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ABSTRACT 

Introduction  

HIV/AIDS remains a major health concern worldwide, with sub-Saharan Africa (SSA) 

carrying the largest burden. HIV is characterised by extremely high genetic diversity, with all 

the major groups and subtypes circulating in SSA. Combination antiretroviral therapy (cART) 

have substantially reduced HIV related deaths, but this is counteracted by the development of 

HIV drug resistance, caused by certain drug resistance-associated mutations (RAMS). 

Integrase (IN) strand transferase inhibitors (INSTIs), the newest class of antiretroviral drugs, 

has a high genetic barrier and can be used in individuals that previously exhibited resistance to 

other classes of drugs. The World Health Organisation (WHO) approved the use of 

Dolutegravir (DTG) as part of first-line cART.  

Methods 

This is a descriptive experimental design study, which aimed to identify IN natural occurring 

polymorphisms (NOP) among different HIV-1 group M subtypes and Drug resistance 

mutations within the HIV-1 pol gene fragment of INSTI naïve patients from South Africa (SA) 

and Cameroon (CR), using the Stanford University genotypic resistance interpretation 

algorithm. Structural computational methods that included; homology modelling, molecular 

docking, molecular dynamics simulations and interaction analysis was performed to 

understand the structural impact of mutations from diverse HIV-1 subtypes on DTG drug 

binding.  

Results 

We observed low-level RAMs against INSTIs in SA (2.2%) and CR sequences (5.4%). 

Through Fisher’s exact test we noted that the two NOPs occurred: VI72I and R269K, with p-

values ≤0. 05, were statistically enriched. The impact of having these mutations are yet to be 

fully understood. Through molecular modelling and stability predictions, we observed a 

destabilizing effect of the known G140S mutant on the HIV-1C IN protein structure and 

simulation analysis showed that it affected structural stability and flexibility of the protein 

structure. Interactions analysis of different drug binding conformations to different HIV-1 IN 

subtypes reported differences in the number of binding interactions to different HIV-1 IN 

subtypes, but we did not observe any significant differences in binding affinity for each INSTIs. 
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This implies no significant alteration to the binding site in the wild type IN, which may not 

prevent INSTIs drug binding. In addition, all accessory mutations that resulted in a change in 

the number of interactions encompassing residues were found within the stable alpha-helix 

secondary structure element and not in close proximity to the drug active site. 

Conclusion 

The study data indicate that RAMS against INSTIs remain low both in SA and in CR. Subtype 

C in SA and CRF02_AG in CR continues to be the driving force of the epidemic. We further 

reported on the impact of various NOPs on drug susceptibility. The analyses suggested that 

NOPs does not have an impact on IN protein structure and stability, and does not affect drug 

binding in the WT IN, but the known mutation G140S affect DTG binding. The study support 

recommendations made by the WHO to use DTG as part of salvage therapy in patients with 

RAM’s and accessory mutations. Data obtained from this study can help to tailor effective 

treatment strategies in the African population, where diverse HIV subtypes circulate. 
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OPSOMMING 

Inleiding  

MIV/vigs bly wêreldwyd ’n ernstige gesondheidskwessie, en Afrika suid van die Sahara dra 

die swaarste las. MIV word deur uiters hoë genetiese diversiteit gekenmerk, waarvan al die 

vernaamste groepe en subtipes in Afrika suid van die Sahara in omloop is. Kombinasie- 

antiretrovirale terapie (kART) het ’n aansienlike vermindering in MIV-verwante sterftes tot 

gevolg, hoewel dít teengewerk word deur die ontwikkeling van MIV-middelweerstandigheid 

vanweë sekere middelweerstandigheidsverwante mutasies (oftewel RAM’s). 

Integrasestringtransferase-inhibitors (INSTI’s), die jongste klas antiretrovirale middels, het ’n 

hoë genetiese skans en kan gebruik word by individue wat voorheen weerstandigheid teen 

ander klasse middels getoon het. Die Wêreldgesondheidsorganisasie (WGO) het die gebruik 

van dolutegravir (DTG) as deel van eerstelinie-kART goedgekeur.  

 

Metodes 

Hierdie studie gebruik ’n beskrywende proefondervindelike ontwerp om natuurlike integrase- 

(IN-) polimorfismes (NOP’s) in verskillende MIV-1-groep-M-subtipes en middelweerstandige 

mutasies in die MIV-1-pol-geenfragment van INSTI-naïewe pasiënte van Suid-Afrika (SA) en 

Kameroen (KR) te identifiseer. Dit word met behulp van die Universiteit van Stanford se 

algoritme vir genotipiese weerstandigheidsvertolking gedoen. Strukturele berekeningsmetodes 

soos homologiemodellering, molekulêre koppeling, molekulêre dinamikasimulasies en 

interaksieontleding is uitgevoer om die strukturele impak van mutasies uit diverse MIV-1-

subtipes op DTG-middelbinding te verstaan.  

 

Resultate 

Laevlak-RAM’s teen INSTI’s is in reekse van SA (2,2%) én KR (5,4%) opgemerk. Fisher se 

eksakte toets het twee NOP’s opgespoor – VI72I en R269K – met p-waardes van ≤0,05, wat 

statisties verryk was. Die impak van hierdie mutasies is nog nie ten volle duidelik nie. Deur 

molekulêre modellering en stabiliteitsvoorspellings het ons bepaal dat die bekende G140S-

mutant ’n destabiliseringsuitwerking het op die MIV-1C-IN-proteïenstruktuur. 

Simulasieontleding het getoon dat dít die strukturele stabiliteit en buigbaarheid van die 

proteïenstruktuur beïnvloed. Interaksieontleding van middelbindingskonformasies met MIV-

1-IN-subtipes het verskille in die getal bindingsinteraksies met verskillende subtipes 

opgelewer, maar geen beduidende verskille in bindingsaffiniteit is vir enige van die INSTI’s 
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opgemerk nie. Dít impliseer dat daar geen beduidende aanpassing is in die bindingsetel by die 

wilde-tipe IN wat INSTI-middelbinding kan verhoed nie. Daarbenewens is alle bykomstige 

mutasies wat ’n verandering in die getal interaksies in residu’s veroorsaak het in die stabiele 

alfaheliks- sekondêre struktuurelement aangetref, en nie naby die aktiewe setel van die middel 

nie. 

 

Gevolgtrekking 

Die studiedata toon dat RAM’s teen INSTI’s steeds laag is in sowel SA as KR. Subtipe C in 

SA en CRF02_AG in KR bly die dryfkrag agter die epidemie. Daarbenewens is daar oor die 

impak van verskillende NOP’s op middelvatbaarheid verslag gedoen. Die ontledings toon dat 

NOP’s nie ’n impak op IN-proteïenstruktuur en -stabiliteit het nie, en ook nie middelbinding 

in die WT-IN beïnvloed nie. Nogtans het die bekende mutasie G140S wél ’n invloed op DTG-

binding. Die studie ondersteun die WGO se aanbeveling dat DTG as deel van 

reddingsbehandeling by pasiënte met RAM’s en bykomstige mutasies gebruik word. Die data 

uit hierdie studie kan doeltreffende behandelingstrategieë help ontwikkel vir die bevolking van 

Afrika, waar diverse MIV-suptipes in omloop is. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1. INTRODUCTION  

There has been many challenges in the search for a cure for HIV/AIDS. The improvements of 

care through standard combination antiretroviral therapy (cART) regimens has reduced the 

severity of HIV/AIDS to a more manageable, chronic disease. cART includes the use of one 

non-nucleoside reverse transcriptase inhibitors (NNRTIs) and two nucleoside reverse 

transcriptase inhibitors (NRTIs) as part of the first-line regimen and two NRTIs, ritonavir 

(RTV)-boosted PI (bPI), as part of the second-line regimen. Due to the emergence of HIV-1 

drug resistance, Integrase (IN) strand-transfer inhibitors (INSTIs) has now become a viable 

option to include in standardized cART. Available INSTIs include; Raltegravir (RAL) and 

Elvitegravir (EVG) as first-generation INSTIs and Dolutegravir (DTG) and Bictegravir (BIC) 

as second-generation inhibitors. First-generation INSTIs have been reported to have a 

relatively low genetic barrier to resistance, while second-generation INSTIs, including DTG, 

exhibit longer dissociation half-life in biochemical analyses of wild-type (WT) Integrase/DNA 

complexes, resulting in a high genetic barrier to resistance and able to achieve complete viral 

suppression that will likely reduce the rate of viral rebound. Furthermore high prevalence of 

HIV diversity worldwide, particularly in sub-Saharan Africa, poses a major challenge on a 

wide spectrum of fields, such as vaccine development, diagnostics and cART outcomes. It is 

hypothesized that diverse HIV-1 subtypes from sub-Saharan Africa have specific naturally 

occurring polymorphisms (NOPs) that might reduce the efficacy and binding strength of 

second-generation INSTIs, like DTG, since current available cART drugs are designed in 

relation to HIV1-B, predominate in the Western Countries, with less research done in Africa 

focusing on non-B subtypes prevalent in Africa. Our work uses a genotypic and structural 

modelling approach to help us try to understand the effect of NOPs from diverse subtypes on 

drug susceptibility and binding affinity to DTG. Molecular modelling provides an approach 

that can be applied to prioritize the effect of mutations/variants on IN drug binding before 

expensive experimental assays are performed. In this chapter, we will highlight the origin and 

history of HIV, including the impact it had on people's lives and how the world responded to 

the AIDS epidemic. I will also provide an overview of the steps that cART target to inhibit 

HIV-1 to replicate further. The study used cohort samples from Cameroon and South Africa. 

Central and West Africa, including Cameroon, which is seen, as the birthplace of HIV, whereas 

South Africa is a country that is heavily affected by the HIV-1 pandemic. 
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1.2. HIV-1 GENOME STRACTURE  

A structure of the HIV-1 genome is presented in Figure 1. HIV is a retrovirus, composed of 

double-stranded genomic RNA that is approximately 9kb in size (1). The virus encodes nine 

open reading frames (ORFs) of which three of these (gag, pol and env) are found in all 

retrovirus and provide the instructions to make proteins that will form new virus particles (2). 

For example, env provides the code to make the proteins that form the envelope, or shell, of 

HIV. gag makes the structural proteins such as the matrix and the capsid, and pol makes the 

enzymes that are essential for making new viruses. The structural components of the virion 

compose of six proteins that form the building blocks of the virus. These are the four Gag 

proteins Capsid (CA), Matrix (MA), Nucleocapsid (NC) and p6, and the two Env proteins, 

Surface (SU or gp120) and Transmembrane (TM or gp41). The polymerase gene (pol) encodes 

three of the major enzymatic components, Protease (PR), Reverse Transcriptase (RT) and 

Integrase (IN) that plays unique roles in other retroviruses.  

