
Methods of enhancing the MOO CEM algorithm

Veronique Tränkle

Thesis presented in partial fulfilment of the requirements for the

degree of Master of Engineering (Industrial) in the Faculty of

Engineering at Stellenbosch University

Supervisor: Prof JF Bekker

March 2021

Declaration

By submitting this thesis electronically, I declare that the entirety of

the work contained therein is my own, original work, that I am the

sole author thereof (save to the extent explicitly otherwise stated),

that reproduction and publication thereof by Stellenbosch University

will not infringe any third party rights and that I have not previously

in its entirety or in part submitted it for obtaining any qualification.

Date: March 2021

Copyright © 2021 Stellenbosch University

All rights reserved

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Optimisation refers to solving a problem as accurately as possible

while making the most effective use of the available resources. While

some problems may have a single best solution, problems with more

than one objective often do not have a single optimal solution. These

types of problems are known as multi-objective problems. Improving

the performance of multi-objective optimisation algorithms, both in

terms of accuracy and execution time, is an active topic of research,

with great emphasis being placed on computational efficiency.

The MOO CEM algorithm was developed as an alternative algorithm

to solve multi-objective optimisation problems accurately and effi-

ciently. However, the algorithm has a number of limitations. This

study explores methods to improve and enhance the existing MOO

CEM algorithm. These areas of improvement include: improving the

sampling method of the algorithm and enhancing the algorithm by

adding functionality to solve constrained problems and problems with

more than two objective functions.

Following a thorough literature study of appropriate techniques, two

methods of sampling improvement were identified: the Beta distri-

bution and the use of covariance of the decision variables. In terms

of solving constrained problems, two methods were evaluated: the

elimination method and the dynamic penalty method. The ENS-SS

algorithm was selected as the ranking and selection method, enabling

the algorithm to sort (and thereby solve) problems with more than

three objectives.

The proposed improved and enhanced algorithms were tested indi-

vidually on a number of benchmark problems. Pareto-compliant per-

formance indicators were used to evaluate the performance of the

ii

Stellenbosch University https://scholar.sun.ac.za

algorithms and, where possible, statistical tests were conducted to

compare the performances to that of the original MOO CEM algo-

rithm. It was observed that the use of the Beta distribution improved

the performance of the algorithm, while using covariance did not.

Adding the constraint and multi-dimensional ranking functionality

yielded positive results.

Following the outcome of the tests, a final algorithm was proposed,

incorporating the successful elements of the study. The final algo-

rithm is relatively simple to implement and improves and expands

the functionality of the original MOO CEM algorithm.

iii

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Optimering verwys na die oplossing van ’n probleem op die mees akku-

rate manier, terwyl die beskikbare hulpbronne so effektief moontlik

benut word. Vir sommige probleme mag daar dalk slegs een beste

oplossing wees, maar probleme met meer as een doelwit het dikwels

nie een optimale oplossing nie. Hierdie tipe probleme word meer-

doelige optimeringsprobleme genoem. Om die doeltreffendheid van

meerdoelige optimeringsalgoritmes ten opsigte van akkuraatheid en

uitvoeringstyd te verbeter, is ’n aktiewe studieveld waarin groot klem

geplaas word op berekeningsdoeltreffendheid.

Die MOO CEM-algoritme is as alternatiewe algoritme ontwikkel om

meerdoelige optimeringsprobleme op akkurater en effektiewer maniere

op te los. Hierdie algoritme het egter ’n aantal beperkings. Dié studie

ondersoek metodes om die bestaande MOO CEM-algoritme te ver-

beter en uit te brei. Die areas van verbetering sluit die volgende

in: verbetering van die steekproefnemingsmetodes en uitbreiding van

die algoritme met behulp van die byvoeging van funksionaliteit sodat

probleme met beperkings en probleme met meer as twee doelwitte ook

opgelos kan word.

Ná ’n deeglike literatuurstudie van toepaslike tegnieke, is twee metodes

ter verbetering van steekproefneming gëıdentifiseer: die Beta-verdeling

en die gebruik van kovariansie van die besluitnemingsveranderlikes.

Rakende die oplossing van probleme met beperkings is twee metodes

geëvalueer: die eliminasie- en die dinamiese boetemetode. Die ENS-SS-

algoritme is gekies as die rangordening-en-seleksiemetode, wat die al-

goritme in staat stel om probleme met meer as twee doelwitte op te

los.

iv

Stellenbosch University https://scholar.sun.ac.za

Die voorgestelde verbeterde en uitgebreide algoritmes is individueel

op ’n aantal maatstafprobleme, getoets. Gehalte-aanwysers wat aan

Pareto-standaarde voldoen, is gebruik om die doeltreffendheid van die

algoritmes te evalueer en statistiese toetse is, waar moontlik, uitgevoer

om die doeltreffendheid daarvan met dié van die oorspronklike MOO

CEM-algoritme te vergelyk. Daar is bevind dat die gebruik van die

Beta-verdeling die doeltreffendheid van die algoritme verbeter het.

Daarteenoor het die gebruik van kovariansie nie die doeltreffendheid

verbeter nie. Die byvoeging van beperkings- en multidimensionele

rangordefunksionaliteit het positiewe resultate gelewer.

Na aanleiding van die toetsresultate is ’n finale algoritme wat die

suksesvolle implementering van die elemente van die studie insluit,

voorgestel. Die finale algoritme is relatief eenvoudig om te imple-

menteer en verbeter die funksionaliteit van die oorspronklike MOO

CEM-algoritme.

v

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

Throughout the writing of this thesis I received a great deal of support

form the following individuals to whom I am eternally grateful:

� My husband, Nicholas Tränkle, for his unwavering love and sup-

port.

� My study leader, Professor James Bekker, for his guidance and

encouragement.

� My parents for the input and motivation they offered.

� Anne Erikson, for proofreading and making valuable suggestions.

� The leadership of Deloitte’s Cognitive Advantage team for grant-

ing me the time I required to complete this research.

� God, for giving me the patience and determination to complete

this study.

vi

Stellenbosch University https://scholar.sun.ac.za

Contents

Nomenclature xvii

1 Introduction 1

1.1 Project background . 1

1.2 Research assignment . 4

1.3 Research scope . 5

1.4 Research objectives . 5

1.5 Problem-solving methodology . 6

1.6 Deliverables envisaged . 8

1.7 Contributions . 9

1.8 Structure of the document . 10

1.9 Summary: Chapter 1 . 10

2 Literature study 12

2.1 Multi-objective optimisation and MOO CEM 12

2.1.1 Introduction to optimisation 12

2.1.2 Multi-objective optimisation 13

2.1.3 Cross-entropy method . 16

2.1.4 Multi-objective optimisation using the cross-entropy method 17

2.2 Beta distribution . 22

2.3 Covariance . 23

2.4 Constrained MOPs . 29

2.5 Non-dominated sorting algorithms 34

2.6 Performance indicators and standard problems 36

2.6.1 Performance indicators . 37

vii

Stellenbosch University https://scholar.sun.ac.za

CONTENTS

2.6.2 Standard problems . 41

2.7 Summary: Chapter 2 . 43

3 Algorithm development 44

3.1 Proposed MOO CEM-Beta algorithm 44

3.2 Proposed MOO CEM-Cov algorithm 46

3.3 Proposed MOO CEM-Constraint algorithm 48

3.3.1 Constraint method 1: Discarding solutions 49

3.3.2 Constraint method 2: Dynamic penalty 49

3.4 Proposed MOO CEM-ENS algorithm 51

3.5 Summary: Chapter 3 . 51

4 Testing of proposed enhanced algorithms 53

4.1 Test specifications . 53

4.1.1 MOO CEM-Beta and MOO CEM-Cov algorithms test spec-

ifications . 54

4.1.2 MOO CEM-Constraint and MOO CEM-ENS algorithms

test specifications . 56

4.1.3 General test specifications 57

4.2 MOO CEM-Beta performance evaluation 57

4.3 MOO CEM-Cov performance evaluation 63

4.4 MOO CEM-Constraint performance evaluation 66

4.5 MOO CEM-ENS performance evaluation 70

4.6 Summary: Chapter 4 . 72

5 Proposed enhanced MOO CEM algorithm 73

6 Research summary and conclusions 78

6.1 Project summary and conclusions 78

6.2 Future research . 82

6.3 Appraisal of research . 82

6.4 Concluding remarks . 83

References 87

viii

Stellenbosch University https://scholar.sun.ac.za

CONTENTS

A Performance indicator box-and-whisker plots 88

A.1 MOO CEM-Beta . 89

A.2 MOO CEM-Cov . 93

A.3 MOO CEM-Constraint . 95

A.4 MOO CEM-ENS . 96

B Matlab® code for the enhanced MOO CEM algorithm 98

ix

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 The engineering design process . 7

2.1 Pareto front (red squares) for a MOO problem where two objective

functions (f1 and f2) are to be minimised 14

2.2 A truncated normal distribution 21

2.3 The Beta distribution for different values of α and β 24

2.4 The left-hand graph shows two variables X and Y with a positive

covariance, the middle graph shows variables X and Y with a

negative covariance and the right-hand graph shows variables X

and Y with a covariance of approximately 0 25

2.5 The probability density functions of two decision variables (x and

y), each with their own normal distribution 26

2.6 The runtime of various non-dominated sorting algorithms for 500

solutions . 35

2.7 Hyperarea of a minimisation problem with two objectives (Pareto

front is indicated by red squares and the reference point in green) 40

4.1 Probability distribution plot for a right-tailed t-test with α = 0.05.

The tcrit value for this level of significance is 1.9625. The null

hypothesis is rejected when the test produces a t∗ of greater than

1.9625 . 56

4.2 MOO CEM and MOO CEM Beta Pareto sets compared to the

true Pareto set for test problems MOP1 and MOP2 62

4.3 MOO CEM and MOO CEM Beta Pareto sets compared to the

true Pareto set for test problems MOP3 and MOP4 62

x

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES

4.4 MOO CEM and MOO CEM Beta Pareto sets compared to the

true Pareto set for test problems MOP6 and ZDT1 63

4.5 MOO CEM and MOO CEM Beta Pareto sets compared to the

true Pareto set for test problems ZDT2 and ZDT3 63

4.6 MOO CEM and MOO CEM-Cov Pareto sets compared to the true

Pareto set for test problems MOP2 and MOP3 66

4.7 MOO CEM and MOO CEM-Cov Pareto sets compared to the true

Pareto set for test problem MOP4 and MOP6 66

4.8 MOO CEM-Constraint Pareto sets compared to the true Pareto

set for test problems MOP-C1 and MOP-C2 69

4.9 MOO CEM-Constraint Pareto sets compared to the true Pareto

set for test problem MOP-C4 . 69

4.10 MOO CEM-ENS Pareto sets compared to the true Pareto set for

test problems MOP5 and MOP7 71

4.11 MOO CEM-ENS Pareto sets compared to the true Pareto set for

test problem MOP-C3 . 72

A.1 MOP1 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 89

A.2 MOP2 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 89

A.3 MOP3 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 90

A.4 MOP4 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 90

A.5 MOP6 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 91

A.6 ZDT1 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 91

A.7 ZDT2 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 92

A.8 ZDT3 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Beta hyperarea 92

xi

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES

A.9 MOP2 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Cov hyperarea 93

A.10 MOP3 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Cov hyperarea 93

A.11 MOP4 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Cov hyperarea 94

A.12 MOP6 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Cov hyperarea 94

A.13 MOP-C1 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Constraint hyperarea 95

A.14 MOP-C2 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Constraint hyperarea 95

A.15 MOP-C4 box-whisker plot of the MOO CEM algorithm hyperarea

compared to MOO CEM-Constraint hyperarea 96

A.16 MOP5 box-whisker plot of the MOO CEM-ENS algorithm ε indicator 96

A.17 MOP7 box-whisker plot of the MOO CEM-ENS algorithm ε indicator 97

A.18 MOP-C3 box-whisker plot of the MOO CEM-ENS algorithm ε indicator 97

xii

Stellenbosch University https://scholar.sun.ac.za

List of Tables

2.1 MO-CMA-ES default parameters 28

2.2 Best and worst case time complexities of selected ranking algorithms 35

2.3 Pareto compliance of some performance indicators 39

2.4 Standard MOP test problems . 42

2.5 Standard constrained MOP test problems 43

4.1 MOO CEM and MOO CEM-Beta results on some standard bench-

mark problems . 59

4.2 One-tailed t-test results of MOO CEM compared MOO CEM-Beta

results on some standard benchmark problems 60

4.3 MOO CEM and MOO CEM-Cov results on some standard bench-

mark problems . 65

4.4 One-tailed t-test results of MOO CEM compared MOO CEM-Cov

results on some standard benchmark problems 65

4.5 MOO CEM-Constraint results on some standard constrained bench-

mark problems . 67

4.6 MOO CEM-ENS results on some standard benchmark problems

with more than two objectives . 70

xiii

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Acronyms

ACO Ant Colony Optimisation

BAP Buffer Allocation Problem

BOS Best Order Sort

BS Binary Search Strategy

CE Cross-entropy

CEM Cross-entropy Method

CMOEA Constrained Multi-objective Evolutionary Algorithm

CV Pareto front convergence indicator

EA Evolutionary Algorithms

ENS Efficient Non-dominated Sort

GA Genetic Algorithms

GD Generation Distance indicator

HA Hyperarea

HV Hypervolume

IGD Inverted Generational Distance

xiv

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE

LP Linear Programming

ME Maximum Pareto front Error indicator

MNDS Merge Non-dominated Sorting Algorithm for Many-Objective

Optimization

MO-CMA-ES Multi-objective Covariance Matrix Adaptation Evolution Strat-

egy

MOO Multi-objective Optimisation

MOO CEM Multi-objective Optimisation using the Cross-entropy Method

MOP Multi-objective Optimisation Problem

MPFE Maximum Pareto Front Error

NPGA Niched-Pareto Genetic Algorithm

NSDE Non-dominated Sorting Differential Evolution

NSGA Non-dominated Sorting Genetic Algorithm

ONVG Overall Non-dominated Vector Generation

OS Overall Pareto Spread

PAES Pareto Archived Evolution Strategy

PSO Particle Swarm Optimisation

SOO Single Objective Optimisation

SOP Single Objective Optimisation Problem

SP Pareto front spacing indicator

SPAD Seven Points Average Distance

SPEA Strength Pareto Evolutionary Algorithm

xv

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE

SS Sequential Search Strategy

TS Tabu Search

UD Uniform Distribution

VEGA Vector Evaluated Genetic Algorithm

Greek Symbols

α Beta distribution parameter

β Beta distribution parameter

δ Tolerance value

ε Common termination threshold

Γ Gamma function

λ Number of new candidate solutions samples

µ Mean of a distribution

φ Truncated normal distribution

ρ Rank value of multi-objective solution vector

ρE MOO CEM algorithm ranking threshold

σ Standard deviation of a distribution

Σ Covariance matrix

τij MOO CEM histogram frequency count, decision variable i, class

j

Roman Symbols

csucc Learning rate

cj j−th constraint

xvi

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE

cjmax Maximum possible violation of the j−th constraint

di Distance measure

E(x) Expected value of x

fi Objective function

f̃i Normalised objective function

f imax Maximum value of objective function fi

f imin Minimum value of objective function fi

g Equality constraint

h Inequality constraint

H0 Null hypothesis

I Identity matrix

Ih Hypervolume indicator

j Total number of equalities and inequalities

k Number of objective functions

n Number of decision variables

N Population size for population-based algorithms

pi Adaptive penalty

psucc Success rate

rf Ratio of feasible solutions to the population size

s Reorder level

S Reorder quantity

v(x) Constraint violation

N Multi-variate normal distribution

xvii

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

This chapter serves as an introduction to the research presented in this thesis.

Background pertaining to this research is briefly discussed, followed by the formal

statement of the research assignment. Subsequently, the scope of the research,

objectives, methodology, deliverables and contributions are addressed. Finally,

the structure of the document is outlined.

1.1 Project background

In recent times, increasing emphasis is being placed on optimisation. Due to

time and financial restrictions, problems must be solved and decisions made as

quickly as possible with as little resources as possible. Banks are reliant on real-

time predictive models when clients apply for loans, credit card fraud must be

identified as it occurs, self-driving cars must identify objects and react to them

without delay and pacemakers must monitor heartbeat and respond immediately

in order to prevent tragedy. These problems can be considered optimisation

problems.

When solving these problems, a number of goals (or objectives) and restric-

tions must be taken into account. When a single best solution does not exist, a

good solution must be selected from a number of good solutions. Given time and

monetary restrictions, not all solutions to a problem can be considered. A good

decision must be made in the shortest possible time, making the most effective

use of the available resources.

1

Stellenbosch University https://scholar.sun.ac.za

1.1 Project background

Two types of optimisation problems exist: single objective optimisation (SOO)

and multi-objective optimisation (MOO). Single objective optimisation refers to

a problem with one single requirement. The goal of single objective optimisation

is to find the single best solution to the problem (or objective function). On the

other hand, a multi-objective optimisation problem is a problem which requires

taking into account more than one requirement (or multiple objective functions)

and making trade-offs between conflicting requirements. In many cases, no single

optimal solution exists for this type of problem, but rather a set of good solu-

tions termed the Pareto-optimal solution set. By considering the solutions in the

Pareto set, an informed decision can be made when selecting the ‘best’ solution

(Savic, 2002).

A MOO problem (MOP) can be mathematically formulated as (Fan et al.,

2019)

Minimise or Maximise

f(x) = fi(x1, x2, . . . , xn), i = 1, . . . , k (1.1)

subject to

gj(x) >= 0, j = 1, . . . , q (1.2)

and

hl(x) = 0, l = 1, . . . , p (1.3)

with

x ∈ Rn,

where fi represents the k objective functions to be minimised or maximised,

gj(x) >= 0 are the q inequality constraints and hl(x) = 0 are the p equality

constraints.

MOO is an active field of research. Many SOO algorithms have been ex-

tended to solve MOO problems using a variety of techniques. One such algorithm

is the multi-objective optimisation using the cross-entropy method (MOO CEM)

2

Stellenbosch University https://scholar.sun.ac.za

1.1 Project background

algorithm developed by Bekker (2012). In his dissertation, Bekker applies the

cross-entropy method to multi-objective optimisation of dynamic stochastic sys-

tems to develop the MOO CEM algorithm. Initially, the algorithm is tested on a

number of deterministic and continuous benchmark problems, on which the algo-

rithm performs satisfactorily. The MOO CEM algorithm is then applied to more

stringent dynamic, stochastic problems, including the buffer allocation problem

(BAP) and variants thereof, as well as a number of practical problems. The per-

formance of the algorithm is first tested using four Pareto non-compliant quality

indicators. Bekker then continues to test the performance of the MOO CEM al-

gorithm against two commercial packages: Matlab® MOO GA and OptQuest®.

It was found that MOO CEM outperforms the Matlab® MOO GA algorithm.

Compared to OptQuest®, the MOO CEM algorithm performed better for certain

problems, while the performance of OptQuest® was superior for others. The com-

parison between the performance of the MOO CEM algorithm and OptQuest®

is, thus, inconclusive.

In his dissertation, Bekker (2012) lists the assumptions made in the design, as

well as the limitations of the algorithm. Some of these assumptions may influence

the performance of the algorithm.

One such assumption is that the decision sets are independent. However, this

may not necessarily be the case. A correlation could exist between the decision

sets, which influences the way in which sampling is done. Bekker (2012) suggests

that further research be done on the improvement of the search efficiency of the

MOO CEM algorithm. He specifically recommends that a covariance structure

similar to the structure used in the multi-objective covariance matrix adaptation

evolution strategy (MO-CMA-ES) by Igel et al. (2007) be considered. By simul-

taneously considering both sets as well as the covariance between sets, sampling

could potentially be improved.

Another assumption made in the MOO CEM algorithm design is that the

truncated normal distribution is the most suitable distribution to be used for

sampling. The problem with using a truncated normal distribution is the po-

tential loss of good samples, and therefore, solutions. In order to solve this,

a different type of distribution could be used instead of the truncated normal

distribution. This would include samples on the extremes of the distribution

3

Stellenbosch University https://scholar.sun.ac.za

1.2 Research assignment

(Burkardt, 2014), which could improve sampling and, ultimately, the quality of

the solutions contained in the Pareto-optimal set.

A limitation of the MOO CEM algorithm is the inability to accommodate

problems with side-constraints. These types of problems differ from the stan-

dard multiple objective optimisation problems in that they contain additional

complexity in the form of the limitations placed on decision variables (Woldesen-

bet et al., 2007). In addition to standard constraints (e.g. the limitation of xi

such that gi ≥ 0), (1.2) and (1.3) could include complex relationships between

decision variables, interference among constraints and interrelationships between

constraints and objective functions (Woldesenbet et al., 2007).

A second limitation of the MOO CEM algorithm is that it cannot solve prob-

lems with more than two objective functions. This is due to the ranking method

used, i.e. the Goldberg method. By using a different ranking method, the algo-

rithm could be extended to solve problems in N -dimensional space.

Considering the assumptions and limitations highlighted above, it is hypoth-

esised that the MOO CEM algorithm could be enhanced. This research explores

the possibility of developing a more efficient MOO CEM algorithm with an ex-

tended scope which will allow it to solve additional classes of problems. The

research hypothesis, based on these assumptions and limitations, is presented in

the next section.

1.2 Research assignment

MOO is an active field of research. Many researchers are attempting to im-

prove simulation optimisation in terms of computational burden and time (and

by implication, cost). In his dissertation, Bekker (2012) successfully applies the

cross-entropy method to multi-objective optimisation of dynamic stochastic sys-

tems to reduce computational burden. In his thesis, Bekker (2012) suggests that

in future work the MOO CEM algorithm could be enhanced. He suggests that

the algorithm could be improved by considering covariance: “the correlation of

solution sets should be investigated to improve search efficiency of the MOO CEM

algorithm. A covariance structure similar to that of the MO-CMA-ES reported

4

Stellenbosch University https://scholar.sun.ac.za

1.3 Research scope

by Igel et al. (2007) may be considered”. Bekker (2012) also advises that the ca-

pabilities of the MOO CEM algorithm should be extended to cater for problems

with more than two objectives: “All the objectives in this research were limited

to two objectives, but the MOO CEM algorithm should be assessed with respect

to problems of higher objective dimensions”.

The aim of this research is to enhance the MOO CEM algorithm by improving

its efficiency and extending the functionality of the algorithm. By doing so,

the search efficiency of the algorithm could be improved and the scope of the

algorithm could be extended to solve additional types of problems.

The research assignment can thus be summarised as

Enhance the MOO CEM algorithm by improving the sampling method and ex-
tend the functionality of the algorithm to solve a wider range of problem types.

1.3 Research scope

The research will focus only on MOO and MOO CEM, not SOO. The two methods

of improving the algorithm suggested by Bekker (2012), the MOO CEM algorithm

developer, in his dissertation will be considered, as well as two additional methods

of enhancement and improvement. These four methods are described in detail in

the next section.

In order to quantify the improvement of the algorithm, the Pareto-compliant

performance indicators produced by the new algorithm will be compared to that of

the original MOO CEM algorithm for a set of benchmark problems. To determine

whether the functionality of the algorithm has been extended successfully, Pareto-

compliant performance indicators will be utilised.

The enhanced algorithm will not be compared to existing MOO algorithms

other than MOO CEM, as the original MOO CEM algorithm was compared to

other algorithms in Bekker (2012)’s dissertation.

1.4 Research objectives

Considering the research assignment, the research project has the following ob-

jectives:

5

Stellenbosch University https://scholar.sun.ac.za

1.5 Problem-solving methodology

1. Determine whether the sampling method of the MOO CEM algorithm can

be improved by using the Beta distribution, rather than a truncated normal

distribution. If the Beta distribution can be used to improve the sampling

method, develop an improved MOO CEM algorithm which utilises the Beta

distribution and compare the new algorithm to the original MOO CEM

algorithm for a number of benchmark problems.

