
Extending the BASE architecture for complex

and reconfigurable Cyber-Physical Systems

using holonic principles

December 2021

Supervisor: Dr Karel Kruger
Co-supervisor: Prof Anton Basson

by
Daniel Jacobus van Niekerk

Thesis presented in partial fulfilment of the requirements for the degree

of Master of Engineering (Mechatronic)

in the Faculty of Engineering at Stellenbosch University

i

Declaration

By submitting this thesis electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof (save

to the extent explicitly otherwise stated), that reproduction and publication thereof

by Stellenbosch University will not infringe any third party rights and that I have

not previously in its entirety or in part submitted it for obtaining any qualification.

Date: December 2021

Copyright © 2021 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract
Extending the BASE architecture for complex and

reconfigurable Cyber-Physical Systems using holonic

principles

D.J. van Niekerk

Department of Mechanical and Mechatronic Engineering

Stellenbosch University

Private Bag X1, 7602 Matieland, South Africa

Thesis: M.Eng. (Mechatronic Engineering)
December 2021

Industry 4.0 (I4.0) represents the newest technological revolution aimed at
optimising industries using drivers such as Cyber-Physical Systems (CPSs), the
Internet of Things (IoT) and many more. In the past two decades, the holonic
paradigm has become a major driver of intelligent manufacturing systems, making
it ideal to advance I4.0.

The objective of this thesis is to extend an existing holonic reference architecture,
the Biography-Attributes-Schedule-Execution (BASE) architecture, for complex
and reconfigurable CPSs. In the context of this thesis, complex and reconfigurable
systems are considered to be systems that are comprised of many diverse,
autonomous and interacting entities, and of which the functionality, organization or
size is expected to change over time. The thesis applies the principles of holonic
systems to manage complexity and enhance reconfigurability of CPS applications.

The BASE architecture is extended for two reasons: to enable it to integrate many
diverse entities, and to enhance its reconfigurability. With regards to research on
holonic systems, this thesis aims to address two important functions for systems
implemented using holonic principles, namely cooperation and cyber-physical
interfacing.

The most important extensions made to the architecture were to enable scalability,
refine the cooperation between holons, and integrate cyber-physical interfacing
services as Interface Holons. These extensions include platform management
components (e.g. a service directory) and standardised plugins (e.g. cyber-physical
interfacing plugins). The extended architecture was implemented on an educational
sheep farm, because of the many heterogeneous resources (sheep, camps, sensors,
humans, etc.) on the farm that need to be integrated into a BASE architecture
implemented CPS. This case study implementation had to integrate data from
different sensors, provide live analysis of observed data and, when required, notify

Stellenbosch University https://scholar.sun.ac.za

iii

the physical world of any problems in the CPS. At the end of the implementation,
an evaluation was done using the requirements of a complex, reconfigurable CPS
as evaluation criteria. This evaluation involved setting up quantitative and
qualitative evaluation metrics for the evaluation criteria, doing the evaluations, and
discussing what the results from the different evaluations indicate about the
effectiveness and efficiency of the extensions made to the BASE architecture.

The extensions made to the BASE architecture were found to improve robustness
and resilience. The use of Erlang was found to play a very important role in the
resulting reliability. The extensions also helped to fully address the original BASE
architecture’s scalability shortcomings and to increase development productivity.
Lastly, the extensions show the benefits of using service orientation to enable
cooperation between holons and how extracting all cyber-physical interfacing of a
system into dedicated Interface Holons reduces development time, improves
reusability and enhances diagnosability of interfacing problems.

Stellenbosch University https://scholar.sun.ac.za

iv

Uittreksel
Uitbreiding van die BASE-argitektuur vir komplekse en

herkonfigureerbare Kuber-Fisiese Stelsels deur die

gebruik van holoniese beginsels

D.J. van Niekerk

Departement van Meganiese and Megatroniese Ingenieurswese

Universiteit Stellenbosch

Privaatsak X1, 7602 Matieland, Suid-Afrika

Tesis: M.Ing. (Megatroniese Ingenieurswese)
Desember 2021

Industrie 4.0 (I4.0) is die nuutste tegnologiese revolusie en dit is daarop gemik om
industrieë te optimiseer deur middel van drywers soos Kuber-Fisiese Stelsels
(KFSs), die Internet of Things (IoT) en vele meer. In die afgelope twee dekades het
die holoniese paradigma ŉ belangrike drywer van intelligente vervaardigingstelsels
geword, wat dit ideaal maak om I4.0 te bevorder.

Die doel van hierdie tesis is om ‘n bestaande holoniese verwysings argitektuur, die
Biography-Attributes-Schedule-Execution (BASE-) argitektuur, uit te brei vir
komplekse, herkonfigureerbare KFSs. In die konteks van hierdie tesis, word
komplekse en herkonfigureerbare stelsels gesien as stelsels wat bestaan uit menige
diverse, outonome entiteite wat met mekaar interaksie het en waarvan die
funksionaliteit, organisasie en grootte verwag is om te verander met verloop van
tyd. Hierdie tesis pas die beginsels van holoniese stelsels toe om die kompleksiteit
van KFSs te bestuur en om herkonfigureerbaarheid van KFSs te verbeter.

Die BASE-argitektuur word uitgebrei om twee redes, naamlik om die integrasie van
menige diverse entiteite te ondersteun en om die argitektuur se
herkonfigureerbaarheid te verbeter. Die studie sal ‘n navorsingsbydrae lewer oor
holoniese stelsels deur twee belangrike funksionaliteite van stelsels wat
geïmplementeer is deur middel van holoniese stelsels aan te spreek – samewerking
tussen holons en kuber-fisiese koppeling.

Die belangrikste uitbreidings wat gemaak is aan die argitektuur was om
skaleerbaarheid moontlik te maak, samewerking tussen holons te verfyn en om
kuber-fisiese koppelingsdienste te integreer as holons. Hierdie uitbreidings sluit
nuwe platformbestuurkomponente en gestandaardiseerde plugins in. Die
uitgebreide argitektuur is geïmplementeer op ŉ opvoedkundige skaapplaas, omdat
die skaapplaas baie heterogene hulpbronne (skape, kampe, sensors, mense, ens.)
insluit wat in die BASE-argitektuur geïmplementeerde KFS geïntegreer kon word.

Stellenbosch University https://scholar.sun.ac.za

v

Hierdie gevallestudie-implementering moes data van verskillende sensors
integreer, intydse analises doen van die waargeneemde data en wanneer nodig, ‘n
entiteit in die fisiese wêreld inlig van enige probleme in die KFS. Aan die einde van
die implementering is ŉ evaluering gedoen deur die vereistes van ŉ komplekse,
herkonfigureerbare KFS as evalueringskriteria te gebruik. Die evaluering het
bestaan uit die opstel van kwantitatiewe en kwalitatiewe evalueringsmaatreëls, die
uitvoer van die evaluerings en ŉ bespreking van wat die evalueringsresultate aandui
oor die effektiwiteit en doeltreffendheid van die uitbreidings wat aan die BASE-
argitektuur gemaak is.

Dit is bevind dat die uitbreidings wat gemaak is aan die BASE-argitektuur
robuustheid en veerkragtigheid verbeter het. Die gebruik van Erlang het ŉ groot rol
gespeel in die gevolglike betroubaarheid. Die uitbreidings aan die BASE-
argitektuur het ook gehelp om die argitektuur volledig skaleerbaar te maak en om
ontwikkelingsproduktiwiteit te verbeter. Laastens, bewys die uitbreidings die
voordele van diensoriëntasie in die samewerking tussen holons en hoe die gebruik
van Koppelings Holons (Interface Holons) ontwikkelingstyd verminder, die
herbruikbaarheid van programbronkode verbeter en diagnoseerbaarheid van
koppelingsprobleme versterk.

Stellenbosch University https://scholar.sun.ac.za

vi

Acknowledgements

First and foremost, I have to thank Doctor Karel Kruger. Thank you for your
continuous guidance throughout this thesis. Your passion for engineering, and
especially research is contagious. Thank you for all the extra unplanned meetings
that helped me to not waste time on things that would not have contributed to my
research. Also, the help you gave me with the writing of my thesis definitely lifted
it to another level.

To Professor Basson, thank you for making me aware of the power of a single word
and how to be cautious with my choice of terminology. Also thank you to both
Professor Basson and Dr Kruger for providing me with the required funding for the
past two years.

Dale, I have learned so much from you and thank you for all the long voice notes
where you explained implementation details about the BASE architecture to me. I
appreciate all your help and know you will excel in anything you do in life.

To the rest of the MAD research group, you have made the past two years very
enjoyable. Even though we could not come into the MAD offices for a big chunk
of these two years, the little time in which we shared lunches and coffee helped to
push through when the work seemed unending.

Aan Ma en Pa: Dankie dat julle my vir so lank finansieel ondersteun het om my

studies te voltooi. Ma, dankie vir al die kospakkies wat Ma op die vreemdste

maniere by my uitgekry het vanaf Bloemfontein en dankie vir al ma se wyse woorde.

Pa, op die dae wat my motivering min was kon ek net dink aan hoe hard Pa op ‘n
daaglikse basis werk en hoeveel ek daarna opkyk, om myself te motiveer om deur

te druk.

Alessia, dankie vir al jou liefde en ondersteuning. Dankie dat jy altyd met regte

belangstelling na al my verduidelikings oor my werk geluister het. Dankie aan jou

ouers wat my altyd laat welkom voel het in julle huis.

Laastens dankie aan God wat my geseën het met my talente. Geen van my prestasies

sou moontlik gewees het sonder U ondersteuning elke dag nie.

Stellenbosch University https://scholar.sun.ac.za

vii

Dedication

Glory be to the Father, and the Son, and the Holy Spirit.

Stellenbosch University https://scholar.sun.ac.za

viii

Table of contents

 Page

List of figures .. xii

List of tables.. xv

List of abbreviations .. xvi

1 Introduction ... 1

1.1 Background .. 1

1.2 Objectives .. 2

1.3 Motivation .. 3

1.4 Methodology .. 4

2 Literature review ... 5

2.1 Cyber-Physical Systems ... 5

2.1.1 Definition .. 5

2.1.2 Characteristics ... 5

2.1.3 Applications .. 10

2.2 Reconfigurable Manufacturing Systems ... 10

2.3 Holonic systems ... 11

2.3.1 Background, definitions and principles 11

2.3.2 Performance metrics of Holonic Control Architectures 12

2.4 The BASE architecture ... 13

2.4.1 Core components and plugins .. 14

2.4.2 The three-stage activity life cycle .. 15

2.4.3 An Erlang implementation of the BASE architecture 15

2.4.4 Application of the BASE architecture in industry 16

2.5 Conclusion ... 17

3 Requirements for the extension of the BASE architecture 18

3.1 Requirements of a complex, reconfigurable CPS 18

3.2 Evaluating the original BASE architecture .. 19

3.3 Extensions required to the BASE architecture 21

4 Platform management components .. 24

4.1 Overview .. 24

4.2 Supervision tree .. 24

4.3 Department of Holon Affairs .. 25

Stellenbosch University https://scholar.sun.ac.za

ix

4.4 Loggers .. 26

4.5 User Interfaces ... 27

5 The refined BASE architecture adminstration shell 28

5.1 Overview .. 28

5.2 Coordinator .. 29

5.3 Schedule Gate .. 30

5.4 Changes to the existing BASE core components 30

5.5 BASE shell component privacy .. 31

5.6 Plugin configuration ... 32

5.6.1 Plugin-shell interfacing ... 32

5.6.2 Plugin configuration file .. 35

5.7 Activity types ... 36

5.7.1 Service Provision Activities and Resource Action Activities ... 36

5.7.2 Resource Data Acquisition Activities 37

5.8 Attribute types .. 38

6 Cooperation ... 39

6.1 Business Cards and Service Descriptions .. 39

6.2 Service discovery ... 40

6.3 Service Provision Activity data structures ... 41

6.4 Plugins for standardised service interactions 42

6.4.1 Call For Proposals and service requests 42

6.4.2 Service Provision Activity initiation .. 43

6.4.3 Service Provision Activity completion 44

6.5 Nested services ... 45

7 Cyber-physical interfacing .. 46

7.1 Overview .. 46

7.2 Interface plugins ... 47

7.3 Interface Service Descriptions .. 48

7.3.1 Overview .. 48

7.3.2 Identifiers .. 49

7.3.3 Topics ... 49

7.4 Inter- and intra-holon communications ... 50

7.4.1 Interface initialisation .. 50

7.4.2 Observers .. 51

7.4.3 Informers .. 53

7.5 Interface Holon activities and attributes .. 54

Stellenbosch University https://scholar.sun.ac.za

x

8 Generic implementation of architecture extensions 55

8.1 Storage components ... 55

8.2 Administrative components .. 56

8.3 Supervisors ... 57

8.4 The Erlang gen_server process, gen_server calls and spawn_monitor . 59

8.5 Inter-process communication in a distributed Erlang application 60

8.6 Standard plugins ... 60

9 Case study .. 62

9.1 Selection criteria ... 62

9.2 Description ... 62

9.3 User requirements .. 63

9.4 Holon identification .. 64

9.5 Implementation .. 65

9.5.1 Platform implementation and integration overview.................. 65

9.5.2 Plugins and activities of case study holons 66

10 Evaluation .. 71

10.1 Criteria ... 71

10.2 Quantitative metrics ... 73

10.2.1 Analysis of implementation source code.................................. 74

10.2.2 Analysis of implementation reliability during deployment 75

10.2.3 Development and reconfiguration experiments 76

10.2.4 Scaling experiments .. 77

10.3 Qualitative evaluation ... 78

10.4 Discussion .. 79

11 Conclusion and future work .. 81

12 References .. 83

Appendix A Coordinator start-up operations and variables 90

Appendix B Standard activity data structures .. 92

Appendix C Contract Net Protocol applied to holonic systems 93

Appendix D Feeding sensor Interface Module .. 94

Appendix E Interface Holon attributes ... 98

Appendix F Case study holon attributes ... 101

Stellenbosch University https://scholar.sun.ac.za

xi

Appendix G Python MQTT client for feeding sensor 113

Appendix H User Interface .. 119

Appendix I Computational requirements evaluation 126

Stellenbosch University https://scholar.sun.ac.za

xii

List of figures

 Page

Figure 1: A BASE implementation raising a human to CPS status to facilitate
communication with other CPSs (Adapted from Sparrow, 2020) 2

Figure 2: A comprehensive schema of characteristics of CPSs (adapted from
Napoleone et al. (2020)) .. 6

Figure 3: Requirements and performance metrics for holonic control
implementations (Kruger & Basson, 2018)13

Figure 4: The BASE architecture (Sparrow, 2021) ..14

Figure 5: Shells and data blocks of stage 1, stage 2 and stage 3 activities in the
3SAL model (Sparrow et al., 2020) ..15

Figure 6: Generalised structure of a BASE core component data repository
implemented in Erlang (Sparrow, 2021) ...16

Figure 7: Action time visualisation from captured execution data during the layup
activity ...17

Figure 8: Relationship matrix showing relationships between the requirements of
a complex, reconfigurable CPS and the required BASE architecture
extensions ..21

Figure 9: Overview of the extended BASE architecture24

Figure 10: Holon interactions shown on a UI ..26

Figure 11: Details of the refined BASE architecture digital administration shell .28

Figure 12: Plugin registrations ..33

Figure 13: Schedule Gate informing an EP to start an activity (a) and an activity
handler being created after the EP started the activity (b)34

Figure 14: Updating stage 2 data and finishing an activity (a), and adding post-
execution data to it (b) ..35

Figure 15: Updating attributes and scheduling new activities35

Figure 16: Plugin configuration file for all sheep holons36

Figure 17: RAA vs SPA ...37

Figure 18: RDAA used to observe temperature data recorded by a temperature
observer holon ..38

Figure 19: Data structures of two holons’ services, each with a "Drill" Service
Type ...40

Figure 20: Service discovery ..40

Stellenbosch University https://scholar.sun.ac.za

xiii

Figure 21: Inter- and intra-holon interactions for selecting a service provision
holon and requesting its services ..42

Figure 22: Starting service provision activity ..43

Figure 23: Inform, inform-done and failure ..44

Figure 24: Nested Services ...45

Figure 25: Use of Interface Holons in the BASE Architecture47

Figure 26: Service Description data structure of cyber-physical interfacing
services ..48

Figure 27: Interface Holon initialisation ...50

Figure 28: Service request to an Observer ...51

Figure 29: New data observed by Observer and shared with clients52

Figure 30: Service request to an Informer ...53

Figure 31: Execution of an “Inform” service...54

Figure 32: Observed data of a sheep plotted in UI (adapted image from
implementation’s UI with enlarged text) ...56

Figure 33: DOHA supervisor process source code ..58

Figure 34: Example of a gen_server process handling a call59

Figure 35: Educational sheep farm setup ..63

Figure 36: Implementation setup ..65

Figure 37: Relationship matrix showing the relationship between the evaluation
criteria and metrics of the extended BASE architecture71

Figure 38: Logged error found in error log after forcefully killing the attribute
reception process of a holon with ID = "Sheep1"75

Figure 39: Scaling experiment results ...77

Figure 40: Contract net protocol - figure adapted from the FIPA CNP diagram
(FIPA Contract Net Interaction Protocol Specification, 2021)93

Figure 41: UI home page .. 119

Figure 42: UI user administration page ... 120

Figure 43: UI resources page showing all sheep.. 121

Figure 44: UI resources page showing all sensors (Observers) 121

Figure 45: UI resource details showing a sheep’s attributes 122

Figure 46: UI resource details showing a sheep’s schedule, execution and
biography ... 123

Figure 47: UI resource details showing a sheep’s resource data 124

Stellenbosch University https://scholar.sun.ac.za

https://stellenbosch.sharepoint.com/sites/MADRG/Shared%20Documents/Theses%20in%20preparation/D%20van%20Niekerk/vanNiekerk_Thesis_KK_feedback.docx#_Toc81469636

xiv

Figure 48: Sheep data in downloaded excel file using UI – group sheet 125

Figure 49: Sheep data in downloaded excel file using UI – sheep sheet 125

Figure 50: Implementation's CPU usage before, during and after the addition of
100 holons to the system .. 126

Figure 51: Implementation's RAM usage before, during and after the addition of
100 holons to the systema ... 127

Stellenbosch University https://scholar.sun.ac.za

xv

List of tables

 Page

Table 1: Evaluation of how well the BASE architecture enables the requirements
of a complex, reconfigurable CPS ..20

Table 2: Intra-shell communication permissions ...32

Table 3: Case study holons with their custom plugins and supported activities ...67

Table 4: Code reuse rate of the case study holons ...74

Table 5: Code reuse rate in the service provision plugins75

Table 6: Development and reconfiguration time of new holons76

Table 7: Data structures of standard activities ...92

Table 8: Service initialisation time and computational resource requirements of
the implementation for different numbers of holons in the system .. 127

Stellenbosch University https://scholar.sun.ac.za

xvi

List of abbreviations

3SAL Three-Stage Activity Lifecycle

AP Analysis Plugin

API Application Programming Interface

AR Augmented Reality

BASE Biography-Attributes-Schedule-Execution

BC Business Card

CFP Call For Proposals

CNP Contract Net Protocol

CPS Cyber-Physical System

CPU Central Processing Unit

DOHA Department of Holon Affairs

EID Electronic Identification Number

EP Execution Plugin

FCR Feeding Conversion Ratio

HCA Holonic Control Architecture

HMS Holonic Manufacturing System

HRH-AS Human Resource Holon Administration Shell

HTTP Hypertext Transfer Protocol

I4.0 Industry 4.0

IoT Internet of Things

MQTT Message Queuing Telemetry Transport

RAA Resource Action Activity

RAM Random Access Memory

RDAA Resource Data Acquisition Activities

RFID Radio-Frequency Identification

RP Reflection Plugin

SBB State Blackboard

Stellenbosch University https://scholar.sun.ac.za

xvii

SLOC Source Lines Of Code

SoA Service-oriented Architecture

SoHMS Service-oriented Holonic Manufacturing System

SP Scheduling Plugin

SPA Service Provision Activity

UI User Interface

URL Uniform Resource Locator

VR Virtual Reality

Stellenbosch University https://scholar.sun.ac.za

1

1 Introduction

This chapter introduces the background and context of the thesis, followed by the
specific thesis objectives, the motivation for conducting this research and the
research methodology that was applied.

1.1 Background

Industry 4.0 (I4.0) is the most recent industrial revolution following three others
and includes technology such as the Internet of Things (IoT), cloud computing and
artificial intelligence. Tay, Lee, Hamid & Ahmad (2018) define I4.0 as an
aggregation of existing ideas and technologies into a new value chain. This involves
connecting systems in a self-organising manner that enables dynamic control within
an organisation.

CPSs are systems that use real-time data acquisition from physical components,
together with feedback from the cyber parts of these components, to provide
intelligent data management, advanced analytics and optimised control in complex
systems (Lee, Bagheri & Kao, 2015). CPSs are able to collect data related to
themselves and their environment, process and evaluate this data, communicate
with other systems, and initiate actions (Thoben, Wiesner & Wuest, 2017).

Derigent, Cardin & Trentesaux (2020) observed that in the past two decades, the
holonic systems paradigm has become a major driver of Intelligent Manufacturing
Systems. They further show how Holonic Control Architectures (HCAs), which are
built on the concept of holons, have evolved and can address the needs of I4.0.
Koestler (1967) defined a holon as an entity with communication and decision-
making capabilities that is composed of a set of sub-level holons, yet at the same
time is part of a holarchy of higher-level holons. HCAs are composed of multiple
autonomous and cooperating holons that are ordered in a holarchy (Bussmann,
1998).

In developing countries such as South Africa, human workers form a big part of
most industries. Furthermore, full automation is not possible in most industries,
because of the unmatched flexibility of human workers (Özkiziltan & Hassel,
2020). HCA research has considered the integration of humans as holons, but this
has not been explored in depth (Sousa, Ramos & Neves, 2007). This is because
research related to I4.0 has been predominantly focussed on automation and digital
systems.

Sparrow (2021) identified the need for human-centric technology development and
subsequently developed a holonic reference architecture, called the Biography-
Attributes-Schedule-Execution (BASE) architecture, to elevate humans to CPS

Stellenbosch University https://scholar.sun.ac.za

2

status. This elevation would help companies exploit the full strengths of their labour
force, consequently enhancing their competitiveness (Sparrow 2021).

In the BASE architecture, each human is integrated into the cyber world through
their own BASE architecture digital administration shell (henceforth referred to as
a BASE shell), which enables its human to interact with other holons through their
BASE shells as illustrated in figure 1. This BASE shell stores, processes and
communicates information relevant to the human and the services that the human
can deliver to other holons.

Figure 1: A BASE implementation raising a human to CPS status to facilitate

communication with other CPSs (adapted from Sparrow, 2020)

This thesis forms part of research from the Mechatronics, Automation and Design
(MAD) Research Group. This group started with research on Reconfigurable
Manufacturing Systems (RMSs), from which two streams of research have been
flowing, namely, research on holonic systems (e.g. Kruger & Basson (2018)) and
research on digital twins (e.g. Redelinghuys, Basson & Kruger (2019)). Sparrow
(2021) identified the need to integrate humans into I4.0 environments and, by
addressing this need, built upon the MAD group’s research on holonic systems.
This thesis aims to show that the BASE architecture is not limited to the integration
of human workers, but can be extended to develop complex, reconfigurable CPSs
that integrate many different types of resources.

1.2 Objectives

The objective of this thesis is to extend the BASE architecture for complex and
reconfigurable CPSs using the principles of holonic systems. This extension
includes the identification and development of platform management components
(components that manage the platform on which BASE shells are deployed) and
refinements to the existing architecture’s BASE shells (including the development
of standard plugins) to support complex and reconfigurable CPS applications. In
the context of this thesis, complex and reconfigurable CPSs are considered to be
systems that are comprised of many diverse, autonomous and interacting entities,

Stellenbosch University https://scholar.sun.ac.za

3

and of which the functionality, organization or size is expected to change over time.
The thesis will apply the principles of holonic systems to manage complexity and
enhance reconfigurability of CPS applications.

The evaluation of the BASE architecture as performed by Sparrow (2021), is
beyond the scope of this thesis. Also, this thesis only focusses on applying the
BASE architecture to resources, and the application of the BASE architecture for
logistics or coordination processes is not considered.

1.3 Motivation

CPSs promise better integration, smoother interactions, uncertainty handling, better
system performance, scalability, flexibility, and faster response times
(Bhrugubanda, 2015). Derigent et al. (2020) state that holonic systems address nine
out of ten key enablers of Industry 4.0, namely: sustainability, real-time capabilities,
process virtualization, service orientation, integration, adaptability, big data
analysis, autonomous and decentralized decision making and connectivity. Using
principles from holonic systems can help to realise the promises of CPSs, and the
extension of the BASE architecture aims to illustrate this.

Sparrow (2021) formulated most of the conceptual structures and rules within the
BASE architecture and implemented the architecture in industry to show how it can
integrate a few human workers in a larger, but not full-scale, application. Sparrow
(2021) suggested that refinement of the internal structure of the BASE
architecture’s core components and attributes can make the architecture capable of
integrating more than just human workers. This indicates the potential to use the
BASE architecture to create complex and reconfigurable CPSs, consisting of
heterogeneous resources. This project aims to prove this by making the necessary
extensions to the BASE architecture.

The BASE architecture is extended for two reasons. The first reason is to expand
its capabilities beyond the integration of human workers in I4.0, to the integration
of many different types of resources. The second reason is to enable
reconfigurability in the architecture. Napoleone, Macchi & Pozzetti (2020)
identified reconfigurability as an important characteristic that CPSs should have.
Koren, Gu & Guo (2018) showed how reconfigurability of RMSs can enhance
manufacturing systems’ responsiveness.

Many of the characteristics of RMSs can be integrated into the BASE architecture.
The BASE architecture already demonstrates two RMS characteristics, modularity
and customisability, but the other characteristics of RMSs like scalability and
integrability still need to be integrated. To integrate the above-mentioned
characteristics, finer details of the BASE architecture like communication between
BASE shells, service-discovery, cyber-physical interfacing, user interfacing and
diagnostics need to be addressed.

Stellenbosch University https://scholar.sun.ac.za

4

With regards to research on holonic systems, this thesis aims to address two
important functions for systems implemented using holonic principles, namely
cooperation and cyber-physical interfacing. The thesis shows how service
orientation can enable cooperation between holons, while keeping these holons
independent. It also shows that extracting all cyber-physical interfacing of a system
into dedicated Interface Holons (as discussed in chapter 7) improves development
time, reduces system complexity and facilitates better diagnosability of interfacing
problems.

1.4 Methodology

To guide the extension of this thesis, research into CPSs was required to understand
their most important characteristics. To address reconfigurability and the use of
holonic principles, research on RMSs and holonic systems were done. This research
was used to formulate the characteristics of complex, reconfigurable CPSs.
Subsequently, the BASE architecture was evaluated against these characteristics to
formulate a set of required extensions to the architecture.

A top-down approach was used to design the extended BASE architecture, where
the first step was to create the infrastructure of the architecture’s platform and
identify the platform management components. Thereafter, the BASE shell was
refined by adding components to it and making any required changes to its existing
components. Most of the development time had to be spent on two of the most
critical and complex functions of the architecture – cooperation between holons and
interfacing between the real and the cyber world. Several standard plugins were
developed to address these two functionalities.

Before considering any of the case study specifics, the majority of the development
was already performed, since the case study only affected the custom plugins that
had to be developed. A case study was selected based on selection criteria that
would ensure all of the extensions made in the architecture could be implemented
and demonstrated.

After the case study was implemented and deployed, an evaluation of the extensions
made to the BASE architecture was performed. For this evaluation, quantitative and
qualitative metrics were set up using the requirements of a complex, reconfigurable
CPS as evaluation criteria. The evaluation results had to be analysed to determine
what they indicated about the extensions, and how much these results were
influenced by other factors like the programming language or the author’s
programming experience. A conclusion is made based on the results from the
evaluation that highlights the most important findings, as well as any future work
that is still required in the BASE architecture.

Stellenbosch University https://scholar.sun.ac.za

5

2 Literature review

This chapter presents a review of literature relevant to the thesis. The first three
sections cover literature about CPS, RMSs and holonic systems. Hereafter the
BASE architecture of Sparrow (2021) is dissected, which served as a starting point
for the rest of the thesis.

2.1 Cyber-Physical Systems

The following section starts of by reviewing the most common definitions of CPSs.
Thereafter, the section focusses on the characteristics of CPS, which was very
important to set up the requirements of a complex, reconfigurable CPS in chapter
three. Lastly, the most common applications of CPSs are listed and an example of
a CPS architecture to be used in the agriculture industry is discussed.

2.1.1 Definition

Definitions of CPSs are still being changed year by year, as researchers gain new
knowledge. In 2013, Kim & Kumar (2013) stated that CPSs require a combination
of computing, communication and control. The following year, Gunes, Peter,
Givargis & Vahid (2014) integrated the contributions of many articles to define
CPSs as systems with embedded computing technology, which are integrated with
multi-disciplinary physical components to observe and control these components.
Shortly hereafter, Lee (2015) generalized a CPS by stating that it is simply an
“orchestration of computers and physical systems”.

In 2016, Monostori et al. (2016) defined CPSs with slightly different terminology
than has been used up to then. They stated that CPSs are systems with collaborating
computational entities which have an “intensive connection” with their physical
world of interest and its operations, while also using “data-accessing and data-
processing services available on the Internet”. Two years later, Ribeiro & Bjorkman
(2018) defined CPSs as the new generator of embedded systems with advanced
artificial intelligence and improved communication capabilities.

One of the newest well cited and more elaborated definitions of CPSs was given by
Chen, Wang, Feng, Li & Liu (2019). They stated that in a CPS “the physical system
acts as a data access role with sensors and communication systems to collect real-
world information and communicate to computation modules, which further
analyse and notify the findings to the corresponding physical systems through
multiple feedback loops”.

2.1.2 Characteristics

Figure 2 shows the technological and operations management characteristics of
CPSs according to Napoleone et al. (2020) based on 151 CPS articles that they

Stellenbosch University https://scholar.sun.ac.za

6

considered. A total of 113 characteristics were identified, from which the 19 most
cited characteristics (each with at least ten references) were chosen. Napoleone et

al. (2020) compressed these 19 characteristics into eight lower-level characteristics.
Furthermore, they added a predictability as a ninth lower-level characteristic that
they felt was important, even though it was not mentioned in the literature that they
considered.

These nine lower-level characteristics (“C1” to “C9” in figure 2) were grouped into
five higher-level characteristics, namely integration, cooperation, intelligence,
reconfigurability and adaptability, and predictability. These five higher-level
characteristics (dashed boxes in figure 2) were further split into technological
characteristics and operations management characteristics.

Figure 2: A comprehensive schema of characteristics of CPSs (adapted from

Napoleone et al. (2020))

Each of the sections from section 2.1.2.1 to 2.1.2.5 discuss one of the higher-level
characteristics of CPSs. In each section this is done by looking at the details of the
lower-level characteristics that make up the higher-level characteristic being
discussed. These sections contain references from some of the most cited CPS
papers together with references from Napoleone et al. (2020).

Stellenbosch University https://scholar.sun.ac.za

7

2.1.2.1 Integration

CPSs can be considered as efficiently integrated physical and digital components.
The following section will discuss complexity encapsulation, networking
capability, service orientation and decentralisation, the first four characteristics of
a CPS, which are all required to enable a CPS’s integration abilities (the first higher-
level characteristic).

CPSs need to integrate several different systems, each with their own
communication protocols. The heterogenous nature of different CPSs, integrated
into one overarching CPS, is one of the biggest contributors to complexity in these
systems (Wan et al., 2013). Thus, Napoleone et al. (2020) regard complexity
encapsulation as a general design principle of CPSs, and lists it as the first
characteristic.

Napoleone et al. (2020) state that CPSs are composed of interconnected clusters of
computational and physical elements, which are connected through wired and
wireless networks. Therefore, they identify network capability, as the second
characteristic of CPSs, which includes a CPSs ability to communicate, connect and
operate with other CPSs.

The interoperability of a CPSs components needs to be standardized to ensure these
components use the same communication protocols, otherwise they would not be
able to communicate (Mourtzis & Vlachou, 2018). This standardisation also
reduces the costs of manufacturing systems by lessening any customized
integrations required for the different components (Ramis Ferrer, Iarovyi, Lobov,
Martinez Lastra, & Mohammed, 2020).

CPSs promise real-time data acquisition and information feedback from the digital
realm, which requires communication between the digital and physical realms.
Communication in CPSs often occurs over the internet and thus IoT is an important
enabler of CPSs (Tedeschi et al., 2018).

In summary of the previous three paragraphs, the networking capability of CPSs
requires them to be interoperable, connected and able to communicate (Ali et al.,
2015), Many papers use the term “network connectivity” to describe CPSs network
capability (Jabeur, Sahli & Zeadally, 2015; Khorrami, Krishnamurthy & Karri,
2016).

The third characteristic of CPSs, according to Napoleone et al. (2020), is service
orientation. In a Service-oriented Architecture (SoA), architectural components
provide services to each other over a shared network (Russo, 2021). In CPSs, the
principles of SoAs can be used to reduce the complexity of integrating the different
components (Iarovyi et al., 2016). The digital services provided by CPS
components can be encapsulated and accessed by other CPS components (Tao &
Qi, 2019).

Stellenbosch University https://scholar.sun.ac.za

8

Modularity, autonomy and self-capabilities are all encapsulated under
decentralisation, the fourth characteristic of a CPS according to Napoleone et al.
(2020). Svetlík (2020) defines a modular system as a system with a flexible set of
unified modules which function together to form a higher functional and more
complex unit. Heiss et al. (2015) show that modularity allows systems to be
independent, which make the systems more flexible to react to customer
requirements or products that are changed.

CPSs must have a high level of autonomy due to their complex nature (Ribeiro &
Bjorkman, 2018). This autonomy is enabled by the ability of CPSs to initiate actions
based on the aggregated data received from the physical components in the system
(Pirvu, Zamfirescu & Gorecky, 2016). Self-capabilities and autonomy are related
terms and Wan, Yan, Suo and Li (2011) show that self-capabilities of components
are enabled by the autonomy of these components. Many papers use different terms
that refer to these self-capabilities, e.g. self-adaptivity (Chen, Wan, Shu, Li,
Mukherjee & Yin, 2018), self-awareness (Lee, Jin & Bagheri, 2017) and self-
learning (Scholze, Barata & Stokic, 2017). CPSs are decentralized because their
components function independently while working towards a common goal
(Ghobakhloo, 2018).

