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Abstract

Automated systems for disease identification have the potential to streamline the patient
diagnosis process and provide insight to physicians. Exploratory studies have developed
such systems for tuberculosis (TB) which rely on the cough audio signal produced by
patients to determine, with the use of statistical classifiers, if they may have TB or not.
Although these studies were small and the algorithms developed rudimentary, promising
results were achieved. In this study, we build upon existing work and investigate the
application of various deep learning -based approaches for TB cough classification. Since
such systems would eventually be deployed in a multitude of environments and to increase
the size of the dataset which is useful for model development, we combine the datasets
used in previous studies. Multiple classifiers are developed, which include architectures
based on bidirectional long short-term memory networks (BiLSTM), convolutional neural
networks (CNN), attention and transformers. Additionally, the application of various
large pre-trained models (ResNet, Audio Spectrogram Transformer and wav2vec2.0) to TB
cough classification is investigated. Moreover, we develop a unique cough classification pre-
training task to better initialise model parameters. Substantial classification performance
improvements are observed compared to the previous best methods. In particular, the
pre-trained BiLSTM architecture achieved relative improvements in AUC and EER of
9.33% and 64.67% respectively compared to the baseline system. More generally, the
use of pre-training almost always improved the performance of these metrics, and always
lead to better generalisation, observed by a reduction in metric standard deviation across
evaluation sets. Due to the cross-validation procedure used during development, the
choice of decision thresholds was sub-optimal, which subsequently lead to poor sensitivity
and specificity. This was typically worse with pre-training. However, even when using
oracle decision thresholds, classifiers were unable to reach the WHO standards for such a
diagnostic tool. Additionally, we conduct a brief investigation into patient identity as a
confounding factor during training and subsequent deep learning-based mechanisms to
inhibit its learning. Whilst we present clear evidence that models learn the identity of
patients in conjunction with the underlying TB signal, its removal does not significantly
impact performance. Lastly, using insights from feature importance experiments, attention
weights analysis, and adversarial synthesis we provide clues regarding the origin and
characteristics of the learnt TB signal in cough. Specifically, we use these methods to
identify the most important frequency bands for classification, the importance of certain
temporal regions in cough, and the distinct spectral characteristics between idealised TB
and non-TB coughs.

ii

Stellenbosch University https://scholar.sun.ac.za



Uittreksel

Geautomatiseerde stelsels vir siekte-identifikasie het die potensiaal om die pasiëntdiagnose-
proses meer vaartbelyn te maak en insig aan dokters te verskaf. Verkennende studies het
sulke stelsels vir tuberkulose (TB) ontwikkel wat staatmaak op die hoes-klank wat deur
pasiënte geproduseer word om, met die gebruik van statistiese klassifiseerders, te bepaal of
hulle moontlik TB het of nie. Alhoewel hierdie studies klein was en die algoritmes rudi-
mentêr ontwikkel het, is belowende resultate behaal. In hierdie studie bou ons op bestaande
werk en ondersoek ons die toepassing van verskeie diepleer-gebaseerde benaderings vir
TB-hoesklassifikasie. Aangesien sulke stelsels uiteindelik in verskeie omgewings ontplooi
sou word en om die grootte van die datastel wat nodig is vir modelontwikkeling te vergroot,
kombineer ons die datastelle wat in vorige studies gebruik is. Veelvuldige klassifiseerders
word ontwikkel, wat argitekture insluit wat baseer is op “bidirectional long short-term
memory networks” (BiLSTM), “convolutional neural networks” (CNN), “attention” en
“transformers”. Daarbenewens word die toepassing van verskeie groot vooraf-opgeleide
modelle (ResNet, Audio Spectrogram Transformer en wav2vec2.0) op TB-hoesklassifikasie
ondersoek. Boonop dit, ontwikkel ons ‘n unieke hoesklassifikasie-voorafopleidingstaak
om modelkomponente beter te inisialiseer. Aansienlike klassifikasie prestasieverbeterings
word waargeneem in vergelyking met die vorige beste metodes. In die besonder het die
vooraf-opgeleide BiLSTM-argitektuur verbetering behaal in AUC en EER van 9.33% en
64.67% onderskeidelik in vergelyking met die basislynstelsel. Oor die algemeen het die
gebruik van vooropleiding byna altyd die prestasie van hierdie maatstawwe verbeter, en het
altyd gelei tot beter veralgemening. Dit is waargeneem deur ‘n vermindering in metrieke
standaardafwyking oor die evalueringsstelle. As gevolg van die kruisvalideringsprosedure
wat tydens ontwikkeling gebruik is, was die keuse van besluitdrempels sub-optimaal, wat
vervolgens gelei het tot swak sensitiwiteit en spesifiekheid. Dit was gewoonlik slegter met
vooropleiding. Selfs wanneer orakelbesluitdrempels gebruik word, kon klassifiseerders egter
nie die WGO-standaarde vir so ‘n diagnostiese hulpmiddel bereik nie. Daarbenewens
doen ons ‘n kort ondersoek na pasiëntidentiteit as ‘n verwarrende faktor tydens opleid-
ing en daaropvolgende diepleer-gebaseerde meganismes om die leer daarvan te verhoed.
Alhoewel ons duidelike bewyse aanbied dat modelle die identiteit van pasiënte leer in
samewerking met die onderliggende TB-klanksein, het die verwydering daarvan nie ‘n
noemenswaardige impak op prestasie nie. Laastens, deur gebruik te maak van insigte
van kenmerkbelang-eksperimente, aandaggewigte-analise en teenstrydige sintese, verskaf
ons leidrade aangaande die oorsprong en kenmerke van die aangeleerde TB-klanksein in
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iv Abstract iv

‘n hoes. Spesifiek, ons gebruik hierdie metodes om die belangrikste frekwensiebande vir
klassifikasie te identifiseer, asook die belangrikheid van sekere temporale streke in ‘n hoes,
en die duidelike spektrale kenmerke tussen ‘n gëıdealiseerde TB en ‘n nie-TB hoes.
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Chapter 1

Introduction

Tuberculosis (TB) is a highly infectious disease. In 2021, 10 million people were reported
to have developed tuberculosis (TB), of whom 1.5 million died. As a result, TB was the
second most lethal infectious disease globally ranking above HIV/AIDS and just below
COVID-19 [9]. The majority of TB cases occur in developing nations where access to
public health care is limited by complex socio-economic factors, making it difficult to
identify and control the spread of the disease, and resulting in patients receiving improper
care [10].

Current TB diagnosis tools are costly and typically require specialised skills and
infrastructure to apply. The developing world’s primary health care facilities often lack
the required funds to employ such diagnostic techniques needed for rapid screening and
have to rely on more time-consuming and rudimentary (but cost-effective) methods such
as sputum analysis [9]. This results in long diagnosis lead times, allowing TB outbreaks to
spread rapidly through communities. As such, there is a need for a low-cost, rapid TB
screening method which can be used to identify patients who are likely to be TB positive
and refer them for more robust confirmatory testing.

Cough is one of the most predominant symptoms of respiratory diseases. Due to the
assortment of pathological and physiological conditions that can cause cough, it is useful
to be able to distinguish between each ailment’s cough characteristics. Since the invention
of the stethoscope, the sound of the lungs, particularly when coughing, has been used as a
diagnostic tool for respiratory diseases by physicians [11]. Whilst the analysis of cough is
usually a manual process which relies on the physician’s experience, automated analysis of
cough provides a potential avenue for faster and more accurate diagnostics. Through both
spectral and time domain analysis, it has been demonstrated that cough can provide insight
into the characteristics of the lungs under different respiratory conditions [1]. Although
published research covering automatic cough classification is currently limited, some
studies have shown promising results in distinguishing between wet and dry coughs [12–14],
classifying pneumonia [15,16], and more recently detecting COVID-19 [17–20].

TB is predominately a respiratory disease, typically resulting in patients developing a
chronic cough. Despite no humanly audible difference, it has been shown in the literature
that it is possible to distinguish between the coughs of TB patients and healthy controls
by utilising simple statistical classifiers [2]. More recently, these same methods have been

1
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2 1.1. Research Motivation 2

evaluated on a dataset that aims to mimic real-world conditions, whereby coughers all
suffer from some lung ailment that is in some cases TB [3].

1.1. Research Motivation

Previous TB cough classification studies largely focused on applying simple linear classifiers.
These classifiers required fixed dimensional inputs, which were achieved by computing the
frame-wise average of an acoustic feature vector and thus disregarded temporal information.
Whilst these systems demonstrated that they can perform surprisingly well, a thorough
investigation has not been conducted into the application of more sophisticated approaches
which retain and utilise the temporal characteristics of cough. Deep learning -based systems,
which achieve state-of-the-art performance in many other acoustic-based problems, can
learn highly non-linear relations in the feature space, and in some architectures, are designed
to specifically capture time-dependent information. As such, we aim to investigate the
application of deep learning architectures to TB cough classification and compare their
performance to the best methods used in the literature.

Moreover, the experimentation presented in the literature was conducted with datasets
collected from a single recording domain, and as such do not test how classifiers generalise
to multiple recording conditions. This is an important consideration when aiming to use
such a classifier in a real-world scenario, where such a diagnostic tool will be used in a
variety of circumstances. Consequently, we conduct experiments using a dataset comprising
cough recordings collected from two domains (a combination of the datasets presented in
the literature) to contribute toward a better understanding of classifier performance in
such a scenario.

Very little is known concerning what distinguishes seemingly similar coughs originating
from TB-positive and TB-negative patients. Analysis of the feature space that is learnt
to be important by classifiers when distinguishing between such coughs may provide
useful insight for researchers and aid in the design of systems in future work. As such we
investigate techniques that aim to provide such insights.

1.2. Project scope and contributions

The scope of this project is limited to the application of the selected deep learning -based
architectures to TB cough classification and comparing them to the previously used best
methods. The investigated systems do not necessarily need to improve upon systems
developed before this work. Whilst some work will be conducted to determine distinct
characteristics of a TB cough, this is not a primary focus, and as such is not rigorously
investigated.
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3 1.3. Published outputs 3

This study contributes to an investigation into deep learning -based systems for
TB cough classification. These include long short-term memory networks (LSTMs),
convolutional neural networks (CNNs), attention, transformers and three large pre-trained
networks. Some of these architectures substantially improve upon previously best methods.
In addition, we investigate the application of a pre-training task to these investigated
architectures and show it generally improves both model generalisation and performance
for TB cough classification. We conduct a brief investigation into the impact of patient
identity information present in cough on model generalisation during training. This
includes the application of various techniques to inhibit the learning of patient identity
through network adaptations and additional loss functions, concluding that its impact on
performance is insubstantial. Further contributions include an adversarial technique used
to synthesise idealised cough feature representations which are subsequently used to infer
important characteristics of cough learnt to be important for classification. Additionally,
a brief analysis of the important temporal regions in cough for classification is presented.
Aspects of this work have been published in Interspeech 2022 [8], which can be found in
Appendix A.

1.3. Published outputs

The following peer-reviewed conference paper has resulted from the work presented in this
thesis:

• G. Frost, G. Theron, and T. Niesler,“TB or not TB? Acoustic cough analysis for
tuberculosis classification,” in Proceedings of Interspeech, 2022, pp. 2448–2452.

1.4. Thesis overview

This thesis is structured as follows. Chapter 2 provides a brief review of TB and the
literature concerning cough analysis and classification, with emphasis on past studies
completed on TB cough classification. An introduction to works of interest in other
audio-processing domains is also provided. Chapter 3 introduces fundamental background
in deep learning concepts and building blocks for the neural network -based architectures
used in this work, namely feed-forward neural networks (FNNs), CNNs, recurrent networks
(LSTMs), attention, and transformers. Additionally, an explanation of the acoustic feature
representations chosen to be investigated is provided. Chapter 4 contains a detailed
description of all data used in this work, which includes how data from previous studies
was combined into the set used herein, and the composition of the dataset used for
the auxiliary pre-training task. This is followed by detailed descriptions of pre-trained
architectures considered in this study presented in Chapter 5. The details of the application
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of deep learning -based architectures to TB cough classification are presented in Chapter
6, which includes each investigated architecture, experiments, and experimental setup.
The results of these experiments are presented in Chapter 7. An investigation into patient
identity as a confounding factor in past TB cough classification systems is presented in
Chapter 8, in addition to experiments which investigate the effect of inhibiting a classifier’s
ability to learn patient identity. Chapter 9 contains an analysis of the acoustic signature of
cough which utilises, among other techniques, synthesised idealised cough representations
with respect to trained systems. Lastly, Chapter 10 provides a summary of the work
presented in this study, conclusions and an outlook on future work.
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Chapter 2

Literature review

Cough is one of the most predominant symptoms of respiratory diseases. Due to the variety
of pathological and physiological conditions that can cause cough, it is useful to be able to
distinguish between each ailment’s cough characteristics. However, many conditions result
in acoustically similar coughs - making it challenging to correctly identify ailments without
further testing. To this end, attempts have been made to leverage machine learning to
automatically learn nuanced differences indiscernible to the human ear and classify coughs
accordingly.

In this chapter, we first give a brief overview of the tuberculosis disease and describe
typical symptoms and diagnostic tools. We then broadly discuss work completed in
cough classification and describe the two previous studies that investigated TB cough
classification in detail. Lastly, studies of interest and inspiration that are not directly linked
to cough classification, but rather other acoustic tasks, are described. When discussing
previous works (unless deemed necessary for immediate context) we do not describe exact
architectures, feature extraction methods, or evaluation metrics in detail. However, aspects
of the aforementioned that are of interest to this study are described in more detail in
subsequent chapters. This includes relevant deep learning methods and acoustic feature
vectors (Chapter 3) and evaluation metrics (Chapter 6).

2.1. Tuberculosis

TB is a highly infectious disease. In 2021 10 million people were reported to have TB,
of whom 1.5 million died. These cases disproportionately occur in developing nations,
with the majority of cases taking place in the densely populated regions of India, China,
South East Asia and Africa [9]. In South Africa, it is estimated that almost 80% of the
population is infected with latent TB, which refers to TB bacteria present in their bodies
but asymptomatic with a chance of developing into active TB [21]. Further, in 2021 the
World Health Organisation (WHO) estimated that there were at least 340, 000 active TB
cases in South Africa (3.3% of the total active cases in the world) of which 55, 000 resulted
in deaths, a mortality rate of 16% [9].

5
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2.1.1. Pathology and transmission

Infection occurs when tubercle bacilli (the bacterium that causes TB) carrying droplets
are inhaled and reach the lung’s alveoli (nodules that branch off the bronchi responsible
for re-oxygenating blood). The tubercle bacilli multiply and spread through lymphatic
channels and the bloodstream, resulting in the development and facilitating the spread of
TB bacteria throughout the body where the disease overcomes the immune system [22].

2.1.2. Symptoms and diagnosis

TB can affect a host of different parts of the body, resulting in the potential for multiple
parallel infection sites. However, it is most common for TB to occur in the pulmonary
system (lungs), resulting in patients developing a characteristic cough. The more rare
extrapulmonary TB occurs when bacteria infect sites outside the lungs, which include the
larynx, lymph nodes brain, kidneys, bones and joints. It is typical for extrapulmonary TB
to accompany pulmonary TB in HIV patients [22].

Since TB can present itself with a variety of symptoms, there are several methods
for diagnosing TB. The most common in South Africa is the analysis of sputum samples,
skin tests, and chest X-rays. Sputum samples are viewed under a microscope, which even
with a trained expert, has an accuracy 50 − 60% [23]. Skin tests are used to test the
sensitivity of a patient to the TB virus by injecting a small amount of tuberculin into the
patient’s arm. An analysis is conducted when the patient returns to the testing centre a
few days later and requires a large degree of expertise to interpret the results, owing to
the numerous factors that influence the outcome of the test (age, other illnesses present
in the patient and immunological status) [24]. The more popular chest X-rays are used
to detect the presence of TB manifestations in the lungs in an effective and fast manner.
However, they require expert doctors to interpret results and expensive equipment, and
can only detect pulmonary TB [25]. Lastly, an accurate, but substantially more expensive
diagnostic tool are polymerase chain reaction (PCR) tests which identify DNA sequences
associated with TB from a sputum sample. However, with each test costing R150 and
an initial investment of R2.5 million required for the necessary lab equipment, it is not
practical for large-scale screening [26].

2.2. Cough classification

Cough is a prevalent symptom of pulmonary disease, and is typically used in conjunction
with other clinical information to diagnose the cause of illness. However, this usually
subjective process leaves room for large degrees of error. Despite this, the use of cough in
automated systems to aid in the precise diagnostics of pulmonary diseases is a largely under-
researched field. Whilst [27] did not directly investigate cough, they demonstrated the
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possibility of airway pathology diagnosis through acoustic probing - indicating a difference
in spectral response depending on the disease. Through both spectral and time domain
analysis, [1] demonstrated that cough can provide insight into distinct characteristics of
the lungs under different respiratory conditions. Whilst there is limited material on cough
classification, a few studies have shown promising results. By combining both clinical data
and coughing sounds, success has been achieved in distinguishing between wet/dry coughs
- an important distinction in paediatric treatment [12–14]. Another body of work has
focused on the classification of pneumonia in children suffering from a range of repository
illnesses, concluding cough contained critical information on the lower respiratory tract
relevant to accurate diagnosis [15, 16]. More recently, the abundance of COVID-19 related
cough data being collected has enabled more sophisticated machine learning approaches to
be applied to cough classification - with varying degrees of success [17–20]. We elaborate
on each body of work in the sections that follow, and then present a summary of important
overarching themes deduced from these works.

2.2.1. Acoustic probing

Whilst not strictly cough classification, [27] was able to determine easily transmittable
frequencies that corresponded to certain airway pathology by introducing a controlled
acoustic signal into the mouths of patients. In particular, by inputting a ramp of pure
tone signals into patients’ airways and measuring the response, the authors determined
strong transmission at 650Hz for all subjects, whilst only healthy non-smokers had strong
transmission at 2.5khz. Further detailed analysis indicated that lower frequency resonance is
determined by characteristics of the trachea and bronchi whilst higher resonant frequencies
are generated in the mucus-lined middle airway, which is typically where diseases manifest.
The authors hypothesised that the dampening effect of increased mucus was the cause for
decreased resonance at 2.5khz for subjects that were ill or smoked.

2.2.2. Analysis of cough

In [1], a thorough investigation was conducted into the characteristics of cough resulting
from various lung ailments. Distinct differences in physiological and pathological coughs
were observed. Power spectra from the former conformed to an exponential decay with an
increase in frequency, whilst a linear decay was observed for the latter. Moreover, unique
cough sound patterns from pathological conditions (bronchitis, laryngitis and tracheitis)
were observed - indicating the potential for a distinction between acute chronic respiratory
diseases based on the temporal nature of cough.

In addition to analysing the differences between cough sounds, the relationship be-
tween airflow changes measured from the mouth and the cough sound creation was also
investigated. Typically, a cough is characterised by two high-energy bursts in quick
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Figure 2.1: An illustration a cough and the corresponding region of the respiratory
system from which it originates from. Observe how the initial sound originates from the
lung airways (bronchi) whilst the second is as a result of reverberation in the voice box
(Larynx). Reproduced from [1].

succession as illustrated in Figure 2.1. Motivated by peak values and differing vibrations
in airflow curves, it was deduced that sound corresponding to the first peak in energy
carries information regarding the pathological condition in airways peripheral to the level
of the tracheal bifurcation whereas the second sound gives more information about the
laryngeal area (around the larynx). The intermediate time between the two explosive
sounds contains information regarding the trachea. For clarity, these areas are labelled in
Figure 2.1.

2.2.3. Wet/Dry

Coughs are typically categorised into two groups: ‘Wet’ and ‘Dry’. This important
distinction is useful in the diagnosis of respiratory diseases, for example, pneumonia (wet)
and bronchiolitis (dry). The distinct difference between the two categories is a result of the
presence (or absence) of mucus and the resulting change in acoustic signature. Typically,
this distinction is made by a physician in an initial consultation period which afterwards
the cough characteristic is not monitored. Approaches to automating this classification
process aim to minimise subjectivity and enable long-term monitoring of a patient’s cough
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as treatment progresses. For instance, the progression of a wet cough to a dry cough could
indicate an improved condition.

Whilst there is some work focused on feature extraction for manual classification [28,29],
the authors of [14] were the first to attempt to automate wet/dry cough classification.
They proposed a logistic regression (LR) classifier that utilised a feature vector consisting
of several measurements: bispectrum score, non-gaussianity score, formant frequencies,
log energy, zero-crossing rate, kurtosis and mel-frequency cepstral coefficients (MFCCs).
They utilised a dataset consisting of 46 patients (178 individual cough episodes) diagnosed
with diseases such as asthma, pneumonia, bronchitis and rhinopharyngitis. By performing
greedy feature selection, an optimal subset of the original feature set was determined
(23 features) and the resulting classifier achieved in a mean sensitivity and specificity of
79± 9% and 72.7± 8% respectively. Whilst the authors do describe a dataset partitioning
strategy similar to k-fold cross-validation, they only ever mention train and test set splits.
With the omission of any development or validation set, the validity of their results is
brought into question. This body of work was furthered in [13] by utilising a larger dataset
(76 patients), whereby explicit development (leave-on-out cross-validation (LOO CV)),
and test strategies were described. Sensitivity and specificity of 84% and 76% respectively
were reported.

2.2.4. Pneumonia

childhood pneumonia results in the death of 700,000 children around the world each year -
the majority of which occur in underdeveloped nations [30]. In these regions, pneumonia
outbreaks are often managed by community workers who lack the professional healthcare
training required to adequately administer a timely diagnosis and provide the required
treatment. Being a disease that resides in the lower respiratory tract, a key symptom of
pneumonia is cough. As such, a small body of research exists to investigate the efficacy of
automated pneumonia classification from recordings of a patient’s cough.

The authors of [16] gathered a large dataset consisting of 91 paediatric patients, of
which 63 had pneumonia and 28 had some other lung ailment (bronchiolitis, asthma,
bronchitis, pharyngitis and laryngomalacia). The study was able to demonstrate that the
automatic classification of pneumonia with cough sounds alone is feasible. A LR classifier
was developed that utilises the exact feature set as described in Section 2.2.3 and the
same optimal feature selection process. Whilst an investigation was also conducted into
classification using both acoustic and clinical features, utilising cough alone a sensitivity
and specified of 94% and 75% was achieved respectively.

This was furthered in [15], whereby a feed-forward neural network (FNN) was developed
to perform the classification of pneumonia and asthmatic coughs, Once again using a
similar feature vector as described by previous works. A small dataset consisting of 18
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patients was used in combination with a LOO CV strategy to train and test the model. No
distinction between a development and test set is made, resulting in a degree of uncertainty
in their results. Nevertheless, sensitivity and specificity of 88.9% and 100.0% were reported.

2.2.5. COVID-19

Recently, with the SARS-CoV2 coronavirus (referred to as COVID-19) being declared
a global pandemic by the WHO, large data collection efforts have been conducted to
better understand its characteristics. Since COVID-19 is a disease that largely affects the
respiratory system, these schemes have resulted in an abundance of cough recordings also
being collected. This large increase in available data has enabled the application of more
sophisticated data-driven machine learning methods for cough classification, namely, deep
learning.

In [17] two datasets were used: the large Coswara dataset which collected cough
recordings around the globe through an online portal (1171 participants) [31] and the much
smaller Sarcos dataset collected in South Africa (44 participants). Due to its size, Sarcos
was only used to simulate testing the developed classifiers on unseen recording domains
and was not used for training or development. To address the large dataset imbalance
between healthy and sick individuals (1027 vs 92 for Coswara and 26 vs 18 for Sarcos) the
synthetic minority over-sampling technique (SMOTE) was applied. SMOTE synthesises
new examples from the under-sampled class by randomly sampling an authentic sample
and taking the random weighted average between one of its k nearest samples of the same
class (typically determined by Euclidean distance) [32]. This is described in Equation
2.1, where XXX is the selected sample, XXXk is one of the similar samples and u is uniformly
distributed between 0 and 1.

XXXSMOTE = XXX + u · (XXXk −XXX) (2.1)

Several of architectures were experimented with, including various shallow linear
models (LR, k-nearest neighbours (KNN) and support vector machines (SVM)) and
deep neural networks, which included FNNs, convolutional neural networks (CNN), long
short-term memory networks (LSTM) and ResNet-50 (a popular CNN-based architecture
pre-trained on an image classification task [4]). The neural architectures all outperformed
their shallow counterparts. Using a nested k-fold cross-validation technique, the authors
optimised feature hyper-parameters (number of MFCC coefficients, Fourier transform
length, temporal axis length) in addition to architecture parameters (batch size, learning
rate, kernel size, model depth, etc.). Notably, through this strenuous process, the ResNet-
50 architecture was able to achieve specificity and sensitivity of 98% and 93% respectively
with an area under the receiver-operator characteristic curve (AUC-ROC, referred to as
just AUC hereafter) of 0.976 when trained and evaluated on the Coswara dataset. In
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contrast, LR which is state-of-the-art in other domains achieved a sensitivity and specificity
of 57% and 94% respectively with an AUC of 0.736. When tasked with applying these
developed architectures trained on Coswara to an unseen recording domain, namely the
Sarcos dataset, the LSTM architecture performed best achieving a specificity, sensitivity
and AUC of 73%, 75%, and 0.7790 respectively. This was further improved by performing
a sequential forward search (SFS, a feature optimisation process described in more detail
in later sections [33]) to 96%, 91%, and 0.9380 respectively. Such impressive performance
indicates that given sufficiently large quantities of data, deep architectures can improve
upon the best methods used in the aforementioned other cough classification domains.
Furthermore, the ability to transfer knowledge learnt from one recording domain to another,
and still achieve strong performance indicates that given enough data models can generalise
when tasked with cough classification.

The use of pre-training to improve the performance of these architectures was investi-
gated in [34], whereby these same networks as those in [17] were trained on an auxiliary
task before being fine-tuned for TB cough classification. A dataset consisting of 10 hours
of various environmental noises (speech, sneezing, laughing, and throat cleaning) and
coughing sounds was constructed and subsequently used in the pre-training step whereby
models were trained to distinguish between coughs and the other environmental sounds.
Marginal classification improvements were observed when deep models were evaluated
on the in-domain Corswara dataset. However, for the much smaller Sarcos dataset, sub-
stantially improved performance was observed compared to non-pre-trained counterparts.
Another important observation of the effects of pre-training was its impact on the reduc-
tion of the standard deviation across outer-fold test set metrics. This indicates that the
pre-training of cough classifiers allows for better generalisation, which is an important
factor should such classifiers be used as a screening tool.

Further demonstration of neural network’s ability to learn effective latent representations
for COVID-19 cough classification was shown in [19] with a dataset comprised of 3, 621
participants of which 2, 001 were confirmed to have the disease collected in India. The
authors did not investigate the performance capabilities of different architectures but
rather opted to optimise a single architecture based on ResNet-18 [4] and benchmark it
against various shallow baselines (LR, SVM, and gradient-boosted trees). During training,
two-second-long segments of audio were randomly sampled from a given patient’s recording
and a log mel-spectrogram was extracted (64 mel filter bins) which served as input to the
CNN-based model. Numerous techniques were employed to increase model performance.
First, background noise sampled from the ESC-50 dataset [35] (consisting of 2000 recordings
of 50 classes) was superimposed on cough recordings. Next, a popular spectrogram-based
augmentation technique is utilised - SpecAugment. SpecAugment performs frequency and
time masking, and is been shown to improve model performance in a variety of acoustic
tasks [7]. Additionally, the authors utilised a pre-training scheme. In a similar fashion
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to [34], the proposed architecture was trained on cough classification task combining the
Freesound [36], FluSense [37] and Coswara datasets. Lastly, to prevent mislabelled coughs
(due to the inaccuracies of COVID-19 testing) from hindering model performance, label
smoothing (a logit regularisation technique) was applied. The classifier’s performance was
comparably modest compared to results presented in [17,34], but the deep architecture
still outperformed its shallow counterparts. The authors also acknowledged and presented
the effects of label smoothing on model performance. In addition to resulting in an AUC
increase from 0.65 to 0.68 (indicating label noise was hindering model performance), it
drove the decision threshold substantially closer to 0.5 (0.02 to 0.422) reducing the model’s
class bias. The developed model was also applied to a case study which demonstrated that
when using their classifier as a triage tool and selecting a threshold such that the model
has high specificity (90%), they can increase testing capacity by 43% when assuming a
disease prevalence of 5%.

Using an approach that deviates from previously discussed work, [20] proposed a method
to aggregate both audio and clinical data to improve cough classification performance.
Instead of extracting MFFCs, a continuous wavelet transform was performed. Wavelet
transforms balance frequency resolution and time resolution by constructing an array of
varied in length windowing functions to capture frequency information at specific bands
(smaller windows for high frequencies, and larger windows for low frequencies). This is
accomplished by replacing the typical windowing function with the complex conjugate of
a wavelet function Φ, where s is a scaling factor, described in equation 2.2. Intuitively,
smaller values for s result in a tighter wavelet, resolving higher frequency components
with tighter time resolution, whilst larger values resolve lower frequency components with
tighter frequency resolution.

F (τ, s) = 1√
|s|

∫ ∞

−∞
f(t)Φ∗

(
t− τ

s

)
dt (2.2)

The resulting scalogram served as the input to a CNN pre-trained as an autoencoder.
During classification fine-tuning, the output of the encoder was concatenated with an
encoding of available clinical data and fed into an FNN for classification. Experiments
were conducted using COUGHVID [38], a large corpus of COVID-19 cough data. 1, 116
samples were used for training, whilst the test set consisted of 340 patients. The authors
do not differentiate between development and test sets, which brings the robustness of
their results into question. Nevertheless, specificity, sensitivity and precision of 0.81, 0.43
and 0.56 were reported respectively.
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2.2.6. Summary

In the preceding sections, we presented studies that investigated the automated classifica-
tion of coughing sounds for the purpose of disease classification. The specific classification
tasks included wet/dry cough distinction, pneumonia detection, and COVID-19 detection.
All three tasks show promising results, as highlighted by the performance summary of each
presented in Table 2.1. Whilst results presented for wet/dry and pneumonia classification
is promising, it is hard to make conclusions regarding the robustness of their results due
to the small sizes of the datasets used. In contrast, COVID-19 studies used much larger
datasets, increasing the robustness of their results. It is thus encouraging to see such
impressive performance being reported which further serves as a strong indicator that
cough can be used for respiratory disease classification. We also observe an overwhelming
prevalence of MFCC features, despite these having been designed for speech processing.
This potentially indicates that cough shares some similar characteristics to speech in
relation to how information is carried in the frequency spectrum.

