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Abstract

Parallel Monte-Carlo Tree Search in Distributed

Environments

M. Christoph

Computer Science Division,
Department of Mathematical Sciences,

University of Stellenbosch,
Private Bag X1, 7602 Matieland, South Africa.

Thesis: M.Sc. Computer Science

2020

Parallelising Monte-Carlo Tree Search (MCTS) holds the promise of being
an effective way to improve the effectiveness of the search, given some time
constraint. Thus, finding scalable parallelisation techniques has been an
important area of research since MCTS was first proposed. The inherently
serial nature of MCTS makes effective parallelisation difficult, since care
must be taken to ensure that all threads or processes have access to accurate
statistics. This is more challenging in distributed-memory environments
due to the latency incurred by network communication.

Prior proposals of distributed MCTS have presented their results on
different domains and hardware setups, making them difficult to compare.
To try to improve this state of affairs, we use the actor-based framework
Akka to implement and compare various distributed MCTS algorithms on
a common domain—the board game Lines of Action (LOA). We describe
our implementation and evaluate the scalability of each approach in terms
of playouts per second (PPS), unique nodes searched per second (NPS), and
playing strength.
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ABSTRACT iii

We observe that distributed root parallelisation provides the best PPS
scalability, but has relatively poor scalability in terms of NPS. We contrast
this with distributed tree parallelisation which scales well in terms of NPS
but performs poorly in terms of PPS. Distributed leaf parallelisation is shown
to scale up to 128 compute nodes in terms of PPS, but its NPS scalability is
limited by its single compute node that manages the tree.

We determine that distributed root parallelisation combined with tree
parallelisation is the strongest of the distributed MCTS algorithms, with
none of our other implementations managing a win-rate of more than 50%
against the algorithm. We show that distributed root/leaf parallelisation, as
well as our distributed leaf parallelisation with a multi-threaded traverser
scale well in terms of playing strength. Distributed tree parallelisation via
TDS, df-UCT and UCT-Treesplit is shown to have limited playing strength
scalability, and we provide possible avenues for future work that may resolve
this limited performance.

We hope that these findings will provide future researchers with suffi-
cient recommendations for implementing distributed MCTS programs.
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Uittreksel

Parallelle Monte-Carlo Boomsoektogte in Verspreide

Omgewings

M. Christoph
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Departement van Wiskundige Wetenskappe,
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Privaatsak X1, 7602 Matieland, Suid Afrika.

Tesis: M.Sc. Rekenaarwetenskap

2020

Parallelisering van die Monte-Carlo Boomsoektog algoritme (MCTS)
blyk ‘n effektiewe manier te wees om die doeltreffendheid van soektogte,
onderhewig aan ’n gegewe tydsbeperking, te verbeter. Dus, is die ontwik-
keling van skaaleerbare parallelisasietegnieke ‘n belangrike navorsingsarea
sedert MCTS voorgestel is. Die inherente sekwensiële aard van MCTS maak
effektiewe parallelisering moeilik, en tegnieke wat verseker dat alle ligge-
wigprosesse toegang tot akkurate statistieke het, moet ondersoek word. Die
deel van statistieke is meer uitdagend in verspreide geheue omgewings as
gevolg van die latensie wat veroorsaak deur netwerkkommunikasie.

Vorige voorstelle van verspreide MCTS algoritmes is getoets vir verskil-
lende take en hardeware, wat dit moeilik maak om hulle resultate met me-
kaar te vergelyk. Dus gebruik ons die akteur-gebaseerde raamwerk Akka
om verskillende verspreide MCTS-algoritmes te implementeer en op die-
selfde taak—die bordspel Lines of Action (LOA)—te toets en te vergelyk.
Ons beskryf die implementasie daarvan en evalueer die skaaleerbaarheid
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UITTREKSEL v

van elke benadering in terme van simulasies per sekonde (PPS), unieke
nodusse per sekonde (NPS) en spelkrag.

Ons bewys dat verspreide wortelparallelisering die beste UPS-skaaleerbaarheid
bied, maar relatief swak skaaleerbaarheid in terme van NPS. Ons kontrasteer
dit met verspreide boomparallelisering wat goed skaaleer in terme van NPS,
maar wat swak presteer in terme van PPS. Daar word getoon dat verspreide
blaarparallelisering tot 128 berekenings-nodusse in terme van PPS skaaleer,
maar dat die NPS-skaaleerbaarheid daarvan beperk word deur die gebruik
van ‘n enkele nodus wat die boom bestuur.

Ons bepaal dat verspreide wortelparallelisering gekombineer met boom-
parallelisering die sterkste is van die verspreide MCTS-algoritmes, en geen
van ons ander implementerings het ‘n wen-koers van meer as 50 % teen hier-
die algoritme nie. Ons toon aan dat verspreide wortel/blaarparallelisering,
sowel as ons verspreide blaarparallelisering met ‘n multi-liggewigproses
deurstapalgoritme, goed skaleer ten opsigte van spelkrag. Daar word ge-
toon dat verspreide boomparallalisering swak spelkrag-skaaleerbaarheid
toon, en ons bied idees vir toekomstige werk wat hierdie swak prestasie
moontlik kan oplos.

Ons hoop dat hierdie bevindings sal toekomstige navorsers voldoende
aanbevelings sal gee vir die implementering van verspreide MCTS-programme.
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Chapter 1

Introduction

Humans have been playing games for entertainment and competition since
the first civilised societies developed many centuries ago [43]. The complex
nature of some games make them an effective domain to test computational
intelligence, and the idea that computers could be used to play games dates
back to 1950, when Claude Shannon proposed the first chess-playing com-
puter program [50]. Since then, games have been an integral part of artificial
intelligence (AI) research.

Game-playing engines may select moves by traversing a game tree (Sec-
tion 2.1) using the minimax algorithm [45] to find optimal moves. However,
the computational resources required to do this makes this approach infea-
sible for most games [28].

αβ pruning [33] was developed in an attempt to minimise the compu-
tational resources required to perform the search by pruning less beneficial
parts of the game tree. Additionally, αβ pruning programs typically employ
a depth-limited search and use a domain-dependent evaluation function to
estimate the value of non-terminal game states. αβ pruning has been the
dominant approach employed by AI researchers for decades. However, it
has been less successful in games with state representations that are compu-
tationally expensive to evaluate [40].

In 2006, Levente Kocsis and Csaba Szepesvári developed Monte-Carlo
Tree Search (MCTS) [34, 11], a best-first search algorithm that is guided by
Monte-Carlo simulations [37]. The algorithm iteratively constructs the game
tree by expanding parts of the tree that show promising simulation results.
The statistical significance of the information gathered by these simulations

1
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increases with an increase in the number of simulations performed [37].
Therefore, simulation results serve as an effective game state evaluation
that does not require built-in domain-specific knowledge. This has enabled
MCTS to dominate αβ pruning in domains such as Go [39], Havannah [55]
and Hex [4].