2. Determine if the sampling method of the MOO CEM algorithm can be

improved by considering the covariance of the solution sets (in a similar

manner to MO-CMA-ES). If covariance can be used to improve the sam-

pling method, develop an improved MOO CEM algorithm which utilises

covariance and compare the new algorithm to the original MOO CEM al-

gorithm for a number of benchmark problems.

3. Extend the capability of the existing MOO CEM algorithm to include func-

tionality to solve side-constrained problems and compare the results of the

new algorithm to the true Pareto set for a number of benchmark problems.

4. Extend the scope of the current MOO CEM algorithm to include function-

ality to solve problems with more than two objectives and compare the

results of the new algorithm to the true Pareto set for a number of bench-

mark problems.

1.5 Problem-solving methodology

In order to meet the objectives outlined in the previous section, this research

project will follow a modified engineering design process depicted in Figure 1.1

(?). The engineering design process is used to structure ideas and refine solutions

to engineering problems. With slight modification, this process can be applied to

algorithm development in this research project.

6

Stellenbosch University https://scholar.sun.ac.za

1.5 Problem-solving methodology

Figure 1.1: The Engineering Design Process (?)

The first step of the engineering design process is Ask. This step requires

defining the research problem in detail, as well as the requirements and limita-

tions. This research project aims to enhance the MOO CEM algorithm, limited

to the four enhancement methods listed in the previous section.

The second step in the process is Research. MOO and specifically the MOO

CEM algorithm will be researched extensively in Chapter 2. The four enhance-

ment methods will also be investigated.

Next, one must Imagine the possible solutions. This refers specifically to

7

Stellenbosch University https://scholar.sun.ac.za

1.6 Deliverables envisaged

the four enhancements which will be applied to the MOO CEM algorithm and

methods of doing so highlighted in the Research step.

Plan is the fourth step in the process. Upon identifying possible methods of

creating the enhancements to the algorithm, the most promising methods must

be selected.

The fifth step is Create. This refers to the implementation of the selected

methods in the existing MOO CEM algorithm. Following the review of the MOO

CEM algorithm and possible improvement and enhancement methods, four algo-

rithms corresponding to these methods are proposed in Chapter 3.

Next, the developed algorithm must be evaluated in the Test step. For the

two sampling improvement enhancements, the results of the new algorithm will

be compared to the results generated by the original MOO CEM algorithm for a

set of benchmark problems. For the two enhancement methods which extend the

scope of the algorithm, the algorithm will be tested on standard problems and

compared to the true Pareto set. The specifications of the tests and test results

are presented in Chapter 4.

Improve is the last step in the process. If the new algorithm does not show

significant improvement over the existing algorithm, the reason for this should be

investigated and improved where possible.

This process will be followed for each of the four enhancement methods. The

engineering design process is iterative and can be conducted multiple times until

satisfactory improvement is observed.

1.6 Deliverables envisaged

The following items will be delivered as part of this research project:

1. A recommendation will be made on whether the Beta distribution can be

used to improve sampling of the MOO CEM algorithm. If the sampling

method can in fact be improved using the Beta distribution, a new op-

timisation algorithm will have been developed and a comparison between

the new algorithm and the original MOO CEM algorithm will have been

8

Stellenbosch University https://scholar.sun.ac.za

1.7 Contributions

done to determine the difference in performance for a number of benchmark

problems.

2. A recommendation will be made on whether the covariance of solution sets

can be used to improve sampling of the MOO CEM algorithm. If sampling

can in fact be improved using covariance, a new optimisation algorithm

will have been developed and a comparison between the new algorithm and

the original MOO CEM algorithm will have been done to determine the

difference in performance for a number of benchmark problems.

3. An enhanced MOO CEM algorithm with the extended capability to cater

for problems with side-constraints will have been developed. A comparison

between the elite set produced by the algorithm and the true Pareto set

will also have been conducted.

4. An enhanced MOO CEM algorithm with the extended capability to cater for

problems with more than two objective functions will have been developed.

A comparison between the result set produced by the algorithm and the

true Pareto set will also have been conducted.

1.7 Contributions

The primary value of this research lies in the improvement of the performance and

enhancement of the capabilities of the MOO CEM algorithm. This could benefit

the academic community and those using the current MOO CEM algorithm to

solve MOO problems.

If it is found that the performance of the MOO CEM algorithm can be im-

proved, the quality of the solutions generated could be increased. Additional

benefits could include the reduction in required computational resources, run-

time and, therefore, cost. By enhancing the capabilities of the algorithm, re-

searchers will be enabled to solve problems which could not previously be solved

by the MOO CEM algorithm. These types of problems include problems with

side-constraints and problems with more than two objective functions.

9

Stellenbosch University https://scholar.sun.ac.za

1.8 Structure of the document

1.8 Structure of the document

The structure of this thesis document is as follows:

Chapter 2 will present a high level literature review on MOO. It will focus

specifically on how the cross-entropy method has been applied to improve MOO

problems and the MOO CEM algorithm. It will also explore the four methods of

enhancement listed in Section 1.4 and consider different techniques of implemen-

tation. The MOO CEM component of this chapter is centred around previous

research completed by Bekker (2012).

Upon completion of the literature study, four enhanced MOO CEM algorithms

will be presented in Chapter 3.

In Chapter 4 the algorithms developed in Chapter 3 will be applied to a num-

ber of benchmark problems. The performance of the algorithm will be analysed.

For the two sampling improvement methods, performance of the algorithm will

be compared to that of the original MOO CEM algorithm when applied to the

benchmark problems. For the two enhancement methods, a comparison between

the algorithm results and the true Pareto set will be presented. The results in

this chapter will be used to determine which of the sampling methods improved

sampling of the MOO CEM algorithm and whether the functionality of the MOO

CEM algorithm was extended successfully.

Considering the results produced in Chapter 4, Chapter 5 will propose a final

algorithm, incorporating the successful enhancement methods.

Chapter 6 will serve as the conclusion to the research project. It will review

the viability of using the four suggested methods to improve and enhance the

MOO CEM algorithm.

1.9 Summary: Chapter 1

This chapter has served as an introduction to the outline research problem. It

described the objectives that will be met in order to achieve the overall goal of

the project: to enhance the MOO CEM algorithm through four specific methods.

The results of this research could benefit the research community and those

using the current MOO CEM algorithm in terms of the quality of the solution

10

Stellenbosch University https://scholar.sun.ac.za

1.9 Summary: Chapter 1

sets, required computational power, time and cost, and will give users the ability

to apply the algorithm to additional classes of problems.

A literature study of MOO, specifically focused on MOO CEM, the four en-

hancement methods and benchmark problems, is presented next.

11

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature study

In the previous chapter, the concept of optimisation was introduced, and the scope

and objectives of this research project were defined. The problem-solving method-

ology followed was described and the structure of this document was outlined.

This chapter serves as an introduction to optimisation, with specific focus on

multi-objective optimisation (MOO) and multi-objective optimisation using the

cross-entropy method (MOO CEM) algorithm. It also explores the four suggested

types of enhancements to the MOO CEM algorithm as outlined in Section 1.4:

the Beta distribution, covariance, constraint handling and non-dominated sorting.

Finally, some of the methods of algorithm evaluation and standard benchmark

problems which will be used to evaluate the proposed algorithms are listed.

2.1 Multi-objective optimisation and MOO CEM

In this section an introduction to optimisation and the MOO CEM algorithm are

presented.

2.1.1 Introduction to optimisation

Optimisation is the art of solving a problem in such a way that the best solution

is selected using the available resources in the most effective manner possible

(Astolfi, 2006). It is a problem which dates back thousands of years - from select-

ing a cave which provides protection while offering a good view of the immediate

12

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

surroundings, to the optimal number of livestock to keep, given the available land

and resources.

The first formal optimisation techniques were developed by Sir Isaac Newton

(1660) and Gottfried Wilhelm von Leibniz (1670) with their study of differential

equations (Theodossiou et al., 2014). In 1939 Linear Programming (LP), the

concept on which combinatorial optimisation is built, was formulated by Leonid

Kantorovich. Then in 1947 both the Simplex Method and the Theory of Du-

ality were published by George Dantzig and Johan von Neumann respectively

(Wang, 2018). Based upon these theories, many optimisation techniques were

developed, including gradient-based methods (such as the Golden Section search,

the Fibonacci search, Karush-Kuhn-Tucker Conditions and Newton’s method),

and Evolutionary Algorithms (EA) (such as the Genetic Algorithm (GA), Parti-

cle Swarm Optimisation (PSO), Tabu Search (TS) and Ant Colony Optimisation

(ACO)) (Venter, 2010).

The optimisation of a problem with a single goal (or objective) is termed single

objective optimisation (SOO). Identifying the best solution to a SOO problem

(SOP) is generally simpler than identifying the best solution to a MOO problem,

as one best solution normally exists for SOO problems, while this is often not the

case for MOO problems.

2.1.2 Multi-objective optimisation

Real-world scenarios often require multiple goals to be met; goals which are fre-

quently contradictory (Savic, 2002). For example, when designing a vehicle, the

material cost must be minimised, while reliability and safety are maximised.

These types of problems are known as multi-objective optimisation problems

(MOP). When solving an MOP, generally, no single best solution exists. Instead,

a set of good solutions are selected, known as the Pareto-optimal solution set

(Quiza Sardiñas et al., 2006).

Figure 2.1 shows a sample dataset evaluated at two objective functions (f1 and

f2). In this instance, the MOP has two objective functions and both functions

are to be minimised. The red square data points indicate the Pareto front (while

other data points which do not form part of the Pareto front are indicated in blue):

13

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

the best solutions when both objective functions are evaluated simultaneously.

These solutions are known as the Pareto-optimal solution set according to the

principle of Pareto Dominance. Pareto Dominance is defined as

a � b (a dominates b) iff f(a) > f(b)

a � b (a weakly dominates b) iff f(a) ≥ f(b)

a ∼ b (a is indifferent to b) iff f(a) � f(b) ∧ f(b) � f(a)

where a and b are two decision vectors (Zitzler, 1999).

If decision vector a is found to dominate b, a is a non-dominated solution

vector. This implies that a is optimal and cannot be improved in one objective

without worsening the solution in at least one other objective. These solutions

are denoted as Pareto optimal (Zitzler, 1999).

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

f1

f 2

Figure 2.1: Pareto front (red squares) for a MOO problem where two objective
functions (f1 and f2) are to be minimised

An MOP is defined by (1.1) - (1.3). A MOO algorithm finds a set of good

solutions (Pareto solution set) to the k objective functions (by minimising or

maximising the functions) represented by (1.1) in terms of the n decision vari-

ables, while complying with the q inequality constraints in (1.2) and p equality

14

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

constraints in (1.3). The n decision variables are defined on a decision space with

lower and upper bounds.

An unconstrained problem is defined using only objective functions and has no

equality or inequality constraints. Constrained problems are subject to equality

and/or inequality constraints and may include side-constraints. Side-constraints

add an additional level of complexity to constrained and unconstrained problems.

Side-constraints are normally considered separately from equality and inequality

constraints (Venter, 2010). Side-constraints will be discussed in more detail in

Section 2.4.

Since the 1950s a variety of approaches have been developed to solve MOPs.

Today many mathematical programming techniques exist which can be used to

solve MOPs. However, these techniques are limited by, amongst other things,

the shape of the Pareto front, and the differentiability of the objective functions

and constraints. Another disadvantage of some of these techniques is that most

algorithms generate a single solution after each run, requiring several runs with

different starting points to generate an acceptable Pareto-optimal solution set

(Coello, 2006).

Due to the limitations of mathematical programming, other approaches and

techniques have been explored to solve MOPs - one of the most popular be-

ing evolutionary algorithms (EA). Evolutionary algorithms are not influenced by

the shape of the Pareto front, or the differentiability of the objective functions.

EAs also have the ability to consider an entire population simultaneously, rather

than single solutions, which allows for numerous Pareto-optimal solutions to be

generated after each run. Some popular EA algorithms include the Vector Eval-

uated Genetic Algorithm (VEGA), developed by David Schaffer in the 1980s,

the Non-dominated Sorting Genetic Algorithm (NSGA) developed by Srinivas

and Deb, NSGA-II and NSGA-III, Niched-Pareto Genetic Algorithm (NPGA),

Multi-Objective Genetic Algorithm (MOGA), Strength Pareto Evolutionary Al-

gorithm (SPEA) and SPEA2 and Pareto Archived Evolution Strategy (PAES)

(Coello, 2006).

Another recently developed MOO algorithm leverages the benefits of the cross-

entropy method and applies it to the field of multi-objective optimisation. The

15

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

MOO CEM algorithm was developed by Bekker (2012). It was applied to a

number of benchmark problems, as well as a range of industry-specific problems.

2.1.3 Cross-entropy method

The cross-entropy method (CEM) was developed by Rubinstein & Kroese (2004)

and is based on the Kullback-Leibler or cross-entropy (CE) distance. This adap-

tive importance sampling algorithm was first used to estimate the probability

of rare events. It was then extended to combinatorial optimisation problems by

utilising the cross-entropy divergence as a measure of closeness between two dis-

tributions. In essence, a very small probability (rare-event) exists of finding an

optimal solution through naive, random sampling. By using the cross-entropy

method, the distributions from which the points are sampled can be adjusted,

so the probability of the rare event occurring is increased. Over time, the sam-

pling distribution converges to a distribution concentrated around optimal (or

near-optimal) solutions (Rubinstein & Kroese, 2004).

The cross-entropy method is iterative, with each iteration consisting of two

distinct parts (Rubinstein & Kroese, 2004):

1. Generate a random data sample according to a specified mechanism.

2. Update the parameters of the random mechanism based on the data to

produce a better sample in the next generation.

Based on these two iterative steps, Algorithm 1 shows the main cross-entropy

algorithm for continuous optimisation.

Algorithm 1 Cross-entropy Algorithm for continuous optimisation

1: Choose some v̂0 for the density h(·; v). Set t = 1.
2: Generate a sample X1, . . . ,XN from the density h(·; v̂t−1) and compute the

(1− %)-quantile γ̂t of the performances according to (2.1).
3: Use the sample X1, . . . ,XN and solve the stochastic program in (2.2). This

solution is vt.
4: Smooth the vector vt using the expression in (2.3).
5: If, for some t ≥ δ, say δ = 5, γ̂t = γ̂t−1 = · · · = γ̂δ then stop, otherwise set
t← t+ 1 and return to Step 2.

16

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

v represents a reference parameter vector and γ is the cross-entropy optimi-

sation rare-event threshold value. X is a random vector (X1, . . . , Xn) and γt is

updated adaptively according to

γ̂t = f([(1−%)N]), (2.1)

where % is the user-specified rare-event threshold value and is typically chosen to

be 10−2.

vt is calculated by solving the stochastic program

max
v
D̂(v) = max

v

1

N

N∑
i=1

I{f(X≥γ̂t)} lnh(Xi; v). (2.2)

The parameter vector v is smoothed using the smoothing function

v̂t = ωṽt + (1− ω)v̂t−1. (2.3)

where ω is a smoothing constant in the range 0− 1 (typically 0.6− 0.9).

2.1.4 Multi-objective optimisation using the cross-entropy

method

In his dissertation, Bekker (2012) starts by applying the cross-entropy method to

four continuous SOO benchmark problems, namely De Jong’s first function, the

Rosenbrock function, the Shekel function and the Rastrigin function. Promising

results were achieved, with the largest number of iterations to solve each of the

four problems being a mere 4 000 iterations.

Given the results of the algorithm, Bekker (2012) then extended the applica-

tion of the cross-entropy method to multi-objective optimisation to develop the

MOO CEM algorithm described by Algorithm 2.

17

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

Algorithm 2 MOO CEM Algorithm

1: Set Elite = ∅, t = 1, k = 1.
2: Initialise variable vectors Xi = ∅, 1 ≤ i ≤ D, and compute initial objective

values.
3: For each decision variable xi, 1 ≤ i ≤ D initialise a histogram class vec-

tor Ci = {ci1, ci2, . . . , ci(r+2), ci(r+2)+1} and histogram frequency vector Ri =
{τi1, τi2, . . . , τi(r+1), τi(r+2)}.

4: Set i = 1.
5: Set κ = 0.
6: Increment κ.
7: for each frequency element τiκ in Ri do
8: Generate a class-based ṽ′ in the range [ciκ ci(κ+1))
9: Generate a subsample Y according to pdf φi(xi ṽ’)
10: with xiε[ciκ, ci(κ+1)) and |Y| = τiκ, 1 ≤ κ ≤ r + 2 .
11: Append Y to Xi.
12: end for
13: If κ < r + 2 , return to Step 6.
14: Invert the histogram counts with probability ph.
15: Increment i.
16: If i ≤ D, return to Step 5.
17: Compute the NK objective function values using Xi, 1 ≤ i ≤ D
18: Rank the objective function values using the Pareto ranking of Algorithm 3

with a relaxed ρE = 2 to obtain an updated elite vector Elite.
19: Form new histogram class vectors Ci and histogram frequency vectors Ri

based on Elite , 1 ≤ i ≤ D.
20: Use the values in Elite and compute ṽ′ for all i, 1 ≤ i ≤ D.
21: Smooth the vectors ṽ′ for all i, 1 ≤ i ≤ D, using (2.3).
22: If all σit > εc or less than the allowable number of evaluations have been

done, increment t and reiterate from Step 4.
23: Rank the elite vector Elite using the Pareto ranking of Algorithm 3 with

ρE = 1.
24: Increment k.
25: If k is smaller than the allowable number of loops, return to Step 2.
26: Rank the elite vector Elite using the Pareto ranking of Bekker Algorithm 3

with ρE = 0 to obtain the final elite vector.

where εc is a common threshold (a small number) implying that if a value

does not change by an amount greater than this threshold εc, the algorithm has

reached steady-state and further iterations would most likely not improve the

18

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

solution. D represents the number of decision variables and K is the number of

objectives. N is the number of solutions.

The MOO CEM algorithm uses the Goldberg (1989) Pareto ranking algorithm

(outlined in Algorithm 3) as a means of finding the set of best solutions, or Pareto

set, shown in Figure 2.1. The implementation of the Goldberg (1989) method is

discussed in more detail in Section 2.5.

Algorithm 3 Pareto ranking algorithm (minimisation) implemented in MOO
CEM
1: Input: working matrix W with N rows and D + K + 1 columns, and user-

selected threshold ρE.
2: j ← D + 1.
3: Sort the working matrix W with the values in column j in descending order.
4: rp ← 1.
5: rq ← 1.
6: If W(rp, j+1) ≥W(rq +1, j+1), increment the rank value ρrp in W(rp, D+
K + 1).

7: rq ← rq + 1.
8: If W(rp, D +K + 1) < ρE and rq < N , return to Step 6.
9: rp ← rp + 1.
10: If rp < N , return to Step 5.
11: j ← j + 1
12: If j < D+K−1, return to Step 3, otherwise return the rows in W with rank

value not exceeding ρE as the weakly or non-dominated vector Elite.

ρE represents the number of the Pareto set with 0 being the set of optimal

solutions, and therefore, the first Pareto front. ρE = 1 represents the second

Pareto front, with the set of second-best solutions.

The MOO CEM algorithm was then tested on a number of benchmark prob-

lems (which are discussed in detail in Section 2.6). The maximum number of

evaluations was limited to 10 000, which is far less than the number of evalu-

ations required by other MOO algorithms, such as the algorithm developed by

Zitzler (1999) which required 25 000 evaluations. The results showed that the

MOO CEM algorithm could achieve proximity to the true Pareto front, while

maintaining diversity.

Considering the positive results, the algorithm was applied to various real-

world problems: an inventory problem, the buffer allocation problem (BAP), an

19

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

extrusion equipment design problem and a CO gas management problem. The

performance of the algorithm was then compared to Matlab®’s commercial MOO

genetic algorithm (GA) which is based on the NSGA-II algorithm. Four quality

indicators were used: Pareto front spacing indicator (SP), Generation Distance

indicator (GD), Maximum Pareto front error indicator (ME) and Pareto front

convergence indicator (CV). The hyperarea and epsilon indicator were calculated

and a two-tailed t-test was performed to determine if there was a statistically

significant difference between the results produced by the MOO CEM algorithm

and those of the MOO GA algorithm. The algorithm which produces the larger

hyperarea and smaller epsilon indicator is considered the best algorithm. For 7

of the 8 test problems, the MOO CEM proved to be superior to the MOO GA

algorithm (one test problem produced inconclusive results). The MOO CEM

algorithm also required fewer evaluations than the MOO GA algorithm. Finally,

the MOO CEM algorithm was compared to the commercial OptQuest®for two

test problems: a BAP and an inventory problem. The MOO CEM algorithm

produced better results for the inventory problem, but the OptQuest®algorithm

achieved better results for the BAP, concluding that additional tests would be

required to compare the algorithms, as the results were inconclusive (Bekker,

2012).

As recommendations for future work, Bekker (2012) suggests, amongst others,

the following areas:

1. Considering a different distribution to the truncated normal distribution to

improve search efficiency or sampling.

2. Investigating the correlation of solution sets to improve search efficiency.

3. Applying the MOO CEM algorithm to constrained problems.

4. Applying the MOO CEM algorithm to problems with more than two ob-

jectives.

The MOO CEM algorithm uses truncated normal distributions (an example

of a truncated normal distribution is shown in Figure 2.2) to sample solutions.

This type of distribution runs the risk of omitting good solutions located on the

20

Stellenbosch University https://scholar.sun.ac.za

2.1 Multi-objective optimisation and MOO CEM

edges of the distribution. It is hypothesised that a different type of distribu-

tion, which would include the solutions located at the edges, would improve the

search efficiency of the algorithm as well as the quality of the final solution set.

Appropriate distributions are considered in the subsequent section.

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

Figure 2.2: A truncated normal distribution

The MOO CEM algorithm makes the assumption that no relationship exists

between the solution sets of the decision variables. If it is found that a correlation

does in fact exist between them, this property could be leveraging to improve the

search efficiency of the algorithm. Bekker (2012) refers specifically to the MO-

CMA-ES developed by Igel et al. (2007). The concept of covariance and the work

by Igel et al. (2007) are analysed in Section 2.3.

Currently, the MOO CEM algorithm is not able to solve problems with side-

constraints. By adding the functionality to handle side-constraints, the algorithm

could be applied to this class of problems. Methods of solving side-constraint

problems are explored in Section 2.4.

In order to rank and evaluate the sampled solutions, the MOO CEM algorithm

uses the Goldberg (1989) Pareto algorithm (Algorithm (3)). This algorithm was

implemented in such a manner that it limits the maximum number of objectives

to two. The algorithm has a high complexity (O(KN2)) making it extremely

computationally expensive and inefficient in terms of runtime for problems with

21

Stellenbosch University https://scholar.sun.ac.za

2.2 Beta distribution

a higher number of objectives than two. Appropriate non-dominated sorting

algorithms which are less computationally intensive are explored in Section 2.5.

2.2 Beta distribution

Many different probability distributions exist, some of the most widely-used in-

clude: the Gaussian (or normal) distribution and modified versions thereof, such

as the truncated normal distribution used by the original MOO CEM algorithm,

uniform distribution, chi-square distribution, binomial distribution, Poisson dis-

tribution and Beta distribution.

The Beta distribution is extremely versatile and can approximate many other

distributions using only two parameters: α and β. These two parameters specify

whether the distribution is symmetrical and whether the distribution’s mode

falls within the range of the distribution. The Beta distribution is continuous

and defined over the interval (0, 1) (Bury, 2012).

The Beta probability density function is mathematically defined as (Bury,

2012)

Beta(α, β) : prob(x|α, β) =
xα−1(1− x)β−1

B(α, β)
, (2.4)

where α and β are positive and real and B is the function

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (2.5)

Γ in (2.5) refers to the Γ function, which is defined as

Γ(x) = (x− 1)!, (2.6)

for any positive integer x. The Γ function is extended to any real number

such that

Γ(x) =

∫ ∞
0

tx−1 exp−t dt. (2.7)

22

Stellenbosch University https://scholar.sun.ac.za

2.3 Covariance

It is evident that the Beta distribution is relatively computationally inexpen-

sive, if α and β are positive integers. This is as a result of the definition of

the Gamma function. When α and β are non-integer, evaluating the Gamma

function becomes considerably more computationally expensive.

