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Abstract

The past decade has seen a rapid increase in investment and interest into the CubeSatellite industry,
with a particular rise in interest seen from the commercial sector. The demand for miniaturised satellite
technology has further fuelled the need for miniaturised attitude determination and control systems,
without which, most mission objectives would be unattainable. Few companies exist whose sole purpose
is to provide CubeSatellite mission designers with the control system they need to achieve their mission
objectives. One such company which has emerged, is the South African born CubeSpace Satellite Systems
RF (Pty) Ltd. whose CubeADCS does exactly this.

This thesis sought to investigate the imager pointing accuracy that can be achieved by a CubeSatellite
in a sun-synchronous low Earth orbit, equipped with a CubeADCS. An initial investigation found that
components such as star trackers and reaction-wheels are critical to high accuracy pointing, and that other
systems in industry have been able to achieve arcsecond pointing accuracies. An in-depth investigation
was conducted into the underlying components of the CubeADCS, consisting of both a theoretical study
and practical hardware investigation, which aimed to understand the inner workings of each component,
in addition to identifying and characterising their primary sources of error. An accurate simulation space
environment reflective of that experienced by a CubeSatellite in low Earth orbit was constructed. A model
of the CubeADCS model was additionally developed from the results of the subcomponent investigation
to be tested by means of comprehensive simulations.

The CubeADCS was investigated in its ability to track a constant reference, in addition to its ability
to perform an accurate target tracking manoeuvre in an attempt to image a location on Earth’s
surface. Several scenarios were investigated, which aimed to observe the effects of changing various
size, orientation, star tracker placements, and attitude estimator parameters. Simulation results revealed
that the CubeADCS is capable of achieve pointing accuracies of within 32′′ when following a constant
reference, and within 31′′ during target tracking manoeuvres in Sun-synchronous orbits. A stability
analysis revealed that the CubeADCS would be acceptable for the likes of stellar observation missions,
making it more than adequate to satisfy Earth observation stability requirements.
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Samevatting

Die afgelope dekade is gekenmerk deur aansienlike groei in belangstelling en beleggings in die CubeSat
industrie, spesifiek vanuit die kommersiële sektor. Hierdie aanvraag na miniatuur sateliet tegnologie het
die behoefte aan miniatuur orientasie bepalers en bedryfstelsels, ’n voorvereiste vir komplekese satelliet
missies, aangevuur. Daar bestaan slegs ’n beperkte aantal maatskappye wat uitsluitlik fokus op die
verskaffing van beheerstelsels aan CubeSat missies. Een van hulle is die Suid Afrikaans gebaseerde
privaat kommersiële maatskappy, CubeSpace Satellite Systems RF (Pty) Ltd, wat met ’n innoverende
CubeADCS stelsel oplossings bied aan CubeSat missie ontwerpers om hulle doelwitte te behaal.

Hierdie tesis het ten doel om die optimale kamera rigakkuraatheid wat ’n CubeSat, toegerus met ’n
CubeADCS substelsel, in ’n sonsinkrone lae-aarde wentelbaan kan bereik te bepaal. ’n Aanvanklike
ondersoek het bevind dat spesifieke CubeSat onderdele soos sterkameras en reaksiewiele, ’n kritiese
rol speel in optimale rigakkuraatheid, en dat akkuraatheidsvlakke van boogsekondes deur kompeterende
satellietstelsels bereik word. ’n Indiepte ondersoek van die onderliggende komponente van die CubeADCS
stelsel is uitgevoer. Die ondersoek, bestaande uit ’n teoretiese analise en ’n praktiese ondersoek van
die hardware, is uitgevoer om die individuduele funksionaliteite van elke komponent te verstaan. Elke
onderliggende komponent se werkverrigting foutdrywers en die grootte daarvan is ook geïdentifiseer en
beskryf. ’n Akkurate ruimte simulasie omgewing wat die invloed van ’n lae-aarde wentelbaan op ’n
CubeSat implementeer is ontwikkel. ’n Model van die CubeADCS stelsel is ontwikkel, gebasseer op
die bevindinge van die subkomponent ondersoek, en in omvattende simulasies in die ruimte simulasie
omgewing getoets.

Die CubeADCS stelsel is getoets vir sy vermoë om ’n konstante verwysingspunt te volg sowel as om
’n akkurate teiken volging uit te voer tydens die neem van ’n foto van ’n teiken op die aardoppervlak.
Verskeie scenarios is geanaliseer om die effek van veranderinge in groottes, orientasie, posisionering van
sterkameras, asook verandering in orientasie afskatter parameters te evalueer. Simulasie resultate het
getoon dat CubeADCS rig akkuraathede van minder as 32 boogsekondes behaal tydens volging van
konstante verwysingspunte en beter as 31 boogsekondes gedurende teikenvolging. ’n Stabiliteitsanalise
het aangetoon dat die CubeADCS stelsel voldoen aan die vereistes vir sterrekundige waarnemingsmissies,
en dus heeltemal geskik is vir aardwaarneming satellietstelsels.
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Chapter 1

Introduction

1.1 Problem Statement
An attitude determination and control system (ADCS) is responsible for providing satellites in orbit
with the ability to accurately and stably orientate itself in space to achieve various mission objects,
such as Earth observation (EO) or improving global telecommunication systems. It is a fundamental
subsystem aboard a satellite, as without it, nearly no mission objectives (scientific or otherwise) would
be achievable. The last decade has seen an exponential growth in the need to design and manufacture
miniaturised satellites, at a lower cost and a shorter lead time as was traditionally the norm prior to
2003, after which marked the beginning of the CubeSatellite (CubeSat) era.

The rising demand in miniaturised satellites has subsequently resulted in the need for miniaturised and
relatively inexpensive ADCSs. The challenge for ADCS design engineers is to create a system which
can compete with larger more powerful ADCSs in its ability to control a miniaturised spacecraft at a
fraction of the price. The added challenge is that these systems must be able to control satellites with
incredibly low mass moments of inertia, operating in low-Earth orbits (LEO) which are known to harbour
a space environment that induces some of the largest disturbance torques on a satellite. Companies such
as CubeSpace Satellite Systems RF (Pty) Ltd. (CubeSpace) have risen to the challenge, and have
been officially designing and building minaturised ADCSs (CubeADCS) from commercial-off-the-shelf
(COTS) components since 2015. It is valuable for ADCS manufacturers to gain meaningful feedback
on their systems so that they may verify their system’s performances and make possible improvements.
At present, very little research exists which aims to prove the imager pointing accuracy (IPA) of the
CubeADCS as it is a relatively new system.

1.2 Objectives of this Study
This research seeks to investigate and verify the accuracy of the CubeADCS in its ability perform in
EO missions whose goal is to point a CubeSat towards a desired Earth target reference or to follow and
track a constant attitude reference. The aim is to determine how a CubeSat in a Sun-synchronous LEO,
equipped with an imaging payload, would perform if it were controlled by a CubeADCS – revealing its
IPA.

In order to achieve this goal, the research aims to

• investigate existing systems currently suited to control CubeSats,

• to perform an in-depth investigation into the CubeADCS’s underlying hardware subsystems to
better understand the theory behind their operation,

• to construct an accurate simulation model which mimics the space environment experienced by
satellites in LEO,

• to model the CubeADCS’s individual subcomponent functionalities and error characteristics and,

• to assess the performances of CubeSpace’s attitude control and estimation software algorithms in

1
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their ability to perform in the constructed simulation model.

The research hopes to gain a better understanding of the CubeADCS’s expected IPA and stability in
comparison to existing systems designed for CubeSats, by achieving the aforementioned objectives. Lastly,
this research seeks to gain meaningful insight into the CubeADCS as a whole, in order to provide feedback
to CubeSpace on the findings, which may contribute to the system’s future improvements.

1.3 Document Outline
This section provides a summarised overview of the chapters contained in this research and their focusses.
The document contains a total of eight chapters.

Chapter 1: Introduction

This chapter presents the problem statement to be addressed by this research, the objectives of this
research, and to provide an overview of the entire document.

Chapter 2: Literature Review

The literature review examines existing literature to gain a better understanding of CubeSat concepts
and trends and miniaturised ADCS trends. The chapter concludes with an in-depth analysis into previous
CubeSat missions known ADCS accuracies and sets a benchmark for the CubeADCS.

Chapter 3: The CubeADCS

This chapter takes a broad look into the CubeADCS as a whole, where specific focus is placed on the
theory behind the operation of the various CubeADCS subcomponents and outlining the key performance
parameters of each such component.

Chapter 4: Satellite Orbit and ADCS Concepts

This chapter discusses fundamental satellite orbit theory and ADCS concepts which lay the groundwork
to construct an accurate simulation environment in which to accurately test the performance of the
CubeADCS.

Chapter 5: CubeSat Simulation Environment

A realistic simulation environment is defined and modelled here based on the theory laid out in chapter 4.
Important sources of disturbance torques reflective of those found in LEO are analysed which creates
a realistic environment in which to investigate the expected accuracy of a satellite equipped with a
CubeADCS.

Chapter 6: CubeADCS Hardware Investigation and Modelling

This chapter builds onto chapter 3 by investigating the CubeADCS hardware in greater detail and
identifying each individual component’s error characteristics. Each section investigates a different
subcomponent and finishes with a simulated model of that component aimed at reflecting its
performance.

Chapter 7: Simulation Investigations

The simulation environment and CubeADCS hardware models are combined in this chapter to finally
investigate the expected pointing accuracy and stability of the CubeADCS as a whole. Several scenarios
are investigated which seek to test the system under different environmental conditions with different
satellite sizes, orientations and star tracker configurations.

Chapter 8: Conclusions and Recommendations

Conclusions are drawn from the results of the simulations in chapter 7, where various system triumphs and
shortfalls are identified. Finally, further conclusions and recommendations based on the entire research
is given, where possible improvements to future research of the CubeADCS are offered.

2
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Chapter 2

Literature Review

2.1 Overview
This chapter analyses existing literature pertaining to CubeSats and CubeSat ADCS performances. The
CubeSat standard is first defined and further expanded on by discussing a brief history of the CubeSat.
Following this, various CubeSat trends including size, organisations involved in CubeSat development,
mission applications and ADCS components are discussed. The chapter then concludes with a more
in-depth examination of some of the more recent studies and CubeSat missions conducted, which analyse
the performances of miniaturised ADCSs. Key factors influencing the pointing accuracy and stability
provided by CubeSat and NanoSats are identified, with reference to recent satellite missions which have set
up an additional benchmark for the expected performances that miniaturised ADCSs can achieve.

2.2 CubeSats
The CubeSat is a miniaturised type of spacecraft which was originally developed to create an affordable
way for universities worldwide to gain access into space predominantly for research purposes. The concept
has additionally helped to develop the skills of students, researchers and aspiring satellite engineers in
the design and manufacturing of small satellites. This concept was developed in 1999 as a collaboration
between two professors: Jordi Puig-Suari from California Polytechnic State University (Cal Poly) and
Bob Twiggs from Stanford Universitys Space Systems Development Laboratory (SSDL) [1].

2.2.1 The CubeSat Standard
Small satellites (SmallSats) are defined by the National Aeronautics and Space Administration (NASA)
to have a mass no larger than 180 kg [2]. They can be further sub-divided into five categories based on
their mass ranges, as seen in table 2.1.

Figure 2.1: Common CubeSat Sizes [3]

The CubeSat however, is primarily categorised by its volume as opposed to its mass. As initially laid
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out by Cal Poly and SSDL, a CubeSat’s volume is defined in terms of a fixed CubeSat unit (1U) with
volumetric dimensions 10 cm × 10 cm × 11.35 cm, where each unit has a mass limit of m1U ≤ 1.33 kg
originally designed to fit into the Poly Picosatellite Orbital Deployer (P-POD) which can hold up to three
CubeSat units. Since this time, however, multiple new deployment mechanisms have been developed to
suit variations in CubeSat sizes and mission requirements. Combinations of the 1U CubeSat can be used
to define smaller or larger CubeSats, where the most common configurations (launched and currently
in development) can be seen in fig. 2.1 which places CubeSats predominantly in the Microsatellite and
Nanosatellite (NanoSat) mass categories.

Table 2.1: SmallSat Mass Categories [2]

SmallSat Category Mass Range
Minisatellite 100 kg ≤ msat < 180 kg
Microsatellite 10 kg ≤ msat < 100 kg
Nanosatellite 1 kg ≤ msat < 10 kg
Picosatellite 0.01 kg ≤ msat < 1 kg
Femtosatellite 0.001 kg ≤ msat < 0.01 kg

The first CubeSats built consisted of five 1U CubeSats and one 3U CubeSat, namely: AAU CubeSat,
developed by Aalborg University; CanX-1, developed by University of Toronto Institute for Aerospace
Studies; Cubesat XI-IV, developed by the University of Tokyo; CUTE-1, developed by the Tokyo Institute
of Technology; DTUsat, developed by the Technical University of Denmark and QuakeSat, the world’s
first 3U CubeSat developed by Stanford University. Each CubeSat mission took approximately two
years to develop, where the satellites were later launched together on 30 June 2003 aboard a Russian
Eurorockot [4] from Plesetsk, Russia [5]. The CubeSat’s widely popular small size and standardisation
has since resulted in an exponential growth in CubeSat development and launches. The standardisation
of the CubeSat has additionally made it possible for multiple companies to mass-produce mechanical
and electronic COTS components to be used by satellite engineers and developers at a far reduced cost
[1].

2.2.2 CubeSat Trends
Since the launch of the first CubeSats, the industry has seen various trends and developments. Figs. 2.2
to 2.4 are all adapted from a predominantly NanoSat and CubeSat database created by Erik Kulu [3].
Kulu has grouped CubeSats, NanoSats, Picosatellites (PicoSats), PocketQubes, TubeSats and ThinSats
under the NanoSat umbrella term – where the author of this thesis shall do the same when referring to
the entire set of data adapted from Kulu for the remainder of this subsection. Fig. 2.2 shows the number
of NanoSats launched and planned to be launched from 1998 up until 2023 – last updated in April 2020.
The data shows, that in the last decade, that there has been a significant increase in the number of
CubeSats launched, where the most popular size is clearly 3U and is followed in close contention by 1U
and 6U CubeSat sizes.

In addition to CubeSat type trends, the types of orbits that CubeSats are injected into is also of interest
for this study. Since their inception in 2003, the vast majority of CubeSats has been injected into low-
Earth orbits (LEOs), where the European Space Agency (ESA) defines a satellite to be in LEO if it has
an orbit altitude of less than 1000 km [6] – which is also used to define LEOs in this study. Fig. 2.4
shows typical LEOs selected by NanoSat mission designers required to complete their desired mission
objectives. The data shows that the two most common mission orbit types selected, are from NanoSats
released from the International Space Station (ISS) at an approximate altitude of 400 km and SSOs at
an altitude of 500 km. NanoSats in the same orbit as the ISS can be seen to decay at a much faster rate
than NanoSats in the 500 km altitude orbit due to a larger atmospheric drag felt by CubeSats orbiting
closer to Earth’s surface.
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The popularity of the CubeSat standard has attracted large numbers of commercial companies to invest
in their own CubeSat development for scientific investigation, technology demonstration or, as of recently,
the development of CubeSat constellations for telecommunication applications – such as internet of things
(IoT) services and global internet coverage [4]. This is illustrated in fig. 2.3 which clearly shows how the
commercial industry has now overtaken academia in NanoSat development, thus broadening the CubeSat
concept and its applications into a whole new industry.

The types of CubeSat applications have also been evolving since the CubeSat’s inception. Brazilian
researchers Villela et al. [7] conducted a study in 2019 producing a statistical overview of the CubeSat
industry between 2005 and 2018. Amongst many other categories, the researchers analysed trends within
CubeSat applications to assess the direction of industry’s progression. As seen in fig. 2.5, they found
that there has been a sharp spike in CubeSats being implemented in remote sensing applications since
2013. The spike also seems to increase hand-in-hand with an enhanced interest in technology development
applications of which the miniaturisation of CubeSat subsystems is a likely component.

There have been significant capital injections into CubeSat missions and component development –
especially within the commercial sector, which further fuels competition and innovation. The increased
contention and complexity in CubeSat mission design, fuelled by a relatively recent interest in EO or
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remote sensing applications, has created a demand for compact and lightweight ADCSs with greater
levels of performance which can be used to carry out accurate pointing manoeuvres to suit more stringent
mission requirements as the industry grows. The next section will analyse the trends in ADCS components
utilised by CubeSats which have complemented the advancement of CubeSats into new and innovative
streams.
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Figure 2.4: NanoSat Orbit Types [3]

2.3 CubeSat ADCS Trends
In 2016, Xia et al. [8] conducted a survey of the ADCSs used by over 350 different NanoSats, where the
vast majority of the satellites analysed were CubeSats. The survey revealed that before 2008, over 50%
of successfully launched CubeSats and NanoSats employed passive control techniques or no control at
all, where the remaining satellites employed active magnetic control with or without a momentum-biased
wheel. This had limited CubeSat control accuracies to a minimum of approximately 5° [8], [9] during
this time, which is not suitable for achieving fine precision pointing but which was more than adequate
for ground station (GS) communications and educational mission purposes.

Figure 2.5: CubeSat Cumulative Application Trends [7]

In 2012, Selva and Krejci [9] produced an exhaustive survey of the capabilities of CubeSats for EO
applications. The study aimed to identify whether CubeSats could be used for more than just educational
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purposes and if so, what those capabilities would extend to and what limitations would arise. Selva and
Krejci had found that (at the time of writing), CubeSats designed for EO applications had primary
been used to conduct space weather measurements or used modest resolution optical cameras to capture
images of Earth [9].

The researchers analysed the most important factors limiting CubeSat EO capabilities such as: on-board
data handling, communications, mass and dimensions, power, propulsion, thermal control and most
relevant to this study – the attitude determination and control limiting factors. They found that the
attitude determination was limited to the performance of miniaturised sun sensors usually combined with
magnetometers with accuracies stated to be less than 2° in the CanX-2 CubeSat mission (the successor
to one of the first CubeSats injected into orbit) [9], [10]. They added that with the development of
miniaturised star trackers for utilisation by CubeSat ADCSs, attitude determination accuracies could be
as low as 0.01° for a CubeSat’s cross star tracker boresight axes and 0.05° for a CubeSat’s about star
tracker boresight axis orientation [9].

To achieve a favourable control accuracy, Selva and Krejci [9] stated that an integration of fine sun
sensors and magnetometers combined with active magnetorquers and reaction wheels is the optimal
choice, drawing attention to the payload pointing performance of CanX-2 being as good as 2° [9], [10].
They proceed to quote certain integrated ADCS suppliers (Pumpkin CubeSatKit and Satellite Services
Ltd) who stated their overall pointing accuracies to potentially be within 1° [9], which had yet to be
proven at the time.

Fig. 2.6 is adapted from the data presented by Xia et al. [8] in their survey, which shows that it was not
until 2013 that reaction wheel-based attitude control started to become the dominant scheme of choice to
be implemented by CubeSat mission designers. Between 2008 and 2016, the researchers showed that over
50% of successful CubeSat and NanoSat missions (from the provided data) had employed a reaction wheel-
based control scheme. This seems to complement Selva and Krejci’s [9] prior research which concluded
that CubeSats could indeed be used to perform more complex EO missions achieving higher pointing
accuracies, provided that CubeSats employ integrated ADCS systems which utilise reaction wheel-based
control schemes with miniaturised star trackers – which appeared to only become commercially available
by 2011 [11]. This is further supported by Villela et al.’s [7] research as presented in fig. 2.5, which shows
the rapid increase in remote sensing CubeSat applications.

Figure 2.6: Control Scheme Proportions [8]

2.4 CubeSats ADCS Pointing Performance
It is clear that there has been a movement towards achieving higher accuracy payload pointing and that
it is necessary to analyse the different performances of CubeSat ADCSs in achieving these requirements.
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Guo and Han [12] conducted a study in 2016 which aimed to analyse the limit of CubeSat ADCS
performances. The researchers identified six integrated ADCS systems which could provide 3-axis reaction
wheel-based control (in which the CubeADCS is included) after investigating 15 different CubeSats from
recent missions at the time. They indicated that the majority of the identified CubeSat mission designers
opted to use integrated ADCSs as a whole package, as opposed to using a combination of different sensors
and actuators from multiple suppliers [12]. A tabulated summary of the six integrated ADCSs is shown
in table 2.2, in which the provided information is taken exactly as presented by the researchers in their
paper [12].

Table 2.2: Summary of ADCS Configurations of a Selection of Launched CubeSats [12]

ADCS Developer Attitude Reaction Wheel Performance Year of
Unit Country Knowledge (°) Momentum mN m s Max Torque mN m 1st Flight

TUD ADCS Unit The Netherlands 0.4 1.56 0.006 2013
iADCS-100 Germany 0.008 1.5 0.087 2016 (expect)
CubeADCS South Africa 0.2 1.7 0.23 2013
Prometheus USA Unknown Unknown Unknown 2013

XACT USA 0.002 15 4 2016
MAI-400 USA 0.013 (MAI-400SS) 9.351 0.635 2013

The researchers’ summary presents the integrated ADCS units’ attitude knowledge performances as
provided by supplier datasheets or statements, and does not discuss the actual determination and payload
pointing performances from CubeSats in orbit. This can be attributed to the fact that at the time of
those researchers’ writing, the ADCS performance results from the relevant CubeSat missions utilising
the aforementioned integrated units were not yet available or had restricted access, and so the attitude
knowledge predictions were largely limited to speculation.

For the remainder of the article, Guo and Han [12] singled out the TUD ADCS unit to conduct an analysis
of its short- and long- term performances as the ADCS controls a 3U CubeSat with body mounted solar
panels in a 600 km altitude SSO. The simulation model was set up to be as realistic as possible with both
the ADCS sensors and actuators performances conforming to empirical data obtained through ground or
in-orbit tests [12]. The researchers include a modelled GPS in addition to an NST-1 nano star tracker
from TY-Space as part of the ADCS sensor suite, with a quoted 3σ accuracy of 7′′ and 70′′ for the sensors
cross boresight and about boresight respectively [12]. A seven state gyro EKF is used for the attitude
estimation of the satellite, where the attitude control is implemented with a system linearisation and
LQR [12].

The simulated CubeSat’s orbit is propagated by the SGP4 model, which is further used to simulate the
International Geomagnetic Reference Field (IGRF) model to calculate the various magnetic torques on
a CubeSat with an assumed (and optimistic) residual magnetic dipole of 0.5 mA m2 [12]. Finally, the
resultant solar radiation, gravitational and aerodynamic environmental disturbance torques are simulated.
The results of the simulation can be seen in fig. 2.7, from which it was concluded that the TUD ADCS
(equipped with an accurate star tracker) can obtain a 1σ absolute pointing error (APE) and attitude
measurement error (AME) of 74.46′′ and 22.40′′ respectively whilst pointing nadir – calculated within
a 60 s window [12]. The results from the TUD ADCS simulation imply that a high ADCS estimation
and pointing accuracy could be achieved provided that the unit’s sensors and actuators are correctly
characterised before the launch of the CubeSat [12].

The researchers briefly discuss the CubeADCS in their survey, with a specific reference to Strand-
1 CubeSat developed by Surrey Satellite Technology (SSTL) and two South African QB50 initiative
precursor CubeSats – ZA-AeroSat and nSight-1, developed in partnership between CubeSpace and SCS
Space (Pty) Ltd. (SCS Space). According to the EO satellite missions database maintained by ESA [13],
Strand-1 was launched in 2013 and was equipped with one of the first versions of the CubeSense (a sun
and nadir sensor). The CubeSense was originally developed by Loubser [14] at the Electronic Systems
Laboratory (ESL) at Stellenbosch University and later adapted to form part of the CubeSpace sensor
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suite. The two QB50 CubeSats were developed in the years that followed and were later deployed from
the ISS in 2017, making them the first integrated CubeADCS units to be released into orbit.

Strand-1 was developed in the premature days of CubeSpace and did not use any other CubeSpace
sensors (excluding the CubeSense) or actuators and so its performance is ignored in this thesis. The
latter two QB50 CubeSats were equipped with a Y-Momentum configured CubeADCS which performed
their specified mission requirements with distinction, but which did not provide the satellites with highly
accurate pointing capabilities. It follows that the two QB50 CubeSats serve as poor examples when
discussing the potential imager pointing accuracy (IPA) which could be provided by a 3-axis reaction
wheel controlled CubeADCS equipped with a full suite of CubeSpace sensors. The attitude knowledge
accuracy seen in table 2.2 is likely quoted from the stated CubeSense accuracy at the researcher’s time
of writing, and is thus not a true reflection of the CubeADCSs performance.

(a) Absolute Pointing Error [12] (b) Attitude Measurement Error [12]

Figure 2.7: TUD ADCS Simulated ADCS Performance Errors

Unfortunately, much is still unknown about the performances of both the Prometheus and MAI-400
ADCSs as the missions were commanded and overseen by the US military or National Reconnaissance
Office (NRO), making data about the missions classified. The iADCS-100 is developed as a joint system
by Berlin Space Technology (BST) and Hyperion Technologies based in Germany and the Netherlands
respectively. The system had its maiden flight aboard Aalto-1 CubeSat, pioneered by students at Aalto
University in Finland. An article written about the CubeSat’s first months in orbit indicated that
a software issue on the iADCS resulted in the systems inability to detumble the satellite [15]. This
malfunction lasted for almost a year after Aalto-1 was injected into orbit, until finally the system was
able to receive a firmware update resulting in the detumbling of the satellite. Precise information about
the pointing accuracy of the iADCS has not been made public, however, the system developers have
stated that the iADCS-100 should be able to achieve a pointing accuracy of within 1° [16].

2.5 CubeSat ADCS Performances from Recent CubeSat
Missions

The remaining ADCS listed in table 2.2 is the integrated XACT ADCS (XACT-15 to be precise) developed
by Blue Canyon Technology (BCT) based in Colorado, USA. A substantial amount of information is
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known about the in-orbit performances of this system – making it valuable to discuss in this chapter.
Two known CubeSats which have previously flown with the XACT ADCS are initially investigated (a 3U
and 6U CubeSat) in this section. Additionally, a NanoSat mission which utilised different miniaturised
ADCS sub-components is analysed in order gain a wider perspective about other known NanoSat ADCS
performances from genuine reported in-orbit data.

2.5.1 MinXSS Mission
The Miniature X-ray Solar Spectrometer (MinXSS) is a 3U CubeSat which was designed, built and
operated by students and staff at the University of Colorado’s (UC) Laboratory for Atmospheric and
Space Physics (LASP) [17]. The MinXSS project consisted of two separate satellites of which the first
(MinXSS-1, discussed in this section and is shown in fig. 2.8a as FM1) was deployed from the ISS in May
2016. As the name of the satellites suggests, the primary mission objective was scientific, with the aim
of measuring the soft x-ray energy distribution from the Sun [17] with the intention of training students
in the STEM fields. MinXSS-1 was intended to last a mere three months in orbit, however, the CubeSat
continued to operate for just under a year before deorbiting naturally [17].

MinXSS-1 was fitted with two 3U deployable solar panels consisting of seven solar cells on each panel
as well as one body-mounted solar panel with five solar cells to handle the satellite’s power generation
requirements. The solar panel array was developed at UC and was able to achieve a maximum power
output of 23.41 W which was used to recharge the system’s COTS lithium-polymer battery pack [17].
Additionally, the satellite’s nominal orbital attitude configuration was defined to point its long body axis
in the ram direction to minimise the effects of atmospheric drag, whilst keeping the solar panels pointed
towards the Sun.

The MinXSS-1 was the first satellite in the world to be equipped with BCT’s XACT ADCS [17] –
seen in fig. 2.8b. The system integrated a set of three highly precise reaction wheels as well as three
magnetorquer rods for momentum dumping to handle the CubeSat’s actuation [17]. The sensor suite in
the ADCS consisted of a combination of one highly accurate star tracker, a fine sun sensor (FSS) with
an FOV of 110°, a set of coarse sun sensors (CSS), a three-axis magnetometer (MM) and a three axis
inertial measurement unit (IMU) [17]. MinXSS-1 did not use a GPS which could have been provided
with the XACT ADCS, where its orbit was instead propagated using uploaded ephemeris [17]. The
entire integrated system fits into a space of 0.5U and consumes an average power of 1.9 W according to a
presentation [18] given by James Mason (one of the students which headed up the project). The system
is able to process ~70 telecommands and to generate ~300 telemetry items at 5 Hz [17].

(a) MinXSS family (left to right): Engineering
Model (EM), FM1 (Flight Model 1), and FM2

(image credit: LASP/University of Colorado) [13]

(b) XACT-15 ADCS [19]

Figure 2.8: MinXSS Family of CubeSats and BCT XACT-15 ADCS

An article written by Mason et al. [17] presents the performance of the XACT ADCS in its capacity
to control MinXSS-1. The performance of the ADCS is discussed separately in terms of pointing
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performance, attitude stability, momentum dumping, agility, orbit propagation, sensor degradation and
edge cases – of which the first two categories are primarily focussed on in this section. The agility aspect
is not looked at as the satellite was not required to perform any slew manoeuvres for target tracking
purposes.

2.5.1.1 Pointing Accuracy and Stability

Prior to MinXSS-1’s deployment from the ISS, BCT specified that the XACT ADCS would be able to
achieve a theoretical 3σ accuracy of 0.009° about satellite’s x and z axes and 0.021° about its y-axis
[17]. The star tracker boresight is aligned primarily along the satellite’s y-axis canted by 10° towards the
satellite zenith direction [17] which explains why accuracies about the y-axis are twice as bad in this case.
The MinXSS mission only required a 3σ pointing accuracy about all three axes of 2° and an attitude
knowledge of 0.05° to achieve its scientific objectives, making the XACT ADCS a more than suitable
choice for the mission. From this, it likely follows that the MinXSS mission was primarily advantageous
to BCT to gain flight heritage and prove the accuracy for their XACT ADCS.

(a) MinXSS XACT ADCS Pointing Accuracy
Histograms [17]

(b) MinXSS XACT ADCS Jitter Histograms [17]

Figure 2.9: MinXSS Pointing Accuracy and Stability

The best pointing requirements were needed during the satellite’s science mode, which required the XACT
ADCS to point the satellite’s solar spectrometer payload towards the Sun. The pointing error histograms
for all three of the satellite’s axes are adopted from Mason et al.’s article [17] and presented in fig. 2.9a.
The accuracy that was achieved by the XACT ADCS is reported to be 0.0042°, 0.0117° and 0.006° for
the satellite’s x, y and z axes respectively [17] – performing nearly twice as well as was specified by BCT
and a few hundred times better that what was required for the mission. The stated control errors were
obtained from two independent sources: the XACT star tracker and the MinXSS fine Sun Position Sensor
with 2′′ dark noise [18]. A full width half max computation of each error histogram divided by a 2.355
conversion factor was multiplied by 3 to obtain the 3σ accuracies.

Early in the satellite’s mission, commands to bias the XACT’s momentum were sent in order to keep the
reaction wheel speeds from reaching zero RPM. The system was able to adequately dump the momentum
buildup caused by environmental disturbance torques for the majority of the MinXSS-1 mission until the
satellite decayed to an altitude of 174 km. At this altitude, the extreme external disturbance torques
resulted in the reaction wheels reaching their maximum momentum storage capacity where they were
finally idled.

The solar spectrometer payload instrument has an FOV of 3° and requires an integration time of 10 s,
from which a required maximum jitter in the satellites y and z axes was calculated to be a 3σ maximum
of 0.3 °(10s-1) [17]. The data from the histogram errors shown in fig. 2.9a was placed into 10 s bins
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from which the peak-to-peak differences were calculated in each bin to compute the maximum attitude
fluctuation over each integration period [17].

The resultant attitude stability histograms are shown in fig. 2.9b where the 3σ attitude stability values
were calculated to be 0.0183 °(10s-1), 0.0073 °(10s-1) and 0.0105 °(10s-1) for the satellite x, y and z axes
respectively [17]. The 3σ values were calculated by using the bin which contained more than 66% of
the data and multiplying this value by 3 [17]. The attitude stability values are found to be larger than
the pointing accuracy errors due to the fact that the attitude stability was calculated from peak-to-peak
values, where the pointing accuracy errors were centred around zero [17].

The performance of the XACT ADCS on MinXSS-1 serves as an excellent benchmark for the
potential performance which can be achieved by 3U CubeSats in a LEO. Its performance far exceeded
the expectations of the mission requirements as well as BCT’s estimations prior to the mission.
Recommendations by Mason et al. with regards to bettering the XACT’s ADCS performance include
functional ground testing of the ADCS on an air bearing table prior to launch, integrating a GPS into
the ADCS (especially for LEO missions) and running simulations which determine if and when bright
objects will come into the star trackers FOV [17].

2.5.2 ASTERIA Mission
The Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) is a 6U CubeSat which
conforms to a new dimension specification of 12 cm × 24 cm × 36 cm presented by Twiggs et al. [20]
and deployed from the Nanoracks CubeSat Deployer (NRCSD) – which has been in operation since
2014 [21],[22]. ASTERIA was designed, built and operated by the Jet Propulsion Laboratory (JPL) at
NASA [23] in collaboration with Massachusetts Institute of Technology (MIT) [13]. The satellite was also
deployed from the ISS in November 2017 where it later stopped transmitting and responding to commands
in December 2019 [3]. The primary mission objective was to demonstrate cutting edge technologies for
enabling photometry on small satellites by possibly discovering exoplanets orbiting Sun-like stars nearest
the solar system [23].

(a) ASTERIA Final Assembly [23] (b) ASTERIA Piezoelectric
Nanopositioning Stage [23]

Figure 2.10: ASTERIA Assembly and Custom Imager Pointing Stage

As seen in fig. 2.10a, ASTERIA was fitted with two 3U by 3U deployable solar panels as well as one 2U
by 3U body-mounted solar panel on the satellite’s zenith facet. Each 3U by 1U solar panel conforms to
the more traditional dimension specifications stipulated in sec. 2.2 (which explains the size discrepancy
seen in the figure). The panels each consist of seven cells amounting to a total of 56 cells on the CubeSat
which are capable of generating a beginning of life power of 48 W to charge the satellite’s 47 W h battery
assembly [24]. In ASTERIA’s safe mode, the satellite is placed into a sun pointing mode which holds the
Sun normal to the solar panels during the sunlit portion of the orbit [24]. During the eclipse portion of
the orbit, the satellite’s nominal orientation is defined to align the long body axis in the satellite’s ram
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direction [24].

As mentioned in the beginning of this section, ASTERIA was additionally equipped with the XACT-
15 ADCS developed by BCT – differing to MinXSS-1 only by the added integration of a GPS unit.
Unfortunately, however, the GPS was not powered on in space following complications with a flight
harness discovered during integration on the ground exceedingly close to the satellite’s launch date [23].
As such, the satellite had to rely on ephemeris which needed to be uploaded by the spacecraft operators
at regular intervals, making the system almost identical to the ADCS aboard MinXSS-1.

The nature of the mission required ASTERIA to precisely point the on-board imager at a target star
to within an accuracy of less than 5′′. As such, the XACT ADCS was intended to only execute the
satellite’s coarse pointing where the fine pointing of the payload was further improved by a pointing
control subsystem (PCS) developed by JPL which consisted of a lens assembly, a piezo stage and an
imager [23] (all three form the components of the payload). The piezoelectric nanopositioning stage
(PNS) can be seen in fig. 2.10b. The PNS was custom built by Physik Instrumente but controlled
with algorithms developed by JPL [23] and was able to accurately control the imager’s position along
ASTERIA’s x and z axes. Additionally, the 2592×2192 pixel Fairchild monochrome CMOS image sensor
was used to perform a star centroiding algorithm which computed a commanded quaternion which was
fed to the XACT ADCS at 5 Hz [23] acting as a second star tracker to assist the ADCS in its attitude
estimation and control.

2.5.2.1 Pointing Accuracy and Stability

Christopher Pong [23] analysed the pointing performance that was achieved by both the XACT ADCS
and PCS (as they worked together) in addition to the pointing performance of the XACT ADCS acting
alone. Only the latter will be discussed in this subsection as only the performances of ADCSs aboard
CubeSats is of interest in this thesis, due to the fact that the addition of a PCS will greatly improve any
payload’s pointing accuracy aboard a CubeSat.

