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Summary 

Retention of crop residue has many benefits such as moisture conservation, improvement 

of soil health and reduction in soil erosion. Residue retention together with no-tillage and 

crop diversification (crop rotation) are classified as Conservation Agriculture (CA). 

However, the adoption of CA comes with challenges of planting into large crop residue 

loads, especially when livestock is not part of the system. Certain crop residue types and 

loads may lead to yield penalties for the subsequent crop. Past studies have indicated 

that allelopathy, physical effects or chemical soil processes might be the cause. This 

study aimed to investigate the influence of crop residue on the subsequent wheat 

(Triticum aestivum), barley (Hordeum vulgare) and canola (Brassica napus) as well as 

identify the possible mechanisms responsible for driving productivity. Laboratory and 

glasshouse trials were conducted to evaluate effects of crop residue that had time to 

degrade prior to planting the next season’s crop, on the early growth of wheat, barley and 

canola. Extracts were made from various residues and the allelopathic effects of the 

extracts were evaluated on the germination, coleoptile and radicle lengths of seedlings. 

Germination was affected (p < 0.05) in barley and canola, but not in wheat (p > 0.05). The 

coleoptile and radicle lengths were affected more adversely (p < 0.05) than germination 

percentages. Some residue types led to decreases in the coleoptile and radicle lengths, 

while other residue types promoted them slightly. Crop residue still had an allelopathic 

potential even after degradation for one year in the field. However, in the presence of soil 

in the glasshouse, the allelopathic effects became negligible (p > 0.05). The canola with 

its small seed size was influenced (p < 0.05) by a large residue load of 8000 kg ha-1, 

which reduced early growth. A field trial evaluated performance of a single and a double 

disc planter and management of the residue loads, as well as the effect of various residue 

types on production of wheat, barley and canola. The double disc planter led to better 

wheat and barley establishment while the single disc planter led to better canola 

establishment (p < 0.05). The double disc planter cleaned the seed furrow more, while 

the single disc planter had better depth control. Allelopathy was negligible and physical 

effects was limited in this study due to relatively small residue loads, mostly under 5000 

kg ha-1. The effect of crop residue on soil processes likely had the biggest influence on 

the subsequent crop. Crop residue types which resulted in the highest N mineralisation 

rate led to better yields in year two (p < 0.05), while in year one residue types which 

produced larger residue loads have led to slightly better yields due to moisture 

Stellenbosch University https://scholar.sun.ac.za



iii 

conservation. In a residue decomposition trial, effects of soil faunal communities and 

residue types on decomposition were tested. Soil fauna fragmented residue leading to 

faster decomposition. Residue types with lower C:N ratios decomposed faster. Retaining 

appropriate amounts of residue for a particular crop will minimise negative effects while 

retaining the benefits.  
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Opsomming 

Die bedekking van grond met gewas residu het verskeie voordele naamlik vog bewaring, 

beter grond gesondheid asook die afname in grond erosie. Die behoud van gewas residu 

te same met minimum bewerking en gewas diversifikasie (gewas rotasie) word 

geklassifiseer as Bewarings Boerdery. Die implimentering van Bewarings Boerdery 

praktyke kom egter nie sonder uitdagings nie soos om te plant in dik gewas residu 

ladings. Die bogenoemde is veral ‘n uitdaging is stelsels waar vee nie geïntegreer word 

nie. Sekere tipes gewas residu en ladings mag laer opbrengste tot gevolg hê. Vorige 

studies dui aan dat allelopatiese, fisiese effekte asook chemiese grond prosesse 

verantwoordelik is. Die mikpunt van hierdie studie was om die invloed van gewas residu 

op die opeenvolgende koring (Triticum aestivum), gars (Hordeum vulgare) en kanola 

(Brassica napus) gewas te evalueer asook die identifisering van moontlike 

verantwoordelike meganismes wat die produktiwiteit dryf. Laboratorium en glashuis 

proewe was gedoen met residu wat tyd gehad het om te verweer, op die vroeë groei van 

koring, gars en kanola. Ekstrakte was gemaak van verskeie tipes residu en was 

geevalueer op die ontkieming, koleoptiel en radikaal lengtes van saailinge. Die 

ontkieming van gars en kanola was geaffekteer (p < 0.05), maar nie koring nie (p > 0.05). 

Die koleoptiel en radikaal lengtes was baie meer geaffekteer (p < 0.05) in vergelyking 

met die ontkieming. Sekere gewas residu tipes het die koleoptiel en radikaal lengtes 

verminder terwyl ander effense verlenging tot gevolg gehad het. Die gewas residu was 

steeds allelopaties selfs na vewering in die veld. Alleloptiese effekte het egter 

weglaatbaar (p > 0.05) geword as grond ingesluit word. Kanola wat ‘n klein saad grote 

het was egter beïnvloed (p < 0.05) deur groot residu ladings van 8000 kg ha-1 wat swak 

vroeë groei tot gevolg gehad het. Die veldproef het ‘n enkelskyf en ‘n dubbelskyf planter 

evalueer in hulle vermoë om residu ladings te hanteer asook die effek van verskeie gewas 

residu tipes op koring, gars en kanola produksie. Die dubbelskyf planter het tot beter 

koring en gars vestiging gelei terwyl die enkelskyf planter kanola beter gevestig het (p < 

0.05). Die dubbelskyf planter het die saadvoor beter skoon gemaak terwyl die enkelskyf 

planter beter diepte beheer gehad het. Allelopatie was weglaatbaar en fisiese effekte was 

klein as gevolg van relatiewe klein residue ladings wat meestal onder 5000 kg ha-1 was. 

Die effek wat gewas residu op die grond prosesse gehad het, het moontlik die grootse 

invloed gehad op die opeenvolgende gewas. Gewas residu tipes wat tot meer minerale 

stikstof in die grond gelei het, het beter opbrengste tot gevolg gehad in jaar twee (p < 
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0.05). In jaar een was beter opbrengste egter verkry in residu tipes was groter residu 

ladings tot gevolg gehad het, dit kan toegeskryf word aan beter vog bewaring. ‘n Residu 

afbraak proef het die effek van grond fauna gemeenskappe en residu tipes evalueer. 

Grond fauna het die residu gefragmenteer wat vinniger afbraak tot gevolg gehad het. 

Residu tipes met laer C:N verhoudings het vinniger af gebreek. Die behoud van ‘n 

geskikte hoeveelheid gewas residu vir ‘n spesifieke opeenvolgende gewas sal negatiewe 

effekte beperk terwyl die voordele behou word.  
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Preface 

This thesis is presented as a compilation of six chapters.  
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Chapter 2 The effects of crop residue on barley, canola and wheat yield: A 

meta-analysis of field trials 

Chapter 3 Allelopathic effects of crop residues on germination and early 

growth of wheat, barley and canola 

Chapter 4 Evaluating crop residue effects and disc planter residue handling 

on wheat, barley and canola production  

Chapter 5 Decomposition of different types of crop residue in response to soil 

faunal decomposer communities 

Chapter 6 General conclusion and future research 
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Chapter 1: General Introduction 

The Southern Cape of South Africa has a Mediterranean type climate and receives 

most of its rain during the winter months. The rainfall may however be very sporadic in 

drought years resulting in crop failure. Adopting Conservation Agriculture (CA) 

practises can enhance the soil organic carbon pool, and in turn improve the agronomic 

productivity (Lal 2006). The three key principles of Conservation Agriculture (CA) is 

residue retention together with no-tillage and crop diversification (Swanepoel et al. 

2019). Residue retention promotes the conservation of soil moisture, nutrient cycling, 

soil health and limits erosion, among other benefits (Turmel et al. 2015). Conservation 

Agriculture can therefore improve environmental, agronomic and economic 

sustainability in relatively dry Mediterranean climates (Calzarano et al. 2018).  

The retention of large residue loads may however lead to yield penalties (Bruce et al. 

2005; Wynne et al. 2019). The negative effects when retaining a large residue load 

may be attributed to allelopathy, physical effects, or soil processes. Allelopathy can be 

defined as the (bio-)chemical interaction amongst plants including those mediated by 

microorganisms (Weston and Duke 2003). Physical effect can be described as the 

overshadowing as well as weight of the residue on the crop. Crop residue may alter 

soil processes such as nitrogen immobilisation when incorporated (Kimber 1973). 

Understanding the mechanisms at work will enable producers to adapt management 

strategies to minimise or mitigate them while retaining the benefits of residue retention. 

The potential negative effects experienced when a large residue load is retained may 

in some cases be attributed to allelopathy (Lovett and Jessop 1982). Crops such as 

wheat (Triticum aestivum) and barley (Hordeum vulgare) are known for hydroxamic 

acids which influence cell membranes while the Brassica spp. are known to contain 

thiocyanates (Weston and Duke 2003). The potential of residue to be allelopathic are 

well known and has been proven in laboratory trials (Wynne et al. 2019). Different 

crops and even different varieties of the same crop reacts differently to allelochemicals 

(Wu et al. 2001). The question however arises if residue has an allelopathic effect on 

the next crop, in particular if there is an extended time period before the next crop is 

sown. The allelochemicals may be leached, adsorbed or transformed by microbes and 

lose their toxicity to the crop plants (Wu et al. 2001). When the residue has time to 
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degrade it becomes less toxic compared to fresh residue (Purvis 1990). The crops in 

the southern Cape are harvested in November and the next crop is seeded in May the 

following year, thus one would expect the crop residue to be degraded and less toxic. 

Potential physical effects of residue include overshadowing, physical weight of the 

residue and cold temperature under the residue layer leading to poor early growth 

(Bruce et al. 2006). Seedlings have to expend energy reserves to penetrate large 

residue loads and in turn less reserves remain to be invested in the early leaf 

development (Bruce et al. 2006). The overshading of the seedlings by a large residue 

load may lead to reduced photosynthetically active radiation (Bruce et al. 2006). The 

retention of residue may result in low soil temperature (Roberts et al. 2005). The low 

soil temperature may lead to slower early growth among plants (Unger 1978) and 

reduce the metabolic rate of seedling development (Porter and Gawith 1999). Seeding 

into big residue loads presents its own challenges. Tine planters tend to get clogged 

in large residue loads while disc planters may push residue into the seed slot (hair 

pinning) under moist conditions (Morris et al. 2010). Residue management has to be 

done while harvesting the previous year, short chopped residue tends to flow better 

around tines (Morris et al. 2010). Proper seed to soil contact can be an issue when a 

lot of residue is retained on the soil surface leading to reduced uptake of water (Kong 

2014).  

The retention of residue has several impacts on soil processes such as possible 

nitrogen immobilisation and nutrient cycling. When residue with a high C:N ratio is 

incorporated the possibility arises for nitrogen to be immobilised (Kimber 1973). When 

residue is left on the soil surface the possibility for nitrogen immobilisation becomes 

negligible (Ferreira and Reinhardt 2010). Residue retention however leads to 

increased nutrient cycling (Turmel et al. 2015). The retention of residue together with 

no-tillage led to higher microbial biomass compared to systems where residue was 

removed and the soil was tilled conventionally (Saikia et al. 2019). Residue 

decomposition is mediated by soil biota thus by managing systems in such a manner 

that is favourable to the increase of soil biota, it may lead to quicker residue 

decomposition and ultimately nutrient cycling (Carlesso et al. 2019). The degradation 

of soils is associated with imbalanced, inadequate and pro-macronutrient fertilizer use 
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together with the inadequate use of crop residue (Gupta et al. 2018). Thus, by retaining 

residues, we may ultimately reduce our dependence on macronutrient fertilisers, which 

may improve soil health.  

This study aims to investigate the influence of crop residue on the subsequent wheat, 

barley and canola crop and identify the possible mechanisms responsible. The first 

objective is to evaluate the effect of crop residue extracts on the germination and 

germination parameters. The second objective aims to distinguish between physical 

and allelopathic effects of wheat residue on early growth of wheat, barley and canola 

under controlled conditions. The first two objectives were addressed in chapter 3. The 

third objective of this study is to evaluate the effect of different types of crop residue 

and two types of disc planters on crop production in the Southern Cape of South Africa 

(Chapter 4). The fourth objective is to determine the rate of decomposition of different 

crop residue types and the influence that micro-, meso- and macro fauna communities 

has on crop decomposition (Chapter 5).   

1.2 Layout of thesis 

The thesis consists of six chapters. Chapter one provides a background on crop 

residue retention and identifies gaps in research. The aim and objectives of the study 

is provided in this chapter. 

Chapter 2 comprises of a literature review in the form of a meta-analysis. The meta-

analysis investigated the effect of crop residue load on the wheat, barley and canola 

yield. This chapter was submitted to the South African Journal of Plant and Soil. The 

article can be cited as follow: Kotzé TN, Pieterse PJ, Strauss JA, Swanepoel PA. (s.a.). 

The effects of crop residue on barley, canola and wheat yield: A meta-analysis of field 

trials. South Africa Journal of Plant and Soil (under review). 

Chapter 3 comprises of a laboratory trial and a glasshouse trial that evaluated the 

allelopathic potential of crop residue in the absence and in the presence of soil. This 

chapter was submitted to Crop Science. The article can be cited as follow: Kotzé TN, 

Pieterse PJ, Strauss JA, Swanepoel PA. (s.a.). Allelopathic Effects of Crop Residues 
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on Germination and Early Growth of Wheat, Barley and Canola. Crop Science (under 

review). 

Chapter 4 comprises of field trials conducted in the southern Cape of South Africa. The 

trials evaluated two different types of disc planters and various crop residue on wheat, 

barley and canola production. This chapter was written with the intention of publishing 

it as a scientific article in a peer-reviewed journal. 

Chapter 5 consists of a decomposition trial conducted in the field. Different 

decomposer communities and various crop residue types was evaluated in the 

decomposition process. The abovementioned factors are discussed in terms of their 

influence on the rate of decomposition. This chapter was submitted to Crop Science. 

The article can be cited as follow: Kotzé TN, Pieterse PJ, Strauss JA, Swanepoel PA. 

(s.a.). Decomposition of Different Types of Crop Residue in Response to Soil Faunal 

Decomposer Communities. Crop Science (under review). 

Chapter 6 consists of the general conclusion and recommendations drawn from all the 

chapters. Limitations and future research are also discussed in this chapter. 
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Chapter 2: The effects of crop residue on barley, canola and wheat yield: A meta-

analysis of field trials 

TN Kotzé, PJ Pieterse, JA Strauss, PA Swanepoel 

2.1 Introduction 

Conservation agriculture (CA) has been defined as a more sustainable cultivation 

system for the future (Hobbs et al. 2008). The three main principles of CA is; (1) 

minimum soil disturbance, (2) residue retention and (3) crop diversification (e.g. crop 

rotation) (Mondal et al. 2019). Benefits of CA include, but is not limited to, increased 

macro and water stable aggregates and better water infiltration into soil (Mondal et al. 

2019). Although no-tillage has a tendency to decrease grain yield, when no-tillage is 

combined with residue retention and crop rotation (viz. CA) the probability to obtain 

yield loss drops (Pittelkow et al. 2015; Li et al. 2020). Conservation Agriculture can 

however result in yield loss in very wet and cold climates (Pittelkow et al. 2015), and 

its outcome is therefore context-specific (Swanepoel et al. 2018). In spite of possible 

reduced (or similar) crop yields from CA compared to conventional agriculture, CA is 

generally more energy efficient (Moradi et al. 2018). Adopting CA practises may not 

always result in the highest yield, but with fewer inputs overall, the system productivity 

supports sustainability. 

Crop residue retention is an important factor to ensure sustainable production and has 

multiple benefits. Retaining crop residue is beneficial in areas where rainfall is low or 

sporadic as it promotes moisture conservation and may consequently increase yield 

(Calzarano et al. 2018). Residue retention is therefore an important practise 

considering the expected reduced rainfall due to climate change in various cropping 

regions (Midgley et al. 2005; Hewitson and Crane 2006). Furthermore, erosion is 

limited when retaining residue and practising no-tillage (dos Santos et al. 1993). 

Residue retention supports the circulation of nutrients, particularly crop residues with 

a low C:N ratio as it decomposes faster to release nutrients (Calzarano et al. 2018). 

Nutrient cycling, mediated by soil biota, is a key process in soil and is underpinned by 

residue decomposition (Carlesso et al. 2019). As soil biota provides additional 
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agroecosystem services, using crop residue to support soil biota could be an effective 

tactic.  

Residue retention does not come without its challenges, the residue may negatively 

interact with the following crop. For instance, Bruce et al. (2005) reported that retaining 

a large amount (> 5000 kg ha-1) of wheat (Triticum aestivum) residue resulted in 

reduced canola (Brassica napus) yield. Crop residue effects in a crop rotation system 

is complex as different crops react differently to particular types of crop residue 

(Ferreira and Reinhardt 2010). For example, when including sorghum (Sorghum 

bicolor) in a rotation, other crops often experiences a yield penalty (Roth et al. 2000). 

Planting barley (Hordeum vulgare) into alfalfa (Medicago sativa) residue may also lead 

to a yield penalty (Ferreira and Reinhardt 2010). The mechanisms of yield penalty 

effects may be biochemically or physically. Allelochemicals may be released from 

residue and have phytotoxic effects on subsequent crops (Bruce et al. 2005; Roth et 

al. 2000; Ferreira and Reinhardt 2010). Canola establishment was reduced when 

canola seed was placed near wheat residue (Morris et al. 2009). The effects was 

primarily attributed to physical effects, but the authors include the possibility that 

allelopathy may play a role. Wheat residue is well known to contain water-soluble 

phytotoxins that inhibits the growth of wheat and other crops (Alsaadawi 2001). Wheat 

and barley contain hydroxamic acids such as 2,4-dihydroxy-1,4-benzoxazin-3-one 

(DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) of which the 

effects on membranes are not fully known (Weston and Duke 2003). Brassica species 

are known to contain thiocyanates which can lead to cyanide poising (Weston and 

Duke 2003). However small amounts of allelochemicals can promote crop growth, a 

process known as hormesis (Farooq et al. 2013). Retaining a low to moderate amount 

of residue may release a low amount of allelochemicals which may promote crop 

growth.  

Residue can influence soil processes thus resulting in indirect effects on the 

subsequent crop. The way crop residue is managed will largely determine the effects 

experienced. Incorporating residue into the soil may affect production of the crop 

planted into the incorporated residue as a result of various soil processes such as 

nitrogen (N) immobilisation and possibly allelopathy (Kimber 1973). Reduced N uptake 
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by plants sown into residue with a high C:N ratio may be attributed to inhibition by 

allelochemicals or N immobilisation (Wu et al. 2001). The yellowing of the above 

ground plant material may be attributed to an impaired root system which can be 

caused by biochemical compounds linked to the residue (Purvis 1990). Depending on 

the C:N ratio of the residue, N may be immobilised specifically when residue with a 

high C:N ratio is incorporated (Trinsoutrot et al. 2000). When the residue is not 

incorporated in soil the possibility of N immobilisation in the soil becomes negligible 

(Ferreira and Reinhardt 2010).  

Retaining a large amount of surface residue can lead to implement blockages in turn 

leading to poor crop establishment and a yield penalty (Morris et al. 2010). Disc seed 

drills with large enough discs will tend not to get blocked, but in tough (moist) conditions 

the residue can be pushed into the seed slot (hair pinning) which will decrease seed 

to soil contact. Large crop residue loads may lead to poor seed placement (dos Santos 

et al. 1993). Crop residue loads in excess of 5000 kg ha-1 may lead to a crop with 

elongated hypocotyls (Bruce et al. 2005). Expending seed energy resources to 

penetrate the residue layer may explain the poor early growth associated with retaining 

large residue loads (Bruce et al. 2005).  

Other indirect effects when residue retention is practised include disease pressure and 

weed management. Residue retention may promote the survival of pathogens (Sturz 

et al. 1997), particularly when crops are established in residue of that same crop, as 

reported for wheat by Sturz et al. (1997). However, when practising CA, crop rotation 

is a key element to decrease disease pressure (Campanella et al. 2020). More diverse 

crop rotations where more crops are sown before the same crop is sown again results 

in a longer disease break (dos Santos et al. 1993). Pre-emergence weed management 

by means of herbicide application can be a problem when a large amount of residue is 

retained because of poor soil contact (Khalil et al. 2018). However, some herbicides 

will retain their efficacy when used in residue retained fields (Khalil et al. 2018). 