HIV encodes at least six additional proteins that play a role in the viral replication cycle. These 

proteins are called accessory and regulatory proteins. Three of the accessory proteins, [Virion 

infectivity factor (Vif), Viral protein R (Vpr), and Negative factor (Nef)] are packed in the viral 

particle core and they play a role in increasing production of the HIV proteins. The vif gene 

increases the production of the HIV particle in the peripheral blood lymphocytes (3). Vpr 

facilitates the infection of non-dividing cells by HIV , while Nef plays a role in down 

modulation of CD4 and MHC class I (4). Two other regulatory proteins, Transcriptional 

transactivator protein (Tat) and Regulator of expression of virion proteins (Rev) are essential 

for regulating the production of HIV in vitro (5) and the last Viral protein U gene (Vpu), helps 

in the assembly of the virion indirectly (6). 
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Figure 1: The HIV-1 genome structure.The Structural genes (gag, pol and env) regulatory genes 

(tat and rev) and accessory genes (nef, vif, vpr and vpu) are indicated in Figure 1, as well as the 

proteins encoded by each genomic region. Image reproduced with permission and adapted from 

(Source:www.hiv.lanl.gov). 

 

1.3. HIV-1 LIFE CYCLE 

Retroviruses uses cells in the host body to replicate (7) Figure 2. HIV infection starts when the 

virus attaches its own glycoprotein (gp120/gp41) to the host CD4+ T-cell receptor and the 

chemokine core-receptors , either Chemokine core-receptors 5 (CCR5) and / or Chemokine X 

core-receptors 4 (CXCR4), and then penetrate the human host cell, usually white blood cells 

(WBC) (8). The CCR5 and CXCR4 co-receptors are the main chemokine receptors that are 

used by HIV for entry in vivo (9). Following attachment, the viral Envelope (Env) fuses with 

the cellular membrane. This process of fusion allows the HIV capsid that hold the core of the 

virus, or nucleus to enter in the cytoplasm of the infected cell (10). The capsid contains two 

enzymes essential for HIV replication, the RT, PR and IN. The capsid houses the viral RNA 

genome from cytosolic DNA sensors. Soon after entry into the cytoplasm, the virus loses its 

outer shell through a process called “uncoating” which is disassembly of a protective, conical 

capsid around the HIV-1 genome, during which most of capsid (CA) sheds off, while 

nucleocapsid (NC), Vpr, RT, PR and IN are still associated (11). Thereafter, NC disintegrate 

and leaves two strand of viral RNA naked and exposed and Viral RNA is then reverse 

transcribed into full-length double-stranded complementary deoxynucleic acid (cDNA) with 

the help of the viral Reverse Transcriptase (RT) enzyme. Newly formed complementary DNA 

(cDNA) interacts with viral and cellular proteins to form the pre-integration complex (PIC). 
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The PIC consists of viral proteins (including Vpr, Matrix and Integrase). After the proteins, 

enzymes, and newly formed viral cDNA are transported to the host cell nucleus, double-

stranded linear viral DNA is inserted into the host genome in a process catalyzed by the virus-

encoded Integrase (IN) to form a proviral DNA (12). The mechanism involves a series of 

nucleophillic attacks, the first of which removes the terminal 2 bases from the 3′ ends of the 

long terminal repeats and of the second which inserts the viral DNA into the host genome (13). 

When viral DNA is successfully integrated into the human genomic DNA, the provirus RNA 

can be transcribed and with the help of Transcriptional Transactivator gene (Tat), which binds 

to the 5’ end of the long terminal repeats (LTR) region of the incorporated viral DNA. 

Thereafter, host Polymerase recognizes the integrated viral DNA as part of the host genomic 

DNA (13). During the late phase of the HIV-1 replication cycle, viral genes are transcribed and 

viral RNAs are exported from the nucleus to the cytoplasm, where mRNA strands are used as 

blueprint to make long chains of HIV-1 precursor proteins that are not able to function within 

the viral cycle to give rise to virus products. PR cuts up these long strands of new HIV particles 

into small individual of subunits to make the virus infectious and continues even after virus 

assembly. (14). Full length unspliced RNA serves as the mRNA template for Gag and Gag–

Pol synthesis, as well as the genome for packaging (15). The Gag precursor contains MA, CA, 

NC and p6 domains, as well as two spacer peptides, SP1 and SP2. As part of the uncleaved 

Gag precursor, the MA domain targets Gag to the plasma membrane and promotes 

incorporation of the viral Env glycoproteins into the forming virions (16). CA drives Gag 

multimerization during assembly; NC recruits the viral RNA genome into virions and 

facilitates the assembly process; and the p6 domain recruits the endosomal sorting complex 

required for transport apparatus, which catalyses the membrane fusion step to complete the 

budding process (17). HIV-1 virion assembly occurs at the plasma membrane, within 

specialized membrane micro domains. The HIV-1 Gag (and Gag-Pro-Pol) polyprotein itself 

mediates all of the essential events in virion assembly, including binding the plasma membrane, 

making the protein–protein interactions necessary to create spherical particles, concentrating 

the viral Env protein, and packaging the genomic RNA via direct interactions with the RNA 

packaging sequence. These events all appear to occur simultaneously at the plasma membrane, 

where conformational change(s) within Gag couples membrane binding, virion assembly, and 

RNA packaging (18). Through a complex combination of Gag– lipid, Gag–Gag, and Gag–RNA 

interactions, a multimeric budding structure forms at the inner leaflet of the plasma membrane. 

The budding virus particle is ultimately released from the cell surface in a process that is 

promoted by an interaction between the late domain in the p6 region of Gag and host proteins, 
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most mediated by the host ESCRT endosomal sorting complexes required for transport 

(ESCRT) machinery (19, 20). These processing events generate the mature Gag proteins MA, 

CA, NC and p6, and two small Gag spacer peptides (SP1 and SP2). Gag cleavage triggers a 

structural rearrangement termed maturation, during which the immature particle transits to a 

mature virion characterized by an electron-dense, conical core (19–21). Among the Gag 

processing cascade, cleavage of SP1 from the C terminus of CA is the final event required for 

final CA condensation and formation of the conical core of virus particles. Virion maturation 

is essential for the released virus particles to become infectious and initiate a new round of 

infection (22). 

 

 

 

Figure 2: This infographic illustrates the HIV replication cycle, which begins when HIV fuses with the surface of 

the host cell. A capsid containing the virus’s genome and proteins then enters the cell. The shell of the capsid 
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disintegrates and the HIV protein called reverse transcriptase transcribes the viral RNA into DNA. The viral DNA 

is transported across the nucleus, where the HIV protein integrase integrates the HIV DNA into the host’s DNA. 

The host’s normal transcription machinery transcribes HIV DNA into multiple copies of new HIV RNA. Some 

of this RNA becomes the genome of a new virus, while the cell uses other copies of the RNA to make new HIV 

proteins. The new viral RNA and HIV proteins move to the surface of the cell, where a new, immature HIV forms. 

Finally, the virus is released from the cell, and the HIV protein called protease cleaves newly synthesized 

polyproteins to create a mature infectious virus (23). 

 

1.4. HIV-1 IN South Africa and Cameroon  
 

1.4.1. South Africa 
 

South Africa (SA) has a population of approximately 56 million people and remains the country 

that is the most heavily affected by HIV-1, with 7.7 million people living with the virus. SA 

has met the UNAIDS 90-90-90 target where by 90% of people living with HIV-1 were aware 

of their HIV-1 status by the year 2018 (24). The test and treat strategies in South Africa, 

regardless of the CD4+ T-cell count had made SA the country with the largest cART program 

in the world. According to UNAIDS in 2018, 240 000 new infections where recorded with an 

additional 71 000 AIDS related deaths. The Integrase (IN) strand-transfer inhibitor (InSTI), 

Dolutegravir (DTG) is now recommended by the World Health Organization (WHO) as part 

of salvage and / or first-line combination antiretroviral therapy (cART) (25). South Africa has 

roughly 4.8 million HIV-1 positive patients who are receiving cART (26). This equated to 62% 

of people living with HIV-1 in the country and 87% of all people living with HIV were virally 

suppressed (26). 

1.4.2. Cameroon  
 

In the West and Central Africa, Cameroon is the country with the highest prevalence rates of 

HIV/AIDS, with 560 000 people living with the virus out of a total population of 25 million 

people. In Cameroon, the lack of resources further limits the availability of treatment options 

in cases where patients require a change of their HIV-1 therapy regimen. Among 560 000 

people living with HIV in Cameroon approximately 225 000 (39,3%) were accessing cART 

(27). In 2018, 23000 people were newly infected with HIV and about 18000 people died from 

AIDS related diseases. A huge effort has been made to meet UNAIDS 90-90-90 target were 
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about 74% of people know their HIV-1 status and 52% of people living with HIV are on 

treatment. In addition, 8% of pregnant women received cART to prevent Mother-to-child-

Transmission (PMTCT) (26). 

1.5. HIV-1 DIVERSITY IN SUB-SAHARAN AFRICA  

HIV/AIDS is a major global health concern caused by two types of retrovirus, HIV-1 and HIV-

2 (28). HIV is thought to have originated via cross-species infection (zoonotic transmission) 

from infected African primates to the human population. Cross-species infection gave birth to 

various types of HIV-1 groups; M (Major), O (Outlier), N (non- M, non-O), P and L (29). HIV-

1 is characterized by an extensive genetic diversity, Figure 3. HIV-1 group M can be subdivided 

into various subtypes and many recombinant forms (30). Some of these subtypes, such as H 

and J, are not common and mostly found in Central Africa (31). Circulating Recombinant 

Forms (CRFs), Unique Recombinant Forms (URFs) and Subtype A are dominant in Eastern 

Africa and subtype D confined in Central Africa and Western Africa (32). HIV-1 group L was 

recently identified from the Democratic Republic of Congo (DRC) (33). HIV-1 group M 

subtype C is the driving force of epidemic and caused more than 75% of HIV-1 cases in sub-

Saharan Africa, particularly in eastern and Southern Africa (34). South Africa, have extensively 

reported on HIV-1 subtype C as the predominant subtype that account for the majority of 

infections (35–37). The most diverse subtypes of HIV-1 is found in Cameroon. Approximately 

1-6% of cases of HIV-1 infection in Cameroon and West-Central Africa is caused by HIV-1 

group O. HIV-1 group N and P has only been isolated in Cameroonian individuals thus far and 

are rare (29,38,39). In Cameroon CRF02_AG subtype is the common cause of HIV-1 infection 

and account for approximately 58.2% of HIV infections, with at least 14.8% of infections 

caused by URFs. Other subtypes, such D, F2 and G, and CRF, 01, 11, 13, 22, 36, and 37 have 

been identified in Cameroon as well (40). 
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Figure 3 : Global distribution of major HIV subtypes. Map showing the global distribution of the major HIV 

subtypes and circulating recombinant forms from the review. Source: Map of the world modified to show HIV-1 

subtype diversity worldwide. Map-menu.com.Source. HIV subtype diversity worldwide. Current Opinion in HIV 

and AIDS 14(3): 153-160, May 2019. 