To measure the accuracy of the XACT ADCS’s ability to point the imaging payload on its own, the
feedback from the imaging payload was disabled and the piezo stage was locked into its nominal position
[23]. The XACT ADCS was commanded to point the payload at the Alpha Centauri star field using
Alpha Centauri A (HIP 71683) as the target star (seen in fig. 2.11) to determine the XACT ADCS’s
pointing accuracy. It is noted that the payload and the XACT’s star tracker FOV’s did not overlap but
that their boresights are only separated by 10° [23].

Figure 2.11: ASTERIA Alpha Centauri Star Field [23]

Fig. 2.12a shows the cross-boresight payload pointing error from the XACT ADCS, where fig. 2.12b shows
the about boresight (roll) payload pointing error. Both errors are measured relative to the payload’s axes
and not the satellite’s axes, however, as the XACT is the only system being used to point at the star
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field, it is representative of the satellite’s attitude pointing error. The results indicate a low-frequency
bias drift dominating the y-axis errors which Pong suggests is due to changes in the alignment between
the star tracker and payload caused by changes in temperature experienced between the two different
structures made of different materials holding the star tracker and payload respectively. This is shown
in Fig. 2.12a where the y-axis error has an initial alignment bias of around 15′′ and drifts by nearly 20′′

over the 20 min observation period [23].

Pong points out the increase in high-frequency pointing errors which he attributes to the larger gains
which were used to reject environmental disturbance torques [23]. Overall, the average error about the
x-axis is −10′′ with a 1σ error of 1.75′′ and the average error about the y-axis is −31.22′′ with a 1σ error
of 4.57′′ over a 20 min observation. Finally, the roll pointing error (seen in fig. 2.12b) measured over the
same 20 min period of observation was shown to drift over time by 30′′ and had a mean bias of −110.9′′

with a 1σ accuracy of 9′′.

The pointing and stability performances achieved by ASTERIA have been the best known for a CubeSat
to date [23]. This can be largely attributed to the both the XACT ADCS and PCS working together to
achieve this milestone. The XACT ADCS aboard ASTERIA performed slightly worse than the XACT
ADCS aboard MinXSS-1, which can be largely attributed to the large low-frequency bias drift in the
y-axis caused by thermal gradients as previously mentioned. Nevertheless, both missions prove the high
degree of accuracy of the XACT ADCS in its ability to point and stabilise CubeSats.

(a) ASTERIA XACT ADCS
Cross-Boresight [23] (b) ASTERIA XACT ADCS Roll Error [23]

Figure 2.12: ASTERIA XACT ADCS Pointing Error

2.5.3 BRITE Mission
The BRIght-star Target Explorer (BRITE) mission was conceptualised and developed by the University
of Toronto Institute for Aerospace Studies Space Flight Laboratory (UTIAS-SFL) in partnership with
organisations from Austria and Poland. The mission is made up of a constellation of six NanoSats whose
primary objective is to make photometric observations of some of the brightest stars in the night sky [11].
The mission entails observing several of the most massive stars thought to be responsible for producing
some of the heavier elements in the known universe [11]. To achieve this, focus was placed on massive
stars with a visual magnitude of 3.5 or brighter [11]. Measuring variations in the brightness of these
stars would help scientists involved in the mission to deduce their internal behaviour – where the mission
aimed to measure these variations to within an accuracy of 0.1% [11].

Four separate launches between February 2013 and August 2014 contributed to the deployment of the
BRITE constellation [25]. The NanoSats were all intended to be injected into low-Earth SSOs at altitudes
greater than 600 km [25]. The two Canadian satellites (BRITE-Toronto and BRITE-Montréal) were
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launched in June 2014, where BRITE-Montréal is thought to have unfortunately not detached from the
third stage of the Dnepr launch vehicle [25]. The remaining five NanoSats were successfully deployed into
their respective approximately circular orbits – with the exception of one Polish NanoSat (Lem) whose
Depnr rocket deployed it into an eccentric 600 km × 890 km orbit. All six of the satellites use the modular
Generic Nanosatellite Bus (GNB) platform developed at UTIAS-SFL with cubic dimensions of 20 cm ×
20 cm × 20 cm [11] where their masses vary between 6 kg and 10 kg [3]. An annotated component view
of the GNB platform as well as the final assembly of one of the BRITE NanoSats (UniBRITE) can be
seen in fig. 2.13.

(a) UniBRITE NanoSat [26] (b) GNB Components for BRITE NanoSats [27]

Figure 2.13: Final Assembly and Components for the BRITE NanoSat GNB Platform

The payload aboard each BRITE NanoSat consists of a wide angle telescope with an FOV of 24° × 19°
and a CCD imager which utilised a region of 4008 × 2672 pixels, translating to a resolution of around 30′′

per pixel [11]. A point spread function over the CCD’s pixels is achieved by slightly defocussing the lens
assembly which distributes the stars’ light over a small number of pixels, thus improving the photometric
accuracy and avoiding undersampling [11]. The challenging scientific objectives of the mission meant that
each NanoSat needed to be capable of stabilising itself to hold the centre of the point spread to within
78′′ (1σ) or 3 pixels RMS [28]. Minor fluctuations in attitude were desired during imaging in order to
slightly smear and effectively smooth the image on each exposure – provided that these fluctuations were
radially symmetric over these exposures [11].

The standard GNB offers GPS capabilities with a sensor suite comprised of a 3-axis magnetometer
and rate sensor and coarse sun sensors on each face of the cube [28]. The actuators are comprised
of three orthogonal Sinclair-SFL reaction wheels (developed in 2006/07) and three magnetic torque
coils for momentum dumping [28]. To achieve the fine pointing requirements set out by the ambitious
mission objectives, the BRITE ADCSs utilise additional miniaturised star trackers. The first two BRITE
NanoSats launched are equipped with a ComTech Aero Astro Miniature Star Tracker (AA-MST), where
the remaining four NanoSats use the Sinclair Interplanetary-Ryerson University-SFL Star Tracker (ST-16)
[28].

2.5.3.1 Pointing Accuracy and Stability

Grant et al. [28] published an article in 2014 which discusses the on-orbit performance of the BRITE
constellation, in which the authors highlight that the high degree of pointing accuracy and stability of
the BRITE NanoSats can be attributed to the on-board star tracker and reaction wheel performances as
well as the implementation of accurate estimation and control algorithms [28]. Both types of star trackers
implemented in the NanoSats were tested on the ground before the full constellation launch. These initial
tests indicated that the AA-MST had a 1σ error of 23′′ and 114′′ around the star tracker cross and about
boresight axes respectively, where the ST-16 star tracker performed substantially better with a 1σ error

15

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW

of 7′′ and 70′′ over the same respective axes [28]. To reduce the effects of thermal misalignments between
the star trackers and the imager payloads, the pair were mounted to the same bracket at the centre of
the GNB – where the smallest temperature fluctuations are observed [28].

Each Sinclair-SFL reaction wheel is balanced to less than 0.5× 10−6 kg m which amounts to an estimated
imbalance error of less than 1′′ [28], meaning that the greatest source of jitter would not be caused by
the pure spin of the reaction wheels themselves. The largest source of jitter is rather attributed to
the wheels’ drive electronics and control software which causes the reaction wheels to imperfectly track
commanded torque references [28]. During initial ground tests, an FFT was applied to the wheels’
measured torque error revealing a 6.5 Hz oscillation which was causing an unacceptable amount of jitter
[28]. This oscillation was removed by adjusting the wheels’ control gains which greatly reduced the
amount of control jitter caused by the wheels’ drive electronics and thus improving the control stability
and accuracy of the satellites [28].

Running on each NanoSat’s OBC is the Canadian Advanced Nanospace Operating Environment
(CANOE). The CANOE multi-threaded operating system has multiple responsibilities – the most
important of which is to execute attitude cycles at fixed intervals. Each attitude cycle is conducted over
a relatively long 2.5 s period which incorporates a sensor-measurement collection period, an execution
of SFL’s On-orbit Attitude System Software (OASYS) estimation and control algorithms, an actuator
commanding period and a waiting period [28]. The main contributor to the large attitude cycle period
is the AA-MST star tracker which can take up to 2 s to return a solution [28].

OASYS incorporates the system’s cascade-EKF responsible for state estimation as well as the required
set of control laws which govern the spacecraft’s attitude [28]. As the name suggests, the cascade-EKF
sensor update steps are implemented in the same order of received measurements. The satellites have
two primary estimation modes, namely: coarse and fine estimation modes. The fine estimation mode
only makes use of the on-board star tracker for sensor measurements, where the coarse estimation mode
only uses the CSSs and magnetometer measurements [28].

Of all the terms characterised and accounted for in Euler’s dynamic equations of motion governing the
spacecrafts’ attitude, the external and internal satellite disturbance torques were identified by Grant et
al. [28] to be the most vital to precision pointing. The relatively low orbits of each BRITE NanoSat
highlighted that the main source of disturbance would be magnetic. The integral term in the well-tuned
PID 3-axis controller was fed back into the system’s state equation during state propagation to track
the steady-state pointing errors (i.e. net disturbance torques), instead of empirically calculating the
disturbance torques in orbit [28]. Grant et al. additionally mentioned that accurately measuring residual
magnetic dipoles of the BRITE satellites during ground tests are difficult and unreliable. This prompted
the engineers to choose the aforementioned PID integral term feedback method to determine the primarily
magnetic disturbance torques [28] – the results of which can be seen in fig. 2.14.

Figure 2.14: BRITE Estimated Disturbance Torque [28]

The feedback of each satellite’s wheel torque is from the system’s commanded torque values as opposed
to using wheel speed telemetry to work out the corresponding torque. This was done so as to minimise
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the large errors which would result from differentiating noisy telemetry data [28]. The choice is justified
by the authors who stipulate that the reaction wheels are able to deliver the torque with a low enough
error [28]. The authors lastly mentioned that all wheel momentum management is disabled during the
BRITE NanoSats’ fine-pointing modes, in order to disable the integrated magnetorquers and remove the
possible effects caused by applied currents and magnetic field measurements.

The spacecrafts’ state variables are well estimated during sensor update steps due to the high accuracy
of each star tracker. The possible errors which could have arisen due to the relatively long propagation
period of up to 2 s are minimised through the accurate tracking of disturbance torques and through
stringent characterisation of the remaining terms in Euler’s equation. According to the authors, only the
satellites’ mass moments of inertias were characterised on the ground before launch to within an accuracy
of 5% using a horizontal pendulum [28].

The performance of the Austrian BRITE NanoSats was simulated before launch by characterising the on-
board sensors and actuators, and simulating the predicted satellite orbit environment. Fig. 2.15a shows
the results of the simulation, where the centroid of a star was observed over a 15 min period and was
predicted to vary on the imager pixel array by approximately 2.1 pixels RMS (53.6′′) – significantly lower
than the required 3 pixels RMS (78′′) [28]. The two Austrian satellites were launched in February 2013,
where UniBRITE and BRITE-Austria further underwent a six and eight month commissioning period
respectively [28]. Following this, the satellites completed their scientific goal of consistently observing
the Orion constellation over a seven-month period [28]. The data obtained from the mission was used
to assess each satellite’s pointing accuracy and stability by observing how the centroid of a target star
varied over the imager payload’s pixel array over time. The actual measured in-orbit accuracy of the same
simulated observation period exhibited by UniBRITE, not only outperformed the required accuracy, but
was in fact better than the predicted simulated results – measuring at slightly less than 2 pixels RMS
(45′′) [28].

(a) UniBRITE ADCS Fine Pointing Accuracy
and Stability Predicted Performance [28]

(b) UniBRITE ADCS Fine Pointing Accuracy
and Stability Actual Performance [28]

Figure 2.15: BRITE ADCS Fine Pointing Accuracy and Stability Performance

2.6 Summary
The above literature aids in creating a general understanding of CubeSats and assists in identifying the
key ADCS factors, which allow CubeSats to achieve good IPAs. Firstly, the CubeSat was defined before
going into the prominent trends since its discovery. These trends included the popular types of CubeSats,
types of orbits, and the organisations that fund development. Following on, three missions were discussed
to gain further perspective as to why CubeSats are being increasingly developed as well as to learn from
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the process in order to increase future CubeSat IPA. The missions were MinXSS-1, ASTERIA, and the
BRITE constellation. Particular focus was placed on the pointing accuracy and stability reached in each
mission, and factors which lead to the high level of performances, which can be achieved by miniaturised
ADCSs. The miniaturisation of high accuracy ADCS sensors, such as star trackers, allowed each satellite
to achieve ambitious arc-second pointing accuracy and attitude stability. The above provided context
and useful information that will assist in this research that aims to investigate the IPA which can be
achieved by a CubeADCS operating in very similar conditions to the aforementioned missions.
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Chapter 3

The CubeADCS

3.1 Overview
CubeSat trends combined with the expected CubeSat ADCS performances have been discussed in the
previous chapter. Sec. 2.3 briefly touched on the performance of the CubeADCS, but this was decidedly
not a true reflection of the CubeADCS’s potential IPA. This chapter discusses the CubeADCS and its
subcomponents in greater detail. The chapter mainly focusses on the underlying theory behind the inner
workings and design of the various sensors and actuators, whilst additionally outlining each subsystem
component’s various key performance parameters as stipulated by CubeSpace and relevant subcomponent
supplier datasheets. Sources of errors and component limitations are analysed, to assist with sensor and
actuator modelling in chapter 6. Additional focus is placed on sensors which provide the CubeADCS with
more precise environmental and attitude estimates, such as the Earth and Sun sensors, and CubeSpace’s
star tracker – the CubeStar.

3.2 An Integrated System
The CubeADCS is an integrated ADCS consisting of up to four separate PCBs (conforming to the
CubeSat dimension standards) and multiple peripheral components. Certain combinations of these PCBs
and peripheral components make up the various modules aboard the CubeADCS as shown in fig. 3.1.
These modules can be customised to integrate less or more sensors and actuators in order to achieve the
unique goals and mission requirements set out by various clients purchasing the system.

Figure 3.1: CubeADCS Modules and Peripheral Components [29]

A summary of all possible components included in the integrated CubeADCS and their pertaining modules
are presented in table 3.1, which includes all relevant ADCS sensors and actuators. The component
manufacturers are also stipulated in the table, of which the majority are designed and manufactured by

19

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. THE CUBEADCS

CubeSpace themselves. The magnetometer (MM) and redundant magnetometer (RMM) sensing devices
are sourced externally, however, the incorporated structure (including the deployment mechanism of the
primary MM) and internal PCB designs are designed and produced by CubeSpace.

There are two standard CubeADCS integrated solutions, namely: Y-Momentum and 3-Axis. The
default Y-Momentum solution offers three primary control modes which include: detumbling a satellite,
stabilising a satellite’s attitude in its orbit and performing satellite pitch manoeuvres in its orbital plane
[30]. The standard Y-Momentum bundle (seen in fig. 3.2a – with an additional CubeSense upgrade) comes
equipped with a CubeComputer, a CubeControl, a small CubeWheel, a deployable MM, ten coarse sun
sensors (CSS), two CubeTorquer rods and a CubeTorquer coil [30]. Both magnetometers and CSSs are
not shown for both configurations in fig. 3.2.

Table 3.1: CubeADCS Sensor and Actuator Summary

No. Component Manufacturer Module
1 MEMS Gyro Silicon Sensing® Systems (UK) Ltd. CubeControl
2 Magnetometer Honeywell International Inc. CubeControl
3 Redundant Magnetometer Honeywell International Inc. CubeControl
4 Coarse Sun Sensor Silonex Inc. CubeControl
5 Fine Sun Sensor CubeSpace CubeSense
6 Earth Sensor CubeSpace CubeSense
7 Star Tracker CubeSpace CubeStar
8 Reaction Wheels CubeSpace CubeWheel
9 Y-Momentum Wheel CubeSpace CubeControl
10 Magnetorquers CubeSpace CubeControl
11 On-Board Computer CubeSpace CubeComputer

The 3-axis solution (seen in fig. 3.2b) comes standard with all the previously mentioned components with
the addition of CubeSense sun and earth sensors to provide more precise attitude estimation capabilities
and two extra small CubeWheels to provide the full 3-axis stability [31]. The 3-axis solution can provide
the satellite with the same three control modes with the added advantage of being able to perform more
complex pointing manoeuvres and target tracking. Finally, both solutions can be upgraded to suit a
client’s specific needs. This includes the addition of an RMM, CubeSense sun and nadir sensors (if not
already included) and a CubeStar for missions which require high accuracy pointing. Actuators can also
be upgraded to larger sizes depending on the mass of the satellite and its moments of inertia.

(a) CubeADCS Y-Momentum [30] (b) CubeADCS 3-Axis [31]

Figure 3.2: Typical CubeADCS Bundle Configurations

The design and operation of each sensor and actuator will be briefly discussed in the context of its
interfacing module, where focus will be placed on the high accuracy sensors and actuators vital to a good
IPA.
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3.3 CubeComputer
The CubeComputer (CC) module is based on the ARM Cortex-M3 architecture which can be configured
as a general purpose NanoSat OBC or as an ADCS OBC. It is responsible for executing the CubeADCS’s
attitude control program (ACP), executing estimation and control algorithms [32] and providing data
storage for various logged telemetries and captured images. The CC is also responsible for all intermodule
communication and for processing all external commands. The CC’s ICD [33] specifies that it has:

• a 32-bit ARM Cortex-M3 processor which has a clock frequency of up to 48 MHz at
1.25 DMIPS/MHz,

• internal and external watchdogs,

• 32 kB of EEPROM storage,

• 4 MB of flash memory for code storage,

• 1 MB of SRAM for data storage,

• a MicroSD socket for greater storage requirements up to 2 GB,

• I2C, UART, CAN V2.0B and SPI communication interfaces and

• a piggyback utility expansion header for mission specific extensions.

The CC physical characteristics indicate that it is low in mass (< 70 g), it has an operating temperature
of between −10 ◦C and 70 ◦C and a typical power consumption of 200 mW on average [33].

3.4 CubeControl
The CubeControl (CL) module is used to control the three on-board CubeTorquers and can be used to
control one small Y-momentum wheel. It is also used to interface with the 3-axis MM and the RMM (if
included in the assembly), three single axis MEMS gyros (placed orthogonally to each other) and up to
10 CSSs (four redundant). The CL module can additionally be configured to support the integration of
a GPS unit, however, the actual GPS must be supplied externally and does not come standard with a
CubeADCS.

3.4.1 MEMS Gyro
A satellite’s gyroscopes are responsible for measuring a satellite’s inertial rates about its respective axes.
An accurate gyro will provide more precise rate measurements and thus lead to a good IPA – making
the gyros important to analyse. The gyros implemented on the CubeADCS are three orthogonally
mounted single axis PinPoint® CRM100 vibrating ring gyros (VRGs) designed and manufactured by
Silicon Sensing® Systems Ltd. The gyro can be used in either an analogue or digital mode (SPI), where
the CL uses the latter to interface with the gyros.

Figure 3.3: Vibrating Ring Gyroscope
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As illustrated in fig. 3.3, VRGs work by driving a thin silicon ring into resonance, which allows the
transducers in the sensor to detect radial motion caused by the Coriolis effect when the gyro is rotating
about its centre axis [34].

A gyro’s measured output rate, ωout, would ideally be equal to its applied input rate, ωin. In reality
however, there are multiple sources of errors effecting the measured output rate – as illustrated in fig. 3.4.
The resulting measured output angular rate of a single axis sensor can be modelled with [35]

ωout = kSFωin +NMAωin + ωbias + ωnoise, (3.1)

where kSF and NMA represent the scale factor and the misalignment error of the sensor respectively [35].
The additive terms ωbias and ωnoise denote the offset bias and stochastic noise of the sensor respectively
[35].

Figure 3.4: Gyro Errors

3.4.1.1 Scale Factor

The scale factor of a gyro is the ratio between the applied rate and the output rate. The scale factor of a
gyro can have a thermal variation as well as a non-linear variation with respect to an applied rate.

3.4.1.2 Misalignment

The misalignment error (or cross-axis error) of a gyro is caused by imperfections in the manufacturing
of a sensor or by imperfect mounting on the respective satellite body axes. In MEMS sensors, this
misalignment can also be effected by thermal variation. Intuitively, both scale factor and misalignment
errors have the greatest impact at high angular rates.

3.4.1.3 Bias

The bias is the measured output of the gyro when it is stationary (the offset). The bias of a gyro can
be decomposed into three main parts, namely: thermal bias drift, switch on bias repeatability and bias
instability (BI) [36]. The switch on repeatability describes a gyro’s ability to have the same bias offset at
device start-up, assuming the same temperature and rate input conditions. The BI is a stochastic error
and can only be modelled for and not removed [35] – which more aptly forms part of the ωnoise noise
term. Temperature gradients causing the thermal bias drift are typically significant in MEMS sensors
and can fortunately be compensated for in most cases.

3.4.1.4 Noise

The remaining stochastic errors are determined from the Allan variance method (BI included), which
is used to identify fundamental noise terms caused by underlying random processes. This method is
discussed in greater detail in chapter 5 together with thermal bias drift compensation.
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3.4.1.5 CRM100 Gyro Performance

The CRM100 gyro datasheet [37] states that the sensor has:

1. measurement sensitivity ranges of ±75 ° s−1, ±150 ° s−1, ±300 ° s−1 and ±900 ° s−1,

2. a worst-case scale factor variation over a temperature range of −40 ◦C to 85 ◦C of between -1.5%
to 1.5%,

3. a worst-case scale factor non-linearity of 0.15%,

4. a nominal bias of 0.5 ° s−1 at a sensitivity range of ±75 ° s−1 measured at 25 ◦C,

5. a bias switch on repeatability of 0.14 ° s−1 (RMS),

6. a bias drift with time of 0.05 ° s−1 min−1 after switch on from 250 s onwards (usually due to self-
heating),

7. a typical BI of 24 ° h−1,

8. a typical angular rate noise density of 0.018 ° s−1 Hz−0.5,

9. an ARW of 0.28 ° h−0.5,

10. a maximum misalignment error of 0.63° and

11. an operating temperature range of −40 ◦C to 105 ◦C.

3.4.2 Magnetometer and Redundant Magnetometer
A magnetometer is responsible for measuring Earth’s magnetic field components as the satellite
propagates along its orbit trajectory. This is important for both attitude estimation and feedback for the
required magnetic control torques to be applied by a satellite’s magnetorquers. Both magnetometers used
by the CubeADCS are low-cost COTS 3-axis HMC1053 magnetoresistive sensors developed by Honeywell.
The MM is sampled digitally via SPI, where the RMM is sampled via an analogue signal.

The Honeywell sensors take advantage of the anisotropic magnetoresistive (AMR) effect which causes the
resistance of certain ferromagnetic materials to change with a varying magnetic field (B-field). As such,
this changes the amount of current permitted to flow through the material, which enables the magnitude
of each respective B-field to be calculated about each sensing axis.

Significant magnetometer errors can be attributed to a combination of:

• errors caused by temperature gradients on the magnetometer measurement,

• errors due to satellite magnetic bus disturbances on the measurement (such as unshielded currents
in harnesses),

• errors due to the spin of the satellite which create alternating currents and current loops in the
solar panels, leading to magnetic disturbances (during in-orbit calibration),

• linearity, orthogonality and hysteresis errors, and

• stochastic magnetometer measurement noise.

Sensitive sensor biases affected by temperature gradients requires that both magnetometers be calibrated
on the ground to assist with commissioning calibration during the start of a satellite’s mission in
orbit.

Specifications, according to the Honeywell datasheet [38], indicate that the sensor has:

1. a B-field measurement range of ±600 µT,

2. a typical measurement sensitivity of 10 µV/Vbus/µT and a minimum of 8 µV/Vbus/µT,

3. a typical noise density, en1 Hz of 50 nV Hz−0.5 and en of 5 nV Hz−0.5 after 50 Hz,

4. an orthogonality error of ±3% FS over a 100 µT range,

5. a maximum linearity error of 0.5% FS when operating in B-field strengths in the range of ±300 µT,
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6. a resolution of 12 nT at a 50 Hz filter bandwidth with a bridge voltage of 5 V and

7. an operating temperature range of −40 ◦C to 125 ◦C.

3.4.3 Coarse Sun Sensors
The CSSs are made up of a combination of SLCD-61N8 planar photodiode cells developed by Silonex Inc.
Photodiodes work by the same principle as solar panels, where they convert light energy (photons) into
electrical current. The CubeADCS comes with a total of ten photodiodes to be mounted, where six cells
are typically placed on the exterior panels of a satellite’s body and four are for redundancy. A coarse sun
vector can be calculated from the respective light intensities on each exterior panel as the total amount
of current varies in correspondence with the light intensities. As such, the CubeADCS is always able to
calculate a sun vector regardless of the satellite’s orientation – provided that it is in the sunlit part of
the orbit.

The CSS Sun vector components are measured by the short circuit currents of the three CSSs mounted on
the facets of a satellite, which are illuminated during the sunlit portion of an orbit. The measured vector
components are each proportional to the cosine of the Sun angle to the specific CSS normal-to-surface
vector, and can subsequently be represented by

Ŝb =

SbxSby

Sbz

 =

cos θaz cos θel
sin θaz cos θel

sin θel

 (3.2)

The main errors in CSS measurements come from reflection errors of light off of the photodiodes, modelling
errors and errors caused by imperfect mounting of the photodiodes on each satellite face. The datasheet
[39] for the photodiodes indicate:

1. a typical spectral sensitivity of 550 mA W−1 at light wavelengths of 940 nm,

2. a typical short circuit current, Isc = 170 µA at a flux density of 25 mW cm−2,

3. a sensitivity spectral range of 400 nm to 1100 nm and

4. an operating temperature range of −40 ◦C to 125 ◦C.

Figure 3.5: CSS Sun Vector with Azimuth and Elevation

3.4.4 CubeTorquers
The final components discussed which form part of the CL are the magnetorquer rods (CubeTorquers)
which typically consists of two small CubeRods (CR) and a CubeCoil (CO). The illustration in fig. 3.6a
shows the basic concept behind the workings of a magnetorquer, where the resultant magnetic torque
vector, Nmt, generated by a magnetorquer can be described by

Nmt = Mmt ×B⊕, (3.3)
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where Mmt represents the magnetic moment vector induced by current loops flowing around a
ferromagnetic core and B⊕ is the Earth’s instantaneous B-field vector.

The main use of magnetorquers is typically to assist in the detumbling of a satellite, placing the
satellite into a controlled spin, or to use them in conjunction with a Y-momentum wheel for steady
state control – allowing for pitch manoeuvres (as mentioned in sec. 3.2). In a 3-axis control system
however, magnetorquers play an important role in dumping angular momentum build-up in reaction
wheels, ensuring that the wheels do not saturate and cause possible damage to themselves or to the
satellite’s attitude stability. The configuration of the CubeTorquers can be seen in fig. 3.6b, where the
CRs are ferromagnetic rods with cylindrical coils which are physically mounted to the CL, and the CO
is a coil wire loop with an air core, which is wedged between the CC and CL modules.

(a) CubeTorquers on the CubeControl Module [40] (b) Magnetorquer Operation

Figure 3.6: CubeTorquers and Magnetic Control

The performance parameters for the CubeTorquers are taken from the product specifications sheet [41]
and summarised in table 3.2. The CRs come in three sizes, small (S), medium (M) and large (L). All CR
sizes have a linearity of 2.5%, where all CubeTorquers permit a maximum continuous current of 150 mA
operating between −20 ◦C and 70 ◦C.

Table 3.2: Magnetorquer Summary

Property CR (S) CR (M) CR (L) CO
Mass (g) 28 36 72 46
Resistance at 25 ◦C (Ω) 31 65 66 83
Nominal Magnetic Moment at 25 ◦C (A m2) ±0.24 ±0.66 ±1.9 ±0.13
Magnetic Gain (A m2 A−1) 2.8 8.2 25 2.1

3.5 CubeSense
Initially developed in 2011 [14], the CubeSense (CS) module consists of either one or two identical CMOS
based cameras, shown in fig. 3.8. Each camera is fitted with a fisheye lens to provide an FOV of over 180°,
where the cameras can be configured as either a fine sun sensor (FSS) or as a nadir sensor. Fig. 3.8a,
shows a CS V2 with both an FSS and nadir sensor fitted to the module, where fig. 3.8b shows the latest
CS V3 – a more compact CS which can be configured as either a stand-alone FSS or nadir sensor.

The CS V3 is a relatively new addition to the CubeSpace component suite and does not yet (at the time
of writing) have flight heritage – unlike the CS V2. The main differences between the two are that the
CS V3 uses around 33% less power on average and provides sensor updates at twice the frequency of the
CS V2 [42]. Both primary differences can be attributed to the fact that the CS V3 only has one camera
where, other than this, its electronics and software algorithms are in fact very similar. Shown in fig. 3.7,
the CS V2 is intended to be integrated into the CubeADCS stack inbetween the CO and CL – as opposed
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to the CS V3 which is connected to the top CubeConnect interface board via a harness as a peripheral
component (seen in fig. 3.1).

Figure 3.7: CubeSense V2 as Part of the CubeADCS Stack [43]

The CS is a visible light spectrum image-based sensor which performs sophisticated image processing
techniques inside the module, outputting virtual angles relative to the camera boresight, allowing the
OBC to calculate a Sun or Earth vector through some mathematical transformations (elaborated on in
sec. 6.5). The sun detecting camera differs only to the nadir camera hardware, in that it has a neutral
density filter (NDF), which ensures that the Sun is the only object visible in the image. The remainder
of this section will discuss the workings of the CS and expand on its key features and drawbacks.

(a) CubeSense V2 with FSS and Nadir Sensor
(b) CubeSense V3 Configured as an FSS or

Nadir Sensor

Figure 3.8: CubeSense Modules [42]

3.5.1 CubeSense Image Processing Methodology
The image processing portion performed by the CubeSense for both sun and nadir detection is executed
by the following sequence [14]:

1. applying a desirable light detection threshold to the image,

2. running an edge detection algorithm,

3. correcting the image for distortion from the fitted fisheye lens,

4. applying centroiding algorithms, which determine the approximate centre of the celestial object,
outputting the resulting virtual angles relative to the camera boresight.

In the case of the CS FSS, steps 3 and 4 above are switched around.

3.5.1.1 Image Thresholding

An image threshold is applied for both the sun and nadir cameras. Fig. 3.9 illustrates the concept behind
thresholding an image, where a pre-defined threshold value is set to isolate the Sun or the Earth (Earth-
or Sun-value), from the background in an image (space-value). The CubeADCS has preset exposure and
thresholding values for both sun and nadir cameras which are best fitted to most satellite missions. The
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user can also set their own thresholding value depending on the level of light sensitivity required. Only
pixels with a higher pixel energy than that, set by the threshold, are subsequently considered by the edge
detection algorithm.

Figure 3.9: A Fixed Camera Threshold [14]

3.5.1.2 Edge Detection

A threshold will only identify pixels with a higher luminance than the background pixels. The edge pixels
of an object will need to be identified to accurately determine the centroid of the relevant object. Efficient
search algorithms are applied for both types of camera’s in order to reduce image processing time [14]. In
order to do so, a coordinate frame is defined for the image sensor and can be seen in fig. 3.10, where the
grid represents pixel locations on the image sensor [14]. Pixel rows are positioned along the grid y-axis
and pixel columns are distributed along the grid x-axis.

To locate the centroid of the Earth, a sequential “grid-search” method [14] is performed, which starts in
the top left corner of the grid and samples equally spaced pixels in the grid (vertically and horizontally) to
find qualifying edge pixels that are within the predefined threshold limit. The search algorithm samples
the grid at a predefined rate set by a sampling factor, K. Both the horizontal and vertical searches can
be described by the algorithm [14]:

Edge search =
N
K −1∑
i=0

M
K −1∑
j=0

pixel(i ·K, j ·K) (3.4)

N and M represent the total number of pixel columns and rows in the image respectively and (i · K,
j ·K) is the pixel coordinate of the possible edge pixel. Candidates for edge pixels are those whose pixel
intensity values lie between a background pixel and an object pixel. I.e. if the current pixel in the search
is found to be above the threshold and the previous pixel was not (or vice versa), then the region between
these pixels is likely to host an edge pixel. Subsequently, a smaller search is performed between the two
aforementioned pixels and the actual edge pixel is identified. At least six edge pixels are required to
perform a successful nadir detection [14].

Figure 3.10: Image Pixel Coordinate Frame
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Edge detection for the sun camera is somewhat simpler than the nadir. This process is much quicker than
the nadir sensor, as the sun takes up a much smaller portion of the image sensor [14]. The sun camera
edge detection algorithm takes advantage of the parallel processing power of an FPGA [14]. Its edge
searching algorithm identifies the first pixel which is above the predefined threshold value whilst saving
the image row by row to memory – starting at pixel (0, 0) [14]. Once this pixel is identified, a sun pixel
enclosing area is found using a smaller version of the nadir “grid-search” method, which is subsequently
fed back to the MCU for centroiding.

3.5.1.3 Distortion Correction

Edge pixels which are identified by both previously mentioned search algorithms are distorted by the
wide-angle FOV, convex fisheye lens. The image distortion is a barrel type radial distortion, meaning
that objects in the image that are close to the camera’s edge of its FOV appear to get “squashed”, where
objects near the image centre are the least distorted.

Fig. 3.11 is adapted from [44] and shows an orthographic projection model using a projection sphere,
which is used to describe the radial distortion. An incident light ray which passes through centre point,
C, at angle θ, would form an image on the image plane at point p if there was no fisheye lens at C. The
radial, undistorted distance from the centre of the image plane to point p is denoted as ru. If there is a
fisheye lens at C, which causes a refraction of the incident ray, then a virtual image at p′ is created on
the projection sphere, which, when orthogonally projected onto the image plane results in the distorted
radial distance, rd, from the image plane centre [44].

Figure 3.11: Orthographic Projection Model [44]

A rational function-based calibration model is used to relate the measured distorted radius to the expected
undistorted radius. This is achieved by mounting a camera on a rotation stage and capturing raw
datapoints at known reference angles along at least two orthogonal axes on the image plane. The distorted
radius, rd, can be calculated from the measured distorted pixel coordinates at (xd, yd) using

rd =
√

(xd − xc)2 + (yd − yc)2, (3.5)

where (xc, yc) is the location of the lens boresight on the image plane. The radial distortion is corrected
by using an inverse form of a Polynomial Fish-Eye Transform (PFET)

rd = a0 + a1ru + a2r
2
u + anr

n
u =

n∑
i=0

air
i
u, (3.6)

proposed by Basu and Licardie [45].
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3.5.1.4 Centroid Calculation for the Nadir Sensor

In the case of the nadir camera, each edge pixel identified as part of an Earth-like object, is passed
through the camera specific lens distortion calibration model and corrected. The next step is to fit a
circle to these undistorted edge pixels using the least squares circle fit method (discussed in greater detail
by Loubser [14]), and finally outputting the undistorted Earth centroid at the circle centre.

3.5.1.5 Centroid Calculation for the FSS

Centroiding for a sun camera is first performed before any distortion correction takes place. The identified
sun pixel enclosing area discussed at the end of sec. 3.5.1.2 is further processed, where the Sun’s centroid
is calculated through a weighted averaging method – otherwise known as a centre of gravity method. Each
identified sun pixel coordinate is weighted by the respective light intensity value at the corresponding
pixel coordinate, such that [14]

Sunx =
∑N
i=0

∑M
j=0 pixel(xds(i), yds(j)) · xds(i)∑N

i=0
∑M
j=0 pixel(xds(i), yds(j))

(3.7)

and,

Suny =
∑N
i=0

∑M
j=0 pixel(xds(i), yds(j)) · yds(j)∑N

i=0
∑M
j=0 pixel(xds(i), yds(j))

. (3.8)

Variables xds and yds in eq. (3.7) and eq. (3.8) are arrays which store the sun pixel x and y coordinates
respectively, N and M are the sun pixel enclosing area dimensions and pixel(xds(i), yds(i)) is the light
intensity value at each corresponding pixel coordinate. Once the centroiding is complete, the calculated
value is fed into the distortion correction model and the undistorted Sun centroid is returned.

