
Investigating hyperheuristics for solving
bi-objective simulation optimisation

problems

by

Leanne Nigrini

Thesis presented in fulfilment of the requirements for the degree of
Master of Engineering (Industrial Engineering)
in the Faculty of Engineering at Stellenbosch University

Supervisor: Prof JF Bekker
Co-supervisor: Dr GS Nel

March 2023

Stellenbosch University https://scholar.sun.ac.za

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein
is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise
stated), that reproduction and publication thereof by Stellenbosch University will not infringe
any third party rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

March 2023

Copyright © 2023 Stellenbosch University

All rights reserved

i

Stellenbosch University https://scholar.sun.ac.za

ii

Stellenbosch University https://scholar.sun.ac.za

Abstract

The investigation and exploration of search and optimisation methodologies are crucial research
areas. Take for example the potential impact of an effective and computationally efficient
decision support methodology, it could be the difference between life and death in healthcare
scheduling. Schedule too few doctors and patients could die; schedule long work-hours and
doctors could make fatal mistakes due to fatigue. Simulation optimisation is typically used to
approximately solve large and complex problems that cannot be solved by exact methods. In
addition, the need for better simulation optimisation approaches are further motivated by the
combinatorial relationship that results in significant search spaces. One of the biggest problems
that researchers face with metaheuristic approaches is the lack of general applicability and the
high number of hyperparameter combinations that algorithms have and a lack of insight on how
to choose them. This is due to the fact that the performance of metaheuristics greatly depends
on the type of problem being optimised, as supported by the no free lunch (NFL) theorem.
Accordingly, each optimisation algorithm has its strengths and weaknesses when it comes to
exploring the search space.

Hyperheuristics propose to compensate, to some extent, for the weaknesses of the individual
low-level heuristics (LLHs) by method of algorithmic cooperation, creating ensemble algorithms
that are more generally applicable, i.e. can solve a larger range of problems than the individual
LLHs are capable of solving. In this study, two hyperheuristic approaches are developed, one
for population-based search and the second for single-solution based search, and are assessed
using five discete-event dynamic stochastic bi-objective simulation optimisation problems. The
hyperheuristics as well as their individual LLHs are implemented and assessed in Tecnomatix
Plant Simulation. In addition, an algorithmic parameter study is presented for the respective
LLHs to determine good hyperparameter combinations and possibly infer insights from the
complex interaction.

Furthermore, due to the dynamic and stochastic nature of simulation models, there exists a
sufficient number of observations per solution that need to be evaluated to be able to construct
suitable narrow confidence intervals. This renders simulation optimisation computationally ex-
pensive and for that reason a pilot study is conducted to determine the feasibility of an ANN
as metamodel to screen out solutions that are predicted to be of low-quality, thereby reducing
the number of computationally expensive evaluations that need to be made by the simulation
model.

The statement that hyperheuristics perform better (or at least similar) to its individual LLHs
does not hold true for the population-based hyperheuristic. The statement, however, holds true
for the single-solution based hyperheuristic. It can be concluded that both hyperheuristics failed
to exhibit superior performance and did not indicate favourable performance improvements
relative to all the individual applications of the LLHs. Furthermore, the novel pilot study
provided valuable insights pertaining to the complex interaction within an ANN, however, the
study could not conclude whether or not an ANN metamodel is a feasible solution to enhance the
simulation optimisation process. The study does provide valuable insights which could inspire
further research.

iii

Stellenbosch University https://scholar.sun.ac.za

iv

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Die ondersoek en verkenning van optimeringmetodes word beskou as ’n kritieke navorsings ge-
bied. Simulasie-optimeringsmetodes word dikwels gebruik om benaderde oplossings te vind vir
komplekse probleme wat onoplosbaar is deur presiese metodes. Die behoefte vir beter optimer-
ingsmetodes word verder gemotiveer deur kombinatoriese verwantskappe wat lei tot beduidende
groot besluitnemingsruimtes. Een van die grootste tekortkominge in navorsing in hierdie gebied
is die gebrek aan metaheuristieke wat oor die algemeen toepaslik is asook die groot aantal algo-
ritme parameters wat kundigheid verg om van te kies. Dit is as gevolg van die metaheuristieke se
sterk en swakpunte, in terme van die besluitnemingsruimte verken, wat lei tot die metaheuristiek
se vermoë om sekere probleme goed te kan benader en ander nie.

Hiperheuristieke is voorgestel met die doel om vir die swakpunte van die enkele metaheuristieke
of heuristieke komponente te kompenseer deur middel van algoritme samewerking om gevolglik
’n groter verskeidenheid van optimeringsprobleme te kan benader as voorheen. Twee hiper-
heuristieke was voorgestel en ontwikkel in hierdie studie. Die een volg ’n enkel-oplossing benader-
ing, terwyl die ander ’n populasie-oplossing benadering volg. Die uitvoer van die voorgestelde
hiperheuristieke was in Tecnomatix Plant Simulation verrig en geevalueer op vyf tweedoelige sto-
gastiese en dinamies simulasie optimeringsprobleme. Daarby, was ’n omvattende parametereval-
uarings studie uitgevoer met die doel om afleidings te kan maak oor die komplekse interaksies
wat plaasvind tussen die parameters.

As gevolg van die stogastiese en dinamies aard van die simulasie-optimeringsprobleme moet daar
’n sekere aantal observasies per oplossing geevalueer word om sodoende nou vertrouensintervalle
te bewerkstellig. Dit is as gevolg van die statistiese steekproefneming dat die produksielopies
tydrowend is. Gevolglik is ’n ondersoek ingestel om te bepaal of ’n kunsmatige neurale netwerk
as ’n metamodel die simulasie optimeringsoekproses kan ondersteun.

Die opvatting dat hiperheuristieke se prestasie beter of ten minste dieselfde is as sy individuele
algoritmes, geld nie vir die populasie-oplossing hiperheuristiek nie. Die verklaring geld wel vir
die enkel-oplossing hiperheuristiek wat ten minste so goed gedoen het of beter as al sy individuele
heuristieke. Om af te sluit, die beslissing wat gevind was in die studie is dat die hiperheuristieke
nie beter presteer het in vergelyking met al hulle individuele algoritmes nie. Die uiteinde van
die ondersoek kon nie oortuigend tot ’n beslissing kom nie en daarom moet verdere ondersoek
ingestel word. Waardevolle insigte is wel verkry uit die studie en kan gebruik work om verdere
navorsing te inspireer.

v

Stellenbosch University https://scholar.sun.ac.za

vi

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

The author wishes to acknowledge the following people and institutions for their various
contributions towards the completion of this work: I am grateful to the following people
who supported me toward completing this research project:

• Derrick van Schalkwyk, my husband, for his continuous love and support.

• Professor James Bekker, my supervisor and role model, for his guidance and wisdom
throughout this study. Providing a strategic level guidance, always helping me see the
bigger picture and helping me identify the intermediate steps that I needed to take to get
where I wanted to go.

• Doctor Gerrit Stephanus Nel, my co-supervisor, for helping me dream big but also helping
me scope my project, otherwise I would have never finished.

• My parents, for teaching me to always finish what I started.

• St Patrick Nice, for lending me three of his computers, which allowed me to run approxi-
mately 19 500 simulation runs and thereby complete my masters on time.

vii

Stellenbosch University https://scholar.sun.ac.za

viii

Stellenbosch University https://scholar.sun.ac.za

Table of Contents

Abstract iii

Uittreksel v

Acknowledgements vii

List of Acronyms xv

List of Figures xvii

List of Tables xxv

List of Algorithms xxxiii

1 Introduction 1

1.1 Research background . 1

1.2 Problem description and research assignment . 3

1.3 Research scope . 4

1.4 Research objectives . 6

1.5 Research methodology . 7

1.6 Thesis organisation . 8

2 Literature Study 11

2.1 Simulation optimisation . 11

2.2 Multi-objective optimisation preliminaries . 14

2.2.1 The notion of solution dominance . 15

2.2.2 The quality of MOO algorithm . 17

2.2.3 Archiving . 18

2.2.4 Performance assessment of MOO algorithms 19

2.3 Metaheuristics . 20

2.4 Hyperheuristics . 22

2.5 Simulation metamodeling . 25

2.5.1 The fundamentals of artificial neural networks 26

2.5.2 The network architecture . 28

2.5.3 The network training algorithms . 31

ix

Stellenbosch University https://scholar.sun.ac.za

x Table of Contents

2.5.4 Activation functions . 33

2.6 Summary . 36

3 ANN as Metamodel Pilot Study 37

3.1 Machine learning models: Regression . 37

3.1.1 Linear regression . 37

3.1.2 Polynomial regression . 38

3.1.3 Support vector regression . 39

3.1.4 Decision tree regression . 39

3.1.5 Random forest regression . 40

3.2 Performance measures for assessing regression models 41

3.3 Hyperparameter optimisation . 42

3.3.1 ANN hyperparameters . 43

3.3.2 An introduction to generalisation techniques 49

3.4 Training, validating and testing the regression models 50

3.5 Conclusion: Chapter 3 . 53

4 Simulation Models and Statistical Prerequisites 55

4.1 Statistical analysis preliminaries . 55

4.2 The simulation model problems . 57

4.2.1 The Open mine problem . 59

4.2.2 The (s, S) inventory problem . 62

4.2.3 The buffer-allocation problem: five machines 63

4.2.4 The buffer-allocation problem: 10 machines 65

4.2.5 The non-linear buffer-allocation problem: 16 machines 67

4.3 Conclusion: Chapter 4 . 69

5 Metaheuristics and Hyperheuristics 71

5.1 The main concepts for metaheuristics . 72

5.1.1 Initial solution . 72

5.1.2 Solution representation . 72

5.1.3 Stopping condition . 74

5.2 Multi-objective cross-entropy method . 74

5.2.1 Preliminaries for the MOOCEM . 74

5.2.2 The MOOCEM algorithm . 76

5.3 Non-dominated sorting genetic algorithm II . 83

Stellenbosch University https://scholar.sun.ac.za

Table of Contents xi

5.3.1 The NSGA-II . 84

5.3.2 Selection operators . 89

5.3.3 Crossover operators . 91

5.3.4 Mutation operators . 93

5.4 Dominance-based bi-objective simulated annealing 95

5.4.1 The DBMOSA algorithm . 95

5.4.2 The annealing schedule . 99

5.4.3 The initial temperature . 101

5.4.4 Neighbourhood move operators . 102

5.5 The BOCEGAH algorithm . 105

5.6 The BOSAH algorithm . 109

5.7 Summary . 116

6 Algorithmic Parameter Evaluation 117

6.1 Introduction to multi-objective statistical analysis 117

6.2 Determining the MOOCEM algorithm hyperparameters 120

6.2.1 Open mine problem . 120

6.2.2 (s, S) Inventory problem . 123

6.2.3 Buffer allocation problem: five machines 125

6.2.4 Buffer allocation problem: 10 machines 125

6.2.5 Non-linear buffer allocation problem: 16 machines 127

6.3 Determining the NSGA-II hyperparameters . 130

6.3.1 Open mine problem . 131

6.3.2 (s, S) Inventory problem . 133

6.3.3 Buffer allocation problem: five machines 134

6.3.4 Buffer allocation problem: 10 machines 136

6.3.5 Non-linear buffer allocation problem: 16 machines 136

6.4 Determining the DBMOSA algorithm hyperparameters 141

6.5 Conclusion: Chapter 6 . 149

7 Algorithm Performance Assessment and Comparison 151

7.1 BOCEGAH versus MOOCEM and NSGA-II . 151

7.2 BOSAH versus DBMOSAs move operators . 154

7.3 BOCEGAH versus BOSAH . 156

7.4 Conclusion: Chapter 7 . 158

Stellenbosch University https://scholar.sun.ac.za

xii Table of Contents

8 Conclusion 159

8.1 Thesis summary . 159

8.2 Appraisal of thesis contributions . 160

8.3 Suggestions for future work . 161

References 165

A Metamodel Pilot Study Results 181

B Algorithmic Parameter Evaluation Results 193

B.1 MOOCEM . 193

B.1.1 Open mine problem . 193

B.1.2 (s, S) Inventory problem . 195

B.1.3 Buffer allocation problem: five machines 197

B.1.4 Buffer allocation problem: 10 machines 199

B.1.5 Non-linear buffer allocation problem: 16 machines 201

B.2 NSGA-II . 214

B.2.1 Open mine problem . 214

B.2.2 (s, S) Inventory problem . 216

B.2.3 Buffer allocation problem: five machines 222

B.2.4 Buffer allocation problem: 10 machines 227

B.2.5 Non-linear buffer allocation problem: 16 machines 232

B.3 DBMOSA . 259

B.3.1 Open mine problem . 259

B.3.2 (s, S) Inventory problem . 259

B.3.3 Buffer allocation problem: five machines 259

B.3.4 Buffer allocation problem: 10 machines 259

B.3.5 Non-linear buffer allocation problem: 16 machines 259

C The Backpropagation Training Algorithm 271

C.1 Backpropagation . 271

D Discrete-event Simulation Optimisation Problem Definitions 275

D.1 The (s, S) inventory problem . 275

D.2 The buffer-allocation problems . 278

D.2.1 The buffer-allocation problem: five machines 279

D.2.2 The buffer-allocation problem: 10 machines 280

Stellenbosch University https://scholar.sun.ac.za

Table of Contents xiii

D.2.3 The non-linear buffer-allocation problem: 16 machines 281

D.3 The Open mine problem . 284

E Algorithmic Comparison Results 287

Stellenbosch University https://scholar.sun.ac.za

xiv

Stellenbosch University https://scholar.sun.ac.za

List of Acronyms

AI Artificial Intelligence

AMALGAM A Multi-algorithm, Genetically Adaptive Multi-objective

ANN Artificial Neural Network

ANOVA Analysis of Variance

BAP Buffer-allocation Problem

BAP5 Buffer-allocation Problem: five machines

BAP10 Buffer-allocation Problem: 10 machines

BAP16 Non-linear Buffer-allocation Problem: 16 machines

COP Combinatorial Optimisation Problem

CNN Convolutional Neural Network

DBMOSA Dominance-based Multi-objective Simulated Annealing

DES Discrete-event Simulation

DNN Deep Neural Network

EA Evolutionary Algorithm

ELU Exponential Linear Units

FNN Feedforward Neural Network

GA Genetic Algorithm

GD Great Deluge

GRASP Greedy Randomised Adaptive Search Procedure

GLS Guided Local Search

HA Hyperarea

HC Hill Climbing

ILS Iterated Local Search

IP (s, S) Inventory Problem

LLH Low-level Heuristic

LReLU Leaky Rectified Linear Units

MAE Mean Absolute Error

ML Machine Learning

xv

Stellenbosch University https://scholar.sun.ac.za

xvi List of Acronyms

MOO Multi-objective Optimisation

MOOCEM Multi-objective Cross-entropy Method

MOOP Multi-objective Optimisation Problem

MOP Multi-objective Problem

MOSA Multi-objective Simulated Annealing

MOSO Multi-objective Simulation Optimisation

MSE Mean Squared Error

MTTR Mean Time to Repairs

NFL No Free Lunch

NSGA-II Non-dominated Sorting Genetic Algorithm II

OMP Open Mine Problem

PReLU Parametric Rectified Linear Units

PSO Particle Swarm Optimisation

RBM Restricted Boltzman Machine

ReLU Rectified Linear Units

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RNS Random Number Seed

SA Simulated Annealing

SeLU Scaled Exponential Linear Units

SO Simulation Optimisation

SOOP Single Objective Optimisation Problem

SGD Stochastic Gradient Descent

SS Scatter Search

TA Threshold Accepting

TPS Tecnomatix Plant Simulation

TS Tabu Search

TSP Travelling Salesman Problem

WWO Water Wave Optimisation

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 Illustration of the search space of hyperheuristics and metaheuristics 2

1.2 An illustration of the proposed framework of a hyperheuristic optimiser with a
metamodel filter . 4

2.1 A taxonomy of the simulation optimisation approaches in literature 12

2.2 Illustration of the black-box scenario used in simulation optimisation 13

2.3 Illustration of the relationships that exist among real-world systems, simulation
models and simulation metamodels . 14

2.4 An illustration of solution dominance . 15

2.5 Illustration of the concept of Pareto optimality for deterministic output 16

2.6 Illustration of the computational burden of simulation optimisation for stochastic
output . 16

2.7 Examples of approximation sets displaying different convergence and diversity
properties . 18

2.8 An example illustrating the notion of archiving 18

2.9 An example illustrating the concept of hyperarea 20

2.10 Exploitation versus exploration . 21

2.11 Classification of hyperheuristic approaches . 23

2.12 Mathematical model of an artificial neuron and its processing capabilities 28

2.13 Illustration of a feedforward neural network with one hidden layer 29

2.14 Training, validation and test set split . 32

2.15 Illustration of the two simplest activation functions, the identity and the heavside
functions . 33

2.16 Sigmoid activation functions . 34

2.17 ReLU activation functions . 35

3.1 An illustration of multiple linear regression . 38

3.2 Illustration of polynomial regression fitting data 38

3.3 An illustration of support vector regression . 39

3.4 An illustration to aid in explaining how decision tree regression works 40

3.5 An example of Bayesian optimisation . 43

3.6 An illustration of the curve fitting phenomena . 44

3.7 Online, mini-batch and batch learning . 46

3.8 Gradient descent for different learning rates . 47

3.9 The learning slowdown phenomenon . 48

xvii

Stellenbosch University https://scholar.sun.ac.za

xviii List of Figures

3.10 k-Fold cross validation . 51

3.11 The proposed machine learning pipeline . 51

4.1 Illustration of a simple deterministic and stochastic system 56

4.2 Illustration of the difference between cross-sample and in-sample variation 56

4.3 Upper bound for BAP5 . 59

4.4 The respective CI plots and p-value tables obtained for the work-in-progress and
throughput objectives for the OMP . 61

4.5 The true Pareto front of the OMP . 61

4.6 The respective CI plots and p-value tables obtained for the total inventory cost
and service level objectives for the IP . 62

4.7 The true Pareto front of the IP . 63

4.8 The respective CI plots and p-value tables obtained for the work-in-progress and
throughput objectives for the BAP5 . 65

4.9 The true Pareto front of BAP5 . 65

4.10 The respective CI plots and p-value tables obtained for the work-in-progress and
throughput objectives for the BAP10 . 66

4.11 The true Pareto front of BAP10 . 67

4.12 The respective CI plots and p-value tables obtained for the work-in-progress and
throughput objectives for the BAP16 . 68

4.13 The true Pareto front of BAP16 . 69

5.1 Solution representations for optimisation problems 73

5.2 The neighbourhoods of solution representations 73

5.3 Examples of truncated distributions . 76

5.4 The MOOCEM tool user-interface . 77

5.5 The input and output tables in Tecnomatix . 77

5.6 Example of the histogram concept used in MOOCEM 80

5.7 An example of inverting histogram frequencies 81

5.8 The NSGA-II tool user-interface . 84

5.9 The mutation operators . 85

5.10 An illustration of candidate solutions partitioned into their respective sets and
fronts . 86

5.11 The fitness assignment procedure followed by NSGA-II 88

5.12 An illustration of a generation in EAs . 89

5.13 Example of binary string representations . 90

5.14 The DBMOSA tool user-interface . 95

5.15 The decision variable table for DBMOSA in Tecnomatix 96

Stellenbosch University https://scholar.sun.ac.za

List of Figures xix

5.16 An example illustrating the energy measure of DBMOSA 97

5.17 The probability of accepting non-improving moves vs. the temperature 101

5.18 The perturbation of solution x for a minimisation problem 102

5.19 The Hyperheuristic tool user-interface for population-based search 106

5.20 The heuristic selection procedure for the BOCEGAH 108

5.21 The Hyperheuristic tool user-interface for single-solution based search 110

5.22 The heuristic selection procedure for BOSAH . 113

6.1 Non-parametric tests and post hoc procedures for multiple comparisons 119

6.2 Hyperarea phenomena for discontinuous approximation fronts 122

6.3 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for hyperparameter combinations A1.1.1–A1.1.9 122

6.4 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A1.2.1–A1.2.9 . 124

6.5 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A1.3.1–A1.3.9 . 125

6.6 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A1.4.1–A1.4.9 . 126

6.7 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A1.5.1–A1.5.9 . 127

6.8 The average hyperareas obtained for hyperparameter combinations A1.1–A1.9 for
the respective simulation problems . 129

6.9 An example illustrating the hyperparameter selection process followed for BAP10
based on average hyperareas . 130

6.10 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A2.1.1–A2.1.24 . 132

6.11 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A2.2.1–A2.2.24 . 134

6.12 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A2.3.1–A2.3.24 . 135

6.13 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A2.4.1–A2.4.24 . 137

6.14 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A2.5.1–A2.5.24 . 138

6.15 The average hyperareas obtained for hyperparameter combinations A2.1–A2.24
for the respective simulation optimisation problems 139

6.16 An example illustrating the hyperparameter selection process followed for BAP16
based on average hyperareas . 140

6.17 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A3.1.1–A3.1.4 . 142

Stellenbosch University https://scholar.sun.ac.za

xx List of Figures

6.18 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A3.2.1–A3.2.4 . 143

6.19 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A3.3.1–A3.3.4 . 144

6.20 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A3.4.1–A3.4.4 . 145

6.21 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A3.5.1–A3.5.4 . 147

6.22 The average hyperareas obtained for hyperparameter combinations A3.1–A3.4 for
the respective simulation problems . 148

6.23 An example illustrating the hyperparameter selection process followed for BAP16
based on average hyperareas . 148

7.1 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A1.9, A2.3 and the BOCEGAH 152

7.2 The p-values obtained by the Nemenyi post hoc test and the averages for the
hyperareas and number of non-dominated solutions for A1.9, A2.3 and the BO-
CEGAH . 153

7.3 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for A3.1, A3.3–A3.4 and the BOSAH 154

7.4 The p-values obtained by the Nemenyi post hoc test and the averages for the
hyperareas and number of non-dominated solutions for A3.1, A3.3–A3.4 and the
BOSAH . 156

7.5 Box plots illustrating the spread of hyperareas and number of non-dominated
solutions found for the BOCEGAH and BOSAH 157

7.6 The averages of the hyperareas and number of non-dominated solutions for the
BOSAH and the BOCEGAH . 157

B.1 The best and worst best approximation fronts for hyperparameter combinations
A1.1.1–A1.1.5 . 194

B.2 The best and worst best approximation fronts for hyperparameter combinations
A1.1.6–A1.1.9 . 195

B.3 The best and worst best approximation fronts for hyperparameter combinations
A1.2.1–A1.2.5 . 196

B.4 The best and worst best approximation fronts for hyperparameter combinations
A1.2.6–A1.2.9 . 197

B.5 The best and worst best approximation fronts for hyperparameter combinations
A1.3.1–A1.3.5 . 198

B.6 The best and worst best approximation fronts for hyperparameter combinations
A1.3.6–A1.3.9 . 199

B.7 The best and worst best approximation fronts for hyperparameter combinations
A1.4.1–A1.4.5 . 200

Stellenbosch University https://scholar.sun.ac.za

List of Figures xxi

B.8 The best and worst best approximation fronts for hyperparameter combinations
A1.4.6–A1.4.9 . 201

B.9 The best and worst best approximation fronts for hyperparameter combinations
A1.5.1–A1.5.5 . 202

B.10 The best and worst best approximation fronts for hyperparameter combinations
A1.5.6–A1.5.9 . 203

B.11 The average number of non-dominated solutions obtained for hyperparameter
combinations A1.1–A1.9 for the respective simulation problems 207

B.12 The best and worst best approximation fronts for hyperparameter combinations
A2.1.1–A2.1.6, A2.1.8, A2.1.12–A2.1.14 . 215

B.13 The best and worst best approximation fronts for hyperparameter combinations
A2.1.7, A2.1.9–A2.1.11 . 216

B.14 The best and worst best approximation fronts for hyperparameter combinations
A2.2.16–A2.2.24 . 217

B.15 The best and worst best approximation fronts for hyperparameter combinations
A2.2.1–A2.2.5 . 218

B.16 The best and worst best approximation fronts for hyperparameter combinations
A2.2.6–A2.2.10 . 219

B.17 The best and worst best approximation fronts for hyperparameter combinations
A2.2.11–A2.2.15 . 220

B.18 The best and worst best approximation fronts for hyperparameter combinations
A2.2.16–A2.2.20 . 221

B.19 The best and worst best approximation fronts for hyperparameter combinations
A2.2.21–A2.2.24 . 222

B.20 The best and worst best approximation fronts for hyperparameter combinations
A2.3.1–A2.3.5 . 223

B.21 The best and worst best approximation fronts for hyperparameter combinations
A2.3.6–A2.3.10 . 224

B.22 The best and worst best approximation fronts for hyperparameter combinations
A2.3.11–A2.3.15 . 225

B.23 The best and worst best approximation fronts for hyperparameter combinations
A2.3.16–A2.3.20 . 226

B.24 The best and worst best approximation fronts for hyperparameter combinations
A2.3.21–A2.3.24 . 227

B.25 The best and worst best approximation fronts for hyperparameter combinations
A2.4.1–A2.4.5 . 228

B.26 The best and worst best approximation fronts for hyperparameter combinations
A2.4.6–A2.4.10 . 229

B.27 The best and worst best approximation fronts for hyperparameter combinations
A2.4.11–A2.4.15 . 230

Stellenbosch University https://scholar.sun.ac.za

xxii List of Figures

B.28 The best and worst best approximation fronts for hyperparameter combinations
A2.4.16–A2.4.20 . 231

B.29 The best and worst best approximation fronts for hyperparameter combinations
A2.4.21–A2.4.24 . 232

B.30 The best and worst best approximation fronts for hyperparameter combinations
A2.5.1–A2.5.5 . 233

B.31 The best and worst best approximation fronts for hyperparameter combinations
A2.5.6–A2.5.10 . 234

B.32 The best and worst best approximation fronts for hyperparameter combinations
A2.5.11–A2.5.15 . 235

B.33 The best and worst best approximation fronts for hyperparameter combinations
A2.5.16–A2.5.20 . 236

B.34 The best and worst best approximation fronts for hyperparameter combinations
A2.5.21–A2.5.24 . 237

B.35 The average number of non-dominated solutions obtained for hyperparameter
combinations A2.1–A2.24 for the respective simulation problems 258

B.36 The best and worst best approximation fronts for hyperparameter combinations
A3.1.1–A3.1.4 . 261

B.37 The best and worst best approximation fronts for hyperparameter combinations
A3.2.1–A3.2.4 . 263

B.38 The best and worst best approximation fronts for hyperparameter combinations
A3.3.1–A3.3.4 . 265

B.39 The best and worst best approximation fronts for hyperparameter combinations
A3.4.1–A3.4.4 . 267

B.40 The best and worst best approximation fronts for hyperparameter combinations
A3.5.1–A3.5.4 . 269

B.41 The average number of non-dominated solutions obtained for hyperparameter
combinations A3.1–A3.4 for the respective simulation problems 270

C.1 Backpropagation visual representation of the chain rule 271

D.1 Some characteristics of the generalised (s, S) inventory problem 276

D.2 A screenshot of the IP model in Tecnomatix . 277

D.3 A series of five machines in a queuing network . 279

D.4 A screenshot of the BAP5 model in Tecnomatix 279

D.5 A series of ten machines in a queuing network . 281

D.6 A screenshot of the BAP10 model in Tecnomatix 281

D.7 The non-linear BAP with sixteen machines in a queuing network 282

D.8 A screenshot of the BAP16 model in Tecnomatix 283

D.9 Examples of a shovel and mine truck in an open mine 285

D.10 A screenshot of the OMP model in Tecnomatix 286

Stellenbosch University https://scholar.sun.ac.za

List of Figures xxiii

E.1 The best and worst best approximation fronts in terms of hyperarea for the
BOSAH and the BOCEGAH . 288

E.2 The best and worst best approximation fronts in terms of the number of non-
dominated solutions for the BOSAH and the BOCEGAH 289

Stellenbosch University https://scholar.sun.ac.za

xxiv

Stellenbosch University https://scholar.sun.ac.za

List of Tables

2.1 Metaheuristic classification criteria . 21

2.2 Move acceptance strategies in perturbation selection hyperheuristics 24

2.3 Heuristic selection strategies in perturbation selection hyperheuristics 25

3.1 Hyperparameter optimisation algorithms . 42

3.2 An example of the data in the IP dataset . 51

3.3 The performance of the respective regressors . 52

3.4 The hyperparameters search space for the FNN 52

3.5 The best hyperparameters obtained during Bayesian optimisation 53

3.6 The average performance of the respective hyperparameter combinations 53

3.7 Comparison of the performances of the respective regression models on the test set 54

4.1 Summary of the experiments used to determine a sensible upper bound 57

4.2 The results of the ANOVA test to determine the upper bound for BAP5 58

4.3 Table of the p-values of the t-test for the work-in-progress objective for BAP5 . . 59

4.4 The results of the ANOVA test for the OMP . 60

4.5 The experiments that are statistically significantly different for the OMP 60

4.6 The results of the ANOVA test for the IP . 62

4.7 The results of the ANOVA test for BAP5 . 64

4.8 The experiments that are statistically significantly different for BAP5 64

4.9 The results of the ANOVA test for BAP10 . 66

4.10 The experiments that are statistically significantly different for BAP10 66

4.11 The results of the ANOVA test for BAP16 . 68

4.12 The experiments that are statistically significantly different for BAP16 68

4.13 Summary of the sufficient number of observations per solution for the respective
problems . 70

5.1 An example illustrating the incrementing process followed for an epoch and a
poorEpoch . 99

5.2 The temperature ranges used to specify the stepsize of a move 103

5.3 The initial allocations for BOSAH . 111

6.1 The hyperparameter search space considered for the MOOCEM 121

6.2 The number of runs that MOOCEM obtained the true Pareto set for the OMP . 123

6.3 The Friedman and Iman-Davenport test results for A1.1.1–A1.1.9 123

6.4 The Friedman and Iman-Davenport test results for A1.2.1–A1.2.9 124

xxv

Stellenbosch University https://scholar.sun.ac.za

xxvi List of Tables

6.5 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A1.2.1–A1.2.9 124

6.6 The Friedman and Iman-Davenport test results for A1.3.1–A1.3.9 125

6.7 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A1.3.1–A1.3.9 126

6.8 The Friedman and Iman-Davenport test results for A1.4.1–A1.4.9 127

6.9 The adjusted p-values obtained by the Nemenyi post hoc test based on the hyper-
areas and number of non-dominated solution found of the approximation fronts
for A1.4.1–A1.4.9 . 127

6.10 The Friedman and Iman-Davenport test results for A1.5.1–A1.5.9 128

6.11 The adjusted p-values obtained by the Nemenyi post hoc test based on the hy-
perareas of the approximation fronts for A1.5.1–A1.5.9 128

6.12 The hyperparameters for the MOOCEM that are considered for implementation
in BOCEGAH . 130

6.13 The hyperparameter search space considered for the NSGA-II 131

6.14 The number of runs that the NSGA-II obtained the true Pareto set, for the
respective hyperparameter combinations . 133

6.15 The Friedman and Iman-Davenport test results for A2.1.1–A2.1.24 133

6.16 The Friedman and Iman-Davenport test results for A2.2.1–A2.2.24 134

6.17 The Friedman and Iman-Davenport test results for A2.3.1–A2.3.24 136

6.18 The Friedman and Iman-Davenport test results for A2.4.1–A2.4.24 136

6.19 The Friedman and Iman-Davenport test results for A2.5.1–A2.5.24 137

6.20 The hyperparameters combinations for the NSGA-II that are considered for im-
plementation in BOCEGAH . 140

6.21 The hyperparameters that are held constant during the hyperparameter study for
DBMOSA . 141

6.22 DBMOSA setup information . 141

6.23 The hyperparameter search space considered for the DBMOSA 142

6.24 The Friedman and Iman-Davenport test results for A3.1.1–A3.1.4 143

6.25 The Friedman and Iman-Davenport test results for A3.2.1–A3.2.4 144

6.26 The adjusted p-values obtained by the Nemenyi post hoc test for both the hyper-
area and number of non-dominated solutions found for the approximation fronts
for A3.2.1–A3.2.4 . 144

6.27 The Friedman and Iman-Davenport test results for A3.3.1–A3.3.4 145

6.28 The adjusted p-values obtained by the Nemenyi post hoc test for both the hyper-
area and number of non-dominated solutions found for the approximation fronts
for A3.3.1–A3.3.4 . 145

6.29 The Friedman and Iman-Davenport test results for A3.4.1–A3.4.4 146

Stellenbosch University https://scholar.sun.ac.za

List of Tables xxvii

6.30 The adjusted p-values obtained by the Nemenyi post hoc test for both the hyper-
area and number of non-dominated solutions found for the approximation fronts
for A3.4.1–A3.4.4 . 146

6.31 The Friedman and Iman-Davenport test results for A3.5.1–A3.5.4 147

6.32 The adjusted p-values obtained by the Nemenyi post hoc test for both the hyper-
area and number of non-dominated solutions found for the approximation fronts
for A3.5.1–A3.5.4 . 147

6.33 The move operators that are considered for implementation in BOSAH 148

6.34 The final hyperparameter combinations . 149

7.1 The critical values for the BOCEGAH comparison 151

7.2 The Friedman and Iman-Davenport test results for A1.9, A2.3 and the BOCEGAH152

7.3 A summary indicating the statistically significant differences for A1.9, A2.3 and
the BOCEGAH . 153

7.4 The critical values for the BOSAH comparison 154

7.5 The Friedman and Iman-Davenport test results for A3.1, A3.3–A3.4 and the BOSAH155

7.6 A summary indicating the statistically significant differences for A3.1, A3.3–A3.4
and the BOSAH . 155

7.7 The critical values for the BOSAH and the BOCEGAH comparison 156

7.8 The Friedman and Iman-Davenport test results for the BOSAH and the BOCEGAH158

7.9 A comparison between the BOSAH and the BOCEGAH 158

A.1 Summary of the performance of MLR in terms of MSE and MAE for the 30 trails
on the IP dataset . 184

A.2 Summary of the performance of SVM in terms of MSE and MAE for the 30 trails
on the IP dataset . 185

A.3 Summary of the performance of DTR in terms of MSE and MAE for the 30 trails
on the IP dataset . 186

A.4 Summary of the performance of RFR in terms of MSE and MAE for the 30 trails
on the IP dataset . 187

A.5 Summary of the performance of XGBoost in terms of MSE and MAE for the 30
trails on the IP dataset . 188

A.6 Summary of the performance of the ANN with hyperparameter combination A in
terms of MSE and MAE for the 30 trails on the IP dataset 189

A.7 Summary of the performance of the ANN with hyperparameter combination B
in terms of MSE and MAE for the 30 trails on the IP dataset 190

A.8 Summary of the performance of the ANN with hyperparameter combination C
in terms of MSE and MAE for the 30 trails on the IP dataset 191

A.9 Summary of the performance of the ANN with hyperparameter combination D
in terms of MSE and MAE for the 30 trails on the IP dataset 192

Stellenbosch University https://scholar.sun.ac.za

xxviii List of Tables

B.1 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A1.1.1–A1.1.9 . 204

B.2 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A1.1.1–A1.1.9 204

B.3 The worst and best runs for A1.1.1–A1.1.9 . 205

B.4 The adjusted p-values obtained by the Nemenyi post hoc test based on the ad-
justed hyperareas of the approximation fronts for A1.1.1–A1.1.9 205

B.5 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A1.1.1–A1.1.9 205

B.6 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A1.2.1–A1.2.9 . 206

B.7 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A1.2.1–A1.2.9 206

B.8 The worst and best runs for A1.2.1–A1.2.9 . 207

B.9 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A1.3.1–A1.3.9 . 208

B.10 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A1.3.1–A1.3.9 208

B.11 The worst and best runs for A1.3.1–A1.3.9 . 209

B.12 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A1.4.1–A1.4.9 . 210

B.13 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A1.4.1–A1.4.9 210

B.14 The worst and best runs for A1.4.1–A1.4.9 . 211

B.15 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A1.5.1–A1.5.9 . 212

B.16 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A1.5.1–A1.5.9 212

B.17 The worst and best runs for A1.5.1–A1.5.9 . 213

B.18 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A2.1.1–A2.1.24 . 238

B.19 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A2.1.1–A2.1.24 238

B.20 The worst and best runs for A2.1.1–A2.1.24 . 239

B.21 The adjusted p-values obtained by the Nemenyi post hoc test based on the hy-
perareas of the approximation fronts for A2.1.1–A2.1.24 240

B.22 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A2.1.1–A2.1.24 241

B.23 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A2.2.1–A2.2.24 . 242

Stellenbosch University https://scholar.sun.ac.za

List of Tables xxix

B.24 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A2.2.1–A2.2.24 242

B.25 The worst and best runs for A2.2.1–A2.2.24 . 243

B.26 The adjusted p-values obtained by the Nemenyi post hoc test based on the hy-
perareas of the approximation fronts for A2.2.1–A2.2.24 244

B.27 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A2.2.1–A2.2.24 245

B.28 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A2.3.1–A2.3.24 . 246

B.29 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A2.3.1–A2.3.24 246

B.30 The worst and best runs for A2.3.1–A2.3.24 . 247

B.31 The adjusted p-values obtained by the Nemenyi post hoc test based on the hy-
perareas of the approximation fronts for A2.3.1–A2.3.24 248

B.32 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A2.3.1–A2.3.24 249

B.33 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A2.4.1–A2.4.24 . 250

B.34 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A2.4.1–A2.4.24 250

B.35 The worst and best runs for A2.4.1–A2.4.24 . 251

B.36 The adjusted p-values obtained by the Nemenyi post hoc test based on the hy-
perareas of the approximation fronts for A2.4.1–A2.4.24 252

B.37 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A2.4.1–A2.4.24 253

B.38 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A2.5.1–A2.5.24 . 254

B.39 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A2.5.1–A2.5.24 254

B.40 The worst and best runs for A2.5.1–A2.5.24 . 255

B.41 The adjusted p-values obtained by the Nemenyi post hoc test based on the hy-
perareas of the approximation fronts for A2.5.1–A2.5.24 256

B.42 The adjusted p-values obtained by the Nemenyi post hoc test based on the number
of non-dominated solutions found for the approximation fronts for A2.5.1–A2.5.24 257

B.43 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A3.1.1–A3.1.4 . 260

B.44 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A3.1.1–A3.1.4 260

B.45 The worst and best runs for A3.1.1–A3.1.4 . 261

Stellenbosch University https://scholar.sun.ac.za

xxx List of Tables

B.46 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A3.2.1–A3.2.4 . 262

B.47 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A3.2.1–A3.2.4 262

B.48 The worst and best runs for A3.2.1–A3.2.4 . 263

B.49 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A3.3.1–A3.3.4 . 264

B.50 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A3.3.1–A3.3.4 264

B.51 The worst and best runs for A3.3.1–A3.3.4 . 265

B.52 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A3.4.1–A3.4.4 . 266

B.53 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A3.4.1–A3.4.4 266

B.54 The worst and best runs for A3.4.1–A3.4.4 . 267

B.55 The hyperareas and corresponding ranks obtained for hyperparameter combina-
tions A3.5.1–A3.5.4 . 268

B.56 The number of non-dominated solutions and their corresponding ranks obtained
for hyperparameter combinations A3.5.1–A3.5.4 268

B.57 The worst and best runs for A3.5.1–A3.5.4 . 269

D.1 Experiments used to determine a sufficient number of observations per solution
for the IP . 277

D.2 Summary of the experiments used for the IP . 277

D.3 Processing times for the machines in BAP5 . 279

D.4 The experiments used to determine a suiteable upper bound for BAP5 280

D.5 Experiments used to determine a sufficient number of observations per solution
for BAP5 . 280

D.6 Summary of the experiments used for BAP5 . 280

D.7 Processing times for the machines in BAP10 . 281

D.8 Experiments used to determine a sufficient number of observations per solution
for BAP10 . 281

D.9 Summary of the experiments used for BAP10 . 282

D.10 Processing times for the machines in BAP16 . 282

D.11 Experiments used to determine a sufficient number of observations per solution
for BAP16 . 283

D.12 Summary of the experiments used for BAP16 . 283

D.14 Experiments used to determine a sufficient number of observations per solution
for the OMP . 286

D.15 Summary of the experiments used for the OMP 286

Stellenbosch University https://scholar.sun.ac.za

List of Tables xxxi

E.1 The worst and best runs for the BOCEGAH . 287

E.2 The worst and best runs for the BOSAH . 287

Stellenbosch University https://scholar.sun.ac.za

xxxii

Stellenbosch University https://scholar.sun.ac.za

List of Algorithms

2.1 Pareto ranking algorithm . 17

3.1 Random Forest Regression . 40

5.1 Truncate a probability distribution . 75

5.2 Sample from a truncated probability distribution 76

5.3 Ranking threshold adaptation of the Pareto ranking algorithm 79

5.4 The MOOCEM algorithm in the context of simulation optimisation 83

5.5 Fast non-dominated sorting algorithm . 86

5.6 Crowding distance sorting and assignment algorithm 87

5.7 The NSGA-II in the context of simulation optimisation 89

5.8 Simulated binary crossover . 92

5.9 Laplace crossover . 92

5.10 Blend crossover . 93

5.11 Polynomial mutation . 94

5.12 Dynamic mutation . 94

5.13 The DBMOSA algorithm in the context of simulation optimisation 100

5.14 Neighbouring move 1 . 103

5.15 Neighbouring move 3 . 104

5.16 The BOCEGAH algorithm for population-based search 109

5.17 The BOSAH method for single-solution based search 115

xxxiii

Stellenbosch University https://scholar.sun.ac.za

xxxiv

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1

Introduction

1.1 Research background . 1

1.2 Problem description and research assignment 3

1.3 Research scope . 4

1.4 Research objectives . 6

1.5 Research methodology . 7

1.6 Thesis organisation . 8

This chapter serves as an introduction to the research assignment and is formalised by research
objectives, a proposed research methodology and scope. Finally, the structure of the document
is discussed.

1.1 Research background

The investigation and exploration of search and optimisation methodologies are crucial research
areas of decision support systems, which can be applied across industry, commerce, science,
healthcare and military. Take for example the potential impact of an effective and computa-
tionally efficient decision support methodology, it could be the difference between life and death
in healthcare scheduling. Schedule too few doctors and patients could die; schedule too long
working hours and doctors could make fatal mistakes due to fatigue [80].

Many real-world problems are too complex to be modelled and solved by exact methods. These
complex real-world problems often have no convenient mathematical representation, linear or
non-linear. A subset of these problems consists of dynamic, discrete, stochastic problems, rep-
resenting systems that evolve over time, for example a production line or a traffic intersection.
Simulation is a markedly powerful and widely adopted technique for analysing and studying
these complex systems [20, 256].

Attempts to use exact methods such as linear programming, non-linear programming or integer
programming require several simplifications of assumptions and abstractions of the problem
under study, resulting in two inadequate outcomes. The first outcome is where an optimal
solution is found, but for a model that does do not adequately represent the real system, or the
second outcome according to which the developed model is an adequate representation of the
real system, but for which only low-quality solutions can be obtained [156]. Thus creating the
need for approximate methods.

Simulation optimisation (SO) can be used to approximately solve these complex problems with-
out the need for simplifying assumptions or abstractions. In the context of simulation, it is
not necessary to formulate the objective function mathematically, since the simulation model
(or black-box1) becomes the objective function, subjected to some optimisation approach [80].
Although simulation is a powerful alternative to solving complex problems, it must be noted
that there is an embedded abstraction error when approximating real-world problems.

1A system where the inputs and outputs are known, without any knowledge of the systems inner workings.

1

Stellenbosch University https://scholar.sun.ac.za

2 Chapter 1. Introduction

Furthermore, complex optimisation problems, typically have significantly large search spaces,
rendering them computationally intractable for most optimisation procedures. These problems
are classified as combinatorial optimisation problems (COPs), i.e. the decision variables can
assume a large number of values, subject to numerous and intricate constraints, which, taken
together, can result in large, complex search spaces that are difficult to traverse by optimisation
procedures. The combinatorial nature of large-scale problems serve as motivation for the use of
metaheuristics and is considered a widely adopted simulation optimisation approach based on
treating the simulation model as a black-box function evaluator [5].

One of the biggest problems that researchers face with metaheuristic approaches is the lack of
general applicability and metaheuristic selection. This is due to the fact that the performance of
metaheuristics greatly depends on the type of problem being optimised. This is where the No
Free Lunch (NFL) theorem originated as each metaheuristic has its strengths and weaknesses
when it comes to searching the search space [80],

The NFL theorem states that, no search algorithm, irrespective of the performance
measures used, performs better than (or worse) than another based on its average
performance over all optimisation problems [257].

Researchers therefore tend to search for algorithms that are considered to be generally applicable,
i.e. algorithms that can perform satisfactory on a subset of optimisation problems or specific
problem domain. The problem, however, is that a vast majority of problems do not have an
exploitable structure that can be used to characterise them into a subset of properties, and
consequently one cannot design an effective algorithm for a subset of problems with unknown
properties. The application of hyperheuristics to the field of optimisation, specifically simulation
optimisation, is motivated by the NFL theorem, as they circumvent and mitigate (to an extent)
the issue of characterising and designing problem-specific algorithms, by instead operating in
the algorithm search space (first) before operating on the solution space, as illustrated in Figure
1.1 [80, 213].

Hyperheuristic

Heuristic search space

Solution search space

(a)

Metaheuristic

Solution search space

(b)

Figure 1.1: Illustration of the search space of (a) hyperheuristics, and (b) metaheuristics, adapted
from [93].

Hyperheuristics can be used to construct an ensemble of algorithms by combining known heuris-
tics in ways that enable each to compensate, to some degree, for the weaknesses of others by
method of algorithmic cooperation, thereby solving a larger range of problems than their individ-
ual counterparts are capable of solving. Hyperheuristics are commonly referred to as “heuristics
to choose heuristics” in the context of combinatorial optimisation [36], importantly, unlike most
metaheuristic applications, hyperheuristics work with the search spaces of heuristics and not
the search spaces of solutions and can therefore be used to construct a more general-purpose
optimisation procedure. The NFL theorem still applies, the only difference is that a larger subset
of problems can be solved using hyperheuristics [80].

It is important to note that optimisation procedures can be classified as either single solution-
based search, which operate iteratively on a single candidate solution, or population-based search,

Stellenbosch University https://scholar.sun.ac.za

1.2. Problem description and research assignment 3

which operate iteratively on a population of candidate solutions [93]. In this study both meta-
heuristics and hyperheuristics are classified as such. An example of a single-solution based meta-
heuristic (or S-metaheuristic) is the simulated annealing (SA) [143] algorithm and a population-
based metaheuristic (or P-metaheuristic) is the genetic algorithm (GA) [120].

Due to the dynamic and stochastic nature of simulation models, it is required that a sufficient
number of observations per solution be evaluated. Consequently, the simulation optimisation
process should intelligently search the search space as to minimise its computationally expensive
nature [20]. Metaheuristic solution methodologies often use metamodels to screen out solutions
that are predicted to be of low-quality when compared with the incumbent solution, i.e. they
reduce the number of solutions to be evaluated by filtering out low-quality solutions. The sim-
ulation optimisation process can therefore be enhanced by combining heuristic procedures with
metamodels to search the solution space less exhaustively and more intelligently by eliminating
low-quality solutions from the search space. Note that quality is based on the performance
measure being optimised, for example solution dominance [5].

Some metamodel procedures use artificial neural networks (ANNs), to build metamodels that
aid the metaheuristic search procedure. The ANN uses predefined rules to filter out the solu-
tions that are potentially low-quality solutions, thereby mitigating computationally expensive
evaluations of the black box evaluator [5, 156]. The ANN is trained using the decision variable
values together with their corresponding objective function values obtained during the search,
over many iterations, as datapoints. The trained ANN then becomes the metamodel that evalu-
ates solutions, if the solutions are not considered to be low-quality solutions, then the simulation
model may evaluate the solution. The metamodel is less computationally expensive to evaluate
than the simulation model.

The hyperheuristic approach to simulation optimisation is an attempt to create a more generally
applicable optimisation tool, whereby decreasing the effects of the NFL theorem. Additionally,
an ANN metamodel filter attempts to accelerate the simulation optimisation process, thereby
decreasing the effects of computationally expensive problems.

1.2 Problem description and research assignment

From the research background given, it should be apparent that there is a lack of general-purpose
(context-independent) optimisation tools, specifically within the field of simulation optimisa-
tion. Therefore, the aim of this thesis is twofold. The first aim is to create a general-purpose
bi-objective simulation optimisation procedure using a hyperheuristic framework, to successfully
explore and approximately solve a subset of five simulation optimisation problems. The second
is to conduct a pilot study to determine whether or not an ANN metamodel is a feasible so-
lution to enhance the simulation optimisation process. The procedure is to be implemented in
Tecnomatix, thereby extending its simulation optimisation capabilities, which in turn may be
beneficial to industries using Tecnomatix as their decision support system.

A high-level overview of the proposed general-purpose optimisation framework is presented in
Figure 1.2. Assume that the metamodel has been trained and that the initial solution(s) have
been generated. The proposed simulation optimisation process starts by evaluating the initial
solution(s), the hyperheuristic is run on the current solution, from which the hyperheuristic
generates the neighbouring solution(s) x. Thereafter, the metamodel predicts the objective
function value(s), i.e. F (x) of x. If the predicted objective function value(s) is good, then the
simulation model may evaluate x, resulting in f(x), otherwise x is discarded. This process
repeats until the stopping condition is reached, after which the simulation optimisation process

Stellenbosch University https://scholar.sun.ac.za

4 Chapter 1. Introduction

terminates.

Note that for single-solution based search framework the simulation model takes as input a single
solution, i.e. one value for each decision variable, to evaluate which is then transformed by the
hyperheuristic. For a population-based search framework the simulation model takes as input a
population of solutions, i.e. each decision variable has several values to be evaluated (simulta-
neously) and then transformed by the hyperheuristic. In this study both search frameworks are
considered, namely a single-solution based hyperheuristic and a population-based hyperheuristic
framework.

Evaluate x via the
simulation model

Run hyperheuristic

Start simulation
optimisation process

Apply ANN
metamodel

Good
F (x)? Discard x

Stopping
condition?

Terminate simulation
optimisation process

F (x)

Yes

f(x)

x

Nox

NoYes

Figure 1.2: An illustration of the proposed framework of a hyperheuristic optimiser with a metamodel
filter [5].

To summarise, the research assignment can be formulated as,

1. Design two hyperheuristics based on the two classifications mentioned previously, namely
a single-solution based hyperheuristic and a population-based hyperheuristic to solve for
bi-objective simulation optimisation of discrete-event dynamic and stochastic problems.

2. Determine whether an ANN metamodel is a feasible solution to enhance the simulation
optimisation process and if so, construct the metamodel with the appropriate architecture
that can be applied to a large subset of problems.

3. Design, develop and implement a computerised user-interface that will enable the simu-
lation analyst using Tecnomatix to solve bi-objective simulation optimisation of discrete-
event dynamic, stochastic problems with the hyperheuristics and possible ANN metamodel
filter, thereby extending the bi-objective optimisation functionality of Tecnomatix.

In conclusion, the novelty of the research problem under investigation necessitates the design
of a hyperheuristic optimiser with an ANN metamodel filter feature within Tecnomatix that
may be used to solve bi-objective simulation optimisation problems. The research assignment
warrants an in-depth exploration into the workings of metaheuristics and hyperheuristics as
well as investigation into the different ANN architectures that can generalise well to unseen
datapoints and consequently approximate various problems with sufficient accuracy.

1.3 Research scope

The following delimitations are adopted to narrow down the scope of the research problem
considered in this thesis:

Stellenbosch University https://scholar.sun.ac.za

1.3. Research scope 5

Simulation models used to evaluate the performance of the general-purpose optimisation
tools are assumed to be built correctly, i.e. all models accurately reflect the real-world
system that they were modelled for. A limited number of discrete-event, dynamic and
stochastic simulation optimisation problems form the testbed so as to validate the opti-
misation tools. The problems include the (s, S) inventory problem (IP), three instances
of the buffer-allocation problem (BAP), namely the BAP with five machines (BAP5), the
BAP with 10 machines (BAP10) and the non-linear BAP with 16 machines (BAP16),
and lastly the Open mine problem (OMP).

Bi-objective optimisation of two objective functions simultaneously. This may involve the
following combinations of minimisation (min) or maximisation (max); min–min, min–max
and max–max.

Hyperheuristic designs that result in more general-purpose, robust optimisation procedures
that are novel in its contribution due to the given optimisation context, i.e. simulation
optimisation. Hyperheuristics are considered more appropriate when solving different
problems or even instances of the same problem and do so by managing a set of low-level
(meta)heuristics (LLHs), i.e. LLHs are either complete metaheuristics or the heuristic
components of metaheuristics.

Accordingly, the LLHs (heuristic components) considered for the inclusion in the single-
solution based hyperheuristic (SBH) are move operators of the multi-objective variant of
simulated annealing, namely dominance-based multi-objective simulated annealing (DB-
MOSA) [233]. The LLHs (metaheuristics) considered for the inclusion in the population-
based hyperheuristic (PBH) are the multi-objective cross-entropy method (MOOCEM) [21]
and the non-dominated sorting genetic algorithm (NSGA-II) [67].

Metaheuristics have a plethora of hyperparameters, each influencing the performance of the
metaheuristic. For this reason, this study includes an empirical study conducted to deter-
mine common hyperparameters for the MOOCEM, the NSGA-II and DBMOSA, respec-
tively.

Artificial neural networks are considered to form part of the feasibility analysis for meta-
modeling purposes. According to Hornik et al. [125] and supported by Faucett [84] an ANN
with one hidden layer that feeds datapoints in a so-called forward fashion, referred to as a
feedforward neural network (FNN), are considered universal function approximators. The
fundamental premise of training ANNs are more or less the same however their applications
are different. For that reason, ANNs such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are excluded from consideration in this study. Further-
more, hardware constraints provide further motivation for this delimitation. The interest
is simulation metamodeling for regression problems.

Similar to simulation models, ANN as well as many machine learning models are essentially
black box optimisers and as a result, building and gaining insight into how the ANN solves
a problem is not straightforward. Interestingly, despite the possibilities of ANN, they
are rarely part of introductory optimisation classes [237]. Consequently, hyperparameter
optimisation of a FNN with one hidden layer is of great importance.

Supervised learning is the machine learning paradigm used to facilitate function approxima-
tion as the ANN learns the relationship between the input values(s) and the corresponding
output values(s) to ultimately make predictions based on unseen inputs [81].

Regression models are used for comparison purposes to determine whether or not the FNN
as simulation metamodel is feasible. This is done by comparing the performance of the

Stellenbosch University https://scholar.sun.ac.za

6 Chapter 1. Introduction

FNN to that of other regression models, namely linear regression [2], polynomial regres-
sion [113], support vector regression [234], decision tree regression [205] and random forest
regression [168, 55].

Dataset is obtained, for the sake of relevancy, by running exhaustive enumeration on the
(s, S) inventory problem (IP). This dataset is used to train, validate and test the network
generalisation capabilities as well as to facilitate the hyperparameter optimisation.

Solution representation considered in this study includes; discrete and binary variables.
Continuous variables, permutations and mixed solution representations are mentioned–
however they are excluded from the functionality of the optimisation tool.

Development of the optimisation tools are built within Tecnomatix using the objects and
methods to create an interactive user-interface facilitating the simulation optimisation
process. The programming language used within Tecnomatix is SimTalk, and will be used
to program the various algorithms.

Note that the DBMOSA, the MOOCEM and NSGA-II are built individually as well as
part of their hyperheuristics to facilitate a comparison between the individual algorithms
and its ensemble.

Algorithmic comparisons are limited to the BOCEGAH and BOSAH and their constituent
LLHs and is facilitated using non-parametric statistical testing. The principal aim of this
study as per the problem statement in §1.2, is twofold. The first aim is to build an
optimisation tool (hyperheuristic) that performs better (measured accross five problems)
than its constituent LLHs, and the second is to determine the feasibility of an ANN as
metamodel to enhance the simulation optimisation process.

It is anticipated that further assumptions may be necessary as the project progresses, and these
will be reported in detail at the appropriate time.

1.4 Research objectives

The following eight objectives are pursued in this thesis:

1. Conduct a review of the academic literature related to simulation optimisation, more
precisely the application of hyperheuristics as well as literature related to applying FNNs
as simulation metamodels.

2. Perform a preliminary study to determine the feasibility of a FNN with one-hidden layer as
metamodel, to determine its capabilities as function approximator, before implementation.

3. Determine the specific parameters related to each simulation problem studied, parame-
ters that are necessary to conduct a statistically sound simulation optimisation study, for
example a sensible upper bound.

4. Review the literature covering the LLHs and identify based on the review, which hyperpa-
rameters to include in the hyperparameter tuning search space. Also, build a computerised
user-interface within Tecnomatix to facilitate the simulation optimisation process for the
MOOCEM, the NSGA-II and the DBMOSA algorithm.

Stellenbosch University https://scholar.sun.ac.za

1.5. Research methodology 7

5. Design the population-based and single-solution based hyperheuristic based using the cho-
sen LLHs, and build a computerised user-interface within Tecnomatix to facilitate the
simulation optimisation process.

6. Perform hyperparameter tuning for the LLHs, respectively, and report the results.

7. Employ the common best hyperparameters and evaluate the hyperheuristic optimisation
tools within Tecnomatix on all five discrete-event dynamic stochastic simulation optimisa-
tion problems and interpret the results obtained from the various tools and report valuable
insights realised.

8. Recommend possible follow-up work and further research avenues that may be pursued to
continue the work done in this thesis.

1.5 Research methodology

The following methodological procedure is adopted to achieve the objectives set out for this
thesis:

1. Conduct an extensive literature review on the following topics relating to this thesis and
the completion thereof. The topics aim to assist the researcher in gaining the required
knowledge and insight necessary to fulfil the research objectives 1–7.

(a) Multi-objective simulation optimisation,

(b) multi-objective optimisation preliminaries,

(c) metaheuristics,

(d) hyperheuristic design, and

(e) simulation metamodeling by method of ANNs.

2. Perform a preliminary study on FNN metamodel feasibility, in fulfilment of Objective 2.

(a) Perform hyperparameter optimisation on a FNN with one hidden layer,

(b) evaluate the performance of the optimised FNN on the IP dataset,

(c) evaluate the regression models on the IP dataset, and

(d) compare their performances, i.e. FNN versus regressors.

3. Define the statistical prerequisites necessary to conduct a simulation study and determine
the following specific to each simulation problem, in fulfilment of Objective 3.

(a) The upper bounds,

(b) the sufficient number of observations per solution.

4. Based on relevant literature, report the hyperparameters to be included in the hyperpa-
rameter tuning search space, in fulfilment of Objective 4.

5. Design the population-based hyperheuristic using the MOOCEM and the NSGA-II, called
the bi-objective cross-entropy and genetic algorithm hyperheuristic (BOCEGAH). Also,
design the single-solution based hyperheuristics, called the bi-objective simulated annealing
hyperheuristic (BOSAH) in fulfilment of Objective 5.

Stellenbosch University https://scholar.sun.ac.za

8 Chapter 1. Introduction

6. Design and build a computerised user-interface within Tecnomatix to facilitate the sim-
ulation optimisation process for the DBMOSA, MOOCEM, NSGA-II, BOCEGAH and
BOSAH, also in fulfilment of Objectives 4 and 5.

(a) Test and validate each metaheuristic and hyperheuristic in terms of logic and output
using structured walkthroughs,

(b) test the user-interface to ensure that it meets the conceptual and operational validity
requirements and is credible,

(c) the functionality must exhibit reasonableness in continuity, consistency, and produce
errors based on absurd conditions,

(d) reiterate the optimisation tools where necessary.

7. Perform hyperparameter tuning and extensive algorithmic parameter evaluations in a
structured and statistically sound manner in order to determine the best hyperparameter
combinations for BOCEGAH and BOSAH and its constituent LLHs, considering all five
simulation problems. This is done in fulfilment of Objective 6.

8. Evaluate the optimisation tools within Tecnomatix for each simulation optimisation prob-
lem in a structured and statistically sound manner, in fulfilment of Objective 7.

(a) Compare the performance of each hyperheuristic with it constituent LLHs as well as
with each other,

(b) evaluate the general application capabilities of the optimisation tools developed, and

(c) report valuable insights realised.

9. Discuss the contribution of the addition of a general-purpose simulation optimisation tool
within Tecnomatix and industries using Siemens and recommend future-work to further
the work done in this thesis, based on the research findings, in fulfilment of Objective 8.

1.6 Thesis organisation

This thesis comprises a total of eight chapters, including this introductory chapter, a bibliog-
raphy, and six appendices. Chapter 2 comprise a literature study of the work related to this
thesis. Thereafter, the detailed documentation of the preliminary study conducted to determine
the feasibility of an FNN as metamodel is delineated in Chapter 3. Chapter 4 reports the statis-
tical prerequisites required to conduct a simulation study and introduced the simulation models
studied. Chapter 5 comprises a review of the LLHs and their algorithm specific parameters
used, as well as the population-based and single-solutions based search hyperheuristics proposed
in this study. Chapter 6 reports the empirical study conducted to determine suitable hyper-
parameter combinations for each LLH, followed by the results chapter, Chapter 7, where both
BOCEGAH and BOSAH are compared with their constituent algorithms and later compared
with each other. Finally, Chapter 8 comprises a summary of the work conducted in this the-
sis and a documentation of the research contributions and concludes with recommended future
work to be done.

This chapter contains a contextual description of time-consuming nature of simulation optimi-
sation and the need for enhancements. This led to the formulation of a research assignment
and research objectives constrained by the scope. In Chapter 2, a literature study is conducted
on simulation optimisation and metamodeling. More specifically simulation optimisation ap-
proaches used in the literature are briefly discussed after which the multi-objective optimisation

Stellenbosch University https://scholar.sun.ac.za

1.6. Thesis organisation 9

preliminaries are documented. Thereafter, literature pertaining to metaheuristics and hyper-
heuristics are discussed. Lastly, metamodels form the basis of discussion, specifically FNN.

Chapter 3 reviews the regression models that are used for comparison purposes. Next, the hy-
perparameter optimisation approach followed for the FNN is documented. Some performance
metrics are introduced, some of which are used to compare the regressors. Lastly, the perfor-
mances of the FNN is compared to that of the other regression models.

Chapter 4 briefly introduces some statistical prerequisites required to conduct a simulation
study, thereafter the dynamic, stochastic simulation problems are discussed. For each problem
a sensible upper bound and a sufficient number of observations per solution is determined. This
chapter also documents the decision variables and objectives for each problem as well as the true
Pareto fronts found by method of exhaustive enumeration and lastly, describes each simulation
model in terms of its complexity. The simulation problems considered in this study include the
(s, S) inventory problem, the buffer-allocation problem with five machines, the buffer-allocation
problem with ten machines, the non-linear buffer-allocation problem with sixteen machines, and
the Open mine problem. See Appendix D for the respective problem descriptions.

Chapter 5, presents the theoretical foundation of the LLHs, as well as its formulation and
application to simulation optimisation specifically. Furthermore, the chapter discusses each
LLHs algorithm specific parameters that will be included in the hyperparameter tuning search
space. Thereafter, the theoretical foundation of the hyperheuristics proposed are presented,
including its formulation and application to simulation optimisation context specifically.

Chapter 6 documents the empirical study conducted to determine common hyperparameter
combinations for each LLH across all five simulation problems by method of statistical infer-
ences. Penultimately, Chapter 7 documents the performances of the hyperheuristics as well as
compares the hyperheuristics with its constituent algorithms and later with each other. The
comparisons are performed using non-parametric statistical tests with relevant post hoc analysis,
where applicable.

Finally, Chapter 8 summarises the work done, documents avenues for improvements and fu-
ture work contributions as well as formally documents the research contributions made by the
completion of this thesis.

Stellenbosch University https://scholar.sun.ac.za

10 Chapter 1. Introduction

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2

Literature Study

2.1 Simulation optimisation . 11

2.2 Multi-objective optimisation preliminaries . 14

2.2.1 The notion of solution dominance . 15

2.2.2 The quality of MOO algorithm . 17

2.2.3 Archiving . 18

2.2.4 Performance assessment of MOO algorithms 19

2.3 Metaheuristics . 20

2.4 Hyperheuristics . 22

2.5 Simulation metamodeling . 25

2.5.1 The fundamentals of artificial neural networks 26

2.5.2 The network architecture . 28

2.5.3 The network training algorithms . 31

2.5.4 Activation functions . 33

2.6 Summary . 36

This chapter serves to fulfil Objective 1 as stated in Chapter 1. In this chapter, the reader
is introduced to some of the fundamental concepts of multi-objective simulation optimisation
(MOSO). First, a short overview is given of the simulation optimisation (SO) approaches in the
literature. Next, an introduction to multi-objective optimisation (MOO) preliminaries pertain-
ing to the notion of Pareto dominance and methods for determining the non-dominated solution
sets, the quality of the Pareto sets are then discussed in terms of the convergence and diversity
of the solution set. Thereafter an introduction to metaheuristic and hyperheuristic methods are
given. Penultimately, an introduction to artificial neural networks (ANNs) as a metamodel is
proposed and discussed. Finally, the chapter closes in with a summary of its contents.

2.1 Simulation optimisation

The following example demonstrates the need for simulation as a research field: A nuclear re-
actor operates within safe operating zones, according to which abnormal operating conditions
could lead to events similar to that of the Chernobyl disaster in 1986. By method of simula-
tion, however, abnormal operating conditions can be reproduced in theory and then avoided in
practice. Simulation enables the trail-and-error process that real-world implementations do not,
whereby reducing the cost, time and potential risk associated with the implementation of new
designs [219].

Simulation can be characterised by the time increment, variable types and time dependency
of the problem and whether or not the problem is terminating. In this study, the nature of
the problems is terminating discrete-event simulation (DES) problems. To elaborate, problems
are discrete (time increment), stochastic (variable type), dynamic (time dependency) and are
evaluated for a specified amount of simulated time (terminating) [20].

11

Stellenbosch University https://scholar.sun.ac.za

12 Chapter 2. Literature Study

In DES models, the state of the system changes at discrete and usually random points in
time [224]. Take for example a single-server queueing system – customers arrive from an unknown
population at an arrival rate lambda; the customer can go to the server if the server is idle, or
join the queue and wait until the server becomes idle [20]. To summarise: the single-server
queueing system is discrete (unique events can be identified), dynamic (the state of the system
evolves over time), and stochastic (the arrival rate of customers is determined by the Poisson
distribution) and starts when the store opens and terminates when the store closes.

Simulation optimisation provides a way to overcome the limitations of traditional optimisation,
attributable to its ability to model uncertainty and complex interactions. The main drawback
of simulation optimisation is the computational cost required for the trail-and-error (simulated)
process [99]. Figure 2.1 shows the optimisation approaches used in literature in combination
with simulation to enhance the simulation optimisation process and reduce the associated com-
putational cost [3, 4, 18, 90, 258].

Simulation optimisation

approaches

Random search

& metaheuristics
Ranking & selection

Direct gradient

methods
Metamodel methods

Figure 2.1: A taxonomy of the simulation optimisation approaches in literature [18].

Random Search & Metaheuristics are used in combination with simulation to search the deci-
sion space and find good solutions to large and typically complex problems intelligently. These
methods provide the simulation model with inputs (or decision variable combinations) to eval-
uate and thereby reduce the search space by intelligently searching the decision space. The
result is a smaller part of the total decision space that needs to be explored and typically less
computational power is required to find good objective function values [20].

Ranking & Selection (R&S) procedures are statistical methods developed to compare a finite
number of simulation alternatives and select the best system from a set of competing alterna-
tives [105]. R&S determines the minimum number of observations per solution required, with a
certain probability, to ensure that the optimal input parameter values over a finite set k, where
k is ‘small’, i.e. 2–200, is found to be different at some level of statistical significance [3]. Statis-
tical methods, specifically R&S, are recommended in case of a discrete search space with limited
number of solutions, whereas random search and metaheuristics are preferred when there are a
large number of alternatives, i.e. combinatorial nature [20]. For an overview of R&S methods,
the reader is referred to [260].

Direct gradient methods are considered efficient estimators as they derive the gradient of the
objective function(s) and determines the search direction used in simulation optimisation algo-
rithms and include perturbation analysis [27, 94, 117], likelihood ratios or score functions [102,
215, 216]. Metamodel methods are used to find the functional relationship between inputs and
their corresponding outputs. In the context of this study, metamodels are used to enhance the
simulation optimisation process by filtering and screening out solutions that are predicted to be
of low-quality when compared with the incumbent solution(s) [18], see §2.5 for more detail.

The use of these approaches is motivated by the sheer size of most real-world problems, specifi-
cally combinatorial optimisation problems (COPs). COPs are a class of optimisation problems
comprising multiple discrete decision variables, as opposed to continuous decision variables. Even
though COPs have a finite search space they can often be too large for exhaustive enumeration
to be considered a feasible option [150].

Stellenbosch University https://scholar.sun.ac.za

2.1. Simulation optimisation 13

In support of this statement, the so-called combinatorial relationship is explained. As the number
of decision variables increase the number of combinations proverbially explode, which is often
referred to as the combinatorial explosion problem [150]. Consider the buffer-allocation problem
(BAP) with 16 machines as an example: there are 15 buffers and suppose that each buffer has
10 buffer spaces. This example results in a search space cardinality of 1× 1015 solutions. Now
imagine that each solution evaluation takes 0.5 seconds and because of the stochastic nature
of simulation models, several observations per solution evaluation is required, say 100. This
results in an exhaustive search that will take 1 585 489 599 years to complete. Also, to further
this explanation, it is said that there are approximately 1× 1025 grains of sand on earth.

Some examples of real-world COPs are vehicle routing and scheduling problems. Most COPs
are considered NP-Hard, which requires exponential time to be solved to optimality [93]. For
an exhaustive list of COPs being studied in literature, the reader is referred to [134].

There are two main approaches towards optimisation, namely exact and approximate (or heuris-
tic) methods. Even though exact methods guarantee optimal solutions within a finite amount
of time, they are not considered suitable for solving many real-world problems [198]. On the
other hand, approximation methods, such as metaheuristics, do not guarantee optimality but
are widely used for solving complex COPs [198]. Simulation used in combination with meta-
heuristics can guide the search, evaluated by the simulation model, in the most effective way,
instead of blindly itemising scenarios or performing exhaustive enumeration [99].

The simulation model represents the objective function that needs to be optimised, represent-
ing the complex but unknown relationship between the decision variables, termed black-box
optimisation [80]. The simulation optimisation process is illustrated in Figure 2.2. First, the
number of observations per solution, the confidence interval and the simulation time specific to
the simulation problem are to be defined as it influences the simulation output as well as the
analysis of the output. This matter is discussed in detail in Chapter 4.

Observations per solution

Confidence interval

Simulation time

Discrete-event

simulation model

(Black box)

Optimisation

approach

Input: x

Output: f(x)

Figure 2.2: Illustration of the black-box scenario used in simulation optimisation, adapted from [93].

Next, values for the decision variables are used as input x which are then evaluated by the
simulation model (or black-box or objective function) to generate the output f(x). The output
is then subjected to some optimisation approach (metaheuristic), which determines the next
input value(s) of the decision variables to be evaluated by the simulation model. This procedure
continues until the optimisation approach terminates due to a predefined stopping condition.
Note that many decision variables may be evaluated, and as such x is a vector of n values, where
n is the number of decision variables. Similarly many objective(s) may be of interest, and as
such f(x) corresponds to a vector of m values.

There is a trade-off relationship between time, cost, accuracy and risk for the real-world system,
a simulation model and simulation metamodel. This relationship is depicted in Figure 2.3, where
the inputs {x1, . . . , xi, . . . , xn} for the real-world system, the simulation model and metamodel
are the same, however, the outputs are different and distinguishes each in terms of time, cost,
accuracy and risk associated. In Figure 2.3 there are n inputs and m outputs. The inputs
are natural numbers (N ∈ {1, 2, . . . ,∞}) since the inputs considered in this study are integers,
while the outputs are real numbers (R), i.e. integer or non-integer values.

Stellenbosch University https://scholar.sun.ac.za

14 Chapter 2. Literature Study

Inputs

Outputs

Increasing
time, cost,
accuracy
and risk.

Metamodel {y1, . . . , yk, . . . , ym}
y ∈ R

Simulation model {y1, . . . , yk, . . . , ym}
y ∈ R

Real-world system

{x1, . . . , xi, . . . , xn}
x ∈ N

{y1, . . . , yk, . . . , ym}
y ∈ R

Figure 2.3: Illustration of the relationships that exist among real-world systems, simulation models and
simulation metamodels, adapted from [165].

The real-world implementation is the most time-consuming, costly and embodies the most risk,
but is the most accurate. Simulation metamodels require the least amount of time, are the least
costly and embody the least risk, but is also the least accurate. Simulation represents a good
trade-off between each of the aforementioned criteria and is therefore the preferred choice by
many. Simulation model can be used in combination with a metamodel, to benefit from the
accuracy of the simulation model and the time, cost and risk of metamodels [165].

Each of the simulation problems considered in this study are combinatorial in nature and there-
fore simulation in combination with some optimisation approach is the preferred choice. Fur-
thermore, an optimisation problem can be classified as single-objective or multi-objective, in this
study bi-objective simulation optimisation problems are considered. The next section addresses
the preliminaries for solving multi-objective COPs.

2.2 Multi-objective optimisation preliminaries

Multi-objective optimisation problems (MOOPs) have multiple, usually conflicting and often
non-commensurate objectives that need to be optimised simultaneously. For this reason, MOO
searches for a set of tradeoff solutions, termed the Pareto set [186].

Formally, a MOOP has a set of m objective functions, n decision variables with J equality and
K inequality constraints. As mentioned previously, in multi-objective simulation optimisation
(MOSO) there is no formulation of an objective function, the simulation model is the objective
function. However, for the sake of completeness, the mathematical formulation of a MOOP can
be stated as follows, where the minimisation of all the objectives is assumed without loss of
generality,

minimise f(x) = {f1(x), . . . , fm(x)}, (2.1)

subject to gk(x) ≥ 0, k ∈ {1, . . . ,K}, (2.2)

hj(x) = 0, j ∈ {1, . . . , J}, (2.3)

x
(L)
i ≤ xi ≤ x

(U)
i , i ∈ {1, . . . , n}, (2.4)

where x = {x1, . . . , xn} ∈ X, (2.5)

f = {f1, . . . , fm} ∈ F, (2.6)

where X denotes the decision space x = (x1, x2), where x1 and x2 have discrete values, and F
the objective space y = (y1, y2). Decision variables are bounded by an upper and lower bound

Stellenbosch University https://scholar.sun.ac.za

2.2. Multi-objective optimisation preliminaries 15

as stated in (2.4). If solution x satisfies the constraints (2.2)–(2.4), it is considered a feasible
solution [46, 169, 266].

For any MOOP, there exists a true but unknown set of non-dominated (or Pareto optimal) solu-
tions, when considering the entire feasible decision space. These solutions form the true Pareto
set (PT) and visually they represent the boundary called the true Pareto front. Solutions are
guided towards the Pareto front by method of fitness assignment. The fitness assignment strat-
egy used in this paper is dominance-based [266]. Approximate methods search the decision space
and identify a set of high-quality non-dominated solutions that form the approximate Pareto set,
for a given MOOP, by means of the notion of solution dominance (or Pareto dominance) [186].
The notion of solution dominance is discussed next.

2.2.1 The notion of solution dominance

Solutions are considered non-dominated if no other solutions in the search space are superior
to them, when all objectives are considered [266]. Formally, a solution x1 dominates another
solution x2, if the following criteria are true:

1. Solution x1 is no worse than solution x2 in respect of all objectives, and

2. solution x1 is better than solution x2 in at least one objective, f1, . . . , fm.

If criteria 1 and 2 are true, it can be said that x1 dominates x2, denoted by x1 ≺ x2. This is
elucidated in the max–min bi-objective optimisation problem (BOOP) given in Figure 2.4. The
members {x3, x5} form approximate Pareto Front 1, i.e. F1 = {3, 5} and are considered non-
dominated solutions [68, 266]. For the sake of brevity, when referring to true Pareto solutions,
the solutions are explicitly referred to as true, otherwise it is regarded as approximate.

f1

f2 2

1

4

3

5

Pareto front 1

1 2 3 4 5
0

1

2

3

4

5 x3, x5 ≺ {x1, x2, x4},
x3 ⊀ x5 and x5 ⊀ x3.

Figure 2.4: An illustration of solution dominance using a population of five solutions, adapted from [60].

Depending on the space considered, the number of Pareto solutions may differ. In Figure 2.5,
a solution in the objective space F is considered as a single point {f1, f2} (), however it is
represented by two different solutions x1 and x2 in the decision space (). The convention used
in this paper is that Pareto set refers to the objective vector, while Pareto optimal solutions
refer to the corresponding decision variable combinations. If the system is operated using any
of the Pareto optimal solutions (), then the system is considered optimal. Mathematically,
non-dominated solutions are regarded as equally desirable. However, in the real world, a final
solution is selected for implementation and is based on some preference information.

Stellenbosch University https://scholar.sun.ac.za

16 Chapter 2. Literature Study

This selection process is typically the responsibility of the decision maker [181, 266], but is not
part of the scope of this study.

x1

x2

(a) Decision space, X

f1

f2

Pareto front

Pareto set

(b) Objective space, F

Figure 2.5: Illustration of the concept of Pareto optimality for two decision variables {x1, x2} ∈ X and
two objectives {f1, f2} ∈ F for a min–min and deterministic output [20].

MOO of stochastic output is very complex and computationally intensive and is elucidated using
Figure 2.6. For each decision variable combination {x1, x2}, the simulation model must execute
a number of observations per solution to be confident, at a certain level of significance, that the
point estimator value is a good approximation of the true but unknown values for {x1, x2} [15].
This matter is discussed in detail in Chapter 4.

x1

x2

(a) Decision space, X

f1

f2

(b) Simulated objective space, F̂

Simulation

Figure 2.6: Illustration of the computational burden of simulation optimisation for two decision variables
{x1, x2} ∈ X and two objectives {f1, f2} in the simulated objective space (F̂) for stochastic output,
adapted from [20].

Many solutions are evaluated during multi-objective simulation optimisation (MOSO), especially
if metaheuristics are used to guide the search. This requires some form of ranking to determine
which solutions form part of the approximate Pareto set. A popular ranking method is described
in Algorithm 2.1, however, this method only applies to deterministic results [20, 104]. Recall
that, the results generated by a simulation model are stochastic, therefore the more appropriate
ranking method is multi-objective ranking and selection (MORS), as it ensures that the solutions
that constitute the Pareto set are statistically significantly different [72, 160]. However, MORS
falls outside of the scope of this project.

Stellenbosch University https://scholar.sun.ac.za

2.2. Multi-objective optimisation preliminaries 17

Consequently, some work has to be done to ensure that the solutions in the Pareto set are
statistically significantly different to enable the use of Algorithm 2.1. MORS is replaced by de-
termining a sufficient number of observations per solution that results in statistically significant
solutions This is dicussed in more detail in Chapter 4.

Consider Algorithm 2.1 for a min–min BOOP. The algorithm takes as input the approximate
Pareto set S and returns the non-dominated fronts and corresponding ranks. The algorithm
starts by sorting the first objective (f1) in descending order. Thereafter, the values of the
second objective (f2) are considered and determine its rank. Remember that both objectives
are to be minimised, therefore if the value of f2 in row i is larger than the value of f2 in row j,
the rank of row i is incremented since it is dominated. Initially each row has a rank of zero.

Algorithm 2.1: Pareto ranking algorithm, for a min–max bi-objective prob-
lem [104]

Input : A set of solutions S containing the values for two objective functions.
Output : The approximate Pareto set PS which contain all the solutions with ρ = 1
S ← sort(S, 1); // Sort the first objective in descending order1

for i← 1 to |S| do2

penalty ← 0; // Initialise Pareto rank to zero3

for j ← (i+ 1) to |S| do4

if fj
2 ≺ fi

2 then // i.e. if fj
2 ≥ fi

2
5

penalty ← penalty + 1; // Increment the penalty6

ρi ← penalty; // Rank of solution i7

for i← 1 to |S| do8

if ρi = 0 then9

F1 ← F1 ∪ {i}10

PS ← PS ∪ {F1}; // Approximate Pareto set11

Specifically, the rank of Row 1 is incremented for every other row it is dominated by. Similarly,
the rank of Row 2 gets incremented for every other row it is dominated by, except itself and
the rows before it. This is repeated until the last row, which is given a default rank of zero.
All rows that have a rank of zero represent non-dominated solutions (or the Pareto set) and
subsequently F1 and Pareto rank ρ1 = 1. The rank value of zero indicates solution dominance,
i.e. no solution pair {f1, f2} dominates any other pair in the Pareto set (PS) [20].

In the next section the properties that determine the quality of an approximated Pareto front
are discussed.

2.2.2 The quality of MOO algorithm

The quality of a MOO algorithm depends on two properties that describe the approximated
Pareto front, namely convergence and diversity. The goal of a MOO algorithm is to converge
toward the true Pareto front, i.e. generate solutions near the true Pareto solutions while main-
taining a diverse set of solutions, i.e. generate solutions that represent the entire range of the
Pareto front [61, 266]. Figure 2.7a shows an approximation front having a diverse set of solu-
tions, but does not converge to the true Pareto front. Next, Figure 2.7b shows an approximation
front that is close to the true Pareto front, i.e. converges, however some regions are unsearched
resulting in poor diversity. Lastly, Figure 2.7c shows an approximation with both desirable
properties, i.e. good convergence and diversity. It can be seen that too much diversity disrupts
the search process and too little could lead to premature convergence [142, 266].

Stellenbosch University https://scholar.sun.ac.za

18 Chapter 2. Literature Study

0 1 2 3 4

0

1

2

3

4

(a) Bad convergence, good
diversity

0 1 2 3 4

0

1

2

3

4

(b) Good convergence, bad
diversity

0 1 2 3 4

0

1

2

3

4

(c) Good convergence and
diversity

Figure 2.7: Examples of approximation sets illustrating (a) bad convergence and good diversity, (b)
good convergence and bad diversity and (c) good convergence and diversity.

An algorithm’s ability to generate good quality approximations, as depicted in Figure 2.7c, is
governed by its ability to efficiently explore the search space and effectively exploit prospective
regions [77], i.e. to generate a diverse set of non-dominated solutions near the true Pareto front.
Therefore, a balance between exploration and exploitation needs to be maintained [107]. Many
MOO algorithms use an archive to prevent non-dominated solutions from being lost or to guide
the search based on previously archived solutions [266]. Note that archived solutions are not
necessarily only non-dominated solutions, for example simulated annealing (SA) [143] accepts
dominated solutions into its archive with some probability. This method of accepting dominated
solutions aids the search algorithm in escaping local optima. The notion of archiving is discussed
next.

2.2.3 Archiving

For the sake of simplicity Figure 2.8 represents a max–max BOOP in which the contents of
the archive consist only of non-dominated solutions, where the Pareto set will become clear by
notion of archiving. The non-dominated solutions generated are represented by • and form the
archive A.

f1

f2

0 1 2 3 4 5
0

1

2

3

4

5

Solution removed from the archive

Solutions not archived (dominated)

New solution added to the archive

Existing solutions in the archive A

Figure 2.8: An example illustrating the notion of archiving for a max–max bi-objective optimisation
problem, adapted from [68].

Stellenbosch University https://scholar.sun.ac.za

2.2. Multi-objective optimisation preliminaries 19

Solution • was not dominated until solution • was generated, replacing • by • in A. Solution
• represent the dominated solutions that are not archived [68]. For comparison purposes, it is
necessary to assess the performance of a search algorithm, a matter discussed in the next section.

2.2.4 Performance assessment of MOO algorithms

Attention is afforded to quality performance indicators because performance indicators refer to
both time and quality. Simulation time is a function of the computer’s processing power, i.e.
the computer used, and the number of simulations optimised simultaneously. To elaborate, the
amount of time it takes to run a single algorithm on a simulation problem differs from machine
to machine, also, the simulation time increases when the number of simulation models being
optimised simultaneously increases, however not linearly. For that reason time cannot be used
to assess the performance of a MOSO algorithm. As a result, quality performance indicators are
considered to assess the performance of a MOO algorithm in the objective space, i.e. in terms
of the approximate Pareto set obtained [222].

Indicator approaches measure quantify the performance of an approximation set as a numerical
value. Quality performance indicators can be classified as unary or binary. Unary indicators
take one approximation set as input and returns a numerical value (that describes its cardinality,
convergence or diversity) as output. Whereas binary indicators, take as input two approxima-
tion sets and considers the relationship between them (in terms of dominance) and returns a
numerical value (that dictates which set is better) as output [147]. In the absence of a true
Pareto front, a unary performance assessment methodology is required to enable the compara-
tive analysis between approximation fronts returned by each algorithm (for a specific problem),
relative to one another.

An extensive review of performance indicators conducted by Riquelme et al. [210] concluded
that the hypervolume indicator is the most widely used quality performance indicator, and is
attributable to being Pareto compliant, evaluation properties and ease of implementation since
it does not require a true Pareto set as reference [162]. The hypervolume1 [267, 269] is a unary
quality indicator that measures both the convergence and diversity of an approximation set [166],
denoted by IH . In this paper, IH is referred to as a hyperarea since the simulation problems
being optimised are bi-objective. The hyperarea indicator essentially measures the portion of the
objective space that is dominated by the approximation front, relative to prespecified reference
point. Note that the reference point has to be dominated by the entire approximation front, i.e.
by both objectives. Formally, the hyperarea can be defined as

IH(Zref,X) = Λ

(⋃
Xn∈X

[
f1(Xn), f

ref
1

]
×
[
f2(Xn), f

ref
2

])
, (2.7)

where IH(Zref, X) represents the area covered by the approximation set X, Zref = {f ref
1 , f ref

2 }
refers to the problem specific reference point and Λ(·) refers to the Lebesque measure. Note that
when conducting multiple comparisons of optimisation algorithms, the reference point must be
the same, otherwise the resulting IH indicator values are not comparable [214, 268]. A simple
example is shown in Figure 2.9 with the min–max bi-objective approximation set containing
seven solutions, X = {(2, 1), (3, 3), (4, 5), (6, 5.6), (7, 6), (8, 7.5), (9.5, 8)} and the reference
point Zref = (10.5, 0.5). The hyperarea is represented by the shaded (blue) area and corresponds
to a hyperarea value IH = 44.53, which is determined by summing the individual hyperareas as
shown in Figure 2.9.

1Also termed the S-metric [269], hyperarea in the case of two objectives or Lebesgue measure [85]

Stellenbosch University https://scholar.sun.ac.za

20 Chapter 2. Literature Study

2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Zref

A1

A2

A3

A4
A5

A6
A7

f1

f2

Approximation front

Reference point
IH = A1 + A2 + A3 + A4 + A5 + A6 + A7

A1 = 1
2
((1 − 0.5) + (3 − 0.5)(3 − 2)) = 1.5

A2 = 1
2
((3 − 0.5) + (5 − 0.5)(4 − 3)) = 3.5

A3 = 1
2
((5 − 0.5) + (5.6 − 0.5)(6 − 4)) = 9.6

A4 = 1
2
((6 − 0.5) + (5.6 − 0.5)(7 − 6)) = 5.3

A5 = 1
2
((6 − 0.5) + (7.5 − 0.5)(8 − 7)) = 6.25

A6 = 1
2
((7.5 − 0.5) + (8 − 0.5)(9.5 − 8)) = 10.86

A7 = (10.5 − 9.5)(8 − 0.5) = 7.5

d

a

c

b

h

A = 1
2
(a + b)h

d

a

A = ad

Figure 2.9: An example illustrating the concept of hyperarea for a min–max bi-objective approximation
front. The blue shaded area corresponds to the value of the hyperarea indicator for this approximation
front, relative to the reference point.

Notice that A1−A6 are trapezoids and are calculated as such, whereas A7 is simply a rectangle.
A larger hyperarea value is preferred, and because the hyperarea indicator is Pareto compliant,
it can be that that if the hyperarea of approximation set A is larger than approximation set B
(IA > IB), then that approximation set A is preferable to B. However, the indicator value does
not provide any information with regards to the extent according to which A outperforms B,
and whether or not it is significant. This matter is discussed in detail in Chapter 6. For more
on quality performance indicators refer to [267, 270].

This concludes the discussion of MOO preliminaries for solving COPs, hereafter metaheuristics
for solving MOOPs are discussed.

2.3 Metaheuristics

It has been shown that metaheuristics provide acceptable solutions in a reasonable amount of
computational time, and are therefore considered good substitutes for exact algorithms [93, 114,
198]. Metaheuristics are classified using many criteria, as seen in Table 2.1, namely nature vs.
non-nature inspired, memory vs. memoryless, deterministic vs. stochastic, population-based vs.
single-solution based search and iterative vs. greedy [93]. Metaheuristics that are considered
memoryless, do not use the historical information during the search process, whereas meta-
heuristics that use memory, such as TS, use a specific structure to take historical information
into account. Moreover, deterministic algorithms generate the same final solution(s) for the
same initial solution(s), whereas stochastic algorithms, generate different final solutions from
the same initial solution(s). Note that this characteristic influences how the performance of the
metaheuristic is evaluated [93], refer to Chapter 6.

Most of the metaheuristics are iterative algorithms, in that they start with a complete solution
and transform it using a set of search operators; this is performed at each iteration [93, 134].
Notice that the algorithms belonging to each family of metaheuristics, as discussed, share many
search mechanisms. However, the most used classification of a metaheuristic takes into account
the number of solutions transformed in each step of the iterative algorithm. For that reason,
metaheuristics will be classified as either single-solution based which transform a single solution
or population-based which transform a population of solutions [134]. Figure 2.10 demonstrates
the complementary strengths and weaknesses of S-metaheuristics and P-metaheuristics.

Stellenbosch University https://scholar.sun.ac.za

2.3. Metaheuristics 21

Table 2.1: Criteria used for the classification of metaheuristics.

Single-solution based Inspiration Memory Stochastic Iterative

Simulated Annealing (SA) [143] Physics ✓ ✓

Tabu Search (TS) [100] AI ✓ ✓

Threshold Accepting (TA) - ✓

Iterated Local Search (ILS) [170] - ✓ ✓

Breakout Local Search (BLS) [23] - ✓ ✓

Descent-based Local Search (DLS) [265] - ✓

Guided Local Search (GLS) [253] - ✓ ✓ ✓

Variable Neighborhood Search (VNS) [185] - ✓ ✓

Hill Climbing (HC) [131] - ✓

Large Neighborhood Search (LNS) [228] - ✓ ✓ ✓

Great Deluge (GD) [79] - ✓ ✓ ✓

Greedy randomised adaptive search procedure (GRASP) - ✓

Population-based Inspiration Memory Stochastic Iterative

Genetic Algorithm (GA) [120] Biology ✓ ✓

Memetic Algorithm (MA) [187] Biology ✓ ✓ ✓

Differential Evolution (DE) [240] Biology ✓ ✓ ✓

Artificial Bee Colony (ABC) [133] Bees ✓ ✓ ✓

Ant Colony Optimisation (ACO) [73] Ants ✓ ✓ ✓

Particle Swarm Optimisation (PSO) [139] Flocking birds ✓ ✓ ✓

Harmony Search (HS) [91] Music ✓ ✓ ✓

Scatter Search (SS) [98, 101] Evolution ✓ ✓ ✓

Water Wave Optimisation (WWO) [264] Wave theory ✓ ✓

Imperialist Competitive Algorithm (ICA) [7] Society ✓ ✓

P-metaheuristics are considered exploration (diversification) oriented as they are powerful in
the approximation of the whole Pareto set while S-metaheuristics are efficient in exploiting
(intensify) the search around the obtained approximations [196, 197, 204]. Hybrid metaheuristics
combine S- and P-metaheuristics to work together [134].

Random search
Population-based
metaheuristic

Single-solution
based metaheuristic

Local search

Exploitation/IntensificationExploration/Diversification →←

Figure 2.10: The two conflicting criteria in the design of a metaheuristic, namely exploitation and
exploration, adapted from [93].

Random search only explores the search space which means that non-improving solutions are
also accepted and because promising regions are not exploited it could result in suboptimal
solutions. Local search on the other hand, only exploits the search space which means that only
improving solutions are accepted and because of the lack of exploration, promising regions may
not be found and could result in premature convergence and consquently suboptimal solutions.
There is a balance that needs to be maintained, called the exploration–exploitation tradeoff.
Exploration of the search space and exploitation of promising regions which are determined by
good solutions [93]. Some of the main classes of metaheuristics are listed below, with examples,
some of which are regularly used or have been adapted to solve large COPs.

Stellenbosch University https://scholar.sun.ac.za

22 Chapter 2. Literature Study

Local Search Methods start with an initial solution and seeks to improve the solution by
searching in the neighbourhood (or locally). When an improvement is found, the process
seeks to improve the solutions, etc. Examples are variable neighbourhood search [111, 185]
and guided local search [246, 253].

Simulated Annealing resembles local search, but accepts non-improving solutions with some
probability, whereby escaping the local optimas [143].

Tabu Search resembles local search, but uses some memory structure to prohibit recent so-
lutions to be revisited, TS also escapes from local optima by allowing non-improving
moves [97, 100, 115, 167].

Evolutionary Algorithms apply the theory of evolution to a population of solutions. Ex-
amples include genetic algorithms [120], evolutionary strategies [93], scatter search [101],
genetic programming [17].

Swarm intelligence inspired by the collective behaviour of swarms and social insect colonies [80,
77]. Examples include artificial bee colony [133], ant-colony optimisation [73] and particle
swarm optimisation [139].

Mememic Algorithms are population-based search techniques in combination with local search
techniques, where information is transferred by imitation, rather than genetically [187].