Allelochemicals from crop residue has the potential to reduce weed pressure in residue 

amended fields but has less efficacy when applied alone compared to a 100 % rate of 

herbicides (Lahmod and Alsaadawi 2014).  Applying a moderate residue load and a 

50 % herbicide rate resulted in similar yield compared to a full herbicide rate (Lahmod 
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and Alsaadawi 2014). The afore mentioned may potensially result in herbicide 

resistance. 

Temperate crops, such as wheat, barley and canola are commonly grown in rotation. 

Wheat is a widely cultivated crop and plays a big role in feeding a growing world 

population, the forecast for the total production of wheat in 2020 is 760.1 million tons 

(FAO 2020). Conservation agriculture, and more specific residue retention, has many 

benefits, but also has challenges. Distinguishing between possible causes of the 

negative effects observed where a large residue load is retained is difficult in the field. 

A combination of possible causes is probably involved.   This paper aims to investigate 

possible ways to mitigate or minimise the negative effects while retaining residue to 

preserve the positive effects. To support the aim, a meta-analysis was conducted to 

further investigate the effects of crop residues on subsequent crop yield and to identify 

a possible optimum residue load. 

2.2 Material and Methods 

2.2.1 Data collection 

Data was extracted from peer-reviewed articles that forms part of three databases, i.e. 

the Institute for Scientific Information Web of Science 

(http://apps.webofknowledge.com), Scopus (https://www-scopus-com) and Cab 

Abstracts (https://www-cabdirect-org). The databases were searched using the 

following Boolean equation: (("crop residue" OR "organic mulch" OR "stubble") AND 

(allelopathy* OR phytotoxic* OR biochem*) AND (wheat OR triticum OR barley OR 

hordeum OR canola OR brassica)). The databases were adjusted so that the keywords 

apply to the article topic and not necessarily the title and no further restrictions were 

placed on the search. The last literature search was conducted on 31 October 2019. 

The search delivered a combined total of 796 results. The articles were screened to 

conform to the following criteria: (1) the grain yield must be reported; (2) the full-text 

articles must be written in English; (3) three or more replications of each treatment 

(type of residue and/or residue load) must be reported; (4) the test crops must be 

barley, wheat, canola or rapeseed; (5) the study must be a field trial. Eleven studies 
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which was distributed over five continents, were used for the analyses. The eleven 

studies consisted of four irrigation studies (34 observations) and seven dryland studies 

(129 observations).  

2.2.2 Data management 

Articles that met the abovementioned criteria was further used for data extraction 

purposes. The mean grain yield was extracted for each treatment as well as the residue 

load and type of tillage. Additional information such as the study location, irrigation, 

annual average rainfall, and test crop was also extracted from the studies if available. 

In studies where data was presented on graphs the values were determined using the 

WebPlotDigitizer (Rohatgi 2019).  

Some studies did not present the exact GPS coordinates, in such cases the 

coordinates of the nearest town were used to reflect the spatial distribution of the 

studies (Figure 2.1). 

 

Figure 2.1: The spatial distribution of the trials which was subjected to the data 

extraction process.  
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2.2.3 Data categories  

The residue load treatments consisted of the previous crop’s residue and was 

categorised as follow: Zero residue load treatment (A) 0 kg ha-1; Low residue load 

treatment (B) 1 to 3000 kg ha-1; Moderate residue load treatment (C) 3001 to 5000 kg 

ha-1; High residue load treatment (D) more than 5000 kg ha-1. Treatment A reflected 

fallow fields which were sprayed or ploughed as well as fields where as much as 

possible of the available residue was removed with only the roots present in the soil at 

planting. The four irrigation production studies did not contain any low residue load 

treatment (1-3000 kg ha-1) observations. 

Following the primary analyses of the residue load, it was decided to analyse the type 

of cultivation as well for all the extracted articles. This was done to compliment the 

findings of the study. The type of cultivation was assigned to three groups namely, no-

tillage (NT), shallow tillage (ST) and conventional tillage (CT). For cultivation practices 

to qualify as NT the soil may not have been cultivated prior to seeding and only seed-

drills (fitted with either disc or tine-type openers) were used to establish crops. Shallow 

tillage was defined as one or more cultivations shallower than a depth of 150 mm. 

Conventional tillage was defined as a mouldboard plough or aggressive cultivation to 

a depth greater than 150 mm. For the irrigation studies analysis, the NT and ST 

categories were combined and renamed to reduced tillage (RT) due to the low number 

of treatment observations in the NT and ST categories. 

The study locations climate was grouped according to the Köppen-Geiger classification 

(Figure 2.2). The classification considers the monthly average temperature and the 

monthly average rainfall. The Köppen-Geiger classifications for each of the 

observations was used to get a context of the type of climate under review. The codes 

beginning with a “D” indicates a cold climate where snow is common in winter, this 

represents 31.9 % of the total observations. The codes beginning with a “C” and “B” 

can fall below freezing point (0°C) in winter but do not receive snow as a rule but in 

exceptional cases it can sometimes snow. The observations classified as an arid or 

semi-arid climate is the Bsk, BWh and BSh which represents 22.7 % of the total 

observations. 
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Figure 2.2: The classification of the observations according to the Köppen-Geiger 

classification. On the Y-axis is the number of observations and on the X-axis the 

Köppen-Geiger classification. Cfa is a Humid Subtropical climate; Cfb is an Oceanic 

Climate; Dfb is a Mild Continental Humid climate; Bsk is a Cold Semi-Arid climate; BWh 

is a Hot Desert climate; Dfa is a Warm Continental Humid climate and lastly BSh is a 

Hot Semi-Arid climate.  

2.2.4 Data analyses 

Some of the extracted information was used in forest plots to visually represent the 

data. The extracted information used for the forest plots include the residue load from 

the previous crop as well as the tillage practises. The extracted information was then 

split up according to dryland crop production and irrigation crop production.  

2.2.4.1 Forest plots 

The forest plots were constructed on the Evidence Partners’ Forest Plot Generator 

(2019) website, as prescribed by (Neyeloff et al. 2012). Firstly, the effect sizes of the 

grain yield for each crop were calculated.  
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(1) 𝐸𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 =
𝑀𝑒𝑎𝑛 (𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)−𝑀𝑒𝑎𝑛 (𝑔𝑟𝑎𝑛𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 ×   100 

Standard error (SE) was calculated for each individual assigned category. 

(2)  𝑆𝐸 =
𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒

√𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑥 𝑛
 

Next the individual study weight was calculated. The larger the SE the smaller the 

study weight. 

(3) 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑢𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑤) =
1

𝑆𝐸2
 

Following the individual study weight, the study weights was calculated. 

(4) 𝑊𝑒𝑖𝑔ℎ𝑡 (%) = 𝑤 × 
1

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑠
  ×  100 

The lower (-95%) and upper confidence levels (+95%) were calculated as follow.  

(5) 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐶𝐼) =  𝑋  ±  𝑍 
𝛼

2
 ×

𝜎

√𝑛    
 

All of the abovementioned parameters were calculated and uploaded into the forest 

plot generator. 

2.2.4.2 Statistical analyses 

An Analysis of Variance (ANOVA) was conducted to analyse treatment effects 

between the respective categories. Normality of residuals were tested with the 

Shapiro-Wilk test, and homogeneity of variances were evaluated with Levene’s test. If 

residuals were not normally distributed, or when variances were heterogenous, the 

Games-Howell, Kruskal-Wallis and Mann-Whitney post-hoc procedures were used to 

confirm the results of the ANOVA. The Fisher’s least significant difference test were 

used to separate treatment means at a 5% significance level. Statistica version 

13.5.0.17 was used to conduct statistical analyses (TIBCO Software Inc. 2019). 
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2.3 Results 

2.3.1 Residue load effect on relative yield under dryland 

Zero residue (treatment A) resulted in a relative grain yield increase (p < 0.05) 

compared to high residue loads (Figure 2.3). The zero-residue load treatment did 

however not differ (p > 0.05) from the low residue treatment. When residue load was 

higher than 3000 kg ha-1, the lowest yields were recorded. Although the low residue 

load treatment had relatively few observations and high variance it did not differ from 

the moderate and high residue load treatments (p > 0.05). Overall, the relative yield 

decrease due to a higher residue load is relatively small (under 5 %) under dryland 

conditions. 

Figure 2.3: The effect of the residue load (kg ha-1) on the relative yield (%) under 

dryland conditions for wheat, barley and canola. The residue load is on the Y-axis and 

the relative yield is on the X-axis. The vertical line (0) on the X-axis is taken as the 

control, the control was taken as the mean of all the combined treatments. No common 

letters indicate significant difference (p < 0.05). On the right-hand Y-axis, n is the 

number of observations per category and the WGHT represents the individual study 

weight (%). The larger the SE the smaller the individual study weight (%). 

2.3.2 Residue load effect on relative yield under irrigation 

Following the zero-residue load treatment a relative yield increase could be expected 

(Figure 2.4). The zero-residue load treatment did not differ from the moderate residue 

load treatment (p > 0.05). The high residue load treatment resulted in the lowest yield 

a 

a

b 
b 

b 
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which was significantly smaller than the zero-residue treatment (p < 0.05). The high 

residue load did however not differ from the moderate residue load (p > 0.05).  

 

Figure 2.4: The effect of residue load (kg ha-1) on the relative yield of wheat (%) under 

irrigation practises. The residue load is on the Y-axis and the relative yield is on the X-

axis. The vertical line (0) on the X-axis is taken as the control, the control was taken 

as the mean of all the combined treatments. No significant letters indicate significant 

difference (p < 0.05). On the right-hand Y-axis, n is the number of observations per 

category and the WGHT represents the individual study weight (%). The larger the SE 

the smaller the individual study weight (%). 

2.3.3 Cultivation practises effect on relative yield under dryland 

The shallow tillage and the no-tillage treatments did not differ from each other (p > 

0.05) (Figure 2.5). The conventional tillage treatment differed from the NT and ST 

treatments (p < 0.05). When following ST or NT a slight relative yield increase could 

be expected, however the CT treatment led to a slight relative yield decrease. Under 

the circumstances of this study, it was beneficial to reduce the amount of soil 

disturbance under dryland conditions. 

 

a 

a

b 

b 
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Figure 2.5: The effects of cultivation practises on the relative yield (%) of wheat, barley 

and canola under dryland conditions. Conservation tillage (CT), Shallow tillage (ST) 

and No tillage (NT) are on the Y-axis. The relative yield is indicated on the X-axis, with 

the vertical line (0) point being the control. The control was taken to be the mean of all 

the treatments combined for each crop. No common letters indicate significant 

difference (p < 0.05). On the right-hand Y-axis, n is the number of observations per 

category and the WGHT represents the individual study weight (%). The larger the SE 

the smaller the individual study weight (%). 

2.3.4 Cultivation practises effect on relative yield under irrigation 

The conventional tillage treatment differed from the reduced tillage treatment (p < 0.05) 

(Figure 2.6). The relative yield increased when following conventional tillage. Although 

variation was high, and the RT treatment consisted out of a low number of observations 

the RT treatment led to a large relative yield decrease.  

 

 

 

a 
b 

b 
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Figure 2.6: The effect of tillage practises on the relative yield (%) of wheat under 

irrigation practises. Conventional tillage (CT) and reduced tillage (RT) are on the Y-

axis. On the X-axis is the relative yield with the vertical line (0) being the control, which 

was the mean of all the treatments. No common letters indicate significant difference 

(p < 0.05). On the right-hand Y-axis, n is the number of observations per category and 

the WGHT represents the individual study weight (%). The larger the SE the smaller 

the individual study weight (%). 

2.4 Discussion 

Meta-analysis results indicate that retaining high amounts of residues result in yield 

penalties in both dryland and irrigation production systems. No-till on its own can lead 

to reduced yields, but when residue is retained in no-tillage systems, yield penalties 

can be largely prevented (Pittelkow et al. 2015; Li et al. 2020). The complementarities 

or synergistic effects of adopting the multiple management practices of CA becomes 

important as complementary biophysical or economic benefits is expected with 

adoption of multiple CA practices. However, when viewed individually, the retention of 

high residue loads can lead to yield reductions (Bruce et al. 2005). There can be 

multiple reasons for crop residues’ effects on subsequent crops, such as biochemical, 

physical, and chemical effects. Although retaining crop residues offers benefits to the 

physical properties of soil as well as chemical properties (Bhattacharyya et al. 2019), 

adverse effects of retaining residue such as disease and weed pressure, may also play 

a role. The negative effects may also have been due to allelochemicals and reduced 

light penetration through the residue (Bruce et al. 2005). Crop residue from different 

species has different effects on the subsequent crop, some residue will increase yield 

while other species might lead to a yield penalty (Ferreira and Reinhardt 2010). 

a 

b 
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Planning of the rotation sequence is therefore very important especially in cash 

cropping systems.  

In the data gathered in the current study’s meta-analysis, the amount of arid and semi-

arid observations represents only 22.7% of the total observations. One could argue 

that if the number of observations in arid and semi-arid environments were more, a 

moderate or high residue load would have caused no yield penalty (Figure 2.3). 

Production in dry climate zones will have less of a yield penalty and more of a yield 

advantage under a higher residue load compared to wetter climates - this can be 

attributed to moisture conservation (Bruce et al. 2005). The higher moisture levels later 

in season when conserving residue will likely offset the initial negative effect (Bruce et 

al. 2005).  

The (bio-) chemical interaction amongst plants including those mediated by 

microorganisms are referred to as allelopathy (Weston and Duke 2003). Crop residue 

is more inhibitory when fresh residue is compared to weathered crop residue (Purvis 

1990; Bruce et al. 2005). A laboratory study showed that the allelopathic effect of crop 

residue decreases over time even if the residue is stored dry (Mason-Sedun et al. 

1986). In regions where only one crop is produced, typical of semi-arid and arid 

regions, the residue has time to decompose over winter or summer months which may 

lead to reduced allelopathic potential. The probability to get an inhibitory effect due to 

allelopathic chemicals being leached from crop residue seems greater with double 

cropping. Allelochemicals of crops can promote growth if applied at low concentration 

and will inhibit crop growth when applied at high concentration (Farooq et al. 2013).  

In laboratory studies the inhibitory effects due to allelopathy are generally more 

pronounced than in the field environment (Lovett and Jessop 1982). Some argue that 

the concentration of allelopathic compounds used in laboratory studies is 20 times 

higher than found in the field (Morris et al. 2010). The vast volume of soil probably has 

a big dilution effect on the strength of allelopathic solutions. Microbial breakdown of 

allelochemicals and adsorption to soil particles under field conditions may also 

contribute to less allelopathic effects seen in the field compared to controlled 

environments (Wu et al. 2001). Crop residue decomposition is mediated by soil biota 

but is also largely dependent on suitable climatic conditions (Carlesso et al. 2019). The 
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rate of decomposition is greater in warm and humid conditions (Arlauskienė et al. 

2016).  

The quality parameters of residue such as the C:N ratio is an important factor 

concerning the speed of breakdown as well as causing temporary N immobilisation in 

the soil when incorporated (Nicolardot et al. 2001). Crops with a high C:N ratio 

decomposes slower and can cause temporary N immobilisation particularly if the 

residue is incorporated (Nicolardot et al. 2001). The N uptake of wheat was less when 

the residue was incorporated compared to when the residue was left on top of the soil 

(Truong et al. 2019). Some argue that the possible N negative period can be excluded 

when the residue is not incorporated (Thompson 1992; Ferreira and Reinhardt 2010). 

In high yielding areas where a lot of biomass is produced, livestock can be used to 

enhance the decomposition of crop residue as well as the nutrient cycling of residue, 

however trampling by cattle in very wet areas can cause yield penalties for subsequent 

crops due to soil compaction (Assmann et al. 2014). Promoting crop decomposition 

with grazing can be a possible management strategy for reducing the residue load 

while retaining nutrients compared to when the residue is mechanically removed. 

Residue management may also play a role in the effect that residue has on the 

subsequent crop and soil processes. In a study done on the effects of sunflower 

(Helianthus annuus) residues on winter wheat in Virginia, USA, the incorporation of the 

sunflower residues led to a yield decrease when compared to the no-till plots (Morris 

and Parrish 1992). The effects were mainly ascribed to the placement of the sunflower 

residues in the soil, the authors suspect that sunflower residues have an allelopathic 

effect on winter wheat (Morris and Parrish 1992). Incorporating sunflower residue led 

to more pronounced production penalties in comparison with the partial or complete 

removal of the residue (Babu et al. 2014).  

Allelopathy, a possible N negative period and the negative effects that conventional 

tillage has on the soil structure may explain the slightly negative effect that the 

conventional tillage had on yield in Figure 2.5. When examining tillage practises 

associated with the data from the studies included in the meta-analysis, findings are 

comparable to other studies (Figure 2.5). When no-till is done in combination with the 

other two practises of CA namely residue retention and crop rotation the probability to 
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obtain yield loss from no-till drops (Pittelkow et al. 2015). In this study there was only 

29 observations where the previous crop was the same as the test crop and 38 

observations in total did not practise residue retention. In a study done in Scotland, 

winter barley was seeded into barley residue (Ball and Robertson 1990). The plots 

where the straw was incorporated at deeper depths performed better when compared 

to plots where the straw was incorporated at shallow depths. No-till was not done in 

this study. The reduced yields reported of shallow incorporation was ascribed to 

waterlogging as well as residue phytotoxicity (Ball and Robertson 1990). The authors 

did not list disease as a possible cause. Conventional tillage will help reduce disease 

pressure in a monoculture compared to reduced tillage or no-tillage which leaves the 

residue on or near the soil surface (Hiel et al. 2016). This again highlights the 

importance of crop rotation. Under very wet and cold climates conventional tillage can 

lead to the soil warming quicker which is beneficial for planting the next crop (Daigh et 

al. 2018). No-till practises can reduce yield when conducted under wet and cold 

conditions (Pittelkow et al. 2015). The observations in this paper were mostly in 

relatively high rainfall zones (Figure 2.1), however the rainfall distribution is very 

important. When poor rainfall distribution occurs for example in a Mediterranean 

climate where the summer is dry and the winter cold and wet, high annual rainfall areas 

will lead to the crops being water-logged from time to time in some winter months. The 

in-season rainfall is an important parameter, but unfortunately not enough studies 

reported it and a representative data set could not be attained. 

Retaining high residue loads will likely have a physical impact on the emerging crops 

together with practical limitations at planting. Canola seeded into wheat residue of 

5000 kg ha-1 resulted in a 46% reduction in biomass and a 26% yield decrease (Bruce 

et al. 2006). The cause of the reduced canola production was attributed to the physical 

effect of the crop residue on the canola (Bruce et al. 2006). Elongated hypocotyls were 

found when seeded into high residue loads, elongation of hypocotyls is a common 

reaction to the reduction in photosynthetically active radiation (Bruce et al. 2006). The 

expenditure of seed energy reserves to emerge through the residue layer likely 

resulted in reduced energy investment in early leaf and root growth (Bruce et al. 2006). 

Seeding into a high residue load a yield penalty was experienced which was attributed 

to poor seed placement (dos Santos et al. 1993). Seed-drill blockages is more likely in 
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long (> 300 mm) unanchored residue compared to short-chopped residue (Baker et al. 

2007). Residue can also be pushed into the seed slot rather than being cut when using 

disc drills resulting in poor seed to soil contact (Morris et al. 2010). The large residue 

loads (>5000 kg ha-1) found under irrigation practises, due to higher production, may 

explain the relatively large yield penalty observed in Figure 2.4, this effect was further 

pronounced due to less water stress compared to dryland production. The 

conventional tillage led to a yield increase under irrigation (Figure 2.6). The reason for 

this increase may be since seeds cannot be accurately placed in the soil under a high 

residue load and water is also not a limiting factor under irrigation production. Moving 

the residue away from the seed furrow resulted in better yields in canola and barley 

compared to regular no-tillage. This was done by placing row cleaners in front of the 

seeding units (Azooz and Arshad 1998). Removing the residue from the furrow will 

likely mitigate most of the physical effect of the crop residue on the seedlings while 

maintaining the benefits of residue retention. 