3.5.2 CubeSense Key Performance Parameters
Errors in CubeSense measurements are largely caused by the errors in the centroid location of the relevant
celestial object, which can be mainly attributed to image sensor resolution and noise, incorrect threshold
and exposure settings, imperfect distortion correction, and the celestial object being partially out of the
camera’s FOV. The stated key performance parameters for the CubeSense (FSS and nadir sensor) are
taken from the CubeSense ICD [46] and are stated to have:

• a sample rate of 1 Hz when both sensors are being used,

• a 1σ accuracy of less than 0.2° for the nadir sensor when the full Earth is in its FOV,

• a 1σ accuracy of less than 0.2° for the FSS over its entire FOV,

• a nadir horizontal and vertical FOV of 130° (160° diagonal) and

• a 170° horizontal and vertical FOV (200° diagonal) for the FSS.

The CS provides the CubeADCS with fine estimates of the Earth and Sun vectors over a large FOV.
Limitations exist, where the CS is only able to provide these estimates in sun-lit portions of a satellite’s
orbit. Additionally, any bright objects which enter the cameras’ FOVs can cause inaccurate or possibly
no detections. Fortunately, the user can define a masking region to ignore certain pixel areas on the image
sensor, however, this is only useful in cases where the location of bright objects is known and constant in
the cameras’ FOVs.

3.6 CubeStar
Developed in 2013 by Erlank [47], the CubeStar (CT) is a highly accurate miniaturised star tracker based
on the ARM Cortex-M3 architecture [48], specifically designed to be implemented on CubeSats. The
CT is shown in fig. 3.12, which shows its compact three layer stack and protruding lens assembly. Star
trackers are the most accurate sensors at determining a satellite’s attitude, where their high accuracy is
traded for their relatively high power consumption and cost of purchase. High IPA is impossible without
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a star tracker, making it a vital component in EO CubeSat missions and for analysis in this thesis.

Figure 3.12: The CubeStar Module [48]

The remainder of this section will describe, in relatively brief detail, the underlying processes which allow
the CT to perform its high accuracy attitude estimation. The section will end with a list of some key
performance parameters pertaining to the CT, as well as CT limitations.

3.6.1 CubeStar Detection
The CT operates by first imaging a portion of stars in its FOV. Next, the on-board processor employs a
star detection algorithm [47] consisting of:

1. image plane searching,

2. region growing,

3. centroiding and,

4. distortion correction,

which must be used to distinguish stars from the background noise [47].

3.6.1.1 Image Plane Searching

Stars captured by a perfectly in-focus lens assembly will only excite single pixels throughout the image
plane. Erank [47] identifies two main underlying drawbacks which would result from using such perfectly
focussed optics. Firstly, the accuracy of the star tracker would be limited to the resolution of the image
sensor, and secondly, a single dead pixel will be incredibly hard to distinguish from an actual star –
resulting in false positives. For this reason, the CT utilises slightly defocussed optics when capturing
images. This results in the star light being spread over a slightly larger region (3× 3 pixels in the CT’s
case), which easily distinguishes dead pixels from actual stars, and most importantly: allows for the
centroiding algorithm to calculate the centroid of each star to within a sub-pixel accuracy.

After an image is captured, the image plane search operates similarly to that of the CS grid-search
method (explained in sec. 3.5.1), including thresholding the image to distinguish stars from background
noise sources. Pixels selected during the grid-search are each compared to the set threshold value to
determine regions of interest containing possible stars. The spreading of each stars’ light over multiple
pixels has the added benefit of increasing the speed of the grid-search algorithm. The grid-search only
looks at every third pixel column and row from the top left pixel, to the bottom right pixel in the image
plane [47], as opposed to individually searching all 1024 × 512 pixels. Once a pixel is detected over
the applied threshold, a region growing algorithm is initiated to group all the pixels belonging to the
possible detected star [47]. Once a result is returned by the region growing algorithm, the grid-search
resumes.
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3.6.1.2 Region Growing

The region growing algorithm is best illustrated in fig. 3.13 as presented by Erlank [47]. The region
growing algorithm is a recursive algorithm which begins by designating the detected pixel, identified by
the image plane search, as the initial seed and growing the number of pixels around it classified as part
of a star. A determined seed’s value is first zeroed, to avoid it being detected again and the four adjacent
pixels surrounding the seed are compared to the threshold value. Neighbouring pixels identified to be
above the detection threshold are classified as new seeds, where the region growing algorithm is called
recursively with each newly identified seed, until there are no more seeds to grow.

All identified seeds make up the grouped set of pixels which possibly belong to a star. Too many pixels
indicate large, bright objects which have entered the camera’s FOV, where too few pixels suggest that a
dead pixel has been discovered or that the identified star is too dim for accurate centroiding and detection
to take place [47]. In both of these cases, the grouped set of pixels must be discarded. If numerous discards
are determined then the image plane search is halted [47]. Centroiding can be performed on the group
of pixels which pass the aforementioned checks.

Figure 3.13: CubeStar Region Growing Algorithm [47]

3.6.1.3 Centroiding

The centroiding algorithm is what largely determines the accuracy of the CT, where the incorporated
algorithm is said to be accurate to within 0.2 pixels [47]. Once the region growing algorithm is complete,
the qualifying grouped pixels belonging to each detected star are then run through the same centre of
gravity centroiding algorithm used by the CS for the sun camera, described by eqs. (3.7) and (3.8), to
locate the x and y pixel centroid coordinates of the identified star. The main difference between the CT
centroiding method and the CS method, is that the CT centroiding algorithm only utilises a 5 × 5 grid
around the brightest pixel in the qualifying group of pixels [47].

3.6.1.4 Distortion Correction

Image distortion correction is done in order to correctly match stars in the image to stars in a known
star catalogue. The distortion correction used is different to that of the CS, where the correction model
compensates for both radial and tangential distortions [47]. The CT lens distortion is corrected through
a simplified version of Brown’s distortion model [47],[49], as the smaller lens FOV does not undergo as
much distortion as the CS wide-angle lens. The undistorted pixel coordinates can be calculated using
[47]:

xu = x(1 +K1r
2
d +K2r

4
d) + P2(r2

d + 2x2) + 2P1xy (3.9)

and,

yu = y(1 +K1r
2
d +K2r

4
d) + P1(r2

d + 2y2) + 2P2xy, (3.10)

where
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x = xd − xc
fpix

y = yd − yc
fpix

. (3.11)

The variables in eqs. (3.9) to (3.11) are described in table 3.3. Erlank [47] calculates the distortion
coefficients for the lens by utilising MATLAB®’s Camera Calibration Toolbox [47] and a set of calibration
checker board images. The focal length is determined by imaging a portion of stars in a known
constellation and measuring the distance between these stars. The distance is then compared to the
actual known distance between the stars, and the focal length is found. Finally, [47] finds the boresight
pixel location on the image plane by imaging the exact same lens lined up with the CT lens assembly,
and centroiding the resulting circle produced.

Table 3.3: CubeStar Distortion Variables

Variable(s) Description
xu, yu Undistorted star centroid pixel coordinates
xd, yd Distorted star centroid pixel coordinates
xc, yc Lens boresight pixel coordinates
fpix Lens focal length
Kn nth radial distortion coefficient
Pn nth tangential distortion coefficient
rd Distorted pixel radius from boresight shown by eq. (3.5)

Once the star detection portion is complete and the undistorted locations of each star are calculated
in 2D image plane coordinates, the on-board processor then transforms the star centroid coordinates to
3D CT body unit vector centroid coordinates, which is further expanded on in chapter 6 during the CT
simulation sensor modelling.

3.6.2 CubeStar Matching
Once the star detection is complete, a star matching algorithm is employed to match the detected stars
in the image plane to stars in the Hipparcos star catalogue referenced by the CT. The CT must be able
to take a centroided star’s calculated boresight-referenced unit vector and either, match this vector to a
corresponding inertial star unit vector, or reject the centroid as a false detection [47]. Erlank conducts
a comparison of various possible matching algorithms in his thesis, where his main considerations were
determined by the limitations of the CT processor speed and internal flash memory allocation [47]. The
chosen matching algorithm was fairly novel at the time, known as the Geometric Voting Algorithm (GVA)
– first published in 2008 by Kolomenkin et. al. [50].

The GVA’s relatively low memory requirements, speed and robustness to false detections, made it a good
choice for the CT to employ. Erlank presents a more in-depth explantation in his thesis [47] into the
methodology and mathematics behind the algorithm. Only a brief summary of the algorithm will be
discussed in this subsection to align with the scope of this thesis.

The GVA uses star-pairs and a subsequent voting mechanism to achieve it’s matching. Erlank divides
the algorithm into five key steps. First the angular distances of separation between all star-pairs in the
image are calculated. Next, similar star-pair angular separation distances are looked for in the catalogue.
Star-pairs in the catalogue which have separations that closely match the measured distances, each give
votes to the two corresponding imaged stars under investigation, by allocating star catalogue IDs to each
star. Following this, an initial matching is conducted which assigns each star its likely identity based
on the number of votes it received. This matching is then verified by conducting a secondary round of
voting, where a final verified list of confirmed star matches is ultimately generated.

The CT was initially developed to perform star matching in what is known as a lost-in-space mode [51].
Star trackers are said to be in such a mode, when they do not have any prior knowledge of their attitude
when attempting to match stars. The main drawback to the lost-in-space mode, is that it takes up a lot
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of computational time. The CT has since had its algorithms improved thanks to research conducted by
Gabriël Roux in 2019 [51], where the researcher contributed to the development of a second star tracker,
tracking mode. The tracking mode implemented is intended to drastically reduce the time and power
consumption needed for the CT to successfully match stars in space, by using prior knowledge of the
systems state [51]. The technique takes advantage of this prior knowledge and uses it to predict the
expected and refined locations on the image plane in which to search and attempt to match the next set
of stars. According to CubeSpace [52], both the lost-in-space and tracking modes are currently utilised
by the CT.

3.6.3 CubeStar Attitude Determination
The primary objective of the CT, is to provide the CubeADCS with an accurate estimation of the CT’s
attitude with respect to an inertial frame of reference. This is the final step conducted by the CT, where
it uses the matched star sensor body and inertial vectors to output its attitude in quaternion vector
form.

The chosen algorithm used by the CT is the QUEST attitude determination algorithm, as it is able to
use all the matched star vectors and provide a statistical solution to determining the CT’s attitude [47].
Its wide usage in the spacecraft industry, robustness and efficiency also aided in its selection for the CT
to implement. A full derivation of the QUEST algorithm is presented by Shuster and Oh in [53].

The QUEST algorithm requires at least three stars that have been successfully matched. Initial estimates
presented by Erlank, on the potential best-case accuracy indicated a maximum simulated cross-boresight
and about-boresight RMS error of 0.004° and 0.02° respectively [47]. The CT can additionally employ
a tracking algorithm, which assists by providing an alternative to star matching. The condition which
allows for this, is when previously identified stars in that frame can be found in the next frame. The
CT tracking algorithm uses its prediction of where the previously identified stars should emerge in the
next frame, and only looks in that exact region for the same star. This assists in the speed in which the
CubeStar can determine its attitude, as well as improving its robustness and sky coverage [47].

3.6.4 CubeStar Specifications
CubeSpace have made several improvements on both the CT’s hardware and software algorithms since
its inception in 2013 by Erlank. CubeSpace reports the following specifications on the CT [48]:

• 3σ star locating accuracies within 0.01° about the camera cross axes and 0.03° about the camera
boresight,

• a maximum FOV of 58°× 47° (x and y-axis respectively),

• a sensitivity range < 3.8 star magnitude,

• a star catalogue of 410 stars and that

• the CT should be able to match three or more stars 99.71% of the time.

A large drawback related to the CT is that if the Sun, Earth or Moon is in the FOV, then it is highly
likely that no stars will be matched, which will lead to a lower accuracy of attitude determination of the
CubeADCS. Additionally, in order to obtain accurate results, the satellite needs to have a slow slew rate
when imaging (the stars), to avoid image smearing. Primary sources of error lie in the CTs image sensor
noise, errors from imperfect lens distortion calibration, inaccurate focal length calculation and boresight
image plane coordinates, and algorithms possibly taking too long to return a solution.

In the unlikely event that the CT is unable to make detections in the eclipse portion of a satellites
orbit, then the only sensor available for measurements will be the MM, which will limit the CubeADCS’s
stability. Fortunately, EO missions with visible light optical payloads (as is considered in this thesis), will
conduct imaging during the sun-lit portion of the orbit. Care must be taken, however, not to let stray
light rays enter the CT’s FOV which would cause invalid or null CT attitude estimation outputs.
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3.7 CubeWheels
As the name suggests, the CubeWheel (CW) is a reaction wheel suited to control CubeSats. Reaction
wheels provide a satellite with the ability to exchange its momentum internally. This is different to
other actuators, such as magnetorquers and thrusters which exchange momentum externally, between
the satellite body and the Earth or between the satellite body and the ejected propulsion mass
respectively.

3.7.1 Reaction Wheel Operation
All reaction wheels comprise a spinning disk with a relatively large mass moment of inertia, connected to
an electric DC (usually brushless) motor. This motor is then controlled by an MCU which commands the
drive electronics to employ various control schemes to track commanded torque or wheel speed references.
A rotating CW creates a gyroscopic stiffness about its centre axis (shown in fig. 3.14) as it conserves its
angular momentum. This gyroscopic stiffness is known as a control torque, which can be used to reduce
the influence of various external environmental disturbance torques, such as aerodynamic or magnetic
disturbances.

Additionally, using an orthogonal set of three reaction wheels holds the satellite stable and controllable
about all three of its body axes. The internal momentum exchange cannot change the total satellite
angular momentum, but it can redistribute this momentum, which allows for the satellite’s attitude to be
controlled. This change in attitude can be achieved at a very precise level with reaction wheels, making
them critical components for any high accuracy IPA EO missions.

Several reaction wheel limitations exist, two of which are that they cannot produce external torques, and
are constrained by their maximum rotation rates. This maximum rotation rate determines a reaction
wheel’s maximum momentum storage as the two are directly related to each other through:

hwheel = Jwheelωwheel, (3.12)

where hwheel, Jwheel and ωwheel are the angular momentum vector, mass moment of inertia and rotation
rate vector (in rad s−1) of the reaction wheel respectively.

Figure 3.14: CubeWheel Angular Momentum Vector [54]

Additionally, the constant absorbing of external disturbance torques gradually causes the wheel’s
momentum to accumulate. This build-up eventually causes the wheel to saturate, as it approaches
its maximum momentum storage capabilities. This means that reaction wheels require momentum
dumping through thrusters or through the on-board magnetorques to externally transfer the accumulated
momentum in the wheel. If this is not done, then any additional external disturbance torques will cause
the satellite to become unstable. It is also not recommended to operate a reaction wheel near 0 RPM
to reduce the dominant frictional torques at low speeds. This can be achieved by biasing the reaction
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wheels, however, this will have an impact on power consumption as well as quicker angular momentum
build-up.

Inaccuracies in following suitable reference commands can be attributed to the CWs speed encoder
resolution being too large, control signal noise, thermal variations, wheel imbalances and frictional torques
acting on the wheels. The last of which, is prominent at low rotational speeds, where this could be
mitigated by biasing the CW’s – as discussed in sec. 2.4. Each wheel is balanced during manufacturing
to avoid unwanted vibrations and inaccuracies. However, design considerations should still be taken to
not mount wheels onto the same mounting platform as an imaging payload or the CT. This will assist
to avoid image smearing due to imaging payload vibrations, and inaccurate star tracker measurements
[55].

3.7.2 CubeWheel Specifications
CubeSpace now manufactures four different CubeWheel (CW) sizes, namely: small, small plus, medium
and large sizes. For the purposes of this thesis, only the small, medium and large wheels were investigated
to suit three separate CubeSat sizes (discussed in chapter 7). The specifications found in the CW ICD
[55] for the three selected CW sizes are summarised in table 3.4.

Table 3.4: Reaction Wheel Summary

Property Units Small Medium Large
Max Speed RPM 8000 6000 6000
Speed Resolution RPM 0.50 0.50 0.50
Sample Rate Hz 1.00 1.00 1.00
Worst-Case Control Error (3σ) RPM 5.00 2.00 2.00
Max Angular Momentum mN m s 1.77 10.82 30.61
Max Torque mN m 0.23 1.00 2.30
MoI kg mm2 2.11 17.23 48.71
Static Imbalance g mm < 0.03 < 0.04 < 0.06
Dynamic Imbalance g mm2 < 0.50 < 1.40 < 5.00

3.7.3 Y-Momentum Wheel
In the case where a CubeADCS is selected to only be a Y-momentum configuration, then only one CW
is required. If the Y-momentum wheel is a small wheel, then it is typically mounted on the CL PCB (as
can be seen in fig. 3.2a), and is controlled by the CL MCU and drive electronics. In all other cases, the
Y-momentum bundle uses a CW with its own drive electronics and MCU (a single reaction wheel). The
Y-momentum wheel can only be activated when the satellite is in a stable Y-Thompson tumbling state
[29]. It works in collaboration with the CubeTorquers in the Y-momentum control stage where it stops
the satellite from spinning to achieve a stable nominal position of zero roll, pitch and yaw. Thereafter,
only the pitch reference angle can be controlled in the Y-momentum control mode.

3.8 Summary
The CubeADCS sensors and actuators have all been discussed. Key performance parameters for each
subcomponent have been laid out, with possible sources of errors identified. This chapter has laid the
framework for proper CubeADCS sensor and actuator simulation modelling to be conducted in chapter 6.
An initial analysis has revealed that the CubeADCS IPA can only be as accurate as the most accurate
sensor – the CT. Its accuracy limits the CubeADCS to a best case IPA of 0.01° about its cross-boresight
axes. To ensure a stable CubeSat attitude throughout the entire orbit period, design considerations must
be made when mounting the CT onto the satellite, to avoid any stray light from entering its FOV.

Additionally, sensor characterisation and calibration must be performed on the ground before launch, to
optimise their performances – especially in the case of the MEMS gyros, which are particularly sensitive
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to thermal variations. Finally, the initial key performance parameters of the CWs, indicate that they
should be able to track speed references to within 0.15% at speeds greater than 2000 RPM and that
the wheels will cause very little vibrational disturbances on the satellite body. To avoid large tracking
errors at low wheel speeds, the CWs can be biased in orbit. The implications of this are analysed in
chapter 7.

Before sensor modelling and simulation testing can take place, an accurate simulation environment must
be defined, and as a prerequisite, the mathematical theory and dynamics which govern this environment
are discussed.
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Chapter 4

Satellite Orbit and ADCS
Concepts

4.1 Overview
An accurate simulation environment that is reflective of the true space environment and satellite
dynamics, can only be defined once the underlying theory and mathematics behind the operation of
an ADCS is understood. This chapter discusses the necessary fundamental ADCS concepts that are both
needed and used throughout this thesis.

4.2 Coordinate Frames
In order to describe a satellite’s relative position in space and time with respect to celestial objects and
the Earth, various appropriate coordinate frames are defined. A rectangular coordinate frame (CF) can
be described with three unit vectors which form a basis to create three orthogonal axes. A vector existing
in such a space can be expressed as a linear combination of the base unit vectors.

Figure 4.1: Example Coordinate Frame

For example, the vector v, shown in fig. 4.1 can be expressed in terms of its orthogonal basis unit vectors
as v = vxx̂ + vyŷ + vz ẑ. The location of the origin (or centre) of the three orthogonal unit vectors is
also important to define, where the origin is usually at the centre of the Earth (nadir) or at the CoM of
a satellite when working with relevant ADCS coordinate frames.

4.2.1 Earth-Centred Coordinate Frames
There are two important Earth-centred CFs to consider when describing a satellite’s position in space
and time, namely: the Earth-Centred Inertial (ECI) frame and the Earth-Centred Earth-Fixed (ECEF)
frame. Fig. 4.2 is adapted from [56] and illustrates both the ECI and ECEF frames and their relation to
each other.

As the name suggests, the ECI frame is an inertial frame of reference and does not rotate with the Earth.
The ECI frame is a celestial coordinate system that is based on the Earth’s orbit around the sun. This
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orbit creates a track along the Earth’s celestial sphere (illustrated in fig. 4.2) which is defined as the
ecliptic, and is inclined at approximately 23.5° to the equatorial plane (obliquity of the ecliptic, ε). The
point where the sun crosses the equatorial plane ascending from the southern to the northern hemisphere
is known as the vernal equinox. The vector pointing from the vernal equinox towards the Sun and the
first point of Aries (�) defines the x-axis in the ECI frame.

Angles αP and δP are referred to as the right ascension and declination of an objects’ position in the ECI
frame respectively. They are celestial coordinates and are defined relative to � and the Earth’s equatorial
plane respectively. Finally, the z-axis in the ECI frame points in the direction of the north celestial pole
along the Earth’s axis of rotation and the y-axis simply completes the orthogonal set. Angles measured
from, and along the ecliptic are known as ecliptic latitudes and longitudes – where longitude in this case
is measured from �.

The ECEF frame x and y axes are both fixed to the Earth and thus rotate with it. The x-axis is defined
to point in the direction of the node of intersection between the Greenwich Meridian and the equatorial
plane. The z-axis is shared with the ECI frame z-axis and points towards the celestial north pole, where
once again the ECEF frame y-axis completes the orthogonal set. Coordinates in the ECEF frame are
defined in terms of a terrestrial geocentric latitude and longitude marked by angles φP and λP respectively
in fig. 4.2.

The position vector in ECEF coordinates of an object on the surface of a spherical Earth can be obtained
from a given geocentric latitude and longitude with

rECEF =

R⊕ cosφgc cosλ
R⊕ cosφgc sinλ
R⊕ sinφgc

 , (4.1)

where R⊕ ∼= 6378.14 km, denotes the Earth’s equatorial radius. Eq. (4.1) gives an example of a position
vector to a location on a spherical Earth’s surface. However, a vector to a satellite in ECEF coordinates
can equally be determined if the radial distance to the satellite and its geocentric latitude and longitude
are known.

Figure 4.2: ECI and ECEF Coordinate Frames

In reality, the Earth is not a perfect spheroid, but rather an ellipsoid with an eccentricity of e⊕ ≈ 0.0818.
Consequently, most Earth navigation and orbit propagation software such as Google Earth and Orbitron,
give locations on Earth with reference to this ellipsoidal Earth in geodetic coordinates. This is important
to take into account for satellites performing Earth target tracking manoeuvres. Seen in fig. 4.3, the
geodetic latitude (φgd) of an object is the angle measured between the equator and the normal to the
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surface of the oblate Earth at the point of interest, where the geocentric latitude (φgc) is the angle
measured from Earth’s centre to the same point.

The vector to a site on the ellipsoidal Earth in ECEF coordinates can thus, be more accurately calculated
by replacing R⊕ in eq. (4.1) with the true radius (Rsite) to an object on Earth’s surface by [56]

Rsite = R⊕

√
1− e2

⊕ sin2 φrd (4.2)

if the geocentric latitude and longitude is known, where φrd is the reduced latitude, and is calculated as
[56]

φrd = arcsin

 sinφgc√
1− e2

⊕ cos2 φgc

 . (4.3)

It must be noted that the radius Rsite is the distance from Earth’s centre to the mean sea level, and that
for locations above or below this level, the relative site altitude can simply offset this radius.

A particular site’s geocentric latitude can be obtained from a geodetic latitude by [56]

φgc = arctan
[(

1− e2
⊕

)
tanφgd

]
, (4.4)

where conversely, the geodetic latitude can be calculated from the geocentric latitude through [56]

φgd = arctan
[

tanφgc(
1− e2

⊕
)]

(4.5)

It must be noted that eqs. (4.4) and (4.5) are only applicable for locations on Earth’s surface [56].
Longitudinal coordinates are identical for both geodetic and geocentric coordinate systems, due to the
oblate sphere being “flattened” from the poles towards the equator.

Figure 4.3: Geodetic and geocentric latitude

With a position vector in ECEF coordinates defined, a position vector in ECI coordinates can be
determined with the following transformation

rECI = AECI
ECEF rECEF , (4.6)

where the transformation matrix AECI
ECEF is calculated as

AECI
ECEF =

cosαG − sinαG 0
sinαG cosαG 0

0 0 1

 . (4.7)

Seen in fig. 4.2, the angular distance αG (measured from � to the Greenwich Meridian) is known as the
Greenwich Sidereal Time (GST) and is calculated as [56]
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αG = ω⊕UT1 + αG0, (4.8)

where ω⊕ (∼= 7.2921× 10−5 rad s−1) is the Earth’s mean angular rotation rate in radians per second, αG0
is the Greenwich Mean Sidereal Time (GSMT) at midnight on the day of interest and UT1 is the total
time elapsed in solar seconds since midnight on the same day. Provided by [56], αG0 can be calculated
using the J2000 epoch in radians as

αG0 = 1.753 368 560 + 628.331 970 688TUT1 + 6.7707× 10−6T 2
UT1

− 4.5× 10−10T 3
UT1,

(4.9)

where TUT1 is the number of Julian centuries elapsed since the J2000 epoch [56] and is calculated using
eq. (4.10) [56] with JD0 being the Julian Date (JD) at midnight on the day of interest.

TUT1 = JD0 + 2 451 545
36 525 (4.10)

A satellite’s geocentric and geodetic latitudes and longitudes (SSP) can additionally be determined from
its ECI position vector. The longitude of a satellite, λsat, can be determined from

λsat = αsat − αG, (4.11)

where αsat is the right ascension of a satellite, shown by αP in fig. 4.2. This angle can be calculated from
the satellite ECI position vector x and y components, rECIx and rECIy respectively using the trigonometric
relation

αsat = atan2
(
rECIx , rECIy

)
. (4.12)

The geocentric latitude, φgc, can be determined using all three vector components through

φgc = arctan

 rECIz√
(rECIx )2 +

(
rECIy

)2

 . (4.13)

As earlier alluded to, the calculation of the geodetic latitude and subsequently, the true altitude of
a satellite involves a slightly more complex solution than the simple use of eq. (4.5). The algorithm
is adapted from Vallado [56] and involves iteratively solving for φgd by using the initial guess of
φgd ≈ φgc. The algorithm is shown below in alg. 4.1, where the inputs to the algorithm are the satellite’s
geocentric latitude and position vector components in ECI coordinates, listed as φgc, rx, ry, and rz

respectively.

Algorithm 4.1: Obtain Satellite Geodetic Latitude and Altitude [56]

Data: φgc, rx, ry, rz, R⊕, e⊕

Result: φgd, hsat
φgd ← φgc

do
φgd(old) ← φgd

C⊕ ←
R⊕√

1 − e2
⊕ sin2 φgd(old)

φgd ←
rz + C⊕e

2
⊕ sinφgd(old)√
r2

x + r2
y

while |φgd − φgd(old)| < Tolerance

hsat ←
√
r2

x + r2
y

cosφgd
− C⊕
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4.2.2 Satellite-Centred Coordinate Frames
Next, it is necessary to define three important satellite-centred CFs, namely: the orbit-referenced
coordinate (ORC) frame, the inertial-referenced coordinate (IRC) frame and finally, the satellite body
coordinate (SBC) frame.

Figure 4.4: ORC frame

Seen in fig. 4.4, the ORC frame is fixed to the satellite’s orbit position and rotates with the orbital motion,
where the origin of the ORC frame is at the satellite’s CoM. The ẐO axis is defined to point towards the
centre of the Earth (nadir) at all times, the ŶO axis points in the orbit anti-normal direction and the
X̂O axis completes the orthogonal set.

Fig. 4.4 illustrates how to transform vectors from the ECI frame to the ORC frame, with knowledge of
the ECI referenced position and velocity vectors, rECIsat and vECIsat respectively. The transformation matrix
AO
ECI , can be determined in terms of the normalised versions of these vectors and the definition of the

ORC frame. The ẐO axis is simply the vector pointing in the opposite direction to r̂ECIsat . The velocity
unit vector, v̂ECIsat , is in the same plane as ẐO, where taking the cross product of the two forms ŶO.
Finally, as earlier mentioned, the axis X̂O completes the orthogonal set of ORC axes and is the cross
product of ŶO and ẐO, which determines the transformation matrix as [57]

AO
ECI =

(r̂ECIsat ×(v̂ECIsat ×r̂ECIsat ))T

(v̂ECIsat ×r̂ECIsat )T

−r̂ECIsat

 , (4.14)

where a vector wECI in ECI coordinates is transformed to the ORC frame by

wO = AO
ECIwECI . (4.15)

Figure 4.5: IRC frame
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The IRC frame is mainly used as a reference frame for satellite dynamic equations of motion. Seen in
fig. 4.5, the IRC frame is defined to have its axes pointing in the same direction as that of the respective
axes in the ORC frame when the satellite is at its perigee. However, it does not rotate with the satellite’s
orbital motion and is nearly fixed in inertial space.

From this perspective, the ORC frame is observed to be rotating about the ŶI axis at a rate opposite to
that of the time varying satellite orbit rotation rate, ωo(t), about the Earth.

Figure 4.6: SBC frame within the ORC frame

Finally, the SBC frame is defined to be fixed the satellite body with its origin at the satellite’s CoM.
The SBC axes are custom defined to suit various mission requirements and provides a reference frame
for ADCS sensor measurements and actuator outputs. The chosen SBC axes orientation is to usually
coincide with the ORC frame when the satellite is in its nominal flight orientation. Fig. 4.6 shows an
arbitrary orientation of the SBC frame within the ORC frame where transformations between the two
frames are discussed in sec. 4.4 on attitude dynamics.

4.3 Orbital Mechanics
In order to place the satellite into the various aforementioned CFs and to accurately predict its position
in space, the properties of its particular orbit must be understood.

4.3.1 Classic Orbital Elements
There are six fundamental properties, which are commonly referred to as the classical orbital elements.
Two of the elements can be seen in fig. 4.7. They describe the shape and size of the satellite’s orbit ellipse
and are respectively known as the semi-major axis, a, and the eccentricity of the orbit, e. Element a,
describes the distance between the centre of the ellipse and either of its vertices, or half the distance of
the ellipse’s major axis. Eccentricity, e represents how flat or circular the orbit is and can be described
by

e = c

a
=

√
1− b2

a2 , (4.16)

where c is the distance between the centres of the orbit ellipse and Earth, and b is the semi-minor axis
(half of the ellipse minor axis).
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Figure 4.7: Shaping Orbital Elements

The next four classical elements are all angular elements, which are used to characterise the orientation of
the orbit ellipse in space, and the satellite’s position along its orbit trajectory. All four of these elements
are illustrated in fig. 4.8 which has been adapted from [58], and are defined with reference to the ECI
frame, discussed in sec. 4.2.1. Element i, describes the inclination of the orbit and is the angle between
the orbital plane and the equatorial plane measured at the right of the ascending node, which is the point
where the satellite crosses the equatorial plane moving in a northerly direction [59].

Figure 4.8: Angular Orbital Elements

The next element, the right ascension of the ascending node (RAAN), is described by symbol, Ω, and is
the angle between � and the ascending node. The RAAN determines how the satellite orbital plane is
orientated with respect to the sun as the Earth moves along its orbit [59]. The argument of perigee, ω,
is the element which describes the position of the orbit perigee (the closest point to Earth) with respect
to the ascending node. It can otherwise be thought of as the orientation of an orbit within its own plane
[59]. The sixth and final classical element to define, is known as the true anomaly represented by ν in
fig. 4.8. It is measured relative to the perigee direction and is the only one of the six elements which is
used to describe the position of a satellite within its orbit as opposed to the shape, size and orientation
of that orbit.
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The radial distance between nadir and a satellite in orbit, rsat = |rsat|, can be calculated by solving for
the two-body vector equation of motion

msatr̈sat +msat
µ

r3
sat

rsat = 0, (4.17)

which yields [59]

rsat = a(1− e2)
1 + e cosν , (4.18)

where msat is the mass of the satellite and µ u 398 601 km3 s−2 is the Earth’s gravitational constant.
It is clear in the case of circular orbits (e = 0), that rsat = a. It follows that eq. (4.18) is only useful
for calculating the angular distance between the satellite and nadir if the orbit is elliptical and the true
anomaly is known. Owing to the fact that the large majority of orbits are never perfectly circular, it is
important to calculate the true anomaly. Two additional conceptual anomaly angles are defined to assist
with this calculation, denoted by E and M , they are the eccentric and mean anomalies respectively.

Figure 4.9: Eccentric and True Anomalies

Fig. 4.9 is adapted from [59], and geometrically illustrates the eccentric anomaly of a satellite in its
orbit. The average angular velocity of a satellite in any orbit is defined as its mean motion, n, calculated
as

n = 2π
τ
, (4.19)

where τ is the orbit period of the satellite in question, calculated by

τ = 2π

√
a3

µ
, (4.20)

for both elliptical and circular orbits. The mean anomaly is the angular correspondent of time and is the
resultant integral of the mean motion n, described by

M = M0 + n(t− t0), (4.21)

where M0 is the mean motion of a satellite at time t0. It follows from eq. (4.21), that it is not possible
to show the mean anomaly geometrically in fig. 4.9. The mean anomaly can additionally be defined in
terms of the eccentric anomaly, E, with [59]

M = E − e sinE, (4.22)

where E can be represented in terms of the true anomaly, ν through [59]
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cosE = e+ cosν
1 + e cosν . (4.23)

Finally, through the use of some elaborate series expansions and manipulations of eqs. (4.22) and (4.23),
the true anomaly can be approximated as [59]

ν ≈M + 2e sinM + 1.25e2 sin 2M, (4.24)

for small values of e.

The North American Aerospace Defence Command (NORAD) generates and maintains a dataset of two-
line elements (TLE) for every single Earth orbiting satellite which has been launched to date. Each TLE
file consists of two lines of 69 characters which includes relevant information about the satellite, such as
its NORAD ID, classification and the epoch at time of TLE generation. The information also includes a
satellite’s classical orbit elements, in addition to its drag and ballistic coefficients at time of generation.
These TLE’s are important sets of data which allow mission designers to monitor and track their satellites,
which may not be equipped with a GPS in orbit. The data is additionally important to ADCSs to assist
with knowledge of the satellite vector in ECI coordinates to accurately control the satellite and perform
desired tracking manoeuvres. The data is fed into simplified perturbation models (SPM) which propagate
a satellite along its orbit trajectory to some accuracy. The SPM used to propagate satellites investigated
in this thesis is the SGP4 model, which is discussed in greater detail in sec. 5.2.1.

4.3.2 Derived Elements and Sun-Synchronous Orbits
There are several additional orbital elements which are derived from the classic orbital elements – of
which only a few will be discussed, to align with the scope of this thesis. The orbital period τ, has
already been defined in eq. (4.20). The next element to define, is the velocity of a satellite as it tracks
along its trajectory. For elliptical orbits the velocity of a satellite can be calculated with [59]

vsat =

√
µ

(
2
rsat
− 1
a

)
, (4.25)

where it follows that for circular orbits (rsat = a) [59]

vsat =
√

µ

a
. (4.26)

Owing to the law of conservation of angular momentum, a satellite in orbit will remain in that orbit
unless it is acted upon by any external forces which consequently alter its angular momentum. There are
a number of orbit perturbations caused by several external space environment forces acting on a satellite,
such as gravitational and aerodynamic forces. These perturbations manifest as a drift or fluctuation
of the classical elements discussed in sec. 4.3.1. Most applicable to this thesis is a drift in a satellite’s
RAAN, known as nodal drift.

The nodal drift phenomenon is directly related to the oblateness of the Earth. This can be seen in fig. 4.10,
where the oblateness of the Earth causes the satellite to experience a more significant gravitational pull
from the Earth as it nears the equatorial bulge. When the satellite is heading from the southern to the
northern hemisphere, it experiences a pull “upwards” towards the equator until it enters the northern
hemisphere and begins to experience a force “downwards” towards the equator [59]. This induces a
perturbing torque, N̂p, where the satellites orbital angular momentum vector, ĥ, will proceed to track
towards this torque vector and result in a coning motion about the north pole. As a consequence of this
motin, the RAAN changes ever so slightly by an amount of ∆Ω with each crossing of the equator (south
to north or vice versa).

In a single day the amount of nodal drift which can occur can be expressed by

∆Ω ∼= −1.5nJ2

(
R⊕

a

)2 cos i
(1− e2)2 , (4.27)
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where J2 = 0.001 082 635 9 is the second zonal harmonic geopotential coefficient and the principal term
which approximates for the bulge at the equator [60].

Figure 4.10: Nodal Drift Observed from Ascending Node Side

Eq. (4.27) shows that this drift can be quite significant for highly circular, low orbiting and gently inclined
orbits. The equation also shows, that prograde orbits (same rotation direction as Earth) where i < 90°,
the nodal precession is in the opposite direction to the Earths rotation, for polar orbits (i = 90°) no
precession occurs, and for retrograde orbits (i > 90°) the nodal precession proceeds in the same direction
as Earths rotation.