Despite the individual success of metaheuristics and their widespread adoption, there is some
reluctance to use them. This is attributable to each having several parameter or operator choices
which directly influence their performance, but to which choice of parameters of operators to
use are unclear to non-expert users [213].

Consequently, the application of hyperheuristics to the field of optimisation, spesifically sim-
ulation optimisation, is motivated by the above-mentioned drawbacks of metaheuristic search
methodologies. Hyperheuristics mitigate, to some extent, the difficulty of characterising and
designing problem-specific algorithms, by operating in the search space of metaheuristics (or
heuristic components) before operating on the search space of solutions, whereas metaheuristics
operate directly on the search space of solutions.

2.4 Hyperheuristics

The main motivations for research on hyperheuristics are to attempt to respond to the legitimate
limitations of existing search methods, some of these limitations include [213]:

1. Metaheuristics cannot be applied to new optimisation problems from diffrent domains or
even instances of the same problem without some changes to the algorithm, and

2. usually there is a large number of parameters or algorithm choices that must be defined,
without guidelines for how to select them [36, 39].

Consequently, hyperheuristics have been developed to represent a class of high-level adaptive
search techniques to raise the level of generality of search algorithms [36, 39]. Accordingly, the
application of hyperheuristics is more appropriate to solve different problems or even instances
of the same problem and does so by managing a set of low-level (meta)heuristics (LLHs).

Stellenbosch University https://scholar.sun.ac.za

2.4. Hyperheuristics 23

By combining LLHs, ensemble algorithms are constructed that enable each heuristic to compen-
sate, to some degree, for the weaknesses of others by method of algorithmic cooperation [142].
The result is a more effective search method that leads to a better overall performance when
compared with the performance of the individual heuristics, i.e. hyperheuristics are adept at
solving a larger range of problems [80, 36, 137]. Hyperheuristics can be classified in terms of
(i) the different sources of feedback information used and (ii) the nature of the heuristic search
space, as shown in Figure 2.11. Firstly, a hyperheuristic can be considered a learning algorithm
when it uses some form of feedback during the search process. The use of information during the
search process is termed online learning, used after the search process is termed offline learn-
ing [38]. Some studies incorporate both, called mixed learning, see [6]. Whenever no learning
takes place, a random or exhaustive process dictates the selection strategy [36].

Secondly, the nature of the heuristic search space, classified as either heuristic selection where
existing LLHs are selected or heuristic generation where new heuristics are generated from the
components of existing LLHs [38]. The second level corresponds to the nature of the search struc-
ture, delineated into two types of LLHs, either constructive or perturbative [38]. Constructive
heuristics incrementally build a complete solution from nothing by applying a selected LLH to
partial solutions at each step. Whereas, perturbation heuristics operate on complete solutions,
iteratively performing local search operations until some stopping (or termination) criterion is
reached [76, 123].

Generative

Constructive Pertubative

Selective

Constructive Pertubative

Hyperheuristics

Online
learning

Offline
learning

No
learning

Mixed
learning

(i) Source of feedback

(ii) Nature of the heuristic the
search space

Heuristic generationHeuristic selection

Figure 2.11: Classification of hyperheuristic approaches according to two dimensions: (i) the source of
feedback during learning, and (ii) the nature of a heuristic search space, adapted from [38].

MO selection hyperheuristics can either manage multiple MO metaheuristics [163, 164, 173]
within a single execution, for example MOEAs, or manage the components of a single MO
metaheuristic such as the crossover or mutation operators [108]. To conclude, a set of LLHs can
either be a set of metaheuristics or a set of metaheuristic components. A selection hyperheuristic
consists of two components: heuristic selection and move acceptance [29, 199]. In heuristic
selection, given a set of perturbative LLHs, a strategy is used to select the most appropriate
LLH to run at a certain point in the search. Thereafter, the perturbed solution(s) is either
accepted or rejected based on the move acceptance strategy.

The nature of the move acceptance strategy for selection hyperheuristics is classified as stochastic
if the accept (or reject) decision is determined with some probability, for example SA, or deter-
ministic, otherwise [38]. It is important to note that improving moves are always accepted, the
move acceptance strategy determines whether or not worsening moves are accepted [142]. Tables
2.3 and 2.2 shows some of the different strategies for move acceptance and heuristic selection,
respectively, note that this is not a taxonomy of all the strategies. When applying selection hy-
perheuristics to population-based methods, it is worth noting that the move acceptance strategy
often becomes a replacement strategy [37, 38].

Stellenbosch University https://scholar.sun.ac.za

24 Chapter 2. Literature Study

Note that it is possible to apply more than one heuristic selection and or move acceptance
strategy, however only one Heuristic Selection–Move Acceptance pair is considered in this paper.
Selection hyperheuristics are described in terms of these two components, allowing for a high
level of modularity, i.e. when either component is replaced by another, a new hyperheuristic is
created. An instance of this will be denoted as Heuristic Selection–Move Acceptance from this
point forward. A plethora of different Heuristic Selection–Move Acceptance combinations have
been explored within the context of perturbative selection hyperheuristics, refer to [36].

It is advised to introduce some learning into the heuristic selection process, to select the next
LLH intelligently and thereby aid the decision-making process [36]. Note that two approaches are
available when employing perturbative selection hyperheuristics, namely single-solution based
search or population-based search. The majority of perturbative selection hyperheuristic re-
search covers single-solution based search methods [51, 108, 201]. However, research is growing
for hyperheuristics using population-based search methods [76] and mixed approaches, i.e. using
single-solution and population-based search methods [126, 161].

Table 2.2: Move acceptance strategies in perturbation selection hyperheuristics.

Deterministic methods Description References

All moves Accepts all moves. [50, 51]

Only improving Only accepts improving moves. [50, 51]

Improving or equal Accepts improving or equal moves. [50, 51]

Threshold acceptance Accepts non-improving moves that are less than a prefixed threshold, in
terms of solution quality.

[29, 138, 182]

Late acceptance The new solution is compared to the Lth solution step and the decision
to accept is made accordingly.

[35, 200]

Stochastic methods Description References

Monte Carlo Accepts non-improving moves with a probability that decreases in relation
to the decrease in objective function value.

[9]

Great Deluge Accepts a move as long as it is no worse than an expected objective value
that changes linearly at each step.

[29, 138]

Tabu search Accepts the move if it is not on the tabu list. [42]

Simulated annealing Accepts non-improving moves with a probability, according to the
Metropolis rule.

[12, 13, 29, 74]

The majority selection hyperheuristics generate an online score based on each LLHs performance,
and based on the selection strategy chosen, the scores are processed and/or combined in a
systematic manner to select the heuristic to be applied to the candidate solution or population
of solutions at each step. A score-based hyperheuristic framework comprises of the following
components: (i) an initial score, (ii) memory length adjustment, (iii) heuristic selection strategy
based on the scores, (iv) score update rules in case of improvement of solution quality and (v)
score update rules in case of degradation of solution quality, respectively [37].

The first component, the initial score is assigned to all the LLHs, the initial score is typically
zero. The memory length adjustment controls how the previous LLHs performance influences
the selection strategy. Note that the choice of heuristic selection strategy may directly affect
the performance of the hyperheuristic [37]. For example, the max heuristic selection strategy
selects the heuristic with the maximum score, the Roulette wheel selects an LLH based on its
probability which corresponds to its performance [36]. The choice function (CF) is an example
of the max strategy and maintains a utility score for each LLH, the heuristic with the maximum
score is selected at each iteration. Another example and commonly used method is reinforcement
learning (RL), for more detail, refer to [132, 242].

Stellenbosch University https://scholar.sun.ac.za

2.5. Simulation metamodeling 25

Table 2.3: Heuristic selection strategies in perturbation selection hyperheuristics.

Max strategy Description References

Greedy Exhaustively applies all LLHs and selects the LLH that produced the best
solution.

[50, 51]

Choice function Adaptively ranks the LLHs with respect to a combined score on its indi-
vidual performance and selects the LLH with the best score.

[50, 51]

Roulette-wheel strategy Description References

Simple random Randomly selects a LLH at each step. [50, 51]

Random descent A LLH is selected at random and applied until no improvement is made. [50, 51]

Random permutation Generates a random order in which a LLH is selected at each step. [50, 51]

Random permutation
descent

Generates a random order in which a LLH is selected but does so when
no improvement is made.

[50, 51]

Reinforcement learning Tries to learn which LLH to select at which step and is based on scores
or cumulative reward.

[40, 74, 183]

RL heuristic selection selects an LLH by method of trial-and-error, the system attempts to learn
which actions result in reward and which actions result in penalty. To elaborate, if an LLH
improves a non-dominated solution, then it is rewarded and its score increases, otherwise it is
punished and its score decreases [36]. Empirical evidence shows that different combinations of
Heuristic Selection–Move Acceptance components yield different performances [29, 199]. The
results show that All Moves (AM) perform the worst, regardless of the selection strategy. Ex-
periments have shown that the move acceptance strategy significantly affects the performance of
the hyperheuristic as compared with heuristic selection. The most used and successfully imple-
mented heuristic selection methods include the choice function and the reinforcement learning
variants. For move acceptance methods, the best is SA and great deluge variants. Experiments
have shown that the choice of move acceptance methods significantly affects the performance of
the hyperheuristics, more so than the choice of heuristic selection methods [142].

Different frameworks for population-based searches have also been proposed, for example a
multi-algorithm genetically adaptive multi-objective (AMALGAM) approach [254]. AMALGAM
applies a set of LLHs simultaneously, where the number of solutions that each LLH may produce
is proportional to its individual past performance, i.e. the percentage of previously created
solutions that are non-dominated [38, 76]. An enhanced AMALGAM method was proposed for
population evolution during the optimisation process [140]. Later AMALGAM was applied to
single-solution based searches, proposed in [128]. So far, this chapter has discussed simulation
and its optimisation approaches, MOO preliminaries, metaheuristics and hyperheuristics. The
next section discusses artificial neural networks for the purpose of simulation metamodeling.

2.5 Simulation metamodeling

The DES models studied in this paper are complex, i.e. they have multiple sources of randomness
that require substantial computational effort to simulate. The computational inefficiency of
simulation motivated the development ofmetamodels in order to enhance the overall effectiveness
of the simulation optimisation process [5]. Using metamodels in combination with simulation
reduces the computationally expensive (time-intensive) nature of simulation by searching the
solution space more intelligently and less exhaustively [5]. The computational time (or simulation
time) required by a simulation model depends greatly on the complexity of the model and may
range from minutes to hours and even weeks.

Stellenbosch University https://scholar.sun.ac.za

26 Chapter 2. Literature Study

The more complex the system, the harder it is to model, resulting in lengthy computational
requirements [248], which is particularly true for complex COPs [18, 248, 258]. Despite the
potential of SO, the excessive computational time required is a limiting factor, and reducing
the model complexity is not an option. Because even if an optimal solution is found, it is for
a model that does do not adequately represent the real system [156]. To this end, metamodels
are proposed to aid in the simulation optimisation procedure and reduce the computational
time required, by acting as a filter for potentially low-quality solutions, thereby mitigating
computationally expensive evaluations of the simulation model [5, 156].

As discussed previously, and as seen in Figure 2.3, metamodels require less computational time
than simulations because they are deterministic rather than stochastic and can be used in
combination with simulation so as to leverage the trade-off between the time, cost, risk and
quality [109], thereby simplifying the simulation optimisation process. Simulation metamodels
offer a trade-off between accuracy and efficiency, by trying to predict the input-output rela-
tionships inherent to the simulation model, thereby offering significant advantages regarding
computational efficiency [87]. For an example, see the development of the OptQuest tool [99].

Metamodels can provide a fast decision support that aids the overall effectiveness of the sim-
ulation optimisation process [109, 219]. Note that the inputs (or decision variables) of the
simulation model are also the inputs of the metamodel, and the outputs (or objective func-
tion values) of the simulation model are used to train the metamodel [109]. There are several
techniques for simulation metamodelling, each having advantages, disadvantages and applicable
domains [18, 248]. The most frequently used techniques in recent literatures include artificial
neural networks (ANNs) [86, 87], genetic programming (GP), multivariate adaptive regression
splines (MARS) [88], spatial correlation or Kriging (KG) [144, 145, 146, 220], radial basis func-
tions (RBF) [178, 190, 230] and support vector regression (SVR) [44].

Publications combining ANNs and simulation are on the rise, the reader is referred to [41, 86,
155, 191, 248], either for simulation metamodeling purposes [248] or as part of the simula-
tion optimisation process which is part of simulation software such as OptQuest, Optimiz and
Simul8 [3, 5], however not yet in Tecnomatix [16]. The next section discusses the pertinent
literature related to the fundamentals of ANNs, mainly to introduce concepts and the notations
used throughout this paper.

2.5.1 The fundamentals of artificial neural networks

ANNs are mathematical models inspired by the generally accepted notion of how the brain
learns from experience by processing information enabling machines to learn in an automated
fashion and is the fundamental underpinning of the domain of machine learning (ML) [106].
To elaborate, ANNs learn from training data which consist of a set of input values and, in the
case of supervised learning, its corresponding output values. The network is able to map the
input-output relationship intrinsic to the data and does so in an iterated manner. Mitchell et
al. [184] provides a succinct definition:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T , as
measured by P , improves with experience E.”

Learning from experience is defined as the method of attaining the ability to perform a task,
and can be accomplished in a supervised, semi-supervised, unsupervised or reinforced manner,
depending on the experience E.

Stellenbosch University https://scholar.sun.ac.za

2.5. Simulation metamodeling 27

Unsupervised learning requires a model to learn from inputs what the underlying function of
the dataset is without having the corresponding outputs to compare to (or learn from). Semi-
supervised learning combines supervised and unsupervised learning, i.e. some of the inputs
include a corresponding output to learn from while others do not. Reinforcement learning
(RL) is different to the other machine learning paradigms as it follows a trail-and-error search
approach and delays reward. RL attempts to learn what the best action is that will maximise
the cumulative reward, the reader is referred to [242].

The two main supervised learning tasks that ANNs can perform are classification and regression
and some applications include clustering, function approximation and optimisation [179]. Given
some input, a classification task would predict the category to which some input belongs, whereas
a regression task would predict some numerical value [106]. To evaluate the performance of an
ML algorithm, a quantitative measure of its performance P is required and is dependent on the
task T being performed and is discussed later. This study focusses on function approximation
for regression tasks. The focus of this study is on regression tasks T and supervised learning
experiences E using ANNs.

ANNs are generally classified into three main categories, exhibiting noteworthy differences, re-
current neural networks (RNNs), convolutional neural networks (CNNs) and Feedforward neural
networks (FNNs). RNNs use memory in the form of feedback connections, where information is
transmitted to and from preceding layers, that enables the network to process and analyse se-
quential data and perform tasks such as speech recognition with exceptional performance [262].
CNNs perform tasks such as pattern-and-image classification by taking as input an image and
encoding specific features into the network architecture that allows the network to learn from
the pixels and make predictions [81, 106]. For a systematic introduction see [211]. FNNs (or
multi-layer perceptrons (MLPs)) allow data to be transmited thought the network, strictly in a
forward direction, i.e. no feedback connections exist [106].

The three basic elements of an ANN are illustrated by the perceptron in Figure 2.12 [153]:

1. A set of weighted connections, also called synapses. Specifically, when referring to Figure
2.12, input signal xi is connected (or multiplied) by weighted connection wi.

2. The weighted sum z, sums the input signals multiplied by their respective weighted con-
nections and adding a bias, denoted by

z =
n∑

i=1

xiwi + b, (2.8)

where b is the bias associated with each neuron and n is the number of inputs. The purpose
of incorporating this bias value is to shift the activation function either to the left or right,
adjusting the neuron’s inherent threshold.

3. An activation function, denoted by σ(z), mathematically models the firing process of a
biological neuron, i.e. a node only relays information if the weighted sum of that node
exceeds some inherent threshold, called the activation of the node.

A biological brain comprises of a network of biological neurons, therefore neurons are the core
building blocks of ANNs as they try to mimic how the brain functions by controlling a network
of artificial neurons, referred to as a node from this point on [153]. As shown in Figure 2.12,
a neuron receives inputs {x1, . . . , xi, . . . , xn}, weighted with {w1, . . . , wi, . . . , wn} and a bias b,
respectively. The sum of the weighted connections z =

∑n
i=1 xiwi+b then produces the predicted

output ŷ = σ(z) of the neuron, according to the activation function σ.

Stellenbosch University https://scholar.sun.ac.za

28 Chapter 2. Literature Study

σ

(
n∑

i=1

xiwi + b

)
ŷ

x1

xi

xn

+1

..
.

..
.

Inputs,
xi

Bias,
b

w1

wi

wn

b

Predicted out-
put, ŷ

Activation
function, σ(z)

Weights,
wi

Figure 2.12: Mathematical model of an artificial neuron and its processing capabilities.

The output represents the transmitted signal strength of the neuron which is influenced by the
weighted connections and bias. Unfortunately, a perceptron is unable to learn from data that are
not linearly separable, which is the case for the logical operation exclusive or (XOR). However,
two perceptrons combined could. ANNs may be defined by the topology in which the neurons are
connected, termed the network architecture, the training algorithm used and activation function
applied [84]. These components and other relevant information are discussed in the following
sections.

2.5.2 The network architecture

In terms of network architecture, an ANNs can be classified as a single-layer or multi-layer
network. A neural network may be described in terms of layers, where the layers consist of
neurons, i.e. neurons are partitioned into different layers as depicted in Figure 2.13, the first
layer is called the input layer and the neurons in that layer input neurons, the last layer is called
the output layer and the neurons output neurons. The layers in between are called hidden layers
and the neurons hidden neurons. Typically, the same activation function is applied to neurons
in the same layer.

Single-layer networks, similar to the network presented in Figure 2.12, do not have hidden layers.
Multi-layer networks consist of an input layer, at least one hidden layer and an output layer
and is capable of learning in respect of linearly separable data [84]. An ANN with more than
one hidden layer is referred to as a deep neural network (DNN) [192]. Note that there are other
conventions being followed, as seen in [192].

In FNNs, signals (or information) are propagated from one neuron to the next in a forward
direction through the network layers, starting at the input layer moving through the hidden
layers towards the output layer [84]. Consequently, the architecture of a fully-connected (or
interconnected) ANN is explained using an FNN with one hidden layer, as depicted in Figure
2.13. The network has n input neurons each representing an input, h hidden neurons with a
bias term in each layer and m output neurons each representing an output. The bracketed
superscripts denote the relevant layers, adopting the convention that the input layer is layer
one, hidden layer is layer two and output layer is layer 3. It should be noted that the neurons
from one layer are connected to the neurons in the subsequent layer, however, neurons in the
same layer are not connected to one another.

Stellenbosch University https://scholar.sun.ac.za

2.5. Simulation metamodeling 29

..

.

...

1

a
(1)
1

a
(1)
i

a
(1)
n

a
(2)
1

..

.

a
(2)
j

...

a
(2)
h

1

a
(3)
1

..

.

a
(3)
k

...

a
(3)
m

x1

xi

xn

ŷ1

ŷk

ŷm

w
(1)
11

w
(1)
j1

w
(1)
h1

w
(1)
1i

w
(1)
ji

w
(1)
hi

w
(1)
1n

w
(1)
jn

w
(1)
hn

b
(1)
1 b

(1)
j

b
(1)
h

w
(2)
11

w
(2)
k1

w
(2)
m1

w
(2)
1j

w
(2)
kj

w
(2)
mj

w
(2)
1h

w
(2)
kh

w
(2)
mh

b
(2)
1

b
(2)
k

b
(2)
m

σ(1)(·)

σ(1)(·)

σ(1)(·)

σ(2)(·)

σ(2)(·)

σ(2)(·)

Input layer Hidden layer Output layer

Figure 2.13: Illustration of the notation used for a FNN with one hidden layer.

Furthermore, Figure 2.13 demonstrates the notation adopted throughout this study. The weights
are numbered sequentially, starting at the first neuron in the input layer to the first hidden

neuron in the hidden layer. Specifically, let w
(1)
ji denote the weighted connection associated with

the input neuron i and the hidden neuron j, and let b
(1)
j denote the bias for hidden neuron

j. Similarly, let w
(2)
kj denote the weighted connection associated with the hidden neuron j and

output neuron k, and let b
(2)
k denote the bias for output neuron k. The biases are represented

as adjustable weights from additional inputs with a value of one [30].

The main components of the FNN with one hidden layer presented in Figure 2.13 can be sum-
marised as:

• Input layer activations, denoted by a(1) = [a
(1)
1 , . . . , a

(1)
i , . . . , a

(1)
n]T ,

• hidden layer activations, denoted by a(2) = [a
(2)
1 , . . . , a

(2)
j , . . . , a

(2)
h]T ,

• output layer activations, denoted by a(3) = [a
(3)
1 , . . . , a

(3)
k , . . . , a

(3)
m]T ,

• weights corresponding to the connection between input neuron i ∈ {1, . . . , n} and hidden

neuron j ∈ {1, . . . , h}, denoted by w
(1)
ji and contained within a weight-matrix W(1) and

bias denoted by b
(1)
j ,

• weights corresponding to the connection between hidden neuron j ∈ {1, . . . , h} and output

neuron k ∈ {1, . . . ,m}, denoted by w
(2)
kj and contained within a weight-matrix W(2) and

bias denoted by b
(2)
k ,

• input layer activation functions are excluded as the identity function is used, the hidden
layer activation functions are denoted by σ(1)(·) and the output layer activation functions
are denoted by σ(2)(·).

Stellenbosch University https://scholar.sun.ac.za

30 Chapter 2. Literature Study

The process followed to determine the predicted output ŷk is termed forward propagation. Given
the aforementioned information, the FNN with one hidden layer can be expressed analytically in
terms of a mathematical function. Recall that the activation function used in the input layer is

the identity function, therefore σ(xi) = a
(1)
i = 1(xi), i.e. the input signal is simply transmitted

onwards, as is. The input layer activations are subsequently used to calculate the net input (or
weighted sum) to hidden neuron j, denoted by z(j)(2) for j ∈ {1, . . . , h}.

The net input is given by

z
(2)
j =

n∑
i=1

w
(1)
ji a

(1)
i + bj(1). (2.9)

The matrix expression that defines the net input for all the hidden nodes may be written as

w

(1)
11 w

(1)
1i . . . w

(1)
1n

w
(1)
j1 w

(1)
ji . . . w

(1)
hi

...
...

. . .
...

w
(1)
h1 w

(1)
hi . . . w

(1)
hn

⊙

a
(1)
1

a
(1)
i
...

a
(1)
n

+

b
(1)
1

b
(1)
j
...

b
(1)
h

 =

z
(2)
1

z
(2)
j
...

z
(2)
h

 ,

where ⊙ is the Hadamard product (or element-wise multiplication). Next, the activation of
hidden neuron j can be calculated by applying the activation function σ(1)(·) to the weighted
sum calculated in (2.9), such that

a
(2)
j = a

(
z
(2)
j

)
= σ(1)

(
z
(2)
j

)
. (2.10)

The matrix expression that defines the activation for all the hidden nodes may be written as

σ(1)

z
(2)
1

z
(2)
j
...

z
(2)
h

 =

a
(2)
1

a
(2)
j
...

a
(2)
h

 .

The calculations for calculating the weighted sum and activation of output node k is similar to
that of hidden neuron j, and is given as

z
(3)
k =

h∑
j=1

w
(2)
kj a

(2)
j + b

(2)
k , (2.11)

where h is the number of hidden nodes. The matrix expression that defines the weighted sum
for all the output nodes may be written as

w

(2)
11 w

(2)
1j . . . w

(2)
1n

w
(2)
k1 w

(2)
kj . . . w

(2)
kn

...
...

. . .
...

w
(2)
m1 w

(2)
mj . . . w

(2)
mn

⊙

a
(2)
1

a
(2)
j
...

a
(2)
h

+

b
(2)
1

b
(2)
k
...

b
(2)
m

 =

z
(3)
1

z
(3)
k
...

z
(3)
m

 .

Stellenbosch University https://scholar.sun.ac.za

2.5. Simulation metamodeling 31

Next, the activation of output neuron k can be calculated by applying the activation function
σ(2)(·) to the weighted sum calculated in (2.11), such that

a
(3)
k = a

(
z
(3)
k

)
= σ(2)

(
z
(3)
k

)
, (2.12)

where a
(3)
k represents the output ŷk. The matrix expression that defines the activation for all

the output nodes may be written as

σ(2)

z
(3)
1

z
(3)
k
...

z
(3)
m

 =

a
(3)
1

a
(3)
k
...

a
(3)
m

 .

The FNN is simply a non-linear function which is controlled by adjusting the network weights
and biases [30]. The weights and biases that represent the underlying input-output relationship
of the data are determined by a training (or learning algorithm) according to which network
weights and biases are updated in an iterative and algorithmic fashion.

2.5.3 The network training algorithms

Recall that supervised learning is adopted in this study, i.e. the ANN is presented with input–
output pairs from which the network adjusts its weights and biases so as to best approximate the
functional mapping from inputs to outputs. There are three approaches that may be adopted
to train an ANN, namely first-order optimisation algorithms, second-order optimisation algo-
rithms and metaheuristics [106]. This section focuses on first-order algorithmic approaches as
second-order approaches are rendered intractable as the problem complexity and cardinality
increases [106]. More on this in Chapter 3. The backpropagation training algorithm introduced
a computationally efficient method for minimising the the error function that measures the pre-
diction error of the network. The derivatives of the error function with respect to the network
weights and biases are used to determine what changes to the weights and biases would result
in the largest decrease in network error [30, 83, 194]. There are four steps involved during
backpropagation training of neural networks [83, 194]:

1. Forward propagate an input training vector (or training example) through the network,
as shown in the previous section using (2.9)–(2.12).

2. Calculate the network errors using

E =
1

2

m∑
k=1

(ak − yk)
2, (2.13)

where m is the number of output nodes, and the network error is the sum of the individual
output errors denoted by E = 1

2

∑m
k=1 Ek. Recall that ak = ŷk, i.e. the predicted output.

3. Determine the derivatives of the error function with respect to the network weights and
biases.

4. Adjust the network weights and biases according to the chosen learning rate2.

2A hyperparameter which controls the step size used to minimise the error function, i.e. speed of learning.

Stellenbosch University https://scholar.sun.ac.za

32 Chapter 2. Literature Study

During forward propagation, a training example is transmitted through the network. The ac-
tivation of the output layer is the predicted output for the given training example. Next, the
network error may be calculated by comparing the predicted output (or response) ak with the
actual output (or target value) yk using (2.13). Now the derivatives of the error function with
respect to the network weights and biases can be calculated and the necessary adjustments to the
weights and biases can be made. The derivation for the backpropagation algorithm is presented
within the context of the FNN with one hidden layer, as depicted in Figure 2.13 in Appendix C.

The adjustments to the weights and biases can be performed by stochastic or batch update.
Stochastic (or online) updates occur for each training example, whereas when batch updates
are performed, the error accumulates and one adjustment is made after n training examples,
where n represents the batch size. Stochastic updates have the advantage of escaping local
minima, however batch updates enable the network to learn faster because the adjustments can
typically be more considerable. The weights regulate how much an input influences the predicted
output and the biases can have an influence on feature importance. The goal of training the
network is to find the weights and biases that result in the predicted output matching the actual
output [134, 188].

When training a neural network, only a percentage of the entire dataset is used, typically 80%
of the dataset which is commonly referred to as the training set. After training the network,
the remaining 20% of the dataset is used to measure the network performance, which is called
the test set. When the network exhibits good performance when measured on the training set,
but poor performance when measured on the testing set, the network is deemed to overfit the
data, i.e. it memorises well but generalises poorly [30]. Consequently, performance with respect
to the test set is of paramount importance, i.e. how well the network was able to generalise to
new (or unseen) data. Note that the performance measure used depends on the task, in this
case regression. This matter is discussed in detail in Chapter 3.

It is also considered good practice to have a validation set which is used for regularisation
purposes and to adjust certain parameters of the network, called the hyperparameters (e.g.
learning rate). Accordingly, the dataset is partitioned into the training set, validation set and
test set, typically with a proportion of 60%:20%:20%, as seen in Figure 2.14. Note that it is also
common practice to partition the dataset into only a training and test set and then partition
the training dataset into a training and validation set, i.e. a 80%:20% partition and then the
80% is split again to form 60%:20%, i.e. a quarter of the training dataset becomes the validation
set [34, 154, 212, 218, 227].

60%

Training set

20% 20%

Test setValidation set

Training or learning set

Dataset

Figure 2.14: Illustration of a dataset partitioned into a training, validation and test set respectively,
adapted from [227].

It should be noted that during training, only the parameters, i.e. the weights and biases, are
typically optimised, not the hyperparameters. Hyperparameters may be adjusted and has been
reported to considerably influence the performance of the network [30].

Stellenbosch University https://scholar.sun.ac.za

2.5. Simulation metamodeling 33

The hyperparameters typically include the number of hidden neurons per hidden layer, the
number of hidden layers, the activation function used in the hidden layers and output layer,
the training algorithm and its learning rate, see Chapter 3. According to Fausett [83], when
using a gradient-based training algorithm, the activation function should be continuous and
differentiable, this is because the derivative of the activation function is required to determine
the partial derivatives of the activation of a neuron with respect to the weighted sum of the
neuron which in turn is required to determine the derivative of the error function with respect
to the weights and biases. Some of the activation functions used in literature are discussed next.

2.5.4 Activation functions

The choice of activation function (or transfer function) is a critical part of the network archi-
tecture design, this is because the activation function can greatly affect the performance of the
network. Different activation functions can be used in different layers. A caveat when choosing
an activation function for both the hidden and output layers. When choosing an activation
function for the hidden layer, the nature of the input variables has to be considered, since it
controls the networks ability to learn from the inputs. The choice of activation function for the
output layer depends on the nature of the output variables, since it determines what predictions
(of the outputs) the network can make [83].

Activation functions essentially model the firing process of biological neurons mathematically,
which can be a linear or non-linear function. However, non-linear functions exhibit the same
level of functionality in a network with a single hidden layer as linear activation functions do in
a network with multiple hidden layers [192]. Moreover, the non-linear nature of the activation
functions is what empowers neural networks with respect to their nonlinear capabilities [159].
As such, non-linear activation functions are discussed in this section and will include the form,
mathematical expression, the advantages and disadvantages, as well as suitable applications of
each. The two simplest activation functions are the identity and the heavside (or binary step)
function, as shown in Figure 2.15a and 2.15b, respectively. The mathematical expression for the
identity function is given as σ(z) = 1(z), for all weighted sums z. The heaveside function is
given by

σ(z) =

{
0, z < 0,

1, z ≥ 0.
(2.14)

z

σ(z)

(a)

z

σ(z)

(b)

Figure 2.15: Illustration of the two simplest activation functions (a) the identity function and (b) the
heavside function, as given in (2.14).

Stellenbosch University https://scholar.sun.ac.za

34 Chapter 2. Literature Study

Recall, that the activation used in the output layer is dependent on the data type of the output
variable that the model must predict. Similar to the activation function chosen for the output
layer being dependent on the data type of the output variable, so is the activation function
chosen for the hidden layers [195]. The nature of the inputs and outputs must be considered.
For example, for binary inputs, an appropriate activation function could the logistic sigmoid or
the hyperbolic tangent function [83].

The sigmoid function can be seen in Figure 2.16a, where the logistic sigmoid function has a
slope of α = 1. These functions take any real number and map it to a probability between 0
and 1 depending on the threshold chosen. Suppose the threshold is set to 0.5, then a probability
smaller than 0.5 would be mapped to the outcome 0 (i.e. false), otherwise the outcome would be
1 (i.e. true). The sigmoid function is one of the most common non-linear activation functions
[81, 106], given by (2.15). The slope parameter is a hyperparameter, and may be adjusted to
influence the performance of the network, or may be learnt in a trail-and-error manner. Figure
2.16 illustrates the sigmoid function for α = {1, 1.5, 3},

σ(z) =
1

1 + e−αz
, (2.15)

and its derivative is given by

σ′(z) = α

(
1

1 + e−αz

)(
1− 1

1 + e−αz

)
, (2.16)

which can be written as σ′(z) = α (σ(z)(1− σ(z))) for the sake of brevity. It is clear by the ‘S’
shape of the hyperbolic tangent function that it is a member of the class of sigmoid functions,
illustrated in Figure 2.16b. Unfortunately, both functions in Figure 2.16 are insensitive to small
changes in the inputs and saturate when the network weights are either too large or too small.
The result is slow gradient descent, i.e. slow learning [116].

z

σ(z)

α = 1
α = 1.5
α = 3

(a) The sigmoid function

z

σ(z)

(b) The hyperbolic tangent function

Figure 2.16: The class of sigmoid activation functions.

The mathematical expression of the hyperbolic tangent function is given by

σ(z) = tanh(z), (2.17)

and its derivative is given by

σ′(z) = (1 + tanh(z))(1− tanh(z)), (2.18)

which can be written as σ′(z) = (1 + σ(z))(1− σ(z)), for the sake of brevity.

Stellenbosch University https://scholar.sun.ac.za

2.5. Simulation metamodeling 35

It has been reported that the performance of FNNs can be improved by employing piecewise
linear activation functions, such as rectified linear units (ReLUs), in the hidden layers rather
than sigmoid or hyperbolic tangent functions [106]. ReLU activation function was first proposed
for restricted Boltzmann machines (RBMs) [81, 189] and then successfully applied to neural
networks in [96]. It can be seen that the ReLU activation function is a combination of Figure
2.15b (for negative values) and Figure 2.15a (for positive values) and is reported to perform
better than the sigmoid and hyperbolic tangent functions [151].

The application of the ReLUs in DNNs have been reported to deliver promising results [96],
however because all negative values are zero, neurons may be made inactive prematurely. This
phenomenon is referred to as the ‘dying ReLU ’ problem. The parametric ReLU (PReLU), leaky
ReLU (LReLU) and the exponential linear unit (ELU) or Scaled ELU (SELU) are alternatives
that permit small negative values by having some slope in the negative region, thereby preventing
the issue [172]. Figure 2.17 is the graphical representation of the different activation functions,
and are discussed accordingly.

PReLU has a hyperparameter alpha (α) that controls the shape of the negative region of the
function and can be trained and improve the networks performance. PReLU function achieves a
notable performance advantage in terms of speed of convergence of the gradient-descent training
algorithm when compared with the sigmoid, hyperbolic tangent functions[135], and with negli-
gible additional computational cost [112]. Note that ReLU is the PReLU function, where α = 0.
The mathematical expression of PReLU is given by

σ(z) =

{
αz, z < 0,

z, z ≥ 0.
(2.19)

LReLU is the PReLU function, where α = 0.01, i.e. LReLU has a predetermined slope whereas
PReLU learns the slope. LReLU replaces the negative region of the ReLU function with a linear
function and has exhibited superior performance with respect to to ReLU [172]. ELU was first
proposed by Clevert et al. [45], designed to combine the advantages of ReLU and LReLU — to
avoid the so-called dying ReLU problem. ELU is similar to the LReLU, having a small slope
for negative values, however an exponential function controls the negative region as opposed to
a straight line. The mathematical expression of the ELU (or SELU) function is given by

σ(z) =

{
α(ez − 1), z < 0,

z, z ≥ 0.

z

σ(z)

ReLU

PReLU

LReLU

ELU

Figure 2.17: The different ReLU activation functions, for α ∈ {0, 0.01, 0.25}, and ELU.

Given a sufficient number of hidden neurons in the hidden layer(s), MFNNs are considered
universal function approximators, capable of approximating function arbitrarily [125].

Stellenbosch University https://scholar.sun.ac.za

36 Chapter 2. Literature Study

Note that more hidden layers and/or hidden neurons do not directly translate to a better function
fit. It does, however, result in a more complex network, a matter discussed in greater detail
later. Supporting this, Fausett [84] suggests that one hidden layer is sufficient for most function
approximations. Moreover, the universal approximation theorem [56, 124] support the use of
FNNs as simulation metamodels, as it states that an FNN with a single hidden layer containing
a finite number of neurons is sufficient to approximate any measurable function. However,
the theorem does not give any information about the network parameterisation and requires
a preliminary study to determine its feasibility. Intuitively, more training examples coincide
with improved network performance, here overfitting is not a consideration since the motivation
behind a metamodel is to reduce the computational time and therefore the goal is to build
a metamodel with limited training and be able to approximate the simulation models with a
certain level of accuracy [248].

2.6 Summary

This chapter contained a review of the most relevant and pertinent literature pertaining to
simulation optimisation methods for MOO as well as ANNs as metamodels. The reader was
presented with the necessary information to facilitate an understanding of the remainder of the
research reported in this study.

First, the need for simulation optimisation was discussed as well as methods for doing so. Next,
the MOO preliminaries required for solving MOOPs were documented. Metaheuristics and
hyperheuristics were discussed next. Lastly, ANNs as metamodels were discussed as they are
considered good candidates for metamodelling purposes, specifically FNN with one hidden layer.
The next chapter reports the preliminary study conducted to determine the feasibility of an FNN
with one hidden layer as a metamodel.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3

ANN as Metamodel Pilot Study

3.1 Machine learning models: Regression . 37

3.1.1 Linear regression . 37

3.1.2 Polynomial regression . 38

3.1.3 Support vector regression . 39

3.1.4 Decision tree regression . 39

3.1.5 Random forest regression . 40

3.2 Performance measures for assessing regression models 41

3.3 Hyperparameter optimisation . 42

3.3.1 ANN hyperparameters . 43

3.3.2 An introduction to generalisation techniques 49

3.4 Training, validating and testing the regression models 50

3.5 Conclusion: Chapter 3 . 53

The previous chapter introduced the fundamental concepts that will be used and build-upon
throughout this study.

The main objective of this chapter is to determine whether or not an artificial neural network
(ANN) as metamodel is a feasible solution to enhance the simulation optimisation process, in
fulfilment of Objective 2 as stated in Chapter 1. The first section introduces the supervised
learning regression models that are used as a benchmark for comparison. Next, the performance
metrics used to train the regression models as well as to quantify their performances are dis-
cussed. Thereafter, the hyperparameters considered for the hyperparameter search space are
discussed. The performance of the respective regression models are presented, followed by the
performance results of the best hyperparameters for the ANN. Penultimately, the regression
models (including the ANN) are compared and a conclusion is made whether or not an ANN as
metamodel is feasible.

3.1 Machine learning models: Regression

It is necessary to compare the ANN with other regression models, specifically other supervised
learning regression models, which include linear regression (LR) [2], polynomial linear regression
(PLR) [113], support vector regression (SVR) [234], decision tree regression (DTR) [205], and
random forest regression (RFR) [55, 168]. The following sections provide a high-level overview
of the theory of each regressor.

3.1.1 Linear regression

Linear regression approximates the linear relationship between the independent variable (or
decision variable) and the dependent variable (or objective variable). However, more than one

37

Stellenbosch University https://scholar.sun.ac.za

38 Chapter 3. ANN as Metamodel Pilot Study

independent variable is of interest, i.e. multiple linear regression (MLR) and is formulated as [2]

ŷ = β0 + β1x1 + . . .+ βnxn, (3.1)

where ŷ is the dependent variable (to be predicted), β0 is the y-intercept and x1, . . . , xn are
the independent variables with their corresponding coefficients β1, . . . , βn that the regressor is
solving for. Moreover, the coefficients (βn) is the effect that xn has on the predicted value y. For
the sake of completeness, in this study, ŷ is a vector of two elements, i.e. two objective variables
each having their own linear relationship with the decision variables.

The goal of MLR, as visually presented in Figure 3.1, is to find the line that minimises the
distance between the actual value y and the predicted value ŷ [81], given by

∑
(y − ŷ)2.

40 50 60 70 80 90 100
150

160

170

180

190

x1

x2

Figure 3.1: An illustration of multiple linear regression.

A caveat, however, is that the assumptions of linear regression which include linearity, ho-
moscedasticity, multivariate normality, independence of errors and lack of multi-collinearity [2]
are not guaranteed, the model will simply perform poorly if the relationships embedded within
the data are non-linear [81]. Polynomial regression is discussed next.

3.1.2 Polynomial regression

Polynomial regression, a special case of linear regression, however, can approximate non-linear
relationships by method of an nth degree polynomial. The function ŷ can be expressed as a
linear combination of the coefficients. The nth degree polynomial for one decision variable is
given by [113]

ŷ = β0 + β1x+ β2x
2 + . . .+ βnx

n, (3.2)

where β0, . . . , βn represents the coefficients of x, not the x variable, that the regressor is solving
for. Figure 3.2 illustrates how polynomial regression works by fitting a 1st, 2nd and 3rd degree
polynomial to the data.

Data
1-degree
2-degree
3-degree

Figure 3.2: Illustration of polynomial regression fitting data.

Stellenbosch University https://scholar.sun.ac.za

3.1. Machine learning models: Regression 39

3.1.3 Support vector regression

Support vector regression is based on statistical learning theory [251] used to find the decision
boundary between groups of data. Future data is predicted based on where they are in terms of
the boundary [234]. For a more in-depth overview of SVR, the reader is referred to [176, 223,
8]. The formulation for SVR is given by [49]

1

2
||w||2 + C

m∑
i=1

(ξi + ξ∗i)→ min, (3.3)

where ||w||2 is the l2-norm of the coefficient vector and C is a hyperparameter that determines
the trade-off between the flatness of the function f and the tolerance for solutions outside ε
that are allowed. The slack variables (ξ) contribute to the cost, if the solution is above the
ε-insensitive tube, the solution is ξ otherwise, it is ξ∗.

Figure 3.3 depicts this graphically, only the points outside the tube, i.e. support vectors ξ∗1 , ξ2, ξ
∗
3 ,

ξ∗4 , ξ5, ξ∗6 , ξ7, ξ∗8 , ξ9, contribute to the cost and therefore determine how the tube is created
and consequently the flexibility of the model.

ξ∗1

ξ2

ξ∗3
ξ∗4

ξ5

ξ∗6

ξ7

ξ∗8
ξ∗9

+ε

−ε

x1

x2

Figure 3.3: An illustration of support vector regression, adapted from [223].

For the sake of completeness, note that the boundary can only be found for linearly separable
data, otherwise SVR has to be extended by either mapping the data to a higher dimension,
thereby rendering the data linearly separable, or by applying a kernel to the data [81, 234].

3.1.4 Decision tree regression

Decision tree regression performs predictions by learning decision rules inferred from the data.
For example, in Figure 3.4, a dataset is divided into smaller subsets, which create the associated
decision tree. The subsets are determined by splitting the data. The splits are determined by the
information entropy, i.e. a split is made if it results in an increase in the amount of information
about the dataset [205].

Figure 3.4a is used to aid in illustrating the working of decision tree regression. How and where
the splits are made is determined by the algorithm, but for demonstration purposes assume the
algorithm determined the splits as shown in Figure 3.4a.

Split 1 is x1 at 20, splitting the data for the first time. Therefore, the first decision is x1 < 20
as seen in Figure 3.4b. Next, the algorithm makes a second split, Split 2 x2 at 170, creating
the second decision, where x2 < 170, and so on, until Split 4. In this example, Split 4 was the
last split which means no more information could be added (or gained) by splitting a leaf again.

Stellenbosch University https://scholar.sun.ac.za

40 Chapter 3. ANN as Metamodel Pilot Study

The final split resulted in five terminal leaves. The associated decision tree based on the splits
is given in Figure 3.4b.

x1

x2
Split 1

Split 2

Split 3

Split 4

300.5∗

1023∗65.7∗

0.7∗−64.1∗

20

170

200

40(30)

(50)

(a) The terminal leaves or splits.

x1 < 20

x2 < 200

300.5∗

Yes

65.7∗

No

Yes

x2 < 170

x1 < 40

−64.1∗

Yes

0.7∗

No

Yes

1023∗

No

No

(b) The resulting decision tree.

Figure 3.4: An illustration to aid in explaining how decision tree regression works, adapted from [81].

For example, the predicted value of y where x1 = 30 and x2 = 50 is determined as follows. It
can be seen that the point {30, 50} falls within the red terminal leaf depicted by the black data
point. The predicted value for y is the average of the red terminal leaf, i.e. y = −64.1.

3.1.5 Random forest regression

Random forest regression applies ensemble learning1 to regression trees, i.e. it creates a number
of regression trees (N), and averages the prediction of all the trees. The y prediction is based on
N trees (or a whole forest of trees), whereby improving the accuracy of the predictions because
an average is taken of N trees (or predictions) [81]. The random forest regression algorithm is
given in Algorithm 3.1.

Algorithm 3.1: Random Forest Regression [81]

Input : Training set and testing set, the number of trees you want to build, denoted by Ntree.
Output : Predicts the output y based on the input x
repeat1

Pick at random K data points from the training set;2

Build the Decision Tree associated to these K data points;3

until Number of trees built = Ntree ;4

for New data point x do5

foreach Tree N do6

Predict yN for tree N7

x←
∑N

i=1 yi
N

.

This concludes the high-level overview of the regression models used in this study. It is sufficient
to know how to use the algorithms at a high-level of abstraction, since each regressor was
implemented in Python using existing libraries [81].

1When multiple algorithms or a single algorithm is used multiple times, to create a more powerful algorithm.

Stellenbosch University https://scholar.sun.ac.za

3.2. Performance measures for assessing regression models 41

Additionally, because of its popularity, extreme gradient boosting (XGBoost) is also used for
comparison purposes. XGBoost is an open-source implementation of the gradient boosted trees
algorithm. For more detail the reader is referred to [43]. The next section discusses the perfor-
mance measures that are used to train the regression models as well as quantify their perfor-
mances.

3.2 Performance measures for assessing regression models

There are many performance metrics (within the context of regression problems) that describe a
model’s capability to learn from data (or so-called goodness of fit), some of which are discussed
here [239].

Mean Squared Error (MSE) takes the square difference between the actual value and the
predicted value. Therefore, when the difference is great, the squared difference is even
greater, emphasising the error and can be expressed as [188]

MSE =
1

Q

m∑
k=1

(yk − ŷk)
2, (3.4)

where Q is the number of training examples, yk is the target output value, ŷk the predicted
value and m the number of outputs. MSE has been extended to root Mean Square Error
(RMSE), which measures the standard deviation of the error between the predicted and
the actual value, indicating the overall approximation capability of the regressor and can
be expressed as [188]

RMSE =

√√√√ 1

Q

m∑
k=1

(yk − ŷk)2. (3.5)

The smaller the RMSE, the better the approximation.

Mean Absolute Error (MAE) represents the average of the absolute differences between the
predicted and actual value and can be expressed as [188]

MAE =
1

Q

m∑
k=1

|yk − ŷk|. (3.6)

Coefficient of Determination (R2) is a statistical measure used to explain the correlation
between variables and can be expressed as

R2 = 1−
∑m

k=1(ŷk − yk)
2∑m

k=1(ȳk − yk)2
, (3.7)

where ȳk is the average. Note that R
2 will continue to increase as the number of parameters

increase, therefore an adjusted R2 is proposed which adds a penalty term to penalise
complex models, because greater complexity does not necessarily translate to improved
performance [188]. Adjusted R2 is given by

R2
adj = 1− (1−R2)

Q− 1

Q− n− 1
, (3.8)

where n is the number of decision variables. If R2 = 1, the variables are perfectly corre-
lated.

Stellenbosch University https://scholar.sun.ac.za

42 Chapter 3. ANN as Metamodel Pilot Study

Each measure provides some indication of the prediction error made by the model and may be
interpreted as the cost of predicting. If a batch learning approach is adopted, then the error is
calculated across the Q input-output training examples that constitute the batch. If an online
learning approach is followed, on the other hand, then the summation is omitted [188].

The next section discusses the hyperparameter optimisation performed to determine the best
hyperparameter combination for the FNN with one hidden layer.

3.3 Hyperparameter optimisation

In the context of ANNs, hyperparameters are parameters of the neural network that are set prior
to the training process, that is, prior to determining the weights and biases [33]. Determining
the best hyperparameter combination, however, is not a trivial task and requires some form of
optimisation. There are several hyperparameter optimisation techniques, Table 3.1 shows the
high-level overview of the different techniques for sequential and parallel computing. Parallel
algorithms are listed for the sake of completeness, however only sequential algorithms are consid-
ered. For in-depth discussions the reader is referred to [25, 26, 235]. Grid search exhaustively

Table 3.1: A summary of hyperparameter optimisation algorithms.

Random Adaptive Evolutionary

Sequential Grid search or random search Bayesian optimisation Genetic algorithm

Parallel Asynchronous successive halv-
ing algorithm (ASHA)

Bayesian optimisation with
hyperband (BOHB)

Population-based
training

evaluates a model for each hyperparameter combination specified, whereas random search sam-
ples each hyperparameter combination from a distribution, over all possible parameter values,
and is likely to discover better combinations (faster) than grid search due to its exploration of
the parameter space [25]. Bayesian optimisation samples regions that result in a better network
performance with a higher likelihood. Initially, Bayesian optimisation resembles random search,
but as the search progresses the algorithm uses information inferred from past trials to guide
the search. It has been shown that Bayesian optimisation is able to find better hyperparameter
combinations than random search [26].

Consequently, Bayesian optimisation is used to determine the best hyperparameter combination
to use for the FNN with one hidden layer. Figure 3.5a shows one function evaluation of what the
actual function g is at that point, next a Gaussian process is fit to this one training example and
the grey shaded area represents the approximate function of g for one observations, it should
be clear that the more function evaluations are performed the more the approximated functions
mirrors g. Next, an acquisition function is used to determine the next point to evaluate g, with
a high probability of getting a lower function value (for a minimisation problem). It can be seen
in Figure 3.5h that after only eight function evaluations, the Gaussian process is a relatively
good approximation of g.

Due to the time-consuming process of selecting and evaluating hyperparameter combinations,
with the goal of finding the best combination [33], the next section discusses the most appropriate
design choices that are considered in the hyperparameter optimisation search space.

Stellenbosch University https://scholar.sun.ac.za

3.3. Hyperparameter optimisation 43

θ

g(θ)

(a) One function evaluation

θ

g(θ)

(b) Two function evaluations

θ

g(θ)

(c) Three function evaluations

θ

g(θ)

(d) Four function evaluations

θ

g(θ)

(e) Five function evaluations

θ

g(θ)

(f) Six function evaluations

θ

g(θ)

(g) Seven function evaluations

θ

g(θ)

(h) Eight function evaluations

Figure 3.5: An example illustrating how Bayesian optimisation works, by fitting a Gaussian process for
each training example.

3.3.1 ANN hyperparameters

The Nobel prize winning physicist Enrico Fermi said:

“I remember my friend Johnny von Neumann used to say, with four parameters
I can fit an elephant, and with five I can make him wiggle his trunk.”

The point is that models with many parameters might be able to fit to the training data, but
overfitting does not make it a good model. For example, a 3rd degree polynomial overfits to the
data presented in Figure 3.2. Formally, the capability of the network to fit the training data
is known as memorisation, which means that the model will be able to predict values for the
existing data, but will fail to generalise to unseen data, known as generalisation [195].

Therefore, the main goal of an ANN is to be able to generalise to unseen data, i.e. make
predictions based on data it has not been trained on. Consequently, a trade-off exists between
the competing abilities of memorisation and generalisation [153].

Stellenbosch University https://scholar.sun.ac.za

44 Chapter 3. ANN as Metamodel Pilot Study

Network architecture and training epochs

In Figure 3.6d and 3.6e, it can be seen that the network’s generalisation error is the gap between
the training error and validation error. The generalisation error is characterised into two terms:
bias and variance. Bias measures the expected deviation between the predicted and the actual
value, while variance measures how much the network predicted output varies between datasets.
To elaborate, when a model performs poorly on the training set but well on the validation set (or
test set), the model is biased. Alternatively, when a model fits the training set well, but not the
validation set (or test set), the model is said to have high variance. Both cases are undesirable,
because the result is the same: poor predictions in respect of out-of-sample data [30].

(a) Underfitting (b) Good fit (c) Overfitting

Error

Generalisation error

Optimal capacity

(b) (c)(a)
Underfitting zone Overfitting zone

(Bias) (Variance)

Validation

error

Training

error

(d) An illustration of how the model’s complexity influence the models gener-
alisation capabilities

Error

Generalisation error

Optimal epoch

(b) (c)(a)
Underfitting zone Overfitting zone

(Bias) (Variance)

Validation

error

Training

error

(e) An illustration of how the number of epochs influence the models general-
isation capabilities

Figure 3.6: An illustration of the curve fitting phenomena that occurs when the ANN is too complex,
or that is trained for too long. These may result in a learning model that either underfits or overfits the
training set, resulting in large prediction errors, i.e. lack of generalisation in respect of the validation set,
adapted from [222].

Stellenbosch University https://scholar.sun.ac.za

3.3. Hyperparameter optimisation 45

The bias-variance tradeoff is strongly associated with the concepts of capacity (or complexity),
underfitting and overfitting. Informally, models with low capacity (for example an ANN with
a small number of hidden neurons) may struggle to fit to the training set, while models with
high capacity (for example an ANN with a large number of hidden neurons) can overfit by
memorising properties of the training set. Generally, increasing capacity and number of epochs
that the network is trained for tends to increase variance and decrease bias [30]. It can be
shown that the minimum network error is when the sum of the bias and variance are minimal,
illustrated by the red dashed lines in Figure 3.6d and 3.6e for the network capacity and number
of epochs trained respectively.

To elucidate this further, refer to Figure 3.6d. On the left side of the optimal capacity (red
dashed line), the training and validation errors are high and the model is underfit (or biased).
This is represented by the underfitting zone (a) in Figure 3.6d and the result is a poor function
fit as seen in Figure 3.6a. However, as the capacity increases, the training error decreases, but
the validation error increases and as a result, the generalisation error increases. On the right of
the optimal capacity, the model is considered overfit (or has high variance). This is represented
by the overfitting zone (c) in Figure 3.6d, also resulting in a poor function fit as seen in Figure
3.6c. The optimal capacity is where the smallest generalisation error exists, i.e. the point where
the validation error starts increasing while the training error gradually decreases [30, 179].

Early on in the training process, the networks predictions are far from the actual output and
therefore the bias is large, this can be seen in zone (a) of Figure 3.6e, the underfitting zone. As
training progresses, the bias decreases as the network learns the underlying function, however,
when the network is trained for too many epochs, the network may learn the noise present in the
dataset it was trained on causing the variance to increase, represented by zone (c) of Figure 3.6e
the overfitting zone [151]. From this, two important questions arise: During the construction of
an FNN (with one hidden layer), how many neurons should be used and for how many epochs
should the model be trained for? Where the goal is to create a model that can generalise well
to out-of-sample data. It is suggested that the required number of neurons depends on many
factors, namely, training set size, problem complexity and the generalisation techniques used to
name but a few [244].

Deciding on the right number of hidden neurons is clearly problem dependent and requires
expert knowledge to infer. Essentially, it must be determined empirically, serving as motivation
for its inclusion in the ANNs hyperparameter optimisation. Next, the learning in literature and
suggested rates are discussed.

Learning algorithms and learning rates

The ideal learning algorithm has low bias and can accurately model the underlying input-to-
output relationship found by finding the trade-off between underfitting and overfitting. Gradient
descent is the standard technique used for training ANNs. There are three variants of gradient
descent, which are defined based on the amount of data used to compute the gradient of the error
function and accordingly the frequency with which the weights and biases are updated. Again,
a trade-off exists, between the accuracy of the weight and bias updates and the computational
time required to perform the updates [194].

Figure 3.7 is used to elucidate this behaviour. Assume that there are 10 training examples
in the training set. Batch learning is where the weights and biases are only updated after all
or a subset of the training examples in the training set have been propagated through to the
network [194]. When the whole training set is used, it is termed batch gradient descent, whereas,
when a subset of training set is used, it is termed mini-batch gradient descent.

Stellenbosch University https://scholar.sun.ac.za

46 Chapter 3. ANN as Metamodel Pilot Study

In Figure 3.7, the mini-batch size is two. During online learning the weights and biases are
updated after each training example, termed stochastic gradient descent (SGD). It is termed
stochastic since the examples are selected at random, rather than using the whole dataset [194].

0 1

Batch learning

Mini-batch learning

Online learning

Epoch

Figure 3.7: An illustration of online, mini-batch and batch learning.

Whenever the weights and biases are updated, an iteration is incremented, whether it was
updated after a single training example (online learning) or a batch of training examples (batch
learning). Moreover, when the entire training set has been evaluated by the training algorithm,
an epoch is incremented. For example, to elucidate these two definitions further, take the
previous example of 10 training examples. If online learning is employed, then when 10 iterations
pass an epoch is completed. On the other hand, when batch learning is employed with a batch
size of 2, then an epoch will be incremented after 5 iterations have been completed. When batch
learning is employed, where the batch size is equal to the number of training examples, then one
iteration is equal to one epoch.

Stochastic gradient descent maintains a single learning rate for all weight updates and the
learning rate does not change during training, i.e. adaptively. For this reason, some gradient
descent optimisation algorithms have been proposed, where the learning rates are adapted during
the search. The algorithms include:

1. Nesterov momentum [208, 241], was developed to help accelerate SGD in the relevant
direction.

2. Nesterov accelerated gradient (NAG) [193], was developed to improve upon the momentum
term, instead of blindly following the slope, Nesterov evaluates gradients using the previous
velocity.

3. Adaptive gradient algorithm (AdaGrad) [78] improves upon NAG and is an algorithm that
adapts the learning rate to the parameters.

4. Adadelta [263] is an extension of Adagrad that seeks to reduce its radically decreasing
learning rates, by adapting the updates for each individual parameter.

5. Root mean square propagation (RMSprop), proposed by Geoffrey Hinton [116, 245], similar
to Adadelta was developed to resolve Adagrad’s radically diminishing learning rates.

6. Adaptive moment estimation (Adam) [141] is a combination of RMSprop and momentum,
and compares favourably to other adaptive learning-method algorithms.

7. AdaMax [141] adapts the update rule in Adam.

8. Nesterov-accelerated Adaptive Moment Estimation (Nadam) [75], is a combination of
Adam and NAG, Adam is essentially RMSprop with momentum, Nadam is Adam with
Nesterov momentum.

Stellenbosch University https://scholar.sun.ac.za

3.3. Hyperparameter optimisation 47

SGD is included in the hyperparameter search space of the ANN, and because of their simplicity,
computational efficiency, relatively low memory requirements and combined advantages [106],
Adam and Nadam are also included in the ANN’s hyperparameter search space. The learning
rate determines how fast the model learns during training or the amount that the weights are
updated during training, also referred as the step size. Therefore, the learning rate affects
both the learning speed as well as the convergence of the model. In Figure 3.8, an illustration
is presented of the effect of the learning rate on the networks capability to learn. Note that
smaller learning rates require more training epochs as the ‘steps’ are smaller, whereas larger
learning rates require fewer training epochs as a result of the large ‘steps’ taken to update the
weights [106].

Figure 3.8a illustrates the effect of employing a small learning rate, training takes long and it
is possible that the algorithm can get stuck at a local optimum because the ‘step’ is too small.
Figure 3.8c illustrates the effect of employing a high learning rate, which can cause premature
convergence to suboptimal values for the weights. The learning rate that results in the fastest
convergence is ηopt, as seen in Figure 3.8b. The largest learning rate that can be used without
causing divergence is ηmax = 2ηopt [159], if η > 2ηopt the algorithm will diverge and high-quality
weights will not be found, as illustrated in Figure 3.8d.

According to Goodfellow et al. [106], the learning rate might be the most important hyperpa-
rameter, serving as motivation for its inclusion in the hyperparameter search space. Note that
a single learning rate is considered for the weights.

wopt w

E(w)

(a) η < ηopt

wopt w

(b) η = ηopt

wopt w

E(w)

(c) η > ηopt

wopt w

(d) η > 2ηopt

Figure 3.8: Gradient descent for different learning rates, adapted from [159].

Next, methods for network weight initialisation are discussed.

Stellenbosch University https://scholar.sun.ac.za

48 Chapter 3. ANN as Metamodel Pilot Study

Network weight initialisation

Humans tend to learn faster when they make mistakes, however, the same does not hold true
for neural networks. For example: Take a network with one input to a node. Suppose the goal
was to train the single input neuron to take the input 1 and change it to the output 0. However,
trivial this task may seem, it will help to explain the learning slowdown phenomenon that occurs
when the initial weight value is too large, and is therefore worth computing the weight w and
bias b using gradient descent.

Experiment 1 The first experiment uses the parameters and hyperparameter (the learning
rate) as specified in Figure 3.9a, which leads to an initial output of 0.82 which is far from
the desired 0.0. Figure 3.9a shows how the neuron rapidly learns the weight and bias that
minimises the error and produces an output of 0.09 which is much closer to 0.0.

Experiment 2 The second experiment uses the parameters and hyperparameter as specified in
Figure 3.9b, which leads to an initial output of 0.98 which is even further from the desired
0.0, although they use the same learning rates. Figure 3.9b shows how the neuron learns
markedly slower, in fact, at the beginning the weight and bias barely change. Then, as
learning kicks in the neuron’s output rapidly moves closer to 0.0. The learned weight and
bias minimises the error and gives an output of 0.20.

To summarise, Experiment 1 performs better and yields a better prediction for the output than
Experiment 2 and is attributable to the chosen initial weight and bias. Based on the experiments
and the results it is clear that the artificial neuron encounters considerable difficulty learning
when the initial weight and bias is large, i.e. either too large or too small. Therefore, it can
be concluded that smaller initialised values for w and b are preferred. This learning slowdown
phenomenon occurs in larger networks too [195]. Consequently, weight and bias initialisation is
included in the hyperparameter search space.

0

1

z

σ(z)

(c) The Sigmoid function

w

b

Epochs

Error

(a) Experiment 1: w =
0.6, b = 0.9, η = 0.15

Epochs

Error

(b) Experiment 2: w =
2, b = 2, η = 0.15

Figure 3.9: The learning slowdown phenomenon, illustrating the effect of weight initialisation and the
chosen activation function.

The training algorithm is essentially an optimisation algorithm which requires a starting point
in the space of possible network weight values from which the optimisation (learning or training)
of the neural network can begin. Consequently, before training (or learning) can transpire, the
network weights must be initialised. This is an important design choice, since the initial weight
values have a substantial effect on the convergence speed and quality of solutions obtained during
the training process [159, 106], as discussed previously.

Stellenbosch University https://scholar.sun.ac.za

3.3. Hyperparameter optimisation 49

A too-large initialisation leads to exploding gradients, resulting in the error to oscillate around
the minimum value (or even diverge). Conversely, too-small initialisations lead to vanishing
gradients, resulting in convergence of the error before it has reached the minimum value [106].
The basic convention is to initialise all the weights to values randomly drawn from a uniform
or Gaussian probability distribution. Weight initialisation methods use information about the
network, such as the activation function (and its associated derivative) and the number of
weighted connections. The heuristic initialisation methods provide the prospects of a more
effective optimisation process and became the de facto standard [106].

The following weight initialisation procedures are suggested based on their prolific use in liter-
ature.

1. The Sigmoid activation function requires a modification, since the function saturates for
markedly small/large values of s, as shown previously in Figure 2.16(a), given by (2.15).
The modification enables the linear region to dictate the range of values from which the
weights can be drawn.

• LeCun et al. [159] suggested that the weights be drawn from some probability distri-

bution, with a mean of zero and a standard deviation of
√

1
m , where m is the number

of weighted connections entering the neuron (or fan-in number).

• Xavier Glorot and Yoshua Bengio [95] proposed the normalised ‘xavier ’ or ‘glorot ’
initialisation method, where the weights are drawn from the uniform probability dis-
tribution referred to as GlorotUniform, given by

w = U

[
−
√
6√

n+m
,

√
6√

n+m

]
, (3.9)

where n is the number of outgoing weighted connections (or fan-out number). An-
other initialisation method was proposed using the normal distribution, referred to
as GlorotNormal.

2. When employing the PReLU activation function, as previously shown in Figure 2.17, He et
al. [112] recommended the ‘he’ initialisation method. Where the weight w is calculated as a
random number from the Gaussian probability distribution, referred to as HeNormal, where

the weights have a mean of zero and a standard deviation of
√

2
m . Another initialisation

method was proposed using the uniform distribution, referred to as HeUniform.

Other than the number of hidden neurons and the number of training epochs, there are some
other techniques that can be used to improve the generalisation capabilities of the regression
model, some of which are discussed next.

3.3.2 An introduction to generalisation techniques

Network generalisation is achieved by controlling the capacity of the network. Goodfellow et
al. [106] defines regularisation as any improvement to the learning algorithm to ‘reduce its gen-
eralisation error but not its training error.’ The most relevant generalisation strategies found in
literature are parameter norm penalisation, known as L1, L2 and elastic-net regularisation, batch
normalisation, early stopping, dropout and cross-validation [30]. Essentially, these techniques
control the complexity of the network in one way or another to avoid the behaviour observed in
the overfitting zone (c), depicted in Figures 3.6d and 3.6e [30].

Stellenbosch University https://scholar.sun.ac.za

50 Chapter 3. ANN as Metamodel Pilot Study

L1, and L2 attempt to control model complexity by the addition of a penalty term to the
error function. By adding a small amount of bias, a smoother input-to-output mapping is
encouraged [30, 106, 152, 243]. Elastic-net combines L1 and L2 regularisers. According to
Goodfellow et al. [106], early stopping is commonly used attributable to its effectiveness and
simplicity. The premise of this strategy is as follows: During training, the validation error
is monitored which can provide an indication for when the network is overfitting, as seen in
Figure 3.6d and 3.6e. Initially the training and validation error decreases, but at some point, at
the optimal number of epochs, the validation error starts to increase. The standard procedure
is to stop the training process (with some patience) if the validation error does not improve.
Patience is the number of epochs that the validation error is permitted to increase before training
is stopped and is set to 15 in this study [106].

The dropout regularisation technique involves randomly shutting down (or dropping) hidden
neurons in each iteration, however, is not considered in this study. Batch normalisation re-
centres and re-scales the activations of each input variable, for each mini-batch, by normalising
them to have a mean of zero and a standard deviation of one [31]. Batch normalisation is said
to stabilise the learning process and dramatically reduce the amount of training required [106].
It is important to note that not all the hyperparameters previously discussed form part of the
hyperparameter search space. This is because hyperparameter optimisation is a time-consuming
process due to the combinatorial relationship that exists.

The next section presents the results obtained during model training and testing for the re-
spective regression models as well as delineates the methodology followed to determine the best
hyperparameters for the FNN with one hidden layer.

3.4 Training, validating and testing the regression models

If a model is trained and evaluated on the same dataset then the evaluation metric produced is
known as training loss (or error). Unfortunately, this leads to a model that has overfit to the
data and is unlikely to generalise to out-of-sample data. Alternatively, the train-test split can
be used, where the dataset is split into two sets, the training and test set. The model is trained
on the training set and evaluated on the test set and results in a performance metric known
as the testing loss. However, the testing loss is a high variance estimate of the out-of-sample
data and is markedly sensitive to how the data is split, i.e. if you split the data with a different
random number seed you are likely to obtain a different testing loss than previously obtained.

As mentioned, cross-validation can be used to train a machine learning model and then estimate
how well a model is likely to perform on out-of-sample data. There are various ways to perform
cross-validation, however, the method employed in this study is k-fold cross-validation, where k
refers to the number of groups that the data set is split into. The training set is partitioned into
k groups, as illustrated in Figure 3.10, for k = 10, i.e. 10-fold CV. The test set is held separate
for the final evaluation of the ML model, while the remaining data forms the training set and
is split into k groups (or folds). At each iteration, one of the k folds are used as the validation
set, while the other k − 1 remaining folds are used for training.

By training and testing the ML model k times on different subsets of the training data and
averaging the scores of each iteration allows for a more accurate representation of the model’s
generalisation capability, compared to one training and one validation set, a sort of ensemble
method. The regression models were built following the proposed machine learning pipeline
presented in Figure 3.11.

Stellenbosch University https://scholar.sun.ac.za

3.4. Training, validating and testing the regression models 51

80%

Training set

20%

Test set

10 folds of equal size

25%

run experiments
using 10 different

partitions

Figure 3.10: An illustration of how the dataset is split for k-fold cross validation.

The data collection phase consisted of performing exhaustive enumeration for the (s, S) inventory
problem (IP) and store the data as inputs and corresponding outputs as illustrated in Table 3.2,
which provides a snapshot of the first five examples from 250 000 training examples. The reorder
point (ROP) and reorder quantities (ROQ) represent the decision variable values (or inputs) and
the total inventory cost (TIC) and service level (SL) the objectives (or outputs).

Data collection
Data

preparation

Train, validate

and test data
Generalise? Integrate model

Hyperparameter

optimisation

Yes

No

Figure 3.11: The proposed machine learning pipeline.

Table 3.2: An example of the data in the IP dataset.

ROP ROQ TIC SL

1 20 20 7686.53 16.80

2 20 30 7394.59 18.79

3 20 40 7261.08 20.80

4 20 50 7154.16 22.66

5 20 60 7074.46 24.55

Assume the necessary libraries have been imported. In the data preparation phase, the dataset
is imported, then partitioned into the training and test set. Accordingly, the training set consists
of 200 000 training examples and the test set of 50 000. The validation set is then 25% of the
training set, i.e. 12 500 training examples. After the data is split, feature scaling is applied,
i.e. normalisation of the data to ensure all values are on the same scale. This prevents one
feature (or variable) from dominating another [81]. Next, build the regressors (as described in
the Python script presented in Listing A.1), then train the regressor on the training set using
10-fold CV, measuring the MSE, MAE, as discussed previously, on the training, validation and
test set. The results for the 30 trails are presented in Tables A.1–A.5 for each regression model.

The stochastic nature of the regression models necessitates a sample of algorithmic performances,
therefore the performance measure scores presented in Table 3.3 were calculated by performing
30 trials (using 30 different random number seeds to produce 30 different datatset splits) of
the learning model and then averaging the individual scores for each performance measure.

Stellenbosch University https://scholar.sun.ac.za

52 Chapter 3. ANN as Metamodel Pilot Study

The Python script demonstrating this for MLR is given in Listing A.2. The best performing
algorithm is RFR, which achieved the lowest training, validation and test scores in terms of
MSE and MAE, and the worst performing algorithm is MLR.

Table 3.3: The performance of the respective regressors in terms of MSE and MAE for the IP dataset.

Training Validation Test

MSE MAE MSE MAE MSE MAE

MLR 0.148 0.311 0.148 0.311 0.148 0.311

SVM 0.003 0.044 0.003 0.044 0.003 0.044

DTR 0 0 0 0.003 0 0.002

RFR 0 0.001 0 0.002 0 0.002

XGBoost 0 0.007 0 0.007 0 0.007

As discussed previously, ANNs have many hyperparameters that can be adjusted, however, it
requires expert knowledge because the hyperparameter combination is dataset specific (problem
specific). The hyperparameter search space considered for optimisation is presented in Table 3.4,
resulting in 12 960 possible combinations, further motivating the use of Bayesian optimisation.
Recall that only one hidden layer is considered, as supported by the literature presented in
Chapter 2.

Table 3.4: The proposed hyperparameters search space for the FNN with one hidden layer.

(a) Network hyperparameters

Neural network search space

Number of neurons 2, 4, . . . , 20

Activation function Sigmoid, ReLU, ELU

Weight initialisation HeNormal, HeUni-
form, GlorotNormal,
GlorotUniform

Batch normalisation Yes, No

Training algorithm SGD, Adam, Nadam

Kernal regulariser L1, L2, L1L2

(b) Algorithm hyperparameters

Algorithm search space

Learning rate 0.01, 0.001, 0.0001

Batch size 512, 1028

The results obtained by employing Bayesian optimisation (by running the Python code in Listing
A.3) is presented in Table 3.5, for a batch size of 512 and 1028 and with or without batch
normalisation. For example, for a batch size of 512 training examples and employing batch
normalisation, the optimal hyperparameters, for the FNN with one hidden layer, are Nadam
with a learning rate of 0.01, L2 regularisation, the ELU activation function, HeUniform weight
initialisation and 12 hidden neurons, which result in a MSE of 0.052.

The network has to be trained again, this time with the hyperparameter combinations found
during Bayesian optimisation, as listed in Table 3.5. Once the model training is completed the
generalisation capabilities of the network can be evaluated on the test set. Again, the stochastic
nature of the regression model necessitates a sample of algorithmic performances, therefore
the FNN is run for 30 independent trials, presented in Tables A.6–A.9 for the hyperparameter
combinations A–D, as specified in Table 3.5. Note that each trial is run with a different random
number seed in order to generate 30 different dataset splits. The performance of the model is
then represented by the average of the 30 trials, as described by the Python code in Listing
A.4. The performance measure scores are tabulated in Table 3.6, where the metrics represent
the average for both objectives for all 30 trials.

Stellenbosch University https://scholar.sun.ac.za

3.5. Conclusion: Chapter 3 53

Table 3.5: The best hyperparameters obtained for the FNN, with one hidden layer, during Bayesian
optimisation.

Convention A B C D

Batch size 512 512 1028 1028

Batch normalisation ✓ ✓

Hyperparameters

Training algorithm Nadam Adam Nadam Nadam

Learning rate 0.01 0.001 0.001 0.0001

Regulariser L2 L2 L2 L2

Activation ELU ELU ELU ELU

Initialiser HeUniform HeNormal HeNormal HeUniform

Units 12 14 14 20

Score: 0.052 0.052 0.052 0.055

According to Table 3.6, the best performance (in terms of the smallest MSE and MAE for the
training, validation and test set) corresponds to hyperparameter combination B, i.e. a batch size
of 512 without employing batch normalisation, employing the Adam optimiser with a learning
rate of 0.001, L2 regularisation, ELU as activation function, HeNormal as weight initialisation
method and with 14 hidden neurons.

Table 3.6: The average performance of the respective hyperparameter combinations, as shown in Table
3.5, in terms of MSE and MAE for the IP dataset.

Batch
size

Batch
normalisation

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

A 512 ✓ 0.0532 0.1466 0.0532 0.1466 0.0669 0.1474

B 512 0.0492 0.1319 0.0492 0.1319 0.0494 0.132

C 1028 ✓ 0.0511 0.1391 0.0511 0.1391 0.0508 0.1376

D 1028 0.0599 0.1506 0.0599 0.0151 0.0601 0.1508

3.5 Conclusion: Chapter 3

The main objective of this chapter was to demonstrate whether or not an ANN as metamodel
would be a feasible solution to enhance the simulation optimisation process. Table 3.7 sum-
marises the performances of each regression model in terms of MSE and MAE. Overall, RFR
performed the best and MLR the worst. The FNN with one hidden layer (with a batch size of 512
without employing batch normalisation) performed better than MLR. This chapter provided an
in-depth inverstigation into the workings of an ANN, considering the network structures, network
initialisation methods, learning algorithms and generalisation techniques, providing valuable in-
sight into the complex interactions within an ANN. Therefore, this pilot study is considered
novel and can be used as a starting point for further experimentation. This pilot study pro-
posed to demonstrate the feasibility of an ANN metamodel, however, from the results in Table
3.7 it is not clear whether or not an ANN metamodel adds sufficient value.

Further experimentation is required regarding the following:

1. At what stage during training can the network start predicting whether or not solutions
should be evaluated?

Stellenbosch University https://scholar.sun.ac.za

54 Chapter 3. ANN as Metamodel Pilot Study

Table 3.7: Comparison of the performances of the respective regression models, in terms of MSE and
MAE for the test set for the IP dataset.

MSE MAE

MLR 0.1471 0.3101

SVM 0.0026 0.0438

DTR 0 0.002

RFR 0 0.0015

XGBoost 0.0001 0.0071

ANN 0.0494 0.132

2. What is the optimal batch size? Consider for example a mini-batch size of 16, 32 and 64.

3. Consider the regularisation parameter λ for L1, L2 and L1L2 regularisation which controls
the trade-off between minimising the error function and keeping the network parameters
(i.e. weights and biases) small [195].

4. Consider dropout regularlisation and the dropout rate.

However, this is out of the scope of this study but should be considered for future work. The
next chapter presents the simulation models studied as well as some statsitical prerequisites
required for simulation output analysis.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4

Simulation Models and Statistical
Prerequisites

4.1 Statistical analysis preliminaries . 55

4.2 The simulation model problems . 57

4.2.1 The Open mine problem . 59

4.2.2 The (s, S) inventory problem . 62

4.2.3 The buffer-allocation problem: five machines 63

4.2.4 The buffer-allocation problem: 10 machines 65

4.2.5 The non-linear buffer-allocation problem: 16 machines 67

4.3 Conclusion: Chapter 4 . 69

Previously, Chapter 3 reported on the preliminary analysis conducted to determine whether or
not the application of an ANN as a metamodel is a feasible solution to enhance the simulation
optimisation process.

This chapter serves to fulfil Objective 3, as stated in Chapter 1. This chapter introduces some of
the statistical aspects with regards to simulation output and each reports the problem-specific
simulation parameters studied. Firstly, the statistical prerequisites necessary for simulation
output analysis are discussed. Thereafter, the respective simulation models are discussed in
terms of their decision variables (inputs) and objectives (or outputs) as well as their boundaries.
Next, the sufficient number of observations per solution is determined scientifically and because
R&S is out of the scope of this study, analysis-of-variance (ANOVA) is used to determine whether
100 observation per solutions are sufficient for each problem. Penultimately, a description of the
complexity of each simulation model is presented as well as its true Pareto front. Finally, the
chapter closes with a summary of its contents.

4.1 Statistical analysis preliminaries

The simulation of stochastic systems is simply statistical sampling and therefore relies on statis-
tical inferences to be able to analyse and draw conclusions from the results. Stochastic systems
or systems containing stochastic elements (or randomness) respond stochastically, i.e. the out-
put(s) obtained for the same set of input(s) will differ for different runs, the reader is referred
to [136] for further reading.

Consequently, several observations per solution is required to describe the output variable in
terms of its point and interval estimators to then analyse and draw conclusions from. The
analysis of the output depends on the type of system (terminating) analysed. For terminating
systems, every termination (or simulation time) results in one observation for the output vari-
able(s) being studied. Each observation is assumed to be statistically independent from other
observations during the same simulation run [20, 157].

55

Stellenbosch University https://scholar.sun.ac.za

56 Chapter 4. Simulation Models and Statistical Prerequisites

For example, a simple deterministic system is given in Figure 4.1a. A customer arrives and
leaves every minute, with a constant service time of 30s. If the system is changed to stochastic,
as shown in Figure 4.1b, it is no longer possible to predict exit time. Assume the simulation time
is from 07:00–17:00, where the mean of all the exit times observed, from 07:00–17:00, represent
one observation. Suppose 100 days are observed, then the mean of the mean observed exit
times are taken and represent the point estimator (x) for the output, i.e. 100 observations per
solution was observed. A sufficient number of arrivals are required, to draw a conclusion from
the unknown exit parameter x.

Service time = 30s One exit every minuteOne arrival per minute

(a) Deterministic system

Exponential ser-

vice time, µ = 30s

One exit every x

minutes, on average

Exponential arrival rate,

λ = 1 arrival
minute

(b) Stochastic system

Figure 4.1: Illustration of (a) a simple deterministic and (b) a simple stochastic system, adapted
from [20].

Formally, it is necessary to determine the number of observations per solution required to be
95% confident that the mean value x, is equal to the true but unknown population mean, where
the confidence interval (CI) specifies the range in which it is to be expected. The output (or
estimated value) generated by a stochastic system may be observed as numerically different,
however they may not be statistically significantly different [20].

For example, X̄1 = 22.4 and X̄2 = 23.5 differ numerically, however, it is necessary to determine
statistically whether they differ statistically significantly or not. To elaborate, Figures 4.2a and
4.2b are used. Figure 4.2a shows samples without a common mean and cross-sample variation,
i.e. X, Y and Z are different and Figure 4.2b shows samples with a common mean and in-sample
variation, i.e. X, Y and Z are considered similar.

2 3 4 5 6 7

µX µY µZ

(a) Samples without a common mean and high
cross-sample variability

2 3 4 5 6

µX µY µZ X
Y
Z

(b) Samples with a common mean and high
in-sample variability

X
Y Z

(c) Samples with different distribution char-
acteristics

Figure 4.2: Illustration of the difference between (a) cross-sample, (b) in-sample variation and (c)
distributions having these characteristics, adapted from [20].

Stellenbosch University https://scholar.sun.ac.za

4.2. The simulation model problems 57

Figures 4.2a and 4.2b can also be explained considering Figure 4.2c, where distribution X and Y
are from the same population that exhibit in-sample variability whereas distribution Z is from
a different population that exhibits cross-sample variation between X, Y versus Z. As stated
in the project scope, it is assumed that all models have been built correctly for the purpose of
validating the proposed solutions. Also, unless stated otherwise the simulation time for each
model is five simulation days, denoted by 05:00:00:00. The simulation problems studied as well
as other relevant information are discussed next. For a formal description of each, refer to
Appendix D.

4.2 The simulation model problems

To reiterate, due to the stochastic nature inherent to simulation models, small-sample theory
must be applied to deal with the observations generated by the simulation model. Typically, the
expected values for the objectives are described by point and interval estimators which require,
as mentioned, several observations per solution [157]. The more observations per solution, the
smaller the CI becomes, i.e. less variance of the output distribution, which leads to a good
approximation (or point estimator) of the output parameter(s) being studied [20].

However, this requires more simulation time to complete, i.e. the computational time may
become considerable [28, 82]. For example, assume one observation per solution takes 0.1 seconds
to evaluate and 100 observations per solution are required, then 10 seconds are required to
evaluate one decision variable combination. Recall that earch algorithms evaluate many solutions
during the search process, assuming 1 000 decision variable combinations are evaluated then the
simulation optimisation process would take 2.77 hours.

Upon considering the above-mentioned, it can be derived that a good search algorithm should
find good quality approximation sets and do so by the least number of function evaluations, i.e.
find good solutions fast. The amount of time it takes to evaluate a single solution varies from
simulation model to simulation model and is attributable to the complexity of the model. There
are four elements that influence the complexity of a simulation model, namely the number of
objectives, number of decision variables, number of stochastic elements, and size of the search
space (or combinatorial nature).

Accordingly, all the problems studied differ in terms of their complexities and are reported in
the following sections, respectively. In this study, the complexity of the simulation problems
differ by the number of decision variables, stochastic elements and the search space cardinality,
not influenced by the number of objectives since all the problems in this study are bi-objective
simulation optimisation problems.

After careful consideration of the problem context, a sensible upper bound for each problem was
chosen. The upper bounds were introduced, because when going beyond a certain value, a point
of diminishing return is reached, also it is used as a method to contain the problem. The BAP
with five machines (BAP5) is used to illustrate this. Table D.4 lists the experiments used for
the hypothesis test to determine the upper bound for BAP5, and is summarised in Table 4.1.

Table 4.1: Summary of the experiments (in the columns) used to determine a sensible upper bound as
given in Table D.4.

Groups Count Sum Average Variance

Work-in-progress 9 21.72 2.41 0.02

Throughput 9 830.09 92.23 0.03

Stellenbosch University https://scholar.sun.ac.za

58 Chapter 4. Simulation Models and Statistical Prerequisites

The possible outcomes of the hypothesis test is, either the data suppports the research question
stated as the null hypothesis H0 (which is assumed to be true) or disproves the research prediction
stated as the alternate hypothesis H1 [71]. Specifically, the null hypothesis states that the means
do not differ and consequently there is no statistically significant difference between the work-
in-progress (WIP) or throughput objective values for different buffer sizes, formally stated as
(4.1). Alternatively, (4.2) the means differ significantly and therefore the buffer sizes influence
the objectives significantly.

Note that one-way ANOVA is used, i.e. the test is conducted for each objective respectively. If
H0 is rejected for one objective then that objective becomes the deciding factor, be it for the
upper bound chosen or the number of observations per solution. The following hypothesis is
used for both the work-in-progress and throughput objectives for determining a sensible upper
bound for BAP5.

H0 : µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 = µ9 (4.1)

H1 : µi ̸= µj , i ̸= j, i, j ∈ {1, . . . , 9}. (4.2)

The values for each objective in Table D.4 may differ numerically, however ANOVA is conducted
to determine whether they differ statistically. The ANOVA test results are summarised in Table
4.2 and describe the sum of squares (SS), degrees of freedom (df), mean squared (MS), the F -
statistic (F) the corresponding critical value (F crit) and p-value. Since F crit < F and p < 0.05
the outcome of the ANOVA test is to reject H0, which indicates that the mean of at least
one pair is statistically different and therefore a post hoc test is required to determine which
experiments differ significantly. To identify the significant pair(s) post hoc analysis is required,.
The multiple comparisons t-test is used for post hoc analysis.

Table 4.2: The results of the ANOVA test to determine the upper bound for BAP5.

Source of variation SS df MS F F crit p-value Outcome

Between groups 36 303.27 1 36 303.27 1 599 757.20 4.49 0 Reject H0

Within groups 0.36 16 0.02

Total 36 303.63 17

Figures 4.3a and 4.3b illustrate the CI plot per experiment for objectives work-in-progress and
throughput and also presents the pair-wise comparisons. Note that the dot represents the
expected mean and the line indicates the range of 95% of the observations. From the visual
inspection of Figure 4.3b, it can be seen that the throughput objective values do not differ
statistically and consequently has no influence on the decision regarding the problem upper
bound. Considering the work-in-progress objective a sensible upper bound is chosen. The larger
the upper bound, the larger the combinatorial nature of the problem, therefore a lower upper
bound is preferred.

From the p-values in Table 4.3 obtained from the post hoc t-test, regarding the work-in-progress
objective, it can be said that Exp 5 is not statistically significantly different to Exp 6–9. Con-
sequently, implementing more than 17 buffers per machine does not yield a work-in-progress
value that is significantly better, i.e. the threshold is reached and the work-in-progress becomes
dependent on the arrival rate of the work. This means that even if 100 buffer spaces are allo-
cated, the point of diminishing return is met at 17 buffers. Logically, further analysis should be
limited to 17 buffer spaces per machine. A similar process was followed to determine sensible
upper bounds for the Open mine problem (OMP), the (s, S) inventory problem (IP), the BAP
with 10 machines (BAP10) and the non-linear BAP with 16 machines (BAP16). The resulting
upper bounds are reported in the following respective sections.

Stellenbosch University https://scholar.sun.ac.za

4.2. The simulation model problems 59

E
x
p
1

E
x
p
2

E
x
p
3

E
x
p
4

E
x
p
5

E
x
p
6

E
x
p
7

E
x
p
8

E
x
p
9

2.2

2.4

2.6

W
o
rk
-i
n
-p
ro
g
re
ss

(a) CI plot for the work-in-progress values

E
x
p
1

E
x
p
2

E
x
p
3

E
x
p
4

E
x
p
5

E
x
p
6

E
x
p
7

E
x
p
8

E
x
p
9

91

91.5

92

92.5

93

T
h
ro
u
g
h
p
u
t

(b) CI plot for the throughput values

Figure 4.3: Illustration of the meticulous consideration taken with the choice of upper bound for BAP5.

Table 4.3: Table of the p-values of the t-test for the work-in-progress objective for BAP5.

Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9

Exp 1 0 0 0 0 0 0 0 0

Exp 2 0.01 0 0 0 0 0 0

Exp 3 0.16 0.04 0.01 0.01 0 0

Exp 4 0.54 0.29 0.17 0.02 0.02

Exp 5 0.66 0.44 0.08 0.08

Exp 6 0.74 0.18 0.18

Exp 7 0.31 0.31

Exp 8 1

The next sections set out to describe each simulation problem in terms of their inputs and
outputs, upper bounds and solution cardinality. Next, hypothesis testing is conducted to deter-
mine whether or not 100 observations per solution are sufficient and lastly, a description of the
complexity of each problem is given as well as its true Pareto front.

4.2.1 The Open mine problem

There are two conflicting objectives that need to be optimised, namely minimise the total cost
while maximising the number of trains served. The decision variables are the number of shovels,
crushers and trucks. The sensible upper bound was found at 15 for all decision variables,
resulting in a discrete search space cardinality of 3 375 solutions.

The MOO question can be formulated as: what values of shovels, crushers and trucks that
result in a minimum total cost and maximum number of trains served? In the context of
simulation optimisation, a search algorithm samples values for shovels, crushers and trucks
within the specified range, the values are then evaluated by the simulation model and point
estimators for the objectives are returned. The evaluation of a decision variable combination
{shovels, crushers, trucks} results in a corresponding value for total cost and number of trains
served.

A wide spectrum of problems sizes are studied, from small (the OMP) to very large (BAP16).
The reason for including a smaller problem such as the OMP is to validate that the algorithms
can solve the problems studied. The reasoning is that if the algorithms are able to find the
true Pareto set (or markedly good approximations of the true Pareto set) for a reasonably small
problem then they should be able to solve the larger problems.

Stellenbosch University https://scholar.sun.ac.za

60 Chapter 4. Simulation Models and Statistical Prerequisites

Observations per solution

The proposed number of observations per solution is 100 due to the limited timeframe in which
the study must be completed. To motivate this decision further, the respective problems are
tested for 10, 100 and 1 000 observations per solution for 10 different experiments (or decision
variable combinations), respectively, to test whether there is a statistically significant difference
in the number of observations chosen and whether or not 100 observations are sufficient.

The following procedure was followed for all the problems. Note that the decision variable
combinations are chosen arbitrarily and has no effect on the outcome of the hypothesis test
conducted. The null hypothesis states that the means do not differ and consequently there is no
statistically significant difference between the number of observations used, formally stated as
(4.3). Alternatively, (4.4) the means differ significantly and therefore the number of observations
used matter.

H0 : µ1 = µ2 = µ3 (4.3)

H1 : µi ̸= µj , i ̸= j, i, j ∈ {1, . . . , 3} (4.4)

The 10 experiments that are used to determine whether 100 observations per solution are suffi-
cient and are given in Table D.14, a summary of which is presented in Table D.15. The ANOVA
test results are summarised in Table 4.4. Note that the simulation time for the OMP is one
simulation day, denoted by 01:00:00:00.

Table 4.4: The results of the ANOVA test for the OMP.

Total cost Served trains

Source of Variation SS df MS F F crit p-value SS df MS F F crit p-value

Between Groups 48 677 990.34 9 5 408 665.59 613 461 121.17 2.39 0 16.13 9 1.79 190.39 2.39 0

Within Groups 0.18 20 0.01 0.19 20 0.01

Total 48 677 990.51 29 16.32 29

Table 4.5: The experiments that are statistically significantly different for the OMP.

p < 0.05

Total cost Served trains

Exp 1 ✓ ✓

Exp 3 ✓

Exp 4 ✓ ✓

Exp 5 ✓

Exp 6 ✓ ✓

Exp 7 ✓

Exp 8 ✓ ✓

Exp 9 ✓

Exp 10 ✓ ✓

Since F crit < F and p < 0.05, the outcome is to reject H0 which indicates that the mean of
at least one pair is significantly different and therefore a post hoc test is required to determine
which. As mentioned, the multiple comparisons are used to determine the significant pair(s).
The t-test concluded that there is a significant difference for Exp 1 and Exp3–10, as seen in
Table 4.5. Exp 1 is used to visually present the differences in terms of CIs for the total cost

Stellenbosch University https://scholar.sun.ac.za

4.2. The simulation model problems 61

(Figure 4.4a) and served trains (Figure 4.4b) objectives, for 10, 100 and 1 000 observations as
well as the corresponding p-values. From Figures 4.4a and 4.4b it can be seen that for Exp 1, 10
observations per solution (A) are statistically significantly different to 100 and 1 000 observations
per solution (B and C, respectively), i.e. p < 0.05.

A B C

1773.8

1 774

1 774.2

T
o
ta
l
co

st

B C
A 0.01 0
B 0.81

(a) CI plot and p-values for Exp 1

A B C
11.4

11.6

11.8

12

12.2

S
er
v
ed

tr
a
in
s

B C
A 0.01 0
B 0.38

(b) CI plot and p-values for Exp 1

Figure 4.4: The respective CI plots and p-value tables obtained for the work-in-progress and throughput
objectives, respectively, for the OMP.

Therefore, 10 observations per solution would not be enough to say with 95% confidence that
the mean generated by 10 observations is the same as the mean generated by 100 or 1 000
observations. However, B and C are not statistically significantly different and therefore, 100
observations per solution is sufficient for OMP.

Problem complexity

To summarise, the OMP has two objectives and three decision variables, with a search space
cardinality of 3 375 solutions. The problem has five sources of randomness, namely shovel
processing time, crusher processing time, the processing time for loader 1 and loader 2, and an
inspection processing time. It is also important to note that each search technique only evaluates
1 000 solution evaluations, i.e. only 29.63% of the total solution space is searched.

Exhaustive enumeration

To obtain the true Pareto set, exhaustive enumeration was performed with 100 simulation ob-
servations per {Shovels, Crushers, Trucks} combination. All decision variables were adjusted in
steps of 1 unit from 1 to 15, thus exploring a solution space of 3 375 possibilities. The resulting
front (containing 36 points) is considered the true Pareto front and is shown in Figure 4.5. The
true hyperarea for the OMP is 14 485.04, determined with reference point {2800, 3.8}.

500 1 000 1 500 2 000 2 500

5

10

15

Total cost

S
er
v
ed

tr
a
in
s

Figure 4.5: The true Pareto front of the OMP obtained by method of exhaustive enumeration.

Stellenbosch University https://scholar.sun.ac.za

62 Chapter 4. Simulation Models and Statistical Prerequisites

4.2.2 The (s, S) inventory problem

There are two conflicting objectives that need to be optimised, namely minimise total inventory
cost while maximising service level. The decision variables are the reorder point (s) and reorder
quantity (S). The sensible upper bound was found as s, S ∈ {1, . . . , 500}, resulting in a discrete
search space cardinality of 250 000 solutions.

The MOO question can be formulated as: what values of s and S result in a minimum total
inventory cost and maximum service level? Again, in the context of simulation optimisation,
a search algorithm samples values for s and S within the specified range, the values are then
evaluated by the simulation model and point estimators for the objectives are returned. The
evaluation of a decision variable combination s, S results in a corresponding value for total
inventory cost and service level.

