
Geospatial Capacity Allocation Framework of Wind and Solar 
Renewable Generation for Optimal Grid Support 

by 

Chantelle Y. van Staden 

Dissertation presented for the degree of Doctor of Philosophy 
in the Faculty of Engineering at Stellenbosch University. 

Supervisor: Professor Hendrik J. Vermeulen 

April 2022



ii 

Declaration 

By submitting this dissertation electronically, I declare that the entirety of the work contained therein is 
my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), 
that reproduction and publication thereof by Stellenbosch University will not infringe any third party 
rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. 

Date:   April 2022, 

Copyright © 2022 Stellenbosch University 

All rights reserved. 

Stellenbosch University https://scholar.sun.ac.za



Abstract 
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Department of Electrical and Electronic Engineering, 
University of Stellenbosch, 

Private Bag X1, Matieland 7602, South Africa. 

Presented for the degree of Doctor of Philosophy in the Faculty of 
Engineering at Stellenbosch University. 

April 2022 

South Africa has displayed a unique energy supply profile over recent years, where the ability to 
consistently meet the energy demand has been constrained by physical limitations of the current energy 
supply infrastructure. The inadequate supply infrastructure results in countrywide loadshedding events, 
where total energy supply within high demand periods cannot be met. Low-grade coal, poorly maintained 
power plants and the impending decommissioning of existing thermal plants adds to the country’s energy 
supply deficit. Inadequate supply in high demand periods typically requires response from expensive on-
demand dispatch units, which are often non-renewable resources. This also equates to a decrease in grid 
supply stability. It is expected that optimised geospatial capacity allocation of new build wind and solar 
plants can assist in addressing the generation capacity constraints in the medium to longer term future. 
The framework proposed in this study favours a cascaded optimisation strategy, whereby the residual 
load profile is optimised statistically to reduce the requirements of ancillary services to complement 
baseload generation.  

In support of a reliable future energy supply scenario with high penetration of renewable energy, the 
optimisation framework proposed in this work represents a probabilistic risk-based approach that seeks 
to minimise the number of events where high residual load values require ancillary service interventions 
to maintain power balance. In this approach, renewable energy resource features are categorised in terms 
of the statistical properties of the spatiotemporal wind and solar power profiles for a given set of daily 
and seasonal Time-of-Use periods. In this context, it is recognised that the resource characteristics and 
grid impact of wind and solar generation profiles can be interpreted with reference to the daily and 
seasonal cycles exhibited by the demand profiles, wherein some Time-of-Use periods are more important 
than others. Apart from the benefit of assigning renewable energy capacities to spatial regions rather than 
specific coordinates, clustering reduces the dimensions of input data sets dramatically. This reduces the 
dimensionality of the multi-variable optimisation search space, which translates to reduced risk of local 
minima and reduced computational cost. 

The proposed framework has been implemented for a number of baseline case studies and optimisation 
case studies. It is concluded that the framework is highly flexible in the sense that the formulation of the 
minimum and maximum allocation constraints allow application for real-world scenarios where capacity 
allocation constraints apply on a regional level.  

Overall, the optimisation framework provides a robust method for the geospatial capacity allocation of 
wind and solar resources. The framework employs a robust way of handling constraint scenarios when 
considering multiple highly granular resource clusters. 
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Uittreksel 

Georuimtelike kapasiteitstoewysingsraamwerk van wind en sonkrag opwekking 
vir optimale netwerkondersteuning  

(“Geospatial Capacity Allocation Framework of Wind and Solar Renewable Generation for Optimal 
Grid Support”) 

C. Y. van Staden

Departement Eletriese en Elektroniese Ingenieurswese, 
Universiteit van Stellenbosch, 

Privaatsak X1, Matieland 7602, Suid Afrika. 

Proefskrif: Proefskrif ingelewer vir die graad Doktor in Filosofie in die Fakulteit 
Ingenieurswese aan die Universiteit Stellenbosch 

April 2022 

Suid-Afrika het die afgelope jare 'n unieke energie-voorsienings-profiel getoon, waar die vermoë om 
konsekwent aan die energievraag te voldoen deur fisiese beperkings van die huidige energie-
voorsienings-infrastruktuur. Die onvoldoende voorsienings-infrastruktuur lei tot landswye beurtkrag-
gebeurtenisse, waar die totale energie voorraad tydens hoë aanvraag periodes nie nagekom kan word nie. 
Laegraadse steenkool, swak onderhoud op kragsentrales en die naderende afskakel van bestaande 
termiese aanlegte dra by tot die land se tekort aan energie-voorsiening. ŉ Onvoldoende aanbod tydens 
hoë-aanvraag-periodes vereis tipies ŉ onmiddellike reaksie vanaf die kragopwekker, waar duurder 
intydse elektrisiteits-eenhede opgewek moet word. Hierdie eenhede is gewoonlik afkomstig vanaf nie-
hernubare hulpbronne en plaas addisionele druk op krag-stelsel-stabiliteit. 

Daar word verwag dat die beperkings op opwekkings-kapasiteit, in die medium- tot langtermyn toekoms, 
aangespreek kan word deur die geoptimaliseerde georuimtelike-kapasiteits-toewysing van nuwe wind- 
en sonkrag-aanlegte. Die raamwerk wat in hierdie studie voorgestel word, bevoordeel 'n kaskade-
optimeringstrategie, waardeur die oorblywende-lasprofiel statisties geoptimaliseer word om die vereistes 
van bykomende dienste te verminder om basislading-opwekking aan te vul. 

Ter ondersteuning van 'n betroubare toekomstige energie-voorsienings-scenario met 'n hoë penetrasie van 
hernubare energie, verteenwoordig die voorgestelde optimaliserings-raamwerk 'n risiko-gebaseerde 
waarskynlikheids-benadering wat poog om die aantal gebeurtenisse te minimaliseer waar hoë 
oorblywende laswaardes aanvullende diens-ingryping vereis om die kragbalans te handhaaf. In hierdie 
benadering word hernubare-energie-hulpbron-kenmerke gekategoriseer. Dit word gedoen volgens die 
statistiese eienskappe van die tydruimtelike wind- en sonkragprofiele, vir 'n gegewe stel daaglikse en 
seisoenale tyd-van-gebruik periodes. In hierdie konteks word erken dat die hulpbron-kenmerke van wind- 
en sonkragkragstelsels se opwekkings-profiele geïnterpreteer kan word met verwysing na die daaglikse 
en seisoenale siklusse, soos vertoon deur die aanvraag-profiel. In hierdie aanvraag-profiel is daar ook 
sommige tyd-van-gebruik periodes wat belangriker is as ander. Afgesien van die voordeel om hernubare-
energie-vermoëns aan ruimtelike streke toe te ken, eerder as spesifieke koördinate, verminder die 
groepering van die insetdatastel-afmetings dramaties. Dit verminder die dimensionaliteit van die multi-
veranderlike optimaliserings-soekruimte, wat neerkom op ŉ verminderde risiko van plaaslike minima en 
berekenings-koste. 

Die voorgestelde raamwerk is geïmplementeer vir 'n aantal basislyn-scenarios en optimaliserings-
gevallestudies. Daar word tot die gevolgtrekking gekom dat die raamwerk hoogs buigsaam is rakende die 
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formulering van die minimum en maksimum toekennings-beperkings-toepassing, soos toegelaat vir 
werklike scenarios waar kapasiteits-toekennings-beperkings op 'n streeksvlak geld. 

In die algemeen bied die optimaliseringsraamwerk 'n robuuste metode vir die georuimtelike-kapasiteits-
toewysing van wind- en sonkragbronne. Die raamwerk gebruik 'n robuuste manier om beperkingscenarios 
te hanteer wanneer verskeie hoogs korrelvormige hulpbrongroeperings oorweeg word.  
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Chapter 1 

Introduction 

1.1 Research overview 
South Africa is currently in the early stages of transitioning from non-renewable fossil fuels to 
Renewable Energy (RE) resources. During this transition period, grid penetration of utility scale wind 
and solar Photovoltaic (PV) resources are expected to increase substantially in the medium- and long-
term future [1]. This places the South African energy market in a unique position, where optimal RE 
siting and grid integration planning can be methodically implemented and executed using best-practice 
approaches from countries with high RE penetration levels as a departure point [2, 3, 4].   

It is broadly acknowledged that wind and solar resources are susceptible to a high degree of variability 
and sudden loss of generation capacity when unfavourable weather conditions are experienced [5, 6]. In 
instances where these unfavourable weather conditions affect a large area of highly localised RE 
resources, the System Operator may experience significant power-imbalance on the national energy 
supply gird. This is especially apparent in scenarios of high RE grid penetration percentages. 
Furthermore, the variability associated with RE generation gives rise to operational challenges in terms 
of reserve margins, scheduling and dispatch [7, 8].  

Unlike the United States of America and Europe, which have large interconnected electricity grid 
systems, the South African electricity supply grid operates mainly as an isolated unit. The neighbouring 
countries of South Africa have limited generation capacity to support the South African electricity grid, 
thus, the energy trading market between the regional countries requires extensive further development. 
This emphasises the importance of medium- and long- term grid integration planning in the local context.  

This research study focuses on the development, implementation and performance evaluation of a 
strategy for medium- to long-term optimisation of the capacity allocation mix and geographic spread of 
utility-scale wind and PV generation sources in the context of grid power balance. In this research study, 
the use of clustering techniques for the partitioning of temporospatial wind and PV generation profiles 
is introduced to aid in addressing plant siting issues concerning RE fleet management. An in-depth grid 
integration plan is also investigated through planning of the RE wind and solar resource fleet based on a 
probabilistic risk-reduced objective. 

1.2 Research background and motivation 
This section provides a detailed background of the current energy climate in South Africa. The country’s 
current and future renewable energy policy and planning is also briefly discussed.  

1.2.1 South Africa’s renewable energy plan 

The public nominal energy capacity for South Africa at the end of December 2020 was 51 600 MW, of 
which the nominal wind capacity was 2.5 GW, the solar nominal capacity was 2 GW and the combined 
nominal capacity of hydro, pumped storage and Concentrated Solar Power (CSP) summated to 3.8 GW 
[9]. This results in a RE grid integration ratio of 10.5 % RE capacity to 89.5 % thermal capacity, which 
still represents a relatively low penetration level of RE resources. In contrast, Denmark has a 32 % 
penetration of RE generation capacity, with an aim to increase the RE share to 43.6 % by 2021 [10]. 
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Similarly, California has a 33 % RE generation capacity, with an ambitious goal of increasing RE 
generation to 100 % by 2045 [11, 12]. 

The South African National Development Plan (NDP) promotes future support and investment into 
South Africa’s economic infrastructure. Since energy infrastructure is a vital component for a country’s 
economic and social growth, the national grid network must be resilient enough to meet the anticipated 
future energy requirements of the industrial, commercial and private sectors. The NDP foresees that 
South Africa requires an additional 29 000 MW of generation capacity by 2030, of which 20 000 MW 
is to be supplied by renewable energy resources [13]. This capacity should be widely accessible, 
financially affordable and environmentally sustainable. The NDP formulated an Integrated Resource 
Plan (IRP), which was finalised and implemented in 2011, to support South Africa’s future energy 
developments. However, it is recognised that the IRP requires continuous foresight and adaptability as 
the plan unfolds from the year 2010 to 2030. Many of the original assumptions have changed since the 
initial IRP was formulated. The demand projection did not increase as forecasted, and the performance 
of existing conventional thermal plants underachieved the availability factor initially assumed. The actual 
plant availability reduced substantially from the assumed 86 % to 71 % in the 2015/16 financial year, 
which recovered slightly to 77.3 % in the 2016/17 financial year [13]. This decrease in availability was 
the main contributing factor to the capacity limitations experienced in years 2011 until 2015. In the 
medium-term, it is critical that plant performance is enhanced and maintained to ensure supply security, 
since the Eskom fleet represents the main source of South Africa’s generation supply capacity.  

A revised and extended version of the original IRP was proposed in 2018, in which the planning period 
has been extended to 2050 [13]. The 2018 version specifies that 39 730 MW of new generation capacity 
must be developed, of which 18 000 MW has already been committed under the Renewable Energy 
Independent Power Producer Procurement (REIPPP) programme and the Eskom new build programme. 

The 2019 IRP [14] projects a scenario where the generation capacity is expected to grow from 37 149 
MW in 2018 to 77 834 MW by 2030. The energy mix for 2030 is expected to include 17 742 MW of 
wind energy and 8 288 MW of solar energy, i.e., 22.5 % and 10.5 %, respectively, as shown in Figure 
1.1. The IRP projects an average annual demand growth of between 1.33 % and 2 % from a base of the 
order of 240 TWh from 2018 to 2030.  

 

Figure 1.1: Generation fleet projected for the year 2030 [14]. 

The Department of Mineral Resources and Energy’s Independent Power Producers (IPP) programme 
was established at the end of 2010 and is designed to support and facilitate investment from the private 
sector into RE generation through a competitive tender process. The introduction of privately owned, 
grid integrated RE plants is aimed at reducing governmental funding burdens, while introducing new 
generation technology, thereby meeting future energy demand with a green-energy approach. This 
process requires the bid winners to adhere to several stringent requirements. The bid submissions are 
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limited to onshore RE sources, namely, PV, wind, CSP, small hydro, biogas, biomass and landfill gas 
projects. 

The South African energy sector is influenced by two acts, namely, the National Energy Act of 2008 
(No. 34 of 2008) and the Electricity Regulation Act (ERA) of 2006 (No. 4 of 2006). Under the ERA, the 
Department of Energy (DoE) gazetted the electricity regulations on new generation capacity. These 
regulations set the guidelines and rules that are applicable when undertaking an IPP bid programme. The 
act also creates a fair, non-discriminatory environment between energy buyers and IPPs. The REIPPP 
allows the private sector to submit bids for renewable power plants and, if the tender is won, a 20-year 
power purchasing agreement is secured. The bids to produce privately owned RE plants are evaluated 
on a 70:30 ratio basis, where 70 % of the total bid value is allocated to the price per kWh of the energy 
produced and 30 % to the economic development criteria. This non-price criteria includes local job 
creation and community development as well as domestic industrialisation and black economic 
empowerment [15]. 

The first bid window, of seven planned bid windows, was initiated in August 2011, where 28 bidders of 
a total 53 were selected, and the round closed in November 2012. After the bid agreements were finalised 
in November 2012, the first projects were successfully online by November 2013. The REIPPP signed 
another 27 power purchase agreements in June 2018, which entails the addition of 19 400 MWs of RE 
(14.4 GW of wind and 6.0 GW of PV) by 2030 [16]. To date, 6 422 MW of electricity, from 112 IPP 
projects in seven bid rounds, has been procured. 5 078 MW of electricity, from 79 IPP projects, has been 
successfully connected to the national grid and is currently operational [17]. According to the latest IPP 
quarterly report, 37 696 MW of new and committed capacity is to be added between 2019 and 2030 [17]. 
Table 1.1 gives the total allocated capacity per bid window for each technology type. Figure 1.2 depicts 
the geographic locations of the completed plants for each bid window. Figure 1.3  depicts the locations 
of the REIPPP programmes wind and PV projects up to Bid Window 4B.  

The siting considerations pertaining to the wind and PV generation fleet are typically addressed by the 
IPPs and the utility during the scope and design stages of individual plants. These considerations are 
predominantly determined by the costs associated with the various technologies, regional economic 
development objectives, availability and cost of land, existing transport infrastructure, grid connectivity, 
transmissions grid capacities, the location of load centres, etc.  

Currently, the South African energy mix is failing to meet the supply and demand scenarios, equating to 
a lag in technological energy advancements in energy efficiency and power system reliably. Neglecting 
to adhere to the two-yearly revision called for by the IRP, the DoE has frustrated the energy sector in the 
planning and adaption of the future energy vision as the country expands. However, with the updated 
IRP 2019, a revised roadmap for generation capacity and RE integration in South Africa, marks a 
promising step in the planning and implementation process.  

The latest version update of the South African IRP was gazetted in October 2019, where the countries 
energy integration planning and forecast has been adjusted and updated [14]. The IRP proposes planning 
updates to the electricity generation fleet, to be implemented between 2020 and 2030. The IRP addresses 
how the countries energy demand should be met in terms of generation technology, capacity, cost and 
projected implementation time. The IRP research is grounded on a Multi-Criteria Decision-Making 
Framework (MCDF), which modelled various outcomes based on multiple electricity system scenarios. 
The scenarios include factors such carbon dioxide emission limits and the associated carbon taxes, 
generating build delays, regional development of diverse electricity import options as well as improved 
demand side management. Within the various scenarios, the MCDF includes parameters such as the cost 
of energy, the actual energy emissions, natural resource consumption, etc. The resulting plan represents 
a balance between cost, risk and key constraints.  
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Table 1.2 displays the projected energy plan for South Africa up until 2030. By 2030 the planned 
renewable energy penetration percentage from wind and solar resources alone is 33.50 %. This is a 
significant penetration increase, which requires further intricate reliability and logistical planning. 

 
Figure 1.2: Locations of the allocated renewable energy plants for each bid window. 
 

 
Figure 1.3: REIPPPP wind and PV projects. 
 
Table 1.1: The REIPPPP capacity allocation by technology and bid window [18]. 

 Wind PV Solar CSP Landfill 
Gas 

Biomass Small 
Hydro 

BW 1 Capacity MW 649 627 150    
No. of projects 8 18 2    

BW 2 Capacity MW 559 417 50   14 

No. of projects 7 9 1   2 
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Table 1.2: The updated long-term Integrated Resource Plan 2019 [14]. 

 Coal Nuclear Hydro Storage PV Wind CSP Gas & 
Diesel 

Other 

Current base 37149   1860 2100 2912 1474 1980 300 3830 499 
2019 2155 -2373     244 300  

 
2020 1433 -557    114 300   

2021 1433 -1403    300 818   

2022 711 -844   513 400 1000 1600   

2023 750 -555    1000 1600   500 

2024   1860    1600  1000 500 

2025      1000 1600   500 

2026  -1219     1600   500 

2027 750 -847     1600  2000 500 

2028  -475    1000 1600   500 

2029  -1694    1000 1600   500 

2030  -1050    1000 1600   500 

TIC 33364 1860 4600 5000 8288 17742 600 6380  

TIC (%) 43 2.36 5.84 6.35 10.52 22.53 0.76 8.10  

AEC (% of 
MWh)  

58.80 4.50 8.40 1.2* 6.30 17.80 0.60 1.30  

  Installed Capacity 
  Committed/Already Contracted Capacity 
  Capacity Decommissioned 
  New Additional Capacity 
  Extension of Koeberg Plant Design Life 

  
Allocation to the extent of the short-term capacity and energy gap. Includes Distributed 
Generation Capacity for own use 

 TIC Total Installed Capacity 
AEC Annual Energy Contribution 

BW 3 Capacity MW 787 435 200 18 17  

No. of projects 7 6 2 1 1  

BW 3.5 Capacity MW   200    

No. of projects   2    

BW 4 Capacity MW 676 415   25 5 

No. of projects 5 6   1 1 

BW 4B Capacity MW 686 398     

No. of projects 7 6     

Total Capacity MW 3357 2292 600 18 42 19 
No. of projects 34 45 7 1 2 3 
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1.2.2 The South African Renewable Energy Development Zones 

In a recent development, a Strategic Environmental Assessment (SEA) study carried out by the Council 
for Scientific and Industrial Research (CSIR) of South Africa identified eleven Renewable Energy 
Development Zones (REDZ), shown in Figure 1.4. The REDZs were identified for the efficient 
deployment of future utility-scale wind and PV plants [1]. Initially, 8 REDZs were gazetted on the 16th 
of February 2018 and as of the 26th of February 2021, the Department of Environment, Forestry and 
Fisheries has gazetted three additional geographic areas for the planning of large-scale wind and PV 
facilities [19].  

These geographic regions are dispersed throughout South Africa and were determined with reference to 
various factors, including RE yield potential, restricted heritage sites, socioeconomic circumstances, 
agriculture terrain, landscape and biodiversity. The proposed zones require a less extensive 
Environmental Impact Assessment (EIA) for new builds, therefore decreasing the EIA assessment time 
for wind and PV plant placement from 300 days to 147 days. This incentives IPPs to site RE plants within 
these zones. Although the introduction of the REDZs is expected to introduce a degree of geographic 
dispersion in the future siting of RE plants, the current scenario still lacks a coherent approach towards 
optimising the RE capacity allocation mix and the locations of future plants in the context of national 
grid support and power balance. The eleven REDZs are strategically placed within 5 powerline corridors. 
These energy corridors were gazetted as powerline corridors in February 2018, after also being identified 
in the electricity grid infrastructure SEA study completed in 2016. Figure 1.4 depicts the eleven REDZs. 
Figure 1.5 shows the 5 energy corridors, together with the existing and planned powerlines. 

 

Figure 1.4: The eleven South African Renewable Energy Development Zones. 
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Figure 1.5: The eleven Renewable Energy Development Zones and the five energy corridors, with the existing 
and planned powerlines. 

1.2.3 Grid impacts of renewable energy generation 

In this section, the key performance indicators related to increased renewable energy penetration are 
expanded on, including power system security, power system adequacy and capacity credit of RE 
power plants. 

The integration of RE resources onto the electricity grid has the potential to provide environmentally 
friendly and cost-effective solutions to the increasing energy demand. The introduction of these low-
emission resources has led to many countries setting ambitious RE penetration targets for the medium- 
and long- term future. However, the temporal power generation profiles of wind and PV resources exhibit 
a highly stochastic profile, which could translate to adverse impacts on grid operations. These impacts 
are specifically noticeable in operational aspects such as capacity availability, system stability, ramp 
rates, forecasting, optimal dispatch, scheduling and power quality, including power system transients 
and harmonic distortion [20, 21]. It follows that the variable nature of RE resources require changes to 
power system planning and operations to successfully meet the targeted integration demands.  

The effective capacity value of wind or PV generation depends on the integration and planning processes 
that support and maximise the availability of reliable capacity from these RE resources. Optimised 
capacity value of wind and solar energy is achieved when the use of conventional fossil-fuel-based 
generation is decreased and replaced by RE sources during high demand periods. Power system planning 
should ensure that the RE resources provide adequate generation capacity to meet the demand.  

Should accurate planning and demand forecasting be neglected, the power system runs the risk of having 
insufficient capacity to meet the demand. This scenario typically requires response from expensive on-
demand dispatch units, which are often non-renewable resources. This also equates to a decrease in grid 
supply stability. However, the capacity value of RE generation can be maximised by aligning the 
generation profile with the demand profile [22].  

Wind energy compared to PV energy, exhibits a resource profile with greater variability. The wind 
energy resource is probabilistically just as likely to display high power outputs in peak demand periods 
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as it would in off-peak periods. For this reason, wind and PV resources should be aggregated as an 
interconnected system and allocated to geographically dispersed areas. This mitigates the risk associated 
with sudden changes in weather patterns, while introducing counteracting variability traits to produce a 
more reliable capacity output. 

If the RE penetration level increases substantially, without stability planning, and the demand becomes 
reliant on the stochastic RE supply, where a sudden loss in capacity may result in a blackout condition 
[23]. 

An increase in grid connected stochastic RE generation induces changes in the demand profile. This can 
increase the frequency and severity of the subsequent ramping effects. This is especially noticeable with 
increased PV resource integration, where the net demand is reduced significantly during the midday 
period. This results in significant loss of capacity outside of the daily solar irradiation cycle. This 
effectively accentuates the peaking effects of the demand profile in the early morning and evening 
periods. The effect induced by this phenomenon is illustrated by the Duck Curve effect in Figure 1.6, 
which graphically depicts the effects of increasing predominately PV penetration capacity on the demand 
profile [3, 24].  

 

Figure 1.6: The Duck Curve effect on the residual demand, with high PV penetration capacity. 

Economic dispatch is also an important aspect to consider for optimal power system operations. 
Economic dispatch involves dispatching generation resources such that the cost of generation is 
minimised. In this context, the integration of renewable energy resources increases the need for advanced 
forecasting and faster scheduling technologies to assist in mitigating the impacts of the stochastic nature 
of RE on network stability, network security and the overall generation profile. Implementation of an 
effective demand management system can assist in achieving optimal economic dispatch, which supports 
energy balance on the power system and allows for an optimal mix of energy generation while 
minimising operational costs [25]. Countries such as California and Spain, which exhibit high levels of 
RE capacity, often experience an undersupply or oversupply in certain demand periods if not managed 
correctly [2, 3, 4]. Optimised demand dispatch allows for the minimisation of wasted green-energy due 
to otherwise necessary energy curtailment methods [26].  

A common consequence of the intermittent nature of wind and PV resources is voltage fluctuation [27]. 
The fluctuation in voltage levels leads to a phenomenon called flicker [28], which affects sensitive 
electronic and electrical equipment on weak grid systems and decreases equipment lifespan [29]. Another 
RE integration issue seen by the System Operator is harmonic distortion. Harmonic distortion occurs 
when a nonlinear load draws non-sinusoidal current waveforms, e.g., pulsed current waveforms with 
high amplitudes, from the supply voltage, creating a condition where current is disproportional to the 
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voltage supply. This creates distortion of the supply voltage waveform [30]. If the injection of the 
operating harmonics is not smoothed within the accepted tolerance, harmonic distortion occurs [31]. 

1.2.3.1 Power system reliability  
Power system reliability is the overall ability to meet the demand regardless of plant failures or 
unexpected supply reduction occurrences. Billinton and Allan [32] defines the reliability of the electric 
power system as the ability to economically satisfy the system load with reasonable assurance of quality 
and continuity. The efficiency and ability to which the electric power system fulfils this responsibility 
can be conceptualised as the power system reliability. The concept of power system reliability can be 
described and subdivided into two aspects, namely, system adequacy and system security.  

 
Figure 1.7: Power system reliability subdivisions. 
System security pertains to the dynamic and transient system disturbances which occur within short time 
frames, from minutes to an hour. System adequacy describes a power system with the existence of 
sufficient facilities to meet demand requirements within the steady state limits. The system adequacy 
defines the power systems static conditions and is pertinent to the long-term system planning time frame 
and does not include system disturbances. 

Since system reliability covers a large and complex range of highly integrated networks, the power 
system itself is divided into three system sublevels. These system sublevels include power generation, 
transmission, and distribution. Focusing on the long-term power system planning and system adequacy, 
the assessment of the system sublevels is conceptualised into hierarchical levels.  

 
Figure 1.8: Hierarchical levels of power system adequacy [32]. 
The hierarchical level I consists solely of the generation aspect, level II includes both the transmission 
and the generation aspects and level III encompasses all the system sublevels [32].  

The adequacy evaluation at hierarchical level I is described as the ability to meet the aggregated system 
load requirements and is referred to as the generating capacity adequacy [33]. This limits the adequacy 
evaluation for this hierarchal level to the estimation of necessary generating capacity to meet the system 
demand and to ensure adequate capacity to complete preventive and corrective maintenance on the 
generation facilities. 

The Loss of Load Probability (LOLP) is the probability of not meeting the full load demand at a certain 
point in time and can be mathematically described as  
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝑃𝑃(𝐶𝐶𝑖𝑖 < 𝐿𝐿𝑖𝑖), 1.1 

where 𝑃𝑃(𝐶𝐶𝑖𝑖, 𝐿𝐿𝑖𝑖) is the probability of the available capacity, 𝐶𝐶𝑖𝑖, being less than the daily peak demand, 
𝐿𝐿𝑖𝑖, at time 𝑖𝑖. The Loss of Load Expectation (LOLE) is the number of hours the load will not be met in a 
specified time frame. The LOLE can be mathematically equated to the summation of LOLP, 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 1.2 

for 𝑛𝑛 days of the year. 

With the introduction of variable RE generation technology, the generic way of calculating system 
adequacy must be adapted to account for power delivery which relies largely on weather patterns rather 
than mechanical availability. The mechanically driven power generation systems are traditionally 
modelled as a binary distribution, where the generation is either available or unavailable. 

Ibanez and Milligan [34] addresses the need for quantifying the capacity credit or capacity value of an 
inherently stochastic resource. They deliberated that the loss of load in the LOLE metric may display 
some inaccuracies for the modern interconnected systems. Three methods for calculating the capacity 
value for wind, PV and CSP are explored. The capacity value is defined as the effective load carrying 
capability of each generator type for each reliability metric, namely the loss of load expectation, expected 
unserved energy and loss of load hours. The study concluded that the three probability-based metrics 
compared show high correlation between results all round.  

1.2.3.2 Renewable energy capacity credit 
Capacity credit can be described as the contribution quantification of a generation technology to support 
the energy demand, otherwise defined as the generation adequacy of a power system. The concept of 
capacity credit has gained importance in recent years, with conventional and renewable energy 
technologies having vastly different demand support capacities. There are various methods that can be 
used to define and calculate the capacity value for a specific generation technology. The use of capacity 
value calculations can give insight into an effective margin of capacity necessary within a system which 
has a high percentage of RE penetration. Comparing the capacity credit of a conventional power plant 
and a wind power plant, assuming an equal annual power output across generation types, a wind plant 
has a lower contribution to the power system generation adequacy compared to a conventional power 
plant. The reliability of a wind plant supply would therefore need to be supplemented by back-up units 
[35]. 

There are multiple ways of calculating the capacity credit of a generating technology, Amelin [36] 
compares four such topical methods. These methods include the equivalent firm capacity method, the 
guaranteed capacity method, the equivalent conventional power plant method, and the effective load 
carrying method.  

1.2.4 Impacts of renewable energy flat feed-in tariff structures 

A flat feed-in tariff structure currently applies in South Africa for utility-scale RE generation. The focus 
of optimising the financial viability of a RE plant thus encourages a scenario where the siting of RE 
plants by IPPPs is based predominantly on achieving the highest cumulative energy yield and optimising 
the capital costs associated the grid connection, technology and construction costs [15]. In considering 
the fleet of utility-scale RE plants currently associated with the REIPPP program, the present scenario 
has given rise to a relatively high degree of geographic concentration of RE plants. This is predominately 
a result of the prevailing flat feed-in tariff structure. However, the flat feed-in tariff does not take 
cognisance of the true generation costs associated with the diurnal and seasonal Time-of-Use (ToU) 
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periods. The local utility implements a diverse range of ToU tariff structures for the various consumer 
sectors, which embody the cost of generation in the context of the national demand profile. Table 1.3 
shows the ToU periods and associated energy costs for the high demand season ranging from the 1st of 
June to 31st of August, and the low demand season ranging from the 1st of September to 31st of May, of 
the Megaflex Generation tariff structure [37]. These costs exhibit a high degree of variability across the 
daily ToU periods and the two demand seasons. This suggests that there is a business case for financial 
incentives to be offered to IPPs to locate RE plants such that the residual load during expensive ToU 
periods is reduced, rather than maximising the cumulative annual energy yield, as inspired by a flat feed-
in tariff. 

Table 1.3: Normalised cost of energy for the Megaflex ToU tariff system [37]. 
Demand period Low Demand Season High Demand Season 

Off-peak  0.14 0.17 
Standard 0.23 0.30 

Peak 0.33 1 

1.3 Defining the research 
South Africa occupies a large geographic area, with highly suited terrain and climatic conditions for the 
large-scale integration of RE resources [38]. The introduction of a location specific integration plan, 
based on these resources is of paramount importance [39]. 

1.3.1 Research question 

The main research question pertaining to this research project can be formulated as follows: 
Can a comprehensive RE geospatial capacity allocation framework be developed that incorporates 
a risk-based approach to grid support, taking cognisance of real-world regional siting constraints, 
using geospatial wind and solar resource clusters as the input dataset? 

1.3.2 Research aim 

Wind and PV resources have become the leading green technologies of the RE sector, where the need 
for transitioning to a more sustainable energy supply has resulted in a surge in RE investment interest. 
However, from a grid perspective these energy sources are non-dispatchable and exhibit a high degree 
of variability and uncertainty. The variability associated with the combined wind and PV generation fleet 
can be substantially mitigated by optimising spatially [40, 41]. The research aim is to develop a RE 
resource planning framework to be used by government, public electric utility as well as private electric 
utility. The framework should consider the current state of the energy generation fleet, the projected 
energy integration capacities as well as the current abilities and limitations of the supply infrastructure 
to increase reliability in the future energy supply fleet. The framework should produce clustered regions 
which define the underlying resource in view of optimised grid supply objectives as well as spatially 
optimised RE capacity allocation maps.  

1.3.3 Research objectives 

This research targets the development, implementation and performance evaluation of a RE planning 
strategy for determining the optimal spatial capacity allocation of wind and PV resources in the context 
of national grid support. The study targets the geographic areas identified as the South African REDZs, 
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using the wind and solar resource datasets produced by CSIR and the EU Science Hub, respectively. The 
investigation involves two major aspects, namely, the development of clustered wind and PV resource 
maps for the target areas and the implementation and performance evaluation of various optimisation 
case studies to derive optimal solutions for power balance. The formulated solutions will serve as a 
valuable benchmark and departure point for medium- and long- term studies pertaining to the optimal 
deployment of wind and PV resources for increased levels of RE penetration in South Africa.  

The Research Objectives (ROs) can be summarised as follows: 
 
1) Conduct a comprehensive systematic literature review on factors influencing the formulation of a 

RE planning strategy to determine the optimal wind and solar capacity allocation and geographic 
site dispersion. Identify similar integration frameworks as well as factors which influence the current 
siting practices. 
 

2) Determine the optimal wind and PV clustering process to create resource maps for the input of the 
integration framework. 
2.1)   Determine the ideal clustering methodology: Find the optimal number of clusters as well as 

the clustering technique to use. 
2.2)   Develop and implement a statistical resource clustering approach, which takes cognisance of 

the countries daily demand patterns and compare results with the commonly used temporal 
approach. 

 
3) Develop the integration framework. 

3.1)   Use the best-performing temporal/statistical inputted clustering algorithm to derive clustered 
wind and solar power geographic resource maps for the South African REDZs. The formulated 
clusters define the input data sets for the integration framework. 

3.2)   Determine the optimal RE geospatial capacity allocation for a range of objective functions, 
where a risk adverse approach is adopted. 
 

4) Achieve optimised capacity allocation inputs for the creation of realistic siting maps based on the 
key objectives. 

 
5) Complete a comparative performance assessment study between the optimised allocations of wind 

and PV capacities versus the formulated baseline case studies, which includes the current REIPPP 
allocation method. 

 
6) Determine opportunities for future work and further development of the integration framework. 

1.4 Research scope  
The research aims are refined to ensure concise target objectives throughout the design and 
implementation of each step within the study. The proposed model is depicted as a funnel 
implementation, as shown in Figure 1.9. The study is initially contextualised in view of South Africa’s 
current energy climate and is then refined as the objectives are achieved in the formulation of the 
integration framework. 
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Figure 1.9: The implementation of the proposed research framework model. 

1.5 Research approach and document structure  
This section incorporates the research design methodology introduced by Takeda et al. [42] which is 
implemented in terms of the five specific research objectives coinciding with the overarching project 
aims. Table 1.4 describes the research objectives and the methodology, with reference to the design 
framework followed. Each objective is linked to the chapters in which the corresponding execution 
process is addressed. 

Takeda et al. [42] introduced a method to model design processes, where design theory is implemented 
for the derivation of an all-inclusive model pertaining to the desired research outcomes. The Model 
Design Process developed by Takeda et al. can be summarised as an all-encompassing design research 
cycle, which is subdivided into five main objectives, visually shown in Figure 1.10. This model is used 
as the implementation approach for this research study. 

The five steps are described as follows: 

1) Awareness of problem - Gaining insight and awareness of the possible study-specific problems. 
Define the study-specific problem and the scope of the problem to be incorporated to determine 
an adequate solution. 

2) Suggestion - Once the problem has been defined and the scope established, the possible solution 
theories and concepts are investigated. The appropriate methodologies and models are then 
selected for implementation into the development phase. 

3) Development - The awareness and suggestion phases provide knowledge and insight into the 
design and development of the problem solution. Multiple development cycles can exist within 
this step to create an all-encompassing model. 

4) Evaluation - The solution is evaluated, and an error feedback model is established and executed 
until the developed solution is ready for adoption. 

5) Conclusion - The conclusion step initiates with the decision to adopt the evaluated solution. The 
results of the final model are presented, and the contributions are described. 

 

 

Chapter 1: Contextualise South Africa’s current energy 
climate. 

Chapter 2: Define the resource data sets used to complete 
the study and define the parameters used to ensure data 
consistency and coherency. 
Chapter 3: Complete a comparative literature review on 
clustering methodologies and the implementation thereof. 
Implement clustering to produce RE resource maps. 

Chapter 5: Conclude on the completed research 
framework, commenting on key contributions, limitations 
and future implementation. 

Chapter 4: Complete a systematic literature review related 
to the optimisation framework. Implement the framework 
and evaluate using applicable performance metrics. 
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Figure 1.10: Modelling Design Processes introduced by Takeda et al. [42]. 
 

Table 1.4: Research structure including the design objectives and methodologies followed. 
 RO Research Objective Chapter Methodology 

A
w

ar
en

es
s o

f p
ro

bl
em

 

1.0 Define the generalised subject matter 
problem together with the research 
background, motivation and 
approach. 

Chapter 1 Investigate the problem background, and 
as a result define the project aim, 
objectives, research strategy and scope.  

1.0 Understand the current energy climate 
within South Africa. 

Chapter 1 Investigate the current renewable energy 
status in South Africa as well as the 
supporting energy framework and policy 
in literature. 

1.0 Determine factors influencing the 
formulation of a RE integration 
framework and examine the core 
competing literature. 

Chapter 4 Conduct a comprehensive systematic 
literature review on factors influencing the 
formulation of a RE integration framework 
to determine and incentivise the optimal 
wind and solar capacity mix and 
geographic site dispersion with reference 
to the existing body of knowledge. 

Su
gg

es
tio

n 

2.0, 

2.1 

& 

2.2 

Determine the ideal resource 
classification methodology. Compare 
statistical and temporal methods. 

Chapter 3 Conduct a literature study on the 
performance of various clustering 
algorithms on temporal and statistically 
representative wind and solar power 
datasets. 

3.0 & 
4.0 

Determine the ideal mythologies for 
the development of the model. 

Chapter 3 
& 

Chapter 4 

Implement and compare methodologies 
identified for the development of the 
integration framework. 
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D
ev

el
op

m
en

t 
 Acquire and process raw reanalysis 

weather and energy demand data. 
Chapter 2 Raw data must be processed to obtain data 

sets representative of characteristic wind- 
and PV-system behaviour. Demand data 
must be processed and detrended to 
remove annual anomalies. 

3.1 Define and implement clustering 
objectives. 

Chapter 3 Implement methodologies to create model. 

3.1 Create final clustered wind and solar 
power geographic resource maps. 

Chapter 3 Use the resultant the wind and PV clusters 
to create geographic resource maps. 

3.2 Define optimisation objectives. Chapter 4 Determine novel optimisation objectives 
which best suit the set objectives. 

3.2 Determine the ideal sizing and 
dispersion of wind and PV capacities 
for the key objective functions 
identified. 

Chapter 4 Implement the ideal optimisation 
methodology on the wind and solar power 
profiles. 

4.0 Achieve allocation inputs to create 
realistic siting maps based on the key 
objectives. 

Chapter 4 Implement the integration framework for 
various key objective case studies. 

Ev
al

ua
tio

n 

5.0 

 

Evaluate the model through 
comparison of real-world baseline 
case studies. 

Chapter 4 Perform a comparative performance 
assessment study between the optimised 
allocations of wind and PV capacities 
versus defined baseline case studies, 
including the current REIPPP allocation 
method. 

C
on

cl
us

io
n 6.0 Determine opportunities for future 

work and further development of the 
integration framework. 

Chapter 5 From the literature studies conducted and 
the framework implemented, determine 
opportunities for future work and further 
development of the model. 

1.6 Expected outcome and original contributions  
The main contributions of an original nature expected from the research are as follows: 

1) Development and implementation of a novel clustering approach for classification of wind and solar 
resources: 
The outcome of this work is a statistical approach to the clustering of temporospatial wind and PV 
power resource datasets into geospatial clusters, using statistical features defined in terms of the ToU 
periods associated with the demand profile. 
 

