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Abstract

Visual exploration of large geolocation-rich data sets
using formal concept analysis

Thesis: MA Socio-Informatics

April 2022

The rate at which data is being generated is ever-increasing, resulting in
an abundance of very large data sets of different structures, all requiring im-
proved methods of data capture, processing and storage. This in turn requires
improved representation and data exploration methods. In an age of web ap-
plications, one such structure that has gained popularity is semi-structured
data. Unlike relational data which can be specifically queried, semi-structured
data relies on different methods for data exploration and knowledge discovery.
One such method is the visualisation of data beyond a purely granular textual
format, in a dynamic and reactive manner. ConceptCloud, a flexible interac-
tive web application for exploring, visualising, and analysing semi-structured
data sets, uses a combination of an intuitive tag cloud visualisation with an
underlying formal concept lattice to provide a formal structure for navigation
through a data set. It is an effective, robust and scalable tool that allows for
extension. The underlying formal concept lattice also allows for alternative
possibilities of exploring data. This research describes the development and
implementation of extensions made to the existing ConceptCloud tool, which
are focused on improving the visualisation of, and the knowledge discovery
through interaction with a data set, especially data with aspects that could be
visualised in a more effective manner. These extensions include a map based
viewer for visualising geolocation data, a graph based viewer for visualising the
composition of the data as well as a REST API to allow for mobile application
development and further unique visualisations. These extensions are demon-
strated and evaluated by visualising and exploring two semi-structured data
sets in the viticultural domain, namely atmospheric measurements of grape
growing regions and wine reviews. It is shown how these extensions aid in
and support data exploration and knowledge discovery of these multi- faceted
semi-structured data sets. These visualisations can not only be refined and
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ABSTRACT iii

expanded upon to include other types of visualisations, but also improve data
mining and knowledge discovery using ConceptCloud. This could result in
further research and improvements in similar tools and processes.
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Uittreksel

Visual exploration of large geolocation-rich data sets
using formal concept analysis

Tesis: MA Socio-Informatics

April 2022

Die pas waarteen data gegenereer word, neem daagliks toe. Dit lei tot ’n 
oorvloed van baie groot data stelle van verskillende strukture, wat almal beter 
metodes van data vaslegging, verwerking en berging vereis. Op ‘n soortgelyke 
wyse, vereis dit op sy beurt weer beter voorstelling en data ondersoek metodes. 
In ’n era van webtoepassings , is semi-gestruktureerde data een so ’n struk-
tuur wat gewild geword het. Anders as verwante data wat spesifiek ondersoek 
kan word, maak semi-gestruktureerde data staat op verskillende metodes vir 
data verkenning en kennis blootlegging. Een so ’n metode is die visualise-
ring van data buite ’n suiwer tekstuele formaat, op ’n dinamiese en reaktiewe 
wyse. ConceptCloud, ’n buigsame interaktiewe webtoepassing vir die verken-
ning, visualisering en ontleding van semi-gestruktureerde data stelle, gebruik 
’n kombinasie van ’n intüıtiewe merker wolk visualisering met ’n onderliggende 
formele konsep rooster om ’n formele struktuur vir navigasie deur ’n datastel 
te verskaf. Dit is ’n effektiewe, robuuste en skaalbare hulpmiddel , wat uit-
breiding moontlik maak. Die onderliggende formele konsep rooster maak ook 
voorsiening vir alternatiewe moontlikhede om data te verken. Hierdie navor-
sing beskryf die ontwikkeling en implementering van uitbreidings , wat aan 
die bestaande ConceptCloud instrument gemaak is. Hierdie uitbreidings is 
gefokus op die verbetering , die visualisering van, en die ontdekking van ken-
nis deur interaksie met ’n data stel, veral data met aspekte wat op ’n meer 
effektiewe wyse gevisualiseer kan word. Hierdie uitbreidings sluit ’n kaartge-
baseerde observasie platform in, vir die visualisering van geoliggingdata , ’n 
grafiekgebaseerde observasie platform, vir die vertoon van die samestelling van 
die data , sowel as ’n REST API om voorsiening te maak vir mobiele toepas-
sings ontwikkeling en verdere unieke visualiserings. Hierdie uitbreidings word 
gedemonstreer en geëvalueer deur twee semi-gestruktureerde data stelle in die 
wingerdbou domein te visualiseer en te verken, naamlik eerstens , atmosferiese
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UITTREKSEL v

metings van druiweverbouing streke , en tweedens, wynresensies. Dit word
getoon hoe hierdie uitbreidings bydra tot , en ondersteuning van dataverken-
ning en kennis ontdekking van hierdie veelvlakkige semi-gestruktureerde data
stelle bied. Hierdie visualiserings kan nie net verfyn en uitgebrei word om
ander soorte visualiserings in te sluit nie , maar verbeter ook data ontginning
en kennis blootlegging met behulp van ConceptCloud. Dit kan lei tot verdere
navorsing en verbeterings in soortgelyke sagteware hulpmiddels en prosesse.
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Chapter 1

Introduction

In the current Information Age, data is being generated at an unprecedented
rate. In 2013, it was shown that ninety percent of data existing today had been
created in the previous two years [18]. The widespread use of location-tracking
and GPS-capable devices such as smartphones and tablets has resulted in the
generation of vast amounts of geolocation-rich data. This abundance presents a
new opportunity for knowledge discovery by exploring the geolocation aspect of
data, but it also demands a specific visualisation approach [44]. Consequently,
there is an ever-increasing demand to improve the methods for which data is
captured, processed, and stored which will ultimately improve data exploration
and representation. Furthermore, the increased generation of data has created
the need for more efficient digital data storage structures as well as improved
and specialised user-centred data visualisations.

1.1 Background and Context

In an age of web applications, one such structure that has gained popularity
is semi-structured data. Traditionally, databases based on a relational model
of data, were used for storing data. This relational model allows for managing
data through a structure and language consistent with first-order logic where
all data is represented in terms of tuples, grouped into relations. Most rela-
tional databases make use of the Structured Query Language (SQL), where the
relational model, now more of an approximation than a pure relational mode, is
used to provide a declarative method for specifying data relations and queries
through the database management system software [32]. Semi-structured data
differs from relational data as it does not have a rigid structure. Instead, it
contains some self-describing meta-data in terms of object field titles [22].

Semi-structured data is typically organised within a tree-like structure in
order to perform exploration on the data. Exploration (or browsing) allows
the user to step through the data without prior knowledge of the structure
or schema of the data. An example of this data structure is the JavaScript

1
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Object Notation (JSON) format which is presented in Figure 1.1.
The data field description appears to the left of the colon and the value for

that field on the right. JSON objects can be arbitrarily long and the values
can be a string in double quotes, a number, a boolean value, another JSON
object or an array of any of these data types. This means that JSON objects
can be nested and cater for most data storage requirements making JSON a
very flexible format. JSON is commonly used in modern web applications,
and data sets in this format has grown exponentially in availability and size
in recent times.

{

"crimeid":2000,

"stationid":"157190",

"stationlocation":"CHUNGWA",

"crimetype":"All theft not mentioned elsewhere",

"crimecategory":"Theft",

"crimelocation":"-32.83898, 27.15612"

},

Figure 1.1: a Semi-structured (JSON) object of crime data.

The emergence of large data sets requires new innovative methods of ex-
ploring the data due to its increasing size and varying structures. Contrary to
relational data, there are cases where unstructured and semi-structured data
can not be queried effectively. Furthermore, unstructured and semi-structured
data rely on the use of different methods for data exploration with the most
effective method being visualisation of data beyond purely textual in table or
JSON object format. There are various tools that can be used to visualise
semi-structured data, some to a better extent than others. To account for
the various challenges mentioned, these tools should be scalable, robust, and
expandable to deal with the requirements of very large data sets.

A formal concept lattice, a visual representation of a formal context, is
frequently used to explore and visualise semi-structured data. This is further
discussed in Chapter 2. Although various tools implement this functionality,
the majority of these tools scale poorly due to attempting to visualise the entire
concept lattice or context table, which is not feasible for very large data sets.
For example, when viewing the full lattice, it becomes difficult to interpret the
detail of the lattice and it is overwhelming for the user from a visualisation
perspective. Therefore, when dealing with large data sets, it is crucial to
implement an alternate scalable visualisation to represent the data so that
the data is never displayed in its’ entirety. One such tool, ConceptCloud, has
shown to possess these attributes and provide a good foundation for improving
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and extending the functionality of these tools. ConceptCloud is an effective,
robust and scaleable tool that allows for extension [9].

1.2 Semi-structured data exploration with

ConceptCloud

Formal concept analysis is used within ConceptCloud in order to hierarchically
structure semi-structured data in a concept lattice [21]. ConceptCloud uses
this concept lattice as an underlying navigation structure, and displays the
data to the user in the form of an interactive tag cloud. Figure 1.2 shows
ConceptCloud’s user interface of this tag cloud. The tag cloud visualisation
allows the user to refine or broaden a focus concept by selecting and deselecting
tags which correspond to formal objects and attributes in the concept lattice
respectively. This is process is called exploratory search, and allows for data
exploration and navigation without constricting the user to pre-defined search
paths, or requiring prior knowledge of the underlying structure of the data [21].

Figure 1.2: ConceptCloud User Interface

1.2.1 Extensibility

The existing ConceptCloud architecture provides a method of exploring semi-
structured data through the use of an auto-generated and object-attribute tag
cloud. The data is presented in an interactive tag cloud, providing the user
with both an intuitive representation of the data set and allows for interactive
navigation through the data [9]. Tag clouds are a representation of the number
of occurrences and types of the attributes and objects in the data set, wherein
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the size of each tag displayed is based on the frequency of that tag within the
data set and the colour is based on the tag type or category. Navigation is
achieved by tag selection and deselection, removing the confines of predefined
search paths which allows for an exploratory search.

A dynamic visualisation of the formal concept lattice during navigation
also allows for alternative possibilities of exploring data, especially when it
comes to specific data types such as geographical coordinates or numeric data.
The modern trend of web application popularity places ConceptCloud in a
strong position to be expanded upon and it will remain relevant and accessible
for the foreseeable future. ConceptCloud’s browser interface makes use of
HTML, CSS and Javascript in the JAVA based Play! framework, which are
some of the most widely used and popular programming languages among
developers [15]. A visualisation of the formal concept lattice also allows for
alternative possibilities of exploring data, especially when it comes to specific
data types such as geographical coordinates or numeric data.

1.2.2 Map Visualisation

For data sets with geolocation aspects, one such possibility is a geographical
centred exploration approach. Google Maps is a popular and widely used tool
for geolocation data exploration and the user interface is easy to interpret.
Since Google Maps is a well established application containing all required
functionality and geolocation data needed, leveraging the data and integrat-
ing its functionality into ConceptCloud would provide a powerful method of
exploring semi structured data with geolocation aspects. Figure 1.3 shows the
Google Maps user interface. Google Maps is one of the most popular and
widely used geographical data exploration tools on the web. Most users are
familiar with the functionality the tool provides and how it operates. Beyond
this, the company has allowed developers to implement and fully integrate the
tool’s functionality and visualisation capabilities into their own applications,
making it a prime candidate when working with any geographical data or data
with a geolocation aspect.
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Figure 1.3: Google Maps User Interface

1.2.3 Graphs

As for numeric data, graphs and charts are the most effective method of vi-
sualising data sets with numeric aspects so that trends and patterns can be
identified. ConceptCloud being a web application, allows for integration of
advanced graph drawing libraries that can fully utilise the HTML canvas to
display advanced and fully interactive graphs and charts. Figure 1.4 shows
an example of a bar graph rendered by D3, a graph drawing library, which is
widely used in modern web applications to render various types of graphs and
charts. D3 is one of many libraries that offers this capability. D3 also allows
for low level manipulation and customisation of graph objects, allowing for
graphs to be drawn inside other graphs, or rendering three dimensional graphs
which can be fully rotated and explored in the browser.
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Figure 1.4: D3 Example Graphs

1.2.4 REST API and Mobile Applications

Another substantial benefit of modern web applications, is their ability to al-
low for the addition of an externally accessible, Representational State Trans-
fer (REST) Application Programming Interface (API) to enable Cross Origin
Resource Sharing (CORS). An externally accessible API allows developers to
build independent applications that can query and present data from the server
without having to do any resource intensive calculations or data processing it-
self. This not only makes it possible for web applications to make use of the
functionality and capabilities of one another, but also allows mobile applica-
tions to leverage the capabilities of web applications without the mobile device
needing to do any of the processing. ConceptCloud’s existing server architec-
ture allows for the development of a REST API making it possible to share its
powerful lattice generation and processing capabilities with other applications.
Figure 1.5 shows a high level architecture diagram of the web application server
and API layer, and how it communicates with mobile devices.

The technology behind mobile devices is always advancing, more specif-
ically smartphones and tablets and their touch screen user interfaces. This
allows for new and unique visualisation opportunities as well as methods of
interacting with the data. By implementing an externally accessible API, it
becomes possible to develop a mobile application with much of the same func-
tionality as ConceptCloud.
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Figure 1.5: API and Mobile Device Architecture

1.3 Aims and Objectives

This thesis aims to improve ConceptCloud by expanding on the visualisation
and exploration functions already present. This will be achieved by providing
the user with additional data visualisations and exploration methods and by
extending the tool’s functionality to other applications and devices. These
extensions will be implemented through a design science research methodology
following a user-centric approach that maximises the benefits of data analysis
and knowledge discovery experienced by the user making use of the tool. This
involves considering which visualisations best suite certain types of data as well
as how the user will interact with the visualisations in manner that improves
analysis and sensemaking of the data while reducing or limiting cognitive load
experienced by the user. Ultimately, these extensions will be evaluated by
applying the tool to suitable data sets and conducting a case study in order
to determine their effectiveness in analysing data and discovering knowledge.

Specifically, this thesis aims to design, develop and evaluate three key ex-
tensions to ConceptCloud, namely a map viewer, graph viewer and mobile
interface. These extensions must adhere to certain requirements which can be
stated below as:

• The extension should be clear and readable for a user with moderate
levels of data literacy.

• The visualisations must remain an accurate representation of the data
where opportunity for misinterpretation of the data by the user is min-
imised.

• The new extension must aid in data analysis by providing cognitive sup-
port and reducing the cognitive load experienced by the user as far as
possible.

• The extension must aid in data exploration and knowledge discovery by
providing different visualisations of the same data.
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• The extension must allow the new visualisation as well as the Tag Cloud
to drive exploration. Thus a pivotal function of this tool is to ensure
the data exploration works in a bidirectional manner. In other words,
to update the new visualisation when changes are made in one of the
visualisations and vice versa.

• The extension must ensure that the visualisation and exploration tool be
highly scalable to process large data sets, since the rate at which such
data is being generated is ever increasing.

1.4 Methodology

This thesis follows a design science research methodology, which is used when a
research problem, usually a business problem, requires the creation of an arte-
fact to be solved. A 2007 paper by information systems researcher Hevner [34],
discusses, implements and applies DSRM to research done in the information
systems field.

Hevner [34] provides a good foundation for thinking about DSRM and
states that there are three design science research cycles. These cycles are
based on the twelve theses stated by author Juhani Iivari [39], and includes
the relevance cycle, the rigor cycle and the design cycle [34]. As can be seen in
Figure 1.6, these cycles either occur in or connect three different environments,
which include the knowledge base, the design science research environment and
the application domain

Figure 1.6: Design Science [34]

The relevance cycle ensures that the research is being done with an appli-
cation context, solving real-world practical problems that provides both the
requirements for the research as well as defines the evaluation criteria for re-
sults [34]. The rigor cycle is located in the knowledge base environment which
serves as a source of past knowledge to the researcher to ensure innovation.
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It is the researcher’s responsibility to thoroughly evaluate the knowledge base
and ensure that their research contributes to it, and that similar research has
not been done before. The final cycle, the internal design cycle, involves the
iteration of design, evaluation and feedback of the artefact, until a satisfactory
design is achieved [34]. This cycle draws from both the relevance cycle and
the rigor cycle.

This model provides a unique macro perspective on conducting this type
of research and shows how the practical environment defined both the re-
quirements and evaluation criteria for the required software artefact. It also
emphasises the role of iteration, especially the internal design cycle, until the
software artefact is fine tuned.

The methodology used in this thesis loosely follows the three cycle method-
ology recommended by Hevner [34]. Firstly, the relevance cycle was iterated
through during the conceptualisation of the software extensions which solves
the real-world practical problem of effective data visualisations. Secondly, a
literature review of the knowledge base was conducted, thus iterating through
the rigor cycle, before development started. During the development and eval-
uation of the extensions during the case study, the internal design cycle was
iterated through.

When considering the relevance cycle and the requirements and evaluation
criteria imposed by the practical environment when it comes to data visuali-
sation, it is important to identify current trends and approaches in the field.

Modern web applications are becoming adept at processing, presenting and
storing very large data sets via efficient digital data storage structures as well
as improved user-centred data visualisations. These applications typically pre-
processes and transforms the data before showing it to the user. They also
makes use of third party APIs or libraries to provide the user with specialised
user interfaces which makes visualising and navigating through the data as
simple and intuitive as possible. This is important since not all users have
the same technological skills or data literacy. This becomes a necessity as the
amount of the data shown to the user increases.

The Cognitive Psychology component of Human-Computer Interaction is
focused on how humans use software applications. Furthermore, it investigates
the importance of creating impactful data visualisations to facilitate sensemak-
ing and reduce the cognitive load when working with complex data. As the
analysis of visualised data requires an individual to understand, analyse and
learn, it is unsurprising that human cognition plays a vital role in visualis-
ing data [31]. Therefore, it is important to acknowledge the role of cognition
within visualisation and when designing user interfaces and data visualisations,
it becomes crucial to follow a user-centric approach. This approach describes
principles in line with visual perception and cognitive processing which includes
not only considering the end-user of the visualisation but also providing the
user all of the information required to interpret the visualisations [33].

The guidelines in this approach might seem obvious but modern software
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applications have progressed far beyond static graphs and charts and now allow
for complex visualisations for user-driven refinement [33]. Thus, developers of
such applications must either decide to visualise as much data as possible or
simplify the data visualisation to ensure they remain effective. Balancing the
need for accuracy with the risk of confusing or overwhelming the user becomes
a difficult task.

1.5 Structure of Thesis

Chapter 2 provides the reader with background theory on the field of formal
concept analysis involving formal contexts as well as how concept lattices are
generated. A brief background of data visualisation will also be given be-
fore exploring some formal concept analysis powered data visualisation and
exploration tools. The initial version of ConceptCloud will then be formally
introduced and described.