1.6. NATURALY OCCURING POLYMORPHISIMS (NOPs). 

Naturally occurring polymorphisms (NOPs) are considered as secondary mutations that alone 

have no effect on resistance. The high error rate of reverse transcriptase (310–5 sites/ 

genome/replication cycle) provides tremendous scope for the generation of NOPs in HIV-1  

open reading frames (ORFs) (41). To date, approximately 42 mutations within the HIV-1 IN 

gene have been associated with INSTI drug resistance. Naturally occurring IN gene 

polymorphisms may have important implications for INSTI resistance development. Of the 42 

amino acids substitutions currently associated with INSTI resistance, 21 occurred as NOPs (42) 

However, their pre-existence might favour a more rapid evolution towards resistance, in 

combination with major mutations during therapy (43). For example, a novel next-generation 

INSTI termed MK-2078 with a higher genetic barrier for selection of resistance than either 

RAL or EVG was able to differentially select for a novel G118R substitution in IN in subtype 

C, compared to subtype B viruses (44). This mutation conferred only slight resistance to MK-

2048, but gave rise to 25-fold resistance against RAL when it was present together with a 

natural polymorphic substitution at position L74M in CRF02-AG cloned patient isolates (45). 
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Other studies reported that NOPs can regulate INSTI susceptibility/resistance in non-B 

subtypes (46). A study by Franset et al., showed that the majority of viruses containing N155H 

also had at least one NOP mutation, L74M, E92Q, T97A, V151I, or G163R that confers large 

reduction in RAL susceptibility. The fact that patient viruses containing N155H without 

additional NOPs exhibited a broad range of RAL susceptibility indicates that other amino acid 

substitutions in the IN proteins of these viruses also influence RAL susceptibility (46). While, 

Ceccherini-Silberstein et al. reported several IN NOPs, for example, M154I, V165I, and 

M185L, that were positively associated with specific RT mutations (F227L and T215Y) in 

treated patients (47). In silico analysis of IN/DNA complexes predicted the impact of NOPs on 

the interaction between the DNA and INSTIs (48). Furthermore, two NOPs V82F and I84V 

present in HIV-1 A and C viruses were found to be associated with reduced binding affinity 

more than occurred in subtype B. (49). 

1.7. HIV-1 INTEGRASE (IN)  

1.7.1. STRUCTURE 

The HIV-1 IN is a highly conserved protein. IN consists of 288-amino acids (32-kDa). It is 

synthesised from the portion of matured pol gene, of the Gag-Pol precursor from the C-terminal 

portion (46). IN is divided into three canonical domains. (i) N-terminal domain (NTD) (amino 

acids 1-49) that carries an HHCC motif analogous to a zinc finger, and effectively binds Zn2+ 

(50), possibly favouring protein multimerisation, a key process in integration (51) . (ii) The 

catalytic core domain (CCD) (50–212) which is indispensable for the catalytic activity and 

which is conserved between viral IN and transposases. (52) This CCD is also implicated in the 

binding of the viral DNA extremities mainly via the residuEs Q148, K156 and K159 (53) and 

the (iii) C-terminal domain (CTD) (213-288) binds non-specifically to DNA and therefore is 

mainly involved in the stability of the complex with DNA (54) . IN catalytic functions are 

maintained throughout the catalytic triad D64, D116, E152 consisting in two aspartates and 

one glutamate residues and the multimerisation of the protein (55). For example, Zn2+ 

facilitates the Mg2+-dependent activity of IN by enhancing its multimerisation and 

cooperativity of DNA-binding (56). No complete structure has yet been determined for the 

integrase protomer (IN1–288), or for oligomers or complexes of these structures with DNA, 

due to poor solubility and interdomain flexibility problems. However, several structures of 

isolated domains or of two consecutive domains have been reported (57, 58). 
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1.7.2. ACTIVITY 

HIV IN It is characteristic for all retroviruses, including HIV-1, to perform a catalytic 

integration of the proviral DNA (vDNA) copy of a RNA genome into the host target DNA 

(tDNA) (59). Viral IN is a key enzyme in the replication mechanism of retroviruses, mediating 

the covalent retroviral integration-insertion process of the vDNA into the tDNA (60). This 

integration process establishes productive permanent infection within the host cells, enabling 

replication and parallel transcription of the newly inserted provirus with other genes of the host 

organism (61). Once integrated, the provirus persist in the host cell and serves as a template for 

the transcription of viral genes and replication of the viral genome, leading to the production 

of new viruses (60). During this process the IN oligomerizes into a higher-order stable synaptic 

complex (SSC) containing two vDNA ends. This is a very important and crucial step in the 

replication cycle of HIV-1 and presents one of the major underlying difficulties in combating 

the HIV/AIDS pandemic to date (59) 

In Figure 4 the DNA cutting and joining steps of retroviral DNA integration is shown. Initially, 

IN removes a GT dinucleotide from the 3′-terminus of each viral DNA end (3′-processing) and 

subsequently catalyzes concerted transesterification reactions (DNA strand transfer) to 

integrate the recessed viral DNA ends into the target DNA in a staggered fashion. Cellular 

chromatin-associated protein lens epithelium-derived growth factor (LEDGF)/p75 engages the 

IN tetramer in the pre-integration complex (PIC), which, in addition to the intasome, contains 

additional viral and cellular proteins, to target HIV-1 integration into active genes (62,63) . 

Recently in 2017, a full length three dimensional structure of the HIV-1B IN strand transfer 

complex (STC) intasome (PDB ID:5U1C) has been determined by Cryo-electron microscopy 

(CryoEM) methods (64). This structure (5U1C) has provided a first glimpse of nucleoprotein 

organization that could be used as a homolog model for the modelling of HIV-1C IN and other 

recombinant subtypes. Predicting a 3D structure for HIV-1C, and other subtypes, using 5U1C 

will assist in deducing the effect of known and/or novel HIV-1 cART resistant variants upon 

the IN structure. This is possible as 5U1C has a higher resolution (3.9 Å) and sequence identity 

(93.4%) to our target sequence, relative to other templates from prototype foamy viruses 

(PFVs). However, crystal structures of the PFV IN in complex with DNA and INSTIs are 

available for comparisons, as they contain both conserved DDE motifs and positions of the 

INSTI drugs making them useful for drug extractions (63, 65, 66). 
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Figure 4: DNA cutting and joining steps of retroviral DNA integration. (A) The viral DNA synthesized by reverse 

transcription is initially blunt ended. (B) The 3′ end processing reaction removes two nucleotides from each 3′ 

end. (C) Next, in the DNA strand transfer reaction, the 3′ hydroxyls at the ends of the viral DNA attack a pair of 

phosphodiester bonds in the target DNA; in the case of HIV, the sites of attack are separated by five nucleotides 

on the two target DNA strands. (D) The result is the integration intermediate, in which the 3′ ends of the viral 

DNA are joined to the 5′ ends of the target DNA at the site of integration. Cellular enzymes to complete the 

integration process then repair the integration intermediate. Image reproduced with permission (67). 

 

1.8. HIV DRUG TARGETS AND ARV CLASSES 

The main steps of HIV viral replication include binding and entry, reverse transcription, 

integration, viral assembly, and budding. These steps form the basis for the targets of the 6 

different ARV drug classes (Nucleos(t)ide reverse transcriptase inhibitors (NRTIs), Non- 

Nucleoside reverse transcriptase inhibitors (NNRTIs), Protease inhibitors (PIs), Integrase 

strand transfer inhibitors (INSTIs) and entry inhibitors (sub-divided as fusion inhibitors (FI) 

and inhibitors of co-receptor usage), Table 1. In total there are 31 United States of America 

(USA) Federal Drug Agency (FDA) approved HIV antiretroviral drugs currently being 
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marketed and the brand names of their co-formulated products are also given below in Figure 

5.

 

Figure 5: FDA approved antiretroviral drugs for HIV treatment shown to act on different stages of the HIV-1 

replication cycle. Image reproduced with permission and adopted from Source: HIV-infected patients 

eje.bioscientifica.com. 
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Table 1: FDA approved Fixed-dose antiretroviral drugs for HIV currently marketed 

 

1.9. MECHANISMs OF ACTION OF DIFFERENT cART drugs 

1.9.1. Reverse Transcriptase  

Reverse Transcriptase (RT) is an enzyme that contains two enzymatic activities, a DNA 

polymerase that can copy either an RNA or DNA template, and an RNase H, which degrades 

RNA if the RNA is part of an RNA/DNA duplex. RT uses these two enzymatic activities to 

convert the single-stranded RNA genome of the virus into a double-stranded DNA that can be 

integrated into the genome of the host cell. The synthesis of a DNA copy of the viral genome 

is a crucial step in the life cycle of the virus, and RT has, for that reason, been the target of a 

number of different anti-HIV drugs (68).  

1.9.1.1. Nucleoside Reverse Transcriptase Inhibitors (NRTIS) 

NRTIs inhibit the replication of HIV via two channels, phosphorylating the 5′-triphosphate 

form by cellular kinase enzymes. The NRTIs becomes, incorporated into the enzyme-template-

primer complex, where natural 5′-deoxynucleoside triphosphates attaches. The NRTIs do not 

Fixed-dose combinations 

Atripla (EFV+ FTC+TDF) 

Stribild (EVG + TDF + Cobicistat + FTC) 

Truvada (TDF + FTC) 

Triumeq (ABC + DTG + 3TC) 

Complera (FTC + RPV + TDF) 

Combivir (3TC + AZT) 

Descovy (FTC + TAF) 

Evotaz (ATV + Cobicistat) 

Epzicom (3TC + ABC) 

Odefsey (FTC + TAF + RPV) 

Prezcobix (DRV + Cobicistat) 

Trizivir (ABC +3TC +AZT) 

Genvoya (EVG + cobicistat + FTC + TAF) 

Biktarvy (BIC + FTC+TAF) 

Symtuza (DRV+ FTC +TAF + Cobicistat) 

Dovato (DTG + 3TC) 

Juluca (DTG + RPV) 

Delstrigo (DOR + 3TC + TDF) 

Symfi (lo) (EFV +3TC +TDF) 

Cimduo (Temixys+ 3TC+TDF) 

Stellenbosch University https://scholar.sun.ac.za



34 | P a g e  
 

have the 3′-hydroxyl group on the deoxyribose moiety required for binding of nucleotide and 

this result in chain termination (69). 