The direction of rotation about Earth’s own axis is the same as that of the Earth around the Sun. In a
single day the Earth rotates 360°

365 = 0.9856° per day. Mission designers take advantage of this fact and
engineer their satellites into retrograde orbits at inclinations determined by their desired orbit altitudes
as they maintain a close to constant nodal precession equal to that of the Earth’s rotation around the
Sun each day. This ensures that the sun angle, β, remains nearly fixed to the orbit plane throughout the
entire year. This angle can be translated into an approximate local time when the satellite is crossing the
equator as it refers to the time for a particular region at the sub-satellite point at the time of crossing.
For example, a midnight-noon orbit will have a constant sun angle of 0°, and a 6am – 6 pm orbit will
have a sun angle of 90° throughout the year. The latter of the two orbits will result in the satellite going
into almost no eclipses and thus a maximum amount of solar energy is available for the satellite to use.
Satellite’s equipped with imager payloads are often placed into SSO’s, as the lighting conditions on Earth
will be mostly the same throughout each orbit at the same ECI sub-satellite point.

4.3.3 Angular Relationship Between Earth and a Satellite
Adapted from [60], fig. 4.11 defines the angular relationships (for a spheroid Earth) between a satellite,
nadir, and a target on Earth. From the perspective of a satellite, the Earth appears as a disk with a radius
which changes with its altitude. This angular radius of the Earth disk, ρ⊕, is calculated with

ρ = arcsin
(

R⊕

R⊕ + hsat

)
, (4.28)

where R⊕ ∼= 6378.14 km and is the equatorial radius of the Earth, and hsat as the altitude of the satellite
above the sub-satellite point (SSP). The Earth central angle, λ is measured at nadir from the SSP to the
satellite’s target. The maximum Earth central angle, λ0, is simply calculated with

λ0 = arccos (sin ρ) . (4.29)

If λ is known then one can calculate the nadir angle, η, measured at the satellite from the SSP to the
satellite’s target, where
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η = atan2(sin ρ sinλ, 1− sin ρ cosλ). (4.30)

Otherwise, if η is known, then one can calculate the elevation angle, ε, measured from the target’s local
horizon to the satellite with

ε = arccos
(

sin η
sin ρ

)
(4.31)

and alternatively if ε is known then

η = arcsin (cos ε sin ρ) . (4.32)

The final angle can be determined with the relationship

η + λ+ ε = 90°, (4.33)

where the distance from the satellite to the target, Dsat, can then be calculated using

Dsat = R⊕ ·
(

sinλ
sin η

)
(4.34)

and the distance from the satellite to the true horizon ,D0 , can be calculated with

D0 = R⊕

tan ρ =
√

(R⊕ + hsat)2 +R⊕. (4.35)

Figure 4.11: Earth and Satellite Angular Relationship

4.4 ADCS Theory
Secs. 4.2 and 4.3 address the position of a satellite within the broader space environment. The next
important theory to discuss is with regard to describing the orientation of a satellite within these respective
frames and the subsequent control of this orientation. More specifically, the relationship between the SBC
and ORC frames is of primary interest in this section.

4.4.1 Euler Angles
The attitude of a satellite can be described in terms of angular rotations relative to a nominal orientation
such as the ORC frame. These angular rotations are known as Euler angles and are referred to as a roll
(φ), pitch (θ) and yaw (ψ) about the respective x, y and z axes of the SBC frame. These individual Euler
angles can be used to create transformation matrices, where a roll rotation about X̂B is described by the
transformation matrix

Aφ =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 , (4.36)

for pitch rotations about ŶB
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Aθ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , (4.37)

and finally for yaw rotations about ẐB

Aψ =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (4.38)

4.4.2 The Direction Cosine Matrix
The Direction Cosine Matrix (DCM) (also known as a rotation matrix) describes the orientation of a
particular orthogonal rotated CF with relation to another fixed orthogonal CF with the same origin [61].
Each element in the DCM is the cosine of the unsigned angle between the fixed axes and the associated
rotated axes such that the DCM can be described as [62]:

A =

cos(θx′,x) cos(θx′,y) cos(θx′,z)
cos(θy′,x) cos(θy′,y) cos(θy′,z)
cos(θz′,x) cos(θz′,y) cos(θz′,z)

 , (4.39)

where, for example, θx′,z is the unsigned angle between the rotated CF’s x-axis and the fixed CF’s z-axis.
Euler angles can be used to describe a satellite’s DCM which can be calculated by combining a particular
sequence of Euler rotations to define the SBC frame’s orientation with respect to the ORC frame (fixed
frame in this case). Fig. 4.12 illustrates a Euler-312 rotation sequence or a yaw, roll and pitch rotation
about the satellites respective z, x and y body axes respectively. The order of rotation is significant
which can be observed both mathematically and graphically (as seen in the aforementioned figure). For
instance, a Euler-312 rotation would obtain the DCM

A312 = AθAφAψ

=

CθCψ − SθSφSψ CθSψ + SθSφCψ −SθCφ
−CφSψ −CφCψ Sφ

SθCψ + CθSφSψ SθSψ − CθSφCψ CθSφ

 , (4.40)

where the same rotations performed in a different order such as a Euler-213 rotation (as used in this
project) would obtain the DCM

A213 = AψAφAθ

=

 CψCθ + SψSφSθ SψCφ −CψSθ + SψSφCθ
−SψCθ + CψSφSθ CψCφ SψSθ + CψSφCθ

CφSθ −Sφ CφCθ

 , (4.41)

with the letters S and C representing the sine and cosine functions respectively.

The Euler angles can be extracted from the DCM A213 as

φ = − sin(a32), (4.42)

θ = atan2 (a31, a33) , (4.43)

and ψ = atan2 (a12, a22) . (4.44)
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(a) Yaw Rotation (b) Roll Rotation (c) Pitch Rotation

Figure 4.12: A successive Euler-312 rotation sequence

Euler angles are useful, as they provide a clear human interpretation to describe the attitude of a satellite
and they do not require any redundant parameters to be calculated. However, limitations exist where
certain rotation angles and rotation orders could produce singularities and thus, no solution. They also
require the use of trigonometric functions, rotation order is important where no beneficial product rule
exists, and they do not provide a convenient method for numerical integration.

The DCM on the other hand: produces no singularities, it does not require the use of trigonometric
functions and a convenient product rule exists for successive rotations. The main disadvantage with the
DCM is that it requires the calculation of six redundant parameters.

4.4.3 Quaternions
A third method exists that is widely used in the field of ADCS to determine and propagate the attitude
of a satellite, which uses a mathematical tool known as quaternions. Quaternions are a four-parameter
representation of attitude consisting of both a scalar part and a vector part. Euler states that “any two
independent orthonormal coordinate frames may be related by a single rotation about some axis” [63],
where this axis remains unchanged throughout the motion. It follows that the SBC frame can be related
to the ORC frame by a single rotation angle (Φ) about a single shared axis known as the Euler or Eigen
axis. This rotation can be mathematically defined by the attitude quaternion

q =


q1

q2

q3

q4

 =


e1 sin Φ

2
e2 sin Φ

2
e3 sin Φ

2
cos Φ

2

 , (4.45)

where (e1, e2, e3) represent the components of the unit vector ê, which is shared by both frames, and
which lies along the Euler axis.

The four components of the quaternion vector are not independent and are in fact constrained by the
property that,

q2
1 + q2

2 + q2
3 + q2

4 = 1 (4.46)

The DCM used to transform a vector from the ORC frame to the SBC frame can be represented in terms
of the components the quaternion unit vector by

AB
O =

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (4.47)
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Conversely, the elements of a quaternion vector can be calculated from the satellite DCM with

q4 = 1
2
√
a11 + a22 + a33, (4.48)

q1 = 1
4q4

(a23 − a32), (4.49)

q2 = 1
4q4

(a31 − a13), (4.50)

and q3 = 1
4q4

(a12 − a21). (4.51)

The error in a satellite’s attitude quaternion vector, qe, is defined as the difference between a commanded
attitude quaternion, qc, and the measured or estimated current attitude quaternion q [64]. The error
quaternion is calculated from the quaternion difference between the two as

qe1
qe2
qe3
qe4

 =


q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c



q1

q2

q3

q4

 , (4.52)

where qie, qic and qi make up the components of the error, commanded and current quaternion vectors
respectively.

The main advantages to using quaternions are that: they will always provide a solution to a three-
dimensional rotation of a rigid-body within a reference frame (i.e. no singularities), the use of quaternions
does not require any trigonometric functions, and they offer a convenient solution to propagate a satellite’s
attitude by numerical integration. The only distinct disadvantage is that they do not offer an obvious
human interpretation.

4.4.4 Small Angle Approximation
A useful approximation which is used by ADCS engineers is the small angle approximation. This allows
one to locally linearise non-linear functions such as sinusoids. This is especially useful when using
estimation algorithms such as the Extended Kalman Filter (EKF) that are used to estimate non-linear
systems which can be well approximated through local linearisations. For a very small angle (γ) which
is close to zero, this approximation implies that

sin γ ≈ γ, (4.53)

and that

cos γ ≈ 1. (4.54)

4.4.5 Calculating Angular Errors
Various ADCS sensors ultimately provide the system with a measurement vector which indicate the
relative positions of a celestial objects or the direction of the surrounding magnetic field. As attitude
describes a satellite’s angular orientation about its respective axes, a good indication of how these
measurements may effect the accuracy of attitude estimations, is to measure the angular distance between
the measured unit vector in the SBC frame and the actual expected unit vector in the same frame. This
can be achieved by modifying the definition of the dot product through

ŵB • v̂B = |ŵB | · |v̂B | cos(ξ)

∴ ξ = arccos(ŵB • v̂B),
(4.55)

where ŵB and v̂B represent the expected and measured unit vectors in the SBC frame respectively.
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It is important to note that both vectors are normalised (unit vectors) and are in the same reference
frame.

4.4.6 Attitude Kinematics & Dynamics
A satellite’s angular body rates can be measured relative to the IRC frame or relative to the ORC frame.
Angular motion as measured by gyroscopes fixed to a satellite’s body are determined relative to the IRC
frame and are combination of both the satellite’s angular body rates within the ORC frame and the
satellite’s orbit angular rate about the Earth with

ωIB = ωOB + ωIO

∴ ωOB = ωIB − ωIO, (4.56)

where ωIB = ωixX̂B + ωiyŶB + ωizẐB (4.57)

is the inertially-referenced body rate vector,

ωOB = ωoxX̂B + ωoyŶB + ωozẐB (4.58)

is the orbit-referenced body rate vector and,

ωIO = ωixX̂O + ωiyŶO + ωizẐO (4.59)

is the inertially-referenced orbit rate vector.

The vector ωIO can be transformed by the DCM, AB
O to obtain the subsequent angular body rates relative

to the ORC frame. As discussed in sec. 4.2.2, fig. 4.5 shows that the ORC frame can be observed as
rotating at a rate of −ωo(t) within the IRC frame which means that ωOB in eq. (4.56) can in fact be
expressed as

ωOB = ωIB −AB
O

 0
−ωo(t)

0

 . (4.60)

Kinematics is the study of an objects motion which is independent of considering the forces which
caused that motion. The kinematic equations of motion can be expressed in terms of: Euler angle
kinematics, DCM kinematics and quaternion kinematics. To avoid trigonometric singularities in 3-axis
control systems, the quaternion control model is used.

The body rates of a satellite can be converted to quaternion rates through

q̇ = 1
2Ωq, (4.61)

where

Ω =


0 ωoz −ωoy ωox

−ωoz 0 ωox ωoy

ωoy −ωox 0 ωoz

−ωox −ωoy −ωoz 0

 . (4.62)

The new quaternion attitude can then be propagated by numerically integrating these rates with

q =
∫

q̇dt . (4.63)
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Once propagated, it is important to normalise the calculated quaternion so that

qnorm = q
‖q‖ . (4.64)

Contrary to the definition of attitude kinematics; the attitude dynamics of a satellite are concerned with
the forces that bring about attitude motion of a satellite body in an inertial frame – where Newton’s
laws apply. The attitude motion is represented by the angular rates of the body axes relative to the IRC
frame and the rotational forces causing that motion are represented by torque vectors in the SBC frame.
The Euler dynamic equation of motion describes that the change in a satellite’s angular momentum must
be equal to the sum of all torques (both internal and external) acting on the satellite. This equation can
be expressed as [64]

Ḣ = Next + Ngyro −Nwheel, (4.65)

where

Ḣ = Jω̇IB , (4.66)

Ngyro = −ωIB × (JωIB + h), (4.67)

Nwheel = ḣ, (4.68)

and

Next = Nm + Nd. (4.69)

In eqs. (4.66) and (4.67) J is the moment of inertia matrix of the satellite and h is the angular momentum
vector of the reaction wheels, where Ngyro is the satellite’s gyroscopic coupling torque. Shown in
eq. (4.69), Next is the sum of the external torques acting on the satellite body – with Nm and Nd

being the satellite’s magnetic control and environmental disturbance torques respectively.

4.4.7 Quaternion Feedback Controller Gains
During reaction wheel control manoeuvres, it is sufficient to assume that the large reaction wheel control
torques will be orders of magnitude greater than the external disturbance torques acting on the satellite.
This reduces eq. (4.65) to

Jω̇IB = Ngyro −Nwheel, (4.70)

where the PD type quaternion feedback control law [64]

Nwheel = KpJqvec +KdJωerr − ωIRCB × (JωIRCSBC + h) (4.71)

acts to control the ORC referenced body rates and error quaternion to zero, where it additionally
compensates for the gyroscopic coupling torque.

Figure 4.13: Basic Pitch Control Loop

In eq. (4.71), the term qvec represents the vector portion of the quaternion error, qe and ωerr is the
ORC angular rate error. Fig. 4.13 illustrates the basic feedback loop for an uncoupled single axis pitch
manoeuvre with a PD type controller. If qvec = [0 sin θ

2 0]T and one assumes that the inertially
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referenced x and z body rates are ≈ 0, and ωyo ∼= ωyi, then after substituting eq. (4.71) into eq. (4.70),
it follows that

Jyy θ̈ = −KpJyy sin θ2 −KdJyy θ̇,

or

Jyy θ̈ +KdJyy θ̇ +KpJyy sin θ2 = 0.

If it is further assumed that there will be small pitch error angles then the small angle approximation in
eq. (4.53) is valid, and

Jyy θ̈ + JyyKdθ̇ + JyyKp
θ

2 = 0 (4.72)

is obtained. The controller and open loop transfer functions in fig. 4.13 can be represented as

GD(s) = K ′
p +K ′

ds, (4.73)

and

GOL(s) = 1
Jyys2 (4.74)

respectively, which determines the closed loop transfer function, GCL, to be

GCL(s) =
K ′
p +K ′

ds

s2 + 1
Jyy

K ′
ds+ 1

Jyy
K ′
p

, (4.75)

where gains K ′
p and K ′

d can be related to the quaternion controller feedback gains with

K ′
p = Jyy

2 Kp, (4.76)

and

K ′
p = JyyKd. (4.77)

The Laplace transform of eq. (4.72) obtains the same second order closed loop pole equation as in
eq. (4.75), which can be used to relate the desired damping and natural frequency terms of a typical
second order system to the satellite pitch control response. It follows that the quaternion controller
feedback gains can thus be calculated with

K ′
d

Jyy
= 2ζωn

∴ Kd = 2ζωn, (4.78)

and

K ′
p

Jyy
= ω2

n

∴ Kp = 2ω2
n, (4.79)

where the tailoring of the desired natural frequency and damping response approximately produces the
resulting quaternion feedback controller gains.
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4.4.8 Target Tracking
Satellites perform target tracking manoeuvres for several purposes such as: pointing at ground stations
(GS) during satellite overpasses for communications, continuous monitoring of various Earth locations,
or for EO imaging of desired targets [65].

In order to track a desired location on Earth’s surface, the target in question must necessarily be in
range of the satellite. This can be determined using eqs. (4.34) and (4.35), where target tracking is only
possible when Dsat < D0. Distance Dsat can be calculated with knowledge of the geocentric coordinates
of a target and the propagated SSP, using the Earth central angle from satellite to target, λ, as calculated
from the law of cosines for sides where

cosλ = cosφ′
S cosφ′

T + sinφ′
S sinφ′

T cos ∆λS/T
= sinφS sinφT + cosφS cosφT cos ∆λS/T . (4.80)

The angular relationships in eq. (4.80) are illustrated in fig. 4.14, where

φ′
S = 90°− φS φ′

T = 90°− φT (4.81)

and

∆λS/T = |λS − λT |. (4.82)

The heading or azimuth angle, as measured from north to the great circle passing through the SSP and
target coordinates, can be calculated with

cos θAz = sinφT − cosλ sinφS
sinλ cosφS

. (4.83)

Figure 4.14: Satellite to Target Earth Geometry

Once it is determined that the target is indeed in range of the satellite, a desired vector from the satellite
towards the target must be calculated to determine the error quaternion which allows the controller
to point the satellite towards the target. The ECEF target vector, rECEFT , can be calculated with
eq. (4.1), where R⊕ is instead replaced with Rsite in eq. (4.2) as determined from the Earth’s geodetic
coordinates.

The target vector is then transformed to ECI coordinates using eq. (4.6), where

rECIT = AECI
ECEF rECEFT .
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The vector pointing from the satellite to the target in ORC coordinates, rORCS/T , uses eq. (4.15) and the
propagated satellite vector, rECIsat , with

rORCS/T = AORC
ECI

(
rECIT − rECIsat

)
. (4.84)

If it is assumed that an imaging payload will point along the satellite z body axis, then the commanded
unit vector to be fed to the quaternion feedback controller can be calculated with [66]

r̂c =
ẑSBC × r̂ORCS/T

|ẑSBC × r̂ORCS/T |
, (4.85)

where ẑSBC and r̂ORCS/T are the normalised SBC imager and ORC satellite to target vectors respectively.
The commanded quaternion is finally determined by [66]

qc =
[

r̂c sin Φ
2

cos Φ
2

]
, (4.86)

where angle Φ can be determined from the vector dot product in eq. (4.55). Finally, the commanded
angular ORC referenced body rates during tracking can be calculated with [66]

ωORCc = r̂c × ˆ̇rc, (4.87)

where the time derivative of r̂c (ˆ̇rc) can be approximated as [66]

(ˆ̇rc)n ≈
1
Tws

(
(r̂c)n − (r̂c)n−1

)
, (4.88)

where Tws is the sample period of the CWs, allowing for the the angular rate error to ultimately be
calculated as

ωerr = ωORCSBC − ωORCc . (4.89)

4.5 Summary
Satellite orbital dynamics and control theory are discussed and expanded on in this chapter. The concepts
and tools elaborated on in the chapter are used throughout the remainder of this thesis to assist with
understanding the laws which govern the simulation environment and satellite dynamics. The final two
topics discussed in this chapter will additionally aid in understanding the control and error dynamics of
a satellite performing tracking manoeuvres. Before the accuracy and stability of such manoeuvres can
be expanded on, it is necessary to define a simulation environment describing both the satellite external
space environment and the various limiting factors which affect its IPA and attitude stability.
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Chapter 5

CubeSat Simulation Environment

5.1 Overview
A realistic simulation environment is required in order to investigate the expected IPA of a satellite
in LEO, equipped with a CubeADCS. To test the various simulation environment models, this chapter
assumes a basic set of physical and orbital parameters for a CubeSat in LEO, where the CubeSat is
defined to be:

• 3U in size,

• to have mass moments of inertia elements, [Ixx Iyy Izz] = [0.0361 0.0365 0.0075] kg m2,

• to have body mounted solar panels,

• to be at an orbit altitude of ± 500 km,

• to be in an SSO with a sun angle of approximately 30°,

• to have its SBC axes aligned with the ORC axes in its nominal orientation,

• is 3-axis stable whilst constantly pointing nadir, and

• to have it’s -Y panel facing towards the Sun at all times (not sun tracking).

First, the external space environmental models are discussed, after which, the resultant external
disturbance torques affecting the CubeSat’s dynamics are modelled. Finally, the satellite dynamics and
kinematics with no control are modelled.

5.2 Low Earth Orbit Space Environment
This section describes the external space environment that a satellite in a LEO would experience. This
includes the modelling of its orbit trajectory around the Earth, the relative position of the Sun, and the
surrounding external geomagnetic field.

5.2.1 Orbit Propagation with SGP4
Several SPMs exist which aim to predict and propagate a satellite’s position and velocity in its orbit.
The first SPM was developed in 1966 by Hilton and Kuhlman, and is known as the SGP model [67].
The SGP model was intended to be used for low orbiting satellites with orbit period of less than 225 min
[67].

The second model, SGP4, made several improvements to the SGP model was initially developed by
Cranford and Lane in 1969 and 1970, where an improved version was published in a US Air Force
document known as “Space Track Report No. 2” [68]. In 1980, Hoots and Roerich published the orbit
propagation documentation and algorithms written in FORTRAN IV computer code in “Space Track
Report No. 3” (STR#3), which was the first report to be released to the public [67]. TLE sets are
generated by NORAD using the SGP4 model, where the orbital periodic variations are removed, and the
mean values are published [67]. Hoots and Roerich subsequently stress the importance of using the same
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model to reconstruct the periodic variations that were previously removed [67].

In 2006, Vallado et. al. released a revised version of STR#3, accompanied by computer code written in
the C++ programming language. The revision aimed to mitigate various rare cases of inaccuracies in the
model whist remaining compatible with the NORAD generated TLE sets. The simulated model used in
this thesis is based on the revised SGP4 model and is implemented in C code to be run as an S-Function
in MATLAB®’s Simulink® software. The CubeADCS additionally relies on an SGP4 propagator and so
it is fitting that the same model is used. The original and revised models additionally make use of the
World Geodetic System 72 (WGS72) constant terms, which is considered throughout the investigations
that follow.

The simulated SGP4 model takes in a unique TLE data set assigned to a particular CubeSat, as well as
the elapsed time (∆t) since the initial TLE generation unix time (t0) in seconds. The model subsequently
propagates the satellite in its orbit, outputting the satellite’s instantaneous RAAN, inclination, orbit
radius from nadir (Rsat), the satellite position (rECIsat ) and velocity (vECIsat ) vectors in ECI coordinates,
the mean (M) and true anomalies (ν) and, the orbit angular rate (ωo(t)). With rECIsat known, the elapsed
and current time, ∆t and t respectively, is used to calculate the satellite geocentric and geodetic latitudes
and longitude from eqs. (4.8) to (4.13) together with the iterative algorithm in alg. 4.1. Additionally,
the satellite velocity and position vectors are used to generate the transformation matrix in eq. (4.14) to
transform vectors to and from the ORC frame.

A TLE set was obtained to suit the physical specifications stipulated in sec. 5.1 where the RAAN was
adjusted to suit the sun angle criteria. The TLE can be found in appendix A where the date of TLE
generation by NORAD is set to be around the Northern Hemisphere Spring solstice in 2019 (20 March
2019), when the ECI x-axis is pointing directly towards the Sun which additionally lies on the equatorial
plane. The set of TLE parameters is used throughout the remainder of this chapter to model the remaining
simulation environmental properties.

The TLE was used to propagate the CubeSat using the simulated SGP4 model over one orbit period.
The results of the simulated model can be seen in figs. 5.1 to 5.3 which plots the satellite position vector,
velocity vector, and orbit angular rate respectively. Fig. 5.3 shows a nearly constant angular rate, which
indicates a near circular orbit.

Figure 5.1: Simulated CubeSat Position Vector in ECI Coordinates
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Figure 5.2: Simulated CubeSat Velocity Vector in ECI Coordinates

Figure 5.3: Simulated CubeSat Orbit Angular Rate

5.2.1.1 SGP4 Accuracy

Several CubeSat ADCS’s, including the CubeADCS, rely on SGP4 models to propagate their orbits and
to determine its positional knowledge in space. Whilst the model is a good approximation of a satellite’s
orbit trajectory, environmental disturbances such as aerodynamic drag, can cause the SGP4 model to
become significantly inaccurate over several days. This error, or SGP4 drift, is more significant at lower
orbit altitudes where the Earth’s atmosphere is denser.

A simulation was conducted to measure the typical SGP4 drift for three similarly orientated, 3U CubeSats
with similar masses, in three different orbits. To measure the drift, a dataset of 21 TLE’s for each
satellite spaced approximately one day apart, was first obtained over the same time period (1 January
2019 to 21 January 2019). Next, each satellite was initialised to a reference centre TLE and propagated
approximately 10 days ahead and 10 days behind the starting ephemeris at time intervals matching the
dates in each CubeSat’s TLE dataset. The error was finally obtained, by initialising the SGP4 model
at each TLE in the dataset per CubeSat, and calculating the RMS error between the initialised position
vectors and the previously calculated propagated position vectors.
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Figure 5.4: SGP4 Drift of 3U CubeSats

Fig. 5.4 shows the SGP4 drift results of the three 3U CubeSats. The CubeSats chosen were RadSat-g,
Aaalto-1 and Delfi-n3Xt, which were in a 400 km ISS orbit, a 500 km SSO, and a 620 km SSO respectively.
The results show a large SGP4 drift for CubeSats in a low orbit such as for RadSat-g. Over a period of 10
days, the positional knowledge error could translate to a IPA error greater than 3° at such a low altitude
– which would be unacceptable for satellites with high IPA requirements. The drift is less significant
for Aalto-1 and Delfi-n3Xt which are both in higher orbits, but it can be seen that in just a few more
days, that the error would eventually also become unacceptable. Additionally, the investigation shown
in fig. 5.4 makes the assumption that the centre reference TLE produces accurate positional knowledge,
where Rossouw shows in his research in 2015 that the RMS error can already be as much at 1 km when
the NORAD TLE positional data is compared to GPS positional data [69].

To mitigate the drift error, CubeSat mission designers send TLE updates to the respective satellites which
reinitialise the on-board SGP4 orbit propagators. These updates need to be sent to CubeSats regularly
for satellites at lower orbit altitudes – such as RadSat-g. For CubeSats in slightly higher LEOs (such
as for the simulated satellite used throughout this chapter), the update frequency does not need to be
that high, unless the mission requires a good IPA. For the purposes of this investigation, it is assumed
that the TLE’s of the various simulated CubeSat’s are updated at regular intervals, in order to reflect
the accuracy of the CubeADCS independent of positional knowledge errors.

5.2.1.2 SGP4 Corrections with the Integration of a GPS

As an alternative to regularly updating a CubeSat’s SGP4 propagator with a new TLE set, CubeSats can
be fitted with a GPS which allow its system to obtain accurate positional knowledge in near real-time.
This unfortunately comes with the drawback of a high power consumption which is typically not suitable
for CubeSat power budgets. Rossouw proposes two solutions to this problem which aims to conserve
power by only activating the on-board GPS at less than a 15% duty cycle [69].

The first solution involves the use of an adaptive SGP4 (aSGP4) analytical method. The method is simply
a slight adaptation of the industry proven SGP4 propagator which uses GPS measurements to adjust the
orbital parameters in the TLE, and was found to produce a simulated RMS and maximum 3D positional
knowledge error of 200 m and 1 km respectively – operating at a duty cycle of 12.5% [70]. The numerical
integration method incorporates an EKF with a Runge-Kutta integrator to estimate the satellite’s position
and velocity. The latter method produced significantly lower RMS and maximum positional knowledge
errors of 60 m and 300 m respectively – operating at a duty cycle of 10.7% [70].

Although the numerical integration method produced better results than the aSGP4 method, Rossouw
points out the substantial flight heritage of the SGP4 propagator versus the use of an entirely new system
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[70]. The use of a simple adaptation of the TLEs presents a lower risk. Additionally, the aSGP4 method
can propagate to any time in one step, where the EKF method needs to propagate in a stepwise fashion
to a point 30 s in the future [70]. Although the CubeADCS does not come standard with a GPS, nor
does CubeSpace manufacture one – an interface does exist on the CubeControl PCB which allows for the
integration of a GPS.

5.2.2 Sun Position Model
The Sun’s positional model is important to define for several reasons in this simulation. The first of which,
is that it provides both the CSS and the FSS with positional knowledge of where a satellite is with respect
to the Sun, and to assist the EKF attitude estimation algorithms implemented by the CubeADCS. Part
of the relative positional knowledge will also indicate when the Sun enters the CubeStar’s FOV, effecting
its performance.

The Sun also influences the solar panel magnetic disturbance torques acting on the satellite body and so
it is important to model the intensity of the solar flux, as well as when the resultant torques are being
applied (i.e. when the satellite is in the sunlit portion of its orbit). Solar radiation pressure contributes to
external disturbance torques acting on satellite’s in space, however, this force is negligible for CubeSats,
especially in comparison to the resultant magnetic torques generated. As such solar radiation pressure
disturbance torques are ignored in sec. 5.3.

The following method and equations for determining the vector from the centre of the Earth to the centre
of the Sun (Sun vector) in the ECI frame, r�, is acquired from Meeus [71]. The author states that the
method yields a Sun positional knowledge accuracy of within 0.01°; which is sufficient for this project,
especially since the expected accuracy of a sensor such as the CubeSense FSS is within 0.2°.

First, the number of Julian centuries from the J2000 epoch to the current epoch (ephemeris), TUT1, is
calculated using eq. (4.10). The geometric mean ecliptic longitude (with reference to the mean equinox),
λM� , of the sun is then calculated with

λM� = 280.466 45° + 36 000.769 83TUT1 + 0.000 303 2T 2
UT1. (5.1)

Next, the mean anomaly, M�, for the Sun is calculated as

M� = 357.529 10° + 35 999.050 30TUT1 − 0.000 155 9T 2
UT1

− 0.000 000 48T 3
UT1, (5.2)

which allows the Sun’s equation of the centre, C�, to be calculated as

C� =
(
1.914 600° − 0.004 817TUT1 − 0.000 014T 2

UT1
)

sinM�

+ (0.019 993° − 0.000 101TUT1) sin 2M�

+ 0.000 290 sin 3M�. (5.3)

Following this, the eccentricity of the Earth’s orbit around the sun, e⊕� , is calculated with

e⊕� = 0.016 708 617 − 0.000 042 037TUT1 + 0.000 000 123 6T 2
UT1. (5.4)

The Sun’s true geometric ecliptic longitude, λT� , is defined as

λT� = λM� + C�, (5.5)

and its true anomaly, ν�, is defined as

ν� = M� + C�. (5.6)
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The final apparent ecliptic longitude, λA� , of the sun (as referenced from the true equinox) is calculated
as

λA� = λT� − 0.005 69° − 0.004 78 sin �, (5.7)

where

� = 125.04° − 1934.136TUT1. (5.8)

Next in the process of calculating the sun vector, the radius, R�(AU) (measured in AU), is the radius
from the centre of the Earth to the sun and is calculated with

R�(AU) =
1.000 001 018

(
1− e2

⊕�

)
1 + e⊕� cos ν�

. (5.9)

The radius, R�(AU), is then converted to kilometres with

R� = 1.495 978 70× 108 ·R�(AU), (5.10)

and the obliquity of the Sun’s ecliptic to the equatorial plane is calculated as:

ε� = 23.439 291 11° − 0.013 004 167TUT1

− 1.638 89× 10−7T 2
UT1 + 5.036 11× 10−7T 3

UT1

+ 0.002 56 cos �. (5.11)

Finally, the sun vector in the ECI frame, r�, is calculated with:

r� =

r�x

r�y

r�z

 =

 R� cosλA�

R� sinλA� cos ε�
R� sinλA� sin ε�

 (5.12)

Fig. 5.5 illustrates the relationship between the satellite’s Sun vector, SECI , and the Earth’s Sun vector,
r�, in the ECI frame where

SECI = r� − rsat. (5.13)

Figure 5.5: Sun Vector in ECI

Once the satellite’s Sun vector is calculated in the ECI frame, the vector is normalised and transformed
to the ORC frame using eq. (4.15), and then to the SBC frame with the calculated satellite DCM.

The Sun angle to the satellites orbit-plane, βsat, is calculated with

βsat = arcsin [cos δ� sin isat sin (Ωsat − α�) + sin δ� cos isat] , (5.14)

where α� is the right-ascension of the sun and is calculated as

α� = atan2
(
cos ε� sinλA� , cosλA�

)
, (5.15)
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and δ� is the declination of the Sun can be calculated with

δ� = sin ε� sinλA� . (5.16)

5.2.2.1 Determining Eclipse

In order to determine when the satellite is in eclipse, the Earth angle, η⊕�, between the Sun’s point (SP)
on Earth and the SSP is first calculated by using the spherical geometry cosine law illustrated in fig. 5.6,
where

η⊕� = arccos
[

cos (90°− φsat) cos (90°− φ�)

+ sin (90°− φsat) sin (90°− φ�) cos ∆λ⊕�
]

= arccos
[

sinφsat sinφ� + cosφsat cosφ� cos ∆λ⊕�
]
. (5.17)

The angles φsat and φ� in eq. (5.17) are the satellite and Sun’s geocentric latitudes respectively, where
∆λ⊕� = λsat − λ� is the difference between the satellite’s longitude, λsat, and the Sun’s longitude,
λ�.

Figure 5.6: Satellite-Sun Earth Angle

Fig. 5.7 shows how to determine if the satellite is in eclipse or not. The angle at which the Sun’s rays
strike the Earth is approximated to 90° do to the immense distance that the Sun is away from the Earth.
With this in mind, the satellite is defined to be in eclipse if

∣∣η⊕�
∣∣ > 90° + arccos

(
R⊕
Rsat

)
.

Figure 5.7: Satellite Eclipse

Fig. 5.8 shows the Sun vector model as measured in the ORC frame of five orbit periods which includes
the applied eclipse periods. The y vector component remains constant throughout the orbits which is
expected for an SSO, where the arcsine of the component corresponds nicely to the desired sun angle of
30°. The eclipse period is additionally short and is expected to remain roughly the same throughout an
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entire Earth year as is additionally typical of an SSO. The simulated model Sun vector in the SBC frame
is always calculated with the eclipse applied to it.

Figure 5.8: Simulated Sun Model Unit Vector Components in the ORC Frame

5.2.3 The Geomagnetic Field Model
The final model discussed is the geomagnetic field model. The Earth’s magnetic field is important to
model as it has a significant impact on satellite’s in orbit – especially those in LEO. Satellites’ residual
and induced solar panel magnetic dipoles interact with the Earth’s magnetic field and influence its
dynamics in the form of disturbance torques. A satellite can also take advantage of the magnetic field
by taking measuremnts of the surrounding magnetic field vector to provide a coarse estimate of its
orientation in space and, to subsequently control its orientation by periodically activating its on-board
magnetorquers.

A satellite’s attitude, through geomagnetic field observations, is determined by comparing magnetometer
measurements to a geomagnetic field model. Earth’s magnetic field is often thought of as a simple
“bar magnet” or dipole model for ease of visualisation. However, this is not a true representation of
the geomagnetic field, where a more accurate and sophisticated model is required for ADCS operations.
The dominant model adopted by scientists and engineers alike is the International Geomagnetic Reference
Field (IGRF) model, which is maintained and released by the International Association of Geomagnetism
and Aeronomy (IAGA).

The IAGA releases a new IGRF model approximately every five years, as the Earth’s magnetic field
varies slowly over time. The model provides a “snapshot” of numerical Gaussian coefficients since the
year 1900 up until the year of release in five-year intervals. Each release additionally includes a secular
variation predictive average coefficient [72] which allows the user to predict the expected behaviour of the
geomagnetic field over the next corresponding five-year period predating the next updated release.

The Earth’s magnetic field strength in ECI coordinates, BECI(r, φ′
gc, λ, t), is described by

BECI = AECI
ECEF∇V, (5.18)

where V (r, φ′
gc, λ, t) is the scalar potential function which is expressed as a finite series containing the

aforementioned Gaussian coefficients [72] such that [72]

V (r, φ′
gc, λ, t) = a

N∑
n=1

n∑
m=0

(a
r

)n+1
[gmn (t) cosmλ+ hmn (t) sinmλ] · Pmn (cosφ′

gc). (5.19)
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Variables r, φ′
gc, λ, t and a = 6371.2 km in eq. (5.19) represent the radial distance of a satellite observing

the geomagnetic field from Earth’s centre, the satellites’s geocentric co-latitude (90° - φgc), the satellite’s
longitude, the year to which the IGRF coefficients are propagated to and, the magnetic spherical radius
respectively. The Gaussian coefficients are shown by gmn (t) and hmn (t) respectively, where Pmn describes
the Legendre functions of degree n and order m [72].