Chapter 3 of this thesis describes a map extension made to ConceptCloud
which allows not only for more effective visualisation of geolocation data, but
also improving the exploration of the data by allowing bidirectional navigation
between the map and tag cloud, i.e., update the map when changes are made
in the tag cloud and vice versa.

This chapter also involves the further extension to ConceptCloud’s visu-
alisation arsenal, an integrated graph viewer that allows the user to generate
either a pie chart of bar graph of the data in order to get a quantitative view
of tags in the data set.

Lastly, this chapter describes how the initial tool was extended to allow
other developers to access the lattice navigating functionality of ConceptCloud
in their own applications. To showcase this, a mobile application was built that
re-creates the functionality of the initial tool with an updated touchscreen
interface.

The fourth chapter of this thesis includes an evaluation of the extensions
made to ConceptCloud through two case studies conducted on very large semi-
structured data sets. The first is a data set of atmospheric indicators and
viticulture indexes of weather conditions measured at various weather stations
in the state of California in the United States of America, over a period of
three years ranging from 2014 to 2016. The second is a wine review data sets
containing textual descriptions of wine, the varietal and review scores of the
wines among other aspects.

The final chapter summarises the changes made to ConceptCloud and their
benefits. Thereafter, it discusses the findings from the evaluation. Finally, the
thesis will conclude by proposing future work.
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Chapter 2

Background

2.1 Overview

Chapter 2 covers the theoretical background of Formal Concept Analysis (FCA).
A brief overview of FCA fundamentals as well as examples of the formal con-
text and concept lattice is provided. Subsequently, the importance of using
data visualisation is investigated by discussing their drawbacks and benefits.
In addition, the various methods of data visualisation are investigated with a
focus placed on a user-centric approach. Furthermore, data visualisation tools
that use FCA to power data visualisations and exploration are introduced.
A detailed discussion on ConceptCloud is provided as this data visualisation
tool will be used throughout the thesis. To conclude, a discussion on ways to
improve tag cloud sizing is provided.

2.2 Formal Concept Analysis

Traditional data structures are unable to make use of powerful data visualisa-
tion and exploration tools [26]. Therefore, the research conducted in this thesis
makes use of the theory behind Formal Concept Analysis as a foundation on
which to build these powerful data visualisation and exploration tools.

Formal concept analysis is a field of applied mathematics with specific
focus placed on applied lattice theory. It is a method that is used to group,
represent and analyse data sets. This is achieved by grouping data objects
hierarchically with their common attributes. For example, when analysing a
crime, the data object refers to the crime incidence and the details surrounding
the crime incidence are its attributes.

Formal Concept Analysis was introduced by Rudolf Wille, a German re-
searcher, in 1982 [52]. It has since been refined and is widely used in various
fields, such as software development for data analysis, knowledge discovery,
and information retrieval [51].

11
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Mathematical set theory and order theory are both used to formulate the
theory of formal concept analysis [26]. At its core, formal concept analysis
consists of binary relations (partial order relations specifically) between sets
of objects and attributes. There is a natural partial order relation of subset
inclusion on a data set, in certain pairs of subsets of elements, neither set is
included in the other. This is in contrast to a total orders relation, where all
elements are ordered.

The data set is partitioned into two types of elements, namely formal ob-
jects and formal attributes. The adjective “formal” distinguishes the terms
from their more classical definitions [52] and emphasises their connection to
mathematical concepts.

Data representation as a formal context allows for a great deal of manipu-
lation and practical use (such as exploratory searching through unknown data
sets). An ideal way of representing a formal context is by making use of a cross
table or context table. An example of such a cross table (or context table) is
presented in Figure 2.1. The table summarises a number of crimes and their
respective details. The formal objects are the crime incidences and the formal
attributes are crime descriptors (location or type). The relationship between
them is represented by a cross [52]. For example, Crime 5 (the object) oc-
curred in Camps Bay (attribute 1) and the crime committed was burglary of
a residential premises (attribute 2).

Figure 2.1: a formal context of crimes committed in South Africa

In FCA, the binary relation on sets of objects and attributes is a partial
order relation which has certain properties. This will be made more precise in
Definition 4 below. Formally, a binary relation R on a set A is called a partial
order relation (a partial order), if it satisfies the following conditions for all
elements a, b, c ∈ A:

1. aRa (Reflexivity: every element is related to itself)

2. aRb and a 6= b→ not bRa (Anti-symmetry: two distinct elements cannot
be related in both directions)
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3. aRb and bRc→ aRc (Transitivity: if a first element is related to a second
element, and, in turn, that element is related to a third element, then
the first element is related to the third element)

Formally:

Definition 1. A formal context is a triple (O,A, I) where O and A are sets
of objects and attributes, respectively, and I ⊆ O×A is an arbitrary incidence
relation.

If we consider Figure 2.1, with sets:

O :={Crime 1, Crime 2, Crime 3, Crime 4, Crime 5 }
A :={Stellenbosch, Camps Bay, burglary at a residential premises,

theft of a motor vehicle, stock theft, Theft},
(2.1)

the incidence relation, for Crime 1 is defined by:

{Crime 1} × {Stellenbosch, stock theft, Theft} ⊆ I (2.2)

Formal concept are certain subsets of the incidence relation I. They can be
viewed as maximal rectangles in the context table a term used in computational
geometry involving finding a rectangle of maximal size to be placed among
obstacles in a plane within the context table. A formal concept is therefore a
maximal set of object-attribute pairs, having the property that adding another
object to the formal concept will result in a loss of common attributes and
adding an additional attribute will result in a loss of common objects [28].

The intent of a formal object is the set of formal attributes possessed by
this object, and the extent of a formal attribute is the set of all formal objects
that share this attribute. By considering the formal context table shown in
Figure 2.1, the extent of the formal attribute Theft is the set T := {Crime 1,
Crime 2, Crime 3, Crime 4} and the intent for the formal object Crime 3 is
the set G := {Camps Bay, stock theft, Theft}. This is formally generalised to
sets of objects and attributes as follows:

Definition 2. Let (O,A, I) be a context, O ⊆ O, and A ⊆ A. The common
attributes of O are defined by α(O) = {a ∈ A|∀o ∈ O : (o, a) ∈ I}, the
common objects of A are denoted by ω(A) = {o ∈ O|∀a ∈ A : (o, a) ∈ I}.

Applying this definition to the formal context in Figure 2.1 and sets O and
A, ({stock theft, Theft}, {Crime 1, Crime 3}) represents a formal concept,
and adding an additional attribute, say Stellenbosch to the concept will result
in a loss of the Crime 3 object since it does not share this attribute.
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This yields a new formal concept, as can be seen from the above example.
It is possible to add or remove objects or attributes from the formal concept
in order to make it more or less general, we can continue doing so until it
results in either a universal or empty set of objects and attributes respectively.
By removing formal attributes from the formal concept, the number of formal
objects will increase resulting in a more general formal concept. Conversely,
adding formal attributes will result in fewer and more specific or granular for-
mal objects in the formal concept. The same holds true for adding or removing
formal objects to a formal concept, thus formal objects and attributes can be
used as a filter in order to make the formal concept more or less specific. This
relation which exists between the attributes and objects of a formal concept,
generates a partial order relation on the formal concepts, which is referred
to as a subconcept, superconcept relation [52]. This is defined formally in
Definition 3.

Definition 3. Let C be a formal context. Then c = (O,A) is called a concept
of C if α(O) = A and ω(A) = O. πO(c) := O and πA(c) := A are the
called the extent and intent of c, respectively. The set of all concepts of C is
denoted by B(C).

Definition 3 allows formal concepts to possess the property where a con-
cept’s extent includes the extent of all of its subconcepts, and the intent of
a concept includes the intent of all of its super concepts. Returning to our
example context, the formal context of crimes, this means that the formal
attribute Theft, has a subconcept Stellenbosch Theft which has an extent of
set Q := {Crime 1, Crime 2} which is contained in the extent Theft which
is the Y:= {Crime 1, Crime 2, Crime 3, Crime 4}. The subconcept relation
induces a partial order on the set of all formal concepts, and is formally defined
as follows:

Definition 4. Let C be a formal context, c1 = (O1, A1), c2 = (O2, A2) for
c1, c2 ∈ B(C). Then c1 and c2 are ordered by the subconcept relation, written
c1 ≤ c2 if O1 ⊆ O2 or equivalently, A2 ⊆ A1 . The structure of B(C) and ≤ is
denoted by B(C).

2.2.1 The Formal Concept Lattice

To represent a formal context, a concept lattice can be used instead of a
context table to show the relationship between the concepts. This differs
from a context table because the lattice shows the relation between the sub-
concepts and super-concepts visually [52]. An example of a formal concept
lattice is provided, most specific to the concept shown, in Figure 2.2. The
nodes of the lattice represent a formal concept, with formal objects below the
node and formal attributes shown above. The extension (formal objects) of a
formal concept is determined by tracing all paths that lead down from the node
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whereas the intention (formal attributes) of a formal concept is determined by
tracing all paths that lead up from the node. Consequently, the top node of a
lattice has all formal objects in its extension and the bottom node has all of
the formal attributes in its intention [52].

Many algorithms exist that are used to compute formal concept lattices,
with some being more efficient than others. An example of an algorithm that
is used to draw a concept lattice is discussed below [38]:

Every formal concept of a context (G,M, I) has the form (ω(α(X)), α(X))
for some subset X ⊆ G and the form (ω(Y ), α(ω(Y )) for some subset Y ⊆
M. Vice versa all such pairs of sets are formal concepts. Then, the proposed
algorithm states:

1. β(G;M; I) := ∅

2. For every subset X of G, add ((ω(α(X)), α(X))) to β (G,M, I)

Since FCA theory states that the structure induced by the partially-ordered
formal concepts of a formal context is always a complete lattice, it can be
automatically computed for any incidence relation between objects and at-
tributes [38]. The greatest lower bound of a lattice is the lowest point in the
lattice that still maintains a common concept. The meet and join can always
be computed based on any position in the lattice. The formal concept lattice
as well as the meet and join operation is described in the theorem below:

Theorem 1. Let C be a context, then B(C) is a complete lattice, called the
concept lattice of C. Its meet and join operation for any set {〈Ai, Bi〉|i ∈ I} ⊆
B(C) of concepts are given by:∧

i∈I(Oi, Ai) = (
⋂

i∈I Oi, α (ω(
⋃

i∈I Ai)))∨
i∈I(Oi, Ai) = (ω(α(

⋃
i∈I Oi)),

⋂
i∈I Ai)
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Figure 2.2: An example concept lattice of the Formal Context given in Figure 2.1

Since each formal object and formal attribute has a uniquely determined
defining formal concept in the lattice, it is never necessary to draw or generate
the entire formal concept lattice since these defining concepts can be calculated
from the objects or attributes, instead of being searched for in the lattice [28].
This is formally defined as follows:

Definition 5. Let B(O,A, I) be a concept lattice. The defining concept of
an attribute a ∈ A is the greatest concept c such that a ∈ πA(c) holds, and
is denoted by µ(a). The defining concept of an object o ∈ O is the smallest
concept c such that o ∈ πO(c) holds, and is denoted by σ(o).

Referring to Figure 2.2, the defining concept of the formal object is 〈{Crime
1}, {Stellenbosch, stock theft}〉 and the defining concept of the attribute stock
theft is 〈{Crime 1, Crime 3}, {stock theft, Theft}〉. The ability of formal
concept lattices to arrange formal concepts in a complex hierarchy has many
practical uses and has become a popular method of facilitating knowledge
discovery and ontology engineering in various fields. According to a survey
published by Poelmans et al., multiple applications have been implemented
which make use of FCA to facilitate data analysis, knowledge discovery and
information retrieval. From the study, it was found that the most popular
application field at the time was text mining.

2.3 Data Visualisation

In the age of ubiquitous technology, data is being generated at an unprece-
dented rate. In many cases, software applications generate this data from user
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input and allow users to explore it. These applications typically pre-process
data and make use of specialised user interfaces so that users can more easily
interpret data, since not all users have the same technological skills or data
literacy. This becomes a necessity as the amount of the data shown to the
user increases. It should also be noted that the visualisations being explored
are dynamic and reactive to user input. These differ from post-processed still
images and graphs visualisations. The visualisations change as the user in-
teracts with the data, increasing the risk of confusing the user or generating.
visualisation that is not human-readable.

2.3.1 Cognitive View of Data Analysis

When data is shown to a user, the data needs to be interpreted by the user
through a process called data analysis. Data analysis is a process in which
the data is first summarised and follows a methodology in which discrepan-
cies in the data are exposed and analysed [31]. Furthermore, Huber (2012)
breaks down data analysis into several different activities that one is required
to fulfil [36]. These activities include: the collection and inspection of data,
the process of error checking, modifying and transforming the data, identifying
discrepancies by comparing data, modelling and simulation, interpretation of
the results, and lastly, the presentation of the findings [36]. In a similar man-
ner, sensemaking is a process of searching for a representation and encoding
data in which it is used to answer a particular question [31].

It is stated that an individual can only store between two to six pieces
of information at a single moment in time. Consequently, sensemaking relies
heavily on the use of schemas [31]. A schema is defined as a mental model
which stores a piece of information regarding a particular type of object or
concept (different to a formal concept as discussed above) [31]. Furthermore,
schemas exist with two forms of data analysis, namely confirmatory analysis
and exploratory analysis [31].
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Figure 2.3: A simplified summary of the sensemaking process.

A sensemaking process that starts with schemas which lead to the collection
of data is common in confirmatory analysis. In contrast, when sensemaking
starts with data and proceeds to search for possible schema it is known as
exploratory analysis [31].

From a cognitive perspective, data analysis is similar to sensemaking. This
is reinforced by Grolemund and Wickham (2014) who state that tasks within
data analysis can be compared to sensemaking, as they both use quantitative
data to analyse information. Furthermore, both data analysis and sensemaking
have shared goals which aim to produce reliable ideas of reality extracted from
observed data [31]. To elaborate, they compare fact with theory, search for dis-
crepancies between the two and lastly, modify the theory. Furthermore, they
both stress the importance of “comparison, discrepancy and iteration” of new
information and data [31]. In addition to shared goals, they also have shared
methods as they both require individuals equipped with cognitive strategies
which facilitate the working memory to interpret the data. The role of cogni-
tion is a pivotal component of data analysis, as assigning meaning to informa-
tion is not a computational or statistical but rather a cognitive process [31].
To elaborate, Grolemund and Wickham (2014) go as far to state that the suc-
cess of data analysis is dependent on the interaction of the above mentioned
cognitive processes [31]. Figure 2.3 showcases the flow of the confirmatory and
exploratory sensemaking processes.
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2.3.2 Cognitive Load

The above theories of data analysis and sensemaking fall under the field of
cognitive psychology which is focused on understanding mental processes in
humans. In this field it is accepted that sensemaking requires cognitive effort,
also referred to as cognitive load, and occurs in what is referred to as “working
memory”.

Human memory can be compared to an information processing system
and consists of four core components, namely: short-term memory, working
memory, sensory memory and long-term memory [35]. A proposed model
of how data is analysed and understood, states that there are four major
steps within the process. The first step includes external information being
processed via the sensory memory. Once the information has been processed,
it is transferred to short-term memory where it is processed and placed within
working memory [35]. Figure 2.4 indicates this flow of incoming information
into the various types of memory.

Figure 2.4: Information processing model of memory.

The theory of cognitive load places a great deal of emphasis on working
memory [35]. The working memory is used when performing cognitive tasks,
however, it is limited in both duration and capacity. The quantity of cognitive
resources required to successfully perform a task is referred to as the cognitive
load [35]. Cognitive load is associated with the learning of complex cognitive
tasks [35]. Mental effort is suggested to mirror the cognitive load, as mental
effort is the amount of cognitive capacity allocated to facilitate the cognitive
demand initiated by a task.

However, there are more complexities to the process, in addition to several
limitations regarding the working memory. To elaborate, working memory
is limited in both duration and capacity [35]. The information that exists
within the working memory is believed to be forgotten over time as it is most
commonly used when performing tasks. These limitations are problematic for
cognitive activity as often tasks require many elements to be held in working
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memory and require the processing of many elements simultaneously which
causes memory overload and information loss [35].

Figure 2.5: A visualisation of cognitive load for understanding visualisations.

When analysing cognitive load, it can be measured by using three dif-
ferent techniques. These include physiological measures (pupillary dilation),
subjective measures (secondary tasks) and performance-based measures (rat-
ing scale) [35]. As mental effort can be measured, so too can mental effort
improvement. Although having the techniques available to measure cognitive
load, it is not the goal of this thesis to measure it, but rather to reduce it.
Thus, it is important to acknowledge that it can be improved and to take
lessons learnt and apply them accordingly.

Figure 2.5 illustrates all of the factors that influence cognitive load as well
as the effects the load has on the individual, when processing some data visu-
alisation. As can be seen from the figure, some causal factors such as “Time
complexity” and “Visual complexity” can be controlled or reduced, while oth-
ers unfortunately can not, namely “Domain complexity” and “Data complex-
ity” among others. Further, some causal factors are set by the user such as
“Task Complexity”.
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2.3.3 Visualising Data

The Cognitive Psychology component of Human-Computer Interaction is fo-
cused on how humans use software applications. Furthermore, it investigates
the importance of creating impactful data visualisations to facilitate sense-
making and reduce the cognitive load when working with complex data. As
the analysis of visualised data requires an individual to understand, analyse
and learn, it is unsurprising that human cognition plays a vital role in visual-
ising data [31]. Therefore, it is important to acknowledge the role of cognition
within visualisation.

Data visualisations are useful since it supports the cognitive processes of
sensemaking/ understanding, especially when a user has access to multiple
visualisations of the same data. Visuals are often easier and faster to process
than numeric or semantic information and it reduces the cognitive load expe-
rienced by said user. In order to do so however, the data first needs to undergo
pre-processing and manipulation [31].

The final product of data visualisation is known as a “knowledge product”.
It requires that this product be interpreted easily by an individual [31]. A
’knowledge product’ must contain meaning that the analyst can understand
when visually examining data. To do so, the act of assigning meaning to the
“knowledge product” is not classified as a computational or statistical step
but rather a cognitive one [31]. To summarise, recognition of properties within
visualisation is only one-half of the visualisation process. The other comprises
of the cognitive processes involved in gaining meaning from visualisation [50].

The cognitive process of understanding data visualisation has two core
components. Firstly, a process that scans through data for information, high-
lights relationships and visually displays the data in a way that can be easily
understood by the individual [31]. Secondly, the nature and detail of the visu-
alisation needs to be in line with the cognitive ability of the observer in a way
that is appropriate to the intended target audience.