2) Development and implementation of a novel RE capacity allocation optimisation methodology: 
The outcome of this work is a framework whereby wind and PV capacities are assigned to the 
geospatial resource clusters such that objective functions defined in terms of the residual load profile 
are optimised. This aspect of the work incorporates a number of novel components, including the 
following: 
− Identifying and evaluating the performance of an appropriate optimisation algorithm. 
− Defining a range of risk-based objective functions. 
− Proposing and implementing a strategy for accommodating real-word constraints to the capacity 

allocations. 
− Proposing suitable performance metrics. 
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1.7 Conclusion: Introduction 
Chapter 1 provides a detailed overview of the research background and motivation. The structured 
approach is also defined, including the research aim, scope, objectives, and document structure. Finally, 
the novel research contributions and implications are highlighted. 
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Chapter 2 

Data acquisition and processing  

2.1 Introduction and overview  
The aim of this chapter is to describe the acquisition, pre-processing and preparation of the data used to 
construct the integration framework. Initially, the raw wind and solar resource data sets are introduced 
and analysed in the context of the overarching framework. The process of converting the raw data into 
necessary power data is detailed. The processed data sets, including the demand profile, and the 
formulated ToU feature vectors are also described considering the framework objectives. The conclusion 
of this chapter should ascertain full confidence in the underlying datasets used in the implementation of 
this framework. 

2.2 Research data resources and study regions 

2.2.1 Research study regions 

The study is implemented using two separate renewable energy resource data sets associated with the 
eleven REDZs proposed in phase 1 and 2 of the SEA study conducted for wind and solar energy in South 
Africa [43]. These zones represent distinct geographic regions within South Africa and have been 
demarcated for the future deployment of RE generation units, based on various environmental and socio-
economic factors [44]. Figure 2.1 depicts the REDZs, which are dispersed across a wide geographic area, 
thereby reflecting a diverse range of climatic and topographic characteristics. Figure 2.1 incorporates a 
zoomed in section of the Stormberg zone. The enlarged region provides a clearer view of the individual 
coordinates comprising the Stormberg zone. Each of the coordinates represents a 25 𝑘𝑘𝑘𝑘2 area, of which 
the temporal wind speed and solar power data profiles are known. Table 2.1 summarises the indices 
associated with the various REDZs, highlighting the number of coordinates per zone as well as the 
applicable RE technology demarcated for each zone. The applicable RE technology is decided based on 
the underlying resource characteristics of each region. 

The data sets represent the temporal wind speed and solar irradiance profiles for a total of 4 770 locations, 
distributed across the eleven REDZs. Hourly wind and solar resource data, over a five-year period from 
2009 to 2013, is used to represent each spatial coordinate represented in Figure 2.1. This yields a total of 
𝑁𝑁𝑘𝑘  = 43 824 intervals for each spatial coordinate, which translates to a total of 195 893 280 observations 
for the wind and solar power data sets, respectively. 

The REDZs were selected as the focus regions for the implementation and testing of the proposed 
integration study. They define a vast and diverse geographic range of potential RE integration sites, 
which have been pre-approved by the South African DoE based on an initial EIA. However, the proposed 
integration framework can easily be adapted to include South Africa in geographic entirety. 
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Figure 2.1: Spatial coordinates comprising each Renewable Energy Development Zone. 
 
Table 2.1: Index summary describing the South African Renewable Energy Zones. 

Name Zone Features  

Index Number of 
coordinates 

Applicable Renewable 
Energy Technology 

Overberg 1 211 Large scale wind and PV  
Komsberg 2 341 Large scale wind and PV  

Cookhouse 3 288 Large scale wind and PV  

Stormberg 4 467 Large scale wind and PV  

Kimberley 5 372 Large scale PV  

Vryburg 6 361 Large scale PV  

Upington 7 497 Large scale PV  

Springbok 8 593 Large scale wind and PV 

Emalahleni 9 369 Large scale PV  

Klerksdorp 10 307 Large scale PV  

Beaufort West 11 664 Large scale wind and PV 

2.2.2 Wind resource data 

The wind resource data is derived using the Wind Atlas for South Africa (WASA) weather model. The 
WASA model applies a mesoscale downscaling method [45], together with a mesoscale modelling 
system. The mesoscale modelling system is also referred to as the Weather Research and Forecasting 
model. This mesoscale downscaling method is used to generate a temporal wind speed data set, defined 
for a high spatial resolution, for Southern Africa. This temporal wind speed reanalysis data set is 
developed by the South African CSIR and Fraunhofer Institute for Wind Energy Systems [46]. 

This WASA model derives wind speed data for hub heights measuring 50, 80, 100 and 150 m. The wind 
speed dataset spans a five-year period, from 2009 to 2013, with a spatial resolution of 25 km2 and a 
temporal resolution of 15 minutes. Wind speed data at the 100 m hub height is selected and is down 
sampled to an hourly averaged temporal resolution for the purposes of the study. 
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Figure 2.2 depicts the mean wind speed map for South Africa [47], with the overlayed REDZs 
representing a diverse range of climatic and topographical features with excellent wind resource 
characteristics for the zones defined in Table 2.1. 

This dataset expands the entire South African region, however for this study, the data is extracted per the 
eleven REDZs. Explaining the dataset mathematically, the sampling times associated with the dataset 
can be represented by the set 𝑻𝑻, given by 

𝑻𝑻 = {𝑡𝑡𝑘𝑘 | 𝑘𝑘 = 1,2,3 ⋯𝑁𝑁𝑘𝑘}, 2.1 

where 𝑡𝑡𝑘𝑘 denotes the sampling time associated with the 𝑘𝑘𝑡𝑡ℎ time instant and 𝑁𝑁𝑘𝑘 denotes the total number 
of sampling intervals. The wind speed dataset for the REDZs is represented by the set 𝑾𝑾, given by the 
relationships 

𝑾𝑾 = {𝑾𝑾𝑖𝑖 | 𝑖𝑖 = 1,2,3⋯𝑁𝑁𝑖𝑖}, 2.2 

𝑾𝑾𝑖𝑖 = �𝑾𝑾𝑖𝑖𝑖𝑖  | 𝑗𝑗 = 1,2,3⋯𝑁𝑁𝑖𝑖𝑖𝑖� 2.3 

and  

𝑾𝑾𝑖𝑖𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘�. 2.4 

𝑾𝑾𝑖𝑖 denotes the set of temporal wind speed profiles associated with the 𝑖𝑖𝑡𝑡ℎ REDZ, 𝑁𝑁𝑖𝑖 denotes the number 
of REDZs, 𝑾𝑾𝑖𝑖𝑖𝑖 denotes the set of temporal wind speeds associated with the 𝑗𝑗𝑡𝑡ℎ spatial location in the 
𝑖𝑖𝑡𝑡ℎ REDZ, 𝑁𝑁𝑖𝑖𝑖𝑖 denotes the total number of spatial locations associated with the 𝑖𝑖𝑡𝑡ℎ REDZ, and 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) 
denotes the wind speed for the 𝑘𝑘𝑡𝑡ℎ sampling interval.  

 
Figure 2.2: The average wind speed map for South Africa, overlayed with the Renewable Energy Development 
Zones. 

2.2.3 Solar resource data 

Radiant energy is the primary source of energy from the Sun to Earth, the measure of this energy is called 
solar irradiance. This is a term used to describe electromagnetic radiation which is emitted by the sun. 
Solar irradiance can be divided into various components, starting with Direct Normal Irradiance (DNI). 
This concept refers to the total solar radiation absorbed by a given surface, per unit area, which is always 
perpendicular to incoming rays. Diffused Radiation is the radiation which is diffused by surrounding 
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elements, such as atmospheric layers or particles in the sky. Lastly, reflection radiation is the radiation 
which is reflected by various surfaces, such as water bodies or clouds.  

The dataset used for this study was developed by the Climate Monitoring Satellite Application Facility 
(CM SAF) and PVGIS team [48]. The dataset has an hourly temporal resolution within the annual range 
of 2005-2016 and a spatial resolution of 0.05 x 0.05 degrees. The dataset is labelled the PVGIS-SARAH, 
covering the entire African region. The dataset was derived using METEOSAT satellite imagery 
captured in hourly time intervals. This satellite imagery is used to estimate the cloud influence on the 
solar irradiation, where the cloud cover causes reflection of the incoming sunlight, which decreases the 
amount of radiation arriving at ground level. The satellite imagery is defined by pixels, where each 
individual pixel is compared at the same time each day over a month-long period and the darkest pixel 
seen over the measurement period is defined as clear sky. The clear sky pixel is used as a reference to 
effectively calculate the cloud reflectivity for all other days. The solar radiation is then calculated for 
clear sky conditions using the theory of radiative transfer in the atmosphere, while accounting for water 
vapour, ozone concentration and atmospheric aerosol density. The clear-sky model is implemented using 
the MAAC monthly climatology for Aerosol Optical Depth and the ERA-Interim monthly means for the 
water vapor. The total radiation is calculated using this clear-sky irradiance and cloud albedo [48]. Figure 
2.3 depicts the mean global horizontal irradiation for South Africa, with the overlayed REDZs 
representing a diverse range of climatic and topographical features with high solar irradiance depicted in 
the northern regions. 

The resultant spatiotemporal Global Horizontal Irradiation (GHI) dataset, 𝑺𝑺, is defined by the 
relationships 

𝑺𝑺 = {𝑺𝑺𝑖𝑖 | 𝑖𝑖 = 1,2,3⋯𝑁𝑁𝑖𝑖}, 2.5 

𝑺𝑺𝑖𝑖 = �𝑺𝑺𝑖𝑖𝑖𝑖 | 𝑗𝑗 = 1,2,3⋯𝑁𝑁𝑖𝑖𝑖𝑖� 2.6 

and  

𝑺𝑺𝑖𝑖𝑖𝑖 = �𝑠𝑠𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘�, 2.7 

where 𝑺𝑺𝑖𝑖 denotes the set of solar irradiance profiles associated with the 𝑖𝑖𝑡𝑡ℎ REDZ, 𝑺𝑺𝑖𝑖𝑖𝑖 denotes solar 
irradiance profile associated with the 𝑗𝑗𝑡𝑡ℎ spatial location in the 𝑖𝑖𝑡𝑡ℎ REDZ and 𝑠𝑠𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) denotes the solar 
irradiance for the 𝑘𝑘𝑡𝑡ℎ sampling interval. 
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Figure 2.3: The average global horizontal irradiation map for South Africa, overlayed with the Renewable 
Energy Development Zones. 

2.2.4 Demand profile data 

The South African demand profile data available for the implementation of this study spans a 19-year 
period, namely from 2000 to 2019. The demand profile represents a mixture of the country’s energy 
usage profile, bounded by the country’s ability to provide the necessary demand. 

In the context of the desired framework objectives, it is important to select an accurate representation of 
the business as usual case for the desired demand profile. Figure 2.4 depicts the national demand profile 
from 2000 to 2019. Overall, the demand profile has shown growth distortion due to generation 
constraints, various economic constraints and global pandemics. Since it is not necessary to use all 19 
years of the demand data, it important to choose the correct annual range, which will provide the best 
depiction of the demand profile. Figure 2.4 shows an expected increase in demand growth between the 
years 2000 and 2007. Thereafter it can be seen that in 2008 the country experienced a breakdown of 
energy plants, which resulted in country-wide load shedding. However, from 2008 the yearly demand 
pattern shows a marginal decline towards 2019. This is attributed to poor economic growth, generation 
capacity constraints that resulted in frequent load shedding, increased embedded generation and an 
extensive nation-wide Demand Side Management (DSM) and Energy Efficiency (EE) program targeting 
the industrial, commercial and residential load sectors as well as fuel switching to Liquefied Petroleum 
Gas (LPG) for cooking and heating.  
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Figure 2.4: The national demand profile for South Africa, from January 2000 to December 2019. 

2.3 Data conditioning and processing 
Data pre-processing in context of the final framework model is multifaceted. This section describes the 
process followed to obtain data sets which are accurate and relevant to the framework objectives.  

2.3.1 Wind resource data processing  

This section will discuss two possible methods which could be used when calculating the wind power 
output from raw wind speed data. These methods include converting the power straight from wind speed 
to power via a chosen turbine class or using a multi-turbine power curve approach. All wind power 
calculations are based on the wind turbine power curve, which shows the general behaviour of a wind 
turbine under various operating wind speed conditions. This wind power curve is depicted in Figure 2.5. 

 
Figure 2.5: The wind turbine power curve [49]. 
 

The power output profile representative of the wind resource is locationally dependent, where the wind 
power profile is derived using a site-specific wind turbine power curve. Table 2.2 summarises the 
characteristics of the three 3.3 MW Vestas turbine models considered in the investigation. The turbine 
model for the 𝑗𝑗𝑡𝑡ℎ spatial location in the 𝑖𝑖𝑡𝑡ℎ REDZ is chosen based on the average wind speed for the 
location, 𝑤𝑤�𝑖𝑖𝑖𝑖, given by 

𝑤𝑤�𝑖𝑖𝑖𝑖 = 1
𝑁𝑁𝑘𝑘
∑ w𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘)𝑁𝑁𝑘𝑘
𝑘𝑘=1 , 2.8 

where the temporal resolution is 15 minutes.  
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The wind power profiles obtained with the turbine models are normalised relative to the rating of the 
turbines shown in Table 2.2, i.e., 3.3 MW.  

Table 2.2: Characteristics of the selected wind turbine models [50]. 
Average Wind Speed at 
Site [m/s] 

Wind Turbine 
Model  

Model Class 

6.0 - 7.5 V126 - 3.3 MW IEC IIIA 

7.5 - 8.5 V117 - 3.3 MW IEC IIA 

8.5 - 10.0 V112 - 3.3 MW IEC IB 

 
To investigate the effects of aggregation of wind speed over a finite area, the multi-turbine power curve 
approach, proposed by Nørgaard and Holttinen [51], is investigated. In this methodology the temporal, 
location specific wind speed profile 𝑾𝑾𝑖𝑖𝑖𝑖 is block-averaged using a sliding window to filter the wind 
speed fluctuations associated with the propagation of the wind over the target wind farm area. The block-
averaged wind speed for the 𝑘𝑘𝑡𝑡ℎ sampling interval, w𝑖𝑖𝑖𝑖

𝐹𝐹 (𝑡𝑡𝑘𝑘), is expressed by the mathematic relationship 
[51] 

w𝑖𝑖𝑖𝑖
𝐹𝐹 (𝑡𝑡𝑘𝑘) = 1

𝑁𝑁𝑖𝑖𝑖𝑖+1
∑ w𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚)
𝑘𝑘+

𝑁𝑁𝑖𝑖𝑖𝑖
2

𝑚𝑚=𝑘𝑘−
𝑁𝑁𝑖𝑖𝑖𝑖
2

, 2.9 

where 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚) denotes the original wind speed in 𝑾𝑾𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑚𝑚 and 𝑁𝑁𝑖𝑖𝑖𝑖 + 1 denotes the size of the 
averaging window as several sampling intervals. 𝑁𝑁𝑖𝑖𝑖𝑖 is an even-number integer derived from the 
relationship [51] 

𝑁𝑁𝑖𝑖𝑖𝑖 = 𝐷𝐷
𝑤𝑤�𝑖𝑖𝑖𝑖∆𝑡𝑡

, 2.10 

where 𝐷𝐷 denotes the spatial dimension of the target area, w�𝑖𝑖𝑖𝑖 denotes the mean wind speed of the original 
time series and ∆𝑡𝑡 denotes the temporal resolution of the original time series. The spatial resolution of 
the wind resource dataset, 𝐷𝐷, is equal to 5 km. 

The multi-turbine power curve, 𝑚𝑚𝑖𝑖𝑖𝑖, for a site is derived by convolving the single turbine power curve 
selected for the site, 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠, and the spatial wind speed distribution of the site, 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠. This is defined by the 
relationship [51]  

𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 ∗  𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠. 2.11 
 

A normal distribution is assumed for the spatial wind speed distribution describing the wind speeds for 
the individual wind turbines at the wind farm. The standard deviation of this distribution is determined 
from parameterised curves using the spatial dimension, 𝐷𝐷, and turbulence intensity of the site [51]. 

The block averaged wind speed is applied to the multi-turbine power curve to produce a per unit power 
time series using the relationship [51] 

P𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) =  𝑚𝑚𝑖𝑖𝑖𝑖(w𝑖𝑖𝑖𝑖
𝐹𝐹 (𝑡𝑡𝑘𝑘)). 2.12 

The mean of the spatial wind speed distribution is initially set to zero, and is adjusted iteratively until 

∑P𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) = ∑ P𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑘𝑘), 2.13 

where 
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P𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑘𝑘) =  𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 �w𝑖𝑖𝑖𝑖
𝐹𝐹 (𝑡𝑡𝑘𝑘)�. 2.14 

The multi-turbine power curve introduces a low pass filtering effect on the wind power profiles. The 
results show that this effect is relatively marginal for the geospatial resolution of 5 km by 5 km that 
applies for the input dataset, and the results are therefore presented for the case study where this 
aggregation is neglected. 

The resultant set of wind power profiles 𝑷𝑷𝑤𝑤 is defined by the relationships 

𝑷𝑷𝑤𝑤 = {𝑷𝑷𝑖𝑖𝑤𝑤  | 𝑖𝑖 = 1,2,3⋯𝑁𝑁𝑖𝑖}, 2.15 

𝑷𝑷𝑖𝑖𝑤𝑤 = �𝑷𝑷𝑖𝑖𝑖𝑖𝑤𝑤| 𝑗𝑗 = 1,2,3⋯𝑁𝑁𝑖𝑖𝑖𝑖� 2.16 

and  

𝑷𝑷𝑖𝑖𝑖𝑖𝑤𝑤 = �𝑝𝑝𝑖𝑖𝑖𝑖𝑤𝑤(𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘�, 2.17 

where 𝑷𝑷𝑖𝑖𝑤𝑤 denotes the set of wind power profiles associated with the 𝑖𝑖𝑡𝑡ℎ REDZ, 𝑷𝑷𝑖𝑖𝑖𝑖𝑤𝑤 denotes the wind 
power profile associated with the 𝑗𝑗𝑡𝑡ℎ spatial location in the 𝑖𝑖𝑡𝑡ℎ REDZ and 𝑝𝑝𝑖𝑖𝑖𝑖𝑤𝑤(𝑡𝑡𝑘𝑘) denotes the wind 
power for the 𝑘𝑘𝑡𝑡ℎ sampling interval. 

2.3.2 Solar resource data processing  

The relative power output of a PV plant is proportional to the solar irradiance found at the Earth’s surface, 
for a specific area. A more accurate power output occurs when considering the tilted irradiance, together 
with the ambient temperature at each solar plant. In this case, the direct tilted irradiance is that which hits 
the solar panel on the suns direct path, the diffuse tilted irradiance is that which has been scattered by 
atmospheric molecules and particles, and the reflected tilted irradiance is that which is reflected off other 
objects in the panels surrounding area. 

The spatiotemporal solar irradiation profiles are translated to power profiles using a fixed 1 kWp 
crystalline silicon panel, with an azimuth angle such that the panel faces north, and the tilt angle is 
determined based on location for maximum annual yield. Power conversion is performed using the 
methodology defined by Huld et al. [52], which is a variant of King’s model [53], with the system losses 
set to 14 %. This approach takes cognisance of the mounting type, ambient temperature and wind patterns 
relative to the PV module. 

The power measured from a PV module under Standard Test Conditions (STC) is known as the nominal 
power of the module. This STC is dictated by the international standard IEC-60904-1. The standard 
testing conditions state that the light intensity over the entire module surface should be 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = 1000 � 𝑊𝑊

𝑚𝑚2� 
and the operating temperature should be 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆 = 25 °𝐶𝐶. The spectrum of light should comply with the 
global spectrum set in IEC 60904-3. The normal operating conditions are however largely influenced by 
external factors, which should be accounted for when estimating the power output of an operational PV 
plant. The power is dependent on the effects of the module temperature 𝑇𝑇𝑀𝑀 and the irradiance 𝐺𝐺, defined 
mathematically as [52] 

𝑃𝑃(𝐺𝐺′,𝑇𝑇′) = 𝐺𝐺′(𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆,𝑚𝑚 + 𝑘𝑘1 ln(𝐺𝐺′) + 𝑘𝑘2 ln(𝐺𝐺′)2 + 𝑘𝑘3𝑇𝑇′ + 𝑘𝑘4𝑇𝑇′ln(𝐺𝐺′) +
𝑘𝑘5𝑇𝑇′ln(𝐺𝐺′) + 𝑘𝑘6𝑇𝑇′2), 

2.18 

where  
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G′ =
𝐺𝐺
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

 2.19 

and 

𝑇𝑇′𝑀𝑀 = 𝑇𝑇𝑀𝑀 − 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆. 2.20 

The coefficients used in Equation (2.18) are defined based on measurements preformed on the PV 
module technology used, in this case a crystalline silicon (c-Si) panel, where [52] 

𝑘𝑘1 = −0.017237, 𝑘𝑘2 = −0.040465, 𝑘𝑘3 = −0.004702, 𝑘𝑘4 = 0.000149,
           𝑘𝑘5 = 0.000170 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘6 = −0.000005. 

2.21 

The module temperature 𝑇𝑇𝑀𝑀 is affected by both the ambient temperature and the wind effects surrounding 
the PV module. The resultant temperature value is therefore calculated as [54] 

𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑎𝑎 −
𝐺𝐺

(𝑈𝑈0+𝑈𝑈1𝑊𝑊), 2.22 

where 𝑇𝑇𝑎𝑎 is the ambient temperature, 𝑊𝑊 denotes the wind speed, 𝑈𝑈0 denotes the coefficient describing 
the effect of the radiation on the module temperature and 𝑈𝑈1 denotes the coefficient describing the 
cooling effect caused by the wind [54, 55].  

This mathematical process is used to calculate the power output per module, thereafter multiple power 
losses must be accounted for, namely, DC-AC transformation losses, cable losses as well as panel 
degradation losses accumulated over time. These losses are complex and are usually summated to a total 
user specific system loss percentage value, where a 14 % loss percentage value is recommended. 

The resultant solar power profile set, 𝑷𝑷𝑠𝑠, is defined by the relationships 

𝑷𝑷𝑠𝑠 = {𝑷𝑷𝑖𝑖𝑠𝑠 | 𝑖𝑖 = 1,2,3⋯𝑁𝑁𝑖𝑖}, 2.23 

𝑷𝑷𝑖𝑖𝑠𝑠 = �𝑷𝑷𝑖𝑖𝑖𝑖𝑠𝑠 | 𝑗𝑗 = 1,2,3⋯𝑁𝑁𝑖𝑖𝑖𝑖� 2.24 

and  

𝑷𝑷𝑖𝑖𝑖𝑖𝑠𝑠 = �𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠 (𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘�, 2.25 

where 𝑷𝑷𝑖𝑖𝑠𝑠 denotes the set of solar power profiles associated with the 𝑖𝑖𝑡𝑡ℎ REDZ, 𝑷𝑷𝑖𝑖𝑖𝑖𝑠𝑠  denotes the solar 
power profile associated with the 𝑗𝑗𝑡𝑡ℎ spatial location in the 𝑖𝑖𝑡𝑡ℎ REDZ and 𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠 (𝑡𝑡𝑘𝑘) denotes the solar 
power for the 𝑘𝑘𝑡𝑡ℎ sampling interval. The resulting solar power dataset has an hourly resolution. 

2.3.3 Demand profile data processing 

The demand profile used in the study is derived from the South African national demand profile for the 
period from January 2010 to December 2014. This excludes the period of strategic growth from 2000 to 
2007. However, it is recognised that strategic growth may have to be included in future medium- to long- 
term studies. This period also excludes the annual profile for 2015, which differs from the surrounding 
profiles, shown in Figure 2.4.  

Figure 2.6 depicts the selected demand profile range, which is detrended using a linear least squares 
regression approach with the view to remove year on year trends, thereby focusing on the daily and 
seasonal characteristics. The detrended profile is subsequently normalised to the peak value 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑 , where 
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𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑  = 36.3713 GW for this period. This yields the profile depicted in Figure 2.7, which is used in the 

framework development. The normalised demand dataset 𝑷𝑷𝑑𝑑 is defined by the relationship 

𝑷𝑷𝑑𝑑 = {𝑝𝑝𝑑𝑑(𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘}, 2.26 

where 𝑝𝑝𝑑𝑑(𝑡𝑡𝑘𝑘) denotes the normalised demand value for the 𝑘𝑘𝑡𝑡ℎ sampling interval. 

 
Figure 2.6: The demand profile for South Africa with the annual linear trend overlay. 

 
Figure 2.7: The detrended, normalised demand profile for South Africa. 

2.3.4 Resource feature vector formulation 

In the highly regulated South African electricity market, the national power utility implements fixed 
bulk-supply ToU tariff structures for large consumers and resellers connected at the transmission level 
[37]. The associated ToU periods and electricity costs are based on the national demand profile and cost 
of generation and transmission for the power network.  

For the implementation of the proposed framework, a novel method for quantifying temporal resource 
profiles is introduced. The approach defines the spatiotemporal resource profiles as a set of feature 
vectors, based on the statistical properties defined within the daily and seasonal ToU periods.  

This bulk supply tariff structure features two distinct demand seasons, namely, a low demand season 
ranging from the 1st of September to the 31st of May, and a high demand season ranging from the 1st of 
June to 31st of August. Furthermore, the tariff structure incorporates three daily ToU categories, namely, 
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off-peak, standard, and peak periods. The three daily ToU periods can be further subdivided into the 
daily temporal composition defined by the Megaflex tariff structure, displayed in Figure 2.8. Figure 2.8 
summarises the seasonal demand as well as the weekday ToU periods for the South African Megaflex 
ToU tariff structure, while Table 1.3 summarises the normalised cost of energy for the demand periods 
[37]. There is significant differentiation in the cost of energy between the daily ToU periods, and between 
the low demand and high demand seasons, respectively. It is therefore proposed that a variable resource 
such as wind energy be classified and quantified in the context of these ToU periods.  

Figure 2.9 and Figure 2.10 depict histograms of the hourly weekday demand values for the low demand 
and high demand seasons, respectively. The histograms show that for the high demand season, the loads 
in the peak periods are higher and occur more frequently compared to the low demand season. The 
demand periods depicted by the histograms in Figure 2.9 and Figure 2.10 are normalised to the number 
of sampling intervals within each demand season over the five-year span. 

The ToU feature vectors derived for the spatiotemporal power resource profiles consists of the mean, 𝜇𝜇, 
and standard deviation, 𝜎𝜎, of the normalised resource for each of the daily ToU period categories depicted 
in Figure 2.8. The feature vector can be categorised using the three ToU periods classified in Table 2.3 
as well as further expanding the vector to include the daily temporal split as shown in Figure 2.8 and 
Table 2.4. 

Defining the feature vector which comprises of the three ToU periods (peak, standard and off-peak) for 
each demand season (high and low demand), yields a total of 6 ToU periods, comprising of 2 features 
per period. This results in a total of 12 defining features per spatial location, 6 features for the low demand 
season and 6 features for the high demand season. The feature vector can be represented mathematically 
by the set 

𝑭𝑭 
𝟔𝟔 = �𝑭𝑭𝑳𝑳𝟔𝟔,𝑭𝑭𝑯𝑯𝟔𝟔 �,  2.27 

where 

𝑭𝑭𝑳𝑳𝟔𝟔 = {𝜇𝜇𝑂𝑂𝑂𝑂𝐿𝐿 ,𝜎𝜎𝑂𝑂𝑂𝑂𝐿𝐿 }, {𝜇𝜇𝑆𝑆𝐿𝐿 ,𝜎𝜎𝑆𝑆𝐿𝐿}, {𝜇𝜇𝑃𝑃𝐿𝐿 ,𝜎𝜎𝑃𝑃𝐿𝐿} 2.28 

and 

𝑭𝑭𝑯𝑯𝟔𝟔 = {𝜇𝜇𝑂𝑂𝑂𝑂𝐻𝐻 ,𝜎𝜎𝑂𝑂𝑂𝑂𝐻𝐻 }, {𝜇𝜇𝑆𝑆𝐻𝐻 ,𝜎𝜎𝑆𝑆𝐻𝐻}, {𝜇𝜇𝑃𝑃𝐻𝐻 ,𝜎𝜎𝑃𝑃𝐻𝐻}. 2.29 

Defining the feature vector which comprises of all daily ToU periods yields a total of 13 ToU periods, 7 
in the low demand season and 6 in the high demand season, as shown in Figure 2.8. Each of the 13 ToU 
periods is defined by the two statistical features, yielding a total of 26 defining features per spatial 
location, i.e., 14 features for the low demand season and 12 features for the high demand season. The 
feature vector can be represented mathematically by the set 

𝑭𝑭 
𝟏𝟏𝟏𝟏 = �𝑭𝑭𝑳𝑳𝟏𝟏𝟏𝟏,𝑭𝑭𝑯𝑯𝟏𝟏𝟏𝟏�,  2.30 

where 

𝑭𝑭𝑳𝑳𝟏𝟏𝟏𝟏 = �𝜇𝜇𝑂𝑂𝑂𝑂𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑂𝑂𝑂𝑂𝑀𝑀

𝐿𝐿  �, �𝜇𝜇𝑆𝑆𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑆𝑆𝑀𝑀

𝐿𝐿  �, �𝜇𝜇𝑃𝑃𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑃𝑃𝑀𝑀

𝐿𝐿 �, �𝜇𝜇𝑆𝑆𝑀𝑀𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑆𝑆𝑀𝑀𝑀𝑀

𝐿𝐿 �, 

�𝜇𝜇𝑃𝑃𝐸𝐸
𝐿𝐿 ,𝜎𝜎𝑃𝑃𝐸𝐸

𝐿𝐿 �, �𝜇𝜇𝑆𝑆𝐸𝐸
𝐿𝐿 ,𝜎𝜎𝑆𝑆𝐸𝐸

𝐿𝐿 �, �𝜇𝜇𝑂𝑂𝑂𝑂𝐸𝐸
𝐿𝐿 ,𝜎𝜎𝑂𝑂𝑂𝑂𝐸𝐸

𝐿𝐿 � 
2.31 

and 

𝑭𝑭𝑯𝑯𝟏𝟏𝟏𝟏 = �𝜇𝜇𝑂𝑂𝑂𝑂𝑀𝑀
𝐻𝐻 ,𝜎𝜎𝑂𝑂𝑂𝑂𝑀𝑀

𝐻𝐻  �, �𝜇𝜇𝑃𝑃𝑀𝑀
𝐻𝐻 ,𝜎𝜎𝑃𝑃𝑀𝑀

𝐻𝐻 �, �𝜇𝜇𝑆𝑆𝑀𝑀𝑀𝑀
𝐻𝐻 ,𝜎𝜎𝑆𝑆𝑀𝑀𝑀𝑀

𝐻𝐻 �, 

�𝜇𝜇𝑃𝑃𝐸𝐸
𝐻𝐻 ,𝜎𝜎𝑃𝑃𝐸𝐸

𝐻𝐻 �, �𝜇𝜇𝑆𝑆𝐸𝐸
𝐻𝐻 ,𝜎𝜎𝑆𝑆𝐸𝐸

𝐻𝐻 �, �𝜇𝜇𝑂𝑂𝑂𝑂𝐸𝐸
𝐻𝐻 ,𝜎𝜎𝑂𝑂𝑂𝑂𝐸𝐸

𝐻𝐻 �. 
2.32 
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Figure 2.8: Megaflex ToU tariff structure showing the weekday peak (red), standard (yellow) and off-peak 
(green) periods for the high and low energy demand seasons, respectively [37]. 

 
Figure 2.9: High demand season histogram, depicting the ToU period breakdown. 

 
Figure 2.10: Low demand season histogram, depicting the ToU period breakdown. 
 
 
 
 
 
 

Stellenbosch University https://scholar.sun.ac.za



 

29 
 

Table 2.3: Statistical ToU features vector parameters for the 6 ToU periods. 
ToU 
Period 

Period Times Features 

Low Demand Season 

Off-peak 
 

00:00 - 06:00, 22:00 - 24:00 𝜇𝜇𝑂𝑂𝑂𝑂
𝐿𝐿 , 𝜎𝜎𝑂𝑂𝑂𝑂𝐿𝐿  

Standard 
 

06:00 - 07:00, 10:00 - 18:00, 20:00 - 22:00 
 

𝜇𝜇𝑆𝑆
𝐿𝐿, 𝜎𝜎𝑆𝑆𝐿𝐿 

Peak 
 

07:00-10:00, 18:00-20:00 𝜇𝜇𝑃𝑃
𝐿𝐿 , 𝜎𝜎𝑃𝑃𝐿𝐿  

High Demand Season 

Off-peak 
 

00:00 - 06:00, 22:00 - 24:00 𝜇𝜇𝑂𝑂𝑂𝑂
𝐻𝐻 , 𝜎𝜎𝑂𝑂𝑂𝑂𝐻𝐻  

Standard 
 

09:00 - 17:00, 19:00 - 22:00 
 

𝜇𝜇𝑆𝑆
𝐻𝐻, 𝜎𝜎𝑆𝑆𝐻𝐻 

Peak 
 

06:00 - 09:00, 17:00 - 19:00 𝜇𝜇𝑃𝑃
𝐻𝐻, 𝜎𝜎𝑃𝑃𝐻𝐻 

 
Table 2.4: Statistical ToU features vector parameters for the 13 ToU periods for the Megaflex tariff. 

Low Demand Season High Demand Season 

ToU Period Features ToU Period Features 

Morning off-peak 
00:00 - 06:00 

𝜇𝜇𝑂𝑂𝑂𝑂𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑂𝑂𝑂𝑂𝑀𝑀

𝐿𝐿  Morning off-peak 
00:00 - 06:00 

𝜇𝜇𝑂𝑂𝑂𝑂𝑀𝑀
𝐻𝐻 ,𝜎𝜎𝑂𝑂𝑂𝑂𝑀𝑀

𝐻𝐻  

Morning standard 
06:00 - 07:00 

𝜇𝜇𝑆𝑆𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑆𝑆𝑀𝑀

𝐿𝐿  Morning peak 
06:00 - 09:00 

𝜇𝜇𝑃𝑃𝑀𝑀
𝐻𝐻 ,𝜎𝜎𝑃𝑃𝑀𝑀

𝐻𝐻  

Morning peak 
07:00 - 10:00 

𝜇𝜇𝑃𝑃𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑃𝑃𝑀𝑀

𝐿𝐿  Midday standard 
09:00 - 17:00 

𝜇𝜇𝑆𝑆𝑀𝑀𝑀𝑀
𝐻𝐻 ,𝜎𝜎𝑆𝑆𝑀𝑀𝑀𝑀

𝐻𝐻  

Midday standard 
10:00 - 18:00 

𝜇𝜇𝑆𝑆𝑀𝑀𝑀𝑀
𝐿𝐿 ,𝜎𝜎𝑆𝑆𝑀𝑀𝑀𝑀

𝐿𝐿  Evening peak 
17:00 - 19:00 

𝜇𝜇𝑃𝑃𝐸𝐸
𝐻𝐻 , 𝜎𝜎𝑃𝑃𝐸𝐸

𝐻𝐻  

Evening peak 
18:00 - 20:00 

𝜇𝜇𝑃𝑃𝐸𝐸
𝐿𝐿 , 𝜎𝜎𝑃𝑃𝐸𝐸

𝐿𝐿  Evening standard 
19:00 - 22:00 

𝜇𝜇𝑆𝑆𝐸𝐸
𝐻𝐻 , 𝜎𝜎𝑆𝑆𝐸𝐸

𝐻𝐻  

Evening standard 
20:00 - 22:00 

𝜇𝜇𝑆𝑆𝐸𝐸
𝐿𝐿 ,𝜎𝜎𝑆𝑆𝐸𝐸

𝐿𝐿  Evening off-peak 
22:00 - 24:00 

𝜇𝜇𝑂𝑂𝑂𝑂𝐸𝐸
𝐻𝐻 , 𝜎𝜎𝑂𝑂𝑂𝑂𝐸𝐸

𝐻𝐻  

Evening off-peak 
22:00 - 24:00 

𝜇𝜇𝑂𝑂𝑂𝑂𝐸𝐸
𝐿𝐿 , 𝜎𝜎𝑂𝑂𝑂𝑂𝐸𝐸

𝐿𝐿    

2.4 Conclusion: Data acquisition and processing  
Chapter 2 provides a detailed overview of the study regions and data sets used. The data processing 
methods are thoroughly described to ascertain full confidence in the resulting data sets used in the 
implementation of this framework. 
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Chapter 3 

 Clustering of renewable energy resource data 

3.1 Overview 
This section details the RE resource clustering method followed, which is implemented as the pre-
processing step to derive the input of the optimisation framework. The aim is to produce clustered wind 
and solar resource maps, which best represent the geographic areas for the underlying features and grid 
support capabilities. This section also entails a literature review of various clustering approaches used in 
similar RE resource clustering scenarios. A comparative study is implemented on the performance of 
various clustering algorithms using both temporal profiles and statistical distribution profiles derived 
from the wind and PV data sets. 

 
Figure 3.1: Flow diagram depicting the process for determining the ideal wind and solar power clustering 
methodologies. 

3.2 Literature review 
The rapid growth in global RE penetration levels has given rise to increased interest in strategies for 
mitigating the associated short-term to medium-term operational grid integration risks. The 
characterisation and optimal allocation of RE resources are of paramount importance in this context. 
Resource clustering and classification have received considerable attention in literature [56, 57, 58, 59]. 
However, limited work has been published on the use of resource clustering as an initial step for the 
optimal geographic allocation of RE generation capacity in medium-term to long-term grid integration 
studies. 

South Africa represents an example of an emerging market in the initial transition stage from a 
predominately fossil fuel-based energy scenario to an integrated generation fleet with a high penetration 
of RE. however, at present the current energy mix shows limited wind and PV resource integration [14]. 
Therefore, appropriate resource assessment and grid integration studies are of major importance to ensure 
a successful transition to the large-scale integration of RE. 
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In the absence of appropriate planning and resource management, high penetration levels of RE may lead 
to substantial undersupply or oversupply in certain demand periods [3, 4]. The demand profile exhibits 
well-defined daily and seasonal ToU periods, which translate into ToU tariff systems for large consumers 
and resellers. The planning and optimisation of RE resources, in the context of grid support, is therefore 
particularly important in ensuring a successful migration to a sustainable RE integration scenario. 

The optimised geographic allocation of large-scale RE resources requires meteorological data sets with 
sufficient geographic coverage and temporal resolution. Spatiotemporal wind and solar resource datasets 
with high temporal and spatial resolutions are readily available for the South African geographic region. 
However, the practical use of these large datasets for resource analysis and grid integration studies 
requires substantial analytical effort and computational power. These challenges can be mitigated by 
implementing data reduction techniques, such as clustering the constituent profiles into archetypical 
spatiotemporal categories [60]. Furthermore, clustered spatiotemporal resource data sets facilitate high-
level interpretation of the resource characteristics in the context of applications such as optimised 
geospatial capacity allocation [59], resource adequacy, forecasting and optimal dispatch [60]. 

Clustering of spatiotemporal data has been applied extensively in the context of RE resource 
classification, especially for wind resources. Consequently, the review of related works examines the 
application of clustering techniques implemented for the classification of RE resource data sets. 

Burlando et al. [58] implemented various clustering approaches, using combinations of agglomerative 
clustering methods and distance metrics, to classify mesoscale wind speed profiles. The data utilised in 
the investigation was collected from 11 weather stations located along the perimeter of the island of 
Corsica, for a period of three calendar years. This study yielded three distinct anemological regions, and 
8 regional wind regimes for the geographic area. It is shown that the clustered anemological regions 
correlate with established climatic zones of the island. Moreover, the derived wind regimes correlate 
with synoptically driven and thermally forced wind patterns in the area. 

Cassola et al. [59] proposed a methodology to minimise the cumulative variability of wind energy by 
optimising the location of wind energy plants. The study was implemented using wind data collected 
from 10 weather stations for a period of 3 calendar years for the island of Corsica. The data is clustered 
and mean-variance optimisation is performed on the clustered and unclustered datasets. The results from 
both optimisations show similar performance, which suggests that clustering is a feasible data reduction 
procedure for wind energy siting applications. 

Leenman and Phillipson [61] employed clustering as an initial data reduction step to derive several 
partitioned wind zones, before implementing a methodology for the optimal allocation of wind power 
capacity in the Netherlands to reduce transmission line losses. The study used wind data from 50 
meteorological stations, over a period of 10 years. The results of this investigation show a significant 
relation between wind farm siting and transmission line losses.  