The combination of the lower-level characteristics discussed in this section
(complexity encapsulation, network capabilities, service orientation and
decentralisation) enable CPSs integration capabilities. Integration, in the context of
CPSs, allows new components to be added to existing ones much easier and in a
much shorter time frame (Penas, Plateaux, Patalano & Hammadi, 2017).

2.1.2.2 Intelligence

Napoleone et al. (2020) state that a CPSs virtualisation and computational
capabilities (the fifth and sixth characteristics of CPSs) enable its intelligence, the
second higher-level characteristic. Virtualisation is the use of virtual replicas of the
physical parts of CPSs to remotely track physical processes (Yuan, Anumba &
Parfitt, 2015) and simulate their behaviours (Babiceanu & Seker, 2016). Cimino,
Negri and Fumagalli (2019) show that these virtualisations can be extended from
just observing and simulating CPS processes, to taking real-time action on the
physical resources, based on the simulation results in the virtual world.

Sanderson, Chaplin & Ratchev (2018) refer to virtualization as creating digital
twins of CPSs. They also state that accurate virtualisation requires a CPS to have
real-time capabilities. Lee, Ryu & Cho (2017) define real-time capability as the
capability of a CPS to provide information immediately after new data has been
acquired. This allows CPSs to react on changes in the physical realm to increase
fault-tolerance and safety in these complex systems (Carreras Guzman, Wied,
Kozine & Lundteigen, 2019).

The sixth characteristic of CPSs, computational capability, refers to the data
management and analytics carried out by the cyber parts of CPSs (Ghobakhloo,

Stellenbosch University https://scholar.sun.ac.za

9

2018). These cyber parts take over the tedious computations and actions which
previously had to be done manually by humans (Zhou, Zhou, Wang & Zang, 2019).
Gai, Qiu, Zhao & Sun (2018) show the advantages of using cloud computing to
enable these computational capabilities. In the cloud, web-services can be utilised,
and distributed physical resources can connect with each other without needing
their cyber parts to run on the same computer (as shown by Caggiano (2018)).

Intelligence of a CPS is measured by how capable the CPS is to sense changes,
make decisions and automatically interface with other CPSs (Cheng, Liu, Qiang &
Liu, 2016). The intelligence of a higher-level CPS can be distributed among the
lower-level CPSs (Cardin, 2019). Intelligence of a CPS relies strongly on its ability
to collect information from the physical components in (or close to) real-time and
the computational power that is available. Therefore, intelligence is the second
higher-level technological characteristic of CPSs, enabled by CPSs’ virtualisation
and computational capabilities.

2.1.2.3 Cooperation

Napoleone et al. (2020) state that cooperation forms both the seventh lower-level
characteristic and the third higher-level characteristic of CPSs. Cooperation allows
distributed CPSs to autonomously choose which of their components should be
used for a specific activity (Etxeberria-Agiriano, Calvo, Noguero & Zulueta, 2012).
Tran, Park, Nguyen & Hoang (2019) show that self-organization in a CPS is
realised by combining autonomy and cooperation.

2.1.2.4 Reconfigurability and adaptability

According to Napoleone et al. (2020), reconfigurability and adaptability can be seen
as equivalent and form both the eighth lower-level characteristic and fourth higher-
level characteristic of CPSs. Adaptability can be realised by ensuring individual
components are independent and do not need to rely on each other to deal with
changes in their environment (Ribeiro & Bjorkman, 2018). Adaptability in a CPS
requires the CPS to react to frequent changes in requirements by dynamically
reconfiguring its components (Otto, Vogel-Heuser & Niggemann, 2018).
Therefore, for a system to be adaptable it must be dynamically reconfigurable.

Napoleone et al. (2020) added scalability and convertibility as driving
characteristics of reconfigurability and adaptability. Scalability refers to a CPSs
ability to add or remove participating resources during the CPSs lifecycle (Heiss et

al., 2015). Iarovyi et al. (2016) describe convertibility as the capability of a CPS to
extend their functionalities in a modular way to support new requirements.

2.1.2.5 Predictability

Napoleone et al. (2020) added predictability as both the ninth CPS characteristic
and the fifth higher-level CPS characteristic and grouped it under CPSs’ operations
management characteristics. As depicted in figure 2, predictability is enabled by

Stellenbosch University https://scholar.sun.ac.za

10

diagnosability, which requires that the system’s errors and status are transparent.
Predictability is required by smart factories to strengthen their production and
logistics adaptivity (Facchinetti & Della Vedova, 2011) and to implement
predictive maintenance (Shcherbakov, Glotov & Cheremisinov, 2019). Prediction
of equipment failures can be used to trigger autonomous maintenance activities.

2.1.3 Applications

Chen (2017) studied 77 CPS publications from 2012 to 2017 in the Scopus database
to identify CPS applications. The ten biggest application domains found and
reviewed were agriculture, education, energy management, environmental
monitoring, intelligent transportation, medical devices and systems, process
control, security, smart city and smart home, and smart manufacturing.

One example application of CPSs in agriculture is precision farming.
Antonopoulos, Panagiotou, Antonopoulos (2019) proposed a commercial grade
CPS platform, called A-FARM, to meet the requirements of multifaceted
agriculture cultivation deployments. A-FARM is divided horizontally into an edge
and a cloud layer. The edge layer contains sensors and gateways. The cloud layer
is split vertically into four layers, namely (from bottom to top): persistence,
aggregation, services and web layer. Data is received in the aggregation layer from
the edge layer and then stored in the persistence layer (below the aggregation layer),
which contains a cluster of databases. The service layer (above the aggregation
layer) acts as the entire architecture’s orchestrator, while the web layer (above the
service layer) contains all the end-user Application Programming Interfaces (APIs).
This architecture has not yet been deployed but its authors state that it promises
minimisation of water wastage and chemical fertilizer usage.

2.2 Reconfigurable Manufacturing Systems

Koren et al. (1999) introduced RMSs to address the unpredictable and fast changes
in the market that manufacturing companies have to deal with. RMSs can easily
switch production, of a specific product family, by adding and/or removing
hardware or software components (Martinsen, Haga, Dransfeld & Watterwald,
2007).

Koren et al. (2018) defined six core characteristics of RMSs, as follows:

• Scalability: the ability to modify production capacity by adding or removing
resources or changing system components.

• Convertibility: the capability of an existing system to change its
functionality to meet new production requirements.

• Diagnosability: an RMS must be designed so that product quality and the
reasons for product failures can be diagnosed very quickly.

Stellenbosch University https://scholar.sun.ac.za

11

• Customisation: the ability to customize a part family.

• Modularity: breaking up operational functions into units that can be altered
between different production schemes.

• Integrability: the ability to integrate different modules rapidly and precisely
through their hardware and software interfaces.

RMSs promise enhanced system responsiveness to fluctuating markets, improving
manufacturing companies’ competitiveness. However, real-time operational
decision-making in RMSs has not yet been researched properly, most likely because
of the complexity of RMSs. Traditional analytical and decision-making algorithms
are unable to efficiently deal with this complexity. New intelligent manufacturing
techniques like multi-agent systems, cloud manufacturing and CPSs can help
address this problem More research on combining RMSs with these techniques
would be very valuable. (Koren et al., 2018)

2.3 Holonic systems

2.3.1 Background, definitions and principles

Koestler (1967) proposed the term holon to describe an entity or system with self-
organizing abilities. He described a holon as being a whole and a part
simultaneously. A holon contains an information processing part combined with a
physical processing part. In essence, a holon is an entity with communication and
decision-making abilities, which may be composed of a set of sub-level holons, but
could also form part of a wider organization composed of higher-level holons
(Koestler, 1967).

When holons are grouped together they form a holonic system, also referred to as a
holarchy. Holonic systems are robust when exposed to disturbances and can adapt
to changes in the environment (Vyatkin, 2007). Derigent et al. (2020) used Giret &
Botti (2004) to identify three core principles of holonic systems, namely: decision
making, autonomy and cooperation. Each of these principles are discussed in more
detail in the following paragraphs.

Each holon needs to be able to make decisions by reducing the number of
possibilities and choosing the optimal solution. This decision-making process can
be reactive, in response to some stimulus, or pro-active, where the system or an
individual holon has a goal towards which it is working. This decision-making
process can also be recursive, because of the recursiveness of holarchies in these
types of systems. For example, a holon that is made up of many other lower-level
holons, might need one/more of its lower-level holons to handle some parts of the
decision-making process. (Derigent et al. 2020)

Stellenbosch University https://scholar.sun.ac.za

12

Autonomy, the second principle of holonic systems, stems from the definition of a
holon as an independent entity with self-organising capabilities (Koestler, 1967).
Giret & Botti (2004) state that autonomy is the degree of freedom with which each
holon can make decisions. Each holon’s autonomy is defined during the design of
the holon, but can be altered by higher-level holons during operation. (Derigent et

al., 2020)

The third principle of holonic systems, cooperation, both restricts and expands the
autonomy of holons (Derigent et al., 2020). Service-orientated communication, like
the Contract-Net Protocol (CNP) of Smith (1980) – discussed in appendix C - is a
popular method of enabling cooperation in holonic systems. This can be seen in
Service-oriented Holonic Manufacturing Systems (SoHMSs), which allow for
flexible and reactive systems (Gamboa et al., 2016).

2.3.2 Performance metrics of Holonic Control Architectures

The informational parts of holonic systems are developed using HCAs (Derigent et

al., 2020). Kruger & Basson (2018) proposed evaluation criteria for the
implementation of HCAs in manufacturing systems. Their methodology was to first
identify the characteristics of HCAs, derive requirements from these characteristics
and, finally, formulate quantitative and qualitative performance metrics for HCAs.
Figure 3 shows the requirements and performance metrics identified, as well as the
dependencies of the requirements on the different performance measures. The rest
of this section will only discuss the performance measures and not the requirements.

The six quantitative performance measures identified by Kruger & Basson (2018)
are reconfiguration time, development time, code complexity, code extension rate,
code re-use rate and computational resource requirements. Reconfiguration time is
the time a developer takes to change an existing system (which includes physical
and software changes) to integrate a new holon, and development time is the time
it takes to develop the new holon’s control software. Development and
reconfiguration time can both be measured by adding a new type of holon to an
existing holonic system and timing the development and the integration separately
for the two respective metrics. When measuring the development time, it is crucial
that the planning time needed by the developer to understand the problem and the
systems involved, is not measured.

Code complexity can be measured using the source lines of code (SLOC)
measurement as shown by Cesarini, Pappalardo & Santoro (2008). The code
extension rate is the amount of “growth” needed to reconfigure the source code for
some reconfiguration and can be calculated by dividing the final configuration’s
SLOC value by the initial configuration’s SLOC value. Reusability is crucial for
high productivity and the code reuse rate can be calculated as the initial
configuration’s SLOC value divided by the new configuration’s SLOC value.

Stellenbosch University https://scholar.sun.ac.za

13

The computational requirements of a holonic control implementation show to what
extent its functionality can be supported by resource-limited controllers. To
measure an HCA’s computational requirements, the Central Processing Unit (CPU)
usage and memory usage can be measured on a computer running the HCA
implemented system while a production activity is active.

The qualitative measures all aim to analyse the system characteristics to estimate
the system’s performance for each of these measures. For example, modularity
considers the architectural considerations that enable modular implementation and
mechanisms to verify the performance of individual modules.

Figure 3: Requirements and performance metrics for holonic control

implementations (Kruger & Basson, 2018)

2.4 The BASE architecture

The development of the BASE architecture was driven by the need to integrate
human workers into I4.0 environments. This development was strongly influenced
by the requirements and responsibilities of Resource Holons in Holonic
Manufacturing Systems (HMSs). Sparrow, Kruger & Basson (2021) proposed the

Stellenbosch University https://scholar.sun.ac.za

14

BASE shell, a Human Resource Holon Administration Shell (HRH-AS), to raise
humans to a CPS level, which would enable them to interact with other CPSs. This
BASE shell adds storage, processing, and communication abilities to the human’s
abilities by making use of Human-Machine Interfaces and Information and
Communication Technology. The BASE architecture was created as the reference
architecture for this BASE shell, and the details of the BASE architecture and its
implementation are discussed in this section. In the context of other popular HCAs
like PROSA (Van Brussel, Wyns, Valckenaers, Bogaerts & Peeters, 1998),
ADACOR (Leitão & Restivo, 2006) and ARTI (Valckenaers, 2019), the BASE
architecture serves as an implementation architecture of the resource (PROSA and
ARTI) or operation (ADACOR) holons in these architectures.

2.4.1 Core components and plugins

The BASE architecture consists of five core components and four types of plugins,
as shown in figure 4. The BASE architecture’s five core components are the
Schedule, Execution, Biography, Attributes and Communication Manager.
Schedule stores all activities that must still be executed, Execution stores all
activities that are being executed and Biography stores all activities that have been
completed.

Figure 4: The BASE architecture (Sparrow, 2021)

In addition to its storage component, Execution consists of a State Blackboard
(SBB), an Observer and an Informer. The SBB stores the human’s current state
(physical, mental and biological) and is updated by the Observer. The Observer
gathers information about the human from observation services, like sensors and
cameras, and delivers the information in Value-Confidence-Timestamp format. The
Informer delivers information to the human and uses the Attributes to personalise
and optimise this information delivery.

The Attributes component stores a holon’s attributes, i.e. the properties of the holon
that do not change during activities. The various BASE shells’ Communication
Managers enable inter-holon communications. The five core components are not
case specific and function the same in all BASE shells; however, these components

Stellenbosch University https://scholar.sun.ac.za

15

do not add any value on their own. Sparrow (2021) created two categories of
attributes, namely Personal Attributes and Contextual Attributes. Personal
Attributes are persistent data about a resource and its BASE shell and forms the
digital model of the resource. Contextual Attributes are application specific and
defines the resource within the context it is in.

To add case specific value to a BASE shell, Sparrow (2021) created BASE plugins
which can interact with the BASE core components. There are four types of BASE
plugins, namely: Scheduling Plugins (SPs), Execution Plugins (EPs), Reflection
Plugins (RPs) and Analysis Plugins (APs). A BASE shell’s SPs schedule new
activities in its Schedule using smart algorithms, consideration of attributes, and
interactions with other holons. Scheduled activities are initiated, monitored and
driven by EPs, which will update the activities’ execution progress in the Execution.
When activities are completed, RPs are used to save the activity data in the
Biography and add any post-execution data to the activities. APs analyse activity
data stored in the Biography in order to update the BASE shell’s attributes in the
Attributes component.

2.4.2 The three-stage activity life cycle

The BASE architecture uses the Three-Stage Activity Lifecycle (3SAL) model,
proposed by Sparrow, Kruger & Basson (2020), for the structuring of its activity
data. In the 3SAL model, an activity progresses through three stages: scheduled, in

execution or completed. The activity data is structured according to the stage at
which the data was created, as shown in figure 5. Schedule data is edited before an
activity is started, execution data is edited while an activity is being executed and
post-execution data is added after an activity has been completed.

Figure 5: Shells and data blocks of stage 1, stage 2 and stage 3 activities in the

3SAL model (Sparrow et al., 2020)

2.4.3 An Erlang implementation of the BASE architecture

Sparrow (2021) implemented the BASE architecture in Erlang – a highly concurrent
programming language. Erlang was selected because the language offers

Stellenbosch University https://scholar.sun.ac.za

16

robustness, high concurrency and scalability, and the functionality to change the
executing code during operation (i.e. without having to stop and restart the
application). These characteristics are considered critical when implementing
complex and reconfigurable software systems.

The Schedule, Execution, Biography and Attributes components all had the
structure shown in figure 6, except that the Attributes component had two storage
components, one for personal attributes and one for contextual attributes. Sparrow
(2021) used Erlang’s Erlang Term Storage (ETS) tables as data repositories, and
these are explained in more detail in section 8.1.

Figure 6: Generalised structure of a BASE core component data repository

implemented in Erlang (Sparrow, 2021)

Except for the Execution processes proposed by the BASE architecture, namely the
SBB, Observer and Informer, two other processes were added in the
implementation, namely the Activity Handler and the Execution Bench. The
Activity Handler acted as a gateway between EPs and Execution, and was used to
give the next instructions and observe outcomes of activities. Completed activities
were moved to the Execution Bench where they awaited further processing from
RPs.

2.4.4 Application of the BASE architecture in industry

Sparrow (2021) managed to evaluate the BASE architecture by implementing it in
an aerospace composites manufacturing company to address some of the
companies’ labour-intensive requirements. This case study showed how the BASE
shell could be used as a HRH-AS which added value to this composites company
by doing real-time automated schedule management, calculating standard work and
improving traceability of operations.

An activity that occurs frequently in the aerospace composites company, namely a
layup activity, was used for the case study. In this activity a worker fetches a ply
pack and mould, unpacks the ply pack and then sequentially places each ply in the
mould using plastic spatulas and a heat gun. Core filler, a hardening polymer
substance, has to be applied between some plies, using a template showing which
areas have to be filled. After all the plies are laid up, the part is placed in a vacuum
bag and taken to a vacuuming station, completing the layup activity.

Stellenbosch University https://scholar.sun.ac.za

17

Figure 7 shows a time sequence visualisation of the duration of the different steps
of the layup activity when the BASE shell was used to manage the activity’s
execution by interfacing with the relevant worker. This data was used to convince
the aerospace composites company to deploy BASE shells on their shop floor.

Figure 7: Action time visualisation from captured execution data during the

layup activity

2.5 Conclusion

CPSs can be applied in many different industries and promises more accurate
reflection of physical systems in the digital realm, as well as greater control over
these systems from the digital realm. Reconfigurability within CPSs, can be more
effectively realised by integrating the characteristics of RMSs with that of CPSs.
Furthermore, the core principles of holonic systems, namely: decision making,
autonomy and cooperation can be used to improve decentralisation, cooperation
and intelligence within CPSs.

The BASE architecture shows much potential to be extended to more than just the
integration of humans into the I4.0 environment. Most of the core components in
this architecture are applicable to any type of resource, making it very appropriate
for complex CPSs. The BASE architecture’s use of plugins greatly enhances its
customisability, an important characteristic of reconfigurable CPSs. In conclusion,
the BASE architecture shows great potential to be used as a reference architecture
for complex, reconfigurable CPSs.

Stellenbosch University https://scholar.sun.ac.za

18

3 Requirements for the extension of the
BASE architecture

This chapter starts by identifying the requirements of a complex, reconfigurable
CPS, based on literature. Furthermore, it evaluates the original BASE architecture
against these requirements to identify any shortcomings. This evaluation is used to
create a list of extensions needed to use the BASE architecture for complex,
reconfigurable CPSs.

3.1 Requirements of a complex, reconfigurable CPS

This section determines the requirements of a complex, reconfigurable CPS by
transforming the nine characteristics of CPSs, as proposed by Napoleone et al.
(2020), into requirements. Of the nine CPS characteristics only decentralisation is
directly used as a requirement. Complexity encapsulation and reconfigurability, are
expanded into more extensive requirements, since these are the two most important
CPS characteristics addressed in this thesis. The ten requirements identified in this
section can be seen in table 1.

Network capability refers to both the ability of a CPS’s cyber and physical
components to connect and communicate, and their ability to integrate and interact
with other systems outside of their overarching CPS (Napoleone et al., 2020). To
clearly distinguish these two abilities within network capability, they are split as
separate requirements, namely: cyber-physical interfacing and integration.

Service oriented interactions is a cooperation strategy and thus service orientation
and cooperation are grouped into the same requirement, namely service-oriented

cooperation. Virtualisation is transformed into a requirement by being less
specific, and rather using the term usability, to refer to a CPS’s provision to let
users view and reconfigure its details. Computational ability cannot be used as a
requirement, but will greatly assist in evaluating the scalability of a CPS, since a
CPS’s scalability can be limited by the computational resources available to it.
Predictability, although proposed by Napoleone et al. (2020) as a characteristic of
a CPS, should not be a requirement of a CPS, but rather a potential benefit.

This thesis focusses especially on complexity encapsulation and reconfigurability
as CPS characteristics that the BASE architecture must enable. To encapsulate the
complexity of integrating many diverse entities, a CPS must generalise as many
functionalities as possible, which is why generalisation is added as a requirement.
The integration of diverse, autonomous entities can be very prone to errors.
Subsequently, the generic parts of a CPS must be robust, while providing resilience
for when custom parts of the system fail. This robustness and resilience are
encapsulated under the same requirement, namely reliability.

Stellenbosch University https://scholar.sun.ac.za

19

Most research about what reconfigurability entails can be found in the field of
RMSs. Koren et al. (2018) defined six core characteristics of RMSs. Modularity is
encapsulated within decentralisation and integrability has already been mentioned
above as a CPS requirement. In the manufacturing domain, customisation and
convertibility refer to different characteristics, but to facilitate many domains these
can be seen as the same and the term customisability is used as another
requirement. The remaining two RMS characteristics, scalability and
diagnosability, and very relevant to reconfigurable CPSs, and are therefore also
added as requirements.

3.2 Evaluating the original BASE architecture

Table 1 evaluates the BASE architecture against the requirements of a complex,
reconfigurable CPS. These evaluations are focussed on identifying all shortcomings
of the BASE architecture as a reference architecture for complex reconfigurable
CPSs. Colours are used in the table to indicate which requirements are met fully
(green), partially (yellow), or not at all (white).

Stellenbosch University https://scholar.sun.ac.za

20

Table 1: Evaluation of how well the BASE architecture enables the

requirements of a complex, reconfigurable CPS

Requirements Evaluation of the BASE architecture

Cyber-physical

interfacing

The original BASE architecture already uses observer and informer

services to enable cyber-physical interfacing. These services need

to be integrated as holons and generalised as far as possible to

reduce complexity and improve diagnosability.

Integration External systems can be integrated using plugins.

Service-oriented

cooperation

Sparrow (2021) already mentioned service orientation in the BASE

architecture, but this still needs to be refined. The services of the

BASE architecture’s holons need to be standardised and some form
of service directory is needed. The Communication Manager

already provides the foundation needed for interactions between

holons, but standardised service-oriented interaction protocols,

encapsulated in plugins, still need to be developed.

Decentralisation Decentralisation within a single holon is already enabled by the

structuring of data (core components) and functionalities (plugins)

within each BASE shell. However, decentralisation within an entire

CPS with many BASE shells still needs to be addressed.

Scalability The BASE architecture in its current state can only accommodate a

single BASE shell and needs to be extended to facilitate scaling.

Customisability The use of plugins and editable attributes in each BASE shell meets

the requirement of being able to reconfigure a holon’s internals.

Diagnosability This requirement is not addressed yet.

Generalisation The management of storage and communication functions is

handled by the core components. Cyber-physical interfacing and

cooperation between holons requires many generic functionalities

to reduce complexity.

Reliability (robustness

and resilience)

The structure and philosophies of the original BASE architecture

already provide a foundation that will make the creation of a robust

CPS easier, but these implementations have not yet been addressed.

Custom components are prone to errors and thus resilience must

also be addressed.

Usability Interfacing with users of the system still needs to be addressed.

Stellenbosch University https://scholar.sun.ac.za

21

3.3 Extensions required to the BASE architecture

Table 1 helped to identify where development is still needed in the BASE
architecture to use it as a reference architecture for complex, reconfigurable CPSs.
Many of these developments are dependent on each other and can be combined into
the same extensions/refinements. A matrix showing the requirements, extensions
and their relationships is shown in figure 8, and should be used to aid the
understanding of the rest of this section.

Figure 8: Relationship matrix showing relationships between the requirements

of a complex, reconfigurable CPS and the required BASE architecture

extensions

The following list contains the extensions required to the BASE architecture. How
each extension is related to the various requirements is also explained in this list.

• Provision for multiple BASE shells: The architecture needs to facilitate
more than one BASE shell in the same system, enabling scalability.

• Supervision: In order to add reliability to the system, the different
components need to be supervised, by dedicated supervision processes, so
that the failure of these components are detected and isolated, and the
components are restarted.

7

P
ro

vi
si

o
n

 f
o

r
m

u
lt

ip
le

 B
A

SE
 s

h
e

lls

Su
p

e
rv

is
io

n

D
ia

g
n

o
st

ic
 t

o
o

ls

U
se

r-
in

te
rf

a
ce

Sh
e

ll
p

ri
va

cy

Sh
e

ll
co

o
rd

in
a

ti
o

n

R
e

fi
n

e
d

 p
lu

g
in

-s
h

e
ll

in
te

rf
a

ci
n

g

St
a

n
d

a
rd

is
e

d
 a

ct
iv

it
y

&
 a

tt
ri

b
u

te
 t

yp
e

s

P
re

ve
n

ti
o

n
 o

f
d

a
ta

 lo
ss

C
u

st
o

m
 c

o
m

p
o

n
e

n
t

fa
ilu

re
 h

a
n

d
lin

g

Se
rv

ic
e

 d
ir

e
ct

o
ry

St
a

n
d

a
rd

is
e

d
 s

e
rv

ic
e

-o
ri

e
n

te
d

 in
te

ra
ct

io
n

s

C
yb

e
r-

p
h

ys
ic

a
l i

n
te

rf
a

ci
n

g
 h

o
lo

n
s

Cyber-physical interfacing x

Service-oriented cooperation x x

Decentralisation x x

Scalability x x x x x

Diagnosability x x x x

Generalisation x x x x

Reliability x x x x x

Usability xR
e

q
u

ir
e

m
e

n
t

a
d

d
re

ss
e

d

b
y

 a
n

 e
xt

e
n

si
o

n

Extension

4 5 6THESIS CHAPTER

Stellenbosch University https://scholar.sun.ac.za

22

• Diagnostic tools: The architecture requires components dedicated to
logging information that can help diagnose problems in the CPS.

• User Interface: In order to make the BASE architecture more usable, the
architecture needs to make provision for a User Interface (UI) that can
enable users to view and reconfigure a BASE architecture implementation.
This UI should also enhance diagnostics and allow users to scale the system
up and down.

• Shell privacy: A very important principle of decentralised architectures are
that the different components should be independent. Thus, each BASE
shell’s internal components must not allow any other components to directly
communicate with them. Communications between BASE shells can only
happen via their Communication Managers. This also makes the
architecture more reliable, since errors are isolated and each holon’s data
can never be corrupted by other holons’ BASE shell components.

• Shell coordination: This extension mainly addresses the need for
scalability, because when there is more than one BASE shell in the system,
each BASE shell’s components need to know about each other (be
coordinated), otherwise intra-shell communication would not be possible.
Each component of a BASE shell might fail, in which case the newly
restarted component and the rest of the BASE shell needs to be re-
coordinated. Thus, BASE shell coordination is essential to the architecture’s
reliability as well.

• Refined plugin-shell interaction: Refined interactions between plugins
and their BASE shells are required to make plugin development more
convenient. Extracting the generic functionalities required in plugins and
integrating these functionalities into the core components of the BASE
architecture also addresses the generalisation requirement.

• Standardised activity and attribute types: The integration of different
types of resources is destined to result in many different types of activities
and attributes, and each developer might use their own terminology to
describe the same types of attributes or activities. Therefore, standardised
activity and attribute types are needed to encapsulate the most common
activities and attributes found in holons’ BASE shells.

• Prevention of data loss: One of the main functions of BASE shells is to
store activity data, which is why BASE shells’ core components should be
refined to not lose this data. If data gets lost occasionally due to unplanned
hardware or network failures, the system would not be reliable.

• Custom component failure handling: Any custom component is very
prone to errors that could cause failures, which is why it is crucial that the

Stellenbosch University https://scholar.sun.ac.za

23

core components can handle these custom component failures. This
resilience is required to improve the system’s reliability.

• Service directory: Without a service directory, holons would not be able to
find and utilise each other and decentralisation would not be possible. The
service directory also allows the system to be scaled up and down with very
little reconfigurations, because new holons’ services are simply added to the
service directory and used whenever another holon requires them.

• Standardised service-oriented interactions: In order to reduce
complexity, all interactions between holons’ BASE shells need to follow
some standardised protocol so that all developers build the same
communication protocols into the plugins they develop. This extension
would also aid the architecture’s diagnosability, because there is a
predefined list of message types that could be sent between holons.

• Cyber-physical interfacing holons: Cyber-physical interfacing services
need to be integrated into the BASE platform as holons which provide
cyber-physical interfacing services. These holons need to be generalised as
far as possible to increase development productivity. Having all cyber-
physical interfacing encapsulated in dedicated holons would also improve
the scalability of the system, since it would enable system operators to
simply add and remove interfaces (as holons) with minimal reconfiguration
in other holons. All cyber-physical interfacing problems would also be
logged within the respective Interface Holons’ Biographies, improving the
diagnostics of cyber-physical interfacing errors.

Stellenbosch University https://scholar.sun.ac.za

24

4 Platform management components

The following chapter introduces the management components required in
platforms on which the BASE shells will be deployed. These components are not
essential for the BASE shells to operate, but greatly improves the robustness,
scalability, cooperation, diagnosability, usability and transparency of the system.

4.1 Overview

Figure 9 shows the platform infrastructure of the extended BASE architecture,
which includes the BASE shells together with the platform management
components of the platform on which these BASE shells are implemented. The four
platform management components illustrated in this figure are the:

• Supervision tree

• Department Of Holon Affairs (DOHA)

• Loggers

• User Interfaces (UIs)

These components are explained in more detail in the rest of this chapter.

Figure 9: Overview of the extended BASE architecture

4.2 Supervision tree

Software supervision is a complicated topic with little research reported on it.
Researchers also have different views of what a software supervisor is, for example
Savor & Seviora (1995) defines a software supervisor as a unit that monitors the
inputs and outputs of a real-time system to report unexpected behaviours. The
developers of Erlang (introduced in section 2.4.4) have a slightly different view of

Stellenbosch University https://scholar.sun.ac.za

25

software supervisors. In Erlang, supervisors are processes that do nothing else
except monitor (and possibly restart) other processes, which might be worker
processes (processes doing something other than supervision) or other supervisors
(Armstrong, 2003). These supervisors’ purpose is to restart the processes that they
monitor if one/more of these processes fail. This view of supervisors is adopted for
the rest of this thesis.

Sparrow’s (2021) use of supervisors in his Erlang implementation of the BASE
architecture showed how much robustness supervisors bring to the system. For this
reason, supervision is an important functionality that should be integrated in both
the platform and the BASE shells running on this platform. Figure 9 and figure 11
(in chapter 5) both show how supervisors must be implemented in the BASE
architecture. This hierarchy of supervisors, referred to as a supervision tree,
facilitates the start-up, shutdown and failure recovery operations of a BASE
architecture implemented CPS.

Each supervisor in the hierarchy monitors its own supervisor/worker processes and
when one of them fail, it tries to restart them. When a supervisor cannot restart one
of its components or the component keeps on failing, the supervisor terminates all
of the components underneath it and then terminates itself. The supervisor that is
monitoring this failed supervisor will then attempt to restart the failed supervisor
and if it fails, the supervisor above it will continue the recovery attempt until the
system can be recovered or fails completely.

When the system is started, the CPS Supervisor will be the only component added
to the system and it has the responsibility of starting the four other supervisors
underneath it for DOHA, the BASE shells, the loggers and the UIs. Each of these
supervisors have their own components that they need to start and monitor. The
BASE Supervisor starts and monitors the existing BASE holon’s Shell Supervisors,
and each Shell Supervisor starts and monitors its internal supervisors which start
and monitor their components (figure 11). The shut-down operation happens in the
exact opposite order than that of the start-up operation, thus from the bottom up.

4.3 Department of Holon Affairs

DOHA acts as the BASE architecture’s service directory (or yellow pages
directory) facilitator. Even though Sparrow (2021) did not write about DOHA, he
came up with the idea and developed the first code for it. The author of this thesis
took the first Erlang code of DOHA to further develop DOHA’s architecture. When
a holon can provide one or more services, its BASE shell must register these
services with DOHA. This enables other holons to search for a service in DOHA
and DOHA will give them a list of all holons that can provide the requested service.

A secondary purpose of DOHA, added in this thesis, is to provide a convenient way
to know which holons were in the system before it shut down. After a system restart,
the list of holons found in DOHA are restarted. DOHA does, however, not help to

Stellenbosch University https://scholar.sun.ac.za

26

configure the system in its last known state, since the holarchy will self-assemble,
based on the relational data stored in the various holons storages.

4.4 Loggers

In order to diagnose a CPS implemented with the BASE architecture, three classes
of data or events need to be logged, namely: errors, system information and holon
interactions. Errors could include mistakes in developers’ code, networking errors
or hardware failures. System information could include metrics like CPU, Random
Access Memory (RAM) usage and storage usage, and the time it takes to complete
certain actions, e.g. the start-up time of the system after power failures or the time
it takes to add a new holon in the system. Holon interactions are communications
between holons, which in the BASE architecture is service-oriented.

The error, system and holon interactions loggers are added to the BASE
architecture’s platform management components to improve the platform’s
diagnosability. The error logger can help platform managers diagnose faults in the
platform or the hardware it is using, while the system logger can be used to track
the load on the system and to measure its performance in different scenarios.

The service-oriented interactions between holons, recorded by the holon
interactions logger aims to help developers diagnose when and why certain
interactions between holons (like a cancelled contract) did or did not occur. The
functionality of the holon interactions logger is similar to that of the Sniffer agent
provided by the Java Agent Development framework (Bellifemine, Caire &
Greenwood, 2007). Figure 10 shows the holon interactions logger developed as part
of this thesis’ generic implementations. In this logger, sequence diagrams are used
to show the type of messages exchanged between two or more holons.

Figure 10: Holon interactions shown on a UI

Stellenbosch University https://scholar.sun.ac.za

27

4.5 User Interfaces

Users of a BASE architecture implemented CPS typically need to add, remove or
change BASE shells, schedule new activities, monitor activity execution and
perform diagnostics. Higher-level stakeholders will also require the CPS to be
transparent to aid their decision making and planning. Thus, UIs are required as
platform components that can provide the following functionalities:

• Display the active holons based on some holon search criteria e.g. holon
type/services: This functionality requires that users of the system be able to
specify some search criteria and the interface’s back-end then be able to
find all holons in the system that satisfy this criteria and return this to the
interface’s front-end. The front-end should then display these holons in an
easy-to-understand way so that users can clearly identify the different
holons and possibly see other high-level information about each holon like
their most important attributes.

• Allow the users to see more detail about each holon: This function entails
that users of the system should be able to look through the Attributes,
Schedule, Execution (including the SBB), and Biography of each holon.
Holons will have many different types of activities and attributes and to
make the finding of specific activities or attributes more convenient, users
should be able to filter these using search criteria like activity/attribute
types or categories.

• Allow users to scale the system: This functionality should allow users to
add and remove holons in the existing system, while it is running. When a
user wants to add a new holon, the front-end should accept input parameters
describing the new holon, like its ID, type, plugins etc. and communicate
this to the interface’s back-end. In the back-end the supervisor of the new
holon’s BASE shell should be added under the BASE Supervisor. The new
BASE shell’s supervisor will initiate the creation of the rest of the BASE
shell. To remove holons, the functionality of finding existing holons in the
system should be extended so that users can select one or more of the
existing holons and indicate that they should be removed.

