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ABSTRACT 

Current scientific planning instruments and practices are inadequate to address the 

multidimensional problems and challenges faced by cities as complex dynamic systems. The aim 

of this research is to provide an international comparative analysis of Cellular Automata (CA) and 

Agent-based modelling (ABM) techniques and its potential application within spatial planning 

practices. The research provides explanations on the key considerations for spatial simulation 

model conceptualization, components, design and construction. Cellular Automata (CA) and 

Agent-based modelling (ABM) techniques abstract the real-world into a series of layers as a visual 

representation of complexity and spatial-temporal urban dynamics. The meta-analysis of published 

spatial simulation research results over the past decade (2009 – 2019) found that urban modelling 

approaches have grown consistently. Applications of urban simulation models appear to be 

regionally divergent with the major focus on the global North. Uptake of these urban models is 

lagging in areas with rapid urbanization and urban growth rates, which are predominantly located 

in the global South (including South Africa). The comparative analysis found that the development 

and design of urban models are also now incorporating aspects of strategic planning within their 

scenarios in order to measure and monitor the appropriateness and effectiveness of policy 

interventions, such as urban growth boundaries, zoning schemes, sustainable development 

outcomes and environmental protection zones. The research found that CA and ABM-based urban 

models improve the understanding of the local and historical contingent factors and how 

multidimensional and complex problems influence urban systems across time and space. 

Keywords: spatial planning, complexity, model, dynamic, spatial simulation, urban model, 

complex systems, cities, cellular automata, agent-based model.  
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OPSOMMING 

Huidige instrumente en praktyke vir wetenskaplike beplanning is onvoldoende om die 

multidimensionele probleme en uitdagings wat stede as komplekse dinamiese stelsels in die gesig 

staar, die hoof te bied. Die doel van hierdie navorsing is om 'n internasionale vergelykende analise 

van Cellular Automata (CA) en Agent-gebaseerde modellering (ABM) tegnieke te bied en die 

potensiële toepassing daarvan binne ruimtelike beplanningspraktyke. Die navorsing verskaf 

verduidelikings oor die sleuteloorwegings vir ruimtelike simulasiemodelkonseptualisering, 

komponente, ontwerp en konstruksie. Cellular Automata (CA) en Agent-gebaseerde modellering 

(ABM) tegnieke abstrakteer die werklikikeid in 'n reeks lae as 'n visuele voorstelling van 

kompleksiteit en ruimtelik-temporele stedelike dinamika. Die meta-analise van gepubliseerde 

navorsingsresultate vir ruimtelike simulasie oor die afgelope dekade (2009 - 2019) het bevind dat 

die benaderings vir stedelike modellering konsekwent gegroei het. Toepassings van stedelike 

simulasiemodelle blyk streeks uiteenlopend te wees, met die grootste fokus op die ontwikkelde 

wêrel. Die gebruik van hierdie stedelike modelle hou egter nie verband met gebiede wat 'n vinnige 

verstedeliking en stedelike groeikoers ondervind nie, soos byvoorbeeld die globale Suide 

(insluitend Suid-Afrika). Die vergelykende ontleding het bevind dat die ontwikkeling en ontwerp 

van stedelike modelle nou ook aspekte van strategiese beplanning binne hul vooruitbeplanning 

inkorporeer om die toepaslikheid en doeltreffendheid van beleidsintervensies, soos stedelike 

groeigrense, soneringskemas, volhoubare ontwikkelingsuitkomste en 

omgewingsbeskermingsones. Uit die navorsing is bevind dat CA- en ABM-gebaseerde stedelike 

modelle die begrip van die plaaslike en historiese faktore verbeter en hoe multidimensionele en 

ingewikkelde probleme stedelike stelsels oor tyd en ruimte beïnvloed. 

Kernwoorde: ruimtelike beplanning, kompleksiteit, model, dinamiese, ruimtelike simulasie, 

stedelike model, komplekse stelsels, stede, sellulêre outomate, agent gebaseerde model 
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CHAPTER 1: INTRODUCTION 

“We live in an age of cities” (Batty 2013: xvii). 

 

1 INTRODUCTION AND RATIONALE 

According to the United Nation’s Report on World Urbanization Prospects for 2018, 55% of 

the global population resides in urban areas, and it is projected that by 2050, 68% of the 

population will be urban. Regional differences based on urbanisation levels are also evident 

with the most significant growth happening in large cities in the global South. These 

concentrations of large cities are experiencing an average annual growth rate of 1.8 percent, 

(UN: DESA 2019) which means that these cities will double their population in approximately 

39 years. It is projected that the urban population growth rate between 2018 and 2050 will be 

concentrated (approximately 90 percent) within Asia and Africa which is also predominantly 

categorised as low-income and lower-middle-income countries (UN: DESA 2019).  

 

“The future of the world’s population is urban” (UN: DESA 2019:1) and phenomena of 

urbanisation and migration need to be integrated into strategic planning and should be 

adequately managed in order to achieve inclusive, safe, resilient and sustainable cities. 

Government policies for planning and managing sustainable urban growth should particularly 

be formulated and implemented in countries that will experience rapid urbanization (i.e. low-

income and lower-middle-income within Africa and Asia) because when left unplanned or 

inadequately managed will lead to unprecedented pressures on cities and their ability to provide 

essential services (Crooks et al 2018). It will also result in increased inequalities, resource 

depletion, reduced quality of life and environmental degradation (UN: DESA 2019).  

 

The role of spatial planners in this complex and dynamic urban landscape is to “create bridges 

between ‘what is’ and ‘what could be’, (or in normative terms) ‘what should be’ and ‘what is 

desired’ (De Roo et al 2016:1). The ‘what is’ or ‘object1 of spatial planning’ represents, for 

instance, the issues stated above namely uncontrolled and unplanned urbanisation, which 

                                                 

 
1 Refers to the specific object which requires planning intervention and it is related in this instance to 

spatial planning practice (Alexander 2015). 
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requires specific planning interventions. This issue itself is not simple or straightforward and 

occurs within a highly complex dynamic landscape with inherent local and historical 

contingent factors (space complexity). Moreover, the issue is multidimensional, it occurs 

within different stages over time (dynamic and non-linear), and within contextually dynamic 

spatial planning practices2 (De Roo et al 2016; Crooks et al 2018). Planners have noted over 

the last decade that there is an inadequacy of using existing scientific methods and practices 

rooted in logical positivism to address the problems and challenges that they must deal with 

daily (De Roo & Silva 2011; McAdams 2012; De Roo 2016).  

 

Complexity science offers a perspective for understanding and dealing with aspects such as 

dynamics, flows, networks, uncertainty, open systems, and time, that can be found within 

reality and complex systems (Batty 2013; De Roo et al 2016). Complex systems such as cities 

are adaptive, emergent, dynamic and non-linear (De Roo & Silva 2011). The theory and 

application of complexity science can be considered as bridges and linkages between the 

theoretical ideas found within complexity sciences and urban theories and planning theory (De 

Roo et al 2016). Urban theories (theory in planning) refers to the object of planning, namely 

the city and how the ‘desired’ urban form and function of the city can be produced, while 

planning theory (theories in planning) refers to the processes, actions and interactions of how 

to plan in order to resolve problems and achieve outcomes (Alexander 2015).  

 

The new ‘science of cities’ could provide insights into the complexity of the city and when 

combined with the normative discussion (De Roo 2011; De Waal 2018; Schintler & Chen 2018) 

of ‘what should the sustainable, liveable and resilient city look like’ can assist planners to 

become managers of change where negatives are avoided, and positive effects of change3 are 

embraced over time and space (De Roo & Silva 2011).  

 

                                                 

 
2 Refers to the distinctive elements characterizing real-life practice of planning i.e. spatial planning and 

the planner’s toolkit which provides them with their distinctive contribution in the co-construction of 

knowledge for collective decision-making and action (Alexander 2015). 

3 Change is an evolutionary process and includes time, evolution, transition and space (De Roo, 2011: 

7). 

Stellenbosch University https://scholar.sun.ac.za



3 

An important element of the new ‘science of cities’, is the use of spatial simulation models as 

quantitative methods for measuring complex real-world systems and phenomena (e.g. urban 

expansion; growth etc.). Spatial simulation models represent distinct spatial elements and their 

relationships for a complete understanding of the system under consideration. Because cities 

cannot be analysed through controlled experiments, “a computer is programmed to iteratively 

recalculate the modelled system state as it changes over time in accordance with the 

relationship represented by the mathematical and other relationships that describe the system” 

(O’Sullivan & Perry 2013:9). It allows for a simplified view of the integrated phenomena and 

provides a platform for convenient exploration of the implications of a dynamic model without 

impacting on the real-world system (Batty 2005; O’Sullivan & Perry 2013).  

 

It not only provides quantitative data but also qualitative interpretation which makes these 

techniques of interest in support of spatial planning practices (De Roo 2011; O’Sullivan & 

Perry 2013). The increased development of computer science coupled with the improvements 

in the availability of data, data quality and processing standards, have further increased the 

demand for these spatial simulation models (urban models).  

 

1.1 RESEARCH PROBLEM 

Complexity science offers a perspective for understanding and dealing with complex systems 

(Batty 2013; De Roo et al 2016). This science of cities can provide insights into the complexity 

of the city and when combined with the normative discussion (De Roo 2011; De Waal 2018; 

Schintler & Chen 2018) dealing with. ‘what should the sustainable, liveable and resilient city 

look like’ can assist spatial planners to become managers of change (De Roo & Silva, 2011) 

within the context of a rapidly urbanizing environment (UN: DESA 2019).  

 

The science of cities uses inter alia spatial simulation models (urban models) for measuring 

the complex real-world systems and phenomena (e.g. urban expansion; growth etc.) and with 

the increased development of computer science coupled with the improvements in availability 

of data, data quality and processing standards have further increased the demand for these 

spatial simulation models (urban models). There is a lack of understanding in the fundamental 

and technical aspects of urban model design, construction and the application thereof within 

spatial planning practices. 
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The focus of this research is to understand the scientific theories, concepts and models around 

the application of the science of cities (complexity theory, spatial simulation modelling, spatial 

planning practices) in order to understand cities as complex and dynamic systems.  

 

1.2 RESEARCH QUESTIONS 

The following research questions will be addressed through this research study: 

 What are the leading debates on complexity theory and how it is related to and describe 

the complexity of cities?  

 Which quantitative spatial simulation models (urban models) are used to measure 

complex systems (cities) and what are the concepts, methods and techniques used by 

these models? 

 In the body of knowledge/literature, has the amount of publications, distribution and 

nature of the applications within the field of spatial simulation models (urban models), 

which includes Cellular Automata (CA), Agent-based modelling (ABM) and hybrids 

(including both CA and ABM) grown internationally and within South Africa over the 

last ten (10) years (period 2009 – 2019)? 

 In practice, how has the selected quantitative spatial simulation models (urban models) 

been developed and used internationally over the last five (5) years (period 2015 – 

2019)? 

 

1.3 RESEARCH AIMS AND OBJECTIVES 

At a theoretical level, the research is interested in understanding the scientific theories, 

concepts and models around the application of the science of cities (complexity theory, spatial 

simulation modelling, spatial planning practices) in order to understand complex and dynamic 

systems. Many studies have attempted to define and demonstrate the relationship between 

complexity science and the applications of the science to cities (Batty 2013; De Roo & Silva 

2011; O’Sullivan & Perry 2013; De Roo et al 2016; Silva et al 2014; Schintler & Chen 2018; 

Wilson 2017; McAdams 2012; Pumain 1998). However, little research has gone into providing 

a comparative analysis of the spatial simulation models (urban models) and its potential 

application within spatial planning practices. 
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The research hence aims to improve the knowledge base and explain the fundamental and 

technical aspects in urban model design and construction, including highlighting the 

relationship and operational application of spatial simulation modelling (urban models) within 

spatial planning practices. 

 

In order to achieve this aim of the research, the following objectives have been set for the study: 

 Conduct research and compile a comprehensive literature review and content analysis 

to explain complexity theory and demonstrate the connection between the theory; the 

way cities are conceptualised, spatial simulation models (urban models), and spatial 

planning practices. 

 Conduct a conceptual analysis to identify and explain the key components (concepts, 

methods and techniques) of the quantitative spatial simulation models (urban models). 

 Identify and provide an evaluation of spatial simulation publications which includes 

Cellular Automata (CA), Agent-based modelling (ABM) and hybrids (including both 

CA and ABM) that have been published internationally over the last ten (10) years. 

 Identify the assessment criteria and provide a comparative evaluation of the selected 

quantitative spatial simulation models. The spatial simulation models (urban models) 

includes CA, ABM and hybrids (CA and ABM) that have been developed and 

practically implemented internationally over the last five (5) years. 

 Analyse and interpret the results from the comparative assessment. 

 Draw conclusions about the relationships between complexity theory; the way cities are 

conceptualised, spatial simulation models (urban models), and spatial planning 

practices. 

 

1.4 RESEARCH DESIGN  

The research framework identified is a qualitative research approach focussing on content 

analysis, conceptual analysis and literature review. The typology of the research design is 

mapped out using the following four dimensions, namely: 

 Empirical versus non-empirical studies;  

 Primary versus secondary data;  

 Numerical versus textual data; and – 
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 Degree of control (Mouton 2001).  

 

Figure 1 illustrates the design classification of the research framework by cross-tabulating the 

first two dimensions.  

 

Source: adapted from Mouton 2001 

Figure 1: Mapping designs (Level 1)  
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Figure 2 illustrates the design classification of the research framework by cross-tabulating the 

dimensions of primary/secondary data and the degree of control.  

 

 

Source: adapted from Mouton 2001 

Figure 2: Mapping designs (Level 2) 

 

The research design is categorised as a textual analysis and assists with the achievement of the 

research aims and objectives. 

  

The following components (refer to section 3.2 for detailed descriptions) have been highlighted 

as design elements for consideration in the comparative analysis of the selected spatial 

simulation models (urban models) (O’Sullivan & Perry 2013; Wray C et al 2013; Chang K 

2014; Wray C et al 2015): 
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 Model name; 

 Main purpose/description of the model; 

 Key model components; 

 Model classification; 

 Data inputs; 

 Indication of model calibration and validation; 

 Model grain;  

 Model extent; 

 Type of agents and neighbourhoods; and – 

 Time period. 

 

Strengths of the identified research design include the ability to analyse large volumes of 

literature, and when the classification system is well-structured, it provides conceptual clarity, 

identifies theoretical linkages and reveals the conceptual differing viewpoints and applications 

(Mouton 2001).  

 

Challenges and limitations to the approach include the lack of generalisability, methodological 

concerns on the selection of data sources, being vulnerable to interpretation biases and poor 

organisation and integration (Mouton 2001).  

 

1.5 RESEARCH METHODOLOGY 

1.5.1 Sources of data. 

Data collection in the research strategy is predominantly focused on textual analysis, 

utilising secondary data sources accessed through the Stellenbosch University Library 

which includes books, articles, journals and e-databases, open source portals and other 

applicable internet sources. 

 

1.5.2 Selection of cases. 

The area selection will focus on spatially explicit simulation models (urban models) 

used to measure complexity in cities quantitatively. Based on the selection criteria, the 
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urban models included are Cellular Automata (CA), Agent-based modelling (ABM), 

and hybrid models (these includes a combination of CA and ABM).  

 

A meta-analysis will focus on a review of the number of academic publications on 

urban models, as well as the distribution and nature of applications throughout 2009 – 

2019 (10 years), both internationally and within South Africa. From this main list, the 

detailed analysis (comparative evaluation) of the urban models will then focus on the 

period between 2015 – 2019, which follows on from the time period after the GCRO 

report and the subsequent publications (Wray C et al 2013; Wray C et al 2015). The 

detailed analysis will focus on the practical application of urban models within the five 

(5) year period and will include peer-reviewed and accessible academic publications.  
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CHAPTER 2: CITIES AND COMPLEXITY 

“Roughly, by a complex system, I mean one made up of a large number of parts that 

interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not 

in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the 

properties of the parts and the laws of interaction, it is not a trivial matter to infer the 

properties of the whole.” (Herbert A. Simon, 1962 as referenced in Batty 2005:v, 65) 

& 

“Cities happen to be problems in organized complexity, like the life sciences. They 

present situations in which half a dozen or several dozen quantities are all varying 

simultaneously and in subtly interconnected ways…. The variables are many but they are not 

helter skelter; they are interrelated into an organic whole”. “Why have cities not long since 

been identified, understood, and treated as problems of organized complexity?... (Jane 

Jacobs, 1961 as referenced in Batty 2005:1) 

 

2 INTRODUCTION 

Cities are examples of organised complexity where urban development (change) emerge from 

the bottom-up and the spatial order that we see are driven by patterns. General features of the 

structure and dynamics of these organised complex systems include path dependence, positive 

feedback, self-organisation and emergence. In studying organised complexity, the interaction 

effects are significant as individual interactions between components in one part of the system 

can unexpectedly change (non-linear dynamics & chaos) and can cause system-wide transitions 

(phase transitions/bifurcations). The complex and chaotic nature of the system makes 

predictability difficult, and these systems are deemed irreducible 4 , which makes spatial 

simulation models (urban models) an important tool for understanding and exploring complex 

system behaviour (Batty 2005; Silva 2011a; Silva 2011b; Xie & Yang 2011; O’Sullivan & Perry 

2013). 

 

                                                 

 
4 The system behaviour cannot be easily reduced to “aggregate rules of thumb or predict the precise 

outcome of a given starting configuration, even if the systems are completely deterministic” (O’Sullivan 

& Perry 2013:22).  
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The role of spatial planners in this complex and dynamic urban landscape is to “create bridges 

between ‘what is’ and ‘what could be’, (or in normative terms) ‘what should be’ and ‘what is 

desired’ (De Roo et al 2016:1). The ‘what is’ or ‘object of spatial planning’ represents, for 

instance, the issues of uncontrolled and unplanned urbanisation which requires specific 

planning interventions. This phenomenon itself is not simple or straightforward, it occurs 

within a highly complex dynamic landscape with inherent local and historical contingent 

factors; the phenomena is multidimensional; it occurs within different stages over time; and 

within contextually dynamic spatial planning practices (De Roo et al 2016; Crooks et al 2018). 

Planners have noted over the last decade that there is an inadequacy of using existing scientific 

methods and practices rooted in logical positivism to address the problems and challenges that 

they must deal with daily (De Roo & Silva 2011; McAdams 2012; De Roo 2016).  

 

The new ‘science of cities’ could provide insights into the complexity of the city and when 

combined with the normative discussion (De Roo 2011; De Waal 2018; Schintler L.A & Chen 

Z 2018) of ‘what should the sustainable, liveable and resilient city look like’ can assist planners 

to become managers of change where negatives are avoided, and positive effects of change are 

embraced over time and space (De Roo & Silva, 2011).  

 

The aim of the chapter is to acquaint the spatial planner (modeller/ user) with the language (i.e. 

meaning, metaphors5, theories) of complexity science and how the science provides the bridge 

between complex systems, modelling techniques and practical applications within cities.  

 

2.1 PROGRESS FROM METAPHOR, MEANING (THEORY) AND CITIES 

According to Wilson (2014), Warren Weaver theorised during the 1940s and 1950s about 

complex systems and classified them broadly into simple and complex systems. These 

classifications were further defined, namely simple systems are describable by a small number 

                                                 

 
5 Metaphors are symbols or linguistic representations which allows the simplification of very intricate 

and detailed discussions, mathematics and theories in order to facilitate their application and further 

understanding (McAdams 2012; Sui 2011).  
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of variables, while complex systems need many variables to describe them and they are divided 

into disorganised complexity and organised complexity.  

 

Cities are defined as organised complexity comprising of numerous intricate and integrated 

components and subsystems, which through the interaction of agents (individuals, politicians, 

urban planners, developers or organisations with specific characteristics) create the behaviour 

of self-organisation (Batty 2005; Nel 2009; De Roo 2011; Bertolini 2011; McAdams 2012). 

Cities mainly grow from these local actions and are based on individual decisions about 

development, which includes planning decisions that are implemented locally (Batty 2005). 

Self-organisation is the process where agents interact collectively (McAdams 2012), and these 

local actions then create global patterns (Batty 2005). Self-organisation can also only emerge 

if individuals were free to interact and are capable of interacting and if their actions were 

facilitated by appropriate rules that command popular support (Nel 2009). In the context of 

cities, these patterns are formed from basic units of development for example neighbourhoods 

that grow and change, and which provides an essential social organisation for the delivery of 

basic services and infrastructure, social networks and economic opportunities (Batty 2005). 

Actions of agents also do not exhibit equal influence or result in the same spatial patterns, for 

example, politicians and developers based on their self-interest can influence land use 

development processes (McAdams 2012) to either produce urban sprawl or compact cities.  

 

Another characteristic of complex systems is that they are non-linear and have an extreme 

sensitivity to initial conditions, also referred to as a chaotic system (Batty 2005; Nel 2009; 

Reggiani & Nijkamp 2009; McAdams 2012; O’Sullivan & Perry 2013). These non-linear and 

chaotic systems exhibit surprising shifts in their behaviour (phase transitions) in response to 

seemingly minor changes in their initial states (states of emergence) and can result in unplanned 

and unexpected patterns via positive feedback6, self-organisation and path dependence7 , for 

example, flocking of birds, weather patterns or the formation of galaxies and stars. These local 

                                                 

 
6 Positive feedback itself tends to generate path-dependent behaviour and diffusion, giving rise to 

growing and declining structures. In economic systems growth takes place as returns to scale and can 

either be constant, increasing or decreasing. In cities it can simulate the distance effect on markets and 

locations and population growth (Batty 2005). 

7 Qualitative different trajectories that emerge from the application of initial conditions. Leading to 

lock-in mechanisms that leads to a growth path (Batty 2005:29). 
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interactions among the system components scale up to cause system-wide outcomes and effects 

(Batty 2005; Nel 2009; De Roo 2011; Silva 2011; O’Sullivan & Perry 2013). Cities are 

sensitive to initial conditions, which can be reflected in their morphology as well as the way 

they develop their economies (Batty 2005; Nel 2009). Some small initial factor, such as a 

particular industry or development, can determine the city’s trajectory/growth path in a unique 

and non-replicable manner. Land use patterns, often spontaneously arising from local demand 

tend to persist, despite changing modes of production or transportation (Nel 2009). Non-linear 

systems lack the quality of predictability and spatial simulation is an essential tool for 

understanding and exploring their behaviour (O’Sullivan & Perry 2013). 

 

Complex systems display many traits of chaotic systems (Batty 2005; Nel 2009; De Roo 2011; 

McAdams 2012). They comprise interrelated components, which change and develop over time 

while retaining coherence. The changes are dynamic and non-linear, and it can also mean that 

something is changing from order to disorder (catastrophe) or is in transition (phase transition) 

(Batty 2005; McAdams 2012). An example of a phase transition in cities is the difference 

between an industrial and post-industrial city, which are associated with technological shifts 

that lead to changes in the functional structure of the city (Batty 2005). Critically, these systems 

respond with modifications to changes in their environment. Such changes are evident in the 

global system and may be slow or sudden as the system moves from one emergent state to 

another. However, these changes to the components of the system may not necessarily translate 

into dramatic changes in the system. Many complex systems exist in a critical state, that is a 

state that occurs on the brink of a phase transition, where the state of the system is poised 

between two alternatives (equilibrium / steady-state or disequilibrium). A small perturbation 

can nudge the system into a new emergent state (Batty 2005; Nel 2009; De Roo 2011; Silva 

2011) or dampen the system to return to its former state or similar trajectory (Nel 2009). Cities 

tend to exist in a critical state (far from equilibrium) where the components in the system 

change at different rates and where the impact differs across spatial scales and time periods 

(Batty 2005). Cities, therefore, maintain a perpetual balancing act between the benefits of the 

agglomeration and potential disasters such as epidemics of disease, terrorism and disruptions 

of the supplies on which the city rely. Cities remain resilient as they have survived changing 

technologies that influenced their economies, natural disasters, war and terrorist attacks. New 

technologies may change the local industries or the way the city connects, but it does not 

change the city as a whole (Nel 2009).  
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Emergence8 is another fundamental characteristic of complex systems and refers to the novel 

way a system can behave that cannot be reduced to the behaviour of the component of the 

system (Batty 2005; Nel 2009; De Roo 2011). Emergence pertains to not only understanding 

the persisting patterns but the dynamics of how the parts behave in relation to one another. 