One way to improve the decision-making ability of an MCTS program is
to maximise the number of Monte-Carlo simulations that the program per-
forms. Parallelising MCTS therefore plays an important role in the develop-
ment of stronger programs, especially since hardware that supports paral-
lelism (multi-core CPUs, multi-CPU machines and large computer clusters)
has become commonplace in recent years. However, effective parallelisation
is not as simple as for classical αβ-based search techniques [17]. This is be-
cause simulation results must be shared to prevent threads from expanding
and traversing parts of the game tree that other threads may have already
determined to be unpromising [17, 62, 47].

1.1 Problem Statement

Ideally, a parallel MCTS implementation running on n cores will perform
as well as a serial implementation that is given n times more time to run.
However, this is not the case. The node statistics that guide the search
change rapidly, and need to be constantly available at all compute nodes for
the search to prioritise more promising parts of the tree. Therefore, a parallel
MCTS implementation must either share node statistics among the available
compute nodes in order to perform an effective search, or limit sharing at
the risk of wasting time searching less beneficial parts of the game tree.

Root parallelisation (Section 2.2.4.2), leaf parallelisation (Section 2.2.4.1)
and tree parallelisation (Section 2.2.4.3) are the three most prominent tech-
niques that exist for parallelising MCTS [16, 17]. In leaf and tree paralleli-
sation, a single game tree is maintained and shared among the available
threads. Because of this, these two approaches lend themselves well to
shared-memory (multi-core) environments. In root parallelisation, each
thread maintains its own game tree, and node statistics are combined at the
end of the search. This means that root parallelisation is more suitable for
distributed memory environments (clusters).
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Transposition Table Driven Work Scheduling (TDS) (Section 3.4.1) was devel-
oped by Romein et al. [44] to efficiently distribute a single game tree across
multiple compute nodes, allowing tree parallelisation to be used effectively
in distributed memory environments. A major bottleneck in TDS is the
need for frequent communication at the compute node responsible for man-
aging the root of the game tree. Yoshizoe et al. [62] and Schaefers et al. [47]
proposed Depth-First UCT (df-UCT) (Section 3.4.2) and UCT-Treesplit (Sec-
tion 3.4.3), respectively, to mitigate this problem.

These distributed MCTS algorithms were tested on different domains
using different hardware setups, which makes fair comparison challenging.
In light of this, our goal is to determine the scalability of the following
distributed MCTS algorithms in terms of playouts per second, tree size and
playing strength. We use Lines of Action (LOA) (Section 2.4) as a common
test domain:

• Distributed leaf parallelisation (see Section 3.2 for background and
Section 4.4.1 for implementation details).

• Distributed root parallelisation combined with either leaf parallelisa-
tion or tree parallelisation (see Section 3.3 for background and Sec-
tion 4.4.2 for implementation details).

• Distributed tree parallelisation with TDS (see Section 3.4.1 for back-
ground and Section 4.4.3.1 for implementation details).

• df-UCT (see Section 3.4.2 for background and Section 4.4.3.2 for imple-
mentation details).

• UCT-Treesplit (see Section 3.4.3 for background and Section 4.4.3.3 for
implementation details).

1.2 Objectives

We identify the following objectives to achieve the goal described above:

• Implement the test domain (LOA).

• Implement each of the distributed MCTS algorithms discussed in Sec-
tion 1.1.

Stellenbosch University https://scholar.sun.ac.za
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• Identify the strongest set of enhancements to apply to our distributed
MCTS algorithms.

• Identify the strongest set of hyperparameters for our distributed MCTS
algorithms.

• Determine the scalability of each distributed MCTS algorithm in terms
of simulations per second.

• Determine the scalability of each distributed MCTS algorithm in terms
of unique nodes expanded per second.

• Determine the scalability of each distributed MCTS algorithm in terms
of playing strength.

• Use the results of these scalability experiments to determine how play-
ing strength is influenced by playout rate and tree size.

• Provide a comprehensive analysis and comparison of these distributed
MCTS algorithms using a common test domain and hardware setup.

1.3 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 provides
the background necessary to understand the remainder of the thesis. This
includes information on game trees and classical search, MCTS, including
its enhancements and parallelisation, Akka and actor systems, and LOA.
Chapter 3 presents the existing literature for applying parallel MCTS al-
gorithms to distributed environments and analyses the scalability of each
approach. Chapter 4 discusses the design and implementation of each of
our distributed MCTS agents, as well as our test framework and LOA. In
Chapter 5, we present our experimental setup and results. This includes pa-
rameter tuning and the scalability of each of our implementations in terms
of playout rate, tree size and playing strength. We conclude the thesis with
Chapter 6, where we reflect on our results in terms of the objectives pre-
sented in Section 1.2. Additionally, we provide possible avenues for future
work that could shed light on, or improve upon, the work presented in this
thesis.
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Chapter 2

Background

Games have been an integral part of Artificial Intelligence (AI) research since
Claude Shannon developed the first chess-playing computer program [50].
Combinatorial games have been particularly popular for AI researchers since
they typically have a simple set of rules but are also complex enough to
provide significant research challenges [11]. By definition, two-player com-
binatorial games have the following properties [11]:

• Zero-sum: Both players are in direct competition with each other, i.e.
a gain in utility for one player implies an equivalent loss in utility for
the opposing player.

• Perfect information: The full state of the game is visible to both players.

• Deterministic: Chance does not play any role in the game.

• Sequential: Players perform actions sequentially, not simultaneously.

• Discrete: The number of possible game states and actions are finite.

In this chapter, we provide the background required to contextualise our
research and discuss the literature leading up to distributed Monte-Carlo
tree search with a focus on two-player combinatorial games. We introduce
the concept of a game tree and consider classical search techniques in Sec-
tion 2.1. Section 2.2 introduces Monte-Carlo tree search and some enhance-
ments to the core algorithm, as well as prevalent parallelisation techniques.
Section 2.3 provides some background on the concurrency framework we

5
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use for our implementations (see Section 4.3 for details). We conclude the
chapter with a summary of our test domain, Lines of Action, in Section 2.4.

2.1 Game Trees and Combinatorial Search

Combinatorial search algorithms attempt to find a specified combinatorial
object in a defined search space. Combinatorial search problems can be
tackled by reducing the problem to a tree where the root node represents
the initial problem to be solved, other nodes represent (possibly interacting)
sub-problems, and branches represent actions that may taken to reduce a
problem to one of its sub-problems [42].