Individuals can gain access to attributes of the visualisation process, the
properties of the results, or characteristics of the user’s perceptual behaviours
when analysing visualisations. The user uses such information to reduce the
search space for optimal control parameters, making the interaction much more
cost-effective. An inappropriate visualisation may impose a high cognitive load
on the human cognitive system, thus overwhelming the viewer and undoing its
benefits of cognitive support.

Therefore, the visualisation process includes representing data, informa-
tion, and knowledge regarding the computational and cognitive space [16].
Visualisation compensates for the difficulties individuals face in acquiring a
sufficient amount of information or knowledge directly from a data set [16].
Therefore, visualisation is a tool that facilitates an effective and efficient cog-
nitive process that allows for the retrieval of information and meaning from a
data set [16].
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2.3.4 Benefits of Visualisation

A key benefit of visualisation is the ability to provide cognitive support to the
user. This includes assistance in understanding data as well as the ability to
communicate information about the data [35]. Furthermore, by visually rep-
resenting data it allows for tasks that typically require a laborious cognitive
process to be completed via a much simpler visual process such as simple per-
ceptual operations [35]. This helps reduce the demand placed on the human
memory. In addition, visual representation facilitates the use of recognition
mechanisms, which are embedded within an individual’s visual perception sys-
tem, allowing for a quicker rate of recognition [50].

2.3.5 User-centric Approach

In order to benefit from data visualisation, a user-centric approach can be
followed as it ensures clear and simple data visualisations. The user-centric
approach provides some guidelines and principles in line with visual percep-
tion and cognitive processing by providing all the stages and actions to follow
in order to uncover the information needed to interpret visualisations. For
example, the key and legend on a graph must always clearly be visible and
cryptic units or abbreviations should be avoided. One aspect of a user-centric
approach is the consideration the user of the visualisation and whether it was
successful in fulfilling their requirements. Data scientists may find vastly differ-
ent visualisations more meaningful compared to standard software application
users [33]. These stages and actions might seem obvious, but modern software
applications have progressed far beyond static graphs and charts and now allow
for complex visualisations for user-driven refinement [33]. Thus, developers of
such applications must either decide to visualise as much data as possible or
simplify the data visualisation. Balancing the need for accuracy with the risk
of confusing or overwhelming the user becomes a difficult task.

According to Wassink et al. 2009, the visualisation design process can be
divided into three specific parts. These are an early envisioning phase, in which
various factors are analysed, such as the users, the environment in which they
reside, and the tasks that they conduct within those environments. A global
specification phase, in which the stakeholders are presented various solutions
and propositions are made. Lastly, a detailed specification phase, which further
expands on what is presented and proposed to the applicable stakeholders. It
is important to note that this is and iterative process, and as such, a high level
of refinement can be achieved over time. As the user-centric approach is imple-
mented, each phase can consist of multiple iterations, each iteration consisting
of three actions. Those being analysis, design and evaluation [55]. Analyses
comprises of analysing the users and their environments in order to distin-
guish between their differences, individually and environmentally. Factors to
consider when doing this analysis include that of, defining which spectrum of
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users will be used to the analysis and which characteristics define them [55].
Furthermore, which tasks they conduct or undertake, what needs to be visu-
alised based on the objects or processes at hand, and lastly, which types of
understandings this visualisation should provide. The Design stage emerges
from the analysis stage, and comprises of using the knowledge gained from
the outcomes of the analysis to develop solutions. These solutions can be ex-
pressed through the use of low and high-fidelity prototypes, and as such range
from the use of sketches to examples of the final product which can be used
for evaluation [55]. The last action that takes place in the iterative process is
evaluation, in which interaction styles and the way in which the data visualised
is evaluated. The aim of the evaluation is to uncover whether the correct user
requirements have been met, through test the various designs and all of their
complexity, as well as if there is an improved ability to discover perceptions
within data sets, such as those which are heterogeneous in nature [55].

Figure 2.6: Poor Pie Chart Visualisations [52]

Figure 2.6 shows two pie charts, both being examples of poor data visual-
isation. The pie chart on the left has no title or legend describing what the
chart represents, making it difficult for the user to interpret. Contrary to this,
the pie chart on the right does have a legend but contains far too many unique
segments to be legible to the user. At best these pie charts are not beneficial
to the user and at worst they can distract and confuse the user.

2.3.6 Visualising Geolocation Data

Geolocation data can take a number of forms but is generally either street
addresses or latitude and longitudinal coordinates, with coordinates being the
more accurate of the two. Traditionally this type of data is visualised using
maps and with the advancements made in web browser technology and web ap-
plications, these maps have evolved far beyond just static visualisations. There
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are a number of third-party libraries which dynamically render interactive 2D
and 3D maps and allows for the plotting of geolocation data on them, either
in the form of pins/markers, polygons, polylines or heatmaps1. These third-
party libraries allow for full integration of these powerful map visualisations
into web applications.

Figure 2.7: Geolocation data plotted as heat maps

Figure 2.7 shows a map visualisation with geolocation data plotted as heat
maps. Heat maps are used to depict the intensity of data at geographical
points. Areas of higher intensity will be coloured red, and areas of lower
intensity will appear green.

2.3.7 Drawbacks of Data Visualisations

Despite the many benefits of visualisation, there are however, several impor-
tant factors to consider when comparing the different visualisation approaches.
For example, most users generally do not have much experience reading so-
phisticated graphs and charts such as the one shown in Figure 2.8, and overly
complex visualisations can confuse the user and obscure meaning. The worst
offender being visualisations that deliberately try to mislead the user [33] i.e.,
by making use of of inconsistent axis on a graph.

It is also important to consider if data should be transformed or visualised
beyond just textually at all and it should not just be assumed that textual
data is more cognitively demanding and less effective when compared to other
visualisations [31]. Further, the visualisation of data, in either a graph or im-
age format, does not ensure the improvement of human understanding of data.
There are, in fact, many complementary factors that guide this understand-
ing. Although visualisation may contribute to quicker task performance and a

1https://developers.google.com/maps/documentation/javascript/datalayer
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decrease in errors, it is a seldom occurrence for visualisation to produce both
high accuracy as well as a short response time [31].

Another risk with data visualisations relates to limited working memory.
This capacity means that the user may experience a high cognitive load which
causes the user to feel overwhelmed and ultimately negates the benefits pro-
vided by visualisation [35]. Consequently, the success of data visualisation is
dependent on the ability of the user to perceive and process the embedded
information efficiently and effectively [35].

Figure 2.8: A complex modern graph visualisation [2]

2.3.8 Data Visualisations and Large Data Sets

Search queries can often take very long to be processed, especially when work-
ing with large data sets. As a result, emphasis is placed on improving the ef-
ficiency of visualisation tools to allow users to have an interactive search that
is both fast and allows for the exploration of bigger parameter spaces [16].
Efficient visualisation tools will facilitate better knowledge discovery when
working with large databases and ultimately aid complex problem-solving and
interactive analysis [50].

2.3.9 Future of Visualisations

Chen et al. (2008), proposes the need to use knowledge-assisted visualisation
in order to handle the vast amount of collected information. To elaborate,
it is stated that knowledge-assisted visualisation provides an interface which
merges information-visualisation and scientific-visualisation communities [16].
Furthermore, Chen et al. (2008) states that, due to the increase in both com-
plexity and size of data, the use of visualisation for large data sets will be a
necessity rather than an option [16].
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2.4 FCA Data Visualisation Tools

The use of a formal concept lattice improves multiple areas of information
retrieval and knowledge discovery [14]. The first area is query refinement,
where a concept can be viewed as a query (the intent) with a set of retrieved
results (the extent). Secondly, the combination of querying and navigation into
a single process allows for functionality and data exploration not previously
possible. For example, being able to determine both the results of a specific
topic and the topics covered by certain results.

Finally, the ability to refine and add attributes to a query incrementally
based on currently displayed results, allows for a more refined and valuable
set of results. This is achieved by combining multiple views of semi-structured
data in cases where data is classified according to various attributes. With
concept lattices specifically, this is achieved by combining different lattices of
partial views of the data and focusing on the points of intersection between
them [14].

Within FCA, most software applications utilise the benefits of the formal
context lattice for data visualisation and exploration. These applications use
a formal context as input to automatically generate a lattice. The lattice is
used to perform various calculations. Most of these applications visualise the
data textually, with some also showing the user the entire lattice.

Generally, these tools function effectively, but a common shortcoming is
their inability to visualise large data sets [48]. Attempting to generate and
retain entire formal concept lattices in memory becomes very expensive, espe-
cially when attempting to perform complex calculations on the lattice. Fur-
thermore, the larger the formal context, the more difficult it is to interpret
the formal concept lattice. Consequently, the visualisation of it becomes less
useful to the user.

A discussion of four tools is provided to evaluate their effectiveness in
visualising data and empowering data exploration, especially in larger data
sets. The tools are ToscanaJ, FCART, Fish-eye software, and ConceptCloud.
The analysis of these tools will determine the current state of FCA-based data
visualisation tools.

2.4.1 ToscanaJ

The ToscanaJ project is a collaborative project that aims to recreate the orig-
inal Toscana lattice browser as a modern open-source desktop application for
the Microsoft Windows Operating System [4]. The ToscanaJ suite contains
the following tools:

• ToscanaJ: The main lattice viewer component.
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• Elba: A tool which allows for the editing of conceptual schemas on rela-
tional databases and allows for the exporting of SQL scripts.

• Siena: Similar to Elba, Siena also allows for the editing of conceptual
schemas, but for ones which store their data in memory.

• Lucca: Another editor that makes use of implication analysis of SQL
clauses in order to create and explore database-connected systems.

Currently, ToscanaJ is the most popular tool in the suite. The software
displays predefined diagrams of conceptual structures and allows the user to
browse and navigate through complex data sets, using a simple graphical in-
terface [8]. Figure 2.9 provides a view of the user interface which shows nested
diagrams that have been defined by some knowledge engineer. The user is then
able to analyse any predefined diagram or combination of diagrams to obtain
more detailed information. Clicking on one node results in a filter process,
consequently, only the objects belonging to the selected node will be used for
the following analysis.

Figure 2.9: The ToscanaJ user interface with nested diagrams [8]

2.4.2 FCART

The Formal Concept Analysis Research Toolbox (FCART) was released in
2013 as a tool for information retrieval and knowledge discovery from various
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data sources, with a focus on unstructured (textual) data [48]. FCART is
a local Microsoft Windows Application that provides the user with tools for
iterative analysis of their data with adjustable queries and analytic artefacts.
It accepts various data formats as input which the software uses to construct
a binary context. This binary context then proceeds to generate a concept
lattice. Figure 2.10 shows FCART’s user interface of a generated concept
lattice.

Figure 2.10: FCART Concept Lattice Visualizer

Although FCART allows for complex visualisations, the tool has some
drawbacks. Prior knowledge of the data is required to write effective queries.
The user is also never given a complete overview of their data. Furthermore,
as seen in Figure 2.11, the interface becomes challenging to read when working
with larger data sets. A visualisation that becomes overpopulated makes it
difficult for the user to distinguish between the various labels within the visu-
alisation or the links between the items. Consequently, gaining any intuition
into the data set becomes near impossible.
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Figure 2.11: Large FCART Concept Lattice

2.4.3 Fish-eye Viewer Software

This tool was developed in 1986 for the Apple Macintosh operating system
and is not able to run on current hardware. The reason for its inclusion is
due to its unique approach to the visualisation of large data sets due to tech-
nological restrictions. The tool’s user interface allows gradual enlargement or
refinement of the user’s query by browsing through a graph of term and docu-
ment subsets [27]. The graph is obtained from a lattice which is automatically
generated from a document-term relation data set. Each vertex in the graph
represents a query formed of a conjunction of terms with the retrieved docu-
ments, similar to formal objects and attributes. A fish-eye view is employed to
deal with the problem of managing a large amount of output data. By analogy
with a wide-angle fish-eye lens, the idea is to display all details of the current
focus while gradually reducing detail as you move away from it. This method
allows for the decrease in detail to be displayed when moving further from the
focal point [27]. In a similar manner to a word cloud, a vertex is displayed
according to its degree of interest (DOI). This means that the importance of
the vertex is relative to the distance from the focal area [27]. A fish-eye view
of a controllable size can be obtained by showing the most interesting points
within a given DOI threshold.

There are two different ways of interacting with the user interface which is
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dependent on the level of familiarity a user has with the underlying data set.
Users with previous experience may directly navigate to a particular vertex
in the graph by preemptively deciding on the subject which the user wants
to query [27]. Furthermore, by interacting with the graph, a user can alter
the initial query [27], as is shown in Figure 2.12, Figure 2.13 and Figure 2.14.
Alternately, a user with no prior knowledge of the data set may interact with
the lattice in order to navigate to the desired results without needing to input
a specific query [27].

Figure 2.12: User interface when
the user clicks the more specific query
“Venus” in the “More specific queries”
window.

Figure 2.13: View resulting from the
user selecting the more specific query
“Venus and sleep”. N.B. Only the addi-
tional terms with respect to the current
query are displayed in the “More specific
queries” window”.

When evaluating the tool’s ability to process large data sets, the tool un-
derstandably has difficulty generating large complex graphs. The researchers
state that devices with limited space and display resolution often give rise to
issues as the structure of the graph is typically too large. As a result, a window
is used in order to display overflow queries. Godin et al. (1986) states that
due to the graph’s complexity, it may be difficult to manage and as a result a
compromise or schematisation is often necessary.
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Figure 2.14: The contents of the selected document selected from the “Documents
of current query” window

2.5 ConceptCloud

The final FCA data visualisation tool to be discussed is ConceptCloud, the
focus of this thesis. ConceptCloud uses a formal concept lattice generated
from the input data as the underlying navigation structure [10, 26, 29]. The
data is presented in an interactive tag cloud, providing the user with both an
intuitive representation of the data set and allowing for interactive navigation
through the data. Figure 2.15 shows ConceptCloud’s user interface. Tag clouds
are representations of the number of occurrences and types of attributes and
objects in a data set, where the size of each tag displayed is determined by its
frequency within the data set, as is the colour depending on the type of tag
displayed. Navigation is achieved by tag selection and deselection, removing
the confines of predefined search paths and allows for an explorative search
process to be followed.
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Figure 2.15: ConceptCloud User Interface

The tool allows the user to iteratively select an attribute or object tag
in the tag cloud, which updates the tag cloud to display all other objects or
attribute tags possessing the selected attribute tag(s). This is achieved by
making use of a focus concept from which a tag cloud is created.

Formally, the focus concept c := 〈O,A〉 is the concept whose extent is the
set of objects that share the set of currently selected attributes, F ⊂ A, within
the tag cloud. The focus concept can be further refined by iteratively adding
elements to F . When an additional attribute is added to F , the focus concept
is updated by computing the meet of the current focus concept (c) and the
concept introduced by the additional attribute. This strategy obviates the
need to compute an entire concept lattice, which is not feasible for large data
sets [10].

The explorative search process described above simulates the process of
navigating through a concept lattice, wherein the selection of an attribute
moves the user to the point in the lattice where all linked objects contain that
attribute. As more attributes are selected and the query is refined, the user
moves further down the lattice. The reverse of this process is also possible
where the user may deselect previously selected tags and move back up the
lattice. This process corresponds to the refinement of the focus concept by
adding and removing elements from F .

Definition 6. The focus concept c = 〈O,A〉 is the concept whose extent is the
set of objects that share the set of currently selected attributes, F , within the
tag cloud, such that α(ω(F )) = πA(c) = A.

Tag clouds are constructed by taking the extent of the focus concept,
c = 〈O,A〉. For each oi ∈ O, its defining concept ci is determined, and all
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the intents (attributes) and extents (objects) of these defining concepts are
displayed.

The initial focus concept has no selected attributes, and thus the tag cloud
created from it will contain tags representing all attributes and objects. For-
mally this can be defined as (in this case ] denotes a multiset union):

Definition 7. The tag cloud from a concept c = (O, A) ∈ B(C) is defined as
τ(c) = O]

⊎
o∈O πA(σ(o)).

Through construction of tags in the tag cloud, subconcepts of the focus
concept is induced with concepts having a non-bottom meet with that focus
concept.

Figure 2.16: Initial Tag Cloud with no Focus Concept

Figure 2.16 and Figure 2.17 show the tag cloud and object table, applied
to a crime data set, before and after an attribute has been selected. In this
case the user has selected the “Stock Theft” attribute and the tag cloud and
table has been updated to represent the new lattice location. The table below
the tag cloud shows the various values of the attributes of the objects in the
data set with the attribute category appearing in the header of the table.
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Figure 2.17: Tag Cloud with Attribute Selected

2.5.1 Architecture

ConceptCloud adopts a client-server architecture visualised in Figure 2.18.
Its server is written in Java and uses the Play! framework2 along with a
PostgreSQL database to generate the concept lattice. Since the lattice is only
used for explorative search, it is not necessary to generate the entire lattice
at any one time. The Colibri java library is used to generate the required
segments of lattice at each navigation step, and these segments are generated
and discarded as the user navigates the lattice [9]. As a result, ConceptCloud
is capable of manipulating large lattices and visualising very large data sets.
The application can run on any Unix based system and the front-end can be
accessed using any web browser.

It is also worth noting that the context table displayed by ConceptCloud
is not a traditional binary context table, but rather a a multi-valued context
where each attribute may have any particular value. Multi-valued contexts are
much more human-readable and practical to display than a binary context, es-
pecially with larger data sets. Figure 2.16 shows a multi-valued context table.
In this example, Attribute:CrimeType Value:Shoplifting is displayed in-
stead of Attribute:Shoplifting Value:X [9].

In terms of loading data into ConceptCloud, it is not specialised to any
specific data set. It accepts any well formed JSON data set or CSV data set,
and processes it in order to generate the concept lattice, and subsequently the
tag cloud. This process is described below:

2https://www.playframework.com/
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Figure 2.18: ConceptCloud Architecture Overview

2.5.1.1 Data Preparation and Manipulation

• Data Source: The first step in uploading data to ConceptCloud is
preparing a JSON file of the desired data. The data must be broken
into individual objects (For each row or entry in the set) and formatted
according to the JSON standards [9]. The JSON objects may not have
nested objects.

• Data Configuration Script: The configuration script is responsible
for setting the initial run configuration for the project, which includes
setting the directory path of the data source, the data fields in which key-
phrase extraction should be performed and the attributes to be displayed
in the context table [9].

• Data Extraction: During the data extraction process, the application
obtains the data structure in order to generate the caching database
and reads in the data from the input data source [9]. Additionally, this
component performs the key phrase extraction and any required NLP
operations on the data before passing the data through to the table
management and lattice builder operations.

• Database Table Generation and Population: This step involves
the generation of the context table in the PostgreSQL database and the
insertion of the extracted data in these new tables [9].