Residue retention may increase disease pressure if the appropriate crop rotations is 

not implemented. In southern Brazil, where the effect of different rotations on barley 

yield was evaluated, it was found that a longer rotation system with less barley 

performed better than a barley-soybean rotation and it was attributed to the effect to a 

longer disease break (dos Santos et al. 1993). Retaining a lot of residue on the surface 

provides material for crop diseases to survive in which can lead to yield penalties if the 

crop rotation sequence is not long and diverse enough (Bajwa 2014). Conventional 

tillage will help reduce disease pressure in a monoculture compared to reduced tillage 

or no-tillage, which leaves the residue on or near the soil surface (Hiel et al. 2016). The 

planning of crop rotation sequences is of great importance to minimise disease 

pressure. Appropriate rotation sequences, crop resistance and effective spray 

programs are however effective to manage disease pressure to prevent major yield 

penalties (Aboukhaddour et al. 2020).   

Weed management under CA practises excludes almost all mechanical control 

methods such as ploughing. Residue retention will have little effect on pre-emergence 

herbicide efficacy when the correct herbicide is applied as some herbicide types retains 

its efficacy (Khalil et al. 2018). Pyroxasulfone retained its efficacy in residue retained 

Stellenbosch University https://scholar.sun.ac.za



 

23 

 

fields (Khalil et al. 2018). In western Canada cover crops helped to reduce weed 

pressure and in turn reduced herbicide application as well as reduced erosion in fallow 

fields (Moyer et al. 1999). Narrow crop rows will help crops compete with weeds (Fahad 

et al. 2015). Applying sorghum residue together with a 50% rate of mesosulfuron and 

iodosulfuron reduced weeds significantly (Lahmod and Alsaadawi 2014). Following an 

integrated approach using different herbicides and agronomic practises, weed 

pressure is likely to be limited thus no major yield loss is likely. 

Retaining the correct amount of residue for a certain climatic area will minimise 

negative effects and, in the process, benefits will be gained. Various studies conducted 

over different continents showed a positive effect of residue retentions on soil health 

(Hiel et al. 2016). The burning of residue led to lower gross N mineralisation rates 

compared to the residue retention plots (Hoyle and Murphy 2006). No-tillage and 

residue retention in a rice-wheat system in India promoted the microbial activity of the 

soil when compared to residue removal and conventional tillage (Saikia et al. 2019). 

The higher microbial biomass may also cause the allelopathic compounds to be broken 

down quicker. Microbial activity in soils will however take time to increase and will only 

do so under the correct management practises. No-till plots where residue was 

retained had a higher residual N in the 0-5 cm topsoil compared to the conventionally 

tilled plots. The short-term N availability might sometimes be lower due to enhanced N 

sequestration into long-lived pools (Bhattacharyya et al. 2019). Crop intensification 

together with no-tillage will result in added C storage in soils, but no-tillage without 

enough crop residues can lead to severe soil degradation (Govaerts et al. 2009). Crop 

residues together with no-tillage leads to higher soil moisture compared to 

conventional tillage practises and removing the residue (Govaerts et al. 2007). 

Considering the above mentioned, the retention of a low amount to a moderate amount 

of residue is beneficial. The yield will not be penalised severely, and a possible yield 

gain can be expected. Over the long term we should expect that a system where 

residue is retained will be more sustainable with fewer inputs being required. No-till 

promotes a better soil structure over time compared to conventional tillage, this can 

lead to improved grain yields (Gupta et al. 2016). Less tillage resulted in better soil 

structure and infiltration, which lead to wheat yield increases when less irrigation water 

was applied (Verhulst et al. 2011). Soil organic matter, and more specific the labile 
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fraction of soil organic matter, plays an important role in maintaining soil structure and 

providing soil nutrients (Six et al. 1998).  Non-inversion tillage such as a chisel plow in 

the Mid-Atlantic region of the USA resulted in higher labile carbon and soil moisture 

compared to conventional tillage where the soil was inverted using a mouldboard 

plough (Lewis et al. 2011). Looking at our results under dryland conditions no-tillage 

together with a low to moderate residue load will likely be beneficial. 

2.5 Conclusion 

This global meta-analysis was conducted to investigate the mitigation or reduction of 

possible negative effects of residue retention on the following crops while still retaining 

the benefits that residue retention offers. Negative effects due to allelopathic influence 

of residue on the following crop may be very small if not negligible. The vast volume of 

soil together with the microbial breakdown of the compounds will likely result in 

negligible allelopathic effects in a production system where the following crop is 

seeded in the following year. However, under irrigation production or high potential 

cropping areas where double cropping is viable, the residue is still largely 

undecomposed and there may be an allelopathic effect. The incorporation of residue 

may lead to more pronounced negative effects. The incorporation of residue will lead 

to N immobilisation if residue with a high C:N ratio is incorporated. Nitrogen 

immobilisation under NT is negligible.  

The optimum residue load is different for each climatic production zone, in very wet 

areas the optimum residue load will be less than in semi-arid and arid environments. 

Crop residue can be grazed or baled to reduce the load. The negative effect of a large 

residue load will likely be offset later during the growing season when more moisture 

is available compared to uncovered soil in dry environments. Seeding into residue with 

unsuitable seed drills will likely lead to physical impacts from the residue on the crop. 

Physical impacts such as overshadowing, and the weight of the residue can largely be 

avoided when the seeding equipment cleans the seed furrow prior to planting. From 

the data studied it appears that the optimum residue load is around 3000 kg ha-1. 

Residue loads should be derived from field trials conducted under similar conditions to 

be more accurate. Rotation sequences should be adequately planned to prevent the 
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seeding of a crop that is sensitive to a high residue load after a crop that produces a 

lot of biomass. 

Other indirect effects of residue retention such as disease pressure can be effectively 

managed when the principles of CA are followed. Pre emergence weed control can be 

done effectively with certain chemicals but a more integrated approach concerning the 

use of residue will be beneficial over the long run. Finally, there is a great need for 

more metadata to provide better recommendations concerning residue retention. 
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Chapter 3: Allelopathic effects of crop residues on germination and early growth of 

wheat, barley and canola 

3.1 Introduction 

Residue retention is of importance for moisture conservation, especially in arid and 

semi-arid production regions (Calzarano et al. 2018). Residue retention in association 

with crop rotation and no-tillage, can improve environmental, agronomic and economic 

sustainability in relatively dry Mediterranean climates (Calzarano et al. 2018). Crop 

residues provide valuable ecosystem services, such as the improvement of soil health 

and the reduction of soil erosion (Turmel et al. 2015). Retaining crop residue is key for 

improving physical, chemical and biological properties of soil which in turn may lead to 

increased crop yields (Turmel et al. 2015). Residue retention will minimise or mitigate 

negative effects associated with implementation of no-tillage (Li et al. 2020).  

Large amounts of residue (> 5000 kg ha-1) can however result in a yield penalty, but 

depends on season and site characteristics (Bruce et al. 2005). The effect that crop 

residue has on the subsequent crop may be ascribed to various mechanisms. Yield 

penalties, a consequence of poor establishment and retarded early crop growth, may 

be caused by physical effects or biochemical (allelopathic) compounds (Purvis 1990; 

Bruce et al. 2005).  

Physical effects such as reduced light penetration, cold temperatures and poor seed 

placement may lead to reduced yield. Reduced light penetration may result in 

elongated and weak hypocotyls (Bruce et al. 2006). Low temperatures under the 

residue layer may lead to reduced metabolic rates of seedlings and subsequently 

slower growth and early development (Porter and Gawith 1999; Bruce et al. 2006). 

Improper depth placement of seed by no-tillage seed-drills can occur in high residue 

loads which can lead to non-uniform establishment and impaired seed-to-soil contact 

(dos Santos et al. 1993; Morris et al. 2010).  

Although there is a limited understanding of the allelopathic effects of crop residue on 

subsequent crop performance, there are reports demonstrating allelopathic effects in 

controlled conditions (Wynne et al. 2019). Allelopathy can be defined as the 
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biochemical interaction among plants including those mediated by microorganisms 

(Weston and Duke 2003). Reports of reduced yields from field trials in the presence of 

residue was attributed to allelopathy especially when the residue was incorporated 

(Lovett and Jessop 1982). Many factors may influence the outcome of allelopathic 

effects, for instance the crop type, quality of crop residue and the degree of 

degradation. Soil may also have a dilution effect on the concentration of allelopathic 

chemicals under field conditions. Degraded crop residue is expected to be less 

phytotoxic to subsequent crops when compared to undegraded residue (Purvis 1990). 

For instance, in the southern Cape region of South Africa, crops are harvested by the 

end of spring (November) and the subsequent crop is planted the following year in 

autumn (May). This gives the crop residue time to degrade. Despite these above-

mentioned factors influencing the phytotoxicity of crop residues, there is a limited 

understanding of how crop residue affects subsequent crops.  

A study was designed to determine the phytotoxicity of different types of crop residue 

on the performance of wheat (Triticum aestivum), barley (Hordeum vulgare) and 

canola (Brassica napus). The study was conducted in two parts. Trial I aimed to 

evaluate crop residue extracts on germination and germination parameters. Trial II 

aimed to distinguish between physical and allelopathic effects of wheat residue on 

early growth of wheat, barley and canola under controlled conditions. 

3.2 Material and methods 

Trial I: Effects of crop residue extracts on germination of wheat, barley and canola 

3.2.1 Trial location 

The trial was conducted in 2020 at Welgevallen Experimental Farm (33°56’34.0” S 

18°51’59.0” E) in Stellenbosch, South Africa. Donor crop residue, derived from crops 

of the 2019 season, was collected from a field at Tygerhoek Research Farm 

(34°09’58.3” S 19°54’34.1” E) in May 2020.  
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3.2.2 Experimental design and treatments 

Trial I consisted of three individual experiments, each investigating the crop residue 

effects on a different test crop: (1) wheat (cv. SST 0117), (2) barley (cv. Hessekwa) 

and (3) canola (cv. Alpha). The three experiments were each laid out as a randomised 

block design with five replicated blocks. The treatment factors for the experiments were 

extracts from six donor crop residue types and the extract strength. The donor crop 

residue type was residue of wheat, barley, canola, field pea (Pisum sativum), annual 

medic (Medicago polymorpha) and oats (Avena sativa). The donor crop residue was 

used to produce extracts with strengths of 0, 1.25, 2.5 and 5 % weight volume-1 (% w 

v-1). The extract was made by soaking the donor crop residue in distilled water for 72

hours. Extracts were kept in the dark to prevent degradation by light. The extract was 

filtered through 0.22 μm filter units to prevent fungal and bacterial contamination. 

Twenty seeds were placed in a 90 mm petri dish on 8-12 μm filter paper. Four millilitres 

of extract was pipetted onto 20 seeds of the test crop in each petri dish. The seeds 

were germinated for seven days under light/dark conditions of 16 hr/8 hr respectively 

in an incubator set at a day-night temperature of 30°C/20°C. The incubator was 

maintained at a high relative humidity, close to 100 % to prevent evaporation of 

extracts. 

3.2.3 Measurements 

Seven days after the seeds were placed in the petri dishes, the percentage 

germination, coleoptile and radicle lengths were determined. The seeds that had a 

radicle and coleoptile were counted as germinated while the rest were counted as 

ungerminated. The coleoptile and radicle length of 10 randomly selected seedlings out 

of the 20 seeds per petri dish was measured. The mean of all 0 % treatments were 

used as the control and all other measurements was deducted from the control to 

calculate the difference. 
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Trial II: The effect of wheat residue on early growth of wheat, barley and canola 

3.2.4 Trial location 

The trial was conducted in 2019 in a glasshouse at the Welgevallen Experimental Farm 

(33°56’34.0” S 18°51’59.0” E) located in Stellenbosch, South Africa. The soil was 

collected from uncultivated land at Tygerhoek (34°09’58.3” S 19°54’34.1” E) near 

Riviersonderend, South Africa. The uncultivated soil was used to exclude any effects 

of plant material present in the soil on the trial. The soil is shallow (30-40 cm) and is a 

highly weathered shale-derived soil (Smith 2014). The soil had a sandy loam texture 

with a clay content of 25% and had a pH (KCl) of 8.1. Soil analysis were done, and the 

nutrients were within the recommended thresholds for crop production in the region. 

3.2.5 Experimental design and treatments 

The trial consisted of three separate experiments, each laid out as a randomised block 

design. The three experiments consisted of three test crops, i.e. (1) wheat (cv. SST 

0127), (2) barley (cv. Hessekwa) and (3) canola (cv. Hyola 559TT) that were planted 

into wheat (SST 0127) residue. Treatment factors for each experiment were residue 

treatment (boiled or unboiled) and residue load (0, 2000, 4000, and 8000 kg ha-1). Each 

treatment combination was replicated four times. The residue treatment consisted of 

residue being boiled for six hours in water and being regularly rinsed with clean water 

to extract as much allelochemicals as possible (Wu et al. 2001). For the unboiled 

treatment, residue was used as is from the field. The wheat residue (SST 0127) was 

collected in May 2019 prior to the planting of the season’s crop. 

Ten seeds were planted per pot (diameter 15 cm; height 16 cm) to a depth of 2 cm for 

barley and wheat and 1 cm for canola. Three weeks after planting, plants were thinned 

so that each pot had three plants. The trial was conducted at 25°C in a glasshouse. 

Pots were irrigated twice a week and fertigation was applied to simulate optimal field 

conditions with no nutrient deficiencies. The pots were irrigated until water started to 

drain from the bottom of the pots to ensure that all pots received equal amounts of 

water. The trial was running from 30 May until 16 July 2019.  
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3.2.6 Data collection 

The trial was terminated 47 days after planting. Plant height was noted, as well as the 

number of tillers per plant for barley and wheat. The plants were dried at 60 °C for 72 

hours and then weighed to determine biomass production per plant.  

3.2.7 Statistical analyses 

Mixed models were used to investigate the treatment effects. For Trial I, the fixed 

effects were type of donor crop residue, extract strength and the interaction among the 

donor crop residue type and extract strength. The random effects consisted of block, 

the block and donor crop residue interaction and the block and extract strength 

interaction. For Trial II, the fixed effects were residue load and residue treatment and 

their interaction. The random effects were specified as the block, the block and residue 

load interaction, as well as the block and residue treatment interaction. For canola 

(Trial II), the boiled treatment at 8000 kg ha-1 is a missing value (error during 

preparation of treatments) and treated accordingly. A separate statistical analysis was 

done evaluating the effect of crop residue load only, this analysis contained an 8000 

kg ha-1 residue load treatment. 

Post-hoc pairwise comparisons were calculated using the Bonferroni test which 

computes contrasts between the least-squares means of each level of factor. Pairwise 

comparisons were only conducted between levels of factors that were found to be 

significant (p < 0.05) in the ANOVA. Results are displayed in line and column graphs. 

Data analyses were undertaken in Statistica version 13.5.0.17 (TIBCO 2019). Models 

were calculated in the package Variance Estimation, Precision and Comparison 

(VEPAC) using restricted maximum likelihood (REML), where P-values for the 

significance of each variable were calculated using type III analyses of variance. 
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3.3 Results 

Trial I: Effects of crop residue extracts on germination of wheat, barley and canola 

3.3.1 Wheat 

Germination percentage of wheat was not affected (p > 0.05) by residue, extract 

strength or their interaction (Table 3.1). The extract strength did however tend (p = 

0.053) to reduce the percentage germination as the extract strength increased.  The 

mean germination percentage for wheat was 96.4 ± 6.01 (results not shown). 

The type of crop residue determined how the coleoptile lengths were influenced by the 

extract strength, i.e. an interaction (p < 0.05) between the type of residue extract and 

the extract strength (Table 3.1). Barley and wheat residue reduced (p < 0.05) the 

coleoptile length of wheat at all extract strengths and there was no difference (p > 0.05) 

between the extract strengths (Figure 3.1). Oats and canola had no effect on the 

coleoptile length when a 1.25 % extract was used but inhibited (p < 0.05) coleoptile 

growth at a 5 % extract strength. Pea residue had no effect at any extract strength, 

while annual medic residue had an erratic effect. 
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Table 3.1: ANOVA F statistic and p values for wheat, barley and canola germination 

percentage difference from control, coleoptile length difference (mm) from control and 

radicle length difference (mm) from control in response to residue type and extract 

strength (w v-1 %). Bold is used to illustrate p < 0.05 

Germination 

percentage 

Coleoptile length Radicle length 

Variable F 

statistic 

p 

value 

F 

statistic 

p 

value 

F 

statistic 

p 

value 

Wheat 

Residue type 2.07 0.112 11.77 <0.001 12.09 <0.001 

Extract strength 3.42 0.053 19.66 <0.001 17.25 <0.001 

Interaction 1.43 0.162 7.75 <0.001 6.67 <0.001 

Barley 

Residue type 4.40 0.007 24.76 <0.001 14.44 <0.001 

Extract strength 0.18 0.905 14.71 <0.001 29.27 <0.001 

Interaction 1.47 0.146 5.01 <0.001 3.82 <0.001 

Canola 

Residue type 5.70 0.002 0.57 0.720 88.29 <0.001 

Extract strength 0.70 0.569 2.93 0.077 4.08 0.033 

Interaction 1.65 0.087 1.54 0.119 17.76 <0.001 
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Figure 3.1: The effects of donor crop residue type and extract strength (% w v-1) on the 

coleoptile length difference (mm) relative to the control of wheat seedlings. Letters on 

plots indicate which treatments were different (p < 0.05) from one another according 

to the post-hoc pairwise comparisons. Vertical bars denote 95 % confidence intervals. 

The type of crop residue determined how the radicle lengths were influenced by the 

extract strength (Table 3.1, Figure 3.2). Field pea residue extract strengths did not 

differ from one another even as the extract strength rose (p > 0.05). Oats and canola 

did not decrease the radicle length when a 1.25 % extract was applied but inhibited 

radicle growth at 5 % (p < 0.05). Barley and wheat residue extract reduced radicle 

length at 1.25 – 5 % (p < 0.05), it seems that the barley and wheat residue is more 

phytotoxic on wheat compared to the other residues tested.  
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Figure 3.2: The effects of donor crop residue type and extract strength (% w v-1) on the 

radicle difference (mm) relative to the control of wheat seedlings. Letters on plots 

indicate which treatments were different (p < 0.05) from one another according to the 

post-hoc pairwise comparisons. Vertical bars denote 95 % confidence intervals. 

3.3.2 Barley 

Germination percentage of barley was not affected (p > 0.05) by extract strength but 

was influenced by residue type (p < 0.05). There was no interaction (p > 0.05) between 

the treatment factors (Table 3.1). Canola residue resulted in the lowest (p < 0.05) 

germination percentage but was not different to that of oat residue (p > 0.05) (Figure 

3.3). Annual medic and wheat residue led to an increase in germination percentage of 

barley (p < 0.05). The average germination percentage for barley was 91.17 ± 6.07. 
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Figure 3.3: The difference of germination percentage relative to the control of barley in 

response to the donor crop residue type from which the extract was made. Letters on 

plots indicate which treatments were different (p < 0.05) from one another according 

to the post-hoc pairwise comparisons. Vertical bars denote 95 % confidence intervals. 

The coleoptile length of barley seedlings was influenced (p < 0.05) by an interaction 

between the type of residue extract and the extract strength variables (Table 3.1). Oat 

residue led to the largest decrease in barley coleoptile length (p < 0.05) (Figure 3.4). 

