URBAN CELLULAR AUTOMATA AND AGENT BASED MODELS FOR THE SIMULATION OF URBAN DYNAMICS: A REVIEW OF PRACTICE AND APPLICATIONS

CHANTEL HAUPTFLEISCH

Thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy (Urban and Regional Science) in the Faculty of Geography and Environmental Studies at Stellenbosch University.

Supervisor: Dr. D du Plessis

March 2020

AUTHOR'S DECLARATION

By submitting this research thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

Date: March 2020

Copyright © 2020 Stellenbosch University

All rights reserved

ABSTRACT

Current scientific planning instruments and practices are inadequate to address the multidimensional problems and challenges faced by cities as complex dynamic systems. The aim of this research is to provide an international comparative analysis of Cellular Automata (CA) and Agent-based modelling (ABM) techniques and its potential application within spatial planning practices. The research provides explanations on the key considerations for spatial simulation model conceptualization, components, design and construction. Cellular Automata (CA) and Agent-based modelling (ABM) techniques abstract the real-world into a series of layers as a visual representation of complexity and spatial-temporal urban dynamics. The meta-analysis of published spatial simulation research results over the past decade (2009 - 2019) found that urban modelling approaches have grown consistently. Applications of urban simulation models appear to be regionally divergent with the major focus on the global North. Uptake of these urban models is lagging in areas with rapid urbanization and urban growth rates, which are predominantly located in the global South (including South Africa). The comparative analysis found that the development and design of urban models are also now incorporating aspects of strategic planning within their scenarios in order to measure and monitor the appropriateness and effectiveness of policy interventions, such as urban growth boundaries, zoning schemes, sustainable development outcomes and environmental protection zones. The research found that CA and ABM-based urban models improve the understanding of the local and historical contingent factors and how multidimensional and complex problems influence urban systems across time and space.

Keywords: spatial planning, complexity, model, dynamic, spatial simulation, urban model, complex systems, cities, cellular automata, agent-based model.

OPSOMMING

Huidige instrumente en praktyke vir wetenskaplike beplanning is onvoldoende om die multidimensionele probleme en uitdagings wat stede as komplekse dinamiese stelsels in die gesig staar, die hoof te bied. Die doel van hierdie navorsing is om 'n internasionale vergelykende analise van Cellular Automata (CA) en Agent-gebaseerde modellering (ABM) tegnieke te bied en die potensiële toepassing daarvan binne ruimtelike beplanningspraktyke. Die navorsing verskaf verduidelikings oor die sleuteloorwegings vir ruimtelike simulasiemodelkonseptualisering, komponente, ontwerp en konstruksie. Cellular Automata (CA) en Agent-gebaseerde modellering (ABM) tegnieke abstrakteer die werklikikeid in 'n reeks lae as 'n visuele voorstelling van kompleksiteit en ruimtelik-temporele stedelike dinamika. Die meta-analise van gepubliseerde navorsingsresultate vir ruimtelike simulasie oor die afgelope dekade (2009 - 2019) het bevind dat die benaderings vir stedelike modellering konsekwent gegroei het. Toepassings van stedelike simulasiemodelle blyk streeks uiteenlopend te wees, met die grootste fokus op die ontwikkelde wêrel. Die gebruik van hierdie stedelike modelle hou egter nie verband met gebiede wat 'n vinnige verstedeliking en stedelike groeikoers ondervind nie, soos byvoorbeeld die globale Suide (insluitend Suid-Afrika). Die vergelykende ontleding het bevind dat die ontwikkeling en ontwerp van stedelike modelle nou ook aspekte van strategiese beplanning binne hul vooruitbeplanning inkorporeer om die toepaslikheid en doeltreffendheid van beleidsintervensies, soos stedelike groeigrense, soneringskemas, volhoubare ontwikkelingsuitkomste en omgewingsbeskermingsones. Uit die navorsing is bevind dat CA- en ABM-gebaseerde stedelike modelle die begrip van die plaaslike en historiese faktore verbeter en hoe multidimensionele en ingewikkelde probleme stedelike stelsels oor tyd en ruimte beïnvloed.

Kernwoorde: ruimtelike beplanning, kompleksiteit, model, dinamiese, ruimtelike simulasie, stedelike model, komplekse stelsels, stede, sellulêre outomate, agent gebaseerde model

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr Danie du Plessis of CRUISE, at Stellenbosch University. He consistently allowed this paper to be my work but steered me in the right direction whenever he thought I needed it.

Thanks are owing to the Western Cape Government: Department of Environmental Affairs and Development Planning (DEA&DP) for their financial support. I am especially indebted to Mrs Helena Jacobs and Ms Riëtte Fourie, who has been supportive of my career goals, and who worked actively to provide me with the protected academic time to pursue those goals.

I would also like to acknowledge my colleagues, especially Mr Dylan Johnstone, as a reader of this thesis, and Dr Cecil Madell and Dr Elizabeth Barclay for inspiring me to pursue continuous learning. I am gratefully indebted to their valuable comments and motivation.

Finally, I must express my very profound gratitude to my husband for providing me with unfailing support and continuous encouragement throughout my year of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without you. Thank you.

Author

Chantel Hauptfleisch

vii

CONTENT

URB	BAN CELLULAR AUTOMATA AND AGENT BASED MODELS	FOR	THE
	ULATION OF URBAN DYNAMICS: A REVIEW OF PRAC		
APP	LICATIONS Error! Bookman	rk not de	efined.
ABS	TRACT		iv
OPS	OMMING		V
АСК	KNOWLEDGEMENTS		vi
CON	NTENT		vii
FIGU	URES		X
TAB	ILES		xi
СНА	APTER 1: INTRODUCTION		1
1	INTRODUCTION AND RATIONALE		1
1.1	RESEARCH PROBLEM		3
1.2	RESEARCH QUESTIONS		4
1.3	RESEARCH AIMS AND OBJECTIVES		4
1.4	RESEARCH DESIGN		5
1.5	RESEARCH METHODOLOGY		8
	1.5.1 Sources of data.1.5.2 Selection of cases.		8 8
СНА	APTER 2: CITIES AND COMPLEXITY		10
2	INTRODUCTION		10
2.1	PROGRESS FROM METAPHOR, MEANING (THEORY) ANI) CITII	E S 11
2.2	PROGRESS FROM METAPHOR, MEANING (THEORY) ANI) URB	AN
	MODEL		16
	 2.2.1 Cities as fractals. 2.2.2 Cities as machines. 2.2.3 Cities as organisms. 2.2.4 Cities as arenas. 		19 20 21 22

2.3	PROGRESS FROM MEANING (THEORY) TO URBAN MODELS	22
2.4	2.3.1 Cellular Automata (CA).2.3.2 Agent-based (AB) modelling.MODEL UNCERTAINTY AND EVALUATION	23 29 34
2.5	2.4.1 Design and construction of models.2.4.2 Calibrating and validating models.CONCLUDING REMARKS	35 37 38
CHA	APTER 3: URBAN CA AND ABM MODELS FOR THE SIMULATION OF U	RBAN
DYN	NAMICS: A REVIEW AND ANALYSIS	40
3	INTRODUCTION	40
3.1	META-ANALYSIS	41
3.2	DETAILED ANALYSIS OF URBAN SIMULATION INITIATIVES	45
3.3	 3.2.1 Cellular automata (CA). 3.2.2 Agent-based modelling (ABM). 3.2.3 Cellular automata and agent-based modelling (CA-AB). APPLICATION OF URBAN SPATIAL SIMULATION MODELS 	48 71 83 90
3.4	 3.3.1 Demography 3.3.2 Welfare, poverty and inequality 3.3.3 Health 3.3.4 Regional development 3.5 Transport planning 3.6 Agriculture, marine and environment 3.7 Disaster planning and management 3.8 Land use and spatial planning STRENGTHS AND WEAKNESSES OF URBAN MODELS 	90 90 91 92 92 93 93 93
3.5	CONCLUDING REMARKS	96
CHA	APTER 4	90
4	CONCLUSION AND RECOMMENDATIONS	90
4.1	SUMMARY OF KEY FINDINGS AND REFLECTION ON RESEAR	СН
	OBJECTIVES	90
4.2	LIMITATIONS OF RESEARCH	92
4.3	RESEARCH CONTRIBUTION AND FURTHER RESEARCH	92

94
116
131

FIGURES

Figure 1: Mapping designs (Level 1)	6
Figure 2: Mapping designs (Level 2)	7
Figure 3: Schematic illustration of the concept of models	
Figure 4: Local neighbourhood configurations	
Figure 5: Conway's game of life simulation	
Figure 6: The random complex cellular environment	
Figure 7: Representation of Schelling's segregation model	
Figure 8: Total urban simulation publications	
Figure 9: Tree map of urban spatial simulation publications	
Figure 10: Spatial distribution of urban simulation publications	
Figure 11: Spatial distribution of percentage urban population	45
Figure 12: Urban simulation publications per model category	46
Figure 13: CA: Urban spatial simulation publications	
Figure 14: CA: Tree map of urban spatial simulation publications	49
Figure 15: CA: Spatial distribution of urban spatial simulation publications	50
Figure 16: CA: Components of urban simulation publications	
Figure 17: ABM: Urban spatial simulation publications	71
Figure 18: ABM: Tree map of urban spatial simulation publications	
Figure 19: ABM: Spatial distribution of urban spatial simulation publications	
Figure 20: ABM: Components of urban simulation publications	74
Figure 21: CA-AB: Urban spatial simulation publications	
Figure 22: CA-AB: Tree map of urban spatial simulation	
Figure 23: CA-AB: Spatial distribution of urban simulation publications	
Figure 24: CA-AB: Components of urban simulation publications	86

TABLES

Table 1: Pepper's world hypothesis	18
Table 2: Properties of agents	31
Table 3: Characteristics of urban CA	52
Table 4: Characteristics of urban ABM	75
Table 5: Characteristics of urban CA-AB	87

CHAPTER 1: INTRODUCTION

"We live in an age of cities" (Batty 2013: xvii).

1 INTRODUCTION AND RATIONALE

According to the United Nation's Report on World Urbanization Prospects for 2018, 55% of the global population resides in urban areas, and it is projected that by 2050, 68% of the population will be urban. Regional differences based on urbanisation levels are also evident with the most significant growth happening in large cities in the global South. These concentrations of large cities are experiencing an average annual growth rate of 1.8 percent, (UN: DESA 2019) which means that these cities will double their population in approximately 39 years. It is projected that the urban population growth rate between 2018 and 2050 will be concentrated (approximately 90 percent) within Asia and Africa which is also predominantly categorised as low-income and lower-middle-income countries (UN: DESA 2019).

"The future of the world's population is urban" (UN: DESA 2019:1) and phenomena of urbanisation and migration need to be integrated into strategic planning and should be adequately managed in order to achieve inclusive, safe, resilient and sustainable cities. Government policies for planning and managing sustainable urban growth should particularly be formulated and implemented in countries that will experience rapid urbanization (i.e. low-income and lower-middle-income within Africa and Asia) because when left unplanned or inadequately managed will lead to unprecedented pressures on cities and their ability to provide essential services (Crooks et al 2018). It will also result in increased inequalities, resource depletion, reduced quality of life and environmental degradation (UN: DESA 2019).

The role of spatial planners in this complex and dynamic urban landscape is to "*create bridges between 'what is' and 'what could be'*, (or in normative terms) *'what should be' and 'what is desired'* (De Roo et al 2016:1). The 'what is' or 'object¹ of spatial planning' represents, for instance, the issues stated above namely uncontrolled and unplanned urbanisation, which

¹ Refers to the specific object which requires planning intervention and it is related in this instance to spatial planning practice (Alexander 2015).

requires specific planning interventions. This issue itself is not simple or straightforward and occurs within a highly complex dynamic landscape with inherent local and historical contingent factors (space complexity). Moreover, the issue is multidimensional, it occurs within different stages over time (dynamic and non-linear), and within contextually dynamic spatial planning practices² (De Roo et al 2016; Crooks et al 2018). Planners have noted over the last decade that there is an inadequacy of using existing scientific methods and practices rooted in logical positivism to address the problems and challenges that they must deal with daily (De Roo & Silva 2011; McAdams 2012; De Roo 2016).

Complexity science offers a perspective for understanding and dealing with aspects such as dynamics, flows, networks, uncertainty, open systems, and time, that can be found within reality and complex systems (Batty 2013; De Roo et al 2016). Complex systems such as cities are adaptive, emergent, dynamic and non-linear (De Roo & Silva 2011). The theory and application of complexity science can be considered as bridges and linkages between the theoretical ideas found within complexity sciences and urban theories and planning theory (De Roo et al 2016). Urban theories (theory in planning) refers to the object of planning, namely the city and how the 'desired' urban form and function of the city can be produced, while planning theory (theories in planning) refers to the processes, actions and interactions of how to plan in order to resolve problems and achieve outcomes (Alexander 2015).

The new 'science of cities' could provide insights into the complexity of the city and when combined with the normative discussion (De Roo 2011; De Waal 2018; Schintler & Chen 2018) of 'what should the sustainable, liveable and resilient city look like' can assist planners to become managers of change where negatives are avoided, and positive effects of change³ are embraced over time and space (De Roo & Silva 2011).

² Refers to the distinctive elements characterizing real-life practice of planning i.e. spatial planning and the planner's toolkit which provides them with their distinctive contribution in the co-construction of knowledge for collective decision-making and action (Alexander 2015).

³ Change is an evolutionary process and includes time, evolution, transition and space (De Roo, 2011: 7).

An important element of the new 'science of cities', is the use of spatial simulation models as quantitative methods for measuring complex real-world systems and phenomena (e.g. urban expansion; growth etc.). Spatial simulation models represent distinct spatial elements and their relationships for a complete understanding of the system under consideration. Because cities cannot be analysed through controlled experiments, "*a computer is programmed to iteratively recalculate the modelled system state as it changes over time in accordance with the relationship represented by the mathematical and other relationships that describe the system*" (O'Sullivan & Perry 2013:9). It allows for a simplified view of the integrated phenomena and provides a platform for convenient exploration of the implications of a dynamic model without impacting on the real-world system (Batty 2005; O'Sullivan & Perry 2013).

It not only provides quantitative data but also qualitative interpretation which makes these techniques of interest in support of spatial planning practices (De Roo 2011; O'Sullivan & Perry 2013). The increased development of computer science coupled with the improvements in the availability of data, data quality and processing standards, have further increased the demand for these spatial simulation models (urban models).

1.1 RESEARCH PROBLEM

Complexity science offers a perspective for understanding and dealing with complex systems (Batty 2013; De Roo et al 2016). This science of cities can provide insights into the complexity of the city and when combined with the normative discussion (De Roo 2011; De Waal 2018; Schintler & Chen 2018) dealing with. 'what should the sustainable, liveable and resilient city look like' can assist spatial planners to become managers of change (De Roo & Silva, 2011) within the context of a rapidly urbanizing environment (UN: DESA 2019).

The science of cities uses *inter alia* spatial simulation models (urban models) for measuring the complex real-world systems and phenomena (e.g. urban expansion; growth etc.) and with the increased development of computer science coupled with the improvements in availability of data, data quality and processing standards have further increased the demand for these spatial simulation models (urban models). There is a lack of understanding in the fundamental and technical aspects of urban model design, construction and the application thereof within spatial planning practices.

The focus of this research is to understand the scientific theories, concepts and models around the application of the science of cities (complexity theory, spatial simulation modelling, spatial planning practices) in order to understand cities as complex and dynamic systems.

1.2 RESEARCH QUESTIONS

The following research questions will be addressed through this research study:

- What are the leading debates on complexity theory and how it is related to and describe the complexity of cities?
- Which quantitative spatial simulation models (urban models) are used to measure complex systems (cities) and what are the concepts, methods and techniques used by these models?
- In the body of knowledge/literature, has the amount of publications, distribution and nature of the applications within the field of spatial simulation models (urban models), which includes Cellular Automata (CA), Agent-based modelling (ABM) and hybrids (including both CA and ABM) grown internationally and within South Africa over the last ten (10) years (period 2009 2019)?
- In practice, how has the selected quantitative spatial simulation models (urban models) been developed and used internationally over the last five (5) years (period 2015 2019)?

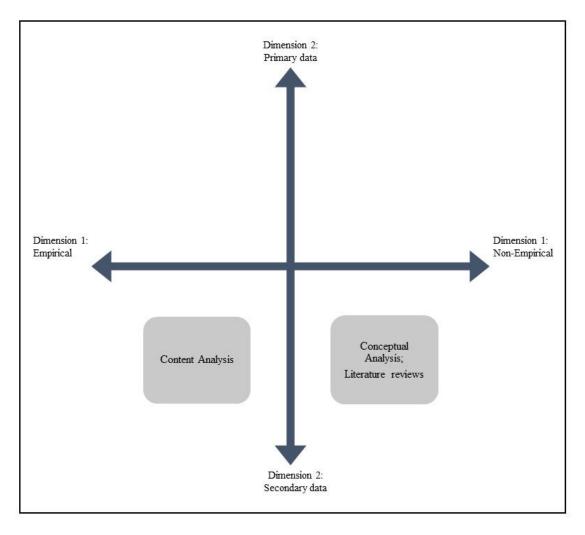
1.3 RESEARCH AIMS AND OBJECTIVES

At a theoretical level, the research is interested in understanding the scientific theories, concepts and models around the application of the science of cities (complexity theory, spatial simulation modelling, spatial planning practices) in order to understand complex and dynamic systems. Many studies have attempted to define and demonstrate the relationship between complexity science and the applications of the science to cities (Batty 2013; De Roo & Silva 2011; O'Sullivan & Perry 2013; De Roo et al 2016; Silva et al 2014; Schintler & Chen 2018; Wilson 2017; McAdams 2012; Pumain 1998). However, little research has gone into providing a comparative analysis of the spatial simulation models (urban models) and its potential application within spatial planning practices.

The research hence aims to improve the knowledge base and explain the fundamental and technical aspects in urban model design and construction, including highlighting the relationship and operational application of spatial simulation modelling (urban models) within spatial planning practices.

In order to achieve this aim of the research, the following objectives have been set for the study:

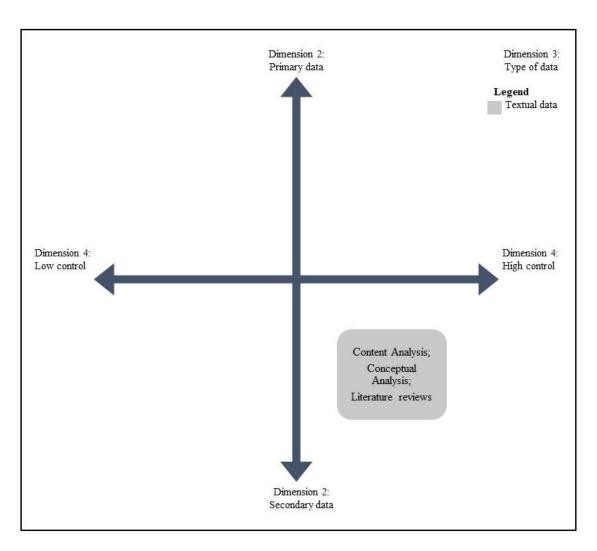
- Conduct research and compile a comprehensive literature review and content analysis to explain complexity theory and demonstrate the connection between the theory; the way cities are conceptualised, spatial simulation models (urban models), and spatial planning practices.
- Conduct a conceptual analysis to identify and explain the key components (concepts, methods and techniques) of the quantitative spatial simulation models (urban models).
- Identify and provide an evaluation of spatial simulation publications which includes Cellular Automata (CA), Agent-based modelling (ABM) and hybrids (including both CA and ABM) that have been published internationally over the last ten (10) years.
- Identify the assessment criteria and provide a comparative evaluation of the selected quantitative spatial simulation models. The spatial simulation models (urban models) includes CA, ABM and hybrids (CA and ABM) that have been developed and practically implemented internationally over the last five (5) years.
- Analyse and interpret the results from the comparative assessment.
- Draw conclusions about the relationships between complexity theory; the way cities are conceptualised, spatial simulation models (urban models), and spatial planning practices.


1.4 RESEARCH DESIGN

The research framework identified is a qualitative research approach focussing on content analysis, conceptual analysis and literature review. The typology of the research design is mapped out using the following four dimensions, namely:

- Empirical versus non-empirical studies;
- Primary versus secondary data;
- Numerical versus textual data; and –

• Degree of control (Mouton 2001).


Figure 1 illustrates the design classification of the research framework by cross-tabulating the first two dimensions.

Source: adapted from Mouton 2001

Figure 1: Mapping designs (Level 1)

Figure 2 illustrates the design classification of the research framework by cross-tabulating the dimensions of primary/secondary data and the degree of control.

Source: adapted from Mouton 2001

Figure 2: Mapping designs (Level 2)

The research design is categorised as a textual analysis and assists with the achievement of the research aims and objectives.

The following components (refer to section 3.2 for detailed descriptions) have been highlighted as design elements for consideration in the comparative analysis of the selected spatial simulation models (urban models) (O'Sullivan & Perry 2013; Wray C et al 2013; Chang K 2014; Wray C et al 2015):

- Model name;
- Main purpose/description of the model;
- Key model components;
- Model classification;
- Data inputs;
- Indication of model calibration and validation;
- Model grain;
- Model extent;
- Type of agents and neighbourhoods; and –
- Time period.

Strengths of the identified research design include the ability to analyse large volumes of literature, and when the classification system is well-structured, it provides conceptual clarity, identifies theoretical linkages and reveals the conceptual differing viewpoints and applications (Mouton 2001).

Challenges and limitations to the approach include the lack of generalisability, methodological concerns on the selection of data sources, being vulnerable to interpretation biases and poor organisation and integration (Mouton 2001).

1.5 RESEARCH METHODOLOGY

1.5.1 Sources of data.

Data collection in the research strategy is predominantly focused on textual analysis, utilising secondary data sources accessed through the Stellenbosch University Library which includes books, articles, journals and e-databases, open source portals and other applicable internet sources.

1.5.2 Selection of cases.

The area selection will focus on spatially explicit simulation models (urban models) used to measure complexity in cities quantitatively. Based on the selection criteria, the

urban models included are Cellular Automata (CA), Agent-based modelling (ABM), and hybrid models (these includes a combination of CA and ABM).

A meta-analysis will focus on a review of the number of academic publications on urban models, as well as the distribution and nature of applications throughout 2009 - 2019 (10 years), both internationally and within South Africa. From this main list, the detailed analysis (comparative evaluation) of the urban models will then focus on the period between 2015 - 2019, which follows on from the time period after the GCRO report and the subsequent publications (Wray C et al 2013; Wray C et al 2015). The detailed analysis will focus on the practical application of urban models within the five (5) year period and will include peer-reviewed and accessible academic publications.

10

CHAPTER 2: CITIES AND COMPLEXITY

"Roughly, by a complex system, I mean one made up of a large number of parts that interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of interaction, it is not a trivial matter to infer the properties of the whole." (Herbert A. Simon, 1962 as referenced in Batty 2005:v, 65)

&

"Cities happen to be problems in organized complexity, like the life sciences. They present situations in which half a dozen or several dozen quantities are all varying simultaneously and in subtly interconnected ways.... The variables are many but they are not helter skelter; they are interrelated into an organic whole". "Why have cities not long since been identified, understood, and treated as problems of organized complexity?... (Jane Jacobs, 1961 as referenced in Batty 2005:1)

2 INTRODUCTION

Cities are examples of organised complexity where urban development (change) emerge from the bottom-up and the spatial order that we see are driven by patterns. General features of the structure and dynamics of these organised complex systems include path dependence, positive feedback, self-organisation and emergence. In studying organised complexity, the interaction effects are significant as individual interactions between components in one part of the system can unexpectedly change (non-linear dynamics & chaos) and can cause system-wide transitions (phase transitions/bifurcations). The complex and chaotic nature of the system makes predictability difficult, and these systems are deemed irreducible⁴, which makes spatial simulation models (urban models) an important tool for understanding and exploring complex system behaviour (Batty 2005; Silva 2011a; Silva 2011b; Xie & Yang 2011; O'Sullivan & Perry 2013).

⁴ The system behaviour cannot be easily reduced to "aggregate rules of thumb or predict the precise outcome of a given starting configuration, even if the systems are completely deterministic" (O'Sullivan & Perry 2013:22).

The role of spatial planners in this complex and dynamic urban landscape is to "create bridges between 'what is' and 'what could be', (or in normative terms) 'what should be' and 'what is desired' (De Roo et al 2016:1). The 'what is' or 'object of spatial planning' represents, for instance, the issues of uncontrolled and unplanned urbanisation which requires specific planning interventions. This phenomenon itself is not simple or straightforward, it occurs within a highly complex dynamic landscape with inherent local and historical contingent factors; the phenomena is multidimensional; it occurs within different stages over time; and within contextually dynamic spatial planning practices (De Roo et al 2016; Crooks et al 2018). Planners have noted over the last decade that there is an inadequacy of using existing scientific methods and practices rooted in logical positivism to address the problems and challenges that they must deal with daily (De Roo & Silva 2011; McAdams 2012; De Roo 2016).

The new 'science of cities' could provide insights into the complexity of the city and when combined with the normative discussion (De Roo 2011; De Waal 2018; Schintler L.A & Chen Z 2018) of 'what should the sustainable, liveable and resilient city look like' can assist planners to become managers of change where negatives are avoided, and positive effects of change are embraced over time and space (De Roo & Silva, 2011).

The aim of the chapter is to acquaint the spatial planner (modeller/ user) with the language (i.e. meaning, metaphors⁵, theories) of complexity science and how the science provides the bridge between complex systems, modelling techniques and practical applications within cities.

2.1 PROGRESS FROM METAPHOR, MEANING (THEORY) AND CITIES

According to Wilson (2014), Warren Weaver theorised during the 1940s and 1950s about complex systems and classified them broadly into simple and complex systems. These classifications were further defined, namely simple systems are describable by a small number

⁵ Metaphors are symbols or linguistic representations which allows the simplification of very intricate and detailed discussions, mathematics and theories in order to facilitate their application and further understanding (McAdams 2012; Sui 2011).

of variables, while complex systems need many variables to describe them and they are divided into disorganised complexity and organised complexity.

Cities are defined as organised complexity comprising of numerous intricate and integrated components and subsystems, which through the interaction of agents (individuals, politicians, urban planners, developers or organisations with specific characteristics) create the behaviour of self-organisation (Batty 2005; Nel 2009; De Roo 2011; Bertolini 2011; McAdams 2012). Cities mainly grow from these local actions and are based on individual decisions about development, which includes planning decisions that are implemented locally (Batty 2005). Self-organisation is the process where agents interact collectively (McAdams 2012), and these local actions then create global patterns (Batty 2005). Self-organisation can also only emerge if individuals were free to interact and are capable of interacting and if their actions were facilitated by appropriate rules that command popular support (Nel 2009). In the context of cities, these patterns are formed from basic units of development for example neighbourhoods that grow and change, and which provides an essential social organisation for the delivery of basic services and infrastructure, social networks and economic opportunities (Batty 2005). Actions of agents also do not exhibit equal influence or result in the same spatial patterns, for example, politicians and developers based on their self-interest can influence land use development processes (McAdams 2012) to either produce urban sprawl or compact cities.

Another characteristic of complex systems is that they are non-linear and have an extreme sensitivity to initial conditions, also referred to as a chaotic system (Batty 2005; Nel 2009; Reggiani & Nijkamp 2009; McAdams 2012; O'Sullivan & Perry 2013). These non-linear and chaotic systems exhibit surprising shifts in their behaviour (phase transitions) in response to seemingly minor changes in their initial states (states of emergence) and can result in unplanned and unexpected patterns via positive feedback⁶, self-organisation and path dependence⁷, for example, flocking of birds, weather patterns or the formation of galaxies and stars. These local

⁶ Positive feedback itself tends to generate path-dependent behaviour and diffusion, giving rise to growing and declining structures. In economic systems growth takes place as returns to scale and can either be constant, increasing or decreasing. In cities it can simulate the distance effect on markets and locations and population growth (Batty 2005).

⁷ Qualitative different trajectories that emerge from the application of initial conditions. Leading to lock-in mechanisms that leads to a growth path (Batty 2005:29).

interactions among the system components scale up to cause system-wide outcomes and effects (Batty 2005; Nel 2009; De Roo 2011; Silva 2011; O'Sullivan & Perry 2013). Cities are sensitive to initial conditions, which can be reflected in their morphology as well as the way they develop their economies (Batty 2005; Nel 2009). Some small initial factor, such as a particular industry or development, can determine the city's trajectory/growth path in a unique and non-replicable manner. Land use patterns, often spontaneously arising from local demand tend to persist, despite changing modes of production or transportation (Nel 2009). Non-linear systems lack the quality of predictability and spatial simulation is an essential tool for understanding and exploring their behaviour (O'Sullivan & Perry 2013).

Complex systems display many traits of chaotic systems (Batty 2005; Nel 2009; De Roo 2011; McAdams 2012). They comprise interrelated components, which change and develop over time while retaining coherence. The changes are dynamic and non-linear, and it can also mean that something is changing from order to disorder (catastrophe) or is in transition (phase transition) (Batty 2005; McAdams 2012). An example of a phase transition in cities is the difference between an industrial and post-industrial city, which are associated with technological shifts that lead to changes in the functional structure of the city (Batty 2005). Critically, these systems respond with modifications to changes in their environment. Such changes are evident in the global system and may be slow or sudden as the system moves from one emergent state to another. However, these changes to the components of the system may not necessarily translate into dramatic changes in the system. Many complex systems exist in a critical state, that is a state that occurs on the brink of a phase transition, where the state of the system is poised between two alternatives (equilibrium / steady-state or disequilibrium). A small perturbation can nudge the system into a new emergent state (Batty 2005; Nel 2009; De Roo 2011; Silva 2011) or dampen the system to return to its former state or similar trajectory (Nel 2009). Cities tend to exist in a critical state (far from equilibrium) where the components in the system change at different rates and where the impact differs across spatial scales and time periods (Batty 2005). Cities, therefore, maintain a perpetual balancing act between the benefits of the agglomeration and potential disasters such as epidemics of disease, terrorism and disruptions of the supplies on which the city rely. Cities remain resilient as they have survived changing technologies that influenced their economies, natural disasters, war and terrorist attacks. New technologies may change the local industries or the way the city connects, but it does not change the city as a whole (Nel 2009).

Emergence⁸ is another fundamental characteristic of complex systems and refers to the novel way a system can behave that cannot be reduced to the behaviour of the component of the system (Batty 2005; Nel 2009; De Roo 2011). Emergence pertains to not only understanding the persisting patterns but the dynamics of how the parts behave in relation to one another. Complexity analysis plays an important role in the analysis of the phenomena that appears at these different scales and across different times. The representation of moments in time and space when a phenomenon is registered is referred to as a phase-transition. This allows for an understanding of when a phenomenon is triggered. The trigger points refer to actions or events that are used to initiate other actions/activities captured at a specific time and space which leads to positive feedbacks, for example, new transportation policies that are devised to change commuting patterns. These trigger points cause different phase-transitions or self-organisation of the system according to the variations registered in variables over time and represent a change in state. A fundamental change in a variable or phenomena refers to a bifurcation, for example, mass extinction, epidemics, diffusion of technology or changes from migrant to sedentary societies (Batty 2005; Silva 2011).