Snel and Lundstedt [62] applied clustering on 25 years of solar wind data, using a Self-Organising Map 
(SOM). The study yielded clusters that are representative of events such as coronal mass ejections and 
solar holes. Berkovic [63] implemented a SOM clustering approach to derive distinct wind regimes for 
Israel using approximately 5 years of 10-minute averaged wind measurements from 53 meteorological 
stations. The resulting clusters showed high correlation with subjective and quantitative analyses in prior 
works. 

Yesilbudak [64] applied k-means clustering to partition monthly averaged wind speed data for 75 regions 
in Turkey. The performance of the squared Euclidean distance, Manhattan distance, Cosine similarity 
and Pearson distance metrics are compared in the investigation. It is concluded that the clustering results 
are useful for identifying the provinces with the best potential for wind energy generation. Furthermore, 
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based on silhouette coefficients, it is shown that the squared Euclidean metric delivers the best clustering 
performance. 

Pinto et al. [65] proposed a methodology to classify archetypal weather developments to assess potential 
variations in storm impacts in future decades using reanalysis data for the state of North Rhine-
Westphalia, Germany. The core of the methodology is centred on the use of principal component analysis 
and the k-means algorithm to classify the synoptic development conditions. The study yielded results 
that are consistent with those presented in similar studies. 

Dong [66] applied k-means clustering to group monthly weather patterns based on similarity, using daily 
reanalysis data spanning a 38-year period for the Southern Plains of the United States. The formulated 
clusters represent the typical weather regimes, where the results are assessed using a baseline frequency 
of occurrence of large-scale atmospheric circulations. The results show well formulated wind resource 
clusters using the novel approach when compared with the generic approach of subjectively assessing 
daily weather maps.  

Nahmmacher et al. [67] applied the hierarchical clustering algorithm for the grouping of historical days 
of the year displaying similar weather patterns. The number of clusters chosen is determined by 
calculating the sum of squared error between cluster centroids and all cluster members as a function of 
the number of clusters, otherwise known as the elbow point method. The daily clusters are obtained as 
the initial step in deriving and selecting representative days as power system model inputs. 

Overall, these studies support the concept of implementing clustering as an initial dimensionality 
reduction step to decrease the computational burden associated with optimisation studies involving the 
large-scale grid integration of RE.  

Temporal wind resource profiles are generally clustered based on averaged, unweighted similarity 
metrics [58, 61, 64], but it is recognised that 𝐿𝐿𝑝𝑝 norm distance metrics, such the Euclidean distance and 
Root Mean Square Error (RMSE), can produce poor performance for high dimensionality time-series 
clustering [60]. The importance of relatively short daily demand periods of high interest to system 
operations, such as peak periods, is furthermore poorly represented when clustering spatiotemporal wind 
power profiles using averaged-based similarity metrics. This can result in clusters with good similarity 
in terms of the overall time series observations but are sub-optimally constituted in the context of 
operational grid support criteria. 

Resource dataset clustering techniques are performed within this study to identify a set of 
characteristically similar geographic areas [68]. The clustering methodologies can be implemented for 
various, user specified, defining characteristics. Each clustering technique, regardless of the input factors, 
requires a predefined similarity/dissimilarity measure. Clustering also requires the derivation of the 
optimal number of clusters which most accurately describe the subdivided dataset.  

3.3 Methodology review 
This section compares various clustering methodologies to identify the method that best segregates and 
classifies the RE resource dataset, while reducing the data processing complexity and storage space 
required. This section will specifically focus on the clustering of raw and converted power time-series 
data as well as the statistical and model-based features extracted from the time-series data sets. 

The clustering methodologies compared include k-means clustering, partition around medoids (PAM) 
[69, 70], clustering large applications algorithm (CLARA) [71], fuzzy C means clustering [72, 73], 
agglomerative and divisive analysis clustering, as well as clustering using SOMs [74, 75].  
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A time series represents a set of dynamic observations which change chronologically as a function of 
time. This data is generally referred to as temporal data, which is often high dimensional data [76, 77]. 
When working with a temporal dataset, it is important to identify the similarity measures which are most 
appropriate for the chosen application. Since temporal data is usually noisy and includes multiple 
outliers, selecting the correct similarity measures is often a major challenge [78]. The whole sequence 
matching technique is a commonly used approach, which allows for the consideration of whole time 
series lengths during distance calculations [79]. Another approach is subsequence clustering, where a 
shorter segment of the whole time series is selected for clustering implementation.  

There are several clustering methods which identify different patterns within the data. These approaches 
can include recognising the dynamic changes or correlation patterns in the temporal data [80], as well as 
prediction and recommendation patterns based on the raw time series, often used in forecasting 
applications [81, 82, 83].  

In whole sequence clustering, three different approaches can be adopted, namely, the shape, feature or 
model-based approach. The shape-based approach is mostly used on the raw time series data, as its aim 
is to best match the shape between various observations within the time series. The feature-based 
approach is implemented on feature vectors which have been extracted as a representative of the original 
raw time series. This can be quantified as the statistical representation of the raw time series, rather than 
a temporal dataset. In the model-based approach, the raw time series is represented as a set of model 
parameters for each observation. However, this method shows a reduction in performance when the time 
series observations are close in proximity [84]. 

Before the clustering methodologies can be applied on the time series dataset, the concept of dimension 
reduction may be applied [85, 86, 87]. Dimension reduction reduces the memory allocation requirements. 
Computational complexity is also reduced when implementing the distance metric, which in turn 
increases the speed of the algorithmic clustering process [88]. Choosing the correct reduction 
methodology often determines the balance between computational complexity and representative data 
quality [89]. A large amount of research has been done on various time series dimensionality reduction 
techniques [90, 91, 88, 92, 93]. A common factor in these techniques is correctly selecting a method 
which ensures optimal end results. 

There are various similarity measures used on time series data, with the most common metrics being 
dynamic time warping, Pearson correlation and the Euclidean distance [94, 95, 96, 97].  

The Euclidean distance, 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦), is defined by the relationship [98] 

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦) = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  , 3.1 

where 𝑥𝑥 and 𝑦𝑦 denote two vectors of length 𝑛𝑛 within the dataset.  

The Pearson correlation distance, 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦), is defined by the relationship [98]  

𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) = 1 − ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖−𝑦𝑦�)

�∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

 , 3.2 

where 𝑥̅𝑥 and 𝑦𝑦� denote the means of 𝑥𝑥 and 𝑦𝑦, respectively. This correlation distance measures the linear 
relationship degree between elements 𝑥𝑥 and 𝑦𝑦. 

These distance metrics are selected based on approach, where the main approaches include finding 
similar series dataset instances based on time, shape or change in the dataset. The time-based approach 
focuses on the correlation of each time series for each time step, where examples of this approach include 
Fourier transforms or Piecewise Aggregate Approximation [99]. Similarity based on shape is a similarity 

Stellenbosch University https://scholar.sun.ac.za



 

34 
 

metric which is independent of the time points and focuses mainly on the similarities in data patterns. 
Research shows that this method displays enhanced results when compared with the time-based method 
[100].  

3.3.1 Clustering algorithms 

The clustering algorithms applied and compared in this study include the k-means algorithm, PAM, 
CLARA, the Agglomerative Hierarchical algorithm, a model-based clustering algorithm and the SOM 
approach.  

When formulating the clustering algorithms mathematically, the un-clustered dataset, P, can be 
represented by the expression [101] 

𝑷𝑷 = {𝑝𝑝𝑖𝑖, 𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁𝑖𝑖}, 3.3 

where 𝑝𝑝𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ element and 𝑁𝑁𝑖𝑖 denotes the number of observations in the set. The set of 
clusters, 𝐶𝐶, can be represented by the expression  

𝑪𝑪 = {𝑪𝑪𝒋𝒋|𝑪𝑪𝒋𝒋 ⊂ 𝑷𝑷, 𝑗𝑗 = 1, 2, 3, … ,𝑁𝑁𝑗𝑗},  3.4 

where 𝑪𝑪𝒋𝒋 comprises of elements within the set 𝑷𝑷, and it denotes the set of 𝑁𝑁𝑗𝑗 clusters. 

The set of observations within a cluster, 𝑪𝑪𝒋𝒋, can be represented by the expression 

𝑪𝑪𝑗𝑗 = {𝐶𝐶𝑗𝑗𝑗𝑗|𝐶𝐶𝑗𝑗𝑗𝑗 ⊂  𝑃𝑃, 𝑗𝑗 = 1, 2, 3, … ,𝑁𝑁𝑗𝑗𝑗𝑗},  3.5 

where C𝑗𝑗𝑗𝑗 and 𝑁𝑁𝑗𝑗𝑗𝑗 denote the k𝑡𝑡ℎ observation within the j𝑡𝑡ℎ cluster and the number of observations, 
respectively in cluster set 𝐶𝐶𝑗𝑗. The set of centroids associated with the clusters, 𝑾𝑾, is represented by the 
expression  

𝑾𝑾 = {𝑊𝑊𝑗𝑗|𝑊𝑊𝑗𝑗 ∈  𝐶𝐶𝑗𝑗, 𝑗𝑗 = 1, 2, 3, … ,𝑁𝑁𝑗𝑗},  3.6 

where W𝑗𝑗 denotes the j𝑡𝑡ℎ centroid [101]. 

In the k-means partitioning clustering algorithm each observation of the set 𝑷𝑷 is iteratively assigned to a 
cluster 𝑪𝑪𝑗𝑗 with a characteristically similar centroid, 𝑊𝑊𝑗𝑗. The initially appointed cluster assignments of 
each element, 𝑝𝑝𝑖𝑖 , remains unchanged until convergence occurs. The number of clusters for the k-means 
method must be predefined and methods such as the elbow point method and information criterion  
approach can be used to determine this predefined number [102, 103].  

The CLARA algorithm is based on the PAM method, which has been adapted for use on large datasets 
[104]. The quality of the selected medoids is determined by the average dissimilarities between each 
clustered point and its corresponding medoid. This quality measure is identified as the medoid rating 
function. The set of medoids, 𝑴𝑴, can be represented by the mathematical set expression 

𝑴𝑴 = {𝑚𝑚𝑗𝑗, 𝑗𝑗 = 1, 2, 3, … ,𝑁𝑁𝑗𝑗}, 3.7 

where 𝑚𝑚𝑗𝑗 denotes the j𝑡𝑡ℎ medoid [101]. The rating function, 𝑅𝑅�mj,𝐶𝐶𝑗𝑗𝑗𝑗�, is defined by the mathematical 
relationship [104] 

𝑅𝑅�𝑚𝑚𝑗𝑗,𝐶𝐶𝑗𝑗𝑗𝑗� =  ∑
𝑑𝑑� 𝐶𝐶𝑗𝑗𝑗𝑗,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑚𝑚𝑗𝑗,𝑝𝑝𝑖𝑖��

𝑁𝑁𝑗𝑗𝑗𝑗𝐶𝐶𝑗𝑗𝑗𝑗 , 3.8 
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where 𝑑𝑑 �𝐶𝐶𝑗𝑗k, rpst�𝑚𝑚𝑗𝑗,𝑝𝑝𝑖𝑖�� represents the dissimilarity between two dataset elements 𝐶𝐶𝑗𝑗k and 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑚𝑚𝑗𝑗,𝑝𝑝𝑖𝑖� and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑚𝑚𝑗𝑗, 𝑝𝑝𝑖𝑖� represents the medoid closest to an element 𝑝𝑝𝑖𝑖. By using this measure 
after suitable iterations, the cluster with the smallest dissimilarity sum is retained. 

The agglomerative clustering method is often referred to as a bottom-up approach, whereby each element 
is initialised as its own cluster. Thereafter, similar clusters are merged with successive levelling within 
the process, starting from the bottom of the dendrogram until the top. The dendrogram is a tree-like 
structure that represents all elements within the dataset. This iterative process continues until one large 
cluster, representing the entire dataset, is reached [105]. 

Model-based clustering, classification, and density estimation is based on Gaussian mixture modelling. 
In the un-clustered set of 𝑷𝑷, the distribution of each element is represented by a probability density 
function through a finite mixture model of 𝑝𝑝𝑖𝑖 components. The probability density function, 𝑓𝑓(𝑝𝑝𝑖𝑖 ,𝜓𝜓), is 
represented by the mathematical expression [106] 

𝑓𝑓(𝑝𝑝𝑖𝑖 ,𝜓𝜓) = ∑ 𝜋𝜋𝑘𝑘𝑓𝑓𝑘𝑘(𝑝𝑝𝑖𝑖,𝜃𝜃𝑘𝑘)𝑃𝑃
𝑘𝑘=1 , 3.9 

where 𝜓𝜓 represents the mixture model parameters, given by 

𝜓𝜓 = {𝜋𝜋1, … ,𝜋𝜋𝑃𝑃−1,𝜃𝜃1, … ,𝜃𝜃𝑃𝑃}. 3.10 

𝑓𝑓𝑖𝑖(𝑝𝑝𝑖𝑖,𝜃𝜃𝑘𝑘) denotes the 𝑘𝑘𝑡𝑡ℎ component density for the observation 𝑝𝑝𝑖𝑖, where the parameter vector and 
𝜃𝜃𝑘𝑘,( 𝜋𝜋1, … ,𝜋𝜋𝑃𝑃−1) are the mixing probabilities, where 

𝜋𝜋𝑘𝑘 > 0 3.11 

and 

∑ 𝜋𝜋𝑘𝑘 = 1𝑃𝑃
𝑘𝑘=1 . 3.12 

The Gaussian finite mixture model is fitted by an Expectation Maximisation (EM) algorithm. The EM 
algorithm is used in conjunction with statistical models, whereby it iteratively finds the maximum 
possibility of parameters with hidden latent variables [107]. 

A SOM is a subclass of Artificial Neural Networks (ANN). SOMs are utilised for dimensionality 
reduction of large datasets and produce a low-dimensional representation of the input [108]. The SOM 
network typically implements two nodal layers, namely, the data input layer and a two-dimensional 
Kohonen layer. The input layer consists of multiple input vectors, which are mapped to the neurons in 
the Kohonen layer. The association between a neuron and the set of inputs are defined by a weight vector, 
which determines the spatial location of the neuron in the two-dimensional Kohonen layer space. During 
training, the weights are updated to change the neuron positions to define well formulated clusters. 

A SOM is trained through an unsupervised training process, where the input data are fed to the network 
through the processing nodes of the input layer. The input vector, 𝑿𝑿, can be described mathematically by 
the vector set [109] 

𝑿𝑿 = [𝑥𝑥𝑖𝑖|𝑥𝑥𝑖𝑖𝜖𝜖 ℝ2 , 𝑖𝑖 = 1,⋯ ,𝑀𝑀], 3.13 

where 𝑥𝑥𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ input signal and 𝑀𝑀 denotes the number of input signals. 

The first step in the SOM training process is the initialisation of the neural network weights, 𝑤𝑤𝑗𝑗, 
represented mathematically by the expression  

𝑤𝑤𝑗𝑗 = �𝑤𝑤𝑗𝑗𝑗𝑗,   𝑖𝑖 = 1, 2,3,⋯ ,𝑁𝑁�, 3.14 
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where 𝑤𝑤𝑗𝑗𝑗𝑗 denotes the weight associated with the 𝑖𝑖𝑡𝑡ℎ input signal and the 𝑗𝑗𝑡𝑡ℎ neuron. During the iterative 
training process, the node weights are adjusted according to the topological relations represented by the 
input data. With each step a winning neuron is selected using the Euclidean distance, 𝑑𝑑𝑗𝑗, represented by 
the expression 

𝑑𝑑𝑗𝑗 = ��(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑗𝑗𝑗𝑗)2
𝑀𝑀

𝑖𝑖=1

. 3.15 

The winning neuron is the one closest to the randomly selected input vector. The surrounding weights 
are then updated using the formula   

∆𝑤𝑤𝑗𝑗𝑗𝑗 = 𝜂𝜂(𝑡𝑡) ∗ 𝑇𝑇𝑗𝑗,𝐼𝐼(𝑥𝑥)(𝑡𝑡) ∗ (𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑗𝑗𝑗𝑗), 3.16 

where 𝐼𝐼(𝑥𝑥) represents the winning neuron and 𝜂𝜂(𝑡𝑡) denotes the learning rate, which determines how fast 
the weights are updated. The topological neighbourhood function 𝑇𝑇𝑗𝑗,𝐼𝐼(𝑡𝑡) 

defines the weight vectors update 
relationship between the neighbouring neurons and the winning neuron, and is represented 
mathematically by the function [109] 

𝑇𝑇𝑗𝑗,𝐼𝐼(𝑡𝑡) 
 =  𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆𝑗𝑗,𝐼𝐼(𝑡𝑡) 
2

2𝜎𝜎(𝑡𝑡)2 
� , 𝜎𝜎(𝑡𝑡) < 1, 3.17 

where the 𝑆𝑆𝑗𝑗,𝐼𝐼(𝑡𝑡) represents the lateral Euclidean distance between neurons. Variable 𝜎𝜎 𝑡𝑡 represents a 
monotonically decreasing scalar function of the time step 𝑡𝑡. 

3.3.2 Optimal number of clusters  

Unsupervised partitioning algorithms require a priori specification of the number of clusters. A range of 
methodologies have been proposed to determine the optimal number of clusters for the various clustering 
algorithms [110, 111, 112]. However, it is generally acknowledged that the existing metrics for 
determining the appropriate number of clusters are subjective. Since all partitioning methods require an 
a priori definition of the number of clusters 𝑁𝑁𝑗𝑗, it is important to explore methods that can accurately 
and algorithmically determine this value. Two methods for determining the number of clusters are 
explored, namely, the elbow point method and silhouette analysis [103, 67, 66]. 

The widely used heuristic elbow point method [113] provides a graphic representation of the average 
sum-of-squared distances between intra-cluster samples versus the number of clusters. The method relies 
on visual interpretation of the benefit derived by increasing the number of clusters. The optimal number 
of clusters is indicated by an inflection point in the curve. This point denotes the transition from a 
significant to a marginal improvement in intra-cluster variance. 

The silhouette width method determines the distance of separation between resulting clusters. This is 
typically expressed as a graphical display of the distance between each point within one cluster, to each 
point between the adjacent clusters. This metric lies in the range [-1, +1], where +1 represents a larger 
distance between points within adjacent clusters, 0 indicates a close or overlapping proximity and 
negative values indicate a suboptimal cluster assignment of the observations. The silhouette width 
algorithm is a function of 𝑁𝑁𝑗𝑗clusters,  which is similar to the elbow point method. However, for each 
value of 𝑁𝑁𝑗𝑗, the average silhouette of the observation is calculated. The cluster number with the 
maximum average silhouette coefficient is then equal to the optimal number of clusters. 
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The average silhouette width, 𝑆𝑆, is defined by the mathematical relationship [114] 

𝑆𝑆 = 1
𝑀𝑀𝑖𝑖 ∑ ∑

(𝑏𝑏𝐶𝐶𝑗𝑗𝑗𝑗−𝑎𝑎𝐶𝐶𝑗𝑗𝑗𝑗)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝐶𝐶𝑗𝑗𝑗𝑗 ,𝑏𝑏𝐶𝐶𝑗𝑗𝑗𝑗)𝐶𝐶𝑗𝑗𝑗𝑗∈𝐶𝐶𝑗𝑗
 𝑀𝑀𝑗𝑗
𝑗𝑗=1 , 3.18 

where 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑗𝑗 denote the number of observations and number of clusters, respectively, and 𝑎𝑎𝐶𝐶𝑗𝑗𝑗𝑗 and 
𝑏𝑏𝐶𝐶𝑗𝑗𝑗𝑗 denote the mean intra-cluster distance and nearest inter-cluster distance, respectively, for 
observation 𝐶𝐶𝑗𝑗𝑗𝑗.  

3.3.3 Cluster validation metrics 

The various validation methods that are used to compare the performances of the various clustering 
algorithms, including the average silhouette width, the Dun index, the Davies-Bouldin criterion and the 
Calinski-Harabasz index. 

The silhouette width is a clustering assignment measure based on the separation and compactness of the 
clusters. This measure ranges between the interval [-1,1], with 1 denoting perfect clustering results and 
poorly formed clusters observe a silhouette width near -1 [115]. The silhouette coefficient for the 𝑖𝑖𝑡𝑡ℎ 
element in the dataset for a given a cluster, 𝑆𝑆𝑖𝑖, is defined by the mathematical relationship [115, 116] 

𝑆𝑆𝑖𝑖 = (𝑏𝑏𝑖𝑖−𝑎𝑎𝑖𝑖)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖,𝑏𝑏𝑖𝑖)

 , 3.19 

where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 denote the mean intra-cluster distance and nearest inter-cluster distance, respectively, 
for each 𝑖𝑖𝑡𝑡ℎ element.  

The Dunn index is a measure based on cluster separation and compactness, which ranges between [0:∞], 
and should be maximised for optimal results. The Dunn index is represented by the mathematical 
expression [117] 

𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1,…,𝑁𝑁𝑗𝑗

� 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=𝑖𝑖+1,…,𝑁𝑁𝑗𝑗

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑐𝑐𝑖𝑖,𝑐𝑐𝑗𝑗�
𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚=1,…,𝑁𝑁𝑗𝑗
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑚𝑚)�

�� , 3.20 

where  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗� = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝑐𝑐𝑖𝑖,𝑦𝑦∈𝑐𝑐𝑗𝑗

{𝑑𝑑(𝑥𝑥,𝑦𝑦)}  𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥,𝑦𝑦∈𝑐𝑐𝑖𝑖

{𝑑𝑑(𝑥𝑥, 𝑦𝑦)}. 3.21 

N𝑗𝑗 denotes the number of clusters, 𝑐𝑐𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ cluster and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑚𝑚) represents the intra-cluster 
diameter of a cluster 𝑚𝑚. 

The Calinski-Harabasz index is a measure of the average inter-cluster and intra-cluster sum of squares, 
which should be maximised for optimal cluster assignment [118]. The Calinski-Harabasz index can be 
described by the mathematical relationship 

𝐶𝐶𝐶𝐶 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆𝐵𝐵)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆𝑤𝑤)

∙ 𝑛𝑛𝑝𝑝−1
𝑛𝑛𝑝𝑝−𝑘𝑘

 , 3.22 

where 𝑆𝑆𝐵𝐵 denotes the inter-cluster scatter matric, 𝑆𝑆𝑤𝑤 denotes the intra-cluster scatter matrix and 𝑛𝑛𝑝𝑝 is the 
number of clusters sampled, with k denoting the number of clusters. 

The Davies-Bouldin criterion [119] is a method often used to determine the optimal number of clusters, 
which is based on an intra-cluster to inter-cluster distance ratio. Since this metric is a measure of cluster 
compactness, it can also be used to validate the cluster results. The Davies-Bouldin index, DB, is 
mathematically described as  
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𝐷𝐷𝐷𝐷 = 1
𝑁𝑁
∑ 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗≠𝑖𝑖
�𝐷𝐷𝑖𝑖,𝑗𝑗�𝑁𝑁

𝑖𝑖=1 , 3.23 

where 𝐷𝐷𝑖𝑖,𝑗𝑗  is the intra-cluster to inter-cluster distance ratio between the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ clusters. The Davies-
Bouldin criterion is optimal for the smallest index value output. 

3.4 Wind resource clustering implementation  
This section details the clustering implementation process followed to achieve realistic and insightful 
resource cluster maps for the input of the optimisation framework. In this section, an initial study is 
executed to determine the ideal resource clustering algorithm to apply for the desired implementation. 
Once the ideal clustering methodologies have been identified, the clustering process is implemented for 
the temporal wind power dataset. Thereafter, statistical distributions of the resultant temporal wind power 
profiles are derived for a predefined set of daily ToU periods. These distributions are translated to ToU 
feature vectors, which are clustered using the best preforming algorithm. 

Figure 3.2 shows an overview of the clustering methodology proposed in this work. The input dataset of 
mesoscale wind speed profiles is converted to power profiles, which are normalised relative to a wind 
turbine rating of 3.3 MW, with the single turbine power curves are detailed in Table 2.2.  
 

 
Figure 3.2: Overview of the proposed clustering methodology. 

3.4.1 Wind resource cluster methodology performance evaluation  

This section explores the implementation of various clustering algorithms for two targeted input 
approaches for the clustering of wind power resource datasets. The various clustering methods are 
explored and compared using four main evaluation criteria, namely, execution time, the Calinski-
Harabasz criterion, the Davies-Bouldin criterion and the silhouette width index. Table 3.1 compares the 
various clustering methodologies based on the four evaluation criteria for a temporal resource input 
dataset. The k-means algorithm shows a superior execution time. The SOM approach shows superior 
results according to both the Davies-Bouldin criterion and the silhouette width index, however, the 
difference between the k-means, PAM and SOM results are marginal. 

Table 3.2 compares the various clustering methodologies based on the four evaluation criteria, for a ToU 
feature-based resource input dataset. For this approach, the k-means algorithm shows superior results for 
all performance metrics. Therefore, to ensure uniformity across the clustering implementation, the k-
means algorithm is selected for both the temporal and statistical methods.  
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Table 3.1: Comparison of the performance evaluation metrics calculated for the temporal cluster approach. 
Algorithm Execution time [seconds] Calinski-Harabasz Davies-Bouldin  Silhouette width 

K-means 75.500 527.724 1.712 0.3565 
PAM  983.850 547.030 1.733 0.3563 

CLARA 223.240 515.457 1.912 0.3252 

Agglomerative 13152.010 316.276 1.951 0.2984 

Diana 6252.030 316.276 1.951 0.2984 

SOM 26986.860 543.029 1.685 0.3842 

 
Table 3.2: Comparison of the performance evaluation metrics calculated for the ToU feature-based approach. 
Algorithm Execution time [seconds] Calinski-Harabasz Davies-Bouldin  Silhouette width 

K-means 0.098 2779.761 1.098 0.4505 
Model 0.498 1202.049 2.682 0.0765 

PAM  7.907 2776.699 1.149 0.4175 

CLARA 0.230 2594.237 1.204 0.3998 

Agglomerative  5.200 2402.371 1.224 0.3794 

Diana 162.250 2303.231 1.243 0.3725 

SOM 4.347 2650.274 1.276 0.3866 

3.4.2 Cluster formations obtained with temporal wind power profiles 

In this section, the clustered results are presented for the implementation of the k-means algorithm, using 
the squared Euclidean distance metric, for the temporal wind power input dataset.  

To implement the clustering process, a priori selection of the appropriate number of clusters for the 
classification of the eleven REDZs is required. A novel hybrid elbow point and silhouette width method 
is implemented to identify the optimal number of clusters. Figure 3.3 depicts the initial number of clusters 
range, chosen between the 2 and 20. The elbow point method is implemented for this initial range, 
resulting in a graphical inflection point from which a second, smaller range is determined. This is 
depicted in Figure 3.3, where a piecewise linear function is superimposed on the elbow line-plot to 
determine the reduced range of cluster numbers. The graph suggests an optimal number of clusters in the 
range between 10 and 12. The average silhouette widths for each number within this range is computed 
to determine the optimal number of clusters. These average silhouette widths are depicted in Figure 
3.4(a), which suggests that the appropriate choice for the number of clusters is ten. This is supported by 
the silhouette widths shown in Figure 3.4(b) for the individual cluster members. Few cluster members 
depict negative silhouette widths, which is indicative of optimal classification. 
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Figure 3.3: Elbow plot of the total intra-cluster sum of squares versus the number of clusters for clustering the 
temporal wind power profiles of all REDZs using the k-means algorithm. 

  

(a) (b) 

Figure 3.4: Silhouette widths for clustering the temporal profiles of all REDZs using the k-means algorithm: (a) 
Average silhouette width versus the number of clusters for the cluster range suggested by the elbow point 
method, (b) Individual silhouette widths for 10 clusters. 

Figure 3.5 shows the cluster distribution obtained by clustering the temporal wind power profiles of all 
REDZs into 10 clusters using the k-means algorithm. Overall, the clusters align with the geographic 
regions represented by the individual REDZs. However, the cluster formations associated with the 
individual REDZs exhibit a low degree of dispersion and granularity. Most REDZs reflect a highly 
homogenous character in the sense that the associated cluster formations consist of a single or low 
number of different clusters. The cluster map for the Springbok REDZs for instance, shown in Figure 
3.6, depicts a single cluster ranging from a coastal to inland region, despite a wide range in elevation 
levels.  
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Figure 3.5: Cluster distribution results obtained by clustering the temporal wind power profiles over all REDZs. 

 
Figure 3.6: Cluster distribution obtained by clustering the temporal wind power profiles using the k-means 
algorithm, overlayed onto the elevation map of the Springbok REDZs. 

3.4.3 Cluster formations obtained with the statistical wind power feature vectors 

This section describes the design, implementation and performance evaluation of a wind resource 
classification methodology that aligns with operational power balance in the context of a ToU 
framework. The key research question addressed in this section focuses on comparing the performance 
of classical spatiotemporal clustering [58, 61, 64] with a novel feature-based clustering approach. In this 
approach, the features are defined in terms of the statistical properties of the spatiotemporal wind power 
profiles for a given set of daily and seasonal ToU periods. In this context, it is recognised that the resource 
characteristics and grid impact of wind generation profiles can be interpreted with reference to the daily 
and seasonal cycles exhibited by the demand profiles, and that some ToU periods are more important 
than others.  
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The results are presented for the wind resource associated with the South African Renewable Energy 
Development Zones, using a mesoscale spatiotemporal wind atlas dataset as the resource input. The 
results obtained by clustering the ToU feature vectors, using the k-means algorithm, are compared with 
results delivered by clustering the temporal power profiles. More particularly, the geographical cluster 
distributions obtained with the two methodologies are compared by interpreting the statistical properties 
of the clusters in the context of temporal grid support. 

The translation of the temporal power profiles to ToU feature vectors reduces the dimensionality of the 
spatiotemporal dataset significantly, i.e., from 175 296 wind power observations per spatial coordinate 
to a total of 12 feature values per spatial coordinate. These features consist of the standard deviation 𝜎𝜎 
and mean 𝜇𝜇 of the temporal wind power profiles for the peak, standard and off-peak periods for the high 
and low demand periods, summarised in Table 2.3. 

Figure 3.7 shows a density scatterplot of the 𝜇𝜇,𝜎𝜎 feature pairs defined in Table 2.3 for all of the 
normalised temporal wind power profiles. The extracted statistical parameters vary over a considerable 
range, such that 𝜇𝜇 varies from 0.0733 to 0.7754 and 𝜎𝜎 varies from 0.1660 to 0.4585, respectively. This 
spread is indicative of a diverse range of wind resource characteristics for the different ToU periods, 
which may be leveraged in siting optimisations for grid support objectives. 

 
Figure 3.7: Density scatterplot of the mean and standard deviation of the normalised wind power profiles for the 
daily ToU periods. The dark blue regions reflect the lowest densities, while the red regions reflect the highest 
densities. 
Figure 3.8 depicts the initial number of clusters range, namely, between the 2 and 20. The elbow point 
method is implemented for clustering the ToU feature vectors, with results suggesting an optimal number 
of clusters in the range between 10 and 12. The average silhouette widths shown in Figure 3.9(a) for this 
range suggests that 10 clusters is an appropriate choice for the optimal number of clusters. This is 
supported by the individual silhouette widths shown in Figure 3.9(b), where 8 of the 10 clusters comprise 
of a minor percentage of members with negative silhouette widths. 
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Figure 3.8: Elbow plot of the total intra-cluster sum of squares versus the number of clusters for clustering the 
ToU feature vectors of all REDZs using the k-means algorithm. 

  

(a) (b) 

Figure 3.9: Silhouette widths for clustering the ToU feature vectors of all REDZs using the k-means algorithm:  
(a) Average silhouette width versus the number of clusters for the cluster range suggested by the elbow point 
method, (b) Individual silhouette widths for 10 clusters. 
 

Figure 3.10 depicts the results obtained by clustering the ToU feature vectors for all REDZs into 10 
clusters using the k-means algorithm. The cluster formations associated with the individual REDZs 
exhibit a much higher degree of dispersion and granularity compared to the result shown in Figure 3.5 
for the temporal profiles. The cluster distribution shown in Figure 3.11 for the Springbok REDZ, for 
instance, includes 10 different clusters, while this region is represented by only 1 cluster using the 
temporal clustering approach, shown in Figure 3.6. 

Overall, it is clear that the two methodologies deliver distinctly different results, especially in terms of 
the granularity of the resultant cluster formations. This may be of importance in the use of clustering as 
a resource classifier in studies aimed at the optimal geospatial allocation of wind generation capacity. 

Figure 3.11 provides geographic depictions of all eleven REDZs clustered and overlayed onto the wind 
speed resource map for the South African region, depicted in Figure 2.2. The graphic images depict 
strong correlation patterns between the ToU feature based clustering results and the underlying wind 
profile patterns. This depicts a significant result, as the ToU feature based approach significantly 
decreases the dimensionality of the input resource dataset as well as increases the correlation between 
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the allocated clusters and the underlying geographic and climatic features. The formulated clusters also 
define regions which increase alignment with the ToU energy profiles, which will greatly increase the 
accuracy of the final optimisation results to support RE plant placement for grid support objectives. 

Figure 3.13 depicts the resultant average daily wind power profiles associated with the (a) annual, (b) 
high and (c) low demand seasons over the five-year temporal span for the temporal wind power cluster 
input profiles. Figure 3.14 depicts the resultant average daily wind power profiles associated with the (a) 
annual, (b) high and (c) low demand seasons over the five-year temporal span for the ToU feature-based 
cluster input profiles. The profiles are averaged over the 5-year period and depict distinct variations in 
the output results when comparing both methodologies. The averaged high and low demand season 
graphs are plotted over the peak, standard and off peak ToU periods. 

 
Figure 3.10: Cluster distribution results obtained by clustering the ToU feature vectors over all REDZs. 

 
Figure 3.11: Cluster distribution obtained by clustering the ToU feature vectors of a zoomed in elevation map 
for the Springbok REDZs using the k-means algorithm. 
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Figure 3.12: The clustered profiles plotted as an overlay onto the average wind speed plot for South Africa 
based on the ToU input vectors. 

 

(a) Annual period 
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(b) High Demand Season 

 

(c) Low Demand season 

Figure 3.13: The clustered daily wind power profiles depicted for the (a) annual, (b) high and (c) low demand 
seasons using the temporal clustering approach. 

 

 

(a) Annual Period 
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(b) High Demand Season 

 

(c) Low Demand Season 

Figure 3.14: The clustered daily wind power profiles depicted for (a) annual, (b) high and (c) low demand 
seasons using the ToU feature-based clustering approach. 

3.4.4 Statistical comparison and analysis 

Statistical comparisons of the cluster formations are performed for the temporospatial and ToU feature-
based approaches. This is achieved by comparing the means of the wind power profiles associated with 
the individual clusters using standard boxplots. In the granularity of the plots, the overall mean wind 
power of each cluster is indicated by a red dot within each boxplot, the median of each mean cluster is 
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indicated by the centre horizontal line, and the bottom and top edges of the boxes indicate the 25th and 
75th percentiles, respectively. The whiskers extend to the extreme data points, excluding the outliers, 
which are indicated by the tail symbols depicted outside the whisker ranges. The results are presented 
for the wind power profiles of the full five-year temporal span of the input dataset. 

Figure 3.15(a) depicts boxplots of the means of the wind power profiles associated with the individual 
clusters, averaged over the five annual periods. On average, the clusters obtained with the ToU feature 
vectors have lower intra-cluster variance of the mean power of each cluster member compared to the 
clusters obtained with the temporal profiles. Figure 3.15(b) and Figure 3.15(c) show boxplots of the 
means of the wind power profiles associated with the individual clusters, averaged over the high demand 
season and low demand seasons, respectively. On average, for both demand seasons, the clusters 
obtained with the ToU feature vectors have lower intra-cluster variance of the mean power for each 
cluster member compared to the clusters obtained with the temporal profiles. The high demand season 
exhibits higher mean power values compared to the annual period and low demand season for both 
clustering approaches. However, the mean wind power of the profiles associated with the individual 
clusters vary considerably more for the high demand season compared to the low demand season.  

Table 3.3 compares the mean wind power of each cluster for the average annual, high demand season 
and low demand season periods. The ToU feature-based approach delivers the cluster with the highest 
overall means for all cases, namely, cluster 10. 

 

(a) Annual period 

 

(b) High demand season 
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(c) Low demand season 

Figure 3.15: Boxplots of the normalised mean power of the profiles associated with the individual clusters 
obtained by clustering the temporal profiles and ToU feature vectors of all REDZs, for the (a) annual, (b) high 
demand season and (c) low demand season averaging intervals. 

 
Table 3.3: Mean wind power of the clusters obtained by clustering the temporal profiles and ToU feature vectors 
of all REDZs, for the annual, high demand season and low demand season averaging intervals. 

Cluster 
Number 

Temporal Statistical 

Annual HDS LDS Annual HDS LDS 

1 0.385 0.388 0.384 0.332 0.314 0.338 
2 0.412 0.460 0.396 0.444 0.581 0.399 

3 0.291 0.275 0.296 0.448 0.479 0.437 

4 0.389 0.427 0.376 0.265 0.241 0.273 

5 0.424 0.559 0.379 0.442 0.491 0.425 

6 0.368 0.351 0.374 0.382 0.501 0.341 

7 0.437 0.469 0.426 0.351 0.390 0.338 

8 0.409 0.469 0.389 0.387 0.390 0.386 

9 0.317 0.284 0.328 0.428 0.386 0.443 

10 0.470 0.578 0.433 0.511 0.626 0.472 
 

Figure 3.16 depicts the boxplots of the means of the wind power profiles associated with the individual 
clusters for the (a) peak, (b) standard and (c) off peak ToU periods, averaged over the high demand 
season. For each ToU period, when comparing the temporal vs ToU feature based approaches, the ToU 
feature based method produces better overall cluster results with each cluster formation showing lower 
variations in the mean wind power profiles as well as higher overall mean wind power profiles for each 
cluster. Figure 3.17 depicts the boxplots of the means of the wind power profiles associated with the 
individual clusters for the (a) peak, (b) standard and (c) off peak ToU periods, averaged over the low 
demand season.  

Overall, the results presented in Figure 3.16 and Figure 3.17 show that the clusters can assist in 
identifying appropriate geographic regions to optimise energy yield and variability targets for specific 
demand seasons and ToU periods. The clusters obtained with the ToU feature vectors generally rate 
superior compared to the clusters obtained with temporal profiles, especially in the sense that the means 
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of profiles associated with the individual clusters have lower variance. Clustering by ToU periods using 
the ToU feature vectors effectively partitions locations into clusters with distinctive seasonal wind 
characteristics. Cluster 10 obtained with the ToU feature vectors, as shown in Figure 3.16 for instance, 
has the highest normalised mean power for all averaging periods. The ToU feature vectors also capture 
the cluster with the lowest normalised mean power over the two demand seasons, namely, cluster 4 
shown in Figure 3.16 for all ToU periods in the high demand season. Table 3.4 compares the mean wind 
power of the clusters for the peak ToU period for the high demand season and low demand season 
averaging periods. The ToU feature vectors deliver the clusters with the highest overall means for both 
cases, namely, cluster 10. 

The derived cluster maps have application in the optimal spatial allocation of wind generation in the 
context of grid support. It is evident from the results that clustering based on ToU statistical features 
presents an opportunity to leverage the temporal diversity of spatiotemporal wind resources. 

 

(a) Peak Periods 

 

(b) Standard Periods 
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(a) Off peak Periods 

Figure 3.16: High demand season Boxplots of the normalised mean power in the (a) peak, (b) standard and (c) 
off peak periods of the profiles associated with the individual clusters obtained by clustering the temporal 
profiles and ToU feature vectors of all REDZs.  

 
(a) Peak Periods 

 

(b) Standard Periods 

Stellenbosch University https://scholar.sun.ac.za



 

53 
 

 

(c) Off Peak Periods 

Figure 3.17: Low demand season Boxplots of the normalised mean power in the (a) peak, (b) standard and (c) 
off peak periods of the profiles associated with the individual clusters obtained by clustering the temporal 
profiles and ToU feature vectors of all REDZs. 
 

Table 3.4: Mean wind power over the peak ToU period of the clusters obtained by clustering the temporal 
profiles and ToU feature vectors of all REDZs, for the high demand and low demand season averaging intervals. 