Complexity analysis plays an important role in the analysis of the phenomena that appears at 

these different scales and across different times. The representation of moments in time and 

space when a phenomenon is registered is referred to as a phase-transition. This allows for an 

understanding of when a phenomenon is triggered. The trigger points refer to actions or events 

that are used to initiate other actions/activities captured at a specific time and space which leads 

to positive feedbacks, for example, new transportation policies that are devised to change 

commuting patterns. These trigger points cause different phase-transitions or self-organisation 

of the system according to the variations registered in variables over time and represent a 

change in state. A fundamental change in a variable or phenomena refers to a bifurcation, for 

example, mass extinction, epidemics, diffusion of technology or changes from migrant to 

sedentary societies (Batty 2005; Silva 2011).  

 

Hierarchies are also a feature of complex systems, arising spontaneously in the self-organising 

process (Nel 2009). As cities grow, their spatial units change between scales, for example, 

neighbourhood – district – city – a metropolis with the same kinds of functions manifesting 

themselves at higher scales and serving larger populations. Self-similarity is implied in the 

scaling of local units of development, and they appear as fractal patterns in urban morphology, 

which are self-similar across scaling (Batty 2005). Fractal forms appear everywhere, and their 

fractal dimensions (points, lines, polygons or pixels) also exhibit self-similarity at all scales 

(Batty 2005; Nel 2009; McAdams 2012). For example, a line can be divided into two and then 

those two lines can be divided into four and eight and so on (McAdams 2012). This implies 

that a view at one scale will be similar at any other scale for example clouds, drainage basins 

(Nel 2009). Self-similarity in cities is evident especially in multi-nodal cities with their central 

business district, regional centres and local centres.  

 

                                                 

 
8 Emergence is that process whereby unanticipated consequences arise from well-defined rules. An 

example is Schelling’s segregation model that shows how decisions by individuals can lead to extreme 

spatial patterns of segregation of social groups. (Batty 2005:51) 
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Hierarchies are prevalent within cities and include functional hierarchies (for example 

economic services) and of systems that nestle within systems (such as transport) (Nel 2009). 

The transportation system, for instance, evolves at different intensities over time and space to, 

for example, a non-congested or congested state. This leads to different phase transitions, such 

as congestion in morning and afternoon traffic as a result of commuting to work. In addition to 

understanding the specific variable along with time and space, the evolution of the specific 

phenomena can also be understood through for example adding the timing of traffic lights, 

parking places and mode choices from individuals. This multidimensional representation of 

variables and phenomena plays an important role in complexity analysis as it provides an 

understanding of the different phase-transitions of each variable, phenomena at different scales 

and for different time periods (Silva 2011). 

 

Complex systems are open systems, interacting with their environment and demanding a 

constant flow of energy and are thus far from equilibrium (equilibrium is equated to death) 

(Batty 2005; Nel 2009; Silva 2011). Cities demand constant inflow or resources to permit their 

functioning. These resources can range from basics such as water, food, energy, economic 

goods and information. The interactions tend to, however, to blur the boundaries between 

systems. As complex systems evolve, their history is important in understanding their present. 

Also, individual agents within the system may come and go, but their role and function may be 

replaced by a somewhat different kind of agent (such as autonomous buses replacing taxis). 

These descriptions emphasise the structure of interactions, non-linearity and openness to the 

environment. Feedback loops can amplify and move the system to another state, or the 

feedback loops can dissipate the effect of perturbations and ensures stability (Nel 2009; De 

Roo 2011).  

 

Change is vital, and a minimum level of growth and change within a city is essential for survival. 

This has significant implications the way we manage our cities. A vision of a city within 

equilibrium, static and orderly, ignores the essential processes that create and maintain the city 

such as the flows and interactions between agents; its form, functions (land uses); densities; 

connectivity (transport modes) and aesthetics. The ‘control’ can move a city from vibrant 

dynamism to dull stability (Nel 2009).  
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Complexity science and the modelling techniques (Cellular automata, agent-based modelling, 

dynamic modelling etc.) are becoming more relevant and are viewed as some of the best 

approaches to describe, represent, evaluate, simulate and explore scenario processes in order 

to obtain an understanding of urban dynamics, which can support spatial planning practices to 

become more subjective, impassioned and inclusive (De Roo 2011; Silva 2011; Couclelis 2009; 

McAdams 2012).  

 

The aim of the next section of the chapter is to acquaint the spatial planner (modeller/user) with 

the structure and meaning (i.e. metaphors, theories etc.) that is already embedded in the 

conceptual foundations of urban models and to provide them with a means of understanding 

the science of cities through explaining the building blocks of these urban models (CA and 

ABM) and highlight where they can be useful in applications.  

 

2.2 PROGRESS FROM METAPHOR, MEANING (THEORY) AND URBAN MODEL 

Spatial simulation models (urban models) uses quantitative methods to measure and represents 

distinct spatial elements and their relationships for a complete understanding of the complex 

system under consideration. Because cities cannot be controlled and analysed through 

controlled experiments, “a computer is programmed to iteratively recalculate the modelled 

system state as it changes over time in accordance with the relationships represented by the 

mathematical and other relationships that describe the system” (O’Sullivan & Perry 2013:9). 

It allows for a simplified view of integrated phenomena and provides a platform for convenient 

exploration of the implications of a dynamic model without impacting on the real-world system 

(O’Sullivan & Perry 2013; Batty 2005).  

 

The figure below provides a schematic illustration of the concept of models. 
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Source: O’Sullivan & Perry 2013:3 

Figure 3: Schematic illustration of the concept of models 

 

Spatial simulation models are primarily used as exploratory learning tools which assist us in 

clarifying our thinking of the complexities of the real world and to prompt further discussion 

and exploration. These urban models can be used as predictive tools in cases where reliable 

data is available, and when the model is an adequate representation of the system and its 

dynamics. The models are therefore flexible, adaptive and diverse in their methods of use. The 

models that are primarily used for analysing this complexity include Cellular Automata (CA) 

and Agent-based modelling (ABM) (Pumain 1998; Batty 2005; Silva 2011b; Torrens 2011; 

O’Sullivan & Perry 2013).  

 

Conceptual metaphors are embedded in urban models, and it is important to reflect on how 

these metaphors influence the design and construction of urban models and how it also informs 

our understanding of reality (Sui 2011). “A science without theory is an unsatisfactory 

approach”, and models are only as strong as the theories it is underpinned by and which they 

are trying to inform/prove (O’Sullivan & Perry 2013:14). An understanding of these conceptual 

metaphors and how it informs urban model development can assist spatial planners to 

understand the influence and constraints of each metaphor, including the intended and 

unintended consequences when the information from the modelling efforts are used in various 

practices. 
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Sui (2011:372-378) employed Pepper’s world hypotheses to assist in identifying the role of 

metaphors in understanding reality. This hypothesis provided an inclusive conceptual 

framework, for understanding the diverse fundamentals within urban analysis and model 

development, particularly in the fields of social sciences and humanities.  

 

Table 1: Pepper's world hypothesis  

Pepper’s world 

hypothesis 

Dominant 

metaphors 

Practice motto Urban analysis 

& modelling 

tradition 

Urban models / 

measurements 

Formism9 Cities as 

fractals (forms) 

“get to the top 

of things.” 

 

Spatial 

morphology 

Fractals’ spatial 

metrics 

Mechanism10 Cities as 

machines 

“get to the 

bottom of 

things.” 

 

Social physics11 ITLUP; 

UrbanSim 

Organism12 Cities as 

organisms 

“get to the 

whole of 

things.” 

 

Social biology Cellular 

Automata (CA); 

Agent based 

model (ABM) 

                                                 

 
9 Formism grounds itself in common sense experience based on similarity. Each form can be analysed 

and explained in terms of its own nature and appearance. (Sui 2011).  

10  Mechanism takes a common-sense experience with the machine as it root cause metaphor. A 

proposition is considered true only if there is an appropriate causal connection between the states of 

affairs (Sui 2011).  

11 Social physics is “the science of social phenomena subject to invariable natural laws” (Merriam 

Webster accessed 14 September 2019) 

12 Organism provides an integrated world view, but it aims to a obtain a synthetic understanding of the 

whole instead of an analysis of its parts. It implicitly assumes that every experience in the world follow 

a concealed process, all eventually reaching maturation in an organic whole (Sui 2011).  
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Pepper’s world 

hypothesis 

Dominant 

metaphors 

Practice motto Urban analysis 

& modelling 

tradition 

Urban models / 

measurements 

Contextualism13 Cities as arenas 

(events) 

“get to each 

individual thing 

itself.” 

Spatial events Field-based time 

geography; 

urban social 

analysis 

Source: Adapted from Sui 2011 

 

2.2.1 Cities as fractals. 

Cities as fractals are the study of the physical dimensions of urban form (Reis et al 

2014; Sui 2011, Batty 2005) to understand the causal forces underlying changes in 

urban patterns (Pacione 2009). The spatial morphology tradition focusses on the 

description, analysis and modelling of the existing and ideal urban form. Methods used 

by this tradition includes spatial metrics and modelling. Spatial metrics are quantitative 

measures used to assess the spatial characteristics of urban settlements and structures. 

The types of metrics include landscape -, geo-spatial -, accessibility metrics and spatial 

statistics (Reis et al 2014). 

 

The spatial morphology tradition is the oldest and is linked to classical location theories. 

According to Sui (2011) and Batty (2005), the following theorists can be grouped into 

this tradition, such as Von Thunen’s concentric rings (1826, 1966), Christaller’s central 

place (1933, 1966), Rawstron’s principles on industrial location (1958), Alonso’s 

theory of residential location (1960), Weber’s theory on location of industries (1909), - 

and from urban geography -, Burgess’s concentric rings (1925), Hoyt’s sectoral 

radiation (1939), Harris & Ullman’s multiple-nuclei (1945). These classical and 

positivistic14 models of urban land use were criticized during the 1960s for neglecting 

                                                 

 
13 Contextualism draws inspiration from the common-sense experience of unique events. It seeks to 

unravel the texture and strands of processes operating within or associated with events (Sui 2011). 

14  Positivism is a philosophy of science characterized by adherence to the scientific method of 

investigation based on hypothesis testing, statistical inference and theory construction. This approach 

was central to spatial analysis in the 1950’s, but has been superseded by approaches that incorporates 
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the underlying causal processes of spatial form which was mainly an outcome 

underlying social, institutional and economic forces (Pacione 2009). New theories such 

as White’s 21st century city (1987), Berry (1963), Scott (1982), Garreau’s edge city 

(1992), Borchert (1998), Prinsloo (2010), Henry & Dawley (2011) - and from new 

urbanism - Jacobs (1961), Alexander (1979), Friedman (1979), Lynch (1981), Harvey 

(1994), was then developed to respond to this criticism (Sui 2011; Batty 2005). 

 

The spatial morphology tradition has grown, and approximately 160 different spatial 

metrics (Reis et al 2014) can be used, depending on the research question and urban 

processes under consideration. Batty and Longley (1994, 2005, 2014) have also done 

extensive work on studying the fractal city as viewing cities as systems within systems 

of cities and understanding the complex relationships between the parts and the whole 

(Sui 2011). 

 

2.2.2 Cities as machines. 

The metaphor of cities as machines incorporates the tradition of social physics and it 

aims to model social variables contained in large sets of geo-coded data through 

statistical measurements to reveal underlying relational patterns that can be explained 

by laws and theories within the field of physics. This form of analysis is an 

interdisciplinary method of inquiry and includes models such as integrated land use and 

transportation modelling. (Sui 2011; Barnes & Wilson 2014).  

 

According to Sui (2011), Batty (2005 & 2014), Barnes and Wilson (2014), the social 

physics tradition is linked to the theories and spatial data analysis from Ravenstein’s 

currents of migration (1885, 1889), Carey’s migration studies (1895), Stewart’s 

population potential (1947), Zipf’s power law on city-size distribution (1949), Hansen’s 

residential location model (1959), Lowry’s model of the metropolis (1964), Wilson’s 

law on spatial interaction (1970), Tobler’s gravitational models (1970, 1976, 1981, 

                                                 

 

social, economic and political structures in determining the nature of cities and urban life. (Pacione 

2009:681) 
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1983), Bak’s self-organizing criticality (1996), Allen’s self-organizing systems (1997), 

Urry’s small world / complex networks (2004).  

 

Urban models that follow this tradition tend to be aggregated, static and non-temporal. 

These models have been overtaken by the next two traditions which are disaggregated, 

dynamic and includes temporal dimensions. The focus for studying cities has changed 

from the top-down15 perspectives as reflected on through the spatial morphology and 

social physics traditions to the bottom-up16 perspectives discussed below in the social 

biology and spatial event traditions (Sui 2011; Batty 2011; Crooks et al 2018).  

 

2.2.3 Cities as organisms. 

The social biology tradition conceptualises cities as organisms as it aims to understand 

the overall structure and dynamics of urban form. This approach explores the discrete 

parts of the system and how they interact with each over across space and at various 

scales (Sui 2011; Batty 2014; Crooks et al 2018). Metaphors are used to understand the 

complexity within the city, such as ecological metaphors for understanding resilience; 

the metabolism metaphor for exploring flows of nutrients, energy, storage and residue; 

and the metaphor of the neural network for understanding relations between places and 

people. (Sui 2011; Batty 2014). 

 

This tradition is linked to the theories on sustainable development (Brundtland report 

1987; Camagni, Capello & Nijkamp 1998, Tanguay et al 2009), urban ecology 

(Marzluff et al  2008), ecological footprints (Global Footprint network 2010), Brand’s 

law on greener cities (2010) (Batty 2014), Clark’s life course approach (2012), and the 

human ecosystem model (Grove et al 2015; Burch et al 2017 etc.).  

                                                 

 
15  It involves using repeated observations from patterns to make inferences about the processes 

responsible for those patterns. It is an inductive approach that builds on accumulated evidence in the 

form of multiple observations of similar and recurrent patterns (O’Sullivan & Perry 2013:50) 

16 Trying to understand the fine-scale processes to predict the broad-scale (macro / global) patterns that 

might emerge from them. This framework aims to provide a way to handle heterogeneity among 

individuals in their reciprocal interactions with complex environments and each other (O’Sullivan & 

Perry 2013:51). 
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Urban models that follow this tradition include cellular automata and agent-based 

modelling. These models simulate complex systems (cities as systems or systems of 

cities) which are dynamic, far from equilibrium, non-linear and temporal. It follows a 

bottom-up (disaggregate), micro, individual-based model approach where the models 

reflect the continual and dynamic change of individual and group processes of 

interaction and location (Batty 2005; Sui 2011; Xie & Yang 2011; Batty 2011; 

O’Sullivan & Perry 2013; Batty 2014; Crooks et al 2018). 

 

2.2.4 Cities as arenas. 

The tradition of conceptualising cities as spatial events aims to understand how 

individual events occur spontaneously within the city over time and space. The tradition 

links closely to the need for understanding cities in real-time. This tradition has great 

potential and momentum for growth, especially with the increase and development of 

technologies around infrastructure (remote sensors, cell phones, computers); software 

(GIS, data mining etc.); and the availability of dynamic internet platforms (Web 2.0 – 

social media, web services etc.) where agents can willingly share user-generated 

content (geotagged photographs, big data etc.) (Sui 2011). Examples include real-time 

disaster response and scenario planning on natural (or human-made) events such as 

fires, hurricanes, and so on. Theories and standardised urban analysis and 

measurements, especially on the use of big data, are currently being developed and 

debated.  

 

2.3 PROGRESS FROM MEANING (THEORY) TO URBAN MODELS 

The focus of modelling shifted from seeing cities as only physical systems (cities as fractals & 

machines) to seeing them as organisms during the 21st Century. This change has been facilitated 

with the increase and improved computational abilities and data, which has also become more 

accessible and cheaper. The new modelling paradigm (cities as organisms) is dominated by CA 

and AB models which is increasingly used to abstract the real-world into a series of layers 

(visual representation of complexity and dynamics) which allow modellers to place and 

connect agents to each other (spatial integration & self-organization mapping) through social 

networks (intelligent & adaptive micro behaviour) and proximity measures. It allows laws/rules 
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to be applied to the agents resulting in the emergence of macro-scale phenomena (Batty 2005; 

Sui 2011; Silva 2011a; Silva 2011b; Xie & Yang 2011; O’Sullivan & Perry 2013; Batty 2014; 

Crooks et al 2018). An example of this dynamic behaviour across space (spatiotemporal 

dynamics) is the phenomena such as traffic congestion emerging from agents driving cars 

(Crooks et al 2018). 

 

The remainder of this section will explain the building blocks of CA and ABM and highlight 

where they can be useful in applications. 

 

2.3.1 Cellular Automata (CA). 

CA is a standard type of spatially explicit simulation model, and it models spatial and 

temporal patterns that we observe in the physical world. These physical and spatial 

structures are the outcomes of processes17 operating within the system at multiple scales 

and through time. CA consists of specific spatial components, and the building blocks 

include lattice of cells, cell states, neighbourhoods, transition rules (deterministic or 

stochastic) and a sequence of time steps (iterations) (Batty 2005; Sui 2011; Silva 2011a; 

O’Sullivan & Perry 2013;). Each of these building blocks is further discussed in the 

following sub-sections.  

 

2.3.1.1 Cells 

CA consists of a lattice of cells, such as a two-dimensional grid of square cells (also 

referred to as a matrix) that are the smallest in that grid/space. Each cell includes a set 

of states for each cell and a set of transition rules that determine how the cell changes 

from one-time step to the next based on its current state and those of its neighbours 

(Pumain 1998; Silva 2011a; O’Sullivan & Perry 2013). 

                                                 

 
17 Process is any mechanism that causes a system to change its state, and so potentially to produce 

characteristic patterns. Processes generate patterns and feedbacks are evident in both directions. Pattern 

and process are intertwined, and their definitions tend to be circular. An example is the neighbourhood 

life cycle of cities, where a newly built neighbourhood might be relatively prosperous, but over time 

the houses and occupants age and some neighbourhood go into relative decline which could lead to 

gentrification and later urban renewal etc. Disentangling pattern and process is difficult (O’Sullivan & 

Perry 2013:31, 32) 
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Cells are the basic units of spatial representation, which are assumed to be indivisible, 

namely the smallest unit of analysis which describes the system. Cells can be used to 

index any object or attribute, such as buildings, cadastre, land use, but they are fixed 

(immovable) and constitute the backdrop on which all urban change takes place. Each 

cell can take on only one state at a time, and the state of the cell depends on the states 

and configurations of other cells in the neighbourhood of that cell. The state of a cell 

can be restricted to integer values when the states are discrete (Batty 2005; O’Sullivan 

& Perry 2013). Examples of cell states can include urban – non-urban, developed – not 

developed, active – inactive.  

 

2.3.1.2 Neighbours 

The lattice of cells defines for each cell those other cells that are its neighbours. The 

neighbourhood around the cell is composed of geometrically contiguous cells. 

Neighbours are defined either as the four immediately adjacent orthogonal cells (called 

Von Neumann) or as the eight immediately adjacent cells (including the diagonals 

called the Moore neighbourhood). Other neighbourhoods relax the requirements of 

strict adjacency, although most contain cells that are no more than two nearest 

neighbours away from the core cell (e.g. Displaced von N; Asymmetric, circular MvN 

& H-neighbourhood) (O’Sullivan & Perry 2013; Batty 2005; Silva 2011a). 

 

The figure below depicts the different configurations of local neighbourhoods.  
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Source: Batty 2005: 77 

Figure 4: Local neighbourhood configurations 

Within a 3 x 3 cellular space as depicted in Figure 4(b), there are a possible 511 

combinations or forms that can be generated. The addition of transition rules can further 

increase the number of possibilities. Using the Moore neighbourhood (Figure 4b) as an 

example and with the inclusion of two transition rules (on-off cell states), the 

configuration possibilities are 2⁹ or 512. With this scenario, the possible number of 

automata is 2⁽⁵¹²⁾, which is an enormous amount of computational possibilities. The 

examples above is an illustration of the enormous variety of the kind of patterns and 

behaviours that might be computed using cellular automata.  

 

2.3.1.3 Time steps / iterations 

Time is represented by cells determining, and iteratively updating to their next state. 

The timing of state changes can occur either synchronously or asynchronously. 

Synchronously is defined when the cells determine their next state and are updated 

simultaneously, while asynchronously is defined when cells update their state one after 

the other, in random order. An asynchronous update can also define when cells may not 

be updated, while others are updated more than once or from a specific location. As a 

rule, either synchronous or asynchronous updating is preferred based on their 

appropriateness (O’Sullivan & Perry 2013). 
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2.3.1.4 Applications of CA  

John Conway (1970) in the ‘game of life’ simplified the rules in the application of 

totalistic automata18, while also still trying to obtain complex spatial patterns. The game 

of life is not a model of a specific system but a hypothetical and mathematical system 

with interest in the relationship between the intricacy of the rules that define a system’s 

behaviour and the richness of the behaviour. The game of life is a two-dimensional grid 

(lattice) which can be infinite or as large as needed, and the configuration for the “Life” 

is a random distribution of developed and non-developed cells (Batty 2005; O’Sullivan 

& Perry 2013). It is also defined as follows: 

 Cell neighbours are the eight (8) immediately adjacent orthogonal and diagonal 

grid cells (forming the Moore neighbourhood); 

 Cell states are ‘alive’ or ‘dead’; and – 

 Two (2) transition rules, namely: 

o Birth (growth) – a dead cell is born if it has three (3) live neighbours to 

its Moore neighbourhood; otherwise it remains dead; and – 

o Survival – a live cell survives if it has two or three live neighbours 

(steady-state); otherwise, it dies. Fewer than two adjacent cells imply 

the cells die from isolation; more than three and it dies from 

overcrowding (O’Sullivan & Perry 2013; Batty 2005).  

Further assumptions and conditions are also: 

 The transition rules are uniform and apply across every cell, state and 

neighbourhood and every time step (iteration); 

 Every change in the state must be local, which in turn implies no action at a 

distance; 

 A start and endpoint of the simulation in space and time is specified and is 

termed initial and boundary conditions; 

 Initial conditions apply to where and when the process begins within the lattice 

of cells, and it is termed the seed site; 

                                                 

 
18 Also referred to as the strict CA framework (Batty 2005; Silva 2011). 
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 Boundary conditions refer to the limit on the space and/or time over which the 

CA can operate; and - 

 The framework emphasises the spatial viewpoint where the objects (contained 

in the cells) and their relations in space and time is organised instead of a 

temporal viewpoint (Batty 2005). 

 

The figure below demonstrates the totalistic automata. 

 

Source: O’Sullivan & Perry 2013:19 

Figure 5: Conway's game of life simulation 

 

In Figure (a) and (b) the cells die immediately while adding another live cell to produce 

the L-shaped pattern in (c) result in a four-cell block of live cells that is stable. In 

creating a linear pattern through adding another cell in Figure (d) creates a blinking 

pattern that switches each time step between a horizontal and vertical line. Adding one 

more cell to (d) to give the T-shaped pattern (e) produces a sequence of nine-time steps 

resulting in four (4) copies of the three-cell blinker pattern (d). Adding on a new live 

cell to the pattern (e) produces the ‘R pentomino’ which has been shown to persist 

indefinitely and extends indefinitely across space since the gliders will continue to 
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move away from the origin. Conway’s discovery in 1970 has led to an explosion of 

interest in CA because simple rules in even a deterministic system can yield an 

unexpectedly rich array of unpredicted dynamic behaviours. The “application of CA 

can be found across numerous fields that have a spatial bias and involve the evolution 

of populations, from ecology to astrophysics” (Batty 2005:76). The attraction of using 

CA lies in the ability to reduce systems to their most basic elements. (Batty 2005; 

O’Sullivan & Perry 2013).  