The goal of a game-playing AI, or agent, is to determine the best possible
move for a given game state. For many games (including combinatorial
games), this can be accomplished through the use of a combinatorial search
algorithm where the search space consists of all possible game states in the
domain. Each node in the tree represents a single game state and each edge
represents a possible action, or move, that can be applied to the state [41].
Such a tree is referred to as a game tree.

Figure 2.1 depicts the game tree for tic-tac-toe. Although tic-tac-toe has
a small number of possible game states, the full game tree is still too large
to feasibly depict here. Therefore, we omit portions of the tree and replace
most of the omitted portions by ellipses.

Game states that represent completed games are called terminal states,
and an AI agent can use a utility function to assign numerical values to
terminal states based on the winner of the game. In general, terminal states
where the agent performing the search has won are assigned higher values
than those where it draws or loses. In Figure 2.1, the utility function assigns
a value of 1 to a terminal state where X has won, 0 for a draw, and -1 when
O has won.
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Figure 2.1: A portion of the game tree for tic-tac-toe.

A game tree like the one depicted in Figure 2.1 can in theory be traversed
by the minimax algorithm to produce perfect play. In the minimax algorithm,
the values assigned to terminal states by the utility function are backpropa-
gated up the tree with the ultimate goal of determining the utility of every
child of the root so that the optimal move can be chosen.

In minimax, it is customary to refer to the searching agent as MAX and its
opponent as MIN. In the game tree shown in Figure 2.1, the engine playing
crosses is MAX, since it is expected to make a move first.

The game tree is traversed recursively by minimax in a depth-first man-
ner with play alternating between MAX and MIN. Once a terminal state is
reached, the utility of the game state is determined and associated with the
node. When minimax has assigned utility values to all the siblings of the
terminal node, it assigns a utility value to the node’s parent in the following
way:

• If MIN is expected to make a move at the parent, it is assigned the mini-
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mum of its children’s utility values. This is because minimax assumes
that MIN plays optimally and will choose the best move possible from
its perspective.

• Similarly, if MAX is expected to make a move at the parent, it is assigned
the maximum of its children’s utility values.

This process is applied recursively until all children of the root node have
been assigned utility values. The optimal move is then the one leading to
the child with the best utility value for MAX.

The size of the search space (the state-space complexity) varies drasti-
cally between games, with tic-tac-toe having an upper bound of 39 = 19683
possible states, and Chess having a state-space complexity in the order of
1043 [50]. Using minimax to traverse a game tree containing all possible
game states allows an agent to make the optimal move at every turn in
principle. However, for a game tree with a uniform branching factor b (the
number of children for internal nodes in the tree) and depth d, the number
of leaf nodes evaluated by minimax is bd. This exponential growth in the
number of nodes with increased depth makes exact minimax infeasible for
games with a large state-space complexity [28].

Sometimes, minimax will unnecessarily search nodes that cannot affect
the final move choice. In order to address this inefficiency, researchers
conceived of the idea to prune, or ignore, nodes by stopping the evaluation of
a node once it is proven that the node is worse than a previously encountered
one. The most effective and widely-used such enhancement to minimax
is known as αβ pruning and the resultant algorithm is called αβ search.1

Pruning is performed in such a way that the solutions found by αβ search
are equivalent to those found by standard minimax [33].

The technique introduces two new variables, α and β, that represent the
best utility values encountered for MAX and MIN, respectively. These values
are initialised to the worst-case utility values, i.e. α = −∞ and β = +∞.

α and β are updated as the search advances, with the difference between
α and β becoming progressively smaller with an increase in depth. When β

1It is difficult to determine who initially conceived of αβ search, but the recognition
for the algorithm’s conception is given to John McCarthy and Alexander Brudno [12], who
independently developed the ideas that would eventually become the αβ search that is used
today.
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becomes smaller than α, the node being searched can no longer be the result
of optimal play by MAX and MIN, and the subtree rooted at the node is pruned.

The average number of nodes evaluated by αβ search when a node’s
children are arranged in a random order is given byO(( b

log(b) )
d) while the best

case is O(b
d
2 ). This is a significant improvement over standard minimax, but

the running time of the algorithm still grows exponentially with an increase
in game tree depth.

In order to apply αβ search to domains with a larger state-space com-
plexity, it is necessary to limit the search to some depth d as opposed to
descending the full game tree up to the terminal states. This partial game
tree is called a search tree.

Since a utility function cannot be applied to non-terminal states, a depth-
limited αβ search will make use of an evaluation function to assign heuristic
values to the non-terminal leaves of the search tree. Like the utility function
used in a full game tree search, the evaluation function assigns values to
game states according to how beneficial the state is considered to be for the
searching player (MAX). By making use of an evaluation function to traverse
a search tree instead of a full game tree, depth-limited αβ search implicitly
defines a new proxy game to which αβ search is applied.

Although this depth-limited version of αβ search bypasses the expo-
nential growth in the number of searched nodes, it has still proven to be
ineffective for games with large branching factors and game states that are
difficult to evaluate such as Go [28]. Therefore, a different approach is
required to develop strong game-playing AIs for these games.

2.2 Monte-Carlo Tree Search

Monte-Carlo tree search (MCTS) was independently developed by Kocsis
and Szepesvari [34] and Rémi Coulom [21] as a best-first, anytime search
technique that does not require an evaluation function to determine node
values. The algorithm performs simulations in the search space to estimate
node values and iteratively grow a search tree while focusing on parts of the
tree with the best estimated values [34, 16, 11].

The fact that MCTS does not require an evaluation function has allowed
the algorithm to achieve success in domains where a high-quality evaluation
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function is difficult to construct such as Go. For example, early MCTS-based
Go programs such as Crazy Stone and Mogo showed significant improve-
ments over previous αβ-based programs [57, 20]. Additionally, in 2016,
AlphaGo became the first computer program to beat a professional player
on a full 19 × 19 board with no handicap [51, 39]. MCTS has also shown
promise in non-game applications such as constraint satisfaction, scheduling
problems and combinatorial optimisation [11].

In this section, we provide an overview of the MCTS algorithm in Sec-
tion 2.2.1, followed by a discussion of the most pervasive selection policy for
MCTS—upper confidence bound for trees (UCT)—in Section 2.2.2. We dis-
cuss selected MCTS enhancements in Section 2.2.3 and conclude the section
with a discussion of various MCTS parallelisation techniques in Section 2.2.4.

2.2.1 Algorithm Overview

The vanilla MCTS algorithm builds a game tree asymmetrically as the search
progresses. This process is guided by simulation results so that the most
promising parts of the tree are preferentially expanded, allowing computa-
tional resources to be used efficiently by avoiding unnecessarily searching
less beneficial subtrees.