Observations per solution

A similar process is followed as documented for the OMP, the null (4.3) and alternative (4.4)
hypothesis stated remain the same, but for the IP. The 10 experiments used to determine if
100 observations per solution are sufficient are given in Table D.1, where group A represents 10
observations, B–100 observations and C–1 000 observations, a summary of which is presented
in Table D.2. The ANOVA test results are summarised in Table 4.6.

Table 4.6: The results of the ANOVA test for the IP.

Total inventory cost Service level

Source of variation SS df MS F F crit p-value SS df MS F F crit p-value

Between groups 8 998 297 9 999 810.82 18 942.63 2.39 0 15 051.09 9 1 672.34 9 350.76 2.39 0

Within groups 1 055.62 20 52.78 3.58 20 0.18

Total 8 999 353 29 15 054.66 29

Since F crit < F and p < 0.05, the outcome is to reject H0 which indicates that the mean of at
least one pair is significantly different and therefore a post hoc test is required to determine which
pair. Again, multiple comparisons t-test is used to determine the significant pair(s). The t-test
concluded that there is a significant difference for Exp 6 for the total inventory cost objective
and Exp 10 for the service level objective. Exp 6 and Exp 10 are used to visually present the
differences in terms of CIs for the total inventory cost (Figure 4.6a) and service level (Figure
4.6b) objectives, for 10, 100 and 1 000 observations as well as the corresponding p-values. From
Figures 4.6a and 4.6b it can be seen that for Exp 6 and Exp 10, 10 observations per solution
(A) are statistically significantly different to 100 observations per solution (B), i.e. p < 0.05.

A B C

1320

1 340

1 360

1 380

1 400

T
o
ta
l
in
v
en

to
ry

co
st

B C
A 0.03 0.07
B 0.82

(a) CI plot and p-values for Exp 6

A B C
92

93

94

95

96

S
er
v
ic
e
le
v
el

B C
A 0 0.14
B 0.07

(b) CI plot and p-values for Exp 10

Figure 4.6: The respective CI plots and p-value tables obtained for the total inventory cost and service
level objectives, respectively, for the IP.

Stellenbosch University https://scholar.sun.ac.za

4.2. The simulation model problems 63

Therefore, 10 observations per solution would not be enough to say with 95% confidence that
the mean generated by 10 observations is the same as the mean generated by 100 observations.
However, B and C are not statistically significantly different and therefore 100 observations per
solution are sufficient for the IP.

Problem complexity

To summarise, the IP has two objectives and two decision variables, with a search space cardinal-
ity of 250 000 solutions. The problem has three sources of randomness (or stochastic elements),
namely the arrival rate, customer demand and the inventory replenishment lead times. It is also
important to note that the search techniques only evaluate a small percentage of the solution
space. Specifically, only 1 000 evaluations were allowed, i.e. only 0.4% of the total solution space
is searched.

Exhaustive enumeration

To obtain the true Pareto set, exhaustive enumeration was performed with 100 simulation ob-
servations per (s, S) combination. Both s and S were adjusted in steps of 1 unit from 1 to 500,
thus exploring a solution space of 250 000 possibilities. The resulting front (containing 1 393
points) is considered the true Pareto front PT for this problem and is shown in Figure 4.7. The
true hyperarea for the IP is 114 443.61, determined with reference point {2500, 20}.

500 1 000 1 500 2 000 2 500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

Figure 4.7: The true Pareto front of the IP obtained by method of exhaustive enumeration.

4.2.3 The buffer-allocation problem: five machines

For each BAP instance, there are two conflicting objectives that need to be optimised, namely
minimise work-in-progress while maximising throughput. The decision variables are the buffer
spaces (or niches) buffer 1–4 with a sensible upper bound that was found at 17, as described
previously, resulting in a discrete search space cardinality of 83 521 solutions.

The MOO question for the BAP can be formulated as: what values of the buffer spaces result
in the minimum work-in-progress and maximum throughput? This is the same for all the BAP
instances, however the buffer spaces differ for each instance. Again, in the context of simulation
optimisation, a search algorithm samples values for buffer 1–4 within the specified range.

Stellenbosch University https://scholar.sun.ac.za

64 Chapter 4. Simulation Models and Statistical Prerequisites

The values are then evaluated by the simulation model and point estimators for the objectives
are returned. The evaluation of a decision variable combination {buffer 1, buffer 2, buffer 3,
buffer 4}, for the sake of brevity {B1, B2, B3, B4}, results in a corresponding value for the
work-in-progress and throughput.

Observations per solution

Again, a similar process is followed as documented for the OMP, the null (4.3) and alternative
(4.4) hypotheses stated remains the same, but for BAP5. The 10 experiments that are used to
determine whether 100 observations per solution are sufficient are given in Table D.5, a summary
of which is presented in Table D.6. The ANOVA test results are summarised in Table 4.7.

Table 4.7: The results of the ANOVA test for BAP5.

Work-in-progress Throughput

Source of Variation SS df MS F F crit p-value SS df MS F F crit p-value

Between Groups 9.46 9 1.05 468.35 2.39 0 1 252.24 9 139.14 145.24 2.39 0

Within Groups 0.04 20 0 19.16 20 0.96

Total 9.51 29 1 271.39 29

Since F crit < F and p < 0.05, the outcome is to reject H0 which indicates that the mean of
at least one pair is significantly different and therefore a post hoc test is required to determine
which. Again, multiple comparisons are used to determine the significant pair(s). The t-test
concluded that there is a significant difference for Exp 1, Exp 3–4 and Exp 7–10, as seen in Table
4.8. Exp1 is used to visually present the differences in terms of CIs for the work-in-progress
(Figure 4.8a) and throughput (Figure 4.8b) objectives, for 10, 100 and 1 000 observations as well
as the corresponding p-values.

Table 4.8: The experiments that are statistically significantly different for BAP5.

p < 0.05

Work-in-progress Throughput

Exp 1 ✓ ✓

Exp 3 ✓

Exp 4 ✓

Exp 7 ✓

Exp 8 ✓

Exp 9 ✓

Exp 10 ✓

From Figures 4.8a and 4.8b it can be seen that for Exp 1, 10 observations per solution (A) are
statistically significantly different to 1 000 observations per solution (C), i.e. p < 0.05. Therefore,
10 observations per solution would not be enough to say with 95% confidence that the mean
generated by 10 observations is the same as the mean generated by 1 000 observations. However,
B and C are not statistically significantly different and therefore, 100 observations per solution
is sufficient for BAP5.

Stellenbosch University https://scholar.sun.ac.za

4.2. The simulation model problems 65

A B C
0.32

0.34

0.36

0.38

0.4

0.42
W

o
rk
-i
n
-p
ro
g
re
ss

B C
A 0.25 0.01
B 0.14

(a) CI plot and p-values for Exp 1

A B C
64

66

68

70

72

74

T
h
ro
u
g
h
p
u
t

B C
A 0.30 0.02
B 0.14

(b) CI plot and p-values for Exp 1

Figure 4.8: The respective CI plots and p-value tables obtained for the work-in-progress and throughput
objectives, respectively, for the BAP5.

Problem complexity

To summarise, BAP5 has two objectives and four decision variables, with a search space cardi-
nality of 83 521 solutions. The problem has fifteen sources of randomness, namely five machine
processing times, five failure distributions and five mean time to repair (MTTR) distributions.
Only a small percentage of the total search space is explored, specifically only 1 000 evaluations
were allowed, i.e. only 1.2% of the total solution space is searched.

Exhaustive enumeration

To obtain the true Pareto set, exhaustive enumeration was performed with 100 simulation ob-
servations per {B1, B2, B3, B4} combination. All buffers were adjusted in steps of 1 unit from
1 to 17, thus exploring a solution space of 83 521 possibilities. The resulting front (containing
306 points) is considered the true Pareto front PT for this problem and is shown in Figure 4.9.
The true hyperarea for the BAP is 33.84, determined with reference point {2.5, 70}.

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
g
h
p
u
t

Figure 4.9: The true Pareto front of BAP5 obtained by method of exhaustive enumeration.

4.2.4 The buffer-allocation problem: 10 machines

The decision variables are the buffer spaces buffer 1–9 (B1–B9). The sensible upper bound was
found at 10, resulting in a discrete search space cardinality of 1 000 000 000 solutions. Again, in
the context of simulation optimisation, a search algorithm samples values for B1–9 within the
specified range. The values are then evaluated by the simulation model and point estimators for
the objectives are returned. The evaluation of a decision variable combination {B1, B2, B3, B4,
B5, B6, B7, B8, B9}, results in a corresponding value for the work-in-progress and throughput.

Stellenbosch University https://scholar.sun.ac.za

66 Chapter 4. Simulation Models and Statistical Prerequisites

Observations per solution

Again, a similar process is followed as documented for the OMP, the null (4.3) and alternative
(4.4) hypothesis stated remain the same, but for BAP10. The 10 experiments that are used to
determine whether 100 observations per solution are sufficient are given in Table D.8, a summary
of which is presented in Table D.9. The ANOVA test results are summarised in Table 4.9.

Table 4.9: The results of the ANOVA test for BAP10.

Work-in-progress Throughput

Source of Variation SS df MS F F crit p-value SS df MS F F crit p-value

Between groups 4.47 9 0.50 703.67 2.39 0 730.72 9 81.19 17.32 2.39 0

Within groups 0.01 20 0 93.77 20 4.69

Total 4.48 29 824.49 29

Since F crit < F and p < 0.05, the outcome is to reject H0 which indicates that the mean of
at least one pair is significantly different and therefore a post hoc test is required to determine
which. Again, multiple comparisons are used to determine the significant pair(s). The t-test
concluded that there is a significant difference for Exp 1–8 and 10, as seen in Table 4.10.

Table 4.10: The experiments that are statistically significantly different for BAP10.

p < 0.05

Work-in-progress Throughput

Exp 1 ✓

Exp 2 ✓ ✓

Exp 3 ✓

Exp 4 ✓

Exp 5 ✓

Exp 6 ✓

Exp 7 ✓

Exp 8 ✓

Exp 10 ✓

Exp 2 is used to visually present the differences in terms of CIs for the work-in-progress (Figure
4.10a) and throughput (Figure 4.10b) objectives, for 10, 100 and 1 000 observations as well as
the corresponding p-values.

A B C
0.45

0.5

0.55

0.6

0.65

W
o
rk
-i
n
-p
ro
g
re
ss

B C
A 0 0
B 0.35

(a) CI plot and p-values for Exp 2

A B C

65

70

T
h
ro
u
g
h
p
u
t

B C
A 0 0
B 0.95

(b) CI plot and p-values for Exp 2

Figure 4.10: The respective CI plots and p-value tables obtained for the work-in-progress and through-
put objectives, respectively, for BAP10.

From Figures 4.10a and 4.10b it can be seen that for Exp 2, 10 observations per solution (A)
are statistically significantly different to 100 and 1 000 observations per solution (B and C,
respectively), i.e. p < 0.05.

Stellenbosch University https://scholar.sun.ac.za

4.2. The simulation model problems 67

Therefore, 10 observations per solution would not be enough to say with 95% confidence that
the mean generated by 10 observations is the same as the mean generated by 100 or 1 000
observations. However, B and C are not statistically significantly different and therefore, 100
observations per solution is sufficient for BAP10.

Problem complexity

To summarise, BAP10 has two objectives and nine decision variables, with a search space cardi-
nality of 1× 109 solutions. The problem has thirty sources of randomness, namely ten machine
processing times, ten failure distributions and ten mean time to repair (MTTR) distributions.
It is also important to note that the search techniques only evaluate a small percentage of the
solution space. Specifically, only 1 000 evaluations were allowed, i.e. only 0.0001% of the total
solution space is searched.

Exhaustive enumeration

An exhaustive search approach involves searching through the entire solution space (i.e. 100
simulation observations per {B1, B2, B3, B4, B5, B6, B7, B8, B9} combination and all buffers
adjusted in steps of 1 unit from 1 to 10) to find the true Pareto set. This approach is not
feasible for large decision spaces, such as 1 × 109 possibilities, as it becomes computationally
time consuming and practically impossible. Therefore, design of experiments was used to obtain
a good approximate of the true Pareto set which for the purposes of this study will represent
the true Pareto set. The resulting front (containing 120 points) is considered the true Pareto
front and is presented in Figure 4.11. The true hyperarea for BAP10 is 22.66, determined with
reference point {1.4, 60}.

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
g
h
p
u
t

Figure 4.11: The true Pareto front of BAP10 obtained by design of experiments.

4.2.5 The non-linear buffer-allocation problem: 16 machines

The decision variables are the buffer spaces buffer 1–15 (B1–B15). The sensible upper bound
was found at 10, resulting in a discrete search space cardinality of 1× 1015 solutions. Again, in
the context of simulation optimisation, a search algorithm samples values for B1–15 within the
specified range. The values are then evaluated by the simulation model and point estimators
for the objectives are returned. The evaluation of a decision variable combination {B1, B2, B3,

Stellenbosch University https://scholar.sun.ac.za

68 Chapter 4. Simulation Models and Statistical Prerequisites

B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15}, results in a corresponding value for
the work-in-progress and throughput.

Obervations per solution

Again, a similar process is followed as documented for the OMP, the null (4.3) and alternative
(4.4) hypothesis stated remain the same, but for BAP16. The 10 experiments that are used
to determine whether 100 observations per solution are sufficient are given in Table D.11, a
summary of which is presented in Table D.12. The ANOVA test results are summarised in
Table 4.11.

Table 4.11: The results of the ANOVA test for BAP16.

Work-in-progress Throughput

Source of Variation SS df MS F F crit p-value SS df MS F F crit p-value

Between Groups 2.67 9 0.30 193.14 2.39 0 34 889.22 9 3 876.58 101.25 2.39 0

Within Groups 0.03 20 0 765.77 20 38.29

Total 2.71 29 35 654.99 29

Since F crit < F and p < 0.05, the outcome is to reject H0 which indicates that the mean of
at least one pair is significantly different and therefore a post hoc test is required to determine
which. Again, multiple comparisons are used to determine the significant pair(s). The t-test
concluded that there is a significant difference for Exp 2–4 and 8–10, as seen in Table 4.12.

Table 4.12: The experiments that are statistically significantly different for BAP16.

p < 0.05

Work-in-progress Throughput

Exp 2 ✓

Exp 3 ✓ ✓

Exp 4 ✓

Exp 8 ✓

Exp 10 ✓ ✓

Exp 3 is used to visually present the differences in terms of CIs for the work-in-progress (Figure
4.12a) and throughput (Figure 4.12b) objectives, for 10, 100 and 1 000 observations as well as
the corresponding p-values. From Figures 4.12a and 4.12b it can be seen that for Exp 10, 10
observations per solution (A) are statistically significantly different to 100 and 1 000 observations
per solution (B and C, respectively), i.e. p < 0.05.

A B C

0.6

0.65

0.7

0.75

W
o
rk
-i
n
-p
ro
g
re
ss

B C
A 0 0.01
B 0.93

(a) CI plot and p-values for Exp 3

A B C
480

500

520

540

560

T
h
ro
u
g
h
p
u
t

B C
A 0 0
B 0.95

(b) CI plot and p-values for Exp 3

Figure 4.12: The respective CI plots and p-value tables obtained for the work-in-progress and through-
put objectives, respectively, for the BAP16.

Stellenbosch University https://scholar.sun.ac.za

4.3. Conclusion: Chapter 4 69

Therefore, 10 observations per solution would not be enough to say with 95% confidence that
the mean generated by 10 observations is the same as the mean generated by 100 or 1 000
observations. However, B and C are not statistically significantly different and therefore 100
observations per solution is sufficient for BAP16.

Problem complexity

To summarise, BAP16 has two objectives and fifteen decision variables, with a search space
cardinality of 1 × 1015 solutions. The problem has fifty-one sources of randomness, namely
sixteen machine processing times, sixteen failure distributions and sixteen mean time to repair
(MTTR) distributions. Lastly, the routing from B1, B3 and B7 are determined stochastically,
i.e. there is a 50:50 chance for the part to go from B1 to M1 or M2, B3 to M4 or M5 and B7
to M8 or M9, as seen in Figure D.8. Again, note that the search techniques only evaluate a
small percentage of the solution space. Specifically, only 1 000 evaluations were allowed, i.e. only
1× 10−10% of the total solution space is searched.

Exhaustive enumeration

An exhaustive search approach involves searching through the entire solution space (i.e. 100
simulation observations per {B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14,
B15} combination and all buffers adjusted in steps of 1 unit from 1 to 10) to find the true Pareto
set. However, as mentioned, this approach is not feasible for large decision spaces, such as 1×1015
possibilities. Therefore, design of experiments was used to obtain a good approximate of the true
Pareto set which for the purposes of this study will represent the true Pareto set. The resulting
front (containing 132 points) is considered the true Pareto front and is presented in Figure 4.13.
The true hyperarea for BAP16 is 214.33, determined with reference point {1.4, 350}.

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
g
h
p
u
t

Figure 4.13: The true Pareto front of BAP16 obtained by design of experiments.

4.3 Conclusion: Chapter 4

This chapter discussed some of the statistical prerequisites required to understand the analysis
of simulation outputs. The respective simulations models were also described in terms of their
inputs, outputs, upper bounds, search space cardinality, complexity and the true Pareto front
was given. This chapter also set out to determine whether 100 observation per solution are
sufficient.

Stellenbosch University https://scholar.sun.ac.za

70 Chapter 4. Simulation Models and Statistical Prerequisites

Table 4.13 summarises the results of the statistical tests conducted in this chapter. Overall, 100
observations per solution are sufficient for all five problems, whereas 10 observations were not
and 1 000 are not computationally feasible. Also, with 100 observations per solution the central
limit theorem can be applied and the observed solutions are approximately normally distributed.

Table 4.13: Summary of the sufficient number of observations per solution for the respective problems.

Observations

10 100 1 000

IP ✓ ✓

BAP5 ✓ ✓

BAP10 ✓ ✓

BAP16 ✓ ✓

OMP ✓ ✓

To revise, the more observations per solution, the smaller the CI becomes, however the effort
required is greater, i.e. the values for 100 and 1 000 observations per solution may differ numer-
ically, but statistically they are considered the same. However, there is a significant difference
in the computational effort required to run 1 000 observations per solution when compared with
100. Also, it is more important to obtain an approximate Pareto set showing a trend, rather
than having more accurate estimations of the objectives, i.e. it is more important to find approx-
imations that are considered accurate enough in the minimum amount of simulation runtime
possible.

Next, Chapter 5 documents the metaheuristics chosen as LLHs as well as the proposed hyper-
heuristics.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5

Metaheuristics and Hyperheuristics

5.1 The main concepts for metaheuristics . 72

5.1.1 Initial solution . 72

5.1.2 Solution representation . 72

5.1.3 Stopping condition . 74

5.2 Multi-objective cross-entropy method . 74

5.2.1 Preliminaries for the MOOCEM . 74

5.2.2 The MOOCEM algorithm . 76

5.3 Non-dominated sorting genetic algorithm II . 83

5.3.1 The NSGA-II . 84

5.3.2 Selection operators . 89

5.3.3 Crossover operators . 91

5.3.4 Mutation operators . 93

5.4 Dominance-based bi-objective simulated annealing 95

5.4.1 The DBMOSA algorithm . 95

5.4.2 The annealing schedule . 99

5.4.3 The initial temperature . 101

5.4.4 Neighbourhood move operators . 102

5.5 The BOCEGAH algorithm . 105

5.6 The BOSAH algorithm . 109

5.7 Summary . 116

The previous chapter introduced the simulation optimisation problems studied as well as statis-
tical prerequisites required to conduct a simulation study.

This chapter serves to fulfil Objective 4 and 5 as stated in Chapter 1. Metaheuristics are con-
stantly being improved upon, either by designing new approaches or by extending current ap-
proaches, to better and more efficiently solve COPs. Consequently, deciding which metaheuristic
(or heuristic operators) to use is not a trivial task. This chapter presents three metaheuristics
from different classes in an attempt to represent the diversity of algorithms available in the litera-
ture, namely the multi-objective cross-entropy method (MOOCEM), the non-dominated sorting
genetic algorithm II (NSGA-II) and the dominance-based multi-objective simulated annealing
(DBMOSA) algorithm. First, some main concepts of S- and P-metaheuristics are discussed with
specific focus on their implementation in this study. Next, each metaheuristic is discussed, in
great detail, in the context of simulation optimisation and its integration in Tecnomatix.

Next, the two hyperheuristics proposed in this study are presented, first for population-based
search and then for single-solution based search. The MOOCEM and the NSGA-II are employed
for the population-based search hyperheuristic and DBMOSA and three move operators are em-
ployed for the single-solution based search hyperheuristic. Each hyperheuristic is also discussed
in the context of simulation optimisation and its integration in Tecnomatix. The chapter closes
with a summary of its contents.

71

Stellenbosch University https://scholar.sun.ac.za

72 Chapter 5. Metaheuristics and Hyperheuristics

5.1 The main concepts for metaheuristics

In this section a discussion follows on the basic concepts for metaheuristics, namely initial
solution(s), solution representations and stopping conditions. These concepts are considered
when designing any metaheuristic [93]. The concept of solution dominance and archiving, as
discussed in §2.2.1 and §2.2.3, forms part of all the LLHs discussed in this chapter.

5.1.1 Initial solution

Generating initial solutions is considered a crucial step when designing a metaheuristic, as
the initial solution(s) have a great impact on the exploration-exploitation capabilities of the
metaheuristic and can therefore affect its performance [93]. In this regard, it is important
to consider the strategy employed to ensure diverse initial solutions are generated to prevent
premature convergence [134].

The two main strategies are random and greedy. The random strategy randomly generates initial
solutions, whereas the greedy strategy finds determines an initial solution that is considered to
be of good quality by method of applying a greedy algorithm to determine the initial solution.
Again, a trade-off exists between the amount of exploration and exploitation. Hybrid strategies
combine both random and greedy strategies, i.e. a pool of initial solutions are generated using
both random and greedy algorithms [93, 134].

The strategy followed for generating initial populations for the P-metaheuristics is the random
strategy. The initial populations are generated using the normal and Poisson distributions. It
is important to note that the random seed values are different for every run to ensure that the
P-metaheuristics start with a different initial population for each run. This is done for both
MOOCEM and NSGA-II. The initial solution for the S-metaheuristic is randomly selected in
the range of possible decision variable values. If a solution has been used as an initial solution, it
is removed from the set of possible initial solutions, ensuring that DBMOSA starts at different
initial solutions for every run.

5.1.2 Solution representation

Deciding on a solution representation (or encoding) is a fundamental design question to consider
during the development of a metaheuristic. The representation influences the efficiency and
effectiveness of a metaheuristic and constitutes careful consideration. The representation must
be suitable and relevant to the optimisation problem, i.e. COPs. The efficiency is also related
to the search operators applied to the representation, for example move operators or crossover
operators. In conclusion, the choice of solution representation requires consideration of how the
solution is evaluated and how the search operators manipulate the representation. Figure 5.1
highlights the main solution representations in the literature, namely binary encodings, vector
of discrete values, permutations and vector of real values [93, 250].

For the sake of completeness, Figure 5.1 includes the representation for a vector of real values,
however, it is not applicable for COPs and is excluded from further discussion.

In Figures 5.2a–5.2c, an illustration is presented of the neighbourhoods that correspond to the
solution representations applicable for discrete variable optimisation. A binary representation,
represents a solution in a vector of bits, where a neighbour is created by flipping a single bit, as
illustrated in Figure 5.2a. The neighbourhood is typically based on a Hamming distance of 1,
where the size of the neighbourhood is the size of the vector.

Stellenbosch University https://scholar.sun.ac.za

5.1. The main concepts for metaheuristics 73

Solution representation

Binary encoding
(Knapsack and SAT problems)

0 1 1 0 0

Permutation
(Sequencing and scheduling problems)

2 1 0 3 4

Vector of discrete values
(Location and assignment problems)

4 2 1 3 2

Vector of real values
(Continuous optimisation)

0.3 2.4 1.9 3.6 4.7

Figure 5.1: Some classical solution representations for optimisation problems: vector of binary values,
vector of discrete values, vector of real values and permutation, adapted from [250].

In Figure 5.2b, an illustration is presented of the neighbourhood for the solution {4, 3, 4} with
a lower bound of 0 and an upper bound of 4, for all decision variables. The size of the neigh-
bourhood is n(k − 1) = 12, where n = 3 represents the number of decision variables and the
cardinality of the decision variables, is denoted by k = 5. The neighbourhood in Figure 5.2c
is created by a pair-wise exchange, where the order is of significance. The neighbourhood size
depends on the permutation length n and can be calculated as n(n−1)

2 [250].

0 1 1 0 0

1 1 1 0 0

0 0 1 0 0

this is it !!!this is it !!!

0 1 0 0 0

0 1 1 1 0

0 1 1 0 1

(a) The neighbourhood for the binary
representation

4 3 4

4 0 4

4 1 4

4 2 4

4 4 4

0 3 4

1 3 4

2 3 4

3 3 4

4 3 0

4 3 1

4 3 2

4 3 3

tt

(b) The neighbourhood for the discrete
vector representation

1 0 3 2

1 3 0 2

1 2 3 0

3 0 1 2

0 1 3 2

2 0 3 1 1 0 2 3 this

this

(c) The neighbourhood for the permutation representa-
tion

Figure 5.2: Illustration of the neighbourhood for (a) binary encoding, (b) discrete vectors and (c)
permutation representations, adapted from [250].

Amajority of the COPs studied either have permutation representations (e.g. travelling salesman
problem (TSP)) or discrete vector representations (e.g. quadratic assignment problem (QAP)),

Stellenbosch University https://scholar.sun.ac.za

74 Chapter 5. Metaheuristics and Hyperheuristics

which is attributable to the number of metaheuristics that are available and the simplicity of
manipulating these types of representations [1, 148]. The simulation optimisation problems
studied are considered COPs. Solutions are evaluated by the simulation model which takes as
input a vector of discrete values and because the search operators can be modified to manipulate
discrete vectors, discrete vector representation is chosen.

5.1.3 Stopping condition

The search terminates if the given stopping condition is met. A stopping condition may be a
fixed number of iterations, or a convergence measure [93]. The stopping conditions of the LLHs
have been modified to control explicitly the duration of each algorithm and to facilitate fair
comparisons between the algorithms. A fixed number of iterations is adopted, namely 1 000
solution evaluations.

The following sections document each LLH with specific focus on the integration of simulation
and optimisation, starting with MOOCEM, then NSGA-II and finally DBMOSA.

5.2 Multi-objective cross-entropy method

The single-objective cross-entropy method (CEM) [217] has been adapted to solve MOOPs.
The multi-objective extension, called MOOCEM, was purposefully designed by Bekker and
Aldrich [22] to solve (computationally expensive time-dependent) stochastic multi-objective sim-
ulation optimisation problems — naturally, motivating its inclusion in this study. The CEM is
based on Importance Sampling and the Kullback–Leibler (or cross-entropy) distance [58]. For
a theoretical discussion, the reader is referred to [217]. The following section introduces some
preliminaries specific to the MOOCEM algorithm.

5.2.1 Preliminaries for the MOOCEM

The literature does not prescribe a specific probability distribution for the CEM [21, 22]. In
this study the normal and Poisson distributions are used for both population initialisation and
to sample decision variable values from. To enable sampling of feasible decision variable values,
it is necessary to truncate the probability distribution so as to sample in the range [li, ui] for
decision variable i.

The truncated normal (or Poisson) distribution on the given range [0, ui] is obtained by nor-
malising the fundamental normal (or Poisson) distribution. This is described next, followed by
how to sample from these distributions. The probability density function (pdf) for the normal
distribution is given as

f(x) =
1

σ
√
2π

exp−
1
2
(x−µ

σ
)2 , −∞ < x <∞, (5.1)

where σ denotes the standard deviation and µ the mean. The pdf for the truncated normal
distribution with µi and σi, on the range [a, b], is given as

ft,i(x, µi, σi, a, b) =
f(x)∫ b

a f(x)dx
, a ≤ x ≤ b, (5.2)

where f(·) is the pdf, as defined in (5.1).

Stellenbosch University https://scholar.sun.ac.za

5.2. Multi-objective cross-entropy method 75

The probability mass function (pmf) for the Poisson distribution can be expressed as

f(x) =
λx exp−λ

x!
, x = 0, 1, 2, . . . (5.3)

where λ is the mean. Note that µ and σ (or λ) are arbitrarily initialised. The pmf for the
truncated Poisson distribution with rate λi, on the range [a, b], is given as

ft,i(x, λi, a, b) =
e−λiλx

i∑b
x=a

e−λiλx
i

x! x!
, x = a, . . . , b. (5.4)

The pseudo-code description of truncating a probability distribution is presented in Algorithm
5.1. The truncation process is similar for the normal and Poisson distributions, therefore one
algorithm is sufficient to describe the process for both probability distributions. In Algorithm
5.1 the truncation process is first described for the normal distribution and then for the Poisson
distribution in brackets.

First, the pdf (or pmf) values fi(x) for normal (or Poisson) distribution are calculated, using
(5.1) (or (5.3)), for decision variable i in the range [0, ui]. Next, each fi(x) value is normalised,
by dividing it by the sum of the fi(x) values in the range [li, ui]. This results in the truncated
pdf (or pmf) values ft,i(x). Now, the truncated cdf values Ft,i(x) can be calculated as the sum
of ft,i(x), where x is in the range [li, ui] and Ft,i(li) = ft,i(li), Ft,i(li + 1) = ft,i(li) + ft,i(li + 1)
and so on. To validate that the distributions are truncated correctly, the cdf value for the upper
bound should be equal to 1, i.e. Ft,i(ui) = 1.

Algorithm 5.1: Truncate a probability distribution

Input : For the normal distribution, specify the µi and σi and (for the Poisson distribution,
specify λi) also specify the upper and lower bound [li, ui] for decision variable i.

Output : The truncated normal (or Poisson) distribution.
sum← 0; // Initialise sum1

for x := 0 to ui do2

Calculate the pdf (or pmf) value fi(x) for x, using (5.1) (or (5.3)); // x ∈ [0, ui]3

for x := li to ui do4

sum← sum+ fi(x); // Determine the sum, x ∈ [li, ui]5

for x := li to ui do6

Calculate the truncated pdf (or pmf) value, ft,i(x)← fi(x)/sum;7

Calculate the first truncated cdf value, Ft,i(li)← ft(li);8

for x := li + 1 to ui do9

Calculate the truncated cdf value, Ft,i(x)← ft,i(x) + ft,i(x− 1); // x ∈ [li + 1, ui]10

The next step is to sample from the truncated normal (or Poisson) distribution which is described
in Algorithm 5.2. To sample from the truncated normal (or Poisson) distribution, a random
number ru ∼ U(0, 1) is generated and x← li. If ru < Ft,i(x), where x is in the range [li, ui] for
decision variable i, then x is incremented. The algorithm terminates when ru ≥ Ft,i(x) and x is
returned as the random sample in the range [li, ui].

Sampling from these distributions is simple and the sample values, for decision variable i on
the defined range, are easily obtained. Figures 5.3a and 5.3b illustrate the truncated normal
distribution with µi and σi and the Poisson distribution with λi, for decision variable i, where
x is defined in the range [−1, 2].

Stellenbosch University https://scholar.sun.ac.za

76 Chapter 5. Metaheuristics and Hyperheuristics

Algorithm 5.2: Sample from a truncated probability distribution

Input : The truncated normal (or Poisson) distribution, Ft,i.
Output : Random sample x, where x is in the range [li, ui].
Generate a random number ru ∼ U(0, 1);1

Set x← li;2

while ru < Ft,i(x) do3

x← x+ 1; // Increment x4

Return x; // Random sample x, where x is in the range [li, ui]5

-1 0 1 2

0

0.2

0.4

0.6

x

F
t,
i
(x

)

(a) Truncated normal distribution

-1 0 1 2

0

0.2

0.4

0.6

x

(b) Truncated Poisson distribution

Figure 5.3: An example illustrating the (a) truncated normal distribution with µi and σi and (b)
truncated Poisson distribution with λi, for decision variable i, where x is defined in the range [−1, 2],
adapted from [22].

The next section provides a detailed description of the MOOCEM algorithm, supported by
the user-interface of the MOOCEM tool used in Tecnomatix, to illustrate the integration of
simulation and optimisation.

5.2.2 The MOOCEM algorithm

Figures 5.4a and 5.4b aids with elucidating the simulation optimisation process via the MOOCEM
tool as it is used in Tecnomatix. The steps for using the MOOCEM tool are as follows: starting
with the Definition tab as shown in Figure 5.4a.

1. Define the number of decision variables (n), from the drop-down list, then click the Define
Input Variables button and define each decision variable in terms of its path and lower
and upper bounds, as seen in Figure 5.5a.

2. Click the Define Output Variables button and define each output variable in terms of its
path and select the optimisation direction from the drop-down list, i.e. Min or Max as
seen in Figure 5.5b.

The next step is to navigate to the Parameterisation tab, as shown in Figure 5.4b:

3. Input the Population size (N), Number of loops, Smoothing parameter, Probability of in-
version and Epsilon.

Stellenbosch University https://scholar.sun.ac.za

5.2. Multi-objective cross-entropy method 77

(a) Definition tab (b) Parameterisation tab

Figure 5.4: The MOOCEM tool user-interface.

The above-mentioned parameters are used as input to Algorithm 5.4. To execute the MOOCEM
algorithm and optimise the simulation problem at hand click the Start button. The Evaluation
tab is where the simulation time for the specific simulation problem is specified as discussed in
Chapter 4.

(a) The decision variable table

(b) The output variable table

Figure 5.5: The user-interface for the input and output tables used in Tecnomatix.

As mentioned, the initial population is generated randomly. The Poisson distribution is a
discrete probability distribution, denoted by X ∼ Pois(λ), where λ is the mean. The Poisson
distribution is unable to generate sample values larger than 130, therefore if the upper bound
of a decision variable exceeds 130, as in the case of the IP, the normal distribution is used. The
normal distribution is a continuous probability distribution, denoted by X ∼ N (µ, σ2), where
µ is the mean and σ the standard deviation.

When sampling from the normal distribution, discrete intervals are used to enable the generation
of discrete sample values and because decision variable i has a lower and upper bound, it is
necessary to truncate the distributions as to contain the search to only generating sample values
within the specified bounds, as discussed in §5.2.1.

Stellenbosch University https://scholar.sun.ac.za

78 Chapter 5. Metaheuristics and Hyperheuristics

The algorithm starts by initialising the iteration counter t ← 1, the current loop k ← 1, the
current number of evaluations NumEvaluations← 0 and a boolean variable NotTerminate←
true. Next, the parameters specific to the probability distribution are initialised [21, 22]. If
the normal distribution is used, then the mean µi and standard deviation σi is initialised, for
decision variable i. If the Poisson distribution is used, then the mean λi is initialised for decision
variable i. The following discussion assumes the normal distribution is used and therefore a
mean and standard deviation are required.

1. Initialise µi and σi.

Initialise µi ← li + (ui − li)ru, where li is the lower bound and ui the upper bound for decision
variable i, for i ∈ {1, . . . , n} and ru is a random number, between 0 and 1, generated from the
uniform distribution, denoted by ru ∼ U(0, 1). Next, initialise an arbitrarily large value for σi,
for example σi ← 10(ui − li) [21, 22]. (In the case of the Poisson distribution, λi is arbitrarily
initialised as λi ← uiru).

2. Construct the truncated probability distribution for each decision variable i for µi and σi,
using Algorithm 5.1. Refer to §5.2.1.

3. Generate an initial population, of size N , by sampling from the truncated probability
distribution, using Algorithm 5.2 for each decision variable i. Again, refer to §5.2.1.

4. Evaluate the initial population, i.e. the simulation model evaluates N decision variable
combinations.

Now, the loop initiates, while the current loop k is less than the user-defined Number of loops,
denoted by kmax, do the following:

5. Rank the solutions obtained by the simulation model, using Algorithm 5.3 for specified
ranking threshold ρE .

6. Append the solutions with ranking values not exceeding a specified threshold value ρE to
a so-called elite vector, titled Elite.

Algorithm 2.1 is adapted to consider the ranking threshold ρE , as given in Algorithm 5.3.

Consequently, Elite represents the current weakly non-dominated set. Solution x1 is said to
weakly dominate x2 (denoted by x1 ⪯ x2) if fk(x1) ≤ fk(x2) for k ∈ {1, . . . ,m} [162]. To
ensure exploration and exploitation during the search, the initial ranking threshold is selected
as ρE = 2, i.e. Elite contains solutions with rank ρ ∈ {0, 1, 2}. The ranking value of the solution
indicates the number of solutions that dominate it [21, 22]. For example, a solution with ρ = 2
is dominated by two solutions in the population.

7. If the elite vector is not an empty set, denoted as Elite ̸= ∅, then update µi and σi
according to (5.5).

8. Construct the truncated probability distribution for each decision variable i for µi and σi,
using Algorithm 5.1.

9. Generate the new population of N possible solutions by sampling from the truncated
probability distribution, using Algorithm 5.2 for each decision variable i and continue
from step 19 onwards.

Stellenbosch University https://scholar.sun.ac.za

5.2. Multi-objective cross-entropy method 79

Algorithm 5.3: Ranking threshold adaptation of the Pareto ranking algorithm, for a
min-max bi-objective optimisation problem

Input : A population of solutions P and ranking threshold ρE .
Output : The elite vector containing solutions with rank 0− ρE .
P ← sort(P, 1); // Sort the first objective in descending order1

for i← 1 to |P| do2

penalty ← 0; // Initialise Pareto rank to zero3

for j ← (i+ 1) to |P| do4

if fj
2 ≺ fi

2 then // i.e. if fj
2 ≥ fi

2
5

penalty ← penalty + 1; // Increment the penalty6

ρi ← penalty; // Rank of solution i7

for i← 1 to |P| do8

if ρi = ρE then9

Elite← Elite ∪ {i}; // Solutions with rank 0− ρE10

10. Check for duplicate solutions and replace them with non-duplicate solutions.

The parameter vectors (µi, σi) are smoothed by means of the smoothing function and the
decision variable values in the elite vector, given as

v̂t = αv̂t + (1− α)v̂t−1, (5.5)

where t is the current iteration and α is the smoothing constant, typically in the range [0.6, 0.9].
For example, the value of σi,t, for the first decision variable, is updated as follows

σ̂1,t = ασ̃1,t + (1− α)σ̂1,t−1, (5.6)

after iteration t [21, 22]. The idea behind smoothing µi and σi is to account for some information
from the previous iteration.

11. If Elite ̸= ∅ and k > 1, then construct a histogram for each decision variable i using the
values in Elite.

The histograms are used to guide the search and inform the MOOCEM on what regions it needs
to explore next. The histogram concept is implemented as follows and explained using Figure
5.6 for a decision variable i defined in the range [li, ui]. In this example, there are r = 5 equally
sized classes that are formed between the two boundary classes (i.e. the first and last class),
resulting in a total of r + 2 classes [21, 22].

The first step is to determine the boundaries of the classes. For the first class, the lower bound
is set equal to li (the lower bound of decision variable i) and the upper bound is set equal to the
minimum value found in Elite, i.e. min(Elite(·, i)). Similarly, for the last class, the upper bound
is set equal to ui (the upper bound of decision variable i) and the lower bound is set equal to
the maximum value found in Elite, i.e. max(Elite(·, i)) [21, 22].

Next, the equally sized class intervals can be calculated as

max(Elite(·, i))−min(Elite(·, i))
r

.

Stellenbosch University https://scholar.sun.ac.za

80 Chapter 5. Metaheuristics and Hyperheuristics

c i
1
–
c i
2

c i
2
–
c i
3

c i
3
–
c i
4

c i
4
–
c i
5

c i
5
–
c i
6

c i
6
–
c i
7

c i
7
–
c i
8

0

10

20

30

c i
1
=

L
i

c i
(r

+
3
)
=

U
i

c i
2
=

m
in

(E
li
te
(·
,i
))

c i
(r

+
2
)
=

m
a
x
(E

li
te
(·
,i
))

Classes

F
re
q
u
en

cy

Figure 5.6: An example illustrating the histogram concept for decision variable i and r = 5 equally
sized classes, with a total of r + 2 classes, adapted from [22].

In summary, consider again the example in Figure 5.6, suppose the class boundaries are recorded
in a vector Ci = {ci1, ci2, . . . , ci(r+2), ci((r+2)+1)}, where ci1 corresponds to the lower boundary
of the first class (i.e. ci1 = li) and ci((r+2)+1) corresponds to the upper boundary of the last class
(i.e. ci((r+2)+1) = ui). Note that Ci contains r + 3 elements because there are r + 2 classes in
the histogram, also, the width of the first class ([ci1, ci2]) and last class ([ci(r+2), ci((r+2)+1)])
may differ from each other, whereas the r classes inbetween have equal widths [21, 22].

12. Determine the frequency value τiκ for each class, for decision variable i, that is present in
Elite.

Informally, the frequency of class ci1−ci2 is determined by counting how many solutions in Elite
are smaller than or equal to ci2. Next, the frequency of class ci2− ci3 is determined by counting
how many solutions in Elite are greater than ci2 and smaller than or equal to ci3 and so on,
until the frequency of class ci7 − ci8 is determined.

Formally: Xij belongs to the class [ciκ, ci(κ+1)) if ciκ < Xij ≤ ci(κ+1), where 1 ≤ κ ≤ r + 2 and
j is the number of solutions in Elite. To conclude, the histogram frequency value τi1 represents
the frequency count of decision variable i in the range [ci1, ci2), τi2 represents the count in the
range [ci2, ci3), and so on. The new population is formed proportionally, according to the class
frequencies for each decision variable [21, 22].

13. Calculate the proportions that determine the number of solutions to generate in each class,
respectively, for decision variable i.

Suppose the elite vector contains Er solutions and τiκ occurrences in class [ciκ, ci(κ+1)) for a
given decision variable. If Er is not equal to N , then ⌊Nτik/Er⌋ values are created from this
range. Note that the proportional numbers may not add up to N because of the rounding down
calculation, however the difference is simply added to the last class [21, 22].

Stellenbosch University https://scholar.sun.ac.za

5.2. Multi-objective cross-entropy method 81

14. Calculate the temporary µ′iκ and σ′iκ values associated with the specific histogram class
ranges, i.e. for the class [ciκ, ci(κ+1)) corresponding to the decision variable i. The param-
eter estimators are given as

µ′iκ = ciκ + ru(ci(κ+1) − ciκ), and (5.7)

σ′iκ = ci(κ+1) − ciκ, (5.8)

where 1 ≤ κ ≤ r + 2 and ru ∼ U(0, 1) [21, 22].

Since Elite is used to determine the frequencies, according to the rankings returned by the
candidates, classes that do not contribute to the elite vector are effectively eliminated from the
search (as the search progresses). For this reason, the histogram frequencies are purposefully
inverted to prevent premature convergence albeit with low probability. This is done for each
iteration t. Note that the probability of inverting the histogram frequencies is denoted by ph,
where the range is typically [0.1, 0.3] [21, 22].

15. Generate a random number ru ∼ U(0, 1). If ru < ph the histogram frequencies are inverted,
otherwise the frequencies remain the same and the new population may be generated
accordingly.

For decision variable i, the maximum frequency over all class frequencies is determined, denoted
as τmax. This corresponds to the frequency of class ci4−ci5, as seen in Figure 5.7a. The frequency,
for each class (τiκ), is then subtracted from τmax, resulting in an inverted histogram, as shown in
Figure 5.7b. After the frequency inversion, search ranges with small proportions of population
candidate allocations receive higher proportions of allocations, while search ranges with high
proportions of population allocations receive fewer allocations, i.e. forcing the algorithm to
explore the regions possibly eliminated during the search [21, 22].

c i
1
–
c i
2

c i
2
–
c i
3

c i
3
–
c i
4

c i
4
–
c i
5

c i
5
–
c i
6

c i
6
–
c i
7

c i
7
–
c i
8

0

10

20

30

Classes

F
re
q
u
en

cy

(a) Histogram after iteration t

c i
1
–
c i
2

c i
2
–
c i
3

c i
3
–
c i
4

c i
4
–
c i
5

c i
5
–
c i
6

c i
6
–
c i
7

c i
7
–
c i
8

0

10

20

30

Classes

(b) Inverted histogram

Figure 5.7: An example illustrating the inversion of the histogram frequencies at iteration t for decision
variable i, adapted from [22].

The number of classes increases as the search progresses which renders it possible to maintain
good combinations of decision variable values because the class ranges become smaller and
consequently more fine-tuned.

Stellenbosch University https://scholar.sun.ac.za

82 Chapter 5. Metaheuristics and Hyperheuristics

The number of classes should not become too large because the algorithm will become inefficient
and may not be larger than the decision variable bound range. For example, the number of classes
for the BAP5 with l = 1 and u = 17, may not exceed u− l = 16 because then the boundaries of
the classes become real values. Finally, the new population can be generated by sampling from
the relevant truncated probability distribution and class frequencies [21, 22].

16. Construct the truncated probability distribution for each decision variable i for each class,
using µ′iκ and σ′iκ and Algorithm 5.1.

17. Generate the new population of possible solutions by sampling from the truncated proba-
bility distribution for each class, using Algorithm 5.2.

18. Check for duplicate solutions and then replace them with non-duplicate solutions.

19. Evaluate the new population, i.e. the simulation model evaluates N new decision variable
combinations.

This concludes the loop which is repeated several times. If all σi,t < ϵc, then the ranking
threshold is set to ρE ← 1, i.e. Elite contains solutions with ρ ∈ {0, 1}, and the number of
loops k is incremented, consequently the number of classes of the histograms is incremented,
r ← k + 5. MOOCEM usually terminates when the value for σi of each decision variable has
decreased below a user-specified threshold ϵc.

As mentioned, the stopping condition employed in this study is fixed at 1 000 solution evaluations
(or when k = kmax). At termination, the ranking threshold is set to ρE ← 0 and Elite is ranked
one final time, using Algorithm 5.3, and returned as an approximate of the true Pareto set of
solutions to the bi-objective simulation optimisation problem under consideration [21, 22]. The
pseudo-code description of the entire process described above is provided in Algorithm 5.4, with
specific reference to the above-mentioned steps.

Although it is not explicitly reported, when a new generation is generated, the algorithm has
to check if duplicate solutions are present, and if so, replace them with non-duplicate solutions.
This is a critical step to ensure that the computationally expensive function evaluator (i.e. the
simulation model) does not evaluate the same solution. Even though checking for duplicate solu-
tions may add to the computational time, it is less computationally expensive than unnecessarily
evaluating a solution, this is done for each algorithm.

In conclusion, the properties of the MOOCEM algorithm are stated. The MOOCEM algorithm

1. is a population-based search technique,

2. has a statistical basis,

3. uses an archive (Elite) to preserve weakly-dominated solutions during the search and finally
non-dominated solutions after the search terminates,

4. employs a Pareto ranking scheme to find non-dominated solutions,

5. achieves proximity to the true Pareto front via the convergence mechanism of the CEM,

6. and ensures diversity of the search via the inversion of the histogram (with probability ph)
which determines the search regions.

Next, the NSGA-II algorithm is discussed.

Stellenbosch University https://scholar.sun.ac.za

5.3. Non-dominated sorting genetic algorithm II 83

Algorithm 5.4: The MOOCEM algorithm, adapted from [21, 22], for the simulation
optimisation process

Input : Previously described using Figures 5.4a and 5.4b.
Output : The approximate Pareto set (PS) for the given simulation problem.
Initialise the iteration counter t← 1;1

Initialise the current loop k ← 1;2

Initialise NumEvaluations← 0; // The current number of evaluations3

Initialise NotTerminate← true; // Boolean variable4

Initialise µi and σi; // Refer to step 15

Elite← ∅; // Initialise Elite vector6

Construct the truncated distribution, using Algorithm 5.1; // Refer to step 27

Generate an initial population, using Algorithm 5.2; // Refer to step 38

Evaluate the initial population; // Refer to step 49

while k ≤ kmax and NumEvaluations < MaxEvaluations do10

t← t+ 1; // Increment t11

Rank the solutions, for ρE = 2, using Algorithm 5.3; // Refer to step 5-612

if Elite ̸= ∅ then13

Update µi and σi, using (5.5); // Refer to step 714

if All σi,t < ϵc then15

NotTerminate← false;16

NotTerminate← (NotTerminate and (Nt ≤MaxEvaluations/2));17

NumEvaluations← NumEvaluations+N ;18

if NotTerminate = false then19

Rank the solutions, for ρE = 1, using Algorithm 5.3;20

k ← k + 1;21

Update µi and σi, as explained in Step 1;22

t← 0;23

NotTerminate← true;24

else if NotTerminate = true then25

if Elite ̸= ∅ and k > 1 then26

Follow the steps described in 11–19; // Refer to step 11-1927

else28

Construct the truncated distribution, using Algorithm 5.1; // Refer to step 829

Generate a new population, using Algorithm 5.2; // Refer to step 930

Evaluate the new population; // Similar to step 1931

Rank the solutions in Elite, for ρE ← 0, using Algorithm 5.3;32

PS ← Elite; // Approximate Pareto set33

5.3 Non-dominated sorting genetic algorithm II

Many multi-objective extensions of the single-objective genetic algorithm have been proposed to
solve MOOPs and some have even been improved upon. Deb et al. [67] developed the NSGA-II
to improve upon NSGA (its predecessor) [238] and is classified under evolutionary algorithms
(EAs). NSGA-II was one of the first algorithms to purposefully maintain the diversity of the
solution set with the focus of converging towards the true Pareto front [238]. EAs are inspired
by the principles of natural selection and evolution [10]. For an introductory survey on EAs
the reader is referred to [11], whereas for an introduction to multi-objective EAs (MOEAs), the
reader is referred to [47].

The following section starts by presenting a detailed description of the NSGA-II algorithm,
supported by the user-interface of the NSGA-II tool used in Tecnomatix, to illustrate the in-

Stellenbosch University https://scholar.sun.ac.za

84 Chapter 5. Metaheuristics and Hyperheuristics

tegration of simulation and optimisation. Thereafter, the selection, crossover and mutation
operators are discussed. The crossover and mutation operators considered in this study, are
real-coded operators applicable to the discrete search space.

5.3.1 The NSGA-II

Figures 5.8a and 5.8b aids with elucidating the simulation optimisation process via the NSGA-II
tool as it is used in Tecnomatix. The first two steps for using the NSGA-II tool are the same
as for the MOOCEM tool as described in §5.2.2, refer to steps 1–2. Accordingly, starting with
the Definition tab as shown in Figure 5.8a, follow the first two steps of the MOOCEM tool, i.e.
steps 1 and 2. After steps 1 and 2 have been completed continue with step 3 as described here:

3. Select the selection operator to apply, i.e. choose between Binary tournament selection
and Rank selection.

(a) Definition tab (b) Parameterisation tab

Figure 5.8: The NSGA-II tool user-interface.

The next step is to navigate to the Parameterisation tab, as shown in Figure 5.8b:

4. Input the Population size (N), Number of generations, Crossover probability, Mutation
operator and Mutation probability.

The mutation operator is selected from a drop-down list as shown in Figure 5.9, where the
choice is Polynomial mutation or Dynamic mutation. The above-mentioned parameters are
used as input to Algorithm 5.7. To execute the NSGA-II algorithm and optimise the simulation
problem at hand, click the Start button.

The algorithm starts by initialising the generation counter, t ← 0. Recall that the initial pop-
ulation is generated randomly, using the truncated normal or Poisson distribution as described
in §5.2.1, where µi and σi or λi are arbitrarily initialised, as suggested in step 1.

Stellenbosch University https://scholar.sun.ac.za

5.3. Non-dominated sorting genetic algorithm II 85

Figure 5.9: The mutation operators.

5. Generate the initial parent population P0, of size N .

6. Evaluate the initial population, i.e. the simulation model evaluates N decision variable
combinations.

If t = 0, then P0 is the mating pool, i.e. no selection operator is applied and the offspring
population Q0 is simply generated from P0.

8. Generate the offspring population Q0, of size N , by applying the reproduction operators,
namely the crossover operator with probability pc and mutation operator with probability
pm to the mating pool (P0).

9. Check for duplicate solutions and then replace them with non-duplicate solutions.

A random number ru ∼ U(0, 1) is generated. If ru < pc, crossover is performed, otherwise the
solution remains the same, i.e. no modification is made. Similarly, if ru < pm, mutation is
performed. Note that different random numbers ru are generated for each decision step.

9. Evaluate the offspring population (Q0), i.e. the simulation model evaluates N decision
variable combinations.

Now, the loop initiates, while the current generation t < tmax, where tmax is the fixed number
of iterations permitted, divided by the population size N , i.e. tmax = 10. Do the following:

10. Combine the parent and offspring populations, i.e. Rt ← Pt ∪Qt, of size 2N .

11. Assign fitness values to the combined population Rt.

The fitness values are used to determine which solutions should constitute the mating pool.
NSGA-II generally follows the same structure as MOEAs, however, its fitness assignment and
selection procedures distinguish it from other MOEAs. Each solution in the population is as-
signed two attributes that constitute its fitness, namely a Pareto rank and crowding distance.
The procedure is as follows: The first step is to apply the fast non-dominated sorting algorithm
(FNSA), described in Algorithm 5.5, in order to rank the solutions in Rt according to their
Pareto rank and partition them into their respective fronts. Thereafter, the solutions within
each rank (or front) are ranked again according to their crowding distance by applying the
crowding distance sorting and assignment algorithm, as described in Algorithm 5.6 [67]. Algo-
rithm 2.1 is adapted to return the non-dominated fronts F1, . . . , Fk, as seen in Algorithm 5.5.
The nature of Algorithm 5.5 is described using Figure 5.10.

The population of solutions in Figure 5.10a is ranked and partitioned into their respective sets
and fronts (as depicted in Figure 5.10b). Front 1 (denoted by F1), contains all the solutions
with a rank value of zero and Pareto rank, i.e. ρ1 = 0 (denoted by), forming the Pareto front.

Stellenbosch University https://scholar.sun.ac.za

86 Chapter 5. Metaheuristics and Hyperheuristics

Algorithm 5.5: Fast non-dominated sorting algorithm, for a min-max bi-objective opti-
misation problem [67]

Input : A population of solutions P.
Output : The population of P partitioned into k successive non-dominated fronts F1, . . . , Fk

with a corresponding Pareto rank ρ1, . . . , ρk and each solution x is also assigned a
Pareto rank ρx, where PS ← F1, containing all the solutions with ρ = 1.

P ← sort(P, 1); // Sort the first objective in descending order1

for i← 1 to |P| do2

penalty ← 0; // Initialise Pareto rank to zero3

for j ← (i+ 1) to |P| do4

if fj
2 ≺ fi

2 then // i.e. if fj
2 ≥ fi

2
5

penalty ← penalty + 1; // Increment the penalty6

ρi ← penalty; // Rank of solution i7

j ← 1;8

while Fj ̸= ∅ do ; // Populating F1, . . . ,Fk9

10

for i ← 1 to |P| do11

if ρi = j-1 then12

Fj ← Fj ∪ {i};13

j ← j + 1;14

f1

f2

←
M
in
im

is
e

← Minimise

(a) Candidate solutions

f1

f2

F2

F1

F5

F4

F3

A

D

E
B

C

(b) Pareto fronts, F1, . . . , F5

Figure 5.10: An illustration of candidate solutions partitioned into their respective sets and fronts and
ranked accordingly, using Algorithm 5.5.

Next, F2 comprises all solutions with ρ2 = 1, F3 comprises all solutions with ρ3 = 2, and so
forth until Front 5 (denoted by) is formed containing all the solutions with ρ5 = 4.

As mentioned, Algorithm 5.6 is applied to each non-dominated front obtained by the FNSA.
The algorithm takes as input the non-dominated front F and returns the crowding distances
d1, . . . , dℓ as output, where ℓ denotes the number of solutions in F . The first step is to initialise
all the crowding distances to zero. Thereafter, the solutions in each objective are sorted in
ascending order irrespective of the optimisation context. Next, the distances of the boundary
solutions are set to infinity. For the intermediary solutions (i.e. 2 to ℓ−1), the crowding distance
is assigned by calculating the normalised distance between the solutions above and below its
rank, using (5.9). The boundary solutions are always added first, with equal probability.

Stellenbosch University https://scholar.sun.ac.za

5.3. Non-dominated sorting genetic algorithm II 87

Algorithm 5.6: Crowding distance sorting and assignment algorithm [67]

Input : A non-dominated front F of cardinality ℓ.
Output : The crowding distances d1, . . . , dℓ for each solution in front F .
ℓ← |F|; // Number of solutions in front F1

for i← 1 to ℓ do2

di ← 0; // Initialise crowding distances to zero3

for fk to |fm| do4

Ik ← sort(F , k);5

d1 = dℓ =∞;6

for i← 2 to (ℓ− 1) do // Apply to all solutions between the endpoints7

8

di ← di +
(f

I[i+1]
k − f

I[i−1]
k)

(fmax
k − fmin

k)
(5.9)

The fitness values of two solutions may be compared according to the crowded comparison
operator, given that each solution i is assigned a Pareto rank ρi and crowding distance di.
Accordingly, solution a is said to dominate solution b, denoted as a ≺cc b if one of two scenarios,
as stated in (5.10), are true. The first: if the solutions have different Pareto ranks (i.e. ρa < ρb)
then a ≺cc b, the solution with the lowest Pareto rank is preferred, i.e. solution a. The second:
if two solutions a and b have the same Pareto ranks (i.e. ρa = ρb), then the solution with the
greater crowding distance is preferred as they promote more diversity, i.e. if da > db then a ≺cc b
and solution a is preferred [67]. The crowded comparison operator is formally given as

a ≺cc b if

{
ρa < ρb, or

ρa = ρb and da > db.
(5.10)

During the entire search process, an archive is maintained and captured in the elite vector Elitist
and includes all the non-dominated solutions found at each generation t, i.e. the solutions in F1

with ρ = 1.

12. Maintain the elite vector by appending F1 to Elitist, denoted as Elitist← Elitist ∪ F1.

Next, the mating pool Pt+1 can be formed based on the crowded comparison operator ≺cc fitness
measure, as previously described.

13. Create the new mating pool Pt+1 by applying the selection operator.

The selection process is depicted in Figure 5.11. A selection operator is applied to the combined
population Rt, consisting of 2N solutions. The selection operator selects N solutions to form
the mating pool, thereafter two offspring solutions are generated from two parent solutions, i.e.
N parents are used to generate N offsprings. The selection operator selects solutions based on
the crowded comparison operator.

It can be seen that the new population consists of the solutions in F1 and F2 because the
solutions with the lower Pareto ranks are included first. A subset of F3 also forms part of the
new population, i.e. Pt+1 = {F1,F2, D}, where D ⊂ F3.

Next, the offspring population can be generated from Pt+1.

Stellenbosch University https://scholar.sun.ac.za

88 Chapter 5. Metaheuristics and Hyperheuristics

Non-dominated
sorting, Algorithm 5.5

Crowding distance
sorting, Algorithm 5.6

Pt

Qt

F1

F2

F3

F4

F5

Pt+1

Rt

Rejected

Figure 5.11: The fitness assignment procedure followed by NSGA-II to generate population Pt+1,
indicating the partitioning of the parent and offspring populations Pt and Qt, adapted from [67].

14. Generate the offspring population Qt by applying the crossover operator with probability
pc and mutation operator with probability pm to the solutions in the mating pool.

15. Check for duplicate solutions and then replace them with non-duplicate solutions.

Again, a random number ru ∼ U(0, 1) is generated. If ru < pc crossover is performed on decision
variable i, otherwise, no modification is made. Similarly, a random number ru ∼ U(0, 1) is
generated, i.e. different random numbers ru are generated for each decision step. If ru < pm
then mutation is performed on decision variable i, otherwise, no modification is made.

15. Evaluate the offspring population Qt, i.e. the simulation model evaluates N new decision
variable combinations.

16. Increment the generation counter, t← t+ 1.

This concludes the loop which is repeated until the stopping condition t ≥ tmax is met. At termi-
nation, the archive Elitist is ranked, according to Algorithm 2.1 and returned as an approximate
of the true Pareto set of solutions to the bi-objective simulation optimisation problem under con-
sideration, i.e. PS ← Elitist. Recall that (although it is not explicitly reported) when a new
generation is generated, the algorithm has to check if duplicate solutions are present, and if so,
replace them with non-duplicate solutions to ensure that the expensive function evaluator does
not unnecessarily evaluate a solution and is done for each algorithm. A pseudo-code description
of the entire process described above is provided in Algorithm 5.7, with specific reference to the
above-mentioned steps.

During each generation, solutions are selected based on fitness values (and not objective function
values) to form the parent population [149]. The crowded comparison operator fitness measure
(≺cc) enables the selection process used in NSGA-II to favour the exploration of diverse so-
lutions [67], refer to the discussion around step 11. Next, an offspring population is created
by applying reproduction operators (crossover and mutation) to the solutions in the parent
population.

Stellenbosch University https://scholar.sun.ac.za

5.3. Non-dominated sorting genetic algorithm II 89

Algorithm 5.7: NSGA-II, adapted from [67, 222], for the simulation optimisation process

Input : Previously described using Figures 5.8a and 5.8b.
Output : The approximate Pareto set (PS) for the given simulation problem.
t← 0; // Initialise the generation counter1

Elitist← ∅; // Initialise Elitist2

Generate an initial population P0; // Refer to step 53

Evaluate P0; // Refer to step 64

Generate the offspring population Q0; // Refer to step 85

Evaluate Q0; // Refer to step 96

while t < tmax do7

Rt ← Pt ∪Qt; // Refer to step 108

Assign fitness values, using Algorithm 5.5 and 5.6 respectively; // Refer to step 119

Elitist← Elitist ∪ F1; // Refer to step 1210

Create the new mating pool of solutions (Pt+1); // Refer to step 1311

Generate offspring population Qt+1; // Refer to step 1412

Evaluate Qt+1; // Refer to step 1513

t← t+ 1; // Refer to step 1614

Rank the solutions in Elitist, using Algorithm 2.1; // Get non-dominated solutions15

PS ← Elitist; // Approximate Pareto set16

Finally, a replacement scheme determines which solutions of the population will survive from
the offspring and parent populations. This process, as depicted in Figure 5.12, is iterated until
a stopping condition is met [93].

Population Parents

Offsprings

Selection

R
ep

ro
d
u
ctio

nR
ep

la
ce
m
en

t

Figure 5.12: An illustration of a generation in EAs, adapted from [93].

Selection pressure is the paradigm in which solutions that have superior fitness values are selected
with a higher probability, without it — the search process is arbitrary. Selection pressure and
diversity preservation are complimentary [255]. The selection pressure guides the population
to better solutions resulting in a loss of population diversity. Conversely, preserving popula-
tion diversity means selecting worse solutions thereby negating the effect of selection pressure.
Consequently, a trade-off exits and should be balanced to obtain a diverse population in close
proximity to the true Pareto front, i.e. aiding the exploration and exploitation of the search and
not premature convergence [171, 175]. The selection operators considered for its inclusion in
this study are discussed next.

5.3.2 Selection operators

As mentioned, the selection operator determines which solutions in the parent population are
used to reproduce (by method of reproduction operators) to create the offspring population.
This strategy is based on the principle of survival of the fittest, where superior parents typically
result in better and fitter offsprings. This selection process is critical as it guides the search
toward the true Pareto front [93].

Stellenbosch University https://scholar.sun.ac.za

90 Chapter 5. Metaheuristics and Hyperheuristics

There are many selection strategies, namely, tournament selection, rank selection and roulette-
wheel selection, refer to [11, 14, 32, 103]. Roulette-wheel selection is dependent on the optimisa-
tion direction, whereas tournament and rank selection are not. For more information regarding
roulette-wheel selection, the reader is referred to [209]. During tournament selection, k solutions
are selected at random from the combined population Rt, which compete against each other.
The solution with the best fitness value, as discussed in step 11, wins and is included in the
mating pool. In this study, the tournament size (or number of solutions competing) is k = 2,
referred to as binary tournament selection (BTS) [93, 209].

Rank selection (RS) simply selects the solutions with the best fitness values, as discussed in
step 11 in §5.3.1, i.e. the mating pool consists of F1,F2, . . . until the mating pool consists of
N solutions. Note that binary tournament selection enables solutions with lower fitness values
to enter the mating pool. Rank selection also enables solutions with lower fitness values to
enter the mating pool, however, solutions with the greatest fitness values are selected first and
consequently, if the number of solutions in Front 1 is equal to the population size (i.e. |F1| = N)
then only non-dominated solutions are selected to enter the mating pool.

The decision to incorporate discrete vector representations is further motivated by the disadvan-
tages of binary representations. The process in Figure 5.13 is as follows: crossover and mutation
are performed in respect of the binary string (the genotype or encoded solution), which is then
decoded (as the phenotype) and evaluated by the simulation model evaluator, i.e. the reproduc-
tion operators act on the genotype level while the simulation model evaluator uses the phenotype
of the associated genotype. At this point the selection operator is applied and a mating pool
created.

The selected parents are then encoded and crossover as well as mutation are performed on the
encoded solutions, and so on. Real-coded reproduction operators have been suggested in the
literature [64, 66, 69, 70] and adapted for discrete vector representations due to the unnecessary
computational inefficiency of encoding and decoding solutions.

Genotype Phenotype

Reproduction operators
(crossover, mutation)

decode

R
ep

ro
d
u
ct
io
n

Fitness
(quality)

Selection
operator

applyencode

E
v
a
lu
a
tio

n

1 1 1 1 15

0 1 1 1 7

1 0 1 1 11

1 1 0 1 13

1 1 1 0 14

Figure 5.13: Illustration of the effect that changing a single bit has on the value the string represents,
adapted from [93].

Furthermore, in order to move to a neighbouring solution, more than one bit might need to be
changed which introduces incumbrance, as changing one bit does not translate into a neighbour.
An example is presented in Figure 5.13, with specific focus on the binary string [1 1 1 1] = 15 —
by converting a single bit the string can take the following values {7, 11, 13, 14}, two of which
are neighbours and two that are not. There is, however, the option of converting the binary
code to so-called Gray code, where changing one bit would result in a neighbouring solution.

Stellenbosch University https://scholar.sun.ac.za

5.3. Non-dominated sorting genetic algorithm II 91

However, the challenge remains of keeping the genotypes within the bounds of the decision
variables and requires considerable effort. Consequently, a so-called direct encoding is used,
where the genotype is similar to the phenotype. The type of operations that can be applied to
a solution depends on its representation, i.e. if the solution representation is discrete then the
application of the reproduction operators should modify the discrete value and return a discrete
value for the solution and is dependent on the problem under consideration. Many optimisation
problems have discrete search spaces [221, 252], as do the simulation problems in this study.

For this reason, techniques exist to adapt continuous heuristics, for example the recombination
operators, for the discrete search space [52]. In this study, the technique of rounding off is used,
i.e. the value generated by the continuous heuristic is simply rounded off to the nearest integer
value. This approach was first used by Yoshida et al. [261] and is used in this study due to its
simplicity and low computational cost.

The real-coded crossover operators that have been adapted for discrete search spaces and that
are considered for its inclusion in this study, are discussed next.

5.3.3 Crossover operators

The next step in creating the offspring population is crossover. A crossover probability pc is
specified by the user and represents the proportion of crossover operations, i.e. pc determines
whether or not the crossover operator is applied. Crossover operators are n-ary operators [93].
In this study, the crossover operators are 2-ary (or binary), i.e. the crossover operator modifies
two solutions in the parent population, simultaneously.

The general procedure is as follows: generate a random number ru ∼ U(0, 1), if ru < pc the
crossover is applied to two parent solutions. Crossover creates two new offspring solutions
by using parts of both parent solutions with the purpose of inheriting some characteristics of
both parents. The offsprings may potentially be generated far from the region being sampled,
depending on how far the parent solutions are from each other and the crossover operator
used, consequently introducing diversity into the population [104]. The primary task of the
crossover operator is therefore to search the neighbourhood of the parent solutions without any
bias to specific neighbourhoods. It is the task of the selection operator to guide the search
towards better, fitter neighbourhoods [64]. As mentioned, if ru ≥ pc, then the solution remains
unchanged, i.e. the parents become the offsprings.

There are several real-coded crossover operators, namely simplex crossover [247], simulated
binary crossover (SBX) [62, 66], Laplace crossover (LX) [69] and blend crossover, to name a
few. SBX and LX are considered parent-centric, i.e. each parent has an equal probability of
creating an offspring in its neighbourhood [93].

Simulated binary crossover

SBX uses a probability distribution function P (β) to simulate the single-point crossover operator,
as used in binary-coded operators [62, 66], to generate two offspring solutions.

The probability distribution function is given as

P (β) =

{
0.5(η + 1)βη, if β ≤ 1

0.5(η + 1)β
1

η+2 , otherwise.
(5.11)

The distribution index η controls the distance between the offsprings and the parents, where
a large η results in a higher probability of generating offsprings that are near their parents.

Stellenbosch University https://scholar.sun.ac.za

92 Chapter 5. Metaheuristics and Hyperheuristics

For MOO the interval value for η is suggested as [5, 10] [93]. The procedure of computing the
offspring solutions xt+1

1 and xt+1
2 from parent solutions xt1 and xt2 is described in Algorithm 5.8,

assuming ru < pc. First, a random number ru ∼ U(0, 1) is generated, thereafter the ordinate β
can be determined by solving for (5.12) using ru and specified η. Finally, the offsprings can be
computed. For more detail, the reader is referred to [62, 66, 93].

Algorithm 5.8: Simulated binary crossover, adapted for the discrete search space [62, 66]

Input : Two parent solutions xt
1 and xt

2 and a specified value for the distribution index η.
Output : Two discrete valued offspring solutions xt+1

1 and xt+1
2 .

Generate a random number, ru ∼ U(0, 1);1

Calculate β as2

β =

 2r
1

η+1
u , if ru ≤ 0.5[

1
2(1−ru)

] 1
η+1

, otherwise.
(5.12)

Compute offsprings as3

xt+1
1 = 0.5⌊(1 + β)xt1 + (1− β)xt2⌋

xt+1
2 = 0.5⌊(1− β)xt1 + (1 + β)xt2⌋

Laplace crossover

The LX operator uses the Laplace distribution to create offsprings. The procedure of computing
the offspring solutions xt+1

1 and xt+1
2 from parent solutions xt1 and xt2 is described in Algorithm

5.9, assuming ru < pc.

Algorithm 5.9: Laplace crossover, adapted for the discrete search space [69]

Input : Two parent solutions xt
1 and xt

2 and specified values for the location parameter a and
the scale parameter b.

Output : Two discrete valued offspring solutions xt+1
1 and xt+1

2 .
Generate a random number, ru ∼ U(0, 1);1

Calculate β as2

β =

{
a− b loge(ru), if ru ≤ 0.5

a+ b loge(ru), otherwise.
(5.13)

Compute offsprings as3

xt+1
1 = xt1 + ⌊β abs(xt1 − xt2)⌋

xt+1
2 = xt2 + ⌊β abs(xt1 − xt2)⌋

Similar to SBX, the value of b (the scale parameter) influences the distance between the offsprings
and the parents. However, for smaller values of b, offsprings are likely to be near the parents. For
fixed values of a and b, the offspring are created proportional to the parents, i.e. the offspring
are expected to be near each other if the parents are near each other, and vice versa [69]. First,
a random number ru ∼ U(0, 1) is generated, thereafter β can be determined by solving for (5.13)
using ru and specified values for a and b, then the offsprings can be computed.

Stellenbosch University https://scholar.sun.ac.za

5.3. Non-dominated sorting genetic algorithm II 93

Blend crossover

The BX procedure of computing offsprings xt+1
1 and xt+1

2 from xt1 and xt2 is described in Algo-
rithm 5.10, assuming ru < pc. First, a random number ru ∼ U(0, 1) is generated, thereafter the
offsprings are created randomly in the range [xt1 − ru(x

t
2 − xt1), xt2 + ru(x

t
2 − xt1)] [203].

Algorithm 5.10: Blend crossover, adapted for the discrete search space [203]

Input : Two parent solutions xt
1 and xt

2, where xt
1 < xt

2.
Output : Two discrete valued offspring solutions xt+1

1 and xt+1
2 .

Generate a random number, ru ∼ U(0, 1);1

Compute offsprings as2

xt+1
1 = ⌊ruxt1 + (1− ru)x

t
2⌋

xt+1
2 = ⌊(1− ru)x

t
1 + rux

t
2⌋

Upon initial experimentation, the LX and BX operators proved to be troublesome, generating
infeasible offsprings and proving difficult to keep values within bound irrespective of the user-
specified parameter values (e.g. the location or scale parameters). Consequently, LX and BX
are excluded from further consideration.

Next, the real-coded mutation operators adapted for discrete search spaces and considered for
its inclusion in this study, are discussed.

5.3.4 Mutation operators

After crossover, the next step in creating the offspring population, is mutation. A mutation
probability pm is specified by the user and is typically markedly lower than the crossover prob-
ability. In contrast to crossover operators, mutation operators are unary operators, modifying
a single solution of the parent population independent of the remainder of the population [65].
The general procedure is as follows: a uniform random number ru ∼ U(0, 1) is generated, if
ru < pm the solution is mutated, i.e. the current variable value (which is the parent if crossover
was not performed or offspring if crossover was performed) is perturbed to a neighbouring value
(the offspring). This is performed for each respective decision variable and each solution.

Mutation introduces and maintains diversity in the population [104, 119]. At the start of the
search, it may be desirable that the mutation operator favours values markedly different from the
current solution, but as the search progresses it should favour values more similar to the parent
solutions [203]. As mentioned, if ru ≥ pm, then the solution remains unchanged. There are
several real-coded mutation operators, namely random mutation [57], Gaussian mutation [225],
polynomial mutation (PM) [59, 63], power mutation [70], dynamic mutation (DM) [203], non-
uniform mutation, to name a few. PM and DM operators create solutions within the user-
specified range [l, u], naturally motivating their inclusion in this study.

Polynomial mutation operator

PM uses the polynomial probability distribution, with a user-defined distribution index (ηm ≈
20), to perturb a solution near the parent (or crossover solution) [93]. The mutation operator
creates a solution x′ in the range [l, u], by mutating x as described in Algorithm 5.11, assuming

Stellenbosch University https://scholar.sun.ac.za

94 Chapter 5. Metaheuristics and Hyperheuristics

ru < pm. First, a random number ru ∼ U(0, 1) is generated, thereafter δ can be determined by
solving for (5.14) using ru and specified ηm. Finally, the mutated offspring can be computed.

Algorithm 5.11: Polynomial mutation, adapted for the discrete search space [65, 93]

Input : Solution x and distribution index ηm. If crossover was not applied, then x is the parent
solution, otherwise x is the offspring solution created by from the crossover operation.

Output : Mutated offspring x′.
Generate a random number, ru ∼ U(0, 1);1

Calculate δ as2

δ =

 2r
1

ηm+1
u − 1, if ru < 0.5

1− 2(1− ru)
1

ηm+1 , otherwise.
(5.14)

Apply mutation operator3

x′ =

{
x+ ⌊(x− l)δ⌋, if ru ≤ 0.5,

x+ ⌊(u− x)δ⌋, otherwise.

Dynamic mutation

As mentioned, it may be desirable to start out with a mutated solution where all possible
values are equally probable (called uniform mutation) and as the search progresses to focus
the search near the parent solutions [203]. The mutated solution x′ is created from solution x,
for ru ∼ U(0, 1), as described in Algorithm 5.12, assuming ru < pm. First, a random number
ru ∼ U(0, 1) is generated, thereafter α can be determined by solving for (5.15) using ru and
specified γ. Finally, the mutated offspring can be computed.

Algorithm 5.12: Dynamic mutation, adapted for the discrete search space [203]

Input : Solution x and mutation parameter γ. If crossover was not applied, then x is the parent
solution, otherwise x is the offspring solution created by from the crossover operation.

Output : Mutated offspring x′.
Generate a random number, ru ∼ U(0, 1);1

Calculate ξ as2

ξ =

(
1− t− 1

tmax

)γ

, (5.15)

where t is the current generation count, tmax the total number of generations and β the user
specified mutation parameter. For the purposes of this study β = 5.

Apply mutation operator

x′ =

{
l + ⌊(ru − l)ξ(x− l)1−ξ⌋, if ru ≤ x,

u− ⌊(u− ru)
ξ(u− x)1−ξ⌋, otherwise.

In conclusion, the properties of the NSGA-II algorithm are stated. The NSGA-II algorithm

1. is a population-based search technique,

2. has a biological basis,

Stellenbosch University https://scholar.sun.ac.za

5.4. Dominance-based bi-objective simulated annealing 95

3. uses an archive to preserve non-dominated solutions (Elitist) during the search,

4. employs a Pareto ranking scheme to find non-dominated solutions,

5. achieves proximity to the true Pareto front via the selection operator,

6. and ensures diversity of the search via the crowded comparison operator, crossover and
mutation operators.

Finally the DBMOSA algorithm is discussed.

5.4 Dominance-based bi-objective simulated annealing

The single-objective SA algorithm has been adapted to solve MOOPs, DBMOSA being one
such manifestation. SA was first proposed by Kirkpatrick et al. [143] and later Smith et al.
developed the multi-objective adaptation DBMOSA [233]. For a summative description of the
different multi-objective extensions of SA, the reader is referred to [236]. The following section
provides a detailed description of the DBMOSA algorithm, supported by the user-interface of the
DBMOSA tool used in Tecnomatix, to illustrate the integration of simulation and optimisation.

5.4.1 The DBMOSA algorithm

Figures 5.14a and 5.14b are purposefully included to elucidate the simulation optimisation pro-
cess via the DBMOSA tool as it is used in Tecnomatix. The steps for using the DBMOSA tool
are as follows: starting with the Definition tab as shown in Figure 5.14a.

(a) Definition tab (b) Parameterisation tab

Figure 5.14: The DBMOSA tool user-interface.

Stellenbosch University https://scholar.sun.ac.za

96 Chapter 5. Metaheuristics and Hyperheuristics

1. Define the number of decision variables, then click the Define Input Variables button and
define the variables in terms of their paths, lower and upper bounds and initial solutions,
as seen in Figure 5.15.

2. Define the output variables, click the Define Output Variables button, in terms of their
paths and select the optimisation direction, i.e. Min or Max as seen in Figure 5.5b.

3. Choose the neighbouring move operator that should be applied. Refer to §5.4.4 for the
detailed documentation regarding the respective move operators.

Figure 5.15: The user-interface for the decision variable table used for DBMOSA in Tecnomatix.

The next step is to navigate to the Parameterisation tab, as shown in Figure 5.14b:

4. Input the Cooling and Heating schedule parameters, select the number of Accepts before
the temperature should decrease and the number of Attempts before it should increase.

5. Input the Stopping Condition, i.e. the number of poor epochs, denoted bymaxpoorEpochs.

6. Select the probability of accepting non-improving moves and then click the Calculate the
Initial Temperature button, refer to §5.4.3.

After the initial temperature has been calculated the Start button appears. The above-mentioned
parameters are used as input to Algorithm 5.13, click the Start button to execute the DBMOSA
algorithm and optimise the simulation problem at hand. As mentioned, the initial solution is
generated randomly, represented by x. The algorithm starts by initialising the iteration counter,
t ← 1, the counters accepts ← 1 (since the initial solution is accepted), attempts ← 0, poor
epochs, poorEpochs← 0 and epochs, epochs← 0.

1. Evaluate the initial solution (x), i.e. the simulation model evaluates x.

An archive A is maintained throughout the search process and contains all the non-dominated
solutions found. Because x is the first solution evaluated it is considered non-dominated and
enters the archive. However, as the search progresses, x might become dominated after which
it is removed from the archive.

2. Initialise the archive to contain the initial solution, i.e. A ← x.

Now the loop initiates, while the current iteration is less than or equal to the fixed number of
iterations permitted (i.e. t ≤ 1 000), do the following:

3. Increment the iteration counter, t← t+ 1.

4. Generate a neighbouring solution x′ from the previously accepted solution x according
to the selected move operator (Move operator 1–4), denoted by x′ ← move operator(x).
Refer to §5.4.4.

Stellenbosch University https://scholar.sun.ac.za

5.4. Dominance-based bi-objective simulated annealing 97

5. Check if a duplicate solution are present and then replace it with a non-duplicate solution.

6. Evaluate x′, i.e. the simulation model evaluates x′.

Smith et al. [233] proposed the use of an energy function which is defined in terms of the
proposed archive (Ã) containing all the non-dominated solutions found as well as the current
and neighbouring solutions, i.e. Ã = A ∪ {x} ∪ {x′}. Consequently, the change in energy for
the current solution x and neighbouring solution x′ may be expressed as

∆E(x
′,x) =

|Ãx′ | − |Ãx|
|Ã|

, (5.16)

where the difference is normalised by dividing by |Ã| (the number of solutions in the archive). It
has been reported that normalising the energy promotes both coverage of and convergence
towards the true Pareto set. The archive Ã includes the current solution to ensure that
∆E(x

′,x) < 0 when the neighbouring solution dominates the current solution (i.e. x′ ≺ x) [233].

In Figure 5.16 an illustration is presented of the nature of the energy measure for the current
solution x and neighbouring solution x′, where the number of solutions in Ã is 11 (denoted
as |Ã| = 11) and |A| = 9. It can be seen that x is dominated by 3 solutions in the archive
(denoted as |Ãx| = 3), and x′ is dominated by 1 solution (denoted as |Ãx′ | = 1). The resulting
change in energy of ∆E(x

′,x) = 1−3
11 = − 2

11 . Therefore, accepting x′ as the new current solution
for the next iteration would encourage exploration by guiding the search towards less explored
neighbourhoods of the non-dominated front (this is because x′ is dominated by fewer solutions
than x) [128].

x′

x

f1

f2

True Pareto set PT

Archived solutions A
Solutions in Ã \ A

Figure 5.16: An example illustrating the energy measure of current solution x and neighbouring solution
x′ for a min–min bi-objective problem with objective functions f1 and f2, adapted from [128].

5. Define the proposed archive Ã that includes the current and the neighbouring solution,
i.e. Ã ← {x, x′}. The number of solutions in the archive is (currently) two.

6. Define the subset of solutions in Ã that dominates x (in terms of objective function values),
i.e. Ãx = {y ∈ aPS | y ≺ x}.

7. Define the subset of solutions in Ã that dominates x′ (in terms of objective function
values), i.e. Ãx′ = {y ∈ aPS | y ≺ x′}.

8. Calculate the change in energy (∆E) for x and x′ using (5.16).

Stellenbosch University https://scholar.sun.ac.za

98 Chapter 5. Metaheuristics and Hyperheuristics

Every solution that is accepted during the search, is a candidate for inclusion in the archive
(A). If the accepted solution is not dominated by any solution in the archive, it is included.
If the accepted solution dominates solutions currently in the archive, it is included, and the
dominated solutions are removed [233]. If, however the accepted solution is dominated by any
other solution in the archive, it is not included, as discussed in §2.2.3.

10. The objective values of x and x′ are compared and if x′ is not dominated by any other
solution in the archive, i.e. |Ax′ | = 0, it is accepted as the new current solution for the next
iteration (with a probability of 1). Otherwise, x′ is accepted stochastically, according to
the Metropolis acceptance rule [180], where the probability of accepting a non-improving
neighbouring solution is given in (5.17).

To elucidate this further, take for example a bi-objective max -max problem with two decision
variables {x1, x2}, if f(x′

1,x
′
2) ≥ f(x1,x2), then x′ is accepted with a probability 1, otherwise

x′ is accepted according to the Metropolis acceptance rule, given as

Pr(x
′) = min

{
1, exp

(
−∆E(x′,x)

qt

)}
, (5.17)

where qt is the temperature at iteration t [233].

11. Generate a random number ru ∼ U(0, 1). If ru < Pr(x
′) then the neighbouring solution

enters the archive (Ã) and becomes the new current solution, i.e. x← x′.

DBMOSA is executed iteratively, each iteration is known as an epoch, where the temperature qt
remains constant during an epoch and only increases or decreases when an epoch is incremented.
An epoch is incremented if either maxAccepts or maxAttempts are reached. Suppose the max-
imum number of attempts (or accepts) are defined as 5, denoted as maxAttempts ← 5 (or
maxAccepts ← 5), then epochs is incremented if attempts = 5 (or if accepts = 5), irrespective
if the attempts or accepts occured successively.

12. If the solution is accepted then accepts is incremented, i.e. accepts← accepts+ 1.

13. If accepts ≥ maxAccepts then epochs ← epochs + 1 and the temperature qt is cooled.
Refer to §5.4.2.

14. If the solution is attempted then attempts is incremented, i.e. attempts← attempts+ 1.

15. If attempts ≥ maxAttempts then epochs ← epochs + 1 and the temperature is heated.
Refer to §5.4.2.

Again, supposemaxAttempts← 5, then poorEpochs is incremented whenmaxAttempts number
of successive epochs have elapsed without accepting a solution. This is illustrated in the example
given in Table 5.1. It can be seen that after 5 solution evaluations are attempted, epochs is
incremented and if 5 epochs are incremented consecutively, without accepting a solution then
poorEpochs is incremented, i.e. if 25 attempts are made then poorEpochs← poorEpochs.

16. If a solution is attempted (i.e. not accepted) maxAttempts consecutive number of times
then poorEpochs is incemented, i.e. poorEpochs← poorEpochs+ 1.

Stellenbosch University https://scholar.sun.ac.za

5.4. Dominance-based bi-objective simulated annealing 99

Table 5.1: An example illustrating the incrementing process followed for an epoch and a poorEpoch.

attemps epochs poorEpochs

1 ✓ 0 0

2 ✓ 0 0

3 ✓ 0 0

4 ✓ 0 0

5 ✓ +1 1 0
...

...
...

...

21 ✓ 4 0

22 ✓ 4 0

23 ✓ 4 0

24 ✓ 4 0

25 ✓ +1 5 +1 1

This concludes the loop. The algorithm terminates when the current iteration is greater than the
maximum number of iterations permitted, i.e. t > tmax, where tmax = 1000 solution evaluations.
At termination, the archive A is returned as an approximate of the true Pareto set of solutions
to the bi-objective simulation optimisation problem under consideration, i.e. PS ← A.

It is worth mentioning that there are other stopping conditions that may be implemented,
namely terminating when the number of poorEpochs ≥ maxPoorEpochs (as depicted in the
user-interface) or when qt ≥ qf , where qf is a user-specified final temperature. Specific reference
is made to this in Algorithm 5.13.

Although it is not explicitly reported, when a neighbouring solution is generated, the algorithm
has to check if it is a duplicate solution, and if so, replace it with a non-duplicate solution. Again,
this is done to ensure that the expensive function evaluator does not unnecessarily evaluate a
solution and is done for each algorithm.

A pseudo-code description of the entire process described above is provided in Algorithm 5.13,
with specific reference to the above-mentioned steps.

The temperature qt controls the probability of accepting non-improving solutions. If the tem-
perature is high, the probability of accepting a non-improving solution is greater and vice versa.
The temperature is controlled by the chosen annealing schedule, this process and the annealing
schedule adopted in this study is discussed next.

5.4.2 The annealing schedule

The annealing schedule determines by how much the temperature is decreased (using the cooling
schedule) or increased (using the reheating schedule). Recall that the temperature is only
decreased or increased if an epoch is incremented, which is based on what happens during
the search, i.e. how many solutions are accepted or not. If an excessive number of solutions
are accepted, the cooling schedule decreases the temperature at some rate and, conversely, if
too few solutions are accepted, the reheating schedule increases the temperature at some rate
(depending on the annealing schedule).

Intuitively, the cooling schedule encourages exploitation, since the probability of accepting a
non-improving solution becomes less significant. On the other hand, the reheating schedule
encourages exploration, since the probability of accepting a non-improving solution becomes
more significant [169, 233], as depicted in Figure 5.17.

Stellenbosch University https://scholar.sun.ac.za

100 Chapter 5. Metaheuristics and Hyperheuristics

Algorithm 5.13: The DBMOSA algorithm adapted from [233], for the simulation opti-
misation process

Input : Previously described using Figures 5.14a and 5.14b.
Output : The approximate Pareto set (PS) for the given simulation problem.
Initialise the iteration counter, t← 1;1

Initialise counters, accepts← 1, attempts← 0 and poorEpochs← 0;2

Initialise the number of epochs, epochs← 0;3

Evaluate the initial solution x; // Refer to step 14

Initialise the archive, A ← {x}; // Refer to step 25

while t ≤ tmax do // Other stopping condition(s) (e.g. poorEpochs < maxPoorEpochs)6

t← t+ 1; // Refer to step 37

Generate a neighbouring solution x′; // Refer to step 48

Evaluate x′; // Refer to step 69

Calculate the change in energy ∆E(x
′, x), according to (5.16); // Refer to step 5-810

if |Ax′ | = 0 then11

Add x′ to the archive, A ← A∪ {x′}; // Refer to step 1012

x← x′;13

for y ∈ A do14

if x ≺ y then15

A ← A \ {y}; // Remove y from archive16

accepts← accepts+ 1; // Refer to step 1217

else18

A← |Ã|+ 1; // Increment the number of solutions in the archive19

else20

Generate a random number, ru ∼ U(0, 1); // Refer to step 1121

if ru < Pr(x
′) then22

Add x′ to the archive, Ã ← Ã ∪ {x′}23

x← x′;24

A← |Ã|+ 1; // Increment the number of solutions in the archive25

accepts← accepts+ 1; // Refer to step 1226

else27

attempts← attempts+ 1; // Refer to step 1428

if accepts ≥ maxAccepts then29

epochs← epochs+ 1; // Refer to step 1330

Decrease the temperature; // According to cooling schedule, refer to §5.4.231

accepts← 0; // Reset counter32

else if attempts ≥ maxAttempts then33

epochs← epochs+ 1; // Refer to step 1534

Increase the temperature; // According to reheating schedule, refer to §5.4.235

attempts← 0; // Reset counter36

if successiveAttempts = maxAttempts then37

poorEpochs← poorEpochs+ 1; // Refer to step 1638

PS ← A; // Approximate Pareto set39

The choice between different annealing schedules involves a compromise between the quality
of the solutions found and the speed of cooling [93]. SA is computationally analogue to the
process of physically annealing a metal, i.e. to slowly cool a metal to induce an equilibrium
state of low-energy. Similarly, if the temperature is decreased sufficiently slow, then better-
quality solutions are obtained, however requires significantly more computational time. Some
annealing schedules include linear schedules, exponential schedules [143], geometric, Geman

Stellenbosch University https://scholar.sun.ac.za

5.4. Dominance-based bi-objective simulated annealing 101

and Geman or logarithmic annealing schedules [92], nonmonotonic schedules [110] and adaptive
schedules [93]. The geometric schedule is considered the most popular of the annealing schedules
and is used for both cooling and reheating.

1 10 100

0

0.5

1

Temperature (qt)

P
ro
b
a
b
il
it
y
(P

r
)

Explore

Exploit

Figure 5.17: An illustration of how the probability of accepting non-improving moves changes as the
temperature changes, resulting in either exploration or exploitation of the search.

The geometric cooling schedule is given by,

qt+1 ← αqt, α ∈
[
3

4
, 1

)
, (5.18)

where α is the cooling parameter. The geometric reheating schedule is given by,

qt+1 ← βqt, β ∈
(

1,
5

4

]
, (5.19)

where β is the reheating parameter [233].

It has been reported that the overall cooling rate is more important than the specific cooling
function. The initial temperature q0 should also be considered. If the starting temperature is
notably high, the search resembles random search, otherwise, the search resembles local search.
Consequently, the initial temperature should be high enough to allow for sufficient exploration
without being completely random [93].

5.4.3 The initial temperature

As mentioned previously, the DBMOSA tool determines an initial temperature by pressing the
Calculate Initial Temperature button. The methodology followed is briefly described in this
section. Many have proposed methods for determining a suitable initial temperature that is
specific to the problem being optimised, refer to [127, 143, 249].

Typically, an initial temperature is found where the probability of accepting non-improving
solutions is close to 1. The algorithm randomly generates trial solutions until the neighbouring
solution is dominated by the solutions currently in the archive, thereafter the initial temperature
q0 can be determined, based on the probability chosen, by solving for

q0 = −
∆E

lnPr(x′)
. (5.20)

In this study the initial temperature is chosen arbitrarily as q0 = 10, which is relatively high so
as to encourage exploration at the start of the search.

Stellenbosch University https://scholar.sun.ac.za

102 Chapter 5. Metaheuristics and Hyperheuristics

The motivation is to facilitate the hyperparameter tuning with specific focus on the move op-
erator (or neighbouring function) used and no other parameters that may influence the per-
formance of the algorithm, i.e. observe the effect on the performance of DBMOSA based on
the move operator used. It may be that the chosen initial temperature is better for a specific
problem, however, this does not influence the analysis of which move operators are best, since
single-problem comparisons are done.

5.4.4 Neighbourhood move operators

In order to apply the DBMOSA algorithm, a perturbation method (or neighbouring move oper-
ator) has to be defined [222]. The move operators reported for SA typically perform a random
perturbation of the current solution x, according to a set of feasible moves while considering the
specific combinatorial context of the problem. The move operators should keep some part of the
solution and strongly perturb another part to escape local optima and possibly move to more
attractive neighbourhoods, as depicted in Figure 5.18.

Initial
solution, x

Final solution, x̂

Local
search

Perturbation

Perturbed
solution, x′

First local
optimum

Search space

Objective

Figure 5.18: The perturbation of solution x for a minimisation problem, adapted from [93].

Consequently, a neighbour is generated by the application of a move operator that performs a
small perturbation of the solution, where perturbation is a random move considering the set of
feasible moves [93]. The motivation behind the proposed move operators is the lack of move
operators applicable for discrete search spaces.