• Allow the managers or users to reconfigure existing holons: The users
should be able to add and remove plugins in existing holons’ BASE shells,
as well as edit these holons’ attributes and scheduled activities through an
intuitive interface.

Stellenbosch University https://scholar.sun.ac.za

28

5 The refined BASE architecture
adminstration shell

This chapter gives an overview of the refined BASE shell. This includes introducing
new core components, explaining the changes made to the existing core
components and showing how independence between BASE shells were realised.
The refinements made to plugin-shell interfacing and categories used to group
similar activities and attributes in BASE shells are also discussed.

5.1 Overview

Figure 11 shows the structure of a single BASE shell. At the top of the tree structure
is a Shell Supervisor, which supervises a Coordinator (discussed in section 5.2) and
six other supervisors: a supervisor for each of the core components and one
supervisor for the plugins.

The Communication Manager only has a reception process, unlike the four data
repository components, which each have a reception process and at least one storage
process. The Schedule component also has a Schedule Gate (discussed in section
5.3) and the Execution component has a SBB and a list of Activity Handlers
(discussed in section 5.4). Since the core components of the BASE shell were
already discussed in section 2.4, this chapter will not reintroduce these components,
but rather discuss the changes that were made to some of the components and
introduce the Coordinator and Schedule Gate.

Figure 11: Details of the refined BASE architecture digital administration

shell

Stellenbosch University https://scholar.sun.ac.za

29

5.2 Coordinator

The Coordinator was added to the BASE shell’s core components, mainly to
address the resilience, and in effect the reliability, required in BASE shells. Core
components and plugins in a BASE shell are restarted by their supervisors when
they fail (as explained in section 4.2). When a component (core component or
plugin) is restarted, the Coordinator shares the addresses of its BASE shell’s
existing components with the restarted component. It also informs existing
components about the updated address of the restarted component. To enable this,
all core components and plugins register themselves with their BASE shell’s
Coordinator after being initialised. This allows the Coordinator to keep the updated
addresses of its BASE shell’s core components and plugins. To facilitate the
registrations of a BASE shell’s core components and plugins, the Coordinator
always needs to be the first component started up underneath its BASE shell’s
supervisor. When a BASE shell’s Coordinator fails, the entire BASE shell must be
restarted, which is why the Coordinator must be as robust as possible.

Coordinators also enhance decentralisation in the BASE architecture in two ways.
Firstly, each Coordinator provides the coordination needed to split each BASE shell
into different core components and plugins, which can still communicate with each
other, even after some of these get restarted. Secondly, each Coordinator ensures
their BASE shell is independent from other BASE shells. Coordinators enable this
by providing their BASE shell’s core components and plugins with each other’s
addresses. This gives a BASE shell’s core components and plugins the ability to
reject any communication from components that are not part of their BASE shell,
since they have a list of addresses of their BASE shell’s components. As
recommended by Sparrow (2021), the Communication Managers are the only
components of BASE shells that communicate with components outside of their
BASE shell.

The two main responsibilities of the Coordinator can be summarised as follows:

• Sharing the addresses of its BASE shell’s core components and plugins
with each other after their initialisation.

• Sharing the address of a restarted core component or plugin (that was
restarted by a supervisor because of failure) with the rest of its BASE shell’s
core components and plugins so that they do not try to communicate with
the terminated process, but with the restarted process.

Appendix A explains the Coordinator’s start-up procedure and highlights the most
important variables that all Coordinators must keep in their state.

Stellenbosch University https://scholar.sun.ac.za

30

5.3 Schedule Gate

The Schedule Gate was added to the Schedule component to inform EPs when
activities, for which they are registered for, are due to start. Consequently, EPs do
not have to continually check through the Schedule’s storage for activities that need
to be started. The Schedule Reception informs the Schedule Gate about the schedule
times of newly scheduled activities. The Schedule Gate uses the list of schedule
times to determine when it needs to look in the Schedule for activities are due to
start, instead of constantly checking through the Schedule.

The Schedule Reception also shares the addresses of EPs that register for activity
types (this registration is discussed in section 5.6.1) with the Schedule Gate. When
the Schedule Gate then finds an activity that must be started, it can use the activity’s
type to determine which EP must be informed.

5.4 Changes to the existing BASE core components

This section discusses the four most notable changes to the core components of the
BASE architecture. The first of these changes is that in the extended BASE
architecture, activity’s data never have to leave the data repositories of their BASE
shell’s core components. Plugins only create activities (SPs), start activities (EPs),
edit the stage 2 data in active activities (EPs), finish activities (EPs) and add stage
3 data to activities (RPs). The progression of an activity from one data repository
component to the next (Schedule to Execution or Execution to Biography) is
handled by the core components. For example, when an activity needs to be
completed, the activity does not need to be removed from Execution by an RP, to
be moved into the Biography. The Execution will will share this activity with the
Biography and only when the Biography has successfully received the activity will
the Execution remove it from its own storage.

The next change is in the Activity Handlers, which have been refined and
generalised for all types of resources, not only humans. Activity Handlers are the
gateways between EPs and the Execution component and each activity in the
Execution component must have an Activity Handler. The details of how Activity
Handlers are used are shown in figures 13, 14 and 15 in section 5.6.1. The
functionalities of each Activity Handler can be summed up as follows:

• It stores the most up to date data about an activity in its state so that it can
quickly share this data with the relevant EP without needing to go into the
Execution component’s storage.

• It receives updates about an activity’s stage 2 data from EPs and uses this
to update the activity in the Execution component’s storage.

Stellenbosch University https://scholar.sun.ac.za

31

• When an EP indicates that it is done executing an activity, the activity’s
Activity Handler informs the Execution component that an activity is
completed. The Execution component then sends the activity to the
Biography and removes it from its own storage.

Another notable change is in the Execution component, where the Observer,
Informer and Execution Bench components have been removed. Observation of a
holon’s data and getting information to a physical part of a holon, is discussed in
chapter 7. The Execution Bench is considered redundant, since the responsibility of
moving activities from Execution to Biography is no longer that of RPs (as
explained above).

The last notable change to the core components is in the Communication Manager.
Sparrow (2021) stated that it is the responsibility of the Communication Manager
to consolidate different communication protocols, but it has been decided to let the
Communication Manager only dictate the high-level service-oriented interactions
(discussed in chapter 6) and not the protocols or ontologies of the messages. These
are handled in the plugins; otherwise the Communication Manager would require
frequent adaptation to support new protocols or ontologies.

5.5 BASE shell component privacy

All holons in the CPS need to be independent from each other. This is facilitated by
prohibiting communication between the internal component processes of different
holons’ BASE shells – only allowing communication between BASE shells to occur
through the respective Communication Manager components.

The core component processes permitted to communicate with each other within a
BASE shell can also be restricted, as shown in table 2. These permissions can be
enforced by letting each process store, in its state, the addresses of the component
processes that are permitted to communicate with it. The Coordinator and
Communication Manager Reception of a BASE shell can receive messages from
any core component process or plugin that is part of their BASE shell.

The Schedule Reception, Execution Reception, Biography Reception and
Attributes Reception processes allow all plugins to communicate with them,
however it is recommended that plugins only communicate with the reception
processes of the data repository components to which they are adjacent in figure 4
(e.g. EPs should preferably only communicate with Schedule and Execution
reception processes).

The storage processes of the four data repository core components can only receive
messages from their core components’ reception processes, e.g. the Biography
Storage can only receive messages from the Biography Reception. This ensures
only one point of entry into the different storage processes, which simplifies the
management of storage permissions and the tracking of data changes.

Stellenbosch University https://scholar.sun.ac.za

32

Table 2: Intra-shell communication permissions

5.6 Plugin configuration

Plugins provide the case specific functionality required in holons’ BASE shells.
The following section discusses how plugins interact with their BASE shells’ core
components. It also briefly discusses the concept of plugin configuration files.

5.6.1 Plugin-shell interfacing

In the original BASE architecture, plugins had to poll the receptions of their BASE
shells’ core components if they wanted to know if there are new activities or
changed attributes. This made plugin development slightly more complex, and the
plugin processes were also less efficient. As such, functionality is added in all core
component receptions to allow plugins to register themselves for all activities or
attributes of a certain type. Each core component reception of a BASE shell informs
a registered plugin if there are new activities or changed attributes of the type that
the plugin registered for.

Figure 12 shows how the different plugins can register for different
activity/attribute types. In the figure, two attribute types are indicated as AT1 and

Base shell core

component process

Other components in the same BASE shell as this component

that are permitted to message/call it

Coordinator All core component processes and plugins

Communication

Manager Reception

All core component processes and plugins

Schedule Reception All plugins and Schedule Gate

Schedule Gate Schedule Reception

Execution Reception Schedule Reception, Activity Handlers and all plugins

Activity Handler Execution Reception and the single EP that started the activity

Biography Reception Execution Reception and all plugins

Attributes Reception All plugins

Storage The reception process of this component (e.g. the Biography

Storage can only receive messages from Biography Reception)

Stellenbosch University https://scholar.sun.ac.za

33

AT2 and three activity types as T1, T2 and T3. The Attributes and Biography
Receptions allow more than one plugin to register for the same attribute/activity
type; however, the Schedule and Execution Receptions only allow one plugin per
activity type. The reason for permitting only one EP per activity type is because
only one EP is allowed to start an activity and update its stage 2 data in Execution.
This prevents clashes between EPs over the control of an activity’s execution. The
reason for permitting only one RP per activity type is to prevent two RPs from
overriding each other’s changes to an activity’s stage 3 data. APs can register for
the same activity type, because the activities in Biography are not affected by APs
analysis. SPs can register for the same attribute types because Attributes are not
affected by SPs that create new activities.

Figure 12: Plugin registrations

Within a BASE shell, plugins must interact with their core components to:

• move activities through their three different stages;

• update attributes based on completed activities’ data; and

• analyse changed attributes to potentially schedule other activities.

To support the explanation of these interactions, an example of a robot with a drill
tool is considered. The robot in this example can drill more than one part at a time
and needs maintenance after a certain period of operation. The interactions between
the plugins and core components that are described in this example are, however,
applicable to any holon’s BASE shell.

Figure 13 indicates the interactions between the core components and an EP in the
drill robot’s BASE shell, required to start a scheduled activity. Note that figure 13a

Stellenbosch University https://scholar.sun.ac.za

34

and 13b represent the same BASE shell. In this scenario, Drill EP is registered for
activities of type “Drill”. The Schedule Gate informs Drill EP about “Act1123
(Drill)” that is due to start (arrow 1, figure 13a). The Schedule Gate does not start
the activity, because EPs have the responsibility of starting an activity (this gives
plugins control over the timing of activity execution). Drill EP messages Schedule
(arrow 2, figure 13a) to start the activity. Schedule sends “Act1123 (Drill)” to
Execution and asks it to start an Activity Handler for it (arrow 3, figure 13a). After
storing the activity (reference box 4, figure 13b) and starting an Activity Handler
for it, Execution replies to Schedule with the Activity Handler’s address (arrow 5,
figure 13b). Schedule removes the activity in its storage (reference box 6, figure
13b) and sends Drill EP the Activity Handler’s address (arrow 7, figure 13b). Drill
EP requests the activity data from the Activity Handler (arrow 8, fogire 13b) and
starts the execution of the activity.

(a) (b)

Figure 13: Schedule Gate informing an EP to start an activity (a) and an

activity handler being created after the EP started the activity (b)

Figure 14 shows the interactions by which the Drill EP updates the stage 2 data of
“Act1123 (Drill)”, completes the activity’s execution and adds post-execution data
to it via an RP. Drill EP sends new stage 2 data to the Activity Handler of “Act1123
(Drill)” (arrow 1, figure 14a) and this Activity Handler updates the activity in its
own state and in Execution’s storage (arrow 2, figure 14a). Drill EP does this every
time it wants to update execution information about the activity that should not get
lost if the system were to shut down while the activity was in execution. When Drill
EP completes the execution of the activity, it informs the activity’s Activity Handler
(arrow 3, figure 14a) and the Activity Handler forwards this message to Execution
(arrow 4, figure 14a). The Activity Handler subsequently terminates.

Execution sends the activity to the Biography (arrow 5, figure 14a), which, after
storing the activity (reference 6, figure 14b), replies to Execution (arrow 7, figure
14b) that it has stored the activity. Before removing the activity from its storage,
Execution shares the activity with Drill RP (arrow 8, figure 14b), because Drill RP
is registered for activities of type “Drill”. Drill RP reflects on the activity (finds
post-execution data related to it, e.g. quality control) and updates the activity’s stage

Stellenbosch University https://scholar.sun.ac.za

35

3 data in Biography (arrow 9, figure 14b). This reflection (arrow 9, figure 14b) can
happen any time in the future, and does not have to be directly after the activity has
been shared with the RP. Note that the activity would still have been in the
Biography if Drill RP did not exist, and that Drill RP only updates the existing
activity’s stage 3 data.

(a) (b)

Figure 14: Updating stage 2 data and finishing an activity (a), and adding

post-execution data to it (b)

In figure 15, Biography informs Drill AP about the completed “Drill” activity
(arrow 1), since Drill AP is registered for activities of type “Drill”. Drill AP updates
the attribute named “Drill time since last maintenance”, by calculating the drilling
time from the “Act1123 (Drill)” activity data and adding it to the attribute’s current
value (arrow 2). The Attributes component informs Drill SP about the updated
attribute (arrow 3), as Drill SP is registered for attributes of type “Drill”. Drill SP
executes an algorithm that determines that this holon’s physical part needs
maintenance and adds a maintenance activity in Schedule (arrow 4).

Figure 15: Updating attributes and scheduling new activities

5.6.2 Plugin configuration file

The plugin configuration file is used by a BASE shell’s Plugin Supervisor to start
up a BASE shell’s plugins. The file must contain the list of plugins to start, where
each entry in the list states the file/module name (and the directory, if necessary) of
the plugin and the plugin’s start-up arguments. Start-up arguments can be used

Stellenbosch University https://scholar.sun.ac.za

36

when one plugin is used for many holons, but the plugin’s functionalities can be
slightly reconfigured by changing arguments sent to the plugin when it is started
up. Each BASE shell must have a plugin configuration file and one file can be
shared by many BASE shells. Figure 16 shows a snippet of a plugin configuration
file used for all sheep holons in the case study.

Figure 16: Plugin configuration file for all sheep holons

5.7 Activity types

Activity types are used to group activities of the same type, for example “Drill”,
“Grind”, “Transport”, etc. Multiple activities can have the same type, as long as
their identifiers are different. Activity identifiers (activity IDs) are what make
activities unique within a holon. The responsibility of ensuring activities have
unique IDs has been assigned to the Schedule. When a SP wants to create an activity
in the Schedule it only needs to specify the activity type, and the Schedule will
ensure that the activity has a unique ID.

There can be an infinite number of activity types within each holon and, to reduce
complexity, these are grouped into a finite list of categories. The following three
categories have been identified:

• Service Provision Activity (SPA)

• Resource Action Activity (RAA)

• Resource Data Acquisition Activity (RDAA)

Each of these activity categories are discussed in more detail in sections 5.7.1 and
5.7.2 and the summaries of their stage 1 and stage 2 data structures are shown in
appendix B.

5.7.1 Service Provision Activities and Resource Action Activities

Any service that a holon provides is always encapsulated in an SPA. SPAs have a
very specific data structure in their stage 1 and stage 2 data as explained in section
6.3. RAAs are activities used to address actions required within a resource, and the

Stellenbosch University https://scholar.sun.ac.za

37

most common examples of RAAs are maintenance and repair activities. An
example from the case study implementation, discussed in section 9.5.2, was the
“Relocate (RAA)” RAA, which was used when a sheep had to be relocated to
another camp. In most cases, RAAs will require other holons’ services to execute
the required action, in which case their stage 1 data structure contains the “Service
Contract” and their stage 2 data structure is the same as that of SPAs. These stage
1 and stage 2 data structures of RAAs are summarised in appendix B.

Figure 17 shows how RAAs and SPAs differ. In this figure the service requester
requires maintenance, which is why it has “Maintenance (RAA)” on its schedule.
Its Maintenance EP starts this RAA (arrow 1) and requests a maintenance service
from an appropriate service provider (arrow 2). The service provider accepts the
service request and puts “Provide maintenance (SPA)” on its schedule (arrow 3).
This SPA contains all the information required for one of the service provider’s EPs
to drive this service provision (arrow 4). The service requester’s RAA will remain
in its Execution component until a message is received from the service provider,
indicating it has finished the maintenance, at which point the service provider will
also finish its SPA (moving it into the Biography). Sometimes RAAs only consist
of a resource doing something internally, in which case no service provider is
required.

Figure 17: RAA vs SPA

5.7.2 Resource Data Acquisition Activities

RDAAs are used to receive and log observed data about a holon from various
Observer holons (as described in section 7.4.2). An RDAA is scheduled in a holon’s
BASE shell for each Observer holon in the system that can provide data to this
holon. RDAAs have a specific stage 1 and stage 2 data structure, which can be seen
in appendix B. The stage 1 data has only one field, namely the “Service Contract”
(discussed in section 6.3) with the Observer holon. When new data is received from
an Observer, this data is added to the stage 2 data of the RDAA and the RDAA is
moved into the Biography, but it is not removed from Execution. This means the
same RDAA is used to continuously receive observed data from an Observer,
without having to schedule and start a new RDAA every time data has been

Stellenbosch University https://scholar.sun.ac.za

38

received. Figure 18 shows an example of how RDAAs (in this case for observed
temperature data) are saved to the Biography as new data is received from an
Observer, while not removing the original RDAA from Execution.

Figure 18: RDAA used to observe temperature data recorded by a

temperature observer holon

To ensure previous RDAA entries are not overwritten, the activity ID of the RDAA
being moved to the Biography is changed slightly for each new entry into the
Biography, as shown in figure 18. When the Observer holon, for which some
RDAA was created, is removed from the system or it stops its service provision,
the RDAA is finished and the reason for finishing it is also added to its stage 2 data
before moving it into the Biography.

5.8 Attribute types

Sparrow (2021) split Attributes into two types, namely Personal and Contextual.
This thesis further divided the Contextual type into three specific types: Relational,
Management and Condition Attributes. Relational Attributes represent a holon’s
relations with other holons in the system and have no value outside of the system.
Management Attributes are used to dictate certain behaviours of resources and the
values of these attributes are set by users via the UIs. For example, a drilling
machine’s operating speed or a human’s maximum continuous hours of work
allowed, can be Management Attributes. Management Attributes are very
dependent on the user requirements and are controlled by the users of the system.

Condition Attributes are similar to State Variables, in the sense that they represent
the state of the holon. State Variables contain the current state information about a
holon (like its last recorded location or temperature) and are updated by EPs, while
Condition Attributes can contain anything related to a holon’s past state and are
updated by APs. The most common State Attributes are statistics derived from
RDAAs, SPAs and RAAs, e.g. in this thesis’ case study, each sheep’s average,
maximum and minimum amount eaten per day was part of its Condition Attributes.

Stellenbosch University https://scholar.sun.ac.za

39

6 Cooperation
One of the most important, but also most complex, characteristics that the BASE
architecture should enable is cooperation between holons. This cooperation can be
challenging to manage because of the different types of holons integrated into a
BASE architecture implemented CPS. A common approach to facilitate this
cooperation is by using service-orientated interactions, which will allow each holon
to remain independent yet be available for use by other holons. This chapter
presents an overview of service-orientated interactions within the extended BASE
architecture. An explanation of the architecture’s Service Descriptions and service

discovery – the way in which services are advertised and utilised – is given.
Thereafter, the data structures of SPAs (introduced in section 5.7.1) are described.
Furthermore, two standard plugins which enable standardised service-oriented
interactions between BASE shells are introduced and lastly a brief overview of
nested services is given.

6.1 Business Cards and Service Descriptions

Each holon has a Business Card (BC) which is stored in DOHA and is used to
advertise the holon’s services to other holons. A holon’s BC represents who they
are (Resource ID), what they are (Resource Type), where they are (BASE shell
Address) and what they can do (Services). The Services field contains a hash table
(data structure with key-value pairs) with the keys and values being Service Types
and Service Descriptions, respectively. When a service requester needs a service
provider, it provides the required Service Type to DOHA and DOHA will return all
holons that can provide the requested Service Type. The service requester can then
filter through all the potential service providers using their Service Descriptions.
The Service Description contains more details about a holon’s service.

Figure 19 shows an example of two holons’ services. Holon A has two Service
Types, namely “Drill” and “Mill”, while holon B only has a “Drill” Service Type.
In figure 19 it can be seen that the Service Descriptions of the two holons’ “Drill”
services have the same keys (“Maximum RPM” and “Cost (R) per minute”), but
different values for each key. This is because in a BASE architecture implemented
CPS, it is required that the Service Descriptions of services of the same Service
Type, must contain the same data structure. The values used to populate these data
structures can differ. This allows a service requester to objectively compare two
holons’ services (of the same Service Type) to aid the service requester’s service
filtering algorithms used to filter through service providers before sending out Call
For Proposals (CFPs).

Stellenbosch University https://scholar.sun.ac.za

40

Figure 19: Data structures of two holons’ services, each with a "Drill"
Service Type

6.2 Service discovery

Having a service directory is one of the fundamental requirements of any SoA.
DOHA was introduced in section 4.3 as the BASE architecture’s service directory.
DOHA contains a database that stores the BCs of all the holons in the CPS. When
holons are created, removed or their details change, DOHA is informed so that it
can update this database and inform other holons about the changes. When a holon
needs to find other holons, it can search for them in DOHA by their name, type or
by one of the holon’s Service Types.

Holons can also register for specific service types so that they are informed by
DOHA when new service providers become available – as is shown in figure 20. It
is important to note that it is one of the plugins of the holon’s BASE shell that does
this registration through its BASE shell’s Communication Manager (arrows 1 and
2). When a new holon’s BC is added to DOHA (arrow 4), DOHA informs all holons
that are registered for the new holon’s Service Types, about the new holon
(arrow 5). The registered holons’ Communication Managers forward this message
to their plugins that initiated the registrations (arrow 6).

Figure 20: Service discovery

Stellenbosch University https://scholar.sun.ac.za

41

All holons’ Communication Managers are the same and thus services cannot be
programmed into the Communication Manager. Each holon’s Communication
Manager gets its holon’s services from the Service Provision SP (arrow 3), adds
this to the holon’s BC and then registers the holon with DOHA (arrow 4). Service
provision SPs are discussed in section 6.4.

6.3 Service Provision Activity data structures

SPAs were introduced in section 5.7.1 as activities that encapsulate a service being
provided by a holon. The stage 1 data of SPAs contain the “Service Contract”, and
the stage 2 data contain the “Pending Proposals”, “Proposals”, “Sub-Contracts”
and “Results”. A visual representation of SPAs’ data structures can be found in
appendix B, to aid the explanations of the data fields in the following paragraphs.

“Service Contracts” are used by service requesters and providers to ensure both
parties are aware of, and agree to, the details of the service being provided. These
contracts contain the “requester BC”, “provider BC”, “delivery address”, “service
type”, “request details” and “inform template”. The “requester BC” allows the
service provider to know to which holon it is providing a service and the “provider

BC” allows the requester to know which holon is providing the service. These two
BCs enable the requester and provider holon to communicate with each other during
the execution of the service. The “delivery address” is used by the requester’s
Communication Manager to know to which of its plugins an inform message should
be delivered and is populated the first time that a plugin sends CFPs (discussed in
section 6.4.1) to acquire a new service. The “service type” simply contains the
Service Type of the service being provided.

The “request details” are constructed by the requester to specify any details about
the service it requires and are used by the service provider to fulfil the service
requirements of the requester. The “request details” will differ for each Service
Type, but all service providers with the same Service Type should be able to process
the same “request details”. In effect, a requester does not need to change the
“request details” for every unique service provider and only needs to know what
details must be provided for every Service Type. The “inform template” specifies
the format in which the service requester is expecting inform messages from the
service provider. This allows the service provider to reject the service request if this
template does not match the format and structure that it can deliver its inform

messages in.

“Pending Proposals”, “Proposals” and “Sub-Contracts” will only be created if a
service provider needs other service providers for some service it is providing – the
concept of nested services is explained in section 6.5. “Pending Proposals” contain
the details of CFPs that have been sent out, but for which the proposals are still
pending. “Proposals” contain the details of the proposals that have been received
from service providers. “Sub-Contracts” contain the “Service Contracts” of the
accepted proposals. Note that for SPAs, “Pending Proposals”, “Proposals” and

Stellenbosch University https://scholar.sun.ac.za

42

“Sub-Contracts” are all part of the stage 2 data of the service provider, not the
service requester. The value of the “Result” field can be either “Pending”,
“Success”, {“Failed”, Reason} or {“Cancelled”, Reason}, where “Reason”
contains the details of the failure or cancellation. A service cancellation occurs
when the holon that requested the service, cancels it before it is completed. The
fields explained in this paragraph are also applicable to the stage 2 data of RAAs.

6.4 Plugins for standardised service interactions

The BASE architecture integrates the CNP of Smith (1980) for all of its service-
oriented interactions between holons. The CNP allows service requesters
(auctioneers) to negotiate with service providers (bidders) in order to select the best
service provider and utilise the services they promised. Appendix C gives a more
in-depth overview of the CNP, in the context of holonic systems. This section will
describe how the BASE architecture’s service provision plugins interact with their
BASE shell’s core components to cooperate with other holons.

6.4.1 Call For Proposals and service requests

Figure 21 shows the various intra- and inter-holon interactions that occur during the
first phase of all service-oriented interactions. When a holon’s plugin (in this figure
an EP, but it can be a plugin from any of the four categories) needs a service of
some Service Type, the plugin first acquires from DOHA all the available service
providers that can provide this Service Type. The plugin then requests its
Communication Manager (arrow 1) to send a CFP to all the potential service
providers (arrow 2). All the service providers’ Communication Managers forward
the request to their Service Provision SP (arrow 3).

Figure 21: Inter- and intra-holon interactions for selecting a service provision

holon and requesting its services

Each Service Provision SP decides between replying with a proposal (arrows 4 and
5) or refusing to make any proposal. All the proposals received by the service

Stellenbosch University https://scholar.sun.ac.za

43

requesting holon’s Communication Manager are forwarded to the plugin that
initially sent out the CFP (arrow 6). After selecting a service provider, this plugin
sends an accept proposal message via its Communication Manager (arrow 7) to the
service provision holon (arrow 8). The service provision holon’s Communication
Manager forwards the accept message to its Service Provision SP (arrow 9), which
schedules the SPA, indicated as “SERV-PROV Activity” (arrow 10).

The proposal process can be bypassed if a holon does not need to analyse many
proposals – i.e. when a service request is only sent to a single holon. In this scenario,
a service request message is sent to the service provision holon (arrows 1, 2 and 3)
and if the holon accepts the request it schedules the SPA (arrow 10) and replies to
confirm acceptance (arrows 4, 5 and 6).

6.4.2 Service Provision Activity initiation

Figure 22 shows the various intra-holon interactions that occur when a service
provision holon starts an SPA on its schedule. When an SPA (“SERV-PROV
Activity” in figure 22) is due to start, the Service Provision EP is informed by its
Schedule (arrow 1), after which it is the responsibility of the Service Provision EP
to start the activity (arrow 2). When the Schedule receives a start message for
“SERV-PROV Activity”, it sends the activity to the Execution (arrow 3) and when
Execution acknowledges that it has received and saved the activity, Schedule
removes the activity from its list of scheduled activities. The Service Provision EP
can update the stage 2 data of this activity in Execution, while it is executing the
service (arrow 4).

Figure 22: Starting service provision activity

Stellenbosch University https://scholar.sun.ac.za

44

6.4.3 Service Provision Activity completion

Figure 23 shows the intra- and inter-holon interactions that occur when inform
messages are sent from a service provider during its service execution, and when
the service has been finished or has failed. While executing a service, the service
provision holon’s Service Provision EP can send inform messages via its
Communication Manager (arrow 1) to the service requesting holon (arrow 2). The
service requesting holon’s Communication Manager forwards these inform
messages to the plugin that initially made the service request (arrow 3). Although
not indicated in figure 23, these inform messages can also be sent from the service
requesting holon to the service provision holon.

When the service provider has finished the service or the service has failed, an
inform-done or failure message, respectively, is sent through the Communication
Manager to the service requesting holon (arrows 4 and 5). The service requesting
holon’s Communication Manager forwards the message to the plugin that initially
made the service request (arrow 6). In parallel with both of the scenarios mentioned
above, the stage 2 data of the SPA can be updated in the Execution component
(arrow 4 in figure 22). After the inform-done or failure message is sent, the Service
provision EP informs the Execution component that the activity is completed (arrow
7). The Execution component then sends the activity to the Biography component
and waits for an acknowledge message from the Biography component before
removing the activity from its storage (arrow 8).

Figure 23: Inform, inform-done and failure

Stellenbosch University https://scholar.sun.ac.za

45

6.5 Nested services

In the BASE architecture, each service is provided by a single holon. If that holon
needs other holons to assist with the service provision, it will need to request their
services. This can happen in both the scheduling and execution stages of the service
and follows the same sequence of iterations described in sections 6.4.1. to 6.4.3.
Figure 24 shows how nested services are supported in the BASE architecture. In
this figure a hypothetical situation is illustrated where service provision holons
(holons B & C) need services from other service provision holons (holons C & D)
in order to execute the services they promised to service requesting holons (holon
A & B). When a service provision holon (e.g. Holon B) receives an inform message
from another service provision holon (e.g. Holon C), this might trigger some action
and possibly another inform message to its client (e.g. Holon A).

Figure 24: Nested Services

Stellenbosch University https://scholar.sun.ac.za

46

7 Cyber-physical interfacing

The CPS concept implies the presence of an interface between the physical and
cyber elements of a system. This chapter will discuss the extensions that were made
to the BASE architecture to enable cyber-physical interfacing with minimal custom
development.

7.1 Overview

Devices like temperature sensors, accelerometers, location sensors, loudspeakers,
computer monitors, augmented or virtual reality systems, touch screen interfaces,
and WhatsApp do not have any other functionalities other than enabling the digital
world to communicate with the physical and/or vice versa. These devices can be
represented as holons and are henceforth referred to as Interface Holons.

The extended BASE architecture has two standard types of Interface Holons,
namely Observers and Informers. These holons have the responsibility of enabling
communication between other holons’ BASE shells and physical parts. When a
holon’s BASE shell needs to exchange data with its physical part, it does not need
to manage the cyber-physical interfacing connections and communications and can
simply make use of an available Interface Holon.

Observers enable data flow from holons’ physical parts to their BASE shells.
Common examples of Observers are sensors that can measure properties like
temperature, location, heart rate, acceleration, torque, speed, etc. Other holons’
BASE shells can create Service Contracts with Observers so that these Observers
will share any new observed data about these holons’ physical parts, with their
BASE shells. Informers enable holons’ BASE shells to send messages to their
physical parts. Examples of Informers are loudspeakers, screens, warning lights and
vibrating devices. Some Interface Holons are both Observers and Informers. The
most common examples are touch screen devices like tablets and phones, as well
as newer technologies like Virtual Reality (VR) and Augmented Reality (AR)
glasses. Observers and Informers have a predefined internal data, functional and
communication structure as discussed in section 7.2 – 7.5.

The use of Interface Holons to enable data flow between the physical and cyber
worlds is illustrated in figure 25. This figure shows two human workers and five
cyber-physical interfaces, each with their own BASE shell. Sparrow (2021)
categorized cyber-physical interfaces into two classes: personal and environmental;
where a personal interface is dedicated to a single resource and an environmental
interface can be used by more than one resource. The factory shown in figure 25
has three environmental interfaces (a camera, a speaker and WhatsApp) and each
worker has a personal interface, which measures their heart rate. The camera and
two heart rate sensors are examples of Observers, while the speaker is an example
of an Informer. The WhatsApp interface is an example of an Observer and an

Stellenbosch University https://scholar.sun.ac.za

47

Informer combined, since it allows information to flow in both directions. An
interesting part to note about the WhatsApp interface is that although each worker
has their own phone, the physical part of the WhatsApp interface is shown as one
resource. This is because the BASE shell of the WhatsApp interface does not
individually communicate with each phone, but uses a third-party service, like
Twilio (Twilio, 2021), to communicate with the different phones.

Figure 25: Use of Interface Holons in the BASE Architecture

7.2 Interface plugins

Every Interface Holon needs two standard plugins, namely a Service Provision SP
(introduced in section 6.4) and an Observer EP or Informer EP (depending on the
interface type), which are both built on top of the Service Provision EP. The
Observer EP and Informer EP are generic for all Observers and Informers. The
interface specifics are contained in the Interface Module, which is simply a
container of program code. The Interface Module contains the code required to start
the custom Interface Process and is also used by the Observer EP to verify
Identifiers (discussed in section 7.3.2). When an Interface Holon is initialised, its
Observer/Informer EP calls a function in its holon’s Interface Module to start the
Interface Process, where this process is a new thread that starts and manages the
connection with the holon’s physical device. This Interface Process must be able to
send and/or receive messages to and from the Interface EP that started it. Each

Stellenbosch University https://scholar.sun.ac.za

48

Observer/Informer EP needs to monitor its holon’s Interface Process and restart it
if it fails.

When new data has been observed about another holon by an Observer’s physical
device, this physical device sends the data to its BASE shell’s Interface Process.
The Interface Process forwards this new data to its Observer EP and the Observer
EP shares the new data with the relevant holon. When another holon requests an
“Inform” service from an Informer, the Informer EP sends a message to its Interface
Process to execute the service. This Interface Process then messages its physical
device with the custom details required to inform the physical part of the BASE
shell that requested the “Inform” service. The Interface Module of the case study’s
feeding sensor is shown in appendix D.

7.3 Interface Service Descriptions

7.3.1 Overview

Figure 26 shows, in JavaScript Object Notation (JSON) format, the standardised
Service Description structure for cyber-physical interfacing services.

Figure 26: Service Description data structure of cyber-physical interfacing

services

Observers and Informers have the same Service Description structure, except that
the Informer does not have a “Topics” field. The highest level of the Service
Description has two fields: “Resources” and “Interface description”. The “Interface
description” field can be used by developers to add any descriptive information
about the interface. The “Resources” field contains all the resource types for which
interfacing is possible, and each resource type field contains three fields, namely:

Service Description =
{
“Resources”:{
 “Resource type 1”:Interfacing Details,
 “Resource type2”: Interfacing Details,
 ...
 },
 “Interface description”: Anything
}

Interfacing Details = {
“Available identifiers”:”all” OR [“Identifier1”,”Identifier2”...],
“Identifier type”:”ID” OR any other string,
“Topics”:{
 “Topic1”:{“Accuracy”:0-100,”Unit”:”kg”/”s”/etc.},
 “Topic2”:{ “Accuracy”:0-100,”Unit”:”kg”/”s”/etc.},
 ...
}

Stellenbosch University https://scholar.sun.ac.za

49

“Available identifiers”, “Identifier type” and “Topics”. Identifiers and Topics are
discussed in more detail in sections 7.3.2 and 7.3.3.

