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ABSTRACT 

Lignin is an amorphous polymer providing structure and strength to the cell walls in plants. In the process 

of making pulp the lignin is removed or solubilised from woodchips and burnt for steam production. 

Interest in alternative higher value applications of these lignins has increased considerably. Furthermore, 

the isolation and characterisation techniques of lignin have improved, thus leading to a better 

understanding of their structure.  In order for lignin to be utilised, there is a requirement for its 

modification to improve its reactivity due to the fact that the pulping process results in a significant 

alteration of its structure – specifically by the repolymerisation of the lignin. Ligninolytic enzymes have 

shown significant potential in repolymerising these degraded lignins. The potential high value application 

of repolymerised lignins include their use as additives as reinforcements in polymeric packaging, 

composites and active packaging. In this project, six different industrial lignins from the South African 

pulping industry, including lignosulphonates, Kraft, and soda lignins, were isolated, characterised and 

reacted with commercial laccase (51003) and Lignin peroxidase, i.e (LiP) enzymes to cause 

repolymerisation, in order to achieve a higher molecular weight. The lignin was treated with the enzyme 

for a period of 24 hours with various enzyme dosages and lignin concentrations. As the lignosulphonates 

are water-soluble, they were able to be tested at higher lignin concentrations than the non-soluble 

alkaline lignins which had a solubility limit. Repolymerisation occurred for almost all the lignins treated 

with the laccase or LiP enzymes, resulting in a subsequent increase in molecular weight. Molecular weight 

was increased up to 5.68-fold as was observed for soda lignin treated with LiP. The highest molecular 

weight increase with the laccase treatment was 3.79-fold for Kraft (hardwood origin) lignin.  For the 

laccase treatments an increase in molecular weight was accompanied by a decrease in the lignins’ 

phenolic content. However, this was not observed for the LiP, indicating that this enzyme was able to 

repolymerise both the phenolic and non-phenolic lignin component. Depolymerisation was observed at 

low enzyme dosages in the LiP experiments (0.067 U/g lignin). It was noticed that lower molecular weight 

lignins are more reactive and allow more efficient interaction with the enzymes in comparison to higher 

molecular weight lignins. 

The economic analysis of a proposed enzymatic modification process from the spent liquor was 

determined, however, owing to the high operating costs of the proposed processes for all six investigated 

lignins, together with the low projected income from the sales of the treated lignin, the enzymatic 

valorisation process is deemed not feasible at this stage. The lowest minimum required selling price of 

the sodium lignosulphonate (hardwood-softwood mix origin) was R250 421 per ton lignin. It is 

recommended that investigations into decreasing the reaction time, increasing the lignin concentration, 

and methods to reuse the enzymes could be considered. 
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OPSOMMING 

Lignien is ’n amorfiese polimeer wat struktuur en krag aan die selwande in plante bied. In die proses om 

pulp of papier te maak, word die lignien verwyder of oplosbaar gemaak uit houtspaanders en gebrand vir 

stoomproduksie. Belang in alternatiewe hoër waarde toepassings van hierdie lignien het aansienlik 

verhoog. Verder, die isolasie- en karakteriseringtegnieke van lignien het verbeter, wat dus tot ’n beter 

verstaan van die struktuur lei. Vir lignien om gebruik te word, is daar ’n behoefte vir sy modifikasie om sy 

reaktiwiteit te verbeter as gevolg van die feit dat die pulpproses ’n beduidende verandering van sy 

struktuur tot gevolg het – spesifiek by die herpolimerisasie van die lignien. Ligninolitiese ensieme het 

beduidende potensiaal gewys in herpolimerisasie van hierdie gedegradeerde lignien. Die potensiële hoë 

waarde toepassing van herpolimeriseerde lignien sluit hul gebruik as bymiddels as versterkings in 

polimeriese verpakking, samestellings en aktiewe verpakking in. In hierdie projek is ses verskillende 

industriële lignien van die Suid-Afrikaanse verpulpingsindustrie, insluitend lignosulfonate, kraft, en 

sodalignien, geïsoleer, gekarakteriseer en gereageer met kommersiële lakkase (51003) en 

Lignienperoksidase, i.e. (LiP) ensieme wat herpolimerisasie veroorsaak, om hoër molekulêre gewig te 

bereik. Die lignien is behandel met die ensiem vir ’n periode van 24 uur met verskeie ensiemdosisse en 

lignienkonsentrasies. Omdat die lignosulfonate wateroplosbaar is, kon hulle getoets word by hoër 

lignienkonsentrasies as die nie-oplosbare alkaliese lignien wat ’n oplosbaarheidsbeperking het. 

Herpolimerisasie het voorgekom vir amper al die lignien behandel met die lakkase of LiP-ensieme, wat ’n 

verhoging in molekulêre gewig tot gevolg gehad het. Molekulêre gewig is verhoog tot 5.68-voud soos 

waargeneem vir sodalignien behandel met LiP. Die hoogste molekulêre gewig verhoging met die 

lakkasebehandeling was 3.79-voud vir kraft (hardehout afkoms) lignien. Vir die lakkasebehandelinge is 

die verhoging in molekulêre gewig vergesel deur ’n afname in die lignien se fenoliese inhoud. Dit was 

egter nie waargeneem vir die LiP nie, wat aandui dat hierdie ensiem beide die fenoliese en nie-fenoliese 

lignienkomponent kon herpolimeriseer. Depolimerisering is waargeneem by lae ensiemdosisse in die LiP-

eksperimente (0.067 U/g lignien). Dit is opgelet dat laer molekulêre gewig lignien meer reaktief is en 

meer effektiewe interaksie met die ensieme toegelaat het in vergelyking met hoër molekulêre gewig 

lignien.  

Die ekonomiese analise van ’n voorgestelde ensiematiese modifikasieproses van die gebruikte pulploog 

is bepaal, maar weens die hoë bedryfskostes van die voorgestelde prosesse vir al ses ondersoekte lignien, 

saam met die lae geprojekteerde inkomste van die verkope van die behandelde lignien, is die 

ensiematiese valorisasieproses beskou as nie uitvoerbaar op hierdie stadium nie. Die laagste minimum 

vereiste verkoopsprys van die sodiumlignosulfonaat (hardehout-sagtehout-mengsel afkoms) was 

R250 421 per ton lignien. Dit word aanbeveel dat ondersoeke in die reaksietyd, verhoging van die 

lignienkonsentrasie, en metodes om die ensieme weer te gebruik, oorweeg word. 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

iv 

TABLE OF CONTENTS 

1. CHAPTER 1: INTRODUCTION ...................................................................................................... 1 

1.1 CONTEXTUAL BACKGROUND ................................................................................................................... 1 

1.2 THESIS LAYOUT ..................................................................................................................................... 2 

2 CHAPTER 2: LITERATURE ........................................................................................................... 4 

2.1 LIGNIN ................................................................................................................................................ 4 

2.1.1 Background ........................................................................................................................... 4 

2.1.2 Lignin Structure .................................................................................................................... 5 

2.1.3 Lignin Characterisation Methods ......................................................................................... 8 

2.2 PULP AND PAPER INDUSTRY AS A SOURCE OF LIGNIN ................................................................................. 10 

2.2.1 Kraft Pulping Process .......................................................................................................... 11 

2.2.2 Soda Pulping Process .......................................................................................................... 12 

2.2.3 Sulphite Pulping Process ..................................................................................................... 13 

2.3 LIGNIN VALORISATION ......................................................................................................................... 15 

2.4 LIGNIN MODIFICATION ENZYMES ............................................................................................................ 18 

2.4.1 Lignin-degrading organisms ............................................................................................... 18 

2.4.2 Lignolytic modification enzymes ........................................................................................ 19 

2.5 LIGNIN POLYMERISATION STUDIES .......................................................................................................... 24 

2.6 AIMS AND OBJECTIVES ......................................................................................................................... 26 

2.6.1 Aims .................................................................................................................................... 26 

2.6.2 Objectives ........................................................................................................................... 27 

3 CHAPTER 3: CHARACTERISATION OF LIGNIN AND LIGNOSULPHONATES .....................................28 

3.1 INTRODUCTION ................................................................................................................................... 28 

3.2 MATERIAL AND METHODS .................................................................................................................... 28 

3.2.1 Experimental approach ...................................................................................................... 28 

3.2.2 Lignin Sources ..................................................................................................................... 28 

3.2.3 Lignin Sample Preparation.................................................................................................. 29 

3.2.4 Lignin Characterisation methods ........................................................................................ 30 

3.3 RESULTS AND DISCUSSION .................................................................................................................... 33 

3.3.1 Compositional Analysis ....................................................................................................... 33 

3.3.2 Structural Analysis .............................................................................................................. 34 

3.3.3 Molecular weight and Phenolic Content Analysis .............................................................. 37 

3.3.4 Thermal Analysis ................................................................................................................. 38 

4 CHAPTER 4: ENZYMATIC POLYMERISATION OF TECHNICAL LIGNIN ............................................41 

Stellenbosch University  https://scholar.sun.ac.za



 

v 

4.1 INTRODUCTION ................................................................................................................................... 41 

4.2 MATERIAL AND METHODS .................................................................................................................... 41 

4.2.1 Experimental Approach ...................................................................................................... 41 

4.2.2 Materials ............................................................................................................................. 41 

4.2.3 Enzyme Activity .................................................................................................................. 41 

4.2.4 Lignin repolymerisation ...................................................................................................... 42 

4.2.5 Treated Technical Lignin characterisation .......................................................................... 44 

4.3 RESULTS AND DISCUSSION .................................................................................................................... 45 

4.3.1 Lignin molecular weight changes during enzymatic modification ..................................... 45 

4.3.2 Phenolic content changes during enzymatic modification ................................................ 55 

4.3.3 Structural and thermal property changes .......................................................................... 56 

4.3.4 Optimal conditions ............................................................................................................. 57 

5 CHAPTER 5: TECHNO-ECONOMIC EVALUATION OF ENZYMATIC LIGNIN EXPERIMENT TO INCREASE 
MOLECULAR WEIGHT ......................................................................................................................59 

5.1 INTRODUCTION ................................................................................................................................... 59 

5.2 LITERATURE ........................................................................................................................................ 59 

5.3 METHODS .......................................................................................................................................... 60 

5.3.1 Techno-economic analysis steps ........................................................................................ 60 

5.3.2 Process Development ......................................................................................................... 60 

5.3.3 Economic Evaluation .......................................................................................................... 66 

5.3.4 Market Research ................................................................................................................ 68 

5.3.5 Cash Flow sheet Assumptions ............................................................................................ 69 

5.3.6 Profitability Indicators ........................................................................................................ 70 

5.4 RESULTS AND DISCUSSION .................................................................................................................... 71 

5.4.1 Plant Capacity ..................................................................................................................... 71 

5.4.2 CAPEX and OPEX ................................................................................................................. 72 

5.4.3 Financial Performance of Proposed Plant .......................................................................... 75 

6 CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS .............................................................77 

6.1 CONCLUSIONS .................................................................................................................................... 77 

6.2 RECOMMENDATIONS ........................................................................................................................... 78 

REFERENCES ....................................................................................................................................80 

APPENDIX A: ENZYMATIC EXPERIMENT ............................................................................................88 

6.3 ENZYMATIC REACTION RESULTS ............................................................................................................. 88 

6.3.1 KS-S-N Enzyme modification .............................................................................................. 88 

6.3.2 KH-S-N Enzyme modification .............................................................................................. 89 

Stellenbosch University  https://scholar.sun.ac.za



 

vi 

6.3.3 S-S-S Enzyme modification ................................................................................................. 91 

6.3.4 NaS-S-T Enzyme modification ............................................................................................. 92 

6.3.5 NaS-M-PR Enzyme modification ......................................................................................... 94 

6.3.6 MgO-S-S Enzyme modification ........................................................................................... 96 

6.3.7 Summary Enzymatic reaction results ................................................................................. 98 

6.4 STATISTICAL ANALYSIS OF ENZYMATIC MODIFICATION RESULTS .................................................................. 100 

6.4.1 KS-S-N Statistical Results .................................................................................................. 100 

6.4.2 KH-S-N Statistical Results .................................................................................................. 101 

6.4.3 S-S-S Statistical Results ..................................................................................................... 103 

6.4.4 NaS-S-T Statistical Results ................................................................................................ 105 

6.4.5 NaS-M-PR Statistical Results ............................................................................................. 106 

6.4.6 MgO-S-S Statistical Results ............................................................................................... 107 

7 APPENDIX B: TECHNO-ECONOMIC ANALYSIS .......................................................................... 108 

7.1 EQUIPMENT SIZING AND SPECIFICATIONS .............................................................................................. 108 

7.2 EQUIPMENT COSTS............................................................................................................................ 112 

7.3 NPV DETERMINATIONS ...................................................................................................................... 115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

vii 

List of Tables 

Table 1: Percentage of H,S and G-monomers present in hardwood, softwood and grass lignin adapted 

from Ek, Gellerstedt and Henriksson (2009) ............................................................................................... 6 

Table 2: The estimated percentage of each type of linkage found in softwood and hardwood lignin (Chakar 

and Ragauskas, 2004; Gouveia, 2014) ......................................................................................................... 8 

Table 3: Various characterization methods of lignin ................................................................................... 9 

Table 4: Modifications made to sulphite pulping process adapted from Naron (2019) ........................... 14 

Table 5: Properties of various technical lignin. Extracted from Vishtal and Kraslawski (2011) ................ 15 

Table 6: Summary of various separation methods of Technical lignin. Adapted from Vishtal and Kraslawski 

(2011). ....................................................................................................................................................... 16 

Table 7: Indication of current and potential product applications of lignin adapted from Gouveia (2014)

 ................................................................................................................................................................... 17 

Table 8: Various chemical and enzymatic polymerization studies in literature ........................................ 25 

Table 9: Biomass origin, pulping process and mill source of lignin to be used in this project .................. 29 

Table 10: Compositional results of various technical lignin ...................................................................... 33 

Table 11: FT-IR Absorption peak functional group assignments extracted from Govender, (2020) ........ 37 

Table 12: Molecular weight and Phenolic content characterisation of various technical lignin .............. 38 

Table 13: Lignin- Enzymatic investigation of lignin concentrations and enzyme dosages ........................ 42 

Table 14: Optimal operating conditions of the various enzymes obtained from literature. .................... 44 

Table 15: Summarizing the Molecular weight fold increase after a 24 hour enzyme experiment of the 

various Purified lignin’s ............................................................................................................................. 47 

Table 16: Summarizing the Molecular weight increases after a 24-hour enzyme experiment of the various 

purified lignin............................................................................................................................................. 49 

Table 17: Summarizing the molecular weight fold increase after a 24-hour enzyme experiment of the 

various lignosulphonates ........................................................................................................................... 52 

Table 18: Summary from LSD tests ........................................................................................................... 54 

Table 19: Summarizing the phenolic content decreases after a 24-hour enzyme experiment of the various 

Purified lignin............................................................................................................................................. 55 

Table 20: Summarizing the Molecular weight fold increase and the phenolic content decreases after a 24- 

hour enzyme experiment of the various lignosulphonates ...................................................................... 56 

Table 21: The thermal degradation temperature changes over a 24-hour enzymatic treatment. .......... 57 

Table 22: The standardized effects and the overall optimum values to maximize the molecular weight or 

minimize the phenolic content (PC) for the lignosulphonates .................................................................. 58 

Table 23: The optimum operating conditions for the purified lignins ...................................................... 58 

Table 24: The Optimized Process Conditions for each scenario to be tested ........................................... 62 

Table 25: Pulping mill sources solids percentage and density of liquor obtained from literature ........... 63 

Table 26: Proposed plants raw materials unit costs ................................................................................. 67 

Table 27: Utility Costs Summary ............................................................................................................... 67 

Table 28: Cash Flow Assumptions ............................................................................................................. 70 

Table 29: Plant Production Capacity ......................................................................................................... 71 

Table 30: Total capital investment for the various proposed scenarios ................................................... 72 

Stellenbosch University  https://scholar.sun.ac.za



 

viii 

Table 31: Total operating costs for the various proposed scenarios ........................................................ 74 

Table 32: Probability indicators for the various process plant scenarios.................................................. 75 

Table 33: Summarizing the Molecular weight fold increase and the phenolic content decreases after a 24-

hour enzyme experiment of the various lignosulphonates ...................................................................... 98 

Table 34: Elemental analysis and estimated empirical formulae after the 24-hour enzymatic experiment

 ................................................................................................................................................................... 99 

Table 35: Equipment Sizing for all proposed plant Scenarios ................................................................. 108 

Table 36: Equipment costing for all processes plant scenarios ............................................................... 112 

Table 37: NPV determination for Scenario 1 KS-S-N and Scenario 2 KH-S-N, respectively ..................... 115 

Table 38: NPV determinations for Scenario 3 S-S-S and Scenario NaS-S-T, respectively ........................ 116 

Table 39: NPV determinations for Scenario 5 NaS-M-PR and Scenario 6 MgO-S-S, respectively ........... 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

ix 

List of Figures 

Figure 1: The ultrastructure of wood cell wall and a schematic diagram of the lignin distribution within 

the middle lamella (ML), primary wall (P) and secondary wall layers (S) redrawn from Azadi et al.(2013) 

2013) ............................................................................................................................................................ 4 

Figure 2: Monolignol monomer species. (a) p-Coumaryl alcohol (b) coniferyl alcohol (c) sinapyl alcohol 

redrawn from (Doherty, Mousavioun and Fellows, 2011) .......................................................................... 6 

Figure 3: The Schematic representation of softwoods (A) and hardwoods (B) redrawn from Zakzeski et al. 

(2010)) ......................................................................................................................................................... 7 

Figure 4: Simplified flow diagram of the Kraft recovery process redrawn from Azadi et al. (2013)......... 12 

Figure 5: Model depicting the structural characteristics of lignosulphonate lignin redrawn from Zakzeski 

et al. (2010) ............................................................................................................................................... 14 

Figure 6: Risk-reward diagram of possible lignin applications redrawn from Gouveia (2014) ................. 18 

Figure 7: General mechanism of phenolic compound oxidation by laccase action from Gonçalves, Silva 

and Cavaco-Paulo (2015) ........................................................................................................................... 20 

Figure 8: The reaction mechanism and structure of laccase redrawn from Areskogh (2011) .................. 21 

Figure 9: The catalytic cycle of LiP redrawn from Wong (2009) ............................................................... 23 

Figure 10: Phenolic content calibration curve (Vanillin) ........................................................................... 32 

Figure 11: FT-IR spectra of technical lignin samples ................................................................................. 34 

Figure 12: Enlarged FT-IR spectra between the wavenumber of 1800–800 cm-1 ..................................... 36 

Figure 13: Thermal degradation curves of lignin samples ........................................................................ 39 

Figure 14: Rate of degradation of lignin samples ...................................................................................... 40 

Figure 15: Molecular weight and Phenolic content analysis of S-S-S during enzymatic experiment ....... 46 

Figure 16: FT-IR Spectra of KH-S-N before and after 24-hour enzymatic experiment, insert enlarges the 

'fingerprint' region of the lignin ................................................................................................................ 50 

Figure 17: FT-IR Spectra of S-S-S before and after 24-hour enzymatic experiment, insert enlarges the 

'fingerprint' region of the lignin ................................................................................................................ 50 

Figure 18: FT-IR Spectra of KS-S-N before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin ................................................................................................................ 51 

Figure 19: Molecular weight and phenolic content analysis of NaS-S-T during the laccase enzymatic 

experiment ................................................................................................................................................ 53 

Figure 20: The LSD test results of NaS-S-T treated with Laccase .............................................................. 54 

Figure 22: Techno-economic Analysis Process Steps ................................................................................ 60 

Figure 23: Process flow diagram for the enzymatic modification of Kraft or Soda Lignin from the black 

liquor ......................................................................................................................................................... 64 

Figure 24: Process flow diagram for the enzymatic modification of lignosulphonates from the spent liquor

 ................................................................................................................................................................... 65 

Figure 25: Depiction of the lignin products based on cost and volume redrawn from Cline and Smith (2017)

 ................................................................................................................................................................... 69 

Figure 26: Distribution of installation cost for the TCI .............................................................................. 73 

Figure 27: Distribution of the variable operating costs for all the scenarios ............................................ 75 

Figure 28: Molecular weight and phenolic content analysis of KS-S-N during enzymatic experiment .... 88 

Stellenbosch University  https://scholar.sun.ac.za

file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956303
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956303
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956303
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956305
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956305
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956308
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956309
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956309
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956320
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956320
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956326
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956326


 

x 

Figure 29: FT-IR Spectra of KS-S-N before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin ................................................................................................................ 88 

Figure 30: Rate of degradation of KS-S-N obtained before and after 24-hour enzymatic experiment .... 89 

Figure 32: Molecular weight and phenolic content analysis of KH-S-N during enzymatic experiment .... 89 

Figure 33: FT-IR Spectra of KH-S-N before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin ................................................................................................................ 90 

Figure 34: Rate of degradation of KH-S-N obtained before and after 24-hour enzymatic experiment .... 90 

Figure 35: Molecular weight and phenolic content analysis of S-S-S during enzymatic experiment ....... 91 

Figure 36: FT-IR Spectra of S-S-S before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin ................................................................................................................ 91 

Figure 37: Rate of degradation of S-S-S obtained before and after 24-hour enzymatic experiment ....... 92 

Figure 38: Molecular weight and phenolic content analysis of NaS-S-T during the laccase enzymatic 

experiment ................................................................................................................................................ 92 

Figure 39: Molecular weight and phenolic content analysis of NaS-S-T during the LiP enzymatic 

experiment ................................................................................................................................................ 93 

Figure 40: FT-IR Spectra of NaS-S-T before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin ................................................................................................................ 93 

Figure 41: Rate of degradation of NaS-S-T obtained before and after 24-hour enzymatic experiment .. 94 

Figure 42: Molecular weight and phenolic content analysis of NaS-M-PR during the laccase enzymatic 

experiment ................................................................................................................................................ 94 

Figure 43: Molecular weight and phenolic content analysis of NaS-M-PR during the LiP enzymatic 

experiment ................................................................................................................................................ 95 

Figure 44: FT-IR Spectra of NaS-M-PR before and after 24-hour enzymatic experiment – insert enlarges 

the 'fingerprint' region of the lignin .......................................................................................................... 95 

Figure 45: Rate of degradation of NaS-M-PR obtained before and after 24-hour enzymatic experiment96 

Figure 46: Molecular weight and phenolic content analysis of MgO-S-T during the laccase enzymatic 

experiment ................................................................................................................................................ 96 

Figure 47: Molecular weight and phenolic content analysis of MgO-S-T during the LiP enzymatic 

experiment ................................................................................................................................................ 97 

Figure 48: FT-IR Spectra of MgO-S-S before and after 24-hour enzymatic experiment – ........................ 97 

Figure 49: Rate of degradation of MgO-S-S obtained before and after 24-hour enzymatic experiment . 98 

Figure 50: Scatterplot analysis of phenolic content of KS-S-N during the laccase enzymatic experiment

 ................................................................................................................................................................. 100 

Figure 51: Scatterplot analysis of molecular weight of KS-S-N during laccase enzymatic experiment .. 100 

Figure 52: KS-S-N LSD test diagrams ....................................................................................................... 101 

Figure 53: Scatterplot analysis of phenolic content of KH-S-N during the laccase enzymatic experiment

 ................................................................................................................................................................. 101 

Figure 54: Scatterplot analysis of molecular weight of KH-S-N during laccase enzymatic experiment .. 102 

Figure 55: KH-S-N LSD test diagrams ....................................................................................................... 102 

Figure 56: Scatterplot analysis of phenolic content of S-S-S during the laccase enzymatic experiment 103 

Figure 57: Scatterplot analysis of molecular weight of S-S-S during laccase enzymatic experiment ..... 103 

Stellenbosch University  https://scholar.sun.ac.za

file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956330
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956330
file:///C:/Users/18268005/Desktop/FINAL%20THESIS%20SUB/DU%20TOIT%20MEng%20Thesis%202021%20%5bFinal%5d.docx%23_Toc70956331


 

xi 

Figure 58: S-S-S LSD test diagrams .......................................................................................................... 104 

Figure 59: Desirability surface plots for optimum values for the maximization of the molecular weights 

and the minimization of the phenolic content of NaS-S-T ...................................................................... 105 

Figure 60: NaS-S-T LSD test diagrams ...................................................................................................... 105 

Figure 61: Desirability surface plots for optimum values for the maximization of the molecular weights 

and the minimization of the phenolic content of NaS-M-PR .................................................................. 106 

Figure 62: NaS-M-PR LSD test diagrams .................................................................................................. 106 

Figure 63: Desirability surface plots for optimum values for the maximization of the molecular weights 

and the minimization of the phenolic content of MgO-S-S .................................................................... 107 

Figure 64: MgO-S-S LSD test diagrams .................................................................................................... 107 

  

Stellenbosch University  https://scholar.sun.ac.za



 

xii 

NOMENCLATURE 

ABTS 2,2' - azino-bis (3-ethylbenzthiazoline-6 sulfonate) 

AQ Anthraquinone 

ATR Attenuated Total Reflectance 

BHT Butylated Hydroxytolvene 

CAPEX Capital Cost Estimate 

CEPCI Chemical Engineering Plant Cost Index 

C-NMR Carbon Nuclear Magnetic Resonance Spectroscopy 

FCI Fixed Capital Investment 

FC-reagent Folin Ciocalteu’s phenol reagent 

FT-IR Fourier Transform Infrared Spectroscopy 

GPC Gel Permeation Chromatography 

H Coumaryl alcohol 

H2O2 Hydrogen Peroxide 

HAA 3-hydroxyanthranilic 

HBT 1-hydroxybentzotriazole 

IRR Internal Rate of Return 

KH-S-N Kraft Lignin, Hardwood origin, Sappi 

KS-S-N Kraft Lignin, Softwood origin, Sappi 

LiP Lignin Peroxidase 

LSD Least Significant Difference 

MgO-S-S Magnesium Lignosulphonate, Hardwood, Sappi 

MN Number average molecular weight 

MRSP Minimum Required Selling Price 

MW Weighted average molecular weight 

Mw/MN Polydispersity  

NaOH Sodium hydroxide 

Nas-M-PR Sodium Lignosulphonate, Mixed, Mpact 

NaS-S-T Sodium Lignosulphonate, Hardwood, Sappi 

NMR Nuclear Magnetic Resonance 

NPP New Production Cost 

NPV Net Present Value 

NSSC Neutral Sulphite Semi-Chemical 

PAMSA Paper Manufacturers Association of South Africa 

PI Polydispersity Index 

Q Coniferyl alcohol 

S  Sinapyl alcohol 

S-S-S Soda Lignin, Bagasse origin, Sappi 

TCI Total Capital Investment 

TDC Total Direct Costs 

TGA Thermogravimetric analysis 

UV Ultraviolet Spectroscopy 

Stellenbosch University  https://scholar.sun.ac.za



 

 

1 

 

1. CHAPTER 1: INTRODUCTION 

1.1 Contextual Background 

Lignin is a heterogeneous, amorphous bio-polymer that is the second-most abundant substance in the 

plant world (Fengel and Wegener, 2003). Lignocellulose plant biomass consists of three structural 

biopolymers in its cell walls, namely cellulose, hemicelluloses and lignin (Axelsson et al., 2012). Lignin 

provides structure and strength to the cells walls. It makes the cell wall resistant to insect attack and 

decay, and it aids in controlling the fluid flow within the plant (Laurichesse and Avérous, 2014).  

In the pulp and paper industry, the lignin is removed from the lignocellulose biomass in a by-product, 

referred to as black liquor or spent liquor. The liquor consists of lignin, spent pulping chemicals and other 

dissolved wood constituents (Svensson, 2008).  The liquor is burnt as a fuel for the production of steam, 

electricity, and to recover the pulping chemicals used in the pulping process (Kouisni et al., 2016). 

Worldwide it is estimated that approximately 50 million tons of these ‘technical’ lignins are produced in 

the paper and pulping industry, where only 2 percent is commercialized into low- value products such as 

additives, surfactants, antioxidants and fillers (Gouveia, 2014; Laurichesse and Avérous, 2014).  

The exact chemical structures of technical lignins are not known, as they are dependent on various factors 

such as the biomass origin, the conditions during its growth, the pulping process used to remove the 

lignin, and the method by which lignin is isolated from pulping liquors. All of these impact on lignins’ 

chemical structures, especially pulping and isolation, which cause extensive degradation to the lignin and 

contaminating it with its inorganic pulping chemicals (Laurichesse and Avérous, 2014; Espinoza-Acosta et 

al., 2016; Gordobil et al., 2016a).  This limits the high-value application capabilities of these technical 

lignins as the low molecular weight lignins obtained from pulping liquors are not well-suited to 

applications such as polymer blends, carbon fibres and active packaging, therefore there is a need to 

develop processes to repolymerise  these low-molecular weight lignins (Bruijnincx et al., 2016).  

Most research into lignin valorisation investigates the utilizing of these technical lignins by further 

breaking them down into their monomeric units. However, little research investigates the 

repolymerisation of these lignin resulting in a higher molecular weight lignin as well as the industrial 

application of these processes. In order to increase the molecular weight of these lignin, they need to be 

altered physically or chemically (Areskogh, 2011; Wells, Kosa and Ragauskas, 2013) . 

In nature, the lignin is formed by the polymerisation of three basic phenylpropanoid units, namely 

guaiacyl, syringyl and p-coumaryl, where these units form ether and carbon-carbon bonds (Kong et al., 

2018). This process is initiated by oxidoreductase plant-produced enzymes such as peroxidases and 

laccases, which form the complex structure (Gouveia, 2014). Peroxidase is a class consisting of enzymes 

such as lignin peroxidase, manganese peroxidase and versatile peroxidase, which utilises hydrogen 

peroxide as an oxygen-donor, and laccases which are fungal enzymes requires oxygen as an oxidant to 

cause the polymerisation (Liu, Luo and Zheng, 2018).  
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Enzymatic modification of technical lignin is an environmental-friendly approach to upgrading these 

lignin. Enzymes are specific, selective and allow for direct lignin modification without the formation of 

undesired products, with minimal energy demand and minimal generation of hazardous wastes (Chan, 

Paice and Zhang, 2020).  

The South African paper and pulping industry contributes significantly to the economy, society and the 

environment in South Africa. The sector contributed R24.13 billion to the South African GDP, which is 

0.53% of the country’s total GDP, while employing 150 000 people across the country in 2019 (PAMSA, 

2019). The sector has initiatives and organisations such as Paper Manufacturers Association of South 

Africa (PAMSA) that investigate improvements in the sector by better resource and waste utilization, 

combatting climate change and moving towards a greener economy. 

The use of black liquor, which is considered carbon neutral and renewable to produce steam and/or 

electricity in the paper and pulping industry, will reduce the mills’ reliance on the national power grid and 

reduces the sector’s carbon footprint (PAMSA, 2019). Studies have shown that in some pulping mills, 60% 

more technical lignin is produced than is required to meet the internal energy requirements of the 

pulping process (Gordobil et al., 2016b). This surplus of black liquor, results in mills experiencing 

bottlenecks at their recovery boilers. This influences the mills pulping capacity, thus resulting in the 

excess black liquor being stored in tanks (Nagy et al., 2010; Namane, 2016). Storing the black liquor will 

decrease the lignin quality over time (Govender, 2020). As lignin is such a carbon-rich source, by only 

burning it for energy production is an underutilization of its potential. In realising the potential application 

capabilities of lignin, the industry has started investigating alternative higher value application 

opportunities for technical lignin (Sena-Martins, Almeida-Vara and Duarte, 2008). Pulping mills which do 

not have excess black liquor, would require the lignin application to add more value than the current 

economic worth of lignins as an energy source.  