1.9.1.2 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIS) 

NNRTIs inhibit the replication process of HIV-1 by interacting with an HIV-RT pocket region 

(70,71). The binding site of the NNRTI is located very close to the substrate-binding site at a 

distance of 10 angstrong (Å) away from the polymerase active site. The relationship between 

these two sites helps in increasing the effectiveness of RT inhibitors. NNRTIs causes an effect 

on the three-stranded β-sheet in the p66 subunit by repositioning it. Once it is repositioned, the 

active catalytic site in the inactive p51 subunit becomes locked. All NNRTIs, when they bind 

to the HIV-1 RT pocket site, change the structural shape of the binding site into “butterfly-like 

“shape and then block the binding of the RT to the primer during reverse transcription (72). 

1.9.2. Integrase strand-Transfer Inhibitors (INSTIs) 

Two strategies used by the INSTIs to block integration of the virus into virus genome have 

been developed; 3’ processing and DNA strand transferase. INSTIs compete with the viral 

DNA for binding to the IN DNA complex. The viral DNA recognizes the binding site next to 

the catalytic triad, which opens after a change in structure caused by the binding and 3' 

processing of the viral DNA (73) . INSTIs chelate the Mg2+ cation required for the activity of 

IN. Secondly, INSTIs target and bind to the IN vDNA complex , near the 3' end of the host 

DNA and thereby blocking the binding of viral DNA, resulting in inhibition of the strand 

transfer reaction , ultimately inhibiting the Integration of viral DNA (74). 

1.9.3. Protease Inhibitors (PIs) 

Protease Inhibitors (PIs) interfere with the process of forming new infectious viral particles. 

The viral Protease is engaged in virion maturation (75). Protease targets the amino acid 

sequences in the Gag and Gag–Pol polyproteins, which must be cleaved before nascent viral 

particles (virions) can mature. Cleavage of the Gag polyprotein produces three large proteins 

(p24, p17 , and p7) that contribute to the structure of the virion and to RNA packaging, and 

three smaller proteins (p6, p2 and p1) of uncertain function (76). PIs are small molecules that 

bind to the active site of the Protease and therefore compete with its natural substrates. PIs 

contain a synthetic analogue of the amino acid sequence of the Gag–Pol polyprotein at position 

that is cleaved by the Protease. PIs prevent cleavage of Gag and Gag–Pol protein precursors in 
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acutely and chronically infected cells, arresting maturation and hence blocking the infectivity 

of nascent virion (77). This results in production of defective viral particles that are unable to 

continue with replication (78). 

1.9.4. Inhibitors of co-receptor usage (CCR5 antagonists) 

CCR5 and CXCR4 are the main HIV co-receptors involved in virus entry and cell-to-cell 

spread. R5-tropic viruses are nearly always involved in the initial infection, while HIV strains 

using the CXCR4 co-receptor are observed only seldomly in the early infection (79). The first 

step of the HIV-1 cell entry comprises the interaction of the Envelope glycoprotein gp120/gp41 

with the host receptor CD4, and the binding to chemokine receptors CCR5 or CXCR4 (80). 

CCR5 antagonist bind in a side pocket region of the CCR5 molecule transmembrane cavity, 

thus preventing the interaction between the HIV gp120 and CCR5. The CCR5 imitates the 

functions of the chemokines, which are found to be natural ligands of the chemokine co-

receptor, thus inhibiting their effect (81). 

1.9.5. Fusion Inhibitors (FIs)  

In order for the HIV virus to gain entry to the intracellular human machinery, which all viruses 

require for replication, the virus must fuse with the human cell membrane. This occurs in a 

complex sequence of events following attachment of the HIV-1 surface glycoprotein 120 

(gp120) binding site to human cells expressing CD4 receptor molecules. After binding, gp120 

changes shape to allow the viral glycoprotein 41 (gp41) to form a pore in the membrane through 

which the virus can enter (82). Fusion inhibitors act extracellularly to prevent the fusion of 

HIV to the CD4 or other target cell. Therefore, fusion inhibitors are drugs that blocks the second 

step in the fusion pathway by binding to the HR1 region of glycoprotein 41 (gp41). This 

mechanism does not allow HR1 and HR2 to fold properly, thereby preventing the 

conformational change of gp41 required to complete the final step in the fusion process (83). 

1.10. HIV drug resistance mechanisms, viral fitness and role of secondary mutations in 

virus evolution  

The high mutation rate of HIV-1 is an important biological factor contributing to HIV drug 

resistance. Approximately 1 - 3 mutations occur in each RNA genome target per round of 

replication (84). This is due to the error prone HIV-1 RT enzyme that lacks a 3’-> 5’ 

proofreading activity. Another contributing factor is that HIV-1 has a high recombination rate 

when co-infection of a cell occurs with more than one variant (85). The high recombination 
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rate is because of the mechanism (known as Copy choice) by which HIV-RT switches from 

one template to another during viral cDNA synthesis (86). Earlier studies have shown that the 

HIV replication efficiency is related at least in part to the processivity of RT. Additionally, in 

vivo peripheral blood mononuclear cell (PBMC)-based replication kinetic assays demonstrated 

that the L74V variant replicates two- to three fold slower than the M184V virus, and there was 

a 2.4% loss of fitness for M184V in comparison to WT virus and a 5.7% loss of fitness for 

L74V virus compared to M184V virus in growth competition assays (87). 

In a particular study (88), the relationship between fitness and replication fidelity was 

investigated. The study suggested a mutation rate close to the HIV-1 WT strain represents the 

optimum for viral evolutionary adaptive forces. To add on, the study proposed a model that 

assumes that high replication fidelity implied evolution of HIV-1 to a lower mutation rate and 

factors such as changes in enzyme processivity and increased time for base recognition would 

require high energy demands that would inevitably result in a reduction of viral fitness. This 

could possibly explain why discriminatory mutations in the HIV-1 pol gene results in less fit 

viral mutants (85). The presence of secondary mutations in this gene, changes enzyme kinetics 

in a way that overcomes the energy constraints needed for correct base incorporation during 

viral synthesis and this compensates for fitness loss (88). Major NRTI resistance-associated 

mutations are known to decrease drug susceptibility of the virus at the expense of reduced viral 

fitness, whereas the general accepted dogma for secondary (accessory or compensatory) 

mutations is that these mutations maintain relative effect of decreased drug susceptibility 

imposed by major mutations but will enhance viral fitness (89). Secondary/compensatory 

mutations have been observed in some studies (90, 91), playing a role in restoring viral fitness. 

The precise molecular mechanisms for drug resistance of each ARV class is discussed below. 

 

1.10.1. NRTIs resistance mechanisms 

Drug resistance remains a central challenge in the success of HIV therapies, as resistant viruses 

can be transmitted. The prevalence of resistant viruses is increasing in untreated HIV-1 

patients. For the virus to replicate and be transmitted, HIV-1 RT must be able to complete viral 

DNA synthesis, and NRTI-resistant RTs must retain the ability to incorporate normal dNTPs 

with reasonable efficiency. Two rare mutations associated with multiple NRTI drug resistance 

are insertions or deletions at codon 69 (known as T69ins/ T69del) and the Q151M (92). The 

T69ins is known to co-occur with Thymidine Analogue Mutations (TAMs) and causes high 
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level clinical resistance to all NRTIs (92). The Q151M mutation is known to usually co-occur 

with accessory mutations that tend to promote the efficiency of the phosphorolytic excision 

reaction of NRTIs (93). As part of the precursor of the multi-nucleoside resistance (MNR) 

complex that include accessory mutations F75I, F77L, F116Y and A62V, Q151M causes high-

level clinical resistance to AZT, D4T, ddI and ABC and low – intermediate resistance to TDF, 

3TC and FTC (94). Combinations of Q151M and T69ins mutations are rarely observed to 

occur, but when they appear severely limit therapy options as they incur resistance to all NRTIs 

(95). Major NRTI mutations are known to decrease drug susceptibility of the virus at the 

expense of reduced viral fitness whereas the general accepted dogma for secondary (accessory 

or compensatory) mutations is that these mutations maintain relative effect of decreased drug 

susceptibility imposed by major mutations but will enhance viral fitness (89). 

Secondary/compensatory mutations have been observed in some studies playing a role in 

restoring viral fitness (96).  

1.10.2. NNRTIs resistance mechanisms 

HIV-1 replication is continuous, occurs vigorously in infected individuals and can 

subsequently lead to HIV-1 drug resistance against RT inhibitors. Resistance of NNRTIs is 

caused by mutations that are located at the amino acid (aa) residues aligning the NNRTI-

binding pocket site. The most common RT mutation pathways associated with resistance to 

NNRTIs include the K103N and Y181C mutations. These mutations can cause reduce 

susceptibility to nevirapine (NVP) (97). Other NNRTI mutations include L100I, E138K 

,V106A, QA45M and P236L that can cause resistance to NNRTIs. NNRTI-resistance 

mutations can occur singly, or in combinations (98). K103R is a polymorphism that is not 

selected by NNRTIs and in isolation has minimal effect on NNRTI susceptibility. In 

combination with V179D, however, it is associated with about 10-fold resistance to each of the 

NNRTIs. Another study found that viruses carrying E138K or Y181C mutation each had 

reduced RT activity relative to that of the WT. The introduction of the secodary mutations into 

the RT-Y181C mutant virus significantly reduced RT activity and viral fitness (99). The two 

most common resistant mutants, K103N and Y181C, show a fitness that is very close to that 

of WT virus. Less-frequent mutations, such as V106A, Y188C and G190S, are associated with 

lower viral fitness. 
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1.10.3. INSTIs resistance mechanisms 

Development of primary mutations against INSTIs usually arises under selective drug pressure 

and renders down the efficacy of the drugs against the virus at a cost of increasing replication 

capacity of the virus. This is due to change in the active site structure where the drug bind 

(100). Common pathways that lead to INSTIs resistance are located at IN residues T66I/A/K, 

E92Q/G, T97A, S147G, Q148R/H/K, and N155H (46,101,102). Another study in which IN 

mutations were purposely introduced in order to determine susceptibility and infectivity, 

reported that each of the G118R, Y143R, Q148R, R263K and G140S/Q148R mutations, when 

introduced into SIV, impaired infectiousness and replication fitness compared to WT virus 

(103). 