The expected value of a Beta distributed variable is defined as

E(x) = µ =
α

α + β
, (2.8)

and the variance as

var(x) =
αβ

(α + β)2(α + β) + 1
. (2.9)

Figure 2.3 shows the Beta distribution for different values of α and β. When α

and β are both equal to 1, the distribution approximates a uniform distribution

(black). When α and β are equal and α + β is large enough, the distribution

approximates a normal distribution (red). When α is greater than β, the distri-

bution is skewed to the right (purple) and vice versa. When α and β are between

0 and 1, the distribution resembles a U-shaped distribution where the outcomes

are most likely to occur at the extremes of the range (blue). When α is less than

1 and β is greater than 1, the distribution resembles an exponential distribution

(yellow). The range of the Beta distribution can be extended from (0,1) to any

range by means of a multiplication factor, making it suitable to problems of any

range.

2.3 Covariance

Variance is the measure of a variable’s variability. Covariance is the measure

of the joint variability of two random variables and provides an indication of

the relationship between the variables. A positive covariance indicates that an

increase in one variable will result in an increase in the other, as shown in the

left-hand graph of Figure 2.4.

23

Stellenbosch University https://scholar.sun.ac.za

2.3 Covariance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

x

f(x)

α = 1, β = 1
α = 5, β = 5
α = 0.7, β = 0.7
α = 0.6, β = 2
α = 5, β = 2

Figure 2.3: The Beta distribution for different values of α and β

Conversely, for variables with a negative covariance, one variable decreases

as the other increases, depicted by the centre graph of Figure 2.4. A covariance

of approximately 0 indicates that there is a negligible relationship between the

variables (right-hand graph of Figure 2.4)(Rice, 2007). It is important to note

that covariance does not have a standard unit, but is rather an indication of the

relationship between variables.

24

Stellenbosch University https://scholar.sun.ac.za

2.3 Covariance

2 4 6 8 10

2

4

6

8

10

X

Y

2 4 6 8 10
0

2

4

6

8

10

X
Y

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

X

Y

Figure 2.4: The left-hand graph shows two variables X and Y with a positive
covariance, the middle graph shows variables X and Y with a negative covari-
ance and the right-hand graph shows variables X and Y with a covariance of
approximately 0

The covariance of two random variables X and Y is described by

Cov(X, Y) = E(X − µx)(Y − µy), (2.10)

where µx and µy are the expected values (or means) of random variables X

and Y respectively.

Alternatively, covariance can be expressed as

Cov(X, Y) = E(XY −Xµy − Y µx + µxµy)

= E(XY)− E(X)µy − E(Y)µx + µxµy

= E(XY)− E(X)E(Y).

(2.11)

If variables X and Y are independent, E(XY) = E(X)E(Y) and the covari-

ance is 0 (Rice, 2007).

The covariance matrix is defined in terms of covariance as

Q =

[
σx

2 σyx
σxy σy

2

]
(2.12)

where σx
2 and σy

2 are the variances of variables X and Y respectively.

Taking the relationship between variables into consideration could provide an

alternative method of sampling. As an example, an adaptation of the well-known

inventory problem (s, S) is considered. The inventory problem has two objectives:

25

Stellenbosch University https://scholar.sun.ac.za

2.3 Covariance

maximise service level and minimise average inventory cost. The problem also has

two decision variables: reorder point (s) and reorder quantity (S). The problem

is modified to be dynamic and stochastic for the purposes of this example.

Figure 2.5 shows the two decision variables (in this example reorder point

and reorder quantity) on the x and y axes respectively. The probability density

function of each variable is shown on the z axis. The red area shows where points

from the two distributions overlap (the darker, the more dense). The stochastic

decision variable x (reorder point) has a normal distribution characterised by:

µx = 1 and σx = 0.5. The stochastic decision variable y (reorder quantity) has a

normal distribution characterised by: µy = 2 and σy = 1.

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4
P (x)

P (y)

x y

P

0

5 · 10−2
0.1

0.15

P (x, y)

Figure 2.5: The probability density functions of two decision variables (x and y),
each with their own normal distribution

Rather than considering the decision variables (reorder point and reorder

quantity) individually, perhaps the relationship between the decision variables

could be leveraged to decrease the computational time required to determine the

26

Stellenbosch University https://scholar.sun.ac.za

2.3 Covariance

Pareto-optimal solution set, as well as create a better final Pareto solution set.

This decrease could be the result of more efficient sampling.

Covariance has been applied to the field of MOO. One of the best known

covariance applications to MOO is the study by Igel et al. (2007): Covariance

Matrix Adaptation for Multi-objective Optimization. Igel et al. (2007) extends

the covariance matrix adaptation evolution strategy (CMA-ES) to MOO and

develops a new variant of the CMA-ES algorithm to solve MOO problems: MO-

CMA-ES. The MO-CMA-ES algorithm exploits the properties of covariance, such

as its invariance properties, in particular invariance against rotation.

The MO-CMA-ES algorithm is depicted in Algorithm 4, which relies on algo-

rithms 5 and 6 for step size and covariance calculations.

Algorithm 4 (1+λ)-CMA-ES

1: g=0, initialize a
(g)
parent

2: repeat
3: a

(g+1)
parent ← a

(g)
parent

4: for k=1,. . . ,λ do
5: x

(g+1)
k ∼ N (x

(g)
parent, σ

(g)2C(g))
6: end for
7: updateStepSize

(
a
(g+1)
parent,

λ
(g+1)
succ

λ

)
8: if f(x

(g+1)
1:λ) ≤ f(x

(g)
parent) then

9: x
(g+1)
parent ← x

(g+1)
1:λ

10: updateCovariance
(
a
(g+1)
parent,

x
(g+1)
parent−x

(g)
parent

σ
(g)
parent

)
11: end if
12: g ← g + 1
13: until stopping criterion is met

λ refers to the number of new candidate solutions samples in each iteration.

After the new candidate solutions are sampled, the step size is updated based on

the success rate psucc = λg+1
succ

λ
.

Algorithm 5 updateStepSize (a = [x, p̄succ, σ, pc, C], psucc)

1: p̄succ ← (1− cp)p̄succ + cppsucc

2: σ ← σ · exp
(

1

d

p̄succ − ptargetsucc

1− ptargetsucc

)

27

Stellenbosch University https://scholar.sun.ac.za

2.3 Covariance

The learning rate cp should be set to a value in the range 0 − 1. If the best

new candidate solution is better than the parent solution, the covariance matrix

is updated by means of Algorithm 6.

Algorithm 6 updateCovariance (a = [x, p̄succ, σ, pc, C], xstep ∈ Rn)

1: if p̄succ < pthresh then
2: pc ← (1− cc)pc +

√
cc(2− cc)xstep

3: C ← (1− ccov)C + ccov · pcpTc
4: else
5: pc ← (1− cc)pc
6: C ← (1− ccov)C + ccov · (pcpTc + cc(2− cc)C)
7: end if

The default selection, step size and covariance parameters are set according

to the values in Table 2.1.

Table 2.1: MO-CMA-ES default parameters

Selection:
λ = 1
Step size control:

d = 1 + n
2λ

, ptargetsucc = 1

5+
√
λ/2

, cp = ptargetsucc λ

2+ptargetsucc λ

Covariance matrix adaptation:
cc = 2

n+2
, ccov = 2

n2+6
, pthresh = 0.44

Igel et al. (2007) compare the MO-CMA-ES to two other non-dominated sort-

ing algorithms namely: Non-dominated Sorting Genetic Algorithm II (NSGA-II)

and Non-dominated Sorting Differential Evolution (NSDE) for a number of test

problems. MO-CMA-ES outperforms NSGA-II for all test problems except one,

and performs better than NSDE on all test problems but two (where NSDE per-

forms worse than the other two algorithms on all other test problems). The results

indicate that using the covariance matrix adaptation as a new selection mecha-

nism, significantly improves the search efficiency of the MO-CMA-ES algorithms,

making it superior to the NSGA-II and NSDE algorithms.

When compared to other non-dominated sorting algorithms, the promising

results of the MO-CMA-ES algorithm could be an indication that a similar co-

28

Stellenbosch University https://scholar.sun.ac.za

2.4 Constrained MOPs

variance matrix adaption could improve the search efficiency of other MOO al-

gorithms, such as MOO CEM.

2.4 Constrained MOPs

At a high level, two types of MOO problems exist: constrained and unconstrained

problems. (1.2) and (1.3) represent the constraints which apply to an uncon-

strained problem formulated by (1.1). Constraints add a dimension of complex-

ity to an MOO problem, as they limit the feasible region of the decision vari-

ables (Coello, 2006). Additional challenges arise from the interference among

constraints and the relationships among decision variables, constraints and the

objective functions (Woldesenbet et al., 2007).

Many different methods have been developed to solve constrained MOPs,

one of the most simple methods being the removal of infeasible solutions post-

processing. Once all points have been sampled, the constraints are applied and

those solutions which do not fall within the feasible region are simply discarded.

This method may be simple, but could result in the removal of too many points,

leaving the algorithm with little direction for the next iteration and, ultimately,

a poor Pareto solution set (Coello, 2006).

Other methods include (Coello, 2002):

� Penalty functions

� Special representations and operators

� Repair algorithms

� Separation of objectives and constraints

� Hybrid methods

This research paper will focus specifically on the Penalty Function method,

as this is a well-researched and widely accepted constraint-handling method.

The main aim of this method is to transform constrained optimisation prob-

lems into unconstrained optimisation problems by adding (for a minimisation

29

Stellenbosch University https://scholar.sun.ac.za

2.4 Constrained MOPs

problem) or subtracting (for a maximisation problem) a specific amount to or

from the objective function. This amount is referred to as the penalty. The size

of the penalty is dependent on the degree of the constraint violation (Coello,

2002). For a minimisation problem, a good solution would have a low objective

function value. However, if the solution is far from the feasible region, a large

penalty would be added to the objective function, resulting in a poor solution.

The challenge with the Penalty Function method is determining the size of

the penalty. If the penalty is too large, the algorithm will be directed to the

feasible region only, limiting exploration. If the optimal solution were to lie on

the boundary between the feasible and infeasible region, the algorithm would

most likely not find the optimal solution. On the other hand, if the penalty is

too small, many infeasible solutions would be considered and much time would

be spent exploring the infeasible region. This is where the minimum penalty

rule provides direction. The minimum penalty rule states that the penalty value

should be kept as small as possible, “just above the limit below which infeasible

solutions are optimal” (Coello, 2002).

Penalty functions can be constructed using three different techniques (Coello,

2002):

� penalise all infeasible solutions equally, irrespective of the distance from the

feasible region,

� penalise solutions according to the ‘size’ of their infeasibility, or

� penalise solutions according to the cost required to transform the solution

into a feasible solution.

Several studies have been focused on which of these methods prove to be the

most effective. A study by Richardson et al. (1989) found that penalties which

take into consideration the size of the infeasibility show better performance than

those which only consider the number of violated constraints.

Woldesenbet et al. (2007) proposed a constraint-handling multi-objective evo-

lutionary optimisation algorithm which uses the Penalty Method. The algorithm

extends the single objective constraint-handling evolutionary algorithm developed

30

Stellenbosch University https://scholar.sun.ac.za

2.4 Constrained MOPs

by Tessema & Yen (2006) to multi-objective optimisation problems. The algo-

rithm developed by Woldesenbet et al. (2007), the Constrained Multi-objective

Evolutionary Algorithm (CMOEA), calculates the penalty according to the size

of the solution’s constraint violation, defined as

Fi(x) = di(x) + pi(x). (2.13)

The penalty has two components: a distance measure di(x) and an adaptive

penalty pi(x). The distance measure is calculated using Algorithm 7, based on

di(x) =

{
v(x), if rf = 0√
f̃i(x)2 + v(x)2), otherwise (2.14)

where

rf =
number of feasible solutions in the current population

population size
. (2.15)

rf represents the percentage of feasible solutions in the current population.

If there are no feasible solutions in the current population, the distance value

is the constraint violation v(x). However, if some feasible solutions exist, the

normalised objective function and constraint violation are used to calculate the

distance. If a solution is feasible, the distance is simply the normalised objective

function.

The constraint violation v(x) is the normalised violation of each constraint

and is calculated according to

v(x) =
1

m

m∑
j=1

cj(x)

cjmax

, (2.16)

where

cj(x) =

{
max(0, gj(x)) j = 1, . . . , q
max(0, hl(x)− δ) l = 1, . . . , p

and

31

Stellenbosch University https://scholar.sun.ac.za

2.4 Constrained MOPs

cjmax = max
x

cj(x).

If a solution violates a constraint, cj is the value (or size) of the j−th equality

(or l−th inequality) constraint violation. If the constraint is not violated, cj is

simply 0. cjmax is the maximum possible violation of the j−th (or l−th) constraint,

which allows for the normalisation according to (2.16). gj(x) and hl(x) are the

equality and inequality constraints as per (1.2) and (1.3) in the MOO problem

definition. The equality constraints are converted to inequality constraints by the

addition of the tolerance value δ.

CMOEA requires each solution x for each objective i to be normalised ac-

cording to (2.17), where f̃i(x) is the normalised objective value of i and f imin and

f imax refer to the minimum and maximum values of objective i respectively.

f̃i(x) =
fi(x)− f imin

f imax − f imin

, (2.17)

where

f imin = min
x
fi(x) (2.18)

and

f imax = max
x

fi(x). (2.19)

The penalty value pi(x) is calculated according to Algorithm 8, based on

pi(x) = (1− rf)Xi(x) + rfYi(x), (2.20)

where

Xi(x) =

{
0, if rf = 0
v(x), otherwise

and

Yi(x) =

{
0, if x is a feasible solution

f̃i(x), if x is an infeasible solution.

32

Stellenbosch University https://scholar.sun.ac.za

2.4 Constrained MOPs

The penalty value pi(x) consists of two penalty values: Xi, which is based on

the objective value, and Yi, which is based on the constraint violation.

Algorithm 7 Distance Measure of the constraint-handling multi-objective evo-
lutionary optimisation algorithm

1: if rf = 0 then
2: for i = 1 to number of objectives do
3: for k = 1 to Population Size do
4: di(xk)← v(xk)
5: end for
6: end for
7: else
8: for i = 1 to number of objectives do
9: for k = 1 to Population Size do

10: f̃i(xk)← fi(xk)−f imin

f imax−f imin

11: di(xk)←
√
f̃i(xk)2 + v(xk)2

12: end for
13: end for
14: end if

Algorithm 8 Penalty Value of the constraint-handling multi-objective evolution-
ary optimisation algorithm

1: for i = 1 to number of objectives do
2: for k = 1 to Population Size do
3: if rf = 0 then
4: Xi(xk)← 0
5: else
6: Xi(xk)← v(xk)
7: end if
8: if v(xk) = 0 then
9: Yi(xk)← 0

10: else
11: Yi(xk)← f̃i(xk)
12: end if
13: pi(xk)← (1− rf)Xi(xk + rfYi(xk))
14: end for
15: end for

33

Stellenbosch University https://scholar.sun.ac.za

2.5 Non-dominated sorting algorithms

Woldesenbet et al. (2007) compared the CMOEA algorithm to the NSGA-II

and Ray-Tai-Seow algorithms for 14 different benchmark problems, using hy-

pervolume as the performance indicator. Results indicated that the CMOEA

algorithm performs better, providing a well-distributed, consistent Pareto front

for all test problems.

2.5 Non-dominated sorting algorithms

In the field of MOO, finding the Pareto-optimal front in the shortest amount of

time is crucial. Many sorting algorithms have been developed, one of the most

well-known algorithms being the Goldberg (1989) Pareto-ranking algorithm.

As mentioned in Subsection 2.1.4, the MOO CEM algorithm uses the Goldberg

(1989) algorithm as a means of identifying the Pareto-optimal solution set. The

Goldberg (1989) method is implemented in such a manner that only problems

with two objective functions can be solved, according to Algorithm 3. This

method has a complexity of O(KN2), where N represents the population size.

It would be useful to extend this functionality such that problems with more than

two objective functions could be solved in a more efficient manner.

Since the Goldberg (1989) algorithm was published in 1989, a number of faster

sorting algorithms have been developed, including: Deductive Sort (McClymont

& Keedwell, 2012), Corner Sort (Wang & Yao, 2014), Efficient Non-Dominated

Sort (ENS) (Zhang et al., 2015), Best Order Sort (BOS) (Roy et al., 2016)

and Merge Non-Dominated Sorting Algorithm for Many-Objective Optimization

(MNDS) (Moreno et al., 2020). The best and worst case time complexities of

each algorithm are stated in Table 2.2.

Figure 2.6 shows the runtime per algorithm for different non-dominated sort-

ing algorithms as per the experiments performed by Moreno et al. (2020). BOS

and MNDS are the most recently developed algorithms and have proven to be

extremely effective in higher dimensions. ENS, on the other hand, performs bet-

ter at lower dimensions (fewer objectives than 5). Since one of the objectives of

this research paper is to add the functionality to solve problems with more than

two objectives to the MOO CEM algorithm, ENS has been selected as a suitable

non-dominated sorting algorithm for this use case and will be discussed in detail.

34

Stellenbosch University https://scholar.sun.ac.za

2.5 Non-dominated sorting algorithms

Table 2.2: Best and worst case time complexities of selected ranking algorithms

Algorithm Best Case
Complexity

Worst Case
Complexity

Goldberg O(KN2) O(KN2)

Deductive Sort O(KN
√
N) O(KN2)

Corner Sort O(KN
√
N) O(KN2)

Efficient Non-dominated Sort
(sequential search strategy)

O(KN
√
N) O(KN2)

Efficient Non-dominated Sort
(binary search strategy)

O(KN logN) O(KN2)

Best Order Sort O(KN logN) O(KN logN+
KN2)

Merge Non-Dominated Sorting
Algorithm for Many-Objective
Optimization

O(N logN) O(KN2)

4 6 8 10 12 14 16 18 20

1

Number of Objectives

R
u
n
ti

m
e

m
s

(l
og

sc
al

e)

ENS-SS
ENS-BS

BOS
MNDS

Figure 2.6: The runtime of various non-dominated sorting algorithms for 500
solutions (Moreno et al., 2020)

The difference between ENS and many other non-dominated sorting algo-

rithms is that rather than comparing each solution to all other solutions before

assigning it to a front, the ENS algorithm compares each solution only to those

35

Stellenbosch University https://scholar.sun.ac.za

2.6 Performance indicators and standard problems

which have already been assigned to a front. This is achieved by sorting the

population according to the first objective before the algorithm is applied. This

limits the number of required comparisons, which makes the algorithm more com-

putationally efficient than many others. The main ENS algorithm is shown in

Algorithm 9 (Zhang et al., 2015).

Algorithm 9 Efficient Non-dominated Sort algorithm

1: Input: population P
2: Output: the set of fronts F
3: F = empty;
4: Sort P in an ascending order of the first objective value;
5: for all P [n] ∈ sorted P do
6: Assign solution P [n] into F using the Sequential Search Strategy (Algo-

rithm 10) or the Binary Search Strategy;
7: end for
8: return F ;

ENS has been developed with two different search strategies: sequential and

binary search strategies. The results by Zhang et al. (2015) showed that the

sequential search strategy had a shorter runtime than the binary search strategy

for problems with more than two objectives. Since the focus of the ENS algorithm

implementation will be to solve problems with more than two objectives, only the

sequential search strategy will be explored.

The Sequential Search Strategy (SS) used in the ENS algorithm is presented

in Algorithm 10. For a solution pn, SS checks whether a solution which dominates

pn exists in the first Pareto set. If not, solution pn is assigned to the first Pareto

set. Otherwise, pn is assigned to the second Pareto set. The same check is then

applied to the second Pareto set and this process is repeated until pn is assigned

to a Pareto set (existing or new).

2.6 Performance indicators and standard prob-

lems

In order to determine the quality of an algorithm, the performance of the algorithm

must be assessed on a set of standard problems using performance indicators.

36

Stellenbosch University https://scholar.sun.ac.za

2.6 Performance indicators and standard problems

Algorithm 10 Sequential Search Strategy for finding the front of a solution used
by Efficient Non-dominated Sort algorithm

1: Input: solution P [n], the set of fronts F .
2: Output: the front number of solution P [n].
3: x = size(F); the number of fronts having been found
4: k = 1; the front now checked
5: while true do
6: Compare P [n] with the solutions in F [k] starting from the last one and

ending with the first one;
7: if F [k] contains no solution dominating P [n] then
8: return k; move P [n] to F [k]
9: break;

10: else
11: k + +
12: if k > x then
13: return x+ 1; {move P [n] to a new front}
14: break;
15: end if
16: end if
17: end while

2.6.1 Performance indicators

A number of different performance indicators have been developed and can be

categorised into four main groups (Jiang et al., 2014):

� Capacity metrics,

– Overall Non-dominated Vector Generation (ONVG)

– Error Ratio

� Convergence metrics,

– Generational Distance (GD)

– ε indicator

– Seven Points Average Distance (SPAD)

37

Stellenbosch University https://scholar.sun.ac.za

2.6 Performance indicators and standard problems

� Diversity metrics

– Uniform Distribution (UD)

– Overall Pareto Spread (OS)

– Generalized Spread

� Convergence-Diversity metrics

– Hypervolume (HV) (also referred to as the S-metric or the Lebesgue

measure)

– Inverted Generational Distance (IGD)

– Maximum Pareto Front Error (MPFE)

Capacity metrics count the number of non-dominated solutions that satisfy

predetermined requirements. Convergence metrics measure the proximity of the

solution set to the true Pareto-optimal front. Diversity metrics include distri-

bution and spread information. Distribution refers to how evenly points in a

solution are spaced. Spread refers to how well the points in the solution set cap-

ture the true extremes. And lastly, Convergence-Diversity metrics measure both

convergence and diversity of the solution set on a single scale (Jiang et al., 2014).

Some of these indicators are classified as Pareto compliant, while others are

Pareto non-compliant. The term Pareto compliant is formally defined as: An

indicator I: Ω→ R is Pareto compliant if for all A,B ∈ Ω : A � B⇒ I(A) ≥ I(B),

assuming that greater indicator values correspond to higher quality (otherwise A �
B ⇒ I(A) ≤ I(B)) (Coello et al., 2007). In essence, when comparing two solution

sets using a Pareto quality indicator, “the quality indicator value for A should

be at least as good as the indicator value for B, with respect to weak Pareto

dominance” (Bekker, 2012). This implies that Pareto-compliant performance

indicators are more reliable than Pareto non-compliant indicators with respect to

algorithm solution set comparison. Table 2.3 indicates Pareto compliance or not

of some popular performance indicators.

A study by Riquelme et al. (2015) found that the hypervolume indicator was

the most widely used metric, followed by the generational distance, the

ε indicator and the inverted generational distance.

38

Stellenbosch University https://scholar.sun.ac.za

2.6 Performance indicators and standard problems

Table 2.3: Pareto compliance of some performance indicators (Coello et al., 2007)

Metric Pareto Compliant
Hyperarea Yes
ε indicator Yes
Generational Distance No
ONVG Yes
Error Ratio Yes
MPFE No

The study by Jiang et al. (2014) concluded that the hypervolume indicator (Ih)

is the most robust and reliable metric when comparing the quality of solution

sets. Since hypervolume takes into account both closeness and spread of the

solution set, it is a favoured solution amongst developers and researchers (While,

2005). Considering that the hypervolume indicator is the most widely accepted

metric, the hypervolume will be the main indicator used to compare algorithm

solutions in this study, followed by the ε indicator where the hypervolume cannot

be calculated (since the GD is Pareto non-compliant).

The hypervolume (or hyperarea for problems in two-dimensional space) in-

dicator was proposed as a performance indicator by Zitzler (1999). Essentially,

hypervolume measures the difference in volume (or area) between a set of Pareto-

optimal solutions found by an algorithm compared to the hypervolume of the

true Pareto-optimal solution set. It relies on a reference point outside of the

maximum of the objective function solution space. Figure 2.7 shows the hyper-

area of a solution set of a minimisation problem with two dimensions. The area

between the Pareto-optimal solution set (red) and the reference point (green) is

the hyperarea. It is calculated as

IH ,
⋃
i

areai|veci ∈ PFknown, (2.21)

where veci represents a non-dominated vector in the known (or true) Pareto

front (PFknown). The hypervolume is calculated similarly: the volume is used

instead of the area (Coello et al., 2007).