The aim of this project was to repolymerise technical lignin from the South African paper and pulping 

industry through enzymatic modification. The lignins were characterised to predict how they would 

respond to the enzymes. The extent of the repolymerisation which was be achieved by the two enzymes 

laccase and lignin peroxidase and the six lignins, were compared by their ability to repolymerise. In order 

to determine if enzymatic modification of lignins was economically feasible, a techno-economic analysis 

was performed. 

1.2 Thesis layout 

This thesis is structured as follows: 

Chapter 1 provides an introduction and gives the contextual background to the study. 

Chapter 2 reviews the literature on the study, starting with the structure of lignin, followed by the various 

pulping processes as a possible source of lignin. Then the availability of various valorisation methods are 

examined for these technical lignin, before moving onto enzymatic modification of lignin and various 

polymerisation studies using enzymes. The chapter ends with explaining the aims and objectives of the 

study. 
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Chapter 3 details the methods used to characterise the various lignin samples, and it presents the results 

from the characterisation of the various lignin samples, such as the compositional, structural and thermal 

analysis. 

Chapter 4 details the methods used to enzymatically modify the various lignin samples, and it presents 

the results found from the characterisation of the various treated lignin samples, such as compositional, 

structural and thermal analysis. 

Chapter 5 presents the techno-economic evaluation of enzymatically modifying these technical lignin. 

Chapter 6 contains the general conclusion of the study and any recommendation for future work. 
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2 CHAPTER 2: LITERATURE 

2.1 Lignin  

2.1.1 Background 

A French chemist Anseleme Payen (1795-1871) recovered two different products when he treated wood 

with caustic soda and nitric acid. The first product he found was called “cellulose” and the second he 

described as an “encrusting material,” now known as lignin, which was embedded within the cellulose 

(Laurichesse and Avérous, 2014). Lignocellulosic biomass is mainly plant cell wall material that consists 

of three biopolymers: cellulose, hemicellulose and lignin, where in woody plant dry matter lignin 

contributes between 15 – 40 wt% (Axelsson et al., 2012; Laurichesse and Avérous, 2014).  

Figure 1 depicts the ultrastructure of a wood cell wall. The figure shows that the cellulose molecules are 

bonded in parallel to each other with the lignin and hemicellulose in-between. The cell wall consists of 

several layers where the lignin concentration decreases from the outer to the inner layer (Azadi et al., 

2013). The lignin in the outer layer binds the adjacent cells together. However, the lignin in the inner 

layer of the cell wall acts as a natural bonding agent with the hemicellulose and the cellulose microfibrils 

to provide rigidity (Azadi et al., 2013).  

 

 

 

 

 

 

Cellulose, a linear biopolymer, is a polysaccharide (carbohydrate) and is the most abundant organic 

molecule found on Earth. It is used in areas such as construction, animal feed, but predominately in the 

papermaking process for the production of electricity, and recently for the production of bioethanol 

(Bugg et al., 2011). Hemicelluloses are heterogeneous polymers that are both linear and branched, and 

which interact with cellulose by strengthening the cell walls (Schoemaker and Piontek, 1996). Lignin 

provides strength and structural support to the cell, as well as resistance to decay and insect attack, and 

Figure 1: The ultrastructure of wood cell wall and a schematic diagram of the lignin distribution within 

the middle lamella (ML), primary wall (P) and secondary wall layers (S) redrawn from Azadi et al.(2013) 

2013)  
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it controls the fluid flow in the plant by aiding in the hydrophobic nature of the cell walls (Laurichesse 

and Avérous, 2014).  

Lignin is predominately obtained in the paper and pulping industry, where the lignin is removed from the 

lignocellulosic material using physical or chemical measures. The resulting pulping liquor contains these 

technical lignins (Areskogh, 2011).  

2.1.2 Lignin Structure 

Lignin is a complex heteropolymer with phenylpropanoid monomers that are bound together by various 

carbon to carbon bonds and by irregular ethers (Conacher, 2018).  The basic structure of lignin monomers 

consists of a phenolic ring with a hydroxyl group (-OH) and a propane side chain, C9H10O2(OCH3)n (n is the 

ratio of methoxyl groups) (Gouveia, 2014). There are three main phenylpropane monomers, namely p-

coumaryl alcohol , sinapyl alcohol (additions of a methoxyl group (-COH3)) and coniferyl alcohol (addition 

of two methoxyl groups), which are illustrated in Figure 2 (Doherty, Mousavioun and Fellows, 2011). 

These monomers are also referred to by their aromatic moieties, i.e. p-hydroxyphenyl (H) for p-coumaryl 

alcohol, syringyl (S) for sinapyl alcohol, and guaiacyl (G) for coniferyl alcohol (Ek, Gellerstedt and 

Henriksson, 2009). 

Lignin is synthesized by random polymerisation of these three phenylpropane monomers, known as 

monolignols. These monolignols undergo an enzyme-mediated dehydrogenation which will result in the 

formation of radical monolignol units. The oxidation of these monolignols causes polymerisation by 

radical-radical coupling to form the polymer lignin (Chakar and Ragauskas, 2004; Conacher, 2018). The 

enzymes causing the radical formations are the plant-based enzymes peroxidase and laccase (Duval and 

Lawoko, 2014). The monolignols are produced within in the wood cells cytoplasm and move to the cell 

wall where the polymerisation with various noticeable linkages forming between them will take place 

(Areskogh, 2011). These linkages include the β-O-4 aryl ether linkage which also occurs the most; aryl 

ether (α-O-4), diphenyl (4-O-5), as well as carbon-carbon linkages such as biphenyl (5-5), pinoresional (β-

β), phenylcoumaran (β-5) and diphenyl methane (Thβ-1). These linkages have been indicated on the 

schematic representations of lignin in Figure 3 (Laurichesse and Avérous, 2014). The abundance of 

chemical sites on the lignin molecule provides opportunity for the chemical modification of the polymer, 

to play a central role in new chemical formations (Laurichesse and Avérous, 2014). However, because the 

lignin molecule is complex, it has been challenging to be able to identify and quantify the various 

structures and linkages in lignin, especially when determining the degree of esterification (Zakzeski et al., 

2010).  
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Figure 2: Monolignol monomer species. (a) p-Coumaryl alcohol (b) coniferyl alcohol (c) sinapyl alcohol 

redrawn from (Doherty, Mousavioun and Fellows, 2011) 

The complexity of the lignin polymer is caused by various factors including, the variation in linkage 

structures and functional group types between different biomass origins, environmental conditions, 

various locations within a specific plant and the process used to isolate the lignin. Various lignin models 

have been produced to explain the various properties of different native lignins (García et al., 2009). 

There are three main types of lignin that are classified according to their monolignol content and these 

include softwoods, also called guaiacyl lignin, as they are mainly formed from coniferyl alcohols (G) and  

hardwoods, also called syringyl-guaiacyl lignin, as they consist of similar amounts of coniferyl (G) and 

sinapyl alcohol (S) phenylpropane and grasses which are called HGS-lignin. The different structures of 

these are shown in Figure 3. Softwoods are gymnosperms (where the ovules are not protected) and 

hardwoods are angiosperms (where the ovules are protected). The different monolignol ratios and 

linkages present in the different types of lignin are summarized in Table 1 and Table 2, respectively. The 

percentage dry mass, composition and molecular weight of lignin, differ from plant to plant. Softwoods 

contain the highest concentration of lignin, then hardwoods, and lastly grasses (Zakzeski et al., 2010). 

The weight percentages of lignin in softwood, hardwood and grasses are typically 27–33 %, 18–25 % and 

17–24 %, respectively (Azadi et al., 2013).  

Table 1: Percentage of H,S and G-monomers present in hardwood, softwood and grass lignin adapted 

from Ek, Gellerstedt and Henriksson (2009) 

 Percentage  
H-monomer  
(p-coumaryl) 

Percentage  
S-monomer 

(sinapyl) 

Percentage  
G-monomer 
(coniferyl) 

Reference 

Hardwood 0-8 46-75 25-50 
(Ek, Gellerstedt 

and Henriksson, 

2009) 

Softwoods <5 Trace >95 

Grasses 5-33 20-54 33-80 
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Figure 3: The Schematic representation of softwoods (A) and hardwoods (B) redrawn from Zakzeski et al. (2010)) 
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Table 2: The estimated percentage of each type of linkage found in softwood and hardwood lignin (Chakar 

and Ragauskas, 2004; Gouveia, 2014) 

Type of Linkage 
Approximate percentage linkage 

Reference 
Softwoods (%) Hardwoods (%) 

β-O-4 45-50 60 

(Chakar and 
Ragauskas, 2004; 
Gouveia, 2014) 

α-O-4 6-8 6-8 

4-O-5 4-8 6 

5-5 18-25 5 

β-1 7-10 7 

β-β 3 3 

β-5 9-12 6 

 

As no definitive structure of lignin exists, only models have been determined which indicate the 

complexity of lignin as a polymer and the lack of methods available to extract the lignin in its native form 

(Areskogh, 2011). The development of various analytical techniques to help characterise and clarify the 

structure of the lignin molecule is evolving, especially owing to the abundance of the molecule and the 

potential products it can provide, and it will be investigated in this study (Conacher, 2018).  

2.1.3 Lignin Characterisation Methods 

Lignin is seen to be one of the most difficult biopolymers to characterise (Chakar and Ragauskas, 2004). 

Characterising the lignin by determining the lignin polymer size, quantifying the chemical linkages and 

functional groups present are essential to design and explain the performance of the enzymatic-catalytic 

reactions to aid in determining the possible applications for these lignins. In order to characterise this 

complex polymer, various techniques are used and have been summarised in Table 3 (Rinaldi et al., 2016).  

The ash content of the lignin, shows the percentage of inorganics present in the lignin, which indicates 

the purity of the lignin (Mansouri and Salvadó, 2006). When determining the chemical composition of 

the lignin, techniques such as Gas Chromatography with Mass Spectrometry (GC-MS) have been used to 

determine the volatile compounds of lignin released from lignins. However, many issues such as the 

calibration standards that are not commercially available and that should be synthesised, have resulted 

in these methods poorly representing the volatile compounds present, and hence they should be used in 

conjunction with other methods. Methods such as Thermogravimetric Analysis (TGA), which is performed 

under an inert gas, has shown to be effective in quantifying mass losses, due to the release of volatile 

compounds (Rinaldi et al., 2016). During thermal heating, the lignins are degraded to form volatile 

compounds, which gives insight into the thermal stability of the lignin. Methods such as Gel Permeation 

Chromatography (GPC) have been successful in indicating the lignin molecular weight and the size 

distribution (Owhe, 2020). Care must be taken when choosing the solvent for the polymer to be fully 

dissolved. To improve the solubility and lower the polarity of the lignin in different solvents, methods of 

chemical derivatisation may be applied to modify its hydroxyl groups; these methods include acetylation, 

flurobenzylation and flurobenzoylation (Esakkimuthu, 2020). Elemental analysis gives insight into the 

atomic C/H and C/O indices and the heating value which can also be measured directly (Rinaldi et al., 

2016).  
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There are various methods that are used to determine the functional groups present in lignin. Fourier 

Transform Infrared Spectroscopy (FTIR) is the most utilized method, as it has a high sensitivity, is non-

destructive, has short analysis time and samples can be used directly in solid form, and it is easy to 

perform. However, the only drawback is that the results are not quantitative. The absorption bands of 

the FTIR spectrum have been extensively researched and have been assigned to represent various 

functional groups (Esakkimuthu, 2020). Nuclear Magnetic Resonance (NMR) techniques are commonly 

used to determine the structural composition of the lignin molecules, where commonly used techniques 

include H-, C-, P- and F-NMR. Ultraviolet Spectroscopy (UV) is another quick method to determine the 

phenolic content present in lignins and results have been comparable to H-NMR results. However, there 

are limitations such as the resulting absorbance that is directly proportional to the lignin purity, as well 

as the method is dependent on the lignin to be fully dissolved in the medium, which does not always 

occur owing to lignin solubility limits (Esakkimuthu, 2020). 

The methods used to characterise lignin are always improving. The determination of the free phenolic 

content, as well as the molecular weight determination of lignin is an important part of lignin valorisation 

(Esakkimuthu, 2020). This study utilizes characterisation techniques which will aid in determining the 

effect of the enzymatic modification before and after the experiments, and where the determination of 

the molecular weight change of the lignin (GPC) will give the best indication whether repolymerisation 

has occurred. Other characterisation techniques like FTIR, elemental analysis, phenolic content and TGA, 

will be done to give insight into the structure and properties of the lignin and hopefully the influence it 

has on the catalytic action of the various enzymes.  

Table 3: Various characterization methods of lignin 

Characterisation Method Method Determines References 

Ultraviolet Spectroscopy (UV) Determine the amount of phenolic end groups 

present in the lignin (Folin-Ciocalteu Reagent) 

(Areskogh et al., 2010a) 

Fourier Transform Infrared 

Spectroscopy (FTIR) 

The functional groups in the lignin (Mansouri and Salvadó, 

2006) 

Elemental Analysis Carbon, Hydrogen, Nitrogen, Oxygen and Sulphur 

contents in the lignin 

(Ai, Wang and Huang, 

2015) 

Gel Permeation 

Chromatography (GPC) 

The average molecular weight (Mw) ), number 

average (Mn) and the polydispersity (Mw/Mn) of 

the lignin samples 

(Naron et al., 2017) 

Gas Chromatography Identifies the volatile components (Esakkimuthu, 2020) 

Ash Content The percentage of inorganics in the lignin 

compound 

(Sameni, Krigstin and 

Sain, 2016) 

Nuclear Magnetic Resonance 

Spectroscopy (NMR) 

Structural compositions: functional groups, 

linkages and it identifies the carbon-hydrogen 

framework of an organic compound. 

(Bergeron, 1984) 
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2.2 Pulp and Paper Industry as a source of Lignin 

The pulp and paper industry is the main commercial source of lignin (Doherty, Mousavioun and Fellows, 

2011). Other areas where lignin is produced as a by-product is in cellulosic bioethanol production, an 

industry that is globally in its infancy. The second-generation cellulosic ethanol is seen as one of the 

promising alternatives for liquid fossil fuels, especially with the goal to replace 30% of fossil fuels with 

alternatives such as biofuels by the year 2030 (Cotana et al., 2014). Thus, a large amount of lignin may be 

produced from this industry in future. It is estimated that 300 billion tons of lignin exist in the biosphere 

where the majority of lignin is combusted as a fuel, while only a portion (less than 2%) is utilized in value-

added application (Naron, 2019).  

In each pulping process, the lignin will undergo various structural changes during the isolation from the 

biomass, hence the properties, structure and composition of the isolated lignin is very different from the 

native lignin present in wood (before the isolation) (Azadi et al., 2013). These isolated lignin are referred 

to as technical lignin or spent lignin, and their names are derived from their type of isolation (Laurichesse 

and Avérous, 2014).  

During the pulping process, pulping chemicals are used to selectively solubilize the lignin from the 

lignocellulose material so that the remaining material can be used to make paper. The lignin is solubilized 

by degrading and/or derivatising the lignin bonds, resulting in lignin fragments of a lower molecular 

weight (Gouveia, 2014). The change in the molecular weight is dependent on the pulping process used. 

In the chemical pulping processes the lignin, hemicellulose, and a small amount of cellulose will dissolve 

in the liquor. These compounds and the inorganics of the liquor are referred to as black liquor or spent 

liquor. Delignification without degrading the cellulose fibres is seen as an important part of the pulping 

process. The black liquors’ organic components are recovered to be utilized in the production of steam 

for the plant, while the inorganics are recovered to be used again in the pulping process (except in the 

soda pulping process).  

The delignification process is done, chemically or with some delignification occurring during semi-

mechanical pulping, where there is a combination of mechanical and chemical processes. (Fengel and 

Wegener, 2003). The chemical pulping processes namely, Kraft pulping, sulphite pulping, soda, ionic 

liquids and organosolv pulping, are processes that utilize chemicals to degrade and dissolve the lignin to 

remove it from the lignocellulose material (Zakzeski et al., 2010). The semi-mechanical pulping processes, 

such as the Neutral Sulphite Semi-chemical (NSSC) process, utilizes an initial chemical process followed 

by mechanical refining (Fengel and Wegener, 2003).  Technical lignin can be divided into two main 

categories: Sulphur containing lignin (lignosulphonates and Kraft lignin) and sulphur-free lignin (soda and 

organosolv lignin) (Espinoza-Acosta et al., 2016). The structures of sulphur-free lignins have a moderate 

molecular mass in comparison to sulphur containing lignin and they resemble native lignin more than 

sulphur lignin do (Domenek et al., 2014), where the Kraft lignins have been depolymerised more 

extensively than the lignosulphonates (Ragauskas et al., 2014). The exact structure of technical lignin are 

unknown, because the various isolation methods of lignin from the lignocellulose biomass alter its 

structure. However, many studies focusing on the characterisation of lignin have provided insights into 
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the biosynthesis of lignin (Zakzeski et al., 2010). This study focusses on the industrial lignin from the Kraft, 

soda, and sulphite-pulping processes and are discussed below.  

2.2.1 Kraft Pulping Process 

Kraft lignin is the by-product from the Kraft pulping process. The Kraft process makes up 90% of the total 

pulp production capacity in the world, making it the most dominant pulping process (Azadi et al., 2013). 

The Kraft process uses an aqueous solution containing sodium hydroxide and sodium sulphide (white 

liquor) to solubilize lignin and hemicellulose from the wood chips (containing lignocellulosic biomass) into 

what is referred to as black liquor (Duval and Lawoko, 2014) .  

The lignin, together with other components of the black liquor, is removed from the digesters during 

washing in the pulping process. During the cooking time in the digester the lignin is depolymerised by 

cleavage of the aryl ether bonds, resulting in the lignin being dissolved into the white liquor (Duval and 

Lawoko, 2014). The delignification process occurs in three stages. The first stage is controlled by diffusion 

and it occurs at a temperature around 150°C. The second stage occurs at a temperature between 150–

170°C (pH 14), where the bulk of the delignification occurs and the final stage occurs at a higher 

temperature (Doherty, Mousavioun and Fellows, 2011). Approximately 90–95% of the lignin content in 

the wood chips is dissolved into the aqueous solution (black liquor) during the cooking (Vishtal and 

Kraslawski, 2011). The dissolved lignin and the spent Kraft-pulping chemicals form a liquid stream, called 

weak black liquor, which is then removed from the pulp by washing (Tran and Vakkilainnen, 2008). Other 

compounds such as hydroxyl carboxylic acids and polysaccharides are also found in the black liquor, due 

to the Kraft- pulping chemicals causing fragmentation of cellulose’s inter-units and converting the 

hemicelluloses (Naron, 2019).  The weak black liquor is sent to the Kraft recovery process as depicted in 

Figure 4. In the Kraft recovery process the weak black liquor is first concentrated in evaporators in order 

to be burnt in the recovery boilers to produce steam, and then electricity for the pulping plant. The 

remaining spent chemicals are recovered, causticized and reused in the digester (Tran and Vakkilainnen, 

2008). 

Over 1.3 billion tons of weak black liquor is processed globally per year, which corresponds to 200 million 

tons of dry black liquor solids per year. This will produce 700 million tons of high pressure steam. Thus, 

black liquor is considered to be the fifth most important fuel in the world, next to coal, natural gas, oil 

and gasoline (Tran and Vakkilainnen, 2008). The high-pressure steam is utilized in the high energy 

integrated Kraft pulping process, thus making it difficult to utilize the lignin from the pulping process for 

alternative applications. However, if a fraction of the lignin is taken away from the fuel and used  in the 

production of speciality or fine chemicals, it may become economically viable if the price of the produced 

chemicals exceeds that of the cost of an alternative fuel to replace the lignin in boilers, once all the 

downstream processing costs have been accounted for (Rinaldi et al., 2016). 
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Figure 4: Simplified flow diagram of the Kraft recovery process redrawn from Azadi et al. (2013) 

Kraft lignin can be isolated from the black liquor by a pH-controlled precipitation. Since lignin water 

solubility decreases as the black liquor’s pH decreases, and the other black liquor components such as 

sugars and inorganic compounds remain water-soluble at various pH values, acidification will precipitate 

the lignin from the liquor. The precipitation is very efficient and the resulting lignin has a very low ash 

content, however, the precipitation itself will also change the lignin structure (Gouveia, 2014). The 

structure of the Kraft lignin is highly modified during the Kraft pulping process where approximately 

70 – 75% of the hydroxyl groups will become sulfonated, and a higher number of condensed structures 

within the lignin will occur. These structural changes are caused by the extensive bond cleavage of the  

α-aryl and β-aryl ether linkages (Lange, Decina and Crestini, 2013; Laurichesse and Avérous, 2014). In 

order for the lignin to dissolve during the process, the sulphide ions react with an important linkage in 

lignin β-O-4, and this causes the lignin to degrade. The increase in the cleavage of these ether bonds 

results in the increase in free phenolic groups (Brodin, 2009). Kraft lignin will generally contain little 

sulphur (1.5 – 3 wt.%) within its structure in comparison to the lignin obtained from the sulphite pulping 

process (4.8 wt.%) (Azadi et al., 2013).  

Kraft lignin is soluble in basic, alkali and highly polar organic solvents (Lange, Decina and Crestini, 2013), 

especially at a pH above 10, where most of the commercially produced Kraft lignin are sulfonated, so that 

it becomes water-soluble (Azadi et al., 2013). This causes issues in terms of further modification of the 

Kraft lignin as the lignin will not be soluble at the lower pH  (between 3 and 6) required by, for example, 

the enzyme modification processes (Gouveia et al., 2013). Previous studies have shown the value in the 

modification of Kraft lignin into low or high molecular weight compounds. The degradation of Kraft lignin 

yields low molecular weight compounds such as phenols, dimethyl sulfoxide and aromatics such as 

vanillin,  while a high molecular weight Kraft lignin has been used to produce adhesives, carbon fibres 

and thermally , stable copolyester (Wells, 2015). 

2.2.2 Soda Pulping Process 

Soda lignin is produced through the soda pulping process. Soda pulping was the first chemical pulping 

process and was patented in 1845 (Doherty, Mousavioun and Fellows, 2011). The soda pulping process 

utilizes high alkaline solutions (sodium hydroxide) to treat lignocellulosic materials such as sisal, bagasse, 
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wheat straw, hemp or kenaf to obtain soda lignin as a by-product under similar conditions to the Kraft 

pulping process (Espinoza-Acosta et al., 2016).  The lignin extraction in the soda pulping process is based 

on hydrolytic cleavage of the native lignin (Laurichesse and Avérous, 2014). The soda pulping process is 

becoming the most dominant pulping process when treating non-woody materials, mainly because of the 

development of effective experiment technology and lower chemical recovery costs (Doherty, 

Mousavioun and Fellows, 2011).  

The soda pulping process is similar to the Kraft pulping process, although sodium hydroxide is the only 

active chemical used. The reactions involved to remove the lignin, include the scission of the α and β 

linkages (Naron, 2019). The addition of the additive anthraquinone to the process, has an effect on the 

stabilization of the carbohydrates and the dissolution of lignin, called the anthraquinone (AQ) alkaline 

sulphite process. However, the removal rate of lignin in the Kraft process is still faster than in the soda 

process (Azadi et al., 2013).  

Soda lignin is sulphur-free, making it attractive for the production of sulphur-free products and polymer 

applications (Duval and Lawoko, 2014). Soda lignin properties include a lower molecular weight (1 

000 – 15 000 g/mol) and a higher phenolic content in comparison to Kraft lignin and lignosulphonates 

(Thakur et al., 2014). The soda lignin is recovered from the soda pulping process by methods such as acid 

precipitation, maturation and filtration, for it to be used for alternative applications (Strassberger, Tanase 

and Rothenberg, 2014). 

2.2.3 Sulphite Pulping Process 

The sulphite pulping process makes up 10% of the global pulping processes. The lignin produced by the 

process is referred to as lignosulphonate (Lange, Decina and Crestini, 2013). In the sulphite pulping 

process the wood chips are treated with sulphur dioxide dissolved in water (H2SO3) and a metal bisulphite  

(HSO3
-) at a temperature between 125–145 °C and a pH between 1 and 2 (Tyhoda, 2008). The different 

metal bisulphites are calcium, sodium, magnesium or ammonium (Fengel and Wegener, 2003). 

Therefore, sulphur dioxide, hydrogen sulphite ions and sulphite ions are involved in the process with the 

amounts of these dependent on the pH of the reactions in the digesters (Naron, 2019). The delignification 

occurs in three stages, i.e. sulphonation, hydrolysis and condensation. During sulphonation the lignin is 

softened by making it more hydrophilic. The second stage which is hydrolysis, causes the lignin to be 

broken down by the random degradation of the ether bonds in the lignin. These lignin fragments are 

solubilized into the liquor by the addition of sulphonic acid groups at various positions on the lignin 

(Areskogh, 2011). The insoluble cellulose is then separated by filtration from the solubilized lignin.  

Lignosulphonates are water-soluble anionic polyelectrolytes, which contain a large amount of charged 

groups (sulphonic, hydroxyl, phenolic and carboxylic acid groups) making them different from other 

technical lignins (Areskogh et al., 2010b; Vishtal and Kraslawski, 2011). Sulphonate groups covalently link 

to the lignosulphonates, resulting in hydrophilic properties, despite lignosulphonates having a 

hydrophobic backbone. There are various proposed lignosulphonate structural models, such as spherical 

micelle, randomly branched polyelectrolytes and ellipsoidal flat particles, which are used to predict and 

explain the behaviours of lignosulphonates (Areskogh, 2011). This combination of hydrophobic and 

hydrophilic properties within lignosulphonates, has resulted in them being used in many applications as 
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plasticizers and technical surfactants (Areskogh et al., 2010a). The molecular weight of lignosulphonates 

is relatively high (1 000 – 250 000 g/mol) in comparison to Kraft and soda lignins, with a broad dispersion 

of the weight (Vishtal and Kraslawski, 2011). Low molecular weight lignosulphonates act as dispersants, 

whereas high molecular weight lignosulphonates at low concentrations, have shown to act as flocculants 

(Chan, Baker and Beeckmans, 1976). The structure characteristics of lignosulphonates is shown in Figure 

5. 

 

Figure 5: Model depicting the structural characteristics of lignosulphonate lignin redrawn from Zakzeski 

et al. (2010)  

Over the years various modifications to the sulphite pulping process caused the improvement of the pulp 

yields and reaction kinetics, namely acid sulphite, bisulphite and neutral sulphite semi-chemical (NSSC) 

pulping (Naron, 2019). Table 4 summarizes the various sulphite pulping modifications applied to the 

industry. 

 

Table 4: Modifications made to sulphite pulping process adapted from Naron (2019) 

Process pH Base Active 
reagent 

Pulp type 

Acid sulphite 1-2 Na+,Mg2+,  
Ca2+, H4N+ 

HSO3
-, H+ Dissolving pulp 

Chemical pulp 

Bisulphite 2-6 Na+,Mg2
+, 

 H4N+ 
HSO3

-, H+ Chemical pulp 
High-yield pulp 

Neutral sulphite 
semi-chemical 

6-9 Na+, H4N+ HSO3
-, SO3

2- High-yield pulp 
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2.3 Lignin Valorisation  

The movement towards more sustainable and renewable sources of fuel, energy and chemical products, 

has increased interest in finding alternatives to current petroleum-based products. Lignin has shown 

great potential as it is a carbon-neutral and an abundant renewable resource (Welker et al., 2015). Lignin 

properties provides a great opportunity for application in the manufacture of higher-value products. 

These properties include its polyphenolic structure, thermal stability, antioxidant, thermoplasticity, and 

its antimicrobial properties (Upton and Kasko, 2015). 

Currently high volumes of lignin are being produced and very few commercial applications of these 

technical lignin exist to completely realize the potential of lignin. Furthermore, the current lignin-based 

commercial products that are produced, have not always been superior in quality to the existing products 

(Vishtal and Kraslawski, 2011). There is a definite underutilization and misapplication of technical lignin 

(Gouveia, 2014).  

The various applications require lignin with specific properties such as certain molecular weights, weight 

distributions, purity, as well as certain functional groups to be present within the molecule (Gouveia, 

2014). Table 5 summarises the various properties of various lignin from the pulping industry.  

Table 5: Properties of various technical lignin. Extracted from Vishtal and Kraslawski (2011) 

 

 

 

 

 

 

 

 

 

Since technical lignins are non-homogenous, it is difficult to use lignins in various applications. Methods 

to isolate high-purity lignin from the liquors, are being developed. Thus far, methods such as 

ultrafiltration, selective precipitation, including lignoboostTM and solvent extraction have shown potential 

(García et al., 2009). The various methods and recovery of technical lignin are summarised in Table 6. 

 

 

Parameter Kraft Lignin Soda Lignin Lignosulphonates 

Ash Content (%) 0 0.7-2.3 4-8 

Moisture Content (%) 3-6 2.5-5 5.8 

Carbohydrates (%) 1-2.3 1.5-3 - 

Acid Soluble lignin (%) 1-4.9 1-11 - 

Nitrogen (%) 0.05 0.2-1 0.02 

Sulphur (%) 1-3 0 3.5-8 

Molecular weight (Mw) 15 00-25 000 1 000-15 000 1 000-15 0000 

Polydispersity (PI) 2.5-3.5 2.5-3.5 4.2-7 

Production status Industrial Industrial Industrial 
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Table 6: Summary of various separation methods of Technical lignin. Adapted from Vishtal and Kraslawski 

(2011).  

Type of Technical 
Lignin 

Separation Methods Status Reference 

Kraft Lignin 

Selective Precipitation 
(pH change) 

Industrial 
(Loutfi, Blackwell and Uloth, 1991) 

Ultrafiltration Industrial (Jönsson, Nordin and Wallberg, 2008) 

Soda Lignin 

Selective Precipitation 
(pH change) 

Laboratory/ 

Pilot 
(Mousavioun and Doherty, 2010) 

Ultrafiltration Laboratory (Toledano et al., 2010) 

Lignosulphonates Ultrafiltration Industrial (Restolho et al., 2009) 

 

Methods have been developed but not implemented commercially to produce syngas through the 

gasification of the black liquor. The syngas can be converted to other products such as methanol with the 

use of a catalyst (Abdelaziz et al., 2016). Owing to lignin antioxidant properties, studies into 

pharmacological applications of lignin and its derivatives have increased. Studies have found that lignin 

and its derivatives have potential applications in improving the current research into obesity, thrombosis, 

diabetes, viral infections and cancer (Vinardell and Mitjans, 2017). Lignin can also be applied to fertilizers, 

acting as a controlled or slow-release additive (Welker et al., 2015). One of the highest value applications 

of lignin is in the production of carbon fibres. Current research has focussed on Kraft lignin replacing the 

main feedstock of carbon fibres, polyacrylonitrile, which is expensive to produce. Carbon fibres produced 

by Kraft lignin have been found not to meet the mechanical characteristics (lower strength) of carbon 

fibres produced from polyacrylonitrile (Norberg, 2012). However, a study of higher molecular weight 

Kraft lignin, gave improved mechanical properties in the carbon fibre (Brodin, 2009). Lignin has shown 

potential as a phenol substitute in the production of phenol-formaldehyde resins, owing to lignin high 

phenolic content structure. As phenols are petroleum-based, toxic, corrosive and flammable, alternative 

substituents have been tested in an attempt to reduce economic and environmental effects, without 

compromising the final product quality. Studies have shown that a 20–50% substitution of lignin is 

possible while maintaining the resin’s important properties (Khan and Ashraf, 2007). 

Lignin has also shown potential in the field of bioplastics. Currently bioplastics contain synthetic fibres, 

which could potentially be replaced with lignin, owing to its availability and good mechanical properties 

(Yang, Ching and Chuah, 2019). Lignin can improve the biodegradability of the bioplastic, act as a stabilizer 

(as the phenolic hydroxyl groups can scavenge free radicals), and act as a plasticiser in bioplastics.  