• Concept Lattice Generator: During this step the concept lattice is
created from the Context table. In order to maintain scalability and
keep resource usage low, only the required sub-sections of the lattice are
generated as the user navigates the lattice via the tag cloud [9].

• User Interface: The final step of the process is to send the data to the
User Interface in the form of a tag cloud through which the user interacts
with the underlying concept lattice and exploratively searches through
the data set [9].
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Figure 2.19: ConceptCloud Low Level Architecture

ConceptCloud’s architecture, visualised in Figure 2.19, and the described
process above allows the application to process very large data sets efficiently
and in a timely manner. This also allows the user to upload any semi structured
data into ConceptCloud as long as it is of a suitable format.

2.5.2 User Interface

ConceptCloud’s user interface consists of two main elements, namely a Tag
Cloud and Object Table. When accessing the user interface for the first time,
the user will see a tag cloud of attributes and objects for the uploaded data
set as well as a table that represents each formal object as a row.

Figure 2.20: ConceptCloud User Interface

ConceptCloud’s user interface consists of the following elements (as can be
seen in Figure 2.20):
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• Tag Cloud Window: The focal tag cloud is on display in this win-
dow. On initial execution, the initial tag cloud viewer with the default
focus concept (the default being the top of the lattice) is displayed. The
tag cloud within the main window displays the top 5000 most relevant
tags. By selecting a relevant tag, the user can recalculate the focus con-
cept [10]. As a result, the new point of focus in the lattice displayed in
the window. Selected tags appear at the top of this window and a user
can deselect these tags if they wish to move back up the lattice.

• Navigation Window: This window provides the user with navigation
links to the home screen and user documentation. Furthermore, it gives
the user the ability to upload a ConSL script which allows for automation
of what is displayed in the tag windows [28]. The user is also able to
change the scaling of the tags within the tag cloud by dragging the slider
on the left of the screen to change the scaling constant [10].

• Search Bar: The search bar allows the user to search for a specific
attribute or object that is not displayed in the initial tag window. By
using a caching database, ConceptCloud provides users with an auto-
complete list of terms and their categories as they enter their search
terms. Selecting one of these terms has the same effect as selecting a
tag in the main window [10]. For example, it updates the focus concept
as well as any tag cloud viewer containing the selected term as its focus
concept.

• Sticky Tag Cloud Viewers: In addition to the main tag cloud window,
sub-windows can be generated from Sticky Tags and appear below the
main window. A sticky tag is an object or attribute to which the viewer
is fixed, and each Sticky Tag Cloud Viewer contains the displayed tags
for the sticky concept of that window [10]. These sub-windows allow the
user to have multiple views/tag clouds of their data. Selecting a new
focus concept will adjust these windows to use the union of the sticky
tag and select the focus concept as their unique focus concept.

• Object Table: The table at the bottom of the interface represents
each formal object as a row, with the columns being the attribute/tag
categories. The table is linked to the tag cloud viewer and is updated
whenever a tag is selected or deselected to reflect the multi-valued context
table corresponding to the current focus concept [10].

2.6 Chapter Summary

Chapter 2 introduced the theory behind Formal Concept Analysis and pro-
vided a discussion on the Formal Concept Lattice: a method used to represent
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a formal context by showing the visual relationship between the sub-concepts
and super-concepts. Secondly, the importance of visualising data with the use
of a user-centric approach was discussed as well as the benefits and drawbacks
of data visualisation. Moreover, a brief discussion on the future of visual-
isations was provided in which Chen et al. 2008 proposed the need to use
knowledge-assisted visualisation to handle the vast amount of collected infor-
mation. Thirdly, a discussion of four data visualisation tools was provided
namely: ToscanaJ, FCART, Fish-eye software, and ConceptCloud. Of these
tools, none provide specialised visualisations for specific types of data such as
numeric or geolocation data. ToscanaJ and FCART both attempt to visualise
the entire lattice, resulting in poor performance and cluttered visualisations
for larger and more diverse the data set. ConceptCloud, while also not having
specialised visualisations for different data types, is the only tool that does not
attempt to visualise the entire lattice, but instead provides the user with more
intuitive tag cloud. ConceptCloud only generates the section of the lattice
currently required to visualise the tag cloud, making it the top choice for visu-
alising large and diverse data sets. Thus, focus was placed on ConceptCloud
as this data visualisation tool will be extended and used to evaluate data sets
in this thesis. To understand the theory behind ConceptCloud, background
information on the architecture and user interface was provided.
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Visualisations

3.1 Overview

This chapter describes the various extensions made to the initial ConceptCloud
architecture. The extensions provide the user with additional and improved
visualisations of the data, thus enabling more efficient data exploration and
knowledge discovery. The first extension made to ConceptCloud is a fully
integrated map-based viewer window that allows for the visualisation and ex-
ploration of semi-structured data with some geolocation aspects. The second
extension, an integrated graph viewer, is then implemented on the Concept-
Cloud front-end to provide the user with a view of the composition of their
data set as well as serving any additional visualisations of their data. The third
extension focuses on the changes made to ConceptCloud’s server architecture
to implement the map and graph viewers. To conclude, an introduction to the
development of a mobile application that mimics the browser user interface
and tag visualisation is provided.

The work discussed in the Map Visualisation section of this chapter is a
re-working of the work covered in a previous research paper: ConceptCloud
2.0: Visualisation and Exploration of Geolocation-Rich Semi-Structured Data
Sets du Toit et al., 2019 co-authored with Joshua Berndt who implemented
the required server architecture modifications to support map visualisation.

3.2 Extending ConceptCloud

ConceptCloud is a modern web application with a browser-based user interface
that allows for an extension of its functionality and integration with other web
applications as well as third-party JavaScript libraries. ConceptCloud’s user
interface consists of two main components, namely the Tag Cloud and Object
Table. As described in Chapter 2, both the Tag Cloud and Object Table tex-
tually visualises the formal objects and attributes, with the Tag Cloud driving
the navigation through the lattice. When considering extending the function-
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ality of ConceptCloud in terms of new data visualisations, both navigation
and maintaining a consistent view of the user’s position in the concept lattice
are important factors in maintaining an effective user interface and providing
cognitive support during data analysis.

Consequently, the extension must adhere to a few requirements to fully
integrate new visualisations with ConceptCloud’s user interface. These re-
quirements are as follows:

• The extension should be clear and readable for a user with moderate
levels of data literacy.

• The visualisations must remain an accurate representation of the data
where opportunity for misinterpretation of the data by the user is min-
imised.

• The new extension must aid in data analysis by providing cognitive sup-
port and reducing the cognitive load experienced by the user as far as
possible.

• The extension must aid in data exploration and knowledge discovery by
providing different visualisations of the same data.

• The extension must allow the new visualisation as well as the Tag Cloud
to drive exploration. Thus a pivotal function of this tool is to ensure
the data exploration works in a bidirectional manner. In other words,
to update the new visualisation when changes are made in one of the
visualisations and vice versa.

• The extension must ensure that the visualisation and exploration tool be
highly scalable to process large data sets, since the rate at which such
data is being generated is ever increasing.

In order to design, develop and implement these extensions, an iterative
design science research methodology was adopted. A user-centric approach
was followed to ensure the extensions adhered to the requirements set out
above.

Three key visualisation extensions were developed, namely a map viewer,
graph viewer and mobile application. This required substantial changes be
made to the existing ConceptCloud architecture, mentioned in Section 2.5.1,
which resulted in the final ConceptCloud architecture shown in Figure 3.1,
with the additions marked in green.
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Figure 3.1: ConceptCloud Mobile Architecture Extension

The architecture now includes the following:

3.2.1 Final ConceptCloud Architecture

• PostGIS Extension: A spatial database extender for the PostgreSQL
object-relational database which allows for optimised geographic queries.

• Geographic database column: An additional column in the table in
the database for the transformed geolocation aspect of the data, stored
as a PostGIS Geography Type in order to make use of more efficient look
up functions.

• Map Viewer: An additional data visualisation window that makes use
of the Google Maps JavaScript API to render a fully interactive map and
pin objects.

• Graph Viewer: An additional data visualisation window that makes
use of the D3 API to render customisable and refineable graphs.

• External API Controller: The API controller forms part of Concep-
Cloud’s server and is accessible by external applications and clients who
may call any of the methods described in Section 3.5.4.1 for data or
lattice computation.

• Mobile Applications: ConceptCloud Mobile exists as a separate, Op-
erating System agnostic mobile application that replicates the function-
ality found in the browser version of ConceptCloud.
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3.3 Map Visualisation

The widespread use of location-tracking and GPS-capable devices such as
smartphones and tablets has resulted in the generation of vast amounts of
geolocation-rich data. This abundance presents a new opportunity for knowl-
edge discovery by exploring the geolocation aspect of data, but it also demands
a specific visualisation approach [44].

When considering an optimal way to visualise this type of data in Con-
ceptCloud, maps are an immediately obvious choice since they have been used
historically and are superior to textually displaying latitude and longitudi-
nal coordinates in a tag cloud. Furthermore, tag clouds provide an effective
method for facilitating knowledge discovery and data visualisation for semi-
structured data. Thus, the overall goal of the extension is to merge these two
successful methods into an integrated and scalable system.

3.3.1 Implementation

As a starting point, ConceptCloud’s tag-cloud viewer makes up the main sec-
tion of the user interface. The viewer window has several controls along the
top border that allow the user to manipulate and adjust the contents of the
window in various ways. For example, the user can resize the window, zoom
in and out, and filter the tags. To maintain a consistent visual aesthetic and
user experience, the map viewer is implemented in this same type of viewer
window.

An effective map viewer was implemented by considering various third-
party libraries based on functionality, customisability, and ease of use. The
Google Maps JavaScript API1 was chosen as it has extensive functionality and
documentation available, a proven track record, and user familiarity. In the
newly added viewer, the Google Maps API is used to render a fully interactive
map. Furthermore, the geolocation attribute of the data objects is used to
generate map pins, where available.

The initial location of the map and zoom level is customisable and the user
is able to navigate to different areas of the map by clicking and dragging their
cursor. The user is also able to change the zoom level of the map by either
clicking on the icons on the right hand side of the map or by scrolling their
mouse.

The user is also able to switch between a “Map” and “Satellite” view,
visible in Figure 3.2, by clicking the labelled buttons in the top left corner
of the map viewer. The “Map” option provides the user with an illustrated
map view, which is the default view, indicating place names, roads, places of
interest and major landmarks, with the ability to toggle the “Terrain” setting
which will display the topography and terrain of the area being viewed. If the

1https://developers.google.com/maps/documentation
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user selects the “Satellite” view, the map will be rendered as satellite images
with the option to toggle labels on or off.

Figure 3.2: Satellite view of the map

Figure 3.3 shows the ConceptCloud user interface with the new map viewer
applied to crime data. A specific crime data set contains, for each crime, its
category (e.g., Theft) or sub-category (e.g., Stock theft) and the name and lo-
cation of the police station where the crime was reported. Map pins are drawn
on the map at a fixed size. At certain zoom levels, the pins begin to overlap
one another which introduces ambiguity and compromises the visualisation of
the data. The map viewer clusters the pins automatically, based on the current
zoom level of the map, to prevent them from obstructing one another. It also
displays the number of pins in each cluster. The further the user zooms in on
the map, the fewer pins will be contained in each cluster until individual pins
become visible.

Figure 3.3: Interface with Map Viewer applied to Crime Data
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Then, the pins function the same way as the tags in the tag cloud. The
user can thus explore the data by selecting an attribute in the tag cloud,
which will update the cloud as before [29]. Furthermore, the selection will also
update the map view to display only the objects (resp. their pins) with that
selected (focus) attribute. Figure 3.4 shows the interface before (left) and after
(right) the user has selected the Stock theft sub-category from the tag cloud.
The tag cloud now contains only the selected Stock theft tag with the map
viewer containing only the (clustered) pins corresponding to the Stock theft
objects. Furthermore, the Theft crime category tag is still visible since Stock
theft belongs to this category. Alternatively, the user can select an individual
pin that will “drill down” the map view, i.e., decrease the map’s scale, redraw
and re-cluster the pins, and update the tag cloud to reflect only the objects
still represented on the map view.

Figure 3.4: Left: Interface applied to Crime Data; Right: Data filtered for Stock-
theft

The geolocation attribute values of the data objects are used to display
the pin objects in the map viewer, although they also appear in the tag cloud
as latitude and longitude pairs. When considering the underlying context
table, each lat-long pair is an attribute, with each object having at most one
geolocation attribute.

A single specialised server call populates the map and marker objects in the
browser-based client. The size of the visible map in the Google Map viewer is
dependent on two factors, namely the size of the viewer window and the zoom
level. Based on the dimensions of this viewer, the visible radius is calculated
and used along with the zoom level and centre coordinates of the map viewer to
only retrieve the map pins that are visible to the user. Map viewer movement
is tracked, and extra server calls are made when the map is moved to a new
location.
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ConceptCloud makes use of a PostgreSQL database which allows for the
addition of a powerful spatial database extension named PostGIS 2. It adds
support for geographic objects allowing SQL to run location queries. Utilising
the optimisation that PostGIS offers, ConceptCloud first indexes the data
before clustering it by coordinate. This process speeds up access to the data
by ensuring that records that are likely to be retrieved together in the same
result set, such as objects located in the same geographical area, are located
in similar physical locations on the hard disk. This allows for much faster,
optimised lookup queries, which becomes a necessity for larger data sets. The
“STD within” method, specifically, is utilised to query the geographic data
required. This method takes three parameters, namely a latitude, a longitude,
and a radius/distance measured in SRID (A spatial reference identifier) to
query the data.

3.3.2 Biclustering

The pin clusters mentioned above also have a formal correspondence in the
concept lattice in the form of biclusters. A bicluster is defined as a pair (A,
B) of inclusion-maximal sets of objects and attributes, where each object, A,
contains almost all of its attributes, B. This technique has been implemented
and applied successfully to mine numeric data sets using triadic formal concept
analysis [43].

When pins representing the formal objects are grouped into clusters on the
map view, a bicluster emerges as an element of the concept lattice by forcing
the inclusion of all the geolocation attributes from the object in a pin cluster
to all the attributes in that pin cluster.

When considering the map viewer in Figure 3.5, multiple pin clusters can be
seen around the central Cape Town area. The objects represented by the pins
in the cluster all share geolocation attributes which are similiar enough that
they were grouped into a single cluster or bicluster. These naturally occurring
biclusters can be “mined” to view common trends where possible.

Figure 3.5 shows the new tag cloud generated from biclusters from the
central Cape Town area below the map viewer. The user can generate the
corresponding bicluster tag cloud by right-clicking either single or multiple
pin clusters as well as individual pins.

This bicluster tag cloud corresponds to a smaller lattice of selected objects,
created from the original lattice, with its own focus concept, namely all of the
objects that share the new “Selected” attribute assigned during the process
mentioned above (The objects in the lattice technically also share the same
relative geolocation aspect but this is no longer relevant once the objects have
been selected and the new tag cloud is generated). This new lattice can then
be navigated independently of the main lattice.

2https://postgis.net
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Figure 3.5: Central Cape Town Bicluster

When dealing with biclusters, a Boolean disjunctive selection is used to
maintain a single focus information retrieval navigation algorithm [30]. This
technique involves modifying the underlying context table of the lattice, as can
be seen in Figure 3.6, and generating a new temporary concept lattice of only
the selected objects from the data set and displaying them in a new tag cloud.
The tags in the new cloud are either from objects in the grouped bicluster, or
object pins selected by the user, or multiple pin biclusters selected by the user.

Figure 3.6: Context Table with additional attribute

Computing the disjunction of two or more objects involves assigning a new
meta-tag to the selected objects, and in doing so, instantly generating a new
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temporary lattice. This new lattice consisting of the merged objects becomes
the subject of the new tag cloud window. As a result, the user is free to explore
the desired objects without introducing concept broadening [30].

3.3.3 Geo-location Rich Data Exploration

A geolocation-rich data set is required to make full use of the newly added
viewer and its functionality. ConceptCloud allows the user to pre-configure
the data attributes they wish to appear in each map pin object, allowing for a
far smaller, more responsive server call to create each pin. The server returns
a set of objects containing at least an identifier and the geolocation. As a
result, a Google Maps marker object is created and populated with the pre-
configured attributes of that object. If desired and available, the user can
populate a tool-tip text window of the marker with additional meta-data and
links to external resources involving the object. In addition, the user needs
to specify the attribute types present in the object. More specifically, the
geolocation attribute must be of the format “lat, long”.

3.3.3.1 Map Driven Knowledge Discovery

A prevalent issue found in geolocation data sets is the limiting effect of pre-
imposed borders in the data. These borders are typically political or geograph-
ical and the geolocation data collected is automatically sorted and grouped
based on these boundaries, when in fact, the data seldom adheres to these
boundaries. Crime data is a perfect example of this, where crimes are not re-
stricted by political borders but perhaps by natural or socio-economic borders
instead. Generally, any quantitative or statistical data collected is confined au-
tomatically to predefined borders. Any query on the data involving unique in-
tersections of these borders becomes very complex or resource-intensive. How-
ever, the improvements made to the ConceptCloud architecture provide a so-
lution to this problem by allowing the user to freely select naturally occurring
biclusters to explore.

3.4 Graph Visualisation

3.4.1 Introduction

The geolocation aspect of data is not the only data that can be displayed more
effectively using different visualisations. Data sets containing numeric fields
are notoriously difficult for users to process when shown as raw values in a
spreadsheet or table. Furthermore, they can induce a high cognitive load [35].
Graphs and charts have traditionally been used as an effective way to present
numeric data in a manner that provides a more holistic view of the figures. As
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a result, the graphs and charts make it easier to identify trends and patterns
in numeric data. Graphs play a pivotal role in data analysis. Furthermore,
they work best as supplementary visualisations to the textual data [35].

After some experimentation with numeric data, it became clear that Con-
ceptCloud’s tag cloud is not well suited for this type of data. A reason for
this is that numeric data, in general, does not work well as a tag since it is
difficult for the user to discern which tags relate to which categories, especially
when the data object contains multiple numeric fields. This could lead to un-
necessary increases in cognitive load and can weaken the sensemaking process.
ConceptCloud generates the tag cloud where the size of each tag displayed is
based on the frequency of that tag within the data set. The problem with
numeric data is that the odds of a number appearing multiple times in the
data set is much lower than with textual fields. This problem can be solved by
binning the numeric data into widely used and accepted categories or scales
where possible. Generic categories (“low”, “medium” and “high”, for example)
can also be used if no specific scale exists. This process allows for better tag
cloud visualisation, albeit with less data accuracy than the original numeric
values.