Table 2.1: Summary of performance metrics (sensitivity and specificity) for proposed
models in various cough classification literature described in this section. Table entries
marked with a ‘*’ denote experimental setups that have not distinguished between a test
and a development set.

Disease Study Model Feature Sens Spec

Wet/Dry* [14] LR MFCCs + metadata 0.79 0.73
Wet/Dry [13] LR MFCCs + metadata 0.84 0.76
Pneumonia [16] LR MFCCs + metadata 0.94 0.75
Pneumonia* [15] FNN MFCCs + metadata 0.94 0.75
COVID-19 [17] ResNet-50 MFCCs 0.93 0.98
COVID-19 [17] LSTM (pre-trained) MFCCs + SFS 0.91 0.96
COVID-19 [34] ResNet-50 (pre-trained) MFCCs 0.98 0.97
COVID-19 [34] ResNet-50 (pre-trained) MFCCs 0.96 0.72
COVID-19 [19] ResNet-18 (pre-trained) mel-spectrogram 0.90 0.31
COVID-19* [20] CNN (pre-trained) scalogram + metadata 0.81 0.43

2.3. TB cough classification

We will now discuss the two studies that comprise the previous work completed on TB
cough classification. As previously highlighted, there are several established clinical
methods for detecting TB. However, these diagnostic tools either suffer from high cost, or
from the need for highly specialised physicians or equipment. These limitations make them
less accessible to high-risk populations and were the motivation for the first exploratory
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work into the viability of using coughs for automatic TB classification [2]. This was
later extended, whereby the same model architectures were applied to a dataset collected
in an environment more representative of the intended real-world deployment of such a
system [3]. Since both of the aforementioned studies share nearly identical structures, we
will detail the process followed by both in parallel.

2.3.1. Datasets

Whilst we give a more in-depth description of the datasets used in both studies in Chapter
4, we give a brief overview now for clarity. Due to the difficulty of data acquisition
in clinical studies, both datasets are rather small. The data used in [2] (referred to as
the Brooklyn dataset) consists of coughs collected from confirmed TB-positive patients
and from healthy controls (people who were not sick). Recordings were collected in a
noise-isolated recording booth with a field recorder, at a sampling rate of 48kHz (later
down-sampled to 44.1kHz for feature extraction). In total, coughs from 38 people were
collected resulting in 6.23 minutes of coughs audio. In contrast, the dataset used in [3]
(referred to as the Wallacedene dataset) was collected at a primary healthcare clinic, and
all participants were suspected of having TB at the time of recording. The definitive
diagnosis for each patient was determined subsequently by laboratory sputum analysis.
Recordings were made in a booth with minimal noise isolation adjacent to a busy road,
and captured background noises such as chatter, vehicle engines, music and traffic. The
audio was recorded with a field recorder with a sample rate of 48kHz, which was later
down-sampled to 44.1kHz for feature extraction. In total there were 51 participants in the
study, yielding 10.27 minutes of coughs.

2.3.2. Experimental setup

We now detail the experimental setup used in both studies, which includes the classification
procedure, feature extraction and experimental method.

Classification

Both [2] and [17] investigated several different shallow classifiers. These included LR, hidden
Markov models (HMMs), SVMs, KNN and decision trees. In addition to the aforementioned,
FNNs, LSTMs and CNNs were investigated in the second study however their application
was largely unsuccessful. For those classifiers that had adjustable architectural hyper-
parameters, different configurations were explored through a computationally expensive
grid search. Due to the simple nature of these classifiers (with the exception of the deep
networks explored in [3]), sequences of acoustic feature vectors (such as those extracted
when computing MFCCs) could not be directly processed by the models. Instead, the
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classification of a patient’s single cough was performed by first segmenting it into N

segments, and then classifying the time-averaged acoustic feature vector of each segment,
disregarding any temporal information. Then, the computed probabilities for all segments
for each cough were averaged to yield a TB index score (TBI1), which represents the
probability of a patient having TB. The equation to compute TBI1 is shown below, where
N1 is the number of segments across all acoustic feature representations of all the coughs
for a given patient and xxx ∈ Rd is the acoustic feature vector for a single segment (where d

is the dimensionality of the acoustic feature vector). It should be noted that [3] in fact
used two scores to perform classification. The additional metric (TBI2) is described in
Equation 2.4, where N2 is the total number of coughs originating from a given patient,
and C is the binary TB label determined by comparing the mean frame-wise predicted
probabilities to decision threshold γ.

TBI1 = 1
N1

N1∑
i=1

PTB(xxxi) (2.3)

TBI2 = 1
N2

N2∑
i=1

C (2.4)

The final prediction of a patient’s TB status is made by utilising the index score(s) as
shown below, where γ is a decision threshold determined while developing the model.

TB =


1 TBI1 ≥ γ (used in [2] and [3])
1 TBI2 ≥ 0.5 (used in [3])
0 otherwise

(2.5)

Feature extraction

In both studies, only two acoustic feature vectors are investigated, namely MFCCs
and linear filter bank (LFB) energies. The particulars of these two acoustic feature
representations are detailed in later chapters, but both attempt to emphasise important
frequency information whilst reducing dimensionality, with the former being specifically
designed for speech-processing applications. Both rely on the short-time Fourier transform
(STFT) and as such both the frame length and hop length are key hyper-parameters to
optimise during development. Increasing the former increases frequency resolution at
the expense of time resolution, while reducing the latter improves time resolution. The
relationship between the two is investigated in both studies, with frame and hop lengths
ranging from 256 and 4096. The authors also optimise the dimensionality of each acoustic
feature vector by varying the number of filters for LFB energies or the number of cepstral
coefficients for MFCC’s.

The number of segments N into which a cough was divided was also investigated. N
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ranged from 1 (simply representing the mean of the entire acoustic feature vector sequence
of a given cough) to 4. This was motivated by work presented in [1], which showed cough
can be divided into distinct regions, representing different phases of the coughing sound.

Acoustic features were further optimised using SFS, which as briefly mentioned in
the preceding section, performs a greedy search to find an optimal subset of acoustic
features. This is accomplished by initialising this subset to be empty and sequentially
adding the single feature that results in the largest increase in performance. This is
determined by training and evaluating classifiers for each combination of the existing
subset and the remaining candidate features. This process allows for the discovery and
retention of important features for classification, whilst discarding features that result in
decreased performance. By simplifying the feature space and subsequent model complexity,
substantial performance improvements in classification for low-resource tasks are often
achieved. In addition, one can analyse the features selected to be most important and infer
previously unknown trends in the data. For example, it is very useful to know the range
of frequencies deemed to be important for TB cough classification, since the distinction
between a cough that is either TB positive or negative is believed to be impossible with
the human ear.

Development and testing

The experimental setup used in both studies is identical. Due to the small size of each
dataset, and the desire to present more robust results, a nested k-fold cross-validation
strategy is used to both develop and test models. The outer fold is responsible for
train/test splits, whilst an inner fold further splits the respective training set into other
train/development sets. Each outer loop’s inner folds are used to independently select
model hyper-parameters and decision thresholds. The exact setup used is visualised in
Figure 2.2. The outer loop is used to produce test scores for each classifier, whilst inner
loop A is responsible for automatically finding optimal model hyper-parameters, and inner
loop B, which has a larger partition, is responsible for determining the EER which is
subsequently used to select the optimal decision threshold γ.

2.3.3. Results

Although [2] also presents results on models that utilise both cough and clinical data to
distinguish between TB patients and healthy controls, the focus of this study is solely on
cough classification and as such we only present the results of classifiers that utilised cough
alone. In addition, [2] only discusses results for their best classifier, LR, as presented in
Table 2.2. We note that the study finds that MFCCs perform significantly worse than
LFB energies, with relative decreases of 35.0%, 13.7%, 21.3% and 12.3% for sensitivity,
specificity, accuracy and AUC respectively. Performing SFS on the LFB energies improved
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Figure 2.2: The nested k-fold cross-validation strategy used to develop and test classifiers
in [2] and [3]. Reproduced from [3].

Table 2.2: Test set classification performance as presented in [2].

Model Feature Sensitivity Specificity Accuracy AUC
LR MFCC 0.40 0.82 0.63 0.71
LR LFB energies 0.62 0.95 0.80 0.81
LR LFB energies (SFS) 0.60 0.78 0.78 0.95

AUC significantly (from 0.81 to 0.95), whilst deterioration was observed in the other
metrics - indicating that the decision threshold was non-ideal.

In [3] results are presented for several of models and feature hyperparameters. Here,
we only consider the results obtained with their best model (LR) and the corresponding
optimal features (26 MFCCs with velocity and acceleration). We also include the results
for the same model, but using LFB energies as presented in [2]. Unfortunately, results using
the exact configuration in [2] (140 filter banks) were not presented in [3], so we present
the results obtained with 60 filter banks. These are tabulated in Table 2.3. We note that
in contradiction to [2], MFCCs outperform LFB energies. The authors hypothesise that
the reason for this improvement was due to the incorporation of more cepstral coefficients,
increasing the acoustic feature vectors dimensionality, in addition to including coefficients
velocity and acceleration. The reported results are very impressive and meet the WHO’s
requirements for a minimum sensitivity and specificity of 0.9 and 0.7 respectively for
community-based triage testing comfortably [39].
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Table 2.3: Test set classification performance as presented in [3].

Model Feature Sensitivity Specificity Accuracy AUC

LR LFB energies - - - 0.75
LR MFCC - - - 0.86
LR MFCC (SFS) 0.93 0.95 - 0.94

Both studies demonstrated the nuance of the frequency information being learnt for
classification. In [3], it was concluded that models were relying on frequency information
that is typically not resolvable by the human ear (such as frequency bins too closely spaced
together). This was shown by observing that the higher resolution MFFC features (26 or
39 cepstral coefficients), which were not investigated in [2], performed substantially better
than a lower resolution baseline (13 cepstral coefficients). The discrepancy in performance
indicates that the model was relying on the increased frequency resolution afforded by
the former. In [2], by applying SFS to LFB energies and analysing the subsequently
determined optimal features, frequency ranges important for classification were inferred
by inspecting each features corresponding filter banks centre frequency. In particular, the
most important features corresponded to filters with centre frequencies at 48Hz, 79Hz,
236Hz, 550Hz, and 10418Hz. In agreement with [3], it was concluded that some of these
frequencies were spaced too closely together to be discernible by the human ear.

2.4. General acoustic analysis

Cough classification is a highly under-researched field and as such, the literature is quickly
exhausted when searching for potential deep learning architectural inspiration. However,
it falls under the general umbrella of acoustic analysis, and therefore it may be reasonable
to explore seemingly adjacent domains that are more well-researched. There are many
fields that fulfil this criterion (emotion recognition, music synthesis, environmental noise
classification etc.). We choose to provide brief descriptions of notable work in the areas of
acoustic scene classification, keyword spotting (KWS) and automatic speech recognition
(ASR) for potential inspiration in neural network model architectures (and pre-trained
models) that may be relevant to cough classification.

2.4.1. Acoustic scene classification

Typical current approaches to acoustic scene classification rely on end-to-end CNN-
based architectures which learn mappings directly from audio spectrogram inputs. These
architectures have performed well due to their inherent ability to learn hierarchical spatial
information which is well suited to the non-linear frequency and temporal characteristics
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of environmental sounds [40,41]. Since we have already highlighted the application of such
architectures to cough classification, we turn our focus to a more recent development in
the field - the widespread use of transformers.

Whilst we detail the transformer architecture in thorough detail in Chapter 3, in
essence, it is a non-autoregressive sequence model, and consequently allows for much
larger architectures to be trained in substantially less time compared to similar-sized
auto-regressive counter-parts such as recurrent neural networks (RNNs). The authors
of [5] propose a convolution-free audio spectrogram transformer (AST) model, which is
based on the vision transformer architecture (ViT) [42]. Patches of a spectrogram are
encoded via a linear projection which is subsequently arranged as a sequence and fed into
a transformer encoder. By including a positional encoding which contains information
regarding the original location of the patch in the input spectrogram, and by means of the
self-attention performed by the transformer, the architecture is able to learn context-rich
latent image representations suitable for classification. The authors show that the proposed
architecture improves upon all previous state of the art CNN based solutions on datasets
such as AudioSet [43], ESC-50 [35] and Speech Commands [44].

Large transformers such as AST benefit from lots of data, consequently, training such
a large transformer from scratch would not be feasible with the small TB datasets that
currently exist. With the success achieved when fine-tuning large pre-trained out-of-domain
architectures for COVID-19 classification (in particular ResNet), similar success may be
achieved when fine-tuning AST (which has already learned general audio representations)
for cough classification.

2.4.2. Keyword spotting

As opposed to traditional ASR, whereby the transcription of an entire utterance is proposed
(which is generally a computationally expensive process), keyword spotters simply indicate
whether specified keywords are present in an utterance or not. This simplification allows for
KWS models to parameter count to be significantly smaller than their ASR counterparts,
which in turn means a lot less training data is needed for such models to converge to a
local minima, and an overall smaller computational footprint.

One such light-weight and previous state-of-the-art architecture is a recurrent neural
network which combines a CNNs ability to capture local information, an RNN’s ability
to capture long-term time dependencies in the audio data, and an attention mechanism
(further detailed in Chapter 3) to weight the RNN’s outputs according to their temporal
relevance. Specifically, 2D convolutions are performed only along the time axis (by
constraining the kernel to have size 1 along the frequency dimension) to extract short-time
local relations. This is then fed into a set of bidirectional long short-term memory units
(BiLSTMs) to extract long-term dependencies. Finally, this sequence is fed to an attention
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head which outputs a weighted average by attention score of the BiLSTM output sequence
(whereby the key is arbitrarily the vector from the centre of this sequence) which is finally
fed to a fully connected network for classification. By combining these three building
blocks, the authors were able to achieve state-of-the-art results on Speech Commands
(at the time of publication), which was further surpassed by introducing the concept of
multi-head attention into the model [45,46]. Additionally, through analysing the temporal
weightings determined by the attention mechanism, the authors were able to visualise the
location of the keyword in utterance.

The simple combination of neural network building blocks to achieve substantial
improvement compared to the previous best methods is important to consider when
developing our own architectures. Additionally, the use of the attention mechanism to
objectively inspect the temporal regions learnt to be important may be useful when
understanding the signal being learnt by TB classifiers.

2.4.3. Automatic speech recognition

ASR is a well-researched field. This is partly due to the abundance of training data
available for high-resource languages such as English, where it is not uncommon for models
to be trained on hundreds of hours of transcribed audio. Whilst traditional ASR techniques
have broken up the process of performing ASR into multiple stages (feature extraction,
acoustic modelling, lexicons and language modelling), recent work has focused on fully
end-to-end deep learning -based systems, which in some cases perform the ASR task
directly from the audio waveform. Such end-to-end systems are typically large (> 100M
parameters) and require significant computing power and data to train. However, once
these models have been trained, their ability to capture complex latent information allows
the transfer of the model to auxiliary tasks (for example, KWS [6]).

In particular, we pay attention to wav2vec2.0, a self-supervised transformer-based
framework which receives acoustic representations extracted directly from a speech wave-
form using a CNN feature extractor. The model is pre-trained on the LibriSpeech corpus,
containing 960 hours of audio [47], whereby latent representations of speech are learned by
solving a contrastive task. During training, regions of audio are masked and the model is
tasked with identifying the true corresponding quantized latent representation (determined
by passing the same unmasked sequence through the model) of the masked time-step from
a set of distractors (latent representations that do not correspond to the masked time-
step). After this self-supervised pre-training, the model is fine-tuned with labelled data by
attaching a linear layer on top of the network which projects the latent representations into
C classes representing the vocabulary of the given task (in this case individual characters
and special tokens for word boundaries, start, end, and blanks), optimised with CTC
loss [48]. With just 10 minutes of labelled data and a transformer-based character-level

Stellenbosch University https://scholar.sun.ac.za



21 2.5. Summary 21

language model, a word error rate of 4.8% and 8.2% was achieved on the Librispeech test
clean and other sets respectively. These are reduced to 2% and 4% when trained on 100
hours of labelled data.

Despite cough being characteristically different from speech, it has been shown in
previous studies that the important frequency information being learnt lies within the
same bands as speech. Moreover, motivated by the success of transfer learning in other
cough classification studies, a fine-tuned wav2vec2.0 may be able to extract good acoustic
representations for TB cough classification.

2.5. Summary

In this chapter, we reviewed the literature relevant to the objectives of this work. We
began with a high-level description of the pathology and transmission of tuberculosis.
We discussed research that details the acoustic analysis of cough, and literature that
describes cough classification for a variety of respiratory conditions, including wet/dry
cough distinction, pneumonia and COVID-19. In each case, the methods and results of
each work are presented and discussed, and the specific novelties of each are highlighted.
Next, we described in detail previous studies completed on TB cough classification, which
showed that simple linear classifiers achieve promising classification performance. Lastly,
we described work of interest that was not directly related to cough classification, but
rather state-of-the-art applications of machine learning to other acoustic tasks. These
will serve as inspiration for architectures explored in this work which will be detailed in
subsequent chapters. In the next chapter, we will provide background and descriptions
of general deep-learning building blocks and techniques, as well as describe the acoustic
feature vectors used in this work.
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Chapter 3

Background

Whilst previous work in TB cough classification has successfully shown that shallow
classifiers can perform well, similar performance with the use of deep learning architectures
has eluded researchers. Due to the increased size of the dataset used in this work, we place
our focus on using deep architectures that have seen widespread success in the broader
machine learning field. In this chapter we describe architecture building blocks used in this
study, namely: feed-forward neural networks (FNN), convolutional neural networks (CNN),
recurrent neural networks (RNN), attention and transformers. This is then followed
by a summary of basic principles used when training deep neural networks including
optimisation, loss functions, and techniques such as dropout and batch normalisation.
Lastly, we introduce three prominent acoustic feature vectors that will experimented with in
this work. Namely, linear filter bank (LFB) energies, mel-spectrograms and mel-frequency
cepstral coefficients (MFCCs).

3.1. Feed-forward Neural Network

The feed-forward neural network (FNN), also referred to as multi-layer perceptron or fully
connected network, forms the foundation of deep learning. The goal of any classifier is
to best approximate a target output distribution yyy by defining a mapping ŷ̂ŷy = f(xxx;θθθ)
where θθθ are learnt parameters that result in the best mapping. In the case of a FNN, this
mapping is derived by stacking functions such that the output of one becomes the input
to the next: f(xxx) = f (n)(f (n−1)(...f (1)(xxx))). Each function is described as a layer in the
network, where f (1) is the input layer as it directly sees the input xxx, whilst the final layer
f (n) is described as the output layer. The layers between the input and output layers are
not directly exposed to the training sample, and are therefore called hidden layers [49].

Each one of these layers consists of a number of neurons, where each neuron receives
a vector input which is the concatenation of the scalar outputs from all the neurons in
the previous layer, from which it computes a scalar activation, similar to linear regression.
However, unlike linear regression which simply fits a linear function to its input, each
neuron applies a linear function to a non-linear transformation of its input transformed
with some non-linear activation function ϕ (non-linear functions are described in more

22
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detail in later sections in this chapter). The inclusion of the activation function allows
FNNs to fit non-linear functions which capture more complex relationships. To cement
this explanation, we visualise this operation for a single neuron, and then an entire layer in
an FNN. Given the output of the previous layer hhh(l−1) ∈ RMl−1 where Ml−1 is the number
of neurons in the previous layer, the scalar output of mth neuron in the next layer l is

h(l)
m = f (l)

m (hhh(l−1)) = ϕ(wwwThhh(l−1) + b) (3.1)

Where www ∈ RMl−1 and b are learnable weights and bias used to map hhh(l−1) to the non-
linear output. For all the neurons in a given layer in an FNN, this operation can be realised
with a single matrix multiplication, where the vector output of the layer is described as
hhh(l) = f (l)(hhh(l−1);WWW,bbb). The mapping function f (l) is described in Equation 3.2 for a layer
with Ml neurons where WWW ∈ RMl×Ml−1 are the weights of the linear transformation and
bbb ∈ RMl−1 are the biases [49].

hhh(l) = f (l)(hhh(l−1)) = ϕ(WWW Thhh(l−1) + bbb) (3.2)

Intuitively we can see how this is the concatenation of each neurons scalar activation.
The layered structure is further reinforced by visualising a simple FNN in Figure 3.1. The
network consists of an input layer with three neurons which takes an xxx ∈ Rn, this feeds
into a single hidden layer of with two neurons, which subsequently feeds into the output
layer which consists of a single neuron.

Figure 3.1: A simple example of a three layered feed-forward network consisting of an
input layer (yellow), a hidden layer (orange) and a output layer (red). Geen highlights
the input feature vector which is fed into the first layer.
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3.2. Convolutional Neural Network

CNNs are able to extract features in high dimensional spaces using series of low-level
filters which map this information to new latent spaces. Performing this operation enough
times allows for highly complex representations to be learned. This process hinges on
the assumption that the input to the network is image-like, and therefore can constrain
the process by which these latent features are extracted. In particular, information is
not necessarily position dependent and therefore the network should be able to detect it
independently from where it appears. The process by which this accomplished is described
subsequently.

3.2.1. Convolutional layers

Concretely, a convolutional layer utilises filters or kernels that are convolved with its input.
Typically these kernels are much smaller than the input, and the convolution operation
involves moving them over an image in a pre-determined manner. Before providing a
mathematical explanation, we first visualise this operation in Figure 3.2, whereby a single
channel input is convolved with one 2× 2 kernel. The kernel is moved across the input
with a stride of one i.e. it can either move horizontally or vertically by one element
when traversing the input, whereby at each step the aforementioned element-wise product
between the kernel and corresponding overlapped region of the input is computed and
summed - resulting in the activation for those specific coordinates in the input. Through
this process, the network introduces the concept of sparse connectivity and parameter
sharing. Unlike FNNs, where every neuron from the previous layer is used to compute
the activation of every other neuron in the next layer, each output unit of a convolutional
layer is only only connected to relatively few input units. These sparse connections mean
kernels can focus on small meaningful features such as edges in images (or formants
in spectrograms), whilst reducing the number of computations. Since each a kernel
activation is computed at almost every position in the input, CNNs inherit a property
called invariance to translation and parameters of the kernel are shared across the input.
That is, if some bit of information were to appear somewhere unexpected in the input,
the same kernel would be still be able to detect it, and the information would move a
corresponding amount in the output feature space. This is unlike a FNN, which would
have to re-learn the same feature at each possible input location. This phenomena is
visualised in Figure 3.3, whereby a hand crafted 3× 3 kernel (a Prewitt edge detection
filter) is convolved with the input, irrespective of where edges may appear in the input
image, they are represented in the activation map.

In practice, a single CNN layer will have a multi-channel input (for instance the three
channels of an RGB image), and therefore is not typically two dimensional, but rather
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Input
Kernel

Output

* =

Figure 3.2: The output of the 2-D convolution between a 3× 4 input and a 2× 2 kernel.
Each time the kernel is stepped across the input the element-wise product between the
kernel and corresponding overlapped region of the input is computed and summed.

*

Input Image Kernel Feature Map

=
1 1 1

-1 -1 -1
0 0 0

Figure 3.3: A 3× 3 edge detection kernel is applied to an image of a capybara.

a three dimensional tensor, with dimensions Cin ×Win × Hin, where Cin is the number
of input channels, Win is the width, and Hin is the height. In this case, kernels have
also have a third dimension equal to Cin. Additionally, a CNN layer would typically
have and multiple kernels. The output of each kernels convolution however is still a
two-dimensional activation map (Wout ×Hout), which is then stacked along a new channel
dimension together with the other kernels output feature maps from the same layer. As
such, the number of output channels Cout of a CNN layer is equivalent to the number of
kernels in that layer.

Mathematically, the convolution is not actually computed, but rather the cross-
correlation. The computation for a single scalar activation between a kernel and overlaping
region in the input is described in Equation 3.3, where XXX ∈ RWin×Hin is the two dimensional
input and KKK ∈ RM×N is the kernel, (i, j) is the anchor point of the region of overlap in
the input (top left corner), and M and N are the dimensions of the kernel. As previously
indicated, this operation is visualised in Figure 3.2.
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S(i, j) = (XXX ∗KKK)(i, j) =
M∑
m

N∑
n

XXX(i + m, j + n)KKK(m, n) (3.3)

3.2.2. Stride and padding

Aside from the number of filters, there are two other hyper-parmeters that effect the
dimensonality of the activation map. Although we have mentioned stride previously, we
will subsequently describe it together with padding in detail.

• Stride refers to the step size (both horizontal and vertical) with which a kernel
is moved across the input to which it is being convolved. A stride of one ensures
that a kernel is applied to as much of the input as possible, preserving the gran-
ularity of information. However, this can result in large activation maps, and be
computationally expensive. In this case, a larger stride is used.

• Padding is a method to prevent dimensionality reduction when applying convolution
to an input. This is accomplished by artificially increasing the number of convolution
operations that take place (and therefore the size of the activation map) by padding
a boarder of zeros with a specific width around the input.

The effects of both the stride (S) and amount of zero padding (P ) on the output
dimensions Wout and Hout with respect to the inputs dimensions Win and Hin are described
in Equations 3.4 and 3.5 respectively (recall M and N are the width and height of the
kernel).

Wout = Win −M + 2P

S
+ 1 (3.4)

Hout = Hin −N + 2P

S
+ 1 (3.5)

3.2.3. Convolutional block

Typically, the convolutional layer consists of 2 or 3 stages: convolution with the kernels, a
non-linearity and an optional pooling operation. Pooling replaces the output at a certain
location with a summary statistic of neighbouring outputs. For example, in max pooling
the output is reported as the maximum output in a square neighbourhood around it. This
typically makes the model more robust since if a small translation occurs, the values of the
pooled outputs mostly stay the same. However, this comes at the cost of losing the ability
to precisely know where a particular feature is (which in most cases is not of particular
importance). In large architectures, a pooling layer may only be used after a stack of
convolutional layers to prohibit latent feature maps from being shrunk too small. The
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structure of a typical CNN layer is presented in Figure 3.4, whereby we denote the output
of the block as SSS

′ ∈ RC
′
out×W

′
out×H

′
out .

Once a sufficient number of convolutional blocks have been stacked, the extracted
three-dimensional latent feature representations are typically used for a task, for example,
image classification. This requires the use a fully connected layer, which takes a vector as
input. A naive method is to simply flatten feature representation into a vector of shape
C ·W ·H. Another popular technique is to apply a channel pooling layer, whereby a single
1 × 1 kernel is used to pool all channels and hence reduce the feature representation’s
complexity before flattening, resulting in a lower dimensional W ·H vector.

Conv Non-
linearity Pooling

Figure 3.4: Typical structure of a convolutional block, consisting of a convolutional
layer, non-linear activation function, and an optional pooling layer.

3.2.4. Residual connections

When training very deep networks (networks with many layers) gradients tend to vanish as
the loss is back-propagated to earlier layers. For CNNs a widely used mitigation are residual
connections between groups of layers, which act highways for the loss to back-propagate to
earlier layers in the network (parameter updating through back-propagation is explained
in more detail in subsequent sections). A residual connection (or skip connection) for a set
of convolutional blocks is depicted in Figure 3.5 whereby the output of the residual block
is f(XXX) + XXX, where f(.) is the function that describes the operations performed within
the residual block itself.

Conv

Conv

Skip

connection
Residual block

Figure 3.5: Depiction of a residual block and its skip-connection. The input to the
block is summed with the output.
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output encoder

(a) RNN cell.

state encoder

output encoder

state encoder

output encoder

state encoder

output encoder

(b) Unfolded RNN in time.

Figure 3.6: A single RNN cell is shown, as well as an unfolded RNN in time showing
the parsing of state information from previous time steps.

3.3. Long Short-Term Memory Networks

RNNs offer a powerful utility in modelling time dependencies in sequences and have
become baseline systems in many speech-related tasks (voice activity detection, automatic
speech recognition and keyword spotting). We briefly provide a general overview of RNNs
and then describe the LSTM cell which addresses some of the challenges faced by the
traditional RNN architecture.

3.3.1. Recurrent Neural Networks

Traditional neural networks do not have the ability to retain information from previous
inputs, which is problematic when dealing with a sequence of inputs whereby the temporal
axis contains important information, such as an acoustic signal. To circumvent this,
an RNN builds upon feed-forward networks by actively passing information about the
previously seen inputs in a sequence forward in time. This feedback connection allows
information to flow from one time step to another by passing a state representation from
the previous time step to the hidden layers of the network and thus allowing the network
to leverage previous information in time for current computations.

The structure of an RNN is shown in Figure 3.6, with the single RNN cell structure on
the left, and high-level representation of the recurrent processing of inputs and sharing of
information between states shown on the right. The RNN cell has two sets of trainable
weights (WWW h and WWW y) and biases (bbbh and bbby) and two non-linear activation functions (σh

and σy). Note we do not give the dimensions of these weights, as they are symbolic, and
in fact, represent a set of weights that are used in a sequence of operations to produce
the desired output. The first half the of the cell is responsible for encoding the hidden
state hhht ∈ Rdh with size dh which includes information about previous time steps hhht−1 and
the current feature vector xxxt ∈ Rdx with size dx. The second half turns hhht into a output
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yyyt ∈ Rdy with size dy suitable for the desired application. This update rule is represented
by the following equation:

hhht = σh(WWW h(hhht−1,xxxt) + bbbh)

yyyt = σy(WWW yhhht + bbby)
(3.6)

RNNs, like most modern neural networks, are trained using back-propagation with the
caveat that the error derivatives must be back-propagated through all considered instances
in time (back-propagation through time). In doing so, gradients are repeatedly multiplied
through time, which can lead to exploding/vanishing gradients for long sequences [50]. This
makes it hard to learn long-term dependencies and achieve stability during training. Due
to this, in practice, the RNN shown in Figure 3.6 is not a viable architecture. Alternatives
that mitigate the exploding and vanishing gradients have been proposed, the most notable
being the LSTM network.

3.3.2. LSTM network

The LSTM addresses the aforementioned vanishing/exploding gradient problem by intro-
ducing a series of information control structures: A cell state ccc ∈ Rdh , as well as three
gates which introduce further control with regards to the flow of information in time.
Namely: the forget gate, input gate and output gate. A diagram of the cell structure is
shown in Figure 3.7a, and a high-level representation of an unfolded LSTM network in
time in Figure 3.7b. Note the sigmoid activation function and hyperbolic tangent function
are denoted by σ and tanh respectively. By simply observing the structure of the cell,
we can see that the network solves the vanishing gradient problem by providing a direct
path from cell state ccct to ccct−1. Gradients can flow along this path without exponentially
decaying/exploding [50]. Each component is described in detail below. We omit the
dimensions of each respective weight matrix as with the RNN as they are symbolic, and in
fact, represent a set of weights that are used to produce the desired output. For example,
aggregating information between xxxt and hhht−1 in each gate is non-trivial due to potential
dimension mismatch and requires a separate weight matrix for each to accommodate this.