Canola and pea extracts only led to a decrease in coleoptile length at a 5 % extract 

strength (p < 0.05). The other residue types did however not result in reduced 

coleoptile lengths (p > 0.05). The type of crop residue extract determined how the 

barley reacted to the extract strength.   
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Figure 3.4: The difference in coleoptile length (mm) relative to the control of barley in 

response to the type of donor crop residue extract and the extract strength (% w v-1). 

Letters on plots indicate which treatments were different (p < 0.05) from one another 

according to the post-hoc pairwise comparisons. Vertical bars denote 95 % confidence 

intervals. 

The radicle length of barley was influenced (p < 0.05) by an interaction between the 

residue type and the extract strength (Table 3.1). Oat residue resulted in the largest 

radicle length reduction at 2.5 % (p < 0.05) (Figure 3.5). Wheat, annual medic and 

barley residue extract did not influence (p > 0.05) the radicle length of barley at a 5 %. 

The type of residue dictated the effect that a specific extract strength had on the barley 

radicle length. 
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Figure 3.5: The difference in radicle length (mm) relative to the control of barley in 

response to the type of donor crop residue extract and the extract strength (% w v-1). 

Letters on plots indicate which treatments were different (p < 0.05) from one another 

according to the post-hoc pairwise comparisons. Vertical bars denote 95 % confidence 

intervals. 

3.3.3 Canola 

Germination percentage of canola was not affected (p > 0.05) by extract strength but 

was influenced by residue type (p < 0.05). There was no interaction (p > 0.05) between 

the variables (Table 3.1). Peas and wheat led to the largest germination percentage 

decrease (p < 0.05) (Figure 3.6). Barley residue however led to a slight germination 

percentage increase (p < 0.05). The average germination for canola was 90.38 ± 5.98. 
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Figure 3.6: The difference in germination percentage (%) relative to the control of 

canola in response to the donor crop residue type which the extract was made from. 

Letters on plots indicate which treatments were different (p < 0.05) from one another 

according to the post-hoc pairwise comparisons. Vertical bars denote 95 % confidence 

intervals. 

The coleoptile length of canola was not influenced (p > 0.05) by the type of residue, 

extract strength or their interaction (Table 3.1). The extract strength at 5 % had a 

tendency (p = 0.077) to promote the coleoptile length of canola. The mean coleoptile 

length was 14.81 mm ± 3.76 (results not shown). 

The radicle length of canola was influenced (p < 0.05) by an interaction between the 

type of residue extract and the extract strength (Table 3.1). The type of residue extract 

determined how the canola reacted to the different extract strengths. Annual medic 

residue resulted in a radicle length increase as the extract strength increased (p < 0.05) 

(Figure 3.7). Pea, oat and canola residue resulted in a significant (p < 0.05) decrease 
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in radicle length at all extract strengths (p < 0.05). Wheat and barley residue had no 

effect on the canola radicle length (p > 0.05).  
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Figure 3.7: The difference relative to the control in canola radicle lengths (mm) in 

response to donor crop residue type and extract strengths (% w v-1). Letters on plots 

indicate which treatments were different (p < 0.05) from one another according to the 

post-hoc pairwise comparisons. Vertical bars denote 95 % confidence intervals. 

Trial II: The effect of wheat residue on early growth of wheat, barley and canola 

3.3.4 Wheat 

The number of tillers per wheat plant was not influenced (p > 0.05) by the residue load, 

residue treatment or their interaction (Table 3.2). The number of tillers of wheat was 

1.29 ± 1.64 (results not shown). 
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Table 3.2: ANOVA F statistics and p values for the models of number of side tillers, 

height per plant and biomass per plant for wheat in response to residue load and 

residue treatment. Bold is used to illustrate p < 0.05 

Tillers Height Biomass 

Variable F 

statistic 

p 

value 

F 

statistic 

p 

value 

F 

statistic 

p 

value 

Wheat 

Residue load 0.37 0.777 1.66 0.245 1.03 0.424 

Residue treatment 0.02 0.900 0.38 0.584 0.28 0.636 

Interaction 0.62 0.617 0.21 0.886 0.31 0.819 

Barley 

Residue load 2.02 0.181 6.23 0.014 3.01 0.087 

Residue treatment 3.91 0.142 2.51 0.211 3.74 0.148 

Interaction 1.91 0.206 3.97 0.053 0.67 0.594 

Canola 

Residue load - - 0.28 0.762 1.73 0.255 

Residue treatment - - 1.68 0.285 4.27 0.131 

Interaction - - 2.66 0.149 8.23 0.019 

The height per wheat plant was not influenced (p > 0.05) by residue load, residue 

treatment or their interaction (Table 3.2). The height of the wheat was 17.10 cm ± 12.51 

(results not shown). The biomass per wheat plant was not influenced (p > 0.05) by 
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residue load, residue treatment or their interaction (Table 3.2). The mean biomass per 

wheat plant was 0.18 g ± 0.27 (results not shown). 

3.3.5 Barley 

The number of tillers per barley plant was not influenced (p > 0.05) by residue load, 

residue treatment or their interaction (Table 3.2). The mean number of tillers per plant 

was 1.61 ± 1.77 (results not shown). 

Height of barley plants were influenced (p < 0.05) by residue load but not by residue 

treatment (Table 3.2). There was no interaction (p > 0.05) between the residue 

treatment and the residue load. The most elongated plants were under a residue load 

of 8000 kg ha-1 (p < 0.05), this was however not different to the plants found under a 

2000 kg ha-1 load (p > 0.05) (Figure 3.8). The shortest plants were found at a 4000 kg 

ha-1 residue load (p < 0.05), but was not different to the zero-residue load and the 2000 

kg ha-1 residue load (p > 0.05).  

Barley biomass was not influenced (p > 0.05) by residue load, residue treatment or 

their interaction (Table 3.2). There was however a tendency (p = 0.087) for the residue 

load to influence the biomass. Increasing residue load appears to have led to more 

biomass production. The mean biomass per plant was 0.19 g ± 0.24 (results not 

shown). 
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Figure 3.8: The height per barley plant (cm) in response to the donor crop residue load 

(kg ha-1). Letters on plots indicate which treatments were different (p < 0.05) from one 

another according to the post-hoc pairwise comparisons. Vertical bars denote 95 % 

confidence intervals. 

3.3.6 Canola 

Height of canola was not influenced (p > 0.05) by the residue treatment or the residue 

load (Table 3.2). There was no interaction amongst the variables (p > 0.05). The mean 

height of canola was 9.25 cm ± 5.92 (results not shown). The biomass per canola plant 

was influenced (p < 0.05) by an interaction between the residue treatment and the 

residue load (Table 3.2). The biomass of canola was similar at residue loads of 0 and 

4000 kg ha-1 (p > 0.05), but at a residue load of 2000 kg ha-1, the boiled residue led to 

higher (p < 0.05) canola biomass compared to unboiled residue (Figure 3.9). 
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Figure 3.9: The biomass (g) per canola plant in response to donor crop residue load 

and the residue treatment. Letters on plots indicate which treatments were different (p 

< 0.05) from one another according to the post-hoc pairwise comparisons. Vertical bars 

denote 95 % confidence intervals. 

When only residue load is considered, the height per canola plant was influenced (p < 

0.05) by the residue load (Table 3.3). The 8000 kg ha-1 residue load led to the shortest 

canola plants (p < 0.05) but was not different (p > 0.05) from the zero-residue load and 

the 4000 kg ha-1 residue load (Figure 3.10). The 2000 kg ha-1 residue load led to the 

most elongated plants (p < 0.05) but was not different to the zero-residue load and the 

4000 kg ha-1 residue load. Furthermore, the biomass production per plant was 

influenced (p < 0.05) by the residue load (Table 3.3). The biomass results followed a 

very similar trend to the height results shown in Figure 3.10.  Planting into an 8000 kg 

ha-1 residue load the plants had the least amount of biomass (p < 0.05) but was 

however not different to the zero-residue and the 4000 kg ha-1 residue load (p > 0.05) 

(Results not shown). The 2000 kg ha-1 led to the highest biomass (p < 0.05). Planting 

into a residue load larger than 4000 kg ha-1 did not lead to a further decrease in 

biomass. 
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Table 3.3: ANOVA F statistics and p values for the models of height per plant and 

biomass per plant for canola in response to residue load. Bold is used to illustrate p < 

0.05 

Height Biomass 

Variable F Statistic p value F statistic p value 

Residue load 3.78 0.040 9.89 0.001 
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Figure 3.10: The height of canola in response to the donor crop residue load which it 

was planted into. Letters on plots indicate which treatments were different (p < 0.05) 

from one another according to the post-hoc pairwise comparisons. Vertical bars denote 

95 % confidence intervals. 
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3.4 Discussion 

Crop residue had an influence on the germination as well as the early growth and 

development of seedlings of the test crops, confirming that allelopathic chemicals must 

still be present in the residue even after the residue had time to degrade (5 months in 

field) (Table 3.1). Wheat and barley contain hydroxamic acids which can influence the 

cell membranes of plants and inhibit cation movement across the membranes (Weston 

and Duke 2003). Canola residue is known to contain thiocyanates which can in some 

cases be inhibitory to germinating seeds (Weston and Duke 2003). The effects 

observed in the germination study may be less pronounced than when fresh residue 

was used, as the residue used had time to degrade (Purvis 1990). Germination of the 

test crops was to a lesser extent influenced by the allelopathic compounds when 

compared to seedling growth parameters (Figures 3.3 and 3.6). The germination 

inhibition due to donor crop residue extracts is generally small (< 5 %). These findings 

are similar those of Wynne et al. (2019), indicating that seedling growth parameters is 

impacted more adversely compared to germination by crop residue. Some crops are 

however more tolerant to the allelochemicals or their growth may even be promoted 

through means of hormesis at low concentrations (Ferreira and Reinhardt 2010). The 

wheat, barley and canola seedlings’ coleoptile lengths mostly reacted differently to the 

type of crop residue extract and the extract strength (Figures 3.1, 3.4 and 3.7). The 

canola coleoptile length was generally slightly stimulated via hormesis by the extracts. 

The wheat, barley and canola radicle measurements all reacted differently to the 

various types of crop residue extracts and the extract strengths, indicating that the 

effects are context-specific (Figures 3.2, 3.5 and 3.7).  

In the presence of soil, the allelopathic influence from the wheat residue seemed to 

decline or even be negligible (Table 3.2). This may be attributed to the fact that the 

wheat residue was degraded and probably lost some of its allelopathic potential. The 

adsorption and microbial breakdown of allelochemicals may play a role in the reduced 

allelopathic activity observed in the presence of soil (Wu et al. 2001). These findings 

are comparable to other studies implying that allelopathy may have a very small or 

even negligible effect on the following crop (Bruce et al. 2006; Wynne et al. 2019). 

Concern has also been raised that a large proportion of allelopathic studies were done 
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in laboratories in the absence of soil (Morris et al. 2010). It was suggested that the 

extracts used in laboratory studies had concentrations 20 times higher than those 

found in field studies (Morris et al. 2010). Our findings indicate that the residue load 

had a more pronounced effect on the subsequent crop than possible allelopathic 

effects. This may be different in higher potential cropping areas where double cropping 

is practical, because in double cropping the crop residue has a lot less time to degrade. 

The effects of crop residue on the following crop may be attributed to physical effects 

and not necessarily allelopathy (Bruce et al. 2006; Wynne et al. 2019). Physical effects 

of crop residue on the crop is mainly the overshadowing of seedlings leading to the 

reduction in photosynthetically active radiation and in some cases low temperatures 

leading to poor early growth (Bruce et al. 2006). The reduction in photosynthetically 

radiation leads to elongated seedlings (Bruce et al. 2006). The physical weight of the 

residue may also lead to increased energy expenditure of seedlings to penetrate the 

residue layer and ultimately less reserves is invested into the development of early 

leaves (Bruce et al. 2006). Canola height and biomass production was influenced by 

the residue load. The larger the seed, the more nutrients it contains which in turn leads 

to more vigorous early growth (Harker et al. 2015; Nik et al. 2011). The larger seed 

size of wheat and barley compared to canola might explain the poor early growth of 

canola in a high residue load (Figures 3.9). Wheat residue has a poor allelopathic effect 

on the seedling parameters of canola (Figure 3.7), thus the poor early growth observed 

is most likely due to physical effects. The physical effects of a large crop residue load 

on the subsequent crop can largely be mitigated with the use of row cleaners that move 

crop residue out of the seed furrow (Azooz and Arshad 1998).   

Residue management plays an important role in determining the effects on soil 

processes and the subsequent crop. When the residue is not incorporated, possible 

nitrogen immobilisation can be excluded (Ferreira and Reinhardt 2010). The 

incorporation of crop residue in the upper soil layer may lead to detrimental effects 

(Kruidhof et al. 2009). The wheat residue used in the glasshouse was not incorporated 

but if the residue was incorporated, negative effects may have been observed. Clay 

dispersion leading to surface crusting is a common occurrence of soils in the region 

(Amezketa et al. 2005; Laker and Nortjé 2019). Thus, the retention of a low to moderate 
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residue load on the soil surface will help to minimize the crusting by softening the 

impact of the water drops on the soil surface leading to a higher canola biomass. 

Height of barley was promoted in the presence of crop residue (Figure 3.8). There was 

also a tendency for barley to produce more biomass in the presence of a large residue 

load. Crop residue releases several essential plant nutrients as it decomposes also 

known as nutrient cycling (Wynne et al. 2019). The tendency for barley to grow taller 

and produce more biomass in the presence of wheat residue may by ascribed to 

valuable crop nutrients being released from the residue or due to barley being more 

tolerant to saline soils. The height of canola was the highest at a low residue load and 

was the shortest in a large residue load (Figure 3.9), in agreement to findings of 

Swanepoel et al. (2019) under field conditions. Although decomposing residue 

releases several crop nutrients the residue load still has a large influence on the crop, 

especially if the seed has a low thousand kernel mass. 

The accurate placement of seed with good seed to soil contact can be a challenge in 

large residue loads which may result in yield penalties (dos Santos et al. 1993). The 

wheat and barley did not react to a large residue load, this result may be due to the 

seed being properly placed at the appropriate depth in the soil prior to the application 

of the residue. Seed with a higher thousand kernel mass has shown a positive linear 

association with early biomass (Harker et al. 2015). Wheat and barley have a higher 

thousand kernel mass when compared to the canola, thus the seed may have enough 

energy reserves to easily penetrate the residue layer and produce its first leaves with 

proper seed placement.  

Although a very high residue load will likely have negative physical effects on the 

subsequent crop, retaining the appropriate amount of residue for a specific crop and 

climatic area will be of great benefit. No-till will improve the soil physical properties of 

soil such as the aggregate size and stability (Li et al. 2020). However, improved 

physical properties of soil will not necessarily lead to an improved yield (Pittelkow et 

al. 2015). Retaining crop residue will mitigate most of the negative effects associated 

with the adoption of no-till (Li et al. 2020). When all three principles of Conservation 

Agriculture are followed, residue retention, no-tillage and crop diversification the 

probability to obtain a yield loss from no-till drops (Pittelkow et al. 2015). Crop residue 
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is considered one of the most important aspects for improving soil health and supplying 

nutrients to crops (Gupta et al. 2018). The degradation of soils is associated with 

imbalanced, inadequate and pro-macronutrient fertiliser use together with the 

inadequate use of crop residue (Gupta et al. 2018). Thus, retaining residue and 

effectively cycling the nutrients may be an effective strategy to reduce our reliance on 

inorganic fertilizer. 

3.5 Conclusion 

The crop residue still had an allelopathic potential even after the residue degraded in 

the field for five months. However, in the presence of soil the allelopathic effects from 

wheat residue is very small and probably negligible. The effects observed in this study 

is likely physical in nature and can be mitigated with the use of appropriate implements 

during the planting process to ensure precise seed placement in high residue loads or 

that can clean the seed row prior to planting. Canola appears to be more sensitive to 

a large residue load compared to wheat and barley, likely due to canola having a single 

radicle and smaller seed size. Planting canola after a crop that produces a low or 

moderate amount of residue will likely mitigate any negative effects of crop residue. 

Although high residue loads might lead to poor early growth in some crops, the correct 

amount of residue retained for a specific crop is still beneficial. Retaining the 

appropriate amount of residue will mitigate or eliminate the negative effects associated 

with large residue loads but will enable producers to retain the benefits from residue 

retention. 
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Chapter 4: Evaluating crop residue effects and disc planter residue handling on wheat, 

barley and canola production 

4.1 Introduction 

Conservation Agriculture (CA) may improve environmental, agronomic and economic 

stability in regions with a relatively dry Mediterranean type climate (Calzarano et al. 

2018). The three main principles of CA is (1) no tillage, (2) crop diversification and (3) 

residue retention (Swanepoel et al. 2019). The practises of CA promotes water 

conservation, soil health and prevents soil erosion (dos Santos et al. 1993; Hiel et al. 

2016; Calzarano et al. 2018). In Mediterranean-type climates, the rainfall amount and 

distribution can be very erratic and variable; thus, the adoption of CA may improve the 

cropping system performance.  

Crops react differently to crop residue. Some types of residue might increase the 

subsequent crops yield while other types may lead to a yield penalty (Ferreira and 

Reinhardt 2010). The mechanisms responsible for the effects may be physical or (bio)-

chemical (Lovett and Jessop 1982; Wynne et al. 2019), but is generally not well 

understood.  

Soil chemical, physical and biological processes is influenced by residue retention. 

When residue has a high carbon-to-nitrogen (C:N) ratio a N immobilisation period, or 

a so-called N-negative period, can occur and is especially prominent when the residue 

is incorporated (Nicolardot et al. 2001). However, some residue types such as legume 

residue with low C:N ratios will decompose faster and in turn N will be mineralised 

quicker which may affect grain yield (Aulakh et al. 1991).  

When planting into large residue loads, yield penalties may be observed due to 

physical impacts from the crop residue on the seedlings (Bruce et al. 2006). Physical 

effects may include the physical weight of the residue on the seedlings, overshading 

and reduced temperatures under the residue layer (Bruce et al. 2006). The seed 

energy reserves required to penetrate the residue layer may lead to slower 

development of the early leaves (Bruce et al. 2006). Reduced soil temperatures under 

the residue may reduce the metabolic rate of seedlings leading to slower development 

(Porter and Gawith 1999). Higher soil moisture later in the season may, however, offset 

the initial reduced early growth in the presence of residue. When the crop residue is 
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removed from the seed furrow negative effects may be alleviated, this can be achieved 

with row cleaners (Azooz and Arshad 1998). Double-disc planters, for instance, has 

slightly offset discs which may move more crop residue from the seed furrow compared 

to the single disc planter. 

Certain residue types may have an allelopathic influence on the following crop.  

Allelopathy can be defined as the (bio-)chemical interaction amongst plants including 

those mediated by microorganisms (Weston and Duke 2003). The potential of residue 

to be allelopathic are well-known and has been proven in laboratory trials (Wynne et 

al. 2019). However, in the field, allelochemicals may be transformed or degraded by 

microbes, or leached, ultimately reducing toxic effects (Wu et al. 2001). Degraded 

residue is less phytotoxic compared to fresh crop residue (Purvis 1990).  

In the Western Cape of South Africa, wheat (Triticum aestivum), barley (Hordeum 

vulgare), canola (Brassica napus), oats (Avena sativa), lupin (Lupinus angustifolius) 

and medics (Medicago polymorpha) are commonly grown in rotation. Diverse crop 

rotations therefore exist in the region. However, the effect of the previous crop’s 

residue on the subsequent crop productivity is not well-understood. A better 

understanding is required to inform farmers of the positive or negative effects of a 

certain crop’s residue on another crop, and optimal crop sequence designs. The aim 

of this study was to evaluate the effect of different types of crop residue and two types 

of disc planters on wheat, barley and canola production in the southern Cape of South 

Africa.  