However, modification to the lignin structure is required in order to improve the lignin compatibility and 

dispersion in the polymer blends (Yang, Ching and Chuah, 2019). Lignin can be applied to other synthetic 

polymers such as in polystyrene and polyethylene to improve their thermal stability (Govender, 2020). 

Lignin polyphenolic structure provides interesting properties such as antioxidant activity, which can be 

applied to active packaging for the purpose of protection of light and sensitive goods (Domenek et al., 

2014). Another area where lignin are used, is in polymer blends where a challenge has been to improve 
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the dispersion of the lignin. However, calcium lignosulphonates have been polymerised with laccase and 

have shown an increase in the dispersion property of the lignin (Prasetyo et al., 2010). 

The depolymerisation of lignin is a widely studied topic owing to lignin being a renewable resource. 

Current depolymerisation methods include processes such as pyrolysis, hydrogenolysis as well as some 

oxidations. These methods focus on the degradation of technical lignin into its monomeric units (Upton 

and Kasko, 2015). The oxidation process causes the cleavage of lignin C-O and C-C bonds and/or altering 

its structure. This depends on the type of oxidant, catalyst and temperature the lignin is exposed to. 

Various oxidants have been investigated, namely H2O2, O2, nitrobenzene and enzymes such as laccase. 

Low molecular weight products are produced, e.g. carboxylic acids, aldehydes and alcohols. The 

production of vanillin is a well-known and an investigated lignin oxidation process (Margellou and 

Triantafyllidis, 2019). Table 7 summarises the current and potential products of lignin. A risk-reward 

diagram of the main possible lignin application is shown in Figure 6. 

Table 7: Indication of current and potential product applications of lignin adapted from Gouveia (2014) 

MULTI-POLARITY PRODUCTS MATERIALS AGRICULTURE HIGH-PURITY 
VALUE APP. 

Dispersion Others    

ceramics complexing agents phenolic resins soil rehabilitation antibacterial 
effects 

oil well drilling flocculating polyurethanes slow-release 
fertilizers 

HIV inhibition 

clay bricks & 
tiles 

heavy metal binders epoxies artificial humus digestion 
regulation 

cements ion exchanging particle boards humus antioxidants 

concrete water softening resin boards encapsulation plant immunology 

gypsum board protein coagulants rubber reinforcing composting aid growth stimulators 

dyestuffs destabilization of oil 
emulsions 

bloc copolymers manure experiment oxygen scavengers 

electrolytes corrosion protection polyesters humus improvement hydrogels 

paper sizing anti-scaling composites soil stabilization MISCELLANEOUS 

emulsion metal cleaners polyolefin insecticides energy production 

wax grinding aids biodegradables granulation diesel fuel 

asphalt  carbon sieves pelletizing foam stabilizers 

bitumen  activated carbons chelates binders 

micronutrients  carbon fibres  tanning agent 

  heat resistance  hydrophobization 

  antioxidants  absorbents 

  anti-inflammation   

  paper bounding   

  paper bounding   

 

Polymerisation of these reclaimed technical lignin offers the opportunity for increasing the technical 

lignin molecular weight to improve or apply to new applications. Various higher-molecular weight 

applications of lignin, include adhesives, copolyester and carbon fibres (Wells, 2015). There are various 
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polymerisation methods that can be applied to alter the properties of lignin, using enzymatic or non-

enzymatic methods. Enzymatic modification of lignin is an energy-efficient and eco-friendly approach, 

which promotes long-term environmental stability and is effective as the enzymes are highly selective 

towards their substrates to upgrade lignin (Gouveia, 2014). However, for this method of lignin 

valorisation to be viable, large quantities of certain enzymes are required at a low cost (Conacher, 2018). 

Enzymatic modification has shown a high specificity of the type of radical generated, mild reaction 

conditions, and few undesired by-products production (Areskogh et al., 2010a). Enzymes such as laccase 

and lignin peroxidase have shown great potential in polymerizing lignin, while they are also able to 

depolymerise it under certain conditions (Conacher, 2018). 

 

 

This project will investigate the repolymerisation of lignins present in pulping liquors via enzymatic 

modification. The free radicals that are formed by the activity of peroxidases or laccases are important 

from an industrial view – the formation of these radicals will increase the reactivity of these lignin 

molecules. These radicals will catalyse repolymerisation in a non-enzymatic manner, forming a newer 

higher-molecular weight lignin with new linkages (Sena-Martins, Almeida-Vara and Duarte, 2008).  

2.4 Lignin modification enzymes 

2.4.1 Lignin-degrading organisms 

There are a limited number of organisms capable of degrading lignin with fungi that are responsible for 

most of the wood decay in nature, aided by some bacteria (Bugg et al., 2011). Various extracellular 

enzymes which differ in composition and their role in the decomposition pathway, are produced by these 

Figure 6: Risk-reward diagram of possible lignin applications redrawn from Gouveia (2014) 
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fungi. These fungi are classified as either brown-rot, soft-rot, or white-rot fungi, based on the 

characteristics of the rotten wood (Gouveia, 2014).  

A brown-rot Basidiomycetes fungus produces a cocktail of enzymes that are able to degrade cellulose, 

lignin and hemicellulose. The degradation of the cellulose and hemicellulose occurs quickly, however, the 

enzymes produced to degrade lignin are very restricted to mainly modifying the lignin. Brown-rot fungi 

present more frequently in softwoods than in hardwoods. The degraded wood has a brownish colour 

which is caused by the increase in modified lignin and decrease in carbohydrates left behind in the wood 

(Dashtban et al., 2010; Gouveia, 2014). Soft-rot fungi are deurteromyces or ascomycetes. They grow in 

more severe environments and are produce enzymes which are able to degrade all the components of 

wood. However, this occurs at a much slower rate.  

White-rot fungi enzymes are able to metabolize lignin in great quantities and could degrade all the cell 

wall components (Martínez et al., 2005). Most white-rot fungi are basidiomycetes, while some have been 

identified as ascomycetes. The delignification of white-rot fungi can be selective, where only lignin is 

degraded, or non-selective where lignin, cellulose and hemicelluloses are also degraded. Different 

enzymes produced by white-rot fungi, degrade the components at different rates, where variations in 

degradation can even be seen amongst different strains from the same species (Gouveia, 2014). Various 

white-rot fungi and bacteria produce and secrete enzymes that are able to degrade or modify the lignin 

(Chan, Paice and Zhang, 2020).  

2.4.2 Lignolytic modification enzymes 

Enzymes are macromolecules which are made up of monomeric amino acids linked together by peptide 

bonds. During chemical reactions the enzyme works as a catalyst. The enzyme will not be consumed in 

the reaction, just like a catalyst. Catalysis is achieved by lowering the activation energy of the reaction, 

thus increasing the rate at which the reaction will occur. The catalytic function of the enzyme is 

determined by its chemical structure which is dependent on the arrangement and variation of the amino 

acids creating the three-dimensional structure. The active site in the protein is where the catalysis occurs, 

where the three-dimensional structure around the active site is of particular importance. Thus enzymes 

do have a higher specificity towards certain substrates.  

White-rot fungi produce four major groups of enzymes in order to degrade lignin, namely lignin 

peroxidase, manganese peroxidase, versatile peroxidase and laccase (Wong, 2009). In nature lignin 

peroxidase and laccase produced by the plant during biosynthesis, are enzymes involved in the formation 

of lignin in the cell walls as well as the degradation of lignin. Although the laccase and lignin peroxidases 

secreted by microbes are not identical to the plant-produced enzymes, they may hold similar catalytic 

activities. Studies on utilizing these enzymes produced by microbes on lignin, have shown that lignin is 

depolymerised as well as repolymerised during the experiments, producing a more degraded or higher 

molecular weight lignin (Harvey, 1997). Therefore these two enzymes were selected to be investigated 

in this study.  
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2.4.2.1 Laccase 

Laccases are enzymes found in plants, fungi, bacteria or insects, where they have different functions such 

as detoxification, synthesis of pigments and fruit-body morphogenesis (Martínez et al., 2005). Laccase 

belongs to the enzyme class oxidoreductases. These enzymes transfer electrons from the donor to the 

acceptor (Areskogh, 2011). Laccases use oxygen as an oxidant to oxidize phenolic rings in lignin to 

phenoxy radicals, while producing water as a by-product (Gasser et al., 2012). The reaction mechanism 

is shown in Figure 7. These radicals can undergo covalent coupling to initiate lignin polymerisation (Dong 

et al., 2017). The advantage of using laccase is because of the type of oxidant it requires. Other enzymes 

such as peroxidases require hydrogen peroxide, whereas laccase requires oxygen. The overall reaction 

showing the catalyses of laccase is summarized in Equation 1 (Pollegioni, Tonin and Rosini, 2015). 

Equation 1:  

4 𝑏𝑒𝑛𝑧𝑒𝑛𝑒𝑑𝑖𝑜𝑙 + 𝑂2  ↔ 4 𝑏𝑒𝑛𝑧𝑜𝑠𝑒𝑚𝑖𝑞𝑢𝑖𝑛𝑜𝑛𝑒 + 2𝐻2𝑂  

 

 

 

 

 

 

 

 

 

The laccase enzyme has an active site containing four copper ions: type 1 (T1 with 1 Cu atom), type 2 (T2 

with 1 Cu atom) and type 3 (T3 with 2 Cu atoms) as shown in Figure 8. The enzymes resting from these 

ions are in a 2+ oxidation state (Pollegioni, Tonin and Rosini, 2015). The reaction mechanism that has 

been proposed for laccase is the so-called two-site, ping-pong, bi-bi reaction mechanism (Areskogh, 

2011). The reaction starts with the oxidation of the substrate by the copper at the T1 site, which accepts 

an electron from the substrate and transfers it to the T2/T3. Dioxygen will bind to the T2/T3 site by 

accepting the electron and is then reduced to form water. The reduction of dioxygen to water requires 

four electrons, hence T1 must oxidise four substrates to transfer the required electrons (Wong, 2009; 

Areskogh, 2011). An advantage of lignin is its low substrate specificity and it can oxidise a range of 

chemical compounds such as diphenols, aminophenols and aryl diamines (Wong, 2009).  

Figure 7: General mechanism of phenolic compound oxidation by laccase action from Gonçalves, Silva 

and Cavaco-Paulo (2015) 
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Figure 8: The reaction mechanism and structure of laccase redrawn from Areskogh (2011) 

The activity and stability of laccase is dependent on pH and temperature. The optimum pH for laccase is 

highly dependent on the substrate. The pH affects the charges of the amino acids in laccase, and pH 

changes from the optimum can alter the enzymes’ structure and also affect the enzymes’ activity. Slight 

changes in pH are reversible, however, at high acid or a high basic pH, irreversible activity losses will 

occur. Operating at the optimum temperature is beneficial for the stability and activity of laccase. When 

operating at a very high temperature, the enzyme will become denatured, resulting in a sudden loss of 

activity (Gouveia, 2014). 

There are various substances that can inhibit, slow down or stop the enzyme’s activity. This can be caused 

by other substances similar to the substrate occupying the enzyme’s active site, by a substance changing 

the enzyme’s formation if added to a different area other than the active site on the enzyme, and in some 

cases when the concentration of the substrate is too high, it causes it to block the access to the active 

site. The presence of other substances has resulted in the loss of enzymatic activity, and these substances 

include various ions (azide, halides, cyanide, fluoride, thiocyanide and metal ions), fatty acids or chelating 

agents (Kunamneni et al., 2007). 

There are two problems to consider in oxidising lignin. Firstly, the lignin’s structure as a 3-dimensional 

polymer, results in possible difficulties in fitting into the active sites of enzymes, and secondly its redox 

potential. Laccases’ redox potential is relatively low (V ≤0.8), meaning the laccase is restricted to the 

oxidization of phenols, anilines and benxenethiols as components  in lignin (Pollegioni, Tonin and Rosini, 

2015). The degradation of the β-1 linkage causes the formation of phenoxy radicals, which leads to the 

cleavage of alkyl-aryl and aromatic rings (Wong, 2009). Native lignin is suggested to contain as much as 

70% non-phenolic groups – these require a redox potential of at least 1.5V in order to be oxidised.  As 

laccase has a low redox potential, the oxidation of the non-phenolic substrates is only possible in the 

presence of a mediator. Most studies have looked at mediators such as ABTS (2,2′-azino-bis(3-

ethylbenzthiazoline-6-sulfonate)), HBT (1-hydroxybenzotriazole) and HAA (3-hyroxyanthranilicacid). The 
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mediator interacts with laccase in a cyclic reaction, where the oxidation of the laccase forms a higher 

potential mediator, which will interact with the substrate (not able to be oxidised by laccase) in a non-

enzymatic manner and returns to its reduced state. This interaction between laccase and the mediator is 

different to general mediator-substrate chemistry. One important difference is that the mediators do not 

increase the redox potential of laccase (Wong, 2009; Areskogh, 2011). Currently the ideal mediator for 

laccase has not been found as studies show that the mediators have low stability, are slow to regenerate, 

or do not regenerate at all. Studies that focused on the depolymerisation of lignin by laccase, have shown 

that repolymerisation of lignin occurs if there are no mediators present. However, if mediators are 

present, then depolymerisation of the lignin can occur. This makes polymerising lignin challenging by 

utilizing laccase with the aid of a mediator to oxidise not only the phenolic substrates but the non-

phenolic substrates (Gasser et al., 2012).  

This project will focus on the laccase enzyme produced from Myceliophthora thermophile (Novozymes 

NS51003), i.e. a commercially produced laccase from this organism. 

2.4.2.2 Lignin peroxidase (LiP) 

Lignin peroxidase (abbreviated to LiP) forms part of the extracellular fungal class peroxidases (Pollegioni, 

Tonin and Rosini, 2015). LiP was first discovered in Phanerochaete chrysosporium in 1983, which is a 

white-rot fungus. The crystal structure of LiP contains many amino acid residues and water molecules, a 

heme group, four carbohydrates molecules and two calcium ions (Chan, Paice and Zhang, 2020). The 

enzyme LiP is referred to as a glycoprotein, which catalyses oxidative depolymerisation of lignin that is 

dependent on H2O2.  

LiP has been found to oxidise phenolic, non-phenolic lignin compounds and various organic compounds 

(Wong, 2009). LiP is assumed to oxidize aromatic rings via long-range electron transfer of the lignin. 

Unstable cation radicals, which are produced by the unspecified oxidation of the aromatic rings, will react 

further and undergo different non-enzymatic reactions such as scission of the Cα-Cβ and C4 ether 

linkages. This will cause the release of aromatic aldehydes and demethoxylations with methanol release 

(Gasser et al., 2012). The non-phenolic lignin compounds have shown to be oxidised to aryl cation 

radicals. The overall reaction equation is summarized in Equation 2 (Pollegioni, Tonin and Rosini, 2015). 

Equation 2: 

1,2 −  𝑏𝑖𝑠(3,4 − 𝑑𝑖𝑚𝑒𝑡ℎ𝑜𝑥𝑦𝑝ℎ𝑒𝑛𝑦𝑙)𝑝𝑟𝑜𝑝𝑎𝑛𝑒 −  1,3 − 𝑑𝑖𝑜𝑙 +  𝐻2𝑂2  ↔    3,4 −

𝑑𝑖𝑚𝑒𝑡ℎ𝑜𝑥𝑦𝑏𝑒𝑛𝑧𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 + 1 − (3,4 − 𝑑𝑖𝑚𝑒𝑡ℎ𝑜𝑥𝑦𝑝ℎ𝑒𝑛𝑦𝑙)𝑒𝑡ℎ𝑎𝑛𝑒 − 1,2, −𝑑𝑖𝑜𝑙 +  𝐻2𝑂  

The catalytic cycle of LiP is a typical peroxidase cycle and consists of two main steps. First the presence 

of hydrogen peroxide (H2O2) initiates the oxidation of two electrons of the native LiP enzyme, which 

produces a ferryl cation radical intermediate, referred to as Compound I (LiP-I). The second stage involves 

two consecutive reductions of Compound I by the substrate donating the electrons, resulting in 

Compound II (LiP-II) and then back to LiP native form (Wong, 2009). The catalytic cycle of LiP is 

summarised in Figure 9. The concentration of the hydrogen peroxide is important: Excess addition of 

hydrogen peroxide and the absence of a reducing substrate can cause heme bleaching, which results in 

the inactivation of the enzyme referred to as Compound III (LiP-III). However, by spontaneous 
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autoxidation or oxidation of the substrate, the radical Compound III can return to its native form (Chan, 

Paice and Zhang, 2020). 

 

Figure 9: The catalytic cycle of LiP redrawn from Wong (2009) 

LiP has an unusually low pH optimum of about 3 (Wong, 2009). The pH and hydrogen peroxide 

concentration plays an important role in the stability of the enzyme; any major deviations cause the 

inactivation of the enzyme. The redox potential of LiP is higher than for laccase, which allows the LiP to 

catalyse the oxidation of the non-phenolic lignin substrates without a mediator (Dashtban et al., 2010). 

Although mediators are not needed, the addition of smaller molecule mediators such as veratryl alcohol 

has shown to increase the activity of LiP, and hence the rate at which lignin is degraded. Theoretically LiP 

should be able to degrade lignin to smaller compounds such as vanillin, veratraldehyde and 

syringaldehyde methyl ether, but in practice this has not happened. Supposedly the combination of lignin 

as a macromolecule as well as LiP results in the incompletion of the depolymerisation. The activity of the 

enzyme has shown to be dependent on the size of the substrate (Chan, Paice and Zhang, 2020).  LiP has 

been found to polymerise lignin, yielding a higher molecular weight, because the LiP provides no 

mechanism to remove lignin fragments. Hence, the formed radical and fragments are susceptible to 

repolymerisation (Hammel et al., 1993).  

The research on the LiP enzyme is limited and further analysis into its interaction with lignin is needed, 

especially on the production of the enzyme. Various methods have been explored such as genetically 

modifying organisms.  These include methods such as baculovirus expression vector systems and the 

addition of mineral nutrients in the growth medium. However, they are either not suitable for 

commercialisation or they are expensive. Research to improve the commercial production of this enzyme 

is required if it is to be used as a method to upgrade technical lignin (Chan, Paice and Zhang, 2020). 
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2.5 Lignin polymerisation studies 

Lignin is an inexpensive and abundant renewable raw material. It has a potential high value and viewed 

as being non-toxic. When treated chemically or enzymatically it can be converted into higher value 

products (Mattinen et al., 2008).  

The potential for lignin production in the pulp and paper industry is 50 million tons per year. From the 

technical knowledge and characteristics of lignin it could replace fossil resources. However, this has not 

occurred, because of the low purity standard of the technical lignin, and as a result, lignin is used in the 

energy production for the pulping process (Gosselink et al., 2004). The properties of lignin, its size, 

composition, linkages and functional groups, make it interesting compound, however, its various 

properties also restrict it from being applied to specific applications such as adhesives, polymer blends 

and carbon fibres. To overcome this structural modification of lignin it is needed to produce the ideal 

lignin for the type of application (Gouveia, 2014). An increased molecular weight lignin has shown in 

improved mechanical properties in the carbon fibres produced, while in polymer blends higher molecular 

weight lignin aids in acting as a thermos-oxidation stabilizer in bio-based polymers (Brodin, 2009; Ludmila 

et al., 2015). 

Much of the reported research on the valorisation of lignin has been focused on the depolymerising of 

lignin, while some of these enzymatic depolymerisation methods have also shown occurrences of 

repolymerisation. Table 8 summarises the various studies that investigated the repolymerisation of 

technical lignin.  

A study was done where various lignosulphonates were treated with a commercially produced laccase 

(NS51003 and NS51002). Various lignin concentrations (1, 10 and 100 g/L) and enzyme dosages ranging 

between 1 and 10 U/L were investigated. The calcium lignosulphonates showed the highest molecular 

weight increase of 20-fold after 24 hours, where the sodium lignosulphonates only achieved a 2.6-fold 

increase. It was found that the higher the lignin concentration, the higher the molecular weight increase 

achieved over the 24-hour period. A low enzyme dosage (1U/L) did not yield any molecular weight 

increase at any concentration. The study also revealed that as the molecular weight of the lignin 

increased, the phenolic content of the lignin decreased,  leading to a conclusion that  there is a strong 

relationship between the molecular weight increase and the consumption of phenols. It was also noted 

that various factors are important to achieve a maximal molecular weight increase, namely the reaction 

time, the phenolic content, sulphonate content and the initial molecular weight of the lignosulphonates 

(Areskogh et al., 2010a).  

Another study using the commercially produced Laccase (NS51003), reacted with Kraft lignin with a 

biomass origin – Eucalyptus globulus. The study investigated what effect various mediators would have 

on the reaction, however, it was found that higher molecular weight increases were achieved when no 

mediator was present. This study also found that there is a relationship between the molecular weight 

increase and the consumption of phenols  (Gouveia et al., 2012). The polymerisation reaction is the 

random coupling of phenoxy radicals, which have been produced by laccase oxidation of the phenolic 

end groups (Areskogh, 2011). 
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Table 8: Various chemical and enzymatic polymerization studies in literature 

 Initial Lignin material Oxidation agent Reference 

E 

N 

Z 

Y 

M 

A 

T 

    I 

    C 

Technical 
lignin 

Eucalyptus globulus 
Kraft lignin 

Mycellophtora thermophila - laccase; 
mediators 

(Gouveia et al., 2012) 

Commercial 
Softwood Kraft 
lignin 
Commercial 
Hardwood Kraft 
lignin 
Birch organosolv 
lignin 

Streptomyces ipomoea - laccase 
Melanocarpus albomyces - laccase 

(Moya et al., 2011) 

Commercial 
lignosulphonates 

Myceliophtora thermophila - laccase 
Trametes villosa - laccase 

(Areskogh et al., 2010a, 
2010b) 

Commercial 
lignosulphonates 

Trametes villosa; HBT mediator 
Bacillus subtilis bacteria; HBT 
mediator 
Trametes hirsuta - laccase; HBT 
mediator 
Myceliophtora thermophila - laccase; 
HBT mediator 

(Prasetyo et al., 2010) 

Eucalyptus globulus 
Kraft lignin 

Polyoxometalate; laccase (Dos Santos, Rudnitskaya 
and Evtuguin, 2012) 

Flax Soda lignin 
Spruce Enzymatic 
mild acidolysis 
lignin 

Trametes hirsuta - laccase 

(Mattinen et al., 2008) 

Lignosulphonate 
(Calcium, Sodium) 
Kraft Lignin 

Trametes villosa - laccase 
(Mai et al., 2002) 

Soda-
anthraquinone 
Steam Explosion 
Lignin 

Phanerochaete chrysosporium - LiP 

(Majeke et al., 2020) 

Coniferyl alcohol 
Phanerochaete chrysosporium - LiP 

(Sarkanen et al., 1991) 

Kraft Lignin 
Steam Explosion 
Lignin 
Sodium 
Lignosulphonate 

Trametes villosa - laccase 

(West et al., 2014) 

 

The relationship between molecular weight and phenolic groups was also discovered in a study of Kraft 

lignin treated with laccase by Ai, Wang and Huang (2015). Where the lignin after modification showed a 

molecular increase, an increase in the condensed structures and the phenolic hydroxyl and methoxy 

groups decreased (Ai, Wang and Huang, 2015). A study of jute fibres treated with laccase showed an 

increase in phenolic hydroxyl, aliphatic hydroxyl and methoxy groups and a decrease in molecular weight 

(Zhang et al., 2014). 

West et al. (2014) found in his study using Kraft, steam-exploded lignin and sodium lignosulphonates that 

the enzymes are not able to act on, precipitated lignin, hence a compromise must be found between the 
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lignin solubility and the optimum operating pH of the enzyme. He also found that the lower molecular 

weight lignin showing a higher free phenolic content are more reactive (West et al., 2014). Mattinen et 

al. found when Flax soda lignin reacted with laccase, the oxidation was also dependant on its solubility 

as well as the biomass origin of the lignin (Mattinen et al., 2008). When determining the operating 

conditions of the study, it is important to ensure that the enzymes are not inhibited in some way. A study 

looking into the inhibition of the laccase enzyme by lignin fragments, found that at high dosages the 

inhibition of the enzyme is evident (Pamidipati and Ahmed, 2020). 

There are very few studies using lignin peroxidase to alter the structure of lignin. In a study by Majeke et 

al. lignin peroxidase was used to treat Soda-anthraquinone and Steam explosion lignin. A tartrate buffer 

with an enzyme dosage of 2 U/mg lignin was prepared and after a 24-hour incubation period the soda-

anthraquinone achieved a 1.43-fold molecular weight increase. As the study aimed to achieve 

depolymerisation of the lignin, it was noted that although LiP possesses the ability to both depolymerise 

and repolymerise, the repolymerisation is more dominant in vitro conditions. It was also found that the 

maximum thermal degradation temperature of the lignin increased after the enzymatic experiment, 

suggesting the lignin converted to a higher molecular compound with an improved thermal stability 

(Majeke et al., 2020). Sarkanen et al. (1991) treated coniferyl alcohols with lignin peroxidase, where it 

was found that LiP was able to cause polymerisation in the presence of hydrogen peroxide (Sarkanen et 

al., 1991). The use of LiP to repolymerise lignin requires a more in-depth analysis in the context of South 

African technical lignins is an area to be explored. 

2.6 Aims and Objectives 

2.6.1 Aims  

The aim of this project was to repolymerise technical lignin from the South African paper and pulping 

industry through enzymatic modification.  To repolymerise these industrial lignin means increasing their 

molecular weight lignin to improve or create possible higher value products. 

In order to distinguish the changes incurred by the enzyme, the lignin will be characterised extensively. 

The process of the project will follow the following steps: 

 The Isolation of technical lignin from the black liquor (where necessary). 

 The purification of technical lignin to reduce the ash contents. 

 Initial characterisation of the technical lignin includes ash content, elemental analysis, functional 

group content, molecular weight analysis and thermogravimetric analysis. 

 Repolymerisation reactions utilising enzymes, laccase and lignin peroxidase to determine the 

extent of repolymerisation. The molecular weight and phenolic content will be determined 

during the experiments. 

 Final characterisation of the treated technical lignin includes ash content, elemental analysis, 

functional group content, molecular weight analysis and thermogravimetric analysis, to 

determine the effect of the enzymatic modification. 

 A techno-economic analysis to determine the industrial application of the process. 
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2.6.2 Objectives 

The specific objectives of the study are: 

1. To characterise the physio-chemical characteristics of lignin that would give insight into its 

interaction with the enzymes. 

Various lignins were selected from six pulping mills in South Africa. The lignin’s selected varied in 

biomass origin and in the pulping process. In order to determine which lignin could be repolymerised, 

various methods of characterization were investigated to determine the structural and chemical 

composition of the lignin – from literature it could be determined how each lignin would react to the 

enzymes (Chapter 3).  

2. To investigate the extent of the repolymerisation by enzymatic modification. 

Two enzymes were investigated: a commercial laccase and a lignin peroxidase (LiP) which was 

produced at Stellenbosch University. The use of LiP as an enzyme for the repolymerisation of 

technical lignins is a novel approach, as LiP has mainly been associated with the depolymerisation of 

lignins. Each lignin was reacted with each enzyme within a range of dosages to determine the 

optimum operating conditions, which would result in the highest repolymerisation. 

3. The comparison of various lignins’ ability to repolymerise. 

The lignins were characterized after the enzymatic treatment to determine the changes incurred by 

the enzymatic modification (Chapter 4). 

4. To investigate the economic feasibility of utilising enzyme modification to repolymerise technical 

lignins. 

The optimum process conditions (maximum repolymerisation) were used to develop a techno-

economic model. This was used to investigate the feasibility of the industrial application of 

enzymatically modifying lignin. The model utilizes one of the enzymes laccase, and the minimum 

selling points were determined, as selling prices for higher molecular weight lignins are not available 

in literature.  
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3 CHAPTER 3: CHARACTERISATION OF LIGNIN AND LIGNOSULPHONATES 

3.1 Introduction 

As lignin has great potential in various applications, it is critical to determine its structural and chemical 

properties prior to its utilisation, especially as various lignins from industrial sources have variable 

properties (Naron, 2019). Various applications require lignin with certain characteristics, such as lignin 

with high phenolic content, and with high thermal degradation temperatures, which is a requirement for  

polymer applications (Govender, 2020). In order to determine the various properties of lignin, various 

established methods exist as was explained in Section 2.1.3. The methods require lignin with low 

impurities so that accurate measurements can be given that would not cause damage to the equipment. 

Hence, the lignin samples are purified before being characterised (Fatehi and Chen, 2016).  This chapter 

discusses these methods and how they were applied to determine the properties in the lignins, which 

will aid in the repolymerisation by enzymatic modification.  

3.2 Material and Methods 

3.2.1 Experimental approach 

The experimental approach was to first acquire lignin samples for the study. Some samples from various 

pulping mills in South Africa were acquired for previous studies. The samples were acquired in 2018 and 

they had gone through initial sample preparation (isolated from the liquor) and were being stored in 

powder form. Two additional lignosulphonates were acquired from different pulping mills in South Africa. 

A total of six samples were investigated and the samples were split into three groups according to their 

pulping process: Kraft lignin, soda lignin and lignosulphonates. The Kraft and soda lignin required sample 

preparation including lignin isolation and purification, while the lignosulphonates could not be purified 

and were prepared by drying the liquor. The samples were characterised using established and cost-

effective methods to give insight into the various lignin samples’ structure and chemistry.  

3.2.2 Lignin Sources 

The lignin used in this project was obtained from various pulping processes from mills in South Africa, 

namely Sappi and Mpact pulping mills. The samples were allocated a sample ID and they were 

summarised in Table 9. All the samples, except NaS-S-T, were received in black liquor form and were 

required to be extracted from their liquor and purified further if possible.  

There is also a slight difference in the Kraft pulping process used, where KH-S-N has an extra processing 

step, pre-hydrolysis, where the biomass is treated with steam or hot water to initially remove some of 

the hemicellulose and some of the lignin before the cooking stage (Govender, 2020). The lignin was 

extracted from the black liquor and then purified. 

S-S-S which is the only non-woody biomass origin lignin investigated, was obtained from Sappi’s Stanger 

Mill from their Soda pulping process. It was received as a black liquor and then isolated and purified. 
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NaS-S-T was received in powdered form from Sappi’s Tugela Mill. The spent liquor was concentrated and 

then spray-dried. The other lignosulphonates, MgO-S-S and NaS-M-PR, were received in liquor form and 

required drying. 

Table 9: Biomass origin, pulping process and mill source of lignin to be used in this project 

Sample ID Biomass Origin Pulping Process Mill Source Type of Lignin 

KS-S-N Pinus patula 
(softwood)  

Kraft Sappi, Ngodwana 

Kraft Lignin 
KH-S-N Eucalyptus grandis 

(hardwood) 
Kraft  
(pre-hydrolysis) 

Sappi, Ngodwana 

S-S-S Sugarcane Bagasse Soda Sappi, Stanger Soda Lignin 

NaS-S-T Eucalyptus grandis Sodium Sulphite Sappi, Tugela 

Lignosulphonates 

NaS-M-PR Hardwood- 
Softwood- 
sugarcane Bagasse 
mixture 

P. greggi/E. grandis 

Sodium Sulphite 
(NSSC) 

Mpact, Piet Retief 

MgO-S-S Eucalyptus grandis Magnesium Oxide Sappi, Saiccor 

 

3.2.3 Lignin Sample Preparation 

The pulping liquor contains various number of organic and inorganic substances; the organic components 

include lignin, low molecular weight substances, and various derivatives from the biomass, while the 

inorganic components include the chemical pulping chemicals, from the wood and their transformation 

products. These inorganics can negatively affect the application capabilities of these lignin, hence it is 

important to isolate and purify them (Tyhoda, 2008).   