In order to propagate the IGRF Gaussian coefficients to the predicted coefficients for a particular year in
the interval between the release year and the valid five-year period after that, simple linear extrapolation
is used, such that [72]

gmn (t) = gmn (T0) + ġmn (T0)(t− T0), (5.20)

where T0 is the IGRF model release year and ġmn (T0) is the aforementioned secular variation predictive
average coefficient. The extrapolation is described in exactly the same way when calculating hmn (t). The
model used to simulate the magnetic field in this thesis is the 12th generation IGRF model which was
released in December 2014 and is valid between 2015-2020, where only the 10th order coefficients are
used. Fig. 5.9 shows the geomagnetic field strength for the simulated CubeSat in its SSO as experienced
in the ORC frame, where the field components are obtained from ECI coordinates using the AO

ECI

transformation matrix in eq. (4.14). The results of the geomagnetic field model correspond nicely to the
expected outcomes as the CubeSat is in a near polar orbit and thus has a small y component throughout
its orbit.

Figure 5.9: Geomagnetic Field Components in ORC Frame

5.3 Environmental Disturbance Torques
Satellite environmental disturbance torques are caused by external forces acting on the CubeSat which
subsequently influence its attitude. Three external forces which have the greatest impact on a CubeSat’s
attitude in LEO are considered in this thesis.

Three main environmental disturbance torques are described by ND (shown in eq. (5.21)), and can be
expanded as

ND = Ngg + Nad + Nmsp, (5.21)

with Ngg being the gravity gradient torque acting on a CubeSat, Nad being the aerodynamic torque
acting on a CubeSat - which is substantial for CubeSats in LEO, and the final term, Nmsp is the magnetic
disturbance torques induced by a CubeSat’s solar panels when it is in the sunlit part of its orbit.
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5.3.1 Gravity Gradient Torque
Gravity gradient torque can be best visualised with a dumb-bell analogy as shown in fig. 5.10, where the
balance between the centrifugal force towards zenith, and the gravitational force towards nadir acts to
passively stabilise the satellite along its long body axis. In other words, the auxiliary mass of the satellite
that is further away from Earth will feel the greatest centrifugal force, and likewise, the auxiliary mass
that is closest to the Earth will feel the greatest gravitational force [59].

Figure 5.10: Gravity Gradient Torque

As a result, a torque is induced about the satellite’s centre of mass (CoM), which is described by [66]

Ngg = 3ω2
0

(
zBO × JzBO

)
, (5.22)

where zBO is the ORC referenced vector pointing along towards the ORC z-axis transformed to the SBC
frame as [66]

zBO = AO
B

0
0
1

 . (5.23)

Eqs. (5.22) and (5.23) can be combined to solve for the vector components of Ngg as [66]

Ngg = 3ω2
0 ·

(Jzz − Jyy)A23A33

(Jxx − Jzz)A13A33

(Jyy − Jxx)A13A23

 . (5.24)

ADCS estimators take advantage of the gravity gradient disturbance torque as it can be modelled
accurately, which separates this kind of external disturbance from others which are somewhat less
predictable and thus more challenging to precisely model.

5.3.2 Aerodynamic Torque
The atmospheric density surrounding satellites in LEO, is substantial enough to induce atmospheric
drag, and subsequently – atmospheric disturbance torques [60]. Such disturbance torques, occur when
a satellite’s centre of pressure (CoP) is misaligned with its centre of mass (CoM) [60]. Variations in
atmospheric velocities cause deviations in pressures acting on the numerous surfaces of a satellite. The
CoP is determined as the average location of these pressure deviations [73].

The atmospheric drag is determined by the satellite’s orbit velocity and the angular rotation of the Earth,
as the outer atmosphere rotates with it [74]. The resultant relative atmospheric velocity vector, vECIa , in
ECI coordinates is calculated as

vECIa =

 0
0
ω⊕

× rECIsat − vECIsat , (5.25)
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where the velocity vector, vOa , in the ORC frame is also obtained using the AO
ECI transformation matrix

in eq. (4.14). In order to determine the relative atmospheric velocity vector inducing drag on the surfaces
of the satellite, the DCM is applied to vOa to produce the vector in the SBC frame, vBa .

The aerodynamic disturbance model, is adapted from Steyn and Lappas [74] where the external
disturbance torques acting on each facet of the satellite body are summed. The total aerodynamic
disturbance torque vector is thus calculated as [66]

Nad =
n∑
i=1

ρ||vBa ||
2
AiH(cosαi) cosαi

{
σt

(
rpi × v̂Ba

)
+

[
σnS + (2− σn − σt) cosαi

]
(rpi × n̂i)

}
, (5.26)

where ρ is the atmospheric density at a particular altitude in LEO, v̂Ba is the unit relative velocity vector
in SBC, αi is the incidence angle of the relative velocity vector on facet i, Ai is the projected surface area
of facet i, rpi is facet i’s CoM to CoP vector, and n̂i is the normal unit vector of facet i – where cosαi is
the dot product between v̂Ba and n̂i. H(...) represents the Heaviside function where

H(x) = 0 if x < 0 and

H(x) = 1 if x ≥ 0.
(5.27)

Variables S, σn and σt represent the ratio of molecular exit velocity, vb, to atmospheric velocity, the
normal accommodation coefficient, and the tangential accommodation coefficient respectively. For this
study it is assumed that σn ∼= σt ∼= 0.998 and that S ∼= 0, which reduces eq. (5.26) to

Nad
∼=

n∑
i=1

ρ||vBa ||
2
AiH(cosαi) cosαi · 0.998 ·

(
rpi × v̂Ba

)
. (5.28)

The atmospheric density, ρ, is dependent on a satellite’s altitude and approximately decreases
exponentially [60]. To calculate the atmospheric density of a satellite at a particular altitude, the formula
[60]

ρ ≈ ρ0e
−∆h

h0 (5.29)

is used, where ρ0 is the known atmospheric density at a particular altitude relating to the atmospheric
scale height, h0 at that same altitude, and ∆h is the difference in altitude of the satellite and the altitude
producing ρ0. Known atmospheric densities and scale heights at altitudes between 400 km and 700 km
are used in this simulated model and are adapted from [60], where the solar maximum values are used
to create a “worst-case” scenario.

5.3.3 Solar Panel Induced Magnetic Torques
CubeSat’s in orbit utilise solar panels as their primary source of energy to power their subsystem
components (including the ADCS). In addition to supplying the subsystem components with energy
during the sunlit portion of the orbit, the solar array is responsible for recharging the on-board battery
system which powers the subcomponents during orbital eclipse periods.

When a solar panel is active, it produces internal current loops which subsequently induce magnetic
moments, which interact with the Earth’s magnetic field to create unwanted magnetic torque disturbances.
These current loops, worsened by current carrying harnesses within the spacecraft, have been found to
be the dominant source of undesirable disturbance torques experienced by CubeSats in LEO [75], which
make it challenging for on-board ADCSs to control such small moments of inertia.

The source of these disturbances can be minimised if solar panel design engineers pursue good design
practices which aim to mitigate these current loops [75], however, several surveys suggest that the majority
of CubeSat COTS solar panels are not in fact designed with this in mind [9], [76]. As a result, CubeSat
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design engineers are prompted to follow their own magnetic cleanliness programmes to lower the resultant
residual magnetic disturbances to an acceptable level [75].

As described by eq. (3.3) and illustrated in fig. 3.6b, a magnetic torque is induced as a result of the
interaction between the Earth’s magnetic field, B⊕, and the generated magnetic moment. The disturbance
torque generated as a result of the current loops in a solar array, functions in exactly the same way as a
magnetorquer rod, except in that the torque is an uncontrolled and undesirable one. The model for the
solar panel induced magnetic disturbance torque, Nmsp, is described in this study by

Nmsp = Msp ×B⊕, (5.30)

where Msp is the magnetic moment vector generated by the external solar panels on the various facets
of the CubeSat body, which is calculated as

Msp = Msp3U
·

nX± · Sbx
nY± · Sby
nZ± · Sbz

 , (5.31)

where Msp3U
is the maximum magnetic dipole moment generated by a 3U solar panel array and, Sbx,

Sby, and Sbz are the unit Sun vector components in SBC. Variables nX± , nY± , nZ± is the number of 3U
solar panel arrays on the satellite body x, y and z-axes respectively, which differs depending on whether
the solar panel is on the negative or positive side of the respective SBC axes. The maximum solar panel
dipole moment is assumed to be time-invariant, as highly accurate dynamic dipole modelling is out of the
scope this study. The goal is to merely introduce the magnetic torque as a disturbance to a simulated
CubeSat, and to observe the CubeADCS’s ability to reject it. Msp3U

is assumed to be at a worst case of
1 mA m2 for the simulations conducted in chapter 7.

5.4 Satellite Kinematics and Dynamics
The final simulation model implemented is concerned with the CubeSat dynamics and kinematics, as
it orbits within the space environment. The model implements the Euler dynamic equation of motion
described by eq. (4.65) in sec. 4.4.6. The equation of motion is incorporated into a Simulink® block which
starts with an assumed initial satellite inertial angular rate vector, ωIB0

, to solve for the inertial angular
acceleration vector, ω̇IB .

Each update to the simulated CubeSat’s dynamics is performed at a simulated frequency of 10 Hz where
the previous time-step output result of ω̇IB is integrated with a continuous-time 4th order Runga-Kutta
solver Simulink® block, to obtain the new value of ωIB which is once again fed into the dynamic satellite
model.

The model takes in five additional inputs which include: the external disturbance torque vector ND

(modelled in sec. 5.2) the inertia matrix, J, of the CubeSat, as well as the CubeTorquer controlled
magnetic torque outputs, and the resultant CubeWheel torque and angular momentum vectors generated,
Nm and hwheel respectively – both of which are discussed in chapter 7.

Finally, the satellite kinematic model uses eqs. (4.60) and (4.62) to calculate the CubeSat’s quaternion
rate vector, q̇, starting at an initial assumed attitude state quaternion vector, q0. The updated quaternion
vector q is then also propagated with a continuous-time 4th order Runga-Kutta solver Simulink® block.
Fig. 5.11 shows the dynamic and kinematic response of the simulated satellite described in the beginning
of this chapter from this model. The attitude is represented in terms of its respective Euler angles, which
are obtained from quaternion calculated DCM matrix in eq. (4.47) and from eqs. (4.42) to (4.44). The
initial conditions of the CubeSat are set to be q0 = [0 0 0 1]T and ωIB0

= [0.5 0.5 0.5]T ° s−1, with no
attitude control implemented whatsoever.
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(a) Euler Angles

(b) ORC Referenced Body Rates

Figure 5.11: Simulated CubeSat Dynamic and Kinematic Models

5.5 Summary
This chapter has established the CubeSat Simulation Environment which will be used to determine the
IPA and stability of the CubeADCS aboard a CubeSat in a LEO.

First, the space environment was discussed which introduced three of the most important models
responsible for replicating the LEO. The SGP4 model was the selected orbit propagator, based on its
use by CubeSpace and its heritage in industry. The accuracy of the propagator was briefly investigated,
where an augmented SGP4 propagator using intermittent GPS measurements was investigated in its
ability to provide an ADCS with more accurate positional knowledge estimates. The Sun model was next
discussed, which enables relative positional CubeSat-to-Sun vectors to be calculated. The final space
environment model implemented was the 10th order IGRF model which produces an accurate simulated
geomagnetic environment and subsequent magnetic field vectors.

The resultant disturbance torques, dependent on the space environment were next discussed. Three
primary sources of external disturbance torques were identified to have the largest impact on a CubeSat
in LEO, namely: the gravity gradient, aerodynamic, and solar panel induced magnetic moment torques.
The latter was determined to have the largest potential impact on a CubeSat with low mass moments of
inertia – the effect of which is analysed in chapter 7.
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Finally, the satellite dynamic and kinematic model was implemented, which simulates the laws of physics
governing a satellite in orbit and its natural responses to external and internal disturbance torques. All
models have been implemented through both S-Function and other Simulink® blocks which all utilise the
4th order Runga-Kutta solver.

The well-defined CubeSat simulation environment is used in chapters 6 and 7 to test and model the
various CubeADCS sensors and actuators, and to finally investigate the performance of its IPA and
stability.
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Chapter 6

CubeADCS Hardware Investigation
and Modelling

6.1 Overview
In order to obtain simulation results which realistically reflect the CubeADCS’ performance, an analysis
is done which assesses the performances of each sensor and actuator on the integrated CubeADCS. This
chapter focuses on the real noise and error characteristics of each sensor and actuator, which forms a
basis to create accurate simulation models shown in each subsequent section. The satellite used to build
and test these models has the same parameters as defined in chapter 4.

During the model investigation, the simulated CubeSat was set to complete two orbits, where only one
particular sensor or actuator was investigated at a time. All other components were set to an ideal model
in order to isolate the sensor or actuator under investigation. There were also no disturbance torques
acting on the satellite during the investigation and a gyro EKF was used to estimate the satellite’s
attitude to create a very stable CubeSat body.

Most sensor models in the simulation were set up to take the standard deviation of a sensor’s error (σe) as
a parameter input into a Gaussian random number generator. The noise is then typically passed through
a digital low pass filter with the discrete transfer function:

H(z) = (1− α)z
z − α

, (6.1)

where the correlation coefficient, α, is adjusted accordingly to change the level of correlation in the noise
and thus allow through less, or more, high frequency errors. The σe parameters were chosen accordingly
to suit the typical errors for each particular component in the CubeADCS.

6.2 Magnetometer
This section first discusses an analysis of the magnetometer sensors implemented on the CubeADCS, and
from this, the model is described with similar error characteristics. All magnetometer parameters used
for the calculations in this section, are referenced from sec. 3.4.2.

6.2.1 Magnetometer Analysis
The 3-axis magnetometer produces a voltage output for each axis which is proportional to the magnetic
field it is measuring, allowing a magnetic field vector to be calculated. The HMC105X range of sensors
have a high bandwidth (BW) >5 MHz, however, the respective voltage outputs for each axis are passed to
a differential low-pass op-amp filter (with a gain G = 235) which lowers the bandwidth to approximately
132 Hz. The low bandwidth considerably reduces the amount of 1

f (flicker noise) and broadband noise in
the magnetometer measurements. A theoretical calculation for the expected RMS broadband noise can
be calculated using:

70

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. CUBEADCS HARDWARE INVESTIGATION AND MODELLING

EnBB
= en ·

√
BW ·Kn

= 5× 10−9 ·
√

132 · 1.57

= 72.15 nV,

(6.2)

where Kn represents the brick wall correction factor which includes the “skirt” of the low pass filter. The
expected RMS flicker noise on the other hand is calculated from the 1

f lower and upper cut-off frequencies
and can be calculated as:

Enflicker
= en1Hz

·

√
ln

(
fH
fL

)

= 50× 10−9 ·

√
ln

(
10
0.1

)
= 107.3 nV.

(6.3)

The combination of the RMS flicker and broadband noise is calculated as:

Entotal
=

√
EnBB

2 + Enflicker

2

= 129.3 nV.
(6.4)

The magnetometer supply voltage is 3.3 V, which places its worst-case measurement sensitivity at
33 µV µT−1. The subsequent theoretical sensor 1σ B-field noise, Bn is thus calculated to be 3.91 nT
if one does not take the op-amps noise contributions into consideration.

6.2.1.1 In-Orbit Magnetometer Data

Calibrated, in-orbit B-field measurement errors relative to the modelled IGRF magnetic field, from the
nSight-1 satellite (developed and operated by SCS Space), provided by CubeSpace [52] is shown in fig. 6.1.
The satellite is equipped with a CubeADCS to handle its attitude requirements, where it uses its 3-axis
magnetometer output as a reference for the EKF.

The results indicate that the measured in-orbit SBC B-field has a 1σ magnitude error of 482.9 nT and a
peak-to-peak magnitude error of 2.85 µT. The higher frequency periodic variations in the figure are due to
the fact that the satellite was in a Y-Thompson spin of around −3 ° s−1 during the time of measurement.
It is therefore likely, that the measured B-field error is largely attributed to internal satellite current
loops (magnetic moments) varying with the spin angle, from the observed results. However, the total
error is a combination of the errors caused by the aforementioned varying magnetic moments, errors in
the IGRF magnetic field model, stochastic magnetometer errors, and imperfect orthogonality calibration
in the sensitivity matrix.
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Figure 6.1: B-field Magnitude Error After Calibration [77]

Fig. 6.1 provides a good indication of what to expect with regard to the B-field magnitude error. However,
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in order to get the difference between the measured and modelled unit vectors, as used by the EKF, one
must use the magnetic unit vector angular error as seen in fig. 6.2, where the 1σ unit vector angular error
is 0.9084°.

Figure 6.2: B-field Angular Vector Error After Calibration [77]

The results from the in-orbit data suggest that the measured SBC magnetic field errors can be largely
attributed to the external magnetic moment disturbances, where the stochastic sensor measurement noise
does not contribute to any significant errors in comparison.

6.2.2 Magnetometer Model
The model for the magnetometer measurements for the simulated CubeADCS utilises the true simulated
IGRF geomagnetic field model to obtain the magnetic field vector in SBC (as described in sec. 5.2.3),
where the on-board B-field vector measurements can be seen in fig. 6.3 with a superimposed noise.

Figure 6.3: Modelled Magnetometer Measurements

Gaussian noise is passed through the low pass filter in eq. (6.1), which is then added to the magnetic
field vector components as measured sensor outputs in the SBC frame and fed back to the simulation for
the EKF to use. A correlation coefficient, α = 0.01, was selected to obtain the slow, highly correlated
error seen in fig. 6.4. A σe = 9.5 µT was then selected to obtain a similar 1σ error in the angular vector
error seen in fig. 6.5. A test was conducted over ten orbits, where the resultant 1σ magnitude error was
calculated to be 366.5 nT.

The angular error in the magnetometer unit vector measurement, as used by the EKF, was calculated
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with eq. (4.55). Although, the magnitude of an angular error between two vectors is always positive,
fig. 6.5 shows negative angles when the magnitude error is negative – in the same fashion as fig. 6.2. The
results from the same test show that the modelled magnetometer measurements have a 1σ angular error
of 0.9269° on average – closely matching the measured calibrated magnetometer angular error.

Figure 6.4: Modelled Magnetometer B-Field Magnitude Error

Figure 6.5: Modelled B-field Vector Angular Error

6.3 The CSS
An analysis of the CSS is discussed in this section, in order to determine its error characteristics. Following
this, the model is described to accurately follow the CSS inaccuracies.

6.3.1 CSS Analysis
By measuring the amount of short circuit current passing through a photodiode, one can measure the
intensity of the light deflected. The amount of short circuit current passing through a photodiode is
ideally proportional to the light incidence angle, θi by the cosine rule, where

I(θi) = Isc cos(θi), (6.5)

where Isc is the maximum short circuit current which can pass through the diode at θi = 0° and where
θi is typically measured from the surface normal. The specifications indicated in sec. 3.4.3, show that at
an average solar irradiance of 136 mW cm−2, the expected maximum short circuit current is 926 µA. In
reality, the output short circuit current does not follow an ideal cosine curve due to reflection errors off
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of the cell or from added light intensities from Earth albedo. However, for the intended application of
the CSS, a cosine approximation is sufficient for calculating the light incidence angle on a cell.

A previous study was done [78] to investigate the resultant CSS Sun vector angular error to a light source
at different azimuth and elevation angles (θaz and θel respectively) relative to a satellite. The setup
(illustrated in fig. 6.6) shows a cube (CubeSat model) fitted with three cells on each axis of rotation and
positioned on a two-stage rotation platform in a dark room,with a light source activated directly in front
of it.

Figure 6.6: CSS Experimental Setup [78]

Three separate tests on each cube axis (face) were conducted which kept one axis fixed, whilst rotating
the cube about the remaining two axes. The voltage of each cell’s short circuit current sense resistor was
sampled by an MCUs ADC, to measure the corresponding light intensities.

As opposed to eq. (6.5), the researcher defined the incidence angle to be measured from the tangential
line to the surface where a fitted sinus wave is used in eq. (6.6) [78] to determine the incidence angle on
each cube axis from an ADC voltage measurement (fAD(θi)).

θi =
arcsin

(
fAD(θi)−K4

K1

)
−K3

K4

(6.6)

The error between the fitted sinus wave and the actual ADC output is shown in figs. 6.7a and 6.7b.
Eq. (3.2) was then used calculate the error in the Sun vector angle.

The results indicate, that the CSS is not especially accurate in determining the Sun vector, particularly
at extreme light incidence angles relative to the cube’s normal axes. Errors in the test are likely due to
reflection errors, the use of a light source with a wider beam than that of the Sun as well as mounting
and calibration inaccuracies. With the proper placement of the sensors, the azimuth and elevation error
magnitudes should be identical, which will result in Sun vector angular errors of less than 5°.

6.3.2 CSS Model
The coarse Sun sensor is modelled by using the calculated Sun position vector in the SBC frame (described
in sec. 5.2.2). In the model, θaz and θel are calculated from the true Sun vector Ŝb (illustrated in fig. 3.5)
where

θaz = atan2 (Sby, Sbx) (6.7)

and θel = atan2
(
Sbz,

√
S2
bx + S2

by

)
. (6.8)
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(a) Azimuth Error (b) Elevation Error

(c) Sun Vector Angular Error

Figure 6.7: CSS Errors [78]

The placement of the CSS sensors is assumed to be accurate, where errors in elevation are expected to
be the same as that of the azimuth. Gaussian noise is similarly passed through low pass filter in eq. (6.1)
with a correlation coefficient, α = 0.05, and added to the true azimuth and elevation angles (the results of
which can be seen in fig. 6.8) which are then fed back into the simulation to be used by the EKF.

Figure 6.8: CSS Measured Azimuth and Elevation Model

Multiple tests were conducted to find a suitable value of σe for the noise to be passed through the low
pass filter in eq. (6.1). Eq. (3.2) was used to calculate the measured Sun vector from the noisy CSS
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azimuth and elevation output angles. It was then compared with the true Sun vector in the SBC frame
to determine its angular Sun vector error with eq. (4.55). Five consecutive tests were run for different
noise values where a value of σe = 10° was chosen as it produced a 3σ angular Sun vector error of 4.628°
on average.

The resultant error of the azimuth and elevation output angles is shown in fig. 6.9, where the results
from the same five tests obtained an average azimuth and elevation 3σ error of 3.235° and 3.336°
respectively.

Figure 6.9: Modelled CSS Azimuth and Elevation Errors

Figure 6.10: Modelled CSS Sun Vector Angular Error

Large errors in the CSS output are why it is typically used by the CubeADCS to make attitude estimates
directly after launch, when the FSS is facing away from the Sun, or when the satellite’s pointing
requirements do not need to be precise.

6.4 MEMS Gyro
Three CRM100 gyros were experimented on in order to measure the variability between separate
individual sensors of the same model which also represent well the three separate sensor axes. An analysis
is completed on the sensors to determine their error characteristics, where the MEMS gyro model is then
defined to closely mimic the true CubeADCS MEMS gyro characteristics.
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6.4.1 MEMS Gyro Analysis
This section analyses the most significant error characteristics effecting the CRM100 MEMS gyros, where
these errors are be broken up into stochastic and deterministic errors. The gyros have both an analogue
and digital output mode which can be utilised (not at the same time). CubeSpace uses the digital SPI
interface, which allows one to optimise the oversampling of the gyro’s on-board ADC [37] and to also
implement digital filtering with the CC.

To suit the same gyro interfacing method as CubeSpace and as suggested in the CRM100 datasheet [37],
an identical PCB was designed (see appendix B) which mounted three separate CRM100 gyros with
digital SPI output pins to interface with an MCU. The bandwidth capacitor was set to 560 pF to allow
for the aforementioned ADC oversampling.

According to CubeSpace [52], the CC takes an average of 400 samples per axis in a window of 200 ms
and then outputs the averaged inertially referenced satellite body rate vector components at a frequency
of 1 Hz. Obtaining 400 samples per 200 ms is equivalent to sampling the gyros at a frequency where
fs = 2 kHz, which is the frequency used to sample the gyros for the remainder of this analysis.

6.4.1.1 MEMS Stochastic Errors

The stochastic errors of a gyro are most accurately observed when they are held motionless and at a
constant temperature in order to minimise thermal bias variations and obtain accurate results. With this
in mind, the PCB mounting the gyros was kept stationary in a sealed container at a relatively constant
ambient temperature of ≈ 26 ◦C, whilst measurements were taken from each gyro. Five separate 45
minute datasets were captured for each gyro in order to observe the variation between separate gyros,
where fig. 6.11 shows the stationary output of a single such dataset for each gyro. These datasets were
then used to perform a statistical analysis on the respective output rates.

Figure 6.11: MEMS Gyro Stationary Output

6.4.1.1.1 Allan Variance Method

A gyro EKF uses the satellites angular body rates to propagate its attitude via numerical integration,
which makes it important to analyse how a particular gyro’s angular rate changes and, thus, how its
resultant apparent orientation changes. The rate noise density of a gyro describes the expected noise of a
gyro with respect to the sensor’s bandwidth, however, it is often more intuitive to observe the statistical
properties of a gyro’s rate output with respect to time.

To accomplish this, the Allan variance (AVAR) of a gyro is determined which allows one to statistically
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analyse the characteristics of underlying random processes producing noise in gyros, accelerometers and
other oscillatory sensors [79]. The IEEE suggests estimating a gyro’s AVAR by using the overlapping
AVAR method [79]. This is estimated by first obtaining a set of N gyro angular rate outputs, ω(n). The
AVAR of a gyro is then defined in terms of discrete output angles (corresponding to each rate sample)
which are calculated by numerically integrating ω(n) with

θ(k) =
k∑

n=1
ω(n) · τ0, (6.9)

where θ(k) represents the discrete output angles and τ0 represents the sample period of the gyro. Fig. 6.12
shows the result of such an integration over the first five minutes of the dataset for gyro-1 in fig. 6.11
(with the average bias over the whole 45 minutes removed). This shows how the stochastic processes are
able to cause large errors in attitude determination, without any EKF bias estimation.

Figure 6.12: Output Gyro-1 Orientation Drift

Following the integration of each dataset, the output angles are divided into finite averaging time clusters
of length τ = mτ0, where m < (N−1)

2 and m ∈ Z chosen arbitrarily. This is illustrated in fig. 6.13 which
gives an example for one of the possible averaging time clusters for m = 2 portraying the overlapping
samples.

Figure 6.13: Overlapping Allan Variance Method

In order to make optimal use of each dataset, the values of m were chosen to be logarithmically spaced,
where approximately 400 unique values were selected to obtain a satisfactory resolution. Next, the Allan
variance, σ2(τ), was calculated for each time cluster with [80]

σ2(τ) = 1
2τ2(N − 2m)

N−2m∑
k=1

[
θ(k + 2m)− 2θ(k +m) + θ(k)

]2
. (6.10)

The final step is to characterise the noise of each gyroscope by calculating the Allan deviation (ADEV),
σ(τ), for each time cluster with σ(τ) =

√
σ2(τ). The characterization was determined by plotting the
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resultant ADEV’s on a log-log scaled graph, where up to seven different noise terms can be extracted,
namely: angle random walk (ARW), rate random walk (RRW), quantization noise (QN), rate ramp (RR),
sinusoidal noise, correlated noise and the bias instability (BI).

Figure 6.14: Allan Deviation Example Plot

These noise terms can all be identified in fig. 6.14, where five of the terms are determined from different
regions of τ where the various random processes are associated with different ADEV slope gradients on
the log-log plot. For modern MEMS sensors, only two of the random processes are considered as principle
error terms [81], namely: the ARW and the BI.

The ARW is a high frequency noise term characterised by a white noise spectrum on the gyro [81], with
smaller correlation times than the sample period. The gyro ARW is represented by the coefficient, N
(with units ° h−0.5), and is associated with the gyro noise deviation by [82]

σN(τ) = N√
τ
, (6.11)

where N is extracted from the Allan deviation plot by fitting a tangent line of slope − 1
2 in the log-log

scale to the ADEV curve near the smaller time clusters and reading the value from this line at τ = 1 s.
Simply put, an ARW value of 0.2 ° h−0.5 means that the standard deviation of the orientation error after
1 h, is expected to be 0.2° [83].

The BI is a more correlated random process observed as a lower frequency deviation in a gyro’s bias,
caused by electronics susceptible to random flickering [82]. The BI is represented by the coefficient, B
(with units ° h−1), associated with the gyro noise deviation by [82]

σB(τ) =
√

2 ln 2
π

B ∼= 0.664B, (6.12)

where B is extracted from the Allan deviation plot by fitting a tangent line of slope 0 in the log-log scale
to the ADEV curve and reading the value of σ(τ) along this tangent line (at the lowest point on the
ADEV curve) and dividing it by 0.664. Over time, the BI of a gyro creates a random walk in the gyro
bias which is constrained within some range [83].

The ADEV plots for the three respective sensors over the five separate datasets can be seen in fig. 6.15,
where the average ADEV plot for each sensor can be seen in fig. 6.16. The average ADEV plots for each
sensor were calculated by taking the RMS the respective AVAR’s.
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Figure 6.15: Allan Deviation of MEMS Gyros

Figure 6.16: Average Allan Deviation of MEMS Gyros

Table 6.1 summarises the results of the statistical analysis, where it can be observed that all three of the
gyros performed similarly and all outperformed the given datasheet specifications – most noticeably with
regard to the BI of the gyros. However, in a presentation given by the manufacturer in 2013 [84], they
stated that the expected BI of the CRM100 gyro’s is 7.2 ° h−1 and that the ARW is closer to 0.18 ° h−0.5.
This shows that the datasheet has provided the worst-case performance for the gyros, where the measured
BI more closely matches the value from the presentation rather than that from the datasheet.

Table 6.1: MEMS Gyro Raw Output Statistical Analysis Summary

Property Units Datasheet Gyro-1 Gyro-2 Gyro-3
ARW ° h−0.5 0.28 0.1272 0.1254 0.1236
BI ° h−1 24 7.1784 7.1208 7.3044

6.4.1.2 MEMS Digital Filtering

Applying a digital filter to a gyro’s rate output reduces the impact of the added white noise to the signal
and thus the ARW. To align with the sampling method used by CubeSpace, a moving average FIR low-
pass filter was implemented to obtain the filtered gyro output, y(n), from the unfiltered gyro input, x(n),
where
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y(n) =
399∑
k=0

0.0025 · x(n− k). (6.13)

The results of the applied filter on one of the gyro-3 datasets can be seen in fig. 6.17. Fig. 6.17a shows the
significant decrease in the white noise component on the gyro, where fig. 6.17b confirms this as the ARW
can no longer be determined in the ADEV plot. It is clear that the most dominant stochastic process is
now the BI, which cannot be removed with a low-pass filter.

(a) Gyro-3 Filtered Output (b) ADEV Gyro-3 Filtered Output

Figure 6.17: Gyro-3 Digital Filter Implementation

To observe each gyro’s BI and its associated upper and lower limits, the unfiltered datasets for each gyro
were passed through a second order Butterworth filter with a cut-off frequency of 20 mHz.

Figure 6.18: Average Allan Deviation of MEMS Gyros

The BI was removed from each gyro measurement in order to analyse the remaining higher frequency
components on the filtered output in order to model the sensors correctly. The results of the filtered gyro
properties are summarised in table 6.2, where the RMS for each gyro’s bias instability is given over the
five different datasets.
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Table 6.2: MEMS Gyro Filtered Stochastic Properties Summary

Property Units Gyro-1 Gyro-2 Gyro-3
High Frequency (1σ error) ° h−1 21.042 19.858 19.897
RMS Bias ° h−1 10.555 10.073 10.436

6.4.1.3 MEMS Deterministic Errors

The deterministic errors of a gyro sensor are those which can be analysed and compensated for to a
certain level of accuracy. This section mainly addresses the effects of temperature changes on a gyro’s
measured output as they cause the most significant errors on this output.

The effects of scale factor non-linearities are difficult to compensate for, however, this is not of a large
concern as the effects are considerably small at slow angular rates. Additionally, the misalignment errors
of the sensors were assumed to be compensated for to a satisfactory accuracy and were thus neglected in
this analysis.

The average over 400 samples was taken in a 200 ms window (for both rate and temperature
measurements) for each gyro by the MCU where the resultant output was then polled every second
during this analysis. This was done to match the CubeContol module’s sampling of the gyros.

6.4.1.3.1 In-Orbit MEMS Gyro Data

Before the results of the temperature variation on three gyro sensors is shown, an initial examination of the
MEMS CRM100 gyro placed on the nSight-1 CubeSat body y-axis is presented. nSight-1s magnetic Y-spin
controller used the MEMS gyro measurement to determine the Y-body spin rate when the satellite was in
its Y-Thompson spin mode, after which the MEMS gyro output was only used for data analysis.

The gyro’s rate and temperature data was captured every 120 s in the analysed WOD (Whole Orbit Data)
file. The resolution of the internal temperature sensor output in the WOD file is only 1 ◦C, however, this
was still enough to determine the effects of the MEMS temperature on the rate output. Fig. 6.19 shows
the measured gyro angular rate output and its corresponding temperature at the time of measurement
for over 270 orbits, during which the satellite was 3-axis stable in Y-momentum control mode (average
Y-body rate must be close to zero). A second order polynomial line-of-best-fit (LOBF) was fitted to the
data to show the correlation between the sensors bias and internal temperature.

Figure 6.19: nSight-1 MEMS Gyro Angular Rate vs. MEMS Temperature

Fig. 6.20 shows the magnetometer EKF estimated ωIby, the measured gyro ωIby and gyro internal
temperature data over just under 24 hours. Additionally, the figure shows the measured gyro ωIby with an
instantaneous temperature bias compensation performed using the polynomial LOBF in fig. 6.19.
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Figure 6.20: nSight-1 Angular Rate and Temperature Data

The satellite is striving to be y-axis stable, with ωIby ≈ 0 ° s−1. The y-axis rate is now likely to be better
represented by the compensated gyro output as it is expectedly more accurate than the EKF estimation
as the EKF only uses the magnetometer to perform attitude and rate estimations. Both aforementioned
figures show a strong relationship between a MEMS gyro’s bias and temperature.

6.4.1.3.2 Thermal Bias Variation

The common downfall of MEMS sensors is their sensitivity to changes in temperature – especially with
regards to the effects on its bias. Currently, CubeSpace does not perform any temperature compensation
on the gyros, which makes the effect important to analyse.

The gyro manufacturers highly recommend using the internal temperature sensor on the gyros to perform
temperature compensation in order to avoid system level thermal gradients from an external temperature
sensor [37]. It must be noted that the temperature output for each gyro can only be obtained in the
digital output mode.

The soak method [35] is a common technique used to measure the effects of temperature change on a gyro’s
bias, in two parts. The first part involves heating a gyro at regular intervals, allowing the temperature of
the gyro to settle for a period of time and measuring the average bias at each temperature settling point.
The second part is conducted in exactly the same way, although the gyro is instead cooled at regular
intervals.

Figure 6.21: Gyro Bias vs. Internal Temperature

A piece of aluminium was mounted to the sensors with a layer of thermal paste between them to increase
heat transfer, where a heat gun was set to warm and cool the sensors to different settling temperatures in
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order to replicate the soak method as closely as possible. It is noted that the settling temperatures during
the heating and cooling processes were not controlled to precise values, where the heat gun was simply
used to heat up or cool down the sensors within a desired temperature range. The temperature range
over the gyros was chosen to be similar to the temperature range seen over the nSight-1 CubeSat.

Fig. 6.21 shows the relationship between the three tested gyros and their respective internal temperatures.
Each gyro is affected by thermal variations differently, where gyro-1 shows the greatest variation over
temperature and gyro-3 the least. Three different second order polynomial LOBFs were chosen to model
the change in each gyro’s bias as a function of temperature which fits the average change in bias over
heating and cooling processes.

(a) Uncompensated Gyro Rate with Varying Temperature

(b) Compensated Gyro Rate with Varying Temperature

Figure 6.22: Gyro Temperature Analysis

Fig. 6.22a presents the results of the temperature varying test conducted over time. It is apparent
that each internal temperature sensor has an offset from the true chip temperature. This temperature
varies linearly with time, however, where the offset is of little significance when using the temperature
measurement to model a gyro’s bias. Although gyro-1 showed the greatest bias variation over temperature,
it also showed the lowest hysteretic variation as it closely followed the same modelled path through both
heating and cooling processes.