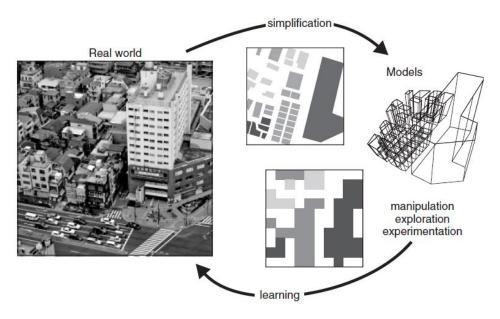
Hierarchies are also a feature of complex systems, arising spontaneously in the self-organising process (Nel 2009). As cities grow, their spatial units change between scales, for example, neighbourhood – district – city – a metropolis with the same kinds of functions manifesting themselves at higher scales and serving larger populations. Self-similarity is implied in the scaling of local units of development, and they appear as fractal patterns in urban morphology, which are self-similar across scaling (Batty 2005). Fractal forms appear everywhere, and their fractal dimensions (points, lines, polygons or pixels) also exhibit self-similarity at all scales (Batty 2005; Nel 2009; McAdams 2012). For example, a line can be divided into two and then those two lines can be divided into four and eight and so on (McAdams 2012). This implies that a view at one scale will be similar at any other scale for example clouds, drainage basins (Nel 2009). Self-similarity in cities is evident especially in multi-nodal cities with their central business district, regional centres and local centres.

⁸ Emergence is that process whereby unanticipated consequences arise from well-defined rules. An example is Schelling's segregation model that shows how decisions by individuals can lead to extreme spatial patterns of segregation of social groups. (Batty 2005:51)

Hierarchies are prevalent within cities and include functional hierarchies (for example economic services) and of systems that nestle within systems (such as transport) (Nel 2009). The transportation system, for instance, evolves at different intensities over time and space to, for example, a non-congested or congested state. This leads to different phase transitions, such as congestion in morning and afternoon traffic as a result of commuting to work. In addition to understanding the specific variable along with time and space, the evolution of the specific phenomena can also be understood through for example adding the timing of traffic lights, parking places and mode choices from individuals. This multidimensional representation of variables and phenomena plays an important role in complexity analysis as it provides an understanding of the different phase-transitions of each variable, phenomena at different scales and for different time periods (Silva 2011).

Complex systems are open systems, interacting with their environment and demanding a constant flow of energy and are thus far from equilibrium (equilibrium is equated to death) (Batty 2005; Nel 2009; Silva 2011). Cities demand constant inflow or resources to permit their functioning. These resources can range from basics such as water, food, energy, economic goods and information. The interactions tend to, however, to blur the boundaries between systems. As complex systems evolve, their history is important in understanding their present. Also, individual agents within the system may come and go, but their role and function may be replaced by a somewhat different kind of agent (such as autonomous buses replacing taxis). These descriptions emphasise the structure of interactions, non-linearity and openness to the environment. Feedback loops can amplify and move the system to another state, or the feedback loops can dissipate the effect of perturbations and ensures stability (Nel 2009; De Roo 2011).

Change is vital, and a minimum level of growth and change within a city is essential for survival. This has significant implications the way we manage our cities. A vision of a city within equilibrium, static and orderly, ignores the essential processes that create and maintain the city such as the flows and interactions between agents; its form, functions (land uses); densities; connectivity (transport modes) and aesthetics. The 'control' can move a city from vibrant dynamism to dull stability (Nel 2009).


Complexity science and the modelling techniques (Cellular automata, agent-based modelling, dynamic modelling etc.) are becoming more relevant and are viewed as some of the best approaches to describe, represent, evaluate, simulate and explore scenario processes in order to obtain an understanding of urban dynamics, which can support spatial planning practices to become more subjective, impassioned and inclusive (De Roo 2011; Silva 2011; Couclelis 2009; McAdams 2012).

The aim of the next section of the chapter is to acquaint the spatial planner (modeller/user) with the structure and meaning (i.e. metaphors, theories etc.) that is already embedded in the conceptual foundations of urban models and to provide them with a means of understanding the science of cities through explaining the building blocks of these urban models (CA and ABM) and highlight where they can be useful in applications.

2.2 PROGRESS FROM METAPHOR, MEANING (THEORY) AND URBAN MODEL

Spatial simulation models (urban models) uses quantitative methods to measure and represents distinct spatial elements and their relationships for a complete understanding of the complex system under consideration. Because cities cannot be controlled and analysed through controlled experiments, "*a computer is programmed to iteratively recalculate the modelled system state as it changes over time in accordance with the relationships represented by the mathematical and other relationships that describe the system*" (O'Sullivan & Perry 2013:9). It allows for a simplified view of integrated phenomena and provides a platform for convenient exploration of the implications of a dynamic model without impacting on the real-world system (O'Sullivan & Perry 2013; Batty 2005).

The figure below provides a schematic illustration of the concept of models.

Source: O'Sullivan & Perry 2013:3

Figure 3: Schematic illustration of the concept of models

Spatial simulation models are primarily used as exploratory learning tools which assist us in clarifying our thinking of the complexities of the real world and to prompt further discussion and exploration. These urban models can be used as predictive tools in cases where reliable data is available, and when the model is an adequate representation of the system and its dynamics. The models are therefore flexible, adaptive and diverse in their methods of use. The models that are primarily used for analysing this complexity include Cellular Automata (CA) and Agent-based modelling (ABM) (Pumain 1998; Batty 2005; Silva 2011b; Torrens 2011; O'Sullivan & Perry 2013).

Conceptual metaphors are embedded in urban models, and it is important to reflect on how these metaphors influence the design and construction of urban models and how it also informs our understanding of reality (Sui 2011). "A science without theory is an unsatisfactory approach", and models are only as strong as the theories it is underpinned by and which they are trying to inform/prove (O'Sullivan & Perry 2013:14). An understanding of these conceptual metaphors and how it informs urban model development can assist spatial planners to understand the influence and constraints of each metaphor, including the intended and unintended consequences when the information from the modelling efforts are used in various practices.

Sui (2011:372-378) employed Pepper's world hypotheses to assist in identifying the role of metaphors in understanding reality. This hypothesis provided an inclusive conceptual framework, for understanding the diverse fundamentals within urban analysis and model development, particularly in the fields of social sciences and humanities.

get to the top	& modelling tradition Spatial	measurements Fractals' spatial
		Fractals' spatial
	Spatial	Fractals' spatial
0.1		1
f things."	morphology	metrics
get to the	Social physics ¹¹	ITLUP;
ottom of		UrbanSim
nings."		
		Callular
-	Social biology	Cellular
whole of		Automata (CA);
nings."		Agent based
		model (ABM)
g o ıi g	et to the ottom of ings." et to the hole of	tet to the Social physics ¹¹ of ings."

Table 1: Pepper's	world hypothesis
-------------------	------------------

⁹ Formism grounds itself in common sense experience based on similarity. Each form can be analysed and explained in terms of its own nature and appearance. (Sui 2011).

¹⁰ Mechanism takes a common-sense experience with the machine as it root cause metaphor. A proposition is considered true only if there is an appropriate causal connection between the states of affairs (Sui 2011).

¹¹ Social physics is "the science of social phenomena subject to invariable natural laws" (Merriam Webster accessed 14 September 2019)

¹² Organism provides an integrated world view, but it aims to a obtain a synthetic understanding of the whole instead of an analysis of its parts. It implicitly assumes that every experience in the world follow a concealed process, all eventually reaching maturation in an organic whole (Sui 2011).

	19

Pepper's world	Dominant	Practice motto	Urban analysis	Urban models /
hypothesis	metaphors		& modelling	measurements
			tradition	
Contextualism ¹³	Cities as arenas	"get to each	Spatial events	Field-based time
	(events)	individual thing		geography;
		itself."		urban social
				analysis

Source: Adapted from Sui 2011

2.2.1 Cities as fractals.

Cities as fractals are the study of the physical dimensions of urban form (Reis et al 2014; Sui 2011, Batty 2005) to understand the causal forces underlying changes in urban patterns (Pacione 2009). The spatial morphology tradition focusses on the description, analysis and modelling of the existing and ideal urban form. Methods used by this tradition includes spatial metrics and modelling. Spatial metrics are quantitative measures used to assess the spatial characteristics of urban settlements and structures. The types of metrics include landscape -, geo-spatial -, accessibility metrics and spatial statistics (Reis et al 2014).

The spatial morphology tradition is the oldest and is linked to classical location theories. According to Sui (2011) and Batty (2005), the following theorists can be grouped into this tradition, such as Von Thunen's concentric rings (1826, 1966), Christaller's central place (1933, 1966), Rawstron's principles on industrial location (1958), Alonso's theory of residential location (1960), Weber's theory on location of industries (1909), - and from urban geography -, Burgess's concentric rings (1925), Hoyt's sectoral radiation (1939), Harris & Ullman's multiple-nuclei (1945). These classical and positivistic¹⁴ models of urban land use were criticized during the 1960s for neglecting

¹³ Contextualism draws inspiration from the common-sense experience of unique events. It seeks to unravel the texture and strands of processes operating within or associated with events (Sui 2011).

¹⁴ Positivism is a philosophy of science characterized by adherence to the scientific method of investigation based on hypothesis testing, statistical inference and theory construction. This approach was central to spatial analysis in the 1950's, but has been superseded by approaches that incorporates

the underlying causal processes of spatial form which was mainly an outcome underlying social, institutional and economic forces (Pacione 2009). New theories such as White's 21st century city (1987), Berry (1963), Scott (1982), Garreau's edge city (1992), Borchert (1998), Prinsloo (2010), Henry & Dawley (2011) - and from new urbanism - Jacobs (1961), Alexander (1979), Friedman (1979), Lynch (1981), Harvey (1994), was then developed to respond to this criticism (Sui 2011; Batty 2005).

The spatial morphology tradition has grown, and approximately 160 different spatial metrics (Reis et al 2014) can be used, depending on the research question and urban processes under consideration. Batty and Longley (1994, 2005, 2014) have also done extensive work on studying the fractal city as viewing cities as systems within systems of cities and understanding the complex relationships between the parts and the whole (Sui 2011).

2.2.2 Cities as machines.

The metaphor of cities as machines incorporates the tradition of social physics and it aims to model social variables contained in large sets of geo-coded data through statistical measurements to reveal underlying relational patterns that can be explained by laws and theories within the field of physics. This form of analysis is an interdisciplinary method of inquiry and includes models such as integrated land use and transportation modelling. (Sui 2011; Barnes & Wilson 2014).

According to Sui (2011), Batty (2005 & 2014), Barnes and Wilson (2014), the social physics tradition is linked to the theories and spatial data analysis from Ravenstein's currents of migration (1885, 1889), Carey's migration studies (1895), Stewart's population potential (1947), Zipf's power law on city-size distribution (1949), Hansen's residential location model (1959), Lowry's model of the metropolis (1964), Wilson's law on spatial interaction (1970), Tobler's gravitational models (1970, 1976, 1981,

social, economic and political structures in determining the nature of cities and urban life. (Pacione 2009:681)

1983), Bak's self-organizing criticality (1996), Allen's self-organizing systems (1997), Urry's small world / complex networks (2004).

Urban models that follow this tradition tend to be aggregated, static and non-temporal. These models have been overtaken by the next two traditions which are disaggregated, dynamic and includes temporal dimensions. The focus for studying cities has changed from the top-down¹⁵ perspectives as reflected on through the spatial morphology and social physics traditions to the bottom-up¹⁶ perspectives discussed below in the social biology and spatial event traditions (Sui 2011; Batty 2011; Crooks et al 2018).

2.2.3 Cities as organisms.

The social biology tradition conceptualises cities as organisms as it aims to understand the overall structure and dynamics of urban form. This approach explores the discrete parts of the system and how they interact with each over across space and at various scales (Sui 2011; Batty 2014; Crooks et al 2018). Metaphors are used to understand the complexity within the city, such as ecological metaphors for understanding resilience; the metabolism metaphor for exploring flows of nutrients, energy, storage and residue; and the metaphor of the neural network for understanding relations between places and people. (Sui 2011; Batty 2014).

This tradition is linked to the theories on sustainable development (Brundtland report 1987; Camagni, Capello & Nijkamp 1998, Tanguay et al 2009), urban ecology (Marzluff et al 2008), ecological footprints (Global Footprint network 2010), Brand's law on greener cities (2010) (Batty 2014), Clark's life course approach (2012), and the human ecosystem model (Grove et al 2015; Burch et al 2017 etc.).

¹⁵ It involves using repeated observations from patterns to make inferences about the processes responsible for those patterns. It is an inductive approach that builds on accumulated evidence in the form of multiple observations of similar and recurrent patterns (O'Sullivan & Perry 2013:50)

¹⁶ Trying to understand the fine-scale processes to predict the broad-scale (macro / global) patterns that might emerge from them. This framework aims to provide a way to handle heterogeneity among individuals in their reciprocal interactions with complex environments and each other (O'Sullivan & Perry 2013:51).

Urban models that follow this tradition include cellular automata and agent-based modelling. These models simulate complex systems (cities as systems or systems of cities) which are dynamic, far from equilibrium, non-linear and temporal. It follows a bottom-up (disaggregate), micro, individual-based model approach where the models reflect the continual and dynamic change of individual and group processes of interaction and location (Batty 2005; Sui 2011; Xie & Yang 2011; Batty 2011; O'Sullivan & Perry 2013; Batty 2014; Crooks et al 2018).

2.2.4 Cities as arenas.

The tradition of conceptualising cities as spatial events aims to understand how individual events occur spontaneously within the city over time and space. The tradition links closely to the need for understanding cities in real-time. This tradition has great potential and momentum for growth, especially with the increase and development of technologies around infrastructure (remote sensors, cell phones, computers); software (GIS, data mining etc.); and the availability of dynamic internet platforms (Web 2.0 – social media, web services etc.) where agents can willingly share user-generated content (geotagged photographs, big data etc.) (Sui 2011). Examples include real-time disaster response and scenario planning on natural (or human-made) events such as fires, hurricanes, and so on. Theories and standardised urban analysis and measurements, especially on the use of big data, are currently being developed and debated.

2.3 PROGRESS FROM MEANING (THEORY) TO URBAN MODELS

The focus of modelling shifted from seeing cities as only physical systems (cities as fractals & machines) to seeing them as organisms during the 21st Century. This change has been facilitated with the increase and improved computational abilities and data, which has also become more accessible and cheaper. The new modelling paradigm (cities as organisms) is dominated by CA and AB models which is increasingly used to abstract the real-world into a series of layers (visual representation of complexity and dynamics) which allow modellers to place and connect agents to each other (spatial integration & self-organization mapping) through social networks (intelligent & adaptive micro behaviour) and proximity measures. It allows laws/rules

to be applied to the agents resulting in the emergence of macro-scale phenomena (Batty 2005; Sui 2011; Silva 2011a; Silva 2011b; Xie & Yang 2011; O'Sullivan & Perry 2013; Batty 2014; Crooks et al 2018). An example of this dynamic behaviour across space (spatiotemporal dynamics) is the phenomena such as traffic congestion emerging from agents driving cars (Crooks et al 2018).

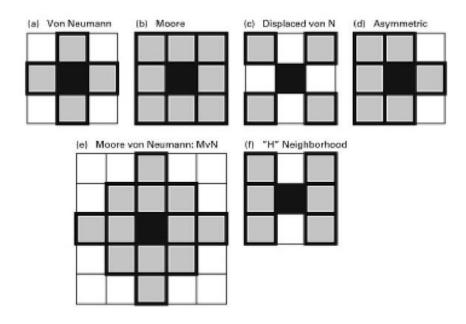
The remainder of this section will explain the building blocks of CA and ABM and highlight where they can be useful in applications.

2.3.1 Cellular Automata (CA).

CA is a standard type of spatially explicit simulation model, and it models spatial and temporal patterns that we observe in the physical world. These physical and spatial structures are the outcomes of processes¹⁷ operating within the system at multiple scales and through time. CA consists of specific spatial components, and the building blocks include lattice of cells, cell states, neighbourhoods, transition rules (deterministic or stochastic) and a sequence of time steps (iterations) (Batty 2005; Sui 2011; Silva 2011a; O'Sullivan & Perry 2013;). Each of these building blocks is further discussed in the following sub-sections.

2.3.1.1 Cells

CA consists of a lattice of cells, such as a two-dimensional grid of square cells (also referred to as a matrix) that are the smallest in that grid/space. Each cell includes a set of states for each cell and a set of transition rules that determine how the cell changes from one-time step to the next based on its current state and those of its neighbours (Pumain 1998; Silva 2011a; O'Sullivan & Perry 2013).


¹⁷ Process is any mechanism that causes a system to change its state, and so potentially to produce characteristic patterns. Processes generate patterns and feedbacks are evident in both directions. Pattern and process are intertwined, and their definitions tend to be circular. An example is the neighbourhood life cycle of cities, where a newly built neighbourhood might be relatively prosperous, but over time the houses and occupants age and some neighbourhood go into relative decline which could lead to gentrification and later urban renewal etc. Disentangling pattern and process is difficult (O'Sullivan & Perry 2013:31, 32)

Cells are the basic units of spatial representation, which are assumed to be indivisible, namely the smallest unit of analysis which describes the system. Cells can be used to index any object or attribute, such as buildings, cadastre, land use, but they are fixed (immovable) and constitute the backdrop on which all urban change takes place. Each cell can take on only one state at a time, and the state of the cell depends on the states and configurations of other cells in the neighbourhood of that cell. The state of a cell can be restricted to integer values when the states are discrete (Batty 2005; O'Sullivan & Perry 2013). Examples of cell states can include urban – non-urban, developed – not developed, active – inactive.

2.3.1.2 Neighbours

The lattice of cells defines for each cell those other cells that are its neighbours. The neighbourhood around the cell is composed of geometrically contiguous cells. Neighbours are defined either as the four immediately adjacent orthogonal cells (called Von Neumann) or as the eight immediately adjacent cells (including the diagonals called the Moore neighbourhood). Other neighbourhoods relax the requirements of strict adjacency, although most contain cells that are no more than two nearest neighbours away from the core cell (e.g. Displaced von N; Asymmetric, circular MvN & H-neighbourhood) (O'Sullivan & Perry 2013; Batty 2005; Silva 2011a).

The figure below depicts the different configurations of local neighbourhoods.

Source: Batty 2005: 77

Figure 4: Local neighbourhood configurations

Within a 3 x 3 cellular space as depicted in Figure 4(b), there are a possible 511 combinations or forms that can be generated. The addition of transition rules can further increase the number of possibilities. Using the Moore neighbourhood (Figure 4b) as an example and with the inclusion of two transition rules (on-off cell states), the configuration possibilities are 2^9 or 512. With this scenario, the possible number of automata is $2^{(512)}$, which is an enormous amount of computational possibilities. The examples above is an illustration of the enormous variety of the kind of patterns and behaviours that might be computed using cellular automata.

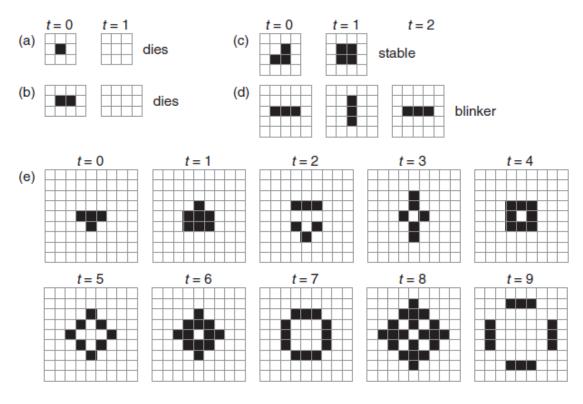
2.3.1.3 Time steps / iterations

Time is represented by cells determining, and iteratively updating to their next state. The timing of state changes can occur either synchronously or asynchronously. Synchronously is defined when the cells determine their next state and are updated simultaneously, while asynchronously is defined when cells update their state one after the other, in random order. An asynchronous update can also define when cells may not be updated, while others are updated more than once or from a specific location. As a rule, either synchronous or asynchronous updating is preferred based on their appropriateness (O'Sullivan & Perry 2013).

2.3.1.4 Applications of CA

John Conway (1970) in the 'game of life' simplified the rules in the application of totalistic automata¹⁸, while also still trying to obtain complex spatial patterns. The game of life is not a model of a specific system but a hypothetical and mathematical system with interest in the relationship between the intricacy of the rules that define a system's behaviour and the richness of the behaviour. The game of life is a two-dimensional grid (lattice) which can be infinite or as large as needed, and the configuration for the "Life" is a random distribution of developed and non-developed cells (Batty 2005; O'Sullivan & Perry 2013). It is also defined as follows:

- Cell neighbours are the eight (8) immediately adjacent orthogonal and diagonal grid cells (forming the Moore neighbourhood);
- Cell states are 'alive' or 'dead'; and –
- Two (2) transition rules, namely:
 - Birth (growth) a dead cell is born if it has three (3) live neighbours to its Moore neighbourhood; otherwise it remains dead; and –
 - Survival a live cell survives if it has two or three live neighbours (steady-state); otherwise, it dies. Fewer than two adjacent cells imply the cells die from isolation; more than three and it dies from overcrowding (O'Sullivan & Perry 2013; Batty 2005).


Further assumptions and conditions are also:

- The transition rules are uniform and apply across every cell, state and neighbourhood and every time step (iteration);
- Every change in the state must be local, which in turn implies no action at a distance;
- A start and endpoint of the simulation in space and time is specified and is termed initial and boundary conditions;
- Initial conditions apply to where and when the process begins within the lattice of cells, and it is termed the seed site;

¹⁸ Also referred to as the strict CA framework (Batty 2005; Silva 2011).

- Boundary conditions refer to the limit on the space and/or time over which the CA can operate; and -
- The framework emphasises the spatial viewpoint where the objects (contained in the cells) and their relations in space and time is organised instead of a temporal viewpoint (Batty 2005).

The figure below demonstrates the totalistic automata.

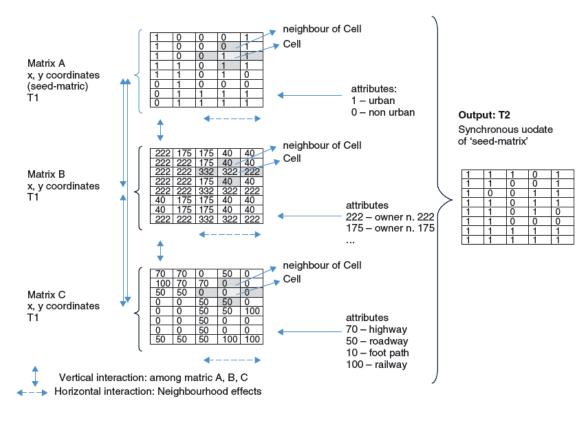

Source: O'Sullivan & Perry 2013:19

Figure 5: Conway's game of life simulation

In Figure (a) and (b) the cells die immediately while adding another live cell to produce the L-shaped pattern in (c) result in a four-cell block of live cells that is stable. In creating a linear pattern through adding another cell in Figure (d) creates a blinking pattern that switches each time step between a horizontal and vertical line. Adding one more cell to (d) to give the T-shaped pattern (e) produces a sequence of nine-time steps resulting in four (4) copies of the three-cell blinker pattern (d). Adding on a new live cell to the pattern (e) produces the 'R pentomino' which has been shown to persist indefinitely and extends indefinitely across space since the gliders will continue to move away from the origin. Conway's discovery in 1970 has led to an explosion of interest in CA because simple rules in even a deterministic system can yield an unexpectedly rich array of unpredicted dynamic behaviours. The "application of CA can be found across numerous fields that have a spatial bias and involve the evolution of populations, from ecology to astrophysics" (Batty 2005:76). The attraction of using CA lies in the ability to reduce systems to their most basic elements. (Batty 2005; O'Sullivan & Perry 2013).

The example described above is an illustration of non-linear dynamics, where the system exhibits surprising shifts in behaviour in response to minor changes in their initial states. Most real-world systems are non-linear and because of their structure requires a way to simplify them, while also retaining their dynamic nature. Cities as systems are also characterised as experiencing actions at a distance, for example, the higher-order transport network linking urban nodes along activity corridors which impacts on activities and accessibility. This action requires that the neighbourhood element should be redefined to allow a less strict adjacency rule. In addition to those mentioned above, the majority of cities do not have restrictive conditions on development (Batty 2005).

To accommodate the abovementioned complexities, cellular automata has evolved into random complex automata (also referred to probabilistic CA) and can include processes that are probabilistic and might impact local behaviour through changing the transition rules or the nature of the neighbourhood (Batty 2005; Silva 2011b; O'Sullivan & Perry 2013). One method includes altering the transition rules to make cells ineligible for activating a change in the state due to, for example, the implementation of government policies (i.e. urban edge delineation) or topological features (i.e. roads, mountains, rivers etc.). The transition rule can also consider the state of the developed cell-based on age and introduce an age limit parameter, which can empty cells of development exploring the gentrification and urban renewal process of cities (Batty 2005). When the same cells have different attributes in each of the layers as described above, the interaction (vertical and horizontal) is essential and the model uses matrixes that can perfectly overlay and are geo-referenced. Once the vertical and horizontal interactions have transpired based on the transition rules and time steps a new configuration matrix is developed where the cells can assume different values and different spatial

Source: Silva 2011a:326

Figure 6: The random complex cellular environment

2.3.2 Agent-based (AB) modelling.

CA modelling provides a spatially explicit simulation model, and it models spatial and temporal patterns that we observe. However, the locational decisions of agents also influence and modify the spatial structures that we observe. To enhance CA modelling, agent-based models (ABM) are incorporated which provides for the modelling of aspatial dynamics. ABM and CA modelling have become the most used approaches to work with complexity theory in a quantitative design (Batty 2005; Silva 2011a; Silva 2011b).

ABM focuses on the socio-economic conductions and aspatial structures (immaterial structures of behavioural and social systems, such as tastes and preferences) which produces action through public-individual choice and option. The goal of ABM is to explain the moment when an agent takes a decision and the moment when the agent moves from one place to another. Methods used are, for instance, decision trees and neuronal nets which are then extrapolated into the modelling environment as decision rules (Pumain 1998; Batty 2005; Silva 2011a; Silva 2011b; Crooks et al 2018).

The advantages of ABM are its ability to model individual decision-making entities and their interactions; it incorporates social processes on decision-making, and it provides dynamic socio-economic, environmental linkages. For instance, ABM can integrate the agent's physical space (natural environment) with the agent's intelligence (policy/decision-making rules) and combine the bottom-up actions (disaggregate, micro-based analysis) with global interactions and simulate processes such as the space-economy (Batty 2005; Silva 2011a; Xie & Yang 2011).

The ABM framework is flexible and can provide different types of models for studying different aspects of cities, such as;

- Abstract models, the intention is to discover new relationships or knowledge e.g. segregation model;
- Experimental models, exploring new ideas about the system of interest;
- Historical models, exploring the past trends and processes; and –
- Empirical models, the intention is to test different scenarios or to create future forecasts (Crooks et al 2018).

Refer to section 2.3.2.2. below for the explanation of the application of the segregation, experimental and empirical models mentioned above.

2.3.2.1 Agents.

ABM models are constituted of agents with the following characteristics;

- Individuals, agencies and institutions or movable physical but nonhuman objects (e.g. animals, particles systems in physics, robots, creatures from artificial life, software agents) can be classified as agents;
- Agents have mobility, and they can change their positions by moving from one cell to the next;
- Agents can be associated with a specific cell; however, they can be attributed in different ways and classified according to different activities for example property owners (like the CA modelling process);
- Agents usually act autonomously and are autonomous entities or objects that act independently of one another. Depending on various conditions displayed by other agents or the system, they may act in concert for example neighbourhood watch, community safety organisations and the police;
- The central feature of an agent is their ability to communicate with one another, as well as sense and respond to their environment;
- An autonomous agent is defined as "*a system situated within and part of an environment that senses that environment and acts on it, over time, in pursuit of its own agenda and so effect what is senses in the future*" (Batty 2005:210). More than one type of agent and environment can be simulated based on the decentralised behaviours within more than one kind of environment, for example, mobile robots, software agents, creatures from artificial life, humans, other animals or plants (Batty 2005:210-211).

The behaviour of agents can be classified according to properties summarized in Table 2 (refer to the table below).

Property	Meaning
Reactive	Responds in a timely fashion to
	changes in the environment or other
	agents.
Autonomous	Exercises control over its own actions.

Table 2: Properties of agents

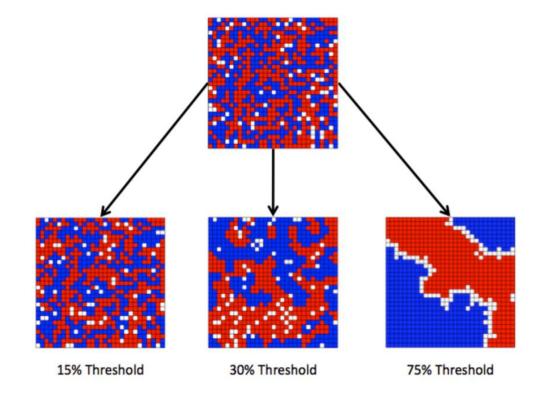
Property	Meaning
Goal-orientated / proactive / purposeful	Does not simply act in response to the
/ cognitive	environment but behave according to
	its own protocols or plans.
Temporally continuous	Is continuously running process.
Communicative / socially aware	Communicates with other agents.
Learning / adaptive	Changes its behaviour based on its
	previous experience.
Mobile	Able to transport itself from one cell to
	another.
Flexible	Actions are not scripted.
Character	Believe 'personality' and emotional
	state.

Source: Adapted from Batty 2005:212

The relations between agents and their environment can be characterised by;

- Agents influence their own behaviour for example personal preferences in what type of products they purchase;
- Environments influence their one state;
- Agents affect their landscapes for example resource extraction and depletion;
- Environments affect agents for movements within cities;
- Relations to all other agents and environments (i.e. action at a distance); and -
- Relations to external environments (i.e. action at a distance) (Batty 2005).

ABM is most appropriate when the focus is on agents reacting purposefully to their local environment, which is encoded into the spatial environment (cells or layers), and the action and interaction (spatial movement and location) between the agent and environment can be defined (Batty 2005; Silva 2001b; Xie & Yang 2011).


2.3.2.2 Application of ABM.

Schelling's simple segregation model (1971) was one of the earliest ABM (Crooks et al 2018; O'Sullivan & Perry 2013). The model aims to explore the disparity between

the preferences on the agents (micro-behaviour) and their aggregate outcome (macro / global behaviour). The model is defined as follows:

- Two types of agents are randomly located on a two-dimensional grid;
- Each agent wants to live in a neighbourhood (Moore neighbourhood) wherein a certain percentage of neighbours are like themselves (likeness parameter);
- When an individual is dissatisfied with their current location, they can move to the nearest available location at which their requirements are satisfied (even empty areas); and -
- Rounds of the relocation of agents are repeated until all the agents are satisfied or until no more can be successfully relocated (O'Sullivan & Perry 2013; Crooks et al 2018).

