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SUMMARY 
 

The research presented in this thesis had the goal of comparing and applying multispectral satellite 

imagery and trend analysis algorithms to evaluate the effectiveness of the management of invasive 

alien Prosopis trees by comparing areas that have been subjected to different management regimes 

in the Northern Cape over the past 20 years. 

From the analysis of a remote sensing time series, I was able to detect the response of Prosopis 

cover to management, and this research provides a baseline for a feasible monitoring framework 

to evaluate the effectiveness of management. While management detection success rates were 

lower than initially expected, the BFAST and BFAST01 trend algorithms combined with NDVI 

values from Landsat 7 and 8 imagery provided to be well-suited for detecting clearing in a short 

time, as is often done by Working for Water with large teams which manually clear a site, or in 

the case of farmers who can afford to use earth-moving equipment to clear dense Prosopis thickets 

in a short period. 

While there are some success stories where Prosopis was brought under control on farms, at a 

broader scale the problem is out of hand. Firstly, it seems that the available scarce funding will 

need to be focussed on priority areas where the goals of management can be met through the 

implementation of adequate and sustained partnerships between government-funded assistance 

and farmers. In other words, limited funds should not be diluted to a point where they become too 

thinly spread, resulting in ineffective control. Secondly, a concerted effort to find effective 

biological control agents needs to be made, which, if effective, could vastly increase the 

effectiveness of clearing operations. 

The findings of this study provide valuable insights into methods that can be used to assess the 

efficacy of Prosopis management in an arid region. Further, they show that the current outcomes 

of management of Prosopis are variable and that a unified approach would be required where all 

stakeholders work together to find solutions to the environmental problem. 

KEY WORDS 

Prosopis, invasive alien plant, remote sensing, Landsat, trend analysis, BFAST, BFAST01, 

Google Earth Engine, Northern Cape 
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OPSOMMING 
 

Die navorsing wat in hierdie tesis aangebied word, het ten doel gehad om multispektrale 

satellietbeelde en tendensanalise-algoritmes te vergelyk en toe te pas om die doeltreffendheid van 

die bestuur van Prosopis te evalueer deur gebiede in die Noord-Kaap te vergelyk wat in die 

afgelope 20 jaar onderhewig was aan verskillende beheermetodes. 

Uit die ontleding van 'n reeks satellietfoto’s kon ek die uitwerking van beheer op Prosopis-dekking 

sien. Hierdie navorsing bied 'n basis vir 'n moniteringsraamwerk om die doeltreffendheid van 

Prosopis-beheer te monitor. Alhoewel die sukseskoerse vir beheeropsporing laer was as wat 

aanvanklik verwag is, is die gebruik van BFAST- en BFAST01-tendensalgoritmes gekombineer 

met NDVI-waardes van Landsat 7 en 8-beelde baie geskik om Prosopis-beheer op te spoor wat 

binne ‘n relatiewe kort tyd gedoen is, soos dikwels die geval is met Werk vir Water wat met groot 

spanne 'n area met die hand skoonmaak, of in die geval van boere wat dit kan bekostig om 

grondverskuiwingstoerusting te gebruik om digte Prosopis-ruigtes binne 'n kort tydperk skoon te 

maak. 

Alhoewel daar 'n paar suksesverhale is waar Prosopis op plase onder beheer gebring is, is die 

probleem op 'n groter skaal buite beheer. Eerstens blyk dit dat die beskikbare skaars befondsing 

gefokus sal moet word op prioriteitsareas waar die bestuur se doelwitte bereik kan word deur die 

implementering van voldoende en volgehoue vennootskappe tussen staatsbefondsde hulp en boere. 

Met ander woorde, beperkte fondse moet nie verdun word tot 'n punt waar dit lei tot 

ondoeltreffende beheer nie. Tweedens moet 'n gesamentlike poging aangewend word om 

effektiewe biologiese bestrydingsspesies te vind, wat, indien dit effektief is, die doeltreffendheid 

van beheer aansienlik kan verbeter. 

Die bevindings van hierdie studie bied waardevolle insigte oor metodes wat gebruik kan word om 

die doeltreffendheid van Prosopis-bestuur in 'n droë gebied te bepaal. Verder toon dit aan dat die 

huidige sukses van die bestuur van Prosopis wisselvallig is en dat 'n eenvormige benadering nodig 

sal wees waar alle belanghebbendes saamwerk om oplossings vir die omgewingsprobleem te vind. 

SLEUTELWOORDE 

Prosopis, indringende uitheemse plant, afstandswaarneming, Landsat, tendensanalise, BFAST, 

BFAST01, Google Earth Engine, Noord-Kaap 
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CHAPTER 1:  INTRODUCTION 

Humans have facilitated the spread of species into areas far from their origins. This has often been 

done deliberately in cases like the introduction of agricultural plant species as well as 

unintentionally where imported goods contain concealed species (Mack, Ruiz & Carlton 2003). 

Quite often the negative impact of invasive species outweighs the positive, leading to declines in 

ecosystem services and loss of biodiversity (Maundu et al. 2009; Wise, van Wilgen & Le Maitre 

2012). Their management is therefore important if negative impacts are to be avoided or reduced. 

1.1 PROSOPIS AS AN INVASIVE SPECIES 

Trees in the genus Prosopis (also known as mesquite) are an example of such invasive species, 

and they are a significant problem in the Northern Cape Province of South Africa (Henderson 

1991). Previous studies have shown that Prosopis trees spread rapidly and form dense thickets 

which cannot be utilised (Bekele et al. 2018; Mwangi & Swallow 2005; Shackleton et al. 2015a).  

Numerous Prosopis species were introduced from the Americas to the arid parts of South Africa 

to provide fodder, fuelwood and shade trees to aid farmers and local communities. Prosopis has 

since become invasive. Several species of Prosopis have hybridised, and the invasive population 

contributes a hybrid swarm which has become the second most widespread invasive tree genus in 

South Africa after Australian acacias (Henderson 2007). 

Prosopis is most abundant in the arid Northern Cape Province, where it covered an estimated 1.5 

million hectares in 2007, with the potential to invade up to 8 million hectares in this province alone 

(van den Berg 2010). About 160 000 of the 1.5 million hectares were covered by very dense 

Prosopis stands, which can’t be efficiently utilised as intended for fodder or shade. Between 1974 

and 2007 Prosopis had an estimated mean annual spread rate of 7.4% (Wise, van Wilgen & Le 

Maitre 2012). Invasive stands of Prosopis now pose threats to biodiversity, ecosystem services 

and human well-being in South Africa. 

The environmental impacts of Prosopis include decreasing dung beetle (Steenkamp & Chown 

1996) and bird diversity (Dean et al. 2002), as well as plant diversity (Shackleton et al. 2015a) in 

invaded areas. Grazing livestock and wildlife populations also decrease due to loss of grazing 

capacity (Ndhlovu, Milton-Dean & Esler 2011; Wise, van Wilgen & Le Maitre 2012). After a 

Prosopis invasion reaches about 80% canopy cover, grass and other herbaceous plants are no 

longer found under the trees (Shackleton et al. 2015a). Such dense invasions have a significant 

impact on groundwater levels and cause water stress in indigenous trees (Dzikiti et al. 2017; 

Schachtschneider & February 2013). Research by Muller et al. (2017) has demonstrated that West 
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African villages with Prosopis invasions can support more mosquitoes, creating a malaria health 

hazard.  Wise, van Wilgen & Le Maitre (2012) found that the value of benefits decreases with an 

increase in areas invaded and density increases of Prosopis. At a point in time the negative impacts 

become greater than the benefits, and without intervention would continue to become increasingly 

negative. 

1.2 MANAGEMENT OF INVASIONS 

An integrated approach to managing Prosopis is being implemented in South Africa to reduce the 

impacts of invasions. Mechanical and chemical control is carried out by the state-run program 

Working for Water (WfW) since 1995, but private landowners also control Prosopis (Shackleton 

et al. 2017). Biological control in the form of seed-feeding insects has also been introduced to 

supplement the mechanical and chemical control, but it has up to now not been very effective 

(Impson, Moran & Hoffmann 1999); however, a more damaging biological control agent (Evippe 

species) was released in 2021. 

Invasive alien plant control in the Northern Cape focused on Prosopis and more than 85% of 

control costs in arid biomes between 1995 and 2008 were attributed to Prosopis management (van 

Wilgen et al. 2012). Only four percent of the invasion in the Northern Cape was treated at a cost 

of 435 million rands during this period. Furthermore, research suggests that that Prosopis invasions 

are increasing at an exponential rate despite clearing efforts. Van den Berg (2010) found that the 

extent of Prosopis in the Northern Cape grew from about 77 000 condensed hectares in 1990 to 

360 000 condensed hectares in 2007 – an increase of 363% over 17 years. Several studies have 

suggested that a different approach to the management of Prosopis in the Northern Cape is needed 

as the threat of increasing Prosopis population is a significant concern (Shackleton et al. 2017; van 

Wilgen et al. 2012; Wise, van Wilgen & Le Maitre 2012). 

The current performance indicators used by Working for Water (WfW) requires them to focus on 

project inputs, rather than the effectiveness of the control (van Wilgen & Wannenburgh 2016). 

These indicators include the area of plants treated, the number of sites where beetles were released 

for biological control, the number of emerging invasive alien plants controlled, and the number of 

jobs created. Additionally, a significant portion of WfW funding is sourced from the Extended 

Public Works Programme (EPWP), with additional employment targets. The findings from Van 

Wilgen & Wannenburgh (2016) suggest that the two goals of Working for Water, namely 

employment creation and ecosystem conservation, lead to confusion about priorities and can 

hinder the effective management of Prosopis. 
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For efficient management planning and the execution thereof, reliable data and methods for 

monitoring the success of Prosopis clearing over time are required.  

1.3 REMOTE SENSING AS A DECISION SUPPORT TOOL 

Field mapping of the species’ geographical extent and cover is difficult over large and rugged 

areas. Remote sensing is known for its ability to map various plant features over large aerial extents 

and over repeat time steps (Huang & Asner 2009). Several authors have used remote sensing as a 

tool to map the presence and abundance of invasive plant species, including mapping the 

distribution of Phragmites in the United States (Liu et al. 2016), detecting alien tree presence in 

Chile’s temperate forest (Martin-Gallego et al. 2020) and mapping the extent of Spartina 

alterniflora in the Yellow River delta in China (Ren et al. 2021). 

Remote sensing has been used for Prosopis mapping in several countries, as Prosopis is such a 

widespread invasion. A recent study by Mbaabu et al. (2019) has used a time series of moderate 

resolution satellite imagery to map Prosopis spread at stand level in the Baringo county in Kenya 

between 1988 and 2016. Accuracies of above 90% were achieved by this study. Another study by 

Ng et al. (2017) focused on mapping Prosopis distribution for the same study area using high 

(Sentinel-2) and very high resolution (Pleiàdes) imagery, as well as an object-oriented machine 

learning classification method. The authors have shown that it is viable to use slightly lower 

resolution imagery to map stands of Prosopis. In Ethiopia, Wakie et al. (2014) determined the 

extent and predicted the spread of Prosopis using low-resolution satellite imagery and geospatial 

modelling techniques. Robinson, van Klinken & Metternicht (2008) has used panchromatic aerial 

imagery to extract Prosopis distribution for Western Australia. 

The distributional extent of the Northern Cape Prosopis invasion was mapped using remote 

sensing and a geographic information system (GIS) from 1974 to 2007 (van den Berg 2010; van 

den Berg, Kotze & Beukes 2013). Spectral analysis of seasonal profiles, various resolution image 

inputs, spectral indices and ancillary data were used for image classification. Areas of Prosopis 

invasion were mapped using coarse resolution imagery and field data using relationships between 

actual Prosopis occurrence, spectral response, soils and terrain unit. To quantify the distribution 

and density as well as the spatial dynamics of Prosopis over time multi-temporal Landsat images 

and a 500m x 500m point grid was used, which enabled vector analysis and statistical analysis for 

accuracy. 

Remote sensing has been proven to be effective for the monitoring of land-use change and 

phenological trends over time and can be well-suited for the task of monitoring Prosopis 

management efforts over time. 
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1.4 RESEARCH PROBLEM FORMULATION 

Knowing how effectively the Prosopis invasion is being managed by different groups and the 

combination of these management efforts is important when planning management strategies. 

Given that the Northern Cape spans an area of 372 889 km2, it is not viable to send large teams 

out to map the occurrence and increase in cover of Prosopis using traditional field mapping 

methods involving counting trees in measured plots (Shackleton et al. 2015a). Estimating cover 

from a ground-based perspective can also be challenging and yield very subjective results. 

Furthermore, it is not possible to analyse the historical increase in cover with in-situ methods if 

the data was not captured in the past. 

In an era where spatial data are becoming more accessible, analysis of remotely-sensed imagery 

offers new and improved methods to address ecological problems (Buchanan et al. 2015; 

Buchanan et al. 2009) such as the mapping of invasive alien plant species (Cord, Klein & Dech 

2010; Huang & Asner 2009). Multispectral imagery has been used before to map the Prosopis 

invasion in the Northern Cape (van den Berg 2010), however so far these monitoring studies have 

not considered the aspects of management effectiveness in reducing the growing abundance of the 

Prosopis invasion in the Northern Cape province. 

To evaluate management effectiveness and make recommendations for an appropriate method for 

future use new remote sensing trend analysis methods, that may capture detailed Prosopis cover 

dynamics over time, should be investigated (Bullock 2018; Drusch et al. 2012; Kennedy, Yang & 

Cohen 2010; Zhu & Woodcock 2014). 

1.5 RESEARCH AIM AND OBJECTIVES 

This study aims to compare and apply multispectral satellite imagery and trend analysis algorithms 

to evaluate the effectiveness of control of Prosopis by comparing areas that have been subjected 

to different management regimes in the Northern Cape over the past 20 years. 

To fulfil the aim, five objectives were set up, namely to: 

1. Carry out a literature review to become familiar with past and current techniques used to 

assess the Prosopis invasion and to identify suitable trend analysis strategies. 

2. Identify farms with Prosopis that have been subjected to different management regimes 

and obtain field data through interviews, participatory mapping and fieldwork. 

3. Analyse remote sensing time series algorithms to estimate the change in cover of the 

Prosopis invasion on selected farms in the Northern Cape. 
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4. Assess the effect of management actions on the cover of the Prosopis invasion in the 

Northern Cape. 

5. Synthesise the findings into a research report. 

1.6 METHODOLOGY AND RESEARCH DESIGN 

Quantitative analysis of remotely sensed imagery together with field-based point or polygon data 

combined with interviews from farmers will be used to map the effect of different management 

regimes of Prosopis on selected farms in the Northern Cape. This study is experimental as novel 

methods will be tested and applied.  Qualitative interview data from landowners/managers will be 

used to collect data on approaches used to control Prosopis, and to corroborate results on where 

and when clearing occurred. 

The research design is shown in Figure 1.1. It includes the relevant objectives and chapters for the 

final thesis (encircled in grey). This document already provides the conceptual framework for the 

project, introducing the research problem, aim, objectives, design and study area. 
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Figure 1.1 Research design with objectives and chapters (encircled) 

The next chapter provides some theoretical background and reviews academic literature on remote 

sensing of invasive alien plants and the management strategy thereof. Chapter 3 deals with 

determining the change in abundance of Prosopis in areas subject to different management 

strategies in the Northern Cape using remote sensing trend analysis algorithms of satellite imagery 

between 1999 and 2020. The efficacy of management of Prosopis on these sites is evaluated in 

Chapter 4 based on outputs from the third chapter, as well as farmer interviews. The study is 

concluded in Chapter 5 with a summary and findings from both Chapters 3 and 4. 
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CHAPTER 2:  LITERATURE REVIEW 

This chapter provides a brief overview of the management of invasive alien plants in South Africa, 

as well as remote sensing and its use in invasive alien plant mapping, with relevant literature cited. 

Knowing how remote sensing is used to detect processes and objects on the earth’s surface is 

important for understanding processing procedures and interpreting results. Firstly, an overview 

of Prosopis management in South Africa is provided, followed by an overview of remote sensing 

as a science. 

2.1 PROSOPIS TREES IN SOUTH AFRICA  

Trees in the genus Prosopis (also known as mesquite) are leguminous thorny trees that are drought 

tolerant with deep taproots (Pasiecznik et al. 2001; Zimmermann 1991). These trees are deciduous 

and have a peak growing season from spring to autumn – which roughly corresponds to the period 

between September to April in South Africa (Agricultural Research Council 2014). Prosopis trees 

are aggressive invaders and can spread rapidly and form dense thickets which are of very little 

value (Bekele et al. 2018; Mwangi & Swallow 2005; Shackleton et al. 2015b). 

2.1.1 History of Prosopis in South Africa 

Numerous Prosopis species were introduced from the Americas, where it is native, to the arid parts 

of South Africa from the 1880s (Pasiecznik et al. 2001). Alston (1914), a farmer in the 

Vanwyksvlei area where Prosopis is currently a significant problem, received seeds from a friend, 

John Marquard, and started planting them on his farm in 1885. Until the 1960’s the planting of 

Prosopis was encouraged by the government because of the plant’s ability to grow in very dry 

conditions (Poynton 1990). Prosopis pods are high in sugar, carbohydrates and protein, making 

them a good source of fodder (Choge et al. 2007). In the Karoo where native trees are scarce, 

communities make use of the shade and fuelwood that these trees provide (Shackleton et al. 

2015a).  

Dense Prosopis stands, however, significantly reduce groundwater levels and cause water stress 

in indigenous trees (Dzikiti et al. 2017; Schachtschneider & February 2013). After a Prosopis 

invasion reaches about 80% canopy cover, grass and other herbaceous plants are no longer found 

under the trees (Wise, van Wilgen & Le Maitre 2012). 

In the years between the 1960s and 1980s, Prosopis became an increasing problem in South Africa 

and was declared as an invasive species by 1983 (Henderson & Harding 1992). At least six species 

of Prosopis are known to occur in South Africa, and the invasive population contributes to a hybrid 
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swarm which is the second most widespread invasive tree genus in South Africa after Australian 

acacias (Henderson 2007). 

2.1.2 Ecology of Prosopis and why it is spreading successfully 

When Prosopis was brought into South Africa, no natural enemies were brought with it. This 

meant that Prosopis had more than 100 years to establish and spread along river courses and in 

low-lying areas (van den Berg 2010). Prosopis roots can reach into water tables, and they 

outcompete other plants which don’t have such extensive root systems (Dzikiti et al. 2017). Deep 

soils also aid Prosopis in reaching water tables more easily. Furthermore, years with above-

average rainfall have been shown to correlate to a rapid spread of Prosopis (Harding 1988), 

because the associated flow in otherwise dry river beds spreads the seeds over large distances.  To 

worsen the problem, the Department of Agriculture actively encouraged farmers to plant Prosopis 

as a dry-land fodder plant (Harding 1988; de Klerk 2004). 

2.1.3 Negative impacts of Prosopis 

The Northern Cape is a water-scarce area with some areas declared disaster areas in 2020 due to 

the influence of a long drought. The high water use of Prosopis is thus a significant problem as it 

rapidly uses what little rain falls and contributes to the depletion of groundwater resources (Davis 

2020; Dzikiti et al. 2013; Evans 2019; Van der Spuy 2019). A report by the Department of Water 

Affairs and Forestry (2005) shows that annually about 17% of groundwater is lost due to Prosopis 

invasions, which could otherwise have been used for socially beneficial economic purposes. This 

is equal to the groundwater proportion of the total recharge registered for use in the region. 

Prosopis also has a direct impact on grazing capacity. Shiferaw et al. (2021) estimated that 

Prosopis uses more than 3 billion m3 of water per year in their study area in the Afar region of 

Ethiopia. 

At low densities (canopy cover <40%) positive impacts of Prosopis such as increased moisture 

content in the upper soil layers can be seen (Wise, van Wilgen & Le Maitre 2012). The loss of 

grass is compensated for by the Prosopis pods at this stage of the invasion. However, when stands 

become dense, Prosopis outcompetes grasses around them, leading to loss of grazing capacity, as 

Prosopis pods cannot be utilized when impenetrable thickets form and livestock cannot gain access 

to the pods on the ground (Smit 2005). 

Schachtschneider & February (2013) found that there is a significant increase in the mortality of 

an indigenous tree, Vachellia erioloba, in the Kuruman River due to water stress caused by 

Prosopis. Furthermore, Dzikiti et al. 2015 concluded that Prosopis uses more groundwater at stand 

level when compared to indigenous plant species. This is due to their rapid growth compared to 
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indigenous trees. The authors also found that dense invasions of Prosopis in their study area used 

approximately 2.72 megalitres of water per hectare per year. Similarly, Shiferaw et al. (2021) 

measured that, in the Afar region of Ethiopia, a Prosopis tree consumes about seven litres of water 

per day. 

2.2 PRINCIPLES OF REMOTE SENSING 

All objects on the surface of the earth emit electromagnetic radiation (EMR) and reflect radiation 

emitted by other objects. By capturing this radiation from earth-orbiting satellites or aerial 

platforms and bearing in mind the interaction the signal might have had with atmospheric particles, 

it is possible to develop a knowledge of characteristics of surface features such as vegetation, soils, 

water bodies and structures (Campbell & Wynne 2011). 

Usable information is stored in the structure of EMR, which consists of both an electric and 

magnetic component. Both the amplitude and wavelength of the wave can vary. The amplitude is 

measured as the maximum extent of a wave’s oscillation from its equilibrium position, while the 

wavelength is the distance between successive peaks or troughs on the wave (Campbell & Wynne 

2011). Frequency is inversely proportional to the wavelength and is measured as the number of 

waves that passes a fixed point per second. Variation in the frequency/wavelength of a wave can 

be grouped into regions, known as wavebands or spectral bands (Chuvieco 2018). 

 

Figure 2.1 Amplitude and wavelength of a wave (a) and the electromagnetic spectrum (b) 

 

The most well-known portion of the EMR is visible light. Other regions of the EMR spectrum with 

value to remote sensing include near-infrared and shortwave-infrared.  

Not all wavelengths of the spectrum can be used for remote sensing purposes. In certain portions 

of the electromagnetic spectrum, light is absorbed or reflected by the atmosphere and consequently 

would not reach objects on the earth’s surface (Conway 1997). These areas do not allow light to 

pass through at all or only partially. Generally, remotely sensed data is captured in regions of the 

spectrum where atmospheric opacity is lower. These sections of the spectrum are referred to as 

atmospheric windows (Figure 2.2). 

Source: Campbell & Wynne (2011) 
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Figure 2.2 Atmospheric windows 

Notable atmospheric windows include the visible, near-infrared and radio regions. Short and 

infrared wavelengths are absorbed by gases such as ozone, nitrogen, carbon dioxide and water 

vapour (Liou 2007).  

2.2.1 Sensor resolution 

The amount of information captured by different sensors can vary – this is commonly referred to 

as the resolution of the data. Image resolution is a combination of spatial, spectral, temporal and 

radiometric resolution (Campbell & Wynne 2011). 

2.2.1.1 Spatial resolution 

The resolution of remotely sensed imagery that is mostly referred to is spatial resolution. It is a 

measure of the smallest object that can be resolved by a sensor (Chuvieco 2018). In other words, 

the smallest object visible on a remotely sensed image is determined by the spatial resolution at 

which the data was captured. If a sensor captures imagery at a 30-metre spatial resolution, then the 

smallest distinguishable object will be about 30 metres in size. The concept is shown in Figure 2.3. 

 

Source: GIS Geography (2018) 

Stellenbosch University https://scholar.sun.ac.za



 11 

 

Figure 2.3 Effect of spatial resolution on satellite imagery of San Francisco – fine (left) to coarser resolution (right) 

A suitable spatial resolution should be chosen to reduce intra-pixel variability. Several studies have 

highlighted that the optimal pixel size is less than half the size of the smallest feature to map 

(Alavipanah et al. 2010; Garrigues et al. 2006; Hengl 2006). 

2.2.1.2 Spectral resolution 

When the aim is to detect objects on the earth’s surface that appear similar through visual analysis 

of a remotely sensed image, spectral resolution is particularly important (Lee & Carder 2002). 

Spectral resolution is a measure of the ability of a sensor to resolve features into separate spectral 

bands on the electromagnetic spectrum (Campbell & Wynne 2011). Due to physical sensor 

constraints, there is a trade-off between spatial and spectral resolution (Key et al. 2001), and one 

needs to find a sensor with the best balance for the specific mapping objective (Ose, Corpetti & 

Demagistri 2016) 

When using narrowly defined bands one can identify details not otherwise possible, such as 

differentiating between tree types, whereas with broader bands it is only possible to distinguish 

between land cover classes i.e. trees, grass, bare ground etc (Mutanga & Skidmore 2004; 

Underwood, Ustin & Ramirez 2007). While hyperspectral data have definite advantages when 

differentiating between similar features, it is also less widely available when compared to 

multispectral data, as currently, only airborne hyperspectral sensors exist. Consequently, data are 

captured mostly for just one point in time and such flight campaigns are costly. Additionally, more 

storage space is required which is exacerbated when spatial resolution needs to be fine as well 

(Cucci & Casini 2020). Hyperspectral data also contain redundancies and the data in all bands can 

often be represented using only a few bands, making it a time-intensive task (Ray et al. 2010). 