The example described above is an illustration of non-linear dynamics, where the 

system exhibits surprising shifts in behaviour in response to minor changes in their 

initial states. Most real-world systems are non-linear and because of their structure 

requires a way to simplify them, while also retaining their dynamic nature. Cities as 

systems are also characterised as experiencing actions at a distance, for example, the 

higher-order transport network linking urban nodes along activity corridors which 

impacts on activities and accessibility. This action requires that the neighbourhood 

element should be redefined to allow a less strict adjacency rule. In addition to those 

mentioned above, the majority of cities do not have restrictive conditions on 

development (Batty 2005).  

 

To accommodate the abovementioned complexities, cellular automata has evolved into 

random complex automata (also referred to probabilistic CA) and can include processes 

that are probabilistic and might impact local behaviour through changing the transition 

rules or the nature of the neighbourhood (Batty 2005; Silva 2011b; O’Sullivan & Perry 

2013). One method includes altering the transition rules to make cells ineligible for 

activating a change in the state due to, for example, the implementation of government 

policies (i.e. urban edge delineation) or topological features (i.e. roads, mountains, 

rivers etc.). The transition rule can also consider the state of the developed cell-based 

on age and introduce an age limit parameter, which can empty cells of development 

exploring the gentrification and urban renewal process of cities (Batty 2005). When the 

same cells have different attributes in each of the layers as described above, the 

interaction (vertical and horizontal) is essential and the model uses matrixes that can 

perfectly overlay and are geo-referenced. Once the vertical and horizontal interactions 

have transpired based on the transition rules and time steps a new configuration matrix 

is developed where the cells can assume different values and different spatial 
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configurations (Silva 2011a; O’Sullivan & Perry 2013). The Figure below indicates 

how this “local self-organisation of cells allows for the identification of different 

regional patterns and allowing the development of new emergent behaviour where 

original conditions would not anticipate the formation of new/different patterns” (Silva 

2011a:325).  

 

 

Source: Silva 2011a:326 

Figure 6: The random complex cellular environment 

 

2.3.2 Agent-based (AB) modelling. 

CA modelling provides a spatially explicit simulation model, and it models spatial and 

temporal patterns that we observe. However, the locational decisions of agents also 

influence and modify the spatial structures that we observe. To enhance CA modelling, 

agent-based models (ABM) are incorporated which provides for the modelling of 

aspatial dynamics. ABM and CA modelling have become the most used approaches to 

work with complexity theory in a quantitative design (Batty 2005; Silva 2011a; Silva 

2011b).  
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ABM focuses on the socio-economic conductions and aspatial structures (immaterial 

structures of behavioural and social systems, such as tastes and preferences) which 

produces action through public-individual choice and option. The goal of ABM is to 

explain the moment when an agent takes a decision and the moment when the agent 

moves from one place to another. Methods used are, for instance, decision trees and 

neuronal nets which are then extrapolated into the modelling environment as decision 

rules (Pumain 1998; Batty 2005; Silva 2011a; Silva 2011b; Crooks et al 2018).  

 

The advantages of ABM are its ability to model individual decision-making entities and 

their interactions; it incorporates social processes on decision-making, and it provides 

dynamic socio-economic, environmental linkages. For instance, ABM can integrate the 

agent’s physical space (natural environment) with the agent’s intelligence 

(policy/decision-making rules) and combine the bottom-up actions (disaggregate, 

micro-based analysis) with global interactions and simulate processes such as the space-

economy (Batty 2005; Silva 2011a; Xie & Yang 2011). 

 

The ABM framework is flexible and can provide different types of models for studying 

different aspects of cities, such as; 

 Abstract models, the intention is to discover new relationships or knowledge 

e.g. segregation model; 

 Experimental models, exploring new ideas about the system of interest; 

 Historical models, exploring the past trends and processes; and – 

 Empirical models, the intention is to test different scenarios or to create future 

forecasts (Crooks et al 2018).  

 

Refer to section 2.3.2.2. below for the explanation of the application of the segregation, 

experimental and empirical models mentioned above.  

 

2.3.2.1 Agents. 

ABM models are constituted of agents with the following characteristics; 
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 Individuals, agencies and institutions or movable physical but nonhuman 

objects (e.g. animals, particles systems in physics, robots, creatures from 

artificial life, software agents) can be classified as agents; 

 Agents have mobility, and they can change their positions by moving from one 

cell to the next; 

 Agents can be associated with a specific cell; however, they can be attributed in 

different ways and classified according to different activities for example 

property owners (like the CA modelling process); 

 Agents usually act autonomously and are autonomous entities or objects that act 

independently of one another. Depending on various conditions displayed by 

other agents or the system, they may act in concert for example neighbourhood 

watch, community safety organisations and the police; 

 The central feature of an agent is their ability to communicate with one another, 

as well as sense and respond to their environment; 

 An autonomous agent is defined as “a system situated within and part of an 

environment that senses that environment and acts on it, over time, in pursuit of 

its own agenda and so effect what is senses in the future” (Batty 2005:210). 

More than one type of agent and environment can be simulated based on the 

decentralised behaviours within more than one kind of environment, for 

example, mobile robots, software agents, creatures from artificial life, humans, 

other animals or plants (Batty 2005:210-211). 

 

The behaviour of agents can be classified according to properties summarized in Table 

2 (refer to the table below). 

 

Table 2: Properties of agents 

Property Meaning 

Reactive Responds in a timely fashion to 

changes in the environment or other 

agents. 

Autonomous Exercises control over its own actions. 
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Property Meaning 

Goal-orientated / proactive / purposeful 

/ cognitive 

Does not simply act in response to the 

environment but behave according to 

its own protocols or plans. 

Temporally continuous Is continuously running process. 

Communicative / socially aware Communicates with other agents. 

Learning / adaptive Changes its behaviour based on its 

previous experience. 

Mobile Able to transport itself from one cell to 

another. 

Flexible Actions are not scripted. 

Character Believe ‘personality’ and emotional 

state. 

Source: Adapted from Batty 2005:212 

 

The relations between agents and their environment can be characterised by; 

 Agents influence their own behaviour for example personal preferences in what 

type of products they purchase; 

 Environments influence their one state; 

 Agents affect their landscapes for example resource extraction and depletion; 

 Environments affect agents for movements within cities; 

 Relations to all other agents and environments (i.e. action at a distance); and - 

 Relations to external environments (i.e. action at a distance) (Batty 2005). 

 

ABM is most appropriate when the focus is on agents reacting purposefully to their 

local environment, which is encoded into the spatial environment (cells or layers), and 

the action and interaction (spatial movement and location) between the agent and 

environment can be defined (Batty 2005; Silva 2001b; Xie & Yang 2011).  

 

2.3.2.2 Application of ABM. 

Schelling’s simple segregation model (1971) was one of the earliest ABM (Crooks et 

al 2018; O’Sullivan & Perry 2013). The model aims to explore the disparity between 
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the preferences on the agents (micro-behaviour) and their aggregate outcome (macro / 

global behaviour). The model is defined as follows: 

 Two types of agents are randomly located on a two-dimensional grid; 

 Each agent wants to live in a neighbourhood (Moore neighbourhood) wherein a 

certain percentage of neighbours are like themselves (likeness parameter); 

 When an individual is dissatisfied with their current location, they can move to 

the nearest available location at which their requirements are satisfied (even 

empty areas); and - 

 Rounds of the relocation of agents are repeated until all the agents are satisfied 

or until no more can be successfully relocated (O’Sullivan & Perry 2013; 

Crooks et al 2018). 

 

In the example below, the parameter of likeness is set at 15%, 30% and 75%. The agents 

move over time to areas that they feel satisfied in and segregated neighbourhoods 

emerge at the aggregated level. As the individual preference increases for a similar 

neighbour, segregation increases and even with a relatively low likeness parameter 

(30%), agents still self-segregate (Batty 2005; O’Sullivan & Perry 2013; Crooks et al 

2018).  
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Source: Batty 2005  

Figure 7: Representation of Schelling's segregation model 

 

In the urban modelling context, ABM needs to represent the agent’s complex behaviour 

and interaction with other agents -such as households, businesses, planners, developers, 

or decision-makers within the system of interest. This requires the formulation of a 

multi-criteria evaluation framework, which can be employed to identify the decision-

making tasks that drive urban land change or urban development policy. This decision-

making framework will be abstracted and computerised in order to simulate how agents 

behave over the simulated landscape (Xie & Yang 2011). The functions developed also 

needs to take into account how the decisions by spatial agents change the spatial 

morphology of the landscape. For instance, when agents find and act on resources 

(location theory), the locations they originate from and the routes they take back to 

these origins (migration & mobility theories) are some of the elements of interest in the 

urban system. The models can also be extended to include actions or behaviours that 

occur when these resources are encountered, thus linking spatial logic to economic and 

social processes (Batty 2005). In this process, the spatial distribution/organisation of 

resources is considered; the agent’s wealth accumulation or deterioration based on 

access and resource consumption, resource exploitation and conservation. When agents 

cannot access resources, this lack of access can lead to inactivity in space economy and 

‘death’, and this is then remedied by income support (direct or indirect subsidies) 

providing them with an opportunity to gain wealth again. The model can be further 

extended to include population demographics (life span of agents); wealth distribution 

measures (i.e. Gini coefficient, poverty indexes etc.) and accessibility measures to 

economic opportunities and social facilities (Batty 2005).  

 

2.4 MODEL UNCERTAINTY AND EVALUATION 

A fundamental problem in modelling is uncertainty, and it is essential to note that in any 

modelling environment, uncertainty is unavoidable. The location, level and nature of 

uncertainty needs to be considered in model development and should be appropriately 

represented in models. In spatial simulation modelling, some of the aspects that impact on 

model uncertainty relate to the trade-offs that need to be made between analytical tractability 
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(deterministic model19) and realism (stochastic model20). This is predominately influenced by 

the research question that is being asked to an urban model, as well as the data, processes and 

patterns that are being considered and analysed within the complex systems. This step evaluates 

the model’s adequacy given its purpose (O’Sullivan & Perry 2013). 

 

Model evaluation is also an essential part of model development and is defined as “the process 

of determining model usefulness and estimating the range or likelihood of various interesting 

outcomes” (O’Sullivan & Perry 2013:198). Calibration and verification are methods used to 

evaluate the model’s ‘fit for purpose’.  

 

2.4.1 Design and construction of models. 

Different patterns are perceived at different scales21 and the inferences made will have 

to change as the scale changes. Patterns contain information on what we observe in 

nature, and within the context of spatial simulation models (urban models), they are the 

defining characteristics of a system and the underlying processes and structures. Spatial 

patterns can be defined as a pattern in which features recur recognizable and regularly, 

and often identically or symmetrically (O’Sullivan & Perry 2013). Spatial processes are 

inferred from patterns, and they can be viewed differently at various scales and time 

frames. 

 

Deciding on the scale is one of the critical steps in model development as the decision 

of the scale will determine the appropriate representation of the spatial processes under 

consideration as well as the inferences that can be made from the model (O’Sullivan & 

Perry 2013).  

 

                                                 

 
19 A deterministic model does not represent uncertainty and so for a given set of boundary conditions 

and input parameters will always produce the same outcomes. The model buys analytical tractability, 

but at the cost of realism (O’Sullivan & Perry 2013:194). 
20 A stochastic model includes some random component, such as variation in parameter growth rates 

from year to year in a population model. The model is intractable and increases realism (O’Sullivan & 

Perry 2013:195)  

21 Scale denotes the resolution within the range or extent of a measured quantity  
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2.4.1.1 Scale and scaling 

In spatial simulation models, the scale can be categorised into grain and extent. Spatially, 

grain refers to the resolution of data, such as the pixel size in remotely sensed imagery. 

Temporally, grain refers to the frequency of data, such as how often measurements are 

taken (O’Sullivan & Perry 2013). 

 

Spatially, extent refers to the total area that the dataset spans and temporal extent are 

defined by the duration over which the data were collected (O’Sullivan & Perry 2013). 

Spatial and temporal extent places restrictions on models, or data, and affect the ability 

to make inferences (generalisations) from them. The scaling problem within urban 

models relates to the nature of the systems under investigation, which is both fine-

grained and of considerable extent. For example, when we consider climate change, we 

need to be able to integrate across different spatial scales (local to global) and temporal 

scales (millisecond to multi-millennial). This is practically challenging, and the scaling 

problem forces the considerations within model conceptualization, development and 

analysis about decisions on model representation (trade-offs between grain and extent 

– What processes shall I include?) and the interpretation of model outcomes (What 

patterns am I seeing, and what do they tell me?) (O’Sullivan & Perry 2013). 

 

With increased access to computing power, software tools, detailed remote sensing, and 

big data, the possibility exists to develop fine-grain simulation models that cover large 

extents. The challenge with this is that such models lose their usefulness in simplifying 

the phenomena and they become difficult to interpret (O’Sullivan & Perry 2013).  

 

2.4.1.2 Scale-dependence: patterns and processes 

A disconnect exists between the scale of the processes of interest and the scale of the 

available observational data. In these cases, the model needs to be designed in a manner 

that allows the user to extrapolate or interpolate data from one scale to another to 

describe or make inferences. Also, the patterns that are perceived within a system can 

change when the space-time scale is changed, and this phenomenon is termed scale-

dependence. Scale-dependence in patterns, do not necessarily translate into scale-

dependence in processes. Processes can occur rapidly, but their effects on patterns are 
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slow to emerge, i.e. lagging effects. The decision on the appropriate scale is influenced 

by the research question (O’Sullivan & Perry 2013). 

 

Some processes do not change with changes in space-time scales, and these patterns are 

termed scale-invariant, self-similar, self-affine or fractal. Many real-world objects, such 

as coastlines, mountain ranges, drainage systems and cities, can be shown to have 

fractal properties (O’Sullivan & Perry 2013). 

 

2.4.2 Calibrating and validating models. 

Calibration and validation exercises are essential in urban models mainly when they are 

used in spatial planning practices as planning support systems. Calibration involves 

adjusting model parameters for simulations (referring to the act of running a model on 

data or applying it to a given scenario) to perform within a level of fitness of sufficiency 

concerning its intended purpose (Torrens 2011; Xie & Yang 2011).  

 

Validation involves assessing the success of a model or simulation run in achieving its 

(specific) intended goals. The method involves comparing the performance of the 

model to some properties of the real system being simulated. Comparisons usually are 

made to register a model as generally applicable to a specific system, place and time, 

or the model fits a particular purpose, for example, decision support or normative 

modelling (Torrens 2011; Xie & Yang 2011). 

 

Another factor that influences the calibration and validation of models is the paradigm 

shift in urban models, away from thinking of them as diagnostic or prescriptive tools, 

towards conceptualising them as laboratories for experimenting or ‘tools to think with’. 

The nature of the spatial dynamics being explored within these urban models are self-

organising, stochastic, catastrophic and chaotic, and different models can produce the 

same outcomes using different parameters or rules. This non-uniqueness or under-

determination makes calibration and validation of urban models difficult. (Xie & Yang 

2011; Silva 2011a; Torrens 2011; O’Sullivan & Perry 2013;). 

 

Stellenbosch University https://scholar.sun.ac.za



38 

Calibration and validation also require adequate data based on the different dynamics 

modelling (i.e. CA – spatial or ABM – aspatial; and temporal), which in turn influences 

the choices of calibration - and validation mechanisms that can be employed and the 

subsequent outcomes. In addition, the data can result in the result in a model to be ‘fit’ 

for use in a specific location, and it, therefore, cannot be used for inferences in a 

different location or as generalisations within the system of interest (Torrens 2011; Xie 

& Yang 2011).  

 

Urban models are also only as strong as the theories that underpin them, and in many 

instances, the theory has been found lacking, particularly at microscale / local behaviour 

and concerning phenomena that operate across scales, for example, demographic 

transitions, urbanisation and migration (Torrens 2011; O’Sullivan & Perry 2013). 

 

The crucial factor in model evaluation, is to keep the purpose of the model firmly in 

mind and can be as simple as to ask, “Did I learn anything useful from building this 

model? And if so, what?” (O’Sullivan & Perry 2013:228). 

 

2.5 CONCLUDING REMARKS  

Within a complex and dynamic landscape (reality), a spatial planner’s role is to “create bridges 

between ‘what is’ and ‘what could be’, (or in normative terms) ‘what should be’ and ‘what is 

desired’ (De Roo et al 2016:1). This requires an understanding of the city as a complex dynamic 

system and how planning interventions should be contextually formulated and implemented to 

address the multidimensional urban phenomena such as uncontrolled and unplanned 

urbanisation challenges. Spatial planners need to become managers of change where negatives 

are avoided, and positive effects of change are embraced over time and space. However, the 

current scientific planning instruments and practices are noted as being inadequate to address 

these multidimensional problems and challenges being faced within cities.  

 

The new ‘science of cities’ has been identified as a method which can provide insights into the 

complexity of the city. The purpose of the chapter is to bring together the concepts of 

complexity theory and complexity science in an attempt to assist spatial planners with an 

understanding of how cities as organisms are theoretically conceptualised. Cities are examples 

Stellenbosch University https://scholar.sun.ac.za



39 

of organised complexity where urban development (change) emerge from the bottom-up and 

the spatial order that we see are driven by patterns. The main components from complexity 

science that relates to the general features of the structure and dynamics of cities as organised 

complex systems include path dependence, positive feedback, self-organisation, emergence, 

non-linear dynamics, and phase-transitions. The components of a complex system make 

predictability difficult, and this makes spatial simulation models (urban models) an important 

tool for understanding and exploring complex system behaviour. 

 

The spatial simulation models (urban models) used by complexity science are CA and AB 

models which abstract the real-world into a series of layers as a visual representation of the 

complexity and spatial-temporal urban dynamics. Spatial simulation (urban models) allow for 

the complex reality to be shown in a simplified form, in order that spatial strategies and their 

impacts can be explored in advance. The chapter provides explanations on the key 

considerations for spatial simulation model (urban model) conceptualisation, the components, 

design and construction. These modelling techniques play a fundamental role in understanding 

the functionality, practicality, accuracy and ‘fit for purpose’ use of these urban models within 

cities. In general, the primary role of urban models (CA & ABM) is as heuristic tools for 

learning about the real world and enables scenario planning which can support spatial planning 

practices.  

 

“models, of course, are never true, but fortunately it is only necessary that they be useful.” 

(George Box, 1979 as referenced in O’Sullivan & Perry 2013:2) 
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CHAPTER 3: URBAN CA AND ABM MODELS FOR THE 

SIMULATION OF URBAN DYNAMICS: A REVIEW AND ANALYSIS 

“Just as settlements are diverse and complex, so there are many ways to describe and 

understand them.” (K. Kropf, 2009 as referenced in Reis et al 2014:279) 

 

3 INTRODUCTION 

Spatial simulation models (urban models) are primarily used as exploratory learning tools 

which can assist spatial planners in clarifying their thinking of the complexities of the real 

world and to prompt further discussion and exploration. These urban models can be used as 

predictive tools in cases where reliable data is available, and when the model is an adequate 

representation of the system and its dynamics. The urban models are therefore flexible, 

adaptive and diverse in their methods of use. As discussed in Chapter 2, urban models that are 

primarily used for modelling complex dynamic systems, such as urban systems include Cellular 

Automata (CA) and Agent-based modelling (ABM). These models are used as planning tools 

to understand how cities develop, including their driving force of land-use change and the 

configuration of its spatial pattern (Reis et al 2014). Urban land dynamics experience different 

driving forces at varying speeds, intensity or trajectory, which has been a dominant research 

agenda for spatial planners (Wu & Silva 2010). 

 

In recent years these models for urban growth simulation have proliferated because of their 

conceptual simplicity, flexibility and their ability to incorporate spatial and temporal 

dimensions of urban processes. The applications have also improved with the advances in 

computer techniques, such as the integration with geographic information systems (GIS), 

artificial intelligence (AI) and advanced spatial analytics (Santé et al 2010; Wu & Silva 2010). 

Even though the ability to use these models have become easier, one of the main problems in 

applying these models to spatial planning practices, is the choice or design of the most suitable 

urban model for a particular situation or application (Santé et al 2010) which then informs 

policy decisions and/or support decision-makers (Reis et al 2014).  

 

The chapter provides a meta-analysis of urban models applied internationally in urban contexts 

over the last decade. Academic publications over the past ten years (2009 – 2019) were 

surveyed in the Web of Science platform in order to provide an overview of the models being 
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adopted in research and practice. From this main list, a detailed analysis (comparative 

evaluations) is conducted on the key urban models over the last five years (2015 – 2019). The 

detailed analysis period follows on from the time period after the GCRO report and the 

subsequent publications (Wray C et al 2013; Wray C et al 2015). The detailed analysis will 

focus on the practical application of urban models within the five (5) year period and will 

include peer-reviewed and accessible academic publications.  

 

The overall purpose of this analysis is to identify the components of the urban models; evaluate 

spatial and temporal scale; delimit their physical boundaries of the system under review; 

articulate the connection among the components (four complexes of urban systems i.e. biotic, 

physical, social and built), and identify the capabilities and limitations (Santé et al 2010; Pickett 

& Cadenasso 2002). 

 

3.1 META-ANALYSIS  

In order to cover as many urban models as possible, a comprehensive review of the literature 

was carried out of the subject area or methodology over the past ten years (2009 – 2019). The 

keywords used in the Web of Science platform included “spatial simulation” and “urban”. The 

results were then assembled into four groups, based on the specific methodological approach 

in which the urban models analysed in this research (CA and ABM) were developed. The four 

groups are: 

1. Urban spatial simulation models; 

2. Urban spatial simulation models using a CA approach; 

3. Urban spatial simulation models using an ABM approach; and - 

4. Urban spatial simulation models using a hybrid (CA-AB) approach.  

The intention of these groups does not intend to constitute a comprehensive classification or 

typology of urban models. The main aim is to facilitate the analysis and provide a broad 

methodological approach to compare the different models applied in practice over the time 

period of the meta-analysis. 

 

The results indicate a consistent increase in the number of publications dealing with urban 

spatial simulation (urban models). A total of 1778 records were returned over the ten-year 
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period (2009 – 2019) (Refer to Appendix A.4). In 2009 the number of records totalled 97 

records (5,5% of total) and 243 in 2018 (13,7% of total) (refer to Figure 8).  

 

The rate of change over the time period (excluding 2019), is 66,4%. The average annual growth 

rate over the period of 6,95 %.  

 

 

Source: Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019].  

Figure 8: Total urban simulation publications 

 

The urban spatial simulation publications over the period were predominantly published in the 

Web of Science categories of Environmental Sciences, Meteorology atmospheric sciences, 

Geography, Geosciences multidisciplinary, Environmental studies, Remote sensing, 

Geography physical, Computer science interdisciplinary application, Water resources, 

Engineering environmental, Computer science information systems, Regional urban planning 

and urban studies. In the regional and urban studies publications, a total number of 270 records 

were cited (Refer to Appendix A.5).  
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The publication categories are predominantly focused on the research themes of environmental 

sciences and geography, which includes research types of long-term monitoring, 

experimentation, comparative analysis and models / methodological approaches. The varying 

coverage of the publications also demonstrates the multi-disciplinary nature of the models and 

their application (Refer to Figure 10).  

 

 

Source: Web of Knowledge database 2019 [online] 

[Accessed 4 October 2019]. 

Figure 9: Treemap of urban spatial simulation publications 

 

In addition to the varying publication categories, the publications predominantly focused on 

applications in China (28,2%), United States of America (23,8), France (7,3%), England (6,6%), 

Germany (5,9), Italy (5,2%), Canada (4,8%), Australia (4,3%), Spain (4,2%), Netherlands 

(4,1%) and Japan (3,9%) (Refer to Figure 11 and Appendix A.6). 
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Source: Author adapted from Web of Knowledge database 2019 [online] 

 [Accessed 4 October 2019]. 