In South Africa, a study conducted by Brado et al., identified the prevalence of Q148H in 1/314 

(0.3%) if co-occurring with additional RAMs. This mutation can lead to resistance against all 

InSTIs (104). some mutations such as S119R have been shown to increase the resistance to 

INSTIs when combined to the primary mutations Y143C, Q148H, and N155H (105). In 

addition, another study surprisingly, found no mutations in the IN gene but rather five 

mutations located in the nef region, one mutation six nucleotides upstream of the 3′ PPT and 

four other changes clustered in the 3′ end of the 3′ PPT, inside the G tract, resulting in GCAGT 

instead of GGGGGG. The location of these mutations in a highly conserved region is very 

surprising, and the mechanism involved in this change remains unknown. The disruption of the 

3′ PPT could lead to modification of the reverse transcription (RT) process, resulting in linear 

DNA that is no longer fully compatible with integration, explaining the decrease in infectivity. 

This nonconventional linear DNA could impair DTG binding, explaining the resistance to 

DTG. (106). Secondary mutations that increase the fitness of the resistant viruses have been 

identified in both pathways. In particular, the secondary G140S mutation, observed in tandem 

with the Q148H mutation, rescues a replica- ive defect due to the presence of the primary 

mutation Q148H (107). 

1.10.4. PI resistance mechanisms 

Protease inhibitors (PIs) which compete with natural cleavage sites, strongly impair viral 

infectivity and have proven to be highly valuable in the treatment of HIV-infected individuals. 

The emergence of specific mutations in Protease that directly decrease the inhibitor binding 

affinity for the enzyme active site is considered the primary mechanism of PI resistance (108). 

Both primary and secondary mutations modify the shape and size of the substrate-binding 
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cavity of the Protease (109), by enhancing the cleavage of Gag and Gag-Pol precursors (110). 

This enlargement seems to have more important consequences on the binding of the inhibitors, 

most of which are dependent upon a strong and tight interaction with the active site of the 

enzyme, than on the binding of the natural substrates of the protease in Gag and Gag-Pol. D30N 

is a nonpolymorphic NFV-selected substrate-cleft mutation that causes high-level resistance to 

NFV. The Protease mutations A71V/T, T74S, M89I/V and L90M (111) showed that mutation 

M89I alone did not confer primary resistance to PIs, but in viral isolates that displayed M89I/V 

and L90M together, the loss of susceptibility to nelfinavir (NFV) was significantly higher than 

in isolates with L90M alone (112). Besides the well documented effect of Gag cleavage site 

mutations on resistance-associated loss of viral fitness, evidence has been accumulating that 

these mutations could also directly affect HIV susceptibility to PIs in a manner that is 

independent of their effect on fitness. (113) 

 

1.11. MOLECULAR MODELLING  

Molecular modelling can help in determining the 3D structure of a protein sequence and predict 

its function from a sequence. It can also be used to understand protein-drug interactions and 

help us to assess the influence of mutations on the protein structure. Molecular modelling 

methods, such as molecular docking, molecular dynamics (MD) simulation and binding free 

energy calculation, have been proved to be very useful tools for protein-ligand and protein-

protein interactions study(48,114). In a previously a molecular modelling study combining 

molecular docking, molecular dynamics simulation, and binding free energy calculation was 

performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD) with 

two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein 

(115). In addition Molecular modelling was useful in the discovery of known and widely used 

drugs, such as HIV PIs (116). In our study, we will use molecular modelling approach to 

understand if second-generation drug, DTG, will be able to retain efficacy against selected 

RAL and EVG known resistance mutations in an various subtypes on IN protein. This methods 

will provided us with a unique opportunity to model the structure of other IN HIV-1 to 

interrogate the effect of other known drug. Overall, computational methods play a significant 

part of the drug lead discovery and indispensable to study drug resistance mutations that can 

develop in future to prevent possible treatment failures (117). 
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1.11.1. HOMOLOGY MODELLING 

Predicting the 3D structure of a protein derived from its own amino acid continues to be a 

scientific problem. The first and most accurate approach used to predict 3D structure is 

“comparative” or “homology” modelling (118). Homology modelling is a method used to 

predict a protein structure from its sequence based on the evidence that proteins with similar 

sequences have same structures (118). It relies on identifying known protein structures that 

they share similarity with the targeted structural sequence and relies on the production of 

sequence alignment that maps the residues on template sequence and target sequence. It has 

been reported that protein of a sequence is less conserved when compared to a structure of a 

protein amongst homologues (119). 3D protein structures gives valuable knowledge about the 

molecular and functionality of the protein structure. Although, X-ray crystallography and 

nuclear magnetic resonance (NMR) spectroscopy have been used towards solving the structural 

solution experimentally, but these methods requires more time to be performed with no 

guarantee of success. About 84 645 of experimentally solved data are found on Protein Data 

Bank (PDB) (120). While, the number of known different structures is much less when 

compared to the number of known protein sequences in SWISS 64 PROT and TrEMBL 

databases (about 850,000 sequence entries) (121). There is a lack of knowledge and 

information on protein structures. Comparative homology modelling stands out to be the 

reliable methods that can be used to generate a 3D model of a target protein using its own 

amino acid sequence (122). Experimentally solved 3D structural template that have similar 

amino acid sequence with a target protein is required to build a successful model. At least, 30% 

or more of similarity between target sequence and template can be used to generate a model 

(118). Homology is made up of four processes (Figure 6). (1) identification of known 3D 

structure(s) of a related protein that can serve as template; (2) sequence alignment of target and 

template proteins; (3) model building for the target based on the 3D structure of the template 

and the alignment; (4) refining/validation/ evaluation of the models. All four steps can be 

repeated until a perfect model is built (123). Models by definition are abstraction and may have 

errors. MODELLER is a computer program for comparative protein structure modelling (124). 

Various parameters such as discrete optimized protein energy (DOPE) score, (125) template. 

modelling (TM) score, (126) and RMSD value (127) are used for comparisons and identifying 

best models. Depending on the similarity of the sequence and the alignment quality, the 

homology models accuracy, when compared with the actual experimental structure can be up 

to approximately ~1–2 Å Cα atom RMSD (root-mean-square deviation distance between 
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corresponding Cα atoms) (128,129). As a general rule, models with similarity sequence of 

≥50% are accurate enough for applications in drug discovery, models built with similarity 

between 25-50% can be applied in assessing the druggability and experimental study design 

such as mutagenesis and models with similarity of between 10-25% are speculative at best 

(130). The presence of inserts and loops are thought to be the limitations in homology 

modelling. This makes modelling challenging without availability of template data (131).  

 

Figure 6: Outline of the homology modeling process and its applications in drug discovery. Image reproduced 

with permission from drug discovery today and adapted from informatics reviews (118). Given the sequence of a 

protein with unknown structure, the first step is the identification of a related protein with known 3D structure 

that serves as template. An alignment of the target and template sequences is necessary to assign the 

correspondence between target and template residues. A model is then built for the target based on the alignment 

and structure of the template, and further refined and validated. This figure was prepared using pymol 

(http://www.pymol.org). 

 

1.11.2. MOLECULAR DYNAMIC SIMULATION 

Molecular Dynamics (MD) is a simulation of atoms movement in a physical state and in a 

given system. Interactions of molecules and atoms is time-dependent, taking approximately 
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ten’s-hundreds of nanoseconds (ns), reaching up to milliseconds generating a view of the atoms 

movement (132). 

The dynamical system of these entities are calculated by solving the Newton's equations of 

motion (d2𝑟𝑖 (𝑡)/ d𝑡2 =𝐹𝑖 (𝑡) / 𝑚𝑖) for a system of interacting particles (Figure 7). Forces 

between the potential energy of the system and atoms are described by the force fields (133). 

Commonly applied force fields for molecular dynamics simulation and analysis include several 

computer software versions from OPLSAA (134), CHARMM (135) AMBER (136) and 

GROMOS (137). Common MD softwares are GROMACS (138), AMBER (139) and NAMD 

(140). The molecular structures encode the conformational dynamics of a protein and this is a 

critical element for the functioning of a protein. The knowledge for understanding how proteins 

function, requires basic understanding of the link between 3D structure, generated with 

increased rapidity’s by X-ray crystallography or nuclear NMR spectroscopy, and MD, that is 

not easy to obtain experimentally. MD simulations is a powerful computational tool that can 

be used for the explorations of changes on structural energy. Landscape accessible to these 

molecules and a sharp increase in power of computational analysis with better methods that 

makes the application of simulation on structural biology more interesting and exciting (141). 

MD simulations provide connections between dynamics and structure by allowing the 

manipulations of the structural energy landscape accessible to protein molecules (142,143). 

The first MD simulation of small proteins in vacuum (9.2-ps) was first reported in 1977. The 

availability of super power computing programs, make it easy to perform simulations of large 

proteins, in different systems. Molecular dynamic simulations can provide detail information 

of individuals at a level of atomic motions as a function of time. This can be used as a method 

to respond to questions, concerning the properties of a model system better than experiments 

(141). A successful MD simulation is dependent on the choice of a suitable energy function for 

describing the inter and intramolecular interactions (144). Besides the success of MD,  principal 

challenges still makes MD difficult (145). The accuracy of classical MD simulations is not 

good enough to capture protein behaviour at high concentration, as the current force field 

parameters cannot describe the crowded microenvironment/ secondary structure of 

biomolecules (146). 
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Figure 7: Schematic representation of a molecular dynamics cycle. Image reproduced with permission from 

Frontiers in pharmacology and adapted from experimental pharmacology and drug discovery informatics reviews 

(147) 

 

1.11.3. MOLECULAR DOCKING 

Molecular Docking is a structure-based virtual screening (SBVS) that is used to put computer-

generated 3D structures of ligands into a target protein structure in different orientations, 

position and conformations (148). Docking is more applied in predicting the best binding 

orientation of a drug against a target protein structure, enabling the predictions of binding 

strength and drug activity (147). (Figure 8). Molecular docking generates possible structural 

orientations for protein-binding site, where drugs can possibly bind. (147). Molecular docking 

consists of two processes; pipelines to perform structural orientations sampling and a scoring 

function, which gives a score to each generated position that can be used when docking a ligand 

to a receptor (149–151). The favoured orientation is possibly used to predict binding strength 

between the protein-ligand using the scoring functions (152). Scoring functions play the role 

of poses selector, used to assume positions to differentiate a supposed right binding modes and 

binders from non-binders from a pools of possible assumed positions generated by the sampling 

system engines. Association of the native-bound to the global minimum of the energy 

hypersurface is performed by the scoring function. Three different types of scoring functions 
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are empirical scoring functions, knowledge-based scoring functions and force-field based 

scoring functions. The most popular used software programs for docking is AutoDock(153), 