2.2.1.3 Temporal resolution 

Since the launch of multispectral sensors on satellites, a vast number of images were captured for 

any given location on the earth’s surface. This is possible due to the orbit speed and continuous 

30m spatial resolution 100m spatial resolution 

 

500m spatial resolution 
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working of satellites, unlike sensors mounted on aeroplanes which require human effort every time 

imagery needs to be captured. The temporal resolution refers to the time it takes a satellite to revisit 

a position on the earth’s surface (Campbell & Wynne 2011). Higher temporal resolution imagery 

is favourable, especially in tropical areas where cloud cover frequently prevents sensing of objects 

on the earth in the visible spectrum (Eberhardt et al. 2016). A high temporal resolution also enables 

more detailed monitoring of change over time (Small et al. 2017). 

2.2.1.4 Radiometric resolution 

Sensors used on Earth-imaging satellites vary in terms of imaging capabilities. The detail each 

pixel can store is influenced by how detailed the sensor can capture the real world. The radiometric 

resolution of a sensor is defined as its ability to capture varying levels of brightness (Campbell & 

Wynne 2011). This resolution is indicated by the bit depth of an image. As shown on the right in 

Figure 2.4, a one-bit raster would be a black and white image, where each pixel can contain one 

of two values. Satellite images are often comprised of eight or sixteen-bit pixels, being able to 

store number values between zero and 28 and zero and 216 respectively per pixel. The optical 

sensors aboard Landsat 1 to 7 captured satellite imagery at 8-bit radiometric depth, whereas the 

newer Landsat 8 optical sensor captures data at 12-bits and is scaled to 16-bit datasets for Level 1 

products (United States Geological Survey 2020a). 

 

Figure 2.4 The effect of radiometric resolution on imagery 

2.2.2 Active and passive sensors 

Remote sensing platforms can capture data with or without the use of their own energy. In the case 

of multispectral sensors, such as Landsat, the sensor relies on the sun’s energy reflected by objects 

on the earth’s surface. With other types of remote sensing technology such as LiDAR (Light 

Detection and Ranging) and RADAR (Radio Detection and Ranging) the platform generates its 

own energy and does not rely on external sources of light (Campbell & Wynne 2011). 

8 𝑏𝑖𝑡𝑠 = 28 = 256 𝑣𝑎𝑙𝑢𝑒𝑠 4 𝑏𝑖𝑡𝑠 = 24 = 16 𝑣𝑎𝑙𝑢𝑒𝑠 1 𝑏𝑖𝑡 = 21 = 2 𝑣𝑎𝑙𝑢𝑒𝑠 
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2.2.3 Spectral reflectance signature 

The basis of vegetation mapping using remotely sensed imagery relies on the fact that different 

surface types reflect radiation differently in various spectral bands. When radiation, such as 

sunlight, strikes an object on the earth’s surface, certain wavelengths of the spectrum are absorbed, 

while others are reflected. In the case of healthy vegetation, visible light – specifically red and blue 

– is strongly absorbed and near-infrared light is reflected (Campbell & Wynne 2011). The 

absorption of blue and red light is essential for the photosynthesis process (Kirkham 2014). A 

typical spectral signature of healthy vegetation is compared to water and soil in Figure 2.5. 

 

Figure 2.5 Spectral signature of vegetation (green), soil (red) and water (blue) 

 

Spectral signatures of Prosopis, crops, water, bare ground, Karoo shrubs and trees were extracted 

from a Landsat image and are shown in Figure 2.6. These points were randomly sampled in the 

Northern Cape, South Africa to show how the spectral signature of plants varies from other land 

cover classes. 

Adapted from: Siegmund & Menz (2005) 
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Figure 2.6 Sample spectral signatures of some land cover classes in the Northern Cape 

For each land cover class, two samples are present. From this example, it is evident that the same 

land cover class will have some variation, but that the general trend should remain the same. The 

points on the graph represent the mean bandwidth of the Landsat 8 bands from band one to seven, 

namely coastal aerosol, blue, green, red, near-infrared, shortwave infrared 1 and shortwave 

infrared 2. The rapid change of vegetation from red to near-infrared is visible in the vegetation 

samples. This region is referred to as the red edge (Seager et al. 2005). 

2.2.4 Spectral indices 

A spectral index is a combination of spectral reflectance from two or more image bands where 

spectral differences between land cover classes are at a maximum (Jackson & Huete 1991). In 

general, the bands used to calculate indices are chosen such that one band decreases and the other 

increases with a cover increase in the land cover class(es) of interest. Vegetation indices are the 

most popular, but indices are available for mapping burnt areas, urban areas, water and geological 

features (Verstraete & Pinty 1996). 

2.2.4.1 Normalised Difference Vegetation Index 

One of the most-used vegetation indices is the normalised difference vegetation index (NDVI) 

(Carlson & Ripley 1997). It is calculated in Equation 2.1. 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑
 Equation 2.1 

 

where 𝜌𝑁𝐼𝑅  is the near-infrared band value; 
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 𝜌𝑟𝑒𝑑 is the red band value; 

Values of the NDVI range from negative 1 to positive 1, with negative values mostly 

corresponding to water, values close to zero being bare ground, rocks and snow. Low positive 

values (up to ~0.4) correspond to shrubs and grasslands. High values indicate rainforests and dense 

growth (Campbell & Wynne 2011; Chen et al. 2017; Gandhi et al. 2015). 

2.2.4.2 Normalised Difference Moisture Index 

The Normalised Difference Moisture Index (NDMI) is sensitive to moisture levels in vegetation 

by utilizing the NIR and SWIR bands of the electromagnetic spectrum (Wilson & Sader 2002). It 

is less sensitive to atmospheric scattering effects than NDVI (Gao 1996). The SWIR reflectance 

values reflect changes in vegetation water content and the mesophyll of plant canopies, whereas 

the NIR reflectance is affected by leaf dry matter content and internal structure. This combination 

of bands remove the variations caused by leaf structure and only focuses on leaf water content 

(Ceccato et al. 2001). It is calculated by the formula in Equation 2.2. 

𝑁𝐷𝑀𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅
 Equation 2.2 

 

where 𝜌𝑁𝐼𝑅  is the near-infrared band value; 

 𝜌𝑆𝑊𝐼𝑅  is the shortwave infrared band value; 

Similar to NDVI and other normalised indices, NDMI also varies between -1 and 1 with generally 

positive values for green vegetation and negative values for dry vegetation and bare soil (Gao 

1996). The Normalised Difference Moisture Index is also known as the Normalised Difference 

Water Index (NDWI) and Normalised Burn Ratio (NBR) amongst others (Ji et al. 2011). 

2.2.4.3 Modified Soil-Adjusted Vegetation Index 

The Modified Soil-Adjusted Vegetation Index (MSAVI2) builds on the earlier Soil-Adjusted 

Vegetation Index (Huete 1988) by incorporating a self-adjusting soil factor in contrast to the 

manually set soil factor in the original implementation (Qi et al. 1994). Both MSAVI2 and the 

original SAVI was developed to reduce the soil background effect in the then newly developed 

NDVI. The equation for calculating the MSAVI is provided in Equation 2.3. 

𝑀𝑆𝐴𝑉𝐼2 =
2𝜌𝑁𝐼𝑅 + 1 − √(2𝜌𝑁𝐼𝑅 + 1)2 − 8(𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑)

2
 Equation 2.3 

 

where 𝜌𝑁𝐼𝑅  is the near-infrared band value; 

 𝜌𝑟𝑒𝑑 is the red band value; 
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2.2.4.4 Surface Albedo 

Unlike the other vegetation indices listed here, surface albedo is a physical parameter of the earth’s 

surface with various factors contributing to it. Surface albedo refers to the ratio of the reflected to 

the incident solar radiation (Post et al. 2000). Amongst others, albedo is affected by human-

induced land cover changes. Activities such as deforestation and agricultural expansion generally 

lead to increased albedo values, whereas afforestation reduces surface albedo (Zhai et al. 2015). 

Albedo values range between 0 and 1, with snow and bright bare soil have values close to 1 in 

contrast to water and dark surfaces which present albedo values close to 0 (Hereher 2017).  

An approximation of albedo is used in remote sensing. Liang (2001) and Liang et al. (2003) applied 

Equation 2.4 to Landsat 7 imagery to derive an albedo image. 

𝑎𝑙𝑏𝑒𝑑𝑜 = 𝑐0 + 𝑐1𝑟1 + 𝑐3𝑟3 + 𝑐4𝑟4 + 𝑐5𝑟5 + 𝑐7𝑟7 Equation 2.4 

 

where c is the constant values provided in Table 2.1; 

 𝑟 is the surface reflectance per band from Landsat imagery; 

The same equation was applied by Hereher (2017) and Münch, Gibson & Palmer (2019) to Landsat 

8 imagery as well, with the corresponding Landsat 8 bands being used. 

Table 2.1 Constant values used for albedo calculation 

Constant 𝑐0 𝑐1 𝑐3 𝑐4 𝑐5 𝑐7 

Landsat 7  Band 1 Band 3 Band 4 Band 5 Band 7 

Landsat 8  Band 2 Band 4 Band 5 Band 6 Band 7 

Value -0.0018 0.356 0.130 0.373 0.085 0.072 

 

2.2.5 Pre-processing 

Before imagery can be used for analysis, it needs to be pre-processed to correct for radiometric 

and atmospheric inaccuracies (Young et al. 2017). This is an essential step to ensure that accurate 

values are extracted for correct object identification and to ensure changes identified between 

images are not caused by variables other than the study’s target objects. Pre-processing also 

ensures that all data is in the correct format or projection and that pixel values are comparable. 

 

 

Source: Münch, Gibson & Palmer (2019) 
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2.2.5.1 Radiometric correction 

The values stored in a raw satellite image are often referred to as digital numbers (Campbell & 

Wynne 2011).  These values are not meaningful for analysis without being converted. The first 

conversion needed to make sense of digital numbers involves converting these values to radiance. 

Radiance is the amount of energy reaching the sensor and is measured in watts per steradian per 

square metre, abbreviated as 𝑊 ∙ 𝑠𝑟−1 ∙ 𝑚−2 (Allen & Triantaphillidou 2011). This measurement 

includes atmospherically scattered light and the light reflected from the earth’s surface may also 

be absorbed partially by the atmosphere. 

To compensate for effects such as illumination intensity and direction, the orientation and position 

of the target on the earth’s surface and the path of light through the atmosphere, atmospheric 

correction is necessary (Young et al. 2017). The sensor may also produce stripes on images due to 

sensor calibration problems or altogether leave gaps on images when a sensor experience 

mechanical problems (Chen et al. 2011). Collectively these pre-processing operations are referred 

to as radiometric correction. 

The value obtained from the atmospheric correction of radiance values is called reflectance. It is 

expressed as the relative brightness of a surface as measured for a specific wavelength interval 

(Campbell & Wynne 2011). As it is a ratio, it is unitless. It is calculated by the formula provided 

in Equation 2.5 where 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 refers to the brightness of light striking the target 

and 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 refers to the amount of light leaving the target. 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠

𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒
 

Equation 2.5 

 

2.2.5.2 Cloud masking 

When analysing remotely sensed imagery, clouds often partially or completely obstruct objects on 

the earth’s surface. Furthermore, clouds also cast shadows on the ground which change the spectral 

reflectance from the objects in these areas (Zhu et al. 2018). This can lead to skewed results when 

analysing cloudy images. Several methods have been developed to detect cloud cover. Some cloud 

detection algorithms make use of pixel-by-pixel approaches, while others use neighbourhood 

functions such as standard deviation (Hagolle et al. 2010). Algorithms such as Fmask use thermal 

bands to detect clouds that are colder than the earth’s surface (Zhu & Woodcock 2012) and are 

often used for Landsat and Sentinel multispectral imagery. Snow and clouds often have similar 

spectral signatures, but can be distinguished by using shortwave infrared bands (Hagolle et al. 

2010). 
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When using Landsat 8 surface reflectance imagery, several quality assessment bands are included, 

namely sr_aerosol, pixel_qa and radsat_qa. These bands provide quality values that are expressed 

as either a confidence level or a boolean value. The values of sr_aerosol were classified using the 

Landsat Surface Reflectance Code (LaSRC) algorithm and are based on coastal aerosol band 

values and climate data from the Moderate Resolution Imaging Spectroradiometer (MODIS; U.S. 

Geological Survey 2019a). Pixels classified as high aerosol content are not recommended for use 

(U.S. Geological Survey 2019b). 

The pixel_qa band fulfils the same purpose as sr_aerosol and sr_cloud_qa but was instead 

generated by the CFMask algorithm, which is derived from the Fmask algorithm (Foga et al. 2017; 

Zhu & Woodcock 2012). The radsat_qa band is a representation of which sensor bands were 

saturated during data capture, yielding unusable data. The values of pixel_qa, which is often used 

for pixel quality assessment, are tabulated in Table 2.2. 

Table 2.2 Pixel quality attributes generated from the CFMask algorithm 

Bit Value Description 

0 Fill No data values are present in pixel (1), 0 if image data is present. 

1 Clear 0 if cloud bits are set, otherwise 1 (pixel clear of clouds). 

2 Water Pixel was identified as water (1). 

3 Cloud shadow High likelihood of cloud shadow present in pixel (1). 

4 Snow & ice High likelihood of snow or ice present in pixel (1). 

5 Cloud High likelihood of cloud present in pixel (1). 

6,7 Cloud confidence None (0), low (1), medium (2) or high (3) cloud confidence. 

8,9 Cirrus confidence None (0), low (1), medium (2) or high (3) cirrus confidence. 

10 Terrain occlusion This bit is set when the desired terrain is not visible from the sensor due to intervening terrain. 

 

Similarly, surface reflectance products from Landsat 7 and earlier Landsat satellites also contain a 

band for cloud masking named sr_cloud_qa (U.S. Geological Survey 2019a). Although it is similar 

to that of Landsat 8, it was produced by a different algorithm, the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS), and consequently, there may be small differences. Both 

Landsat 7 and 8 images also contain the pixel_qa and radsat_qa quality assessment bands.  

2.2.5.3 Orthorectification 

While radiometric correction alters pixel values and cloud masking excludes them, these pixels 

may not be in the correct location on the earth’s surface. Orthorectification aims to transform a 

Source: Google Earth Engine (2020) 
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remotely sensed image to match a projection and maintain a constant scale across the image 

(Brown & Harder 2016). Landsat 7 and 8 Level-1 terrain and precision corrected (L1TP) imagery 

are already radiometrically calibrated and orthorectified using ground control points and a digital 

elevation model (DEM) to correct for relief displacement. This makes the imagery suitable for 

pixel-level time series analysis (Young et al. 2017). 

2.2.5.4 Pan-sharpening 

Multispectral imagery often contains a panchromatic band of higher spatial resolution, lower 

spectral resolution. This band can be fused, or pan-sharpened, with lower spatial, higher spectral 

resolution imagery. The combined output is then of both high spatial and spectral resolution 

(Zhang 2004).  

Pan-sharpened imagery was not used in this study due to the loss of spatial properties when 

calculating vegetation indices Johnson (2014) and also to avoid possible errors with mismatched 

pixels (Pohl & Van Genderen 1998). 

2.3 REMOTE SENSING FOR INVASIVE ALIEN PLANT MAPPING 

Field mapping of the species’ geographical extent and abundance is difficult over large and rugged 

areas. Remote sensing is known for its ability to map various plant features over large aerial extents 

and over repeat time steps while saving time and cost (Huang & Asner 2009). 

2.3.1 Google Earth Engine platform 

In December 2010 Google launched Earth Engine (GEE), a free cloud computing platform for 

planetary-scale analysis of remotely-sensed imagery (Gardner 2010). The platform provides 

access to freely available satellite imagery and other geospatial data sources in the cloud, 

eliminating the need to download these datasets. Additionally, Google also pre-processes the 

Landsat imagery available in its data archive using workflows provided by the United States 

Geological Survey, saving the user the time of conventional pre-processing workflows such as 

radiometric correction and orthorectification. The Landsat collection available on Earth Engine 

dates to the first image of Landsat 4, from August 1982. Should a dataset not be available on GEE, 

it can be ingested to the platform by the user (Gorelick et al. 2017).  

Since the launch of Google Earth Engine, dozens of studies have used the platform for remote 

sensing analysis. A literature search with the keyword “Google Earth Engine” returned more than 

200 results as of the end of 2019, with 82 publications using GEE in 2018 alone (Google Inc. 

2019). Initial applications of Earth Engine have included mapping Mexican forests (Regalado 

2010), crop mapping (Lemoine & Leo 2015; Lobell et al. 2015), soil mapping (Padarian, Minasny 

Stellenbosch University https://scholar.sun.ac.za



 20 

& McBratney 2015), water body mapping (Xu & Bai 2015), woody vegetation mapping (Johansen, 

Phinn & Taylor 2015) and urban mapping (Patel et al. 2015). 

More recently, GEE was used to monitor tiger habitat (Joshi et al. 2016), map malaria risk 

(Kurtzman 2014) and produce a global map of surface water dynamics from 1984 (Pekel et al. 

2016). Prosopis invasions were also mapped in India on a single-date composite of both Landsat 

8 and Sentinel 2 imagery using machine-learning classifiers including Classification and 

regression trees (CART), Random forest (RF) and Support vector machine (SVM) on the Google 

Earth Engine platform (Vanthof & Kelly 2017). 

2.3.2 Satellite imagery 

Most invasive species mapping projects covering large areas make use of remotely-sensed imagery 

(van den Berg, Kotze & Beukes 2013; Cohen, Yang & Kennedy 2010; Ng et al. 2017; Robinson, 

van Klinken & Metternicht 2008; Wakie et al. 2014; Wang et al. 2018). Two popular remote 

sensing satellite programmes which provide freely available remote sensing imagery include the 

Landsat and Sentinel programmes (Atzberger 2016; van den Berg 2010; van den Berg, Kotze & 

Beukes 2013; Meroni et al. 2017; Ng et al. 2017; Ng, Immitzer, et al. 2016; Wang 2006). 

2.3.2.1 Moderate-resolution imagery 

Sentinel 2 captures imagery with spatial resolutions up to ten metres and Landsat 7 and 8 up to 30 

metres – the smallest object visible on these images would consequently have a dimension of ten 

square metres and 30 square metres respectively. While this is not nearly the size of a single 

Prosopis tree, the canopy cover can be estimated from the mixture of Prosopis trees and ground 

or other plants in a single pixel with an acceptable level of accuracy using field reference data (van 

den Berg 2010; Ng et al. 2017; Ng, Meroni, et al. 2016). Mbaabu et al. (2019) noted that satellite 

data captured at the optimal time of the year must be chosen to successfully identify and distinguish 

Prosopis from other species’ spectral signatures. 

2.3.2.2 Landsat 7 & 8 imagery 

Currently, Landsat is considered as the standard imagery source for land cover classification over 

large areas and longer periods (Cohen & Goward 2004). This is due to its medium spatial 

resolution, high spectral resolution and the wide ground swath results in fewer images having to 

be processed for large areas. 

The Landsat archive also dates to 25 July 1972 when the first Landsat 1 image was captured at 

60m spatial resolution (NASA Earth Observatory 2012). Since the launch of Landsat 4 in 1982, 
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which had an improved sensor, 30m spatial resolution images became available and a continuous 

archive of these 30m resolution images are available until the present (NASA 2019).  

Landsat 5 captured images from August 1984 until January 2013 and Landsat 7 started acquiring 

imagery in April 1999 and at the time of writing it was still operational. The latest satellite in the 

Landsat programme, Landsat 8, started capturing imagery in March 2013 and was also still 

operational at the time of writing (NASA 2019). The data availability is also continuous except 

for Landsat 7 imagery having a sensor malfunction since 2003 which causes black lines in images. 

A chart of the Landsat constellation’s image availability is shown in Figure 2.7, with the white 

line indicating the span of the sensor malfunction on the Landsat 7 satellite.  

 

Figure 2.7 Landsat mission timeline 

Since June 2003 the malfunction of the scan line corrector on Landsat 7 causes a partial loss of 

data in scenes captured by the sensor. Fortunately, with a pixel-composite approach commonly 

used when performing analysis on Google Earth Engine, the issue can be circumvented by 

combining pixels from different image acquisitions to form a complete image for each month. 

From Table 2.3 it can be seen that both Landsat 7 and 8 have comparable spatial resolutions and 

spectral bands are more or less the same, allowing analysis from these satellites to be compatible. 

The bands for Landsat 7 and 8 are shown in Table 2.3 along with spectral and spatial resolution. 

Table 2.3 Landsat 7 & 8 bands 

# Band Description Platform Sensor Wavelength range (nm) Spatial resolution (m) 

1 Coastal Aerosol Landsat 8 OLI 435 – 451 30 

2 
1 

Blue 
Blue 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

450 
450 

– 
510 
520 

30 
30 

3 
2 

Green 
Green 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

530 
520   

– 
590 
600 

30 
30 

4 

3 

Red 

Red 

Landsat 8 

Landsat 7 

OLI 

ETM+ 

640 

630   
– 

670 

690 

30 

30 

5 
4 

Near-infrared (NIR) 
Near-infrared (NIR) 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

850 
770 

– 
880 
900 

30 
30 

Source: NASA (2019) 
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# Band Description Platform Sensor Wavelength range (nm) Spatial resolution (m) 

6 
5 

Shortwave-infrared (SWIR) 1 
Shortwave-infrared (SWIR) 1 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

1570 
1550  

– 
1650 
1750 

30 
30 

10 
11 
6 

Thermal Infrared (TIRS) 1 
Thermal Infrared (TIRS) 2 
Thermal 

Landsat 8 
Landsat 8 
Landsat 7 

OLI 
OLI 
ETM+ 

10600 
11500 
10400 

– 
11190 
12510 
12500 

100 resampled to 30 
100 resampled to 30 
60 resampled to 30 

7 
7 

Shortwave-infrared (SWIR) 2 
Shortwave-infrared (SWIR) 2 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

2110 
2090 

– 
2290 
2350 

30 
30 

8 

8 

Panchromatic 

Panchromatic 

Landsat 8 

Landsat 7 

OLI 

ETM+ 

500 

520 
– 

680 

900 

15 

15 

9 Cirrus Landsat 8 OLI 1363 – 1384 30 

 

Landsat imagery is often used for large area land cover classification. Dong et al. (2016) used 

Landsat 8 OLI data to identify rice fields in North-Eastern Asia, which includes parts of China, 

North Korea, South Korea and Japan. Knorn et al. (2009) classified forested areas around the 

Carpathian mountains spanning across the Czech Republic, Slovakia, Poland, Ukraine, Hungary, 

and Romania totalling an area of about 185 000 km2. Walker et al. (2010) mapped the Brazilian 

Amazon forest using Landsat and PALSAR data. 

Several studies mapped invasive alien plants such as Phragmites and Prosopis using Landsat 

imagery (van den Berg 2010; van den Berg, Kotze & Beukes 2013; Liu et al. 2016; Mbaabu et al. 

2019; Ng, Meroni, et al. 2016; Shiferaw et al. 2019; Vanthof & Kelly 2017). Of these studies, Van 

den Berg (2010) mapped Prosopis at time intervals for the Northern Cape from the 1980s and 

achieved an accuracy of 72%. Overall, accuracies of between 70 and 90% were achieved by these 

studies using Landsat for large area invasive plant mapping, indicating that Landsat is a sensible 

choice for mapping invasive alien plants over large areas. 

A review by Gómez, White & Wulder (2016) highlighted that the use of pixel-based Landsat 

composites is one of the developments enabling progress in the optical remote sensing field. Tsai 

et al. (2018) mapped vegetation and land use using a multi-seasonal Landsat image composite. 

This minimized cloud and terrain issues. The authors grouped images by season to preserve 

seasonal vegetation signals. These composites were then reduced to a single image by taking the 

mean value of all pixels. Similarly, Azzari & Lobell (2017) produced land cover maps of Zambia 

by creating seasonal composites of Landsat 7 scenes by reducing seasonal images on their median 

pixel values. 

With this study, the aim is to monitor Prosopis management using satellite imagery, compared to 

the distributional mapping and distributional mapping at set intervals of invasive alien plants often 

used in other studies imagery (van den Berg 2010; van den Berg, Kotze & Beukes 2013; Liu et al. 

Source: United States Geological Survey (2015) 
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2016; Mbaabu et al. 2019; Ng, Meroni, et al. 2016; Shiferaw et al. 2019; Vanthof & Kelly 2017). 

While it is possible to evaluate a change in the distribution of an invasion at set intervals of ten 

years, for example, comparing two discrete classifications ten years apart would not meet the aims 

of this study, which is to comment on management effectiveness by analysing trends of regrowth 

and how it was affected by clearing. 

2.3.2.3 Sentinel 2 imagery 

The Sentinel 2 mission consists of two satellites – Sentinel 2A was launched in June 2015 and 

Sentinel 2B in March of 2017. With a single satellite, the revisit period of the mission is 10 days 

and when imagery from both satellites are used, the revisit period is reduced to 5 days. Due to the 

satellite imagery of the Sentinel 2 mission only being available from 2015 onwards, Landsat was 

chosen due to its historical record of imagery, which overlaps completely with the clearing of 

Prosopis. 