Forget gate: The forget fate activation vector fff t ∈ Rdh is responsible for determining
which parts of the previous cell state ccct−1 are kept and which parts are forgotten. Thus, the
forget gate determines which information from previous time steps will remain encoded.

Input gate: The input gate is responsible for computing the input gate activation vector
iiit ∈ Rdh and candidate cell state ĉcct. The vector, iiit dictates which parts of ĉcct will be used
when computing the new cell state in a similar fashion to the forget gate.
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forget gate input gate output gate

(a) Structure of a single LSTM cell.

Forget gate

Input gate

Output gate

Forget gate

Input gate

Output gate

Forget gate

Input gate

Output gate

(b) High level representation of an LSTM unfolded in time.

Figure 3.7: A single LSTM cell, showing in detail the computations performed with
each gate’s (where red, blue, and green highlight the forget, input, and output gates
respectively) output and the cell state. In addition, a high level representation of an
LSTM unfolded in time.

Cell state: The updated cell state is a combination of information from the previous
state that is to be maintained and information from the input gate that is to be maintained.
This is best described by the equation below, whereby ◦ denotes the element-wise product.

ccct = fff t ◦ ccct−1 + iiit ◦ ĉcct (3.7)

Here fff t controls the information flow from the previous time step, and iiit controls the
information flow from the current time step.

Output gate: The output gate activation vector ooot ∈ Rdh is used to suppress unwanted
information in the hidden cell state hhht ∈ Rdh , and determines the output of the network
(similar to yyyt in the classic RNN). The updated hidden state hhht which will be passed to
the next time step is determined with the equation below.

hhht = ooot ◦ tanh(ccct) (3.8)

Bidirectional LSTM

A popular adaptation of the LSTM is to process the input in both directions, referred
to as a bidirectional LSTM (BiLSTM). In doing so, the network is able to produce
latent representations for a specific time-step that captures both past (backward in time)
and future (forward in time) information from elements of the sequence. The ability to
represent both past and future relevant information for a given element in a sequence
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is immensely useful when modelling non-causal relationships. For example in natural
language processing, the likelihood of a word being spoken can drastically change based
on what is said next, and therefore it makes sense to encode this future information in its
representation. We present a high-level depiction of a unfolded in-time BiLSTM in Figure
3.8.

−→
hhh and

←−
hhh denote hidden states generated for the forward and backward LSTMs

respectively. Note how
−→
hhht is only dependent on inputs and their representations prior to t

and
←−
hhht is only dependent on inputs and their representations after t. The concatenation

of these two vectors results in hhh ∈ R2·dh , a latent representation for time t that captures
both relevant past and future information.

LSTM cell LSTM cell LSTM cell

LSTM cell LSTM cell LSTM cell

Forward 

Backward

cat cat cat

Figure 3.8: BiLSTM unfolded in time.

3.4. Attention

Attention networks have brought about a radical change in machine learning, especially
in language and speech processing [51]. To grasp the underlying concept of attention,
a practical example is given first, followed by formal equations that describe the scaled
dot-product attention computation [51] - the most prevalent form of attention.

Given some sequence XXX = {xxx1,xxx2, ...,xxxt} where xxx ∈ Rdx , attention aims to produce a
hidden state hhh ∈ Rdh , by means of a linear mapping of XXX with scalar attention weights
ααα = {α1, α2, ..., αt} with the constraint that these weights sum to one (soft attention) for
each element in a set of query vectors QQQ = {qqq1, qqq2, ..., qqqm} where qqq ∈ Rdk . This operation
is described for a single query vector in Equation 3.9. In doing so, the network is able
to select information from the sequence most important conditioned on the query and
disregard information that is irrelevant.
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softmax

Figure 3.9: Attention cell, where XXXq XXXk XXXv are the set of vectors to be used as queries,
keys and values. Note in self-attention XXXq = XXXk = XXXv.

hhhi|qqqi = α1xxx1 + α2xxx2 + ... + αtxxxt (3.9)

In the case of self-attention, a hidden state hhhi is computed for each sequence element
xxxi in the input sequence XXX, whereby hhhi captures the relevant information from the rest of
the input sequence with respect to xixixi, that is, each element in the sequence is used as a
query vector exactly once. The resulting output is a set of hidden states represented by
a matrix HHH ∈ Rdh×t which is computed by performing the dot product between XXX and
AAA ∈ Rt×t the matrix representation of the set of attention weights αααi ∈ Rt for each query
qqqi in QQQ (which again in the context of self-attention, corresponds to each element xxxi).

In practice attention is generalised by introducing key and value sequences KKK ∈ Rdk×t

and VVV ∈ Rdh×t respectively. The matrix multiplication between QQQ and KKK (and softmax
of the subsequent output to ensure attention weights sum to one) form the matrix of
attention weights AAA ∈ Rm×t which is then multiplied by VVV to produce HHH ∈ Rdh×m. Note
the number of elements in the hidden state matrix is m, the same number of elements as
in the query. This operation is described in Equation 3.10 where dk is used as a scaling
factor and is also typically the dimensionality of queries and keys. The attention cell is
visualised in Figure 3.9 where WWW q ∈ Rdk×dx , WWW k ∈ Rdk×dx and WWW v ∈ Rdh×dx are learnable
weight matrices that are applied to the sequences to be used as queries, keys and values
(XXXq ∈ Rdx×m, XXXk ∈ Rdx×t and XXXv ∈ Rdx×t).

HHH = Attention(QQQ,KKK,VVV ) = softmax
(

QQQKKKT

√
dk

)
VVV T (3.10)

To further cement this concept, we will describe the computation of queries, keys and
values in more detail, using a practical single-attention example. Referring to Figure 3.10a,
we are presented with a cough spectrogram, of which its time axis can be categorised
into three types of audio: silence, unvoiced, and voiced whereby the voiced regions are
highlighted in green. Researchers hypothesise that voiced portions of cough contain the
majority of the TB signal, and thus want their classifier to weigh the associated temporal
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(a) Cough spectrogram with five high energy
voiced regions highlighted in green.

(b) Stylised attention weights verses time for the
given spectrogram when using a query vector
representing the generalised voiced spectra of
cough.

Figure 3.10: Visualisation of a practical attention application to cough.

regions more heavily. Consequently, we assume all optimal parameter matrices have already
been found by training a system which uses components of the below-described process.
We will use the analogy of trying to find all voiced regions in the cough to describe the
role of queries and keys when computing the attention weights.

Queries: The query can be interpreted as to what the network computes the attention
scores with respect to. In this example, the query is a single vector XXXq ∈ Rdx×1 representing
a typical spectrum of a voiced frame of coughing audio which we assume we know prior to
this search, where dx is the number of frequency bins. To transform XXXq into an actualy
query QQQ, we have to multiply our query vector by the learnable weight matrix WWW q:

QQQ = WWW qXXXq (3.11)

Keys: The keys constitute the set of information which the network is trying to weigh
with respect to the query. This would be the sequence of t frames in the spectrogram
XXXk ∈ Rdx×t. Like the queries, the learnable weight matrix WWW k is applied to this sequence:

KKK = WWW kXXXk (3.12)

Finally, AAA ∈ R1×t is determined as described by multiplying QQQ and KKK together, and
applying the softmax term as described Equation 3.10. We show the resulting stylised
attention scores overlaid with the cough spectrogram in Figure 3.10b. Note the voiced
regions have very high attention scores, whilst in the unvoiced regions the attention scores
drop towards zero as they blend into silence.

Multi-head attention: Instead of performing single attention with a given set of
queries, keys and values, it is often useful to have multiple weight matrices, whereby
different hidden states can be learnt for the given sets of queries, keys, and values, and
concatenated and projected again to reduce dimensionality. This is known as multi-
head attention and allows the model to jointly attend to multiple relationship streams,
capturing a more diverse range of contexts. For example, in the application of multi-head
self-attention to NLP, one head could focus on attending to relevant nouns in the sentence,
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whilst another on verbs.

3.5. Transformer encoder
While incorporating attention into a network is useful when one already has highly non-
linear latent representations of an input sequence, its simple mapping is not sufficient
to capture these complex latent representations on its own. First proposed in [51], the
transformer addresses this issue by first incorporating a positional encoding to the input
sequence, such that temporal information is retained, and then feeding this sequence into a
stack of transformer blocks each containing a combination of self-attention and FNN layers
both with residual connections. By stacking a sufficient number, complex relationships
can be captured. In the traditional transformer, these context-rich latent encodings are
then decoded by transformer decoding blocks, but this step is irrelevant to this study and
is used more in traditional NLP tasks such as machine translation.

The transformer encoding scheme is illustrated in Figure 3.11. A sequence XXX ∈ Rn×t

is passed through a positional encoder, which simply adds a positional encoding matrix
PPP ∈ Rdx×t to XXX, which in the original work [51] that presents the transformer architecture
is derived from an assortment of cosine functions at different frequencies as described by
Equation 3.13 where 0 ≤ i < dx

2 and 0 ≤ k < t. The encoded sequence is then passed to
a multi-head self-attention layer, whereby a skip connection and normalisation layer are
used to prevent vanishing gradients and stabilise training. The same is repeated for the
linear feed-forward layer, whereby the single linear layer is applied to every element in the
sequence.

P (2i, k) = sin( k

10, 0002i/n
)

P (2i + 1, k) = cos( k

10, 0002i/n
)

(3.13)

3.6. Activation functions

An activation function describes how the output of a linear operation is non-linearly
transformed. Typically, the activation function used is highly dependent on the goal of
the network. Three activation functions are used widely: sigmoid, hyperbolic tan (tanh),
and the rectified linear unit (ReLU), and are shown in Figure 3.12 respectively.

Sigmoid and tanh are well-known squashing functions. The former limits the set of
all real numbers between (0, 1) whilst the latter between (−1, 1). Whilst these both have
strong non-linear properties, a general problem with the sigmoid and tanh functions is
that, since they have a finite output range, they become increasingly less sensitive to large
values which saturate the functions (values begin to approach the respective functions’
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Add & Layer Norm

Feed ForwardFeed ForwardFeed Forward

+

Figure 3.11: A single transformer encoding block, whereby XXX has already been passed
through a positional encoding. Dashed lines indicate residual skip connections.

bounds). In the case of deep neural networks, this damages the network’s information
capacity and learning ability (due to smaller gradients) [52]. ReLU was formulated to
address this issue. ReLU behaves linearly for all positive values but outputs zero for all
negative inputs. Hence, ReLU maintains the same gradient as inputs grow large and thus
retain information sensitivity, but is still nonlinear (which is essential for deep networks to
learn complex relationships) due to its piece-wise nature. The ReLU function is described
by the equation below.

f(x) =
 0, x ≤ 0

x, x > 0
(3.14)

3.7. Training

In this section, we describe how a deep neural network is typically trained. That is, how
optimal parameters are found such that a good solution to the problem is fit. We start by
describing the quantification of model error using a loss function. Next, we describe how
this loss function is used to iteratively update model parameters such that it is reduced.
This is then followed by a series of common techniques (including network structure and
training hyper-parameters) that are typically used to improve and optimise the training
process.

3.7.1. Loss functions

A loss function is used to describe the error made by a model with respect to the desired
outcome. For classification, this is usually accomplished by comparing ground truth labels
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Figure 3.12: Commonly used activation functions.

with the predicted label probabilities outputted by a model. Typically, cross-entropy (or
equivalently negative log-likelihood) is used. The loss for a single input xxx is described in
Equation 3.15 where f(·) is the model function that outputs a vector that corresponds to
predicted probabilities for each class, and yyy is the ground truth one-hot encoding for c

classes, whereby the index of the correct class is assigned one and the rest zero. To ensure
the probabilities as predicted by f(·) sum to one, the last layer in the network, which
is reasonable for outputting the activation values that correspond to class confidence, is
typically followed by a softmax function.

J(xxx;θθθ) = −yyy · log(f(xxx;θθθ)) (3.15)

The relation between model confidence (how large the predicted probability is) and the
cross-entropy loss is visualised in Figure 3.13. Clearly, cross-entropy rewards the model for
being confident and correct (by means of a low loss), and penalises it for the converse on
an exponentially decaying scale. In the case of batched learning (described subsequently),
this loss function is summed for each element in a batch and normalised. The resulting
value is used by an optimiser to adjust model weights accordingly, the method by which
is detailed in subsequent sections. In the case where predictions might be biased to a
certain class, for instance in unbalanced datasets, an additional term can be included to
artificially increase the underrepresented class’ loss, and therefore incentivise the network
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to place more focus on correctly predicting it. This is aptly named weighted cross-entropy
and is practically implemented by introducing an additional term βββ ∈ Rc whereby the
value of each element corresponds to a respective class’s weight. To perform weighted
cross-entropy βββ is simply element-wise multiplied by the one-hot encoding yyy.

0.0 0.2 0.4 0.6 0.8 1.0

f(θ, x)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

J
(x

)

Cross-entropy vs predicted probability

Figure 3.13: Plot of the cross-entropy loss compared to the predicted probability for a
given class. As the confidence increases, the loss decays exponentially.

3.7.2. Back-propagation

Back-propagation is a technique used to calculate the gradients of the model parameters
∇θθθ in the network with respect to the loss function J after each iteration. These gradients
are then subsequently used to update the model parameters according to the chosen
optimisation method. Where:

∇θθθ = ∂J(f(xxx;θθθ), y)
∂θ

(3.16)

Whilst the derivation differs depending on the loss function used, the key principle of
back-propagation utilises the chain rule to compute each layer’s partial derivative. Whereby
partial derivatives computed for the nth layer can then be used in the computation of the
partial derivatives of the n− 1th layer and so on until all layer’s partial derivatives have
been computed with respect to the loss function.

3.7.3. Optimisation

As previously eluded to, neural network parameters are typically optimised using some
form of gradient-based learning. The goal of gradient-based learning is to iteratively adjust
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Algorithm 3.1: Stochastic gradient descent (SGD) parameter update [49]
while stopping criterion no met do

Sample minibatch of m examples from training set
Compute gradient estimate: ĝ̂ĝg ← 1

m
∇θθθ

∑
i J(f(xxx(i);θθθ), yyy(i))

Apply update: θθθ ← θθθ − ϵĝ̂ĝg
end while

the weights in such a way that a chosen loss function approaches a local minima, whereby
the gradients will approach zero. In machine learning, stochastic gradient descent (SGD)
is a widely used optimisation to achieve this. In each iteration of training, a mini-batch of
m samples (sampled from a training set) is used to compute gradient estimates which are
subsequently used to update model parameters such that the J approaches a local minima
as described in Algorithm 3.1, where ϵ is the learning rate.

However, due to the noisy nature of the sampled mini-batches and subsequent gradients,
models using this optimisation require more iterations to converge and are sensitive to
the learning rate. In this case, a popular technique is the use of momentum. Momentum
computes a decaying exponential sum of the gradients, mitigating much of the noisy
characteristics of the mini-batches and resulting in faster convergence. This is described by
Equation 3.17 and 3.18, where vvv is the velocity and α ∈ [0, 1) (the momentum) determines
how quickly the contribution of the previous gradients decay:

vvv ← αvvv − ϵ
1
m
∇θθθ

∑
i

J(f(xxx(i);θθθ), yyy(i)) (3.17)

θθθ ← θθθ + vvv (3.18)

Whilst SGD and momentum form one of the fundamental optimisers used in deep
learning, there exist some more sophisticated approaches that introduce adaptive learning
rates on a parameter scale to mitigate axis-aligned sensitivity. Two of these are the Adam
optimiser and RMSprop - which will be used in this work. The key difference between the
two is that Adam incorporates not only the exponentially decaying average of squared
gradients when scaling the learning rate, but also the exponentially decaying average of
past gradients. Both are described in more detail in [53] and [54].

Learning rate

The learning rate is used to scale the computed parameter gradients with respect to the loss
function and update model parameters accordingly, and as such is a fundamental hyper-
parameter in deep learning applications. As illustrated in the simplified example in Figure
3.14, the learning rate can be a very important parameter when attempting to optimally
traverse the loss surface toward a local minima. If it is too small, the optimiser will get
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Figure 3.14: Single parameter model updates (red arrows) for various learning rates and
subsequent observed effects during training. Note we omit the loss functions dependence
on xxx for simplicity.

stuck in a sub-optimal solution, and if it is too large, training will diverge. Practically, loss
surfaces have high dimensionality and are problem specific, and as such the general rule of
thumb is to simply try a few learning rate values until adequate performance is achieved.
A manual method such as this is not viable for large-scale experimentation which will be
conducted in later chapters.

One such method that attempts to semi-automate learning rate selection utilises a
learning rate sweep performed at the start of training. The learning rate is linearly increased
each step from zero (whilst updating model parameters after each step) until the loss
diverges or the maximum number of steps is reached. The learning rate that corresponds
to the steepest gradient (implying parameters are being updated most efficiently) from the
resulting loss versus learning rate function is chosen [55]. We visualise this technique with
a stylised example shown in Figure 3.15, and observe that the learning rate corresponding
to the steepest decrease in loss (not the minimum value) is selected. Importantly, the
model is reinitialised after the sweep and training is resumed with the newly determined
optimal learning rate.

3.7.4. Over-fitting

Over-fitting is a phenomenon in machine learning whereby spurious correlations that exist
in training data are relied on to achieve a more optimal solution compared to that which
would have been achieved if only the true signal was learnt. When this happens, a model
is deemed to have over-fit to the training data. Such a model can subsequently fail to
generalise to unseen data in which such spurious correlations do not exist, which can
become problematic.

We provide a simple example to illustrate this premise in its most basic form. For a given
data set, two predictors hair colour ∈ [red, brown, black, blond] and number of cars ∈W,
are used predict a person’s net-worth. Due to the small sample size, there exist a few
spurious relationships in the data. Namely, people with red hair always have fewer than
two cars but a high net worth and; those with black hair who all have two cars or more
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Figure 3.15: Stylised learning rate sweep, illustrating how the optimal learning rate
is selected. Note after each step model parameters are updated and the learning rate is
increased.

always have a low net worth. The informed reader will understand that a person’s hair
colour is uncorrelated with their net worth, whilst the number of cars they own is a
somewhat correlated yet noisy predictor. However, due to the noise in the true signal
that we intend to learn, the model might rely on the spurious hair colour phenomena in
the training data to reduce the error in the function it fits, which is of course its only
objective. Come test time, this will allow hair colour to incorrectly contribute to the net
worth predictions of unseen samples, degrading the reliability of those predictions. In this
over-simplified example, it would be simple to negate this effect by simply removing the
troublesome hair colour predictor entirely. In practice, this is not simple and is made even
more complex when such spurious correlations only become evident after many non-linear
transforms.

Whilst this phenomenon is not unique to deep learning, it is of particular concern when
working with such models due to the relative ease of it taking place. Particularly, this
is due to their typically large number of parameters (which often exceed the number of
training examples) which, in conjunction with the characteristics of the activation functions
with the architecture, enable the ability to learn highly non-linear relationships which can
easily become spurious. Moreover, these relationships are often impossible to observe when
the data is in its base state (unlike the previously described example). Techniques such as
restricting the number of features and decreasing model size are commonly used to address
this issue, in conjunction with additions to model architectures which include dropout
layers, normalisation layers, and weight regularisation (all used in this work) which are
described in more detail subsequently.
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Dropout

Dropout is a regularisation technique whereby each element of a specific layer’s output (and
subsequent input to the dropout layer) has a certain probability of being “dropped” (being
multiplied by zero), the specific probability of which is a user-defined hyper-parameter. By
randomly omitting subsets of layer outputs, the neurons that make up this layer cannot
rely on specific combinations of one another to form complex relationships that map
specific training samples to their respective targets, but instead, each neuron is forced to
learn a general feature mapping that is in some way helpful to produce the target during
training [56].

Batch and layer normalisation

Batch normalisation is a technique used to either normalise (across a mini-batch) the
inputs to a network, or the outputs of intermediary hidden layers. The standardisation
across mini-batches helps stabilise training by reducing internal covariate shift - the change
in the distribution of network activations during training which can result in activation
saturation - in addition to reducing the ability of models to fit to noise present in training
samples [57]. The normalisation process is described in Equation 3.19 where xxx ∈ RB is
the vector containing the activations for each sample in a mini-batch of size B from a
particular neuron and x̄ and σxxx are it’s mean and standard deviation along the batch
dimension. Both γ and β are optional learnable parameters.

BatchNorm(xxx) = xxx− x̄

σxxx

· γ + β (3.19)

In contrast, layer normalisation performs this normalisation not on the batch dimension,
but rather along each sample’s feature dimension. This is accomplished using the exact
same equation and process with the exception that xxx ∈ Rd is the vector of d activations in
a specific layer for a specific training sample.

Weight regularisation

Weight regularisation, also known as weight decay, is a regularisation term added to a
model’s loss which is the L2 norm of the model’s weights. This results in the model
minimising both the objective loss function and this L2 norm. By penalising large weights,
the model’s freedom to over-fit to the training samples is reduced in addition to helping to
prevent exploding gradients.
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3.8. Acoustic features

In most audio recordings unwanted attributes are present which can include characteristics
such as speaker stressing, background noise and amplitude variations [58]. To separate
desired information from some of these unwanted attributes and to uncover information
not initially evident in the audio itself (such as frequency content), acoustic feature
vectors are typically used to represent frames of audio. Generally, the continuous audio
signal is windowed, resulting in a segment of audio referred to as a frame, upon which
feature extraction is performed. This window then moves forward by some amount of
time or samples, yielding a new frame upon which feature extraction is performed again.
The amount the window is shifted is known as the hop length and varies depending on
the type of feature extraction being performed. In previous work, two acoustic feature
vectors have been used to aid in the successful classification of TB coughs, MFCCs and
LFB energies [2, 3]. Both are described subsequently. In addition, we also describe
mel-spectrograms, a prevalent acoustic feature representation used in many other audio
domains, especially for neural networks.

3.8.1. Linear filterbank energies

Audio signals are often best described in terms of the change in their frequency information
over time. Typically this is represented in the form of a STFT, whereby a window is
slid over the acoustic signal; each time computing the Fourier transform of that frame of
audio, yielding a snap-shot of frequency information. However, depending on the frame
size, this can result in a very high dimensional representation, which is generally not ideal
when training deep neural networks, specifically in low-resource applications. For this
reason, several acoustic feature extraction techniques exist that both aim at reducing the
dimensionality of this feature space whilst retaining relevant information to the task at
hand.

One of the most simple of these acoustic feature representations is a linearly scaled
filter bank (LFB). First, the STFT of an audio signal is computed with the desired frame
size and hop length. Next, the log energy spectrum of each frame is multiplied by a set of
NLFB overlapping triangular filters, as shown in Figure 3.16, normalised such that each
filter has unit area. Finally, the weighted sum of the resulting scaled log energy spectral
coefficients is determined for each filter, resulting in a vector of NLFB log spectral energies.

3.8.2. Mel-spectrograms

Similarly to LFB energies, the mel-spectrogram is also the result of applying a set of Nmel

triangular filters to a STFT. However, these are not linearly spaced, but rather spaced
according to the mel scale fmel. The mel scale follows a logarithmic-like function which
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Figure 3.16: An example of a linearly scaled filter bank. Each colour represents an
individual filter.
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Figure 3.17: Depiction of the mel scale.

maps pitches perceived to be equal distances from one another by human listeners. The
scale is described by Equation 3.20 which is further depicted in Figure 3.17. The mel
scale is used in a variety of speech applications, due to its ability to mimic the spectral
resolution of the human ear.

fmel = 1127 · ln
(

1 + f

700

)
(3.20)

Mel-scaled triangular filters are visualised in Figure 3.18. Note that the peak of each
filter is proportional to its width, such that the area in each is the same. Following the same
process described for LFB energies, the log STFT spectrum is multiplied by the filter bank,
and the energies for each respective filter are summed, resulting in a Nmel-dimensional
feature vector of mel scaled log spectral energies (referred to as a mel-spectrogram).

3.8.3. Mel frequency cepstral coefficients

MFCCs capture spectral information, whilst maintaining a low dimensionality by only
capturing the perceptually important characteristics of speech [59]. This is accomplished

Stellenbosch University https://scholar.sun.ac.za



44 3.8. Acoustic features 44

0 5000 10000 15000 20000
Frequency (Hz)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
Fi

lte
r a

m
pl

itu
de

Mel scaled filter banks

Figure 3.18: Mel scaled filter banks. Each colour represents an individual filter.

by first computing the STFT of the audio signal. A mel-scaled filter bank is then applied
to the spectra, in the exact way described for mel-spectrograms as shown in Figure 3.18.
The logarithm of these filter bank outputs (SSSk) is then transformed back to the time
domain using the discrete cosine transform (DCT) which outputs n cepstral coefficients
shown in Equation 3.21, where K is the number of filter banks [60]:

C[m] =
K−1∑
k=0

log10(SSSk) cos
(

πm(k − 0.5)
K

)
, m = 0, .., n (3.21)

The elements of the resulting n + 1-dimensional acoustic feature vector is named the
mel frequency cepstral coefficients. Empirically, n = 13 has been found to be optimal for
speech processing since it captures the aspects of the audio signal that are discernable by
the human ear and are important for the recognition of speech. However, this value can be
increased to compute higher-resolution MFCCs. To capture the change of these features
over time, the first and second derivatives, often referred to as velocity and acceleration,
of these cepstra are appended to the feature vector. These derivatives are approximated
using N preceding and succeeding frames as shown in Equation 3.22. For 13 MFCCs, this
results in a 39-dimensional acoustic feature vector for each frame [61].

dt =

N∑
n=1

n(ct+n − ct−n)

2
N∑

n=1
n2

(3.22)

In Equation 3.22, dt is the velocity coefficient for the cepstral coefficient ct of frame
t computed in terms of the neighbouring coefficients from frame t − N to t + N . The
resulting velocities are used to estimate the acceleration using the same equation.

3.8.4. Feature normalisation

It is well known in machine learning literature that features normalisation can help stabilise
training. Particularly in deep learning, the gradients of non-linear activation functions can
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saturate for large inputs, making it hard to converge to local minima through gradient-
based learning methods. For this reason, all acoustic features are normalised to lie in the
range [−1, 1] using global max/min scaling shown in Equation 3.23. It should be noted
that there are a vast number of feature normalisation techniques provided in the literature
(for example, statistics pooling). However, the investigation of these was not the focus of
this work and as such we opt for the simplistic aforementioned approach.

XXX(n)
norm = XXX(n) −max(∀XXX)

max(∀XXX)−min(∀XXX) (3.23)

This equation shows how the feature vectors are scaled by the largest and smallest
values present in the training dataset. This is shown for a single acoustic feature vector
XXX(n) in the set of acoustic feature vectors XXX in Equation 3.23.

3.9. Summary

In this chapter, we introduced the fundamental deep learning architectural building blocks
used in this work, namely, fully-connected neural networks (FNNs), convolutional neural
networks (CNNs), ling short-term memory networks (LSTMs), attention, and transformers.
Next, we described the typical training procedure to fit such architectures. Lastly, we
detailed three acoustic feature vectors explored in this work, which include linear-filter
bank energies, mel-spectrograms, and mel-frequency cepstral coefficients. In the next
chapter, we provide an overview of the datasets used for experimentation in this work.
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Chapter 4

Datasets

In this chapter, we first detail two datasets compiled in previous TB cough classification
studies, namely the Brooklyn and Wallacedene datasets [2, 3]. The unique characteristics
of each are given, and the data collection scheme employed by each study is described.
Next, we detail and motivate the combination of these datasets, which will be used for
experimentation in this work. Finally, we describe a dataset compiled for use during
pre-training, titled “Cough or Not”, in which audio samples are labelled as either coughs
or some other environmental noise.

4.1. Brooklyn dataset

The Brooklyn dataset [2] comprises coughs originating from TB-positive patients (con-
firmed before recordings) in addition to healthy controls, who were close contacts of the
patients. Data collection was performed in a controlled environment in the form of a
specially-designed noise-isolated facility. Recordings were made with a high-quality studio
microphone with a sample rate of 48kHz, placed at a distance of between 15cm− 40cm
from the seated coughers.

In total, there were 38 participants of which 17 were TB positive and 21 were healthy
controls (henceforth referred to as TB and TB). The details of the collected data are
presented in Table 4.1. In total, 746 coughs were collected resulting in 377 seconds of
audio. Despite fewer TB than TB participants, we note more than double the number
of TB coughs. This is however expected, as the healthy controls did not suffer from any
respiratory diseases and therefore found it harder to cough. The Brooklyn dataset also
includes clinical measurements such as BMI, heart rate and temperature, but was not used
in this work and hence are not further detailed.

4.2. Wallacedene dataset

The Wallacedene dataset [3] consists of coughs collected from patients that reported to
a primary health clinic, all of whom were ill and suspected of having TB at the time of
recording. Recordings were made in an external booth typically used for sputum analysis

46
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Table 4.1: Brooklyn dataset description.

TB TB Total
Patients 17 21 38
Total coughs 501 247 748
Mean coughs per patient 29.47 11.76 19.68
Std dev coughs per patient 22.56 10.89 19.25
Mean cough length (s) 0.55 0.40 0.50
Std dev cough length (s) 0.22 0.16 0.22

Table 4.2: Wallacedene dataset description.

TB TB Total
Patients 11 25 36
Total coughs 219 637 856
Mean coughs per patient 19.91 25.48 23.78
Std coughs per patient 7.48 11.44 10.71
Mean cough length (s) 0.83 0.68 0.72
Std dev cough length (s) 0.32 0.35 0.35

adjacent to a busy road with minimal external noise isolation. Since the goal of the dataset
collection scheme was to mimic the real-world scenario in which a field TB screening tool
would be deployed, no effort was made concerning noise isolation or reduction. With this in
mind, the recordings contain significant background noise, ranging from chatter, vehicles,
pets, and even music. However, when performing an initial exploratory investigation into
the composition of the background noises present in the dataset, we found that some
recordings contained severe distortions and disturbances. These were unrelated to the
background noise. The process by which this was dealt with, together with a summary of
the clean dataset, will be detailed in the next section.

Recordings were made with a high-quality field recorder, at a sampling rate of 48kHz.
Patients were placed 10cm−15cm from the microphone and were asked to produce at least
two bursts of voluntary coughing, although typically the number of coughing episodes was
significantly higher due to the irritation in the patients’ lungs associated with their ailment.
In total, recordings from 49 patients were collected of whom 16 were later confirmed via
sputum analysis as being TB positive whilst 33 were determined to be TB negative.