Each iteration of the main MCTS loop is termed a playout, and consists of
four distinct phases, as depicted in Figure 2.2. These are repeated until some
computational budget (normally a time, memory or iteration constraint) has
been expended. When this happens, the search is stopped and the best child
of the root node is returned according to some final move policy. The four
phases of MCTS are as follows:

1. Selection: Starting at the root of the game tree, child nodes are re-
cursively selected until a terminal state or a node that is not yet fully
expanded (a node with actions that have not been considered yet) is
reached.

2. Expansion: If the game state represented by the node is not terminal, a
new child is added to the node, thereby expanding the tree. If the game
state is terminal, the tree is not expanded and the value of the terminal
node is backpropagated (see step 4) without the need for simulation.
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3. Simulation: Starting at the newly expanded node, moves are applied
to the game state until a terminal state is reached, at which point the
value of the state (commonly 1 for a win and 0 for a loss) is obtained.

4. Backpropagation: The reward value obtained in the simulation phase
is used to update the statistics for every node on the path from the
newly expanded node to the root of the tree. This normally entails
incrementing each node’s visit count and updating average node re-
wards based on the simulation result [34].

These first three phases of MCTS may be grouped into the following two
policies:

1. A tree policy that defines how the agent descends the tree. This includes
the choice of children during selection and which nodes are added to
the tree during expansion. The main consideration in choosing a tree
policy is balancing the exploitation of parts of the tree that are believed
to be beneficial and the exploration of less-visited parts of the tree in the
hope of finding more promising sub trees.

2. A default policy that defines how moves are applied to the game state
during simulation. A possible default policy is to choose moves uni-
formly at random [34], but more sophisticated policies are often used
instead [11].

Note that, although backpropagation does not use either of these policies,
the manner in which node statistics are updated during backpropagation
can differ when some enhancements, such as Rapid Action Value Estimation
(RAVE), are used [26].

Popular final move policies include the following:

• Max child: Select the child with the highest reward.

• Robust child: Select the child with the most visits. This is the most
commonly used strategy [18, 11].

• Max-robust child: Select the node with the most visits and the highest
reward. If none exist, continue searching until a sufficient visit count
is reached.
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Figure 2.2: A single iteration of the MCTS algorithm. Node fill colour
indicates the player to move at the node. Values inside nodes represent
average rewards (total reward divided by number of playouts through the
node) from the perspective of the player to move. Bold arrows indicate the
path taken during selection, the newly added action/node during expansion,
and the path taken during backpropagation. The dotted arrow indicates an
out-of-tree simulation.

• Secure child: Select the child which maximises some lower confidence
bound.

2.2.2 Upper Confidence Bound For Trees (UCT)

In order to develop a tree policy that addresses the exploration-exploitation
tradeoff discussed in Section 2.2.1, Kocsis and Szepesvari [34] formulated the
selection phase of MCTS as a multi-armed bandit problem (MAB)—a class of
problems where one must repeatedly choose amongst K actions with the goal
of maximising one’s cumulative average reward over time. The choice of
action is difficult to determine as the underlying reward distribution for each
action is unknown, and can only be estimated based on past observations.

In the context of an MAB, regret after n turns refers to the expected
loss (relative to the best option in hindsight) incurred by failing to select the
optimal action, and the policies for action selection typically aim to minimise
this regret. Lai and Robbins [35] showed that there is no action selection
policy with a regret that grows slower than O(ln(n)). Therefore, a policy
with logarithmic regret growth is deemed to have solved the exploration-
exploitation dilemma.

Among these policies is UCB1—a policy that leverages the probabilistic
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upper confidence bound (UCB) on the value of an action [5]. After n previous
selections, UCB1 dictates to choose the action i that maximises:

UCB1(i) = Xi +

√
2 ln n

ni
(2.1)

where Xi is the average reward for action i and ni is the number of times action
i was chosen previously. A higher Xi value encourages the exploitation of
actions with greater accumulated reward, while the second term in the
formula encourages exploration of less-selected actions.

In UCT, each selection step is modelled as a MAB where the set of avail-
able actions corresponds to the set of child nodes that may be selected and
the value of a child node is approximated by previous simulations. In light
of this, the average reward Xi of a child node i is given by:

Xi =
vi

ni
(2.2)

where ni is the number of times a playout has passed through child i and vi

is the total reward obtained in the simulation phase of those playouts. This
leads to a selection policy that dictates to select the child i that maximises:

UCT(i) =
vi

ni
+ 2Cuct

√
2 ln n

ni
(2.3)

where n is the number of simulations that have passed through the parent
of i, i.e.

∑
i ni = n − 1 and Cuct is a constant that determines the degree to

which UCT favours less explored tree nodes.
There is a balance between the first (exploitation) and second (explo-

ration) terms of Formula 2.3. When child i is selected, the denominator of
the exploration term increases for that child, and so the contribution of the
exploration term to the value of the child decreases. On the other hand,
the contribution of the exploration term to the value of i’s siblings increases
with an increase in the numerator. The value of Cuct can be adjusted to
lower or increase the degree of exploration. While it has been proven that
Cuct = 1

√
2

allows node values to converge to their game-theoretic values for

Xi ∈ [0, 1] [34], the value of Cuct is commonly optimised empirically.
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If ni = 0 for some child i, The UCT value of the child is understood to
be ∞, so that each child of a node is visited at least once before any of its
children are expanded.2

After selection, the UCT algorithm progresses as described in Section 2.2.1.
The child to be expanded can be chosen at random from the unexpanded
children, or domain knowledge can be used to select the most promising
child (see Section 2.2.3 for examples).

Following this, the default policy is used to perform a simulation at the
newly expanded node. The reward obtained at the end of the simulation is
then added to vi for every node i on the path from the root, and the number
of visits is incremented for each node. Modular pseudocode for UCT is
provided in Algorithm 1.

2.2.3 Enhancements

Several enhancements have been proposed to improve the effectiveness of
MCTS. These enhancements can be broadly grouped into the following two
categories [11]:

• Domain-dependent enhancements require some form of domain-specific
knowledge such as game mechanics and game state representation.

• Domain independent enhancements are applicable to any domain and
do not require any prior knowledge in order to function.

In this section, we discuss three enhancements to the selection phase
in UCT: first play urgency (Section 2.2.3.1), progressive unpruning (Sec-
tion 2.2.3.2), and progressive bias (Section 2.2.3.3). We conclude this section
with a discussion of transposition tables—an efficient technique for storing
the tree—in Section 2.2.3.4.