4.2 Material and methods 

4.2.1 Study area 

The field study was conducted in 2019 (year one) and 2020 (year two) on Tygerhoek 

Research Farm (19°54˝ E, 34°08˝ S) near Riviersonderend in the Western Cape of 

South Africa (Figure 4.1). The area has a Mediterranean-type climate with an annual 

average rainfall of 443 mm and a growing season (April to October) average rainfall of 

245 mm. The 2019 total rainfall was below average at 379 mm, however in the first 

year of the field trial only 117 mm of rain was received within the growing season which 

made it an extremely dry cropping season. In the second year of the trial 272 mm of 

rainfall was received in the growing season.  
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The soil is shallow (30-40 cm) and is a highly weathered shale derived soil. The soil 

also has a high coarse fragment (Smith 2014). The soil is classified as a sandy loam 

with a clay content of around 10%. Soil samples were taken prior to the trial and all 

necessary soil fertility corrections were done in order to ensure that there were no 

nutrient deficiencies.  

 

Figure 4.1: Aerial view of the crop rotation trials at Tygerhoek. 

4.2.2 Experimental design 

The research was conducted inside long-term crop rotation trials that was managed 

under conservation agriculture practises for the past 19 years. Three separate 

experiments were conducted on three test crops, i.e., wheat, barley and canola, that 

were planted into various crop residue types. The experiments were laid out as three 

separate split-plot designs replicated in four blocks. Plot sizes were 12 x 50 m. All 

experiments had two treatment factors, namely donor crop residue type (whole plot 

factor) and the type of planter used (sub-plot factor). The planters used were a single 

disc and a double disc no-tillage planter, which has contrasting residue handling 

characteristics. 
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Experiment 1, wheat (year one cv. SST 0127 and year two cv. SST 0117) was sown 

into the following donor crop residue types: two-year medic, one-year medic, oats, 

canola and lupin residue. In year two the oats residue was replaced, and wheat was 

sown into field pea (Pisum sativum) residue. This experiment had 40 experimental 

units. 

Experiment 2, barley (cv. Hessekwa) was sown into the following donor crop residue 

types: two-year medic, one-year medic, oats, canola and lupin residue. This 

experiment had 32 experimental units.  

Experiment 3, canola (cv. Alpha) was sown into the following donor crop residue types: 

two-year medic, one-year medic, wheat and barley residue. This experiment had 32 

experimental units.  

4.2.3 Crop establishment and management  

Planting in both years were within the optimum planting window, i.e., 10 May 2019 and 

13 May 2020. The trial was seeded by an Equalizer single disc planter and an NTX-

farm double disc planter. The single disc planter had a row spacing of 203 mm and the 

double disc planter has a row spacing of 170 mm. The double disc planter (Figure 4.2) 

moves more crop residue from the seed furrow compared to the single disc planter 

(Figure 4.3) due to the double disc planter having slightly offset discs. The cleaner 

seed furrow may reduce the physical effects of crop residue (Figure 4.4).  

 

Figure 4.2: The NTX X-farm double disc planter planting unit. 
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Figure 4.3: The Equalizer single disc planter planting unit. 

  

Figure 4.4: The seedbed after using the double disc planter on the left and the single 

disc planter on the right. 

In both seasons, wheat was seeded at 60 kg ha-1, barley at 50 kg ha-1 and canola at 3 

kg ha-1. All crops received 6 kg N ha-1 in the band. In year one, all crops received a top 

dressing of 44 kg ha-1 N on 3 July 2019. In the second year all crops received a top 

dressing of 25 kg ha-1 N on 24 June 2020.  

Weed management was done according to best practise in the area. The crops were 

harvested on 24 October 2019 and 10 November 2020. All the crops were windrowed 

7 days prior to the harvest and harvested using a Claas Dominator 76 combine. The 

wheat, barley and canola seed yields were standardised to 12, 13 and 8% moisture, 

respectively.  
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4.2.4 Measurements 

Residue load 

Prior to seeding the residue load of the previous year’s crop was determined for each 

plot. This was done by randomly collecting residue from four 0.25 m2 quadrats per plot. 

The residue was dried at 60°C for 72 hours and weighed.  

Plant population and biomass production 

The plant population was determined 20 days after emergence (DAE) by counting 

plants in 10 randomly selected one-meter rows per plot. The biomass measurements 

were taken at 30, 60, 90 DAE and at physiological maturity (PM). The measurements 

were taken by cutting 10 plants at the soil surface and doing a conversion to biomass 

production per hectare with the plant population.  

Soil mineral nitrogen 

The mineral nitrogen was determined at 30 DAE and at physiological maturity. One 

representative soil sample was taken per plot to a depth of 150 mm. The soil samples 

were analysed in year one for total mineral N using the indophenol-blue (Page et al. 

1982) and salicylic acid methods (Vendrell and Zupancic 1990) and with the Kjeldahl 

method in year two (Raveh and Avnimelech 1979). 

Yield parameters 

Prior to harvesting the number of ear-bearing tillers per square meter was determined 

for the wheat and barley. The number of ear-bearing tillers were counted in four one-

meter rows per plot. The number of spikelets per ear was also determined by counting 

the number of spikelets on 10 randomly selected ears per plot.   

The crops were harvested by picking up a 4.6 m wide row per plot, the length of each 

row was measured to keep the area harvested constant. Grain quality was determined 

with a Near-infrared spectroscopy machine at wavelengths between 570–1100 nm. 

Quality parameters for barley included grain moisture content, protein content, 

thousand kernel mass (TKM), hectolitre mass (HLM) and kernel plumpness. Wheat 

quality parameters included grain moisture content, protein content, thousand kernel 

mass and hectolitre mass. Quality parameters for canola included grain moisture 

content, oil content and TKM. 
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4.2.5 Statistical analyses 

Mixed models were used to investigate the treatment effects on the crop production. 

The fixed effects were type of donor crop residue, type of planter and the interaction 

among the donor crop residue type and planter type. The random effects consisted of 

block, the block and donor crop residue interaction and the block and planter type 

interaction. For the mineral nitrogen content analyses the fixed effects were residue 

type, planter type, sampling date, the interaction between residue type and planter 

type, the interaction between residue type and date of sampling, the interaction 

between planter type and date of sampling, the interaction between residue type, 

planter type and date of sampling. The random effects were specified as the block, the 

block and residue type interaction, as well as the block and planter type interaction, 

the block and sampling date interaction, the block, residue type and sampling date 

interaction, the block, planter type and sampling date interaction. For the donor crop 

residue load analyses, the fixed effects were specified as crop residue type. The 

random effects were specified as block and block and crop residue type interaction. 

Post-hoc pairwise comparisons were calculated using the Bonferroni test which 

computes contrasts between the least-squares means of each level of factor. Pairwise 

comparisons were only conducted between levels of factors that were found to be 

significant (p < 0.05) in the ANOVA. Results are displayed in line and column graphs. 

Data analyses were undertaken in Statistica version 13.5.0.17 (TIBCO 2019). Models 

were calculated in the package Variance Estimation, Precision and Comparison 

(VEPAC) using restricted maximum likelihood (REML), where p-values for the 

significance of each variable were calculated using type III analyses of variance. 

4.3 Results  

Experiment 1: Wheat 

4.3.1 Donor crop residue load 

During year one, the donor crop residue load was influenced (F = 16.38; p < 0.05) by 

the crop residue type. The oats produced the most biomass (p < 0.05). The one-year 

medic pasture led to the lowest residue load (p < 0.05) but did however not differ (p > 

0.05) from the two-year medic, canola and lupin residue load (Table 4.1). During year 

Stellenbosch University https://scholar.sun.ac.za



 

65 

 

one, the donor crop residue load was not correlated (p > 0.05; r2 = 0.032) with grain 

yield of wheat (results not shown). 

Table 4.1: The crop residue load (kg ha-1) present at the time of planting for both years. 

No common letters indicate significant difference at a 5% level 

Residue type Residue load (kg ha-1) 

2019 

Two-year medic 2264b 

One-year medic 1592b 

Canola 2360b 

Oats 5705a 

Lupin 2591b 

2020 

Two-year medic 926b 

One-year medic 1652a 

Canola 2153a 

Oats 2185a 

Peas 1070b 

 

During year two, the donor crop residue load was influenced (F = 10.73; p < 0.05) by 

the crop residue type. The oats residue resulted in the highest residue load (p < 0.05) 

but was not different to the canola residue and the one-year medic residue (p > 0.05) 

(Table 4.1). The two-year medic residue resulted in the lowest residue load but was 

not different to the pea residue load (p > 0.05). During year two, the donor crop residue 

load was once more not correlated (p > 0.05; r2 = 0.001) to the grain yield of wheat 

(results not shown). 

4.3.2 Plant population 

Although plant population of wheat in both years was not influenced (p > 0.05) by the 

crop residue type, it was influenced (p < 0.05) by the planter type (Table 4.2). There 
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was no interaction between the two treatment factors (p > 0.05). The double disc 

planter resulted in a higher plant population compared to the single disc planter (p < 

0.05) (results not shown). The mean plant population in year one for the double disc 

seed planter was 88 plants m-2 and 65 plants m-2 for the single disc planter (p < 0.05). 

The double disc planter in year two resulted in a mean plant population of 115 plants 

m-2 and the single planter resulted in a mean plant population of 62 plants m-2 (p < 

0.05).  

4.3.3 Biomass production 

During year one, the biomass of wheat 30 days after emergence was influenced (p < 

0.05) by the donor crop residue type and the planter type, there was no interaction (p 

> 0.05) between the two variables (Table 4.2). The lupin residue resulted in the highest 

wheat biomass (p < 0.05) while the oats residue resulted in the lowest biomass (p < 

0.05) (Figure 4.5). The double disc planter resulted in a higher crop biomass compared 

to the single disc planter (p < 0.05) (Figure 4.5).  

During year two, the biomass of wheat 30 DAE was not influenced (p > 0.05) by the 

planter type but was influenced (p < 0.05) by the donor crop residue type (Table 4.2). 

There was no interaction between the variables (p > 0.05). The canola residue resulted 

in the highest biomass 30 DAE and the oats residue resulted in the lowest biomass 

although not significantly different from the rest of the crop residues apart from canola 

(p < 0.05) (Figure 4.5). There was a tendency for the double disc planter to result in 

higher crop biomass (p = 0.065) (results not shown). 

During year one, the biomass of wheat 60 DAE was not influenced (p > 0.05) by the 

planter type but was influenced (p < 0.05) by the donor crop residue type (Table 4.2). 

There was no interaction between the two variables (p > 0.05). Oat residue led to the 

lowest wheat biomass while lupin led to the highest wheat biomass (p < 0.05) (Figure 

4.5). 
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Table 4.2: ANOVA F statistics and p-values for the models of wheat plant population, biomass at 30, 60 and 90 days after emergence 

(DAE), as well as biomass at physiological maturity, in response to planter type and crop residue type. Bold is used to illustrate p 

values < 0.05 

 

 

  Plant 

population 

Biomass 

30 DAE 

Biomass 

60 DAE 

Biomass 

90 DAE 

Biomass 

maturity 

 Variable F 

statistic 

p 

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F  

statistic 

p  

value 

2019           

 Residue type 0.34 0.847 13.17 < 0.001 5.66 0.008 4.30 0.022 1.42 0.286 

 Planter type 26.34 0.014 25.37 0.015 0.96 0.400 3.92 0.142 2.98 0.183 

 Interaction 1.78 0.197 1.43 0.283 0.82 0.537 1.91 0.174 1.64 0.227 

2020           

 Residue type 1.74 0.171 4.22 0.009 0.97 0.439 0.87 0.495 0.23 0.916 

 Planter type 169.52 <0.001 3.70 0.065 1.08 0.308 13.02 0.001 27.71 <0.001 

 Interaction 1.36 0.275 0.54 0.708 0.51 0.728 0.60 0.668 2.05 0.116 
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Figure 4.5: The biomass of wheat 30 (year one and two), 60 (year one) and 90 (year 

one) days after emergence (DAE) in response to the crop residue type and the planter 

type. Letters on plots indicate which treatments were different (p < 0.05) from one 

another according to the post-hoc pairwise comparisons. Vertical bars denote 95 % 

confidence intervals. 

During year two, the biomass of wheat 60 DAE was not influenced (p > 0.05) by the 

type of residue type, planter type or their interaction (Table 4.2). The mean biomass 

was 3775 kg ha-1 (results not shown). 

During year one, the biomass of wheat 90 DAE was not influenced (p > 0.05) by the 

planter type but was, however, influenced (p < 0.05) by the residue type (Table 4.2). 

There was no interaction between the two variables (p < 0.05). The oat residue led to 

the lowest wheat biomass while the lupin residue led to the highest biomass (p < 0.05) 

(Figure 4.5). 

During year two, the biomass of wheat 90 DAE was not influenced (p > 0.05) by the 

residue type but was influenced (p < 0.05) by the planter type (Table 4.2). There was 

no interaction between the variables (p > 0.05). The double disc planter led to a higher 
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biomass compared to the single disc planter (p < 0.05) (results not shown). The mean 

biomass in response to the double disc drill was 8931 kg ha-1 and the mean biomass 

in response to the single disc drill was 4150 kg ha-1. 

During year one, the biomass of wheat at physiological maturity was not influenced (p 

> 0.05) by the donor crop residue type, the planter type, or their interaction (Table 4.2). 

The mean biomass was 3695 kg ha-1 (results not shown). 

During year two, the biomass of wheat at physiological maturity was not influenced (p 

> 0.05) by the donor crop residue type but was influenced (p < 0.05) by the planter 

type (Table 4.2). There was no interaction between the variables. The double disc 

planter resulted in a mean biomass of 20 612 kg ha-1 and the single disc planter 

resulted in a mean biomass of 12 353 kg ha-1 (results not shown) 

4.3.4 Yield components, grain yield and quality parameters 

During year one, the number of ear-bearing tillers of wheat was not influenced (p > 

0.05) by the residue type, planter type or their interaction (Table 4.3). The double disc 

planter did, however, have a tendency (p = 0.054) to lead to the development of more 

ear-bearing tillers. The mean number of ear-bearing tillers of the trial was 133 m-2 

(results not shown). 

During year two, the number of ear-bearing tillers of wheat was not influenced (p > 

0.05) by the donor crop residue type but was influenced (p < 0.05) by the planter type 

(Table 4.3). There was no interaction amongst the variables (p > 0.05). The double 

disc planter resulted in a mean of 250 ear-bearing tillers m-2 and the single disc planter 

resulted in a mean 218 ear-bearing tillers m-2 (results not shown).  
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Table 4.3: ANOVA F statistics and p-values for the models of wheat ear-bearing tillers, spikelets per ear, grain yield, protein content, 

hectolitre mass and thousand kernel mass in response to planter type and crop residue type. Bold is used to illustrate p values < 0.05  

 

  Ear-bearing 

tillers  

Spikelets Grain yield  Protein content Hectolitre     

mass 

Thousand  

kernel mass 

 Variable F 

statistic 

p 

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F    

statistic 

p  

value 

2019             

 Residue type 0.69 0.610 1.15 0.381 1.01 0.441 6.84 0.004 13.77 <0.001 2.52 0.096 

 Planter type 9.56 0.054 0.57 0.507 6.61 0.082 0.53 0.519 29.63 0.012 5.72 0.097 

 Interaction 1.99 0.160 3.48 0.042 0.43 0.782 6.12 0.006 2.22 0.128 1.89 0.177 

2020             

 Residue type 2.27 0.088 2.01 0.122 6.82 0.004 4.11 0.025 2.08 0.146 5.14 0.012 

 Planter type 10.22 0.004 0.13 0.724 4.54 0.123 0.42 0.565 4.86 0.115 0.10 0.775 

 Interaction 1.66 0.188 1.78 0.161 1.86 0.183 0.48 0.753 1.48 0.268 0.41 0.798 
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During year one, the number of spikelets per wheat ear was influenced (p < 0.05) by 

an interaction between the residue type and the planter type (Table 4.3). When 

planting wheat into medic residue, the single disc drill resulted in significantly more 

spikelets per ear compared to the double disc drill (p < 0.05) (Figure 4.6). 
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Figure 4.6: In year one, the spikelets per ear of wheat in response to residue type and 

the type of planter. Letters on plots indicate which treatments were different (p < 0.05) 

from one another according to the post-hoc pairwise comparisons. Vertical bars 

denote 95 % confidence intervals. 

During year two, the spikelets per ear of wheat was not influenced (p > 0.05) by the 

donor crop residue type, the planter type or their interaction (Table 4.3). The mean 

number of spikelets per ear was 17.29 (results not shown). 

During year one, the grain yield of wheat was not influenced (p > 0.05) by the residue 

type, planter type or their interaction (Table 4.3). There was however a tendency for 

the double disc drill to result in a higher wheat grain yield when compared to the single 

disc drill (p = 0.082). The mean grain yield for wheat was 1269 kg ha-1 (results not 

shown).  
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During year two, the grain yield of wheat was not influenced (p > 0.05) by the planter 

type but was influenced (p < 0.05) by the crop residue type (Table 4.3). There was no 

interaction amongst the variables (p > 0.05). The oat residue led to the highest wheat 

yield (p < 0.05), but did not differ from the two-year medic residue (p > 0.05) (Figure 

4.7). The canola residue led to the lowest wheat yield (p < 0.05) but was not different 

to the one-year medic and pea residue (p > 0.05). 
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Figure 4.7: The grain yield of wheat in response to the residue type and the planter 

type in year two. Letters on plots indicate which treatments were different (p < 0.05) 

from one another according to the post-hoc pairwise comparisons. Vertical bars 

denote 95 % confidence intervals. 

During year one, the protein content of the wheat grain was influenced (p < 0.05) by 

an interaction between the residue type and the planter type (Table 4.3). When 

planting into two-year and one-year medic residue the double disc planter led to the 

highest protein content while the single disc led to a slightly higher protein content in 

the canola, oat and lupin residue (Figure 4.8).  
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Figure 4.8: In year one and year two, the type of planter and type of residue’s effect 

on the protein content (%) of wheat grain. Letters on plots indicate which treatments 

were different (p < 0.05) from one another according to the post-hoc pairwise 

comparisons. Vertical bars denote 95 % confidence intervals 

During year two, the protein content of the wheat grain was not influenced (p > 0.05) 

by the planter type but was influenced (p < 0.05) by the residue type (Table 4.3). There 

was no interaction amongst the variables (p > 0.05). The two-year medic residue led 

to the highest protein content (p < 0.05) but was not different to the one-year medic 

and the oats residue (p > 0.05) (Figure 4.8). The canola residue led to the lowest 

protein content (p < 0.05) but was not different to the one-year medic residue and the 

pea residue (p > 0.05). 

During year one, the hectolitre mass of wheat grain was influenced (p < 0.05) by the 

residue type and the planter type, there was no interaction (p > 0.05) between the 

variables (Table 4.3). The two-year medic residue led to the lowest HLM (p < 0.05) but 

was not different from the HLM obtained in the lupin residue (p > 0.05) (Figure 4.9). 

The canola and oat residue led to the highest HLM (p < 0.05) but was not different 

from the medic residue (p > 0.05). The single disc drill planter led to a higher HLM 

when compared to the double disc drill (p < 0.05) (Figure 4.9). 

Year one Year two 
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Figure 4.9: In year one, the hectolitre mass of the wheat grain in response to donor 

crop residue type and planter type. Letters on plots indicate which treatments were 

different (p < 0.05) from one another according to the post-hoc pairwise comparisons. 

Vertical bars denote 95 % confidence intervals. 

During year two, the hectolitre mass of wheat grain was not influenced (p > 0.05) by 

either the planter type or the crop residue type (Table 4.3). There was no interaction 

amongst the variables (p > 0.05). The mean HLM of wheat was 75.25 kg hL-1 (results 

not shown). 

During year one, the thousand kernel mass of wheat was not influenced (p > 0.05) by 

the residue type, planter type or their interaction (Table 4.3). The mean TKM of wheat 

was 33.99 g (results not shown). 

During year two, the thousand kernel mass of wheat was not influenced (p > 0.05) by 

the planter type but was influenced (p < 0.05) by the crop residue type (Table 4.3). 