4.2.1. Data cleaning

As previously mentioned, some recordings contained severe distortion caused for example
by shaking of the microphone stand, amplitude saturation, or ‘popping’. Whilst the original
dataset consisted of 49 patients, 13 of these recordings were identified as containing such
distortions. This was determined by manually listening to each recording, and categorising
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Table 4.3: Combined dataset description.

TB TB Total
Patients 28 46 74
Total coughs 720 884 1604
Mean coughs per patient 25.71 19.22 21.68
Std coughs per patient 18.78 13.11 15.82
Mean cough length (s) 0.64 0.60 0.62
Std dev cough length (s) 0.29 0.34 0.32

them into either: ‘no disturbance’, ‘some disturbance’, or ‘significant disturbance’. Since
these disturbances could mask important frequency information, all recordings labelled as
‘significant disturbance’ were removed from the dataset. A list including the notes and
noise labels for each recording can be found in Appendix D. After cleaning, 11 TB-positive
and 25 TB-negative patients remained. It should be emphasised that recordings were
only removed based on audio signal distortions and not background noise (music, chatter,
vehicles etc.). We detail the cleaned Wallacedene dataset in Table 4.2. In contrast to the
Brooklyn dataset, we observe that the cough rate for TB patients is no longer lower than
for TB patients. Considering that both groups of patients suffering from lung ailments
and therefore are predisposed to coughing, these two rates should in fact be similar. Upon
further investigation, it became clear that these cough rates are in fact much closer (25
and 26 respectively) when including the recordings with severe distortion. This suggests
that the noisy TB recordings appear to be associated with prolonged (and perhaps more
violent) coughing episodes. Further investigation is necessary to verify this, however.

4.3. Combined dataset

Previous work in TB cough classification has relied on relatively small datasets gathered
in a single recording environment from a small number of patients. This is problematic
when training deep architectures due to their tendency to over-fit, especially in a clinical
setting, to confounding factors [62]. Consequently relying on recordings from a single
environment restricts data diversity and consequently the final model’s ability to generalise.
Additionally, by combining datasets we can begin to quantify performance when tasked
with detecting TB coughs from multiple recording domains and provide a small insight
into expected performance in a real-world application, whereby the recording conditions
will certainly change. In an attempt to address this, we combine the Brooklyn and
Wallacedene datasets used previously in [2] and in [3]. This is in an effort to yield a more
environmentally diverse dataset. This combined dataset is summarised in Table 4.3. In
total, the dataset consists of 74 patients, 28 of whom have TB, while the remaining 46
belong to the TB set. This doubles the size of datasets used in previous work.
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4.4. “Cough or Not” dataset

Table 4.4: “Cough or Not” dataset description for each audio source.

Dataset Samples Length (hrs)
TASK (other) 13208 2.55
AudioSet (other) 1570 4.37
TASK (coughs) 2816 0.72
Free sound (coughs) 249 0.52
AudioSet (coughs) 410 1.13
COUGHVID (coughs) 1565 3.65
Total not cough 14778 6.92
Total cough 5040 6.00

In addition to the dataset described in the previous section, we compiled a dataset for
a pre-training task, with the aim of improving model performance on the primary TB
classification task. We choose cough detection as our pre-training task as also done in [34]
and use a similar set of data (without the inclusion of LibriSpeech). Since the goal of the
pre-training task is to allow for the transfer of some learnt information to the primary TB
classification task we also include voiced sounds that may be acoustically similar to cough
in the “other” category such as laughing, sneezing and throat clearing. This is in an effort
to encourage networks to learn more complex relationships that can help to distinguish
between coughing and these other similar sounds during pre-training. We detail each audio
source below and provide a summary of the combined “Cough or Not” dataset in Table
4.4. In total, the combined dataset contains 776 minutes of audio of which 361 minutes
contain coughing and the rest consists of other environmental sounds.

TASK: The TASK dataset was collected in a TB ward in Cape Town, South Africa
that consists of both coughing and environmental noises (doors opening, beds shuffling,
chatter and other ward background noise). Recordings were made using smartphones with
external microphones attached to the patients’ beds [63].

COUGHVID: COUGHVID is a corpus of crowd-sourced COVID-19 coughs collected
throughout the pandemic whereby participants submitted cough recordings from across
the globe via an online platform [38]. In total, 25, 000 recordings were gathered, of which
we use a randomly selected small subset simply because it was easily available from prior
work.

AudioSet: Google’s AudioSet is a large audio dataset with over 2 million recordings
hand-annotated into 632 audio event classes. the recordings were gathered from YouTube
videos covering a broad range of recording environments [43]. We use a subset of this
dataset as a source of both “other” and “cough” samples. Specifically, we use sneeze, laugh
and throat-clearing classes as “other” samples in our dataset, in addition to using the
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cough class recordings.
Freesound: Freesound is a large, collaborative database containing an assortment

of audio recordings, snippets, effects and samples released under the creative commons
license [36]. We use recordings of coughs uploaded to this platform to diversify our dataset.

Due to the variation in sample rate across different audio sources (ranging from 16 to
48kHz), all samples are down-sampled to 16KHz. Importantly, all data used subsequently
to train TB classifiers which used the pre-trained neural networks were down-sampled to
the same frequency.

4.5. Summary

In this chapter, we have presented an overview of the datasets used in previous research
into TB cough classification, namely the Brooklyn and Wallacedene datasets. We then
detailed the amalgamation of these two sources of data to produce the dataset used
for experimentation in this study. This combined dataset includes 76 patients, double
the number used in previous studies. The dataset is also more representative of diverse
recording environments. We also highlighted the presence of some severe distortions in
some of the recordings in the Wallacedene dataset and detailed how these were removed
from the dataset used in this work. Lastly, a large dataset constructed for a pre-training
task was described (classifying audio as either containing cough or not) which totalled 13
hours of audio recordings from a multitude of sources.
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Chapter 5

Pre-trained Networks

In Chapter 2 we briefly introduced prominent pre-trained networks. We now describe these
networks in detail for the sake of brevity in later chapters and motivate their suitability
for TB cough classification. Detailed descriptions are provided for ResNet [4], Audio
Spectrogram Transformer [5], and wav2vec2.0 [64].

5.1. ResNet

CNN architectures have become the dominant choice for vision-based tasks [65–67]. Gen-
erally, such networks perform better as the number of layers (and therefore model size)
increases. This makes it hard to train state-of-the-art vision models from scratch without
huge computational resources. As such, it is common to begin with a network that
has been pre-trained on large amounts of data, and fine-tune it to the target domain.
One architecture that is widely used in this way is ResNet [4], a CNN which achieved
state-of-the-art performance on ImageNet, a dataset that spans 1,000 object classes and
more than one million training images [68]. All proposed ResNet architectures from
ResNet-34 onwards improved upon the previous best methods, with ResNet-152 achieving
a top-1 error rate of 19.38% - a 11.87% relative reduction. Whilst ResNet is no longer
the top performer, it remains widely used as a backbone in many visual tasks due to its
relative simplicity and availability. This includes tasks such as object detection, semantic
segmentation, pose estimation and other image classification tasks [69].

Particularly, ResNet is a convolution-based framework which eases the training of
large CNN-based image networks by incorporating skip connections between intermediary
convolutional blocks. In addition to contributing to faster optimisation, the additional
residual connections allow the depth of such networks to increase to previously unrealistic
values whilst not suffering from vanishing gradients. An example of a 34-layer ResNet
(ResNet-34) is provided in Figure 5.1. The layers between skip-connections are referred
to as convolutional building blocks. Every ResNet architecture starts with an initial
convolutional layer with 7× 7 filters, stride 2 and 64 channels followed by a 3× 3 max
pooling layer with stride 2. These together compress the 3× 244× 244 sized RGB input
image. These are then followed by a series of building block layers that intermittently
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Figure 5.1: An illustration of the 34-layer ResNet architecture (ResNet-34). Dotted
shortcuts indicate an increase in channel dimension. Reproduced from [4].

Figure 5.2: A residual building block used in ResNet-18/34 (left) and the bottleneck
residual building block used in ResNet-50/101/152 (right). Reproduced from [4].

increase the channel number. In the ResNet-18 and ResNet-34 architectures, each building
block is made of two convolutional layers with 3× 3 filters, where the number of channels
is doubled every 2 blocks for ResNet-18, and after the 3rd, 7th and 13th building block
for the ResNet-34 architecture. ResNet-50 follows the same pattern of channel dimension
increases as ResNet-34, however, it uses a bottleneck design for each building block to
decrease the computational cost and parameter count of these deeper networks. Each
building block consists of three convolutional layers: a layer with 1× 1 kernels to reduce
the number of channels by a factor of four, a layer with kernel size 3× 3, and a final 1× 1
layer that up-samples the number of channels back to the original dimension. A similar
process is followed for ResNet-101 and ResNet-152. Both building blocks are visualised in
Figure 5.2, showing the input and output dimensionality (number of channels).

5.1.1. Motivation

As presented in Chapter 2, success has been achieved in the literature when using pre-
trained ResNet architectures for cough classification. As such, we investigate its application
to TB cough classification. Typically in the literature, ResNet-50 was used, which has over
23 million trainable parameters. Due to the small nature of the dataset and the tendency
for over-parameterised models to over-fit, we also investigate the application of the smaller
ResNet-18 architecture (11 million parameters).
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5.2. Audio Spectrogram Transformer

Vision-based models have remained popular in audio classification tasks due to their ability
to locate acoustic signatures in a robust manner. Recent advancements in transformer-
based vision models have resulted in their dominance in state-of-the-art computer vision
research [42, 70]. Consequently, the Audio Spectrogram Transformer (AST), which is built
upon a pre-trained vision transformer model, has achieved state-of-the-art results on audio
classification benchmarks [5].

AST’s architecture is shown in Figure 5.3, where it follows the same structure as
the Vision Transformer (ViT) architecture. In ViT, patches of an image are flattened
and linearly projected onto an embedding, positionally encoded, and fed through a large
transformer which extracts the non-linear latent relations between patches and embeds
them in a classification token which can be used for downstream tasks. In fact, AST fine-
tunes a DeiT-base model [71]; a distilled vision transformer pre-trained on ImageNet [42]. A
fundamental underlying problem with the structure of the ViT architecture is that it lacks
the inductive biases CNNs possess, and therefore requires much larger amounts of data
(and compute power) to generalise to image tasks. DeiT builds upon the ViT architecture
by successfully using substantially smaller architectures that are less data-hungry by
employing a knowledge distillation teacher-learner paradigm during a pre-training step.
The DeiT model (learner) is initialised to mimic the predictions of an already trained CNN
(teacher). This allows the DeiT model to quickly learn the desirable properties important
for computer vision which are inherent to CNNs (such as being invariant to translation
and location) without needing copious amounts of data. Whilst three DeiT variants were
proposed, AST utilises DieT-base (the largest of the three) which comprises a 12-layer
transformer encoder with 12 attention heads.

AST is trained on AudioSet, which contains 5.5k hours of sounds from 527 classes
extracted from YouTube videos [43]. First, mel-spectrograms are divided into 16 × 16
patches (with an overlap of 6 found to be optimal). Each patch is flattened xxxp ∈ R256 and
projected with a point-wise linear layer to a latent patch embedding zzzp ∈ R768. Learnable
positional embeddings are then added to each patch embedding. Since the original DeiT
architecture was trained with image resolutions that differ from the mel-spectrograms
presented to AST, the learnt positional tokens EEE = {eee1, eee2, ..., eeeP}, where eeep ∈ R768 and P

is the number of patches, cannot simply be reused. The authors propose a cut and bilinear
interpolation approach to transfer the learnt embeddings to different input dimensions.
For example, in the case of the original DeiT-base model, each 384× 384 image with patch
sizes of 16× 16 results in 24× 24 individual patches and therefore the same number of
positional embeddings. However, in the case of a 128-dimensional mel-spectrogram with
1024 frames, the resulting number of patches would be 12× 100 (with a patch overlap of
6). Therefore, to maintain the information that the pre-trained positional embeddings
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have already learnt, the first dimension of the original 24× 24 embeddings (arranged into
a grid) is reduced to 12, and the second is interpolated to 100. This process is visualised
in Figure 5.4.

Figure 5.3: High-level diagram of AST. A 2D spectrogram is split up and linearly
projected into patch embeddings where an additional classification token is prepended.
The resulting sequence is combined with learnable positional embeddings and fed into a
transformer encoder. The output corresponding to the classification token is then fed
into a linear layer for classification. Reproduced from [5].

Cut and
interpolate

to 2x4

Original positional embeddings
(3x3)

Figure 5.4: Visualisation of reducing the dimension of a matrix along one axis, and
interpolating it along another. Red squares indicate interpolated samples where ẽeei,j is
the mean between eeei and eeej .

5.2.1. Motivation

Large transformers such as AST benefit from having been trained on exceptionally large
datasets. Consequently, training such a large transformer from scratch would not be
feasible with the size of the dataset used for experimentation in this work. With the
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success of fine-tuning pre-trained out-of-domain architectures on seemingly unrelated tasks,
for example, the previously highlighted widespread use of ResNet in COVID-19 cough
classification, it was hoped that similar success could be achieved when fine-tuning AST
(which has already learned general audio representations). As such, we investigate its use
for TB cough classification during experimentation.

5.3. wav2vec2.0

Large transformer-based language models have proven successful in capturing complex
contextualised representations resulting in state-of-the-art performance on a multitude
of ASR tasks [72]. A highly successful architecture is wav2vec2.0 [64], which starts by
extracting a sequence of acoustic representations ZZZ = {zzz1, zzz2, ..., zzzt}, where zzz ∈ Rd, directly
from an audio waveform by means of a 1D convolutional feature extractor. This feature
extractor consists of seven layers, each with 512 channels, with the kernel width and
stride of 10,3,3,3,3,2,2 and 5,2,2,2,2,2,2 respectively, that reduce the size of the normalised
input waveform (unit mean and variance) by a factor of 320. This is then followed
by a normalisation and projection layer (a point-wise linear layer), which projects the
512-dimensional embeddings to be d-dimensional embeddings, where d is either 768 or
1024 depending on the size of the network. ZZZ is then fed into a series of transformer
encoder blocks, which extract contextualised representations CCC = {ccc1, ccc2, ..., ccct}, where
ccc ∈ Rd, as shown in Figure 5.5. To circumvent the large labelled dataset that would be
needed to train the model from scratch, a self-supervised learning technique is employed
that allows the model to learn generalised speech representations using a contrastive loss.
During this self-supervised training, feature representations ZZZ are discretized into the
set of vectors QQQ = {qqq1, qqq2, ..., qqqt} where qqq ∈ Rd using a complex product quantization
scheme to enforce the learning of speech-like acoustic units. The details of this procedure
are not necessary for a high-level understanding of the wav2vec2.0 framework. Next, a
proportion of these quantized representations QQQ are masked (replaced with a learnable
masking token) before being fed into a transformer encoder. The network is trained to
minimise the cosine distance between the context representations CCC generated for these
masked representations at the output of the transformer and the corresponding quantized
speech representations qqq. Additionally, the cosine distance is maximised between the
generated context representations and a set of distractors, which are true quantized speech
representations uniformly sampled from other masked time steps in a given utterance. This
is described by the following equation, where cccj is the extracted context representation for
some masked speech representation, qqqj is its quantized speech representation and q̃̃q̃q is a
distractor form a set of K distractors.
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Figure 5.5: Illustration of the wav2wec2.0 architecture. A raw waveform is fed into a
convolutional speech representation extractor, the output of which is used by a transformer-
based context network.

L = − log exp(sim(cccj, qqqj)/K)∑
∀q̃qq exp(sim(cccj, q̃̃q̃q)/K) (5.1)

Two variants were released, namely “base” (12 transformer blocks) and “large” (24
transformer blocks), trained on 960 and 53,2k hours of unlabelled audio derived from the
LibriSpeech and LibriVox corpora respectively. Finally, these architectures were fine-tuned
with (comparably less) labelled data using connectionist temporal classification (CTC)
loss to form acoustic models in ASR tasks where they achieved state-of-the-art results. In
addition to their great success in ASR, the latent acoustic representations learnt during
the self-supervised pre-training step have been shown to transfer well to a variety of
acoustic tasks including phoneme recognition, keyword spotting, speaker identification,
speaker verification, speaker diarization, intent classification, semantics, and emotion
recognition [73].

5.3.1. Motivation

Despite cough being characteristically different from speech, it has been shown in previous
studies that the important frequency information being learnt lies within the same bands as
speech. Moreover, motivated by the success of transfer learning in other cough classification
studies, a fine-tuned wav2vec2.0 may be able to capture good acoustic representations
useful for TB cough classification. To investigate this hypothesis, we use the base variant
of wav2vec2.0 in experimentation.
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5.4. Summary

In this chapter, we detailed three large pre-trained networks used in this work, namely
ResNet, AST, and wav2vec2.0. ResNet is a large convolutional-based architecture that has
been used for a variety of downstream image-based tasks and is pre-trained on ImageNet.
AST, which applies transfer learning to an already pre-trained vision transformer on
ImageNet, performs convolution-free audio classification. Lastly, wav2vec2.0 is another
transformer-based acoustic model. Rather than using image patches (like AST), wav2vec2.0
extracts acoustic representations directly from the audio waveform and can therefore be used
for a host of downstream acoustic tasks, most notably ASR. In the next chapter, we detail
the experimental setup, including architecture design, for the primary experimentation
conducted in this study, that is, the application of deep learning-based methods to TB
cough classification.
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Chapter 6

Experimental setup

In this chapter, we detail the application of deep learning -based models to TB classification,
which is the main focus of this work. First, utilising the deep learning architectural building
blocks and pre-trained networks described in previous chapters, investigated architectures
and variations of which (structure, depth, complexity, and size) are detailed. In addition
to training randomly initialised classifiers, we investigate the effect of pre-training models
on an auxiliary task before fine-tuning them for TB classification. We detail this pre-
training scheme, a cough detection task, whereby models are exposed to significantly more
data. Next, investigated hyper-parameters for the three previously described acoustic
feature vectors (LFB energies, mel-spectrograms, and MFCCs) are detailed, and the
investigated data augmentation techniques used are described. This is followed by a
thorough description of the experimental setup used, which includes dataset splits and
the use of nested cross-validation, performance metrics (sensitivity, specificity, equal error
rate, and area under the receiver operating characteristic curve), and the general training
procedure.

6.1. Architectures

Previous work has shown that machine learning algorithms can learn to distinguish between
coughs originating from patients that suffer from TB and those that do not. We conduct
a rigorous investigation into the application of deep learning to this domain, comparing a
variety of architectures to the current best classifier that has been presented in previous
work (LR). These architectures include RNNs, CNNs, transformers, the use of attention,
and various larger models pre-trained on seemingly unrelated tasks which we fine-tune for
TB cough classification. We subsequently describe the exact classifier architectures used
for experimentation in this work. Albeit each pre-trained network or architectural building
block has already been explained in previous chapters in-depth (Chapter 5 and Chapter
3), we provide a brief motivation and description of each when used. Where this detail is
insufficient, we refer the reader to the relevant chapters. This description also includes
approaches to architecture optimisation. We detail the general method used to train these
deep learning architectures in later sections. Unless otherwise stated, sequences of acoustic
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feature vectors are always zero-padded to the longest sequence in a given mini-batch.

6.1.1. Linear Regression

Previous work in TB cough classification has focused on simple linear models since it was
observed that more complex neural networks resulted in degraded performance [3]. In
both [2] and [3], logistic regression (LR) outperformed all other classifiers considered. As
such, we use it as a baseline with which our architectures will be compared. LR is a simple
approach that linearly models a probability f(xxx) given a set of d predictors xxx ∈ Rdx using
learnable coefficients θθθ.

f(xxx) = 1
1 + eθθθTxxx

(6.1)

Equation 6.1 highlights an important limitation of LR: each predictor x is a feature
vector computed from a segment of audio - the frame-wise average of a sequence of acoustic
feature vectors. In doing so, any temporal information is lost. In this work, we use this
same procedure to ensure a fixed dimensional input feature vector, that is, for each segment
of audio, we compute the temporal mean of its corresponding sequence of acoustic feature
vectors. Moreover, whilst previous studies experimented with dividing a single cough
audio sample into multiple segments (refer to Chapter 2 for more detail), one segment was
always optimal, and as such we fix this hyper-parameter in our experimentation.

Hyper-parameters

There are no architectural hyper-parameters for LR, but it is common to introduce
regularisation to improve generalisation. Typically, an additional loss term is introduced
that penalises the magnitudes of learnt parameters which helps prevent over-fitting. This
is performed by either minimising the square magnitude or the absolute magnitude of
the coefficient vector (known as L2 and L1 regularisation respectively). The latter has
the benefit of allowing coefficients to become zero, allowing the model to perform its own
feature selection which is very useful in low-resource applications. To remain consistent
with both [2] and [3], we use a linear combination of L2 and L1 (known as an elastic net),
performing a grid-search between the following parameters: The overall regularisation
strength (weighting) λ and relative weighting between L1 and L2 regularisation βr. A βr

value of 0 corresponds to only using L2 regularisation, and a value of 1 corresponds to
only using L1 regularisation.

Optimisation

We use the saga solver in scikit-learn for logistic regression [74] with the maximum number
of iterations until convergence set to 10, 000.
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Figure 6.1: Network diagram for the proposed BiLSTM architecture. The input feature
vector is fed into a set of stacked BiLSTMs. The last embeddings in both directions are
concatenated followed by a fully connected layer for classification.

6.1.2. BiLSTM

RNNs have successfully been used in several acoustic classification tasks. Acoustic feature
vectors are processed sequentially, at each step updating the network’s internal hidden
states which contain context-rich information and are available to the network at the next
time step. This process allows complex temporal information within a set of acoustic
features to be captured. In this work, we choose to use the LSTM architecture [50] due to
its successful use in many related applications, such as automatic speech recognition and
voice activity detection [75–79]. Concretely, we make use of a BiLSTM, which extends the
LSTM architecture by processing the sequence in both forward and backward temporal
directions. Initial informal tests using various model size configurations allowed us to
conclude that the BiLSTM architecture consistently outperforms its LSTM counterpart
for TB classification.

A high-level diagram of the proposed network is shown in Figure 6.1. First, a sequence
of acoustic feature vectors XXX ∈ Rdx×n where n is the number of frames and dx is the
dimensionality of the acoustic feature vector is fed into a BiLSTM encoder. The BiLSTM
encoder contains βn stacked BiLSTM cells, each of which has a hidden state size βh whereby
the final outputs due to both directions HHH

(n−m)
f ∈ Rβh and HHH

(n)
b ∈ Rβh are concatenated

to form the vector q ∈ R2·βh , where m is the number of padded frames and HHHf ∈ Rβh×n

and HHHb ∈ Rβh×n are the output sequences of the last BiLSTM encoder in the forward and
backward directions respectively. The formation of q for a BiLSTM encoder with only
one BiLSTM cell is further illustrated in Figure 6.2. This latent representation is then
passed through a small feed-forward network with a 32-dimensional hidden layer and ReLU
activation followed by a two-dimensional output layer and softmax. We include dropout
before the first linear layer with a probability of 0.5. The size of this fully connected
network was determined through informal observations, adjustments of which are not
investigated further.
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Figure 6.2: Illustration of an input sequence XXX of length n with m padded samples
being fed into a single BiLSTM layer and the formation of the single vector q. The last
output of the forward LSTM that does not correspond to a padded input HHH

(n−m)
f is

concatenated with the last output of the backward cell HHH
(n)
b , which because it processes

the padded elements fist, may include information extracted over the padded region.

Hyper-parameters

When designing the BiSLTM architecture, we investigate the trade-off between model
complexity and performance. An increase in model complexity, for example by adding
BiLSTM layers, may allow more complex temporal relationships to be captured, but also
increases the number of model parameters, which could make the network harder to train
or lead to over-fitting. As such, we conduct a grid search between two parameters which
directly influence model complexity: the number of BiLSTM layers βn and βh. Whereby
the search space for βn is constrained to {1, 2, 3} and βh to {32, 64, 128, 256}.

Optimisation

We use the RMSProp optimiser 1 with a weight decay of 0.0001. We perform a learning
rate sweep at the beginning of training to find the optimal learning rate.

6.1.3. BiLSTM-Attention

The development of the attention mechanism [51] has revolutionised deep learning research.
With a focus on acoustic classification, attention-based architectures achieve near state-of-
the-art results on tasks such as the Google speech commands dataset [45, 46]. In addition,
the intuitive nature of the architecture allows for analysis of what the network is learning,
reducing the black-box notion commonly associated with deep learning. The concept of
attention is explained in detail in Chapter 3.

We develop an attention-based model by incorporating an attention layer in the
previously described BiLSTM architecture. Instead of passing q directly to the fully

1Informal experiments showed RMSProp to outperform Adam for recurrent networks.

Stellenbosch University https://scholar.sun.ac.za



62 6.1. Architectures 62

query

key

value

At
te
nt
io
n

FNN

BiLSTM encoder

catForward

Backward

BiLSTM

Forward

Backward

BiLSTM

cat

Figure 6.3: Network diagram for the proposed BiLSTM-Attention architecture. The
input feature vector is fed into a set of stacked BiLSTMs. The last forward and backward
representations in both directions are concatenated to form a query vector q which
is parsed to an attention layer together with keys and values from the concatenated
sequence of forward and backward representations (HHH f and HHHb respectively) outputted
by the BiLSTM encoder. The attention mechanism outputs a single embedding which is
the weighted sum of HHH by attention score relative to q. This is then parsed to a fully
connected network for classification.

connected network as is shown in Figure 6.1, we use a single head attention layer to weight
the BiLSTM encoders final layer output embedding sequence HHH ∈ Rn×2·βh (where n is the
length of the sequence) which is the concatenation of the BiLSTM encoder outputs in
both the forward HHH f and backward HHHb directions as in [45,46]. Importantly, attention is
masked (forced to zero) for padded regions. We use q as a query vector and HHH as the keys
and values, as illustrated in the high-level network diagram in Figure 6.3. This results in
a single latent vector e ∈ R2·βhe ∈ R2·βhe ∈ R2·βh that captures information only from the temporal regions
most relevant for classification, and suppress information from unimportant regions in
time. This latent vector is then fed into the same fully connected network described for
the previous BiLSTM architecture.

Hyper-parameters

We perform the same hyper-parameter optimisation followed for the BiLSTM architecture.

Optimisation

We use the RMSProp optimiser 2 with a weight decay of 0.0001. We perform a learning
rate sweep at the beginning of training to find the optimal learning rate.

6.1.4. CNN

Owing to their ability to extract robust feature representations, CNNs have been widely
used to perform a variety of tasks including image classification, object detection, im-
age segmentation, and even speech processing [65–67, 80]. Moreover, as highlighted in
Chapter 2, much related work has leveraged CNNs for cough classification. Therefore, we
investigate their application to TB cough classification.

2Informal experiments showed RMSProp to outperform Adam for recurrent networks.
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Figure 6.4: Network diagram for the proposed CNN-based architecture. Each convolu-
tional block is highlighted with a solid colour, where pink denotes the input block, and
orange the convolutional blocks which will be stacked. Note k, s and c above each block
denote the kernel size, stride, and the number of filters/channels respectively.

We construct a CNN architecture similar in structure to ResNet [4] which includes skip
connections between stacked convolutional blocks with a focus on a reduced parameter
count. We present our architecture in Figure 6.4. The designed network expects a fixed
dimensional input of XXX ∈ R1×224×224, chosen to be consistent with ResNet. However, the
acoustic feature vectors used to represent cough are variable in length. To ensure all
elements in a batch are the correct dimension, we simply zero pad along the time axis
of the acoustic feature vector such that its length (or the number of frames) is 224 and
then stretch the frequency axis to a height of 224 through linear interpolation. When the
sequence of acoustic feature vectors is longer than 224, a simple energy detector is used.
A 224 frame window is slid over the sequence with a frame skip of 1, whereby the window
with the highest RMS energy (assumed to have the most cough information) is selected.
After this pre-processing, XXX is passed through a convolution layer with stride 2 and kernel
size 7 to capture initial contextual information (highlighted by pink in Figure 6.4) and
compress the feature space. This is then followed by βd convolutional blocks (highlighted
by orange in Figure 6.4). A depth-wise expansion layer, which is a convolutional layer
with c 1× 1 kernels where c is the new channel dimension, is used to upsample the channel
dimension to twice as many as the previous layer followed by three convolutional layers
with stride 1 and 3× 3 kernels with skip connections between the input of the first layer
and output of the last. This is then followed by batch normalisation, max pooling, and
dropout (fixed probability of 0.2). ReLU activations are used after each convolutional
operation. To perform classification, we pool over the channel dimension of the final output
activation map and flatten the resulting two-dimensional feature space such that it can be
passed to a single layer fully connected layer for classification (two neurons and softmax).

Hyper-parameters

Since the number of filters required to extract the latent feature representations suitable
for TB classification and how complex these latent representations should be is unknown,
we set both the number of initial filters βc and depth of the convolutional network βd

as hyper-parameters, and perform a grid-search between βc and βd from {8, 16, 32} and
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{3, 4, 5} respectively. Note the complexity of features extracted scales with the depth of
the network.

Optimisation

We use the Adam optimiser with a weight decay of 0.0001. We perform a learning rate
sweep at the beginning of training to find the optimal learning rate.

6.1.5. Transformer

Transformers have been used successfully in a range of deep learning applications, in
particular speech processing [72]. This is owed to their ability to capture context-rich,
latent representations with a broad temporal range, a task that is much harder for RNNs.
As such, we investigate the use of the basic transformer architecture in this work. We
refer the reader to Chapter 3 for terminology and concepts related to attention and
transformers, as this section will not reintroduce them for the sake of brevity (including
positional encodings and encoders).

Our designed architecture takes as input a sequence of acoustic feature vectors XXX ∈
Rdx×n (described in previous sections). First, XXX is linearly projected by a single point-wise
feed-forward layer (i.e. the same feed-forward layer is applied to each element in the
sequence) which has the same number of neurons as the feature dimensionality expected
by the transformer βd. A learnable classification token xxxcls is then appended to the start
of the resulting sequence which is then positionally encoded (the method of which will be
detailed subsequently). This sequence is then fed into a series stack of transformer encoder
blocks. Importantly, attention is masked for regions corresponding to padded inputs. The
first embedding of the last encoder’s output sequence, which corresponds to xxxcls, is then
fed into a single fully connected 2-dimensional layer followed by softmax for classification.
The general architecture is depicted in Figure 6.5. We experiment with an assortment of
model configurations, which will be described subsequently.