Fig. 6.22b concludes the thermal bias experiment where each gyro was compensated against temperature
to remove the respective biases, regardless of internal temperature. The results show that thermal bias
removal is possible, with gyro- 1 to 3 each indicating an RMS error of 0.0108 ° s−1, 0.0146 ° s−1 and
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0.0153 ° s−1 respectively over the full tested temperature range.

6.4.1.3.3 Prior Literature

A previous study was conducted on an earlier model of the CRM100 gyros by students in the United States
Army Research Laboratory (ARL) [85]. The study examined the stochastic and deterministic errors of
the sensors over temperature variation which covered the full operating temperature range (−40 ◦C to
85 ◦C). The researchers used a much more accurate setup which utilised an integrated rate table and
temperature chamber developed by Acutronic USA, Inc.

The study conducted an analysis on the sensors in the analogue mode and thus used an external
temperature sensor during the analysis. Being an older model, the gyros were also quoted to have a
significantly worse expected BI and ARW of 24 ° h−1 and 0.28 ° h−0.5 respectively. The results from the
report are summarised for the performance of one of the gyros tested in table 6.3. For more information
on the results, the reader is requested to refer to the authors’ report [85].

Table 6.3: ARL Tested Results for One Gyro [85]

Property Units −40 ◦C −15 ◦C 10 ◦C 35 ◦C 60 ◦C 80 ◦C
ARW ° h−0.5 0.186 0.188 0.179 0.181 0.179 0.187
BI ° h−1 12.88 11.75 11.14 9.79 9.64 10.09
Measured Bias ° s−1 0.83 0.58 0.17 −0.33 −0.17 0.5
SF (from nominal) % −0.54 −0.50 −0.47 −0.52 −0.58 −0.75

It must be noted that the researchers mistakenly omitted to divide the measured bias instabilities by the
value of 0.664 and so the values in table 6.3 differ from those in the actual report. The results show,
nonetheless, that both the stochastic and deterministic outputs for a given gyro are expected to vary
with temperature.

The largest error is dominated by the variation in a gyro’s bias, where in comparison, the SF variation
will have a significantly lower influence on the measured rate output (especially at low angular rates).
In conclusion, a small temperature variation (such as that measured by the rate sensor on nSight-1) will
only have a significant impact on the bias of the sensor, where changes in the scale factor, BI and ARW
will be comparatively insignificant over the same small temperature range.

6.4.2 MEMS Gyro Model
Having completed the analysis of the MEMS gyros, this section discusses the model for the three different
gyros that are be implemented in the simulation in chapter 7 on each CubeSat axis. Only the most
significant errors were chosen to be modelled unlike in eq. (3.1), namely: the noise of the gyros and the
variation in the gyro’s bias with temperature where the measured gyro vector is calculated with

ωI
B(meas)

= ωI
B(true)

+ ωbias + ωnoise. (6.14)

6.4.2.1 Stochastic Model

The stochastic model was chosen to only consist of a high frequency component and a low frequency
correlated BI, from which, the stochastic error vector was modelled with

ωnoise = ωHF + ωBI . (6.15)

The resultant full stochastic model is shown in fig. 6.23, where the high frequency component is modelled
as Gaussian white noise with a standard deviation σHF = 0.005 85 ° s−1. Also in the figure, the BI
is modelled as a highly correlated signal with uniformly distributed noise having a maximum value of
0.018 ° s−1 being passed through eq. (6.1) with correlation coefficient, α = 0.02.
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Figure 6.23: Gyro Stochastic Error Models

The resultant high frequency components show errors extremely close to the chosen standard deviation
as expected, where the BI has a worst case RMS error of 11.88 ° h−1 tested over ten orbits.

6.4.2.2 Thermal Bias Drift Model

In order to model the effects of temperature variation on the simulated gyros’ biases, it was necessary to
model the internal temperature variations for a typical CubeSat in LEO. Fig. 6.24 plots a portion of the
internal temperature variation measured on nSight-1 for the on-board gyro, where the grey portions on
the plot represent when the CubeSat was in eclipse.

Examining the full dataset of over 270 orbits, reveals that the measured maximum and minimum internal
gyro temperatures were 39 ◦C and 24 ◦C respectively. The temperature is shown to vary approximately
sinusoidally with an amplitude of 4 ◦C and a lag after the change in each eclipse state. The mean of
the eclipse varying temperature is also observed to change approximately sinusoidally with a period of ≈
200 h and an amplitude of 3.5 ◦C. The resulting temperature model is shown in fig. 6.25, which is shown
to vary per orbit as well as every 200 h covering the whole temperature range.

Figure 6.24: nSight-1 Temperature Variation with Eclipse

Each gyro’s change in bias over temperature is chosen to be modelled with the second order polynomial
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LOBFs seen in fig. 6.21, where the vector, ωB, representing the gyros’ biases is defined as

ωbias =

ωbiasx

ωbiasy

ωbiasz

 =

a1 b1 c1

a2 b2 c2

a3 b3 c3


T 2

gyro(t)
Tgyro(t)

1


=

−1.705× 10−4 −4.538× 10−3 c1

−1.867× 10−4 8.253× 10−4 c2

−1.029× 10−4 1.512× 10−3 c3


T 2

gyro(t)
Tgyro(t)

1

 .
(6.16)

The coefficients {c1, c2, c3}, are calculated at the beginning of each simulation, in-order to zero the bias
of each gyro to whatever the starting temperature is for a particular orbit, with c1

c2

c3

 = −

a1 · T 2
gyro(0) + b1 · Tgyro(0)

a2 · T 2
gyro(0) + b2 · Tgyro(0)

a3 · T 2
gyro(0) + b3 · Tgyro(0)

 . (6.17)

Figure 6.25: Long Term Simulation Temperature Model

The resultant bias drift with temperature model is shown in fig. 6.26 over two successive orbits.

Figure 6.26: Simulation Temperature Model
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6.4.2.3 Complete Model

The final step was to combine all of the different gyro errors to form a full gyro measurement model in
the simulation, where these errors were added to the true angular rotation rates calculated in the satellite
dynamics block of the simulation as described in sec. 5.4.

Fig. 6.27 plots the typical gyro vector component measurements aboard the simulated 3-axis stable
CubeSat using a full state EKF without a gyro in order to measure the true angular rate output. The
angular rotation rates for both the x and the z satellite body axes should be measuring ≈ 0 ° s−1, where
the body y-axis should be measuring a rotational rate of ≈ 0.063 ° s−1 (the orbit rotation rate) in the
IRC frame.

Figure 6.27: Simulation Temperature Model

6.5 CubeSense
The theory behind the operation of the CS has been discussed in sec. 3.5. This section analyses the error
characteristics of the CS as well as the modelling of the CS components. First, the FSS on the CS is
investigated and modelled, which is then followed by the analysis and modelling of the nadir sensor.

(a) CubeSense Camera Axes [86] (b) CubeSense Camera Angles

Figure 6.28: CubeSense Camera Axes and Angle Visualisation

After the centroid is located for either the Sun or the Earth, the CS generates two centroid x and y angles,
α and β (in centi-degrees), which can then be used to calculate the relevant Sun and Earth vectors with
respect to the camera boresight (BS). The camera’s coordinate frame is shown in fig. 6.28a, where the
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camera z-axis, ẐC , is defined to be along the camera BS, the y-axis, ŶC , is defined to be pointed upwards,
away from connector of the camera, and the x-axis, X̂C completes the orthogonal set.

Fig. 6.28b illustrates how the respective rectangular coordinates are determined, where the angle θ, is
calculated as

θ =

√(
α

100

)2
+

(
β

100

)2
(6.18)

and is measured from the ẐC axis to the celestial body position vector. The angle φ is calculated as

φ = atan2(β, α) (6.19)

and is the angle between the camera xz-plane and the plane passing through the Ẑc axis and the celestial
body position vector. Once angles θ and φ are calculated, then the celestial body position vector, vc, in
the camera frame rectangular coordinates, is calculated as

vc =

vcxvcy
vcz

 =

sin θ cosφ
sin θ sinφ

cos θ

 (6.20)

6.5.1 CubeSense FOV and Detection Range
The fisheye lens provides a theoretical FOV close to 200° for both the FSS and nadir cameras. Pixels
which fall out of a 180° FOV are ignored to prevent irregularities from reflections on the satellite’s side-
panels. Furthermore, the outer perimeter of the lens is cut off at the edges of the image plane, reducing
the FOV to 170° at these edges. Lastly, the nadir sensor will begin to produce significantly inaccurate
measurements as the Earth moves further away from the BS.

Table 6.4: Maximum and Minimum DRs

Property FSS Nadir
DRmax 180° 160°
DRmin 170° 130°

(a) FSS Hor. and Ver. FOV/DR (b) FSS Diagonal FOV/DR

Figure 6.29: FSS FOVs and DRs

A detection range (DR) is defined which describes a new FOV for each sensor which will produce valid
position vector measurements for a particular celestial body. Figs. 6.29 and 6.30 illustrate the detection
ranges at the horizonal and vertical edges as well as along the diagonal for both the FSS and nadir
sensor. Table 6.4 shows the maximum and minimum DRs for the FSS and nadir sensor respectively. If it
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is determined that an SBC referenced Sun or nadir vector is outside of the respective sensor’s DR then
the vector is ignored and marked as a null detection.

(a) Nadir Sensor Hor. and Ver. FOV/DR (b) Nadir Sensor Diagonal FOV/DR

Figure 6.30: Nadir Sensor FOVs and DRs

The simulation modelling of the DR is done slightly differently for each sensor. For the FSS, most of the
image sensor’s 1024× 1024 pixels are utilised within the DR as Sun detections with acceptable accuracy
can occur near or even on the image sensor edges. To model how the DR changes for the Sun sensor, it
is firstly assumed that after distortion correction of the lens that the linear relationship

DRFSS(φ) = Rmax(φ)
RFOV BS

· FOVBS (6.21)

exists, where DRFSS(φ) is the maximum possible DR for an object along line described at φ, Rmax(φ)
is the maxium possible pixel radius to an object on the image plane, FOVBS = 200° is the maximum
boresight FOV and, RFOV BS

is the pixel radius at the maximum boresight FOV. It is known from table 6.4
that at the edges of the image sensor (Rmax(0°) = 512 pixels), where it can be deduced using eq. (6.21) that
RFOV BS

= 602.35 pixels, and furthermore that Rmax(φ) = 542.12 pixels, at DRFSS(φ) = 180°.

Figure 6.31: CubeSense DR

As the Sun centroid begins to move off of the image sensor at the positive x side of the image sensor
(i.e Xpix is increasing past 512 pixels) the maximum possible radius in this position can be calculated
as
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Rmax(φ) =
√

5122 + Y 2
pix, (6.22)

where the maximum radius is calculated similary for all edges of the image sensor as it is a square sensor,
the difference being that Ypix is the value that is fixed for the top and bottom edges. The algorithm for
calculating the maximum detection range and whether a Sun vector is within that range is described by
alg. 6.1, where a Sun vector is not accepted if the DRflag is false.

Detections for the nadir sensor begin to become unacceptably inaccurate at points before the image
sensor edges and even before the FSS DR limit. For this reason, the DR for the nadir sensor is defined
differently using

DR(φ) = (DRmax −DRmin) · |sin(2φ)|+ DRmin, (6.23)

where DRmax and DRmin represent the maximum and minimum DRs for the nadir sensor (see table 6.4).
Angle φ, is determined from known celestial body position coordinates in camera axes by

φ = atan2(vcy, vcx), (6.24)

If the nadir vector is determined to be outside of the DR then the vector is ignored. Eq. (6.23) and alg. 6.1
are visualised in polar form in fig. 6.31 as φ changes.

Algorithm 6.1: FSS Detection Range

Data: Scx, Scy, Scz

Result: DRflag, DRmax

DRflag ← True
φ← atan2(Scy, Scx)
Rmax(φ)← 542.12
if Scz < 0 then

DRflag ← False
else

Xpix ← Scx ·Rmax(φ)
Ypix ← Scy ·Rmax(φ)
XYlim ←

√
R2
max(φ)− 5122

if |Xpix| < XYlim then
Rmax(φ)←

√
5122 + Y 2

pix

if |Ypix| > 512 then
DRflag ← False

end
else if |Ypix| < XYlim then

Rmax(φ)←
√
X2
pix + 5122

if |Xpix| > 512 then
DRflag ← False

end
end
DRmax ← Rmax(φ)

602.35 · 200°

6.5.2 Fine Sun Sensor Analysis
In order to test the error of the FSS, the sensor was placed on the roof of a tall building on a sunny day
with the setup shown in fig. 6.32. The FSS was left to locate the Sun over a period of approximately 4.5
hours, sampling at a rate of 1 Hz, as the Sun moved across the sky.
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After the test was complete, the α and β angles were extracted from the data log and the Sun position
vector, SC , was calculated using eqs. (6.18) to (6.20). The results of the test are seen in fig. 6.33, which
plots the individual vector components with respect to time during the investigation.

(a) CubeSense FSS Placement (b) CubeSense FSS Setup

Figure 6.32: CubeSense FSS Roof Setup

To find the error in the vector component measurements, a fourth order polynomial LOBF was determined
for each of the vector component outputs as a function of time, in order to find a mean path as measured
by the FSS for the position of the Sun. The error is therefore a deviation from the mean path which is
assumed to be the true location of the Sun during this investigation.

(a) Vector Component Scx

(b) Vector Component Scy

Figure 6.33: FSS Camera Sun Vector Components
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(c) Vector Component Scz

Figure 6.33: FSS Camera Sun Vector Components

Fig. 6.34a shows the deviation from the mean for each of the Sun vector components where the 3σ
errors for each component were calculated as 2.455× 10−3, 2.351× 10−3 and 2.232× 10−3 respectively.
Eq. (4.55) was once again used to calculate the expected angular vector error from the mean Sun vector –
the results of which can be seen in fig. 6.34b. The random spikes in the errors in both figures particularly
after the 8000 s mark, could be attributed to small clouds passing over the Sun during the investigation.
Even with this as the case however, 99.59 % of the angular errors still remained much lower than the
stated 1σ error of 0.2° where this particular test obtained a 3σ accuracy of 0.233° which reflects the
random measurement noise error, not the lens distortion corrected angular error.

(a) FSS SC Component Error

(b) FSS SC Angular Error

Figure 6.34: FSS Error
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Upon the conclusion of the FSS analysis, where the findings show that FSS’s reported accuracy is likely to
actually be better than stated, as the test conducted for this research was completed on Earth’s surface –
where atmospheric and cloud conditions played a role in accurately measuring the error in the FSS. With
satellite’s in space, the error is likely to be lower, where weather conditions and atmospheric diffraction
will not be a factor influencing the accuracy of the FSS.

6.5.3 Fine Sun Sensor Model
The FSS was modelled similarly to that of the CSS, where a correlated Gaussian noise was instead added
to each of the Sun vector components in the SBC frame. The FSS model only includes the random noise
errors and not its absolute angular errors. The FSS was chosen to be placed with the camera BS to be
pointing towards the -Y facet of the satellite, where the FSS camera axes are transformed to the satellite
body axes by

SB =

1 0 0
0 0 −1
0 1 0

 SC . (6.25)

Figure 6.35: Modelled FSS ŜB Components

(a) Modelled FSS ŜB Component Error

Figure 6.36: Modelled FSS Error
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(b) Modelled FSS SB Angular Error

Figure 6.36: Modelled FSS Error

The Gaussian noise is correlated through the same low-pass filter as in eq. (6.1) with α = 0.1 in order
to allow higher frequency components to pass. Multiple tests were conducted to find the best suited
noise output for the FSS, where a value of σe = 4.5× 10−3 obtained to most realistic error output. The
resultant Sun vector component errors can be seen in fig. 6.36a and the measured Sun vector in SBC is
shown in fig. 6.35, where the FSS model is set to give no measurements if the satellite is in the eclipse
portion of its orbit or if the Sun is out of the DR as explained in sec. 6.5.1.

The 3σ errors were calculated over ten orbits. The X̂B and ẐB Sun vector errors were similar at
2.1216× 10−3 and 2.1412× 10−3 respectively, where, the 3σ error on the BS axis was the smallest in
the simulation at 1.7582× 10−3. This is because the Sun vector components are normalised after noise
is added and the ŶB component remained relatively large and constant during the simulation. The
resultant angular error can be seen in fig. 6.36b, where the 3σ error was calculated to be 0.2013° on
average – closely matching the expected error for the FSS.

6.5.4 Nadir Sensor Analysis
Fig. 6.37 shows the setup of the nadir camera that was used to investigate its performance. The setup
was based in a darkroom at the CubeSpace head-office, where an illuminated ball was used to represent
the Earth as detected by the nadir camera.

In order to maintain accuracy, CubeSpace has set the nadir camera (in software) to only calculate nadir
measurements for a minimum Earth disk radius ρ⊕ = 37.5°, which equates to a maximum satellite altitude
of approximately 4100 km [52]. The ball in the test setup has a radius, Rball = 30 cm. By modifying
eq. (4.28) and treating the ball as the Earth and the camera as a satellite, the angular radius of the ball
relative to the camera, ρball, could be calculated with

ρball = arcsin
(

Rball
Rball + dball

)
. (6.26)

Similarly, the distance dball could be calculated with

dball = Rball · (1− sin ρball)
sin ρball

, (6.27)

where the theoretical maximum distance for the camera to be placed from the ball is calculated to be
19.28 cm before the camera will report an error.

To make sure that the camera was well within range of the ball, it was placed at a distance dball = 5.5 cm
(not the same as in the figure). Additionally, fewer errors are to be expected if the camera is placed

95

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. CUBEADCS HARDWARE INVESTIGATION AND MODELLING

in close proximity to the ball as more edges are likely to be detected for the circle fitting algorithm to
utilise.

Next, the camera was fixed to a rotation stage set to change its azimuth angle relative to the ball’s centre
along the xz-plane in the camera frame to observe the increase in error as the ball moves towards the
edge of the nadir DR. Additional care was taken to ensure that the camera BS was aligned with the axis
of rotation to minimise external errors in the measurements.

Figure 6.37: Nadir Camera Test Setup

During the experiment, the camera’s azimuth was changed from −10° to 50° in increments of 1°. Five
consecutive measurements were then captured at each angle increment to observe the deviation of error.
Fig. 6.38 shows the actual distorted images captured by the nadir camera at the two outer limits of the
tested angles and at the camera BS. Fig. 6.39 shows a contrast equalised version of each image which
allows one to see previously hidden objects in the background; but more importantly, it shows the edge
of the camera lens on the image plane.

It is typically difficult to perfectly align the BS with the centre of an image plane, which is clearly seen
in fig. 6.39b. This, in turn, skews the horizontal DR and limits the maximum camera rotation angle for
positive azimuth angles, resulting in a detection error occurring sooner than expected as the ball moves
towards the right-hand side of the image.

Each measured nadir vector component was obtained using eqs. (6.18) to (6.20) where a true reference
vector was also calculated to determine the error of each component with αref being set to the negative
camera rotation angle and βref = 0°. Fig. 6.41 shows the errors in each vector component from its
respective reference vector component, as well as the angular errors between the measured vector and
the true reference vector.

(a) −10° (b) 0° (c) 50°

Figure 6.38: Nadir Camera Images
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(a) −10° (b) 0° (c) 50°

Figure 6.39: Nadir BS on Image Plane

The camera was expected to obtain an error when the camera azimuth angle was at 65° (the edge of
the DR). However, due to the misalignment of the BS, the camera instead started producing errors for
azimuth angles greater than 50°. This was also worsened by the errors in the distortion correction model
increasing as the ball moved further away from the BS. Additionally, less light from the ball reached the
camera at extreme angles which caused fewer pixels to pass through the detection threshold.

Fig. 6.40 shows angular errors found during error testing for the nadir camera during the original design
and experimentation of the CS [14]. These previous results bare a close similarity to results obtained
in this experiment seen in fig. 6.41b which used a very similar setup and Earth disk to this analysis.
Angular errors are shown, in both cases, to increase as the BS moves further away from the ball, where
both errors remain below 1° before the camera azimuth angles reaches 40°.

Fig. 6.41c plots the angular errors found whilst the full ball is still in the camera’s DR. The 3σ angular
error in this region is calculated to be 0.1904° which is well within the stated expected accuracy. This
error then increases to 0.9283° for camera azimuth angles less than 40°, where after this range, the errors
become unacceptable.

Figure 6.40: Original Nadir Camera Accuracy Results [14]
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(a) Vector Component Error

(b) Angular Error

(c) Angular Error – Full Ball in DR

Figure 6.41: Nadir Sensor Errors

6.5.5 Nadir Sensor Model
Using the results from the nadir sensor analysis, a nadir camera model is defined. The nadir camera is
intuitively placed on the +Z facet of the satellite, which aligns the satellite body axes to the nadir camera
axes. By definition of the ORC frame, the nadir vector in ORC is defined as

ĤO =

Hox

Hoy

Hoz

 =

0
0
1

 , (6.28)
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where the true nadir vector in the SBC frame is simply the 3rd column of the satellite DCM. The nadir
camera can only detect an illuminated Earth and so the model is designed to produce no measurements
if the simulated satellite is in the eclipse portion of its orbit.

Furthermore, the DR is continuously calculated in the simulation using eqs. (6.23) and (6.24) where no
nadir sensor measurements could be produced if the nadir vector was out of the camera’s DR. Gaussian
noise was correlated through eq. (6.1) with a correlation coefficient α = 0.01 and was once again added
to each nadir vector component. The errors were then set to increase as soon as a portion of the Earth
begins to leave the DR.

Figure 6.42: Modelled Nadir Sensor Angular Errors – Full Earth in DR

Fig. 6.42 plots the angular error measured when the full Earth is still in the camera’s DR, where fig. 6.43
plots the measured nadir vector angular error for a satellite performing a slowly increasing and decreasing
pitch manoeuvre. The errors are seen to increase as the Earth moves further out of the nadir DR. A test
conducted over ten orbits revealed a 3σ error of 0.2124° when the full Earth is in the DR, where five tests
run over two orbits performing the same pitching manoeuvre as in fig. 6.43 produced an average 3σ error
of 0.9124° – closely matching the measured results.

Figure 6.43: Modelled Nadir Sensor Angular Errors – Satellite Pitching

6.6 CubeStar
This section discusses the analysis and modelling for the CT (the final sensor discussed), and addresses
the main theory behind the operation of the CT presented in sec. 3.6. Fig. 6.44 shows the two-dimensional
pixel coordinate frame for the image sensor on the CT, where the top right-hand corner represents the
sensors (0, 0) pixel coordinate. Increases in x-axis pixels represent an increase in image sensor pixel
columns (of which there are 1280), where increases along the image sensor y-axis represent changes in
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pixel rows (of which there are 1038). The subsequent image produced, when viewed, will be mirrored
about the image sensor x-axis due to the pixels being stored from left to right and top to bottom
[48].

Figure 6.44: CubeStar Image Sensor Coordinate Frame [52]

The CT’s body coordinate system is shown in fig. 6.45, where the orthogonal set of the camera body
axes are defined relative to the lens’s principal point shown in the centre of the lens. The location of
the origin in fig. 6.45 is different to that in fig. 6.44, where it has been moved to the principal point of
the image plane [48]. The unit body vectors pointing to identified stars is generated in the defined body
axes.

Figure 6.45: CubeStar Camera Body Coordinate Frame [52]

6.6.1 CubeStar Field of View
Shown in fig. 6.47, the CT lens and image sensor provide the camera a horizontal FOV of 58° and a
vertical FOV of 47°. This is limited to both a vertical and horizontal FOV of 42° by a defined "valid
image region" [48] used for valid star detection, represented as a square block on the image sensor shown
in fig. 6.46. The square block thus defines a diagonal FOV of approximately 60°.

Figure 6.46: CubeStar Valid Image Region [48]

If the Sun, illuminated Moon or Earth are in or near the camera’s FOV, then the CT is likely to produce
an invalid detection due to its long exposure time causing the image sensor to take in a lot of external
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light. If the satellite is in the eclipse portion of its orbit and the Moon is either not visible or illuminated,
then the Earth would be the source of most errors if the CT is pointing nadir as the Earth will block the
light from stars behind it. Care should be taken to position the CT in a location on the satellite which
would minimise such errors.

(a) CubeStar FOV –
Side View

(b) CubeStar FOV – Front
View

Figure 6.47: CubeStar FOVs [48]

6.6.2 CubeStar Star Catalogue
The identified stars are matched to a reduced set of 410 stars in the Hipparcos star catalogue from which
an inertial vector to the star is generated with reference to the International Celestial Reference System
(ICRS) having an epoch of J1991.25 [48] and its axes “fixed” in space. The ICRS frame differs in origin
to the ECI frame in that its origin is at the barycentre of the solar system, however, the ICRS coordinates
are considered to be approximately the same as ECI coordinates.

At the beginning of each year, the positions of the stars are updated by having their epochs set to 12h
(TT) on 1 January. The inertial and corresponding body referenced star vectors form a star vector pair
which is then used to estimate the CT’s attitude [48] using a QUEST algorithm. The CT outputs both its
attitude in quaternion form together with its RA and declination celestial coordinates in degrees.

It is stated that with the combination of the FOV and star catalogue, the CT will be able to observe a
maximum and minimum of 38 and 2 stars respectively and that it should be able to match three or more
stars 99.71 % of the time. Additionally, the CT has been tested and proven to perform correctly under
a maximum slew rate of 0.3 ° s−1 when the CT is in its lost-in-space mode, and up to 1 ° s−1 when in
its tracking mode [52]. Angular rates any higher than the rated maximums in each mode will cause the
stars to be “smeared” across the image due to the long integration time of the camera – leading to poor
or null star detection and matching results.

6.6.3 CubeStar Analysis
A dataset obtained from an experiment conducted by CubeSpace [52] was used to analyse the accuracy
of the CT. In preparation for the test, before any imaging took place, the CT was placed at rest on
the Earth’s surface with the camera BS facing the clear night-sky. Over a period of about 26 min, the
CT took images of the stars approximately every 3 s and calculated a corresponding quaternion attitude
vector as the Earth rotated. The accuracy test is one which measures the CT’s ability to estimate its
attitude.

The results show that the CT was able to estimate its attitude 504 times out of a total 511 measurements
(matched 3 or more stars 98.63% of the time) and that the processor matched a total of 4138 out of
a possible 5256 detected stars. The measurement errors that did occur could also likely be due to
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atmospheric disturbances during the test as it was conducted on Earth and not in space where the
accuracy is expected to be improved.

In orbit, a satellite’s DCM would relate its SBC frame to the ORC frame. If the attitude quaternion is
known, then the DCM, AB

O, can be calculated with eq. (4.47). The DCM calculated for a CT placed
on Earth’s surface relates its body frame to the ECI frame and is thus represented by AB

ECI . Both
the calculated star vector, vB and the corresponding ideal star vector from the catalogue, wECI can be
obtained from the output test data. The vectors are first normalised, then vB is transformed to the ECI
coordinate frame using:

vECI = AB
ECI

−1vB . (6.29)

Figure 6.48: Calculated Star Vector Error

Eq. (4.55) is used to calculate the angular error, between the vector pair vECI and wECI . The results
from calculated error angle for each vector pair relating to a matched star and the CT’s attitude can be
seen in fig. 6.48, the RMS of which was found to be 0.0176° represented in the figure by the black dashed
line. The results indicated that 64.14 % of the errors were below the RMS error. The errors shown in
fig. 6.48 calculate the angular error between a matched star and its reference star, and is not a measure
of how accurately the CT can determine its true attitude.

Figure 6.49: CubeStar Attitude Deviation from Mean

A separate dataset provided by CubeSpace [52] logged the calculated attitude quaternion for a CT in a
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similar setup at 1 Hz over a period of 1 h as the Earth rotated with it. Once again, eq. (4.47) was used to
calculate the DCM between the CT body frame and the ECI frame which was further used to calculate
the respective Euler angles at each instant. The resultant roll, pitch and yaw angles obtained were then
fitted individually with their own respective LOBFs from which their deviations from the mean Euler
angle was calculated.

The resultant errors can be seen in fig. 6.49, where the RMS roll, pitch and yaw errors were calculated to
be 0.005 29°, 0.005 95° and 0.011 71° respectively. Notably, 94.22 % and 91.36 % of the respective roll and
pitch (cross-axis) errors remained below 0.01° in magnitude, where 98.61 % of the yaw (BS roll) errors
remained below 0.03° in magnitude. Factors contributing to the magnitude of these errors could once
again possibly be attributed to atmospheric disturbances or stray light in the environment. The accuracy
is expected to be improved when in the CT is tested in space.

6.6.4 CubeStar Model
Fig. 6.50 illustrates the conversion of a star’s projected 2-dimensional centroid coordinates in the image
plane (not pixel coordinates) to 3-dimensional camera coordinates. Coordinates for a star centroid
on the 2-dimensional image plane can be represented as (xi, yi) in mm, where (xi0, yi0) represent the
coordinates for where the camera BS passes through the centre of the image plane. The distance
coordinates from the camera boresight centre point to the star centroid on the image plane is given
as (∆xi,∆yi) = (xi − xi0, yi − yi0).

Figure 6.50: CubeStar Projection

In the simulation, three different star distance coordinates were given and were unchanged relative to
the image plane frame in order to represent the CT being able to match at least three different stars.
These coordinates were then used together with the focal length, f , to calculate the camera body three-
dimensional unit vector coordinates, (vcx, vcy, vcz). First the angle ξ was calculated with

ξ = arctan
(

∆xi
f

)
, (6.30)

where the angle γ was next calculated with

γ = arctan
(

∆yi · cos ξ
f

)
. (6.31)

Finally, the star unit vector body coordinates were calculated using
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v̂C =

vcxvcy
vcz

 =

sin ξ · cos γ
sin γ

cos ξ · cos γ

 (6.32)

Both reference star vectors and a measurement star vectors were calculated in the simulation. The
measurement vector components had a Gaussian distributed noise added to the image plane distance
coordinates to represent errors in centroid calculation after the reference vector is initially calculated
with the noise-free coordinates. It was decided to orient the CT at 45° between the -ZB and +YB axes,
and so, both the reference and measurement star vectors were transformed to the SBC frame by rotating
about the CT’s X̂C-axis with

v̂B =

vbxvby
vbz

 =

1 0 0
0 − cos(45°) sin(45°)
0 − sin(45°) − cos(45°)


vcxvcy
vcz

 . (6.33)

The final step was to observe if the measurements are valid in the surrounding space environment. First,
the CT BS vector was converted from the SBC frame to the ORC frame using the DCM. The angles
between the BS and the Sun and the Earth were then calculated in order to see if the stars were actually
visible and that the measurements were valid. If the satellite is in eclipse, then the angle between the BS
and nadir must be larger than the sum of the Earth disk radius and half of the camera’s FOV (set at a
worst case of 30°). If the satellite is not in eclipse, then the angle between the Sun and the BS must be
greater than half the FOV chosen as 39°. Additionally, the angle between nadir and the BS was chosen
to be 10° larger than the Earth disk radius to account for Earth albedo from the local horizon.

Next, the simulation implemented the worst-case lost-in-space mode angular rate requirements, which
ensured that no detections would be made at inertially referenced body angular rates higher than 0.3 ° s−1.
The effect of this, combined with the effect of stray light entering the CT’s FOV was tested by commanding
the simulated CubeSat into a target tracking mode and attempting to track a location on Earth as it
passed overhead. The results of this can be seen in fig. 6.51c, where it is clear that the CT is not able to
make valid detections at high pitching angles and slew rates. In reality, the CT will likely be in a tracking
mode when performing target tracking manoeuvres, and will instead be able to make valid detentions at
angular rates less than 1 ° s−1. This is accounted for in the simulations conducted in chapter 7.

Finally, a random number generator was run to generate numbers between 0 and 1, where if the number
generated was greater than 0.9971 then the measurements were considered invalid. This represented the
probability of the CT matching three or more stars 99.71 % of the time.

(a) Star Vector Components

Figure 6.51: CubeStar Star Tracking Components and Errors
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(b) Star Vector Angular Error

(c) Star Vector Components While Pitching

Figure 6.51: CubeStar Star Tracking Components and Errors

Fig. 6.51 shows the modelled CT vector components and errors for one of the matched stars in the
simulation. Fig. 6.51a shows how there is no match for three of the stars for 0.29 % of the time, where
fig. 6.51c shows how the change in pitch effects the CT measurement errors caused by a contribution of
both the Earth albedo coming close to the CT baffle and the increase in the satellite’s angular rates.
Fig. 6.51b shows the angular errors between the measured star vector for one matched star and its
reference star vector during the simulation where a 1σ error of 1.6 µm in the calculated x and y coordinates
for the star centroid was found to produce a similar RMS angular error of 0.017° with 63.17 % of the
errors being below this RMS value.

6.7 CubeWheels
The CWs are fundamental to achieving a high IPA in EO satellite missions. In addition to enabling
a complete 3-axis control, the CWs absorb external environmental disturbances in space and assist to
hold the satellite stable through its orbit. The CW comprises of a 2610 series brushless DC (BLDC)
micromotor developed by Faulhaber [87] and a rotating flywheel which can be controlled to follow either
a reference torque or a reference speed command.

The CW speed can be measured by two separate independent sensors, namely: a primary magnetic
encoder with a resolution of 0.5 RPM and secondary Hall sensor with a resolution of 10 RPM for
redundancy. The primary encoder has an adjustable update rate from 1 Hz to 10 Hz where the secondary
sensor has a maximum update rate of 1 Hz. The control algorithm can use either speed measurements
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for feedback, however, the primary sensor is the default.

Table 6.5 is adapted from [55] and shows the typical sizes of CWs which should typically be used on a
CubeSat with a specific size.

Table 6.5: Typical CubeWheel to CubeSat Size Matching

CubeSat Size
CubeWheel Size 2U 3U 4U 6U 8U 12U Larger
Small and Small+ X X X - - - -
Medium - - X X X - -
Large - - - - X X X

6.7.1 CubeWheel Analysis
An analysis was conducted on a medium-sized CW to measure its performance in relation to its ability to
track a broad spectrum of different reference speeds. It is of particular interest to observe how accurately
the CW is able to track slower reference speeds as the wheels will be primarily operating at slower rates
during the majority of a satellite’s orbit.

Table 6.6: Stated CubeWheel 3σ Error

CubeWheel Size
Reference Speed (RPM) Small Small+ Medium Large
50 ±5 ±5 ±2 ±2
500 ±2.5 ±2.5 ±1.5 ±1
2000 ±3 ±3 ±1 ±1
6000 ±3 ±3 ±0.5 ±2

The CWs are controlled by a custom logic PID controller, the performance of which is worsened when
controlling a CW at lower speeds. The data in table 6.6 is adapted from [55] and is the stated speed
control 3σ error margins for each of the four CW sizes. Fig. 6.52 plots the measured errors at each
commanded speed reference on a log scale, where 27 different data points between (and including)
0.5 RPM to 6000 RPM were collected to gain a good idea of the kind of errors that can be expected
at each reference.

Figure 6.52: CubeWheel Medium Reference Speed Tracking Errors

For reference speeds lower than 3 RPM, the CW controller struggles to maintain a constant speed. The
measured output is found to vary considerably, and to have an average speed which is always greater
than the actual reference. Once the reference speeds increase past 3 RPM, the errors reduce rapidly with
an average 1σ error below 0.5 RPM which only begins to increase again after 1000 RPM. Additionally,
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the average speed outputs are consistently measured to be 0.25 RPM below the reference – all the way up
to 6000 RPM. Discrepancies between the stated expected errors and the measured errors (especially at
6000 RPM) may be attributed to testing a wheel which is not brand new and which has been experimented
on multiple times in various laboratories.

The last step in the analysis was to measure the expected torque outputs of the medium CW in order to
determine a suitable torque saturation point to consider in the simulated model. Two different derivations
of torque were calculated in this analysis where the first was to measure the motor torque, Nmotor, from
the measured motor current, Im, by

Nmotor = km · Im, (6.34)

where km is the motor torque constant for the motor driving the wheel obtained from [87]. The second
torque derivation was to determine the wheel torque, Nwheel, by calculating the discrete derivative of the
measured angular momentum of the CW, hwheel, with

Nwheel = ∆hwheel
∆twheel

, (6.35)

where

hwheel = Jwheel · ωwheel, (6.36)

with Jwheel and ωwheel being the medium CW’s moment of inertia (obtained from sec. 3.7) and angular
speed of rotation in rad s−1 respectively.