There was no interaction amongst the variables (p > 0.05). Oats and medic residues 
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produced significantly (p < 0.05) higher TKM than two- year medics and peas residues 

(Figure 4.10).  
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Figure 4.10: The thousand kernel mass of wheat in response to the crop residue type 

in year two. Letters on plots indicate which treatments were different (p < 0.05) from 

one another according to the post-hoc pairwise comparisons. Vertical bars denote 95 

% confidence intervals. 

4.3.5 Soil mineral nitrogen 

During year one, the total mineral nitrogen content in the soil was not influenced (p > 

0.05) by the planter type but was however influenced (p < 0.05) by the residue type 

and the sampling date (Table 4.4). There was no interaction between any of the 

variables (p > 0.05). At the first sampling date (30 DAE) the oat residue resulted in the 

lowest mineral N (p < 0.05). The two-year medic residue led to the highest mineral N 

(p < 0.05), but did not differ from the one-year medic residue or the lupin residue (p > 

0.05) (Figure 4.11). At the second sampling (physiological maturity) the mineral N in 

the soil declined from the first sampling date (p < 0.05). There were no differences 
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among the crop residue types mineral N at physiological maturity (p > 0.05) (Figure 

4.11). 

Table 4.4: ANOVA F statistics and p values for the model of total mineral nitrogen 

content for both years in response to crop residue type, planter type and date of 

sampling.  Bold is used to illustrate p values < 0.05 

Variable Total Mineral N 

2019 F statistic p value 

Residue 5.92 0.007 

Planter 0.36 0.592 

Date 61.12 0.004 

Residue*Date 3.21 0.052 

Planter*Date 0.43 0.558 

Residue*Planter 1.53 0.224 

Residue*Planter*Date 0.57 0.684 

2020   

Residue 4.66 0.002 

Planter 0.30 0.585 

Date 5.87 0.018 

Residue*Date 0.77 0.547 

Planter*Date 1.37 0.247 

Residue*Planter 0.44 0.781 

Residue*Planter*Date 0.17 0.954 
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Figure 4.11: In year one and year two, the mineral nitrogen content in wheat plots at 

30 DAE and physiological maturity (PM) in response to the crop residue type. No 

common letters on the bars indicate statistical difference at 5% level. Letters plots 

indicate which treatments were different (p < 0.05) from one another according to the 

post-hoc pairwise comparisons. Vertical bars denote 95 % confidence intervals. 

During year two, the total mineral N in the soil was not influenced (p > 0.05) by the 

planter type but was influenced (p < 0.05) by the crop residue type and the date of 

sampling (Table 4.4). There was no interaction amongst the variables (p > 0.05). At 

the first sampling date the pea residue resulted in the lowest mineral N (p < 0.05) 

(Figure 4.11). The one-year medic residue and the canola residue did not result in total 

N different to that of the pea residue (p > 0.05). The two-year medic residue resulted 

in the highest mineral N (p < 0.05) but was not different to the oat residue (p > 0.05). 

At the second sampling date the mineral N declined (p < 0.05) (Figure 4.11). The 

residue types did however not result in mineral N differences (p > 0.05). 

Experiment 2: Barley 

4.3.6 Donor crop residue load 

During year one, the donor crop residue load was influenced (F = 10.18; p < 0.05) by 

the residue type. The canola residue resulted in the highest residue load (p < 0.05), 

but did not differ from the wheat residue load (p > 0.05) (Table 4.5). The one-year 

medics resulted in the lowest residue load (p < 0.05), but did not differ from the two-

year medic residue load (p > 0.05).  

Year one 
Year two 
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Table 4.5: The crop residue load (kg ha-1) present at the time of planting for both years. 

No common letters indicate significant difference at a 5% level  

Residue type Residue load (kg ha-1) 

2019 

Two-year medic 1930b 

One-year medic 1590b 

Canola 3404a 

Wheat 3310a 

2020  

Two-year medic 1087b 

One-year medic 2117a 

Canola 2631a 

Wheat 2575a 

During year one, the crop residue load was very poorly correlated (p < 0.05; r2 = 0.157) 

to the grain yield of barley. Higher residue loads led to a slight grain yield increase 

(results not shown). 

During year two, the donor crop residue load was influenced (F = 5.13; p < 0.05) by 

the donor crop residue type. Canola residue led to the highest residue load (p < 0.05), 

but was however not different to the wheat and one-year medic residue (p > 0.05) 

(Table 4.5). The two-year medic residue resulted in the lowest residue load (p < 0.05).  

During year two, the crop residue load was not correlated (p > 0.05; r2 = 0.123) to the 

grain yield of barley (results not shown). 

4.3.7 Plant population 

In both years the plant population of barley was not influenced (p > 0.05) by the type 

of residue but was influenced (p < 0.05) by the planter type (Table 4.6). There was no 
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interaction amongst the variables (p > 0.05). The double disc planter resulted in a 

better establishment compared to the single disc drill (p < 0.05). In year one the double 

disc planter led to a mean plant population of 79 plants m-2 and the single disc planter 

resulted in a mean plant population of 57 plants m-2 (results not shown). In year two 

the double disc planter led to a mean plant population of 89 plants m-2 and the single 

disc planter led to a mean plant population of 75 plants m-2 (results not shown). 

4.3.7 Biomass 

During year one, the biomass of barley at 30 DAE was not influenced (p > 0.05) by the 

residue type but was influenced (p < 0.05) the planter type (Table 4.6). There was no 

interaction amongst the variables (p > 0.05). The double disc planter led to a mean 

biomass of 108 kg ha-1 and the single disc drill resulted in a mean biomass of 70 kg 

ha-1 (results not shown). 

During year two, the biomass of barley 30 DAE was not influenced (p > 0.05) by the 

residue type, the planter type, or their interaction (Table 4.6). There was however a 

tendency for the type of residue to influence the biomass (p = 0.073). Canola crop 

residue tended to lead to the highest barley biomass. The mean biomass of barley 

was 344 kg ha-1 (results not shown). 

In both years, the biomass of barley 60 DAE was not influenced (p > 0.05) by the 

residue type, the planter type, or their interaction (Table 4.6). During year one, the 

mean biomass of barley was 789 kg ha-1 (results not shown). In year two, the mean 

biomass of barley was 5344 kg ha-1 (results not shown). 

In both years, the biomass of barley 90 DAE was not influenced (p > 0.05) by the 

residue type, the planter type, or their interaction (Table 4.6). In year one, the mean 

biomass was 4184 kg ha-1 (results not shown). In year two, the mean biomass was 

5878 kg ha-1 (results are not shown). 
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Table 4.6: ANOVA F statistics and p-values for the models of barley plant population, biomass at 30, 60 and 90 days after emergence 

(DAE), as well as biomass at physiological maturity, in response to planter type and crop residue type.  Bold is used to illustrate p 

values < 0.05 

  Plant 

population 

Biomass 30 DAE Biomass 60 DAE Biomass 90 

DAE 

Biomass 

maturity 

 Variable F 

statistic 

p 

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F  

statistic 

p  

value 

2019           

 Residue type 2.16 0.163 2.34 0.141 2.10 0.170 1.80 0.218 1.10 0.397 

 Planter type 18.67 0.023 13.29 0.036 2.88 0.188 2.43 0.217 0.12 0.748 

 Interaction 0.99 0.440 0.46 0.791 1.33 0.323 0.77 0.542 1.52 0.274 

2020           

 Residue type 0.55 0.656 2.69 0.073 1.33 0.292 2.11 0.130 2.09 0.132 

 Planter type 18.36 <0.001 0.07 0.788 0.39 0.538 0.03 0.866 1.33 0.262 

 Interaction 0.21 0.886 1.09 0.377 0.73 0.545 0.04 0.990 0.89 0.462 
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In both years the biomass of barley at physiological maturity was not influenced (p > 

0.05) by the residue type, the planter type or their interaction (Table 4.6). During year 

one, the mean biomass was 4002 kg ha-1 (results not shown). In year two, the mean 

biomass of barley was 14914 kg ha-1 (results not shown). 

3.3.8 Yield components, grain yield and quality parameters 

During year one, the number of ear-bearing tillers of barley was not influenced (p > 

0.05) by planter type but was influenced (p < 0.05) by the residue type (Table 4.7). 

There was no interaction between the variables (p > 0.05). The wheat residue led to 

the highest number of ear-bearing tillers and the two-year medic residue led to the 

lowest number (p < 0.05) (Figure 4.12). 
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Figure 4.12: In year one, the number of ear-bearing tillers and the number of spikelets 

for barley in response to donor crop residue type. Letters plots indicate which 

treatments were different (p < 0.05) from one another according to the post-hoc 

pairwise comparisons. Vertical bars denote 95 % confidence intervals. 

During year two, the number of barley ear-bearing tillers was not influenced (p > 0.05) 

by the donor crop residue type but was influenced (p < 0.05) by the planter type (Table 

4.7). The double disc planter resulted in a mean of 367 ear bearing tillers m-2 and the 

single disc planter resulted in a mean of 300 ear bearing tillers m-2 (p < 0.05) (results 

not shown). 
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Table 4.7: ANOVA F statistics and p-values for the models of barley ear-bearing tillers, spikelets per ear, grain yield, protein content, 

hectolitre mass, thousand kernel mass and kernel plumpness in response to planter type and residue type. Bold is used to illustrate 

p < 0.05 

  Ear-bearing 

tillers 

Spikelets  Grain yield Protein content Hectolitre     

mass 

Thousand  

kernel mass 

Kernel 

plumpness  

 Variable F statistic p 

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F 

statistic 

p 

value 

F    

statistic 

p 

value 

F 

statistic 

p  

value 

2019               

 Residue type 5.32 0.022 4.39 0.037 5.29 0.022 20.96 <0.001 1.12 0.390 9.24 0.004 10.51 0.003 

 Planter type 6.54 0.083 3.19 0.172 12.64 0.038 2.26 0.230 0.01 0.946 0.01 0.918 5.03 0.111 

 Interaction 0.84 0.503 1.30 0.333 2.46 0.129 6.95 0.010 2.53 0.123 3.51 0.063 0.80 0.526 

2020               

 Residue type 2.56 0.082 0.98 0.421 7.91 0.001 9.11 <0.001 0.72 0.552 0.54 0.659 5.50 0.006 

 Planter type 9.96 0.005 3.19 0.089 2.29 0.145 0.88 0.358 0.21 0.650 0.53 0.476 1.07 0.313 

 Interaction 0.66 0.587 1.47 0.252 0.33 0.801 0.59 0.626 2.56 0.083 0.42 0.738 0.61 0.615 
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During year one, the spikelets per ear of barley was not influenced (p > 0.05) by the 

planter type but was influenced (p < 0.05) by the residue type (Table 4.7). There was 

no interaction between the variables (p > 0.05). One-year medic and wheat residues 

resulted in significantly (p < 0.05) higher spikelets per ear than two-year medic residue 

(Figure 4.12). 

During year two, the number of spikelets per ear of barley was not influenced (p > 

0.05) by the donor crop residue type, the planter type or their interaction (Table 4.7). 

The mean number of spikelets per ear was 23.90 (results not shown). 

During year one, the grain yield of barley was influenced (p < 0.05) by the residue type 

and the planter type (Table 4.7). There was no interaction between the variables (p > 

0.05). When planting into canola the highest yield was obtained (p < 0.05), but was 

however not different from the wheat and one-year medic residue treatments (p > 0.05) 

(Figure 4.13). The two-year medic residue led to the lowest yield (p < 0.05), but was 

however not different to the one-year medic residue (p > 0.05). The double disc drill 

led to higher grain yields (p < 0.05) (Figure 4.13).  
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Figure 4.13: In year one and year two, the grain yield of barley in response to the 

residue type and the planter type. Letters on plots indicate which treatments were 

different (p < 0.05) from one another according to the post-hoc pairwise comparisons. 

Vertical bars denote 95 % confidence intervals.  

During year two, the grain yield of barley was influenced (p < 0.05) by the crop residue 

type but was not influenced (p > 0.05) by the planter type (Table 4.7). There was no 

interaction amongst the variables (p > 0.05). The one-year medic residue resulted in 

the highest barley yield (p < 0.05), but was not different to the two-year medic residue 

Year one 

Year two 
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and the wheat residue (p > 0.05) (Figure 4.13). The canola residue led to the lowest 

barley yield (p < 0.05). 

During year one, the protein content (%) of barley grain was influenced (p < 0.05) by 

an interaction between the crop residue type and the planter used (Table 4.7). The 

planter type did not influence (p > 0.05) the protein content in all residue types except 

the wheat residue and the one-year medic residue. The single disc planter resulted in 

a higher protein content in the wheat and one-year medic residue compared to the 

double disc planter (p < 0.05) (Figure 4.14). 

2yr Medics
Medics

Canola
Wheat

Residue type

8
9

10
11
12
13
14
15
16
17
18
19
20
21

P
ro

te
in

 %
 

a
a

b
cd

e e

bc
de

 Single disc planter
 Double disc planter

2yr Medics
Medics

Wheat
Canola

Residue type

8

9

10

11

12

P
ro

te
in

 %
 

a
a

a

b

 

Figure 4.14: In year one and year two, the protein content of barley grain in response 

to the planter type and type of crop residue. Letters on plots indicate which treatments 

were different (p < 0.05) from one another according to the post-hoc pairwise 

comparisons. Vertical bars denote 95 % confidence intervals. 

During year two, the protein content of barley grain was not influenced (p > 0.05) by 

the planter type used, but was influenced (p < 0.05) by the crop residue type (Table 

4.7). The two-year medic residue resulted in the highest protein content (p < 0.05) but 

was however not different to the one-year medic residue and the wheat residue (p > 

0.05) (Figure 4.14). The canola residue led to the lowest protein content in barley grain 

(p < 0.05). 

In both years, the hectolitre mass of barley grain was not influenced (p > 0.05) by the 

crop residue type or the planter type, there was no interaction amongst the variables 

(Table 4.7). The HLM in year one was 68.11 kg hL-1 (results not shown). The HLM in 

year two was 66.34 kg hL-1 (results not shown). 

Year one Year two 
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During year one, the thousand kernel mass of barley was influenced (p < 0.05) by the 

crop residue type but was not influenced (p > 0.05) by the planter type (Table 4.7). 

There was no interaction amongst the variables (p > 0.05). The wheat residue resulted 

in the highest TKM (p < 0.05), but was however not different to the canola and one-

year medic residue (Figure 4.15). The two-year medic residue resulted in the lowest 

TKM for barley (p < 0.05). 
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Figure 4.15: In year one, the thousand kernel mass (g) of barley grain in response to 

different crop residue types. Letters on plots indicate which treatments were different 

(p < 0.05) from one another according to the post-hoc pairwise comparisons. Vertical 

bars denote 95 % confidence intervals. 

During year two, the thousand kernel mass of barley grain was not influenced (p > 

0.05) by the crop residue type or the planter type, there was no interaction amongst 

the variables (Table 4.7). The mean TKM (g) of barley grain was 47.36 (results not 

shown). 

During year one the percentage plump kernels of barley was not influenced (p > 0.05) 

by the planter type but was however influenced (p < 0.05) by the crop residue type 
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(Table 4.7). There was no interaction amongst the variables. Wheat crop residue 

resulted in the highest % plump kernels (p < 0.05), but was however not different to 

the one-year medic and canola residue (p > 0.05) (Figure 4.16). The two-year medic 

residue resulted in the lowest % plump kernels (p < 0.05). 
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Figure 4.16: The percentage plump kernels of barley in year one and year two in 

response to the crop residue type. Letters on plots indicate which treatments were 

different (p < 0.05) from one another according to the post-hoc pairwise comparisons. 

Vertical bars denote 95 % confidence intervals.  

During year two, the percentage plump kernels of barley was not influenced (p > 0.05) 

by the planter type but was influenced (p < 0.05) by the crop residue type (Table 4.7). 

There was no interaction amongst the variables (p > 0.05). The canola crop residue 

led to the highest % plump kernels (p < 0.05) (Figure 4.16). The two-year medic 

residue led to the lowest % plump kernels (p < 0.05), but was not different to the wheat 

and the one-year medic residue (p > 0.05).  

4.3.9 Soil mineral nitrogen 

During year one, the total mineral nitrogen in the soil was not influenced (p > 0.05) by 

the type of planter but was however influenced (p < 0.05) by the residue type and the 

sampling date (Table 4.8). There was no interaction amongst the variables (p > 0.05). 

At the first sampling date 30 days after emergence the two-year medic residue resulted 

in the highest mineral N content (p < 0.05), the mineral N content in the soil was 

however not different to the one-year medic residue (p > 0.05) (Figure 4.17). The 

wheat residue led to the lowest mineral N content in the soil (p < 0.05), but was 

however not different to the canola residue (p > 0.05). At the end of the season at 

Year one 
Year two 
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physiological maturity, there was still some mineral N present in the soil profile but was 

lower than the 30 days after emergence sampling (p < 0.05) (Figure 4.17). This led to 

a high nitrogen % in the kernels, thus making it unsuitable for malting barley and 

leading the grain to be dropped to feed quality. The two-year medic residue led to the 

highest mineral N content at the end of the season (p < 0.05), but was however not 

different to the wheat residue (p > 0.05). The canola residue resulted in the lowest 

mineral N content in the soil at the end of the season (p < 0.05), but was not different 

to the one-year medic and wheat residue (p > 0.05). 

Table 4.8: ANOVA F statistics and p values for the model of total mineral nitrogen 

content for both years in response to crop residue type, planter type and date of 

sampling. Bold is used to illustrate p values < 0.05 

 Variable  Total mineral N  

2019 F statistic p value 

 Residue 7.68 0.007 

 Planter  0.28 0.632 

 Date 117.92 0.001 

 Residue*Planter 0.08 0.971 

 Residue*Date 0.39 0.761 

 Planter*Date 0.63 0.484 

 Residue*Planter*Date 0.16 0.923 

2020  

 Residue 1.95 0.134 

 Planter  0.26 0.610 

 Date 4.38 0.042 

 Residue*Planter 0.10 0.961 

 Residue*Date 1.80 0.159 

 Planter*Date 0.00 0.998 

 Residue*Planter*Date 0.17 0.915 
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Figure 4.17: In year one, the mineral nitrogen content in barley plots at 30 DAE and 

physiological maturity (PM) in response to the crop residue type. No common letters 

on the bars indicate statistical difference at 5% level. Vertical bars denote 95 % 

confidence intervals. 

During year two, the total mineral nitrogen was not influenced (p > 0.05) by the crop 

residue type and the planter type but was influenced (p < 0.05) by the date of sampling 

(Table 4.8). There were no interactions amongst the variables (p > 0.05). The total N 

in the soil was higher at 30 DAE (22.2 mg kg-1) than at physiological maturity (19.6 mg 

kg-1; results are not shown). 

Experiment 3: Canola 

4.3.10 Donor crop residue load 

During year one, the donor crop residue load was influenced (F = 18.46; p < 0.05) by 

the residue type. The barley residue resulted in the highest residue load (p < 0.05), 

but did not differ from the wheat residue load (p > 0.05) (Table 4.9). The one-year 

medic resulted in the lowest residue load (p < 0.05), but did not differ from the two-

year medic residue load (p > 0.05). Year one the donor crop residue load was not 

correlated (p > 0.05; r2 = 0.005) to the canola grain yield (results not shown).  
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Table 4.9: The crop residue load (kg ha-1) present at the time of planting for both years. 

No common letters indicate significant difference at a 5% level   

Residue type Residue load (kg ha-1) 

2019 

Two-year medic 2265b 

One-year medic 1607b 

Barley 4873a 

Wheat 4667a 

2020 

Two-year medic 2600a 

One-year medic 1803b 

Barley 2759a 

Wheat 2487a 

 

In year two the donor crop residue load was influenced (F = 6.37; p < 0.05) by the type 

of crop residue. The barley residue resulted in the highest residue load but was not 

different (p > 0.05) to the two-year medic residue or the wheat residue (Table 4.9). 

The one-year medic residue resulted in the lowest crop residue load (p > 0.05). During 

year two the crop residue load was not correlated (p > 0.05; r2 = 0.002) to the canola 

grain yield (results not shown). 