Instead of using graphs to visualise numeric data, once the data has been
binned, a graph visualisation can be used to provide the user with insight
into the composition of tag categories in the data, as well as the composition
of tag categories in relation to specific tags. Implementing a graph viewer
in ConceptCloud requires adherence to the same requirements applied to the
map viewer stated in Section 3.2, in order to achieve an integrated and scalable
system.

3.4.2 Abstraction of the Map Viewer

After implementing the map visualisation extension to ConceptCloud, addi-
tional visualisations were explored. One such visualisation is possible from
abstracting the map viewer, essentially a 2D Cartesian plane, to support other
metric space visualisations. In the map implementation, the count of the lo-
cation attribute of the objects was used to roll up the objects i.e pin clusters.
Instead of rolling up by a single attribute, it is possible to roll up by a set of at-
tributes, or concept (a concept being the smallest object containing the object
set). This results in new groups based on the collection of attributes. Further,
this allows for the creation of graphs that have the ability to be “rolled up” or
“drilled-down” to change the perspective and level at which the data is being
viewed. This requires advanced graph visualisation tools which must be able
to integrate with the existing ConceptCloud infrastructure and user interface.
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3.4.3 Implementation

ConceptCloud’s browser-based user interface allows for advanced graph vi-
sualisation through third-party Javascript libraries and the HTML5 canvas.
Generally, these libraries can draw any type of graph and chart, trading flex-
ibility and functionality for ease of implementation. To implement a graph
viewer successfully, a library that allows for the necessary functionality and
flexibility to draw and manipulate the graphs to the desired granular level
while having the library handle the majority of the rendering and styling, is
required.

Figure 3.7: Full User Interface With Map and Graph Viewer

The D3 library3 was selected for this task since it is popular and satisfies
the above criteria. The D3 library allows for low-level manipulation of the
graph objects which is of key importance when attempting to implement graph
refinement operations. For example, having to draw graphs with other graphs
or combining the various graphs into a new graph. Figure 3.7 shows the full
ConceptCloud user interface with both the map and graph viewers.

3https://d3js.org
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Figure 3.8: Initial Graph Viewer Window

The graph visualisation is triggered by the user from the front-end and as
with the map viewer, can be done from either the tag cloud or new graph
viewer window. The new viewer window is situated below the map viewer
window on the user interface as can be seen in Figure 3.8. In this window, the
user is presented with two options, the first for generating a pie chart and the
second for generating a bar graph. Once one of the tiles is clicked, the user
can select a tag category, or formal attribute, from the drop-down menu in the
bottom left corner of the window, shown in Figure 3.9 to generate the graph.

Figure 3.9: Graph Drop Down Menu

Once the category is selected, the graph is rendered in the graph viewer
with the various tag categories broken down by count (occurrence in the data
set). For a bar graph, the count is displayed on the y-axis in a linear scale and
the attributes on the x-axis. The user may hover their cursor over each pie
segment or bar to view the attribute and count of that segment via a tooltip
popup window. Figure 3.10 shows the initial pie chart generated for a climate
data set and Figure 3.11 shows the bar graph visualisation of this same data.
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Figure 3.10: Initial Pie Chart Figure 3.11: Initial Bar Graph

After rendering the graph, the user is given the option to refine the graph
by selecting an additional tag category. This is achieved by selecting a specific
attribute on the graph, either a pie segment or bar, and then selecting a second
tag category from the corresponding drop-down menu. In the case of the pie
chart, the entire graph is re-drawn based on the second tag category. This is
shown in Figure 3.12.

However, when a second category is selected for the bar graph, a new
stacked bar graph is generated. The stacked bar graph represents both the
first tag category, in the full bar, and the second category attributes in the
segments within each bar. This is shown in Figure 3.13.

The user can then switch between any first or second tag categories by
changing their selection in either of the drop-down menus. When a pie segment
or bar is clicked in the graph viewer, the focus concept is updated with this tag
and both the tag cloud and map viewer is updated to maintain a consistent
view of the lattice. At the bottom of the graph viewer there is a “Back” button
which sets the viewer window back to the graph selection screen.

Figure 3.12: Drilled down pie chart Figure 3.13: Drilled down bar graph

By having the drop down menu fixed at the bottom of the viewer window,
the user is able to switch between different tag categories instantly on both
the initial level as well as “drilled down” level in order to get a deeper under-
standing of the composition of the data set, both in its entirety as well as the
different tag categories in terms of specific tags. Beyond that, the graph viewer
provides the user with an additional visualisation of the same data visible in
the tag cloud and map, which has been shown to improve data analysis and
sense-making [31].
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Alternatively, to generate a graph from the tag cloud the user may right-
click any tag in the cloud and then select the desired graph from the specialised
context menu seen in Figure 3.14. Based on the user’s selection, the chosen
graph will be rendered in the graph viewer window with the selected tag’s tag
category, similar to if it had been selected from the drop-down menu above.
From here, the graph can be “drilled down” and explored in the same way as
described above with the selected tag added to the focus concept.

Figure 3.14: Generating graph from Tag Cloud

Both of the initial graphs are populated by the same server call, which
expects a tag category and returns a count for each unique tag in that category.
Since the grouping is done by the server before the data is returned to the
browser, only a small amount of data is returned ensuring the call remains
responsive as the size of the data set increases.

The server call that populates the “drilled down” graphs differ depending
on whether the user selected a bar graph or pie chart. The refined pie chart’s
server call expects a primary and secondary tag category and a specific tag
from the primary tag category, which it uses to get the counts for each of the
tags in the secondary category grouped by tag. The D3 library then redraws
the pie chart using these tags names and counts. The refined bar graph’s server
call is similar, but unlike the pie chart, it does not require a specific tag from
the primary tag category. Instead it returns all secondary tag category tags in
terms of the different values in the primary tag category.

In cases where the number of unique tag values in any tag category sur-
passes 15, the server call limits the returned tags to the 15 most frequently
occurring tags in the data set and groups the remaining tags into a tempo-
rary “Other” category. This “Other” category is hidden by default but can be
displayed if required.

Lastly, ways of generating a graph from the map viewer was investigated
but proved difficult due to the already existing map functionality. As described
in Section 3.3.1, left clicking a pin on the map is already bound to updating the
focus concept of the lattice and the right click overwrites the existing Google
Maps context menu in order to add the pin to the bicluster list. Therefore
there is no intuitive way of adding the ability to generate a graph from the
map without significantly changing how the map viewer functions.
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3.5 Mobile Visualisation

3.5.1 Introduction

Mobile devices, more specifically smartphones and tablets, are becoming ever
more powerful and capable of similar functionality as personal computers.
These devices usually consist of a touch screen display which can be inter-
acted with using a standardised set of gestures. These devices generally also
include a range of other components such as GPS, accelerometer, camera and
microphone, among others. This combination of components make these de-
vices uniquely suited to certain applications but due to the limited screen size
and a touch screen interface, these devices to display information to the user
optimally by making use of symbolic icons, unique data visualisations and
streamlined interaction and navigation. Touch screen user interfaces also al-
low for unique visualisations and user interactions. Gestures such as pinching,
zooming, single and double tapping as well as swiping allow for an additional
level of interaction not possible through traditional desktop interfaces.

3.5.2 Native and Hybrid Mobile Applications

Mobile devices (smartphones and tablets specifically) are becoming ever more
powerful and capable of similar functionality as personal computers. These
devices usually consist of a touch screen display that can be interacted with
using a standardised set of gestures. These devices generally also include a
range of other components such as GPS, accelerometer, camera, and a mi-
crophone. These components make these devices uniquely suited to specific
applications. Due to the limited screen size and touch screen interface, these
devices display information to the user optimally using symbolic icons, unique
data visualisations, and streamlined interaction and navigation. Touch screen
user interfaces also allow for unique visualisations and user interactions. Vari-
ous gestures (such as pinching, zooming, single and double-tapping, and swip-
ing) allow for an additional level of interaction not possible through traditional
desktop interfaces.

The goal of mobile application development is to provide an application
that can target multiple users as well as cater to numerous platforms and
devices [23]. Platform vendors provide application developers with a set of ap-
plicable APIs, programming languages, Integrated Development Environments
(IDEs), and application distribution markets (Application Stores) where the
application can be bought and or downloaded [23].

Mobile applications generally take one of two forms. The first is a native
application built for a specific platform or operating system in a dedicated
programming language. For example, IOS applications use Objective C or
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Swift 4 whereas Android applications use Java 5. The latter, more modern
type, is a hybrid web application for mobile devices which use modern browser
languages such as HTML5, CSS and JavaScript.

Instead of making use of device specific APIs like native applications [24],
hybrid applications allow for the wrapping of CSS, HTML, and JavaScript code
depending on the platform. Furthermore, it extends the features of HTML and
JavaScript to access the components of the device, something not possible with
pure web-based applications.

These “Hybrid” applications are named as such since they are not truly
native applications (since layout rendering is done via Web views as opposed to
the platform’s native user interface framework), nor are they purely web-based
since they have access to native device functionality [24]. These hybrid ap-
plications are packaged as native mobile applications for distribution through
application distribution markets. Figure 3.15 showcases the benefits and costs
of the different forms of mobile applications.

Figure 3.15: A comparison of the different developmental approaches

Developers are faced with two options for mobile application development.
Producing one platform-specific application at a time is the first option [23].
This approach supports the use of an application on different platforms, yet, it
is time-consuming as developers are required to familiarise themselves with the
various IDEs [23]. The second option requires the developers to separate into
teams where they develop each specific platform in parallel development [23].

Figure 3.16 represents both the traditional life cycle on the left as well as
the cross-platform life cycle on the right. The cross-platform cycle improves
the software development life cycle as it facilitates the structure of developing
an app once and deploying it across a variety of platforms [23].

4https://developer.apple.com/swift
5https://developer.android.com
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Figure 3.16: Traditional software development vs Cross-Platform development

There are six main tools available when developing hybrid cross-platform
applications, namely: Apache Cordova; Appcelerator Titanium; Rhodes; Canappi
mdsl; mobl and DragonRAD [23]. The Thesis uses Apache Cordova6 since it
is the most popular open-source mobile application development framework
which allows for the development of hybrid applications.

Wrappers provide access to the mobile device’s native features such as GPS
and the camera. Cordova is a wrapper that provides such features as it loads
web applications into native applications that then allow access to the device’s
native functionality [23]. Furthermore, Cordova applications are hybrid since
they are neither “purely native” nor “purely web-based”. With hybrid applica-
tions, CSS3 and HTML5 is used for rendering the user interface and JavaScript
for powering the logic of the application [3]. The HTML and JavaScript com-
ponents provide access to underlying mobile hardware, although the extent of
this access varies depending on the device and browser used. Functionality
is especially limited in older versions of the Android operating system. To
overcome these limitations, Cordova embeds the HTML code inside a native
“WebView” on the device, using a foreign function interface (a mechanism
by which a program written in one programming language can make use of
services written in another) to access the native resources of the mobile hard-
ware [23]. Figure 3.17 shows the architecture of Cordova and how it interacts
with the mobile application’s operating system through the HTML APIs.

6https://cordova.apache.org/
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Figure 3.17: PhoneGap Tool Architecture

These hybrid applications are naturally not quite as adept at handling
memory-intensive tasks when compared to native applications. However, they
allow for faster development and for JavaScript libraries to be used. These are
also operating system agnostic, meaning the same application can run on any
mobile operating system with no additional effort.

3.5.3 ConceptCloud Mobile

ConceptCloud’s server architecture allows for the addition of an externally
accessible, representational state transfer (REST) application programming
interface (API) to enable cross-origin resource sharing (CORS) of its powerful
lattice generation and processing capabilities. This addition is achieved by
configuring the Play! Server to return lattice data in JSON format.

This ability of the ConceptCloud server to support an externally accessible
REST API and hybrid mobile application allows for the unique opportunity to
build a mobile application that implements ConceptCloud’s capabilities. As
a starting point, a mobile application was built that mimics the functionality
of ConceptCloud with an updated, more appropriate user interface and visu-
alisation. It is not easy to utilise the current ConceptCloud user interface on
a mobile device. As a result, developing a mobile version of ConceptCloud
presents unique visualisation challenges.
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3.5.3.1 Mobile User Interface

Figure 3.18 shows the main user interface of ConceptCloud Mobile. The user
can interact with the touch screen interface by making use of standard touch
screen gestures such as pinch, zoom and tap. Below are the features and
elements found on all screens of the application:

Figure 3.18: ConceptCloud Mobile

• Page Title: At the top of the screen is the page title indicating which
screen of the application the user is currently viewing.

• Clear all: At the top of the Tag Cloud and Bicluster screen there is
a Clear All button that will return the user to the top of the lattice as
well as return all tags.

• Navigation tabs: At the bottom of the screen are three tabs, namely:
Tag Cloud (Home), Map and Bicluster which allow the user to navigate
between the different screens of the application.
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3.5.3.2 Tag Cloud

Figure 3.18 shows the mobile version of the Tag Cloud. The floating bubbles
represent the tag cloud instead of text since the larger surface area of the
bubbles allows for easier navigation on a touch screen interface. Similar to
ConceptCloud, the bubble colour denotes the different categories of tags, and
their size denotes the tag’s frequency in the data set. The user can navigate
the tag cloud by pinching the screen to zoom and swiping to change which
section of the tag cloud is visible. When a bubble is tapped, it appears in
the top left of the screen and the tag cloud is regenerated with the new focus
concept (See Figure 3.19 and Figure 3.20). To ensure bi-directional navigation
between the tag cloud and map is maintained, this action also updates the
map screen and the pins displayed similar to how these viewers function in the
browser based version of ConceptCloud.

Figure 3.19: Filtered Mobile Tag
Cloud

Figure 3.20: Filtered Mobile Tag
Cloud 2
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3.5.3.3 Map

Figure 3.21 shows the mobile map screen. The map screen is accessed by
tapping on the map icon in the navigation bar at the bottom of the screen.
The mobile map screen functions similar to the map viewer in ConceptCloud.
This view also makes use of the Google Maps API, albeit within a mobile-
friendly Ionic wrapper. Similar to the browser version of ConceptCloud, pins
are drawn on the map based on the geolocation aspect of the data objects.
Furthermore, the pins are clustered automatically to prevent the pins from
overlapping one another. The user can navigate the map in the same manner
as the Tag Cloud, that is, by pinching the screen to zoom in or out and swiping
to change which section of the map is visible. The users may then tap any pin
to update the tag cloud to display the object and attributes associated with
that specific pin.

Figure 3.21: Mobile Map Screen
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3.5.3.4 Bicluster

Figure 3.22 shows the Bicluster Tag Cloud screen that is accessed by tapping
on the Bicluster icon in the navigation bar at the bottom of the screen. The
mobile bicluster functions in a similar manner to the bicluster functionality in
ConceptCloud. Individual map pins or pin clusters can be tapped and held to
add them to the Bicluster lattice, similar to right-clicking them in the browser
version of ConceptCloud. From there, the Bicluster cloud can be navigated
and explored in the same way as the main Tag Cloud.

Figure 3.22: Mobile Bicluster

3.5.4 Server Implementation

In order to replicate the functionality found in the browser version of Concept-
Cloud, the server architecture was expanded. The expansion was achieved by
developing REST API endpoints that accepted HTTP requests from external
sources and returned data in the more agnostic and modern JSON format,
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as opposed to Play! framework “Views”. This allows external developers to
also make use of these methods to develop their own applications. The newly
added API endpoints are:

3.5.4.1 API Endpoints:

• GET/mobileTags: This API call serves the same role as the method
used for the main Tag Cloud but instead of returning the tags as a Play!
framework view, it returns the tags as JSON objects instead.

• GET/mobileFilteredTags: This method requires a Tag object, se-
lected by the user, and returns all Tags, also in JSON format, based on
the user’s new position in the lattice.

• GET/mapPinsInBounds: This method is the same one used in the
Map Implementation since the Google Maps API, like the mobile ap-
plication, require the geolocation data in JSON format to calculate the
location of pins and render them on the map.

• POST/mobileBiClusterTags: This method accepts a JSON object
of all tags required in the Bicluster Tag Cloud and returns all Tags in
the newly generated lattice as a JSON object.

3.6 Chapter Summary

Chapter 3 discussed the extensions used to fully integrate new visualisations
into ConceptCloud’s existing user interface by ensuring the extensions adhered
to key requirements. The key requirements and the methods used to ensure
each requirement was met is summarised below:

• The extension should be clear and readable for a user with moderate
levels of data literacy.

• The visualisations must remain an accurate representation of the data
where opportunity for misinterpretation of the data by the user is min-
imised.

• The new extension must aid in data analysis by providing cognitive sup-
port and reducing the cognitive load experienced by the user as far as
possible.

• The extension must aid in data exploration and knowledge discovery by
providing different visualisations of the same data.
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• The extension must allow the new visualisation as well as the Tag Cloud
to drive exploration. Thus a pivotal function of this tool is to ensure
the data exploration works in a bidirectional manner. In other words,
to update the new visualisation when changes are made in one of the
visualisations and vice versa.

• The extension must ensure that the visualisation and exploration tool be
highly scalable to process large data sets, since the rate at which such
data is being generated is ever increasing.

These extensions included a map viewer for visualising semi-structured
data with geolocation aspects, a graph viewer for visualising the occurrences
of attributes in the semi-structured data set, and a mobile application that
mimics the functionality of the desktop application. These extensions were
added seamlessly and comprehensively into the existing ConceptCloud infras-
tructure and user interface. To conclude, the latest ConceptCloud architecture
was expanded by including a mobile architecture extension. The Mobile archi-
tecture extension included an external API controller as well as various mobile
applications.
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Chapter 4

Evaluation

4.1 Overview

This chapter describes the evaluation conducted on the functionality of the
newly implemented data visualisations made to ConceptCloud described in
Chapter 3. The evaluation takes the form of two case studies conducted on two
publicly available data sets in the viticulture domain. These data sets contain
textual, numeric, and geolocation aspects. This chapter begins by providing a
background discussion on viticulture and the climatic indexes used by viticul-
turists. Moreover, a discussion on the data preparation and transformation of
both sets for ConceptCloud is provided. Thereafter, a discussion of the eval-
uation and case studies is provided as well the results obtained from it using
the newly developed data visualisations of ConceptCloud.

4.2 Introduction

ConceptCloud is a versatile tool that applies to any domain as long as the
data is of a suitable format, namely JSON. The two data sets utilised in this
chapter both fall in the viticulture domain, and in particular, contains data
from California in the United States of America. A state that is widely known
and highly regarded for its wine production [7]. Consequently, viticulturists
from all over the world study the atmospheric conditions in which these grapes
are grown and the characteristics of the wines produced there. This makes the
data sets good candidates for example case studies viticulturist might conduct
using a tool such as ConceptCloud.