Figure 6.53: CubeWheel Medium Maximum Torques

To measure the maximum possible torque output, a constant torque PWM reference with a 100 % duty-
cycle was commanded to the CW until the wheel speed reached its maximum rotation rate of 6000 RPM –
the results of which are shown in fig. 6.53. The measured change in the CW’s angular momentum is shown
to be considerably higher than the measured motor torque where the average maximum wheel and motor
torques over full commanded torque period were calculated as 2.267 mN m and 1.01 mN m respectively,
where the latter more closely resembles the stated maximum CW medium torque. Eq. (6.34) assumes
the motor current measurement is calibrated correctly, which could explain the difference seen between
motor torque and wheel torque.

6.7.2 CubeWheel Model
The CW open-loop step response for a BLDC motor plant is typically a first-order response and is thus
chosen to be modelled with the continuous transfer function
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G(s) = τm

(s+ 1
τm

)
, (6.37)

where τm = 69 ms, is the BLDC motor’s mechanical time constant acquired from [87].

Figure 6.54: CubeWheel Model Control Loop

Fig. 6.54 illustrates the modelled CW control loop where the plant is discretised and transformed to
the Z-domain using the minimum CW sample time of 0.1 s. It was decided to control the plant using a
discrete-time PI (Proportional and Integrator) controller as this proved to be the closest match to the
tested medium CW response. To acquire the expected torque output for the CW, the derivative of the
angular momentum from the plant output was obtained and further passed through a saturation block
which limits the maximum possible torque that can be delivered as well as through a quantizer which
represents the minimum control torque increments which can be commanded by the CW controller.

The resultant torque was then integrated, where a measurement noise was further added to the output
signal and fed back to complete the control loop. Additionally, the input angular momentum reference
was fed through a saturation block to represent the CW maximum rotation speed limit, where the
output angular momentum had a mean error added to it in order to match the CW average errors seen in
fig. 6.52. Finally, the encoder blocks represent the rotation speed magnetic encoder which has a resolution
of 0.5 RPM.

The angular momentum and torque saturation limits as well as the encoder and quantizer parameters
were calculated with the CW parameters in table 6.6 and were adjusted based on the CW size required
for a specific CubeSat size in the simulation. Fig. 6.55 plots the resultant modelled error for a medium
CW at different commanded rotation speeds and is shown to closely match the results in fig. 6.52.

Figure 6.55: CubeWheel Model Errors

The modelled mean and 1σ errors were referenced against the measured reference rotation speed from two
spline-fitted lookup tables based on the results from fig. 6.52. The errors were modelled to be correlated
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low frequency noise proportional to the referenced lookup table value at wheel speeds lower than 8 RPM
– as was observed from the actual CW output. At higher wheel speeds, the errors were modelled as
Gaussian noise with a standard deviation equal to that from the referenced lookup table value.

Figure 6.56: CubeWheel Model Step Responses

Whilst testing the medium CW, it was observed that the closed-loop step responses were different for
alternating increments in speed references. To match this response as closely as possible, the PI controller
was modelled with varying PI gains for different increments in speed references (∆ω). An experiment
was conducted which doubled the change in the speed reference (∆ω) every 10 s starting at 5 RPM and
ending at 2560 RPM in order to find the best PI gains to match the real CW’s response.

Table 6.7: Modelled CubeWheel PI Controller Gains

∆ω (RPM)
Gain ≤ 100 ≤ 1100 > 1100

P 0.05 0.2 0.5
I 1.3 1.4 3.0

The resulting PI gains chosen can be seen in table 6.7, where ∆ω is given in RPM. Fig. 6.56 shows the
final results implementing the chosen PI controller gains, where the model was found to closely resemble
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the real CW exhibiting approximately equal 2% settling times for each step increment.

The final implementation of the CW model was tested in the main project simulation over ten orbits.
The satellite sensors were set to have no noise, however, the external disturbances were set to be active.
As described in the beginning of this chapter, the simulated CubeSat is 3U and thus uses small CWs
on all three of its body axes – where the wheel parameters were adjusted accordingly. In this particular
experiment, the momentum dumping controller was chosen to be permanently off.

The results of the CWs tracking the simulated angular momentum references is shown in fig. 6.57
(converted to an equivalent small CW speed), where the speed is shown to increase as time progresses
due to angular momentum build-up.

Figure 6.57: CubeWheel Model In-Orbit Simulation

The wheel dynamics models proved to accurately track the desired reference angular momentum. Fig. 6.58
shows the error between the modelled CW’s tracking response and the reference wheel speed at the time,
where the errors are shown to increase as the associated wheel speeds increase. It is noted that for all
three wheels, the wheel speed error begins to increase substantially at approximately the 400 minute
mark, where the maximum magnitudes of all three wheel speeds’ are greater than 500 RPM after this
point.

Figure 6.58: CubeWheel Model In-Orbit Simulation Errors
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The x, y and z wheels each have an RMS error of 1.339 RPM, 0.987 RPM and 1.312 RPM respectively.
The x and z wheels show similar errors as they are following similar sinusoidal angular momentum
patterns, where the y wheel is increasing in speed almost linearly with time. Although the y wheel is
spinning much faster than the x and z wheels, the larger errors exhibited by the latter two wheels can
be more closely attributed to the wheel controllers lagging behind the reference speeds as they track the
nearly sinusoidal references.

6.8 CubeTorquers
The CubeTorquers aboard a 3-axis stable CubeADCS do not contribute towards a high IPA. They are
instead intended to be used to perform angular momentum dumping as reaction wheels have a limited
angular momentum storage capacity and consume more power when operating at higher rates. The
benefits to using magnetorquers are that they are low in cost, they have no mechanical parts which wear
out, and they do not consume large amounts of power.

Each CubeRod size as well as the CubeCoil have their own respective maximum magnetic moment seen
in table 3.2. By applying a PWM signal to pulse the required magnetorquer on and off for longer and
shorter periods of time, the required magnetic moment can be generated which then interacts with Earth’s
magnetic field to generate magnetic torques which work to reduce the angular momentum build-up in
the CWs.

For the remainder of this project, where IPA is of the utmost importance, it was decided to only
activate the momentum dumping magnetic controller during the satellite’s eclipse period in a stable
nadir pointing attitude, when no target tracking imaging is occurs. Fig. 6.59 shows the CubeTorquers
working to dump the CWs angular momentum during the satellite’s eclipse period and its effect on the
CW speed. Comparatively, fig. 6.57 shows the resultant wheel speeds where no momentum dumping is
implemented.

Figure 6.59: CubeTorquer Momentum Dumping

6.9 Summary
This chapter investigated the sensors and actuators implemented by the fully integrated CubeADCS with
3-axis stability. Additionally, the equivalent simulation models were designed to exhibit the expected
errors in the measured outputs of each component. The error models were chosen to represent a worst-
case scenario in order to show that the true IPA measured in chapter 7 is also the maximum IPA error
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which could be expected for a CubeSat in LEO.

Primary focus was placed on the sensors and actuators contributing to a high IPA such as the CS, the
MEMS gyros, the CT and the CWs. The magnetometer and CSS were modelled for, nonetheless, due to
their outputs being used by the EKF – where their models show errors which closely match the measured
outputs. The CubeTorquer errors were not designed for as its only main error is caused by remanence
in each magnetorquer causing a magnetic torque disturbance which is so low that it is dwarfed by the
aerodynamic and solar panel induced magnetic torque disturbances.

In-orbit data was found to be extremely valuable when determining a component’s expected accuracy in
space. This is seen in both secs. 6.2 and 6.4 which showed the magnetometer errors after calibration as
well as the errors caused by temperature variations during a satellites orbit on both the magnetometer
EKF estimates and the MEMS gyro rate outputs.

The MEMS gyro was found to exhibit the largest range of errors. The main improvement which could
be made to reducing these errors would be to calibrate the gyros in a highly accurate temperature
chamber with a rate table built in. This would drastically reduce the effects of temperature on the gyro
outputs. Additionally, averaging a larger number of gyro samples per second would further minimise the
high frequency error components measured. The modelled MEMS gyros are shown to closely mimic the
characteristics measured from the true outputs, especially with regards to the effects of temperature on
the bias.

The FSS and CT errors were found to resemble the stated accuracy closely, where the models implemented
could replicate this. Additionally, accuracies in space are expected to be better than those measured on
Earth. The nadir camera was one of the hardest components to analyse due to experimental setup
limitations. The measured accuracies were still shown to match those stated for when the full Earth is
in the DR. The model shows the increase in errors expected as the Earth moves further and further out
of the camera’s DR.

Finally, the CW’s performance was shown to worsen at lower rotation rates under 3 RPM but to drastically
improve when tracking high rotation speeds until friction begins to play a role in the errors after ≈
4000 RPM. The model is very accurate and is able to closely match the 2 % settling times for different
increases in speed references. The errors at each rate are also shown to closely resemble those measured
in the CW analysis.

This concludes the hardware investigation and modelling portion of this research. With the components
behaviours and errors closely resembling that of the CubeADCS components implemented, the further
simulation investigations should, to a large degree, indicate the expected IPAs and stabilities for various
EO CubeSats in LEOs.
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Simulation Investigations

7.1 Overview
In order to gain a broader understanding of the expected IPA of a CubeSat in LEO, multiple simulation
investigations are conducted in this chapter in which several physical and orbital CubeSat parameters
were considered. Different simulation scenarios are created by adjusting

1. the size of the CubeSat,

2. the number of solar panels on a CubeSat and their mounting configurations,

3. the nominal orientation of the CubeSat in its orbit,

4. the type of orbit (altitude and inclination),-

5. the type of estimator used to estimate the CubeSat’s attitude and angular rates and,

6. the sensor placements on the CubeSat.

Altering these parameters influences the way in which the environmental disturbances will affect the
CubeSat as well as the accuracy at which the CubeADCS can estimate and control its attitude. These
investigations are conducted to determine the conditions in which the CubeADCS will perform best as
well as to identify possible adaptions which could improve the CubeADCS’s performance in the future.
Additionally, two different satellite pointing methods will be tested, where the first will test the satellites’
IPA whilst tracking a constant nadir reference, and the other will test the satellites’ target tracking
performance.

7.2 CubeSat Configurations and Orbit Considerations
A significant amount of permutations involving different parameter combinations can be explored to
develop a multitude of different scenarios. As a result, the selection of these parameters is refined to
investigate a modest, but diverse, set of different scenarios likely to be found in typical EO CubeSat
missions in which a high IPA is required. The selection of these parameters is discussed in this
section.

7.2.1 Size and Mass
By altering a CubeSat’s dimensions and mass, one changes the its’s MoI and thus, its dynamics, as well as
its exposed surface areas which effect disturbance torques. Three separate CubeSat sizes are considered in
the simulations that follow, namely: 3U, 6U and 12U. The sizes were selected to be double the previous
size in order to gain a diverse understanding of how the CubeADCS performs as it controls different
moments of inertias. Additionally, the CubeSat’s each require different CubeWheel and CubeTorquer
sizes to control the satellite’s attitude, which imply different wheel speeds and different momentum
dumping strategies and thus, different error dynamics.
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(a) 3U CubeSat (b) 6U CubeSat (c) 12U CubeSat

Figure 7.1: CubeSat Sizes

7.2.2 Solar Panel Configurations
As described in sec. 5.3.3, the number of solar panels a CubeSat greatly influences its magnetic disturbance
torques. Additionally, deployed solar panels create greater aerodynamic disturbance torques and change
the CubeSat’s dynamics. There are two types of CubeSat solar panel configurations for the 3U and 6U
CubeSat sizes: deployed and body-mounted solar panels, DSP and BMSP respectively. The 12U CubeSat
size is considered to only have BMSPs.

Figs. C.1 to C.3 in appendix C, illustrate the typical solar panel configurations for each CubeSat type
as well as their typical MoIs which are used in the simulations that follow. None of the CubeSat’s have
solar panels on their +Z and -Z facets, as the Zenith and anti-Zenith sides of the CubeSats are assumed
to be used for communications and imager payload purposes respectively. The remaining facets are all
covered in solar panels for the BMSP designs.

The DSP 3U and 6U CubeSat body types are chosen to have a pair of deployed 3U and 6U solar panels
on either side of their -Y facets respectively, with body-mounted solar panels on the remaining facets –
excluding the facets from which the solar panels are deployed.

7.2.3 Long-body Axis Configuration
Fig. 7.2 illustrates the two different CubeSat orientations chosen to be investigated in this chapter which
suit typical conventions followed in most CubeSat missions. The two different orientations are defined
such that, the long-body axis of the CubeSat is aligned with either the SBC z or x-axis. Implying that
when the CubeSat is in its nominal ORC frame aligned orientation, that the long-body axis will either be
nadir pointing or in the ram direction. This determines how the environmental disturbances will impact
each CubeSat, where the long-body axis configuration also defines the axis with the lowest MoI needed
to be controlled.

Figure 7.2: CubeSat Orientations for Simulations
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7.2.4 Orbit Type and Parameters
The type of orbit a CubeSat is in additionally affects the way in which it interacts with its surrounding
environment. Three separate LEO’s are considered which align with common CubeSat missions existing
at present. A large number of CubeSat’s currently orbiting the Earth have been deployed from the
ISS and so it is appropriate that one of the orbits to be investigated is the same as that of the ISS.
Furthermore, to align with the project scope, two separate SSO’s are investigated which exhibit different
orbit altitudes and resulting inclinations.

As such, the orbits considered are ±400 km for the ISS orbits, a ±500 km SSO and another SSO with
an altitude of ±650 km, where the remaining orbit parameters are summarised in table 7.1. All chosen
satellite orbits have additionally been selected to have near perfect circular orbits (i.e. e ≈ 0). The
CubeSat TLE’s are chosen to begin at approximately the same date to create equal solar positions for
each satellite. The chosen date is set to be at the March equinox where the two SSO’s were set to have
a RAAN = 30°, in order to create a sun angle to the orbit plane of ≈ 30° – allowing for CubeStar to be
placed in an orientation which is unobscured by the Sun.

Table 7.1: Simulation Investigation Orbit Parameters

No. Type TLE Epoch isat Ωsat esat ωsat Msat nsat

1 ISS 19 079.81 51.64° 75.02° 0.00054 149.95° 210.19° 15.59
2 SSO 19 079.89 97.50° 30.00° 0.00086 202.35° 157.73° 15.24
3 SSO 19 079.67 98.00° 30.00° 0.00081 254.35° 105.69° 14.72

7.2.5 Estimators and Star Tracker Orientation
The type of estimator used has a significant impact on the CubeADCS’s ability to estimate and propagate
a CubeSats’s attitude and body angular rates. The simulated CubeSats all use a full EKF and a
full gyro EKF, which both make use of the complete suite of sensors on the CubeADCS (including
the CT). Both EKF algorithms have been provided to the author by CubeSpace [52], where the same
algorithms adopted by the CubeADCS in its CubeACP software have been modified to suit the format
of a MATLAB® S-function, compiled into an executable mex file to be implemented by this author for
this investigation.

A high IPA is not possible without the use of a CT and so the only change in sensor placement which is
implemented is the orientation at which the CT is mounted on each CubeSat. There are two chosen CT
orientations under investigation: 1) the CT is placed with the boresight pointing 45° from the +X facet
towards the -Z facet on the CubeSat, and 2) the ST is placed with its boresight pointing in the direction
of the -Z facet on the CubeSat. The two different orientations will provide two different scenarios, where
the first scenario will ensure that the CubeADCS will always have valid CT measurements and another
scenario where the CubeADCS will not have ST measurements for the middle part of the sunlit portion
of its orbit, due to the sun being within 30° of its boresight when nadir pointing.

7.3 Maximum Disturbance Torques
The maximum disturbance torques were determined for each simulated CubeSat based on body MoI,
solar panel configuration, and orbit types. The maximum disturbance torques account for a worst
case scenario when determining the maximum gravity gradient, aerodynamic, and solar panel induced
magnetic disturbance torques – regardless of nominal orientation. For example, when calculating the
maximum aerodynamic disturbance torques, the cross-sectional area is assumed to be as large as it can
be, where in reality, this area will be much smaller.

The maximum gravity gradient torque can be approximated by
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Ngg(max) = 3µ⊕

2R3
sat

|Jzz − Jxx| sin 2θ, (7.1)

or

Ngg(max) = 3µ⊕

2R3
sat

|Jzz − Jyy| sin 2φ, (7.2)

where a pitch or roll angle of 45° (whichever produces the larger outcome) would result in the highest
possible torque value. The maximum solar panel induced magnetic moment torque can be approximated
by

Nsp(max) = DmaxBmax, (7.3)

where Bmax is the maximum magnitude of the surrounding magnetic field, and Dmax is the maximum
possible magnetic moment that can be produced by the CubeSat face with the largest solar panel array
with the Sun pointing directly at the panels – assumed to be 1 mA m2.

The maximum aerodynamic torque was determined differently, where each simulated CubeSat was instead
commanded to assume an attitude that would induce the largest aerodynamic torque disturbances on it,
where the maximum magnitude was found over one orbit. In each simulation, the CubeSat is assumed
to have its CoM at 2 cm away from the centre of the SBC frame along the negative z-axis, where each
CoP is at the geometric centre of each external BMSP or DSP array.

Tables 7.2 to 7.4 summarise the maximum possible disturbance torques which could be experienced by a
CubeSat in each type of the three simulated orbits, with each possible size and solar panel configuration.
In reality, when the simulated CubeSat’s are in their nominal orientations, they will not come close to
experiencing these magnitudes of disturbance torques. The summary is, however, a good indicator of the
major contributing factors influencing the IPA of the CubeADCS, and outline which conditions will be
the most significant for the CubeADCS to overcome.

It is clear from the data, that CubeSats in an ISS orbit will experience the greatest magnitudes of
disturbance torques, with aerodynamic torques being the largest possible contributing factor for CubeSats
with deployed solar panels. For both SSO’s the effect of the aerodynamic torque quickly begins to
diminish with rising altitude, where the maximum solar panel induced and gravity gradient torques
remain relatively and consistently high. Although the gravity gradient torques appear to be a close
contender to the solar panel induced torques, the nominal orientation of the CubeSat’s will once again
reduce these torques to nearly 0 N m, which leaves the latter as the dominant disturbance source for
CubeSats in all three orbits.

Table 7.2: ISS Orbit – Maximum Possible Disturbance Torques

3U 6U 12U
Disturbance Torque Unit BMSP DSP BMSP DSP BMSP
Ngg(max) nN m 55.68 72.96 103.67 107.52 201.60
Naero(max) nN m 17.95 314.10 35.91 494.97 71.82
Nsp(max) nN m 51.73 155.19 103.46 310.38 103.46

Table 7.3: Sun-Synchronous 500 km Orbit – Maximum Possible Disturbance Torques

3U 6U 12U
Disturbance Torque Unit BMSP DSP BMSP DSP BMSP
Ngg(max) nN m 53.28 69.82 99.22 102.90 192.93
Naero(max) nN m 9.50 183.96 21.03 316.67 42.07
Nsp(max) nN m 50.35 151.1 100.7 302.1 100.7
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Table 7.4: Sun-Synchronous 650 km Orbit – Maximum Possible Disturbance Torques

3U 6U 12U
Disturbance Torque Unit BMSP DSP BMSP DSP BMSP
Ngg(max) nN m 49.95 65.45 93.00 96.45 180.84
Naero(max) nN m 1.31 23.12 2.64 39.42 5.29
Nsp(max) nN m 46.21 138.63 92.42 277.26 92.42

7.4 Initial Attitude Estimation and Control Analysis
The selection of quaternion feedback controller gains is done before the main simulation scenarios that
follow are investigated. The feedback gains are calculated using the second order system approximation
in sec. 4.4.7, where a damping coefficient ζ = 0.707 is selected for optimal damping of a second order
system. A system with too quick of a response (i.e. a short 2% settling time) can lead to instability,
especially when controlling low MoI’s such as those of CubeSats. The natural frequency, ωn, of the
approximately second order system described in sec. 4.4.7, can be calculated from the desired 2% settling
time, t2%, using

ωn = 4
ζt2%

, (7.4)

where a time of t2% = 50 s was found to produce the most optimal and desired response for all CubeSat
types tested in the next section. Substituting in, the calculated ωn = 0.113 rad s−1 into eqs. (4.78)
and (4.79) obtains proportional and derivative gains of Kp = 0.0256 and Kd = 0.16 respectively.

A simulation was conducted using the same 3U CubeSat parameters defined in sec. 5.1, where an
attitude reference of RPY = [5° 10° 15°] was commanded to the quaternion feedback controller to
test its effectiveness. The command was issued at t = 500 s and held there for a further 500 s before
being commanded back to the zero reference. The results show that the controller is able to track the
commanded references well, exhibiting roll, pitch and yaw root-mean-square errors (RMSE) of 22.87′′,
50.84′′, and 75.02′′ respectively during the steady-state period.

Figure 7.3: Quaternion Feedback Controller reference Tracking

The ADCS uses the full suite EKF in the simulation conducted in this section, which includes CT star
tracker measurements. The resultant attitude estimation error can be seen in fig. 7.4, where te largest
errors occur during the transient periods where the attitude is approaching its commanded references.
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The estimation error for the roll, pitch, and yaw over the same steady-state period is 13.13′′, 30.87′′, and
43.19′′ respectively.

Figure 7.4: Attitude Estimation Error

For the simulations that follow, the imager pointing error (IPE) is defined using only the roll and pitch
angles of each CubeSat such that

IPE =
√
φ2
e + θ2

e , (7.5)

where φe and θe represent the CubeSat attitude roll and pitch errors respectively. This means that
the RMSE of the simulated CubeSat in this section is 55.74′′. An error in a satellite’s yaw, although
not desirable, does not have a significant effect on the overall pointing accuracy, which is why it is not
considered when determining the IPA of a CubeSat.

7.5 Simulated CubeADCS Performance – Nadir Tracking
This section conducts the first main set of simulations to determine the IPA of all combinations of
CubeSat’s defined to have the different properties described throughout sec. 7.2. The simulations will
asses their ability to continuously track a commanded zero reference for all roll, pitch and yaw angles,
otherwise described as a continuous nadir reference. The results are divided up between each orbit type
described in sec. 7.2.4. Within each orbit type, the results of CubeSats with BMSPs are shown separately
from those with DSPs, where the key, “{Long-body Axis}{Size}”, distinguishes between the size of the
CubeSat and the alignment of its long-body axis in the SBC frame. For example, the key “X3U” describes
a 3U CubeSat with it’s long-body axis lying along the SBC x-axis.

Furthermore, the attitude estimator configurations are categorised to be either a full EKF (FEKF) or
a gyro EKF (GEKF), which both use the full suite of CubeADCS sensors and actuators (excluding the
gyro’s in the FEKF implementation). Each estimator is tested with the first CT orientation canted 45°
where no sunlight enters its FOV, and in the second orientation with the CT pointing zenith, where
sunlight enters the FOV for a portion of each orbit. The GEKF is further tested by measuring its
performance when the on-board gyro’s either do or do not have temperature compensation calibrated
for. All errors are given in terms of an RMS value to include the effect of any mean pointing error, as
opposed to a 1σ value which represents a deviation about a mean error.

First, the results pertaining to each orbit are shown in the subsections that follow, where the best and
worst performing CubeSat scenarios will be briefly pointed out and discussed. An overview of the data
is then presented at the end of this section, which elaborates on the results in greater detail.
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7.5.1 ISS Orbit
The first orbit tested is the ISS orbit. The external disturbances at this altitude are expected to be
considerably higher than those experienced by CubeSats in the selected SSOs, resulting in an expectedly
poorer performance of the CubeADCS. Figs. 7.5 and 7.6 show the RMS IPE of the simulated CubeADCS
for CubeSats with BMSPs and DSPs respectively, where the actual values of the calculated errors are
shown in tables 7.5 and 7.6.

Table 7.5: RMS IPE Data of CubeSats with BMSPs in an ISS Orbit

Estimator Properties X3U Z3U X6U Z6U X12U Z12U
FEKF CT Canted 0.0648° 0.0364° 0.0175° 0.0144° 0.0102° 0.0100°
FEKF CT Zenith 2.078° 0.188° 0.371° 0.170° 0.0822° 0.0516°
Compensated GEKF CT Canted 0.0687° 0.0631° 0.0626° 0.0608° 0.0643° 0.0614°
Compensated GEKF CT Zenith 0.187° 0.149° 0.289° 0.196° 0.270° 0.150°
Uncompensated GEKF CT Canted 0.119° 0.120° 0.120° 0.125° 0.122° 0.129°

Figure 7.5: RMS IPE of CubeSats with BMSPs in an ISS Orbit

It can be seen from the data, that the worst performing CubeSat is the X3U CubeSat with BMSPs,
utilising an FEKF with its CT pointing zenith, which exhibits an RMS IPE far greater than all the other
simulated CubeSats. The X3U CubeSat with DSPs in the same scenario appears to perform slightly
better, which is likely because of the increased MoI about the long-body axis being easier to control,
despite the larger disturbance torques experienced. The best performing CubeSats are the X12U and the
Z12U CubeSats, whose IPE is better represented in terms of arcseconds as having an RMS value of 36′′.
In general, the CubeSats with their long-body axis aligned with their SBC x-axis, show a larger IPE than
their long-body z-axis aligned counterparts. This is likely due to it being harder to control the smaller
MoIs about the CubeSats’ roll axes. The effect of this for CubeSats in ISS orbits is then worsened by the
more extreme external disturbance torques experienced at such a low altitude.

Table 7.6: RMS IPE Data of CubeSats with DSPs in an ISS Orbit

Estimator Properties X3U Z3U X6U Z6U
FEKF CT Canted 0.0712° 0.0413° 0.0213° 0.0197°
FEKF CT Zenith 1.542° 0.494° 0.739° 0.513°
Compensated GEKF CT Canted 0.0691° 0.0612° 0.0632° 0.0600°
Compensated GEKF CT Zenith 0.212° 0.174° 0.210° 0.150°
Uncompensated GEKF CT Canted 0.124° 0.123° 0.121° 0.125°
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Figure 7.6: RMS IPE of CubeSats with DSPs in an ISS Orbit

7.5.2 SSO Orbit at 500 km
The next orbit tested is a 500 km SSO and is more aligned with the project scope. The external
disturbances are expected to be weaker at this altitude than that of the ISS orbit, especially with regards
to the aerodynamic disturbance torques experienced. The effect of the solar panel induced disturbance
torque still remains relatively large and is the dominant disturbance in the simulations that follow. The
measured IPEs are illustrated and tabulated in figs. 7.7 and 7.8 and tables 7.7 and 7.8 respectively.

Table 7.7: RMS IPE Data of CubeSats with BMSPs in an SSO 500 km Orbit

Estimator Properties X3U Z3U X6U Z6U X12U Z12U
FEKF CT Canted 0.0619° 0.0125° 0.0195° 0.0120° 0.0103° 0.009 56°
FEKF CT Zenith 1.051° 0.284° 0.192° 0.124° 0.0558° 0.0587°
Compensated GEKF CT Canted 0.0668° 0.0655° 0.0580° 0.0637° 0.0613° 0.0612°
Compensated GEKF CT Zenith 0.210° 0.253° 0.212° 0.270° 0.293° 0.247°
Uncompensated GEKF CT Canted 0.112° 0.123° 0.123° 0.126° 0.122° 0.123°

Figure 7.7: RMS IPE of CubeSats with BMSPs in an SSO 500 km Orbit

The Z12U CubeSat using an FEKF with continuous CT measurements remains the best performing
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CubeSat with an RMS error of nearly 34′′. As is expected, the X3U CubeSat with the zenith pointing
CT and BMSPs performs the worst, but is still twice as good as the same CubeSat in an ISS orbit, due
to the lower disturbance torques experienced. The performance of the Z3U CubeSat with DSPs using
an FEKF with a zenith pointing CT is worse than expected, with an error that is actually greater than
the same CubeSat in the ISS orbit – despite the smaller disturbance torques. After examining the data,
however, it appears that the CubeADCS in the ISS orbit was able to receive CT measurements for a
longer period during the sunlit portion of the orbit than the same CubeSat in this SSO. This explains why
it would have a poorer performance, nearly equal to that of its X3U fitted with DSPs counterpart.

Table 7.8: RMS IPE Data of CubeSats with DSPs in an SSO 500 km Orbit

Estimator Properties X3U Z3U X6U Z6U
FEKF CT Canted 0.0418° 0.0236° 0.0209° 0.0181°
FEKF CT Zenith 0.786° 0.735° 0.280° 0.209°
Compensated GEKF CT Canted 0.0620° 0.0599° 0.0600° 0.0594°
Compensated GEKF CT Zenith 0.178° 0.253° 0.224° 0.192°
Uncompensated GEKF CT Canted 0.115° 0.122° 0.120° 0.120°

Figure 7.8: RMS IPE of CubeSats with DSPs in an SSO 500 km Orbit

7.5.3 SSO Orbit at 650 km
The final orbit tested is a 650 km SSO. The aerodynamic disturbance torques at this altitude as dwarfed
by the solar panel induced magnetic disturbance torques. The performances of each CubeSat in their
respective categories are expected to be the best performances seen in all three orbits. The measured IPEs
are similarly illustrated and tabulated in figs. 7.9 and 7.10 and tables 7.9 and 7.10 respectively.

Table 7.9: RMS IPE Data of CubeSats with BMSPs in an SSO 650 km Orbit

Estimator Properties X3U Z3U X6U Z6U X12U Z12U
FEKF CT Canted 0.0595° 0.0128° 0.0180° 0.0121° 0.009 62° 0.008 88°
FEKF CT Zenith 0.956° 0.304° 0.185° 0.147° 0.0541° 0.0558°
Compensated GEKF CT Canted 0.0667° 0.0578° 0.0625° 0.0639° 0.0642° 0.0636°
Compensated GEKF CT Zenith 0.243° 0.199° 0.174° 0.251° 0.248° 0.347°
Uncompensated GEKF CT Canted 0.103° 0.119° 0.113° 0.116° 0.116° 0.118°
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Figure 7.9: RMS IPE of CubeSats with BMSPs in an SSO 650 km Orbit

As expected, the Z12U CubeSat using an FEKF with continuous CT measurements outperforms all other
CubeSats tested throughout these simulations. The CubeADCS was able to track a nadir reference with
the Z12U satellite with an error of less than 32′′. The same X3U CubeSat with a zenith pointing CT and
BMSPs continues to show the worst performance, despite it having the lowest error in its own category
throughout all three orbits. Its error is only slightly lower than the error seen in the 500 km SSO, which
suggests that the main cause of the poor performance is a combination of solar panel induced magnetic
disturbance torques acting on an axis with a tiny principle MoI.

Table 7.10: RMS IPE Data of CubeSats with DSPs in an SSO 650 km Orbit

Estimator Properties X3U Z3U X6U Z6U
FEKF CT Canted 0.0421° 0.0184° 0.0206° 0.0165°
FEKF CT Zenith 0.686° 0.365° 0.287° 0.226°
Compensated GEKF CT Canted 0.0693° 0.0582° 0.0563° 0.0689°
Compensated GEKF CT Zenith 0.249° 0.269° 0.223° 0.314°
Uncompensated GEKF CT Canted 0.111° 0.116° 0.114° 0.115°

Figure 7.10: RMS IPE of CubeSats with BMSPs in an SSO 650 km Orbit
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7.5.4 Overview of the CubeADCS’s Nadir Tracking Performance
The first observation made, is that the IPA of a CubeSat in LEO generally improves as its altitude
increases. Additionally, it is clear from the data represented that the FEKF performs most poorly when
CT star tracker data is not available. In each key group, the performances of CubeSat’s with their long-
body axis aligned on the SBC z-axis is better than those with their long-body axis aligned on the SBC
x-axis. This is attributed to the CubeADCS needing to control a much smaller MoI when attempting
to control the CubeSats roll orientations. Each GEKF in its own category has the same consistent
performance throughout each CubeSat size and long-body axis alignment, regardless of small MoIs or
solar panel configuration. This is due to the fact that the CubeSat angular rates do not need to be
estimated by the EKF as they are directly obtained from the gyros.

The main poor performing outliers for both types of solar panel configurations are for CubeSats utilising
the FEKF with zenith pointing CTs. The absence of data from the star tracker makes it more difficult to
reject the external disturbance torques. The effect is only worsened for CubeSats with the lowest MoIs,
where it can be seen that for 12U CubeSats, that an absence of star tracker measurements has the lowest
relative impact on its IPA due to its greater size. The CubeSats affected the most by the FEKF with a
zenith pointing CT are the 3U CubeSats with their long-body axes aligned with their SBC x axes.

All Z3U CubeSats with DSPs actually perform better than the 3U CubeSats with BMSPs despite being
more susceptible to external disturbance torques. This is likely due to the larger MoI along their long-
body axes of CubeSats with DSPs, making it slightly easier to control despite larger disturbance torques.
This is not the case with the remaining CubeSat categories, however, where the CubeSats with DSPs
generally perform worse than their BMSP counterparts for CubeSats using an FEKF. As was discovered
in sec. 7.5.2, the performance of the Z3U CubeSat with DSPs using an FEKF with a zenith pointing CT
was worse in the 500 km SSO than the same CubeSat in an ISS orbit. This was found to be attributed
to the CubeSat in the ISS orbit receiving more intermittent CT measurements than the former.

Figure 7.11: GEKF Canted CT Cross-Boresight Roll and Pitch Angles – Z12U CubeSat in 650 km
SSO

The GEKFs in all categories are able to mostly reject the external disturbances felt. This can be seen
throughout the data in all three orbits where the general performances of each of the three GEKF
scenarios remain relatively consistent. The CubeSats using the temperature compensated version of the
GEKF with a zenith pointing CT performed much better than the corresponding FEKF scenarios, and
only three times worse than those with continuous CT measurements, showing that it can still reject
the external disturbances fairly well. From the data, it is also apparent that the performance of the
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temperature compensated GEKF is limited by the noise and random bias drift of the gyros, this is
presented in fig. 7.11 which shows how the cross-boresight errors are mainly Gaussian in nature and
evenly distributed, rather than as a result of external disturbance torques which present non-Gaussian
IPEs, an example of which is shown in fig. 7.12.

Figure 7.12: FEKF Canted CT Cross-boresight Roll and Pitch – Z3U CubeSat in ISS Orbit

The effect of not implementing gyro temperature bias compensation was tested and shown in the last
category of each group. It can be seen that the EKF was not able to completely remove the various gyro
biases, which resulted in approximately double the error of GEKFs with continous CT measurements.
The CubeSats which utilised GEKFs with a zenith pointing CT and uncompensated gyros performed the
worst and are actually omitted from all data representations. Without star tracker measurements, the
GEKF is simply not able to adequately estimate each gyros bias to an acceptable degree, resulting in an
IPE drift of more than 5° over the entire sunlit portion of each orbit, until it could be removed again
when CT data once again became available.

7.6 Simulated CubeADCS Performance – Target Tracking
In order to test the target tracking capabilities of the CubeADCS, two CubeSats were selected from each
orbit in sec. 7.5 to track a predetermined target that the CubeSat will be passing over in its orbit. The
two selected CubeSats are the best performing Z12U CubeSat as well as the Z3U CubeSat, the latter
of which more commonly aligns with the CubeSats typically selected by CubeSat mission designers in
the industry. Two estimators are selected, namely: the FEKF and the temperature compensated GEKF,
both having canted CTs.

The predetermined targets were selected by using the Orbitron satellite propagating software to propagate
each respective CubeSat in its orbit using the corresponding TLEs defined in sec. 7.2.4. A location along
the orbit track for each CubeSat was selected, which is provided as geodetic coordinates in Orbitron.
The altitudes of the selected locations were obtained from Google Earth, where both the geodetic
coordinates and altitudes above mean sea level are used to calculated the corresponding geocentric
coordinates and altitude above or below the equatorial radius, R⊕, of each location using eqs. (4.2)
and (4.4). The geocentric coordinates and relative altitudes are then fed into the simulation, which
continuously calculates the ORC referenced vector to the location on Earth’s surface. The CubeADCS
is then placed into target tracking mode when the CubeSat is approaching the selected target where its
controller attempts to track the desired reference by appropriately setting the required roll, pitch and
yaw references. The timing and selection of locations in the simulation is set up such that the target
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tracking occurs during the sunlit portion of each orbit.