Move operator 2 simply uses a linear regression model to guide the search. Move operators 3
and 4 borrow mutation operators from the evolutionary computation literature and adapt them
for discrete search spaces. These constitute the set of neighbourhood move operators proposed
for the DBMOSA algorithm and are discussed in the following sections, respectively. Note that
all move operators consider the solution representation and generate feasible solutions.

Move operator 1: Temperature dependent move

Move operator 1 was designed to change as the temperature parameter qt changes and was
designed during a quantitative pilot study. Consequently, when the temperature is high, the
corresponding move should be large as to encourage exploration, and conversely, when the
temperature is small the corresponding move should be small as to encourage exploitation. The
proposed move operator is described in Algorithm 5.14 and is applied to the solution previously
accepted into the archive.

Stellenbosch University https://scholar.sun.ac.za

5.4. Dominance-based bi-objective simulated annealing 103

Algorithm 5.14: Neighbouring move 1

Input : Previously accepted solution x.
Output: Neighbouring solution x′.
Generate a random number, ru ∼ U(0, 1); // Random number between 0 and 11

if ru < 0.5 then2

3

x← x+min(u− x, x− l, stepsize) (5.21)

else4

5

x← x−min(u− x, x− l, stepsize) (5.22)

Table 5.2: The temperature ranges used to specify the stepsize of a move.

qt stepsize

qt ≥ 0.75q0 (0.3− 0.39)u

0.5q0 ≤ qt < 0.75q0 (0.20− 0.29)u

0.25q0 ≤ qt < 0.5q0 (0.10− 0.19)u

qt < 0.25q0 (0.01− 0.09)u

Suppose that the initial temperature for a given problem is q0 = 2 and the current temperature
for iteration t is qt = 1.6. Then the relationship qt

q0
= 0.8, i.e. the temperature range is qt ≥ 0.75q0

as seen in Table 5.2, and the corresponding step size is between 30%–39% of the upper bound
for decision variable i. Also, suppose that the lower and upper bounds for decision variable i are
l = 0 and u = 100 and currently x = 50. The step size can be is determined by first generating
a random number between 0.3 and 0.39. Suppose 0.32 was generated and that ru > 0.5 then
the neighbouring solution x′ is created by adding the minimum of expression in (5.21) as

x = 50 +min(100− 50, 50− 0, (0.32)100)

= 82,

otherwise the neighbouring solution x′ is created by subtracting the minimum of expression
(5.22) as

x = 50−min(100− 50, 50− 0, (0.32)100)

= 5.

Move operator 2: Linear regression

Move operator 2 applies a linear regression model to the solutions that are evaluated and then
uses the coefficients for the respective decision variables to guide the search. The regression
model is updated after every 50 solution evaluations. The motivation behind move operator 2
is its ease of implementation when compared with other regression models. Linear regression is
discussed in Chapter 3. The idea is to use the coefficients in respect of the decision variable’s
effect on the two objectives to determine how far the decision variables should move from its
current position.

Stellenbosch University https://scholar.sun.ac.za

104 Chapter 5. Metaheuristics and Hyperheuristics

Move operator 3: Dynamic and polynomial mutation

As mentioned, move operator 3 and 4 are borrowed from evolutionary computation literature
and adapted to form move operators that mutate discrete vector representations. Polynomial
and dynamic mutation are combined to form move operator 3 discussed in §5.3.4 and §5.3.4.
The mutation operators are applied as described in Algorithm 5.15, to the solution previously
accepted into the archive. For every decision variable, a random number ru ∼ U(0, 1) is generated
and if ru < 0.5 polynomial mutation is applied, otherwise, dynamic mutation is applied, however
(5.15) is adapted as ξ = 1 − |(counter mod 100)/(10)|5, where counter is the current solution.
By combining polynomial mutation and dynamic mutation, the hope is that a balance between
exploitation and exploration is established.

Algorithm 5.15: Neighbouring move 3

Input : Previously accepted solution x.
Output: Neighbouring solution x′.
Generate a random number, ru ∼ U(0, 1); // Random number between 0 and 11

if ru < 0.5 then2

Polynomial mutation; // See Section 5.3.43

else4

Dynamic mutation; // See Section 5.3.45

Move operator 4: Temperature dependent dynamic mutation

Move operator 4 adapts the dynamic mutation operator (discussed in §5.3.4) to determine a
move based on the relationship between the initial temperature and the current temperature.
Consequently, (5.15) is adapted to include the temperature parameters and is given as

ξ = 1−
(
q0 − qt
q0

)
, (5.23)

where q0 is the initial temperature and qt is the temperature at iteration t. The smaller the
value of ξ the closer the neighbouring solution x′ is created to the previously accepted solution
x.

In conclusion, the properties of the DBMOSA algorithm are stated. The DBMOSA algorithm

1. is a single-solution based search technique,

2. has a physics basis,

3. uses an archive to preserve non-dominated solutions (A) during the search,

4. uses an archive (Ã) to control the probability of acceptancing non-improving solutions,

5. employs a Pareto ranking scheme to find non-dominated solutions,

6. achieves proximity to the true Pareto front via the cooling schedule,

7. and ensures diversity of the search via the energy measure and the Metropolis acceptance
rule which determine whether or not a non-improving solution is accepted into the archive.

Stellenbosch University https://scholar.sun.ac.za

5.5. The BOCEGAH algorithm 105

Recall that, based on the NFL theorem, no single algorithm outperforms all other algorithms
when considering a diverse set of optimisation problems, irrespective of the performance metric
used [257]. Consequently, the implementation of hyperheuristics proposed a way to try to mit-
igate, to some extent, the effect of the NFL theorem by combining more than one algorithm.
AMALGAM was used as inspiration for both the population-based and single-solution based
search hyperheuristics, as proposed in this study. As mentioned, AMALGAM is a population-
based search hyperheuristic proposed by Vrugt and Robinson [254], which incorporates multi-
ple metaheuristics (or LLHs) simultaneously and has also been adapted and applied to single-
solution based searches, as proposed in [128].

The choice of hyperheuristic framework (or method for managing the LLHs) is crucial as it is
often difficult to determine which LLH to apply to the current search space and serves as the
motivation for using AMALGAM as inspiration. AMALGAM applies the LLHs in parallel (or
proportionally) rather than successively. The heuristic selection procedure proposed in AMAL-
GAM determines how many solutions each LLH may generate during each generation (or loop),
i.e. given a population size N , then each LLH is allocated a proportion of N (based on its indi-
vidual past performance) to contribute to and form the offspring population [38, 76]. The move
acceptance procedure implemented in AMALGAM is that of NSGA-II, namely Pareto rank and
crowding distance (as discussed in §5.3.1).

The next sections document each hyperheuristic, first, a detailed description of the population-
based search hyperheuristic inspired by AMALGAM is given, called the bi-objective cross-
entropy and genetic algorithm hyperheuristic (BOCEGAH). Next, a detailed description of the
single-solution based search hyperheuristic, also inspired by AMALGAM is given, called the
bi-objective simulated annealing hyperheuristic (BOSAH). Each description is supported by
the user-interface of the Hyperheuristic tool used in Tecnomatix, to illustrate the integration of
simulation and optimisation.

5.5 The BOCEGAH algorithm

The typical procedure for solving MOOPs (approximately) by means of a population-based
search approach is to implement a single algorithm that evolves a population of solutions (itera-
tively). AMALGAM follows a similar approach, however, multiple algorithms are implemented
in parallel and each evolve a proportion of the population [254]. The MOOCEM and the
NSGA-II are also applied in parallel (or simultaneously), evolving their own (partial) popula-
tions, enabling them to (ultimately) exploit their shared advantages while compensating for their
respective weaknesses [192]. To conclude, by applying the LLHs in parallel, the hyperheuristic
is able to determine the extent to which each LLH may contribute to the search, based on its
past performance and effectively allocate solutions to each LLH for the current search space.

The BOCEGAH implements AMALGAMs heuristic selection procedure, however, each LLH
(i.e. the MOOCEM and the NSGA-II) maintain their own move acceptance strategies as de-
signed (specifically) for them. The reasoning pertains to the trade-off between exploration and
exploitation of the search space and algorithms have to be designed to balance this trade-off.
The simulation optimisation process (for population-based search) is illustrated using the Hy-
perheuristic tool in Tecnomatix, as shown in Figures 5.19a and 5.19b. Note that the same tool
user-interface is used for both hyperheuristics. The steps for using the Hyperheuristic tool are
as follows: starting with the Definition tab as shown in Figure 5.19a.

1. Define the number of decision variables (n), from the drop-down list, then click the Define

Stellenbosch University https://scholar.sun.ac.za

106 Chapter 5. Metaheuristics and Hyperheuristics

Input Variables button and define each decision variable in terms of its path and lower
and upper bounds (as previously shown in Figure 5.5a).

2. Click the Define Output Variables button and define each output variable in terms of its
path and select the optimisation direction from the drop-down list, i.e. Min or Max (as
previously shown in Figure 5.5b).

(a) Definition tab (b) Parameterisation tab

Figure 5.19: The Hyperheuristic tool user-interface for population-based search.

The next step is to navigate to the Parameterisation tab, as shown in Figure 5.19b:

3. Select Population-based search, enter the Population size (N) and Maximum evaluations
permitted.

Recall that the population size N = 100 and a fixed number of 1 000 solution evaluations are
permitted in this study. The above-mentioned parameters are used as input to Algorithm 5.16
as well as the best hyperparameter combination specific to MOOCEM and NSGA-II, as reported
in Chapter 6. To execute the Hyperheuristic tool for population-based search and solve for the
simulation problem at hand, click the Start button. A similar process is followed to execute and
evaluate the Hyperheuristic tool as for the individual LLHs, where the initial population is also
generated randomly.

Start with the initialisation of the parameters for the MOOCEM algorithm (as described in
§5.2.2):

1. Initialise the elite vector, Elite← ∅.

2. Initialise µi and σi (refer to §5.2.2 step 1).

Next, initialise the parameters for the NSGA-II algorithm (as described in §5.3.1):

3. Initialise the elite vector (Elitist← ∅).

Stellenbosch University https://scholar.sun.ac.za

5.5. The BOCEGAH algorithm 107

Next, initialise the parameters specific to the BOCEGAH algorithm. First, initialise the loop
counter, l ← 0 and the number of LLHs (or heuristic components) considered, nLLH ← 2.
Also, initialise the elite vector Elites← ∅, used to combine the elite vectors of MOOCEM and
NSGA-II at termination. Now, the general procedure starts.

4. Generate an initial population (of size N) by sampling from a truncated probability dis-
tribution, using Algorithm 5.1 and 5.2 as discussed in §5.2.1.

5. Evaluate the initial population, i.e. the simulation model evaluates N decision variable
combinations.

6. Increment the loop counter, l← l + 1.

At the start of the search procedure each LLH (i.e. MOOCEM and NSGA-II) is allocated
the same number of solutions, i.e. for l = 1 and N = 100, each LLH is allocated N/2 = 50
(offspring) solutions, denoted by Nh,l for h ∈ {1, 2}, where h = 1 is the MOOCEM and h = 2
is the NSGA-II. The allocations are updated for every loop l.

To summarise, for loop l = 1, MOOCEM generates 50 offspring solutions (referred to as offspring
population Q1,1) from the 50 solutions in the random initial population, and similarly, NSGA-II
generates 50 offspring solutions (Q2,1) from the remaining 50 solutions in the random initial
population.

7. Initialise the allocations Nh,l for h ∈ {1, 2} and loop l = 1, i.e. Nh,1 ← N/2.

Now, the loop initiates, while the current loop l < 10 (resulting in 1 000 solution evaluations), do
the following. Generate the offspring populations Qh,l for h ∈ {1, 2}. The process of generating
the offspring populations is first described for the MOOCEM and then for the NSGA-II. The
MOOCEM generates (partial) offspring population Q1,l of size N1,l by following steps 11–30 in
Algorithm 5.4. Also, refer to the supporting documentation given in §5.2.2.

8. Generate offspring population Q1,l of size N1,l for loop l by following steps 11–30 in Algo-
rithm 5.4.

Next, the NSGA-II generates the other partial offspring population Q2,l of size N2,l by following
steps 8–12 and 14 in Algorithm 5.7 for loop l. Also, refer to the supporting documentation given
in §5.3.1.

9. Generate offspring population Q2,l of size N2,l for loop l by following steps 8–12 and 14 in
Algorithm 5.7.

After the offspring populations Q1,l and Q2,l are generated, it is necessary to check if duplicate
solutions are present and then replace them with non-duplicate solutions by generating new
(offspring) solutions, as described in steps 8 and 9. This is a critical step that ensures that the
expensive function evaluator does not unnecessarily evaluate solutions.

10. Check for duplicate solutions and then replace them with non-duplicate solutions.

Next, combine the individual offspring populations Qh,l for h ∈ {1, 2} and then evaluate the
combined population, denoted by PC,l.

Stellenbosch University https://scholar.sun.ac.za

108 Chapter 5. Metaheuristics and Hyperheuristics

11. Combine the offspring populations generated in step 8 and 9 for loop l, i.e. PC,l ← Q1,l ∪
Q2,l.

12. Evaluate the combined population PC,l of size N , for loop l, i.e. the simulation model
evaluates N decision variable combinations.

Next, determine the new allocations for loop l + 1, following steps 13–15.

13. Rank the combined population PC,l for loop l, using Algorithm 5.5.

Next, determine how many solutions from Q1,l and Q2,l contributed to the new population,
based on the non-dominated solutions found in step 13. The contributions are referred to as
Ch,l for h ∈ {1, 2}.

14. Determine the contributions Ch,l for h ∈ {1, 2}, for loop l.

Now, the new allocations can be determined. This is where the heuristic selection procedure
proposed in AMALGAM [254] is implemented. Each LLH is allocated a number of solutions
based on their contributions (Ch,l). Suppose LLH h ∈ {1, . . . , nLLH} contributes Ch,l solutions
during loop l, then let the number of solutions that LLH h ∈ {1, 2} may generate during loop
l + 1 be given by

Nh,l+1 =

Ch,l

Nh,l∑nLLH
h=1

Ch,l

Nh,l

N. (5.24)

When l = 1, then N1,1, N2,1 = 50 because (as mentioned) each LLH h ∈ {1, 2} is given
equal opportunity at the start. Now, suppose h = 1 (MOOCEM) contributed 20 solutions (i.e.
C1,1 = 20) and h = 2 (NSGA-II) contributed 15 solutions (i.e. C2,1 = 15). Then, the new al-
location for l = 2 and h = 1 (i.e. N1,2) can be calculated using (5.24), as depicted in Figure 5.20.

l h Nh,l Ch,l

1
1 50 20

2 50 15

2
1 57 -

2 43 -

N1,2 =

C1,1

N1,1

C1,1

N1,1
+

C2,1

N2,1

N

=
20
50

20
50

+ 15
50

100

(5.24)

Figure 5.20: An example illustrating the heuristic selection procedure implemented for the BOCEGAH.

Accordingly, h = 2 (NSGA-II) is allocated N2,2 = 43 solutions. Note that provision is made
to ensure that the number of solutions allocated to each LLH h for loop l adds up to the
population size, i.e. N1,l + N2,l = N . Also, to ensure that a LLH is not eliminated from the
search, a minimum allocation is set at 5, i.e. the minimum number of offspring solutions that
LLH h may generate is Nh,l = 5. If the allocations for either MOOCEM or NSGA-II is less
than 5, the allocation is updated to equal 5. For example, if {N1,2, N2,2} = {2, 98} then it is
updated so that {N1,2, N2,2} = {5, 95}.

Stellenbosch University https://scholar.sun.ac.za

5.6. The BOSAH algorithm 109

15. Update the allocations Nh,l for h ∈ {1, 2} for loop l, using (5.24).

16. Increment the loop counter, l← l + 1.

This concludes the loop. At termination, the elite vectors for MOOCEM (Elite) and NSGA-II
(Elitist) are joined in elite vector Elites, i.e. Elites ← Elite ∪ Elitist. Finally, the solutions
in Elites are ranked using Algorithm 2.1 and returned as an approximate of the true Pareto
set of solutions to the bi-objective simulation optimisation problem under consideration, i.e.
PS ← Elites.

A pseudo-code description of the entire process described above is provided in Algorithm 5.16,
with specific reference to the above-mentioned steps.

Algorithm 5.16: The BOCEGAH algorithm for population-based search

Input : Previously described using Figures 5.19a and 5.19b.
Output : The approximate Pareto set (PS) for the given simulation problem.
/* MOOCEM initialisation */

Refer to step 1-2;1

/* NSGA-II initialisation */

Refer to step 3;2

/* Hyperheuristic initialisation */

l← 0; // Initialise the loop counter3

nLLH ← 2; // Initialise the number of LLHs4

Elites← ∅; // Initialise the elite vector5

/* General procedure starts */

Generate the initial population (of size N) using Algorithm 5.1; // Refer to step 46

Evaluate initial population; // Refer to step 57

l← l + 1; // Increment the loop counter, refer to step 68

Initialise the allocations, Nh,l for h ∈ {1, 2}; // Refer to step 79

while l < 10 do10

Follow steps 11–30 as described in Algorithm 5.4; // Refer to step 811

Follow steps 8–12 and 14 as described in Algorithm 5.7; // Refer to step 912

Combine offspring populations, PC,l ← Q1,l ∪Q2,l; // Refer to step 1113

Evaluate the combined offspring population, PC,l of size N ; // Refer to step 1214

Rank the solutions in PC,0, using Algorithm 5.5; // Refer to step 1315

Determine the contributions Ch,l for h ∈ {1, 2}; // Refer to step 1416

Update allocations Nh,l for h ∈ {1, 2}, using (5.24); // Refer to step 1517

l← l + 1; // Refer to step 1618

Elites← Elite ∪ Elitist; // Combine elite vectors19

Rank the solutions in Elites; // Using Algorithm 2.120

PS ← Elites; // Approximate Pareto set21

The next section documents BOSAH with specific focus on the integration of simulation and
optimisation.

5.6 The BOSAH algorithm

The typical procedure for solving MOOPs (approximately) by means of a single-solution based
search approach is to implement a single algorithm that perturbs a single solution (iteratively).
For that reason, the heuristic selection procedure proposed for AMALGAM is adapted for suc-
cessive heuristic assignment.

Stellenbosch University https://scholar.sun.ac.za

110 Chapter 5. Metaheuristics and Hyperheuristics

Each LLH (or move operator) is assigned successively instead of simultaneously to facilitate
single-solution based search. The heuristic selection implemented in AMALGAM is employed
to determine how many consecutive solutions a LLH may be assigned for. Three LLHs are
assigned sequentially, i.e. move operator 1–2–3–1· · · , each generating their assigned number of
solutions. For this reason, another step is proposed as part of the heuristic selection procedure
to ensure that if a LLH is performing poorly then instead of completing its assigned number of
solutions, the next move operator in the sequence is assigned the rest of its allocations. The
purpose of this step is to ensure that the search does not stagnate (due to the NFL theorem),
because the LLHs are assigned sequentially, it is possible that the best move operator for the
current point in the search is not assigned and should be addressed accordingly.

The simulation optimisation process (for single-solution based search) is illustrated using the
Hyperheuristic tool in Tecnomatix as shown in Figures 5.21a and 5.21b. The steps for using the
Hyperheuristic tool are as follows: starting with the Definition tab, as shown in Figure 5.21a.

(a) Definition tab (b) Parameterisation tab

Figure 5.21: The Hyperheuristic tool user-interface for single-solution based search.

1. Define the number of decision variables (n), from the drop-down list, then click the Define
Input Variables button and define each decision variable in terms of its path, lower and
upper bounds and initial solutions (as previously shown in Figure 5.15).

2. Click the Define Output Variables button and define each output variable in terms of its
path and select the optimisation direction from the drop-down list, i.e. Min or Max (as
previously shown in Figure 5.5b).

The next step is to navigate to the Parameterisation tab, as shown in Figure 5.19b:

3. Select Single-solution based search and enter the Maximum evaluations permitted.

Recall that a fixed number of 1 000 evaluations are permitted in this study. The above-mentioned
parameters are used as input to Algorithm 5.17 as well as the three best move operators for
DBMOSA as found in Chapter 6. To execute the Hyperheuristic tool for single-solution based

Stellenbosch University https://scholar.sun.ac.za

5.6. The BOSAH algorithm 111

search and optimise the simulation problem at hand click the Start button. A similar process
is followed to execute and evaluate the Hyperheuristic tool as for the DBMOSA and its move
operators (LLHs), where the initial solution is also generated randomly, represented by x.

Start with the initialisation of the parameters for the DBMOSA algorithm (as described in §5.4):

1. Initialise the counters, accepts (accepts ← 1), attempts (attempts ← 0), poor epochs
(poorEpochs← 0) and epochs (epochs← 0).

Next, initialise the parameters specific to the BOSAH algorithm. First initialise the iteration
counter, t ← 1, and the number of LLHs (or heuristic components) considered, nLLH ← 3.
Next, initialise the move sequence counter (denoted by i) and the move operator (denoted by
m) assigned at the start of the search. Note that move operator m ∈ {1, 2, 3}, where m = i
implies move operator i.

2. Initialise the move sequence counter, i← 1.

3. Initialise the move operator assigned, m← 1.

The search starts with move operator 1, denoted as m = 1. Initially, each LLH (i.e. move
operator 1–3 or m ∈ {1, 2, 3}) is allocated the same number of solutions that it is permitted to
generate. The allocations are denoted by Nm,i and are initialised to 20, as illustrated in Table
5.3, i.e. Nm,1 = 20 for m ∈ {1, 2, 3}. Note that the initial allocations were chosen arbitrarily.

Table 5.3: An example illustrating the initial allocations for the BOSAH.

i m Nm,i Tm,i

1

1 20 20

2 20 40

3 20 60

4. Initialise the allocations Nm,i for m ∈ {1, 2, 3}, for move sequence i = 1.

The allocations are updated after each move sequence i, where a move sequence consists of
move operator m = 1 generating N1,i solutions, then m = 2 generating N2,i solutions and
lastly m = 3 generating N3,i solutions. This process continues until 1 000 solutions have been
generated and evaluated. Now, the general procedure starts. Recall, that an archive A is
maintained throughout the search and contains all the non-dominated solutions generated by
the individual move operators (or LLHs). The random initial solution x is evaluated and inserted
into the archive, A ← {x}.

5. Evaluate the initial solution x, i.e. the simulation model evaluates x.

6. Initialise the archive to contain the initial solution, A ← {x}.

As part of the heuristic selection strategy, it is necessary to count the number of non-dominated
solutions found per move operator assignment, i.e. the number of non-dominated solutions found
by move operator m for move sequence i and stored in variable NDS. Initially NDS ← 1 since
one solutions has been evaluated. Note that NDS is initialised to zero every time a new move
operator m is assigned.

Stellenbosch University https://scholar.sun.ac.za

112 Chapter 5. Metaheuristics and Hyperheuristics

7. Initialise the non-dominated solutions counter, NDS ← 1.

As part of the proposed heuristic selection procedure, a rate (denoted by ratet) of non-dominated
solutions is updated at each iteration t, i.e. ratet is the number of non-dominated solutions found
divided by t (the number of solutions evaluated so far). Initially, ratet ← 1 as the initial solution
is considered non-dominated.

8. Initialise the rate of non-dominated solutions found, rate1 ← 1.

Now, the loop initiates, while t ≤ 1 000 do the following. Increment the iteration counter,
t ← t + 1. The next step, as described in §5.4, is to generate the neighbouring solution x′

using a move operator. At each iteration t, the algorithm checks if move operator m should be
employed to generate neighbouring solution x′.

To facilitate the heuristic selection procedure (of the move operators m ∈ {1, 2, 3}) three steps
are required. The first step ensures that each move operator (m) generates its allocated num-
ber of solutions (Nm,i). The second step is proposed in this study to ensure that the search
does not stagnate, making it a novel contribution. The third step determines the new alloca-
tions for the next move sequence i and is similar to the strategy implemented in BOCEGAH
and proposed for AMALGAM [254]. The heuristic selection procedure is described in steps 9–20.

The first step

Suppose t = 15 (i.e. 15 solutions have been evaluated) then from Table 5.3 it can be seen that it
is currently the first move sequence (i.e. i = 1) and move operator m = 1 is assigned. Also, from
Table 5.3, it can be seen that move operator m = 1 is allocated 20 solutions (i.e. N1,1 = 20).
Therefore, once the current iteration t reaches the cumulative total number of solutions that
move operator m for move sequence i may generate (i.e. Tm,i), then the next move operator in
the move sequence is assigned (i.e. m← m+ 1).

If t = Nm,i + 1, then execute steps 9–11:

9. Assign the number of non-dominated solutions (NDS) contributed by move operator m
for move sequence i, denoted by Cm,i ← NDS.

10. Re-initialise the NDS counter to zero, NDS ← 0.

11. Increment the move operator assigned, m← m+ 1.

The second step

The motivation behind the second heuristic selection step is to negate the effect of the NFL
theorem by playing to the strengths of the individual move operators, i.e. if move operator
m = 1 is not generating (enough) solutions that are evaluated as non-dominated then the rest
of its allocation should be transferred to the next move operator in the move sequence (i.e.
m = 2) and so forth. Ultimately, compensating for their respective weaknesses and exploiting
their individual strengths.

Specifically, when the current move operator m has generated half of its allocated solutions
(i.e. t = Nm,i/2 + Tm−1,i), then test if the move operator’s rate of generating non-dominated
solutions (i.e. NDS

Nm,i/2
) is smaller than the overall rate (ratet). If this is true, then move operator

Stellenbosch University https://scholar.sun.ac.za

5.6. The BOSAH algorithm 113

m is performing below the search standard and should not continue to generate the rest of its
allocated solutions. Rather, the rest of the solutions are transferred to the next move operator
(i.e. m+1) in the same move sequence i. However, if m = nLLH, then the rest is not transferred
over to the next move sequence.

Formally, the overall rate of non-dominated solutions found, ratet can be determined as

ratet =

∑
Cm−1,i +NDS

t
, (5.25)

where m ∈ {1, 2, 3},
∑

Cm−1,i is the sum of the individual contributions up until m − 1 for
move sequence i = 1 to the current move sequence i, NDS ← 3 (currently) and t is the current
iteration. If m = 1 and i = 2, then the contribution Cm−1,i is represented by C3,1, i.e. the
previous move sequence.

Suppose that the number of non-dominated solutions found by move operator m = 2 is 3
(denoted by NDS = 3) out of the N2,2/2 = 10 solutions generated (for move sequence i = 2),
then the rate at t = 95 can be calculated using (5.25) as depicted in Figure 5.22. Consequently,
NDS
N2,2/2

= 0.3 and 0.3 < 0.693.

i m Nm,i Cm,i Tm,i

1

1 20 15 20

2 20 12 40

3 20 9 60∑
36 60

2

1 25 22 85

2 20 17 105

3 15 8 120∑
47 120

N1,2 =

C1,1

N1,1∑3
m=1

Cm,1

Nm,1

T3,1

=
15
20

15
20

+ 12
20

+ 9
20

60

(5.26)

rate95 =
(
∑

Cm−1,i) +NDS

t

=
(15 + 12 + 9 + 22) + 3

95

= 0.693

(5.25)

Figure 5.22: An example illustrating the heuristic selection procedure proposed for the BOSAH.

If i > 1 and t = Nm,i/2 + Tm−1,i and
NDS
N2,2/2

< ratet and Nm,i > 5, then execute steps 12–16:

12. Update the number of allocations assigned to move operator m, i.e. Nm,i ← Nm,i/2.

13. Assign the non-dominated solutions (NDS) contributed by move operator m for move
sequence i, i.e. Cm,i ← NDS.

14. Re-initialise the NDS counter to zero, NDS ← 0.

Consequently, move operator m = 2 is assigned fewer solutions, i.e. N2,2 ← 10 instead of 20.
Also, the contribution of move operator m = 2 becomes C2,2 ← 3. Next, the next move operator
m = 3 in the move sequence is assigned and its allocation updated as N3,2 ← 15 + 20/2.

15. Increment the move operator, m← m+ 1.

16. Update the number of allocations assigned to move operator m for move sequence i, i.e.
Nm,i ← Nm,i +Nm−1,i/2.

Stellenbosch University https://scholar.sun.ac.za

114 Chapter 5. Metaheuristics and Hyperheuristics

The third step

Recall that there is a sequence of move operators being assigned, called a move sequence. The
sequence is as follows, move operator m = 1, then m = 2 and lastly m = 3, until termination
is reached. Therefore, if the increment of move operator m results in m = nLLH + 1, then a
move sequence is complete and move operator m = 1 is assigned again and the move sequence
counter is incremented, i← i+ 1. Next, determine the new allocations Nm,i for move sequence
i and move operators m ∈ {1, 2, 3}, using (5.26).

Nm,i =

Cm,i−1

Nm,i−1∑3
m=1

Cm,i−1

Nm,i−1

T3,1. (5.26)

Figure 5.22 aids with elucidating the process followed to determine the new allocation for move
sequence i = 2, move operator m = 1, i.e. N1,2. In the example, the contributions are Cm,1 =
{15, 12, 9}, i.e. move operator m = 1 contributed C1,1 = 15 (non-dominated) solutions from
N1,1 = 20. From this N1,2 = 25 is calculated using (5.26) as shown in Figure 5.22.

Following a similar process for N2,2 and N3,2 results in allocations N2,2 = 20 and N3,2 = 15. Note
that the total number of allocations should be equal to the sum of the individual allocations for
the first move sequence, namely 60 solutions, which is arbitrarily chosen.

If m = nLLH + 1, then execute steps 17–19:

17. Restart the move operator sequence, m← 1.

18. Increment the move sequence, i← i+ 1.

19. Update the allocations Nm,i for move sequence i and m ∈ {1, 2, 3}, using (5.26).

A minimum allocation threshold na is set at na = 5 and is required so that none of the move
operators recieve an allocation of 0, and thereby be eliminated from the search. Consequently,
if step 19 results in an allocation of less than five solutions, then it is simply set to 5 and the
other allocations are updated accordingly.

20. If Nm,i < na, then Nm,i ← na for m ∈ {1, 2, 3}.

Finally, the neighbouring solution x′ can be generated. Recall that the neighbouring solution is
generated from the previously accepted solution (as discussed in §5.4).

21. Generate the neighbouring solution x′ according to move operator m, denoted by move
operatorm(x).

22. Check if a duplicate solution are present and then replace it with a non-duplicate solution.

After the neighbouring solution x′ is generated using move operator m, it is necessary to check if
a duplicate solution is present. If so, then replace it with a non-duplicate solution by generating a
new neighbouring solution, (again) using move operator m. This step ensures that the expensive
function evaluator does not unnecessarily evaluate a solution. Now, evaluate the non-duplicate
neighbouring solution x′.

Stellenbosch University https://scholar.sun.ac.za

5.6. The BOSAH algorithm 115

Algorithm 5.17: The BOSAH method for single-solution based search

Input : Previously described using Figures 5.19a and 5.21b.
Output : The approximate Pareto set (PS) for the given simulation problem.
/* DBMOSA initialisation */

Refer to step 1;1

/* Hyperheuristic initialisation */

t← 1; // Initialise iteration counter2

nLLH ← 3; // Initialise the number of LLHs3

Initialise the move sequence counter, i← 1; // Refer to step 24

Initialise move operator assigned, m← 1; // Refer to step 35

Initialise allocations; // Refer to step 46

/* General procedure starts */

Evaluate the initial solution x; // Refer to step 57

Initialise the archive, A ← {x}; // Refer to step 68

NDS ← 1; // Refer to step 79

Initialise the rate1 ← 1; // Refer to step 810

while t ≤ 1 000 do11

t← t+ 1; // Increment the iteration counter12

if t = Tm,i + 1 then13

Assign the contribution of m, Cm,i ← NDS; // Refer to step 914

NDS ← 0; // Refer to step 1015

m← m+ 1; // Refer to step 1116

if i > 1 and t = Nm,i/2 + Tm−1,i and NDS
Nm,i/2

< ratet and Nm,i > 5 then17

Update allocations; // Refer to step 1218

Assign the contribution of m, Cm,i ← NDS; // Refer to step 1319

NDS ← 0; // Refer to step 1420

m← m+ 1; // Refer to step 1521

Update allocations; // Refer to step 1622

if m = nLLH + 1 then23

m← 1; // Refer to step 1724

i← i+ 1; // Refer to step 1825

Update allocations, Nm,i for m ∈ {1, 2, 3}; // Refer to step 1926

if Nm,i < 5 then27

Nm,i ← 5 and update allocations accordingly; // Refer to step 2028

Generate neighbouring solution x′ according to move operator m; // Refer to step 2129

Evaluate neighbouring solution x′; // Refer to step 2330

Follow steps 8–36 as described in Algorithm 5.13; // Refer to step 2431

Update ratet, using (5.25); // Refer to step 2532

Ps ← A; // Approximate Pareto set33

23. Evaluate the neighbouring solution (x′), i.e. the simulation model evaluates x.

Next, execute the move acceptance mechanism of the DBMOSA algorithm, by following steps
8–36 in Algorithm 5.13, as discussed in §5.4. Naturally, the move acceptance strategy was chosen
as simulated annealing.

24. Apply the move acceptance mechanism, by following steps 8–36 in Algorithm 5.13, refer
to §5.4.

25. Update ratet, using (5.25).

This concludes the loop. At termination, the archive A is returned as an approximate of the true

Stellenbosch University https://scholar.sun.ac.za

116 Chapter 5. Metaheuristics and Hyperheuristics

Pareto set of solutions to the bi-objective simulation optimisation problem under consideration,
i.e. PS ← A. A pseudo-code description of the entire process described above is provided in
Algorithm 5.17, with specific reference to the above-mentioned steps and concludes the docu-
mentation of both hyperheuristics proposed in this study.

5.7 Summary

This chapter discussed some of the main concepts of S- and P-metaheuristics, with specific fo-
cus on their implementations for each respective metaheuristic considered in this study. The
MOOCEM, the NSGA-II and the DBMOSA algorithms were discussed in the context of sim-
ulation optimisation and their integration in Tecnomatix. Next, the two hyperheuristics were
presented, first for population-based search employing MOOCEM and NSGA-II as LLHs and
then for single-solution based search employing three move operators.

The next chapter determines which hyperparameter combination, for each metaheuristic respec-
tively, should be employed for the respective hyperheuristics.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6

Algorithmic Parameter Evaluation

6.1 Introduction to multi-objective statistical analysis 117

6.2 Determining the MOOCEM algorithm hyperparameters 120

6.2.1 Open mine problem . 120

6.2.2 (s, S) Inventory problem . 123

6.2.3 Buffer allocation problem: five machines 125

6.2.4 Buffer allocation problem: 10 machines 125

6.2.5 Non-linear buffer allocation problem: 16 machines 127

6.3 Determining the NSGA-II hyperparameters . 130

6.3.1 Open mine problem . 131

6.3.2 (s, S) Inventory problem . 133

6.3.3 Buffer allocation problem: five machines 134

6.3.4 Buffer allocation problem: 10 machines 136

6.3.5 Non-linear buffer allocation problem: 16 machines 136

6.4 Determining the DBMOSA algorithm hyperparameters 141

6.5 Conclusion: Chapter 6 . 149

The previous chapter discussed the hyperheuristics BOCEGAH and BOSAH and their respective
LLHs with specific reference to the simulation optimisation process as it occurs in Tecnomatix.

This chapter documents the empirical (and statistically sound) hyperparameter study conducted
which is deemed necessary due to the high number of hyperparameter combinations (or con-
figurations) that algorithms have and a lack of insight on how to choose them, attributable
to their complex interactions. Moreover, when considering more than one problem it becomes
markedly challenging to suggest a common hyperparameter combination suitable for the subset
of problems considered. Consequently, deciding which metaheuristic (or heuristic operators) to
use is not a trivial task.

The first section introduces the non-parametric hypothesis test and corresponding post hoc test
followed to determine the best hyperparameter combinations. Next, the hypothesis tests and
post hoc tests (where necessary) are documented for the MOOCEM, then the NSGA-II and
lastly for the DBMOSA, for all five discrete-event dynamic stochastic simulation optimisation
problems, as discussed in Chapter 4. After the individual tests have been conducted (for each
algorithm), the results are consolidated in order to make an informed decision regarding the
hyperparameter combination when considering all five simulation problems. The chapter closes
with a conclusion of its contents.

6.1 Introduction to multi-objective statistical analysis

As mentioned in §2 the term quality performance is used, instead of the term performance which
pertains to both time and quality. In this study only quality is assessed based on an algorithm’s
performance in the objective (or solution) space for a fixed number of evaluations (chosen as

117

Stellenbosch University https://scholar.sun.ac.za

118 Chapter 6. Algorithmic Parameter Evaluation

1 000). As mentioned (in Chapter 5) the solutions obtained by the MOOCEM, the NSGA-II
and the DBMOSA are referred to as approximation sets which aim to approximate the true
Pareto set. In this chapter, the approximation sets are compared with each other based on the
obtained hyperareas and number of non-dominated solutions in the approximation sets.

Recall that each algorithm contains stochastic elements and operate on stochastic problems (in
this study), therefore, the resulting approximation sets vary from experimental run to experi-
mental run. In order to derive significant statistical results, many experimental runs must be
carried out, at least 10 or more than 100 if possible [93]. However, due to the limited timeframe
of this study, 100 runs are carried out (unless stated otherwise). Consequently, any statements
about the quality of an experimental run is probabilistic in nature, i.e. the estimated parameter
values may be numerically different, however, statistical tests are required to determine whether
they are statistically different. For the sake of brevity, experimental runs are hereafter simply
referred to as runs.

There are two main types of statistical tests in the literature: parametric and nonparametric
tests. The decision between the two tests depends on the assumptions made about the properties
of the underlying population (or distribution) [121]. To elaborate, parametric tests assume that
the data fulfills three conditions, namely normality, independency and homoscedasticity [229].
However, these conditions cannot be assumed for output data generated by stochastic optimi-
sation algorithms and therefore nonparametric tests are considered [48].

Recall (from Chapter 4) that the possible outcomes of a hypothesis test is that either the data
supports the research question stated as the null hypothesis H0 (which is assumed to be true)
or disproves the research prediction stated as the alternate hypothesis H1 [71]. The Friedman
test is regarded an omnibus test, i.e. more than three groups of data is to be analysed and
is considered the nonparametric counterpart of the parametric two-way (repeated measures)
analysis of variance (ANOVA), performed on ordinal (or ranked) data [89].

The test statistic suggested by Friedman is given as [231]

χ2
F =

12

nk(k + 1)

k∑
k=1

R2
k − 3n(k + 1), (6.1)

where Rk =
∑n

i=1Rik is the sum of the ranks for sample k over the n observations and χ2
F is

approximately χ2-distributed. At a significance level of α = 0.05, the null hypothesis is rejected
if χ2

F ≥ χ2
k−1,1−α, where χ2

k−1,1−α is the (1 − α) quantile of the Chi-square distribution with
k − 1 degrees of freedom [206].

Iman and Davenport [129] noted that the χ2 approximation was occasionally poor or too con-
servative and is therefore also included. The test statistic suggested by Iman and Davenport is
referred to as Iman-Davenport is given by [129]

FID =
(n− 1)χ2

F

n(k − 1)− χ2
F

. (6.2)

Similarly, at α = 0.05, the null hypothesis is rejected if FID ≥ Fk−1,(k−1)(n−1),1−α, where
Fk−1,(k−1)(n−1),1−α is the (1− α) quantile of the F -distribution with (k − 1) and (k − 1)(n− 1)
degrees of freedom.

Both statistical tests yield a p-value, and if p < α, then H0 is rejected. Indicating that at least
one of the summed ranks are statistically significantly different, however, it does not indicate
which groups. Therefore, a post hoc test is required to determine where the differences are.

Stellenbosch University https://scholar.sun.ac.za

6.1. Introduction to multi-objective statistical analysis 119

There are several multiple comparison post hoc tests that can be applied, some of which are
listed in Figure 6.1 [89].

Multiple comparison tests N ×N post hoc procedures

Friedman Test [89]
& Iman-Davenport’s

[129] extension

Nemenyi [118, 121]

Holm [122]

Shaffer [226]

Bergmann-Hommel [24]

Figure 6.1: Non-parametric tests and post hoc procedures for N ×N comparisons.

The Nemenyi, formally called the Wilcoxon-Nemenyi-McDonald-Thompson post hoc test is cat-
egorised as more powerful than that of Holm and Hommel post hoc tests [121]. The procedure of
determining the individual differences involves performing two-tailed pairwise significance tests
between all pairs of samples, using the Friedman ranks. The test is performed using rank sums,
and H0 is rejected if

|R.k −R.j | ≥ qk, n−k, 1−α

√
nk(k + 1)

12
, (6.3)

where qk, n−k, 1−α is the (1−α) of the studentised range distribution with k and (n−k) degrees
of freedom and requires equal sample sizes, i.e. n1 = n2 = . . . = nk for each group k.

The Nemenyi post hoc test controls the familywise Type I error rate, correcting for the multiple
inferences made by dividing the calculated p-values by the number of combinations determined
as k(k−1)

2 , thereby ensuring that the experiment-wide significance level α = 0.05 is not exceeded.

The hypothesis testing procedure followed in this study is listed below:

1. State the null H0 and alternate hypotheses H1. Formally stated as,

H0: There is no significant difference between the ranked sums of the groups being com-
pared.

H1: There is a significant difference between the ranked sums of the groups being comp-
pared and a post-hoc test is required to determine which groups.

2. State the level of significance, alpha: α = 0.05.

3. Calculate the degrees of freedom:

Friedman df = k − 1

Iman-Davenport df = {k − 1, (k − 1)(n− 1)}

where k is the number of groups being compared and n is the number of observations. For
the purpose of this paper n = 100 (unless stated otherwise), and k varies from algorithm
to algorithm.

4. Get the corresponding critical values for both distributions, i.e. the χ2-distribution and
F -distribution, as χ2

k−1 and Fk−1,(k−1)(n−1), respectively.

5. Calculate the test statistics for Friedman using (6.1) and Iman-Davenport using (6.2).

Stellenbosch University https://scholar.sun.ac.za

120 Chapter 6. Algorithmic Parameter Evaluation

6. Determine the p-values.

7. Reject H0 or fail to reject H0.

Friedman The null hypothesis is rejected if χ2
F ≥ χ2

k−1,α or if p < α.

Iman-Davenport The null hypothesis is rejected if FID ≥ Fk−1,(k−1)(n−1),α or if p < α.

6.2 Determining the MOOCEM algorithm hyperparameters

The MOOCEM contain many interacting hyperparameters to be adjusted and consequently,
the purpose of this section is to determine the single best hyperparameter combination (for the
MOOCEM) that results in the best algorithmic performance, across all five simulation problems.
Algorithmic performance is compared based on the hyperareas obtained by the approximation
fronts, as well as the number of non-dominated solutions in the fronts. The Friedman test
and Iman-Davenport extension is used to compare these performances with regards to both
measures. If the Friedman test or Iman-Davenport extension indicates significance, then the
Nemenyi post-hoc test is conducted. Ultimately, the results are combined and used to decide
which hyperparameter combination to implement in the BOCEGAH.

The population size N is typically chosen in the range [30, 100], in this study N = 100.
Bekker [21] found that ϵc ∈ [0.1, 1] was sufficiently small, accordingly ϵc = 0.1. The smoothing
parameter α is typically in the range [0.6, 0.9] and the probability of inverting the decision
variable histograms ph is typically in the range [0.1, 0.3] [21].

It is important to note that a different random number stream (RNS) is used for each run, and
the same RNS is used for the respective hyperparameter combinations, i.e. RNS = 1 is used for
run 1, RNS = 2 for run 2 and so on, until RNS = 100 for run 100. The same setting applies
for all the hyperparameter combinations as well as all the problems. The RNS is responsible for
generating the initial population and therefore needs to be consistent for the same runs across
the hyperparameter combinations. This applies for both the MOOCEM and the NSGA-II.

The MOOCEM parameters that are considered for the hyperparameter study are summarised
in Table 6.1, where the naming convention is adopted to help navigate this section, i.e. A1.1.1
refers to the hyperparameter combination α = 0.65 and ph = 0.2 for the OMP specifically. Nine
hyperparameter combinations are explored per simulation problem, i.e. the number of groups
being compared is k = 9. Moreover, each hyperparameter combination (or group) is run for
100 individual (simulation) runs (unless stated otherwise), i.e. n = 100 observations per group
resulting in 100 individual hyperareas and number of non-dominated solutions. Also, each run
consists of 1 000 solution evaluations (as mentioned previously) to facilitate fair comparison.

The hypothesis tests conducted are first discussed for the OMP, then the IP, BAP5, BAP10 and
finally for BAP16. Thereafter, the results of the respective tests are combined and a single best
hyperparameter combination is chosen.

6.2.1 Open mine problem

This study includes a wide range of problem sizes, from the smallest problem the OMP with a
decision space of 3 375 solutions to the largest problem, BAP16 with a decision space of 1×1015

solutions. The OMP, which has a relatively small decision space, is included as a method to
validate the algorithms, because if an algorithm is able to approximately solve the OMP, then
it can be assumed that the algorithm will be able to solve the larger problems too.

Stellenbosch University https://scholar.sun.ac.za

6.2. Determining the MOOCEM algorithm hyperparameters 121

Table 6.1: The hyperparameter search space and corresponding naming convention adopted refer to
the specific hyperparameter combinations for the specific simulation problem, resulting in the entire
hyperparameter search space considered for the MOOCEM.

Smoothing
parameter

Probability
of inversion

OMP IP BAP5 BAP10 BAP16

α = 0.65

ph = 0.2 A1.1.1 A1.2.1 A1.3.1 A1.4.1 A1.5.1

ph = 0.3 A1.1.2 A1.2.2 A1.3.2 A1.4.2 A1.5.2

ph = 0.4 A1.1.3 A1.2.3 A1.3.3 A1.4.3 A1.5.3

α = 0.70

ph = 0.2 A1.1.4 A1.2.4 A1.3.4 A1.4.4 A1.5.4

ph = 0.3 A1.1.5 A1.2.5 A1.3.5 A1.4.5 A1.5.5

ph = 0.4 A1.1.6 A1.2.6 A1.3.6 A1.4.6 A1.5.6

α = 0.75

ph = 0.2 A1.1.7 A1.2.7 A1.3.7 A1.4.7 A1.5.7

ph = 0.3 A1.1.8 A1.2.8 A1.3.8 A1.4.8 A1.5.8

ph = 0.4 A1.1.9 A1.2.9 A1.3.9 A1.4.9 A1.5.9

Note that for the OMP, only 40 simulation runs per hyperparameter combination were executed,
i.e. n = 40 observations. The reason for not executing 100 simulation runs as with the other
problems is due to the time constraint of the project and the purpose of its inclusion in this
study. The critical values for k = 9 and n = 40 for the Chi-square and F -distributions are
χ2
8 = 15.51 and F8,312 = 2.68, respectively.

When calculating the hyperareas for the various approximation fronts, larger hyperarea values
(than that of the true hyperarea) were obtained, this is demonstrated in Figure 6.2. Upon
investigation of the approximation fronts, the discrepancy seems reasonable, and is attributable
to the discontinuity of the approximation fronts and the method used to calculate the hyperarea
of the front. From literature, it is clear that the better approximation front should have the
largest hyperarea and consequently the hyperarea of the true approximation front should be the
largest. For this reason, a linear adjustment is proposed to account for the discontinuity present
in the OMPs approximation fronts, given as

IHadj = IH

(
NDS

NDStrue

)
, for NDS ≤ NDStrue, (6.4)

where IH is the hyperarea calculated as described in §2.2.4, NDS is the number of non-
dominated solutions in the approximation front and NDStrue is the number of non-dominated
solutions in the true Pareto front, refer to Chapter 4.

Note that the approximation front with the largest hyperarea does not necessarily correspond
to the approximation front with the most non-dominated solutions found, i.e. it is possible
for an approximation front to have more non-dominated solutions than that of the true non-
dominated front, because the non-dominated solutions obtained by the approximation fronts are
not necessarily the true non-dominated solutions of the true Pareto front.

For example, consider the two Pareto fronts in Figure 6.2, the true Pareto front contains 36 non-
dominated solutions with a true hyperarea value of 14 485.04 presented by the blue dot area,
and the other (larger) approximation front has 34 non-dominated solutions with a hyperarea
value of 14 617.45 with the adittional red area. Due to the discontinuity, the approximation
front is larger denoted by the red area. To account for this, the adjusted hyperarea is calculated
by applying (6.4), such that

Stellenbosch University https://scholar.sun.ac.za

122 Chapter 6. Algorithmic Parameter Evaluation

IHadj = 14617.45

(
34

36

)
= 13805.37.

The correction holds true for the case where the true Pareto set is found, since the obtained
hyperarea would simply be multiplied by 1, as both sets contain 36 non-dominated solutions.

500 1 000 1 500 2 000 2 500 3 000

4

6

8

10

12

14

Total cost

S
e
rv

e
d

tr
a
in
s

True Pareto set

Approximate Pareto set

Additional area

True hyperarea

Figure 6.2: An example illustrating that a larger hyperarea value than the true hyperarea value can
exist (for a worst approximation front), when the front is discontinuous.

Tables B.1 and B.2 present the adjusted hyperareas and number of non-dominated solutions
and their ranks (respectively) for run 1–10 and 39–40 as well as the sum of the ranks which is
used in the Friedman and Iman-Davenport extension hypothesis tests. For example, the values
in the columns of Table B.1 represent a snapshot of the adjusted hyperareas and their ranks
obtained for α = 0.65 and ph = 0.2 (or A1.1.1) for Run 1–10 and 39–40. The boxplots in Figure
6.3 provide a graphical summary of the results for hyperparameter combinations A1.1.1–A1.1.9,
as presented in Tables B.1 and B.2.

A
1
.1
.1

A
1
.1
.2

A
1
.1
.3

A
1
.1
.4

A
1
.1
.5

A
1
.1
.6

A
1
.1
.7

A
1
.1
.8

A
1
.1
.9

1

1.2

1.4

·104
Hyperarea

A
1
.1
.1

A
1
.1
.2

A
1
.1
.3

A
1
.1
.4

A
1
.1
.5

A
1
.1
.6

A
1
.1
.7

A
1
.1
.8

A
1
.1
.9

25

30

35

Non-dominated solutions

Figure 6.3: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A1.1.1–A1.1.9.

Table 6.2 shows the number of runs (out of 40) that obtained the true Pareto set, for each
hyperparameter combination. For example, for α = 0.65 and ph = 0.2, the MOOCEM obtained
the true Pareto set 24 out of the 40 times (i.e. 60% of the time). Consequently, validating that

Stellenbosch University https://scholar.sun.ac.za

6.2. Determining the MOOCEM algorithm hyperparameters 123

the MOOCEM algorithm works correctly and will be able to solve the larger problems that
follow this discussion. The runs that correspond to the worst and best approximation fronts
obtained (in terms of hyperarea and number of non-dominated solutions) are presented in Table
B.3 and depicted in Figures B.1 and B.2 for A1.1.1–A1.1.9.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.3. The Friedman and Iman-Davenport test statistics for both the adjusted hyperareas (and
the number of non-dominated solutions) indicate significance (χ2

F = {22.11, 22.15} > χ2
8, p < α

and FID = {2.89, 2.9} > F8,312, p < α). The outcome is to reject H0, which means that there
exists a statistically significant difference between at least one of the groups. Consequently, the
Nemenyi post hoc test is conducted to determine between which groups a statistically significant
difference exists.

Table 6.2: The number of runs that the MOOCEM obtained the true Pareto set, for the corresponding
hyperparameter combinations A1.1.1–A1.1.9.

A1.1.1 A1.1.2 A1.1.3 A1.1.4 A1.1.5 A1.1.6 A1.1.7 A1.1.8 A1.1.9

24 23 14 27 27 20 26 21 20

Table 6.3: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A1.1.1–A1.1.9.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 22.11 0.01 2.89 0.004
Reject H0

Non-dominated solutions 22.15 0.01 2.9 0.004

The Nemenyi post hoc test is presented in Tables B.4 and B.5 and represent the upper triangle
of the matrix that contains the adjusted p-values of the multiple pairwise comparisons for both
the adjusted hyperareas and number of non-dominated solutions, respectively. The Friedman
and Iman-Davenport extension both detected a significant difference (for α = 0.05) between
the groups, however upon further analysis, the Nemenyi post hoc test found that there was
no statistically significant difference between the groups. Consequently, the hyperparameter
combination employed do not influence the performance of the MOOCEM (on the OMP) and
consequently the hyperparameter combinations A1.1.1–A1.1.9 are equally desirable.

6.2.2 (s, S) Inventory problem

Note that for the IP, BAP5, BAP10 and BAP16, 100 simulation runs per hyperparameter
combination were executed, i.e. n = 100 observations per group. The critical values for k = 9 and
n = 100 for the Chi-square and F -distributions are χ2

8 = 15.51 and F8,792 = 1.95, respectively.
Note that the hyperareas are not adjusted for the IP, BAP5, BAP10 or BAP16, since the
approximation fronts are not discontinuous. Tables B.6 and B.7 present the hyperareas and
number of non-dominated solutions and their ranks for run 1–10 and 99–100 as well as the sum
of the ranks which is used in the Friedman and Iman-Davenport extension hypothesis tests.

For example, the values in the columns of Table B.6 represent a snapshot of the hyperareas
and their ranks obtained for α = 0.65 and ph = 0.2 (or A1.2.1) for Run 1–10 and 99–100.
The boxplots in Figure 6.4 provide a graphical summary of the results for hyperparameter
combinations A1.2.1–A1.2.9, as presented in Tables B.6 and B.7.

Stellenbosch University https://scholar.sun.ac.za

124 Chapter 6. Algorithmic Parameter Evaluation

A
1
.2
.1

A
1
.2
.2

A
1
.2
.3

A
1
.2
.4

A
1
.2
.5

A
1
.2
.6

A
1
.2
.7

A
1
.2
.8

A
1
.2
.9

1.11

1.12

1.13

1.14

·105
Hyperarea

A
1
.2
.1

A
1
.2
.2

A
1
.2
.3

A
1
.2
.4

A
1
.2
.5

A
1
.2
.6

A
1
.2
.7

A
1
.2
.8

A
1
.2
.9

150

200

250

300

Non-dominated solutions

Figure 6.4: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A1.2.1–A1.2.9.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are presented in Table B.8 and depicted in
Figures B.3 and B.4 for A1.2.1–A1.2.9.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.4. The Friedman and Iman-Davenport test statistics do not indicate significance for the
hyperareas (χ2

F = 6.76 < χ2
8, FID = 0.846 < F8,792, p > α). Therefore, do not reject H0.

The tests, however, do indicate significance for the number of non-dominated solutions found
(χ2

F = 63.86 > χ2
8, FID = 8.59 > F8,792, p < α). Consequently, H0 is rejected and the Nemenyi

post hoc test is conducted.

Table 6.4: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A1.2.1–A1.2.9.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 6.76 0.56 0.84 0.56 Fail to reject H0

Non-dominated solutions 63.86 0 8.59 0 Reject H0

The Nemenyi post hoc test results are presented in Table 6.5 and contains the adjusted p-values
of the multiple pairwise comparisons for number of non-dominated solutions. The red p-values
indicate statistical significance, for example the Nemenyi post hoc test found that there are
statistically significant differences between A1.2.1 and A1.2.3, A1.2.5–A1.2.6 and A1.2.8–A1.2.9.

Table 6.5: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
based on the number of non-dominated solutions found for the approximation fronts for the hyperparam-
eter combinations A1.2.1–A1.2.9.

A1.2.2 A1.2.3 A1.2.4 A1.2.5 A1.2.6 A1.2.7 A1.2.8 A1.2.9

A1.2.1 1 0.02 0.72 0 0 1 0.04 0

A1.2.2 0.92 1 0.08 0 1 1 0.01

A1.2.3 1 1 0.17 1 1 1

A1.2.4 1 0 1 1 0.22

A1.2.5 1 0.19 1 1

A1.2.6 0 0.09 1

A1.2.7 1 0.01

A1.2.8 1

Stellenbosch University https://scholar.sun.ac.za

6.2. Determining the MOOCEM algorithm hyperparameters 125

6.2.3 Buffer allocation problem: five machines

Tables B.9 and B.10 present the hyperareas and number of non-dominated solutions and their
ranks (respectively) for run 1–10 and 99–100 as well as the sum of the ranks which is used in the
Friedman and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.5 provide a
graphical summary of the results for hyperparameter combinations A1.3.1–A1.3.9, as presented
in Tables B.9 and B.10.

A
1
.3
.1

A
1
.3
.2

A
1
.3
.3

A
1
.3
.4

A
1
.3
.5

A
1
.3
.6

A
1
.3
.7

A
1
.3
.8

A
1
.3
.9

26

28

30

32

34

Hyperarea

A
1
.3
.1

A
1
.3
.2

A
1
.3
.3

A
1
.3
.4

A
1
.3
.5

A
1
.3
.6

A
1
.3
.7

A
1
.3
.8

A
1
.3
.9

50

100

150

Non-dominated solutions

Figure 6.5: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A1.3.1–A1.3.9.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are presented in Table B.11 and depicted in
Figures B.5 and B.6 for A1.3.1–A1.3.9.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.6. The Friedman and Iman-Davenport test statistics do not indicate significance for the
hyperareas (χ2

F = 13.8 < χ2
8, FID = 1.74 < F8,792, p > α) and therefore, fail to reject H0.

The tests, however, do indicate significance for the number of non-dominated solutions found
(χ2

F = 33.78 > χ2
8, FID = 4.37 > F8,792, p < α). Consequently, H0 is rejected and the Nemenyi

post hoc test is conducted.

Table 6.6: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A1.3.1–A1.3.9.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 13.8 0.09 1.74 0.09 Fail to reject H0

Non-dominated solutions 33.78 0 4.37 0 Reject H0

The Nemenyi post hoc test is presented in Table 6.7 and contains the adjusted p-values of
the multiple pairwise comparisons for number of non-dominated solutions. The red p-values
indicate statistical significance, for example the Nemenyi post hoc test found that there was
only statistically significant differences between A1.3.7 and A1.3.2–A1.3.3 and A1.3.6.

6.2.4 Buffer allocation problem: 10 machines

Tables B.12 and B.13 present the hyperareas and number of non-dominated solutions and their
ranks (respectively) for run 1–10 and 99–100 as well as the sum of the ranks which is used in the

Stellenbosch University https://scholar.sun.ac.za

126 Chapter 6. Algorithmic Parameter Evaluation

Table 6.7: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
based on the number of non-dominated solutions found for the approximation fronts for the hyperparam-
eter combinations A1.3.1–A1.3.9.

A1.3.2 A1.3.3 A1.3.4 A1.3.5 A1.3.6 A1.3.7 A1.3.8 A1.3.9

A1.3.1 1 1 1 1 1 0.27 1 1

A1.3.2 1 0.21 1 1 0 0.1 0.98

A1.3.3 0.17 1 1 0 0.08 0.83

A1.3.4 1 0.78 1 1 1

A1.3.5 1 0.15 1 1

A1.3.6 0.01 0.41 1

A1.3.7 1 1

A1.3.8 1

Friedman and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.6 provide a
graphical summary of the results for hyperparameter combinations A1.4.1–A1.4.9, as presented
in Tables B.12 and B.13.

A
1
.4
.1

A
1
.4
.2

A
1
.4
.3

A
1
.4
.4

A
1
.4
.5

A
1
.4
.6

A
1
.4
.7

A
1
.4
.8

A
1
.4
.9

20

21

22

Hyperarea
A
1
.4
.1

A
1
.4
.2

A
1
.4
.3

A
1
.4
.4

A
1
.4
.5

A
1
.4
.6

A
1
.4
.7

A
1
.4
.8

A
1
.4
.9

40

60

80

Non-dominated solutions

Figure 6.6: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A1.4.1–A1.4.9.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are given in Table B.14 and presented in
Figures B.7 and B.8 for A1.4.1–A1.4.9.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.8. The Friedman and Iman-Davenport test statistics for both the adjusted hyperareas (and
the number of non-dominated solutions) indicate strong significance (χ2

F = {529.1, 368.75} >
χ2
8, p < α and FID = {193.36, 84.65} > F8,792, p < α). Therefore, the outcome is to reject

H0, which means that there exists a significance difference between at least one of the groups in
terms of both hyperarea and number of non-dominated solutions. Consequently, the Nemenyi
post hoc test is conducted to determine between which groups a statistically significant difference
exists.

The Nemenyi post hoc test is presented in Table 6.9 and contains the adjusted p-values of the
multiple pairwise comparisons for both hyperareas and number of non-dominated solutions,
since the test resulted in the same p-values. For example, the Nemenyi post hoc test found that
there was a statistically significant difference between A1.4.1 and A1.4.4–A1.4.6 (for both the
hyperareas and number of non-dominated solutions).

Stellenbosch University https://scholar.sun.ac.za

6.2. Determining the MOOCEM algorithm hyperparameters 127

Table 6.8: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A1.4.1–A1.4.9.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 529.1 0 193.36 0
Reject H0

Non-dominated solutions 368.75 0 84.65 0

Table 6.9: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
based on the hyperareas and number of non-dominated solution found of the approximation fronts for
the hyperparameter combinations A1.4.1–A1.4.9.

A1.4.2 A1.4.3 A1.4.4 A1.4.5 A1.4.6 A1.4.7 A1.4.8 A1.4.9

A1.4.1 1 1 0 0 0 1 1 1

A1.4.2 1 0 0 0 1 1 1

A1.4.3 0 0 0 1 1 1

A1.4.4 1 1 0 0 0

A1.4.5 1 0 0 0

A1.4.6 0 0 0

A1.4.7 1 1

A1.4.8 1

6.2.5 Non-linear buffer allocation problem: 16 machines

Tables B.15 and B.16 present the hyperareas and number of non-dominated solutions and their
ranks (respectively) for run 1–10 and 99–100 as well as the sum of the ranks which is used in the
Friedman and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.7 provide a
graphical summary of the results for hyperparameter combinations A1.5.1–A1.5.9, as presented
in Tables B.15 and B.16. The runs that correspond to the worst and best approximation fronts
obtained (in terms of hyperarea and number of non-dominated solutions) are presented in Table
B.17 and depicted in Figures B.9 and B.10 for A1.5.1–A1.5.9.

A
1
.5
.1

A
1
.5
.2

A
1
.5
.3

A
1
.5
.4

A
1
.5
.5

A
1
.5
.6

A
1
.5
.7

A
1
.5
.8

A
1
.5
.9

190

195

200

205

Hyperarea

A
1
.5
.1

A
1
.5
.2

A
1
.5
.3

A
1
.5
.4

A
1
.5
.5

A
1
.5
.6

A
1
.5
.7

A
1
.5
.8

A
1
.5
.9

40

60

80

Non-dominated solutions

Figure 6.7: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A1.5.1–A1.5.9.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.10. The Friedman and Iman-Davenport test statistics indicate significance for the hyperareas
(χ2

F = 41.66 > χ2
8, FID = 5.44 > F8,792, p < α). Therefore, the outcome is to reject H0

for the hyperareas, which means that there exists a significant difference between at least one
of the groups in terms of the hyperarea value. Consequently, the Nemenyi post hoc test is

Stellenbosch University https://scholar.sun.ac.za

128 Chapter 6. Algorithmic Parameter Evaluation

required to determine between which groups a statistically significant difference exists. The
tests, however, do not indicate significance for the number of non-dominated solutions found
(χ2

F = 10.28 < χ2
8, FID = 1.29 < F8,792, p > α) and therefore, fail to reject H0.

Table 6.10: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A1.5.1–A1.5.9.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 41.66 0 5.44 0 Reject H0

Non-dominated solutions 10.28 0.25 1.29 0.25 Fail to reject H0

The Nemenyi post hoc test is presented in Table 6.11 and contains the adjusted p-values of the
multiple pairwise comparisons for hyperareas. For example, the Nemenyi post hoc test found
that there is a statistically significant difference between A1.5.1 and A1.5.3, A1.5.6 and A1.5.9.

Table 6.11: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
based on the hyperareas of the approximation fronts for the hyperparameter combinations A1.5.1–A1.5.9.

A1.5.2 A1.5.3 A1.5.4 A1.5.5 A1.5.6 A1.5.7 A1.5.8 A1.5.9

A1.5.1 1 0 1 1 0 1 1 0

A1.5.2 1 1 1 0.73 1 1 1

A1.5.3 0.02 0.33 1 0.21 0.63 1

A1.5.4 1 0.01 1 1 0.02

A1.5.5 0.14 1 1 0.38

A1.5.6 0.08 0.28 1

A1.5.7 1 0.24

A1.5.8 0.73

This concludes the individual (or problem-specific) analysis of the hyperparameter combinations
for the MOOCEM. Finally, the single best hyperparameter combination can be determined for
the MOOCEM, across all five simulation problems. Note that only the hyperareas are considered,
since the hyperarea is the better indicator of the quality of an approximation front. Figure 6.8
represents the average hyperareas obtained for each respective hyperparameter combination
(collectively referred to as A1.1–A1.9) for each simulation problem. The average number of
non-dominated solutions obtained for hyperparameter combinations A1.1–A1.9 is presented in
Figure B.11 for each simulation problem.

Figure 6.9 is used to explain the process followed to determine the single best hyperparameter
combination (specifically for BAP10) for the MOOCEM. From the p-values given in Table 6.9
and included in the figure, it can be seen that hyperparameter combinations A1.4.4–A1.4.6 are
statistically significantly different to A1.4.1–A1.4.3 and A1.4.7–A1.4.9 which is illustrated by the
red rectangles in Figure 6.9. Because A1.4.4–A1.4.6 have the smaller average hyperareas they
are eliminated from consideration. Accordingly, A1.4.1–A1.4.3 and A1.4.7–A1.4.9 are not sta-
tistically significantly different and are therefore considered. A similar process was followed for
each problem and the outcome is presented in Table 6.12, where it is clear that hyperparameter
combination A1.2–A1.3 and A1.7–A1.9 are the common denominators across all five simulation
problems.

Next, the hyperparameter combination (i.e. A1.2–A1.3 and A1.7–A1.9) that obtains the largest
average hyperarea (for most of the time) is chosen. The green checkmarks in Table 6.12 corre-
spond to the hyperparameter combinations with the largest average hyperarea. Consequently,
because hyperparameter combination A1.9 (or α = 0.75 and ph = 0.4) resulted in the largest

Stellenbosch University https://scholar.sun.ac.za

6.2. Determining the MOOCEM algorithm hyperparameters 129

1.38

1.4

1.42

·104

OMP
(A1.1.1–A1.1.9)

Average hyperareas

1.13

1.13

·105

IP
(A1.2.1–A1.2.9)

33.05

33.1

33.15

33.2

BAP5
(A1.3.1–A1.3.9)

A1.1

A1.2

A1.3

A1.4

A1.5

A1.6

A1.7

A1.8

A1.9

21

21.5

22

BAP10
(A1.4.1–A1.4.9)

201

201.5

202

202.5

BAP16
(A1.5.1–A1.5.9)

Figure 6.8: The average hyperareas obtained for hyperparameter combinations A1.1–A1.9 for the re-
spective simulation problems.

average hyperarea for four out of the five problems, it is employed in the BOCEGAH. Note
that hyperparameter combinations A1.2–A1.3 and A1.7–A1.9 are not statistically significantly
different, i.e. any one of these combinations could be used, however, one had to be chosen.

Interestingly, Bekker [21] found that the probability of inverting the decision variable histograms
ph is typically in the range [0.1, 0.3], however the hyperparameter study conducted for the
MOOCEM on the five simulation problems concluded that ph = 0.4 is the common best hyper-
parameter combination.

This concludes the empirical study determining the hyperparameter combination to be employed
for the MOOCEM in the BOCEGAH. The results can be used as a guideline for choosing
hyperparameters for the MOOCEM, when deciding on suitable hyperparameter combinations
to employ, or is at least a good place to start.

The next section documents the extensive parametric study conducted for the NSGA-II.

Stellenbosch University https://scholar.sun.ac.za

130 Chapter 6. Algorithmic Parameter Evaluation

21

21.5

22 A1.4.1 A1.4.2 A1.4.3

A1.4.4 A1.4.5A1.4.6

A1.4.7 A1.4.8 A1.4.9

BAP10
(A1.4.1–A1.4.9)

Average hyperareas

A1.4.2 A1.4.3 A1.4.4 A1.4.5 A1.4.6 A1.4.7 A1.4.8 A1.4.9
A1.4.1 1 1 0 0 0 1 1 1
A1.4.2 1 0 0 0 1 1 1
A1.4.3 0 0 0 1 1 1
A1.4.4 1 1 0 0 0
A1.4.5 1 0 0 0
A1.4.6 0 0 0
A1.4.7 1 1
A1.4.8 1

Figure 6.9: An example illustrating the hyperparameter selection process followed for BAP10 based on
the Friedman and Iman-Davenport extension hypothesis test and Nemenyi post hoc test conducted for
the hyperareas obtained for hyperparameter combinations A1.4.1–A1.4.9.

Table 6.12: The hyperparameters for the MOOCEM that are considered for implementation in the
BOCEGAH.

A1.1 A1.2 A1.3 A1.4 A1.5 A1.6 A1.7 A1.8 A1.9

OMP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BAP5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BAP10 ✓ ✓ ✓ ✓ ✓ ✓

BAP16 ✓ ✓ ✓ ✓ ✓ ✓ ✓

6.3 Determining the NSGA-II hyperparameters

The NSGA-II contains many interacting hyperparameters to be adjusted and consequently, the
purpose of this section is to determine the single best hyperparameter combination for the
NSGA-II that results in the best algorithmic performance, across all five simulation problems.
Ultimately, the results of the Friedman and Iman-Davenport extension tests are combined and
used to decide which hyperparameter combination to implement for NSGA-II and employ in the
BOCEGAH.

Population size N is typically chosen in the range [20, 100] because large populations result
in better convergence toward the true Pareto front, however, the time complexity increases
linearly with the size of the population [93]. In this study N = 100.

Crossover probability pc typically ranges between [0.3, 0.9]. In this study the pc ∈ {0.9, 1}
is considered, i.e. crossover operations are applied to 90% and 100% of the parents.

Mutation probability pm typically ranges between [0.001, 0.01], where large probabilities
could disrupt the search. Usually, the pm = 1/nd, where nd is the number of decision
variables, i.e. on average, one variable is mutated [93]. However, because the number of
decision variables differs from simulation problem to simulation problem, ranging from 2
to 15, pm ∈ {0.1, 0.2, 0.3} is considered.

The NSGA-II parameters that are considered for the hyperparameter study are summarised
in Table 6.13. A similar naming convention is adopted as before, where A2.1.1 refers to the

Stellenbosch University https://scholar.sun.ac.za

6.3. Determining the NSGA-II hyperparameters 131

hyperparameter combination rank selection, polynomial mutation, pc = 0.9 and pm = 0.1 for
the OMP specifically. A search space of 24 combinations per simulation problem is explored,
i.e. the number of groups being compared is k = 24.

The search space explores selection operators, binary tournament selection and rank selection,
crossover operator simulated binary crossover, mutation operators polynomial mutation and
dynamic mutation and (as mentioned) crossover probabilities pc ∈ {0.9, 1} and mutation prob-
abilities pm ∈ {0.1, 0.2, 0.3} with a maximum of 1 000 solutions evaluations and a population
size N = 100. Again, each hyperparameter combination (or group) is run for 100 individual
(simulation) runs (unless stated otherwise), i.e. n = 100 observations per group resulting in 100
individual hyperareas and number of non-dominated solutions.

Table 6.13: The hyperparameter search space and corresponding naming convention adopted refer
to the specific hyperparameter combinations for the specific simulation problem, resulting in the entire
hyperparameter search space considered for the NSGA-II.

Selection
operator

Mutation
operator

Crossover
probability

Mutation
probability

OMP IP BAP5 BAP10 BAP16

R
a
n
k
se
le
ct
io
n

P
o
ly
n
o
m
ia
l

m
u
ta
ti
o
n

pc = 0.9

pm = 0.1 A2.1.1 A2.2.1 A2.3.1 A2.4.1 A2.5.1

pm = 0.2 A2.1.2 A2.2.2 A2.3.2 A2.4.2 A2.5.2

pm = 0.3 A2.1.3 A2.2.3 A2.3.3 A2.4.3 A2.5.3

pc = 1

pm = 0.1 A2.1.4 A2.2.4 A2.3.4 A2.4.4 A2.5.4

pm = 0.2 A2.1.5 A2.2.5 A2.3.5 A2.4.5 A2.5.5

pm = 0.3 A2.1.6 A2.2.6 A2.3.6 A2.4.6 A2.5.6

D
y
n
a
m
ic

m
u
ta
ti
o
n

pc = 0.9

pm = 0.1 A2.1.7 A2.5.7 A2.3.7 A2.4.7 A2.5.7

pm = 0.2 A2.1.8 A2.2.8 A2.3.8 A2.4.8 A2.5.8

pm = 0.3 A2.1.9 A2.2.9 A2.3.9 A2.4.9 A2.5.9

pc = 1

pm = 0.1 A2.1.10 A2.2.10 A2.3.10 A2.4.10 A2.5.10

pm = 0.2 A2.1.11 A2.2.11 A2.3.11 A2.4.11 A2.5.11

pm = 0.3 A2.1.12 A2.2.12 A2.3.12 A2.4.12 A2.5.12

B
in
a
ry

to
u
rn

a
m
en

t
se
le
ct
io
n

P
o
ly
n
o
m
ia
l

m
u
ta
ti
o
n

pc = 0.9

pm = 0.1 A2.1.13 A2.2.13 A2.3.13 A2.4.13 A2.5.13

pm = 0.2 A2.1.14 A2.2.14 A2.3.14 A2.4.14 A2.5.14

pm = 0.3 A2.1.15 A2.2.15 A2.3.15 A2.4.15 A2.5.15

pc = 1

pm = 0.1 A2.1.16 A2.2.16 A2.3.16 A2.4.16 A2.5.16

pm = 0.2 A2.1.17 A2.2.17 A2.3.17 A2.4.17 A2.5.17

pm = 0.3 A2.1.18 A2.2.18 A2.3.18 A2.4.18 A2.5.18

D
y
n
a
m
ic

m
u
ta
ti
o
n

pc = 0.9

pm = 0.1 A2.1.19 A2.2.19 A2.3.19 A2.4.19 A2.5.19

pm = 0.2 A2.1.20 A2.2.20 A2.3.20 A2.4.20 A2.5.20

pm = 0.3 A2.1.21 A2.2.21 A2.3.21 A2.4.21 A2.5.21

pc = 1

pm = 0.1 A2.1.22 A2.2.22 A2.3.22 A2.4.22 A2.5.22

pm = 0.2 A2.1.23 A2.2.23 A2.3.23 A2.4.23 A2.5.23

pm = 0.3 A2.1.24 A2.2.24 A2.3.24 A2.4.24 A2.5.24

The hypothesis tests conducted are first discussed for the OMP, then the IP, BAP5, BAP10 and
finally for BAP16. Thereafter, the results of the respective tests are combined and a single best
hyperparameter combination is chosen. Note that the previous sections (§6.2.1–§6.2.5) wil be
used as a template to succinctly present the remainder of the results.

6.3.1 Open mine problem

Recall that for the OMP, only 40 simulation runs per hyperparameter combination were exe-
cuted, i.e. n = 40 observations. Accordingly, the critical values for k = 24 and n = 40 for
the Chi-square and F -distributions are χ2

23 = 35.17 and F23,897 = 1.54, respectively. Tables

Stellenbosch University https://scholar.sun.ac.za

132 Chapter 6. Algorithmic Parameter Evaluation

B.1 and B.2 present the adjusted hyperareas and number of non-dominated solutions and their
ranks (respectively) for run 1–10 and 39–40 as well as the sum of the ranks which is used in
the Friedman and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.10 pro-
vide a graphical summary of the results for hyperparameter combinations A2.1.1–A2.1.24, as
presented in Tables B.18 and B.19.

A
2
.1
.1

A
2
.1
.2

A
2
.1
.3

A
2
.1
.4

A
2
.1
.5

A
2
.1
.6

A
2
.1
.7

A
2
.1
.8

A
2
.1
.9

A
2
.1
.1
0

A
2
.1
.1
1

A
2
.1
.1
2

A
2
.1
.1
3

A
2
.1
.1
4

A
2
.1
.1
5

A
2
.1
.1
6

A
2
.1
.1
7

A
2
.1
.1
8

A
2
.1
.1
9

A
2
.1
.2
0

A
2
.1
.2
1

A
2
.1
.2
2

A
2
.1
.2
3

A
2
.1
.2
4

0.4

0.6

0.8

1

1.2

1.4

·104
Hyperarea

A
2
.1
.1

A
2
.1
.2

A
2
.1
.3

A
2
.1
.4

A
2
.1
.5

A
2
.1
.6

A
2
.1
.7

A
2
.1
.8

A
2
.1
.9

A
2
.1
.1
0

A
2
.1
.1
1

A
2
.1
.1
2

A
2
.1
.1
3

A
2
.1
.1
4

A
2
.1
.1
5

A
2
.1
.1
6

A
2
.1
.1
7

A
2
.1
.1
8

A
2
.1
.1
9

A
2
.1
.2
0

A
2
.1
.2
1

A
2
.1
.2
2

A
2
.1
.2
3

A
2
.1
.2
4

15

20

25

30

35

Non-dominated solutions

Figure 6.10: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A2.1.1–A2.1.24.

Table 6.14 shows the number of runs (out of 40) that obtained the true Pareto set, for each
hyperparameter combination. For example, for hyperparameter combination A2.1.1, the NSGA-
II obtained the true Pareto set 3 out of the 40 times (i.e. 7.5% of the time). Consequently,
validating that the NSGA-II algorithm works correctly and will be able to solve the larger
problems that follow this discussion.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are presented in Table B.20 and depicted in
Figures B.12–B.14 for A2.1.1–A2.1.24.

Stellenbosch University https://scholar.sun.ac.za

6.3. Determining the NSGA-II hyperparameters 133

Table 6.14: The number of runs that the NSGA-II obtained the true Pareto set, for the respective
hyperparameter combinations.

A2.1.1 A2.1.4 A2.1.7 A2.1.8 A2.1.9 A2.1.10 A2.1.11 A2.1.12 A2.1.20 A2.1.22 A2.1.23

3 2 2 4 1 4 1 1 3 1 2

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.15. The Friedman and Iman-Davenport test statistics for both the adjusted hyperareas (and
the number of non-dominated solutions) indicate significance (χ2

F = {304.76, 285.67} > χ2
23, p <

α and FID = {19.32, 17.56} > F23,897, p < α). Consequently, H0 is rejected and the Nemenyi
post hoc test is conducted.

Table 6.15: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A2.1.1–A2.1.24.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 304.76 0 19.32 0
Reject H0

Non-dominated solutions 285.67 0 17.56 0

The Nemenyi post hoc test is presented in Tables B.21 and B.22 and contains the adjusted
p-values of the multiple pairwise comparisons for both the adjusted hyperareas and number of
non-dominated solutions, respectively. The p-values in red indicate statistical significance, for
example A1.1.1 and A1.1.13–A1.1.19, A1.1.21–A1.1.22 and A1.1.24.

6.3.2 (s, S) Inventory problem

Recall that for the IP, BAP5, BAP10 and BAP16, 100 simulation runs per hyperparameter com-
bination were executed, i.e. n = 100 observations per group. The critical values for k = 24 and
n = 100 for the Chi-square and F -distributions are χ2

23 = 35.17 and F23,2277 = 1.53, respectively.
Tables B.23 and B.24 present the hyperareas and number of non-dominated solutions and their
ranks for run 1–10 and 99–100 as well as the sum of the ranks which is used in the Friedman and
Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.11 provide a graphical
summary of the results for hyperparameter combinations A2.2.1–A2.2.24, as presented in Tables
B.23 and B.24.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are given in Table B.25 and presented in
Figures B.15 and B.19 for A2.2.1–A2.2.24.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.16. The Friedman and Iman-Davenport test statistics both indicate significance for both the
hyperarea and non-dominated solutions (χ2

F = {171.73, 1030.87} > χ2
23, FID = {7.99, 80.41} >

F23,2277, p < α). Consequently, H0 is rejected and the Nemenyi post hoc test is conducted.

The Nemenyi post hoc test is presented in Tables B.26 and B.27 and contains the adjusted
p-values of the multiple pairwise comparisons for number of non-dominated solutions. The red
p-values indicate statistical significance, for example there are statistically significant differences
between A2.2.1 and A2.2.13, A2.2.15, A2.2.18 and A2.2.19.

Stellenbosch University https://scholar.sun.ac.za

134 Chapter 6. Algorithmic Parameter Evaluation

A
2
.3
.1

A
2
.3
.2

A
2
.3
.3

A
2
.3
.4

A
2
.3
.5

A
2
.3
.6

A
2
.3
.7

A
2
.3
.8

A
2
.3
.9

A
2
.3
.1
0

A
2
.3
.1
1

A
2
.3
.1
2

A
2
.3
.1
3

A
2
.3
.1
4

A
2
.3
.1
5

A
2
.3
.1
6

A
2
.3
.1
7

A
2
.3
.1
8

A
2
.3
.1
9

A
2
.3
.2
0

A
2
.3
.2
1

A
2
.3
.2
2

A
2
.3
.2
3

A
2
.3
.2
4

31

32

33

34

Hyperarea

A
2
.3
.1

A
2
.3
.2

A
2
.3
.3

A
2
.3
.4

A
2
.3
.5

A
2
.3
.6

A
2
.3
.7

A
2
.3
.8

A
2
.3
.9

A
2
.3
.1
0

A
2
.3
.1
1

A
2
.3
.1
2

A
2
.3
.1
3

A
2
.3
.1
4

A
2
.3
.1
5

A
2
.3
.1
6

A
2
.3
.1
7

A
2
.3
.1
8

A
2
.3
.1
9

A
2
.3
.2
0

A
2
.3
.2
1

A
2
.3
.2
2

A
2
.3
.2
3

A
2
.3
.2
4

50

100

150

Non-dominated solutions

Figure 6.11: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A2.2.1–A2.2.24.

Table 6.16: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A2.2.1–A2.2.24.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 171.73 0 7.99 0
Reject H0

Non-dominated solutions 1030.87 0 80.41 0

6.3.3 Buffer allocation problem: five machines

Tables B.28 and B.29 present the hyperareas and number of non-dominated solutions and their
ranks for run 1–10 and 99–100 as well as the sum of the ranks which is used in the Friedman and
Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.12 provide a graphical

Stellenbosch University https://scholar.sun.ac.za

6.3. Determining the NSGA-II hyperparameters 135

summary of the results for hyperparameter combinations A2.3.1–A2.3.24, as presented in Tables
B.28 and B.29.

A
2
.3
.1

A
2
.3
.2

A
2
.3
.3

A
2
.3
.4

A
2
.3
.5

A
2
.3
.6

A
2
.3
.7

A
2
.3
.8

A
2
.3
.9

A
2
.3
.1
0

A
2
.3
.1
1

A
2
.3
.1
2

A
2
.3
.1
3

A
2
.3
.1
4

A
2
.3
.1
5

A
2
.3
.1
6

A
2
.3
.1
7

A
2
.3
.1
8

A
2
.3
.1
9

A
2
.3
.2
0

A
2
.3
.2
1

A
2
.3
.2
2

A
2
.3
.2
3

A
2
.3
.2
4

31

32

33

34

Hyperarea
A
2
.3
.1

A
2
.3
.2

A
2
.3
.3

A
2
.3
.4

A
2
.3
.5

A
2
.3
.6

A
2
.3
.7

A
2
.3
.8

A
2
.3
.9

A
2
.3
.1
0

A
2
.3
.1
1

A
2
.3
.1
2

A
2
.3
.1
3

A
2
.3
.1
4

A
2
.3
.1
5

A
2
.3
.1
6

A
2
.3
.1
7

A
2
.3
.1
8

A
2
.3
.1
9

A
2
.3
.2
0

A
2
.3
.2
1

A
2
.3
.2
2

A
2
.3
.2
3

A
2
.3
.2
4

50

100

150

Non-dominated solutions

Figure 6.12: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A2.3.1–A2.3.24.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are given in Table B.30 and presented in
Figures B.20 and B.24 for A2.3.1–A2.3.24.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.17. The Friedman and Iman-Davenport test statistics both indicate significance for both the
hyperarea and non-dominated solutions (χ2

F = {90.47, 274.21} > χ2
23, p < α and FID =

{4.05, 13.4} > F23,2277, p < α). Consequently, H0 is rejected and the Nemenyi post hoc test is
conducted.

The Nemenyi post hoc test is presented in Tables B.31 and B.32 and contains the adjusted
p-values of the multiple pairwise comparisons for number of non-dominated solutions. The red

Stellenbosch University https://scholar.sun.ac.za

136 Chapter 6. Algorithmic Parameter Evaluation

Table 6.17: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A2.3.1–A2.3.24.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 90.47 0 4.05 0
Reject H0

Non-dominated solutions 274.21 0 13.4 0

p-values indicate statistical significance, for example there are statistically significant differences
between A2.2.1 and A2.2.13, A2.2.15, A2.2.18 and A2.2.19 in terms of hyperarea.

6.3.4 Buffer allocation problem: 10 machines

Tables B.33 and B.34 present the hyperareas and number of non-dominated solutions and their
ranks for run 1–10 and 99–100 as well as the sum of the ranks which is used in the Friedman and
Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.13 provide a graphical
summary of the results for hyperparameter combinations A2.4.1–A2.4.24, as presented in Tables
B.33 and B.34. The runs that correspond to the worst and best approximation fronts obtained
(in terms of hyperarea and number of non-dominated solutions) are given in Table B.35 and pre-
sented in Figures B.25 and B.29 for A2.4.1–A2.4.24. The Friedman and Iman-Davenport exten-
sion hypothesis test results are summarised in Table 6.17. The Friedman and Iman-Davenport
test statistics both indicate significance for both the hyperarea and non-dominated solutions
(χ2

F = {268.26, 103.06} > χ2
23, p < α and FID = {13.07, 4.64} > F23,2277, p < α). Conse-

quently, H0 is rejected and the Nemenyi post hoc test is conducted.

Table 6.18: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A2.4.1–A2.4.24.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 268.26 0 13.07 0
Reject H0

Non-dominated solutions 103.06 0 4.64 0

The Nemenyi post hoc test is presented in Tables B.36 and B.37 and contains the adjusted
p-values of the multiple pairwise comparisons for number of non-dominated solutions. The red
p-values indicate statistical significance, for example there are statistically significant differences
between A2.4.1 and A2.4.8–A2.4.9, A2.4.11–A2.4.12, A2.4.21 and A2.4.24 in terms of hyperarea.

6.3.5 Non-linear buffer allocation problem: 16 machines

Tables B.38 and B.39 present the hyperareas and number of non-dominated solutions and their
ranks for run 1–10 and 99–100 as well as the sum of the ranks which is used in the Friedman and
Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.14 provide a graphical
summary of the results for hyperparameter combinations A2.5.1–A2.5.24, as presented in Tables
B.38 and B.39. The runs that correspond to the worst and best approximation fronts obtained
(in terms of hyperarea and number of non-dominated solutions) are given in Table B.30 and
presented in Figures B.30 and B.34 for A2.5.1–A2.5.24.

Stellenbosch University https://scholar.sun.ac.za

6.3. Determining the NSGA-II hyperparameters 137

A
2
.4
.1

A
2
.4
.2

A
2
.4
.3

A
2
.4
.4

A
2
.4
.5

A
2
.4
.6

A
2
.4
.7

A
2
.4
.8

A
2
.4
.9

A
2
.4
.1
0

A
2
.4
.1
1

A
2
.4
.1
2

A
2
.4
.1
3

A
2
.4
.1
4

A
2
.4
.1
5

A
2
.4
.1
6

A
2
.4
.1
7

A
2
.4
.1
8

A
2
.4
.1
9

A
2
.4
.2
0

A
2
.4
.2
1

A
2
.4
.2
2

A
2
.4
.2
3

A
2
.4
.2
4

20

21

22

Hyperarea

A
2
.4
.1

A
2
.4
.2

A
2
.4
.3

A
2
.4
.4

A
2
.4
.5

A
2
.4
.6

A
2
.4
.7

A
2
.4
.8

A
2
.4
.9

A
2
.4
.1
0

A
2
.4
.1
1

A
2
.4
.1
2

A
2
.4
.1
3

A
2
.4
.1
4

A
2
.4
.1
5

A
2
.4
.1
6

A
2
.4
.1
7

A
2
.4
.1
8

A
2
.4
.1
9

A
2
.4
.2
0

A
2
.4
.2
1

A
2
.4
.2
2

A
2
.4
.2
3

A
2
.4
.2
4

40

60

80

Non-dominated solutions

Figure 6.13: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A2.4.1–A2.4.24.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.19. The Friedman and Iman-Davenport test statistics both indicate significance for both the
hyperarea and non-dominated solutions (χ2

F = {115.15, 73.33} > χ2
23, p < α and FID =

{5.22, 3.26} > F23,2277, p < α). Consequently, H0 is rejected and the Nemenyi post hoc test is
conducted.

Table 6.19: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A2.5.1–A2.5.24.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 115.15 0 5.22 0
Reject H0

Non-dominated solutions 73.33 0 3.26 0

Stellenbosch University https://scholar.sun.ac.za

138 Chapter 6. Algorithmic Parameter Evaluation

A
2
.5
.1

A
2
.5
.2

A
2
.5
.3

A
2
.5
.4

A
2
.5
.5

A
2
.5
.6

A
2
.5
.7

A
2
.5
.8

A
2
.5
.9

A
2
.5
.1
0

A
2
.5
.1
1

A
2
.5
.1
2

A
2
.5
.1
3

A
2
.5
.1
4

A
2
.5
.1
5

A
2
.5
.1
6

A
2
.5
.1
7

A
2
.5
.1
8

A
2
.5
.1
9

A
2
.5
.2
0

A
2
.5
.2
1

A
2
.5
.2
2

A
2
.5
.2
3

A
2
.5
.2
4

150

160

170

180

190

Hyperarea

A
2
.5
.1

A
2
.5
.2

A
2
.5
.3

A
2
.5
.4

A
2
.5
.5

A
2
.5
.6

A
2
.5
.7

A
2
.5
.8

A
2
.5
.9

A
2
.5
.1
0

A
2
.5
.1
1

A
2
.5
.1
2

A
2
.5
.1
3

A
2
.5
.1
4

A
2
.5
.1
5

A
2
.5
.1
6

A
2
.5
.1
7

A
2
.5
.1
8

A
2
.5
.1
9

A
2
.5
.2
0

A
2
.5
.2
1

A
2
.5
.2
2

A
2
.5
.2
3

A
2
.5
.2
4

20

30

40

50

60

Non-dominated solutions

Figure 6.14: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A2.5.1–A2.5.24.

The Nemenyi post hoc test is presented in Tables B.41 and B.42 and contains the adjusted
p-values of the multiple pairwise comparisons for number of non-dominated solutions. The red
p-values indicate statistical significance, for example there are statistically significant differences
between A2.5.1 and A2.5.9 and A2.5.12 in terms of hyperarea.

This concludes the individual (or problem-specific) analysis of the hyperparameter combinations
for the NSGA-II. Finally, the single best hyperparameter combination can be determined for the
NSGA-II, across all five simulation problems. Again, note that only the hyperareas are consid-
ered, since the hyperarea is the better indicator of the quality of an approximation front. Figure
6.15 represents the average hyperareas obtained for each respective hyperparameter combina-
tion (collectively referred to as A2.1–A2.24) for the simulation problems. The average number
of non-dominated solutions obtained for hyperparameter combinations A2.1–A2.24 is presented
in Figure B.35 for each simulation problem.

Stellenbosch University https://scholar.sun.ac.za

6.3. Determining the NSGA-II hyperparameters 139

1

1.1

1.2

·104

OMP
(A2.1.1–
A2.1.24)

Average hyperareas

1.13

1.13

1.13

·105

IP
(A2.2.1–
A2.2.24)

33.1

33.2

33.3
BAP5
(A2.3.1–
A2.3.24)

A2.1

A2.2

A2.3

A2.4

A2.5

A2.6

A2.7

A2.8

A2.9

A2.10

A2.11

A2.12

A2.13

A2.14

A2.15

A2.16

A2.17

A2.18

A2.19

A2.20

A2.21

A2.22

A2.23

A2.24

21

21.2

21.4

BAP10
(A2.4.1–
A2.4.24)

182

184

186

BAP16
(A2.5.1–
A2.5.24)

Figure 6.15: The average hyperareas obtained for each hyperparameter combinations A2.1–A2.24 for
the respective simulation optimisation problems.

Figure 6.16 is used to explain the process followed to determine the single best hyperparameter
combination (specifically for BAP16) for the NSGA-II. From the p-values given in Table B.41
and included in the figure, it can be seen that A2.5.12 is statistically significantly different
to A2.5.1, A2.5.4, A2.5.13–A2.5.23 which is illustrated by the red rectangle in Figure 6.16.
Because A2.5.1, A2.5.4, A2.5.13–A2.5.23 have smaller average hyperareas they are eliminated
from consideration.

Accordingly, solutions A2.5.3, A2.5.7, A2.5.9, A2.5.11, A2.5.12 and A2.5.24 are not statistically
significantly different and are therefore considered. A similar process was followed for each
problem and the outcome is presented in Table 6.20, where it is clear that hyperparameter
combination A2.3 is the common denominator across all five simulation problems. Consequently,
hyperparameter combination A2.3 (or rank selection, polynomial mutation, pc = 0.9 and pm =
0.3) is employed in BOCEGAH.