Figure 10: Spatial distribution of urban simulation publications 

 

Comparing the urban simulation publications with the urban agglomerations (300 000 or more 

inhabitants) that are predicted to change over the period of 2020 – 2030, a visual comparison 

can be distinguished between the areas with a high growth percentage and the research into 

urban models (refer to Figure 12).  

 

Table B.1 in Appendix B sets out the top 30 countries with the highest aggregate national 

predicted change in urban agglomerations over the period of 2020 – 2030. China is predicted 

to have the most substantial increase in the percentage urban population over this period, with 

the urban population at 70,1% in 2030 (UNDESA 2019). This necessitates an understanding of 

the driving forces behind this growth, as well as a measure of prediction, not only at a local 

level but also considering the national and regional implications. This explains the dominance 

of applications in China with a total of 502 records over the past ten (10) years to understand 

and predict the growth of the urban system. Based on the published research output China is 

thus dominating the active research of long-term monitoring, experimentation, comparative 

analysis and modelling techniques.  
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Although South Africa is listed under the top 30 countries which are predicted to experience 

significant change in the next 11 years, only a single urban spatial simulation publication found 

was found on urban modelling practices/initiatives and the opportunities and challenges within 

the South African context (Wray C et al 2013; Wray C et al 2015). 

 

 

Source: Author adapted from UNDESA population prospects database 2019 [online].  

[Accessed 4 October 2019]. 

Figure 11: Spatial distribution of percentage urban population 

 

3.2 DETAILED ANALYSIS OF URBAN SIMULATION INITIATIVES 

In the review of the urban spatial simulation model publication per model category, it was 

found that there was a consistent increase of publications within the CA and ABM categories.  

 

A total of 573 records were returned over the ten-year period (2009 – 2019) consisting of CA 

urban models (63,4%), urban ABM (27,6%) and urban CA-AB (9,1%) records (refer to Figure 

13).  
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Source: Author adopted from Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 12: Urban simulation publications per model category 

 

Most publications regarding urban simulation appeared over the five years between 2015 - 

2019. This time period is, therefore considered in further detail in order to identify and analyse 

the key urban models that have been applied.  

 

The various individual applications were considered by applying the following assessment 

criteria: 

1. Objective. The various categories of urban simulation models are classified according 

to four categories of objectives:  

a. descriptive models, which analyse the factors and dynamics that provide 

insights into the past (What has happened?);  

b. predictive models, which uses statistical models and forecasting techniques to 

understand the future (What could happen?);  

c. prescriptive models, which aims at obtaining optimisation and simulation 

algorithms to advise on possible outcomes (What should we do?);  
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d. conceptual models, which looks at theories, models, concepts and different 

methodological approaches through experimentation to test specific hypotheses. 

2. Main purpose and issues. The model applications can be grouped into four main 

components of urban systems, i.e. biotic, physical, social and built. 

3. Model components. Modelling techniques and application software are identified to 

evaluate if the models are integrated with other models and how they are applied within 

the computer environment. 

4. Data inputs. The data inputs needed between the various categories of urban models 

differ according to their needs and the scale at which the components of the system are 

investigated, and the requirements are compared between the different categories and 

practical application of the models.  

5. Calibration. Calibration aims to obtain the values of the model parameters that allow 

for the most accurate reproduction of the real world. This measure provides an 

understanding in terms of the level of fitness of the model, based on its intended purpose. 

6. Validation. The aim of validation is the evaluation of the overall accuracy of the model 

with the real system being simulated. This measure provides a measure of confidence 

based on the accuracy of the urban model and its ability to predict the future. 

7. Model grain. According to their objective, the various categories of urban simulation 

models can be classified into four categories: global, national, regional, local (cities) 

and micro (suburbs). The classification allows the analysis of the hierarchy of the urban 

models and a comparative analysis between the same levels. 

8. Model extent identifies the specific urban system under investigation and allows a 

comparative analysis between the same urban systems under investigation. 

9. Type of agent. The ABM and CA-AB models identify the different individual decision-

making entities and their interactions within the system.  

10. Cell states. Depending on the components and the purpose of the urban model, the cell 

states can vary between the different CA and CA-AB models. The cell states can be as 

simple as a simulation from urban to non-urban, or it might have multiple transitions to 

multiple land-uses. 

11. Neighbourhood. The neighbourhood size and type significantly affect the model 

outcomes within the different CA and CA-AB models. 

12. Time period. The time period specifies the period used in validating and calibrating the 

different categories of models, including the projection of model outcomes over time 

which highlights its temporal dynamics. 
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3.2.1 Cellular automata (CA). 

As indicated in Figure 13, the number of CA urban simulation publication showed a 

steady increase, especially since 2014 (refer to Appendix A.7).  

 

 

Source: Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 13: CA: Urban spatial simulation publications 

 

The CA category of urban spatial simulation publications over the period was 

predominantly published in the Web of Science categories of Geography, Geography 

physical, Environmental sciences and Environmental studies. In the regional and urban 

studies publications, a total number of 89 records were cited (Refer to Appendix A.8).  

 

The publication categories are predominantly focused on the research themes of 

environmental sciences, computer sciences and geography, which includes research 

types of long-term monitoring, experimentation, comparative analysis and models / 

methodological approaches. The varying coverage of the publications also 
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demonstrates the multi-disciplinary nature of the models and their application (Refer to 

Figure 14).  

 

 

Source: Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 14: CA: Treemap of urban spatial simulation publications 

 

The majority of the publication CA urban simulation studies have applications in China 

(39,9%), United States of America (14,67%), Canada (7,4%), Iran (7,4%) and Australia 

(Refer to Figure 15 and Appendix A.9). 
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Source: Author adapted from Web of Knowledge database 2019 [online] 

 [Accessed 4 October 2019]. 

Figure 15: CA: Spatial distribution of urban spatial simulation publications 

 

According to the main purpose, issues, parameters and data inputs, the urban CA 

models and their components/relationships can be grouped into the four components of 

an urban system i.e. biotic, physical, social and built. The biotic refers to the natural 

ecosystem and ecosystem services (organism interactions), physical states the space, 

scale and time structure of the system (biophysical structure), social refers to cultural 

resources, social-economic and institutional processes (people-people interactions), 

while built refers to the built structures such as roads, buildings, infrastructure etc. The 

visual representation of the components and their subsequent interactions are displayed 

in an x-y graph and illustrate the connections being simulated between the components 

of the urban systems.  

 

As indicated in Figure 16, most urban CA models simulate the following two 

interactions namely: 

 Organisms-built environment-land resources/potential across the micro (1), 

local (27), national (2) and global (2) scales; and – 
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 People-organisms-built environment-land resources / potential across local 

(22), regional (8) and national (2) scales. 

 

The other interactions that are simulated are characterised and ranked as follows: 

 people-built environment-land resources / potential across micro (1), local (15) 

and regional (1) scales; 

 people-organisms across micro (1) and national (1) scales; and –  

 organisms-land resources/potential across a local scale. 

 

In addition to those mentioned above, several conceptual models (31) and models trying 

to support and/or inform planning policy (22) is also highlighted.  

 

 

Source: Author 

Figure 16: CA: Components of urban simulation publications 
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Based on the assessment criteria, the following are noted: 

 The majority of the urban CA models reviewed had a combination of 

descriptive and predictive objectives as part of the model design. The factors 

and dynamics explored in the past provide the foundation of using forecasting 

techniques to understand the future. In addition to the aforementioned, a large 

number of urban CA models started to incorporate prescriptive objectives as a 

way of understanding the possible constraints within the system (e.g. urban 

growth boundaries, zoning, environmental protection zones), as well as trying 

to measure and predicting the outcomes of implementing these policy 

interventions through scenario planning.  

 Data inputs varied across the various categories of urban models according to 

their needs and the scale at which the components of the system were 

investigated. Although, all the models required satellite images in order to 

apply remote sensing techniques for land use/land cover classification. Basic 

geographic information such as road networks, administrative boundaries, 

topographical was also required within all the urban models.  

 Calibration and validation formed part of the design and construction of the 

majority of the urban models and was viewed as an essential factor in terms of 

measuring the level of fitness of the model based on its intended purpose and 

its accurate reproduction of the real world and its ability to predict the future. 

 The model grain of the urban models ranged from micro (30m resolution), 

local (10m, 30m, 100m & 1 000m resolutions), regional (30m & 100m 

resolutions), national (500m & 1 000m resolutions) and global (300m, 1 000m 

& 10km resolutions). It appears that there are no limitations as to the model 

grain that can be modelled across the various scales. Even though the 

objectives of the various categories of urban simulation models are different 

in terms of their applications, most of the phenomena / urban dynamics that 

were simulated related to urban expansion due to urbanisation and its 

associated impacts. It appears from the comparison that there is no 

standardisation in terms of the most appropriate view on urban growth and 

dynamics. 

 The time period specifies the period used in validating and calibrating within 

the urban models which generally coincided with data points such as updates 
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in census data, household and travel surveys. The time period between these 

data points generally ranged between five (5) and ten (10) years. The 

projection time periods in many of the models did not follow a continues / 

yearly update but followed a time interval update of five (5), ten (10) and 15 

years. The most significant time interval used in prediction was 35 years. 

 

The detailed analysis of the selected urban CA models (excluding conceptual models) 

are contained in the assessment matrix below (Refer to Table 3). 
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Table 3: Characteristics of urban CA 

Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

Quesada-

Ruiz et al 

2019 

Not explicit D; P Simulation of the 

housing bubble’s 

impact on illegal 

landfill 

proliferation and 

the forecasting of 

the proliferation of 

illegal landfill. 

Illegal landfills 

& impact on 

the 

environment 

and causes of 

public health 

risks. 

CA + CA-

Markov + 

Multiobjective 

land 

allocation 

model 

CA Orthophotos; 

Land use data; 

Socioeconomic 

data; 

Topographic 

data; 

Road network; 

 

Yes Yes Local Las Palmas 

Gran 

Canaria, 

Spaim 

Not explicit 5 x 5 2000 – 

2006; 

2006 – 

2012; 

Projection 

- 2018 

Huang et al 

2019 

Not explicit D; P; PC Simulation of 

urban expansion 

based on the 

ecological priority 

principle. 

Ecological & 

environmental 

issues due to 

urban 

expansion. 

CA (ArcGIS) CA Land use 

survey; 

Landsat 

imagery; 

climate 

observations; 

Urban-rural 

master 

planning map; 

Soil fertility 

data; 

Administrative 

boundaries 

Not 

explicit 

Not 

explicit 

Local 

(30 x 

30m) 

Zhangjiakou, 

Zhangbei 

County, 

China 

Not explicit 3 x 3 2013 - 

2030 

Tong & Feng 

2019 

PCGA-CA D; P; PC Simulation of the 

current and future 

urban patterns 

under the spatial 

constraints of 

urban planning 

regulations. 

Illegal urban 

development 

due to 

ineffective 

implementation 

of planning 

regulations. 

CA (UrbanCA 

+ ArcGIS) + 

Genetic 

Algorithm 

(GA) 

CA Satellite 

images;  

Terrain 

datasets;  

Socio-

economic data;  

Facility data; 

Urban planning 

map; 

Yes Yes Local Ningbo City, 

China 

Non-urbanized; 

Urbanized 

5 x 5  2000 - 

2015; 

Projections 

2030 & 

2045 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

Population 

density. 

 

Wang et al 

2019 

Not explicit D; P Coupling of top-

down and bottom-

up CA models and 

the simulation of 

urban development 

dynamics under 

three scenarios 

(compact, stability, 

sprawl). 

Rapid 

urbanisation 

CA (ArcGIS) 

+ Artificial 

neural 

network 

(ANN) + 

Markov chain 

model 

CA Historical 

urban land use; 

topographical 

data; road 

network data 

Yes 

 

Yes Local 

(30 x 

30m) 

Wuhan, 

China 

Urban (commercial, 

residential, 

industrial, 

transportation, other 

impervious 

surfaces); non-

urban (forest, 

grassland, 

vegetation, other 

unused lands); 

water bodies (rivers, 

lakes, ponds) 

5 x 5 Moore  2007 - 

2016; 

Projection 

– 2026 

Feng & Tong 

et al 2019 

UrbanCA D; P; PC Simulation of 

dynamic urban 

growth and to 

project future 

urban scenarios 

and assess their 

natural and socio-

economic impacts.  

Urban 

encroachment 

on agricultural 

and 

ecologically 

valuable land. 

CA (UrbanCA 

+ ArcGIS) 

CA Not explicit Yes Yes Local Shanghai, 

China 

Urban; non-urban Moore; 

Circular; 

Von-Neumann 

2005 – 

2015; 

Projection 

- 2025 

Guan et al 

2019 

Not explicit D; P Simulation of 

spatial patterns of 

land use and land 

cover change 

within the region to 

inform the 

formulation of 

structural 

optimisation and 

land policies. 

Significant 

infrastructure 

investment 

impacting on 

land use 

structure and 

ecological 

environments. 

Logistic-CA-

Markov; 

WLC-CA-

Markov 

(ArcGIS)  

CA Land use data; 

remote sensing 

data; ecological 

data; 

topographic 

data; 

population 

data; economic 

data; 

hydrological 

Yes Yes Local Zhongxian 

County, 

Chongqing, 

China 

6 conversion 

probabilities 

(grassland; 

farmland; 

construction land; 

forest land; waters; 

unused land) 

Not explicit 1990; 

2000; 

2005; 

2010; 

Projection 

– 2015, 

2020, 2025 

& 2030 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

data; road 

network; 

boundaries data 

Tripathy & 

Kumar 2019 

Not explicit D; P Spatio-temporal 

land use/land cover 

monitoring and 

urban growth 

modelling to 

predict urban 

growth 

Rapid 

urbanisation 

leading to 

environmental 

degradation & 

socio-

economic 

disparities. 

CA (ArcGIS) CA Satellite 

imager; Census 

data; 

topographical 

data; land 

use/land cover 

maps; road 

networks. 

Yes Yes Local 

(30 x 

30m)  

Delhi, India Built up land; 

Vegetation cover: 

Water body; Others 

3 x 3 1989; 

1994; 

2004; 

2009 &  

2014; 

Projection 

– 2019 & 

2024 

He et al 2019 UEMCPI D; P Modelling 

integrated urban 

spatial expansion, 

including the 

population 

interaction to 

simulate the 

collaborative 

development 

process of an urban 

area. 

Rapid 

urbanization & 

migration 

CA (ArcGIS; 

SPSS) + 

UEMPI 

CA Land cover; 

land use; socio-

economic; 

population 

(Census data); 

migration; 

administrative 

boundaries, 

rivers, road 

networks. 

Yes Yes Local Ezhou, 

China 

Urban land; 

Cultivated land; 

Forest: Water; 

Others 

5 x 5 2004; 

2013; 

Projection 

- 2022 

Ou et al 2019 Not explicit D; P Simulation of 

landscape pattern 

optimisation 

allocation to 

achieve ecological 

security. 

Ineffective 

regulation for 

urban 

expansion; 

ecological 

environmental 

problems. 

CA + LPOA CA GIS data, 

remote sensing 

images, 

socioeconomic 

statistics, 

environmental 

data. 

Yes Yes Local Longquanyi 

District, 

Chengdu 

City, 

Sichuan 

Province, 

China 

Farmland; Orchard; 

Forest; Urban-rural 

residential and 

industrial mining; 

Waters 

Not explicit 2014; 

Projection 

2021; 

2028. 

Mousivand 

& Arsanjani 

2019 

Not explicit D; P Simulating the 

global land cover 

changes. 

Unsustainable 

urban growth 

CA CA Remote 

sensing data 

Not 

explicit 

Not 

explicit 

Global 

(300m) 

Global Agriculture; Forest; 

Grassland; Wetland; 

Settlement; Sparse 

vegetation; Bare 

Not explicit 1992 – 

2015; 

Projection 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

area; Water; 

Permanent snow 

and ice. 

2030 & 

2050 

Feng & Tong 

2019 

Not explicit D Simulation of the 

spatial 

heterogeneity of 

land use within a 

rapidly growing 

urban area.  

Not explicit CA + GA CA Satellite 

imagery; 

boundary; 

transportation 

networks; 

demographics; 

population; 

socioeconomic. 

Yes Yes Local 

(30m) 

Shaoxing 

City, China 

Urban; nonurban; 

excluded 

5 x 5 (Moore) 1995 - 

2015 

Musa et al 

2019 

Not explicit D; P; PC Geospatial 

modelling of urban 

growth for 

sustainable 

development (UN 

SDGs 11 & 15) 

Land 

degradation & 

fragmentation, 

biodiversity 

loss, water 

crisis & 

environmental 

pollution. 

CA-Markov CA Satellite 

imagery; 

topographical 

maps; 

population; 

economic; 

ground truth 

points. 

Yes Yes Regional 

(30m) 

Abia, Akwa-

Ibom, 

Bayelsa, 

Cross-River, 

Delta, Edo, 

Imo, Ondo 

& Rivers 

(Niger Delta 

region), 

Nigeria 

Built-up 

(residential, 

commercial, 

industrial buildings, 

roads, 

infrastructures), 

waterbody (open 

waters, ponds, 

reservoirs, rivers, 

lakes), bare surface 

(intrusions, mining, 

vacant land) 

Not explicit 1985 – 

2015; 

Projection 

2030 

Hou et al 

2019 

Not explicit D; P Scenario-based 

modelling for 

urban sustainability 

focusing on spatial-

temporal changes 

in cropland under 

rapid urbanisation. 

Rapid 

urbanisation; 

agricultural 

production & 

biodiversity 

loss 

CA-Markov CA Satellite 

imagery; 

transportation 

networks; 

water bodies; 

reservation 

areas; land 

uses. 

Yes Yes Local 

(100m) 

Hangzhou, 

Zhejiang 

Province, 

China 

Built-up; cropland; 

bareland; forest; 

grassland; water. 

8 cell rule 1990 - 

2035 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

Yang et al 

2019 

Not explicit D; P Simulation of 

landscape spatial 

layout evolution in 

rural-urban fringe 

areas to provide 

insights into 

regional land use 

planning, urban 

development and 

ecological 

environment 

management.  

Rapid 

urbanization; 

agricultural 

production & 

biodiversity 

loss 

CA + Markov 

+ MLP-ANN  

CA Satellite 

imagery; 

topographical 

maps; 

socioeconomic; 

transportation 

networks; land 

uses; zoning 

regulations. 

Yes  Yes Local 

(30m) 

Ganjingzi 

District, 

China 

Farmland, garden 

land; forest land; 

construction land; 

water; other lands. 

Not explicit 2000 – 

2015; 

Projection 

- 2020 

Rimal et al 

2019 

Not explicit D; P Simulating the 

spatiotemporal 

dynamics of 

urbanisation and 

predicting future 

growth for 

sustainable urban 

planning and 

policymaking. 

Rapid peri-

urban 

expansion; 

decline in 

cultivated land; 

food security. 

CA-Markov CA Satellite 

imagery; 

topographical 

maps; 

population; 

transportation 

networks; land 

uses; 

administrative 

boundaries. 

Yes Yes Local 

(30m) 

Biratnagar, 

Itahari & 

Dharan, 

Tarai, Nepal 

Urban, cultivated 

land, vegetation, 

sand, water. 

Not explicit 1996 – 

2006; 

2006 – 

2016; 

Projections 

– 2026; 

2036 

Zhang et al 

2019 

Not explicit D Simulation of intra-

urban land-use 

changes to identify 

the contribution of 

different driving 

factors in urban 

growth and to aid 

in the formulation 

of planning 

strategies. 

Urban sprawl CA + Random 

forest (RF) 

CA Points of 

interest; land 

use, 

administrative 

data 

(boundaries); 

transportation 

data; 

population data  

Yes Yes Local 

(10m) 

Huicheng, 

China 

Non-urban; water 

body; Urban 

(commercial, 

industrial, 

residential, 

administration & 

public services) 

7 x 7 2000 –

2015. 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

Wang et al 

2019 

Not explicit D Simulation of 

spatial and 

temporal processes 

in land cover 

changes. 

Land 

degradation & 

fragmentation, 

biodiversity 

loss, water 

crisis & 

environmental 

pollution. 

CA + 

temporal-

dimension-

extension 

(TDE) 

CA Satellite 

imagery; Land 

cover; Land 

use; Basic 

geographic 

information 

data. 

Yes Yes Micro 

(30m)  

Shendong, 

China 

Urban; non-urban; 

other 

3 x 3; 5 x 5; 7 

x 7 & 9 x 9 

(Moore) 

2005 - 

2015 

Yu et al 2019 Not explicit D; P Modelling of the 

spatial distribution 

of green GDP 

(ecosystem service 

value & GDP) and 

the impact of land-

use change and 

socio-economic 

development on 

this value.   

Ecosystem 

degradation; 

biodiversity 

loss, water 

crisis & 

environmental 

pollution. 

CA-Markov CA Land use; 

economic data; 

agricultural 

production 

data; 

administrative 

boundaries  

Yes Yes National 

(1 000m) 

China Cultivated land; 

forest land; 

grassland; 

waterbody; 

construction land; 

unused land 

Not explicit 1995 – 

2015; 

Projection 

2020 - 

2050 

Nguyen et al 

2019 

Not explicit D; P Simulation of land 

use/land cover 

changes in Hanoi 

City, to improve 

urban planning 

efficiency, local 

governance, 

socioeconomic 

development and 

environmental 

protection. 

Rapid 

urbanisation, 

inefficient 

urban spatial 

planning; 

socioeconomic 

growth 

pressure. 

CA-Markov CA Satellite 

imagery; Land 

cover; Land 

use; Basic 

geographic 

information 

data; ground 

truth points. 

Yes Yes Local Hanoi City, 

Vietnam 

Built up; non built-

up; water bodies. 

5 x 5  1990 – 

2015; 

Projection 

- 2030 

Jamali & 

Kalkhajeh 

2019 

Not explicit D; P Simulation and 

prediction of urban 

growth through 

Rapid 

urbanization; 

land 

CA + ANN CA Satellite 

imagery; Land 

cover; Land 

use; Basic 

Yes Yes Local Tehran, Iran Urban; green space; 

agriculture; 

mountain; open 

land; clay plain. 

Not explicit 2000 - 

2016 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

land use/land cover 

changes. 

fragmentation; 

deforestation. 

geographic 

information 

data. 

Xia et al 

2019 

Not explicit D Simulating urban 

landscape 

dynamics in 

metropolitan areas 

based on intercity 

urban flows across 

a regional scale. 

Rapid 

urbanization 

Logistic-CA CA Geospatial big 

data; 

population 

data; 

socioeconomic 

data; land use; 

land cover; 

ecological; 

basic 

geographic 

data. 

Yes Yes Regional Wuhan, 

Changsha, 

Nanchang, 

China 

Urban; non-urban; 

water 

3 x 3 (Moore) 2005 - 

2015 

Li et al 2019 GIA-CCA D; P Spatial-temporal 

simulation of green 

infrastructure 

preservation 

through the 

establishment of an 

urban growth 

boundary (UGB). 

Rapid 

urbanisation; 

land 

fragmentation; 

degradation of 

ecosystem 

services. 

CA + green 

infrastructure 

assessment 

(GIA) 

CA Satellite 

imagery; Land 

cover; Land 

use; Basic 

geographic 

information 

data; urban 

construction 

constraint; 

ecological 

constraint. 

Yes Yes Local Hangzhou, 

China 

Farmland; forestry; 

construction land; 

water & unused 

land. 

3 x 3 (Moore) 2000; 

2005; 

2010; 

2015; 

Projection 

– 2020. 

Gounaridis et 

al 2019 

Not explicit D; P Simulation of 

potential future 

land use/land cover 

dynamics under 

different economic 

performance and 

planning option 

scenarios.  

Unregulated 

urban growth; 

increasing 

housing 

demand; 

limited land 

use planning 

controls. 