7.3.2 Identifiers

Identifiers are used by Interface Holons to distinguish between the different service
requesters (i.e. other holons) with which they interact. When using Informers,
holons do not need to specify an identifier – their ID will always be used, which the
Informer can find in their BC. One very important functionality of Informers is that
they prevent one holon’s BASE shell to communicate directly with another holon’s
physical part.

Like Informers, Observers can use a holon’s ID as Identifier, but Observers can also
use one of the holon’s attributes, e.g. in the case study the feeding sensor used the
Electronic Identification Number (EID), an attribute of each sheep. The type of
Identifier that an Interface Holon is able to use is specified in its “Identifier type”
field. Note that the identifier type can differ for the different type of resources that
an Observer can interface with. There are two ways in which a holon can specify
for which Identifier they are making a service request to an Observer:

• The holon can add an “Identifier” field to the request arguments of the
Service Contract with one of its attribute’s used as the value of this field.

• The holon can specify no Identifier in the Request Arguments, in which
case the Interface Holon will use the holon’s ID.

In both scenarios, the Observer will verify the Identifier by calling the
valid_identifier function in its Interface Module. Observers allow more than one
holon to use the same Identifier. For example, all the machines in a room can
request to observe the ambient temperature of the same room. The Identifier used,
might then be something similar to “Room ID”, which must be an attribute in all
the machines’ BASE shells. However, most of the time each Identifier is meant for
one holon.

When the “Available identifiers” field is equal to “all”, the Interface Holon can (but
will not necessarily) enable cyber-physical interfacing for all holons of some
resource type, as long as they provide a valid Identifier. When an “Available
identifiers” field is not equal to “all”, but is a list of identifiers, the Interface Holon
can only enable interfacing for the Identifiers specified, and will reject requests
from holons with Identifiers that are not in this list.

7.3.3 Topics

Topics are the names/descriptions of observed data, e.g. “Temperature”, “RPM”,
etc., and each Topic specifies the estimated accuracy and unit of the observed data
(as shown in figure 26). When making a request to an Observer, a holon can specify

Stellenbosch University https://scholar.sun.ac.za

50

which Topics’ data it wants to receive or not specify anything, in which case all of
the Topics’ data will be shared with the holon.

7.4 Inter- and intra-holon communications

After an Informer executed an “Inform” service, the Service Contract with the
requesting holon is completed. However, “Observe” Service Contracts are not
terminated after new observed data has been sent to a client holon, but remain active
while the Observer is active and the client has not cancelled the service. Sections
7.4.1 to 7.4.3 show the inter- and intra-holon interactions related to Observers and
Informers. The standard plugins, Interface Module and Interface Process used in
each of the interactions were introduced in section 7.2.

7.4.1 Interface initialisation

Figure 27 shows the interactions necessary to add a new Interface Holon to a CPS.
The initialisation of all Interface Holons follows the same procedure. The Interface
EP (Observer EP and Informer EP) calls the start_interface function in its holon’s
Interface Module (arrow 1). The Interface Module starts the Interface Process
(arrow 2) and returns the address of this process to the Interface EP (arrow 3), since
this EP needs to monitor the Interface Process to restart it if necessary. As
mentioned in section 7.2, the Interface Process is different for each Interface Holon
and will manage the connection with the holon’s physical device or with a gateway
to the device (arrow 4).

Figure 27: Interface Holon initialisation

Stellenbosch University https://scholar.sun.ac.za

51

7.4.2 Observers

7.4.2.1 Overview of plugins required by Observers’ clients

Any BASE shell that wants to automatically receive observed data relevant to its
holon from all available Observers, needs to have two standard plugins, namely:
Resource Data SP and Resource Data EP. Together these plugins enable a BASE
shell to know about new Observers, request their services and receive observed
data. The details of how these plugins interact with their own shell and with
Observers are discussed in sections 7.4.2.2 and 7.4.2.3.

7.4.2.2 Service Request

Figure 28 shows the BASE shell of a holon, Resource A, requesting an Observer’s
“Observe” service, just after the Observer has been added to the system. Before the
Observer was added to the system, Resource A’s Resource Data SP registered with
DOHA for holons that can provide “Observe” services. Section 6.2 showed how
plugins register for services with DOHA. Just after the Observer registers with
DOHA, DOHA informs Resource A’s Resource Data SP (via its Communication
Manager) about the Observer (arrow 1). Resource Data SP checks if the new
Observer can provide data for its holon (Resource A), by evaluating the Service
Description of the Observer (described in section 7.3). If the new Observer can
provide data for Resource A, Resource Data SP schedules a new RDAA activity,
“Act 2115(RDAA)”, with the scheduled start time set to the current time (arrow 2).

Figure 28: Service request to an Observer

Resource A’s Resource Data EP is informed, by its BASE shell’s Schedule, about
the new RDAA activity and starts it (arrow 3; more details in figure 13). Note that
there might be more than one RDAA activity in Execution at the same time – one
activity for every Observer in the system that can provide data for this holon.

Stellenbosch University https://scholar.sun.ac.za

52

Resource Data EP requests its Communication Manager (arrow 4) to forward a
service request to the Observer (arrow 5). In this service request’s request
arguments, no Topics are specified, because Resource Data EP is registering for all
available topics. The Observer’s Communication Manager forwards this request to
its Service Provision SP (arrow 6), which checks two requirements before accepting
the service request and scheduling a new SPA. These requirements are (in order):

1. Check if Resource A’s resource type is one of the resource types in this
Observer’s Service Description.

2. Check if the Identifier provided by Resource A is valid (arrow 7) and
included in the “Available identifier” list (discussed in section 7.3.1).

If both of the above requirements are met, Service Provision SP schedules a new
SPA, “Observe12 (SPA)”, with the scheduled time set to the current time (arrow
8), and accepts the service request via its Communication Manager (arrows 9, 10
and 11). Observer EP will be notified about the SPA by its BASE shell’s Schedule,
triggering it to start this activity (arrow 12) and add Resource A to its list of clients.

7.4.2.3 New data observed and shared by Observer

Figure 29 shows the Observer’s Interface Process receiving new data from its real-
world part (arrow 1). The Observer’s Interface Process sends the new data to its
Observer EP (arrow 2), which triggers Observer EP to update the stage 2 data of
the relevant SPAs (arrows 3) and share the new data with all the registered clients
as inform messages (arrows 4 and 5). The Communication Manager of each client
forwards the inform message to their Resource Data EP (arrow 6). Each client’s
Resource Data EP copies the RDAA in execution, adds the observed data to its
stage 2 data and moves the copied RDAA into its biography (arrow 7) without
removing the original RDAA from its Execution. RDAAs were explained in more
detail in section 5.7.2.

Figure 29: New data observed by Observer and shared with clients

Stellenbosch University https://scholar.sun.ac.za

53

7.4.3 Informers

7.4.3.1 Overview of plugins required by Informers’ clients

Any holon that wants to use an Informer can do so from any of its plugins and does
not need any standard plugins. A service request can be sent to Informers at any
point in time when their “Inform” service is required, and this service will be
executed as soon as possible. Thus, no long-lived Service Contract is required as in
the case with Observers.

7.4.3.2 Service Request

Figure 30 shows one of Resource A’s EPs, EP-A, using an Informer to send a
message to its holon’s physical part. EP-A starts by requesting DOHA for all
resources with a service of Service Type “Inform”, and DOHA returns the BCs of
all holons that satisfy this. EP-A goes through all the returned BCs, removes the
BCs of Informers that cannot interface with Resource A’s physical part, and then
selects the preferred Informer. After selecting an Informer, EP-A requests (via its
Communication Manager) the Informer to send a message to its holon’s physical
part (arrows 1 and 2). The Informer’s Communications Manager forwards this
request to its Service Provision SP (arrow 3). This Service Provision SP checks if
it can communicate with Resource A’s physical part (by checking the Service
Description of its Informer) and, if so, it schedules an SPA, “Inform23 (SPA)”
(arrow 4), and accepts Resource A’s request (arrows 5 and 6). Resource A’s
Communication Manager forwards this accept message to EP-A (arrow 7). The
Informer’s Schedule informs its Informer EP of the SPA that is due to start and,
subsequently, Informer EP starts this activity (arrow 8; details shown in figure 13).

Figure 30: Service request to an Informer

7.4.3.3 Informer executes “Inform” service

Figure 31 shows the interactions between the Informer EP and its Interface Process
to execute the “Inform” service requested by Resource A’s BASE shell. The

Stellenbosch University https://scholar.sun.ac.za

54

Informer EP messages its Interface Process, asking it to execute the “Inform”
service request (arrow 1). Interface Process communicates with its physical device
(arrow 2), to send a message to Resource A’s physical part, using this device. The
message delivery result is returned to Informer EP (arrow 3), which will send either
inform-done or failure to Resource A (arrows 4, 5 and 6), depending on whether
the message was delivered successfully or not. Informer EP writes this result to the
stage 2 data of the “Inform23 (SPA)” activity and then finishes this activity (arrow
7 and 8).

Figure 31: Execution of an “Inform” service

7.5 Interface Holon activities and attributes

As shown in section 7.4, each type of Interface Holon has its own interface activity:
“Observe (SPA)” or “Inform (SPA)”, depending on the type of interface. In
addition, all Interface Holons have three common types of activities: “Device State
Change”, “Interface State Change” and “Restart interface”.

Activities of type “Device State Change” are created when the Interface Process
informs its EP that the physical device’s state has changed from working to down
or vice versa. This provides developers with a mechanism to track the state of an
Interface Holon’s physical device. However, this functionality requires that the
physical device be programmed to communicate its state to the Interface Process.

Activities of type “Interface State Change” are created when the Interface Process
fails or has been restarted successfully. An Interface Process’s failure is detected
by the EP that started it (Observer EP or Informer EP), since this EP monitors the
Interface Process after starting it via the Interface Module. It is the responsibility of
this EP to start and finish an activity of type “Interface State Change” and to try to
restart the interface. If the restart succeeds, the plugin will have to log another
activity of type “Interface State Change”, with the Result set to “Success”.
Activities of type “Restart interface” can also be scheduled from a UI if a user of
the system suspects that an Interface Process is unresponsive. All Interface Holons
have the same attributes, as shown in appendix E.

Stellenbosch University https://scholar.sun.ac.za

55

8 Generic implementation of architecture
extensions

This thesis continues to use Erlang to implement the BASE architecture, because
of the benefits discussed in section 2.4.4. This chapter will discuss the generic
BASE architecture components that were developed and all important
implementation strategies.

8.1 Storage components

All data storage in this thesis’ BASE architecture implementation was realised
using Erlang’s ETS tables. Each ETS table in an Erlang application has the same
high-level functionalities a Structured Query Language (SQL) table in an SQL
database, even though the way they work differ completely. ETS tables are
processes in the Erlang runtime system, making access to data in these tables very
fast. What is known as rows or data entries in SQL databases is termed objects in
ETS tables. Each object is contained in an Erlang tuple and Erlang records can be
used as templates for these objects, ensuring new objects are stored in the correct
field order – the order of the columns in SQL tables. (Erlang -- ets, 2021)

There are four types of ETS tables, namely: set, ordered set, bag and duplicate bag.
Sets and ordered sets can only have one object per key, while bags and duplicate
bags can have many objects per key. Keys are used to separate objects in an ETS
table and can also be used to quickly find or delete objects. Ordered sets return data
in the order of their keys’ values, which means if keys are auto-incremented or uses
the date and time in their constructions, queried data will be returned from oldest to
newest. For this reason, ordered sets were the type of ETS table used for all ETS
tables in this thesis’ BASE architecture implementation.

ETS tables exist in RAM, and thus if an Erlang application with ETS tables is shut
down, all data in them are lost. This problem is addressed by using the ets:tab2file

function to save tables to text files, and the ets:file2tab function to create tables
from text files. In this thesis’ implementation, each table’s text file was updated
after every create or delete operation in the table, to ensure no data is lost when the
system shuts down without warning. However, the tables are retrieved from the text
files only at start-up and then kept in memory, otherwise the system would be too
slow. If the available RAM on the computer running the Erlang application would
be a problem, then the tables should not be kept in memory, but rather read from
text files for every operation. ETS tables allow smart read and delete operations
using match specifications. These specifications allow data entries to be
read/deleted based on the value of any of the entries’ properties – similar to what
SQL databases allow with their “where” statement.

Stellenbosch University https://scholar.sun.ac.za

56

Two alternatives to ETS tables were considered, namely DETS tables, which is a
disk-based version of ETS tables, and Mnesia, a distributed telecommunications
database management system. Both DETS tables and Mnesia are disk-only
databases, which may result in longer latencies. However, Mnesia is frequently
used in large, distributed Erlang applications and should be considered in future
work.

8.2 Administrative components

DOHA’s reception component was implemented as an Erlang gen_server process
and provided all the functionalities required for DOHA as outlined in sections 4.3
and 6.2. DOHA’s storage component was implemented as discussed in section 8.1.

The architecture allows for multiple UIs, but for this implementation only one was
implemented that can serve multiple users. The implemented UI was a browser-
based UI, served by the Erlang application through a web socket using the Cowboy
Erlang library (Cámara, 2021). HTML, JavaScript and CSS code was developed for
the front-end of this UI. This code had to enable many front-end functionalities to
facilitate reconfiguring the system (adding/removing holons, editing management
attributes and editing holons’ schedules) and viewing live data about holons. This
code was also responsible for the communication with the web socket exposed by
the Erlang application.

Figure 32 shows a screenshot of the UI where it is used to plot the quantity and
duration of a sheep’s feeding from the 15th of July to the 19th. The other images of
the UI are shown in appendix H. Note that this plot did not require any custom code
for the case study and was used for all holons with numeric data in their RDAA
activities.

Figure 32: Observed data of a sheep plotted in UI (adapted image from

implementation’s UI with enlarged text)

Stellenbosch University https://scholar.sun.ac.za

57

As mentioned in section 4.4, the BASE architecture consists of three loggers,
namely: a system logger, an error logger and a holon interactions logger. A system
logger was implemented that could record the static state of the system after big
changes have been implemented in the system. The system logger was implemented
as a gen_server process that could receive requests to log the system’s state. This
call was implemented after big changes in the system, e.g. after a holon was added
or removed or after each sheep holon in the system received new weight data. When
receiving this call, the system logger waited five seconds to allow the system to
settle and then logged the date and time, the number of holons, the number of ETS
tables, the number of Erlang processes, the system’s overall RAM usage and the
RAM usage of the ETS tables.

The error logger could be used by any process in the system to log an error. Each
logged error contained the error description, the module name, function and line
number where the error was encountered, and the date and time at which the error
occurred.

The holon interactions logger was called by all the Communication Managers in
the system to indicate when they sent or received any service-oriented messages.
When a call was received, the holon interactions logger logged the date and time,
sender holon ID, receiver holon ID, message type (CFP, proposal etc.) and the
Service Type. This logger was used to debug communications between holons from
the UI. JavaScript code was written that was able to decode the logged holon
interactions into and display it as sequence diagrams. The front-end of the holon
interactions logger was shown in figure 10.

8.3 Supervisors

Erlang has built-in supervisor processes which are responsible for starting, stopping
and monitoring their child processes. Erlang supervisors have different restart
strategies that a developer must choose from, namely:

• one_for_one – only the child process that failed is restarted,

• one_for_all – when one child process fails, all child processes are restarted,

• rest_for_one – the child process that failed and all child processes that were
added after this child process, are restarted,

• simple_one_for_one – this is the same as one_for_one, except that child
processes are added instances of the same process type, thus all child
processes are gen_servers, supervisors or gen_fsms – Erlang’s finite state
machines.

One of the core properties of the BASE architecture is the independence between
BASE shells and between their internal components. One component’s failure

Stellenbosch University https://scholar.sun.ac.za

58

should not affect any other components, even under the same supervisor. Thus, the
one_for_one and simple_one_for_one restart strategies were the only restart
strategies that could be used.

The BASE Supervisor (figure 9) and Plugin Supervisor (figure 11) were
implemented with the simple_one_for_one restart strategy, because this restart
strategy is ideal for situations where the children are not specified beforehand, but
change throughout the life of the system. Only a process template needs to be given
to this supervisor when it is initialised. When new children need to be added
supervisor:start_child(Sup_PID,[]) can be called, where Sup_PID is the address of
this supervisor process. No other start up arguments need to be specified, because
all children have the same start up arguments.

All other supervisors in the system have fixed children and thus, the one_for_one

restart strategy was used for these. This restart strategy allows the developer to
specify the children for each supervisor in the supervisor’s initialisation function,
so that these children are started up by the supervisor after it is initialised. DOHA’s
supervisor code is shown in figure 33 as an example. This code also shows two
other properties that need to be specified for all supervisors, namely the restart

intensity and period. These two properties determine the maximum number of times
(restart intensity) any child is allowed to fail within a certain time period (period).
Another thing to note from this code is that all children also have individual
properties, namely id, start, restart, shutdown, type and modules and the details of
this can be found in Erlang’s online documentation (Erlang -- supervisor, 2021).

Figure 33: DOHA supervisor process source code

Stellenbosch University https://scholar.sun.ac.za

59

8.4 The Erlang gen_server process, gen_server calls and

spawn_monitor

Figure 34 shows an example of the concepts and functions that will be discussed in
this section. The figure shows a gen_server process (the Biography Reception)
handling a gen_server:call (update_s3_data) by first checking from who the call is
received (security_functions:check_sender) and then using spawn_monitor to
create a new process that handles the call.

Figure 34: Example of a gen_server process handling a call

Erlang’s gen_server process was used for all of the core components of each BASE
shell. This was done because of gen_server’s standard set of interface functions,
their functionalities for tracing and error logging and the fact that they do not need
any extra development to allow Erlang supervisors to monitor and restart them.
Erlang has a tool called the Observer, which can show the entire supervision tree of
an Erlang application as long as all processes are standard Erlang processes (like
gen_servers and supervisors). Thus, the utilisation of the Erlang Observer was
another motivation for using gen_server processes.

In section 5.5, it was mentioned that each BASE shell’s internal components do not
communicate with other components outside of their BASE shell, except for the
Communication Manager. Moreover, within each BASE shell there are restrictions
on which components can communicate with each other, as summarised in table 2.
There are a few methods of communicating with a gen_server process, but only the
gen_server:call allows the gen_server process to see the address of the process that
sent the call. Consequently, the gen_server can decide to evaluate the call or ignore
it, which is why the gen_server:call was chosen as communication method with all
gen_servers. This facilitated all component processes to only respond to calls from
components permitted to communicate with them.

Stellenbosch University https://scholar.sun.ac.za

60

Some actions executed by component processes, in response to calls from other
component processes, require much time. If the process that receives the calls also
executes these actions, it would sometimes be unavailable to other component
processes. Subsequently, component processes were programmed to spawn a new
process when a call was received, which would execute the time-consuming
computations and then reply to the calling component. The problem with this
approach was that the spawned process would not be allowed to communicate with
other component processes within its BASE shell (because of the shell privacy
restrictions discussed in the previous paragraph). This was overcome by using
spawn_monitor, which allows the component process to spawn and monitor a new
process. All component processes were then programmed to check both the address
of a calling process, as well as the address of the process monitoring the calling
process, to determine if communication should be allowed. This was implemented
using Erlang’s process_info functionality.

8.5 Inter-process communication in a distributed Erlang

application

Erlang has a datatype, not found in many programming languages, called an atom.
Atoms are literals with their value encapsulated in their name, for example the atom
cat123 has the value cat123. In the original implementation of the BASE
architecture by Sparrow (2021), all components had atom names, because there was
only one BASE shell implemented. In Erlang a process must either have a unique
name or not have a name at all (i.e. use the process ID). Erlang also has a maximum
number of atoms that can be used in an application. Furthermore, atoms are very
memory consuming because of an atom table that is kept in every Erlang
application’s memory. As such, a decision was made to assign atom names only to
DOHA, the loggers and the Communication Managers of the BASE shells – all
other processes are identified by their unique process ID.

DOHA and the loggers need to have an atom name, otherwise other components in
the system would not be able to find them. The atom names for Communication
Managers were used to make it easier to debug the system using the supervision
tree of the Erlang Observer.

8.6 Standard plugins

All the standard plugins introduced in chapters 6 and 7 were implemented in the
BASE architecture implementation of this thesis. The implemented Observer EP
and Informer EP used Interface Modules for their case specific parts as outlined in
section 7.2. Functionality was added to the Observer EP to not only wait for data
from its Interface Module, but to also register with its BASE shell’s Schedule for
activities that contain new observed data. This allowed new observed data to be
added from the UI to an Observer’s Schedule to be shared with other holons. This
functionality was used by the sheep scale holon as discussed in section 9.5.2.

Stellenbosch University https://scholar.sun.ac.za

61

The Resource Data SP and Resource Data EP were implemented completely
generic for all holons and did not require any case specific code, because of the way
in which RDAAs’ stage 2 data is structured (shown in section 5.7.2), and the
standardisation of messages from Observer holons. These two plugins should
always be implemented in a holon, even if there are not Observers in the system
that can provide data for this holon, because new Observers might be added to the
system later on. If a holon does not have these plugins, it would not be able to
automatically request any “Observe” services from newly added Observers.

Service Provision SP and Service Provision EP, both required a generic and a case-
specific code base. The case specific parts of these plugins were extracted into
functions that can be called from the generic parts. These functions were put into a
module, specific to the holon that the plugin was part of. All of these specific plugin
modules were named as follows: “{HolonType}_{PluginName}_mod” – all in
lowercase letters, so that each plugin with a case specific part knows how to access
its case specific module. For example, the case specific module for the Service
Provision SP of any sheep holon was named sheep_service_provision_sp_mod.

Three types of faults could occur in case specific modules:

• the module does not exist;

• the relevant function was not implemented; and

• there was a mistake in the function’s implementation that caused it to crash.

The Service Provision SP and Service Provision EP both had default actions when
a call to a relevant function in their case specific module failed. For example, if the
Service Provision EP started an SPA and called its case specific module’s execute
function, but this call failed, it simply finished the SPA and replied to the service
requester, stating that it failed to execute the service.

Stellenbosch University https://scholar.sun.ac.za

62

9 Case study

To demonstrate the benefits and shortcomings of the extended BASE architecture,
a real-world case study implementation was required. For this thesis, an educational
sheep farm was used as case study. This chapter introduces the criteria that was
used to select the case study and, subsequently, describes the selected case study.
Thereafter, the user requirements and case study holons are identified. Finally, the
implementation details specific to the case study are discussed.

9.1 Selection criteria

The case study implementation is intended to provide a basis on which the different
extensions to the BASE architecture can be demonstrated and evaluated. To this
end, the following criteria were formulated for the selection of the case study:

• The case study must integrate more than one type of resource into the CPS.

• At least one holon in the system must be an Interface Holon (Observer or
Informer).

• At least one example of each activity category (SPA, RAA, RDAA) must
be present in the implementation.

• At least one example of each attribute type (Personal, Relational,
Management and Condition) must be present in the implementation.

• At least one SP, EP, RP and AP must be implemented in a BASE shell in
the implementation.

• At least one service-oriented interaction must be implemented between
holons that are not Interface Holons.

9.2 Description

The case study that was selected for this thesis is the Stellenbosch University’s
educational sheep farm. This farm is used by students in the university’s agricultural
department for livestock and feed related experiments.

This farm was recently afforded an opportunity to use a sheep scale and feeding
data sensor from an agricultural system integrations solution provider. All sheep on
the farm were fitted with Radio-Frequency Identification (RFID) tags. Sheep
weight data was captured from a scale, which identifies the individual sheep by
means of an RFID tag reader. A load cell and RFID tag reader was installed at each
feeder, which allowed the feeding sensor to captured feeding data (quantity eaten
and duration of eating) of individual sheep.

Stellenbosch University https://scholar.sun.ac.za

63

Figure 35 shows the farm’s setup, which includes the feeding sensor that is
connected to the load cells and RFID tag readers at the different feeders, and the
sheep scale. The sheep were grouped into camps for experiments.

Figure 35: Educational sheep farm setup

The RFID tag reader and load cells of each feeder are connected to a central data
acquisition device (Raspberry-Pi), which pushes the recorded data into a cloud
database. This Raspberry-Pi sends all recorded data to an SQL Server every 30
minutes. To show the real-time capabilities of the BASE architecture
implementation, a method of acquiring this data in near real-time was implemented
as discussed in section 9.5.1.

The recorded weight data from the sheep scale can either be integrated into
BenguFarm Sheep & Goat (BenguFarm, 2015), if the user owns this software, or
downloaded onto a memory stick as a text file. The latter method was used in this
case study, since the university’s farm does not have access to the expensive
BenguFarm software.

9.3 User requirements

With the existing sheep data acquisition system, students have to download data as
text files and manually organize the data to enable the desired analysis for each
sheep. Furthermore, students have to calculate the average values of the variables
of interest within each sheep group – aggregating the data to represent the average
sheep of each group. Apart from this tedious and time-consuming process, students
cannot determine the status or progress of their experiments until they were
completed. The implementation of the extended BASE architecture aimed to
improve the monitoring, management and real-time analysis of sheep data by
addressing six user requirements:

• Simplify the collection of feeding and weight data for the sheep on the farm.

Stellenbosch University https://scholar.sun.ac.za

64

• Extract and archive each sheep’s data from the farm’s collected data so that
each sheep’s data is grouped together.

• Automatically calculate the overall statistics of the variables of interest.

• Aggregate the variables of interest for each sheep group, since in many
experiments the average statistics of the different groups, and not of the
individual sheep, are compared.

• Visualise the data and variables of interest in near real-time, so that students
can view the progress of their experiments before they are completed.

• Facilitate a notification service to notify students of critical events – e.g.
when a feeder has not recorded any data or a sheep has not eaten for some
user-defined time period.

In the above-mentioned requirements, the considered variables of interest are daily
food intake (kg), sheep mass (kg), sheep mass gain (kg) and Feeding Conversion
Ratio (FCR) (mass of feed consumed (kg) over increase in body mass (kg)).
Statistics of these variables must be calculated, e.g. average, maximum and
minimum values over different time periods.

9.4 Holon identification

Before implementation of the system could start, the resources on the farm that had
to be integrated as holons, needed to be identified. The most obvious resources are
the sheep. As mentioned in section 9.2, the different camps on the farm are used to
group sheep in experiments. In these experiments, each camp had different input
variables, e.g. each camp might have a different type of food, or each camp contains
a different breed of sheep. However, the sheep camps and groups are identified as
two different resources, because the camps had to do with housing sheep, where
the groups are used to aggregate sheep data for experiments. Each sheep group
could also be relocated to different camps during an experiment and thus a decision
was made to let each group and camp be represented as a holon. The students using
the system are integrated as human holons.

The sheep scale and feeding sensor are integrated as Observer holons. The physical
containers from which the sheep ate are integrated as feeder holons and does not
form part of the feeding sensor, since these would exist whether or not the feeding
sensor is installed. An SMS-based notification service is selected for sending
notifications to the users/stakeholders, since not all workers might have
smartphones that can run WhatsApp or some Android/Apple application. Vonage
(Vonage, 2021) was chosen as service provider for these SMS messages. The
Vonage SMS service was integrated into the system as an Informer, which can only
provide a service to human holons. The attributes of each of these holons can be

Stellenbosch University https://scholar.sun.ac.za

65

seen in appendix E (Interface Holons) and appendix F (sheep, groups, camps,
feeders and humans).

9.5 Implementation

9.5.1 Platform implementation and integration overview

The BASE platform and its integration with other systems and services for the case
study is presented in figure 36. The BASE platform, running on an Erlang runtime
node, is hosted on a remote PC. The BASE platform interfaces with a browser-
based UI, a cloud-based Message Queuing Telemetry Transport (MQTT) broker, a
TCP-tunnelling service (ngrok) and an SMS notification service (Vonage).

Figure 36: Implementation setup

A browser-based UI was developed for the case study implementation’s UI. The UI
is served by the BASE platform through a public web socket and consists of HTML,
JavaScript and CSS. The web socket is exposed on one of the PCs local TCP ports
using the Cowboy Erlang Library (Cámara, 2021). Ngrok, (2021) is used to make
this local TCP port public and assign to it a fixed Uniform Resource Locator (URL).

The feeding sensor records how much and for how long a sheep eats every time a
sheep is at a feeder. It also adds the ambient temperature to every data packet sent
via the MQTT broker, which can be acquired by all camp holons that are in the

Stellenbosch University https://scholar.sun.ac.za

66

same location as the feeding sensor. The feeding sensor does not have the ability to
push the feeding and temperature data to the cloud in real time. Consequently, a
Python script that can publish the data in real-time, via a cloud MQTT broker, was
added to the feeding sensor.

MQTT is a communication protocol that is built on the TCP transport layer protocol
and supports a publish/subscribe architecture (Banks, Briggs, Borgendale & Gupta,
2021). MQTT communications always require at least one broker with any number
of clients that publish and subscribe to this broker. The broker is responsible for
managing connections, accepting published messages and forwarding published
messages to subscribers. The case study implementation required a cloud-based
MQTT broker, since the feeding sensor and the BASE platform resided on two
different networks. MaQiaTTo (MaQiaTTo, 2021) is a free cloud-based MQTT
broker that was used in this implementation.

The source code of the Python script that implements the MQTT client for the
feeding sensor is shown in appendix G. The Python script establishes and maintains
an MQTT client for the feeding sensor, enabling it to publish new data, via an
MQTT broker, to other MQTT clients that subscribe to the data. The Interface
Process of the feeding sensor’s BASE shell also establishes and maintains an
MQTT client that is subscribed to this data. The way in which new data is shared
from the Interface Process to the relevant sheep and camp holons was described in
section 7.4.2.3.

The sheep scale had no connectivity capabilities and the recorded weight data had
to be downloaded to a portable storage device (a USB memory stick). To allow
integration of this data into the Erlang application, the students uploaded the data
from the portable storage device via the BASE platform’s UI.

As mentioned in section 9.4, the SMS API of Vonage (Vonage, 2021) was chosen
to send notifications to students that are using the system. Vonage’s SMS API can
be used by making a REpresentational State Transfer (REST) request containing
the API URL, the message text, the phone number to which the message must be
delivered, and a unique API key given to a user when they make an account with
Vonage.

9.5.2 Plugins and activities of case study holons

Table 4 shows all the case study holon types, except for the Interface Holons
(feeding sensor, sheep scale and Vonage SMS service), together with their plugins
and the activity types that they support. Each case study holon also has a Resource
Data SP and Resource Data EP, even though this is not shown in table 3. Holons
provide all their services through their service provision plugins. Table 3 shows that
all holons, except the sheep and feeder holons, required service provision plugins.
Sections 9.5.2.1 to 9.5.2.6 discuss the functionalities of the custom plugins
(indicated in bold in these sections) and activities required for the different case
study holons. Some attributes of the case study holons are used in discussions in

Stellenbosch University https://scholar.sun.ac.za

67

these sections and appendix F can be referenced to see the descriptions of the case
study holons’ attributes.

Table 3: Case study holons with their custom plugins and supported activities

9.5.2.1 Interface Holons

Three Interface Holons were implemented, namely the feeding sensor holon
(Observer), sheep scale holon (Observer) and Vonage SMS service holon
(Informer). The two Observer holons used the Observer EP and the Informer holon
used the Informer EP. The only custom development required for each of these
holons was in their Interface Modules, which contained the code required for their
Interface Processes that communicated with their real-world devices or services.
These details were already discussed in section 9.5.1 and appendix D contains the
Interface Module of the feeding sensor.

9.5.2.2 Camp holons

Each camp holon provides three services, namely: “Add_Sheep”, “Add_Group”
and “Add_Feeder”. Each camp holon has a management attribute, “Sheep limit”,
which is set from UIs and is used to determine if a group or sheep can join. A camp

Holon

Type

Plugins Supported Activities

Sheep
• sheep_aggregation_sp &

sheep_aggregation_ep
• sheep_relocation_ep &

sheep_relocation_ap
• sheep_eating_rp &

sheep_fcr_ap

• Relocate (RAA)
• Aggregate (RAA)
• Weight (RDAA)
• Eating (RDAA)

Group
• group_service_provision_sp &

group_service_provision_ep
• group_relocation_ep &

group_relocation_ap
• group_scaling_ap
• group_aggregation_ap

• Relocate (RAA)
• Add_Sheep (SPA)
• Remove Sheep (RAA)

Camp
• camp_service_provision_sp &

camp_service_provision_ep
• camp_scaling_ap

• Add_Sheep (SPA)
• Add_Group (SPA)
• Add_Feeder (SPA)
• Temperature (RDAA)
• Remove_Sheep (RAA)
• Remove_Group (RAA)
• Remove_Feeder (RAA)

Feeder
• feeder_relocation_ep &

feeder_relocation_ap
• Relocate (RAA)

Human
• human_service_provision_sp &

human_service_provision_ep
• Relocate_Sheep (SPA)
• Relocate_Feeder (SPA)

Stellenbosch University https://scholar.sun.ac.za

68

can add a group if it does not already host a group or some sheep, and if the number
of sheep in the group is less than or equal to the sheep limit. A camp can add a sheep
(not part of a group) if it already hosts sheep that are not part of a group, and the
sheep limit is not yet reached. A camp can host more than one feeder at a time, but
in the case study, each camp only hosted one feeder.

Camp holons do not need to give holons permission to leave, which is why
“Remove_{holon type} (RAA)” services are not provided by camp holons. When
a sheep, group or feeder holon leaves its camp, it informs the camp holon about it
and the camp holon removes the relevant holon by scheduling, starting and finishing
a “Remove_{holon type} (RAA)” activity. Every time a sheep, group or feeder is
added or removed in a camp, the camp_scaling_ap updates the “Sheep”, “Group”
or “Feeder” attribute of the camp.

In the case study, the feeding sensor also recorded the ambient temperature of the
shed it was in. Each camp in the case study was in the same location as the feeding
sensor, which is why all camp holons received temperature data from the feeding
sensor, and logged these temperatures using “Observe Temperature (RDAA)”. This
ambient temperature data was not utilised for anything, but can potentially be used
in future experiments on the sheep farm.

9.5.2.3 Feeder holons

In section 9.4, it was mentioned that feeder holons are required to represent each
feeder on the farm, separately from the feeding sensor. For this case study, the
feeder holons were developed with limited functionality. Each feeder holon has a
primary function of holding (in a management attribute) the product ID of the food
inside its physical feeder. Students using the system could use the UI to edit this
product ID after refilling a feeder. The product ID is requested by the BASE shells
of sheep that are in same camp as a feeder, to be used as post-execution data for
their eating data. This allows students to not only see how much and for how long
each sheep ate, but also what each sheep ate.