Hyper-parameters

There are several parameters to consider when designing transformer architectures. Typi-
cally, performance is a function of width (number of attention heads βah), depth (number
of encoder blocks βe), and general model size (latent representation size βd and each
encoder’s feed-forward size). Whilst the common trend in high-resource applications is to
maximise all of these factors, this will likely inhibit learning in our low-resource task. As
such, we perform a grid search on these parameters, with βah = {4, 8}, βe = {4, 8} and
βd = {128, 256}. We set the size of the point-wise feedforward layer in each encoder block
to 2 · βd as is common in transformer applications [51,64,71]. This relative increase in the
size of this layer to βd is motivated by the fact that it is applied to every element in the
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Figure 6.5: High-level diagram for the proposed transformer architecture. XXX is up-
sampled in the feature axis, with a single linear layer (same layer used for each element in
the sequence) before being positionally encoded. This in then fed through βn transformer
encoding modules, after which the CLS token is used for classification.

latent sequence outputted by the multi-head attention module, and as such needs to be
able to transform a diverse range of latent representations.

In addition to architectural hyper-parameters, we also consider two different methods
of positional encoding, namely the fixed sinusoidal embeddings described in Chapter 3,
and a set of learnable positional embeddings PPP ∈ Rβt×βd as described in [81] similar to
that used in AST, where βt is the longest sequence seen during training. In essence, this
allows the network to potentially learn more complex positional relationships between
elements in the sequence, with the trade-off of not generalising to sequences longer than
those seen during training.

Optimisation

We use the Adam optimiser with a larger weight decay than that used for other architectures
of 0.01. This is motivated by the general observations in the literature, whereby larger
weight regularisation tends to be used when training transformers [6, 42, 51, 64, 71]. We
perform a learning rate sweep at the beginning of training to find the optimal learning
rate.

6.1.6. ResNet

ResNet architectures have proven to transfer well to cough classification, in particular
detecting COVID-19 as highlighted in Chapter 2. We investigate using both ResNet-50 (50
convolutional layers) and the smaller ResNet-18 (18 convolutional layers) as TB classifiers.

ResNet expects a fixed dimensional input of size 3 × 224 × 224, which represents
the three channels of an RGB image with a height and width of 224 pixels. Whilst
it is common practice in computer vision to interpolate or resize data to match that
expected by the model, this procedure would inhibit the learning of sensitive temporal
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information contained in the sequence of acoustic feature vectors, as different samples
would be stretched or squeezed by varying amounts depending on how many frames were
present in the original sequence. To circumvent this, we simply zero pad along the time
axis of the acoustic feature vector such that its length (or the number of frames) is 224
and then stretch the frequency axis to a height of 224 through linear interpolation. When
the sequence of acoustic feature vectors is longer than 224, a simple energy detector is
used. A 224 frame window is slid over the sequence with a frame skip of one, whereby the
window with the most cough information (highest RMS energy) is selected. The resulting
fixed-dimensional acoustic feature vector is then stacked three times along a new dimension
to represent the three RGB channels. To perform classification, the latent 3-dimensional
feature map outputted by the last convolutional layer is averaged over its width and height,
as is performed in the original implementation of ResNet [4]. The resulting embedding
(the same dimension as the number of channels in the aforementioned feature map) is then
fed into a fully connected layer for classification. The size of this latent vector is 512 and
2048 for ResNet-18 and ResNet-50 respectively.

Hyper-parameters

We investigate not updating parameters (freezing) from portions of the pre-trained architec-
ture (also referred to as a backbone) during training. This is motivated by the hypothesis
that most parameters learnt during pre-training should be generalised, and as such should
not all have to be fine-tuned to the task at hand (and hence mitigate the potential for
over-fitting). For example, the early layers in ResNet have been shown to learn very
low-level patterns (edges, textures, lines etc.), which would be useful for most fine-tuning
tasks, and hence should not need to be retrained [82]. We freeze/unfreeze different portions
of the backbone to investigate how generalised the pre-trained architecture parameters are.
Namely, we experiment with freezing the entire backbone, freezing the entire backbone
except for the last convolutional block, and finally unfreezing the entire backbone and
allowing the loss to back-propagate through the entire model.

Optimisation

We use the Adam optimiser with a weight decay of 0.0001. We perform a learning rate
sweep at the beginning of training to find the optimal learning rate.

6.1.7. Audio Spectrogram Transformer

Motivated by AST’s ability substantially improve upon audio classification benchmarks,
we investigate fine-tuning it for TB cough classification. The setup of AST remains the
same as that previously described in Chapter 5, except for the replacement of the final
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linear layer which has 527 output classes with a 2-dimensional linear layer suitable for our
binary classification task.

Hyper-parameters

We do not investigate any hyper-parameters when training AST and consider only the
exact implementation used in [5], which uses 128-dimensional mel-spectrograms as acoustic
feature vectors.

Optimisation

We use the Adam optimiser with a weight decay of 0.01. We perform a learning rate sweep
at the beginning of training to find the optimal learning rate.

6.1.8. wav2vec2.0

Motivated by wav2vec2.0’s state-of-the-art ability to extract complex contextualised
acoustic representations, we use the smaller “base” variant as a pre-trained backbone for
TB classification and experiment with fine-tuning it for TB cough classification.

Since wav2vec2.0 was trained on 16kHz audio, we down-sample our cough audio to
match this. In [6] it was shown that using a decoder on top of a wav2vec2.0 backbone can
help convert the extracted speech representations into speech command features suitable
for keyword spotting, and results in improved performance in comparison to using a simple
linear classification layer which takes the last element in the sequence outputted by the
transformer as input. We experiment with both techniques. Importantly, all input samples
are padded or cropped to one second, masking attention for padded samples. This was
performed for two reasons: padding all input samples in a batch to the longest sequence
(as is done with the recurrent architectures) required too much memory for an adequate
mini-batch size for training to converge, and secondly, the contextual embedding decoder
used is designed to work with strictly one second long inputs. Cropping is performed
by simple energy detection, whereby a one-second window (16,000 samples) is slid over
the entire audio waveform with a hop length of one. For each window of audio, the
root-mean-square (RMS) of its amplitudes is computed. The window with the highest
RMS amplitude is used as the input to the network.

As in [6] our decoder is made up of two 1D convolutional layers. The first performs
time compression with 112 kernels of size 25 and dilation of 2 designed to convert the 49
contextual embeddings CCC ∈ R768×49 outputted by the backbone for the one-second-long
input to CCC

′ ∈ R112×1. The second convolutional layer applies point-wise convolutions
(kernel of size 1), the output of which is fed to a fully connected network for classification.
The complete structure of the decoder is shown in Figure 6.6, whereby each convolutional
block makes use of batch normalisation and ReLU activation functions.
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Figure 6.6: wav2vec2.0 decoder structure used in [6]. Context representations are fed
through two 1D convolutional blocks, and then a fully connected layer for classification.

When using a simple linear classification head directly on top of the backbone, we
arbitrarily use the last element of the sequence CCC described previously. In theory, any
element should suffice, as after passing through all 12 transformer encoder layers, the
relevant sequence context for classification should be embedded in each output embedding.

Hyper-parameters

Whilst limited architecture modifications can be made, we experiment with freezing different
layers of the backbone during training to investigate its effect in reducing over-fitting
and subsequent improvement of performance. This includes freezing the CNN feature
extractor and the entire backbone, although we only perform the latter when the model
has been pre-trained on the auxiliary cough detection task. Some informal preliminary
experimentation was conducted concerning using earlier transformer layer outputs instead
of the final latent embeddings, but this always resulted in reduced performance.

Optimisation

We use the Adam optimiser with a weight decay of 0.01. We perform a learning rate sweep
at the beginning of training to find the optimal learning rate.

6.2. Pre-training

It is well documented in the literature that pre-training large neural networks on related
tasks before fine-tuning them on the primary task can lead to improved performance. Pre-
training networks as cough classifiers, that is classifying if an audio signal contains a cough
or not, has shown to improve the performance of COVID-19 cough classifiers [19,20,34].
Motivated by this, we investigate the application of such pre-training techniques to TB
cough classification and use a similar setup to that described in [34]. Concretely, we use a
self-constructed dataset titled “Cough or Not” as described in Chapter 4.

As highlighted in previous sections, extensive hyper-parameter searches are conducted
for many investigated architectures. It is not feasible to pre-train each configuration due to
computational constraints, and as such we only investigate pre-training the configuration
which performed best during development. All networks are trained for 30 epochs, with a
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Table 6.1: Dimensionalities considered for various acoustic feature vectors.

Acoustic Feature Dimensionalities considered
LFBE 80, 128, 180
Mel-spectrogram 80, 128, 180
MFCCs 13× 3, 26× 3, 39× 3

decaying learning rate initialised by a learning rate sweep. After each epoch, classification
accuracy is evaluated on a held-out development set, after which model weights are stored
if the performance metric has increased. Due to the presence of some substantially long
recordings in the constructed “Cough or Not” dataset, memory constraints were reached
for larger models. To circumvent this, we use the same simple energy detector used for
the CNN, ResNet and wav2vec2.0 architectures. A fixed-length window is slid over the
sequence of acoustic feature vectors, selecting the sub-set of acoustic feature vectors that
correspond to the window with the highest RMS energy. The window lengths for all
other architectures which did not already use an energy detector (BiLSTM, BiLSTM-Att,
transformer, and AST) were set to 600 frames.

After pre-training, the “Cough or Not” classifier’s weights were used to initialise a
corresponding TB classifier, with the exception of the final fully connected layer (responsible
for outputting class probabilities) which was discarded. The same training procedure
is followed as with the non-pre-trained (base) networks. Importantly, when discussing
experimental results, already pre-trained architectures (e.g. ResNet) will still be referred
to as base models if they have not yet been further fine-tuned on the “Cough or Not” task.

6.3. Acoustic features

We previously described LFB energies, mel-spectrograms, and MFCCs in Chapter 3. All
three of these acoustic feature vectors are experimented with in this work. However, due to
the computational complexity of searching for optimal acoustic features for each architecture
in addition to each specific architecture’s own extensive hyper-parameter search, we use the
results of an initial study to identify the class of acoustic representations that results in the
best performance across a few models and make the naive assumption that this will also be
a good choice in the remaining experiments. In this initial investigation, we also explore
the impact of the dimensionality of each acoustic feature vector on model performance.
Three sizes for each acoustic feature are experimented with and are highlighted in Table
6.1. Note the multiplication factor of three for each MFCC dimension, which accounts
for the inclusion of velocity and acceleration coefficients. The range of feature vector
dimensionalities is based on those explored in [2] and [3] as well as other related cough
classification literature described in Chapter 2.

We use a fixed window and hop length of 2048 and 512 respectively. This is motivated
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by parameters found to be ideal in [2, 3] in addition to [83] which all showed through
rigorous experimentation that larger windows are more beneficial for capturing frequency
information relevant for both cough classification and detection. Due to the already large
computational extent of our experiments we take advantage of results presented in these
related studies and do not investigate tuning these parameters, however, we acknowledge
that a thorough search for optimal parameters in this specific application may improve
results.

6.3.1. Data augmentation

We experimented with two data augmentation techniques: SpecAugment [7], and speed-
perturbation [84]. Whilst it is often common to augment audio datasets by the addition of
environmental noises, we do not explore this in this work due to the already noisy nature
of our dataset. We conduct an initial informal experiment comparing performance with the
aforementioned augmentations on two deep classifiers (BiLSTM and BiLSTM-Attention)
to conclude which augmentation techniques will be used in later work. We describe each
augmentation in more detail subsequently.

SpecAugment

SpecAugment is a simple data-augmentation technique that applies time warping, frequency
masking, and time masking directly to a sequence of acoustic feature representations [7].
Given a sequence of n acoustic feature vectors with dx feature bins, time stretching is
achieved by first randomly selecting a frame between (W, n−W ) to serve as an anchor
point, where W is the time warp parameter. The anchor point is then either moved
either left or right by some factor w sampled uniformly between (−W, W ), whilst either
stretching or compressing the sequence of frames to the left and right of the anchor point
as it moves to its new position through linear interpolation. This results in one half of the
sequence resembling a speed-up of audio, and the other a slow-down. For example, if the
30th frame of a 50-frame spectrogram was selected, and a w of +5 (move right by 5) was
sampled, the first 29 frames would be interpolated to a new length of 34, and the last 20
frames would be interpolated to a new length of 15. This concept is further reinforced in
Figure 6.7, where we visualise this transformation for a base spectrogram (top), and the
resulting warped spectrogram (bottom).

Both time and frequency masking are comparatively more simple. With respect to
frequency masking, the width of the masking band (the number of consecutive bins to
mask) f , is sampled uniformly between [0, F ), where F is the frequency masking parameter.
Next, the bin f0 from where the masking starts is sampled from [0, dx − f ]. Masking is
applied to each element in the sequence of acoustic feature vectors. A similar process
is followed for time masking, where the masking parameter T determines the maximum
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Stretch Compress

Figure 6.7: Illustration of time warping being applied to a spectrogram (top) and the
resulting transformation (bottom). The dashed red line indicates the selected anchor
point [7].

Figure 6.8: Example of frequency (top) and time (bottom) masking [7].

number of consecutive frames to be masked. Note that in time masking, the entire acoustic
feature vector is masked. We provide an example for both frequency and time masking in
Figure 6.8.

Since we are unsure as to where important information lies in a TB cough, and how
nuanced the signal in time can be, we choose F and T to be only 5% of dx and n, and only
apply masking once. W is chosen to be 95% of n such that the time warp is sufficiently
small so as to not destroy any temporal information. Whilst potentially more optimal
parameters may be possible, due to computational constraints we could not investigate
them further. We did however conduct informal experiments, which showed some degree
of performance insensitivity around these values implying that they are within a good
range.
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Speed-perturbation

A simple yet effective audio augmentation technique is to create additional training data
by simply speeding up or slowing-down original samples. In [84] such a technique was
proposed for data augmentation for an ASR task, whereby an audio signal x(t) is warped
by some warping factor α to produce the signal x(αt). By analysing the Fourier transform
of this perturbed signal, α−1X(α−1f), we observe that this causes some shift in frequency
information with respect to X(f). In addition, the change in the duration of the signal
results in a different number of acoustic feature frames from those derived for the original
audio signal. This technique was applied to the training sets of ASR systems, which
increased the dataset size by a factor of three by using warping factors α = {0.9, 1, 1.1}
and resulted in a 4.3% reduction in word error rate on average.

In this study, we experiment with using these same warping factors as in [84] to augment
training data. Whilst an investigation into the number and size of warping factors on
performance may yield a more ideal configuration for this augmentation technique, we
leave this for future study.

6.3.2. Sequential forward search

SFS has been shown to substantially improve classifier performance (in particular AUC)
in the literature [2, 3, 8] and as such we investigate its application in our work. SFS is an
algorithm used to determine the feature vector subset that results in optimal classifier
performance by means of a greedy search that sequentially adds the individual feature to
the feature subset that results in the greatest improvement in classification performance
(based on the development set). This procedure is outlined by the pseudo-code below,
where J is the criterion function that is being optimised. Owing to SFS’s O(N2) complexity,
it is infeasible to apply it to all investigated architectures. For this reason, we only conduct
SFS for the optimal configuration of the best non-pre-trained architecture as presented in
the subsequent chapter.

Algorithm 6.2: Sequential forward search feature selection.
Let the input feature set be: X ← {x1, x2, ..., xd}
Create the empty sets: Y ← ∅, Q← ∅
Let: k ← 0
while k ̸= d do

x+ = argmax J(Y + x), where x ∈ X − Y
Q = Q + J(Y + x+)
Y = Y + x+

k = k + 1
end while
Let the optimal feature set index be: q ← argmax Q
return Y0:q, the optimal feature set, ranked
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Table 6.2: Train and test set splits of the combined dataset for the three outer folds
(fold 1 to 3 from left to right).

Set TB TB Total
Train 19 30 49
Test 9 16 25
Total 28 46 74

Set TB TB Total
Train 18 31 49
Test 10 15 25
Total 28 46 74

Set TB TB Total
Train 19 31 50
Test 9 15 24
Total 28 46 74

6.4. Datasets, evaluation and training

We now detail the general experimental setup used in this work. This includes details
regarding the training, development, and testing of models. In addition, we explain the
evaluation metrics which will be used to quantify model performance. Lastly, we summarise
experiments that will be conducted, most of which have already been introduced in this
chapter. Experiments were conducted in Python, and unless otherwise stated implemented
with PyTorch and PyTorch Lightning.

6.4.1. Dataset splits

We divide the combined dataset, as described in Section 4.3, into three training set
and test set partitions, whereby patients in one test do not appear in any other. This
three-fold cross-validation (referred to as the outer folds) is in an effort to evaluate model
robustness to unique sets of unseen patients, whereby experiments are repeated for each
fold independently. Each of these train/test splits is shown in Table 6.2. Importantly, both
the Brooklyn and Wallacedene datasets are represented equally in all splits. Furthermore,
splits are performed patient-wise, ensuring that all coughs originating from the same
patient are only present in one set, and we ensure a uniform distribution of TB and TB
patients across splits.

Each of the three training sets is further divided into four inner folds (each consisting
of its own train and development set) for development cross-validation using the same
previously described procedure. Importantly, there is again no patient overlap between the
development sets. Any given split which is being used to train and evaluate an individual
model will typically rely on ≈ 38 patients for training and ≈ 12 for development. We
highlight how these partitions were performed in Figure 6.9. Note the non-overlapping
nature of both train/test and train/development splits, whereby each element in the
dataset (patient) only appears in a test set once, whilst the same is true for inner-fold
development sets. The precise contents of each split in terms of patient IDs are given in
Appendix B. We refer to this procedure of utilising outer folds for testing and inner folds
for development as nested k-fold cross-validation.

A keen eye will notice that patients used in the test set of, say, fold 1 for example, will
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Figure 6.9: Visualisation of nested k-fold cross-validation used in this work. The dataset
is divided into three non-overlapping subsets (or three outer folds). Each training set
is further divided in four non-overlapping subsets (or inner folds). These are used to
optimise architecture parameters for that specific outer fold. This is repeated for each
inner and each outer fold.

partially appear (50% in fact) in the development sets of fold 3. This overlap across outer
folds between test and development sets must be handled with care, and means decisions
during development must be independent across other outer folds. This phenomenon is
highlighted in more detail in Appendix C. With this in mind, it is important to state that
these experiments were not initially designed with nested k-folds cross-validation in mind,
and hence unwanted biases may have crept in. For example, when performing development
in fold 1 (which was initially the only split used during experimentation) we might have
observed a specific range of hyper-parameters performing better on the development set
than others, which would have been used to inform decisions made when selecting which
hyper-parameters to search for when conducting nested k-folds cross-validation.

Inner fold development

During hyper-parameter optimisation, for each iteration, we fix the set of hyper-parameters
currently being investigated for all inner folds belonging to a specific outer fold and use
the mean development scores to determine the optimal hyper-parameters for that given
outer fold. In other words, we try to find a set of hyper-parameters that result in the
best-generalised performance across all development folds for a given outer fold split,
rather than trying to optimise each inner fold individually, which would almost certainly
result in development set over-fitting, a phenomenon whereby model hyper-parameters are
tuned to such a degree that that whilst optimising development set performance, they no
longer generalise to other unseen data.
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6.4.2. Performance Metrics

A variety of performance metrics are used to evaluate the effectiveness of the classifiers
considered in work. These include sensitivity, specificity equal error rate (EER) and AUC.
To better understand the metrics presented subsequently, it is first necessary to understand
the concepts of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) after selecting a decision threshold. TP and TN quantify the number of
correctly classified samples with ground truth positive and negative labels respectively,
whilst FN and FP quantify the number of incorrectly classified samples with ground truth
positive and negative labels respectively. High TP and TN values indicate a classifier that
can easily and reliably distinguish between two classes, whilst high FN and FP values
indicate that the classifier is confused, and cannot accurately determine the class a data
point belongs to. These are best described visually and are depicted through a confusion
matrix for a binary classifier (predicts two classes, 1 or 0), in Figure 6.10. Typically each
row in the confusion matrix is normalised by the total number of ground truth samples
for the specific class it corresponds to.

Figure 6.10: A confusion matrix depicting the ground truth and predicted labels for
TP, TN, FP, and FN decisions. Cells highlighted in green indicate metrics where higher
values indicate a better classifier, whereas red indicates metrics where lower values infer
better performance.

Sensitivity

Sensitivity is a performance measure for binary classification systems which aims to
partially mitigate the effects of class imbalance in performance metric computation by
considering only the proportion of true positive samples correctly classified. This is shown
in Equation 6.2, where TP + FN corresponds to the number of ground-truth positive
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samples in the evaluation set. By observing the equation, we see that a higher sensitivity
indicates fewer FNs, and therefore that a classifier’s positive predictions are more reliable.
This is especially important for medical systems, whereby miss-classifying a patient who is
sick can have severe consequences.

Sensitivity = TP
TP + FN (6.2)

Specificity

Specificity accomplishes the same task as sensitivity, but for the negative class, by repre-
senting the proportion of negative samples correctly predicted. As shown in Equation 6.3,
specificity is the measure of correctly predicted TN samples compared to the total number
of ground-truth negative samples in the evaluation set (TN + FP). Thus, higher specificity
indicates a classifier that will result in fewer FPs. This, in the context of a medical system,
corresponds to a reduction in the number of people being sent for further testing but who
are not in fact ill.

Specificity = TN
TN + FP (6.3)

AUC-ROC

The ROC curve is determined by plotting the true positive rate (TPR) which is equivalent
to the sensitivity, on the vertical against the false positive rate (FPR) shown in Equation
6.4, on the horizontal as the decision threshold is varied. Note FPR is in fact equivalent
to 1− specificity. The ROC curve is a useful tool since the trade-off between sensitivity
and specificity can be easily visualised. A curve that passes through the upper left corner
of the plot indicates a perfect classifier, whereas a curve that lies along the 45◦ diagonal
represents a classifier making random decisions.

FPR = FP
TN + FP (6.4)

While ROC is a useful visualisation tool, it can become difficult to use effectively when
comparing classifiers of similar performance. As such, it is useful to compare classifiers
by considering the area under the ROC curve (AUC). In doing so, AUC characterises
the classifier across all operating points. Note, AUC ∈ [0, 1] where higher values indicate
a better classifier and values approaching 0.5 indicate performance similar to a random
classifier. An example is provided in Figure 6.11 for two classifier systems, A and B. In
this example, system A is the better-performing classifier, and therefore its ROC curve
lies above that of system B.
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Figure 6.11: ROC curves for two systems: A and B.

Figure 6.12: Representation of FPR and FNR as the decision threshold is increased.
The error rate where FPR and FNR cross is labelled the EER.

Equal error rate

EER is the error rate at the decision threshold where the false negative rate (FNR)
equals the FPR (recall, FPR is equivalent to 1 − specificity), where the FNR is simply
1−sensitivity. As the decision threshold of a system is increased, the FPR will naturally
decrease while the FNR will increase. For a good classifier, the FPR should decrease
rapidly, and thus FNR and FPR should cross over at a low error rate, depicted in Figure
6.12. Therefore, a lower EER indicates a better classifier. In this work, in addition to its
use a performance measure, we also use the EER to determine optimal decision thresholds
during development as is done in [2] and [3].
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Table 6.3: Batch sizes used when training various architectures.

Architecture Batch size
BiSLTM 128
BiSLTM-Att 128
CNN 64
Transformer 64
ResNet 64
wav2vec2.0 32
AST 24

6.4.3. Training

Except for LR, which follows the standard scikit-learn training recipe [74], all models
are trained for 15 epochs. This was always found to be sufficient for the binary cross-
entropy training loss to converge. Moreover, to account for class imbalance during training
we use weighted cross-entropy, whereby class weights are their respective inverse proportion
of the training set. The details for each optimiser used for a specific architecture can be
found in Section 6.1. It was found empirically that larger batch sizes tended to result in
better performance until a batch size of 128 was reached. Thus, for each network, we try
to achieve a batch size as close to this number in increments of 2n where n is an integer.
We tabulate these batch sizes for each architecture in Table 6.3. All models were trained
on the same system running Ubuntu 20.04 with 16GB of RAM and an Nvidia GTX 1070Ti
GPU.

6.4.4. Model selection and evaluation

After training is completed for all four inner folds as described in Section 6.4.1, the mean
development AUC over the four respective inner folds is computed for each epoch. The
models from the epoch with the highest mean AUC are selected as optimal. For a given
architecture and outer fold, the configuration with the highest mean development AUC
is selected to be evaluated on the corresponding outer fold test set. Importantly, this
selection is independent for each outer fold and as such the optimal configuration of a
specific architecture is not necessarily the same for each.

The prediction ensembling process followed when evaluating optimal architectures on
the test set to determine a patients probability of having TB ˆ̄y is described by Equation
6.5, where n is a particular inner development fold and ŷn is the estimated probability
of a patient having TB as predicted by the model for that fold. To determine ŷn for a
particular patient, we take the mean probability predicted for each of their C coughs being
a TB positive cough ẑ as shown in Equation 6.6 as in [2].
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ˆ̄y = 1
4

4∑
n=1

ŷn (6.5)

ŷn = 1
C

C∑
c=1

ẑc (6.6)

To determine the optimal decision threshold for ˆ̄y, the mean of the decision thresholds
γn that result in the EER for each inner fold is determined:

γ̄ = 1
4

4∑
n=1

γn (6.7)

Hence the optimal decision threshold was chosen based on the EER. We note that
it might be possible to improve performance if a strategy that chooses this threshold
to optimise, for example, sensitivity and specificity, is adopted. However, we leave this
investigation for future work.

6.5. Summary

In this chapter, we detailed experiments conducted to investigate the application of deep
learning -based classifier architectures to TB cough classification. This included recur-
rent architectures (BiLSTM with and without attention), convolutional-based models
(CNN, ResNet-18, and ResNet-50) and transformers (including our own small-scale im-
plementation, AST, and wav2vec2.0). We then detailed a pre-training scheme, and its
application to investigate its effect on model performance. Next, the hyper-parameters
for the acoustic feature representations investigated in this work were detailed, followed
by data augmentation techniques, and a greedy feature selection algorithm SFS. Lastly,
an in-depth description of the experimental setup used in this work was provided, which
included details regarding dataset splits, performance metrics, training, model selection and
evaluation. In the next chapter, we will present the results of the described experiments.
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Chapter 7

Experimental Results

In the previous chapter, we described architectures and general experimental setup with
regard to the investigation into the application of deep learning for TB cough classification.
In this chapter, we first present the results of experiments conducted to find optimal meta-
parameters (data augmentations and acoustic features). Then, we present the performance
of each investigated architecture individually in comparison to the baseline system with
and without pre-training and describe the configurations found optimal across outer folds.
We then summarise and discuss these results, and present our observations and findings.

7.1. Optimal meta-parameters

First, we present the performance impact of the two data augmentation techniques on
the development results on the first outer-fold for an 80-dimensional mel-spectrogram in
Table 7.1. Note that this does not strictly follow the correct approach for nested k-fold
cross-validation outlined in Appendix C, as we do not perform this investigation for each
outer fold as it was too computationally expensive. We experimented with applying the
two augmentations sequentially. That is, first speed-perturbation, and then SpecAugment
to the perturbed data. As such, the performance of SpecAugment is relative to that
reported for speed-perturbation. We note that only speed-perturbation increases AUC,
and therefore is the only augmentation used in all subsequent work. We suspect that the
degradation in performance when applying SpecAugment was a result of the models being
unable to learn reliable relations between frequency bins carrying the TB signal due to
the stochastic nature of the masking process, but this is speculation.

Table 7.1: Mean development AUC for the first outer-fold for the two investigated
augmentation techniques. Namely, speed-perturbation (S-P) and SpecAugment.

Model Augmentation
None S-P S-P + SpecAugment

BiLSTM 0.7410 0.7450 0.7196
BiLSTM-Att 0.7990 0.8460 0.8268

Next, we present experiments using the same outer fold for various acoustic feature

80
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configurations in Table 7.2. Again, although this does not strictly follow the correct
approach for nested k-fold cross-validation outlined in Appendix C, it was too computa-
tionally expensive to perform this experimentation for all outer folds, and all architectures.
Overall, mel-spectrograms are superior to both LFB energies and MFFCs, with the latter
performing substantially worse. This is likely a result of the inclusion of the Brooklyn
dataset in our combined dataset, for which [2] also found MFCCs to perform poorly (albeit
that they did not consider the higher dimensional MFFCs considered here). Since no clear
conclusions can be made as to the optimal dimensionality of the mel-spectrogram used,
we leave this as a hyper-parameter in the work that follows.

Table 7.2: Mean and standard deviation of AUC and the decision thresholds (γ̄) during
4-fold cross-validation.

Model mel-spectrogram LFB energies MFCCs
80 128 180 80 128 180 13 26 39

LR (baseline) [2, 3] 0.5960 0.6850 0.7070 0.6290 0.676 0.6600 0.5450 0.553 0.5820
BiLSTM 0.7450 0.7770 0.7470 0.6200 0.727 0.7570 0.6260 0.6590 0.6080
BiLSTM-Att 0.8460 0.7990 0.8110 0.7410 0.7440 0.7520 0.6210 0.5800 0.6590

7.2. Classifier performance

In this section, we detail the performance of each optimised classifier (with and without
pre-training) compared to the baseline system separately. When doing so, we present the
mean and standard deviation of performance metrics across all three outer fold test sets.
After analysing each classifier’s performance, we summarise the optimal configurations
for each outer fold and draw conclusions about the generalisability of the investigated
architectural hyper-parameters. This detailing of individual performance with respect
to the baseline is followed by a summary of all classifiers’ performance, whereby general
observations and trends are highlighted.

7.2.1. BiLSTM

We present the mean and standard deviation of the test set performance of the BiLSTM
architecture across the three outer folds in Table 7.3. Both the base and pre-trained models
outperform the LR baseline. A large increase in AUC and decrease in EER is observed
when pre-training, indicating an improvement in the model’s overall ability to distinguish
between TB and TB. In conjunction, a decrease in the standard deviation of performance
metrics (Notably in EER and AUC), indicates better generalisation across folds. However,
the substantial decrease in mean sensitivity indicates a sub-optimal decision threshold
was chosen. During development, there was a large discrepancy in optimal architectural
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parameters (including feature dimensionality) for each fold. With the optimal hidden state
sizes of 32, 64, and 32 and BiLSTM layers of 2, 1, and 1 being selected for the respective
folds, whilst all investigated feature dimensionalities (80, 128 and 180) were found optimal
for only one fold.