Interestingly, the proposed range for pm is typically between [0.001, 0.01], since large probabili-
ties could disrupt the search [93], however the hyperparameter study conducted for the NSGA-II

Stellenbosch University https://scholar.sun.ac.za

140 Chapter 6. Algorithmic Parameter Evaluation

182

184

186

BAP16
(A2.5.1–
A2.5.24)

Average hyperareas

A2.5.1 A2.5.2 A2.5.3 A2.5.4 A2.5.5 A2.5.6 A2.5.7 A2.5.8 A2.5.9 A2.5.10 A2.5.11 A2.5.12

A2.5.13 A2.5.14 A2.5.15 A2.5.16 A2.5.17 A2.5.18 A2.5.19 A2.5.20 A2.5.21 A2.5.22 A2.5.23 A2.5.24

Figure 6.16: An example illustrating the hyperparameter selection process followed for BAP16 based
on the Friedman and Iman-Davenport extension hypothesis test and Nemenyi post hoc test conducted for
the hyperareas obtained for hyperparameter combinations A2.5.1–A2.5.24.

on the five simulation problems concluded that pm = 0.3 is the common best hyperparameter
combination.

Table 6.20: The hyperparameters combinations for the NSGA-II that are considered for implementation
in BOCEGAH.

OMP IP BAP5 BAP10 BAP16

A2.1 ✓ ✓

A2.2 ✓ ✓ ✓

A2.3 ✓ ✓ ✓ ✓ ✓

A2.4 ✓ ✓

A2.5 ✓ ✓

A2.6 ✓ ✓ ✓

A2.7 ✓ ✓

A2.8 ✓ ✓ ✓

A2.9 ✓ ✓ ✓ ✓

A2.10 ✓

A2.11 ✓ ✓ ✓ ✓

A2.12 ✓ ✓ ✓ ✓

A2.13 ✓

A2.14 ✓ ✓

A2.15 ✓ ✓ ✓

A2.16 ✓

A2.17 ✓ ✓

A2.18 ✓ ✓

A2.19 ✓

A2.20 ✓ ✓

A2.21 ✓ ✓

A2.22 ✓

A2.23 ✓ ✓ ✓

A2.24 ✓ ✓ ✓

This concludes the empirical study determining the hyperparameter combination to be employed
for the NSGA-II in the BOCEGAH. The results can be used a guideline for choosing hyperpa-
rameters for the NSGA-II, when deciding on suitable hyperparameter combinations to employ,
or is at least a good place to start.

The next section documents the parametric study conducted for the move operators proposed
for DBMOSA.

Stellenbosch University https://scholar.sun.ac.za

6.4. Determining the DBMOSA algorithm hyperparameters 141

6.4 Determining the DBMOSA algorithm hyperparameters

The aim in this section is to determine which three move operators for the DBMOSA resulted in
the best algorithmic performance, across all five simulation problems. Ultimately, the results of
the Friedman and Iman-Davenport extension tests are combined and used to decide which three
move operators to implement for the DBMOSA to employ in the BOSAH. First, it is necessary
to define which parameters are held constant and are summarised in Table 6.21.

Table 6.21: The hyperparameters that are held constant during the hyperparameter study for DBMOSA.

Parameter Value

Initial temperature 10

Maximum iterations 1000

Annealing schedule Geometric

Cooling parameter 0.75

Heating parameter 1.2

Maximum accepts 10

Maximum attempts 5

It is important to know that for DBMOSA each run was run with a different initial solution and
RNS, an example of which is depicted in Table 6.22 for the IP. For Run 1 the initial solution is
s = 1 and S = 1 with RNS = 1, Run 2 the initial solution is s = 5 and S = 5 with RNS = 2,
until Run 100 with the initial solution is s = 397 and S = 397 with RNS = 100, applied to all
the hyperparameter combinations being evaluated. A similar approach is followed for the other
simulation optimisation problems. Moreover, the initial solution for each run remains the same
for the different hyperparameter combinations.

Table 6.22: DBMOSA setup information.

Initial solution RNS

Run 1 {1,1} 1

Run 2 {5,5} 2
...

...
...

Run 100 {397,397} 100

The DBMOSA parameters that are considered for the hyperparameter study are summarised
in Table 6.23. A similar naming convention is adopted as before, where A3.1.1 refers to the
hyperparameter combination represents move operator 1, for the OMP specifically. A search
space of four combinations per simulation problem is explored, i.e. the number of groups being
compared is k = 4. Again, each hyperparameter combination (or group) is run for 100 individual
(simulation) runs (unless stated otherwise), i.e. n = 100 observations per group resulting in 100
individual hyperareas and number of non-dominated solutions. Also, each run consists of 1 000
solution evaluations (as mentioned previously) to facilitate fair comparison.

The hypothesis tests conducted are first discussed for the OMP, then the IP, BAP5, BAP10 and
finally for BAP16. Thereafter, the results of the respective tests are combined and the three
best move operators are chosen.

Stellenbosch University https://scholar.sun.ac.za

142 Chapter 6. Algorithmic Parameter Evaluation

Table 6.23: The hyperparameter search space and corresponding naming convention adopted refer
to the specific hyperparameter combinations for the specific simulation problem, resulting in the entire
hyperparameter search space considered for the DBMOSA.

Move operator OMP IP BAP5 BAP10 BAP16

1 A3.1.1 A3.2.1 A3.3.1 A3.4.1 A3.5.1

2 A3.1.2 A3.2.2 A3.3.1 A3.4.2 A3.5.2

3 A3.1.3 A3.2.3 A3.3.3 A3.4.3 A3.5.3

4 A3.1.4 A3.2.4 A3.3.1 A3.4.4 A3.5.4

Open mine problem

Recall that for the OMP, only 40 simulation runs per hyperparameter combination were exe-
cuted, i.e. n = 40 observations. Accordingly, the critical values for k = 4 and n = 40 for the
Chi-square and F -distributions are χ2

3 = 7.82 and F3,117 = 2.68, respectively. Tables B.43 and
B.44 present the adjusted hyperareas and number of non-dominated solutions and their ranks
(respectively) for run 1–10 and 39–40 as well as the sum of the ranks which is used in the Fried-
man and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.17 provide a
graphical summary of the results for hyperparameter combinations A3.1.1–A3.1.4, as presented
in Tables B.43 and B.44.

A
3
.1
.1

A
3
.1
.2

A
3
.1
.3

A
3
.1
.4

0.5

1

·104
Hyperarea

A
3
.1
.1

A
3
.1
.2

A
3
.1
.3

A
3
.1
.4

10

20

30

Non-dominated solutions

Figure 6.17: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A3.1.1–A3.1.4.

The DBMOSA was unable to find the true Pareto set for any of the 40 simulation runs for the
four different move operators used. However, this does not in-validate the DBMOSA since the
hyperparameter search space is very small. The runs that correspond to the worst and best
approximation fronts obtained (in terms of hyperarea and number of non-dominated solutions)
are presented in Table B.3 and depicted in Figure B.36 for A3.1.1–A3.1.4.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.24. The Friedman and Iman-Davenport test statistics for both the adjusted hyperareas (and
the number of non-dominated solutions) do not indicate significance (χ2

F = {7.41, 5.29} <
χ2
3, p > α and FID = {2.57, 1.8} < F3,117, p > α). Therefore, the tests fails to reject H0,

which means that there is no statistically significant difference between any of the groups, i.e.
the move operators are equally desirable. Consequently, no post hoc analysis is required.

Stellenbosch University https://scholar.sun.ac.za

6.4. Determining the DBMOSA algorithm hyperparameters 143

Table 6.24: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A3.1.1–A3.1.4.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 7.41 0.06 2.57 0.058
Fail to reject H0

Non-dominated solutions 5.29 0.15 1.8 0.15

(s, S) Inventory problem

Recall that for the IP, BAP5, BAP10 and BAP16, 100 simulation runs per hyperparameter
combination were executed, i.e. n = 100 observations. Accordingly, the critical values for k = 4
and n = 100 for the Chi-square and F -distributions are χ2

3 = 7.82 and F3,297 = 2.64, respectively.
Tables B.46 and B.47 present the hyperareas and number of non-dominated solutions and their
ranks for run 1–10 and 99–100 as well as the sum of the ranks which is used in the Friedman and
Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.18 provide a graphical
summary of the results for hyperparameter combinations A3.2.1–A3.2.4, as presented in Tables
B.46 and B.47.

A
3
.2
.1

A
3
.2
.2

A
3
.2
.3

A
3
.2
.4

0.8

1

·105
Hyperarea

A
3
.2
.1

A
3
.2
.2

A
3
.2
.3

A
3
.2
.4

0

200

400

Non-dominated solutions

Figure 6.18: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A3.2.1–A3.2.4.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are presented in Table B.48 and depicted in
Figure B.37 for A3.2.1–A3.2.4.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.25. The Friedman and Iman-Davenport test statistics indicate significance for both the hyper-
areas and number of non-dominated solutions found (χ2

F = {128.68, 28.82} > χ2
3, p < α and

FID = {74.36, 10.52} > F3,297, p < α). Consequently, H0 is rejected and the Nemenyi post hoc
test is conducted.

The Nemenyi post hoc test is presented in Tables 6.26a and 6.26b and contains the adjusted
p-values of the multiple pairwise comparisons for both the adjusted hyperareas and number of
non-dominated solutions, respectively. The red p-values indicate statistical significance. For
example, there are statistically significant differences between A3.2.1 and A3.2.2–A3.2.4 for the
hyperareas and number of non-dominated solutions.

Stellenbosch University https://scholar.sun.ac.za

144 Chapter 6. Algorithmic Parameter Evaluation

Table 6.25: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A3.2.1–A3.2.4.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 128.68 0 74.36 0
Reject H0

Non-dominated solutions 28.82 0 10.52 0

Table 6.26: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
for (a) hyperarea and (b) number of non-dominated solutions found for the approximation fronts for the
hyperparameter combinations A3.2.1–A3.2.4.

(a) Hyperarea

A3.2.2 A3.2.3 A3.2.4

A3.2.1 0 0 0

A3.2.2 0 0.01

A3.2.3 0.33

(b) Non-dominated solutions

A3.2.2 A3.2.3 A3.2.4

A3.2.1 1 0 1

A3.2.2 0 1

A3.2.3 0

Buffer allocation problem: five machines

Tables B.49 and B.50 present the hyperareas and number of non-dominated solutions and their
ranks (respectively) for run 1–10 and 99–100 as well as the sum of the ranks which is used
in the Friedman and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.19
provide a graphical summary of the results for hyperparameter combinations A3.3.1–A3.3.4, as
presented in Tables B.49 and B.50.

A
3
.3
.1

A
3
.3
.2

A
3
.3
.3

A
3
.3
.4

30

32

34

Hyperarea

A
3
.3
.1

A
3
.3
.2

A
3
.3
.3

A
3
.3
.4

20

40

60

80

Non-dominated solutions

Figure 6.19: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A3.3.1–A3.3.4.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are presented in Table B.51 and depicted in
Figure B.38 for A3.3.1–A3.3.4.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.27. The Friedman and Iman-Davenport test statistics indicate strong significance for both the
hyperareas and number of non-dominated solutions found (χ2

F = {75.16, 148.04} > χ2
3, p < α

and FID = {33.09, 96.44} > F3,297, p < α). Consequently, H0 is rejected and the Nemenyi post
hoc test is conducted.

The Nemenyi post hoc test is presented in Tables 6.28a and 6.28b and contains the adjusted

Stellenbosch University https://scholar.sun.ac.za

6.4. Determining the DBMOSA algorithm hyperparameters 145

Table 6.27: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A3.3.1–A3.3.4.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 75.16 0 33.09 0
Reject H0

Non-dominated solutions 148.04 0 96.44 0

p-values of the multiple pairwise comparisons for both the adjusted hyperareas and number of
non-dominated solutions, respectively. The red p-values indicate statistical significance. For
example, there are statistically significant differences between A3.3.1 and A3.3.2–A3.3.4 for the
hyperareas and number of non-dominated solutions.

Table 6.28: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
for (a) hyperarea and (b) number of non-dominated solutions found for the approximation fronts for the
hyperparameter combinations A3.3.1–A3.3.4.

(a) Hyperarea

A3.3.2 A3.3.3 A3.3.4

A3.3.1 0 0 0

A3.3.2 0 0.29

A3.3.3 0.26

(b) Non-dominated solutions

A3.3.2 A3.3.3 A3.3.4

A3.3.1 0 0 0

A3.3.2 0 0.64

A3.3.3 0

Buffer allocation problem: 10 machines

Tables B.52 and B.53 present the hyperareas and number of non-dominated solutions and their
ranks (respectively) for run 1–10 and 99–100 as well as the sum of the ranks which is used
in the Friedman and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.20
provide a graphical summary of the results for hyperparameter combinations A3.4.1–A3.4.4, as
presented in Tables B.52 and B.53.

A
3
.4
.1

A
3
.4
.2

A
3
.4
.3

A
3
.4
.4

14

16

18

20

22

Hyperarea

A
3
.4
.1

A
3
.4
.2

A
3
.4
.3

A
3
.4
.4

20

30

40

50

Non-dominated solutions

Figure 6.20: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A3.4.1–A3.4.4.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are presented in Table B.54 and depicted in
Figure B.39 for A3.4.1–A3.4.4.

Stellenbosch University https://scholar.sun.ac.za

146 Chapter 6. Algorithmic Parameter Evaluation

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.29. The Friedman and Iman-Davenport test statistics indicate strong significance for both the
hyperareas and number of non-dominated solutions found (χ2

F = {105.28, 101.96} > χ2
3, p < α

and FID = {53.52, 50.97} > F3,297, p < α). Consequently, H0 is rejected and the Nemenyi post
hoc test is conducted.

Table 6.29: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A3.4.1–A3.4.4.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 105.28 0 53.52 0
Reject H0

Non-dominated solutions 101.96 0 50.97 0

The Nemenyi post hoc test is presented in Tables 6.30a and 6.30b and contains the adjusted p-
values of the multiple pairwise comparisons for both the hyperarea and number of non-dominated
solutions. For example, there are statistically significant differences between A3.4.1 and A3.4.2–
A3.4.4 for both hyperarea and number of non-dominated solutions.

Table 6.30: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
for (a) hyperarea and (b) number of non-dominated solutions found for the approximation fronts for the
hyperparameter combinations A3.4.1–A3.4.4.

(a) Hyperarea

A3.4.2 A3.4.3 A3.4.4

A3.4.1 0 0 0

A3.4.2 0.18 0.01

A3.4.3 1

(b) Non-dominated solutions

A3.4.2 A3.4.3 A3.4.4

A3.4.1 0 0 0

A3.4.2 0 0.13

A3.4.3 1

Non-linear buffer allocation problem: 16 machines

Tables B.55 and B.56 present the hyperareas and number of non-dominated solutions and their
ranks (respectively) for run 1–10 and 99–100 as well as the sum of the ranks which is used
in the Friedman and Iman-Davenport extension hypothesis tests. The boxplots in Figure 6.21
provide a graphical summary of the results for hyperparameter combinations A3.5.1–A3.5.4, as
presented in Tables B.55 and B.56.

The runs that correspond to the worst and best approximation fronts obtained (in terms of
hyperarea and number of non-dominated solutions) are presented in Table B.57 and depicted in
Figure B.40 for A3.5.1–A3.5.4.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
6.31. The Friedman and Iman-Davenport test statistics indicate strong statistical significance
for both the hyperareas and number of non-dominated solutions found (χ2

F = {86.96, 66.52} >
χ2
3, p < α and FID = {40.41, 28.21} > F3,297, p < α). Consequently, H0 is rejected and the

Nemenyi post hoc test is conducted.

The Nemenyi post hoc tests are presented in Tables 6.32a and 6.32b and contains the adjusted
p-values of the multiple pairwise comparisons for both the hyperareas and number of non-
dominated solutions, respectively. For example, there was statistically significant differences
between A3.5.1 and A3.5.2–A3.5.4 for both hyperarea and number of non-dominated solutions.

Stellenbosch University https://scholar.sun.ac.za

6.4. Determining the DBMOSA algorithm hyperparameters 147

A
3
.4
.1

A
3
.4
.2

A
3
.4
.3

A
3
.4
.4

14

16

18

20

22

Hyperarea

A
3
.4
.1

A
3
.4
.2

A
3
.4
.3

A
3
.4
.4

20

30

40

50

Non-dominated solutions

Figure 6.21: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for hyperparameter combinations A3.5.1–A3.5.4.

Table 6.31: The Friedman and Iman-Davenport test results based on the ranked hyperareas and non-
dominated solutions obtained for each hyperparameter combination A3.5.1–A3.5.4.

Friedman test p-value Iman-Davenport test p-value
Outcome

χ2
F p FID p

Hyperarea 86.96 0 40.41 0
Reject H0

Non-dominated solutions 66.52 0 28.21 0

Table 6.32: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
for (a) hyperarea and (b) number of non-dominated solutions found for the approximation fronts for the
hyperparameter combinations A3.5.1–A3.5.4.

(a) Hyperarea

A3.5.2 A3.5.3 A3.5.4

A3.5.1 0 0 0

A3.5.2 0.28 0.09

A3.5.3 1

(b) Non-dominated solutions

A3.5.2 A3.5.3 A3.5.4

A3.5.1 0 0 0

A3.5.2 0.77 0.6

A3.5.3 1

This concludes the individual (or problem-specific) analysis of the four move operators proposed
for the DBMOSA. Finally, the three best move operators can be determined for the DBMOSA,
across all five simulation problems. Recall that only the hyperareas are considered, since the
hyperarea is the better indicator of the quality of an approximation front. Figure 6.22 represents
the average hyperareas obtained for each respective hyperparameter combination (collectively
referred to as A3.1–A3.4) for each simulation problem. The average number of non-dominated
solutions obtained for hyperparameter combinations A3.1–A3.4 is presented in Figure B.41 for
each simulation problem.

Figure 6.23 is used to explain the process followed to determine the three best move operators
(specifically for BAP16) for the DBMOSA. From the p-values given in Table 6.32a and included
in the figure, it can be seen that hyperparameter combination A3.5.1 (or move operator 1) is
statistically significantly different to A3.5.2–A3.5.4 which is illustrated by the red rectangles
in Figure 6.23. Consequently, move operator 1 is considered. Even though move operator 1 is
statistically significantly better than move operator 2–4, the hyperheuristic requires three LLHs.

The second and third best move operators need to be determined and because A3.5.2–A3.5.4 are
not statistically significantly different (p > α), the two move operators with the largest average

Stellenbosch University https://scholar.sun.ac.za

148 Chapter 6. Algorithmic Parameter Evaluation

7,000

7,500

8,000

OMP
(A3.1.1–A3.1.4)

Average hyperarea

1.1

1.12

·105

IP
(A3.2.1–A3.2.4)

33

33.2

33.4
BAP5
(A3.3.1–A3.3.4)

A3.1

A3.2

A3.3

A3.4

21

21.5

BAP10
(A3.4.1–A3.4.4)

175

180

185

190

BAP16
(A3.5.1–A3.5.4)

Figure 6.22: The average hyperareas obtained for hyperparameter combinations A3.1–A3.4 for the
respective simulation problems.

hyperarea are chosen. Accordingly, move operators 1, 3 and 4 are considered for the BAP16. A
similar process was followed for each problem and the outcome is presented in Table 6.33, where
it is clear that hyperparameter combination A3.1, A3.3 and A3.4 are the common denominators
across four of the five simulation problems. Interestingly, move operator 1 (or A3.1) constantly
outperforms the other (proposed) move operators.

170

175

180

185

190

BAP16
(A3.5.1–A3.5.4)

Average hyperareas

A3.5.1

A3.5.2

A3.5.3

A3.5.4

A3.5.2 A3.5.3 A3.5.4
A3.5.1 0 0 0
A3.5.2 0.28 0.09
A3.5.3 1

Figure 6.23: An example illustrating the hyperparameter selection process followed for BAP16 based
on the Friedman and Iman-Davenport extension hypothesis test and Nemenyi post hoc test conducted for
the hyperareas obtained for hyperparameter combinations A3.5.1–A3.5.4.

Table 6.33: The move operators that are considered for implementation in BOSAH.

A3.1 A3.2 A3.3 A3.4

OMP ✓ ✓ ✓

IP ✓ ✓ ✓

BAP5 ✓ ✓ ✓

BAP10 ✓ ✓ ✓

BAP16 ✓ ✓ ✓

This concludes the empirical study determining the three hyperparameter combinations to be
employed for the DBMOSA in the BOSAH.

Stellenbosch University https://scholar.sun.ac.za

6.5. Conclusion: Chapter 6 149

6.5 Conclusion: Chapter 6

The purpose of this chapter was to determine the best hyperparameter combinations, respec-
tively for the MOOCEM, the NSGA-II and the DBMOSA, respectively. Ultimately, the aim was
to determine common hyperparameter combinations suitable for the subset of problems consid-
ered in the study. The final outcome of all the hyperparameter studies for the BOCEGAH and
the BOSAH are summarised in Table 6.34.

Table 6.34: The final hyperparameter combinations.

Hyperparameter
combinations

MOOCEM A1.9

NSGA A2.3

DBMOSA A3.1, A3.3, A3.4

The MOOCEM will be employed in the BOCEGAH with hyperparameter combination A1.9,
i.e. α = 0.75 and ph = 0.4. The NSGA-II will also be employed in the BOCEGAH, however
with hyperparameter combination A2.3, i.e. rank selection, polynomial mutation, pc = 0.9 and
pm = 0.3. Finally, the DBMOSA will be implemented in the BOSAH using move operator 1, 3
and 4. The next chapter documents the extensive algorithmic comparative study conducted for
the BOCEGAH and the BOSAH.

Stellenbosch University https://scholar.sun.ac.za

150 Chapter 6. Algorithmic Parameter Evaluation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7

Algorithm Performance Assessment and
Comparison

7.1 BOCEGAH versus MOOCEM and NSGA-II 151

7.2 BOSAH versus DBMOSAs move operators . 154

7.3 BOCEGAH versus BOSAH . 156

7.4 Conclusion: Chapter 7 . 158

The previous chapter documented the empirical study that was conducted to determine the
best hyperparameter combination for each algorithm, i.e. the MOOCEM, the NSGA-II and the
DBMOSA.

This chapter serves to fulfil Objective 7, as stated in Chapter 1, evaluating the quality of
the BOCEGAH and the BOSAH using the five discrete-event dynamic stochastic simulation
optimisation problems, as discussed in Chapter 4. The performances are documented for each
hyperheuristic and each simulation problem. Thereafter, the hyperheuristics are compared to
their individual LLHs to draw a conclusion on the generalisation capabilities of the proposed
hyperheuristics. Finally, the BOCEGAH and the BOSAH are compared to determine whether
or not population-based search or single-solution based search performs better, particularly in
this study. The chapter closes with a conclusion and summary of its contents.

The Friedman and Iman-Davenport tests are used to compare hyperheuristics with their con-
stituent LLHs. The hypothesis test is first described for the BOCEGAH and its constituent
LLHs, i.e. the MOOCEM employing hyperparameter combination A1.9 (simply denoted by
A1.9) and the NSGA-II employing hyperparameter combination A2.3 (simply denoted by A2.3).
Thereafter, a similar process is followed for the BOSAH and the DBMOSA employing move op-
erators A3.1, A3.3 and A3.4. Finally, the tests are used to compare the population-based and
the single-solution based search hyperheuristics, the BOCEGAH and the BOSAH.

7.1 BOCEGAH versus MOOCEM and NSGA-II

The critical values applicable for the tests conducted in this section, for the χ2 and F -distributions,
are presented in Table 7.1, for k = 3 and α = 0.05. Again, recall that n = 40 for the OMP and
n = 100 for the IP, BAP5, BAP10 and BAP16. The boxplots in Figure 7.1 provide a graphical
summary of the results for A1.9, A2.3 and the BOCEGAH.

Table 7.1: The critical values for the χ2 and F -distributions at k = 3, α = 0.05 but for different n.

Friedman Iman-Davenport

k n χ2
k−1,α Fk−1,(k−1)(n−1),α

3 40 5.99 3.11

3 100 5.99 3.04

151

Stellenbosch University https://scholar.sun.ac.za

152 Chapter 7. Algorithm Performance Assessment and Comparison

0.6

0.8

1

1.2

1.4

·104

Hyperarea

OMP

1.12

1.14

·105
IP

26

28

30

32

34

BAP5

20

21

22

BAP10

170

180

190

200

BAP16

A
1
.1
.9

A
2
.1
.3

B
O
C
E
G
A
H

20

25

30

35

Non-dominated
solutions

A
1
.2
.9

A
2
.2
.3

B
O
C
E
G
A
H

200

300

A
1
.3
.9

A
2
.3
.3

B
O
C
E
G
A
H

50

100

150

A
1
.4
.9

A
2
.4
.3

B
O
C
E
G
A
H

40

60

80

A
1
.5
.9

A
2
.5
.3

B
O
C
E
G
A
H

40

60

Figure 7.1: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for each simulation problem comparing A1.9, A2.3 and the BOCEGAH.

The Friedman and Iman-Davenport extension hypothesis test results are summarised in Table
7.2, for each simulation problem. The outcome of the hypothesis tests, to reject H0 is indicated
by a red checkmark. For example, from Tables 7.1 and 7.2 it can be seen that (for BAP5) the
Friedman and Iman-Davenport test statistics indicated statistical significance for the hyperarea
(χ2

F = 0.62 < 5.99, p > 0.05 and FID = 0.31 < 3.04, p > 0.05), i.e. the tests failed to reject H0

(denoted by ‘ ’). However, the tests did not indicate statistical significance for the number of
non-dominated solutions (χ2

F = 31.34 > 5.99, p < 0.05 and FID = 18.39 > 3.04, p < 0.05), i.e.
the outcome is to reject H0 (denoted by ‘✓’).

Table 7.2: A summary of the Friedman and Iman-Davenport test results (for each simulation problem)
based on the ranked hyperareas and non-dominated solutions obtained by comparing A1.9, A2.3 and the
BOCEGAH.

Friedman test p-value Iman-Davenport test p-value
Reject H0

χ2
F p FID p

OMP
Hyperarea 50.55 0 66.94 0

✓
Non-dominated solutions 44.04 0 47.76 0

IP
Hyperarea 42.98 0 27.10 0

✓
Non-dominated solutions 143.96 0 254.29 0

BAP5
Hyperarea 0.62 0.73 0.31 0.74

Non-dominated solutions 31.34 0 18.39 0 ✓

BAP10
Hyperarea 137.58 0 218.21 0

✓
Non-dominated solutions 66.47 0 49.28 0

BAP16
Hyperarea 155.12 0 342.18 0

✓
Non-dominated solutions 112.19 0 126.47 0

Recall that §6.2 is used as a template to succinctly present the results obtained for the hypothesis
tests and post hoc test. Accordingly, the Nemenyi post hoc test is conducted for the OMP, IP,
BAP10 and BAP16 for both the hyperarea and number of non-dominated solutions.

Stellenbosch University https://scholar.sun.ac.za

7.1. BOCEGAH versus MOOCEM and NSGA-II 153

However, the post hoc test for BAP5 is only conducted for the number of non-dominated solu-
tions. The results are presented (where applicable) by the p-value tables in Figure 7.2, along with
the averages of the n hyperareas and number of non-dominated solutions, for each simulation
problem comparing A1.9, A2.3 and the BOCEGAH.

1.1

1.2

1.3

1.4
·104

O
M

P

Average hyperareas

28

30

32

34

Average number of non-dominated
solutions

1.13

1.13

1.13
·105

IP

220

240

260

280

33.14

33.16

33.18

33.2

B
A
P
5

A1.9 A2.3 BOCEGAH

90

95

21.4

21.6

21.8

B
A
P
1
0

55

60

185

190

195

200

B
A
P
1
6

45

50

55

A2.1.3 BOCEGAH
A1.1.9 0 0.02
A2.1.3 0

A2.2.3 BOCEGAH
A1.2.9 1 0
A2.2.3 0

A2.4.3 BOCEGAH
A1.4.9 0 0.41
A2.4.3 0

A2.5.3 BOCEGAH
A1.5.9 0 0.24
A2.5.3 0.73

A2.1.3 BOCEGAH
A1.1.9 0 0.49
A2.1.3 0

A2.2.3 BOCEGAH
A1.2.9 0 0
A2.2.3 0

A2.3.3 BOCEGAH
A1.3.9 0 1
A2.3.3 0

A2.4.3 BOCEGAH
A1.4.9 0 0.13
A2.4.3 0

A2.5.3 BOCEGAH
A1.5.9 0 0.34
A2.5.3 0

Figure 7.2: The p-values obtained by the Nemenyi post hoc test and the averages of the n hyperareas
and number of non-dominated solutions for each simulation problem comparing A1.9, A2.3 and the
BOCEGAH.

By combining A1.9 and A3.2 to create the BOCEGAH, the hope was that the ensemble algorithm
would enable each LLH to compensate, to some degree, for the weaknesses of other by method
of algorithmic cooperation. The result, as reported in [142], is a more (or at least as) effective
search method that leads to better (or similar) overall performances when compared with its
individual LLHs [36]. From Table 7.3 it can be seen that the performances of A1.9 for the OMP
and IP are statistically significantly better to that of the BOCEGAH (in terms of hyperarea).

Table 7.3: A summary indicating the statistically significant differences in terms of hyperareas and
number of non-dominated solutions for A1.9, A2.3 and the BOCEGAH for each simulation problem.

Hyperarea Non-dominated solutions

Problem OMP IP BAP5 BAP10 BAP16 OMP IP BAP5 BAP10 BAP16

A1.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A2.3 ✓ ✓

BOCEGAH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A1.9 (or MOOCEM) and the BOCEGAH outperform A3.2 (or NSGA-II) in terms of hyperarea
for the OMP, BAP10 and BAP16, and in terms of the number of non-dominated solutions they
outperform NSGA-II for all five simulation problems. By combining MOOCEM and NSGA-II

Stellenbosch University https://scholar.sun.ac.za

154 Chapter 7. Algorithm Performance Assessment and Comparison

to create the BOCEGAH, the hope was that the ensemble algorithm would enable each LLH to
compensate, to some degree, for the weaknesses of other by method of algorithmic cooperation.

However, the hypothesis test and post hoc analysis concluded that (next) MOOCEM with hy-
perparameter combination A1.9 outperforms the BOCEGAH for the OMP and IP. Therefore,
the statement that claims hyperheuristics perform better (or at least similar) to its LLHs can-
not be claimed for the population-based hyperheuristic the BOCEGAH. This concludes the
performance comparisons between BOCEGAH and its LLHs, and concluded that overall the
MOOCEM performed better.

7.2 BOSAH versus DBMOSAs move operators

The critical values applicable for the tests conducted in this section, for the χ2 and F -distributions,
are presented in Table 7.4, for k = 4 and α = 0.05. The boxplots in Figure 7.3 provide a graphical
summary of the results for A3.1, A3.3–A3.4 and the BOSAH.

Table 7.4: The critical values for the χ2 and F -distributions at k = 4, α = 0.05 but for different n.

Friedman Iman-Davenport

k n χ2
k−1,α Fk−1,(k−1)(n−1),α

4 40 7.82 2.68

4 100 7.82 2.64

0.4

0.6

0.8

1

1.2

·104

Hyperarea

OMP

0.8

1

·105
IP

30

31

32

33

34

BAP5

14

16

18

20

22

BAP10

120

140

160

180

200

BAP16

A
3
.1
.1

A
3
.1
.3

A
3
.1
.4

B
O
S
A
H

20

30

Non-dominated
solutions

A
3
.2
.1

A
3
.2
.3

A
3
.2
.4

B
O
S
A
H

0

100

200

300

A
3
.3
.1

A
3
.3
.3

A
3
.3
.4

B
O
S
A
H

20

40

60

80

A
3
.4
.1

A
3
.4
.3

A
3
.4
.4

B
O
S
A
H

20

30

40

50

A
3
.5
.1

A
3
.5
.3

A
3
.5
.4

B
O
S
A
H

20

40

Figure 7.3: Box plots illustrating the spread of hyperareas and number of non-dominated solutions for
each simulation problem comparing A3.1, A3.3–A3.4 and the BOSAH.

The Friedman and Iman-Davenport hypothesis test results are summarised in Table 7.5, for
each simulation problem. From Tables 7.4 and 7.5 it can be seen that (for the OMP) the
Friedman and Iman-Davenport test statistics do not indicate statistical significance for either
the hyperarea or number of non-dominated solutions ({χ2

F = {7.35, 6.01} < 7.82, p > 0.05}
and {FID = {2.55, 2.06} < 2.68, p > 0.05}), i.e. the tests failed to reject H0 (). However, for
the IP, BAP5, BAP10 and BAP16 the tests indicate strong statistical significance, i.e. ✓.

Stellenbosch University https://scholar.sun.ac.za

7.2. BOSAH versus DBMOSAs move operators 155

Table 7.5: A summary of the Friedman and Iman-Davenport test results (for each simulation problem)
based on the ranked hyperareas and non-dominated solutions obtained comparing A3.1, A3.3–A3.4 and
the BOSAH.

Friedman test p-value Iman-Davenport test p-value
Reject H0

χ2
F p FID p

OMP
Hyperarea 7.35 0.06 2.55 0.06

Non-dominated solutions 6.01 0.11 2.06 0.11

IP
Hyperarea 174.84 0 138.3 0

✓
Non-dominated solutions 25.78 0 9.31 0

BAP5
Hyperarea 83.86 0 38.41 0

✓
Non-dominated solutions 128.09 0 73.76 0

BAP10
Hyperarea 84.23 0 38.65 0

✓
Non-dominated solutions 82.97 0 37.85 0

BAP16
Hyperarea 96.14 0 46.69 0

✓
Non-dominated solutions 70.67 0 30.51 0

Accordingly, the Nemenyi post hoc test is conducted for the IP, BAP5, BAP10 and BAP16 for
both the hyperarea and number of non-dominated solutions. The results are presented (where
applicable) by the p-value tables in Figure 7.4, along with the averages of the n hyperareas and
number of non-dominated solutions, for each simulation problem comparing A3.1, A3.3–A3.4
and the BOSAH.

From Table 7.6 it can be seen that the performances of A3.1 and BOSAH are not statistically
significantly different, however they are statistically significantly different to A3.3 and A3.4 (for
the IP, BAP5, BAP10 and BAP16). Therefore, it can be said that A3.1 and BOSAH outperform
A3.3 and A3.4 (in terms of hyperarea).

Interestingly, A3.1 outperforms BOSAH in terms of the number of non-dominated solution,
however, not for the hyperarea. For this reason, only the hyperarea is considered, since it
provides a better indication of the quality of an approximation front. Consequently, it can be
said that BOSAH performs similar to A3.1 and outperforms A3.3 and A3.4 on four of the five
simulation problems.

Again, by combining DBMOSA with three move operators to create the BOSAH, the hope was
that the ensemble algorithm would enable each LLH to compensate, to some degree, for the
weaknesses of the other and consequently, the statement that claims hyperheuristics perform
better or at least similar to its LLHs holds true for the single-solution based hyperheuristic the
BOSAH. The result is a more (or at least as) effective search method that leads to better (or
similar) overall performances when compared with its individual LLHs.

Table 7.6: A summary indicating the statistically significant differences in terms of hyperareas and
number of non-dominated solutions for A3.1, A3.3–A3.4 and the BOSAH for each simulation problem.

Hyperarea Non-dominated solutions

Problem OMP IP BAP5 BAP10 BAP16 OMP IP BAP5 BAP10 BAP16

A3.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A3.3 ✓ ✓

A3.4 ✓ ✓ ✓

BOSAH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stellenbosch University https://scholar.sun.ac.za

156 Chapter 7. Algorithm Performance Assessment and Comparison

7,500

8,000

O
M

P
Average hyperareas

19

20

21

Average number of non-dominated
solutions

1.1

1.12

·105

IP

140

160

180

33.2

33.3

33.4

33.5

B
A
P
5

A3.1 A3.3 A3.4 BOSAH

50

55

60

21

21.2

21.4

21.6

B
A
P
1
0

34

36

38

180

185

190

B
A
P
1
6

30

32

34

36

A3.2.3 A3.2.4 BOSAH
A3.2.1 0 0 0.38
A3.2.3 0.93 0
A3.2.4 0

A3.3.3 A3.3.4 BOSAH
A3.3.1 0 0 1
A3.3.3 0.48 0
A3.3.4 0

A3.4.3 A3.4.4 BOSAH
A3.4.1 0 0 0.74
A3.4.3 1 0
A3.4.4 0

A3.5.3 A3.5.4 BOSAH
A3.5.1 0 0 1
A3.5.3 1 0
A3.5.4 0

A3.2.3 A3.2.4 BOSAH
A3.2.1 0 1 1
A3.2.3 0 0
A3.2.4 1

A3.3.3 A3.3.4 BOSAH
A3.3.1 0 0 0.01
A3.3.3 0 0.21
A3.3.4 0

A3.4.3 A3.4.4 BOSAH
A3.4.1 0 0 1
A3.4.3 1 0
A3.4.4 0

A3.5.3 A3.5.4 BOSAH
A3.5.1 0 0 1
A3.5.3 1 0
A3.5.4 0

Figure 7.4: The p-values obtained by the Nemenyi post hoc test and the averages of the n hyperareas
and number of non-dominated solutions for each simulation problem comparing A3.1, A3.3–A3.4 and the
BOSAH.

This concludes the performance comparisons between BOSAH and its LLHs, and concluded that
overall BOSAH performed similar to or better than its LLHs, but never worse.

7.3 BOCEGAH versus BOSAH

Finally, the population-based and single-solution based hyperheuristics BOCEGAH and BOSAH
are compared. The critical values applicable for the tests conducted in this section, for the χ2

and F -distributions, are presented in Table 7.7, for k = 2 and α = 0.05.

Table 7.7: The critical values for the χ2 and F -distributions at k = 2, α = 0.05 but for different n.

Friedman Iman-Davenport

k n χ2
k−1,α Fk−1,(k−1)(n−1),α

2 40 3.84 4.09

2 100 3.84 3.94

The boxplots in Figure 7.5 provide a graphical summary of the results for the BOSAH and
the BOCEGAH and provides some insight in terms of which hyperheuristic performed better.
To further demonstrate the differences between BOSAH and BOCEGAH, the worst and best
approximation sets in terms of hyperarea are presented in Figure E.1. The approximation
fronts correspond to the approximation sets obtained for the runs listed in Tables E.2 and E.1.
In addition, the worst and best approximation sets in terms of the number of non-dominated

Stellenbosch University https://scholar.sun.ac.za

7.3. BOCEGAH versus BOSAH 157

solutions, also specified in Tables E.2 and E.1, are presented in Figure E.2.

0.5

1

1.5
·104

Hyperarea

OMP

1.11

1.12

1.13

1.14
·105

IP

32

33

34

BAP5

20.5

21

21.5

22

BAP10

180

200

BAP16

B
O
S
A
H

B
O
C
E
G
A
H

20

30
Non-dominated
solutions

B
O
S
A
H

B
O
C
E
G
A
H

100

200

300

B
O
S
A
H

B
O
C
E
G
A
H

50

100

B
O
S
A
H

B
O
C
E
G
A
H

40

60

80

B
O
S
A
H

B
O
C
E
G
A
H

20

40

60

80

Figure 7.5: Box plots illustrating the spread of hyperareas and number of non-dominated solutions
found for the BOCEGAH and the BOSAH.

The Friedman and Iman-Davenport hypothesis test results are summarised in Table 7.5, for
each simulation problem. Note that the Iman-Davenport test statistic could not be determined,
for the number of non-dominated solutions, for the IP, BAP10 and BAP16. This is because
χ2
F = 100 and n = 100 and accordingly (6.2) results in a division of zero. From Tables 7.7 and

7.8 it can be seen that the Friedman and Iman-Davenport test statistics indicate significance for
both hyperarea and number of non-dominated solutions for all five simulation problems, i.e. H0

is rejected (✓).

Since only two groups are being compared (i.e. k = 2), it is deemed unnecessary to perform
the Nemenyi post hoc tests. The averages of the n hyperareas and number of non-dominated
solutions, for each simulation problem comparing the BOSAH and the BOCEGAH are presented
in Figure 7.6.

0.8

1

1.2

·104

Hyperareas

OMP

1.13

1.13

1.13

1.13

·105
IP

33.2

33.3

33.4

33.5

BAP5

21.5

21.6

21.7

21.8

BAP10

190

195

200

BAP16

20

25

30
Non-dominated
solutions

200

250

300

60

70

80

90

BOSAH BOCEGAH

40

50

60

40

50

Figure 7.6: The averages of the n hyperareas and number of non-dominated solutions for the BOSAH
and the BOCEGAH.

From table 7.9 it can be concluded that the BOSAH outperforms the BOCEGAH on the IP
and BAP5 simulation problems, whereas, BOCEGAH outperforms the BOSAH on the OMP,
BAP10 and BAP16. In addition, the average of the n hyperareas is presented, along with the

Stellenbosch University https://scholar.sun.ac.za

158 Chapter 7. Algorithm Performance Assessment and Comparison

Table 7.8: A summary of the Friedman and Iman-Davenport test results (for each simulation problem)
based on the ranked hyperareas and non-dominated solutions obtained comparing the BOSAH and the
BOCEGAH.

Friedman test p-value Iman-Davenport test p-value
Reject H0

χ2
F p FID p

OMP
Hyperarea 36.1 0 361 0

✓
Non-dominated solutions 36.1 0 361 0

IP
Hyperarea 9 0 9.79 0

✓
Non-dominated solutions 100 0 − −

BAP5
Hyperarea 14.44 0 16.71 0

✓
Non-dominated solutions 73.96 0 281.18 0

BAP10
Hyperarea 11.56 0 12.94 0

✓
Non-dominated solutions 100 0 − −

BAP16
Hyperarea 36 0 55.69 0

✓
Non-dominated solutions 100 0 − −

so-called hyperarea ratio.

Even though their performances are statistically significantly different, their hyperarea ratios
are relatively similar (next) except for the OMP. It seems the BOSAH struggled to find the true
Pareto front which could be due to the fact that the Pareto set was discontinuous, and that
single-solution based search is considered exploitation oriented whereas population-based search
is considered exploration oriented as they are powerful in the approximation of the whole Pareto
set.

Table 7.9: A comparison between the BOSAH and the BOCEGAH.

Problem OMP IP BAP5 BAP10 BAP16

BOSAH ✓ ✓

BOCEGAH ✓ ✓ ✓

Hyperarea (BOSAH) 7968.49 113 000.49 33.48 21.5 188.98

Hyperarea (BOCEGAH) 13 408.65 112 654.36 33.16 21.78 200.54

True hyperarea 14 485.04 114 442.61 33.84 22.66 214.33

Hyperarea ratio (BOSAH) 0.5501 0.9874 0.9894 0.9488 0.8817

Hyperarea ratio (BOCEGAH) 0.9257 0.9844 0.9799 0.9612 0.9357

7.4 Conclusion: Chapter 7

This chapter opened with an extensive algorithmic comparative study focussed on comparing
the algorithmic performance of the BOCEGAH with its constituent LLHs (i.e. the MOOCEM
and the NSGA-II) and the BOSAH with its constituent LLHs (i.e. the A3.1, A3.3 and A3.4
for DBMOSA). Later, the BOCEGAH and the BOSAH were compared. Upon considering the
evaluation results for the BOCEGAH and the BOSAH, in §7.1 and §7.2, it can be concluded
that both hyperheuristics failed to exhibit superior performance and did not indicate favourable
performance improvements relative to all the individual applications of the LLHs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8

Conclusion

8.1 Thesis summary . 159

8.2 Appraisal of thesis contributions . 160

8.3 Suggestions for future work . 161

This final chapter comprises three section. In §8.1 a chapter-by-chapter overview of the research
documented in this study is provided. This is followed in §8.2 by an appraisal of the contributions
made in this study and §8.3, which contains suggestions for seven avenues of further investigation
as possible follow-up work, to fulfil Objective 7 as stated in Chapter 1.

8.1 Thesis summary

This study opened with the introductory, Chapter 1, in §1.1 with a general background in
which the need for a more generalise purpose optimisation tool, by means of hyperheuristic
approaches (i.e. BOCEGAH and BOSAH), especially in the context of simulation optimisation,
was motivated. Furthermore, the potential utility of an ANN as metamodel was established,
motivating the pilot study that was conducted to determine its feasibility. Thereafter, the prob-
lem considered in the study was formally described in §1.2. Following this was a delimitation
of the study’s scope to bi-objective discrete-event, dynamic and stochastic simulation optimi-
sation problems and FNNs in a supervised learning paradigm, with specific focus on regression
problems, presented in §1.3. In addition, the optimisation approaches considered for inclusion
in the proposed hyperheuristic framework were limited to the MOOCEM, the NSGA-II and
the DBMOSA. Accordingly, algorithmic comparisons were limited to the BOCEGAH (and its
constituent sub-algorithms) and the BOSAH (and its constituent algorithms), for the five bi-
objective discrete-event, dynamic and stochastic simulation optimisation problems. Next, the
objectives pursued in the study were outlined in §1.4, followed by the proposed research method-
ology in §1.5. The first chapter closed in §1.6 with a detailed description of how the remainder
of the study was organised into the respective chapters and corresponding appendices.

Apart from the above-mentioned introductory chapter, this study comprised a further seven
chapters, a bibliography, and five appendices. Chapter 2 was a literature review in fulfilment of
Objective 1 in §1.4, and consisted of six sections. The first section, §2.1, emphasised the need
for simulation as a research field and, accordingly, the need for better optimisation approaches
to solve complex (combinatorial) simulation optimisation problems. Thereafter, in §2.2, the
important notions pertaining to MOO was discussed, which included Pareto dominance, Pareto
rank, the quality of MOO algorithms, the notion of archiving and finally MOO performance
assessment. This was followed in §2.3 by a discussion of the criteria used to classify metaheuris-
tics and listed the main classes of metaheuristics. Next, in §2.4, the motivations supporting the
research on hyperheuristics were discussed and a classification of the hyperheuristic approaches
were presented. §2.5, discussed the potential utility of an ANN as metamodel and contained a
review of the pertinent literature related to ANNs. The review included the fundamentals of
ANNs and the terminology found in the ANN literature, where FNNs were selected to form the

159

Stellenbosch University https://scholar.sun.ac.za

160 Chapter 8. Conclusion

basis of discussion. Furthermore, prominent training algorithms and activation functions were
discussed.

In Chapter 3, a pilot study was presented to determine the feasibility of an ANN as metamodel
in fulfilment of Objective 2 in §1.4, and consisted of five sections. The first section, §3.1, briefly
discussed the regression models used to compare to the ANN, which included MLR, PLR, SVR,
DTR, RFR and XGBoost. This was followed in §3.2 by the performance measures used to assess
the regression models as to facilitate the comparison. Next, in §3.3, Bayesian optimisation was
discussed as the proposed method for finding the best hyperparameters for the FNN with one
hidden layer. Thereafter, in §3.4, the training, validation and test results for the respective
regression models were documented including the results obtained for the FNN employing the
hyperparameters found during Bayesian optimisation.

Chapter 4 discussed the simulation models studied in fulfilment of Objective 3 in §1.4, and con-
sisted of three sections. The first section, §4.1, introduced the statistical prerequisites required
for stochastic output analysis. Thereafter, §4.2 presented the respective simulation models, dis-
cussing each model in terms of their inputs, outputs as well as the sensible upper bounds that
were determined by method of statistical inference. In addition, the hypothesis tests conducted
to determine whether or not 100 observations per solution were sufficient was documented for
each simulation model and concluded in §4.3.

Chapter 5 documented both hyperheuristics and their constituent sub-algorithm in fulfilment
of Objective 4 and 5 in §1.4, and consisted of seven sections. The first section, §5.1, introduced
some of the main concepts of P- and S-metaheuristics, which included initial solutions, solution
representation and stopping conditions. Following that, in §5.2–§5.4, was a discussion for the
MOOCEM, the NSGA-II and the DBMOSA in the context of simulation optimisation and its
integration in Tecnomatix. Thereafter, §5.5 and §5.6 discussed the hyperheuristics proposed in
the study, also in the context of simulation optimisation and its integration in Tecnomatix.

Chapter 6 documented both hyperheuristics and their constituent sub-algorithms in fulfilment
of Objective 6 in §1.4, and consisted of five sections. The first section, §6.1, introduced the
non-parametric inferential statistical testing employed in this chapter, i.e. the Friedman and
Iman-Davenport extension with the Nemenyi post hoc procedure. These statistical procedures
facilitated the algorithmic parameter evaluation and the algorithmic performance comparisons
conducted in Chapter 7. These statistical procedures were documented in §6.2–§6.4 for the
MOOCEM, the NSGA-II and the DBMOSA, and concluded the common hyperparameter com-
bination for each algorithm in §6.5.

Chapter 7 documented algorithmic performance comparisons in fulfilment of Objective 7 in
§1.4, and consisted of four sections. The first section, §7.1, documented the statistical procedure
that facilitated the comparison between the BOCEGAH, the MOOCEM and the NSGA-II.
Thereafter, §7.2, documented the statistical procedure that facilitated the comparison between
the BOSAH and the DBMOSA employing move operators A3.1, A3.3 and A3.4. Finally, §7.3,
documented the statistical procedure that facilitated the comparison between the BOCEGAH
and the BOSAH and concluded in §7.4.

8.2 Appraisal of thesis contributions

The main contribution of this study is five-fold. This section contains a documentation and
appraisal of these contributions.

Contribution 1 The establishment of a formal pilot study, providing an in-depth investigation

Stellenbosch University https://scholar.sun.ac.za

8.3. Suggestions for future work 161

into the workings of an ANN.

The novel pilot study proposed some avenues for further experimentation, some of which
are listed in §3.5. The study provided valuable work pertaining to the complex interactions
within an ANN and from the Python scripts included in Listing A, it is possible to further
the study and ascertain more definitive results pertaining to the feasibility of an ANN as
metamodel.

Contribution 2 The addition of five new optimisation tools to solve bi-objective simulation
optimisation problems within Tecnomatix.

The addition of two population-based metaheuristics, the MOOCEM and the NSGA-II
and the corresponding hyperheuristic tool BOCEGAH, which combined MOOCEM and
the NSGA-II. The addition of a single-solution based metaheuristic, the DBMOSA employ-
ing four (proposed) move operators and the hyperheuristic tool BOSAH which combined
three of the move operators, thereby enhancing the bi-objective simulation optimisation
capabilities of Tecnomatix. This may be of particular interest to industries using Tecno-
matix.

Contribution 3 The modification and furtherance of the AMALGAM hyperheuristic within the
context of single-solution based search.

The application of AMALGAM towards single solutions-based search has been attempts
in the literature, see [128], however a new heuristic selection mechanism was proposed and
outlined in §5.6.

Contribution 4 An evaluation of the algorithmic parameters for the MOOCEM and the NSGA-
II.

The novelty of the hyperparameter search space explored is the valuable insights that can
be inferred from the hyperparameter combinations when considering the five discrete-event
simulation optimisation problems with varying sizes, approximation front forms and com-
plexities. Moreover, the results can be used as a guideline for choosing hyperparameters
for the MOOCEM and the NSGA-II, refer to §6.2 and §6.3.

Contribution 5 The realisation of the inconsistency with the hyperarea calculation for discon-
tinuous approximation fronts.

A linear adjustment was proposed for the hyperarea calculation, taking into account the
discontinuity of the approximation front by considering the number of non-dominated
solutions in the front versus that of the true front, as documented in §6.2.1.

8.3 Suggestions for future work

Suggestions for further investigation is documented in this section. In each case, the suggestion
is stated formally and then elaborated upon.

Suggestion 1 Consider the evaluation of the optimisation approaches for different problem
contexts.

The problem contexts considered in this study were all (coincidentally) min–max problems
and therefore min–min and max–max problems should also be considered.

Stellenbosch University https://scholar.sun.ac.za

162 Chapter 8. Conclusion

Suggestion 2 Design more move operators for single-solution based search for discrete vector
representation.

The parameter evaluations of DBMOSA’s move operators concluded that move operator
1 was statistically significantly better than the other proposed move operators, as docu-
mented in §6.4.

1. Creating perturbations of x from the Laplacian distribution. The Laplacian distri-
bution is suggested due to its tails that decay relatively slow, ensuring that regions
distant from the current solutions are explored [232].

2. Use feature importance techniques to determine which inputs have the most influence
on the outputs and possibly use that to guide the search.

Suggestion 3 Conduct an empirical study for the algorithmic parameters for the DBMOSA
algorithm.

The study should consider different annealing schedules (some of which are listed in §5.4.2),
initial temperature (see §5.4.3 for some guidelines) and the effect of different initial solu-
tions.

Suggestion 4 Design a complexity measure that encapsulates the complexity of a simulation
problem.

Currently, complexity is measured in terms of the number of objectives, number of decision
variables, the size of the search space and number of stochastic elements present in the
simulation problem. Some have proposed complexity measures [207], however, it is too
complex as it takes into account the complexity of the software used, for example the
number of objects modeled.

In this study, BAP16 is considered the most complex simulation problem, however no
consideration was made for the actual time required to optimise the model. In that case
the OMP would have to be considered as it took the longest amount of time to evaluate
due to the simulation of the waiting times of the trucks moving to the trains etc. The
complexity term should also consider the computer used to run the simulations since it
influences the time required to optimise a model, i.e. consider the central and graphical
processing units. Moreover, the time it takes to optimise a model is also influenced by the
number of models optimised simultaneously and should therefore also be considered.

Suggestion 5 Design an improved hyperarea calculation that takes into account the true number
of non-dominated solutions found.

If the true Pareto set is available, then the hyperarea calculation should only consider the
area underneath the non-dominated solutions that corresponds to the true non-dominated
solutions found in the true Pareto set.

Suggestion 6 Consolidate the method used to calculate the hyperarea of an approximation front.

In the literature there are various methods proposed for calculating the hyperarea of an
approximation set, namely by method of summing the rectangles under the front (for
a min–max approximation front), or a more accurate method which includes summing
the rectangles and trapezoids (as employed in this study) under the front. Also, some
literature suggests that the area under each non-dominated solution with reference to the
chosen reference point be summed, however, it does not translate to the dominated area.

Stellenbosch University https://scholar.sun.ac.za

8.3. Suggestions for future work 163

Suggestion 7 Further the work done to determine the feasibility of an ANN.

As mentioned, the Python scripts included in Listing A can be used as a starting point to
further the study and ascertain more definitive results pertaining to the feasibility of an
ANN as metamodel. Also, some suggestions for further experimentation is listed in §3.5.

Stellenbosch University https://scholar.sun.ac.za

164 Chapter 8. Conclusion

Stellenbosch University https://scholar.sun.ac.za

References

[1] Abdel-Basset M, Manogaran G, Rashad H & Zaied ANH, 2018, A comprehensive
review of quadratic assignment problem: variants, hybrids and applications, Journal of
Ambient Intelligence and Humanized Computing, pp. 1–24.

[2] Aiken LS, West SG & Pitts SC, 2003, Multiple linear regression, Handbook of Psy-
chology, pp. 481–507.

[3] Amaran S, Sahinidis NV, Sharda B & Bury SJ, 2016, Simulation optimization: a
review of algorithms and applications, Annals of Operations Research, 240(1), pp. 351–
380.

[4] Andradóttir S, 2006, An overview of simulation optimization via random search, Hand-
books in Operations Research and Management Science, 13(1), pp. 617–631.

[5] April J, Glover FW, Kelly JP & Laguna M, 2003, Simulation-based optimization:
Practical introduction to simulation optimization, Proceedings of the 35th Winter Simu-
lation Conference: Driving Innovation, New Orleans (NO), pp. 71–78.

[6] Asta S, Özcan E, Parkes AJ & Etaner-Uyar AŞ, 2013, Generalizing hyper-heuristics
via apprenticeship learning , Proceedings of the European Conference on Evolutionary
Computation in Combinatorial Optimization, Berlin, Heidelberg, pp. 169–178.

[7] Atashpaz-Gargari E & Lucas C, 2007, Imperialist competitive algorithm: An algo-
rithm for optimization inspired by imperialistic competition, Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 4661–4667.

[8] Awad M & Khanna R, “Support vector regression”, in: Efficient learning machines,
Springer, 2015, pp. 67–80.

[9] Ayob M & Kendall G, 2003, A monte carlo hyper-heuristic to optimise component
placement sequencing for multi head placement machine, Proceedings of the International
Conference on Intelligent Technologies, pp. 132–141.

[10] Bäck T, 1996, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press, Oxford, UK.

[11] Bäck T, Fogel DB & Michalewicz Z, 1997, Handbook of Evolutionary Computation,
New York (NY), Oxford University Press/IOP Publishing, 97(1).

[12] Bai R, Blazewicz J, Burke EK, Kendall G & McCollum B, 2012, A simulated
annealing hyper-heuristic methodology for flexible decision support , A Quarterly Journal
of Operations Research (4OR-Q J Oper Res), 10(1), pp. 43–66.

[13] Bai R & Kendall G, “An investigation of automated planograms using a simulated
annealing based hyper-heuristic”, in: Metaheuristics: Progress as Real Problem Solvers,
Springer, 2005, pp. 87–108.

[14] Baker JE, 1985, Adaptive selection methods for genetic algorithms, Proceedings of the
International Conference on Genetic Algorithms and their Applications, Pittsburg (PA).

[15] Bamporiki T, Bekker J & Yoon M, 2019, Using a discrete-event, simulation optimi-
sation optimiser to solve a stochastic multi-objective NP-hard problem, Proceedings of
the International Conference on Competitive Manufacturing, Stellenbosch.

[16] Bangsow S, 2020, Tecnomatix Plant Simulation, 1st Edition, Springer.

165

Stellenbosch University https://scholar.sun.ac.za

166 REFERENCES

[17] Banzhaf W, Nordin P, Keller RE & Francone FD, 1998, Genetic Programming:
An Introduction, Morgan Kaufmann Publishers, San Francisco (SF).

[18] Barton RR & Meckesheimer M, 2006, Metamodel-based Simulation Optimization,
Handbooks in Operations Research and Management Science, 13(1), pp. 535–574.

[19] Bashyam S & Fu M, 1998, Optimization of (s, S) inventory systems with random lead
times and a service level constraint , Management Science, 44(1), pp. 243–256.

[20] Bekker JF, Introduction to discrete-event simulation, Stellenbosch, July 2019.

[21] Bekker J, 2012, Applying the cross-entropy method in multi-objective optimisation of
dynamic stochastic systems, PhD thesis, Stellenbosch University, Stellenbosch.

[22] Bekker J & Aldrich C, 2011, The cross-entropy method in multi-objective optimisation:
An assessment , European Journal of Operational Research, 211(1), pp. 112–121.

[23] Benlic U, Epitropakis MG & Burke EK, 2017, A hybrid breakout local search and
reinforcement learning approach to the vertex separator problem, European Journal of
Operational Research, 261(3), pp. 803–818.

[24] Bergmann B & Hommel G, “Improvements of general multiple test procedures for re-
dundant systems of hypotheses”, in:Multiple Hypotheses Testing , Springer, 1988, pp. 100–
115.

[25] Bergstra J & Bengio Y, 2012, Random search for hyper-parameter optimization.,
Journal of machine learning research, 13(2), February, pp. 281–305.

[26] Bergstra J, Yamins D & Cox D, 2013,Making a Science of Model Search: Hyperparam-
eter Optimization in Hundreds of Dimensions for Vision Architectures, Proceedings of
the 30th International Conference on Machine Learning (ICML), Atlanta, Georgia (GA),
pp. 115–123.

[27] Bettonvil B, 1989, A formal description of discrete event dynamic systems including
infinitesimal perturbation analysis, European Journal of Operational Research, 42(2),
pp. 213–222.

[28] Bettonvil B, Del Castillo E & Kleijnen JP, 2009, Statistical testing of optimality
conditions in multiresponse simulation-based optimization, European Journal of Opera-
tional Research, 199(2), pp. 448–458.

[29] Bilgin B, Özcan E & Korkmaz EE, 2007, An Experimental Study on Hyper-heuristics
and Exam Timetabling , Proceedings of the International Conference on the Practice and
Theory of Automated Timetabling, Berlin, Heidelberg, pp. 394–412.

[30] Bishop CM, 1995, Neural Networks for Pattern Recognition, Oxford University Press,
Cambridge, UK.

[31] Bjorck J, Gomes C, Selman B & Weinberger KQ, 2018, Understanding Batch Nor-
malization, Proceedings of the.

[32] Blickle T & Thiele L, 1996, A comparison of selection schemes used in evolutionary
algorithms, Evolutionary Computation, 4(4), pp. 361–394.

[33] Boute RN, Gijsbrechts J, van Jaarsveld W & Vanvuchelen N, 2022, Deep rein-
forcement learning for inventory control: A roadmap, European Journal of Operational
Research, 298(2), April, pp. 401–412.

[34] Brownlee J, 2017, What is the difference between test and validation datasets, url:
https://machinelearningmastery.com/difference-test-validation-datasets/#:

~:text=That%20the%20%E2%80%9Cvalidation%20dataset%E2%80%9D%20is,it%20to%

20other%20final%20models.

Stellenbosch University https://scholar.sun.ac.za

https://machinelearningmastery.com/difference-test-validation-datasets/#:~:text=That%20the%20%E2%80%9Cvalidation%20dataset%E2%80%9D%20is,it%20to%20other%20final%20models
https://machinelearningmastery.com/difference-test-validation-datasets/#:~:text=That%20the%20%E2%80%9Cvalidation%20dataset%E2%80%9D%20is,it%20to%20other%20final%20models
https://machinelearningmastery.com/difference-test-validation-datasets/#:~:text=That%20the%20%E2%80%9Cvalidation%20dataset%E2%80%9D%20is,it%20to%20other%20final%20models

REFERENCES 167

[35] Burke EK & Bykov Y, 2008, A Late Acceptance Strategy in Hill-climbing for Exam
Timetabling Problems, Proceedings of the Conference on the Practice and Theory of
Automated Timetabling (PATAT), Montreal, Canada.

[36] Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E & Qu R, 2013,
Hyper-heuristics: A survey of the state of the art , Journal of the Operational Research
Society, 64(12), pp. 1695–1724.

[37] Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E & Qu R, 2009, A survey
of hyper-heuristics, (Unpublished) Technical Report, School of Computer Science and
Information Technology, University of Nottingham, Nottingham, UK.

[38] Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E & Woodward JR, 2010, A
Classification of Hyper-heuristic Approaches, pp. 449–468 in Gendreau M & Potvin
JY (Eds), Handbook of Metaheuristics, Springer US, Boston (MA).

[39] Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E & Woodward JR, 2019, A
Classification of Hyper-heuristic Approaches: Revisited , pp. 453–477 in Gendreau M &
Potvin JY (Eds), Handbook of Metaheuristics, Springer, Cham.

[40] Burke EK, Kendall G& Soubeiga E, 2003,A tabu-search hyperheuristic for timetabling
and rostering , Journal of Heuristics, 9(6), pp. 451–470.

[41] Can B & Heavey C, 2012, A comparison of genetic programming and artificial neural
networks in metamodeling of discrete-event simulation models, Computers & Operations
Research, 39(2), February, pp. 424–436.

[42] Chakhlevitch K & Cowling P, 2008, Hyperheuristics: Recent Developments, pp. 3–29
in Cotta C, Sevaux M & Sörensen K (Eds), Adaptive and Multilevel Metaheuristics,
Springer, Berlin, Heidelberg.

[43] Chen T & Guestrin C, 2016, Xgboost: A scalable tree boosting system, Proceedings of
the 22th International Conference on Knowledge Discovery and Data Mining, New York
(NY), pp. 785–794.

[44] Clarke SM, Griebsch JH & Simpson TW, 2005, Analysis of support vector regres-
sion for approximation of complex engineering analyses, Journal of Mechanical Design,
127(6), pp. 1077–1087.

[45] Clevert DA, Unterthiner T & Hochreiter S, 2015, Fast and accurate deep network
learning by exponential linear units (elus).

[46] Coello Coello CA, 2009, Evolutionary multi-objective optimization: Some current re-
search trends and topics that remain to be explored , Frontiers of Computer Science in
China, 3(1), pp. 18–30.

[47] Coello Coello CA, Lamont GB & Van Veldhuizen DA, 2007, Evolutionary Algo-
rithms for Solving Multi-Objective Problems, 2nd Edition, Springer, New York (NY).

[48] Conover WJ, 1999, Practical nonparametric statistics, 3rd Edition, John Wiley & Sons.

[49] Cortes C& Vapnik V, 1995, Support-vector networks, Machine learning, 20(3), pp. 273–
297.

[50] Cowling P, Kendall G & Soubeiga E, 2001, A Hyperheuristic Approach to Scheduling
a Sales Summit , Proceedings of the Practice and Theory of Automated Timetabling III,
Berlin, Heidelberg, pp. 176–190.

[51] Cowling P, Kendall G & Soubeiga E, 2002, Hyperheuristics: A Tool for Rapid Pro-
totyping in Scheduling and Optimisation, Proceedings of the Workshops on Applications
of Evolutionary Computation, Berlin, Heidelberg, pp. 1–10.

Stellenbosch University https://scholar.sun.ac.za

168 REFERENCES

[52] Crawford B, Soto R, Astorga G, Garcıéa J, Castro C & Paredes F, 2017,
Putting continuous metaheuristics to work in binary search spaces, Machine Learning
Applied to Metaheuristics and Combinatorial Problems, 2017(2), pp. 1–19.

[53] Cruz F, Van Woensel T & Smith JM, 2010, Buffer and throughput trade-offs in
M/G/1/K queueing networks: A bi-criteria approach, International Journal of Production
Economics, 125(2), June, pp. 224–234.

[54] Cruz FR, Duarte AR & Van Woensel T, 2008, Buffer allocation in general single-
server queueing networks, Computers & Operations Research, 35(11), pp. 3581–3598.

[55] Cutler A, Cutler DR & Stevens JR, 2012, Random forests, pp. 157–175 in Zhang
C & Ma Y (Eds), Ensemble Machine Learning: Methods and Applications, Springer US,
Boston (MA).

[56] Cybenko G, 1989, Approximation by superpositions of a sigmoidal function, Mathemat-
ics of Control, Signals and Systems, 2(4), pp. 303–314.

[57] Dasgupta D & Michalewicz Z, 1997, Evolutionary algorithms—an overview , pp. 3–28
in Dasgupta D & Michalewicz Z (Eds), Springer, Berlin, Heidelberg.

[58] De Boer PT, Kroese DP & Rubinstein RY, 2004, A fast cross-entropy method for
estimating buffer overflows in queueing networks, Management Science, 50(7), pp. 883–
895.

[59] Deb K, 2011, Multi-objective optimisation using evolutionary algorithms: An introduc-
tion, pp. 3–34 in Wang L, Ng AHC & Deb K (Eds), Multi-objective Evolutionary
Optimisation for Product Design and Manufacturing , Springer, London (UK).

[60] Deb K, 2001, Multi-Objective Optimization Using Evolutionary , John Wiley & Sons.

[61] Deb K, 2010, Recent Developments in Evolutionary Multi-Objective Optimization, pp.
339–368 in Ehrgott M, Figueira JR & Greco S (Eds), Springer, Boston (MA).

[62] Deb K & Agrawal RB, 1995, Simulated binary crossover for continuous search space,
Complex Systems, 9(2), pp. 115–148.

[63] Deb K & Agrawal S, 1999, A Niched-Penalty Approach for Constraint Handling in
Genetic Algorithms, Proceedings of the Artificial Neural Nets and Genetic Algorithms,
Vienna, pp. 235–243.

[64] Deb K & Beyer HG, 2001, Self-Adaptive Genetic Algorithms with Simulated Binary
Crossover , Evolutionary Computation, 9(2), June, pp. 197–221.

[65] Deb K & Deb D, 2014, Analysing mutation schemes for real-parameter genetic algo-
rithms, International Journal of Artificial Intelligence and Soft Computing, 4(1), Febru-
ary, pp. 1–28.

[66] Deb K & Kumar A, 1995, Real-coded genetic algorithms with simulated binary crossover:
Studies on multimodal and multiobjective problems, Complex Systems, 9(6), pp. 431–454.

[67] Deb K, Pratap A, Agarwal S & Meyarivan T, 2002, A fast and elitist multiobjective
genetic algorithm: NSGA-II , IEEE Transactions on Evolutionary Computation, 6(2),
April, pp. 182–197.

[68] Deb K & Sundar J, 2006, Reference Point Based Multi-Objective Optimization Using
Evolutionary Algorithms, Proceedings of the 8th Annual Conference on Genetic and Evo-
lutionary Computation, Seattle, Washington (WA), pp. 635–642.

[69] Deep K & Thakur M, 2007, A new crossover operator for real coded genetic algorithms,
Applied Mathematics and Computation, 188(1), pp. 895–911.

Stellenbosch University https://scholar.sun.ac.za

REFERENCES 169

[70] Deep K & Thakur M, 2007, A new mutation operator for real coded genetic algorithms,
Applied Mathematics and Computation, 193(1), October, pp. 211–230.

[71] Derrac J, Garcıéa S, Molina D & Herrera F, 2011, A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms, Swarm and Evolutionary Computation, 1(1), March, pp. 3–18.

[72] Di Pierro F, Khu ST & Savic DA, 2007, An investigation on preference order ranking
scheme for multiobjective evolutionary optimization, IEEE Transactions on Evolutionary
Computation, 11(1), pp. 17–45.

[73] Dorigo M & Blum C, 2005, Ant colony optimization theory: A survey , Theoretical
Computer Science, 344(3), November, pp. 243–278.

[74] Dowsland KA, Soubeiga E & Burke E, 2007, A simulated annealing based hyper-
heuristic for determining shipper sizes for storage and transportation, European Journal
of Operational Research, 179(3), June, pp. 759–774.

[75] Dozat T, 2016, Incorporating nesterov momentum into adam, url: https://openreview.
net/forum?id=OM0jvwB8jIp57ZJjtNEZ.

[76] Drake JH, Kheiri A, Özcan E & Burke EK, 2020, Recent advances in selection hyper-
heuristics, European Journal of Operational Research, 285(2), September, pp. 405–428.

[77] Dréo J, Pétrowski A, Siarry P & Taillard E, 2006, Metaheuristics for Hard Opti-
mization, 1st Edition, Springer, Berlin, Heidelberg.

[78] Duchi J, Hazan E & Singer Y, 2011, Adaptive subgradient methods for online learn-
ing and stochastic optimization, Journal of Machine Learning Research, 12(7), July,
pp. 2121–2159.

[79] Dueck G, 1993, New Optimization Heuristics: The Great Deluge Algorithm and the
Record-to-Record Travel , Journal of Computational Physics, 104(1), January, pp. 86–
92.

[80] Edmund K.Burke GK (Ed), 2010, Search Methodologies, 1st Edition, Springer, New
York (NY).

[81] Eremenko K & de Ponteves H, 2019, Machine Learning AZ: Hands-On Python & R
In Data Science.

[82] Fang H, Wang Q, Tu YC & Horstemeyer MF, 2008, An efficient non-dominated sort-
ing method for evolutionary algorithms, Evolutionary Computation, 16(3), September,
pp. 355–384.

[83] Fausett LV, 1993, Fundamentals of Neural Networks: Architectures, Algorithms and
Applications, 1st Edition, Pearson.

[84] Fausett LV, 1994, Neural Networks Based on Competition, Proceedings of the Fun-
damentals of Neural Networks: Architectures, Algorithms and Applications. Englewood
Cliffs: Prentice-Hall, pp. 156–217.

[85] Fleischer M, 2003, The Measure of Pareto Optima Applications to Multi-objective Meta-
heuristics, Proceedings of the International Conference on Evolutionary Multi-criterion
Optimization, Berlin, Heidelberg, pp. 519–533.

[86] Fonseca DJ & Navaresse D, 2002, Artificial neural networks for job shop simulation,
Advanced Engineering Informatics, 16(4), October, pp. 241–246.

[87] Fonseca DJ, Navaresse DO & Moynihan GP, 2003, Simulation metamodeling through
artificial neural networks, Engineering Applications of Artificial Intelligence, 16(3), April,
pp. 177–183.

Stellenbosch University https://scholar.sun.ac.za

https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ

170 REFERENCES

[88] Friedman JH, 1991, Multivariate adaptive regression splines, The Annals of Statistics,
19(1), March, pp. 1–67.

[89] Friedman M, 1937, The use of ranks to avoid the assumption of normality implicit in
the analysis of variance, Journal of the American Statistical Association, 32(200), May,
pp. 675–701.

[90] Fu MC, 1994, Optimization via simulation: A review , Annals of Operations Research,
53(1), December, pp. 199–247.

[91] Geem ZW, Kim JH & Loganathan GV, 2001, A New Heuristic Optimization Algo-
rithm: Harmony Search, Simulation: Transactions of The Society for Modeling and Sim-
ulation International, 76(2), February, pp. 60–68.

[92] Geman S & Geman D, 1984, Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 6(6), November, pp. 721–741.

[93] El-Ghazali T, 2009, Metaheuristics from Design to Implementation, John Wiley &
Sons.

[94] Glasserman P & Ho Y.-C, 1991, Gradient Estimation via Perturbation Analysis, 1st

Edition, Springer Science & Business Media, New York (NY).

[95] Glorot X & Bengio Y, 2010, Understanding the Difficulty of Training Deep Feed-
forward Neural Networks, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (PMLR), Sandinia, Italy, pp. 249–256.

[96] Glorot X, Bordes A & Bengio Y, 2011, Deep Sparse Rectifier Neural Networks,
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, Fort Lauderdale (FL), pp. 315–323.

[97] Glover F, 1986, Future paths for integer programming and links to artificial intelligence,
Computers & Operations Research, 13(5), pp. 533–549.

[98] Glover F, 1977, Heuristics for integer programming using surrogate constraints, Deci-
sion Sciences, 8(1), January, pp. 156–166.

[99] Glover F, Kelly JP & Laguna M, 1996, New Advances and Applications of Combining
Simulation and Optimization, Proceedings of the 28th Conference on Winter Simulation,
California (CA), pp. 144–152.

[100] Glover F & Laguna M, 1997, Tabu Search Principles, 1st Edition, Springer, Boston
(MA).

[101] Glover F, Laguna M & Martıé R, 2015, Scatter Search, pp. 519–537 in Ghosh A &
Tsutsui S (Eds), Advances in Evolutionary Computing , Springer, Berlin, Heidelberg.

[102] Glynn PW, 1987, Likelilood ratio gradient estimation: an overview , Proceedings of the
19th Conference on Winter Simulation, Georgia (GA), pp. 366–375.

[103] Goldberg DE & Deb K, 1991, A Comparative Analysis of Selection Schemes Used in
Genetic Algorithms, Foundations of Genetic Algorithms, 1, pp. 69–93.

[104] Goldberg DE, Korb B & Deb K, 1989,Messy genetic algorithms: Motivation, analysis,
and first results, Complex Systems, 3(5), pp. 493–530.

[105] Goldsman D & Nelson BL, 1994, Ranking, selection and multiple comparisons in com-
puter simulation, Proceedings of the Winter Simulation Conference, Lake Buena Vista
(FL), pp. 192–199.

Stellenbosch University https://scholar.sun.ac.za

REFERENCES 171

[106] Goodfellow I, Bengio Y, Courville A & Bengio Y, 2016, Deep learning , MIT
press, Cambridge (UK).

[107] Grefenstette JJ, 1992, Genetic algorithms for changing environments.

[108] Guizzo G, Vergilio SR, Pozo AT & Fritsche GM, 2017, A Multi-objective and Evo-
lutionary Hyper-heuristic Applied to the Integration and Test Order Problem, Applied
Soft Computing, 56, March, pp. 331–344.

[109] Hachicha W, 2011, A simulation metamodelling based neural networks for lot-sizing
problem in MTO sector , International Journal of Simulation Modelling, 10(4), pp. 191–
203.

[110] Hajek B & Sasaki G, 1989, Simulated annealing—to cool or not , Systems & Control
Letters, 12(5), June, pp. 443–447.

[111] Hansen P & Mladenović N, 2001, Variable neighborhood search: Principles and appli-
cations, European Journal of Operational Research, 130(3), pp. 449–467.

[112] He K, Zhang X, Ren S & Sun J, 2015, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), pp. 1026–1034.

[113] Heiberger RM & Neuwirth E, 1998, Polynomial regression, pp. 235–268 in Rawlings
JO, Pantula SG & Dickey DA (Eds), Applied Regression Analysis: A Research Tool ,
Springer, New York (NY).

[114] Hertz A & de Werra D, 1990, The tabu search metaheuristic: How we used it , Annals
of Mathematics and Artificial Intelligence, 1(1), September, pp. 111–121.

[115] Hill NJ & Parks GT, 2015, Pressurized water reactor in-core nuclear fuel management
by tabu search, Annals of Nuclear Energy, 75, January, pp. 64–71.

[116] Hinton G, Srivastava N & Swersky K, 2012, Neural Networks for Machine Learning ,
Lecture 6a: Overview of mini-batch gradient descent.

[117] Ho YC & Cao X.-R, 1991, Introduction to Discrete Event Dynamic Systems, pp. 1–13
in , Perturbation Analysis of Discrete Event Dynamic Systems, Springer, Boston (MA).

[118] Hochberg Y & Tamhane AC, 1987, Multiple Comparison Procedures, John Wiley &
Sons.

[119] Holland JH, 1992, Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control, and Artificial Intelligence.

[120] Holland JH, 1992, Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control, and Artificial Intelligence, MIT press.

[121] Hollander M, Wolfe DA & Chicken E, 2015, Nonparametric Statistical Methods,
3rd Edition, John Wiley & Sons.

[122] Holm S, 1979, A Simple Sequentially Rejective Multiple Test Procedure, Scandinavian
Journal of Statistics, 6(2), pp. 65–70.

[123] Hoos HH & Stützle T, 2004, Stochastic Local Search: Foundations and Applications,
Elsevier, San Francisco (CA).

[124] Hornik K, 1991, Approximation capabilities of multilayer feedforward networks, Neural
Networks, 4(2), pp. 251–257.

[125] Hornik K, Stinchcombe M & White H, 1989, Multilayer feedforward networks are
universal approximators, Neural Networks, 2(5), pp. 359–366.

Stellenbosch University https://scholar.sun.ac.za

172 REFERENCES

[126] Hsiao PK, Jiang S.-J, Sahayam A & Hsiao TC, 2012, Determination of trace ele-
ments in silicon powders by inductively coupled plasma quadrupole mass spectrometry
with a membrane desolvation sample introduction system, Atomic Spectroscopy, 33(1),
January, pp. 1–8.

[127] Huang M, 2004, An efficient general cooling schedule for simulated annealing , Proceed-
ings of the Computational Science and Its Applications, Berlin, Heidelberg, pp. 396–404.

[128] Hüsselmann G, 2022, Bus route design and frequency setting for public transit systems,
PhD thesis, Stellenbosch University, Stellenbosch.

[129] Iman RL & Davenport JM, 1980, Approximations of the critical region of the friedman
statistic, Communications in Statistics-Theory and Methods, 9(6), pp. 571–595.

[130] James G, Witten D, Hastie T & Tibshirani R, 2013, An Introduction to Statistical
Learning , 1st Edition, Springer, New York (NY).

[131] Johnson DS, Papadimitriou CH & Yannakakis M, 1988, How easy is local search? ,
Journal of Computer and System Sciences, 37(1), September, pp. 79–100.

[132] Kaelbling LP, Littman ML & Moore AW, 1996, Reinforcement learning: A survey ,
Journal of Artificial Intelligence Research, 4, May, pp. 237–285.

[133] Karaboga D, 2005, An idea based on honey bee swarm for numerical optimization,
(Unpublished) Technical Report, Erciyes University.

[134] Karimi-Mamaghan M, Mohammadi M, Meyer P, Karimi-Mamaghan AM & Talbi
E.-G, 2022, Machine Learning at the service of Meta-heuristics for solving Combinatorial
Optimization Problems: A state-of-the-art , European Journal of Operational Research,
296(2), January, pp. 393–422.

[135] Karpathy A, 2016, CS231n: Convolutional Neural Networks for Visual Recognition,
Stanford University.

[136] Kelton WD, 1997, Statistical analysis of simulation output , Proceedings of the 29th

Conference on Winter Simulation, Cincinnati, Ohio (OH), pp. 23–30.

[137] Kendall G & Hussin NM, 2005, An investigation of a tabu-search-based hyper-heuristic
for examination timetabling , Proceedings of the Multidisciplinary Scheduling: Theory and
Applications, Boston (MA), pp. 309–328.

[138] Kendall G & Mohamad M, 2004, Channel assignment in cellular communication using
a great deluge hyper-heuristic, Proceedings of the 12th IEEE International Conference on
Networks (ICON), pp. 769–773.

[139] Kennedy J, 2006, Swarm intelligence, pp. 187–219 in Zomaya AY (Ed), Handbook of
Nature-Inspired and Innovative Computing , Springer.

[140] Khan W, Salhi A, Asif M, Adeeb R & Sulaiman M, 2015, Enhanced version of multi-
algorithm genetically adaptive for multiobjective optimization, International Journal of
Advanced Computer Science and Applications, 6(12), pp. 279–287.

[141] Kingma DP & Ba J, 2015, Adam: A method for stochastic optimization, Proceedings of
the 3th International Conference for Learning Representations, San Diego (CA).

[142] Kiraz B, Etaner-Uyar AŞ & Özcan E, 2013, Selection hyper-heuristics in dynamic
environments, Journal of the Operational Research Society, 64(12), pp. 1753–1769.

[143] Kirkpatrick S, Gelatt CD & Vecchi MP, 1983, Optimization by simulated annealing ,
American Association for the Advancement of Science, 220(4598), pp. 671–680.

Stellenbosch University https://scholar.sun.ac.za

REFERENCES 173

[144] Kleijnen JP, 2009, Kriging metamodeling in simulation: A review , European Journal
of Operational Research, 192(3), February, pp. 707–716.

[145] Kleijnen JP & Van Beers WC, 2004, Application-driven sequential designs for simu-
lation experiments: Kriging metamodelling , Journal of the Operational Research Society,
55(8), pp. 876–883.

[146] Kleijnen JP & Van Beers WC, 2005, Robustness of Kriging when interpolating in
random simulation with heterogeneous variances: Some experiments, European Journal
of Operational Research, 165(3), September, pp. 826–834.

[147] Knowles JD, Thiele L & Zitzler E, 2005, A tutorial on the performance assessment of
stochastic multiobjective optimizers, 3rd International Conference on Evolutionary Multi-
Criterion Optimization (EMO), 214, February.

[148] Koç Ç, Bektaş T, Jabali O & Laporte G, 2016, Thirty years of heterogeneous vehicle
routing , European Journal of Operational Research, 249(1), February, pp. 1–21.

[149] Konak A, Coit DW & Smith AE, 2006, Multi-objective optimization using genetic algo-
rithms: A tutorial , Reliability Engineering & System Safety, 91(9), September, pp. 992–
1007.

[150] Korte BH, Vygen J, Korte B& Vygen J, 2012, Combinatorial Optimization, Springer,
Berlin, Heidelberg.

[151] Koutsoukas A, Monaghan KJ, Li X & Huan J, 2017, Deep-learning: Investigating
deep neural networks hyper-parameters and comparison of performance to shallow meth-
ods for modeling bioactivity data, Journal of Cheminformatics, 9(42), pp. 1–13.

[152] Krogh A & Hertz JA, 1991, A simple weight decay can improve generalization, Pro-
ceedings of the Advances in Neural Information Processing Systems (NIPS), pp. 950–
957.

[153] Kubat M, 1998, Neural networks: A comprehensive foundation by Simon Haykin, Macmil-
lan, 1994, ISBN 0-02-352781-7., The Knowledge Engineering Review, 13(4), pp. 409–
412.

[154] Kuhn M & Johnson K, 2013, Applied Predictive Modeling , 1st Edition, Springer, New
York (NY).

[155] Kuo Y, Yang T, Peters BA & Chang I, 2007, Simulation metamodel development us-
ing uniform design and neural networks for automated material handling systems in semi-
conductor wafer fabrication, Simulation Modelling Practice and Theory, 15(8), Septem-
ber, pp. 1002–1015.

[156] Laguna M, OptQuest , Opttek Systems, Inc., 2011.

[157] Law AM, Kelton WD & Kelton WD, 2007, Simulation Modeling and Analysis, 5th

Edition, Mc Graw Hill Education, New York (NY).

[158] Le QV, 2015, A tutorial on deep learning part 1: Nonlinear classifiers and the backprop-
agation algorithm, Google Inc., Mountain View, CA, December.

[159] LeCun YA, Bottou L, Orr GB & Müller K.-R, 2012, Efficient backprop, pp. 9–48 in
Montavon G, Orr GB & Müller K.-R (Eds), Neural Networks: Tricks of the Trade,
Springer, Berlin, Heidelberg.

[160] Lee LH, Chew EP, Teng S & Goldsman D, 2010, Finding the non-dominated Pareto
set for multi-objective simulation models, IIE Transactions, 42(9), pp. 656–674.

Stellenbosch University https://scholar.sun.ac.za

174 REFERENCES

[161] Lehrbaum A & Musliu N, 2012, A New Hyperheuristic Algorithm for Cross-domain
Search Problems, Proceedings of the International Conference on Learning and Intelligent
Optimization (LION), Berlin, Heidelberg, pp. 437–442.

[162] Li M & Yao X, 2020, Quality evaluation of solution sets in multiobjective optimisation:
A survey , ACM Computing Surveys (CSUR), 52(26), March, pp. 1–38.

[163] Li W, Özcan E & John R, 2017, A learning automata-based multiobjective hyper-
heuristic, IEEE Transactions on Evolutionary Computation, 23(1), pp. 59–73.

[164] Li W, Özcan E & John R, 2017, Multi-objective evolutionary algorithms and hyper-
heuristics for wind farm layout optimisation, Renewable Energy, 105, May, pp. 473–
482.

[165] Li YF, Ng SH, Xie M & Goh T, 2010, A systematic comparison of metamodeling tech-
niques for simulation optimization in decision support systems, Applied Soft Computing,
10(4), September, pp. 1257–1273.

[166] Liagkouras K & Metaxiotis K, 2013, An elitist polynomial mutation operator for
improved performance of MOEAs in computer networks, Proceedings of the 22nd In-
ternational Conference on Computer Communication and Networks (ICCCN), Nassau,
Bahamas, pp. 1–5.

[167] Lin C, Yang JI, Lin KJ & Wang ZD, 1998, Pressurized water reactor loading pattern
design using the simple tabu search, Nuclear Science and Engineering, 129(1), pp. 61–71.

[168] Liu Y, Wang Y & Zhang J, 2012, New machine learning algorithm: Random forest ,
Proceedings of the International Conference on Information Computing and Applications
(ICICA), Berlin, Heidelberg, pp. 246–252.

[169] Lotter DP, 2017, Design of a weapon assignment subsystem within a ground-based air
defence environment , PhD thesis, Stellenbosch University, Stellenbosch.

[170] Lourenço HR, Martin OC & Stützle T, “Iterated Local Search”, in: Handbook of
Metaheuristics, ed. by Fred Glover and Gary A. Kochenberger, Boston (MA): Springer,
2003, pp. 320–353.

[171] Lozano M, Herrera F & Cano JR, 2008, Replacement strategies to preserve useful
diversity in steady-state genetic algorithms, Information Sciences, 178(23), pp. 4421–
4433.

[172] Maas AL, Hannun AY & Ng AY, 2013, Rectifier nonlinearities improve neural network
acoustic models, Proceedings of the, (CA).

[173] Maashi M, Özcan E & Kendall G, 2014, A multi-objective hyper-heuristic based on
choice function, Expert Systems with Applications, 41(9), July, pp. 4475–4493.

[174] MacGregor Smith J & Cruz FR, 2005, The buffer allocation problem for general finite
buffer queueing networks, IIE Transactions, 37(4), pp. 343–365.

[175] Mahfoud SW, 1995, Niching methods for genetic algorithms, PhD thesis, University of
Illinois, Urbana, Illinois (IL).

[176] Mattera D, Palmieri F & Haykin S, 1999, An explicit algorithm for training support
vector machines, IEEE Signal Processing Letters, 6(9), September, pp. 243–245.

[177] Mazur M, A step by step backpropagation example, 2015.

[178] Meghabghab G & Kandel A, 2004, Stochastic simulations of web search engines: RBF
versus second-order regression models, Information Sciences, 159(1-2), January, pp. 1–
28.

Stellenbosch University https://scholar.sun.ac.za

REFERENCES 175

[179] Mehrotra K, Mohan CK & Ranka S, 1996, Elements of Artificial Neural Networks,
MIT press.

[180] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH & Teller E, 1953,
Equation of state calculations by fast computing machines, The Journal of Chemical
Physics, 21(6), pp. 1087–1092.

[181] Miettinen K, 1998, Nonlinear Multiobjective Optimization, 1st Edition, Springer Science
& Business Media, New York (NY).

[182] Misir M, Vancroonenburg W, Verbeeck K & Berghe GV, 2011, A selection hyper-
heuristic for scheduling deliveries of ready-mixed concrete, Proceedings of the 9th Meta-
heuristics International Conference (MIC 2011), Udine, Italy, pp. 289–298.

[183] Misir M, Verbeeck K, De Causmaecker P & Berghe GV, 2010, Hyper-heuristics
with a dynamic heuristic set for the home care scheduling problem, Proceedings of the
Congress on Evolutionary Computation, pp. 1–8.

[184] Mitchell TM, 1997, Machine Learning , McGraw-Hill, New York (NY).

[185] Mladenović N & Hansen P, 1997, Variable neighborhood search, Computers & Oper-
ations Research, 24(11), November, pp. 1097–1100.

[186] Mornati F, 2013, Pareto Optimality in the work of Pareto, European Journal of Social
Sciences, (51-2), pp. 65–82.

[187] Moscato P, 2000, On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms, Caltech Concurrent Computation Program, October.

[188] Mueller JP & Massaron L, 2019, Deep Learning , For Dummies.

[189] Nair V & Hinton GE, 2010, Rectified linear units improve restricted boltzmann ma-
chines, Proceedings of the International Conference on Machine Learning (ICML), pp. 807–
814.

[190] Nakayama H, Arakawa M & Sasaki R, 2002, Simulation-based optimization using
computational intelligence, Optimization and Engineering, 3(2), June, pp. 201–214.

[191] Negahban A & Smith JS, 2014, Simulation for manufacturing system design and opera-
tion: Literature review and analysis, Journal of Manufacturing Systems, 33(2), pp. 241–
261.

[192] Nel GS, 2021, A hyperheuristic approach towards the training of artificial neural net-
works, PhD thesis, Stellenbosch University, Stellenbosch.

[193] Nesterov Y, 1983, A method for unconstrained convex minimization problem with the
rate of convergence, Mathematics.

[194] Nielsen M, 2015, How the backpropagation algorithm works, Proceedings of the Neural
Networks and Deep Learning.

[195] Nielsen MA, 2019, Neural Networks and Deep Learning , San Francisco (CA).

[196] Osman IH & Kelly JP, 1997, Meta-heuristics theory and applications, Journal of the
Operational Research Society, 48(6), pp. 657–657.

[197] Osman IH & Kelly JP, 1996, Meta-heuristics: An overview , pp. 1–21 in Osman IH &
Kelly JP (Eds), Springer, Boston (MA).

[198] Osman IH & Laporte G, 1996, Metaheuristics: A bibliography , Annals of Operations
Research, 63, pp. 511–623.

[199] Özcan E, Bilgin B & Korkmaz EE, 2008, A comprehensive analysis of hyper-heuristics,
Intelligent Data Analysis, 12(1), pp. 3–23.

Stellenbosch University https://scholar.sun.ac.za

176 REFERENCES

[200] Özcan E, Bykov Y, Birben M & Burke EK, 2009, Examination timetabling using late
acceptance hyper-heuristics, Proceedings of the Congress on Evolutionary Computation,
pp. 997–1004.

[201] Özcan E, Misir M, Ochoa G & Burke EK, 2012, A reinforcement learning: Great-
deluge hyper-heuristic for examination timetabling , pp. 34–55 in , Modeling, Analysis,
and Applications in Metaheuristic Computing: Advancements and Trends, IGI Global.

[202] Papadopoulos HT & Heavey C, 1996, Queueing theory in manufacturing systems
analysis and design: A classification of models for production and transfer lines, European
Journal of Operational Research, 92(1), July, pp. 1–27.

[203] Parkinson AR, Balling R & Hedengren JD, 2013, Optimization Methods for Engi-
neering Design, Brigham Young University, 5(11).

[204] Pereira I, Madureira A, de Moura Oliveira PB & Abraham A, “Tuning meta-
heuristics using multi-agent learning in a scheduling system”, in: Transactions on Compu-
tational Science XXI , ed. by Marina L. Gavrilova, C.J.Kenneth Tan, and Ajith Abraham,
vol. 8160, Lecture Notes in Computer Science book series, Berlin, Heidelberg: Springer,
2013, pp. 190–210.

[205] Podgorelec V & Zorman M, 2016, Decision tree learning , pp. 1–28 in , Encyclopedia
of Complexity and Systems Science, Springer, Berlin, Heidelberg.

[206] Pohlert T, The pairwise multiple comparison of mean ranks package (PMCMR), 2019,
R package, 2014, p. 9.

[207] Popovics G & Monostori L, 2016, An approach to Determine Simulation Model Com-
plexity , The Sixth International Conference on Changeable, Agile, Reconfigurable and
Virtual Production (CARV), (257–261).

[208] Qian N, 1999, On the momentum term in gradient descent learning algorithms, Neural
Networks, 12(1), January, pp. 145–151.

[209] Razali NM& Geraghty J, 2011,Genetic algorithm performance with different selection
strategies in solving TSP , Proceedings of the 1th World Congress on Engineering, London
(UK), pp. 1–6.

[210] Riquelme N, Von Lücken C & Baran B, 2015, Performance metricsi n multi-objective
optimization, Proceedings of the Latin American Computing Conference (CLEI), Are-
quipa, Peru, pp. 1–11.

[211] Rojas R, 2013, Neural networks: A systematic introduction, 1st Edition, Springer Science
& Business Media, Berlin, Heidelberg.