The lignin samples KS-S-N, KH-S-N and S-S-S were all isolated and purified using the methods described 

below. 

As lignosulphonates are water-soluble, acid precipitation and lignin purification techniques are not 

suitable methods to isolate or purify the lignin solids. NaS-S-T was received in powder form and required 

no further preparation, while the MgO-S-S and NaS-S-T which were received in liquor form, required 

further preparation. Thus, these samples received in liquor form were poured into tinfoil trays and dried 

at 40°C in an oven for a period of at least 3 weeks. The dried liquor was milled into a powder and sealed 

in an airtight bag as lignosulphonates are very hydrophilic.  

3.2.3.1 Acid Precipitation 

The method used to precipitate the lignin from the black liquor was obtained from Naron et al. (2017). 

According to this method, the black liquor samples are first diluted using distilled water. Sulphuric acid 

(1N) was added to the diluted black liquor under stirred conditions at room temperature until the pH was 

2. The liquor and acid was then left for a period of 24 hours. Thereafter the mixture was centrifuged for 
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a period of 10 minutes at approximately 7 000 rpm, where the solids are kept and the supernatant was 

discarded. The solids are washed with acidified water (pH 2), centrifuged and then air dried in foil trays 

until weight constant (Naron, 2019). The lignin was placed in a tinfoil tray and left to dry. Once dried, the 

lignin samples were milled with an Ultra Centrifugal Mill to a 0.5 mm particle size and stored. The 

lignosulphonates did not undergo this process as they will dissolve when added to acid.  

The lignin which required isolating from the black liquor (KS-S-N, KH-S-N and S-S-S) was isolated by 

P.  Govender and B. Majeke at Stellenbosch University. 

3.2.3.2 Lignin Purification 

To ensure that minimal impurities remained, the isolated lignin was further purified according to an acid- 

purification method described by Naron et al. (2017). The acid-precipitated dried lignin was mixed for 24 

hours in a 1 M sulphuric acid solution in a solid liquid ratio of 1.5 (w/v). The mixture was then centrifuged 

to extract the solids and the supernatant discard. The lignin was then washed with distilled water and 

centrifuged twice. The ash content of the solids was determined and the process was repeated until the 

ash content was less than 5%. The lignin was then air-dried in tin foil containers, ground and stored.  

3.2.4 Lignin Characterisation methods 

The lignin characterisations were done to give insight into the structure and chemistry of the lignin 

samples. The following characterisation methods were used: Ash content, Elemental analysis, Fourier 

transform infrared spectroscopy (FTIR), Phenolic content determination, Gel permeation 

chromatography (GPC) and Thermogravimetric analysis (TGA).  

3.2.4.1 Ash content 

The ash content of the isolated and purified lignin and the dried lignosulphonates were gravimetrically 

determined according to the method described by TAPPI (1993). The determination was carried out in 

crucibles which were cleaned and oven-dried at 900°C for a period of 60 minutes and stored in desiccators 

to cool. The initial weight of the crucible was recorded, after which approximately 1 g of each sample was 

added to the dried crucibles and the weight noted. The crucibles were placed in a muffle furnace and 

heated gradually to 900°C and then kept at that temperature for a period of 24 hours, after which the 

muffle furnace temperature was decreased and the crucibles removed and left to cool in desiccators. 

After the heating cycle, the samples had a whitish-grey colour. The crucibles containing the ash samples 

were weighed to the nearest 0.1 mg, and the ash content was determined according to Equation 3.  

Equation 3: 

𝐴𝑠ℎ 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =  
(𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠ℎ)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
 × 100  

3.2.4.2 Elemental analysis 

Elemental analysis was used to determine the carbon, oxygen, hydrogen and sulphur content in the lignin. 

The analysis was completed by the Central Analytical Facility (CAF) at Stellenbosch University. Samples of 

dried lignin, between 1–3 mg were analysed by being combusted in a Vario EL Cube Elemental Analyser. 

The composition of carbon (C), hydrogen (H), nitrogen (N) and sulphur (S) was expressed as a weight 
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percentage (wt. %), with the weight percent of oxygen that was determined by the difference method. 

The above-mentioned method was obtained from Ai, Wang and Huang, (2015) and Naron et al. (2017). 

3.2.4.3 Fourier Transform Infrared spectroscopy (FT-IR) 

FT-IR spectra of the lignin were determined in order to determine the functional groups of the lignin. The 

spectra were obtained by using a Thermo Nicolet NexusTM model 470/670/870 FT-IR spectrometer, which 

is equipped with an ATR (attenuated total reflectance) system sampling module hosting a diamond 

crystal. The lignin samples were recorded at a 4 cm-1 resolution and a number of 32 scans per sample 

within the absorption bands of 4 000-600 cm-1 were taken. The background measurement of the clean 

diamond is used as the initial spectrum and subtracted from the spectra sample. Assignment of the major 

absorption bands was based on findings from literature (Naron et al., 2017).  

3.2.4.4 Phenolic Content Determination 

As the enzymes utilize phenols to form radicals, the determination of the phenolic content is important 

to determine if repolymerisation has occurred. The phenolic content was determined by a method used 

by Areskogh et al., (2010a) which utilizes the Folin-Ciocalteu reagent to determine the phenolic hydroxyl 

group content of the lignin samples. A lignin solution was prepared by dissolving a lignin sample in a 

reaction phosphate buffer (pH 6) at a lignin concentration of 10 g/l. From the lignin solution 1 ml was 

added to 30 ml of distilled water and 3 ml of Folin-Ciocalteu reagent (FC reagent) and mixed for 

approximately 8 minutes. After thorough mixing, 10 mL of a 20% sodium carbonate solution was added 

under stirred conditions and distilled water was added to adjust the final volume to 50 ml. The mixture 

was stirred for 2 hours after which the absorbance was measured by a spectrophotometer at a 

wavelength of 760 nm of the blue-coloured samples. A phenol-free sample (no lignin present in the lignin 

solution) was taken throughout the entire procedure to use as a reference. In order to determine the 

phenolic content, a calibration curve was set up where the absorbance was plotted against concentration. 

A standard solution of 5 M vanillin was used as the top level in a series of dilutions. The number of 

phenolic hydroxyl groups was found by measuring the absorbance at 760 nm and fitting it to the 

calibration curve as shown in Figure 10. The reference was also a phenol-free sample in the calibration 

curve. 
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Figure 10: Phenolic content calibration curve (Vanillin) 

 

3.2.4.5 Molecular weight determination  

The molecular weight was determined to see if repolymerisation had occurred. Gel permeation 

chromatography (GPC) determines the average molecular weight (Mw), number average (Mn) and the 

polydispersity (Mw/Mn) of the lignin samples. The method used is described by Ringena, et al. (2005). The 

solvent was first prepared: Lithium bromide (0.05M) was dissolved in dimethylsulfoxide and water (90:10, 

v/v). Approximately 2mg of a dried lignin sample was dissolved in 2 ml of solvent and left for 24 hours at 

room temperature, after which the samples were then filtered (0.45 µm) and placed in HPLC vials before 

being analysed. All lignin samples dissolved in the chosen buffer and could be analysed. The samples were 

analysed in an Agilent 1260 Infinity Quaternary LC, which consisted of an Agilent 1260 Infinity, Quaternary 

pump, degasser, higher performance auto sampler and a variable wavelength detector. The columns 

were set up with an Agilent polargel-M Guard (50 x 7.5mm) and two Aqueous Agilent polargel-M (300 x 

7.5 mm) columns. The flowrate was set to 0.5 ml/min with a column temperature of 60°C and the 

wavelength detector to 254 nm at a temperature of 30°C. 40 µL of each sample was injected and analysed 

for 45 minutes. The instrument was calibrated using polystyrene polymer standards ranging from 180 to 

708 000 g/mol.  

3.2.4.6  Thermal properties 

The thermal degradation of the lignin samples was determined to ascertain the thermal stability of the 

lignin by using a TGA according to a method described by Naron, (2019) and Majeke et al., (2020). 

Approximately 10 mg of dried lignin samples was heated on an alumina pan under a nitrogen atmosphere 

from 50 – 110°C at a heating rate of 50°C/min and then 110–900°C at a heating rate of 100°C/min. The 

weight loss of the samples was determined to compare it to the temperature, resulting in a degradation 

curve which would indicate the maximum degradation temperature of the lignin. 
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3.3 Results and Discussion 

3.3.1 Compositional Analysis 

The compositional analysis of the purified lignin samples and dried lignosulphonate samples consists of 

the ash content determination, the elemental analysis and the estimation of the C9 empirical formulas of 

the lignin samples. The results from the analyses are summarised in Table 10. The ash content indicates 

the inorganic compounds attached to the lignin. These inorganics originate from the pulping chemicals 

added during the pulping process (Gouveia, 2014; Adu-Poku, 2015). It was expected that the ash content 

that the lignosulphonates (NaS-S-T, NaS-M-PR and MgO-S-S) would be higher than the Kraft and soda 

lignin (KS-S-N, KH-S-N and S-S-S), as the Kraft and soda lignin have undergone precipitation and 

purification processes. The ash content of both Kraft lignin agrees with literature, as it was expected that 

it should be below 1% (Chen, 2014). At 1.4%, the ash content of the soda lignin is within the expected 

range of 0.7–2.3% (Vishtal and Kraslawski, 2011). The lignosulphonates from the sulphite pulping process 

showed ash contents between 17–32%, which agrees with the results reported by Govender, (2020) on 

lignosulphonates from the same pulping mills. As lignosulphonates are unable to be precipitated and 

purified from the liquor, owing to their solubility in acid and water solutions, this results in a high ash 

content.  

Table 10: Compositional results of various technical lignin 

Sample ID Ash 
Content 

Elemental Analysis Estimated Empirical Formula 
from Elemental Analysis  

% C  
[%] 

H  
[%] 

N  
[%] 

S  
[%] 

O  
[%] 

 

KS-S-N 0.3 59.85 5.99 0.04 4.12 30.00 C9H10.81S0.23O3.38 

KH-S-N 0.4 59.2 5.6 0.11 4.1 31.0 C9H10.23S0.23O3.54 

S-S-S 1.4 52.9 6.4 0.09 1.0 39.6 C9H13S0.07O5.06 

NaS-S-T 22.1 31.8 4.9 0.11 6.6 56.6 C9H16.50S0.70O12.03 

NaS-M-PR 32.5 24.0 3.7 0.1 10.1 62.1 C9H16.44S1.41O17.45 

MgO-S-S 17.3 36.1 6.0 0.1 6.0 51.9 C9H17.82S0.56O9.70 

 

The elemental analysis showed that the carbon content of the Kraft and soda lignin was higher than the 

lignosulphonates (59.2–59.85%, 52.9% and 24–36.1 %, respectively). This is owing to the proportionally 

higher ash content present in the lignosulphonate samples. The carbon content of the Kraft and soda 

lignin is slightly lower than the reported ranges of between 59–64 wt% (Schorr, Diouf and Stevanovic, 

2014; Naron et al., 2017). The reported hydrogen content ranged between 5.6–6.4 wt% for the purified 

lignin, which is slightly higher than in the reported literature of between 5–6 wt% (Naron, 2019). The 

slight variations in the carbon content could be because of the varying plant origin and purification 

methods. This should be considered when looking for potential applications for these lignins (Schorr, 

Diouf and Stevanovic, 2014). While all the nitrogen content present in all the lignin samples was below 

0.11%, the amount has originated from the biomass (Govender, 2020). The sulphur content in the 

lignosulphonates (NaS-S-T, NaS-M-PR and MgO-S-S) and the Kraft lignin (KS-S-N and KH-S-N) was as 
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expected and was in the range of 4.1–10.1 %, while the soda pulping lignin (S-S-S) which would not be 

contaminated by sulphur from the pulping process, contained 1%, which probably originated from the 

biomass source, the precipitation, or the purification process that was used. The range of sulphur present 

in Kraft lignin is between 4.6–6.3 wt% which is slightly higher than the results (4.1 wt%) found in this 

study (Naron et al., 2017). This indicates a higher purity lignin which is confirmed by the low ash contents 

obtained. The results from the elemental analysis were used to estimate the C9 formulas of each lignin 

sample. The resulting elemental analysis and estimated formulae are within range and consistent with 

analysis from literature (Mansouri and Salvadó, 2006; Wörmeyer et al., 2011; Naron, 2019; Govender, 

2020).   

3.3.2 Structural Analysis 

Insight into the structural analysis of the lignin was achieved by determining the functional groups 

present. Infrared spectra of the lignin samples by Fourier Transform Infrared Spectroscopy (FTIR) were 

taken to identify the functional groups, and are presented in Figure 11. The spectra shows characteristic 

lignin structures, where some differences in the intensities of the peaks between the samples are 

observed. The important functional groups’ peak assignments have been summarized in Table 11.   

 

Figure 11: FT-IR spectra of technical lignin samples 

 

The region between 3440–3430 cm-1 results from the presence of phenolic or aliphatic hydroxyl groups. 

The magnesium lignosulphonate, MgO-S-S, and bagasse origin soda lignin, S-S-S, have the highest 

intensity in this region, and hence contain more hydroxyl groups, thus they are expected to be more 
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reactive as the hydroxyl groups’ influence the reactivity of the lignin (Laurichesse and Avérous, 2014). 

This would indicate that these lignins have a good potential for repolymerisation as the enzymes utilise 

the phenolic groups. The peaks at 2935 cm-1 show the C-H stretching of methyl and methylene groups. 

At 2849 cm-1 they indicate that the C-H vibrations of –OCH3 groups were visible in all samples without 

major intensity differences, with the exception of the sodium lignosulphonate, NaS-M-PR, showing no 

distinctive peak, and the S-S-S lignin showing the highest intensity compared to the other samples.  

The major spectral differences between the samples are found in the fingerprint region (1800–800 cm-1), 

which has been enlarged and can be seen in Figure 12. The presence of unconjugated ketones, carboxyl 

and ester groups as found in the region 1712–1702 cm-1, showed the highest intensity for S-S-S lignin, 

indicating that little modification was done to the carbonyl groups. This observation agrees with a study 

done by Govender (2020), but this disagrees with what was observed by Naron (2019), where both these 

studies investigated lignin’s in the South African pulping industry. The C-H bending of methoxyl groups is 

seen at a peak of 1457 cm-1, where distinctive peaks were observed for most of the technical lignin, with 

the exception of two samples where no peak was observed for the NaS-M-PR and a small peak was 

observed for the Kraft lignin, KS-S-N. Meanwhile in the peak region of 1424-1426 cm-1, indicating the 

aromatic ring stretching, the KH-S-N showed lignin the lowest intensity and an absence of peaks was 

observed for the sodium lignosulphonates samples (NaS-S-T and NaS-M-PR). This absence or low peak 

could indicate either a lower methoxyl group content, or because of the lignosulphonates’ high impurity 

(indicated by the high ash content) it could result in a possible band shift, as distinctive peaks can be seen 

around 1400 cm-1, however, this peak has no band assignment available in current literature (Govender, 

2020). The peak region 1220–1210 cm-1 indicates the stretching of phenolic hydroxyl groups and peak 

region 1044–1030 cm-1 indicates the stretching of primary aliphatic hydroxyl groups, including C-O 

stretching of primary alcohols. KH-S-S and S-S-S showed the highest intensity peaks at 1220–1210 cm-1. 

The lignosulphonates showed no peaks at 1220–1210 cm-1, but a strong peak intensity at 1044–1030 cm-

1, indicating that the lignosulphonates contain more aliphatic hydroxyls with trace amounts of phenolic 

hydroxyls, or that the peak allocation for the phenolic hydroxyl groups may also have shifted, owing to 

the lignosulphonates’ high impurity (Ignat et al., 2011). As expected all the lignosulphonates have strong 

intensity peaks at 1190 cm-1, indicating the presence of sulphonate groups. However, the magnesium 

lignosulphonate, MgO-S-S indicated a lower intensity peak in comparison to the sodium sulphite 

lignosulphonates, NaS-S-T and NaS-M-PR, which can be explained from the elemental analysis and the 

ash contents found in Section 3.3.1.  
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Figure 12: Enlarged FT-IR spectra between the wavenumber of 1800–800 cm-1 

The region between 914 and 813 cm-1 indicates the C-H bending of the G & S units (lignin monomers), 

while the peak at 832 cm-1 indicates the C-H stretching of the H units. The S-S-S lignin was the only lignin 

with a peak intensity at 832 cm-1 as the lignin origin, bagasse, are grass which contain H, G and S 

monomers (as discussed in Section 2.1.2). The peak 854 cm-1 indicates the C-H bending of the guaiacyl 

ring, as softwoods contain more G monomers than hardwoods or grasses, it is expected that the softwood 

origin lignin will have a higher intensity (Gouveia, 2014). Other peaks associated with G units are 1264 

and 1141 cm-1. The only softwood origin lignin from the Kraft pulping process, KS-S-N, shows distinct 

peaks in comparison to the other lignin at these mentioned wavenumbers (854, 1264 and 1141cm-1). The 

peak 1330 cm-1 has shown to indicate the C-O in the syringyl (S monomer). All the lignin investigated 

except the softwood Kraft lignin, showed peaks at this wavenumber, which is expected as both grasses 

and hardwoods contain S monomers. 
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Table 11: FT-IR Absorption peak functional group assignments extracted from Govender, (2020)  

Peaks (cm-1) Band Assignment 

3 430-3 440, 3 400 Phenolic and aliphatic O-H stretching 

2 935 C-H stretching of methyl and methylene groups 

2 849 C-H vibration of –OCH3ngroups 

1 702-1 712 Unconjugated ketone and aldehyde groups 

1 510-1 606, 1 500 Aromatic skeletal vibrations 

1 457 C-H bending of methoxyl groups 

1 424-1 426 Ring stretching coupled with C-H in plane formation 

1 264 C=O stretching of G units 

1 220 Stretching of phenolic hydroxyl groups 

1 210 G & S rings breathing and C-O stretching (phenolic C-OH and 

phenolic C-O(Ar) stretching) 

1 190 Sulphonic acids/sulphonate groups in lignosulphonates 

1 141 C-H bending G units 

1 030 Stretching of primary aliphatic OH 

1 030-1 044 C-O stretching of primary alcohols 

914-813 C-H bending of G & S units 

854 C-H out-of-plane deformation typical of guaiacyl aromatic ring 

structure 

832 C-H stretching of p-hydroxyphenylpropane 

3.3.3 Molecular weight and Phenolic Content Analysis 

The results of the average molecular weight (Mw), number average (Mn), polydispersity and phenolic 

content for the lignin samples, are shown in Table 12. The molecular weights ranged from 5 657 to 12 

156 g/mol, the number averages from 1 744 to 3 811 g/mol, and the polydispersity ranged from 1.73 to 

4.3.  
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Table 12: Molecular weight and Phenolic content characterisation of various technical lignin 

 

 

 

 

 

 

 

The softwood origin Kraft lignin (KS-S-N) has a higher average molecular weight and polydispersity than 

the hardwood Kraft lignin (KH-S-N), which is consistent with reports in literature (Fengel and Wegener, 

2003; Naron, 2019). As softwood origin lignin contains predominantly guaiacyl units, resulting in the lignin 

structure being more stable, predominately from the C-C linkages formed at the C5 position of the 

aromatic ring of the guaiacyl monomer which are difficult to cleave and the β-aryl ether bonds are easily 

repolymerised (Fengel and Wegener, 2003). In comparison to the β-aryl ether bonds present in the 

sinapyl, monomers of hardwoods are cleaved easily and have a lower tendency to repolymerise, hence 

the average molecular weights of hardwoods are lower than softwoods (Naron, 2019). Even though the 

sodium lignosulphonates (NaS-S-T and NaS-M-PR) were obtained from different pulp mills, similar 

biomass origin and similar isolation processes, the average molecular weights, number average and 

polydispersity were similar, indicating the lignin was depolymerised into similar chain lengths and hence 

have similar average molecular weights.  

The phenolic content determined by the spectrophotometric method showed the lignins’ phenolic 

content and the conclusions regarding the intensity of the phenolic hydroxyl functional group bands 

present in the lignins’ results, were similar and are comparable to results in literature (Areskogh, 2011; 

Gouveia, 2014). The Kraft lignin, KS-S-N and KH-S-N, showed the highest phenolic content of 1.65 and 

2.23 mmol/g lignin, respectively, and the sodium lignosulphonates, NaS-S-T and NaS-M-PR, had the 

lowest of 0.96 and 0.95 mmol/g lignin, respectively. During the delignification in the pulping process the 

cleavage of the phenyl propane linkages generates these phenolic hydroxyl groups, which indicates the 

reactivity of the lignin (Gouveia, 2014). The cause of the lignosulphonates lower phenolic content may 

be owing to the high impurity of the lignin.   

3.3.4 Thermal Analysis 

A thermogravametric analyser (TGA) commonly determines the thermal decomposition of the organic 

components of polymers and reveals the loss of weight of the samples in relation to the temperature of 

thermal degradations. The first derivative of this curve shows the corresponding weight loss rate, and the 

peak of the curve indicates a single degradation temperature, which can be used to compare the thermal 

stability of the different lignin samples as summarised in Figure 14.  

Sample ID Molecular Weight Phenolic Content (mmol/g) 

Mw 
(g/mol) 

Mn 
(g/mol) 

Polydispersity 
 

KS-S-N 12 156 2 513 4.37 1.65 

KH-S-N 5 657 2 073 2.83 2.23 

S-S-S 5 685 1 744 3.26 1.28 

NaS-S-T 6 185 3 251 1.732 0.96 

NaS-M-PR 6 453 3 189 2.0 0.95 

MgO-S-S 6 589 3 811 2.319 1.16 
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In Figure 13, the decomposition of the different lignin samples are shown to start at temperatures ranging 

between 120°C – 250°C with S-S-S and MgO-S-S degrading slightly earlier than the other lignin samples, 

which agrees with literature (Laurichesse and Avérous, 2014; Govender, 2020). It is believed the initial 

degradation is as a result of the dehydration of the hydroxyl groups from the benzyl functional groups of 

the lignin and the cleavage of the α - aryl and β – aryl –aryl links (Laurichesse and Avérous, 2014). The 

main degradation of the lignin samples occurs between 250°C and 500°C. This agrees with studies found 

in literature. During this range the KS-S-N, KH-S-N and S-S-S experience a significant mass percentage loss 

between 39% and 46% while the lignosulphonates, NaS-S-T, NaS-M-PR and MgO-S-S, achieved 26%, 23% 

and 37% respectively. This is explained by the fact that after a temperature of 300°C the degradation of 

the aliphatic side chains occur, and after 370°C the cleavage of the carbon-carbon bonds between the 

lignin structures occurs (Laurichesse and Avérous, 2014). Slight degradation of the purified lignins are 

observed at temperatures above 500°C where the degradation of some aromatic rings occur (Tejado et 

al., 2007; Martin-Sampedro et al., 2011), while the lignosulphonates have a higher inorganic content and 

hence, degradation is still noticed after 600°C. Interestingly, the magnesium sulphite lignosulphonate, 

MgO-S-S, degrades before the sodium sulphite lignosulphonates, NaS-S-T and NaS-M-PR, which could be 

attributed to MgO-S-S having a lower ash content (Govender, 2020). The final weight residues recorded 

at 899°C were found to be between 29.8–32.5% – this range is within the reported ranges in literature 

(Tejado et al., 2007; Laurichesse and Avérous, 2014; Govender, 2020; Majeke et al., 2020). 

 

Figure 13: Thermal degradation curves of lignin samples 

The rate of degradation of each lignin sample is depicted in Figure 14 where the peaks indicate the 

maximum degradation rate at a specific temperature. The maximum degradation temperature of the 

purified lignin was between 407°C – 434°C. which agrees with reports made by Tejado et al., (2007) and 

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

W
ei

gh
t 

(%
)

Temperature (°C)

KS-S-N KH-S-N S-S-S NaS-S-T NaS-M-PR MgO-S-S

Stellenbosch University  https://scholar.sun.ac.za



 

40 

Gouveia, (2014) in literature. The softwood biomass origin lignin KS-S-N, recorded the highest 

degradation temperature at 434°C which is expected, as softwood lignin contains more G monomers and 

have more condensed carbon-carbon bonds than hardwood or non-woody lignin, thus making them 

more thermal stable (Tejado et al., 2007; Naron, 2019). While the lignosulphonates ranged between 

276  °C – 307°C which is slightly higher, but within the range of what was reported by Govender, (2020). 

The cause of the lignosulphonates to degrade at lower temperature is because of a catalytic effect from 

the higher inorganic content of the lignosulphonates (Naron, 2019; Govender, 2020).   

 

Figure 14: Rate of degradation of lignin samples 
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4 CHAPTER 4: ENZYMATIC POLYMERISATION OF TECHNICAL LIGNIN 

4.1 Introduction 

The use of lignin in higher value applications requires the lignin structure and chemistry to be altered 

either by depolymerisation or by repolymerisation methods. Studies have shown that lignin can be 

modified to be used as a value-added low or high molecular weight material. Low molecular weight lignin 

can be used as raw material for such chemicals as dimethyl sulfoxide, aromatics or phenols. High 

molecular weight lignin applications include the production of adhesives, carbon fibres, binders, additives 

(e.g. In cement) and thermally-stable copolyester (Areskogh, 2011; Gouveia, 2014; Wells, 2015). While  

various methods have been proposed to achieve either low or high molecular weight lignin, the use of 

enzymes to upgrade lignin has indicated to be an energy-efficient and eco-friendly method (Gouveia, 

2014). 

4.2 Material and Methods 

4.2.1 Experimental Approach 

In this study, two enzymes were investigated i.e. laccase and Lignin peroxidase (LiP). The enzymes’ 

optimal operating conditions were sourced from literature and established methods were used to 

determine the activity of the enzymes. Individual experiments were designed for the enzymatic 

treatment of each of the purified lignins, i.e. soda and Kraft lignin, as well as for the lignosulphonates 

with the two enzymes. The original as well as the treated lignins were characterised by established 

methods to determine the chemistry and structural changes incurred by the enzyme experiments, in 

order to determine if repolymerisation had occurred. 

4.2.2 Materials 

The six lignins investigated in Section 3 were treated with two different enzymes which have shown the 

ability to repolymerise lignin under various conditions. The two enzymes to be investigated are Laccase 

(NS51003) from Myceliophthora thermophile, which was kindly supplied by Novozyme, and Lignin 

peroxidase (LiP) from P. chrysosporium, which was developed in the Pichia pastoris expression system as 

described in Majeke (2020).  

4.2.3 Enzyme Activity 

4.2.3.1 Laccase 

The laccase activity was determined according to a method developed by Hong, Meinander and Jönsson 

(2002). According to this method, 0.4 mM 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonate), also 

known as ABTS, is dissolved as a substrate in a 100 mM sodium acetate buffer (pH 5 and at 25°C). The 

enzymes are diluted appropriately and mixed with the substrate solution (1 mM). The increase in the 

absorbance is monitored in a spectrophotometer at 420 nm for 5 minutes (using an extinction coefficient, 

Ɛ = 36 mM-1 cm-1 to calculate the activity). The activity is then expressed in units per litre of sample.  
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4.2.3.2 Lignin Peroxidase 

The LiP activity is determined in a spectrophotometer according to a method described by Majeke et al. 

(2020). According to this method, the reactive mixture contains 0.5 ml of enzyme, 1 ml of 125 mM Sodium 

tartrate buffer (pH 3) and 0.5 ml of 10 mM veratryl alcohol (3,4-Dimethoxylbenzyl alcohol). An amount 

of 0.5 ml of Hydrogen peroxide (0.4 mM) is added to initiate the reaction. The absorbance is measured 

in a spectrophotometer for 5 minutes at a wavelength of 310 nm. The absorbance is used to determine 

the enzyme activity [extinction coefficient, Ɛ = 9,3 mM-1 cm-1 (Majeke et al., 2020)]. 

4.2.4 Lignin repolymerisation  

Owing to the insolubility of the purified lignin, two different experiments were designed. The purified 

lignin, Kraft and soda lignin that had limited solubility, could only be investigated at a maximum fixed 

concentration of 15g/l at various enzyme dosages. The lignin was added to an alkaline NaOH (0.5 mM) 

solution to produce a homogenous suspension and diluted with the respective reaction buffer to the 

specified reaction volume as described by Ai, Wang and Huang (2015). The enzyme dosages investigated 

for the purified lignin ranged from 1 – 30 U/l as summarised in Table 13. As the lignosulphonates are 

water-soluble, a fractional factorial was designed to investigate lignin concentrations from 15 to 50 g/l 

and an enzyme dosage from 1 – 20 U/l. However, after the statistical analysis, additional points were 

added in order to fit the data to the full surface response model. All the investigated points are also 

summarised in Table 13. Both experiments followed the same experimental procedure as is explained 

below. The reactions were carried out in two different buffers at different pH’s and different reaction 

temperatures, owing to the enzyme’s pH and temperature sensitivity, which was determined from 

literature. This has been summarised in Table 14. 

Table 13: Lignin- Enzymatic investigation of lignin concentrations and enzyme dosages 

Purified lignin reaction with laccase and LiP ( KS-S-N, KH-S-N and S-S-S) 

Lignin Concentration  
(g/L) 

Enzyme dosages  
(U/L) 

Enzymatic units per gram lignin 
(U/g) 

15 1 0.067 
15 5 0.333 
15 10 0.667 
15 20 1.333 
15 30 2 

Lignosulphonates reaction with laccase and LiP (NaS-S-T, NaS-M-PR and MgO-S-S) 
Central composite design with additional runs 

15 1 0.07 
15 20 1.33 
50 1 0.02 
50 20 0.40 

32.5 (Centre points: Triplicate) 10.5 0.32 
5.75 (Additional) 32.5 0.178 
10.5 (Additional) 41.25 0.255 

15.25 (Additional) 32.5 0.469 
10.5 (Additional) 23.75 0.442 
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A phosphate buffer (0.1M) at a pH of 6 was prepared for the laccase experiments and an acetic acid buffer 

(0.1M) at a pH of 3 was prepared for the lignin peroxidase experiments. The phosphate buffer was 

prepared by adding approximately 800 ml of distilled water into a volumetric flask, 3.669 g of sodium 

phosphate dibasic, 11.911 g of sodium phosphate monobasic. Thereafter distilled water was added until 

a final volume of 1 L. The pH of the buffer is measured and adjusted by the addition of hydrochloric acid 

or sodium hydroxide to a pH of 6. The acetic acid buffer was prepared by adding approximately 800 ml 

of distilled water into a volumetric flask, 396 mg of sodium acetate, and 5.715 g of acetic acid. Thereafter, 

distilled water was added until a final volume of 1 L. The pH of the buffer is measured and adjusted by 

the addition of hydrochloric acid or sodium hydroxide to a pH of 3. As the activation of the Lignin 

peroxidase is caused by hydrogen peroxide, it was added to the acetic acid buffer at a concentration of 

0.4 mM as reported by Majeke et al. (2020) for the LiP enzyme. 

4.2.5 All the reactions were carried out in closed Erlenmeyer flasks in shake incubators at the desired 

reaction temperature for a period of 24 hours, as summarised in Table 14Enzyme Activity 

4.2.5.1 Laccase 

The laccase activity was determined according to a method developed by Hong, Meinander and Jönsson 

(2002). According to this method, 0.4 mM 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonate), also 

known as ABTS, is dissolved as a substrate in a 100 mM sodium acetate buffer (pH 5 and at 25°C). The 

enzymes are diluted appropriately and mixed with the substrate solution (1 mM). The increase in the 

absorbance is monitored in a spectrophotometer at 420 nm for 5 minutes (using an extinction coefficient, 

Ɛ = 36 mM-1 cm-1 to calculate the activity). The activity is then expressed in units per litre of sample.  