Cluster 
Number 

Temporal Statistical 

HDS LDS HDS LDS 

1 0.361 0.377 0.284 0.318 
2 0.463 0.344 0.585 0.394 

3 0.254 0.289 0.473 0.411 

4 0.403 0.341 0.220 0.269 

5 0.555 0.364 0.484 0.377 

6 0.327 0.345 0.493 0.324 

7 0.455 0.392 0.373 0.326 

8 0.462 0.404 0.366 0.357 

9 0.260 0.296 0.364 0.414 

10 0.579 0.445 0.632 0.461 
 

Table 3.5 summarises the performance of the ToU feature based approach and the temporal input 
approach across various metrics. Comparison of the input dataset sizes shows a significant reduction in 
the ToU feature input.  

Table 3.5: Comparison of the cluster evaluation metrics for the ToU features and the temporal wind power 
profiles inputs. 
Input dataset Input dataset 

dimensions 
Execution 
time [seconds] 

Calinski-
Harabasz 

Davies-
Bouldin  

Silhouette 
width 

ToU features 12 x 4470 0.0977  2779.761 1.098 0.451 

Temporal wind power  175 296 x 4470 101.160  527.724 1.712 0.356 
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Since the ToU feature based approach achieved significantly superior results, this approach is chosen as 
the optimal clustering methodology to be used for this research application.  

3.4.5 Wind power clustering conclusion 

Characterising and classifying spatiotemporal wind resources by clustering of the temporal wind power 
profiles awards equal weights to the contribution of the inter- and intra- cluster distance metrics for all 
hours. This inadvertently places a high importance on the long off-peak periods during the late evening 
and early morning, compared to the relatively shorter standard and peak ToU periods in the daily demand 
profile. The contribution of the relatively long low demand season to these distance metrics, similarly, 
outweighs the contribution for the shorter high demand season. However, from a system operations 
perspective the energy yield and variance of the cumulative wind power generation profile are interpreted 
with reference to the demand profile. Demand profiles are variable, and exhibit daily and seasonal 
characteristics, such as peak ToU periods where the operational risks are typically most severe.  

This section explores the translation of spatiotemporal wind power profiles into feature vectors defined 
in terms of the statistical properties of these profiles for a predefined set of ToU periods. The proposed 
approach allows for spatiotemporal wind resource data to be translated to spatial cluster formations, with 
due cognisance of the temporal characteristics of the demand profile. The resulting clustered resource 
maps are of value for the siting of wind generation capacity such that the power generation profiles 
deliver optimal grid support in the context of the daily and seasonal residual load profile. Furthermore, 
for the case study of the spatiotemporal wind resource dataset associated with the South African REDZs, 
the translation to feature vectors reduces the dimensionality of the dataset to be clustered significantly, 
i.e., from 175 296 15-minute wind power observations for each of the 4470 spatial coordinates to 12 ToU 
feature values per spatial coordinate. 

The cluster distributions obtained with the ToU feature vectors are compared with distributions delivered 
by clustering the spatiotemporal profiles using the k-means algorithm. This delivers a significant result 
in the sense that the distributions obtained with the ToU feature vectors across the eleven geographical 
REDZs, for the same number of clusters, show significantly higher granularity and diversity. It is 
concluded that the clustering of ToU feature vectors, compared to the clustering of raw temporal profiles, 
distinguishes more finely between the daily and seasonal temporal properties of neighbouring geographic 
locations. Overall, the results show that the power profiles associated with the individual clusters 
obtained by the feature vector approach have similar or higher means and similar or lower standard 
deviations compared to the clusters obtained with spatiotemporal profiles. 

The ToU based clustering approach has potential as a data reduction pre-processing step in optimising 
the site locations of future wind energy plants for optimal grid support in the context of the diurnal and 
seasonal characteristics of the aggregated load profile. The ToU periods used in the case study can be 
readily amended to represent the operating characteristics of different systems, or incorporate different 
criteria, such as time-dependent transmission constraints, real-time pricing considerations, etc. 

3.5 Solar resource clustering implementation  
In this section a similar clustering implementation process is followed to achieve realistic and insightful 
solar resource cluster maps for the input of the optimisation framework. Table 3.6 and Table 3.7 show 
the results of a performance evaluation study completed for various clustering algorithms. In this section, 
the clustering process is implemented for a temporal solar power dataset. Thereafter, statistical 
distributions of the resultant temporal solar power profiles are derived for a predefined set of daily ToU 
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periods. These distributions are translated to ToU feature vectors, which are clustered using the best 
performing algorithm.  

Figure 3.18 shows an overview of the solar clustering methodology proposed in this work.  
 

 

 
Figure 3.18: Overview of the proposed solar clustering methodology. 

3.5.1 Solar resource cluster methodology performance evaluation  

This section explores the implementation of various clustering algorithms for two targeted input 
approaches for the clustering of solar power resource datasets. The various clustering methods are 
explored and compared using four main evaluation criteria. Table 3.6 and Table 3.7 summarise the 
results, with the main evaluation criterion including the algorithm execution time, the Calinski-Harabasz 
criterion, the Davies-Bouldin index, the silhouette width index. Table 3.6 compares the results for the 
instance where the temporal solar power profiles are used as the input variables. Table 3.7 compares the 
results for the instance where the 13 ToU feature profiles are used as input, summarised in Table 2.4. 

The k-means algorithm shows a superior execution time for both instances. The PAM approach shows 
superior results according to the silhouette width index. However, the difference between the PAM, 
CLARA and Agglomerative Hierarchical algorithm results are marginal. 

Table 3.6 compares the various clustering methodologies based on the four evaluation criteria, for a ToU 
feature-based resource input dataset. For this approach, the PAM algorithm shows superior results for 
the silhouette width index. Agglomerative Hierarchical clustering performs well according to the Davies-
Bouldin and silhouette width metrics, although the results are close to that of PAM and k-means 
algorithms for the silhouette width and Calinski-Harabasz. The PAM method is also similar in value to 
the Agglomerative Hierarchical method for the Davies-Bouldin criteria. The Agglomerative Hierarchical 
clustering method has a very long execution time when compared with the shortest execution time, which 
is for the k-means algorithm. 

Table 3.7 shows that the k-means algorithm achieves superior results over all performance metrics. To 
ensure uniformity across the clustering implementation, the k-means algorithm is selected for both the 
temporal and statistical methods. 
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Table 3.6: Comparison of the cluster evaluation metrics for the temporal solar power profiles inputs. 
Algorithm Execution time [seconds] Calinski-Harabasz Davies-Bouldin  Silhouette width 

K-means 8.955 763.640 1.511 0.4314 
PAM  190.759 772.253 1.469 0.4396 

CLARA 48.554 739.207 1.476 0.4170 

Diana 7998.720 611.437 1.473 0.4070 

Agglomerative 6455.510 772.345 1.469 0.4397 

Fuzzy C 298.001 1051.724 2.036 0.3155 

SOM 7663.004 726.057 1.493 0.4115 
 

Table 3.7: Comparison of the cluster evaluation metrics for the solar power 13 ToU features profile inputs. 
Algorithm Execution time [seconds] Calinski-Harabasz Davies-Bouldin  Silhouette width 

K-means 0.030 4484.118 0.679 0.6928 
Model 0.570 2172.934 1.735 0.4410 

PAM  4.835 4519.905 0.849 0.6766 

CLARA 0.100 4413.404 0.867 0.6684 

Diana 144.780 2451.240 0.956 0.5369 

Agglomerative 2.000 4295.248 0.832 0.6487 

Fuzzy C  0.594 4297.365 1.007 0.5904 

SOM 5.440 4552.645 0.836 0.6826 

3.5.2 Cluster formations obtained with temporal solar power profiles 

In this section, the results are presented for the implementation of the k-means algorithm, using the 
squared Euclidean distance metric, for the temporal solar power input dataset. The dataset comprises of 
4470 spatial locations, with each location representing a five-year temporal span, namely, from 2009 to 
2013, with an hourly temporal resolution.  

To implement the clustering process, a priori selection of the appropriate number of clusters for the 
classification of the eleven REDZs is required. The hybrid elbow point and silhouette width method is 
again implemented in order to identify the optimal number of solar clusters. In the final all-encompassing 
model, the ideal number of solar clusters is also determined as a function of the final optimisation 
objectives. 

Figure 3.19 depicts the initial range of the number of clusters, which is selected between the cluster range 
2 and 20. The elbow point method is implemented for the initial range, resulting in a graphical inflection 
point, from which a second smaller range for the number of clusters is determined. This is depicted in 
Figure 3.19, where piecewise linear functions are superimposed on the elbow plot in order to determine 
the reduced range of cluster numbers. The graph suggests an optimal number of clusters in the range 
between 8 and 10. The average silhouette widths for each number within this range is computed to inform 
the choice of the optimal number of clusters. These average silhouette widths are depicted in Figure 
3.20(a), which suggests that the appropriate choice for the number of clusters is 10. This is supported by 
the silhouette widths shown in Figure 3.20(b) for the individual cluster members. Few cluster members 
depict negative silhouette widths, which is indicative of optimal classification. 
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Figure 3.19: Elbow plot of the total intra-cluster sum of squares versus the number of clusters for clustering the 
temporal profiles of all REDZs using the k-means algorithm. 

 

  

(a) (b) 

Figure 3.20: Silhouette widths for clustering the temporal profiles of all REDZs using the k-means algorithm: 
(a) Average silhouette width versus the number of clusters for the cluster range suggested by the elbow point 
method, (b) Individual silhouette widths for 10 clusters. 
 

Figure 3.21 shows the cluster distribution obtained by clustering the temporal solar power profiles of all 
REDZs into 10 clusters using the k-means algorithm. Overall, the clusters align with the geographic 
regions represented by the individual REDZs. The cluster formations associated with the individual 
REDZs exhibit a low degree of dispersion and granularity. Most REDZs reflect a highly homogenous 
character in the sense that the associated cluster formations lie within a single REDZs.  
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Figure 3.21: Cluster distribution obtained by clustering the temporal solar power profiles of all REDZs into 10 
clusters. 

3.5.3 Cluster formations obtained with the statistical solar power feature vectors 

This section describes the design, implementation and performance evaluation of a solar resource 
classification methodology that aligns with operational power balance in the context of a ToU 
framework. In this approach, the features are defined in terms of the statistical properties of the 
spatiotemporal solar power profiles for a given set of daily and seasonal ToU periods. In this context, it 
is recognised that the resource characteristics and grid impact of solar generation profiles can also be 
interpreted with reference to the daily and seasonal cycles exhibited by the demand profiles, and that 
some ToU periods are more important than others.  

The results are presented for the solar resource power profiles associated with the South African REDZs, 
using a mesoscale spatiotemporal solar power resource dataset as the input. The results obtained by 
clustering the ToU feature vectors using the k-means algorithm are compared with results delivered by 
clustering the temporal power profiles using the k-means algorithm. More particularly, the geographical 
cluster distributions obtained with the two methodologies are compared by interpreting the statistical 
properties of the clusters in the context of temporal grid support. 

The translation of the temporal power profiles to ToU feature vectors reduces the dimensionality of the 
spatiotemporal dataset significantly, i.e., from 43 824 hourly solar power observations per spatial 
coordinate to a total of 26 feature values per spatial coordinate. These features consist of the standard 
deviation 𝜎𝜎 and mean 𝜇𝜇 of the temporal solar power profiles for the peak, standard and off-peak periods, 
during the morning, midday and evening periods for the high and low demand periods, summarised in 
Table 2.4. The daily ToU feature-based profiles derived for the solar resource are divided into the 
morning, midday and evening periods because the solar bell curve shows important movement patterns 
throughout the morning, midday and evening periods dependent on the time of year.  

Figure 3.22 depicts the initial number of clusters range, namely, between the 2 and 20. The elbow point 
method is implemented for clustering the ToU feature vectors, with results suggesting an optimal number 
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of clusters in the range between 10 and 12. The average silhouette widths shown in Figure 3.23(a) for this 
range suggests that 10 clusters is an appropriate choice for the optimal number of clusters. This is 
supported by the individual silhouette widths shown in Figure 3.23(b), where 8 of the 10 clusters comprise 
of a minor percentage of members with negative silhouette widths. 

 

Figure 3.22: Elbow plot of the total intra-cluster sum of squares versus the number of clusters for clustering the 
ToU feature vectors of all REDZs using the k-means algorithm. 

 

  

(a) (b) 

Figure 3.23: Silhouette widths for clustering the ToU feature vectors of all REDZs using the k-means algorithm: 
(a) Average silhouette width versus the number of clusters for the cluster range suggested by the elbow point 
method, (b) Individual silhouette widths for 10 clusters. 

Figure 3.24 shows the cluster distribution obtained by clustering the ToU feature vectors of all REDZs 
into 10 clusters using the k-means algorithm. The cluster formations associated with the individual 
REDZs exhibit a slightly increased degree of dispersion and granularity compared to the result shown in 
Figure 3.21 for the temporal profiles.  

Figure 3.25 provides geographic depictions of all eleven REDZs clustered using the ToU approach and 
overlayed onto the solar GHI resource map for the South African region, depicted in Figure 2.3. The 
graphic images depict correlation patterns between the ToU feature based clustering results and the 
underlying solar profile patterns. The solar resource profile is vastly different to that of the wind resource 
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profile, whereby the solar production curve is centred around the midday point. Due to this, the solar 
profiles display less variability compared to the wind power profiles and cluster variations are mainly 
determined by the movement of the solar bell curve. It is observed that the clustered profiles for both 
methods depict low levels of granularity, which is accounted to the nature of the geographically tied 
resource. The solar GHI does not change as sporadically as the wind speed profiles in various regions. 
However, the clustered ToU feature-based implementation does show merit in the large dataset reduction 
as well as capturing finer gradient resolution change over the change in geographic GHI as shown in 
Figure 2.3. This can be seen more clearly in Figure 3.25 for Springbok and Beaufort West, REDZ 8 and 
11, respectively. Figure 3.25, for both REDZs, shows clear changes in the underlying GHI intensity and 
this translates to different cluster assignemnts in these areas. This shows that the ToU clustering 
algorithm idetifies small changes within the PV profile and assigns the clusters accordingly. For example, 
Figure 3.25(a) depicts a definite drop in solar GHI in one specific area and this area is awarded a different 
cluster assignment, namely, cluster 8. The fluctuation changes in GHI could be due to changes in 
elevation, slope, roughness, terain or general surface topology. 

In Figure 3.25, specific zones are highlighted based on the areas which depict a change in the average 
solar GHI per REDZs, such as, Springbok and Stormberg. This does not apply for the temporally 
clustered profiles, depicted in Figure 3.21, since all zones comprise of only one clustered profile, despite 
the change in solar GHI within REDZs, which is depicted in Figure 2.3. 

The Springbok REDZ comprises of 1 cluster for the temporally clustered case, namely, cluster 6. The 
Springbok REDZ predominately comprises of two clusters for the ToU feature-based approach, namely, 
clusters 1 and 9. Comparing these averaged profiles per cluster for both clustering methods, cluster 6, 
shown in Figure 3.26(a), depicts a highest mean power for the daily temporal profile for the averaged 
cluster. The cluster 9 for the ToU feature-based approach, shown in Figure 3.27(a), also depict the highest 
mean values, however cluster 9 depicts a higher mean and a higher standard deviation than cluster 1. 
Cluster 1, shown in Figure 3.27(a), depicts a lower mean with a lower standard deviation compared to 
cluster 9. This shows that the ToU feature based approach was able to capture finer granularity within 
this REDZs, resulting in clusters which better represent the zones solar GHI profile. 

 
Figure 3.24: Cluster distribution obtained by clustering the ToU feature vectors of all REDZs into 10 clusters. 
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(a) Springbok REDZ 8 

 
(b) Beaufort West REDZ 11 

Figure 3.25: The clustered profiles plotted as an overlay onto the global horizontal irradiation image for South 
Africa based on the ToU input vectors for REDZs 8 and 11. 
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(a) Annual Period 

 

(b) High Demand Season 
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(c) Low Demand Season 

Figure 3.26: The clustered daily solar power profiles depicted for the (a) annual, (b) high and (c) low demand 
seasons using the temporal clustering approach. 

 

 

(a) Annual Period 
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(b) High Demand Season 

 

(c) Low Demand Season 

Figure 3.27: The clustered daily solar power profiles depicted for the (a) annual, (b) high and (c) low demand 
seasons using the ToU feature-based clustering approach. 

3.5.4 Statistical comparison and analysis 

Statistical comparisons of the cluster formations are performed for the temporospatial and the 13 ToU 
feature-based approaches. This is achieved by comparing the means of the solar power profiles associated 
with the individual clusters using standard boxplots. In the granularity of the plots, the overall mean solar 
power of each cluster is indicated by a red dot within each boxplot, the median of each mean cluster 
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member profiles is indicated by the centre horizontal line, and the bottom and top edges of the boxes 
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the extreme data points, 
excluding the outliers, which are indicated by the tail symbols depicted outside the whisker ranges. The 
results are presented for the solar power profiles of the full five-year temporal span of the input dataset. 

Figure 3.28(a) shows boxplots of the means of the solar power profiles associated with the individual 
clusters, averaged over the five annual periods. On average, the clusters obtained with the ToU feature 
vectors depict the cluster with the highest mean value, where the mean values for all clusters have a 
higher combined mean power. Figure 3.28(b) and Figure 3.28(c) show boxplots of the means of the solar 
power profiles associated with the individual clusters, averaged over the high demand season and low 
demand seasons, respectively. In Figure 3.28(b) for ToU clustering approach, the high demand season 
depicts 5 clusters which show a mean of over 0.2 pu power, while the temporal clusters only formulate 
four clusters with a mean above 0.2 pu. The same is seen in Figure 3.28(c), where four clusters show 
mean values above 0.22 pu and only 3 are depicted in using the temporal approach. This shows a bettering 
in the formulation of the clusters with similar characteristics.  

 

(a) Annual period 

 

(b) High Demand Season 
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(c) Low Demand Season 

Figure 3.28: Boxplots of the normalised mean power of the solar profiles associated with the individual clusters 
obtained by clustering the temporal profiles and ToU feature vectors of all REDZs, for the (a) annual, (b) high 
demand season and (c) low demand season averaging intervals. 

Figure 3.29 and Figure 3.30 depict the (a) morning peak, (b) midday standard and (c) evening peak ToU 
periods for the high and low demand seasons, respectively. These periods were chosen since the solar 
bell curve is most dominant during these times periods. In Figure 3.29(c) and Figure 3.30(c), both ToU 
clustering approaches depict higher mean values, specifically in clusters 1 and 9. When examining Figure 
3.24, it is seen that these clusters both belong to the Springbok region, which was divided into two main 
clusters for the ToU clustering approach and is only represented by one cluster for the temporal approach. 
Although overall the two clustering methods show similar outputs, the ToU clustering approach shows 
notably higher means in the peak ToU periods. This is a significant result, since the clustering approach 
takes cognisance of the periods which are of most value from a System Operators’ point of view. The 
ToU feature based approach also significantly reduces the number of input variables per location, and 
approach is still able to accurately formulate clusters without degradation of the underlying data 
characteristics. 

 

(a) Morning Peak Period 
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(b) Standard Period 

 

(c) Evening Peak Period 

Figure 3.29: High demand season boxplots of the normalised mean power in the (a) peak, (b) standard and (c) 
off peak periods of the profiles associated with the individual clusters obtained by clustering the temporal 
profiles and ToU feature vectors of all REDZs.  

 

(a) Morning Peak Period 
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(b) Standard Period 

 

(c) Evening Peak Period 

Figure 3.30: Low demand season Boxplots of the normalised mean power in the (a) peak, (b) standard and (c) 
off peak periods of the profiles associated with the individual clusters obtained by clustering the temporal 
profiles and ToU feature vectors of all REDZs. 
 

Table 3.8 compares the ToU feature based approach with the temporal input approach across various 
metrics. Comparison of the input dataset sizes shows a significant reduction for the ToU feature-based 
input, with the evaluation metrics yielding superior outcomes for the ToU feature input set for all 
instances. 

Table 3.8: Comparison of the cluster evaluation metrics for the ToU features and the temporal solar power 
profiles inputs. 
Input dataset Input dataset 

dimensions 
Execution 
time [seconds] 

Calinski-
Harabasz 

Davies-
Bouldin 

Silhouette 
width 

ToU features 26 x 4470 5.8645 5129.3971 0.7417 0.6866 
Temporal profiles 43 824 x 4470 190.7596 772.2525 1.4686 0.4396 

3.5.5 Solar power clustering conclusion 

This section explores the translation of spatiotemporal solar power profiles into feature vectors defined 
in terms of the statistical properties of these profiles for a predefined set of ToU periods. The proposed 
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approach allows for spatiotemporal solar resource data to be translated to spatial cluster formations, with 
due cognisance of the temporal characteristics of the demand profile. The resulting clustered resource 
maps are of value for the siting of solar generation capacity such that the power generation profiles 
deliver optimised complementarity with the solar resource profiles in the context of the daily and 
seasonal residual load profile. Furthermore, for the case study of the spatiotemporal solar resource dataset 
associated with the South African REDZs, the translation to feature vectors reduces the dimensionality 
of the dataset to be clustered significantly, i.e., from 43 824 hourly solar power observations for each of 
the 4470 spatial coordinates to 26 ToU feature values per spatial coordinate. 

Overall, the results presented in Figure 3.29 and Figure 3.30 show that the clusters can assist in identifying 
appropriate geographic regions to optimise energy yield and variability targets for specific demand 
seasons and ToU periods. The clusters obtained with the ToU feature vectors generally rate superior 
compared to the clusters obtained with temporal profiles. Clustering by ToU periods using the ToU 
feature vectors effectively partitions locations into clusters with distinctive seasonal solar characteristics. 
For instance, Cluster 1 obtained with the ToU feature vectors, as shown in Figure 3.30(c), has the highest 
normalised mean power for all evening peak periods. 

The derived cluster maps have application in the optimal spatial allocation of solar generation in the 
context of grid support. It is evident from the results that clustering based on ToU statistical features 
presents an opportunity to leverage the temporal diversity of spatiotemporal solar resources 

3.6 Conclusion: Resource data clustering 
The cluster distributions obtained with the ToU feature vectors are compared with distributions delivered 
by clustering the spatiotemporal profiles using the k-means algorithm. This delivers a significant result 
in the sense that the distributions obtained with the ToU feature vectors across the eleven geographical 
REDZs, for the same number of clusters, show significantly higher granularity and diversity. It is 
concluded that the clustering of ToU feature vectors, compared to the clustering of raw temporal profiles, 
distinguishes more finely between the daily and seasonal temporal properties of neighbouring geographic 
locations. Overall, the results show that the power profiles associated with the individual clusters 
obtained by the feature vector approach have similar or higher means and similar or lower standard 
deviations compared to the clusters obtained with spatiotemporal profiles. 

The ToU based clustering approach has potential as a data reduction pre-processing step in optimising 
the locations of future wind and solar energy plants for optimal grid support in the context of the diurnal 
and seasonal characteristics of the aggregated load profile. The ToU periods used in the case study can 
be readily amended to represent the operating characteristics of different systems, or incorporate different 
criteria, such as time-dependent transmission constraints, real-time pricing considerations, etc. 
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Chapter 4 

 Optimised spatial capacity allocation framework 

Chapter 4 provides a detailed view of the optimised spatial capacity allocation framework, where a 
comprehensive systematic literature review is completed to determine where the proposed model fits 
into the existing body of knowledge. The remainder of the chapter details the implementation of the 
optimisation framework proposed. 

4.1 Systematic literature review: Factors influencing the proposed 
model 

This section details factors influencing the formulation of a RE integration strategy to optimise the 
geospatial capacity allocation of wind and PV resources. 

4.1.1 Systematic literature review methodology 

The aim of this research is to develop an optimisation framework which addresses the following research 
question: 

Can a comprehensive RE geospatial capacity allocation framework be developed that incorporates 
a risk-based approach to grid support, taking cognisance of real-world regional siting constraints, 
using geospatial wind and solar resource clusters as the input dataset? 

The expected outcome of this research is to develop a model which determines the number of 
temporospatial clusters an area should be subdivided into, and then statistically determine the optimal 
geospatial capacity allocation of the RE fleet to the clustered zones, based on a risk adverse approach. 

It is vital to examine, understand and critically engage with the literature that forms the body of 
knowledge pertaining to the chosen research question. In this study the aim is to conduct a systematic 
literature review to determine what relevant research publications exist. The main literature search is 
done through three scientific research databases, namely, the Scopus database1, Engineering Village 
database2 and IEEE Xplore Digital Library3. 

The literature search aims to identify a body of work that shows similarity to and supports the proposed 
optimised geospatial capacity allocation framework, while simultaneously identifying the research gaps. 
This is defined in the following reformulated research question: 

Does a model / framework / roadmap exist that determines the optimised geospatial capacity 
allocation of clustered wind and solar regions for grid power balance. 

 
1 Scopus is an abstract and citation database introduced by Elsevier. It includes publications from various fields namely, social sciences, earth 

sciences, physical sciences and life sciences. 
2 Engineering Village is a research database with high-quality, cross-disciplinary content, which enables researchers to perform thorough 

and effective literature reviews as well as analyse the research landscape and solve problems. 
3 IEEE Xplore is a research database for discovery and access to conference proceedings, journal articles, technical standards, and related 

materials on topics, such as electrical and electronic engineering, computer science, and related fields. 
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The keywords searched are derived from this research question. The selected keywords are searched for 
through all paper titles, abstracts and research keywords within the three literature databases. 

The search line is as follows: 

 (“renewable energy” OR RE) AND (wind AND solar) AND (geographic OR sit*4 OR location* OR 
plant* OR farm*) AND (planning OR allocation) AND (optim*) AND (capacity OR mix) AND (peak 
OR load OR demand OR supply OR balance)5 

The Scopus database found 95 record matches, of which 51 are journal articles, 35 are conference articles 
and 9 are other sources, i.e., conference reviews, reviews and book chapters. The Engineering Village 
database found 132 record matches, of which 70 are journal articles, 52 are conference articles and 10 
are other sources, i.e., conference proceedings, book chapters and articles in press. IEEE Xplore digital 
library found 73 recorded matches, of which 11 are journal articles and 62 are conference articles. With 
an emphasis on novelty, the journal articles are made the focus of the literature review, while the 
conference articles and other literature are briefly scanned for novel contribution. Throughout all 
databases there is a total of 133 journal articles matches, of which 40 are duplicate studies that were 
removed. This results in 93 journal records which match the keywords for the formulated research 
question. 

In the initial record screening of the 93 journal articles, 22 documents are deemed irrelevant and 
excluded. This leaves 71 document abstracts showing varied similarities to the proposed model. The 71 
full-text articles are then thoroughly assessed for eligibility and a further 26 full-text articles are excluded 
with reference to the exclusion criteria. The criteria used for document exclusion include research where 
the optimisation objectives vary significantly compared to the proposed method. The exclusion criteria 
also includes isolated and off-grid related research, review journals or reviews of country specific energy 
practices, research highly dependent on storage optimisation, wind or solar resources seen only as a 
peripheral constraint, and studies that focus on the transmission network level optimisation of the RE 
resources. Figure 4.1 depicts a flow diagram of the systematic literature review process including the 
resource identification, screening, eligibility and inclusion stages. 

 
4 Inclusion operator, used to find keywords in research which include any variations in the word, which may be filled into the inclusion 

operator space. E.g., optim* includes optimise/optimise, optimal, optimisation, etc. 
5 Search line including logical operators AND and OR, used to incorporate various key words and phrases into the literature content found. 

The inclusion of brackets and logical operators allows for the multiple variations of the same concept to be used, as to widen the search 

space and avoid exclusion of important literature based on varying terminology.  
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Reports excluded (n = 26) 

Exclusion criteria: large variation in the 
optimisation objectives, isolated/off-grid 
research, reviews/country specific energy 
practices, research highly dependent on 
storage optimisation, wind or solar RE 
factors seen only as a peripheral/added 
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Figure 4.1: Flow Diagram of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) implemented in the systematic 
literature review.  
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4.1.2 Review on the existing body of knowledge  

4.1.2.1 Overview 
Renewable energy sources represent a clean energy alternative to the commonly used fossil fuel energy 
counterpart. Many countries have set medium to long term planning targets to reach 100 % renewable 
energy generation systems [120, 121, 122, 123]. However, the integration of this green energy alternative 
has given rise to increased variability and uncertainty in the power generation mix [124]. Consequently, 
the resulting residual load profile, i.e., national demand less the renewable generation component, 
requires increased ramping of conventional generation as well as leveraging of ancillary services to 
maintain power balance [125].  

It is generally accepted that geographic dispersion and correlated geographic siting of renewable energy 
generation capacity reduces the variability of the aggregated power generation profile [126]. The 
stochastic nature of the renewable generation sources can thus, to an extent, be managed through optimal 
geographic capacity allocation and site dispersion of renewable energy generation units. 

RE resource integration studies have been conducted worldwide. Studies have been published for Poland 
[127], India [128], The USA [129, 130, 131, 132],  Australia [133, 134] and Europe as a whole [135, 
136]. The literature shows that no detailed study has been reported for the planning and integration of 
the renewable wind and solar energy fleet in South Africa. 

Although numerous studies aimed at geospatial optimisation of the siting and sizing of renewable plants 
have been reported in literature, many of these show limitations, such as the following: 

− Complementarity of the RE sources is optimised without inclusion of the demand profile. 

− Capacity is allocated geographically for predefined locations rather than optimising the spatial 
distribution, or the implementation is defined for a limited geographic area. 

− Optimise temporally to minimise the RE generation and demand mismatches. 

− Minimise correlation coefficient-based objectives.  

− Optimisation is based on minimising cost rather than targeting the characteristics of the RE 
generation profiles. 

− Consider energy storage and other ancillary services to predominately meet the demand shortfall 
/ peak demand periods. 

The following sections detail the studies assessed based on these defined limitations. 

4.1.2.2 Studies investigating complementarity without the demand profile 
Several of the studies aimed at exploring the nature of the complementary relationships between 
spatiotemporal wind and PV power generation profiles focus predominantly on minimising the variance 
of the resultant RE generation profile [137, 138, 6, 139, 140, 141, 142, 143]. This is done without 
considering the temporal characteristics of the demand profile. The studies confirm that complementarity 
between the wind and solar resources can be utilised to create an aggregated generation output that 
reduces the effect of the stochastic nature of the RE resource. The complementary relationships can be 
formulated according to the combination of technologies, in this case wind and solar, as well as by 
considering multiple geospatial locations with varied climatic and temporal characteristics  [138, 6, 139, 
144, 145].  

An early investigation by Takle & Shaw [137] examines the complementary behaviour of the wind and 
solar resources on an annual and seasonal basis, in Central Iowa USA. The results show high resource 
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complementarity on an annual basis and only slight complementarity on the daily scale. Widén [138] 
considers the correlation between large scale integration of wind and solar power, noting the effects of 
geographic resource dispersion in Sweden. The results show negative correlation between these 
resources on all time scales, resulting in a significant smoothing effect on the aggregated output of 
dispersed generation units. Hoicka & Rowlands [6] explore whether the combination of solar and wind 
resources in selected locations serve to reduce the variability of the power production in Ontario. The 
study further investigates whether the reduction in variation can be further improved by dispersing the 
resources geographically, as well as when the number of solar and wind resource locations is increased. 
The results of this study show that the combination of resources increases the smoothness of the resulting 
generation profile, and that increased geographic dispersion and an increased number of generating units 
further reduces the output variability. Santos-Alamillos et al. [139] completed a similar study, where the 
complementarity of wind and CSP power is assessed. The results of the study confirm that combining 
geographically diversified resources results in spatiotemporal power balancing. 

Other complementarity studies include the optimised ratio of the combined resources [146, 142, 140]. 
Han et al. [140] considers the complementarity of wind power, photovoltaic power and hydropower, 
while assessing the optimal ratio of wind and solar resources for power system planning in North China. 
The complementarity of these resources is investigated by examining the fluctuations of the individual 
and combined power generation profiles. Ren et al. [146], similarly, assess the complementarity of the 
wind and solar resources in China, with the aim to reduce the output fluctuations associated with RE 
generation. The relationship between the wind and solar resources is determined using Kendall 
correlation, and it is shown that optimising the complementarity of the wind and solar resource fleet 
decreases the risk of days with zero output power from the variable RE sources, thereby increasing the 
reliability of the power supply. The return levels of hourly decrease in the wind and solar power output 
are also significantly decreased by introducing complementary RE sources, which reduces the need for 
ancillary services. Zhang et al. [142] propose a multi-level framework to assess the synergy of the 
regional wind and solar resources in Shandong province, China. The framework initially employs 
clustering to reduce the input data set dimensions while capturing the temporal and spatial attributes of 
the underlying data set. The cluster sets are used as the input data to capture the complementarity of the 
wind and solar resources. The mutual complementarity between the wind and solar resources is 
determined and defined by a local synergy coefficient. A matrix of the anti-correlation patterns of the 
regional resources is determined and used as the input variable for the clustered region formations. The 
use of clustered inputs in [142] shows some similarity to the methodology proposed in this study. 
However, the predominant focus of Zhang et al. is to assess the complementary nature of the wind and 
solar resource, and demand is not included in the study. 

Koivisto et al. [144] investigates the variance of the aggregated renewable power generation profile by 
optimising the capacity allocations and siting of onshore wind, offshore wind and PV plants for Northern 
Europe. The incorporation of PV, in conjunction with the geographical dispersion of the RE plants, is 
shown to contribute to a large reduction in the variability of the RE generation. It is furthermore 
determined that the optimisation aids in significantly reducing the probability of very high and very low 
aggregated generation, while reducing large ramping requirements. This is achieved with the 
minimisation of a single statistical parameter, namely, the standard deviation of the aggregated renewable 
power. Jerez et al. [145] identifies optimal locations for the siting of wind and solar RE plants, such that 
the variability of the output generation is decreased while meeting specified efficiency and stability 
conditions. The implementation of this optimisation model is applied over in the Iberian Peninsula in 
Spain. In this approach the demand profile is not considered, but rather the RE resource variability is 
minimised for increasing percentages of the demand profile. 

Stellenbosch University https://scholar.sun.ac.za



 

75 
 

Overall, the above complementarity studies confirm that RE resource diversification and geographic 
dispersion can be leveraged to decrease the variability of the aggregated wind and solar power generation 
profile. This represents the basis for optimisation of the RE generation fleet by taking cognisance of the 
geographic placement and sizing of RE generation units. Several further studies have been conducted to 
extend this principle by incorporating the demand profile. A large amount of work has been published 
based on the optimised siting and sizing of renewable energy resources with consideration of the demand 
profile. 

4.1.2.3 Studies investigating complementarity considering the demand profile 
Assessing the complementarity of the RE generation profile, including the demand, can be implemented 
using predefined locations, rather than optimising the RE spatial distributions [123, 147, 148, 129]. This 
differs from the proposed framework which includes the optimisation of the RE plant placements.  

Stoyanov et al. [147] preselected 8 sites to investigate the complementary nature of wind and solar 
resources with reference to the demand in Bulgaria. The study noted that the optimal RE resource 
configuration is highly dependent on the energy potential at a given location, as well as the correlation 
between the wind and solar resources. Jurasz & Mikulik [149] conducted a similar spatial and temporal 
complementarity study for wind and solar resources in Poland. The study targets seven preselected wind 
and seven preselected solar sites, where the correlation coefficient is determined for each time step 
between the RE resource profiles, as well as the demand profile. The objective of the optimisation method 
employed in the study is to minimise fluctuation in the daily energy yield. The resultant aggregated 
generation profile is then further investigated with the view to determine the effects of the spatial 
distribution of the RE sources. The study concluded that increasing the distance between sites increases 
the correlation coefficient between the temporal RE profiles, which increases the smoothness of the 
resulting generation output. 

Slusarewicz & Cohan [129] studied the complementarity of wind and solar resources for various 
locations in Texas. Five wind sites and seven solar sites, representing existing RE plants, are considered 
in the study. The wind and solar resources are studied using two reliability metrics, namely, firm capacity 
as introduced by Archer & Jacobson [150],  and peak average capacity percentage. The capacity factors 
are computed annually for each site from 2007 to 2013, as well for the summer and winter peak hours. 
The RE resources are compared over the hourly periods which coincide with peak demand periods, to 
identify sites that show complementarity with instances of peak demand. The results yield a high 
percentage of negative correlation when comparing wind and solar resources directly. When comparing 
the RE capacity with the peak demand periods, the solar resource shows high correlation with the peak 
demands in summer, and the chosen wind resource locations show high positive correlation with the 
peak demand in winter. All the above studies consider a limited numbers of RE site locations. In this 
context, the contribution by Slusarewicz & Cohan acknowledge that there is a need to increase the 
geographic scope, with the view to identify the exact locations to maximise complementarity and derive 
the optimised resource capacity mix.  

Da Luz & Moura [123] introduce a novel method for determining the optimal complementary mix of 
wind, hydro, biomass and solar resources to meet the projected hourly and monthly demand profile in 
Brazil in 2050. The optimisation is specifically aimed at determining a scenario where 100 % of the 
demand is serviced with RE sources, without experiencing loss-of-load, curtailment of the RE 
technologies, or requiring the addition of new hydro reservoirs. The study was implemented using 
spatiotemporal data sets, representative of each technology included in the study. The country is divided 
into regions based on the annual variations in the characteristics of the wind and solar resources. The 
study concludes that optimising based on complementarity reduces the energy storage requirements and 
allows for a higher PV power integration. 
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There are limited studies that focus on energy storage as a method of meeting the demand shortfalls. 
However, Hemmati et al. [151] presents a method to smooth the wind and solar resource output as well 
reduce network losses using energy storage systems. 

4.1.2.4 Studies investigating power mismatches between demand and RE generation 
A number of studies that focus on the concept of demand matching have been conducted. In these studies, 
the RE fleet is optimised to reduce the mismatched hours between the resultant RE profile and the 
demand profile. However, the geographic locations of the potential RE profiles are not clustered as in 
the methodology proposed in this dissertation. The objective is to reduce the overall variability of the 
resultant residual load profile, rather than the frequency of occurrence of the maximum residual hourly 
load values. The studies are, furthermore, implemented using temporal resource profiles, rather than 
profiles derived using a statistical approach, as is the case for the proposed framework. 

Multiple investigations have been conducted to determine the hourly power mismatches between the 
demand and the RE generation profiles [148, 130, 136], as well as the spatiotemporal reliability of wind 
and solar resources to meet the total demand [131]. Other studies focus on the maximum penetration 
levels achievable for wind and solar resources [132], or the optimised ratio of the installed wind and solar 
resource capacities, by considering their complementarity in the context of demand [135, 152].  

Heide et al. [148] developed a weather driven modelling approach to optimise the RE supply based on 
the hourly power mismatches between the RE generation and load in Europe, for a fully RE generation 
fleet. The mix of the wind and solar fleet is optimised such that the storage energy capacity, annual 
balancing energy or balancing power is minimised. Ramirez Camargo et al. [153] explore the time-
dependent variability of the RE profile, by presenting a spatiotemporal analysis of potential RE locations 
within municipal areas in Germany. The study identifies locations that provide an optimised solution for 
a balanced local energy supply, considering the local demand profile. Clack et al. [130] introduces two 
novel linear programming approaches to aid in the planning and design of the electric power systems in 
the USA. The first optimisation approach combines conventional generation types, renewable energy 
sources and storage methods to minimise the residual load profile. The second optimisation approach 
aims to minimise the annual system costs, whilst considering the parameters included in the first 
optimisation. The optimisation method employs a load-matching technique, using a temporal approach, 
where minimised variance of the residual load is calculated over a desired time interval. The residual 
load refers to the demand minus the aggregated RE electricity generation. The second approach takes 
cognisance of the first optimisation approach, with the aim of minimising overall system cost. The load 
matching technique calculates the shortest distance between the generated electricity and the load for 
each time interval over a specific temporal span. Both methodologies optimise over the various sites and 
capacity allocations. The optimisation routines simultaneously include the existing and future expansion 
of the conventional and variable generators, High Voltage Direct Current transmission, and storage over 
large geographic area. The results show that both methods provide robust approaches for modelling an 
optimised electric power system over a large geographic region with high temporal resolution. The cost 
optimisation approach yields superior results for optimising a real-world power system. Mareda et al. 
[136] investigate hourly power mismatches between the demand and the RE generation profiles. This 
approach takes advantage of the geographic resource complementarity between renewable energy 
sources and energy storage methodologies across Europe. A parameterised optimisation method, using 
the genetic algorithm, is developed to determine the optimal spatial distribution of the RE units. This 
optimisation methodology takes into account the renewable energy penetration mix as well as the 
required reserve power capacity. The study highlights trade-offs pertaining to grid storage, grid extension 
and the optimal wind and solar mix. 
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Shaner et al.  [131] analyse the spatiotemporal reliability of wind and solar resources to meet the total 
demand in the US. The temporal characteristics of the wind, solar and demand profiles are examined 
over a 36-year period. It is concluded that providing a highly reliable energy supply with only wind and 
solar resources would require a large degree of support technology, including demand management, 
energy storage, flexible generation and so on. Nikolakakis & Fthenakis [132] investigated the maximum 
penetration levels achievable for wind and solar resources, combined and individually, as a function of 
grid flexibility in the state of New York, USA. The optimisation method implemented compares hourly 
wind and solar resource profiles to demand over an annual period. The proposed penetration level 
optimisation methodology takes cognisance of flexibility constraints and dumped electricity by setting 
maximum constraints. The study concludes that combined wind and solar resources yields a higher 
penetration level with lower curtailment rates. The PV component contributes an additional benefit in 
the sense that the PV generation profile satisfies the peak demands periods in the summer months, which 
is associated with higher demand costs. 