2.3.2.4 Very high-resolution imagery 

In contrast to the freely available moderate to high-resolution imagery used in many remote 

sensing projects, there are very high-resolution satellite (VHR) imagery available which was 

shown to accurately map Prosopis in Eastern Africa (Ng et al. 2017). However, the use of very 

high-resolution satellite imagery is not feasible for mapping the study area, let alone the entire 

Northern Cape (372 889 km2) in terms of cost, storage capacity needed, processing power and time 

required. Very high-resolution imagery is more suited for smaller areas of interest. Acquiring 

higher resolution imagery such as RapidEye, SPOT or aerial imagery from the Chief Directorate: 

National Geospatial Information (CD:NGI) for certain areas can assist with verification as these 

sensors capture imagery at five-metre spatial resolution or higher. Google Earth also provides 

high-resolution imagery and some historical imagery in some areas, although these historical are 

more readily available for larger cities and their surrounding areas. 

2.3.3 Trend algorithms 

To identify invasive alien plants such as Prosopis in satellite images, image classification 

algorithms are used. There are several different algorithms available and literature has shown some 

to be more suitable for invasive alien plant mapping than others. This section will review the 

algorithms for calculating the rate of spread to determine the management efficacy of Prosopis. 

2.3.3.1 Analysing trends in the change of Prosopis abundance 

Land surface change is often divided into three broad categories, namely intra-annual, inter-annual 

and abrupt change (Zhu & Woodcock 2014). In the case of intra-annual change, change is caused 
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by vegetation phenology driven by seasonal patterns of environmental factors such as temperature 

and precipitation, whereas with inter-annual change the change is caused by climate variability, 

vegetation growth or gradual change in land management or land degradation. The latter form of 

change can occur over several years. In contrast to these gradual vegetation change events, abrupt 

change can occur in a single day due to events including deforestation, natural events such as 

floods and fire, and insects (Zhu & Woodcock 2014). Consequently, an algorithm used to evaluate 

the change of vegetation over time should capture all the above-mentioned factors – seasonality, 

trends and breaks. 

There are two popular approaches to analyse a remote sensing time series to monitor changes in 

vegetation abundance over time. The first is to compare individual landcover maps of two different 

dates. An extension of this approach would be to use multiple two-date comparisons to extract a 

trend from an imagery time series (Kennedy, Yang & Cohen 2010). In this approach images of 

different dates would be treated as separate classifications – subtle or long-term variation in 

vegetation cover may be inseparable from background noise (Hicke et al. 2006; Logan, Régnière 

& Powell 2003).  

Mbaabu et al. (2019) have used the first approach with a time series of Landsat satellite imagery 

to map Prosopis spread at stand level in the Baringo county in Kenya between 1988 and 2016 from 

individual image sets at intervals of seven years. Both wet and dry season imagery were used to 

assess the spread. The authors made use of the Random Forest (RF) machine learning algorithm 

for the classification of the invasion. Variables used for classification included the blue, green, red, 

near-infrared (NIR) and shortwave infrared (SWIR) bands as well as NDVI. Accuracies of above 

90% were achieved by this study. K-fold cross-validation was done to assess the accuracy – given 

a limited set of training and validation samples, these samples are partitioned into folds ensuring 

that every sample will be used as both training and testing in the classification process. 

The second approach addresses this problem by extracting spectral trajectories on a pixel-level of 

land cover change from yearly satellite imagery stacks. 

2.3.4 Land-cover trend analysis algorithms 

2.3.4.1 BFAST 

The Breaks for Additive Season and Trend (BFAST) algorithm has been developed to identify 

long term trends and abrupt changes (breaks) in a remote sensing time series (Verbesselt, 

Hyndman, Newnham, et al. 2010). BFAST combines land cover change detection with the additive 

decomposition of the signal into trend, seasonal and noise components (Figure 2.8). The algorithm 

does this by iteratively fitting piecewise linear trend and seasonal models to a remote sensing time 
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series. BFAST estimates the time and number of changes and characterizes change by its 

magnitude and direction. The algorithm was developed for detecting vegetation change in an 

offline mode, meaning not in real-time or near real-time.  

 

Figure 2.8 BFAST components: season, trend and remaining noise 

BFAST is often used for forest disturbance detection, but some studies also covered other land 

cover change topics. The BFAST algorithm has been applied to Landsat time series for detecting 

forest change (Ng et al. 2017; Schachtschneider & February 2013; Schmidt et al. 2015), wetland 

change (Li et al. 2017), yearly vegetation change and greenness variation (Li et al. 2019) and land-

use history (Dutrieux et al. 2016; Platt, Manthos & Amos 2018). Several BFAST applications 

using MODIS time series also exist including forest change (Grogan et al. 2016; Xulu et al. 2018), 

fire and flood detection (Watts & Laffan 2014) and fluctuations in lake water levels (Che et al. 

2017). 

BFAST has several user-adjustable parameters. One of its most prominent parameters, the ℎ 

parameter, is calculated as the number of observations per segment divided by the length of the 

entire time series (Almeida et al. 2018). In other words, it determines the potential number of 

breaks that can be detected. It does this by controlling the minimal segment size between breaks. 

Consequently, lower ℎ values result in a high number of breaks detected (and short trend segments) 

and vice versa. 

As an example, let the time series used as input to BFAST cover 20 years with one observation 

per month. That would equate to 240 observations in total. An ℎ parameter of 0.2 would mean that 

Source: (Verbesselt, Hyndman, Zeileis, et al. 2010) 
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0.2 × 240 = 36 observations would be used to fit each linear segment. In this example, up to three 

breaks can be detected with segment lengths equating to 5 years each. 

In a study by Watts & Laffan (2014) the parameters of BFAST were studied, including several 

different ℎ values ranging from 0.14 to 0.33. While no exact ℎ value exists for a given scenario, 

the study pointed out that using too large values of ℎ, such as 0.33 in the case of the study by Watts 

& Laffan (2014), could lead to a disturbance event not being recorded at the time the event 

occurred in the real world or missed completely (Saxena et al. 2018). In contrast, using low ℎ 

values could lead to false positives – in Watts & Laffan (2014) values of 0.14 caused additional 

unexplained breaks to be detected. The authors have also cautioned against using less than 30 

observations per segment in regression analysis, while Lin et al. (2020) recommend at least 23 

observations and use an ℎ  value of 0.17. Additionally, Verbesselt, Hyndman, Zeileis, et al. (2010) 

outlines how to implement recommendations by Bai & Perron (2003) concerning the fraction of 

data required between breaks. The authors have used an ℎ value of 0.2 as a result. In a study by Li 

et al. (2019), an ℎ value of 0.1 was used, as this value provided an acceptable number of breaks 

for their objective of identifying land cover change. 

Other BFAST parameters include a seasonal model option, the maximum number of breaks and 

the maximum number of iterations. The seasonal model parameter specifies the model used to fit 

the seasonal component and detect significant phenological change (seasonal breaks).  One of three 

options can be used for the seasonal model, namely “dummy”, “harmonic” and “none”. The 

authors note that “none” should only be used when no seasonality is observed i.e. no seasonal 

cycle to be modelled (Verbesselt, Zeileis & Hyndman 2015). 

The “dummy” season-modelling option was first used by Verbesselt et al. (2010) and focuses on 

the detection of trend changes rather than temporal shifts in land surface phenology (Watts & 

Laffan 2014). The “harmonic” option fits a harmonic model to the seasonal trend. Verbesselt, 

Hyndman, Zeileis, et al. (2010) summarises three main advantages of the “harmonic” option over 

the “dummy” option. The authors note that the harmonic seasonal modelling is less prone to short-

term data variations and noise, fewer observations are required for the multiple regression model 

used and it is easier to characterise phenological change using the amplitude and phase of the 

harmonic model. 

The breaks parameter allows for setting the maximum number of breaks to be calculated. Saxena 

et al. (2018) note that in the event where the number of breaks detected by BFAST exceeds the 

number of breaks defined by the user (𝑥), only the 𝑥 most significant breaks will be detected. By 

default, the maximum number of breaks is defined by the ℎ  parameter (Verbesselt, Zeileis & 

Hyndman 2015). 
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The maximum number of iterations parameter of BFAST allow the specification of the maximum 

amount of iterations used for estimation of breakpoints in the seasonal and trend component. Awty-

Carroll et al. (2019) have experimented with using up to 50 iterations for BFAST but concluded 

that five iterations were optimal for striking a balance between computational cost and an adequate 

number of outputs. In an implementation of BFAST by Almeida et al. (2018), only a single 

iteration was used. 

2.3.4.2 BFAST Monitor 

BFAST was later adapted and renamed BFAST Monitor (Verbesselt, Zeileis & Herold 2012). 

Unlike BFAST, BFAST Monitor does not separate seasonal and trend changes (Awty-Carroll et 

al. 2019). Instead, it constructs a stable season-trend model for an observed time (the history 

period) to model normal vegetation dynamics. After the historical period, new observations are 

compared to the stable history model in the monitoring period. A deviation from the stable model 

in the monitoring period will result in BFAST Monitor detecting a break.  

As BFAST Monitor relies on a stable historical period to have a baseline to compare future 

observations to, it is unsuitable for this study where known periods that exhibit typical trends of 

areas with unmanaged Prosopis are not available to compare to periods when Prosopis were 

managed. Also, environmental factors such as precipitation events and periods of drought impact 

the study area significantly, making typical trends of unmanaged Prosopis hard to identify without 

detailed historical records of each site. 

2.3.4.3 BFAST01 

Another variant of the BFAST algorithm, BFAST01, was developed by De Jong et al. (2013). 

BFAST01 attempts to fit a suitable model to the data by choosing either a model with no or a 

single major breakpoint. The decision on whether or not a break should be detected relies on a 

significance test based on moving sums (MOSUMs) of ordinary least squares (OLS) residuals 

(OLS-MOSUM in short) or another user-specified test method (Verbesselt, Zeileis & Hyndman 

2015). If the test detects a significant instability in the season-trend model, a breakpoint is 

estimated, and separate season-trend models are fit to the segments before and after the break. If 

the MOSUM test results are non-significant no break will be detected. 

Although the two-segment model with one break potentially contains more breaks, the breakpoint 

identified by BFAST01 will be the most significant (De Jong et al. 2013; Tai-leung Chong 1995). 

BFAST01 is less sensitive to changes to a phenological pattern (season shifts or amplitude 

changes) and more sensitive to changes in trend. The authors advise interpreting results with 
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caution when the breakpoint is near the start or end of the time series, as one of the segments, 

which a trend is based on, is very short (De Jong et al. 2013).  

BFAST01 has been used for a range of applications including the analysis of the socioeconomic 

impact on vegetation productivity (Zhou et al. 2019), identification of ecosystem turning points 

(Bernardino et al. 2020) and for break detection in water-use efficiency (Horion et al. 2019). 

In an interesting non-remote sensing use for BFAST01, Dupas et al. (2018) used the algorithm for 

analysing trends in the nitrogen and phosphorus levels in rivers in France using historical water 

tests over 46 years. Another alternative use for BFAST01 is illustrated in Camino-Serrano et al. 

(2016) where BFAST01 is used to detect breakpoints in dissolved organic carbon trends in forests 

in Europe. The BFAST01 analysis enabled the authors to remove time series affected by local 

disturbances (breaks) and to solely retain time series with monotonic trends. 

BFAST01 parameters include options for harmonic order, regression formula, breakpoint test 

method, significance level for the test and bandwidth to name a few often used in research 

(Bernardino et al. 2020; Horion et al. 2019; Ma et al. 2019; Zhou et al. 2019). 

The harmonic order parameter refers to the order of the harmonic term, which defaults to three if 

unspecified. As with BFAST Monitor, options for regression formulas include “trend and 

harmonic”, “trend” and “harmonic” where “trend” refers to a linear trend and “harmonic” refers 

to a harmonic season component. Bernardino et al. (2020) used the “trend” formula option for 

BFAST01 due to the absence of seasonality in their input time series while the authors opted to 

use default values for the remaining parameters. In a study by Ma et al. (2019) the “harmonic” 

seasonal model was used. 

A sequence of tests for the null hypothesis of zero breaks is performed using the test method of 

choice, such as MOSUM, which is specified by the breakpoint test method parameter. Each test 

results in a decision of false for no break or true for a structural break. Test decisions are then 

aggregated to form a single decision. The significance level used in the test is specified by the 

significance level parameter provided to the BFAST01 algorithm. A significance level of 0.05 is 

often used (Horion et al. 2019; Ma et al. 2019; Zhou et al. 2019). The bandwidth parameter is 

passed on as the ℎ parameter of the algorithm performing tests for structural change in the 

regression model (Verbesselt, Zeileis & Hyndman 2015).  
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CHAPTER 3:  CHANGES IN THE COVER OF INVASIVE ALIEN 

PROSOPIS TREES OVER 20 YEARS AT SELECTED SITES IN THE 

NORTHERN CAPE PROVINCE, SOUTH AFRICA 

3.1 ABSTRACT 

Invasive alien plant management can be expensive, so scarce resources need to be used effectively 

to achieve control. One such invasive alien plant (Prosopis) which was planted to provide fodder 

for livestock, spreads rapidly and forms dense thickets, causing negative impacts which outweigh 

any benefits for landowners. Evaluating trends in the cover (biomass) of Prosopis over time can 

provide insights into the efficacy of different management methods. 

Trends in Prosopis biomass were analysed using a Landsat remote sensing time series and the 

BFAST and BFAST01 trend algorithms to determine their suitability for detecting trends in the 

cover of Prosopis in the Northern Cape province and relating these to management effort (which 

included areas that were not managed at all). With both algorithms, several indices were also 

assessed, including NDVI, NDMI, MSAVI2 and surface albedo, to find the most suitable index 

for detecting Prosopis biomass best. A suitable sample size was determined to account for 

heterogeneity in managed sites while including smaller sites spanning only a few satellite imagery 

pixels too. 

The indices varied in their suitability for detecting sudden changes (termed “breaks”) in Prosopis 

cover, and NDVI was selected as the best index in this regard. Results vary due to site 

heterogeneity and the number of pixels aggregated for analysis of a site, with more stable results 

obtained in more homogenous sites and when more pixels were used. Furthermore, results varied 

depending on the method of management, the number of treatments over time, and the amount of 

money spent per treatment episode. BFAST and BFAST01 produced similar results, but breaks 

detected by BFAST were more closely aligned to management inputs as more than one break could 

be detected per time series. Some breaks were possibly not related to management input because 

they occurred on both managed and unmanaged sites, and were likely related to environmental 

factors such as drought. 

In areas with high variability in management effort within a single site, or when management 

spanned several years, results were inconclusive. When management was completed in a few 

months, the clearing of Prosopis was detected well using NDVI combined with BFAST and 

BFAST01. While varying results were observed, BFAST and BFAST01 proved to be suitable 

methods for vegetation change analysis and the detection of invasive alien plant management.  
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3.2 INTRODUCTION 

Prosopis trees, native to north and central America, are invasive in South Africa. These invasive 

trees are managed by private landowners, sometimes in combination with government-funded 

control teams. Knowing how effective the Prosopis invasion in South Africa is being managed by 

these different groups and the effectiveness of a combination of these management efforts is 

important when planning management strategies to control the species. The Northern Cape 

Province has seen an alarming increase in Prosopis cover over the last 50 years (van den Berg, 

Kotze & Beukes 2013). Given that the Northern Cape spans an extensive area, it is not viable to 

send large teams out to map the occurrence and spread of Prosopis. Estimating cover using ground 

surveys can also be challenging and yield very subjective results. Furthermore, it is not possible 

to analyse the historical increase in cover with in-situ methods if the data was not captured in the 

past. 

In an era where remotely-sensed imagery is becoming more accessible, analysis thereof offers new 

and improved methods to address ecological problems (Buchanan et al. 2015; Buchanan et al. 

2009) including the mapping of invasive alien plant species (Cord, Klein & Dech 2010; Huang & 

Asner 2009). Multispectral imagery has been used before to map the Prosopis invasion in the 

Northern Cape (van den Berg 2010), but existing research does not consider the effectiveness of 

management in reducing the extent of the Prosopis invasion in the Northern Cape province. 

In this chapter phenological trend analysis algorithms are compared and applied to a time series of 

multispectral imagery to evaluate the effectiveness of control of Prosopis by comparing areas that 

have been subjected to different management regimes over the past 20 years. The purpose of this 

chapter is to present the results of mainly three analyses that were performed, namely a) the 

selection of suitable vegetation index to detect Prosopis cover (biomass) changes, b) the selection 

of an appropriate number of pixels to achieve reliable breaks with the tested algorithms and c) test 

of best performing algorithm to identify Prosopis clearing (using the optimum number of pixels). 

3.3 MATERIALS AND METHODS 

3.3.1 Study area 

This study was conducted on sections of individual farms around the towns of Carnarvon and 

Vanwyksvlei in the Northern Cape Province of South Africa (Figure 3.1). The Northern Cape is 

the largest of nine provinces in South Africa and covers 372 889 km2, about a third of the country’s 

total surface area. The province falls in the arid and semi-arid zone of the country and has an 

extremely low population density of approximately three people per square kilometre (Statistics 
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South Africa 2012). Prosopis invasions and degradation from overstocking, in addition to a recent 

drought, are key pressures in the area (Jordaan 2012; Van der Spuy 2019). 

 

Figure 3.1  Study sites around Carnarvon and Vanwyksvlei 

All study sites fall within the Nama Karoo biome (Rutherford, Mucina & Powrie 2006), 

characterised by short, shrubby vegetation of low cover. The study area is dominated by about four 

types of soils. These soil types include brown and reddish soils with a marked clay accumulation 

in low-lying areas, shallow soils with minimal development in higher areas and red dune sand 

intrusions towards the northern parts of the area (Department of Agriculture, Land Reform and 

Rural Development 2018). 

The economy in this area is mostly agriculturally driven (Statistics South Africa 2000). In terms 

of Prosopis management, only small areas were treated by the government-funded Working for 

Water (WfW) programme. Some private landowners have also attempted to clear their properties, 

but clearing records have generally not been documented in great detail. 

3.3.2 Data acquisition 

Data used in this study mainly include a remote sensing time series of Landsat surface reflectance 

imagery and field data collected during a field trip to the study sites, which consist of 

questionnaires, coordinates of sites and several photos per site. 
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3.3.2.1 Field data 

Initial field data were collected in April 2019 during a field trip to the Northern Cape. To reduce 

the diversity of soil types and biomes, the study area was limited to the area between Carnarvon 

and Vanwyksvlei. The area falls within a single biome, the Nama Karoo, and covers two 

bioregions: the Bushmanland bioregion and Upper Karoo bioregion (Rutherford, Mucina & 

Powrie 2006). A significant number of sites that had been cleared by WfW are also found in the 

area. The selection of this area was based on the relative homogenous environment across all sites, 

the presence of government-managed sites, and the considerable invasions of Prosopis trees in the 

area. 

Due to the national COVID-19 lockdown, field data collection was interrupted and this 

necessitated the use of a digital questionnaire and email correspondence to collect further data. 

Data collection at sites between Carnarvon and Vanwyksvlei commenced in May and June 2020 

utilizing digital questionnaires with interactive maps, where participants could indicate areas 

where they managed Prosopis, as well as where Working for Water had conducted management 

operations and areas where no management was done. 

In a subsequent step, the coordinates collected from the questionnaires were used for ground-

truthing. Areas defined by the coordinates were assigned to one of four categories: 

1. Prosopis cleared by Working for Water with follow-up clearing by the landowner or land 

manager between 1995 and 2020. 

2. Prosopis cleared by Working for Water with no follow-up by the farmer between 1995 and 

2020. 

3. Prosopis cleared by the landowner or land manager between 1995 and 2020. 

4. No Prosopis clearing was done by either party between 1995 and 2020. 

The digital questionnaires were developed on the KoBoToolbox platform, a free and open-source 

suite of tools for field data collection (KoBoToolbox 2018). The questionnaire (Appendix A; 

Figure 3.2) consisted of a single bilingual (English and Afrikaans) interactive form which was 

shared with participants via email. They could then complete the form on a computer or mobile 

device in their own time and then return the completed questionnaire.  

Useful background knowledge of sites was provided by the participants who completed the 

questionnaires and additional data was recorded with follow-up communication. Questions and 

locations regarding unmanaged areas were included in the questionnaire to obtain control areas for 

comparison with areas where Prosopis was managed.  
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Figure 3.2 An extract from the first questionnaire used for field data collection. For the full questionnaire, see 

Appendix A. 

A final field trip was undertaken in October 2020 to verify Prosopis clearing site locations, dates 

of clearing and other clearing-related information. A total of 23 landowners and managers were 

interviewed. Before interviews were conducted, a consent form to participate in the research, as 

well as a COVID-19 screening form, were completed. 

A general interview form was completed for each farmer where questions focused on the general 

state of Prosopis management on the property. The purpose was also to ascertain how 

knowledgeable the interviewee was on all Prosopis management done in the study period, between 

1995 and 2020. At this stage, interviews that would not be beneficial for the project could also be 

flagged and further site-specific interviews would not be conducted. One such example would be 

if an area of less than 30m2 were cleared – it would be unlikely that changes would be detected 

with such a small footprint using 30m-resolution Landsat satellite imagery. Another condition for 

the removal of an interview from the study was if the management of Prosopis on the farm did not 

fall within the time frame set by the study period, being from 1995 to 2020. 

On each property individual interviews were completed for the same four site categories used 

during the digital interviews in May and June of 2020. At each site, the category of management 

was captured along with the dates of management and up to four coordinates. For one of the 

coordinates, a photo was taken in each main direction (north, east, south and west) to help with 

feature identification later. Up to three additional photos were also taken in cases where specific 

areas or features needed to be illustrated. 

The KoBoCollect Android application was used for field data collection during the October 2020 

trip. The web-based forms (on KoBoToolbox – see Appendix A) used during the digital interview 

phase was synchronised to be used offline on the mobile phone as reception is scarce between 

Carnarvon and Vanwyksvlei. The mobile phone that was used had a global navigation satellite 
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system (GNSS) receiver capable of using positioning from the GPS, GLONASS and BeiDou 

satellite constellations, ensuring quick positioning with a precision of at least five metres. A few 

screenshots of the field questionnaires can be seen in Figure 3.3. 

 

Figure 3.3 Screenshots of the various field questionnaires 

In addition to the data collected via the application, additional aerial photos were also acquired 

using a drone if weather and time allowed. The aerial photos assist with understanding the density 

of the invasion and were specifically useful in areas with impenetrable Prosopis thickets where 

only a side-view is possible without knowledge of what the invasion looks like behind the “wall” 

of Prosopis visible from outside (Figure 3.4). 

 

Figure 3.4 Prosopis thicket viewed from the side (left) and from above using the drone (right) 

In total, about 145 sites were visited for which interviews were completed, although the actual 

total unique areas will be less due to more than one form occasionally being completed per area if 

it was a significantly large area that required more photos or there were differences within the area 

that needed to be recorded. Of these initial unfiltered 145 site forms, 52 were managed privately, 

56 by Working for Water, five by Working for Water with follow-up done by the landowner, and 

32 sites that were not managed at all in the study period. 
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Data captured during the fieldwork was further filtered afterwards. Extremely small managed sites, 

sites where management effects were negligible, where the canopy cover of Prosopis was low 

before management or where insufficient field data were available, were removed from the dataset 

as management cannot be detected using the satellite imagery used in the study, or if data is 

lacking, it cannot be compared to known management data. After the sites were filtered, the 

number of usable sites was 82 (Table 3.1). 

Table 3.1 Prosopis management sites used in the study 

# Category Count 

1 
Prosopis cleared by Working for Water with follow-up clearing by the landowner or land manager between 1995 
and 2020 

2 

2 Prosopis only cleared by Working for Water with no follow-up by the landowner between 1995 and 2020 24 

3 Prosopis only cleared by landowner or land manager between 1995 and 2020 21 

4 No management between 1995 and 2020 35 

 Total 82 

The sites were expanded from a single coordinate per site to up to 20 coordinates per site for large 

areas. These coordinates were aligned with the locations of pixel centres of Landsat imagery to 

minimise mixed pixels being selected for analysis (Figure 3.5). The relevant Google Earth Engine 

code can be seen in Appendix B. 
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Figure 3.5 Selected Landsat pixel centres of two neighbouring sites – farmer-managed and unmanaged 

3.3.2.2 Remote sensing data 

3.3.2.2.1 Sensors 

A suitable spatial resolution should be chosen to reduce intra-pixel variability. Several studies have 

highlighted that the optimal pixel size is less than half the size of the smallest feature to map 

(Alavipanah et al. 2010; Garrigues et al. 2006; Hengl 2006). In the case of this study, the smallest 

feature that should ideally be visible is a Prosopis tree. While several sensors exist that can capture 

satellite imagery at resolutions in the same proportion of a Prosopis tree, these images are often 

prohibitively expensive and require ample storage space when covering several sites over a larger 

area. 

Two popular remote sensing satellite programmes which provide freely available remote sensing 

imagery include the Landsat and Sentinel programmes (Atzberger 2016; van den Berg 2010; van 

den Berg, Kotze & Beukes 2013; Meroni et al. 2017; Ng et al. 2017; Ng, Immitzer, et al. 2016; 

Wang 2006). Due to the limited availability of Sentinel-2 imagery (2015 until present), Landsat 

imagery was selected for this study. 

Imagery from Landsat 7 and 8 was used in this research due to the amount of usable time series 

data available from the Landsat programme dating back beyond the start of the period used in this 

study. New images are currently still being captured by both Landsat 7 and 8, with Landsat 7 
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collecting imagery from January 1999 and Landsat 8 from April 2013. The temporal resolution for 

Landsat 7 and 8 respectively is 16 days, but when the data from the sensors are used together that 

is reduced to 8 days due to the image acquisition dates of these two satellites being offset by 8 

days. A summary of sensor bands, their wavelengths and spatial resolutions is shown in Table 3.2. 