Table 7.3: BiLSTM test set performance, mean across outer folds, evaluated through
various metrics: sensitivity, specificity, equal error rate, and area under the curve. Base
and pre-trained models are indicated with “base” and “pt” respectively.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
BiLSTM (base) 0.6778± 0.0157 0.6278± 0.0906 0.3264± 0.0098 0.7497± 0.0815
BiLSTM (pt) 0.3556± 0.1841 0.9583± 0.0589 0.1305± 0.0039 0.7874± 0.0268

7.2.2. BiLSTM-Attention

The mean and standard deviation of test set performance for all folds are presented in Table
7.4. We do not observe substantial performance increases with the BiLSTM-Attention
architecture in comparison to the baseline system, and in some cases observe a decline in
performance (specificity and EER). However, when pre-trained, we observe most metrics
improving on the baseline system except for sensitivity, indicating non-optimal decision
thresholds were selected. Larger standard deviations for EER (and AUC for the base
system) are observed compared to the baseline system indicating poorer generalisation.
Like the plain BiLSTM architecture, there was a large degree of variation between the
optimal architectures found for each fold during development, with the hidden state sizes
being found optimal for each fold being 128 or 80 with either 1 or 2 BilSTM layers.

Table 7.4: BiLSTM-Attention test set performance, mean across outer folds, evaluated
through various metrics: sensitivity, specificity, equal error rate, and area under the curve.
Base and pre-trained models are indicated with “base” and “pt” respectively.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
BiLSTM-Att (base) 0.6481± 0.1142 0.6069± 0.0631 0.3708± 0.0683 0.7216± 0.0759
BiLSTM-Att (pt) 0.3185± 0.0733 0.91389± 0.0610 0.2638± 0.0982 0.7387± 0.0378

7.2.3. CNN

Test set performance for the CNN-based architecture is presented in Table 7.5. Except
for sensitivity, the base CNN model performed substantially worse than the baseline
system, with notable relative reductions of 17.7% in AUC and 39.6% in specificity. When
pre-training, we observe the AUC returning closer to the baseline, however, see the same
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trend in previous architectures whereby the sensitivity drops substantially. Large standard
deviations are observed for the base CNN architecture, which reduces when pre-training,
albeit still sometimes higher than the baseline (EER, AUC), indicating poor generalisation
across folds. No consistent trend was observed during development regarding optimal
architecture configurations with either 80 or 128-dimensional acoustic feature vectors being
selected, and depths (number of convolutional blocks) of 5 or 3 with 8 or 16 base channels.

Table 7.5: CNN test set performance, mean across outer folds, evaluated through various
metrics: sensitivity, specificity, equal error rate, and area under the curve. Base and
pre-trained models are indicated with “base” and “pt” respectively.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
CNN (base) 0.7556± 0.1626 0.4486± 0.3389 0.4972± 0.1217 0.5927± 0.1226
CNN (pt) 0.3222± 0.2726 0.958± 0.05893 0.3931± 0.0631 0.7102± 0.0749

7.2.4. Transformer

We present the test set performance of the Transformer based architecture in Table 7.6. We
notice an improvement upon the baseline in sensitivity, EER and AUC (albeit that the latter
was marginal). Improvements in EER and AUC are furthered when pre-training, notably
AUC, which saw a relative increase of 8.07% with respect to the base system. Moreover,
reductions in the standard deviations of the performance metrics are observed, indicating
better generalisation. However, sub-optimal decision thresholds degrade the sensitivity
of the pre-trained model. We also note that the pre-trained transformer achieves smaller
standard deviations for most metrics when compared to its base counterpart - indicating
better generalisation across folds. There was no consistent architectural configuration
across folds, aside from the size of the embeddings, for which the smallest investigated
(128) was optimal throughout.

Table 7.6: Transformers test set performance, mean across outer folds, evaluated through
various metrics: sensitivity, specificity, equal error rate, and area under the curve. Base
and pre-trained models are indicated with “base” and “pt” respectively.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
Transformer (base) 0.7185± 0.1235 0.6083± 0.0117 0.3278± 0.0613 0.7206± 0.0696
Transformer (pt) 0.4629± 0.1833 0.8722± 0.1021 0.2819± 0.0585 0.78295± 0.0289
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Table 7.7: ResNet test set performance, mean across outer folds, evaluated through
various metrics: sensitivity, specificity, equal error rate, and area under the curve. Base
and pre-trained models are indicated with “base” and “pt” respectively.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
ResNet-18 (base) 0.6815± 0.0733 0.3861± 0.2756 0.3694± 0.0817 0.6495± 0.1170
ResNet-50 (base) 0.7407± 0.2283 0.4028± 0.3350 0.4833± 0.2732 0.6325± 0.2628
ResNet-18 (pt) 0.1000± 0.1414 0.9556± 0.0628 0.3486± 0.0373 0.7330± 0.0186
ResNet-50 (pt) 0.0704± 0.0499 0.9347± 0.0545 0.3278± 0.0614 0.6714± 0.0608

7.2.5. ResNet

We present results for both the ResNet-18 and ResNet-50 architectures in Table 7.7. With
the exception of sensitivity, both ResNets perform substantially worse on average across
the folds than the LR baseline. However, after pre-training, fair improvements in EER and
AUC for both ResNet-50 and 18 are observed. A large reduction in standard deviation is
also observed, indicating that pre-training helped to improve generalisation across folds
compared to the base models. There was no clear optimal configuration for the ResNets,
with both unfreezing the entire backbone, or just the last convolutional block being selected
as optimal for different folds with either 80 and 128 -dimensional mel-spectrograms.

7.2.6. AST

The test set performance for the AST architecture is presented in Table 7.8. Although
AST is already pre-trained for KWS and hence should be initialised for acoustic tasks,
considerably worse performance is observed compared to the baseline with large standard
deviations across all metrics. Performance is improved after pre-training, with both EER
and AUC surpassing the baseline, as has been generally observed in other architectures.

Table 7.8: AST test set performance, mean across outer folds, evaluated through various
metrics: sensitivity, specificity, equal error rate, and area under the curve. Base and
pre-trained models are indicated with “base” and “pt” respectively.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
AST (base) 0.3333± 0.1999 0.9567± 0.0305 0.3750± 0.1947 0.6984± 0.0617
AST (pt) 0.3852± 0.2039 0.9361± 0.0511 0.3306± 0.1479 0.7407± 0.0333

7.2.7. wav2vec2.0

Test set performance for wav2vec2.0 is presented in Table 7.9. We observe all metrics
improve upon the baseline. Interestingly, in contradiction to results observed for other
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architectures, mean performance for all metrics worsens after pre-training. Interestingly,
we do not note the same trend with other architectures, whereby pre-training resulted in
sub-optimal decision thresholds and the subsequent large decrease in sensitivity. Rather,
we observe a small decrease ( 5%) similar to that observed for all other metrics. Whilst not
all folds benefited from the inclusion of the contextual representation decoder, all optimal
configurations chose to unfreeze all layers (including wav2vec2.0’s feature extractor) for
both the pre-trained and base architectures.

Table 7.9: wav2vec2.0 test set performance, mean across outer folds, evaluated through
various metrics: sensitivity, specificity, equal error rate, and area under the curve. Base
and pre-trained models are indicated with “base” and “pt” respectively.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
wav2vec2.0 0.6407± 0.2306 0.8097± 0.1748 0.2791± 0.1244 0.7604± 0.0369
wav2vec2.0 (pt) 0.6778± 0.2726 0.7639± 0.1019 0.3472± 0.0579 0.6847± 0.0112

7.3. Discussion

To aid in the discussion of the performance of the investigated classifiers, we present a
summary of the previously highlighted results in Table 7.10. Our experiments consistently
show that the pre-training of networks leads to improved ability in distinguishing between
TB and TB (in terms of improved EER and AUC). This is made clear when comparing
the performance of corresponding base and pre-trained models which, with the exception
of one architecture (wav2vec2.0), always resulted in an improvement in the aforementioned
metrics. Concretely, the mean relative percentage improvement in EER and AUC after pre-
training computed across all architectures was 18.63% and 5.95% respectively. Conversely,
the decision thresholds selected for networks intialised with pre-trained weights were
consistently a poorer choice as opposed to the base models across outer folds, evident in
the stark reduction in sensitivity and increase in specificity. Despite this shortcoming, pre-
training generally leads to a large reduction in the standard deviation of the performance
metrics across folds, in particular for AUC and EER, indicating it can improve model
generalisation across a diverse set of patients. This is especially important when considering
the application of these models as medical triage tools, where a dependable and reliable
test is sometimes more important than top-line performance.

We observe that architectures based on sequence processing and aggregating a global
temporal context (BiLSTM, Transformer, and wav2vec2.0), generally perform better than
the primarily convolution-based or vision-based architectures (CNN, ResNet-18, ResNet-50
and AST), which only focus on capturing local information, albeit at a coarse resolution
at later stages in the network. Noting this discrepancy in performance we can state that
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Table 7.10: Summary of test set performance across all architectures, mean across outer
folds, evaluated through various metrics: sensitivity, specificity, equal error rate, and area
under the curve.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.4741± 0.2983 0.7417± 0.0988 0.3694± 0.0275 0.7202± 0.0405
BiLSTM 0.6778± 0.0157 0.6278± 0.0906 0.3264± 0.0098 0.7497± 0.0815
BiLSTM-Att 0.6481± 0.1142 0.6069± 0.0631 0.3708± 0.0683 0.7216± 0.0759
CNN 0.7556± 0.1626 0.4486± 0.3389 0.4972± 0.1217 0.5927± 0.1226
Transformer 0.7185± 0.1235 0.6083± 0.0117 0.3278± 0.0613 0.7206± 0.0696
ResNet-18 0.6815± 0.0733 0.3861± 0.2756 0.3694± 0.0817 0.6495± 0.1170
ResNet-50 0.7407± 0.2283 0.4028± 0.3350 0.4833± 0.2732 0.6325± 0.2628
AST 0.3333± 0.1999 0.9567± 0.0305 0.3750± 0.1947 0.6984± 0.0617
wav2vec2.0 0.6407± 0.2306 0.8097± 0.1748 0.2791± 0.1244 0.7604± 0.0369

pre-trained
BiLSTM 0.3556± 0.1841 0.9583± 0.0589 0.1305± 0.0039 0.7874± 0.0268
BiLSTM-Att 0.3185± 0.0733 0.9139± 0.0610 0.2638± 0.0982 0.7387± 0.0378
CNN 0.3222± 0.2726 0.9580± 0.0589 0.3931± 0.0631 0.7102± 0.0749
Transformer 0.4629± 0.1833 0.8722± 0.1021 0.2819± 0.0585 0.7830± 0.0289
ResNet-18 0.1000± 0.1414 0.9556± 0.0628 0.3486± 0.0373 0.7330± 0.0186
ResNet-50 0.0704± 0.0499 0.9347± 0.0545 0.3278± 0.0614 0.6714± 0.0608
AST 0.3852± 0.2039 0.9361± 0.0511 0.3306± 0.1479 0.7407± 0.0333
wav2vec2.0 0.6778± 0.2726 0.7639± 0.1019 0.3472± 0.0579 0.6847± 0.0112

the patterns in the TB signal being relied on for classification are temporal in nature, and
require context gathered over an entire cough. This is in contrast to the baseline system,
which simply pools acoustic feature vectors over time. Consequently, the architectures that
perform the best are BiLTSM, transformer and wav2vec2.0. We present the respective
ROC curves in Figure 7.1 for the base (left) and pre-trained variants (right). Without
pre-training, the selected architectures appear to match or only slightly improve upon
the baseline’s initial true positive rates as the decision threshold is decreased and false
positives increase. An anecdotal observation indicates that this is improved when these
networks are pre-trained, where increases in the initial true positive rates become more
clear and more sustained relative to the baseline as the decision threshold is made less
strict. Referring to Table 7.10, the BiLSTM improves on the baseline system on practically
all metrics (with the exception of specificity) and achieves an EER and AUC of 0.1305 and
0.7874 after pre-training with comparatively low standard deviations of 0.0039 and 0.0268
respectively. This equates to a substantial relative improvement of 9.33% in AUC and
64.67% in EER. Whilst the transformer architecture does not improve upon the baseline
initially, after pre-training, we observe a comparable AUC to the BiLSTM, and a decrease
in EER by ≈ 14% with reduced standard deviations across folds. Interestingly, whilst
wav2vec2.0 achieves the highest AUC without pre-training, it is the only architecture to
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wav2Vec2.0 (AUC=0.76±0.04)
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LR (AUC=0.72±0.04)
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Mean ROC curves (pre-trained)

wav2Vec2.0 (pt) (AUC=0.68±0.01)
Transformer (pt) (AUC=0.78±0.03)
BiLSTM (pt) (AUC=0.79±0.03)
LR (AUC=0.72±0.04)

Figure 7.1: Mean ROC curves across the outer folds for three selected architectures
(wav2vec2.0, Transformer, and BiLSTM) and the LR baseline for both base (left) and
pre-trained variants (right).

degrade in performance afterwards. It is unclear why this may be, and warrants further
investigation in future work.

7.3.1. Model size

When comparing the performance of deep architectures, it is important to consider their
size for a fair comparison. For high-resource applications, there is typically a trade-off
between parameter count and resource usage, where an increase of the former results in
improved performance at the expense of the latter. In our work, this relation is not the
case, whereby over-parameterisation can lead to over-fitting and subsequent degradation
in performance. Moreover, as the intended application of these classifiers is to form part
of a triage tool which will most likely be in the form of a mobile application, model size is
an important factor to consider. We tabulate the estimated number of model parameters
and the respective pre-trained architectures mean test AUC in Table 7.11. Quite clearly
(with respect to the BiLSTM architecture), strong performance can be achieved with
small models. However, overall, the relation between model size and performance is
somewhat unclear, partly due to the variance in architectures and their inherent impact
on performance.

7.3.2. Decision thresholds

For architectures that performed well, we present the mean EER decision thresholds in
Table 7.12. Despite being inferior choices overall, due to the aforementioned reduction in
sensitivity and specificity, the standard deviation between decision thresholds is reduced
substantially for large pre-trained networks, indicating better generalisation across folds.
This improvement in decision threshold generalisation however appears to be related to
model size, whereby the smallest model (referring to Table 7.11) actually has the worst
decision threshold generalisation. Additionally, it would seem that pre-training, as in [19],
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drove the selected decision thresholds closer to 0.5, indicating a reduction in class bias.
Future work should focus on optimal strategies to select this decision threshold, as it is
fundamental to the task.

Table 7.11: Investigated architectures parameter count and respective mean test set
AUC with pre-training with exception of the LR baseline.

Model AUC Parameter
count

LR (baseline) [2, 3] 0.7202 ≈ 128
BiLSTM 0.7874 ≈ 55k
BiLSTM-Att 0.7387 ≈ 75k
CNN 0.7102 ≈ 2.4M
Transformer 0.7831 ≈ 1.1M
ResNet-18 0.7333 ≈ 11M
ResNet-50 0.6714 ≈ 24M
AST 0.7407 ≈ 87M
wav2vec2.0 0.6847 ≈ 95M

Table 7.12: Mean and standard deviation of EER decision thresholds γ across outer
folds for selected architectures.

Model γ

LR (baseline) [2, 3] 0.2702± 0.1207
BiLSTM 0.6070± 0.0538
Transformer 0.3013± 0.0750
wav2vec2.0 0.5312± 0.0571
pre-trained
BiLSTM 0.5240± 0.1192
Transformer 0.3580± 0.0465
wav2vec2.0 0.5160± 0.0204

7.3.3. Oracle decision thresholds

As previously highlighted, pre-trained architectures generally improved upon metrics that
did not require choosing a decision threshold (EER and AUC). However, the sensitivity
and specificity always degraded substantially. Both of these metrics are important if such
a classifier should ever be used as a TB triage tool, whereby diagnostic tests have to meet
the minimum sensitivity and specificity requirements set by the WHO [85]. As such we
investigate the oracle top-line sensitivity and specificity by finding the decision thresholds
that would result in achieving the WHO’s sensitivity (0.9) and specificity (0.7) minimum
requirements respectively. These results are presented in Table 7.13 for the baseline system,
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Table 7.13: Oracle specificity and sensitivity of selected classifiers when tuning decision
thresholds to meet the WHO’s specificity and sensitivity requirements (0.7 and 0.9
respectively).

Model Sens (Spec≈0.7) γsp Spec (Sens≈0.9) γse

LR (baseline) [2, 3] 0.5296± 0.0052 0.5122± 0.0393 0.4750± 0.1192 0.2876± 0.0272
BiLSTM 0.6074± 0.0457 0.7389± 0.0715 0.4958± 0.1738 0.5341± 0.1389
Transformer 0.5370± 0.1833 0.5056± 0.0793 0.5625± 0.0924 0.3101± 0.0589
wav2vec2.0 0.6741± 0.1440 0.5618± 0.0992 0.4764± 0.2000 0.4167± 0.1763
pre-trained
BiLSTM 0.7519± 0.0367 0.4159± 0.1019 0.4750± 0.1192 0.2452± 0.1263
Transformer 0.7185± 0.1235 0.3417± 0.0639 0.6083± 0.1637 0.2188± 0.0542
wav2vec2.0 0.5333± 0.1440 0.6195± 0.0716 0.4305± 0.1383 0.6977± 0.2479

and our three best architectures: BiLSTM, transformer, and wav2vec2.0. No classifiers
achieve the minimum specifications set by the WHO when using oracle decision thresholds.
It should be clarified that when conducting this experiment, decision thresholds were
selected that achieved performance specifications either equal to or above and as close to
those specified. Due to the relatively small size of each outer folds test set, we were often
not able to achieve the target sensitivity and specificity, with the target values sometimes
being exceeded by up to 0.05 for each, making our oracle results less accurate. Despite this,
some classifiers achieve fair oracle performance. Notably, the pre-trained BiLSTM and
transformer architectures achieve a sensitivity of 0.7519 and 0.7185 respectively when fixing
specificity to 0.7, which is a substantial improvement over results presented with default
decision thresholds. An interesting observation is made when comparing the decision
thresholds determined through experimentation presented in Table 7.12 and the oracle
decision thresholds used to achieve specificities of 0.7. There appears to be, notably for the
transformer architecture, only a small difference (≈ 0.01− 0.1) between the mean decision
threshold determined through EER optimisation and the mean decision threshold used to
determine oracle specificity results. This relatively small variation indicates some degree of
decision threshold sensitivity. Moreover, as highlighted in the previous section, pre-training
reduces EER-determined decision threshold standard deviation by a substantial margin
for the larger transformer and wav2vec2.0 architectures. This is not the case for oracle
decision thresholds, however, where fairly large standard deviations are observed for each
architecture.

7.3.4. Sequential forward search

Recall, SFS performs a greedy feature selection, whereby the optimal feature set is
iteratively found by, starting from the empty set, adding the single feature that improved
performance the most. The subset that resulted in the best performance, often much
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Figure 7.2: Mean development AUCs for each outer fold as the optimal subset of
acoustic features is increased during SFS.

smaller than the original feature set size, is chosen. Despite wav2vec2.0 being the best
non-pre-trained architecture, we could not use it in SFS experiments. This is due to the
fact that it directly receives audio waveforms as input and not acoustic feature vectors.
Thus, we choose the next best architecture, the BiLSTM, and compare SFS results to the
baseline LR system. We perform SFS for each outer fold independently, with the respective
architectural hyper-parameters (model depth, feature size, etc.) found to be optimal for
each in previous experimentation. Hence, the optimal feature sizes for each model for each
outer fold may not be identical. With this in mind, we present the relation between mean
development AUC and the number of features added to the optimal subset by SFS for
each outer fold in Figure 7.2. We observe that performance very quickly improves with
the use of only a few features and after reaching some maxima begins to slowly decrease.
In fact, all architectures need fewer than 10 features to achieve mean development AUCs
above 0.8, indicating that there are a few particular frequency bands that are important
for classification. The composition of these and whether or not these frequencies generalise
across folds will be explored in Chapter 9. Clearly, whilst true for both architectures,
LR’s performance is highly dependent on the feature subset size, and sharply drops off as
it approaches the complete set, indicating the inclusion of all the acoustic features may
actually make it harder to learn the TB signal in cough.

We present the mean and the standard deviation of the test set performance across all
outer folds for the optimal acoustic feature vector subsets determined for each in Table
7.14. Performance is substantially worse than that expected when we observed Figure 7.2.
To this end, it is important to note that during SFS each subsequent additional feature
is chosen directly based on its mean development set performance, and thus introduces
scope for heavy development set over-fitting. We suspect that this may be the cause for
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Table 7.14: Summary of test set performance after performing SFS, mean across outer
folds, evaluated through various metrics: sensitivity, specificity, equal error rate, and area
under the curve.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
LR (baseline) [2, 3] 0.1481± 0.1386 0.8958± 0.1473 0.4569± 0.0561 0.6726± 0.0367
BiLSTM 0.7519± 0.0367 0.6500± 0.0707 0.3292± 0.1002 0.7374± 0.0952

Table 7.15: Comparison of test set performance after performing SFS on the same
dataset splits (fold 1) for the BiLSTM architecture for two different experimental code-
bases.

Model Sens ↑ Spec ↑ EER ↓ AUC ↑
BiLSTM [8] 0.6670 0.7500 - 0.8620
BiLSTM (this study) 0.7778 0.7500 0.1875 0.8632

the large disparity in performance, although it does not explain why in other work this has
not been observed [2,3,8]. Suspecting a mistake in implementation, we compared BiLSTM
results for fold 1 to [8], which uses the exact same dataset splits as are represented in
fold 1 (albeit an entirely different code-base and optimal architecture configuration). Our
results were either similar or improved upon theirs, and to aid in this discussion we present
them in Table 7.15. This indicates that the discrepancy in performance is not due to the
experiment’s implementation, but some other factor.

To investigate whether the discrepancy in development and test performance is due
to the hypothesised development set over-fitting, and hence the discovery of a non-
generalisable feature subset, we evaluate the BiLSTM architecture on the test set each
time a feature was added to the optimal set (that is, for each step in the previously
performed SFS). Importantly, these results cannot be used to infer absolute classification
performance, but only to investigate the cause for the discrepancy in development and
test set performance. Development and test set AUCs for each step in SFS for all three
folds are presented in Figure 7.3. Clearly, the feature subset that corresponds to optimal
test performance (purple star) requires substantially more features than that during
development (red star). This premature peak in development AUC confirms our suspicion
that the discrepancy in test set performance as previously presented is due to development
set over-fitting, whereby there are more degrees of freedom to do so in the early stages of
SFS due to the larger search space.

7.4. Comparison to previous studies

We note that in previous studies [2, 3] stronger classification performance is reported
compared to the results presented in this chapter. Notably, both works achieve classification
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Figure 7.3: Mean BiLSTM test and development AUCs for each fold as the optimal
subset of acoustic features is increased during SFS.

performance that meets the WHO standards. By directly comparing the presented
performance to these works, it may seem that this study has been unsuccessful in the
application of deep architectures to TB cough classification. However, relative to the
baseline system, which is in fact the exact architecture used to achieve such performance
in the aforementioned studies, our developed architectures make substantial performance
improvements. A natural question to ask is why such a discrepancy in performance exists
between these works - the dataset size increased, so why did this not result in improved
performance as is typically observed in applications of deep learning? In fact, the answer to
this question is simple. Despite an increase in dataset size, it was made substantially more
complex by spanning two independently collected sets, each comprising its own unique
characteristics. The degradation compared to previous studies when tasked with a more
complex dataset indicates the task of creating a generalised TB cough classification tool
that will perform proficiently in the field may be harder to achieve than initially indicated
by exploratory work.

7.5. Summary

In this chapter, we presented classification results regarding the application of various
deep learning architectures to TB cough classification. We investigated pre-training these
networks on an auxiliary task, namely cough detection. Notably, the pre-trained BiLSTM
achieved an EER and AUC of 0.1305 ± 0.0039 and 0.7874 ± 0.0268 respectively, which
is a relative improvement over the baseline by 65.68% and 9.33%. We further observed
that the pre-training of architectures decreased the standard deviation of performance
metrics, whilst typically resulting in improved performance for metrics which did not
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rely on decision threshold selection. We then detailed observations made with regard to
model size, chosen decision thresholds, and an investigation into whether or not chosen
architectures could meet the WHO performance standards if oracle decision thresholds
could be selected. Lastly, we present classification performance when applying SFS feature
selection and reason about the degradation. In the next chapter, we will present a brief
investigation into patient identity as a confounding factor in TB cough classification
research, and detail experiments conducted in an effort to inhibit the learning of identity
by deep neural networks.
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Chapter 8

Identity Confounding

In the previous chapter, we noted a degradation in classification performance achieved
by our systems (including the baseline system) compared to that reported in previous
work [2,3]. Despite the likely hypothesis that this was due to increased dataset complexity,
it has been shown that in such small clinical data sets such as the ones used in these
studies, machine learning -based methods tend to over-fit to patient identity [86]. When
over-fitting to patient identity, large standard deviations in model performance may be
observed due to the identity of patients in the test sets mapping (or failing to map) to
those seen during training. In this chapter, we qualitatively quantify the extent of potential
identity confounding in past work in TB cough classification. This is accomplished through
an empirical evaluation whereby a comparison is made to the null hypothesis that models
solely rely on patient information to perform TB cough classification, using a similar
method to that presented in [86]. We show that while cough does contain TB information,
it can easily be overshadowed by models suffering from identity confounding. We then
investigate different deep learning techniques to mitigate this issue and present our findings.

8.1. Comparison to the null hypothesis

In initial experimentation preceding the work presented in this study, it was found to
be difficult to reproduce the results presented in [3] despite using the same dataset and
experimental setup. After a lengthy investigation, it was determined that this was partially
due to the use of different nested k-fold splits, that is, the combination of patients appearing
in these subsets was different from ours. Upon further investigation, it became apparent
that model performance was highly dependent on the composition of these splits. Hence,
the exact same experimental setup with different split compositions resulted in substantially
different classifier performance. This indicated that some confounding factor was being
learnt during training, which only sometimes generalised to the unseen patients.

It has been shown in the literature that surprisingly low speaker identification error
rates can be achieved using cough alone [87]. We qualitatively show the extent of identity
information contained in cough in Figure 8.1, with a plot of the patient-wise colour-coded
t-SNE dimensionality reduction of speaker embeddings from a d-vector extractor trained
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Figure 8.1: Patient-wise colour-coded t-SNE dimensionality reduction of d-vector speaker
embeddings extracted using patient coughs.

entirely on speech [88]. The tight clustering of coughs originating from the same patient is
observed.

We hypothesise the large deviation in performance when reproducing results in [3]
is a result of patient identity confounding and quantify its extent through an empirical
evaluation similar to that presented in [86]. In the subsequent experiments, we use the
optimal architecture presented in [3] (LR with MFFCs) and the exact experimental setup
described in Chapter 2.

8.1.1. Experimental setup

The work presented in [86] provides a framework for a permutation approach to empirically
determine the extent of identity confounding in clinical datasets. The premise is to
generate a permutation distribution of AUC scores when a classifier’s ability to learn any
relation between independent (cough) and dependent (TB) variables is inhibited. This
simulates the null hypothesis that classifiers do not learn a TB signal, but rather some
other confounding factor. This is accomplished by repeatedly assigning random labels
(TB or not TB) to all patients in a given dataset. Ideally, there exists a relationship
between the information contained in a cough and a patient’s TB diagnosis. However, by
assigning random TB labels to patients, this relationship is obscured. When a classifier is
trained on this obscured data, it is forced to ignore any true relation between the cough
feature set and TB - since the true correlation between these variables has been destroyed.
Instead, the classifier must learn some other relation in the training data to converge.
By conducting a Monte-Carlo simulation, whereby the only variable changed in each
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iteration is the random seed used to assign new TB labels, and performing nested k-fold
cross-validation, the resulting distribution of AUC scores can be estimated and compared
to one generated when the relation between the dependent and independent variables is
not obscured. This comparison allows the strength of identity confounding to be inferred
through qualitative analysis.

We conduct two experiments. The first highlights the extent to which models are relying
on patient information during training. This is quantified by comparing distributions
observed using the aforementioned permutation approach when patient overlap between
train and test sets is allowed (although each patient does not strictly need to appear in
all sets due to the number of coughs generated by each, it is unlikely that they do not).
Whilst this does not represent the experimental setup used in this work (as we strictly
enforce no patient overlap), it is a good way to benchmark the extent to which models rely
on identity information to perform TB classification. The second, and more important
experiment investigates the overlap between the distribution associated with the null
hypothesis and the distribution observed when TB information is intact when no patient
overlap is allowed. This is an accurate representation of the experimental setup used in
this work. Each Monte-Carlo simulation is described in Table 8.1.

Table 8.1: Monte-Caralo simulations and their respective experimental constraints.
Simulation A and C represented the null hypothesis when patient overlap is and is not
allowed respectively.

Simulation Constraint

A • Random labels assigned per patient
• Patient overlap

B • Patient overlap between test and training set

C • Random labels assigned per patient
• No patient overlap between test and training set

D • No patient overlap between test and training set

8.1.2. Results and discussion

We present the estimated probability densities for AUC and the corresponding mean and
variance in Figure 8.2 and Table 8.2 respectively. In agreement with the findings of [86] on
voice data, strong identity confounding is present in this dataset. This is indicated by the
distribution associated with the null hypothesis being centred at an AUC much larger than
0.5. We observe fAUC|B(auc|B) lies slightly to the right of the null hypothesis distribution,
and has lower variance, indicating that the model can learn the disease signal, albeit whilst
still fitting to confounding factors. This is reinforced by the stark difference between
distributions fAUC|B(auc|B) and fAUC|D(auc|D) whereby the only difference between the
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experimental setups is patient overlap and as such, over-fitting to confounding factors
(such as patient identity) during training substantially impacts performance.

The wide distribution fAUC|D(auc|D) highlights the dependency of model performance
on the patients appearing in each split and may also point towards a source for the
discrepancy in classifier performance presented in the previous chapter and to that presented
in [2, 3] as highlighted in Chapter 2. Although our deep learning experiments were
conducted with both the Wallacedene and Brooklyn datasets combined, while previous
work was conducted only with the former, the mean of fAUC|D(auc|D) appears to be more
representative of the classification performance presented in the previous chapter which
is encouraging. However, such a large variance in performance when classifying unseen
patients is worrying because it indicates poor generalisation. As it is clear that models
over-fit to confounding factors (which could contain patient information) to learn TB
labels during training, it is suspected that a partial source for this variance could be the
coincidental similar (or dissimilar) patient identification mappings and their respective TB
status, and thus dataset splits have a large effect on measurement performance. Despite
this, it is quite clear that there is in fact a TB signal that can be learnt in cough, evident
when comparing fAUC|D(auc|D) to fAUC|C(auc|C) which on average achieves random
classification performance (mean AUC ≈ 0.5). The standard deviation of fAUC|C(auc|C)
could have been due to the classifier relying on a host of factors, including random labels
that align well with the ground truth.