Solutions with a larger hyperarea indicate a greater distance from the reference

39

Stellenbosch University https://scholar.sun.ac.za

2.6 Performance indicators and standard problems

point. This implies that the solutions are smaller, and thus, better, in the case

of a minimisation problem. Therefore, the hyperarea should be maximised.

2 3 4 5

−1

0

1

2

3

Figure 2.7: Hyperarea of a minimisation problem with two objectives (Pareto
front is indicated by red squares and the reference point in green)

In certain cases, the hypervolume cannot be calculated intuitively due to the

computational complexity. When the hypervolume cannot be computed, the ε

indicator will be used as the performance indicator instead.

The ε indicator represents the minimum factor by which the approximation

set must be translated to (weakly) dominate the true Pareto solution set. Two

different ε indicators exist: an additive ε indicator (Iε+), based on the difference

between the approximation set and the true Pareto solution set, and the multi-

plicative ε indicator (Iε×), which is the ratio between the approximation set and

the true Pareto solution set (Liefooghe & Derbel, 2016). The additive ε indicator

is used in this study. It is calculated as

Iε+ = max
r∈R

min
a∈A

max
i∈{1,...,d}

(ai − ri). (2.22)

As the ε indicator represents the difference between the approximation set and

the true Pareto solution set, this indicator is to be minimised. When Iε+ = 0, it

implies that the approximation set and the true Pareto solution set consist of the

40

Stellenbosch University https://scholar.sun.ac.za

2.6 Performance indicators and standard problems

same solutions. A small Iε+ (close to 0) implies a good approximation set which

is close to the true Pareto solution set.

2.6.2 Standard problems

Since the main objective of this research paper is the enhancement of the MOO

CEM algorithm, the enhanced algorithm must be tested on the same standard

problems as those on which MOO CEM was tested for fair comparison. The

MOO CEM algorithm was tested (amongst others) on the standard MOP testing

problems (MOP1, MOP2, MOP3, MOP4 and MOP6) listed in Table 2.4. MOP5

and MOP7 are problems with more than two objectives and could not be solved

with the original MOO CEM algorithm, due to the non-dominated sorting algo-

rithm implementation. Table 2.5 contains a set of standard side-constraint test

functions which can be used to test the performance of algorithms on problems

with side-constraints (Coello, 2002).

The original MOO CEM algorithm and the enhanced algorithms will be tested

on the problems shown in the tables. The results of these tests are analysed in

Chapter 4.

41

Stellenbosch University https://scholar.sun.ac.za

2.6 Performance indicators and standard problems

Table 2.4: Standard MOP test problems

Function Definition Constraints

MOP1 f1(x) = x2 −105≤x≤105

(Min) f2(x) = (x−2)2

MOP2 f1(x) = 1−exp(−
∑n
i=1(xi−

1√
n
)2) −4≤xi≤4

(Min) f2(x) = 1−exp(−
∑n
i=1(xi+

1√
n
)2) i=1,...,n, n=3

MOP3 f1(x,y) = −[1+(A1−B1)2+(A2−B2)2] −π≤x,y≤π

(Max) f2(x,y) = −[(x+3)2+(y+1)2] A1=0.5 sin 1−2 cos 1+

sin 2−1.5 cos 2,
A2=1.5 sin 1−cos 1+

2 sin 2−0.5 cos 2,
B1=0.5 sinx−2 cosx+

sin y−1.5 cos y

B2=1.5 sinx−cosx+

2 sin y−0.5 cos y

MOP4 f1(x) =
∑n−1
i=1 (−10 exp (−0.2)

√
x2i+x

2
i+1), −5≤xi≤5

(Min) f2(x) =
∑n
i=1(|xi|a+5 sin(xi)

b) i=1,2,3, a=0.8, b=3

MOP5 f1(x) = 0.5∗(x2+y2)+sin(x2+y2), −30≤x,y≤30

(Min) f2(x) = =
(3x−2y+4)2

8
+

(x−y+1)2

27
+15

f3(x) = = 1
(x2+y2+1)

−1.1e−x2−y2

MOP6 f1(x,y) = x 0≤x,y≤1

(Min) f2(x,y) = (1+10y)[1−(x
1+10y

)α− x
1+10y

sin(2πqx)] q=6, α=2

MOP7 f1(x) =
(x−2)2

2
+

(y+1)2

13
+3, −400≤x,y≤400

(Min) f2(x) = =
(x−y−3)2

36
+

(−x+y+2)2

8
−17

f3(x) = =
(x+2y−1)2

175
+

(2y−x)2
17

−13

ZDT1 f1(x) = x1 0≤xi≤1, n=30

(Min) f2(x,g) = g(x)·(1−
√
f1/g(x))

g(x) = 1+ 9
n−1
·
∑n
i=2 xi

ZDT2 f1(x) = x1 0≤xi≤1, n=30

(Min) f2(x,g) = g(x)·(1−(f1/g(x))2)

g(x) = 1+ 9
n−1
·
∑n
i=2 xi

ZDT3 f1(x) = x1 0≤xi≤1, n=30

(Min) f2(x,g) = g(x)·(1−
√
f1/g(x)−f1/g(x)·sin (10πf1))

g(x) = 1+ 9
n−1
·
∑n
i=2 xi

42

Stellenbosch University https://scholar.sun.ac.za

2.7 Summary: Chapter 2

Table 2.5: Standard constrained MOP test problems

Function Definition Constraints

MOP-C1 Binh(2) f1(x,y) = 4x2+4y2 0≤x,y≤5,

(Min) f2(x,y) = (x−5)2+(y−5)2 0≥(x−5)2+y2−25,

0≥−(x−8)2+(y+3)2+7.7

MOP-C2 Osyczka(2) f1(x,y) = −(25((x1−2)2+(x2−2)2+ 0≤x1,x2,x6≤10,

(Min) (x3−1)2+(x4−4)2+(x5−1)2) 1≤x3,x5≤5,
f2(x,y) = x21+x

2
2+x

2
3+x

2
4+x

2
5+x

2
6 0≤x4≤6,

0≥x1+x2−2,

0≥6−x1−x2,

0≥2−x2+x1,

0≥2−x1+3x2,

0≥4−(x3−3)2−x4,

0≥(x5−3)2+x6−4

MOP-C3 Viennet(4) f1(x,y) =
(x−2)2

2
+

(y+1)2

13
+3 −4≤x,y≤4,

(Min) f2(x,y) =
(x+y−3)2

175
+

(2y−x)2
17

−13 y<−4x+4,

x>−1,

f3(x,y) =
(3x−2y+4)2

8
+

(x−y+1)2

27
+15 y>x−2,

MOP-C4 Tanaka f1(x,y) = x 0≤x,y≤π,

(Min) f2(x,y) = y 0≥−(x2)−(y2)+1+

(a cos (b arctan (x/y))),

a=0.1, b=16

2.7 Summary: Chapter 2

An overview of the literature relating to MOO, the MOO CEM algorithm and

the four methods of enhancements was presented in this chapter. The aim was

not to provide a comprehensive analysis, but rather to provide an overview of

the field of MOO, the design of MOO CEM and the four areas of enhancement,

with specific focus on those pertinent to this research. The most widely used

performance indicators and benchmark problems were listed, as these will be of

importance when testing the new proposed algorithms.

In the next chapter, four new algorithms will be developed to address the four

areas of improvement and enhancement. The methods of enhancement have been

selected in accordance with the research presented in this chapter.

43

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Algorithm development

In the previous chapter, an analysis and review of the fields pertaining to this

study were presented. This includes at the centre, the MOO CEM algorithm, and

the methods, algorithms and equations selected to enhance the algorithm. In this

chapter, some of the reviewed techniques are implemented in order to enhance

the MOO CEM algorithm. The algorithm is enhanced through the improve-

ment of the sampling method, as well as through the incorporation of additional

functionality. The two techniques investigated to improve sampling are the Beta

distribution and covariance. The functionality of the algorithm is then extended

to solve constrained problems and problems with more than two objective func-

tions. Upon testing each of the proposed algorithms, a final algorithm will be

included in Chapter 5, consisting of the most successful algorithms proposed in

this chapter as implemented in the MOO CEM algorithm.

3.1 Proposed MOO CEM-Beta algorithm

This section investigates improving of the sampling method of the MOO CEM by

using the Beta distribution (reviewed in Chapter 2.2), instead of the truncated

normal distribution. It is theorised that, by using the Beta distribution, the qual-

ity of the Pareto solution set could be improved, i.e. the hypervolume calculated

from the final solutions generated by the algorithm would be larger than that

generated by the original MOO CEM algorithm. This hypothesis is based on

the fact that the Beta distribution is more flexible, in that it can approximate a

44

Stellenbosch University https://scholar.sun.ac.za

3.1 Proposed MOO CEM-Beta algorithm

number of distributions, rather than a single normal distribution. As stated in

Section 2.1.4, another disadvantage of the truncated normal distribution is the

possibility of overlooking solutions at the extremes of the range. By using the

Beta distribution, these solutions could be included and the spread of the Pareto

solution set could be increased.

The MOO CEM algorithm (Algorithm 2) was reviewed in Section 2.1.4. The

decision space is divided into r + 2 classes (where r is the number of classes of

the elite vector), with the total of all class frequencies equal to N . In Step 8, a

class-based mean and standard deviation are calculated for each histogram class

[ciκ ci(κ+1)) of the decision space. The mean and standard deviation are then used

to sample from the truncated normal distribution φ. Algorithm 11 is proposed

to replace the truncated normal distribution, from which solutions are sampled,

with the Beta distribution. This algorithm replaces steps 8 − 11 in the original

MOO CEM algorithm. This algorithm is executed once per histogram class.

Algorithm 11 MOO CEM-Beta: Algorithm to sample from Beta distribution
to be implemented in MOO CEM algorithm

1: Find the Elite solutions which fall into the range [ciκ ci(κ+1)).
2: if 1 or no unique Elite solutions fall within this range then
3: Set αiκ = 1.
4: Set βiκ = 1.
5: else
6: Calculate a class based αiκ and βiκ of the distribution of the corresponding

Elite solutions over the normalised range 0− 1.
7: end if
8: Generate a subsample Y according to the pdf Beta (αi,βi).
9: with xi ε [ciκ ci(κ+1)) and |Y| = τiκ, 1 ≤ κ ≤ r + 2 .

10: Append Y to Xi.

The parameters required by the Beta distribution (α and β) are calculated

for each histogram class (a class based αi and βi) using the elite solutions which

fall within the range of that histogram class. Calculating the Beta distribution

parameters requires at least two points. If only one or no unique elite solutions

fall within the range of the histogram class, αi and βi are both set to 1, assuming

a uniform distribution across the range. Building the initial solution set for the

45

Stellenbosch University https://scholar.sun.ac.za

3.2 Proposed MOO CEM-Cov algorithm

first iteration of the algorithm follows the same logic: assigning both α and β a

value of 1, so a uniform distribution is assumed across the range.

As the Beta distribution is defined over the range 0 − 1, the range of the

histogram class must be normalised when calculating the values of αi and βi.

This is achieved using the upper and lower limits of the histogram class.

In the MOO CEM algorithm, the mean and standard deviation are smoothed

and a stopping criteria is calculated in steps 20 − 22. This is replaced with the

smoothing of the α and β parameters in a similar fashion, using (2.3). The

stopping criteria is calculated using the difference between the values of the α

and β for the current iteration and the values thereof in the previous iteration. If

α and β do not change materially from one iteration to the next, the algorithm is

assumed to have reached steady-state and there would be no benefit in running the

algorithm for further iterations. These updated steps are contained in Algorithm

12 and intend to replace steps 20− 22 of the MOO CEM algorithm.

Algorithm 12 Algorithm to update α and β in the MOO CEM-Beta algorithm

1: Use the values in Elite and compute αit and βit for all i, 1 ≤ i ≤ D.
2: Smooth the vectors αit and βit using (2.3).
3: Calculate the differences between αit and αit−1; and βit−1 and βit.
4: If all changes in αi and βi > εc, or less than the allowable number of evalu-

ations have been done, increment t and reiterate from Step 4 of the original
MOO CEM algorithm.

3.2 Proposed MOO CEM-Cov algorithm

In this section, the improvement of the MOO CEM algorithm’s sampling method

through the use of covariance is proposed. The method of using covariance to

improve sampling is based on the method developed by Igel et al. (2007), as

discussed in Section 2.3.

The MOO CEM algorithm assumes independence between decision variables.

However, this is not necessarily true. It is hypothesised that leveraging any po-

tential correlation between decision variables to influence sampling, the rate and

quality of samples could be improved. The proposed algorithm which utilises co-

variance between decision variables when sampling, is presented in Algorithm 13.

46

Stellenbosch University https://scholar.sun.ac.za

3.2 Proposed MOO CEM-Cov algorithm

As with the proposed MOO CEM-Beta algorithm in the previous section, this

algorithm intends to replace steps 8 − 11 of the original MOO CEM algorithm.

Again, this algorithm is executed once per each histogram class.

Algorithm 13 MOO CEM-Cov: Algorithm to sample using covariance to be
implemented in MOO CEM algorithm

1: Find the Elite solutions which fall into the range [ciκ ci(κ+1)).
2: Calculate the mean µ̃i of the Elite subset.
3: Calculate the standard deviation σ̃i of the Elite subset.
4: if 1 or no unique Elite solutions fall within this range then
5: Set covariance matrix Σ̃ to I.
6: else
7: Calculate the covariance matrix Σ̃ of the Elite subset.
8: end if
9: Generate a subsample Y according to the mvn N (µ̃i,Σ̃).

10: with xi ε [ciκ ci(κ+1)) and |Y| = τiκ, 1 ≤ κ ≤ r + 2 .
11: Append Y to Xi.

The covariance of the decision variables is calculated for each class in the

histogram. Similarly to Algorithm 11, the elite solutions which fall within the

histogram class are identified and the covariance is calculated on this subset of

solutions. The calculation of covariance requires at least two unique points. If

fewer than two solutions fall within the histogram class, the identity matrix I

replaces the covariance matrix. The identity matrix is generally used as the

covariance matrix when there is no known covariance between the samples or

when the samples are uncorrelated. The same logic is applied when the first

iteration of the algorithm is completed (and no elite solutions have been generated

yet). The identity matrix is defined as follows:1 0 0
0 1 0
0 0 1


In step 9, the solutions are sampled from the multi-variate normal distri-

bution (mvn) using the mean and covariance to sample from the joint normal

distribution, taking into account the relationship between the decision variables.

47

Stellenbosch University https://scholar.sun.ac.za

3.3 Proposed MOO CEM-Constraint algorithm

Matlab®’s multivariate normal distribution function (mvncdf used in con-

junction with the norminv function to change the range of the samples to the

desired range) was used to sample from the normal distribution with a covari-

ance Σ̃ for each class in the histogram. mvncdf uses four different methods to

sample from the multivariate normal distribution, depending on the number of

dimensions (or decision variables):

1. For 1 dimension: normal cumulative distribution function (normcdf)

2. For 2 dimensions: bivariate normal cumulative distribution function (bvncdf)

3. For 3 dimensions: trivariate normal cumulative distribution function (tvncdf)

4. For more than 4 dimensions: quasi-Monte Carlo integration algorithm (mvtcd-

fqmc)

It is also important to note that the mvncdf function is limited to a maximum

of 25 decision variables. This can be increased by writing a custom function, but

Matlab® discourages this, as the evaluation time of this function increases with

the number of decision variables.

3.3 Proposed MOO CEM-Constraint algorithm

This section proposes two different methods of adding functionality to the MOO

CEM algorithm, giving it the capability to solve constrained problems. The two

constraint methods suggested by Coello (2002), reviewed in Section 2.4, applied

are:

1. Discarding all solutions which do not adhere to constraints (Subsection

3.3.1).

2. A constraint method based on a dynamic penalty (Subsection 3.3.2).

48

Stellenbosch University https://scholar.sun.ac.za

3.3 Proposed MOO CEM-Constraint algorithm

3.3.1 Constraint method 1: Discarding solutions

Unlike the algorithms proposed in the previous sections, this proposed algorithm

aims to add new functionality to the existing MOO CEM algorithm, not to im-

prove its existing functionality. Algorithm 14 implements the discarding of solu-

tions method of constraint-handling suggested by Coello (2002). This algorithm

essentially consists of a single step, which should be added between steps 16 and

17 of MOO CEM algorithm.

Algorithm 14 Algorithm to solve constrained problems with the MOO CEM
algorithm using the discarding of solutions method

1: for each constraint q do
2: Evaluate each solution Xi, 1 ≤ i ≤ D against constraint q.
3: Delete all solutions which do not adhere to the constraint.
4: end for
5: Increase the number of samples sampled per iteration N proportional to the

number of discarded solutions.

Once the points are sampled from the distribution, those which do not ad-

here to the constraints are simply discarded. This is done before calculating

the objective functions and ranking the solutions accordingly. As a result, no

constraint-violating solutions are considered.

As this method discards a number of solutions, the sample size N is essentially

decreased. To ensure that N remains approximately the same size as initially

assigned, the proportion of discarded solutions is calculated and the size of N is

increased proportionally to account for the number of discarded solutions.

Although the implementation of this method is simple, it may discard good

solutions with small constraint violations. This could lead the algorithm to con-

verge on a set of sub-optimal solutions or stop the algorithm from converging;

both scenarios preventing the algorithm from finding the true Pareto-optimal

front.

3.3.2 Constraint method 2: Dynamic penalty

The second method implemented to enable the MOO CEM algorithm to solve

constrained problems, is the dynamic penalty method used by the CMOEA al-

49

Stellenbosch University https://scholar.sun.ac.za

3.3 Proposed MOO CEM-Constraint algorithm

gorithm developed by Woldesenbet et al. (2007). As this method was developed

specifically for evolutionary algorithms, it was adapted for MOO CEM algorithm

implementation. This method is more complex than the first constraint method

implemented, but allows for more solutions to be considered, even when they

violate constraints. It increases the diversity of the solutions, while penalising

infeasible solutions depending on the size of the violation (how far a solution is

from the feasible solution space).

Algorithm 15 implements the penalty method by Woldesenbet et al. (2007)

and should update the objective function values to include the dynamic penalty.

This will be achieved by replacing steps 17 and 18 of MOO CEM algorithm with

steps 1− 6 of the proposed algorithm and replacing ranking steps as indicated in

Algorithm 15.

Algorithm 15 Algorithm to solve constrained problems with the MOO CEM
algorithm using the dynamic penalty method

1: for each constraint q do
2: Calculate the distance measure di of each solution according to (2.14).
3: Calculate the penalty pi of each solution according to (2.20).
4: Calculate the final modified objective value of each solution using (2.13).
5: end for
6: Rank the final modified objective values using the Pareto ranking of Algo-

rithm 3 with a relaxed ρ = 2 to obtain an updated elite vector Elite.
7: Continue with steps 19-22 of the MOO CEM algorithm.
8: Rank the elite vector Elite on the final modified objective values using the

Pareto ranking of Algorithm 3 with ρ = 1.
9: Continue with steps 24-25 of the MOO CEM algorithm.

10: Rank the elite vector Elite on the original objective values using the Pareto
ranking of Algorithm 3 with ρ = 0 to obtain the final elite vector.

It should be noted that when ρ is relaxed (steps 6 and 8), the solutions are

ranked according to the final modified objective value formulation (which includes

the penalty value), not the original objective value. This is to ensure that not

only solutions which fall within the feasible region, but also good solutions which

lie close to the feasible region (solutions with small penalties) are added to the

elite set. When the elite solutions are ranked for the last time to establish the

final set of elite solutions (ρ = 0 in Step 10), solutions are ranked according to

50

Stellenbosch University https://scholar.sun.ac.za

3.4 Proposed MOO CEM-ENS algorithm

the original objective value. This ensures that no infeasible solutions exist within

the final set of Elite solutions.

The implementation of this method is more time-consuming and intricate than

the first constraint method discussed, as the maximum of each constraint violation

and minimum and maximum values of each objective must be calculated.

3.4 Proposed MOO CEM-ENS algorithm

A limitation of the original MOO CEM algorithm is its inability to solve problems

with more than two objectives. This is due to the implementation of the non-

dominated sorting method used and the computational effort associated there-

with. In order to extend the functionality of the MOO CEM algorithm to solve

problems with more than two objectives, a non-dominated sorting method which

can sort more than two objectives at the same time should be implemented.

One of the latest and best performing algorithms is the ENS-SS algorithm

developed by Zhang et al. (2015) (discussed in Section 2.5). This algorithm has

been identified as the best suited non-dominated sorting method to extend the

functionality of the MOO CEM algorithm, as it is the non-dominated sorting

method which has shown the best performance for problems with more than two

objectives and fewer than five objectives (see Figure 2.6).

No changes or updates are required in the implementation of this algorithm.

The ENS-SS is implemented according to Algorithms 9 and 10. This algorithm

replaces Algorithm 3 used for non-dominated sorting by the MOO CEM algorithm

and should be used for Pareto ranking in steps 18, 23 and 26 of the MOO CEM

algorithm (Algorithm 2).

3.5 Summary: Chapter 3

In this chapter four algorithms were proposed to improve and enhance the MOO

CEM algorithm: MOO CEM-Beta, MOO CEM-Cov, MOO CEM-Constraint and

MOO CEM-ENS. Two algorithms which incorporate constraint methods are pro-

posed. Both algorithms will be tested and the algorithm with the best perfor-

mance will be selected for implementation in the final proposed algorithm. In

51

Stellenbosch University https://scholar.sun.ac.za

3.5 Summary: Chapter 3

the subsequent chapter, the performance of these four algorithms is tested and

quality indicators are calculated to determine the quality of each of them.

52

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Testing of proposed enhanced

algorithms

In this chapter, the four algorithms proposed in the previous chapter are applied

to the set of benchmark problems listed in Section 2.6. For the two enhancement

methods (implementing the Beta distribution and covariance), the results of the

approximate Pareto sets obtained are compared to those of the MOO CEM algo-

rithm to determine if the enhancements caused a statistically significant change

in the performance of the MOO CEM algorithm. For the two methods which add

functionality to the algorithm (constraint-handling and non-dominated sorting),

results are presented graphically and compared only to the true Pareto fronts

using performance indicators, as the MOO CEM algorithm did not previously

have the functionality to solve these types of problems. The hypervolume perfor-

mance indicator was used as the main indicator to compare the performance of

the algorithms. Where the hypervolume could not be calculated, the ε indicator

was used.

4.1 Test specifications

This section presents the test specifications for the various algorithms. General

specifications of the machine used to perform the tests are also provided.

53

Stellenbosch University https://scholar.sun.ac.za

4.1 Test specifications

4.1.1 MOO CEM-Beta and MOO CEM-Cov algorithms

test specifications

In order to determine whether or not the algorithm’s performance was signifi-

cantly improved, a fair method of comparison is required. The approximate

Pareto sets obtained from the algorithms are used as datasets for statistical test-

ing. The paired t-test was used to determine whether the difference between the

results of the original algorithm and the enhanced algorithms are statistically sig-

nificant, as this is a widely accepted standard. The paired t-test is a special case

of the general Analysis of Variance (ANOVA) and assumes unknown, unequal

variances and independent, normally distributed samples (Bekker, 2019).

Two types of hypothesis tests exist: one-tailed and two-tailed hypothesis tests.