4.2.5.2 Lignin Peroxidase 

The LiP activity is determined in a spectrophotometer according to a method described by Majeke et al. 

(2020). According to this method, the reactive mixture contains 0.5 ml of enzyme, 1 ml of 125 mM Sodium 

tartrate buffer (pH 3) and 0.5 ml of 10 mM veratryl alcohol (3,4-Dimethoxylbenzyl alcohol). An amount 

of 0.5 ml of Hydrogen peroxide (0.4 mM) is added to initiate the reaction. The absorbance is measured 

in a spectrophotometer for 5 minutes at a wavelength of 310 nm. The absorbance is used to determine 

the enzyme activity [extinction coefficient, Ɛ = 9,3 mM-1 cm-1 (Majeke et al., 2020)]. 

4.2.6 Lignin repolymerisation  

Owing to the insolubility of the purified lignin, two different experiments were designed. The purified 

lignin, Kraft and soda lignin that had limited solubility, could only be investigated at a maximum fixed 

concentration of 15g/l at various enzyme dosages. The lignin was added to an alkaline NaOH (0.5 mM) 

solution to produce a homogenous suspension and diluted with the respective reaction buffer to the 

specified reaction volume as described by Ai, Wang and Huang (2015). The enzyme dosages investigated 

for the purified lignin ranged from 1 – 30 U/l as summarised in Table 13. As the lignosulphonates are 

water-soluble, a fractional factorial was designed to investigate lignin concentrations from 15 to 50 g/l 

and an enzyme dosage from 1 – 20 U/l. However, after the statistical analysis, additional points were 
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added in order to fit the data to the full surface response model. All the investigated points are also 

summarised in Table 13. Both experiments followed the same experimental procedure as is explained 

below. The reactions were carried out in two different buffers at different pH’s and different reaction 

temperatures, owing to the enzyme’s pH and temperature sensitivity, which was determined from 

literature. This has been summarised in Table 14. 

Table 13. The flasks contained 50 ml of the reaction buffer for the respective enzymes, the lignin was 

added according to the desired concentration and was solubilised into the buffer. The respective enzymes 

were added at the desired dosage to the reaction mixture and placed in the shake incubators at 150 rpm 

for a period of 24 hours with sampling occurring at various stages – 0, 4, 10 and 24 hours. As samples 

were taken, their pH was lowered to 2 which caused the enzyme to become inactive. The samples were 

oven-dried at 50°C and milled for further analysis. A liquid sample was also taken directly from the 

reaction mixture to immediately determine the phenolic content based on the method described in 

Areskogh et al.( 2010a); Gouveia (2014); Majeke et al.(2020). 

Table 14: Optimal operating conditions of the various enzymes obtained from literature. 

* According to Manufacturer (Novzymes, 2003) 

** According to literature (dos Santos et al., 2016; Majeke et al., 2020) 

4.2.7 Treated Technical Lignin characterisation  

The lignin characterisations were done before, during and after enzymatic treatment to determine the 

changes which might have occurred, owing to enzymatic modification. The following characterisation 

methods were used: Elemental analysis, Fourier transform infrared spectroscopy (FT-IR), Phenolic 

content determination, Gel permeation chromatography and Thermogravimetric analysis (TGA). The 

Elemental analysis, FT-IR and TGA were determined before the enzyme experiment (see Chapter 3), and 

for some selected conditions after 24 hours of laccase or LiP enzymatic treatment. The phenolic content 

and molecular weights were determined at all the sample time. The sampled points were 0, 4, 10 and 24 

hours for the laccase and LiP enzymatic experiments. However, because of running out of time the 

molecular weights could not be determined for the 4 hours LiP-treated lignin samples. 

  
Laccase  

(NS51003) 

LiP 

(Stellenbosch 

University) 

Optimum Conditions 

from literature 

Temperature (°C) 40 – 60 * 30 ** 

pH 3 * 2.5-4.5 ** 

Enzymatic Experiment 

Conditions 

Temperature (°C) 60 30 

pH 6 3 

Reaction Buffer Phosphate (0.1M) Acetic Acid (0.1M) 

Experiment time (hrs) 24 24 
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4.3 Results and Discussion 

Extra results from the enzymatic modification as well as the statistical analysis of the results are 

presented in Appendix A.  

4.3.1 Lignin molecular weight changes during enzymatic modification 

The molecular weight of the various lignins was determined before, during and after the enzymatic 

experiments. Table 15Molecular weight increases were observed for almost all the enzymatic 

experiments tested, with the exception of three lignin-enzyme combinations. It was observed that when 

KH-S-N was treated with LiP at low doses (0.067 and 0.85 U/g lignin), no increase in molecular weight was 

observed. Instead, a molecular weight decrease was observed, indicating a slight depolymerisation after 

the 24 hours (8 115 to 6 227 g/mol and 8 230 to 6 971 g/mol, respectively). The same was observed for 

the lignosulphonate MgO-S-S (Table 17) which was treated with laccase at a low dose of 0.02 U/g lignin, 

where no increase in molecular weight was observed (16 447 to 13 614 g/mol). This suggests that there 

is a minimum required enzyme dosage to induce repolymerisation in the lignin KH-S-N, as it was found 

that the molecular weight increases as the enzyme dosage increases (0.77-, 0.85-, 1.18-, 1.47- and 1.93-

fold). While in the case of the lignosulphonate, the high lignin to enzyme ratio, combination of a 50 U/L 

Laccase dosage and a 1 g/L lignin dose (0.02 U/g lignin), has caused an inhibition of the enzyme 

(Kunamneni et al., 2007). This has also been observed in a study by Pamidipati and Ahmed (2020) using 

lignin fragments. 

Table 15, 16 and 17 provides summaries of the molecular weight changes that occurred during the 24-

hour enzymatic experiment.   

The highest increase in molecular weight of the purified lignins (KS-S-N, KH-S-N and S-S-S) after enzymatic 

modification of 24 hours, was from 1 639 to 9 315 g/mol (5.68-fold or 82% increase) for the lignin S-S-S 

at a dosage of 2 U/g lignin of LiP (Table 17). The highest increase in molecular weight by the enzyme 

laccase was a 3.79-fold increase of KH-S-N at a low 0.067 U/g lignin dosage. In the lignosulphonate 

enzymatic modification, the highest molecular weight increase achieved was a 4.34-fold of NaS-S-T (3 

226 to 14 014 g/mol) by LiP at 0.4 U/g lignin dosage. The highest laccase molecular weight increase was 

2.42-fold of NaS-S-T at 1.33 U/g lignin dosage.  

Stellenbosch University  https://scholar.sun.ac.za



 

46 

 

Figure 15: Molecular weight and Phenolic content analysis of S-S-S during enzymatic experiment 

Few investigations into the use of enzymatic modification to repolymerise technical lignin have been 

done. In literature a study done on a Eucalyptus globulus biomass origin (hardwood) Kraft lignin and a 

75% softwood-25% hardwood mixture Kraft lignin by Gouveia (2014), resulted in a 20-fold and 2-fold 

molecular weight increase by laccase, respectively. The results in this study where Kraft lignin was from 

a softwood biomass, the 1.61-fold increase of KS-S-N by laccase is comparable. However, the hardwood 

Kraft lignin molecular weight increase reported in Gouveia (2014) is much higher than the 3.79-fold 

increase of KH-S-N by laccase. Sodium lignosulphonates treated with laccase have been investigated by 

both Mai et al. (2002) and Areskogh (2011), where a 2-fold and 2.6-fold molecular weight increase was 

observed, respectively. In this study the sodium lignosulphonates obtained a 2.2- and 2.42-fold increase 

in molecular weight, which agrees with previously published literature. According to the knowledge of 

the author, no study has been done on technical lignin to achieve repolymerisation by LiP. However, a 

study by Majeke (2020) which aimed to depolymerise Soda lignin, resulted in a 1.43-fold repolymerisation 

of the lignin. In this study the same origin Soda lignin was investigated. However, at the conditions 

chosen, a 5.68-fold increase in molecular weight was observed. This is significantly higher than the results 

obtained in Majeke’s (2020) study. 

Molecular weight increases were observed for almost all the enzymatic experiments tested, with the 

exception of three lignin-enzyme combinations. It was observed that when KH-S-N was treated with LiP 

at low doses (0.067 and 0.85 U/g lignin), no increase in molecular weight was observed. Instead, a 

molecular weight decrease was observed, indicating a slight depolymerisation after the 24 hours (8 115 

to 6 227 g/mol and 8 230 to 6 971 g/mol, respectively). The same was observed for the lignosulphonate 

MgO-S-S (Table 17) which was treated with laccase at a low dose of 0.02 U/g lignin, where no increase in 

molecular weight was observed (16 447 to 13 614 g/mol). This suggests that there is a minimum required 
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enzyme dosage to induce repolymerisation in the lignin KH-S-N, as it was found that the molecular weight 

increases as the enzyme dosage increases (0.77-, 0.85-, 1.18-, 1.47- and 1.93-fold). While in the case of 

the lignosulphonate, the high lignin to enzyme ratio, combination of a 50 U/L Laccase dosage and a 1 g/L 

lignin dose (0.02 U/g lignin), has caused an inhibition of the enzyme (Kunamneni et al., 2007). This has 

also been observed in a study by Pamidipati and Ahmed (2020) using lignin fragments. 

Table 15: Summarizing the Molecular weight fold increase after a 24 hour enzyme experiment of the 

various Purified lignin’s 

Sample ID 
Molecular weight fold increase after 24hr Enzyme experiment of the Purified 

lignins 

0.067 U/g 0.333 U/g 0.667 U/g 1.333 U/g 2 U/g 

KS-S-N Laccase 1.58 1.61 1.6 1.5 1.56 
KS-S-N LiP 1.21 1.11 1.24 1.29 1.31 
KH-S-N Laccase 3.79 3.4 3.58 3.24 3.28 
KH-S-N LiP 0.77 0.85 1.18 1.47 1.93 
S-S-S Laccase 3.24 3.29 3.34 3.24 3.06 
S-S-S LiP 2.99 4.04 4.14 4.73 5.68 

 

When comparing the purified lignin, it was found that lignin with a low initial molecular weight performed 

better than a higher molecular weight lignin. KH-S-N and S-S-S are of hardwood and grass biomass origin 

technical lignin, respectively. They have an initial molecular weight of around 5 600 g/mol. When these 

lignins were treated enzymatically with laccase or LiP, their molecular weight increased after 24 hours. 

This was higher than KS-S-N, a lignin with a higher initial molecular weight (12 156 g/mol at 0 hrs). This 

can be seen in Table 15Molecular weight increases were observed for almost all the enzymatic 

experiments tested, with the exception of three lignin-enzyme combinations. It was observed that when 

KH-S-N was treated with LiP at low doses (0.067 and 0.85 U/g lignin), no increase in molecular weight was 

observed. Instead, a molecular weight decrease was observed, indicating a slight depolymerisation after 

the 24 hours (8 115 to 6 227 g/mol and 8 230 to 6 971 g/mol, respectively). The same was observed for 

the lignosulphonate MgO-S-S (Table 17) which was treated with laccase at a low dose of 0.02 U/g lignin, 

where no increase in molecular weight was observed (16 447 to 13 614 g/mol). This suggests that there 

is a minimum required enzyme dosage to induce repolymerisation in the lignin KH-S-N, as it was found 

that the molecular weight increases as the enzyme dosage increases (0.77-, 0.85-, 1.18-, 1.47- and 1.93-

fold). While in the case of the lignosulphonate, the high lignin to enzyme ratio, combination of a 50 U/L 

Laccase dosage and a 1 g/L lignin dose (0.02 U/g lignin), has caused an inhibition of the enzyme 

(Kunamneni et al., 2007). This has also been observed in a study by Pamidipati and Ahmed (2020) using 

lignin fragments. 

Table 15 which indicates the molecular weight fold increases after the 24-hour enzymatic modification. 

The lower molecular weight lignin allows for a more efficient interaction with the enzyme, as the lignin 

fragments are smaller and the enzymes’ active sites have better access to the substrate, also because the 

fragments will dissolve better (Areskogh, 2011). This is also seen in the FTIR analysis. In Chapter 3 it was 
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found that when comparing the purified lignin, S-S-S had the highest peak at the wavenumber assigned 

to the OH group (3400cm-1), whereas KS-S-S showed the lowest peak.  

In Figure 16 and 

Figure 17 the peaks at 3 400cm-1 are lower for the KH-S-N and S-S-S lignin after the enzymatic modification 

by both enzymes, whereas in the lignin KS-S-N, a slight change is seen in the phenolic and aliphatic group 

after the enzymatic experiment (Figure 18). The lower molecular weight lignins respond better to the 

enzymatic modification as there are more available phenolic end groups for enzymes in comparison to 

the higher molecular weight lignins, which have a more compact structure (Areskogh, 2011; Gouveia, 

2014). 
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Table 16: Summarizing the Molecular weight increases after a 24-hour enzyme experiment of the various purified lignin 

Sample ID 

Average molecular weight increases after 24-hour enzyme modification (g/mol) 

0.067 U/g 0.333 U/g 0.667 U/g 1.333 U/g 2 U/g 

Initial Final Change  

(%) 

Initial Final Change  

(%) 

Initial Final Change  

(%) 

Initial Final Change  

(%) 

Initial Final Change  

(%) 

KS-S-N Laccase 14 324 22 561 37 13 418 21 425 37 12 691 20 336 38 12 707 19 149 34 12 673 19 833 36 

KS-S-N LiP 11 439 13 852 17 11 556 12 822 10 11 743 14 527 19 11 859 15 165 22 11 685 15 344 24 

KH-S-N Laccase 5 607 21 253 74 5 465 18 601 71 5 486 19 664 72 5 492 17 769 69 5 265 17 251 69 

KH-S-N LiP 8 115 6 227 -30 8 230 6 971 -18 8 231 9 712 15 8 283 12 189 32 8 385 16 149 48 

S-S-S Laccase 5 357 17 369 69 5 385 17 701 70 4 845 16 186 70 5 280 17 132 69 5 372 16 450 67 

SSS LiP 1 539 5 990 74 1 529 6 180 75 1 558 6 453 76 1 581 7 481 79 1 639 9 315 82 
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Figure 16: FT-IR Spectra of KH-S-N before and after 24-hour enzymatic experiment, insert enlarges the 

'fingerprint' region of the lignin 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: FT-IR Spectra of S-S-S before and after 24-hour enzymatic experiment, insert enlarges the 

'fingerprint' region of the lignin 
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The hardwood origin lignin, KH-S-N and grass origin S-S-S achieved the highest laccase molecular fold 

increase, 3.79-fold and 3.34-fold, respectively, while the softwood origin lignin, KS-S-N achieved a 1.61-

fold increase. This observation agrees with data from a study where it revealed that the molecular weight 

of a hardwood lignin, polymerised by laccase was higher than the investigated softwood lignin (van de 

Pas et al., 2011). In hardwoods the syringyl structure’s two methoxyl substituents which are in ortho-

positions to the phenolic hydroxyl group, are oxidised by laccase. These electron-donating groups 

stabilize the phenoxyl radicals and prevent the formation of 5-5’ linkages, thus prolonging the lifespan of 

the radicals, causing a high concentration of radicals which are stable for longer (Cañas and Camarero, 

2010; van de Pas et al., 2011). As KH-S-N only has trace amounts of syringyl units (Table 1 in Chapter 2), 

they result in a lower molecular weight increase in comparison to the grass and hardwood origin lignin, 

which contain syringyl units.  

When comparing the performance of two enzymes with respect to molecular weight increase capability, 

it was observed that laccase performed better on KS-S-N and KH-S-N in comparison to LiP. In Table 16, 

the initial molecular weights (0 hrs) of the same lignins differ for the two enzymes. For example, for the 

enzymatic modification of KS-S-N at a dosage of 0.067 U/g lignin, it was found that the initial molecular 

weight of the laccase and the LiP is 14 324 and 11 439 g/mol, respectively. The LiP enzymatic modifications 

were performed at a low pH of 3 in comparison to laccase at a pH of 6. It was observed that in the LiP 

experiments some of the lignin did not dissolve. There are many factors influencing the solubility of lignin, 

and molecular weight is one of them. At the lower pH treatments the lower molecular weight lignins’ 

fragments were only able to solubilise, hence lower molecular weights were analysed. It has also been 

suggested that an enrichment of phenolic hydroxyl groups improves the solubility of the lignin 

(Evstigneyev and Shevchenko, 2019).  

Figure 18: FT-IR Spectra of KS-S-N before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin 
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Table 17: Summarizing the molecular weight fold increase after a 24-hour enzyme experiment of the various lignosulphonates 

Sample ID 

Molecular weight fold increase after 24-hr experiment 

0.02 
U/g 

Change 
(%) 

0.07 
U/g 

Change 
(%) 

0.178 
U/g 

Change 
(%) 

0.255 
U/g 

Change 
(%) 

0.32 
U/g 

Change 
(%) 

0.40 
U/g 

Change 
(%) 

0.442 
U/g 

Change 
(%) 

0.469 
U/g 

Change 
(%) 

1.33 
U/g 

Change 
(%) 

NaS-S-T Laccase 1.84 46 1.54 35 1.87 47 2.21 55 1.55 35 2.02 51 1.87 47 2.15 53 2.42 59 

NaS-S-T LiP 2.27 56 2.63 66 3.46 71 3.85 74 3.50 71 4.34 77 3.48 71 3.83 72 3.44 71 

NaS-M-PR 
Laccase 

1.69 41 1.28 47 1.98 50 1.72 42 1.52 34 1.66 40 2.12 53 1.94 48 1.70 41 

NaS-M-PR LiP 2.05 51 1.89 47 1.89 47 1.86 45 1.88 55 2.03 51 1.89 47 1.88 47 1.89 47 

MgO-S-S 
Laccase 

0.83 -21 1.88 22 2.18 54 2.17 54 1.92 48 1.97 49 2.06 51 2.12 53 1.21 18 

MgO-S-S LiP 1.54 35 1.62 38 2.09 52 2.23 55 2.22 47 2.38 58 2.41 59 2.56 61 2.79 64 
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When comparing the lignosulphonates, Table 17 summarises the lignosulphonate enzymatic 

modifications, where the highest molecular weight increase observed was 4.34-fold (0.4 U/g lignin) and 

2.42-fold (1.33 U/g lignin) of NaS-S-T by LiP and laccase, respectively. The lowest molecular weight 

increase observed was 0.83-fold by MgO-S-S by laccase. Overall NaS-M-PR achieved the lowest molecular 

weight increases. This could partly be explained by the lignosulphonates’ high impurity with an ash 

content of 32.5% in comparison to NaS-S-T and MgO-S-S (ash content of 22.1 and 7.3%, respectively). The 

molecular weight increases achieved by laccase or LiP are very similar, with the exception of NaS-S-T 

when treated with LiP. NaS-S-T LiP achieved the highest molecular fold increases at every dosage in 

comparison to the other LiP and laccase experiments. The LiP enzyme shows a definite substrate 

specificity to the structure of NaS-S-T.  

  

Figure 19: Molecular weight and phenolic content analysis of NaS-S-T during the laccase enzymatic 

experiment 

As part of the statistical analysis of the results, when comparing the change in the molecular weight 

during the enzymatic treatment, the least significant difference tests were performed. A mean separation 

was performed using Fischer’s least significant difference (LSD 0.05) at a 95% confidence level. The graphs 

which are presented in Appendix A have been summarised in Table 18. As the LiP molecular weight was 

not taken throughout the whole experiment, unfortunately LSD tests could not be done for the molecular 

weight analysis. The graphs show that the molecular weight of the lignin after the enzymatic experiment 

at 24 hours are significantly different to the molecular weight at the start of the enzymatic experiments 

for all the investigated lignin. 

When comparing the laccase enzymatic modification of the lignosulphonates, there is a significant drop 

in the enzymatic reaction rate after 4 or 10 hours for some of the enzymatic experiments. After this time 

there was no significant change in the molecular weight of lignin observed. The LSD tests indicate that 

after 4 hours there is no significant difference between the molecular weights recorded at 4, 10 and 24 
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hours (an example is shown in Figure 20). This can partly be explained by the macromolecular structure 

of the lignosulphonates. Many models of the macromolecular structure have been proposed such as the 

micelle-like structure, which suggests that the lignosulphonates in solution form a hydrophilic surface 

and a hydrophobic core (Rezanowich and Goring, 1960). Owing to steric constraints, the phenolic end 

groups located on the surface of the micelle can only be accessed by the enzyme. Thus, it is possible that 

when the available phenolic end groups are oxidised, the molecular weight increase levels out, as the 

remaining groups are inside the micelle and they are not accessible (Areskogh, 2011).  

The lignin’s of KH-S-N, NaS-S-T and MgO-S-S all reached their maximum molecular weight increase after 

4 hours of being treated with laccase. These lignin’s have a biomass origin, Eucalyptus grandis 

(hardwood). The softwood origin lignin KS-S-N reached a maximum at 24 hours and had not reached 

completion. As the structure of softwood lignin is more condensed, this influences the ability of the 

enzyme to access possible active sites to cause radical formation. Also, if radicals are formed they may 

not be able to couple together, because of the condensed structure (Kunamneni et al., 2007). 

Table 18: Summary from LSD tests 

Sample ID 
Time taken to reach maximum 

molecular weight (hr) 

Observed change in molecular 
weight after maximum is 

reached 

KS-S-N Laccase 24 - 

KH-S-N Laccase 4 Slightly Increased 

S-S-S Laccase 10 Constant 

NaS-S-T Laccase 4 Constant 

NaS-M-PR Laccase 10 Decreased 

MgO-S-S Laccase 4 Decreased 

 

Figure 20: The LSD test results of NaS-S-T treated with Laccase 
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4.3.2 Phenolic content changes during enzymatic modification 

The free phenolic content decreases which were determined during the enzymatic modification, are 

summarized in Table 19 and Table 20. 

All the lignin’s treated with laccase achieved a significant decrease in their free phenolic content. As 

mentioned in the literature study, there is a relationship between the decrease in the free phenolic 

content and the increase in the molecular weight of the lignin during the enzymatic treatment. Over time 

the phenolic content of the lignin decreases as the laccase enzyme oxidises the phenols to produce 

radicals, which are able to repolymerise through a radical coupling process, creating longer chains and 

thereby increasing the average molecular weight of the lignin (Areskogh, 2011). The results of this 

showed that the molecular weights of the lignins did increase while the free phenolic content decreased 

when treated with laccase. However, it is not a linear relationship. For example, when MgO-S-S was 

treated with laccase, it achieved the largest decrease in the free phenolic content (80.4% at 1.33 U/g 

lignin) in comparison to the other lignins. However, this did not necessarily correspond with the highest 

molecular weight increase (1.21-fold at 1.33 U/g lignin). This means that the relationship will not apply 

to the lignins that reacted with LiP, as this enzyme is able to oxidise the phenolic and non-phenolic groups 

of lignin. 

The lignins enzymatically modified by LiP showed decreases in their phenolic content. However, some 

lignin’s treated at lower enzyme dosages showed increases in their phenolic content after 24 hours. These 

include the lignosulphonates, MgO-S-S (0.02 U/g lignin) and NaS-M-PR (0.178 U/g lignin), as well as all 

the purified lignin’s, which showed an increase in the phenolic content at a LiP dosage of 0.067 U/g (S-S-

S, KH-S-N and KS-S-N). This indicates that at low enzyme to lignin concentrations, repolymerisation of the 

phenolic end groups does not occur, but rather depolymerisation. The breakdown of the radicals formed 

occurs as there is fewer radical-radical interactions at the lower dosages. However, MgO-S-S, NaS-M-PR, 

S-S-S and KS-S-N molecular weights all increased at the above-mentioned dosages (1.54-, 1.89-, 2.99- and 

1.21-fold, respectively). This indicates that repolymerisation must have occurred through the oxidation 

of the non-phenolic groups of the lignin by LiP to cause an increase in the lignins’ molecular weight. LiP 

has shown the ability to cause repolymerisation and depolymerisation. It has been suggested that the 

repolymerisation is more dominant, as the radicals which are formed by LiP are not removed. Therefore, 

the formed radicals are susceptible to repolymerise (Álvarez et al., 2011). 

Table 19: Summarizing the phenolic content decreases after a 24-hour enzyme experiment of the various 

Purified lignin 

Sample ID 
Phenolic content decrease after 24hr Enzyme experiment 

0.067 U/g 0.333 U/g 0.667 U/g 1.333 U/g 2 U/g 

KS-SN Laccase 36.4% 44.3% 41.2% 42% 42.5% 
KS-S-N LiP -9.64% 9.59% 7.14% 12.65% -27.9% 
KH-S-N Laccase 21.9% 24.35% 25.14% 24.84% 23.43% 
KH-S-N LiP -14.24% 13.29% 14.08% 18.35% 14.56% 
S-S-S Laccase 52.99% 56.06% 56.79% 58.06% 48.98% 
S-S-S LiP -11.9% 24.28% 39.23% 18.50% 27.58% 
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Table 20: Summarizing the Molecular weight fold increase and the phenolic content decreases after a 24- 

hour enzyme experiment of the various lignosulphonates 

Sample ID 

Phenolic content decrease after 24hr experiment 

0.02 
U/g 

0.07 
U/g 

0.178 
U/g 

0.255 
U/g 

0.32 
U/g 

0.40 
U/g 

0.442 
U/g 

0.469 
U/g 

1.33 
U/g 

NaS-S-T Laccase 41.7% 69.8% 73.2% 62.4% 63.1% 55.5% 76.1% 75.9% 74.5% 

NaS-S-T LiP 14.4% 42.6% 52.0% 54.2% 50.8% 47.9% 53.9% 51.7% 50.4% 

NaS-M-PR Laccase 66.7% 77.6% 77.1% 69.3% 77.4% 72.5% 74.8% 77.8% 77.7% 

NaS-M-PR LiP 8.3% 6.1% -28.8% 14.9% 14.9% 8.3% 12.5% 14.7% 1.1% 

MgO-S-S Laccase 3.3% 63.2% 58.3% 48.8% 45.6% 27.7% 72.8% 76.3% 80.4% 

MgO-S-S LiP -1.2% 5.9% 13.9% -1.5% 8.8% 18.9% 24% 18.0% 44.5% 

 

The highest phenolic content decrease was 80.4 % of MgO-S-S, caused by laccase treatment at the highest 

dosage of 1.33 U/g lignin. The highest phenolic content decrease by LiP was 44.5% of MgO-S-S at the 

highest dosage of 1.33 U/g lignin. This corresponds with the results from Chapter 3, where it was 

observed that MgO-S-S had the highest peak in the phenolic hydroxyl groups in the FTIR analysis. 

As the enzyme LiP is able to repolymerise, the non-phenolic groups and phenolic end groups explain why 

the highest molecular weight fold increases were obtained by LiP, but low changes in phenolic content 

were observed in comparison to the laccase-treated lignins.  

4.3.3 Structural and thermal property changes 

The FTIR analysis of the purified lignins and the lignosulphonates before and after the enzymatic 

modifications revealed only minor differences, such as the reduction in the phenolic and aliphatic groups 

(3 400cm-1), which suggest that no structural changes occurred, except the increase in molecular weight 

increases.  

The changes in the thermal stability of the lignin were observed before and after the enzymatic 

treatments. Slight degradation temperature changes were observed for the laccase-treated lignins, 

whereas the LiP-treated lignin showed larger differences. This has been summarised in Table 21. It was 

speculated that an increase in the molecular weight of a lignin will cause an increase in the thermal 

degradation temperature (Majeke et al., 2020). Also studies where a more polymerised structure was 

observed, showed a more thermally stable structure with a defined peak (Abdelaziz and Hulteberg, 2017). 

This was only seen in the LiP results where the thermal degradation temperatures increased as well as 

the molecular weights of the lignins. The same conclusion was reached by Álvarez et al. (2011), where 

fibre lignin was treated with laccase. 
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The thermal degradation results of laccase-treated lignins did not correspond to the results shown in 

literature. Low thermal degradation temperatures were observed around 170°C. Interestingly, the final 

degradation temperature of NaS-S-T laccase was slightly lower than the initial molecular weight. 

Table 21: The thermal degradation temperature changes over a 24-hour enzymatic treatment. 

Sample ID Thermal degradation temperature changes over 
the 24 hour enzymatic treatment. 

Initial (°C) Final (°C) 

KS-SN Laccase 170 180 

KS-S-N LiP 320 400 

KH-S-N Laccase 175 175,532 

KH-S-N LiP 310 450 

S-S-S Laccase 160 175,400 

S-S-S LiP 300,465 300,465 

NaS-S-T Laccase 450 430 

NaS-S-T LiP 200 300 

NaS-M-PR Laccase 197 268 

NaS-M-PR LiP 438 445 

MgO-S-S Laccase 150 175 

MgO-S-S LiP 171 250 

 

4.3.4 Optimal conditions 

The results from the standardised effects and the overall optimum conditions are summarised in Table 

22, where additional and more detailed data such as the surface response curves can be seen in 

Appendix A. It can be concluded that the enzyme dosage used in the enzymatic experiment has a 

significant effect on both the molecular weight and the phenolic content outcome. Areskogh (2011) 

found that the change in the phenolic content was unaffected by the lignin concentration. However, in 

this study the lignin concentration was only found to be significant when determining the phenolic 

content in the NaS-M-PR and LiP enzymatic experiment.  The overall optimum values were determined 

where the highest increase in the molecular weight was observed and then the phenolic content overall 

optimums were obtained where the maximum minimization of the phenolic content was observed. The 

lignosulphonates overall optimum values obtained for the two are almost identical in terms of enzyme 

dosage with slight differences in lignin loading.  
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Table 22: The standardized effects and the overall optimum values to maximize the molecular weight or 

minimize the phenolic content (PC) for the lignosulphonates 

 

 

Table 23: The optimum operating conditions for the purified lignins 

Sample ID Optimum operating conditions 

Enzyme dosage (u/L) Lignin concentration (g/L) Units per gram lignin 
(U/g) 

KS-S-N Laccase 5 15 0.33 
KS-S-N LiP 30 15 2 

KH-S-N Laccase 1 15 0.067 
KH-S-N LiP 30 15 2 

S-S-S Laccase 10 15 0.667 
S-S-S LiP 30 15 2 

    

 

 

 

 

 

 MgO-S-S NaS-S-T NaS-M-PR 

Laccase  LiP  Laccase  LiP  Laccase  LiP  

Standardized 
Effect: Significant 

variable 

Mw Enzyme Enzyme  
Enzyme 
dosage 

Enzyme  

Enzyme  X 
Lignin 

None 

Lignin  X 
Enzyme  

PC Enzyme  
Lignin  X 
Enzyme 

None 
Lignin X 
Enzyme 

Enzyme  Lignin  

Dosage  (g/L) (U/L) (g/L) (U/L) (g/L) (U/L) (g/L) (U/L) (g/L) (U/L) (g/l) (U/L) 

Overall Optimum 

Mw 

32.5 20 15 20 32.5 10.5 32.5 15.5 32.5 10.5 32.5 20 

0.62 U/g 1.33 U/g 0.32 U/g 0.48 U/g 0.32 U/g 0.62 U/g 

PC 
32.5 20 50 20 32.5 10.5 50 15.5 50 15.25 50 20 

0.62 U/g 0.4 U/g 0.32 U/g 0.31 U/g 0.31 U/g 0.4 U/g 
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5 CHAPTER 5: TECHNO-ECONOMIC EVALUATION OF ENZYMATIC LIGNIN EXPERIMENT TO 

INCREASE MOLECULAR WEIGHT 

5.1 Introduction 

In order to determine if enzymatic modification of technical lignin is a potential process route, a techno-

economic study is required to determine financial feasibility of the processes. In Chapter 4 it was found 

that utilizing the enzymes, laccase and LiP are technically feasible, in order to increase the molecular 

weight of technical lignin. As LiP is not yet available for commercial application, the techno-economic 

evaluation will utilise the laccase enzyme for the enzymatic modification. Although the LiP produced the 

highest molecular weight-fold increases, the laccase enzyme did produce more consistent results. It is 

suggested that these upgraded lignins can be applied to high-value applications such as carbon fibres, 

polymer blends, adsorbents and hydrogels (Ludmila et al., 2015). In this chapter a techno-economic 

model was developed to determine the feasibility of producing a higher molecular weight lignin sourced 

from six South African mills by laccase enzymatic modification. 