DOCK (154), FlexX (155), Glide (89), GOLD (157), Molegro Virtual Docker (158), AutoDock 

Vina (159) and Surflex (160), to name the few. Docking process involves the following steps, 

preparations of active site prediction, ligand, the protein and docking. The docked ligand 

against protein and interactions are analysed (148). The best docked-ligand complex, get 

picked and scored by the scoring function. MM-PBSA and MM-GBSA are methods that 

employs two combination of molecular mechanisms (MM) energies, polar and nonpolar 

solvation terms, and an entropy term for calculations of free binding energy using the equation 

(ΔGbind; Massova and Kollman) from the change between the bound complex (ΔGcom) and 

unbound receptor (ΔGrec) and ligand (ΔGlig) in solution [Eq: ΔGbind= ΔGcom -ΔGrec - 

ΔGlig] (161). The most explored and successful breakthrough in drug discovery, it was the 

development of NNRTI RPV that was approved by FDA in 2011. RPV was developed by 

combining different synthetic chemicals structures with extensive antiviral screening; 

bioavailability and followed by clinical trials on the safety using animals models and use of 

molecular modelling approach, that include the analysis of 3D structures and molecular 

modelling (162). Lack of confidence and ability by the scoring function in giving accurate 

binding energies is a major limitation in molecular docking. 

Figure 8. Molecular docking flow chart. A typical docking workflow. This flowchart shows the key steps common 

to all docking protocols. The 3D structures for the target macromolecule and the small molecule must first be 

chosen, and then each structure must be prepared in accordance with the requirements of the docking method 

Stellenbosch University https://scholar.sun.ac.za



45 | P a g e  
 

being used. Following the docking, the results must be analyzed, selecting the binding modes with the best scores. 

Source, and included with permission.Image reproduced with permission from JSM Chemistry and adapted from 

a Review on Molecular Docking (163). 

2. CHAPTER TWO: STUDY FINDINGS 
 

2.1. AIMS AND OBJECTIVES 

The proposed study includes structural work to understand the impact of natural occurring 

polymorphisms (NOPs) and known INSTI mutations on the protein structure of HIV-1 Integrase. 

The aim of this project was to determine which polymorphisms and mutations screened may 

affect the efficacy of the INSTIs, and further understand the effect on binding of DNA and DTG 

to non-B subtypes from South Africa and Cameroonian sequences. 

My thesis is driven by the hypothesis that HIV-1 IN gene fragment sequences obtained from 

sub-Saharan Africa, particularly Cameroon and South Africa, have specific naturally occurring 

polymorphisms that might reduce the efficacy and binding strength of second-generation 

INSTIs, like DTG. 

This study is a descriptive experimental design study, that investigated the impact of Integrase 

NOPs among different HIV-1 group M subtypes. The specific major objectives were: 

I. To determine the primary and secondary resistance-associated mutations (RAMs) to 

INSTI naïve patients from Cameroon (Chapter III). 

II. To determine the RAMS of HIV database derived sequences from Cameroon (Chapter 

IV). 

III. To identify the HIV-1 resistance mutation profiles of patients failing second-line cART 

regimens in South Africa (Chapter V). 

IV. To determine the structural effects of NOPs on DTG binding to IN (Chapter VI). 

V. To compare the effects of NOPs on INSTI drug binding to various HIV-1 IN subtypes 

using molecular modelling, docking and simulation studies (Chapter VII).  

VI. To investigate the structural impact of known drug resistance mutations on HIV-1C 

Integrase-Dolutegravir binding (Chapter VIII). 
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The results of the study are summarized below in the form of manuscript or article 

published. 

The goal of Chapter III, IV and V was to investigate prevalence of HIV-1 diversity and the 

HIV-1 drug resistance associated mutations (RAMs) from INSTI naïve patients from Cameroon 

and South African. Natural occurring polymorphisms of CRF02_AG subtype identified from 

Chapter III, IV and V, and those that are statistically enriched, were explored to further studied 

to try and  understand their impact on the IN protein structure stability Chapter VI and see if 

these polymorphisms they exert any impact on INSTIs binding ability, using molecular 

modelling approach (Chapter VII). Known HIV-1 drug resistance mutations against INSTIs 

identified from South Africa and Cameroon cohorts (Chapter III-V), were further investigated 

to study their structural impact on the IN HIV-C that is the driving force of epidemic in South 

Africa (Chapter VIII). In (Chapter IX), I give a summary of the study. In Chapter X, I give 

general discussion, conclusions and future remarks. 
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Chapter 3: HIV-1 Integrase Diversity and Resistance-Associated 

Mutations and Polymorphisms among Integrase Strand Transfer 

Inhibitor-Naive HIV-1 Patients from Cameroon. 

 

3.1. Journal article  

The article is published in AIDS Res Hum Retroviruses. 2020 May; 36(5):450-455. doi: 

10.1089/AID.2019.0264.  

 

3.2. Author’s list 

Mikasi SG, Gichana JO, Van der Walt C, Brado D, Obasa AE, Njenda D, Messembe M, 

Lyonga E , Okomo O, Cloete R, IkomeGM, Jacobs GB. 

 

3.3. Author’s contribution  

In the enclosed manuscript, I confirmed that I am the first author. I collected the samples, 

performed laboratory experiments and data analysis. I wrote the first draft and was responsible 

for subsequent manuscript updates received from the co-authors. 

 

3.4. Background  

In Cameroon, resistance testing remains challenging, due to the lack of laboratory 

infrastructure and cost involvement. The high genetic diversity of HIV-1 in Cameroon 

contribute negatively in optimizing laboratory protocols to amplify, sequence and characterize 

the IN gene for diverse subtypes. Though HIV-1 CRF02_AG is dominant in the country, all 

HIV strains can be found in the country, complicating HIV diagnostics. 

 

3.5. Main findings 

For this study we PCR amplified 56 patient samples targeting the HIV-1 IN gene fragment. 

Subsequently, for subtyping and genotypic drug resistance mutation analysis we only used 37 

sequences with good quality and fragment size of ≥500 bp. The majority of the sequence were 

infected with subtype CRF02_AG (54%) and 45.9% were infected with other subtypes, such 
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as (A, CRF36_cpx, F,G and C). RAMs against INSTIs were identified in 18.9% of the 

sequences, of which major RAMs (Y143R/C/D/G and P145S) were detected in 5.4% of the 

sequences. Three (8.1%) of the sequences had accessory mutations, with one sequence having 

solely E157Q and the other sequence had Q95K. Another patient sequence had a combination 

of triple accessory mutations (G140E, E157Q, and G163R). Of the 288 IN positions, 53 

(18.4%) had at least one amino acid NOP present in 0.5% or more sequences, including 49 

(17.1%), of which two or more polymorphisms were present. Through our test, the two NOPs 

namely: VI72I and R269K occurred with p-values ≤0. 05. 

 

3.6. Study significance  

This was a novel study to report the possible appearance of IN mutations against INSTIs naïve 

patients. Mutations can interfere with the success of therapy. Therefore, proper monitoring of 

patients on therapy should be done, to reduce the risk of transmitted drug resistance (TDR). 

  

3.7. Conclusion  

Our study identified RAMs against INSTIs among treatment naïve patients from Cameroon. 

The study supports the use of DTG as part of first-line therapy in Cameroon for patients who 

are failing first-line and second line therapy regimens. However, resistance testing is 

recommended before initiation of treatment. 
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3.8. Published article 
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Chapter 4: HIV-1 drug resistance analyses of Cameroon derived 

Integrase sequences 

4.1. Journal article 

The article is published in AIDS Res Hum Retroviruses.2020 July. 

https://doi.org/10.1089/AID.2020.0022.  

 

4.2. Author’s list 

Mikasi SG, Isaacs D, Ikomey GM, Shimba H, Cloete R and Jacobs GB  

 

4.3. Author’s contribution  

In the enclosed manuscript, I confirmed that I am the first author. I collected all the sequences 

and performed data searches and performed data analyses. I wrote the first manuscript draft 

and was responsible for subsequent manuscript updates received from the co-authors. 

 

4.4. Background  

cART is widely used to fight against HIV infections. However, it has led to emerging HIV 

strains known to contain RAMs. This could consequently lead to treatment failure or 

unsatisfactory therapy outcomes. INSTIs are the most recent drug class being administered due 

to their higher genetic barrier to develop resistance. 

 

4.5. Main findings 

From our online derived sequences, we observed (1.4%) INSTIs mutations that confer 

resistance to raltegravir (RAL) and elvitegravir (EVG), as well as 10.1% of the sequences 

having accessory mutations. 

 

4.6. Study significance  

The study used sequences that were available as early as 2004, before the rollout of the HIV-1 

treatment program and the introduction of INSTIs in Cameroon. Data generated from this study 

can be considered as a baseline INSTIs resistance rate. This study shows the need and 

importance for continuous surveillance of drug resistance mutations (DRM). This information 

could possibly be used to improve the effectiveness of future drugs. 
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4.7. Conclusion.  

HIV-1 CRF02_AG was the predominant subtype (44.7.%) in this study analyses. The 

occurrence of INSTI RAMs among the sequences at baseline needs to be monitored carefully. 

 

4.8. Published article 
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Chapter 5: Drug resistance mutations against protease, reverse 

transcriptase and integrase inhibitors in people living with HIV-1 

receiving boosted protease inhibitors (bPIs) in South Africa. 

 

5.1. Journal article 

The article is published in the journal: Frontiers in Microbiology. ORIGINAL RESEARCH 

published: 20 March 2020 doi: 10.3389/fmicb.2020.00438. 

 

5.2. Author’s list 

Obasa AE, Mikasi SG, Brado D, Cloete R, Singh K, Neogi U, Jacobs GB. 

5.3. Authors contribution 

In the enclosed manuscript, I confirmed that I am the second, co- author. I helped collect 

samples for the study, collected demographic data of the patients, assisted with PCR, sequence 

and data analysis. I subsequently gave significant inputs in the manuscript. 

 

5.4. Background  

South Africa is home to more than 7.7 million people living with HIV-1 and has the largest 

cART rollout program in the world. A major drawback of the success of cART is the emergence 

of RAMS that can compromise treatment outcomes. In this study, we analyzed the RAMS 

against current available drugs (PIs, RTs and INSTIs) from patients suspected of failing first-

line and or second-line cART in South Africa. 