A two-tailed hypothesis would be used to determine whether or not there is a

statistically significant difference between two datasets. This gives no indication

of which dataset has the larger mean, only that there is a difference between

them. A one-tailed hypothesis test, on the other hand, is formulated such that

the alternative hypothesis indicates that one dataset has a larger mean than the

other. In this case, the objective is to determine whether or not the enhanced

algorithm performed better than the original MOO CEM algorithm. This is done

using three metrics: the hypervolume (or hyperarea for the two-dimensional case),

runtime and the size of the Pareto set. In the case of hypervolume, the aim is

to maximise it (see Section 2.6). For the runtime metric, the algorithm with

the shortest runtime is most superior. The algorithm which produces the largest

set of Pareto solutions is deemed the better algorithm. These three indicators

should not be considered in isolation, as a fast algorithm with a poor solution set

is of little value, while implementing an extremely slow, but accurate algorithm,

might not be practical. Therefore, this analysis utilises the one-tailed hypothesis

test for comparing each of the metrics. The hypotheses for the three metrics are

formally stated as:

54

Stellenbosch University https://scholar.sun.ac.za

4.1 Test specifications

1. Hyperarea: The one-tailed right-tail hypothesis used for assessment is stated

as

H0 : mBH ≤ mMH

H1 : mBH > mMH

where mBH represents the mean hyperarea produced by the MOO CEM-

Beta algorithm and mMH
represents the mean hyperarea produced by the

MOO CEM algorithm.

2. Runtime: The one-tailed right-tail hypothesis used for assessment is stated

as

H0 : mBt ≥ mMt

H1 : mBt < mMt

where mBH represents the mean runtime of the MOO CEM-Beta algorithm

and mMH
represents the mean runtime of the MOO CEM algorithm.

3. Pareto Set Size: The one-tailed right-tail hypothesis used for assessment is

stated as

H0 : mBs ≤ mMs

H1 : mBs > mMs

where mBH represents the mean size of the Pareto solution set produced by

the MOO CEM-Beta algorithm and mMH
represents the mean size of the

Pareto solution set produced by the MOO CEM algorithm.

The null hypothesis states that there is no statistically significant difference

between the two datasets. In contrast, the alternative hypothesis states that the

parameter of the second dataset is either statistically smaller or larger than that

of the first dataset. The t-test specifies that if t∗ > tcrit, H0 is rejected. The

t-test was performed with a significance level of α = 0.05. The critical value tcrit

for this significance level and a sample size of 500 is 1.962. See Figure 4.1 for

55

Stellenbosch University https://scholar.sun.ac.za

4.1 Test specifications

reference. If the calculated t∗ value is greater than 1.962, the null hypothesis is

rejected. t∗ is calculated according to

t∗ =
(x̄1 − x̄2)− d0√
(s21/n1) + (s22/n2)

(4.1)

where x̄1 represents the mean of dataset 1 and x̄2 the mean of dataset 2. s21

and s22 are the variances of datasets 1 and 2 respectively. n1 and n2 represent the

sizes of the two datasets. The value of d0 is set to 0 for all tests performed in this

research project.

1.9620

Density

X

Figure 4.1: Probability distribution plot for a right-tailed t-test with α = 0.05.
The tcrit value for this level of significance is 1.9625. The null hypothesis is
rejected when the test produces a t∗ of greater than 1.9625

4.1.2 MOO CEM-Constraint and MOO CEM-ENS algo-

rithms test specifications

The original MOO CEM algorithm did not have the functionality to solve prob-

lems with more than two objectives. Furthermore, it did not have constraint-

handling capabilities. Therefore, no comparison could be made between the

original MOO CEM algorithm and the two enhanced algorithms (MOO CEM-

Constraint and MOO CEM-ENS) respectively.

56

Stellenbosch University https://scholar.sun.ac.za

4.2 MOO CEM-Beta performance evaluation

Instead, the hyperarea is calculated, along with the ε indicator which serves

as an additional performance indicator. In the case where the hyperarea could

not be calculated, only the ε indicator is used. The hyperarea is maximised, while

the ε indicator is minimised. Results are also presented graphically along with

the true Pareto solution set.

4.1.3 General test specifications

The test simulations were conducted on a machine with an Intel i7 core (1.9 GHz)

and 32 GB RAM. Each algorithm was run for 500 simulations with the following

parameters:

1. Allowable number of loops: 100 (line 24 of Algorithm 2)

2. Population size N : 200

3. Maximum number of evaluations: 15 000

The above parameters were selected in line with those of the original MOO

CEM algorithm. By selecting these parameters, advantage could be taken of the

fact that the original MOO CEM algorithm requires fewer iterations (evaluations)

than many other algorithms.

Upon testing, it was found that the MOO CEM-Constraint and MOO CEM-

ENS algorithms require more iterations to converge to an acceptable solution

set. Therefore, the maximum number of evaluations was increased from 15 000 to

30 000 for the constrained problems and problems with more than two objective

functions.

The parameters were kept constant for the MOO CEM, MOO CEM-Beta and

MOO CEM-Cov algorithms.

4.2 MOO CEM-Beta performance evaluation

In order to determine if the proposed MOO CEM-Beta algorithm performed

statistically better than the original MOO CEM algorithm, both algorithms were

tested on the set of standard test problems presented in Section 2.6.

57

Stellenbosch University https://scholar.sun.ac.za

4.2 MOO CEM-Beta performance evaluation

Only the problems on which the original MOO CEM algorithm was tested

by Bekker (2012) were considered. MOP5 and MOP7 were not tested as these

problems have three objective functions and MOO CEM does not have the func-

tionality to solve problems with more than two objectives. This was to ensure a

comparable and fair test. The average hyperarea, execution time and Pareto set

size results of each test are listed in Table 4.1 for reference.

The results indicate a larger hyperarea for some problems, shorter runtime

and smaller Pareto set size, but simply comparing the average values does not

indicate whether or not there is a statistically significant difference between the

results. Therefore, the hypervolume, runtime and Pareto set size test results

of the MOO CEM and MOO CEM-Beta algorithms were then compared using

a one-tailed hypothesis test. The results of the one-tailed t-test are shown in

Table 4.2. The hypothesis tests were formulated as stated in Section 4.1. For the

hyperarea metric, the null hypothesis was rejected if a test produced a t∗ value

greater than 1.962, indicating that the MOO CEM-Beta algorithm produced a

larger hyperarea, and this therefore indicates that the MOO CEM-Beta algorithm

outperformed the MOO CEM algorithm. In terms of runtime, a left tailed t-test

was used to compare the algorithm runtimes. A t∗ value smaller than −1.962

will cause the null-hypothesis to be rejected, indicating a shorter runtime of the

MOO CEM-Beta algorithm and therefore, superior performance.

58

Stellenbosch University https://scholar.sun.ac.za

4
.2

M
O

O
C

E
M

-B
e
ta

p
e
rfo

rm
a
n
ce

e
v
a
lu

a
tio

n

Table 4.1: MOO CEM and MOO CEM-Beta results on some standard benchmark problems
MOO CEM-Beta MOO CEM

Test
Problem

Reference
Hyperarea

Mean
Hyperarea

Mean
Runtime (s)

Mean
Pareto Set

Size

Mean
Hyperarea

Mean
Runtime (s)

Mean
Pareto Set

Size
MOP1 14.132 8.006 0.360 1728.874 13.771 1.216 5999.314
MOP2 0.323 0.322 0.760 896.958 0.322 0.284 888.728
MOP3 34.338 34.324 0.203 619.614 34.319 0.280 575.770
MOP4 28.918 27.935 0.508 193.748 28.136 0.196 223.888
MOP6 0.777 0.774 0.624 844.87 0.773 0.252 801.44
ZDT1 0.767 0.704 2.542 476.50 0.695 6.772 464.600
ZDT2 6.833 6.772 2.244 289.430 6.189 4.377 310.150
ZDT3 1.040 0.950 1.800 163.92 0.587 2.243 167.038

59

Stellenbosch University https://scholar.sun.ac.za

4
.2

M
O

O
C

E
M

-B
e
ta

p
e
rfo

rm
a
n
ce

e
v
a
lu

a
tio

n

Table 4.2: One-tailed t-test results of MOO CEM compared MOO CEM-Beta results on some standard benchmark
problems

Hyperarea Runtime Pareto Set Size
Test

Problem
t∗ Outcome t∗ Outcome t∗ Outcome

MOP1 -18.647 No reject 43.578 Reject -46.980 No reject
MOP2 0.180 No reject -68.593 No reject 1.008 No reject
MOP3 0.333 No reject 23.002 Reject 6.887 Reject
MOP4 -38.637 No reject -43.746 No reject -7.054 No reject
MOP6 2.529 Reject -64.186 No reject 7.043 Reject
ZDT1 2.631 Reject 21.804 Reject 1.878 No reject
ZDT2 7.800 Reject 34.014 Reject 1.326 No reject
ZDT3 17.161 Reject 12.832 Reject 1.570 No reject

60

Stellenbosch University https://scholar.sun.ac.za

4.2 MOO CEM-Beta performance evaluation

The tests indicate that, for problems with a smaller number of decision vari-

ables (MOPs 1-4), the MOO CEM-Beta algorithm does not outperform the MOO

CEM algorithm in terms of maximising the hyperarea. In fact, by considering the

mean hyperareas alongside the t-test results for MOP4 and MOP6, it is clear that

the quality of the MOO CEM algorithm solutions exceed those produced by the

MOO CEM-Beta algorithm. However, for MOPs ZDT1, ZDT2 and ZDT3, which

each have 30 decision variables, MOO CEM-Beta outperforms the MOO CEM

algorithm and produces solutions with a better hyperarea. MOO CEM-Beta

also shows superior performance for MOP6 regarding the hyperarea performance

indicator.

With respect to runtime, the MOO CEM-Beta algorithm has faster execution

times for 5 out of the 8 problems (62.5%). The size of the MOO CEM algorithm

Pareto sets is generally larger (for 75% of problems) than the size of the Pareto

sets produced by the MOO CEM-Beta algorithm.

Considering these results, it can be concluded that the MOO CEM-Beta al-

gorithm produces similar results to the MOO CEM algorithm, generally with a

shorter runtime. Furthermore, the MOO CEM-Beta algorithm delivers superior

results to the MOO CEM algorithm for problems with a large number of decision

variables.

Figures 4.2-4.5 display the MOO CEM and MOO CEM-Beta approximate

Pareto sets and the true Pareto sets. The approximate Pareto sets were recalcu-

lated after the completion of the 500 simulations. The Pareto sets produced by

the MOO CEM and MOO CEM-Beta are almost indistinguishable for most test

problems, but the superiority of the MOO CEM-Beta algorithm can be clearly

seen in test problems ZDT1-3.

Refer to Appendix A for box-and-whisker diagrams comparing the hyperareas

of the MOO CEM, MOO CEM-Beta and true Pareto solution sets.

61

Stellenbosch University https://scholar.sun.ac.za

4.2 MOO CEM-Beta performance evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

f1

f 2

MOP1 Pareto front

MOP1 MOO CEM
MOP1 MOO CEM Beta
True MOP1 Pareto Front

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

MOP2 Pareto front

MOP2 MOO CEM
MOP2 MOO CEM Beta
True MOP2 Pareto Front

Figure 4.2: MOO CEM and MOO CEM Beta Pareto sets compared to the true
Pareto set for test problems MOP1 and MOP2

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

−25

−20

−15

−10

−5

0

f1

f 2

MOP3 Pareto front

MOP3 MOO CEM
MOP3 MOO CEM Beta
True MOP3 Pareto Front

−20 −19 −18 −17 −16 −15 −14

−12

−10

−8

−6

−4

−2

0

f1

f 2

MOP4 Pareto front

MOP4 MOO CEM
MOP4 MOO CEM Beta
True MOP4 Pareto Front

Figure 4.3: MOO CEM and MOO CEM Beta Pareto sets compared to the true
Pareto set for test problems MOP3 and MOP4

62

Stellenbosch University https://scholar.sun.ac.za

4.3 MOO CEM-Cov performance evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

1

f1

f 2

MOP6 Pareto front

MOP6 MOO CEM
MOP6 MOO CEM Beta
True MOP6 Pareto Front

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

ZDT1 Pareto front

ZDT1 MOO CEM
ZDT1 MOO CEM Beta
True ZDT1 Pareto Front

Figure 4.4: MOO CEM and MOO CEM Beta Pareto sets compared to the true
Pareto set for test problems MOP6 and ZDT1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

ZDT2 Pareto front

ZDT2 MOO CEM
ZDT2 MOO CEM Beta
True ZDT2 Pareto Front

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

1

f1

f 2

ZDT3 Pareto front

ZDT3 MOO CEM
ZDT3 MOO CEM Beta
True ZDT3 Pareto Front

Figure 4.5: MOO CEM and MOO CEM Beta Pareto sets compared to the true
Pareto set for test problems ZDT2 and ZDT3

4.3 MOO CEM-Cov performance evaluation

Covariance exploits the relationship between multiple decision variables. As the

MOP1 test problem only has one decision variable, it is required that this problem

is solved using the original MOO CEM algorithm.

63

Stellenbosch University https://scholar.sun.ac.za

4.3 MOO CEM-Cov performance evaluation

The one-tailed hypothesis tests described in Section 4.1 were conducted simi-

larly to the MOO CEM-Beta - MOO CEM comparison discussed in the previous

section. The mean hyperarea, runtime and Pareto set size test results for prob-

lems MOP2, MOP3, MOP4 and MOP6 are shown in Table 4.3 and the results of

the hypothesis tests are recorded in Table 4.4.

The MOO CEM-Cov algorithm could not be tested on the ZDT1, ZDT2 and

ZDT3 test problems. This was due to Matlab’s® maximum number of deci-

sion variables allowed (25), whereas these test problems each have 30 decision

variables. This limitation was circumvented by manually adjusting the decision

variable threshold, but due to the quasi-Monte Carlo integration algorithm used

to solve multivariate problems with more than three variables (see Section 3.2),

the extensive runtime made solving these problems using covariance infeasible.

Considering the hyperarea results of the two algorithms, the MOO CEM-Cov

algorithm does not produce a t∗ value greater than the critical t-value (1.962), and

therefore does not yield better results than the MOO CEM algorithm. Regard-

ing the runtime performance indicator, the MOO CEM algorithm has a shorter

runtime for all problems. The MOO CEM algorithm generally produces a larger

Pareto set than the MOO CEM-Cov algorithm (for 75% of problems). The only

problem for which the MOO CEM-Cov algorithm produces a larger Pareto set

than the MOO CEM algorithm, is MOP6.

Given the results, it can be concluded that the MOO CEM-Cov does not

produce better results than the MOO CEM algorithm.

Figures 4.6-4.7 display the MOO CEM and MOO CEM-Cov approximate

Pareto sets and the true Pareto sets. The approximate Pareto sets were recalcu-

lated after the completion of the 500 simulations. For more detail regarding these

results, refer to Appendix A which contains box-and-whisker diagrams compar-

ing the hyperareas produced by MOO CEM and MOO CEM-Cov and the true

Pareto set.

64

Stellenbosch University https://scholar.sun.ac.za

4
.3

M
O

O
C

E
M

-C
o
v

p
e
rfo

rm
a
n
ce

e
v
a
lu

a
tio

n

Table 4.3: MOO CEM and MOO CEM-Cov results on some standard benchmark problems
MOO CEM-Cov MOO CEM

Test
Problem

Reference
Hyperarea

Mean
Hyperarea

Mean
Runtime (s)

Mean
Pareto Set

Size

Mean
Hyperarea

Mean
Runtime (s)

Mean
Pareto Set

Size
MOP2 0.323 0.320 14.307 933.098 0.322 0.284 888.728
MOP3 34.338 33.524 0.800 1321.004 34.319 0.280 575.770
MOP4 28.918 28.035 8.481 474.082 28.136 0.196 223.888
MOP6 0.777 0.771 2.150 820.322 0.773 0.252 801.44

Table 4.4: One-tailed t-test results of MOO CEM compared MOO CEM-Cov results on some standard benchmark
problems

Hyperarea Runtime Pareto Set Size
Test

Problem
t∗ Outcome t∗ Outcome t∗ Outcome

MOP2 -15.915 No reject -66.465 No reject 5.771 Reject
MOP3 -13.129 No reject -59.217 No reject 71.923 Reject
MOP4 -2.327 No reject -55.126 No reject -38.757 Reject
MOP6 -2.122 No reject -70.370 No reject 0.664 No reject

65

Stellenbosch University https://scholar.sun.ac.za

4.4 MOO CEM-Constraint performance evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

MOP2 Pareto front

MOP2 MOO CEM
MOP2 MOO CEM Cov

True MOP2 Pareto Front

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

−25

−20

−15

−10

−5

0

f1

f 2

MOP3 Pareto front

MOP3 MOO CEM
MOP3 MOO CEM-Cov

True MOP3 Pareto Front

Figure 4.6: MOO CEM and MOO CEM-Cov Pareto sets compared to the true
Pareto set for test problems MOP2 and MOP3

−20 −19 −18 −17 −16 −15 −14

−12

−10

−8

−6

−4

−2

0

f1

f 2

MOP4 Pareto front

MOP4 MOO CEM
MOP4 MOO CEM-Cov

True MOP4 Pareto Front

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

1

f1

f 2

MOP6 Pareto front

MOP6 MOO CEM
MOP6 MOO CEM-Cov

True MOP6 Pareto Front

Figure 4.7: MOO CEM and MOO CEM-Cov Pareto sets compared to the true
Pareto set for test problem MOP4 and MOP6

4.4 MOO CEM-Constraint performance evalu-

ation

The tests conducted on the MOO CEM-Beta algorithm showed promising re-

sults. Therefore, this algorithm (rather than the original MOO CEM algo-

rithm) was enhanced to include both constraint methods discussed in Section 3.3.

66

Stellenbosch University https://scholar.sun.ac.za

4.4 MOO CEM-Constraint performance evaluation

This enhancement gives the algorithm the ability to solve problems with side-

constraints. Four standard side-constraint problems (MOP-C1, -C2 , -C3 and

-C4, see Table 2.5 for details) were selected to test the performance of the algo-

rithm. The results of MOP-C3 are discussed in the subsequent chapter, as this

problem has three objective functions, which cannot be solved by the current

variation of the MOO CEM algorithm.

The method of discarding infeasible solutions (Section 3.3.1) was applied to

the algorithm first (according to Algorithm 14), as this is the simpler of the two

techniques. Although this method could locate the Pareto solution set for some

test problems, a high number of iterations and an increased population size was

required. The result was a long runtime and an inaccurate Pareto solution set.

Thereafter, the dynamic penalty method considered in Section 3.3.2 was ap-

plied to the MOO CEM-Beta algorithm according to Algorithm 15 to develop

the MOO CEM-Constraint algorithm. The hyperarea and ε indicator were cal-

culated for these two-objective problems and compared to the true Pareto so-

lution set. The average runtime and size of the Pareto solution set were also

recorded in Table 4.5. Figures 4.8 and 4.9 show the solution sets generated by

the enhanced algorithm compared to the true Pareto solution set for problems

MOP-C1, MOP-C2 and MOP-C4. Box-and-whisker plots of the hyperarea can

be found in Appendix A.3.

Table 4.5: MOO CEM-Constraint results on some standard constrained bench-
mark problems

MOO CEM-Constraint
Test
Problem

Reference
Hyperarea

Mean
Hyperarea

Epsilon
Indicator

Mean
Runtime (s)

Mean
Pareto Set

Size
MOP-C1 8333.333 8332.675 < 10−3 7.330 10031.262
MOP-C2 13530.128 11481.3372 2.885 1.011 140.656
MOP-C4 0.319 0.294 0.106 0.399 170.742

67

Stellenbosch University https://scholar.sun.ac.za

4.4 MOO CEM-Constraint performance evaluation

Comparing the hyperarea generated by the solution set to the reference hy-

perarea (hyperarea of the true Pareto solution set), for problem MOP-C1 a mean

difference in hyperarea of less than 0.01% is observed. This indicates that the

solution set produced by the algorithm and the true Pareto solution set are very

similar. This observation is supported by the very small ε indicator (< 10−3),

indicating a very small difference between the solution set produced by the algo-

rithm and the true Pareto solution set. The Pareto set produced is large and the

runtime is rather lengthy. This long runtime could be attributed to the additional

complexity of the dynamic penalty method.

For problem MOP-C2, a larger difference between the hyperarea of generated

solution set and true Pareto solution set is seen (15%). Considering Figure 4.8,

it is observed that the generated solutions closely approximate the true Pareto

front for larger values of f1, but deviate from the true front for smaller values

of f1. Nevertheless, the ε indicator remains relatively small (2.885), indicating

that the generated solution set is usually not far from the true Pareto solution

set. The runtime of this problem is significantly shorter than that of MOP-C1,

which could be as a result of the notably smaller Pareto set. The accuracy of

the generated solutions could possibly be improved by increasing the number of

iterations for which the algorithm is run. Since the runtime of this problem is

currently short, this may be a feasible solution.

The results of MOP-C4 show a mean difference in hyperarea of the generated

solution set and the true Pareto solution set of 8%. The ε indicator denotes

a relatively small difference between the two solution sets (0.106), suggesting

that the generated solution set closely approximates the true Pareto set. A short

runtime and relatively small Pareto size are observed. For MOP-C2, the generated

solution set could be improved as suggested above.

68

Stellenbosch University https://scholar.sun.ac.za

4.4 MOO CEM-Constraint performance evaluation

−20 0 20 40 60 80 100 120 140 160 180 200 220

0

10

20

30

40

50

f1

f 2

MOP-C1 Pareto front

MOP-C1 MOO CEM-Constraint
True MOP-C1 Pareto Front

−280−260−240−220−200−180−160−140−120−100−80−60−40−20

0

20

40

60

80

100

f1

f 2

MOP-C2 Pareto front

MOP-C2 MOO CEM-Constraint
True MOP-C2 Pareto Front

Figure 4.8: MOO CEM-Constraint Pareto sets compared to the true Pareto set
for test problems MOP-C1 and MOP-C2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f 2

MOP-C4 Pareto front

MOP-C4 MOO CEM-Constraint
True MOP-C4 Pareto Front

Figure 4.9: MOO CEM-Constraint Pareto sets compared to the true Pareto set
for test problem MOP-C4

69

Stellenbosch University https://scholar.sun.ac.za

4.5 MOO CEM-ENS performance evaluation

4.5 MOO CEM-ENS performance evaluation

The MOO CEM-Beta algorithm was enhanced by including the ENS-SS ranking

algorithm (Algorithms 9 and 10) as discussed in Section 3.4. This algorithm is

referred to as MOO CEM-ENS. This enhancement gives the algorithm the ability

to solve problems with more than two objective functions. In order to evaluate

the performance of this enhanced algorithm, it was tested on three benchmark

problems (MOP5, MOP7 and MOP-C3), each having three objective functions.

Due to the computational complexity associated with calculating hypervol-

ume, the ε indicator was used as the performance metric for evaluation. The

average runtime and size of the Pareto solution set were recorded and results can

be found in Table 4.6. Figures 4.10 and 4.11 show the solution sets generated by

the enhanced algorithm as well as the true Pareto solution set. Box-and-whisker

plots of the hyperarea are displayed in Appendix A.4.

Table 4.6: MOO CEM-ENS results on some standard benchmark problems with
more than two objectives

MOO CEM-ENS
Test
Problem

Epsilon
Indicator

Mean
Runtime (s)

Mean
Pareto Set

Size
MOP5 0.030 178.977 216.24
MOP7 0.004 73.209 4333.357
MOP-C3 0.480 284.382 8131.985

It is observed that the runtime of these problems is significantly longer than

those of problems with only two objective functions. A portion of this lengthy

runtime can be attributed to the time required by the ranking and selection

algorithm (ENS). The runtimes cannot be compared to those of the MOPs in

Section 4.2, as these problems were run for 15 000 iterations, while MOP5, MOP7

and MOP-C3 required double the number of iterations to converge to a reasonable

solution set.

For MOP5, when comparing the solution set of the algorithm to the true

Pareto solution set, the ε indicator was found to be very small (0.03). This

indicates that there is very little difference between the algorithm solution set

70

Stellenbosch University https://scholar.sun.ac.za

4.5 MOO CEM-ENS performance evaluation

and the true Pareto solution set. The size of the generated Pareto set is relatively

small compared to MOP7 and MOP-C3; however, given the small ε indicator, the

solution set closely approximates the true Pareto solution set.

The ε indicator calculated for MOP7 is extremely small (0.004), implying that

the algorithm solution set and the true Pareto solution set are almost identical.

This observation is supported by Figure 4.10, showing that the two sets are

almost indistinguishable. For this problem, the algorithm produced a large Pareto

solution set.