Table 3.2 Landsat 7 & 8 bands 

# Band Description Platform Sensor Wavelength range (nm) Spatial resolution (m) 

1 Coastal Aerosol Landsat 8 OLI 435 – 451 30 

2 
1 

Blue 
Blue 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

450 
450 

– 
510 
520 

30 
30 

3 

2 

Green 

Green 

Landsat 8 

Landsat 7 

OLI 

ETM+ 

530 

520 
– 

590 

600 

30 

30 

4 
3 

Red 
Red 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

640 
630   

– 
670 
690 

30 
30 

5 
4 

Near-infrared (NIR) 
Near-infrared (NIR) 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

850 
770 

– 
880 
900 

30 
30 

6 

5 

Shortwave-infrared (SWIR) 1 

Shortwave-infrared (SWIR) 1 

Landsat 8 

Landsat 7 

OLI 

ETM+ 

1570 

1550 
– 

1650 

1750 

30 

30 

10 
11 

6 

Thermal Infrared (TIRS) 1 
Thermal Infrared (TIRS) 2 

Thermal 

Landsat 8 
Landsat 8 

Landsat 7 

OLI 
OLI 

ETM+ 

10600 
11500 

10400 

– 
11190 
12510 

12500 

100 resampled to 30 
100 resampled to 30 

60 resampled to 30 

7 
7 

Shortwave-infrared (SWIR) 2 
Shortwave-infrared (SWIR) 2 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

2110 
2090 

– 
2290 
2350 

30 
30 

8 
8 

Panchromatic 
Panchromatic 

Landsat 8 
Landsat 7 

OLI 
ETM+ 

500 
520 

– 
680 
900 

15 
15 

9 Cirrus Landsat 8 OLI 1363 – 1384 30 

 

Unfortunately, Landsat 7 suffered the loss of its scan line corrector (SLC) on May 31st 2003 which 

lead to a loss of about 22% of each image due to missing bands. However, when aggregated with 

other Landsat 7 or 8 images, this problem can be circumvented mostly. It must be noted that 

Landsat 7 acquisitions were temporarily suspended from 31 May 2003 and resumed on 17 

September 2003 after an investigation into the SLC loss was complete (United States Geological 

Survey 2020b). Several other issues of Landsat 7 are known which may lead to periods without 

data from the specific sensor (United States Geological Survey 2019a).  

Clouds often partially or completely obstruct objects on the earth’s surface. Furthermore, clouds 

also cast shadows on the ground which change the spectral reflectance from the objects in these 

areas (Zhu et al. 2018), which can lead to skewed results. Several methods have been developed 

to detect cloud cover, including pixel-by-pixel approaches and neighbourhood functions such as 

standard deviation (Hagolle et al. 2010). Algorithms like Fmask use thermal bands to detect clouds 

Source: United States Geological Survey (2015) 

Stellenbosch University https://scholar.sun.ac.za



 38 

colder than the earth’s surface (Zhu & Woodcock 2012) and are often used for Landsat and 

Sentinel multispectral imagery. While snow and clouds often have similar spectral signatures, they 

can be distinguished by using shortwave infrared bands (Hagolle et al. 2010). 

When using Landsat surface reflectance imagery, several quality assessment bands are included, 

namely sr_aerosol (sr_cloud_qa for Landsat 7 and earlier Landsat satellites), pixel_qa and 

radsat_qa. These bands provide quality values that are expressed as either a confidence level or a 

boolean value. The values of sr_aerosol are classified using the Landsat Surface Reflectance Code 

(LaSRC) algorithm in the case of Landsat 8 and for Landsat 7 and earlier the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) are used. Pixels classified as high aerosol 

content are not recommended for use (U.S. Geological Survey 2019b). 

The pixel_qa band fulfils the same purpose as sr_aerosol and sr_cloud_qa but was instead 

generated by the CFMask algorithm, which is derived from the Fmask algorithm (Foga et al. 2017; 

Zhu & Woodcock 2012). The radsat_qa band is a representation of which sensor bands were 

saturated during data capture, yielding unusable data. 

The Google Earth Engine (GEE) platform was used for data extraction from the Landsat 7 and 8 

Tier 1 collections. The surface reflectance products of all three Landsat satellites were used as 

these products were already corrected for atmospheric and geometric errors as provided by the 

United States Geological Survey (2019b). Additionally, cloud masking was implemented using 

the pixel_qa band values provided with the satellite imagery. 

3.3.2.2.2 Indices 

The Normalised Difference Vegetation Index (NDVI; Rouse et al. 1973) was used due to its wide 

use for monitoring vegetation presence in several environments (Carlson & Ripley 1997). Values 

of the NDVI range from -1 to 1, with negative values mostly corresponding to water, values close 

to zero being bare ground, rocks and snow. Low positive values (up to ~0.4) often correspond to 

shrubs and grasslands. High values indicate rainforests and dense growth (Campbell & Wynne 

2011; Chen et al. 2017; Gandhi et al. 2015), also used to isolate Prosopis presence (Eckert et al. 

2020; Kyuma et al. 2016; Shiferaw et al. 2019). 

In addition to NDVI, the Normalised Difference Moisture Index (NDMI; Wilson & Sader 2002), 

the Modified Soil-Adjusted Vegetation Index (MSAVI2; Qi et al. 1994) and surface albedo (Post 

et al. 2000) were also used for a comparison of results. Based on these results, NDVI was selected 

as it outperformed the other indices and was often used with Prosopis detection and mapping from 

satellite imagery (Atzberger 2016; Kyuma et al. 2016; Shiferaw et al. 2019; Vidhya, Vijayasekaran 

& Ramakrishnan 2017; Wakie et al. 2014). 
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3.3.2.3 Additional sources 

To aid in the process of site selection, historical imagery on the Google Earth Pro software (Google 

Inc. 2005) was used to verify clearing locations, approximate dates, and intensity. Google Earth 

imagery was often used to approximate the year of Prosopis clearing, in instances where 

participants could not provide exact dates or locations. Due to the remote location of the study 

area, satellite images on Google Earth are not updated as often as areas around large cities and this 

meant the images on Google Earth were often separated by a few years making exact estimation 

of clearing dates impossible. Despite this, Google Earth imagery often proved to be helpful when 

no clearing dates were known. 

In the case of a site cleared by Working for Water, the expected clearing dates correspond to the 

year in which the clearing of the site was completed. These details are recorded in a database kept 

by Working for Water, namely the Water Information Management System (WIMS). Records 

include, amongst others, details such as the area cleared, date(s) when clearing was completed, 

and financial details related to the clearing. It should be noted that due to the clearing often 

spanning several months, the break detected by BFAST01 could be found a year before the 

expected break as the WIMS database only records the date when management ended. 

3.3.3 Trend analysis 

Trends in the biomass of Prosopis were analysed using the BFAST (Verbesselt, Hyndman, 

Newnham, et al. 2010) and BFAST01 (De Jong et al. 2013) algorithms, which map the seasonal 

changes in vegetation biomass and how these change over years. 

3.3.3.1 Overview of trend algorithms 

BFAST combines land cover change detection with the additive decomposition of the signal into 

trend, seasonal and noise components. The algorithm does this by iteratively fitting piecewise 

linear trend and seasonal models to a remote sensing time series. BFAST has several user-

adjustable parameters. One of its most prominent parameters, the ℎ parameter, is calculated as the 

number of observations per segment divided by the length of the entire time series (Almeida et al. 

2018). It is important to note that any number of breaks can be detected by the BFAST algorithm, 

depending on the ℎ parameter. 

In contrast, BFAST01 attempts to fit a suitable model to the data by choosing either a model with 

no break or a single major breakpoint, meaning it will either detect a single break or no break at 

all. The decision on whether or not a break should be detected relies on a significance test based 

on moving sums (MOSUMs) of ordinary least squares (OLS) residuals (OLS-MOSUM in short) 
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or another user-specified test method (Verbesselt, Zeileis & Hyndman 2015). If the test detects a 

significant instability in the season-trend model, a breakpoint is estimated, and separate season-

trend models are fit to the segments before and after the break. If the MOSUM test results are non-

significant no break will be detected. BFAST01 is less sensitive to changes to a phenological 

pattern (season shifts or amplitude changes) and more sensitive to changes in trend. 

Another variant of BFAST, BFAST Monitor, was excluded from this study. It is unsuitable for 

this study as BFAST Monitor relies on a stable historical period to have a baseline to compare 

future observations to and known periods that exhibit typical trends of areas with unmanaged 

Prosopis are not available to compare to periods when Prosopis were managed. Also, 

environmental factors such as precipitation events and periods of drought impact the study area 

significantly, making typical trends of unmanaged Prosopis hard to identify without detailed 

historical records of each site. 

3.3.3.2 Evaluating the impact of several variables on results 

To avoid mixed pixels, the points used as input to BFAST and BFAST01 were placed on Landsat 

pixel centroids on pixels that had a more or less homogenous composition. Due to the lack of 

clearing present in the study area before 2000, only a time series spanning Landsat 7 and 8 imagery 

from 1999 until 2020 was analysed in this study. 

Four vegetation indices were compared to determine which detected Prosopis abundance the best. 

The indices tested included NDVI, NDWI, MSAVI2 and surface albedo. These indices were tested 

for four single pixels per site for two sites, one managed by Working for Water and one managed 

by the landowner. Single pixels were used to exclude all changes unrelated to changing the 

vegetation index. 

Furthermore, the effect of micro-niche variation within a site on the performance of the trend 

analysis results was tested by variably randomly selecting three to ten pixels for all managed sites, 

and then calculating the BFAST01 breaks over ten iterations with the replacement of 

samples/pixels (meaning the same pixel could be included in more than one iteration). This 

approach of randomly selecting pixels in multiple iterations is similar to how ensemble 

classification methods such as Random Forest work (Breiman 2001). In cases where breaks 

correspond between iterations, there is a higher chance of an actual break related to clearing being 

detected rather than a break by chance with the selection of particular pixels.  

Based on initial results from testing the impact of sample size and site heterogeneity, five pixels 

were chosen per site. While a minimum of three pixels was considered for statistical purposes, 

results indicated that the effect of differences between samples causes breaks in the trend which 
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are not indicative of the overall site state. Increasing the number of pixels used per site meant that 

samples used in the time series would be lost. When using five samples per site, only 14 additional 

sites of the 82 total sites when three pixels are used, are lost – leaving 68 sites. These pixels were 

grouped to ensure the effect of mixed pixels and differences in management are minimised in the 

time series data. 

Subsequently, five sets of five randomly selected pixels from each site present in the study were 

analysed using both BFAST and BFAST01. The majority break for these five sets of results per 

site was noted. This provided a more robust result. The workflow for a single iteration of BFAST 

and BFAST01 algorithms can be seen in Figure 3.6.  

 

Figure 3.6 Workflow of a single iteration of the BFAST and BFAST01 analysis 

First, the five randomly selected pixels were aggregated using a median filter. BFAST analysis 

would then be able to produce multiple breaks determined by the ℎ parameter. An ℎ parameter of 

0.1 was used as it would be possible for BFAST to detect a break about every two years. This was 

calculated based on the knowledge that each pixel consists of approximately 250 images (one 

composite image per month between 1999 and 2020). The number of observations multiplied by 

the ℎ parameter equals the minimum length of a trend line before a new break can be detected. In 

this case, this was approximately 25 months (250 × 0.1). 

In the analysis of BFAST01, managed sites were paired with their closest unmanaged site to be 

able to compare trends from both. The objective of this was to evaluate whether some breaks can 

be attributed to environmental factors if they were observed in both the managed and unmanaged 

sites in a pair. 

3.3.3.3 BFAST and BFAST01 implementation 

A modified implementation of BFAST and its variants, originally developed by Almeida et al. 

(2018), was used. It utilises the Google Earth Python API to obtain a remote sensing time series 

which is then analysed using the “bfast” and “bfast01” functions in the “bfast” package in R 

(Verbesselt, Zeileis & Hyndman 2015). The implementation in R allows for the exploration of all 

historical surface reflectance data from the 7 and 8 datasets provided in the Earth Engine Data 

Catalog. After a single or multiple coordinates are selected, the data for those pixel(s) are acquired 

from Google Earth Engine through the GEE Python API, after which it is pre-processed with the 
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CFMask filter (Foga et al. 2017; Zhu & Woodcock 2012) to mask cloudy pixels. Vegetation 

indices are also created in this step. A simplification of the process can be seen in Figure 3.7. 

 

Figure 3.7 Architectural overview of the BFAST application. 

3.4 RESULTS 

3.4.1 Impact of vegetation index on the detection of phenological trends 

Four different vegetation indices were applied to the BFAST algorithm to evaluate if notable 

differences could be detected. The vegetation indices tested include the Normalised Difference 

Vegetation Index (NDVI), Normalised Difference Moisture Index (NDMI), Modified Soil-

Adjusted Vegetation Index (MSAVI2) and surface albedo. 

Only breaks indicating a decrease in vegetation cover are noted (possibly a Prosopis clearing 

event). This corresponds to a decrease in NDVI, NDMI and MSAVI2 and an increase in surface 

albedo. Analysis to select a suitable vegetation index was done on all managed sites. A summary 

of the results is presented in Table 3.3, with the full set of results available in Appendix F. 

Table 3.3 Comparison of expected breaks in the cover of Prosopis due to management intervention, and breaks 

detected by  BFAST for selected pixels (numbered 1 to 4) in two sites (5.1 and 19.4) using the 

Normalised Difference Vegetation Index, Normalised Difference Moisture Index, Modified Soil-

Adjusted Vegetation Index and surface albedo 

Site 

ID 
Managed By 

Expected Break 

(from WfW or land 
manager) 

Pixel ID NDVI NDMI MSAVI2 
Surface 

Albedo 

19.4 Working for Water 
1. ± 2002 

2. ± 2013 
1 

2016 

2017 

2016 

2017 

2016 

2017 
None 

Source: Almeida et al. (2018) 
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Site 
ID 

Managed By 

Expected Break 

(from WfW or land 
manager) 

Pixel ID NDVI NDMI MSAVI2 
Surface 
Albedo 

3. ± 2018 

2 2017 
2017 

2018 
None 2017 

3 2017 2017 2017 2017 

4 
2017 

2018 

2016 

2018 

2017 

2018 
2017 

5.1 Farmer 
2012 – 2016 

(estimate) 

1 2014 

2015 

2016 

2018 

2014 None 

2 2014 

2014 

2016 

2018 

2014 
2014 

2016 

3 2014 

2014 

2016 

2018 

None None 

4 2014 
2014 

2018 
2014 None 

From site 19.4, a recurring break that occurs throughout is the 2017 break, which likely 

corresponds to clearing done by Working for Water. For site 5.1 the 2014 break is most likely 

representing the clearing done by the farmer due to its frequent occurrence across indices. From 

both sites, NDVI mostly produced a single break matching an expected break. MSAVI2 produced 

results remarkably similar to that of NDVI, only deviating from the NDVI result in cases where it 

failed to detect a break at all. NDMI produced more breaks overall, although those breaks mostly 

aligned with the NDVI and MSAVI2 results. The results from surface albedo mostly matched 

NDVI in cases where it was able to detect breaks. Surface albedo provided the weakest results of 

the four indices compared, as it failed to detect breaks in 50% of the performed tests in Table 3.3. 

NDVI was able to consistently produce a break in the year that clearing took place and did not 

introduce additional breaks as NDMI did or missed breaks like MSAVI2. Additionally, NDVI also 

performs well in detecting small vegetation cover changes in arid environments (Funghi et al. 

2020; Shiferaw et al. 2019). Based on the comparison of the four indices, NDVI was selected to 

be used on the remaining analyses in this study. 
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3.4.2 Impact of sample size and field site heterogeneity on the detection of phenological 

trends 

The results of the five sites used to evaluate the effect of varying the number of pixels used in the 

time series, as well as the effect of differences in site heterogeneity, are summarised in Table 3.4. 

The expected break for each cleared site is provided from information provided by Working for 

Water or the farmer, as well as the break which BFAST01 produced most often through the ten 

iterations for each sample size. Additional breaks which occurred during the ten iterations are also 

noted with their frequency. 

Table 3.4 Impact of sample size and site heterogeneity on trend detection using BFAST01 over ten iterations 

Site 
ID 

Managed By 

Expected Break 

(from WfW or 
land manager) 

 Number of pixels used in time series 

 3 4 5 6 7 8 9 10 

19.4 Working for Water 

1. ± 2002 

2. ± 2013 

3. ± 2018 

Majority 2017 2017 2017 2017 2017 2017 2017 2017 

Majority % 90% 70% 100% 100% 100% 100% 100% 100% 

Other 2014 2012 - - - - - - 

Other % 10% 30% - - - - - - 

19.1 Working for Water 

1. ± 2001 

2. ± 2013 

3. ± 2018 

Majority 2010 2013 2013 2013 2013 2013 2013 2013 

Majority % 40% 60% 60% 50% 60% 70% 90% 90% 

Other 
2010 

2013 

2010 

2014 

2010 

2014 

2010 

2014 
2010 2010 2010 2010 

Other % 
30% 

30% 

30% 

10% 

20% 

20% 

40% 

10% 
40% 30% 10% 10% 

1.1 Farmer 
± 2015 

(estimate) 

Majority 2017 2017 2017 2017 2017 2017 2017 2017 

Majority % 80% 100% 100% 100% 100% 100% 100% 100% 

Other 2015 - - - - - - - 

Other % 20% - - - - - - - 

5.1 Farmer 
2012 – 2016 

(estimate) 

Majority 2007 2007 2007 2007 2007 2007 2007 2007 

Majority % 60% 60% 80% 100% 100% 100% 90% 90% 

Other 
2013 

2016 

2014 

2016 

2017 

2014 - - - 2014 2017 
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Site 

ID 
Managed By 

Expected Break 

(from WfW or 
land manager) 

 Number of pixels used in time series 

 3 4 5 6 7 8 9 10 

2020 

Other % 
30% 

10% 

10% 

10% 

10% 

10% 

20% - - - 10% 10% 

5.2 None - 

Majority 2016 2002 
2002 

2016 
2002 

2002 

2016 
2002 2002 2002 

Majority % 60% 70% 
40% 

40% 
70% 

40% 

40% 
60% 50% 80% 

Other 

2015 

2002 

2020 

2015 

2016 
2015      

Other % 

20% 

10% 

10% 

20% 

10% 
20%      

In the case of a site cleared by Working for Water, the expected clearing dates correspond to the 

year in which the clearing of the site was completed as indicated in the WIMS database. As clearing 

often spans several months, the break detected by BFAST01 could be found a year before the 

expected break as the WIMS database does not record the date when management started, only 

when it ended. 

With farmer-cleared sites, there is no general rule of thumb for how long clearing will take, and 

this mostly depends on the method used, as well as the purpose of clearing and the financial 

standing of the farmer. These purposes of clearing can be categorised into five broad categories, 

namely, to clear the entire farm, to clear and maintain some parts of the farm in an uninvaded state, 

to only prevent the spread of Prosopis to new areas, to prevent the establishment of Prosopis on 

farms currently free of it and to confine clearing to areas of strategic importance such as roads, 

fences and water points. As an example, when a farmer clears an area of Prosopis around areas of 

strategic importance, clearing will often be intermittent and take place whenever access is 

restricted to these areas by Prosopis. Also, clearing using an excavator and bulldozer (as was done 

by some farmers) will see an area cleared in a significantly shorter time than when clearing is done 

with manual labour. Lastly, the funding dedicated to the clearing of Prosopis differ from farmer 

to farmer and this will affect the speed of clearing operations. 
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None of the private landowners in this study kept highly detailed records of clearing, and as a 

result, rough estimates were often provided for areas cleared by farmers. These estimates could 

therefore be inaccurate regarding the year of clearing, the exact location and area cleared, the 

method used, and the cost. To minimise the effect of incorrect data on matching breaks to clearing, 

all breaks within a window of two years before or after the date indicated by management records 

were considered to be the same. This was done for both farmer- and WfW-managed sites. 

The two Working for Water sites in Table 3.4 (19.1 and 19.4) share some trends with the farmer-

managed site 1.1, concerning the number of pixels at which results (percentage of times the same 

year of management action is identified) stabilised. The major breaks remain relatively consistent 

for these three sites when increasing the number of samples used in the time series. Sites 19.1 and 

19.4 were mechanically cleared with multiple labourers over a relatively short period – likely less 

than six months. The farmer-cleared area (1.1) was cleared using a bulldozer and excavator in less 

than a month, and the result stabilizes at fewer pixels selected. As mentioned previously, the dates 

provided by farmers are very rough estimates in contrast to the dates provided by Working for 

Water in their WIMS database. This could explain the farmer indicating a clearing date of 2015 

for this site (1.1), whereas a major break is consistently observed only two years later in 2017. 

Notably, the expected dates of clearing in the case of the two Working for Water sites differ 

considerably from the majority of breaks found for these sites. This might be due to several factors, 

including errors in the capturing of boundaries areas demarcated for clearing, or only partial 

clearing of the demarcated area. In site 19.1, only the clearing of 2013 is evident. In site 19.4 the 

break observed in 2017 is observed in almost all cases, with breaks only being detected in 2012 

and 2014 when less than five observations are used, which might indicate only partial clearing of 

the site in those years.  

What is interesting to note is what happens to the trend line in site 19.4 after the break with the 

inclusion of different pixels. There is one area in which fieldwork found that water accumulates 

slightly, so the regrowth in those pixels will be much higher compared to the other pixels, such 

that results are strongly impacted depending on whether these “waterlogged” pixels are included 

in a particular iteration. In Figure 3.8 five observations are used in the time series, of which three 

observations fall in the dense regrowth area.  
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Figure 3.8 Prosopis regrowth in site 19.4 with the inclusion of pixels where water had accumulated 

This particular selection of pixels causes the high rate of regrowth observed between 2017 and 

2020, which is not visible in Figure 3.9 where only one pixel is selected from the area with dense 

regrowth. 

 

Figure 3.9 Prosopis regrowth in site 19.4 with fewer pixels included where water had accumulated 
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In an oblique aerial photo of the site (Figure 3.10) the area where rainfall water accumulates and 

extraordinarily strong regrowth is seen, is outlined in green, with the entire cleared area outlined 

in red. 

 

Figure 3.10 An aerial view of site 19.4 (red) with dense regrowth visible (green). Dead branches were piled by 

Working for Water, but never removed and are also visible. 

3.4.3 Effect of Prosopis clearing 

The effect of Prosopis clearing was tested on all sites with five pixels or more (24 sites cleared by 

WfW, 14 farmer sites and two sites where both parties managed Prosopis). Additionally, the 

analysis also included 28 unmanaged sites to be able to compare breaks exhibited in managed sites 

with those in unmanaged sites. 

Two sets of results were produced to investigate the effect of clearing: BFAST01 with NDVI and 

BFAST also with NDVI as the indicator of biomass. For all sets of results, five iterations were 

used (with five randomly selected pixels each time). The full set of BFAST and BFAST01 results 

from all 40 managed sites can be seen in Appendices C and D respectively. BFAST01 results of 

unmanaged sites are available in Appendix E. 

3.4.3.1 BFAST01 

A summary of the results of the BFAST01 algorithm with NDVI used as input for all managed 

sites can be seen in Table 3.5. Results were condensed from five sets of results per site (200 

BFAST01 graphs), each of which had its own break as different pixels were randomly selected by 
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the implementation of BFAST01. Breaks that occurred most of the time were termed “major 

breaks” and breaks that occurred less frequently are referred to as “minor breaks”. 

Table 3.5 Summary of break detections from all managed sites analysed with BFAST01 and NDVI, with and 

without the inclusion of minor breaks – i.e. breaks which did not occur most of the time during iterative 

analysis of sites. 

 Managed by Total Sites Detection Success # Detection Success % 

Using only major break 

Farmer 14 3 21% 

WfW 24 9 38% 

Both 2 2 100% 

Major and minor breaks 

Farmer 14 8 57% 

WfW 24 15 63% 

Both 2 2 100% 

Of the 40 managed sites, better management detection success rates are observed for Working for 

Water sites. The inclusion of minor breaks improves detection success rates on both WfW and 

farmer-managed sites. Of the 40 managed sites, 25 were matched to management records. The 

results in Table 3.5 are available in full detail in Appendix D. 

To illustrate specific results better, the same five sites used to demonstrate the impact of sample 

size and field site heterogeneity on the detection of phenological trends were included in more 

detail in Table 3.6. The trend in Prosopis biomass before the break and after the break is noted, as 

well as the trend during the break. When Prosopis clearing is done, the expectation is that a 

decrease will be observed during the break i.e. a high NDVI value before the break followed by a 

lower NDVI value immediately after the break. The trend after the break may also indicate 

regrowth. 

Table 3.6 Extract of results from selected pixels from Landsat 7 and 8 using BFAST01 with NDVI. 