Each feeder can be relocated to a camp, and this is triggered when a new “Relocate
(RAA)” RAA is created from the UI in the schedule of the feeder’s BASE shell.
The feeder_relocation_ep is responsible for starting, executing and finishing the
feeder’s relocation. It does so by first making a service request to the camp to which
the feeder needs to be relocated. When this is rejected, the feeder_relocation_ep

finishes the RAA with the “Result” set to “Failed” and the “Reason” set to the
reason for the service request being rejected (refer to appendix B on RAA data
structures). When the service request is accepted, the feeder_relocation_ep
requests DOHA for holons that can provide a service of type “Relocate_feeder
(SPA)”, and sends out CFPs to all these holons (typically human holons). The first
holon to respond with a proposal message is selected. When the service is finished,
the RAA is completed and the “Result” is set to “Success”. When “Relocate
(RAA)” is put into the Biography, the feeder_relocation_ap updates the feeder’s
“Camp” attribute to reflect the feeder’s new camp.

Stellenbosch University https://scholar.sun.ac.za

69

9.5.2.4 Sheep holons

The sheep holons were developed with the most detail, since most of the case study
requirements could be satisfied in these holons. Each sheep can be relocated to a
group or to an empty camp. This relocation is triggered when a new “Relocate
(RAA)” activity is created in the sheep’s schedule from a UI. The logic executed in
the sheep_relocation_ep is almost identical to that of the feeder_relocation_ep,

except that the sheep can be relocated to either a group that is hosted by a camp, or
a camp that hosts sheep without a group. When “Relocate (RAA)” is put into the
Biography and was successful, the sheep_relocation_ap updates the sheep holon’s
“Camp”, “Feeders” and “Group” attributes. It does so by retrieving the ID of the
new camp/group from the RAA’s stage 1 data and requesting the other two
attributes (“Feeders” and “Group”/ “Camp”) from the new camp/group.

Each sheep’s resource_data_sp and resource_data_ep ensures each sheep receives
and logs any recorded data about the sheep, which in this case study was eating and
weight data. The sheep_eating_rp was developed to add the details of the food a
sheep ate to its “Eating (RDAA)” activities’ stage 3 data. It does so by obtaining
the sheep’s feeder from its “Feeders” attribute and then requesting the feeder holon
for the product ID of the food it contains (as explained in section 9.5.2.3). After
receiving the product ID, the sheep_eating_rp adds this to the stage 3 data of the
relevant “Eating (RDAA)” activity.

The sheep_fcr_ap was the most complex plugin developed for the case study
implementation and implemented many calculations required to satisfy the case
study requirements. This AP updates its sheep’s state attributes whenever new
eating or weight data is put into the Biography of its sheep. All of these state
attributes are statistics (over different time periods) about the sheep’s daily food
intake, mass, mass gain and FCR. These attributes are listed in appendix F.

Whenever the attributes are updated, and the sheep is part of a group, the
sheep_aggregation_sp creates a new “Aggregate (RAA)” RAA that contains all
the updated condition attribute values in its stage 1 data. The
sheep_aggregation_ep then starts this activity, retrieves the sheep’s group ID from
its attributes, shares the updated condition attributes with the sheep’s group and
finishes the activity.

9.5.2.5 Group holons

When a group holon receives data from its sheep, the data is passed to its
group_aggregation_ap, which updates the group’s condition attributes. Each
sheep group’s condition attributes represent the condition attributes of the average
sheep in the group. The steps followed by the group_relocation_ep and
group_relocation_ap to relocate an entire group to another camp are very similar
to the steps followed by the two relocation plugins of sheep holons.

Stellenbosch University https://scholar.sun.ac.za

70

Similar to camps, groups can also host sheep. However, for a group to host sheep,
the group itself must be hosted by camp. When a group receives an “Add Sheep”
service request, it first needs to check with the camp that it is in if there is any space
left before accepting the request. The group_scaling_ap updates the group’s
“Sheep” attribute when a sheep has been added or removed.

9.5.2.6 Human holons

Due to time constraints, human holons were developed with limited functionality
and are only intended to show how the humans might be integrated in a fully
developed system. In this case study, human holons can provide two services,
namely: “Relocate_Sheep” and “Relocate_Feeder”. In a more completely
developed holonic implementation, human holons should have also provided the
service of collecting data from the sheep scale and storing it on the computer. In the
case study, the only implemented cyber-physical interfacing for human holons was
that each holon could send an SMS to its human’s mobile telephone. This was used
when a sheep holon needed to inform all humans in the system that the sheep has
not eaten for a long time, or when the feeding sensor holon needed to inform all
humans in the system that it has not been active for a long time, potentially
indicating some failure.

Stellenbosch University https://scholar.sun.ac.za

71

10 Evaluation

Each of the required BASE architecture extensions in section 3.3 were identified
based on shortcomings of the original BASE architecture as a reference architecture
for complex, reconfigurable CPSs. The requirements of complex, reconfigurable
CPSs then serve as basis for the evaluation of the extended BASE architecture.
Building on these requirements, this chapter formulates evaluation criteria
comprising quantitative and qualitative metrics. Measurements of the metrics are
obtained through the analysis of, and experiments on, the extended BASE
architecture – providing the basis for a holistic evaluation and discussion.

10.1 Criteria

To evaluate the extensions presented in this thesis, the CPS requirements that were
addressed are used as evaluation criteria. The consideration of the requirements as
criteria leads to the identification of a set of quantitative and qualitative metrics,
which are used to facilitate the evaluation. The relationships between the
requirements and metrics are presented in figure 37.

Figure 37: Relationship matrix showing the relationship between the

evaluation criteria and metrics of the extended BASE architecture

In
te

rf
a

ce
 H

o
lo

n
 c

o
d

e
 r

e
u

se
 r

a
te

S
lo

w
e

st
 s

e
rv

ic
e

 i
n

it
ia

li
sa

ti
o

n

%
 m

e
ss

a
g

e
s

lo
st

 b
e

tw
e

e
n

 s
h

e
ll

s

S
e

rv
ic

e
 p

ro
v

is
io

n
 c

o
d

e
 r

e
u

se
 r

a
te

H
o

lo
n

 d
e

v
e

lo
p

m
e

n
t

ti
m

e

R
e

co
n

fi
g

u
ra

ti
o

n
 t

im
e

 a
ft

e
r

sc
a

li
n

g

O
v

e
ra

ll
 c

o
d

e
 r

e
u

se
 r

a
te

C
o

m
p

u
ta

ti
o

n
a

l
re

q
u

ir
e

m
e

n
ts

G
e

n
e

ri
c

co
m

p
o

n
e

n
t

fa
il

u
re

 r
a

te

%
 c

u
st

o
m

 c
o

m
p

o
n

e
n

t
fa

il
u

re
s

is
o

la
te

d
 a

n
d

 h
a

n
d

le
d

E
rr

o
r

tr
a

n
sp

a
re

n
cy

M
o

d
u

la
ri

ty

U
I

In
tu

it
iv

e
n

e
ss

Cyber-physical interfacing x x

Service-oriented cooperation x x x

Decentralisation x x

Scalability x x x x

Diagnosability x x

Generalisation x x x x x

Reliability x x x

Usability x x

Sections in which metrics applied

Green columns - 10.2.1

Blue columns - 10.2.2

Gold columns - 10.2.3

Red columns - 10.2.4

White columns - 10.3

Evaluation metrics

Quantitative Qualitative

R
e

q
u

ir
e

m
e

n
t

Stellenbosch University https://scholar.sun.ac.za

72

As metric, the code reuse rate in Interface Holons evaluates two requirements of
the implementation, namely cyber-physical interfacing and generalisation. Section
7.2 showed how the standard plugins of Interface Holons encapsulate the generic
functionalities of Interface Holons, allowing developers to only focus on holon-
specific implementation details. This generalisation can be evaluated by measuring
the amount of code reused for each Interface Holon.

In order for a holon to use a service, it first needs to discover other holons which
can provide the desired service, send out service requests to these holons, and
receive at least one proposal. The longest time required for a holon to complete
these steps is used as a metric to evaluate the implementation’s service-oriented
cooperation. It is expected that the number of holons in the system would have a
direct impact on this time. As such, this time is also used to evaluate the
implementation’s scalability, because it would indicate how many holons could be
added before the performance of the implementation is affected.

Lost messages between BASE shells would cause cooperation errors and make the
system unreliable. Thus, the percentage of messages lost between BASE shells
evaluates the implementation’s service-oriented cooperation and reliability. In
addition, this metric evaluates the implementation’s cyber-physical interfacing
ability. This is because all cyber-physical interfacing messages are communicated
via Interface Holons’ BASE shells, which must be able to communicate with other
BASE shells in the system. In such cases, the loss of messages between BASE shells
will also imply a loss of data between the cyber and physical systems.

The code reuse rate of service provision plugins is used as another metric to evaluate
the implementation’s cooperation ability. Similar to the code reuse rate used for
Interface Holons, this metric also evaluates the implementation’s generalisation. In
this case, the level of generalisation in holons’ service provision plugins is
measured by measuring the percentage of code reused in holons’ service provision
plugins.

The time required to develop new holons, and the time required to reconfigure the
implementation after adding these holons, have a notable influence on how
effectively an implementation can be scaled (Kruger & Basson, 2018). As such, the
metrics of development time and reconfiguration time are used to evaluate the
scalability of the implementation.

A reduction in development time is expected when generic functionalities are
extracted into generic components, since developers do not need to spend time to
develop these functionalities. Therefore, development time also evaluates the
implementation’s generalisation.

Reconfiguration time refers to the time required to add a new holon, edit its
attributes and make any other necessary reconfigurations in this holon or any
existing holons. In the developed implementation, these reconfigurations need to be
done through the UI and, thus, the reconfiguration time also evaluates the

Stellenbosch University https://scholar.sun.ac.za

73

implementation’s usability. Reconfiguration time also evaluates the generalisation
of the implementation, because a system with many generic components would
need less reconfiguration than a system with very few generic components.

It should be noted that both development and reconfiguration time can be
influenced by external and subjective factors, like developer experience or fatigue,
and thus more objective metrics are also required to evaluate the implementation’s
scalability and generalisation. For scalability, the increase in computational and
memory requirements associated with the addition of holons to the system is
inspected (Kruger & Basson, 2018). For generalisation, the code reuse rate in all
holons (not only Interface Holons) is identified as an appropriate metric.

To evaluate the implementation’s reliability, both the robustness and the resilience
of the implementation need to be considered. To determine the implementation’s
robustness, the failure rate of its generic components is used as metric. When
custom components fail, the implementation must isolate these failures and apply
the appropriate fault-handling and/or restart strategy. Therefore, the percentage of
custom component failures correctly handled is used to evaluate the
implementation’s resilience. Furthermore, the metric serves to evaluate the
implementation’s decentralisation, since the failure of an individual component
should not affect the operation of other components in a decentralised system.

Three qualitative evaluation metrics are identified, namely: error transparency,
modularity (both used by Kruger & Basson (2018)) and intuitiveness. An error
transparency metric is used to evaluate the implementation’s diagnosability.
Modularity refers to how much a system is broken up into modules, which is why
this metric is used to evaluate the implementation’s decentralisation. Diagnosability
is improved when a system is broken up, and thus modularity also evaluates the
implementation’s diagnosability. Intuitiveness refers to the ease of using the
implementation’s UI (from the perspective of a user in the system) and is proposed
as a qualitative measure of the implementation’s usability.

10.2 Quantitative metrics

This section presents the measurements of the different metrics used for a
quantitative evaluation of the implementation. Measurements for several
quantitative metrics could be obtained from an analysis of the implementation’s
source code and from the logged data, recorded while the implementation was
deployed. For the measurement of some metrics, development and reconfiguration
experiments and scaling experiments had to be performed. The methods and
experiments used to obtain measurements of the metrics, along with the obtained
results, are discussed in sections 10.2.1 to 10.2.3. However, the discussions about
the implications of these metrics are deferred to section 10.4.

Stellenbosch University https://scholar.sun.ac.za

74

10.2.1 Analysis of implementation source code

An analysis of the source code of the implementation of the extended BASE
architecture is performed to obtain measurements for the code reuse rate in the case
study holons (which include the Interface Holons) and the service provision
plugins. Each of these metrics consider the number of SLOC, as used by Kruger &
Basson (2018). The results of the source code analysis of the case study holons are
presented in table 4.

Table 4: Code reuse rate of the case study holons

All holons in the BASE architecture have the same generic code base, mostly from
the core components of their BASE shells. In the implementation, this generic code
base had 8864 SLOC. Table 4 gives a custom SLOC measurement and percentage
of code reused for the most important case study holons. The feeder and human
holons were not developed with the same detail and completeness as the other
holons and are thus left out of this table. The sheep holon was the most complex
case study holon type. Nonetheless, only 10.3 % of the sheep holons’ entire BASE
shell implementation source code is custom code.

The Interface Holons required the least amount of custom code, and the BASE shell
of the most complex Interface Holon, the feeding sensor, only required 1.39 % of
custom code. The feeding sensor’s custom code required an MQTT client, which is
why it had much more SLOC than the other two Interface Holons.

The SLOC measurements and percentages of code reused of the case study holons’
service provision plugins is shown in table 5. The case study implementation
included three holon types providing services (other than cyber-interfacing
services), namely the group holons, camp holons and human holons. Group holons
provided an “Add_Sheep” service, which required 171 custom SLOC. Camp holons
provided an “Add_Sheep”, “Add_Group” and “Add_Feeder” service, which
required 124 custom SLOC. Human holons provided a “Relocate_Sheep” and
“Relocate_Feeder” service, which required 98 custom SLOC. The generic parts of
the two service provision plugins required in each service provision holon, had a
total SLOC measurement of 1494. As can be seen from these SLOC measurements,
the number of services has no clear influence on the code reuse rate in the service

 Sheep Group Camp Feeding

sensor

Sheep

scale

Vonage SMS

service

Custom

SLOC

1025 329 691 125 36 32

% code

reused

89.7 % 96.42 % 92.77 % 98.61 % 99.6 % 99.64 %

Stellenbosch University https://scholar.sun.ac.za

75

provision plugins. For example, the group holons service provision plugins needed
1.4 times more SLOC than that of the camp holons, even though the group holons
only provided one service and the camp holons provided three services.

Table 5: Code reuse rate in the service provision plugins

Another important consideration is that a different case study might have required
service provision holons with completely different SLOC values. However, the
SLOC values reported are expected to be representative of typical implementations
of services provided by a holon in the BASE architecture.

10.2.2 Analysis of implementation reliability during deployment

Before the implementation was deployed, it was confirmed that core component
failures are logged if they do occur. This was done by forcefully terminating each
of the core components during testing and checking if the failure event is logged in
the error log. Figure 38 shows the caption of an entry in the error log after the
attribute reception process of a sheep holon’s BASE shell terminated. In figure 38,
the time of the error (in seconds since 1 January 1970, 00:00), the module in which
the error occurred, the line in which the error occurred (“N/A”, in this case), the
resource ID (“Sheep1”) and the error description is shown. No core component or
custom component failures were found in the error log at the end of the
implementation’s deployment, indicating that not a single core component or
custom component failed.

Figure 38: Logged error found in error log after forcefully killing the

attribute reception process of a holon with ID = "Sheep1"

The implementation’s ability to isolate and handle custom component failures could
not be checked during the deployment period because no custom components
failed. To force an error, a fault was intentionally added into a sheep holon’s AP

 Group Camp Human

Service provision

plugins’ custom SLOC

171 124 98

% code reused 89.73 % 92.34 % 93.84 %

Stellenbosch University https://scholar.sun.ac.za

76

that would cause the plugin to fail the first time an analysis is to be performed on
new eating data. The plugin was installed and the first time that it was triggered to
analyse new data, it failed and was restarted by its BASE shell’s Plugin Supervisor.
This test was repeated for each of the plugins and the implementation managed to
isolate and log all of the failures and restart all of the plugins appropriately.

10.2.3 Development and reconfiguration experiments

Experiments were conducted to measure the time required to develop new holons,
as well as the time required to perform the necessary reconfigurations when new
holons were added to the system. In these experiments, the author (acting as the
developer) timed himself when developing the custom code for the case study
holons and also timed how long it takes to make any necessary reconfigurations.
These measurements, for the different case study holons, are shown in table 6. As
mentioned in section 10.2.1, the feeder and human holons were not developed with
the same detail as the rest and are again left out of this table. While it is not possible
in this thesis to compare the measured development times with that of alternative
implementations, the measured times provide an indication of the development time
required to develop holons in the BASE architecture.

Table 6: Development and reconfiguration time of new holons

The reconfiguration of the implementation was performed as a two-part process.
The first part involved the addition of the holons to the existing implementation and
updating their attributes. The second part involved any other reconfigurations
required in the new holon or any existing holons. The sheep and group holons had
to be scheduled to relocate to a camp when they were added to the system, which
is why their reconfiguration times are longer than that of the camp holons, which
did not require any reconfiguration. However, this scheduling only required a few
minutes because the UI allows users to quickly add or remove activities from
holons’ schedules. The two Observers (feeding sensor and sheep scale) did not
require any reconfiguration, because all BASE architecture holons have a Resource
Data EP (introduced in section 7.4.2) that automatically handles any interactions
required with new Observers in the system. The Informer (Vonage SMS service)
also did not require any reconfigurations, except for its own installation.

 Sheep Group Camp Feeding

sensor

Sheep

scale

Vonage SMS

service

Development

time (hh:mm)

68:06 18:58 32:51 05:35 02:05 03:32

Reconfiguration

time (hh:mm)

0:12 00:14 0:02 00:01 00:01 00:02

Stellenbosch University https://scholar.sun.ac.za

77

10.2.4 Scaling experiments

To measure the computational load and slowest service initialisation for varying
amounts of holons in the system, one sheep scale holon together with varying
amounts of sheep holons (0, 9, 99, 499 and 999 sheep holons) were added to the
implementation. The sheep scale holon was added to have a service provider that
could be requested for its services by the multiple sheep holons. This was required
to measure service initialisation time for varying numbers of holons in the system.

The experiment was done on a computer with an Intel i7-8750H CPU (2.20 GHz
clock speed) and 16 GB of RAM. To measure CPU usage, the Windows
Performance Monitor application was used and to measure the RAM usage of the
implementation, the Erlang Observer was used. Appendix I shows plots of the CPU
and RAM usage obtained from the Performance Monitor and Erlang Observer when
100 holons were added to the system. CPU time was calculated by multiplying the
duration of the holon addition with the average CPU usage percentage. The service
initialisation time was measured for single and parallel service initialisations. Single
service initialisations involved each sheep holon finding and initialising the service
at a different time than other holons. Parallel service initialisation involved all sheep
holons finding and initialising the service at the same time.

Figure 39 summarises the results from this experiment. Both the CPU and RAM
usage was measured during and after each set of holons were added, but it was
found that the CPU usage was negligibly small after the holons were added, even
with 1000 holons running on the BASE platform. This is why figure 39 does not
show the CPU usage after holons were added. The RAM usage increased
continuously while holons were being added and was at its maximum after all the
holons were added, which is why the RAM usage shown in figure 39 is the stead
state RAM usage after all holons were added. The detailed results can be found in
table 7 in appendix I.

Figure 39: Scaling experiment results

Stellenbosch University https://scholar.sun.ac.za

78

The CPU time required for every experiment increased at approximately 0.074 s
per holon, while the total required RAM usage increased at 0,833 MB per holon.
The parallel service-initialisation time increased as more holons were added, and
for 1000 holons the longest parallel service-initialisation time measured was just
over 14 seconds. However, it is important to note that this scenario - where all
holons try to initialise a service with the same service provider at the exact same
time – is unlikely to occur. The single service initialisation time barely changed
(from zero to 16 milliseconds) as the number of holons increased and is a more
accurate representation of how long service initialisation would take.

The total RAM usage includes the RAM usage of the ETS tables, which in each of
the experiments was negligibly small. However, as more data gets added to a
holon’s storage components, these ETS tables will become bigger, but the rate at
which they grow is dependent on the type of data that is being stored in them. For
example, one holon might have activities which have very large amounts of data
stored in them, where another holon’s activities might have almost no data stored
in them. As mentioned in section 8.1, the ETS tables in the system do not need to
be active in RAM when they are not being used, but if they are not the storage
operations are slightly slower. It would be up to the developer to decide if they are
very concerned about speed of operations or rather want the system to use as little
RAM as possible.

10.3 Qualitative evaluation

This section evaluates the implementation’s error transparency, modularity and the
intuitiveness of its UI. These metrics are difficult to quantify and, as such, are
evaluated through a qualitative discussion.

During development and testing of the case study plugins, the author (as developer)
had to debug several of his own coding mistakes. The error log helped to detect
these mistakes, as well as show in which module and line each mistake occurred.
The error log also shows for which holon the error occurred, which enhanced
debugging, since many holons used the same Erlang modules. A screenshot of a
logged error was shown in figure 38. The holon interactions logger was only
developed halfway into the development of the case study holons. After this
addition, the debugging of holon interaction errors was much faster. The biggest
benefit of the holon interactions logger was to narrow cooperation errors down to
the exact step in the CNP, and to know if it was the service provider or receiver that
did not react as expected. The system logger made it possible to identify memory
leaks (because of spawned processes that did not terminate as expected) and to see
which operations took the most CPU time.

The original BASE architecture was already modular within each BASE shell, since
it was divided into the Biography, Attributes, Schedule and Execution components
together with the four classes of plugins. This thesis extended this modularity to the
different BASE shells and the platform management components. DOHA is divided

Stellenbosch University https://scholar.sun.ac.za

79

into a reception and a storage component – as are the three types of logging, namely
error, system and holon interactions.

The newly developed service provision plugins are also modularised. The
service_provision_sp handles all CFPs and proposal acceptances, while the
service_provision_ep drives the execution of a service, handles any cancellations
and informs service requesters when a service has been completed. Interface Holons
are modularised by extracting all generic functionalities into their observer_ep or
informer_ep and allowing developers to add any context-specific details in the
Interface Module.

The UI developed for the case study managed to incorporate all the requirements
listed in section 4.5. The students who performed research at the sheep farm also
managed to use the UI without any major difficulties; however, a thorough
explanation of the UI was provided beforehand.

10.4 Discussion

This section will discuss the results from section 10.2 and 10.3, focussing on what
these results imply about the benefits and shortcomings of the extensions made to
the BASE architecture in this thesis.

The code reuse rates shown in section 10.2.1 indicate that the extensions managed
to encapsulate complexity into generic components. It is expected that when fewer
custom SLOC are required, development productivity would increase – as
confirmed by the short development times reported in section 10.2.3. The number
of generic components, together with DOHA, also result in short reconfiguration
times when new holons were added to the implementation. The Interface Holons
had the fewest SLOC, proving the effectiveness of using an Observer EP or
Informer EP for all of the generic functionalities and allowing developers to only
focus on the custom code required in the Interface Modules.

The fact that no generic or custom components failed while the implementation was
deployed shows a definite increase in reliability, which can mostly be attributed to
the supervisors, the Coordinator, and the failure handling capabilities built into the
generic components. However, it is expected that if the implementation was not
implemented in Erlang the same reliability might not have been possible, but this
would need to be confirmed in future work. The deployed implementation also had
no messages lost between BASE shells, which is crucial for holons to cooperate
efficiently. This also indicates that any cyber-physical interfacing messages
received by Observers would always reach the BASE shells of the holons observed,
enabling the BASE shells to reflect the state of their holons’ physical parts.

Scalability was a fundamental shortcoming of the original BASE architecture, but
the results shown in section 10.2.4 indicate a significant improvement in this regard.
The results indicate that the only limitation to the implementation’s scalability is

Stellenbosch University https://scholar.sun.ac.za

80

the available memory (RAM) on the computer. The author expects that with future
work, the amount of RAM needed per holon can most likely be decreased even
more, allowing BASE architecture implementations to be extremely scalable and
deployable to resource-constrained controllers (e.g. Raspberry-Pi). In normal
situations, service initialisation times between holons are barely influenced by the
number of holons in the system. This confirms decentralisation within the BASE
architecture and shows one of the benefits of having a decentralised architecture.
Again, this is enabled by the inherent concurrency of Erlang.

One possible shortcoming in the implementation’s UI is that it was developed for
users that have some knowledge on holonic systems and, to a lesser extent, for
general users. In future research more time should be spent on finding better ways
of navigating through the UI and also incorporating what general users of this
system would require of its UI. Intuitiveness is a difficult metric to evaluate, since
the user’s technical capabilities, experience with the UI and personal preferences
can bias the evaluation.

The above discussion highlights two important concepts that can also be used
outside of the BASE architecture in other holonic architectures. The first of these
findings is that service-oriented communication is the way forward for complex
systems that integrate many heterogeneous components. The most notable
assistance provided by service-oriented interactions within holonic architectures is
that it ensures less effort is spent on reconfiguring an existing system, when a new
holon is added to the system. Another advantage of service-oriented
communications in holonic systems is that they give more control to individual
holons to accept or reject requests from other holons, making them more
independent. Independence is one of the fundamental properties of holons
(Koestler, 1967).

The second holonic concept applicable outside of the BASE architecture is that
interfacing with the real world should be encapsulated in dedicated Interface
Holons. The biggest advantage gained by this is that new interfacing devices can be
added to a holonic system without requiring a single extra line of code in the rest of
the system’s holons. It is also easier to diagnose why data transfers between the
cyber and physical world fail, because Interface Holons have their own Biographies
that can be inspected.

Overall, the extensions made to the BASE architecture managed to address the
objective of this thesis, namely encapsulating the complexity of many
heterogeneous resources and enabling reconfigurability in the BASE architecture,
using holonic principles. The extended BASE architecture was proven to be highly
effective in the agricultural case study; however, this architecture would need to be
applied in more industries before it can truly be classified as a generic reference
architecture for complex, reconfigurable CPSs.

Stellenbosch University https://scholar.sun.ac.za

81

11 Conclusion and future work

This thesis developed an extended version of the BASE architecture for application
in complex and reconfigurable CPSs. To guide the development of the extensions
to the architecture, a set of requirements was formulated from a review of literature
on CPSs, RMSs and holonic systems and evaluation of the original BASE
architecture.

The extensions focussed on four aspects of the BASE architecture: the platform
management components, the internal architecture of the administration shell, the
cooperation between administration shells and the interfacing of cyber and real-
world components. For platform management, a service registration and discovery
mechanism, information loggers and a UI was developed. The refinements to the
BASE architecture administration shell included new components, standardised
plugins and the organisation of attribute and activity information. For the
cooperation of resources, service-oriented communication was supported by
generic and customisable plugin components. Cyber-physical interfacing was
enabled by, and encapsulated within, Interface Holons.

The extensions to the BASE architecture were evaluated by means of a case study
implementation. For the case study, the data and operations management of an
educational sheep farm was selected as a representative CPS with suitable
complexity and requirements for reconfigurability. The evaluation criteria were
built on the requirements that guided the development of the extensions and
included both quantitative and qualitative metrics. The evaluation revealed
important findings, namely:

• Development productivity can be increased by generalising as many
components as possible, to reduce the custom code base required.

• The extended BASE architecture is extremely reliable, since no generic or
custom components failed and no inter-shell messages were lost while the
implementation was deployed. The use of Erlang is considered critical to
this reliability.

• The extensions made to the BASE architecture helped to fully address the
original BASE architecture’s scalability shortcomings. Service-oriented
cooperation in the BASE architecture is not affected by the size of the
system.

• Service-oriented cooperation and the use of Interface Holons are expected
to greatly enhance other holonic reference architectures as well.

While this thesis represents notable progress towards applications of the BASE
architecture in complex, reconfigurable CPSs, there is need and potential for further
work on the following aspects:

Stellenbosch University https://scholar.sun.ac.za

82

• The integration of Logistics Holons – Logistics Holons, included in the
prominent holonic reference architectures (as Activity Holons in ARTI
(Valckenaers, 2019), Order Holons in PROSA (Van Brussel et al., 1998)
and Task Holons in ADACOR (Leitão & Restivo, 2006)), are responsible
for the coordination of services provided by Resource Holons to achieve a
specific goal (e.g. the production of a single product instance). If the BASE
architecture is to be applied as a control system (i.e. instead of purely an
information management system), the integration of Logistics Holons
should be explored further.

• Aggregation – while the thesis showed a basic example of aggregation by
aggregating sheep holons’ data into their respective groups, further work is
required to achieve enhanced standardisation and value addition with
regards to aggregation.

• Refinement of Interface Holons – the implications of splitting the
Interface Holons into Interface and Gateway Holons should be explored.
Interface Holons would still be used as the BASE shells for interfacing
devices, e.g. sensors. Gateway Holons would be used to represent MQTT
brokers, Hypertext Transfer Protocol (HTTP) Servers etc. that are used to
communicate with the physical parts of the Interface Holons.

• Refinement of the UI – the UI was usable, but it requires users to
understand how holonic systems work. Research is required on how a
holonic system’s UI can make it easier for general users to use the system.

• Deployment to the cloud – in some sense the case study was deployed to
the cloud, since it was installed on a remote computer. However, many other
benefits of the cloud like Big Data, automatic scaling, data security etc. can
still be utilised in the BASE architecture. Thus, future work on deploying a
BASE architecture implementation in the cloud is required.

• Comparison with other HCAs – The BASE architecture as an
implementation architecture for holons in PROSA, ADACOR and ARTI
should be compared with POLLUX (Jimenez, Bekrar, Zambrano-Rey,
Trentesaux & Leitão, 2017) as an implementation architecture for holons in
ORCA (Pach, Berger, Bonte & Trentesaux, 2014).

The realisation of the Industry 4.0 vision is expected to rely heavily on the
development and integration of CPSs. The BASE architecture, in its extended form
as developed in this thesis, leverages holonic principles and a powerful software
platform. As such, the BASE architecture holds great potential for the development
of complex, reconfigurable CPSs that are expected to emerge in multiple domains.

Stellenbosch University https://scholar.sun.ac.za

83

12 References

Antonopoulos, K., Panagiotou, C., Antonopoulos, C.P. & Voros, N.S. 2019.A-
FARM Precision Farming CPS Platform. in 10th International Conference on

Information, Intelligence, Systems and Applications.

Armstrong, J. (2003). Concurrency oriented programming in Erlang. Prentice Hall.

Babiceanu, R. & Seker, R., 2016. Big Data and virtualization for manufacturing
cyber-physical systems: A survey of the current status and future outlook.
Computers in Industry, 81:128-137.

Banks, A., Briggs, E., Borgendale, K. & Gupta, R., 2021. MQTT Version 5.0.
[Online]. Available: http://docs.oasis-open.org/mqtt/mqtt/v5.0/csprd02/mqtt-v5.0-
csprd02.html [Accessed: 5 July 2021].

Bellifemine, F., Caire, G. & Greenwood, G., 2007. Developing Multi-Agent Systems

with JADE. John Wiley & Sons, Ltd.

Bengufarm. 2015. [Online] Available: https://www.bengufarm.co.za [Accessed: 23
June 2021].

Bhrugubanda, M., 2015. A Review on Applications of Cyber Physical
Systems. International Journal of Innovative Science, Engineering & Technology,
2(6):728-730.

Bussmann, S. 1998. An agent-oriented architecture for holonic manufacturing
control. in 1st International Workshop on IMS. Lausanne: 1‑12.

Caggiano, A., 2018. Cloud-based manufacturing process monitoring for smart
diagnosis services. International Journal of Computer Integrated Manufacturing,
31(7):612-623.

Cámara, L., 2021. Nine Nines. [Online]. Available: https://ninenines.eu/ [Accessed:
5 July 2021].

Cardin, O., 2019. Classification of cyber-physical production systems applications:
Proposition of an analysis framework. Computers in Industry, 104:11-21.

Carreras Guzman, N., Wied, M., Kozine, I. & Lundteigen, M., 2019.
Conceptualizing the key features of cyber‐physical systems in a multi‐layered
representation for safety and security analysis. Systems Engineering 23(2):189-210.

Cesarini, F., Pappalardo, V. & Santoro, C., 2008. A Comparative Evaluation of
Imperative and Functional Implementations of the IMAP Protocol. Proceedings of

the 7th ACM SIGPLAN Workshop on Erlang, 29-40.

Stellenbosch University https://scholar.sun.ac.za

http://docs.oasis-open.org/mqtt/mqtt/v5.0/csprd02/mqtt-v5.0-csprd02.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/csprd02/mqtt-v5.0-csprd02.html
https://www.bengufarm.co.za/
https://ninenines.eu/

84

Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M. & Yin, B., 2018. Smart Factory
of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access,
6:6505-6519.

Chen, G., Wang, P., Feng, B., Li, Y. & Liu, D., 2019. The framework design of
smart factory in discrete manufacturing industry based on cyber-physical system.
International Journal of Computer Integrated Manufacturing, 33(1):79-101.

Chen, H., 2017. Applications of Cyber-Physical System: A Literature
Review. Journal of Industrial Integration and Management, 02(03): 1750012.

Cheng, G., Liu, L., Qiang, X. & Liu, Y., 2016. Industry 4.0 Development and
Application of Intelligent Manufacturing. 2016 International Conference on

Information System and Artificial Intelligence (ISAI), 407-410

Cimino, C., Negri, E. & Fumagalli, L., 2019. Review of digital twin applications in

manufacturing. Computers in Industry, 113:103-130.

Derigent, W., Cardin, O. & Trentesaux, D. 2020. Industry 4.0: contributions of
holonic manufacturing control architectures and future challenges. Journal of

Intelligent Manufacturing.

Erlang -- ets. 2021. Available: https://erlang.org/doc/man/ets.html [Accessed: 1
May 2021].

Etxeberria-Agiriano, I., Calvo, I., Noguero, A. & Zulueta, E., 2012. Configurable
cooperative middleware for the next generation of CPS. 2012 9th International

Conference on Remote Engineering and Virtual Instrumentation. 1-5.

Facchinetti, T. & Della Vedova, M., 2011. Real-Time Modeling for Direct Load
Control in Cyber-Physical Power Systems. IEEE Transactions on Industrial

Informatics, 7(4):689-698.

FIPA Contract Net Interaction Protocol Specification. 2021. Available:
http://www.fipa.org/specs/fipa00029/XC00029F.html. [Accessed: 10 May 2021].

Gai, K. Qiu, M., Zhao, H., Sun, X. 2018. Resource management in sustainable
cyber-physical systems using heterogeneous cloud computing. IEEE Transactions

on Sustainable Computing, 3(2):60-72.

Ghobakhloo, M., 2018. The future of manufacturing industry: a strategic roadmap
toward Industry 4.0. Journal of Manufacturing Technology Management,
29(6):910-936.