5.2 Literature 

The upgrading of technical lignin is not a new concept, however, upgrading these lignins to increase their 

molecular weight is. This study and previous studies have focused on experimental, laboratory scale 

testing of these technical lignins (Areskogh et al., 2010a; Gouveia et al., 2012; Kalliola et al., 2014), where 

the novelty of the study setup is the addition of the enzyme LiP to repolymerise these lignins, and the 

varying of the enzyme dosage and a techno-economic analysis for the modification of technical lignin in 

the South African environment.  Furthermore, there is currently no industrial application of utilizing 

enzymes to increase the molecular weights of technical lignin. Hence, based on the performances 

demonstrated under the laboratory scale conditions and assuming that these can be replicated during 

the scale-up to an industrial practice, one needs to assess whether the isolation and enzymatic 

modification of technical lignin to a higher molecular weight macromolecule, is economically attractive 

as a potential technology for industrial application. 

Two different proposed plants will be designed according to the steps of the laboratory-scale 

experiments. The first proposed plant will be for the Kraft and soda lignin, as they need to be isolated 

from the liquor, and the second plant will be for the lignosulphonates which will not be isolated. Isolating 

the lignin removes significant inorganics attached to the lignin, resulting in a higher purity lignin. Higher 

purity lignins are required for higher value applications (Smolarski, 2012). The proposed process of 

enzymatic modification will occur in bioreactors to upgrade the lignin, where steps will be included to 

solubilise the Kraft and soda lignin for the enzyme to access the substrate (West et al., 2014). The treated 

lignin will be dried and stored (Gouveia, 2014). 
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5.3 Methods 

5.3.1 Techno-economic analysis steps 

The following process steps are followed when conducting a techno-economic analysis and they have 

been summarised in  

Figure 21 in order to construct a process flow diagram. The study’s experimental procedure and the 

literature associated with the proposed process need to be reviewed. The process will follow the steps 

of the laboratory scale experiments: lignin isolation, purification, enzymatic experiment and product 

drying. Once the process diagram is constructed, a mass balance will be determined such that the process 

equipment and utility consumption can be designed and calculated. The capital and operating cost of the 

proposed process, referred to as CAPEX and OPEX, will then be determined. Financial indicators and 

profitability analysis such as the total capital investment (TCI), net present value (NPV), and the minimum 

selling prices (MSPs) of the proposed processes will be determined. 

 

Figure 21: Techno-economic Analysis Process Steps 

 

 

5.3.2 Process Development 

5.3.2.1 Process Scenarios 

There are no existing plants in the South African industry to enzymatically upgrade technical lignin from 

pulping mill liquor sources. Two processes are proposed, the first for the experiment of black liquor from 

the Kraft and soda pulping processes and the second for the experiment of red liquor from the sulphite 

pulping process. 
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The following scenarios for Kraft/Soda process will be investigated: 

 Scenario 1: Kraft Black liquor, Pinus patula origin (KS-S-N) from Sappi, Ngodwana  

 Scenario 2: Kraft Black liquor, Eucalyptus grandis origin (KH-S-N) from Sappi, Ngodwana 

 Scenario 3: Soda Liquor, Sugarcane Bagasse origin (S-S-S) from Sappi, Stanger 

The following scenarios for Sulphite process will be investigated: 

 Scenario 4: Sodium sulphite liquor, Eucalyptus grandis origin (NaS-S-T) from Sappi, Tugela 

 Scenario 5: Sodium sulphite liquor, Mixed origin (NaS-M-Pr) from Mpact, Piet Retief 

 Scenario 6: Magnesium liquor, Eucalyptus grandis origin (MgO-S-S) from Sappi, Saiccor 

5.3.2.2 Process Description and Flow Diagrams 

The simulated processes include the preparation of liquor from the mill by drying or the isolation of the 

lignin, the enzymatic treatment of the lignin, and the post processing. Currently there are no industrial 

enzymatic modification processes in production to increase the molecular weight of these industrial 

lignins. The process flow diagrams were developed by modifying the current lignin extraction process and 

by scaling up the enzymatic reactions done in the study (Chapter 4). Two different processes were 

developed, one for the Kraft and soda lignin, and another for the lignosulphonates. The process flow 

diagrams are shown in Figure 22 and Figure 23. Both are batch processes. 

In the Kraft and soda lignin a proposed plant was designed from scaling up the experimental work in 

Chapter 4: The black liquor stream from the paper mills storage tanks will be pumped (P-100A/B) into a 

mixer (M-101) where water and sulphuric acid will be added (P-101A/B and P102A/B, respectively) and 

the blend will be mixed for approximately 24 hours. This forms part of the precipitation and isolation step 

of the lignin and is based on the experimental work done in Chapter 3.2.3. The mixture is pumped 

(P- 103A/B) to an industrial centrifuge (C-100) where the supernatant will be removed, the solids washed 

and centrifuged again and transported by a conveyor (CV-100A/B) to the reaction vessel (RX-100). The 

buffer preparation for the enzymatic reaction (Chapter 4.2.4) starts with sodium phosphate dibasic and 

sodium phosphate monobasic that are transported by conveyor (CV-101A/B and CV-102A/B, 

respectively), water is pumped (P-104A/B) to be mixed, and then pumped (P-105A.B) to the reaction 

vessel. As for this study, the solubility of lignin was overcome by initially dissolving the lignin in sodium 

hydroxide (Chapter 4.2.4), the same is proposed for the plant. Sodium hydroxide will be pumped 

(P- 106A/B) to the reaction vessel to initially dissolve the lignin and then the reaction buffer will be added. 

The addition of the commercial enzyme laccase will start the enzymatic modification experiment, where 

reaction will occur for a period of 24 hours under stirred conditions (Chapter 4.2.4). Once the reaction is 

completed, the pH of the mixture will be adjusted to denature the enzyme. The lignin mixture is pumped 

(P-108A/B) from the reaction vessel to a dryer (D-100) where the lignin will be dried at 50°C. The lignin is 

dried in a pan dryer and can be milled into a powder to be sold. Using the pan dryer, corresponds to the 

drying method of ovens used in Chapter 4.2.4. 

The plant proposed for the lignosulphonates as shown in Figure 23, was designed from scaling up the 

experimental work in Chapter 4: The liquor from the pulping mills storage tanks is pumped (P-100A/B) to 
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the reaction vessel (RX-100). The buffer preparation will be identical to the Kraft and soda proposed plant, 

in that sodium phosphate dibasic, sodium phosphate monobasic and water is mixed in M-100 and then 

pumped (P-102A/B) to the reaction vessel (Chapter 4.2.4). The commercial enzyme laccase is added, and 

the reaction will occur for a period of 24 hours under stirred conditions. Once the reaction is completed, 

the pH of the mixture will be adjusted to denature the enzyme. The lignin mixture is pumped (P-104A/B) 

to be dried in a pan dryer (D-101) at 50°C. Thereafter the lignin can be milled into a powder to be sold. 

The optimized process conditions from the results in Chapter 4.3.4 are summarized in Table 24. 

Table 24: The Optimized Process Conditions for each scenario to be tested 

Scenario Lignin 

Concentration 

(g/L) 

Enzyme 

Dosage 

(U/L) 

Temperature 

(°C) 

Reaction 

pH 

Mw Change 

(g/mol) 

Scenario 1 (KS-S-N) 15 5 60 6 13418-21425 

Scenario 2 (KH-S-N) 15 1 60 6 5607-21253 

Scenario 3 (S-S-S) 15 10 60 6 4845-16186 

Scenario 4 (NaS-S-T) 32.5 10.5 60 6 7625-11806 

Scenario 5 (NaS-M-PR) 32.5 10.5 60 6 6583-10033 

Scenario 6 (MgO-S-S) 32.5 20 60 6 6473-16557 

5.3.2.3 Process Assumptions 

As information regarding the production volumes of excess liquor, or liquor that is discarded by being 

pumped into the sea from the various plants are not reported, a confidential and alternative approach 

was used to design the plant.  

The plants were designed with the installation of the largest available jacketed bioreactor with a volume 

of 30m3 (Turton et al., 2009), hence, a production capacity of 30m3 in the bioreactor per day. This 

production capacity is small in relation to the volumes of black liquor being produced, however, as an 

initial investigation to compare the various lignins. This will be a batch process in the study where the 

reaction duration is 24 hours (Chapter 4.2.4). Including the shutdown, cleanup and start-up, the total 

duration of the enzymatic modification is 26 hours. 

Various key assumptions were made and have been summarized below: 

 Steady state operations; 

 The loss owing to transport, handling or raw materials is negligible; 

 The drier efficiency is at 80% (Turton et al., 2016); 

 All the lignin dissolves in the reaction vessel; 

 The recovery rate of lignin from the isolation is 60% (Govender, 2020); 

 The lab conditions can be replicated during scale-up to the industrial process. 
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The percentage solids and density of the liquor received from the various mills were assumed from 

literature and have been summarized in Table 24. 

 

Table 25: Pulping mill sources solids percentage and density of liquor obtained from literature 

Sample ID 
Percentage solids 

(%) 

Density 

(kg/m3) 
Reference 

KS-S-N 42 1300 
(Cardoso, de Oliveira and Passos, 2009; 

Nikolskaya et al., 2019) 

KH-S-N 39 1251 (Andreuccetti, Leite and D’Angelo, 2011) 

S-S-S 30 1100 (Mamaye et al., no date; Azadi et al., 2013) 

NaS-S-T 50 1380 
(Nicholas and Cheremisinoff, 2010; 

Polchem, 2020) 

NaS-M-PR 32 1035 (Joachimiak, Wojech and Wójciak, 2019) 

MgO-S-S 56 1480 (Marques et al., 2009) 
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Figure 22: Process flow diagram for the enzymatic modification of Kraft or Soda Lignin from the black liquor 
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Figure 23: Process flow diagram for the enzymatic modification of lignosulphonates from the spent liquor 
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5.3.3 Economic Evaluation 

5.3.3.1 Capital Cost Estimation 

The Capital Cost estimation (CAPEX) was gauged from methods described in Sinnott (2005) and Turton 

et  al. (2016). It is assumed that the capital investment, which is required to build the facility and the 

utility supply, has been made (Turton et al., 2016). The total of all the installed purchased costs is referred 

to as the new product production cost (NPP).  

The total direct costs (TDC) consist of the NPP, the warehouse cost (4% NPP), site development (9% NPP) 

and additional piping costs (4.5% NPP), which are calculated relative to the NPP. The total indirect costs 

consist of the field expenses (10% TDC), office construction (20% TDC), contingency (10% TDC) and other 

costs (10% TDC). The total capital investment (TCI) is determined by adding the fixed capital investment 

(FCI), which is the combination of the total direct and indirect costs with the working capital (5% FCI). 

To determine the NPP, the process equipment purchased costs and the installation costs were calculated. 

The process equipment purchased costs were determined by sizing the equipment from literature 

heuristics, and the costs determined from the size parameters according to Equation 4 (Sinnott, 2005). 

Equation 4:    𝐶𝑒 = 𝐶𝑆𝑛 

Where 

 Ce is the calculated purchased equipment cost, $ (Price for 2004) 

 S is the characteristic capacity or size parameter [Units displayed in Table 6.2 in Sinnot (2005)] 

 C is the cost constant [Table 6.2 in Sinnot (2005) on page 263] 

 n is the index number for the type of equipment 

The heuristics of the pumps were determined and the cost estimation made according to Equation 5 from 

Turton et al. (2016). 

Equation 5:   log10 𝐶𝑝
𝑜 =  𝐾1 +  𝐾2 log10(𝐴) +  𝐾3[log10(𝐴)]2 

Where 

 𝐶𝑝
𝑜 is the purchased cost of equipment (2001) 

               A is the capacity of size parameter of the equipment 

 K1, K2, K3 values are determined from Table A.1 in Turton et al. (2006) on page 953 

As the equipment was determined based on historical cost data, factors such as inflation need to be 

considered. This was calculated according to Sinnot (2005) as shown in Equation 6. 

Equation 6:  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑦𝑒𝑎𝑟 𝑐𝑜𝑠𝑡 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑦𝑒𝑎𝑟 𝑐𝑜𝑠𝑡 × 
𝐶𝐸𝑃𝐶𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑦𝑒𝑎𝑟

𝐶𝐸𝑃𝐶𝐼𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑦𝑒𝑎𝑟
 

The installation costs were determined according to Humbird et al. (2011), where the equipment 

purchased cost was multiplied by an installation factor.  
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5.3.3.2 Operation Cost Estimation 

The operating cost estimation (OPEX) includes the manufacturing costs, operating costs and general 

expenses. The plant was envisaged to operate for 8 000 hours in a year as was described by Chimphango 

(2020) for a valorization of water paper sludge.  

5.3.3.2.1 Raw Materials 

The determination of the cost of the raw materials was based on the required quantity for the plant’s 

production for a year and the cost of the raw materials. The costs of the various raw materials were 

determined from literature and is summarized in Table 26. Equation 7 summarizes the formula used to 

determine the cost of raw materials. 

Equation 7: 

𝑅𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 (
𝑘𝑔

ℎ𝑟
) × 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (ℎ𝑟) × 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡(

𝑅

𝑘𝑔
)  

Table 26: Proposed plants raw materials unit costs 

Raw Material Cost Reference 

Sodium phosphate dibasic R236/kg (Noah Technologies, 2020a) 

Sodium phosphate monobasic R145/kg (Noah Technologies, 2020b) 

Sodium hydroxide R46/kg (KCatz, 2020) 

Sulphuric Acid Industrial Grade R18/l (Reflecta, 2020) 

Laccase R1000/l (Merck, 2020) 

   

 

5.3.3.2.2 Utility Costs 

The utility costs are summarized in Table 27. 

Table 27: Utility Costs Summary 

Utility Cost Reference 

Electricity R0.84/kWh (Chimphango, 2020) 

Water R16.96/ton (Chimphango, 2020) 
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5.3.3.2.3 Labour Costs 

In order to determine the labour costs, the staff requirements for the proposed plant needed to be 

determined. The quantities of staff are based on other production processes (Chimphango, 2020) and 

through Turton et al. (2016). 

The shift operators were determined according to Equation 8 (Turton et al., 2016). 

Equation 8:   𝑁𝑂𝐿 =  (6.25 + 31.7(𝑃2) + 0.23𝑁𝑛𝑝)
0.5

 

Where 

 𝑁𝑂𝐿 is the number of operators per shift 

 P is the processing steps involved in handling of particle solids 

 𝑁𝑛𝑝 is the number of non-particulate steps 

The salary estimations were based on the average South Africa salary value sourced from Pay Scale 

South Africa. 

Position Required 
Quantity 

Total Salary/year 

Plant Manager 1 R620 415 

Plant Engineer 1 R717 491 

Maintenance Supervisor 1 R273 035 

Maintenance Technician 2 R351 540 

Laboratory Manager 1 R392 933 

Laboratory Analyst 1 R125 765 

Shift Supervisors 2 R758 542 

Shift Operators 12 R2 186 304 

Administrator 1 R540 489 

Accountant 1 R277 859 

Secretary 1 R129 248 

Total Salaries 24 R6 373 621 

 

The number of operators are six per shift for both designed plants. The operators will be split into two 

groups where six will operate in a 12-hour shift ever alternative day. 

5.3.3.2.4 Other Expenses 

The other expenses include the maintenance costs (3% NPP) and property tax (0.7% FCI) – these relations 

were obtained from Chimphango (2020). 

5.3.4 Market Research 

There are many lignin applications available that are run at a high volume and a resulting low cost, 

however, to find a higher value application for lignin, modifications are required (Bangalore Ashok et al., 

2018). In the pulping process, there are excess lignosulphonates produced, some of which are discarded 

or stored and mainly burnt in the recovery boilers a select few produce and sell their lignosulphonates to 
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various markets. If a high-value application can be determined for a modified lignin with a process plant 

which is economically feasible, it would be beneficial to the pulping industry (Vishtal and Kraslawski, 

2011).Especially since applying the lignin for alternative uses should cover the cost for an alternative fuel 

source to replace the lignin that are presently going to the recovery boilers. This alternative fuel source 

could be forest residues or excess biomass such as sawdust from nearby sawmills.  

 

As lignin is a renewable resource and a rich source of phenols, there are many applications where lignin 

can replace existing non-renewable sources (Gouveia, 2014). Figure 24 indicates the various applications 

in terms of their market value. An interesting application where a higher molecular weight lignin has 

shown promise, is where lignin is used for the production of carbon fibre (Wells, 2015). As some of the 

current possible applications require further processing or development, the minimum required selling 

price will be determined for the six scenarios. 

5.3.5 Cash Flow sheet Assumptions 

In the determination of the NPV and other indicators of economic profitability, the following assumptions 

were made and are summarised in Table 28. The assumptions are determined from an economic analysis 

done by Chimphango (2020). The plant will operate for 8 000 hours a year to include time allocated for 

planned and unexpected maintenance and plant downtown. The plant is assumed to take one year to 

construct and thereafter a phased production will occur over three years until the plant is running at full 

capacity in the 4th year. This will allow time for the logistics, markets and training adjustments. The plant 

is expected to operate for a period of 20 years. 

A straight line depreciation of the plant is to be done over a period of 5 years with an annual depreciation 

of 20%. The sales and operating costs are adjusted for an inflation rate of 4.13%. 

Figure 24: Depiction of the lignin products based on cost and volume redrawn from Cline and Smith (2017) 
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Table 28: Cash Flow Assumptions 

Assumption Value 

Annual Operating hours 8000h 

Scrap value 0 

Equity 100% 

Working Capital % of FCI 5% 

Depreciation Method Straight Line 

Annual Depreciation 20% 

Depreciation Period in years 5 

Construction Period 1 

Salvage value 0 

Ramp-up to full capacity:  

     1st Year 70% 

     2nd Year 80% 

     3rd Year 90% 

     4th Year 100% 

Exchange Rate R16.50/$ 

Inflation Rate 4.13% 

Income Tax Rate 28% 

Internal Rate of Return (IRR) 15% 

Minimum Set Hurdle rate 25% 

Cost Year for Analysis 2020 

Selling price of produced lignin 
*Determined from Industry professionals 

R1 622/ton  

  

5.3.6 Profitability Indicators 

The NPV and MRSP will be ascertained to determine the profitability of the proposed process. The NPV 

indicated the cumulative discounted cash flow analysis of the plant at the end of its lifespan. The MRSP 

indicates the minimum selling price of the lignin to provide an acceptable return to the investor (Turton 

et al., 2016).  
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5.4 Results and Discussion 

5.4.1 Plant Capacity 

The annual production capacity of the proposed plants are summarised in Table 29, which was 

determined from mass balances. It was decided that each plant will run one bioreactor (30m3) with a 

residence time of 26 hours, thus the spent liquor feed amount would be determined from the liquors’ 

properties (solids content) and the efficiencies and recovery rates of the processes. The solids contents 

of the various liquors were determined from literature sources.  

Table 29: Plant Production Capacity 

 
Unit Scenario 1 

KS-S-N 
Scenario 2 

KH-S-N 
Scenario 3 

S-S-S 
Scenario 4 

NaS-S-T 
Scenario 5 
NaS-M-Pr 

Scenario 6 
MgO-S-S 

Feedstock 
       

   Feed liquor ton/day 1.97 2.12 2.76 2.69 4.20 2.40 

    Solids Content % 42a 39b 30c 50d 32e 50f 

    Sodium  
       phosphate 
       dibasic 

kg/day 110 110 110 110 110 110 

    Sodium  
       phosphate 
       monobasic 

kg/day 357 357 357 357 357 357 

    Sodium   
        hydroxide 

kg/day 1.20 1.20 1.20 - - - 

    Sulphuric Acid l/day 4 140 4 140 4 140 - - - 

    Water l/day 170 550 170 550 170 550 24 690 24 690 24 690 

    Laccase  l/day 15 3 30 32 32 60 

Product 
       

    Treated lignin Dry 
ton/day 

0.40 0.40 0.40 0.86 0.86 0.86 

a- (Cardoso, de Oliveira and Passos, 2009; Nikolskaya et al., 2019) 

b- (Andreuccetti, Leite and D’Angelo, 2011) 

c-(Mamaye et al., no date) 

d-(Nicholas and Cheremisinoff, 2010; Polchem, 2020) 

e-(Joachimiak, Wojech and Wójciak, 2019) 

f-(Marques et al., 2009) 

 

In the lab-scale experiments, the concentration of the purified lignins was limited, owing to their 

insolubility at the lower pH values. As the lignosulphonates are soluble at higher lignin concentrations 

this could be investigated resulting in the optimum concentration conditions higher than the purified 

lignins, therefore the dry tonnes produced per day is higher for the lignosulphonates than for the Kraft 

and soda lignin.  
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5.4.2 CAPEX and OPEX 

5.4.2.1 CAPEX 

The total capital investment is summarised in Table 30. Of the various proposed process scenarios the 

KS-S-N required the highest TCI of R 59.01 million, where the MgO-S-S proposed process required the 

least, R 43 million. There is a big difference in FCI between the Kraft/soda proposed process and  the 

lignosulphonate proposed process, this is because of the isolation process required for the Kraft and soda 

plant, which adds more equipment requirements. The breakdown of the total installation cost is 

summarised in Figure 25. The cost of the bioreactors contributed most to the total installation cost for all 

the scenarios. 

Table 30: Total capital investment for the various proposed scenarios 

Total Capital 
Investment (TCI)  
(R million/year) 

Scenario 1 
KS-S-N 

Scenario 2 
KH-S-N 

Scenario 3 
S-S-S 

Scenario 4 
NaS-S-T 

Scenario 5 
NaS-M-Pr 

Scenario 6 
MgO-S-S 

Total Direct Costs (TDC) 35.13 36.51 34.82 26.37 26.36 25.60 

   Total Installation Cost 29.88 29.76 29.62 22.44 22.42 21.77 

   Warehouse (4% NPP) 1.20 1.19 1.18 0.90 0.90 0.87 

   Site Development   
   (9% NPP) 

2.69 2.68 2.67 2.02 2.02 1.96 

   Additional Piping  
   (4.5% NPP) 

1.36 1.35 1.35 1.02 1.02 0.99 

Total Indirect Costs 
(60% TDC) 

21.08 20.99 20.89 15.82 15.82 15.36 

  
     

  

Fixed Capital 
Investment (FCI) 

56.20 55.97 55.71 42.20 42.18 40.95 

Working Capital  
(5% FCI) 

2.81 2.8 2.79 2.11 2.11 2.05 

Total Capital 
Investment (TCI) 

59.01 58.50 58.50 44.31 44.28 43.00 
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Figure 25: Distribution of installation cost for the TCI 

5.4.2.2 OPEX 

The total operating costs are summarised in Table 31 for the various scenarios. The scenario with the 

highest operating costs is scenario, S-S-S (R79.2 million) and the lowest operating costs is Scenario 4 and 

5 – NaS-S-T and NaS-M-Pr, respectively (R54.86 million). The difference is mainly as a result of the cost. 

The cost of the isolation of the lignin in the soda and Kraft designed process (Scenarios 1-3) is also 

expensive, owing to the high volumes of sulphuric acid and the corresponding costs required. The 

required buffer chemicals are the same for all the processes, as the same reaction volume was processed 

every day and the pH of the buffer solution is the same for all six scenarios. The contribution of each of 

the materials to the total operating costs is summarised in Figure 26. The treatment of the toxic waste 

from the proposed plants were not included in the OPEX and should be considered in further studies. 
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Table 31: Total operating costs for the various proposed scenarios 

Total Operating Costs 
(TOC) (R million/year) 

Scenario 1 
KS-S-N 

Scenario 2 
KH-S-N 

Scenario 3 
S-S-S 

Scenario 4 
NaS-S-T 

Scenario 5 
NaS-M-Pr 

Scenario 6 
MgO-S-S 

Raw Materials 
      

    Sodium phosphate  
     dibasic 

8.0 8.0 8.0 8.0 8.0 8.0 

    Sodium phosphate 
    monobasic 

15.9 15.9 15.9 15.9 15.9 15.9 

    Sodium hydroxide 0.017 0.017 0.017 - - - 

    Sulphuric Acid  
    Industrial Grade 

22.9 22.9 22.9 - - - 

    Laccase 4.6 0.9 9.2 9.69 9.69 18.46 

    Water 1 1 1 0.13 0.13 0.13 

Utilities 
      

    Electricity 12.67 12.68 12.69 12.29 12.29 12.29 

Total Labour Costs 6.37 6.37 6.37 6.37 6.37 6.37 

Maintenance  
(5% of FCI) 

2.81 2.92 2.79 2.11 2.11 2.05 

Property Insurance 
and Tax (0.7% of FCI) 

0.39 0.41 0.39 0.30 0.30 2.87 

Production Cost 74.6 71.1 79.2 54.8 54.8 66.1 
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Figure 26: Distribution of the variable operating costs for all the scenarios 

5.4.3 Financial Performance of Proposed Plant  

The results from the NPV and MRSP analysis of the various scenarios are summarised in Table 32. It is 

noted that the NPV for all six simulated scenarios are negative. Thus, none of the proposed scenarios are 

economically feasible. However, the most ‘profitable’ scenario corresponds to scenarios 4 and 5 – NaS-

S-T and NaS-M-PR, respectively, since these scenarios have the least negative NPV (R-57 800 000). The 

negative NPV is most probably due to the low income generated. Additionally, the operating costs are 

much more than the income generated, resulting in no profit every year. Thus, the minimum required 

selling price of the lignin was determined and summarised in Table 32.  

Table 32: Probability indicators for the various process plant scenarios 

Probability Indicators  

 

MRSP 

(R/tonne) 

NPV 

(R million) 

Scenario 1 KS-H-N 735 965 -397.5 

Scenario 2 KH-S-N 705 126 -372.3 

Scenario 3 S-S-S 772 546 -428.0 

Scenario 4 NaS-S-T 250 432 -57.8 

Scenario 5 NaS-M-PR 250 421 -57.8 

Scenario 6 MgO-S-S 291 780 -132.4 
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NaS-M-PR and NaS-S-T showed the lowest MRSPs of R250 421 and R 250 432 per tonne, respectively. 
These are nearly identical, owing to the similarity in the process and the optimum operating conditions. 
MgO-S-S achieved a higher MRSP as more enzymes are required.   
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6 CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

This study investigates the enzymatic valorisation by repolymerising various lignins derived from 

industrial-spent pulping liquor. The liquor investigated was obtained from various pulping mills in South 

Africa to give insight into an area of study that was not commonly investigated. The purpose of this study 

was to compare the various liquors available in SA to determine which showed the greatest potential to 

be repolymerised to a higher molecular weight lignin by enzyme modification, to be used for higher-value 

applications. This would then enable further investigation into the lignin and enzymes to eventually 

implement them industrially. Two enzymes, laccase and lignin peroxidase were investigated for the 

modifications at various conditions. A handful of studies have investigated the effect enzymes have on 

lignin and an even less effect on industrial lignins.  

6.1 Conclusions 

The overall aim of this study was to investigate the potential valorisation of the enzymatic modification 

of industrial lignin, specifically by increasing the molecular weight of the lignin. 

The following conclusions can be drawn from the results determined in Chapter 3 regarding the 

characterisations of the various industrial lignins: 

The compositional results of lignin showed that the Kraft and soda lignin had the lowest ash contents of 

below ≤ 1.4%. This is mainly attributed to the isolation and purification steps done before the 

characterisation. The lignosulphonates could not be purified, owing to their high solubility and higher ash 

contents that were observed between 17% and 32%, indicating higher impurities in the lignosulphonates. 

These higher impurities could hinder the action of the enzymes. 

The structural analysis included determining the FT-IR spectra of the lignin samples. Broad spectra were 

observed for all the lignin at 3 400 cm-1, with MgO-S-S and S-S-S obtaining the highest intensities. This 

band is allocated to the hydroxyl groups, which influence the reactivity of lignin. These lignins are 

expected to perform well as the modification enzymes oxidise the phenolic groups to form radicals.  

The results from the phenolic content analysis were comparable to the FT-IR spectra with ranges between 

0.95 to 2.23 mmol/g reported. The GPC analysis showed a range of molecular weights between 5 657 to 

12 156 g/mol, where the highest molecular weight was observed for KS-S-N, while KH-S-N and S-S-S lignin 

had the lowest molecular weight. As KS-S-NT has a higher guaiacyl monomer content and more 

condensed C-C bonds than hardwood and non-wood it results in a higher molecular weight. It is expected 

that a higher molecular weight lignin is more thermally stable. This was confirmed by the TGA analysis, 

where KS-S-N was found to be thermally the most stable with a degradation temperature of 434°C. The 

lignosulphonates had low degradation temperatures, between 276°C and 307°C, owing to the inorganic 

content causing a catalytic effect and resulting in a lower degradation temperature. 

 

The following conclusions can be drawn from the results in Chapter 4 on the enzymatic modification of 

lignin: 
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The results showed that the enzymes laccase and LiP were able to repolymerise the purified lignin and 

lignosulphonates over a 24-hour period. The highest molecular weight increase was found when S-S-S 

was treated with LiP at a dosage of 2 U/g lignin and a 5.8-fold molecular weight increase was observed. 

As was predicted in Chapter 3, the molecular weight increase of NaS-M-PR was lower than the other 

lignosulphonates, owing to the high impurities present. S-S-S achieved the highest molecular weight 

increase which corresponds to Chapter 3, where it had the highest intensity at the peak assigned to the 

phenolic and aliphatic groups. 

Lower molecular weight lignin was found to be more reactive in comparison to higher molecular weight 

lignin. The lower molecular weight lignin allows for a more efficient interaction with the enzyme. The 

syringyl units are present in hardwoods and grasses that aid in the repolymerisation action, causing these 

lignins to perform better than softwoods. A drop in the reaction rate after 4 or 10 hours was because of 

the micelle-like structure of lignosulphonates, where the enzyme only has access to the phenolic end 

groups on the surface of the micelle. 

The relationship between the decrease in the phenolic content and the increase in the molecular weight 

was observed only in all the laccase enzymatic modifications. There is a minimum enzyme dosage for LiP 

to induce repolymerisation. At dosages below 0.067 U/g lignin, there is a high possibility of 

depolymerisation by LiP, instead of repolymerisation. This was further proven by the phenolic content 

data which showed that at low LiP dosages (0.067 U/g and lower), an increase in phenolic end groups 

was observed indicating that depolymerisation occurred. Other experiments showed an increase in 

molecular weight, while an increase in phenolic content was found for the same dosage of LiP. This 

indicated that repolymerisation occurred by LiP, oxidising the non-phenolic groups. 

It was found that for laccase a high lignin concentration to enzyme dosage ratio causes the inhibition of 

the enzyme. 

Based on the results from the techno-economic analysis in Chapter 5, the following conclusions could be 

drawn: 

Using the lab-scale experimental setup, a process was created for the enzymatic modification of lignins. 

The optimum enzyme dosages and lignin concentrations determined in Chapter 4, were used in the 

proposed process. Two processes were designed, one for the soda and Kraft lignin which included a 

purification step, and the other for the lignosulphonates without the purification step.  

It was found that all the scenarios investigated resulted in negative NPV values, indicating that the 

proposed process is not economically feasible. The MRSPs were determined and for the investor to 

receive a return on investment the MRSP for NaS-SM-PR is R250 421.  