As discussed in Section 3.4, ConceptCloud is capable of processing and
operating on numeric data. However, the data exploration of the main tag
cloud visualisation is greatly improved when displaying textual data, prefer-
ably short phrases. Thus, when utilising a numeric data set, it is beneficial to
categorise the numeric data using a widely known and accepted scale or index.

63
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The first data set used in the evaluation is an example of a purely nu-
meric data set, namely climatic measurements, that was binned into indices,
described in Section 4.4 for improved tag cloud visualisation. The second data
set used in the evaluation, namely wine reviews, contains more textual fields
and required no data binning. It does however contain large amounts of free
text which again, can be processed by ConceptCloud as is, but is not conducive
to effective tag cloud visualisations. ConceptCloud has some Natural Language
Processing (NLP) capabilities, which was used to extract key-phrases from the
free text. This process is described in Sections 4.5.6 and 4.5.7.

Further, the second data set lacks an explicit geolocation aspect which is
required to make use of the map viewer. To resolve this, the data set was
combined with the first, resulting in a diverse and complex data set with
geolocation aspects used in the final evaluation. This process is described
further in Section 4.5.8.

4.3 Viticulture

Viticulture or “winegrowing” is a branch of horticulture and involves the cul-
tivation and harvesting of grapes. The duties of the viticulturist include
monitoring and controlling pests and diseases, fertilisation, irrigation, canopy
management, monitoring of fruit development and characteristics, deciding on
optimal harvest windows and managing vine pruning during winter months.
Viticulturists generally work closely with winemakers since vineyard manage-
ment is the first step in crafting wine that is of a high-quality [41].

4.4 Climatic Indices

The climate found in different grape-growing regions contributes significantly
to the variety of viticultural products, wine quality, and wine type. In previous
studies, researchers have concluded that the temperature, for example, affects
both the quality and the composition of grapes [17]. Consequently, viticultur-
ists have developed several indices to formalise these effects and to group and
compare different wine-growing regions over the world.

Some of the first indices, such as The Thermal Index of Winkler, focused
only on temperature [6]. However, researchers later discovered that multiple
climatic factors play a role in grape development and composition. Further-
more, researchers found that these climatic factors also influence one another.
Jackson and Cherry, (1988) discovered that the ripening capacity of grapes in
regions with high rainfall is significantly lower compared to the predictions of
climatic thermal indices. Thus, requiring the development of new indices.

The new indices include various climatic factors for a given region, namely
the day and night temperature, the air temperature, and the water level in

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. EVALUATION 65

the soil. These factors influence the coloration, aroma, ripening quality, and
overall quality of the grapes. As a result, the factors directly impact the
characteristics and quality of the wine [54].

Lastly, the Géoviticulture Multi-criteria Climatic Classification (MCC) Sys-
tem was developed in 2004 by Tonietto and Carbonneau [54]. The system
was developed to identify weather conditions in grape-growing regions more
simply. Furthermore, the system consists of three indexes, namely the He-
liothermal Index, Cool Night Index, and Dryness Index. Various researchers
collaborated with the World Meteorological Organization (W.M.O.), mem-
bers of the Agricultural Meteorology Commission of various wine-producing
countries, and scientific institutions to obtain the necessary climate data for
grape-growing regions. These climatic indices are strongly related to the char-
acteristics and qualitative potential of grapes/viticultural products including
the acidity, colour, and type of the wines. Furthermore, these indices are used
to characterise a region’s climatic potential.

4.4.1 Heliothermal Index

The Heliothermal Index of Huglin, developed by Huglin in 1978 [37], calculates
the heliothermal potential of a region. The index can be used worldwide and
exhibits a good relation to the potential sugar content of the grape.

It was chosen for the Géoviticulture MCC System above other heliother-
mal indices for a variety of reasons. Firstly, the index calculates the heliother-
mal potential based on a period which is nearest to the average cycle of the
grapevine. Secondly, it provides a more accurate estimation of the sugar po-
tential according to varieties compared to the classic temperature sums. The
index therefore provides qualitative information as well. Thirdly, when the
index is combined with the cool night index,it allows for a good discrimination
of the region climate with regards to cool night conditions during the ripen-
ing period of the grape and the heliothermal conditions during the vegetative
cycle.

The index is calculated from monthly climatic means using the below equa-
tion:

HI =

Mf∑
Mi

[(T − 10) + (Tx − 10)]

2
d (4.0)

• In the Northern Hemisphere, T is the mean air temperature (oC), Tx is
the maximum air temperature (oC), d is the length of day coefficient,
ranging from 1.02 to 1.06 between 40o and 50o of latitude for the period
of 1 April to 30 September.

• In the Southern Hemisphere the index is equally calculated based on the
6-month period from 1 October to 31 March.
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For this index, the “helio” component is a result of the “d” coefficient of
the thermal component which expresses the mean day length in relation to
the latitude. Secondly, it is due to the calculation of the thermal component
being estimated over the mean period when most of metabolisms in the plant
is active.

4.4.2 Cool Night Index

The Cool Night Index (CI) represents the minimum average air temperature
of the last month of the growing period and varies from values of 12o C (very
cool nights) to values greater than 18o C (warm nights). Night coolness is a
climatic factor that has significant influence on grape and wine colour as well
as aromas [45]. The Cool night index is used in order to improve the evaluation
of the qualitative potentials of wine-growing regions, especially with regards
to secondary metabolites. Depending on the hemisphere, the cool night index
(CI) is calculated as follows:

CI = Ty (4.0)

• Northern Hemisphere: CI= minimum air temperature in the month of
September (mean of minima), in o C.

• Southern Hemisphere: CI= minimum air temperature in the month of
March (mean of minima), in o C.

4.4.3 Dryness Index

The Dryness Index (DI) indicates the potential water availability in soil, which
is related to the level of dryness in a region, and varies from values greater
than 150mm (humid) to values of -100mm (very dry). Essentially, this index
allows for the characterisation of the water component of a climate. This is
an important climatic factor to consider seeing as it influences grape ripening
and wine quality [40]. The dryness index is an adaptation of the potential
water balance of the soil index of Riou [53], which was developed specifically
for vineyard use.

The Dryness Index is calculated using the following formula [54]:

W =

Mf∑
Mi

Wo+ P − Tv − Es (4.0)

Where:

• W is the estimate of soil water reserve at the end of a chosen period

• W0 is the initial useful soil water reserve
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• P is the precipitation

• Tv is the potential transpiration in the vineyard

• Es is the direct evaporation from the soil

Similar to the HI Index, this calculation is based on a 6 month period which
is suitable for most vineyards in the world. The Index is calculated month by
month using the monthly values for all the variables mentioned above. The
Dryness Index is the value of W calculated at the end of the 6 month period.

The values for Tv and Es are calculated monthly using the following for-
mulas:

Tv = ETPk (4.0)

Where:

• ETP is the potential evapotranspiration (monthly total calculated using
the Penman method [49])

• k is the coefficient of radiation absorption by vine-plant

Es =
ETP

N
(1− k)JPm (4.0)

Where:

• N is the number of days in the month

• JPm is the number of days of effective evaporation from the soil per
month (rainfall per month in mm/5)

Values used for k differ depending on the hemisphere the calculation is
based on. The different values for k are as follows:

• In the Northern Hemisphere: k is equal to 0.1 for April, 0.3 for May and
0.5 for the months June to September.

• In the Southern Hemisphere: k is equal to 0.1 for October, 0.3 for Novem-
ber and 0.5 for the months from December to March.

4.4.4 A Multicriteria Climatic Classification System
(Géoviticulture MCC System)

As discussed above, The Géoviticulture Multicriteria Climatic Classification
System is a climatic classification system for grape-growing regions based on
the integration of the different classes of the three climatic indices, namely DI,
HI and CI. A multicriteria classification system is used in order to allow the
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grouping of grape-growing regions with similar viticultural climates. This is
useful since the different classes of viticultural climate represents both climatic
differences as well as the responses of the vine and grapes to the climatic
factors. Different classes of viticultural climate is proposed for the heliothermal
index, cool night index and the dryness index. The proposed classification
system of the different viticultural climates as well as the interpretation of
each class is presented in Figure 4.1.

Figure 4.1: Classes of viticultural climate for the dryness index, heliothermal index
and cool night index of the grape-growing regions

This system makes use the following definitions to describe climates and
regions [54]:

• Viticultural climate: this refers to the climate of some locality, grape-
growing region or vineyard described by the set of three viticultural cli-
matic indices. The viticultural climate is thus a more specific descrip-
tion of the climate than its more general definition. This climate can also
change annually and distinctions are made between the mean viticultural
climate and the range of viticultural climate.

• Climatic group: this refers to the group assigned to a locality, grape-
growing region or vineyard based on its viticultural climate. Usually,
the climatic group includes a large share of the (inter-annual) ranges of
viticultural climates.

• Viticultural climate with intra-annual variability: this relates to
regions that, under natural climate conditions, change viticultural cli-
mate class as a result of the time of the year at which grapes can be
produced (This definition is specifically used for regions where it is pos-
sible to have more than one grape harvest a year).

The Geoviticulture MCC System is only applicable to grape-growing re-
gions, since it is applied once the climatic criteria limiting viticulture (risk of
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frost, excessive humidity, etc.) are taken into account. Figure 4.2 shows the
full process of converting climatic variables into the MCC system.

Figure 4.2: The Géoviticulture MCC System [54]

4.5 Discussion

4.5.1 Climatic Data Set

The first data set used in the evaluation is publicly available and was collected
from The National Centers for Environmental Information’s portal. This is
part of the National Oceanic and Atmospheric Administration [25], which in
turn is an American scientific and regulatory agency within the United States
Department of Commerce.

The data set specifically is from the “GHCN (Global Historical Climatology
Network)- Daily database”, which contains records from various sources which
are merged and reviewed for quality assurance. The database contains more
than 40 different meteorological measurements such as wind speed average, soil
temperature, evaporation, precipitation, temperature maximum, temperature
minimum and a wide array of other elements.

When downloading the data, one can select from a number of different at-
mospheric and climatic measurements at any weather station in the country,
some of which extend as far back as the nineteenth century. Further, the mea-
surements are updated daily where possible and are usually available within a
few days of observation. Furthermore, when downloading the data, it is pos-
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sible to include geographic location, station name as well as other flags within
the data request.

The final data set of atmospheric measurements were chosen based on their
ability to satisfy the below criteria:

• It should be possible to categorise or index any numeric field in the set
into some formalised textual scale. For atmospheric measurements to be
categorised into the climatic indices described in Section 4.4, it is further
required that: 1) the measurement be from stations in a grape growing
region (California in this case), as well as that 2) the measurements span
a certain period (For the northern hemisphere this is period is 1 April
to 30 September).

• The data must contain some explicit geolocation aspect, preferably lati-
tude and longitudinal co-ordinates, in order to evaluate the map viewer.

• The total data set must contain at least 15 000 unique objects in order
to evaluate tool scalability.

As a result the data set contains indicators measured at various weather
stations and reservoirs across the entire state of California, measured daily from
April 2014 up until the end of September 2016. The data set contains 520631
unique sets of measurements at 1086 different stations. The data contains all
the measurements required to calculate the climatic indices described in Sec-
tion 4.4 above. These include measurements such as minimum and maximum
temperature, rainfall and average wind speed among others. The designations
used in the data set link to the following climate measurements:

• AWND: Average daily wind speed (meters per second).

• DATE: Year, month and day of record.

• ELEVATION: elevation above mean sea level (tenths of meters).

• EVAP: Evaporation of water from evaporation pan (mm).

• LATITUDE: latitude coordinate (decimated degrees w/northern hemi-
sphere values /> 0).

• LONGITUDE: longitude coordinate (decimated degrees w/western hemi-
sphere values /< 0).

• NAME: Weather Station Common Name (city or airport).

• PRCP: Precipitation (mm).

• TAVG: Average temperature (Celsius).

• TMAX: Maximum temperature (Celsius).
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• TMIN: Minimum temperature (Celsius).

• STATION: Station identification code.

Figure 4.3 shows the initial data object before any data categorisation was
done.

{

"AWND": 2.1,

"DATE": "2014/06/20",

"ELEVATION": 57.9,

"EVAP": "",

"LATITUDE": 39.49,

"LONGITUDE": "-121.61833",

"NAME": "OROVILLE MUNICIPAL AIRPORT, CA US",

"PRCP": 0.0,

"TAVG": 22.3,

"TMAX": 35.6,

"TMIN": 16.1,

"STATION": "USW00093210"

},

Figure 4.3: Initial JSON object of climatic measurements

4.5.2 Data Transformation

The data set was collected as a comma separated value (.csv) file of daily
measurements and was loaded into a custom data processing script which pro-
cessed the individual daily station measurements and calculated the climatic
indices, namely the Heliothermal Index and Cool night Index. This was done
for each station for the grape growing seasons of 2014, 2015 and 2016. The
Dryness Index could unfortunately not be calculated due to a lack of potential
evapotranspiration measurements in the data set, and as a result has been
assigned a value of “NoData” instead.

This process resulted in the daily measurements being summarised into a
period index where each unique station, and its climatic indices, appears in the
processed data set a maximum of three times (once for each growing period
the indices could be calculated) data allowing.

The only numeric field in the data set that is not used in any climatic index
calculation, is AWND (Average daily wind speed). This climatic measurement
was averaged per station for each of the grape growing periods and categorised
into the Beaufort Wind Scale. This scale has historically been used to assign
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a textual description to wind speed measured in knots [1]. Figure 4.4 shows
this scale as well as the categories and descriptions these measurements relate
to.

Figure 4.4: The Beaufort Wind Scale

As a final step in the data transformation script, the data was transformed
to a JSON object since this is the format ConceptCloud requires. The newly
transformed JSON object can be seen in Figure 4.5.

{

"period": "2014",

"location": "37.4681, -120.1106",

"station_name": "OROVILLE MUNICIPAL AIRPORT, CA US",

"wind_speed_avg": "Light Breeze",

"helio_thermal_index": "Very warm",

"dryness_index": "NoData",

"cool_night_index": "Warm nights"

"avg wind speed": "Light breeze"

},

Figure 4.5: Transformed JSON Object

4.5.3 Case Study 1: Climatic Data

The goal of this case study is to evaluate the new additions made to Concept-
Cloud and determine how they facilitate and improve the data exploration and
knowledge discovery aspects of the software artefact through a case study. The
case study done on the publicly available data set serves as a demonstration
and it is not the primary goal of this evaluation to conduct any deep data
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exploration and mining, but rather demonstrate how ConceptCloud enables
and promotes the exploration of data and knowledge discovery. It should be
viewed as as an example of how a domain expert might utilise the tool to gain
a better understanding of their data set, identify any correlations therein and
determine which parts of the data can be investigated further.

This case study is presented alongside a series of screenshots of the different
viewers in ConceptCloud’s user interface. It is recommended that they be
viewed in colour as the software tool makes use of uniquely coloured tags and
clusters to indicate the different attribute types and cluster sizes in the tag
viewers, as well as pie segments and bars.

4.5.3.1 California Climate Overview

As stated in Section 4.2, the state of California is widely known and highly
regarded for its wine production [7]. It attracts the attention of viticulture
researchers from all over the world to study the atmospheric conditions in
which these grapes are grown and the characteristics possessed by the wines
grown in this climate.

California is unique in its climate and displays five major climate types de-
pending on latitude, elevation, and proximity to the coast. These are Desert,
Cool interior, Highland, Steppe and a small section of Mediterranean cli-
mate [42].

This Mediterranean climate in the state has three variations, namely a cool
summer and cool winter climate found along the coast and the western slopes
of the Sierra Nevada foothills. The second is similar to the first, also found
along the coast, but with frequent summer fog. The final type of Mediter-
ranean climate found in California has hotter, dry summers and cooler, rainy
winters [42]. This climate is found in the Central Valley. Most of the rainfall
occurs in the winter and the ocean moderates temperature extremes.

Rainfall in the state ranges from more than 4300 mm in the northwest
to only traces in the southeastern desert [47]. Further, in the higher eastern
deserts of California, summer temperatures are more moderate. Winter tem-
peratures in the Sierra Nevada can drop to near freezing [47]. In Los Angeles,
the average annual temperature is around 18 degrees Celsius and annual pre-
cipitation is roughly 350mm. San Francisco on the other hand is on average
cooler with a annual temperate average of 14 degrees Celsius, and also on
average receives more rainfall, namely 508 mm annual average [47].

4.5.3.2 Initial View

After completing the data transformation process described in Section 4.5.2,
a single JSON file was generated by the custom data processing script. This
JSON file was then loaded into ConceptCloud through the standard data con-
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figuration script and process discussed in Section 2.5.1.1, resulting in the view
shown in Figure 4.6, after loading the user interface.

Upon first viewing the data set in ConceptCloud’s user interface, the user
is able to easily determine the different attribute categories by looking at
the colour of the tags. It is also easy to determine which tags appear most
frequently in the data set by identifying the largest tags. From Figure 4.6,
we can see that the tag “Very cool nights”, which belongs to the ’Cool night
index’ tag category and is typed in blue, appears as one of the largest tags in
the cloud.

Figure 4.6: Initial tag cloud and map viewer

Another aspect of the data that is immediately obvious from looking at the
tag cloud, is that the ’Station name’ tags, shown in pink text, all appear to be
roughly the same size. This indicates that measurements from these stations
are relatively consistent in the data set, with no single station making up the
bulk of the measurements.

There are a few stations which do appear smaller that the other tags such
as “BENICIA 1.3 SW, CA US”. This can be confirmed by hovering over the
tag and observing the tag count in the tool tip pop up. Figure 4.7 shows an
example of this, and confirms that “BENICIA 1.3 SW, CA US” only appears
twice in the data set while most other stations with the mode tag size, appear
on average eighteen times.
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Figure 4.7: BENICIA 1.3 SW, CA US
Tooltip

Figure 4.8: BIG PINE FLAT, CA US
Tooltip

By looking at the initial visualisation of the map viewer, it can be seen
that the pin clusters for the various station measurements are relatively evenly
spread across the state of California. By looking at the different coloured clus-
ters, it is clear that the majority of stations appear in the centre and bottom of
the state (bigger clusters appear in purple while smaller clusters appear in red
and even smaller clusters in yellow), with the highest concentration of station
measurements appearing around the three big cities, namely San Francisco,
Los Angeles and San Diego.

In order to get a clearer view of the station distributions near the cities,
the user can zoom in on one of the clusters, breaking up the purple clusters
into red and yellow clusters, to observe a lower level breakdown of the pins. In
the case of San Francisco, Figure 4.9 shows that the concentration of stations
are higher around the highly developed areas as opposed to the rural areas.