4.3.11 Plant population 

During year one, the plant population of canola was influenced (p < 0.05) by an 

interaction between the residue type and the planter type (Table 4.10). The single disc 

planter generally led to a higher plant population in all residue except for the two-year 

medic residue (Figure 4.18). 
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Table 4.10: ANOVA F statistics and p-values for the models of canola plant population, biomass at 30, 60 and 90 days after 

emergence (DAE), as well as biomass at physiological maturity, in response to planter type and crop residue type. Bold is used to 

illustrate p values < 0.05  

 

  

  Plant 

population 

Biomass 30 DAE Biomass 60 DAE Biomass 90 DAE Physiological 

maturity 

 Variable F 

statistic 

p 

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

F  

statistic 

p  

value 

2019           

 Residue type 0.31 0.815 3.01 0.087 3.28 0.073 1.96 0.191 1.91 0.198 

 Planter type 3.53 0.157 0.52 0.523 5.71 0.097 3.08 0.177 2.90 0.187 

 Interaction 5.48 0.020 0.16 0.918 1.04 0.420 1.86 0.207 4.54 0.034 

2020           

 Residue type 0.72 0.548 0.45 0.718 1.27 0.308 0.22 0.879 0.71 0.556 

 Planter type 22.84 <0.001 5.44 0.030 1.45 0.242 3.44 0.078 1.35 0.258 

 Interaction 0.87 0.472 0.37 0.775 1.04 0.397 0.60 0.619 0.34 0.795 
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Figure 4.18: In year one, the effect of residue type and planter type on the plant population 

of canola. Letters on plots indicate which treatments were different (p < 0.05) from one 

another according to the post-hoc pairwise comparisons. Vertical bars denote 95 % 

confidence intervals. 

During year two, the plant population of canola was not influenced (p > 0.05) by the 

residue type but was however influenced (p < 0.05) by the planter type (Table 4.10). 

There was no interaction amongst the variables (p > 0.05). The single disc planter led to 

a mean plant population of 56 plants m-2 and the double disc planter led to a mean plant 

population of 37 plants m-2 (p < 0.05) (results not shown). 

4.3.12 Biomass production 

During year one, the biomass of canola 30 DAE was not influenced (p > 0.05) by the 

residue type, the planter type or their interaction (Table 4.10). The mean biomass of 

canola 30 DAE was 155 kg ha-1 (results not shown). 

During year two, the biomass of canola 30 DAE was not influenced (p > 0.05) by the 

residue type but was influenced (p < 0.05) by the planter type (Table 4.10). There was no 

interaction between the variables (p > 0.05). The double disc planter resulted in a canola 
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biomass of 221 kg ha-1 and the single disc planter resulted in a mean biomass of 107 kg 

ha-1 (p < 0.05) (results not shown). 

During year one, the biomass of canola 60 DAE was not influenced (p > 0.05) by the 

residue type, the planter type or their interaction (Table 4.10). The mean biomass of 

canola 60 DAE was 2219 kg ha-1 (results not shown). 

During year two, the biomass of canola 60 DAE was not influenced (p > 0.05) by the 

residue type, the planter, or their interaction (Table 4.10). The mean biomass of canola 

60 DAE was 9645 kg ha-1 (results not shown). 

During year one, the biomass of canola 90 DAE was not influenced (p > 0.05) by the 

residue type, the planter type or their interaction (Table 4.10). The mean biomass of 

canola 90 DAE was 5343 kg ha-1 (results not shown). 

During year two, the biomass of canola 90 DAE was not influenced (p > 0.05) by the 

residue type, the planter or their interaction (Table 4.10). The mean biomass was 4481 

kg ha-1 (results not shown). 

During year one, the biomass of canola at physiological maturity was influenced by an 

interaction (p < 0.05) between the residue type and the planter type (Table 4.10). The 

double disc planter resulted in a higher biomass in medic residue while the single disc 

planter resulted in a higher biomass in wheat and barley residue (Figure 4.19). 

During year two, the biomass of canola at physiological maturity was not influenced (p > 

0.05) by the donor crop residue type, planter type or their interaction (Table 4.10). The 

mean biomass of canola was 7941.41 kg ha-1 (results not shown). 
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Figure 4.19: In year one, the biomass of canola at physiological maturity in response to 

the residue type and the planter type used. Letters on plots indicate which treatments 

were different (p < 0.05) from one another according to the post-hoc pairwise 

comparisons. Vertical bars denote 95 % confidence intervals.  

4.3.13 Yield and quality parameters 

During year one, the grain yield of canola was influenced (p < 0.05) by an interaction 

between the residue type and the planter type (Table 4.11). The double disc planter 

resulted in higher yields in one-year medic and barley residues while the single disc 

planter resulted in higher yields in two-year medic and wheat residues (Figure 4.20). 

These differences were generally not significant. 

During year two, the grain yield of canola was not influenced (p > 0.05) by the crop residue 

type or the planter type (Table 4.11). There was no interaction amongst the variables (p 

> 0.05). The mean grain yield of canola was 3091 kg ha-1 (results not shown). 
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Table 4.11: ANOVA F statistics and p values for the models of canola grain yield, 

thousand kernel mass and oil content in response to planter type and residue type. Bold 

is used to illustrate p values < 0.05  

 

  Grain yield  Thousand kernel 

mass 

Oil content 

 Variable F 

statistic 

p 

value 

F 

statistic 

p  

value 

F 

statistic 

p  

value 

2019       

 Residue type 1.58 0.262 3.42 0.066 13.96 0.001 

 Planter type 0.05 0.846 1.49 0.310 2.60 0.205 

 Interaction 4.40 0.036 0.70 0.577 2.23 0.154 

2020       

 Residue type 1.46 0.254 0.49 0.698 9.82 <0.001 

 Planter type 0.27 0.611 0.03 0.876 0.74 0.400 

 Interaction 0.89 0.462 2.68 0.098 0.33 0.800 
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Figure 4.20: In year one, the grain yield of canola in response to the residue type and the 

planter type. Letters on plots indicate which treatments were different (p < 0.05) from one 

another according to the post-hoc pairwise comparisons. Vertical bars denote 95 % 

confidence intervals. 

The thousand kernel mass of canola in both years was not influenced (p > 0.05) by the 

residue type, the planter type, or their interaction (Table 4.11). In year one, there was 

however a tendency (p = 0.066) for the wheat residue to lead to a higher thousand kernel 

mass. In year one the mean thousand kernel mass of canola was 2.83 g (results not 

shown). In year two the mean thousand kernel mass of canola was 3.67 g (results not 

shown). 

During year one, the oil content of canola was not influenced (p > 0.05) by the planter 

type but was influenced (p < 0.05) by the residue type (Table 4.11). There was no 

interaction between the variables (p > 0.05). The wheat residue resulted in the highest oil 

content while the two-year medic residue resulted in the lowest oil content (p < 0.05) 

(Figure 4.21). 
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Figure 4.21: Year one and year two, the oil content (%) of canola in response to the type 

of donor crop residue. Letters on plots indicate which treatments were different (p < 0.05) 

from one another according to the post-hoc pairwise comparisons. Vertical bars denote 

95 % confidence intervals. 

During year two, the oil content of canola was not influenced (p > 0.05) by the planter 

type but was influenced (p < 0.05) by the crop residue type (Table 4.11). There was no 

interaction amongst the variables (p > 0.05). The barley crop residue led to the highest 

oil content (p < 0.05) (Figure 4.21). The two-year medic residue led to the lowest oil 

content (p < 0.05) but did not differ from the wheat crop residue (p > 0.05). 

4.3.14 Soil mineral nitrogen 

During year one, the total mineral nitrogen content of the soil in the canola plots was 

influenced (p < 0.05) by an interaction between the donor crop residue type and the 

sampling date (Table 4.12). There were no other interactions between the variables (p > 

0.05). The mineral nitrogen content in the soil decreased in all residue types from the first 

sampling date to the second (p < 0.05) (Figure 4.22). The medic residue resulted in higher 

mineral N content at the first sampling when compared to the barley and wheat residue 

(p < 0.05). There were no differences (p > 0.05) in mineral N content among residue types 

at the second sampling date. 

During year two, the total mineral N content in the soil was not influenced (p > 0.05) by 

the crop residue type and the planter type but was influenced (p < 0.05) by the date of 

sampling (Table 4.12). There was no interaction amongst the variables (p > 0.05). The 

total N was higher 30 DAE (24.7 mg kg-1) compared to physiological maturity (19.4 mg 

kg-1) (p < 0.05; results not shown). 

 

Year one Year two 
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Table 4.12: ANOVA F statistics and p values for the model of mineral nitrogen content 

(mg kg-1) of the soil in response to residue type, planter type and date of sampling. Bold 

is used to illustrate p values < 0.05  

 Variable   Total mineral N 

2019 F statistic p value 

 Residue 6.54 0.012 

 Planter  0.88 0.417 

 Date 108.53 0.002 

 Residue*Planter 0.85 0.485 

 Residue*Date 5.14 0.024 

 Planter*Date 2.68 0.200 

 Residue*Planter*Date 2.47 0.095 

2020 

 Residue 1.00 0.399 

 Planter  1.54 0.220 

 Date 13.69 0.001 

 Residue*Planter 1.18 0.326 

 Residue*Date 1.20 0.319 

 Planter*Date 0.07 0.787 

 Residue*Planter*Date 0.59 0.627 
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Figure 4.22: In year one, the mineral nitrogen content in canola plots soil at 30 days after 

emergence and at physiological maturity (PM). Letters on plots indicate which treatments 

were different (p < 0.05) from one another according to the post-hoc pairwise 

comparisons. 

4.4 Discussion 

The type of planter had a significant impact on the wheat, barley and canola production.  

Wheat and barley both had higher (p < 0.05) plant populations when established with the 

double disc planter. The double disc planter with the disc furrow openers being slightly 

offset, slightly moved the crop residue out of the furrow to the interrow space. When the 

seed furrow is cleaned, negative physical effects due to crop residue can be alleviated 

(Azooz and Arshad 1998). The double disc planter may have had more pressure on the 

closing wheels compared to the single disc planter due to the design of the unit. Poor 

seed to soil contact may lead to poor establishment and ultimately a potential yield penalty 

(Morris et al. 2010). Good seed to soil contact is especially critical when crop with small 

seed size such as canola is planted (Swanepoel et al. 2019; Swanepoel and 

Labuschagne 2020). 
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The drought conditions prior to and in the first year of the study led to relatively small 

donor crop residue loads (Table 4.1, 4.5 and 4.9). Negative effects due to physical effects 

may however be limited due to the small residue loads. Generally residue loads above 

5000 kg ha-1 may have negative impacts on the following crop (Bruce et al. 2006). The 

canola had a higher plant population when established with the single disc planter. The 

single disc planter however had shallower seed depth placement which was evident from 

the worn edge on the discs during planting. The better depth placement of the single disc 

planter compared to the double disc planter favoured canola establishment. Large seeds 

contains more energy reserves (Harker et al. 2015). Placing canola seed deeper in the 

soil may have reduced the emergence (Malhi and Gill 2004). Due to the small seed size 

of canola and limited energy reserves depth placement in the soil is critical to a good 

establishment. 

Soil processes, physical and allelopathic effects from crop residue cannot be separated 

from each other in the field as the results seen are a combination of these factors. The 

physical effects of crop residue on the subsequent crop are likely very limited in our study 

due to the relatively small crop residue loads. The possibility for allelopathic effects may 

also be limited. The crop residue had time to degrade over the summer months and 

became less toxic (Purvis 1990). Concern have been raised due to the fact that 

allelopathic studies are often done in the absence of a soil medium (Morris et al. 2010). 

In the presence of soil, allelopathic effects may be limited due to microbial breakdown 

and adsorption of allelochemicals (Wu et al. 2001).   

The type of planter used had an influence or at least a tendency on production of biomass 

of the crops 30 days after emergence (Figure 4.5). This may be ascribed to higher plant 

populations for wheat and barley when the double disc planter was used, and the single 

disc planter led to higher canola plant populations. In year one, as the season progressed 

the crops were able to compensate for lower plant population however, in the second 

year when large differences among plant populations were recorded, the wheat crop was 

unable to compensate in biomass (Table 4.2). It appears as if canola is able to better 

compensate in biomass for low plant populations compared to wheat and barley (Table 

4.10). Canola forms more flowering branches while wheat and barley form more tillers 

when competition amongst plants are low (Swanepoel et al. 2019). 

In year one the donor crop residue type seemed to play a bigger role on the mineral N 

content in the soil compared to year two (Figure 4.11). The mineral N content in the soil 
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was higher in the first year compared to the second year. In year two there was no 

difference in mineral N content of the soil among residue types (Table 4.8 and 4.12). This 

may be attributed to the drought conditions, in severe drought medics fix less N (Graham 

and Vance 2000). The higher soil mineral N in certain residue types may have led to 

larger crop biomass. Due to the low crop residue loads that has limited physical effects 

on the subsequent crop the soil processes likely had the biggest influence on the 

subsequent crop. Year one biomass of wheat at 60 and 90 days after emergence was 

influenced by the residue type and not the planter type in year one (Figure 4.5). The large 

difference in soil mineral nitrogen content from year one to year two may partly be affected 

by the different types of soil analyses used as explained in the material and methods. 

The number of ear-bearing tillers of wheat in year one had a tendency and in year two, 

was more in the double disc planter treatments. This may be attributed to the higher plant 

population found in the double disc treatments. The number of ear-bearing tillers of barley 

in year one was influenced by the type of donor crop residue (Figure 4.12) and in year 

two by the planter type used. In year two, the higher plant population of the double disc 

planter may have resulted in the increased number of ear-bearing tillers. In year one, the 

two-year medic residue led to the lowest number of ears per square meter while wheat 

led to the highest number of ears. This may be attributed to the high mineral N found in 

the two-year medic residue plots. Legume species such as medics, lupins and peas fix 

nitrogen and can fix between 30–160 kg of N per hectare per year (Peoples and Baldock 

2001). The amount of N fixed by legume species is dependent on sufficient nodulation 

(Graham 1981). This may explain why the pea residue did not result in high levels of 

mineral N. Due to the severe drought in year one, the amount of N was excessive in 

medics residue while the wheat residue had a higher residue load and conserved more 

moisture. Increased soil moisture later in the season will likely offset the negative effects 

of a moderate to high residue load on the early growth (Bruce et al. 2006).  

The number of spikelets per ear of wheat and barley is determined early in the season, 

while the plants are is still the vegetative growth stage (Wang and Engel 1998). The 

number of barley spikelets per ear was influenced by the residue type in year one (Figure 

4.12). Yield components are increased when nutrients is sufficient during the vegetative 

stages of crops (Abedi et al. 2011). The spikelets per ear was not influenced in year two 

in both wheat and barley. This may be attributed to the similar soil nitrogen content 
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amongst the residue types. One could argue that if the first year was not a drought year 

the residue type would have had a larger influence on the following crop. 

The planter type had an influence on the grain yield of barley in year one which may be 

attributed to the higher plant population when seeded with the double disc planter. The 

residue types with the highest mineral N present resulted in the lowest yields while the 

residue types which produces more biomass resulted in higher yields. As mentioned, the 

N may have been excessive in the drought year. The crop residue types which has a 

higher biomass may have conserved more moisture throughout the growing season. The 

canola grain yield in year one was influenced by an interaction between the crop residue 

types and the planter type. The residue type all led to similar yields while the double disc 

planter and single disc planter led to better yield in the different crop residue 

combinations. The planter type used was not correlated to the crop residue load. The 

fluctuations between the planter types may be attributed to some plots having a higher 

stones content on the soil surface leading to inconsistent crop establishment. During year 

two the crop residue types that resulted in the highest mineral N content in the soil led to 

the highest grain yields in barley and wheat (Figure 4.7 and 4.13). 

The grain quality parameters such as the protein content in wheat and barley was 

influenced by the crop residue type (Figure 4.8 and 4.14). The protein content of seed 

has a positive linear relationship to the amount of nitrogen present which is similar to 

other studies done (Abedi et al. 2011). Parameters such as the hectolitre mass of wheat 

and barley is mostly dependent on climatic factors (Nel et al. 1998). The hectolitre mass 

of wheat was however influenced by the crop residue type in year one. Crop residue types 

which led to a higher soil mineral N content reduced the hectolitre mass (Figure 4.9).  

4.5 Conclusion 

The type of planter influenced the plant population of the different crops (p < 0.05), but 

due to the ability of crops to compensate when competition amongst them is low and the 

conditions is favourable the type of planter used did not affect the grain yield in year two. 

Where the difference amongst the plant populations was great and the climatic factors 

unfavourable, the plants were unable to compensate and a yield difference could be seen. 

In year one, the yield was influenced by the planter type or tended to be influenced. The 

double disc drill led to better wheat and barley yields. 
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The type of residue had an influence on the production of crops (p < 0.05). The residue 

types with a higher residue load led to higher yields in barley in year one. The cereal 

residue types led to the highest residue loads and did not lead to high soil mineral N 

contents in the first year. The high residue loads likely conserved more moisture 

compared to low residue loads. The residue types such as the legumes like medics 

produced less biomass and led to a higher mineral N content in the soil, due to year one’s 

drought the amount of nitrogen was excessive. In the second year of the study when the 

climatic conditions were favourable, the residue types which resulted in a higher mineral 

N content in the soil resulted in the best yields. Wheat and barley are however more 

sensitive to the type of crop residue present compared to canola. Canola residue led to 

poor yields in the wheat and barley in the second year of the study, this might be because 

canola uses a lot of nitrogen and during the decomposition does not result in high levels 

of soil mineral N. It appears that a cereal crop planted after canola might need more 

nitrogen fertiliser. Wheat generally performed well on the medic and oats residue while 

barley performed well on the medics and wheat residue. 

In this study, due to the small crop residue loads the physical effects of crop residue on 

the following crop could have been limited. It appears that how the soil processes were 

affected by crop residue likely had the biggest effect on the following crop. Nitrogen 

fertiliser programmes can be altered to account for any potential deficiencies caused by 

crop residues. The following crop planted after the second year of this study might 

however encounter physical effects from the crop residue. The crop residue loads will be 

high and proper seed placement may be difficult as well as overshading from the crop 

residue might be detrimental for emerging seedlings.   
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Chapter 5: Decomposition of different types of crop residue in response to soil 

faunal decomposer communities 

5.1 Introduction 

Nutrient cycling is mediated by soil biota as a whole and is a key soil process for 

maintenance of crop production (Balestrini et al. 2015). Soil biota refers to 

microorganisms (fungi, bacteria and archaea) as well as soil fauna which all play a part 

in the decomposition process (Balestrini et al. 2015). Soil fauna can be described as 

organisms inhabiting the soil and litter strata (Petersen and Luxton 1982). The soil fauna 

can be further divided into micro-, meso-, and macro-fauna classes (Bradford et al. 2002). 

Micro fauna represents protozoa groups, meso fauna represents nematodes and 

microarthropods while macro fauna represents macro arthropods, earthworms, ants and 

termites (Coleman and Wall 2015).  Soil fauna accelerates residue decomposition via 

fragmentation (Tian et al. 1992). Residue decomposition underpins the nutrient cycling 

processes (Carlesso et al. 2019). Decomposition dominated by fungal communities 

contributes more organic matter to stabile pools compared to bacteria (Horwarth 2015).  

The speed of residue decomposition is determined by the quality characteristics of 

residue (such as the C:N ratio), environmental conditions and the amount of soil biota 

present (Nicolardot et al. 2001). The higher the C:N ratio, the slower the speed of 

decomposition (Nicolardot et al. 2001). Warm and moist conditions lead to a higher rate 

of decomposition (Guixiang et al. 2016). Soil biota tends to be more abundant in no-till 

managed soil compared to conventionally tilled soil (Reeleder et al. 2006). Thus, moving 

to Conservation Agriculture may lead to better nutrient cycling by managing the system 

to accommodate more soil biota. The application of certain groups of fungicides however, 

may have a detrimental effect on non-target soil fungi (Yang et al. 2011). 