To account for random variations from simulation to simulation, the average IPE for five of the same
orbits per CubeSat was calculated over each imaging period. The proportional and derivative gains have
also been adjusted to achieve a faster 2% settling time of 30 s with a damping coefficient of ζ = 1. The
results of the target tracking simulations are first presented and individually discussed, where the end of
the section summarises the findings.

7.6.1 ISS Orbit
For the ISS orbit, the CubeSats were set to track a location at the Southern tip of South America
with geodetic coordinates: φgd = −51.6794° and λ = −73.6902°, at a mean sea-level altitude of 400 m.
Fig. 7.13 shows each CubeSat’s Euler angles during the target tracking manoeuvre using the FEKF
estimator, where figs. 7.14 and 7.15 show the corresponding IPEs for each CubeSat during the imaging
period for both the GEKF and FEKF estimators. The IPEs at the precise time when the CubeSats
passed over the desired target (2500 s in the simulation) is shown in table 7.11.

Table 7.11: CubeADCS Target Tracking IPE Per CubeSat in an ISS Orbit

FEKF GEKF
Z3U 155.52′′ 393.12′′

Z12U 179.64′′ 638.64′′

(a) Z3U CubeSat (b) Z12U CubeSat

Figure 7.13: CubeADCS Target Tracking Manoeuvre for CubeSats in an ISS Orbit

Figure 7.14: Imager Pointing Error During Target Tracking – 3U CubeSat in an ISS Orbit

As expected from the results in sec. 7.5, the FEKF is worse at rejecting external disturbances than the
GEKF – especially in ISS orbits. This is not necessarily apparent from the results in table 7.11, but can
easily be seen as the case in figs. 7.14 and 7.15, where the CubeSats using the GEKF have a lower average
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IPE over the 600 s periods shown. Additionally, the CubeADCS did not receive CT measurements for
the portions of the manoeuvre where the Earth albedo entered the CT’s FOV at high pitching angles.
This explains the sudden changes in IPE at around the 2400 s and 2600 s marks in the simulations. The
CubeADCS additionally did not receive CT measurements for a small portion of the period near the time
of imaging when the angular rate of the CubeSat’s increased to slightly over 1 ° s−1. On average, the 12U
CubeSats perform better than the 3U CubeSats over the shown period, but better at the time of imaging
for both estimators.

Figure 7.15: Imager Pointing Error During Target Tracking – 12U CubeSat in an ISS Orbit

7.6.2 SSO Orbit at 500 km
In the 500 km SSO, the CubeSats were set to track a Northern Canadian location with geodetic
coordinates: φgd = 75.1336° and λ = −90.1626°, with a mean sea-level altitude of 312 m. Fig. 7.16
similarly shows each CubeSat’s Euler angles during the target tracking manoeuvre, with each CubeSat
using the FEKF estimator. Figs. 7.17 and 7.18 then show the corresponding IPEs over the imaging period,
where table 7.12 tabulates the IPEs for each CubeSat and estimator at target passover time.

Table 7.12: CubeADCS Target Tracking IPE Per CubeSat in a 500 km SSO Orbit

FEKF GEKF
Z3U 42.12′′ 283.32′′

Z12U 95.4′′ 218.52′′

(a) Z3U CubeSat (b) Z12U CubeSat

Figure 7.16: CubeADCS Target Tracking Manoeuvre for CubeSats in a 500 km SSO

The performance of the CubeADCS in this SSO is significantly better than in the ISS orbit, at both
the time of imaging, and over the 600 s period shown. The CubeADCS once again did not receive CT
measurements at high pitch angles due to Earth albedo entering its FOV, but the CT was able to obtain
valid detections at the highest angular rates, as they did not exceed 1 ° s−1 in magnitude at the 2500 s
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mark. This is due to the increased altitude of the CubeSats, resulting in a lower required angular rate to
track a target as it passes overhead. The performance of the FEKF is once again worse on average over
the shown period than the GEKF, due to disturbance torques remaining fairly high. However, GEKF
appears to have a more dampened response, despite the proportional and derivative gains of the controller
being the same, which is why the IPE at the time of imaging is much higher than CubeSats using the
FEKF. The 12U CubeSats actually show a slightly worse performance on average than the 3U CubeSats
over the shown period, but this is suspected to only be due to the yaw angle positively increasing and
letting in more Earth albedo for longer until the 2350 s mark shown in figs. 7.16b and 7.18. The 3U
CubeSat IPE still remains better than the 12U IPE at the time of imaging.

Figure 7.17: Imager Pointing Error During Target Tracking – 3U CubeSat in a 500 km SSO

Figure 7.18: Imager Pointing Error During Target Tracking – 12U CubeSat in a 500 km SSO

7.6.3 SSO Orbit at 650 km
The final location selected for the 650 km SSO, is similar to that of the previous SSO with geodetic
coordinates: φgd = 74.0552° and λ = −93.6725°, having a mean sea-level altitude of 75 m. Once again,
the fist plot shown in fig. 7.19 shows each CubeSat’s Euler angles during the target tracking manoeuvre
using the FEKF estimator. Figs. 7.20 and 7.21 then displays the IPE plots for each estimator, where
table 7.13 presents the IPEs for each CubeSat and estimator at the exact time of target passover.

Table 7.13: CubeADCS Target Tracking IPE Per CubeSat in a 650 km SSO Orbit

FEKF GEKF
Z3U 30.6′′ 238.68′′

Z12U 56.16′′ 237.24′′
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(a) Z3U CubeSat (b) Z12U CubeSat

Figure 7.19: CubeADCS Target Tracking Manoeuvre for CubeSats in a 650 km SSO

This SSO generally presents the best CubeADCS target tracking results out of the three selected orbits in
this section for both CubeSat sizes. This can be attributed to the CubeADCS receiving CT measurements
for the majority of the manoeuvres. This is due to the CubeSats being at a much higher altitude than
the previous two orbits, which results in the CubeSat holding high pitch angles for shorter periods of
time, as well as a smaller Earth disk seen by the CubeSats. As a result, the Earth albedo only enters the
CT FOV for a much shorter period. The disturbance torques are also the lowest at this altitude which
only helps to improve the results further. The GEKF is still seen to not perform as well as the FEKF,
where it once again exhibts a more dampened type response. The 3U CubeSat once again does slightly
better than the 12U CubeSat at the time of imaging as well, but on average the 12U CubeSat performs
better over the shown period.

Figure 7.20: Imager Pointing Error During Target Tracking – 3U CubeSat in a 650 km SSO

Figure 7.21: Imager Pointing Error During Target Tracking – 12U CubeSat in a 650 km SSO
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7.6.4 Overview of the CubeADCS’s Target Tracking Performance
The target tracking analysis has revealed that continuous CT measurements are vital to achieving high
levels of accuracy during a slew manoeuvre. The effects of not receiving CT measurements are only
worsened by extreme external disturbance torques, especially those experienced in LEOs. The worst
performance was seen in the ISS orbit, where the external disturbances were highest, and the CT
detections were disrupted the most. The best performances are seen in both of the SSOs, which is
of the greatest interest in this project.

The GEKF is seen to perform the worst overall, where its response to the changing references appeared
to be more dampened than that of the CubeSats using the FEKF, where the errors generally seem to
also have a larger offset than that seen from the FEKF. This may be due to the higher levels of noise
measured from the gyros. The 12U CubeSats generally perform better over the entire target tracking
manoeuvre, but seem to show consistently worse results at the precise times of imaging – at least in the
case when the FEKF is used as the estimator. This may be due to the 3U CubeSats having greater
agility than the 12U CubeSats where they can respond to changing references at a faster rate with less
error.

Overall, the CubeADCS appears to be able to successfully and accurately track Earth based targets to
within 100′′ in SSOs when using an FEKF, and to within 300′′ when using a compensated GEKF. These
accuracies translate to a worst case off-target error of less than 1 km at an altitude of 650 km. The best
case IPE seen is the incredibly low 30.6′′ achieved by the 3U CubeSat using an FEKF in a 650 km SSO,
which translates to an off-target error of 96 m.

7.7 Stability
A final analysis was conducted on the stability of the CubeADCS whilst controlling a CubeSat in LEO.
The stability of a CubeSat equipped with an imaging payload will have an effect on undesirable factors
such as image smearing. The full set of data, including the CubeSats with uncompensated GEKFs with
zenith pointing CTs, obtained during the nadir tracking analysis in sec. 7.5 was used to determine the
stability, where the same method discussed in sec. 2.5.1 used by the researchers investigating the stability
of the XACT ADCS was adopted. To achieve this, the roll, pitch, and yaw errors of all CubeSats from
the data, were grouped into bins of 10 s integration periods. The maximum peak-to-peak differences in
each bin were then calculated to determine the largest fluctuations in attitude that could be observed
over a 10 s integration period. This was done in order to directly compare the results of other known
miniaturised ADCSs, such as the XACT ADCS discussed in sec. 2.5.1. In reality, imaging payloads used
in EO missions will need a fraction of the integration time used by MinXSS-1.

The best and worst performing CubeSats were determined by observing which CubeSat had the most
stability over all three roll, pitch and yaw axes. Tables 7.14 to 7.16 summarise the best and worst
performances over each orbit type, where the stability is defined as the magnitude of all three Euler
angles’ 3σ stabilities. The 3σ stability was determined by calculating which bin contained more than
99.71% of the data. As expected, CubeSats in an ISS orbit generally performed the worst, given the
large external disturbance torques the satellites have to endure. It was not expected that for both types
of SSOs, that the greatest stability over the 10 s integration period would be exhibited by 3U CubeSats
– especially those equipped with DSPs. The change in MoI, however, for a 3U CubeSat with BMSPs to
one with DSPs may explain the good stability in this case.

It was additionally found that CubeSat’s utilising compensated GEKFs with canted CTs all had similar
3σ stabilities of approximately 0.07°(10s-1) about each axis, regardless of orbit type and satellite
configuration. This once again seems to point to the noise characteristics of the gyros. Although the
CubeSats with the best IPAs (Z12U CubeSats) are not listed in the tables below, their stabilities were
still close competitors with the best performing Z12U CubeSat showing a stability of 0.0124°, 0.0127°
and 0.0234° about the satellite’s roll, pitch and yaw axes respectively in a 650 km SSO, using an FEKF
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with a canted CT. Despite the large drift in attitude for CubeSats using an uncompensated GEKF with
a zenith pointing CT over the sunlit portion of the orbit, the maximum change in attitude over the
10 s integration period was similar to that of the FEKF with the same CT orientation. Although the
uncompensated GEKF exhibited the worst stability performances in two of the three orbits, it was only
slightly worse than its FEKF counterpart without continuous CT measurements.

Table 7.14: CubeADCS Stability of a CubeSat in an ISS Orbit

3σ Stability [°(10s-1)] Estimator CubeSat CT Orientation Solar Panels
Best 0.0308 FEKF Z6U Canted 45° Deployed
Worst 0.8661 GEKF (Uncompensated) Z6U Zenith Body-mounted

Table 7.15: CubeADCS Stability of a CubeSat in a 500 km SSO

3σ Stability [°(10s-1)] Estimator CubeSat CT Orientation Solar Panels
Best 0.0192 FEKF Z3U Canted 45° Deployed
Worst 0.5945 FEKF Z3U Zenith Deployed

Table 7.16: CubeADCS Stability of a CubeSat in a 650 km SSO

3σ Stability [°(10s-1)] Estimator CubeSat CT Orientation Solar Panels
Best 0.0202 FEKF Z3U Canted 45° Deployed
Worst 0.3480 GEKF (Uncompensated) Z3U Zenith Deployed

The CubeSat with the best performance is the Z3U CubeSat in a 500 km SSO using an FEKF with
a canted CT. The roll, pitch and yaw stabilities for this CubeSat can be seen in fig. 7.22 having 3σ
accuracies of 0.0081°(10s-1), 0.0114°(10s-1) and 0.0132°(10s-1) respectively. These results compare nicely
to the results presented by the researchers discussing the MinXSS-1 mission, where the stability seen in
this section will likely be more than adequate for what is required in EO missions.

#

(a) Roll Stability

#

(b) Pitch Stability

#

(c) Yaw Stability

Figure 7.22: Best CubeADCS Stability of a CubeSat in LEO

7.8 Summary
The simulation investigation set out to determine the IPA and stability of a CubeSat using a CubeADCS
in LEO. To achieve this, two types of tracking were investigated, namely: nadir and target tracking.
Several different scenarios were investigated to gain a broad understanding of which factors would have
the biggest impact on the CubeADCS’s performance. These factors included orbit type, CubeSat size
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and nominal orientation in its orbit, the type of estimator used, and the orientation of the CT on a
CubeSat. Two SSOs were selected for investigation to align with the project scope, where an ISS orbit
was additionally examined to include a commonly chosen orbit for missions in the industry.

In the nadir tracking investigation, it was found that CubeSats in ISS orbits had the worst overall IPA,
which can be mainly attributed to the extremely harsh environmental disturbance torques experienced
in such an orbit. Additionally, CubeSats with their long-body axis aligned with the SBC x-axis
generally performed worse than their z-axis aligned counterparts. Those CubeSats which received
few CT measurements during the sunlit portions of their orbits also showed significantly worsened
performances.

In most cases, CubeSats with deployed solar panels performed worse than those without, except in the
cases where the roll axis of a CubeSat was incredibly small and thus harder to control. CubeSats using
GEKFs performed consistently within their subcategories, which showed that the major cause of error
was predominately due to gyro noise and not from external disturbances. Finally, it was found that
without temperature compensation or CT measurements, that the GEKF would cause a drift in attitude
that would be too large for missions with a high IPA. The results of the nadir tracking section indicated
that the CubeADCS has a potential RMS IPE of less than 32′′, and a worst-case RMS IPE of less than
257′′ for those with continuous CT measurements.

The target tracking investigation revealed that the CubeADCS is able to accurately track targets to
within 300′′ for CubeSats in SSOs using a compensated GEKF and to within 100′′ for CubeSats using
an FEKF. It was additionally determined that continuous CT measurements play a crucial role in high
accuracy target tracking, especially when it comes to rejecting external disturbances in very low orbits.
The 3U CubeSats were found to have the best IPEs at times of imaging, but that the 12U CubeSats had
the best overall IPE over a larger imaging period. A 3U CubeSat in a 650 km SSO was able to achieve
an IPE of as low as 30.6′′.

A final investigation was conducted to determine the stability of a CubeSat equipped with a CubeADCS
over an integration period of 10 s in order to compare the results to the performance of the XACT
ADCS. This revealed that the most significant change in attitude over the integration period would have
a maximum magnitude of 0.8661°(10s-1) over all three axes and that the best case stability was as low as
0.0192°(10s-1) in magnitude. High levels of stabilty are shown to only be possible with the CubeADCS
receiving continuous CT measurements and for CubeSats having more symmetrical principal MoIs. If
the stability of the CubeADCS is shown to be good enough for missions observing distant stars, then the
stability is likely to be more than adequate for EO missions.
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Chapter 8

Conclusions and
Recommendations

8.1 Research Summary and Conclusions
This project sought to investigate the IPA of a CubeADCS aboard a CubeSat in a low-Earth SSO.

In order to achieve this, existing ADCSs currently suited to control CubeSats were investigated. After
which, an in-depth investigation into the CubeADCS’s underlying subcomponents was performed to
gain a better understanding of the theory behind their operation. The underlying theory of satellite
orbital dynamics and control were first expanded on to lay the foundation that would allow an accurate
simulation model to be constructed and, which would assist in the understanding of the control and
operation of the CubeADCS. An accurate simulation model needed to be constructed in order to mimic
the space environment experienced by CubeSats in LEO, as well as to replicate the error characteristics
and performances of the CubeADCS subsystems. All the above aimed to asses the performances of
CubeSpace’s attitude control and estimation software algorithms in their ability to perform in the
constructed simulation model.

The literature research done in chapter 2 was aimed at investigating CubeSats, trends related to them,
and the trends in miniaturised ADCS development, which have allowed CubeSats to achieve good IPAs.
In addition to this, three missions were investigated, namely: MinXSS-1, ASTERIA, and the BRITE
constellation. These examples provided insight into the types of subcomponents used by ADCSs necessary
to achieve a high IPA, as well as the kind of accuracy which has been achieved by CubeSats in real
missions. It was found that the miniaturisation of high accuracy ADCS sensors, such as star trackers
play a key role in allowing CubeSats to achieve arc-second pointing accuracies and stability. Of the
three missions, two of the CubeSats were launched into ISS orbits and were equipped with BCT’s XACT
ADCS, which has proven to be one of the world’s leading manufacturers of miniaturised ADCSs and
subcomponents. In both missions (MinXSS and ASTERIA) the XACT ADCS was able to achieve
extremely fine 3σ pointing accuracies to within 40′′, which is one of the best known examples of accurate
pointing exhibited by CubeSats to date. The last mission (BRITE) used different subcomponents made
by different manufacturers. The NanoSats were each launched into SSOs, where UniBRITE was able to
achieve an RMS IPA of 53.6′′.

Chapter 3 launched an initial in-depth investigation into the CubeADCS which expanded on the theory
behind the operation of the various sensors and actuators implemented. Particular focus was placed on
the sensors and actuators crucial to providing CubeSats with a high IPA. These included: the CS fine-sun
and nadir sensors, the CL gyroscopes, the CT high accuracy star tracker, and the CWs – precise reaction
wheels. Various key performance parameters were identified alongside the possible sources of errors which
can effect each sensor in their ability to provide accurate measurements.

The initial analysis revealed that the CS Sun and nadir sensors had a 1σ accuracy of 0.2° respectively
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over their specified FOVs, and that their greatest sources of errors can be attributed to image sensor noise
as well as errors in distortion correction over a large FOV fisheye lens. The investigation into the MEMS
gyros revealed that there are multiple sources of errors, which have an impact on their accuracy. It was
found that both their scale factor and bias can be heavily affected by temperature gradients and that
they are particularly vulnerable to stochastic errors such as angular random walk and bias instability,
which cannot be calibrated for. The analysis of the CT proved that it is indeed the most accurate
sensor adopted by the CubeADCS, outputting attitude knowledge estimations with a cross-boresight 3σ
accuracy of 36′′. The prior research conducted in chapter 2 suggests that an ADCS is only as accurate as
its most accurate sensor, which already then theoretically limited the CubeADCS to the same best-case
IPA. The primary sources of error pertaining to the CT are similar to that of the CS which are: errors in
distortion correction as well as pixel noise of the image sensor. The initial analysis of the CW showed that
they are primarily designed to be used in a speed control mode, measuring speeds to within a 0.5 RPM
resolution. The largest expected errors are from the small CWs having a 3σ accuracy of 5 RPM. Errors
in CW reference tracking can be primarily attributed to encoder noise, the measurement resolution being
too coarse, control signal noise, thermal variations, wheel imbalances, and frictional forces.

The aim of chapter 4 was to provide the theoretical knowledge needed to create the various required
simulation models, as well as to gain an understanding into the control theory behind an ADCS.
Coordinate frames were elaborated on to relate the CubeSats attitude and position in space to locations
on Earth. Orbital mechanics and elements were discussed to explain the application of the SGP4 model as
well as which elements play a role in defining exactly what a SSO is. ADCS control theory was additionally
analysed to gain an understanding of various representations of attitude in space, of which it was found
that the most popular method used to propagate a satellite’s attitude in space is through the use of
quaternions, which provide a solution to three-dimensional rotations in space without any singularities
and are convenient to propagate through numerical integration. The discussion of attitude dynamics and
kinematics of a satellite were lastly discussed, with the main aim of describing the quaternion feedback
control law used to command a satellite to follow various attitude references in space, as well as the
theory behind satellite’s performing target tracking manoeuvres to point at locations on Earth as they
pass over-head.

Chapter 5 was dedicated to constructing the accurate simulation environment experienced by a satellite
in space expanding on some of the theory laid out in chapter 4. The SGP4 model was initially discussed,
which was found to be the dominant method in industry used to propagate satellite’s in LEO along
their various orbit trajectories. Examples showing the position and velocity of a modelled CubeSat were
presented and shown to accurately mimic the expected ECI referenced satellite vectors for a CubeSat in an
SSO. The accuracy of the SGP4 model was briefly analysed to determine just how far the positional model
of a satellite can drift from its actual position in space. The simulation of three different CubeSats in three
different orbits showed that over a period of 10 days, that the positional knowledge of a CubeSat could
drift by nearly 25 km RMS and that the drift is more prominent for CubeSats in very low altitude orbits
such as that of the ISS. To protect against this drift in positional knowledge, a solution implementing a
hybrid GPS and SGP4 model on an ADCS was discussed which showed promising results which could
reduce these errors to a maximum of 1 km. A second solution was also provided which would see even
better results, but it was pointed out that the adoption of which could be a high risk as it is a completely
new system when compared to the flight proven simple SGP4 stand-alone propagator.

The Sun position and geomagnetic reference models where next defined. These two models served two
main purposes: 1) to be used as a basis for the Sun and magnetometer sensor models, 2) to be used to
model the solar panel induced magnetic moment disturbance torques acting on a satellite. Following this,
the primary disturbance torques affecting CubeSats in LEOs were discussed, which included the satellite
induced magnetic moment, gravity gradient, and aerodynamic disturbance torques. It was found through
investigation that only the gravity gradient disturbance torques are modelled by ADCS systems and used
by their estimators as they are the most predictable type of disturbance. Aerodynamic disturbance
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torques are somewhat less predictable and are found to play a significant role of CubeSats operating
in very low orbit altitudes such as that of the ISS. It is determined that solar panel induced magnetic
disturbances remain fairly consistent regardless of LEO altitude, as the magnetic field strength decreases
at a slower rate than atmospheric density (for example) with altitude. This makes it an important source
of disturbance to consider for CubeSats in LEO, especially since these torques are most prominent in sun-
lit portions of an orbit where imaging usually takes place. The chapter ends by modelling the CubeSat
dynamics and kinematics and shows how the attitude and angular rates are propagated.

The crucial investigation into the actual sensor and actuator error characteristics of the subcomponents
within the CubeADCS was achieved in chapter 6. Each sensor and actuator implemented on the
CubeADCS was investigated and modelled individually based on actual measured data. Primary focus
was once again placed on those sensors, which are crucial to the CubeADCS providing a high IPA. A
PCB was designed to fit three of the gyros for investigation. The gyros were found to have the largest
spectrum of error sources, the most prominent of which is its bias’s susceptibility to thermal gradients.
The stochastic noise of the gyros was also found to be higher than was expected with peak-to-peak values
larger than 0.03 ° s−1 when considering both the bias instability and high frequency noise acting together.
It was found that temperature bias drift could be modelled and thus compensated for by using techniques
such as the soak method. The gyro model was also designed to be able to be used as compensated and
uncompensated versions by the simulated CubeADCS. The gyro model was found to accurately resemble
the error characteristics measured.

An analysis of the CS followed which sought to determine the actual measured accuracies of both the
fine-sun and nadir sensors. CubeSpace provided this author with a functioning CS, where an experiment
was set up where the FSS was left to sit and track the position of the Sun as it passed overhead. This
revealed that the CS Sun sensor could track the Sun with a 3σ deviation from the mean Sun position
of less than 0.25°, far out-performing its stated 1σ accuracy of 0.2°. The nadir sensor was tested by
mounting it on a rotation stage and placing a large illuminated ball in front of the camera aligning the
ball’s centre with its boresight. The camera was then rotated about its boresight, where the error in nadir
detections was plotted as the ball moved across the camera’s image plane. The nadir sensor errors were
found to be well within the stated 1σ accuracy of 0.2° when the entire ball was in the the camera’s FOV.
As was expected, the errors began to increase significantly as portions of the ball began to leave this
FOV, with errors increasing to as much as 9° when less than half the ball was in the FOV. This can be
attributed to both the errors in the test setup as the ball appeared to dim as the camera rotated to more
extreme angles, as well as errors from the circle fitting algorithm trying to fit a circle to an incomplete
image of the ball. Both the CS fine-sun and nadir sensor models mimic the behaviour seen from actual
measurements where invalid detections are given when the Sun or Earth vectors indicated that they are
outside of each camera’s pre-defined acceptable DRs. Both sensors were modelled to show very similar
angular error outputs, with the nadir sensor errors increasing as the angle between its boresight and nadir
increases.

The last major sensor investigated was the CT star tracker. Unfortunately, this author was not able to
perform the investigation on an actual CT sensor, but was instead provided with actual measurement data
from field tests conducted by CubeSpace. The data came from a CubeStar which was left over a period
of the night to observe the night sky as the stars passed overhead. A log of estimated quaternion data
was generated by the device, which was then investigated to determine how much the estimated attitude
varied over time. The accuracy was determined to be lower than the stated CT 3σ accuracies with a worst-
case cross-boresight RMS error of 0.005 95°. It was determined, however, that the larger measurement
errors could be attributed to stray light sources entering the camera’s FOV and that possible atmospheric
disturbances could impact the results, as on-Earth testing provides a less than ideal environment in which
to test such a sensitive device. Nevertheless, the model and error characteristics of the CT were designed
to replicate a worst-case scenario and thus used the measured results for the simulation model. Two
additional features of the model take into account that the CT will not be able to detect three or more
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stars 0.29% of the time and that null detections will also be given if the simulated CubeSat is determined
to have an angular rotation rate greater than 0.3 ° s−1. The model was thus determined to accurately
mimic the CT.

Chapter 6 ended with an analysis of the CW – the high accuracy actuator needed to perform
precision pointing. An in-depth investigation was conducted on a medium CW provided to the author
by CubeSpace where it was set to track multiple speed references. The errors exhibited at the
various reference speeds were determined where the step responses of the wheel at each reference was
additionally examined. The observed error characteristics were found to closely resemble the stated error
characteristics for speeds less than 2000 RPM. Possible discrepancies in measured versus stated errors
could be attributed to the age and usage of the wheel prior to testing by this author. In any case, the
CWs are not intended to be run for significantly long periods of time at very high speeds, which indicates
that large errors at these speeds should be of relatively low concern. To once again allow for a worst-case
scenario, the observed errors were used to model each CW. The step responses of the model were also
shown to closely resemble the step response of the actual CW as well.

The final simulations conducted to determine the IPA of the CubeADCS were performed in chapter 7.
Several scenarios were investigated to gain a broad understanding of the factors which may influence
the performance of the CubeADCS. Such scenarios included: CubeSat size, orbit type, solar panel
configuration, long-body axis alignment in the SBC frame, the type of attitude estimator used, and
CT orientation within a CubeSat. Two types are attitude reference tracking were assessed, namely:
nadir tracking (constant reference) and target tracking (changing reference). The maximum disturbance
torques were determined for each orbit type, where the orbits selected were two different altitude SSOs
and a single ISS orbit – selected to test the most popular orbit for CubeSats in industry. The CubeADCS
was found to be able to track constant references considerably well, provided that CT measurements
were available and that the axis with the lowest principle MoI was aligned with the CubeSat yaw axis.
CubeSats using the FEKF estimator with continuous CT measurements were able to achieve pointing
accuracies with an RMS IPE of between 32′′ and 257′′ over all simulated CubeSat sizes, orbits, and long-
body axis alignments, with many CubeSats performing just as well as UniBRITE in sec. 2.5.3. CubeSats
in the ISS orbit generally exhibited the largest IPEs with those CubeSats equipped with solar panels
having the worst performances.

CubeSats using the temperature compensated GEKF had nearly identical performances regardless of
CubeSat orbit type, size, long-body axis alignment, and solar panel configuration. The GEKF does not
need to estimate the CubeSat body angular rotation rates, which is the likely reason for the consistent
performance. The GEKF was additionally found to reject external disturbances better than the FEKF.
Nevertheless, the performance of the compensated GEKF was still limited by the gyro sensor noise,
resulting in a best-case RMS IPE of 203′′. The uncompensated GEKF was found to be able to estimate
the changing gyro biases with temperature, but not to an accuracy seen with compensation where the
errors in bias estimation were prominent in the simulations. In the cases where the GEKF did not have
compensation, or continuous CT measurements, the accuracy was found to be too large, with attitude
errors drifting by more than 5° over the sunlit portion of each orbit.

The target tracking portion of the investigation proved that the CubeADCS is able to achieve high levels
of accuracy when tracking an Earth-based target. The performance of the CubeSats in the ISS orbit
was the worst out of the three selected orbits by a large margin. The greater error seen can be directly
attributed to the higher external disturbances experienced, where the lack of CT measurements at the
time of imaging also contributed to this. The performance of the CubeSats in the SSOs was of the greatest
interest in this thesis, however, where it was found that the IPE could be as low as 30.6′′. CubeSats
using the compensated GEKF had a worse performance than those using an FEKF, where the smaller
3U CubeSats were actually shown to have the best accuracy at the time of imaging. This is thought to
be due to the CubeSat having a greater agility than the 12U CubeSats.
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At the end of chapter 7, the data was used from the first nadir tracking investigation to determine the
stability of the CubeADCS. The CubeADCS was found to have a good stability about all three of its axes
where the best-case stabilities about a CubeSat’s roll, pitch and yaw axes was found to be 0.0081°(10s-1),
0.0114°(10s-1) and 0.0132°(10s-1) respectively, and a worst-case combined axes stability magnitude of
0.8661°(10s-1) over a 10 s integration period. The vast majority of CubeSats having continuous CT
measurements had very similar stabilities to the best-case outcome, performing at a level in the same
range as the XACT ADCS. A stabilty which is acceptable for stellar observations, is likely to be more
than adequate for EO missions.

In conclusion, the outcomes set out in this project were successfully achieved. An accurate simulation
environment was setup, accurate subcomponent modelling was conducted to mimic the CubeADCS
hardware, and the IPA and stability of the CubeADCS were investigated by testing CubeSpace’s
estimation on control software algorithms. The results of the simulations show the predicted worst-
case performances of the CubeADCS, where all sensor models were set to exhibit the worst possible
error characteristics and the environmental disturbances were set to be some of the harshest a CubeSat
could experience in LEO. The performance within an ISS orbit was considerably worse than the SSO
performances, however, the project set out to determine the performances of the latter, which proved to
have great potential for CubeSats using a CubeADCS.

8.2 Improvements and Recommendations
The following section will discuss various improvements which could have been made to improve the
research and attempt to provide possible alternative solutions.

8.2.1 Gyroscopes
During the investigation into the gyros implemented on the CubeADCS, it was found that the sensors
themselves are prone to several impacting sources of error. The most apparent of which was found
to be their high sensitivity to thermal gradients affecting the bias drift. The gyros also seem to have
unacceptably large high frequency and bias instability errors which seem to limit to potential performance
of the CubeADCS. Investigating different types of MEMS gyros could have been done to determine if
there exists better sensors which are perhaps not as error prone as the one used on the CL.

8.2.2 Gyroscope Temperature Compensation
It was found that without any temperature compensation of the gyros, that the bias would not be
completely removed and that errors can become significant. It is recommended that temperature
compensation should actually be conducted.

8.2.3 Accurate Temperature Modelling
Although it is advised to compensate the gyros for bias drifts caused by thermal variations, a better
CubeSat temperature model could have been constructed to more accurately replicate the kind of
temperature changes that a CubeSat would experience in LEO. It is a possibility that the simple sinusoidal
model could play a role in the reason than the GEKF was not able to completely remove the changing
bias.

8.2.4 Magnetometer Testing and Modelling
It could be valuable for future researchers to verify the true effect of alternating current loops on the
satellite bus creating magnetic moment disturbances on magnetometer measurements. Reducing these
effects would be highly beneficial to improving the accuracy of the magnetic field measurements.
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8.2.5 CubeStar Testing and Modelling
The CT was investigated using data provided to the author from CubeSpace. More indepth and accurate
testing of the CT could have been achieved and verified if the actual hardware was available to test.
Additionally, the effect of having a second CT in the modelled simulations would be useful to determine
the absolute limits of the kind of accuracies that could be achieved by the CubeADCS.

8.2.6 CubeWheel Testing and Modelling
Only one CW was tested to gain an understanding of its error characteristics. Investigating more CWs
could gain a broader knowledge of the expected CW errors used on different size CubeSats.

8.2.7 Solar Panel Testing and Modelling
The solar panels considered in this simulation were assumed to have certain resultant magnetic
moment characteristics. An investigation into an actual solar panel produced by a CubeSat component
manufacturer could help to gain a better understanding of their expected impact on a CubeSat, where
an accurate model could be constructed.

8.2.8 Mission Data
Although the target tracking performance of the CubeADCS seemed to be poor in comparison to nadir
tracking, its performance could not be compared to any other reference from CubeSats performing the
same manoeuvre. More data on the accuracies of other CubeSats conducting the same manoeuvres would
help to gain a better idea of what can be expected.

8.2.9 Proper SGP4 Error Modelling
A more in-depth investigation could have been conducted into the error of the SGP4 propagator, where
noise on the positional knowledge vector matching the actual expected errors in positional knowledge
could have been added to test the CubeADCS accuracy in extreme cases when updated TLE data is not
available.

8.2.10 Target Tracking Controller Integral Term
It was discovered at the end of this research that the target tracking controller used in the simulations,
did not include an integral term gain. The inclusion of such a term in a different controller provided by
CubeSpace could show better results, especially with regards to target tracking.

8.2.11 Further Investigation and Optimisation of Estimators
The optimisation of the FEKF and GEKF designs fell out of the scope of this project. An in-depth
investigation which seeks to optimise the various weighting parameters per each estimator, could further
improve the accuracy of the system as a whole.
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Appendix A

TLE Data Sets

The following TLE datasets are used throughout chapters 5 to 7:

A.1 ISS Orbit

Figure A.1: ISS TLE Dataset

A.2 Sun-Synchronous 500 km Orbit

Figure A.2: 500 km SSO TLE Dataset

A.3 Sun-Synchronous 650 km Orbit

Figure A.3: 650 km SSO TLE Dataset
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Appendix B

MEMS Sensor PCB Design

The following development board was designed to test the CRM100 MEMS gyro sensors in chapter 6. The
device had an XBEE wireless sensor mounting for possible cases when wireless comunication was needed,
as well as an SPI interface to each gyro sensor, which was communicated to via an Arduino.

Eagle PCB design software was used to design the board.

B.1 Schematics

Figure B.1: CRM100 Gryo Interface Schematics
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APPENDIX B. MEMS SENSOR PCB DESIGN

B.2 PCB

Figure B.2: CRM100 Gryo Interface PCB Layout
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Appendix C

Simulated CubeSat Solar Panel
Configurations

The following section shows the visual representations and typical CubeSat MoIs used as the simulated
CubeSats in the simulations throughout chapter 7. The convention representing the MoIs in the
subsections that follow show principle moment of inertia, Jzz, to be aligned with the long-body axis
of the CubeSat (nominal nadir pointing). In the case of the CubeSat long-body axis pointing in the ram
direction, Jxx swaps with Jzz.

C.1 3U CubeSats
The simulated 3U CubeSats MoIs are shown below.

J3UBMSP
=

0.0361 0 0
0 0.0365 0
0 0 0.0075

 kg m2

J3UDSP
=

0.0476 0 0
0 0.0485 0
0 0 0.0105

 kg m2

(a) 3U CubeSat with Body Mounted
Solar Panels

(b) 3U CubeSat with Two 3U Deployed Solar
Panels (-Y Facet)

Figure C.1: 3U CubeSat Solar Panel Configurations
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APPENDIX C. SIMULATED CUBESAT SOLAR PANEL CONFIGURATIONS

C.2 6U CubeSats
The simulated 6U CubeSats MoIs are shown below.

J6UBMSP
=

0.065 0 0
0 0.08 0
0 0 0.026

 kg m2

J6UDSP
=

0.071 0 0
0 0.104 0
0 0 0.048

 kg m2

(a) 6U CubeSat with Body Mounted
Solar Panels

(b) 6U CubeSat with Four 3U Deployed Solar
Panels (-Y Facet)

Figure C.2: 6U CubeSat Solar Panel Configurations

C.3 12U CubeSat
The simulated 12U CubeSats MoI is shown below.

J12UBMSP
=

0.26 0 0
0 0.265 0
0 0 0.16

 kg m2

Figure C.3: 12U CubeSat with Body Mounted Solar Panels
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