In the example below, the parameter of likeness is set at 15%, 30% and 75%. The agents move over time to areas that they feel satisfied in and segregated neighbourhoods emerge at the aggregated level. As the individual preference increases for a similar neighbour, segregation increases and even with a relatively low likeness parameter (30%), agents still self-segregate (Batty 2005; O'Sullivan & Perry 2013; Crooks et al 2018).

Source: Batty 2005

Figure 7: Representation of Schelling's segregation model

In the urban modelling context, ABM needs to represent the agent's complex behaviour and interaction with other agents -such as households, businesses, planners, developers, or decision-makers within the system of interest. This requires the formulation of a multi-criteria evaluation framework, which can be employed to identify the decisionmaking tasks that drive urban land change or urban development policy. This decisionmaking framework will be abstracted and computerised in order to simulate how agents behave over the simulated landscape (Xie & Yang 2011). The functions developed also needs to take into account how the decisions by spatial agents change the spatial morphology of the landscape. For instance, when agents find and act on resources (location theory), the locations they originate from and the routes they take back to these origins (migration & mobility theories) are some of the elements of interest in the urban system. The models can also be extended to include actions or behaviours that occur when these resources are encountered, thus linking spatial logic to economic and social processes (Batty 2005). In this process, the spatial distribution/organisation of resources is considered; the agent's wealth accumulation or deterioration based on access and resource consumption, resource exploitation and conservation. When agents cannot access resources, this lack of access can lead to inactivity in space economy and 'death', and this is then remedied by income support (direct or indirect subsidies) providing them with an opportunity to gain wealth again. The model can be further extended to include population demographics (life span of agents); wealth distribution measures (i.e. Gini coefficient, poverty indexes etc.) and accessibility measures to economic opportunities and social facilities (Batty 2005).

2.4 MODEL UNCERTAINTY AND EVALUATION

A fundamental problem in modelling is uncertainty, and it is essential to note that in any modelling environment, uncertainty is unavoidable. The location, level and nature of uncertainty needs to be considered in model development and should be appropriately represented in models. In spatial simulation modelling, some of the aspects that impact on model uncertainty relate to the trade-offs that need to be made between analytical tractability

(deterministic model¹⁹) and realism (stochastic model²⁰). This is predominately influenced by the research question that is being asked to an urban model, as well as the data, processes and patterns that are being considered and analysed within the complex systems. This step evaluates the model's adequacy given its purpose (O'Sullivan & Perry 2013).

Model evaluation is also an essential part of model development and is defined as "*the process* of determining model usefulness and estimating the range or likelihood of various interesting outcomes" (O'Sullivan & Perry 2013:198). Calibration and verification are methods used to evaluate the model's 'fit for purpose'.

2.4.1 Design and construction of models.

Different patterns are perceived at different scales²¹ and the inferences made will have to change as the scale changes. Patterns contain information on what we observe in nature, and within the context of spatial simulation models (urban models), they are the defining characteristics of a system and the underlying processes and structures. Spatial patterns can be defined as a pattern in which features recur recognizable and regularly, and often identically or symmetrically (O'Sullivan & Perry 2013). Spatial processes are inferred from patterns, and they can be viewed differently at various scales and time frames.

Deciding on the scale is one of the critical steps in model development as the decision of the scale will determine the appropriate representation of the spatial processes under consideration as well as the inferences that can be made from the model (O'Sullivan & Perry 2013).

¹⁹ A deterministic model does not represent uncertainty and so for a given set of boundary conditions and input parameters will always produce the same outcomes. The model buys analytical tractability, but at the cost of realism (O'Sullivan & Perry 2013:194).

²⁰ A stochastic model includes some random component, such as variation in parameter growth rates from year to year in a population model. The model is intractable and increases realism (O'Sullivan & Perry 2013:195)

²¹ Scale denotes the resolution within the range or extent of a measured quantity

2.4.1.1 Scale and scaling

In spatial simulation models, the scale can be categorised into grain and extent. Spatially, grain refers to the resolution of data, such as the pixel size in remotely sensed imagery. Temporally, grain refers to the frequency of data, such as how often measurements are taken (O'Sullivan & Perry 2013).

Spatially, extent refers to the total area that the dataset spans and temporal extent are defined by the duration over which the data were collected (O'Sullivan & Perry 2013). Spatial and temporal extent places restrictions on models, or data, and affect the ability to make inferences (generalisations) from them. The scaling problem within urban models relates to the nature of the systems under investigation, which is both fine-grained and of considerable extent. For example, when we consider climate change, we need to be able to integrate across different spatial scales (local to global) and temporal scales (millisecond to multi-millennial). This is practically challenging, and the scaling problem forces the considerations within model conceptualization, development and analysis about decisions on model representation (trade-offs between grain and extent – What processes shall I include?) and the interpretation of model outcomes (What patterns am I seeing, and what do they tell me?) (O'Sullivan & Perry 2013).

With increased access to computing power, software tools, detailed remote sensing, and big data, the possibility exists to develop fine-grain simulation models that cover large extents. The challenge with this is that such models lose their usefulness in simplifying the phenomena and they become difficult to interpret (O'Sullivan & Perry 2013).

2.4.1.2 Scale-dependence: patterns and processes

A disconnect exists between the scale of the processes of interest and the scale of the available observational data. In these cases, the model needs to be designed in a manner that allows the user to extrapolate or interpolate data from one scale to another to describe or make inferences. Also, the patterns that are perceived within a system can change when the space-time scale is changed, and this phenomenon is termed scale-dependence. Scale-dependence in patterns, do not necessarily translate into scale-dependence in processes. Processes can occur rapidly, but their effects on patterns are

slow to emerge, i.e. lagging effects. The decision on the appropriate scale is influenced by the research question (O'Sullivan & Perry 2013).

Some processes do not change with changes in space-time scales, and these patterns are termed scale-invariant, self-similar, self-affine or fractal. Many real-world objects, such as coastlines, mountain ranges, drainage systems and cities, can be shown to have fractal properties (O'Sullivan & Perry 2013).

2.4.2 Calibrating and validating models.

Calibration and validation exercises are essential in urban models mainly when they are used in spatial planning practices as planning support systems. Calibration involves adjusting model parameters for simulations (referring to the act of running a model on data or applying it to a given scenario) to perform within a level of fitness of sufficiency concerning its intended purpose (Torrens 2011; Xie & Yang 2011).

Validation involves assessing the success of a model or simulation run in achieving its (specific) intended goals. The method involves comparing the performance of the model to some properties of the real system being simulated. Comparisons usually are made to register a model as generally applicable to a specific system, place and time, or the model fits a particular purpose, for example, decision support or normative modelling (Torrens 2011; Xie & Yang 2011).

Another factor that influences the calibration and validation of models is the paradigm shift in urban models, away from thinking of them as diagnostic or prescriptive tools, towards conceptualising them as laboratories for experimenting or 'tools to think with'. The nature of the spatial dynamics being explored within these urban models are self-organising, stochastic, catastrophic and chaotic, and different models can produce the same outcomes using different parameters or rules. This non-uniqueness or under-determination makes calibration and validation of urban models difficult. (Xie & Yang 2011; Silva 2011a; Torrens 2011; O'Sullivan & Perry 2013;).

Calibration and validation also require adequate data based on the different dynamics modelling (i.e. CA – spatial or ABM – aspatial; and temporal), which in turn influences the choices of calibration - and validation mechanisms that can be employed and the subsequent outcomes. In addition, the data can result in the result in a model to be 'fit' for use in a specific location, and it, therefore, cannot be used for inferences in a different location or as generalisations within the system of interest (Torrens 2011; Xie & Yang 2011).

Urban models are also only as strong as the theories that underpin them, and in many instances, the theory has been found lacking, particularly at microscale / local behaviour and concerning phenomena that operate across scales, for example, demographic transitions, urbanisation and migration (Torrens 2011; O'Sullivan & Perry 2013).

The crucial factor in model evaluation, is to keep the purpose of the model firmly in mind and can be as simple as to ask, "*Did I learn anything useful from building this model? And if so, what?*" (O'Sullivan & Perry 2013:228).

2.5 CONCLUDING REMARKS

Within a complex and dynamic landscape (reality), a spatial planner's role is to "*create bridges between 'what is' and 'what could be'*, (or in normative terms) *'what should be' and 'what is desired'* (De Roo et al 2016:1). This requires an understanding of the city as a complex dynamic system and how planning interventions should be contextually formulated and implemented to address the multidimensional urban phenomena such as uncontrolled and unplanned urbanisation challenges. Spatial planners need to become managers of change where negatives are avoided, and positive effects of change are embraced over time and space. However, the current scientific planning instruments and practices are noted as being inadequate to address these multidimensional problems and challenges being faced within cities.

The new 'science of cities' has been identified as a method which can provide insights into the complexity of the city. The purpose of the chapter is to bring together the concepts of complexity theory and complexity science in an attempt to assist spatial planners with an understanding of how cities as organisms are theoretically conceptualised. Cities are examples

of organised complexity where urban development (change) emerge from the bottom-up and the spatial order that we see are driven by patterns. The main components from complexity science that relates to the general features of the structure and dynamics of cities as organised complex systems include path dependence, positive feedback, self-organisation, emergence, non-linear dynamics, and phase-transitions. The components of a complex system make predictability difficult, and this makes spatial simulation models (urban models) an important tool for understanding and exploring complex system behaviour.

The spatial simulation models (urban models) used by complexity science are CA and AB models which abstract the real-world into a series of layers as a visual representation of the complexity and spatial-temporal urban dynamics. Spatial simulation (urban models) allow for the complex reality to be shown in a simplified form, in order that spatial strategies and their impacts can be explored in advance. The chapter provides explanations on the key considerations for spatial simulation model (urban model) conceptualisation, the components, design and construction. These modelling techniques play a fundamental role in understanding the functionality, practicality, accuracy and 'fit for purpose' use of these urban models within cities. In general, the primary role of urban models (CA & ABM) is as heuristic tools for learning about the real world and enables scenario planning which can support spatial planning practices.

"models, of course, are never true, but fortunately it is only necessary that they be useful." (George Box, 1979 as referenced in O'Sullivan & Perry 2013:2)

CHAPTER 3: URBAN CA AND ABM MODELS FOR THE SIMULATION OF URBAN DYNAMICS: A REVIEW AND ANALYSIS

"Just as settlements are diverse and complex, so there are many ways to describe and understand them." (K. Kropf, 2009 as referenced in Reis et al 2014:279)

3 INTRODUCTION

Spatial simulation models (urban models) are primarily used as exploratory learning tools which can assist spatial planners in clarifying their thinking of the complexities of the real world and to prompt further discussion and exploration. These urban models can be used as predictive tools in cases where reliable data is available, and when the model is an adequate representation of the system and its dynamics. The urban models are therefore flexible, adaptive and diverse in their methods of use. As discussed in Chapter 2, urban models that are primarily used for modelling complex dynamic systems, such as urban systems include Cellular Automata (CA) and Agent-based modelling (ABM). These models are used as planning tools to understand how cities develop, including their driving force of land-use change and the configuration of its spatial pattern (Reis et al 2014). Urban land dynamics experience different driving forces at varying speeds, intensity or trajectory, which has been a dominant research agenda for spatial planners (Wu & Silva 2010).

In recent years these models for urban growth simulation have proliferated because of their conceptual simplicity, flexibility and their ability to incorporate spatial and temporal dimensions of urban processes. The applications have also improved with the advances in computer techniques, such as the integration with geographic information systems (GIS), artificial intelligence (AI) and advanced spatial analytics (Santé et al 2010; Wu & Silva 2010). Even though the ability to use these models have become easier, one of the main problems in applying these models to spatial planning practices, is the choice or design of the most suitable urban model for a particular situation or application (Santé et al 2010) which then informs policy decisions and/or support decision-makers (Reis et al 2014).

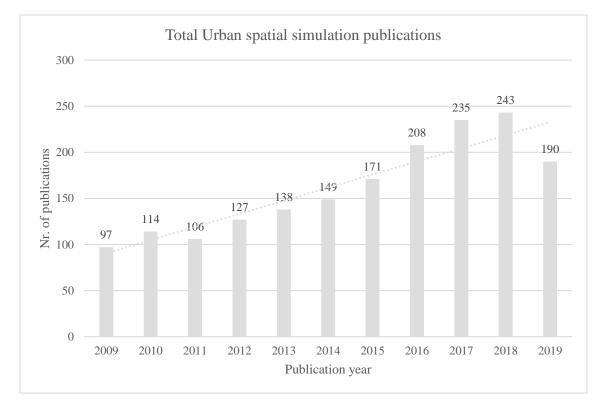
The chapter provides a meta-analysis of urban models applied internationally in urban contexts over the last decade. Academic publications over the past ten years (2009 - 2019) were surveyed in the Web of Science platform in order to provide an overview of the models being

adopted in research and practice. From this main list, a detailed analysis (comparative evaluations) is conducted on the key urban models over the last five years (2015 - 2019). The detailed analysis period follows on from the time period after the GCRO report and the subsequent publications (Wray C et al 2013; Wray C et al 2015). The detailed analysis will focus on the practical application of urban models within the five (5) year period and will include peer-reviewed and accessible academic publications.

The overall purpose of this analysis is to identify the components of the urban models; evaluate spatial and temporal scale; delimit their physical boundaries of the system under review; articulate the connection among the components (four complexes of urban systems i.e. biotic, physical, social and built), and identify the capabilities and limitations (Santé et al 2010; Pickett & Cadenasso 2002).

3.1 META-ANALYSIS

In order to cover as many urban models as possible, a comprehensive review of the literature was carried out of the subject area or methodology over the past ten years (2009 – 2019). The keywords used in the Web of Science platform included "spatial simulation" and "urban". The results were then assembled into four groups, based on the specific methodological approach in which the urban models analysed in this research (CA and ABM) were developed. The four groups are:

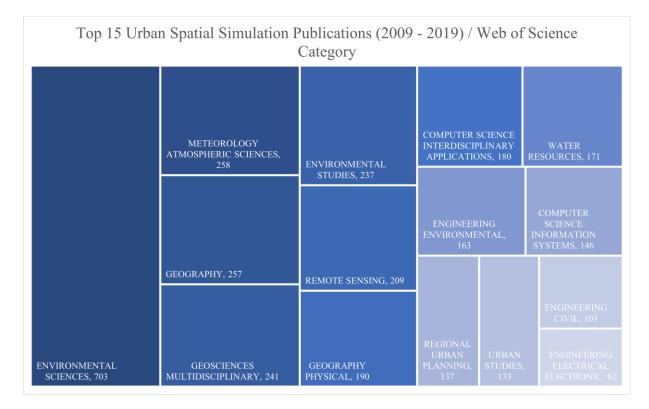

- 1. Urban spatial simulation models;
- 2. Urban spatial simulation models using a CA approach;
- 3. Urban spatial simulation models using an ABM approach; and -
- 4. Urban spatial simulation models using a hybrid (CA-AB) approach.

The intention of these groups does not intend to constitute a comprehensive classification or typology of urban models. The main aim is to facilitate the analysis and provide a broad methodological approach to compare the different models applied in practice over the time period of the meta-analysis.

The results indicate a consistent increase in the number of publications dealing with urban spatial simulation (urban models). A total of 1778 records were returned over the ten-year

period (2009 – 2019) (Refer to Appendix A.4). In 2009 the number of records totalled 97 records (5,5% of total) and 243 in 2018 (13,7% of total) (refer to Figure 8).

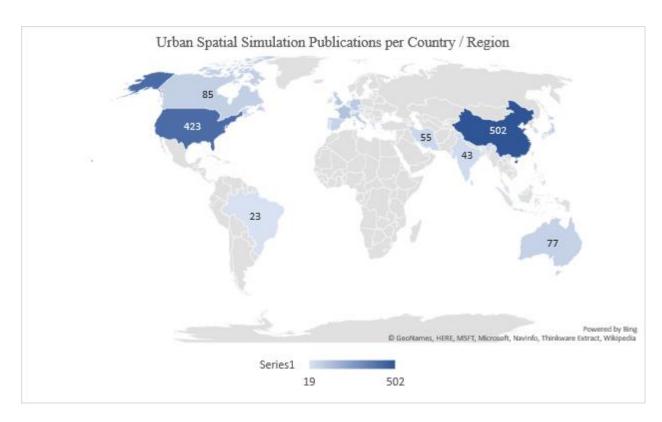
The rate of change over the time period (excluding 2019), is 66,4%. The average annual growth rate over the period of 6,95 %.



Source: Web of Knowledge database 2019 [online] [Accessed 4 October 2019].

Figure 8: Total urban simulation publications

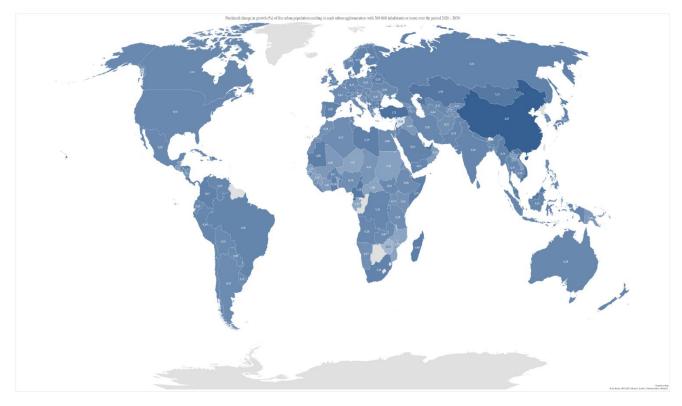
The urban spatial simulation publications over the period were predominantly published in the Web of Science categories of Environmental Sciences, Meteorology atmospheric sciences, Geography, Geosciences multidisciplinary, Environmental studies, Remote sensing, Geography physical, Computer science interdisciplinary application, Water resources, Engineering environmental, Computer science information systems, Regional urban planning and urban studies. In the regional and urban studies publications, a total number of 270 records were cited (Refer to Appendix A.5).


The publication categories are predominantly focused on the research themes of environmental sciences and geography, which includes research types of long-term monitoring, experimentation, comparative analysis and models / methodological approaches. The varying coverage of the publications also demonstrates the multi-disciplinary nature of the models and their application (Refer to Figure 10).

Source: Web of Knowledge database 2019 [online] [Accessed 4 October 2019].

Figure 9: Treemap of urban spatial simulation publications

In addition to the varying publication categories, the publications predominantly focused on applications in China (28,2%), United States of America (23,8), France (7,3%), England (6,6%), Germany (5,9), Italy (5,2%), Canada (4,8%), Australia (4,3%), Spain (4,2%), Netherlands (4,1%) and Japan (3,9%) (Refer to Figure 11 and Appendix A.6).

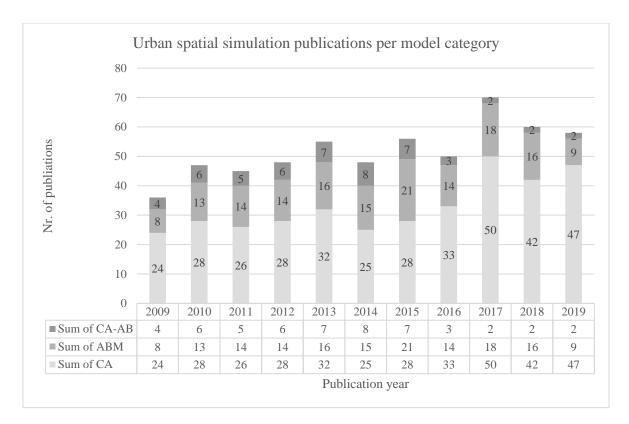


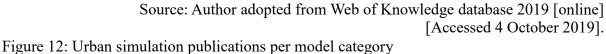
Source: Author adapted from Web of Knowledge database 2019 [online] [Accessed 4 October 2019]. Figure 10: Spatial distribution of urban simulation publications

Comparing the urban simulation publications with the urban agglomerations (300 000 or more inhabitants) that are predicted to change over the period of 2020 - 2030, a visual comparison can be distinguished between the areas with a high growth percentage and the research into urban models (refer to Figure 12).

Table B.1 in Appendix B sets out the top 30 countries with the highest aggregate national predicted change in urban agglomerations over the period of 2020 - 2030. China is predicted to have the most substantial increase in the percentage urban population over this period, with the urban population at 70,1% in 2030 (UNDESA 2019). This necessitates an understanding of the driving forces behind this growth, as well as a measure of prediction, not only at a local level but also considering the national and regional implications. This explains the dominance of applications in China with a total of 502 records over the past ten (10) years to understand and predict the growth of the urban system. Based on the published research output China is thus dominating the active research of long-term monitoring, experimentation, comparative analysis and modelling techniques.

Although South Africa is listed under the top 30 countries which are predicted to experience significant change in the next 11 years, only a single urban spatial simulation publication found was found on urban modelling practices/initiatives and the opportunities and challenges within the South African context (Wray C et al 2013; Wray C et al 2015).


Source: Author adapted from UNDESA population prospects database 2019 [online]. [Accessed 4 October 2019].

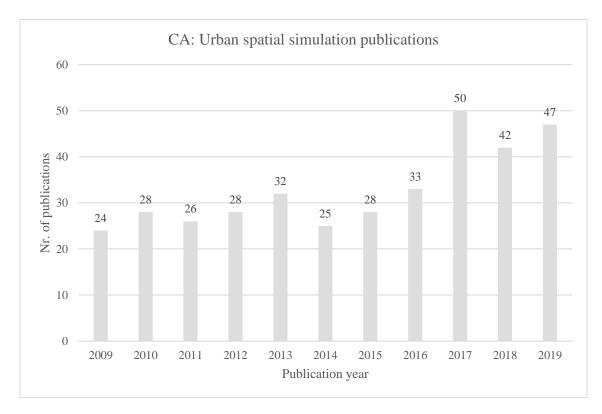

Figure 11: Spatial distribution of percentage urban population

3.2 DETAILED ANALYSIS OF URBAN SIMULATION INITIATIVES

In the review of the urban spatial simulation model publication per model category, it was found that there was a consistent increase of publications within the CA and ABM categories.

A total of 573 records were returned over the ten-year period (2009 - 2019) consisting of CA urban models (63,4%), urban ABM (27,6%) and urban CA-AB (9,1%) records (refer to Figure 13).

Most publications regarding urban simulation appeared over the five years between 2015 - 2019. This time period is, therefore considered in further detail in order to identify and analyse the key urban models that have been applied.

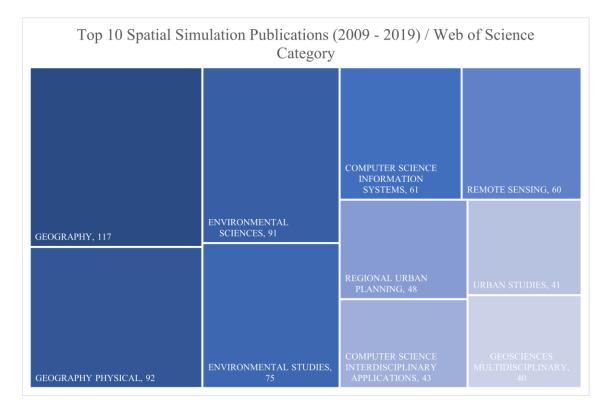

The various individual applications were considered by applying the following assessment criteria:

- Objective. The various categories of urban simulation models are classified according to four categories of objectives:
 - a. descriptive models, which analyse the factors and dynamics that provide insights into the past (What has happened?);
 - b. predictive models, which uses statistical models and forecasting techniques to understand the future (What could happen?);
 - c. prescriptive models, which aims at obtaining optimisation and simulation algorithms to advise on possible outcomes (What should we do?);

- d. conceptual models, which looks at theories, models, concepts and different methodological approaches through experimentation to test specific hypotheses.
- 2. Main purpose and issues. The model applications can be grouped into four main components of urban systems, i.e. biotic, physical, social and built.
- 3. Model components. Modelling techniques and application software are identified to evaluate if the models are integrated with other models and how they are applied within the computer environment.
- 4. Data inputs. The data inputs needed between the various categories of urban models differ according to their needs and the scale at which the components of the system are investigated, and the requirements are compared between the different categories and practical application of the models.
- 5. Calibration. Calibration aims to obtain the values of the model parameters that allow for the most accurate reproduction of the real world. This measure provides an understanding in terms of the level of fitness of the model, based on its intended purpose.
- 6. Validation. The aim of validation is the evaluation of the overall accuracy of the model with the real system being simulated. This measure provides a measure of confidence based on the accuracy of the urban model and its ability to predict the future.
- 7. Model grain. According to their objective, the various categories of urban simulation models can be classified into four categories: global, national, regional, local (cities) and micro (suburbs). The classification allows the analysis of the hierarchy of the urban models and a comparative analysis between the same levels.
- 8. Model extent identifies the specific urban system under investigation and allows a comparative analysis between the same urban systems under investigation.
- 9. Type of agent. The ABM and CA-AB models identify the different individual decisionmaking entities and their interactions within the system.
- 10. Cell states. Depending on the components and the purpose of the urban model, the cell states can vary between the different CA and CA-AB models. The cell states can be as simple as a simulation from urban to non-urban, or it might have multiple transitions to multiple land-uses.
- 11. Neighbourhood. The neighbourhood size and type significantly affect the model outcomes within the different CA and CA-AB models.
- 12. Time period. The time period specifies the period used in validating and calibrating the different categories of models, including the projection of model outcomes over time which highlights its temporal dynamics.

3.2.1 Cellular automata (CA).

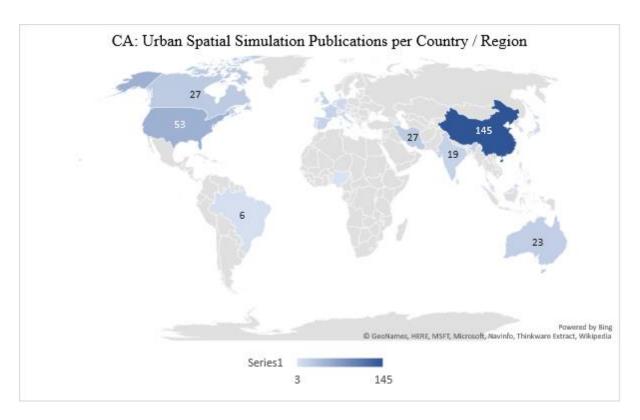
As indicated in Figure 13, the number of CA urban simulation publication showed a steady increase, especially since 2014 (refer to Appendix A.7).

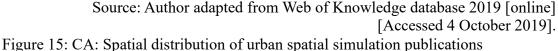


Source: Web of Knowledge database 2019 [online] [Accessed 4 October 2019].

Figure 13: CA: Urban spatial simulation publications

The CA category of urban spatial simulation publications over the period was predominantly published in the Web of Science categories of Geography, Geography physical, Environmental sciences and Environmental studies. In the regional and urban studies publications, a total number of 89 records were cited (Refer to Appendix A.8).


The publication categories are predominantly focused on the research themes of environmental sciences, computer sciences and geography, which includes research types of long-term monitoring, experimentation, comparative analysis and models / methodological approaches. The varying coverage of the publications also demonstrates the multi-disciplinary nature of the models and their application (Refer to Figure 14).



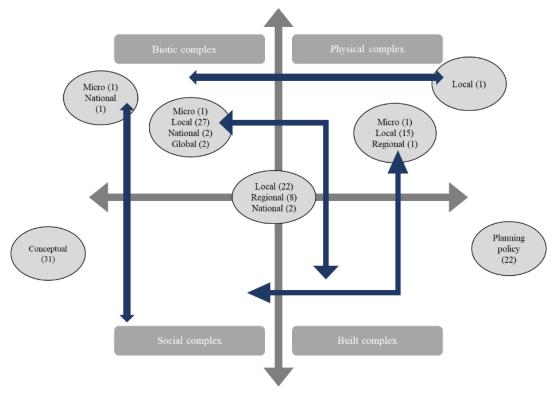
Source: Web of Knowledge database 2019 [online] [Accessed 4 October 2019].

Figure 14: CA: Treemap of urban spatial simulation publications

The majority of the publication CA urban simulation studies have applications in China (39,9%), United States of America (14,67%), Canada (7,4%), Iran (7,4%) and Australia (Refer to Figure 15 and Appendix A.9).

According to the main purpose, issues, parameters and data inputs, the urban CA models and their components/relationships can be grouped into the four components of an urban system i.e. biotic, physical, social and built. The biotic refers to the natural ecosystem and ecosystem services (organism interactions), physical states the space, scale and time structure of the system (biophysical structure), social refers to cultural resources, social-economic and institutional processes (people-people interactions), while built refers to the built structures such as roads, buildings, infrastructure etc. The visual representation of the components and their subsequent interactions are displayed in an x-y graph and illustrate the connections being simulated between the components of the urban systems.

As indicated in Figure 16, most urban CA models simulate the following two interactions namely:


 Organisms-built environment-land resources/potential across the micro (1), local (27), national (2) and global (2) scales; and – • People-organisms-built environment-land resources / potential across local (22), regional (8) and national (2) scales.

The other interactions that are simulated are characterised and ranked as follows:

- people-built environment-land resources / potential across micro (1), local (15) and regional (1) scales;
- people-organisms across micro (1) and national (1) scales; and –
- organisms-land resources/potential across a local scale.

Figure 16: CA: Components of urban simulation publications

In addition to those mentioned above, several conceptual models (31) and models trying to support and/or inform planning policy (22) is also highlighted.

Source: Author

Based on the assessment criteria, the following are noted:

- The majority of the urban CA models reviewed had a combination of descriptive and predictive objectives as part of the model design. The factors and dynamics explored in the past provide the foundation of using forecasting techniques to understand the future. In addition to the aforementioned, a large number of urban CA models started to incorporate prescriptive objectives as a way of understanding the possible constraints within the system (e.g. urban growth boundaries, zoning, environmental protection zones), as well as trying to measure and predicting the outcomes of implementing these policy interventions through scenario planning.
- Data inputs varied across the various categories of urban models according to their needs and the scale at which the components of the system were investigated. Although, all the models required satellite images in order to apply remote sensing techniques for land use/land cover classification. Basic geographic information such as road networks, administrative boundaries, topographical was also required within all the urban models.
- Calibration and validation formed part of the design and construction of the majority of the urban models and was viewed as an essential factor in terms of measuring the level of fitness of the model based on its intended purpose and its accurate reproduction of the real world and its ability to predict the future.
- The model grain of the urban models ranged from micro (30m resolution), local (10m, 30m, 100m & 1 000m resolutions), regional (30m & 100m resolutions), national (500m & 1 000m resolutions) and global (300m, 1 000m & 10km resolutions). It appears that there are no limitations as to the model grain that can be modelled across the various scales. Even though the objectives of the various categories of urban simulation models are different in terms of their applications, most of the phenomena / urban dynamics that were simulated related to urban expansion due to urbanisation and its associated impacts. It appears from the comparison that there is no standardisation in terms of the most appropriate view on urban growth and dynamics.
- The time period specifies the period used in validating and calibrating within the urban models which generally coincided with data points such as updates

in census data, household and travel surveys. The time period between these data points generally ranged between five (5) and ten (10) years. The projection time periods in many of the models did not follow a continues / yearly update but followed a time interval update of five (5), ten (10) and 15 years. The most significant time interval used in prediction was 35 years.