[212] Rokach L & Maimon O, 2005, Decision trees, pp. 165–192 in Maimon O & Rokach
L (Eds), Data Mining and Knowledge Discovery Handbook , Springer, Boston (MA).

[213] Ross P, 2005, Hyper-heuristics, pp. 529–556 in Burke EK & Kendall G (Eds), Search
Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques,
Springer.

[214] Rostami S, 2019,Hypervolume Indicator , Accessed: 2022-09-27, url: https://datacrayon.
com/posts/search%20and%20optimisation/practical%20evolutionary%20algorithms/

hypervolume%20indicator.

[215] Rubinstein R, 1990, How to optimize discrete-event systems from a single sample path
by the score function method , Annals of Operations Research, 27(1), pp. 175–212.

[216] Rubinstein RY & Shapiro A, 1993, Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization by the Score Function Method , 1st Edition, Wiley.

Stellenbosch University https://scholar.sun.ac.za

https://datacrayon.com/posts/search%20and%20optimisation/practical%20evolutionary%20algorithms/hypervolume%20indicator
https://datacrayon.com/posts/search%20and%20optimisation/practical%20evolutionary%20algorithms/hypervolume%20indicator
https://datacrayon.com/posts/search%20and%20optimisation/practical%20evolutionary%20algorithms/hypervolume%20indicator

REFERENCES 177

[217] Rubinstein RY & Kroese DP, 2004, The Cross-Entropy Method: A Unified Approach to
Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , Springer.

[218] Russell S & Norvig P, 2009, Artificial Intelligence: A Modern Approach, 3rd Edition,
Pearson.

[219] Sabuncuoglu I & Touhami S, 2002, Simulation metamodelling with neural networks:
An experimental investigation, International Journal of Production Research, 40(11),
pp. 2483–2505.

[220] Sacks J, Welch WJ, Mitchell TJ & Wynn HP, 1989, Design and analysis of com-
puter experiments, Statistical Science, 4(4), pp. 409–423.

[221] Salman A, Ahmad I & Al-Madani S, 2002, Particle swarm optimization for task as-
signment problem, Microprocessors and Microsystems, 26(8), November, pp. 363–371.

[222] Schlunz EB, 2016, Multiobjective in-core fuel management optimisation for nuclear re-
search reactors, PhD thesis, Stellenbosch University, Stellenbosch.

[223] Schölkopf B, Smola AJ & Bach F, 2002, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond , MIT press.

[224] Schriber TJ, Brunner DT & Smith JS, 2013, Inside discrete-event simulation soft-
ware: How it works and why it matters, Proceedings of the 2013 Winter Simulations
Conference (WSC), pp. 424–438.

[225] Schwefel HP & Rudolph G, 1995, pp. 7–45 in , Contemporary Evolution Strategies,
Springer, Berlin, Heidelberg.

[226] Shaffer JP, 1986, Modified sequentially rejective multiple test procedures, Journal of the
American Statistical Association, 81(395), pp. 826–831.

[227] Shah T, 2020, About Train, Validation and Test Sets in Machine Learning.

[228] Shaw P, 1998, Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems, Proceedings of the International Conference on Principles and Practice
of Constraint Programming, pp. 417–431.

[229] Sheskin DJ, 2011, Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman & Hall.

[230] Shin M, Sargent RG & Goel AL, 2002, Gaussian radial basis functions for simulation
metamodeling , Proceedings of the Proceedings of the Winter Simulation Conference, San
Diego (CA), pp. 483–488.

[231] Sidney S, 1957, Nonparametric statistics for the behavioral sciences, 125(3).

[232] Smith KI, Everson RM& Fieldsend JE, 2004,Dominance measures for multi-objective
simulated annealing , Proceedings of the Proceedings of the 2004 congress on evolutionary
computation (IEEE Cat. No. 04TH8753), pp. 23–30.

[233] Smith KI, Everson RM, Fieldsend JE, Murphy C & Misra R, 2008, Dominance-
based multiobjective simulated annealing , IEEE Transactions on Evolutionary computa-
tion, 12(3), pp. 323–342.

[234] Smola AJ & Schölkopf B, 2004, A tutorial on support vector regression, Statistics and
Computing, 14(3), pp. 199–222.

[235] Snoek J, Larochelle H & Adams RP, 2012, Practical bayesian optimization of ma-
chine learning algorithms, Advances in Neural Information Processing Systems (NIPS),
25.

Stellenbosch University https://scholar.sun.ac.za

178 REFERENCES

[236] Solıés JF, Fraire HJ, Soto-Monterrubio JC & Pazos-Rangel R, “Multi-Objective
Simulated Annealing Algorithms for General Problems”, in: Handbook of Research on Mil-
itary, Aeronautical, and Maritime Logistics and Operations, IGI Global, 2016, pp. 280–
292.

[237] Sørng̊ard B, 2014, Information Theory for Analyzing Neural Networks, Proceedings of
the.

[238] Srinivas N & Deb K, 1994, Muiltiobjective optimization using nondominated sorting in
genetic algorithms, Evolutionary Computation, 2(3), pp. 221–248.

[239] Steurer M, Hill RJ & Pfeifer N, 2021, Metrics for evaluating the performance of ma-
chine learning based automated valuation models, Journal of Property Research, 38(2),
pp. 1–31.

[240] Storn R & Price K, 1997, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization, 11(4), pp. 341–
359.

[241] Sutskever I, Martens J, Dahl G & Hinton G, 2013, On the importance of ini-
tialization and momentum in deep learning , Proceedings of the 3th 30th International
Conference on Machine Learning (ICML), Atlanta, Georgia (GA), pp. 1139–1147.

[242] Sutton RS & Barto AG, 2018, Reinforcement Learning: An Introduction, 2nd Edition,
MIT press, Cambridge (MA).

[243] Svensén M & Bishop CM, 2007, Pattern Recognition and Machine Learning , Springer.

[244] Svozil D, Kvasnicka V & Pospichal J, 1997, Introduction to multi-layer feed-forward
neural networks, omputer Science Chemometrics and Intelligent Laboratory Systems,
39(1), November, pp. 43–62.

[245] Tieleman T & Hinton G, 2012, Neural Networks for Machine Learning , (Unpublished)
Technical Report, University of Toronto, Toronto.

[246] Tsang E & Voudouris C, 1997, Fast local search and guided local search and their appli-
cation to British Telecom’s workforce scheduling problem, Operations Research Letters,
20(3), March, pp. 119–127.

[247] Tsutsui S, Yamamura M & Higuchi T, 1999, Multi-parent recombination with simplex
crossover in real coded genetic algorithms, Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation, pp. 657–664.

[248] Van Gelder L, Das P, Janssen H & Roels S, 2014, Comparative study of metamod-
elling techniques in building energy simulation: Guidelines for practitioners, Simulation
Modelling Practice and Theory, 49(1), December, pp. 245–257.

[249] Van Laarhoven PJ & Aarts EH, “Simulated Annealing”, in: Simulated Annealing:
Theory and Applications, Springer, June 1987, pp. 7–15.

[250] Van Luong T, Melab N & Talbi E.-G, 2011, GPU computing for parallel local search
metaheuristic algorithms, IEEE Transactions on Computers, 62(1), January, pp. 173–
185.

[251] Vapnik V & Chervonenkis AY, 1974, The method of ordered risk minimization, I ,
Stochastic Systems, 8, pp. 21–30.

[252] Venter G & Sobieszczanski Sobieski J, 2004, Multidisciplinary optimization of a
transport aircraft wing using particle swarm optimization, Structural and Multidisci-
plinary Optimization, 26(1), January, pp. 121–131.

Stellenbosch University https://scholar.sun.ac.za

REFERENCES 179

[253] Voudouris C & Tsang E, 1999, Guided local search and its application to the traveling
salesman problem, European Journal of Operational Research, 113(2), March, pp. 469–
499.

[254] Vrugt JA & Robinson BA, 2007, Improved evolutionary optimization from genetically
adaptive multimethod search, Proceedings of the National Academy of Sciences, 104(3),
pp. 708–711.

[255] Whitley LD, 1989, The GENITOR algorithm and selection pressure: Why rank-based
allocation of reproductive trials is best., Proceedings of the Junth Icga, Fairfax (VA),
pp. 116–123.

[256] Winston WL, 2004, Operations Research: Applications and Algorithms, 4th Edition,
Duxbury Press.

[257] Wolpert DH & Macready WG, 1997, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation, 1(1), pp. 67–82.

[258] Xu J, Huang E, Chen C.-H & Lee LH, 2015, Simulation optimization: A review and
exploration in the new era of cloud computing and big data, Asia-Pacific Journal of Op-
erational Research, 32(03).

[259] Yang S, Wu C & Hu SJ, 2000, Modeling and analysis of multi-stage transfer lines with
unreliable machines and finite buffers, Annals of Operations Research, 93(1), pp. 405–
421.

[260] Yoon M & Bekker J, 2017, Single-and multi-objective ranking and selection proce-
dures in simulation: A historical review , South African Journal of Industrial Engineering,
28(2), pp. 37–45.

[261] Yoshida H, Kawata K, Fukuyama Y, Takayama S & Nakanishi Y, 2000, A particle
swarm optimization for reactive power and voltage control considering voltage security
assessment , IEEE Transactions on Power Systems, 15(4), pp. 1232–1239.

[262] Zaremba W, Sutskever I & Vinyals O, 2014, Recurrent neural network regularization,
Neural and Evolutionary Computing.

[263] Zeiler MD, 2012, Adadelta: An adaptive learning rate method , Machine Learning.

[264] Zheng YJ, 2015, Water wave optimization: A new nature-inspired metaheuristic, Com-
puters & Operations Research, 55(1), March, pp. 1–11.

[265] Zhou Y, Hao J.-K & Duval B, 2016, Reinforcement learning based local search for
grouping problems: A case study on graph coloring , Expert Systems with Applications,
64, December, pp. 412–422.

[266] Zitzler E, 1999, Evolutionary algorithms for multiobjective optimization: Methods and
applications, PhD thesis, Swiss Federal Institute of Technology, Zurich.

[267] Zitzler E, Knowles J & Thiele L, 2008, Quality Assessment of Pareto Set Approx-
imations, pp. 373–404 in Branke J, Deb K, Miettinen K & S lowiński R (Eds),
Multiobjective Optimization: Interactive and Evolutionary Approaches, Springer, Berlin,
Heidelberg.

[268] Zitzler E & Künzli S, 2004, Indicator-Based Selection in Multiobjective Search, Pro-
ceedings of the Parallel Problem Solving from Nature, Berlin, Heidelberg, pp. 832–842.

[269] Zitzler E & Thiele L, 1999,Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach, IEEE Transactions on Evolutionary Computa-
tion, 3(4), November, pp. 257–271.

Stellenbosch University https://scholar.sun.ac.za

180 REFERENCES

[270] Zitzler E, Thiele L, Laumanns M, Fonseca CM & Da Fonseca VG, 2003, Perfor-
mance assessment of multiobjective optimizers: An analysis and review , IEEE Transac-
tions on Evolutionary Computation, 7(2), April, pp. 117–132.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A

Metamodel Pilot Study Results

This appendix contains additional results obtained during the pilot study conducted in Chapter
3 to determine the feasibility of an ANN metamodel. The results obtained for the 30 trails
conducted for each regression model is presented in Tables A.1–A.5 and the Python script used
for MLR is given in Listing A.2. Thereafter, the results for the 30 trials conducted for hyperpa-
rameter combinations A–B is given in Tables A.6–A.9 and the Python script for hyperparameter
combinations C is given in Listing A.4. The Python script illustrating the process followed for
Bayesian optimisation is given in Listing A.3.

Listing A.1: The Python script used for the data preprocessing phase.

1 #Build regressors:

2

3 # 1. Multiple Linear Regression

4 from sklearn.linear_model import LinearRegression

5 mlr_regressor = LinearRegression ()

6

7 # 2. Support Vector Machine Regression

8 from sklearn.multioutput import MultiOutputRegressor

9 from sklearn.svm import SVR

10 SVM_regressor = SVR(kernel = ’rbf’)

11 svm_regressor = MultiOutputRegressor(SVM_regressor)

12

13 # 3. Decision Tree Regression

14 from sklearn.tree import DecisionTreeRegressor

15 dt_regressor = DecisionTreeRegressor ()

16

17 # 4. Random Forest Regression

18 from sklearn.ensemble import RandomForestRegressor

19 rfr_regressor = RandomForestRegressor(n_estimators = 15, random_state = 0)

20

21 # 5. K-Nearest Neighbour Regression

22 from sklearn.neighbors import KNeighborsRegressor

23 knn_regressor = KNeighborsRegressor ()

24

Listing A.2: The Python script used to run 30 independent trials for the MLR model.

1 # Multiple Linear Regression

2 for i in range(1, 31):

3 dataset = pd.read_csv(’ssIP_dataset.csv’)

4 X = dataset.iloc[: , 0:2]. values # Independent variables or inputs

5 y = dataset.iloc[: , 2:4]. values # Dependent variables or outputs

6

7 X_train , X_test , y_train , y_test = train_test_split(X, y,

8 test_size = 0.2,

9 random_state = i)

10 sc_X = StandardScaler ()

11 sc_y = StandardScaler ()

12 X_train = sc_X.fit_transform(X_train) # Normalise X_train

13 X_test = sc_X.transform(X_test) # Normalise X_test

14 y_train = sc_y.fit_transform(y_train) # Normalise y_train

15 y_test = sc_y.transform(y_test) # Normalise y_test

16

17 mlr_regressor = LinearRegression () # Build regressor

18 mlr_regressor.fit(X_train , y_train)

19 t_y_pred = mlr_regressor.predict(X_train)

20

181

Stellenbosch University https://scholar.sun.ac.za

182 Appendix A. Metamodel Pilot Study Results

21 v_mses = []

22 v_maes = []

23 test_maes = []

24 test_mses = []

25 t_mse = mean_squared_error(y_train ,t_y_pred)

26 t_mae = mean_absolute_error(y_train ,t_y_pred)

27

28 # 10-Fold Cross Validation

29 v_mse = -np.round(cross_val_score(mlr_regressor , X_train ,

30 y_train ,

31 scoring=’neg_mean_squared_error ’,

32 cv = 10), 4)

33 v_mses.append(v_mse)

34 v_mse_avg = np.round(v_mse.mean(), 4)

35 v_mae = -np.round(cross_val_score(mlr_regressor , X_train ,

36 y_train ,

37 scoring=’neg_mean_absolute_error ’,

38 cv = 10), 4)

39 v_maes.append(v_mae)

40 v_mae_avg = np.round(v_mae.mean(), 4)

41

42 # Evaluate regressor on Test set

43 test_mse = np.round(mean_squared_error(y_test , y_pred), 4)

44 test_mses.append(test_mse)

45 test_mse_avg = np.round(test_mse.mean(), 4)

46 test_mae = np.round(mean_absolute_error(y_test , y_pred), 4)

47 test_maes.append(test_mae)

48 test_mae_avg = np.round(test_mae.mean(), 4)

49

50 # Populate dataframe

51 trial_performance_row = [t_mse , t_mae ,

52 v_mse_avg , v_mae_avg ,

53 test_mse_avg , test_mae_avg]

54 MLR_performance_df.loc[’Run_’ + str(i)] = trial_performance_row

Listing A.3: The Python script used to run the Bayesian optimisation and determine suitable
hyperparameters for the FNN.

1 def model(hp):

2

3 # Hyperparameter search space

4 hp_optimizer = hp.Choice("optimizer", values = ["sgd","adam", "nadam"])

5 hp_learning_rate = hp.Choice("learning_rate", values = [1e-2, 1e-3, 1e-4])

6 hp_regularizer = hp.Choice("kernel_regularizer", values = ["l1", "l2", "l1_l2"])

7 hp_activation = hp.Choice("activation", values = ["sigmoid", "relu", "elu"])

8 hp_initializer = hp.Choice("kernel_initializer",

9 values=["HeUniform", "HeNormal", "GlorotUniform", "GlorotNormal"])

10 hp_units = hp.Int("units", min_value = 2, max_value = 20, step = 1)

11

12 # Build ANN

13 model = Sequential ()

14

15 # Hidden layer

16 model.add(Dense(units = hp_units ,

17 kernel_regularizer = hp_regularizer ,

18 activation = hp_activation ,

19 kernel_initializer = hp_initializer))

20

21 model.add(BatchNormalization ()) # Comment out if not applicable

22

23 # Output layer

24 model.add(tf.keras.layers.Dense(units = 2, activation = hp_activation))

25

26 model.compile(optimizer = hp_optimizer ,

27 loss = "mean_squared_error",

28 metrics = ["mean_squared_error"]

29)

30

31 return model

Stellenbosch University https://scholar.sun.ac.za

183

Listing A.4: The Python script used to run 30 independent trails for the hyperparameter com-
bination C found during Bayesian optimisation for the ANN.

1 # Import dataset

2 dataset = pd.read_csv(’ssIP_dataset.csv’)

3 X = dataset.iloc[: , 0:2]. values # Independent variables , i.e. inputs

4 y = dataset.iloc[: , 2:4]. values # Dependent variables , i.e. outputs

5

6 for i in range(1, 31):

7 # Split dataset using random state i

8 X_train , X_test , y_train , y_test = train_test_split(X, y,

9 test_size = 0.2,

10 random_state = i)

11

12 # Normalise

13 sc_X = StandardScaler ()

14 sc_y = StandardScaler ()

15 X_train = sc_X.fit_transform(X_train)

16 X_test = sc_X.transform(X_test)

17 y_train = sc_y.fit_transform(y_train)

18 y_test = sc_y.transform(y_test)

19

20 # Build ANN using best hyperparameters

21 bo_model = Sequential ()

22

23 # Hidden layer

24 bo_model.add(Dense(units=14,

25 kernel_regularizer = "l2",

26 kernel_initializer = "HeNormal",

27 activation=’elu’))

28

29 bo_model.add(BatchNormalization ()) # Comment out if not applicable

30

31 # Output layer

32 bo_model.add(Dense(units=2, activation=’elu’))

33

34 bo_optimizer = tf.keras.optimizers.Nadam(learning_rate = 0.001)

35

36 bo_model.compile(optimizer = bo_optimizer ,

37 loss = "mean_squared_error",

38 metrics=["mean_squared_error"])

39

40 history_bo = bo_model.fit(X_train ,

41 y_train ,

42 batch_size = batch_size ,

43 epochs = max_epochs ,

44 validation_split = 0.25,

45 callbacks=[early_stopping])

46

47 # Evaluate model on Test set

48 eval_result = bo_model.evaluate(X_test , y_test)

Stellenbosch University https://scholar.sun.ac.za

184 Appendix A. Metamodel Pilot Study Results

Table A.1: Summary of the performance of MLR in terms of MSE and MAE for the 30 trails on the
IP dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0.1479 0.3109 0.1479 0.3109 0.1480 0.3111

Trial 2 0.1481 0.3110 0.1481 0.3110 0.1474 0.3103

Trial 3 0.1479 0.3109 0.1479 0.3109 0.1470 0.3100

Trial 4 0.1482 0.3112 0.1482 0.3112 0.1463 0.3092

Trial 5 0.1480 0.3108 0.1480 0.3108 0.1487 0.3118

Trial 6 0.1480 0.3109 0.1480 0.3109 0.1476 0.3106

Trial 7 0.1481 0.3111 0.1481 0.3111 0.1476 0.3105

Trial 8 0.1480 0.3109 0.1480 0.3109 0.1486 0.3118

Trial 9 0.1482 0.3111 0.1482 0.3111 0.1486 0.3117

Trial 10 0.1479 0.3108 0.1479 0.3108 0.1483 0.3113

Trial 11 0.1481 0.3110 0.1481 0.3110 0.1481 0.3109

Trial 12 0.1481 0.3111 0.1481 0.3111 0.1477 0.3105

Trial 13 0.1477 0.3107 0.1478 0.3107 0.1486 0.3114

Trial 14 0.1478 0.3107 0.1478 0.3107 0.1485 0.3116

Trial 15 0.1480 0.3111 0.1480 0.3111 0.1483 0.3108

Trial 16 0.1479 0.3109 0.1479 0.3109 0.1484 0.3111

Trial 17 0.1480 0.3108 0.1480 0.3109 0.1482 0.3114

Trial 18 0.1478 0.3107 0.1478 0.3107 0.1475 0.3107

Trial 19 0.1480 0.3109 0.1480 0.3109 0.1491 0.3120

Trial 20 0.1481 0.3110 0.1481 0.3110 0.1473 0.3107

Trial 21 0.1480 0.3110 0.1480 0.3110 0.1484 0.3111

Trial 22 0.1481 0.3110 0.1481 0.3110 0.1485 0.3115

Trial 23 0.1480 0.3108 0.1480 0.3108 0.1497 0.3128

Trial 24 0.1479 0.3109 0.1480 0.3110 0.1473 0.3103

Trial 25 0.1478 0.3106 0.1478 0.3106 0.1489 0.3120

Trial 26 0.1476 0.3106 0.1476 0.3106 0.1486 0.3116

Trial 27 0.1480 0.3108 0.1480 0.3108 0.1480 0.3113

Trial 28 0.1479 0.3109 0.1479 0.3109 0.1487 0.3117

Trial 29 0.1479 0.3109 0.1479 0.3110 0.1476 0.3103

Trial 30 0.1481 0.3111 0.1481 0.3111 0.1472 0.3101

Average 0.1480 0.3109 0.1480 0.3109 0.1481 0.3111

Stellenbosch University https://scholar.sun.ac.za

185

Table A.2: Summary of the performance of SVM in terms of MSE and MAE for the 30 trails on the IP
dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0.0026 0.0438 0.0026 0.0439 0.0026 0.0438

Trial 2 0.0026 0.0437 0.0026 0.0438 0.0026 0.0437

Trial 3 0.0026 0.0439 0.0026 0.0439 0.0026 0.0439

Trial 4 0.0026 0.0439 0.0026 0.0439 0.0026 0.0439

Trial 5 0.0026 0.0439 0.0026 0.0439 0.0026 0.0439

Trial 6 0.0026 0.0440 0.0026 0.0439 0.0026 0.0440

Trial 7 0.0026 0.0439 0.0026 0.0439 0.0026 0.0439

Trial 8 0.0026 0.0438 0.0026 0.0438 0.0026 0.0438

Trial 9 0.0026 0.0439 0.0026 0.0439 0.0026 0.0439

Trial 10 0.0026 0.0439 0.0026 0.0438 0.0026 0.0439

Trial 11 0.0026 0.0438 0.0026 0.0439 0.0026 0.0438

Trial 12 0.0026 0.0437 0.0026 0.0437 0.0026 0.0437

Trial 13 0.0026 0.0438 0.0026 0.0437 0.0026 0.0438

Trial 14 0.0026 0.0438 0.0026 0.0440 0.0026 0.0438

Trial 15 0.0026 0.0439 0.0026 0.0439 0.0026 0.0439

Trial 16 0.0026 0.0437 0.0026 0.0438 0.0026 0.0437

Trial 17 0.0026 0.0437 0.0026 0.0436 0.0026 0.0437

Trial 18 0.0026 0.0437 0.0026 0.0438 0.0026 0.0437

Trial 19 0.0026 0.0436 0.0026 0.0438 0.0026 0.0436

Trial 20 0.0026 0.0438 0.0026 0.0438 0.0026 0.0438

Trial 21 0.0026 0.0440 0.0026 0.0438 0.0026 0.0440

Trial 22 0.0026 0.0440 0.0026 0.0439 0.0026 0.0440

Trial 23 0.0026 0.0438 0.0026 0.0439 0.0026 0.0438

Trial 24 0.0026 0.0440 0.0026 0.0439 0.0026 0.0440

Trial 25 0.0026 0.0436 0.0026 0.0438 0.0026 0.0436

Trial 26 0.0026 0.0437 0.0026 0.0438 0.0026 0.0437

Trial 27 0.0026 0.0438 0.0026 0.0438 0.0026 0.0438

Trial 28 0.0026 0.0438 0.0026 0.0439 0.0026 0.0438

Trial 29 0.0026 0.0436 0.0026 0.0436 0.0026 0.0436

Trial 30 0.0026 0.0438 0.0026 0.0439 0.0026 0.0438

Average 0.0026 0.0438 0.0026 0.0438 0.0026 0.0438

Stellenbosch University https://scholar.sun.ac.za

186 Appendix A. Metamodel Pilot Study Results

Table A.3: Summary of the performance of DTR in terms of MSE and MAE for the 30 trails on the IP
dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0 0 0 0.0025 0 0.0024

Trial 2 0 0 0 0.0025 0 0.0024

Trial 3 0 0 0 0.0025 0 0.0024

Trial 4 0 0 0 0.0025 0 0.0024

Trial 5 0 0 0 0.0025 0 0.0024

Trial 6 0 0 0 0.0025 0 0.0024

Trial 7 0 0 0 0.0025 0 0.0024

Trial 8 0 0 0 0.0025 0 0.0024

Trial 9 0 0 0 0.0025 0 0.0024

Trial 10 0 0 0 0.0025 0 0.0024

Trial 11 0 0 0 0.0025 0 0.0024

Trial 12 0 0 0 0.0025 0 0.0024

Trial 13 0 0 0 0.0025 0 0.0024

Trial 14 0 0 0 0.0025 0 0.0024

Trial 15 0 0 0 0.0025 0 0.0024

Trial 16 0 0 0 0.0025 0 0.0024

Trial 17 0 0 0 0.0025 0 0.0024

Trial 18 0 0 0 0.0025 0 0.0024

Trial 19 0 0 0 0.0025 0 0.0024

Trial 20 0 0 0 0.0025 0 0.0024

Trial 21 0 0 0 0.0025 0 0.0024

Trial 22 0 0 0 0.0025 0 0.0024

Trial 23 0 0 0 0.0025 0 0.0024

Trial 24 0 0 0 0.0025 0 0.0024

Trial 25 0 0 0 0.0025 0 0.0024

Trial 26 0 0 0 0.0025 0 0.0024

Trial 27 0 0 0 0.0025 0 0.0024

Trial 28 0 0 0 0.0025 0 0.0024

Trial 29 0 0 0 0.0025 0 0.0024

Trial 30 0 0 0 0.0025 0 0.0024

Average 0 0 0 0.0025 0 0.0024

Stellenbosch University https://scholar.sun.ac.za

187

Table A.4: Summary of the performance of RFR in terms of MSE and MAE for the 30 trails on the IP
dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0 0.00151 0 0.0015 0 0.0015

Trial 2 0 0.00149 0 0.0015 0 0.0015

Trial 3 0 0.00150 0 0.0015 0 0.0015

Trial 4 0 0.00151 0 0.0015 0 0.0015

Trial 5 0 0.00149 0 0.0016 0 0.0015

Trial 6 0 0.00149 0 0.0016 0 0.0015

Trial 7 0 0.00150 0 0.0015 0 0.0015

Trial 8 0 0.00149 0 0.0016 0 0.0015

Trial 9 0 0.00151 0 0.0016 0 0.0015

Trial 10 0 0.00151 0 0.0015 0 0.0015

Trial 11 0 0.00148 0 0.0015 0 0.0015

Trial 12 0 0.00149 0 0.0015 0 0.0015

Trial 13 0 0.00150 0 0.0015 0 0.0015

Trial 14 0 0.00149 0 0.0016 0 0.0015

Trial 15 0 0.00150 0 0.0015 0 0.0015

Trial 16 0 0.00150 0 0.0016 0 0.0015

Trial 17 0 0.00151 0 0.0016 0 0.0015

Trial 18 0 0.00149 0 0.0015 0 0.0015

Trial 19 0 0.00151 0 0.0015 0 0.0015

Trial 20 0 0.00151 0 0.0015 0 0.0015

Trial 21 0 0.00149 0 0.0015 0 0.0015

Trial 22 0 0.00151 0 0.0015 0 0.0015

Trial 23 0 0.00151 0 0.0015 0 0.0015

Trial 24 0 0.00149 0 0.0015 0 0.0015

Trial 25 0 0.00150 0 0.0016 0 0.0015

Trial 26 0 0.00149 0 0.0015 0 0.0015

Trial 27 0 0.00149 0 0.0016 0 0.0015

Trial 28 0 0.00149 0 0.0016 0 0.0015

Trial 29 0 0.00149 0 0.0015 0 0.0015

Trial 30 0 0.00150 0 0.0015 0 0.0015

Average 0 0.00150 0 0.0015 0 0.0015

Stellenbosch University https://scholar.sun.ac.za

188 Appendix A. Metamodel Pilot Study Results

Table A.5: Summary of the performance of XGBoost in terms of MSE and MAE for the 30 trails on
the IP dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0.0001 0.0072 0.0001 0.0071 0.0001 0.0072

Trial 2 0.0001 0.0070 0.0001 0.0071 0.0001 0.0070

Trial 3 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 4 0.0001 0.0072 0.0001 0.0071 0.0001 0.0072

Trial 5 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 6 0.0001 0.0070 0.0001 0.0070 0.0001 0.0070

Trial 7 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 8 0.0001 0.0070 0.0001 0.0070 0.0001 0.0070

Trial 9 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 10 0.0001 0.0072 0.0001 0.0071 0.0001 0.0072

Trial 11 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 12 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 13 0.0001 0.0070 0.0001 0.0072 0.0001 0.0070

Trial 14 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 15 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 16 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 17 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 18 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 19 0.0001 0.0072 0.0001 0.0071 0.0001 0.0072

Trial 20 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 21 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 22 0.0001 0.0072 0.0001 0.0071 0.0001 0.0072

Trial 23 0.0001 0.0070 0.0001 0.0071 0.0001 0.0070

Trial 24 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 25 0.0001 0.0071 0.0001 0.0072 0.0001 0.0071

Trial 26 0.0001 0.0070 0.0001 0.0070 0.0001 0.0070

Trial 27 0.0001 0.0070 0.0001 0.0071 0.0001 0.0070

Trial 28 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Trial 29 0.0001 0.0070 0.0001 0.0071 0.0001 0.0070

Trial 30 0.0001 0.0070 0.0001 0.0071 0.0001 0.0070

Average 0.0001 0.0071 0.0001 0.0071 0.0001 0.0071

Stellenbosch University https://scholar.sun.ac.za

189

Table A.6: Summary of the performance of the ANN with hyperparameter combination A in terms of
MSE and MAE for the 30 trails on the IP dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0.052 0.146 0.052 0.146 0.053 0.145

Trial 2 0.052 0.145 0.052 0.145 0.076 0.211

Trial 3 0.054 0.149 0.054 0.149 0.054 0.149

Trial 4 0.054 0.150 0.054 0.150 0.056 0.156

Trial 5 0.052 0.144 0.052 0.144 0.152 0.340

Trial 6 0.052 0.146 0.052 0.146 0.058 0.168

Trial 7 0.053 0.146 0.053 0.146 0.062 0.176

Trial 8 0.054 0.148 0.054 0.148 0.054 0.147

Trial 9 0.053 0.146 0.053 0.146 0.062 0.175

Trial 10 0.055 0.151 0.055 0.151 0.054 0.143

Trial 11 0.055 0.150 0.055 0.150 0.058 0.162

Trial 12 0.055 0.151 0.055 0.151 0.209 0.396

Trial 13 0.054 0.150 0.054 0.150 0.054 0.145

Trial 14 0.055 0.151 0.055 0.151 0.053 0.144

Trial 15 0.054 0.147 0.054 0.147 0.059 0.161

Trial 16 0.054 0.148 0.054 0.148 0.055 0.155

Trial 17 0.054 0.149 0.054 0.149 0.061 0.172

Trial 18 0.052 0.146 0.052 0.146 0.058 0.169

Trial 19 0.053 0.146 0.053 0.146 0.056 0.151

Trial 20 0.052 0.145 0.052 0.145 0.050 0.138

Trial 21 0.053 0.143 0.053 0.143 0.051 0.135

Trial 22 0.054 0.148 0.054 0.148 0.055 0.155

Trial 23 0.053 0.147 0.053 0.147 0.054 0.149

Trial 24 0.054 0.148 0.054 0.148 0.060 0.173

Trial 25 0.054 0.148 0.054 0.148 0.057 0.160

Trial 26 0.052 0.145 0.052 0.145 0.078 0.218

Trial 27 0.049 0.137 0.049 0.137 0.079 0.213

Trial 28 0.052 0.144 0.052 0.144 0.074 0.206

Trial 29 0.051 0.140 0.051 0.140 0.052 0.147

Trial 30 0.053 0.147 0.053 0.147 0.055 0.155

Average 0.053 0.147 0.053 0.147 0.067 0.177

Stellenbosch University https://scholar.sun.ac.za

190 Appendix A. Metamodel Pilot Study Results

Table A.7: Summary of the performance of the ANN with hyperparameter combination B in terms of
MSE and MAE for the 30 trails on the IP dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0.049 0.130 0.049 0.130 0.049 0.129

Trial 2 0.049 0.131 0.049 0.131 0.050 0.131

Trial 3 0.049 0.133 0.049 0.133 0.049 0.133

Trial 4 0.049 0.133 0.049 0.133 0.050 0.134

Trial 5 0.049 0.132 0.049 0.132 0.050 0.132

Trial 6 0.050 0.133 0.050 0.133 0.051 0.133

Trial 7 0.050 0.134 0.050 0.134 0.049 0.134

Trial 8 0.050 0.134 0.050 0.134 0.051 0.135

Trial 9 0.049 0.133 0.049 0.133 0.050 0.133

Trial 10 0.049 0.131 0.049 0.131 0.050 0.133

Trial 11 0.049 0.132 0.049 0.132 0.049 0.132

Trial 12 0.050 0.135 0.050 0.135 0.050 0.135

Trial 13 0.049 0.131 0.049 0.131 0.049 0.130

Trial 14 0.049 0.131 0.049 0.131 0.049 0.131

Trial 15 0.051 0.136 0.051 0.136 0.051 0.136

Trial 16 0.048 0.129 0.048 0.129 0.049 0.130

Trial 17 0.049 0.131 0.049 0.131 0.049 0.132

Trial 18 0.049 0.130 0.049 0.130 0.049 0.131

Trial 19 0.049 0.133 0.049 0.133 0.049 0.131

Trial 20 0.049 0.133 0.049 0.133 0.050 0.133

Trial 21 0.050 0.135 0.050 0.135 0.050 0.135

Trial 22 0.049 0.132 0.049 0.132 0.049 0.131

Trial 23 0.049 0.132 0.049 0.132 0.049 0.132

Trial 24 0.049 0.132 0.049 0.132 0.049 0.132

Trial 25 0.050 0.135 0.050 0.135 0.050 0.134

Trial 26 0.046 0.122 0.046 0.122 0.047 0.123

Trial 27 0.049 0.131 0.049 0.131 0.049 0.131

Trial 28 0.049 0.132 0.049 0.132 0.050 0.132

Trial 29 0.049 0.132 0.049 0.132 0.049 0.131

Trial 30 0.049 0.131 0.049 0.131 0.050 0.131

Average 0.049 0.132 0.049 0.132 0.049 0.132

Stellenbosch University https://scholar.sun.ac.za

191

Table A.8: Summary of the performance of the ANN with hyperparameter combination C in terms of
MSE and MAE for the 30 trails on the IP dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0.054 0.148 0.054 0.148 0.053 0.143

Trial 2 0.051 0.139 0.051 0.139 0.050 0.138

Trial 3 0.050 0.137 0.050 0.137 0.049 0.136

Trial 4 0.050 0.134 0.050 0.134 0.050 0.134

Trial 5 0.049 0.133 0.049 0.133 0.049 0.133

Trial 6 0.051 0.138 0.051 0.138 0.052 0.137

Trial 7 0.050 0.137 0.050 0.137 0.049 0.132

Trial 8 0.052 0.142 0.052 0.142 0.053 0.140

Trial 9 0.051 0.139 0.051 0.139 0.053 0.140

Trial 10 0.050 0.135 0.050 0.135 0.049 0.134

Trial 11 0.051 0.140 0.051 0.140 0.053 0.148

Trial 12 0.049 0.134 0.049 0.134 0.049 0.129

Trial 13 0.052 0.142 0.052 0.142 0.051 0.138

Trial 14 0.051 0.139 0.051 0.139 0.050 0.136

Trial 15 0.051 0.140 0.051 0.140 0.050 0.138

Trial 16 0.054 0.148 0.054 0.148 0.055 0.150

Trial 17 0.050 0.136 0.050 0.136 0.050 0.138

Trial 18 0.051 0.137 0.051 0.137 0.051 0.135

Trial 19 0.050 0.135 0.050 0.135 0.049 0.132

Trial 20 0.053 0.143 0.053 0.143 0.053 0.140

Trial 21 0.055 0.150 0.055 0.150 0.054 0.147

Trial 22 0.051 0.139 0.051 0.139 0.050 0.136

Trial 23 0.050 0.137 0.050 0.137 0.051 0.139

Trial 24 0.052 0.141 0.052 0.141 0.050 0.138

Trial 25 0.051 0.138 0.051 0.138 0.050 0.134

Trial 26 0.053 0.145 0.053 0.145 0.054 0.146

Trial 27 0.050 0.135 0.050 0.135 0.049 0.131

Trial 28 0.051 0.139 0.051 0.139 0.050 0.137

Trial 29 0.050 0.136 0.050 0.136 0.048 0.130

Trial 30 0.050 0.134 0.050 0.134 0.051 0.139

Average 0.051 0.139 0.051 0.139 0.051 0.138

Stellenbosch University https://scholar.sun.ac.za

192 Appendix A. Metamodel Pilot Study Results

Table A.9: Summary of the performance of the ANN with hyperparameter combination D in terms of
MSE and MAE for the 30 trails on the IP dataset.

Training set Validation set Test set

MSE MAE MSE MAE MSE MAE

Trial 1 0.060 0.150 0.060 0.150 0.060 0.150

Trial 2 0.060 0.154 0.060 0.154 0.061 0.155

Trial 3 0.060 0.151 0.060 0.151 0.060 0.151

Trial 4 0.060 0.153 0.060 0.153 0.060 0.153

Trial 5 0.061 0.154 0.061 0.154 0.062 0.154

Trial 6 0.059 0.146 0.059 0.146 0.060 0.147

Trial 7 0.062 0.153 0.062 0.153 0.061 0.153

Trial 8 0.061 0.153 0.061 0.153 0.062 0.153

Trial 9 0.059 0.148 0.059 0.148 0.059 0.149

Trial 10 0.062 0.155 0.062 0.155 0.063 0.155

Trial 11 0.060 0.152 0.060 0.152 0.060 0.152

Trial 12 0.057 0.146 0.057 0.146 0.058 0.146

Trial 13 0.059 0.150 0.059 0.150 0.059 0.150

Trial 14 0.061 0.154 0.061 0.154 0.061 0.154

Trial 15 0.060 0.150 0.060 0.150 0.060 0.150

Trial 16 0.059 0.151 0.059 0.151 0.060 0.151

Trial 17 0.060 0.151 0.060 0.151 0.061 0.151

Trial 18 0.058 0.145 0.058 0.145 0.058 0.146

Trial 19 0.058 0.145 0.058 0.145 0.057 0.145

Trial 20 0.059 0.148 0.059 0.148 0.059 0.148

Trial 21 0.060 0.152 0.060 0.152 0.059 0.151

Trial 22 0.058 0.146 0.058 0.146 0.058 0.146

Trial 23 0.062 0.155 0.062 0.155 0.062 0.155

Trial 24 0.059 0.150 0.059 0.150 0.058 0.149

Trial 25 0.060 0.151 0.060 0.151 0.060 0.150

Trial 26 0.060 0.151 0.060 0.151 0.061 0.152

Trial 27 0.062 0.154 0.062 0.154 0.061 0.153

Trial 28 0.060 0.152 0.060 0.152 0.061 0.153

Trial 29 0.060 0.149 0.060 0.149 0.059 0.149

Trial 30 0.060 0.150 0.060 0.150 0.060 0.151

Average 0.060 0.151 0.060 0.151 0.060 0.151

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B

Algorithmic Parameter Evaluation Results

This appendix contains additional results obtained during the hyperparameter search space
evaluation for the respective algorithms as described in Chapter 6 which focussed on determining
good parameter values for the BOCEGAH and BOSAH.

The results documented in this appendix were omitted from the respective sections (in Chapter
6) so as to enhance the understanding of the main text. After determining good parameter
values for the respective sub-algorithms (or LLHs) they are employed in the BOCEGAH and
the BOSAH, respectively.

B.1 MOOCEM

This section presents the results for the hyperparameter study conducted for the MOOCEM.

B.1.1 Open mine problem

Tables B.1 and B.2 present a preview of the hyperareas and number on non-dominated solutions
and their corresponding ranks for run 1–40 for hyperparameter combinations A1.1.1–A1.1.9.
Figures B.1 and B.2 illustrate the worst and best approximation fronts found, in terms of hy-
perareas and number non-dominated solutions, for the respective hyperparameter combinations
A1.1.1–A1.1.9 that correspond to the runs given in Table B.3.

193

Stellenbosch University https://scholar.sun.ac.za

194 Appendix B. Algorithmic Parameter Evaluation Results

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

Hyperarea

500 1,000 1,500 2,000 2,500

5

10

15

Non-dominated solutions

A1.1.1 (Best)

A1.1.1 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A1.1.2 (Best)

A1.1.2 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A1.1.3 (Best)

A1.1.3 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A1.1.4 (Best)

A1.1.4 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

A1.1.5 (Best)

A1.1.5 (Worst)

Figure B.1: The best and worst best approximation fronts for hyperparameter combinations A1.1.1–
A1.1.5.

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 195

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

Hyperarea

500 1,000 1,500 2,000 2,500

5

10

15

Non-dominated solutions

A1.1.6 (Best)

A1.1.6 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A1.1.7 (Best)

A1.1.7 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A1.1.8 (Best)

A1.1.8 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

A1.1.9 (Best)

A1.1.9 (Worst)

Figure B.2: The best and worst best approximation fronts for hyperparameter combinations A1.1.6–
A1.1.9.

B.1.2 (s, S) Inventory problem

Tables B.6 and B.7 present a preview of the hyperareas and number on non-dominated solutions
and their corresponding ranks for run 1–100 for hyperparameter combinations A1.2.1–A1.2.9.
Figures B.3 and B.4 illustrate the worst and best approximation fronts found, in terms of hy-
perareas and number non-dominated solutions, for the respective hyperparameter combinations
A1.2.1–A1.2.9 that correspond to the runs given in Table B.8.

Stellenbosch University https://scholar.sun.ac.za

196 Appendix B. Algorithmic Parameter Evaluation Results

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A1.2.1 (Best)

A1.2.1 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A1.2.2 (Best)

A1.2.2 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A1.2.3 (Best)

A1.2.3 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A1.2.4 (Best)

A1.2.4 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A1.2.5 (Best)

A1.2.5 (Worst)

Figure B.3: The best and worst best approximation fronts for hyperparameter combinations A1.2.1–
A1.2.5.

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 197

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A1.2.6 (Best)

A1.2.6 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A1.2.7 (Best)

A1.2.7 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A1.2.8 (Best)

A1.2.8 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A1.2.9 (Best)

A1.2.9 (Worst)

Figure B.4: The best and worst best approximation fronts for hyperparameter combinations A1.2.6–
A1.2.9.

B.1.3 Buffer allocation problem: five machines

Tables B.9 and B.10 present a preview of the hyperareas and number on non-dominated solutions
and their corresponding ranks for run 1–100 for hyperparameter combinations A1.3.1–A1.3.9.
Figures B.5 and B.6 illustrate the worst and best approximation fronts found, in terms of hy-
perareas and number non-dominated solutions, for the respective hyperparameter combinations
A1.3.1–A1.3.9 that correspond to the runs given in Table B.11.

Stellenbosch University https://scholar.sun.ac.za

198 Appendix B. Algorithmic Parameter Evaluation Results

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A1.3.1 (Best)

A1.3.1 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A1.3.2 (Best)

A1.3.2 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A1.3.3 (Best)

A1.3.3 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A1.3.4 (Best)

A1.3.4 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A1.3.5 (Best)

A1.3.5 (Worst)

Figure B.5: The best and worst best approximation fronts for hyperparameter combinations A1.3.1–
A1.3.5.

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 199

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A1.3.6 (Best)

A1.3.6 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

A1.3.7 (Best)

A1.3.7 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A1.3.8 (Best)

A1.3.8 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A1.3.9 (Best)

A1.3.9 (Worst)

Figure B.6: The best and worst best approximation fronts for hyperparameter combinations A1.3.6–
A1.3.9.

B.1.4 Buffer allocation problem: 10 machines

Tables B.12 and B.13 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A1.4.1–
A1.4.9. Figures B.7 and B.8 illustrate the worst and best approximation fronts found, in terms
of hyperareas and number non-dominated solutions, for the respective hyperparameter combi-
nations A1.4.1–A1.4.9 that correspond to the runs given in Table B.14.

Stellenbosch University https://scholar.sun.ac.za

200 Appendix B. Algorithmic Parameter Evaluation Results

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A1.4.1 (Best)

A1.4.1 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A1.4.2 (Best)

A1.4.2 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A1.4.3 (Best)

A1.4.3 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A1.3.4 (Best)

A1.3.4 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A1.4.5 (Best)

A1.4.5 (Worst)

Figure B.7: The best and worst best approximation fronts for hyperparameter combinations A1.4.1–
A1.4.5.

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 201

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
g
h
p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A1.4.6 (Best)

A1.4.6 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
g
h
p
u
t

0.4 0.6 0.8 1 1.2

70

80

A1.4.7 (Best)

A1.4.7 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A1.4.8 (Best)

A1.4.8 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A1.4.9 (Best)

A1.4.9 (Worst)

Figure B.8: The best and worst best approximation fronts for hyperparameter combinations A1.4.6–
A1.4.9.

B.1.5 Non-linear buffer allocation problem: 16 machines

Tables B.15 and B.16 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A1.5.1–
A1.5.9. Figures B.9 and B.10 illustrate the worst and best approximation fronts found, in terms
of hyperareas and number non-dominated solutions, for the respective hyperparameter combina-
tions A1.5.1–A1.5.9 that correspond to the runs given in Table B.17. In Figure B.11 the average
number of non-dominated solutions obtained for hyperparameter combinations A1.1–A1.9 is
illustrated for the respective simulation problems.

Stellenbosch University https://scholar.sun.ac.za

202 Appendix B. Algorithmic Parameter Evaluation Results

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A1.5.1 (Best)

A1.5.1 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A1.5.2 (Best)

A1.5.2 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A1.5.3 (Best)

A1.5.3 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A1.5.4 (Best)

A1.5.4 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
g
h
p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A1.5.5 (Best)

A1.5.5 (Worst)

Figure B.9: The best and worst best approximation fronts for hyperparameter combinations A1.5.1–
A1.5.5.

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 203

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A1.5.6 (Best)

A1.5.6 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A1.5.7 (Best)

A1.5.7 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A1.5.8 (Best)

A1.5.8 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A1.5.9 (Best)

A1.5.9 (Worst)

Figure B.10: The best and worst best approximation fronts for hyperparameter combinations A1.5.6–
A1.5.9.

Stellenbosch University https://scholar.sun.ac.za

204 Appendix B. Algorithmic Parameter Evaluation Results
T
a
b
le

B
.1
:
A

p
re
v
ie
w

of
th
e
h
y
p
er
ar
ea
s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

40
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
1.
1.
1–

A
1.
1.
9.

T
h
e
ra
n
k
s
a
re

gi
ve
n
in

th
e
p
ar
en
th
es
es

a
n
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en
p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
1
.1
.1

A
1
.1
.2

A
1
.1
.3

A
1
.1
.4

A
1
.1
.5

A
1
.1
.6

A
1
.1
.7

A
1
.1
.8

A
1
.1
.9

1
1
3
9
3
7
.9
4
(3
.5
)

1
3
9
3
7
.9
4
(3
.5
)

1
3
5
6
1
.8
4
(6
)

1
3
6
3
9
.3
0
(5
)

1
4
4
8
5
.0
4
(1
)

1
3
9
9
6
.0
8
(2
)

1
3
4
7
5
.3
7
(8
.5
)

1
3
4
7
5
.3
7
(8
.5
)

1
3
5
4
1
.0
7
(7
)

2
1
4
3
9
4
.8
7
(6
)

1
4
4
8
5
.0
4
(3
)

1
4
2
1
0
.8
7
(7
)

1
4
4
8
5
.0
4
(3
)

1
4
4
8
5
.0
4
(3
)

1
4
4
8
5
.0
4
(3
)

1
4
4
8
5
.0
4
(3
)

1
4
0
8
2
.6
8
(8
)

1
4
0
8
1
.7
1
(9
)

3
1
4
4
8
5
.0
4
(2
)

1
4
0
7
5
.3
6
(4
)

1
4
0
6
1
.3
1
(6
)

1
4
4
8
5
.0
4
(2
)

1
3
6
6
7
.8
2
(7
)

1
4
0
6
9
.3
9
(5
)

1
4
4
8
5
.0
4
(2
)

1
2
8
4
0
.9
8
(8
)

1
2
0
4
8
.3
1
(9
)

4
1
4
4
8
5
.0
4
(4
.5
)

1
4
4
8
5
.0
4
(4
.5
)

1
4
4
8
4
.9
3
(9
)

1
4
4
8
5
.0
4
(4
.5
)

1
4
4
8
5
.0
4
(4
.5
)

1
4
4
8
5
.0
4
(4
.5
)

1
4
4
8
5
.0
4
(4
.5
)

1
4
4
8
5
.0
4
(4
.5
)

1
4
4
8
5
.0
4
(4
.5
)

5
1
4
4
7
6
.2
9
(1
)

1
3
4
3
1
.1
8
(6
.5
)

1
3
4
3
1
.1
8
(6
.5
)

1
3
7
7
4
.8
9
(3
)

1
3
6
8
1
.2
2
(4
.5
)

1
3
6
8
1
.2
2
(4
.5
)

1
4
0
8
3
.2
2
(2
)

1
2
5
8
5
.4
1
(8
.5
)

1
2
5
8
5
.4
1
(8
.5
)

6
1
4
4
8
5
.0
4
(1
.5
)

1
4
0
8
5
.6
0
(4
)

1
4
0
8
5
.6
0
(4
)

1
4
0
8
5
.6
0
(4
)

1
3
6
7
9
.9
1
(6
.5
)

1
3
6
7
9
.9
1
(6
.5
)

1
4
4
8
5
.0
4
(1
.5
)

1
2
9
9
5
.8
1
(8
.5
)

1
2
9
9
5
.8
1
(8
.5
)

7
1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

8
1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

9
1
3
8
0
5
.3
7
(3
)

1
2
0
6
7
.1
2
(4
.5
)

1
2
0
6
7
.1
2
(4
.5
)

1
4
0
8
3
.2
3
(2
)

1
0
9
2
5
.8
3
(8
.5
)

1
0
9
2
5
.8
3
(8
.5
)

1
4
2
1
0
.8
7
(1
)

1
0
9
2
8
.9
7
(6
.5
)

1
0
9
2
8
.9
7
(6
.5
)

1
0

1
4
3
9
4
.8
7
(8
)

1
4
4
8
5
.0
4
(4
)

1
4
4
8
5
.0
4
(4
)

1
3
6
8
1
.5
0
(9
)

1
4
4
8
5
.0
4
(4
)

1
4
4
8
5
.0
4
(4
)

1
4
4
8
5
.0
4
(4
)

1
4
4
8
5
.0
4
(4
)

1
4
4
8
5
.0
4
(4
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

3
9

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

1
4
4
8
5
.0
4
(5
)

4
0

1
4
4
8
5
.0
4
(3
.5
)

1
3
6
8
0
.3
4
(3
.5
)

1
4
4
8
5
.0
4
(8
)

1
4
4
8
5
.0
4
(3
.5
)

1
4
4
8
5
.0
4
(3
.5
)

1
2
8
8
1
.5
2
(9
)

1
4
4
8
5
.0
4
(3
.5
)

1
4
0
8
3
.5
1
(7
)

1
4
4
8
5
.0
4
(3
.5
)

∑ R
C
i

1
7
6
.5

1
8
1
.5

2
4
1

1
7
5

1
8
6
.5

2
2
7
.5

1
6
4
.5

2
1
6
.5

2
3
1

∑ R
2 C
i

3
1
1
5
2
.2
5

3
2
9
4
2
.2
5

5
8
0
8
1

3
0
6
2
5

3
4
7
8
2
.2
5

5
1
7
5
6
.2
5

2
7
0
6
0
.2
5

4
6
8
7
2
.2
5

5
3
3
6
1

T
a
b
le

B
.2
:

A
p
re
v
ie
w

of
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
on

s
(a
n
d

co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n

1–
40

fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
a
ti
o
n
s

A
1.
1.
1–
A
1.
1.
9.

T
h
e
ra
n
k
s
a
re

gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en

p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
1
.1
.1

A
1
.1
.2

A
1
.1
.3

A
1
.1
.4

A
1
.1
.5

A
1
.1
.6

A
1
.1
.7

A
1
.1
.8

A
1
.1
.9

1
3
5
(3
)

3
5
(3
)

3
4
(7
)

3
4
(7
)

3
6
(1
)

3
5
(3
)

3
4
(7
)

3
4
(7
)

3
4
(7
)

2
3
7
(1
)

3
6
(4
)

3
5
(8
)

3
6
(4
)

3
6
(4
)

3
6
(4
)

3
6
(4
)

3
5
(8
)

3
5
(8
)

3
3
6
(2
)

3
5
(5
)

3
5
(5
)

3
6
(2
)

3
4
(7
)

3
5
(5
)

3
6
(2
)

3
2
(8
)

3
0
(9
)

4
3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

5
3
6
(1
)

3
3
(6
.5
)

3
3
(6
.5
)

3
4
(4
)

3
4
(4
)

3
4
(4
)

3
5
(2
)

3
1
(8
.5
)

3
1
(8
.5
)

6
3
6
(1
.5
)

3
5
(4
)

3
5
(4
)

3
5
(4
)

3
4
(6
.5
)

3
4
(6
.5
)

3
6
(1
.5
)

3
2
(8
.5
)

3
2
(8
.5
)

7
3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

8
3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

9
3
4
(3
)

3
0
(4
.5
)

3
0
(4
.5
)

3
5
(1
.5
)

2
7
(7
.5
)

2
7
(7
.5
)

3
5
(1
.5
)

2
7
(7
.5
)

2
7
(7
.5
)

1
0

3
7
(1
)

3
6
(5
)

3
6
(5
)

3
4
(9
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

3
9

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

3
6
(5
)

4
0

3
6
(3
.5
)

3
4
(3
.5
)

3
6
(8
)

3
6
(3
.5
)

3
6
(3
.5
)

3
2
(9
)

3
6
(3
.5
)

3
5
(7
)

3
6
(3
.5
)

∑ R
C
i

1
6
0
.5

1
7
9
.5

2
2
4

1
8
2
.5

1
8
4
.5

2
2
8
.5

2
2
8
.5

2
2
9
.5

2
3
5
.5

∑ R
2 C
i

2
5
7
6
0
.2
5

3
2
2
2
0
.2
5

5
0
1
7
6

3
3
3
0
6
.2
5

3
4
0
4
0
.2
5

5
2
2
1
2
.2
5

5
2
2
1
2
.2
5

5
2
6
7
0
.2
5

5
5
4
6
0
.2
5

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 205

Table B.3: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the MOOCEM) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A1.1.1–A1.1.9.

Worst Best

HA NDS HA NDS

A1.1.1 Run 37 Run 24 Run 3 Run 2

A1.1.2 Run 18 Run 18 Run 2 Run 38

A1.1.3 Run 30 Run 33 Run 7 Run 25

A1.1.4 Run 34 Run 33 Run 2 Run 2

A1.1.5 Run 34 Run 33 Run 1 Run 19

A1.1.6 Run 30 Run 33 Run 2 Run 19

A1.1.7 Run 32 Run 33 Run 2 Run 2

A1.1.8 Run 1 Run 9 Run 4 Run 4

A1.1.9 Run 1 Run 9 Run 4 Run 20

Table B.4: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
based on the adjusted hyperareas of the approximation fronts for the hyperparameter combinations
A1.1.1–A1.1.9.

A1.1.2 A1.1.3 A1.1.4 A1.1.5 A1.1.6 A1.1.7 A1.1.8 A1.1.9

A1.1.1 1 0.3 1 1 1 1 1 0.94

A1.1.2 0.54 1 1 1 1 1 1

A1.1.3 0.25 0.94 1 0.06 1 1

A1.1.4 1 1 1 1 0.8

A1.1.5 1 1 1 1

A1.1.6 1 1 1

A1.1.7 1 0.24

A1.1.8 1

Table B.5: The adjusted p-values obtained by the Nemenyi post hoc test for the multiple comparisons
based on the number of non-dominated solutions found for the approximation fronts for the hyperparam-
eter combinations A1.1.1–A1.1.9.

A1.1.2 A1.1.3 A1.1.4 A1.1.5 A1.1.6 A1.1.7 A1.1.8 A1.1.9

A1.1.1 1 0.34 1 1 0.2 1 0.17 0.08

A1.1.2 1 1 1 1 1 1 0.8

A1.1.3 1 1 1 1 1 1

A1.1.4 1 1 1 1 1

A1.1.5 1 1 1 1

A1.1.6 1 1 1

A1.1.7 0.99 0.52

A1.1.8 1

Stellenbosch University https://scholar.sun.ac.za

206 Appendix B. Algorithmic Parameter Evaluation Results
T
a
b
le

B
.6
:
A

p
re
v
ie
w

of
th
e
h
y
p
er
ar
ea
s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
1.
2.
1–

A
1.
2.
9.

T
h
e
ra
n
k
s
a
re

gi
ve
n
in

th
e
p
ar
en
th
es
es

a
n
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en
p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
1
.2
.1

A
1
.2
.2

A
1
.2
.3

A
1
.2
.4

A
1
.2
.5

A
1
.2
.6

A
1
.2
.7

A
1
.2
.8

A
1
.2
.9

1
1
1
2
2
6
8
.3
2
(2
)

1
1
2
2
6
8
.3
2
(2
)

1
1
2
2
6
8
.3
2
(2
)

1
1
2
2
2
5
.6
8
(5
)

1
1
2
2
2
5
.6
8
(5
)

1
1
2
2
2
5
.6
8
(5
)

1
1
1
8
1
4
.8
3
(8
)

1
1
1
8
1
4
.8
3
(8
)

1
1
1
8
1
4
.8
3
(8
)

2
1
1
3
5
5
6
.2
2
(8
)

1
1
3
5
5
6
.2
2
(8
)

1
1
3
5
5
6
.2
2
(8
)

1
1
3
6
9
2
.9
5
(2
)

1
1
3
6
9
2
.9
5
(2
)

1
1
3
6
9
2
.9
5
(2
)

1
1
3
5
8
1
.6
1
(5
)

1
1
3
5
8
1
.6
1
(5
)

1
1
3
5
8
1
.6
1
(5
)

3
1
1
1
0
8
6
.7
0
(6
.5
)

1
1
1
0
8
6
.7
0
(6
.5
)

1
1
3
5
3
2
.9
0
(3
)

1
1
1
5
9
9
.5
2
(4
)

1
1
1
5
5
9
.6
2
(5
)

1
1
3
5
3
5
.9
4
(2
)

1
1
0
7
2
4
.2
5
(8
.5
)

1
1
0
7
2
4
.2
5
(8
.5
)

1
1
3
7
2
4
.6
4
(1
)

4
1
1
2
3
3
5
.5
1
(8
.5
)

1
1
2
3
3
5
.5
1
(8
.5
)

1
1
2
6
9
8
.8
8
(2
)

1
1
2
3
7
5
.5
7
(6
.5
)

1
1
2
3
7
5
.5
7
(6
.5
)

1
1
2
6
1
3
.2
0
(3
)

1
1
2
3
9
5
.1
9
(4
.5
)

1
1
2
3
9
5
.1
9
(4
.5
)

1
1
3
6
9
6
.5
7
(1
)

5
1
1
2
5
8
3
.0
2
(8
)

1
1
2
5
8
3
.0
2
(8
)

1
1
2
5
8
3
.0
2
(8
)

1
1
2
6
5
0
.3
1
(5
.5
)

1
1
2
6
5
0
.5
1
(4
)

1
1
2
6
5
0
.3
1
(5
.5
)

1
1
2
6
5
9
.3
9
(2
)

1
1
2
6
5
9
.3
9
(2
)

1
1
2
6
5
9
.3
9
(2
)

6
1
1
2
0
7
6
.3
2
(1
)

1
1
1
6
4
6
.6
3
(6
.5
)

1
1
1
6
4
6
.6
3
(6
.5
)

1
1
1
8
9
4
.1
8
(3
)

1
1
1
6
6
3
.0
1
(4
.5
)

1
1
1
6
6
3
.0
1
(4
.5
)

1
1
1
9
9
6
.0
9
(2
)

1
1
1
5
5
8
.4
6
(8
.5
)

1
1
1
5
5
8
.4
6
(8
.5
)

7
1
1
2
4
0
8
.4
4
(8
)

1
1
2
4
0
8
.4
4
(8
)

1
1
2
4
0
8
.4
4
(8
)

1
1
2
4
6
0
.9
6
(5
)

1
1
2
4
6
0
.9
6
(5
)

1
1
2
4
6
0
.9
6
(5
)

1
1
2
4
6
3
.9
1
(2
)

1
1
2
4
6
3
.9
1
(2
)

1
1
2
4
6
3
.9
1
(2
)

8
1
1
3
0
0
0
.8
6
(1
.5
)

1
1
3
0
0
0
.8
6
(1
.5
)

1
1
2
9
3
4
.6
5
(6
)

1
1
2
9
7
4
.5
5
(3
.5
)

1
1
2
9
7
4
.5
5
(3
.5
)

1
1
2
9
6
2
.0
9
(5
)

1
1
2
8
9
8
.8
3
(8
.5
)

1
1
2
8
9
8
.8
3
(8
.5
)

1
1
2
9
1
4
.4
2
(7
)

9
1
1
3
0
5
5
.4
6
(2
)

1
1
2
8
9
4
.5
3
(5
.5
)

1
1
2
8
9
4
.5
3
(5
.5
)

1
1
2
6
8
9
.9
3
(7
)

1
1
2
5
6
9
.1
6
(9
)

1
1
2
5
7
1
.8
7
(8
)

1
1
3
1
9
1
.1
6
(1
)

1
1
3
0
3
4
.3
5
(3
.5
)

1
1
3
0
3
4
.3
5
(3
.5
)

1
0

1
1
2
4
6
1
.8
6
(5
)

1
1
2
4
6
1
.8
6
(5
)

1
1
2
4
6
1
.8
6
(5
)

1
1
3
1
7
8
.0
6
(1
.5
)

1
1
3
0
8
4
.9
6
(3
)

1
1
3
1
7
8
.0
6
(1
.5
)

1
1
2
3
9
5
.8
8
(8
)

1
1
2
3
9
5
.8
8
(8
)

1
1
2
3
9
5
.8
8
(8
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

9
9

1
1
2
2
5
6
.7
1
(2
)

1
1
2
2
5
6
.7
1
(2
)

1
1
2
2
5
6
.7
1
(2
)

1
1
2
0
8
2
.2
1
(8
)

1
1
2
0
8
2
.2
1
(8
)

1
1
2
0
8
2
.2
1
(8
)

1
1
2
1
5
3
.7
3
(5
)

1
1
2
1
5
3
.7
3
(5
)

1
1
2
1
5
3
.7
3
(5
)

1
0
0

1
1
1
9
2
9
.6
0
(2
)

1
1
1
9
2
9
.6
0
(2
)

1
1
1
9
2
9
.6
0
(2
)

1
1
1
8
0
8
.6
4
(5
)

1
1
1
8
0
8
.6
4
(5
)

1
1
1
8
0
8
.6
4
(5
)

1
1
1
5
0
8
.1
3
(8
)

1
1
1
5
0
8
.1
3
(8
)

1
1
1
5
0
8
.1
3
(8
)

∑ R
C
i

5
2
2
.5
0

5
2
5
.5
0

5
1
5
.0
0

5
1
5
.5
0

4
8
1
.0
0

4
9
1
.5
0

5
1
6
.5
0

4
8
1
.5
0

4
5
1
.0
0

∑ R
2 C
i

2
7
3
0
0
6
.2
5

2
7
6
1
5
0
.2
5

2
6
5
2
2
5
.0
0

2
6
5
7
4
0
.2
5

2
3
1
3
6
1
.0
0

2
4
1
5
7
2
.2
5

2
6
6
7
7
2
.2
5

2
3
1
8
4
2
.2
5

2
0
3
4
0
1
.0
0

T
a
b
le

B
.7
:

A
p
re
v
ie
w

of
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
on

s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
a
ti
o
n
s

A
1.
2.
1–
A
1.
2.
9.

T
h
e
ra
n
k
s
a
re

gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en

p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
1
.2
.1

A
1
.2
.2

A
1
.2
.3

A
1
.2
.4

A
1
.2
.5

A
1
.2
.6

A
1
.2
.7

A
1
.2
.8

A
1
.2
.9

1
2
0
8
(5
)

2
0
8
(5
)

2
0
8
(5
)

2
0
6
(8
)

2
0
6
(8
)

2
0
6
(8
)

2
1
4
(2
)

2
1
4
(2
)

2
1
4
(2
)

2
2
5
4
(3
.5
)

2
5
4
(3
.5
)
2
5
4
(3
.5
)

2
4
1
(8
)

2
4
1
(8
)

2
4
1
(8
)

2
5
4
(3
.5
)
2
5
4
(3
.5
)
2
5
4
(3
.5
)

3
2
3
3
(5
.5
)

2
3
3
(5
.5
)
2
4
2
(3
)

2
2
3
(9
)

2
3
1
(7
)

2
2
5
(8
)

2
4
2
(3
)

2
4
2
(3
)

2
5
0
(1
)

4
2
5
6
(4
.5
)

2
5
6
(4
.5
)
2
3
5
(9
)

2
7
2
(1
.5
)

2
7
2
(1
.5
)
2
6
9
(3
)

2
4
8
(7
.5
)
2
4
8
(7
.5
)
2
5
5
(6
)

5
1
8
3
(5
)

1
8
3
(5
)

1
8
3
(5
)

1
9
0
(1
.5
)

1
8
9
(3
)

1
9
0
(1
.5
)
1
8
1
(8
)

1
8
1
(8
)

1
8
1
(8
)

6
2
4
9
(3
)

1
9
9
(4
.5
)
1
9
9
(4
.5
)

2
5
1
(1
)

1
9
8
(6
.5
)
1
9
8
(6
.5
)
2
5
0
(2
)

1
9
0
(8
.5
)
1
9
0
(8
.5
)

7
2
3
3
(8
)

2
3
3
(8
)

2
3
3
(8
)

2
4
0
(2
)

2
4
0
(2
)

2
4
0
(2
)

2
3
8
(5
)

2
3
8
(5
)

2
3
8
(5
)

8
2
5
0
(1
.5
)

2
5
0
(1
.5
)
2
0
9
(3
)

2
0
4
(5
.5
)

2
0
4
(5
.5
)
2
0
7
(4
)

1
9
5
(8
)

1
9
5
(8
)

1
9
5
(8
)

9
2
2
1
(3
)

1
9
1
(6
)

1
9
1
(6
)

2
3
0
(1
.5
)

1
9
1
(6
)

2
0
1
(4
)

2
3
0
(1
.5
)
1
7
9
(8
.5
)
1
7
9
(8
.5
)

1
0

2
2
4
(2
)

2
2
4
(2
)

2
2
4
(2
)

2
1
0
(7
.5
)

1
9
3
(9
)

2
1
0
(7
.5
)
2
1
9
(5
)

2
1
9
(5
)

2
1
9
(5
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

9
9

2
7
3
(5
)

2
7
3
(5
)

2
7
3
(5
)

2
6
2
(8
)

2
6
2
(8
)

2
6
2
(8
)

2
8
7
(2
)

2
8
7
(2
)

2
8
7
(2
)

1
0
0

2
1
9
(3
.5
)

2
1
9
(3
.5
)
2
1
9
(3
.5
)

2
1
9
(3
.5
)

2
1
9
(3
.5
)
2
1
9
(3
.5
)
2
1
3
(8
)

2
1
3
(8
)

2
1
3
(8
)

∑ R
C
i
3
8
1
.5

4
3
0

5
1
6
.5

4
7
1
.5

5
4
8

6
2
6

4
4
0

5
0
9

5
7
7
.5

∑ R
2 C
i
1
4
5
5
4
2
.2
5

1
8
4
9
0
0

2
6
6
7
7
2
.2
5

2
2
2
3
1
2
.2
5

3
0
0
3
0
4

3
9
1
8
7
6

1
9
3
6
0
0

2
5
9
0
8
1

3
3
3
5
0
6
.2
5

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 207

Table B.8: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the MOOCEM) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A1.2.1–A1.2.9.

Worst Best

HA NDS HA NDS

A1.2.1 Run 94 Run 89 Run 93 Run 79

A1.2.2 Run 94 Run 62 Run 93 Run 79

A1.2.3 Run 94 Run 62 Run 36 Run 79

A1.2.4 Run 30 Run 23 Run 48 Run 79

A1.2.5 Run 72 Run 23 Run 50 Run 79

A1.2.6 Run 72 Run 23 Run 69 Run 79

A1.2.7 Run 72 Run 21 Run 69 Run 79

A1.2.8 Run 3 Run 89 Run 69 Run 79

A1.2.9 Run 3 Run 89 Run 36 Run 79

34.5

35

35.5

OMP
(A1.1.1–A1.1.9)

Average number of non-dominated solutions

220

225

230

235

IP
(A1.2.1–A1.2.9)

86

88

90

92

BAP5
(A1.3.1–A1.3.9)

A1.1

A1.2

A1.3

A1.4

A1.5

A1.6

A1.7

A1.8

A1.9

50

55

60

BAP10
(A1.4.1–A1.4.9)

55.5

56

56.5

57

BAP16
(A1.5.1–A1.5.9)

Figure B.11: The average number of non-dominated solutions obtained for hyperparameter combina-
tions A1.1–A1.9 for the respective simulation problems.

Stellenbosch University https://scholar.sun.ac.za

208 Appendix B. Algorithmic Parameter Evaluation Results

Table B.9: A preview of the hyperareas (and corresponding ranks) obtained for run 1–100 for hy-
perparameter combinations A1.3.1–A1.3.9. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A1.3.1 A1.3.2 A1.3.3 A1.3.4 A1.3.5 A1.3.6 A1.3.7 A1.3.8 A1.3.9

1 31.78 (9) 32.13 (7) 32.18 (6) 32.30 (3) 32.51 (1) 32.25 (4) 32.04 (8) 32.39 (2) 32.24 (5)

2 33.43 (7) 33.72 (2.5) 33.72 (2.5) 32.80 (9) 33.76 (1) 33.64 (6) 33.38 (8) 33.70 (4.5) 33.70 (4.5)

3 32.37 (3) 32.22 (6) 32.29 (4) 32.21 (8) 33.59 (1) 32.71 (2) 32.22 (7) 32.15 (9) 32.28 (5)

4 33.50 (2.5) 33.50 (2.5) 33.26 (9) 33.42 (6) 33.60 (1) 33.27 (8) 33.47 (4.5) 33.47 (4.5) 33.29 (7)

5 33.42 (7.5) 33.42 (7.5) 33.41 (9) 33.50 (1) 33.45 (5) 33.45 (6) 33.45 (2.5) 33.45 (2.5) 33.45 (4)

6 33.25 (4) 33.34 (2) 33.09 (6) 33.09 (7) 33.33 (3) 32.59 (9) 33.20 (5) 33.37 (1) 32.93 (8)

7 32.22 (5) 32.22 (5) 32.22 (5) 32.40 (2.5) 33.50 (1) 32.40 (2.5) 32.12 (8) 32.12 (8) 32.12 (8)

8 33.57 (6) 33.57 (6) 33.57 (6) 33.56 (8.5) 33.59 (4) 33.56 (8.5) 33.62 (2) 33.62 (2) 33.62 (2)

9 33.01 (6) 33.19 (3) 33.20 (2) 33.02 (5) 33.34 (1) 32.76 (9) 32.92 (8) 32.99 (7) 33.03 (4)

10 33.65 (2) 33.58 (5) 33.62 (3) 33.57 (6) 33.53 (9) 33.67 (1) 33.54 (8) 33.56 (7) 33.62 (4)
...

...
...

...
...

...
...

...
...

...

99 33.02 (3.5) 33.02 (3.5) 32.58 (6) 32.55 (7) 33.46 (1) 33.06 (2) 32.52 (8.5) 32.52 (8.5) 32.99 (5)

100 33.22 (6.5) 33.22 (6.5) 33.29 (5) 33.18 (9) 33.33 (3) 33.30 (4) 33.51 (1.5) 33.51 (1.5) 33.18 (8)∑
RCi 536.50 525 508.50 555 479 504.00 485 465.50 441.50∑
R2

Ci 287 832.25 275 625 258 572.25 308 025 229 441 254 016 235 225 216 690.25 194 922.25

Table B.10: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–100 for hyperparameter combinations A1.3.1–A1.3.9. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A1.3.1 A1.3.2 A1.3.3 A1.3.4 A1.3.5 A1.3.6 A1.3.7 A1.3.8 A1.3.9

1 37 (9) 55 (4) 52 (5) 46 (7) 59 (2) 49 (6) 41 (8) 58 (3) 65 (1)

2 73 (8) 105 (5.5) 105 (5.5) 63 (9) 112 (3) 107 (4) 76 (7) 117 (1.5) 117 (1.5)

3 78 (3) 69 (8) 76 (4.5) 71 (7) 111 (1) 64 (9) 81 (2) 73 (6) 76 (4.5)

4 113 (5.5) 113 (5.5) 86 (9) 115 (4) 128 (1) 88 (8) 117 (2.5) 117 (2.5) 94 (7)

5 83 (8.5) 83 (8.5) 105 (1) 95 (3.5) 94 (5) 98 (2) 87 (6.5) 87 (6.5) 95 (3.5)

6 71 (3) 53 (9) 57 (7.5) 72 (2) 69 (4) 57 (7.5) 79 (1) 65 (5) 62 (6)

7 68 (5) 68 (5) 68 (5) 74 (2.5) 92 (1) 74 (2.5) 63 (8) 63 (8) 63 (8)

8 126 (2) 126 (2) 126 (2) 108 (7.5) 79 (9) 108 (7.5) 109 (5) 109 (5) 109 (5)

9 64 (3) 51 (9) 62 (4) 55 (8) 87 (1) 60 (5) 59 (6) 56 (7) 71 (2)

10 107 (5) 106 (6) 94 (9) 111 (3) 120 (1) 104 (7) 113 (2) 108 (4) 99 (8)
...

...
...

...
...

...
...

...
...

...

99 98 (1.5) 98 (1.5) 97 (3) 87 (7) 96 (4) 94 (6) 86 (8.5) 86 (8.5) 95 (5)

100 92 (4.5) 92 (4.5) 71 (8) 106 (1) 70 (9) 80 (6) 93 (2.5) 93 (2.5) 77 (7)∑
RCi 508 566 568.5 459 515.5 548 404.5 450 480.5∑
R2

Ci 258 064 320 356 323 192.25 210 681 265 740 300 304 163 620 202 500 230 880.25

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 209

Table B.11: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the MOOCEM) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A1.3.1–A1.3.9.

Worst Best

HA NDS HA NDS

A1.3.1 Run 75 Run 1 Run 50 Run 50

A1.3.2 Run 75 Run 75 Run 2 Run 18

A1.3.3 Run 75 Run 75 Run 2 Run 18

A1.3.4 Run 75 Run 27 Run 92 Run 50

A1.3.5 Run 79 Run 98 Run 2 Run 58

A1.3.6 Run 75 Run 75 Run 10 Run 18

A1.3.7 Run 27 Run 1 Run 60 Run 18

A1.3.8 Run 75 Run 75 Run 60 Run 18

A1.3.9 Run 75 Run 75 Run 2 Run 18

Stellenbosch University https://scholar.sun.ac.za

210 Appendix B. Algorithmic Parameter Evaluation Results

Table B.12: A preview of the hyperareas (and corresponding ranks) obtained for run 1–100 for hy-
perparameter combinations A1.4.1–A1.4.9. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A1.4.1 A1.4.2 A1.4.3 A1.4.4 A1.4.5 A1.4.6 A1.4.7 A1.4.8 A1.4.9

1 22.10 (2) 21.85 (6) 21.92 (4) 20.24 (8) 20.24 (8) 20.24 (8) 21.86 (5) 22.16 (1) 22.03 (3)

2 21.96 (3) 21.96 (4) 22.08 (1) 21.33 (8) 21.33 (8) 21.33 (8) 21.99 (2) 21.93 (5) 21.91 (6)

3 21.29 (5) 21.62 (3) 21.72 (2) 21.13 (7) 21.13 (7) 21.13 (7) 21.05 (9) 21.42 (4) 22.07 (1)

4 21.98 (3) 21.96 (4) 21.65 (5) 20.68 (8) 20.68 (8) 20.68 (8) 22.10 (1) 22.07 (2) 21.60 (6)

5 22.14 (2) 21.78 (6) 22.15 (1) 21.20 (8) 21.20 (8) 21.20 (8) 22.05 (3) 21.82 (5) 22.03 (4)

6 21.36 (6) 21.98 (4) 22.08 (2) 21.09 (8) 21.09 (8) 21.09 (8) 21.53 (5) 22.17 (1) 22.07 (3)

7 21.71 (4) 21.73 (2) 21.66 (5) 20.94 (8) 20.94 (8) 20.94 (8) 21.57 (6) 21.88 (1) 21.71 (3)

8 21.92 (4) 21.91 (5) 21.93 (3) 21.22 (8) 21.22 (8) 21.22 (8) 21.86 (6) 22.05 (2) 22.14 (1)

9 22.05 (1) 21.99 (3) 21.89 (5) 20.64 (8) 20.64 (8) 20.64 (8) 21.99 (2) 21.89 (4) 21.83 (6)

10 21.72 (6) 22.06 (1) 21.87 (5) 21.03 (8) 21.03 (8) 21.03 (8) 21.95 (2) 21.93 (4) 21.93 (3)
...

...
...

...
...

...
...

...
...

...

99 21.89 (3) 21.73 (4) 22.03 (2) 20.89 (8.5) 20.89 (8.5) 21.37 (7) 21.72 (5) 21.71 (6) 22.07 (1)

100 22.03 (4) 22.15 (1) 21.90 (6) 20.83 (7.5) 20.83 (7.5) 20.80 (9) 22.12 (3) 22.15 (2) 22.00 (5)∑
RCi 371 359 347 799.5 789 799.5 350 373 312∑
R2

Ci 137 641 128 881 120 409 639 200.25 622 521 639 200.25 122 500 139 129 97 344

Table B.13: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–100 for hyperparameter combinations A1.4.1–A1.4.9. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A1.4.1 A1.4.2 A1.4.3 A1.4.4 A1.4.5 A1.4.6 A1.4.7 A1.4.8 A1.4.9

1 61 (4) 50 (6) 57 (5) 42 (8) 42 (8) 42 (8) 63 (3) 69 (2) 70 (1)

2 64 (2.5) 60 (5.5) 63 (4) 46 (8) 46 (8) 46 (8) 64 (2.5) 65 (1) 60 (5.5)

3 60 (1) 59 (2.5) 59 (2.5) 51 (7) 51 (7) 51 (7) 58 (4) 56 (5) 47 (9)

4 66 (3) 71 (1) 63 (4) 53 (7.5) 53 (7.5) 53 (7.5) 67 (2) 53 (7.5) 57 (5)

5 59 (6) 69 (1) 61 (4) 49 (8) 49 (8) 49 (8) 68 (2.5) 60 (5) 68 (2.5)

6 64 (4.5) 82 (1) 74 (2) 40 (8) 40 (8) 40 (8) 52 (6) 64 (4.5) 71 (3)

7 50 (4) 55 (3) 49 (6.5) 49 (6.5) 49 (6.5) 49 (6.5) 60 (1) 48 (9) 56 (2)

8 80 (2) 68 (6) 84 (1) 67 (8) 67 (8) 67 (8) 75 (4) 75 (4) 75 (4)

9 64 (3) 65 (1.5) 54 (6) 39 (8) 39 (8) 39 (8) 62 (4) 65 (1.5) 59 (5)

10 63 (4.5) 66 (3) 56 (6) 47 (8) 47 (8) 47 (8) 68 (1) 67 (2) 63 (4.5)
...

...
...

...
...

...
...

...
...

...

99 61 (4) 58 (5) 72 (2) 57 (7) 57 (7) 57 (7) 69 (3) 56 (9) 73 (1)

100 56 (6) 58 (5) 65 (2) 46 (8.5) 46 (8.5) 50 (7) 60 (3.5) 60 (3.5) 67 (1)∑
RCi 368 384.5 393.5 744.5 735 762.5 386 365 361∑
R2

Ci 135 424 147 840.25 154 842.25 554 280.25 540 225 581 406.25 148 996 133 225 130 321

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 211

Table B.14: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the MOOCEM) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A1.4.1–A1.4.9.

Worst Best

HA NDS HA NDS

A1.4.1 Run 75 Run 55 Run 37 Run 92

A1.4.2 Run 75 Run 76 Run 37 Run 49

A1.4.3 Run 22 Run 91 Run 35 Run 8

A1.4.4 Run 89 Run 35 Run 75 Run 8

A1.4.5 Run 65 Run 44 Run 75 Run 8

A1.4.6 Run 88 Run 44 Run 60 Run 8

A1.4.7 Run 75 Run 82 Run 88 Run 37

A1.4.8 Run 32 Run 58 Run 62 Run 40

A1.4.9 Run 47 Run 58 Run 95 Run 90

Stellenbosch University https://scholar.sun.ac.za

212 Appendix B. Algorithmic Parameter Evaluation Results

Table B.15: A preview of the hyperareas (and corresponding ranks) obtained for run 1–100 for hy-
perparameter combinations A1.5.1–A1.5.9. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A1.5.1 A1.5.2 A1.5.3 A1.5.4 A1.5.5 A1.5.6 A1.5.7 A1.5.8 A1.5.9

1 203.81 (4) 206.29 (3) 206.33 (2) 206.68 (1) 202.53 (7) 203.7 (5) 202.38 (8) 203.29 (6) 201.28 (9)

2 202.7 (5) 204.25 (1) 203.57 (3) 203.63 (2) 201.16 (7) 200.09 (9) 203.38 (4) 201.25 (6) 200.59 (8)

3 202.19 (6) 203.39 (4) 201.42 (8) 202.55 (5) 200.46 (9) 204.71 (1) 201.71 (7) 204.07 (3) 204.47 (2)

4 200.24 (8) 201.65 (4) 195.51 (9) 201.5 (6) 204.48 (1) 200.68 (7) 201.52 (5) 201.65 (3) 204.3 (2)

5 194.67 (9) 201.67 (4) 200.73 (5) 195.99 (8) 202.68 (3) 203.63 (2) 199.85 (7) 200.47 (6) 204.46 (1)

6 200.89 (7) 202.62 (1) 201.86 (2) 196.34 (9) 201.84 (3) 201.78 (4) 197.98 (8) 201.08 (6) 201.31 (5)

7 203.06 (3) 205.08 (1) 202.76 (4) 201.71 (5) 201.08 (9) 201.69 (6) 204.74 (2) 201.14 (7) 201.09 (8)

8 199.21 (9) 201.94 (6) 201.72 (7) 204.56 (1) 201.37 (8) 203.18 (2) 202.27 (4) 202.98 (3) 202.1 (5)

9 196.32 (7) 199.6 (4) 202.13 (1) 193.71 (8) 201.15 (2) 199.49 (5) 191.98 (9) 199.06 (6) 200.25 (3)

10 203.4 (8) 204.09 (4) 204.1 (3) 204.44 (2) 202.61 (9) 203.96 (6) 205.27 (1) 204.06 (5) 203.87 (7)
...

...
...

...
...

...
...

...
...

...

99 200.86 (9) 202.16 (7) 203.53 (2) 202.4 (6) 202.65 (4) 201.5 (8) 202.52 (5) 205.8 (1) 203.28 (3)

100 202.61 (6) 202.26 (9) 203.17 (3) 202.77 (5) 202.47 (7) 202.94 (4) 202.32 (8) 203.8 (2) 205.31 (1)∑
RCi 585 505 426 563 527 415 533 518 428∑
R2

Ci 342 225 255 025 181 476 316 969 277 729 172 225 284 089 268 324 183 184

Table B.16: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–100 for hyperparameter combinations A1.5.1–A1.5.9. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A1.5.1 A1.5.2 A1.5.3 A1.5.4 A1.5.5 A1.5.6 A1.5.7 A1.5.8 A1.5.9

1 63 (3) 58 (4) 50 (8) 44 (9) 64 (2) 70 (1) 53 (7) 54 (6) 56 (5)

2 65 (1) 61 (4) 63 (2) 50 (9) 54 (7) 57 (6) 62 (3) 58 (5) 53 (8)

3 58 (8) 60 (6.5) 63 (2.5) 54 (9) 63 (2.5) 68 (1) 60 (6.5) 62 (4.5) 62 (4.5)

4 50 (8) 57 (3.5) 54 (6) 49 (9) 52 (7) 55 (5) 69 (1) 64 (2) 57 (3.5)

5 61 (4) 66 (1) 48 (9) 64 (2) 51 (6) 62 (3) 49 (8) 60 (5) 50 (7)

6 55 (4.5) 62 (1) 51 (7.5) 43 (9) 61 (2) 55 (4.5) 54 (6) 59 (3) 51 (7.5)

7 46 (9) 60 (2) 48 (7) 52 (4) 49 (6) 51 (5) 54 (3) 47 (8) 65 (1)

8 51 (7) 66 (1) 63 (2) 59 (4) 48 (8) 56 (5) 46 (9) 52 (6) 61 (3)

9 56 (5.5) 58 (3) 63 (1) 56 (5.5) 54 (8.5) 60 (2) 57 (4) 55 (7) 54 (8.5)

10 55 (8) 60 (6) 62 (4.5) 63 (3) 66 (1.5) 66 (1.5) 55 (8) 62 (4.5) 55 (8)
...

...
...

...
...

...
...

...
...

...

99 64 (2) 57 (6.5) 47 (9) 61 (4) 57 (6.5) 66 (1) 62 (3) 50 (8) 59 (5)

100 59 (4.5) 61 (3) 57 (6.5) 52 (9) 57 (6.5) 62 (2) 66 (1) 54 (8) 59 (4.5)∑
RCi 511.5 479 467 555.5 510 460 532.5 499 485.5∑
R2

Ci 261 632 229 441 218 089 308 580 260100 211 600 283 556.25 249 001 235 710.25

Stellenbosch University https://scholar.sun.ac.za

B.1. MOOCEM 213

Table B.17: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the MOOCEM) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A1.5.1–A1.5.9.

Worst Best

HA NDS HA NDS

A1.5.1 Run 75 Run 24 Run 19 Run 89

A1.5.2 Run 75 Run 83 Run 19 Run 29

A1.5.3 Run 63 Run 60 Run 43 Run 57

A1.5.4 Run 71 Run 56 Run 1 Run 50

A1.5.5 Run 83 Run 29 Run 49 Run 39

A1.5.6 Run 75 Run 75 Run 68 Run 77

A1.5.7 Run 9 Run 93 Run 35 Run 4

A1.5.8 Run 75 Run 28 Run 32 Run 77

A1.5.9 Run 93 Run 52 Run 72 Run 35

Stellenbosch University https://scholar.sun.ac.za

214 Appendix B. Algorithmic Parameter Evaluation Results

B.2 NSGA-II

This section presents the results for the hyperparameter study conducted for the NSGA-II.

B.2.1 Open mine problem

Tables B.18 and B.19 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–40 for hyperparameter combinations A2.1.1–
A2.1.24. Figures B.12 and B.14 combines the approximation fronts for which the runs where
found to be the same, whereas Figure B.13 illustrate the worst and best approximation fronts
found (in terms of hyperareas and number non-dominated solutions), for the respective hyper-
parameter combinations A2.1.1–A2.1.24, all corresponding to the runs given in Table B.20.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 215

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

Hyperarea and non-dominated solutions

A2.1.1 (Best)

A2.1.1 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.2 (Best)

A2.1.2 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

A2.1.3 (Best)

A2.1.3 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.4 (Best)

A2.1.4 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

A2.1.5 (Best)

A2.1.5 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.6 (Best)

A2.1.6 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

A2.1.8 (Best)

A2.1.8 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.12 (Best)

A2.1.12 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

A2.1.13 (Best)

A2.1.13 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

A2.1.14 (Best)

A2.1.14 (Worst)

Figure B.12: The best and worst best approximation fronts for hyperparameter combinations A2.1.1–
A2.1.6, A2.1.8, A2.1.12–A2.1.14.

Stellenbosch University https://scholar.sun.ac.za

216 Appendix B. Algorithmic Parameter Evaluation Results

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

Hyperarea

500 1,000 1,500 2,000 2,500

5

10

15

Non-dominated solutions

A2.1.7 (Best)

A2.1.7 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.9 (Best)

A2.1.9 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.10 (Best)

A2.1.10 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

A2.1.11 (Best)

A2.1.11 (Worst)

Figure B.13: The best and worst best approximation fronts for hyperparameter combinations A2.1.7,
A2.1.9–A2.1.11.

B.2.2 (s, S) Inventory problem

Tables B.23 and B.24 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A2.2.1–
A2.2.24. Figures B.15–B.19 illustrate the worst and best approximation fronts found, in terms
of hyperareas and number non-dominated solutions, for the respective hyperparameter combi-
nations A2.2.1–A2.2.24 that correspond to the runs given in Table B.25.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 217

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

Hyperarea and non-dominated solutions

A2.1.15 (Best)

A2.1.15 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.16 (Best)

A2.1.16 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

A2.1.17 (Best)

A2.1.17 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.18 (Best)

A2.1.18 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

A2.1.19 (Best)

A2.1.19 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.20 (Best)

A2.1.20 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

A2.1.21 (Best)

A2.1.21 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

A2.1.22 (Best)

A2.1.22 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

A2.1.23 (Best)

A2.1.23 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

A2.1.24 (Best)

A2.1.24 (Worst)

Figure B.14: The best and worst best approximation fronts for hyperparameter combinations A2.2.16–
A2.2.24.

Stellenbosch University https://scholar.sun.ac.za

218 Appendix B. Algorithmic Parameter Evaluation Results

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A2.2.1 (Best)

A2.2.1 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.2 (Best)

A2.2.2 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.3 (Best)

A2.2.3 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.4 (Best)

A2.2.4 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A2.2.5 (Best)

A2.2.5 (Worst)

Figure B.15: The best and worst best approximation fronts for hyperparameter combinations A2.2.1–
A2.2.5.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 219

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A2.2.6 (Best)

A2.2.6 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.7 (Best)

A2.2.7 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.8 (Best)

A2.2.8 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.9 (Best)

A2.2.9 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A2.2.10 (Best)

A2.2.10 (Worst)

Figure B.16: The best and worst best approximation fronts for hyperparameter combinations A2.2.6–
A2.2.10.

Stellenbosch University https://scholar.sun.ac.za

220 Appendix B. Algorithmic Parameter Evaluation Results

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A2.2.11 (Best)

A2.2.11 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.12 (Best)

A2.2.12 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.13 (Best)

A2.2.13 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.14 (Best)

A2.2.14 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A2.2.15 (Best)

A2.2.15 (Worst)

Figure B.17: The best and worst best approximation fronts for hyperparameter combinations A2.2.11–
A2.2.15.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 221

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A2.2.16 (Best)

A2.2.16 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.17 (Best)

A2.2.17 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.18 (Best)

A2.2.18 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.19 (Best)

A2.2.19 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A2.2.20 (Best)

A2.2.20 (Worst)

Figure B.18: The best and worst best approximation fronts for hyperparameter combinations A2.2.16–
A2.2.20.

Stellenbosch University https://scholar.sun.ac.za

222 Appendix B. Algorithmic Parameter Evaluation Results

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A2.2.21 (Best)

A2.2.21 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.22 (Best)

A2.2.22 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A2.2.23 (Best)

A2.2.23 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A2.2.24 (Best)

A2.2.24 (Worst)

Figure B.19: The best and worst best approximation fronts for hyperparameter combinations A2.2.21–
A2.2.24.

B.2.3 Buffer allocation problem: five machines

Tables B.28 and B.29 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A2.3.1–
A2.3.24. Figures B.20–B.24 illustrate the worst and best approximation fronts found, in terms
of hyperareas and number non-dominated solutions, for the respective hyperparameter combi-
nations A2.3.1–A2.3.24 that correspond to the runs given in Table B.30.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 223

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A2.3.1 (Best)

A2.3.1 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.2 (Best)

A2.3.2 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.3 (Best)

A2.3.3 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.4 (Best)

A2.3.4 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A2.3.5 (Best)

A2.3.5 (Worst)

Figure B.20: The best and worst best approximation fronts for hyperparameter combinations A2.3.1–
A2.3.5.

Stellenbosch University https://scholar.sun.ac.za

224 Appendix B. Algorithmic Parameter Evaluation Results

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A2.3.6 (Best)

A2.3.6 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.7 (Best)

A2.3.7 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.8 (Best)

A2.3.8 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.9 (Best)

A2.3.9 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A2.3.10 (Best)

A2.3.10 (Worst)

Figure B.21: The best and worst best approximation fronts for hyperparameter combinations A2.3.6–
A2.3.10.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 225

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A2.3.11 (Best)

A2.3.11 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.12 (Best)

A2.3.12 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.13 (Best)

A2.3.13 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.14 (Best)

A2.3.14 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A2.3.15 (Best)

A2.3.15 (Worst)

Figure B.22: The best and worst best approximation fronts for hyperparameter combinations A2.3.11–
A2.3.15.