Area Managed By 

Expected Break 

(from WfW or land 

manager) 

Observed 
Breaks 

Trend Before 
Break 

Trend During 
Break 

Trend After 
Break 

19.4 Working for Water 

4. ± 2002 

5. ± 2013 

6. ± 2018 

2017 (60%) Steady Decrease Steady 

2012 (40%) Steady Increase Decrease 

19.1 Working for Water 1. ± 2001 2010 (60%) Increase Decrease Decrease 
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Area Managed By 

Expected Break 

(from WfW or land 
manager) 

Observed 
Breaks 

Trend Before 
Break 

Trend During 
Break 

Trend After 
Break 

2. ± 2013 

3. ± 2018 
2013 (40%) Increase Decrease Increase 

1.1 Farmer ± 2015 (estimate) 

2017 (80%) Variable Decrease Variable 

2015 (20%) Increase Decrease Decrease 

5.1 Farmer 
2012 – 2016 

(estimate) 

2007 (80%) Decrease Increase Decrease 

2014 (20%) Decrease Decrease Increase 

5.2 None - 2002 (100%) Increase Decrease Increase 

The two areas managed by WfW (19.1 and 19.4) both have indications that breaks are successfully 

detected. In site 19.4, the observed break in 2017 is highly likely the same as the expected break 

of 2018 due to records not specifying when clearing has commenced. This is also further 

emphasised by the clear unambiguous break observed in 2017 on a plot of the time series data 

(Figure 3.8 and Figure 3.9). The break observed for the second Working for Water site indicates a 

majority break in 2010 (Figure 3.11). 

 

Figure 3.11 Break identified by BFAST01 at the end of 2010 in site 19.1 

While the majority break is observed in 2010, when visually inspecting the time series graphs a 

break of 2013 would be expected as only in 2013 does the annual growth peaks stabilise at a lower 

NDVI value (Figure 3.12). In this case, the minority break likely corresponds to the expected break 

(provided by WfW) in 2013. 
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Figure 3.12 Break identified by BFAST01 in 2013 in site 19.1 

Similar results were observed when using MSAVI2 instead of NDVI to model Prosopis biomass 

(Table 3.7). Breaks correspond mostly with those observed when using NDVI, although some sites 

with large differences between pixels of the same site introduce new breaks, which is likely due 

to the variability in those sites. It is important to note that the time series exhibit the same trends 

for NDVI and MSAVI2 when the same break is detected, pointing to similarities between these 

two indices. 

Table 3.7 Extract of results from selected pixels from Landsat 7 and 8 using BFAST01 with MSAVI2. Breaks in 

bold were not present when using BFAST01 with NDVI. 

Area Managed By 

Expected Break 

(from WfW or land 
manager) 

Observed 

Breaks 

Trend Before 

Break 

Trend During 

Break 

Trend After 

Break 

19.4 Working for Water 

1. ± 2002 

2. ± 2013 

3. ± 2018 

2017 (60%) Steady Decrease Increase 

2012 (20%) Decrease Increase Decrease 

2014 (20%) Increase Decrease Decrease 

19.1 Working for Water 

1. ± 2001 

2. ± 2013 

3. ± 2018 

2010 (100%) Increase Decrease Variable 

1.1 Farmer ± 2015 (estimate) 

2020 (60%) Decrease Increase Decrease 

2017 (20%) Increase Decrease Increase 

Stellenbosch University https://scholar.sun.ac.za



 52 

Area Managed By 

Expected Break 

(from WfW or land 
manager) 

Observed 
Breaks 

Trend Before 
Break 

Trend During 
Break 

Trend After 
Break 

2019 (20%) Steady Decrease Increase 

5.1 Farmer 
2012 – 2016 

(estimate) 

2007 (40%) Decrease Increase Decrease 

2012 (40%) Increase Decrease Decrease 

2016 (20%) Decrease Increase Decrease 

5.2 None - 

2002 (60%) Increase Decrease Increase 

2015 / 2016 

(40%) 
Decrease Increase Decrease 

Unmanaged sites were also analysed using BFAST01 to compare each managed site to the closest 

unmanaged site and inspect overlaps in the dates of breaks detected between these sites. In total, 

of the 25 sites that were matched to records of management by comparing years of management 

in records with years when breaks were identified by BFAST01, 13 sites had breaks that matched 

their unmanaged paired site. This does not necessarily mean that the breaks in these sites cannot 

be attributed to management, but there is a possibility that some of the breaks in these sites might 

be due to environmental causes if the break is also found in the unmanaged paired site. Paired 

managed and unmanaged sites can be seen in Appendices D and E. 

3.4.3.2 BFAST 

An ℎ value of 0.1 was selected for BFAST, as there was a total of approximately 250 observations 

(one per month) which was used as input to BFAST for break detection. Setting ℎ = 0.1 meant 

that each segment can have a duration of 25 months before a new break (and segment) can start. 

A value of more than 0.1 did shift breaks from their real date of occurrence or completely miss 

them when it was tested with ℎ values of 0.125, 0.15 and 0.2.  

A summary of the results of the BFAST algorithm with NDVI used as input for all managed sites 

can be seen in Table 3.8. Results were condensed from five sets of results per site where different 

pixels were used, with results from each iteration having their own set of breaks ranging between 

zero and seven breaks per site. Only breaks that occurred most frequently were included due to the 

number of breaks per iteration of a site. 
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Table 3.8 Summary of break detections from all managed sites analysed with BFAST and NDVI. 

 Managed by Total Sites Detection Success # Detection Success % 

Using only major break 

Self 14 7 50% 

WfW 24 12 50% 

Both 2 2 100% 

The detection success rate of sites managed by farmers is equal to those for Working for Water. 

Overall, detection success rates are higher than those observed with BFAST01 when using only 

the major break, but lower when also considering other breaks (Table 3.5). The results in Table 

3.8 are available in full detail in Appendix C. 

To highlight specific results, the same subset of results used in Table 3.6 are tabulated in more 

detail in Table 3.9. 

Table 3.9 Extract of results from selected pixels from Landsat 7 and 8 using BFAST with NDVI. 

Area Managed By 

Expected Break 

(from WfW or land 
manager) 

Observed 

Breaks 

Trend Before 

Break 

Trend During 

Break 

Trend After 

Break 

19.4 Working for Water 

1. ± 2002 

2. ± 2013 

3. ± 2018 

2017 (100%) Increase Decrease Variable 

19.1 Working for Water 

1. ± 2001 

2. ± 2013 

3. ± 2018 

2011 (100%) Increase Decrease Decrease 

1.1 Farmer ± 2015 (estimate) 

2017 (40%) Increase Decrease Decrease 

2014 (20%) Increase Decrease Decrease 

2011 (20%) Decrease Increase Decrease 

2006 (20%) Increase Increase Decrease 

5.1 Farmer 
2012 – 2016 

(estimate) 

2011 (60%) Decrease Decrease Decrease 

2016 (40%) Decrease Increase Decrease 

5.2 None - 

1998 / 2002 / 

2007 / 2015 
(100%) 

- - - 

For site 19.4, the 2017 break was constantly observed with all five iterations of BFAST, 

confirming the majority break observed using BFAST01 and NDVI (Table 3.6), as well as 

BFAST01 and MSAVI2 (Table 3.7). A similar observation can be made regarding the break seen 
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in 2010 for site 19.1 – it also agrees very well with the break observed as the majority break in 

previous analyses (Table 3.6 and Table 3.7). Site 1.1 has shown erratic results, but the majority 

break still agrees with BFAST01 results for the same site. Surprisingly, the results for site 5.1 

might point toward clearing detected starting in 2011, with a downwards trend afterwards (Figure 

3.13).  

 

Figure 3.13 A notable reduction in NDVI is visible at the 2011 break produced by BFAST using NDVI (site 5.1). 

Less predictable results were seen for this site with BFAST01 analysis (Figure 3.14). It must be 

stressed that the landowner of this site approached clearing over about five years whenever time 

and funding was available. This led to clearly visible breaks on Google Earth imagery between 

2012 and 2016, but when more pixels are aggregated for analysis the resulting loss of data variation 

causes BFAST01 to miss existing breaks. 

Stellenbosch University https://scholar.sun.ac.za



 55 

 

Figure 3.14 Break identified by BFAST01 in late 2007 in site 5.1 

3.5 DISCUSSION 

This study used changes observed in the biomass of Prosopis in combination with the trend 

analysis algorithms, BFAST and BFAST01, to identify changes in cover of invasive alien Prosopis 

trees. This method differs from the classical multi-temporal pre- and post-event(s) classification 

approaches making use of a few satellite images, typically reflecting the situation in selected points 

in time (i.e. selected years), providing no information on how vegetation cover has changed (i.e. 

increased or decreased) in between the observed points in time (Mbaabu et al. 2019). While both 

methods have advantages and disadvantages, the method used in this study provides almost 

continuous information (with a monthly interval) on the amount of living biomass, thus enabling 

the estimation of clearing dates from satellite imagery when an exact date is not known. 

Firstly, different vegetation indices were compared to select a suitable index to use with the 

BFAST and BFAST01 trend analysis algorithms. BFAST can detect multiple breaks over a period, 

with the number and occurrence of breaks defined by the ℎ parameter. Based on literature review, 

a value of 0.1 was chosen for the ℎ parameter (Lin et al. 2020; Saxena et al. 2018; Verbesselt, 

Hyndman, Newnham, et al. 2010; Watts & Laffan 2014; Zhou et al. 2019). BFAST01 only detects 

the most significant break and did not have additional parameters like BFAST which had an impact 

on the location of breaks. Both algorithms were able to detect breaks in trends expected due to 

management action of clearing Prosopis. As expected, BFAST were able to detect more breaks 

when compared to the major breaks of BFAST01. This can be attributed to the ability of BFAST 

to detect more than one break per site. This property also contributed to many unexplained breaks 
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being detected in addition to expected breaks, making evaluating results from BFAST more time-

consuming than with BFAST01. In cases where breaks were evidently visible on satellite imagery 

after a clearing event, the break detected by BFAST01 would often correspond to one of the breaks 

detected by BFAST for that site. In a few cases, BFAST01 detected breaks not detected by BFAST, 

despite BFAST being able to detect multiple breaks per site. This might be due to the choice of 

the ℎ parameter of BFAST, which was set to 0.1, which limited break detections to one break every 

two years. 

Before the effects of management could be detected, a vegetation index was to be selected for use 

by both BFAST and BFAST01. NDVI, NDWI, MSAVI2 and surface albedo were evaluated on all 

sites using BFAST and their resulting breaks were compared against each other, and to data that 

was collected during fieldwork. NDVI and MSAVI2 performed similarly, except in some cases 

where MSAVI2 failed to detect some breaks detected by NDVI. When using BFAST with NDMI, 

more breaks were consistently detected, which often did not match with clearing data on record. 

Surface albedo failed to detect breaks in 50% of the sites analysed, which might be due to the 

relatively small changes in albedo in cases where NDVI exhibit larger fluctuations. Subsequently, 

NDVI was chosen for the rest of the analysis in this chapter.  

With a vegetation index selected, the area of each site to be used as input required standardisation 

- some sites consisted of only a single pixel, whereas other sites often consisted of more than ten 

pixels. Different vegetation growth patterns could be observed in individual pixels, within a site 

cleared by management action, due to environmental and human factors, such as the availability 

of water to sustain growth (Figure 3.10) as well as the duration of clearing of Prosopis trees. Three 

to ten pixels were selected (per study site for a subset of five sites) over ten iterations with 

replacement and analysed using BFAST01 to determine the sample size to use. 

It was found that with different management methods and paces of Prosopis clearing, results 

stabilised at a different number of pixels used for the study site. In cases where management was 

done over a short period (e.g. six months or less), fewer pixels were required to obtain a stable 

result and clearing dates could be accurately retrieved by the methods used in this study. In sites 

where longer periods of management were seen, more variability was observed. Five pixels were 

consequently selected as the number of pixels to use per site for further analyses. 

Furthermore, the intent of clearing and funding available per year also had influences on how well 

the methods could detect clearing. For instance, the method accurately retrieved clearing dates for 

WfW sites cleared within six months, whereas sites that were cleared by farmers over several 

years, as time and funding were available, made it challenging for the algorithm to identify a clear 
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break in the phenology trend. The method may have potential as a tool for confirming the extent 

of clearing by WfW in the short term. 

In sites with more inherent heterogeneity observed on the ground between pixel locations, results 

did not stabilise to the point where a single break could easily be identified as the majority with 

confidence. A good example of this is site 5.1 where the landowner managed a relatively small 

area over about five years, resulting in pixels that were partially cleared at times and only fully 

cleared a year or more later. It was also observed that in sites unequal rates of Prosopis regrowth 

can occur which can affect regrowth trends observed after clearing with the inclusion of different 

pixels per study site. 

Variable soil and drainage patterns influenced Prosopis regrowth within the same site. This was 

well-observed in site 19.4 where a portion of the site had regrown, after clearing, to form 

moderately dense Prosopis stands while other areas remained almost bare. As some sites are made 

up of only a few pixels, five pixels per site were selected to balance the exclusion of sites with 

fewer pixels with the increase in stability seen when increasing the number of pixels. In some sites 

with high variability between pixels, using more than five pixels lead to losses of pixel information 

as the median pixel value is used for analysis. 

Finally, this study compared two trend algorithms, BFAST and its variant BFAST01, to analyse 

the changes in Prosopis cover over 21 years at all managed sites in the study to determine if and 

how well the effect of clearing could be observed using remote sensing.  

After elimination of sites that did not consist of at least five pixels or which did not have the 

required metadata such as robust estimates of dates or boundaries of clearing, 40 managed sites 

remained. Of these 40 sites (Appendix C and D), 24 were managed by Working for Water (WfW), 

14 by landowners and only two sites were managed by both parties. A management detection 

success was defined as a break that has occurred within two years of the indicated date of clearing 

and having a decreasing trend during the time of the break. This was done as landowners could 

not always remember the exact date (or year) of the clearing and because clearing in such cases 

often took place over a number of years, such that a two-year leeway was deemed to provide a 

suitable window of temporal detection. 

For BFAST01, with only the major break taken into account, i.e. the break that occurs most 

throughout the five iterations per site over the 21-year time series, the management detection 

success of WfW sites is 38%, compared to 21% for sites managed by landowners and 100% for 

the two sites managed by both parties. When breaks other than the major break was taken into 

consideration, these figures increased to 63% for WfW-managed sites and 57% for sites managed 

by landowners. 
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The increase in the management detection success rate when minor breaks are included suggests 

that the variation found in sites have a greater effect on results than expected. With the selection 

of five random pixels per site for each iteration where breaks were calculated, the variation 

between pixels in some sites led to a situation where different breaks were recorded for each 

iteration. In sites 21.9 and 23.1 this can be seen where no majority break was recorded, but instead 

five different breaks throughout the iterations. 

When BFAST results are evaluated, overall management detection success rates are 50% for both 

WfW- and landowner-managed sites and stays at 100% for the two sites managed by both parties. 

While these figures are somewhat lower than those seen with BFAST01 when including all minor 

breaks too, this drop in the detection success rate is expected as several sites only showed 

increasing breaks. This can be due to the way the BFAST break and trend line fitting was done, 

which depend on the ℎ parameter. Several of the sites which only showed increasing breaks had 

many short breaks every two or more years. This problem of overfitting was often seen when a 

seasonal growth spike caused a break.  

With BFAST01, cleared sites were also compared to uncleared sites to determine if they have 

similarities that can be used to isolate breaks caused by natural causes such as rainfall, drought and 

other external variations. This was not attempted with BFAST, as the latter can detect several 

breaks which complicates matching managed and unmanaged breaks. Each managed site was 

paired with the closest unmanaged site covered with Prosopis. From a comparison between 

managed and unmanaged sites, of the 25 sites that were matched to records of management by 

comparing years of management in records with years when breaks were identified by BFAST01, 

13 sites (52%) had breaks that matched their unmanaged paired site. This does not necessarily 

mean that the breaks in these sites cannot be attributed to management, but there is a possibility 

that some of the breaks in these sites might be due to environmental causes if the break is also 

found in the unmanaged paired site. This might indicate the complexity of using phenological 

trend analysis in areas that have less distinct seasonal patterns and highly variable inter-annual 

conditions. 

Overall, BFAST and BFAST01 were able to successfully detect management of Prosopis, albeit 

with varying results depending on the method, its parameters and several management-related 

factors. The current methods performed better with sites managed by Working for Water than sites 

managed by private landowners, possibly due to the more rapid clearing taking place at WfW 

managed sites, leading to less mixed pixels which are partially cleared. 

Future research can build on the methods and results of this study by evaluating the ability of 

additional trend analysis algorithms such as Landsat-based detection of Trends in Disturbance and 
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Recovery (LandTrendr) and Continuous Change Detection and Classification (CCDC) to detect 

invasive alien plant clearing. The LandTrendr algorithm can provide landcover change information 

on an annual time scale, which might capture less variation due to seasonality and other 

unexplained changes the methods in this study are susceptible to – in particular the effect of 

seasonal growth spikes causing overfitting of trend lines. The CCDC algorithm is a multivariate 

approach, meaning it is capable of using all spectral bands available to detect changes in land 

cover, unlike univariate approaches like BFAST and BFAST01 which was used in this study. 

To improve results in situations where management progressed slowly and differed between 

pixels, a pixel-based approach that also deals with the spatial aspect of the break can be considered. 

One such approach is the BFAST Spatial algorithm, which evaluates each pixel present in the input 

using BFAST Monitor and outputs a raster indicating breaks and their magnitudes with all pixels 

per site included in the analysis. This might provide better insight into what areas within a site 

were best cleared without having to randomly pick and aggregate pixels to find the average trends 

within each managed site. 

3.6 CONCLUSION 

This chapter used changes observed in the biomass of Prosopis in combination with the trend 

analysis algorithms, BFAST and BFAST01, to identify changes in the cover of invasive alien 

Prosopis trees. Four indices were compared as input, namely the Normalised Difference 

Vegetation Index (NDVI), the Modified Soil-Adjusted Vegetation Index (MSAVI2), the 

Normalised Difference Moisture Index (NDMI) and surface albedo, as well as the effect of varying 

the input sample size, was also evaluated. 

Of the four vegetation indices that were compared in terms of whether their estimation of Prosopis 

biomass as input to the BFAST algorithm produced noticeable differences, NDVI was selected as 

the indicator of Prosopis biomass for the rest of the study as it provided a balanced number of 

breaks when used with BFAST. MSAVI2 performed remarkably similar to NDVI but missed some 

breaks detected when using NDVI, and NDMI produced several extra breaks not observed with 

other indices. Surface albedo missed most breaks other vegetation indices could detect, likely due 

to its very flat response observed to changes in Prosopis biomass. 

Using the median aggregate of fewer pixels in the analysis resulted in more accurate Prosopis 

biomass trends representing the pixels involved but does not provide a broader picture of the entire 

site, which was managed, whereas when more pixels were included, the spectral data representing 

Prosopis biomass were lost in most cases due to heterogeneity between pixels. As a result, a 

sample size of five pixels was used to attempt to capture management efforts even in sites with 
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high heterogeneity, which is likely caused by factors such as slow clearing or variable water 

availability within a site. 

When using BFAST and BFAST01 with NDVI to detect Prosopis management intervention, 

Prosopis clearing was overall better detected in sites managed by Working for Water than in sites 

managed by private landowners, which can be attributed to several differences, including funding 

and purpose of clearing - which ultimately affects the rate of clearing. WfW sites are generally 

cleared over a few months, while landowner cleared sites were generally cleared over a number of 

years, which leads to sites with highly heterogenous pixels and differences between pixels as 

biomass is not removed uniformly over a short period of time. In cases where management was 

rapid and where the stakeholder completely cleared the area of Prosopis, clear breaks were found 

where they were expected based on interview data. 

To summarise, while Prosopis management was less accurately detected than expected, results in 

this chapter have shown that Prosopis management detection using Landsat imagery is possible 

given sufficient background data, and that current analysis methods proved to be more suitable for 

detecting management by Working for Water than for landowner-managed sites. In retrospect, an 

analysis of a smaller sample size could have provided more accurate break detection, albeit at the 

cost of losing a sense of management for the entire site.  

Stellenbosch University https://scholar.sun.ac.za



 61 

CHAPTER 4:  AN ASSESSMENT OF THE EFFECTIVENESS OF 

ATTEMPTS TO CONTROL PROSOPIS TREES IN THE NORTHERN 

CAPE PROVINCE, SOUTH AFRICA 

4.1 ABSTRACT 

Prosopis trees are alien to South Africa, and since their introduction in the 1880s have become 

invasive, specifically in the Northern Cape Province, where they covered an estimated 1.5 million 

hectares in 2007. These trees have had significant negative impacts on biodiversity, groundwater 

resources, and grazing capacity. 

Until the 1960’s the planting of Prosopis was actively encouraged through government subsidies 

and extension programmes. Prosopis trees were later declared as invasive species, but due to their 

perceived value, only seed-feeding biological control agents were introduced to assist with control. 

At the start of the 21st century, various stakeholders finally agreed that the negative impacts 

outweighed any positive benefits, and it was finally agreed that more damaging biological control 

agents should be sought. 

In 1995 the South African government initiated the Working for Water program to assist land 

managers in their attempts to bring alien plant invasions under control. Invasive alien plant 

management in the Northern Cape is focused almost exclusively on Prosopis. Working for Water 

has spent approximately ZAR 580 million (adjusted for inflation to 2021 values and with project 

overheads included) on Prosopis management across South Africa, based on WfW records of 

contracts awarded to clearing teams since 1998, but Prosopis invasions are increasing despite this 

significant spending. 

In this study, I conducted structured interviews with 17 landowners whose farms were invaded by 

Prosopis trees and examined the outcomes of control on the ground to establish farmers’ attitudes 

towards Prosopis, to document perceived benefits and impacts, and whether state support through 

Working for Water improved the effectiveness of controlling Prosopis. In addition, a remote 

sensing time series from 1999 to 2020 was analysed using the BFAST and BFAST01 trend analysis 

algorithms to assess whether these algorithms could be useful for monitoring management 

activities and resultant trends.  

Farmers all recognised that Prosopis trees had both advantages and disadvantages. More than half 

of the farmers identified fodder for livestock as an advantage, and less than a quarter also 

mentioned that shade and firewood were beneficial. On the other hand, farmers identified twice as 

many disadvantages than advantages associated with Prosopis, of which water usage and loss of 

grazing capacity were most frequently mentioned. Farmers were almost unanimous in agreeing 
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that they would like to eradicate Prosopis from their farms, but in reality, they had to set lesser 

goals for themselves depending on their financial standing, with some simply being unable to 

afford any form of control. 

The farmer survey included farms where control had been carried out either by the farmer or by 

Working for Water. It was found that relatively good progress was made towards achieving control 

on demarcated sites when the farmers carried out the control themselves, while sites treated by 

Working for Water generally showed poor progress. Only two sites could be located where the 

treatments were conducted by both the farmer and Working for Water, so the effectiveness of joint 

control could not be assessed. I conclude by suggesting that scarce funds for the control of Prosopis 

are probably too thinly spread to be effective, and that management could improve if funds were 

to be focussed on fewer, high-priority sites. In addition, attempts to identify effective and lethal 

biological control agents should be intensified, as they arguably offer the only realistic chance of 

controlling Prosopis over large areas. 

4.2 INTRODUCTION 

Prosopis species (mesquite) are leguminous thorny trees that are drought-resistant with deep 

taproots. Prosopis trees are alien to South Africa and were introduced in the 1880s from their 

native range in south-central America to provide benefits such as fodder and shade for livestock 

(Pasiecznik et al. 2001). Prosopis trees are aggressive invaders that can form dense, impenetrable 

thickets which are of very little value (Bekele et al. 2018; Mwangi & Swallow 2005; Shackleton 

et al. 2015b). At least six species of Prosopis are found in South Africa, and the invasive population 

constitutes a hybrid swarm which is the second most widespread invasive alien tree genus in South 

Africa, after Australian trees and shrubs in the genus Acacia (Henderson 2007). 

Prosopis is most abundant in the arid Northern Cape Province, where it covered an estimated 1.5 

million hectares in 2007 (of which about 160 000 ha were very dense stands), with the potential to 

invade up to 8 million hectares in this province alone (van den Berg 2010). Between 1974 and 

2007 Prosopis increased in range by approximately 7.4% per year (Wise, van Wilgen & Le Maitre 

2012). 

Invasive Prosopis trees have had significant negative impacts on biodiversity, groundwater 

resources, and grazing capacity. These impacts included decreases in the abundance and diversity 

of dung beetles (Steenkamp & Chown 1996), birds (Dean et al. 2002), and indigenous plants 

(Schachtschneider & February 2013; Shackleton et al. 2015a). The capacity of invaded rangelands 

to support livestock decreased by 34% when Prosopis cover was above 15%, to 100% when sites 

became fully invaded (Ndhlovu, Milton-Dean & Esler 2011). Dense invasions also significantly 
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reduce groundwater levels and result in the mortality of indigenous trees (Dzikiti et al. 2017; 

Dzikiti et al. 2015; Fourie et al. 2007; Schachtschneider & February 2013). Similar impacts have 

been noted in other parts of Africa, including impacts on indigenous vegetation (Linders et al. 

2019), water resources (Shiferaw et al. 2021), and indigenous mammals (Kebede & Coppock 

2015). Research by Muller et al. (2017) has demonstrated that West African villages with Prosopis 

invasions can support more mosquitoes, increasing the risk of contracting malaria. Although 

Prosopis trees can arguably provide benefits in the form of fodder, shade and firewood, these 

benefits are exceeded by the cost of negative impacts when invasions become more widespread 

(Wise, van Wilgen & Le Maitre (2012). 