The detailed analysis of the selected urban CA models (excluding conceptual models) are contained in the assessment matrix below (Refer to Table 3).

Author	Model name	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model extent	Cell states	Neighbourhood	Time
			purpose/description		components	classification				grain				period
			of the model											
Quesada-	Not explicit	D; P	Simulation of the	Illegal landfills	CA + CA-	СА	Orthophotos;	Yes	Yes	Local	Las Palmas	Not explicit	5 x 5	2000 -
Ruiz et al			housing bubble's	& impact on	Markov +		Land use data;				Gran			2006;
2019			impact on illegal	the	Multiobjective		Socioeconomic				Canaria,			2006 -
			landfill	environment	land		data;				Spaim			2012;
			proliferation and	and causes of	allocation		Topographic							Projection
			the forecasting of	public health	model		data;							- 2018
			the proliferation of	risks.			Road network;							
			illegal landfill.											
Huang <i>et al</i>	Not explicit	D; P; PC	Simulation of	Ecological &	CA (ArcGIS)	CA	Land use	Not	Not	Local	Zhangjiakou,	Not explicit	3 x 3	2013 -
2019			urban expansion	environmental			survey;	explicit	explicit	(30 x	Zhangbei			2030
			based on the	issues due to			Landsat			30m)	County,			
			ecological priority	urban			imagery;				China			
			principle.	expansion.			climate							
							observations;							
							Urban-rural							
							master							
							planning map;							
							Soil fertility							
							data;							
							Administrative							
							boundaries							
Tong & Feng	PCGA-CA	D; P; PC	Simulation of the	Illegal urban	CA (UrbanCA	CA	Satellite	Yes	Yes	Local	Ningbo City,	Non-urbanized;	5 x 5	2000 -
2019			current and future	development	+ ArcGIS) +		images;				China	Urbanized		2015;
			urban patterns	due to	Genetic		Terrain							Projections
			under the spatial	ineffective	Algorithm		datasets;							2030 &
			constraints of	implementation	(GA)		Socio-							2045
			urban planning	of planning			economic data;							
			regulations.	regulations.			Facility data;							
							Urban planning							
							map;							

Table 3: Characteristics of urban CA

Author	Model name	Objective	Main purpose/description of the model	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
							Population density.							
Wang et al 2019	Not explicit	D; P	Coupling of top- down and bottom- up CA models and the simulation of urban development dynamics under three scenarios (compact, stability, sprawl).	Rapid urbanisation	CA (ArcGIS) + Artificial neural network (ANN) + Markov chain model	CA	Historical urban land use; topographical data; road network data	Yes	Yes	Local (30 x 30m)	Wuhan, China	Urban (commercial, residential, industrial, transportation, other impervious surfaces); non- urban (forest, grassland, vegetation, other unused lands); water bodies (rivers, lakes, ponds)	5 x 5 Moore	2007 - 2016; Projection – 2026
Feng & Tong et al 2019	UrbanCA	D; P; PC	Simulation of dynamic urban growth and to project future urban scenarios and assess their natural and socio- economic impacts.	Urban encroachment on agricultural and ecologically valuable land.	CA (UrbanCA + ArcGIS)	CA	Not explicit	Yes	Yes	Local	Shanghai, China	Urban; non-urban	Moore; Circular; Von-Neumann	2005 – 2015; Projection - 2025
Guan <i>et al</i> 2019	Not explicit	D; P	Simulation of spatial patterns of land use and land cover change	Significant infrastructure investment impacting on land use structure and ecological environments.	Logistic-CA- Markov; WLC-CA- Markov (ArcGIS)	CA	Land use data; remote sensing data; ecological data; topographic data; population data; economic data; hydrological	Yes	Yes	Local	Zhongxian County, Chongqing, China	6 conversion probabilities (grassland; farmland; construction land; forest land; waters; unused land)	Not explicit	1990; 2000; 2005; 2010; Projection – 2015, 2020, 202: & 2030

Author	Model name	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model extent	Cell states	Neighbourhood	Time
			purpose/description		components	classification				grain				period
			of the model											
							data; road							
							network;							
							boundaries data							
Fripathy &	Not explicit	D; P	Spatio-temporal	Rapid	CA (ArcGIS)	CA	Satellite	Yes	Yes	Local	Delhi, India	Built up land;	3 x 3	1989;
Kumar 2019	-		land use/land cover	urbanisation			imager; Census			(30 x		Vegetation cover:		1994;
			monitoring and	leading to			data;			30m)		Water body; Others		2004;
			urban growth	environmental			topographical							2009 &
			modelling to	degradation &			data; land							2014;
			predict urban	socio-			use/land cover							Projection
			growth	economic			maps; road							- 2019 &
				disparities.			networks.							2024
He et al 2019	UEMCPI	D; P	Modelling	Rapid	CA (ArcGIS;	CA	Land cover;	Yes	Yes	Local	Ezhou,	Urban land;	5 x 5	2004;
			integrated urban	urbanization &	SPSS) +		land use; socio-				China	Cultivated land;		2013;
			spatial expansion,	migration	UEMPI		economic;					Forest: Water;		Projection
			including the				population					Others		- 2022
			population				(Census data);							
			interaction to				migration;							
			simulate the				administrative							
			collaborative				boundaries,							
			development				rivers, road							
			process of an urban				networks.							
			area.											
Du <i>et al</i> 2019	Not explicit	D; P	Simulation of	Ineffective	CA + LPOA	CA	GIS data,	Yes	Yes	Local	Longquanyi	Farmland; Orchard;	Not explicit	2014;
			landscape pattern	regulation for			remote sensing				District,	Forest; Urban-rural		Projection
			optimisation	urban			images,				Chengdu	residential and		2021;
			allocation to	expansion;			socioeconomic				City,	industrial mining;		2028.
			achieve ecological	ecological			statistics,				Sichuan	Waters		
			security.	environmental			environmental				Province,			
				problems.			data.				China			
Mousivand	Not explicit	D; P	Simulating the	Unsustainable	CA	CA	Remote	Not	Not	Global	Global	Agriculture; Forest;	Not explicit	1992 –
& Arsanjani			global land cover	urban growth			sensing data	explicit	explicit	(300m)		Grassland; Wetland;		2015;
2019			changes.									Settlement; Sparse		Projection
												vagatation: Para		

vegetation; Bare

Author	Model name	Objective	Main purpose/description of the model	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
												area; Water;		2030 &
												Permanent snow		2050
												and ice.		
Feng & Tong	Not explicit	D	Simulation of the	Not explicit	CA + GA	CA	Satellite	Yes	Yes	Local	Shaoxing	Urban; nonurban;	5 x 5 (Moore)	1995 -
2019			spatial				imagery;			(30m)	City, China	excluded		2015
			heterogeneity of				boundary;							
			land use within a				transportation							
			rapidly growing				networks;							
			urban area.				demographics;							
							population;							
							socioeconomic.							
Musa et al	Not explicit	D; P; PC	Geospatial	Land	CA-Markov	CA	Satellite	Yes	Yes	Regional	Abia, Akwa-	Built-up	Not explicit	1985 –
2019			modelling of urban	degradation &			imagery;			(30m)	Ibom,	(residential,		2015;
			growth for	fragmentation,			topographical				Bayelsa,	commercial,		Projecti
			sustainable	biodiversity			maps;				Cross-River,	industrial buildings,		2030
			development (UN	loss, water			population;				Delta, Edo,	roads,		
			SDGs 11 & 15)	crisis &			economic;				Imo, Ondo	infrastructures),		
				environmental			ground truth				& Rivers	waterbody (open		
				pollution.			points.				(Niger Delta	waters, ponds,		
											region),	reservoirs, rivers,		
											Nigeria	lakes), bare surface		
												(intrusions, mining,		
												vacant land)		
Hou et al	Not explicit	D; P	Scenario-based	Rapid	CA-Markov	CA	Satellite	Yes	Yes	Local	Hangzhou,	Built-up; cropland;	8 cell rule	1990 -
2019			modelling for	urbanisation;			imagery;			(100m)	Zhejiang	bareland; forest;		2035
			urban sustainability	agricultural			transportation				Province,	grassland; water.		
			focusing on spatial-	production &			networks;				China			
			temporal changes	biodiversity			water bodies;							
			in cropland under	loss			reservation							
			rapid urbanisation.				areas; land							
							uses.							

5	5
J	J

Author	Model name	Objective	Main purpose/description of the model	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
Yang et al 2019	Not explicit	D; P	Simulation of landscape spatial layout evolution in rural-urban fringe areas to provide insights into regional land use planning, urban development and ecological environment management.	Rapid urbanization; agricultural production & biodiversity loss	CA + Markov + MLP-ANN	CA	Satellite imagery; topographical maps; socioeconomic; transportation networks; land uses; zoning regulations.	Yes	Yes	Local (30m)	Ganjingzi District, China	Farmland, garden land; forest land; construction land; water; other lands.	Not explicit	2000 – 2015; Projection - 2020
Rimal et al 2019	Not explicit	D; P	Simulating the spatiotemporal dynamics of urbanisation and predicting future growth for sustainable urban planning and policymaking.	Rapid peri- urban expansion; decline in cultivated land; food security.	CA-Markov	CA	Satellite imagery; topographical maps; population; transportation networks; land uses; administrative boundaries.	Yes	Yes	Local (30m)	Biratnagar, Itahari & Dharan, Tarai, Nepal	Urban, cultivated land, vegetation, sand, water.	Not explicit	1996 – 2006; 2006 – 2016; Projections – 2026; 2036
Zhang et al 2019	Not explicit	D	Simulation of intra- urban land-use changes to identify the contribution of different driving factors in urban growth and to aid in the formulation of planning strategies.	Urban sprawl	CA + Random forest (RF)	CA	Points of interest; land use, administrative data (boundaries); transportation data; population data	Yes	Yes	Local (10m)	Huicheng, China	Non-urban; water body; Urban (commercial, industrial, residential, administration & public services)	7 x 7	2000 – 2015.

Author	Model name	Objective	Main purpose/description of the model	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
Wang et al	Not explicit	D	Simulation of	Land	CA +	СА	Satellite	Yes	Yes	Micro	Shendong,	Urban; non-urban;	3 x 3; 5 x 5; 7	2005 -
2019			spatial and temporal processes	degradation & fragmentation,	temporal- dimension-		imagery; Land cover; Land			(30m)	China	other	x 7 & 9 x 9 (Moore)	2015
			in land cover	biodiversity	extension		use; Basic						(1010010)	
			changes.	loss, water	(TDE)		geographic							
			6	crisis &			information							
				environmental			data.							
				pollution.										
Yu et al 2019	Not explicit	D; P	Modelling of the	Ecosystem	CA-Markov	CA	Land use;	Yes	Yes	National	China	Cultivated land;	Not explicit	1995 –
			spatial distribution	degradation;			economic data;			(1 000m)		forest land;		2015;
			of green GDP	biodiversity			agricultural					grassland;		Projection
			(ecosystem service	loss, water			production					waterbody;		2020 -
			value & GDP) and	crisis &			data;					construction land;		2050
			the impact of land-	environmental			administrative					unused land		
		S	use change and	pollution.			boundaries							
			socio-economic											
			development on											
			this value.											
Nguyen et al	Not explicit	D; P	Simulation of land	Rapid	CA-Markov	CA	Satellite	Yes	Yes	Local	Hanoi City,	Built up; non built-	5 x 5	1990 -
2019			use/land cover	urbanisation,			imagery; Land				Vietnam	up; water bodies.		2015;
			changes in Hanoi	inefficient			cover; Land							Projection
			City, to improve	urban spatial			use; Basic							- 2030
			urban planning	planning;			geographic							
			efficiency, local	socioeconomic			information							
			governance,	growth			data; ground							
			socioeconomic	pressure.			truth points.							
			development and											
			environmental											
* ** ^	X	D - 5	protection.				G . 17			. .		** 1	N 1 1 1	2000
Jamali &	Not explicit	D; P	Simulation and	Rapid	CA + ANN	CA	Satellite	Yes	Yes	Local	Tehran, Iran	Urban; green space;	Not explicit	2000 -
Kalkhajeh			prediction of urban	urbanization;			imagery; Land					agriculture;		2016
2019			growth through	land			cover; Land					mountain; open		
							use; Basic					land; clay plain.		

Author	Model name	Objective	Main purpose/description of the model	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
			land use/land cover changes.	fragmentation; deforestation.			geographic information data.							
Xia et al 2019	Not explicit	D	Simulating urban landscape dynamics in metropolitan areas based on intercity urban flows across a regional scale.	Rapid urbanization	Logistic-CA	CA	Geospatial big data; population data; socioeconomic data; land use; land cover; ecological; basic geographic data.	Yes	Yes	Regional	Wuhan, Changsha, Nanchang, China	Urban; non-urban; water	3 x 3 (Moore)	2005 - 2015
Li et al 2019	GIA-CCA	D; P	Spatial-temporal simulation of green infrastructure preservation through the establishment of an urban growth boundary (UGB).	Rapid urbanisation; land fragmentation; degradation of ecosystem services.	CA + green infrastructure assessment (GIA)	CA	Satellite imagery; Land cover; Land use; Basic geographic information data; urban construction constraint; ecological constraint.	Yes	Yes	Local	Hangzhou, China	Farmland; forestry; construction land; water & unused land.	3 x 3 (Moore)	2000; 2005; 2010; 2015; Projection – 2020.
Gounaridis et al 2019	Not explicit	D; P	Simulation of potential future land use/land cover dynamics under different economic performance and planning option scenarios.	Unregulated urban growth; increasing housing demand; limited land use planning controls.	CA + RF	CA	Satellite imagery; Land cover; Land use; Basic geographic information data; social infrastructure;	Yes	Yes	Regional (30m)	Athens, Attica region, Greece	Continuous urban fabric; discontinuous dense urban fabric; discontinuous medium density; discontinuous low density; industrial,	Not explicit	1991; 1999; 2003; 2010; 2016; Projection - 2040.

Author	Model name	Objective	Main purpose/description of the model	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent		Neighbourhood	Time period
							administrative					commercial &		
							boundaries;					transport units;		
							land use					arable land &		
							management					permanent crops;		
							policies.					forests, scrubs &		
												other natural areas;		
												other.		
Yin et al	Not explicit	D; P	Simulation of the	Rapid	CA-SLEUTH	CA	Satellite	Yes	Yes	Local	Jinan, China	No zoning; zoning	Not explicit	1996 -
2018			potential impacts	urbanisation;			imagery;					based on land-use;		2020
			of zoning as a	land			topographic					zoning based on		
			growth	fragmentation;			maps; urban					urbanisation		
			management policy	degradation of			planning					suitability; zoning		
			on urban growth.	ecosystem			documents;					based on		
				services &			basic					administrative		
				quality of life.			geographic					division; zoning		
							information.					based on		
												development		
												planning		
												subdivision.		
Xu et al 2018	SLUCS	D; P	Land-use change	Rapid	CA +	CA	Satellite	Yes	Yes	Local	Guizhou,	Paddy field; dry	Not explicit	1981 -
			simulation model	urbanisation;	elevation-		imagery;			(1 000m)	China	land; forest;		2000;
			reflecting the scale	land	based		socioeconomic					grassland; water;		Projecti
			differences of land-	fragmentation;	stratification		data;					built-up land; bare		- 2015 -
			use change and	degradation of	strategy.		population					land.		2030
			includes the zoning	ecosystem			data; economic							
			constraints that	services &			data; land use;							
			impact on urban	quality of life.			zoning							
			growth.				policies; basic							
							geographic							
							information.							
Feng et al	Not explicit	D	Simulation of the	Not explicit	CA – particle		Satellite	Yes	Yes	Local	Shanghai,	Urban; non-urban;	5 x 5	1995 -
2019	-		impact of changing	-	swarm		imagery;			(120m)	China	water		2015
			the observation				socioeconomic			. ,				

Author	Model name	Objective	Main purpose/description	Issues	Key mod components		Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
			of the model											
			scale (regional,		optimisation		data;							
			meso & city) on		based (PSO)		population							
			the model of urban				data; economic							
			growth.				data; land use;							
							basic							
							geographic							
							information.							
Zhang et al	Not explicit	D; P	Modelling of the	Increase air	CA-Markov	CA	Satellite	Yes	Yes	Local	Wuhan,	Built-up; unused;	5 x 5	2010;
2018			spatial	pollutants are			imagery; air			(1 000m)	China	forest; water body;		Projection
			relationships	leading to			quality data;					agricultural;		2030
			between the	decreased air			precipitation;					grassland.		
			aerosol optical	quality in			land use;							
			depth (aerosol	urban areas.			economic;							
			loading/air quality)				population;							
			and urban land-use				basic							
			change.				geographic							
							information.							
Feng & Qi	Not explicit	D	Urban growth	Rapid	CA +	CA	Satellite	Yes	Yes	National	650 cities,	Urban; non-urban	5 x 5	2000;
2018			simulation model	urbanisation &	analytical		imagery;				China			Projections
			considering the	population	hierarchical		Nighttime							- 2015;
			land use/land cover	growth;	process		imagery;							2020;
			changes over the	informal	(AHP)		socioeconomic							2025;
			entire nation.	settlement;			data; land use;							2030
				insufficient			economic;							
				urban service;			population;							
				degradation of			basic							
				agricultural			geographic							
				and natural			information.							
				land.										
Mei et al		D; P	Simulation of land		CA + CLUE	- CA	Satellite	Yes	Yes	Local	Zengcheng	Arable land;	5 x 5	2001;
2018			use and its drivers,		S		imagery;			(150m)	District,	woodland; traffic		2005,
			including the				socioeconomic				Guangzhou,	land;		2009;
			prediction of land-				data; land use;				China	residential/industrial		

Author	Model name	Objective	Main	Issues	Key model		Data inputs	Calibration	Validation	Model	Model extent	Cell states	Neighbourhood	Time
			purpose/description		components	classification				grain				period
			of the model											
			use change				basic					land; water area;		Projection
			probabilities under				geographic					unused land.		- 2020
			different scenarios				information.							
			(natural growth,											
			ecological											
			protection,											
			economic											
			development).											
Xu et al 2018	Not explicit	D; P	Simulation of the	Rapid urban	CA-RF	CA	Satellite	Yes	Yes	Local	Changzhou	Arable land;	Not explicit	2007 -
			impact of future	expansion &			imagery;				City, China	woodland;		2014;
			urban development	sprawl; loss of			population					grassland;		Projection
			on the surrounding	high ecological			data; land use;					waterbody; artificial		2020
			environment using	value			basic					surface; unutilized		
			land ecological	resources.			geographic					land.		
			suitability.				information.							
Yu et al 2018	Not explicit	D; P	Multi-scale (macro,	Rapid	CA	CA	Satellite	Yes	Yes	Local	Wuhan,	Arable land;	3 x 3 (Moore)	1995;
			meso & micro)	urbanisation.			imagery;			(150m)	China	grassland; forest		2005;
			simulation model				population					land; urban land;		2015;
			to simulate the				data; economic					water & unused		Projection
			agglomeration				data; land use;					land.		- 2020.
			development				basic							
			process of the area and includes the				geographic information.							
			prediction of the				Information.							
			demand for new											
			urban land at an											
			aggregated urban											
			scale.											
Zhang et al	Not explicit	D: P		CA	CA-CLUE-S	CA	Satellite	Yes	Yes	Local	Tekes	Forest; grassland;	Not explicit	1998;
2018		-,-	use and land cover				imagery;			(30m)	County,	cropland; urban;	·P	2006;
			change				socioeconomic;				Xinjiang,	barren land; water.		2011;
			<u> </u>				population				China			Projection
							data; economic							- 2020

Author	Model name	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model extent	Cell states	Neighbourhood	Time
			purpose/description		components	classification				grain				period
			of the model											
							data; land use;							
							natural							
							resource;							
							hydrological							
							data; basic							
							geographic							
							information.							
Jia et al 2018	Not explicit	D; P	Simulation of	Negative	CA – CLUE-S	CA	Satellite	Yes	Yes	Local	Beijing,	Croplands; forest	Not explicit	2010 -
			spatial and	ecological			imagery;			(90m)	China	lands; grasslands;		2020
			temporal changes	impacts during			socioeconomic;					water bodies;		
			in land use, taking	urban			population					construction lands.		
			into consideration	expansion.			data; basic							
			the ecological				geographic							
			redline areas.				information.							
Feng & Tong	DE-CA	D; P	Simulation model	Optimisation	DE-CA	CA	Satellite	Yes	Yes	Local	Kunming	Urban; non-urban;	3 x 3; 5 x 5; 7	2006;
2018			that integrates	of the CA			imagery; land				City, China	other	x 7.	2016 -
			differential	model to			use;							2026
			evolution (DE) into	represent land-			socioeconomic;							
			CA to generate the	use dynamics			population							
			optimal sets of CA	adequately.			data; basic							
			parameters for				geographic							
			prediction of future				information;							
			scenarios to				administrative							
			address urban				boundaries.							
			growth,											
			environmental											
			protection & urban											
			planning.											
Fan et al	UECDM	D; P	A simulation	Rapid	CA + urban-	CA	Satellite	Yes	Yes	Regional	Fuzhou City,	Original	Not explicit	1990 -
2018			model that links	urbanization	ecological		imagery; land				Fuqing City,	construction land;		2015;
			urban planning and		coordinated		use;				Changle	new construction		Projection
			the dynamics of		development		socioeconomic;				City, Pingtan	land; forest land;		2020
			regional ecosystem		model		population				County,			

Author	Model name	Objective	Main	Issues	Key	model	Model	Data inputs	Calibration	Validation	Model	Model extent	Cell states	Neighbourhood	Time
			purpose/description		compor	nents	classification				grain				period
			of the model												
			services value					data; basic				Luoyuan	arable land; a water		
			(ESV) to model					geographic				County,	area		
			urban expansion					information;				Minhou			
			impact on ESV.					administrative				County,			
								boundaries.				China			
Liu et al	Not explicit	D; P	National	Ecological &	Gradier	nt CA	CA	Satellite	Yes	Yes	National	China	Built-up; no built-	Not explicit	2000;
2018			simulation model	environmental				imagery;			(500m)		up		2005;
			considering the	deterioration				Nighttime							2010;
			gradient of	due to urban				imagery;							Projection
			development	expansion.				socioeconomic							- 2050
			differences among					data; land use;							
			cells and to detect					economic;							
			past and future					population;							
			urbanisation states					vegetation							
			and temporal					index; basic							
			evolution trends,					geographic							
			including national					information.							
			planning policy												
			implementation.												
Liang et al	Not explicit	D; P	Urban simulation	Rapid	CA – F		CA	Satellite	Yes	Yes	-	Guangzhou,	Non-urban; urban;	3 x 3 (Moore)	2000 -
2018			model focused on	urbanisation	land-us			imagery;			(100m)	Shenzhen,	water area.		2013;
			future land use		simulat			socioeconomic				Foshan,			Projection
			simulation and the		(FLUS))		data; land use;				Dongguan			2052
			integration of					economic;				(Pearl River			
			different planning					population;				delta), China			
			drivers (traffic					master							
			planning,					planning;							
			development					ecological data;							
			zones) into the					basic							
			model.					geographic							
F., (1	NT- 1 1	D. D		D		WD		information.	V	V	T . 1	01 C''	TI de sur se de la companya de la co	5 -	2000
Feng et al	Not explicit	D; P	Simulation of	Rapid land-use	CA - G	WK	CA	Satellite	Yes	Yes	Local		Urban; non-urban;	5 x 5	2000 -
2018			dynamic	change				imagery;				China	excluded areas.		2015

Author	Model name	Objective	Main	Issues	Key	model	Model	Data inputs	Calibration	Validation	Model	Model extent	Cell states	Neighbourhood	Time
			purpose/description		compon	nents	classification				grain				period
			of the model												
			relationships					socioeconomic							
			between land-use					data; land use;							
			change and its					economic;							
			driving forces.					population;							
								ecological &							
								agricultural							
								protection							
								zones; basic							
								geographic							
								information.							
Kuo & Tsou	Not explicit	D; P	Simulation of	Ecological &	CA -		CA	Satellite	Yes	Yes	Local	Tainan,	Urban; agriculture;	Not explicit	1993 –
2018			urban expansion	environmental	SLEUT	Ή		imagery; land				Taiwan	water; forest; other		2008;
			and its impact on	deterioration				use; surface							2008 -
			habitat diversity.	due to urban				temperature;							2030
				expansion.				surface runoff;							
								habitat							
								diversity; basic							
								geographic							
								information.							
Zheng et al	Not explicit	D	Modelling of a new		CA		CA	Satellite	Yes	Yes	Regional		Suitable region;	Not explicit	2002;
2017			urban growth	urban				imagery;			(30m)	China	Basic suitable		2009;
			boundary (UGB)	expansion.				socioeconomic					region; Unsuitable		2015
			delimitation					data; land use;					region.		
			method, combined					economic;							
			with land					population;							
			suitability					ecological							
			evaluation and CA					safety data;							
			to use in urban					planning maps;							
			management.					basic							
								geographic							
71 1	N T / 11			D 11				information	X 7		. .		N7 1 1		2000
Zhou et al	Not explicit	D; P	Simulation of land-	Rapid	CA – he		CA	Satellite	Yes	Yes	Local		Non-urban; urban	7 x 7 (Moore)	2000 -
2017			use change and	urbanisation	bat algo	oritinm		imagery; land				China			2015;

64

Author	Model name	Objective	Main purpose/description	Issues	Key compo	model nents	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Ce
			of the model										
			urban expansion to		(BA) +	- deep		use; zoning					
			assist policymakers		belief	network		suitability;					
			in strategising and		(DBN))		basic					
			facilitating					geographic					
			sustainable					information					
			urbanisation										
			development.										
Li et al 2017	Not explicit	D; P	Global land use	Rapid urban	CA - F	LUS	CA	Satellite	Yes	Yes	Global	Global	Fo
			and land cover	expansion,				imagery; land			(1km;		far
			change model,	altering				use; soil data;			10km)		ba
			including the	processes and				hydrological					
			simulation of the	functions of				data; basic					
			relationship	natural				geographic					
			between LUCC	ecosystems.				information					
			and human-										
			environment										
			interactions at local										
			and global scales.										
Pérez-Molina	Not explicit	D; P	Simulation of	Increased	CA +		CA	Satellite	Yes	Yes	Local	Kampala,	No
et al 2017			urban growth and	flooding due to	openL	ISEM		imagery; land				Uganda	
			the resultant	urban	(integr	ated		use; soil data;					
			intensification of	expansion.	flood			hydrological					
			local flooding		modeli	ng		data; basic					
			problems.		tool)			geographic					
								information					
Feng & Tong	Not explicit	D	Simulation of	Rapid	CA +		CA	Satellite	Yes	Yes	Local	Shanghai,	Ur
2017			dynamic urban	urbanisation	genera			imagery;				China	wa
			growth and		additiv			administrative					
			prediction thereof		model	(GAM)		data; protected					
			based on future					areas; land use;					
			scenarios under					basic					
			various spatial					geographic					
								information					

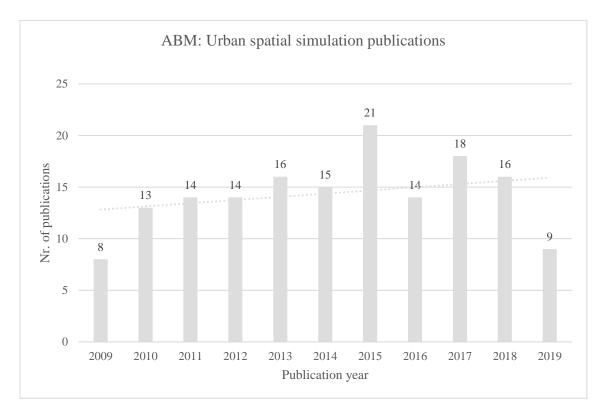
nt	Cell states	Neighbourhood	Time
			period
			Projection
			2024
	Forest; grassland;	Not explicit	2010 -
	farmland; urban;	Not explicit	2100
	barren.		2100
	barren.		
	Not explicit	3 x 3	2004 -
			2010;
			Projection
			2020
	Urban; non-urban;	7 x 7	2000 -

water

2015

Author	Model name	Objective	purpose/description of the model constraints and	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
Long & Wu 2017	Not explicit	D	conditions. Development of a mega-vector-block CA to simulate urban expansion at the block level on a national scale.	Not explicit	CA + mage- vector-blocks (MVB)	CA	Satellite imagery; administrative data; land uses; points of interest; basic geographic information	Yes	Yes	National (90m)	654 cities, China	Expanded (no development); Non- expanded (rural to urban development)	Not explicit	2012 - 2017
Shafizadeh- Moghadam et al 2017	Not explicit	D; P	Land cover change modelling and the inter-relations among the driving forces influencing urban growth	Rapid urban growth	CA + ANN	CA	Satellite imagery; OpenStreetMap data; basic geographic information	Yes	Yes	Local (30m)	Mumbai, India	Urban extent; urban growth; water bodies; wetlands; forest & green spaces; cropland & open land.	7 x 7	2001 – 2010; Projection - 2020
Rahman et al 2017	Not explicit	D; P	processes. Simulation of land use and land cover changes and the impact on land surface temperature.	Increase of urban heat islands due to rapid urban developments	CA-Markov	CA	Satellite imagery; administrative data; land uses; basic geographic information; ground truth points.	Yes	Yes	Local (30m)	Dammam, Saudi Arabia	Built-up; bare soil' vegetation; water body.	Not explicit	1990; 2002; 2014; Projection 2026
Zare et al 2017	Not explicit	D; P	Simulation of current and future land-use changes and the impact on soil characteristics based on land use	Vegetation cover reduction	CA-Markov	CA	Satellite imagery; administrative data; land uses; basic geographic information;	Yes	Yes	Regional	Shirgah, Zirab, Darzikola, Kaleh, Rig Cheshmeh, Sangdeh,	Forest; rangeland; settlement; agriculture	Not explicit	1961 – 1990; 1991 – 2000; 2011-2030

Author	Model name	Objective	Main purpose/description of the model	Issues	Key model components	Model classification	Data inputs	Calibration	Validation	Model grain	Model extent	Cell states	Neighbourhood	Time period
			and climate scenarios.				soil data; hydrological data; population.				Talar Cities, Iran			
She et al 2017	CA-MAS- SEF	D; P	Monitor land-use change and cover change in coastal areas, assess coastal wetland change & predict land use requirements	Reclamation of land to address land shortages Environmental degradation, e.g. soil and water pollution, nutrient over- enrichment & reduction in biodiversity; Landscape fragmentation	CA + MAS + Digital Shoreline analysis system (DSAS)	CA	Satellite images; land use data; river data; basic geographic information.	Yes	Yes	Local (30m)	Dongtai County, China	Landowners Entrepreneurs	Not explicit	1985 – 2014 (6- year intervals); Projections in 2020 & 2030
Kazemzadeh- Zow et al 2017	Not explicit	D; P	Spatial zoning approach simulating the long-term urban expansion and distinguishing between local-scale urban dynamics and their different socioeconomic characteristics.	Not explicit	CA-Markov + multi-layer perceptron (MLP) neural network.	CA	Satellite imagery; administrative data; land uses; basic geographic information.	Yes	Yes	Local (30m)	Mashhad, Iran	Urban; vegetation; urban green space; barren land; mountainous & rocky land; water surfaces; sedimentary surfaces.	Not explicit	2013 - 2025
He et al 2017	BPANN- CBRSortCA	D; P	Simulation of future urban building heights (vertical) and their	Rapid urbanisation	BPANN- CBRSortCA	СА	Satellite imagery; socioeconomic data; land use;	Yes	Yes	Local	Wuhan, China	Low building; multi-story building; middle-	Not explicit	2005; 2015 - 2025