Understanding the process of crop decomposition and factors influencing the rate of 

decomposition will enable us to adapt management strategies to promote the cycling of 

nutrients and, in turn, improve the sustainability of cropping. The degradation of soils is 

associated with imbalanced, inadequate and pro-macronutrient fertiliser use together with 

the inadequate use of crop residue (Gupta et al. 2018). The degradation of the soil 

structure leads to slower decomposition, thus slower release of crop essential nutrients 
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(Carlesso et al. 2019). Improving nutrient cycling may reduce the need for inorganic 

fertilizers and may improve the soil structure. Residue with a low C:N ratio may lead to 

more stable organic carbon assimilation (Zhou et al. 2019). The addition of residue with 

a high C:N ratio may however provide a longer lasting source of nutrients for plants and 

may prevent leaching of nutrients (Truong et al. 2019).  

It is hypothesised that (1) the residue with high C:N ratios will decompose slower 

compared to residue with a lower C:N ratio and (2) that the exclusion of soil meso- and 

macrofauna will lead to slower decomposition. The aim of the trial was to evaluate the 

decomposition rate of annual medics (Medicago polymorpha), oats (Avena sativa), lupine 

(Lupinus angustifolius), wheat (Triticum aestivum), barley (Hordeum vulgare) and canola 

(Brassica napus). The influence of micro-, meso- and macro fauna on decomposition was 

also evaluated. 

5.2 Material and methods 

5.2.1 Experimental design 

The trial was conducted during 2019 at the Western Cape Department of Agriculture 

Tygerhoek research farm (34°09’58.3” S 19°54’34.1” E) near Riviersonderend in the 

Western Cape of South Africa. The area has a Mediterranean type climate with an 

average annual rainfall of 443 mm. The 2019 total rainfall was below average at 379 mm, 

however only 117 mm of rain was received within the growing season which made it an 

extremely dry cropping season. The average temperature was 14.8 °C and the average 

relative humidity 78.9 % for the duration the litterbags were in the field. The decomposition 

trail was conducted inside a long-term rotation trial. The decomposition trial has a varying 

number of replicates due to the fact that the long-term rotation trial had different donor 

crop residue and different test crop combinations (Table 5.1). Donor crop residue is 

derived from the previous year’s crop which was harvested, the test crop represents the 

crop that is seeded into the donor crop residue. 
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Table 5.1: Test crop and donor crop residue combinations leading to a varying number of 

replicates 

Donor crop residue type Test crop Total replications 

Two-year annual medics Wheat, barley and canola 24 

One-year annual medics Wheat, barley and canola 24 

Wheat Barley and canola 16 

Barley Canola 8 

Canola Wheat and barley 16 

Oats Wheat 8 

Lupin Wheat 8 

 

The trial was laid out as a randomised block design and had the following treatment 

factors: two types of litter bags, four litter bag removal dates, and the following residue 

types; barley, wheat, canola, lupin, oats, one-year medic and two-year medic. Overall, 

832 litter bags were used in the trial. The residue was dried at 60 °C for 72 hours then 

placed into litter bags with different mesh sizes. The small mesh size litter bags had the 

following dimensions: 10 x 20 cm and a porosity of 50 microns ± 10 micron due to handling 

of the bags. The small mesh size litter bags permitted the entry of some of the micro 

fauna but mostly only bacteria and fungi (Carlesso, et al., 2019). The bigger mesh size 

litter bags had the following dimensions: 10 x 20 cm and a porosity of 2000 microns which 

allowed full access to soil biota (Carlesso, et al., 2019). All the litter bags were made of 

nylon plastic material that is not bio-degradable to ensure that the litter bags specifications 

will not change over time. Each bag was filled with five grams of crop residue and was 

permanently sealed. The canola residue was extremely brittle after the drying process 

and fell through the bigger mesh size litter bags, thus due to practical reasons some of 

the courser canola material was used to fill the mesh bags. The rest of the bags was filled 
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was a representative sample of course and fine material trying to replicate in-field 

conditions. The bags were put in the field directly after planting on the 10th of May 2019.   

5.2.2 Measurements 

The removal of the litter bags took place at 30, 60, 90 and 150 days after planting with 

the 150 days after planting being prior to harvest of the bigger rotation trials. The litter 

bag removal process consisted of the litter bags being collected and dried at 60 ºC for 72 

hours. The small mesh litter bags were weighed complete with bag and residue and the 

weight of the bag was subtracted. The weight of the big size mesh bags varied a lot, 

therefore each individual litter bag was cut open and the residue was extracted from the 

bag and weighed. 

5.2.3 Statistical analyses 

Linear mixed models were used to investigate the effect of residue type, removal date 

and mesh size on the rate of crop residue decomposition. The mass of the remaining 

residue after decomposition was winsorised to obtain normally distributed data. The fixed 

effects were residue type (one year of annual medics, two years of annual medics, barley, 

canola, oats, wheat and lupin), removal date (30, 60, 90 and 150 days after planting) and 

the mesh size (big and small) and all the combinations of interactions amongst them. The 

random effects were replications, the interaction between replication and residue type, 

the interaction between replication and removal date, the interaction between replication 

and mesh size, the interaction between replication, residue type and removal date and 

lastly the interaction between the replication, mesh size and removal date. 

All data analyses were undertaken in Statistica version 13.5.0.17 (TIBCO 2019). Models 

were calculated in the package Mixed model ANOVA in R(Imer) package using Kenward-

Rogers, with P-values for the significance of each variable were calculated using type III 

analyses of variance (ANOVA). 

Post-hoc pairwise comparisons were calculated using the Probabilities for Post Hoc Tests 

package which computes contrasts between the least-squares means (LSD) of each level 

of factor. Pairwise comparisons were only conducted between levels of factors that were 

found to be significant (p < 0.05) in the ANOVA. 
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Results are displayed in line graphs. The vertical bars indicate the 95 % confidence 

intervals. Letters on plots indicate which treatments were different from one another 

according to the post-hoc pairwise comparisons. 

5.3 Results  

The decomposition of crop residue was influenced (p < 0.05) by the interaction between 

the residue type and the mesh size of the litterbags (Table 5.2). Some of the residue 

types such as the medic and lupin residue were more dependent on the decomposition 

mediated by meso and macro fauna compared to residue types with higher C:N ratios 

such as the wheat (Figure 5.1). All the residue types however decomposed faster in the 

presence of all soil biota (Figures 5.1 and 5.2). The crop residue decomposition was also 

dependant (p < 0.05) on the interaction between the removal date and the mesh size of 

the litter bags (Table 5.2). At later removal dates the residue was more decomposed 

compared to early in the season (p < 0.05). The decomposition slowed between the 60 

and 90 days after planting measurements as the amount of residue left in the litter bags 

did not differ (p > 0.05). This decrease in the rate of decomposition might be due to lower 

temperatures experienced during that time in the winter. 

Table 5.2: ANOVA F statistics and p values for the model of residue decomposition in 

response the type of residue, the removal date and the mesh size of the litter bags. Bold 

is used to illustrate p values <0.05 

Variable F statistic p value 

Residue type 8.99 <0.001 

Removal date 39.12 <0.001 

Mesh size 275.43 <0.001 

Residue type x Removal date 1.09 0.360 

Residue type x Mesh size 5.03 <0.001 

Removal date x Mesh size 6.08 <0.001 

Residue type x Removal date x Mesh size 1.17 0.281 

Stellenbosch University https://scholar.sun.ac.za



 

111 

 

Figure 5.1: Decomposition of different types of crop residue in response to mesh bags 

with different size. On the Y-axis is the amount of residue left in the litter bag after the 

initial five grams of residue. On the X-axis is the type of residue which was used in the 

litter bag. The big mesh size was 2000 microns, and the small mesh size was 50 microns. 

No common letters on the bars indicate statistical difference at a 5 % level. Vertical bars 

denote 95 % confidence intervals. 
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Figure 5.2: The decomposition of crop residue in response to the number of days the 

residue was in the field and to the mesh size of the litterbags. On the Y-axis is the amount 

of residue left in the litter bag after the initial five grams of residue. On the X-axis is the 

number of days the litter bags were in the field. The big mesh was 2000 microns, and the 

small mesh was 50 microns. No common letters on the bars indicate statistical difference 

at a 5 % level. Vertical bars denote 95 % confidence intervals. 

5.4 Discussion 

The type of donor crop residue and the different decomposer communities influenced the 

rate of decomposition (Figure 5.1). The type of crop residue is directly correlated to the 

different quality characteristics such as the C:N ratio (Huang et al. 2004). Residue with 

C:N ratios lower than 20 decomposes rapidly under favourable conditions (Huang et al. 

2004). The approximate C:N ratios of the residue used in the study ranged from high to 

low: Wheat > Oats > Barley > Canola > Lupin > Medic residue (Huang et al. 2004; 

Murungu et al. 2011; Jensen 1997; Begum et al. 2014; Elgharably and Marschner 2011; 

Lefroy et al. 1995). The C:N ratio of wheat is approximately 64 and the C:N ratio of medic 

residue was approximately 13.5 (Huang et al. 2004; Lefroy et al. 1995). The C:N ratio of 
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the crops may differ slightly from one season to the next depending on the climatic 

conditions and production practises. The residue with the lowest C:N ratios decomposed 

a lot faster than the residue such as wheat, barley and oats with higher C:N ratios, the 

pattern was however amplified in the big mesh litter size treatments where the full 

spectrum of soil biota was present (Figure 5.1). Residue with a low C:N ratio leads to 

more soil organic carbon sequestration compared to residue with a high C:N ratio (Zhou 

et al. 2019). Crop diversity may also improve the residue quality which may lead to the 

increase in organic carbon sequestration (Zhou et al. 2019). Including crops with a lower 

C:N ratio or increasing crop diversity in the rotation system may lead to higher levels of 

carbon assimilation. When the meso and macro fauna were excluded by means of the 

small mesh size litter bags, the decomposition among the different crop residue species 

was rather similar, but in the presence of an entire soil biotic community the type of 

residue had a more pronounced effect on the decomposition.   

The residue decomposition rate differed more between the different mesh size litterbags 

later in the season when compared to early in the season (Figure 5.2). The interaction 

between removal date and different mesh size litter bags was significant (p < 0.05). These 

findings were similar to that of Carlesso et al. (2019) and Bradford et al. (2002) who found 

that the early stages of residue decomposition were more dependent on microbial 

processes. Mesh size effects such as residue loss due to handling may have occurred 

with the large mesh size litter bags. The loss due to handling may explain the fact that 

the decomposition differed significantly at the 30-day removal date (Figure 5.2). In the 

later stages the decomposition mediated by all groups of soil biota was more rapid, 

however none of the treatment combinations was completely decomposed. The amount 

of residue left in the litter bags did not change significantly between the 60 and 90 days 

after planting removal dates (Figure 5.2). This may be due to the cold temperatures 

experienced during that period. When cold periods are experienced during winter months 

and decomposition slows, the crop’s need may however be higher than the amount of 

nutrients released by nutrient cycling. It is important that nutrients are abundant during 

the critical growth period of the crops to obtain the yield potential (Dreccer et al. 2000). 

The critical period of wheat is the pre flower stages where the number of kernels are 

determined (Velasco et al. 2012). During the critical growth stages where the crop’s 

demand may exceed the amount of nutrients cycled through decomposition the 

application of inorganic fertilizer may improve crop yield.  
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Soil fauna is significantly higher in no-till managed soil compared to conventionally 

managed soils (House and Parmelee 1985). Soil fauna is known to fragment crop residue 

leading to faster decomposition (Tian et al. 1992). Soil fauna amplifies existing patterns 

of nutrients release including nitrogen mineralisation (Anderson et al. 1983). Thus, 

adopting management strategies to increase the amount of soil biota in the soil may lead 

to faster decomposition and in turn nutrient cycling. Being able to effectively cycle 

nutrients may lead to less inorganic fertilizer use and in turn may promote soil health 

(Gupta et al. 2018).  

5.5 Conclusion 

Nutrient cycling is underpinned by crop residue decomposition. The type of crop residue 

had an influence on the speed decomposition. The residue types with a higher C:N ratio 

decomposed slower compared to residue with a low C:N ratio. During the coldest winter 

month, the decomposition was the slowest but as the temperature increased the rate of 

decomposition increased. The early stages of decomposition are dominated by microbial 

decomposition however later in the season the decomposition mediated by all groups of 

soil biota was faster. Soil fauna is known to fragment crop residue and in turn amplifies 

existing patterns of nutrient release.  

Adopting CA management strategies may increase the nutrient cycling in soils and in turn 

reduce our dependence on inorganic fertilizer. However, because of the high demand for 

nutrients during the critical period of crop growth and cold periods during the winter the 

use of inorganic fertilizer may alleviate any nutrient shortages.   
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Chapter 6: General conclusion and future research 

6.1 Conclusion 

Adopting Conservation Agriculture (CA) practices may improve environmental, 

agronomic and economic sustainability in relatively dry Mediterranean climates 

(Calzarano et al. 2018). Local perception in the southern Cape is that in recent times 

producers tend to move more towards continuous cash cropping systems or at least to 

longer cropping sequences between pastures. The adoption of CA does not come without 

its challenges. For example, reduced yields may be observed when planting into large 

crop residue loads (dos Santos et al. 1993). Previous studies conducted over various 

parts of the world and in different climates generally ascribe poor growth in the presence 

of crop residue to allelopathy, physical effects and chemical effects such as nitrogen 

mineralisation or immobilisation. Some studies exclude some of the mechanisms such as 

allelopathy (Wynne et al. 2019), while other ascribe the effects mainly to allelopathy 

(Alsaadawi 2001). Field trials will likely represent a combination of abovementioned 

mechanisms, while laboratory trials will likely overestimate the potential of allelopathic 

effects. In the field allelopathic chemicals may be adsorbed to soil particles or 

decomposed by microbes (Wu et al. 2001). 

The first objective of this research project was to evaluate the effect of crop residue 

extracts on the germination and germination parameters of wheat, barley and canola. The 

crop residue extracts were allelopathic in the absence of soil even after the residue had 

time to degrade over the summer months. The crop residue extracts of wheat, barley, 

canola, medics, oats and pea residue affected the germination percentage of barley and 

canola but did not affect the germination of wheat. Some residue types led to a reduction 

in germination percentage while other residue types slightly promoted germination (a 

mechanism called hormesis). The germination parameters such as coleoptile and radicle 

lengths, were generally affected more adversely compared to the germination 

percentages.  

The second objective aimed to distinguish between physical and allelopathic effects of 

wheat residue on early growth of wheat, barley and canola under controlled conditions. 

In the presence of soil, allelopathic effects became less pronounced, to such an extent 

that it was negligible, at least for the southern Cape area where only a single crop is 

planted on a specific area per year and the residue had time to degrade. Degraded 
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residue is less allelopathic compared to fresh residue (Purvis 1990). In the presence of 

large residue loads the subsequent crop may experience yield penalties (Bruce et al. 

2006). Planters can struggle to accurately place seeds in high residue loads and ensure 

good seed-to-soil contact which may also lead to yield penalties (Morris et al. 2010). 

Although the trial was conducted in a glasshouse, conditions in the field with no-tillage 

planters were mimicked. Crop residue was placed on top of the soil in the pots, ensuring 

accurate seed placement and good seed to soil contact. The wheat and barley did not 

suffer penalties even at 8000 kg ha-1 residue loads. The canola however had stunted 

early growth at large residue loads in comparison to other crops. The response of canola 

might be attributed to its small seeds not having sufficient energy reserves to penetrate a 

thick residue load and still have energy left to invest in early leaf formation. 

The third objective of the study was to evaluate the effect of different types of crop residue 

and two types of disc planters on crop production in the southern Cape of South Africa. 

The double disc planter cleaned the seed furrow more than the single disc planter. 

However, the single disc planter had better depth control. The double disc planter may 

reduce the physical effects of crop residue on the subsequent crop, but during our study 

the residue loads was not very high and as a result the physical effects may have been 

limited. The canola benefited from the better depth-control of the single disc planter which 

led to a higher plant population. The type of crop residue had an influence on the 

subsequent crop. Allelopathy likely played a negligible role in the field and physical effects 

was probably limited due to the low crop residue loads because of drought conditions. 

The effect that the crop residue has on the soil processes likely played the biggest role 

on the subsequent crop due to the climatic conditions when the study was conducted. In 

years where the crops yields are better, and the resulting crop residue load is higher, 

physical effects may play a bigger role on the subsequent crop.  

The fourth objective of this study was to determine the rate of decomposition of different 

crop residue types and the influence that micro-, meso- and macro fauna communities 

had on crop decomposition. Crop residue from legume species decomposed faster than 

the cereal crop residue, due to their low C:N ratio. Crops with a high C:N ratio decompose 

slowly and may cause nitrogen immobilisation especially if incorporated. Residue 

decomposition is promoted by the soil fauna groups. Soil fauna is known to fragment crop 

residue leading to quicker decomposition and subsequently nutrient cycling (Tian et al. 
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1992). Enhancing the cycling of nutrients may lead to reduced dependence on inorganic 

fertilizers. 

6.2 Limitations of the study 

During the trial in the controlled glasshouse experiment, the soil used was unfortunately 

prone to surface crusting. This complicated the results since the no residue treatment, 

which was included to implicate no physical effects from residue on the subsequent crop, 

experienced surface crusting due to the impact from the water droplets. The seedlings 

struggled to break though the crust; this may have been comparable to physical effects 

of a residue load. The pots where residue was applied experienced less surface crusting 

thus the physical effects from crop residue alone could not be entirely isolated. 

During the field trials, due to the drought conditions experienced in the field the residue 

loads was small which may have led to very limited physical effects from the crop residue 

on the subsequent crop. The residue loads in year one was rarely above 5000 kg ha-1 

and in the second year of the study the residue loads was even smaller. Previous 

research done indicated that crop residue loads above 5000 kg ha-1 may lead to negative 

physical effects on the following crop (Bruce et al. 2006). The crop biomass was 

determined by sampling 10 plants per plot. Towards the end of the season, it became 

difficult to distinguish between the individual wheat or barley plants due to the number of 

tillers they had formed. The biomass determined is therefore likely an overestimation of 

the actual biomass present. To be able to make a better comparison between the 

planters, the planting depth should have been measured as well as the force applied by 

the closing wheels.  

During the residue decomposition trial, the different residue types was not analysed for 

quality characteristics such as C:N ratio. The C:N ratio has a significant effect on the rate 

of residue decomposition and should be measured when a decomposition study is 

undertaken. 

6.3 Future research  

Relatively little research has been done examining the effect of crop residue on the 

subsequent crop, especially locally. Similar research is recommended to build up a data 

base on how certain crops react to different types of residue, taking the climate into 

account. Future research should aim to differentiate between the different effects of crop 
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residue such as physical, biochemical or soil chemical processes being influenced by 

crop residue. Hopefully, the benefits of residue retention can be retained while focusing 

on ways to mitigate any yields loses or poor early growth in large residue loads. 

The adoption of CA is rapid in South Africa, but producers are still sceptical about disc 

planters especially in very stony soil. Conversely, tine planters tend to get blocked easily 

in large residue loads. It is recommended that different types of planters are evaluated in 

depth in different crop residue loads and it’s important to quantify the accurate placement 

of seeds in high residue loads. It would be interesting to see what effect row cleaners in 

front of the planting unit will have and if it would eliminate physical effects on crops and 

improve the placement of seed due to the absence of residue. 

During the drought when the residue loads dropped from year one to year two the mineral 

N content in the soil also dropped. Following a drought year, it would have been better to 

apply more nitrogen fertiliser at topdressing. It would however be interesting to evaluate 

the mineral N content in the soil after a good cropping year. If nutrient cycling is sufficient 

the need for inorganic fertilisers may be very little. It remains relatively unclear how 

decomposer communities are impacted by herbicides, fungicides and nitrogen 

applications. Enough decomposers are needed to enable quick breakdown of the residue 

load before planting the next crop and is thus important to study the possible effect of 

synthetic inputs on decomposers should. 
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