Stellenbosch University https://scholar.sun.ac.za

226 Appendix B. Algorithmic Parameter Evaluation Results

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A2.3.16 (Best)

A2.3.16 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.17 (Best)

A2.3.17 (Worst)

0.5 1 1.5 2 2.5

70

80

90

S
T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.18 (Best)

A2.3.18 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.19 (Best)

A2.3.19 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A2.3.20 (Best)

A2.3.20 (Worst)

Figure B.23: The best and worst best approximation fronts for hyperparameter combinations A2.3.16–
A2.3.20.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 227

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A2.3.21 (Best)

A2.3.21 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.22 (Best)

A2.3.22 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A2.3.23 (Best)

A2.3.23 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A2.3.24 (Best)

A2.3.24 (Worst)

Figure B.24: The best and worst best approximation fronts for hyperparameter combinations A2.3.21–
A2.3.24.

B.2.4 Buffer allocation problem: 10 machines

Tables B.33 and B.34 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A2.4.1–
A2.4.24. Figures B.25–B.29 illustrate the worst and best approximation fronts found, in terms
of hyperareas and number non-dominated solutions, for the respective hyperparameter combi-
nations A2.4.1–A2.4.24 that correspond to the runs given in Table B.35.

Stellenbosch University https://scholar.sun.ac.za

228 Appendix B. Algorithmic Parameter Evaluation Results

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A2.4.1 (Best)

A2.4.1 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.2 (Best)

A2.4.2 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.3 (Best)

A2.4.3 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.4 (Best)

A2.4.4 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A2.4.5 (Best)

A2.4.5 (Worst)

Figure B.25: The best and worst best approximation fronts for hyperparameter combinations A2.4.1–
A2.4.5.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 229

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A2.4.6 (Best)

A2.4.6 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.7 (Best)

A2.4.7 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.8 (Best)

A2.4.8 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.9 (Best)

A2.4.9 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A2.4.10 (Best)

A2.4.10 (Worst)

Figure B.26: The best and worst best approximation fronts for hyperparameter combinations A2.4.6–
A2.4.10.

Stellenbosch University https://scholar.sun.ac.za

230 Appendix B. Algorithmic Parameter Evaluation Results

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A2.4.11 (Best)

A2.4.11 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.12 (Best)

A2.4.12 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.13 (Best)

A2.4.13 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.14 (Best)

A2.4.14 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A2.4.15 (Best)

A2.4.15 (Worst)

Figure B.27: The best and worst best approximation fronts for hyperparameter combinations A2.4.11–
A2.4.15.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 231

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A2.4.16 (Best)

A2.4.16 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.17 (Best)

A2.4.17 (Worst)

0.4 0.6 0.8 1 1.2

70

80

S
T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.18 (Best)

A2.4.18 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.19 (Best)

A2.4.19 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A2.4.20 (Best)

A2.4.20 (Worst)

Figure B.28: The best and worst best approximation fronts for hyperparameter combinations A2.4.16–
A2.4.20.

Stellenbosch University https://scholar.sun.ac.za

232 Appendix B. Algorithmic Parameter Evaluation Results

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
g
h
p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A2.4.21 (Best)

A2.4.21 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
g
h
p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.22 (Best)

A2.4.22 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A2.4.23 (Best)

A2.4.23 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A2.4.24 (Best)

A2.4.24 (Worst)

Figure B.29: The best and worst best approximation fronts for hyperparameter combinations A2.4.21–
A2.4.24.

B.2.5 Non-linear buffer allocation problem: 16 machines

Tables B.38 and B.39 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A2.5.1–
A2.5.24. Figures B.30–B.34 illustrate the worst and best approximation fronts found, in terms
of hyperareas and number non-dominated solutions, for the respective hyperparameter combina-
tions A2.5.1–A2.5.24 that correspond to the runs given in Table B.40. In Figure B.35 the average
number of non-dominated solutions obtained for hyperparameter combinations A2.1–A2.24 is
illustrated for the respective simulation problems.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 233

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A2.5.1 (Best)

A2.5.1 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.2 (Best)

A2.5.2 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.3 (Best)

A2.5.3 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.4 (Best)

A2.5.4 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A2.5.5 (Best)

A2.5.5 (Worst)

Figure B.30: The best and worst best approximation fronts for hyperparameter combinations A2.5.1–
A2.5.5.

Stellenbosch University https://scholar.sun.ac.za

234 Appendix B. Algorithmic Parameter Evaluation Results

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A2.5.6 (Best)

A2.5.6 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.7 (Best)

A2.5.7 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.8 (Best)

A2.5.8 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.9 (Best)

A2.5.9 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A2.5.10 (Best)

A2.5.10 (Worst)

Figure B.31: The best and worst best approximation fronts for hyperparameter combinations A2.5.6–
A2.5.10.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 235

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A2.5.11 (Best)

A2.5.11 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.12 (Best)

A2.5.12 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.13 (Best)

A2.5.13 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.14 (Best)

A2.5.14 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A2.5.15 (Best)

A2.5.15 (Worst)

Figure B.32: The best and worst best approximation fronts for hyperparameter combinations A2.5.11–
A2.5.15.

Stellenbosch University https://scholar.sun.ac.za

236 Appendix B. Algorithmic Parameter Evaluation Results

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A2.5.16 (Best)

A2.5.16 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.17 (Best)

A2.5.17 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

S
T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.18 (Best)

A2.5.18 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.19 (Best)

A2.5.19 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A2.5.20 (Best)

A2.5.20 (Worst)

Figure B.33: The best and worst best approximation fronts for hyperparameter combinations A2.5.16–
A2.5.20.

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 237

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A2.5.21 (Best)

A2.5.21 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.22 (Best)

A2.5.22 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A2.5.23 (Best)

A2.5.23 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A2.5.24 (Best)

A2.5.24 (Worst)

Figure B.34: The best and worst best approximation fronts for hyperparameter combinations A2.5.21–
A2.5.24.

Stellenbosch University https://scholar.sun.ac.za

238 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.1
8
:
A

p
re
v
ie
w

of
th
e
h
y
p
er
a
re
as

(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

40
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
1.
1–

A
2.
1.
24

.
T
h
e
ra
n
k
s

ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en
p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.1
.1

A
2
.1
.2

A
2
.1
.3

A
2
.1
.4

A
2
.1
.5

A
2
.1
.6

.
.
.

A
2
.1
.1
9

A
2
.1
.2
0

A
2
.1
.2
1

A
2
.1
.2
2

A
2
.1
.2
3

A
2
.1
.2
4

1
1
2
6
3
0
.3
7

(2
)

1
2
4
1
2
.6
4

(3
)

9
3
5
3
.4
8

(1
3
)

1
0
4
1
5
.2
6

(1
1
)

1
1
1
8
8
.1
0

(8
)

8
8
6
1
.3
0

(1
7
)

.
.
.

1
0
8
9
2
.4
6

(9
)

1
0
4
5
6
.3
7

(1
0
)
9
3
4
2
.5
5

(1
4
)

6
6
0
3
.3
5

(2
4
)

8
9
1
2
.7
7

(1
6
)

6
9
9
1
.7
9

(2
3
)

2
9
8
8
6
.7
7

(1
6
)

1
2
6
2
6
.1
5

(6
)

1
2
0
5
6
.1
5

(8
)

1
1
8
4
3
.2
1

(9
)

8
4
2
3
.7
8

(2
0
)

6
6
1
2
.0
5

(2
4
)

.
.
.

1
0
1
1
0
.9
1

(1
3
)
1
1
4
0
8
.4
4

(1
1
)
8
5
2
8
.6
2

(1
9
)

1
2
6
8
0
.9
6

(5
)

1
2
4
0
1
.5
8

(7
)

1
3
1
8
1
.4
4

(4
)

3
9
3
1
5
.3
5

(1
3
)

9
6
6
8
.6
7

(1
0
)

1
0
1
8
2
.9
5

(6
)

9
4
8
9
.4
3

(1
2
)

1
0
5
3
7
.1
0

(3
)

9
5
2
2
.3
4

(1
1
)

.
.
.

7
4
7
0
.0
6

(2
2
)

8
7
7
4
.4
3

(1
5
)

1
0
4
6
6
.6
0

(4
)

6
9
5
7
.3
3

(2
4
)

1
0
9
2
2
.9
6

(1
)

7
2
9
5
.4
0

(2
3
)

4
1
4
4
8
5
.0
4

(1
.5
)
1
3
6
8
5
.3
0

(6
)

1
3
2
6
0
.0
7

(1
0
)
1
3
2
4
0
.5
1

(1
2
)

1
3
6
8
3
.9
6

(7
)

1
3
6
5
8
.3
9

(8
)

.
.
.

1
3
2
0
5
.7
4

(1
3
)
1
2
0
8
1
.0
1

(2
2
)
1
2
2
5
5
.6
8

(2
0
)
1
2
3
9
5
.1
8

(1
9
)
1
2
7
7
2
.7
1

(1
7
)
1
1
4
1
9
.9
7

(2
3
)

5
8
9
3
9
.8
4

(1
1
)

7
7
1
8
.2
4

(1
6
)

8
3
0
3
.6
1

(1
4
)

9
0
6
5
.7
4

(9
)

9
1
9
2
.9
4

(8
)

1
1
7
7
3
.1
7

(1
)

.
.
.

7
2
6
2
.1
7

(1
8
)

5
7
8
6
.8
8

(2
4
)

9
3
2
3
.9
2

(6
)

6
9
9
2
.1
6

(2
1
)

9
2
8
3
.6
6

(7
)

8
9
7
5
.2
4

(1
0
)

6
9
7
8
8
.5
3

(4
)

9
8
0
3
.3
0

(3
)

1
0
5
3
5
.9
2

(2
)

7
5
7
7
.5
2

(1
8
)

9
4
1
2
.6
6

(8
)

9
3
6
1
.3
1

(9
)

.
.
.

6
0
0
7
.4
1

(2
4
)

7
1
4
8
.8
1

(1
9
)

7
7
2
2
.3
7

(1
7
)

6
7
0
0
.5
7

(2
3
)

7
9
1
6
.7
7

(1
5
)

9
0
9
0
.1
9

(1
0
)

7
1
0
6
3
3
.4
4

(1
5
)

1
1
7
1
1
.3
2

(6
)

8
7
4
1
.6
9

(2
1
)

1
1
9
3
9
.6
8

(5
)

1
2
2
7
8
.5
5

(4
)

1
0
7
6
2
.4
0

(1
3
)
.
.
.

9
4
3
2
.9
3

(1
8
)

1
0
8
5
2
.2
6

(1
2
)
9
4
0
9
.0
7

(1
9
)

1
1
6
0
3
.1
6

(9
)

1
0
8
6
7
.0
3

(1
1
)
8
5
8
5
.6
8

(2
3
)

8
1
3
9
2
8
.7
2

(7
)

1
3
2
4
1
.5
3

(1
2
)
1
3
1
9
5
.3
6

(1
3
)
1
4
4
8
5
.0
4

(1
.5
)
1
1
7
3
6
.7
7

(2
3
)
1
3
1
0
6
.9
7

(1
5
)
.
.
.

1
3
2
8
1
.7
7

(1
0
)
1
2
6
6
7
.8
0

(1
8
)
1
1
4
9
9
.0
4

(2
4
)
1
3
6
6
1
.5
3

(8
)

1
3
1
3
3
.2
4

(1
4
)
1
2
4
5
0
.4
8

(2
0
)

9
1
1
2
5
8
.2
9

(5
)

9
9
7
0
.7
5

(1
2
)

1
0
6
8
0
.6
7

(1
0
)
1
2
4
0
2
.0
5

(2
)

1
2
0
6
9
.0
8

(4
)

1
0
7
5
6
.0
1

(8
)

.
.
.

9
5
6
0
.3
0

(1
6
)

1
0
0
4
7
.2
1

(1
1
)
8
6
3
5
.2
7

(2
3
)

8
8
2
4
.2
3

(2
2
)

9
1
8
2
.6
1

(2
0
)

9
8
5
8
.4
5

(1
4
)

1
0

1
2
8
7
8
.1
6

(2
)

1
1
7
5
2
.3
9

(4
)

9
4
4
8
.6
5

(1
6
)

1
1
5
0
4
.0
2

(6
)

1
0
4
6
0
.5
2

(1
1
)
1
1
3
3
1
.5
1

(7
)

.
.
.

9
5
4
7
.9
5

(1
5
)

1
1
1
2
2
.0
5

(8
)

8
3
9
1
.3
4

(2
0
)

9
6
0
4
.0
7

(1
4
)

8
0
1
7
.3
1

(2
2
)

9
1
5
8
.0
1

(1
8
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
3
9

1
4
3
5
0
.5
8

(5
)

1
3
2
7
5
.5
3

(1
4
)
1
1
7
9
2
.4
5

(2
3
)
1
4
0
5
9
.4
6

(9
)

1
3
6
4
5
.0
7

(1
1
)
1
2
7
7
8
.1
2

(1
7
)
.
.
.

1
2
7
5
6
.5
9

(1
8
)
1
4
4
8
5
.0
4

(2
)

1
2
3
7
4
.4
1

(2
0
)
1
3
6
8
3
.6
8

(1
0
)
1
3
2
5
7
.1
9

(1
5
)
1
1
9
6
1
.0
4

(2
2
)

4
0

1
1
7
8
9
.7
2

(7
)

9
6
0
0
.2
7

(2
1
)

1
2
0
8
3
.5
1

(5
)

1
1
1
2
8
.3
7

(1
2
)

1
3
9
9
2
.4
7

(1
)

1
1
1
9
6
.9
3

(1
0
)
.
.
.

9
7
8
7
.2
4

(2
0
)

9
3
5
5
.4
7

(2
2
)

8
8
5
4
.3
6

(2
4
)

1
0
0
3
4
.0
0

(1
9
)
1
1
4
3
4
.5
9

(9
)

8
9
0
0
.8
7

(2
3
)

∑ R
C

i
2
8
9

4
2
3

4
7
3

3
0
3

3
9
1

5
2
2

.
.
.

5
9
5

5
4
3

6
5
8

5
9
4

5
1
7

6
5
6

∑ R
2 C

i
8
3
5
2
1

1
7
8
9
2
9

2
2
3
7
2
9

9
1
8
0
9

1
5
2
8
8
1

2
7
2
4
8
4

.
.
.

3
5
4
0
2
5

2
9
4
8
4
9

4
3
2
9
6
4

3
5
2
8
3
6

2
6
6
7
7
2

4
3
0
3
3
6

T
a
b
le

B
.1
9
:

A
p
re
v
ie
w

of
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
on

s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

o
b
ta
in
ed

fo
r
ru
n
1–

40
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
a
ti
o
n
s

A
2.
1.
1–
A
2.
1.
24
.
T
h
e
ra
n
k
s
ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
a
re

u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en

p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.1
.1

A
2
.1
.2

A
2
.1
.3

A
2
.1
.4

A
2
.1
.5

A
2
.1
.6

A
2
.1
.7

A
2
.1
.8

.
.
.

A
2
.1
.1
7

A
2
.1
.1
8

A
2
.1
.1
9

A
2
.1
.2
0

A
2
.1
.2
1

A
2
.1
.2
2

A
2
.1
.2
3

A
2
.1
.2
4

1
3
2

(2
)

3
1

(3
.5
)

2
4

(1
3
.5
)
2
6

(1
2
)

2
8

(8
.5
)

2
3

(1
7
.5
)

2
3

(1
7
.5
)

2
1

(2
1
.5
)

.
.
.

3
0

(5
.5
)

2
3

(1
7
.5
)

2
8

(8
.5
)

2
7

(1
0
.5
)
2
3

(1
7
.5
)

2
1

(2
1
.5
)
2
3

(1
7
.5
)

1
8

(2
4
)

2
2
7

(1
2
.5
)
3
2

(6
)

3
0

(9
)

3
0

(9
)

2
1

(2
1
.5
)
1
7

(2
4
)

3
4

(2
)

3
4

(2
)

.
.
.

1
9

(2
3
)

2
2

(1
9
.5
)

2
5

(1
5
.5
)

2
9

(1
1
)

2
2

(1
9
.5
)

3
2

(6
)

3
2

(6
)

3
3

(4
)

3
2
4

(1
3
)

2
5

(1
0
)

2
6

(6
.5
)

2
5

(1
0
)

2
7

(3
)

2
4

(1
3
)

2
1

(2
1
.5
)

2
6

(6
.5
)

.
.
.

2
1

(2
1
.5
)

2
5

(1
0
)

2
1

(2
1
.5
)

2
3

(1
6
.5
)
2
7

(3
)

2
0

(2
4
)

2
8

(1
)

2
1

(2
1
.5
)

4
3
6

(1
.5
)

3
4

(7
.5
)

3
3

(1
3
)

3
3

(1
3
)

3
4

(7
.5
)

3
4

(7
.5
)

3
3

(1
3
)

3
6

(1
.5
)

.
.
.

3
3

(1
3
)

3
1

(2
0
)

3
3

(1
3
)

3
1

(2
0
)

3
1

(2
0
)

3
1

(2
0
)

3
2

(1
7
)

2
9

(2
3
)

5
2
4

(7
.5
)

2
1

(1
7
.5
)

2
3

(1
2
)

2
3

(1
2
)

2
4

(7
.5
)

3
0

(1
)

2
9

(2
)

2
2

(1
5
)

.
.
.

1
8

(2
2
)

2
4

(7
.5
)

2
1

(1
7
.5
)

1
5

(2
4
)

2
3

(1
2
)

2
0

(2
0
)

2
4

(7
.5
)

2
5

(4
.5
)

6
2
5

(5
)

2
5

(5
)

2
7

(1
.5
)

2
0

(1
8
.5
)
2
4

(9
)

2
5

(5
)

2
2

(1
3
)

2
5

(5
)

.
.
.

2
2

(1
3
)

1
9

(2
1
.5
)

1
7

(2
3
.5
)

2
0

(1
8
.5
)
2
0

(1
8
.5
)

1
7

(2
3
.5
)
2
1

(1
5
.5
)

2
4

(9
)

7
2
8

(1
2
)

3
0

(6
)

2
3

(2
1
.5
)
3
0

(6
)

3
1

(3
.5
)

2
8

(1
2
)

3
3

(1
.5
)

3
1

(3
.5
)

.
.
.

3
3

(1
.5
)

2
8

(1
2
)

2
4

(1
9
)

2
8

(1
2
)

2
6

(1
7
.5
)

2
9

(8
.5
)

2
7

(1
5
.5
)

2
2

(2
4
)

8
3
5

(5
.5
)

3
3

(1
2
.5
)

3
3

(1
2
.5
)
3
6

(2
)

3
0

(2
2
)

3
3

(1
2
.5
)

3
4

(8
.5
)

3
2

(1
7
.5
)

.
.
.

3
5

(5
.5
)

3
2

(1
7
.5
)

3
3

(1
2
.5
)

3
2

(1
7
.5
)
2
9

(2
4
)

3
4

(8
.5
)

3
3

(1
2
.5
)

3
1

(2
0
)

9
2
8

(6
)

2
5

(1
4
)

2
7

(8
.5
)

3
1

(2
)

3
0

(4
)

2
7

(8
.5
)

2
8

(6
)

3
1

(2
)

.
.
.

2
1

(2
4
)

2
5

(1
4
)

2
5

(1
4
)

2
5

(1
4
)

2
2

(2
3
)

2
3

(2
1
)

2
3

(2
1
)

2
5

(1
4
)

1
0

3
2

(2
)

3
0

(3
.5
)

2
4

(1
5
.5
)
2
9

(6
)

2
6

(1
1
.5
)
2
9

(6
)

2
9

(6
)

3
0

(3
.5
)

.
.
.

2
1

(2
1
.5
)

2
6

(1
1
.5
)

2
4

(1
5
.5
)

2
8

(8
.5
)

2
3

(1
9
)

2
4

(1
5
.5
)
2
1

(2
1
.5
)

2
3

(1
9
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
3
9

3
6

(3
)

3
3

(1
5
)

3
0

(2
2
.5
)
3
5

(7
.5
)

3
4

(1
1
.5
)
3
2

(1
7
.5
)

3
6

(3
)

3
6

(3
)

.
.
.

3
1

(1
9
.5
)

3
0

(2
2
.5
)

3
2

(1
7
.5
)

3
6

(3
)

3
1

(1
9
.5
)

3
4

(1
1
.5
)
3
3

(1
5
)

3
0

(2
2
.5
)

4
0

3
0

(7
.5
)

2
4

(2
2
.5
)

3
1

(4
.5
)

2
8

(1
4
)

3
5

(1
)

2
9

(1
0
.5
)

3
0

(7
.5
)

2
7

(1
7
)

.
.
.

2
8

(1
4
)

3
1

(4
.5
)

2
6

(1
9
)

2
4

(2
2
.5
)
2
4

(2
2
.5
)

2
6

(1
9
)

3
0

(7
.5
)

2
4

(2
2
.5
)

∑ R
C

i
2
8
5

4
4
6
.5

4
7
9

3
1
3

3
9
1

5
3
1
.5

3
1
0
.5

3
2
1
.5

.
.
.

6
8
5
.5

7
1
6
.5

5
7
8
.5

5
4
5

6
5
7
.5

5
8
0

5
0
9
.5

6
3
4
.5

∑ R
2 C

i
8
1
2
2
5

1
9
9
3
6
2
.2
5

2
2
9
4
4
1

9
7
9
6
9

1
5
2
8
8
1

2
8
2
4
9
2
.2
5

9
6
4
1
0
.2
5

1
0
3
3
6
2
.2
5

.
.
.

4
6
9
9
1
0
.2
5

5
1
3
3
7
2
.2
5

3
3
4
6
6
2
.2
5

2
9
7
0
2
5

4
3
2
3
0
6
.2
5

3
3
6
4
0
0

2
5
9
5
9
0
.2
5

4
0
2
5
9
0
.2
5

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 239

Table B.20: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the NSGA-II) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A2.1.1–A2.1.24.

Worst Best

HA NDS HA NDS

A2.1.1 Run 27 Run 27 Run 4 Run 4

A2.1.2 Run 5 Run 5 Run 16 Run 16

A2.1.3 Run 21 Run 21 Run 18 Run 18

A2.1.4 Run 31 Run 31 Run 8 Run 8

A2.1.5 Run 37 Run 37 Run 16 Run 16

A2.1.6 Run 2 Run 2 Run 4 Run 4

A2.1.7 Run 21 Run 21 Run 20 Run 16

A2.1.8 Run 27 Run 27 Run 4 Run 4

A2.1.9 Run 1 Run 6 Run 19 Run 19

A2.1.10 Run 21 Run 34 Run 8 Run 8

A2.1.11 Run 27 Run 27 Run 16 Run 36

A2.1.12 Run 34 Run 34 Run 19 Run 19

A2.1.13 Run 27 Run 27 Run 16 Run 16

A2.1.14 Run 5 Run 5 Run 39 Run 39

A2.1.15 Run 27 Run 27 Run 15 Run 15

A2.1.16 Run 32 Run 32 Run 39 Run 39

A2.1.17 Run 21 Run 21 Run 16 Run 16

A2.1.18 Run 32 Run 32 Run 36 Run 36

A2.1.19 Run 6 Run 6 Run 19 Run 19

A2.1.20 Run 5 Run 5 Run 16 Run 16

A2.1.21 Run 27 Run 27 Run 19 Run 19

A2.1.22 Run 27 Run 27 Run 25 Run 25

A2.1.23 Run 27 Run 27 Run 16 Run 16

A2.1.24 Run 1 Run 1 Run 16 Run 16

Stellenbosch University https://scholar.sun.ac.za

240 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.2
1
:
T
h
e
a
d
ju
st
ed

p
-v
a
lu
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
h
y
p
er
ar
ea
s
of

th
e
ap

p
ro
x
im

a
ti
o
n

fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
1
.1
–A

2.
1.
2
4.

A
2
.1
.2

A
2
.1
.3

A
2
.1
.4

A
2
.1
.5

A
2
.1
.6

A
2
.1
.7

A
2
.1
.8

A
2
.1
.9

A
2
.1
.1
0

A
2
.1
.1
1

A
2
.1
.1
2

A
2
.1
.1
3

A
2
.1
.1
4

A
2
.1
.1
5

A
2
.1
.1
6

A
2
.1
.1
7

A
2
.1
.1
8

A
2
.1
.1
9

A
2
.1
.2
0

A
2
.1
.2
1

A
2
.1
.2
2

A
2
.1
.2
3

A
2
.1
.2
4

A
2
.1
.1

1
1

1
1

0
.0
6

1
1

1
1

1
1

0
0

0
0

0
0

0
0
.0
2

0
0

0
.0
9

0

A
2
.1
.2

1
1

1
1

1
1

1
1

1
1

0
.0
3

0
.0
1

0
0
.0
8

0
.0
1

0
1

1
0
.0
6

1
1

0
.0
6

A
2
.1
.3

1
1

1
1

1
1

0
.3
9

0
.4
6

1
0
.5
2

0
.1
8

0
.0
1

1
0
.1
3

0
.0
7

1
1

0
.9
5

1
1

1

A
2
.1
.4

1
0
.1
5

1
1

1
1

1
1

0
0

0
0

0
0

0
1

0
.1
5

0
.0
4

0
1

A
2
.1
.5

1
1

1
1

1
1

1
0

0
0

0
.0
1

0
0

0
.3
5

1
0
.0
1

0
.3
7

1
0
.0
1

A
2
.1
.6

0
.3
6

0
.1
8

1
0
.0
2

0
.0
2

1
1

1
0
.1
7

1
1

1
1

1
1

1
1

1

A
2
.1
.7

1
1

1
1

1
0

0
0

0
0

0
0

0
.1
1

0
0

0
.4
8

0

A
2
.1
.8

1
1

1
1

0
0

0
0

0
0

0
.0
0
1

0
.0
5

0
0

0
.2
5

0

A
2
.1
.9

1
1

1
0
.0
0
1

0
0

0
0

0
0
.0
9

1
0

0
.1

1
0

A
2
.1
.1
0

1
1

0
0

0
0

0
0

0
0
.0
1

0
0

0
.0
3

0

A
2
.1
.1
1

1
0

0
0

0
0

0
0

0
.0
1

0
0

0
.0
4

0

A
2
.1
.1
2

0
0

0
0

0
0

0
.0
3

0
.6
3

0
0
.0
3

1
0

A
2
.1
.1
3

1
1

1
1

1
1

1
1

1
1

1

A
2
.1
.1
4

1
1

1
1

1
1

1
1

1
1

A
2
.1
.1
5

1
1

1
1

0
.5
4

1
1

0
.1
2

1

A
2
.1
.1
6

1
1

1
1

1
1

1
1

A
2
.1
.1
7

1
1

1
1

1
1

1

A
2
.1
.1
8

1
1

1
1

0
.7
9

1

A
2
.1
.1
9

1
1

1
1

1

A
2
.1
.2
0

1
1

1
1

A
2
.1
.2
1

1
1

1

A
2
.1
.2
2

1
1

A
2
.1
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 241

T
a
b
le

B
.2
2
:
T
h
e
ad

ju
st
ed

p
-v
al
u
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
o
n
s

fo
u
n
d
fo
r
th
e
ap

p
ro
x
im

at
io
n
fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
1.
1–

A
2.
1.
24

.

A
2
.1
.2

A
2
.1
.3

A
2
.1
.4

A
2
.1
.5

A
2
.1
.6

A
2
.1
.7

A
2
.1
.8

A
2
.1
.9

A
2
.1
.1
0

A
2
.1
.1
1

A
2
.1
.1
2

A
2
.1
.1
3

A
2
.1
.1
4

A
2
.1
.1
5

A
2
.1
.1
6

A
2
.1
.1
7

A
2
.1
.1
8

A
2
.1
.1
9

A
2
.1
.2
0

A
2
.1
.2
1

A
2
.1
.2
2

A
2
.1
.2
3

A
2
.1
.2
4

A
2
.1
.1

1
0
.5
9
6

1
1

0
.0
2
7

1
1

1
1

1
1

0
0

0
0

0
0

0
0
.0
1

0
0

0
.1
1

0

A
2
.1
.2

1
1

1
1

1
1

1
1

1
1

0
.1
9

0
.0
7

0
0
.2
5

0
.0
4

0
.0
1

1
1

0
.2
3

1
1

0
.8
2

A
2
.1
.3

1
1

1
1

1
1

0
.3
1

0
.5
4

1
1

0
.4
6

0
.0
2

1
0
.3
0

0
.0
4
8

1
1

1
1

1
1

A
2
.1
.4

1
0
.1
5
2

1
1

1
1

1
1

0
0

0
0

0
0

0
.0
1

1
0
.1
5

0
.0
7

0
1

A
2
.1
.5

1
1

1
1

1
1

1
0
.0
1

0
0

0
.0
1

0
0

0
.8
4

1
0
.0
0
7

0
.7
7

1
0
.0
3

A
2
.1
.6

0
.1
3

0
.2
5

1
0
.0
1

0
.0
2

1
1

1
0
.5
5

1
1

0
.9
5

1
1

1
1

1
1

A
2
.1
.7

1
1

1
1

1
0

0
0

0
0

0
0
.0
0
6

0
.0
6

0
0
.0
1

0
.4
6

0

A
2
.1
.8

1
1

1
1

0
0

0
0

0
0

0
.0
1
3

0
.1
1

0
0
.0
1

0
.8
2

0

A
2
.1
.9

1
1

1
0

0
0

0
0

0
0
.3
5

1
0
.0
0
2

0
.3
2

1
0
.0
1

A
2
.1
.1
0

1
1

0
0

0
0

0
0

0
0
.0
1

0
0

0
.0
5

0

A
2
.1
.1
1

1
0

0
0

0
0

0
0
.0
0
1

0
.0
1

0
0

0
.0
9

0

A
2
.1
.1
2

0
0

0
0
.0
0
1

0
0

0
.1
7

1
0

0
.1
5

1
0

A
2
.1
.1
3

1
1

1
1

1
1

1
1

1
1

1

A
2
.1
.1
4

1
1

1
1

1
1

1
1

1
1

A
2
.1
.1
5

1
1

1
1

1
1

1
0
.1
6

1

A
2
.1
.1
6

1
1

1
1

1
1

1
1

A
2
.1
.1
7

1
1

1
1

1
1

1

A
2
.1
.1
8

1
1

1
1

0
.2
9

1

A
2
.1
.1
9

1
1

1
1

1

A
2
.1
.2
0

1
1

1
1

A
2
.1
.2
1

1
1

1

A
2
.1
.2
2

1
1

A
2
.1
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

242 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.2
3
:
A

p
re
v
ie
w

of
th
e
h
y
p
er
a
re
as

(a
n
d
co
rr
es
p
o
n
d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
2.
1–

A
2.
2.
24

.
T
h
e
ra
n
k
s

ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en
p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.1
.1

A
2
.1
.2

A
2
.1
.3

A
2
.1
.4

A
2
.1
.5

A
2
.1
.6

.
.
.

A
2
.1
.1
9

A
2
.1
.2
0

A
2
.1
.2
1

A
2
.1
.2
2

A
2
.1
.2
3

A
2
.1
.2
4

1
1
1
3
1
7
2
.3
4

(1
5
)
1
1
3
2
0
5
.3
2

(1
3
)
1
1
2
9
4
9
.3
5

(2
1
)
1
1
3
1
9
6
.2
8

(9
)

1
1
3
3
3
6
.8
8

(1
0
)
1
1
2
5
5
6
.1
5

(1
7
)
.
.
.

1
1
3
4
4
1
.3
4

(8
)

1
1
3
4
8
9
.9
4

(6
)

1
1
2
9
1
6
.7
9

(1
8
)
1
1
3
7
9
3
.9
1

(1
)

1
1
3
5
5
7
.6
5

(4
)

1
1
2
8
5
6
.4
8

(2
0
)

2
1
1
3
0
3
4
.5
2

(2
0
)
1
1
3
0
3
7
.1
7

(1
9
)
1
1
3
0
5
6
.0
1

(1
)

1
1
3
3
6
0
.7
8

(1
3
)
1
1
3
4
9
1
.9
8

(2
1
)
1
1
3
0
3
8
.5
6

(1
7
)
.
.
.

1
1
3
5
8
8
.6
3

(4
)

1
1
3
4
6
2
.1
6

(1
0
)
1
1
3
6
5
6
.7
7

(3
)

1
1
3
5
6
9
.8
4

(5
)

1
1
3
2
2
1
.1
5

(1
6
)
1
1
2
8
7
1
.1
4

(2
3
)

3
1
1
2
0
2
0
.5
1

(1
7
)
1
1
3
5
7
5
.2
7

(1
)

1
1
1
4
1
4
.3
0

(1
4
)
1
1
1
3
1
0
.2
9

(7
)

1
1
2
7
1
1
.9
2

(6
)

1
1
1
5
7
3
.5
3

(2
3
)
.
.
.

1
1
3
0
3
9
.1
4

(4
)

1
1
2
6
1
8
.6
2

(1
1
)
1
1
1
9
0
5
.6
9

(1
9
)
1
1
2
9
4
1
.5
0

(5
)

1
1
1
9
5
8
.4
3

(1
8
)
1
1
2
0
4
1
.6
6

(1
6
)

4
1
1
2
9
3
3
.8
0

(1
8
)
1
1
2
7
7
9
.8
2

(2
3
)
1
1
2
7
9
1
.8
5

(1
7
)
1
1
3
0
8
9
.4
4

(3
)

1
1
3
2
3
6
.6
4

(4
)

1
1
3
5
2
8
.0
5

(2
2
)
.
.
.

1
1
3
0
0
1
.6
4

(1
6
)
1
1
3
1
1
0
.3
7

(1
2
)
1
1
3
0
5
5
.5
5

(1
5
)
1
1
3
7
7
0
.7
6

(1
)

1
1
3
6
9
1
.9
4

(2
)

1
1
3
1
6
9
.6
6

(1
1
)

5
1
1
3
6
2
9
.2
2

(4
)

1
1
3
0
9
1
.3
8

(2
1
)
1
1
4
3
0
8
.7
7

(1
1
)
1
1
3
5
4
7
.7
7

(2
0
)
1
1
3
1
8
4
.4
1

(6
)

1
1
2
7
9
5
.5
3

(1
)

.
.
.

1
1
2
9
1
4
.6
8

(2
2
)
1
1
3
2
8
8
.0
2

(1
4
)
1
1
3
5
9
8
.4
0

(5
)

1
1
3
1
9
3
.8
1

(1
7
)
1
1
3
2
6
5
.3
1

(1
5
)
1
1
3
4
7
9
.8
8

(1
0
)

6
1
1
2
6
0
8
.8
3

(2
0
)
1
1
2
9
2
6
.9
7

(1
1
)
1
1
2
6
0
5
.4
0

(1
0
)
1
1
3
0
7
9
.6
5

(1
3
)
1
1
2
9
1
1
.6
5

(1
8
)
1
1
2
4
8
8
.3
5

(2
1
)
.
.
.

1
1
3
1
4
7
.4
5

(7
)

1
1
2
6
5
7
.5
8

(1
7
)
1
1
3
1
4
8
.2
6

(6
)

1
1
3
1
6
3
.1
4

(5
)

1
1
2
8
7
4
.4
2

(1
4
)
1
1
2
5
2
4
.9
2

(2
2
)

7
1
1
3
8
7
9
.9
5

(2
)

1
1
3
8
4
3
.5
3

(3
)

1
1
2
8
7
3
.4
6

(6
)

1
1
3
7
2
9
.5
1

(1
8
)
1
1
3
0
6
4
.7
5

(2
3
)
1
1
2
9
2
4
.0
5

(1
9
)
.
.
.

1
1
2
5
5
3
.7
5

(2
2
)
1
1
3
1
9
8
.9
2

(1
1
)
1
1
3
2
7
6
.4
6

(1
0
)
1
1
3
0
5
2
.7
7

(1
6
)
1
1
3
5
5
0
.2
5

(8
)

1
1
3
6
7
4
.6
7

(5
)

8
1
1
3
5
9
3
.5
8

(1
)

1
1
2
8
9
1
.6
9

(1
3
)
1
1
2
4
3
0
.8
2

(2
3
)
1
1
2
8
5
1
.9
9

(1
1
)
1
1
2
2
1
9
.2
3

(2
2
)
1
1
2
3
1
2
.2
0

(2
0
)
.
.
.

1
1
3
5
0
3
.8
5

(6
)

1
1
3
3
9
1
.7
7

(9
)

1
1
2
7
3
2
.0
3

(1
8
)
1
1
3
5
9
0
.5
6

(2
)

1
1
2
7
6
1
.5
6

(1
7
)
1
1
2
8
6
2
.1
9

(1
4
)

9
1
1
2
1
8
7
.7
1

(2
4
)
1
1
2
4
3
7
.2
5

(2
1
)
1
1
3
9
2
4
.7
7

(7
)

1
1
2
4
2
0
.6
9

(1
5
)
1
1
2
7
8
0
.5
7

(1
3
)
1
1
2
7
4
5
.0
1

(2
)

.
.
.

1
1
3
0
1
5
.7
9

(1
1
)
1
1
3
2
2
5
.7
1

(9
)

1
1
3
6
9
1
.4
6

(3
)

1
1
2
8
5
8
.3
4

(1
4
)
1
1
2
7
9
0
.0
5

(1
7
)
1
1
3
3
6
9
.6
6

(8
)

1
0

1
1
3
2
7
9
.5
0

(1
1
)
1
1
2
9
2
4
.0
8

(1
8
)
1
1
4
1
6
6
.3
8

(8
)

1
1
3
1
8
5
.0
8

(4
)

1
1
2
7
2
5
.4
1

(1
9
)
1
1
3
0
9
9
.2
1

(1
)

.
.
.

1
1
3
2
4
0
.6
0

(1
2
)
1
1
2
7
7
2
.1
8

(2
1
)
1
1
3
2
9
9
.7
0

(9
)

1
1
3
2
1
4
.7
7

(1
3
)
1
1
3
4
5
4
.4
5

(6
)

1
1
3
0
9
6
.0
3

(1
6
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

1
1
2
3
4
9
.0
1

(1
9
)
1
1
3
7
5
3
.3
6

(1
)

1
1
2
7
0
7
.1
5

(1
5
)
1
1
2
2
1
3
.9
1

(2
3
)
1
1
1
9
9
9
.8
1

(1
1
)
1
1
2
3
6
0
.7
0

(1
2
)
.
.
.

1
1
2
8
8
3
.1
3

(1
0
)
1
1
3
2
0
5
.3
6

(7
)

1
1
2
5
6
4
.1
4

(1
4
)
1
1
3
2
1
9
.1
0

(6
)

1
1
2
4
3
7
.3
9

(1
7
)
1
1
3
3
8
8
.7
5

(4
)

1
0
0

1
1
2
8
0
5
.2
6

(1
8
)
1
1
3
0
8
4
.0
0

(1
1
)
1
1
3
1
9
9
.7
1

(3
)

1
1
3
3
6
0
.7
2

(2
)

1
1
2
1
6
9
.9
8

(2
1
)
1
1
3
8
5
5
.0
0

(9
)

.
.
.

1
1
3
3
0
6
.1
4

(8
)

1
1
3
1
5
5
.6
9

(1
0
)
1
1
2
5
9
0
.7
6

(1
9
)
1
1
2
8
7
7
.8
7

(1
5
)
1
1
2
8
0
5
.2
7

(1
7
)
1
1
2
8
3
4
.0
3

(1
6
)

∑ R
C

i
1
4
1
0

1
2
2
7

1
1
1
7

1
3
4
9

1
3
7
1

1
2
6
2

.
.
.

9
6
1

1
2
1
4

1
3
3
6

1
1
2
2

1
1
3
3

1
3
4
0

∑ R
2 C

i
1
9
8
8
1
0
0

1
5
0
5
5
2
9

1
2
4
7
6
8
9

1
8
1
9
8
0
1

1
8
7
9
6
4
1

1
5
9
2
6
4
4

.
.
.

9
2
3
5
2
1

1
4
7
3
7
9
6

1
7
8
4
8
9
6

1
2
5
8
8
8
4

1
2
8
3
6
8
9

1
7
9
5
6
0
0

T
a
b
le

B
.2
4
:
A

p
re
v
ie
w

of
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
on

s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
a
ti
o
n
s

A
2.
2.
1–
A
2.
2.
24
.
T
h
e
ra
n
k
s
ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
a
re

u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en

p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.2
.1

A
2
.2
.2

A
2
.2
.3

A
2
.2
.4

A
2
.2
.5

A
2
.2
.6

A
2
.2
.7

A
2
.2
.8

.
.
.

A
2
.2
.1
6

A
2
.2
.1
7

A
2
.2
.1
8

A
2
.2
.1
9

A
2
.2
.2
0

A
2
.2
.2
1

A
2
.2
.2
2

A
2
.2
.2
3

A
2
.2
.2
4

1
2
7
6

(3
)

2
7
7

(1
.5
)

2
2
9

(1
8
)

2
7
0

(4
.5
)

2
7
1

(8
)

2
6
3

(1
9
.5
)
2
4
1

(7
)

2
4
6

(2
2
)

.
.
.

2
2
9

(1
9
.5
)

2
3
3

(1
6
.5
)
2
2
0

(2
3
)

2
7
7

(1
.5
)

2
3
3

(1
6
.5
)

2
3
8

(1
5
)

2
7
3

(4
.5
)

2
4
2

(1
3
)

2
2
6

(2
1
)

2
2
8
6

(1
)

2
4
2

(1
4
)

2
4
2

(1
4
)

2
6
7

(9
)

2
5
1

(1
0
.5
)

2
5
0

(1
4
)

2
5
1

(3
)

2
2
1

(2
)

.
.
.

2
4
7

(1
0
.5
)

2
4
0

(1
6
)

2
2
3

(1
9
)

2
1
3

(2
3
)

2
4
5

(1
2
)

2
1
9

(2
2
)

2
3
2

(1
8
)

2
3
8

(1
7
)

2
2
0

(2
1
)

3
2
4
4

(1
3
.5
)
2
5
0

(7
.5
)

2
6
4

(7
.5
)
2
6
6

(5
)

2
4
3

(6
)

2
4
3

(3
)

2
1
6

(1
)

2
4
6

(1
7
)

.
.
.

2
1
8

(2
3
)

2
3
5

(1
8
)

2
2
5

(2
2
)

2
4
5

(1
2
)

2
2
8

(2
1
)

2
4
7

(9
)

2
6
5

(2
)

2
4
4

(1
3
.5
)
2
2
9

(2
0
)

4
2
6
3

(8
)

2
7
9

(2
)

2
5
8

(1
4
)

2
3
7

(3
)

2
5
8

(5
.5
)

2
6
4

(9
.5
)

2
5
3

(1
5
)

2
3
0

(5
.5
)

.
.
.

2
2
1

(2
2
)

2
2
9

(1
8
)

2
2
7

(1
9
.5
)
2
5
3

(1
2
.5
)

2
1
6

(2
4
)

2
2
5

(2
1
)

2
5
7

(1
1
)

2
2
7

(1
9
.5
)
2
3
5

(1
6
)

5
2
4
1

(1
4
)

2
6
3

(7
.5
)

2
3
2

(3
)

2
6
6

(1
)

2
3
3

(2
3
.5
)

2
7
2

(2
0
)

2
2
3

(6
)

2
6
3

(4
.5
)

.
.
.

2
3
4

(1
8
)

2
4
0

(1
5
)

2
2
8

(2
1
)

2
4
5

(1
2
)

2
4
2

(1
3
)

2
3
8

(1
6
)

2
5
4

(1
0
)

2
3
6

(1
7
)

2
1
7

(2
3
.5
)

6
2
7
3

(2
.5
)

2
7
6

(1
)

2
5
1

(8
.5
)
2
6
7

(1
4
)

2
5
0

(1
0
)

2
6
0

(1
1
)

2
3
8

(4
.5
)

2
2
2

(8
.5
)

.
.
.

2
2
2

(2
2
.5
)

2
2
7

(2
1
)

2
0
3

(2
4
)

2
7
3

(2
.5
)

2
2
9

(2
0
)

2
4
5

(1
3
)

2
3
1

(1
9
)

2
3
6

(1
7
)

2
3
5

(1
8
)

7
2
7
1

(7
)

3
0
0

(1
)

2
3
8

(4
.5
)
2
8
8

(1
2
.5
)
2
6
4

(1
4
)

2
6
1

(1
9
)

2
5
8

(4
.5
)

2
6
3

(6
)

.
.
.

2
4
4

(1
5
)

2
1
6

(2
4
)

2
1
7

(2
2
.5
)
2
1
7

(2
2
.5
)

2
6
2

(1
0
)

2
4
3

(1
6
)

2
3
9

(1
8
)

2
1
9

(2
1
)

2
3
1

(2
0
)

8
2
5
7

(1
)

2
4
1

(7
.5
)

2
1
3

(1
0
)

2
5
1

(6
)

2
4
9

(1
6
.5
)

2
4
1

(2
1
.5
)
1
9
9

(3
.5
)

2
1
3

(3
.5
)

.
.
.

2
3
1

(1
4
)

2
2
5

(1
8
.5
)
2
1
6

(2
0
)

2
3
4

(1
1
)

2
2
9

(1
5
)

2
3
3

(1
2
)

2
2
5

(1
8
.5
)

2
2
6

(1
6
.5
)
2
3
2

(1
3
)

9
2
7
6

(2
.5
)

2
4
2

(1
7
)

2
5
7

(1
1
)

2
5
3

(4
)

2
6
1

(5
.5
)

2
5
9

(1
0
)

2
5
2

(1
3
)

2
1
6

(1
4
.5
)
.
.
.

2
0
7

(2
4
)

2
3
2

(1
9
)

2
4
9

(1
6
)

2
2
2

(2
2
)

2
5
4

(1
2
)

2
6
0

(8
)

2
2
4

(2
0
.5
)

2
3
5

(1
8
)

2
7
9

(1
)

1
0

2
5
1

(8
)

2
5
6

(6
)

2
4
1

(4
)

2
7
5

(9
)

2
3
8

(1
6
)

2
5
7

(1
0
)

2
2
4

(1
)

2
2
5

(7
)

.
.
.

2
3
3

(1
3
.5
)

2
2
6

(1
8
.5
)
2
2
0

(2
3
)

2
3
1

(1
6
)

2
3
1

(1
6
)

2
2
5

(2
0
.5
)

2
3
3

(1
3
.5
)

2
3
4

(1
2
)

2
2
6

(1
8
.5
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

2
4
0

(2
2
)

2
6
8

(8
.5
)

2
9
0

(3
)

2
5
4

(1
4
.5
)
2
5
1

(6
)

2
6
5

(2
)

2
3
7

(1
4
.5
)
2
4
4

(4
)

.
.
.

2
6
8

(8
.5
)

2
6
2

(1
3
)

2
5
1

(1
6
.5
)
2
2
5

(2
4
)

2
6
6

(1
0
)

2
4
4

(2
0
.5
)

2
7
8

(5
)

2
7
2

(7
)

2
4
8

(1
8
.5
)

1
0
0

2
7
0

(2
)

2
6
2

(4
)

2
5
5

(8
)

2
5
1

(5
)

2
5
7

(1
8
)

2
4
9

(7
)

2
2
7

(1
0
.5
)
2
5
2

(1
)

.
.
.

2
3
2

(1
9
.5
)

2
3
2

(1
9
.5
)
2
0
7

(2
4
)

2
6
4

(3
)

2
3
4

(1
7
)

2
4
9

(1
3
.5
)

2
3
7

(1
6
)

2
5
0

(1
2
)

2
1
2

(2
3
)

∑ R
C

i
6
5
3

8
0
3
.5

1
0
4
2

7
6
4

9
3
9
.5

1
0
7
5

6
5
4

5
9
8

.
.
.

1
6
5
5
.5

1
7
8
9

1
9
0
2

1
4
8
5
.5

1
5
2
2
.5

1
6
9
7
.5

1
5
2
3
.5

1
6
5
2

1
8
3
5
.5

∑ R
2 C

i
4
2
6
4
0
9

6
4
5
6
1
2
.2
5

1
0
8
5
7
6
4

5
8
3
6
9
6

8
8
2
6
6
0
.2
5

1
1
5
5
6
2
5

4
2
7
7
1
6

3
5
7
6
0
4

.
.
.

2
7
4
0
6
8
0
.2
5

3
2
0
0
5
2
1

3
6
1
7
6
0
4

2
2
0
6
7
1
0
.2
5

2
3
1
8
0
0
6
.2
5

2
8
8
1
5
0
6
.2
5

2
3
2
1
0
5
2
.2
5

2
7
2
9
1
0
4

3
3
6
9
0
6
0
.2
5

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 243

Table B.25: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the NSGA-II) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A2.2.1–A2.2.24.

Worst Best

HA NDS HA NDS

A2.2.1 Run 17 Run 30 Run 7 Run 26

A2.2.2 Run 39 Run 60 Run 92 Run 7

A2.2.3 Run 72 Run 78 Run 88 Run 90

A2.2.4 Run 57 Run 23 Run 29 Run 76

A2.2.5 Run 17 Run 65 Run 62 Run 68

A2.2.6 Run 3 Run 8 Run 14 Run 85

A2.2.7 Run 3 Run 11 Run 79 Run 26

A2.2.8 Run 12 Run 1 Run 44 Run 28

A2.2.9 Run 12 Run 39 Run 25 Run 17

A2.2.10 Run 57 Run 88 Run 62 Run 79

A2.2.11 Run 72 Run 11 Run 79 Run 48

A2.2.12 Run 3 Run 22 Run 100 Run 37

A2.2.13 Run 3 Run 44 Run 9 Run 16

A2.2.14 Run 39 Run 44 Run 7 Run 79

A2.2.15 Run 83 Run 65 Run 54 Run 43

A2.2.16 Run 57 Run 60 Run 15 Run 26

A2.2.17 Run 3 Run 44 Run 21 Run 94

A2.2.18 Run 100 Run 44 Run 70 Run 71

A2.2.19 Run 94 Run 35 Run 74 Run 79

A2.2.20 Run 12 Run 38 Run 11 Run 71

A2.2.21 Run 17 Run 43 Run 73 Run 45

A2.2.22 Run 57 Run 61 Run 63 Run 27

A2.2.23 Run 57 Run 29 Run 36 Run 50

A2.2.24 Run 97 Run 89 Run 79 Run 24

Stellenbosch University https://scholar.sun.ac.za

244 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.2
6
:
T
h
e
a
d
ju
st
ed

p
-v
a
lu
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
h
y
p
er
ar
ea
s
of

th
e
ap

p
ro
x
im

a
ti
o
n

fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
2
.1
–A

2.
2.
2
4.

A
2
.2
.2

A
2
.2
.3

A
2
.2
.4

A
2
.2
.5

A
2
.2
.6

A
2
.2
.7

A
2
.2
.8

A
2
.2
.9

A
2
.2
.1
0

A
2
.2
.1
1

A
2
.2
.1
2

A
2
.2
.1
3

A
2
.2
.1
4

A
2
.2
.1
5

A
2
.2
.1
6

A
2
.2
.1
7

A
2
.2
.1
8

A
2
.2
.1
9

A
2
.2
.2
0

A
2
.2
.2
1

A
2
.2
.2
2

A
2
.2
.2
3

A
2
.2
.2
4

A
2
.2
.1

1
0
.9
4

1
1

1
1

1
1

1
1

1
0
.0
1

0
0
.0
4

1
1

0
0

1
1

1
1

1

A
2
.2
.2

1
1

1
1

1
1

1
1

1
0
.0
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.2
.3

1
1

1
0
.3
1

1
0
.0
4
5

0
.1
4

0
.2
5

0
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.2
.4

1
1

1
1

1
1

1
1

0
.1
1

0
.0
4

0
.4
1

1
1

0
.0
2

0
.0
3

1
1

1
1

1

A
2
.2
.5

1
1

1
1

1
1

1
0
.0
4
7

0
.0
2

0
.1
9

1
1

0
.0
1

0
.0
1

1
1

1
1

1

A
2
.2
.6

1
1

1
1

1
0
.0
4
5

1
0
.9
4

1
1

1
0
.4
4

0
.7
2

1
1

1
1

1

A
2
.2
.7

1
1

1
1

1
0

0
0
.0
1

1
0
.3
7

0
0

1
1

0
.3
7

0
.5
3

1

A
2
.2
.8

1
1

1
1

0
.0
1

0
0
.0
5

1
1

0
0

1
1

1
1

1

A
2
.2
.9

1
1

1
0

0
0

1
0
.0
5

0
0

1
1

0
.0
5

0
.0
8

1

A
2
.2
.1
0

1
1

0
0

0
1

0
.1
7

0
0

1
1

0
.1
7

0
.2
6

1

A
2
.2
.1
1

1
0

0
0
.0
1

1
0
.3

0
0

1
1

0
.3

0
.4
4

1

A
2
.2
.1
2

0
0

0
0

0
0

0
0
.0
1

0
.6
7

0
0

0
.7
7

A
2
.2
.1
3

1
1

1
1

1
1

1
0
.1
8

1
1

0
.1
5

A
2
.2
.1
4

1
1

1
1

1
1

0
.0
7

1
1

0
.0
6

A
2
.2
.1
5

1
1

1
1

1
0
.6
3

1
1

0
.5
5

A
2
.2
.1
6

1
1

1
1

1
1

1
1

A
2
.2
.1
7

1
1

1
1

1
1

A
2
.2
.1
8

1
1

0
.0
3

1
1

0
.0
2

A
2
.2
.1
9

1
0
.0
4
9

1
1

0
.0
4

A
2
.2
.2
0

1
1

1
1

A
2
.2
.2
1

1
1

1

A
2
.2
.2
2

1
1

A
2
.2
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 245

T
a
b
le

B
.2
7
:
T
h
e
ad

ju
st
ed

p
-v
al
u
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
o
n
s

fo
u
n
d
fo
r
th
e
ap

p
ro
x
im

at
io
n
fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
2.
1–

A
2.
2.
24

.

A
2
.2
.2

A
2
.2
.3

A
2
.2
.4

A
2
.2
.5

A
2
.2
.6

A
2
.2
.7

A
2
.2
.8

A
2
.2
.9

A
2
.2
.1
0

A
2
.2
.1
1

A
2
.2
.1
2

A
2
.2
.1
3

A
2
.2
.1
4

A
2
.2
.1
5

A
2
.2
.1
6

A
2
.2
.1
7

A
2
.2
.1
8

A
2
.2
.1
9

A
2
.2
.2
0

A
2
.2
.2
1

A
2
.2
.2
2

A
2
.2
.2
3

A
2
.2
.2
4

A
2
.2
.1

1
0
.0
3

1
1

0
.0
1

1
1

1
1

1
0
.5
3

0
0

0
0

0
0

0
0

0
0

0
0

A
2
.2
.2

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

A
2
.2
.3

1
1

1
0
.0
3

0
1

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0

A
2
.2
.4

1
0
.5
2

1
1

1
1

1
1

0
0

0
0

0
0

0
1

0
.5
2

0
0

0

A
2
.2
.5

1
1

0
.1
8

1
0
.0
4

1
1

0
0

0
0

0
0

0
0

0
0

0
0

A
2
.2
.6

0
.0
1

0
1

0
1

1
0

0
0

0
0

0
0
.0
1

0
0

0
0

0

A
2
.2
.7

1
1

1
1

0
.5
5

0
0

0
0

0
0

0
0

0
0

0
0

A
2
.2
.8

1
1

1
0
.0
7

0
0

0
0

0
0

0
0

0
0

0
0

A
2
.2
.9

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0

A
2
.2
.1
0

0
.8
1

0
.0
2

0
0

0
0

0
0

0
0

0
0

0
0

A
2
.2
.1
1

1
0

0
0

0
0

0
0

0
0

0
0

0

A
2
.2
.1
2

0
0

0
0

0
0

0
0

0
0

0
0

A
2
.2
.1
3

1
1

1
1

1
1

1
1

1
1

1

A
2
.2
.1
4

1
1

1
1

1
1

1
1

1
1

A
2
.2
.1
5

1
1

1
0
.7
5

1
1

1
1

1

A
2
.2
.1
6

1
1

1
1

1
1

1
1

A
2
.2
.1
7

1
0
.6
6

1
1

1
1

1

A
2
.2
.1
8

0
.0
1

0
.0
4

1
0
.0
4

1
1

A
2
.2
.1
9

1
1

1
1

0
.1
3

A
2
.2
.2
0

1
1

1
0
.4
8

A
2
.2
.2
1

1
1

1

A
2
.2
.2
2

1
0
.5

A
2
.2
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

246 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.2
8
:
A

p
re
v
ie
w

of
th
e
h
y
p
er
a
re
as

(a
n
d
co
rr
es
p
o
n
d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
3.
1–

A
2.
3.
24

.
T
h
e
ra
n
k
s

ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en
p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.2
.1

A
2
.2
.2

A
2
.2
.3

A
2
.2
.4

A
2
.2
.5

A
2
.2
.6

A
2
.2
.7

A
2
.2
.8

.
.
.
A
2
.2
.1
7

A
2
.2
.1
8

A
2
.2
.1
9

A
2
.2
.2
0

A
2
.2
.2
1

A
2
.2
.2
2

A
2
.2
.2
3

A
2
.2
.2
4

1
3
3
.5
7

(1
3
)
3
3
.6
3

(1
0
)
3
3
.5
4

(1
)

3
3
.6
4

(8
)

3
3
.6
2

(1
7
)
3
3
.6
7

(1
4
)
3
3
.6
7

(6
)

3
3
.6
3

(7
)

.
.
.
3
2
.7
9

(2
2
)
2
2

(3
3
.5
4
)
3
3
.5
8

(1
2
)
3
3
.5
4

(1
6
)
3
2
.8
2

(2
1
)
3
1
.9
6

(2
4
)
3
3
.2
6

(2
0
)
3
3
.3
8

(1
9
)

2
3
3
.0
1

(1
3
)
3
3
.3
1

(8
)

3
3
.4
5

(1
2
)
3
2
.9
7

(5
)

3
3
.2
4

(1
9
)
3
2
.2
6

(3
)

3
2
.9
5

(1
4
)
3
2
.2
5

(1
0
)
.
.
.
3
3
.3

(9
)

3
3
.3
8

(6
)

3
2
.2
3

(2
2
)
3
2
.9
5

(1
6
)
3
3
.5
4

(1
)

3
2
.7
5

(1
8
)
3
3
.4
6

(2
)

3
3
.3
7

(7
)

3
3
2
.1
8

(2
4
)
3
2
.7
3

(1
5
)
3
3
.4
5

(1
4
)
3
2
.3
8

(1
2
)
3
3
.4
6

(1
8
)
3
3
.4
4

(5
)

3
2
.5
6

(2
0
)
3
3
.4
4

(1
1
)
.
.
.
3
2
.3
3

(2
1
)
3
2
.7
5

(1
3
)
3
3
.3
9

(9
)

3
2
.3
2

(2
2
)
3
2
.7
2

(1
6
)
3
3
.4
7

(3
)

3
3
.3
9

(8
)

3
3
.5

(1
)

4
3
3
.6
1

(5
)

3
3
.6
5

(3
)

3
3
.6
5

(1
4
)
3
3
.4
7

(2
3
)
3
3
.6
5

(1
2
)
3
3
.4
8

(2
)

3
3
.5

(1
7
)

3
3
.5
4

(6
)

.
.
.
3
3
.4
6

(1
8
)
3
3
.5
5

(9
)

3
3
.4

(2
2
)

3
3
.5
3

(1
1
)
3
3
.4
4

(2
0
)
3
3
.4
4

(1
9
)
3
3
.6
4

(4
)

3
3
.5
2

(1
3
)

5
3
2
.3

(2
1
)

3
2
.2
1

(2
4
)
3
3
.4
2

(3
)

3
3
.3

(8
)

3
2
.9
7

(2
2
)
3
3
.2
7

(6
)

3
3
.3
9

(1
3
)
3
3
.2
3

(2
)

.
.
.
3
3
.3
1

(1
2
)
3
2
.6
1

(2
0
)
3
3
.4
3

(5
)

3
2
.6
9

(1
9
)
3
3
.4
2

(7
)

3
3
.3
4

(1
1
)
3
3
.3
5

(1
0
)
3
3
.6
6

(1
)

6
3
2
.0
3

(2
4
)
3
3

(1
0
)

3
2
.6
4

(1
)

3
2
.1
4

(2
1
)
3
3
.3
1

(1
2
)
3
3
.4
3

(1
4
)
3
2
.7
4

(2
3
)
3
3
.4

(1
3
)

.
.
.
3
3
.1
6

(9
)

3
2
.4
2

(1
7
)
3
2
.4
4

(1
6
)
3
2
.2
6

(2
0
)
3
2
.3
3

(1
9
)
3
2
.1
8

(2
2
)
3
2
.4

(1
8
)

3
3
.4

(4
)

7
3
3
.4
5

(5
)

3
2
.5
6

(2
0
)
3
2
.2
6

(2
2
)
3
3
.3
8

(2
1
)
3
3
.3
2

(1
8
)
3
3
.4
7

(2
4
)
3
3
.3
4

(8
)

3
3
.3
7

(7
)

.
.
.
3
3
.4
8

(3
)

3
3
.0
7

(1
4
)
3
3
.0
4

(1
5
)
3
3
.0
1

(1
6
)
3
2
.7

(1
9
)

3
2
.9
5

(1
7
)
3
3
.5
6

(1
)

3
3
.4
9

(2
)

8
3
3
.3
7

(2
3
)
3
3
.6
8

(1
)

3
3
.4
2

(2
4
)
3
3
.4
7

(1
5
)
3
3
.5
4

(7
)

3
3
.6
3

(2
1
)
3
3
.6
7

(1
7
)
3
3
.5
7

(2
0
)
.
.
.
3
3
.5
4

(1
2
)
3
3
.5
6

(1
0
)
3
3
.6
4

(4
)

3
3
.5
3

(1
3
)
3
3
.4
7

(1
6
)
3
3
.6
4

(5
)

3
3
.4
6

(1
8
)
3
3
.6
7

(3
)

9
3
2
.9
4

(1
6
)
3
3
.0
2

(1
3
)
3
3
.2
3

(1
)

3
2
.2
6

(2
2
)
3
3
.2
5

(1
2
)
3
3
.5
2

(1
0
)
3
2
.5
3

(2
3
)
3
2
.6
9

(9
)

.
.
.
3
2
.7
9

(1
8
)
3
2
.6
3

(2
0
)
3
2
.1
4

(2
4
)
3
3
.2
1

(1
1
)
3
3
.3
3

(6
)

3
2
.9
7

(1
5
)
3
3
.3
6

(5
)

3
3
.4
3

(3
)

1
0

3
3
.6

(2
)

3
3
.4
4

(7
)

3
3
.3
6

(1
)

3
3
.4
4

(1
2
)
3
2
.2
2

(1
7
)
3
3
.3
4

(1
5
)
3
3
.3
6

(8
)

3
2
.7
3

(2
2
)
.
.
.
3
3
.4
1

(1
1
)
3
3
.4
3

(9
)

3
3
.3
2

(1
9
)
3
3
.5
3

(5
)

3
3
.4
2

(1
0
)
3
2
.4

(2
3
)

3
3
.3
7

(1
4
)
3
3
.5
6

(4
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

3
2
.3
7

(2
2
)
3
3
.1
3

(1
0
)
3
3
.0
4

(1
6
)
3
2
.7
1

(1
)

3
3
.4
3

(2
3
)
3
3
.4
3

(1
4
)
3
3
.3
3

(1
8
)
3
3
.0
7

(9
)

.
.
.
3
2
.2
1

(2
4
)
3
3
.3
6

(6
)

3
3
.3
9

(4
)

3
2
.8
4

(1
5
)
3
3
.0
5

(1
3
)
3
2
.5
2

(1
9
)
3
3
.3
8

(5
)

3
2
.4
9

(2
0
)

1
0
0

3
3
.3
3

(1
1
)
3
2
.1
4

(2
3
)
3
2
.2
4

(3
)

3
2
.1
2

(1
4
)
3
3
.0
8

(6
)

3
3
.4

(2
2
)

3
3
.2
7

(2
4
)
3
3
.3
7

(1
6
)
.
.
.
3
3
.5
9

(1
)

3
3
.0
5

(1
7
)
3
2
.8
1

(2
0
)
3
3
.3
2

(1
2
)
3
2
.8
2

(1
9
)
3
3
.3
8

(9
)

3
3
.4
5

(4
)

3
3
.4
4

(5
)

∑ R
C

i
1
3
7
2

1
1
3
2

1
2
6
5

1
3
1
9

1
2
2
9

1
1
8
8

1
3
3
7

1
1
0
9

.
.
.
1
2
5
2

1
1
0
7

1
5
0
8

1
2
6
9

1
0
4
2

1
4
2
1

1
1
1
1

1
0
7
5

∑ R
2 C

i
1
8
8
2
3
8
4

1
2
8
1
4
2
4

1
6
0
0
2
2
5

1
7
3
9
7
6
1

1
5
1
0
4
4
1

1
4
1
1
3
4
4

1
7
8
7
5
6
9

1
2
2
9
8
8
1

.
.
.
1
5
6
7
5
0
4

1
2
2
5
4
4
9

2
2
7
4
0
6
4

1
6
1
0
3
6
1

1
0
8
5
7
6
4

2
0
1
9
2
4
1

1
2
3
4
3
2
1

1
1
5
5
6
2
5

T
a
b
le

B
.2
9
:
A

p
re
v
ie
w

of
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
on

s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
a
ti
o
n
s

A
2.
3.
1–
A
2.
3.
24
.
T
h
e
ra
n
k
s
ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
a
re

u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en

p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.3
.1

A
2
.3
.2

A
2
.3
.3

A
2
.2
.4

A
2
.2
.5

A
2
.2
.6

A
2
.2
.7

A
2
.2
.8

A
2
.2
.9

.
.
.
A
2
.2
.1
7

A
2
.2
.1
8

A
2
.2
.1
9

A
2
.2
.2
0

A
2
.2
.2
1

A
2
.2
.2
2

A
2
.2
.2
3

A
2
.2
.2
4

1
1
6
0

(4
.5
)

1
5
2

(9
)

1
4
3

(1
4
)

1
1
8

(1
7
)

1
0
3

(1
8
)

1
2
8

(1
6
)

1
6
4

(2
)

1
6
2

(3
)

1
4
4

(1
2
.5
)
.
.
.
8
8

(2
2
)

8
3

(2
4
)

8
8

(2
2
)

8
8

(2
2
)

8
9

(2
0
)

1
5
3

(8
)

1
5
7

(7
)

1
4
4

(1
2
.5
)

2
9
2

(4
)

7
3

(1
5
)

9
9

(2
)

6
9

(1
9
)

6
8

(2
0
)

8
0

(1
1
)

8
7

(6
)

8
4

(1
0
)

1
0
3

(1
)

.
.
.
8
5

(8
)

8
5

(8
)

7
4

(1
4
)

9
0

(5
)

9
3

(3
)

7
1

(1
8
)

8
5

(8
)

7
2

(1
6
.5
)

3
9
8

(4
.5
)

9
2

(8
.5
)

1
0
6

(1
.5
)

8
9

(1
3
)

9
3

(7
)

9
8

(4
.5
)

8
2

(2
2
)

9
2

(8
.5
)

1
0
6

(1
.5
)

.
.
.
8
8

(1
5
)

9
7

(6
)

7
7

(2
4
)

8
4

(1
9
.5
)

8
9

(1
3
)

8
5

(1
7
.5
)

8
0

(2
3
)

9
1

(1
0
)

4
1
2
3

(5
)

1
2
1

(7
)

1
1
0

(1
7
.5
)
1
1
1

(1
5
.5
)

1
1
4

(1
3
)

1
1
7

(9
)

1
4
4

(1
)

1
2
2

(6
)

1
2
5

(4
)

.
.
.
1
2
7

(2
.5
)

1
1
1

(1
5
.5
)
1
2
0

(8
)

1
1
5

(1
0
.5
)
9
9

(2
4
)

1
2
7

(2
.5
)

1
0
6

(1
9
)

1
0
2

(2
2
)

5
6
9

(1
9
.5
)

7
8

(9
)

7
1

(1
6
)

7
5

(1
2
.5
)

6
4

(2
3
)

7
9

(8
)

6
6

(2
2
)

9
2

(2
)

9
5

(1
)

.
.
.
8
5

(6
)

7
0

(1
7
.5
)

5
6

(2
4
)

7
0

(1
7
.5
)

8
9

(4
)

6
8

(2
1
)

7
4

(1
4
)

9
1

(3
)

6
7
2

(1
2
.5
)

7
8

(7
)

8
4

(4
)

7
6

(8
.5
)

7
4

(1
0
)

5
4

(2
3
)

5
7

(2
1
)

7
6

(8
.5
)

8
1

(5
.5
)

.
.
.
7
2

(1
2
.5
)

5
3

(2
4
)

6
9

(1
6
.5
)
6
4

(1
8
)

7
1

(1
4
)

6
2

(1
9
)

7
3

(1
1
)

8
1

(5
.5
)

7
1
0
0

(4
)

8
1

(1
7
.5
)

7
9

(1
9
)

8
1

(1
7
.5
)

1
0
4

(2
)

9
0

(9
)

1
0
2

(3
)

1
0
5

(1
)

8
7

(1
2
.5
)

.
.
.
6
5

(2
4
)

7
7

(2
0
.5
)

7
6

(2
2
.5
)
9
6

(6
)

8
7

(1
2
.5
)

9
5

(7
)

8
9

(1
0
)

8
3

(1
5
.5
)

8
1
2
0

(3
.5
)

9
9

(1
8
)

8
7

(2
1
)

1
3
1

(2
)

1
1
3

(6
.5
)
8
2

(2
4
)

1
0
5

(1
5
)

1
0
7

(1
1
)

1
3
4

(1
)

.
.
.
1
0
6

(1
3
)

9
6

(1
9
)

8
6

(2
2
)

1
1
5

(5
)

1
2
0

(3
.5
)

8
3

(2
3
)

1
0
9

(9
)

1
0
4

(1
6
.5
)

9
5
6

(1
7
)

6
6

(9
)

8
7

(2
)

5
5

(1
9
)

5
6

(1
7
)

6
8

(8
)

5
3

(2
1
)

6
3

(1
1
)

9
0

(1
)

.
.
.
5
4

(2
0
)

7
5

(4
.5
)

3
7

(2
3
)

5
7

(1
4
.5
)

7
6

(3
)

3
3

(2
4
)

6
1

(1
2
.5
)
7
5

(4
.5
)

1
0

7
6

(2
0
)

6
6

(2
3
)

8
9

(5
)

8
8

(6
.5
)

8
4

(1
3
.5
)
8
6

(1
1
)

8
2

(1
5
.5
)

8
7

(8
.5
)

7
9

(1
7
)

.
.
.
7
3

(2
2
)

8
7

(8
.5
)

6
5

(2
4
)

8
8

(6
.5
)

8
4

(1
3
.5
)

7
4

(2
1
)

8
2

(1
5
.5
)
1
0
0

(3
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

8
7

(1
8
.5
)

1
0
3

(6
)

9
6

(1
0
.5
)

1
1
1

(2
)

8
1

(2
3
)

1
0
6

(5
)

9
1

(1
5
)

9
1

(1
5
)

7
7

(2
4
)

.
.
.
8
5

(2
1
.5
)

1
0
0

(7
)

9
7

(9
)

1
1
2

(1
)

8
6

(2
0
)

8
5

(2
1
.5
)

9
8

(8
)

8
9

(1
7
)

1
0
0

7
5

(1
6
.5
)

6
0

(2
3
)

7
0

(2
0
.5
)

8
2

(9
.5
)

9
2

(2
.5
)

7
6

(1
5
)

7
2

(1
9
)

8
2

(9
.5
)

7
5

(1
6
.5
)

.
.
.
9
2

(2
.5
)

7
7

(1
4
)

5
7

(2
4
)

8
4

(6
)

8
3

(7
.5
)

7
0

(2
0
.5
)

9
0

(4
)

7
9

(1
2
)

∑ R
C

i
1
3
1
3
.5
0

1
1
4
4
.5
0

1
0
5
0

1
2
7
6
.5
0

1
1
3
1

1
1
9
0
.5
0

1
0
8
6
.5
0

9
0
6
.5
0

8
7
9

.
.
.
1
4
2
3
.5
0

1
4
4
7

1
6
0
4

1
3
7
4

1
1
5
9
.5
0

1
5
6
3
.5
0

1
2
2
4

1
1
3
2
.5
0

∑ R
2 C

i
1
7
2
5
2
8
2
.2
5

1
3
0
9
8
8
0
.2
5

1
1
0
2
5
0
0

1
6
2
9
4
5
2
.2
5

1
2
7
9
1
6
1

1
4
1
7
2
9
0
.2
5

1
1
8
0
4
8
2
.2
5

8
2
1
7
4
2
.2
5

7
7
2
6
4
1

.
.
.
2
0
2
6
3
5
2
.3
0

2
0
9
3
8
0
9

2
5
7
2
8
1
6

1
8
8
7
8
7
6

1
3
4
4
4
4
0
.3
0

2
4
4
4
5
3
2
.2
5

1
4
9
8
1
7
6

1
2
8
2
5
5
6

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 247

Table B.30: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the NSGA-II) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A2.3.1–A2.3.24.

Worst Best

HA NDS HA NDS

A2.3.1 Run 6 Run 44 Run 17 Run 1

A2.3.2 Run 34 Run 71 Run 89 Run 48

A2.3.3 Run 27 Run 97 Run 1 Run 39

A2.3.4 Run 44 Run 44 Run 95 Run 39

A2.3.5 Run 27 Run 82 Run 73 Run 39

A2.3.6 Run 34 Run 34 Run 96 Run 89

A2.3.7 Run 59 Run 9 Run 50 Run 89

A2.3.8 Run 21 Run 9 Run 76 Run 1

A2.3.9 Run 44 Run 12 Run 16 Run 39

A2.3.10 Run 34 Run 34 Run 89 Run 1

A2.3.11 Run 34 Run 98 Run 13 Run 1

A2.3.12 Run 66 Run 2 Run 89 Run 1

A2.3.13 Run 44 Run 44 Run 1 Run 15

A2.3.14 Run 39 Run 44 Run 7 Run 79

A2.3.14 Run 12 Run 60 Run 84 Run 1

A2.3.15 Run 28 Run 2 Run 63 Run 1

A2.3.16 Run 44 Run 44 Run 89 Run 15

A2.3.17 Run 32 Run 32 Run 16 Run 48

A2.3.18 Run 45 Run 6 Run 25 Run 65

A2.3.19 Run 21 Run 9 Run 78 Run 39

A2.3.20 Run 71 Run 12 Run 25 Run 18

A2.3.21 Run 87 Run 12 Run 94 Run 39

A2.3.22 Run 97 Run 9 Run 96 Run 15

A2.3.23 Run 44 Run 1 Run 49 Run 39

A2.3.24 Run 21 Run 97 Run 74 Run 15

Stellenbosch University https://scholar.sun.ac.za

248 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.3
1
:
T
h
e
a
d
ju
st
ed

p
-v
a
lu
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
h
y
p
er
ar
ea
s
of

th
e
ap

p
ro
x
im

a
ti
o
n

fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
3
.1
–A

2.
3.
2
4.

A
2
.3
.2

A
2
.3
.3

A
2
.3
.4

A
2
.3
.5

A
2
.3
.6

A
2
.3
.7

A
2
.3
.8

A
2
.3
.9

A
2
.3
.1
0

A
2
.3
.1
1

A
2
.3
.1
2

A
2
.3
.1
3

A
2
.3
.1
4

A
2
.3
.1
5

A
2
.3
.1
6

A
2
.3
.1
7

A
2
.3
.1
8

A
2
.3
.1
9

A
2
.3
.2
0

A
2
.3
.2
1

A
2
.3
.2
2

A
2
.3
.2
3

A
2
.3
.2
4

A
2
.3
.1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0
.2
7

1
1

0
.8
2

A
2
.3
.2

1
1

1
1

1
1

1
0
.3
8

1
1

0
.2
6

1
1

0
.5
3

1
1

0
.0
4
7

1
1

1
1

1

A
2
.3
.3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.3
.4

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.3
.5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.3
.6

1
1

1
1

1
1

1
1

1
1

1
1

0
.3
8

1
1

1
1

1

A
2
.3
.7

1
1

1
1

1
1

1
1

1
1

1
1

1
0
.8
8

1
1

1

A
2
.3
.8

1
0
.1
7

1
1

0
.1
1

1
1

0
.2
4

1
1

0
.0
2

1
1

0
.5

1
1

A
2
.3
.9

0
.1
4

1
1

0
.0
9

1
1

0
.2

1
1

0
.0
2

1
1

0
.4
2

1
1

A
2
.3
.1
0

1
0
.1
3

1
1

1
1

1
0
.1
6

1
1

0
.0
1

1
0
.1
8

0
.0
4
5

A
2
.3
.1
1

1
1

1
1

1
1

1
0
.9
9
8

1
1

1
1

1

A
2
.3
.1
2

0
.0
9

1
1

0
.1
9

1
1

0
.0
1

1
1

0
.3
9

1
1

A
2
.3
.1
3

1
1

1
1

0
.1
0

1
1

0
.0
1

1
0
.1
2

0
.0
3

A
2
.3
.1
4

1
1

1
1

1
1

1
1

1
1

A
2
.3
.1
5

1
1

1
0
.2
2

1
1

1
1

1

A
2
.3
.1
6

1
0
.2
2

1
1

0
.0
2

1
0
.2
6

0
.0
7

A
2
.3
.1
7

1
1

1
1

1
1

1

A
2
.3
.1
8

0
.0
2

1
1

0
.4
7

1
1

A
2
.3
.1
9

1
0

1
0
.0
2

0

A
2
.3
.2
0

1
1

1
1

A
2
.3
.2
1

0
.0
4

1
1

A
2
.3
.2
2

0
.5
3

0
.1
5

A
2
.3
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 249

T
a
b
le

B
.3
2
:
T
h
e
ad

ju
st
ed

p
-v
al
u
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
o
n
s

fo
u
n
d
fo
r
th
e
ap

p
ro
x
im

at
io
n
fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
3.
1–

A
2.
3.
24

.

A
2
.3
.2

A
2
.3
.3

A
2
.3
.4

A
2
.3
.5

A
2
.3
.6

A
2
.3
.7

A
2
.3
.8

A
2
.3
.9

A
2
.3
.1
0

A
2
.3
.1
1

A
2
.3
.1
2

A
2
.3
.1
3

A
2
.3
.1
4

A
2
.3
.1
5

A
2
.3
.1
6

A
2
.3
.1
7

A
2
.3
.1
8

A
2
.3
.1
9

A
2
.3
.2
0

A
2
.3
.2
1

A
2
.3
.2
2

A
2
.3
.2
3

A
2
.3
.2
4

A
2
.3
.1

1
1

1
1

1
1

0
.0
1
3

0
1

0
.0
0
4

0
.0
4
8

0
.0
1

1
1

0
.2
1

1
1

1
1

1
1

1
1

A
2
.3
.2

1
1

1
1

1
1

1
1

1
1

0
0
.7

1
0

1
0
.7

0
.0
0
1

1
1

0
.0
1

1
1

A
2
.3
.3

1
1

1
1

1
1

1
1

1
0

0
.0
2

0
.9
8

0
0
.0
5

0
.0
2

0
0
.3
3

1
0

1
1

A
2
.3
.4

1
1

1
0
.0
6

0
.0
2

1
0
.0
2

0
.2

0
1

1
0
.0
5

1
1

0
.2
9

1
1

1
1

1

A
2
.3
.5

1
1

1
1

1
1

1
0

0
.4
4

1
0

0
.9
5

0
.4
4

0
1

1
0

1
1

A
2
.3
.6

1
1

0
.5
1

1
0
.5
4

1
0

1
1

0
1

1
0
.0
1

1
1

0
.0
5

1
1

A
2
.3
.7

1
1

1
1

1
0

0
.0
9

1
0

0
.2
1

0
.0
9

0
1

1
0

1
1

A
2
.3
.8

1
1

1
1

0
0

0
0

0
0

0
0

1
0

0
.4
1

1

A
2
.3
.9

1
1

1
0

0
0

0
0

0
0

0
1

0
0
.1
6

1

A
2
.3
.1
0

1
1

0
0
.2
3
1

1
0

0
.5
7

0
.2
3

0
1

1
0
.0
0
2

1
1

A
2
.3
.1
1

1
0

0
0

0
0

0
0

0
1

0
0
.1
7

1

A
2
.3
.1
2

0
0

0
.0
2

0
0

0
0

0
1

0
1

1

A
2
.3
.1
3

1
0
.0
4

1
0
.7
2

1
1

0
.1
3

0
1

0
0

A
2
.3
.1
4

1
1

1
1

1
1

1
1

1
0
.4
7

A
2
.3
.1
5

0
.5
6

1
1

1
1

1
1

1
1

A
2
.3
.1
6

1
1

1
1

0
1

0
.0
1

0

A
2
.3
.1
7

1
1

1
1

1
1

1

A
2
.3
.1
8

1
1

1
1

1
0
.4
5
8

A
2
.3
.1
9

1
0

1
0
.0
4

0

A
2
.3
.2
0

1
1

1
1

A
2
.3
.2
1

0
.0
2

1
1

A
2
.3
.2
2

0
.1
9

0
.0
1

A
2
.3
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

250 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.3
3
:
A

p
re
v
ie
w

of
th
e
h
y
p
er
a
re
as

(a
n
d
co
rr
es
p
o
n
d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
4.
1–

A
2.
4.
24

.
T
h
e
ra
n
k
s

ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en
p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.4
.1

A
2
.4
.2

A
2
.4
.3

A
2
.4
.4

A
2
.4
.5

A
2
.4
.6

A
2
.4
.7

A
2
.4
.8

.
.
.

A
2
.4
.1
7

A
2
.4
.1
8

A
2
.4
.1
9

A
2
.4
.2
0

A
2
.4
.2
1

A
2
.4
.2
2

A
2
.4
.2
3

A
2
.4
.2
4

1
2
1
.1
4

(1
0
)
2
0
.9
1

(2
1
)
2
0
.9
1

(2
0
)
2
1
.0
1

(1
7
)
2
1
.1
7

(9
)

2
1
.4
7

(1
)

2
1
.1

(1
2
)

2
1
.0
7

(1
3
)
.
.
.

2
1

(1
9
)

2
1
.3

(6
)

2
1

(1
8
)

2
1
.1
7

(8
)

2
1
.3
6

(4
)

2
0
.6
2

(2
3
)
2
1
.0
1

(1
6
)
2
1
.0
3

(1
4
)

2
2
1
.4
9

(3
)

2
1
.0
8

(1
3
)
2
1
.3
3

(6
)

2
0
.8
5

(1
8
)
2
1
.1
5

(1
0
)
2
1
.3
6

(5
)

2
0
.9
8

(1
5
)
2
1
.6
8

(2
)

.
.
.

2
0
.7
4

(2
0
)
2
1
.1
7

(9
)

2
0
.8
8

(1
7
)
2
1
.2
8

(8
)

2
0
.3
6

(2
1
)
1
9
.9
5

(2
2
)
2
0
.9

(1
6
)

2
1
.2
9

(7
)

3
2
0
.4

(2
2
)

2
0
.6
6

(2
1
)
2
1
.2
1

(1
0
)
2
1
.4
6

(4
)

2
1
.1
5

(1
5
)
2
0
.8

(2
0
)

2
1
.1
6

(1
3
)
2
1
.2
6

(7
)

.
.
.

2
0
.9
7

(1
9
)
2
1
.1
8

(1
2
)
2
1
.2
5

(8
)

2
1
.5
8

(3
)

2
1
.1
9

(1
1
)
2
1
.1
5

(1
4
)
2
1
.3
2

(5
)

2
1
.8
2

(1
)

4
2
1
.1
5

(2
1
)
2
1
.7

(3
)

2
1
.5
8

(4
)

2
1
.4
3

(1
0
)
2
1
.5

(8
)

2
1
.4
1

(1
2
)
2
1
.2
1

(2
0
)
2
1
.3

(1
7
)

.
.
.

2
1
.7
3

(2
)

2
1
.5
6

(5
)

2
1
.3
4

(1
6
)
2
1
.3

(1
8
)

2
1
.5
2

(7
)

2
0
.9
7

(2
4
)
2
1
.1

(2
3
)

2
1
.4
1

(1
3
)

5
2
1
.6
9

(4
)

2
1
.4
7

(8
)

2
1
.4
6

(9
)

2
0
.9
2

(2
1
)
2
1
.7
7

(2
)

2
1
.6
4

(5
)

2
1
.3

(1
3
)

2
1
.3
2

(1
1
)
.
.
.

2
1
.2
8

(1
4
)
2
1
.2
6

(1
6
)
2
0
.5
9

(2
2
)
2
1
.2
4

(1
7
)
2
1
.8
4

(1
)

2
1
.5
3

(7
)

2
1
.0
2

(2
0
)
2
1
.1
4

(1
9
)

6
2
1
.7
5

(1
)

2
0
.4
6

(2
0
)
2
1
.3
7

(5
)

2
1
.2
1

(1
0
)
2
1
.2
9

(7
)

2
1
.3
8

(4
)

2
1
.1
2

(1
3
)
2
1
.2
4

(8
)

.
.
.

2
1
.1
2

(1
4
)
2
1
.0
3

(1
5
)
2
0
.5
7

(1
9
)
1
9
.7
2

(2
4
)
2
0
.5
8

(1
8
)
2
1
.2

(1
1
)

2
1
.4
6

(2
)

2
0
.9
3

(1
6
)

7
2
1
.1
7

(1
1
)
2
0
.8
6

(2
4
)
2
1
.3

(6
)

2
0
.9
9

(2
0
)
2
1
.1
8

(9
)

2
1
.2
6

(8
)

2
0
.9
7

(2
1
)
2
1
.3
7

(4
)

.
.
.

2
1
.1
7

(1
0
)
2
1
.0
1

(1
8
)
2
1
.0
8

(1
4
)
2
1
.5

(2
)

2
1
.0
2

(1
7
)
2
1
.0
5

(1
5
)
2
0
.9
3

(2
2
)
2
1
.5
4

(1
)

8
2
1
.6
1

(6
)

2
1
.4
3

(1
8
)
2
1
.3
1

(2
1
)
2
1
.1
6

(2
4
)
2
1
.7
5

(2
)

2
1
.5
8

(1
0
)
2
1
.8

(1
)

2
1
.4
8

(1
6
)
.
.
.

2
1
.5
1

(1
5
)
2
1
.4

(1
9
)

2
1
.5
7

(1
1
)
2
1
.6

(8
)

2
1
.7
1

(3
)

2
1
.4
8

(1
7
)
2
1
.6

(7
)

2
1
.2
7

(2
2
)

9
2
1
.5
3

(5
)

2
1
.3
4

(1
0
)
2
0
.4
4

(2
4
)
2
0
.8
9

(2
0
)
2
1
.6
4

(3
)

2
1
.5
7

(4
)

2
1
.3
4

(9
)

2
1
.4
8

(6
)

.
.
.

2
0
.7

(2
2
)

2
1
.7
4

(1
)

2
1
.3
3

(1
1
)
2
1
.2

(1
7
)

2
1
.1
3

(1
8
)
2
1
.2

(1
5
)

2
1
.0
5

(1
9
)
2
1
.3
8

(8
)

1
0

2
0
.5
3

(2
3
)
2
1
.2
1

(1
0
)
2
0
.9
4

(2
0
)
2
1
.3
3

(5
)

2
1

(1
7
)

2
1
.0
6

(1
6
)
2
1
.2

(1
2
)

2
0
.6
4

(2
2
)
.
.
.

2
0
.9
5

(1
8
)
2
1
.1
2

(1
5
)
2
1
.2
9

(6
)

2
1
.6

(1
)

2
1
.2

(1
1
)

2
0
.6
6

(2
1
)
2
1
.4
4

(3
)

2
1
.2
7

(7
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

2
1
.5
1

(5
)

2
1
.4
1

(8
)

2
1
.0
7

(2
3
)
2
1
.1

(2
2
)

2
1
.2
1

(1
7
)
2
1
.4
3

(7
)

2
1
.3
9

(9
)

2
1
.3
3

(1
3
)
.
.
.

2
1
.6
1

(2
)

2
0
.9
1

(2
4
)
2
1
.5
4

(4
)

2
1
.3
7

(1
1
)
2
1
.1
4

(2
0
)
2
1
.1

(2
1
)

2
1
.4
5

(6
)

2
1
.5
7

(3
)

1
0
0

2
0
.9
4

(2
2
)
2
1
.4
5

(6
)

2
1
.6
3

(2
)

2
1
.2
9

(9
)

2
1
.0
5

(1
7
)
2
1
.0
8

(1
6
)
2
1
.1
8

(1
1
)
2
1
.6
4

(1
)

.
.
.

2
0
.9
5

(2
0
)
2
1
.1

(1
4
)

2
0
.9
6

(1
8
)
2
1
.1
5

(1
3
)
2
0
.9
5

(2
1
)
2
0
.8
7

(2
3
)
2
1
.0
9

(1
5
)
2
1
.4

(8
)

∑ R
C

i
1
4
5
7

1
3
7
6

1
1
2
0

1
4
7
6

1
1
5
2

1
1
0
9

1
3
9
5

1
0
0
8

.
.
.

1
3
3
6

1
2
0
1

1
5
3
9

1
2
4
8

9
6
9

1
5
5
8

1
1
4
6

9
9
3

∑ R
2 C

i
2
1
2
2
8
4
9

1
8
9
3
3
7
6

1
2
5
4
4
0
0

2
1
7
8
5
7
6

1
3
2
7
1
0
4

1
2
2
9
8
8
1

1
9
4
6
0
2
5

1
0
1
6
0
6
4

.
.
.

1
7
8
4
8
9
6

1
4
4
2
4
0
1

2
3
6
8
5
2
1

1
5
5
7
5
0
4

9
3
8
9
6
1

2
4
2
7
3
6
4

1
3
1
3
3
1
6

9
8
6
0
4
9

T
a
b
le

B
.3
4
:
A

p
re
v
ie
w

of
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
on

s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
a
ti
o
n
s

A
2.
4.
1–
A
2.
4.
24
.
T
h
e
ra
n
k
s
ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
a
re

u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en

p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.4
.1

A
2
.4
.2

A
2
.4
.3

A
2
.4
.4

A
2
.4
.5

A
2
.4
.6

A
2
.4
.7

A
2
.4
.8

A
2
.4
.9

.
.
.

A
2
.4
.1
6

A
2
.4
.1
7

A
2
.4
.1
8

A
2
.4
.1
9

A
2
.4
.2
0

A
2
.4
.2
1

A
2
.4
.2
2

A
2
.4
.2
3

A
2
.4
.2
4

1
5
7

(2
)

4
9

(1
1
.5
)

4
5

(1
6
.5
)

5
6

(3
)

5
2

(8
)

5
4

(5
.5
)

6
1

(1
)

4
3

(2
1
)

5
0

(9
.5
)

.
.
.

4
4

(1
8
.5
)

4
3

(2
1
)

4
7

(1
4
.5
)

5
0

(9
.5
)

5
3

(7
)

4
9

(1
1
.5
)
4
8

(1
3
)

3
8

(2
4
)

4
3

(2
1
)

2
4
5

(1
3
.5
)

5
0

(6
)

3
4

(2
4
)

4
5

(1
3
.5
)

4
3

(1
5
.5
)
5
4

(2
.5
)

4
8

(9
)

4
7

(1
1
)

4
2

(1
7
.5
)
.
.
.

3
8

(2
1
)

4
7

(1
1
)

5
4

(2
.5
)

4
2

(1
7
.5
)
6
2

(1
)

4
9

(7
.5
)

3
9

(2
0
)

5
2

(5
)

4
7

(1
1
)

3
5
6

(7
)

4
9

(1
6
)

5
1

(1
3
)

5
5

(8
.5
)

6
3

(1
)

4
6

(2
1
)

5
4

(1
0
)

5
2

(1
1
)

4
7

(1
8
.5
)
.
.
.

5
9

(4
)

5
9

(4
)

5
7

(6
)

4
6

(2
1
)

4
3

(2
4
)

5
1

(1
3
)

5
9

(4
)

5
1

(1
3
)

5
5

(8
.5
)

4
5
3

(1
5
.5
)

5
8

(8
.5
)

5
8

(8
.5
)

5
0

(1
8
.5
)

5
5

(1
3
)

4
9

(2
0
.5
)
5
2

(1
7
)

6
7

(2
.5
)
7
3

(1
)

.
.
.

4
7

(2
3
)

6
7

(2
.5
)

5
3

(1
5
.5
)

5
7

(1
1
)

5
8

(8
.5
)

5
8

(8
.5
)

4
5

(2
4
)

6
6

(4
)

6
4

(6
)

5
5
0

(1
5
)

5
3

(1
2
)

5
3

(1
2
)

5
2

(1
4
)

4
6

(2
0
.5
)
5
7

(5
)

5
4

(9
.5
)

4
7

(1
9
)

5
6

(6
)

.
.
.

5
5

(7
.5
)

4
8

(1
7
.5
)
6
2

(1
.5
)

4
8

(1
7
.5
)
4
0

(2
4
)

6
1

(3
)

4
3

(2
2
)

5
5

(7
.5
)

5
3

(1
2
)

6
5
2

(3
)

5
1

(6
)

4
2

(1
6
.5
)

4
3

(1
5
)

5
1

(6
)

4
0

(1
9
.5
)
3
5

(2
4
)

4
7

(1
2
)

4
9

(1
0
)

.
.
.

4
0

(1
9
.5
)

4
4

(1
4
)

4
7

(1
2
)

4
0

(1
9
.5
)
3
9

(2
2
)

5
2

(3
)

4
7

(1
2
)

5
2

(3
)

4
2

(1
6
.5
)

7
5
6

(3
)

4
7

(1
7
)

4
7

(1
7
)

4
9

(1
3
.5
)

4
9

(1
3
.5
)
4
9

(1
3
.5
)
4
0

(2
3
)

6
0

(1
.5
)
5
4

(5
)

.
.
.