Giret, A. & Botti, V., 2004. Holons and agents. Journal of Intelligent

Manufacturing, 15(5):645‑659.

Stellenbosch University https://scholar.sun.ac.za

http://www.fipa.org/specs/fipa00029/XC00029F.html.

85

Gunes, V., Peter, S., Givargis, T. & Vahid, F., 2014. A Survey on Concepts,
Applications, and Challenges in Cyber-Physical Systems. KSII Transactions on

Internet and Information Systems, 8(12):134-159.

Heiss, M., Oertl, A., Sturm, M., Palensky, P., Vielguth, S. & Nadler, F., 2015.
Platforms for industrial cyber-physical systems integration: contradicting
requirements as drivers for innovation. 2015 Workshop on Modeling and

Simulation of Cyber-Physical Energy Systems (MSCPES), 1-8.

Iarovyi, S., Mohammed, W., Lobov, A., Ferrer, B. & Lastra, J., 2016. Cyber–
Physical Systems for Open-Knowledge-Driven Manufacturing Execution Systems.
Proceedings of the IEEE, 104(5):1142-1154.

Jabeur, N., Sahli, N. & Zeadally, S., 2015. Enabling Cyber Physical Systems with
Wireless Sensor Networking Technologies, Multiagent System Paradigm, and
Natural Ecosystems. Mobile Information Systems, 2015:1-15.

Jimenez, J.F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., Leitão P., 2017,
Pollux: a dynamic hybrid control architecture for flexible job shop systems,
International Journal of Production Research, 55(15):4229-4247.

Khorrami, F., Krishnamurthy, P. & Karri, R., 2016. Cybersecurity for Control
Systems: A Process-Aware Perspective. IEEE Design & Test, 33(5):75-83.

Kim, K. & Kumar, P., 2013. An overview and some challenges in cyber-physical
systems. Journal of the Indian Institute of Science, 93(3):341-352.

Koestler, A., 1967. The Ghost in the Machine. London: Arkana Books.

Koren, Y., Gu, X. & Guo, W., 2018. Reconfigurable manufacturing systems:
Principles, design, and future trends. Frontiers of Mechanical Engineering,
13(2):121-136.

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G. & Van
Brussel, H., 1999. Reconfigurable Manufacturing Systems. CIRP Annals,
48(2):527-540.

Kruger, K. & Basson, A.H., 2018. Evaluation criteria for holonic control
implementations in manufacturing systems. International Journal of Computer

Integrated Manufacturing, 32(2):148-158.

Lee, E.A. 2015. The past, present and future of cyber-physical systems: A focus on
models. Sensors (Basel). 15(3):4837–4869.

Lee, H., Ryu, K. & Cho, Y., 2017. A Framework of a Smart Injection Molding
System Based on Real-time Data. Procedia Manufacturing, 11:1004-1011.

Stellenbosch University https://scholar.sun.ac.za

86

Lee, J., Bagheri B. & Kao, H.A. 2015. A cyber-physical systems architecture for
industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18–23.

Lee, J., Jin, C. & Bagheri, B., 2017. Cyber physical systems for predictive
production systems. Production Engineering, 11(2):155-165.

Leitao, P., Colombo, A. & Restivo, F., 2005. ADACOR: A Collaborative
Production Automation and Control Architecture. IEEE Intelligent Systems,
20(1):58-66.

MaQiaTTo. 2021. [Online] Available: https://www.maqiatto.com/ [Accessed: 5
July 2021].

Martinsen, K., Haga, E., Dransfeld, S., & Watterwald, L.E., 2007. Robust, Flexible
and Fast Reconfigurable Assembly System for Automotive Air-brake Couplings.
Intelligent Computation in Manufacturing Engineering, 6.

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G.,
Sauer, O., Schuh, G., Sihn, W. & Ueda, K., 2016. Cyber-physical systems in

manufacturing. CIRP Annals, 65(2):621-641.

Mourtzis, D. & Vlachou, E., 2018. A cloud-based cyber-physical system for
adaptive shop-floor scheduling and condition-based maintenance. Journal of

Manufacturing Systems, 47:179-198.

Napoleone, A., Macchi, M. and Pozzetti, A., 2020. A review on the characteristics
of cyber-physical systems for the future smart factories. Journal of Manufacturing

Systems, 54:305-335.

Ngrok. 2021. [Online] Available: https://ngrok.com/ [Accessed: 5 July 2021].

Otto, J., Vogel-Heuser, B. & Niggemann, O., 2018. Automatic Parameter
Estimation for Reusable Software Components of Modular and Reconfigurable
Cyber-Physical Production Systems in the Domain of Discrete Manufacturing.
IEEE Transactions on Industrial Informatics, 14(1):275-282.

Özkiziltan, D. & Hassel, A., 2020. Humans versus Machines: An Overview of
Research on the Effects of Automation of Work. SSRN Electronic Journal

[Electronic]. Available: https://dx.doi.org/10.2139/ssrn.3789992 [Accessed: 3
March 2021].

Pach, C., Berger, T., Bonte, T., Trentesaux, D., 2014. ORCA-FMS: a dynamic
architecture for the optimized and reactive control of flexible manufacturing
scheduling. Computers in Industry, 65:706-720.

Stellenbosch University https://scholar.sun.ac.za

https://dx.doi.org/10.2139/ssrn.3789992

87

Penas, O., Plateaux, R., Patalano, S. & Hammadi, M., 2017. Multi-scale approach
from mechatronic to Cyber-Physical Systems for the design of manufacturing
systems. Computers in Industry, 86:52-69.

Pirvu, B., Zamfirescu, C. & Gorecky, D., 2016. Engineering insights from an
anthropocentric cyber-physical system: A case study for an assembly station.
Mechatronics, 34:147-159.

Ramis Ferrer, B.R., Iarovyi, S., Lobov, A., Martinez Lastra, J. & Mohammed, W.,
2020. Exemplifying the Potentials of Web Standards for Automation Control in
Manufacturing Systems. International Journal of Simulation: Systems, Science &

Technology, 17(33):262-268

Redelinghuys, A.J.H., Basson, A.H. & Kruger, K., 2019. A six-layer architecture
for the digital twin: a manufacturing case study implementation. Journal of

Intelligent Manufacturing, 31(6):1383-1402.

Ribeiro, L. & Bjorkman, M., 2018. Transitioning From Standard Automation
Solutions to Cyber-Physical Production Systems: An Assessment of Critical
Conceptual and Technical Challenges. IEEE Systems Journal, 12(4):3816-3827.

Russo, S., 2021. Service-Oriented Architecture. [Online] Umsl.edu. Available:
https://www.umsl.edu/~sauterv/analysis/F2015/Service%20Oriented%20Architect
ure.html [Accessed: 5 March 2021].

Sanderson, D., Chaplin, J. & Ratchev, S., 2018. Conceptual Framework for
Ubiquitous Cyber-Physical Assembly Systems in Airframe Assembly. IFAC-

PapersOnLine, 51(11):417-422.

Savor, T. & Seviora, R.E. 1995. Improving the Efficiency of Supervision by
Software. in Proceedings of the Real-Time Technology and Applications
Symposium (RTAS ’95). IEEE Computer Society, USA.

Scholze, S., Barata, J. & Stokic, D., 2017. Holistic Context-Sensitivity for Run-
Time Optimization of Flexible Manufacturing Systems. Sensors, 17(3):455.

Shcherbakov, M., Glotov, A. & Cheremisinov, S., 2019. Proactive and Predictive
Maintenance of Cyber-Physical Systems. Studies in Systems, Decision and Control,
263-278.

Smith, R. G., 1980. The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver. Trans. Computers, 29(12):1104‑1113.

Sousa, P., Ramos, C. & Neves, J., 2007. Scheduling in Holonic Manufacturing
Systems. Springer Series in Advanced Manufacturing, 167-190.

Stellenbosch University https://scholar.sun.ac.za

https://www.umsl.edu/~sauterv/analysis/F2015/Service%20Oriented%20Architecture.html
https://www.umsl.edu/~sauterv/analysis/F2015/Service%20Oriented%20Architecture.html

88

Sparrow, D. 2021. An architecture for the integration of human workers into an
Industry 4.0 manufacturing environment. Unpublished doctoral dissertation.
Stellenbosch: University of Stellenbosch.

Sparrow, D., Kruger, K. & Basson, A.H. 2021. An architecture to facilitate the
integration of human workers in Industry 4.0 environments. International Journal

of Production Research, 1-19

Sparrow, D. 2020. An architecture for the integration of human workers into an
industry 4.0 manufacturing environment: Lab Report. [Online]. Available:
https://sun.ac.za/mad [Accessed: 8 June 2020].

Sparrow, D., Kruger, K., Basson, A.H., 2020. Activity Lifecycle Description for
Communication in Human-Integrated Industry 4.0 Environments. in Service

Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the

Future.

Svetlík, J., 2020. Modularity of Production Systems. in Ľubomír Šooš & Jiri Marek.
Machine Tools. Rijeka: IntechOpen.

Tao, F. & Qi, Q., 2019. New IT Driven Service-Oriented Smart Manufacturing:
Framework and Characteristics. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 49(1):81-91.

Tay, S.I., Lee,T.C., Hamid, N.A. & Ahmad, A.N., 2018. An Overview of Industry
4.0: Definition, Components, and Government Initiatives. Journal of Advanced

Research in Dynamical and Control Systems, 10(14):1379-1387.

Tedeschi, S., Rodrigues, D., Emmanouilidis, C., Erkoyuncu, J., Roy, R. & Starr, A.,
2018. A cost estimation approach for IoT modular architectures implementation in
legacy systems. Procedia Manufacturing, 19:103-110.

Thoben, K., Wiesner, S. & Wuest, T., 2017. “Industrie 4.0” and Smart
Manufacturing – A Review of Research Issues and Application Examples.
International Journal of Automation Technology, 11(1):4-16.

Tran, N., Park, H., Nguyen, O. & Hoang, T., 2019. Development of a Smart Cyber-
Physical Manufacturing System in the Industry 4.0 Context. Applied Sciences,
9(16):3325.

Twilio. 2021. Twilio - Communication APIs for SMS, Voice, Video and

Authentication. [Online]. Available: https://www.twilio.com/ [Accessed: 1 June
2021].

Valckenaers, P. 2019. ARTI Reference Architecture – PROSA Revisited. in Service

Orientation in Holonic and Multi-Agent Manufacturing, 803.

Stellenbosch University https://scholar.sun.ac.za

https://sun.ac.za/mad
https://www.twilio.com/

89

Van Brussel, H., J. Wyns, P. Valckenaers, L. Bongaerts & Peeters. P. 1998.
Reference Architecture for Holonic Manufacturing Systems: PROSA. Computers

in Industry 37: 255–274.

Vonage. 2021. [Online] Available: https://www.vonage.com/ [Accessed: 5 July
2021].

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. North Carolina: Instrumentation, Systems and Automation
Society, ISA.

Wan, J., Yan, H., Suo, H. & Li, F., 2011. Advances in Cyber-Physical Systems
Research. KSII Transactions on Internet and Information Systems, 5(11).

Yuan, X., Anumba, C. & Parfitt, K., 2015. Review of the Potential for a Cyber-
Physical System Approach to Temporary Structures Monitoring. International

Journal of Architectural Research: ArchNet-IJAR, 9(3):26.

Zhou, J., Zhou, Y., Wang, B. & Zang, J., 2019. Human–Cyber–Physical Systems
(HCPSs) in the Context of New-Generation Intelligent Manufacturing.
Engineering, 5(4):624-636.

Stellenbosch University https://scholar.sun.ac.za

90

Appendix A Coordinator start-up
operations and variables

This appendix discusses the start-up operations and variables of the Coordinator,
the new core component added to the BASE architecture digital administration
shell.

Start-up operations

The order of steps implemented by the Coordinator at start-up are:

1. Start core components: Start the BASE shell’s internal supervisors. Each
supervisor will start up its reception and storage component, except for the
Communication Manager’s supervisor which will only start its reception,
and the Plugin Supervisor which will not be started yet.

2. Inform core components about each other: Wait for each reception and
storage component to register themselves (including their unique process
address/name) with the Coordinator, and then share these addresses with the
core components so that they know of each other.

3. Start plugins: Start up the plugin supervisor, which will start up all the
plugins in the BASE shell’s plugin configuration file (section 5.6.2). Each
plugin must register itself with the Coordinator to be able to interact with
the rest of the BASE shell and will receive the addresses of the BASE shell’s
five core receptions upon registration. The plugin supervisor would inform
the Coordinator if a plugin failed to start so that the coordinator does not
wait for that plugin.

4. Share plugin addresses with the core components: Once all the plugins
have either registered themselves or failed to start, the Coordinator shares
all the plugin addresses with all the core components so that the core
components know which processes are allowed to communicate with them
(concept of BASE shell privacy discussed in section 5.5).

Stellenbosch University https://scholar.sun.ac.za

91

Variables

CO1. core_addresses – contains the addresses of the core components in
a key-value format with the keys being bio_recep, bio_storage, atr_recep,
atr_storage, sched_recep, sched_storage, exe_recep, exe_storage,
comms_recep, and the values being the process, goroutine or thread unique
addresses/names.

CO2. plugins – contains the addresses of the active plugins in a key-value
format with the keys being the plugin module names and the values being
either a unique address/name or “failed” for when the active plugin could
not be started or failed too many times.

CO3. instance_sup – the unique address/name of the instance’s
supervisor process.

CO4. plugins_sup – the unique address/name of the plugin supervisor
process under which all active plugins are spawned.

Stellenbosch University https://scholar.sun.ac.za

92

Appendix B Standard activity data
structures

Table 7 contains a summary of the data structures of standard activities in the
extended BASE architecture. These activities were discussed in more detail in
section 5.7. Each bullet point represents a data field. The numbers in brackets next
to some of the data fields indicate the section numbers in which the data fields are
explained in more detail.

Table 7: Data structures of standard activities

 Stage 1 Data Stage 2 Data

SPA
• Service Contract (6.3) • Pending Proposals (6.3)

• Proposals (6.3)
• Sub-Contracts (6.3)
• Results (6.3)

RAA
• Case specific details • Pending Proposals (6.3)

• Proposals (6.3)
• Sub-Contracts (6.3)
• Results (6.3)

RDAA
• Observer ID
• Interfacing Details
➢ Identifier Type (7.3.2)
➢ Topics (7.3.3)

• Value
• Extra information

Stellenbosch University https://scholar.sun.ac.za

93

Appendix C Contract Net Protocol applied
to holonic systems

Figure 40 shows a sequence diagram, illustrating how the CNP is applied in a
holonic system. The CNP is initialised by a service requesting holon, who sends a
CFP to all possible service provision holons. These service provision holons can
send a proposal if they are interested in providing the service or refuse if they are
not interested. The service requesting holon selects the most suitable service
provision holon among the proposals and accepts its proposal, while rejecting all
the other proposals. Hereafter the service provision holon can send as many inform-

result messages as is necessary. When the service provision holon fails to provide
the service it sends a failure message. When the service provision holon has
successfully completed providing a service, it sends an inform-done message.

Figure 40: Contract net protocol - figure adapted from the FIPA CNP

diagram (FIPA Contract Net Interaction Protocol Specification, 2021)

Stellenbosch University https://scholar.sun.ac.za

9
4

A
p

p
en

d
ix

 D

Fe
ed

in
g

se
ns

or
 In

te
rf

ac
e

M
od

ul
e

Th
is

ap
pe

nd
ix

 s
ho

w
s

th
e

so
ur

ce
 c

od
e

of
 th

e
fe

ed
in

g
se

ns
or

’s
 In

te
rfa

ce
 M

od
ul

e,
 w

hi
ch

 h
ad

 to
 c

on
ne

ct
 a

s
an

 M
Q

TT
 c

lie
nt

 to
 a

 c
lo

ud

M
Q

T
T

 b
ro

ke
r

to
 r

ec
ei

ve
 d

at
a

fr
om

 t
he

 p
hy

si
ca

l
fe

ed
in

g
se

ns
or

 o
n

th
e

ed
uc

at
io

na
l

sh
ee

p
fa

rm
.

 -
m
o
d
u
l
e
(
r
f
i
d
_
s
h
e
e
p
_
f
e
e
d
e
r
_
i
n
t
e
r
f
a
c
e
_
m
o
d
)
.

-
d
e
f
i
n
e
(
T
O
P
I
C
,
<
<
"
d
j
v
n
i
e
k
e
r
k
@
s
u
n
.
a
c
.
z
a
/
p
i
_
t
e
m
p
"
>
>
)
.
%
c
h
a
n
g
e

t
o

<
<
"
d
j
v
n
i
e
k
e
r
k
@
s
u
n
.
a
c
.
z
a
/
r
f
i
d
_
s
h
e
e
p
_
f
e
e
d
e
r
"
>
>

f
o
r

r
e
a
l

t
h
i
n
g
.

p
i
_
t
e
m
p

j
u
s
t

f
o
r

t
e
s
t
i
n
g

w
i
t
h

o
w
n

r
a
s
p
b
e
r
r
y

p
i

-
d
e
f
i
n
e
(
R
E
P
L
Y
_
T
O
P
I
C
,
<
<
"
d
j
v
n
i
e
k
e
r
k
@
s
u
n
.
a
c
.
z
a
/
b
f
_
a
c
k
"
>
>
)
.

-
d
e
f
i
n
e
(
B
R
O
K
E
R
,
"
m
a
q
i
a
t
t
o
.
c
o
m
"
)
.

-
d
e
f
i
n
e
(
P
O
R
T
,
1
8
8
3
)
.

%
%

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

%
%

A
P
I

f
u
n
c
t
i
o
n
s

%
%

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

-
e
x
p
o
r
t
(
[
g
e
t
_
g
a
t
e
w
a
y
_
d
e
t
a
i
l
s
_
a
n
d
_
m
i
n
_
t
i
m
e
_
b
e
t
w
e
e
n
_
f
a
i
l
u
r
e
s
/
1
,
s
t
a
r
t
_
i
n
t
e
r
f
a
c
e
/
3
,
v
a
l
i
d
_
i
d
e
n
t
i
f
i
e
r
/
2
,
g
e
t
_
i
n
t
e
r
f
a
c
e
_
i
n
f
o
/
1
]
)
.

%
%

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

%
%

I
n
t
e
r
n
a
l

f
u
n
c
t
i
o
n
s

%
%

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

g
e
t
_
g
a
t
e
w
a
y
_
d
e
t
a
i
l
s
_
a
n
d
_
m
i
n
_
t
i
m
e
_
b
e
t
w
e
e
n
_
f
a
i
l
u
r
e
s
(
_
I
d
)
-
>
%
%
u
s
e
d

b
y

s
e
n
s
o
r
_
e
p

{
o
k
,
#
{
<
<
"
I
n
t
e
r
f
a
c
e

t
y
p
e
"
>
>
=
>
"
M
Q
T
T
"
,
<
<
"
B
r
o
k
e
r
"
>
>
=
>
?
B
R
O
K
E
R
,
<
<
"
T
C
P

P
o
r
t
"
>
>
=
>
?
P
O
R
T
}
,
1
0
0
0
0
}
.

g
e
t
_
i
n
t
e
r
f
a
c
e
_
i
n
f
o
(
_
I
d
)
-
>
%
%
u
s
e
d

b
y

s
e
n
s
o
r
s
_
s
e
r
v
_
p
r
o
v
_
m
o
d

{
o
k
,
T
o
p
i
c
s
}

=

c
p
_
i
n
t
e
r
f
a
c
e
_
c
r
e
a
t
i
o
n
:
a
d
d
_
o
b
s
e
r
v
e
r
_
t
o
p
i
c
(
#
{
}
,

"
E
a
t
i
n
g
"
,

9
5
,

"
g
"
)
,

{
o
k
,
R
e
s
o
u
r
c
e
s
}

=

c
p
_
i
n
t
e
r
f
a
c
e
_
c
r
e
a
t
i
o
n
:
a
d
d
_
t
o
_
r
e
s
o
u
r
c
e
s
(
o
b
s
e
r
v
e
r
,

#
{
}
,

"
S
h
e
e
p
"
,

a
l
l
,

"
E
I
D
"
,

T
o
p
i
c
s
)
,

{
o
k
,
T
o
p
i
c
s
2
}

=

c
p
_
i
n
t
e
r
f
a
c
e
_
c
r
e
a
t
i
o
n
:
a
d
d
_
o
b
s
e
r
v
e
r
_
t
o
p
i
c
(
T
o
p
i
c
s
,

"
A
m
b
i
e
n
t

t
e
m
p
e
r
a
t
u
r
e
"
,

9
9
,

"
C
"
)
,

{
o
k
,
R
e
s
o
u
r
c
e
s
2
}

=

c
p
_
i
n
t
e
r
f
a
c
e
_
c
r
e
a
t
i
o
n
:
a
d
d
_
t
o
_
r
e
s
o
u
r
c
e
s
(
o
b
s
e
r
v
e
r
,
R
e
s
o
u
r
c
e
s
,

"
H
o
u
s
e
s
"
,

[
<
<
"
R
F
I
D

F
e
e
d
e
r

B
u
i
l
d
i
n
g
"
>
>
]
,

"
L
o
c
a
t
i
o
n
"
,

T
o
p
i
c
s
2
)
,

{
"
P
r
i
m
a
r
y
:
M
e
a
s
u
r
e
s

h
o
w

m
u
c
h

i
n
d
i
v
i
d
u
a
l

s
h
e
e
p

e
a
t
.

S
e
c
o
n
d
a
r
y
:
M
e
a
s
u
r
e
s

a
m
b
i
e
n
t

t
e
m
p
e
r
a
t
u
r
e

o
f

b
u
i
l
d
i
n
g

c
o
n
t
a
i
n
i
n
g

r
f
i
d

f
e
e
d
i
n
g

s
e
n
s
o
r
"
,
R
e
s
o
u
r
c
e
s
2
}
.

 v
a
l
i
d
_
i
d
e
n
t
i
f
i
e
r
(
"
E
I
D
"
,
I
d
e
n
t
i
f
i
e
r
)
-
>

c
a
s
e

c
u
s
t
o
m
_
e
r
l
a
n
g
_
f
u
n
c
t
i
o
n
s
:
i
s
_
b
i
n
a
r
y
_
s
t
r
i
n
g
(
I
d
e
n
t
i
f
i
e
r
)

o
f

t
r
u
e
-
>

t
r
u
e
;

_
-
>

f
a
l
s
e

e
n
d
;

v
a
l
i
d
_
i
d
e
n
t
i
f
i
e
r
(
"
L
o
c
a
t
i
o
n
"
,
I
d
e
n
t
i
f
i
e
r
)
-
>

c
a
s
e

c
u
s
t
o
m
_
e
r
l
a
n
g
_
f
u
n
c
t
i
o
n
s
:
i
s
_
b
i
n
a
r
y
_
s
t
r
i
n
g
(
I
d
e
n
t
i
f
i
e
r
)

o
f

Stellenbosch University https://scholar.sun.ac.za

9
5

t
r
u
e
-
>

t
r
u
e
;

_
-
>

f
a
l
s
e

e
n
d
.

 s
t
a
r
t
_
i
n
t
e
r
f
a
c
e
(
M
y
P
l
u
g
i
n
,
_
M
y
I
d
,
R
e
c
e
p
t
i
o
n
M
a
p
)
-
>

{
P
i
d
,
_
R
e
f
}

=

s
p
a
w
n
_
m
o
n
i
t
o
r
(
f
u
n
(
)
-
>
s
i
m
u
l
a
t
e
(
M
y
P
l
u
g
i
n
,
1
0
0
)
e
n
d
)
,

{
o
k
,
P
i
d
}
.

 %
%
I
n
t
e
r
n
a
l

s
t
a
r
t
_
e
m
q
t
t
(
M
y
P
l
u
g
i
n
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)
-
>

i
o
:
f
o
r
m
a
t
(
"
\
n
S
t
a
r
t
i
n
g

e
m
q
t
t
"
)
,

{
o
k
,

C
o
n
n
P
i
d
}

=

e
m
q
t
t
:
s
t
a
r
t
_
l
i
n
k
(
[
{
h
o
s
t
,
?
B
R
O
K
E
R
}
,
{
u
s
e
r
n
a
m
e
,
"
d
j
v
n
i
e
k
e
r
k
@
s
u
n
.
a
c
.
z
a
"
}
,
{
p
a
s
s
w
o
r
d
,
"
B
A
S
E
_
m
e
e
t
s
_
d
a
i
s
y
"
}
]
)
,

u
n
l
i
n
k
(
C
o
n
n
P
i
d
)
,
%
d
o

n
o
t

w
a
n
t

t
h
i
s

p
r
o
c
e
s
s

t
o

f
a
i
l

w
i
t
h

C
o
n
n
P
i
d

o
k

=

t
r
y
_
t
o
_
c
o
n
n
e
c
t
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)
,

S
u
b
O
p
t
s

=

[
{
q
o
s
,

1
}
]
,

{
o
k
,

_
P
r
o
p
s
,

_
R
e
a
s
o
n
C
o
d
e
s
}

=

e
m
q
t
t
:
s
u
b
s
c
r
i
b
e
(
C
o
n
n
P
i
d
,

#
{
}
,

[
{
<
<
"
d
j
v
n
i
e
k
e
r
k
@
s
u
n
.
a
c
.
z
a
/
p
i
_
t
e
m
p
"
>
>
,

S
u
b
O
p
t
s
}
]
)
,

r
e
c
e
i
v
e
_
d
a
t
a
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
b
a
s
e
_
t
i
m
e
:
n
o
w
(
)
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)
.

t
r
y
_
t
o
_
c
o
n
n
e
c
t
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)
-
>

i
o
:
f
o
r
m
a
t
(
"
\
n
T
r
y
i
n
g

t
o

c
o
n
n
e
c
t

t
o

~
p
"
,
[
?
B
R
O
K
E
R
]
)
,

%
i
o
:
f
o
r
m
a
t
(
"
\
n
C
o
n
n
P
i
d

a
l
i
v
e

~
p
"
,
[
i
s
_
p
r
o
c
e
s
s
_
a
l
i
v
e
(
C
o
n
n
P
i
d
)
]
)
,

c
a
s
e

i
s
_
p
r
o
c
e
s
s
_
a
l
i
v
e
(
C
o
n
n
P
i
d
)

o
f

t
r
u
e
-
>

R
e
s

=

e
m
q
t
t
:
c
o
n
n
e
c
t
(
C
o
n
n
P
i
d
)
,

c
a
s
e

R
e
s

o
f

{
o
k
,
_
P
r
o
p
s
}
-
>

i
o
:
f
o
r
m
a
t
(
"
\
n
C
o
n
n
e
c
t
e
d
"
)
,

c
u
s
t
o
m
_
e
r
l
a
n
g
_
f
u
n
c
t
i
o
n
s
:
m
y
G
e
n
S
e
r
v
C
a
l
l
(
M
y
P
l
u
g
i
n
,

s
e
n
s
o
r
_
r
u
n
n
i
n
g
)
,

o
k
;

_
-
>

i
o
:
f
o
r
m
a
t
(
"
\
n
R
e
s

w
h
e
n

t
r
y
i
n
g

t
o

c
o
n
n
e
c
t

t
o

~
p
:

~
p
"
,
[
?
B
R
O
K
E
R
,
R
e
s
]
)
,

t
i
m
e
r
:
s
l
e
e
p
(
5
0
0
0
)
,

i
o
:
f
o
r
m
a
t
(
"
\
n
G
o
n
n
a

r
e
s
t
a
r
t
"
)
,

t
r
y
_
t
o
_
c
o
n
n
e
c
t
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)

e
n
d
;

_
-
>

s
t
a
r
t
_
e
m
q
t
t
(
M
y
P
l
u
g
i
n
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)

e
n
d
.

%
6
0

Stellenbosch University https://scholar.sun.ac.za

9
6

r
e
m
o
v
e
_
a
l
l
_
s
p
a
c
e
s
(
R
a
w
E
I
D
)
-
>

N
e
w
S

=

r
e
:
r
e
p
l
a
c
e
(
R
a
w
E
I
D
,

"
(
\
\
s
)
"
,

"
"
,

[
g
l
o
b
a
l
,
{
r
e
t
u
r
n
,
l
i
s
t
}
]
)
,

l
i
s
t
_
t
o
_
b
i
n
a
r
y
(
N
e
w
S
)
.

 r
e
c
e
i
v
e
_
d
a
t
a
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
L
a
s
t
T
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)
-
>

%
i
o
:
f
o
r
m
a
t
(
"
\
n
W
a
i
t
i
n
g

f
o
r

p
a
c
k
a
g
e
s

f
r
o
m

m
a
q
i
a
t
t
o
"
)
,

r
e
c
e
i
v
e

{
d
i
s
c
o
n
n
e
c
t
,

R
e
a
s
o
n
C
o
d
e
,

P
r
o
p
e
r
t
i
e
s
}

-
>

i
o
:
f
o
r
m
a
t
(
"
\
n
N
E
T
W

E
R
R
O
R
:

R
e
c
v

a

D
I
S
C
O
N
N
E
C
T

p
a
c
k
e
t

f
r
o
m

~
p

f
o
r

r
f
i
d
_
f
e
e
d
e
r

-

R
e
a
s
o
n
C
o
d
e
:

~
p
,

P
r
o
p
e
r
t
i
e
s
:

~
p
~
n
"
,

[
?
B
R
O
K
E
R
,
R
e
a
s
o
n
C
o
d
e
,

P
r
o
p
e
r
t
i
e
s
]
)
,

c
u
s
t
o
m
_
e
r
l
a
n
g
_
f
u
n
c
t
i
o
n
s
:
m
y
G
e
n
S
e
r
v
C
a
l
l
(
M
y
P
l
u
g
i
n
,

{
s
e
n
s
o
r
_
d
o
w
n
,
l
i
s
t
s
:
f
l
a
t
t
e
n
(
i
o
_
l
i
b
:
f
o
r
m
a
t
(
"
~
p
"
,

[
R
e
a
s
o
n
C
o
d
e
]
)
)
}
)
,

t
r
y
_
t
o
_
c
o
n
n
e
c
t
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)
,

S
u
b
O
p
t
s

=

[
{
q
o
s
,

1
}
]
,

{
o
k
,

_
P
r
o
p
s
,

_
R
e
a
s
o
n
C
o
d
e
s
}

=

e
m
q
t
t
:
s
u
b
s
c
r
i
b
e
(
C
o
n
n
P
i
d
,

#
{
}
,

[
{
<
<
"
d
j
v
n
i
e
k
e
r
k
@
s
u
n
.
a
c
.
z
a
/
p
i
_
t
e
m
p
"
>
>
,

S
u
b
O
p
t
s
}
]
)
,

r
e
c
e
i
v
e
_
d
a
t
a
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
L
a
s
t
T
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)
;

{
p
u
b
l
i
s
h
,

P
U
B
L
I
S
H
}

-
>

P
a
y
L
o
a
d

=

m
a
p
s
:
g
e
t
(
p
a
y
l
o
a
d
,
P
U
B
L
I
S
H
)
,

%
i
o
:
f
o
r
m
a
t
(
"
\
n
R
e
c
v

a

P
U
B
L
I
S
H

p
a
y
l
o
a
d
:

~
p
~
n
"
,

[
P
a
y
L
o
a
d
]
)
,

P
a
y
L
o
a
d
M
a
p

=

j
s
o
n
e
:
d
e
c
o
d
e
(
P
a
y
L
o
a
d
,
[
{
o
b
j
e
c
t
_
f
o
r
m
a
t
,

m
a
p
}
]
)
,

R
a
w
E
I
D

=

m
a
p
s
:
g
e
t
(
<
<
"
e
i
d
"
>
>
,
P
a
y
L
o
a
d
M
a
p
)
,

E
I
D

=

r
e
m
o
v
e
_
a
l
l
_
s
p
a
c
e
s
(
b
i
n
a
r
y
_
t
o
_
l
i
s
t
(
R
a
w
E
I
D
)
)
,

S
t
a
r
t
D
a
t
e
A
n
d
T
i
m
e

=

b
i
n
a
r
y
_
t
o
_
l
i
s
t
(
m
a
p
s
:
g
e
t
(
<
<
"
s
t
a
r
t
_
d
a
t
e
"
>
>
,
P
a
y
L
o
a
d
M
a
p
)
)
,

[
S
t
a
r
t
D
a
t
e
|
[
S
t
a
r
t
T
i
m
e
]
]

=

s
t
r
i
n
g
:
s
p
l
i
t
(
S
t
a
r
t
D
a
t
e
A
n
d
T
i
m
e
,

"

"
)
,

S
t
a
r
t
I
n
t

=

b
a
s
e
_
t
i
m
e
:
d
a
t
e
_
a
n
d
_
t
i
m
e
_
s
t
r
i
n
g
s
_
t
o
_
b
a
s
e
_
t
i
m
e
(
S
t
a
r
t
D
a
t
e
,

S
t
a
r
t
T
i
m
e
)
,

E
n
d
D
a
t
e
A
n
d
T
i
m
e

=

b
i
n
a
r
y
_
t
o
_
l
i
s
t
(
m
a
p
s
:
g
e
t
(
<
<
"
e
n
d
_
d
a
t
e
"
>
>
,
P
a
y
L
o
a
d
M
a
p
)
)
,

[
E
n
d
D
a
t
e
|
[
E
n
d
T
i
m
e
]
]

=

s
t
r
i
n
g
:
s
p
l
i
t
(
E
n
d
D
a
t
e
A
n
d
T
i
m
e
,

"

"
)
,

E
n
d
I
n
t

=

b
a
s
e
_
t
i
m
e
:
d
a
t
e
_
a
n
d
_
t
i
m
e
_
s
t
r
i
n
g
s
_
t
o
_
b
a
s
e
_
t
i
m
e
(
E
n
d
D
a
t
e
,

E
n
d
T
i
m
e
)
,

c
a
s
e

E
n
d
I
n
t

o
f

L
a
s
t
T
-
>

F
i
n
a
l
T

=

E
n
d
I
n
t
+
1
;

_
-
>

F
i
n
a
l
T

=

E
n
d
I
n
t

e
n
d
,

F
i
n
a
l
D
a
t
e
A
n
d
T

=

b
a
s
e
_
t
i
m
e
:
b
a
s
e
_
t
i
m
e
_
t
o
_
d
a
t
e
_
a
n
d
_
t
i
m
e
_
s
t
r
i
n
g
(
F
i
n
a
l
T
)
,

[
F
i
n
a
l
D
a
t
e
|
[
F
i
n
a
l
T
i
m
e
]
]

=

s
t
r
i
n
g
:
s
p
l
i
t
(
F
i
n
a
l
D
a
t
e
A
n
d
T
,

"