 

5.5. Main findings 

Of the 96 samples from individuals suspected of failing first-line and or second-line cART (n= 

52, 54%) had M184V/I as the most frequent NRTI RAM. The most frequent NNRTI RAM 

was K103N/S, which was identified in (n=40, 42%) patients, while E157Q mutation was 

identified in (n= 2, 2%) of patients as the most common INSTIs RAMs, alongside 

mutations;T66I, Y143R and T97A, which are major INSTIs RAMs. 
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5.6. Study significance  

Amino acid sequence analysis revealed that the most frequent detected mutation was M184V. 

The mutation is associated with reduced susceptibility to the NRTIs. This mutation could have 

resulted from first-line therapy. Our findings are relevant given that DTG is recommended as 

a rescue intervention, as most patient who are on first-line therapy are already developing 

mutations that might compromise treatment success. 

 

5.7. Conclusion  

The study of 96 sequences covering three fragments; PI, RT and IN, from patients suspected 

to be failing second-line therapy disclosed a high level of polymorphisms against NRTIs and 

PIs of HIV-1-infected subjects from South Africa. No major mutations were detected against 

INSTIs. This study provide important information about the resistance profile in South Africa 

and supports the use of DTG in South Africa. 

 

5.8. Published article 
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Chapter 6: Investigating the structural effects of statistically 

enriched mutations identified in Cameroon recombinant subtype 

CRF02_AG that might lead to Dolutegravir drug resistance.  

 

6.1. Journal article 

The manuscript was submitted to BMC infectious diseases’ journal on the 04 July 2020. It was 

subsequently sent back by the reviewers to address the comments on 15 March 2020. Currently 

the manuscript is under review ID: INFD-D-20-02350. This is the preprint, submitted to the 

BMC infectious diseases doi: 10.21203/rs.3.rs-40608/v1. 

 

6.2. Author’s list 

Mikas SG, Isaacs D, Chitongo R, Ikomey GM, Cloete R, Jacobs GB  

 

6.3. Authors contribution 

In the enclosed manuscript, I confirmed that I am first author. I performed data analyses and 

structural analyses. SGM wrote the first draft of the manuscript reviewed by GBJ, DI and RC. 

All the authors approved the final version of the manuscript. 

 

6.4. Background  

The majority of HIV-1 infections are caused by subtype C, with an increase in number of 

circulating recombinant forms (CRFs), such as CRF02_AG, in the Western regions of Africa. 

Genomic differences among various subtypes lead to sequence variations in encoded genes. 

This has consequences for gene targets used for cART, such as IN. Clinical aspects of HIV-1 

diversity in resource-limited settings is rarely studied and constitute a great interest in the 

world. Structural modelling approaches can be a cost effective way to investigate the impact 

of mutations at a level of protein structure. 

 

6.5. Main findings 

The possible impact on protein structure caused by CRF02_AG subtype variations was 

addressed within the context of a 3D model of the HIV-1 IN complex. We observed 12.8 % 

(37/287) sequences to contain RAMs with only 1.04% (3/287) of the sequences having major 
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INSTI resistance mutations: T66A, Q148H, R263K and N155H. 11.8% (34/287) of the 

sequences contained five different IN accessory mutations, namely Q95K, T97A, G149A, 

E157Q and D232N. NOPs rates equal or above 50% were found for 66% of central core domain 

(CCD) positions, 44% C-terminal domain (CTD) positions and 35% of the N-terminal domain 

(NTD) positions. Our analysis showed that all accessory mutations that resulted in a change in 

the number of interactions were found within the stable alpha-helix secondary structure 

element, but any change may result in a change of protein conformation and could interfere 

with the functioning of the protein. 

 

6.6. Study significance  

Here we used computational analysis to explore the impact of IN natural occurring 

polymorphisms on the IN protein. This study shows that NOPs can have an impact on the 

stability of the protein, by either enhancing the functionality of the protein or rendering down 

the functionality of the protein. 

 

6.7. Conclusion 

Molecular modelling can be used to determine the location and effect of mutations on IN 

protein structure to ascertain their effect on drug binding. This is important as some INSTIs 

naïve patients sequences are already exhibiting resistance mutations before the roll-out of 

INSTIs in Cameroon. Integrase strand transfer inhibitors (INSTIs) can be used as the preferred 

option to be on the forefront of treatment options. 

 

6.8. Preprint manuscript  
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Chapter 7: Structural comparison of diverse HIV-1 subtypes using 

Molecular modelling and Molecular Docking of integrase 

inhibitor. 

 

7.1. Journal article 

The manuscript was submitted to Viruses’ journal on the 31 January 2020. It was subsequently 

sent back by the reviewers to address the comments on 15 March 2020. Currently the 

manuscript was re-submitted to the journal on 10 June 2020 after addressing the reviewers 

comments ID: Viruses-721103. This is the preprint ,submitted to the preprints.org > life 

sciences > virology > doi: 10.20944/preprints202002.0062.v1. 

 

7.2. Author’s list 

Isaacs D, Mikasi SG, Obasa AE, Ikomey GM, Jacobs GB and Cloete R.  

 

7.3. Authors contribution 

In the enclosed manuscript; Mr. Isaacs and I, are joint-first authors, with equal contributions to 

the work performed. I provided raw sequence data. Mr. Isaacs and I, we performed sequence 

analysis .We both started the first manuscript draft and subsequently addressed the reviewers 

comment to the manuscript. 

 

7.4. Background  

HIV-1 integrates its viral DNA into the host genome using two processes: 3′-end processing 

and strand-transfer activities. INSTIs target the HIV-1 gene. These drugs have high genetic 

barrier against resistance mutations. As these drugs become preferred option to be used as part 

of first-line therapy world-wide, there is a need to understand the mechanism of resistance 

among subtype C that dominates in South Africa and subtype CRF02_AG that dominates in 

West Africa, particularly Cameroon. Studies have showed that mutations can be subtype-

specific and for this reason, IN polymorphisms among various subtypes might be responsible 

for different mutational patterns. HIV-1 IN structure of high resolution has been a major 

drawback to the study and understanding the mutational pathways and the impact of NOPs on 

treatment outcome. 
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7.5. Main findings 

In this study, we investigated the impact of NOPS on IN structure of HIV-1, using molecular 

modelling and docking approach. NOPs were identified among Cameroonian sequences (n=16) 

and South African sequences (n=17). NOPs did not show to exert any impact on INSTIs 

binding. All INSTIs showed to have same binding affinity to each IN structure. INSTIs shows 

to remain the effective drugs against INSTI treatment naïve individuals living with HIV. The 

study support wide scale access to DTG in Sub-Saharan Africa, where there is a high HIV 

pandemic and to combat the spread and control of HIV.  

 

7.6. Study significance  

The study provided important data that can provide guidance for investigating how NOPs affect 

IN structure and INSTIs binding affinity. The analysis of these molecular modelling 

approaches provides crucial clues to the possible future discovery of novel IN mutations 

 

7.7. Conclusion  

NOPs that were present in the study did not possess any form of effect against binding affinity 

of INSTIs. DTG will remain effective once it becomes available in this region. 
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7.8. Published article  
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Chapter 8: Molecular dynamic simulations to investigate the 

structural impact of known drug resistance mutations on HIV-1C 

Integrase-Dolutegravir binding.  

 

8.1. Journal article 

The article is published in the journal: PLoS ONE 15(5): e0223464. 

https://doi.org/10.1371/journal. pone.0223464. 

 

8.2. Author’s list 

Chitongo R, Obasa A.E, Mikasi SG, Jacobs GB and Cloete R. 

 

8.3. Authors contribution 

In the enclosed manuscript, I am the co-author. I assisted with sample collection and with 

laboratory work (RNA extraction, PCR, sequencing) and performed sequence analysis, prior 

to molecular modelling, also learned major principles of molecular modelling. I also had 

various interactions (discussions) with the first author (Ms. Chitongo) and the corresponding 

author (Dr. Cloete) on the analysis and findings. 

 

8.4. Background  

The emergence of drug RAMs as a result of cART poses a major concern to the control of the 

HIV-1 pandemic. The INSTI DTG has shown high efficiency in controlling HIV replication 

and viremia, IN structures have only been partially studied to understand the resistance 

mechanisms against INSTIs, like DTG. The development of resistance involves the 

accumulation of concoctions of mutations along the periphery and active site of the enzyme. 

Mutations that are found in close proximity to the active site decreases the drug binding. 

Conformational changes of the active site of an enzyme is typically associated with 

destabilizing of proteins. Mutations that successfully destabilizes the protein can therefore 

interfere with protein function. 
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8.5. Main findings 

The HIV-1 subtype C structure was assessed and found to be reliable with support of 90% 

confidence in modelled regions. Through molecular modelling and stability predictions, we 

observed a destabilizing effect of the known G140S mutant on the HIV-1C IN protein structure. 

Simulation analysis showed that it affected structural stability and flexibility of the protein 

structure. Our results indicate that the G140S mutant has an effect on INSTI drug binding to 

HIV-1 subtype C IN structure. These results can also be validated using laboratory -

experiments. This study method can also be applied to investigate the effect of other mutations 

on HIV-1 subtype C INSTIs binding. 

 

8.6. Study significance  

Our findings are in agreement with the hypothesis that conformational change on the active 

site of the enzyme caused by the development of resistance mutations; it has a negative effect 

on the stability of the protein and drug binding 

 

8.7. Conclusion  

Our findings explain the effects of mutations located close to the active site and underscore the 

importance of drug binding and protein stability during the presence of mutations. 

 

8.8. Published article 
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Chapter 9: Summary of the study: South African Medical Journal 

(SAMJ). 
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Chapter 10: Overall discussion and future remarks 
 

Sub-Saharan Africa (SSA) is a developing region with most of the countries listed as resource-

limited settings (RLS), with limited access to HIV drug resistance testing (HIVDRT) and 

infrastructure for proper research. Drug switching to effective regimens remain a major clinical 

challenge in RLS, especially in patients already experiencing virological failure and who have 

developed drug resistance. These pose a challenge on meeting the global and regional 90-90-

90 target for the year 2020, with the aim that 90% of all people living with HIV (PLHIV) to 

know their status; 90% of people living with HIV to start cART; and 90% of people on 

treatment to have fully suppressed the virus. South Africa has successfully met one global 

target of 90% of all people living with HIV knowing their status, while 62% are on treatment 

and 54% of these virally suppressed. In Cameroon, 74% of people living with HIV know their 

status and 52% were on treatment. (UNAIDS, 2019). The high HIV-1 genetic diversity further 

makes it difficult to control the epidemic. It is well known that HIV diversity remains a key 

challenge pertaining to a wide spectrum of fields, such as serological diagnosis, virological 

follow-up, vaccine development and therapeutic monitoring. This is due to the concept that 

natural occurring polymorphisms (NOPs) from diverse HIV-1 subtypes can affect therapy 

outcomes. The combined results from (Chapter 3 - Chapter 8) discussed in full below, support 

the hypothesis proposed in this study that HIV-1 IN gene fragment sequences obtained from 

SSA contains NOPs that might possibly have an effect on the efficacy of second-generation 

INSTIs, like DTG. The chapters are discussed below. 