Zappa and van den Broek [135] explore the optimal integration of wind and solar energy resources in 
Europe. The study investigates the optimal mix these resources as well as the effects of optimal plant 
placement for minimised residual demand. The study concludes that the optimised placement of 
renewables has minimal effect on minimising the residual demand profile within the European context. 
This work has some synergy with the methodology proposed in this dissertation. However, there are 
distinct differences in the two approaches, especially in the sense that the study does not employ the 
initial clustering of the RE resources. The objective function used to reduce the residual load profile also 
differs, in that the proposed method uses a statistical approach to reduce the expensive high load 
operating periods. Coutinho et al. [152] determines the optimised ratio of the installed wind and solar 
resource capacities, by considering their complementarity, for best fit to demand in the Açurua, Brazil. 
The hourly RE generation profile is fitted to the hourly demand profile, and the mean absolute error is 
used as the metric to determine the error between each time step. The results provide an optimal wind 
and PV ratio per region to find the best fit to the energy demand. 

A few general optimisation studies incorporate the demand profile with the aim to meet optimisation 
objectives such as the optimal RE penetration level [154], potential RE capacity integration [155], the 
optimal capacity mix and minimised curtailment [156], or improving voltage quality and system 
reliability [157].  

Jayapalan et al. [154] implements an optimisation strategy to achieve optimal generation capacity 
expansion planning until 2044 in India. The optimisation model aims to evaluate the environmental 
influences, as well as the flexibility of the supply, based on variation in the RE penetration level. Jo et 
al. [156] investigates the optimal capacity mix of the wind and solar resources installed capacity for a 
Midwestern state in the USA. The proposed optimisation approach yields a RE optimisation matrix that 
identifies the hours for which the load can potentially by serviced by an alternative energy source, such 
as wind and solar. The study, furthermore, focuses strongly on identifying the maximum percentage of 
wind and solar generation that can be integrated into the total generation capacity without resulting in 
curtailment of RE generation. Khalid et al. [157] propose an optimisation approach aimed at determining 
the ideal locations and capacities of non-dispatchable and dispatchable distributed generating units, as 
well as battery storage systems. The objective function aims to reduce losses and improve voltage quality 
and system reliability. Quijano et al. [155] introduce the MODERGIS Integrated Simulation’s Platform 
as a RE planning and strategy development tool and presents simulation results for Colombia. This model 
is all encompassing, with the aim to identify potential RE capacity integration, without the use of installed 
measurement equipment. The model successfully identifies RE installation potential in selected areas. 
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4.1.2.5 Studies investigating correlation-coefficient based objective functions 
Several studies investigate the complementarity of RE generation profiles, together with demand profile, 
using correlation coefficients. In these approaches, a figure of merit based on a measure of similarity or 
dissimilarity between profiles is determined, and the profiles are represented either temporally or 
statistically. Various correlation metrics are used, including Kendall correlation [158], the Mann-Kendal 
test spearman coefficient [159], Pearson correlation [160] and the Pearson product-moment correlation 
coefficient [161]. General correlation is also used to optimise the sizing and placement of RE plants 
[160] as well as to optimally allocate RE capacity to predefined regions [162]. Canales, et al. [163] 
introduces a methodology to quantify the partial and the total temporal complementarity between energy 
sources, where this method can assess complementarity between input vectors on different time scales. 
The predominate aim is to derive an optimisation model that  reduces the variability of the residual load 
by correlating the aggregated RE generation profile with the demand profile [164, 161, 165]. Although 
the objectives associated with these studies show some similarity with optimisation framework proposed 
in this dissertation, the methodologies differ distinctly, especially in terms of the definition of the 
objective functions. 

Horst et al. [158] employs a unit commitment optimisation for increasing levels of variable RE 
penetration in India. The Kendall correlation factor is used to determine the relationship between the RE 
sources and the load profile. The results show that an increase in spatial variation aids in smoothing the 
residual load profile, thereby improving power balance. Jurasz et al. [159] utilise reanalysis datasets from 
ERA5 to implement a complementarity study between wind and solar resources. The spearman 
coefficient and the Mann-Kendal test is implemented to assess the complementarity of the RE profiles. 
It is concluded that the highest correlation occurs on a seasonal scale, while the correlation for daily and 
hourly observations are virtually negligible. Torres et al. [161] determine the correlation between wind, 
solar and hydro power generation profiles and demand profile for a case study in Portugal, where the 
Pearson product-moment correlation coefficient is used. Rosa et al. [160] introduce methodology for 
optimal sizing and placement of RE resources based on resource complementarity in Brazil. The study 
implements the Pearson correlation metric to determine the resource complementarity. The dataset is 
derived for specific automated meteorological measurement station locations, and the solar and hydro 
resources are initially clustered based on factor analysis using the Principal Component Method. The 
focus areas of the study include the optimal mix, and the complementarity and the maximum penetration 
of the RE resources. The optimal mix is initially determined without the influence of the demand profile, 
and the optimal mix then is re-evaluated with the influence of the demand profile. The objective function 
implemented in the optimisation study is aimed at reducing the variability of the resultant RE generation 
profile and minimising the difference between demand and generation. 

Li et al. [162] analyse wind and solar resource data for a predefined location in Sydney, Australia. The 
RE data is correlated against the demand profile with the view to examine the complementary nature 
between the demand profile and the variable renewable energy generation profile. The conclusion of the 
study documents strong complementarity between the RE resources, while the level of complementarity 
between the RE generation profiles and the demand profile depends strongly on the location of the RE 
plants. Complementarity is defined in terms of the correlation coefficient between two given time series. 
It is concluded that the combined RE generation profiles can be leveraged to provide better matching of 
demand. Canales et al. [163] introduces a methodology to quantify the partial and the total temporal 
complementarity between three energy sources, namely, wind, solar and hydro. This is achieved by 
combining Euclidean vectors, compromise programming and normalisation correlation techniques. This 
study provides a robust method for assessing complementarity between input vectors on different time 
scales. 
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Guozden et al. [164] investigate an optimisation model that aims to reduce the variability of the residual 
load by correlating the RE production with the demand profile. The proposed optimisation approach is 
aimed at the optimal siting of the wind and solar resources, where positive correlation between demand 
and RE generation is favoured. Solomon et al. [165] investigate the possibility of using negative 
correlation of wind and solar resource outputs to decrease the storage required to meet the demand in 
California, USA. The study also determined that the optimal wind and solar mix varies as a function of 
the RE grid penetration level, where the demand is considered in this study. 

4.1.2.6 Studies investigating optimised cost-based objective functions 
Another variation in the optimised RE integration planning approach involves minimising the investment 
and operational costs involved, by optimising the siting of RE sources [166, 167], sizing [168, 169] or 
both [170, 171, 172, 133]. These studies aim to economically optimise network investments for energy 
planning and integration over a long-term horizon. These studies typically consider the short-term 
uncertainties associated with of RE generation, as well as demand growth and resource price 
uncertainties [133].  

He et al. [170] employs a unique method, termed SWITCH-China, to investigate optimised capacity 
expansion in China. The framework identifies the minimised cost solution for achieving national energy 
and climate related goals. The optimal capacity mix for 2050 is determined, while the hourly generation 
dispatch is optimised simultaneously, by taking cognisance of the demand profile. Lenzen et al. [171] 
simulate a low-carbon electricity supply scenario for Australia with the incorporation of RE generation 
sources and the demand. The optimisation process determines the locations of RE plants, as well as the 
expansion of transmission networks. The method represents a cost-based approach, whereby a 
competitive hourly selection process is simulated to achieve the least-cost configuration. The 
optimisation output incudes the optimal RE sites as well as the energy mix. Oliveira & Maria [172] 
proposed an optimisation approach to plan the renewable energy generation for a distribution system in 
Brazil. The optimisation objective is to determine the optimal placement of the variable renewable 
resources, with the aim to reduce the investment and operational costs of the RE generation fleet in a 
long-term planning scenario. The demand profile is incorporated into the proposed optimal planning 
approach. Simoes et al. [166] investigate the effect of geographical disaggregation of wind and solar 
resources on the long-term energy system model outcomes for Austria. The study addresses the 
difference in geographical disaggregation by implementing two scenarios, where low and high 
disaggregation levels are implemented, and the results are compared. The PV data is divided into five 
larger regions, with an aggregated profile representing each region. The geographical disaggregation 
scenarios are analysed based on the system costs incurred to satisfy the demand. 

Nunes et al. [133] develop a long-term integration planning approach, with the aim to economically 
optimise network investments for 2030. A static, stochastic cost minimisation model is employed, by 
considering the short-term uncertainties of RE resources, as well as load growth and gas price 
uncertainties expected in the long-term horizon. The study focusses on optimisation of wind, solar and 
gas resources, by minimising the cost of the system while adhering to policy regulations. The main 
decision variables are the spatial location, size and RE technology type, as well as requirements for new 
transmission lines and gas pipelines. Mixed integer linear programming is used as the optimisation 
solver. Iwamura and Kobayashi [167] proposed an integrated geospatial approach which considers a 
given wind farm capacity allocation and the associated transmission infrastructure extension costs. This 
investigation focusses primarily on the optimal siting of wind farms in the context of minimising the 
total associated capital cost. The constraints imposed on the feasible sites include a minimum capacity 
factor and the thermal limits of transmission lines. The optimisation strategy uses the Genetic Algorithm 
(GA). 
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Candia et al. [173] investigate the effect of large wind and solar energy deployment on the flexibility of 
the regional power generation system, in Bolivia. The flexibility is measured in terms of energy balancing 
criteria, by considering the demand profile, power plant scheduling and electricity generation costs. The 
optimisation model simulates various scenarios with adjusted wind and solar integration levels. The main 
optimisation objective is to minimise the operational costs, which include, fixed and variable costs, start-
up and shut-down costs, ramping and transmission-related costs, as well as loadshedding costs. Pluta et 
al. [127] explore the impact of increased electricity generation from wind and solar resources over a 
defined implementation period in Poland. The research questions targeted in the study derives from the 
Polish energy plan, namely, the Energy Policy of Poland until 2040, which aims to increase the RE share 
to 32 % by 2030. To investigate and validate the feasibility of the implementation of the proposed energy 
plan, a generalised Unit Commitment and Economic Dispatch approach is used, specifically the Model 
of Economic Dispatch and Unit commitment for System Analysis (MEDUSA). To verify the long-term 
plan and the proposed expansion, the suggested framework implements capacity expansion modelling 
and thereafter employs the MEDUSA. MEDUSA is employed to optimise the operation of controllable 
power generation units, which is implemented using real technical constraints for an hourly temporal 
resolution. The objective function employed by the optimisation framework aims to minimise the total 
cost of the forecasted load balancing, where the dispatchable units are described as in or out of operation 
at a specific time instance. The costs include operation costs, and the costs of load shifting, demand 
response and load shedding, as well as start-up and shut down costs. The optimisation includes the 
centrally dispatched generating units, renewable energy units, the demand, as well as gas units. The result 
of the study confirms the feasibility of the implementation plan defined by the Polish Energy Policy, 
stating that the plan is reasonable and consistent with their findings. 

Schadler et al. [168] propose a cost optimisation method based on the residual power generation profile 
for varying wind and solar shares in Germany. The method also identifies the optimal mix of the wind 
and solar resources, for the scenario that the average renewable energy profile meets 100 % of the average 
demand profile. The optimisation methodology is implemented using 15-minute temporospatial data sets 
for the wind and solar resources. The regions for the placement of these RE resources are pre-defined, 
using the 2-digit ZIP code regions in Germany as the nodes considered. Tróndheim et al. [169] aims to 
optimise investment and dispatch for energy balance with a 100 % renewable power system by the year 
2030 in the Faroe Islands. The study considers storage, as well as the regional demand. The main grid is 
divided into seven regions, based on the existing transmission grid, together with the smaller Suðuroy 
region, rather than RE resource characteristics. The optimisation results indicate the exact location and 
capacity of the added generation, storage, and transmission. The optimisation approach is aimed at 
minimising the total costs of the electrical power system through a linear optimisation problem based on 
various capacity and emission constraints. 

The studies conducted by Prasad et al. [134] and Priyadharshini et al. [128] focus on methods to reduce 
the peak demand. Prasad et al. [134] assess the spatiotemporal synergy between wind and solar resources 
in Australia. The aim of the study is to mitigate the intermittency and variability of the RE resources. 
Priyadharshini et al. [128] proposes a methodology using wind and solar RE resources to meet the hourly 
peak demand at minimised cost, for Rameswaram, Tamil Nadu. 

4.1.2.7 Studies investigating optimised statistical-based objective functions 
Multiple studies have been conducted to evaluate a statistical approach for the optimal allocation and 
distribution of the RE resource profiles, while considering the demand profile. Certinay et al. [174] 
proposed a methodology to determine the optimal siting and sizing of wind farm sites in Turkey. The 
methodology considers both wind resource characteristics, as well as grid constraints and uses a linear 
optimisation function for maximising the cumulative annual wind power generation, whilst satisfying 
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the national grid constraints. The proposed approach discards the temporal characteristics of geographic 
wind speeds by only considering the probabilistic density functions for each location. This methodology 
only assesses the optimised siting and capacities of wind farms and neglects the inclusion of other RE 
resource integration. 

Vinela & Mortaz [175] determine that by strategically planning for technological and geographical 
diversification of the RE resource fleet, reduced risk can be achieved for a 100 % RE portfolio in the US. 
The study considers wind and solar resources, together with demand. Conditional Value-at-Risk 
optimisation is used as the objective to determine the optimal locations and energy capacities. This is a 
risk verses return approach, which leverages the variability of the resultant profile against the possible 
energy return. 

Monforti et al. [176] examines the complementarity of wind and solar resources over a single test year 
in Italy. The demand profile is included, where the hourly, daily and monthly correlation was derived to 
compute the minimised objective function using a Monte Carlo based approach for the assessment of 
complementarity over multiple sites. The study is implemented for both short- and long-range spatial 
complementarity, where both instances showed desirable results for assuring continuous demand 
coverage. Schindler et al. [177] exploit the complementarity of RE resources to improve the balance 
between the demand profile and the RE supply in Germany. The results of the study show low 
complementarity use for wind and solar resources, except on a seasonal scale. Jerez et al. [178] developed 
a tool that determines an optimised, realistic spatial allocation of given amounts of installed capacities 
for PV and wind power resources, simulated under varying climate conditions. 

There are some similarities between the objectives and methodologies implemented in the above studies 
and the optimisation framework proposed in this dissertation. However, none of these studies implement 
the same combination of objective function definition, constraints, optimisation algorithm and clustering 
approach adopted in the proposed framework. 

4.1.2.8 Studies incorporating clustering as an initial data reduction step 
A very limited number of optimisation studies have been reported in literature using temporospatial 
resource clustering as an initial data reduction step.  

Siala & Mahfouz [179] applies a novel clustering methodology to initially define optimal regions for 
energy system planning in Europe. The clusters are determined based on the resource potential of each 
area. The clustered regions are used as inputs for a modelling framework, termed urbs, where the goal is 
to minimise the cost of expansion and system operations. The study optimises for both the optimal 
capacity allocation and the hourly dispatch of generation, transmission, and storage. Couto & 
Estanqueiro [5] propose a methodology to aid in the expansion of electric power systems by exploiting 
the complementarity of wind and solar resources to decrease the residual load profile. The method 
assesses the hybrid power capacity needed to meet the typical daily profiles, the extreme demand values, 
as well as energy deficits. The method is applied for a Portuguese case study, where the results show that 
an optimised solar and wind resource fleet increases the stability and sustainability of RE integrated into 
the electrical grid, as well as reducing the variability and extreme peak values of the residual load profile. 
The wind and solar resource data are initially clustered based on the resources average power capacity. 
The current installed capacity is used as a baseline constraint. The objective functions include the 
minimisation of the residual load as well as the one-hour net load step change standard deviation of the 
residual load. This method optimises the placement as well as the capacity allocation to different clusters 
to reduce residual load variability. 

Zhang et al. [142] implement principal component analysis and k-means clustering to capture temporal 
and spatial synergy patterns as well as reduce dataset dimensionality. The synergy patterns are calculated 
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for all combinations of correlation between wind and solar resources, namely, wind and wind, solar and 
solar, wind and solar, and solar and wind. This produces four cluster scenarios, dependent on the desired 
correlation objective. This method differs from the proposed method, as the clustering approach 
identifies clusters based on the interaction between resource type rather than using the underlying 
statistical characteristics of the individual resources. 

The above optimisation studies exhibit some synergy with the optimisation framework proposed in this 
dissertation in the sense that they also implement geospatial clustering as a means of categorising the RE 
sources. However, the clustering approaches used in these studies differ distinctly from the 
spatiotemporal approaches considered in the proposed framework. Furthermore, there are distinct 
differences in the optimisation objectives, objective functions and optimisation algorithms implemented. 

4.1.3 Overall conclusions on existing literature  

Various studies have been conducted to examine the complementarity of the wind and solar resources, 
without including the demand profile. Where optimisation of the mix and location of these resources are 
targeted, the objective generally is aimed at reducing the variability of the associated RE power 
generation profiles, without cognisance of the demand pattern. However, in practice the demand profile 
is not flat. This implies that the benefits of the optimisation processes do not necessarily translate to an 
optimised residual load profile. This differs from the framework proposed in this study, where the 
objective function aims to reduce specific statistical properties of the residual load profile. 

The majority of historical studies aimed at optimising the residual load profile generally target a limited 
number of individual RE locations, which are often pre-selected. The results of these studies yield 
valuable insights but have limited application in long-term planning where the RE resources span large 
geographical areas with diverse climatic conditions. In these studies, RE generation capacities are 
typically assigned to individual locations rather than geospatial regions, as is the case for the proposed 
framework. This is an important consideration in practice, especially in view of the South African 
REIPPP scenario, where the locations of RE plants are not only based on plant-specific techno-economic 
considerations, but also on socio-economic considerations defined on a regional level. Siting for specific 
coordinates, or a limited number of coordinates, limits the ability of IPPs to select sites that are optimal 
in terms of practical considerations such as land use, topography, accessibility, cost of land, etc. The 
proposed optimisation framework addresses these aspects by optimising across diverse spatial clusters. 

The studies reported in literature target a wide range of objective functions. These are often defined in 
terms multiple cost functions including power balance, specific operational aspects such as the use of 
storage systems, operational costs, the capital cost associated with the RE plants and grid expansion, etc. 
The framework proposed in this study favours a cascaded optimisation strategy, whereby the residual 
load profile is optimised statistically to reduce the requirements of ancillary services to complement 
baseload generation. The operational use of ancillary services, such storage, is thereby considered as a 
separate subsequent optimisation process.  

Several studies investigate the complementarity of RE generation profiles, together with the demand 
profile, using correlation coefficients. In these approaches, a figure of merit based on a measure of 
similarity or dissimilarity between profiles is determined and the aim is to combine the RE fleet and the 
demand profile such that the residual load variability is minimised. This can be done by temporally 
matching the RE resources to the load or statistically reducing the variability or output ramping, etc. The 
proposed optimisation framework differs from these strategies in the sense that it adopts a statistical 
approach aimed at reducing the risk of events associated with high residual load values. The proposed 
framework, thereby, does not attempt to temporally match the load profile with the RE generation profile. 
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The literature review identified a limited number of studies where resource clustering has been used as 
a RE classification tool. However, in these studies the clustering component is generally treated in a 
cursory manner without considering the suitability of the applied clustering algorithms. Resource 
clustering represents a core part of the proposed optimisation framework, and the performance of the 
various clustering algorithms in the context of geospatial optimisation is investigated extensively. From 
a practical perspective, geospatial clustering is regarded as an essential part of the prosed framework. 
Apart from the benefit of assigning RE capacities to spatial regions rather than specific coordinates, 
clustering reduces the dimensions of input dataset dramatically. This reduces the dimensionality of the 
multi-variable optimisation search space, which translates to reduced risk of local minima and reduced 
computational cost. 

The planning of medium- to long-term RE integration worldwide is mostly conducted using the PLEXOS 
software platform. This tool typically uses some representative RE resource profile as input. This is a 
limited approach as the spatial element of the RE resource is not incorporated, and there is a dire need to 
produce condensed input profiles which represent the diverse characteristics of the underlying RE 
resource. The proposed integration framework introduces a novel clustering method which drastically 
reduces the dimensionality of the input dataset, while retaining the underlying properties of the RE 
resource. The clusters show increased granularity and accuracy when compared to general clustering 
methodologies. 

The research reported in literature, with a few exceptions that is applicable for specific case study 
scenarios, confirm that geospatial optimisation of RE capacity allocation, especially in the context of the 
spatiotemporal properties of the RE resources, can contribute to support power balance and various other 
such operational objectives at high levels of RE penetration. Overall, it is concluded that, compared to 
the body of work reported in literature, the proposed RE geospatial capacity allocation framework 
proposed in this dissertation exhibits aspects of novelty and originality, especially in terms of the pre-
classification of the RE resource data, the risk-based objective function and the use of adaptable 
optimisation constraints to accommodate real-world scenarios. 

4.2 Spatial capacity allocation framework methodology 

4.2.1 Overview 

Figure 4.2 shows a high-level block diagram of the proposed geospatial capacity allocation optimisation 
framework. The processes comprising the framework can be summarised as follows: 

− The spatiotemporal mesoscale wind speed and GHI profiles, given by 𝑾𝑾 and 𝑺𝑺, respectively, are 
converted to power profiles and normalised. This yields the normalised wind and solar power 
profiles 𝑷𝑷𝑤𝑤 and 𝑷𝑷𝑠𝑠, respectively. 

− The ToU feature vectors of the normalised temporal power profiles are derived and clustered. 

− The sets of temporal power profiles representing the wind and solar clusters, given by 𝑷𝑷𝑐𝑐𝑐𝑐 and 
𝑷𝑷𝑐𝑐𝑐𝑐, respectively, are derived. 

− The sets of mean temporal power profiles of the wind and solar clusters are derived, given by 
𝑷𝑷�𝑐𝑐𝑐𝑐 and 𝑷𝑷�𝑐𝑐𝑐𝑐, respectively. 

− A statistical objective function 𝐹𝐹𝑜𝑜, defined in terms of the histogram of the residual load profile, 
is calculated. 
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− The optimisation algorithm allocates the specified wind and solar generation capacities, given by 
𝑃𝑃𝑐𝑐𝑤𝑤 and 𝑃𝑃𝑐𝑐𝑠𝑠, respectively, to the clusters such that the cost function 𝐹𝐹𝑜𝑜 is minimised. This yields 
the weight vectors, given by 𝑿𝑿𝑐𝑐𝑤𝑤 and 𝑿𝑿𝑐𝑐𝑠𝑠, whereby 𝑃𝑃𝑐𝑐𝑤𝑤 and 𝑃𝑃𝑐𝑐𝑠𝑠 are allocated to the individual wind 
and solar clusters, respectively. 

 
Figure 4.2: Geospatial capacity allocation framework. 

4.2.2 Resource classification 

The initial step in the optimisation framework involves clustering the RE resources. Clustering translates 
the power profiles associated with 𝑷𝑷𝑤𝑤 and 𝑷𝑷𝑠𝑠 into clusters with similar temporal properties, each 
representing a subregion of the geographical target space. Clustering also represents a dataset reduction 
methodology, which considerably reduces the computational expense of spatial optimisation. In practice, 
clustered resource maps are also more appropriate for plant siting studies compared to resource maps 
defined in terms of single coordinates. This is due to the many considerations and constraints that apply 
for plant siting in practice. With allocation to single sites, there is a high risk of choosing coordinates 
that are not viable for plant placement. It also limits the ability of IPPs to find the most appropriate sites 
from plant-specific perspectives such as capital expenditure, terrain topography, accessibility and 
transport infrastructure, etc. 

The power profiles associated with 𝑷𝑷𝑤𝑤 and  𝑷𝑷𝑠𝑠 are clustered using the k-means algorithm. Two clustering 
approaches are considered, namely, clustering the temporal profiles, and clustering based on the 
statistical properties of the temporal profiles for ToU periods. The latter approach has been shown to 
yield superior results for the clustering of spatiotemporal power compared to the clustering of raw 
temporal profiles [180], and is discussed in detail in Chapter 3. 

The resultant wind and solar clusters can be defined mathematically, where the set of wind power clusters 
𝑷𝑷𝑐𝑐𝑐𝑐 is defined by the relationships 

𝑷𝑷𝑐𝑐𝑐𝑐 = {𝑷𝑷𝑚𝑚𝑐𝑐𝑐𝑐| 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑤𝑤}, 4.1 

𝑷𝑷𝑚𝑚𝑐𝑐𝑐𝑐 = {𝑷𝑷𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐  | 𝑛𝑛 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑚𝑚

𝑤𝑤 } 4.2 
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and 

𝑷𝑷𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐 = {𝑝𝑝𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐 (𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘}, 4.3 

where 𝑷𝑷𝑚𝑚𝑐𝑐𝑐𝑐 denotes the set of power profiles associated with the 𝑚𝑚𝑡𝑡ℎ cluster, 𝑁𝑁𝑚𝑚𝑤𝑤 denotes the number of 
wind profile clusters, 𝑷𝑷𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐  denotes the 𝑛𝑛𝑡𝑡ℎ profile associated with the 𝑚𝑚𝑡𝑡ℎ cluster, 𝑁𝑁𝑚𝑚𝑚𝑚
𝑤𝑤  denotes the 

number of profiles associated with the 𝑚𝑚𝑡𝑡ℎ wind power cluster, and 𝑝𝑝𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐 (𝑡𝑡𝑘𝑘) denotes the wind power 

for the 𝑘𝑘𝑡𝑡ℎ sampling interval. The set of mean temporal power profiles 𝑷𝑷�𝑐𝑐𝑐𝑐 for the clusters are 
subsequently derived, given by 

𝑷𝑷�𝑐𝑐𝑐𝑐 = {𝑷𝑷�𝑚𝑚𝑐𝑐𝑐𝑐| 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑤𝑤}, 4.4 

𝑷𝑷�𝑚𝑚𝑐𝑐𝑐𝑐 = {𝑝̅𝑝𝑚𝑚𝑐𝑐𝑐𝑐(𝑡𝑡𝑘𝑘)| 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘} 4.5 

and 

𝑝̅𝑝𝒎𝒎𝒄𝒄𝒄𝒄(𝑡𝑡𝑘𝑘) = 1
N𝑚𝑚𝑚𝑚
𝑤𝑤 ∑ 𝑝𝑝𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐N𝑚𝑚𝑚𝑚
𝑤𝑤

n=1 (𝑡𝑡𝑘𝑘), 4.6 

where 𝑷𝑷�𝑚𝑚𝑐𝑐𝑐𝑐 denotes the mean wind power profile of the 𝑚𝑚𝑡𝑡ℎ cluster. 

The set of solar power clusters 𝑷𝑷𝑐𝑐𝑐𝑐 is defined similarly by the relationships 

𝑷𝑷𝑐𝑐𝑐𝑐 = {𝑷𝑷𝑚𝑚𝑐𝑐𝑐𝑐| 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑠𝑠 }, 4.7 

𝑷𝑷𝑚𝑚𝑐𝑐𝑐𝑐{𝑷𝑷𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐  | 𝑛𝑛 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑚𝑚

𝑠𝑠 } 4.8 

and 

𝑷𝑷𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐 = {𝑝𝑝𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐 (𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘}, 4.9 

where 𝑷𝑷𝑚𝑚𝑐𝑐𝑐𝑐 denotes the set of power profiles associated with the 𝑚𝑚𝑡𝑡ℎ cluster, 𝑁𝑁𝑚𝑚𝑠𝑠  denotes the number of 
solar profile clusters, 𝑷𝑷𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐  denotes the 𝑛𝑛𝑡𝑡ℎ profile associated with the 𝑚𝑚𝑡𝑡ℎ cluster, 𝑁𝑁𝑚𝑚𝑚𝑚
𝑠𝑠  denotes the 

number of profiles associated with the 𝑚𝑚𝑡𝑡ℎ solar power cluster, and 𝑝𝑝𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐 (𝑡𝑡𝑘𝑘) denotes the solar power for 

the 𝑘𝑘𝑡𝑡ℎ sampling interval. The set of mean temporal power profiles 𝑷𝑷�𝑐𝑐𝑐𝑐 for the clusters are subsequently 
derived, given by 

𝑷𝑷�𝑐𝑐𝑐𝑐 = {𝑷𝑷�𝑚𝑚𝑐𝑐𝑐𝑐| 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑠𝑠 }, 4.10 

𝑷𝑷�𝑚𝑚𝑐𝑐𝑐𝑐 = {𝑝̅𝑝𝑚𝑚𝑐𝑐𝑐𝑐(𝑡𝑡𝑘𝑘)| 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘} 4.11 

and 

𝑝̅𝑝𝒎𝒎𝒄𝒄𝒄𝒄(𝑡𝑡𝑘𝑘) = 1
𝑁𝑁𝑚𝑚𝑚𝑚
𝑠𝑠 ∑ 𝑝𝑝𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐𝑁𝑁𝑚𝑚𝑚𝑚
𝑠𝑠

𝑛𝑛=1 (𝑡𝑡𝑘𝑘), 4.12 

where 𝑷𝑷�𝑚𝑚𝑐𝑐𝑐𝑐 denotes the mean solar power profile of the 𝑚𝑚𝑡𝑡ℎ cluster. 

4.2.3 Geospatial capacity allocation 

The objective of the optimal geospatial capacity allocation strategy is to divide a given wind generation 
capacity 𝑃𝑃𝑐𝑐𝑤𝑤 and solar generation capacity 𝑃𝑃𝑐𝑐𝑠𝑠 amongst the wind and solar clusters, respectively, such 
that a predefined objective function is optimised. These wind and solar capacity allocations are 
represented by the weight vectors 𝑿𝑿𝑤𝑤 and 𝑿𝑿𝑠𝑠, respectively. The weight vector 𝑿𝑿𝑤𝑤 for the wind capacity 
allocations is defined by the relationships 
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𝑿𝑿𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑤𝑤  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑤𝑤  }, 4.13 

0 ≤ 𝑥𝑥𝑚𝑚𝑤𝑤 ≤1 4.14 

and 

� 𝑥𝑥𝑚𝑚𝑤𝑤
𝑁𝑁𝑚𝑚𝑤𝑤

𝑚𝑚=1

= 1. 4.15 

The weight vector 𝑿𝑿𝑠𝑠 for the solar capacity allocations is defined similarly by the relationships 

𝑿𝑿𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑠𝑠  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑠𝑠  }, 4.16 

0 ≤ 𝑥𝑥𝑚𝑚𝑠𝑠 ≤1 4.17 

and 

� 𝑥𝑥𝑚𝑚𝑠𝑠
𝑁𝑁𝑚𝑚𝑠𝑠

𝑚𝑚=1

= 1. 4.18 

The normalised aggregated wind generation profile 𝑷𝑷𝑤𝑤𝑤𝑤 , which has been optimised, is given by the 
relationships 

𝑷𝑷𝑤𝑤𝑤𝑤 = {𝑝𝑝𝑤𝑤𝑤𝑤(𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘  } 4.19 

and 

𝑝𝑝𝑤𝑤𝑤𝑤(𝑡𝑡𝑘𝑘) = ∑ 𝑃𝑃𝑐𝑐𝑤𝑤

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑 𝑥𝑥𝑚𝑚𝑤𝑤  𝑝̅𝑝𝑚𝑚𝑐𝑐𝑐𝑐(𝑡𝑡𝑘𝑘)𝑁𝑁𝑚𝑚𝑤𝑤

𝑚𝑚=1 , 4.20 

where 𝑃𝑃𝑐𝑐𝑤𝑤 is given in GW. 

Similarly, the normalised aggregated solar generation profile 𝑷𝑷𝑠𝑠𝑠𝑠 is given by the relationship 

𝑷𝑷𝑠𝑠𝑠𝑠 = {𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡𝑘𝑘) | 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘  }, 4.21 

and 

𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡𝑘𝑘) = �
𝑃𝑃𝑐𝑐𝑠𝑠

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑 𝑥𝑥𝑚𝑚𝑠𝑠  𝑝̅𝑝𝑚𝑚𝑐𝑐𝑐𝑐(𝑡𝑡𝑘𝑘)

𝑁𝑁𝑚𝑚𝑠𝑠

𝑚𝑚=1
. 4.22 

where 𝑃𝑃𝑐𝑐𝑠𝑠 is given in GW. 

The wind and solar spatial capacity allocations, given by the weight vectors 𝑿𝑿𝑤𝑤 and 𝑿𝑿𝑠𝑠 are obtained by 
implementing a constrained hybrid optimisation strategy using the genetic algorithm and gradient-based 
nonlinear multivariable algorithm to minimise an objective function 𝐹𝐹𝑂𝑂. 

The objective functions considered for performance evaluation of the proposed geospatial capacity 
allocation framework are defined in terms of the normalised residual load profile. The residual load 
profile 𝑷𝑷𝑟𝑟 is defined by the relationships 

𝑷𝑷𝒓𝒓 = {𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘)| 𝑘𝑘 = 1,2,3⋯𝑁𝑁𝑘𝑘} 4.23 

and 

𝑝𝑝𝒓𝒓(𝑡𝑡𝑘𝑘) = 𝑝𝑝𝑑𝑑(𝑡𝑡𝑘𝑘)− 𝑝𝑝𝑤𝑤𝑤𝑤(𝑡𝑡𝑘𝑘)− 𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡𝑘𝑘), 4.24 
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where 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘), 𝑝𝑝𝑑𝑑(𝑡𝑡𝑘𝑘), 𝑝𝑝𝑤𝑤𝑤𝑤(𝑡𝑡𝑘𝑘) and 𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡𝑘𝑘) denote the normalised residual load, demand, aggregated 
wind power and aggregated solar power at time 𝑡𝑡𝑘𝑘, respectively. 

The optimisation objective functions proposed in this study can be summarised as follows: 

Objective function 1: The objective function 𝐹𝐹𝑂𝑂  is defined as the number of residual load values above 
a given threshold 𝑃𝑃𝑇𝑇. This is expressed as 

𝐹𝐹1𝑂𝑂 = ∑ �1, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) ≥ 𝑃𝑃𝑇𝑇
0, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) < 𝑃𝑃𝑇𝑇

𝑁𝑁𝑘𝑘
𝑘𝑘=1 . 4.25 

This objective function targets the probability density function of the residual load profile in the sense 
that it seeks to minimise the number of events featuring higher hourly residual load values. 

Objective function 2: The objective function is defined as the cumulative sum of the residual load values 
above the threshold 𝑃𝑃𝑇𝑇. This is expressed as 

𝐹𝐹2𝑂𝑂 = ∑ �𝑝𝑝
𝑟𝑟(𝑡𝑡𝑘𝑘), 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) ≥ 𝑃𝑃𝑇𝑇

         0, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) < 𝑃𝑃𝑇𝑇
𝑁𝑁𝑘𝑘
𝑘𝑘=1 . 4.26 

This function is similar to objective function 1 but represents a linear weighted approach whereby higher 
load values contribute comparatively more to the objective function compared to lower load values. The 
function can be readily adapted to implement non-linear weightings, such as an exponentially increasing 
weighting function, which would be more effective in targeting extreme values. 

The objective functions employed target the higher load values in the residual load profile histogram in 
a statistical manner. As such, it represents a probabilistic risk-based approach that seeks to minimise the 
number of events where high residual load values require ancillary service interventions to maintain 
power balance. From a financial perspective, the proposed approach also reduces the capital expenditure 
requirements associated with baseload generation capacity and ancillary service, as well as the energy 
costs associated with expensive peaking generation, such as open-cycle gas turbines. 

In practice, the objective function can be easily amended to target the probability density function of the 
residual load profile for a given ToU period, etc. 

In practice, optimal siting of RE generation is not only defined in terms of power balance, but is subject 
to considerations such as availability of grid infrastructure, power evacuation capacity constraints, 
economic and socio-economic considerations, land use and availability, environmental impacts, etc. 
[176, 133]. Together, these considerations translate to minimum and maximum RE generation capacity 
constraints for a given cluster or geographical area. These constraints should be taken into consideration 
in a robust spatial capacity allocation framework. These capacity allocation constraints can be formulated 
mathematically in terms of the weight vectors. The weight vector 𝑿𝑿𝑐𝑐𝑤𝑤 for constrained wind capacity 
allocations at cluster level can be represented by the relationships 

𝑿𝑿𝑐𝑐𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑤𝑤  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑤𝑤  }, 4.27 

𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤 ≤ 𝑃𝑃𝑐𝑐𝑤𝑤𝑥𝑥𝑚𝑚𝑤𝑤 ≤𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚

𝑤𝑤  4.28 

and 

∑ 𝑥𝑥𝑚𝑚𝑤𝑤
𝑁𝑁𝑚𝑚𝑤𝑤
𝑚𝑚=1 = 1, 4.29 

where 𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤  and 𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚

𝑤𝑤  denote the minimum and maximum wind capacities to be assigned to the 
geographical area associated with cluster 𝑚𝑚, respectively. The weight vector 𝑿𝑿𝑐𝑐𝑠𝑠 for constrained solar 
capacity allocations at cluster level can be represented similarly by the relationships 
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𝑿𝑿𝑐𝑐𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑠𝑠  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑠𝑠  }, 4.30 

𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠 ≤ 𝑃𝑃c𝑠𝑠𝑥𝑥𝑚𝑚𝑠𝑠 ≤𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠  4.31 

and 

∑ 𝑥𝑥𝑚𝑚𝑠𝑠
𝑁𝑁𝑚𝑚𝑠𝑠
𝑚𝑚=1 = 1, 4.32 

where 𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠  and 𝑃𝑃𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠  denote the minimum and maximum solar capacities to be assigned to the 
geographical area associated with cluster 𝑚𝑚, respectively. 

The minimum constraints can be used effectively to accommodate capacity allocations that are 
predefined based on criteria such as regional development targets and socio-economic considerations, as 
is currently applicable for the REIPPP programme. Furthermore, in practice, existing generation 
capacities in the geographical clusters also translates to minimum constraints in the weight vectors. In 
these implementations the capacities of the existing plants are then added to the new capacities to 
formulate capacities to be allocated, i.e., 𝑃𝑃𝑐𝑐𝑤𝑤 and 𝑃𝑃𝑐𝑐𝑠𝑠. 

The maximum capacity constraints can be used to accommodate criteria such as geographic grid capacity 
constraints, as outlined in the recent Generation Connection Capacity Assessment (GCCA) study [181]. 
These constraints can also be used to limit the allocations to the regions based on technical criteria such 
as the distance to load centres, and socio-economic considerations aimed at just transition to RE, whereby 
excessive benefit by some communities can be avoided. 

In practice, both the minimum and maximum constraints are typically defined for geographical regions, 
such as the REDZs in this study, rather than for the individual geospatial clusters. In order to implement 
a rigorous approach to handle such constraints, the constraints must be translated to apply to subsets of 
the geospatial clusters. This can be done by splitting the clusters into subclusters, where each subcluster 
is associated with a predefined geographical region. The capacities are assigned to the individual 
subclusters. 