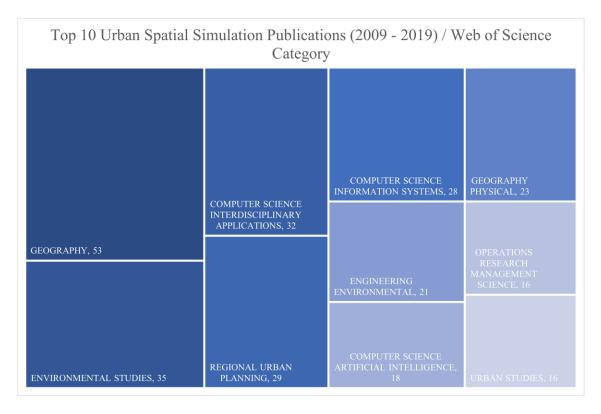

Author	Model name	Objective	Main purpose/description of the model	Issues	Key mode components	el Model classification	Data inputs	Calibration	Validation	Model grain	Model extent
			spatial distribution (horizontal).				economic; population; planning maps; basic geographic				
Feng & Liu 2016	Not explicit	D; P	Simulation of future scenarios for urban expansion, including the impact on ecological and environmental conditions as	Rapid urbanisation; increased risk of ecological damage and storm surge related to global climate	CA + self- adaptive genetic algorithm (SAGA)	CA	information Satellite imagery; administrative data; protected areas; land use; basic geographic information	Yes	Yes	Local	Lingang, Shanghai, China
Jiang et al 2016	Not explicit	D; P	spatial constraints. Simulation of the future urban change of the urban agglomeration and its impacts on ecological services.	change and sea-level rise. Degradation of ecological landscapes and ecosystem structures due to urbanisation.	CA + CLUE	s CA	Satellite imagery; administrative data; protected areas; land use; socioeconomic; basic geographic	Yes	Yes	Regional	Changsha- Zhuzhou- Xiangtan, China
Osman et al 2016	Not explicit	D; P	Simulation of current and future urban change and their effects on arable lands, including the application of	Rapid urban growth	CA + SLEUTH	CA	information Satellite imagery; administrative data; protected areas; land use; socioeconomic; basic	Yes	Yes	Local	Cairo, Egypt

Cell states Neighbourhood Time period high building; high building; water. 2005; Not explicit Urban; non-urban; 2015; water Projection - 2030 Built-up ecosystem; Not explicit 2000; green land 2005; 2009; ecosystem; Projections cultivated - 2014; ecosystem; wetland 2019; ecosystem; other. 2024 Urban; water; Not explicit 1984; 2000; agricultural land; urban sprawl; 2013; Projections hillshade relief. 2015 -2035

Author	Model name	Objective	Main	Issues	Key	model	Model	Data inputs	Calibration	Validation	Model	Model extent	Cell states	Neighbourhood	Time
			purpose/description		compoi	nents	classification				grain				period
			of the model												
			different urban					geographic							
			policy scenarios.					information							
Liu et al	SMDUGP	D; P	Simulation of	Rapid	CA +		CA	Satellite	Yes	Yes	Local	Huangpi,	Outlying; adjacent;	3 x 3	2004 -
2016			urban land	urbanisation	simulat	tion of		imagery;				Wuhan,	urban land; non-		2024
			expansion.		differer	nt		administrative				China	urban land.		
					urban g	growth		data; land use;							
					pattern			basic							
					(SMDU	JGP)		geographic							
								information							

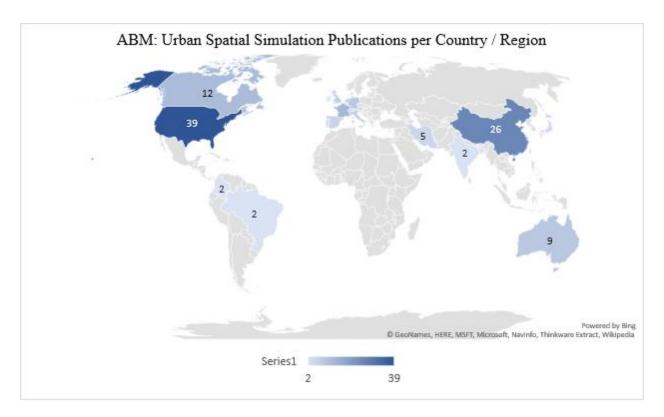
3.2.2 Agent-based modelling (ABM).

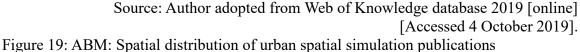
The review of ABM urban spatial simulation models revealed a consistent publication stream since 2010 (refer to Figure. 14 and Appendix A.10).



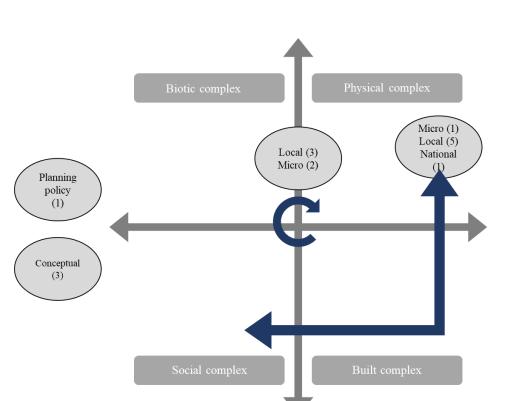
Source: Web of Knowledge database 2019 [online] [Accessed 4 October 2019].

Figure 17: ABM: Urban spatial simulation publications


The ABM category of urban spatial simulation publications over the period was predominantly published in the Web of Science categories of Geography, Environmental Studies, Computer science interdisciplinary application and Regional urban planning. In the regional and urban planning and urban studies categories, a total number of 45 publications were cited over the 2009 - 2019 time period (Refer to Appendix A.11).


The publication categories are predominantly focused on the research themes of environmental sciences, computer sciences and geography, which includes research types of long-term monitoring, experimentation, comparative analysis and models / methodological approaches. The varying coverage of the publications also demonstrates the multi-disciplinary nature of the models and their application (Refer to Figure 18).

Source: Web of Knowledge database 2019 [online] [Accessed 4 October 2019]. Figure 18: ABM: Treemap of urban spatial simulation publications


Publications dealing with ABM urban spatial simulation have their applications in the United States of America (24,7%), China (16,5%), France (8,2%), Canada (7,6%), and the Netherlands (7%) (Refer to Figure 19 and Appendix A.12).

According to the primary purpose, issues, parameters and data inputs, the urban ABM models and their components/relationships can be grouped into the four components of an urban system i.e. biotic, physical, social and built. In addition to the categories mentioned above, several conceptual models (3) and models trying to support and/or inform planning policy (1) is highlighted.

Most urban ABM models simulate the interactions between people-built environment-land resources/potential across the micro (1), local (5) and national (1) scales. A total of three local and two micro-level urban ABM models simulates the interactions between people-organisms-built environment-land resources/potential.

Source: Author

Figure 20: ABM: Components of urban simulation publications

Based on the assessment criteria, the following are noted:

- The majority of the urban ABM models reviewed had a combination of descriptive and predictive objectives as part of the model design. The factors and dynamics explored in the past provide the foundation of using forecasting techniques to understand the future. In addition to the aforementioned, several urban ABM models started to incorporate prescriptive objectives as a way of understanding the possible constraints within the system (e.g. political decision making, priorities, governance criteria and budget), as well as trying to measure and predicting the outcomes of implementing these decision-making models.
- Data inputs varied across the various categories of urban models according to their needs and the scale at which the components of the system were investigated. Although, all the models required demographic, socio-economic and basic

geographic information such as road networks, administrative boundaries, land uses and topography.

- Calibration and validation formed part of the design and construction of the majority of the urban models and was viewed as an important factor in terms of measuring the level of fitness of the model based on its intended purpose and its accurate reproduction of the real world and its ability to predict the future.
- Most of the urban ABM models did not explicitly mention a time period. The time periods noted ranged between days, weeks, a year or time periods ranging between five (5) and ten (10) years. The models that incorporated predictive objectives, set projection time interval update of five (5), ten (10) and 15 years. The biggest time interval used in prediction was 35 years.

The detailed analysis of the selected urban ABM models (excluding conceptual models) is contained in the assessment matrix below.

Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
Wu et al	Not	D; P; PC	Urban space	Traffic	MAS (Repast S;	ABM + origin-	Big data – mobile	Not explicit	Yes	Micro	Baishazhou	Mobile	Not
2019	explicit		optimisation through	congestion	RepastCity);	destination matrix	phone data;				area,	agent –	explicit
			understanding		Geospatial		Spatial data – aerial				Wuhan,	resident	
			commuting		simulation		photographs; urban				China	Static agent	
			behaviours in a local		(ArcGIS)		road network					– urban	
			urban residential									roads	
			area and simulation										
			of behaviours of										
			residents through										
			ABM and inducing										
			backwards the										
			causes of congestion.										
Baeza et al	Not	D; P	Simulation of	Influence by	ABM;	ABM + multi-	Not explicit	Yes	Not explicit	Local	Mexico	Local agent	Not
2019	explicit		complex socio-	agents (social	Geospatial	criteria decision					City,	(resident);	explicit
			political decision	pressure) on	simulation	analysis					Mexico	Institutional	
			models (socio-	socio-political	(ArcGIS)							agent (water	
			political / social-	infrastructure								body);	
			institutional module)	investment									
			to analyse urban	decisions and									
			vulnerability under	the patterns of									
			different scenarios	urban									
			(governance –	vulnerability &									
			criteria, priorities,	climate-related									
			actions & budget) of	hazards									
			climate change and	(flooding, water									
			to explore the	scarcity).									
			hydrological										
			vulnerability/risk of										
			the case study area.										
Wahyudi et	Not	D; P	Simulation of private	Lack of	ABM	ABM +	Economic data;	Yes	Yes	Local	Jakarta,	Large,	1994 -
al 2019	explicit		land developers' role	knowledge in	(NetLogo);	microeconomic	Satellite images;			300m	Indonesia	medium and	2012
			in stages of the land	how the spatial	Geospatial	theory							

l	Jakarta,	Large,	1994 -
l	Indonesia	medium and	2012

Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
			development process	decision of	simulation		Spatial data (land					small	
			(supply-side) and	individual	(ArcGIS)		use, roads,					developer	
			how their spatial	developers			economic value)						
			decision behaviours	collectively									
			affect the spatial	influences urban									
			form of the urban	growth.									
			footprint and urban										
			land market.										
lackl &	Not	D	Modelling and	The rapid	ABM	ABM +	Socio-demographic	Yes	Yes	Local	Zurich,	Synthetic	Week
ubernet	explicit		quantifying human	geographical	(MATSim)	Compartmental	data; health data;				Switzerland	individual	50/2016-
019			mobility for studying	spread of		model –	road network					(1:100)	Week
			the large-scale	emergent		Susceptible –							8/2017
			transmission of	infectious		Infected –							
			infectious diseases	diseases through		Recovered (SIR)							
			(seasonal influenza)	a complex web									
			and improving	of mobility									
			epidemic control.										
Iorelle <i>et</i>	SiReMo	D; P	Simulating the close-	Lack of access	ABM	ABM + origin-	Land use data; road	Yes	Yes	Local	Will,	Synthetic	Not
<i>l</i> 2019			to-home recreation	to recreation	(NetLogo);	destination matrix	networks			70m x	Switzerland	individual	explicit
			activities of multiple	areas & poorly	Geospatial					70m cell		(200 agents)	
			individuals by foot,	located and	simulation								
			in order to assess the	quality	(QGIS)								
			movement flows &	recreation areas									
			gaps along with the										
			mobility network										
u <i>et al</i>	Not	D; P	Simulation of	Traffic	ABM (GAMA);	ABM + origin-	Spatial data (road	Yes	Yes	Local	Ann Arbor,	Commuter;	Not
)18	explicit		commuters' travel	congestion;	Geospatial	destination matrix	network; land use)				Michigan	aTaxi agents	explicit
			patterns by	Air pollution	simulation		Commute data;						
			autonomous taxis on		(GIS)		Population data						
			road networks,										
			including the travel										
			costs and										
			environmental										

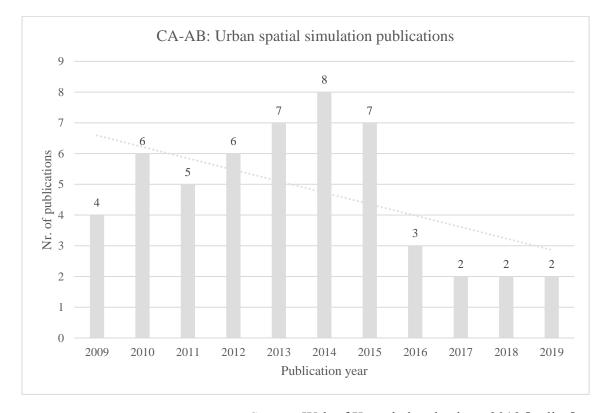
Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
			implications of										
			substitution of										
			personal vehicle										
			travel with aTaxi										
			travel.										
Jin et al	Not	D; PC	Modelling of	High burden of	ABM	ABM +	Administrative	Yes	Not explicit	Local	Manhattan,	Synthetic	Not
2018	explicit		socioeconomic	access to	(AnyLogic);	transportation	data;				New York,	agent (500	explicit
			means and social	healthcare by	Geospatial	model	Population data;				USA	agents)	
			support of older	older adults;	simulation		Spatial data						
			adults and their	Inequities in			(facilities; road						
			transportation mode	healthcare for			network);						
			of choices in	poor & disabled			Commute data						
			accessing oral	populations.									
			healthcare screening										
			events/services.										
Alghais &	Not	D; P; PC	Modelling of	Rapid	ABM (ArcGIS	ABM	Satellite images;	Yes	Yes	Local	Kuwait	Citizens;	1995 –
Pullar 2018	explicit		disaggregate future	urbanisation;	Agent Analyst		Administrative data				City,	non-citizens;	2015;
			changes in land use	Housing	extension);		(housing				Kuwait	Decision-	Projectior
			patterns given	shortages;	Geospatial		applicants; master					makers	2050
			forecast population	Traffic	simulation		plans);						
			estimates and	congestion	(ArcGIS)		Population data;						
			planning policies.				Spatial data (road						
							network;						
							boundaries; land						
							use);						
							Commute &						
							accident data						
Yu et al	Not	D; P; PC	Modelling spatial	Disaster events;	MAS;	ABM	Aerial images;	Yes	Yes	Micro	Jing'an	Government;	Not
2018	explicit		allocation of	time-consuming	Geospatial		Spatial data				District,	Shelter;	explicit
			emergency shelters	evacuation	simulation		(population; road				Shanghai,	Resident	
			during unexpected	processes; Road	(ArcGIS)		network;				China		
			disaster events and	congestion.			emergency shelter;						
			optimising shelter to				land use)						

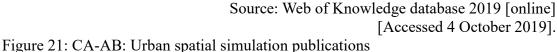
Jing'an	Government;	Not
District,	Shelter;	explicit
Shanghai,	Resident	
China		

Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
			improve evacuation										
			of residents.										
Cantergiani	AMEBA	D;	Simulation of the	Urban growth	ABM	ABM	Satellite imagery;	Yes	Yes	Micro	"Corredor	Urban	Not
& Delgado			urban development		(NetLogo);		Spatial data			(50 x	del	planners;	explicit
2018			process at the sub-		Geospatial		(population,			50m)	Henares",	Developers;	
			regional scale		simulation		boundaries, zoning,				Madrid,	Population	
			considering urban		(GIS)		housing				Spain		
			planners, developers				distribution, natural						
			and the population's				protected zones,						
			decision-making				environmental						
			process in different				layers; land use;						
			future urban growth				facilities; cadastral						
			scenarios.				data; road network)						
u & Hsu	ALENT	D	Dynamic urban	Not explicit	ABM	ABM + lifecycle	Spatial data (road	Yes	Yes	Local	Hong Kong	Modes;	Not
017			transportation		(NetLogo);	analysis	& rail network);					Passengers	explicit
			simulation model for		Geospatial		Commute data;						
			lifecycle		simulation		Census data						
			environmental		(GIS)								
			performance										
			evaluation of										
			transport modes										
			under different										
			market scenarios.								~ .		
Chou <i>et al</i>	WECC	D; PC	Simulation of the	Rapid	MAS	ABM +	Social – Population	Yes	Yes	Local	Changzhou,	-	Not
017			economic and water	industrialization;	(RNetLogo);		data;				Jiangsu,	(urban &	explicit
			environment	Water pollution	Geospatial		Industrial data;				China	rural);	
			information for		simulation		Pollution data;					Industrial,	
			industrial structure		(GIS)		Water environment					Tertiary &	
			upgrading				data;					Agricultural	
			(equipment &				Satellite imagery					enterprises	
			machinery industry)				(land use; drainage;					Sewage	
			and spatial				ecological					treatment	
			optimisation based				constraint maps)						

Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
			on water									plants &	
			environment									outlets;	
			carrying the capacity									Pollutant	
			to promote socio-									flow &	
			ecological									pollutants;	
			sustainability.									River;	
												Monitored	
												sections	
												Landscape	
émare et	Not	D; P	Simulation of the	Inefficient	MAS (GAMA);	ABM	Goods production	Not explicit	Not explicit	Regional	Paris,	Goods	80 days
2017	explicit		logistic system to	management of	Geospatial		& consumption			(50 x	Orléans,	provider;	
			describe the	the flow of	simulation		data;			50)	Rouen, Le	Land	
			movement of goods	goods &	(GIS)		Network data (road,				Havre,	transporter	
			over the territory	infrastructure			rail & river				Caen,	(road, river,	
			through a supplying	network			infrastructure;					rail);	
			network.	constraints			logistics flow;					Warehouses;	
							traffic);					Logistics	
							Building permit					service	
							data					provider;	
												Terminal	
												operator;	
												Shipowner;	
												Final co-	
												signees	
havami	CaféSCP	D; PC	Simulation of the	Lack of	MAS (GAMA);	ABM	Not explicit	Yes	Yes	Local	Zanjan,	Land use	Not
Taleai			spatial group	understanding of	Geospatial					(40 x	Iran	agents	explicit
17a;			decision-making	the influence of	simulation					40m)		(residential,	
navami et			process as well as	different	(GIS)							business,	
2017b;			the relationship that	factors/actors on								educational,	
navami et			exist among the	the outcome and								green,	
2016			influencing	performance of								medical);	
			entities/stakeholders	the decision-									
			in the approval of the	making process									

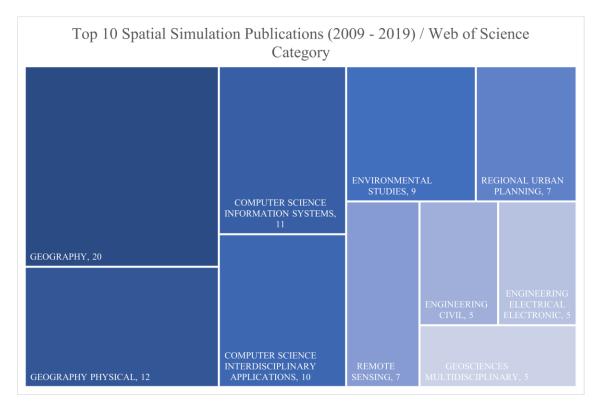
Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
			urban land use	&								Decision	
			master plan.	implementation.								maker;	
												Facilitator;	
Malik &	Not	D	Simulation of urban	Urban sprawl	ABM	ABM	Political	Not explicit	Not explicit	Local	Waterloo,	Students	Not
Abdalla	explicit		dynamics and to		(NetLogo);		boundaries; Road				Canada		explicit
2017			model the settlement		Geospatial		network;						
			pattern of students of		simulation		Residential zones;						
			the University of		(ArcGIS)		Grocery stores;						
			Waterloo Campus.				Light rail transit						
							stops						
Liu & Lim	Not	D; P	Simulation of	Ineffective	ABM (Agent	ABM + urban	Flood lines; Road	Not explicit	Not explicit	Local	Brisbane,	Households	Not
2016	explicit		evacuation planning	evacuation	Analyst	network analysis	networks; shelters;			(5 x 5m)	Australia		explicit
			(shelter assignment	planning during	ArcGIS);		census boundaries;						
			& routing strategy)	natural disasters.	Geospatial		census data;						
			from both the spatial		simulation		hydrology; slope;						
			and temporal		(ArcGIS)		historical flood						
			perspectives during a				events						
			flood event scenario.										
Liu et al	CID-	D; P; PC	Simulation of policy	Lack of local	ABM	ABM	Administrative	Yes	Not explicit	Micro	Jiading	Creative	2013,
2016	USST_GIS		scenarios to reflect	land-use policies	(NetLogo);		boundaries;				District,	firms;	2018,
			on the dynamics of	for the	Geospatial		City centres;				Shanghai,	Creative	2023 (5
			spatial distributions	optimisation of	simulation		Infrastructure				China	workers;	year plan
			of creative firms and	land use in	(GIS)		networks (rail, air,					Urban	period
			creative workers	support of			road, water,					government	intervals)
			across time within a	creative			stations);						
			city/district.	industries.			Facilities (cultural,						
							leisure; education);						
							Hydrological data;						
							Services (internet)						
							Land uses						
Li et al	Not	D	Analysis of historical	Food security	ABM (Analyst	ABM	Satellite imagery;	Yes	Yes	National	Uganda	Agricultural;	1993;
2016	explicit		and future land-use		Agent ArcGIS);		Land use					Non-	2001;
			changes and		Geospatial							agricultural	2013


Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
			simulation of		simulation							developers;	
			scenarios of potential		(ArcGIS)							Land parcels	
			agricultural land-use										
			changes and the										
			decision-making										
			process of farmers.										
Vermeiren	ASSURE	D	Simulation of urban	Urban sprawl;	ABM (Analyst	ABM	Not explicit	Yes	Not explicit	Local	Kampala,	Households	2010 -
et al 2016			growth and intra-	Inequality;	Agent ArcGIS);						Uganda	(Agent	2013;
			urban social	Spatial	Geospatial							group)	Projection
			segregation,	segregation &	simulation								2014 -
			including alternative	accessibility	(ArcGIS)								2030
			policy strategies	problems.									
			(quality of life,										
			accessibility,										
			affordability) and										
			expected social										
			dynamics over space										
			and time.										
Lichter et	Not	D	Simulation of long-	Climate change	ABM (RePast);	ABM	Census data;	Not explicit	Yes	Micro	CBD,	Households;	Not
al 2015	explicit		term consequences		Geospatial		GPS survey;				Jerusalem,	workers;	explicit
			of disasters		simulation		National tax				Israel	land	
			(earthquake &		(GIS)		authority data					developers;	
			missile attack) and				(property value);					firms; city	
			the outcomes in				Capital stock					authorities;	
			disaster				estimates.					intervention	
			management.									agencies.	
Xu et al	Not	D; P	Simulation of the	Rapid socio-	ABM (RePast);	ABM	Satellite imagery;	Yes	Yes	Regional	Dali City,	Farmer;	2010 -
2015	explicit		spatiotemporal	economic	Geospatial		Road network;				Erhai Lake	Habitat;	2020
			process model for	development &	simulation		Hydrological data;				Basin,	Government	
			land use/land cover	urbanisation;	(GIS)		Census data;				China		
			changes (LUCC) that	Loss of			Economic data;						
			simulated dynamic	agricultural			Land use data						
				production;									

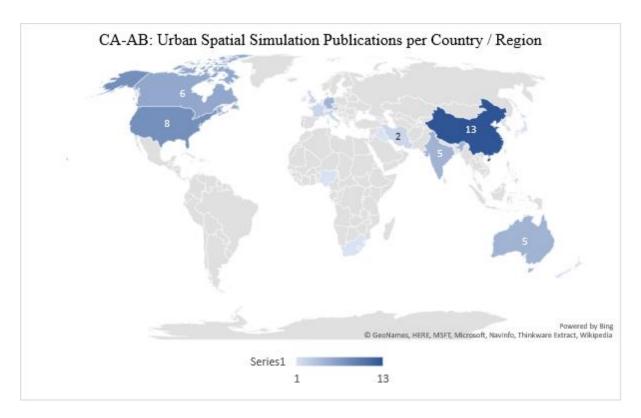

Author	Model	Objective	Main	Issues	Key model	Model	Data inputs	Calibration	Validation	Model	Model	Type of	Time
	name		purpose/description		components	classification				grain	extent	agent	period
			of the model										
			land-use changes in	Pollution,									
			the case study area.										

0	2
ð	L

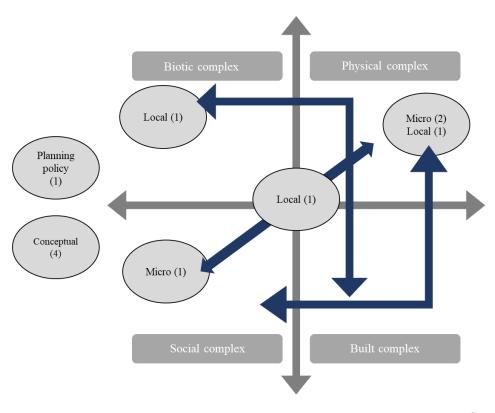
3.2.3 Cellular automata and agent-based modelling (CA-AB).


As can be expected, the total number of publications over the analysis period that dealt with CA-AB simulation publications are much lower than in the two individual categories. Over this period, the number of CA-AB urban spatial simulation publications represented between 3,8% and 15,4% of the total publications (refer to Figure 21 and Appendix A.13).

The CA-AB category of urban spatial simulation publications over the period were predominantly published in the Web of Science categories of Geography, Geography physical and Computer science information systems. Regional urban planning and urban studies cited a total of 13 over the selected time period (Refer to Appendix A.14).


The publication categories are predominantly focused on the research themes of environmental sciences, computer sciences and geography, which includes research types of long-term monitoring, experimentation, comparative analysis and models / methodological approaches. The varying coverage of the publications also demonstrates the multi-disciplinary nature of this category of models and their application (Refer to Figure 22).

Source: Web of Knowledge database 2019 [online] [Accessed 4 October 2019].


Figure 22: CA-AB: Treemap of urban spatial simulation

Similar to the other categories the application areas of these studies are predominantly focused on China (25%), United States of America (15,4%) and Canada (11,5%) (Refer to Figure 23 and Appendix A.15).

Source: Author adopted from Web of Knowledge database 2019 [online] [Accessed 4 October 2019]. Figure 23: CA-AB: Spatial distribution of urban simulation publications

As indicated in Figure 24, most of the urban CA-AB models simulate the interactions between people-built environment-land resources/potential across the micro (2) and local (1) scales. One local scaled CA-AB model simulates the interactions between people-organisms-built environment-land resources/potential and one each for people-land potential /resources and people-organisms-built environment, respectively. In addition to the aforementioned, several conceptual models (4) and models trying to support and/or inform planning policy (1) is highlighted.

Source: Author

Figure 24: CA-AB: Components of urban simulation publications

Based on the assessment criteria, the following are noted:

- Most of the urban CA-AB models reviewed had a combination of descriptive and predictive objectives as part of the model design. The factors and dynamics explored in the past provide the foundation of using forecasting techniques to understand the future. None of the models reviewed incorporated prescriptive objectives as a way of understanding the possible constraints within the system (e.g. urban growth boundaries, zoning, environmental protection zones), as well as trying to measure and predicting the outcomes of implementing these policy interventions through scenario planning.
- Data inputs varied across the various categories of urban models according to their needs and the scale at which the components of the system were investigated. Although, all the models required satellite images in order to apply remote sensing techniques for land use/land cover classification. Basic geographic information such as road networks, administrative boundaries, topographical and population data was also required.

- Calibration and validation formed part of the design and construction of the majority of the urban models and was viewed as an essential factor in terms of measuring the level of fitness of the model based on its intended purpose and its accurate reproduction of the real world and its ability to predict the future.
- The model grain of the urban models ranged from micro (10m & 50m resolution) and local (30m & 100m resolutions). The reviewed models did not incorporate model grains of regional, national and global, and most of the modelling was done across various scales.
- Cell states in the urban CA-AB mostly focused on two-state cells, for example, feel good / not feel good; suitable for vertical development / not suitable; builtup / non-built-up and approval probability / no approval. The characteristics of the agents across the models were different which hampered a comparative analysis.
- The time period specifies the period used in validating and calibrating within the urban models which generally coincided with data points such as updates in census data, household and travel surveys. The time period between these data points generally ranged between five (5) and ten (10) years. The projection time periods in most of the models did not follow a continues / yearly update but followed a time interval update of five (5), ten (10) and 15 years.

The detailed analysis of the selected urban CA-AB models (excluding conceptual models) is contained in the assessment matrix below.