Until the 1960’s the planting of Prosopis was encouraged by the government due to its ability to 

grow in very dry conditions. This was done through subsidies and extension programmes (Poynton 

1990). In the Northern Cape, native trees are scarce, and local people valued the shade and 

fuelwood that Prosopis trees provided (Zachariades, Hoffmann & Roberts 2011). Prosopis pods 

are also high in sugar, carbohydrates and protein, making them useful as a source of fodder (Choge 

et al. 2007).  

In the years between the 1960s and 1980s, Prosopis increasingly became recognised as a problem 

and was declared an invasive species in 1983 (Henderson & Harding 1992). Biological control in 

the form of seed-feeding insects that target Prosopis was introduced in the 1980s (Impson, Moran 

& Hoffmann 1999). Due to the perceived value of Prosopis, biological control was restricted to seed-

feeding agents (Moran, Hoffmann & Zimmermann 1993). Three workshops involving a wide range 

of stakeholders were held to address the problem between 2001 and 2019. During the first meeting 

in 2001, it was agreed that the negative impacts of Prosopis outweighed any benefits and that the 

introduction of flower-bud and flower-feeding insects, in addition to seed-feeders, would be 

justified. The biological control programme was consequently expanded to investigate agents that 

prevent the pods from reaching maturation. A later meeting in 2004 suggested that agents that 

attack the vegetative parts of the plant should also be considered, and further prospects for 

additional biological control agents were discussed at a meeting in 2019. Currently, potential 

agents that damage the growth of the plants are being considered, in response to the observation 

that there is no other route to the successful control of Prosopis in South Africa (Kleinjan et al. in 

press). 

In 1995, South Africa’s newly-elected democratic government initiated a program to assist land 

managers, both government and private, in their attempts to bring alien plant invasions under 

control in the areas for which they were responsible (Koenig 2009; van Wilgen & Wannenburgh 

2016). South African legislation requires landowners to control listed invasive alien species on 
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their land. Private landowners are simply expected to pay for the control of listed invasive species 

on their land even though they may not have been responsible for the introduction of the species 

in the first place (this has been called a “faultless liability” by Lukey & Hall (2020)). The central 

government has thus sought to provide assistance to both private and state landowners in the form 

of teams of workers who can clear invasive alien species. The workers are drawn from the ranks 

of disadvantaged people in mainly rural areas, where unemployment is rampant. It has been 

possible to justify expenditure on this program (dubbed “Working for Water”, hereafter WfW) 

because it addresses multiple goals by providing developmental opportunities, alleviating 

unemployment, and dealing with an important environmental problem. 

WfW is often depicted in the literature as a program that is responsible for managing invasive 

species in South Africa (Turpie, Marais & Blignaut 2008; Zimmermann, Moran & Hoffmann 

2004). This is not accurate, because (as explained above) WfW simply assists landowners who are 

in turn legally responsible for control. In reality, however, almost all of the funding that is available 

for control originates from WfW. This funding has been available since 1995 and currently 

amounts to over ZAR 1 billion annually (Zengeya & Wilson 2020). Funding is granted by WfW 

subject to non-negotiable operating rules, for example, labour-intensive methods are compulsory, 

pay scales are pre-determined, and each intervention requires signing a short-term contract for 

clearing a particular area. The programme is nonetheless by far the most influential intervention 

for managing invasive species at a national level. 

WfW’s performance indicators are formulated in terms of project inputs (money spent and people 

employed) or immediate outputs (hectares cleared), rather than desired outcomes (reductions in 

the cover and density of Prosopis, and ecosystem restoration) (van Wilgen & Wannenburgh 2016). 

There are thus no monitoring data that could be used to assess the effectiveness of the program. 

Invasive alien plant management in the Northern Cape is focused almost exclusively on Prosopis 

(van Wilgen et al. 2012). WfW spent approximately ZAR 580 million (adjusted for inflation to 

2021 values and with project overheads included), based on WfW records of contracts awarded to 

clearing teams since 1996. Despite this, research suggests that that Prosopis invasions are 

increasing at an exponential rate. Van den Berg (2010) found that the extent of Prosopis in the 

Northern Cape grew from about 77 000 condensed hectares in 1990 to 360 000 “condensed” 

hectares1 in 2007 – an increase of 363% over 17 years. Henderson & Wilson (2017) also estimated 

that the range occupied by Prosopis glandulosa increased by 280% (from 40 to 112 quarter degree 

grid cells) between 2000 and 2016, and that Prosopis hybrids simultaneously increased by 23% 

 
1 A condensed ha is the equivalent area occupied at a canopy cover of 100% (i.e. 50% cover on 10 ha = 5 condensed 

ha). 
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(from 390 to 481 quarter degree grid cells). Several studies have suggested that a different 

approach to the management of Prosopis in the Northern Cape would be needed if Prosopis were 

to be effectively controlled (Shackleton et al. 2017; van Wilgen et al. 2012; Wise, van Wilgen & 

Le Maitre 2012). 

In this study, I conducted structured interviews with 17 landowners whose farms were invaded by 

Prosopis trees and examined the outcomes of control on the ground. On these farms, the 

landowners either funded the control themselves or relied on WfW teams to do the control; in 

some cases, both approaches were used. The goal was to establish farmer’s attitudes towards 

Prosopis, to document perceived benefits and impacts, and to establish the goals of control and 

the methods employed. My interests also included whether or not state support from WfW 

improved the effectiveness of controlling Prosopis.  

4.3 METHODS 

4.3.1 Site selection 

This study was conducted on 19 farms, owned by 17 farmers, in the Northern Cape Province, 

selected in a relatively homogenous bioregion between the towns of Carnarvon and Vanwyksvlei 

(Figure 4.1). This area falls within the Nama Karoo and Succulent Karoo biomes, characterised by 

largely treeless landscapes with low mean annual rainfall (100 – 400 mm; Rutherford, Mucina & 

Powrie 2006). 
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Figure 4.1  Location of farms (red pins) on which the approaches to, and effectiveness of, management of invasive 

Prosopis trees was surveyed in the Northern Cape. Areas shaded in green show the distribution of Prosopis 

invasions as mapped by Van den Berg (2010). 

I included farms where the management of Prosopis over the past 25 years could be categorised 

into one of the following categories: (1) management by the farmer only; (2) management by 

Working for Water only; (3) a combination of management by Working for Water and the farmer; 

and (4) areas where no attempt had been made to manage Prosopis. On each farm, several sites 

were selected to establish the management approaches and to assess their effectiveness (Table 4.1). 

Table 4.1 The number of farms, and sites within farms, on which the approaches to, and effectiveness of, 

management of invasive Prosopis trees was surveyed in the Northern Cape. The area under 

management was based on contract records from Working for Water or was indicated by the farmer. 

The area where there was no management was examined on five 30 x 30 m pixels per site. 

Treatment history Number of farms Number of sites 
Total area under management 
(ha) 

Management by 

Working for Water only 
7 24 760.93 

Management by farmer 
only 

11 14 101.24 

Management by both 
Working for Water and 
farmer 

2 2 52.15 

No management 13 28 12.6 

Totals 19 68 941.45 
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4.3.2 Trends in the cover of Prosopis 

A remote sensing time series for the period between 1999 and 2020 were analysed using the 

BFAST  and BFAST01 algorithms (Verbesselt, Hyndman, Newnham, et al. 2010) to detect breaks 

in vegetation cover in the time series, which could be related to management intervention. In both 

algorithms, the Normalised Difference Vegetation Index (NDVI) was used as the vegetation index 

used to indicate changes in Prosopis biomass. First, five pixels were randomly selected within 

each site, including sites managed by farmers, WfW, both farmers and WfW and also unmanaged 

sites. The median NDVI value of these five pixels was used as the input to the BFAST and 

BFAST01 trend algorithms. This process of randomly selecting five pixels and producing results 

using both algorithms was repeated five times, to be able to account for differences between pixels 

in a site. In the case of BFAST, with specific algorithm parameters set, a break in the time series 

can be detected about every two years if the change deviates significantly from previous values. 

With BFAST01, only a single break can be detected. 

4.3.3 Information on control efforts 

Information on Prosopis management efforts was obtained from two sources. First, in the case of 

farms where Working for Water had been active, a spatial database of control operations was 

available, which provided data on the location and extent of the area subjected to control 

treatments, the date(s) of the treatment(s), the cost of the treatment(s), the number of people 

employed, and whether the treatment was an initial clearing or a follow-up action. I adjusted 

amounts spent by WfW on each site for each year to 2021 values for South African Rands (ZAR; 

1 USD = ~ 15 ZAR) to account for inflation, by using annual inflation rates (Statistica 2021). 

Secondly, I conducted an initial survey on farms around 6300 km of roads in April 2019. I used 

this information to select 19 farms that covered a range of management approaches for further 

study. Each of these farms was visited in October 2020. I conducted structured interviews on each 

farm, in which the owners were asked about attitudes, goals of management, methods used, 

challenges faced and, where appropriate, whether the assistance provided by the state’s WfW 

programme had assisted in the achievement of goals. The full set of questions asked is provided 

in Appendix A. I also inspected several sites on each farm, where management had been carried 

out to assess effectiveness on the ground (Table 4.1). 

At each site, I classified the outcome as either good (a marked reduction in cover, or elimination 

of Prosopis from the whole site), limited (reductions in cover on some parts of the site, but not on 

others), or poor (increases in cover and density on the site). I also categorised trends in the cover 

of Prosopis as either increasing (an increasing trend in the remote sensing time series), decreasing 
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(a decreasing trend in the remote sensing time series), or steady (no change in the remote sensing 

time series). 

4.4 RESULTS 

4.4.1 Management effort and outcomes 

The survey included 14 sites that were managed by the farmer only, 24 sites that were managed 

by Working for Water only, and two sites that were managed jointly by the farmer and Working 

for Water. Working for Water spent a total of 7 745 person-days on these 26 sites, at a total cost 

of ZAR 2 745 236 (adjusted to 2021 values) on Prosopis management that covered 761 ha. This 

amounts to ZAR 3 607 and 10.18 person-days per hectare over the period of the management. The 

amount of money spent by farmers is not known, as they did not keep any records, although at 

least one farmer spent ZAR 346 870 on hiring a bulldozer to clear about 29 ha of land. 

Field inspections of the sites revealed that relatively good progress was made when the farmers 

carried out the control themselves, while sites treated by Working for Water generally showed 

poor progress (Figure 4.2). I was only able to locate two sites where the treatments were conducted 

by both the farmer and Working for Water, and no clear pattern could be deduced. Examination 

of remotely-sensed data suggested that cover had mainly decreased when areas were managed by 

the farmer alone and that areas managed by Working for Water resulted in decreasing, steady or 

increasing cover in about equal proportions (Figure 4.3). For the 28 unmanaged sites, a consistent 

cover was exhibited in 12 sites, with almost the same number of sites showing an increase and 

decrease in cover, at 9 and 7 sites respectively. However, I suspect that many of the sites where 

remote sensing indicated a gradual decrease in cover over years would have been due to severe 

drought (between about 2014 and 2021) that would have resulted in the loss of leaves and an 

inability of the sensor to detect Prosopis trees. 

Stellenbosch University https://scholar.sun.ac.za



 69 

 

Figure 4.2 Comparison of progress towards the goals of reducing the cover of Prosopis invasions managed by 

farmers only, Working for Water only, or both parties, at 40 sites in the Northern Cape. 

 

Figure 4.3 Comparison of trends in Prosopis unmanaged, managed by farmers only, Working for Water only, and 

both parties, at 68 sites in the Northern Cape. 

4.4.2 Information gathered from farmers 

4.4.2.1 Farmers attitudes towards Prosopis 

Farmers interviewed all acknowledged that Prosopis trees had both advantages and disadvantages. 

More than half of the farmers identified fodder for livestock as an advantage, with a relatively 

small number of farmers also mentioning shade and firewood as additional advantages (Table 4.3). 

Thirteen farmers identified no advantages at all on their property. 

0 2 4 6 8 10 12 14 16 18

Good progress

Limited progress

Poor progress

Number of sites

Both farmer and Working for Water Working for Water only Farmer only

0 2 4 6 8 10 12 14

Decreasing trend

Steady trend

Increasing trend

Number of sites

Unmanaged Both farmer and Working for Water Working for Water only Farmer only

Stellenbosch University https://scholar.sun.ac.za



 70 

It is understandable that in some cases Prosopis trees can be viewed as beneficial. Given the natural 

vegetation type and frequent droughts, Prosopis pods can sustain livestock through periods where 

farmers would otherwise have to purchase fodder. 

The second most-mentioned advantage of Prosopis was the shade it provides. The only other tall 

tree found in the study area is the Karee tree (Searsia lancea), but it is uncommon. Temperatures 

frequently exceed 35oC in summer and without Prosopis trees, livestock would have to compete 

for shade under very few if any trees. With this scarcity of trees, wood is also scarce in the area 

and Prosopis wood is thus important to local people. In one case the abundance of Prosopis on a 

farm led to the farm being sold for half the price asked for neighbouring farms. This allowed 

another farmer to buy the farm and supplement fodder for his livestock. 

Farmers identified twice as many disadvantages than advantages associated with Prosopis (Table 

4.2). The most frequently mentioned disadvantage was the significant water use by Prosopis, 

leading to a reduction in groundwater and surface water. Related to this was the fact that Prosopis 

roots often caused blockages of boreholes if they were close to the borehole. The presence of 

Prosopis trees also displaced natural vegetation that would otherwise have provided good grazing 

for livestock. Farmers also mentioned allelopathic effects on natural vegetation as a result of 

tannins in the plant. 

Prosopis is known to form dense thickets and farmers noted that these thickets make parts of the 

farm inaccessible for management. In addition, livestock was unable to reach water points when 

Prosopis thickets become too dense. For certain livestock, such as angora goats, Prosopis can be 

deadly when the long hair of the goats become trapped in Prosopis thickets. The dense thickets 

also provide cover to predators such as jackals (Canis mesomelas) and caracals (Felis caracal). 

Some farmers also indicated that they have seen an increase in stock theft in areas with Prosopis 

thickets because of the good cover it provides. 

Table 4.2 Advantages and disadvantages of Prosopis that were identified during interviews with 17 farmers in the 

Northern Cape Province 

 

Nature of advantage or 
disadvantage 

 

Number of farmers who 
mentioned the advantage or 
disadvantage 

Notes 

Advantages Fodder 13 
Livestock utilise the pods, 
but not leaves 

 Shade 3 
Shade is valuable as the 
area is hot in summer 

 Wood 3 Used as firewood 

 
Enable the purchase of land 
by reducing the price 

1 

Prosopis is mostly unwanted 
and reduces the property 
value significantly. This 

could be advantageous to 
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one party, but 

disadvantageous to the 
other. 

Disadvantages 
Groundwater and surface 
water reduction 

17 

Additional effort, for 

example, drilling to deeper 
depths, is required to secure 
sufficient water to support 

livestock production 

 
Blocking of boreholes by 
roots 

2 
Increases maintenance 
costs and reduces the 

viability of stock farming 

 
Displaces native vegetation 
and grazing 

16 
Results in serious shortages 
of fodder for livestock 

 Tannins and allelopathy 6 
Retards the growth of native 
vegetation that provides 
grazing 

 

Access to areas for 
management, as well as 
access by livestock to water 

points 

7 
Can lead to increased 
management costs or 
mortality in livestock 

 Mortality of livestock 2 
Angora goats become 
entangled in thorny Prosopis 

thickets and die 

 Provides cover for predators 3 
Prosopis trees provide cover 
for jackals and caracals that 

prey on livestock 

 
Provides cover to stock 

thieves 
2 

Stock theft has been noted 
to increase where dense 

invasions of Prosopis have 
established 

Only one of the 17 farmers regarded Prosopis as entirely beneficial on their property in the short-

term, while 11 farmers indicated that Prosopis was entirely disadvantageous, and five were 

ambivalent, recognising a mixture of advantages and disadvantages. All farmers said they would 

like to see Prosopis eradicated in the long term, while one considered the trees to be advantageous 

in the short term, but likely to become a problem in the more distant future. 

4.4.2.2 Goals of management on farms 

Interviews with farmers suggested that six potential goals were considered (Table 4.3). The goals 

that were adopted were dependent on the farmer’s financial standing, the extent of invasions, and 

the perceived value of the benefits or impacts of Prosopis. Note that sometimes a farmer identified 

different goals for different areas on the farm, based on factors such as the density of the invasion. 

Table 4.3 Goals of management of Prosopis that were identified during interviews with 17 farmers in the Northern 

Cape Province 

Goal of 
management 

Number of farmers who 
had adopted the goal 

Situations where the goal is appropriate 

Clear the entire 
farm 

3 
Farmers with sufficient resources to manage significant areas of Prosopis trees 
continuously, often with workers solely appointed to clear Prosopis. 
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Goal of 

management 

Number of farmers who 

had adopted the goal 
Situations where the goal is appropriate 

Clear and 
maintain some 

parts of the farm 
in an uninvaded 
state 

3 

Farms where Prosopis clusters have become extremely dense so that farmers 

abandon clearing efforts in those areas and focus on clearing sparsely invaded 
areas. Some farms along fence lines that provide an identifiable break between 
invaded areas and those targeted for clearing. 

Prevent the 
spread of 
Prosopis to new 

areas 

3 

Prosopis invasions observed during the field trips were often most dense in low-
lying areas with ample water. Farmers often opt to leave these very dense areas 
and remove individual Prosopis trees when they appear in uninvaded areas to 

prevent new thickets from forming. 

Prevent the 
establishment of 

Prosopis on 
farms where it is 
not yet present 

2 

Some farms are uninvaded and often these farmers put the effort in to keep the 

farm Prosopis-free as these farmers have seen the negative effects of Prosopis 
on nearby farms. 

Confine clearing 
to areas of 
strategic 

importance 
such as roads, 
fences, and 

water points 

7 

When farmers are not in a financial position to do large-scale clearing of 
Prosopis, or if they believe the plant has more advantages than disadvantages, 

they only focus on clearing strategic areas such as roads, fences, and water 
points. At least one farmer did intensive removal of Prosopis around water points 
when livestock started struggling to access the water in herds. 

Simply allow 
invasions to 

continue 

2 
This is often the case when the farm is completely covered in Prosopis and 
where it would be more affordable to sell the farm and buy an uninvaded farm as 

a few farmers commented. 

4.4.2.3 Methods employed by farmers 

Most farmers used mechanical control methods in combination with chemical control, either 

funded by themselves or in combination with assistance provided by Working for Water (Table 

4.4). Some used chemical control only, while others resorted to the use of earth-moving equipment, 

especially where large trees had to be removed. 

Table 4.4 Methods of Prosopis management that were identified during interviews with 17 farmers in the Northern 

Cape Province 

Method employed Approach 
Number of farmers 

using the method 

Manual labour-intensive clearing 
combined with chemical control, 

funded by the farmer alone 

Prosopis trees are cut down, either with hand or electrical saws, and 
stumps are afterwards treated with herbicide such as Garlon diluted 

with diesel. 

6 

Manual labour-intensive clearing 
combined with chemical control, 

with initial clearing done by 
Working for Water 

Initial clearing work is done by Working for Water. Often the cost of 
initial clearing is the prohibitive factor and once initial clearing is done, 

it is relatively easy to keep the area free of Prosopis. 

2 

Chemical control only Apply herbicide to the stem or spray the tree with a foliar herbicide to 

leave the dead tree standing upright. According to participants who 
mentioned this, there are two advantages. Firstly, Prosopis trees can 
be quite thorny and cause punctures to vehicle tyres. Leaving the 

branches on the tree also leaves the thorns above the ground level 
where vehicle tyres run. Secondly, some farmers said that Prosopis 
seeds dormant in the ground are more likely to germinate when a large 

Prosopis tree is cut down and the ground is exposed to sunlight. 

 

Aerial spraying was not done by any participants in the area, but some 
of them indicated that they might consider aerial spraying if it was 

2 
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Method employed Approach 
Number of farmers 

using the method 

affordable enough in areas where Prosopis trees are very densely 
spaced. 

Manual clearing using earth-
moving equipment 

On farms where money is less of a constraint to intensive 
management, mechanical clearing involving excavators and bulldozers 
has been used. The method followed is generally to remove large 

trees which have strong root networks with an excavator and then use 
a bulldozer to flatten smaller trees and push all Prosopis trees onto 
heaps where they are burned. This method is far less time-consuming 

than cutting trees by hand, but it costs significantly more per hectare 
than manual labour. 

3 

Biological control No farmer in the study introduced biological agents to their farms, but 

some indicated that they could see signs of damage to pods caused by 
beetles, most likely introduced to the area by previous governmental 
and research efforts to slow the spread of Prosopis. 

0 

 

 

None of the farmers who took part in the study kept detailed records of the cost of management. 

In cases where records were kept, these were aggregated across farms, and it was not possible to 

obtain precise costs for each area cleared. The fact that farmers mostly use their regular 

farmworkers to clear Prosopis and to attend to other tasks without differentiating between them 

essentially means that the labour effort spent on control alone could not be estimated. 

Farmers could sometimes provide a rough estimate of costs, or at least an estimate of person-days 

spent on clearing, which tools were used and how much herbicide was used in a year. When 

farmers made use of heavy machinery such as bulldozers and excavators for clearing, those costs 

were recorded as they constituted a significant single expense. 

A recent drought in the study area had an impact on how farmers spend their income and Prosopis 

management was halted mostly for the period between 2016 and 2020 due to this extensive drought 

that resulted in substantially less income. This had the effect that Prosopis continued to spread, 

albeit more slowly than would have been the case in wetter years. While the drought also stunted 

Prosopis growth somewhat, most farmers indicated that they believed Prosopis management 

would become a priority when rainfall increased again. 

Farmers were also asked about what they regarded as the most effective way of managing 

Prosopis, irrespective of constraints such as effort and costs. Most farmers agreed that continuous 

management would be needed. If funds were not limiting, they indicated that they would carry out 

uninterrupted management for at least 20 years. Most farmers said that realistically this would 

require funding beyond what they would ever be capable of spending, and often cost more per 

hectare than the hectare of land is worth.  

Some farmers also pointed out that, to have the maximum effect, Prosopis would need to be 

controlled in the correct growing phase. Lastly, farmers with dense invasions on their property 
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said that they believed that aerial spraying could assist with initial clearing in areas where Prosopis 

stands are impenetrable on ground level. 

4.5 DISCUSSION AND CONCLUSION 

Prosopis trees are aggressively invasive, and although they do have some advantages, I found 

general agreement that any such advantages are outweighed by negative impacts. While all farmers 

would therefore like to see Prosopis trees eradicated from their lands, effective control appears to 

be largely beyond their means, except for removal in small areas or in rare cases where the farmer 

has sufficient personal resources. The government’s programme for assisting farmers by providing 

state-funded control teams does not appear to have been effective, as in most cases progress 

towards achieving effective control using these teams alone has been poor. On the other hand, 

control projects that were funded by the farmers themselves, without state assistance, tended to be 

more successful. 

Perhaps the best solution would be for Working for Water to carry out the initial clearing, and to 

have this followed up by the farmer. This is certainly the intent of the Working for Water 

programme, but I was not able to locate sufficient examples of these combinations to assess 

whether this was working in practice. However, the fact of the matter is that Working for Water, 

although well-funded, has far too little funding to reverse the spread of Prosopis across the entire 

Northern Cape. Although the programme invests around 100 000 person-days per year on the 

control of Prosopis in South Africa (about 85% of it in the Northern Cape), it is still only able to 

reach less than 4% of the invaded area every year, and invasions continue to spread (van Wilgen 

et al. 2012). 

WfW has spent around ZAR 580 million on Prosopis management since the inception of the 

programme. However, indications are that the level of funding is dropping (Zengeya and Wilson 

2020). The drop in spending is due to recent drastic cuts in the budget of WfW, and a change in 

priorities. WfW, therefore, faces the same challenges as farmers and cannot adhere to best practices 

concerning continuous follow-up, often resulting in cleared areas becoming re-invaded. It is thus 

clear that a change in strategy will be needed if Prosopis invasions are to be brought under control. 

In the first place, the available scarce funding will need to be focussed on priority areas where the 

goals of management can be met through the implementation of adequate and sustained 

partnerships between government-funded assistance and farmers. Clearly, a program of random 

and intermittent funding of individual projects will not be effective and may even be counter-

productive. The criteria for deciding on priority areas, and the form and content of defensible and 

transparent collaborative agreements will still have to be agreed on. Secondly, and more 

importantly, the only sustainable solution will probably have to come from effective biological 
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control, if suitable agents can be found. It has taken a long time to finally reach a consensus that 

lethal biological control agents will be acceptable. While there is no guarantee that such agents 

will be found, investing in research to locate and assess potential agents would appear to be the 

best way to use scarce funding to potentially bring a significant environmental threat under control. 
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CHAPTER 5:  DISCUSSION AND CONCLUSION 

This chapter summarises the findings of this research. Firstly, the aims and objectives are revisited, 

followed by a discussion of the main findings and limitations of the study and lastly suggestions 

are made for future research. Finally, Prosopis management is discussed at a broader scale 

followed by the conclusions that can be drawn from this research.  

5.1 REVISITING THE AIMS AND OBJECTIVES 

This study aimed to compare and apply multispectral satellite imagery and trend analysis 

algorithms to evaluate the effectiveness of the management of Prosopis by comparing areas that 

have been subjected to different management regimes in the Northern Cape over the past 20 years. 