Mathematically, the weight vector 𝑿𝑿𝑐𝑐𝑤𝑤 for constrained wind capacity allocations can be redefined such 
that 

𝑿𝑿𝑐𝑐𝑤𝑤 = {𝑿𝑿𝑚𝑚𝑤𝑤  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑤𝑤  }, 4.33 

𝑿𝑿𝑚𝑚𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑤𝑤 , 𝑟𝑟 = 1,2,3⋯𝑁𝑁𝑟𝑟  }, 4.34 

𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤 ≤� 𝑃𝑃𝑐𝑐𝑤𝑤𝑥𝑥𝑚𝑚𝑚𝑚𝑤𝑤

𝑁𝑁𝑚𝑚𝑤𝑤

𝑚𝑚=1
≤𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚

𝑤𝑤  4.35 

and 

∑ ∑ 𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤𝑁𝑁𝑚𝑚𝑤𝑤

𝑚𝑚=1
𝑁𝑁𝑟𝑟
𝑟𝑟=1 = 1, 4.36 

where 𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤  and 𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚

𝑤𝑤  denote the minimum and maximum wind capacities to be assigned to the 𝑟𝑟𝑡𝑡ℎ 
geographical region, 𝑁𝑁𝑟𝑟denotes the number of geographical regions, 𝑃𝑃𝑐𝑐𝑤𝑤 denotes the wind capacity to be 
allocated, and 𝑥𝑥𝑚𝑚𝑚𝑚

𝑤𝑤  denotes the weight assigned for the 𝑚𝑚𝑡𝑡ℎ wind cluster in the 𝑟𝑟𝑡𝑡ℎ region. 

The weight vector 𝑿𝑿𝑐𝑐𝑠𝑠 for constrained solar capacity allocations is defined similarly, such that 

𝑿𝑿𝑐𝑐𝑠𝑠 = {𝑿𝑿𝑚𝑚𝑠𝑠  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑠𝑠  }, 4.37 

𝑿𝑿𝑚𝑚𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑠𝑠  | 𝑚𝑚 = 1,2,3⋯𝑁𝑁𝑚𝑚𝑠𝑠 , 𝑟𝑟 = 1,2,3⋯𝑁𝑁𝑟𝑟 }, 4.38 
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𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠 ≤� 𝑃𝑃𝑐𝑐𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚

𝑠𝑠
𝑁𝑁𝑚𝑚𝑠𝑠

𝑚𝑚=1
≤𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠  4.39 

and 

∑ ∑ 𝑥𝑥𝑚𝑚𝑚𝑚
𝑠𝑠𝑁𝑁𝑚𝑚𝑠𝑠

𝑚𝑚=1
𝑁𝑁𝑟𝑟
𝑟𝑟=1 = 1, 4.40 

where 𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠  and 𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠  denote the minimum and maximum solar capacities to be assigned to the 𝑟𝑟𝑡𝑡ℎ 
geographical region, 𝑃𝑃𝑐𝑐𝑠𝑠 denotes the solar capacity to be allocated, and 𝑥𝑥𝑚𝑚𝑚𝑚

𝑠𝑠  denotes the weight assigned 
for the 𝑚𝑚𝑡𝑡ℎ solar cluster in the 𝑟𝑟𝑡𝑡ℎ region. 

Some regional constraints, such as the maximum power that can be evacuated from region due to grid 
constraints, are specified in terms of the total wind and solar power that can be allocated to that region. 
In these cases, Equations (4.35) and (4.39) are combined to yield 

 𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∑ 𝑃𝑃𝑐𝑐𝑤𝑤𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤 + ∑ 𝑃𝑃𝑐𝑐𝑠𝑠𝑥𝑥𝑚𝑚𝑚𝑚

𝑠𝑠𝑁𝑁𝑚𝑚𝑤𝑤𝑠𝑠
𝑚𝑚=1

𝑁𝑁𝑚𝑚𝑤𝑤
𝑚𝑚=1 ≤𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚

 , 4.41 

where 𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 denote the minimum and maximum capacities to be assigned to the 𝑟𝑟𝑡𝑡ℎ 
geographical region. 

If any of the constraints are specified at regional level, the above mathematical formulations imply that 
all clusters must be subclustered in terms of regions. Clusters and subclusters located outside of the 
regions for which constraints are defined are therefore grouped together in an additional region for 
which no regional constraints apply. For a subcluster that is not geospatially present in region 𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚

𝑤𝑤  
or 𝑥𝑥𝑚𝑚𝑚𝑚

𝑠𝑠  is pre-assigned a weigh of zero and is omitted from the weight vector presented to the 
optimisation algorithm. 

In practice, the constraints may translate to a combinational permutation of the above formulations, 
consisting of minimum and/or maximum constraints formulated individually for the wind and solar 
allocations at cluster level, minimum and/or maximum constraints formulated individually for the wind 
and solar allocations at regional level, and minimum and/or maximum constraints formulated for the 
combined wind and solar allocations at cluster level and/or regional level. 

The above approach can handle a complex set of capacity allocation constraints in a robust manner. 
However, constraints that are defined at a regional level require that the optimisation algorithm take 
cognisance of the individual subclusters present in those regions. This increases the dimensions of the 
search space, which gives rise to longer simulation times and increased challenges with problems 
related to phenomena such as local minima. 

4.2.4 Optimisation algorithm 

Multiple methods have been implemented for the optimisation of RE resource integration. Some such 
methods include Conditional Value-at-Risk [182], linear programming techniques [130, 165, 133, 173], 
nonlinear programming techniques e.g. sequential quadratic programming [123, 160], as well as 
nonlinear mixed integer optimisation stochastic programming [151]. Other optimisation approaches 
include the greedy algorithm [5] and the simulated annealing algorithm [145]. 

Further common optimisation methodologies implemented include various evolutionary algorithms, 
which have been developed for the optimisation of complex problems [183, 184]. 

The evolutionary algorithms include the bio-inspired metaheuristic, called artificial immune system 
[172], particle swam optimisation [151, 185] and the genetic algorithm [186, 187, 188, 136]. The genetic 
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algorithm is a well-documented and widely used method for the optimisation of RE integration models 
[183, 189].  

The optimised geospatial capacity allocation framework is therefore implemented using a hybrid GA-
fmincon approach. The genetic algorithm is a meta-heuristic, population-based algorithm inspired by the 
theory of natural selection [190, 191]. A population of potential solutions, or individuals, evolve with 
each generation as new solutions are born into the population space, while others die out of the population 
space. The potential solutions improve with each generation as the general fitness or accuracy of the 
population improves. A selection process identifies the best individuals for breeding with other 
individuals based on their fitness values. This is done to produce new candidate solutions within the 
population space. Random mutation is also incorporated into the algorithm to introduce variation in the 
parameters of individuals. The algorithm is repeated until the desired termination criterion is achieved. 
Once the algorithm terminates, the candidate solution with the highest fitness value in the population is 
selected as the solution to the problem. In the hybrid approach, the best candidate solution becomes the 
input into the nonlinear programming algorithm, fmincon, to maximise the likelihood of reaching the 
global minimum. 

4.2.5 Performance metrics 

The metrics used in literature to quantify the performance of optimised spatial capacity allocation of 
RE generation vary widely and are highly dependent on the case study objectives. In this study, three 
metrics are derived to evaluate the performance of the spatial capacity allocation results. These include 
metrics which calculate the normalised weighted and unweighted cumulative frequency of occurrence 
of residual power values above a selected demand threshold, as well as the frequency of occurrence 
within 10 % of the maximum residual load value. 
The normalised unweighted cumulative frequency of occurrence metric, 𝐹𝐹1𝑇𝑇, represents the cumulative 
frequency of occurrence of residual power values above a set threshold 𝑃𝑃𝑇𝑇, as a percentage of the total 
number occurrences, 𝑁𝑁𝑘𝑘. The metric is defined mathematically as  

𝐹𝐹1𝑇𝑇 = 100
𝑁𝑁𝑘𝑘

∑ �  1, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) ≥ 𝑃𝑃𝑇𝑇
 0, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) < 𝑃𝑃𝑇𝑇

𝑁𝑁𝑘𝑘
𝑘𝑘=1 , 4.42 

where 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) denotes the mean residual power for the 𝑡𝑡𝑘𝑘𝑡𝑡ℎ interval.  

The normalised weighted cumulative frequency of occurrence metric, 𝐹𝐹2𝑇𝑇, represents the cumulative 
energy above a set threshold 𝑃𝑃𝑇𝑇, as a percentage of the total energy. The metric is defined mathematically 
as  

𝐹𝐹2𝑇𝑇 = 100

∑ 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘)𝑁𝑁𝑘𝑘
𝑘𝑘=1

∑ �𝑝𝑝
𝑟𝑟(𝑡𝑡𝑘𝑘), 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) ≥ 𝑃𝑃𝑇𝑇

         0, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) < 𝑃𝑃𝑇𝑇
𝑁𝑁𝑘𝑘
𝑘𝑘=1 . 4.43 

The final metric, 𝐹𝐹3𝑇𝑇, represents the frequency of occurrences within a given per unit range 𝑃𝑃𝐹𝐹𝑇𝑇 of the 
maximum residual load value. This metric quantifies the most expensive operating time when replaced 
by ancillary services. The metric is defined mathematically as 

𝐹𝐹3𝑇𝑇 = ∑ �
1, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) ≥ 𝑃𝑃𝐹𝐹𝑇𝑇 ∙ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟

0, 𝑝𝑝𝑟𝑟(𝑡𝑡𝑘𝑘) < 𝑃𝑃𝐹𝐹𝑇𝑇 ∙ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

𝑁𝑁𝑘𝑘
𝑘𝑘=1  , 4.44 

where p𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟   denotes the maximum residual load value. For purposes of the case studies conducted in 

this investigation, the 𝑃𝑃𝐹𝐹𝑇𝑇 is chosen arbitrarily as 0.90. 
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4.3 Implementation and case study results 

4.3.1 Overview 

The optimised spatial capacity allocation framework is implemented for a range of case studies, which 
are chosen to emphasise the benefits and drawbacks of the proposed methodology. Table 4.1 
summarises the case studies explored for the results presented in this dissertation. 

Table 4.1: Summary of case studies. 

Case study Objectives  

1 Unconstrained capacity allocation scenario 

2 Minimum constrained capacity allocation scenario: existing wind and solar 
capacity  

3 Minimum and maximum constrained capacity allocation scenario: existing 
wind and solar capacity and generation connection capacity constraints [181]. 

 

The projected demand for the medium term is uncertain, and the Integrated Resource Plan for 2019 
(IRP2019) [14] expects that demand growth is likely to be lower than forecasted. For the purposes of the 
case studies conducted in this investigation, the wind and solar generation capacity figures projected in 
IRP2019 are scaled to the demand profile shown in Figure 2.7. The projected wind and solar integration 
percentage is kept constant, but the total demand capacity is defined as the current load profiles maximum 
demand value, 36.371 GW. The IRP2019 plans for the integration of 10.52 % solar and 22.53 % wind 
percentage of the total installed capacity. This translates to approximately 8.2 GW of wind generation 
capacity for 𝑃𝑃𝑐𝑐𝑤𝑤 and 3.8 GW of solar generation capacity for 𝑃𝑃𝑐𝑐𝑠𝑠, respectively. 

Figure 4.3 depicts a histogram of the normalised national demand profile of South Africa for 2010 to 
2014. The figure shows the frequency of occurrence of demand power values during the peak, standard 
and off-peak periods over a range of normalised demand power. The histogram is normalised to the 
number of hourly time instances within the five-year period. The maximum frequency of occurrence 
occurs at approximately 0.82 pu power and the second highest frequency of occurrence at approximately 
0.64 pu power. The peak and standard ToU periods occur predominantly in the higher power range above 
0.8 pu, while the off-peak period is dominant below 0.77 pu power. The optimisation objective function 
targets the frequency of occurrence of the higher load values  

 
Figure 4.3: The detrended, normalised South African national demand profile histogram indicating the peak, 
standard and off-peak ToU periods from 2010 to 2014. 
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4.3.2 Baseline case studies 

The results of the optimal spatial capacity allocation case studies are evaluated comparatively against 
four baseline case study scenarios of interest. These include the following: 

Baseline case study 1: The generation capacities are assigned to the averaged temporal profiles of the 
individual REDZs such that the aggregated RE generation profile produces maximum cumulative 
energy yield. 

Baseline case study 2: The wind and solar generation capacities are divided equally amongst the 
REDZs according to the RE technologies listed in Table 2.1. The wind generation capacity 𝑃𝑃𝑐𝑐𝑤𝑤 is 
therefore divided equally between the Overberg, Komsberg, Cookhouse, Stormberg, Springbok and 
Beaufort West REDZs, while the solar generation capacity 𝑃𝑃𝑐𝑐𝑠𝑠 is divided equally between all REDZs. 

Baseline case study 3: The generation capacities are assigned to the clusters obtained by clustering 
the temporal profiles such that the aggregated RE generation profile produces maximum cumulative 
energy yield. 

Baseline case study 4: The wind and solar generation capacities are divided equally amongst the wind 
and solar clusters obtained by clustering the ToU feature vectors. This baseline case study thus 
represents an unoptimised spatial allocation of the generation capacity, using the same clustered input 
profiles as for the optimisation case studies to follow.  

Baseline case studies 1 and 3 are of interest because they are representative of current RE siting practices, 
whereby IPPs typically site the RE plants such that the cumulative annual energy production is 
maximised in order to take advantage of the flat feed-in RE tariff. This siting approach thus takes no 
cognisance of the temporal characteristics of the demand profile and the possibility of siting RE 
generation capacities to optimise the power balance along temporal timelines. These are best-case 
scenarios from an energy production perspective. However, the scenarios may be impractical for various 
reasons, including the fact that the capacities are typically allocated to one spatial region for wind and 
one spatial region for solar. If a selected region is geographically small, placing all of the RE resource 
capacity in such a region would be unrealisable. These scenarios also suffer from the disadvantage that 
large generation capacities can go offline due to unfavourable weather conditions occurring in the 
selected regions. 

Baseline case studies 2 and 4 represent unoptimised, equal assignment scenarios used for comparative 
purposes. Baseline case 4 is significant since the same input profiles are used in the optimisation case 
studies, which provides a direct comparison scenario. 

Table 4.2 summarises the baseline case studies considered in the investigation. 

Table 4.2: Summary of baseline case studies. 
Baseline 
case study 

Objective function Input 

1 Maximise cumulative energy yield  Averaged temporal profiles of the individual REDZs  

2 Equal weight allocation to individual 
technology specific REDZs 

Averaged temporal profiles of the individual REDZs  

3 Maximise cumulative energy yield Average profiles of individual temporal clusters 
4 Equal weight allocation to individual 

clusters 
Averaged profiles of the individual ToU clusters 

 

Figure 4.4(a) depicts the normalised capacity allocations to the individual REDZs for baseline case 
studies 1 and 2. Figure 4.4(b) depicts the normalised capacity allocations to the temporal clusters and 
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ToU clusters for baseline case studies 3 and 4, respectively. As expected, by optimising the allocations 
for maximum cumulative energy yield, the capacities are assigned to a single entity for each of the wind 
and solar allocations.  

 

(a) Capacity assignments to the individual Renewable Energy Development Zones 

 

(b) Capacity allocations to the individual clusters 

Figure 4.4: Normalised geospatial capacity allocations: (a) Baseline case studies 1 and 2, and (b) Baseline case 
studies 3 and 4. 

Figure 4.5 shows the resultant normalised residual load profile histograms associated with each baseline 
case study, plotted against the original demand profile histogram to provide a visual comparison of the 
impacts. Baseline case study 1, shown in Figure 4.5(a), depicts a maximum frequency of occurance at 
approximately 0.59 pu power, whereas baseline case study 2, shown in Figure 4.5(b), depicts the highest 
frequency of occurance at approximately 0.58 pu, with a noticeable dip at 0.63 pu. In baseline case study 
3, shown in Figure 4.5(c), the maximum frequency of occurance is at approximately 0.58 pu. Baseline 
case study 4, shown in Figure 4.5(d), depicts the highest frequency of occurance at approximately 0.7 
pu, with another high frequency of occurance at approximately 0.57 pu, and a noticeable dip at 0.62 pu.  

The histograms shown in Figure 4.5 are shown in Figure 4.6 as normalised probability density 
distributions, plotted against the normalised demand profile for comparison. All of the distributions 
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depict a significant reduction in the frequency of occurrence above 0.8 pu power compared to the 
normalised demand histogram. This study essentially examines to what extend further reduction in the 
frequency of occurrence of demand values above set thresholds can be achieved by optimised spatial 
capacity allocation.  

  

(a) Baseline case study 1 (b) Baseline case study 2 

  

(c) Baseline case study 3 (d) Baseline case study 4 

Figure 4.5: Histograms of the residual load profiles for the various baseline case studies. 

Figure 4.6 shows that both baseline case studies 1 and 3 depict a maximum frequency of occurance at 
approximately 0.6 pu power. These scenarios also service more energy at the lower load values, i.e., 
between 0.35 pu to 0.5 pu power, compared to baseline case studies 2 and 4, where more energy is 
serviced in the higher range, i.e., between the 0.65 pu to 0.75 pu power. This confirms that optimisation, 
even in the case of optimising cumulative energy yield as in scenarios 1 and 3, reduce the frequency of 
occurrence of higher load values compared to equal assignment unoptimised cases. However, it is 
noticeable that all of the baseline case studies perform very similar in the highest residual load range, 
i.e., above approximately 0.85 pu. Baseline case study 4 displays a notable dip in the frequency of 
occurrence at approximately 0.64 pu but seems to serve this energy at a higher load value, i.e., around 
0.7 pu. 
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Overall, the results for the baseline case studies confirm that the geospatial capacity allocation strategy 
can have a major impact on the statistical distribution of the residual load profile. 

 

Figure 4.6: Probability density distributions of the residual load profiles for the various baseline case studies. 

Table 4.3 provides the performance evaluation results for all baseline case studies. The normalised 
unweighted cumulative frequency of occurrence metric, 𝐹𝐹1𝑇𝑇, represents the cumulative frequency of 
occurrence of residual power values above a set threshold 0.7 pu and 0.8 pu power, as a percentage of 
the total number occurrences, 43 824. The set threshold values of 0.7 pu and 0.8 pu power are used to 
determine the performance metric results for the baseline case studies, as to provide comparative results 
to quantify the impact of the optimisation case studies.  

The normalised weighted cumulative frequency of occurrence metric, 𝐹𝐹2𝑇𝑇, represents the cumulative 
energy above a set threshold, 0.7 pu and 0.8 pu power, as a percentage of the total energy.  

𝐹𝐹3𝑇𝑇 represents the frequency of occurrences above a given per unit range of above 0.9 pu of the maximum 
residual load value. These results remain unchanged dependent on the threshold value, this is because 
the baseline case studies are unoptimised and the capacity allocation weight vector remains unchanged 
between the weighted and unweighted scenarios. 

Baseline case study 4 is shown to be the worst preforming case for a 0.7 pu threshold and baseline case 
1 is shown to be the worst preforming case for a 0.8 pu threshold. 

Table 4.3: Performance of the baseline case studies. 
Baseline 
case study 

𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 

Unweighted Weighted 

1: 0.7 pu 26.924 35.543 191 20.374 26.896 191 

2: 0.7 pu 26.711 35.263 172 20.059 26.481 172 

3: 0.7 pu 24.906 32.880 190 18.837 24.868 190 

4: 0.7 pu 29.545 39.005 214 22.184 29.286 214 

1: 0.8 pu 4.153 5.483 191 3.477 4.590 191 

2: 0.8 pu 3.208 4.235 172 2.677 3.534 172 

3: 0.8 pu 3.886 5.130 190 3.261 4.305 190 

4: 0.8 pu 3.683 4.862 214 3.073 4.057 214 
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4.4 Optimisation case studies 
The spatial capacity allocation framework is implemented for three optimisation case studies, which are 
evaluated comparatively against the four baseline case studies. These optimisation case studies include 
the following: 

Optimisation case study 1: The weighted and the unweighted objective functions are implemented to 
derive optimised spatial capacity allocations for set thresholds of 0.7 pu and 0.8 pu power. This case 
study does not include capacity allocation constraints.  

Optimisation case study 2: The weighted and the unweighted objective functions are implemented to 
derive optimised spatial capacity allocations for set thresholds of 0.7 pu and 0.8 pu power. This case 
study includes minimum capacity constraints, which represent the existing wind and solar plants 
within each cluster. Figure 4.7 depicts the existing wind and solar plants within South Africa where 
the encircled RE plants are included in the minimum constraints.  

Optimisation case study 3: The unweighted objective function is implemented to derive optimised 
spatial capacity allocations for a set threshold of 0.7 pu power. This case study includes minimum 
and maximum capacity constraints, where the minimum capacity constraints are defined as in 
optimisation case study 2. For this case study scenario, the maximum constraints are derived from 
the recent GCCA study [181]. Figure 4.8 depicts the remaining generation capacity that can be 
evacuated by existing grid infrastructure for the various supply areas. The Northern Cape has no 
further supply capacity, besides existing and committed capacity in this region. The supply area 
capacity within the six areas accumulates approximately 10.5 GW of generation capacity. These 
generation limits are used to formulate the maximum constraints.  

Table 4.4 summarises the optimisation case studies considered in the investigation. 

 
Figure 4.7: Existing renewable energy plants. Renewable energy plants included in the minimum optimisation 
constraints are encircled.  
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Figure 4.8: Power evacuation capacities for the South African supply areas [181]. 
Table 4.4: Summary of optimisation case studies. 

Optimisation 
case studies 

Objective Functions Constraints 

1 1.1 Minimise residual load events above thresholds 

 𝑃𝑃𝑇𝑇 = 0.7 pu and 𝑃𝑃𝑇𝑇 = 0.8 pu , unweighted objective function  

None 

1.2 Minimise residual load events above thresholds 

 𝑃𝑃𝑇𝑇 = 0.7 pu and 𝑃𝑃𝑇𝑇 = 0.8 pu , unweighted objective function  

None 

2 2.1 Minimise residual load energy above thresholds 

 𝑃𝑃𝑇𝑇 = 0.7 pu and 𝑃𝑃𝑇𝑇 = 0.8 pu , unweighted objective function  

Minimum  

2.2 Minimise residual load energy above thresholds 

 𝑃𝑃𝑇𝑇 = 0.7 pu and 𝑃𝑃𝑇𝑇 = 0.8 pu , unweighted objective function  

Minimum  

3  Minimise residual load energy above threshold 

𝑃𝑃𝑇𝑇 = 0.7 pu, unweighted objective function 

Minimum and 
maximum  

4.4.1  Optimisation case studies 1.1 and 1.2  

The unconstrainted optimisation case studies 1.1 and 1.2 determine the spatial capacity allocations for 
optimal power balance without considering capacity and grid infrastructure limitations. The optimisation 
framework is implemented using the averaged profiles of the clusters obtained with ToU feature-based 
clustering. The unweighted and weighted objective functions defined by Equations (4.25) and (4.26) are 
implemented, using thresholds of 0.7 pu and 0.8 pu power. 

Figure 4.9 shows the optimal capacity allocations obtained for optimisation case studies 1.1 and 1.2. The 
available wind generation capacity is allocated predominantly to clusters 3, 5 and 10 for both power 
thresholds in both case studies. The clustered wind resource map shown in Figure 3.10 depicts the 
geographic distribution of the clusters. Cluster 10 is represented in 6 of the 11 REDZ, but is located 
predominantly in Komsberg, Beaufort West and Stormberg. Although a high percentage of the capacity 
is allocated to cluster 10, the cluster represents a diverse geographic spread, which allows for spatial 
dispersion across REDZs. Figure 3.10 shows that cluster 3 is represented in the same 6 REDZs as cluster 
10, but is located predominantly in the Springbok, Overberg and Komsberg REDZs. Cluster 5 is situated 
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in the northern region, predominately in the Springbok, Upington and Vryburg REDZs. This is of interest 
since the gazetted REDZs define the Upington and Vryburg REDZs as a solar integration region. 

Figure 3.14(a) and Figure 3.14(b) show that the yield associated with cluster 3 occurs predominantly in 
the late afternoon period. In Figure 3.14, cluster 5 shows a dip in midday production, with increased yield 
in the morning and evening periods. This shows good complementary characteristics in comparison with 
the yield of the solar power produced during midday. Clusters 1, 4, 6, 7, 8 and 9 received little to no wind 
capacity allocation. Cluster 1, 4 and 8 are predominately situated in the north-eastern region, i.e., in the 
Kimberly, Emalahleni and Klerksdorp REDZs. Clusters 4 and 7 are situated in the southern and western 
regions but show a lower average yield in comparison with clusters 2, 3 and 10 located in the same 
region. This suggests that the lower wind speed locations within these regions are clustered together. By 
comparing clusters 4 and 7 with the underlying wind speed characteristics, shown in Figure 3.12, the 
wind speed map confirms low wind speeds within these clusters. Cluster 9 shown in Figure 3.14(a) depicts 
a high yield in the evening peak period, with a low yield in the morning peak period. Furthermore, the 
results show that the choice of objective function, i.e., weighted versus unweighted, as well as the 
threshold values, i.e., 0.7 pu or 0.8 pu, impact quite significantly on the allocations. The weighted 
objective function combined with the higher threshold value generally yields more diverse weight 
allocations to the clusters. 

The available solar generation capacity is allocated to all solar clusters. For a threshold value of 0.7 pu, 
a large share is assigned to cluster 9 for both objective functions. For a threshold value of 0.8 pu, the 
largest share is assigned to cluster 1 for both objective functions. For the unweighted objective function 
with a threshold value of 0.8 pu, a fair share is also assigned to cluster 6. Figure 3.24 displays the ToU 
feature-based solar clusters, where clusters 1 and 9 are located in the north-western region, and cluster 6 
is located in the north-eastern region. Cluster 6 shown in Figure 3.27(b) depicts a relatively high yield in 
the morning and midday for the high demand season. Clusters 1 and 9 shown in Figure 3.27(b) and Figure 
3.27(c) depict a relatively high yield during the midday and towards the evening peak periods in the low 
and high demand season.  

 

Figure 4.9: Normalised geospatial capacity allocations for optimisation case studies 1.1 and 1.2, for thresholds of 
0.7 pu and 0.8 pu power. 

Figure 4.10 depicts the histograms of the normalised residual load profiles obtained for optimisation case 
studies 1.1 and 1.2, for set thresholds of 0.7 pu and 0.8 pu power. The histogram of the original demand 
profile is shown to provide a basis for visual comparison. 
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Both the unweighted and weighted objective functions, for a threshold of 0.7 pu, exhibit a maximum 
frequency of occurrence at approximately 0.58 pu power. For a threshold of 0.8 pu, the maximum 
frequency of occurrence is shifted to approximately 0.72 pu power for both objective functions.  

  

(a) Unweighted objective function with a threshold value 
of 0.7 pu 

(b) Unweighted objective function with a threshold 
value of 0.8 pu 

  

(c) Weighted objective function with a threshold value 
of 0.7 pu 

(d) Weighted objective function with a threshold value 
of 0.8 pu 

Figure 4.10: Histograms of the optimised residual load profile for optimisation case studies 1.1 and 1.2. 

In order to evaluate the performance of the optimised capacity allocation, the residual load histograms 
for the optimisation case studies are subtracted from each of the baseline case study histograms. This 
yields bar charts that display the differences in frequency of occurrences between the optimisation case 
study results and the baseline case studies. Therefore, a positive value shows that the baseline case study 
has a lower frequency of occurrence for that normalised power range, while a negative value shows that 
the optimisation case study has a higher frequency of occurrence for that power range. Figure 4.11 and 
Figure 4.12 depict bar charts of the difference in frequency of occurrence for each comparative scenario. 

In Figure 4.11 and Figure 4.12, all instances display predominately positive differences in the range 
above 0.78 pu. This indicates that the optimisation framework successfully reduced the frequency of 
occurrence above the set thresholds when compared to all baseline case studies.  
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Baseline case studies 1 and 3 represent the capacity allocation for maximum cumulative yield, where it 
is notable that the optimised placement achieves reduction in the frequency of occurrence above the set 
threshold values.  

The unweighted cases shown in Figure 4.11 show a distinct difference between the 0.7 pu and 0.8 pu 
thresholds, where the 0.7 pu threshold case shows a higher reduction in hourly occurrences closer to the 
set threshold and the 0.8 pu threshold case shows a higher reduction in hourly occurrences in the higher 
power range, closer to 1 pu. Figure 4.11(b) and Figure 4.11(d) depict a higher reduction in hourly 
occurrences when compared to Figure 4.11(a) and Figure 4.11(c), which is accounted to the difference 
in the baseline case function objectives, summarised in Table 4.2, which translates to the differences in 
the probability density function plots shown in Figure 4.6.Figure 4.12 depicts the weighted optimisation 
case study, where a greater importance is placed on higher power values, closer to 1 pu. Comparing each 
diagram in Figure 4.11 against the same case diagrams in Figure 4.12, although marginal, all instances 
depict a shift towards 1 pu. Overall, the optimisation strategy clearly leverages the temporospatial 
characteristics of the resource profiles to achieve the desired outcomes. 

  
(a) Baseline case study 1: Maximise energy yield for 

assignment to REDZs profiles 
(b) Baseline case study 2: Equal assignment to 

averaged REDZs profiles 

  
(c) Baseline case study 3: Maximise energy yield for 

assignment to temporal clusters 
(d) Baseline case study 4: Equal assignment to ToU 

cluster profiles 

Figure 4.11: Difference in the histograms of unweighted optimisation case study 1.1 and the baseline case 
studies. 
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(a) Baseline case study 1: Maximise energy yield for 
assignment to averaged REDZs profiles 

(b) Baseline case study 2: Equal assignment to 
averaged REDZs profiles 

  

(c) Baseline case study 3: Maximise energy yield for 
assignment to temporal clusters 

(d) Baseline case study 4: Equal assignment to ToU 
cluster profiles 

Figure 4.12: Difference in the histograms of weighted cases study 1.2 and the baseline case studies. 
 

Table 4.5 provides the performance evaluation results for the optimisation case studies. The normalised 
unweighted cumulative frequency of occurrence metric, 𝐹𝐹1𝑇𝑇, represents the cumulative frequency of 
occurrence of residual power values above a set threshold 0.7 pu and 0.8 pu power, as a percentage of 
the total number occurrences, 43 824. The unweighted scenarios, for both thresholds, show a higher 
percentage of occurrence compared to the weighted cases.  

The normalised weighted cumulative frequency of occurrence metric, 𝐹𝐹2𝑇𝑇, represents the cumulative 
energy above a set threshold, 0.7 pu and 0.8 pu power, as a percentage of the total energy. The unweighted 
scenarios, for both thresholds, also show higher percentages of occurrence compared to the weighted 
cases. 

𝐹𝐹3𝑇𝑇 represents the frequency of occurrences above a given per unit range of 0.9 pu of the maximum 
residual load value. For the 0.7 pu threshold, the weighted case shows a reduction in occurrences, while 
the 0.8 pu threshold shows an increase in occurrences above 90 % of the maximum residual load value. 

Table 4.6 lists the differences between the baseline case study results and the optimisation case study 
results. The difference in performance metrics is calculated by subtracting the optimisation case study 
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performance results, shown in Table 4.5, from the baseline case study performance results, shown in 
Table 4.3. Therefore, if the results are positive then the optimisation case studies out preformed the 
baseline case studies and if the results are negative then the baseline case studies out preformed the 
optimisation case studies. Table 4.6 shows that all values are positive, which indicates that the 
optimisation case study 1 outperformed all baseline case scenarios. The greatest improvement is seen 
between baseline case study 4 and the optimisation case study for a threshold of 0.7 pu power. For the 
unweighted case, there is a 7.18 % improvement in the frequency of occurrence of residual power values 
and a 9.48 % improvement in the cumulative energy yield when compared to the baseline case study 4 
scenario. The frequency of occurrences of residual power values above 90 % of the maximum residual 
load value is reduced by 78 instances. This is a significant result since the baseline case study 4 represents 
the unoptimised case for the same statistical input clusters. Similarly for the weighted case, there is a 
5.43 % improvement in the frequency of occurrence of residual power values and a 7.16 % improvement 
in the cumulative energy yield when compared to the baseline case study 4 for this set threshold value. 
The frequency of occurrences of residual power values above 90 % of the maximum residual load values 
is reduced by 84 instances. This increase from 78 to 84 reduced instances shows that the weighted 
optimisation objective succeeded in reducing more instances of occurrence for higher residual load 
values. This is not the case for the 0.8 pu threshold scenarios, which could be because the optimisation 
range is shorter, and the reduction in the higher residual load values is seen closer to the maximum 
residual load value, i.e., above 95 %. 

Overall, the optimisation case studies all outperformed the baseline case studies for load instances above 
the set threshold, with improvements ranging from 1 % to 9.5 % dependent on the objective function. 
This shows a significant result since these high residual load values quantify the most expensive 
operating time when replaced by ancillary services. 

Table 4.5: Performance of the optimisation case studies 1.1 and 1.2. 
Optimisation 
case study 

𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 

0.7 pu 0.8 pu 

1.1 22.278 29.410 136 2.515 3.320 136 

1.2 16.756 22.120 129 2.056 2.714 139 

 

Table 4.6: Difference between performance results between the baseline case studies and the optimisation case 
studies. 

 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 

Unweighted Weighted 

1: 0.7 pu 4.561 6.022 55 3.614 4.771 61 

2: 0.7 pu 4.349 5.742 36 3.300 4.356 42 

3: 0.7 pu 2.544 3.359 54 2.078 2.744 60 

4: 0.7 pu 7.183 9.483 78 5.425 7.161 84 

1: 0.8 pu 1.625 2.145 58 1.414 1.866 54 

2: 0.8 pu 0.680 0.898 39 0.614 0.810 35 

3: 0.8 pu 1.358 1.792 57 1.197 1.581 53 

4: 0.8 pu 1.155 1.524 81 1.010 1.333 77 
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Figure 4.13 and Figure 4.14 depict the clustered wind and solar resource maps together with the 
optimised allocation capacity for the 0.8 pu power threshold for the unweighted optimisation case study 
1.1. This optimisation case is chosen as an example to depict the cluster formations together with the 
capacity allocation values, to form useful RE geospatial capacity allocation siting maps. 

 
Figure 4.13: Clustered wind resource map together with the optimised capacity allocations for optimisation case 
study 1.1, for a 0.8 pu threshold. 

 
Figure 4.14: Clustered solar resource map together with the optimised capacity allocations for optimisation case 
study 1.1, for a 0.8 pu threshold. 
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4.4.2 Optimisation case studies 2.1 and 2.2 

The constrained optimisation case studies 2.1 and 2.2 determine the spatial capacity allocation scenarios 
for optimal power balance, while considering minimum capacity constraints defined by the existing wind 
and solar generation units within the clustered regions. The optimisation framework is implemented 
using the averaged profiles of the clusters obtained with the ToU feature-based clustering approach. The 
unweighted and weighted objective functions defined by Equations (4.25) and (4.26) are implemented, 
using thresholds of 0.7 pu and 0.8 pu power. 

Figure 4.15 shows the optimal capacity allocations obtained for optimisation case studies 2.1 and 2.2. 
The minimum capacity constraints are indicated in Figure 4.15 by transparent grey bars plotted over the 
optimal capacity assignments. The available wind generation capacity is allocated predominantly to 
cluster 10 for both power thresholds in both case studies. All capacity is allocated to cluster 10, apart 
from the capacity committed to the minimum constraints for optimisation case study 2.1 for a threshold 
of 0.7 pu. Optimisation case study 2.1 for a threshold of 0.8 pu, allocates majority of additional capacity 
to clusters 2, 3 and 5. Optimisation case study 2.2 for a threshold of 0.8 pu, allocates majority of the 
additional capacity to clusters 3, 5, 7 and 9. In Figure 3.10, cluster 2, 3, 7, 9 and 10 are situated in the 
southern region, specifically in Overberg, Komsberg, Beaufort West, Cookhouse and Stormberg. High 
wind speed patterns are depicted within these areas, which is confirmed in Figure 3.14(a), specifically in 
the evening peak period. Cluster 5 is situated in the northern region, predominately in the Springbok, 
Upington and Vryburg REDZs. This is of interest since the gazetted REDZs define the Upington and 
Vryburg REDZs as a solar integration region. In Figure 3.14(a)-(c) it is noted that cluster 2, 3, 7, 9 and 
10 display similar annual daily yield profiles, with a peak in the evening peak period. In Figure 3.14, 
cluster 5 shows a dip in midday production, with increased yield in the morning and evening periods. 
This shows good complementary characteristics in comparison with the yield of the solar power 
produced during midday. Clusters 1, 4, 6, 7 and 8 received little to no capacity allocation. Clusters 1, 4 
and 8 are predominately situated in Emalahleni, Vryburg, Kimberly and Klerksdorp in the northeast 
region. Figure 3.12 compares the clusters with the underlying wind speed characteristics, where the 
regions depict low wind speed characteristics. Comparing clusters 6 and 7 with the underlying wind 
speed characteristics, shown in Figure 3.12, these clusters, overlayed onto the wind speed map, also show 
low wind speed characteristics. 

The available solar generation capacity is allocated to all solar clusters. For a threshold value of 0.7 pu, 
a large share is assigned to cluster 9 and for a threshold value of 0.8 pu, a large share is assigned to cluster 
10. Figure 3.24 shows that clusters 9 and 10 are situated in Springbok and Klerksdorp, respectively. 
Figure 3.27 shows that cluster 9 has the highest yield during the evening peak periods, and cluster 10 
shows high yield in the morning period. The cluster with the lowest assigned capacity is cluster 4, which 
is situated in Stormberg and Cookhouse. Comparing Figure 2.3 and Figure 3.24, it shows that cluster 4 
has of the lowest average GHI values for that region. 
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Figure 4.15: Normalised geospatial capacity allocations for optimisation case studies 2.1 and 2.2, for set 
thresholds of 0.7 pu and 0.8 pu power. 

Figure 4.16 depicts the histograms of the normalised residual load profiles obtained with optimisation 
case studies 2.1 and 2.2, for set thresholds of 0.7 pu and 0.8 pu power. The histogram of the original 
demand profile is shown to provide a basis for visual comparison. 

Optimisation case 2.1 depicts a maximum frequency of occurance at approximately 0.58 pu power for a 
threshold of 0.7 pu, whereas for a threshold of 0.8 pu, the maximum frequency of occurance is shifted to 
approximately 0.71 pu power. Optimisation case 2.2 shows the highest frequency of occurance at 
approximately 0.58 pu for a threshold of 0.7 pu, whereas for a threshold of 0.8 pu, the maximum 
frequency of occurance is shifted to approximately 0.71 pu power. 

  

(a) Unweighted objective function with a threshold value 
of 0.7 pu 

(b) Unweighted objective function with a threshold 
value of 0.8 pu 
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(c) Weighted objective function with a threshold value 
of 0.7 pu 

(d) Weighted objective function with a threshold value 
of 0.8 pu 

Figure 4.16: Histograms of the optimised residual load profiles for optimisation case studies 2.1 and 2.2 

To evaluate the performance of the optimised capacity allocation, the residual load histograms for the 
optimisation case studies are subtracted from each of the baseline case study histograms. This yields bar 
charts that display the differences in frequency of occurrences between the optimisation case study 
results and the baseline case studies.  

Figure 4.17 and Figure 4.18 depict bar charts of the difference in the frequency of occurrence for residual 
load instances above a set threshold, for each comparative scenario. 

In Figure 4.17(a) and (c) and Figure 4.18(a) and (c) all of the instances display positive differences in the 
range above approximately 0.75 pu. In Figure 4.17(b) and (d) and Figure 4.18(b) and (d) all of the 
instances display positive differences in the range above approximately 0.68 pu. Figure 4.17(d) and 
Figure 4.18(d) represent baseline case study 4, which is an unoptimised case which uses the same input 
profile as the optimisation case studies. These profiles show a large decrease in the frequency of 
occurrence of the residual load values for the 0.7 pu set threshold. This indicates that optimising the 
geospatial capacity allocation, rather than allocating equally between clusters, successfully aids in 
reducing the frequency of occurrence of residual load power values above the set thresholds.  

Overall, the results indicate that the optimisation framework successfully reduces the frequency of 
occurrence of residual load power values above the set thresholds when compared to all baseline case 
studies. 

The unweighted cases shown in Figure 4.17 show a distinct difference between the 0.7 pu and 0.8 pu 
thresholds, where the 0.7 pu threshold case shows a higher reduction in hourly occurrences closer to the 
set threshold and the 0.8 pu threshold case shows a higher reduction in hourly occurrences in the higher 
power range, closer to 1 pu. Figure 4.17(d) depicts a higher reduction in hourly occurrences when 
compared to Figure 4.17(a)-(c). 