Author	Model	Objectiv	Main	Issues	Key model	Model	Data inputs	Calibratio	Validatio	Model	Model	Cell states	Neighbourho	Type of agent	Time
	name	e	purpose/descripti		component	classificatio		n	n	grain	extent		od		period
			on of the model		S	n									
Mueller	SimUSy	D	Integrate	Impact on	CA	Hybrid +	Environment	Yes	Yes	Local	CBD,	Feel good;	Not explicit	Landowner	Not
et al	S		geospatial	location	(ArcGIS)	conceptual	and services			CA –	Herdecke,	Not feel			explicit
2018			methods for	choices and	+ ABM +	for smaller	(land use,			(100 x	Germany	good			
			measuring	spatial	gamificati	size	protected			100m);					
			spatial	attractivenes	on	(<25 000	areas etc.)			(5 x 5m					
			attractiveness	s (noise	approach	citizens)	Networks			network					
			and combines	pollution,		municipaliti	(streets,			distance					
			gamification,	traffic		es.	pipelines			grid)					
			system dynamics	intensity)			etc.)								
			and ABM for	during, e.g.			Points of								
			creating a spatial	events.			interest								
			simulation for				(parks, shops								
			smaller urban				etc.)								
			systems.				Planning								
							entities								
							(administrati								
							ve districts,								
							zoning,								
							addresses);								
							Volunteered								
							Geographic								
							data								
Liu et	SGCAB	D; P	Simulate urban	Urban	Static	Hybrid	Satellite	Yes	Yes	Micro	Jiangxia,	Land-use	3 x 3	Residents,	2003 -
al 2016	М		growth at the	sprawl;	game		images;			(50 x	Wuhan,	conversion		farmers;	2013
			urban fringe of	Rapid	model +		Land use			50m)	China	in line with		government	Projectio
			the city and	urbanization;	CA +		data;					land-use			n to 2023
			considers the	Land	ABM		Public					planning;			
			microeconomic	expropriatio			infrastructur					land use			
			behaviour of	n (legal /			e points;					conversion			
			farmers and	forcibly /			socio-					not in line			
			government, the	illegally) &								with land			

Table 5: Characteristics of urban CA-AB

Neighbourho	Type of agent	Time
od		period
Not explicit	Landowner	Not
		explicit

Author	Model	Objectiv	Main	Issues	Key model	Model	Data inputs	Calibratio	Validatio	Model	Model	Cell states	Neighbourho	Type of agent	Time
	name	e	purpose/descripti		component	classificatio		n	n	grain	extent		od		period
			on of the model		S	n									
			selection of	acquisition			economic					use			
			housing by	(force /			data					planning;			
			agents and it	willingly)								Urban;			
			explores drivers	conflicts.								Non-urban			
			of urbanisation												
			using a game												
			theory-based												
			economic model.												
Koziate	Not	D	A geospatial	Environment	CA	Hybrid	Satellite	Yes	Not	Micro	Town	Suitable for	Not explicit	Not applicable	Not
k et al	explicit		modelling	al impact of	(ArcGIS)		imagery;		explicit	(10m	centre,	vertical			explicit
			approach to	urban	+		LiDAR;			spatial	Surrey,	developme			
			represent the	sprawl,	Computer		cadastral			resolutio	Vancouver,	nt;			
			urban	sustainabilit	Graphic		data;			n)	Canada	unsuitable			
			densification	У	architectur		buildings;					for vertical			
			process in 3D by		e		land uses &					developme			
			generating urban				designation;					nt			
			development in the form of mid-				population data								
			and high-rise				uala								
			buildings.												
Donday	CA-	D; P	Modelling	Environment	CA	Hybrid	Satellite	Yes	Yes	Local	Chandigarh	Built-up;	Moore &	Urban;	1999 –
Pandey & Joshi	MAS	D, r	urbanisation	al	(ArcGIS)	Tryona	imagery;	105	105	(30m	Chandigarh , India	non-built-	Von-	Rural	2009
2015	MAS		dynamics for the	degradation	(AICOIS) +		Settlement			spatial	, muta	up	Neumann	Kurai	Projectio
2010			urban and rural	due to	MAS		point dataset;			resolutio		۳þ			n to 2019
			population	uncontrolled	(Netlogo)		Population			n)					
			within the	urbanization			data			,					
			regional	and urban											
			landscape and	growth.											
			how it shapes the												
			urban												
			morphology.												

Not explicit	Not applicable	Not
		explicit

Author	Model	Objectiv	Main	Issues	Key model	Model	Data inputs	Calibratio	Validatio	Model	Model	Cell states	Neighbourho	Type of agent	Time
	name	e	purpose/descripti		component	classificatio		n	n	grain	extent		od		period
			on of the model		S	n									
Zhang	GIS-	D; P	Simulate and	Rapid	GIS +	Hybrid	Geographic	Yes	Yes	Not	Lianyunga	Approval	3 x 3	Residents,	2008
et al	MAS		analyse 3 target	urbanization	MAS		data –			explicit	ng City,	probability;		farmers,	(base
2015			scenarios,	Environment			transportatio				China	no approval		industrial	year)
			including	al			n, land price,					probability		enterprises,	Projectio
			maintenance of	degradation			public							environmentalis	ns-2020
			current trends,	Urban			facilities,							ts, government	& 2030
			priorities for	management			land use,								
			economic				urban master								
			development,				planning.								
			and priorities for				Socio-								
			environmental				economic								
			protection to				data -								
			obtain a better				population,								
			understanding of				GDP,								
			land-use				economic								
			preferences and				sector data.								
			the driving												
			mechanism of												
			urban growth.												

3.3 APPLICATION OF URBAN SPATIAL SIMULATION MODELS

3.3.1 Demography

A fundamental aspect of urban models is the creation of a micro-dataset containing the spatial distribution of demographic features. This dataset assists in the demographic modelling and population projection in the urban models (O'Donoghue et al 2014).

Many of the urban models under review, used population and socio-economic data to dynamically simulate demographic processes for use in the spatial distribution and to inform population projections. The model developed by Alghais & Pullar (2018), for example, used the demographic analysis to inform their forecast for population estimates in Kuwait City, Kuwait.

The socio-economic analysis underpins the dynamic simulation processes of transport (Jin et al 2018; Lu et al 2018; Lu & Hsu 2017; Xia et al 2019; Liang et al 2018), social mobility (Hackl & Dubernet 2018; Pandey & Joshi 2015); planning policy formulation (Alghais & Pullar 2018; Tong & Feng 2019; Guan et al 2019; Liu et al 2018; Zheng et al 2017; Osman et al 2016); and land market and housing (Liu et al 2016; Quesada-Ruiz et al 2019; Yu et al 2018; He et al 2017);

3.3.2 Welfare, poverty and inequality

The ASSURE urban model developed by Vermeinen et al (2016) simulates urban growth and how this can drive intra-urban social segregation and further impact on the quality of life, accessibility and affordability within Kampala, Uganda.

Other applications where socio-economic and income analysis data was used include the dynamic simulation processes of disparities/inequality (Tripathy & Kumar 2019; Feng & Qi 2018)), food security (Li et al 2016; Rimal et al 2019), access to and social program

91

interventions for example access to healthcare programs (Jin et al 2018) and land through expropriation programs (Liu et al 2016).

3.3.3 Health

Health care service provision is an important policy area, which involves significant expenditure and requirements of access to services and facilities (O'Donoghue et al 2014). Urban models that contain facility data in their spatial location with health attributes and the spatial distribution of health services can be useful in planning and analysing health services and the spread of infectious diseases. Hackl & Dubernet (2019), utilised an urban model to examine the spread of seasonal influenza across Zurich, Switzerland, while Jin et al (2018) modelled the individual level demands of older adults in accessing oral healthcare services.

3.3.4 Regional development

Yu et al (2019) developed an urban model, simulating the distribution of the green gross domestic product (GDP of ecosystem service value) and the impact of land-use change and the socio-economic benefits derived from this development across China. A further example is the CID-USST-GIS model developed by Liu et al (2016) that simulated the spatial location and the impact of land-use policies in the development and distribution of creative industries and creative workers.

Both the abovementioned examples of urban models aim to understand the changes in the economy, the driving forces impacting on the spatial distribution of these new economies and it tries to analyse and assess the impact of planning policies in order to inform them and to improve the support to these new industries.

3.3.5

Several urban models in the ABM list such as Wu et al (2019), Lu et al (2018), Jin et al (2018), Lu & Hsu (2017) and Demare et al (2017) explored this theme. Within this theme the following areas are generally considered:

- Travel over transport networks, the mode of transport, car ownership, congestion and transport control measures.
- Transportation issues such as congestion and their relevance for extensive land use and transportation requirements.
- Impact of road management planning and civil engineering issues.
- Prediction and impact on the changes in travel behaviour (travel plans, modal and route choice) following from changes in the travel environment and population dynamics.
- Economic analysis of transport and its potential impacts of instruments such as congestion charging or road pricing systems.
- Environmental issues related to travel, commuting and transporting goods (O'Donoghue et al 2014).

3.3.6 Agriculture, marine and environment

The interaction between people and the environment is strongly influenced by spatial location, and the use of urban models can assist in the modelling of socio-economic-environmental interactions and policy.

Examples of urban simulation models within this category reviewed as part of this study include Baeza et al (2019), Morelle et al (2019) (SiReMo), Zhou et al (2017), Li et al (2016), Ou et al (2019), Hou et al (2019), Zhang et al (2018), Fan et al (2018), Kuo & Tsou et al (2018), Rahman et al (2017), Zare et al (2017), She et al (2017), Feng & Liu (2016), Jiang et al (2016) and Osman et al (2016).

3.3.7 Disaster planning and management

One of the advantages of urban simulation models is their capacity for use as an experimental platform for examining the impact of disaster events and the economic cost of an incident and how to improve the planning and management of these events.

A number of the models reviewed have been developed to simulate the allocation of emergency shelters (Yu et al 2019), evacuation planning (Liu & Lim 2016; Perez-Molina et al 2017) and the long term consequences of these disasters and their outcomes on disaster management (Lichter et al 2015).

3.3.8 Land use and spatial planning

Urban models are increasingly recognised as an essential tool for scenario planning and measuring outcomes and geographical impact of government policies, public and private investment (O'Donoghue et al 2014). Within this context, some of the urban simulation models reviewed dealt with migration and urbanization (Alghais & Pullar 2018), access to facilities, infrastructure, and transport planning (Lu et al 2018; Lu & Hsu 2017; Guan et al 2019; Liang et al 2018), land use (Xu et al 2015; Xu et al 2015; Quesada-Ruiz et al 2019; Mousivand & Arsanjani 2019; Feng & Tong 2019; Wang et al 2019); buildings (Koziatek et al 2016; Long & Wu 2017; He et al 2017), land markets and environmental protection (Huang et al 2019; Yang et al 2019; Li et al 2019; Xu et al 2018; Jia et al 2018; She et al 2017).

Most of the urban models reviewed linked planning policy and attempted to use it as a constraint in the simulation of urban change (Tong & Feng 2019; Feng & Tong 2017); forecasting of the impacts and outcomes on individual spatial decisions (Cantergiani & Delgado 2018; Ghavami & Taleai 2017a; Ghavami et al 2017b; Ghavami et al 2016; He et al 2019); estimating the intended and unintended consequences of planning decisions related to land use (urban edges, zonings); and the impacts of different scenarios and the resulting urban changes (Wang et al 2019; Tripathy & Kumar 2019; Nguyen et al 2019;

Yin et al 2018; Xu et al 2018; Mei et al 2018; Zheng et al 2017) in order to achieve sustainable development (Musa et al 2019; Rimal et al 2019; Zhou et al 2017).

3.4 STRENGTHS AND WEAKNESSES OF URBAN MODELS

The application of urban CA tends to replicate urban morphology best and its limitations are the limited incorporation of the connections and driving forces behind the different elements of the system under consideration (Wahyudi & Liu 2015; Batty 2014). The limitation stems from the neighbourhood building block/element and its application in practice. It is often difficult to associate cells and cell states with those of real systems. For example, buildings are considered as basic elements of cities, and within each building, there are many distinct activities. This implies that buildings cannot be cells as the fundamental principle in deciding cell size is the consideration that it must be the smallest unit of measurement for the specific component in the system. In the example provided the activities will have to be further disaggregated to be associated with a single cell (Batty 2014). Another factor is the changing of cell states through the transition rules within the neighbourhood concept, which is viewed endogenous to the system. However, distant objects (commercial properties, facilities, noxious industries etc.) through push and pull factors, or decay functions also influence the changes in the state of the cell. The transition rules can be relaxed on an ad hoc basis, but these methods have a weak theoretical basis, and new methods need to be explored and adopted (Wahyudi & Liu 2015).

In addition to the abovementioned, another factor that influences the system is not only the physical and socio-economic factors of the system but the actors within the system such as developers, farmers, landowners and other actors. The relationship of these actors with each other and the physical component of the system also changes the urban processes, and CA lacks the capability in representing the actors and behaviours in the urban system.

To address the abovementioned limitation, the application of ABM and integration of ABM in CA has been introduced. The application of ABM in urban simulation modelling has some limitations, such as the decision criteria of the agents that are extrapolated from data and the fact that it only models behaviours of the grouping of agents with similar considerations and how they would influence the structure of the system. They are therefore not an entirely accurate reflection of the real world, and specific attributes/behaviours might be hidden from view. An example of the can be the learning and then the adaptation in terms of their behaviour from this learning experience (Wahyudi & Liu 2015).

All models have advantages and disadvantages, and in addition to the system design, some of the following factors can also influence the choice of a model and its outcomes. The selection of the factors focuses on relatively high-level fundamental choices rather than particular modelling choices, namely:

1. Data requirements;

The ability to create robust micro-level data through data techniques in urban simulation offers a powerful alternative to the expensive and time-consuming assembling of official micro-datasets, such as published census records or individual / household survey data (O'Donoghue et al 2014).

The ideal base dataset for urban models is one collected specifically for modelling purposes with the appropriate scope and level of spatial disaggregation. Many models require the linkage of datasets of different types using statistical techniques.

These sets of official and application-specific data are still crucial in model development and design as they are used predominantly in the calibration and validation of urban models. The importance of Statistical Offices and good quality statistical products are paramount in model development and impacts significantly on measuring model outcomes.

2. Software availability;

Most of the models reviewed use GIS and other software models where programming languages are required to implement and integrate the different models. Modellers, therefore, need programming knowledge to implement and interpret the outcomes of models. This impedes non-expert users in applying and utilising models in spatial planning applications (Sante et al 2010).

3. Accuracy of the results.

The key to having confidence in an urban model is adequate validation and evaluation of the matching or data generation process. When validation is understood it translates into an understanding of the relationships and interconnections between the different variables in the system. Even though the accuracy of models can be found to be good, the results are not directly comparable to other areas or models as they are largely dependent on the specific system under consideration.

3.5 CONCLUDING REMARKS

Spatial simulation (urban models) allow for the complex reality to be shown in a simplified form, in order that spatial strategies and their impacts can be explored in advance. It is mainly used as an exploratory learning tool which can assist spatial planners in clarifying their thinking of the complexities of the real world and to prompt further discussion and exploration. These urban models can be used as predictive tools in cases where reliable data is available, and when the model is an adequate representation of the system and its dynamics. The urban models are therefore flexible, adaptive and diverse in their methods of use and they can become valuable decision support tools for monitoring and guiding spatial planning and development.

In reviewing the urban models, it was found that the development and design of urban models are also now incorporating aspects of strategic planning within their scenarios in order to measure and monitor the appropriateness and effectiveness of policy interventions, such as urban growth boundaries, zoning schemes, sustainable development outcomes and environmental protection zones. With the incorporation of these prescriptive elements creates the bridges between the reality ('what is' and 'what could be') and normative terms ('what should be' and 'what is desired') (De Roo 2011; De Roo et al 2016; De Waal 2018; Schintler & Chen 2018), which can aid spatial planners in their daily operations. The urban models can improve the understanding of the local and historical contingent factors, how multidimensional and complex problems (e.g. demography; welfare, poverty & inequality; health; education; housing; regional development; transport planning; agriculture, marine & environment; disaster planning & management; and land use and spatial planning) impact and drive the complex urban systems and then accordingly use the laboratory environment provided by urban models to explore and experiment with different scenarios without impacting on the real-world systems.

In reviewing the urban models, most of the issues identified relate to rapid urbanisation, migration and unplanned and uncontrolled urban expansion. The urban models acknowledge that with this increased urbanisation that cities will face unprecedented pressures to provide basic services and aspects around increased inequalities, resource depletion reduced the quality of life and environmental degradation. The aforementioned aspects correspond to the United Nation's Report on World Urbanization Prospects for 2018 (UN: DESA 2019), however, the spatial extent of these urban models are predominantly distributed in the global North (USA, UK, Canada, France, Germany, Italy, Spain, Netherlands), Australia and in Asia (China, Japan and India) with Africa lacking an in any development and practical application of urban models.

In recent years these models for urban growth simulation have proliferated because of their conceptual simplicity, flexibility and their ability to incorporate spatial and temporal dimensions of urban processes. "Just as settlements are diverse and complex, so there are many ways to describe and understand them." (K. Kropf, 2009 as referenced in Reis et al 2014:279), which was found to be an accurate assessment of the types of applications of the different urban models that were reviewed.

The applications have also improved with the advances in computer techniques, such as the integration with geographic information systems (GIS), artificial intelligence (AI) and advanced spatial analytics. The increased development of computer science coupled with the improvements in the availability of data, data quality and processing standards, have further increased the demand for these urban models. The meta-analysis of urban models applied internationally in urban contexts over the past decade (2009 – 2019) have shown that the total rate of academic publications in urban models (CA, ABM & CA-AB) has grown consistently. Both CA and ABM experienced growth over the period; however, the urban modelling category of CA-AB has shown a significant decline. Throughout the literature, the hybrid approach has been viewed as the modelling approach that can fully simulate the complex urban system and its urban dynamics. Even though the ability to use these models have become easier, some of the main problems could relate to the access and availability of appropriate data; data and model accuracy; software requirements; resource constraints (time, human resources, hardware) and modelling skills.

CHAPTER 4

4 CONCLUSION AND RECOMMENDATIONS

4.1 SUMMARY OF KEY FINDINGS AND REFLECTION ON RESEARCH OBJECTIVES

Within a complex and dynamic landscape (reality), a spatial planner's role is to "*create bridges between 'what is' and 'what could be'*, (or in normative terms) *'what should be' and 'what is desired'* (De Roo et al 2016:1). This requires an understanding of the city as a complex dynamic system and how planning interventions should be contextually formulated and implemented to address the multidimensional urban phenomena such as uncontrolled and unplanned urbanisation challenges. Spatial planners need to become managers of change where negatives are avoided, and positive effects of change are embraced over time and space. The current scientific planning instruments and practices are, however, inadequate to address these multidimensional problems and challenges being faced within cities.

Within this context, one of the objectives of this research was to compile a comprehensive literature review and content analysis to explore the new 'science of cities' as a method that can provide insights into the complexity of the city. It was found that the concepts of complexity theory can be used to conceptualise cities as organised complex systems and the main components (metaphors) provided a means of understanding and exploring complex system behaviour. Complexity theory and complexity science can assist spatial planners with an understanding of how cities are theoretically conceptualised.

The components of a complex system make predictability difficult, and this makes spatial simulation models (urban models) an important tool for understanding and exploring complex system behaviour. Complexity science uses Cellular Automata (CA) and Agent-based modelling (ABM) techniques to abstracts the real-world into a series of layers as a visual representation of the complexity and spatial-temporal urban dynamics. A conceptual analysis was conducted to

identify and explain the key components (concepts, methods and techniques), design and construction of the spatial simulation models (urban models). The research provides explanations on the critical considerations for spatial simulation model (urban model) conceptualisation, components, design and construction. It was established that the modelling techniques play a fundamental role in understanding the functionality, practicality, accuracy and 'fit for purpose' use of these urban models within cities. In general, the primary role of urban models (CA & ABM) is as heuristic tools for learning about the real world and enables scenario planning which can support spatial planning practices.

The application of spatial simulation models has in recent years increased because of their conceptual simplicity, flexibility and their ability to incorporate spatial and temporal dimensions of urban processes. The applications have also improved with the advances in computer techniques, such as the integration with geographic information systems (GIS), artificial intelligence (AI) and advanced spatial analytics. The increased development of computer science coupled with the improvements in the availability of data, data quality and processing standards, have further increased the demand for these urban models. The meta-analysis of the spatial simulation publications over the past decade (2009 - 2019) found that urban modelling approaches have grown consistently. Applications of urban simulation models appear to be regionally divergent with the primary focus on the global North (USA, UK, Canada, France, Germany, Italy, Spain, Netherlands), Asia (China, Japan) and Australia. Uptake of these urban models is lagging in areas with rapid urbanisation and urban growth rates, which are predominantly located in the global South, such as South Africa.

To move beyond the conceptual frameworks as discussed above, the research focused on identifying and evaluating spatial simulation applications in peer-reviewed scientific literature which includes Cellular Automata (CA), Agent-based modelling (ABM) and hybrids (including both CA and ABM) that have been published internationally and within South Africa over the last five (5) years. The comparative analysis found that the development and design of urban models are also now incorporating aspects of strategic planning within their scenarios in order to measure and monitor the appropriateness and effectiveness of policy interventions, such as urban growth

boundaries, zoning schemes, sustainable development outcomes and environmental protection zones. The review found that urban models improve the understanding of the local and historical contingent factors, how multidimensional and complex problems (e.g. demography; welfare, poverty & inequality; health; education; housing; regional development; transport planning; agriculture, marine & environment; disaster planning & management; and land use and spatial planning) impact and drive the complex urban systems across time and space. Urban simulation models provide the laboratory environment to explore and experiment with different scenarios without impacting on the real-world systems, and with the incorporation of these prescriptive elements creates the bridges between the reality ('what is' and 'what could be') and normative terms ('what should be' and 'what is desired'), which can aid spatial planners in their daily operations.

4.2 LIMITATIONS OF RESEARCH

Challenges and limitations to the approach include the lack of / or restricted access to literature especially in the detailed comparative analysis of urban simulation models. The restricted access limited the data collection process. In addition to the accessibility issues, the amount of time afforded for the review, evaluation and comparison of the entire publication information set over the ten (10) year period was limited and the detailed analysis period had to be shortened to five years, which follows on from the analysis period (2014) of the GCRO report. The type of meta-analysis conducted in this research is also potentially vulnerable to interpretation biases.

4.3 RESEARCH CONTRIBUTION AND FURTHER RESEARCH

At a theoretical level, the research is interested in understanding the scientific theories, concepts and models around the application of the science of cities (complexity theory, spatial simulation modelling, spatial planning practices) in order to understand complex and dynamic systems. This research attempted to define and demonstrate the relationship between complexity science and the applications of the science to cities and urban simulations from a spatial planning perspective. Through the literature review, it was also found that little research has gone into providing a comparative analysis of the spatial simulation models (urban models) and its potential applications. The research aimed to improve the knowledge base and expand on the concepts, relationship and operational application of spatial simulation modelling (urban models) within different places and across different times in order to provide conceptual clarity and revealing the different methodologies and applications for analysing complex city systems.

Some areas of further research to consider includes an in-depth understanding of what impacts the use and application of these spatial simulation models (urban models) and demonstrating how these models solve practical planning issues, especially in the South African context.

REFERENCES

Pumain D 1998. Urban research and complexity. In Bertuglia G & Mela B.A (eds) 1998. *The city and its sciences,*. 323-361 Physica-Verslag: HD.

Mouton J 2001. *How to succeed in your Master's & Doctoral Studies: A South African guide and resource book.* Pretoria: Van Schaik.

Pickett STA & Cadenasso ML 2002. The ecosystem as a multidimensional concept: meaning, model, and metaphor. *Ecosystems* 5(1): 1-10.

Batty M 2005. *Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals.* Cambridge: MIT Press.

Reggiani A & Nijkamp P (eds) 2009. *Complexity and spatial networks: in search of simplicity*. New York: Springer.

Reggiani A & Nijkamp P 2009. Simplicity in complex spatial systems: Introduction. In Reggiani A & Nijkamp P (eds) 2009. *Complexity and spatial networks: in search of simplicity*. 1-7 New York: Springer.

Couclelis H 2009. Polyplexity: a complexity science for the social and policy science. In Reggiani A & Nijkamp P (eds) 2009. *Complexity and spatial networks: in search of simplicity*. 75-88 New York: Springer.

Pacione M 2009. Urban geography: a global perspective, 3rd edition. Routledge: New York.

Nel V 2009. Complex adaptive systems as a theoretical tool in urban planning. *Town and regional planning journal* 2009(55): 24-30.

Santé I, García AM, Miranda D & Crecente R 2010. Cellular automata models for the simulation of real-world urban processes: A review and analysis. *Landscape and Urban Planning* 2010(96): 108-122.

Wu N & Silva EA 2010. Artificial intelligence solutions for urban land dynamics: a review. *Journal of Planning literature* 24(3): 246-265.

Silva EA 2011a. Cellular automata and agent base models for urban studies: from pixels to cells to hexa-dpi's. In Yang X (ed) 2011. *Urban remote sensing: Monitoring, synthesis and modelling in the urban environment*. 324-332 West Sussex: Wiley-Blackwell.

Torrens PM 2011. Calibrating and validating cellular automata models of urbanization. In Yang X (ed) 2011. *Urban remote sensing: Monitoring, synthesis and modelling in the urban environment.* 336-342 West Sussex: Wiley-Blackwell.

Xie Y & Yang X 2011. Agent-based urban modeling: simulating urban growth and subsequent landscape change in Suzhou, China. In Yang X (ed) 2011. *Urban remote sensing: Monitoring, synthesis and modelling in the urban environment.* 348-355 West Sussex: Wiley-Blackwell.

Sui DZ 2011. Rethinking progress in urban analysis and modeling: models, metaphors, and meaning. In Yang X (ed) 2011. *Urban remote sensing: Monitoring, synthesis and modelling in the urban environment*. 372-378 West Sussex: Wiley-Blackwell.

De Roo G & Silva EA (eds) 2011. *A planner's encounter with complexity*. Surrey: Ashgate Publishing Limited.

De Roo G 2011. Planning and complexity. In De Roo G & Silva EA (eds) *A planner's encounter with complexity*, 1-18. Surrey: Ashgate Publishing Limited.

Nilsson KL 2011. Complexity in spatial planning practice and theory: The case of Kiruna mining town. In De Roo G & Silva EA (eds) *A planner's encounter with complexity*, 63-80. Surrey: Ashgate Publishing Limited.

Silva EA 2011b. Waves of Complexity: Theory, models and practice. In De Roo G & Silva EA (eds) *A planner's encounter with complexity*, 309-331. Surrey: Ashgate Publishing Limited.

Silva EA 2011c. Complexity and Cellular Automaton: Exploring its practical application. In De Roo G & Silva EA (eds) *A planner's encounter with complexity, 189-207*. Surrey: Ashgate Publishing Limited.

McAdams MA 2012. Complexity theory and urban planning. In McAdams MA, Vassoler-Froelich I & Treviño-Cantú J (eds) *The Geography, Politics, and Architecture of Cities: Studies in the creation and complexification of culture*, 7-23. Ceredigion: Edwin Mellen.

O'Sullivan D & Perry GLW 2013. Spatial simulation: Exploring pattern and process. West Sussex: Wiley-Blackwell.

Wray C, Musango J, Damon K & Cheruiyot K 2013. *Modelling urban spatial change: a review of international and South African modelling initiatives*. ISBN No 978-0-620-58368-8. Gauteng City-Region Observatory & partners.

Batty M 2013. The new science of cities. USA: MIT Press.

Chang K 2014. Introduction to Geographic Information Systems. Singapore: McGraw-Hill.

Silva EA, Van den Broeck P, Harris N & Healey P (eds) 2014. *The Routledge Handbook of Planning Research Methods*. New York: Routledge.

Reis JP, Silva EA & Pinho P 2014. Measuring space: a review of spatial metrics for urban growth and shrinkage. In Silva EA, Van den Broeck P, Harris N & Healey P (eds) 2014. *The Routledge Handbook of Planning Research Methods*. 279-292 New York: Routledge.

Yamu C, Voigt A & Frankhauser P 2014. Spatial simulation and the real world: digital methods and techniques in the context of strategic planning. In Silva EA, Van den Broeck P, Harris N & Healey P (eds) 2014. *The Routledge Handbook of Planning Research Methods*. 348-363 New York: Routledge.

Barnes TJ & Wilson MW 2014. Big data, social physics, and spatial analysis. The early years. *Big data and society* 2014: 1-14.

O'Donoghue C, Morrissey K & Lennon J 2014. Spatial simulation modelling: a review of applications and methodological choices. *International journal of microsimulation* 7(1): 26-75.

Wilson A 2014. Complex spatial systems: the modelling foundations of urban and regional analysis. New York: Routledge.

Wray C & Cheruiyot K 2015. Key challenges and potential urban modelling opportunities in South Africa, with specific reference to the Gauteng City-Region. *South African Journal of Geomatics* 4(1): 4-35.

Alexander ER 2015. There is no planning - only planning practices: Notes for spatial planning theories. *Planning Theory* 15(1): 91-103.

Wahyudi A & Liu Y 2015. Spatial dynamic models for inclusive cities: a brief concept of cellular automata (CA) and Agent-based model (ABM). *Jurnal Perencanaan Wilayah dan Kota* 26(1): 54-70.

Lichter M, Grinberger AY & Felsenstein D 2015. Simulating and communicating outcomes in disaster management situations. *ISPRS International Journal of Geo-Information* 4(4): 1827-1847.

Filatova T 2015. Empirical agent-based land market: Integrating adaptive economic behavior in urban land-use models. *Computers environment and urban systems* 54: 397-413.

Mansury Y & Shin JK 2015. Size, connectivity, and tipping in spatial networks: Theory and empirics. *Computers environment and urban systems* 54: 428-437.

Ciari F, Balac M & Balmer M 2015. Modelling the effect of different pricing schemes on freefloating carsharing travel demand: a test case for Zurich, Switzerland. *Transportation* 42(3): 413-433.

Koomen E, Diogo V, Dekkers J & Rietveld P 2015. A utility-based suitability framework for integrated local-scale land-use modelling. *Computers environment and urban systems* 50: 1-14.

Schmitt C, Rey-Coyrehourcq S, Reuillon R & Pumain D 2015. Half a billion simulations: evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model. *Environment and Planning B – Planning & Design* 42(2): 300-315.

Xu QL, Yang K, Wang GL & Yang YL 2015. Agent-based modelling and simulations of land-use and land-cover according to ant colony optimization: a case study of the Erhai Lake Basin, China. *Natural Hazards* 75(1): 95-118.

Pandey B & Joshi PK 2015. Numerical modelling spatial patterns of urban growth in Chandigarh and surrounding region (India) using multi-agent systems. *Modeling earth systems and environment* 1(3): 14-27.

Kim IH, Tsou MH & Feng CC 2015. Design and implementation strategy of a parallel agent-based Schelling model. *Computers environment and urban systems* 49: 30-41.

Zhang HH, Jin XB, Wang LP, Zhou YK & Shu BR 2015. Multi-agent based modelling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China. *Stochastic environmental research and risk assessment* 29(1): 63-78.

Caruso G, Cavailhes J, Peeters D, Thomas I, Frankhauser P & Vuidel G 2015. Greener and larger neighbourhoods make cities more sustainable! A 2D urban economics perspective. *Computers environment and urban systems* 54: 82-94.

Crols T, White R, Uljee I, Engelen G, Poelmans L & Canters F 2015. A travel-time based variable grid approach for an activity-based cellular automata model. *International journal of geographical information science* 29(10): 1757-1781.

Gong ZY, Thill JC & Liu WG 2015. ART-P-MAP neural networks modeling of land-use change: accounting for spatial heterogeneity and uncertainty. *Geographical analysis* 47(4): 376-409.

Gonzalez PB, Aguilera-Benavente F & Gomez-Delgado M 2015. Partial validation of cellular automata based model simulations of urban growth: An approach to assessing factor influence using spatial methods. *Environmental modelling & software* 69: 77-89.

Jiang WG, Chen Z, Lei X, Jia K & Wu YF 2015. Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model. *Journal of geographical sciences* 25(7): 836-850.

Bihamta N, Soffianian A, Fakheran S & Gholamalifard M 2015. Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. *Journal of the Indian society of remote sensing* 43(2): 407-414.

He YQ, Ai B, Yao Y & Zhong FJ 2015. Deriving urban dynamic evolution from self-adaptive cellular automata with multi-temporal remote sensing images. *International Journal of applied earth observation and geoinformation* 38: 164-174.

Li XC, Liu XP & Gong P 2015. Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model. *International journal of geographical information science* 29(5): 762-785.

Cao M, Tang GA, Shen QF & Wang YX 2015. A new discovery of transition rules for cellular automata by using cuckoo search algorithm. *International Journal of geographical information science* 29(5): 806-824.

Malek Z & Boerboom L 2015. Participatory scenario development to address potential impacts of land use change: an example from the Italian Alps. *Mountain research and development* 35(2): 126-138.

Shafizadeh-Moghadam H, Hagenauer J, Farajzadeh M & Helbich M 2015. Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change: a case study. *International Journal of geographical information science* 29(4): 606-623.