CA + RF CA Satellite 

imagery; Land 

cover; Land 

use; Basic 

geographic 

information 

data; social 

infrastructure; 

Yes Yes Regional 

(30m)  

Athens, 

Attica 

region, 

Greece 

Continuous urban 

fabric; 

discontinuous dense 

urban fabric; 

discontinuous 

medium density; 

discontinuous low 

density; industrial, 

Not explicit 1991; 

1999; 

2003; 

2010; 

2016; 

Projection 

- 2040. 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

administrative 

boundaries; 

land use 

management 

policies. 

commercial & 

transport units; 

arable land & 

permanent crops; 

forests, scrubs & 

other natural areas; 

other.  

Yin et al 

2018 

Not explicit D; P Simulation of the 

potential impacts 

of zoning as a 

growth 

management policy 

on urban growth.  

Rapid 

urbanisation; 

land 

fragmentation; 

degradation of 

ecosystem 

services & 

quality of life. 

CA-SLEUTH CA Satellite 

imagery; 

topographic 

maps; urban 

planning 

documents; 

basic 

geographic 

information. 

Yes Yes Local Jinan, China No zoning; zoning 

based on land-use; 

zoning based on 

urbanisation 

suitability; zoning 

based on 

administrative 

division; zoning 

based on 

development 

planning 

subdivision. 

Not explicit 1996 - 

2020 

Xu et al 2018 SLUCS D; P Land-use change 

simulation model 

reflecting the scale 

differences of land-

use change and 

includes the zoning 

constraints that 

impact on urban 

growth. 

Rapid 

urbanisation; 

land 

fragmentation; 

degradation of 

ecosystem 

services & 

quality of life. 

CA + 

elevation-

based 

stratification 

strategy. 

CA Satellite 

imagery; 

socioeconomic 

data; 

population 

data; economic 

data; land use; 

zoning 

policies; basic 

geographic 

information. 

Yes Yes Local 

(1 000m) 

Guizhou, 

China 

Paddy field; dry 

land; forest; 

grassland; water; 

built-up land; bare 

land. 

Not explicit 1981 – 

2000; 

Projections 

- 2015 - 

2030 

Feng et al 

2019 

Not explicit D Simulation of the 

impact of changing 

the observation 

Not explicit CA – particle 

swarm 

 Satellite 

imagery; 

socioeconomic 

Yes Yes Local 

(120m) 

Shanghai, 

China 

Urban; non-urban; 

water 

5 x 5  1995 - 

2015 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

scale (regional, 

meso & city) on 

the model of urban 

growth. 

optimisation 

based (PSO) 

data; 

population 

data; economic 

data; land use; 

basic 

geographic 

information. 

Zhang et al 

2018 

Not explicit D; P Modelling of the 

spatial 

relationships 

between the 

aerosol optical 

depth (aerosol 

loading/air quality) 

and urban land-use 

change. 

Increase air 

pollutants are 

leading to 

decreased air 

quality in 

urban areas. 

CA-Markov CA Satellite 

imagery; air 

quality data; 

precipitation; 

land use; 

economic; 

population; 

basic 

geographic 

information. 

Yes Yes Local 

(1 000m) 

Wuhan, 

China 

Built-up; unused; 

forest; water body; 

agricultural; 

grassland. 

5 x 5 2010; 

Projection 

2030 

Feng & Qi 

2018 

Not explicit D Urban growth 

simulation model 

considering the 

land use/land cover 

changes over the 

entire nation. 

Rapid 

urbanisation & 

population 

growth; 

informal 

settlement; 

insufficient 

urban service; 

degradation of 

agricultural 

and natural 

land.  

CA + 

analytical 

hierarchical 

process 

(AHP) 

CA Satellite 

imagery; 

Nighttime 

imagery; 

socioeconomic 

data; land use; 

economic; 

population; 

basic 

geographic 

information. 

Yes Yes National 650 cities, 

China 

Urban; non-urban 5 x 5 2000; 

Projections 

– 2015; 

2020; 

2025; 

2030 

Mei et al 

2018 

 D; P Simulation of land 

use and its drivers, 

including the 

prediction of land-

 CA + CLUE-

S 

CA Satellite 

imagery; 

socioeconomic 

data; land use; 

Yes Yes Local 

(150m) 

Zengcheng 

District, 

Guangzhou, 

China 

Arable land; 

woodland; traffic 

land; 

residential/industrial 

5 x 5 2001; 

2005, 

2009; 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

use change 

probabilities under 

different scenarios 

(natural growth, 

ecological 

protection, 

economic 

development). 

basic 

geographic 

information. 

land; water area; 

unused land. 

Projection 

- 2020 

Xu et al 2018 Not explicit D; P Simulation of the 

impact of future 

urban development 

on the surrounding 

environment using 

land ecological 

suitability. 

Rapid urban 

expansion & 

sprawl; loss of 

high ecological 

value 

resources. 

CA-RF CA Satellite 

imagery; 

population 

data; land use; 

basic 

geographic 

information. 

Yes Yes Local Changzhou 

City, China 

Arable land; 

woodland; 

grassland; 

waterbody; artificial 

surface; unutilized 

land.  

Not explicit 2007 – 

2014; 

Projection 

2020 

Yu et al 2018 Not explicit D; P Multi-scale (macro, 

meso & micro) 

simulation model 

to simulate the 

agglomeration 

development 

process of the area 

and includes the 

prediction of the 

demand for new 

urban land at an 

aggregated urban 

scale.  

Rapid 

urbanisation. 

CA CA Satellite 

imagery; 

population 

data; economic 

data; land use; 

basic 

geographic 

information. 

Yes Yes Local 

(150m) 

Wuhan, 

China 

Arable land; 

grassland; forest 

land; urban land; 

water & unused 

land. 

3 x 3 (Moore) 1995; 

2005; 

2015; 

Projection 

– 2020. 

Zhang et al 

2018 

Not explicit D; P Simulation of land 

use and land cover 

change 

CA CA-CLUE-S CA Satellite 

imagery; 

socioeconomic; 

population 

data; economic 

Yes Yes Local 

(30m) 

Tekes 

County, 

Xinjiang, 

China 

Forest; grassland; 

cropland; urban; 

barren land; water. 

Not explicit 1998; 

2006; 

2011; 

Projection 

- 2020 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

data; land use; 

natural 

resource; 

hydrological 

data; basic 

geographic 

information. 

Jia et al 2018 Not explicit D; P Simulation of 

spatial and 

temporal changes 

in land use, taking 

into consideration 

the ecological 

redline areas. 

Negative 

ecological 

impacts during 

urban 

expansion.  

CA – CLUE-S CA Satellite 

imagery; 

socioeconomic; 

population 

data; basic 

geographic 

information. 

Yes Yes Local 

(90m) 

Beijing, 

China 

Croplands; forest 

lands; grasslands; 

water bodies; 

construction lands. 

Not explicit 2010 - 

2020 

Feng & Tong 

2018 

DE-CA  D; P Simulation model 

that integrates 

differential 

evolution (DE) into 

CA to generate the 

optimal sets of CA 

parameters for 

prediction of future 

scenarios to 

address urban 

growth, 

environmental 

protection & urban 

planning.  

Optimisation 

of the CA 

model to 

represent land-

use dynamics 

adequately. 

DE-CA CA Satellite 

imagery; land 

use; 

socioeconomic; 

population 

data; basic 

geographic 

information; 

administrative 

boundaries. 

Yes Yes Local Kunming 

City, China 

Urban; non-urban; 

other 

3 x 3; 5 x 5; 7 

x 7. 

2006; 

2016 - 

2026 

Fan et al 

2018 

UECDM D; P A simulation 

model that links 

urban planning and 

the dynamics of 

regional ecosystem 

Rapid 

urbanization 

CA + urban-

ecological 

coordinated 

development 

model 

CA Satellite 

imagery; land 

use; 

socioeconomic; 

population 

Yes Yes Regional Fuzhou City, 

Fuqing City, 

Changle 

City, Pingtan 

County, 

Original 

construction land; 

new construction 

land; forest land; 

Not explicit 1990 – 

2015; 

Projection 

2020 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

services value 

(ESV) to model 

urban expansion 

impact on ESV. 

data; basic 

geographic 

information; 

administrative 

boundaries. 

Luoyuan 

County, 

Minhou 

County, 

China 

arable land; a water 

area 

Liu et al 

2018 

Not explicit D; P National 

simulation model 

considering the 

gradient of 

development 

differences among 

cells and to detect 

past and future 

urbanisation states 

and temporal 

evolution trends, 

including national 

planning policy 

implementation. 

Ecological & 

environmental 

deterioration 

due to urban 

expansion. 

Gradient CA CA Satellite 

imagery; 

Nighttime 

imagery; 

socioeconomic 

data; land use; 

economic; 

population; 

vegetation 

index; basic 

geographic 

information. 

Yes Yes National 

(500m) 

China Built-up; no built-

up 

Not explicit 2000; 

2005; 

2010; 

Projection 

- 2050 

Liang et al 

2018 

Not explicit D; P Urban simulation 

model focused on 

future land use 

simulation and the 

integration of 

different planning 

drivers (traffic 

planning, 

development 

zones) into the 

model. 

Rapid 

urbanisation 

CA – Future 

land-use 

simulation 

(FLUS) 

CA Satellite 

imagery; 

socioeconomic 

data; land use; 

economic; 

population; 

master 

planning; 

ecological data; 

basic 

geographic 

information. 

Yes Yes Regional 

(100m) 

Guangzhou, 

Shenzhen, 

Foshan, 

Dongguan 

(Pearl River 

delta), China 

Non-urban; urban; 

water area. 

3 x 3 (Moore) 2000 – 

2013; 

Projection 

2052 

Feng et al 

2018 

Not explicit D; P Simulation of 

dynamic 

Rapid land-use 

change 

CA - GWR CA Satellite 

imagery; 

Yes Yes Local Suzhou City, 

China 

Urban; non-urban; 

excluded areas. 

5 x 5 2000 - 

2015 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

relationships 

between land-use 

change and its 

driving forces.  

socioeconomic 

data; land use; 

economic; 

population; 

ecological & 

agricultural 

protection 

zones; basic 

geographic 

information. 

Kuo & Tsou 

2018 

Not explicit D; P Simulation of 

urban expansion 

and its impact on 

habitat diversity.  

Ecological & 

environmental 

deterioration 

due to urban 

expansion. 

CA - 

SLEUTH 

CA Satellite 

imagery; land 

use; surface 

temperature; 

surface runoff; 

habitat 

diversity; basic 

geographic 

information. 

Yes Yes Local Tainan, 

Taiwan  

Urban; agriculture; 

water; forest; other 

Not explicit 1993 – 

2008; 

2008 - 

2030 

Zheng et al 

2017 

Not explicit D Modelling of a new 

urban growth 

boundary (UGB) 

delimitation 

method, combined 

with land 

suitability 

evaluation and CA 

to use in urban 

management.  

Uncontrolled 

urban 

expansion. 

CA CA Satellite 

imagery; 

socioeconomic 

data; land use; 

economic; 

population; 

ecological 

safety data; 

planning maps; 

basic 

geographic 

information 

Yes Yes Regional 

(30m) 

Ningbo, 

China 

Suitable region; 

Basic suitable 

region; Unsuitable 

region. 

Not explicit 2002; 

2009; 

2015 

Zhou et al 

2017 

Not explicit D; P Simulation of land-

use change and 

Rapid 

urbanisation 

CA – heuristic 

bat algorithm 

CA Satellite 

imagery; land 

Yes Yes Local Jiaxing City, 

China 

Non-urban; urban 7 x 7 (Moore) 2000 – 

2015; 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

urban expansion to 

assist policymakers 

in strategising and 

facilitating 

sustainable 

urbanisation 

development.  

(BA) + deep 

belief network 

(DBN) 

use; zoning 

suitability; 

basic 

geographic 

information 

Projection 

2024 

Li et al 2017 Not explicit D; P Global land use 

and land cover 

change model, 

including the 

simulation of the 

relationship 

between LUCC 

and human-

environment 

interactions at local 

and global scales. 

Rapid urban 

expansion, 

altering 

processes and 

functions of 

natural 

ecosystems. 

CA - FLUS CA Satellite 

imagery; land 

use; soil data; 

hydrological 

data; basic 

geographic 

information 

Yes Yes Global 

(1km; 

10km) 

Global Forest; grassland; 

farmland; urban; 

barren.  

Not explicit 2010 - 

2100 

Pérez-Molina 

et al 2017 

Not explicit D; P Simulation of 

urban growth and 

the resultant 

intensification of 

local flooding 

problems. 

Increased 

flooding due to 

urban 

expansion. 

CA + 

openLISEM 

(integrated 

flood 

modeling 

tool) 

CA Satellite 

imagery; land 

use; soil data; 

hydrological 

data; basic 

geographic 

information 

Yes Yes Local Kampala, 

Uganda 

Not explicit 3 x 3 2004 – 

2010; 

Projection 

2020 

Feng & Tong 

2017 

Not explicit D Simulation of 

dynamic urban 

growth and 

prediction thereof 

based on future 

scenarios under 

various spatial 

Rapid 

urbanisation 

CA + 

generalised 

additive 

model (GAM) 

CA Satellite 

imagery; 

administrative 

data; protected 

areas; land use; 

basic 

geographic 

information 

Yes Yes Local Shanghai, 

China 

Urban; non-urban; 

water 

7 x 7 2000 - 

2015 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

constraints and 

conditions. 

Long & Wu 

2017 

Not explicit D Development of a 

mega-vector-block 

CA to simulate 

urban expansion at 

the block level on a 

national scale.   

Not explicit CA + mage-

vector-blocks 

(MVB) 

CA Satellite 

imagery; 

administrative 

data; land uses; 

points of 

interest; basic 

geographic 

information 

Yes Yes National 

(90m) 

654 cities, 

China 

Expanded (no 

development); Non-

expanded (rural to 

urban development) 

Not explicit 2012 - 

2017 

Shafizadeh-

Moghadam 

et al 2017 

Not explicit D; P Land cover change 

modelling and the 

inter-relations 

among the driving 

forces influencing 

urban growth 

processes.  

Rapid urban 

growth 

CA + ANN CA Satellite 

imagery; 

OpenStreetMap 

data; basic 

geographic 

information 

Yes Yes Local 

(30m) 

Mumbai, 

India 

Urban extent; urban 

growth; water 

bodies; wetlands; 

forest & green 

spaces; cropland & 

open land.  

7 x 7  2001 – 

2010; 

Projection 

- 2020 

Rahman et al 

2017 

Not explicit D; P Simulation of land 

use and land cover 

changes and the 

impact on land 

surface 

temperature.  

Increase of 

urban heat 

islands due to 

rapid urban 

developments 

CA-Markov CA Satellite 

imagery; 

administrative 

data; land uses; 

basic 

geographic 

information; 

ground truth 

points. 

Yes Yes Local 

(30m) 

Dammam, 

Saudi Arabia  

Built-up; bare soil’ 

vegetation; water 

body. 

Not explicit 1990; 

2002; 

2014; 

Projection 

2026 

Zare et al 

2017 

Not explicit D; P Simulation of 

current and future 

land-use changes 

and the impact on 

soil characteristics 

based on land use 

Vegetation 

cover reduction 

CA-Markov CA Satellite 

imagery; 

administrative 

data; land uses; 

basic 

geographic 

information; 

Yes Yes Regional Shirgah, 

Zirab, 

Darzikola, 

Kaleh, Rig 

Cheshmeh, 

Sangdeh, 

Forest; rangeland; 

settlement; 

agriculture 

Not explicit 1961 – 

1990; 

1991 – 

2000; 

2011-2030 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

and climate 

scenarios.  

soil data; 

hydrological 

data; 

population. 

Talar Cities, 

Iran 

She et al 

2017 

CA-MAS-

SEF 

D; P Monitor land-use 

change and cover 

change in coastal 

areas, assess 

coastal wetland 

change & predict 

land use 

requirements 

Reclamation of 

land to address 

land shortages 

Environmental 

degradation, 

e.g. soil and 

water 

pollution, 

nutrient over-

enrichment & 

reduction in 

biodiversity; 

Landscape 

fragmentation 

CA + 

MAS 

+ Digital 

Shoreline 

analysis 

system 

(DSAS) 

CA Satellite 

images; land 

use data; river 

data; basic 

geographic 

information. 

Yes Yes Local 

(30m) 

Dongtai 

County, 

China 

Landowners 

Entrepreneurs 

Not explicit 1985 – 

2014 (6-

year 

intervals); 

Projections 

in 2020 & 

2030 

Kazemzadeh-

Zow et al 

2017 

Not explicit D; P Spatial zoning 

approach 

simulating the 

long-term urban 

expansion and 

distinguishing 

between local-scale 

urban dynamics 

and their different 

socioeconomic 

characteristics. 

Not explicit CA-Markov + 

multi-layer 

perceptron 

(MLP) neural 

network.  

CA Satellite 

imagery; 

administrative 

data; land uses; 

basic 

geographic 

information. 

Yes Yes Local 

(30m) 

Mashhad, 

Iran 

Urban; vegetation; 

urban green space; 

barren land; 

mountainous & 

rocky land; water 

surfaces; 

sedimentary 

surfaces. 

Not explicit 2013 - 

2025 

He et al 2017 BPANN-

CBRSortCA 

D; P Simulation of 

future urban 

building heights 

(vertical) and their 

Rapid 

urbanisation 

BPANN-

CBRSortCA 

CA Satellite 

imagery; 

socioeconomic 

data; land use; 

Yes Yes Local Wuhan, 

China 

Low building; 

multi-story 

building; middle-

Not explicit 2005; 

2015 - 

2025 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

spatial distribution 

(horizontal). 

economic; 

population; 

planning maps; 

basic 

geographic 

information 

high building; high 

building; water. 

Feng & Liu 

2016 

Not explicit D; P Simulation of 

future scenarios for 

urban expansion, 

including the 

impact on 

ecological and 

environmental 

conditions as 

spatial constraints. 

Rapid 

urbanisation; 

increased risk 

of ecological 

damage and 

storm surge 

related to 

global climate 

change and 

sea-level rise. 

CA + self-

adaptive 

genetic 

algorithm 

(SAGA) 

CA Satellite 

imagery; 

administrative 

data; protected 

areas; land use; 

basic 

geographic 

information 

Yes Yes Local Lingang, 

Shanghai, 

China 

Urban; non-urban; 

water 

Not explicit 2005; 

2015; 

Projection 

- 2030 

Jiang et al 

2016  

Not explicit D; P Simulation of the 

future urban 

change of the 

urban 

agglomeration and 

its impacts on 

ecological services. 

Degradation of 

ecological 

landscapes and 

ecosystem 

structures due 

to urbanisation. 

CA + CLUE-s CA Satellite 

imagery; 

administrative 

data; protected 

areas; land use; 

socioeconomic; 

basic 

geographic 

information 

Yes Yes Regional Changsha-

Zhuzhou-

Xiangtan, 

China 

Built-up ecosystem; 

green land 

ecosystem; 

cultivated 

ecosystem; wetland 

ecosystem; other. 

Not explicit 2000; 

2005; 

2009; 

Projections 

- 2014; 

2019; 

2024 

Osman et al 

2016 

Not explicit D; P Simulation of 

current and future 

urban change and 

their effects on 

arable lands, 

including the 

application of 

Rapid urban 

growth 

CA + 

SLEUTH 

CA Satellite 

imagery; 

administrative 

data; protected 

areas; land use; 

socioeconomic; 

basic 

Yes Yes Local Cairo, Egypt Urban; water; 

agricultural land; 

urban sprawl; 

hillshade relief. 

Not explicit 1984; 

2000; 

2013; 

Projections 

2015 - 

2035 
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Author Model name Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model extent Cell states Neighbourhood Time 

period 

different urban 

policy scenarios. 

geographic 

information 

Liu et al 

2016 

SMDUGP D; P Simulation of 

urban land 

expansion. 

Rapid 

urbanisation 

CA + 

simulation of 

different 

urban growth 

pattern 

(SMDUGP) 

CA Satellite 

imagery; 

administrative 

data; land use; 

basic 

geographic 

information 

Yes Yes Local Huangpi, 

Wuhan, 

China 

Outlying; adjacent; 

urban land; non-

urban land. 

3 x 3 2004 - 

2024 
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3.2.2 Agent-based modelling (ABM). 

The review of ABM urban spatial simulation models revealed a consistent publication 

stream since 2010 (refer to Figure. 14 and Appendix A.10).  

 

 

Source: Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 17: ABM: Urban spatial simulation publications 

 

The ABM category of urban spatial simulation publications over the period was 

predominantly published in the Web of Science categories of Geography, Environmental 

Studies, Computer science interdisciplinary application and Regional urban planning. In 

the regional and urban planning and urban studies categories, a total number of 45 

publications were cited over the 2009 - 2019 time period (Refer to Appendix A.11).  

 

The publication categories are predominantly focused on the research themes of 

environmental sciences, computer sciences and geography, which includes research types 
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of long-term monitoring, experimentation, comparative analysis and models / 

methodological approaches. The varying coverage of the publications also demonstrates 

the multi-disciplinary nature of the models and their application (Refer to Figure 18).  

 

 

Source: Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 18: ABM: Treemap of urban spatial simulation publications 

 

Publications dealing with ABM urban spatial simulation have their applications in the 

United States of America (24,7%), China (16,5%), France (8,2%), Canada (7,6%), and the 

Netherlands (7%) (Refer to Figure 19 and Appendix A.12). 
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Source: Author adopted from Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 19: ABM: Spatial distribution of urban spatial simulation publications 

 

According to the primary purpose, issues, parameters and data inputs, the urban ABM 

models and their components/relationships can be grouped into the four components of an 

urban system i.e. biotic, physical, social and built. In addition to the categories mentioned 

above, several conceptual models (3) and models trying to support and/or inform planning 

policy (1) is highlighted.  

 

Most urban ABM models simulate the interactions between people-built environment-land 

resources/potential across the micro (1), local (5) and national (1) scales. A total of three 

local and two micro-level urban ABM models simulates the interactions between people-

organisms-built environment-land resources/potential. 
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Source: Author 

Figure 20: ABM: Components of urban simulation publications 

 

Based on the assessment criteria, the following are noted: 

 The majority of the urban ABM models reviewed had a combination of descriptive 

and predictive objectives as part of the model design. The factors and dynamics 

explored in the past provide the foundation of using forecasting techniques to 

understand the future. In addition to the aforementioned, several urban ABM 

models started to incorporate prescriptive objectives as a way of understanding 

the possible constraints within the system (e.g. political decision making, 

priorities, governance criteria and budget), as well as trying to measure and 

predicting the outcomes of implementing these decision-making models.  

 Data inputs varied across the various categories of urban models according to their 

needs and the scale at which the components of the system were investigated. 

Although, all the models required demographic, socio-economic and basic 

Stellenbosch University https://scholar.sun.ac.za



75 

geographic information such as road networks, administrative boundaries, land 

uses and topography.  

 Calibration and validation formed part of the design and construction of the 

majority of the urban models and was viewed as an important factor in terms of 

measuring the level of fitness of the model based on its intended purpose and its 

accurate reproduction of the real world and its ability to predict the future. 

 Most of the urban ABM models did not explicitly mention a time period. The time 

periods noted ranged between days, weeks, a year or time periods ranging between 

five (5) and ten (10) years. The models that incorporated predictive objectives, set 

projection time interval update of five (5), ten (10) and 15 years. The biggest time 

interval used in prediction was 35 years. 

 

The detailed analysis of the selected urban ABM models (excluding conceptual models) is 

contained in the assessment matrix below. 
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Table 4: Characteristics of urban ABM 

Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

Wu et al 

2019 

Not 

explicit 

D; P; PC Urban space 

optimisation through 

understanding 

commuting 

behaviours in a local 

urban residential 

area and simulation 

of behaviours of 

residents through 

ABM and inducing 

backwards the 

causes of congestion.   

Traffic 

congestion 

MAS (Repast S; 

RepastCity); 

Geospatial 

simulation 

(ArcGIS) 

ABM + origin-

destination matrix 

Big data – mobile 

phone data; 

Spatial data – aerial 

photographs; urban 

road network 

Not explicit Yes Micro Baishazhou 

area, 

Wuhan, 

China 

Mobile 

agent – 

resident 

Static agent 

– urban 

roads 

 

Not 

explicit 

Baeza et al 

2019 

Not 

explicit 

D; P Simulation of 

complex socio-

political decision 

models (socio-

political / social-

institutional module) 

to analyse urban 

vulnerability under 

different scenarios 

(governance – 

criteria, priorities, 

actions & budget) of 

climate change and 

to explore the 

hydrological 

vulnerability/risk of 

the case study area.  