Figure 4.18 depicts the weighted optimisation case study, where a greater importance is placed on higher 
power values, closer to 1 pu. Comparing each diagram in Figure 4.17 against the same case diagrams in 
Figure 4.18, although marginal, all instances depict a shift towards 1 pu.  

Overall, the optimisation strategy clearly leverages the temporospatial characteristics of the resource 
profiles to achieve the desired outcomes. The results show similar capacity allocations as optimisation 
case 1, apart from the minimum constraint allocations included in the capacity weight vectors.  
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(a) Baseline case study 1: Maximise energy yield for 
assignment to REDZs profiles 

(b) Baseline case study 2: Equal assignment to 
averaged REDZs profiles 

  

(c) Baseline case study 3: Maximise energy yield for 
assignment to temporal clusters 

(d) Baseline case study 4: Equal assignment to ToU 
cluster profiles 

Figure 4.17: Difference in the histograms of unweighted optimisation case study 2.1 and the baseline case 
studies. 
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(a) Baseline case study 1: Maximise energy yield for 
assignment to averaged REDZs profiles 

(b) Baseline case study 2: Equal assignment to 
averaged REDZs profiles 

  

(c) Baseline case study 3: Maximise energy yield for 
assignment to temporal clusters 

(d) Baseline case study 4: Equal assignment to ToU 
cluster profiles 

Figure 4.18: Difference in the histograms of weighted cases study 2.2 and the baseline case studies. 
 

Table 4.7 provides the performance evaluation results for the optimisation case studies 2.1 and 2.2. Table 
4.8 lists the differences between the baseline case study results and the optimisation case study results. 
Table 4.8 shows that all values are positive, which indicates that the optimisation case study 2 
outperformed all baseline case studies. The greatest improvement is seen between baseline case study 4 
and the optimisation case study for a threshold of 0.7 pu power. For the unweighted case, there is a 7.05 
% improvement in the frequency of occurrence of residual power values above the set threshold and a 
9.3 % improvement in the cumulative energy yield above the set threshold when compared to baseline 
case study 4. The difference in the frequency of occurrences of residual power values above 90 % of the 
maximum residual load value, between the optimisation case 2 and baseline case 4 study shows a 
reduction of 84 instances. These residual load values quantify the most expensive operating time when 
replaced by ancillary services. This is a significant result since the baseline case study 4 represents the 
unoptimised case for the same statistical input clusters. Similarly for the weighted case, there is a 5.3 % 
improvement in the frequency of occurrence of residual power values and a 7 % improvement in the 
cumulative energy yield when compared to the baseline case study 4, for a set threshold of 0.8 pu power. 
The difference in the frequency of occurrences of residual power values above 90 % of the maximum 
residual load value, between the optimisation case 1 and baseline case 4 shows a reduction of 85 
instances.  

The optimisation case study 2 shows similar results to the optimisation case study 1, which is to be 
expected since the inclusion of the minimum capacity constraints did not have a large impact on the 
capacity weight vector allocations. 

Table 4.7: Performance of the optimisation case studies 2.1 and 2.2. 
Optimisation 
case study 

𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 

0.7 pu 0.8 pu 

2.1 22.396 29.567 130 2.478 3.271 141 

2.2 16.603 21.918 136 2.108 2.783 138 
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Table 4.8: Difference between performance results between the baseline case studies and the optimisation case 
studies. 

 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 

Unweighted Weighted 

1: 0.7 pu 4.429 5.847 61 3.494 4.613 62 

2: 0.7 pu 4.217 5.567 42 3.180 4.198 43 

3: 0.7 pu 2.412 3.184 60 1.958 2.585 61 

4: 0.7 pu 7.051 9.308 84 5.305 7.003 85 

1: 0.8 pu 1.622 2.142 56 1.357 1.791 54 

2: 0.8 pu 0.678 0.895 37 0.557 0.735 35 

3: 0.8 pu 1.355 1.789 55 1.140 1.505 53 

4: 0.8 pu 1.152 1.521 79 0.953 1.258 77 

4.4.3 Optimisation case study 3 

Constrained optimisation case study 3 determines the spatial capacity allocation for optimal power 
balance while considering minimum and maximum capacity constraints. The minimum constraint is 
defined by the existing wind and solar generation units within the clustered regions. The maximum 
constraints are set according to the capacity limits shown in Figure 4.8. 

The optimisation framework is implemented using the average ToU feature-based clusters as input. The 
resultant residual load histogram is targeted, where unweighted occurrence above a set threshold of 0.7 
pu power is minimised. The maximum constraints are derived for grouped areas. The grouped areas are 
derived from Figure 4.8 and are defined in Table 4.9. 

Table 4.9: Capacity supply constraints per zone, depicted in Figure 4.8. 
Region REDZs within the Region Capacity Supply Limit 

1 Western cape  Overberg, Komsberg, 
Beaufort West 

1.1 GW 

2 Eastern cape Cookhouse, Stormberg, 
Beaufort West  

1.74 GW 

3 Free state Klerksdorp, Kimberly  1.26 GW 

4 Northwest Klerksdorp 4.051 GW 

5 Northern cape Springbok, Upington, 
Vryburg, Kimberly  

0 GW 

6 Unconstraint region Emalahleni None 
 

The combined capacity allocation for wind and solar, defined by the IRP2019, amounts to 12 GW, 8.2 
GW of wind and 3.8 GW of solar [14]. The minimum capacity allocation is defined by the existing RE 
generation plants within the REDZs, this summates to 1.526 GW of wind capacity and 0.769 GW of 
solar capacity. The remaining capacity to be allocated amounts to 6.657 GW of wind capacity and 3.05 
GW of solar capacity. The supply area is divided into 6 regions, listed in Table 4.9, where regions 1 to 5 
have a set maximum constraint, as shown in Figure 4.8. The Hydra cluster is excluded since no REDZs 
fall within this area. The 6th region is defined as all areas outside of the constrained regions, where this 
region has no maximum constraint set. This is a vital region, since the summation of the maximum 
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constraints for regions 1 to 5 equals to 8.151 GW, which this is less than the power capacity to be 
allocated, namely, 6.657 GW of wind capacity and 3.05 GW of solar capacity. Emalahleni is the only 
REDZs situated in the unconstraint region, therefore all excess capacity must be allocated to this REDZs. 
Regions 1 and 2 are situated in the south of the country, where Figure 2.2 depicts the favourable wind 
speed characteristics. Regions 3 and 4 are situated in the northeast part of the country, where Figure 2.3 
depicts favourable solar GHI characteristics. Regions 1 and 2 are only able to accommodate 2.84 GW, 
which implies that the remaining wind capacity will be forced into the southern part of the country. 
Region 5 has a maximum constraint set to zero, therefore no additional capacity can be allocated to this 
region. The existing capacity is constraint per cluster and added to the final capacity allocation after the 
maximum constraint limits have been taken into consideration. The maximum supply constraints define 
the available supply capacity, therefore the existing and committed capacity does not need to be 
subtracted from the maximum constraint, but rather added to ensure the weight vector per region includes 
the minimum power constraints applicable to that specific region. This process is defined mathematically 
below.  

The constraints for region 1 can be defined mathematically as 

𝑿𝑿1𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤  | 𝑚𝑚 = 2,3,6,7,9,10 and 𝑟𝑟 = 1}, 4.45 

𝑿𝑿1𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑠𝑠  | 𝑚𝑚 = 3,4,5,8 and 𝑟𝑟 = 1}   4.46 

and  

𝑃𝑃𝑐𝑐𝑤𝑤𝑋𝑋1𝑤𝑤 + 𝑃𝑃𝑐𝑐𝑠𝑠𝑋𝑋1𝑠𝑠 ≤ 1.1 𝐺𝐺𝐺𝐺 + 𝑃𝑃1 𝑚𝑚𝑚𝑚𝑚𝑚. 4.47 

The constraints for region 2 can be defined mathematically as 

𝑿𝑿2𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤  | 𝑚𝑚 = 2,3,6,7,10 and 𝑟𝑟 = 2}, 4.48 

𝑿𝑿2𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠  | 𝑚𝑚 = 3,4,5 and 𝑟𝑟 = 2} 4.49 

and  

𝑃𝑃𝑐𝑐𝑤𝑤𝑋𝑋2𝑤𝑤 + 𝑃𝑃𝑐𝑐𝑠𝑠𝑋𝑋2𝑠𝑠 ≤ 1.74 𝐺𝐺𝐺𝐺 + 𝑃𝑃2 𝑚𝑚𝑚𝑚𝑚𝑚. 4.50 

The constraints for region 3 can be defined mathematically as 

𝑿𝑿3𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤  | 𝑚𝑚 = 1,4,8 and 𝑟𝑟 = 3}, 4.51 

𝑿𝑿3𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠  | 𝑚𝑚 = 2,6,10 and 𝑟𝑟 = 3}, 4.52 

and  

𝑃𝑃𝑐𝑐𝑤𝑤𝑋𝑋3𝑤𝑤 + 𝑃𝑃𝑐𝑐𝑠𝑠𝑋𝑋3𝑠𝑠 ≤ 1.26 𝐺𝐺𝐺𝐺 + 𝑃𝑃3 𝑚𝑚𝑚𝑚𝑚𝑚. 4.53 

The constraints for region 4 can be defined mathematically as 

𝑿𝑿4𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤  | 𝑚𝑚 = 1,4,8 and 𝑟𝑟 = 4}, 4.54 

𝑿𝑿4𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠  | 𝑚𝑚 = 2,6 and 𝑟𝑟 = 4} 4.55 

and  

𝑃𝑃𝑐𝑐𝑤𝑤𝑋𝑋4𝑤𝑤 + 𝑃𝑃𝑐𝑐𝑠𝑠𝑋𝑋4𝑠𝑠 ≤ 4.051 𝐺𝐺𝐺𝐺 + 𝑃𝑃4 𝑚𝑚𝑚𝑚𝑚𝑚. 4.56 
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The constraints for region 5 can be defined mathematically as 

𝑿𝑿5𝑤𝑤 = {𝑥𝑥𝑚𝑚𝑚𝑚
𝑤𝑤  | 𝑚𝑚 = 1,2,3,4,5,6,7,8,10 and  𝑟𝑟 = 5}, 4.57 

𝑿𝑿5𝑠𝑠 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠  | 𝑚𝑚 = 1,2,3,7,9 and 𝑟𝑟 = 5} 4.58 

and  

𝑃𝑃𝑐𝑐𝑤𝑤𝑋𝑋5𝑤𝑤 + 𝑃𝑃𝑐𝑐𝑠𝑠𝑋𝑋5𝑠𝑠 = 0 𝐺𝐺𝐺𝐺 + 𝑃𝑃5 𝑚𝑚𝑚𝑚𝑚𝑚. 4.59 

The total number of wind subclusters within each region summates to 29 and the number of solar sub-
clusters summates to 18. The research space is therefore increased from 20 to 47 clusters. After the 
capacity allocation weights have been assigned to each cluster, the results are accumulated to achieve a 
single weighting for each cluster, the minimum constraints per region are also included in weight vector. 

Optimisation case study 3 is implemented to showcase the framework capability, where an increase in 
computing complexity is seen due to the nature of the maximum constraints. 

The constrained optimisation case study 3 determines the spatial capacity allocation scenario for optimal 
power balance and grid support while considering minimum and maximum capacity constraints defined 
by the existing wind and solar generation units within the clustered regions. The optimisation framework 
is implemented using the average ToU clusters as input. The resultant residual load histogram is targeted, 
where unweighted occurrences above a set threshold of 0.7 pu are minimised. 

Figure 4.19(a) shows the normalised geospatial capacity allocations and Figure 4.19(b) shows the spatial 
capacity allocations translated to the power allocations in GW, for the threshold above 0.7 pu power. The 
capacity allocation for the wind resource is assigned predominately to clusters 8 and 10. The allocation 
shows that the maximum available capacity, which falls within regions 1 and 2 is allocated to cluster 10. 
Regions 1 and 2 have a combined maximum constraint 2.84 GW and the combined minimum constraints 
for cluster 10 is 1.0218 GW, as indicted by the grey bars in Figure 4.19(b). The rest of the capacity is 
allocated to cluster 8, where the optimisation specifically allocated the capacity to the unconstraint region 
6. This allocation will have been the next best cluster in terms of the wind resource characteristics. 
Looking at Figure 3.14(a)-(c), the wind resource profiles depicted per cluster show that cluster 8 is indeed 
the best yielding cluster when compared to the other possible options in the unconstraint region 6, 
namely, clusters 1 and 4. 

All unconstraint capacity allocation for the solar resource is assigned to cluster 6. Figure 3.24 shows that 
cluster 6 is situated in Emalahleni, which is the REDZs within the unconstraint region 6. Figure 3.27 
shows that cluster 6 has the highest yield during the morning peak period in the high demand season and 
it is the best performing cluster when compared with the other cluster allocation option, namely cluster 
2. 

Figure 4.20 depicts the histogram of the normalised residual load profile obtained with optimisation case 
study 3, for a set threshold of 0.7 pu power. The histogram of the original demand profile is shown to 
provide a basis for visual comparison. Optimisation case 3 depicts a maximum frequency of occurance 
at approximately 0.71 pu power. 
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(a) Normalised geospatial capacity allocations 

 

(b) Geospatial capacity allocations in GW 

Figure 4.19: The geospatial (a) normalised and (b) power capacity allocations for optimisation case study 3, for a 
set threshold of 0.7 pu power. 

 

Figure 4.20: Histogram of the optimised residual load profiles for optimisation case studies 3, unweighted 
objective function with a threshold value of 0.7 pu. 
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To evaluate the performance of the optimised capacity allocation, the residual load histogram for the 
optimisation case study 3 is subtracted from each of the baseline case study histograms. This yields bar 
charts that display the differences in frequency of occurrences between the optimisation case study 
results and the baseline case studies, above the set threshold of 0.7 pu. However, the minimum and 
maximum constraint scenario cannot be fairly compared with the baseline case studies since there are 
major limitations enforced on the capacity allocations. 

In Figure 4.21(a)-(c) all of the instances still display positive differences in the higher power ranges, 
mainly above approximately 0.8 pu. Figure 4.21(c) shows the most improvement, starting from 
approximately 0.55 pu. Figure 4.21(a)-(d) shows less of an improvement in the frequency of occurrence 
for the higher residual load power values, which is due to the major maximum constraints applied to the 
various regions. 

Overall, the results indicate that the optimisation framework is still able to successfully reduce the 
frequency of occurrence of residual load power values above the set threshold when compared to all 
baseline case studies, despite the stringent maximum constraints applied. 

  

(a) Baseline case study 1: Maximise energy yield for 
assignment to REDZs profiles 

(b) Baseline case study 2: Equal assignment to 
averaged REDZs profiles 

  

(c) Baseline case study 3: Maximise energy yield for 
assignment to temporal clusters 

(d) Baseline case study 4: Equal assignment to ToU 
cluster profiles 

Figure 4.21: Difference in the histograms of unweighted optimisation case study 3 and the baseline case studies. 
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Table 4.10 provides the performance evaluation results for the optimisation case study 3. The results 
show an increase in the frequency of occurrence of residual load power values above the set threshold 
when compared to optimisation case studies 1 and 2. This is to be expected as stringent constraints have 
been applied to the capacity allocations. Due to these constraints, it seems unfair to compare the results 
with the baseline case studies, however the results are still calculated to see the effects of the maximum 
constraint allocations. Table 4.11 lists the differences between the baseline case study results and the 
optimisation case study results. Table 4.11 shows a mix of positive and negative values, which shows 
that the optimisation case study 3 was still able to outperform some baseline case scenarios. The greatest 
improvement is again seen between baseline case study 4 and the optimisation case study for a threshold 
of 0.7 pu power. There is a 1.62 % improvement in the frequency of occurrence of residual power values 
and a 2.14 % improvement in the cumulative energy yield when compared to baseline case study 4. The 
difference in the frequency of occurrences of residual power values above 90 % of the maximum residual 
load value, between the optimisation case 3 and baseline case study 4 shows a reduction of 32 instances.  

From these results, it is clear that the grid constraints limit the opportunity for optimisation of the 
geospatial capacity allocations. This has serious implications for future deployment of RE in SA, since 
our gird is facing severe supply limitations for all added generation capacity. 

Table 4.10: Performance of the optimisation case study 3, unweighted objective function with a threshold value 
of 0.7 pu. 

Optimisation 
case study 

𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 

3 27.925 36.866 182 

Table 4.11: Difference between performance results between the baseline case studies and the optimisation case 
study 3 for the unweighted case with a set threshold of 0.7 pu. 

Difference 𝐹𝐹1𝑇𝑇 [%] 𝐹𝐹2𝑇𝑇 [%] 𝐹𝐹3𝑇𝑇 

1 -1.002 -1.322 9.000 

2 -1.214 -1.603 -10.000 

3 -3.019 -3.985 8.000 

4 1.620 2.139 32.000 

4.5 Conclusion: Spatial capacity allocation framework 
A strategy is proposed, whereby spatiotemporal wind and solar power profiles are statistically clustered 
such that the cluster regions represent temporal profiles with the same statistical characteristics for a set 
of pre-defined ToU periods. Thereafter, the averaged temporal profiles of the clusters are used as the 
input for a geospatial capacity allocation optimisation procedure, using a statistical risk-based objective 
function. The objective function targets the frequency of occurrence of the residual load values above a 
given threshold. 

The proposed framework has been implemented for a number of baseline case studies and optimisation 
case studies. It is concluded that the framework is highly flexible in the sense that the formulation of the 
minimum and maximum allocation constraints allow application for real-world scenarios where capacity 
allocation constraints apply on a regional level. 

The results show that the geospatial capacity allocations obtained with optimisation case studies 1 and 2 
significantly reduce the frequency of load occurrences when compared with the baseline case studies. 
These reductions appear modest in terms of the performance metrics. However, the framework targets 
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the occurrences of the higher residual load values. These occurrences translate nonlinearly to high 
impacts due to the high capital and operating costs associated with these load values. 

Optimisation case 3 is considered a real-world scenario, where stringent constraints are applied. This 
case study cannot be fairly compared with the baseline case studies. However, the results still show an 
improvement in the frequency of occurrence of the residual load power values above 0.8 pu. From these 
results, it is clear that the grid constraints limit the opportunity for optimisation of the geospatial capacity 
allocations. This has serious implications for RE in SA, since our gird is facing severe supply limitations 
for all newly added generation capacity. 

Overall, the optimisation framework provides a robust method for the geospatial capacity allocation of 
wind and solar resources. The framework employs a robust way of handling constraint scenarios when 
considering multiple highly granular resource clusters.  
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Chapter 5 

 Conclusions and Recommendations 

5.1 Overview 
South Africa has displayed a unique energy supply profile over recent years, where the ability to 
consistently meet the energy demand has been constrained by physical limitations of the current energy 
supply infrastructure. The inadequate supply infrastructure results in countrywide loadshedding events, 
where total energy supply within peak ToU periods cannot be met. Low-grade coal, poorly maintained 
power plants and the impending end of life periods approaching for existing thermal plants adds to the 
country’s energy supply deficit. It is expected that optimised spatial capacity allocation of new build 
wind and solar plants can assist in addressing the generation capacity constraints in the medium to longer 
term future. 

Figure 5.1 depicts a high-level block diagram of the geospatial capacity allocation framework developed 
and implemented in this work. The framework incorporates a number of distinct processes, including 
the translation of temporospatial wind and solar resource profiles to normalised power profiles, the 
clustering of the temporospatial power profiles into geospatial clusters using a novel ToU statistical 
feature vector approach, and a constrained spatial allocation optimisation process for wind and solar 
generation capacities. The remainder of this chapter summarises the conclusions pertaining to the 
different processes, highlights contributions of an original nature, and presents recommendations for 
further work. The chapter concludes with a summary of the publication outcomes generated by this 
research. 

 
Figure 5.1: Block diagram representation of the geospatial capacity allocation framework proposed in this 
investigation.  
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5.2 Research summary and conclusions 

5.2.1 Defining the research  

Chapter 1 provides a detailed overview of the research background and motivation. The research aim, 
scope, objectives, and the expected novel contributions are also defined. The main research question is 
defined as follows: 

Can a comprehensive RE geospatial capacity allocation framework be developed that incorporates 
a risk-based approach to grid support, taking cognisance of real-world regional siting constraints, 
using geospatial wind and solar resource clusters as the input dataset? 

5.2.2 Resource classification model 

Clustering represents an integral part of the proposed framework. Clustering of the temporospatial 
resource data sets into a set of geospatial clusters represents a data reduction methodology, which reduces 
the computational expense of the optimised spatial capacity allocation process considerably. In practice, 
clustered resource maps are also more appropriate for plant siting studies compared to resource maps 
defined in terms of single coordinates, as is predominantly the case for the historical studies reported in 
literature. This is due to single sites having high risks of choosing coordinates which are not viable for 
plant placement, or large quantities of RE resources are allocated to coordinates with limited integration 
capacities.  

The cluster distributions obtained with the ToU feature vectors are compared with distributions delivered 
by clustering the spatiotemporal profiles using the k-means algorithm. This delivers a significant result 
in the sense that the distributions obtained with the ToU feature vectors across the eleven geographical 
REDZs, for the same number of clusters, show significantly higher granularity and diversity. It is 
concluded that the clustering of ToU feature vectors, compared to the clustering of raw temporal profiles, 
distinguishes more finely between the daily and seasonal temporal properties of neighbouring geographic 
locations. A statistical analysis of the clustering results obtained with the two clustering approaches are 
presented. The analysis show that the power profiles associated with the individual clusters obtained 
using the feature vector approach have similar or higher means, and similar or lower standard deviations, 
compared to the clusters obtained using spatiotemporal profiles. 

The ToU feature vector-based approach decreases the dimensionality of the input resource dataset 
significantly. Compared to clustering of the temporal profiles, the statistical feature vector approach 
delivers improved correlation between the geospatial clusters and the underlying topographic and 
climatic features.  

Overall, the ToU based clustering approach proposed and implemented in the study shows excellent 
performance as a data reduction pre-processing step in optimising the site locations of future wind and 
solar energy plants for optimal grid support in the context of the diurnal and seasonal characteristics of 
the aggregated load profile. The ToU periods used in the case study can be readily amended to represent 
other temporal criteria of interest, such as time-dependent transmission constraints, real-time pricing 
considerations, the pumping schedules of hydro-storage systems, etc. 

5.2.3 Optimal spatial capacity allocation framework 

A comprehensive systematic literature review is conducted on the strategies proposed in literature for 
the optimal spatial capacity allocation of wind and solar resources in the context of varying optimisation 
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objectives. These contributions are analysed with the view to determine the similarities and differences 
with the framework proposed in this research. 
The integration framework is developed using the best-performing clustering algorithm with the ToU 
feature-based vectors as input. Thereafter, clustered wind and solar power geographic resource maps are 
derived for the South African REDZs.  
The proposed geospatial capacity allocation framework is formulated mathematically and is 
implemented for a range of risk-based objective functions defined in terms of the residual load profile. 
These objective functions include minimising the unweighted frequency of occurrence above a set 
threshold and minimising the weighted frequency of occurrence above a set threshold. Case study results 
are obtained for various case study scenarios, including scenarios without capacity allocation constraints, 
and scenarios with minimum and/or maximum capacity constraints. 
The capacity allocations obtained with the proposed framework are compared with the capacity 
allocations associated with various baseline case studies. These baseline case studies are defined to 
mimic best case scenarios, as well as various siting strategies that do not include optimisation of the 
spatial capacity allocations, such as represented by the current REIPPP allocations. The performance 
evaluation showed a significant decrease in the frequency of occurrence for load values above the set 
thresholds, when compared to the baseline case study scenarios. The results are detailed as follows: 
For all geospatial capacity allocation optimisation case studies, the resultant capacity outputs showed the 
most improvement when compared with the baseline case study 4. This is a significant result, since 
baseline case study 4 represents the unoptimised, equal weight assignment scenario, using the same ToU 
feature-based input profiles as the optimisation case studies. 
− Optimisation case study 1 

This case study shows a diverse set of optimised capacity allocation weights, with wind cluster 10 
and solar clusters 1 and 9, showing large capacity allocation percentages.  

Various evaluation metrics are defined to measure the optimised allocation performances. For this 
optimisation scenario, the greatest improvement is seen between baseline case study 4 and the 
unweighted optimisation case study, for a threshold of 0.7 pu power. There is a 7.18 % improvement 
in the difference between the frequency of occurrence of residual power values and a 9.48 % 
improvement in the cumulative energy yield when compared to the baseline case 4 scenario. The 
frequency of occurrences of residual power values above 90 % of the maximum residual load value 
is reduced by 78 instances. 

− Optimisation case study 2 

This case study shows similar results to optimisation case study 2 since the only difference in the 
capacity allocation scenarios is the introduction of minimum capacity constraints. However, solar 
clusters 9 and 10 now show the largest capacity allocation percentages. 

Results indicate that optimising the geospatial capacity allocation, rather than allocating equally 
between clusters, successfully aids in reducing the frequency of occurrence of residual load power 
values above the set thresholds. 

The greatest improvement is again seen between baseline case study 4 and the unweighted 
optimisation case study for a threshold of 0.7 pu power. There is a 7.05 % improvement in the 
difference between the frequency of occurrence of residual power values and a 9.3 % improvement 
in the cumulative energy yield when compared to baseline case study 4. The difference in the 
frequency of occurrences of residual power values above 90 % of the maximum residual load value, 
between the optimisation case 2 and base case study 4 shows a reduction of 84 instances. This shows 
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a significant result since these high residual load values quantify the most expensive operating time 
when replaced by ancillary services. 

− Optimisation case study 3 

This case study is implemented to showcase the framework capabilities, where an increase in 
computing complexity is seen due to the nature of the maximum constraints. 

The constrained optimisation case study 3 determines the spatial capacity allocation scenario for 
optimal power balance and grid support while considering stringent minimum and maximum capacity 
constraints. 

The greatest improvement is again seen between baseline case study 4 and the optimisation case study 
for a threshold of 0.7 pu power. There is a 1.62 % improvement in the difference between the 
frequency of occurrence of residual power values and a 2.14 % improvement in the cumulative energy 
yield when compared to baseline case study 4. The difference in the frequency of occurrences of 
residual power values above 90 % of the maximum residual load value, between the optimisation 
case 3 and base case study 4 shows a reduction of 32 instances.  

From these results, it is clear that the grid constraints limit the opportunity for optimisation of the 
geospatial capacity allocations. This has serious implications for RE in SA, since our gird is facing 
severe supply limitations for all newly added generation capacity. 

Overall, in support of a reliable future energy supply scenario with high penetration of RE, the 
optimisation framework proposed in this work represents a probabilistic risk-based approach that seeks 
to minimise the number of events where high residual load values require ancillary service interventions 
to maintain power balance. 

5.3 Research contributions 
The novel contributions pertaining to the study can be summarised as follows: 

− Time-of-Use feature based clustering methodology: 

A detailed comparison is conducted of various clustering methodologies for the use on wind and solar 
resource data, for both statistical and temporal inputs. The RE resource is initially clustered using 
generic temporal input data sets, which yields clusters formations which align closely within the 
REDZs, showing low cluster granularity within each REDZs. The temporal input data sets each span 
a 5-year period, with an hourly resolution for the solar resource and a 15-minute resolution for the 
wind resource. This summates to 43 824 solar instances for each of the 4470 spatial locations and 
175 296 wind instances for each of the 4470 spatial locations. The temporal data sets are translated 
to statistical feature vectors, which model the high and low demand ToU profiles, which can be 
adapted to incorporate different criteria, such as time-dependent transmission constraints, real-time 
pricing considerations, etc. The ToU feature vectors statistically model the daily peak, standard and 
off-peak periods, which places equal importance on all periods. The spatiotemporal clustering method 
inherently places more emphasis on the off-peak periods since these periods occur for longer time 
intervals. The ToU feature-based clustering approach summates the large temporal dataset to two 
daily representations of the high and low demand seasons. This summates to 12 instances for each of 
the 4470 spatial locations for the wind resource clustering. The solar resource clusters are further 
segregated into the morning, midday and evening periods, therefore summating to 26 instances for 
each of the 4470 spatial locations. The ToU cluster formations depict highly granular cluster 
formations, which show clear ties to the underlying terrain and climatic conditions.  
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Overall, the novel ToU feature-based clustering method drastically reduces the dimensionality of the 
data sets and creates well defined clusters which better capture the underlying characteristics of the 
RE resource profiles. The clusters show improved granularity and accuracy when compared to 
clustering methodologies based on temporal profiles. 

− Probabilistic risk-reduced approach: 

The formulated objective functions target the higher load values in the residual load profile histogram 
in a statistical manner. As such, this method represents a probabilistic risk-based approach that seeks 
to minimise the number of events where high residual load values require ancillary service 
interventions to maintain power balance. From a financial perspective, the proposed approach also 
reduces the capital expenditure requirements associated with baseload generation capacity and 
ancillary service, as well as the energy costs associated with expensive peaking generation, such as 
open-cycle gas turbines. 

In practice, the cost function can be easily amended to target the probability density function of the 
residual load profile for a given ToU period, etc. The function can also be readily adapted to 
implement a non-linear weighting, such as an exponentially increasing weighting function, which 
would be more effective in targeting extreme values. 

− Robust constraint capabilities: 

In practice, the optimal siting of RE generation is not only defined in terms of power balance, but is 
subject to considerations such as the availability of grid infrastructure, power evacuation capacity 
constraints, economic and socio-economic considerations, land use and availability, environmental 
impacts, etc. 

The concept of regional constraints is introduced in order to enforce constraints on the same cluster 
profiles which fall into different constrained regions. The maximum constraints are often locationally 
dependent, as they are subject to the capacity limit imposed by nearby substations. In practice, the 
constraints may translate to a combinational permutation of minimum and/or maximum constraints 
formulated individually for the wind and solar allocations at cluster level and minimum and/or 
maximum constraints formulated for the combined wind and solar allocations at cluster level and/or 
regional level. 

The proposed constraint approach can handle a complex set of capacity allocation constraints in a 
robust manner. However, constraints that are defined at a regional level require that the optimisation 
algorithm take cognisance of the individual subclusters present in those regions. This increases the 
dimensions of the search space, which gives rise to longer simulation times and increased challenges 
with problems related to phenomena such as local minima. 

− Optimised spatial capacity allocation framework: 

The research reported in literature, with a few exceptions that are only applicable for specific case 
study scenarios, confirms that geospatial optimisation of RE capacity allocation, especially in the 
context of the spatiotemporal properties of the RE resources, can contribute in supporting power 
balance and various other operational objectives at high levels of RE penetration. Overall, it is 
concluded that, compared to the body of work reported in literature, the proposed RE geospatial 
capacity allocation framework proposed in this dissertation exhibits aspects of novelty and originality. 
This is particularly in terms of the pre-classification of the RE resource data, the risk-based objective 
function, and the use of adaptable optimisation constraints to accommodate real-world scenarios. 
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5.4 Recommendations for future work  
This research has uncovered potential opportunities for further investigation. These can be summarised 
as follows: 

− Increase the number of clusters to see the effects on the spatial capacity allocations. 
− Increase the study region to include the whole of South Africa, including all of the existing RE 

generation capacities. 
− Implement a non-linear weighting function in the objective function, such as an exponentially 

increasing the weighting function, which would be more effective in targeting extreme values. 
− Implement different optimisation methods with the view to decrease the simulation times 

reduce the risks associated with local minima for highly dimensional input datasets. 
− Consider hydrogen plants to alleviate the stringent maximum regional allocation constraints 

currently imposed by the power evacuation limitations. In this approach, excess capacity is 
diverted into hydrogen plants instead of curtailing excess RE generation. 
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5.5 List of research publications 
This research has generated the following publications. 

5.5.1 Conference articles 

− Clustered wind resource domains for the South African Renewable Energy Development Zones, 
C. Y. Janse van Vuuren, H. J. Vermeulen, 2019 Southern African Universities Power Engineering 
Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa 
(SAUPEC/RobMech/PRASA). 

− Clustering of wind resource Weibull characteristics on the South African renewable energy 
development zones, C. Y. Janse van Vuuren, H. J. Vermeulen, J. C. Bekker, 2019 10th 
International Renewable Energy Congress (IREC). 

− Optimised Geographical Allocation of Wind Energy Capacity using a Mean-Variance Portfolio 
Algorithm for Clustered and Un-clustered Profiles, C. Y. Janse van Vuuren, H. J. Vermeulen, J. 
C. Bekker, 2019 IEEE International Conference on Environment and Electrical Engineering and 
2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). 

− Optimal Siting of Wind Energy Capacity for Minimum Residual Load Variance, C. Y. Janse van 
Vuuren, H. J. Vermeulen, M. Groch, 2019 9th International Conference on Power and Energy 
Systems (ICPES). (Best paper award) 

− Optimal Geospatial Allocation of Wind Generation Capacity for Grid-Support Objectives, C. Y. 
Janse Van Vuuren, H. J. Vermeulen, M. Groch, 2020 11th International Renewable Energy 
Congress (IREC), 1-6. 

− A Self-Organizing Map Approach for Time-of-Use Feature Based Wind Resource Clustering, 
C.Y. Janse Van Vuuren, H. J. Vermeulen, M. Groch, 2020 11th International Renewable Energy 
Congress (IREC). (Best paper award) 

5.5.2 Journals articles 

− Clustering of wind resource data for the South African renewable energy development zones, C. 
Y. Janse van Vuuren, H. J. Vermeulen, Journal of Energy in Southern Africa 30(2), 126-143. 

− Wind resource clustering based on statistical Weibull characteristics, C. Y. Janse van Vuuren, H. 
J. Vermeulen, Wind Engineering 43(4), 359-376. 

− A statistical Time-Of-Use tariff based wind resource clustering approach using Self-Organizing 
Maps, C. Y. Janse van Vuuren, H. J. Vermeulen, M Groch, Wind Engineering 45(4), 807-821. 

− Time of Use Feature Based Clustering of Spatiotemporal Wind Power Profiles, C. Y. van Staden, 
H. J. Vermeulen, M. Groch, Energy Elsevier 236. 

  

Stellenbosch University https://scholar.sun.ac.za



 

123 
 

References 
 

[1]  Council for Scientific and Industrial Research, “National wind solar sea,” 17 February 2016. 
[Online]. Available: https://www.csir.co.za/national-wind-solar-sea. [Accessed 29 July 2019]. 

[2]  California Independent System Operator Corporation, “Impacts of renewable energy on grid 
operations,” California ISO, California , 2017. 

[3]  P. Denholm, M. O’Connell, G. Brinkman and J. Jorgenson , “Overgeneration from Solar Energy 
in California: A Field Guide to the Duck Chart,” National Renewable Energy Laboratory, 
California, 2015. 

[4]  P. del Río and L. Janeiro, “Overcapacity as a Barrier to Renewable Energy Deployment: The 
Spanish Case,” Journal of Energy, pp. 1-10, 2016.  

[5]  A. Couto and A. Estanqueiro, “Exploring wind and solar PV generation complementarity to meet 
electricity demand,” Energies, vol. 13, no. 16, 2020.  

[6]  C. E. Hoicka and I. H. Rowlands, “Solar and wind resource complementarity: Advancing options 
for renewableelectricity integration in Ontario, Canada,” Renewable Energy, vol. 36, pp. 97-
107, 2011.  

[7]  E. Ela, M. Milligan and B. Kirby, “Operating Reserves and Variable Generation,” National 
Renewable Energy Laboratory, Colorado, 2011. 

[8]  M. Hedayati-Mehdiabadi, J. Zhang and K. W. Hedman, “Wind Power Dispatch Margin for 
Flexible Energy and Reserve Scheduling With Increased Wind Generation,” IEEE Transactions 
on Sustainable Energy, vol. 6, no. 4, pp. 1543-1552, 2015.  

[9]  J. R. Calitz and J. G. Wright, “Statistics of utility-scale power generation in South Africa in 
2020,” in The CSIR Energy Centre on the statistics of utility-scale power generation in South 
Africa in 2020, 2021.  

[10]  The Danish Energy Agency, “Denmark’s Energy and Climate Outlook,” The Danish Energy 
Agency, Denmark, 2018. 

[11]  Union of Concerned Scientists , “Turning Down the Gas in California,” Union of Concerned 
Scientists , Cambridge, 2018. 

[12]  California Energy Commission, California Public Utilities Commission, California Air 
Resources Board, “SB 100 Joint Agency Report: Charting a path to a 100% Clean Energy 
Future,” California Energy Commission, California , 2021. 

[13]  Department of Energy: South Africa, “Integrated Resource Plan Draft,” Department of Energy, 
South Africa, Pretoria, 2018. 

[14]  Department of Energy: South Africa, “Integrated Resource Plan (IRP2019),” Department of 
Mineral Resources and Energy, Pretoria, 2019. 

[15]  A. Eberhard and R. Naude, “The South African renewable energy IPP procurement programme,” 
Graduate School of Business, University of Cape Town, Cape Town, 2017. 

Stellenbosch University https://scholar.sun.ac.za



 

124 
 

[16]  Mineral resources and energy, “Independent Power Producers Procurement Programme (IPPPP) 
An Overview,” Independent Power Producers Office, Johannesburg, South Africa, 2019. 

[17]  Mineral resources and energy, “Independent Power Producers Procurement Programme 
(IPPPP): An Overview,” Independent Power Producer Office, Johannesburg, South Africa, 
2021. 

[18]  A. Eberhard and R. Naude, “The South African Renewable Energy IPP Procurement 
Programme: Review, Lessons Learned & Proposals to Reduce Transaction Costs,” Graduate 
School of Business, University of Cape Town, Cape Town, 2017. 

[19]  Department of Environment, Forestry and Fisheries, “Government Gazette No. 44191 Vol. 668,” 
26 February 2021. [Online]. Available: sapvia.co.za/wp-content/uploads/2021/03/44191_26-
02_NationalGovernment-REDACT2.pdf. [Accessed 2021 05 2021]. 

[20]  M. Liserre, T. Sauter and J. Y. Hung, “Future Energy Systems,” in IEEE Industrial Electronics 
Magazine, 2010.  

[21]  APS Panel on Public Affairs, “Integrating Renewable Electricity on the Grid,” American 
Physical Society, Washington DC, 2007. 

[22]  Greening the Grid, “Using Wind and Solar to Reliably Meet Electricity Demand,” U.S. 
Government’s Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) 
program, 2015. 

[23]  J. Hossain and H. R. Pota, Robust Control for Grid Voltage Stability: High Penetration of 
Renewable Energy, Springer, 2014.  

[24]  Q. Hou, N. Zhanga, E. Du, M. Miao, F. Peng and C. Kanga, “Probabilistic duck curve in high 
PV penetration power system: Concept, modeling, and empirical analysis in China,” Applied 
Energy, Elsevier, vol. 242, pp. 205-215, 2019.  

[25]  C. W. Potter, A. Archambault and K. Westrick, “Building a Smarter Grid through Better 
Renewable Energy Information,” in IEEE/PES Power Systems Conference and Exposition, 
Seattle, USA, 2009.  

[26]  G. M. Shafiullah, M. T. Amanullah, D. Jarvis, S. Ali and P. Wolfs, “Potential Challenges: 
Integrating Renewable Energy with the Smart Grid,” in 20th Australasian Universities Power 
Engineering Conference, Christchurch, New Zealand, 2010.  

[27]  H. H. Ei-Tamaly and M. A. Wahab, “Simulation of Directly Grid-Connected Wind Turbines for 
Voltage Fluctuation Evaluation,” Journal of Applied Engineering Research,, vol. 2, no. 1, pp. 
15-30, 2007.  

[28]  E. Bossanyi, Z. Saad-Saoud and N. Jenkins, “Prediction of Flicker Produced by Wind Turbines,” 
Wind Energy, vol. 1, pp. 35-51, 1998.  

[29]  N. T. Linh, “Power Qulaity Investigation of Grid Connected Wind Turbines,” in 4th IEEE 
Conference on Industrial Elctronics and Applications,, China, 2009.  

[30]  Eaton Electrical , “Harmonics in your electrical system,” Eaton Corporation . 

Stellenbosch University https://scholar.sun.ac.za



 

125 
 

[31]  Z. Ming, H. Lixin, Y. Fam and J. Danwei, “Research of the problems of renewable energy 
orderly combined to the grid in smart grid,” in Power and Energy Engineering Conference 
(APPEEC 2010), Chengdu, 2010.  

[32]  R. Billinton and R. N. Allan, “Power-system reliability in perspective,” Electronics & Power , 
pp. 231-236, 1984.  