Veerbeek W, Pathirana A, Ashley R & Zevenbergen C 2015. Enhancing the calibration of an urban growth model using a memetic algorithm. *Computers environment and urban systems* 50: 53-65.

Maithani S 2015. Neural networks-based simulation of land cover scenarios in Doon Valley, India. *GEOCARTO International* 30(2): 163-185.

Lu Y, Cao M & Zhang L 2015. A vector-based cellular automata model for simulating urban land use change. *Chinese geographical science* 25(1): 74-84.

Ye YY, Su YX, Zhang HO, Liu K & Wu QT 2015. Construction of an ecological resistance surface model and its application in urban expansion simulations. *Journal of geographical sciences* 25(2): 211-224.

Nourqolipour R, Shariff ARBM, Balasundram SK, Ahmad NB, Sood AM, Buyong T & Amiri F 2015. A GIS-based model to analyze the spatial and temporal development of oil palm land use in Kuala Langat district, Malaysia. *Environmental earth sciences* 73(4): 1687-1700.

Gong WF, Yuan L, Fan WY, & Stott P 2015. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling. *International Journal of applied earth observation and geoinformation* 34: 207-216.

De Roo G, Hillier J & Van Wezemael J (eds) 2016. *Complexity and planning: systems, assemblages and simulation*. New York: Routledge.

De Roo G, Hillier J & Van Wezemael J 2016. Complexity and spatial planning: Introducing systems, assemblages and simulations. In De Roo G, Hillier J & Van Wezemael J (eds) 2016. *Complexity and planning: systems, assemblages and simulation.* 1-36 New York: Routledge.

Hillier J 2016. Baroque Complexity: 'If things were simple, word would have gotten round'. In De Roo G, Hillier J & Van Wezemael J (eds) 2016. *Complexity and planning: systems, assemblages and simulation*. 37-36 New York: Routledge.

De Roo G 2016. Spatial planning, complexity and a world 'out of equilibrium': outline of a nonlinear approach to planning. In De Roo G, Hillier J & Van Wezemael J (eds) 2016. *Complexity and planning: systems, assemblages and simulation.* 129-166 New York: Routledge.

Li X & Gong P 2016. Urban growth models: progress and perspective. *Sci. Bull.* 61(21):1637-1650.

Liu XF & Lim SS 2016. Integration of spatial analysis and an agent-based model into evacuation management for shelter assignment and routing. *Journal of Spatial Science* 61(2): 283-298.

Piera MA, Buil R & Ginters E 2016. State space analysis for model plausibility validation in multiagent system simulation of urban policies. *Journal of Simulation* 10(3): 216-226. Liu H, Silva EA & Wang Q 2016. Incorporating GIS data into an agent-based model to support planning policy making for the development of creative industries. *Journal of Geographical Systems* 18(3): 205-228.

Li JJ, Oyana TJ & Mukwaya PI 2016. An examination of historical land use changes in Uganda using change detection methods and agent-based modelling. *African Geographical Review* 34(3): 247-271.

Vermeiren K, Vanmaercke M, Beckers J & Van Rompaey A 2016. ASSURE: a model for the simulation of urban expansion and intra-urban social segregation. *International journal of Geographic Information Science* 30(12): 2377-2400.

Lopez-Ospina HA, Martinez FJ & Cortes CE 2016. Microeconomic model of residential location incorporating life cycle and social expectations. *Computers environment and urban systems* 55: 33-43.

Liu YL, He QS, Tan RH, Zhou KH, Liu GG & Tang SH 2016. Urban growth modeling based on a game between farmers and governments: Case study of urban fringe in Wuhan, Hubei Province in China. *Journal of urban planning and development* 142(2): 1-9.

Koziatek O, Dragicevic S & Li S 2016. Geospatial modelling approach for 3D urban densification developments. *XXIII ISPRS Congress, Commission II* 41(B2): 349-352.

Barreira-Gonzalez P & Barros J 2016. Configuring the neighbourhood effect in irregular cellular automata based models. *International journal of geographical information science* 31(3): 617-636.

Naghibi F & Delavar MR 2016. Discovery of transition rules for cellular automata using Artificial Bee Colony and Particle Swarm Optimization Algorithms in urban growth modeling. *ISPRS international journal of geo-information* 5(12): 241-257.

Guan CH & Rowe PG 2016. Should big cities grow? Scenario-based cellular automata urban growth modeling and policy applications. *Journal of urban management* 5(2): 65-78.

Trolard F, Bourrie G, Baillieux A, Buis S, Chanzy A, Clastre P, Closet JF, Courault D, Dangeard ML, Dangeard ML, Di Virgilio N, Dussouilliez P, Fleury J, Gasc J, Geniaux G, Jouan R, Keller C, Lecharpentier P, Lecroart J, Napoleone C, Mohammed G, Olioso A, Reynders S, Rossi F, Tennant M & Lopez JD 2016. The PRECOS framework: measuring the impacts of the global

changes on soils, water, agriculture on territories to better anticipate the future. *Journal of environmental management* 181: 590-601.

Samardzic-Petrovic M, Dragicevic S, Kovacevic M & Bajat B 2016. Modeling urban land use changes using support vector machines. *Transactions in GIS* 20(5): 718-734.

Jafarnezhad J, Salmanmahiny A & Sakieh, Y 2016. Subjectivity versus objectivity: comparative study between brute force method and genetic algorithms for calibrating the SLEUTH urban growth model. *Journal of urban planning and development* 142(3): 1-12.

Feng YJ & Liu Y 2016. Scenario prediction of emerging coastal city using CA modeling under different environmental conditions: a case study of Lingang New City, China. *Environmental monitoring and assessment* 188(9): 540-555.

Gharbia SS, Abd Alfatah S, Gill L, Johnston P & Pilla F 2016. Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms. *Modeling earth systems and environment* 2(3): 151-170.

Jjumba A & Dragicevic S 2016. Towards a voxel-based geographic automata for the simulation of geospatial processes. *ISPRS journal of photogrammetry and remote sensing* 117: 206-216.

Yang X, Zhao Y, Chen R & Zheng XQ 2016. Simulating land use change by integrating landscape metrics into ANN-CA in a new way. *Frontiers of earth science* 10(2): 245-252.

Mahmoud SH & Alazba AA 2016. Land cover dynamics mapping and predictions using EO data and a GIS-cellular automata model: the case of Al-Baha region, Kingdom of Saudi Arabia. *Arabian journal of geosciences* 9(5): 419-438.

Feng YJ, Liu Y & Batty M 2016. Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu-Songjiang area of Shanghai, China. *Stochastic environmental research and risk assessment* 30(5): 1387-1400.

Ke XL, Qi LY & Zeng C 2016. A partitioned and asynchronous cellular automata model for urban growth simulation. *International journal of geographical information science* 30(4): 637-659.

Ku CA 2016. Incorporating spatial regression model into cellular automata for simulating land use change. *Applied geography* 69: 1-9.

Azari M, Tayyebi A, Helbich M & Reveshty MA 2016. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: an application to Maragheh, Iran. *GISCIENCE & Remote sensing* 53(2): 183-205.

Guan QF, Shi X, Huang MQ & Lai CG 2016. A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU heterogenous architectures. *International journal of geographical information science* 30(3): 494-514.

Vazquez-Quintero G, Solis-Moreno R, Pompa-Garcia M, Villarreal-Guerrero F, Pinedo-Alvarez C & Pinedo-Alvarez A 2016. Detection and protection of forest changes by using the Markov chain model and cellular automata. *Sustainability* 8(3): 169-185.

Sakieh Y & Salmanmahiny A 2016. Performance assessment of geospatial simulation models of land-use change – a landscape metric-based approach. *Environmental monitoring and assessment* 188(3): 169-185.

Jiang WG, Chen Z, Lei X, He B, Jia K & Zhang YF 2016. Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: a case study of the Changsha-Zhuzhou-Xiangtan urban agglomeration. *Ecological engineering* 88: 112-121.

Anderson T & Dragicevic S 2016. A Geosimulation approach for data scarce environments: modeling dynamics of forest insect infestation across different landscape. *ISPRS International journal of geo-information* 5(2): 9-29.

Osman T, Divigalpitiya P & Arima T 2016. Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on land use in the GIZA Governorate, Greater Cairo Metropolitan region. *International journal of urban sciences* 20(3): 407-426.

Grinblat Y, Gilichinsky M & Benenson I 2016. Cellular automata of land-use/land-cover dynamics: questioning the reliability of data sources and classification methods. *Annals of the American Association of Geographers* 106(6): 1299-1320.

Cao M, Bennett SJ, Shen QF & Xu RQ 2016. A bat-inspired approach to define transition rules for a cellular automaton model used to simulate urban expansion. *International journal of geographical information science* 30(10): 1961-1979.

Liu YL, He QS, Tan RH, Liu YF & Yin CH 2016. Modeling different urban growth patterns based on the evolution of urban form: a case study from Huangpi, Central China. *Applied Geography* 66: 109-118.

Van de Voorde T, Van der Kwast J, Poelmans L, Canters F, Binard M, Cornet Y, Engelen G, Uljee I, Shahumyan H, Williams B, Convery S & Lavalle C 2016. Projecting alternative urban growth patterns: the development and application of a remote sensing assisted calibration framework for the Greater Dublin Area. *Ecological Indicators* 60: 1056-1069.

Liao JF, Tang LN, Shao GF, Su XD, Chen DK & Xu T 2016. Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. *Environmental modelling & software* 75(Special Issue): 163-175.

Wilson A 2017. Applied spatial modelling: 'Big science' and 'best practice' challenges. In Lombard J.R, Stern E & Clarke G (eds) 2017. *Applied spatial modelling and planning*, 8-16. New York: Routledge.

Musa SI, Hashim M & Md Reba MN 2017. A review of geospatial-based urban growth models and modelling initiatives. *GEOCARTO International* 32(8): 813-833.

Lu MJ & Hsu SC 2017. Spatial agent-based model for environmental assessment of passenger transportation. *Journal of Urban Planning and development* 143(4): 1-14.

Zhou XY, Lei K, Meng W & Khu ST 2017. Industrial structural upgrading and spatial optimization based on water environment carrying capacity. *Journal of cleaner production* 165: 1462-1472.

Tasseron G & Martens K 2017. Urban parking space reservation through bottom-up information provision: An agent-based analysis. *Computers environment and urban systems* 64: 30-41.

Demare T, Bertelle C, Dutot A & Leveque L 2017. Modeling logistic systems with an agent-based model and dynamic graphs. *Journal of transport geography* 62: 51-65.

Ghavami SM & Taleai M 2017. Towards a conceptual multi agent-based framework to simulate the spatial group decision-making process. *Journal of geographical systems* 19(2): 109-132.

Malik A & Abdalla R 2017. Agent-based modelling for urban sprawl in the region of Waterloo, Ontario, Canada. *Modeling earth systems and environment* 3(1): 7-15.

Lemoy R, Raux C & Jensen P 2017. Exploring the polycentric city with multi-worker households: An agent-based microeconomic model. *Computers environment and urban systems* 62: 64-73. Ghavami SM, Taleai M & Arentze T 2017a. An intelligent spatial land use planning support system using socially rational agents. *International journal of Geographic Information Science* 31(5): 1022-1041.

Ghavami SM, Taleai M & Arentze T 2017b. Socially rational agents in spatial land use planning: A heuristic proposal based negotiation mechanism. *Computers environment and urban systems* 60: 67-78.

Samardzic-Petrovic M, Kovacevic M, Bajat B & Dragicevic S 2017. Machine learning techniques for modelling short term land-use change. *ISPRS International journal of geo-information* 6(12): 387-401.

Zheng Q, Yang X, Wang K, Huang LY, Shahtahmassebi AR, Gan MY & Weston MV 2017. Delimiting urban growth boundary through combining land suitability evaluation and cellular automata. *Sustainability* 9(12): 2213-2234.

Mirbagheri B & Alimohammadi A 2017. Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. *Transactions in GIS* 21(6): 1280-1297.

Jat MK, Choudhary M & Saxena A 2017. Application of geo-spatial techniques and cellular automata for modelling urban growth of a heterogeneous urban fringe. *Egyptian journal of remote sensing and space sciences* 20(2): 223-241.

Zhou Y, Zhang F, Du ZH, Ye XY & Liu RY 2017. Integrating cellular automata with deep belief network for simulating urban growth. *Sustainability* 9(10): 1786-1804.

Pickard B, Gray J & Meentemeyer R 2017. Comparing quantity, allocation and configuration accuracy of multiple land change models. *Land* 6(3): 52-72.

Pinto N, Antunes AP & Roca J 2017. Applicability and calibration of an irregular cellular automata model for land use change. *Computers environment and urban systems* 65: 93-102.

Li X, Chen GZ, Liu XP, Liang X, Wang SJ, Chen YM, Pei FS & Xu XC 2017. A new global landuse and land-cover change product at a 1-km resolution for 2010 to 2100 based on humanenvironment interactions. *Annals of the American Association of Geographers* 107(5): 1040-1059. Perez-Molina E, Sliuzas R, Flacke J & Jetten V 2017. Developing a cellular automata model of urban growth to inform spatial policy for flood mitigation: a case study in Kampala, Uganda. *Computers environment and urban systems* 65: 53-65.

Feng YJ & Tong XH 2017. Calibrating nonparametric cellular automata with a generalized additive model to simulate dynamic urban growth. *Environmental earth sciences* 76(14): 496-510.

Votsis A 2017. Utilizing a cellular automaton model to explore the influence of coastal flood adaptation strategies on Helsinki's urbanization patterns. *Computers environment and urban systems* 64: 344-355.

Aburas MM, Ho YM, Ramli MF & Ash'aari ZH 2017. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy process and Frequency Ration. *International journal of applied earth observation and geoinformation* 59: 64-78.

Long Y & Wu K 2017. Simulating block-level urban expansion for national wide cities. *Sustainability* 9(6): 879-897.

Gao Y, Zhang CR, He QS & Liu YL 2017. Urban ecological security simulation and prediction using an improved Cellular Automata (CA) Approach-A case study for the City of Wuhan in China. *International journal of environmental research and public health* 14(6):463-482.

Shafizadeh-Moghadam H, Tayyebi A & Helbich M 2017. Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. *Environmental monitoring and assessment* 189(6): 300-314.

Rahman MT, Aldosary AS & Mortoja MG 2017. Modeling future land cover changes and their effects on the land surface temperatures in the Saudi Arabian eastern coastal city of Dammam. *Land* 6(2): 36-51.

Yao YX, Li J, Zhang, XG, Duan P, Li, S & Xu QL 2017. Investigation on the expansion of urban construction land use based on the CART-CA model. *ISPRS international journal of geo-information* 6(5): 149-165.

Li ZQ, Guan XF, Wu HU & Gong JY 2017. A novel k-means clustering based task decomposition method for distributed vector-based CA models. *ISPRS international journal of geo-information* 6(4): 93-109.

Zare, M, Mohammady M & Pradhan B 2017. Modeling the effect of land use and climate change scenarios on future soil loss rate in Kasilian watershed of northern Iran. *Environmental Earth Sciences* 76(8): 305-319.

She JF, Guan ZQ, Cai FF, Pu LJ, Tan JZ & Chen T 2017. Simulation of land use changes in a coastal reclaimed area with dynamic shorelines. *Sustainability* 9(3): 2259-2283.

Lestrelin G, Augusseau X, David D, Bourgoin J, Lagabrielle E, Lo Seen D & Degenne P 2017. Collaborative landscape research in Reunion island: using spatial modelling and simulation to support territorial foresight and urban planning. *Applied Geography* 78: 66-77.

Kazemzadeh-Zow A, Shahraki SZ, Salvati L & Samani NN 2017. A spatial zoning approach to calibrate and validate urban growth models. *International journal of geographical information science* 31(4): 763-782.

Amiri BJ, Asgarian A & Sakieh Y 2017. Introducing landscape accuracy metric for spatial performance evaluation of land use/land cover change models. *GEOCARTO International* 32(11): 1171-1187.

Li XC, Lu H, Zhou YY, Hu TY, Liang L, Liu XP, Hu GH & Yu L 2017. Exploring the performance of spatio-temporal assimilation in an urban cellular automata model. *International journal of geographical information science* 31(11): 2195-2215.

Shafizadeh-Moghadam H, Asghari A, Taleai M, Helbich M & Tayyebi A 2017. Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata. *GISCIENCE & Remote sensing* 54(5): 639-656.

Wang RQ, Zhang Y & Yue H 2017. Developing a new design method avoiding latent congestion danger in urban rail transit station. *World Conference on Transport Research – WCTR* 2016 25: 4079-4063.

He QS, Liu YL, Zeng C, Yin CH & Tan RH 2017. Simultaneously simulate vertical and horizontal expansions of a future urban landscape: a case study in Wuhan, Central China. *International journal of geographical information science* 31(10): 1907-1928.

Ke XL, Zheng WW, Zhou T & Liu XP 2017. A CA-based land system change model: LANDSCAPE. *International journal of geographical information science* 31(9): 1798-1817.

Musa SI, Hashim M & Reba MNM 2017. A review of geospatial-based urban growth models and modelling initiatives. *GEOCARTO International* 32(8): 813-833.

Dezhkam S, Jabbarian Amiri B, Darvishsefat AA & Sakieh Y 2017. Performance evaluation of land change simulation models using landscape metrics. *GEOCARTO International* 32(6): 655-677.

Li C & Zhao J 2017. Assessment of future urban growth impact on landscape pattern using cellular automata model: a case study of Xuzhou City, China. *Journal of environmental engineering and landscape management* 25(1): 23-38.

Mondal B, Das DN & Bhatta B 2017. Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration. *GEOCARTO Internation* 32(4): 401-419.

Schintler LA & Chen Z 2018. Big data for regional science. New York: Routledge.

De Waal M 2018. A city is not a galaxy: understanding the city through urban data. In Kitchin R, Laurialut TP & McArdle G (eds) 2018. *Data and the city*. 17-30 New York: Routledge.

Tang M & Auffrey C 2018. Advanced digital tools for updating overcrowded rail stations: Using eye tracking, virtual reality, and crowd simulation to support design decision-making. *Urban rail transit* 4(4): 249-256.

Lu MJ, Taiebat M, Xu M & Hsu S.C 2018. Multiagent spatial simulation of autonomous taxis for urban commute: Travel economics and environmental impacts. *Journal of Urban Planning and Environment* 144(4): 1-12.

Cicirelli F, Forestiero A, Giordano A & Mastroianni C 2018. Parallelization of space-aware applications: Modeling and performance analysis 122: 115-127.

Jin Z, Northridge ME & Metcalf SS 2018. Modeling the influence of social ties and transportation choice on access to oral healthcare for older adults. *Applied Geography* 96: 66-76.

Rich J. Large-scale spatial population synthesis for Denmark. *European Transport Research Review* 10(2): 1-19.

Manley E & Cheng T 2018. Exploring the role of spatial cognition in predicting urban traffic flow through agent-based modelling. *Transportation research part A- Policy and practice* 109: 14-23.

Alghais N & Pullar D 2018. Modelling future impacts of urban development in Kuwait with the use of ABM and GIS. *Transactions in GIS* 22(1): 20-42.

Yu J, Zhang CR, Wen JH, Li WD, Liu R & Xu H 2018. Integrating multi-agent evacuation simulation and multi-criteria evaluation for spatial allocation of urban emergency shelters. *International journal of Geographic Information Science* 32(9): 1884-1910.

Cantergiani C & Delgado MG 2018. Urban land allocation model of territorial expansion by urban planners and housing developers. *Environments* 5(1): 5-15.

Ahlqvist O, Khodke N & Ramnath R 2018. Geogame analytics – A cyber-enabled petri dish for geographic modeling and simulation. *Computers environment and urban systems* 67: 1-8.

Mueller C, Klein U & Hof A 2018. An easy-to-use spatial simulation for urban planning in smaller municipalities. *Computers environment and urban systems* 71: 109-119.

Gao XS, Liu Y, Liu L, Li QQ, Deng OP, Wei YL, Ling J & Zeng M 2018. Is Big Good or Bad? Testing the performance of urban growth cellular automata simulation at different spatial extents. *Sustainability* 10(12): 4758-4767.

Sikder SK, Nagarajan M, Kar S & Koetter T 2018. A geospatial approach of downscaling urban energy consumption density in mega-city Dhaka, Bangladesh. *Urban climate* 26: 10-30.

Yin HW, Kong FH, Yang XJ, James P & Dronova I 2018. Exploring zoning scenario impacts upon urban growth simulations using a dynamic spatial model. *Cities* 81: 214-229.

Zheng FY & Hu YC 2018. Assessing temporal-spatial land use simulation effects with CLUE-S and Markov-CA models in Beijing. *Environmental science and pollution research* 25(32): 32231-32245.

Xu EQ, Zhang HQ & Yao LN 2018. An elevation-based stratification model for simulating land use change. *Remote sensing* 10(11): 1730-1754.

Feng YJ, Wang JF, Tong XH, Liu Y, Lei ZK, Gao C & Chen SR 2018. The effect of observation scale on urban growth simulation using particle swarm optimization-based CA models. *Sustainability* 10(11): 4002-4021.

Mustafe A, Van Rompaey A, Cools M, Saadi I & Teller J 2018. Addressing the determinants of built-up expansion and densification processes at the regional scale. *Urban studies* 55(15): 3279-3298.

Zhang WT, He QQ, Wang HJ, Cao K & He SW 2018. Factor analysis for aerosol optical depth and its prediction from the perspective of land-use change. *Ecological indicators* 93: 458-469.

Feng YL & Qi Y 2018. Modeling patterns of land use in Chinese Cities using an integrated cellular automata model. *ISPRS International journal of geo-information* 7(10): 403-415.

Hu WB, Wang H, Qiu ZY, Yan LP, Nie C & Du B 2018. An urban traffic simulation model for traffic congestion predicting and avoiding. *Neural computing & applications* 30(6): 1769-1781.

Mirbagheri B & Alimohammadi A 2018. Integration of local and global vector machines to improve urban growth modelling. *ISPRS International journal of geo-information* 7(9): 347-366.

Mei Z, Wu H & Li SY 2018. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modelling: a case study in Zhengcheng District, Guangzhou, China. *Frontiers of earth science* 12(2): 299-310.

Jahanishakib FM, Mirkarimi SH, Salmanmahiny A & Poodat F 2018. Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting. *Environmental monitoring and assessment* 190(6): 1-20.

Xu L, Huang QH, Ding DD, Mei MY & Qin HT 2018. Modelling urban expansion guided by land ecological suitability: a case study of Changzhou City, China. *Habitat International* 75: 12-24.

Yu Y, He JH, Tang WW & Li C 2018. Modeling urban collaborative growth dynamics using a multiscale simulation model for the Wuhan urban agglomeration area, China. *ISPRS International journal for geo-information* 7(5): 176-188.

Zhang, Y, Wang PC, Wang TW, Cai CF, Li ZX & Teng MJ 2018. Scenarios simulation of spatiotemporal land use changes for exploring sustainable management strategies. *Sustainability* 10(4): 1013-1029.

Jia ZM, Ma BR, Zhang J & Zeng W.H 2018. Simulating spatial-temporal changes of land-use based on ecological redline restrictions and landscape driving factors: a case study of Beijing. *Sustainability* 10(4): 1299-1316.

Feng YJ & Tong XH 2018. Calibration of cellular automata models using differential evolution to simulate present and future land use. *Transactions in GIS* 22(2): 582-601.

Moghadam SA, Karimi M & Habibi K 2018. Simulating urban growth in a megalopolitan area using a patch-based cellular automata. *Transactions in GIS* 22(1): 249-268.

Liu XP, Hu GH, Ai B, Li X, Tian GJ, Chen YM & Li SY 2018. Simulating urban dynamics in China using a gradient cellular automata model based on S-shaped curve evolution characteristics. *International journal of geographical information science* 32(1): 73-101.

Mustafa A, Heppenstall A, Omrani H, Saadi I, Cools M & Teller J 2018. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. *Computers environment and urban systems* 67: 147-156.

Du GD, Shin KJ, Yuan L & Managi S 2018. A comparative approach to modelling multiple urban land use changes using tree-based methods and cellular automata: a case of Greater Tokyo area. *International journal of geographical information science* 32(4): 757-782.

Achmad A, Irwansyah M & Ramli I 2018. Prediction of future urban growth using CA-Markov for urban sustainability planning of Banda Aceh, Indonesia. *Friendly city 4 from research to implementation for better sustainability* 126: 1-9.

Liang X, Liu XP, Li D, Zhao H & Chen GZ 2018. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. *International journal of geographical information science* 32(11): 2294-2316.

Feng YJ & Tong XH 2018. Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules. *GISCIENCE & Remote sensing* 55(5): 678-698.

Maithani S, Begum A, Kumar P & Kumar AS 2018. Simulation of peri-urban growth dynamics using weights of evidence approach. *GEOCARTO International* 33(9): 957-976.

Kuo HF & Tsou KW 2018. Modeling and simulation of the future impacts of urban land use change on the natural environment by SLEUTH and Cluster analysis. *Sustainability* 10(1): 72-92.

Mirici ME, Berberoglu S, Akin A & Satir O 2018. Land use/cover change modelling in a Mediterranean rural landscape using multi-layer perceptron and Markov chain (MLP-MC). *Applied ecology and environmental research* 16(1): 467-486.

Qui RX, Xu W, Zhang J & Staenz K 2018. Modeling and simulating industrial land-use evolution in Shanghai, China. *Journal of geographical systems* 20(1): 57-83.

Liu XJ, Tian GJ, Feng JM, Wang J & Kong LQ 2018. Assessing summertime urban warming and the cooling efficacy of adaptation strategy in the Chengdu-Chongqing metropolitan region of China. *Science of the total environment* 610: 1092-1102.

United Nations, Department of Economic and Social Affairs, Population Division 2019. *World Urbanization Prospects: The 2018 Revision*. ST/ESA/SER.A/420. New York: United Nations.

Wu H, Liu LB, Yu Y, Peng ZH, Jiao HZ & Niu Q 2019. An agent-based model simulation of human mobility based on mobile phone data: How commuting relates to congestion. *ISPRS International Journal of Geo-Information* 8(7): 313-328.

Baeza A, Bojorquez-Tapia LA, Janssen MA & Eakin H 2019. Operationalizing the feedback between institutional decision-making, socio-political infrastructure, and environmental risk in urban vulnerability. *Journal of environmental management* 241: 407-417.

Wahyudi A, Liu Y & Corcoran J 2019. Generating different urban land configurations based on heterogeneous decisions of private land developers: An agent-based approach in a developing country context. *ISPRS International Journal of Geo-Information* 8(5): 229-247.

Hackl J & Dubernet T 2019. Epidemic spreading in urban areas using agent-based transportation models. *Future internet* 11(4): 92-105.

Morelle K, Buchecker M, Fienast F & Tobias S 2019. Nearby outdoor recreation modelling: An agent-based approach. *Urban forestry & urban greening* 40(Special Issue): 286-298.

Tang M & Auffrey C. Advanced digital tools for updating overcrowded rail stations: Using eyetracking, virtual reality, and crowd simulation to support design decision-making. *Urban rail transit* 4(4): 249-256.

Wang WL, Jiao LM, Dong T, Xu ZB & Xu G 2019. Simulating urban dynamics by coupling topdown and bottom-up strategies. *International Journal of Geographical Information Science* 33(11): 2259-2284.

Khani M, Ahmadi A & Hajary H 2019. Distributed task allocation in multi-agent environments using cellular learning automata. *Soft computing* 23(4): 1199-1218.

Huang A, Xu Q, Liu C, Lu H, Zhang B, Sun PL & Zhou GY 2019. Simulated town expansion under ecological constraints: a case study of Zhangbei County, Heibei Province, China. *Habitat International* 91: 1-12.

Tong XH & Feng YJ 2019. How current and future urban patterns respond to urban planning? An integrated cellular automata modeling approach. *Cities* 92: 247-260.

Kantakumar LN, Kumar S & Schneider K 2019. SUSM: a scenario-based urban growth model using remote sensing data. *European journal of Remote Sensing* 52(Special Issue): 26-41.

Feng YL & Tong XH 2019. A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods. *International journal of Geographical Information Science:* 1-25.

Yang J, Shi F, Sun YZ & Zhu J 2019. A cellular automata model by spatiotemporal heterogeneity of the urban development strategy for simulating land-use change: a case study in Nanjing City, China. *Sustainability* 11(15): 4012-4030.

Guan DJ, Zhao ZL & Tan J 2019. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: a case study in three gorges reservoir area of Chongqing, China. *Environmental science and pollution research* 26(20): 20669-20688.

Tripathy P & Kumar A 2019. Monitoring and modelling spatio-temporal urban growth of Delhi using Cellular Automata and geoinformatics. *Cities* 90: 52-63.

Ji X, Thompson A, Lin JS, Jiang FS, Li SX, Yu MM & Huang YH 2019. Simulating and assessing the evolution of collapsing gullies based on cellular automata-Markov and landscape pattern metrics: a case study in Southern China. *Journal of soils and sediments* 19(7): 3044-3055.

Ibrahim MR, Titheridge H, Cheng T & Haworth J 2019. predictSLUMS: a new model for identifying and predicting informal settlements and slums in cities from street intersections using machine learning. *Computers environment and urban systems* 76: 31-56.

Shafizadeh-Morghadam H 2019. Improving spatial accuracy of urban growth simulation models using ensemble forecasting approaches. *Computers environment and urban systems* 76: 91-100.

Jamali B, Back PM, Cunningham L & Deletic A 2019. A cellular automata fast flood evacuation (CA-ffe) model. *Water resources research* 55(6): 4936-4952.

Semecurbe F, Tannier C & Roux SG 2019. Applying two fractal methods to characterize the local and global deviations from scale invariance of built patterns throughout mainland France. *Journal of geographical systems* 21(2): 271-293.

He JH, Li C, Huang JL, Liu DF & Yu Y 2019. Modeling urban spatial expansion considering population migration interaction in Ezhou, Central China. *Journal of urban planning and development* 145(2): 1-18.

Ou DH, Yao XZ, Xia JG, Gao XS, Wang CQ, Chen WL, Li QQ, Hu ZD & Yang J 2019. Development of a composite model for simulating landscape pattern optimization allocation: A case study in the Longquanyi District of Chengdu City, Sichuan Province, China. *Sustainability* 11(9): 267-301.

Mousivand A & Arsanjani JJ 2019. Insights on the historical and emerging global land cover changes: the case of ESA-CCI-LC datasets. *Applied geography* 106: 82-92.

Karimi F, Sultana S, Babakan AS & Suthaharan S 2019. An enhanced support vector machine model for urban expansion prediction. *Computers environment and urban systems* 75: 61-75.

Feng YJ & Tong XH 2019. Incorporation of spatial heterogeneity-weighted neighborhood into cellular automata for dynamic urban growth simulation. *GISCIENCE & Remote Sensing* 56(7): 1024-1045.

Musa SI, Hashim M & Reba MNM 2019. Geospatial modelling of urban growth for sustainable development in the Niger Delta Region, Nigeria. *International journal of remote sensing* 40(8): 3076-3104.

Hou H, Wang R & Murayama Y 2019. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: a case study of Hangzhou from 1990 to 2035. *Science of the total environment* 661: 422-431.