2In practise, this is not always the case. Some MCTS enhancements assign finite UCT
values to unvisited nodes, such as first play urgency (FPU) (Section 2.2.3.1).
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Algorithm 1 UCT

1: function UCT(s0) . Return the best move for the state s0

2: create root node v0 with state s0

3: while computational budget is not reached do
4: v← treePolicy(v0)
5: s← the game state associated with v
6: ∆← defaultPolicy(s)
7: backup(v, ∆)
8: end while
9: bestChild← bestChild(v0, 0)

10: return the move leading to bestChild
11: end function
12:
13: function treePolicy(v) . Apply the selection process to node v
14: while v is not terminal do
15: if v is not fully expanded then
16: return expand(v)
17: else
18: v← bestChild(v, C)
19: end if
20: end while
21: return v
22: end function
23:
24: function expand(v) . Add an unexplored child to v
25: a← an unexpanded action for v
26: s← result of applying a to state associated with v
27: add a child c to v with associated state s
28: return c
29: end function
30:
31: function bestChild(v, C) . Return child of v with the best UCT value

32: return the child i of v that maximises Qi
ni

+ 2C
√

2 ln nv
ni

33: end function
34:
35: function defaultPolicy(s) . Simulate from s and return a reward
36: while s is not terminal do
37: a← a random legal move for s
38: apply a to s
39: end while
40: ∆← the reward for s
41: return ∆
42: end function
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43: function backup(v, ∆) . Backpropagate the reward ∆, starting at v
44: i← v
45: v← the parent of v
46: while v is not null do
47: ni ← ni + 1
48: Qi ← Qi + ∆(v, p) . ∆(v, p) contains the reward for the

player p to move at node v
49: i← v
50: v← the parent of v
51: end while
52: end function

2.2.3.1 First Play Urgency

In standard UCT, unvisited nodes are implicitly assigned a UCT value of∞.
This forces the algorithm to expand every child of a node n before growing
the subtree rooted at n any deeper. In a domain with a large branching factor,
an agent employing this approach may fail to reach a significant depth in
the tree within a reasonable time constraint.

First play urgency (FPU) is a domain-independent selection enhancement
proposed by Gelly et al. [27] to tackle this issue. FPU assigns a fixed value
to unexplored nodes while using the UCT formula for visited nodes. This
means that early exploitation will be encouraged with a low FPU value
since the UCT values of nodes with good statistics will be greater than the
assigned FPU values. On the other hand, higher FPU values will allow
early exploration. Implementations that assign a high enough FPU value to
unvisited nodes will expand every child of a tree node before applying the
UCT formula, just like standard UCT.

2.2.3.2 Progressive Unpruning

Similarly to FPU, progressive unpruning [18] promotes early exploitation in
order to explore deeper parts of the tree. Progressive unpruning achieves
this by artificially restricting the number of expandable child nodes early
in the search—effectively limiting the branching factor and forcing deeper
exploration.

When a node is first encountered, the progressive unpruning strategy
will tentatively prune all of its children, except for some constant number
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U0 of them, so that only the best U0 children are initially considered in the
search. For all subsequent playouts, a function U(n) determines the number
of children of a node to be considered, where n is the node’s total visit count.
When U(n) is incremented, an additional move is made available (or un-
pruned). The order in which moves are unpruned is usually determined by
some heuristic evaluation function [18], which makes progressive unprun-
ing a domain-dependent enhancement. A possible definition for U(n) is as
follows [30]:

U(n) = U0 +

⌊
log(n)
log(µ)

⌋
. (2.4)

Here, µ is a hyperparameter that determines the rate at which children
are unpruned, with the rate increasing as µ decreases.

2.2.3.3 Progressive Bias

The reliability of a node’s statistics generally increases as more playouts pass
through the node [37]. This means that a node with a low visit count is more
likely to have an inaccurate estimated value, and it may be beneficial to
take into account an initial value of such a node through the use of domain-
specific heuristic knowledge.

Chaslot et al. [18] proposed progressive bias as a means to incorporate
heuristic knowledge into the standard UCT formula. Progressive bias esti-
mates a node’s value with the domain knowledge having a strong influence
when the node has been visited a small number of times and the node’s UCT
statistics are less reliable. As the node’s visit count increases, the domain
knowledge contribution is decreased in favour of the node’s increasingly
accurate UCT statistics. This dynamic influence is achieved by adding a
decaying bias term to the standard UCT formula (see Formula 2.3) so that,
as ni grows, the contribution of the newly added bias term becomes less
significant. The modified formula is as follows:

UCTpb(i) = UCT(i) + Cpb

( Hi

ni + 1

)
. (2.5)

The right-hand term in Equation 2.5 is the bias term that is weighted
with the constant Cpb. Hi is the heuristic value of child i that is usually
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determined by a (naïve) static evaluation function, i.e. progressive bias is a
domain-dependent enhancement.

2.2.3.4 Transposition Tables

In many domains, different sequences of moves can lead to the same game
state. When the same game state is reached by more than one path in
the tree, we call the state a transposition. If an MCTS agent can not detect
transpositions, it may store multiple tree nodes that represent the same game
state. Since the agent accumulates statistics for these nodes independently,
failure to detect transpositions can lead to a search overhead incurred by
searching nodes that already have well established value estimates.

A commonly used technique to tackle this issue is to store tree nodes in
a transposition table [52]. A transposition table is a large hash table that maps
game states to table entries containing the information associated with the
state. When an MCTS agent using a transposition table encounters a game
state, it performs a table lookup to determine whether the state already has
associated statistics stored in a corresponding table entry. If so, the agent
uses the stored statistics to perform selection or updates them if the playout
is in the backpropagation phase. If not, the agent inserts a new entry into
the transposition table for the encountered game state and continues with
the search.

In practice, transposition tables are implemented as a one-dimensional
array with each array index holding a single transposition table entry. The
index into the array for a game state is usually determined by computing a
hash of the game state modulo the length of the array. For a game state s with
hash h(s), the index into a transposition table with length |T| is computed as
follows:

I(s) = h(s) mod |T|. (2.6)

The most common hashing scheme for board game agents is Zobrist
hashing [63], which maps game states to large integers (usually 64-bit or
more). We outline the approach using tic-tac-toe as an example domain.

Hashing begins by populating a table of random bitstrings for each pos-
sible combination of piece and position on the board. For example, in tic-
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tac-toe, this consists of 2 piece types × 9 squares on the board. Pseudocode
for the initialisation procedure in tic-tac-toe is provided in Algorithm 2.

Algorithm 2 Zobrist random table initialisation for tic-tac-toe.