The study was motivated by the importance of insights into the efficacy of different management 

methods employed to manage Prosopis. These trees are alien to South Africa, and they became 

invasive following their introduction in the 1880s, specifically in the Northern Cape Province, 

where they covered an estimated 1.5 million hectares in 2007 in a province of about 37 million 

hectares.  

Before the 1990s Prosopis in the Northern Cape was relatively unmanaged, except for some 

individual farmers who targeted specific areas where it was deemed to be a problem. By 1995, the 

South African government initiated a program to assist land managers in their attempts to bring 

alien plant invasions under control. This program, called Working for Water (WfW), has since 

spent approximately ZAR 580 million (adjusted for inflation to 2021 values) on Prosopis 

management across South Africa, based on WfW records of contracts awarded to clearing teams 

since 1998. Despite this significant spending, Prosopis invasions are increasing. 

My first research objective was to carry out a literature review to become familiar with past and 

current techniques used to assess the Prosopis invasion and to identify suitable trend analysis 

strategies (Chapter 2). A review of the history of Prosopis trees, their uses, problems and spread 

over time highlighted the extent of the problem, not only in South Africa but globally. The species 

is able to spread so successfully due to the lack of co-evolved natural enemies (e.g. insects and 

pathogens) which retard their spread in their native range. Negative impacts of Prosopis were 

identified as, among others, negative impacts on biodiversity, groundwater resources, and grazing 

capacity, including decreases in the abundance and diversity of dung beetles, birds, indigenous 

plants, decreases in the ability of rangelands to support livestock and reductions in groundwater 

levels. Existing research highlighted that, although Prosopis trees can provide benefits in the form 

of fodder, shade and firewood, these benefits are exceeded by the cost of negative impacts when 

invasions become more widespread. 
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Literature pointed to several remote sensing methods used to assess changes in the biomass of 

invasive alien plants, with two methods often used, namely image classifications of two or more 

scenes at different dates and analysis of trends in the full stack of imagery available, often reduced 

using a mean or median filter to create a composite scene. The latter method was selected for use 

in this study, utilizing two similar algorithms, BFAST (Breaks for Additive Season and Trend) 

and BFAST01. Imagery from both the Sentinel and Landsat satellite constellations were often used 

in literature due to their medium spatial resolution and relatively high temporal resolutions. For 

this research, imagery from Landsat 7 and 8 was used, as Sentinel imagery does not fully cover 

the duration of the study. Landsat imagery also has a collection of spectral bands which is often 

used in research to create vegetation indices for improved biomass detection, such as Normalised 

Difference Vegetation Index (NDVI), Normalised Difference Moisture Index (NDMI), Modified 

Soil-Adjusted Vegetation Index (MSAVI2) and surface albedo. 

For the second research objective, farms with Prosopis, that have been subjected to different 

management regimes, were selected and field data were obtained through interviews, participatory 

mapping, and examination of sites in the field. Initial fieldwork conducted in the Northern Cape 

during two separate trips in 2019 narrowed the study area down to the region between the towns 

of Carnarvon and Vanwyksvlei, where the Prosopis invasion has a long history, with a cluster of 

management sites grouped in a relatively small area. This region also falls within the Nama Karoo 

biome characterised by short, shrubby vegetation of low cover, which assisted remote sensing 

analysis as most trees in the area could be assumed as Prosopis with high certainty. 

In 2020 during a third field trip to the final selected study area, structured interviews were 

conducted with 17 landowners whose farms were invaded by Prosopis trees. Additionally, several 

sites per farm were inspected and selected for remote-sensing analysis, with inputs from farmer 

interviews and a database kept by Working for Water gathered as a baseline for the comparison of 

trend analysis results. 

In Chapter 3, the third objective – to analyse remote sensing time series algorithms to estimate the 

change in abundance of the Prosopis invasion on selected farms – was addressed. Trends in 

Prosopis biomass were analysed using a Landsat 7 and 8 remote sensing time series and the 

BFAST and BFAST01 trend algorithms were applied to determine their suitability for detecting 

trends in the cover of Prosopis in the Northern Cape Province and relating these to management 

effort. With both algorithms, several indices were also assessed, including the NDVI, NDMI, 

MSAVI2 and surface albedo, to find the most suitable index for detecting Prosopis biomass in the 

study area. A suitable sample size of five pixels per site was determined through experimentation 

to account for heterogeneity within sites, while still including smaller sites spanning only a few 
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satellite imagery pixels. BFAST and BFAST01 produced similar results but breaks detected by 

BFAST were more closely aligned to management inputs. 

In Chapter 4, the effect of management actions on the abundance of the Prosopis invasion in the 

Northern Cape was assessed (objective four). The structured interviews with farmers (objective 

two), the Working for Water database and trends observed in sites (Chapter 3) were used as input 

to analyse Prosopis management efficacy. Farmers all recognised that Prosopis trees had both 

advantages and disadvantages. More than half of the farmers identified fodder for livestock as an 

advantage, and less than a quarter also mentioned that shade and firewood were beneficial. On the 

other hand, farmers identified twice as many disadvantages than advantages associated with 

Prosopis, of which water usage and loss of grazing capacity were most frequently mentioned. 

Farmers were almost unanimous in agreeing that they would like to eradicate Prosopis from their 

farms, but in reality, they had to set lesser goals for themselves depending on their financial 

standing, with some simply being unable to afford any form of control. It was found that relatively 

good progress was made towards achieving control on demarcated sites when the farmers carried 

out the control themselves, while sites treated by Working for Water generally showed poor 

progress. 

The fifth and last objective was collectively addressed in both Chapters 3 and 4 and is summarised 

in Section 5.2 of this chapter. 

5.2 MAIN FINDINGS AND VALUE OF THE RESEARCH 

In chapter 3, NDVI, NDMI, MSAVI2 and surface albedo were compared and NDVI was selected 

as vegetation index for further analysis as it detected breaks most often and agreed best with 

management records obtained during fieldwork. It should be noted that the results obtained from 

using MSAVI2 matched well with that of NDVI, but in some cases, it missed breaks that NDVI 

could detect. NDMI introduced many unknown breaks, which were unmatched by the other 

indices, possibly as it is more sensitive to small microvariations in plant moisture than NDVI. 

Trend lines produced by surface albedo were flatter than those observed with the other indices and 

consequently, it missed most breaks detected by other indices. The results observed when using 

NDVI matches the observation made by existing research that NDVI performs well in detecting 

small vegetation cover changes in arid environments (Funghi et al. 2020; Shiferaw et al. 2019). 

Further, an analysis of sample size and its effect on the results of the trend analysis algorithms 

were conducted. Sample sizes used in the analysis ranged from three pixels, up to and including 

ten pixels used per site to detect breaks in vegetation growth. More stable results were obtained in 

more homogenously managed sites i.e. sites that were cleared in a short time with the same level 
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of management applied throughout the site, as well as when more pixels were used. Using the 

median NDVI value of fewer pixels resulted in different breaks being observed with each iteration 

of BFAST and BFAST01 when a different set of managed pixels were used. To maintain a balance 

between analysing the overall management done in a site and including variations due to differing 

environmental conditions throughout the site, five pixels were randomly selected, the median 

monthly NDVI value obtained and used as input for BFAST and BFAST01. Similar to the concept 

of the Random Forest algorithm (Breiman 2001), five iterations of analysis, each with five 

randomly selected pixels, were performed for each site.  

The results in Chapter 3 further demonstrated that analysis of a remote sensing time series using 

the BFAST and BFAST01 trend analysis algorithms can be used to detect management of invasive 

Prosopis trees in the Northern Cape Province. It was observed that the success of matching a break 

in growth, as well as the growth trends observed, varied due to environmental heterogeneity found 

within a site, such as more thorough clearing in some parts of a site or part of a site becoming 

flooded at times. Of the 40 managed sites, better management detection success rates (38%) were 

observed for Working for Water sites when compared to farmer-managed sites (21%). The 

inclusion of minor breaks (breaks which did not occur the most frequently when comparing the 

outcome of five sets of samples) improved detection success rates on both WfW and farmer-

managed sites, reaching 57% and 63% respectively. Of the 40 managed sites, 25 had breaks that 

were matched to management records. 

The duration of management, that is the time taken to clear a site, which could be several years, 

likely had the greatest effect on the overall lower management detection success rate observed on 

sites managed by farmers. Unlike Working for Water-managed sites, farmers often manage sites 

as funds and time become available, and from interviews it was apparent that clearing sometimes 

spanned several years, leading to a slow and very gradual downwards trend, which was often not 

detected using BFAST and BFAST01. These trend algorithms did prove to be very effective in 

sites managed by earth-moving machinery where Prosopis trees were removed in a matter of days, 

being present one month and completely absent the next. Similarly, sites managed by dedicated 

teams, who use manual labour to remove Prosopis trees in a relatively short time, such as Working 

for Water, was also in most cases detected with the trend analysis algorithms. 

In Chapter 4, the management effectiveness of Prosopis was analysed for the same sites used in 

Chapter 3. To understand the reasons behind management, interview responses were first 

summarised. From the results, it was observed that all 17 farmers recognised that Prosopis trees 

had both advantages and disadvantages. More than half of the farmers identified fodder for 

livestock as an advantage, and less than a quarter also mentioned that shade and firewood were 
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beneficial. On the other hand, farmers identified twice as many disadvantages than advantages 

associated with Prosopis, of which water usage and loss of grazing capacity were most frequently 

mentioned. Farmers were almost unanimous in agreeing that they would like to eradicate Prosopis 

from their farms, but in reality, they had to set lesser goals for themselves depending on their 

financial standing, with some simply being unable to afford any form of control. 

The results further suggested that farmers would consider one or more of six potential goals (see 

Table 4.3), depending on their financial standing, the extent of invasions, and the perceived value 

of the benefits or impacts of Prosopis. Farmers often had multiple goals for different areas of a 

farm. The goal most often mentioned was to confine clearing to areas of strategic importance such 

as roads, fences, and water points, with only two farmers having no goal of management. 

Clearing methods used by farmers varied, also based on affordability, with manual labour-

intensive clearing combined with chemical control being the most common method of 

management. It was found that relatively good progress was made towards achieving control on 

demarcated sites when the farmers carried out the control themselves, while sites treated by 

Working for Water generally showed poor progress. Only two sites where the treatments were 

conducted by both the farmer and Working for Water could be located, so the effectiveness of joint 

control could not be assessed. 

5.3 LIMITATIONS AND RECOMMENDATIONS 

This research provides a good foundation for Prosopis management detection in the arid areas of 

South Africa using Landsat satellite imagery and the BFAST and BFAST01 trend analysis 

algorithms. However, the study has some limitations, which are addressed here. 

As seen from the BFAST and BFAST01 results, detection of growth breaks due to management is 

limited to areas where management made a significant difference in a short amount of time. Future 

research can evaluate the ability of additional trend analysis algorithms such as Landsat-based 

detection of Trends in Disturbance and Recovery (LandTrendr) and Continuous Change Detection 

and Classification (CCDC) to detect invasive alien plant clearing that occurs over longer time 

periods, such as over a number of years. The LandTrendr algorithm can provide land cover change 

information on an annual time scale, which might capture less variation due to seasonality and 

other unexplained changes the methods in this study are susceptible to. The CCDC algorithm is a 

multivariate approach, meaning it can use all spectral bands available to detect changes in land 

cover, unlike univariate approaches like BFAST and BFAST01 which was used in this study.  

To improve results in situations where management differed between pixels within a site, a pixel-

based approach that also deals with the spatial aspect of the break can be considered, instead of 
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selecting the median of five pixels within a site as was done in this study. One such approach is 

the BFAST Spatial algorithm (Gao et al. 2019), which evaluates each pixel present in the input 

using BFAST Monitor and outputs a raster indicating breaks and their magnitudes with all pixels 

per site included in the analysis. This might provide better insight into what areas within a site 

were best cleared without having to randomly pick and aggregate pixels to find the average trends 

within each managed site. 

The absence of accurate dates of management obtained through interviews with farmers also 

contributed to additional uncertainty in the cross-verification of management events, as farmers 

often guessed a year in which management took place and mostly had no way of providing accurate 

costs of management. The database provided Working for Water data also contained 

inconsistencies, such as missing dates and costs of management. Future research on Prosopis 

management detection, should, if possible, collect field data and interview responses before and 

during clearing episodes. 

A severe drought also occurred during the last half of the study period (between about 2014 and 

2021), and this would have resulted in the loss of leaves of some trees and consequently a decrease 

in growth trend reported by BFAST and BFAST01. Some sites did indicate a gradual decrease in 

seasonal peaks from about 2013, but the drought was taken into account when interpreting breaks 

followed by such a gradual decrease. 

Lastly, this study only examined a relatively small number of sites covering less than 1000 hectares 

in total, which is a very small percentage of the total Prosopis invasion in the Northern Cape. The 

methods presented in this study are well-suited to be expanded to a larger scale, provided sufficient 

field data is available for verification. Recent research done by Mbaabu et al. (2019) was able to 

successfully monitor the spread of Prosopis in Kenya through several discrete Random Forest 

classified images, and while their methods and goals differed from those of this study, an additional 

land cover change map could provide useful data (given a large number of validation data points) 

to further assess and spatially visualise trends in the Northern Cape Prosopis invasion. 

5.4 CONCLUSIONS 

The research presented in this thesis had the goal of comparing and applying multispectral satellite 

imagery and trend analysis algorithms to evaluate the effectiveness of the management of Prosopis 

by comparing areas that have been subjected to different management regimes in the Northern 

Cape over the past 20 years. The aim of the research was achieved by five objectives listed in 

Chapter 1, Section 5, of which all were met. 
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From the analysis of a remote sensing time series management of Prosopis was detected and this 

research provides a baseline for a feasible monitoring framework to evaluate the effectiveness of 

management. While management detection success rates were lower than initially expected, the 

BFAST and BFAST01 trend algorithms combined with NDVI values from Landsat 7 and 8 

imagery proved to be well-suited for thorough clearing in a short time, as is often done by Working 

for Water with large teams which manually clear a site, or in the case of farmers which can afford 

to use earth-moving equipment to clear dense Prosopis thickets completely in a short period. 

While there are some success stories where Prosopis was brought under control on farms, at a 

broader scale the problem is out of hand. Firstly, it seems that the available scarce funding will 

need to be focussed on priority areas where the goals of management can be met through the 

implementation of adequate and sustained partnerships between government-funded assistance 

and farmers. In other words, limited funds should not be diluted to a point where they become 

thinly spread and outcomes ineffective. This observation, based on outcomes observed in this 

study, agrees with observations made by van Wilgen et al. (2016). Secondly, a concerted effort to 

find effective biological control agents needs to be made, which, if effective, could vastly increase 

the effectiveness of clearing operations. 

The findings of this study provide valuable insights into methods that can be used to assess the 

efficacy of Prosopis management in an arid region. Further, it shows that the current success of 

the management of Prosopis is variable and that a unified approach is required where all 

stakeholders work together to find solutions to the environmental problem. 
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APPENDIX A 

 

Fieldwork questionnaires 

 

GENERAL QUESTIONS (1 PER FARM) 

1. Background 

1.1. How long have you been on this farm? 

1.2. Do you know how Prosopis ended up on your farm? 

1.3. Do you view Prosopis as an advantage or problem? 

1.3.1. Why do you view Prosopis as such? 

2. Management by farmer 

2.1. Did you manage Prosopis on your property in the period from 1995 to 2020? 

2.2. Did you manage a fairly large area (more than a 30m x 30m block)? 

2.3. Have you managed once or more than once? Or is it an ongoing effort without any concrete 

dates of management? 

2.3.1. Will you please expand with a reason for your answer in 2.3? 

2.4. Please describe your purpose with the management of Prosopis on your farm. 

2.5. How much does the management cost you annually in terms of labour (person-days), 

herbicide, equipment, transport and so on? 

2.6. How many areas do you manage on your farm? 

3. Management by Working for Water (Government) 

3.1. Did Working for Water (government) carry out any Prosopis management on your farm 

between 1995 and 2020? 

3.2. Did Working for Water do any Prosopis management on your farm in areas where you did 

not also control Prosopis? 

3.2.1. How many such areas (managed by Working for Water only) are on your farm? 

3.3. Do you have any areas where both you and Working for Water did Prosopis management in 

the same area? 

3.3.1. How many such areas (managed by Working for Water and you) are on your farm? 
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4. Areas of no management 

4.1. Do you have Prosopis on your property that was NOT controlled between 1995 and 2020? 

4.1.2. How many such areas (no management) are on your farm? 

5. Farmer’s opinion 

5.1. Do you think that the current management by you is successful? 

5.1.1. Why do you feel that way? 

5.2. Do you think that the current management by Working for Water (without your follow-up) is 

successful? 

5.2.1. Why do you feel that way? 

5.3. Do you think the current combination of management by you and Working for Water is 

successful? 

5.3.1. Why do you feel that way? 

5.4. What suggestions do you have for better management? 

5.5. Would you, if you had the choice, choose a farm with or without Prosopis? 

SITE-SPECIFIC QUESTIONS (1 PER SITE) 

1. Background 

1.1. By whom was management done in this area between 1995 and 2020? 

1.2. What was the purpose of management in this area? 

2. Details of management 

2.1. What was the purpose of management in this area? 

2.2. Please describe the method of management. 

2.3. How much does the management in this area cost you annually (or per cleaning if it was once) 

in terms of labour (person-days), herbicide, equipment, transport and so on? 

2.4. On more or less what date(s) was this area managed? 

3. Your opinion 

3.1. Do you think that the management in this area is successful? 

3.2. Why do you feel that way? 
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APPENDIX B 

 

Script to extract Landsat pixel boundaries and centres using Google Earth Engine 

 

var L8_SR = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR"), 

    L7_SR = ee.ImageCollection("LANDSAT/LE07/C01/T1_SR"), 

    L5_SR = ee.ImageCollection("LANDSAT/LT05/C01/T1_SR"), 

 

    ACTIVE_IMAGERY = L8_SR, 

 

    START_DATE = '2020-05-01', 

    END_DATE = '2021-06-10', 

 

    EMPTY = ee.Image().byte(); 

 

Map.setCenter(LONGITUDE, LATITUDE, 10); 

 

var region = Pts_All_Merge_Buffer_1km; // the ROI 

 

var randomisePixel = function(image) { // prevents neighbouring pixels with similar values from 

merging together 

  var randomImage = ee.Image.random(); 

  var randomPix = image.select(['B4']).multiply(randomImage).rename('random'); 

  return image.addBands(randomPix); 

}; 

 

//Select Landsat image 

var image = ACTIVE_IMAGERY 

  .filterBounds(region).map(randomisePixel).select(['random']).max(); 

 

  var imageOriginal = ACTIVE_IMAGERY 

  .filterBounds(region).select(['B4']).median(); 

 

  var samplePts = image.sample({ 

  region: region, 

  scale: 30, //scale of image to get centroid of every pixel 

  geometries: true 

}); 

 

var imagePoly = image.toInt().reduceToVectors({ 

  reducer: ee.Reducer.countEvery(), 

  geometry: region, 

  scale: 30 

}); 

 

var AddXY = function(feature) { 

  var lon = feature.geometry().coordinates().get(0); 
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  var lat = feature.geometry().coordinates().get(1); 

  return feature.set({lat: lat, lon: lon}); 

}; 

 

var samplePtsAddedXY = samplePts.map(AddXY) 

print(samplePtsAddedXY.first()) 

Map.addLayer(imagePoly) 

Map.addLayer(samplePtsAddedXY) 

 

Export.table.toDrive({ 

  collection: samplePtsAddedXY, 

  description: 'samplePts', 

  folder: 'GEE_2020', 

  fileFormat: 'SHP' 

}) 

 

Export.table.toDrive({ 

  collection: imagePoly, 

  description: 'imagePoly', 

  folder: 'GEE_2020', 

  fileFormat: 'SHP' 

}) 
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APPENDIX C 

 

BFAST results of all managed sites 

Summary of breaks detected in Prosopis growth using five iterations of BFAST using different 

pixels within each site. Breaks marked using an asterisk (*) correspond to management records. 

Trends in Prosopis biomass are recorded as increasing in biomass (↑), decreasing in biomass (↓) 

and remaining steady (→). Breaks with a very slight increase in biomass during the duration of 

the break, followed by a decrease can also indicate a break due to clearing and was included. 

# Category 

Recorded 

Management 
Year 

Decreasing Breaks Trends in Biomass 

Year Occurrence Before During After 

1.1 Self 2015* 2017* 100% ↑ ↓ → 

5.1 Self 2012 - 2016 Only increasing breaks detected 

6.1 WfW 
2002* 

2005 
2002* 80% ↑ ↓ ↑ 

6.2 WfW 
2001* 
2002 

2005 

2001* 80% ↑ ↓ ↑ 

6.3 WfW 
2001* 
2002 

2005 

2001* 60% ↑ ↓ ↓ 

6.4 Both 

WfW: 
2001 

2008 
2003* 
2005 

2010* 

Farmer: 
2011 - 2014 

2002* 

2011* 
2014 

100% 

60% 
60% 

↑ 

↑ 
↑ 

↓ 

↓ 
↓ 

↑ 

↑ 
→ 

8.1 Self 

± 2013 
Single 
unspecified 

follow-up 

2002 60% ↑ ↓ ↓ 

8.2 Self 2015 2002 80% ↑ ↓ ↓ 

9.1 Self 
± 2010 - 2020 
annually 

2002 
2011* 

80% 
20% 

↑ 
↑ 

↓ 
↓ 

↑ 
↓ 

10.2 Self ± 2014 2002 40% ↑ ↓ ↓ 

11.2 Self 

2004/2005 

Annual follow-up 
until 2010 

2002 
2007* 

2011 
2014 

40% 
60% 

40% 
40% 

↑ 
↑ 

↑ 
↑ 

↓ 
↓ 

↓ 
↓ 

↑ 
↑ 

↑ 
↓ 

11.3 Self 
2007 

2020 
Only increasing breaks detected 

11.5 Self 2006/2007 Only increasing breaks detected 

13.3 WfW 
2002 

2007 
Only increasing breaks detected 
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# Category 

Recorded 

Management 
Year 

Decreasing Breaks Trends in Biomass 

Year Occurrence Before During After 

14.1 WfW 2007 2014 100% ↑ ↓ ↑ 

15.1 Self 
2010* 
2016 

2002 
2006 

2010* 

20% 
20% 

20% 

↑ 
↑ 

↑ 

↓ 
↓ 

↓ 

↓ 
↓ 

↓ 

16.1 WfW 
2011 
2016 

Only increasing breaks detected 

16.2 WfW 
2006 
2016 

Only increasing breaks detected 

16.3 WfW 
2006* 

2017* 

2008* 

2014 
2018* 

80% 

80% 
80% 

↑ 

↑ 
↓ 

↓ 

↓ 
↑ 

↑ 

↓ 
↓ 

16.4 WfW 2006 Only increasing breaks detected 

16.5 WfW 2006 Only increasing breaks detected 

16.7 WfW 
2006 
2017 

Only increasing breaks detected 

17.6 WfW 2006 Highly variable - breaks do not match between iterations 

17.7 WfW 2006 
2002 
2014 

40% 
40% 

↑ 
↑ 

↓ 
↓ 

↑ 
↓ 

17.8 WfW 2006 
2002 
2014 

40% 
40% 

↑ 
↑ 

↓ 
↓ 

↑ 
↓ 

18.7 Self ± 2000 - 2016 

2002 

2010 
2014* 

20% 

60% 
60% 

↑ 

↑ 
↑ 

↓ 

↓ 
↓ 

↑ 

↑ 
↓ 

19.1 WfW 

2001* 

2013* 
2018 

2001* 

2014* 

20% 

80% 

↑ 

↓/↑ 

↓ 

↑/↓ 

↑ 

→ 

19.2 WfW 

2001* 

2013 
2018* 

2001* 

2018* 

60% 

60% 

↑ 

→ 

↓ 

↓ 

→ 

↓ 

19.3 Self 2018 
2001 

2013 

40% 

80% 

↑ 

↑ 

↓ 

↓ 

→ 

↓ 

19.4 WfW 
2002 
2013* 

2018* 

2013* 
2017* 

20% 
100% 

↑ 
↑ 

↓ 
↓ 

↓ 
↑/→ 

19.5 WfW 
2001* 
2013* 

2001* 
2014* 

100% 
100% 

↑ 
↓ 

↓ 
↑ 

↑ 
↓ 

19.8 WfW 2016 - 2017 Only increasing breaks detected 

20.1 Self 2018* 2018* 20% ↑ ↓ ↓ 

21.1 Both 

WfW: 
2004* 

2006* 
2008* 

Farmer: 

2016 – 2020 

2003* 
2006* 
2008* 

2011 
2013/4 

60% 
20% 
20% 

20% 
60% 

↑ 
↑ 
↑ 

↑ 
↑ 

↓ 
↓ 
↓ 

↓ 
↓ 

↑ 
↑ 
↑ 

↑ 
↓ 
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# Category 

Recorded 

Management 
Year 

Decreasing Breaks Trends in Biomass 

Year Occurrence Before During After 

21.4 WfW 
2003 
2005 
2008 

2013 60% ↑ ↓ ↓ 

21.6 WfW 
2003 
2008* 

2006 
2008* 

20% 
20% 

↑ 
↑ 

↓ 
↓ 

↑ 
↑ 

21.7 WfW 
2003* 

2008 
2003* 100% ↑ ↓ ↑ 

21.8 WfW 
2003* 
2008 

2003* 100% ↓ ↓ ↑ 

21.9 WfW 
2003* 
2008 

2003* 
2013 

60% 
40% 

↑ 
↑ 

↓ 
↓ 

↑ 
↓ 

23.1 Self Before 2011 
2006* 

2013 

100% 

100% 

↑ 

↑ 

↓ 

↓ 

↑ 

↓ 
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APPENDIX D 

 

BFAST01 results of all managed sites 

Summary of breaks detected in Prosopis growth using five iterations of BFAST01 using different 

pixels within each site. Breaks marked using an asterisk (*) correspond to management records. 