In Chapter 3 it was demonstrated that CRF02_AG remains the predominant subtype in 

Cameroon. This is in agreement with other reported studies (164,165). The study further 

reported the appearance of accessory mutations and RAMs against naïve INSTI individuals 

(166). NOPs across diverse subtypes were secondly reported. Some NOPs can play a role in 

the development of RAMs as some of them are statistically enriched. Given the presence of 

these mutations in Cameroon, where INSTIs is not yet widely in use, there is the possibility of 

cross-resistance to occur if drug resistance testing is not done prior to switching cART 

regimens. This assumption is supported, by the data generated from Chapter 4 that analysed 

CRF02_AG sequences data dating back from 1999 to 2004, which also detected major RAMs 

that cause resistance against INSTIs. Furthermore, we detected Q148H that can cause cross-

resistance to other class of INSTIs, if it occurs in combination with other mutations, R263K 
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(0.3%) mutation identified in our study, is commonly found in patients experiencing therapy 

failure , especially on incompletely suppressive regimens containing DTG. In South Africa, 

subtype C, remains the driving force of the epidemic, Chapter 5. High level of RAMs against 

first-line cART in South Africa is increasing and this could be due to poor adherence. The low 

rate of RAMs against PI and INSTIs was expected as the majority of South African individuals 

are still on standardised regimens. Results from Chapter 6 showed some interactions between 

variant residues and DNA, could promote integration of DNA and assumed to have effect on 

drug binding. NOPs can have two effect on the IN gene, firstly NOPs can interfere with the 

ability of protein binding caused by primary mutations and also NOPs can help to restore viral 

enzymatic activity, based on the presence of background mutations and specific subtype. Some 

mutations that resulted in the change in number of interactions were found to be within the 

stable alpha-helix secondary structure element and this change could affect the protein 

conformation. Results from Chapter 7 give long-term optimism for the use of DTG as part of 

first-line cART. We explored computational analysis to study the possible impact on protein 

structure caused by NOPs present in diverse HIV-1 subtypes (CRF02_AG and HIV-1C). NOPs 

present in IN sequences and in silico analysis of IN/DNA complexes predicted the impact of 

NOPs on the interaction between the DNA and INSTIs (48). We identified 15 NOPs present 

on CRF02_AG when compared to subtype B using consensus sequence analysis. Based on a 

model of the HIV-1B integrase/DNA complex, Malet et al., suggested that these NOPs might 

affect IN interaction with DNA or IN susceptibility to INSTIs (101). Moreover, two NOPs 

V82F and I84V, present in our study were previously reported among subtype A and C viruses 

to be associated with reduced binding affinity, as compared to subtype B. However, more 

mechanistic studies are needed to demonstrate the association of NOPs with major INSTI 

RAMs and evaluate the potency of INSTIs in treating HIV-1 non-B subtypes. In chapter 8 the 

potential impact of INSTIs mutations among subtypes C on the protein structure, functions and 

susceptibility to INSTIs were performed using computational modelling tools. Results suggest 

that the G140S mutant has the strongest effect on the HIV-1C IN protein structure and DTG 

binding. However, a combination of mutants still need to be investigated among individuals 

infected with diverse HIV-1 subtypes. This approach will allow us to have better insight 

knowledge with the pathways of resistance and drug binding, more especially in SSA, where 

HIV-1 infections continues to increase and the majority of infections are caused by non-B 

subtype. 

 

Stellenbosch University https://scholar.sun.ac.za



123 

Significance of the study in resource limited settings (RLS) 

Wide-scale access to DTG across the SSA region has been given the green light by the WHO 

to form part as a the preferred first-line and salvage regimens for all HIV infected individuals 

and the treatment of paediatric patients (167). In SSA few studies have been done on identifying 

mutational patterns in the HIV-1 IN gene of the infected patients failing first-line and second-

line cART (104,168,169). The proposed study had the strength to bridge that gap of lack of 

data on DRMs against DTG in RLS and able to study genetically diverse HIV-1 strains that 

might potentially have an impact on the susceptibility to INSTIs of patients’ sequences infected 

with different subtypes. Furthermore, this study will strengthen the collaborative research 

initiative and skills transfer on HIV-1 drug resistance between South Africa and Cameroon. 

Data generated from this study will help to guide in tailoring effective treatment strategies in 

the South African and Cameroonian populations, infected with diverse HIV-1 subtypes. 

Computational analysis methods used in this study is cost effective, time saving and can be 

used as a tool to predict therapy failure due to resistance and timely switching of patients to a 

more efficacious regimen. 

 

Overall strength and limitations of the work 

There are several strengths and limitations in the study. There was small samples size of patient 

sequences analysed (Chapter 3). This was as a result of no or poor PCR DNA amplification. 

This is most likely due to the high sequence variability seen in HIV, thus primer mismatches 

lead to inefficient PCR amplification and DNA sequencing. In addition, there were no data 

available, or access to patients, who are currently receiving INSTIs to make comparison 

between INSTI naïve and treated INSTI individuals. We were only limited to one statistically 

method for analysis of the mutations that might be statistically enriched. This would have been 

an interesting and crucial addition to our knowledge of INSTI success in cART regimens. In 

Chapter 4 we used online database sequences dating back from 2000-2001 before the roll out 

of HIV treatment in South Africa and this result provided a baseline resistance in South Africa. 

In this study we did not screen for resistance associated mutations on the 3′ polypurine tract 

(PPT) region of HIV-1 that has been suggested as an alternative mechanism to the develop of 

resistance to INSTIs. Chapter 5. This is the first study to look at the prevalence of InSTIs in 

patients receiving LPV/r and ATV as their bPIs from South Africa, this study therefore 

contributed to expanding current HIV-1 knowledge regarding LPV/r and ATV resistance. 
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Although there was no data of HIV-1 viral load and CD4 count. Other limitations was that we 

only investigated RAL and EVG and did not include novel DTG mutations. We further 

excluded entropy effects due to lack of computational resources and this might have led to 

under or over estimation of the binding free energy. In addition to the study limitations include 

lack of performing in vitro assays to determine the drug resistance against virus isolates that 

harbour RAMs in relation to WT strains. The study had the strength to study the mutations that 

might potential have an impact on the protein binding and susceptibility to INSTIs of patients’ 

sequences infected with different subtypes in the context of 3D using computational analysis 

(Chapter 6 and Chapter 7). Thus far, subtype B is the only structure available that is used as 

a template to study structural difference because there is no structure for non-B subtypes. This 

is the first study to successfully build an accurate three dimensional model using wild-type 

HIV-1 subtype C consensus sequence to study the effect of mutations on INSTIs drug binding 

(Chapter 8). 

 

Overall strength of our study, knowledge transfer and strengthening collaboration  

Our collaborating partners throughout Africa are using the HIV resistance protocols we have 

developed in our studies. These include Dr. George Ikomey – University of Yaoundé I in 

Cameroon, Mr. Henerico Shimba in Mwanza, Tanzania and Dr. Franklin Onyambu from the 

University of Nairobi, Kenya. This is a real world impact and shows the strength of our work. 

Other international partners, from the Institute of Virology and Immunobiology, University of 

Wuerzburg, Germany and the Department of Laboratory Medicine, Karolinska Institute, 

Sweden, have also used our Methods.  

Conclusions 

The following conclusions and recommendations can be made from findings in this thesis 

 

 In South Africa, there is a high prevalence of RAMs against first line therapy (NRTI 

and NNRTI), with increasing number of patients having RAMs against PIs and INSTIs. 

Thus, close monitoring strategies to ensure a successful switch of regimens is 

warranted.  
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 IN Cameroon, there is a low rate of mutations against INSTIs and this could be due to 

INSTIs not yet fully available. There is a possibility of HIV-1 infected patients to 

experience virological failure ,when switched to DTG as mutations already appear 

before the roll out of DTG based regimen in Cameroon 

 

 This study further reports the analysis and interpretation of HIV-1 IN sequences and 

subtyping among infected individuals from naïve ART Cameroon and South Africa. 

CRF02_AG continues to increase and becoming the predominant subtype causing the 

infections in Cameroon, while subtype C also remains the predominant subtype causing 

the infections in South Africa. 

 

 We further reported the impact of various NOPs and their impact on drug susceptibility. 

The analyses suggested that NOPs might have impact on IN protein structure and 

stability, which will in turn affect viral DNA binding and which will subsequently affect 

drug sensitivity.  

 

 Up to date, the only available crystal structure used to study computational analysis is 

based on the HIV-1B intasome (PDBID: 5U1C). This is not ideal to assess the viability 

and long-term efficacy of INSTIs based regimens on non-B subtypes circulating in 

SSA. Therefore, it is imperative that standard crystal structure to study diverse subtypes 

mostly affecting sub-Saharan Africa should be investigated. 

 Despite the fact that the majority (90%) of infections worldwide are caused by HIV-1 

non-B subtypes, knowledge of HIV-1 diversity and drug resistance-associated 

mutations (RAMs) in non-B HIV-1 and their clinical management in RLS is limited 

and need to be addressed. 

Overall, to the best of our knowledge this is the first study to successfully construct an accurate 

3D model structure that ca be used to study further in silico studies. Furthermore, our study 

findings support the use of INSTIs in first line therapy to form part of the long-sought goal of 

attainment of a functional cure for HIV-1 disease. However, before roll out of DTG in RLS, 

infrastructure capacity need to be improved, to allow proper and adequate switching of 

regimens to prevent carrying over resistance mutations. 

 

Stellenbosch University https://scholar.sun.ac.za



126 

Future work  

 Perform drug resistance analysis of mutations outside IN that can confer resistance 

against DTG  

 Perform phenotypic drug resistance analysis on integrase-based recombinant viral 

mutants. 

 Perform viral fitness assays to determine the effect of known mutants on the HIV-1 

virus replication in the presence of DTG. 

 Perform viral integration assays to determine if DTG, BIC and CBT can prevent viral 

integration within plasmid. 
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