Influence by 

agents (social 

pressure) on 

socio-political 

infrastructure 

investment 

decisions and 

the patterns of 

urban 

vulnerability & 

climate-related 

hazards 

(flooding, water 

scarcity). 

 

ABM; 

Geospatial 

simulation 

(ArcGIS) 

ABM + multi-

criteria decision 

analysis 

Not explicit Yes Not explicit Local Mexico 

City, 

Mexico 

Local agent 

(resident); 

Institutional 

agent (water 

body); 

 

Not 

explicit 

Wahyudi et 

al 2019 

Not 

explicit 

D; P Simulation of private 

land developers’ role 

in stages of the land 

Lack of 

knowledge in 

how the spatial 

ABM 

(NetLogo); 

Geospatial 

ABM + 

microeconomic 

theory 

Economic data; 

Satellite images; 

Yes Yes Local 

300m 

Jakarta, 

Indonesia 

Large, 

medium and 

1994 - 

2012 
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Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

development process 

(supply-side) and 

how their spatial 

decision behaviours 

affect the spatial 

form of the urban 

footprint and urban 

land market. 

decision of 

individual 

developers 

collectively 

influences urban 

growth. 

simulation 

(ArcGIS) 

Spatial data (land 

use, roads, 

economic value) 

small 

developer 

Hackl & 

Dubernet 

2019 

Not 

explicit 

D Modelling and 

quantifying human 

mobility for studying 

the large-scale 

transmission of 

infectious diseases 

(seasonal influenza) 

and improving 

epidemic control. 

The rapid 

geographical 

spread of 

emergent 

infectious 

diseases through 

a complex web 

of mobility 

ABM 

(MATSim) 

ABM + 

Compartmental 

model – 

Susceptible – 

Infected – 

Recovered (SIR) 

Socio-demographic 

data; health data; 

road network 

Yes Yes Local Zurich, 

Switzerland 

Synthetic 

individual 

(1:100) 

Week 

50/2016-

Week 

8/2017 

Morelle et 

al 2019 

SiReMo D; P Simulating the close-

to-home recreation 

activities of multiple 

individuals by foot, 

in order to assess the 

movement flows & 

gaps along with the 

mobility network 

Lack of access 

to recreation 

areas & poorly 

located and 

quality 

recreation areas 

ABM 

(NetLogo); 

Geospatial 

simulation 

(QGIS) 

ABM + origin-

destination matrix 

Land use data; road 

networks 

Yes Yes Local 

70m x 

70m cell 

Will, 

Switzerland 

Synthetic 

individual 

(200 agents) 

Not 

explicit 

Lu et al 

2018 

Not 

explicit 

D; P Simulation of 

commuters’ travel 

patterns by 

autonomous taxis on 

road networks, 

including the travel 

costs and 

environmental 

Traffic 

congestion; 

Air pollution 

 

ABM (GAMA); 

Geospatial 

simulation 

(GIS) 

ABM + origin-

destination matrix 

Spatial data (road 

network; land use) 

Commute data; 

Population data 

Yes Yes Local Ann Arbor, 

Michigan 

Commuter; 

aTaxi agents 

Not 

explicit 
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Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

implications of 

substitution of 

personal vehicle 

travel with aTaxi 

travel. 

Jin et al 

2018 

Not 

explicit 

D; PC Modelling of 

socioeconomic 

means and social 

support of older 

adults and their 

transportation mode 

of choices in 

accessing oral 

healthcare screening 

events/services. 

High burden of 

access to 

healthcare by 

older adults; 

Inequities in 

healthcare for 

poor & disabled 

populations. 

ABM 

(AnyLogic); 

Geospatial 

simulation 

ABM + 

transportation 

model 

Administrative 

data; 

Population data; 

Spatial data 

(facilities; road 

network); 

Commute data 

Yes Not explicit Local Manhattan, 

New York, 

USA 

Synthetic 

agent (500 

agents) 

Not 

explicit 

Alghais & 

Pullar 2018 

Not 

explicit 

D; P; PC Modelling of 

disaggregate future 

changes in land use 

patterns given 

forecast population 

estimates and 

planning policies. 

Rapid 

urbanisation; 

Housing 

shortages; 

Traffic 

congestion 

ABM (ArcGIS 

Agent Analyst 

extension); 

Geospatial 

simulation 

(ArcGIS) 

ABM  Satellite images; 

Administrative data 

(housing 

applicants; master 

plans); 

Population data; 

Spatial data (road 

network; 

boundaries; land 

use); 

Commute & 

accident data 

Yes Yes Local Kuwait 

City, 

Kuwait 

Citizens; 

non-citizens; 

Decision-

makers 

1995 – 

2015; 

Projection 

2050 

Yu et al 

2018 

Not 

explicit 

D; P; PC Modelling spatial 

allocation of 

emergency shelters 

during unexpected 

disaster events and 

optimising shelter to 

Disaster events; 

time-consuming 

evacuation 

processes; Road 

congestion. 

MAS; 

Geospatial 

simulation 

(ArcGIS)  

ABM Aerial images; 

Spatial data 

(population; road 

network; 

emergency shelter; 

land use) 

Yes Yes Micro Jing’an 

District, 

Shanghai, 

China 

Government; 

Shelter; 

Resident 

Not 

explicit 
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Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

improve evacuation 

of residents. 

Cantergiani 

& Delgado 

2018 

AMEBA D; Simulation of the 

urban development 

process at the sub-

regional scale 

considering urban 

planners, developers 

and the population’s 

decision-making 

process in different 

future urban growth 

scenarios. 

Urban growth ABM 

(NetLogo); 

Geospatial 

simulation 

(GIS) 

ABM Satellite imagery; 

Spatial data 

(population, 

boundaries, zoning, 

housing 

distribution, natural 

protected zones, 

environmental 

layers; land use; 

facilities; cadastral 

data; road network) 

Yes Yes Micro 

(50 x 

50m) 

“Corredor 

del 

Henares”, 

Madrid, 

Spain 

Urban 

planners; 

Developers; 

Population 

Not 

explicit 

Lu & Hsu 

2017 

ALENT D Dynamic urban 

transportation 

simulation model for 

lifecycle 

environmental 

performance 

evaluation of 

transport modes 

under different 

market scenarios.  

Not explicit ABM 

(NetLogo); 

Geospatial 

simulation 

(GIS) 

ABM + lifecycle 

analysis 

Spatial data (road 

& rail network); 

Commute data; 

Census data 

Yes Yes Local Hong Kong Modes; 

Passengers 

Not 

explicit 

Zhou et al 

2017 

WECC D; PC Simulation of the 

economic and water 

environment 

information for 

industrial structure 

upgrading 

(equipment & 

machinery industry) 

and spatial 

optimisation based 

Rapid 

industrialization; 

Water pollution 

MAS 

(RNetLogo); 

Geospatial 

simulation 

(GIS) 

ABM + Social – Population 

data; 

Industrial data; 

Pollution data; 

Water environment 

data; 

Satellite imagery 

(land use; drainage; 

ecological 

constraint maps) 

Yes Yes  Local Changzhou, 

Jiangsu, 

China 

Population 

(urban & 

rural); 

Industrial, 

Tertiary & 

Agricultural 

enterprises 

Sewage 

treatment 

Not 

explicit 
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Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

on water 

environment 

carrying the capacity 

to promote socio-

ecological 

sustainability. 

plants & 

outlets; 

Pollutant 

flow & 

pollutants; 

River; 

Monitored 

sections 

Landscape 

Démare et 

al 2017 

Not 

explicit 

D; P Simulation of the 

logistic system to 

describe the 

movement of goods 

over the territory 

through a supplying 

network. 

Inefficient 

management of 

the flow of 

goods & 

infrastructure 

network 

constraints 

MAS (GAMA); 

Geospatial 

simulation 

(GIS) 

ABM Goods production 

& consumption 

data; 

Network data (road, 

rail & river 

infrastructure; 

logistics flow; 

traffic); 

Building permit 

data 

Not explicit Not explicit Regional 

(50 x 

50) 

Paris, 

Orléans, 

Rouen, Le 

Havre, 

Caen,  

Goods 

provider; 

Land 

transporter 

(road, river, 

rail); 

Warehouses; 

Logistics 

service 

provider; 

Terminal 

operator; 

Shipowner; 

Final co-

signees 

80 days 

Ghavami 

& Taleai 

2017a; 

Ghavami et 

al 2017b; 

Ghavami et 

al 2016 

CaféSCP D; PC Simulation of the 

spatial group 

decision-making 

process as well as 

the relationship that 

exist among the 

influencing 

entities/stakeholders 

in the approval of the 

Lack of 

understanding of 

the influence of 

different 

factors/actors on 

the outcome and 

performance of 

the decision-

making process 

MAS (GAMA); 

Geospatial 

simulation 

(GIS) 

ABM Not explicit Yes Yes Local 

(40 x 

40m) 

Zanjan, 

Iran 

Land use 

agents 

(residential, 

business, 

educational, 

green, 

medical); 

Not 

explicit 
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Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

urban land use 

master plan. 

& 

implementation. 

Decision 

maker; 

Facilitator; 

Malik & 

Abdalla 

2017 

Not 

explicit 

D Simulation of urban 

dynamics and to 

model the settlement 

pattern of students of 

the University of 

Waterloo Campus. 

Urban sprawl ABM 

(NetLogo); 

Geospatial 

simulation 

(ArcGIS) 

ABM Political 

boundaries; Road 

network; 

Residential zones; 

Grocery stores; 

Light rail transit 

stops 

Not explicit Not explicit Local Waterloo, 

Canada 

Students Not 

explicit 

Liu & Lim 

2016 

Not 

explicit 

D; P Simulation of 

evacuation planning 

(shelter assignment 

& routing strategy) 

from both the spatial 

and temporal 

perspectives during a 

flood event scenario. 

Ineffective 

evacuation 

planning during 

natural disasters. 

ABM (Agent 

Analyst 

ArcGIS); 

Geospatial 

simulation 

(ArcGIS) 

ABM + urban 

network analysis 

Flood lines; Road 

networks; shelters; 

census boundaries; 

census data; 

hydrology; slope; 

historical flood 

events  

Not explicit Not explicit Local  

(5 x 5m) 

Brisbane, 

Australia 

Households Not 

explicit 

Liu et al 

2016 

CID-

USST_GIS 

D; P; PC Simulation of policy 

scenarios to reflect 

on the dynamics of 

spatial distributions 

of creative firms and 

creative workers 

across time within a 

city/district.  

Lack of local 

land-use policies 

for the 

optimisation of 

land use in 

support of 

creative 

industries. 

ABM 

(NetLogo); 

Geospatial 

simulation 

(GIS) 

ABM Administrative 

boundaries;  

City centres; 

Infrastructure 

networks (rail, air, 

road, water, 

stations); 

Facilities (cultural, 

leisure; education); 

Hydrological data; 

Services (internet) 

Land uses  

Yes Not explicit Micro Jiading 

District, 

Shanghai, 

China 

Creative 

firms; 

Creative 

workers; 

Urban 

government 

2013, 

2018, 

2023 (5 

year plan 

period 

intervals) 

Li et al 

2016 

Not 

explicit 

D Analysis of historical 

and future land-use 

changes and 

Food security ABM (Analyst 

Agent ArcGIS); 

Geospatial 

ABM Satellite imagery; 

Land use 

Yes Yes National Uganda Agricultural; 

Non-

agricultural 

1993; 

2001; 

2013 
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Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

simulation of 

scenarios of potential 

agricultural land-use 

changes and the 

decision-making 

process of farmers.  

simulation 

(ArcGIS) 

developers; 

Land parcels 

Vermeiren 

et al 2016 

ASSURE D Simulation of urban 

growth and intra-

urban social 

segregation, 

including alternative 

policy strategies 

(quality of life, 

accessibility, 

affordability) and 

expected social 

dynamics over space 

and time. 

Urban sprawl; 

Inequality; 

Spatial 

segregation & 

accessibility 

problems. 

ABM (Analyst 

Agent ArcGIS); 

Geospatial 

simulation 

(ArcGIS) 

ABM Not explicit Yes Not explicit Local Kampala, 

Uganda 

Households 

(Agent 

group) 

2010 – 

2013; 

Projection 

2014 - 

2030 

Lichter et 

al 2015 

Not 

explicit 

D Simulation of long-

term consequences 

of disasters 

(earthquake & 

missile attack) and 

the outcomes in 

disaster 

management. 

Climate change ABM (RePast); 

Geospatial 

simulation 

(GIS) 

ABM Census data; 

GPS survey; 

National tax 

authority data 

(property value); 

Capital stock 

estimates. 

Not explicit Yes  Micro CBD, 

Jerusalem, 

Israel 

Households; 

workers; 

land 

developers; 

firms; city 

authorities; 

intervention 

agencies. 

Not 

explicit 

Xu et al 

2015 

Not 

explicit 

D; P Simulation of the 

spatiotemporal 

process model for 

land use/land cover 

changes (LUCC) that 

simulated dynamic 

Rapid socio-

economic 

development & 

urbanisation; 

Loss of 

agricultural 

production; 

ABM (RePast); 

Geospatial 

simulation 

(GIS) 

ABM Satellite imagery; 

Road network; 

Hydrological data; 

Census data; 

Economic data; 

Land use data 

Yes Yes  Regional Dali City, 

Erhai Lake 

Basin, 

China 

Farmer; 

Habitat; 

Government 

2010 - 

2020 
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Author Model 

name 

Objective Main 

purpose/description 

of the model 

Issues Key model 

components 

Model 

classification 

Data inputs Calibration Validation Model 

grain 

Model 

extent 

Type of 

agent 

Time 

period 

land-use changes in 

the case study area. 

Pollution, 
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3.2.3 Cellular automata and agent-based modelling (CA-AB). 

As can be expected, the total number of publications over the analysis period that dealt 

with CA-AB simulation publications are much lower than in the two individual 

categories. Over this period, the number of CA-AB urban spatial simulation 

publications represented between 3,8% and 15,4% of the total publications (refer to 

Figure 21 and Appendix A.13).  

 

 

Source: Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 21: CA-AB: Urban spatial simulation publications 

 

The CA-AB category of urban spatial simulation publications over the period were 

predominantly published in the Web of Science categories of Geography, Geography 

physical and Computer science information systems. Regional urban planning and 

urban studies cited a total of 13 over the selected time period (Refer to Appendix A.14).  

 

The publication categories are predominantly focused on the research themes of 

environmental sciences, computer sciences and geography, which includes research 

4

6

5

6

7

8

7

3

2 2 2

0

1

2

3

4

5

6

7

8

9

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
r.

 o
f 

p
u
b

li
ca

ti
o

n
s

Publication year

CA-AB: Urban spatial simulation publications

Stellenbosch University https://scholar.sun.ac.za



84 

types of long-term monitoring, experimentation, comparative analysis and models / 

methodological approaches. The varying coverage of the publications also 

demonstrates the multi-disciplinary nature of this category of models and their 

application (Refer to Figure 22).  

 

 

Source: Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 22: CA-AB: Treemap of urban spatial simulation 

 

Similar to the other categories the application areas of these studies are predominantly 

focused on China (25%), United States of America (15,4%) and Canada (11,5%) (Refer 

to Figure 23 and Appendix A.15). 
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Source: Author adopted from Web of Knowledge database 2019 [online]  

[Accessed 4 October 2019]. 

Figure 23: CA-AB: Spatial distribution of urban simulation publications 

 

As indicated in Figure 24, most of the urban CA-AB models simulate the interactions 

between people-built environment-land resources/potential across the micro (2) and 

local (1) scales. One local scaled CA-AB model simulates the interactions between 

people-organisms-built environment-land resources/potential and one each for people-

land potential /resources and people-organisms-built environment, respectively. In 

addition to the aforementioned, several conceptual models (4) and models trying to 

support and/or inform planning policy (1) is highlighted. 
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Source: Author 

Figure 24: CA-AB: Components of urban simulation publications 

 

Based on the assessment criteria, the following are noted: 

 Most of the urban CA-AB models reviewed had a combination of descriptive 

and predictive objectives as part of the model design. The factors and dynamics 

explored in the past provide the foundation of using forecasting techniques to 

understand the future. None of the models reviewed incorporated prescriptive 

objectives as a way of understanding the possible constraints within the system 

(e.g. urban growth boundaries, zoning, environmental protection zones), as well 

as trying to measure and predicting the outcomes of implementing these policy 

interventions through scenario planning.  

 Data inputs varied across the various categories of urban models according to 

their needs and the scale at which the components of the system were 

investigated. Although, all the models required satellite images in order to apply 

remote sensing techniques for land use/land cover classification. Basic 

geographic information such as road networks, administrative boundaries, 

topographical and population data was also required.  
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 Calibration and validation formed part of the design and construction of the 

majority of the urban models and was viewed as an essential factor in terms of 

measuring the level of fitness of the model based on its intended purpose and its 

accurate reproduction of the real world and its ability to predict the future. 

 The model grain of the urban models ranged from micro (10m & 50m 

resolution) and local (30m & 100m resolutions). The reviewed models did not 

incorporate model grains of regional, national and global, and most of the 

modelling was done across various scales. 

 Cell states in the urban CA-AB mostly focused on two-state cells, for example, 

feel good / not feel good; suitable for vertical development / not suitable; built-

up / non-built-up and approval probability / no approval. The characteristics of 

the agents across the models were different which hampered a comparative 

analysis.  

 The time period specifies the period used in validating and calibrating within 

the urban models which generally coincided with data points such as updates in 

census data, household and travel surveys. The time period between these data 

points generally ranged between five (5) and ten (10) years. The projection time 

periods in most of the models did not follow a continues / yearly update but 

followed a time interval update of five (5), ten (10) and 15 years.  

 

The detailed analysis of the selected urban CA-AB models (excluding conceptual 

models) is contained in the assessment matrix below. 
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Table 5: Characteristics of urban CA-AB 

Author Model 

name 

Objectiv

e 

Main 

purpose/descripti

on of the model 

Issues Key model 

component

s 

Model 

classificatio

n 

Data inputs Calibratio

n 

Validatio

n 

Model 

grain 

Model 

extent 

Cell states Neighbourho

od 

Type of agent Time 

period 

Mueller 

et al 

2018 

SimUSy

s 

D Integrate 

geospatial 

methods for 

measuring 

spatial 

attractiveness 

and combines 

gamification, 

system dynamics 

and ABM for 

creating a spatial 

simulation for 

smaller urban 

systems.  

Impact on 

location 

choices and 

spatial 

attractivenes

s (noise 

pollution, 

traffic 

intensity) 

during, e.g. 

events. 

CA 

(ArcGIS) 

+ ABM + 

gamificati

on 

approach  

Hybrid + 

conceptual 

for smaller 

size 

(<25 000 

citizens) 

municipaliti

es. 

Environment 

and services 

(land use, 

protected 

areas etc.) 

Networks 

(streets, 

pipelines 

etc.) 

Points of 

interest 

(parks, shops 

etc.) 

Planning 

entities 

(administrati

ve districts, 

zoning, 

addresses); 

Volunteered 

Geographic 

data 

Yes Yes Local 

CA – 

(100 x 

100m); 

(5 x 5m 

network 

distance 

grid) 

CBD, 

Herdecke, 

Germany 

Feel good; 

Not feel 

good 

Not explicit Landowner Not 

explicit 

Liu et 

al 2016 

SGCAB

M 

D; P Simulate urban 

growth at the 

urban fringe of 

the city and 

considers the 

microeconomic 

behaviour of 

farmers and 

government, the 

Urban 

sprawl;  

Rapid 

urbanization; 

Land 

expropriatio

n (legal / 

forcibly / 

illegally) & 

Static 

game 

model + 

CA + 

ABM 

Hybrid Satellite 

images; 

Land use 

data; 

Public 

infrastructur

e points; 

socio-

Yes Yes Micro 

(50 x 

50m) 

Jiangxia, 

Wuhan, 

China 

Land-use 

conversion 

in line with 

land-use 

planning; 

land use 

conversion 

not in line 

with land 

3 x 3  Residents, 

farmers; 

government 

2003 – 

2013 

Projectio

n to 2023 
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Author Model 

name 

Objectiv

e 

Main 

purpose/descripti

on of the model 

Issues Key model 

component

s 

Model 

classificatio

n 

Data inputs Calibratio

n 

Validatio

n 

Model 

grain 

Model 

extent 

Cell states Neighbourho

od 

Type of agent Time 

period 

selection of 

housing by 

agents and it 

explores drivers 

of urbanisation 

using a game 

theory-based 

economic model. 

acquisition 

(force / 

willingly) 

conflicts. 

 

economic 

data 

use 

planning; 

Urban; 

Non-urban 

Koziate

k et al  

Not 

explicit 

D A geospatial 

modelling 

approach to 

represent the 

urban 

densification 

process in 3D by 

generating urban 

development in 

the form of mid- 

and high-rise 

buildings. 

Environment

al impact of 

urban 

sprawl, 

sustainabilit

y  

CA 

(ArcGIS) 

+ 

Computer 

Graphic 

architectur

e 

Hybrid Satellite 

imagery; 

LiDAR; 

cadastral 

data; 

buildings; 

land uses & 

designation; 

population 

data  

Yes Not 

explicit 

Micro 

(10m 

spatial 

resolutio

n) 

Town 

centre, 

Surrey, 

Vancouver, 

Canada 

Suitable for 

vertical 

developme

nt; 

unsuitable 

for vertical 

developme

nt 

Not explicit Not applicable Not 

explicit 

Pandey 

& Joshi 

2015  

CA-

MAS 

D; P Modelling 

urbanisation 

dynamics for the 

urban and rural 

population 

within the 

regional 

landscape and 

how it shapes the 

urban 

morphology. 

Environment

al 

degradation 

due to 

uncontrolled 

urbanization 

and urban 

growth. 

CA 

(ArcGIS) 

+ 

MAS 

(Netlogo) 

Hybrid Satellite 

imagery; 

Settlement 

point dataset; 

Population 

data 

 

Yes Yes Local 

(30m 

spatial 

resolutio

n) 

Chandigarh

, India 

Built-up; 

non-built-

up 

Moore & 

Von-

Neumann 

Urban; 

Rural 

1999 – 

2009 

Projectio

n to 2019 
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Author Model 

name 

Objectiv

e 

Main 

purpose/descripti

on of the model 

Issues Key model 

component

s 

Model 

classificatio

n 

Data inputs Calibratio

n 

Validatio

n 

Model 

grain 

Model 

extent 

Cell states Neighbourho

od 

Type of agent Time 

period 

Zhang 

et al 

2015 

GIS-

MAS 

D; P Simulate and 

analyse 3 target 

scenarios, 

including 

maintenance of 

current trends, 

priorities for 

economic 

development, 

and priorities for 

environmental 

protection to 

obtain a better 

understanding of 

land-use 

preferences and 

the driving 

mechanism of 

urban growth. 

Rapid 

urbanization 

Environment

al 

degradation 

Urban 

management 

GIS + 

MAS 

Hybrid Geographic 

data – 

transportatio

n, land price, 

public 

facilities, 

land use, 

urban master 

planning. 

Socio-

economic 

data -

population, 

GDP, 

economic 

sector data. 

Yes Yes Not 

explicit 

Lianyunga

ng City, 

China 

Approval 

probability; 

no approval 

probability 

3 x 3  Residents, 

farmers, 

industrial 

enterprises, 

environmentalis

ts, government 

2008 

(base 

year) 

Projectio

ns – 2020 

& 2030 
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3.3 APPLICATION OF URBAN SPATIAL SIMULATION MODELS 

 

3.3.1 Demography 

A fundamental aspect of urban models is the creation of a micro-dataset containing the 

spatial distribution of demographic features. This dataset assists in the demographic 

modelling and population projection in the urban models (O’Donoghue et al 2014). 