6.2 Recommendations 

As all the lignin achieved repolymerisation at almost all of the enzyme dosages, further optimisations are 

recommended to improve the process to become economically feasible. Investigations that are 

recommended: decreasing the reaction time of the enzymatic reactions which could be beneficial; the 
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reuse of the enzymes used in the modification as an area where costs can be saved; methods such as the 

immobilization of the enzymes; and the non-phenolic groups which can be repolymerised by LiP. 

Investigation into the conditions which cause the depolymerisation or repolymerisation action of the 

enzymes would also be beneficial. 

Further study should be undertaken into solubilising the Kraft and soda lignin at higher concentrations 

and a lower pH, which will aid the enzyme in accessing the lignin. The use of surfactants to achieve this 

could be a possible solution. Higher lignin concentrations are beneficial to produce the treated lignin on 

a larger scale. Batch pilot plant scale reactions should be carried out to determine the changes in the 

outcomes owing to scale up. If the solubility issue is not resolved, higher concentrations of the 

lignosulphonates should be investigated. This would be very beneficial for the techno-economic analysis. 

Investigation into alternative purification processes for the Kraft and soda lignin is required – a more 

environmentally and economically friendly alternative.  

In order to apply these treated lignins to higher value applications, the use of these enzymatically-treated 

lignins should be investigated in various fields, such as carbon fibres, cement additives or polymer blends.  

(Gonçalves, Silva and Cavaco-Paulo, 2015) 
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APPENDIX A: ENZYMATIC EXPERIMENT  

6.3 Enzymatic reaction Results 

6.3.1 KS-S-N Enzyme modification 

 

Figure 27: Molecular weight and phenolic content analysis of KS-S-N during enzymatic experiment 

 

 Figure 28: FT-IR Spectra of KS-S-N before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin 
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6.3.2 KH-S-N Enzyme modification 

 

Figure 30: Molecular weight and phenolic content analysis of KH-S-N during enzymatic experiment 

 

Figure 29: Rate of degradation of KS-S-N obtained before and after 24-hour enzymatic experiment 
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Figure 31: FT-IR Spectra of KH-S-N before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin 

 

Figure 32: Rate of degradation of KH-S-N obtained before and after 24-hour enzymatic experiment 
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6.3.3 S-S-S Enzyme modification 

 

Figure 33: Molecular weight and phenolic content analysis of S-S-S during enzymatic experiment 

.  

 

Figure 34: FT-IR Spectra of S-S-S before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin 
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Figure 35: Rate of degradation of S-S-S obtained before and after 24-hour enzymatic experiment 

6.3.4 NaS-S-T Enzyme modification 

 

Figure 36: Molecular weight and phenolic content analysis of NaS-S-T during the laccase enzymatic 

experiment 
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Figure 37: Molecular weight and phenolic content analysis of NaS-S-T during the LiP enzymatic 

experiment 

 

 

Figure 38: FT-IR Spectra of NaS-S-T before and after 24-hour enzymatic experiment – insert enlarges the 

'fingerprint' region of the lignin 
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Figure 39: Rate of degradation of NaS-S-T obtained before and after 24-hour enzymatic experiment 

6.3.5 NaS-M-PR Enzyme modification 

 

Figure 40: Molecular weight and phenolic content analysis of NaS-M-PR during the laccase enzymatic 

experiment 
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Figure 41: Molecular weight and phenolic content analysis of NaS-M-PR during the LiP enzymatic 

experiment 

 

Figure 42: FT-IR Spectra of NaS-M-PR before and after 24-hour enzymatic experiment – insert enlarges 

the 'fingerprint' region of the lignin 
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Figure 43: Rate of degradation of NaS-M-PR obtained before and after 24-hour enzymatic experiment 

6.3.6 MgO-S-S Enzyme modification 

 

Figure 44: Molecular weight and phenolic content analysis of MgO-S-T during the laccase enzymatic 

experiment 
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Figure 45: Molecular weight and phenolic content analysis of MgO-S-T during the LiP enzymatic 

experiment 

 

Figure 46: FT-IR Spectra of MgO-S-S before and after 24-hour enzymatic experiment – 

insert enlarges the 'fingerprint' region of the lignin 
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Figure 47: Rate of degradation of MgO-S-S obtained before and after 24-hour enzymatic experiment 

6.3.7 Summary Enzymatic reaction results 

Table 33: Summarizing the Molecular weight fold increase and the phenolic content decreases after a 24-

hour enzyme experiment of the various lignosulphonates 

Sample ID 

Molecular weight fold increase after 24hr experiment 

0.02 
U/g 

0.07 
U/g 

0.178 
U/g 

0.255 
U/g 

0.32 
U/g 

0.40 U/g 0.442 
U/g 

0.469 
U/g 

1.33 
U/g 

NaS-S-T Laccase 1.84 1.54 1.87 2.21 1.55 2.02 1.87 2.15 2.42 

NaS-S-T LiP 2.27 2.63 3.46 3.85 3.50 4.34 3.48 3.83 3.44 

NaS-M-PR Laccase 1.69 1.28 1.98 1.72 1.52 1.66 2.12 1.94 1.70 

NaS-M-PR LiP 2.05 1.89 1.89 1.86 1.88 2.03 1.89 1.88 1.89 

MgO-S-S Laccase 0.83 1.88 2.18 2.17 1.92 1.97 2.06 2.12 1.21 

MgO-S-S LiP 1.54 1.62 2.09 2.23 2.22 2.38 2.41 2.56 2.79 

 Phenolic content percentage decrease after 24hr experiment 

NaS-S-T Laccase 41.7% 69.8% 73.2% 62.4% 63.1% 55.5% 76.1% 75.9% 74.5% 

NaS-S-T LiP 14.4% 42.6% 52.0% 54.2% 50.8% 47.9% 53.9% 51.7% 50.4% 

NaS-M-PR Laccase 66.7% 77.6% 77.1% 69.3% 77.4% 72.5% 74.8% 77.8% 77.7% 

NaS-M-PR LiP 8.3% 6.1% -28.8% 14.9% 14.9% 8.3% 12.5% 14.7% 1.1% 

MgO-S-S Laccase 3.3% 63.2% 58.3% 48.8% 45.6% 27.7% 72.8% 76.3% 80.4% 

MgO-S-S LiP -1.2% 5.9% 13.9% -1.5% 8.8% 18.9% 24% 18.0% 44.5% 
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Table 34: Elemental analysis and estimated empirical formulae after the 24-hour enzymatic experiment 

 
Elemental Analysis after 24-hour 

enzyme experiment 

Estimated Empirical Formula from Elemental 

Analysis 

Sample ID C  

[%] 

H  

[%] 

N  

[%] 

S  

[%] 

O [%] T=0 T=24 

KS-S-N Laccase 31.50 4.68 1.10 1.68 61.05 
C9H10.81N0.01S0.23O3.38 

C9H16.03N0.27S0.18O19.84 

KS-S-N LiP 40.39 6.07 0.32 1.17 52.05 C9H16.23N0.06S0.10O15.13 

KH-S-N Laccase 22.64 4.13 0.99 1.42 70.82 
C9H10.23N0.01S0.23O3.54 

C9H19.68N0.34S0.21O27.99 

KH-S-N LiP 44.47 5.96 0.26 1.48 47.83 C9H14.47N0.05S0.11O13.70 

S-S-S Laccase 30.57 4.75 1.10 0.61 62.98 
C9H13N0.01S0.07O5.06 

C9H16.77N0.28S0.07O20.45 

S-S-S LiP 42.27 5.79 0.43 0.82 50.69 C9H14.80N0.08S0.07O14.47 

NaS-S-T Laccase 25.51 4.41 0.46 4.52 65.11 
C9H16.50N0.03S0.70O12.03 

C9H18.65N0.14S0.60O24.69 

NaS-S-T LiP 27.52 5.77 0.17 3.63 62.91 C9H22.66N0.05S0.45O22.52 

NaS-M-PR Laccase 18.24 3.24 0.47 6.23 71.83 
C9H16.44N0.03S1.41O17.45 

C9H19.18N0.20S1.15O35.16 

NaS-M-PR LiP 22.96 4.11 0.15 5.89 66.89 C9H19.35N0.05S0.87O27.57 

MgO-S-S Laccase 29.04 4.97 0.46 3.96 61.57 
C9H17.82N0.02S0.56O9.70 

C9H18.48N0.12S0.46O21.49 

MgO-S-S LiP 37.48 5.17 0.22 4.54 52.59 C9H14.90N0.05S0.41O16.49 
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6.4 Statistical analysis of enzymatic modification results 

6.4.1 KS-S-N Statistical Results 

 

Figure 48: Scatterplot analysis of phenolic content of KS-S-N during the laccase enzymatic experiment 

 

 

Figure 49: Scatterplot analysis of molecular weight of KS-S-N during laccase enzymatic experiment 
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Figure 50: KS-S-N LSD test diagrams 

 

6.4.2 KH-S-N Statistical Results 

Figure 51: Scatterplot analysis of phenolic content of KH-S-N during the laccase enzymatic experiment 
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Figure 52: Scatterplot analysis of molecular weight of KH-S-N during laccase enzymatic experiment 

 

Figure 53: KH-S-N LSD test diagrams 
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6.4.3 S-S-S Statistical Results 

 

Figure 54: Scatterplot analysis of phenolic content of S-S-S during the laccase enzymatic experiment 

 

Figure 55: Scatterplot analysis of molecular weight of S-S-S during laccase enzymatic experiment 

Stellenbosch University  https://scholar.sun.ac.za



 

104 

 

Figure 56: S-S-S LSD test diagrams 
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6.4.4 NaS-S-T Statistical Results 

 

Figure 57: Desirability surface plots for optimum values for the maximization of the molecular weights 

and the minimization of the phenolic content of NaS-S-T 

 

Figure 58: NaS-S-T LSD test diagrams 
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6.4.5 NaS-M-PR Statistical Results 

 

Figure 59: Desirability surface plots for optimum values for the maximization of the molecular weights 

and the minimization of the phenolic content of NaS-M-PR 

 

Figure 60: NaS-M-PR LSD test diagrams 
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6.4.6 MgO-S-S Statistical Results 

 

Figure 61: Desirability surface plots for optimum values for the maximization of the molecular weights 

and the minimization of the phenolic content of MgO-S-S 

 

Figure 62: MgO-S-S LSD test diagrams 
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7 APPENDIX B: TECHNO-ECONOMIC ANALYSIS 

7.1 Equipment Sizing and Specifications 

Table 35: Equipment Sizing for all proposed plant Scenarios 

Equipment Sizing and Specifications             

  Scenario 1 KS-S-
N 

Scenario 2 KH-S-
N  

Scenario 3 
S-S-S 

Scenario 4 
NaS-S-T 

Scenario 5 NaS-
M-Pr 

Scenario 6 
MgO-S-S 

Pumps 
     

  

 P-100A/B Kraft liquor Kraft liquor Soda Liquor Na Sulphite 
liquor 

Na Sulphite 
liquor 

Mg Sulphite 
liquor 

   Type Centrifugal Centrifugal Centrifugal Centrifugal Centrifugal Centrifugal 

   Capacity (m3/hr) 0.057 0.064 0.095 0.079 0.142 0.257 

   Duty (kW) 0.1196 0.1288 0.1675 0.1758 0.2355 0.1570 

   Inlet flow (kg/hr) 74 80 104 109 146 98 

   Head (m) 10 10 10 10 10 10 

P-101A/B Water Water Water Water Water Water 

   Type 
     

  

   Capacity (m3/hr) 
     

  

   Duty (kW) 9.7711 9.7711 9.7711 0.8270 0.8270 0.8270 

   Inlet flow (m3/hr) 6.1 6.1 6.1 1.03 1.03 1.03 

   Head (m) 10 10 10 5 5 5 

P-102A/B Sulphuric Acid  Sulphuric Acid  Sulphuric 
Acid  

Phosphate 
Buffer 

Phosphate 
Buffer 

Phosphate 
Buffer 

   Type 
     

  

   Capacity (m3/hr) 
     

  

   Duty (kW) 0.2604 0.2604 0.2604 1.0048 1.0048 1.0048 

   Inlet flow (m3/hr) 0.17 0.17 0.17 1.25 1.25 1.25 

   Head (m) 5 5 5 5 5 5 

P-103A/B Mixed H2S04 
+liq 

Mixed H2S04 
+liq 

Mixed 
H2S04 +liq 

Laccase Laccase Laccase 

   Type 
     

  

   Capacity (m3/hr) 
     

  

   Duty (kW) 19.0438 19.0644 19.1569 0.0010 0.0010 0.0018 

   Inlet flow (m3/hr) 6.31 6.31 6.34 0.001 0.001 0.002 

   Head (m) 10 10 10 5 5 5 

P-104A/B Water Water Water Treated lignin  Treated lignin  Treated lignin  

   Type 
     

  

   Capacity (m3/hr) 
     

  

   Duty (kW) 0.8270 0.8270 0.8270 2.2147 2.2046 2.2147 

   Inlet flow (m3/hr) 1.03 1.03 1.03 
  

  

   Inlet flow (kg/hr) 
   

1377.5 1371.25 1377.5 

   Head (m) 5 5 5 10 10 10 

P-105A/B Phosphate 
Buffer 

Phosphate 
Buffer 

Phosphate Buffer 
 

  

  
     

  

  
     

  

   Type 
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   Capacity (m3/hr) 
     

  

   Duty (kW) 1.0048 1.0048 1.0048 
  

  

   Inlet flow (m3/hr) 1.25 1.25 1.25 
  

  

   Head (m) 5 5 5 
  

  

P-106A/B Sodium 
hydroxide Soln 

Sodium 
hydroxide Soln 

Sodium hydroxide Soln 
 

  

   Type 
     

  

   Capacity (m3/hr) 
     

  

   Duty (kW) 0.0010 0.0010 0.0010 
  

  

   Inlet flow (kg/hr) 0.00125 0.00125 0.00125 
  

  

   Head (m) 5 5 5 
  

  

P-107A/B Laccase Laccase Laccase 
  

  

   Type 
     

  

   Capacity (m3/hr) 
     

  

   Duty (kW) 0.0005 0.0001 0.0010 
  

  

   Inlet flow (kg/hr) 0.001 0.000 0.001 
  

  

   Head (m) 5 5 5 
  

  

P-108A/B Treated Lignin Treated Lignin Treated 
Lignin 

  
  

   Type 
     

  

   Capacity (m3/hr) 
     

  

   Duty (kW) 2.1765 2.1765 2.1765 
  

  

   Inlet flow (kg/hr) 1354 1354 1354 
  

  

   Head (m) 10 10 10 
  

  

  
     

  

Belt Conveyors 
     

  

CV-100A/B 
     

  

   Mass Flowrate (ton/day) 0.496035 0.496035 0.496035 1.157415 0.99207 1.157415 

   Length (m) 3 3 3 3 3 3 

   Width (m) 0.5 0.5 0.5 0.5 0.5 0.5 

   Power (kW) 5.5 5.5 5.5 5.5 5.5 5.5 

CV-101A/B 
     

  

   Mass Flowrate (kg/hr) 110 110 110 110 110 110 

   Length (m) 3 3 3 3 3 3 

   Width (m) 0.5 0.5 0.5 0.5 0.5 0.5 

   Power (kW) 5.5 5.5 5.5 5.5 5.5   

CV-102A/B 
     

  

   Mass Flowrate (kg/hr) 357 357 357 357 357 357 

   Length (m) 3 3 3 3 3 3 

   Width (m) 0.5 0.5 0.5 0.5 0.5 0.5 

   Power (kW) 5.5 5.5 5.5 5.5 5.5 5.5 

  
     

  

Centrifuge 
     

  

C-100 
     

  

   Orientation Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal 

   Diameter (m) 1 1 1 1 1 1 
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Mixers 
     

  

M-100 
     

  

   Capacity (m3) 100 100 100 30 30 30 

   Agitator Propeller Propeller Propeller Propeller Propeller Propeller 

    Residence time (hr.) 24 24 24 - - - 

M-101 
     

  

   Capacity (m3) 30 30 30 - - - 

   Agitator Propeller Propeller Propeller - - - 

  
     

  

Dryers 
     

  

D-100 
     

  

   Type Pan Pan Pan Pan Pan Pan 

    Size (m2) 10 10 10 10 10 10 

D-101 - - - 
  

  

   Type - - - Pan Pan Pan 

    Size (m2) - - - 13 14 15 

  
     

  

Reaction vessel 
     

  

RX-100 
     

  

   Capacity (m3) 30 30 30 30 30 30 

   Agitated Propeller Propeller Propeller Propeller Propeller Propeller 

   Residence time (hr.) 4 4 4 4 4 4 

  
     

  

Storage tanks 
     

  

Feed Liquor  
     

  

   Orientation Vertical Vertical Vertical Vertical Vertical Vertical 

   Capacity (m3) 3 3 3 3 3 3 

   Removed Flow rate (m3/day) 1.37 1.54 2.27 1.90 3.40 1.58 

   Residence time (hr.) 24 24 24 24 24 24 

   Material of Construction Carbon Steel Carbon Steel Carbon 
Steel 

Carbon Steel Carbon Steel Carbon Steel 

Water Tank 
     

  

   Orientation Vertical Vertical Vertical Vertical Vertical Vertical 

   Capacity (m3) 150 150 150 50 50 50 

   Removed Flow rate (l/day) 170.55 170.55 170.55 24.69 24.69 24.69 

   Residence time (hr.) 24 24 24 24 24 24 

   Material of Construction Carbon Steel Carbon Steel Carbon 
Steel 

Carbon Steel Carbon Steel Carbon Steel 

Sulphuric Acid 
     

  

   Orientation Vertical Closed Vertical Closed Vertical 
Closed 

- - - 

   Capacity (m3) 5 5 5 - - - 

   Removed Flow rate (l/day) 4140.00 4140.00 4140.00 - - - 

   Residence time (hr) 24 24 24 - - - 

   Material of Construction Carbon Steel Carbon Steel Carbon 
Steel 

- - - 

   Quantity  2 2 2 (Required as a backup)   

Laccase Storage 
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   Orientation Vertical Closed Vertical Closed Vertical 
Closed 

Vertical 
Closed 

Vertical Closed Vertical Closed 

   Capacity (m3) 3 3 3 3 3 3 

   Removed Flow rate (l/day) 15 3 30 30 30 54 

   Residence time (hr) 24 24 24 24 24 24 

   Material of Construction Carbon Steel Carbon Steel Carbon 
Steel 

Carbon Steel Carbon Steel Carbon Steel 

Sodium phosphate dibasic storage 
     

  

   Orientation Vertical Vertical Vertical Vertical Vertical Vertical 

   Capacity (m3) 3 3 3 3 3 3 

   Removed Flow rate (kg/day) 110 110 110 110 110 110 

   Residence time (hr) 24 24 24 24 24 24 

   Material of Construction Carbon Steel Carbon Steel Carbon 
Steel 

Carbon Steel Carbon Steel Carbon Steel 

Sodium phosphate monobasic storage 
     

  

   Orientation Vertical Vertical Vertical Vertical Vertical Vertical 

   Capacity (m3) 3 3 3 3 3 3 

   Removed Flow rate (kg/day) 357 357 357 357 357 357 

   Residence time (hr) 24 24 24 24 24 24 

   Material of Construction Carbon Steel Carbon Steel Carbon 
Steel 

Carbon Steel Carbon Steel Carbon Steel 

Sodium hydroxide Storage 
     

  

   Orientation Vertical Vertical Vertical - - - 

   Capacity (m3) 1 1 1 - - - 

   Removed Flow rate (kg/day) 1 1 1 - - - 

   Residence time (hr) 24 24 24 - - - 

   Material of Construction Carbon Steel Carbon Steel Carbon 
Steel 

- - - 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



   

112 

7.2 Equipment Costs 

Table 36: Equipment costing for all processes plant scenarios 

Equipment Costs Scenario 1 KS-S-N Scenario 2 KH-S-N  Scenario 3 S-S-S 

Equipment Purchase Cost 
in 2004 

Purchase Cost 
in 2020 

Installation 
Cost 2020 

Purchase Cost 
in 2004 

Purchase Cost 
in 2020 

Installation 
Cost 2020 

Purchase Cost 
in 2004 

Purchase Cost 
in 2020 

Installation 
Cost 2020 

Belt conveyors 
        

  

   CV-100A/B R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 

   CV-101A/B R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 

   CV-102A/B R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 

Centrifuges 
        

  

   C-100 R957 000 R1 293 243.24 R2 974 459 R957 000 R1 293 243.24 R2 974 459 R957 000 R1 293 243.24 R2 974 459 

Reaction Vessel 
        

  

   RX-100 R2 363 471 R3 193 879.18 R6 387 758 R2 363 471 R3 193 879.18 R6 387 758 R2 363 471 R3 193 879.18 R6 387 758 

Mixers (Agitators and Tank) 
        

  

   M-101 R828 472 R1 119 556.92 R1 791 291 R828 472 R1 119 556.92 R1 791 291 R828 472 R1 119 556.92 R1 791 291 

   M-102 R438 361 R592 379.53 R947 807 R438 361 R592 379.53 R947 807 R438 361 R592 379.53 R947 807 

Pan Dryers 
    

R0.00 
   

  

   D-100 R284 430 R384 364.22 R614 983 R284 430 R384 364.22 R614 983 R284 430 R384 364.22 R614 983 

Storage Tanks 
        

  

   Liquor feed Tank R76 554 R103 451.36 R268 974 R76 554 R103 451.36 R268 974 R76 554 R103 451.36 R268 974 

   Water Tank R967 245 R1 307 088.45 R3 398 430 R967 245 R1 307 088.45 R3 398 430 R967 245 R1 307 088.45 R3 398 430 

   Sulphuric Acid Tank R251 359 R339 673.93 R883 152 R251 359 R339 673.93 R883 152 R251 359 R339 673.93 R883 152 

   Laccase R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 

   Sodium phosphate dibasic R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 

   Sodium phosphate monobasic R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 

   Sodium hydroxide R47 850 R64 662.16 R168 122 R47 850 R64 662.16 R168 122 R47 850 R64 662.16 R168 122 

Pumps 
        

  

   P-100A/B R48 706 R65 819.45 R151 385 R47 930 R64 769.77 R148 970 R45 448 R61 416.22 R141 257 
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   P-101A/B R64 605 R87 304.25 R200 800 R64 605 R87 304.25 R200 800 R64 605 R87 304.25 R200 800 

   P-102A/B R42 430 R57 338.38 R131 878 R45 203 R61 084.53 R140 494 R45 203 R61 084.53 R140 494 

   P-103A/B R84 522 R114 218.30 R262 702 R55 961 R75 623.47 R173 934 R56 043 R75 733.43 R174 187 

   P-104A/B R40 097 R54 184.74 R124 625 R40 097 R54 184.74 R124 625 R40 097 R54 184.74 R124 625 

   P-105A/B R40 420 R54 621.72 R125 630 R40 420 R54 621.72 R125 630 R40 420 R54 621.72 R125 630 

   P-106A/B R40 740 R55 053.86 R126 624 R40 740 R55 053.86 R126 624 R40 740 R55 053.86 R126 624 

   P-107A/B R63 450 R85 742.67 R197 208 R354 311 R478 799.13 R1 101 238 R33 654 R45 477.74 R104 599 

   P-108A/B R43 867 R59 279.12 R136 342 R43 867 R59 279.12 R136 342 R43 867 R59 279.13 R136 342 

TOTAL     R29 882 469     R31 061 091     R29 620 426 

 

Equipment Costs Scenario 4 NaS-S-T Scenario 5 NaS-M-Pr Scenario 6 MgO-S-S 

Equipment Purchase 
Cost in 2004 

Purchase 
Cost in 2020 

Installation 
Cost 2020 

Purchase Cost 
in 2004 

Purchase Cost 
in 2020 

Installation 
Cost 2020 

Purchase Cost 
in 2004 

Purchase Cost 
in 2020 

Installation 
Cost 2020 

Belt conveyors 
        

  

   CV-100A/B R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 

   CV-101A/B R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 

   CV-102A/B R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 R71 463 R96 571.01 R106 228 

Reaction Vessel 
        

  

   RX-100 R2 363 471 R3 193 
879.18 

R6 387 758 R2 363 471 R3 193 879.18 R6 387 758 R2 363 471 R3 193 879.18 R6 387 758 

Mixers (Agitators and Tank) 
        

  

   M-100 R828 472 R1 119 
556.92 

R1 791 291 R828 472 R1 119 556.92 R1 791 291 R828 472 R1 119 556.92 R1 791 291 

Pan Dryers 
    

R0.00 
   

  

   D-100 R284 430 R384 364.22 R614 983 R284 430 R384 364.22 R614 983 R112 048 R151 416.21 R242 266 

   D-101 R284 430 R384 364.22 R614 983 R284 430 R384 364.22 R614 983 R284 430 R384 364.22 R614 983 

Storage Tanks 
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   Liquor feed Tank R76 554 R103 451.36 R268 974 R76 554 R103 451.36 R268 974 R76 554 R103 451.36 R268 974 

   Water Tank R967 245 R1 307 
088.45 

R3 398 430 R967 245 R1 307 088.45 R3 398 430 R967 245 R1 307 088.45 R3 398 430 

   Laccase R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 

   Sodium phosphate dibasic R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 

   Sodium phosphate monobasic R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 R92 503 R125 003.73 R325 010 

  
        

  

  
        

  

Pumps 
        

  

   P-100A/B R45 047 R60 873.70 R140 010 R43 001 R58 109.39 R133 652 R46 007 R62 171.65 R142 995 

   P-101A/B R40 097 R54 184.74 R124 625 R40 097 R54 184.74 R124 625 R40 097 R54 184.74 R124 625 

   P-102A/B R41 032 R55 448.66 R127 532 R40 420 R54 621.72 R125 630 R40 420 R54 621.72 R125 630 

   P-103A/B R33 654 R45 477.74 R104 599 R33 654 R45 477.74 R104 599 R20 670 R27 932.06 R64 244 

   P-104A/B R43 956 R59 399.77 R136 619 R43 956 R59 399.77 R136 619 R43 988 R59 442.88 R136 719 

TOTAL     R22 436 330     R22 424 479     R21 774 461 
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7.3 NPV Determinations 

Table 37: NPV determination for Scenario 1 KS-S-N and Scenario 2 KH-S-N, respectively 

 

 

Year Plant Land
Working   

Capital
Total Capital Sales Production Costs Cash Flow Plant Buildings Total

Profit: Previous 

Year before Tax
Tax

After Tax Cash 

Flow
Project Cash Flow

Cumulative Cash 

Flow

Project Discounted 

Cash Flow
Project DCFROR

0 -R 56 202 948 R 0 -R 2 810 147 -R 59 013 095 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 -R 59 013 095 -R 59 013 095 -R 59 013 095 -R 59 013 095

1 R 0 R 0 R 0 R 0 R 17 066 779 -R 52 246 150 -R 35 179 371 R11 240 590 R 0 R 11 240 590 -R 11 240 590 R 0 -R 35 179 371 -R 35 179 371 -R 94 192 467 -R 30 590 758 -R 28 143 497

2 R 0 R 0 R 0 R 0 R 19 504 890 -R 59 709 886 -R 40 204 996 R 11 240 590 R 0 R 11 240 590 -R 46 419 961 R 0 -R 40 204 996 -R 40 204 996 -R 134 397 462 -R 30 400 753 -R 25 731 197

3 R 0 R 0 R 0 R 0 R 21 943 001 -R 67 173 621 -R 45 230 620 R 11 240 590 R 0 R 11 240 590 -R 51 445 585 R 0 -R 45 230 620 -R 45 230 620 -R 179 628 083 -R 29 739 867 -R 23 158 078

4 R 0 R 0 R 0 R 0 R 24 381 112 -R 74 637 357 -R 50 256 245 R 11 240 590 R 0 R 11 240 590 -R 56 471 210 R 0 -R 50 256 245 -R 50 256 245 -R 229 884 327 -R 28 734 171 -R 20 584 958

5 R 0 R 0 R 0 R 0 R 25 388 052 -R 77 719 880 -R 52 331 828 R 11 240 590 R 0 R 11 240 590 -R 61 496 834 R 0 -R 52 331 828 -R 52 331 828 -R 282 216 155 -R 26 018 167 -R 17 148 093

6 R 0 R 0 R 0 R 0 R 26 436 579 -R 80 929 711 -R 54 493 132 R 0 R 0 R 0 -R 52 331 828 R 0 -R 54 493 132 -R 54 493 132 -R 336 709 287 -R 23 558 885 -R 14 285 048

7 R 0 R 0 R 0 R 0 R 27 528 410 -R 84 272 108 -R 56 743 698 R 0 R 0 R 0 -R 54 493 132 R 0 -R 56 743 698 -R 56 743 698 -R 393 452 985 -R 21 332 058 -R 11 900 016

8 R 0 R 0 R 0 R 0 R 28 665 333 -R 87 752 546 -R 59 087 213 R 0 R 0 R 0 -R 56 743 698 R 0 -R 59 087 213 -R 59 087 213 -R 452 540 199 -R 19 315 715 -R 9 913 189

9 R 0 R 0 R 0 R 0 R 29 849 211 -R 91 376 726 -R 61 527 515 R 0 R 0 R 0 -R 59 087 213 R 0 -R 61 527 515 -R 61 527 515 -R 514 067 714 -R 17 489 960 -R 8 258 083

10 R 0 R 0 R 0 R 0 R 31 081 983 -R 95 150 585 -R 64 068 601 R 0 R 0 R 0 -R 61 527 515 R 0 -R 64 068 601 -R 64 068 601 -R 578 136 315 -R 15 836 778 -R 6 879 314

11 R 0 R 0 R 0 R 0 R 32 365 669 -R 99 080 304 -R 66 714 635 R 0 R 0 R 0 -R 64 068 601 R 0 -R 66 714 635 -R 66 714 635 -R 644 850 950 -R 14 339 859 -R 5 730 743

12 R 0 R 0 R 0 R 0 R 33 702 372 -R 103 172 321 -R 69 469 949 R 0 R 0 R 0 -R 66 714 635 R 0 -R 69 469 949 -R 69 469 949 -R 714 320 899 -R 12 984 430 -R 4 773 939

13 R 0 R 0 R 0 R 0 R 35 094 280 -R 107 433 338 -R 72 339 058 R 0 R 0 R 0 -R 69 469 949 R 0 -R 72 339 058 -R 72 339 058 -R 786 659 957 -R 11 757 119 -R 3 976 882

14 R 0 R 0 R 0 R 0 R 36 543 673 -R 111 870 334 -R 75 326 661 R 0 R 0 R 0 -R 72 339 058 R 0 -R 75 326 661 -R 75 326 661 -R 861 986 618 -R 10 645 816 -R 3 312 902

15 R 0 R 0 R 0 R 0 R 38 052 927 -R 116 490 579 -R 78 437 652 R 0 R 0 R 0 -R 75 326 661 R 0 -R 78 437 652 -R 78 437 652 -R 940 424 270 -R 9 639 555 -R 2 759 780

16 R 0 R 0 R 0 R 0 R 39 624 513 -R 121 301 640 -R 81 677 127 R 0 R 0 R 0 -R 78 437 652 R 0 -R 81 677 127 -R 81 677 127 -R 1 022 101 397 -R 8 728 407 -R 2 299 007

17 R 0 R 0 R 0 R 0 R 41 261 005 -R 126 311 398 -R 85 050 393 R 0 R 0 R 0 -R 81 677 127 R 0 -R 85 050 393 -R 85 050 393 -R 1 107 151 790 -R 7 903 383 -R 1 915 165

18 R 0 R 0 R 0 R 0 R 42 965 085 -R 131 528 059 -R 88 562 974 R 0 R 0 R 0 -R 85 050 393 R 0 -R 88 562 974 -R 88 562 974 -R 1 195 714 764 -R 7 156 342 -R 1 595 409