1: X← 0
2: O← 1
3: randomTable← a 2-d array of size 9 × 2
4:
5: function initZobrist . Populate a table of random bitstrings
6: for i in 0 . . . 8 do . Loop over the squares on the board
7: for j in 0 . . . 1 do . Loop over the pieces
8: randomTable[i][j]← getRandomBitstring()
9: end for

10: end for
11: end function

Once this table is populated, a game state can be broken up into piece/square
components, which map to the random bitstrings generated during initial-
isation. The Zobrist hash of a game state can then by computed by xoring
appropriate bitstrings together. Pseudocode to compute the Zobrist hash
for a tic-tac-toe game state represented as a 1-dimensional array of length 9
is provided in Algorithm 3.

Algorithm 3 Zobrist hash computation for tic-tac-toe after random table
initialisation.

1: function getZobristHash(gameState[])
2: hash← 0 . Initialise the Zobrist hash
3: for i in 0 . . . 8 do
4: piece← gameState[i]
5: hash← hash xor randomTable[i][piece]
6: end for
7: return hash
8: end function

The advantage of Zobrist hashing is that the hash for a game state does
not have to be fully re-computed every time a move is applied to it. Instead,
the hash can be incrementally updated (e.g. as one descends the search tree
during the selection phase of MCTS) by xoring out the bitstrings for pieces
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that are removed from a square and xoring in the bitstrings for pieces that
are placed on a square.

When implementing a transposition table using Zobrist hashing, care
must be taken to detect and handle hashing errors appropriately. The fol-
lowing two types of errors have been defined in the literature [63]:

• Type 1 errors: If the number of available hash values is smaller than the
number of possible game states, there will be cases where two or more
game states yield the same hash. When this happens during a search,
the information in the transposition table entry will be related to a
completely different game state, and this will introduce search errors.
Although one can detect type 1 errors in some cases by checking that
the moves stored in the table entry are legal from the game state being
searched, there is no way to detect these errors with 100% certainty [9].

• Type 2 errors: If the number of entries in the transposition table is
smaller than the number of possible game states, there will be cases
where multiple game states map to the same transposition table en-
try. When this occurs, the transposition table implementation must
determine whether to replace the existing entry with the new one or
keep the existing entry and find a new entry for the game state. The
technique used by the implementation to resolve type 2 errors is called
a replacement scheme [9]. Although there is always a loss of information
incurred when replacing nodes, many replacement schemes have been
proposed that use metrics such as node age and depth to minimise the
impact of this loss [9].

2.2.4 Parallelisation

It has been shown that MCTS performs better when more playouts are per-
formed and a larger tree is produced [17, 37]. Therefore, when implementing
an MCTS agent, it is important to maximise its playout rate and the size of
the tree that it builds so that stronger moves can be found within some fixed
time constraint.

An effective technique for improving the peformance of computationally
expensive algorithms such as MCTS is parallelisation. Parallelising MCTS
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allows it to take advantage of multiple CPU cores on a symmetric multi-
processing (SMP) machine or a cluster of networked machines to increase
the rate at which playouts are performed. Parallelisation can be divided into
two distinct categories:

• Multi-core (shared-memory) parallelisation spreads work across one
or more CPUs, each with one or more cores on an SMP machine, with
memory being shared by all participating cores.

• Cluster (distributed-memory) parallelisation distributes work across
a network of inter-connected machines (a compute cluster). Each ma-
chine, or compute node (CN) consists of one or more CPUs, each with
one or more cores that share the CNs memory.

For the purposes of this section, we use the term compute entity (CE) to
denote a single unit of computation that may either be a CPU core in an SMP
environment or a compute node in a cluster.

The effectiveness of a parallelisation technique is determined by its scala-
bility. If a program running on N CEs is better than a version running on N−1
CEs according to some metric, the program is said to scale to N CEs in terms
of that metric. An ideal parallel MCTS implementation would scale linearly
with an increase in the number of CEs. However, parallelising any search
algorithm introduces overhead that can restrict scalability [36, 48, 10], and
the inherently sequential nature of MCTS makes parallelisation difficult [17].
The three notable types of overhead in parallel MCTS are as follows [54]:

1. Search overhead is incurred when some CEs waste time searching nodes
that have been deemed unfavourable by other CEs.

2. Synchronisation overhead is incurred when some CEs must wait for other
CEs to finish their computations before moving forward with their
own.

3. Communication overhead is incurred when network latency causes de-
lays in the exchange of information between CEs.

Minimising the performance impact of these overheads is of utmost im-
portance when parallelising MCTS.
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The most established MCTS parallelisation techniques are root paralleli-
sation, leaf parallelisation and tree parallelisation [17]. Leaf and root parallelisa-
tion were first proposed by Cazenave and Jouandeau [14] under the names
at-the-leaves parallelisation and single-run parallelisation, respectively, but we
do not use this terminology. Although far more than three parallel MCTS
algorithms have been proposed, they are mostly variations on these three
techniques [11]. Figure 2.3 pictorially contrasts these approaches, which are
discussed in detail in Sections 2.2.4.1-2.2.4.3.

Leaf	parallelisation Root	parallelisation Tree	parallelisation

Thread 1

Thread 2

Thread 3

Figure 2.3: An outline of the operation of leaf, root and tree parallelisation.
Dotted arrows represent the simulation phase of MCTS while solid arrows
represent selection if they point towards leaf nodes and backpropagation if
they point towards the root.

2.2.4.1 Leaf Parallelisation

While the in-tree phases of MCTS (selection, expansion and backpropagation—
see Section 2.2) are dependent on previous simulation results, the simulation
phase has no such dependency. Due to the independent nature of MCTS
simulations and the fact that the simulation phase is generally the most
time-consuming part of MCTS [14], leaf parallelisation aims to increase
the playout rate by performing simulations in parallel while building and
traversing the tree sequentially.

In leaf parallelisation, the tree is maintained by one CE (the traverser) and
simulations are performed in parallel by the remaining CEs. The various
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leaf parallelisation algorithms that have been proposed can be divided into
the following two distinct approaches [49]:

• Single leaf multiple playouts (SLMP) is the earliest approach to leaf par-
allelisation [14, 17]. In SLMP, the traverser performs selection and
expansion as usual. When a node is added to the tree, the traverser
signals to every simulator that a simulation must be performed from
the newly expanded node. The traverser then waits for all simulations
to finish and proceeds with backpropagation.

SLMP suffers from the following two types of overhead:

1. Synchronisation overhead incurred at the traverser while it waits
for simulations to finish and at the simulators while they wait for
the traverser to perform backpropagation and selection.