The results of MOP-C3 show a relatively small ε indicator (0.48). It can be

deduced that the algorithm produces a good solution set which approximates the

true Pareto solution set. From Figure 4.11, it is observed that the algorithm

produces extremely good solutions for smaller values of f3, where solutions are

concentrated. As values of f3 increase, the solutions become less concentrated

and resemble a line. For these larger values of f3, the solutions produced by the

algorithm are further from the true Pareto set. It is theorised that the accuracy

of the solutions could be increased by increasing the number of iterations, but

this would increase the already lengthy runtime. For this problem, a very large

Pareto solution set is produced.

0
2

4
6

15

15.5
16

16.5
17

−0.1

0

0.1

0.2

f1f2

f 3

MOP5 Pareto front

True MOP5 Pareto Front
MOP5 MOO CEM-ENS

3

3.5

4
−17 −16.9 −16.8 −16.7 −16.6 −16.5

−13

−12.8

−12.6

−12.4

−12.2

−12

f1

f2

f 3

MOP7 Pareto front

True MOP7 Pareto Front
MOP7 MOO CEM-ENS

Figure 4.10: MOO CEM-ENS Pareto sets compared to the true Pareto set for
test problems MOP5 and MOP7

71

Stellenbosch University https://scholar.sun.ac.za

4.6 Summary: Chapter 4

4

6
−12.5

−12

15

20

25

f1

f2

f 3

MOP-C3 Pareto front

MOP-C3 MOO CEM-ENS
True MOP-C3 Pareto Front

Figure 4.11: MOO CEM-ENS Pareto sets compared to the true Pareto set for
test problem MOP-C3

4.6 Summary: Chapter 4

The results showed that the MOO CEM-Beta algorithm outperforms the original

MOO CEM algorithm on some benchmark problems. This indicates that replacing

the truncated normal distribution with the Beta distribution is a suitable method

of improving the algorithm’s sampling method.

Using covariance of decision variables does not improve sampling and the

MOO CEM-Cov algorithm did not perform as well as the MOO CEM algorithm.

The MOO CEM-Beta algorithm was further enhanced by using the dynamic

penalty method to solve constrained problems (MOO CEM-Constraint). Fur-

thermore by implementing the ENS-SS non-dominated sorting algorithm, MOO

CEM-Beta also boasts the functionality to solve problems with more than two

objective functions (MOO CEM-ENS).

In the next chapter, a final algorithm combining the enhancement and im-

provement methods is proposed.

72

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Proposed enhanced MOO CEM

algorithm

Taking into account the results presented in the previous chapter, a final algorithm

is proposed. This algorithm uses the Beta distribution for sampling (replacing

the original truncated normal distribution sampling), enhances the original MOO

CEM algorithm by giving it the ability to solve constrained problems (through

the addition of a dynamic penalty function) and problems with more than two ob-

jective functions (by replacing the Pareto ranking algorithm with ENS-SS). Test

results indicate that considering covariance when sampling is not an appropriate

method to improve the sampling of the MOO CEM algorithm, especially not for

problems with a very large number of decision variables, and it is therefore not

included in the final algorithm.

This final algorithm pseudo code is presented in Algorithm 16. The algorithm

follows the same logic as the original MOO CEM algorithm, with the addition of

the proposed enhancements. The Matlab® code of the algorithm is presented in

Appendix B.

73

Stellenbosch University https://scholar.sun.ac.za

Algorithm 16 Enhanced MOO CEM Algorithm

1: Set Elite = ∅, t = 1, k = 1.
2: Initialise variable vectors Xi = ∅, 1 ≤ i ≤ D, and compute initial objective

values.
3: For each decision variable xi, 1 ≤ i ≤ D initialise a histogram class vec-

tor Ci = {ci1, ci2, . . . , ci(r+2), ci(r+2)+1} and histogram frequency vector Ri =
{τi1, τi2, . . . , τi(r+1), τi(r+2)}.

4: Set i = 1.
5: Set κ = 0.
6: Increment κ.
7: for each frequency element τiκ in Ri do
8: Find the Elite solutions which fall into the range [ciκ ci(κ+1)).
9: if one or no unique Elite solutions fall within this range then
10: Set αiκ = 1.
11: Set βiκ = 1.
12: else
13: Calculate a class based αiκ and βiκ of the distribution of the corre-

sponding Elite solutions over the normalised range 0− 1.
14: end if
15: Generate a subsample Y according to the pdf Beta (αi,βi).
16: with xi ε [ciκ ci(κ+1)) and |Y| = τiκ, 1 ≤ κ ≤ r + 2 .
17: Append Y to Xi.
18: end for
19: If κ < r + 2 , return to Step 6.
20: Invert the histogram counts with probability ph.
21: Increment i.
22: If i ≤ D, return to Step 5.
23: Compute the NK objective function values using Xi, 1 ≤ i ≤ D
24: for each constraint q do
25: Calculate the distance measure di of each solution according to (2.14).
26: Calculate the penalty pi of each solution according to (2.20).
27: Calculate the final modified objective value of each solution using (2.13).
28: end for
29: If the problem is constrained, rank the final modified objective values,

otherwise rank the objective function values using the Pareto ranking of
Algorithm 9 with a relaxed ρE = 2 to obtain an updated elite vector Elite.

74

Stellenbosch University https://scholar.sun.ac.za

30: Form new histogram class vectors Ci and histogram frequency vectors Ri

based on Elite , 1 ≤ i ≤ D.
31: Use the values in Elite and compute αit and βit for all i, 1 ≤ i ≤ D.
32: Smooth the vectors αit and βit using (2.3).
33: Calculate the differences between αit and αit−1; and βit−1 and βit.
34: If all changes in αi and βi > εc, or less than the allowable number of evalua-

tions have been done, increment t and reiterate from Step 4.
35: If the problem is constrained, rank the elite vector Elite on the final modified

objective values, otherwise rank the elite vector Elite on the objective values,
using the Pareto ranking of Algorithm 9 with ρE = 1.

36: Increment k.
37: If k is less than the allowable number of loops, return to Step 2.
38: Rank the elite vector Elite using the Pareto ranking Algorithm 9 with ρE = 0

to obtain the final elite vector.

The algorithm commences by creating a number of variables: Elite, which

will contain the Pareto solution set, the allowable number of evaluations t, the

allowable number of loops k and a vector for each decision variable xi. In Step 3,

the decision space of each decision variable is divided into r+ 2 histogram classes

with a total frequency of N (the number of solutions).

Beta distribution parameters αiκ and βiκ are calculated for each histogram

class. This is done in Step 7 by first identifying which of the solutions of the

previous iteration fall into the current histogram class. If fewer than two solutions

fall within the class, αiκ and βiκ cannot be calculated and are, therefore, each

assigned a value of 1 (Steps 10 and 11). With parameters having a value of 1 a

uniform distribution is used for sampling for the particular class. Otherwise, the

solutions in the class are normalised (to fall within the range 0−1) and parameters

αiκ and βiκ are calculated for the distribution in Step 13. New solutions are then

generated according to the probability density function of the Beta distribution

with parameters αiκ and betaiκ in Steps 15 to 17. The number of solutions sampled

is determined by the frequency element τiκ. To ensure diversity, in Step 20 the

histogram counts (or frequency elements) are inverted with a probability ph (for

example, if N is 10 and the histogram count is 2, the inverted count would be 8).

This process is repeated for each decision variable.

75

Stellenbosch University https://scholar.sun.ac.za

The objective functions of each of the N solutions are calculated in Step 23.

If the problem is constrained, the penalty value of each sample is then calculated

according to the dynamic penalty method (Subsection 3.3.2) in Steps 25 and 26.

In Step 27, a modified objective value is then calculated by taking the penalty

into account. For a minimisation problem, the penalty is added to the original

objective value. For a maximisation problem, on the other hand, the penalty

value is subtracted. In this way, solutions far from the feasible region will have

very large penalties and therefore large modified objective values, similar to poor

solutions that fall within the feasible region (which will have no added penalty

value).

The solutions are ranked according to their calculated objective values in

Step 29. Unconstrained problems are ranked according to their original objective

function values. For constrained problems, the solutions are ranked according

to the modified objective value. ENS-SS is used as the ranking algorithm, as

this algorithm can rank more than two objective values at once and is relatively

computationally efficient. A relaxed ρE = 2 value is chosen in this step, which

refers to the third best solution set. It includes solutions which have a rank of two

or less, which includes the best (ρE = 0), second best (ρE = 1) and third best

solution sets. This is to ensure exploration and exploitation of the algorithm.

The second time the solution is ranked (Step 35), ρE is set to 1 and objectives

are again ranked on the modified objective values. However, when solutions are

ranked for the last time (in Step 38), only solutions with a rank of ρE = 0 are

preserved and solutions are ranked on the original objective values. This is to

ensure all solutions are feasible.

Based on the new solution set (or Elite set), new histogram classes and fre-

quencies are calculated in Step 30. A single αit and βit per iteration are calculated

for each decision variable and smoothed in Steps 31 and 32. Smoothing is done

using the ω parameter, which can be increased or decreased to change the ratio

of old to new (current iteration) solutions.

These values of αit and βit are used as one of the methods to determine

whether the stopping criteria are met. This is done by comparing these values

to the values of αit−1 and βit−1 of the previous iteration. If there is no change in

either α or β between iterations, the algorithm is assumed to have reached steady

76

Stellenbosch University https://scholar.sun.ac.za

state, indicating that the solution has converged and additional iterations would

not improve the solution (Step 34). In Step 35, the solutions are ranked with an

adjusted value of ρE = 1, discarding weaker solutions. This is the final step of

the iteration and the iteration number k is incremented in Step 36. The second

stopping criterion is reached when the number of the current iteration reaches

the maximum allowable number of loops in Step 37. If the maximum number of

iterations is reached, the algorithm is terminated with one final ranking of the

solutions in Step 37. Otherwise, the algorithm is repeated from Step 2 for the

next iteration.

The enhanced MOO CEM algorithm outlined in Algorithm 16 incorporates

functionality which makes it more flexible and suited to a variety of problem

classes. In the next chapter, the research conducted in this thesis is summarised

and conclusions are reached regarding the enhancement techniques and proposed

algorithms. Future areas of research which build on the findings presented in this

thesis are also put forward.

77

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Research summary and
conclusions

This chapter summarises the research conducted and presents the research con-

clusions. Future areas of research are suggested and an appraisal of the research

is performed. Finally, some concluding remarks are made.

6.1 Project summary and conclusions

This study explored some methods of improving and enhancing the MOO CEM

algorithm developed by Bekker (2012). After studying the MOO CEM algorithm,

the following three areas were identified with direction from the developer of the

original MOO CEM algorithm, Bekker (2012):

� Improve the method of sampling.

� Add functionality to solve constrained problems.

� Add functionality to solve problems with more than two objectives.

Upon performing a literature review of the techniques available for each of

the suggested improvements and enhancements, four methods were selected to

address the areas of improvement and enhancement:

� Use the Beta distribution as a method of improving sampling, rather than

the truncated normal distribution.

78

Stellenbosch University https://scholar.sun.ac.za

6.1 Project summary and conclusions

� Consider using the covariance of the decision variables to improve sampling.

� Enhance the MOO CEM algorithm by adding functionality to solve con-

strained problems through the use of one of two techniques: the elimination

method or the dynamic penalty method.

� Use the ENS-SS algorithm to sort solutions according to more than two

objective functions, thereby adding the functionality to solve problems with

more than two objectives.

Each of the four techniques was applied to the MOO CEM algorithm sepa-

rately and the new proposed algorithms were tested on benchmark problems. The

results were compared to those produced by the original MOO CEM algorithm

where possible (for problems which could be solved by MOO CEM) by means of a

one-tailed t-test, based on the hyperarea, runtime and size of the observed Pareto

set. For those problems which could not be solved by MOO CEM, due to the

limitations of the algorithm, two Pareto-compliant indicators were calculated and

reported: the hyperarea (which is to be maximised) and the ε indicator (which

is to be minimised). For certain problems, the hyperarea could not be calculated

due to the shape of the solution set. In these cases, only values for the ε indicator

were presented.

The results produced by the MOO CEM-Beta algorithm (which replaced the

truncated normal distribution with the Beta distribution) showed great promise.

Results indicate that the MOO CEM-Beta algorithm produces a hyperarea no

worse than that produced by the MOO CEM algorithm for some problems (MOP1-

MOP4) and a larger hyperarea for other problems (MOP6 and ZDT1-ZDT3),

suggesting a better solution set, and therefore, better performance. The MOO

CEM-Beta algorithm performs particularly well for problems with a high number

of decision variables (ZDT problems with 30 decision variables each). In general,

the MOO CEM-Beta is faster (has a shorter runtime) than the MOO CEM algo-

rithm. Although MOO CEM-Beta generally produces a smaller observed Pareto

set, this metric cannot be considered in isolation and the performance of the algo-

rithm is evaluated by considering all three metrics simultaneously. In summary,

79

Stellenbosch University https://scholar.sun.ac.za

6.1 Project summary and conclusions

replacing the truncated normal distribution with the Beta distribution improves

the quality of the solution set produced by the algorithm.

The solution sets produced by the MOO CEM-Cov algorithm (which takes

covariance of the decision variables into account, rather than using the trun-

cated normal distribution for sampling) were compared to those produced by the

original MOO CEM algorithm. The test results indicate that considering covari-

ance of decision variables does not improve sampling and, therefore, the quality

of the solution sets. This was particularly evident for problems with a high num-

ber of decision variables (such as ZDT problems with 30 decision variables each)

where the algorithm did not converge within a reasonable amount of time.

On account of the promising results shown by the MOO CEM-Beta algorithm,

the two suggested enhancements were applied to this algorithm, rather than to the

original MOO CEM algorithm. In terms of constraints, both suggested constraint

methods were applied to the MOO CEM-Beta algorithm.

The simplest method of elimination was found not to be suitable, as the num-

ber of iterations and sample size required to achieve an acceptable solution set

were too large. It is concluded that this is not a practicable method of solv-

ing constrained problems. The second method was considered: using a dynamic

penalty method to evaluate infeasible solutions. This technique produced positive

results. All problems showed a small difference in hyperarea compared to that of

the true Pareto solution set and the calculated ε indicator was small, both indi-

cating that the enhanced algorithm produces a solution set which approximates

the true Pareto solution set. This implies that applying the dynamic penalty

method is an appropriate method of enhancing the MOO CEM algorithm, giving

it the functionality to solve constrained problems.

The ENS-SS algorithm for the ranking and selection of solution sets with

more than two objectives was applied to the MOO CEM-Beta algorithm. The

performance of the algorithm was tested on three problems, using the ε indicator

as a performance metric. The tests of each problem produced extremely small

ε indicators (all less than 0.5), suggesting that the solutions produced by the

enhanced algorithm and the true Pareto solution set are acceptably similar. This

indicates that the integration of the ENS-SS algorithm with the MOO CEM-Beta

80

Stellenbosch University https://scholar.sun.ac.za

6.1 Project summary and conclusions

algorithm was successful, giving it the ability to solve problems with more than

two objectives.

Considering the results produced by each of the improved and enhanced

algorithms, a final algorithm was presented in Chapter 5, which includes the

Beta distribution, ENS-SS algorithm and the dynamic penalty method, as these

algorithms used in conjunction, produced the best results.

In summary, the research objectives set out in Chapter 1 were achieved

through the following:

1. The four suggested methods of improvements and enhancements were each

applied to the original MOO CEM algorithm.

2. It was established which of these techniques are suitable as methods of

improvement

3. Using the Beta distribution as a sampling method improved the results of

the algorithm.

4. Incorporating the covariance of the decision variables in the sampling method

did not improve the performance of the algorithm.

5. The dynamic penalty method added constraint handling functionality to

the new MOO CEM-Beta algorithm.

6. Replacing the Pareto ranking and selection algorithm with ENS-SS gave

the new MOO CEM-Beta algorithm the ability to solve problems with more

than two objectives.

7. A final enhanced MOO CEM algorithm was proposed, incorporating the

successful improvements and enhancements.

Considering the summary and conclusions drawn from the research, a few

suggestions are made for further research in the subsequent section.

81

Stellenbosch University https://scholar.sun.ac.za

6.2 Future research

6.2 Future research

Building on the research presented in this study, the following suggestions are

made for future research:

1. Test the proposed algorithm on more problems with high numbers of deci-

sion variables. The results of the MOO CEM-Beta tests indicated that the

algorithm is especially effective on problems with a high number of decision

variables, but this observation should be verified through additional testing.

2. The proposed algorithm should be tested on problems with more than three

objective functions.

3. A faster sorting algorithm could be considered to decrease the runtime of

problems with a high number of objectives.

4. The performance of the algorithm should be compared to other industry

leading optimisation algorithms.

In the next section, the study presented is critically evaluated.

6.3 Appraisal of research

During the course of conducting the research required for this study, the re-

searcher gained knowledge in various areas of optimisation. A number of tech-

niques related to the four methods of enhancement were investigated. The re-

searcher is confident that sufficient evidence has been provided of the value added

to the original MOO CEM algorithm through the addition of the selected tech-

niques, thereby meeting the objectives set out at the start of the research.

However, the performance of the newly proposed algorithm should be tested

on additional test problems, as well as on practical industry problems. Specifi-

cally, constrained and many-objective problems should be included.

The developed enhanced algorithm has been tested on a representative, yet

limited, set of benchmark problems on which it performed satisfactorily. The

researcher does not claim that the enhanced algorithm will outperform all other

82

Stellenbosch University https://scholar.sun.ac.za

6.4 Concluding remarks

optimisation algorithms on all problems, or that the algorithm would be able to

solve every new optimisation problem. This is in line with the No Free Lunch

Theorem by Wolpert & Macready (1997).

During the development of the proposed algorithm, a new sorting algorithm

was published by Moreno et al. (2020): MNDS. This algorithm has proven to be

especially efficient for problems with many dimensions. Should the new enhanced

MOO CEM algorithm be applied to these types of problems, it is recommended

that this algorithm be investigated.

The research is concluded with some closing remarks in the last section.

6.4 Concluding remarks

In this final section, the author wishes to share some reflections regarding this

study.

This research introduced the researcher to the field of optimisation. Hav-

ing spent some time working in the industry, made the researcher acutely aware

of the importance and value of optimisation, specifically multi-objective optimi-

sation. Realistically, few problems have only one single goal and even fewer are

unconstrained. By enhancing the original MOO CEM algorithm, significant func-

tionality has been added, making it suitable for practical implementation in the

industry.

In industry, time is limited and there is little opportunity for exploratory

research. This project has given the researcher a chance to explore different areas

of optimisation improvement and implement these techniques. Some techniques

proved successful, while others did not. Although unsuccessful, this knowledge

is not without value, as it would prevent future researchers from spending time

exploring the same unfruitful areas.

In closing, an insight by William Of Occam, inspiring us all to optimise: “It

is futile to do with more things that which can be done with fewer”.

83

Stellenbosch University https://scholar.sun.ac.za

Bibliography

Astolfi, A. (2006). Optimization: An introduction. 12

Bekker, J. (2012). Applying the cross-entropy method in multi-objective optimi-

sation of dynamic stochastic systems . Ph.D. thesis, University of Stellenbosch.

3, 4, 5, 10, 16, 17, 20, 21, 38, 58, 78

Bekker, J. (2019). Introduction to discrete-event simulation. 54

Burkardt, J. (2014). The Truncated Normal Distribution. Department of Sci-

entific Computing , Florida State University , 1–35. 4

Bury, K. (2012). Beta Distributions. Statistical Distributions in Engineering , 1,

238–266. 22

Coello, C.A.C. (2002). Theoretical and Numerical Constrain-Handling Tech-

niques used with Evolutionary Algorithms: A Survey of the State of the Art.

93. 29, 30, 41, 48, 49

Coello, C.A.C. (2006). Evolutionary Multi-Objective optimization: A Histor-

ical View of the Field. IEEE Computational Intelligence Magazine, 12, 66–70.

15, 29

Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V., Goldberg, D.E.

& Koza, J.R. (2007). Evolutionary Algorithms for Solving Multi-Objective

Problems Second Edition Genetic and Evolutionary Computation Series Series

Editors Selected titles from this series :. 38, 39

84

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY

Fan, Z., Li, W., Cai, X., Li, H., Wei, C., Zhang, Q., Deb, K. & Good-

man, E. (2019). Difficulty Adjustable and Scalable Constrained Multiobjective

Test Problem Toolkit. Evolutionary Computation, 1–40. 2

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Ma-

chine Learning . Addison-wesley Publishing Company Inc. 19, 21, 34

Igel, C., Hansen, N. & Roth, S. (2007). Covariance matrix adaptation for

multi-objective optimization. Evolutionary Computation, 15, 1–28. 3, 5, 21,

27, 28, 46

Jiang, S., Ong, Y.S., Zhang, J. & Feng, L. (2014). Consistencies and

contradictions of performance metrics in multiobjective optimization. IEEE

Transactions on Cybernetics , 44, 2391–2404. 37, 38, 39

Liefooghe, A. & Derbel, B. (2016). A correlation analysis of set quality

indicator values in multiobjective optimization. GECCO 2016 - Proceedings of

the 2016 Genetic and Evolutionary Computation Conference, 581–588. 40

McClymont, K. & Keedwell, E. (2012). Deductive sort and climbing sort:

New methods for non-dominated sorting. Evolutionary Computation, 20, 1–26.

34

Moreno, J., Rodriguez, D., Nebro, A.J., Lozano, J.A. & Member,

S. (2020). Merge Non-Dominated Sorting Algorithm for Many-Objective Op-

timization. IEEE , 1–13. 34, 35, 83

Quiza Sardiñas, R., Rivas Santana, M. & Alfonso Brindis, E. (2006).

Genetic algorithm-based multi-objective optimization of cutting parameters in

turning processes. Engineering Applications of Artificial Intelligence, 19, 127–

133. 13

Rice, J.A. (2007). Mathematical statistics and data analysis , vol. 34. Thomson

Brooks/Cole, 3rd edn. 24, 25

Richardson, J.T., Palmer, M.R., Liepins, G. & Hilliard, M. (1989).

Some Guidelines for Genetic Algorithms with Penalty Functions. Proceedings

of the Third International Conerence on Genetic Algorithms . 30

85

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY

Riquelme, N., Von Lücken, C. & Barán, B. (2015). Performance met-

rics in multi-objective optimization. Proceedings - 2015 41st Latin American

Computing Conference, CLEI 2015 . 38

Roy, P.C., Islam, M.M. & Deb, K. (2016). Best order sort: A new algo-

rithm to non-dominated sorting for evolutionary multi-objective optimization.

GECCO 2016 Companion - Proceedings of the 2016 Genetic and Evolutionary

Computation Conference, 1113–1120. 34

Rubinstein, R.Y. & Kroese, D.P. (2004). The Cross-Entropy Method: A

Unfied Approach to Combinatorial Optimization, Monte-Carlo Simulation, and

Machine Learning . Springer. 16

Savic, D. (2002). Single-objective vs Multiobjective Optimisation for Integrated

Decision Support. Proceedings of the First Biennial Meeting of the International

Environmental Modelling and Software Society , 7–12. 2, 13

Tessema, B. & Yen, G.G. (2006). A self-adaptive constrained evolutionary

algorithm. Proceedings of the IEEE International Conference on Evolutionary

Computation. 31

Theodossiou, N., Karakatsanis, D. & Kougias, I. (2014). The history of

optimization. Applications in water resources management. Conference of the

Hellenic Hydrotechnical Association (H.H.A). 13

Venter, G. (2010). Review of Optimization Techniques. Encyclopedia of

Aerospace Engineering . 13, 15

Wang, G. (2018). Brief History of Optimization. 13

Wang, H. & Yao, X. (2014). Corner sort for pareto-based many-objective

optimization. IEEE Transactions on Cybernetics , 44, 92–102. 34

While, L. (2005). A new analysis of the LebMeasure algorithm for calculating

hypervolume. Lecture Notes in Computer Science, 3410, 326–340. 39

86

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY

Woldesenbet, Y.G., Tessema, B.G. & Yen, G.G. (2007). Constraint han-

dling in multi-objective evolutionary optimization. 2007 IEEE Congress on

Evolutionary Computation, CEC 2007 , 3077–3084. 4, 29, 30, 31, 33, 50

Wolpert, D.H. & Macready, W.G. (1997). No Free Lunch Theorems for

Optimisation. IEEE Transactions on Evolutionary Computation, 1, 287–322.