Uncleared sites nearby were paired with the managed sites below to identify breaks that occur in 

both managed and unmanaged sites. If a break occurs in both sites, it can be attributed to something 

other than management. 

# Category 

Recorded 

Management 
Year 

Uncleared 
Pair(s) 

Matches Uncleared 
Pair(s) 

Most Frequent Break Other Breaks 

Year Occurrence Year Occurrence 

1.1 Self 2015* 12.1 Yes – 2015* 2017* 80%  2015* 20% 

5.1 Self 2012 - 2016 5.2 No 2007 80%  2014* 20% 

6.1 WfW 
2002 

2005 
5.2 No 2012 100%  N/A N/A 

6.2 WfW 
2001 
2002 

2005 

5.2 No 2017 80%  2020 20% 

6.3 WfW 
2001 
2002 

2005* 

5.2 No 2017 60%  
2007* 
2012 

20% 
20% 

6.4 Both 

WfW: 
2001 

2008 
2003* 
2005 

2010* 

Farmer: 
2011 - 2014 

5.2 Yes – 2002* 2012* 80%  2002* 20% 

8.1 Self 

± 2013* 
Single 
unspecified 

follow-up 

8.3 Yes – 2012*/13* 2012* 60%  
2002 
2013* 

20% 
20% 

8.2 Self 2015 8.4 Yes – 2012 2012 80%  2002 20% 

9.1 Self 
± 2010 - 2020 
annually 

9.2 No 2020 40%  2002 20% 

10.2 Self ± 2014* 10.1 No 2005 40%  
2007 
2012* 
2003 

20% 
20% 
20% 

11.2 Self 
2004/2005* 
Annual follow-up 
until 2010 

11.4 No 2017 80%  2002* 20% 

11.3 Self 
2007* 
2020 

11.4 No 2017 80%  2007* 20% 

11.5 Self 2006/2007 11.6 No 2002 100%  N/A N/A 
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# Category 

Recorded 

Management 
Year 

Uncleared 
Pair(s) 

Matches Uncleared 
Pair(s) 

Most Frequent Break Other Breaks 

Year Occurrence Year Occurrence 

13.3 WfW 
2002 
2007 

13.1 Yes – 2018 2018 40%  2020 40% 

14.1 WfW 2007 18.1 Yes – 2014 2014 80%  2020 20% 

15.1 Self 
2010 
2016 

15.2 No 2002 100%  N/A N/A 

16.1 WfW 
2011* 

2016* 
17.4 No 2012* 80%  2015* 20% 

16.2 WfW 
2006 
2016* 

17.4 Yes – 2017*/18* 2018* 80%  2017* 20% 

16.3 WfW 
2006 
2017* 

17.4 Yes – 2017*/18* 2018* 80%  2017* 20% 

16.4 WfW 2006 17.4 No 2014 100%  N/A N/A 

16.5 WfW 2006 17.4 Yes – 2018 2012 40%  
2014 
2018 

40% 
20% 

16.7 WfW 
2006 

2017* 
17.4 Yes – 2017* 2017* 60%  2012 40% 

17.6 WfW 2006* 17.4 Yes – 2007* 2014 80%  2007* 20% 

17.7 WfW 2006 17.4 No 2014 100%  N/A N/A 

17.8 WfW 2006 17.4 No 2014 100%  N/A N/A 

18.7 Self ± 2000 - 2016 18.6 Yes – 2014*/15* 2015* 80%  2014* 20% 

19.1 WfW 

2001 

2013* 
2018 

17.1 Yes – 2010/13* 2010 60%  2013* 40% 

19.2 WfW 

2001 

2013 
2018* 

17.1 No 2018* 80%  2016* 20% 

19.3 Self 2018 17.1 Yes – 2012 2012 100%  N/A N/A 

19.4 WfW 
2002 
2013* 
2018* 

17.1 Yes – 2012 2017* 60%  2012* 40% 

19.5 WfW 
2001 
2013* 

17.1 Yes – 2013* 2013* 100%  N/A N/A 

19.8 WfW 2016 - 2017 17.1 No 2009 100%  N/A N/A 

20.1 Self 2018 20.5 Yes – 2012/15 2015 60%  2012 40% 

21.1 Both 

WfW: 
2004 

2006 
2008 

Farmer: 
2016 – 2020* 

17.4 No 2016* 40%  
2010 
2012 

40% 
20% 

21.4 WfW 
2003 
2005 
2008* 

17.4 No 2010* 80%  2016 20% 

Stellenbosch University https://scholar.sun.ac.za



 114 

# Category 

Recorded 

Management 
Year 

Uncleared 
Pair(s) 

Matches Uncleared 
Pair(s) 

Most Frequent Break Other Breaks 

Year Occurrence Year Occurrence 

21.6 WfW 
2003 
2008* 

17.4 No 2016 80%  2010* 20% 

21.7 WfW 
2003 

2008* 
17.4 Yes – 2007* 2012 80%  2007* 20% 

21.8 WfW 
2003 
2008* 

17.4 Yes – 2007* 2009* 80%  2007* 20% 

21.9 WfW 
2003 
2008* 

17.4 Yes – 2007*/17/18 Variable N/A  

2007* 
2010* 
2012 

2017 
2018 

20% 
20% 
20% 

20% 
20% 

23.1 Self Before 2011 18.1 Yes – 2012 Variable N/A  

2005* 

2007* 
2010* 
2012 

2019 

20% 

20% 
20% 
20% 

20% 
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APPENDIX E 

 

BFAST01 results of unmanaged sites 

Summary of breaks detected in Prosopis growth using five iterations of BFAST01 using different 

pixels within each site. Can be used against Appendix D to see managed-unmanaged site pairs. 

# 

Most Frequent Break Other Breaks 

Year Occurrence Year Occurrence 

4.1 2016 80%  2020 20% 

5.2 2002 100%  N/A N/A 

8.3 2012 100%  N/A N/A 

8.4 2012 80%  2007 20% 

8.5 2012 100%  N/A N/A 

9.2 2019 40%  2018 60% 

9.3 2020 80%  2002 20% 

10.1 2020 100%  N/A N/A 

11.1 2016 60%  
2014 

2018 

20% 

20% 

11.4 2012 60%  2014 40% 

11.6 2018 60%  2012 40% 

12.1 2017 80%  2014 20% 

12.2 2020 60%  2019 20% 

13.1 2017 80%  2012 20% 

15.2 2018 100%  N/A N/A 

15.4 2018 80%  2006 20% 

15.5 2020 80%  2002 20% 

17.1 2012 100%  N/A N/A 

17.4 2019 80%  2005 20% 

18.1 2014 100%  N/A N/A 

18.3 2014 100%  N/A N/A 

18.5 2014 100%  N/A N/A 

18.6 2014 100%  N/A N/A 

20.4 2019 100%  N/A N/A 

20.5 2014 100%  N/A N/A 
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# 

Most Frequent Break Other Breaks 

Year Occurrence Year Occurrence 

20.6 2014 100%  N/A N/A 

20.7 2019 60%  
2004 
2012 

20% 
20% 

20.11 2012 40%  
2015 
2013 

40% 
20% 

 
  

Stellenbosch University https://scholar.sun.ac.za



 117 

APPENDIX F 

 

Vegetation index comparison using BFAST for all managed sites 

# Category 

Recorded 

Management 
Year 

Pixel 
ID 

NDVI NDMI MSAVI2 Surface Albedo 

1.1 Self 2015 

1 
2010 
2014 
2017 

2010 
2014 
2017 

2010 
2014 
2017 

None 

2 
2002 
2010 
2013 

None 
2002 
2010 

2016 

3 

2002 
2010 
2013 

2017 

2002 
2009 

2002 None 

4 
2010 

2017 

2004 
2006 

2010 
2017 

2010 

2014 
2017 

None 

5.1 Self 2012 - 2016 

1 2014 
2015 
2016 
2018 

2014 None 

2 2014 
2014 
2016 
2018 

2014 
2014 
2016 

3 2014 
2014 
2016 
2018 

None None 

4 2014 
2014 
2018 

2014 None 

6.1 WfW 
2002 
2005 

1 None None None 2003 

2 None 2002 
2002 
2010 

2014 

2003 

3 
2002 
2011 

2013 

2002 
2002 
2011 

2014 

None 

4 
2010 

2014 
2002 

2002 
2010 

2014 

2003 

6.2 WfW 

2001 

2002 
2005 

1 
2001 

2017 

2001 
2008 

2011 
2017 

2001 None 

2 
2001 
2017 

None 
2001 
2017 

None 

3 2001 None 2001 None 

4 
2001 
2018 

None 
2001 
2017 

None 
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6.3 WfW 

2001 

2002 
2005 

1 2001 2001 2001 2003 

2 
2001 
2012 
2014 

2001 
2012 
2014 

2001 
2012 
2014 

2009 

3 2001 2001 2001 2013 

4 2001 2001 

2001 

2012 
2014 

None 

6.4 Both 

WfW: 
2001 
2008 

2003 
2005 
2010 

Farmer: 
2011 - 2014 

1 2001 2001 2001 None 

2 
2002 
2015 

2015 
2002 
2015 

2015 

3 2002 
2001 

2014 
2001 2002 

4 2002 
2002 

2014 
2002 

2002 

2015 

8.1 Self 

± 2013 

Single 
unspecified 
follow-up 

1 2002 2001 2002 2002 

2 2002 2001 2002 
2002 

2015 

3 2002 2002 2002 2011 

4 2002 2002 2002 2002 

8.2 Self 2015 

1 2002 2001 2002 2002 

2 2002 2001 2002 2002 

3 2002 2001 2002 
2002 
2016 

4 2002 2001 2002 2002 

9.1 Self 
± 2010 - 2020 

annually 

1 2002 2002 2002 2002 

2 2002 2002 2002 

2002 

2004 
2018 

3 2002 

2002 

2005 
2011 
2013 

2002 2002 

4 2002 2002 2002 2002 

10.2 Self ± 2014 

1 

2002 

2009 
2011 
2013 

2002 
2011 
2013 

2002 

2008 
2011 
2013 

2005 

2008 
2011 
2013 

2015 

2 None 
2002 
2014 

2002 2010 

3 
2004 
2006 
2008 

2002 2002 
2006 
2009 
2015 

4 2002 2002 2003 None 
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11.2 Self 
2004/2005 
Annual follow-
up until 2010 

1 
2004 

2007 

2002 

2007 

2005 

2007 
2007 

2 None 2014 None None 

3 
2002 
2007 

2002 
2007 
2010 

2002 

2005 
2007 
2010 

2014 

2007 
2015 

4 
2002 

2007 
None None 2016 

11.3 Self 
2007 
2020 

1 2001 
2002 
2018 

2002 
2015 

2018 

None 

2 None 

2004 
2006 

2008 
2011 
2013 

2002 None 

3 2001 2018 None None 

4 
2001 

2018 

2002 

2018 

2001 

2018 
None 

11.5 Self 2006/2007 

1 None 
2001 
2007 

2002 
2004 

None 

2 

2001 
2008 
2011 

2014 

2001 
2008 
2011 

2013 

2001 
2008 
2011 

2014 

None 

3 
2001 
2011 

2014 

2001 

2018 

2001 

2018 
None 

4 

2001 
2008 

2011 
2014 

2001 
2008 

2011 
2013 

2001 
2008 

2011 
2014 

2002 

13.3 WfW 
2002 
2007 

1 2008 
2011 
2014 

2008 None 

2 2008 None None None 

3 None 
2011 
2013 

2002 
2008 

None 

4 
2002 

2008 

2011 

2013 
None 

2001 

2012 

14.1 WfW 2007 

1 2014 2014 

2001 

2008 
2011 
2014 

None 

2 2014 

2003 
2006 
2008 

2011 
2018 

2014 None 

3 
2001 
2014 

2001 
2006 

2001 

2011 
2014 

None 
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2011 

2014 

4 
2014 

2018 

2006 
2008 

2018 

2011 
2014 

2018 

None 

15.1 Self 
2010 
2016 

1 
2004 
2015 

None 2015 
2003 
2010 

2 2002 
2002 
2007 

2009 

2002 2002 

3 None 

2002 
2004 

2006 
2009 

2016 2010 

4 2004 

2002 

2004 
2006 

None 
2003 
2009 

16.1 WfW 
2011 
2016 

1 None None None None 

2 None None None None 

3 

2009 

2011 
2013 

2008 

2011 
2013 

2009 

2011 
2013 

None 

4 

2009 

2011 
2013 

None 

2009 

2011 
2013 

None 

16.2 WfW 
2006 
2016 

1 

2005 

2008 
2011 
2013 

2001 

2009 
2011 
2013 

2005 
2008 

None 

2 
2005 
2008 
2011 

2005 
2008 
2011 

None 
2003 
2006 

3 None None None 2006 

4 2014 2011 None 
2003 

2006 

16.3 WfW 
2006 

2017 

1 None 2014 None None 

2 None 
2002 

2014 

2010 

2014 
None 

3 

2006 

2008 
2014 

None 

2006 

2008 
2014 

None 

4 

2006 

2008 
2014 

None None None 

16.4 WfW 2006 

1 
2005 
2014 

2006 

2008 
2011 
2014 

2006 

2008 
2011 
2014 

2003 
2006 
2017 

2 None None None None 

3 2006 

2008 
None None None 
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2011 

2014 

4 None None None None 

16.5 WfW 2006 

1 2014 
2011 

2014 

2011 

2014 
2002 

2 None None 
2011 

2014 
None 

3 
2006 

2008 
None 

2006 
2008 

2010 
2013 

None 

4 None 2001 None None 

16.7 WfW 
2006 

2017 

1 

2008 
2011 
2014 

2017 

2008 
2011 

2009 
2011 

2014 

2002 

2 

2008 

2011 
2014 
2017 

2009 

2011 
2014 
2017 

2008 

2011 
2014 

None 

3 2017 

2002 
2008 
2011 

2013 

None 2010 

4 

2006 
2008 

2011 
2013 

2003 
2009 

2011 
2013 

None None 

17.6 WfW 2006 

1 
2008 
2010 
2014 

2014 

2004 

2008 
2010 
2014 

None 

2 None 2014 2014 None 

3 None None 

2004 

2008 
2010 

None 

4 

2004 

2008 
2010 

None 

2004 

2008 
2010 

None 

17.7 WfW 2006 

1 

2002 

2010 
2014 

2002 
2014 

2002 
2014 

None 

2 

2002 

2010 
2014 

2002 
2014 

2002 
2014 

None 

3 
2002 
2010 
2014 

2002 
2014 

2002 
2014 

None 

4 

2002 
2008 
2010 

2014 

2002 
2014 

2002 
2014 

2009 
2012 
2017 
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17.8 WfW 2006 

1 

2002 

2008 
2010 

2002 

2008 
2010 

2002 

2008 
2010 

None 

2 
2002 
2010 
2014 

2014 

2002 

2008 
2010 
2014 

2017 

3 
2010 
2014 

2010 
2014 

2008 
2010 
2014 

None 

4 None 
2002 
2006 

None None 

18.7 Self ± 2000 - 2016 

1 2014 

2002 
2004 
2006 

2010 
2015 
2017 

2014 None 

2 

2002 

2010 
2014 

2002 
2004 
2006 

2010 
2015 
2018 

2002 

2015 
2017 

2012 

3 
2003 
2011 
2014 

2014 
2011 
2014 

2001 

4 
2004 
2006 

2014 

2004 
2006 
2010 

2015 
2018 

2010 
2015 

2018 

2001 

19.1 WfW 

2001 

2013 
2018 

1 
2007 
2009 
2014 

2006 
2009 
2011 

2014 

2005 
2009 
2011 

2014 

None 

2 None 2004 2004 None 

3 2001 2001 2001 None 

4 None 2001 None 2013 

19.2 WfW 

2001 

2013 
2018 

1 

2001 

2004 
2006 
2013 

2017 

2001 
2004 
2006 

None None 

2 2001 2001 2001 None 

3 

2001 

2004 
2006 

2001 

2004 
2006 

2001 
2004 

None 

4 2001 2001 2001 2007 

19.3 Self 2018 

1 
2001 
2011 

2001 
2011 

2001 2007 

2 2001 
2001 
2010 

2001 
2007 
2010 
2018 
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3 

2001 

2009 
2011 
2013 

2001 

2009 
2011 
2013 

2001 
2007 
2011 

4 

2001 
2008 
2011 

2013 

2001 
2008 

2013 

2001 None 

19.4 WfW 

2002 

2013 
2018 

1 
2016 

2017 

2016 

2017 

2016 

2017 
None 

2 2017 
2017 

2018 
None 2017 

3 2017 2017 2017 2017 

4 
2017 

2018 

2016 

2018 

2017 

2018 
2017 

19.5 WfW 
2001 
2013 

1 2002 2001 
2002 
2010 
2013 

2003 

2 

2003 
2006 

2011 
2013 

2003 
2008 

2011 
2013 

2003 
2006 

2010 
2013 

None 

3 None 2001 None 2003 

4 None 2001 2001 None 

19.8 WfW 2016 - 2017 

1 
2002 
2011 

2013 

2001 
2011 

2013 

2001 
2003 
2006 

2017 

2 
2001 

2013 

2001 
2011 

2013 

2001 
2011 

2013 

None 

3 2001 

2001 

2011 
2013 

2001 None 

4 

2001 

2011 
2013 

2001 

2011 
2013 

2001 2017 

20.1 Self 2018 

1 

2003 

2006 
2010 
2015 

2018 

2003 

2006 
2010 
2015 

2018 

2003 
2006 
2015 

2018 

2018 

2 

2003 
2006 

2010 
2018 

2002 

2016 
2018 

2003 
2006 

2010 
2018 

2012 

2018 

3 None 
2003 
2006 
2018 

2003 
2006 

2018 

4 

2003 
2006 
2015 

2018 

2003 
2006 
2015 

2018 

2003 
2005 
2018 

2018 
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21.1 Both 

WfW: 

2004 
2006 
2008 

Farmer: 
2016 – 2020 

1 

2008 

2011 
2013 

2001 

2008 
2011 
2013 

2001 

2008 
2011 
2013 

None 

2 
2008 
2011 
2013 

2008 
2011 
2013 

2008 
2011 
2013 

None 

3 

2004 
2008 
2011 

2013 

2001 
2008 
2011 

2013 

2002 
2008 
2011 

2013 

None 

4 

2008 

2011 
2013 

2001 

2011 
2013 

2008 

2011 
2013 

None 

21.4 WfW 
2003 
2005 
2008 

1 
2011 

2013 
2001 

2011 

2013 
None 

2 None None 
2004 
2006 

2018 

3 
2008 
2011 

2013 

2009 
2011 

2013 

2004 
2006 
2008 

2011 
2013 

None 

4 None None 
2004 
2006 

2018 

21.6 WfW 
2003 
2008 

1 2003 None 
2011 

2013 
2018 

2 
2004 
2006 

2008 

2004 
2006 

2008 

None None 

3 
2004 

2006 

2004 
2006 

2011 
2013 

2004 
2006 

2011 
2013 

None 

4 

2004 

2006 
2008 

None None None 

21.7 WfW 
2003 

2008 

1 
2003 
2010 

2013 

2003 
2006 
2008 

2011 
2013 

2003 
2010 

2013 

None 

2 

2003 

2006 
2008 

2003 

2003 

2010 
2013 

None 

3 2003 2003 2003 None 

4 
2003 
2010 

2003 
2003 
2010 
2013 

None 

21.8 WfW 
2003 
2008 

1 2003 
2003 
2011 

2013 

2003 None 
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2 2003 

2003 

2011 
2013 

2003 None 

3 2003 None None None 

4 2003 None 2003 None 

21.9 WfW 
2003 
2008 

1 2003 

2003 

2011 
2013 

None None 

2 
2004 

2006 
None None None 

3 
2004 

2006 

2003 
2011 

2013 

None None 

4 None 
2003 
2006 

None None 

23.1 Self Before 2011 

1 None 
2001 
2011 

2013 

None None 

2 None 2001 None None 

3 None 

2001 

2006 
2008 
2011 

2013 

None None 

4 None 

2001 
2006 

2008 
2011 
2013 

2008 

2010 
2013 

None 
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APPENDIX G 

 

Management action summary of managed sites 

Site 
Manage

ment 

Area 

ha 

Labour 

person days 

Cost 

ZAR 

Treat

ments 
Method Growth break Growth trend Progress 

1.1 Self 29.15 No data 346 870 2 Excavator 

Sudden, 2 
years before 
farmer’s 

record 

Decrease Good 

5.1 Self 2.08 180 No data 4 Cut down 
Gradual, 
matches 

record 

Decrease Good 

6.1 WfW 14.01 520.12 118 475 4 Cut down 
No clear 
break 

Increase Poor 

6.2 WfW 17.31 401.2 123 420 4 Cut down 
No clear 
break 

Steady Poor 

6.3 WfW 17.53 313.56 89 535 4 Cut down 
No clear 

break 
Steady Poor 

6.4 Both 33.93 709.13 245 939 5 Cut down 
WfW break 
observed 

Steady Good 

8.1 Self 9.89 100 30 427 2 Spray Gradual Decrease Good 

8.2 Self 13.91 No data No data 1 Spray 
No clear 
break 

Steady Limited 

9.1 Self 10.63 900 194 226 5 Cut down 
No clear 
break 

Steady Good 

10.2 Self 6.48 240 59 167 1 

Pour 

herbicide 
over 

No clear 

break 
Decrease Good 

11.2 Self 7.39 No data No data 4 Cut down 
No clear 

break 
Decrease Good 

11.3 Self 4.14 No data No data 2 Cut down Gradual Decrease Good 

11.5 Self 5.65 No data No data 1 Cut down 
No clear 

break 
Decrease Good 

13.3 WfW 71.62 1 131.6 226 783 6 Cut down 
No clear 
break 

Steady Poor 

14.1 WfW 106.7 98.16 30 171 1 Cut down 
Clear break, 
wrong year 

Steady Limited 

15.1 Self 1.11 No data No data 2 Cut down 
Clear break, 

wrong year 
Increase Poor 

16.1 WfW 87.71 716.74 197 277 2 Cut down Gradual Decrease Limited 

16.2 WfW 37.11 626.84 167 773 2 Cut down Gradual Increase Poor 

16.3 WfW 38.23 347.17 90 264 1 Cut down Gradual Increase Poor 

16.4 WfW 65.88 303.05 98 223 1 Cut down 
Clear break, 
wrong year 

Increase Poor 

16.5 WfW 53.36 330.83 107 067 1 Cut down Gradual Increase Poor 
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16.7 WfW 38.23 347.17 90 264 1 Cut down Gradual Increase Poor 

17.6 WfW 38.93 272.51 88 988 1 Cut down 
No clear 
break 

Steady Poor 

17.7 WfW 26.46 322.81 97 043 1 Cut down 
Clear break, 

wrong year 
Decrease Poor 

17.8 WfW 31.26 300.1 92 612 1 Cut down 
Clear break, 
wrong year 

Steady Poor 

18.7 Self 7.22 No data No data 10 Cut down 

Sudden 
break, 
matches 

farmer’s date 

Steady Limited 

19.1 WfW 16.03 1 088.86 168 580 3 Cut down Gradual Decrease Poor 

19.2 WfW 16.03 1 088.86 168 580 3 Cut down 

Sudden, 

matches a 
date provided 

Decrease Limited 

19.3 Self 1.74 No data No data 1 Excavator Gradual Decrease Good 

19.4 WfW 16.58 699.61 97 167 3 Cut down 

Sudden 
break, 
matches a 

date provided 

Decrease Limited 

19.5 WfW 24.94 902.97 153 091 2 Cut down 
Sudden, 
matches a 

date provided 

Steady Poor 

19.8 WfW 38.96 636.08 597 027 1 Cut down Gradual Decrease Poor 

20.1 Self 0.63 No data No data 1 Excavator 
Clear break, 

wrong year 
Steady Good 

21.1 Both 18.22 379.81 124 491 3 Cut down Gradual Decrease Poor 

21.4 WfW 8.98 430.98 71 059 4 Cut down 
No clear 
break 

Decrease Poor 

21.6 WfW 4.56 131.92 29 930 2 Cut down 
No clear 
break 

Decrease Poor 

21.7 WfW 4.56 131.92 29 930 2 Cut down 
No clear 

break 
Steady Poor 

21.8 WfW 6.54 43.17 10 487 2 Cut down Steady Decrease Poor 

21.9 WfW 6.54 43.17 10 487 2 Cut down 
No clear 

break 
Increase Poor 

23.1 Self 1.22 No data No data 
No 
data 

Cut down 
No clear 
break 

Steady Good 
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