5
0

(1
0
.5
)

4
7

(1
7
)

4
9

(1
3
.5
)

5
0

(1
0
.5
)
5
2

(7
)

3
9

(2
4
)

5
2

(7
)

5
5

(4
)

6
0

(1
.5
)

8
6
0

(1
1
)

6
5

(3
.5
)

6
2

(7
)

6
1

(9
)

5
2

(2
0
.5
)
5
0

(2
2
.5
)
6
0

(1
1
)

6
4

(5
)

5
7

(1
5
)

.
.
.

6
6

(2
)

5
7

(1
5
)

5
6

(1
7
.5
)

5
2

(2
0
.5
)
5
9

(1
3
)

6
5

(3
.5
)

6
0

(1
1
)

6
2

(7
)

5
6

(1
7
.5
)

9
5
0

(6
)

3
8

(2
3
)

5
1

(4
.5
)

4
4

(1
4
)

6
0

(1
)

4
6

(1
0
.5
)
5
1

(4
.5
)

5
7

(2
)

4
9

(7
)

.
.
.

4
1

(1
8
.5
)

4
5

(1
2
)

4
7

(8
.5
)

4
1

(1
8
.5
)
4
6

(1
0
.5
)

4
1

(1
8
.5
)
3
9

(2
2
)

4
0

(2
1
)

4
7

(8
.5
)

1
0

4
1

(2
0
)

5
5

(5
)

4
3

(1
7
)

5
4

(6
)

3
8

(2
3
.5
)
4
5

(1
1
.5
)
5
7

(3
.5
)

4
3

(1
7
)

5
7

(3
.5
)

.
.
.

4
4

(1
4
)

4
1

(2
0
)

4
8

(8
.5
)

4
3

(1
7
)

4
5

(1
1
.5
)

4
1

(2
0
)

3
9

(2
2
)

4
8

(8
.5
)

6
1

(2
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

6
2

(4
.5
)

6
0

(8
)

6
5

(3
)

5
8

(1
0
.5
)

4
8

(2
2
)

5
2

(1
8
)

5
0

(2
0
.5
)
6
1

(6
.5
)
5
7

(1
3
)

.
.
.

5
0

(2
0
.5
)

5
6

(1
5
)

5
9

(9
)

5
8

(1
0
.5
)
4
7

(2
3
)

6
7

(1
)

4
6

(2
4
)

5
5

(1
6
.5
)
5
7

(1
3
)

1
0
0

5
1

(5
.5
)

4
7

(1
6
.5
)

4
9

(1
3
)

5
1

(5
.5
)

4
4

(2
0
.5
)
5
6

(1
)

4
8

(1
5
)

5
2

(3
.5
)
5
3

(2
)

.
.
.

4
5

(1
9
)

5
0

(9
)

5
0

(9
)

4
9

(1
3
)

4
4

(2
0
.5
)

5
0

(9
)

5
2

(3
.5
)

4
3

(2
2
)

5
0

(9
)

∑ R
C

i
1
2
7
0

1
1
8
2

1
2
6
2

1
2
3
5

1
1
2
4

1
2
6
2

1
0
8
3

9
6
6

1
0
7
8

.
.
.

1
4
7
3

1
3
8
1

1
2
6
2

1
4
5
6

1
2
7
8

1
2
1
8

1
5
4
2

1
2
0
7

1
1
7
8

∑ R
2 C

i
1
6
1
1
6
3
0
.2
5

1
3
9
5
9
4
2
.3

1
5
9
1
3
8
2
.2
5

1
5
2
3
9
9
0
.3

1
2
6
3
3
7
6

1
5
9
2
6
4
4

1
1
7
2
8
8
9

9
3
2
1
9
0

1
1
6
1
0
0
6

.
.
.

2
1
6
8
2
5
6
.2
5

1
9
0
7
1
6
1

1
5
9
1
3
8
2
.2
5

2
1
1
9
9
3
6

1
6
3
2
0
0
6
.2
5

1
4
8
3
5
2
4

2
3
7
7
7
6
4

1
4
5
6
8
4
9

1
3
8
7
6
8
4

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 251

Table B.35: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the NSGA-II) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A2.4.1–A2.4.24.

Worst Best

HA NDS HA NDS

A2.4.1 Run 66 Run 66 Run 6 Run 39

A2.4.2 Run 79 Run 26 Run 25 Run 16

A2.4.3 Run 83 Run 58 Run 98 Run 15

A2.4.4 Run 44 Run 42 Run 77 Run 50

A2.4.5 Run 32 Run 12 Run 5 Run 96

A2.4.6 Run 59 Run 21 Run 15 Run 84

A2.4.7 Run 79 Run 82 Run 24 Run 18

A2.4.8 Run 82 Run 68 Run 38 Run 15

A2.4.9 Run 83 Run 58 Run 76 Run 4

A2.4.10 Run 12 Run 64 Run 63 Run 15

A2.4.11 Run 28 Run 9 Run 76 Run 73

A2.5.12 Run 71 Run 60 Run 70 Run 19

A2.5.13 Run 68 Run 27 Run 15 Run 18

A2.5.14 Run 2 Run 2 Run 4 Run 36

A2.5.15 Run 74 Run 82 Run 47 Run 18

A2.5.16 Run 26 Run 26 Run 46 Run 16

A2.5.17 Run 58 Run 26 Run 4 Run 39

A2.5.18 Run 21 Run 71 Run 81 Run 65

A2.4.19 Run 13 Run 13 Run 50 Run 39

A2.4.20 Run 6 Run 44 Run 63 Run 15

A2.4.21 Run 59 Run 82 Run 96 Run 15

A2.5.22 Run 74 Run 12 Run 75 Run 73

A2.5.23 Run 74 Run 55 Run 33 Run 96

A2.5.24 Run 44 Run 44 Run 3 Run 15

Stellenbosch University https://scholar.sun.ac.za

252 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.3
6
:
T
h
e
a
d
ju
st
ed

p
-v
a
lu
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
h
y
p
er
ar
ea
s
of

th
e
ap

p
ro
x
im

a
ti
o
n

fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
4
.1
–A

2.
4.
2
4.

A
2
.4
.2

A
2
.4
.3

A
2
.4
.4

A
2
.4
.5

A
2
.4
.6

A
2
.4
.7

A
2
.4
.8

A
2
.4
.9

A
2
.4
.1
0

A
2
.4
.1
1

A
2
.4
.1
2

A
2
.4
.1
3

A
2
.4
.1
4

A
2
.4
.1
5

A
2
.4
.1
6

A
2
.4
.1
7

A
2
.4
.1
8

A
2
.4
.1
9

A
2
.4
.2
0

A
2
.4
.2
1

A
2
.4
.2
2

A
2
.4
.2
3

A
2
.4
.2
4

A
2
.4
.1

1
0
.2
0
7

1
0
.6
3

0
.1
3
8

1
0
.0
0
2

0
1

0
.0
0
3

0
0
.8
8

1
0
.5
2

1
1

1
1

1
0

1
0
.5
2

0

A
2
.4
.2

1
1

1
1

1
0
.0
6

0
1

0
.1
0

0
0
.0
4
7

1
1

1
1

1
1

1
0
.0
1

1
1

0
.0
3
5

A
2
.4
.3

0
.1
0
2

1
1

1
1

1
0
.1
9
3

1
0
.7

0
1

1
0
.0
1

1
1

0
.0
1

1
1

0
.0
0
3

1
1

A
2
.4
.4

0
.3
3

0
.0
6
7

1
0

0
1

0
0

1
1

0
.2
7

1
1

1
1

0
.3
3

0
.0
7

1
0

1

A
2
.4
.5

1
1

1
1

0
.5
9
1

1
0
.2
3

0
1

1
0
.0
4

1
1

0
.0
3

1
1

0
.0
1

1
1

A
2
.4
.6

1
1

1
0
.1
2
8

1
0
.9
9
8

0
1

1
0
.0
1

1
1

0
.0
0
5

1
1

0
.0
0
2

1
1

A
2
.4
.7

0
.0
3

0
1

0
.0
4
9

0
0
.1

1
1

1
1

1
1

1
0
.0
1

1
1

0
.0
1
6

A
2
.4
.8

1
0

1
1

0
0
.9
7

1
0

0
.2
9

1
0

1
1

0
1

1

A
2
.4
.9

0
1

1
0

0
.0
1

1
0

0
0
.4
7

0
0
.0
9

1
0

1
1

A
2
.4
.1
0

0
.0
0
3

0
0
.9
4

1
0
.4
8

1
1

1
1

1
0

1
0
.4
8

0
.0
0
1

A
2
.4
.1
1

1
0

1
1

0
0
.4
4

1
0

1
1

0
1

1

A
2
.4
.1
2

0
0

0
.2
9

0
0

0
.0
4

0
0
.0
1

1
0

0
.2
9

1

A
2
.4
.1
3

0
.0
0
2

0
1

0
.0
0
9

0
1

0
0

1
0

0

A
2
.4
.1
4

1
1

1
1

1
1

0
.2
6

1
1

0
.5
9

A
2
.4
.1
5

0
.0
3

1
1

0
.0
2

1
1

0
.0
1

1

A
2
.4
.1
6

1
0
.2
3

1
1

0
1

0
.0
2
8

0

A
2
.4
.1
7

1
1

1
0
.0
7

1
1

0
.1
7

A
2
.4
.1
8

0
.2

1
1

0
.1

1
1

A
2
.4
.1
9

0
.9
9
8

0
1

0
.0
2

0

A
2
.4
.2
0

1
0
.5
3

1
1

A
2
.4
.2
1

0
1

1

A
2
.4
.2
2

0
.0
1

0

A
2
.4
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 253

T
a
b
le

B
.3
7
:
T
h
e
ad

ju
st
ed

p
-v
al
u
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
o
n
s

fo
u
n
d
fo
r
th
e
ap

p
ro
x
im

at
io
n
fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
4.
1–

A
2.
4.
24

.

A
2
.4
.2

A
2
.4
.3

A
2
.4
.4

A
2
.4
.5

A
2
.4
.6

A
2
.4
.7

A
2
.4
.8

A
2
.4
.9

A
2
.4
.1
0

A
2
.4
.1
1

A
2
.4
.1
2

A
2
.4
.1
3

A
2
.4
.1
4

A
2
.4
.1
5

A
2
.4
.1
6

A
2
.4
.1
7

A
2
.4
.1
8

A
2
.4
.1
9

A
2
.4
.2
0

A
2
.4
.2
1

A
2
.4
.2
2

A
2
.4
.2
3

A
2
.4
.2
4

A
2
.1

1
1

1
1

1
1

0
.6
5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.2

1
1

1
1

1
1

1
1

1
1

0
.7
8

1
1

1
1

1
1

1
1

0
.0
9

1
1

A
2
.3

1
1

1
1

0
.8
5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.4

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5

1
1

1
1

1
1

1
0
.1

1
1

0
.1
4

1
1

0
.2
5

1
1

0
.0
1

1
1

A
2
.6

1
0
.8
4

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.7

1
1

1
1

1
0
.0
2

1
0
.7
1

0
.0
3

0
.8

1
0
.0
5

1
1

0
1

1

A
2
.8

1
0
.8

1
1

0
0
.1
5

0
.0
1

0
0
.0
1

0
.8
5

0
0
.5

1
0

1
1

A
2
.9

1
1

1
0
.0
2

1
0
.5
9

0
.0
2

0
.6
6

1
0
.0
4

1
1

0
1

1

A
2
.1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.1
1

1
0
.0
1

1
0
.5

0
.0
2

0
.5
6

1
0
.0
3

1
1

0
1

1

A
2
.1
2

0
1

0
.1
4

0
0
.1
6

1
0
.0
1

1
1

0
1

1

A
2
.1
3

1
1

1
1

1
1

1
1

1
1

0
.7
0

A
2
.1
4

1
1

1
1

1
1

1
1

1
1

A
2
.1
5

1
1

1
1

1
1

1
1

1

A
2
.1
6

1
1

1
1

1
1

1
0
.8
9

A
2
.1
7

1
1

1
1

1
1

1

A
2
.1
8

1
1

1
1

1
1

A
2
.1
9

1
1

1
1

1

A
2
.2
0

1
1

1
1

A
2
.2
1

0
.3
3

1
1

A
2
.2
2

0
.2
2

0
.0
8

A
2
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

254 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.3
8
:
A

p
re
v
ie
w

of
th
e
h
y
p
er
a
re
as

(a
n
d
co
rr
es
p
o
n
d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
5.
1–

A
2.
5.
24

.
T
h
e
ra
n
k
s

ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
ar
e
u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en
p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.5
.1

A
2
.5
.2

A
2
.5
.3

A
2
.5
.4

A
2
.5
.5

A
2
.5
.6

A
2
.5
.7

.
.
.

A
2
.5
.1
8

A
2
.5
.1
9

A
2
.5
.2
0

A
2
.5
.2
1

A
2
.5
.2
2

A
2
.5
.2
3

A
2
.5
.2
4

1
1
8
9
.3

(4
)

1
8
2
.5
9

(1
8
)
1
9
0
.3

(2
)

1
8
4
.1
5

(1
7
)
1
8
7
.2
2

(8
)

1
8
6
.9
2

(1
0
)
1
8
7
.3
2

(7
)

.
.
.

1
7
1
.0
1

(2
4
)
1
8
8
.0
2

(6
)

1
8
5
.0
9

(1
2
)
1
8
4
.2
8

(1
6
)
1
7
3
.3
9

(2
3
)
1
8
4
.7
9

(1
4
)
1
8
5
.0
3

(1
3
)

2
1
8
4
.3
2

(6
)

1
8
5
.1

(4
)

1
8
7

(1
)

1
8
4
.2
1

(7
)

1
8
6
.7
2

(2
)

1
8
2
.0
3

(1
0
)
1
7
8
.3

(1
6
)

.
.
.

1
7
7
.4
6

(1
8
)
1
7
0
.4
6

(2
3
)
1
7
1
.3
3

(2
2
)
1
7
8
.9

(1
4
)

1
7
9
.3
5

(1
2
)
1
7
3
.9
4

(1
9
)
1
8
0
.7
3

(1
1
)

3
1
8
2
.7
9

(1
4
)
1
8
8
.7

(3
)

1
8
4
.3

(1
1
)

1
8
4
.8
3

(1
0
)
1
7
8
.9

(2
0
)

1
8
9
.0
7

(2
)

1
8
7
.3
3

(5
)

.
.
.

1
8
5
.1

(8
)

1
8
8
.4
9

(4
)

1
8
3
.2

(1
2
)

1
7
6
.9
4

(2
1
)
1
7
6
.9

(2
2
)

1
7
6
.6
1

(2
3
)
1
8
0

(1
8
)

4
1
8
8
.2

(5
)

1
8
8
.3
1

(4
)

1
8
7
.5
9

(1
1
)
1
8
2
.6
4

(2
3
)
1
8
6
.8
5

(1
3
)
1
8
4
.9
9

(1
6
)
1
8
5
.4
8

(1
5
)
.
.
.

1
8
3
.9
7

(2
1
)
1
8
6
.9
7

(1
2
)
1
8
0
.6
5

(2
4
)
1
8
8
.0
9

(6
)

1
8
9
.6
5

(2
)

1
8
6
.2
5

(1
4
)
1
8
7
.5
9

(1
0
)

5
1
8
4
.0
9

(4
)

1
6
6
.6
9

(2
4
)
1
8
4
.1
7

(3
)

1
8
0
.4

(1
0
)

1
7
2
.2
5

(2
2
)
1
7
3
.3
4

(1
9
)
1
8
8
.9
4

(2
)

.
.
.

1
8
2
.2

(6
)

1
6
8
.6

(2
3
)

1
7
8
.6
3

(1
5
)
1
7
7
.8
3

(1
7
)
1
7
2
.3
3

(2
1
)
1
7
9
.0
7

(1
4
)
1
7
9
.3
7

(1
2
)

6
1
7
0
.0
5

(2
0
)
1
7
6
.3
7

(1
4
)
1
8
4
.5

(4
)

1
7
3
.3
2

(1
7
)
1
7
6
.8
2

(1
3
)
1
8
6
.2
5

(2
)

1
8
3
.4
5

(6
)

.
.
.

1
6
9
.3
5

(2
1
)
1
6
8
.8
8

(2
2
)
1
5
3
.2
9

(2
4
)
1
7
8
.4
9

(1
2
)
1
7
1
.6
4

(1
9
)
1
8
1
.4
8

(8
)

1
8
3
.6

(5
)

7
1
8
7
.1
2

(3
)

1
7
5
.9
7

(2
4
)
1
8
3
.3
2

(1
1
)
1
8
4
.5
8

(9
)

1
8
2
.8
7

(1
4
)
1
8
3
.8
7

(1
0
)
1
7
9
.8
9

(2
0
)
.
.
.

1
7
6
.9
1

(2
3
)
1
8
1
.1
4

(1
5
)
1
7
8
.8
2

(2
1
)
1
8
5
.3
3

(6
)

1
8
7
.1
2

(4
)

1
8
3
.0
3

(1
2
)
1
8
8
.9
1

(2
)

8
1
8
0
.5
4

(1
9
)
1
8
0
.7
2

(1
8
)
1
7
8
.1
4

(2
2
)
1
7
9
.3
2

(2
1
)
1
8
4
.5
9

(1
1
)
1
8
5
.5
8

(8
)

1
7
7
.7
9

(2
3
)

1
8
4
.7
6

(1
0
)
1
8
3
.1
4

(1
5
)
1
7
7
.4
6

(2
4
)
1
8
7
.8
4

(2
)

1
8
2
.3
8

(1
6
)
1
8
8
.7
7

(1
)

1
8
3
.3
7

(1
4
)

9
1
7
4
.3
5

(1
8
)
1
6
2
.9
9

(2
4
)
1
8
7
.2
8

(2
)

1
6
4
.9
7

(2
3
)
1
8
2
.2
1

(7
)

1
7
9
.2
2

(1
2
)
1
6
6
.6
5

(2
1
)
.
.
.

1
8
1
.4
5

(8
)

1
8
2
.8
3

(5
)

1
7
6
.5
7

(1
6
)
1
7
6
.0
1

(1
7
)
1
7
9
.7
3

(1
1
)
1
8
2
.4
4

(6
)

1
8
6
.3
5

(3
)

1
0

1
8
9
.4
9

(7
)

1
8
5
.6
7

(1
5
)
1
7
7
.2

(2
4
)

1
8
3
.9
7

(1
9
)
1
8
1
.8
9

(2
1
)
1
8
7
.2

(1
2
)

1
7
9
.9

(2
2
)

.
.
.

1
8
4
.7
9

(1
6
)
1
8
3
.9
7

(1
8
)
1
9
5
.2
8

(1
)

1
9
2
.8
9

(2
)

1
9
1
.3
9

(4
)

1
8
6
.2
3

(1
3
)
1
8
3
.4
1

(2
0
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

1
7
1
.6

(1
9
)

1
7
9
.4
2

(1
0
)
1
8
5
.5
2

(4
)

1
6
9
.9

(2
0
)

1
8
9
.7
6

(1
)

1
8
4
.5
5

(6
)

1
8
7
.4
4

(2
)

.
.
.

1
7
3
.9
7

(1
6
)
1
7
6
.2
6

(1
4
)
1
8
4
.4
5

(7
)

1
7
1
.8
5

(1
8
)
1
7
3
.9
7

(1
7
)
1
7
7
.2
8

(1
3
)
1
6
9
.7
1

(2
1
)

1
0
0

1
8
2
.6
2

(9
)

1
7
9
.0
4

(1
8
)
1
8
2
.5
7

(1
0
)
1
8
0
.5
4

(1
4
)
1
8
1
.0
2

(1
2
)
1
8
0
.9
7

(1
3
)
1
9
0
.6
4

(2
)

.
.
.

1
7
6
.7
3

(2
0
)
1
7
5
.9
6

(2
2
)
1
8
0
.3
5

(1
5
)
1
9
0
.0
9

(3
)

1
6
7
.8
4

(2
4
)
1
8
3
.8

(8
)

1
7
6
.0
6

(2
1
)

∑ R
C

i
1
3
6
5

1
3
1
3

1
1
2
9

1
4
1
1

1
2
3
5

1
2
3
6

1
1
3
3

.
.
.

1
3
1
2

1
4
0
0

1
2
2
9

1
2
1
1

1
3
8
6

1
3
3
7

1
1
1
7

∑ R
2 C

i
1
8
6
3
2
2
5

1
7
2
3
9
6
9

1
2
7
4
6
4
1

1
9
9
0
9
2
1

1
5
2
5
2
2
5

1
5
2
7
6
9
6

1
2
8
3
6
8
9

.
.
.

1
7
2
1
3
4
4

1
9
6
0
0
0
0

1
5
1
0
4
4
1

1
4
6
6
5
2
1

1
9
2
0
9
9
6

1
7
8
7
5
6
9

1
2
4
7
6
8
9

T
a
b
le

B
.3
9
:
A

p
re
v
ie
w

of
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
on

s
(a
n
d
co
rr
es
p
on

d
in
g
ra
n
k
s)

ob
ta
in
ed

fo
r
ru
n
1–

10
0
fo
r
h
y
p
er
p
ar
am

et
er

co
m
b
in
a
ti
o
n
s

A
2.
5.
1–
A
2.
5.
24
.
T
h
e
ra
n
k
s
ar
e
gi
v
en

in
th
e
p
ar
en
th
es
es

an
d
a
re

u
se
d
in

th
e
co
m
p
u
ta
ti
on

of
th
e
F
ri
ed
m
an

an
d
Im

an
-D

av
en

p
or
t
h
y
p
ot
h
es
is

te
st
s.

R
u
n

A
2
.5
.1

A
2
.5
.2

A
2
.5
.3

A
2
.5
.4

A
2
.5
.5

A
2
.5
.6

A
2
.5
.7

A
2
.5
.8

.
.
.

A
2
.5
.1
8

A
2
.5
.1
9

A
2
.5
.2
0

A
2
.5
.2
1

A
2
.5
.2
2

A
2
.5
.2
3

A
2
.5
.2
4

1
3
4

(2
2
.5
)

4
1

(1
6
.5
)
5
1

(2
)

3
8

(1
9
)

4
3

(1
4
)

4
6

(6
)

4
7

(4
.5
)

4
1

(1
6
.5
)

.
.
.

4
4

(1
0
.5
)

4
9

(3
)

4
5

(7
.5
)

5
2

(1
)

3
3

(2
4
)

4
7

(4
.5
)

4
3

(1
4
)

2
3
7

(1
4
.5
)

4
2

(9
.5
)

4
5

(5
)

2
9

(2
4
)

3
2

(2
1
.5
)
3
9

(1
2
.5
)
3
4

(2
0
)

4
8

(2
)

.
.
.

4
3

(8
)

3
6

(1
7
)

3
0

(2
3
)

4
2

(9
.5
)

3
2

(2
1
.5
)

3
7

(1
4
.5
)
4
4

(6
.5
)

3
4
8

(3
.5
)

4
9

(2
)

3
7

(2
2
.5
)

3
9

(2
1
)

4
3

(1
3
.5
)
4
0

(1
8
.5
)
4
0

(1
8
.5
)

4
2

(1
5
)

.
.
.

4
4

(1
2
)

4
1

(1
6
)

4
5

(9
)

4
5

(9
)

4
0

(1
8
.5
)

4
5

(9
)

4
5

(9
)

4
5
0

(6
)

4
6

(1
2
)

3
8

(2
2
)

4
4

(1
5
)

5
0

(6
)

4
0

(1
9
)

3
6

(2
4
)

4
7

(1
0
)

.
.
.

5
2

(2
)

3
9

(2
0
.5
)

4
3

(1
7
)

5
0

(6
)

5
2

(2
)

4
6

(1
2
)

5
0

(6
)

5
5
0

(2
.5
)

3
6

(1
9
.5
)
3
6

(1
9
.5
)

4
0

(1
3
)

4
2

(1
0
)

4
2

(1
0
)

4
2

(1
0
)

3
8

(1
6
.5
)

.
.
.

3
1

(2
4
)

3
5

(2
1
)

5
1

(1
)

3
8

(1
6
.5
)

3
4

(2
2
)

4
0

(1
3
)

5
0

(2
.5
)

6
3
2

(2
4
)

4
6

(6
)

3
7

(1
8
.5
)

3
9

(1
4
)

5
1

(1
.5
)

5
1

(1
.5
)

4
7

(5
)

3
4

(2
3
)

.
.
.

4
0

(1
1
)

3
8

(1
6
)

3
7

(1
8
.5
)
3
7

(1
8
.5
)

3
5

(2
1
.5
)

3
9

(1
4
)

4
4

(7
)

7
3
3

(2
4
)

3
6

(2
2
)

4
1

(1
3
.5
)

3
9

(1
8
)

4
4

(8
.5
)

4
0

(1
6
)

4
5

(7
)

4
2

(1
2
)

.
.
.

3
5

(2
3
)

4
0

(1
6
)

4
4

(8
.5
)

4
1

(1
3
.5
)

4
7

(3
.5
)

4
3

(1
0
.5
)
4
6

(5
.5
)

8
3
3

(2
3
.5
)

5
4

(1
)

4
3

(1
6
)

3
8

(2
1
)

4
7

(1
0
)

4
9

(6
.5
)

4
7

(1
0
)

4
3

(1
6
)

.
.
.

5
0

(5
)

4
3

(1
6
)

4
7

(1
0
)

4
0

(1
8
.5
)

4
4

(1
3
.5
)

5
2

(3
)

4
7

(1
0
)

9
3
8

(1
2
.5
)

3
6

(1
5
)

3
8

(1
2
.5
)

3
2

(2
0
.5
)

4
4

(5
)

4
3

(6
.5
)

3
9

(1
1
)

4
2

(8
)

.
.
.

4
3

(6
.5
)

4
1

(9
.5
)

3
1

(2
2
)

4
6

(4
)

3
6

(1
5
)

4
1

(9
.5
)

4
7

(3
)

1
0

3
9

(2
1
)

4
8

(8
)

4
0

(2
0
)

4
8

(8
)

4
5

(1
2
.5
)
4
3

(1
7
)

5
0

(4
.5
)

4
9

(6
)

.
.
.

4
4

(1
5
.5
)

4
8

(8
)

5
8

(1
)

3
8

(2
2
.5
)

4
6

(1
0
)

4
4

(1
5
.5
)
5
1

(3
)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
9
9

3
6

(1
7
.5
)

4
3

(7
.5
)

4
8

(2
)

3
7

(1
6
)

5
2

(1
)

4
2

(1
1
)

4
5

(4
)

4
2

(1
1
)

.
.
.

3
2

(2
0
.5
)

3
1

(2
2
.5
)

4
5

(4
)

3
5

(1
9
)

4
3

(7
.5
)

3
2

(2
0
.5
)
3
1

(2
2
.5
)

1
0
0

2
9

(2
3
.5
)

4
1

(1
1
.5
)
4
0

(1
3
.5
)

3
3

(2
1
.5
)

4
1

(1
1
.5
)
4
8

(2
)

4
7

(3
.5
)

4
0

(1
3
.5
)

.
.
.

2
9

(2
3
.5
)

3
8

(1
7
)

4
4

(7
)

4
9

(1
)

3
3

(2
1
.5
)

4
2

(1
0
)

3
7

(1
8
.5
)

∑ R
C

i
1
3
4
4

1
3
0
4

1
3
0
6

1
3
5
1

1
2
1
1

1
1
5
7

1
0
5
6

1
0
7
3

.
.
.

1
4
5
6

1
4
2
2

1
0
6
0

1
2
4
3

1
4
3
1

1
2
2
5

1
1
6
5

∑ R
2 C

i
1
8
0
4
9
9
2
.2
5

1
7
0
0
4
1
6

1
7
0
4
3
3
0
.2
5

1
8
2
3
8
5
0
.2
5

1
4
6
6
5
2
1

1
3
3
8
6
4
9

1
1
1
4
0
8
0
.2
5

1
1
5
0
2
5
6
.2
5

.
.
.

2
1
1
8
4
8
0
.2
5

2
0
2
0
6
6
2
.2
5

1
1
2
3
6
0
0

1
5
4
3
8
0
6
.2
5

2
0
4
6
3
3
0
.2
5

1
5
0
0
6
2
5

1
3
5
7
2
2
5

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 255

Table B.40: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the NSGA-II) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A2.5.1–A2.5.24.

Worst Best

HA NDS HA NDS

A2.5.1 Run 13 Run 13 Run 84 Run 63

A2.5.2 Run 9 Run 34 Run 73 Run 25

A2.5.3 Run 44 Run 79 Run 47 Run 38

A2.5.4 Run 75 Run 57 Run 81 Run 73

A2.5.5 Run 28 Run 29 Run 18 Run 99

A2.5.6 Run 75 Run 16 Run 39 Run 35

A2.5.7 Run 9 Run 57 Run 16 Run 47

A2.5.8 Run 6 Run 74 Run 47 Run 18

A2.5.9 Run 68 Run 32 Run 42 Run 78

A2.5.10 Run 27 Run 99 Run 84 Run 74

A2.5.11 Run 91 Run 98 Run 93 Run 16

A2.5.12 Run 34 Run 87 Run 10 Run 82

A2.5.13 Run 75 Run 98 Run 20 Run 52

A2.5.14 Run 75 Run 9 Run 73 Run 93

A2.5.15 Run 27 Run 92 Run 39 Run 96

A2.5.16 Run 75 Run 28 Run 73 Run 19

A2.5.17 Run 99 Run 60 Run 56 Run 86

A2.5.18 Run 27 Run 75 Run 47 Run 92

A2.5.19 Run 75 Run 72 Run 86 Run 36

A2.5.20 Run 6 Run 2 Run 10 Run 48

A2.5.21 Run 75 Run 46 Run 39 Run 81

A2.5.22 Run 32 Run 2 Run 36 Run 96

A2.5.23 Run 75 Run 97 Run 39 Run 92

A2.5.24 Run 75 Run 26 Run 62 Run 33

Stellenbosch University https://scholar.sun.ac.za

256 Appendix B. Algorithmic Parameter Evaluation Results

T
a
b
le

B
.4
1
:
T
h
e
a
d
ju
st
ed

p
-v
a
lu
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
h
y
p
er
ar
ea
s
of

th
e
ap

p
ro
x
im

a
ti
o
n

fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
5
.1
–A

2.
5.
2
4.

A
2
.5
.2

A
2
.5
.3

A
2
.5
.4

A
2
.5
.5

A
2
.5
.6

A
2
.5
.7

A
2
.5
.8

A
2
.5
.9

A
2
.5
.1
0

A
2
.5
.1
1

A
2
.5
.1
2

A
2
.5
.1
3

A
2
.5
.1
4

A
2
.5
.1
5

A
2
.5
.1
6

A
2
.5
.1
7

A
2
.5
.1
8

A
2
.5
.1
9

A
2
.5
.2
0

A
2
.5
.2
1

A
2
.5
.2
2

A
2
.5
.2
3

A
2
.5
.2
4

A
2
.5
.1

1
1

1
1

1
1

1
0

1
1

0
.0
2

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5
.2

1
1

1
1

1
1

0
1

1
0
.1
7

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5
.3

1
1

1
1

1
0
.0
9

1
1

1
1

1
1

0
.1
2

1
1

1
1

1
1

1
1

A
2
.5
.4

1
1

1
1

0
1

0
.7
2

0
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.5

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.6

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5
.7

1
0
.0
8

1
1

1
1

1
1

0
.1
4

1
1

1
1

1
1

1
1

A
2
.5
.8

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.9

0
.0
0
2

0
.1
8

1
0

0
0

0
0

0
0

0
0

0
0

0
.1
4

A
2
.5
.1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5
.1
1

1
1

1
1

0
.0
6

1
1

1
1

1
1

1
1

A
2
.5
.1
2

0
.0
2

0
.0
1

0
.4
4

0
0
.0
2

0
.1
8

0
1

1
0
.0
1

0
.0
7

1

A
2
.5
.1
3

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.1
4

1
1

1
1

1
1

1
1

1

A
2
.5
.1
5

1
1

1
1

1
1

1
1

1

A
2
.5
.1
6

1
1

1
1

1
1

1
0
.0
8

A
2
.5
.1
7

1
1

1
1

1
1

1

A
2
.5
.1
8

1
1

1
1

1
1

A
2
.5
.1
9

1
1

1
1

1

A
2
.5
.2
0

1
1

1
1

A
2
.5
.2
1

1
1

1

A
2
.5
.2
2

1
1

A
2
.5
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

B.2. NSGA-II 257

T
a
b
le

B
.4
2
:
T
h
e
ad

ju
st
ed

p
-v
al
u
es

ob
ta
in
ed

b
y
th
e
N
em

en
y
i
p
os
t
h
o
c
te
st

fo
r
th
e
m
u
lt
ip
le

co
m
p
ar
is
on

s
b
as
ed

on
th
e
n
u
m
b
er

of
n
on

-d
om

in
at
ed

so
lu
ti
o
n
s

fo
u
n
d
fo
r
th
e
ap

p
ro
x
im

at
io
n
fr
on

ts
fo
r
th
e
h
y
p
er
p
ar
am

et
er

co
m
b
in
at
io
n
s
A
2.
5.
1–

A
2.
5.
24

.

A
2
.5
.2

A
2
.5
.3

A
2
.5
.4

A
2
.5
.5

A
2
.5
.6

A
2
.5
.7

A
2
.5
.8

A
2
.5
.9

A
2
.5
.1
0

A
2
.5
.1
1

A
2
.5
.1
2

A
2
.5
.1
3

A
2
.5
.1
4

A
2
.5
.1
5

A
2
.5
.1
6

A
2
.5
.1
7

A
2
.5
.1
8

A
2
.5
.1
9

A
2
.5
.2
0

A
2
.5
.2
1

A
2
.5
.2
2

A
2
.5
.2
3

A
2
.5
.2
4

A
2
.5
.1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5
.3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.4

1
1

0
.8
8

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.6

1
1

1
1

1
1

1
1

1
0
.6
3

1
0
.7
8

1
1

1
1

1
1

A
2
.5
.7

1
1

1
1

1
1

1
1

0
.0
1

0
.3
7

0
.0
2

0
.0
7

1
1

0
.0
4
9

1
1

A
2
.5
.8

1
1

1
1

1
1

1
0
.0
3

0
.6
5

0
.0
4

0
.1
3

1
1

0
.0
9

1
1

A
2
.5
.9

1
1

1
1

1
1

0
.0
4

0
.8
1

0
.0
4
6

0
.1
7

1
1

0
.1
2

1
1

A
2
.5
.1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5
.1
1

1
1

1
1

0
.2
3

1
0
.2
9

0
.9
2

1
1

0
.6
9

1
1

A
2
.5
.1
2

1
1

1
1

1
1

1
1

1
1

1
1

A
2
.5
.1
3

1
1

1
1

1
1

1
1

1
1

1

A
2
.5
.1
4

1
1

1
1

1
1

1
1

1
1

A
2
.5
.1
5

1
1

1
1

1
1

1
1

1

A
2
.5
.1
6

1
1

1
0
.0
2

1
1

1
0
.8
2

A
2
.5
.1
7

1
1

0
.4
3

1
1

1
1

A
2
.5
.1
8

1
0
.0
2

1
1

1
1

A
2
.5
.1
9

0
.0
8

1
1

1
1

A
2
.5
.2
0

1
0
.0
6

1
1

A
2
.5
.2
1

1
1

1

A
2
.5
.2
2

1
1

A
2
.5
.2
3

1

Stellenbosch University https://scholar.sun.ac.za

258 Appendix B. Algorithmic Parameter Evaluation Results

26

28

30

OMP
(A2.1.1–
A2.1.24)

Average number of non-dominated solutions

230

240

250

260

270

IP
(A2.2.1–
A2.2.24)

90

95

100

BAP5
(A2.3.1–
A2.3.24)

A2.1

A2.2

A2.3

A2.4

A2.5

A2.6

A2.7

A2.8

A2.9

A2.10

A2.11

A2.12

A2.13

A2.14

A2.15

A2.16

A2.17

A2.18

A2.19

A2.20

A2.21

A2.22

A2.23

A2.2450

52

54

BAP10
(A2.4.1–
A2.4.24)

41

42

43

44

BAP16
(A2.5.1–
A2.5.24)

Figure B.35: The average number of non-dominated solutions obtained for hyperparameter combina-
tions A2.1–A2.24 for the respective simulation problems.

Stellenbosch University https://scholar.sun.ac.za

B.3. DBMOSA 259

B.3 DBMOSA

This section presents the results for the hyperparameter study conducted for the DBMOSA.

B.3.1 Open mine problem

Tables B.43 and B.44 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–40 for hyperparameter combinations A3.1.1–
A3.1.4. In Figure B.36 the worst and best approximation fronts are plotted for the respective
hyperparameter combinations (or move operators) A3.1.1–A3.1.4, for the respective simulation
problems as summarised in Table B.45.

B.3.2 (s, S) Inventory problem

Tables B.46 and B.47 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A3.2.1–
A3.2.4. In Figure B.37 the worst and best approximation fronts are plotted for the respective
hyperparameter combinations (or move operators) A3.2.1–A3.2.4, for the respective simulation
problems as summarised in Table B.48.

B.3.3 Buffer allocation problem: five machines

Tables B.49 and B.50 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A3.3.1–
A3.3.4. In Figure B.38 the worst and best approximation fronts are plotted for the respective
hyperparameter combinations (or move operators) A3.3.1–A3.3.4, for the respective simulation
problems as summarised in Table B.51.

B.3.4 Buffer allocation problem: 10 machines

Tables B.52 and B.53 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A3.4.1–
A3.4.4. In Figure B.39 the worst and best approximation fronts are plotted for the respective
hyperparameter combinations (or move operators) A3.4.1–A3.4.4, for the respective simulation
problems as summarised in Table B.54.

B.3.5 Non-linear buffer allocation problem: 16 machines

Tables B.55 and B.56 present a preview of the hyperareas and number on non-dominated so-
lutions and their corresponding ranks for run 1–100 for hyperparameter combinations A3.5.1–
A3.5.4. In Figure B.40 the worst and best approximation fronts are plotted for the respective
hyperparameter combinations (or move operators) A3.5.1–A3.5.4, for the respective simulation
problems as summarised in Table B.57.

In Figure B.41 the average number of non-dominated solutions obtained for hyperparameter
combinations A3.1–A3.4 is illustrated for the respective simulation problems.

Stellenbosch University https://scholar.sun.ac.za

260 Appendix B. Algorithmic Parameter Evaluation Results

Table B.43: A preview of the hyperareas (and corresponding ranks) obtained for run 1–40 for hy-
perparameter combinations A3.1.1–A3.1.4. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.1.1 A3.1.2 A3.1.3 A3.1.4

1 9 199.23 (2) 5 384.99 (4) 8 898.58 (3) 9 678.68 (1)

2 9 117.74 (1) 6 114.05 (3) 7 637.54 (2) 5 675.39 (4)

3 10 800.56 (1) 7 399.36 (3) 7 021.79 (4) 9 473.27 (2)

4 7 334.52 (3) 8 640.86 (1) 7 532.07 (2) 6 736.11 (4)

5 7 811.52 (3) 8 018.12 (1) 7 969.69 (2) 6 519.96 (4)

6 6 701.76 (3) 4 420.00 (4) 8 274.31 (1) 7 573.69 (2)

7 8 122.81 (2) 5 582.25 (4) 7 408.69 (3) 9 303.05 (1)

8 6 454.90 (2) 5 577.79 (3) 5 243.40 (4) 7 952.99 (1)

9 6 447.06 (3) 5 103.89 (4) 8 112.39 (1) 7 099.57 (2)

10 12 070.97 (1) 4 620.59 (4) 10 656.92 (2) 8 936.71 (3)
...

...
...

...
...

39 6 518.99 (3) 7 925.88 (1) 7 124.13 (2) 6 054.66 (4)

40 6 500.90 (4) 6 909.59 (3) 10 594.92 (1) 8 848.14 (2)∑
RCi 90 109 88 113∑
R2

Ci 8 100 11 881 7 744 12 769

Table B.44: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–40 for hyperparameter combinations A3.1.1–A3.1.4. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.1.1 A3.1.2 A3.1.3 A3.1.4

1 24 (2) 14 (4) 23 (3) 25 (1)

2 24 (1) 16 (3) 20 (2) 15 (4)

3 27 (1) 20 (3) 19 (4) 24 (2)

4 19 (3) 22 (1) 21 (2) 17 (4)

5 20 (2.5) 21 (1) 20 (2.5) 18 (4)

6 18 (3) 12 (4) 21 (1) 20 (2)

7 21 (2) 16 (4) 19 (3) 25 (1)

8 18 (2) 15 (3) 14 (4) 20 (1)

9 17 (3) 14 (4) 21 (1) 19 (2)

10 31 (1) 14 (4) 27 (2) 24 (3)
...

...
...

...
...

39 17 (3) 20 (1) 19 (2) 16 (4)

40 18 (3.5) 18 (3.5) 27 (1) 22 (2)∑
RCi 93 109 88.5 109.5∑
R2

Ci 8 649 11 881 7 832.25 11 990.25

Stellenbosch University https://scholar.sun.ac.za

B.3. DBMOSA 261

Table B.45: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the DBMOSA) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A3.1.1–A3.1.4.

Worst Best

HA NDS HA NDS

A3.1.1 Run 8 Run 28 Run 33 Run 33

A3.1.2 Run 33 Run 22 Run 15 Run 15

A3.1.3 Run 35 Run 8 Run 38 Run 38

A3.1.4 Run 32 Run 21 Run 30 Run 30

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

Hyperarea

500 1,000 1,500 2,000 2,500

5

10

15

Non-dominated solutions

A3.1.1 (Best)

A3.1.1 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A3.1.2 (Best)

A3.1.2 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

A3.1.3 (Best)

A3.1.3 (Worst)

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

A3.1.4 (Best)

A3.1.4 (Worst)

Figure B.36: The best and worst best approximation fronts for hyperparameter combinations (or move
operators) A3.1.1–A3.1.4.

Stellenbosch University https://scholar.sun.ac.za

262 Appendix B. Algorithmic Parameter Evaluation Results

Table B.46: A preview of the hyperareas (and corresponding ranks) obtained for run 1–100 for hy-
perparameter combinations A3.2.1–A3.2.4. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.2.1 A3.2.2 A3.2.3 A3.2.4

1 112 804.07 (1) 111 381.09 (3) 108 706.16 (4) 111 633.64 (2)

2 112 712.34 (1) 111 546.09 (3) 111 315.14 (4) 112 078.12 (2)

3 113 925.8 (1) 113 110.8 (2) 105 669.79 (4) 110 381.22 (3)

4 112 902.02 (2) 113 541.5 (1) 111 165.58 (4) 112 155.7 (3)

5 112 666.71 (1) 111 847.99 (3) 108 289.54 (4) 112 666.35 (2)

6 113 200.88 (1) 111 054.7 (3) 110 461.12 (4) 112 589.25 (2)

7 113 016.04 (1) 111 289.27 (2) 100 622.78 (4) 111 211.16 (3)

8 113 544.92 (2) 113 597.58 (1) 111 551.79 (3) 111 162.96 (4)

9 112 723.49 (1) 110 520.39 (3) 109 914.84 (4) 111 870.97 (2)

10 113 462.11 (1) 111 493.86 (4) 112 956.93 (3) 113 026.35 (2)
...

...
...

...
...

99 112 944.81 (2) 113 485.79 (1) 112 324.02 (3) 112 230.69 (4)

100 113 225.38 (1) 111 076.44 (3) 109 549.16 (4) 111 697.29 (2)∑
RCi 138 235 331 296∑
R2

Ci 19 044 55 225 109 561 87 616

Table B.47: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–100 for hyperparameter combinations A3.2.1–A3.2.4. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.2.1 A3.2.2 A3.2.3 A3.2.4

1 198 (2) 313 (1) 23 (4) 145 (3)

2 183 (2) 259 (1) 44 (4) 118 (3)

3 156 (3) 135 (4) 208 (2) 219 (1)

4 169 (1) 149 (2) 118 (4) 129 (3)

5 214 (1) 112 (3) 102 (4) 177 (2)

6 167 (4) 321 (1) 184 (3) 204 (2)

7 162 (3) 414 (1) 80 (4) 165 (2)

8 156 (3) 163 (2) 108 (4) 177 (1)

9 186 (2) 318 (1) 147 (3) 124 (4)

10 137 (3) 198 (1) 42 (4) 189 (2)
...

...
...

...
...

99 160 (3) 178 (2) 58 (4) 214 (1)

100 188 (1) 163 (2) 66 (4) 117 (3)∑
RCi 240.5 223.5 309 227∑
R2

Ci 57 840.25 49 952.25 95 481 51 529

Stellenbosch University https://scholar.sun.ac.za

B.3. DBMOSA 263

Table B.48: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the DBMOSA) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A3.2.1–A3.2.4.

Worst Best

HA NDS HA NDS

A3.2.1 Run 47 Run 38 Run 33 Run 47

A3.2.2 Run 79 Run 98 Run 20 Run 7

A3.2.3 Run 36 Run 1 Run 59 Run 41

A3.2.4 Run 54 Run 40 Run 37 Run 76

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

Hyperarea

500 1,000 1,500 2,000 2,500

40

60

80

100

Non-dominated solutions

A3.2.1 (Best)

A3.2.1 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A3.2.2 (Best)

A3.2.2 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

A3.2.3 (Best)

A3.2.3 (Worst)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

A3.2.4 (Best)

A3.2.4 (Worst)

Figure B.37: The best and worst best approximation fronts for hyperparameter combinations (or move
operators) A3.2.1–A3.2.4.

Stellenbosch University https://scholar.sun.ac.za

264 Appendix B. Algorithmic Parameter Evaluation Results

Table B.49: A preview of the hyperareas (and corresponding ranks) obtained for run 1–100 for hy-
perparameter combinations A3.3.1–A3.3.4. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.3.1 A3.3.2 A3.3.3 A3.3.4

1 33.67 (2) 33.65 (3) 33.72 (1) 33.54 (4)

2 33.70 (1) 33.42 (3) 33.61 (2) 33.20 (4)

3 33.73 (1) 33.69 (2) 33.49 (3) 33.38 (4)

4 33.67 (1) 33.53 (4) 33.63 (3) 33.65 (2)

5 33.63 (2) 33.46 (3) 33.65 (1) 33.42 (4)

6 33.64 (3) 33.71 (1) 33.70 (2) 33.22 (4)

7 33.68 (2) 33.54 (4) 33.72 (1) 33.65 (3)

8 33.65 (1) 33.19 (4) 33.46 (2) 33.44 (3)

9 33.70 (1) 33.45 (3) 33.45 (2) 33.19 (4)

10 33.75 (1) 33.43 (4) 33.59 (3) 33.69 (2)
...

...
...

...
...

99 33.52 (3) 33.59 (2) 33.07 (4) 33.67 (1)

100 32.20 (4) 33.24 (3) 33.48 (2) 33.50 (1)∑
RCi 164 315 242 279∑
R2

Ci 26 896 99 225 58 564 77 841

Table B.50: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–100 for hyperparameter combinations A3.3.1–A3.3.4. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.3.1 A3.3.2 A3.3.3 A3.3.4

1 62 (1) 55 (2) 54 (3) 46 (4)

2 60 (1) 49 (4) 52 (2.5) 52 (2.5)

3 76 (1) 39 (4) 48 (2) 41 (3)

4 55 (1) 43 (4) 54 (2) 46 (3)

5 60 (1) 31 (4) 55 (2) 40 (3)

6 64 (2) 50 (4) 65 (1) 53 (3)

7 52 (2) 47 (4) 63 (1) 49 (3)

8 56 (1) 46 (3) 39 (4) 52 (2)

9 63 (1) 46 (2) 45 (3) 43 (4)

10 77 (1) 39 (4) 56 (2) 43 (3)
...

...
...

...
...

99 67 (1) 56 (3) 62 (2) 44 (4)

100 41 (2) 38 (3) 59 (1) 37 (4)∑
RCi 139.5 338 214 308.5∑
R2

Ci 19 460.25 114 244 45 796 95 172.25

Stellenbosch University https://scholar.sun.ac.za

B.3. DBMOSA 265

Table B.51: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the DBMOSA) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A3.3.1–A3.3.4.

Worst Best

HA NDS HA NDS

A3.3.1 Run 100 Run 100 Run 63 Run 84

A3.3.2 Run 88 Run 17 Run 6 Run 36

A3.3.3 Run 97 Run 68 Run 18 Run 98

A3.3.4 Run 57 Run 32 Run 10 Run 21

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

Hyperarea

0.5 1 1.5 2 2.5

70

80

90

Non-dominated solutions

A3.3.1 (Best)

A3.3.1 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

A3.3.2 (Best)

A3.3.2 (Worst)

0.5 1 1.5 2 2.5

70

80

90

T
h
ro
u
g
h
p
u
t

0.5 1 1.5 2 2.5

70

80

90

A3.3.3 (Best)

A3.3.3 (Worst)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
gh

p
u
t

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

A3.3.4 (Best)

A3.3.4 (Worst)

Figure B.38: The best and worst best approximation fronts for hyperparameter combinations (or move
operators) A3.3.1–A3.3.4.

Stellenbosch University https://scholar.sun.ac.za

266 Appendix B. Algorithmic Parameter Evaluation Results

Table B.52: A preview of the hyperareas (and corresponding ranks) obtained for run 1–100 for hy-
perparameter combinations A3.4.1–A3.4.4. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.4.1 A3.4.2 A3.4.3 A3.4.4

1 22.1 (1) 21.86 (4) 21.98 (2) 21.97 (3)

2 21.36 (1) 20.87 (3) 21.16 (2) 20.78 (4)

3 22.02 (1) 21.29 (2) 20.98 (3) 19.57 (4)

4 21.76 (1) 21.37 (3) 20.78 (4) 21.59 (2)

5 21.8 (1) 21.32 (2) 21.18 (3) 21.07 (4)

6 21.05 (2) 21.11 (1) 19.81 (3) 18.81 (4)

7 21.45 (2) 20.18 (4) 20.94 (3) 21.45 (1)

8 21.65 (1) 20.53 (4) 20.64 (3) 21 (2)

9 21.36 (1) 20.25 (3) 20.46 (2) 19.95 (4)

10 21.97 (1) 19.37 (4) 20.32 (3) 20.7 (2)
...

...
...

...
...

99 21.23 (2) 19.89 (4) 21.04 (3) 21.64 (1)

100 21.12 (3) 19.56 (4) 21.14 (2) 21.25 (1)∑
RCi 145 327 274 254∑
R2

Ci 21 025 106 929 75 076 64 516

Table B.53: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–100 for hyperparameter combinations A3.4.1–A3.4.4. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.4.1 A3.4.2 A3.4.3 A3.4.4

1 35 (3) 31 (4) 39 (1) 38 (2)

2 40 (1) 27 (4) 29 (3) 33 (2)

3 46 (1) 28 (3) 33 (2) 26 (4)

4 39 (2) 31 (3.5) 31 (3.5) 41 (1)

5 40 (1) 26 (4) 33 (3) 35 (2)

6 34 (1) 29 (2) 27 (3) 19 (4)

7 36 (2) 29 (4) 35 (3) 42 (1)

8 40 (1) 30 (3.5) 30 (3.5) 36 (2)

9 33 (1.5) 24 (4) 33 (1.5) 28 (3)

10 47 (1) 29 (3.5) 34 (2) 29 (3.5)
...

...
...

...
...

99 43 (1) 28 (4) 34 (2) 32 (3)

100 32 (2) 29 (4) 41 (1) 31 (3)∑
RCi 148.5 328.5 250 273∑
R2

Ci 22 052.25 107 912.25 62 500 74 529

Stellenbosch University https://scholar.sun.ac.za

B.3. DBMOSA 267

Table B.54: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the DBMOSA) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A3.4.1–A3.4.4.

Worst Best

HA NDS HA NDS

A3.4.1 Run 40 Run 11 Run 76 Run 92

A3.4.2 Run 55 Run 54 Run 1 Run 82

A3.4.3 Run 25 Run 25 Run 1 Run 31

A3.4.4 Run 32 Run 32 Run 1 Run 93

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

Hyperarea

0.4 0.6 0.8 1 1.2

70

80

Non-dominated solutions

A3.4.1 (Best)

A3.4.1 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A3.4.2 (Best)

A3.4.2 (Worst)

0.4 0.6 0.8 1 1.2

70

80

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

A3.4.3 (Best)

A3.4.3 (Worst)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

A3.4.4 (Best)

A3.4.4 (Worst)

Figure B.39: The best and worst best approximation fronts for hyperparameter combinations (or move
operators) A3.4.1–A3.4.4.

Stellenbosch University https://scholar.sun.ac.za

268 Appendix B. Algorithmic Parameter Evaluation Results

Table B.55: A preview of the hyperareas (and corresponding ranks) obtained for run 1–100 for hy-
perparameter combinations A3.5.1–A3.5.4. The ranks are given in the parentheses and are used in the
computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.5.1 A3.5.2 A3.5.3 A3.5.4

1 205.74 (2) 178.94 (4) 203.61 (3) 205.85 (1)

2 183.55 (3) 182.99 (4) 191.91 (2) 200.81 (1)

3 205.97 (1) 184.54 (2) 179.41 (3) 178.97 (4)

4 180.93 (1) 174.15 (4) 174.74 (3) 179.45 (2)

5 183.24 (1) 172.86 (3) 164.59 (4) 177.03 (2)

6 174.51 (3) 179.59 (2) 170.54 (4) 187.56 (1)

7 191.64 (1) 173.07 (4) 179.66 (3) 182.57 (2)

8 188.19 (1) 173.72 (4) 179.59 (2) 179.59 (3)

9 188.33 (1) 164.58 (4) 181.09 (2) 171.32 (3)

10 202.83 (1) 179.86 (2) 173.66 (4) 177.67 (3)
...

...
...

...
...

99 178.91 (3) 184.86 (2) 188.48 (1) 166.98 (4)

100 182.53 (2) 177.85 (3) 172 (4) 182.68 (1)∑
RCi 153 318 269 260∑
R2

Ci 23 409 101 124 72 361 67 600

Table B.56: A preview of the number of non-dominated solutions (and corresponding ranks) obtained
for run 1–100 for hyperparameter combinations A3.5.1–A3.5.4. The ranks are given in the parentheses
and are used in the computation of the Friedman and Iman-Davenport hypothesis tests.

Run A3.5.1 A3.5.2 A3.5.3 A3.5.4

1 42 (1) 31 (4) 37 (2) 33 (3)

2 31 (4) 33 (2) 37 (1) 32 (3)

3 53 (1) 31 (3) 27 (4) 36 (2)

4 32 (2.5) 32 (2.5) 35 (1) 30 (4)

5 35 (1) 29 (3) 25 (4) 33 (2)

6 33 (2) 28 (4) 34 (1) 30 (3)

7 31 (3) 26 (4) 35 (1.5) 35 (1.5)

8 32 (2) 31 (3) 36 (1) 28 (4)

9 33 (1) 26 (3) 32 (2) 25 (4)

10 38 (1) 28 (2.5) 25 (4) 28 (2.5)
...

...
...

...
...

99 34 (3) 40 (2) 49 (1) 28 (4)

100 32 (1) 26 (4) 27 (3) 31 (2)∑
RCi 163.5 306 266.5 264∑
R2

Ci 26 732.25 93 636 71 022.25 69 696

Stellenbosch University https://scholar.sun.ac.za

B.3. DBMOSA 269

Table B.57: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the DBMOSA) for the hyperarea performance indicator and the number of non-dominated solutions
found for hyperparameter combinations A3.5.1–A3.5.4.

Worst Best

HA NDS HA NDS

A3.5.1 Run 82 Run 80 Run 30 Run 3

A3.5.2 Run 64 Run 42 Run 36 Run 99

A3.5.3 Run 71 Run 12 Run 1 Run 99

A3.5.4 Run 27 Run 27 Run 1 Run 97

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

Hyperarea

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Non-dominated solutions

A3.5.1 (Best)

A3.5.1 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A3.5.2 (Best)

A3.5.2 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

A3.5.3 (Best)

A3.5.3 (Worst)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

A3.5.4 (Best)

A3.5.4 (Worst)

Figure B.40: The best and worst best approximation fronts for hyperparameter combinations (or move
operators) A3.5.1–A3.5.4.

Stellenbosch University https://scholar.sun.ac.za

270 Appendix B. Algorithmic Parameter Evaluation Results

18

19

20

21

OMP
(A3.1.1–A3.1.4)

Average number of non-dominated solutions

140

160

180
IP
(A3.2.1–A3.2.4)

45

50

55

60

BAP5
(A3.3.1–A3.3.4)

A3.1

A3.2

A3.3

A3.4

30

35

40

BAP10
(A3.4.1–A3.4.4)

28

30

32

34

36

BAP16
(A3.5.1–A3.5.4)

Figure B.41: The average number of non-dominated solutions obtained for hyperparameter combina-
tions A3.1–A3.4 for the respective simulation problems.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C

The Backpropagation Training Algorithm

This appendix contains details concerning the backpropagation training algorithm for ANNs
training using gradient methods, namely, gradient descent and stochastic gradient descent. The
derivation of the backpropagation of errors is presented in the context of a single layered per-
ceptron. This derivation is a modified reproduction of the derivatives presented in [30, 158, 177,
194, 159].

Furthermore, the gradient-based optimisation technique employed in the training algorithm is
also elaborated upon. This appendix should be read in conjunction with Chapter 2, as the
terminologies and notations employed in this appendix are introduced there.

The purpose of the backpropagation algorithm is to find suitable values for the network weights
between the input and hidden layer as well as between the hidden and the output layer. This is
achieved by minimising the error function, denoted by E. The individual errors {E1, . . . , Ek, . . . , Em},
where m is the number of outputs, may be defined seperately, where E is the summation of the
individual errors, i.e.

∑m
k=1Ei. Assume that the individual errors can be expressed as a differ-

entiable function of the network outputs.

The backpropagation procedure obtains the derivatives of the error function, where the error
function is influenced by the network weights, biases and activations. Note that only the weights
and biases may be changed to minimise E. The weights and biasses are updated in proportion
to their contribution to E.

C.1 Backpropagation

Figure C.1 is used to help elucidate the process followed to perform backpropagation.

E

y

aLzL

wL

aL−1zL−1

wL−1

aL−2

bL−1 bL

Figure C.1: Backpropagation visual representation of the chain rule.

Assume that input training vector x has been propagated forward through the network, therefore
the activations of the hidden and output neurons have been calculated using (2.9)–(2.12) and
are rewritten in the context of Figure C.1 to simplify the explanation, such that

271

Stellenbosch University https://scholar.sun.ac.za

272 Appendix C. The Backpropagation Training Algorithm

zL = wLaL−1 + bL, (2.9), (C.1)

aL = σ(zL), (2.10), (C.2)

zL−1 = wL−1aL−2 + bL−1, (2.11), (C.3)

aL−1 = σ(zL−1), (2.12). (C.4)

The output layer (L):

The partial derivative of the error function given the weight in layer L is,

∂E

∂wL
=

∂E

∂aL
∂aL

∂zL
∂zL

∂wL
, (C.5)

where the partial derivatives are defined as follows. Given E = 1
2(a

L − y)2, the derivative is

∂E

∂aL
= (aL − y). (C.6)

Given aL = σ(zL), the derivative is

∂aL

∂zL
= σ′(zL). (C.7)

Given zL = wLaL−1 + bL, the derivative is

∂zL

∂wL
= aL−1. (C.8)

Substituting (C.6)–(C.8) into (C.5) yields,

∂E

∂wL
= (aL − y) σ′(zL) aL−1. (C.9)

The hidden layer (L− 1):

The partial derivative of the error function given the weight in layer L− 1 is,

∂E

∂wL−1 =
∂E

∂aL−1
∂aL−1

∂zL−1
∂zL−1

∂wL−1 (C.10)

where the partial derivatives are defined as follows

∂E

∂aL−1
=

m∑
k=1

∂Ek

∂aL−1
, (C.11)

=

m∑
k=1

∂Ek

∂zLk

∂zLk
∂aL−1k

, (C.12)

=

m∑
k=1

∂Ek

∂aLk

∂aLk
∂zLk

∂zLk
∂aL−1k

, (C.13)

Stellenbosch University https://scholar.sun.ac.za

C.1. Backpropagation 273

and since backpropagation is performed on a MFNN with one hidden layer (C.13), can simplify
to

∂E

∂aL
=

∂E

∂aL
∂aL

∂zL
∂zL

∂aL−1
, (C.14)

= (aL − y) σ′(zL) wL. (C.15)

The partial derivative of the activation of layer L− 1 with respect to the weighted sum of layer
L− 1 is given by

∂aL−1

∂zL−1
= σ′(zL−1). (C.16)

The partial derivative of the activation of layer L− 1 with respect to the weighted sum of layer
L− 1 is given by

∂zL−1

∂wL−1 = aL−2. (C.17)

Substituting (C.14)–(C.17) into (C.10) yields

∂E

∂wL−1 = (aL − y) σ′(zL) wL σ′(zL−1) aL−2. (C.18)

The weights are updated as follows:

wL+
= wL − η

∂E

∂wL
, (C.19)

wL−1+ = wL−1 − η
∂E

∂wL−1 , (C.20)

where wL+
represents the updated weight for layer L, wL−1+ the updated weight in layer L− 1

and η is the learning rate.

Stellenbosch University https://scholar.sun.ac.za

274 Appendix C. The Backpropagation Training Algorithm

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D

Discrete-event Simulation Optimisation
Problem Definitions

This appendix defines each of the bi-objective simulation optimisation problems studied. First,
the (s, S) inventory problem (IP) is presented. Next, a well-researched problem, the buffer-
allocation problem (BAP) is studied as well as instances thereof and lastly, the Open mine
problem (OMP) is presented. The experiments used to determine a sensible upper bound and
the sufficient number of observations per solution are also defined, where applicable, for the
respective problems.

D.1 The (s, S) inventory problem

[The content of this section is an extract from unpublished notes, from the University of Stellenbosch
(US), and are included here to define the problem.]

The (s, S) IP used in this study is dynamic and stochastic in nature as it deals with uncertain
demand, where s refers to the re-order level and S to the re-order quantity. For a detailed
description of the problem, the reader is referred to [19].

A company sells a single commodity and has to determine the level of inventory necessary for
the following n months in order to satisfy the demand. The inventory level can be calculated
as stock on hand minus backorders minus demand and the inventory position as inventory level
plus outstanding orders. Customer inter-arrival times follow an exponential distribution with
a mean of 3 minutes. Assume that the demand follows a distribution of ⌊Weibull(1, 8)⌋ for
each customer i and order lead time is distributed TRI(12,14,20) hours. In order to know what
quantity should be ordered, the company assesses the inventory level after each sale. Once the
inventory level drops below the reorder point s after the sale, a quantity of S items are ordered.
Due to the order lead time and the continuity of demand, there exists a possibility that the
inventory level will reach zero. If this is the case, and replenishment stock has not yet arrived,
a stock-out period is experienced and customer demand cannot be fulfilled, which leads to lost
sales.

When a customer requests a certain number of units x, the inventory level I will drop by x:

It+1 = It − x. (D.1)

Once the inventory level drops below the re-order level s, a supplier is notified. The supplier will
dispatch a quantity equal to the re-order quantity S. There is a delay (in hours), distributed
TRI(1,2,4), between the notification and the delivery of S. It is assumed that the supplier is
reliable and will always deliver the number S units, but it is delayed as stated earlier. Ignoring
possible capacity constraints for the moment, a delivery has the following effect on inventory:

It+1 = It + S. (D.2)

275

Stellenbosch University https://scholar.sun.ac.za

276 Appendix D. Discrete-event Simulation Optimisation Problem Definitions

If the inventory level drops too low to be able to meet customer demand, customer satisfaction
is affected negatively. Assume that a customer whose exact demand cannot be met, will not
be satisfied with an alternative amount and will leave without having drawn cash.. The seller
therefore has to maintain an inventory level high enough to meet most customers’ demand.
Refer to the percentage of demand met as service level and it is defined in (D.3).

Service level =
Number of customers serviced

Number of customers requiring service
. (D.3)

There is an inventory cost CI associated with inventory. Inventory being stored has to be paid
for, and each delivery also has a cost associated with it. Delivery cost is denoted by CD. The
break down of the total cost CT incurred is shown in (D.4), (D.5) and (D.6).

CT = CD + CI , (D.4)

where

CD = d× cd, (D.5)

and

CI =
n∑

i=1

0.06× ui, (D.6)

where ui is the number of units in store at the end of day i and 0.06 is the holding cost per unit
per day. A single delivery d costs R120 (this is denoted by cd) and n denotes the total number
of days. The goal is to minimise total inventory cost while maximising service level. The typical
inventory consumption and replenishment process is shown in Figure D.1.

0 100 200 300 400 500 600
0

20

40

60

80

100

Lead time

Replenishment = S units

StockoutReorder level

Time

In
ve
n
to
ry

le
ve
l

Figure D.1: Some characteristics of the generalised (s, S) inventory problem

Figure D.2 shows the simulation model as it is built in Tecnomatix and represents the IP.

Stellenbosch University https://scholar.sun.ac.za

D.1. The (s, S) inventory problem 277

Figure D.2: A screenshot of the IP model in Tecnomatix.

Observations per solution

Table D.1 shows the experiments used to determine whether or not 100 observations per solution
are sufficient for the IP and is summarised in Table D.2.

Table D.1: Experiments used to determine a sufficient number of observations per solution for the IP

Total inventory cost Service level

s S A B C A B C

Exp 1 50 50 744.08 750.95 744.58 28.98 29.22 28.66

Exp 2 100 100 816.61 814.90 809.19 40.05 40.43 39.92

Exp 3 150 150 914.15 909.34 906.91 51.20 51.69 51.07

Exp 4 200 200 1 049.33 1 044.23 1 042.70 62.54 63.37 62.32

Exp 5 250 250 1 209.69 1 200.14 1 194.99 72.55 72.83 72.15

Exp 6 300 300 1 361.72 1 382.71 1 380.13 81.08 81.08 80.47

Exp 7 350 350 1 594.72 1 604.73 1 599.25 87.96 87.72 86.84

Exp 8 400 400 1 863.48 1 847.64 1 840.77 91.62 91.70 91.06

Exp 9 450 450 2 118.69 2 122.16 2 121.81 93.54 94.04 93.22

Exp 10 500 500 2 434.06 2 438.60 2 417.66 93.77 94.94 94.25

Table D.2: Summary of the experiments used to determine the sufficient number of observations per
solution for the IP.

Total inventory cost Service level

Groups Count Sum Average Variance Sum Average Variance

Exp 1 3 2 239.61 746.54 14.66 86.86 28.95 0.08

Exp 2 3 2 440.69 813.56 15.07 120.40 40.13 0.07

Exp 3 3 2 730.41 910.14 13.60 153.96 51.32 0.11

Exp 4 3 3 136.26 1 045.42 12.04 188.23 62.74 0.31

Exp 5 3 3 604.82 1 201.61 55.64 217.54 72.51 0.12

Exp 6 3 4 124.56 1 374.85 131.02 242.63 80.88 0.12

Exp 7 3 4 798.70 1 599.57 25.13 262.52 87.51 0.34

Exp 8 3 5 551.89 1 850.63 135.72 274.38 91.46 0.12

Exp 9 3 6 362.66 2 120.89 3.64 280.80 93.60 0.17

Exp 10 3 7 290.32 2 430.11 121.29 282.96 94.32 0.34

Stellenbosch University https://scholar.sun.ac.za

278 Appendix D. Discrete-event Simulation Optimisation Problem Definitions

D.2 The buffer-allocation problems

[The content of this section is an extract from [21] and is included here with permission from the
author.]

Finite queuing networks are associated with many practical systems through which discrete or
continuous flow occurs, such as manufacturing systems and telecommunication networks. These
networks often exhibit flow variation or asynchronous part movement; hence the need for buffer
space in the network. One of the network design priorities is to maximise the network throughput
or throughput rate, which increases with more buffer space [53].

However, buffer space may be costly for several reasons in commercial projects and costs must
be minimised. This gives rise to the BAP which is usually formulated as a stochastic, non-linear,
integer mathematical programming problem and which is computationally hard to solve [54].
The problem has several variations, including problems with reliable or unreliable servers (for
example, manufacturing machines), the type of distribution assigned to service time, repair times
and time-to-failure, synchronous or asynchronous part movement, and the network topology.

Papadopoulos & Heavey [202] classified queuing network models for production and transfer
lines, while [54] identified four traditional methodological approaches to the BAP: simulation
methods, metaheuristics, dynamic programming and search methods. In some studies the pro-
cessing times were assumed to be deterministic, while time-to-failure and repair times were
exponentially distributed. Researchers also adopt different performance measures (objectives)
and consider single or multi-objective problem variants, while decision variables include buffer
sizes and server processing rates.

A production line consists of a series of m machines with m − 1 buffers (or niches). Discrete
parts are processed by each of these machines in sequence, and each discrete part takes up one
buffer space or occupies a machine. There are n such spaces available, while the spaces in front
of the first and beyond the last machine are considered infinite.

Generally, the machines have exponentially distributed processing and repair times with mean
rates µi and ri, respectively. The machine failures of the models in this study are operation
dependent failures (ODF), which are more realistic than time-based failures [259]. A machine
thus fails after a number of operations has been completed, and these operation counts are
dictated by Poisson distributions with rates βi.

Note that the ODF approach results in longer times between failures when finite buffers are
required. Suppose the time between failures for Machine 1 is exponentially distributed with
rate β1 and the repair rate is r1. Then the expected number of failures for this machine for a
simulation run length of T , when infinite buffers are used, is

T
1
β1

+ 1
r1

.

When the buffer sizes are limited, this number decreases and the time between failures increases.
An upstream machine can become blocked when its successor has failed, while a downstream
machine can eventually become starved if its predecessor has failed. The basic performance
measures of such a system are the throughput rate and the work-in-progress (WIP).

The objective is to determine the best buffer allocations, given a certain size of n. For example if
n = 10, there are 10 buffers slots that can each hold a part. All 10 of these slots can be assigned
to one machine and zero to the other three machines. Two buffers slots can be assigned, each

Stellenbosch University https://scholar.sun.ac.za

D.2. The buffer-allocation problems 279

to three machines and four buffers slots to the remaining machine. The goal is to minimise
work-in-progress while maximising the throughput.

The three instances of the BAP are discussed in the next sections.

D.2.1 The buffer-allocation problem: five machines

The linear buffer allocation problem with m = 5 (BAP5) has exponential processing and repair
times, schematically presented in Figure D.3.

M1 M2 M3 M4 M5

B0 =∞ B1 B2 B3 B4 B5 =∞

Figure D.3: A series of five machines M1, . . . ,M5 with finite buffers B1, . . . , B5−1 in a queuing network,
representative of BAP5

Table D.3 shows the processing times for machines M1 −M5, respectively, note that the pro-
cessing times become progressively faster.

Table D.3: Processing times for the machines in BAP5

M1 M2 M3 M4 M5

Processing time 1:00:00 55:00 50:00 46:00 43:00

Figure D.4 shows the simulation model as it is built in Tecnomatix and represents BAP5.

Figure D.4: A screenshot of the BAP5 model in Tecnomatix.

Upper bounds

Table D.4 shows the experiments used to determine a sensible upper bound for BAP5.

Observations per solution

Table D.5 shows the experiments used to determine whether or not 100 observations per solution
are sufficient for BAP5 and is summarised in Table D.6.

Stellenbosch University https://scholar.sun.ac.za

280 Appendix D. Discrete-event Simulation Optimisation Problem Definitions

Table D.4: The experiments used to determine a suiteable upper bound for BAP5

B1 B2 B3 B4 Work-in-progress Throughput

Exp 1 10 10 10 10 2.13 91.83

Exp 2 12 12 12 12 2.28 92.14

Exp 3 14 14 14 14 2.38 92.23

Exp 4 16 16 16 16 2.43 92.31

Exp 5 17 17 17 17 2.46 92.28

Exp 6 18 18 18 18 2.48 92.30

Exp 7 19 19 19 19 2.49 92.34

Exp 8 50 50 50 50 2.54 92.34

Exp 9 100 100 100 100 2.54 92.34

Table D.5: Experiments used to determine a sufficient number of observations per solution for BAP5

Work-in-progress Throughput

B1 B2 B3 B4 A B C A B C

Exp 1 1 1 1 1 0.37 0.38 0.39 69.30 70.15 71.34

Exp 2 2 2 2 2 0.73 0.71 0.72 77.10 77.45 78.37

Exp 3 3 3 3 3 0.99 1 1.02 80.40 82.22 82.94

Exp 4 4 4 4 4 1.26 1.21 1.25 83.60 85.54 86.05

Exp 5 5 5 5 5 1.45 1.43 1.46 87.30 87.73 88.02

Exp 6 6 6 6 6 1.73 1.62 1.65 88.30 88.95 89.52

Exp 7 7 7 7 7 1.92 1.76 1.80 89.80 89.87 90.50

Exp 8 8 8 8 8 2.07 1.89 1.93 88.50 90.22 91.08

Exp 9 9 9 9 9 2.05 2 2.04 90.10 90.52 91.59

Exp 10 10 10 10 10 2.14 2.06 2.13 89.20 90.80 91.83

Table D.6: Summary of the experiments used to determine the sufficient number of observations per
solution for BAP5.

Work-in-progress Throughput

Groups Count Sum Average Variance Sum Average Variance

Exp 1 3 1.14 0.38 0 210.79 70.26 1.05

Exp 2 3 2.16 0.72 0 232.92 77.64 0.43

Exp 3 3 3.00 1.00 0 245.56 81.85 1.71

Exp 4 3 3.71 1.24 0 255.19 85.06 1.67

Exp 5 3 4.34 1.45 0 263.05 87.68 0.13

Exp 6 3 5.00 1.67 0 266.77 88.92 0.38

Exp 7 3 5.48 1.83 0.01 270.17 90.06 0.15

Exp 8 3 5.90 1.97 0.01 269.80 89.93 1.72

Exp 9 3 6.08 2.03 0 272.21 90.74 0.59

Exp 10 3 6.34 2.11 0 271.83 90.61 1.75

D.2.2 The buffer-allocation problem: 10 machines

The linear buffer allocation problem with m = 10 (BAP10) is similar to BAP5, i.e. has expo-
nential processing and repair times. BAP10 is schematically presented in Figure D.5. Table D.7
shows the processing times for machines M1 −M10, respectively. Again, note that the process-
ing times become progressively faster. Figure D.6 shows the simulation model as it is built in
Tecnomatix and represents BAP10.

Stellenbosch University https://scholar.sun.ac.za

D.2. The buffer-allocation problems 281

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

B0 =∞ B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 =∞

Figure D.5: A series of ten machinesM1, . . . ,M10 with finite buffersB1, . . . , B10−1 in a queuing network,
representative of BAP10

Table D.7: Processing times for the machines in BAP10

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Processing time 1:00:00 55:00 50:00 46:00 43:00 39:00 35:00 31:00 27:00 23:00

Figure D.6: A screenshot of the BAP10 model in Tecnomatix.

Observations per solution

Table D.8 shows the experiments used to determine whether or not 100 observations per solution
are sufficient for BAP10 and is summarised in Table D.9.

Table D.8: Experiments used to determine a sufficient number of observations per solution for BAP10

Work-in-progress Throughput

B1 B2 B3 B4 B5 B6 B7 B8 B9 A B C A B C

Exp 1 1 1 1 1 1 1 1 1 1 0.32 0.34 0.34 62 62.74 62.77

Exp 2 2 2 2 2 2 2 2 2 2 0.54 0.61 0.63 66.5 69.64 69.59

Exp 3 3 3 3 3 3 3 3 3 3 0.81 0.84 0.86 71.4 73.67 73.74

Exp 4 4 4 4 4 4 4 4 4 4 1.00 1.02 1.04 71.2 75.94 76.02

Exp 5 5 5 5 5 5 5 5 5 5 1.19 1.15 1.17 72.6 77.64 77.7

Exp 6 6 6 6 6 6 6 6 6 6 1.26 1.27 1.29 76.3 78.39 78.73

Exp 7 7 7 7 7 7 7 7 7 7 1.45 1.38 1.38 72.7 78.35 79.25

Exp 8 8 8 8 8 8 8 8 8 8 1.42 1.43 1.45 74.8 78.93 79.58

Exp 9 9 9 9 9 9 9 9 9 9 1.48 1.5 1.51 77.7 79.12 79.69

Exp 10 10 10 10 10 10 10 10 10 10 1.49 1.53 1.55 76.3 78.69 79.93

D.2.3 The non-linear buffer-allocation problem: 16 machines

The non-linear buffer allocation problem with m = 16 (BAP16), proposed by MacGregor Smith
et al. [174], has exponential processing and repair times as well as probabilistic routings. BAP16
is schematically presented in Figure D.7.

Table D.10 shows the processing times for machines M1−M16, respectively. However, note that

Stellenbosch University https://scholar.sun.ac.za

282 Appendix D. Discrete-event Simulation Optimisation Problem Definitions

Table D.9: Summary of the experiments used to determine the sufficient number of observations per
solution for the BAP10.

Work-in-progress Throughput

Groups Count Sum Average Variance Sum Average Variance

Exp 1 3 1.00 0.33 0 187.51 62.50 0.19

Exp 2 3 1.78 0.59 0 205.73 68.58 3.23

Exp 3 3 2.51 0.84 0 218.81 72.94 1.77

Exp 4 3 3.06 1.02 0 223.16 74.39 7.61

Exp 5 3 3.51 1.17 0 227.94 75.98 8.57

Exp 6 3 3.82 1.27 0 233.42 77.81 1.73

Exp 7 3 4.21 1.40 0 230.30 76.77 12.61

Exp 8 3 4.31 1.44 0 233.31 77.77 6.71

Exp 9 3 4.48 1.49 0 236.51 78.84 1.05

Exp 10 3 4.57 1.52 0 234.92 78.31 3.41

the processing times do not become progressively faster because of the non-linear topology.

Table D.10: Processing times for the machines in BAP16

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

Processing time 6:00 6:00 6:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 6:00 6:00 3:00

M1

M2 M3

M4 M10

M5 M11

M14

M6 M7

M8 M12

M9 M13

M15

M16

B0 =∞

B1

B1

B2

B3

B3

B6

B3

B3

B4

B5

B8

B9

B10

B11

B12

B13

B14

B15

B16 =∞

Figure D.7: The non-linear BAP with sixteen machines M1, . . . ,M16 with finite buffers B1, . . . , B16−1

in a queuing network

Figure D.8 shows the simulation model as it is built in Tecnomatix and represents BAP16.

Observations per solution

Table D.11 shows the experiments used to determine whether or not 100 observations per solution
are sufficient for BAP16 and is summarised in Table D.12.

Stellenbosch University https://scholar.sun.ac.za

D.2. The buffer-allocation problems 283

Figure D.8: A screenshot of the BAP16 model in Tecnomatix.

Table D.11: Experiments used to determine a sufficient number of observations per solution for BAP16

Work-in-progress Throughput

B1 B2 B3 B4 B5 · · · B11 B12 B13 B14 B15 A B C A B C

Exp 1 1 1 1 1 1 · · · 1 1 1 1 1 0.24 0.24 0.25 452.4 449.09 453.98

Exp 2 2 2 2 2 2 · · · 2 2 2 2 2 0.43 0.42 0.43 473.4 487.57 481.43

Exp 3 3 3 3 3 3 · · · 3 3 3 3 3 0.66 0.60 0.59 524.6 502.92 503.47

Exp 4 4 4 4 4 4 · · · 4 4 4 4 4 0.75 0.69 0.72 504.5 510.35 516.28

Exp 5 5 5 5 5 5 · · · 5 5 5 5 5 0.81 0.81 0.82 525.4 521.95 526.17

Exp 6 6 6 6 6 6 · · · 6 6 6 6 6 0.90 0.90 0.92 534.8 533.93 537.18

Exp 7 7 7 7 7 7 · · · 7 7 7 7 7 1.02 0.96 1.00 548.2 536.7 546.74

Exp 8 8 8 8 8 8 · · · 8 8 8 8 8 0.94 1.05 1.08 552.1 551.52 553.38

Exp 9 9 9 9 9 9 · · · 9 9 9 9 9 1.18 1.14 1.12 560.8 554.92 557.29

Exp 10 10 10 10 10 10 · · · 10 10 10 10 10 1.32 1.18 1.19 575.9 559.06 561.72

Table D.12: Summary of the experiments used to determine the sufficient number of observations per
solution for the BAP16.

Work-in-progress Throughput

Groups Count Sum Average Variance Sum Average Variance

Exp 1 3 0.73 0.24 0 1 355.47 451.82 6.22

Exp 2 3 1.28 0.43 0 1 442.40 480.80 50.50

Exp 3 3 1.85 0.62 0 1 530.99 510.33 152.79

Exp 4 3 2.16 0.72 0 1 531.13 510.38 34.69

Exp 5 3 2.44 0.81 0 1 573.52 524.51 5.05

Exp 6 3 2.71 0.90 0 1 605.91 535.30 2.83

Exp 7 3 2.99 1.00 0 1 631.64 543.88 39.21

Exp 8 3 3.07 1.02 0.01 1 657.00 552.33 0.90

Exp 9 3 3.45 1.15 0 1 673.01 557.67 8.75

Exp 10 3 3.69 1.23 0.01 1 696.68 565.56 81.94

Stellenbosch University https://scholar.sun.ac.za

284 Appendix D. Discrete-event Simulation Optimisation Problem Definitions

D.3 The Open mine problem

[The content of this section is an extract from unpublished notes, from the University of Stellenbosch
(US), and are included here to define the problem.]

A rail operator has to transport crushed ore to a port for export. There are a number of trains
in service which cycles between the open mine and the port. Each train consists of a set of
locomotives and trucks. The trains arrive at a buffer yard where one of two loaders in the mine
site is assigned to each train for loading.

There are maintenance requirements that need to be met and as a result the loaders must be
cycled, i.e. when Loader 1 has just been assigned a train, the next train is assigned to Loader 2,
regardless of whether Loader 2 is occupied or not. The cycle is thus Loader 1–Loader 2–Loader
1–Loader 2. There are two different physical waiting areas that the trains can be assigned to,
one in front of each loader.

The mine operation uses a shovel (see Figure D.9a1) that loads a number of mine trucks (see
Figure D.9b2). The shovel loads TRI(140, 160, 200)*1000 kg per truck per loading time as
given in Table D.13. The mine trucks then transport the ore to a crusher, which in turn forms
a stockpile. The crushing processing time of a load is given in Table D.13.

Table D.13: Loading and processing times for OMP

Distribution (minutes)

Shovel loading time TRI(18,12,28)

Crusher processing time TRI(9,6,15)

The distance between the shovel and crusher is 2 500m and the trucks travel at 15km/hr (loaded
and unloaded). The delivery of a truck load of ore has the following effect on the stockpile (after
crushing):

StackSize = StackSize + Truck.LoadMass. (D.7)

The loaders retrieve the crushed product from the stockpile to fill the train trucks. The loaded
mass is distributed UNI(65,85) metric tons and it takes EXP(3) minutes to load a train truck.
A loader can only start to retrieve ore from the stockpile if the amount of ore is available to fill
the alternate loader’s train (i.e. the number of train trucks to be filled multiplied by 80 tons,
plus 100 tons safety margin). The 80 ton value is just a guide the mine agreed upon.

If sufficient ore is not available in the stockpile, the loader must wait for the mine trucks to
replenish the stockpile. If the stockpile gets depleted while a loader is loading, the loader will
cease operation until some ore is available. The other loader must wait until the current loader
has completely filled the train it was busy with. The two loaders thus do not compete for crushed
ore when the stockpile gets low – one train is filled and dispatched rather than having two trains
waiting.

So, suppose Loader 1 has loaded 36 of its train trucks and Loader 2 has loaded seven of its train
trucks, when the stockpile becomes depleted. Now the loaders have to wait. When there are
at least 200 metric tons of crushed ore available again, the loading process at Loader 1 resumes

1source: http://www.thompsoncreekmetals.com/i/photos/milligan/milligan9.jpg
2source: http://i.telegraph.co.uk/multimedia/archive/02256/Metal to Medal 0 2256835b.jpg

Stellenbosch University https://scholar.sun.ac.za

D.3. The Open mine problem 285

(a) Mine shovel

(b) Mine truck

Figure D.9: Examples of a (a) mine shovel and (b) mine truck in an open mine

and Loader 2 does not load at all. Once Loader 1 has completed loading its 50 train trucks,
Loader 2 may resume loading, provided the stockpile has sufficient (more than 200 metric tons)
crushed ore. After a train is loaded by one of the loaders, the train is inspected. Inspection time
is distributed EXP(10) minutes, after which it starts its 24 hour journey to the port.

Figure D.10 shows the simulation model as it is built in Tecnomatix and represents OMP.

Observations per solution

Table D.14 shows the experiments used to determine whether or not 100 observations per solution
are sufficient for the OMP and is summarised in Table D.15.

Stellenbosch University https://scholar.sun.ac.za

286 Appendix D. Discrete-event Simulation Optimisation Problem Definitions

Figure D.10: A screenshot of the OMP model in Tecnomatix.

Table D.14: Experiments used to determine a sufficient number of observations per solution for the
OMP

Total cost Served trains

Shovels Crushers Trucks A B C A B C

Exp 1 4 4 4 1 773.93 1 773.82 1 773.81 11.8 11.61 11.55

Exp 2 5 5 5 2 217.44 2 217.41 2 217.37 13.8 13.85 13.84

Exp 3 6 6 6 2 660.96 2 660.88 2 660.89 14 14.16 14.18

Exp 4 7 7 7 3 104.66 3 104.45 3 104.41 14 14.16 14.18

Exp 5 8 8 8 3 548.03 3 547.93 3 547.92 14 14.16 14.18

Exp 6 9 9 9 3 991.66 3 991.43 3 991.38 14 14.16 14.18

Exp 7 10 10 10 4 434.92 4 434.78 4 434.83 14 14.16 14.18

Exp 8 11 11 11 4 878.51 4 878.30 4 878.31 14 14.16 14.18

Exp 9 12 12 12 5 321.86 5 321.78 5 321.77 14 14.16 14.18

Exp 10 13 13 13 5 765.36 5 765.14 5 765.20 14 14.16 14.18

Table D.15: Summary of the experiments used to determine the sufficient number of observations per
solution for the OMP.

Total cost Served trains

Groups Count Sum Average Variance Sum Average Variance

Exp 1 3 5 321.57 1 773.86 0 34.96 11.65 0.02

Exp 2 3 6 652.23 2 217.41 0 41.49 13.83 0

Exp 3 3 7 982.74 2 660.91 0 42.34 14.11 0.01

Exp 4 3 9 313.51 3 104.50 0.02 42.34 14.11 0.01

Exp 5 3 10 643.88 3 547.96 0 42.34 14.11 0.01

Exp 6 3 11 974.47 3 991.49 0.02 42.34 14.11 0.01

Exp 7 3 13 304.53 4 434.84 0.01 42.34 14.11 0.01

Exp 8 3 14 635.12 4 878.37 0.01 42.34 14.11 0.01

Exp 9 3 15 965.41 5 321.80 0 42.34 14.11 0.01

Exp 10 3 17 295.70 5 765.23 0.01 42.34 14.11 0.01

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E

Algorithmic Comparison Results

This appendix contains additional results obtained during the algorithmic comparisons for the
hyperheuristics, as described in Chapter 7 and were omitted from the respective sections so as
to enhance the understanding of the main text.

In Figures E.1 and E.2, the best and worst approximation fronts are plotted for the BOSAH
and the BOCEGAH for hyperarea and number of non-dominated solutions, for the respective
simulation problems as summarised in Tables E.2 and E.1.

Table E.1: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the BOCEAH) for the hyperarea performance indicator and the number of non-dominated solutions
found for each simulation problem.

Worst Best

HA NDS HA NDS

OMP Run 1 Run 1 Run 30 Run 5

IP Run 94 Run 49 Run 19 Run 14

BAP5 Run 60 Run 34 Run 16 Run 89

BAP10 Run 57 Run 27 Run 35 Run 48

BAP16 Run 75 Run 75 Run 97 Run 89

Table E.2: The simulation runs that correspond to the best and worst approximation fronts (obtained
by the BOSAH) for the hyperarea performance indicator and the number of non-dominated solutions
found for each simulation problem.

Worst Best

HA NDS HA NDS

OMP Run 39 Run 39 Run 3 Run 3

IP Run 97 Run 42 Run 3 Run 16

BAP5 Run 57 Run 83 Run 35 Run 25

BAP10 Run 57 Run 79 Run 76 Run 1

BAP16 Run 27 Run 19 Run 3 Run 24

287

Stellenbosch University https://scholar.sun.ac.za

288 Appendix E. Algorithmic Comparison Results

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

(O
M
P
)

BOSAH

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

BOCEGAH

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

(I
P
)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
gh

p
u
t

(B
A
P
5)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

Best

Worst

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

(B
A
P
10

)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

(B
A
P
16
)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

Figure E.1: The best and worst best approximation fronts obtained for the BOSAH and the BOCEGAH
in terms of hyperarea.

Stellenbosch University https://scholar.sun.ac.za

289

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

S
er
v
ed

tr
ai
n
s

(O
M
P
)

BOSAH

500 1,000 1,500 2,000 2,500

5

10

15

Total cost

BOCEGAH

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

S
er
v
ic
e
le
v
el

(I
P
)

500 1,000 1,500 2,000 2,500

40

60

80

100

Total inventory cost

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

T
h
ro
u
gh

p
u
t

(B
A
P
5)

0.5 1 1.5 2 2.5

70

80

90

Work-in-progress

Best

Worst

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

T
h
ro
u
gh

p
u
t

(B
A
P
10

)

0.4 0.6 0.8 1 1.2

70

80

Work-in-progress

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

T
h
ro
u
gh

p
u
t

(B
A
P
16
)

0.2 0.4 0.6 0.8 1 1.2

450

500

550

Work-in-progress

Figure E.2: The best and worst best approximation fronts obtained for the BOSAH and the BOCEGAH
in terms of the number of non-dominated solutions.

Stellenbosch University https://scholar.sun.ac.za

	Abstract
	Uittreksel
	Acknowledgements
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research background
	Problem description and research assignment
	Research scope
	Research objectives
	Research methodology
	Thesis organisation

	Literature Study
	Simulation optimisation
	Multi-objective optimisation preliminaries
	The notion of solution dominance
	The quality of MOO algorithm
	Archiving
	Performance assessment of MOO algorithms

	Metaheuristics
	Hyperheuristics
	Simulation metamodeling
	The fundamentals of artificial neural networks
	The network architecture
	The network training algorithms
	Activation functions

	Summary

	ANN as Metamodel Pilot Study
	Machine learning models: Regression
	Linear regression
	Polynomial regression
	Support vector regression
	Decision tree regression
	Random forest regression

	Performance measures for assessing regression models
	Hyperparameter optimisation
	ANN hyperparameters
	An introduction to generalisation techniques

	Training, validating and testing the regression models
	Conclusion: Chapter 3

	Simulation Models and Statistical Prerequisites
	Statistical analysis preliminaries
	The simulation model problems
	The Open mine problem
	The (s,S) inventory problem
	The buffer-allocation problem: five machines
	The buffer-allocation problem: 10 machines
	The non-linear buffer-allocation problem: 16 machines

	Conclusion: Chapter 4

	Metaheuristics and Hyperheuristics
	The main concepts for metaheuristics
	Initial solution
	Solution representation
	Stopping condition

	Multi-objective cross-entropy method
	Preliminaries for the MOOCEM
	The MOOCEM algorithm

	Non-dominated sorting genetic algorithm II
	The NSGA-II
	Selection operators
	Crossover operators
	Mutation operators

	Dominance-based bi-objective simulated annealing
	The DBMOSA algorithm
	The annealing schedule
	The initial temperature
	Neighbourhood move operators

	The BOCEGAH algorithm
	The BOSAH algorithm
	Summary

	Algorithmic Parameter Evaluation
	Introduction to multi-objective statistical analysis
	Determining the MOOCEM algorithm hyperparameters
	Open mine problem
	(s,S) Inventory problem
	Buffer allocation problem: five machines
	Buffer allocation problem: 10 machines
	Non-linear buffer allocation problem: 16 machines

	Determining the NSGA-II hyperparameters
	Open mine problem
	(s,S) Inventory problem
	Buffer allocation problem: five machines
	Buffer allocation problem: 10 machines
	Non-linear buffer allocation problem: 16 machines

	Determining the DBMOSA algorithm hyperparameters
	Conclusion: Chapter 6

	Algorithm Performance Assessment and Comparison
	BOCEGAH versus MOOCEM and NSGA-II
	BOSAH versus DBMOSAs move operators
	BOCEGAH versus BOSAH
	Conclusion: Chapter 7

	Conclusion
	Thesis summary
	Appraisal of thesis contributions
	Suggestions for future work

	References
	Metamodel Pilot Study Results
	Algorithmic Parameter Evaluation Results
	MOOCEM
	Open mine problem
	(s,S) Inventory problem
	Buffer allocation problem: five machines
	Buffer allocation problem: 10 machines
	Non-linear buffer allocation problem: 16 machines

	NSGA-II
	Open mine problem
	(s,S) Inventory problem
	Buffer allocation problem: five machines
	Buffer allocation problem: 10 machines
	Non-linear buffer allocation problem: 16 machines

	DBMOSA
	Open mine problem
	(s,S) Inventory problem
	Buffer allocation problem: five machines
	Buffer allocation problem: 10 machines
	Non-linear buffer allocation problem: 16 machines

	The Backpropagation Training Algorithm
	Backpropagation

	Discrete-event Simulation Optimisation Problem Definitions
	The (s,S) inventory problem
	The buffer-allocation problems
	The buffer-allocation problem: five machines
	The buffer-allocation problem: 10 machines
	The non-linear buffer-allocation problem: 16 machines

	The Open mine problem

	Algorithmic Comparison Results