[33]  R. Billinton and D. Huang, “Basic considerations in generating capacity adequacy evaluation,” 
in Canadian Conference on Electrical and Computer Engineering, Saskatoon, Canada, 2005.  

[34]  E. Ibanez and M. Milligan, “Comparing Resource Adequacy Metrics,” in 13th International 
Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on 
Transmission Networks for Offshore Wind Power Plants, Berlin, 2014.  

[35]  L. Söder and M. Amelin, “A review of different methodologies used for calculation of wind 
power capacity credit,” in Proc. IEEE Power Eng. Soc. General Meeting, Pittsburgh, 2008.  

[36]  M. Amelin, “Comparison of Capacity Credit Calculation Methods for Conventional Power 
Plants and Wind Power,” IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 685-691, 
2009.  

[37]  Eskom, “Tariffs & Charges 2019/2020,” Eskom Holdings SOC Ltd, Pretoria, South Africa, 
2020. 

[38]  G. C. Wu, R. Deshmukh, K. Ndhlukula, T. Radojicic, J. Reilly-Moman, A. Phadke, D. M. 
Kammen and D. S. Callaway, “Strategic siting and regional grid interconnections key to low-
carbon futures in African countries,” Proceedings of the National Academy of Sciences of the 
United States of America, vol. 114, no. 15, p. 3004–3012, 2017.  

[39]  The International Renewable Energy Agency, “Planning for the Renewable future,” The 
International Renewable Energy Agency, Abu Dhabi, 2017. 

[40]  T. Aboumahboub, K. Schaber, P. Tzscheutschler and T. Hamacher, “Optimization of the 
Utilization of Renewable Energy Sources in the Electricity Sector,” in Recent Advances in the 
Analysis of Sustainable Energy and Environment, 2010.  

[41]  S. Beckera, B. A. Frew, G. B. Andresen, T. Zeyer, A. Schramm, M. Greiner and M. Z. Jacobson, 
“Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and 
transmission grid extensions,” Elsevier, 2014.  

[42]  H. Takeda, P. Veerkamp, T. Tomiyama and H. Yoshikawa, “Modeling Design Processes,” AI 
Magazine, vol. 11, no. 4, 1990.  

[43]  CSIR, CSIR Report Number: CSIR/SPLA/SECO/ER/2019/0085, Phase 1 Strategic 
Environmental Assessment for wind and solar PV energy in South Africa. CSIR Report Number: 
CSIR/SPLA/SECO/ER/2019/0085 Stellenbosch, Western Cape., Stellenbosch, Western Cape: 
Department of Environment Forestry and Fisheries, 2015.  

[44]  Department of Environmental Affairs, “Strategic Environmental Assessment for wind and solar 
photovoltaic energy in South Africa,” CSIR Report Number: CSIR/CAS/EMS/ER/2015/0001/B, 
Stellenbosch, 2015. 

Stellenbosch University https://scholar.sun.ac.za



 

126 
 

[45]  J. Badger, H. Frank, A. N. Hahmann and G. Giebel, “Wind-Climate Estimation Based on 
Mesoscale and Microscale Modeling: Statistical-Dynamical Downscaling for Wind Energy 
Applications,” Journal of Applied Meteorology and Climatology, vol. 53, p. 1901–1919, 2014.  

[46]  Fraunhofer IWES and The CSIR Energy Centre, “Wind and Solar PV Resource Aggregation 
Study for South Africa,” Fraunhofer IWES, South Africa, 2016. 

[47]  Department of Mineral Resources and Energy South Africa, Sonedi, Royal Danish Embassy and 
Wind Atlas for South Africa, “The WASA download site,” Council for Scientific and Industrial 
Research, Pretoria, 2010. 

[48]  R. Müller, U. Pfeifroth, C. Tr€ager-Chatterjee, R. Cremer, J. Trentmann and R. Hollmann, 
“Surface Solar Radiation Data Set - Heliosat (SARAH) - Edition 1,” Satellite Application 
Facility on Climate Monitoring, CM SAF, 2015.  

[49]  G. M. Masters, “Wind Farms,” in Renewable and Efficient Electric Power Systems, New Jersey, 
JOHN WILEY & SONS, INC., 2004, pp. 351-360. 

[50]  Vestas, “Vestas 3 MW Platform,” 15 10 2015. [Online]. Available: 
https://www.nhsec.nh.gov/projects/2013-02/documents/131212appendix_15.pdf. [Accessed 24 
06 2021]. 

[51]  H. Nørgaard and H. Holttinen, “A Multi-Turbine Power Curve Approach,” in Nordic Wind 
Power Conference, Gothenburg, 2004.  

[52]  T. Huld, G. Friesen, A. Skoczek, R. P. Kenny, T. Sample, M. Field and E. D. Dunlop, “A power-
rating model for crystalline silicon PV modules,” Solar Energy Materials & Solar Cells, vol. 95, 
pp. 3359-3369, 2011.  

[53]  D. L. King, W. E. Boyson and J. A. Kratochvil, “Photovoltaic Array Performance,” Sandia 
National Laboratories, 2004. 

[54]  D. Faiman, “Assessing the outdoor operating temperature of photovoltaic modules,” Progress 
in Photovoltaics: Research and Applications , vol. 16, p. 307–315, 2008.  

[55]  M. Koehl, M. Heck, S. Wiesmeier and J. Wirth, “Modeling of the nominal operating cell 
temperature based on outdoor weathering,” Solar Energy Materials & Solar Cells, vol. 95, p. 
1638–1646, 2011.  

[56]  A. Zagouras, R. H. Inman and C. F. M. Coimbra, “On the determination of coherent solar 
microclimates for utility planning and operations,” Solar Energy, vol. 102, pp. 173-188, 2014.  

[57]  F. Vallee, G. Brunieau, M. Pirlot, O. Deblecker and J. Lobroy, “Optimal wind clustering 
methodology for adequacy evaluation in system generation studies using nonsequential Monte 
Carlo simulation,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2173-2184, 2011.  

[58]  M. Burlando, M. Antonelli and C. F. Ratto, “Mesoscale wind climate analysis: identification of 
anemological regions and wind regimes,” Int. J. Climatol., vol. 28, no. 5, pp. 629-641, 2008.  

[59]  F. Cassola, M. Burlando, M. Antonelli and C. F. Ratto, “Optimization of the Regional Spatial 
Distribution of Wind Power Plants to Minimize the Variability of Wind Energy Input into Power 
Supply Systems,” American Meteorology Society, vol. 47, pp. 3099-3116, 2008.  

Stellenbosch University https://scholar.sun.ac.za



 

127 
 

[60]  L. L. Tupper, D. S. Matteson and C. L. Anderson, “Band Depth Clustering for Nonstationary 
Time Series and Wind Speed Behavior,” in Technometrics, 2015.  

[61]  T. Leenman and F. Phillipson, “Optimal Placing of Wind Turbines: Modelling the Uncertainty,” 
J. Clean Energy Technol., vol. 3, no. 2, pp. 91-105, 2015.  

[62]  R. Snel and H. Lundstedt, “Self organising maps of solar wind structures,” in Proceedings of 
Artificial Intelligence Applications, Sweden, 1993.  

[63]  S. Berkovic, “Wind regimes and their relation to synoptic variables using self-organizing maps,” 
Advances in Science and Research, vol. 15, pp. 1-9, 2018.  

[64]  M. Yesilbudak, “Clustering analysis of multidimensional wind speed data using k-means 
approach,” in 2016 IEEE International Conference on Renewable Energy Research and 
Applications (ICRERA), Birmingham, 2016.  

[65]  J. G. Pinto, C. P. Neuhaus, G. C. Leckebusch, M. Reyers and M. Kerschgens, “Estimation of 
wind storm impacts over Western Germany under future climate conditions using a statistical—
dynamical downscaling approach,” Dynamic Meteorology and Oceanography, vol. 62, no. 2, 
pp. 188-201, 2010.  

[66]  L. Dong, “Wind Resource Assessment in the Southern Plains of the US: Characterizing Large-
Scale Atmospheric Circulation with Cluster Analysis,” Atmosphere, vol. 9, no. 3, p. 2018, 2018.  

[67]  P. Nahmmacher, E. Schmid, L. Hirth and B. Knopf, “Carpe diem: A novel approach to select 
representative days for longterm power system modeling,” Energy, vol. 112, pp. 430 - 442, 2016.  

[68]  B. Andreopoulos, A. An and X. Wang, “A roadmap of clustering algorithms: finding a match 
for a biomedical application,” Brief. Bioinform., vol. 10, no. 3, pp. 297-314, 2009.  

[69]  A. Bhat, “k-medoids clustering using partitioning around medoids for performing face 
recognition,” International Journal of Soft Computing, Mathematics and Control (IJSCMC), 
vol. Vol. 3, no. No.3, 2014.  

[70]  S. Ayramo and T. Karkkainen, “Introduction to partitioning-based clustering methods with a 
robust example,” University of Jyvaskyla Department of Mathematical Information Technology, 
Jyvaskyla, 2006. 

[71]  Z. Guo-fu and Q. U. Gou-qing, “Analysis and implementation of CLARA algorithm on 
clustering,” Journal of Shandong University of Technology (Science and Technology), vol. 02, 
2006.  

[72]  J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function, MA, USA: Kluwer Academic 
Publishers Norwell, 1981.  

[73]  D. Dembélé and P. Kastner, “Fuzzy C-means method for clustering microarray data,” 
Bioinformatics , vol. 19, no. 8, p. 973–980, 2003.  

[74]  M. Ester, H. P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for discovering clusters 
in large spatial databases with noise,” Kdd, vol. 96, no. 34, p. 226–231, 1996.  

[75]  D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,” Mach. Learn, vol. 
2, no. 2, pp. 139-172, 1987.  

Stellenbosch University https://scholar.sun.ac.za



 

128 
 

[76]  T. W. Liao, “Clustering of time series data—a survey,” Pattern Recognition, vol. 38, no. 11, pp. 
1857-1874, 2005.  

[77]  S. Rani and G. Sikka, “Recent techniques of clustering of time series data: a survey,” 
International Journal of Computer Applications , vol. 52, no. 15, pp. 1-9, 2012.  

[78]  J. Lin, M. Vlachos, E. Keogh and D. Gunopulos, “Iterative incremental clustering of time series,” 
in EDBT, 2004, pp. 521-522. 

[79]  S. Aghabozorgi, A. S. Shirkhorshidi and W. Y. Teh, “Time-series clustering – A decade review,” 
Information Systems, vol. 53, pp. 16-38, 2005.  

[80]  W. He, G. Feng, Q. Wu, T. He, S. Wan and J. Chou, “A new method for abrupt dynamic change 
detection of correlated time series,” International Journal of climatology, vol. 32, no. 10, pp. 
1604-1614, 2012.  

[81]  D. Graves and W. Pedrycz, “Proximity fuzzy clustering and its application to time series 
clustering and prediction,” in Intelligent Systems Design and Applications ISDA10, 2010.  

[82]  N. Pavlidis, V. P. Plagianakos, D. K. Tasoulis and M. N. Vrahatis, “Financial forecasting through 
unsupervised clustering and neural networks,” Operational Research, vol. 6, no. 2, p. 103–127, 
2006.  

[83]  A. Sfetsos and C. Siriopoulos, “Time series forecasting with a hybrid clustering scheme and 
pattern recognition,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems 
and Humans, vol. 34, no. 3, p. 399–405, 2004.  

[84]  T. Mitsa, Temporal Data Mining, vol. 33, New York: Chapman and Hall/CRC, 2010.  

[85]  E. Ghysels, P. Santa-Clara and R. Valkanov, “Predicting volatility: getting the most out of return 
data sampled at different frequencies,” Journal of Econometrics, vol. 131, no. 1-2, pp. 59-95, 
2006.  

[86]  E. Keogh, “Hot sax: efficiently finding the most unusual time series,” in Fifth IEEE International 
Conference on Data Mining ICDM05, 2005.  

[87]  G. Duan, Y. Suzuki and K. Kawagoe, “Grid representation of time series data for similarity 
search,” in The institute of Electronic, Information,and Communication Engineer, 2006.  

[88]  E. J. Keogh, M. J. Pazzani, K. Chakrabarti and S. Mehrotra, “A simple dimensionality reduction 
technique for fast similarity search in large time series databases,” Knowledge Discovery and 
Data Mining. Current Issues and New Applications , vol. 1805, pp. 122-133, 2000.  

[89]  H. Zhang and V. Lesser, “Multi-agent based peer-to-peer information retrieval systems with 
concurrent search sessions,” in Autonomous agents and multiagent systems, Japan, 2006.  

[90]  J. Lin, E. Keogh, L. Wei and S. Lonardi, “Experiencing SAX: a novel symbolic representation 
of time series,” Data Mining and Knowledge Discovery, vol. 15, no. 2, pp. 107-144, 2007.  

[91]  K. Chan and A. W. Fu, “Efficient time series matching by wavelets,” 15th International 
Conference on Data Engineering, vol. 15, no. 3, p. 126–133, 1999.  

[92]  B. K. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary Lp norms,” in 26th 
International Conference on Very Large Data Bases, 2000.  

Stellenbosch University https://scholar.sun.ac.za



 

129 
 

[93]  Y. L. Wu, D. Agrawal and A. El Abbadi, “Comparison of DFT and DWT based similarity search 
in time-series databases,” in Ninth International Conference on Information and Knowledge 
Management, 2000.  

[94]  H. Sakoe and S. Chiba, “A dynamic programming approach to continuous speech recognition,” 
Seventh International Congress on Acoustics, vol. 3, pp. 65-69, 1971.  

[95]  H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word 
recognition,” IEEE Trans. Acoust. Speech Signal Process, vol. 26, no. 1, pp. 43-49, 1978.  

[96]  J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. 
Stat, vol. 42, no. 1, pp. 59-66, 1988.  

[97]  C. Faloutsos, M. Ranganathan and Y. Manolopoulos, “Fast subsequence matching in time-series 
databases,” ACM SIGMOD Rec, vol. 23, no. 2, pp. 419-429, 1994.  

[98]  A. Kassambara, “Clustering Distance Measures,” in Practical Guide To Cluster Analysis in R, 
STHDA, 2017, pp. 25-27. 

[99]  E. Keogh and S. Kasetty, “On the Need for Time Series Data Mining Benchmarks: A Survey 
and Empirical Demonstration,” Data Mining and Knowledge Discovery, vol. 7, no. 4, pp. 349-
371, 2003.  

[100]  C. Ratanamahatana and E. Keogh, “Three myths about dynamic time warping data mining,” in 
International Conference on Data Mining, 2005.  

[101]  C. Y. Janse van Vuuren and H. J. Vermeulen, “Clustered wind resource domains for the south 
african renewable energy development zones,” Cape Town, 2019.  

[102]  R. L. Thorndike, “Who Belongs in the Family?,” Psychometrika, vol. 18, no. 4, p. 267–276, 
1953.  

[103]  C. A. Sugar and G. M. James, “Finding the number of clusters in a data set: An information 
theoretic approach,” Journal of the American Statistical Association, vol. 98, p. 750–763, 2003.  

[104]  A. Bhat, “k-medoids clustering using partitioning around medoids for performing face 
recognition,” International Journal of Soft Computing, Mathematics and Control, vol. 3, no. 3, 
2014.  

[105]  C. Martha, W. Milligan and G. Cooper, “Methodology review: clustering methods,” Applied 
psychological measurement, vol. 11, no. 4, pp. 329-354, 1987.  

[106]  L. Scrucca, M. Fop, T. B. Murphy and A. E. Raftery, “mclust 5: clustering, classification and 
density estimation using gaussian finite mixture models,” NCBI, vol. 8, no. 1, p. 289–317, 2016.  

[107]  R. Boyles, “On the convergence of the EM algorithm,” Journal of the Royal Statistical Society, 
vol. 45, p. 47–50, 1983.  

[108]  T. Kohonen, “Adaptive, associative, and self-organizing functions in neural computing,” 
Applied Optics , vol. 26, no. 23, pp. 4910-4918, 1987.  

[109]  T. Kohonen, “MATLAB Implementations and Applications of the Self-Organizing Map,” 
Unigrafia Oy, Helsinki, Finland, 2014.  

[110]  S. K. Kingrani, M. Levene and D. Zhang, “Estimating the number of clusters using diversity,” 
Artificial Intelligence Research, vol. 7, no. 1, pp. 15-22, 2018.  

Stellenbosch University https://scholar.sun.ac.za



 

130 
 

[111]  M. Yan and K. Ye, “Determining the Number of Clusters Using the Weighted Gap Statistic 
Statistic,” The International Biometric Society, vol. 63, no. 4, pp. 1031-1037, 2007.  

[112]  T. M. Kodinariya and P. R. Makwana, “Review on determining number of Cluster in K-Means 
Clustering,” International Journal of Advance Research in Computer Science and Management 
Studies, vol. 1, no. 6, 2013.  

[113]  M. A. Syakur, “Integration K-Means Clustering Method and Elbow Method For Identification 
of The Best Customer Profile Cluster,” IOP Conference Series: Materials Science and 
Engineering, vol. 336, 2018.  

[114]  P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster 
analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65, 1987.  

[115]  B. Kim, J. Kim and G. Yi, “Analysis of clustering evaluation considering features of item 
response data using data mining technique for setting cut-off scores,” Symmetry MDIP, vol. 9, 
no. 5, 2017.  

[116]  T. Thinsungnoena, N. Kaoungku, P. Durongdumronchai, K. Kerdprasop and N. Kerdprasop, 
“The Clustering Validity with Silhouette and Sum of Squared Errors,” in International 
Conference on Industrial Application Engineering , Thailand, 2015.  

[117]  C. Legány, S. Juhász and A. Babos, “Cluster validity measurement techniques,” Madrid, 2006.  

[118]  E. Rendón, I. M. Abundez, C. Gutierrez, S. D. Zagal, A. Arizmendi and E. M. Quiroz, “A 
comparison of internal and external cluster validation indexes,” Applications of Mathematics 
and Computer Engineering, pp. 158-163, 2011.  

[119]  D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 1, no. 2, p. 224–227, 1979.  

[120]  J. Zhong, M. Bollen and S. Rönnberg, “Towards a 100% renewable energy electricity generation 
system in Sweden,” Renewable Energy, vol. 171, pp. 812-824, 2021.  

[121]  X. Yue, N. Patankar, J. Decarolis, A. Chiodi, F. Rogan, J. P. Deane and B. O'Gallachoir, “Least 
cost energy system pathways towards 100% renewable energy in Ireland by 2050,” Energy, vol. 
207, 2020.  

[122]  D. Icaza, D. Borge-Diez and S. P. Galindo, “Proposal of 100% renewable energy production for 
the City of Cuenca- Ecuador by 2050,” Renewable Energy, vol. 170, pp. 1324-1341, 2021.  

[123]  T. da Luz and P. Moura, “Power generation expansion planning with complementarity between 
renewable sources and regions for 100% renewable energy systems,” International Transactions 
on Electrical Energy Systems, pp. 1-19, 2019.  

[124]  A. S. Brouwer, M. Van Den Broek, A. Seebregts and A. Faaij, “ Impacts of large-scale 
intermittent renewable energy sources on electricity systems, and how these can be modeled,” 
Renewable and Sustainable Energy Reviews, vol. 33, pp. 443-466, 2014.  

[125]  S. Montoya-Bueno, J. I. Munoz-Hernandez and J. Contreras, “Uncertainty management of 
renewable distributed generation,” Journal of Cleaner Production, vol. 138, pp. 103-118, 2016.  

Stellenbosch University https://scholar.sun.ac.za



 

131 
 

[126]  M. R. Elkadeem, A. Younes, S. W. Sharshir, P. Campana and S. Wang, “Sustainable siting and 
design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis,” 
Applied Energy, vol. 295, 2021.  

[127]  M. Pluta, A. Wyrwa, W. Suwała, J. Zysk, M. Raczynski and S. Tokarski, “A Generalized Unit 
Commitment and Economic Dispatch Approach for Analysing the Polish Power System under 
High Renewable Penetration,” Energies, vol. 13, no. 1952, pp. 1-18, 2020.  

[128]  B. Priyadharshini, V. Ganapathy and . P. Sudhakara, “An Optimal Model to Meet the Hourly 
Peak Demands of a Specific Region With Solar, Wind, and Grid Supplies,” IEEE Access, vol. 
8, pp. 13179-13193, 2020.  

[129]  J. H. Slusarewicz and D. S. Cohan, “Assessing solar and wind complementarity in Texas,” 
Renewables: Wind, Water, and Solar, vol. 5, no. 7, pp. 1-13, 2018.  

[130]  C. T. M. Clack, Y. Xie and A. E. MacDonald, “Linear programming techniques for developing 
an optimal electrical system including high-voltage direct-current transmission and storage,” 
Electrical Power and Energy Systems, vol. 68, pp. 103-114, 2015.  

[131]  M. R. Shaner, S. J. Davis, N. S. Lewis and K. Caldeira, “Geophysical constraints on the 
reliability of solar and wind power in the United States,” Energy & Environmental Science, vol. 
11, pp. 914--925, 2018.  

[132]  T. Nikolakakis and V. Fthenakis, “The optimummixofelectricityfromwind-andsolar-
sourcesinconventional power systems:EvaluatingthecaseforNewYorkState,” Energy Policy, vol. 
39, pp. 6972-6980, 2011.  

[133]  J. B. Nunes, N. Mahmoudi, T. K. Saha and D. Chattopadhyay, “A stochastic integrated planning 
of electricity and natural gas networks for Queensland, Australia considering high renewable 
penetration,” Energy, vol. 153, pp. 539-553, 2018.  

[134]  A. A. Prasad, R. A. Taylor and M. Kay, “Assessment of solar and wind resource synergy in 
Australia,” Applied Energy, vol. 190, p. 354–367, 2017.  

[135]  W. Zappa and M. van den Broek, “Analysing the potential of integrating wind and solar power 
in Europe using spatial optimisation under various scenarios,” Renewable and Sustainable 
Energy Reviews, vol. 94, pp. 1192-1216, 2018.  

[136]  T. Mareda, L. Gaudard and F. Romerio, “A parametric genetic algorithm approach to assess 
complementary options of large scale windsolar coupling,” IEEE/CAA Journal of Automatica 
Sinica, vol. 4, no. 2, pp. 260-272, 2017.  

[137]  E. S. Takle and R. H. Shaw, “Complimentary nature of wind and solar energy at a continental 
mid-latitude station,” International Journal of Energy Research, vol. 3, pp. 103-112, 1979.  

[138]  J. Widén, “Correlations Between Large-Scale Solar and Wind Power in a Future Scenario for 
Sweden,” IEEE Transactions on Sustainable Energy, vol. 2, no. 2, pp. 177-184, 2011.  

[139]  F. J. Santos-Alamillos, D. Pozo-Vazquez, J. A. Ruiz-Arias, L. Von Bremen and J. Tovar-
Pescador, “Combining wind farms with concentrating solar plants to providestable renewable 
power,” Renewable Energy, vol. 76, pp. 539-550, 2015.  

Stellenbosch University https://scholar.sun.ac.za



 

132 
 

[140]  S. Han, L. Zhang, Y. Liu, H. Zhang, J. Yan, L. Li, X. Lei and X. Wang, “Quantitative evaluation 
method for the complementarity of wind–solar–hydro power and optimization of wind–solar 
ratio,” Applied Energy, vol. 236, pp. 973-984, 2019.  

[141]  G. Ren, J. Wan, J. Liu and D. Yu, “Spatial and temporal assessments of complementarity for 
renewable energy resources in China,” Energy, vol. 177, pp. 262-275, 2019.  

[142]  H. Zhang, Y. Cao, Y. Zhang and V. Terzija, “Quantitative synergy assessment of regional wind-
solar energy resources based on MERRA reanalysis data,” Applied Energy, vol. 216, pp. 172-
182, 2018.  

[143]  N. S. Thomaidis, F. J. Santos-Alamillos, D. Pozo-Vázquez and j. Usaola-García, “Optimal 
management of wind and solar energy resources,” Computers & Operations Research, vol. 66, 
pp. 284-291, 2015.  

[144]  M. Koivisto, N. Cutululis and J. Ekstrom, “Minimizing Variance in Variable Renewable Energy 
Generation in Northern Europe,” in 2018 IEEE International Conference on Probabilistic 
Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 2018.  

[145]  S. Jerez, R. M. Trigo, A. Sarsa, R. Lorente-Plazas, D. Pozo-Vázquez and J. P. Montávez, 
“Spatio-temporal complementarity between solar and wind power in the Iberian Peninsula,” 
Energy Procedia, vol. 40, pp. 48-47, 2013.  

[146]  G. Ren, J. Lui and D. Yu, “Spatial and temporal assessments of complementarity for renewable 
energy resources in China,” Energy, vol. 177, pp. 262-275, 2019.  

[147]  L. Stoyanov, G. Notton, V. Laza and E. M, “Wind and solar energies production 
complementarity for various bulgarian sites,” Revue des Energies Renouvelables SMEE’10 Bou 
Ismail Tipaza, pp. 311-325, 2010.  

[148]  D. Heide, M. Greiner, L. von Bremen and C. Hoffmann, “Reduced storage and balancing needs 
in a fully renewable European power system with excess wind and solar power generation,” 
Renewable Energy, vol. 36, pp. 2515-2523, 2011.  

[149]  J. Jurasz and J. Mikulik, “Site selection for wind and solar parks based on resources temporal 
and spatial complementarity – mathematical modelling approach,” 2017.  

[150]  C. L. Archer and M. Z. Jacobson, “Supplying baseload power and reducing transmission 
requirements by interconnecting wind farms,” Journal of Applied Meteorology and Climatology, 
vol. 46, p. 1701–1717, 2007.  

[151]  R. Hemmati, S. M. S. Ghiasi and A. Entezariharsini, “Power fluctuation smoothing and loss 
reduction in grid integrated with thermal-wind-solar-storage units,” Energy, vol. 152, pp. 759-
769, 2018.  

[152]  A. Coutinho, S. G. Relva, D. S. Ramos and M. E. M. Udaeta, “Hybrid Power Supply Assessment 
in Long Term Basis Considering Complementarity of Wind and Solar Resources,” in 2019 
International Conference on Smart Energy Systems and Technologies (SEST), Portugal, 2019.  

[153]  L. Ramirez Camargo, R. Zink and W. Dorner, “Spatiotemporal Modeling for Assessing 
Complementarity of Renewable Energy Sources in Distributed Energy Systems,” ISPRS Annals 

Stellenbosch University https://scholar.sun.ac.za



 

133 
 

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 2, no. 4, pp. 147-
154, 2015.  

[154]  B. Jayapalan, M. Krishnan, K. Kandasamy and K. Subramanian, “Renewable Energy 
Penetration and Its Impact on Reliability—A Case Study of Tamil Nadu,” Journal of 
Computational and Theoretical Nanoscience, vol. 14, pp. 4036-4044, 2017.  

[155]  R. Quijano, S. B. Botero and J. B. Domınguez, “MODERGIS application :Integrated simulation 
platform to promote and develop renewable sustainable energy plans, Colombian case study,” 
Renewable and Sustainable Energy Reviews, vol. 16, pp. 5176-5187, 2012.  

[156]  J. H. Jo, M. R. Aldeman and D. G. Loomis, “Optimum penetration of regional utility-scale 
renewable energy systems,” Renewable Energy, vol. 118, pp. 328-334, 2018.  

[157]  M. Khalid, U. Akram and S. Shafiq, “Optimal Planning of Multiple Distributed Generating Units 
and Storage in Active Distribution Networks,” IEEE Access, vol. 6, pp. 55234-55244, 2018.  

[158]  D. Horst, M. Jentsch, M. Pfennig, I. Mitra and S. Bofinger, “Impact of renewable energies on 
the indian power system: Energy meteorological influences and case study of eefects on existing 
power fleet for rajasthan state,” Energy Policy, vol. 122, pp. 486-498, 2018.  

[159]  J. Jurasz, J. Mikulik, P. Dabek, M. Guezgouz and B. Kamierczak, “Complementarity and 
‘resource droughts’ of solar and wind energy in poland: An era5-based analysis,” Energies, vol. 
14, no. 4, 2021.  

[160]  C. Rosa, E. da Silva Christo, K. A. Costa and L. dos Santos, “Assessing complementarity and 
optimising the combination ofintermittent renewable energy sources using ground 
measurements,” Journal of Cleaner Production, vol. 258, pp. 1-14, 2020.  

[161]  J. F. Torres, L. Ekonomou and P. Karampelas, “The Correlation Between Renewable Generation 
and Electricity Demand: A Case Study of Portugal,” in Energy Systems, Berlin, Springer, 2016.  

[162]  Y. Li, V. G. Agelidis and Y. Shrivastava, “Wind-solar resource complementarity and its 
combined correlation with electricity load demand,” in 2009 4th IEEE Conference on Industrial 
Electronics and Applications, China, 2009.  

[163]  F. Canales, J. Jurasz, A. Beluco and A. Kies, “Assessing temporal complementarity between 
three variable energy sources through correlation and compromise programming,” Energy, vol. 
192, 2020.  

[164]  T. Guozden, J. P. Carbajal, E. Bianchi and A. Solarte, “Optimized Balance Between Electricity 
Load and Wind-Solar Energy Production,” Frontiers in Energy Research, vol. 8, no. 16, pp. 1-
10, 2020.  

[165]  A. A. Solomon, D. M. Kammen and D. Callaway, “The role of large-scale energy storage design 
and dispatch in the powergrid: A study of very high grid penetration of variable renewable 
resources,” Applied Energy, vol. 134, pp. 75-89, 2014.  

[166]  S. Simoes, M. Zeyringer, D. Mayr, T. Huld, W. Nijs and J. Schmidt, “Impact of different levels 
of geographical disaggregation of wind and PV electricity generation in large energy system 
models: A case study for Austria,” Renewable Energy, vol. 105, pp. 183-198, 2017.  

Stellenbosch University https://scholar.sun.ac.za



 

134 
 

[167]  K. Iwamura and R. Kobayashi, “A Combined Geospatial Approach to Extension Planning of 
Wind Farms and Transmission Networks,” in Innovative Smart Grid Technologies Conference 
Europe (ISGT-Europe) , Sarajevo, Bosnia and Herzegovina, 2018.  

[168]  Y. Schadler, V. Renken, M. Sorg , . L. Gerdes, G. Gerdes and A. Fischer, “Power transport needs 
for the German power grid for a major demand coverage by wind and solar power,” Energy 
Strategy Reviews, vol. 34, 2021.  

[169]  H. M. Tróndheim, B. A. Niclasen, T. Nielsen, F. F. da Silva and C. L. Bak, “100% Sustainable 
Electricity in the Faroe Islands: Expansion Planning through Economic Optimisation,” IEEE 
Open Access Journal of Power and Energy, vol. 8, pp. 23 - 34, 2021.  

[170]  G. He, A. Avrin, J. H. Nelson, J. Johnston, A. Mileva, J. Tian and D. M. Kammen, “SWITCH-
China: A Systems Approach to Decarbonizing China’s Power System,” Environmental Science 
& Technology, vol. 50, pp. 5467-5473, 2016.  

[171]  M. Lenzen, B. McBain, T. Trainer, S. Jütte, O. Rey-Lescure and J. Huang, “Simulating low-
carbon electricity supply for Australia,” Applied Energy, vol. 179, pp. 553-564, 2016.  

[172]  L. W. Oliveira and T. C. J. Maria, “Planning of Renewable Generation in Distribution Systems 
Considering Daily Operating Periods,” IEEE Latin America Transactions , vol. 15, pp. 901 - 
907, 2017.  

[173]  R. A. R. Candia, S. L. Balderrama, S. L. B. Subieta, J. G. P. Balderrama, V. S. Miquélez, H. J. 
Florero and S. Quoilin, “Techno-economic assessment of high variable renewable energy 
penetration in the Bolivian interconnected electric system,” International Journal of Sustainable 
Energy Planning and Management, vol. 22, pp. 17-38, 2019.  

[174]  H. Certinay, F. A. Kuipers and A. N. Guven, “Optimal siting and sizing of wind farms,” 
Renewable Energy, vol. 101, pp. 51-58, 2017.  

[175]  A. Vinela and E. Mortaz, “Optimal pooling of renewable energy sources with a risk-averse 
approach: Implications for US energy portfolio,” Energy Policy, vol. 132, pp. 928-939, 2019.  

[176]  F. Monforti, T. Huld, K. Bódis, L. Vitali, M. D’Isidoro and R. Lacal-Arántegui, “Assessing 
complementarity of wind and solar resources for energyproduction in Italy. A Monte Carlo 
approach,” Renewable Energy, vol. 63, pp. 576-586, 2014.  

[177]  D. Schindler, C. Jung and H. D. Behr, “On the spatiotemporal variability and potential of 
complementarity of wind and solar resources,” Energy Conversion and Management, vol. 218, 
2020.  

[178]  S. Jerez, F. Thais, I. Tobin, M. Wild, A. Colette, P. Yiou and R. Vautard, “The CLIMIX model: 
A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power 
development,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 1-15, 2015.  

[179]  K. Siala and M. Y. Mahfouz, “Impact of the choice of regions on energy system models,” Energy 
Strategy Reviews, vol. 25, pp. 75-85, 2019.  

[180]  C. Y. van Staden , H. Vermeulen and M. Groch , “Time-of-Use Feature Based Clustering of 
Spatiotemporal Wind Power Profiles,” Energy, 2021.  

Stellenbosch University https://scholar.sun.ac.za



 

135 
 

[181]  S. Satimburwa, “Transmission generation connection capacity assessment of the 2023 
transmission network (GCCA – 2023),” Eskom Transmission Division, Sandton, 2021. 

[182]  A. Vinela and E. Mortazb, “Optimal pooling of renewable energy sources with a risk-averse 
approach: Implications for US energy portfolio,” Energy Policy, vol. 132, pp. 928-939, 2019.  

[183]  P. Punia and M. Kaur, “Various Genetic Approaches for Solving Single and Multi-Objective 
Optimization Problems: A Review,” International Journal of Advanced Research in Computer 
Science and Software Engineering, vol. 3, no. 7, pp. 1014-1020, 2013.  

[184]  M. Ming, R. Wang, Y. Zha and T. Zhang, “Multi-Objective Optimization of Hybrid Renewable 
Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm,” Energies, vol. 
10, no. 674, pp. 1-15, 2017.  

[185]  Z. Liu, Z. Zhang, R. Zhuo and X. Wang, “Optimal operation of independent regional power grid 
with multiple wind-solar-hydro-battery power,” Applied Energy, vol. 235, pp. 1541-1550, 2019.  

[186]  K. Sopian, A. Zaharim, Y. Ali, Z. M. Nopiah, J. A. Razak and N. S. Muhammad, “Optimal 
Operational Strategy for Hybrid Renewable Energy System Using Genetic Algorithms,” WSEAS 
Transactions on Mathematics, vol. 4, no. 7, pp. 130-140, 2008.  

[187]  M. J. Ko, Y. S. Kim, M. H. Chung and H. C. Jeon, “Multi-Objective Optimization Design for a 
Hybrid Energy System Using the Genetic Algorithm,” Energies, vol. 8, pp. 2924-2949, 2015.  

[188]  M. S. Ismail, M. Moghavvemi and T. M. I. Mahlia, “Genetic algorithm based optimization on 
modeling and design of hybrid renewable energy systems,” Energy Conversion and 
Management, vol. 85, pp. 120-130, 2014.  

[189]  S. Katoch, S. S. Chauhan and V. Kumar, “A review on genetic algorithm: past, present, and 
future,” Multimedia Tools and Applications, vol. 80, p. 8091–8126, 2020.  

[190]  S. Thede, “An introduction to genetic algorithms,” Journal of Computing Sciences in Colleges, 
vol. 20, no. 1, pp. 115-123, 2004.  

[191]  K. S. Tang, K. F. Man, S. Kwong and Q. He, “Genetic algorithms and their applications,” IEEE 
Signal Processing Magazine, vol. 13, no. 6, pp. 22 - 37, 1996.  

[192]  E. Keogh and M. Pazzani, “An enhanced representation of time series which allows fast and 
accurate classification, clustering and relevance feedback,,” 4th International Conferencef 
Knowledge Discovery and Data Mining, p. 239–241, 1998.  

[193]  N. Holjevac, T. Baškarad, J. Ðakovi´, M. Krpan, M. Zidar and I. Kuzle, “Challenges of High 
Renewable Energy Sources Integration in Power Systems—The Case of Croatia,” Energies, vol. 
14, 2021.  

 
 

Stellenbosch University https://scholar.sun.ac.za


	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1
	1 Introduction
	1.1 Research overview
	1.2 Research background and motivation
	1.2.1 South Africa’s renewable energy plan
	1.2.2 The South African Renewable Energy Development Zones
	1.2.3 Grid impacts of renewable energy generation
	1.2.3.1 Power system reliability
	1.2.3.2 Renewable energy capacity credit

	1.2.4 Impacts of renewable energy flat feed-in tariff structures

	1.3 Defining the research
	1.3.1 Research question
	1.3.2 Research aim
	1.3.3 Research objectives

	1.4 Research scope
	1.5 Research approach and document structure
	1.6 Expected outcome and original contributions
	1.7 Conclusion: Introduction

	Chapter 2
	2 Data acquisition and processing
	2.1 Introduction and overview
	2.2 Research data resources and study regions
	2.2.1 Research study regions
	2.2.2 Wind resource data
	2.2.3 Solar resource data
	2.2.4 Demand profile data

	2.3 Data conditioning and processing
	2.3.1 Wind resource data processing
	2.3.2 Solar resource data processing
	2.3.3 Demand profile data processing
	2.3.4 Resource feature vector formulation

	2.4 Conclusion: Data acquisition and processing

	Chapter 3
	3 Clustering of renewable energy resource data
	3.1 Overview
	3.2 Literature review
	3.3 Methodology review
	3.3.1 Clustering algorithms
	3.3.2 Optimal number of clusters
	3.3.3 Cluster validation metrics

	3.4 Wind resource clustering implementation
	3.4.1 Wind resource cluster methodology performance evaluation
	3.4.2 Cluster formations obtained with temporal wind power profiles
	3.4.3 Cluster formations obtained with the statistical wind power feature vectors
	3.4.4 Statistical comparison and analysis
	3.4.5 Wind power clustering conclusion

	3.5 Solar resource clustering implementation
	3.5.1 Solar resource cluster methodology performance evaluation
	3.5.2 Cluster formations obtained with temporal solar power profiles
	3.5.3 Cluster formations obtained with the statistical solar power feature vectors
	3.5.4 Statistical comparison and analysis
	3.5.5 Solar power clustering conclusion

	3.6 Conclusion: Resource data clustering

	Chapter 4
	4 Optimised spatial capacity allocation framework
	4.1 Systematic literature review: Factors influencing the proposed model
	4.1.1 Systematic literature review methodology
	4.1.2 Review on the existing body of knowledge
	4.1.2.1 Overview
	4.1.2.2 Studies investigating complementarity without the demand profile
	4.1.2.3 Studies investigating complementarity considering the demand profile
	4.1.2.4 Studies investigating power mismatches between demand and RE generation
	4.1.2.5 Studies investigating correlation-coefficient based objective functions
	4.1.2.6 Studies investigating optimised cost-based objective functions
	4.1.2.7 Studies investigating optimised statistical-based objective functions
	4.1.2.8 Studies incorporating clustering as an initial data reduction step

	4.1.3 Overall conclusions on existing literature

	4.2 Spatial capacity allocation framework methodology
	4.2.1 Overview
	4.2.2 Resource classification
	4.2.3 Geospatial capacity allocation
	4.2.4 Optimisation algorithm
	4.2.5 Performance metrics

	4.3 Implementation and case study results
	4.3.1 Overview
	4.3.2 Baseline case studies

	4.4 Optimisation case studies
	4.4.1  Optimisation case studies 1.1 and 1.2
	4.4.2 Optimisation case studies 2.1 and 2.2
	4.4.3 Optimisation case study 3

	4.5 Conclusion: Spatial capacity allocation framework

	Chapter 5
	5 Conclusions and Recommendations
	5.1 Overview
	5.2 Research summary and conclusions
	5.2.1 Defining the research
	5.2.2 Resource classification model
	5.2.3 Optimal spatial capacity allocation framework

	5.3 Research contributions
	5.4 Recommendations for future work
	5.5 List of research publications
	5.5.1 Conference articles
	5.5.2 Journals articles


	References