83

Zhang, X., Tian, Y., Cheng, R. & Jin, Y. (2015). An Efficient Approach to

Non-dominated Sorting for Evolutionary Multi-objective. IEEE Transactions

on Evolutionary Computation, 19, 1–15. 34, 36, 51

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications. TIK-SCHRIFTENREIHE , 30, 691–698. 14, 19, 39

87

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Performance indicator

box-and-whisker plots

The box-whisker plots of the benchmark problems discussed in Chapter 4 are

displayed in figures A.1 to A.18. Figures A.1 to A.15 refer to the hyperarea

metric, while A.16 to A.18 refer to the ε indicator.

88

Stellenbosch University https://scholar.sun.ac.za

A.1 MOO CEM-Beta

A.1 MOO CEM-Beta

0 2 4 6 8 10 12 14

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.1: MOP1 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Beta hyperarea

0.32 0.32 0.32 0.32

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.2: MOP2 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Beta hyperarea

89

Stellenbosch University https://scholar.sun.ac.za

A.1 MOO CEM-Beta

34 34.5 35 35.5

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.3: MOP3 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Beta hyperarea

25 26 27 28 29 30

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.4: MOP4 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Beta hyperarea

90

Stellenbosch University https://scholar.sun.ac.za

A.1 MOO CEM-Beta

0.76 0.77 0.77 0.78 0.78

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.5: MOP6 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Beta hyperarea

0.4 0.5 0.6 0.7 0.8

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.6: ZDT1 box-whisker plot of the MOO CEM algorithm hyperarea com-
pared to MOO CEM-Beta hyperarea

91

Stellenbosch University https://scholar.sun.ac.za

A.1 MOO CEM-Beta

0 0.2 0.4 0.6 0.8 1

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.7: ZDT2 box-whisker plot of the MOO CEM algorithm hyperarea com-
pared to MOO CEM-Beta hyperarea

0 2 4 6

MOO CEM

True Hyperarea

MOO CEM-Beta

Figure A.8: ZDT3 box-whisker plot of the MOO CEM algorithm hyperarea com-
pared to MOO CEM-Beta hyperarea

92

Stellenbosch University https://scholar.sun.ac.za

A.2 MOO CEM-Cov

A.2 MOO CEM-Cov

0.32 0.32 0.33

MOO CEM

True Hyperarea

MOO CEM-Cov

Figure A.9: MOP2 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Cov hyperarea

26 28 30 32 34 36 38

MOO CEM

True Hyperarea

MOO CEM-Cov

Figure A.10: MOP3 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Cov hyperarea

93

Stellenbosch University https://scholar.sun.ac.za

A.2 MOO CEM-Cov

26 27 28 29 30

MOO CEM

True Hyperarea

MOO CEM-Cov

Figure A.11: MOP4 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Cov hyperarea

0.72 0.74 0.76 0.78 0.8 0.82 0.84

MOO CEM

True Hyperarea

MOO CEM-Cov

Figure A.12: MOP6 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Cov hyperarea

94

Stellenbosch University https://scholar.sun.ac.za

A.3 MOO CEM-Constraint

A.3 MOO CEM-Constraint

8,332.6 8,332.8 8,333 8,333.2 8,333.4

True Hyperarea

MOO CEM-Constraint

Figure A.13: MOP-C1 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Constraint hyperarea

0.5 1 1.5 2 2.5 3

·104

True Hyperarea

MOO CEM-Constraint

Figure A.14: MOP-C2 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Constraint hyperarea

95

Stellenbosch University https://scholar.sun.ac.za

A.4 MOO CEM-ENS

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

True Hyperarea

MOO CEM-Constraint

Figure A.15: MOP-C4 box-whisker plot of the MOO CEM algorithm hyperarea
compared to MOO CEM-Constraint hyperarea

A.4 MOO CEM-ENS

0 2 4 6

·10−2

MOO CEM-ENS ε indicator

Figure A.16: MOP5 box-whisker plot of the MOO CEM-ENS algorithm
ε indicator

96

Stellenbosch University https://scholar.sun.ac.za

A.4 MOO CEM-ENS

0 2 4 6 8

·10−3

MOO CEM-ENS ε indicator

Figure A.17: MOP7 box-whisker plot of the MOO CEM-ENS algorithm
ε indicator

0 0.2 0.4 0.6 0.8

MOO CEM-ENS ε indicator

Figure A.18: MOP-C3 box-whisker plot of the MOO CEM-ENS algorithm
ε indicator

97

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Matlab® code for the enhanced

MOO CEM algorithm

Below the Matlab® code for the enhanced MOO CEM algorithm is shown. This

code includes all proposed enhancements, including using the Beta distribution

to improve sampling, the Penalty method to solve constrained problems and the

ENS-SS algorithm to solve problems with more than two objectives. All problems

solved as part of this research are pre-coded in the algorithm below. New prob-

lems can be solved by adding the problem specifications to the InitializeProblem

function.

global WorkArea
global Elite;
global CM; global mu; global glue; global SetMu; global SetSigma;

%Choose which MOP to run (refer to InitializeProblem function ...
for MOP

%specifications
MOP=1;
%Initialise MOP (objective functions, decision variable limits, ...

etc.)
[NumVars, NumObjectives, Limits, L, SheetName, ProblemN] = ...

InitializeProblem(MOP);
z=[];
WorkArea = []; mu=[]; Elite=[]; CM=[]; sigma=[]; glue=[]; SetMu=[];

98

Stellenbosch University https://scholar.sun.ac.za

SetSigma=[];abrec=[];ab=[];AllElite=[];

%Define stopping criteria determined by the threshold
eps = 0.01;
%Choose which percentage of the old and new alpha and beta ...

parameters are
%used to update the value of alpha and beta
w=0.7;
%Number of outer loops (maximum). Used for MOO
NoOfLoops = 100;
%Population Size
N = 200;
%Number of simulations to run (solve same problem simNum times)
simNum=1;
format long;
HA=0.0000000000000;
simProp= -2.5:1.5;
simProp1=-2.5:1.5;
abrec=zeros(1,6);

%Probability of inverting histograms (frequency of ranges ...
defined over the

%decision variable space). This avoids getting stuck in a local ...
optimum and

%diversifies the search.
Prob = 0.3;
%Maximum number of evaluations (to be kept as low as possible to ...

decrease
%computational time)
MaxEvaluations = 15000;

%Execute for number of simulations specified
for l=1:simNum

NumEvaluations = 0;
Elite=[];
EliteTemp=[];
time start=tic; %Start timer to record runtime
NotTerminate=true;

%Execute maximum number of loops specified or until stopping ...
criteria

%is reached
for k=1:NoOfLoops

k;
%Initialise mean and standard deviation. These are for ...

reference
%only and do not influence sampling or stopping criteria.
sigmaeps(1:NumVars)=Inf;
%Initially, sigma is large and mu is random (within decision

99

Stellenbosch University https://scholar.sun.ac.za

%variable limits)
sigma(1:NumVars) = 10*(L(1:NumVars,2) - L(1:NumVars,1));
mu(1:NumVars) = (L(1:NumVars,1) + (L(1:NumVars,2) - ...

L(1:NumVars,1)).*rand(NumVars,1))';
t=0;
WorkArea = [];
NotTerminate = true;

%Continue executing until stopping criteria is reached ...
(indicating

%convergence)
while NotTerminate

t=t+1;
bin freq = [];
bin edges = [];
if size(Elite,1) > 0 && k>1 %If not the first iteration
for i=1:NumVars

%If the Elite contains only 1 unique ...
solution, number of

%histograms = 1, otherwise number of loops + 5
if min(Elite(:, i))==max(Elite(:, i))

r=2;
else

r = k + 5;
end
bin freq = [];
bin edges = [];
bin edges(1:r+1) = 0;
bin edges(1) = L(i, 1); %First histogram ...

range starts at
%top limit of ...

decision space
bin edges(r+1) = L(i, 2);%Last histogram ...

range ends at
%bottom limit of ...

decision space
bin edges(2) = min(Elite(:, i));
bin edges(r) = max(Elite(:, i));

%Assign other histogram range values. If ...
Elite has more

%than 3 values, split remaining range equally.
if bin edges(2) 6=bin edges(r)

bin edges(2:r)= ...
bin edges(2):max((bin edges(r) - ...
bin edges(2))/(r-2),0):bin edges(r);

end
%Edge vector must be monotonically ...

non-decreasing.

100

Stellenbosch University https://scholar.sun.ac.za

for m=1:r
if bin edges(m+1)<bin edges(m)

bin edges(m+1)=bin edges(m);
end

end
%Allocate frequencies to each range to create ...

histogram
try
bin freq(1:r) = histc(Elite(:,i), ...

bin edges(1:r));
catch err

bin freq
end
%Invert the histogram if random value is less ...

than Prob
if rand<Prob

bin freq(1:r) = max(bin freq) - bin freq(1:r);
end
%Plot (for reference only)
if i==200
dn=subplot(2,2,4);
bar(bin freq(1:r))
[d, I] = max(bin freq);
[bin edges(I), bin edges(I+1)];
end

bin freq = floor(N*bin freq./sum(bin freq));
s = sum(bin freq(1:r));
bin freq(r) = N - sum(bin freq(1:r)) + ...

bin freq(r);
s=sum(bin freq);

UpTo=0; %Indices into WorkArea
%Sample per histogram range (number of sample ...

according
%to assigned frequency per range).
for a=1:r

Start = UpTo + 1;
UpTo = UpTo + bin freq(a);
Limits(i, 1) = bin edges(a);
Limits(i, 2) = bin edges(a+1);
if Start ≤ UpTo

%Determine which Elite values fall ...
within the

%current histogram range. These values ...
are used

%to determine alpha and beta of the Beta
%distribution
correspondingElite=Elite(Elite(:,i) ≥ ...

101

Stellenbosch University https://scholar.sun.ac.za

Limits(i,1) & Elite(:,i) ≤ ...
Limits(i,2), i);

if size(correspondingElite,1)<2 | | ...
size(unique(correspondingElite),2)==1
%Beta distribution requires 2 ...

different
%points to estimate alpha and ...

beta. Use a
%uniform distribution if not ...

enough samples
%fall within the current range.
alpha=1;
beta=1;

else
%Calculate alpha and beta
params=mle(max((correspondingElite-...

Limits(i, 1))/(Limits(i, 2)-...
Limits(i, ...

1)),0),'distribution',...
'beta');

alpha=params(1);
beta=params(2);

end
%Sample points from Beta distribution ...

of current
%histogram using calculated alpha and ...

beta.
WorkArea(Start:UpTo, i)=(icdf('beta',...

rand(UpTo-Start+1,1),alpha,beta)*...
(Limits(i, 2)-Limits(i, ...

1)))+Limits(i, 1);
ab=[l,k,t,i,alpha,beta];
abrec=vertcat(abrec,ab);

end
end

end
else %Build initial population (for first iteration ...

- uniform
%distribution).

for i=1:NumVars
alpha=1;
beta=1;
WorkArea(1:N, ...

i)=(icdf('beta',rand(N,1),alpha,beta)*...
(L(i, 2)-L(i, 1))) +L(i, 1);

end
end

s = size(WorkArea, 1);

102

Stellenbosch University https://scholar.sun.ac.za

WorkArea(1:s, NumVars+NumObjectives+2) = zeros(s, 1);
% +2 is for ranking and distance
%f1 returns [f1, normalised f1]. Store f1 in last ...

columns for
%plotting. Normalised f1 is used for constrained ...

problems.
[WorkArea(1:s, NumVars+NumObjectives+2+1),...

WorkArea(1:s, NumVars+1)] = f1(WorkArea, ...
NumVars, MOP);

if MOP<15 | | MOP≥20
%f2 returns [f2, normalised f2]. Store f2 in last ...

columns
%for plotting. Normalised f2 is used for ...

constrained problems.
[WorkArea(1:s, NumVars+NumObjectives+2+2),...

WorkArea(1:s, NumVars+2)] = f2(WorkArea, ...
NumVars, MOP);

end

if MOP==5 | | MOP==7 | | MOP == 13 | | MOP == 14 | | MOP ...
== 22
%Only these problems have 3 objectives. f3 returns
%[f3, normalised f3]. Store f3 in last columns ...

for plotting.
%Normalised f3 is used for constrained problems.
[WorkArea(1:s, ...

NumVars+NumObjectives+2+3),WorkArea(1:s, ...
NumVars+3)] = f3(WorkArea, NumVars, MOP);

end

%%%%%%%%%%%%%%%%% CONSTRAINT PENALTY %%%%%%%%%%%%%%%%%
%Determine which samples are feasible and calculate ...

rf and
%penalty.
if MOP≥20 && MOP≤26

[feasible,rf]=CountFeasible(WorkArea,MOP,NumVars,...
NumObjectives,ETA,SIGMA,GAMMA);

rf=rf/N;
Penalty = CalculatePenalty(WorkArea,MOP,NumVars,...

NumObjectives,ETA,SIGMA,GAMMA);
if rf==0

dist=ones(N,NumObjectives).*Penalty;
Xi=zeros(N,NumObjectives);

else
dist=sqrt((WorkArea(:,NumVars+1:NumVars+...

NumObjectives)).ˆ2+(Penalty).ˆ2);
%need xi for each objective : times penalty ...

by 1 for N

103

Stellenbosch University https://scholar.sun.ac.za

Xi=ones(N,NumObjectives).*Penalty;
end

Yi=feasible.*(WorkArea(:,NumVars+1: ...
NumVars+NumObjectives));

%Add the two penalties to the normalised objective
%functions.
for i=1:NumObjectives

p(:,i)=(1-rf).*Xi(:,i)+rf.*Yi(:,i);
WorkArea(:,NumVars+i)=dist(:,i)+p(:,i);

end
end

%Sort the samples according to all normalised ...
objectives using

%ENS-SS. Note: relaxed value of theta=3 to keep ...
solutions for

%diversity.
Temp = ENSort(WorkArea, 3, NumVars, NumObjectives);

EliteTemp=vertcat(EliteTemp, Temp);
Elite = vertcat(Elite, Temp);

%%%%%%%%%%%%%%%%%%%%%UNCOMMENT THIS FOR ...
PLOT%%%%%%%%%%%%%%

PlotDetailProgress(MOP, NumVars, NumObjectives, ...
WorkArea, ...

ProblemN, NoOfLoops, t, k, N)

%Determine if stopping criteria is reached. If alpha ...
and beta

%do not change, solution is assumed to have converged.
if size(Elite,1) > 1

AllEps = 0;
for i=1:NumVars

%mu and sigma are updated for reference only.
mu(i) = (1-w)*mu(i) + ...

w*mean(Elite(:,i));
sigmaeps(i) = sigma(i);
sigma(i) = (1-w)*sigma(i) + ...

w*std(Elite(:,i));
sigmaeps(i) = abs(sigma(i) - sigmaeps(i));

%Calculate total difference between alpha ...
and beta for

%each variable (mean per variable, not one per
%histogram range).
alpha curr=mean(abrec(abrec(abrec(:,2)==k,4)...

104

Stellenbosch University https://scholar.sun.ac.za

==i,5));
beta curr=mean(abrec(abrec(abrec(:,2)==k,4)...

==i,6));
alpha prev=mean(abrec(abrec(abrec(:,2)==k-1,4)...

==i,5));
beta prev=mean(abrec(abrec(abrec(:,2)==k-1,4)...

==i,6));
AllEps = abs(alpha curr-alpha prev)+...

abs(beta curr-beta prev);
end

if AllEps == 0
%If alpha and beta have not changed for any ...

variable
%since the previous iteration, solution has ...

converged
%and algorithm terminates.
NotTerminate = false;

end
%SetMu = vertcat(SetMu, mu);
%SetSigma = vertcat(SetSigma, sigma);

end

NotTerminate = (NotTerminate && (N*t ≤ ...
MaxEvaluations/2));

%Algorithm terminates if solution has converged.
if ¬NotTerminate, break, end

NumEvaluations = NumEvaluations + N;
%Algorithm terminates if maximum number of ...

evaluations is
%reached.
if (NumEvaluations ≥ MaxEvaluations), break, end

end %while not Terminate

%Sort the samples according to all normalised objectives ...
using

%ENS-SS. Note: relaxed value of theta=2 to keep ...
solutions for

%diversity.
Elite=ENSort(Elite, 2, NumVars, NumObjectives);

%%%%%%%%%%%%%%%%%UNCOMMENT THIS FOR ...
PLOT%%%%%%%%%%%%%%%%%%%%%%%

i = subplot(2,2,2);
hold on
if MOP≥20

scatter(Elite(:,NumVars+1+2+NumObjectives), ...

105

Stellenbosch University https://scholar.sun.ac.za

Elite(:, NumVars+2+2+NumObjectives), 3, '*');
else

scatter(Elite(:,NumVars+1), Elite(:, NumVars+2), 3, ...
'*');

end
xlabel('f1')
ylabel('f2')
title(['Current Pareto front, after iteration ' ...

int2str(t) ...
' ' int2str(NumEvaluations)])

drawnow
grid on
hold off

if (NumEvaluations ≥ MaxEvaluations)
break

end
end % for k

EliteWithNorm=Elite;
Elite(:,NumVars+1:NumVars+NumObjectives)=Elite(:,NumVars+...

NumObjectives+2+1:NumVars+NumObjectives+2+NumObjectives);
%Sort the samples according to all original objectives using ...

ENS-SS.
%This ensures that all final solutions are feasible and best ...

according
%to all objetcives.
Elite=ENSort(Elite, 1, NumVars, NumObjectives);

%Record end time.
time end=toc(time start);
%Calculate hyperarea.
if MOP==1

HA=hyperArea2([Elite(:,2),Elite(:,3)]);
elseif MOP==2

HA=hyperArea2([Elite(:,4),Elite(:,5)]);
elseif MOP==3

HA=hyperArea2([Elite(:,3),Elite(:,4)]);
elseif MOP==4

HA=hyperArea2([Elite(:,4),Elite(:,5)]);
elseif MOP==5

HA=hyperArea2([Elite(:,3),Elite(:,4)]);
elseif MOP==6

HA=hyperArea2([Elite(:,3),Elite(:,4)]);
elseif MOP==8

HA=hyperArea2([Elite(:,31),Elite(:,32)]);
elseif MOP==9

HA=hyperArea2([Elite(:,31),Elite(:,32)]);
elseif MOP==10

106

Stellenbosch University https://scholar.sun.ac.za

HA=hyperArea2([Elite(:,31),Elite(:,32)]);
elseif MOP==20

HA=hyperArea2([Elite(:,3),Elite(:,4)],[200,50]);
elseif MOP==21

HA=hyperArea2([Elite(:,7),Elite(:,8)],[0,80]);
elseif MOP==23

HA=hyperArea2([Elite(:,3),Elite(:,4)],[3.3,3.3]);
end
%%%%%%%%%%%%%%%%%UNCOMMENT THIS FOR ...

PLOT%%%%%%%%%%%%%%%%%%%%%%%%%
if MOP ≤ 6 | | (MOP≥8 && MOP ≤12)

Plot WorkArea(Elite(:,NumVars+1), Elite(:,NumVars+2), ...
MOP, ...
SheetName, NumEvaluations)

elseif MOP≥20 && MOP 6=22
Plot WorkArea(Elite(:,NumVars+1+2+NumObjectives), ...

Elite(:,...
NumVars+2+2+NumObjectives), MOP, SheetName, ...

NumEvaluations)
else

scatter3(Elite(:,NumVars+1), Elite(:,NumVars+2), ...
Elite(:,NumVars+3), 2.4, '*');

end
simProp=[double(l),double(time end),double(size(Elite,1)),...

double(HA),NumEvaluations];
simProp1=vertcat(simProp1,simProp);
AllElite=vertcat(AllElite,[l+zeros(size(Elite,1),1),Elite]);
end
%Record all generated data (final solutions, objective functions ...

and values
%of alpha and beta.
%writematrix(simProp1,strcat('MOOCEMBeta MOP',int2str(MOP),...
%' HyperArea TEST2.csv'));
%writematrix(AllElite,strcat('MOOCEMBeta MOP',int2str(MOP),...
%' Elite TEST2.csv'));
%writematrix(abrec,strcat('MOOCEMBeta MOP',int2str(MOP),...
%' AlphaBeta TEST2.csv'));

%Evaluate first objective function. Also calculate normalised ...
objective

%function value for constrained problems.
function [Do f1, Do f1 norm] = f1(X, NVars, MOP)

Do f1 norm=X.*0;
if MOP == 1

c=cos(3*pi/4);
c=1;
Do f1=(X(:,1)*c).ˆ2;

elseif MOP == 2
rt = 1/sqrt(NVars);

107

Stellenbosch University https://scholar.sun.ac.za

Do f1=1-exp(-((X(:,1)-rt).ˆ2+(X(:,2)-rt).ˆ2+(X(:,3)-rt).ˆ2));
elseif MOP == 3

A1 = 0.5*sin(1)-2*cos(1)+ sin(2) - 1.5*cos(2);
A2 = 1.5*sin(1)- cos(1)+2*sin(2) - 0.5*cos(2);
B1 = 0.5*sin(X(:,1)) - 2* cos(X(:,1)) + sin(X(:,2)) - ...

1.5*cos(X(:,2));
B2 = 1.5*sin(X(:,1)) - cos(X(:,1)) + 2*sin(X(:,2)) - ...

0.5*cos(X(:,2));
Do f1 = -(1 + (A1 - B1).ˆ2 + (A2 - B2).ˆ2);

elseif MOP == 4
Do f1 = -10*(exp(-0.2*sqrt(X(:,1).ˆ2 + X(:,2).ˆ2)) + ...

exp(-0.2*sqrt(X(:,2).ˆ2 + X(:,3).ˆ2)));
elseif MOP ==5

Do f1 = 0.5*(X(:,1).ˆ2 + X(:,2).ˆ2) + sin(X(:,1).ˆ2 + ...
X(:,2).ˆ2);

elseif MOP == 6
Do f1=X(:,1);

elseif MOP == 7
Do f1 = 0.5*(X(:,1) - 2).ˆ2 +(1/13)*(X(:,2) + 1).ˆ2 + 3;

elseif MOP ≥ 8 && MOP ≤ 11
Do f1 = X(:,1); %ZDT1, 2 & 3 & 4

elseif MOP==12 %ZDT6
SixPi = 6*pi;
Do f1 = 1 - exp(-4*X(:,1)).*sin(SixPi*X(:,1)).ˆ6;

elseif MOP == 13
Do f1 = cos(pi/12)*X(:,1) - sin(pi/12)*X(:,2);

elseif MOP == 14
S=0;
for i=1:NVars-1

S = S + 100*(X(:,i+1) - X(:,i).ˆ2).ˆ2 + ((X(:,i) - ...
1).ˆ2);

end
Do f1 = S;

elseif MOP == 15
TwentyPi = 20*pi;
gxM = 0; %zeros(1:size(X,1),1:NVars);
for i=3:NVars

gxM = gxM + ((X(:,i)-0.5).ˆ2) - ...
cos(TwentyPi*(X(:,i)-0.5));

end
gxM = 100*(gxM + 5);
Do f1 = 0.5*X(:,1).*X(:,2).*(1+gxM);

elseif MOP == 16
y = (X(:,1).ˆ2);
Do f1=2*28.3*X(:,2).*sqrt(1+y);

elseif MOP==20
Do f1=4*(X(:,1).ˆ2)+4*(X(:,2).ˆ2);
%Normalise
f1 max=200;

108

Stellenbosch University https://scholar.sun.ac.za

f1 min=0;
Do f1 norm=(Do f1-f1 min)/(f1 max-f1 min);

elseif MOP==21
Do f1=-(25*((X(:,1)-2).ˆ2)+((X(:,2)-2).ˆ2)+((X(:,3)-1).ˆ2)+...