19 R 0 R 0 R 0 R 0 R 44 739 543 -R 136 960 167 -R 92 220 625 R 0 R 0 R 0 -R 88 562 974 R 0 -R 92 220 625 -R 92 220 625 -R 1 287 935 388 -R 6 479 912 -R 1 329 039

20 R 0 R 0 R 0 R 0 R 46 587 286 -R 142 616 622 -R 96 029 336 R 0 R 0 R 0 -R 92 220 625 R 0 -R 96 029 336 -R 96 029 336 -R 1 383 964 725 -R 5 867 419 -R 1 107 143

NVP -R 397 532 449 -R 253 814 575

Discounted Profitability Criteria
Depreciation Payable on Profit

Capital Cash Flow Tax

Year Plant Land
Working   

Capital
Total Capital Sales Production Costs Cash Flow Plant Buildings Total

Profit: Previous 

Year before Tax
Tax

After Tax Cash 

Flow
Project Cash Flow

Cumulative Cash 

Flow

Project Discounted 

Cash Flow
Project DCFROR

0 -R 55 972 678 R 0 -R 2 798 634 -R 58 771 312 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 -R 58 771 312 -R 58 771 312 -R 58 771 312 -R 58 771 312

1 R 0 R 0 R 0 R 0 R 17 066 779 -R 49 654 015 -R 32 587 236 R11 194 536 R 0 R 11 194 536 -R 11 194 536 R 0 -R 32 587 236 -R 32 587 236 -R 91 358 548 -R 28 336 727 -R 26 069 789

2 R 0 R 0 R 0 R 0 R 19 504 890 -R 56 747 445 -R 37 242 556 R 11 194 536 R 0 R 11 194 536 -R 43 781 772 R 0 -R 37 242 556 -R 37 242 556 -R 128 601 104 -R 28 160 723 -R 23 835 236

3 R 0 R 0 R 0 R 0 R 21 943 001 -R 63 840 876 -R 41 897 875 R 11 194 536 R 0 R 11 194 536 -R 48 437 091 R 0 -R 41 897 875 -R 41 897 875 -R 170 498 979 -R 27 548 533 -R 21 451 712

4 R 0 R 0 R 0 R 0 R 24 381 112 -R 70 934 307 -R 46 553 194 R 11 194 536 R 0 R 11 194 536 -R 53 092 411 R 0 -R 46 553 194 -R 46 553 194 -R 217 052 173 -R 26 616 940 -R 19 068 188

5 R 0 R 0 R 0 R 0 R 25 388 052 -R 73 863 894 -R 48 475 841 R 11 194 536 R 0 R 11 194 536 -R 57 747 730 R 0 -R 48 475 841 -R 48 475 841 -R 265 528 015 -R 24 101 061 -R 15 884 564

6 R 0 R 0 R 0 R 0 R 26 436 579 -R 76 914 472 -R 50 477 894 R 0 R 0 R 0 -R 48 475 841 R 0 -R 50 477 894 -R 50 477 894 -R 316 005 908 -R 21 822 986 -R 13 232 477

7 R 0 R 0 R 0 R 0 R 27 528 410 -R 80 091 040 -R 52 562 631 R 0 R 0 R 0 -R 50 477 894 R 0 -R 52 562 631 -R 52 562 631 -R 368 568 539 -R 19 760 240 -R 11 023 183

8 R 0 R 0 R 0 R 0 R 28 665 333 -R 83 398 800 -R 54 733 467 R 0 R 0 R 0 -R 52 562 631 R 0 -R 54 733 467 -R 54 733 467 -R 423 302 006 -R 17 892 468 -R 9 182 752

9 R 0 R 0 R 0 R 0 R 29 849 211 -R 86 843 170 -R 56 993 959 R 0 R 0 R 0 -R 54 733 467 R 0 -R 56 993 959 -R 56 993 959 -R 480 295 965 -R 16 201 240 -R 7 649 600

10 R 0 R 0 R 0 R 0 R 31 081 983 -R 90 429 793 -R 59 347 810 R 0 R 0 R 0 -R 56 993 959 R 0 -R 59 347 810 -R 59 347 810 -R 539 643 775 -R 14 669 871 -R 6 372 423

11 R 0 R 0 R 0 R 0 R 32 365 669 -R 94 164 544 -R 61 798 874 R 0 R 0 R 0 -R 59 347 810 R 0 -R 61 798 874 -R 61 798 874 -R 601 442 650 -R 13 283 249 -R 5 308 483

12 R 0 R 0 R 0 R 0 R 33 702 372 -R 98 053 540 -R 64 351 168 R 0 R 0 R 0 -R 61 798 874 R 0 -R 64 351 168 -R 64 351 168 -R 665 793 818 -R 12 027 693 -R 4 422 179

13 R 0 R 0 R 0 R 0 R 35 094 280 -R 102 103 151 -R 67 008 871 R 0 R 0 R 0 -R 64 351 168 R 0 -R 67 008 871 -R 67 008 871 -R 732 802 689 -R 10 890 815 -R 3 683 852

14 R 0 R 0 R 0 R 0 R 36 543 673 -R 106 320 011 -R 69 776 338 R 0 R 0 R 0 -R 67 008 871 R 0 -R 69 776 338 -R 69 776 338 -R 802 579 027 -R 9 861 396 -R 3 068 796

15 R 0 R 0 R 0 R 0 R 38 052 927 -R 110 711 027 -R 72 658 100 R 0 R 0 R 0 -R 69 776 338 R 0 -R 72 658 100 -R 72 658 100 -R 875 237 127 -R 8 929 280 -R 2 556 430

16 R 0 R 0 R 0 R 0 R 39 624 513 -R 115 283 393 -R 75 658 880 R 0 R 0 R 0 -R 72 658 100 R 0 -R 75 658 880 -R 75 658 880 -R 950 896 007 -R 8 085 269 -R 2 129 608

17 R 0 R 0 R 0 R 0 R 41 261 005 -R 120 044 597 -R 78 783 592 R 0 R 0 R 0 -R 75 658 880 R 0 -R 78 783 592 -R 78 783 592 -R 1 029 679 598 -R 7 321 035 -R 1 774 049

18 R 0 R 0 R 0 R 0 R 42 965 085 -R 125 002 439 -R 82 037 354 R 0 R 0 R 0 -R 78 783 592 R 0 -R 82 037 354 -R 82 037 354 -R 1 111 716 952 -R 6 629 038 -R 1 477 854

19 R 0 R 0 R 0 R 0 R 44 739 543 -R 130 165 039 -R 85 425 497 R 0 R 0 R 0 -R 82 037 354 R 0 -R 85 425 497 -R 85 425 497 -R 1 197 142 449 -R 6 002 450 -R 1 231 111

20 R 0 R 0 R 0 R 0 R 46 587 286 -R 135 540 856 -R 88 953 570 R 0 R 0 R 0 -R 85 425 497 R 0 -R 88 953 570 -R 88 953 570 -R 1 286 096 019 -R 5 435 088 -R 1 025 565

NVP -R 372 347 414 -R 239 219 160

Capital Cash Flow Tax Discounted Profitability Criteria
Depreciation Payable on Profit
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Table 38: NPV determinations for Scenario 3 S-S-S and Scenario NaS-S-T, respectively 

 

 

Year Plant Land
Working   

Capital
Total Capital Sales Production Costs Cash Flow Plant Buildings Total

Profit: Previous 

Year before Tax
Tax

After Tax Cash 

Flow
Project Cash Flow

Cumulative Cash 

Flow

Project 

Discounted Cash 

Flow

Project DCFROR

0 -R 55 710 098 R 0 -R 2 785 505 -R 58 495 603 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 -R 58 495 603 -R 58 495 603 -R 58 495 603 -R 58 495 603

1 R 0 R 0 R 0 R 0 R 17 066 779 -R 55 466 268 -R 38 399 490 R11 142 020 R 0 R 11 142 020 -R 11 142 020 R 0 -R 38 399 490 -R 38 399 490 -R 96 895 093 -R 33 390 861 -R 30 719 592

2 R 0 R 0 R 0 R 0 R 19 504 890 -R 63 390 021 -R 43 885 131 R 11 142 020 R 0 R 11 142 020 -R 49 541 509 R 0 -R 43 885 131 -R 43 885 131 -R 140 780 224 -R 33 183 464 -R 28 086 484

3 R 0 R 0 R 0 R 0 R 21 943 001 -R 71 313 774 -R 49 370 772 R 11 142 020 R 0 R 11 142 020 -R 55 027 151 R 0 -R 49 370 772 -R 49 370 772 -R 190 150 996 -R 32 462 084 -R 25 277 835

4 R 0 R 0 R 0 R 0 R 24 381 112 -R 79 237 526 -R 54 856 414 R 11 142 020 R 0 R 11 142 020 -R 60 512 792 R 0 -R 54 856 414 -R 54 856 414 -R 245 007 410 -R 31 364 333 -R 22 469 187

5 R 0 R 0 R 0 R 0 R 25 388 052 -R 82 510 036 -R 57 121 984 R 11 142 020 R 0 R 11 142 020 -R 65 998 433 R 0 -R 57 121 984 -R 57 121 984 -R 302 129 394 -R 28 399 721 -R 18 717 732

6 R 0 R 0 R 0 R 0 R 26 436 579 -R 85 917 700 -R 59 481 122 R 0 R 0 R 0 -R 57 121 984 R 0 -R 59 481 122 -R 59 481 122 -R 361 610 515 -R 25 715 330 -R 15 592 619

7 R 0 R 0 R 0 R 0 R 27 528 410 -R 89 466 102 -R 61 937 692 R 0 R 0 R 0 -R 59 481 122 R 0 -R 61 937 692 -R 61 937 692 -R 423 548 207 -R 23 284 673 -R 12 989 275

8 R 0 R 0 R 0 R 0 R 28 665 333 -R 93 161 051 -R 64 495 719 R 0 R 0 R 0 -R 61 937 692 R 0 -R 64 495 719 -R 64 495 719 -R 488 043 926 -R 21 083 765 -R 10 820 586

9 R 0 R 0 R 0 R 0 R 29 849 211 -R 97 008 603 -R 67 159 392 R 0 R 0 R 0 -R 64 495 719 R 0 -R 67 159 392 -R 67 159 392 -R 555 203 318 -R 19 090 891 -R 9 013 981

10 R 0 R 0 R 0 R 0 R 31 081 983 -R 101 015 058 -R 69 933 075 R 0 R 0 R 0 -R 67 159 392 R 0 -R 69 933 075 -R 69 933 075 -R 625 136 393 -R 17 286 387 -R 7 509 007

11 R 0 R 0 R 0 R 0 R 32 365 669 -R 105 186 980 -R 72 821 311 R 0 R 0 R 0 -R 69 933 075 R 0 -R 72 821 311 -R 72 821 311 -R 697 957 703 -R 15 652 447 -R 6 255 303

12 R 0 R 0 R 0 R 0 R 33 702 372 -R 109 531 202 -R 75 828 831 R 0 R 0 R 0 -R 72 821 311 R 0 -R 75 828 831 -R 75 828 831 -R 773 786 534 -R 14 172 951 -R 5 210 918

13 R 0 R 0 R 0 R 0 R 35 094 280 -R 114 054 841 -R 78 960 562 R 0 R 0 R 0 -R 75 828 831 R 0 -R 78 960 562 -R 78 960 562 -R 852 747 096 -R 12 833 299 -R 4 340 903

14 R 0 R 0 R 0 R 0 R 36 543 673 -R 118 765 306 -R 82 221 633 R 0 R 0 R 0 -R 78 960 562 R 0 -R 82 221 633 -R 82 221 633 -R 934 968 728 -R 11 620 273 -R 3 616 146

15 R 0 R 0 R 0 R 0 R 38 052 927 -R 123 670 313 -R 85 617 386 R 0 R 0 R 0 -R 82 221 633 R 0 -R 85 617 386 -R 85 617 386 -R 1 020 586 115 -R 10 521 905 -R 3 012 394

16 R 0 R 0 R 0 R 0 R 39 624 513 -R 128 777 897 -R 89 153 384 R 0 R 0 R 0 -R 85 617 386 R 0 -R 89 153 384 -R 89 153 384 -R 1 109 739 499 -R 9 527 356 -R 2 509 445

17 R 0 R 0 R 0 R 0 R 41 261 005 -R 134 096 424 -R 92 835 419 R 0 R 0 R 0 -R 89 153 384 R 0 -R 92 835 419 -R 92 835 419 -R 1 202 574 918 -R 8 626 814 -R 2 090 468

18 R 0 R 0 R 0 R 0 R 42 965 085 -R 139 634 607 -R 96 669 522 R 0 R 0 R 0 -R 92 835 419 R 0 -R 96 669 522 -R 96 669 522 -R 1 299 244 440 -R 7 811 392 -R 1 741 443

19 R 0 R 0 R 0 R 0 R 44 739 543 -R 145 401 516 -R 100 661 973 R 0 R 0 R 0 -R 96 669 522 R 0 -R 100 661 973 -R 100 661 973 -R 1 399 906 413 -R 7 073 046 -R 1 450 692

20 R 0 R 0 R 0 R 0 R 46 587 286 -R 151 406 598 -R 104 819 313 R 0 R 0 R 0 -R 100 661 973 R 0 -R 104 819 313 -R 104 819 313 -R 1 504 725 725 -R 6 404 489 -R 1 208 484

NVP -R 428 001 082 -R 271 128 096

Capital Cash Flow Tax Discounted Profitability Criteria
Depreciation Payable on Profit

Year Plant Land
Working   

Capital
Total Capital Sales Production Costs Cash Flow Plant Buildings Total

Profit: Previous 

Year before Tax
Tax

After Tax Cash 

Flow
Project Cash Flow

Cumulative Cash 

Flow

Project 

Discounted Cash 

Flow

Project DCFROR

0 -R 42 191 888 R 0 -R 2 109 594 -R 44 301 483 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 -R 44 301 483 -R 44 301 483 -R 44 301 483 -R 44 301 483

1 R 0 R 0 R 0 R 0 R 36 978 020 -R 38 376 088 -R 1 398 068 R8 438 378 R 0 R 8 438 378 -R 8 438 378 R 0 -R 1 398 068 -R 1 398 068 -R 45 699 550 -R 1 215 711 -R 1 118 454

2 R 0 R 0 R 0 R 0 R 42 260 595 -R 43 858 386 -R 1 597 792 R 8 438 378 R 0 R 8 438 378 -R 9 836 445 R 0 -R 1 597 792 -R 1 597 792 -R 47 297 342 -R 1 208 160 -R 1 022 587

3 R 0 R 0 R 0 R 0 R 47 543 169 -R 49 340 685 -R 1 797 516 R 8 438 378 R 0 R 8 438 378 -R 10 036 169 R 0 -R 1 797 516 -R 1 797 516 -R 49 094 857 -R 1 181 896 -R 920 328

4 R 0 R 0 R 0 R 0 R 52 825 743 -R 54 822 983 -R 1 997 239 R 8 438 378 R 0 R 8 438 378 -R 10 235 893 R 0 -R 1 997 239 -R 1 997 239 -R 51 092 097 -R 1 141 928 -R 818 069

5 R 0 R 0 R 0 R 0 R 55 007 447 -R 57 087 172 -R 2 079 725 R 8 438 378 R 0 R 8 438 378 -R 10 435 617 R 0 -R 2 079 725 -R 2 079 725 -R 53 171 822 -R 1 033 991 -R 681 484

6 R 0 R 0 R 0 R 0 R 57 279 254 -R 59 444 872 -R 2 165 618 R 0 R 0 R 0 -R 2 079 725 R 0 -R 2 165 618 -R 2 165 618 -R 55 337 440 -R 936 256 -R 567 704

7 R 0 R 0 R 0 R 0 R 59 644 887 -R 61 899 945 -R 2 255 058 R 0 R 0 R 0 -R 2 165 618 R 0 -R 2 255 058 -R 2 255 058 -R 57 592 499 -R 847 760 -R 472 920

8 R 0 R 0 R 0 R 0 R 62 108 221 -R 64 456 413 -R 2 348 192 R 0 R 0 R 0 -R 2 255 058 R 0 -R 2 348 192 -R 2 348 192 -R 59 940 691 -R 767 628 -R 393 961

9 R 0 R 0 R 0 R 0 R 64 673 291 -R 67 118 463 -R 2 445 172 R 0 R 0 R 0 -R 2 348 192 R 0 -R 2 445 172 -R 2 445 172 -R 62 385 863 -R 695 071 -R 328 185

10 R 0 R 0 R 0 R 0 R 67 344 298 -R 69 890 456 -R 2 546 158 R 0 R 0 R 0 -R 2 445 172 R 0 -R 2 546 158 -R 2 546 158 -R 64 932 021 -R 629 371 -R 273 392

11 R 0 R 0 R 0 R 0 R 70 125 617 -R 72 776 931 -R 2 651 314 R 0 R 0 R 0 -R 2 546 158 R 0 -R 2 651 314 -R 2 651 314 -R 67 583 335 -R 569 882 -R 227 746

12 R 0 R 0 R 0 R 0 R 73 021 805 -R 75 782 619 -R 2 760 814 R 0 R 0 R 0 -R 2 651 314 R 0 -R 2 760 814 -R 2 760 814 -R 70 344 149 -R 516 016 -R 189 722

13 R 0 R 0 R 0 R 0 R 76 037 606 -R 78 912 441 -R 2 874 835 R 0 R 0 R 0 -R 2 760 814 R 0 -R 2 874 835 -R 2 874 835 -R 73 218 984 -R 467 241 -R 158 046

14 R 0 R 0 R 0 R 0 R 79 177 959 -R 82 171 525 -R 2 993 566 R 0 R 0 R 0 -R 2 874 835 R 0 -R 2 993 566 -R 2 993 566 -R 76 212 550 -R 423 077 -R 131 658

15 R 0 R 0 R 0 R 0 R 82 448 008 -R 85 565 209 -R 3 117 200 R 0 R 0 R 0 -R 2 993 566 R 0 -R 3 117 200 -R 3 117 200 -R 79 329 750 -R 383 087 -R 109 677

16 R 0 R 0 R 0 R 0 R 85 853 111 -R 89 099 052 -R 3 245 941 R 0 R 0 R 0 -R 3 117 200 R 0 -R 3 245 941 -R 3 245 941 -R 82 575 690 -R 346 877 -R 91 365

17 R 0 R 0 R 0 R 0 R 89 398 845 -R 92 778 843 -R 3 379 998 R 0 R 0 R 0 -R 3 245 941 R 0 -R 3 379 998 -R 3 379 998 -R 85 955 688 -R 314 089 -R 76 111

18 R 0 R 0 R 0 R 0 R 93 091 017 -R 96 610 609 -R 3 519 592 R 0 R 0 R 0 -R 3 379 998 R 0 -R 3 519 592 -R 3 519 592 -R 89 475 280 -R 284 401 -R 63 403

19 R 0 R 0 R 0 R 0 R 96 935 676 -R 100 600 627 -R 3 664 951 R 0 R 0 R 0 -R 3 519 592 R 0 -R 3 664 951 -R 3 664 951 -R 93 140 231 -R 257 519 -R 52 818

20 R 0 R 0 R 0 R 0 R 100 939 119 -R 104 755 433 -R 3 816 313 R 0 R 0 R 0 -R 3 664 951 R 0 -R 3 816 313 -R 3 816 313 -R 96 956 544 -R 233 178 -R 43 999

NVP -R 57 754 621 -R 52 043 112
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Table 39: NPV determinations for Scenario 5 NaS-M-PR and Scenario 6 MgO-S-S, respectively 

 

Year Plant Land
Working   

Capital
Total Capital Sales Production Costs Cash Flow Plant Buildings Total

Profit: Previous 

Year before Tax
Tax

After Tax Cash 

Flow
Project Cash Flow

Cumulative Cash 

Flow

Project Discounted 

Cash Flow
Project DCFROR

0 -R 42 160 570 R 0 -R 2 108 029 -R 44 268 599 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 -R 44 268 599 -R 44 268 599 -R 44 268 599 -R 44 268 599

1 R 0 R 0 R 0 R 0 R 36 978 020 -R 38 379 982 -R 1 401 962 R8 432 114 R 0 R 8 432 114 -R 8 432 114 R 0 -R 1 401 962 -R 1 401 962 -R 45 670 560 -R 1 219 097 -R 1 121 569

2 R 0 R 0 R 0 R 0 R 42 260 595 -R 43 862 836 -R 1 602 242 R 8 432 114 R 0 R 8 432 114 -R 9 834 076 R 0 -R 1 602 242 -R 1 602 242 -R 47 272 802 -R 1 211 525 -R 1 025 435

3 R 0 R 0 R 0 R 0 R 47 543 169 -R 49 345 691 -R 1 802 522 R 8 432 114 R 0 R 8 432 114 -R 10 034 356 R 0 -R 1 802 522 -R 1 802 522 -R 49 075 324 -R 1 185 187 -R 922 891

4 R 0 R 0 R 0 R 0 R 52 825 743 -R 54 828 546 -R 2 002 802 R 8 432 114 R 0 R 8 432 114 -R 10 234 636 R 0 -R 2 002 802 -R 2 002 802 -R 51 078 127 -R 1 145 109 -R 820 348

5 R 0 R 0 R 0 R 0 R 55 007 447 -R 57 092 965 -R 2 085 518 R 8 432 114 R 0 R 8 432 114 -R 10 434 916 R 0 -R 2 085 518 -R 2 085 518 -R 53 163 644 -R 1 036 871 -R 683 383

6 R 0 R 0 R 0 R 0 R 57 279 254 -R 59 450 904 -R 2 171 650 R 0 R 0 R 0 -R 2 085 518 R 0 -R 2 171 650 -R 2 171 650 -R 55 335 294 -R 938 864 -R 569 285

7 R 0 R 0 R 0 R 0 R 59 644 887 -R 61 906 226 -R 2 261 339 R 0 R 0 R 0 -R 2 171 650 R 0 -R 2 261 339 -R 2 261 339 -R 57 596 633 -R 850 121 -R 474 237

8 R 0 R 0 R 0 R 0 R 62 108 221 -R 64 462 953 -R 2 354 732 R 0 R 0 R 0 -R 2 261 339 R 0 -R 2 354 732 -R 2 354 732 -R 59 951 366 -R 769 766 -R 395 059

9 R 0 R 0 R 0 R 0 R 64 673 291 -R 67 125 273 -R 2 451 983 R 0 R 0 R 0 -R 2 354 732 R 0 -R 2 451 983 -R 2 451 983 -R 62 403 348 -R 697 007 -R 329 100

10 R 0 R 0 R 0 R 0 R 67 344 298 -R 69 897 547 -R 2 553 250 R 0 R 0 R 0 -R 2 451 983 R 0 -R 2 553 250 -R 2 553 250 -R 64 956 598 -R 631 124 -R 274 153

11 R 0 R 0 R 0 R 0 R 70 125 617 -R 72 784 316 -R 2 658 699 R 0 R 0 R 0 -R 2 553 250 R 0 -R 2 658 699 -R 2 658 699 -R 67 615 297 -R 571 469 -R 228 380

12 R 0 R 0 R 0 R 0 R 73 021 805 -R 75 790 308 -R 2 768 503 R 0 R 0 R 0 -R 2 658 699 R 0 -R 2 768 503 -R 2 768 503 -R 70 383 800 -R 517 453 -R 190 250

13 R 0 R 0 R 0 R 0 R 76 037 606 -R 78 920 448 -R 2 882 842 R 0 R 0 R 0 -R 2 768 503 R 0 -R 2 882 842 -R 2 882 842 -R 73 266 642 -R 468 542 -R 158 486

14 R 0 R 0 R 0 R 0 R 79 177 959 -R 82 179 862 -R 3 001 904 R 0 R 0 R 0 -R 2 882 842 R 0 -R 3 001 904 -R 3 001 904 -R 76 268 546 -R 424 255 -R 132 025

15 R 0 R 0 R 0 R 0 R 82 448 008 -R 85 573 891 -R 3 125 882 R 0 R 0 R 0 -R 3 001 904 R 0 -R 3 125 882 -R 3 125 882 -R 79 394 428 -R 384 154 -R 109 982

16 R 0 R 0 R 0 R 0 R 85 853 111 -R 89 108 092 -R 3 254 981 R 0 R 0 R 0 -R 3 125 882 R 0 -R 3 254 981 -R 3 254 981 -R 82 649 410 -R 347 843 -R 91 620

17 R 0 R 0 R 0 R 0 R 89 398 845 -R 92 788 257 -R 3 389 412 R 0 R 0 R 0 -R 3 254 981 R 0 -R 3 389 412 -R 3 389 412 -R 86 038 822 -R 314 964 -R 76 323

18 R 0 R 0 R 0 R 0 R 93 091 017 -R 96 620 412 -R 3 529 395 R 0 R 0 R 0 -R 3 389 412 R 0 -R 3 529 395 -R 3 529 395 -R 89 568 216 -R 285 193 -R 63 580

19 R 0 R 0 R 0 R 0 R 96 935 676 -R 100 610 835 -R 3 675 159 R 0 R 0 R 0 -R 3 529 395 R 0 -R 3 675 159 -R 3 675 159 -R 93 243 375 -R 258 236 -R 52 965

20 R 0 R 0 R 0 R 0 R 100 939 119 -R 104 766 062 -R 3 826 943 R 0 R 0 R 0 -R 3 675 159 R 0 -R 3 826 943 -R 3 826 943 -R 97 070 318 -R 233 827 -R 44 122

NVP -R 57 759 207 -R 52 031 790

Capital Cash Flow Tax Discounted Profitability Criteria
Depreciation Payable on Profit

Year Plant
Lan

d

Working   

Capital
Total Capital Sales Production Costs Cash Flow Plant

Building

s
Total

Profit: Previous 

Year before Tax
Tax

After Tax Cash 

Flow

Project Cash 

Flow

Cumulative Cash 

Flow

Project Discounted 

Cash Flow
Project DCFROR

0 -R 40 945 268 R 0 -R 2 047 263 -R 42 992 531 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 -R 42 992 531 -R 42 992 531 -R 42 992 531 -R 42 992 531

1 R 0 R 0 R 0 R 0 R 36 978 020 -R 46 269 569 -R 9 291 549 R8 189 054 R 0 R 8 189 054 -R 8 189 054 R 0 -R 9 291 549 -R 9 291 549 -R 52 284 080 -R 8 079 608 -R 7 433 239

2 R 0 R 0 R 0 R 0 R 42 260 595 -R 52 879 508 -R 10 618 913 R 8 189 054 R 0 R 8 189 054 -R 17 480 603 R 0 -R 10 618 913 -R 10 618 913 -R 62 902 993 -R 8 029 424 -R 6 796 104

3 R 0 R 0 R 0 R 0 R 47 543 169 -R 59 489 446 -R 11 946 277 R 8 189 054 R 0 R 8 189 054 -R 18 807 967 R 0 -R 11 946 277 -R 11 946 277 -R 74 849 271 -R 7 854 871 -R 6 116 494

4 R 0 R 0 R 0 R 0 R 52 825 743 -R 66 099 385 -R 13 273 641 R 8 189 054 R 0 R 8 189 054 -R 20 135 331 R 0 -R 13 273 641 -R 13 273 641 -R 88 122 912 -R 7 589 248 -R 5 436 884

5 R 0 R 0 R 0 R 0 R 55 007 447 -R 68 829 289 -R 13 821 843 R 8 189 054 R 0 R 8 189 054 -R 21 462 695 R 0 -R 13 821 843 -R 13 821 843 -R 101 944 755 -R 6 871 899 -R 4 529 141

6 R 0 R 0 R 0 R 0 R 57 279 254 -R 71 671 939 -R 14 392 685 R 0 R 0 R 0 -R 13 821 843 R 0 -R 14 392 685 -R 14 392 685 -R 116 337 440 -R 6 222 355 -R 3 772 956

7 R 0 R 0 R 0 R 0 R 59 644 887 -R 74 631 990 -R 14 987 103 R 0 R 0 R 0 -R 14 392 685 R 0 -R 14 987 103 -R 14 987 103 -R 131 324 543 -R 5 634 207 -R 3 143 023

8 R 0 R 0 R 0 R 0 R 62 108 221 -R 77 714 291 -R 15 606 070 R 0 R 0 R 0 -R 14 987 103 R 0 -R 15 606 070 -R 15 606 070 -R 146 930 613 -R 5 101 652 -R 2 618 264

9 R 0 R 0 R 0 R 0 R 64 673 291 -R 80 923 892 -R 16 250 601 R 0 R 0 R 0 -R 15 606 070 R 0 -R 16 250 601 -R 16 250 601 -R 163 181 214 -R 4 619 435 -R 2 181 119

10 R 0 R 0 R 0 R 0 R 67 344 298 -R 84 266 048 -R 16 921 751 R 0 R 0 R 0 -R 16 250 601 R 0 -R 16 921 751 -R 16 921 751 -R 180 102 965 -R 4 182 798 -R 1 816 959

11 R 0 R 0 R 0 R 0 R 70 125 617 -R 87 746 236 -R 17 620 619 R 0 R 0 R 0 -R 16 921 751 R 0 -R 17 620 619 -R 17 620 619 -R 197 723 584 -R 3 787 433 -R 1 513 600

12 R 0 R 0 R 0 R 0 R 73 021 805 -R 91 370 156 -R 18 348 351 R 0 R 0 R 0 -R 17 620 619 R 0 -R 18 348 351 -R 18 348 351 -R 216 071 934 -R 3 429 438 -R 1 260 889

13 R 0 R 0 R 0 R 0 R 76 037 606 -R 95 143 743 -R 19 106 137 R 0 R 0 R 0 -R 18 348 351 R 0 -R 19 106 137 -R 19 106 137 -R 235 178 072 -R 3 105 281 -R 1 050 371

14 R 0 R 0 R 0 R 0 R 79 177 959 -R 99 073 180 -R 19 895 221 R 0 R 0 R 0 -R 19 106 137 R 0 -R 19 895 221 -R 19 895 221 -R 255 073 293 -R 2 811 765 -R 875 001

15 R 0 R 0 R 0 R 0 R 82 448 008 -R 103 164 902 -R 20 716 894 R 0 R 0 R 0 -R 19 895 221 R 0 -R 20 716 894 -R 20 716 894 -R 275 790 186 -R 2 545 992 -R 728 911

16 R 0 R 0 R 0 R 0 R 85 853 111 -R 107 425 612 -R 21 572 501 R 0 R 0 R 0 -R 20 716 894 R 0 -R 21 572 501 -R 21 572 501 -R 297 362 688 -R 2 305 340 -R 607 212

17 R 0 R 0 R 0 R 0 R 89 398 845 -R 111 862 290 -R 22 463 446 R 0 R 0 R 0 -R 21 572 501 R 0 -R 22 463 446 -R 22 463 446 -R 319 826 133 -R 2 087 436 -R 505 832

18 R 0 R 0 R 0 R 0 R 93 091 017 -R 116 482 203 -R 23 391 186 R 0 R 0 R 0 -R 22 463 446 R 0 -R 23 391 186 -R 23 391 186 -R 343 217 319 -R 1 890 128 -R 421 378

19 R 0 R 0 R 0 R 0 R 96 935 676 -R 121 292 918 -R 24 357 242 R 0 R 0 R 0 -R 23 391 186 R 0 -R 24 357 242 -R 24 357 242 -R 367 574 561 -R 1 711 469 -R 351 025

20 R 0 R 0 R 0 R 0 R 100 939 119 -R 126 302 315 -R 25 363 196 R 0 R 0 R 0 -R 24 357 242 R 0 -R 25 363 196 -R 25 363 196 -R 392 937 757 -R 1 549 698 -R 292 418

NVP -R 132 402 008 -R 94 443 351
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