Yang J, Guo AD, Li YH, Zhang YQ & Li XM 2019. Simulation of landscape spatial layout evolution in rural-urban fringe areas: a case study of Ganjingzi District. *GISCIENCE & Remote Sensing* 56(2): 388-405.

Rimal B, Keshtkar H, Sharma R, Stork N, Rijal S & Kunwar R 2019. Simulating urban expansion in a rapidly changing landscape in eastern Tarai, Nepal. *Environmental monitoring and assessment* 191(4): 255-269.

Xu TT, Coco G & Gao J 2019. Extraction of urban built-up areas from nighttime lights using artificial neural network. *GEOCARTO International:* 1-18.

Zhao MM, He ZB, Du J, Chen LF, Lin PF & Fang S 2019. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. *Ecological indicators* 98: 29-38.

He QS, Tan SK, Yin CH & Zhou M 2019. Collaborative optimization of rural residential land consolidation and urban construction land expansion: A case study of Huangpi in Wuhan, China. *Computers environment and urban systems* 74: 210-228.

Chen YM, Li X, Liu XP, Zhang YY & Huang M 2019. Tele-connecting China's future urban growth to impacts on ecosystem services under the shared socioeconomic pathways. *Science of the total environment* 652: 765-779.

Zhang DC, Liu XP, Wu XY, Yao Y & Chen YM 2019. Multiple intra-urban land use simulations and driving factors analysis: a case study in Huicheng, China. *GISCIENCE & Remote Sensing* 56(2): 282-308.

Wang CJ, Lei SG, Elmore AJ, Jia D & Mu SG 2019. Integrating temporal evolution with cellular automata for simulating land cover change. *Remote sensing* 11(3): 301-322.

Yu YH, Yu MM, Lin L, Chen JX, Li DJ, Zhang WT & Cao K 2019. National green GDP assessment and prediction for China based on a CA-Markov land use simulation. *Sustainability* 11(3): 576-594.

Nguyen TA, Le PMT, Pham TM, Hoang HTT, Nguyen MQ, Ta HQ, Phung HTM, Le HTT & Hens L 2019. Toward a sustainable city of tomorrow: a hybrid Markov-Cellular Automata modelling for urban landscape evolution in the Hanoi City (Vietnam) during 1990-2030. *Environment development and sustainability* 21(1): 429-446.

Nery T, Sadler R, White B & Polyakov M 2019. Predicting future plantation forest development in response to policy initiatives: a case study of the Warren River Catchment in Western Australia. *Environmental science & policy* 92: 299-310.

Jamali AA & Kalkhajeh RG 2019. Urban environmental and land cover change analysis using the scatter plot, kernel, and neural network methods. *Arabian Journal of GEOSciences* 12(3): 100-116.

Tine M, Perez L & Molowny-Horas R 2019. Hybrid spatiotemporal simulation of future changes in open wetlands: a case study of the Abitibi-Temiscamingue, Quebec, Canada. *International journal of applied earth observation and geoinformation* 74: 302-313.

Xia C, Zhang AQ, Wang HJ & Zhang B 2019. Modeling urban growth in a metropolitan area based on bidirectional flows, an improved gravitational field model, and partitioned cellular automata. *International journal of geographical information science* 33(5): 877-899.

Song XD, Yang JY, Zhao MS, Zhang GL, Liu F & Wu HY 2019. Heuristic cellular automaton model for simulating soil organic carbon under land use and climate change: a case study in eastern China. *Agricultural ecosystems & environment* 269: 156-166.

Li YH, Ma QW, Song Y & Han HY 2019. Bringing conservation priorities into urban growth simulation: an integrated model and applied case study of Hangzhou, China. *Resources conservation and recycling* 140: 324-337.

Gounaridis D, Chorianopoulos I, Symeonakis E & Koukoulas S 2019. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. *Science of the total environment* 646: 320-335.

APPENDIX A

Table A.1. Spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals as selection criteria.

Year	Publications			% of Total				
2009			1388			7.315		
2010			1302			6.862		
2011			1392			7.336		
2012			1424			7.505		
2013			1529			8.058		
2014			1810			9.539		
2015			2011			10.599		
2016			2062			10.868		
2017			2197			11.579		
2018			2262			11.922		
2019			1597			8.417		
TOTAL			18974			100		
Source:	Web	of	Knowledge	database	2019	[online].	Available	from

Web of Science categories	Publications	% of Total	
Environmental sciences	4945	26.062	
Geosciences multidisciplinary	4763	25.103	
Computer science interdisciplinary applications	3297	17.376	
Engineering electrical electronic	3015	15.890	
Water resources	2539	13.381	
Computer science information systems	2443	12.876	
Computer science theory methods	2069	10.904	
Remote sensing	1887	9.945	
Meteorology atmospheric sciences	1665	8.775	
Telecommunications	1563	8.238	
Computer science artificial intelligence	1450	7.642	
Geography physical	1174	6.187	
Engineering civil	1038	5.471	
Imaging science photographic technology	986	5.197	
Engineering environmental	858	4.522	
Ecology	638	3.362	
Mathematics interdisciplinary applications	618	3.257	
Environmental studies	615	3.241	
Computer science hardware architecture	596	3.141	
Physics mathematical	587	3.094	
Geography	581	3.062	
Statistics probability	558	2.941	
Computer science software engineering	477	2.514	
Limnology	449	2.366	
Operations research management science	356	1.876	
TOTAL	18974	100	

Table A.2. Spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Web of Science category.

Country / Region			Publications	% of To	tal
USA			5419	28.560	
Peoples Republic of China			4723	24.892	
Germany			1644	8.664	
France			1300	6.851	
England			1259	6.635	
Canada			1070	5.639	
Italy			957	5.044	
Australia			935	4.928	
Japan			763	4.021	
Spain			703	3.705	
Netherlands			646	3.405	
India			627	3.305	
Switzerland			559	2.946	
South Korea			494	2.604	
Taiwan			341	1.797	
Iran			338	1.781	
Brazil			314	1.655	
Belgium			307	1.618	
Sweden			296	1.560	
Austria			276	1.455	
Norway			250	1.318	
Scotland			235	1.239	
Greece			220	1.159	
Denmark			212	1.117	
Portugal			212	1.117	
TOTAL			18974	100	
Source: Web of Knowledge	database	2019	[online].	Available	fron

Table A.3. Spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Country / Region.

Year	Publications	% of Total			
2009	97	5.456			
2010	114	6.412			
2011	106	5.962			
2012	127	7.143			
2013	138	7.762			
2014	149	8.380			
2015	171	9.618			
2016	208	11.699			
2017	235	13.217			
2018	243	13.667			
2019	190	10.686			
TOTAL	1778	100			
Source: Web	of Knowledge database	2019 [online]. Available from			

Table A.4. Urban spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals.

Web of Science categories	Publications	% of Total	
Environmental sciences	703	39.539	
Meteorology atmospheric sciences	258	14.511	
Geography	257	14.454	
Geosciences multidisciplinary	241	13.555	
Environmental studies	237	13.330	
Remote sensing	209	11.755	
Geography physical	190	10.686	
Computer science interdisciplinary applications	180	10.124	
Water resources	171	9.618	
Engineering environmental	163	9.168	
Computer science information systems	146	8.211	
Regional urban planning	137	7.705	
Urban studies	133	7.480	
Engineering civil	103	5.793	
Engineering electrical electronic	82	4.612	
Operations research management science	78	4.387	
Computer science theory methods	74	4.162	
Transportation	73	4.106	
Imaging science photographic technology	68	3.825	
Green sustainable science technology	64	3.600	
Computer science artificial intelligence	61	3.431	
Ecology	61	3.431	
Transportation science technology	59	3.318	
Information science library science	48	2.700	
Economics	47	2.643	
TOTAL	1778	100	

Table A.5. Urban spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Web of Science category.

Country / Region	Publications	% of Total
Peoples Republic of China	502	28.234
USA	423	23.791
France	130	7.312
England	117	6.580
Germany	105	5.906
Italy	92	5.174
Canada	85	4.781
Australia	77	4.331
Spain	74	4.162
Netherlands	72	4.049
Japan	70	3.937
Iran	55	3.093
India	43	2.418
South Korea	42	2.362
Portugal	40	2.250
Belgium	37	2.081
Switzerland	34	1.912
Greece	32	1.800
Taiwan	31	1.744
Denmark	28	1.575
Austria	24	1.350
Israel	24	1.350
Brazil	23	1.294
Singapore	22	1.237
Malaysia	19	1.069
TOTAL	1778	100
Source: Web of Knowledge dat	abase 2019 [online].	Available from

Table A.6. Urban spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Country / Region.

Year		Publicat	tions		% of To	tal	
2009		24			6.612		
2010		28			7.713		
2011		26			7.163		
2012		28			7.713		
2013		32			8.815		
2014		25			6.887		
2015		28			7.713		
2016		33			9.091		
2017		50			13.774		
2018		42			11.570		
2019		47			12.948		
TOTAL		363			100		
Source: Web	of	Knowledge	database	2019	[online].	Available	from

Table A.7. Urban cellular automata (CA) spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals.

Web of Science categories	Publications	% of Total
Geography	117	32.231
Geography physical	92	25.344
Environmental sciences	91	25.069
Environmental studies	75	20.661
Computer science information systems	61	16.804
Remote sensing	60	16.529
Regional urban planning	48	13.223
Computer science interdisciplinary applications	43	11.846
Urban studies	41	11.295
Geosciences multidisciplinary	40	11.019
Information science library science	34	9.366
Engineering environmental	32	8.815
Ecology	21	5.785
Green sustainable science technology	21	5.785
Operations research management science	21	5.785
Engineering electrical electronic	19	5.234
Computer science theory methods	18	4.959
Imaging science photographic technology	17	4.683
Engineering civil	15	4.132
Computer science artificial intelligence	13	3.581
Water resources	11	3.030
Computer science software engineering	6	1.653
Telecommunications	5	1.377
Transportation	5	1.377
Transportation science technology	5	1.377
TOTAL	363	100
Source: Web of Knowledge database 201	9 [online].	Available from

Table A.8. Urban CA spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Web of Science category.

Country / Region	Publications	% of Total
Peoples Republic of China	145	39.945
USA	53	14.601
Canada	27	7.438
Iran	27	7.438
Australia	23	6.336
England	22	6.061
France	19	5.234
India	19	5.234
Spain	18	4.959
Netherlands	16	4.408
Germany	13	3.581
Japan	12	3.306
Belgium	10	2.755
Italy	9	2.479
Luxembourg	8	2.204
Portugal	8	2.204
Brazil	6	1.653
Denmark	6	1.653
Malaysia	6	1.653
Taiwan	5	1.377
Austria	4	1.102
Ireland	4	1.102
Israel	4	1.102
Nigeria	3	0.826
Scotland	3	0.826
TOTAL	363	100
Source: Web of Knowledge da	tabase 2019 [online].	Available fro

Table A.9. Urban CA spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Country / Region.

Year			Publicat	tions		% of To	tal		
2009			42			5.063			
2010			59			8.228			
2011			43			8.861			
2012			52			8.861			
2013			59			10.127			
2014		71			9.494				
2015			81		13.291				
2016			101			8.861	8.861		
2017			140			11.392			
2018			138		10.127				
2019			118		5.696				
TOTAL			158			100			
Source: V	Web	of	Knowledge	database	2019	[online].	Available	from	

Table A.10. Urban agent-based (ABM) spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals.

Web of Science categories	Publications	% of Total
Geography	53	33.544
Environmental studies	35	22.152
Computer science interdisciplinary applications	32	20.253
Regional urban planning	29	18.354
Computer science information systems	28	17.722
Geography physical	23	14.557
Engineering environmental	21	13.291
Computer science artificial intelligence	18	11.392
Operations research management science	16	10.127
Urban studies	16	10.127
Computer science theory methods	13	8.228
Environmental sciences	13	8.228
Transportation	13	8.228
Remote sensing	12	7.595
Engineering civil	11	6.962
Information science library science	10	6.329
Transportation science technology	10	6.329
Engineering electrical electronic	9	5.696
Computer science software engineering	8	5.063
Geosciences multidisciplinary	7	4.430
Ecology	6	3.797
Economics	6	3.797
Water resources	5	3.165
Green sustainable science technology	4	2.532
Architecture	3	1.899
TOTAL	158	100

Table A.11. Urban ABM spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Web of Science category.

Country / Region	Publications	% of Total
USA	39	24.684
Peoples Republic of China	26	16.456
France	13	8.228
Canada	12	7.595
Netherlands	11	6.962
Australia	9	5.696
Germany	9	5.696
Israel	8	5.063
England	7	4.430
Italy	7	4.430
Spain	6	3.797
Iran	5	3.165
Switzerland	5	3.165
Austria	4	2.532
Japan	4	2.532
Scotland	4	2.532
Belgium	3	1.899
Portugal	3	1.899
Brazil	2	1.266
Colombia	2	1.266
Denmark	2	1.266
Greece	2	1.266
India	2	1.266
Ireland	2	1.266
Latvia	2	1.266
TOTAL	158	100
Source: Web of Knowledge data	abase 2019 [online].	Available from
http://apps.webofknowledge.com.ez.sun.ac.za/		

Table A.12. Urban ABM spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Country / Region.

Year	Publications	% of Total
2009	4	7.692
2010	6	11.538
2011	5	9.615
2012	6	11.538
2013	7	13.462
2014	8	15.385
2015	7	13.462
2016	3	5.769
2017	2	3.846
2018	2	3.846
2019	2	3.846
TOTAL	52	100
Source: Web	of Knowledge databa	se 2019 [online]. Available from

Table A.13. Urban AB & CA spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals.

Web of Science categories	Publications	% of Total
Geography	20	38.462
Geography physical	12	23.077
Computer science information systems	11	21.154
Computer science interdisciplinary applications	10	19.231
Environmental studies	9	17.308
Regional urban planning	7	13.462
Remote sensing	7	13.462
Engineering civil	5	9.615
Engineering electrical electronic	5	9.615
Geosciences multidisciplinary	5	9.615
Information science library science	5	9.615
Urban studies	5	9.615
Computer science artificial intelligence	4	7.692
Engineering environmental	4	7.692
Environmental sciences	4	7.692
Ecology	3	5.769
Green sustainable science technology	3	5.769
Computer science software engineering	2	3.846
Computer science theory methods	2	3.846
Imaging science photographic technology	2	3.846
Operations research management science	2	3.846
Transportation	2	3.846
Development studies	1	1.923
History of social sciences	1	1.923
Instruments instrumentation	1	1.923
TOTAL	52	100
Source: Web of Knowledge database	2019 [online].	Available from

Table A.14. Urban AB & CA spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Web of Science category.

Country / Region	Publications	% of Total
Peoples Republic of China	13	25.000
USA	8	15.385
Canada	6	11.538
Australia	5	9.615
Germany	5	9.615
India	5	9.615
Austria	3	5.769
Belgium	2	3.846
England	2	3.846
France	2	3.846
Iran	2	3.846
Israel	2	3.846
Italy	2	3.846
Portugal	2	3.846
Scotland	2	3.846
Iraq	1	1.923
Ireland	1	1.923
Japan	1	1.923
Luxembourg	1	1.923
Netherlands	1	1.923
New Zealand	1	1.923
Nigeria	1	1.923
Singapore	1	1.923
South Africa	1	1.923
TOTAL	52	100
Source: Web of Knowledge dat	abase 2019 [online].	Available from

Table A.15. Urban AB & CA spatial simulation publications per year over the period 2009-2019 using selected environmental, GIScience and planning journals per Country / Region.

APPENDIX B

Table B.1. Percentage of the urban population residing in each urban agglomeration with 300,000 inhabitants or more in 2018, by Country, 2020-2035.

Country	2020	2025	2030	Difference	Rate of change
China	67,03	69,17	70,09	3,07	4,57
Bahrain	41,76	44,27	44,73	2,97	7,12
Lebanon	45,29	47,28	47,51	2,22	4,91
Kuwait	72,38	73,98	74,31	1,93	2,66
Estonia	49,45	50,90	51,33	1,87	3,79
Turkey	66,71	68,13	68,42	1,71	2,57
Equatorial Guinea	40,40	41,61	41,92	1,52	3,77
United Arab Emirates	82,52	83,78	84,02	1,50	1,82
Kazakhstan	59,17	60,39	60,60	1,44	2,43
Burundi	61,90	62,89	63,31	1,41	2,28
Mongolia	71,90	73,00	73,21	1,31	1,82
Vietnam	55,05	56,02	56,33	1,28	2,33
Cameroon	66,54	67,51	67,71	1,18	1,77
Bulgaria	37,36	38,00	38,52	1,15	3,09
Malaysia	52,92	53,70	54,01	1,09	2,06
Costa Rica	51,69	52,32	52,61	0,93	1,80
Madagascar	38,98	39,62	39,86	0,88	2,27
Mauritania	49,67	50,30	50,55	0,88	1,76
Libya	53,40	53,98	54,18	0,79	1,47
Myanmar	43,14	43,77	43,87	0,73	1,69
Albania	27,02	27,49	27,74	0,72	2,65
Somalia	66,04	66,57	66,75	0,71	1,08
Belarus	54,75	55,32	55,46	0,70	1,28
Bangladesh	49,27	49,70	49,96	0,68	1,39
Colombia	69,98	70,50	70,65	0,67	0,96
TFYR Macedonia	48,75	49,31	49,41	0,66	1,35

Country	2020	2025	2030	Difference	Rate of change
South Africa	68,24	68,72	68,88	0,64	0,93
Honduras	41,38	41,81	42,01	0,63	1,52

Source: Adapted from UNDESA population prospects database 2019 [online]. Available from https://population.un.org/wpp/DataQuery/ [Accessed 4 October 2019].

Countries	Bing map	2020	2025	2030	Difference	Rate of
	reference					change
China	China	67,03	69,17	70,09	3,07	4,57
Bahrain	Bahrain	41,76	44,27	44,73	2,97	7,12
Lebanon	Lebanon	45,29	47,28	47,51	2,22	4,91
Kuwait	Kuwait	72,38	73,98	74,31	1,93	2,66
Estonia	Estonia	49,45	50,90	51,33	1,87	3,79
Turkey	Republic of	66,71	68,13	68,42	1,71	2,57
	Turkey					
Equatorial	Equatorial	40,40	41,61	41,92	1,52	3,77
Guinea	Guinea					
United Arab	United Arab	82,52	83,78	84,02	1,50	1,82
Emirates	Emirates					
Kazakhstan	Kazakhstan	59,17	60,39	60,60	1,44	2,43
Burundi	Burundi	61,90	62,89	63,31	1,41	2,28
Mongolia	Mongolia	71,90	73,00	73,21	1,31	1,82
Viet Nam	Viet Nam	55,05	56,02	56,33	1,28	2,33
Cameroon	Cameroon	66,54	67,51	67,71	1,18	1,77
Bulgaria	Bulgaria	37,36	38,00	38,52	1,15	3,09
Malaysia	Malaysia	52,92	53,70	54,01	1,09	2,06
Costa Rica	Costa Rica	51,69	52,32	52,61	0,93	1,80
Madagascar	Madagascar	38,98	39,62	39,86	0,88	2,27
Mauritania	Mauritania	49,67	50,30	50,55	0,88	1,76
Libya	Libya	53,40	53,98	54,18	0,79	1,47
Myanmar	Myanmar	43,14	43,77	43,87	0,73	1,69
Albania	Albania	27,02	27,49	27,74	0,72	2,65
Somalia	Somalia	66,04	66,57	66,75	0,71	1,08
Belarus	Belarus	54,75	55,32	55,46	0,70	1,28

Table B.2. Percentage of the urban population residing in each urban agglomeration with 300,000 inhabitants or more in 2018, by Country, 2020-2035.

Countries	Bing map	2020	2025	2030	Difference	Rate of
	reference					change
Bangladesh	Bangladesh	49,27	49,70	49,96	0,68	1,39
Colombia	Colombia	69,98	70,50	70,65	0,67	0,96
TFYR	TFYR	48,75	49,31	49,41	0,66	1,35
Macedonia	Macedonia					
South Africa	South Africa	68,24	68,72	68,88	0,64	0,93
Honduras	Honduras	41,38	41,81	42,01	0,63	1,52
Russian	Russian	54,72	55,23	55,33	0,61	1,12
Federation	Federation					
Spain	Spain	48,23	48,73	48,83	0,60	1,24
Finland	Finland	34,50	35,00	35,10	0,60	1,73
Ghana	Ghana	42,26	42,69	42,85	0,58	1,38
Guinea-	Guinea-	67,82	68,28	68,40	0,57	0,84
Bissau	Bissau					
Benin	Benin	41,74	42,19	42,28	0,55	1,31
Sweden	Sweden	28,81	29,24	29,36	0,55	1,90
Nepal	Nepal	29,62	30,06	30,15	0,53	1,79
Saudi Arabia	Saudi Arabia	77,94	78,35	78,46	0,52	0,67
Dominican	Dominican	43,43	43,77	43,95	0,52	1,20
Republic	Republic					
Japan	Japan	79,93	80,17	80,42	0,50	0,62
Latvia	Latvia	48,77	49,25	49,26	0,49	1,01
Brazil	Brazil	58,19	58,54	58,68	0,49	0,84
New Zealand	New Zealand	57,74	58,09	58,17	0,43	0,75
Democratic	Democratic	70,59	70,75	71,00	0,41	0,59
Republic of	Republic of					
the Congo	the Congo					
Lithuania	Lithuania	27,76	28,07	28,17	0,40	1,46
India	India	58,31	58,62	58,71	0,40	0,69
Denmark	Denmark	26,36	26,69	26,76	0,40	1,51

Countries	Bing map	2020	2025	2030	Difference	Rate of
	reference					change
Pakistan	Pakistan	67,90	68,19	68,25	0,36	0,52
Peru	Peru	60,02	60,27	60,36	0,34	0,57
Yemen	Yemen	60,82	60,97	61,15	0,33	0,54
Switzerland	Switzerland	53,67	53,93	53,98	0,32	0,59
Panama	Panama	63,39	63,62	63,71	0,31	0,49
Burkina Faso	Burkina Faso	58,65	58,72	58,96	0,31	0,53
Congo	Congo	93,39	93,65	93,70	0,31	0,33
Venezuela	Venezuela	52,22	52,42	52,50	0,29	0,55
(Bolivarian	(Bolivarian					
Republic of)	Republic of)					
Australia	Australia	83,42	83,64	83,70	0,28	0,34
Angola	Angola	61,36	61,38	61,64	0,28	0,45
Serbia	Serbia	28,45	28,70	28,72	0,27	0,94
Rwanda	Rwanda	49,63	50,00	49,88	0,26	0,52
Iran (Islamic	Iran (Islamic	50,99	51,12	51,25	0,26	0,51
Republic of)	Republic of)					
Belgium	Belgium	41,07	41,27	41,31	0,24	0,59
Thailand	Thailand	76,30	76,48	76,53	0,23	0,30
Indonesia	Indonesia	31,79	31,87	32,01	0,22	0,71
Germany	Germany	26,40	26,60	26,62	0,22	0,83
Jordan	Jordan	50,05	50,32	50,26	0,22	0,43
China,	Taiwan	73,89	74,04	74,10	0,21	0,29
Taiwan						
Province of						
China						
Czechia	Czechia	21,39	21,53	21,58	0,19	0,90
Austria	Austria	37,41	37,57	37,60	0,19	0,51
Hungary	Hungary	25,54	25,69	25,73	0,19	0,73
Canada	Canada	75,50	75,65	75,68	0,19	0,25

Countries	Bing map	2020	2025	2030	Difference	Rate of
	reference					change
Netherlands	Netherlands	23,73	23,83	23,91	0,18	0,77
Tunisia	Tunisia	36,17	36,26	36,35	0,18	0,50
Slovakia	Slovakia	14,84	15,01	15,02	0,18	1,19
United	United	53,38	53,49	53,54	0,17	0,31
Kingdom	Kingdom					
United States	United States	76,02	76,15	76,19	0,16	0,22
of America	of America					
Mexico	Mexico	70,04	70,08	70,21	0,16	0,23
South Sudan	South Sudan	14,67	14,80	14,82	0,15	1,02
Qatar	Qatar	64,90	64,97	65,04	0,14	0,21
Chile	Chile	61,07	61,15	61,19	0,13	0,21
Haiti	Haiti	42,73	42,67	42,83	0,11	0,25
Uzbekistan	Uzbekistan	26,29	26,40	26,40	0,11	0,41
Norway	Norway	23,03	23,10	23,13	0,10	0,43
Cambodia	Cambodia	51,30	51,38	51,39	0,09	0,18
Italy	Italy	62,01	62,07	62,08	0,08	0,13
Zambia	Zambia	48,01	48,00	48,09	0,07	0,15
Armenia	Armenia	58,39	58,46	58,45	0,06	0,11
Bolivia	Bolivia	64,14	64,15	64,20	0,05	0,08
(Plurinational	(Plurinational					
State of)	State of)					
State of	State of	17,48	17,49	17,53	0,05	0,30
Palestine	Palestine					
Uruguay	Uruguay	52,50	52,52	52,56	0,05	0,10
Israel	State of Israel	85,51	85,55	85,56	0,05	0,06
Ukraine	Ukraine	40,03	40,13	40,07	0,04	0,10
Ecuador	Ecuador	50,72	50,72	50,74	0,02	0,04
Portugal	Portugal	63,02	62,98	63,02	0,00	0,01
Paraguay	Paraguay	83,26	83,26	83,26	0,00	0,00

Countries	Bing map	2020	2025	2030	Difference	Rate of
	reference					change
China, Hong	China, Hong	100,00	100,00	100,00	0,00	0,00
Kong SAR	Kong SAR					
China,	China,	100,00	100,00	100,00	0,00	0,00
Macao SAR	Macao SAR					
Singapore	Singapore	100,00	100,00	100,00	0,00	0,00
Argentina	Argentina	63,22	63,13	63,20	-0,02	-0,03
Cuba	Cuba	32,55	32,52	32,53	-0,02	-0,06
Kyrgyzstan	Kyrgyzstan	44,71	44,73	44,68	-0,03	-0,06
Ireland	Ireland	39,47	39,43	39,43	-0,04	-0,10
Ethiopia	Ethiopia	26,43	26,30	26,39	-0,04	-0,16
Philippines	Philippines	59,29	59,25	59,25	-0,05	-0,08
Egypt	Egypt	71,30	71,37	71,25	-0,05	-0,08
Puerto Rico	Puerto Rico	80,45	80,43	80,35	-0,10	-0,12
Liberia	Liberia	57,07	56,97	56,96	-0,11	-0,19
France	France	45,64	45,53	45,53	-0,11	-0,24
Algeria	Algeria	18,96	18,77	18,84	-0,12	-0,63
Eritrea	Eritrea	42,88	42,69	42,74	-0,13	-0,31
Turkmenistan	Turkmenistan	26,72	26,58	26,59	-0,13	-0,49
Republic of	South Korea	82,81	82,68	82,66	-0,15	-0,18
Korea						
Croatia	Croatia	28,91	28,82	28,75	-0,16	-0,55
Poland	Poland	26,12	26,14	25,96	-0,16	-0,62
Sri Lanka	Sri Lanka	15,53	15,44	15,35	-0,17	-1,10
Greece	Greece	44,81	44,63	44,61	-0,20	-0,44
Nigeria	Nigeria	53,76	53,38	53,56	-0,20	-0,38
United	United	46,79	46,52	46,55	-0,24	-0,51
Republic of	Republic of					
Tanzania	Tanzania					
Azerbaijan	Azerbaijan	53,31	53,01	53,06	-0,25	-0,47

Countries	Bing map	2020	2025	2030	Difference	Rate of
	reference					change
Sierra Leone	Sierra Leone	34,80	34,54	34,52	-0,28	-0,80
Afghanistan	Afghanistan	59,14	58,85	58,83	-0,31	-0,52
Bosnia and	Bosnia and	20,01	19,70	19,65	-0,36	-1,79
Herzegovina	Herzegovina					
Dem.	North Korea	30,74	30,42	30,38	-0,36	-1,17
People's						
Republic of						
Korea						
Namibia	Namibia	30,73	30,37	30,37	-0,37	-1,19
Uganda	Uganda	28,01	27,64	27,65	-0,37	-1,30
Morocco	Morocco	52,32	51,80	51,91	-0,41	-0,79
Tajikistan	Tajikistan	35,14	34,81	34,69	-0,45	-1,28
Georgia	Georgia	46,50	46,08	46,04	-0,46	-1,00
Romania	Romania	26,03	25,79	25,56	-0,47	-1,81
Kenya	Kenya	50,43	49,88	49,89	-0,55	-1,08
Chad	Chad	37,14	36,65	36,47	-0,67	-1,80
Nicaragua	Nicaragua	28,09	27,53	27,42	-0,67	-2,39
Trinidad and	Trinidad and	74,23	73,70	73,52	-0,71	-0,95
Tobago	Tobago					
Jamaica	Jamaica	36,02	35,38	35,31	-0,72	-1,99
Djibouti	Djibouti	73,82	73,06	72,95	-0,87	-1,18
Mali	Mali	33,73	32,78	32,77	-0,96	-2,83
Iraq	Iraq	62,71	61,79	61,72	-0,99	-1,57
Côte d'Ivoire	Côte d'Ivoire	42,67	41,77	41,66	-1,02	-2,38
El Salvador	El Salvador	23,24	22,27	22,16	-1,08	-4,63
Papua New	Papua New	32,74	31,96	31,65	-1,09	-3,32
Guinea	Guinea					
Oman	Oman	44,34	43,37	43,21	-1,12	-2,54
Guatemala	Guatemala	31,61	30,56	30,42	-1,19	-3,76

Countries	Bing map	2020	2025	2030	Difference	Rate of
	reference					change
Republic of	Republic of	28,99	28,01	27,79	-1,20	-4,15
Moldova	Moldova					
Senegal	Senegal	46,70	45,59	45,49	-1,21	-2,59
Lao People's	Lao People's	26,25	25,04	24,95	-1,30	-4,94
Democratic	Democratic					
Republic	Republic					
Sudan	Sudan	57,41	56,30	56,01	-1,40	-2,43
Guinea	Guinea	38,23	37,02	36,81	-1,42	-3,71
Malawi	Malawi	58,11	56,89	56,51	-1,60	-2,75
Niger	Niger	44,50	43,28	42,82	-1,67	-3,76
Central	Central	42,82	41,45	41,14	-1,68	-3,93
African	African					
Republic	Republic					
Mozambique	Mozambique	45,46	43,85	43,67	-1,78	-3,92
Gabon	Gabon	43,04	41,42	41,12	-1,92	-4,47
Togo	Togo	50,94	49,09	48,88	-2,06	-4,04
Gambia	Gambia	31,40	29,48	29,30	-2,10	-6,69
Zimbabwe	Zimbabwe	44,81	42,33	41,70	-3,11	-6,94
Syrian Arab	Syrian Arab	84,60	77,11	78,27	-6,34	-7,49
Republic	Republic					

Source: UNDESA population prospects database 2019 [online]. Available from https://population.un.org/wpp/DataQuery/ [Accessed 4 October 2019].