((X(:,4)-4).ˆ2)+((X(:,5)-1).ˆ2));
%Normalise
f1 max=0;
f1 min=-1712;
Do f1 norm=(Do f1-f1 min)/(f1 max-f1 min);

elseif MOP==22
Do f1=((X(:,1)-2).ˆ2)/2 +((X(:,2)+1).ˆ2)/13 + 3;
%Normalise
f1 max=(6ˆ2)/2+(5ˆ2)/13+3;
f1 min=3;
Do f1 norm=(Do f1-f1 min)/(f1 max-f1 min);

elseif MOP==23
Do f1=X(:,1);
%Normalise
f1 max=pi;
f1 min=0.0000001;
Do f1 norm=(Do f1-f1 min)/(f1 max-f1 min);

end
end
%Evaluate second objective function. Also calculate normalised ...

objective
%function value for constrained problems.
function [Do f2, Do f2 norm]= f2(X, NVars, MOP)

Do f2 norm=X.*0;
if MOP == 1

c=cos(3*pi/4);
c=1;

Do f2=((X(:,1)-2)*c).ˆ2;
elseif MOP == 2

rt = 1/sqrt(NVars);
Do f2=1-exp(-((X(:,1)+rt).ˆ2+(X(:,2)+rt).ˆ2+(X(:,3)+rt).ˆ2));

elseif MOP == 3
Do f2 = -((X(:,1) + 3).ˆ2 + (X(:,2) + 1).ˆ2);

elseif MOP == 4
Do f2 = abs(X(:,1)).ˆ(0.8)+ 5*sin((X(:,1)).ˆ3) + ...

abs(X(:,2)).ˆ(0.8) + 5*sin((X(:,2)).ˆ3) + ...
abs(X(:,3)).ˆ(0.8) ...

+ 5*sin((X(:,3)).ˆ3);
elseif MOP == 5

Do f2 = ((3*X(:,1) -2*X(:,2) + 4).ˆ2)/8 + ...
((X(:,1) - X(:,2) + 1).ˆ2)/27 + 15;

elseif MOP == 6
x=X(:,1)./(1+10*X(:,2));
y=x;
x=x.ˆ2;

109

Stellenbosch University https://scholar.sun.ac.za

x=1-x;
Do f2=(1+10*X(:,2)).*(x - y.*sin(12*pi*X(:,1)));

elseif MOP == 7
Do f2 = (1/36)*(X(:,1) +X(:,2) - 3).ˆ2 + ...

0.125*(-X(:,1) + X(:,2) + 2).ˆ2 - 17;
elseif MOP ≥ 8 && MOP ≤ 10 %ZDT1-3

c = 9/(NVars-1);
x = transpose(sum(transpose(X(:,2:NVars))));
gx = 1 + x.*c;
gx inv = 1./gx;
if MOP == 8 %ZDT1

Do f2 = gx.*(1 - sqrt(gx inv.*X(:,NVars+1)));
elseif MOP == 9 %ZDT2

Do f2 = gx.*(1 - (gx inv.*X(:,NVars+1)).ˆ2);
elseif MOP == 10 %ZDT3

Ten Pi = 10*pi;
Do f2 = gx.*(1 - sqrt(gx inv.*X(:,1)) - ...

gx inv.*X(:,1).*sin(Ten Pi*X(:,1)));
end

elseif MOP == 11 %ZDT4
gx = 1 + 10*(NVars-1) + sum(X(:,2:NVars).ˆ2 - ...

10*cos(4*pi*X(:,2:NVars)),2); %The "2" is to add ...
columns

%gx=2;
gx inv = 1./gx;
Do f2 = gx.*(1 - sqrt(gx inv.*X(:,NVars+1))); %NVars+1 ...

is f1
elseif MOP==12 %ZDT6

gx = 1 + ...
(NVars-1)*(1/(NVars-1)*sum(X(:,2:NVars),2)).ˆ(0.25);

%gx=1;
gx inv = 1./gx;
Do f2 = gx.*(1 - (gx inv.*X(:,NVars+1)).ˆ2);

elseif MOP == 13
x1 = cos(pi/12)*X(:,1) - sin(pi/12)*X(:,2);
x2 = sin(pi/12)*X(:,1) + cos(pi/12)*X(:,2);
Do f2 = sqrt(2*pi)*ones(size(X,1),1) - sqrt(abs(x1)) + ...

2*sqrt(abs(x2 - 3*cos(x1) - 3));
elseif MOP == 14

Do f2 = X(:,NVars + 1);
elseif MOP == 15

TwentyPi = 20*pi;
gxM = 0; %zeros(1:size(X,1),1:NVars);
for i=3:NVars

gxM = gxM + ((X(:,i)-0.5).ˆ2) - ...
cos(TwentyPi*(X(:,i)-0.5));

end
gxM = 100*(gxM + 5);
Do f2 = 0.5*X(:,1).*(1-X(:,2)).*(1+gxM);

110

Stellenbosch University https://scholar.sun.ac.za

elseif MOP == 16
y = X(:,1).ˆ2;
s = (2*sqrt(2)*3E7*y.*X(:,2));
z=0;
for i =1:size(X,1)

z(i,1) = ((1+X(i,1)ˆ2)ˆ1.5)*((1 + ...
X(i,1)ˆ4).ˆ0.5)/s(i,1);

end
Do f2 = 1E6*z;

elseif MOP==20
Do f2=((X(:,1)-5).ˆ2)+((X(:,2)-5).ˆ2);
%Normalise
f2 max=50;
f2 min=0;
Do f2 norm=(Do f2-f2 min)/(f2 max-f2 min);

elseif MOP==21
Do f2=(X(:,1).ˆ2)+(X(:,2).ˆ2)+(X(:,3).ˆ2)+(X(:,4).ˆ2)+...

(X(:,5).ˆ2)+(X(:,6).ˆ2);
%Normalise
f2 max=386;
f2 min=2;
Do f2 norm=(Do f2-f2 min)/(f2 max-f2 min);

elseif MOP==22
Do f2=((X(:,1)+X(:,2)-3).ˆ2)/175 ...

+(2*X(:,2)-X(:,1)).ˆ2/17 - 13;
%Normalise
f2 max=((-4-4-3).ˆ2)/175 +(2*(-4)-(+4)).ˆ2/17 - 13;
f2 min=-13;
Do f2 norm=(Do f2-f2 min)/(f2 max-f2 min);

elseif MOP==23
Do f2=X(:,2);
%Normalise
f2 max=pi;
f2 min=0.0000001;
Do f2 norm=(Do f2-f2 min)/(f2 max-f2 min);

end
end
%Evaluate third objective function. Also calculate normalised ...

objective
%function value for constrained problems.
function [Do f3,Do f3 norm] = f3(X, NVars, MOP)

Do f3 norm=X.*0;
if MOP ==5

x = X(:,1).ˆ2;
y = X(:,2).ˆ2;
Do f3 = (1./(x + y + 1)) - 1.1*exp(-(x + y));

elseif MOP == 7
Do f3 = (1/175)*(X(:,1) + 2*X(:,2) -3).ˆ2 + ...

(1/17)*(2*X(:,2) - X(:,1)).ˆ2 - 13;

111

Stellenbosch University https://scholar.sun.ac.za

elseif MOP==13
TwentyPi = 20*pi;
gxM = 0; %zeros(size(X,1),NVars);
for i=3:NVars

gxM = gxM + ((X(:,i)-0.5).ˆ2) - ...
cos(TwentyPi*(X(:,i)-0.5));

end
gxM = 100*(gxM + 5);
Do f3 = 0.5*(1-X(:,1)).*(1+gxM);

elseif MOP==22
Do f3=((3*X(:,1)-2*X(:,2)+4).ˆ2)/8 ...

+(X(:,1)-X(:,2)+1).ˆ2/27 +15;
%Normalise
f3 max=((3*4-2*(-4)+4).ˆ2)/8 +(4-(-4)+1).ˆ2/27 +15;
f3 min=15;
Do f3 norm=(Do f3-f3 min)/(f3 max-f3 min);

end
end
%Function to plot solutions vs true Pareto front.
function PPF = Plot WorkArea(x,y, MOP, xlSheetName, NEval)
subplot(2,2,4);
hold on;
if MOP ≤ 4 | | (MOP ≥ 6 && MOP < 11)

z=[];
z = xlsread('True PFs Coello.xls', xlSheetName);
scatter(z(:,1), z(:,2), 5, 'v', 'filled');

end
scatter(x, y, 3, 'o');
hold off
grid on
xlabel('f1');
ylabel('f2');
title(['Final Pareto Front of MOP', int2str(MOP), ' after ', ...

int2str(NEval), ' evaluations']);
end
%Calculate penalty value for infeasible solutions
%(for constrained problems).
function Penalty = CalculatePenalty(Elite,MOP, NVars, ...

NObj,ETA,SIGMA,GAMMA)
if MOP==20

Violation1=max(((Elite(:,1)-5).ˆ2) + (Elite(:,2).ˆ2) -25,0);
%normalise: violation / max violation
Violation1=Violation1/(25);
Violation2=max(-((Elite(:,1)-8).ˆ2)-((Elite(:,2)+3).ˆ2)+...

7.7,0);
Violation2=Violation2/65.3;
%contraint 2 can never be violated given x and y
TotalViolation=(1/2)*(Violation1+Violation2);

elseif MOP==21

112

Stellenbosch University https://scholar.sun.ac.za

Violation1=abs(min(Elite(:,1) + Elite(:,2) -2, 0));
Violation1=Violation1/(2);
Violation2=abs(min(6-Elite(:,1) - Elite(:,2),0));
Violation2=Violation2/(14);
Violation3=abs(min(2-Elite(:,2) + Elite(:,1),0));
Violation3=Violation3/(8);
Violation4=abs(min(2-Elite(:,1) + (3*Elite(:,2)),0));
Violation4=Violation4/(8);
Violation5=abs(min(2-Elite(:,1) + (3*Elite(:,2)),0));
Violation5=Violation5/(6);
Violation6=abs(min(2-Elite(:,1) + (3*Elite(:,2)),0));
Violation6=Violation6/(4);
TotalViolation=(1/6)*(Violation1+Violation2+Violation3+...

Violation4+Violation5+Violation6);
elseif MOP==22

Violation1=max(Elite(:,2) + 4*(Elite(:,1)) -4,0.000001);
Violation1=Violation1/(16);
Violation2=max(-Elite(:,1) -1,0.000001);
Violation2=Violation2/(3);
Violation3=max(Elite(:,1) - 2 - Elite(:,2),0.000001);
Violation3=Violation3/(6);
TotalViolation=(1/3)*(Violation1+Violation2+Violation3);

elseif MOP==23
a=0.1;
b=16;
TotalViolation=max(-(Elite(:,1).ˆ2) -(Elite(:,2).ˆ2) + 1 ...

+ ...
(a*cos(b*atan(Elite(:,1)./Elite(:,2)))), 0);

TotalViolation=TotalViolation/(1.1);
end
Penalty=TotalViolation;

end
%Find feasible solutions and calculate rf (for constrained ...

problems).
function ...

[feasible,Rf]=CountFeasible(Elite,MOP,NVars,NObj,ETA,SIGMA,GAMMA)
if MOP==20

Constraint1=Elite(((Elite(:,1)-5).ˆ2) +
%(Elite(:,2).ˆ2) -25 ≤ 0,:);
Constraint=Constraint1(-((Constraint1(:,1)-8).ˆ2)-...

((Constraint1(:,2)+3).ˆ2)+7.7≤0,:);
Rf=size(Constraint,1);
feasible=((Elite(:,1)-5).ˆ2) + (Elite(:,2).ˆ2) -25 > 0;
feasible=min(feasible+(-((Elite(:,1)-8).ˆ2)-...

((Elite(:,2)+3).ˆ2)+7.7 > 0),1);
elseif MOP==21

Constraint1=Elite(Elite(:,1) + Elite(:,2) -2 ≥ 0,:);
Constraint2=Constraint1(6-Constraint1(:,1) - ...

Constraint1(:,2) ≥ 0,:);

113

Stellenbosch University https://scholar.sun.ac.za

Constraint3=Constraint2(2-Constraint2(:,2) + ...
Constraint2(:,1) ≥ 0,:);

Constraint4=Constraint3(2-Constraint3(:,1) + ...
(3*Constraint3(:,2)) ≥ 0,:);

Constraint5=Constraint4(4-(Constraint4(:,3)-3).ˆ2 - ...
Constraint4(:,4) ≥ 0,:);

Constraint=Constraint5((Constraint5(:,5)-3).ˆ2 + ...
Constraint5(:,6) -4 ≥ 0,:);

Rf=size(Constraint,1);
feasible1=(Elite(:,1) + Elite(:,2) -2) < 0;
feasible2=6-Elite(:,1) - Elite(:,2) < 0;
feasible3=2-Elite(:,2) + Elite(:,1) < 0;
feasible4=2-Elite(:,1) + (3*Elite(:,2)) < 0;
feasible5=4-(Elite(:,3)-3).ˆ2 - Elite(:,4) < 0;
feasible6=(Elite(:,5)-3).ˆ2 + Elite(:,6) -4 < 0;
feasible=min(feasible1+feasible2+feasible3+feasible4+...

feasible5+feasible6,1);
elseif MOP==22

Constraint1=Elite(Elite(:,2) + 4*(Elite(:,1)) -4 < 0,:);
Constraint2=Constraint1(-Constraint1(:,1) -1 < 0,:);
Constraint=Constraint2(Constraint2(:,1) - ...

Constraint2(:,2) ...
- 2 < 0,:);

Rf=size(Constraint,1);
feasible1=Elite(:,2) + 4*(Elite(:,1)) -4 ≥ 0;
feasible2=-Elite(:,1) -1 ≥ 0;
feasible3=Elite(:,1) - 2 - Elite(:,2) ≥ 0;
feasible=min(feasible1+feasible2+feasible3,1);

elseif MOP==23
a=0.1;
b=16;
Constraint=Elite(-(Elite(:,1).ˆ2) -(Elite(:,2).ˆ2) + 1 + ...

(a*cos(b*atan(Elite(:,1)./Elite(:,2)))) ≤ 0,:);
Rf=size(Constraint,1);
feasible=min(-(Elite(:,1).ˆ2) -(Elite(:,2).ˆ2) + 1 + ...

(a*cos(b*atan(Elite(:,1)./Elite(:,2))))>0,1);
end

end
%Apply constraints (not used, first attempt at constraint method).
function Constraint = SideConstraint(Elite, MOP)

%after every Elite is created, discard the ones which do not ...
fall

%within the constraints line 147
if MOP==20

%(x-5)ˆ2+yˆ2-25≤0
Constraint1=Elite(((Elite(:,1)-5).ˆ2) + ...

(Elite(:,2).ˆ2) -25 ≤ 0,:);
Constraint=Constraint1(-((Constraint1(:,1)-8).ˆ2)-...

((Constraint1(:,2)+3).ˆ2)+7.7≤0,:);

114

Stellenbosch University https://scholar.sun.ac.za

elseif MOP==21
%(x-5)ˆ2+yˆ2-25≤0
Constraint1=Elite(Elite(:,1) + Elite(:,2) -2 ≥ 0,:);
Constraint2=Constraint1(6-Constraint1(:,1) - ...

Constraint1(:,2) ≥ 0,:);
Constraint3=Constraint2(2-Constraint2(:,2) + ...

Constraint2(:,1) ≥ 0,:);
Constraint4=Constraint3(2-Constraint3(:,1) + ...

(3*Constraint3(:,2)) ≥ 0,:);
Constraint5=Constraint4(4-(Constraint4(:,3)-3).ˆ2 - ...

Constraint4(:,4) ≥ 0,:);
Constraint=Constraint5((Constraint5(:,5)-3).ˆ2 + ...

Constraint5(:,6) -4 ≥ 0,:);
elseif MOP==22

Constraint1=Elite(4*(Elite(:,1)) + Elite(:,2) - 4 < 0,:);
Constraint2=Constraint1(Constraint1(:,1) +1 > 0,:);
Constraint=Constraint2(Constraint2(:,1) - ...

Constraint2(:,2) - 2 > 0,:);
elseif MOP==23

a=0.1;
b=16;
Constraint=Elite(-(Elite(:,1).ˆ2) -(Elite(:,2).ˆ2) + 1 + ...

(a*cos(b*atan(Elite(:,1)./Elite(:,2)))) ≤ 0,:);
end

end
%Initialise problems - number of variables, number of objectives,
%variable limits, etc.
function [NumVars, NumObjectives, Limits, L, SheetName, ...

ProblemN] = ...
InitializeProblem(MOP)

MOP Config = [1 1 2 -1E5 1E5, %mop num, number of variables, ...
number of
%objectives, lower limit for variable 1, upper limit for ...

variable 1,
%lower limit for variable 2, upper limit for variable 2 etc.

2 3 2 -4 4,
3 2 2 -pi pi,
4 3 2 -4 4,
5 2 3 -30 30,
6 2 2 0 1,
7 2 3 -400 400,
8 30 2 0 1, % ZDT1
9 30 2 0 1, % ZDT2
10 30 2 0 1, % ZDT3
11 3 2 -5 5, % ZDT4 en x1 is (0,1)!
12 10 2 0 1, %ZDT6
13 2 2 0 1, %OKA1
14 5 1 -1 1, %Rosenbrock (NB: One objective
15 7 3 0 1,

115

Stellenbosch University https://scholar.sun.ac.za

16 2 2 0 1, %Truss
17 2 1 -2 2,
18 2 1 -8 8,
19 2 1 0 10, %Shekel
20 2 2 0 5, %MOP-C1
21 6 2 0 10, % 0 10 1 5 0 6 1 5 1 10];
22 2 3 -4 4,
23 2 2 10ˆ-6 pi
];

NumVars = MOP Config(MOP, 2);
NumObjectives = MOP Config(MOP, 3);

for i=1:NumVars %Set problem boundaries
L(i,1) = MOP Config(MOP, 4);
L(i,2) = MOP Config(MOP, 5);

end

ProblemName = ['MOP1 ', 'MOP2 ', 'MOP3 ', 'MOP4 ', 'MOP5 ', ...
'MOP6 ', 'MOP7 ', 'ZDT1 ', 'ZDT2 ', 'ZDT3 ', 'ZDT4 ', ...
'ZDT6 ', 'OKA1 ', 'ROSB ', 'DTLZ1', 'Truss', ...
'Single Objective', 'MOP-C1', 'MOP-C2', 'MOP-C3','MOP-C4'];

if MOP==11 % x2 to x10 are on [-5,5], x1 is on [0,1]
L(1,1)=0;
L(1,2)=1;

end

if MOP==13
L(1,1) = 6*sin(pi/12); L(1,2) = 6*sin(pi/12) + 2*pi*cos(pi/12);
L(2,1) = -2*pi*sin(pi/12); L(2,2) = 6*cos(pi/12);

end

if MOP == 14 %Truss problem
L(1,1) = 0.1; L(1,2) = 2.25;
L(2,1) = 0.5; L(2,2) = 2.5;

end

if MOP == 20 %MOP-C1
L(2,1) = 0;
L(2,2) = 5;

end

if MOP == 20 %MOP-C2
L(2,1) = 0;
L(2,2) = 10;
L(3,1) = 1;
L(3,2) = 5;
L(4,1) = 0;
L(4,2) = 6;

116

Stellenbosch University https://scholar.sun.ac.za

L(5,1) = 1;
L(5,2) = 5;
L(6,1) = 0;
L(6,2) = 10;

end
for i=1:NumVars

Limits(i,1) = L(i,1);
Limits(i,2) = L(i,2);

end;

ProblemN = ProblemName((MOP-1)*5+1:5*MOP);
SheetName = ProblemN(1:4);
end %function InitializeProblem
%Plot solutions
function PlotDetailProgress(MOP, NumVars, NumObjectives, ...

WorkArea, ...
ProblemN, NoOfLoops, t, k, N)

h = subplot(2,2,[1 3]);
hold on
if MOP≥20

scatter(WorkArea(1:N, NumVars+1+2+NumObjectives), ...
WorkArea(1:N, ...
NumVars+2+2+NumObjectives), 3, '*');

else
scatter(WorkArea(1:N, NumVars+1), WorkArea(1:N, NumVars+2), ...

3, '*');
end
xlabel('f1')
ylabel('f2')
title(['Search space for ' ProblemN ': k=' int2str(k) ' of ' ...

int2str(NoOfLoops) ', t=' int2str(t)]);
drawnow
grid on
hold off

end %PlotDetailProgress
%ENS-SS algorithm used to rank solutions.
function Out = ENSort(Pop, Rank, NumVars, NumObj)

N = size(Pop,1); % Determine size of ...
population

Obj1 = NumVars+1; % Column number of first ...
objective

K = NumVars+NumObj; % Column number of last ...
objective

Fronts = cell(N,1);
Pop=sortrows(Pop, [Obj1,Obj1+1]); % Sort pop in ascending ...

order of
%independent axis Obj, ties broken by dependent axis
Fronts{1} = 1;

117

Stellenbosch University https://scholar.sun.ac.za

Pop(1,K+1) = 1;
Pop(1,K+2) = 1;

for p = 2:N
k = 0;
sorted = false;
while ¬sorted

k = k + 1;
r = size(Fronts{k},2);
if r == 0

Fronts{k} = p;
Pop(p,K+1) = k;
break

end
for i = r:-1:1

if DominationCheck(Pop(p,Obj1:K),Pop(Fronts{k}(i),...
Obj1:K))

break
end
if i == 1

sorted = true;
Fronts{k} = [Fronts{k}, p];
Pop(p, K+1) = k;

end
end

end
end

Out = Pop(Pop(:,K+1)≤Rank,:);

function result = DominationCheck(s,t) % Algorithm 4
M = size(s,2);
for j = 1:M

if s(j) < t(j)
result = false;
break

end
result = true;

end
end

end

118

Stellenbosch University https://scholar.sun.ac.za

	Nomenclature
	1 Introduction
	1.1 Project background
	1.2 Research assignment
	1.3 Research scope
	1.4 Research objectives
	1.5 Problem-solving methodology
	1.6 Deliverables envisaged
	1.7 Contributions
	1.8 Structure of the document
	1.9 Summary: Chapter 1

	2 Literature study
	2.1 Multi-objective optimisation and MOO CEM
	2.1.1 Introduction to optimisation
	2.1.2 Multi-objective optimisation
	2.1.3 Cross-entropy method
	2.1.4 Multi-objective optimisation using the cross-entropy method

	2.2 Beta distribution
	2.3 Covariance
	2.4 Constrained MOPs
	2.5 Non-dominated sorting algorithms
	2.6 Performance indicators and standard problems
	2.6.1 Performance indicators
	2.6.2 Standard problems

	2.7 Summary: Chapter 2

	3 Algorithm development
	3.1 Proposed MOO CEM-Beta algorithm
	3.2 Proposed MOO CEM-Cov algorithm
	3.3 Proposed MOO CEM-Constraint algorithm
	3.3.1 Constraint method 1: Discarding solutions
	3.3.2 Constraint method 2: Dynamic penalty

	3.4 Proposed MOO CEM-ENS algorithm
	3.5 Summary: Chapter 3

	4 Testing of proposed enhanced algorithms
	4.1 Test specifications
	4.1.1 MOO CEM-Beta and MOO CEM-Cov algorithms test specifications
	4.1.2 MOO CEM-Constraint and MOO CEM-ENS algorithms test specifications
	4.1.3 General test specifications

	4.2 MOO CEM-Beta performance evaluation
	4.3 MOO CEM-Cov performance evaluation
	4.4 MOO CEM-Constraint performance evaluation
	4.5 MOO CEM-ENS performance evaluation
	4.6 Summary: Chapter 4

	5 Proposed enhanced MOO CEM algorithm
	6 Research summary and conclusions
	6.1 Project summary and conclusions
	6.2 Future research
	6.3 Appraisal of research
	6.4 Concluding remarks

	References
	A Performance indicator box-and-whisker plots
	A.1 MOO CEM-Beta
	A.2 MOO CEM-Cov
	A.3 MOO CEM-Constraint
	A.4 MOO CEM-ENS

	B Matlab® code for the enhanced MOO CEM algorithm