Figure 4.9: Map Viewer view of San Francisco

4.5.3.3 Tag and Map Exploration

Since “Very cool nights” is the most frequently occurring tag in the data set,
it provides a natural starting point for further knowledge discovery. This
tag belongs to the “Cool night index” category. In order to get a high level
view of the distribution of this category, the user can generate a graph in the
graph viewer by selecting the “Cool night index” category from the first drop
down and visualising the composition of tags in this category. Figure 4.10
shows a bar graph of this tag category and the maroon bar with the tool tip
indicates that the “Very cool nights” tag occurs in the data set 6669 times.
By considering the graph as a whole, it is clear that this tag does indeed
make up the majority of the data set (The pink bar on the far left relates to
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instances where the index could not be calculated due to lack of data and can
be ignored).

Figure 4.10: Bar graph of the ’Cool night index’ tag category

Once the first graph is generated, the user can easily get a view of the
composition of other tag categories in relation to the “Cool night index” tag
category. This can be achieved by selecting a category from the second drop
down menu. This will update the focus concept and update both the tag cloud
and map viewer to the new location in the concept lattice.

The same data can be visualised in a pie chart. Figure 4.11 shows the
“drilled down” pie chart for the “Wind speed average” tag category for the
“Very cool night” tag. The largest cyan segment once again relates to the
“No Data” category and should be ignored. The actual largest segment is the
“Light Breeze” tag, shown in maroon, with 185 objects that share both the
“Very cool night” and “Light Breeze” attributes.
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Figure 4.11: Drilled down pie chart

With “Very cool night” now being the focus concept, the tag cloud is
updated to show the tags visible in Figure 4.12. The station names have been
removed for clarity. By looking at the remaining tags, it can seen that the
viticultural class of “Very cool nights” are most frequently associated with the
period of “2016” and the “Gentle Breeze” wind speeds among others.
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Figure 4.12: Tag cloud with ’Very cool night’ as the focus concept

4.5.3.4 Temporal Filter

Since the data set contains measurements taken from the year 2014 to 2016,
displayed in the “Period” tag category, the user is able to use these tags as a
temporal filter to compare how the measurements and indices differed over the
years. This can be accomplished by selecting a tag belonging to the “Period”
tag category, appearing in maroon text in the tag cloud, which will update
the focus concept and only display objects containing this attribute in the
tag cloud and map viewer. Figures 4.13 and Figure 4.14 shows a comparison
of the tag clouds having the “2014” and “2016” tags as the focus concept
respectively. As can be seen, there are no major differences with regards to
the climatic indices, displayed in blue and green, but it does appear that the
2016 grape growing period had on average, higher wind speeds than 2014. This
can be derived from the “Light Air” and “Light Breeze” tags appearing larger
in Figure 4.14 than in Figure 4.13.

Figure 4.13: Tag cloud with “2014” as
the focus concept Figure 4.14: Tag cloud with “2016” as

the focus concept
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In a similar fashion, the graph viewer can also be used with this temporal
filter to explore the data. This can be achieved by selecting the “Period” tag
category in the first drop down menu and then visualising the occurrence of
different tag categories for that period by changing the selection in the second
drop down menu.

4.5.3.5 Bicluster Functionality

In order to get a better view of the climate indicators from stations in certain
areas, the user can make use of the biclustering tool on the map viewer. The
user can generate this bicluster tag cloud by right-clicking either a single or
multiple pin clusters as well as individual pins on the map.

As mentioned in Section 3.3, a prevalent issue found in geolocation data
sets is the limiting effect of pre-imposed borders on the data, usually political
or socio-economic in nature. The biclustering functionality in Conceptcloud
circumvents these restrictions. Figure 4.15 and Figure 4.16 shows a comparison
of the tag clouds, appearing below the map viewer, generated from pin clusters
around San Francisco and Los Angeles respectively.

In order to generate the San Francisco bicluster, the map was zoomed in
on the city to a relatively low level, until the pin clusters grouped into small
enough clusters around the city borders (As discussed in Section 3.3.1, the pins
are re-clustered automatically based on the current zoom level of the map).
Right clicking all of the pin clusters in the city as well as the clusters touching
the city borders and then clicking the “Generate Bicluster” button to the left
of the map viewer resulted in the tag cloud seen in Figure 4.15
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Figure 4.15: San Francisco Bicluster

The San Francisco bicluster was generated from 1333 unique objects/pins,
and similar to the data set as a whole, “Very cool nights”, appearing in blue
text, is still the most frequently occurring tag. “2016” had the most measure-
ments compared to the other periods. “Light breeze” was the most frequently
occurring average wind speed and “Temperate” was the modal Heliothermal
Index class.
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Figure 4.16: Los Angeles Bicluster

As for the Los Angeles bicluster, it was generated in the same way as the
San Francisco bicluster, from 1974 pins appearing in and around the city. In-
terestingly, when considering the Cool night Index class, “Temperate nights’
was the most frequently occurring, as well as “Warm” for the Heliothermal
Index. This indicates a slightly warmer climate when compared to San Fran-
cisco.

4.5.4 Wine Review Data Set

The second data set used in the evaluation, which is also publicly available, was
downloaded from Kaggle 1. This web portal allows users to share large data
sets for machine learning exercises and other statistical analyses. The data set

1www.kaggle.com
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consists of wine reviews published on the Wine Enthusiast Magazine’s website
2, a popular publication among wine drinkers.

These reviews were collected during the week of 22 November 2017 and
contains 129975 wine reviews from various countries. The data describes in-
formation about the wine such as the review score, variety, winery, description
and country of origin among others. The full data object consists of the ten
fields below:

• Points: The number of points WineEnthusiast rated the wine on a scale
of 1-100 (WineEnthusiast only publishes reviews for wines that achieve
a score of 80 or higher).

• Title: The title of the wine review, which often contains the vintage of
the wine.

• Variety: The type of grapes used to make the wine (ie. Sauvignon Blanc).

• Description: A sommelier’s description of the wine’s taste, smell, look
and feel.

• Country: The wine’s country of origin.

• Province: The province or state that the wine is from.

• Region 1: The wine growing area in a province or state (ie Napa).

• Region 2: The more specific regions specified within a wine growing area
(ie Rutherford inside the Napa Valley).

• Winery: The winery that made the wine.

• Designation: The vineyard within the winery where the grapes that made
the wine are from.

• Price: The cost for a bottle of the wine in USD ($).

• Taster Name: The name of the wine reviewer.

• Taster Twitter Handle: Twitter handle for the wine reviewer.

4.5.5 Data Cleaning

An important step when processing any data, especially large amounts of un-
cleaned data from publicly available sources, is to perform a list of standardised
checks in order to ensure the data is of good quality [19]. Good quality data
is valid, accurate, complete, consistent and uniform. Data completeness, ac-
curacy, consistency and uniformity is relatively simple to check but difficult to

2www.winemag.com
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correct through the data cleaning process and must be achieved earlier in the
data capturing process. Other factors such as validity and completeness can
be assessed and rectified as required [19].

As a first step in checking data validity, the data was checked for duplicate
observations and all duplicates were removed. Further, a check was done to
ensure that all variables were of the correct type ie. numeric data is of type
number, categorical data adheres to the expected categories and so forth. Dur-
ing this check, data fields of the wrong type were corrected. The data set also
contained a number of non-ASCII characters in the “Descriptions”, “Varietals”
and “Wineries” which had to be stripped before continuing with any further
data transformation. The next step was a check for data completeness, where
again there were multiple records found with missing fields. These fields were
assigned a “NoData” value. Data accuracy and consistency and uniformity
were all at an acceptable level.

The final step in the data transformation process involves the “Description”
field in the data object which consists of multiple sentences (See Figure 4.17).
It can be used as is, but becomes much more effective in the tag cloud visual-
isation when split into smaller phrases. This can be accomplished by utilising
ConceptCloud’s key-phrase extraction functionality. Key phrase extraction is
one of many natural language processing techniques used to identify important
concepts in strings of text. Other techniques such as filtering of common stop
word, stemming, n-gramming and lemmatisation all play a role in determining
important phrases.
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{

"id": 1,

"Region1": "Napa Valley",

"Region2": "Napa",

"Designation": "Martha’s Vineyard",

"Points": 96.0,

"Price": 235.0,

"Variety": "Cabernet Sauvignon",

"Winery": "Heitz",

"Description": "This tremendous 100% varietal wine

hails from Oakville and was aged

over three years in oak. Juicy

red-cherry fruit and a compelling

hint of caramel greet the palate,

framed by elegant, fine tannins

and a subtle minty tone in the

background. Balanced and

rewarding from start to finish,

it has years ahead of it to

develop further nuance.

Enjoy 20222030."

}

Figure 4.17: Wine review JSON object with “Description” attribute

4.5.6 Natural Language Processing

When processing natural language, there are a number of challenges to consider
depending on the data in question. The first of these relate to ambiguity found
in natural language. Allen 2003, identifies five types of ambiguity.

These are:

• Simple lexical ambiguity which refers to words that are both nouns and
verbs, i.e. “duck” being either an animal or the action of bending down.

• Structural or syntactic ambiguity, which refers to cases where it is unclear
what information pertains to which subject in a sentence, i.e.“I saw a
man with a telescope”.

• Semantic ambiguity, referring to words with multiple definitions, i.e. the
word “Go” which, depending on context, has more than 10 definitions
in any dictionary.
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• Pragmatic ambiguity which refers to sentences that can be interpreted
as either a question or a request, i.e. “Can you lift that rock?”

• Referential ambiguity, which refers to cases where it is not clear who or
what the subject of the sentence is, i.e. “Jack met Sam at the station.
He was feeling ill”. In this case it is unclear who was feeling ill.

The interaction of these various ambiguities result in a complex interpreta-
tion process for the natural language processing system [5]. In order to avoid
these ambiguities, some type of processing needs to be done which normalises
and simplifies the text. This can be achieved through stemming or lemmatisa-
tion. Stemming is the process of reducing inflected, or derived words to their
stem or root form, even if the stem itself is not a valid root. Lemmatisation
on the other hand, is the process of grouping together the different inflected
forms of a word so they can be analysed as a single item [11]. Lemmatisation
as opposed to stemming, always normalises words to a valid root, namely the
dictionary form of the word. Any natural language processing system will have
to make use of these techniques in order to simplify input and remove

When considering how to identify important phrases in a piece of text, a
paper by Brown et al. [12], provides insights into assigning words to classes
according to statistical behaviour. Using statistical algorithms, the researchers
assigned words to classes based on how frequently they occur together with
other words. This results in classes that are either syntactically based group-
ings or semantically based groupings [12].

Brown et al. 1992, differentiate between two types of sticky pairs of words,
basically 2-grams, one type which occur next to each other but are non-
symmetric, and semantically sticky pairs which are symmetric and occur near
each other only [12]. An example of a normal sticky pair is “Humpty Dumpty”,
but not “Dumpty Humpty as it is non-symmetric. “Dumpty Humpty” would
be a new sticky pair, if it appeared in the text. Normal non-symmetric sticky
pairs are useful for determining important phrases or key words in text.

Semantic pairs are more useful in creating classes of grouped together words
having the same morphological stem, such as performance, performed, per-
form, performs, and performing, and others containing words that are related
semantically but have different stems, such as attorney, counsel, trial, court,
and judge [12]. This method of statistically analysing pairs of words to form
classes and to determine sticky pairs, is a very effective method for determining
the most important words and phrases in a piece of text.

4.5.7 Key-phrase Extraction

In order to split the text in the “Description” field into useful key phrases,
ConceptCloud’s key phrase extraction was used. The tool makes use of the
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Stanford CoreNLP Java library 3 for natural language processing. This process
consists of firstly splitting the text into individual sentences and removing any
punctuation, escape characters and symbols that may interfere with language
processing done later. The sentences are then further split into key-phrases or
n-grams on which tokenisation, named-entity recognition and lemmatisation
is performed. Although stemming is faster, it does not always reduce words
into proper roots, for example “having” is stemmed to “hav”. Lemmatisation
considers the part of speech of a word when performing normalisation, which
generally results in a better root [11]. Finally these phrases are added to each
data object as additional attributes which will appear as tags in the tag cloud
and can be explored the same as any other tag. The key-phrases extracted
from the wine review shown in Figure 4.17 is shown in Figure 4.18.

{"Key-phrases": "compelling hint , further nuance ,

three years , caramel , year , subtle minty tone ,

start to finish , elegant , fine tannins ,

compelling hint of caramel ,

three years in oak , background ,

oak , Juicy red-cherry fruit , palate"}

Figure 4.18: Key-phrases extracted from the “Description” attribute in Figure 4.17

4.5.8 Combining Data Sets

As discussed in Section 4.2, in order to have a diverse and complex data set
for the final evaluation, the wine review data set was combined with the cli-
matic data set described in Section 4.5.1 above. This was achieved by adding a
“County” field to both data sets. For the climatic data, the county was deter-
mined by the coordinates of the weather station. The climatic data was then
averaged for all stations within a county and the climatic indices calculated
using these new averaged measurements.

For the wine review data set, the “Region 1” and “Region 2” fields were
used to determine the county of the wine. The region attributes describe the
American Viticultural Area (AVA) of the wine in question. An AVA is a des-
ignated wine grape-growing region in the United States, providing an official
appellation for the mutual benefit of wineries and consumers. As often the
regions in which wine is produced can have a profound effect on the charac-
teristics of the wine, it is vital for both winemakers as well as customers to
know the geographic locations and its environment’s potential impact. As it
is required for a wine with an AVA label to be produced with 85% or more

3https://stanfordnlp.github.io/CoreNLP/

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. EVALUATION 87

grapes grown within the AVA, often prices and customers can be influenced
by different AVAs [13]. Figure 4.19 shows the various AVAs in California, with
the darker shades of purple indicating overlapping AVAs. By combining the
wine reviews with the climate data, only wine reviews for Californian wines
could be used, where the region values were precise enough to assign the wine
to a county. This meant that a total of 24028 wine objects were included in
the final dataset.

Figure 4.19: California AVAs

Since AVAs are defined by certain climatic factors, it would have been
ideal to join the data sets on a common AVA instead of county but the reason
for not doing so is twofold. Firstly, the size of the AVA’s vary greatly when
compared to counties, with the biggest AVA in California being the Central
Coast AVA, spanning around 100,000 acres (400 km2) and includes portions
of 6 counties [46]. Secondly, as there is overlap between AVAs as well as
multiple levels of nesting, in many cases it is difficult to assign a single AVA
to a wine. The state of California alone contains 139 AVAs as opposed to only
58 counties. Thus, the county was chosen as the joining attribute between the
two data sets. It was also chosen as the geolocation aspect, with the centre
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coordinates of the county, based on US census data 4, being used in the final
data object.

The final data object, shown in Figure 4.20, has numeric, textual and
geolocation aspects which can be fully explored and mined by ConceptCloud
in order to gain insight into the interplay between climatic factors and wine
characteristics. The combined data object now contains the following fields:

{

{

"id": 2,

"Location": "38.532574 -122.945194",

"County": "sonoma",

"CountyArea": 4578.96,

"HI2014": "Temperate warm",

"HI2015": "Temperate warm",

"HI2016": "Temperate warm",

"CI2014": "Very cool nights",

"CI2015": "Very cool nights",

"CI2016": "Very cool nights",

"DI2014": "Moderately dry",

"DI2015": "Moderately dry",

"DI2016": "Moderately dry",

"Region1": "Knights Valley",

"Region2": "Sonoma",

"Description1": "toasted hazelnut",

"Description2": "pear compote",

"Description3": "orange peel",

"Designation": "Special Selected Late Harvest",

"Points": 96.0,

"Price": 90.0,

"Variety": "Sauvignon Blanc",

"Winery": "Macauley"

}

},

Figure 4.20: Combined JSON Object

4https://census.gov
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4.5.9 Limitations of the Data Set

Unlike the previous set, the wine becomes the formal object in this data set.
This means that the geolocation of each wine had to be approximated based
on the centre coordinates of its county, which in turn had to be approximated
based on its region attributes. This is not ideal since counties are not deter-
mined by natural borders but rather by political legislature, and the climate
in any one county can differs greatly depending on the latitude, topography,
elevation, nearby bodies of water, ocean currents and prevailing winds. This
approximation also means the climatic indices have to be averaged across coun-
ties per grape growing period. This results in each wine having an attribute per
year for the three climatic indices. The county surface area is included as an
attribute to give an indication of how accurate the climate indices potentially
are.

Further, there is unfortunately no consistent way to determine the vintage
of the wines, but sometimes it is included in the title. The data set was created
in November 2017, so it can be assumed that these wines all have a vintage of
at least 2017 or earlier. The climatic indices are available for the grape growing
regions of 2014 through to 2016, which might not directly relate to the period
some of the grapes used to produce these wines were grown, but should provide
a relatively accurate indicator of the climate at the time. Further, we also lose
the temporal filtering possible in the previous data set, since the wine data
object lacks a “Vintage” attribute.

Finally, it is important to note that this data set is biased towards high
scoring wines due to the original wine review data set’s limitation on review
scores below 80. This means the scores and varietals in the data set might not
be representative of all wines produced in the state.

4.5.10 Case Study 2: Wine Review Data

It should be re-iterated that this evaluation is for demonstration purposes and
the primary goal is not to gain new insight from the data but rather determine
how well the tool facilitates data exploration and knowledge discovery. This
evaluation is again presented alongside a series of screenshots of the different
viewers in ConceptCloud’s user interface.

4.5.10.1 California Wine Overview

California is responsible for 90% of all wine produced in North America, and
there are over 1200 wineries in the state [46]. The majority of vines are grown
ranging from Mendocino County to the southwestern tip of Riverside County.
There are over 100 different grape varieties grown in California, with the four
leading varieties in descending order being [46]:

• Cabernet Sauvignon

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. EVALUATION 90

• Chardonnay

• Merlot

• Pinot noir

California’s warm climate allows many wineries to make use of very ripe
fruits in the wine making process, which promotes the fruit flavours as opposed
to the earthy and mineral tones found in European wines. This also creates
the opportunity for higher alcohol levels in the wines [46].

4.5.10.2 Initial View

After completing the data transformation processes described in Sections 4.5.5,
4.5.7 and 4.5.8, a single JSON file was generated by the custom data process-
ing script. This JSON file was then loaded into ConceptCloud through the
standard data configuration script and process discussed in Section 2.5.1.1,
resulting in the view shown in Figure 4.21, after loading the user interface.

From the initial cloud, seen in Figure 4.21, it is clear the data set contains a
wide variety of wines ranging from “Bordeaux-style Red Blend” to “Zinfandel”.
Of these, the tags for “Chardonnay”, “Cabernet Sauvignon” and “Pinot Noir”
appear to be the largest, which is in line with expectation. The “Merlot”,
although present, is not as large as the other three tags mentioned. This view
gives the user an immediate view of the varietals that appear most frequently
in the set. This might be due to the fact that California produces more of
these varietals than any other, or that these varietals are generally reviewed
higher than other varietals produced in the region.