 

Many of the urban models under review, used population and socio-economic data to 

dynamically simulate demographic processes for use in the spatial distribution and to 

inform population projections. The model developed by Alghais & Pullar (2018), for 

example, used the demographic analysis to inform their forecast for population estimates 

in Kuwait City, Kuwait.  

 

The socio-economic analysis underpins the dynamic simulation processes of transport (Jin 

et al 2018; Lu et al 2018; Lu & Hsu 2017; Xia et al 2019; Liang et al 2018), social mobility 

(Hackl & Dubernet 2018; Pandey & Joshi 2015); planning policy formulation (Alghais & 

Pullar 2018; Tong & Feng 2019; Guan et al 2019; Liu et al 2018; Zheng et al 2017; Osman 

et al 2016); and land market and housing (Liu et al 2016; Quesada-Ruiz et al 2019; Yu et 

al 2018; He et al 2017); 

 

3.3.2 Welfare, poverty and inequality 

The ASSURE urban model developed by Vermeinen et al (2016) simulates urban growth 

and how this can drive intra-urban social segregation and further impact on the quality of 

life, accessibility and affordability within Kampala, Uganda.  

 

Other applications where socio-economic and income analysis data was used include the 

dynamic simulation processes of disparities/inequality (Tripathy & Kumar 2019; Feng & 

Qi 2018)), food security (Li et al 2016; Rimal et al 2019), access to and social program 
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interventions for example access to healthcare programs (Jin et al 2018) and land through 

expropriation programs (Liu et al 2016).  

 

3.3.3 Health 

Health care service provision is an important policy area, which involves significant 

expenditure and requirements of access to services and facilities (O’Donoghue et al 2014). 

Urban models that contain facility data in their spatial location with health attributes and 

the spatial distribution of health services can be useful in planning and analysing health 

services and the spread of infectious diseases. Hackl & Dubernet (2019), utilised an urban 

model to examine the spread of seasonal influenza across Zurich, Switzerland, while Jin et 

al (2018) modelled the individual level demands of older adults in accessing oral healthcare 

services.  

 

3.3.4 Regional development 

Yu et al (2019) developed an urban model, simulating the distribution of the green gross 

domestic product (GDP of ecosystem service value) and the impact of land-use change and 

the socio-economic benefits derived from this development across China. A further 

example is the CID-USST-GIS model developed by Liu et al (2016) that simulated the 

spatial location and the impact of land-use policies in the development and distribution of 

creative industries and creative workers.  

 

Both the abovementioned examples of urban models aim to understand the changes in the 

economy, the driving forces impacting on the spatial distribution of these new economies 

and it tries to analyse and assess the impact of planning policies in order to inform them 

and to improve the support to these new industries.  
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3.3.5 Transport planning 

Several urban models in the ABM list such as Wu et al (2019), Lu et al (2018), Jin et al 

(2018), Lu & Hsu (2017) and Demare et al (2017) explored this theme. Within this theme 

the following areas are generally considered: 

 Travel over transport networks, the mode of transport, car ownership, congestion 

and transport control measures.  

 Transportation issues such as congestion and their relevance for extensive land use 

and transportation requirements. 

 Impact of road management planning and civil engineering issues. 

 Prediction and impact on the changes in travel behaviour (travel plans, modal and 

route choice) following from changes in the travel environment and population 

dynamics. 

 Economic analysis of transport and its potential impacts of instruments such as 

congestion charging or road pricing systems. 

 Environmental issues related to travel, commuting and transporting goods 

(O’Donoghue et al 2014). 

 

3.3.6 Agriculture, marine and environment 

The interaction between people and the environment is strongly influenced by spatial 

location, and the use of urban models can assist in the modelling of socio-economic-

environmental interactions and policy.  

 

Examples of urban simulation models within this category reviewed as part of this study 

include Baeza et al (2019), Morelle et al (2019) (SiReMo), Zhou et al (2017), Li et al (2016), 

Ou et al (2019), Hou et al (2019), Zhang et al (2018), Fan et al (2018), Kuo & Tsou et al 

(2018), Rahman et al (2017), Zare et al (2017), She et al (2017), Feng & Liu (2016), Jiang 

et al (2016) and Osman et al (2016). 
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3.3.7 Disaster planning and management 

One of the advantages of urban simulation models is their capacity for use as an 

experimental platform for examining the impact of disaster events and the economic cost 

of an incident and how to improve the planning and management of these events. 

 

A number of the models reviewed have been developed to simulate the allocation of 

emergency shelters (Yu et al 2019), evacuation planning (Liu & Lim 2016; Perez-Molina 

et al 2017) and the long term consequences of these disasters and their outcomes on disaster 

management (Lichter et al 2015). 

 

3.3.8 Land use and spatial planning 

Urban models are increasingly recognised as an essential tool for scenario planning and 

measuring outcomes and geographical impact of government policies, public and private 

investment (O’Donoghue et al 2014). Within this context, some of the urban simulation 

models reviewed dealt with migration and urbanization (Alghais & Pullar 2018), access to 

facilities, infrastructure, and transport planning (Lu et al 2018; Lu & Hsu 2017; Guan et al 

2019; Liang et al 2018), land use (Xu et al 2015; Xu et al 2015; Quesada-Ruiz et al 2019; 

Mousivand & Arsanjani 2019; Feng & Tong 2019; Wang et al 2019 ); buildings (Koziatek 

et al 2016; Long & Wu 2017; He et al 2017), land markets and environmental protection 

(Huang et al 2019; Yang et al 2019; Li et al 2019; Xu et al 2018; Jia et al 2018; She et al 

2017).  

 

Most of the urban models reviewed linked planning policy and attempted to use it as a 

constraint in the simulation of urban change (Tong & Feng 2019; Feng & Tong 2017); 

forecasting of the impacts and outcomes on individual spatial decisions (Cantergiani & 

Delgado 2018; Ghavami & Taleai 2017a; Ghavami et al 2017b; Ghavami et al 2016; He et 

al 2019); estimating the intended and unintended consequences of planning decisions 

related to land use (urban edges, zonings); and the impacts of different scenarios and the 

resulting urban changes (Wang et al 2019; Tripathy & Kumar 2019; Nguyen et al 2019; 
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Yin et al 2018; Xu et al 2018; Mei et al 2018; Zheng et al 2017) in order to achieve 

sustainable development (Musa et al 2019; Rimal et al 2019; Zhou et al 2017).  

 

3.4 STRENGTHS AND WEAKNESSES OF URBAN MODELS 

The application of urban CA tends to replicate urban morphology best and its limitations 

are the limited incorporation of the connections and driving forces behind the different 

elements of the system under consideration (Wahyudi & Liu 2015; Batty 2014). The 

limitation stems from the neighbourhood building block/element and its application in 

practice. It is often difficult to associate cells and cell states with those of real systems. For 

example, buildings are considered as basic elements of cities, and within each building, 

there are many distinct activities. This implies that buildings cannot be cells as the 

fundamental principle in deciding cell size is the consideration that it must be the smallest 

unit of measurement for the specific component in the system. In the example provided the 

activities will have to be further disaggregated to be associated with a single cell (Batty 

2014). Another factor is the changing of cell states through the transition rules within the 

neighbourhood concept, which is viewed endogenous to the system. However, distant 

objects (commercial properties, facilities, noxious industries etc.) through push and pull 

factors, or decay functions also influence the changes in the state of the cell. The transition 

rules can be relaxed on an ad hoc basis, but these methods have a weak theoretical basis, 

and new methods need to be explored and adopted (Wahyudi & Liu 2015).  

 

In addition to the abovementioned, another factor that influences the system is not only the 

physical and socio-economic factors of the system but the actors within the system such as 

developers, farmers, landowners and other actors. The relationship of these actors with 

each other and the physical component of the system also changes the urban processes, and 

CA lacks the capability in representing the actors and behaviours in the urban system.  

 

To address the abovementioned limitation, the application of ABM and integration of ABM 

in CA has been introduced. The application of ABM in urban simulation modelling has 

some limitations, such as the decision criteria of the agents that are extrapolated from data 
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and the fact that it only models behaviours of the grouping of agents with similar 

considerations and how they would influence the structure of the system. They are 

therefore not an entirely accurate reflection of the real world, and specific 

attributes/behaviours might be hidden from view. An example of the can be the learning 

and then the adaptation in terms of their behaviour from this learning experience (Wahyudi 

& Liu 2015). 

 

All models have advantages and disadvantages, and in addition to the system design, some 

of the following factors can also influence the choice of a model and its outcomes. The 

selection of the factors focuses on relatively high-level fundamental choices rather than 

particular modelling choices, namely: 

1. Data requirements; 

The ability to create robust micro-level data through data techniques in urban 

simulation offers a powerful alternative to the expensive and time-consuming 

assembling of official micro-datasets, such as published census records or 

individual / household survey data (O’Donoghue et al 2014).  

 

The ideal base dataset for urban models is one collected specifically for modelling 

purposes with the appropriate scope and level of spatial disaggregation. Many 

models require the linkage of datasets of different types using statistical techniques. 

 

These sets of official and application-specific data are still crucial in model 

development and design as they are used predominantly in the calibration and 

validation of urban models. The importance of Statistical Offices and good quality 

statistical products are paramount in model development and impacts significantly 

on measuring model outcomes. 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



96 

2. Software availability; 

Most of the models reviewed use GIS and other software models where 

programming languages are required to implement and integrate the different 

models. Modellers, therefore, need programming knowledge to implement and 

interpret the outcomes of models. This impedes non-expert users in applying and 

utilising models in spatial planning applications (Sante et al 2010).  

 

3. Accuracy of the results.  

The key to having confidence in an urban model is adequate validation and 

evaluation of the matching or data generation process. When validation is 

understood it translates into an understanding of the relationships and 

interconnections between the different variables in the system. Even though the 

accuracy of models can be found to be good, the results are not directly comparable 

to other areas or models as they are largely dependent on the specific system under 

consideration. 

 

3.5 CONCLUDING REMARKS 

Spatial simulation (urban models) allow for the complex reality to be shown in a simplified form, 

in order that spatial strategies and their impacts can be explored in advance. It is mainly used as 

an exploratory learning tool which can assist spatial planners in clarifying their thinking of the 

complexities of the real world and to prompt further discussion and exploration. These urban 

models can be used as predictive tools in cases where reliable data is available, and when the model 

is an adequate representation of the system and its dynamics. The urban models are therefore 

flexible, adaptive and diverse in their methods of use and they can become valuable decision 

support tools for monitoring and guiding spatial planning and development.  

 

In reviewing the urban models, it was found that the development and design of urban models are 

also now incorporating aspects of strategic planning within their scenarios in order to measure and 

monitor the appropriateness and effectiveness of policy interventions, such as urban growth 
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boundaries, zoning schemes, sustainable development outcomes and environmental protection 

zones. With the incorporation of these prescriptive elements creates the bridges between the reality 

(‘what is’ and ‘what could be’) and normative terms (‘what should be’ and ‘what is desired’) (De 

Roo 2011; De Roo et al 2016; De Waal 2018; Schintler & Chen 2018), which can aid spatial 

planners in their daily operations. The urban models can improve the understanding of the local 

and historical contingent factors, how multidimensional and complex problems (e.g. demography; 

welfare, poverty & inequality; health; education; housing; regional development; transport 

planning; agriculture, marine & environment; disaster planning & management; and land use and 

spatial planning) impact and drive the complex urban systems and then accordingly use the 

laboratory environment provided by urban models to explore and experiment with different 

scenarios without impacting on the real-world systems. 

 

In reviewing the urban models, most of the issues identified relate to rapid urbanisation, migration 

and unplanned and uncontrolled urban expansion. The urban models acknowledge that with this 

increased urbanisation that cities will face unprecedented pressures to provide basic services and 

aspects around increased inequalities, resource depletion reduced the quality of life and 

environmental degradation. The aforementioned aspects correspond to the United Nation’s Report 

on World Urbanization Prospects for 2018 (UN: DESA 2019), however, the spatial extent of these 

urban models are predominantly distributed in the global North (USA, UK, Canada, France, 

Germany, Italy, Spain, Netherlands), Australia and in Asia (China, Japan and India) with Africa 

lacking an in any development and practical application of urban models.  

 

In recent years these models for urban growth simulation have proliferated because of their 

conceptual simplicity, flexibility and their ability to incorporate spatial and temporal dimensions 

of urban processes. “Just as settlements are diverse and complex, so there are many ways to 

describe and understand them.” (K. Kropf, 2009 as referenced in Reis et al 2014:279), which was 

found to be an accurate assessment of the types of applications of the different urban models that 

were reviewed. 
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The applications have also improved with the advances in computer techniques, such as the 

integration with geographic information systems (GIS), artificial intelligence (AI) and advanced 

spatial analytics. The increased development of computer science coupled with the improvements 

in the availability of data, data quality and processing standards, have further increased the demand 

for these urban models. The meta-analysis of urban models applied internationally in urban 

contexts over the past decade (2009 – 2019) have shown that the total rate of academic publications 

in urban models (CA, ABM & CA-AB) has grown consistently. Both CA and ABM experienced 

growth over the period; however, the urban modelling category of CA-AB has shown a significant 

decline. Throughout the literature, the hybrid approach has been viewed as the modelling approach 

that can fully simulate the complex urban system and its urban dynamics. Even though the ability 

to use these models have become easier, some of the main problems could relate to the access and 

availability of appropriate data; data and model accuracy; software requirements; resource 

constraints (time, human resources, hardware) and modelling skills.  
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CHAPTER 4 

 

4 CONCLUSION AND RECOMMENDATIONS 

 

4.1 SUMMARY OF KEY FINDINGS AND REFLECTION ON RESEARCH 

OBJECTIVES 

Within a complex and dynamic landscape (reality), a spatial planner’s role is to “create bridges 

between ‘what is’ and ‘what could be’, (or in normative terms) ‘what should be’ and ‘what is 

desired’ (De Roo et al 2016:1). This requires an understanding of the city as a complex dynamic 

system and how planning interventions should be contextually formulated and implemented to 

address the multidimensional urban phenomena such as uncontrolled and unplanned urbanisation 

challenges. Spatial planners need to become managers of change where negatives are avoided, and 

positive effects of change are embraced over time and space. The current scientific planning 

instruments and practices are, however, inadequate to address these multidimensional problems 

and challenges being faced within cities.  

 

Within this context, one of the objectives of this research was to compile a comprehensive 

literature review and content analysis to explore the new ‘science of cities’ as a method that can 

provide insights into the complexity of the city. It was found that the concepts of complexity theory 

can be used to conceptualise cities as organised complex systems and the main components 

(metaphors) provided a means of understanding and exploring complex system behaviour. 

Complexity theory and complexity science can assist spatial planners with an understanding of 

how cities are theoretically conceptualised. 

 

The components of a complex system make predictability difficult, and this makes spatial 

simulation models (urban models) an important tool for understanding and exploring complex 

system behaviour. Complexity science uses Cellular Automata (CA) and Agent-based modelling 

(ABM) techniques to abstracts the real-world into a series of layers as a visual representation of 

the complexity and spatial-temporal urban dynamics. A conceptual analysis was conducted to 
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identify and explain the key components (concepts, methods and techniques), design and 

construction of the spatial simulation models (urban models). The research provides explanations 

on the critical considerations for spatial simulation model (urban model) conceptualisation, 

components, design and construction. It was established that the modelling techniques play a 

fundamental role in understanding the functionality, practicality, accuracy and ‘fit for purpose’ use 

of these urban models within cities. In general, the primary role of urban models (CA & ABM) is 

as heuristic tools for learning about the real world and enables scenario planning which can support 

spatial planning practices.  

 

The application of spatial simulation models has in recent years increased because of their 

conceptual simplicity, flexibility and their ability to incorporate spatial and temporal dimensions 

of urban processes. The applications have also improved with the advances in computer techniques, 

such as the integration with geographic information systems (GIS), artificial intelligence (AI) and 

advanced spatial analytics. The increased development of computer science coupled with the 

improvements in the availability of data, data quality and processing standards, have further 

increased the demand for these urban models. The meta-analysis of the spatial simulation 

publications over the past decade (2009 – 2019) found that urban modelling approaches have 

grown consistently. Applications of urban simulation models appear to be regionally divergent 

with the primary focus on the global North (USA, UK, Canada, France, Germany, Italy, Spain, 

Netherlands), Asia (China, Japan) and Australia. Uptake of these urban models is lagging in areas 

with rapid urbanisation and urban growth rates, which are predominantly located in the global 

South, such as South Africa.  

 

To move beyond the conceptual frameworks as discussed above, the research focused on 

identifying and evaluating spatial simulation applications in peer-reviewed scientific literature 

which includes Cellular Automata (CA), Agent-based modelling (ABM) and hybrids (including 

both CA and ABM) that have been published internationally and within South Africa over the last 

five (5) years. The comparative analysis found that the development and design of urban models 

are also now incorporating aspects of strategic planning within their scenarios in order to measure 

and monitor the appropriateness and effectiveness of policy interventions, such as urban growth 
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boundaries, zoning schemes, sustainable development outcomes and environmental protection 

zones. The review found that urban models improve the understanding of the local and historical 

contingent factors, how multidimensional and complex problems (e.g. demography; welfare, 

poverty & inequality; health; education; housing; regional development; transport planning; 

agriculture, marine & environment; disaster planning & management; and land use and spatial 

planning) impact and drive the complex urban systems across time and space. Urban simulation 

models provide the laboratory environment to explore and experiment with different scenarios 

without impacting on the real-world systems, and with the incorporation of these prescriptive 

elements creates the bridges between the reality (‘what is’ and ‘what could be’) and normative 

terms (‘what should be’ and ‘what is desired’), which can aid spatial planners in their daily 

operations. 

 

4.2 LIMITATIONS OF RESEARCH 

Challenges and limitations to the approach include the lack of / or restricted access to literature 

especially in the detailed comparative analysis of urban simulation models. The restricted access 

limited the data collection process. In addition to the accessibility issues, the amount of time 

afforded for the review, evaluation and comparison of the entire publication information set over 

the ten (10) year period was limited and the detailed analysis period had to be shortened to five 

years, which follows on from the analysis period (2014) of the GCRO report. The type of meta-

analysis conducted in this research is also potentially vulnerable to interpretation biases. 

 

4.3 RESEARCH CONTRIBUTION AND FURTHER RESEARCH 

At a theoretical level, the research is interested in understanding the scientific theories, concepts 

and models around the application of the science of cities (complexity theory, spatial simulation 

modelling, spatial planning practices) in order to understand complex and dynamic systems. This 

research attempted to define and demonstrate the relationship between complexity science and the 

applications of the science to cities and urban simulations from a spatial planning perspective. 

Through the literature review, it was also found that little research has gone into providing a 

comparative analysis of the spatial simulation models (urban models) and its potential applications. 

The research aimed to improve the knowledge base and expand on the concepts, relationship and 
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operational application of spatial simulation modelling (urban models) within different places and 

across different times in order to provide conceptual clarity and revealing the different 

methodologies and applications for analysing complex city systems.  

 

Some areas of further research to consider includes an in-depth understanding of what impacts the 

use and application of these spatial simulation models (urban models) and demonstrating how 

these models solve practical planning issues, especially in the South African context.  
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APPENDIX A 

Table A.1. Spatial simulation publications per year over the period 2009-2019 using selected 

environmental, GIScience and planning journals as selection criteria. 

Year Publications % of Total 

2009 1388 7.315 

2010 1302 6.862 

2011 1392 7.336 

2012 1424 7.505 

2013 1529 8.058 

2014 1810 9.539 

2015 2011 10.599 

2016 2062 10.868 

2017 2197 11.579 

2018 2262 11.922 

2019 1597 8.417 

TOTAL 18974 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019]. 
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Table A.2. Spatial simulation publications per year over the period 2009-2019 using selected 

environmental, GIScience and planning journals per Web of Science category. 

Web of Science categories Publications % of Total 

Environmental sciences 4945 26.062 

Geosciences multidisciplinary 4763 25.103 

Computer science interdisciplinary applications 3297 17.376 

Engineering electrical electronic 3015 15.890 

Water resources 2539 13.381 

Computer science information systems 2443 12.876 

Computer science theory methods 2069 10.904 

Remote sensing 1887 9.945 

Meteorology atmospheric sciences 1665 8.775 

Telecommunications 1563 8.238 

Computer science artificial intelligence 1450 7.642 

Geography physical 1174 6.187 

Engineering civil 1038 5.471 

Imaging science photographic technology 986 5.197 

Engineering environmental 858 4.522 

Ecology 638 3.362 

Mathematics interdisciplinary applications 618 3.257 

Environmental studies 615 3.241 

Computer science hardware architecture 596 3.141 

Physics mathematical 587 3.094 

Geography 581 3.062 

Statistics probability 558 2.941 

Computer science software engineering 477 2.514 

Limnology 449 2.366 

Operations research management science 356 1.876 

TOTAL 18974 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.3. Spatial simulation publications per year over the period 2009-2019 using selected 

environmental, GIScience and planning journals per Country / Region. 

Country / Region Publications % of Total 

USA 5419 28.560 

Peoples Republic of China 4723 24.892 

Germany 1644 8.664 

France 1300 6.851 

England 1259 6.635 

Canada 1070 5.639 

Italy 957 5.044 

Australia 935 4.928 

Japan 763 4.021 

Spain 703 3.705 

Netherlands 646 3.405 

India 627 3.305 

Switzerland 559 2.946 

South Korea 494 2.604 

Taiwan 341 1.797 

Iran 338 1.781 

Brazil 314 1.655 

Belgium 307 1.618 

Sweden 296 1.560 

Austria 276 1.455 

Norway 250 1.318 

Scotland 235 1.239 

Greece 220 1.159 

Denmark 212 1.117 

Portugal 212 1.117 

TOTAL 18974 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.4. Urban spatial simulation publications per year over the period 2009-2019 using selected 

environmental, GIScience and planning journals. 

Year Publications % of Total 

2009 97 5.456 

2010 114 6.412 

2011 106 5.962 

2012 127 7.143 

2013 138 7.762 

2014 149 8.380 

2015 171 9.618 

2016 208 11.699 

2017 235 13.217 

2018 243 13.667 

2019 190 10.686 

TOTAL 1778 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019]. 
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Table A.5. Urban spatial simulation publications per year over the period 2009-2019 using selected 

environmental, GIScience and planning journals per Web of Science category. 

Web of Science categories Publications % of Total 

Environmental sciences 703 39.539 

Meteorology atmospheric sciences 258 14.511 

Geography 257 14.454 

Geosciences multidisciplinary 241 13.555 

Environmental studies 237 13.330 

Remote sensing 209 11.755 

Geography physical 190 10.686 

Computer science interdisciplinary applications 180 10.124 

Water resources 171 9.618 

Engineering environmental 163 9.168 

Computer science information systems 146 8.211 

Regional urban planning 137 7.705 

Urban studies 133 7.480 

Engineering civil 103 5.793 

Engineering electrical electronic 82 4.612 

Operations research management science 78 4.387 

Computer science theory methods 74 4.162 

Transportation 73 4.106 

Imaging science photographic technology 68 3.825 

Green sustainable science technology 64 3.600 

Computer science artificial intelligence 61 3.431 

Ecology 61 3.431 

Transportation science technology 59 3.318 

Information science library science 48 2.700 

Economics 47 2.643 

TOTAL 1778 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].   
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Table A.6. Urban spatial simulation publications per year over the period 2009-2019 using selected 

environmental, GIScience and planning journals per Country / Region. 