Table 8.2: Mean and standard deviation of AUC for estimated probability densities
generated given conditions A, B, C, and D respectively.

Probability density AUC

fAUC|A(auc|A) 0.8120± 0.0395
fAUC|B(auc|B) 0.8479± 0.0125
fAUC|C(auc|C) 0.4993± 0.0866
fAUC|D(auc|D) 0.6662± 0.0448

8.2. Exploring identity-learning mitigation techniques

We previously highlighted that cough contains patient information that is being learnt
during training. Moreover, the seeming dependence of model performance on the way
the dataset is split into training and testing sets suggests that models are over-fitting
to some confounding factor, which could be patient identity. Whilst these experiments
were conducted solely on the Wallacedene dataset, there is a possibility that identity
confounding may also be present in our combined dataset (Wallacedene + Brooklyn). To
explore this, we investigate whether removing patient information has any effect on model
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Figure 8.2: Distributions of AUC scores given the experimental conditions described.

performance and more importantly, reduces performance standard deviation when tasked
with different dataset set splits.

We experiment with three adapted deep learning techniques to mitigate the learning
of patient identity: domain adversarial networks (DANNs), triplet loss, and generalised
end-to-end (GE2E) loss. We first describe our experimental setup, including the chosen
deep neural architecture with which experimentation will be conducted. We then detail
each of the aforementioned mitigation techniques and present experimental results.

8.2.1. Experimental setup

We use the same permutation approach described previously, where a Monte-Carlo simula-
tion is used to generate a distribution of classifier performance, and where the only varying
factor between runs is the seed used to perform nested k-fold cross-validation (the same
process described in Chapter 6). This process is conducted for a baseline classifier, and the
same classifier with each identity-learning inhibitor (DANN, triplet loss and GE2E loss).

Since we are investigating the effect of these mitigation techniques on the performance
of deep neural networks, a strong baseline architecture should be used. We choose to use
the transformer architecture described in Chapter 6, due to its good performance and
fast inference speed. Whilst the BiLSTM performed better and its substantially lower
parameter count, its recurrent nature makes it significantly slower and would have resulted
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in longer run times. Moreover, in this experiment optimising the overall classification
performance is not the priority. Instead, we would like to determine its change relative to
a baseline system.

To aid the reader, the transformer encoder outputs a single classification token xxxcls

which is then fed to a linear classification head. We use 128-dimensional mel-spectrograms,
sinusoidal positional encodings, 4 transformer encoder blocks with 128-dimensional latent
representations, and 4 attention heads. In the identity-learning mitigation techniques
described below, the transformer encoder is referred to as the feature extractor, and xxxcls is
the embedding e.

8.2.2. Domain adversarial training

Domain adversarial training was initially proposed as a representation learning technique
that aimed to transfer learnt representations from a source to a target domain by incen-
tivising the network to learn latent representations that are indiscriminate with respect to
the differences between the two [89]. A primary neural classifier is trained on the labelled
source domain on some supervised task, whilst an auxiliary domain classifier (which shares
the same feature extractor as the primary classifier) is tasked with distinguishing between
samples originating from the source and from the target domains. Note the target domain
is only used to train the auxiliary domain classifier in this task, and not for the primary
classification task. The classification loss from both classifiers is back-propagated through
the network. However, due to a special gradient reversal layer placed between the feature
extractor and auxiliary classifier, which multiplies gradients propagating from the domain
classifier by some negative constant, the feature extractor learns domain invariant features.
By multiplying the domain classifiers’ gradients by this negative constant, the feature
extractors’ weights are updated in such a way that actually maximises the domain loss
(gradient accent). Consequently, when the primary classifier is tasked with the classification
of the target domain, it manages to transfer the learnt relations from the source domain
well, even though the network never saw the target domain’s class labels during training.

More formally, let Gf(·; θf) = eee be the neural feature extractor with parameters θf ,
Gy(·; θy) be the primary classifier with parameters θy, and Gd(·; θd) be the domain classifier
with parameters θd. For some input x, let the prediction and domain loss respectively be:

Ly(θf , θy) = Ly(Gy(Gf (x)), y)
Ld(θf , θd) = Ld(Gd(Gf (x)), d)

(8.1)

Then the updates for parameters θf , θy and θd using gradient decent where ϵ is the
learning rate and λ is the gradient reversal factor are:
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Figure 8.3: A typical domain adversarial neural network. Note the feature extractor
(green), the primary classifier (blue) and domain classifier (pink) which is connected to
the feature extractor via a gradient reversal layer.

θf ←− θf − ϵ

(
∂Ly

∂θf

− λ
∂Ld

∂θf

)
,

θy ←− θy − ϵ
∂Ly

∂θy

,

θd ←− θd − ϵλ
∂Ld

∂θd

(8.2)

The described flow of gradients is visualised in Figure 8.3 for a general DANN. Gradients
are only reversed during backpropagation, and the reversal layer simply multiplies the
output of Gf (·) by the identity during the forward pass.

We adapt the approach of domain adversarial training by replacing the auxiliary
“domain” classifier with a patient classifier, directly forcing the network to learn patient
invariant feature representations. In practice, both the primary and auxiliary classifiers
are simple FNNs. Following the literature, we make the auxiliary classifier shallower than
the primary with two and three hidden layers with ReLU activations respectively, each a
quarter the size of the feature extractor’s output (the previously described transformer).
In our application, we use weighted cross entropy for Ly, and standard cross-entropy for
Ld. We exponentially increase λ from 0 at the start of training to 1 at the end [89]. Since
there are far more classes to predict for the auxiliary classifier than the primary, the
cross-entropy loss is expected to be significantly higher. As such, we weight the domain
loss by a constant regularisation term α (either 0.1 or 0.01). Any order of magnitudes
higher or lower either destabilised training or simply had no effect. the final loss function is
shown below, where B is the batch size, βββ are the class weights for weighted cross-entropy,
yb and ŷb ground truth and predicted probabilities respectively and db and d̂b are the
predicted and true patient identities.
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L = − 1
B

(
B∑

b=1
(βββ ◦ yb · log(ŷb) + αλdb · log(d̂b))

)
(8.3)

8.2.3. Triplet loss

Originally proposed for image classification [90], triplet loss aims to reduce the distance
between embeddings that map to the same class, and maximise the distance between
those that do not. This is accomplished by minimising the distance between an anchor
embedding e and another sample of the same class e+, and maximising the distance
between e and an embedding of another class e−. This is described in Equation 8.4, where
d is a distance function, typically the square Euclidean distance, and m is a margin to
incentivise larger distances between embeddings of different classes. This is visualised
in Figure 8.4. Observing Equation 8.4, we note that triplet loss allows for distances
between embeddings of the same class to be minimised by computing d(e, e+), but also
places the same emphasis on maximising d(e, e−). As such, triplet loss allows for some
intra-class variance as long as e− is sufficiently far away. Owing to this, triplet loss is a
good middle ground when investigating the effect of patient identity as a confounding
factor, as embeddings produced for different patients of the same TB status do have to
map to the same latent region, but not necessarily be identical.

Ltriplet(e) = max(d(e, e+)− d(e, e−) + m, 0) (8.4)

Figure 8.4: Visual representation of the relationship between the anchor e, positive e+,
and negative e− pairs for a given triplet. Negative samples are pushed away from the
anchor passed the margin, whilst positive samples are brought closer.

In a given batch, there exist a vast number of valid triplet pairs, the selection of which
can greatly influence model performance. Simply randomly selecting these pairs may result
in a disproportionate number of easy triplets d(e, e+)≪ d(e, e−), as they typically occur
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more often during training [91] inhibiting the network from learning useful generalised
representations. To counter this, a popular approach focuses on hard-mining, whereby
the hardest positive (largest d(e, e+)) and negative (smallest d(e, e−)) are selected for a
given sample in a randomly sampled mini-batch to form its triplet pair - known as batch
hard mining [92]. Whilst with respect to the batch these are hard triplets, globally they
are considered moderate triplets since they are only determined over a small subset of
the dataset. They provide a good compromise between truly hard and easy triplet pairs
needed to learn with triplet loss. Formally, batch hard loss for a given embedding e can
be written as below, where P are the total number of positive samples in a batch with
respect e, and N is the number of negative samples with respect to e.

LBH(e) = max
(

max
p=1...P

d(e, e+
p )− min

n=1...N
d(e, e−

n ) + m, 0
)

(8.5)

We experiment with including an additional triplet loss term to encourage the network
to separate embeddings for TB and TB classes whilst reducing the distance between
embeddings of the same class albeit with some intra-class variance. The combined loss
function used to train our network is given in Equation 8.6, where B is the batch size.

L = − 1
B

(
B∑

b=1
(βββ ◦ yb · log(ŷb) + α · LBH(eb))

)
(8.6)

The first term in Equation 8.6 is standard weighted cross-entropy. yb and ŷb are the
vectors of ground truth one-hot labels and predicted probabilities respectively for a given
cough in the batch (where the dimension is the number of classes i.e. two), βββ is a vector
of class weights. The second is triplet loss, with triplet pairs mined through the batch
hard algorithm. To incentivise reducing intra-class variance, we use a lower margin as is
typically used in literature (0.3) which places more emphasis on reducing d(e, e+

p ).

8.2.4. GE2E loss

GE2E loss was originally proposed for a speaker diarization task and encourages utterance
embeddings to be clustered close together when originating from the same target speaker,
whilst maximising the distance between embeddings from different speakers [88]. A
similarity matrix S ∈ RN ·M×N is constructed, whose elements are the cosine similarities
between the ith embedding vector from the jth speaker eji and the speaker centroids ck

for 1 < j, k < N and 1 < i < M where N is the number of speakers and M is the (same)
number of utterances for each speaker in a batch. This similarity matrix is then used in a
loss function, Equation 8.7, to maximise the similarity between eji and cj (negative term
in the equation) whilst minimising the similarity between eji and the rest of the speaker
centroids.
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LGE2E(eji) = −Sji,j + log
N∑

k=1
exp(Sji,k) (8.7)

In our application, we consider TB and TB coughs to represent two respective “speakers”.
Hence Equation 8.7 maximises the similarity between the embedding centroids of different
patients with the same TB status, whilst minimising the similarity between embeddings
from different patients of the same TB status. This encourages the latent space to be
patient invariant as it is directly encouraged to be homogeneous for each class. The
combined loss function used to train our network is given in Equation 8.8, where B is the
batch size.

L = − 1
B

 B∑
b=1

βββ ◦ yb · log(ŷb) + α
∑
j,i

LGE2E(eij)
 (8.8)

Here the first term is standard weighted cross-entropy where yb and ŷb are the vectors
of ground truth and predicted probabilities respectively (where the dimension is the number
of classes i.e. two) for a given cough in the batch and βββ is a vector of class weights. The
second term corresponds to the GE2E loss where α is a regularisation parameter and
eij is the embedding vector of the ith class and jth cough. We consider two options for
α, 0.01 and 0.1. Any order of magnitudes higher or lower either destabilised training or
generalised to the same solution without the additional loss term.

Table 8.3: Mean and standard deviation of AUC for the baseline architecture and the
inclusion of patient-learning mitigation strategy.

Strategy AUC

Baseline 0.7334± 0.0773
DANN 0.7331± 0.0786
Triplet loss 0.7238± 0.0729
GE2E loss 0.7379± 0.0841

8.2.5. Results and discussion

We present the mean and standard deviation for the baseline classifier and each patient-
identity learning mitigation strategy in Table 8.3. Importantly, apart from adjusted losses,
each training procedure is the same as the baseline. We observe no substantial performance
difference between the baseline architecture and each investigated technique. Whilst the
inclusion of the GE2E loss term did result in improved mean AUC, the standard deviation
increased by 9%. The opposite is observed for triplet loss, where a 6% reduction in
standard deviation was observed with a decrease in mean AUC. Lastly, the DANN network
neither improved upon the baseline mean nor the standard deviation of AUC.

It is interesting that only triplet loss leads to some decrease in standard deviation
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in performance across different runs, albeit small. Recall, triplet loss only partially
removes patient identity, due to its ability to maintain limited intra-class variance. This
indicates that the preservation of some patient identity information is still needed to better
generalise across different test split combinations (and the patient compositions thereof).
In contrast, the mitigation technique that directly inhibits the network from learning any
patient identity information (DANN) performs the worst, further strengthening this idea.
Whilst the marginal increase in mean performance when using GE2E loss hints at better
generalisation to unseen patients, the increase in standard deviation indicates that its
inclusion may have destabilised model convergence, resulting in worse generalisation. A
possible source of this destabilisation could have been the fixed run-independent α term,
which may have been sub-optimal for the particular fold. Naturally, the aforementioned
may be true for each mitigation technique.

Overall, the effect of the investigated patient-learning mitigation strategies appears
to be minimal. Whilst strong identity confounding was identified in the Wallacedene
dataset, it is possible that due to the almost doubling in the total number of patients
in the combined dataset, this was somewhat mitigated. Whilst some techniques did
either improve mean performance (GE2E loss) or reduce standard deviation (triplet loss),
these improvements were marginal, and no method improved upon both. We note one
shortcoming of the experiment was the naive selection of α, which was fixed independently
of each fold. It is possible that different training set compositions would have required a
unique value for α to better converge, and subsequently impact results.

8.3. Summary

In this chapter, we investigated the extent of identity confounding in data used in previous
work, namely the Wallacdene dataset. This was highlighted through an empirical compari-
son between the distribution associated with the null hypothesis. Specifically, a strong
dependence on the patient composition of outer-fold train/test set splits was observed for
model performance. We subsequently investigated three deep-learning techniques that
could be used to mitigate the learning of patient identity with varying intensity for the
dataset used in this work, and compared their inclusion to the performance of a baseline
architecture. However, no conclusive improvements were observed. We hypothesised that
this may be due to the increase in the number of patients in our study compared to that
in previous work, which in turn led to an overall reduction in over-fitting to the identity of
patients, mitigating the previously highlighted identity confounding problem. In the next
chapter, we briefly explore the acoustic signature of cough for TB classification.
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Chapter 9

Acoustic Signature of Cough

In this chapter, we present an investigation into the acoustic signature of cough for
TB classification. This is accomplished by selecting networks presented in Chapter 6
and analysing the contents of the feature space that have been learned to be important
for classification. This is attempted through three techniques: SFS feature importance
analysis, attention weight analysis, and idealised cough representations through adversarial
synthesis. Results from this analysis are discussed, and conclusions are made regarding
the specific characteristics of TB and TB coughs.

9.1. SFS feature importance

Classification performance when performing SFS on mel-spectrograms was presented in
Chapter 7. Despite the choice of a sub-optimal feature set, it was clear that performance
improves substantially with the use of only a few acoustic features (or mel-spectrogram
bins). Presenting and analysing these specific frequency bins determined to be most
important at the beginning of SFS may provide insight to future studies. Observing
Figures 7.2 and 7.3, the described sharp increase in performance typically takes place over
the first ten discovered optimal features. Although each acoustic feature vector used in
each fold has different dimensionality, and therefore different filter bank center frequencies,
it may be useful to compare the frequency content being considered as important by each
fold to investigate any generalised trends. As such, we present the center frequencies for
the first ten discovered optimal features for each fold (sorted to be ascending in frequency)
in Figure 9.1. Whilst variance between folds makes it hard to discern reliable conclusions
regarding specific important frequency bands, more than half the selected acoustic features
have center frequencies below 5000 Hz, indicating that these lower to mid-band frequencies
play an important role in carrying the TB signal.

9.2. Temporal analysis

Little is known with regard to which temporal regions of cough are important for TB
cough classification. However, this is important if the physiological origin of the learnt
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Figure 9.1: Acoustic feature center frequencies for the first ten optimal features discov-
ered by SFS for each fold.

signal is to be determined. For example, it may be that different phases of cough carry
information from different regions within the respiratory system (bronchus, trachea and
larynx) as highlighted in Chapter 2. Whilst some analysis of important frequencies has
been presented in the literature, these were inferred from models trained on the temporal
mean of acoustic feature vectors, and as such could give no indication of where this
important frequency information occurs in time.

Recall that the BiLSTM-Attention architecture uses an attention mechanism to calcu-
late a weighted sum of the sequence of latent representations outputted by the BiLSTM
encoder. Whilst these weightings do not directly relate to a particular time in the input
feature space (since the BiLSTM encoder encodes select past and future information in
each latent representation), they can be used to infer the general importance of temporal
regions relative to one another. We visualised this relation to garner insight into the
temporal regions important for cough classification using a simplified BiLSTM-Attention
architecture using only one BiLSTM cell with a hidden state size of 32. We present these
results in Figure 9.2, where we plot the attention weights as a function of time for six
cough mel-spectrograms. The top row corresponds to TB coughs from the same patient,
and the bottom row corresponds to TB coughs from originating from a different patient.
We observe large importance being placed on regions where the signal has high power
and large bandwidth, which coincide with the initial bursts of energy for each coughing
episode. Whilst only a few examples are shown, these observations were made in general.
Interestingly, this high-energy portion of the coughing sound originates from the lung
itself, in particular, the bronchi [1]. It, therefore, appears that whilst TB can manifest
in all regions of the respiratory tract, the model is relying on some change in the sound
produced inside the lungs of TB and TB patients. Further research is necessary to deduce
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what the physiological causes of this difference in the audio signals could be.
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Figure 9.2: Various cough mel-spectrograms and their respective attention weights are
shown above them. The first two rows correspond to coughs from the same TB patient,
whilst the last two correspond to coughs from a TB patient. Reproduced from [8].

9.3. Idealised coughs

Whilst through attention weight analysis we were able to determine where information
learnt to be important lies within the temporal axis of cough and where it is physiologically
generated, the distinct characteristics of the signal being learnt remain largely unknown.
We conduct an investigation designed to probe the learnt TB and TB representations of
trained networks and use this information to infer the distinct characteristics of the signal
being learnt. We compare findings from two different networks.

9.3.1. Adversarial synthesis

In an attempt to understand what each network is learning to distinguish between TB
and TB coughs, as presented in [8], we synthesise an idealised cough for each class by
employing a technique that is typically used to generate adversarial attacks. Typically,
a trained network maps some input feature vector xxx to an output ŷyy using a mapping
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G(xxx;θθθ) where θθθ are the learnt parameters of the network. It is possible to estimate the
parameterised input xxx that minimises some loss function L that is a function of G(x̂xx;θθθ)
where the already trained parameters θθθ are fixed and not updated. In doing so, L is
minimised with respect to xxx, resulting in x̂xx. By using cross-entropy for L as shown in
Equation 9.1, and assuming a one-hot encoding for target classes yyy, we can learn the x̂xx

that represents the idealised input for each of these classes by minimising this loss with
respect to xxx (with respect to a trained network).

LCE = yyy ·G(xxx;θθθ) (9.1)

The flow of gradients during backward propagation is visualised in Figure 9.3.

Gtrainable 

input

back propagation

Forward pass

Figure 9.3: Illustration of the loss back-propagation during adversarial synthesis training.

9.3.2. Experimental setup

We synthesise idealised inputs for two networks, namely, the BiLSTM-Attention architec-
ture, and the wav2vec2.0 model. The former was chosen to facilitate consistency with the
already conducted temporal analysis, and the latter affords the ability to directly synthesise
audible waveforms (recall wav2vec2.0 directly takes audio waveforms as input). In the
case of the BiLSTM-Attention architecture, we define x̂xx as the trainable 2D parameter
matrix x̂xx ∈ Rn×dx initialised to zeros, where dx is the size of the acoustic feature vector
seen by the network during training, and n is the number of frames. In this case we select
n = 80 as it is the aproximate number of frames required for a one-second long audio
signal. The same is performed for wav2vec2.0, with x̂xx ∈ Rs, where s = 16, 000 represents
a one-second long audio signal.

Next, we perform training as before, but instead of fixing the network input and output
and optimising the weights, we fix the network weights and train the input parameter
matrices using the previously described adversarial synthesis method. For both networks,
we use the Adam optimizer with a learning rate of 1× 10−3, and train for as many steps
as needed until the training loss converges, and the ideal input has been reached.

We selected the model corresponding to the best development fold from the first outer
fold to perform this investigation. When these experiments were originally conducted
in [8], this was the singular dataset split being used. In the experimental setup described
in Chapter 6, this corresponds to outer fold 1 and inner fold 3. We select the optimal
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Figure 9.4: Idealised mel-spectrograms and mean spectral power for the synthesised
coughs produced by the BiLSTM-Attention architecture. Reproduced from [8].

wav2vec2.0 model that was trained on this fold such that we can conduct a fair comparison
between each network’s idealised inputs. Importantly, the BiLSTM-Attention architecture
was trained on mel-spectrograms extracted from 44.1kHz audio, whilst wav2vec2.0 was
trained with cough audio down-sampled to 16kHz, and thus restricts the comparison of
frequencies learnt to be important to 8kHz (the Nyquist theorem).

9.3.3. Results and discussion

Figure 9.4a depicts the idealised coughs synthesised by the BiLSTM-Attention network
using the adversarial synthesis method described previously. Clear differences between
idealised TB and TB cough mel-spectrograms are observed. This is further illustrated
by comparing the mean power of these idealised coughs as a function of the frequencies
determined to be most important by SFS, as shown in Figure 9.4b. Note this was a
separate SFS experiment from that presented in Chapter 7. For the idealised TB cough,
we observe generally higher power at lower frequencies (< 500Hz) and the mid-band range
of 1.8kHz− 3.3kHz whereas the TB cough has higher power between 1.2kHz− 1.8kHz and
frequencies greater than 3.7kHz, which include frequencies far outside the typical range of
human speech (> 8kHz).

Next we present the idealised waveforms1 produced by the wav2vec2.0 architecture
as shown in Figure 9.5. Initial inspection yields very little discernible difference between
the two synthesised coughs, with both waveforms largely resembling noise, even upon
auditory inspection. However, when computing the mel-spectrogram of each as presented
in Figure 9.6a, clear differences emerge. As with the BiLSTM-Attention architecture, the
idealised TB cough tends to have a wide band of higher power, whereas the idealised TB
coughs power is generally localised in low frequencies. This is reaffirmed when plotting

1Recordings are made available at: https://youtu.be/r3AvD5mE8Fw (TB) and
https://youtu.be/ow5JoAJE5zY (TB).
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the mean spectral power for the center frequency mel-bin (on a log scale) in Figure 9.6b,
whereby we observe higher power for the TB cough for frequencies below 500Hz, whilst
the converse is true until around 1.5kHz, where an interesting phenomenon is observed.
There appears to be a narrow band of high power centered at 1.5kHz which both idealised
coughs contain, the origin of which is unknown. Greater periodicity is observed in the
TB coughs mean powers, whereby the power oscillates from about 2.5kHz, with a ≈ 1kHz
period. The same phenomenon is not observed as predominantly for the TB cough, for
which the power slowly dissipates as the frequency increases. These same oscillations are
observed for results presented in Figure 9.4b, albeit presented at a different scale.
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Figure 9.5: Idealised waveforms for a TB negative (top) and TB positive (bottom)
cough produced by the wav2vec2.0 architecture.
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9.4. Summary

In this chapter, we presented a brief investigation into the characteristics learnt to be
important for selected deep architectures (BiLSTM, BiLSTM-Attention and wav2vec2.0).
We presented a brief exploration of the particular features determined to be important by
the SFS search performed in Chapter 7. Utilising the attention-based architecture, the
importance of certain temporal regions in the cough signal could be visualised. It was
observed that the initial voiced regions of cough were the most important for classification,
providing evidence that the TB signal being learnt does indeed originate in the lungs.
Moreover, by employing a neural adversarial synthesis technique, idealised TB negative and
positive coughs were formulated. Subsequent inspection revealed stark differences between
the energy content in specific frequency bands. This was then repeated for the wav2vec2.0
architecture, whereby audible coughs were synthesised and further analysed. The two
idealised representations generated by each architecture were compared, and a large degree
of overlap between the distinct characteristics of the learnt signal was observed, providing
new insights into the aspects of a tuberculosis cough that are important for classification.
In the next and final chapter, we present a final summary of the work conducted in this
study.
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Chapter 10

Conclusion

10.1. Summary and conclusions

This thesis has explored the application of deep learning -based methods for TB cough
classification. This was motivated by a lack of such techniques being thoroughly explored
in the literature (or the success thereof), which has mostly relied on simple machine
learning algorithms such as logistic regression. We began by reviewing literature relevant
to this study, namely work completed in cough analysis and cough classification for several
respiratory ailments. As cough classification is a highly under-researched field, we also
briefly explored notable work in other acoustic analysis domains which focus on deep
learning -based solutions, including acoustic scene classification, keyword spotting, and
automatic speech recognition. We subsequently detailed the fundamental background of
deep learning building blocks and architectures relevant to this work. We also provided
detailed descriptions and motivation for the use of various pre-trained architectures to
be fine-tuned for cough classification (ResNet, AST, wav2vec2.0). Next, we described
the datasets used in our experiments, including how datasets from previous work were
combined to present a larger, more diverse, and challenging set. In addition, a dataset
constructed for a cough detection pre-training task is also described.

Once sufficient context was established, we began detailing the setup of the experiments
conducted to investigate the application of deep learning -based methods for TB cough
classification. This included the structure of the proposed architectures (BiLSTM, BiLSTM-
Attention, CNN, transformer, ResNet, AST and wav2vec2.0), how these networks were
trained, acoustic feature vectors, nested cross-validation, and evaluation metrics. Results
regarding an initial investigation into data augmentation techniques and optimal acoustic
feature representations with select networks were presented, with speed-perturbation being
determined to be a useful augmentation technique, whilst mel-spectrograms performed
best among investigated acoustic representations. Next, the classification performance
of each investigated network was presented with and without pre-training and compared
to a baseline logistic regression system. Optimal configurations determined across each
independent test fold for each architecture were briefly discussed, whereby it became clear
that there was a large degree of variation in the chosen best hyper-parameters. Upon
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inspection of results, architectures that were designed with temporally structured data
in mind generally performed better than their CNN counterparts both before and after
pre-training and surpassed baseline performance by a substantial margin. This indicated
that preserving the temporal structure of cough is imperative for improved classification
performance, although this had been disregarded in previous studies. Notably, the pre-
trained BiLSTM achieved an EER and AUC of 0.1305 ± 0.0039 and 0.7874 ± 0.0268
respectively, which is a relative improvement over the baseline by 65.68% and 9.33%. We
further observed that the pre-training of architectures decreased the standard deviation
of performance metrics by a large margin, implying better generalisation. Moreover,
pre-training typically resulted in improved performance for all systems, specifically in
terms of EER and AUC.

This was followed by a small study into the impact of patient identity as a confounding
factor when performing TB cough classification. We showed that cough contains a
large degree of identity information, which classifiers in previous work learnt during
training. Based on this observation, we investigated if employing techniques to reduce the
ability of deep learning-based architectures to learn patient identity improved classification
generalisation across patients. This included the application of domain adversarial networks,
triplet loss, and GE2E loss. Although triplet loss decreased the standard deviation of
classification performance (AUC) across different test set patient compositions, and GE2E
loss improved mean performance, none of the investigated techniques improved both. This
indicated that even though networks may learn patient identity during training, it does
not supersede the generalised TB signal being learnt.

Lastly, we concluded this study with exploratory analysis into distinct characteristics
of cough that were being learnt for TB classification. First, we presented some of the most
important frequency bands for classification, determined through a sequential forward
feature selection search. It became clear that whilst higher frequencies were important, the
majority of the frequency bins deemed to be most important were centred at frequencies
lower than 5kHz. Next, visualisations of the temporal attention scores produced by the
BiLSTM-Attention architecture for numerous cough mel-spectrograms were presented. It
was concluded that the network was mostly relying on initial explosive regions of cough
for classification, which corresponds to the portion of the coughing sound that typically
originates from the bronchi and provided evidence that the characteristic TB signal being
learnt originates in the lungs of patients. Finally, an adversarial synthesis technique was
employed to deduce idealised mel-spectrograms (using the BiLSTM-Attention architecture)
and raw audio waveforms (using wav2vec2.0) for TB and non-TB coughs. Subsequent
inspection revealed stark differences between the energy content in specific frequency bands
for both and provided new insights into the distinct characteristics of a TB cough that
enable its use for classification.
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10.2. Future work

In future work, emphasis should be placed on the rigorous testing of TB cough classifiers
on larger datasets. This is important if such classifiers are to be implemented in a clinical
setting whereby a larger degree of certainty in expected performance is needed. Not only
would larger datasets allow for less noisy development owing to the better generalisation
between development and test sets, but it would also allow for better model generalisation
overall due to the increase in unique patients and recording environments seen during
training. Additionally, as such classifiers will eventually be deployed in a mobile application,
the development of future classifiers should be performed with this in mind, and techniques
such as quantisation and knowledge distillation should be explored.

In this work, some results were negatively impacted by the sub-optimal selection of
decision thresholds. This problem arose due to the aggregation of model predictions across
outer folds, and the small size of development sets. As the decision threshold-based metrics
are imperative for the success of these models should they be deployed in a real-world
TB screening tool, future work should optimise the strategy used for decision threshold
selection.
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Abstract
In this work, we explore recurrent neural network architectures
for tuberculosis (TB) cough classification. In contrast to pre-
vious unsuccessful attempts to implement deep architectures
in this domain, we show that a basic bidirectional long short-
term memory network (BiLSTM) can achieve improved perfor-
mance. In addition, we show that by performing greedy feature
selection in conjunction with a newly-proposed attention-based
architecture that learns patient invariant features, substantially
better generalisation can be achieved compared to a baseline
and other considered architectures. Furthermore, this attention
mechanism allows an inspection of the temporal regions of the
audio signal considered to be important for classification to be
performed. Finally, we develop a neural style transfer technique
to infer idealised inputs which can subsequently be analysed.
We find distinct differences between the idealised power spec-
tra of TB and non-TB coughs, which provide clues about the
origin of the features in the audio signal.

Index Terms: cough, tuberculosis (TB), BiLSTM, attention,
style-transfer

1. Introduction
In 2021, 10 million people were reported to have developed tu-
berculosis (TB), of whom 1.5 million died. As a result, TB
was the second most lethal infectious disease globally, ranking
above HIV/AIDS and just below COVID-19 [1]. The majority
of TB cases occur in developing nations where access to public
health care is limited by complex socio-economic factors, mak-
ing it difficult to identify and control the spread of the disease
and resulting in patients receiving improper care [2].