"
)
,

D
u
r
a
t
i
o
n

=

E
n
d
I
n
t
-
S
t
a
r
t
I
n
t
,

A
m
o
u
n
t
E
a
t
e
n

=

m
a
p
s
:
g
e
t
(
<
<
"
e
a
t
e
n
"
>
>
,
P
a
y
L
o
a
d
M
a
p
)
,

D
a
t
a
M
a
p

=

#
{
"
E
a
t
i
n
g
"
=
>
#
{
<
<
"
D
a
t
e
"
>
>
=
>
F
i
n
a
l
D
a
t
e
,
<
<
"
T
i
m
e
"
>
>
=
>
F
i
n
a
l
T
i
m
e
,
<
<
"
V
a
l
u
e
"
>
>
=
>
A
m
o
u
n
t
E
a
t
e
n
,
<
<
"
D
u
r
a
t
i
o
n
"
>
>
=
>
D
u
r
a
t
i
o
n
}
}
,

T
e
m
p
e
r
a
t
u
r
e

=

m
a
p
s
:
g
e
t
(
<
<
"
t
e
m
p
"
>
>
,
P
a
y
L
o
a
d
M
a
p
)
,

T
e
m
p
D
a
t
a
M
a
p

=

#
{
"
A
m
b
i
e
n
t

t
e
m
p
e
r
a
t
u
r
e
"
=
>
#
{
<
<
"
D
a
t
e
"
>
>
=
>
F
i
n
a
l
D
a
t
e
,
<
<
"
T
i
m
e
"
>
>
=
>
F
i
n
a
l
T
i
m
e
,
<
<
"
V
a
l
u
e
"
>
>
=
>
T
e
m
p
e
r
a
t
u
r
e
}
}
,

c
a
s
e

i
s
_
p
r
o
c
e
s
s
_
a
l
i
v
e
(
M
y
P
l
u
g
i
n
)

o
f

t
r
u
e
-
>

Stellenbosch University https://scholar.sun.ac.za

9
7

o
k

=

c
u
s
t
o
m
_
e
r
l
a
n
g
_
f
u
n
c
t
i
o
n
s
:
m
y
G
e
n
S
e
r
v
C
a
l
l
(
M
y
P
l
u
g
i
n
,
{
n
e
w
_
d
a
t
a
,
E
I
D
,
D
a
t
a
M
a
p
}
)
,

o
k

=

c
u
s
t
o
m
_
e
r
l
a
n
g
_
f
u
n
c
t
i
o
n
s
:
m
y
G
e
n
S
e
r
v
C
a
l
l
(
M
y
P
l
u
g
i
n
,
{
n
e
w
_
d
a
t
a
,
<
<
"
R
F
I
D

F
e
e
d
e
r

B
u
i
l
d
i
n
g
"
>
>
,
T
e
m
p
D
a
t
a
M
a
p
}
)
,

o
k

=

e
m
q
t
t
:
p
u
b
l
i
s
h
(
C
o
n
n
P
i
d
,

?
R
E
P
L
Y
_
T
O
P
I
C
,

#
{
}
,

P
a
y
L
o
a
d
,

[
{
q
o
s
,

0
}
]
)
,
%
t
o

i
n
f
o
r
m

s
e
n
s
o
r

t
h
a
t

d
a
t
a

h
a
s

b
e
e
n

r
e
c
e
i
v
e
d

r
e
c
e
i
v
e
_
d
a
t
a
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
F
i
n
a
l
T
,
R
e
c
e
p
t
i
o
n
M
a
p
,
f
a
l
s
e
)
;

_
-
>

e
x
i
t
(
C
o
n
n
P
i
d
,
k
i
l
l
)

e
n
d
;

_
-
>

i
o
:
f
o
r
m
a
t
(
"
\
n
E
M
Q
T
T

E
R
R
O
R
:
R
e
c
e
i
v
e
d

u
n
k
n
o
w
n

f
r
o
m

e
m
q
t
t
"
)
,

r
e
c
e
i
v
e
_
d
a
t
a
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
L
a
s
t
T
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)

a
f
t
e
r

6
0
0
0
0
-
>

c
a
s
e

i
s
_
p
r
o
c
e
s
s
_
a
l
i
v
e
(
M
y
P
l
u
g
i
n
)

o
f

t
r
u
e
-
>

c
a
s
e

i
s
_
p
r
o
c
e
s
s
_
a
l
i
v
e
(
C
o
n
n
P
i
d
)

o
f

t
r
u
e
-
>

%
%
c
h
e
c
k

i
f

h
u
m
a
n

h
o
l
o
n

n
e
e
d
s

t
o

b
e

i
n
f
o
r
m
e
d

{
o
k
,
M
a
x
M
i
n
u
t
e
s
W
i
t
h
N
o
A
c
t
i
v
i
t
y
}

=

a
t
r
_
a
p
i
:
g
e
t
_
a
t
t
r
i
b
u
t
e
_
v
a
l
u
e
(
m
a
p
s
:
g
e
t
(
a
t
r
,
R
e
c
e
p
t
i
o
n
M
a
p
)
,

"
M
a
x

m
i
n
u
t
e
s

w
i
t
h

n
o

a
c
t
i
v
i
t
y
"
)
,

c
a
s
e

(
b
a
s
e
_
t
i
m
e
:
n
o
w
(
)
>
=
(
L
a
s
t
T
+
M
a
x
M
i
n
u
t
e
s
W
i
t
h
N
o
A
c
t
i
v
i
t
y
*
6
0
)
)

a
n
d

n
o
t
(
M
e
s
s
a
g
e
S
e
n
t
)

o
f

t
r
u
e
-
>

{
o
k
,
H
u
m
a
n
s
}

=

d
o
h
a
_
a
p
i
:
g
e
t
_
b
c
s
_
b
y
_
t
y
p
e
s
(
[
"
H
u
m
a
n

w
o
r
k
e
r
s
"
]
)
,

t
r
y
_
t
o
_
i
n
f
o
r
m
_
e
a
c
h
_
h
u
m
a
n
(
H
u
m
a
n
s
,
m
a
p
s
:
g
e
t
(
c
o
m
m
s
,
R
e
c
e
p
t
i
o
n
M
a
p
)
,
M
a
x
M
i
n
u
t
e
s
W
i
t
h
N
o
A
c
t
i
v
i
t
y
)
,

N
e
w
M
e
s
s
a
g
e
S
e
n
t
=
t
r
u
e
;

_
-
>

N
e
w
M
e
s
s
a
g
e
S
e
n
t

=

M
e
s
s
a
g
e
S
e
n
t

e
n
d
,

r
e
c
e
i
v
e
_
d
a
t
a
(
C
o
n
n
P
i
d
,
M
y
P
l
u
g
i
n
,
L
a
s
t
T
,
R
e
c
e
p
t
i
o
n
M
a
p
,
N
e
w
M
e
s
s
a
g
e
S
e
n
t
)
;

_
-
>

s
t
a
r
t
_
e
m
q
t
t
(
M
y
P
l
u
g
i
n
,
R
e
c
e
p
t
i
o
n
M
a
p
,
M
e
s
s
a
g
e
S
e
n
t
)

e
n
d
;

_
-
>
%
%
i
f

p
l
u
g
i
n

d
e
a
d

k
i
l
l

t
h
i
s

p
r
o
c
e
s
s

a
n
d

C
o
n
n
P
i
d

c
a
s
e

i
s
_
p
r
o
c
e
s
s
_
a
l
i
v
e
(
C
o
n
n
P
i
d
)

o
f

t
r
u
e
-
>

e
x
i
t
(
C
o
n
n
P
i
d
,
k
i
l
l
)
;

_
-
>

o
k

e
n
d

e
n
d

e
n
d
.

Stellenbosch University https://scholar.sun.ac.za

9
8

A
p

p
en

d
ix

 E

In
te

rf
ac

e
H

ol
on

 a
ttr

ib
ut

es

A
tt

ri
b

u
te

 I
D

A

tt
ri

b
u

te
 T

y
p

e

A
tt

ri
b

u
te

 C
o
n

te
x
t

A
tt

ri
b

u
te

 V
a
lu

e

(E
x
a
m

p
le

)

U
sa

g
e

G
at

ew
ay

de

ta
il

s
P

er
so

na
l

K
ey

-v
al

ue
 p

ai
rs

 w
it

h
at

 l
ea

st
 t

he

in
te

rf
ac

e
ty

pe
 a

s
ke

y
an

d
an

y
ot

he
r

de
ta

il
s

as
 s

ep
ar

at
e

ke
ys

“{
“I

nt
er

fa
ce

 ty
pe

”:

“M
Q

TT
”,

“B

ro
ke

r”
:

“M
aq

ia
tto

”,

“P
or

t”
:1

88
3}

”

P
ro

vi
de

s
de

ta
il

s
ab

ou
t

th
e

m
et

ho
d

of

co
m

m
un

ic
at

io
n

be
tw

ee
n

th
e

B
A

S
E

sh

el
l

an
d

it
s

ph
ys

ic
al

 d
ev

ic
e.

S
ta

rt
-u

p
da

te

an
d

ti
m

e
P

er
so

na
l

D
at

e
an

d
ti

m
e

“2
02

0-
05

-2
3

14
:0

2:
34

”
U

se
d

to
 h

av
e

a
re

fe
re

nc
e

po
in

t
of

 h
ow

lo

ng
 t

he
 d

ev
ic

e
ha

s
be

en
 d

ep
lo

ye
d

w
he

n
lo

ok
in

g
at

 it
s

ot
he

r
at

tr
ib

ut
es

lik

e
“N

r o
f d

ev
ic

e
fa

ilu
re

s”
.

A
tt

ac
he

d
to

re

so
ur

ce
 w

it
h

id

R
el

at
io

na
l

B
A

S
E

 I
D

“C

am
p

12
”

A
n

in
te

rf
ac

in
g

de
vi

ce
’s

 o
pe

ra
tio

n
m

ig
ht

 b
e

in
fl

ue
nc

ed
 b

y
th

e
re

so
ur

ce
 i

t
is

 a
tt

ac
he

d
to

.

C
li

en
ts

 (
on

ly

O
bs

er
ve

rs
)

R
el

at
io

na
l

K
ey

-v
al

ue
 p

ai
rs

 w
it

h
cl

ie
nt

id

en
ti

fi
er

s
as

 k
ey

s
an

d
co

nt
ra

ct
s

as
 v

al
ue

s

“{
“S

he
ep

14
”:

S

he
ep

14
C

on
tr

ac
t,

“S

he
ep

23
”:

S

he
ep

23
C

on
tr

ac
t,

U
se

d
to

 d
el

iv
er

 m
es

sa
ge

s
fr

om
 t

he

ph
ys

ic
al

 w
or

ld
 t

o
th

e
co

rr
ec

t B
A

S
E

sh

el
ls

.

Stellenbosch University https://scholar.sun.ac.za

9
9

“C
am

p1
2”

:
Ca

m
p1

2C
on

tra
ct

}”

M
ax

im
um

m

in
ut

es
 w

it
h

no
 a

ct
iv

it
y

M
an

ag
em

en
t

C
an

 b
e

us
ed

 b
y

th
e

In
te

rf
ac

e
P

ro
ce

ss
 t

o
in

fo
rm

 a
ny

 a
va

il
ab

le

hu
m

an
s

in
 t

he
 s

ys
te

m
 t

ha
t

th
er

e
m

ig
ht

 b
e

a
pr

ob
le

m
 w

it
h

th
e

de
vi

ce

36
0

C
an

 b
e

us
ed

 b
y

th
e

In
te

rf
ac

e
P

ro
ce

ss

to
 i

nf
or

m
 a

ny
 a

va
il

ab
le

 h
um

an
s

in
 t

he

sy
st

em
 t

ha
t

th
er

e
m

ig
ht

 b
e

a
pr

ob
le

m

w
it

h
th

e
de

vi
ce

In
te

rf
ac

in
g

ra
te

 (
m

es
sa

ge
s

en
tr

ie
s

pe
r

ho
ur

)

C
om

m
un

ic
at

io
n

E
ve

ry
 m

es
sa

ge
 s

ha
re

d
to

/f
ro

m

th
e

ph
ys

ic
al

 w
or

ld
 i

s
re

ga
rd

ed
 a

s
a

m
es

sa
ge

28
4.

52

U
se

d
to

 t
ra

ck
 h

ow
 b

us
y

an
 i

nt
er

fa
ci

ng

de
vi

ce
 i

s.

N
r

m
es

sa
ge

s
de

li
ve

re
d

(i
nc

lu
di

ng

re
je

ct
ed

)

C
om

m
un

ic
at

io
n

E
ve

ry
 m

es
sa

ge
 s

ha
re

d
to

/f
ro

m

th
e

ph
ys

ic
al

 w
or

ld
 i

s
re

ga
rd

ed
 a

s
a

m
es

sa
ge

.

27
46

U

se
d

to
 s

ee
 h

ow
 w

el
l

an
 i

nt
er

fa
ci

ng

de
vi

ce
 i

s
pe

rf
or

m
in

g

N
r

de
li

ve
ri

es

re
je

ct
ed

C

om
m

un
ic

at
io

n
R

ej
ec

te
d

m
es

sa
ge

s
ar

e
m

es
sa

ge
s

th
at

 w
er

e
de

li
ve

re
d

su
cc

es
sf

ul
ly

,
bu

t a
fte

r w
hi

ch
 a

 “
re

je
ct

ed
”

or

“e
rr

or
”

re
pl

y
w

as
 re

ce
iv

ed

12

L
as

t
de

li
ve

ry

re
je

ct
ed

C

om
m

un
ic

at
io

n
D

at
e

an
d

ti
m

e
“2

02
1-

03
-0

4
02

:0
4:

08
”

U
se

d
to

 e
as

il
y

di
ag

no
se

 t
he

 l
as

t
er

ro
r

th
at

 o
cc

ur
re

d
if

 t
he

re
 w

as
 a

ny
.

Stellenbosch University https://scholar.sun.ac.za

1
0

0

D
ev

ic
e

st
at

us

D
ev

ic
e

st
at

e
“R

un
ni

ng
”,

 “
D

ow
n”

 o
r

“p
en

di
ng

”
“R

un
ni

ng
”

G
iv

es
 a

 l
iv

e
up

da
te

 o
f

th
e

st
at

us
 o

f
th

e
de

vi
ce

 s
o

th
at

 i
t

ca
n

be
 a

dd
re

ss
ed

 i
f

ne
ce

ss
ar

y.

N
r

of
 d

ev
ic

e
fa

il
ur

es

D
ev

ic
e

st
at

e
A

 f
ai

lu
re

 is
 r

ec
or

de
d

w
he

n
a

m
es

sa
ge

 i
s

re
ce

iv
ed

 f
ro

m
 t

he

de
vi

ce
 t

ha
t

it
 i

s
do

w
n

or
 w

he
n

th
e

de
vi

ce
 c

an
no

t
be

 r
ea

ch
ed

.

3
G

iv
es

 a
n

ov
er

vi
ew

 o
f t

he
 d

ev
ic

e’
s

re
li

ab
il

it
y

so
 t

ha
t i

t
ca

n
be

 r
ep

la
ce

d
if

ne

ce
ss

ar
y.

L
as

t
de

vi
ce

fa

il
ur

e
D

ev
ic

e
st

at
e

D
at

e
an

d
ti

m
e

“2
02

1-
04

-2
3

12
:3

4:
41

”
U

se
d

to
 s

ee
 h

ow
 l

on
g

ag
o

th
e

de
vi

ce

ha
d

a
fa

il
ur

e,
 b

ec
au

se
 e

ve
n

if
 i

t
m

ig
ht

ha

ve
 m

an
y

fa
il

ur
es

, a
ll

 o
f

th
em

 m
ig

ht

be
 f

ro
m

 v
er

y
lo

ng
 a

go
, m

ak
in

g
th

em

le
ss

 r
el

ev
an

t.

In
te

rf
ac

e
pr

oc
es

s
st

at
us

In

te
rf

ac
e

pr
oc

es
s

st
at

e
“R

un
ni

ng
”,

 “
D

ow
n”

 o
r

“p
en

di
ng

”
“R

un
ni

ng
”

T
he

se
 t

hr
ee

 a
tt

ri
bu

te
s

ar
e

us
ed

 t
o

re
pr

es
en

t
th

e
st

at
e

of
 th

e
In

te
rf

ac
e

P
ro

ce
ss

. T
he

 I
nt

er
fa

ce
 P

ro
ce

ss
 i

s
th

e
on

ly
 p

ar
t t

ha
t

ne
ed

s
to

 b
e

cu
st

om

de
ve

lo
pe

d
fo

r
ev

er
y

In
te

rf
ac

e
H

ol
on

an

d
ca

n
th

us
 b

e
ve

ry
 p

ro
ne

 t
o

er
ro

rs
.

T
he

se
 t

hr
ee

 a
tt

ri
bu

te
s

he
lp

 d
ia

gn
os

e
th

es
e

er
ro

rs
 a

nd
 s

ee
 i

f
an

y
m

aj
or

im

pr
ov

em
en

ts
 a

re
 n

ec
es

sa
ry

 t
o

th
is

In

te
rf

ac
e

P
ro

ce
ss

.

N
r

in
te

rf
ac

e
pr

oc
es

s
fa

il
ur

es

In
te

rf
ac

e
pr

oc
es

s
st

at
e

A
 f

ai
lu

re
 is

 r
ec

or
de

d
w

he
n

a
m

es
sa

ge
 i

s
re

ce
iv

ed
 f

ro
m

 t
he

de

vi
ce

 t
ha

t
it

 i
s

do
w

n
or

 w
he

n
th

e
de

vi
ce

 c
an

no
t

be
 r

ea
ch

ed
.

3

L
as

t
in

te
rf

ac
e

pr
oc

es
s

fa
il

ur
e

In
te

rf
ac

e
pr

oc
es

s
st

at
e

D
at

e
an

d
ti

m
e

“2
02

1-
04

-2
3

12
:3

4:
41

”

Stellenbosch University https://scholar.sun.ac.za

1
0

1

A
p

p
en

d
ix

 F

C
as

e
st

ud
y

ho
lo

n
at

tr
ib

ut
es

S
h

ee
p

A
tt

ri
b

u
te

ID

A
tt

ri
b

u
te

 T
y
p

e

A
tt

ri
b

u
te

C
o
n

te
x
t

A
tt

ri
b

u
te

 V
a
lu

e
U

sa
g
e

D
at

e
of

bi

rt
h

P
er

so
na

l
“D

at
e”

“2

01
7-

08
-2

3”

Re
pr

es
en

ts
th

e
sh

ee
p’

s a
ge

E
ID

P

er
so

na
l

“E
le

ct
ro

ni
c

ID

of
 t

he
 t

ag

at
ta

ch
ed

 t
o

th
is

re

so
ur

ce
”

“9
64

00
10

31
05

93
12

”
U

se
d

by
 a

ny
 R

F
ID

 s
ca

nn
in

g
eq

ui
pm

en
t l

ik
e

th
e

R
F

ID
 F

ee
di

ng
 S

en
so

r

G
en

de
r

P
er

so
na

l
“R

am
, e

w
e

or

pe
nd

in
g”

“E

w
e”

T

he
se

 f
iv

e
at

tr
ib

ut
es

 c
an

 p
ot

en
ti

al
ly

 b
e

us
ed

 t
o

m
ak

e
pr

ed
ic

tio
ns

 b
as

ed
 o

n
th

e
sh

ee
p’

s g
en

et
ic

da

ta
. T

hi
s

w
as

 n
ot

 d
on

e
in

 t
hi

s
ca

se
 s

tu
dy

, b
ut

 t
he

at

tr
ib

ut
es

 w
er

e
in

cl
ud

ed
 n

on
et

he
le

ss
.

D
am

P

er
so

na
l

“D
at

ab
as

e
na

m
e”

 o
r

“B
A

SE
 ID

”
or

“p

en
di

ng
”

“S
he

ep
 6

3”

S
ir

e
P

er
so

na
l

“D
at

ab
as

e
na

m
e”

 o
r

“B
A

SE
 ID

”
or

“p

en
di

ng
”

“S
he

ep
 8

6”

Stellenbosch University https://scholar.sun.ac.za

1
0

2

O
ff

sp
ri

ng

P
er

so
na

l
“K

ey
-v

al
ue

pa

ir
s

w
it

h
da

ta
ba

se
 n

am
es

as

 k
ey

s
an

d
id

s
as

 v
al

ue
s”

“S
he

ep
 6

”

B
re

ed

P
er

so
na

l
“D

or
pe

r,
M

er
in

o,
 e

tc
.”

“D

or
pe

r”

C
am

p
R

el
at

io
na

l
“B

A
SE

 ID
”

“C
am

p
12

”
T

he
se

 f
ou

r
at

tr
ib

ut
es

 r
ep

re
se

nt
 t

he
 r

el
at

io
ns

 t
he

sh

ee
p

ha
s,

 i
.e

.,
in

 w
ha

t
ca

m
p

it
 i

s,
 w

ha
t

gr
ou

p
it

is

 p
ar

t
of

, f
ro

m
 w

hi
ch

 f
ee

de
rs

 i
t e

at
s

an
d

w
ha

t
se

ns
or

s
ar

e
at

ta
ch

ed
 t

o
it

.
G

ro
up

R

el
at

io
na

l
“B

A
SE

 ID
”

“G
ro

up
 1

2”

F
ee

de
rs

R

el
at

io
na

l
“L

ist
 o

f B
A

SE

ID
s”

[“

Fe
ed

er
 1

”,
 “

Fe
ed

er

4”
]

A
tt

ac
he

d
S

en
so

rs

R
el

at
io

na
l

“L
ist

 o
f B

A
SE

ID

s”

[“
Se

ns
or

 1
”,

 “
Se

ns
or

2”

]

M
ax

ho

ur
s

be
tw

ee
n

ea
ti

ng

ac
ti

vi
ti

es

M
an

ag
em

en
t

U
se

d
to

 n
ot

if
y

al
l

hu
m

an
s

in

th
e

sy
st

em

w
he

n
th

is

sh
ee

p
ha

s
no

t
ea

te
n

fo
r

a
lo

ng

ti
m

e

12

U
se

d
to

 n
ot

if
y

al
l h

um
an

s
in

 t
he

 s
ys

te
m

 w
he

n
th

is
 s

he
ep

 h
as

 n
ot

 e
at

en
 f

or
 a

 l
on

g
ti

m
e

Stellenbosch University https://scholar.sun.ac.za

1
0

3

C
as

e
st

ud
ie

s
M

an
ag

em
en

t
S

to
re

s
th

e
st

ar
t

an
d

en
d

da
te

s
of

 t
he

 d
if

fe
re

nt

ca
se

 s
tu

di
es

th

at
 t

he
 s

he
ep

is

 p
ar

t
of

“{
“C

as
e

stu
dy

X

”:
Ca

se
St

ud
yD

et
ai

ls
,

“C
as

e
stu

dy
 Y

”:

C
as

eS
tu

dy
D

et
ai

ls
}

S
to

re
s

th
e

st
ar

t
an

d
en

d
da

te
s

of
 t

he
 d

if
fe

re
nt

 c
as

e
st

ud
ie

s
th

at
 t

he
 s

he
ep

 i
s

pa
rt

 o
f

H
ea

lt
hy

H

ea
lt

h
“

‘f
al

se
’ o

r d
at

e
sin

ce
 si

ck
”

“2
02

1-
07

-2
5”

T

he
se

 f
ou

r
at

tr
ib

ut
es

 w
er

e
no

t u
se

d
in

 t
he

 c
as

e
st

ud
y,

 b
ut

 a
re

 m
or

e
ex

am
pl

es
 o

f
th

e
ty

pe
 o

f
pr

op
er

ti
es

 o
f

a
sh

ee
p

th
at

 m
us

t
be

 i
nc

lu
de

d
in

 i
ts

at

tr
ib

ut
es

.
O

n
he

at

R
ep

ro
du

ct
io

n
“f

al
se

 o
r d

at
e

sin
ce

 o
n

he
at

”
“f

al
se

”

P
re

gn
an

t
R

ep
ro

du
ct

io
n

“
‘f

al
se

’ o
r d

at
e

sin
ce

 si
ck

”
“2

02
1-

07
-2

5”

In
 l

ab
or

R

ep
ro

du
ct

io
n

“f
al

se
 o

r d
at

e
sin

ce
 o

n
he

at
”

“f
al

se
”

O
ve

ra
ll

w

ei
gh

t
st

at
s

W
ei

gh
t

(k
g)

C

al
cu

la
te

d
fr

om
 “

W
ei

gh
t

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:5

0,
 m

in
:2

5,
 a

vg
:

47
}”

T

he
se

 a
tt

ri
bu

te
s

w
er

e
al

l s
pe

ci
fi

c
to

 t
he

 c
as

e
st

ud
y

an
d

us
ed

 t
o

sh
ow

 t
he

 d
at

a
ab

ou
t

ea
ch

 s
he

ep

re
le

va
nt

 t
o

th
e

ca
se

 s
tu

dy
, i

.e
.,

st
at

is
ti

cs
 a

bo
ut

 i
ts

ea

ti
ng

, w
ei

gh
t,

w
ei

gh
t

ga
in

 a
nd

 F
C

R
.

W
ei

gh
t

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

W
ei

gh
t

(k
g)

C

al
cu

la
te

d
fr

om
 “

W
ei

gh
t

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:5

0,
 m

in
:2

5,
 a

vg
:

47
}”

Stellenbosch University https://scholar.sun.ac.za

1
0

4

O
ve

ra
ll

ga

in
 s

ta
ts

G

ai
n

(k
g/

da
y)

C

al
cu

la
te

d
fr

om
 “

W
ei

gh
t

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:1

.2
, m

in
:-0

.7
,

av
g:

 0
.3

}”

C
on

ti
nu

e:
 T

he
se

 a
tt

ri
bu

te
s

w
er

e
al

l s
pe

ci
fi

c
to

th

e
ca

se
 s

tu
dy

 a
nd

 u
se

d
to

 s
ho

w
 t

he
 d

at
a

ab
ou

t
ea

ch
 s

he
ep

 r
el

ev
an

t
to

 t
he

 c
as

e
st

ud
y,

 i.
e.

,
st

at
is

ti
cs

 a
bo

ut
 i

ts
 e

at
in

g,
 w

ei
gh

t,
w

ei
gh

t
ga

in

an
d

F
C

R
.

W
ei

gh
t

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

G
ai

n
(k

g/
da

y)

C
al

cu
la

te
d

fr
om

 “
W

ei
gh

t
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:1

.2
, m

in
:-0

.7
,

av
g:

 0
.3

}”

L
as

t
24

h
ea

ti
ng

E

at
in

g
(g

)
C

al
cu

la
te

d
fr

om
 “

Ea
tin

g
(R

D
A

A
)”

ac

ti
vi

ti
es

24
34

O
ve

ra
ll

ea

ti
ng

st

at
s

E
at

in
g

(g
/d

ay
)

C
al

cu
la

te
d

fr
om

 “
Ea

tin
g

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:3

60
0,

 m
in

:2
50

,
av

g:
 2

10
0}

”

E
at

in
g

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

E
at

in
g

(g
/d

ay
)

C
al

cu
la

te
d

fr
om

 “
Ea

tin
g

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:3

60
0,

 m
in

:2
50

,
av

g:
 2

10
0}

”

O
ve

ra
ll

ea

ti
ng

E

at
in

g
du

ra
ti

on
 (

s)

C
al

cu
la

te
d

fr
om

 “
Ea

tin
g

“{
m

ax
:3

60
, m

in
:2

5,

av
g:

 1
25

}”

Stellenbosch University https://scholar.sun.ac.za

1
0

5

du
ra

ti
on

st

at
s

(R
D

A
A

)”

ac
ti

vi
ti

es

C
on

ti
nu

e:
 T

he
se

 a
tt

ri
bu

te
s

w
er

e
al

l s
pe

ci
fi

c
to

th

e
ca

se
 s

tu
dy

 a
nd

 u
se

d
to

 s
ho

w
 t

he
 d

at
a

ab
ou

t
ea

ch
 s

he
ep

 r
el

ev
an

t
to

 t
he

 c
as

e
st

ud
y,

 i.
e.

,
st

at
is

ti
cs

 a
bo

ut
 i

ts
 e

at
in

g,
 w

ei
gh

t,
w

ei
gh

t
ga

in

an
d

F
C

R
.

O
ve

ra
ll

ea

ti
ng

fr

eq
ue

nc
y

st
at

s

E
at

in
g

fr
eq

ue
nc

y
(m

ea
ls

 p
er

 d
ay

)
C

al
cu

la
te

d
fr

om
 “

Ea
tin

g
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:9

, m
in

:2
, a

vg
:

6}
”

O
ve

ra
ll

ea

ti
ng

st

at
s

F
C

R

(k
g_

ea
te

n/
kg

_g
ai

ne
d)

C

al
cu

la
te

d
fr

om
 “

Ea
tin

g
(R

D
A

A
)”

 a
nd

“W

ei
gh

t
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:4

2,
 m

in
:1

.4
, a

vg
:

8.
4}

”

E
at

in
g

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

F
C

R

(k
g_

ea
te

n/
kg

_g
ai

ne
d)

C

al
cu

la
te

d
fr

om
 “

Ea
tin

g
(R

D
A

A
)”

 a
nd

“W

ei
gh

t
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:4

2,
 m

in
:1

.4
, a

vg
:

8.
4}

”

Stellenbosch University https://scholar.sun.ac.za

1
0

6

 G
ro

u
p

:

A
tt

ri
b

u
te

ID

A
tt

ri
b

u
te

 T
y
p

e

A
tt

ri
b

u
te

C
o
n

te
x
t

A
tt

ri
b

u
te

 V
a
lu

e
U

sa
g
e

C
am

p
R

el
at

io
na

l
“B

A
SE

 ID
”

“C
am

p
12

”
T

he
se

 f
ou

r
at

tr
ib

ut
es

 r
ep

re
se

nt
 t

he
 r

el
at

io
ns

 t
he

gr

ou
p

ha
s,

 i.
e.

, i
n

w
ha

t
ca

m
p

it
 i

s,
 w

ha
t

gr
ou

p
it

 i
s

pa
rt

 o
f,

 f
ro

m
 w

hi
ch

 f
ee

de
rs

 i
t e

at
s

an
d

w
ha

t
se

ns
or

s
ar

e
at

ta
ch

ed
 t

o
it

.
S

he
ep

R

el
at

io
na

l
“L

ist
 o

f
B

A
S

E
 ID

s”

[“
Fe

ed
er

 1
”,

 “
Fe

ed
er

4”

]

F
ee

de
rs

R

el
at

io
na

l
“L

ist
 o

f
BA

SE
 ID

s”

[“
Fe

ed
er

 1
”,

 “
Fe

ed
er

4”

]

N
um

be
r

of

sh
ee

p
R

el
at

io
na

l
In

te
ge

r
23

A
ge

bo

un
da

ri
es

(m

on
th

s)

M
an

ag
em

en
t

R
es

tr
ic

ts

w
hi

ch
 s

he
ep

ar

e
al

lo
w

ed
 i

n
th

is
 g

ro
up

[1
2,

 4
8]

T

he
se

 f
ou

r
at

tr
ib

ut
es

 a
re

 u
se

d
to

 r
es

tr
ic

t
w

ha
t

sh
ee

p
ar

e
al

lo
w

ed
 i

n
th

is
 g

ro
up

 b
as

ed
 o

n
th

ei
r

at
tr

ib
ut

es

A
vg

 f
oo

d
in

ta
ke

bo

un
da

ri
es

(g

ra
m

s)

M
an

ag
em

en
t

R
es

tr
ic

ts

w
hi

ch
 s

he
ep

ar

e
al

lo
w

ed
 i

n
th

is
 g

ro
up

[7
00

, 3
20

0]

Stellenbosch University https://scholar.sun.ac.za

1
0

7

G
en

de
rs

al

lo
w

ed

M
an

ag
em

en
t

R
es

tr
ic

ts

w
hi

ch
 s

he
ep

ar

e
al

lo
w

ed
 i

n
th

is
 g

ro
up

“a
ll”

 o
r “

Ra
m

s”
 o

r
“E

w
es

”

W
ei

gh
t

bo
un

da
ri

es

(k
g)

M
an

ag
em

en
t

R
es

tr
ic

ts

w
hi

ch
 s

he
ep

ar

e
al

lo
w

ed
 i

n
th

is
 g

ro
up

[3
0,

 4
5]

C
as

e
st

ud
ie

s
M

an
ag

em
en

t
S

to
re

s
th

e
st

ar
t

an
d

en
d

da
te

s
of

 t
he

di

ff
er

en
t

ca
se

st

ud
ie

s
th

at

th
e

gr
ou

p
is

pa

rt
 o

f

“{
“C

as
e

stu
dy

X

”:
Ca

se
St

ud
yD

et
ai

ls
,

“C
as

e
stu

dy
 Y

”:

C
as

eS
tu

dy
D

et
ai

ls
}

S
to

re
s

th
e

st
ar

t
an

d
en

d
da

te
s

of
 t

he
 d

if
fe

re
nt

 c
as

e
st

ud
ie

s
th

at
 t

he
 g

ro
up

 (
an

d
it

s
sh

ee
p)

 is
 p

ar
t

of

O
ve

ra
ll

w

ei
gh

t
st

at
s

A
ve

ra
ge

 S
he

ep
’s

W

ei
gh

t
(k

g)

C
al

cu
la

te
d

fr
om

 “
W

ei
gh

t
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:5

0,
 m

in
:2

5,
 a

vg
:

47
}”

T

he
se

 a
tt

ri
bu

te
s

w
er

e
al

l s
pe

ci
fi

c
to

 t
he

 c
as

e
st

ud
y

an
d

us
ed

 to
 sh

ow
 th

e
da

ta
 a

bo
ut

 e
ac

h
gr

ou
p’

s
sh

ee
p

re
le

va
nt

 t
o

th
e

ca
se

 s
tu

dy
, i

.e
.,

st
at

is
ti

cs

ab
ou

t t
he

 a
ve

ra
ge

 sh
ee

p’
s e

at
in

g,
 w

ei
gh

t,
w

ei
gh

t
ga

in
 a

nd
 F

C
R

.

W
ei

gh
t

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

A
ve

ra
ge

 S
he

ep
’s

W

ei
gh

t
(k

g)

C
al

cu
la

te
d

fr
om

 “
W

ei
gh

t
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:5

0,
 m

in
:2

5,
 a

vg
:

47
}”

Stellenbosch University https://scholar.sun.ac.za

1
0

8

O
ve

ra
ll

ga

in
 s

ta
ts

A

ve
ra

ge
 S

he
ep

’s

G
ai

n
(k

g/
da

y)

C
al

cu
la

te
d

fr
om

 “
W

ei
gh

t
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:1

.2
, m

in
:-

0.
7,

av

g:
 0

.3
}”

 C
on

ti
nu

e:
 T

he
se

 a
tt

ri
bu

te
s

w
er

e
al

l s
pe

ci
fi

c
to

 t
he

ca

se
 s

tu
dy

 a
nd

 u
se

d
to

 s
ho

w
 t

he
 d

at
a

ab
ou

t e
ac

h
gr

ou
p’

s s
he

ep
 re

le
va

nt
 to

 th
e

ca
se

 st
ud

y,
 i.

e.
,

sta
tis

tic
s a

bo
ut

 th
e

av
er

ag
e

sh
ee

p’
s e

at
in

g,
 w

ei
gh

t,
w

ei
gh

t
ga

in
 a

nd
 F

C
R

.