2. If multiple simulations at a node have already resulted in a loss,
it is likely that the majority of the remaining simulations will also
lead to a loss. Since the traverser always waits for all simulations
to finish before performing backpropagation, this could lead to
computational resources being wasted on performing simulations
at unpromising nodes, thereby incurring a search overhead.

• Multiple leaves multiple playouts (MLMP) was proposed to mitigate the
overheads incurred by SLMP [15, 31]. When a node is expanded in
MLMP, the traverser asynchronously sends a simulation request to a
single simulator and asynchronously starts another MCTS iteration,
without the need to wait for the simulation result. This mitigates
the synchronisation overhead since CEs are never required to wait
for other CEs to finish their computations, and it mitigates the search
overhead since only one simulation is performed per newly expanded
node.

While both approaches to leaf parallelisation successfully increase the
rate at which an MCTS agent performs playouts, it fails to build a larger tree
than a serial agent since the in-tree phases are performed sequentially by a
single traverser [62].3

3This only holds for the case where the traverser is single-threaded. See Section 4.4.1
for a discussion of our multi-threaded traverser implementation.
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2.2.4.2 Root Parallelisation

In root parallelisation, multiple searches are performed simultaneously, i.e.
the search is parallelised at the root. Initial implementations of root paralleli-
sation had each CE perform an independent search on its own tree until the
computational budget is almost expended. At this point, the best move can
be chosen by combining the value estimates obtained from the various trees
by simply adding them together or using a majority voting scheme [14, 17].

The problem with this approach is that CEs can not take advantage of
value estimates obtained by other CEs. This leads to a search overhead
incurred by CEs wasting time searching parts of the tree that other CEs may
already have determined to hold little value.

In order to address this, Cazenave and Jouandeau [14] proposed period-
ically sharing statistics between CEs for children of the root node. In this
approach, each CE has access to a more stable set of statistics for the children
of its root, and the CE is therefore deterred from searching subtrees of the
root that other CEs have determined to be unfavourable. This approach to
root parallelisation was termed slow-root parallelisation by Bourki et al. [8].

While this technique for reducing the search overhead incurred by root
parallelisation showed promising results, it was refined by Gelly et. al [25],
who proposed periodic sharing of statistics for nodes deeper than the chil-
dren of the root. This approach, termed slow-tree parallelisation by Bourki et al. [8]
involves sharing statistics for nodes up to some depth d that have been in-
volved in some percentage p of the total playouts with some frequency f .
Bourki et al. [8] reported results where this strategy was effective for d = 3,
p = 5% and f = 3Hz.

Similarly to leaf parallelisation, the focus of root parallelisation is to
increase the rate at which an MCTS agent performs playouts. However,
since the tree constructed by each CE is independent, root parallelisation
fails to build a larger tree than a serial implementation [62, 54].

2.2.4.3 Tree Parallelisation

Where root parallelisation and SLMP leaf parallelisation only aim to increase
the playout rate, tree parallelisation aims to perform more playouts and
build a larger tree by having each CE perform an independent search in
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parallel on a single shared tree [17]. This means that multiple CEs may
attempt to write to the same memory locations simultaneously, and care
must be taken to prevent data corruption. In the seminal tree parallelisation
paper, Chaslot et al. [17] proposed two solutions to this problem:

• Global mutexes lock the whole tree in such a way that only one thread
can access the tree at a time. This means that only one CE can be
in the selection, expansion or backpropagation phase at a time, while
multiple simulations can occur simultaneously from different nodes.
Similarly to MLMP leaf parallelisation, the scalability of this approach
is limited by a synchronisation overhead incurred by CEs waiting for
access to the tree. Unfortunately, most MCTS implementations often
spend between 25 and 50 percent of the total search time in these
phases [17].

• Local mutexes lock a node whenever a CE accesses that node. This
means that several CEs can access different nodes simultaneously. Al-
though this technique still incurs a sychronisation overhead when CEs
wait for a node to be released, the overhead is less dramatic than in the
global mutex approach. However, CEs now frequently have to lock
and unlock parts of the tree, which may lead to an additional over-
head. Therefore, the use of fast-access mutexes such as spinlocks [3] are
recommended to take full advantage of available resources [17].

Enzenberger and Müller [23] proposed a lock-free variation of tree par-
allelisation with better scalability than either local or global mutexes. They
found that simultaneous updates to node statistics happen infrequently, and
the data corruption caused by this can be safely ignored. While this tech-
nique relies on hardware with a specific memory model [23], most modern
architectures satisfy these requirements.

While the data corruption caused by simultaneous node statistic updates
is negligible, the addition of new nodes to the tree during expansion still
requires some protection against corruption. When a CE performs expan-
sion, it initialises the new node fully in a memory array dedicated to the CE.
Only once the node is fully initialised is it linked to the parent node. This
prevents CEs from attempting to access partially initialised nodes, but can
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cause a small memory overhead since multiple CEs might each create a new
node for a given game state.

An inherent issue with tree parallelisation is that CEs are likely to de-
scend the tree in a very similar fashion. If K CEs select a node n during tree
descent and K −M of them find that the node is unfavourable, the remain-
ing M CEs will waste computational resources on playouts that include the
unfavourable node n. Additionally, if local mutexes are used, the synchro-
nisation overhead incurred by CEs frequently attempting to access the same
nodes is exacerbated.

A heuristic solution to this problem, proposed by Chaslot et al. [17], is
to increment the visit count of every node encountered during selection
without updating their rewards. This is called a virtual loss, and it deters
other CEs from selecting the same nodes by artificially decreasing their value
estimates when they are selected. The virtual loss is effectively reverted
during backpropagation when node rewards are updated (and visit counts
are not incremented).

2.3 Akka Actors and Clustering

Our system is implemented in Java and we make use of the Akka toolkit [7]
for all message passing and concurrency. Akka leverages the actor model
of computation [29] to facilitate the development of concurrent, distributed
software by treating actors as the primitives of concurrency.

Actors are computational entities that communicate through asynchronous
message-passing. Upon receiving a message, an actor can:

• modify its local state;

• create more actors;

• send more messages; and/or

• designate a behaviour to be used for future messages

Since Akka actors can only process one message at a time, tasks are
performed in parallel by delegating work to more than one actor. Akka
actors do not typically share any mutable data, and one actor may only
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affect another actor’s state by sending a message to that actor’s ActorRef—
an object that uniquely represents an actor and may be passed around freely
without exposing the actor’s internal state to the outside world. In fact,
messages that are sent by an actor implicitly contain that actor’s ActorRef.
This model prevents the need for traditional concurrency constructs such
as locks and semaphores, thereby simplifying the process of developing
concurrent applications. However, immutable state is not explicitly enforced
in Akka, and the developers have discussed the use of shared data as an
optimisation in Akka applications [2].