Whilst published research covering cough classification is
currently limited, a few studies have shown promising results
when distinguishing between: wet and dry coughs [3, 4], pneu-
monia [5, 6], and more recently COVID-19 [7, 8, 9]. Because
TB is predominately a respiratory disease, it results in patients
developing a chronic cough. It has been shown in previous work
that it is possible to distinguish between the coughs of TB pa-
tients and healthy controls by utilising simple statistical classi-
fiers [10]. More recently, these methods have been evaluated
on a dataset that aims to reflect real-world conditions, whereby
coughers all suffer from some lung ailment that is in some cases
TB [11]. Whilst frequency bands important for classification
were identified [10], a thorough investigation into the acoustic
patterns being learnt has not yet been conducted. Moreover,
work considering TB cough classification has relied on linear
models utilising fixed dimensional inputs which are typically
frame-wise averages of acoustic features. Thus, temporal infor-
mation present in a cough has so far been disregarded.

In this work we show that recurrent deep learning architec-
tures can be used successfully for TB cough classification, and

improve upon existing methods. In addition, by incorporating
an attention mechanism and a new loss term, combined with
frugal feature selection, we show that model generalisation can
be improved. Using the same attention mechanism, we are able
to visualise the temporal regions of the feature space that are
learnt to be important for cough classification. By considering
idealised TB negative and TB positive coughs produced by a
technique normally used for neural style transfer, we discuss
the distinct characteristics of a TB cough captured by the neural
network.

2. Data
We report classification results on a dataset comprising 74 indi-
vidual patients and 1564 coughs. Previous work in TB cough
classification has relied on relatively small datasets gathered
in a single recording environment from a small number of pa-
tients. This is problematic when training deep-architectures due
to their tendency to overfit, for example, to confounding socio-
environmental factors which are especially important to disre-
gard in a clinical setting [12]. Relying on recordings from a
single environment restricts data diversity and consequently the
final model’s ability to generalise. In an attempt to address this,
we combine the datasets used previously in [10] and in [11],
referred to as the Brooklyn and Wallacedene datasets respec-
tively. This is in an effort to yield a more environmentally di-
verse dataset. Brooklyn was collected in a noise-isolated facil-
ity from patients known to have TB and healthy controls, whilst
Wallacendene was collected in a noisy environment, from pa-
tients who all suffer from either TB or some other lung ailment
(confirmed later by sputum analysis). This combined dataset is
summarised in Table 1.

Table 1: Dataset used for experimentation. TB and TB indicate
TB positive and negative respectively.

TB TB Total

Patients 28 46 74
Total coughs 844 720 1564
Mean cough length (s) 0.60 0.64 0.62
Std dev cough length (s) 0.34 0.29 0.32

2.1. Cross-validation and testing
We divide the combined dataset into a training set (which is fur-
ther subdivided for cross-validation) and a test set, containing
49 and 25 patients respectively. Importantly, both the Brooklyn
and Wallacedene datasets are represented equally in all splits.
Furthermore, splits are performed patient wise, ensuring that
all coughs originating from the same patient are only present in
one set, and we ensure a uniform distribution of TB positive and
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negative (TB and TB) patients across splits. The training set is
further divided into 4 folds (each consisting of its own train and
development set) for cross-validation using the same previously
described procedure.

3. Models
We first train and evaluate several binary classifiers, including:
logistic regression (baseline), a basic BiLSTM and a BiLSTM
with attention. Next, we use the attention-based architecture to
deduce important cough characteristics by generating idealised
coughs for each class through a neural style-transfer technique.
A sequential forward search (SFS) [13] is performed for both re-
current architectures to identify the most important frequencies
for classification and to investigate its impact on model gen-
eralisation. This information is considered in conjunction with
the temporal regions identified as important for classification by
analysis of the attention weights.

3.1. Logistic regression
Previous work in TB cough classification has focused on sim-
ple linear models since it was observed that complex neural net-
works resulted in degraded performance. In both [10] and [11],
logistic regression (LR) outperformed all other considered clas-
sifiers. As such, we use it as a baseline with which our architec-
tures will be compared. LR is a simple approach that linearly
models a probability f(x) given a set of d predictors x ∈ Rd

using learnable parameters θ. This highlights an important lim-
itation of LR: each predictor x is a feature vector computed
from a frame of audio. To obtain the probability that a cough
is associated with TB, the average of the frame probabilities is
computed. In doing so, any temporal information is lost.

3.2. BiLSTM
RNNs have successfully been used in several acoustic classi-
fication tasks. Acoustic feature vectors are processed sequen-
tially, each updating the network’s internal hidden states which
contain complex context-rich information and are available at
the next time step. This allows the network to learn temporal
relations important to the task at hand. In this work, we make
use of a BiLSTM which extends the LSTM architecture [14] by
processing the sequence in both forward and backward tempo-
ral directions.

A high-level diagram of the network is shown in Figure 1.
The single BiLSTM layer has a 32-dimensional hidden state
whereby the final outputs in both directions are concatenated to
form q. This embedding is then passed through a small feed-
forward network with a 32-dimensional hidden layer and ReLU
activations followed by an output layer. We include dropout be-
fore the first linear layer with a probability of 0.5. Lastly, to ac-
count for the unbalanced nature of our dataset, we use weighted
cross-entropy as our loss function.

3.3. BiLSTM-Att
The development of the attention mechanism [15] has revolu-
tionised deep learning research. With a focus on acoustic classi-
fication, attention-based architectures achieve near state-of-the-
art results on tasks such as the Google speech commands dataset
[16, 17]. In addition, the intuitive nature of the architecture al-
lows for analysis of what the network is learning, reducing the
black-box notion commonly associated with deep learning.

We develop an attention-based model by integrating an at-
tention layer into the above BiLSTM architecture. Instead of

passing q directly to the fully connected network as is done in
the basic BiLSTM architecture, the attention mechanism uses q
as the query and outputs a weighted average (by the attention
score) of all the BiLSTM outputs, thereby allowing the single
output vector to capture information from the temporal regions
most relevant for classification and suppress information from
unimportant regions in time.

We design this architecture bearing in mind the fact that it
will be used to aid in the understanding of the acoustic signa-
ture of a TB cough. Accordingly, a new loss term is introduced
that encourages the embedding layer of the network (the out-
put of the attention block) to generalise across patients of the
same TB status. This is performed to inhibit our subsequent
model analysis to be confounded by attributes learned irrelevant
to TB cough classification, namely patient identity, an attribute
present in cough [18]. This is accomplished by incorporating
a GE2E loss term which was originally proposed to determine
speaker embeddings by encouraging the network to keep em-
beddings close together when from the same target speaker, and
further apart for different speakers [19]. We consider TB and
TB coughs to represent two respective “speakers”. Hence the
similarity between the embedding centroids of different patients
with the same TB status is maximised, whilst minimising the
similarity between embeddings of the TB and TB classes. The
combined loss function used to train our network is given in
Equation 1, where B is the batch size.

L = − 1

B

(
B∑

b

β · yb · log(ŷb) + α
∑

j,i

LGE2E(eij)

)
(1)

Here the first term is standard weighted cross-entropy
where yb and ŷb are the vectors of ground truth and predicted
probabilities respectively (where the dimension is the number of
classes i.e. two) for a given cough in the batch and β is a vector
of class weights (constant throughout training). The weight for
the under-sampled class is set to 1, while for the over-sampled
class it is the ratio of its occurrence in the training set to the
total number of samples. In the second term, α is a regularisa-
tion parameter, LGE2E is the function that computes the GE2E
loss for a specific embedding in a given batch, and eij is the
embedding vector of the ith cough from the jth class.

4. Experimental procedure
With the exception of LR, which is trained using the standard
scikit-learn recipe [20], models are trained for 15 epochs
with a learning rate of 1× 10−4 and batch size of 128. After
training all 4 folds, the mean development AUC is computed for
each epoch. The models from the epoch with the highest mean
development AUC are selected, and at test time are ensembled.
The decision threshold used for classification was γ̄, the mean
of the decision thresholds γn that result in the EER for each
fold. Hence the decision threshold was chosen on the basis of
the EER as in previous work [10, 11]. We note that it might be
possible to improve performance if a strategy that chooses this
threshold to optimise, for example, sensitivity and specificity, is
adopted. However, we leave this investigation for future work.

4.1. Data Augmentation and feature extraction
We experimented with 3 data augmentation techniques:
SpecAugment [21], random insertions and deletions, and speed-
perturbation [22]. Initial experiments indicated that only speed
perturbation was effective, and hence report only this form of
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Figure 1: Structure of the basic BiLSTM (Network 1) and its attention variant (Network 2), with shared components indicated.

augmentation. We use warping factors of {0.9, 1.0, 1.1} result-
ing in a 3-fold increase in the size of the dataset. We consid-
ered three types of acoustic feature: mel-spectrograms, linear
filter-bank energies, and MFCCs (with appended velocity and
acceleration, as well as cepstral mean and variance normalisa-
tion). The former was found to perform best for all architec-
tures, with the ideal number of filter banks being 180, 128, and
80 for LR, the BiLSTM and BiLSTM-Att model respectively.
Analysis was based on 2048-sample frames, with successive
frames overlapping by 1536 samples (i.e. a frame-skip of 512).
Variations in frame length and frame-skip were not considered
in this work. All recordings were down-sampled to 44.1kHz
before feature extraction.

4.2. Idealised coughs through neural style transfer
In an attempt to understand what the network is learning in or-
der to distinguish between TB and TB coughs, we employ a
technique similar to that used in neural style transfer [23] to
synthesise an idealised cough for each class. This is accom-
plished by first defining a 2D parameter matrix x̂ ∈ Rn×d (ini-
tialised to zeros) that will represent the input to the network,
where d is the size of the acoustic feature vector seen by the
network during training, and n is the number of frames. In this
case we select n = 80. Next, we perform training as before,
but instead of fixing the network input and output and optimiz-
ing the weights, we fix the weights and train x̂. This allows
the discovery of the input x̂ that best leads to the output class
y for the trained weights, i.e. an idealised input cough feature
representation for the output class in question.

5. Experimental results and discussion
We present classification performance for the various classifiers
investigated and discuss our findings. In addition, we analyse
the idealised cough mel-spectrograms produced when applying
our adaptation of neural style transfer and observe the attention
weights to infer the spectral and temporal regions that the clas-
sifier finds most useful for classification.

5.1. Classification
We present development set performance for each considered
architecture in Table 2 and the associated test set performance
in Table 3. A substantial increase in classification performance
over the LR baseline is observed with regards to the basic BiL-
STM model with all metrics either matched or improved upon,
most notably the specificity. The test set AUC for both the basic
BiLSTM and its attention variant are comparable, but there is a
large discrepancy in the remaining metrics. This indicates that
the decision threshold was not optimal and more robust alterna-
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Figure 2: Idealised mel-spectrograms and mean spectral power.

tives to using the EER should be explored in future work.

When inspecting the effect of applying SFS on the two deep
architectures, interesting observations can be made. We note a
substantial reduction in the standard deviation of the EER-based
thresholds determined for the BiLSTM-Att architecture (0.175
before and 0.070 after SFS) whilst the opposite is observed for
the BiLSTM without attention. Despite achieving the highest
test AUC, an increase in decision threshold standard deviation
was observed (from 0.108 to 0.155). An increase in the vari-
ability of the decision threshold between folds indicates poorer
generalisation. Conversely, with the BiLSTM-Att architecture,
better generalisation across the folds is observed which is evi-
dent in the reduced standard deviation of the decision threshold.
This is especially important with the implementation of a TB
screening tool in mind, where model generalisation will be key.
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Figure 3: Various cough mel-spectrograms, all of which originate from the same patient, and their respective attention weights shown
above them.

Table 2: Mean and standard deviation of the area under the
ROC curve (AUC) and the EER decision thresholds (γ̄) ob-
served during 4-fold cross validation.

Model γ̄ AUC

LR (baseline) [10, 11] 0.272± 0.103 0.701± 0.127
BiLSTM 0.534± 0.108 0.777± 0.094
BiLSTM (SFS) 0.603± 0.155 0.919± 0.081
BiLSTM-Att 0.460± 0.175 0.873± 0.054
BiLSTM-Att (SFS) 0.568± 0.070 0.900± 0.092

Table 3: Test set performance for the models listed in Table 2,
evaluated through various metrics: sensitivity, specificity, accu-
racy and area under the curve.

Model Sens Spec Acc AUC

LR (baseline) [10, 11] 0.889 0.625 0.720 0.769
BiLSTM 0.889 0.750 0.800 0.821
BiLSTM (SFS) 0.667 0.750 0.720 0.862
BiLSTM-Att 0.778 0.625 0.680 0.822
BiLSTM-Att (SFS) 0.778 0.813 0.800 0.850

5.2. Analysis and interpretation
Figure 2a depicts the idealised coughs synthesised by the
BiLSTM-Att network using the neural style transfer method
described in Section 4.2. Clear differences between idealised
TB and TB cough mel-spectrograms are observed. This is fur-
ther illustrated by comparing the mean power of these idealised
coughs as a function of the frequencies determined to be most
important by SFS, as shown in Figure 2b. For the idealised TB
cough, we observe generally higher power at lower frequen-
cies (< 500Hz) and the mid-band range of 1.8kHz − 3.3kHz
whereas the TB cough has higher power between 1.2kHz −
1.8kHz and frequencies greater than 3.7kHz, which include
frequencies far outside the typical range of human speech
(> 8kHz). In Figure 3 we plot the attention weights as a func-
tion of time for three cough mel-spectrograms. We observe
large importance being placed on regions where the signal has
a high power and a large bandwidth, which coincide with the

initial bursts of energy for each coughing episode. Whilst only
three examples are shown, these observations were made in gen-
eral. This high energy portion of the coughing sound originates
from the lung itself, in particular, the bronchi [24]. It therefore
appears that, whilst TB can manifest in all regions of the respi-
ratory tract, the model is relying on some change in the sound
produced inside the lungs of TB and TB patients. Further re-
search is necessary to deduce what the physiological causes of
this difference in the audio signals could be.

6. Conclusion
In this work, we explored the use of recurrent networks for
TB cough classification and use these trained networks to iden-
tify and interpret important cough characteristics in both fre-
quency and time. A BiLSTM architecture is shown to improve
on previous research, achieving a sensitivity and specificity of
0.89 and 0.75 respectively. This indicates that deeper architec-
tures are viable for TB cough classification, and can improve
upon previous state-of-the-art for TB screening. Furthermore,
we show that by incorporating frugal feature selection our pro-
posed attention-based architecture exhibits substantially better
generalisation across folds than the other considered architec-
tures. This is an important observation for future work, in which
datasets will include many more recording domains and associ-
ated variability. Utilizing an attention architecture, the impor-
tance of certain temporal regions in the cough signal could be
visualised. It was observed that the initial voiced regions of
cough were the most important for classification. Moreover,
by employing a neural style transfer technique, idealised TB
negative and positive coughs were synthesised. Subsequent in-
spection revealed stark differences between energy content in
specific frequency bands. In addition to providing new insights
into the aspects of a tuberculosis cough that are important for
classification, this provides evidence that the TB signal being
learnt does indeed originate in the lungs. In future work, we
look forward to evaluating our architectures on larger datasets
currently being collected [25].
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Appendix B

Dataset splits

For ease of any other future experiments, we present the patient ID’s for the dataset splits
(test and development sets) in a list format.

B.1. Fold 1

B.1.1. Test set

[‘Wu0376’, ‘Wu0489’, ‘Wu0426’, ‘Wu0453’, ‘Wu0480’, ‘Wu0427’, ‘Wu0398’, ‘Wu0436’,
‘Wu0401’, ‘Wu0440’, ‘Wu0438’, ‘Wu0449’, ‘CONX 088’, ‘C 429’, ‘CONX 077’, ‘CONX 061’,
‘CONX 081’, ‘CONX 085’, ‘C 443’, ‘C 430’, ‘C 412’, ‘C 438’, ‘C 442’, ‘CONX 071’,
‘CONX 065’]

B.1.2. Inner fold 1 development set

[‘Wu0431’, ‘Wu0473’, ‘Wu0459’, ‘Wu0423’, ‘Wu0384’, ‘Wu0378’, ‘CONX 064’, ‘CONX 063’,
‘CONX 068’, ‘CONX 069’, ‘C 410’, ‘C 415’, ‘C 449’]

B.1.3. Inner fold 2 development set

[‘Wu0454’, ‘Wu0442’, ‘Wu0437’, ‘Wu0476’, ‘Wu0393’, ‘Wu0448’, ‘CONX 060’, ‘CONX 086’,
‘CONX 089’, ‘CONX 070’, ‘C 440’, ‘C 407’]

B.1.4. Inner fold 3 development set

[‘Wu0485’, ‘Wu0443’, ‘Wu0479’, ‘Wu0475’, ‘Wu0435’, ‘Wu0380’, ‘CONX 066’, ‘CONX 072’,
‘CONX 082’, ‘C 433’, ‘C 432’, ‘C 425’]

B.1.5. Inner fold 4 development set

[‘Wu0482’, ‘Wu0481’, ‘Wu0486’, ‘Wu0424’, ‘Wu0404’, ‘Wu0388’, ‘CONX 076’, ‘CONX 087’,
‘CONX 083’, ‘C 451’, ‘C 431’, ‘C 418’]
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131 B.2. Fold 2 131

B.2. Fold 2

B.2.1. Test set

[‘Wu0393’, ‘Wu0431’, ‘Wu0482’, ‘Wu0479’, ‘Wu0435’, ‘Wu0475’, ‘Wu0380’, ‘Wu0486’,
‘Wu0384’, ‘Wu0459’, ‘Wu0448’, ‘Wu0485’, ‘CONX 060’, ‘CONX 087’, ‘C 433’, ‘C 440’,
‘C 451’, ‘CONX 076’, ‘C 410’, ‘C 415’, ‘CONX 063’, ‘CONX 069’, ‘C 425’, ‘CONX 089’,
‘CONX 070’]

B.2.2. Inner fold 1 development set

[‘Wu0473’, ‘Wu0453’, ‘Wu0442’, ‘Wu0476’, ‘Wu0404’, ‘Wu0438’, ‘CONX 072’, ‘CONX 081’,
‘CONX 068’, ‘CONX 071’, ‘C 438’, ‘C 407’, ‘C 443’]

B.2.3. Inner fold 2 development set

[‘Wu0454’, ‘Wu0401’, ‘Wu0424’, ‘Wu0376’, ‘Wu0440’, ‘Wu0426’, ‘CONX 066’, ‘CONX 086’,
‘CONX 085’, ‘CONX 065’, ‘C 442’, ‘C 430’]

B.2.4. Inner fold 3 development set

[‘Wu0443’, ‘Wu0436’, ‘Wu0398’, ‘Wu0449’, ‘Wu0378’, ‘Wu0427’, ‘CONX 088’, ‘CONX 061’,
‘CONX 082’, ‘C 429’, ‘C 432’, ‘C 449’]

B.2.5. Inner fold 4 development set

[‘Wu0481’, ‘Wu0480’, ‘Wu0423’, ‘Wu0437’, ‘Wu0489’, ‘Wu0388’, ‘CONX 064’, ‘CONX 077’,
‘CONX 083’, ‘C 412’, ‘C 431’, ‘C 418’]

B.3. Fold 3

B.3.1. Test set

[‘Wu0423’, ‘Wu0404’, ‘Wu0424’, ‘Wu0476’, ‘Wu0437’, ‘Wu0388’, ‘Wu0473’, ‘Wu0481’,
‘Wu0443’, ‘Wu0378’, ‘Wu0442’, ‘Wu0454’, ‘CONX 066’, ‘CONX 086’, ‘CONX 064’, ‘C 432’,
‘CONX 072’, ‘CONX 082’, ‘CONX 068’, ‘C 407’, ‘C 431’, ‘C 449’, ‘CONX 083’, ‘C 418’]

B.3.2. Inner fold 1 development set

[‘Wu0431’, ‘Wu0453’, ‘Wu0482’, ‘Wu0435’, ‘Wu0376’, ‘Wu0438’, ‘CONX 077’, ‘CONX 061’,
‘CONX 069’, ‘CONX 071’, ‘C 429’, ‘C 442’, ‘C 415’]

Stellenbosch University https://scholar.sun.ac.za



132 B.3. Fold 3 132

B.3.3. Inner fold 2 development set

[‘Wu0486’, ‘Wu0459’, ‘Wu0401’, ‘Wu0398’, ‘Wu0440’, ‘Wu0427’, ‘CONX 060’, ‘CONX 076’,
‘CONX 081’, ‘CONX 065’, ‘C 433’, ‘C 410’, ‘C 440’]

B.3.4. Inner fold 3 development set

[‘Wu0480’, ‘Wu0489’, ‘Wu0449’, ‘Wu0448’, ‘Wu0426’, ‘Wu0380’, ‘CONX 088’, ‘CONX 089’,
‘CONX 085’, ‘C 412’, ‘C 451’, ‘C 443’]

B.3.5. Inner fold 4 development set

[‘Wu0485’, ‘Wu0479’, ‘Wu0475’, ‘Wu0436’, ‘Wu0393’, ‘Wu0384’, ‘CONX 087’, ‘CONX 063’,
‘CONX 070’, ‘C 438’, ‘C 430’, ‘C 425’]
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Appendix C

The limitations of nested
cross-validation

Nested k-fold cross-validation has been used in both [2] and [3] as a means to develop and
test models. We attempt to show why this severely limits the degrees of freedom when
developing models due to an overlap in inner-fold train/dev splits and outer-fold train/test
splits. In both works, an outer k-fold loop partitions the data into train and test sets. For
each of these partitions, the train set is further partitioned by a nested k-fold loop into k

train and development sets. These development sets are used to select model architecture
and tune hyper-parameters.

C.1. The problem

Suppose you have the dataset consisting of n samples:

X = [x1, x2, ..., xn] (C.1)

Given two outer-fold splits Sa and Sb as shown in Figure C.1, it can be observed that
when the training set (Traina) of Sa is further partitioned into sub-training (Trainaj

)
and development sets (Devaj

), there can be an overlap between Trainaj
and Trainb and

Devaj
and Testb. More concretely:

Trainaj
∩Trainb ̸= ∅

Devaj
∩Testb ̸= ∅

(C.2)

In an attempt to quantify this overlap, we derive an expression for the overlap between
Devaj

and Testb given the worst-case scenario that Devaj
⊂ Testb. Let the number of

samples in the dataset be N , the number of outer folds be ko and the number of inner
folds be ki. We can state that in a given outer loop split the number of test and train
samples respectively are:
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Further
split

Figure C.1: Two partitions of a nested k-fold cross validation strategy Sa and Sb are
visualised. Blue samples indicate training data points that overlap between a nested fold
and another outer fold, while red indicates dev/test samples that overlap between the
same nested fold and outer fold.

N

ko

(C.3)

N · (1− 1
ko

) (C.4)

Thus given a single inner loop split the number of dev samples are:

N

ki

· (1− 1
ko

) (C.5)

Given the aforementioned worst-case scenario, we can express the overlap between a
dev and test set (from two independent outer loops) as:

�N
ki
· (1− 1

ko
)

�N
ko

⇒ko − 1
ki

(C.6)
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C.2. Discussion

It is clear that what happens in each outer loop is completely independent of each other loop.
Optimal hyper-parameters from loop a are completely independent of those determined in
loop b. This is not where we take issue with the relation in Equation C.2. Our main issue
is that if one were to ever look at these dev set results (not in the automatic fashion that
is used for independent hyper-parameter tuning), and make any general decision based on
that (examples to follow), that would be a form of cheating.

But why, each outer loop is completely independent, right? Yes! Cheating does not
refer to finding the optimal point of convergence or hyper-parameters for a given model in
a given outer loop. But rather, it refers to making global architectural decisions (decisions
that apply to all folds) that seem to do better on the dev set (across all outer loops),
which in turn due to the relation in Equation C.2 could be construed as cheating - since
you are making a decision loosely based off of test-set performance, albeit unintentional.
A typical approach taken in model development is to iteratively build an architecture,
whereby in each step you quantify its performance on a held-out development set and
make adjustments to improve said performance. Such a process can not be followed in
nested k-fold cross-validation. Dev set results cannot be used to inform any adjustments
or new additions to the model architecture that one is investigating.

If nested k-fold cross-validation is to be used, the model architectures that are to be
investigated should be decided upon and fixed from the outset of any experiments. It
also means that any hyper-parameter tuning being performed by nested k-folds should be
completely automatic (and independent between outer loops), since as soon as these dev
set results are observed, one would be partly aware of a subset of the test set performance
(even though it is from another independent outer loop).

Constraining one’s research by fixing your selection of model architectures before any
experiments have been run has a high potential to lead to non-optimal solutions. Iterative
design is a cornerstone of any good solution, and to cut it out in search of “robust” results
seems counterintuitive.

C.2.1. Examples

New architectures: A researcher is investigating two architectures to perform sequence
classification: logistic regression and an LSTM. They implement a nested k-fold cross-
validation setup since they are working with a very small dataset but still want to present
robust results. Before looking at the final test set results (the mean across the outer folds),
they have a look at the dev set results (the mean across each outer fold’s nested fold
means - confusing, I know). Upon looking at the results they notice logistic regression,
although much less sophisticated than the LSTM model, seems to perform better. This
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puzzles them, and they assume it is because they are naively selecting the last output of
the LSTM layer to represent the sequence. The researcher recalls an interesting paper
they recently read that uses attention to “re-weight” the importance of each output of
an LSTM, and combines them into a single context-rich feature vector. The researcher
decides it would be a good idea to add this to their vanilla LSTM model and repeat the
experiment.

Notice that at first glance, nothing seems out of the ordinary, the researcher simply
made an observation and adjusted their architecture accordingly. However, despite never
looking at test scores, this decision was made based on a dev set score made up of train/dev
splits that partly overlap with train/test splits and has inadvertently cheated.

Feature selection: A research group is utilising a pre-trained multilingual feature
extractor (Facebook’s wav2vec2-xlsr model) for an acoustic unit discovery model they are
currently working on. They utilise a nested k-fold cross-validation strategy to get test
scores since they are working with an ultra-low resource language (<1hr of transcribed
speech!). It’s important for these results to be robust since this system is intended to be
deployed in a real-world scenario. One of the hyper-parameters that are automatically
tuned during nested k-fold cross-validation is which layer of wav2vec2 to use to extract
said features. Due to computational constraints, they can’t look at all the layers, so they
only consider layers 18-24. After the first outer loop is complete, the eager researchers
plot the development ABX scores from that specific outer fold vs the wav2vec2 feature
layer number. They notice that the deeper the layer, (that is towards 18), the better the
ABX score gets, and at layer 18 it still seems to be decreasing! The researchers stop the
experiment, change the config file to consider layers 14-24 and restart the experiment.

Unfortunately caught up in all the excitement, these researchers have made a global
decision (applies to all folds) on train/dev splits that partly overlap with another outer
loop train/test set and have hence cheated and invalidated all their hard work :(
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Appendix D

Wallacedene noise categorisation

Table D.1: Wallacedene cough recording notes per patient, categorised into three
disturbance categories: “None”, “Some” and “Significant”.

ID Notes TB status Disturbance
Wu376 Some microphone disturbance, but it’s only be-

tween coughs. Minimal background noise.
0 Some

Wu378 Nothing notable. Minimal background noise. 1 None
Wu380 patient sniffs at the end of some coughs. Minimal

background noise.
1 None

Wu381 Quite substantial microphone disturbance. 1 Significant
Wu384 Cough is characterised by a hick. Some coughs

have background noise (trucks).
0 Some

Wu388 Nothing notable. Some background noise. 1 None
Wu392 Quite substantial microphone disturbance. 1 Significant
Wu393 Nothing notable. Some coughs have significant

background noise (trucks, music).
1 Some

Wu398 Nothing notable. Minimal background noise. 0 None
Wu399 Some coughs have microphone disturbances. 0 Significant
Wu401 Nothing notable. Some background noise. 1 None
Wu403 Most coughs have microphone disturbances. 0 Significant
Wu404 Nothing notable. Some background noise. 0 None
Wu405 Coughs towards the end of the recording have mi-

crophone disturbances.
0 Significant

Wu413 Quite substantial microphone disturbance. 0 Significant
Wu414 Quite substantial microphone disturbance. 0 Significant
Wu417 A little bit of microphone disturbance, but not as

bad as the other coughs
1 Significant

Wu423 Nothing notable. Some background noise. 1 None
Wu424 Nothing notable. A little bit of disturbance between

coughs.
0 None
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Wu426 Some disturbance, but it is less prominent than
other recordings.

1 Some

Wu427 Nothing notable. Some loud speaker background
noise.

1 None

Wu430 Some disturbance - gets worse towards the end of
the recording.

1 Significant

Wu431 Very slight disturbance. 0 Some
Wu435 Very very slight disturbance. 0 Some
Wu436 Nothing notable. Minimal background noise. 0 None
Wu437 Nothing notable. Minimal background noise. 0 None
Wu438 Very slight disturbance, volume quite low. 0 Some
Wu440 volume quite low. 0 Some
Wu442 Nothing notable. Minimal background noise. 1 None
Wu443 Very forced coughs, rapid breathing. Slight distur-

bance.
0 Some

Wu448 Coughs are forced. Some background noise. 0 Some
Wu449 Some minimal disturbance. Gets better towards

the end.
0 Some

Wu450 Disturbances seem to become more prevalent to-
wards the end.

0 Significant

Wu453 It sounds like something is being brushed against
the mic in the beginning.

0 Some

Wu454 Nothing notable. Minimal background noise. 0 None
Wu459 Nothing notable. Minimal background noise. 0 None
Wu471 Disturbance is quite bad in a few coughs. 0 Significant
Wu473 Nothing notable. Minimal background noise. 0 None
Wu475 Slight disturbance. 1 Some
Wu476 Nothing notable. Minimal background noise. 0 None
Wu479 Slight disturbance, but not too notable. 1 Some
Wu480 Slight disturbance. 0 Some
Wu481 Coughs are quite quiet? Shame this man is strug-

gling.
1 Some

Wu482 Nothing notable. Minimal background noise. 0 None
Wu485 Slight disturbance. Gets worse towards the end. 0 Some
Wu486 Nothing notable. Minimal background noise. 0 None
Wu488 Some groovy music. 1 Significant
Wu489 Nothing notable. Minimal background noise. 0 None
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Wu494 Disturbance is quite bad in a few coughs. 0 Significant
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