W
ei

gh
t

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

A
ve

ra
ge

 S
he

ep
’s

G

ai
n

(k
g/

da
y)

C

al
cu

la
te

d
fr

om
 “

W
ei

gh
t

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:1

.2
, m

in
:-0

.7
,

av
g:

 0
.3

}”

L
as

t
24

h
ea

ti
ng

A

ve
ra

ge
 S

he
ep

’s

E
at

in
g

(g
)

C
al

cu
la

te
d

fr
om

 “
Ea

tin
g

(R
D

A
A

)”

ac
ti

vi
ti

es

24
34

O
ve

ra
ll

ea

ti
ng

st

at
s

A
ve

ra
ge

 S
he

ep
’s

E

at
in

g
(g

/d
ay

)
C

al
cu

la
te

d
fr

om
 “

Ea
tin

g
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:3

60
0,

 m
in

:2
50

,
av

g:
 2

10
0}

”

E
at

in
g

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

A
ve

ra
ge

 S
he

ep
’s

E

at
in

g
(g

/d
ay

)
C

al
cu

la
te

d
fr

om
 “

Ea
tin

g
(R

D
A

A
)”

ac

ti
vi

ti
es

“{
m

ax
:3

60
0,

 m
in

:2
50

,
av

g:
 2

10
0}

”

O
ve

ra
ll

ea

ti
ng

A

ve
ra

ge
 S

he
ep

’s

E
at

in
g

du
ra

ti
on

 (
s)

C

al
cu

la
te

d
fr

om
 “

Ea
tin

g
“{

m
ax

:3
60

, m
in

:2
5,

av

g:
 1

25
}”

Stellenbosch University https://scholar.sun.ac.za

1
0

9

du
ra

ti
on

st

at
s

(R
D

A
A

)”

ac
ti

vi
ti

es

O
ve

ra
ll

ea

ti
ng

fr

eq
ue

nc
y

st
at

s

A
ve

ra
ge

 S
he

ep
’s

E

at
in

g
fr

eq
ue

nc
y

(m
ea

ls
 p

er
 d

ay
)

C
al

cu
la

te
d

fr
om

 “
Ea

tin
g

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:9

, m
in

:2
, a

vg
:

6}
”

O
ve

ra
ll

ea

ti
ng

st

at
s

A
ve

ra
ge

 S
he

ep
’s

F

C
R

(k

g_
ea

te
n/

kg
_g

ai
ne

d)

C
al

cu
la

te
d

fr
om

 “
Ea

tin
g

(R
D

A
A

)”
 a

nd

“W
ei

gh
t

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:4

2,
 m

in
:1

.4
, a

vg
:

8.
4}

”

E
at

in
g

st
at

s
si

nc
e

la
st

re

lo
ca

ti
on

A
ve

ra
ge

 S
he

ep
’s

F

C
R

(k

g_
ea

te
n/

kg
_g

ai
ne

d)

C
al

cu
la

te
d

fr
om

 “
Ea

tin
g

(R
D

A
A

)”
 a

nd

“W
ei

gh
t

(R
D

A
A

)”

ac
ti

vi
ti

es

“{
m

ax
:4

2,
 m

in
:1

.4
, a

vg
:

8.
4}

”

Stellenbosch University https://scholar.sun.ac.za

1
1

0

C
a
m

p
:

A
tt

ri
b

u
te

ID

A
tt

ri
b

u
te

T
y
p

e

A
tt

ri
b

u
te

 C
o
n

te
x
t

A
tt

ri
b

u
te

 V
a
lu

e
U

sa
g
e

S
iz

e
P

er
so

na
l

“L
xW

 (m
)”

“6

x5
m

”
T

he
se

 f
iv

e
at

tr
ib

ut
es

 w
er

e
no

t
us

ed
 f

or
 a

ny
th

in
g

du
ri

ng
 t

he
 c

as
e

st
ud

y,
 b

ut
 w

er
e

st
il

l
in

cl
ud

ed
 to

 g
iv

e
an

 e
xa

m
pl

e
of

 t
he

 t
yp

e
of

 a
tt

ri
bu

te
s

th
at

 a
 c

am
p

ho
lo

n
w

ou
ld

 h
av

e.

F
lo

or

m
at

er
ia

l
P

er
so

na
l

“T
ex

t d
es

cr
ip

tio
n”

“W

oo
d

w
ith

 g
ra

ss
”

R
oo

f
P

er
so

na
l

“t
ru

e/
fa

lse
”

“t
ru

e”

S
ol

id

w
al

ls

P
er

so
na

l
“t

ru
e/

fa
lse

”
“f

al
se

”

L
oc

at
io

n
P

er
so

na
l

“A
 G

PS
 c

oo
rd

in
at

e
or

 a
 d

es
cr

ip
tio

n”

“-
32

.4
56

23
4

28
.8

37
45

2”

E
ID

P

er
so

na
l

“E
le

ct
ro

ni
c

ta
g

nu
m

be
r

in
 s

tr
in

g
fo

rm
at

 if
 t

he
 c

am
p

ha
s o

ne
”

“9
43

43
85

72
95

34
”

S
om

et
im

es
 c

am
ps

 h
av

e
R

F
ID

 t
ag

s
at

ta
ch

ed
 t

o
th

ei
r

ga
te

s
to

 e
as

il
y

id
en

ti
fy

 t
he

m
 w

he
n

w
al

ki
ng

 a
ro

un
d

w
it

h
an

 R
F

ID
 s

ca
nn

er

S
he

ep

li
m

it

M
an

ag
em

en
t

“T
he

 m
ax

im
um

nu

m
be

r
of

 s
he

ep

al
lo

w
ed

 i
n

th
is

ca

m
p”

25

T
hi

s
is

 u
se

d
to

 m
an

ua
ll

y
or

 i
nt

el
li

ge
nt

ly
 (

ba
se

d
on

si

ze
)

li
m

it
 t

he
 n

um
be

r
of

 s
he

ep
 a

 c
am

p
ca

n
ha

ve
.

S
he

ep

R
el

at
io

na
l

“L
ist

 o
f B

A
SE

 ID
s”

[“

Sh
ee

p
1”

, “
Sh

ee
p

2”
]

Stellenbosch University https://scholar.sun.ac.za

1
1

1

 F
ee

d
er

s:

F
ee

de
rs

R

el
at

io
na

l
“L

ist
 o

f B
A

SE
 ID

s”

[“
Fe

ed
er

 1
”,

 “
Fe

ed
er

 2
”]

R

el
at

io
na

l
at

tr
ib

ut
es

 o
f

th
e

ca
m

p
sh

ow
in

g
w

ha
t

sh
ee

p,
 f

ee
de

rs
 a

nd
 s

en
so

rs
 a

re
 i

n
it

.

C
on

ti
nu

e:

R
el

at
io

na
l

at
tr

ib
ut

es
 o

f
th

e
ca

m
p

sh
ow

in
g

w
ha

t
sh

ee
p,

 f
ee

de
rs

 a
nd

 s
en

so
rs

 a
re

 i
n

it
.

S
en

so
rs

R

el
at

io
na

l
“L

ist
 o

f B
A

SE
 ID

s”

[“
Se

ns
or

 1
”,

 “
Se

ns
or

 2
”]

G
ro

up

R
el

at
io

na
l

“B
A

SE
 ID

”
“G

ro
up

 3
”

N
um

be
r

of
 s

he
ep

R

el
at

io
na

l
In

te
ge

r
22

A
tt

ri
b

u
te

ID

A
tt

ri
b

u
te

T
y
p

e

A
tt

ri
b

u
te

 C
o
n

te
x
t

A
tt

ri
b

u
te

 V
a
lu

e
U

sa
g
e

E
ID

P

er
so

na
l

“E
le

ct
ro

ni
c

ta
g

nu
m

be
r

in
 s

tr
in

g
fo

rm
at

 if
 t

he
 f

ee
de

r
ha

s o
ne

”

“9
43

43
85

72
95

34
”

S
om

et
im

es
 f

ee
de

rs
 h

av
e

R
F

ID
 t

ag
s

at
ta

ch
ed

 t
o

th
ei

r
ga

te
s

to
 e

as
il

y
id

en
ti

fy
 t

he
m

 w
he

n
w

al
ki

ng
 a

ro
un

d
w

it
h

an
 R

F
ID

 s
ca

nn
er

C
ur

re
nt

F

oo
d

P
ro

du
ct

ID

M
an

ag
em

en
t

“I
D

 o
f o

ne
 o

f t
he

pr

od
uc

ts
 i

n
th

e
sh

ee
p

fo
od

 w
ar

eh
ou

se
”

“M
ea

do
w

 X
34

5”

T
hi

s
is

 u
se

d
by

 s
he

ep
 t

o
ad

d
to

 th
e

po
st

-e
xe

cu
ti

on

da
ta

 o
f

th
ei

r
re

co
rd

ed
 e

at
in

g
da

ta
 a

nd
 m

us
t

be

ch
an

ge
d

vi
a

th
e

U
I

w
he

ne
ve

r
ne

w
 f

oo
d

is
 p

ut
 i

nt
o

a
fe

ed
er

.

C
am

p
R

el
at

io
na

l
“B

A
SE

 ID
”

“C
am

p
3”

R

ep
re

se
nt

s
th

e
ca

m
p

th
at

 t
he

 f
ee

de
r

is
 i

n.

Stellenbosch University https://scholar.sun.ac.za

1
1

2

H
u

m
a
n

s:

A
tt

ri
b

u
te

ID

A
tt

ri
b

u
te

 T
y
p

e

A
tt

ri
b

u
te

C
o
n

te
x
t

A
tt

ri
b

u
te

 V
a
lu

e
U

sa
g
e

D
at

e
of

bi

rt
h

P
er

so
na

l
“D

at
e”

“1

99
7-

11
-1

8”

T
he

se
 f

ou
r

at
tr

ib
ut

es
 w

er
e

no
t u

se
d

fo
r

an
yt

hi
ng

 in

th
e

ca
se

 s
tu

dy
 a

nd
 a

re
 j

us
t

ex
am

pl
es

 o
f

w
ha

t
ty

pe
 o

f
at

tr
ib

ut
es

 a
 h

um
an

 h
ol

on
 w

ou
ld

 h
av

e.

G
en

de
r

P
er

so
na

l
“M

al
e,

F

em
al

e
or

pe

nd
in

g”

“M
al

e”

H
ei

gh
t

(c
m

)
P

er
so

na
l

“c
m

”
18

1

W
ei

gh
t

(k
g)

P

er
so

na
l

“k
g”

66

C
el

l
ph

on
e

nu
m

be
r

M
an

ag
em

en
t

“2
7*

**
**

**
”

“2
78

36
56

69
42

”
T

hi
s

at
tr

ib
ut

e
is

 u
se

d
by

 t
he

 h
um

an
 h

ol
on

 t
o

te
ll

 t
he

V

on
ag

e
S

M
S

 h
ol

on
 t

o
w

hi
ch

 c
el

l
ph

on
e

nu
m

be
r

an

S
M

S
 m

us
t

be
 s

en
t

if
 t

he
 h

um
an

 h
ol

on
 n

ee
ds

 t
o

co
m

m
un

ic
at

e
w

it
h

it
s

ph
ys

ic
al

 h
um

an
.

Stellenbosch University https://scholar.sun.ac.za

113

Appendix G Python MQTT client for
feeding sensor

The appendix shows the Python code used to enable the feeding sensor to share its
data over an MQTT broker. The comments in the code can be used to understand
how this was done.

#This version waits for published messages to be received by the base factory, not just by #the broker

Explanation: When new data is recorded the pi will try and publish the data. #The client subscribes for a

'bf_ack' that will be published by the base factory when it #receives the data. If this bf_ack is not received

after 5 seconds because of a broker #error or because the factory is offline the data is kept in the que and the

publish is #not successful. If not successful the data is anyways kept in a que in a text file which #is only

removed once the data has #been published successfully. A new thread will be #created for an alarm that will

go off after 60 seconds to que a retry. This will continue #until data can be published. When new data comes

in with old data still in que. The new #data is just added to the que and the pi again retries to publish all data

in que. If #unsuccessful it is not needed to start a new alarm. There will never exist more than one #retry

alarm thanks to the global variable BFRetryAlarm. If an alarm goes off when there #is no data in que

anymore because it was successfully published when new data came in #which triggered a retry, the alarm is

just ignored. One more important feature is that no #more than one client will ever be created. When new data

comes in while the system is #busy trying to publish other data, the new data is added to NewBFDataQue.

Once the #current publish is done it will see if any new datas came in while it was busy trying to #publish. If

there did, it will add any unpublished data left over with the new data and #make another publish attempt.

The scenario in this last paragraph is not expected to #happen often. The only scenario where this might

happen is when two different feeders are #sending data to the pi just after each other, but still this will not be

a problem.

#How to use:

#1. Call start when pi is started up (can be seperate thread if you want)

#2. Call #new_data(EID::string,StartDate::string,EndDate::string,Temp::number,Eaten::number)

#when new data available (can be seperate thread if you want)

import paho.mqtt.client as mqtt

import time

import json

import os

import threading

#GLOBAL VARIABLES - BF used to seperate from other global variables maybe already

implemented to prevent global variable clashes

BFClient = "pending"

NewBFDataQue = []

BFRetryAlarm = False #if true a second alarm won’t be started

BFPackageReceived = "none"

Stellenbosch University https://scholar.sun.ac.za

114

#---

#HELPER FUNCTIONS:

def is_json(myjson):

 try:

 json_object = json.loads(myjson)

 except ValueError as e:

 return False

 return True

#---

#retry_alarm is started as a seperate thread when data could not be published

#successfully. When new data comes in before this alarm goes off the unsucessfull data is #published

before the new data. If the publish fails again new data is just added to the #que

and another retry_alarm is started

def retry_alarm():

 global BFRetryAlarm

 BFRetryAlarm = True

 #print("New alarm started")

 time.sleep(60)

 BFRetryAlarm = False

 #print("Alarm going off")

 new_data(0,0,0,0,0)

#This function is automatically called when the system manages to connect

def on_connect(client, userdata, flags, rc):

 if rc==0:

 client.connected_flag=True

 #print("connected")

 else:

 #print("Could not connect. Return code = ",rc)

 client.bad_connection_flag=True

 #This function is automatically called when the system receives a published message

def on_message(client,userdata,message):

 global BFPackageReceived

 if (BFClient==client)and(message.topic=="djvniekerk@sun.ac.za/bf_ack"):

 BFPackageReceived = message.payload.decode("utf-8")

 #print("payload rec: ",message.payload.decode("utf-8"))

def GetQue():

 Que = []

 if os.path.isfile("base_factory_que.txt") ==True:

 with open('base_factory_que.txt','r') as filehandle:

 filecontents = filehandle.readlines()

Stellenbosch University https://scholar.sun.ac.za

115

 for line in filecontents:

 if is_json(line):

 Que.append(line.strip())

 filehandle.close()

 else:

 #print("Que file does not exist yet. Gonna create now")

 f = open('base_factory_que.txt','x')

 return Que

def SaveQue(Que):

 with open('base_factory_que.txt','w') as filehandle:

 filehandle.writelines("%s\n"% e for e in Que)

 filehandle.close()

#Called when system booted up to send any old data still in the que file.

def start():

 global NewBFDataQue

 Que = GetQue()

 if len(Que)>0:

 NewBFDataQue = ["start"]

 try_to_publish_que(Que)

#Called when new data available in the system

def new_data(EID,StartDate,EndDate,Temp,Eaten):

 global NewBFDataQue

 if EID==0:#if EID==0 the call was from the retry alarm and there is not any new data

 NewDataJson = "none"

 else:

 NewData = {"eid":EID,"start_date":StartDate,"end_date":EndDate,"temp":Temp,"eaten":Eaten}

 NewDataJson = json.dumps(NewData)

 if len(NewBFDataQue)==0:

 NewBFDataQue.append(NewDataJson)

 if not(EID==0):#if EID==0 the call was from the retry alarm and there is not any new data

 Que = GetQue()

 Que.append(NewDataJson)

 SaveQue(Que)#save before starting publish

 try_to_publish_que(Que)

 else:#call from alarm

 Que = GetQue()

 if len(Que)>0:

 try_to_publish_que(Que)

 else:

 NewBFDataQue.pop(0)

 if len(NewBFDataQue)>0:#in case another new data came in while alarm was processed

 NewQue = NewBFDataQue.copy()

Stellenbosch University https://scholar.sun.ac.za

116

 NewBFDataQue = ["busy"]

 #print("NewQue")

 #(NewQue)

 try_to_publish_que(NewBFDataQue)

 else:

 #print("Still busy publishing data. Queing this request")

 #not saving data in file to ensure no clashes between two threads trying to open or save

 #to a file

 if EID==0:#if the call was from retry_alarm, do not append to NewBFDataQue

 global BFRetryAlarm

 if not(BFRetryAlarm):#new alarm only started if no alarms exists yet.

 #One alarm triggers old past failed data to be pushed

 tRetry = threading.Thread(target = retry_alarm,args = [])

 tRetry.start()

 else:

 NewBFDataQue.append(NewDataJson)

def try_to_publish_que(Que):

 SQue = Que.copy()

 #print("Starting que:")

 #print(Que)

 mqtt.Client.connected_flag = False

 mqtt.Client.bad_connection_flag = False

 broker = "maqiatto.com"

 port = 1883

 client = mqtt.Client()

 global BFClient

 BFClient = client

 client.on_connect = on_connect

 client.on_message = on_message

 client.loop_start()

 #print("Connecting to broker",broker)

 client.username_pw_set(username = "djvniekerk@sun.ac.za",password="BASE_meets_daisy")

 nrConnectionAttempts = 0

 ConnectionAttemptMade = False

 while nrConnectionAttempts<3:

 try:

 client.connect(broker,port)

 ConnectionAttemptMade = True

 break

 except:

 #print("Can't connect. No internet connection or broker down")

 nrConnectionAttempts = nrConnectionAttempts+1

 time.sleep(1)

Stellenbosch University https://scholar.sun.ac.za

117

 if ConnectionAttemptMade: #only waiting for acknowledge if connection attempt was made

 WaitCount=0

 Publish = True

 while not client.connected_flag :

 #print("waiting")

 WaitCount = WaitCount+1

 if (WaitCount>5):

 #print("Did not get connection acknowledge from broker after 5 seconds")

 Publish = False

 break

 else:

 time.sleep(1)

 if client.bad_connection_flag:

 #print("Some connection error.")

 Publish = False

 break

 if Publish==True: #only trying to publish if connection attempt was made and an

 #acknowledge was received

 client.subscribe("djvniekerk@sun.ac.za/bf_ack",qos=0)

 #print("publishing data in que")

 Count=0

 for d in Que:

 if (Count>10):#no point in trying to publish if previous failed

 break

 msg_info = client.publish("djvniekerk@sun.ac.za/pi_temp",d,qos=2)

 global BFPackageReceived

 Count=0

 #print("Tried to publish ",d)

 while True:

 if(BFPackageReceived==d):

 #print("BASE received package")

 SQue.remove(d)

 break

 else:

 time.sleep(1)

 Count=Count+1

 if (Count>10):

 #print("BASE did not receive package")

 break

 client.unsubscribe("djvniekerk@sun.ac.za/bf_ack")

 client.loop_stop()#if disconnected after connection was already established and

data already published this will take 2mins to execute

 #print("stopped loop")

 try:

Stellenbosch University https://scholar.sun.ac.za

118

 #print("trying to disconnect")

 client.disconnect()

 #print("done")

 except:

 pass

 #print("Was not needed to disconnect")

 else:

 #print("Could not connect to broker after 3 connection attempts. Giving up now")

 client.loop_stop()

 try:

 client.disconnect()

 except:

 pass

 #print("Was not needed to disconnect")

 if len(SQue)>0:

 global BFRetryAlarm

 if not(BFRetryAlarm):#new alarm only started if no alarms exists yet. One alarm triggers

old past failed data to be pushed

 tRetry = threading.Thread(target = retry_alarm,args = [])

 tRetry.start()

 #print("Ending que")

 #print(SQue)

 global NewBFDataQue

 NewBFDataQue.pop(0)

 if len(NewBFDataQue)>0: #starting pending 'new datas' together with failed publishes

 for e in NewBFDataQue:

 SQue.append(e)

 NewBFDataQue = ["busy"]

 #print("NewQue")

 #print(SQue)

 SaveQue(SQue)

 try_to_publish_que(SQue)

 else:

 SaveQue(SQue)#always saving que at end

Stellenbosch University https://scholar.sun.ac.za

1
1

9

A
p

p
en

d
ix

 H

U
se

r I
nt

er
fa

ce

Fi
gu

re
s 4

1
to

 4
7

sh
ow

 sc
re

en
sh

ot
s f

ro
m

 th
e

BA
SE

 a
rc

hi
te

ct
ur

e
im

pl
em

en
ta

tio
n’

s U
I.

Fi
gu

re
s

48
 a

nd
 4

9
sh

ow
 e

xa
m

pl
es

 o
f

E
xc

el
 f

il
es

th

at
 c

ou
ld

 b
e

do
w

nl
oa

de
d

by
 s

tu
de

nt
s

fo
r

th
ei

r
ex

pe
ri

m
en

ts
 o

n
th

e
sh

ee
p

fa
rm

N
o
te

 t
o
 e

xa
m

in
er

s:
 T

h
is

 u
se

r
in

te
rf

a
ce

 c
a
n
 b

e
u
se

d
 t

o
 a

cc
es

s
th

e
B

A
S
E

 a
rc

h
it

ec
tu

re
 i

m
p
le

m
en

ta
ti

o
n
 b

y
g
o
in

g
 t

o
 h

tt
p
:/

/b
a
se

-s
h
ee

p
-

fa
rm

.e
u
.n

g
ro

k.
io

/
an

d
en

te
rin

g
ei

th
er

 “
in

te
rn

al
”

or
 “

ex
te

rn
al

”
(d

ep
en

di
ng

 o
n

ty
pe

 o
f e

xa
m

in
er

) a
s b

ot
h

th
e

us
er

na
m

e
an

d
pa

ss
wo

rd
.

H
.1

S

cr
ee

n
sh

ot
s

of
 th

e
us

er
 in

te
rf

ac
e

F
ig

u
re

 4
1
:

U
I

h
o
m

e
p

a
g
e

F
ig

ur
e

41
 s

ho
w

s
th

e
ho

m
e

pa
ge

 a
ft

er
 t

he
 C

a
se

 S
tu

d
ie

s
B

ut
to

n
w

as
 c

li
ck

ed
.

T
he

 S
te

ll
en

b
o
sc

h
 F

a
rm

 Q
u
ic

k
S
et

u
p
 b

ut
to

n
w

as
 u

se
d

to

qu
ic

kl
y

ad
d

th
e

sh
ee

p,
 g

ro
up

s,
 f

ee
de

rs
, c

am
ps

 a
nd

 I
nt

er
fa

ce
 H

ol
on

s
fr

om
 a

n
E

xc
el

 f
il

e.
 T

he
 A

d
d
 R

F
ID

 S
ca

le
 D

a
ta

 (
ex

ce
l)

 w
as

 u
se

d
to

qu

ic
kl

y
ad

d
ne

w
 w

ei
gh

t d
at

a
to

 th
e

sh
ee

p
sc

al
e

ho
lo

n’
s

sc
he

du
le

 (t
o

sh
ar

e
w

ith
 s

he
ep

 h
ol

on
s)

 w
ith

ou
t n

ee
di

ng
 t

o
go

 t
o

R
es

ou
rc

es
 -

>

S
en

so
rs

 -
>

 R
F

ID
 S

he
ep

 S
ca

le
. T

he
 C

a
se

 S
tu

d
ie

s
bu

tt
on

 o
pe

ns
 a

 t
ab

le
 (

w
it

h
th

e
gr

ee
n

he
ad

er
 i

n
fi

gu
re

 4
1)

 w
he

re
 s

tu
de

nt
s

ca
n

ad
d

an
d

Stellenbosch University https://scholar.sun.ac.za

http://base-sheep-farm.eu.ngrok.io/
http://base-sheep-farm.eu.ngrok.io/

1
2

0

re
m

ov
e

ca
se

 s
tu

di
es

,
vi

ew
 l

iv
e

da
ta

 i
n

th
e

br
ow

se
r

ab
ou

t
th

e
va

ri
ab

le
s

of
 i

nt
er

es
t

fo
r

ea
ch

 c
as

e
st

u
dy

,
an

d
do

w
nl

oa
d

da
ta

 a
bo

ut
 e

ac
h

ca
se

 s
tu

dy
.

T
he

 t
hr

ee
 b

ut
to

ns
 o

n
th

e
ho

m
e

pa
ge

 u
nd

er
 S

h
o
rt

cu
ts

 a
nd

 t
he

ir
 f

un
ct

io
na

li
ti

es
 w

er
e

th
e

on
ly

 c
us

to
m

 d
ev

el
op

m
en

t
re

qu
ir

ed

fo
r

th
e

sh
ee

p
fa

rm
. T

he
 r

es
t

of
 t

he
 f

un
ct

io
na

li
ti

es
 o

f
th

e
U

I
is

 c
om

pl
et

el
y

ge
ne

ri
c.

 F
ig

ur
e

42
 s

ho
w

s
th

e
U

se
rs

 p
ag

e
w

he
re

 u
se

rs
 o

f
th

e
sy

st
em

 c
an

 b
e

vi
ew

ed
, a

dd
ed

 a
nd

 r
em

ov
ed

 b
y

ad
m

in
is

tr
at

or
s

(p
er

m
is

si
on

 l
ev

el
 =

 1
),

 a
nd

 w
he

re
 e

ac
h

us
er

 c
an

 c
ha

ng
e

th
ei

r
pa

ss
w

o
rd

.

F
ig

u
re

 4
2
:

U
I

u
se

r
a
d

m
in

is
tr

a
ti

o
n

 p
a
g
e

Stellenbosch University https://scholar.sun.ac.za

1
2

1

ig
ur

e
43

 s
ho

w
s

th
e

U
I

af
te

r
cl

ic
ki

ng
 o

n
R

es
o
u
rc

es
->

S
h
ee

p
->

G
et

 a
ll

.
T

he
 U

I
sh

ow
s

al
l

th
e

sh
ee

p
re

so
ur

ce
s,

 i
nc

lu
di

ng
 t

he
ir

 a
tt

ri
bu

te
s.

T

he
 h

ea
de

rs
 in

 th
e

ta
bl

e
ca

n
be

 c
li

ck
ed

 to
 o

rd
er

 th
e

re
so

ur
ce

s
ac

co
rd

in
g

to
 a

n
at

tr
ib

ut
e

(w
il

l o
rd

er
 a

lp
ha

be
ti

ca
ll

y
or

 n
um

er
ic

al
ly

).
 F

ig
ur

e
44

 s
ho

w
s

al
l

th
e

O
bs

er
ve

rs
 i

n
th

e
sy

st
em

, i
.e

.,
th

e
sh

ee
p

sc
al

e
an

d
th

e
fe

ed
in

g
se

ns
or

.

F
ig

u
re

 4
3
:

U
I

re
so

u
rc

es
 p

a
g
e

sh
o
w

in
g
 a

ll
 s

h
ee

p

F
ig

u
re

 4
4
:

U
I

re
so

u
rc

es
 p

a
g
e

sh
o
w

in
g
 a

ll
 s

en
so

rs
 (

O
b

se
rv

er
s)

Stellenbosch University https://scholar.sun.ac.za

1
2

2

Th
e

w
ay

 in
 w

hi
ch

 e
ac

h
re

so
ur

ce
’s

 d
at

a
is

di
sp

la
ye

d
is

sh
ow

n
in

 fi
gu

re
s 4

5,
 4

6
an

d
47

. F
ig

ur
e

45
 sh

ow
s h

ow
 e

ac
h

re
so

ur
ce

’s
 a

ttr
ib

ut
es

ar

e
di

sp
la

ye
d,

 c
at

eg
or

iz
ed

 u
nd

er
 p

er
so

na
l,

re
la

ti
on

al
, m

an
ag

em
en

t a
nd

 s
ta

te
 a

tt
ri

bu
te

s.
 N

ot
e

th
at

 th
e

pe
rs

on
al

 a
nd

 m
an

ag
em

en
t a

tt
ri

bu
te

s
ca

n
be

 e
di

te
d,

 b
ut

 n
ot

 th
e

re
la

ti
on

al
. E

ac
h

st
at

e
at

tr
ib

ut
e

ha
s

a
ch

ec
kb

ox
 u

nd
er

 it
 w

hi
ch

 c
an

 b
e

us
ed

 to
 d

is
pl

ay
 th

e
R

D
s

us
ed

 to
 c

al
cu

la
te

th

e
at

tri
bu

te
’s

 v
al

ue
.

F
ig

u
re

 4
5
:

U
I

re
so

u
rc

e
d

et
a
il

s
sh

ow
in

g
a

sh
ee

p’
s a

ttr
ib

ut
es

Stellenbosch University https://scholar.sun.ac.za

1
2

3

F
ig

ur
e

46
 s

ho
w

s
ho

w
 th

e
U

I
di

sp
la

ys
 th

e
sc

he
du

le
, e

xe
cu

ti
on

 a
nd

 b
io

gr
ap

hy
 o

f
ea

ch
 r

es
ou

rc
e.

 U
nd

er
 S

ch
ed

u
le

,
G

et
 s

ch
ed

u
le

->
S
ch

ed
u
le

n
ew

 a
ct

s
w

as
 c

li
ck

ed
,

fo
ll

ow
ed

 b
y

cl
ic

ki
ng

 o
n

th
e

dr
op

do
w

n
bo

x
un

de
r

A
ct

iv
it

y
ty

p
e,

 w
hi

ch
 g

iv
es

 t
he

 p
os

si
bl

e
ac

ti
vi

ti
es

 t
ha

t
ca

n
be

sc

he
du

le
d

fo
r

th
is

 r
es

ou
rc

e
(s

he
ep

).
 W

he
n

ac
ti

vi
ti

es
 u

nd
er

 E
xe

cu
ti

o
n
 o

r
B

io
g
ra

p
h
y

co
nt

ai
n

da
ta

 w
it

h
m

or
e

th
an

 1
00

 c
ha

ra
ct

er
s,

 a
 v

ie
w

bu

tt
on

 is
 g

en
er

at
ed

 o
n

th
e

U
I,

 w
hi

ch
 c

an
 b

e
cl

ic
ke

d
to

 d
is

pl
ay

 th
e

da
ta

 in
 th

e
bu

tt
on

. T
he

 s
am

e
bu

tt
on

 c
an

 a
ga

in
 b

e
cl

ic
ke

d
to

 h
id

e
th

is
.

F
ig

u
re

 4
6
:

U
I

re
so

u
rc

e
d

et
ai

ls
sh

ow
in

g
a

sh
ee

p’
s s

ch
ed

u
le

,
ex

ec
u

ti
o
n

 a
n

d
 b

io
g
ra

p
h

y

Stellenbosch University https://scholar.sun.ac.za

1
2

4

F
ig

ur
e

47
 s

ho
w

s
ho

w
 t

he
 R

es
ou

rc
e

D
at

a
of

 e
ac

h
re

so
ur

ce
 i

s
di

sp
la

ye
d

in
 t

he
 U

I.
 I

f
th

e
da

ta
 i

s
nu

m
er

ic
 i

t
w

il
l

be
 p

lo
tt

ed
.

T
he

 t
hi

ck
er

li

ne
 i

n
fi

gu
re

 4
7

sh
ow

s
th

e
ea

ti
ng

 d
at

a
of

 a
 s

he
ep

 o
ve

r
a

fe
w

 d
ay

s
an

d
th

e
th

in
ne

r
li

ne
 i

n
th

e
pl

ot
 s

ho
w

s
ho

w
 l

on
g

th
e

sh
ee

p
at

e
ev

er
y

ti
m

e
it

 h
ad

 e
at

en
.

F
ig

u
re

 4
7

:
U

I
re

so
u

rc
e

 d
et

ai
ls

sh
ow

in
g

a
sh

ee
p’

s r
es

ou
rc

e
d

a
ta

Stellenbosch University https://scholar.sun.ac.za

125

H.2 Downloaded FCR data for student experiments

Figures 48 and 49 show an example of the Excel files that could be downloaded by
students for their experiments on the sheep farm. For every case study, an excel file
would be downloaded for each group. In each file there is a Group sheet which
contains the average FCR of the entire group as shown in figure 48. There is also a
sheet for every sheep, showing all the data and variables of interest as shown in
figure 49.

Figure 48: Sheep data in downloaded excel file using UI – group sheet

Figure 49: Sheep data in downloaded excel file using UI – sheep sheet

Stellenbosch University https://scholar.sun.ac.za

126

Appendix I Computational requirements
evaluation

Figures 50 and 51 show the CPU usage and RAM usage plots when the
computational resource requirements of the BASE architecture implementation
were measured as part of the evaluation of the extended BASE architecture (section
10.2.4). Figure 50 shows the CPU usage measured using Windows’s Performance
Monitor and figure 51 shows the CPU measured using Erlang’s Observer. Both of
these figures show the plots for the experiment where 100 holons were added to the
system.

Figure 50: Implementation's CPU usage before, during and after the addition

of 100 holons to the system

Stellenbosch University https://scholar.sun.ac.za

127

Figure 51: Implementation's RAM usage before, during and after the

addition of 100 holons to the systema

Table 8 shows the detailed results of the computational requirement experiment
discussed in section 10.2.4.

Table 8: Service initialisation time and computational resource requirements

of the implementation for different numbers of holons in the system

Number

of

holons

Service

initialisation

time (milli-

seconds)

While holons were being

added

After holons were

added

Average

CPU

Usage

(% of

total)

Time to

add

holons

(s)

CPU

Time

(s)

Total

RAM

Usage

(MB)

Average

CPU

Usage (%

of total)

1 0 45 0.016 0.007 22.1 0.17

10 15 100 0.359 0.359 30.2 0.15

100 933 100 3.563 3.563 108.6 0.19

500 7109 100 45.547 45.547 440.1 0.18

1000 14812 100 70.594 70.594 855.6 0.18

Stellenbosch University https://scholar.sun.ac.za

	Microsoft Word - Document1
	Opsomming