Figure 4.21: Initial tag cloud of the wine review data set

As for the most frequently occurring counties, “Sonoma” and “Napa” ap-
pear to be the largest. The “Central Coast” region also appears very largely in
the tag cloud. This is expected as the Central Coast AVA is the largest in the
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state, spanning 400 km2 and producing 75% of the state’s wine [46]. These
tags also provides a clear indication of where the majority of the map pins
will appear. This is confirmed by looking at the initial map view, shown in
Figure 4.22, where most of the markers do indeed appear in the centre of the
state, around the Napa Valley and Central Coast regions. The purple cluster
is the largest and consists of 14282 pins.

Figure 4.22: Initial map of the wine review data set

Again, as with the first data set, utilising the graph viewer can give the
user a high level view of the composition of the data. By selecting “County”
in the first drop down menu, the user is provided with the visualisation seen
in Figure 4.23. Here it can be seen that most of the wine reviews fall within
Sonoma, the pink bar, and Napa county, the maroon bar. This view can be
drilled down further by selecting “Variety” in the second drop down list and
generating the view shown in in Figure 4.24. This allows the user to quickly
determine that most of the reviews in Sonoma are for the Pinot Noir varietal,
the charcoal segment, and for Napa it is Cabernet Sauvignon, the grey segment
.
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Figure 4.23: Bar graph view of the
“County” tag category

Figure 4.24: Drilled down bar graph
view of the “Variety” tag category in
terms of “County”

4.5.10.3 Tag and Map Exploration

With some insight gained into the composition of the data set, data exploration
can now be conducted. By clicking the maroon “Chardonnay” tag, we get the
view displayed in Figure 4.25. The map view provides us with the location
distribution of this varietal. By generating the pie chart for this varietal, drilled
down by points, we get three different perspectives on this data attribute
allowing for very low level examination of this varietal in the data set. The
pie chart can also be drilled down by any other tag category as desired.
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Figure 4.25: View of the“Chardonnay” tag

From the tag cloud, it can be seen that the phrases “Buttered toast” and
“Buttered popcorn” are associated with this wine, among others. In terms
of climate, it seems the “Very Cool Night” climate class for the Cool night
Index and “Warm” for the Heliothermal Index are most commonly associated
with this varietal. This holds true for all periods, from 2014 to 2016 and could
indicate that highly reviewed Chardonnays are grown in areas with overall
warm climates but having cool nights over the grape growing period. The
“Russian River Valley” region seems to be the most popular region for growing
highly rated Chardonnays. The map viewer shows a large cluster of pins north
of San Francisco, which is where the Russian River Valley AVA is located.
The graph viewer in Figure 4.26 shows that Chardonnays in the data set most
frequently fall between the range of 82 to 94 points.
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Figure 4.26: Pie chart of the“Chardonnay” varietal tag, drilled down by the
“Points” category

Investigating another varietal, namely Cabernet Sauvignon, we are pre-
sented with the tag cloud shown in Figure 4.27, and it can be seen that the
key-phrases “blackberry” and “blackcurrants”, shown in salmon coloured text,
are frequently associated with highly rated wines of this varietal. This gives
us an idea of the characteristics a highly reviewed Cabernet Sauvignon might
possess. The “Napa valley”, and “Alexander Valley” region tags are the most
prominent for this variety, and this is again supported by the map view show-
ing large pin clusters to the north of San Francisco. This is also supported
by what was seen in the graph viewer in Figure 4.24. As with Chardonnay,
“Very cool night” was again the most frequently occurring Cool night Index
class, but unlike Chardonnay, the “Temperate Warm” class was the modal
Heliothermal Index.
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Figure 4.27: View of the “Cabernet Sauvignon” tag

Further, using the tag cloud we are able to determine which common at-
tributes are possessed by the most expensive Cabernet Sauvignons, as well as
what review scores they achieved. By having “Cabernet Sauvignon” as our
focus concept, we can then click the “350” tag which is the highest price tag
for this varietal. The tag cloud and map viewer is then updated to display
the view seen in Figure 4.28. There are 4 wine reviews that share these at-
tributes. Of these, they all share a very high rating of 94 points and are grown
in Napa county. Upon further investigation, it is found that these wines are
all produced by Lokoya winery, an exclusive winery in Napa valley, renowned
for their Cabernet Sauvignons 5.

5https://www.lokoya.com/the-cellar
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Figure 4.28: View of the most expensive Cabernet Sauvignons

4.5.10.4 Highest Reviewed Wines

By clicking the “99” tag belonging to the points tag category, we are able
to get a view of the common attributes shared between exceptionally highly
rated wines, shown in Figure 4.29. Doing so, shows that there is a correla-
tion between high ratings and red varietals such as Cabernet Blend, Cabernet
Sauvignon and Pinot Noir, appearing as gold text in the tag cloud. There also
seems to be a correlation between these red wines and key phrases involving
fruity flavours such as “raspberry” and “red currant”. “Acidity” and “strong
tannins” also appear among the phrases for these wines, which is in line with
expectations around Californian wines. Further, the price of these wines are
relatively high, ranging from 75 to 290 USD. Using the graph viewer it is pos-
sible to see that roughly only 10% of wines are more expensive than 75 USD,
and only 2 are 290 USD in price.

Figure 4.29: Highest rated wines
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4.5.10.5 Biclusters Exploration

Similarly to what was done during the evaluation on the climate data set, pin
clusters in the map viewer can be used to generate new tag cloud visualisations.
These in turn can be explored as per normal. To get a view of the wines
produced in the southern parts of the state, a bicluster of 104 objects was
used to generate the tag cloud shown in Figure 4.30.

Figure 4.30: Tag Cloud generated from the bottom most pin cluster

The tag cloud for this bilcuster contains mostly red varietals such as Caber-
net Sauvignon and Merlot. The majority of review scores seem to be in the
low to mid 80s and the climatic indicators point to a definite warmer climate
as opposed to the ones found towards Napa and Sonoma county.

4.5.10.6 Individual Map Pins

Finally, to see all of the attributes associated with a particular wine review, a
single map pin can be clicked. This provides the user with the view shown in
Figure 4.31, showing all of the wine review objects’ formal attributes. In this
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case it is a Rose grown in the Dragonsleaf Vineyard in Sonoma county. The
wine has notes of tropical guava and peach, and a score of 89 points, costing
13 USD.

Figure 4.31: Tag cloud after a map pin was clicked

4.6 Evaluation Learnings

4.6.1 Viewer Extensions

As was demonstrated by the evaluation, much can be learned from the data sets
just from the initial visualisations shown in the tag cloud and map viewer. Hav-
ing multiple visualisations of the same data also assists the user in analysing
the data, providing them insight into the composition of the data. From there,
the data exploration process can be initiated from any of the three viewers,
with the tag cloud still being the primary visualisation used for navigating
the data. The graph viewer is very effective for the early stages of the data
exploration process, since it is able to instantly give the user an idea of the
concentration of tags in the data set, especially the volume of tags with regards
to another tag.

As for the map viewer, it proved to be a very effective visualisation of the
geolocation data as opposed to having the lat and long coordinates appear
as text in the tag cloud only. The map viewer together with the bicluster
functionality, makes the map viewer not just a useful data visualisation, but
also supports powerful data exploration from the map.

In terms of data analysis and sensemaking, the visualisations are clear and
easily readable. The viewers contain all the information a user requires to
interpret the visualisation and provides methods of exploring the data further,
while not incurring unnecessary cognitive load on the user.

As mentioned in Section 2.3.5, the visualisation design process is an it-
erative one of refinement through evaluation and feedback. This is especially
true of dynamic and reactive visualisations as the ones described in this thesis.
As such, further changes and improvements can be made to these extensions
through further evaluations and applying the tool to other data sets.
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4.6.2 Data Sets

During the evaluation, it once again become obvious that purely numeric data
does not result in an effective visualisation in ConceptCloud, but as demon-
strated, this problem can be bypassed by performing binning or categorising
the data.

Since ConceptCloud is a data exploration tool, the type and quality of
data used with the tool directly impacts how effective the data analysis and
exploration process is going to be. Effective knowledge discovery can not
be conducted on poor quality data. Thus it is important to make use of high
quality data as far as possible and be aware of any biases within the data, such
as the ones described in Section 4.5.9. As was the case with the example data
sets used, some data cleaning and transformation processes might be required
before the data is loaded into ConceptCloud. When analysing the data, it
is beneficial to formulate questions about the data to investigate. Domain
experts will know which correlations to look out for and know which aspects
of the data is worth exploring further. This gives direction and purpose to the
exploratory search process.

The evaluation also showed that ConceptCloud is capable of processing
very large data sets. The server architecture processes the data effectively and
efficiently, and the tag cloud displayed the top 5000 tags without issue. The
map viewer makes use of pin clustering to avoid the map from becoming over-
crowded and provides a clear visualisation even when all pins are displayed on
the map. The graph viewer also caters for very large data sets by limiting the
number of pie segments or bars. This ensures that the visualisation remains
clear and readable by the user. Some detail is sacrificed for less frequently oc-
curring tags, but the benefits of maintaining a readable visualisation outweighs
this negative.

4.6.3 Conclusion

In conclusion, ConceptCloud is a data exploration and knowledge discovery
tool that works best on data sets that contain textual information as opposed
to numeric. This evaluation proved that ConceptCloud is effective in providing
a user with a low level and multi faceted view of the data, and allows for
exploratory search through any of the three viewer windows. This functionality
is useful when the user is not familiar with the data set, and as a result,
ConceptCloud is most useful during the initial stages of data exploration where
the user is still becoming familiar with the details and composition of the data.
The tool is very effective in identifying correlations in the data and other
aspects that the user would like to explore further, perhaps using a different
method of analysis.
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4.7 Chapter Summary

Chapter 4 provided an evaluation on the functionality of the newly imple-
mented data visualisations made to ConceptCloud’s existing architecture. This
was achieved by using two data sets that fall within the viticulture domain.
The first data set was obtained from the National Centers for Environmental
Information’s Portal and is a numeric data set that consisted of different me-
teorological measurements. The second data set consisted of wine reviews that
were posted on the Wine Enthusiast Magazine’s website, a popular and highly
regarded publication among wine enthusiasts. The data sets both contained
data pertaining to the wine regions of California, United States of America,
thus making it the area of focus for the evaluation. Both data sets were used
to demonstrate ConceptCloud’s ability in enabling and promoting data explo-
ration and knowledge discovery. From the evaluation, it was found that having
multiple visualisations of the same data assisted the user in analysing the data
and provided them with insight into the composition of the data. The graph
viewer provided the user with an understanding of the concentration of tags
in the data set, especially the volume of tags with regards to another tag.
Secondly, the map viewer was very effective for displaying geolocation data
and together with the bicluster functionality, provided support for powerful
data exploration. Overall, the evaluation reinforced ConceptCloud’s ability
in effectively providing a user with a low level and multi faceted view of the
data.
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Conclusion

5.1 Thesis Summary

This thesis aimed to improve and extend ConceptCloud by achieving the fol-
lowing:

• Expanding on the visualisation and exploration capabilities of the tool
when handling large semi-structured data sets.

• Providing the user with additional data visualisations and exploration
methods.

• Extending the tool’s functionality to other applications and devices.

The above objectives were achieved through the development of specialised
map and graph viewer windows which were integrated seamlessly with the
existing tag cloud visualisation. Further, the map and graph viewers provided
additional visualisations of the data to assist the user with data exploration
and knowledge discovery.

Furthermore, a mobile application was created that mimicked the function-
ality found in the browser-based version of the tool, albeit with an updated
user interface for mobile touch screens and reduced screen sizes. In Concept-
Cloud, this was accomplished through the implementation of a REST API
made possible by its modern web-based architecture.

ConceptCloud incorporated the aforementioned extensions into its exist-
ing architecture. The benefits of data analysis and knowledge discovery were
maximised for the user by following a user-centric approach.

The following subsections provided a summary of the major topics covered
in this thesis.

101
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5.1.1 Background

Chapter 2 provided the reader with a theoretical background of Formal Con-
cept Analysis (FCA). This section provided the reader with a brief overview
of FCA fundamentals and examples of the formal context and concept lat-
tice. This was followed by background theory on data visualisation, analysis,
and sensemaking before several formal concept analysis data visualisation and
exploration tools were introduced and explored. The initial version of Con-
ceptCloud’s architecture was introduced and its functionality was discussed.

5.1.2 Map Visualisation

The first extension made to ConceptCloud was a fully integrated map-based
viewer window that allowed for the visualisation and exploration of semi-
structured data with some geolocation aspects. Chapter 3 discussed the im-
plementation of the Google Maps API and integration with the existing tag
cloud functionality. Furthermore, Chapter 3 discussed the development of the
biclustering functionality that allows the user to generate a new tag cloud and
lattice, based on any cluster or individual map pins on the map.

5.1.3 Graph Visualisation

The second extension made to ConceptCloud, an integrated graph viewer,
was implemented to assist the user in gaining a better understanding of the
composition of their data set, especially in terms of specific tags. Furthermore,
the graph viewer provided additional supporting visualisations of the data.

5.1.4 Mobile Visualisation

Last, a discussion of the extensions made to ConceptCloud’s server architecture
with a REST API and the development of a mobile application that mimics the
browser user interface, with an updated tag cloud visualisation, was provided.

5.1.5 Evaluation

Chapter 4 evaluated the extensions made to ConceptCloud using two large
semi-structured data sets, namely a climate data set and a wine review data
set. The two data sets were explored and interrogated using a combination of
all three data visualisations. The map and graph viewer provided additional
visualisations of the data present in the tag cloud and supported the explo-
rative search process. Furthermore, the map and graph viewer provided the
user with methods for navigating the concept lattice beyond the tag cloud.
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5.2 Future Work

When considering future work involving ConceptCloud, firstly additional vi-
sualisations for the user interface can be developed for other aspects of semi-
structured data, e.g. an image viewer for photo data. Secondly, even though
ConceptCloud is a modern web application, it can benefit from being ported
to a newer version of the Play! framework or a different modern framework
entirely such as Microsoft’s .NET core framework. Together with this, oppor-
tunities for refactoring and optimisation can be explored to improve its ability
to process very large data sets even further.

As for ConceptCloud Mobile, there is potential for expanding the func-
tionality offered by the application. One such feature could involve utilising
the user’s current location with the geolocation aspect of the data to change
how data is displayed to the user. The size of the tags displayed to the user
can vary depending on the object’s proximity to the user’s current location.
Moreover, further integration with the Google Maps API can allow the map
viewer to calculate and indicate the fastest route to various objects in the data
set.

Furthermore, it is recommended that further research be conducted on
extending and refining the functionality of the map and graph viewer by in-
tegrating further with the Google Maps API beyond pins and pin clustering.
The API allows for a range of visualisations that include shapefiles, legends,
and heat maps. For the graph viewer, support for more advanced 3D graphs
as well as improved lattice navigation between the graph and tag cloud can
be added. Furthermore, adding the graph viewer functionality to the bicluster
lattice could assist users with more advanced and in-depth data exploration.

5.3 Limitations of Visualisations in

ConceptCloud

When processing large data sets, it is important to consider performance lim-
itations imposed by third-party libraries that could negatively affect the per-
formance of ConceptCloud as a whole. Problems may arise if the library does
not allow extensive modification or low-level manipulation to resolve the issue.
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Figure 5.1: Map pins being added to the map after the focus concept is reset

An example of this involves the Google Maps API utilised in the map
viewer, which adds marker objects to the map individually before they are
clustered. Figure 5.1 shows this process when the focus concept is reset to the
top of the lattice in ConceptCloud. Generally, this is not a problem, but during
initial experimentation with large data sets, the process was highly memory
intensive and resulted in an unresponsive web browser when exceeding 250 000
markers. Due to the highly granular developer functionality provided by this
library, this limitation was resolved through a combination of front-end and
back-end optimisations described in Chapter 3.

5.4 Conclusion

The primary goals of this thesis were to extend the functionality and visuali-
sation capabilities of Conceptcloud and ensure these extensions adhered to the
following requirements:

• The extension must be clear and readable for a user with moderate levels
of data literacy.

• The visualisations must remain an accurate representation of the data
where an opportunity for misinterpretation of the data by the user is
minimised.

• The new extension must aid in data analysis by providing cognitive sup-
port and reducing the cognitive load experienced by the user as far as
possible.
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• The extension must aid in data exploration and knowledge discovery by
providing different visualisations of the same data.

• The extension must allow the new visualisation as well as the Tag Cloud
to drive exploration. Thus a pivotal function of this tool is to ensure
the data exploration works in a bidirectional manner. In other words,
to update the new visualisation when changes are made in one of the
visualisations and vice versa.

• The extension must ensure that the visualisation and exploration tool be
highly scalable to process large data sets since the rate at which such data
is being generated is ever increasing.

5.4.1 Visualisation Extension

Despite the capability of handling visualisation for general data sets, it is
vital to acknowledge the drawbacks of the default tag-cloud visualisation tool
that ConceptCloud provides, specifically when working with specialised data.
Support for specialised viewers was added to ConceptCloud to account for
these shortcomings. Thereafter the graph viewer was implemented together
with the REST API and mobile application.

5.4.2 Architecture and Mobile Extension

Although the mobile application did not form part of the evaluation, it served
as an example of what is possible through the REST API. There is still much
to explore regarding extension of the the REST API and more advanced mobile
applications with powerful lattice processing capabilities.

5.4.3 Evaluation

The newly developed viewers were successfully utilised to conduct case studies
on the two data sets described in Chapter 4. The evaluation showcased the
flexibility and scalability of ConceptCloud, and the novel ways data can be
grouped and explored, especially through the bicluster in the map viewer.

5.4.4 Comparison with existing Tools

As discussed in Chapter 2, none of the other FCA data visualisation tools pro-
vide specialised visualisations for specific data types. This now makes Concept-
Cloud a novel and unique tool for this purpose. Further, due to its approach
to lattice generation and visualisation, ConceptCloud remains the top choice
for visualising very large and diverse data sets.
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5.4.5 Final Conclusions

This thesis achieved the goals set out for it and lays the foundations for fur-
ther research in data visualisation. The extensions made to ConceptCloud
serve as a starting point for further, more advanced extensions, especially in
the field of mobile applications. The methods of efficiently visualising large
data sets dynamically could potentially be adapted upon to be used for future
work involving visualisations. Ultimately, ConceptCloud is now more flexi-
ble and feature rich in terms of its data exploration and knowledge discovery
functionality than its previous iteration.
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