Country / Region Publications % of Total 

Peoples Republic of China 502 28.234 

USA 423 23.791 

France 130 7.312 

England 117 6.580 

Germany 105 5.906 

Italy 92 5.174 

Canada 85 4.781 

Australia 77 4.331 

Spain 74 4.162 

Netherlands 72 4.049 

Japan 70 3.937 

Iran 55 3.093 

India 43 2.418 

South Korea 42 2.362 

Portugal 40 2.250 

Belgium 37 2.081 

Switzerland 34 1.912 

Greece 32 1.800 

Taiwan 31 1.744 

Denmark 28 1.575 

Austria 24 1.350 

Israel 24 1.350 

Brazil 23 1.294 

Singapore 22 1.237 

Malaysia 19 1.069 

TOTAL 1778 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.7. Urban cellular automata (CA) spatial simulation publications per year over the period 

2009-2019 using selected environmental, GIScience and planning journals.  

Year Publications % of Total 

2009 24 6.612 

2010 28 7.713 

2011 26 7.163 

2012 28 7.713 

2013 32 8.815 

2014 25 6.887 

2015 28 7.713 

2016 33 9.091 

2017 50 13.774 

2018 42 11.570 

2019 47 12.948 

TOTAL 363 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019]. 
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Table A.8. Urban CA spatial simulation publications per year over the period 2009-2019 using 

selected environmental, GIScience and planning journals per Web of Science category. 

Web of Science categories Publications % of Total 

Geography 117 32.231 

Geography physical 92 25.344 

Environmental sciences 91 25.069 

Environmental studies 75 20.661 

Computer science information systems 61 16.804 

Remote sensing 60 16.529 

Regional urban planning 48 13.223 

Computer science interdisciplinary applications 43 11.846 

Urban studies 41 11.295 

Geosciences multidisciplinary 40 11.019 

Information science library science 34 9.366 

Engineering environmental 32 8.815 

Ecology 21 5.785 

Green sustainable science technology 21 5.785 

Operations research management science 21 5.785 

Engineering electrical electronic 19 5.234 

Computer science theory methods 18 4.959 

Imaging science photographic technology 17 4.683 

Engineering civil 15 4.132 

Computer science artificial intelligence 13 3.581 

Water resources 11 3.030 

Computer science software engineering 6 1.653 

Telecommunications 5 1.377 

Transportation 5 1.377 

Transportation science technology 5 1.377 

TOTAL 363 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.9. Urban CA spatial simulation publications per year over the period 2009-2019 using 

selected environmental, GIScience and planning journals per Country / Region. 

Country / Region Publications % of Total 

Peoples Republic of China 145 39.945 

USA 53 14.601 

Canada 27 7.438 

Iran 27 7.438 

Australia 23 6.336 

England 22 6.061 

France 19 5.234 

India 19 5.234 

Spain 18 4.959 

Netherlands 16 4.408 

Germany 13 3.581 

Japan 12 3.306 

Belgium 10 2.755 

Italy 9 2.479 

Luxembourg 8 2.204 

Portugal 8 2.204 

Brazil 6 1.653 

Denmark 6 1.653 

Malaysia 6 1.653 

Taiwan 5 1.377 

Austria 4 1.102 

Ireland 4 1.102 

Israel 4 1.102 

Nigeria 3 0.826 

Scotland 3 0.826 

TOTAL 363 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.10. Urban agent-based (ABM) spatial simulation publications per year over the period 

2009-2019 using selected environmental, GIScience and planning journals. 

Year Publications % of Total 

2009 42 5.063 

2010 59 8.228 

2011 43 8.861 

2012 52 8.861 

2013 59 10.127 

2014 71 9.494 

2015 81 13.291 

2016 101 8.861 

2017 140 11.392 

2018 138 10.127 

2019 118 5.696 

TOTAL 158 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019]. 
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Table A.11. Urban ABM spatial simulation publications per year over the period 2009-2019 using 

selected environmental, GIScience and planning journals per Web of Science category. 

Web of Science categories Publications % of Total 

Geography 53 33.544 

Environmental studies 35 22.152 

Computer science interdisciplinary applications 32 20.253 

Regional urban planning 29 18.354 

Computer science information systems 28 17.722 

Geography physical 23 14.557 

Engineering environmental 21 13.291 

Computer science artificial intelligence 18 11.392 

Operations research management science 16 10.127 

Urban studies 16 10.127 

Computer science theory methods 13 8.228 

Environmental sciences 13 8.228 

Transportation 13 8.228 

Remote sensing 12 7.595 

Engineering civil 11 6.962 

Information science library science 10 6.329 

Transportation science technology 10 6.329 

Engineering electrical electronic 9 5.696 

Computer science software engineering 8 5.063 

Geosciences multidisciplinary 7 4.430 

Ecology 6 3.797 

Economics 6 3.797 

Water resources 5 3.165 

Green sustainable science technology 4 2.532 

Architecture 3 1.899 

TOTAL 158 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.12. Urban ABM spatial simulation publications per year over the period 2009-2019 using 

selected environmental, GIScience and planning journals per Country / Region. 

Country / Region Publications % of Total 

USA 39 24.684 

Peoples Republic of China 26 16.456 

France 13 8.228 

Canada 12 7.595 

Netherlands 11 6.962 

Australia 9 5.696 

Germany 9 5.696 

Israel 8 5.063 

England 7 4.430 

Italy 7 4.430 

Spain 6 3.797 

Iran 5 3.165 

Switzerland 5 3.165 

Austria 4 2.532 

Japan 4 2.532 

Scotland 4 2.532 

Belgium 3 1.899 

Portugal 3 1.899 

Brazil 2 1.266 

Colombia 2 1.266 

Denmark 2 1.266 

Greece 2 1.266 

India 2 1.266 

Ireland 2 1.266 

Latvia 2 1.266 

TOTAL 158 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.13. Urban AB & CA spatial simulation publications per year over the period 2009-2019 

using selected environmental, GIScience and planning journals. 

Year Publications % of Total 

2009 4 7.692 

2010 6 11.538 

2011 5 9.615 

2012 6 11.538 

2013 7 13.462 

2014 8 15.385 

2015 7 13.462 

2016 3 5.769 

2017 2 3.846 

2018 2 3.846 

2019 2 3.846 

TOTAL 52 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019]. 
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Table A.14. Urban AB & CA spatial simulation publications per year over the period 2009-2019 

using selected environmental, GIScience and planning journals per Web of Science category. 

Web of Science categories Publications % of Total 

Geography 20 38.462 

Geography physical 12 23.077 

Computer science information systems 11 21.154 

Computer science interdisciplinary applications 10 19.231 

Environmental studies 9 17.308 

Regional urban planning 7 13.462 

Remote sensing 7 13.462 

Engineering civil 5 9.615 

Engineering electrical electronic 5 9.615 

Geosciences multidisciplinary 5 9.615 

Information science library science 5 9.615 

Urban studies 5 9.615 

Computer science artificial intelligence 4 7.692 

Engineering environmental 4 7.692 

Environmental sciences 4 7.692 

Ecology 3 5.769 

Green sustainable science technology 3 5.769 

Computer science software engineering 2 3.846 

Computer science theory methods 2 3.846 

Imaging science photographic technology 2 3.846 

Operations research management science 2 3.846 

Transportation 2 3.846 

Development studies 1 1.923 

History of social sciences 1 1.923 

Instruments instrumentation 1 1.923 

TOTAL 52 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019].  
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Table A.15. Urban AB & CA spatial simulation publications per year over the period 2009-2019 

using selected environmental, GIScience and planning journals per Country / Region. 

Country / Region Publications % of Total 

Peoples Republic of China 13 25.000 

USA 8 15.385 

Canada 6 11.538 

Australia 5 9.615 

Germany 5 9.615 

India 5 9.615 

Austria 3 5.769 

Belgium 2 3.846 

England 2 3.846 

France 2 3.846 

Iran 2 3.846 

Israel 2 3.846 

Italy 2 3.846 

Portugal 2 3.846 

Scotland 2 3.846 

Iraq 1 1.923 

Ireland 1 1.923 

Japan 1 1.923 

Luxembourg 1 1.923 

Netherlands 1 1.923 

New Zealand 1 1.923 

Nigeria 1 1.923 

Singapore 1 1.923 

South Africa 1 1.923 

TOTAL 52 100 

Source: Web of Knowledge database 2019 [online]. Available from 

http://apps.webofknowledge.com.ez.sun.ac.za/ [Accessed 4 October 2019]. 
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APPENDIX B 

Table B.1. Percentage of the urban population residing in each urban agglomeration with 300,000 

inhabitants or more in 2018, by Country, 2020-2035. 

Country 2020 2025 2030 Difference Rate of change 

China 67,03 69,17 70,09 3,07 4,57 

Bahrain 41,76 44,27 44,73 2,97 7,12 

Lebanon 45,29 47,28 47,51 2,22 4,91 

Kuwait 72,38 73,98 74,31 1,93 2,66 

Estonia 49,45 50,90 51,33 1,87 3,79 

Turkey 66,71 68,13 68,42 1,71 2,57 

Equatorial Guinea 40,40 41,61 41,92 1,52 3,77 

United Arab Emirates 82,52 83,78 84,02 1,50 1,82 

Kazakhstan 59,17 60,39 60,60 1,44 2,43 

Burundi 61,90 62,89 63,31 1,41 2,28 

Mongolia 71,90 73,00 73,21 1,31 1,82 

Vietnam 55,05 56,02 56,33 1,28 2,33 

Cameroon 66,54 67,51 67,71 1,18 1,77 

Bulgaria 37,36 38,00 38,52 1,15 3,09 

Malaysia 52,92 53,70 54,01 1,09 2,06 

Costa Rica 51,69 52,32 52,61 0,93 1,80 

Madagascar 38,98 39,62 39,86 0,88 2,27 

Mauritania 49,67 50,30 50,55 0,88 1,76 

Libya 53,40 53,98 54,18 0,79 1,47 

Myanmar 43,14 43,77 43,87 0,73 1,69 

Albania 27,02 27,49 27,74 0,72 2,65 

Somalia 66,04 66,57 66,75 0,71 1,08 

Belarus 54,75 55,32 55,46 0,70 1,28 

Bangladesh 49,27 49,70 49,96 0,68 1,39 

Colombia 69,98 70,50 70,65 0,67 0,96 

TFYR Macedonia 48,75 49,31 49,41 0,66 1,35 
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Country 2020 2025 2030 Difference Rate of change 

South Africa 68,24 68,72 68,88 0,64 0,93 

Honduras 41,38 41,81 42,01 0,63 1,52 

Source: Adapted from UNDESA population prospects database 2019 [online]. Available from 

https://population.un.org/wpp/DataQuery/ [Accessed 4 October 2019]. 
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Table B.2. Percentage of the urban population residing in each urban agglomeration with 300,000 

inhabitants or more in 2018, by Country, 2020-2035. 

Countries Bing map 

reference 

2020 2025 2030 Difference Rate of 

change 

China China 67,03 69,17 70,09 3,07 4,57 

Bahrain Bahrain 41,76 44,27 44,73 2,97 7,12 

Lebanon Lebanon 45,29 47,28 47,51 2,22 4,91 

Kuwait Kuwait 72,38 73,98 74,31 1,93 2,66 

Estonia Estonia 49,45 50,90 51,33 1,87 3,79 

Turkey Republic of 

Turkey 

66,71 68,13 68,42 1,71 2,57 

Equatorial 

Guinea 

Equatorial 

Guinea 

40,40 41,61 41,92 1,52 3,77 

United Arab 

Emirates 

United Arab 

Emirates 

82,52 83,78 84,02 1,50 1,82 

Kazakhstan Kazakhstan 59,17 60,39 60,60 1,44 2,43 

Burundi Burundi 61,90 62,89 63,31 1,41 2,28 

Mongolia Mongolia 71,90 73,00 73,21 1,31 1,82 

Viet Nam Viet Nam 55,05 56,02 56,33 1,28 2,33 

Cameroon Cameroon 66,54 67,51 67,71 1,18 1,77 

Bulgaria Bulgaria 37,36 38,00 38,52 1,15 3,09 

Malaysia Malaysia 52,92 53,70 54,01 1,09 2,06 

Costa Rica Costa Rica 51,69 52,32 52,61 0,93 1,80 

Madagascar Madagascar 38,98 39,62 39,86 0,88 2,27 

Mauritania Mauritania 49,67 50,30 50,55 0,88 1,76 

Libya Libya 53,40 53,98 54,18 0,79 1,47 

Myanmar Myanmar 43,14 43,77 43,87 0,73 1,69 

Albania Albania 27,02 27,49 27,74 0,72 2,65 

Somalia Somalia 66,04 66,57 66,75 0,71 1,08 

Belarus Belarus 54,75 55,32 55,46 0,70 1,28 
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Countries Bing map 

reference 

2020 2025 2030 Difference Rate of 

change 

Bangladesh Bangladesh 49,27 49,70 49,96 0,68 1,39 

Colombia Colombia 69,98 70,50 70,65 0,67 0,96 

TFYR 

Macedonia 

TFYR 

Macedonia 

48,75 49,31 49,41 0,66 1,35 

South Africa South Africa 68,24 68,72 68,88 0,64 0,93 

Honduras Honduras 41,38 41,81 42,01 0,63 1,52 

Russian 

Federation 

Russian 

Federation 

54,72 55,23 55,33 0,61 1,12 

Spain Spain 48,23 48,73 48,83 0,60 1,24 

Finland Finland 34,50 35,00 35,10 0,60 1,73 

Ghana Ghana 42,26 42,69 42,85 0,58 1,38 

Guinea-

Bissau 

Guinea-

Bissau 

67,82 68,28 68,40 0,57 0,84 

Benin Benin 41,74 42,19 42,28 0,55 1,31 

Sweden Sweden 28,81 29,24 29,36 0,55 1,90 

Nepal Nepal 29,62 30,06 30,15 0,53 1,79 

Saudi Arabia Saudi Arabia 77,94 78,35 78,46 0,52 0,67 

Dominican 

Republic 

Dominican 

Republic 

43,43 43,77 43,95 0,52 1,20 

Japan Japan 79,93 80,17 80,42 0,50 0,62 

Latvia Latvia 48,77 49,25 49,26 0,49 1,01 

Brazil Brazil 58,19 58,54 58,68 0,49 0,84 

New Zealand New Zealand 57,74 58,09 58,17 0,43 0,75 

Democratic 

Republic of 

the Congo 

Democratic 

Republic of 

the Congo 

70,59 70,75 71,00 0,41 0,59 

Lithuania Lithuania 27,76 28,07 28,17 0,40 1,46 

India India 58,31 58,62 58,71 0,40 0,69 

Denmark Denmark 26,36 26,69 26,76 0,40 1,51 
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Countries Bing map 

reference 

2020 2025 2030 Difference Rate of 

change 

Pakistan Pakistan 67,90 68,19 68,25 0,36 0,52 

Peru Peru 60,02 60,27 60,36 0,34 0,57 

Yemen Yemen 60,82 60,97 61,15 0,33 0,54 

Switzerland Switzerland 53,67 53,93 53,98 0,32 0,59 

Panama Panama 63,39 63,62 63,71 0,31 0,49 

Burkina Faso Burkina Faso 58,65 58,72 58,96 0,31 0,53 

Congo Congo 93,39 93,65 93,70 0,31 0,33 

Venezuela 

(Bolivarian 

Republic of) 

Venezuela 

(Bolivarian 

Republic of) 

52,22 52,42 52,50 0,29 0,55 

Australia Australia 83,42 83,64 83,70 0,28 0,34 

Angola Angola 61,36 61,38 61,64 0,28 0,45 

Serbia Serbia 28,45 28,70 28,72 0,27 0,94 

Rwanda Rwanda 49,63 50,00 49,88 0,26 0,52 

Iran (Islamic 

Republic of) 

Iran (Islamic 

Republic of) 

50,99 51,12 51,25 0,26 0,51 

Belgium Belgium 41,07 41,27 41,31 0,24 0,59 

Thailand Thailand 76,30 76,48 76,53 0,23 0,30 

Indonesia Indonesia 31,79 31,87 32,01 0,22 0,71 

Germany Germany 26,40 26,60 26,62 0,22 0,83 

Jordan Jordan 50,05 50,32 50,26 0,22 0,43 

China, 

Taiwan 

Province of 

China 

Taiwan 73,89 74,04 74,10 0,21 0,29 

Czechia Czechia 21,39 21,53 21,58 0,19 0,90 

Austria Austria 37,41 37,57 37,60 0,19 0,51 

Hungary Hungary 25,54 25,69 25,73 0,19 0,73 

Canada Canada 75,50 75,65 75,68 0,19 0,25 
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Countries Bing map 

reference 

2020 2025 2030 Difference Rate of 

change 

Netherlands Netherlands 23,73 23,83 23,91 0,18 0,77 

Tunisia Tunisia 36,17 36,26 36,35 0,18 0,50 

Slovakia Slovakia 14,84 15,01 15,02 0,18 1,19 

United 

Kingdom 

United 

Kingdom 

53,38 53,49 53,54 0,17 0,31 

United States 

of America 

United States 

of America 

76,02 76,15 76,19 0,16 0,22 

Mexico Mexico 70,04 70,08 70,21 0,16 0,23 

South Sudan South Sudan 14,67 14,80 14,82 0,15 1,02 

Qatar Qatar 64,90 64,97 65,04 0,14 0,21 

Chile Chile 61,07 61,15 61,19 0,13 0,21 

Haiti Haiti 42,73 42,67 42,83 0,11 0,25 

Uzbekistan Uzbekistan 26,29 26,40 26,40 0,11 0,41 

Norway Norway 23,03 23,10 23,13 0,10 0,43 

Cambodia Cambodia 51,30 51,38 51,39 0,09 0,18 

Italy Italy 62,01 62,07 62,08 0,08 0,13 

Zambia Zambia 48,01 48,00 48,09 0,07 0,15 

Armenia Armenia 58,39 58,46 58,45 0,06 0,11 

Bolivia 

(Plurinational 

State of) 

Bolivia 

(Plurinational 

State of) 

64,14 64,15 64,20 0,05 0,08 

State of 

Palestine 

State of 

Palestine 

17,48 17,49 17,53 0,05 0,30 

Uruguay Uruguay 52,50 52,52 52,56 0,05 0,10 

Israel State of Israel 85,51 85,55 85,56 0,05 0,06 

Ukraine Ukraine 40,03 40,13 40,07 0,04 0,10 

Ecuador Ecuador 50,72 50,72 50,74 0,02 0,04 

Portugal Portugal 63,02 62,98 63,02 0,00 0,01 

Paraguay Paraguay 83,26 83,26 83,26 0,00 0,00 
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Countries Bing map 

reference 

2020 2025 2030 Difference Rate of 

change 

China, Hong 

Kong SAR 

China, Hong 

Kong SAR 

100,00 100,00 100,00 0,00 0,00 

China, 

Macao SAR 

China, 

Macao SAR 

100,00 100,00 100,00 0,00 0,00 

Singapore Singapore 100,00 100,00 100,00 0,00 0,00 

Argentina Argentina 63,22 63,13 63,20 -0,02 -0,03 

Cuba Cuba 32,55 32,52 32,53 -0,02 -0,06 

Kyrgyzstan Kyrgyzstan 44,71 44,73 44,68 -0,03 -0,06 

Ireland Ireland 39,47 39,43 39,43 -0,04 -0,10 

Ethiopia Ethiopia 26,43 26,30 26,39 -0,04 -0,16 

Philippines Philippines 59,29 59,25 59,25 -0,05 -0,08 

Egypt Egypt 71,30 71,37 71,25 -0,05 -0,08 

Puerto Rico Puerto Rico 80,45 80,43 80,35 -0,10 -0,12 

Liberia Liberia 57,07 56,97 56,96 -0,11 -0,19 

France France 45,64 45,53 45,53 -0,11 -0,24 

Algeria Algeria 18,96 18,77 18,84 -0,12 -0,63 

Eritrea Eritrea 42,88 42,69 42,74 -0,13 -0,31 

Turkmenistan Turkmenistan 26,72 26,58 26,59 -0,13 -0,49 

Republic of 

Korea 

South Korea 82,81 82,68 82,66 -0,15 -0,18 

Croatia Croatia 28,91 28,82 28,75 -0,16 -0,55 

Poland Poland 26,12 26,14 25,96 -0,16 -0,62 

Sri Lanka Sri Lanka 15,53 15,44 15,35 -0,17 -1,10 

Greece Greece 44,81 44,63 44,61 -0,20 -0,44 

Nigeria Nigeria 53,76 53,38 53,56 -0,20 -0,38 

United 

Republic of 

Tanzania 

United 

Republic of 

Tanzania 

46,79 46,52 46,55 -0,24 -0,51 

Azerbaijan Azerbaijan 53,31 53,01 53,06 -0,25 -0,47 
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Countries Bing map 

reference 

2020 2025 2030 Difference Rate of 

change 

Sierra Leone Sierra Leone 34,80 34,54 34,52 -0,28 -0,80 

Afghanistan Afghanistan 59,14 58,85 58,83 -0,31 -0,52 

Bosnia and 

Herzegovina 

Bosnia and 

Herzegovina 

20,01 19,70 19,65 -0,36 -1,79 

Dem. 

People's 

Republic of 

Korea 

North Korea 30,74 30,42 30,38 -0,36 -1,17 

Namibia Namibia 30,73 30,37 30,37 -0,37 -1,19 

Uganda Uganda 28,01 27,64 27,65 -0,37 -1,30 

Morocco Morocco 52,32 51,80 51,91 -0,41 -0,79 

Tajikistan Tajikistan 35,14 34,81 34,69 -0,45 -1,28 

Georgia Georgia 46,50 46,08 46,04 -0,46 -1,00 

Romania Romania 26,03 25,79 25,56 -0,47 -1,81 

Kenya Kenya 50,43 49,88 49,89 -0,55 -1,08 

Chad Chad 37,14 36,65 36,47 -0,67 -1,80 

Nicaragua Nicaragua 28,09 27,53 27,42 -0,67 -2,39 

Trinidad and 

Tobago 

Trinidad and 

Tobago 

74,23 73,70 73,52 -0,71 -0,95 

Jamaica Jamaica 36,02 35,38 35,31 -0,72 -1,99 

Djibouti Djibouti 73,82 73,06 72,95 -0,87 -1,18 

Mali Mali 33,73 32,78 32,77 -0,96 -2,83 

Iraq Iraq 62,71 61,79 61,72 -0,99 -1,57 

Côte d'Ivoire Côte d'Ivoire 42,67 41,77 41,66 -1,02 -2,38 

El Salvador El Salvador 23,24 22,27 22,16 -1,08 -4,63 

Papua New 

Guinea 

Papua New 

Guinea 

32,74 31,96 31,65 -1,09 -3,32 

Oman Oman 44,34 43,37 43,21 -1,12 -2,54 

Guatemala Guatemala 31,61 30,56 30,42 -1,19 -3,76 
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Countries Bing map 

reference 

2020 2025 2030 Difference Rate of 

change 

Republic of 

Moldova 

Republic of 

Moldova 

28,99 28,01 27,79 -1,20 -4,15 

Senegal Senegal 46,70 45,59 45,49 -1,21 -2,59 

Lao People's 

Democratic 

Republic 

Lao People's 

Democratic 

Republic 

26,25 25,04 24,95 -1,30 -4,94 

Sudan Sudan 57,41 56,30 56,01 -1,40 -2,43 

Guinea Guinea 38,23 37,02 36,81 -1,42 -3,71 

Malawi Malawi 58,11 56,89 56,51 -1,60 -2,75 

Niger Niger 44,50 43,28 42,82 -1,67 -3,76 

Central 

African 

Republic 

Central 

African 

Republic 

42,82 41,45 41,14 -1,68 -3,93 

Mozambique Mozambique 45,46 43,85 43,67 -1,78 -3,92 

Gabon Gabon 43,04 41,42 41,12 -1,92 -4,47 

Togo Togo 50,94 49,09 48,88 -2,06 -4,04 

Gambia Gambia 31,40 29,48 29,30 -2,10 -6,69 

Zimbabwe Zimbabwe 44,81 42,33 41,70 -3,11 -6,94 

Syrian Arab 

Republic 

Syrian Arab 

Republic 

84,60 77,11 78,27 -6,34 -7,49 

Source: UNDESA population prospects database 2019 [online]. Available from 

https://population.un.org/wpp/DataQuery/ [Accessed 4 October 2019]. 
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