Akka actors exist within a hierarchical structure called an actor system,
and actors may only communicate with other actors in the same actor system,
regardless of their relative positions within the hierarchy. When some actor
A creates a new actor B, B is added to the actor system hierarchy as a child
of A, and A becomes the supervisor of B.

A supervisor is responsible for handling any exceptions that are thrown
by its children. If a supervisor delegates work to one of its children and
that child throws an exception, the child actor suspends itself and all of
its descendants and indicates to its supervisor that it has encountered a
failure. Depending on the failure, the supervisor may respond in one of the
following ways:

• ignore the exception and resume the child;

• restart the child and clear its internal state, including the messages in
it’s message queue;

• kill the child completely; or

• suspend itself and escalate the exception to its own supervisor.

This implicit supervision hierarchy allows Akka to gracefully handle
exceptions, prevent orphaned actors, and cleanly shut down subtrees of the
actor hierarchy.

Akka provides distributed computing functionality through the cluster-
ing module. An Akka cluster consists of a set of actor systems, or nodes,
possibly running on independent Java Virtual Machines (JVMs) that may
span multiple CNs. Nodes are identified by a hostname:port:uid tuple,
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where the UID is a unique identifier for the actor system at the given host-

name:port pair. The actors in these actor systems may communicate with
one another as if they were all in the same actor system on the condition
that the relevant actor references are available to them and that they share
the same UID. This property is known as location transparency. A depiction
of a three-node Akka cluster is provided in Figure 2.4.

host2:24:123

host1:23:123

host3:25:123

Akka
Cluster

Actor

Independent	Actor	Systems

Figure 2.4: An Akka cluster consisting of three nodes. An actor may send
a message to an actor in a different node as long as it has access to the
recipient’s ActorRef and the nodes have the same UID.

The formation of a cluster begins by launching one or more seed nodes—
the initial contact points through which other nodes join the cluster. Addi-
tional nodes are added to the cluster by instantiating actor systems with the
seed nodes’ UID and providing the newly created actor systems with the
hostname and port of one or more seed nodes. A newly created node uses
this information to send a join command to a seed node, resulting in the
node being added to the cluster.
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2.4 Lines of Action

We choose to perform our comparison of distributed MCTS algorithms using
the board game Lines of Action (LOA). The reason for this choice is the
game’s highly tactical nature and moderate branching factor (approximately
29) [59].

LOA is a connection-based combinatorial game played on an 8× 8 board
which initially contains 12 black pieces and 12 white pieces. The initial board
layout is shown in Figure 2.5. The rules of LOA [46] are as follows:
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Figure 2.5: The initial
board state.
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Figure 2.6: f6 may move
to b6, d4, f2 or h8.
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Figure 2.7: An example
of a terminal state where
black has won.

1. The players alternate moves, starting with Black.

2. The player to move must move one of their pieces in a straight line
(horizontal, vertical or diagonal). The number of squares the piece
moves is exactly equal to the number of pieces of any colour in the line
of movement, including the moving piece. An example of this is given
in Figure 2.6.

3. A player may jump over their own pieces.

4. A player may not jump over enemy pieces. However, it may land on
top of an enemy piece, resulting in that piece’s capture (removal from
the board).

5. The first player to have all of their pieces in a single, connected compo-
nent is the winner of the game. The connections between pieces may
be either orthogonal or diagonal. The first player to achieve this is the
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winner. An example of a terminal state where black has won is given
in Figure 2.7.

6. If a move simultaneously causes both Black and White to achieve the
winning condition, the game is drawn.

2.4.1 The Quad Heuristic

The rules of LOA dictate that the game is over once a player has moved all of
their pieces into a single connected component. The most obvious technique
for detecting a terminal state would involve the following:

1. Maintain variables for the number of black pieces (nb) and white pieces
(nw) on the board, updating them after every move.

2. To check for a terminal state, perform a breadth-first search starting
at an arbitrary black piece, and another starting at an arbitrary white
piece to determine the sizes (sb and sw) of the respective connected
components.

3. If nb = sb or nw = sw, the state is terminal.

Since MCTS performs thousands of simulations per second and it is
necessary to check for a terminal state after every move in each playout, it
would be beneficial to optimise this procedure as much possible.

The quad heuristic is a procedure for detecting non-terminal positions
in LOA that was first proposed and implemented by Dave Dyer in his
LOA program LoaJava and subsequently formalised by Mark Winands [60].
The quad heuristic makes use of quads—a concept used widely in Optical
Character Recognition—to compute the Euler number for a player’s pieces
on the board and use this information to determine connectivity.

The Euler number of a grid represents the number of connected groups
in the grid minus the number of holes (an empty square surrounded or-
thogonally by filled squares) [38]. For example, in the board provided in
Figure 2.8, black will have an Euler number of 2 since there are 2 connected
black components and no holes. White will have an Euler number of 2
because there are 3 connected white components and one hole at g6.
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Figure 2.8: A state containing a hole at g6.

The quad heuristic is able to detect non-terminal board states by making
use of 2 × 2 quads imposed on the board. Figure 2.9 shows the six possible
quad types in LOA, taking rotational equivalence into account. Each quad
(except Q0) contains a vertex (the black points), line segments (the thick black
lines) and filled regions (squares occupied by a player’s pieces). Vertices and
line segments are always adjacent to a filled region. A standard 8 × 8 LOA
board consists of 81 quads, including those which only partially cover the
board. Squares containing opponent pieces or those that are not on the
board are considered empty.

Q0 Q1 Q2

Q3 Q4 Qd

Figure 2.9: Possible quads for a LOA board.
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Letting nv represent the number of vertices on the board, nl the number
of line segments, and n f the number of filled regions, the Euler number E of
the player’s pieces on the board can be computed as follows:

E = nv − nl + n f .

Let ∆nq
v, ∆nq

l and ∆nq
f denote the number of vertices, line segments and

filled regions, respectively, for a single quad q. Since each vertex occupies
only one quad, each line segment occupies two quads, and each filled region
occupies four, the contribution ∆Eq to the Euler number E for the quad is
given by:

∆Eq = ∆nq
v −

1
2

∆nq
l +

1
4

∆nq
f .

Using this, we can determine the contributions to the Euler number for
each quad type shown in Figure 2.9. The contributions are as follows:

Type ∆E

Q0 0

Q1 1/4

Q2 0

Q3 −1/4

Q4 0

Qd −1/2

The Euler number for the board can then be determined by counting the
number of quads of each type and using the following formula:

E =
1
4

(∑
Q1 −

∑
Q3 − 2

∑
Qd

)
.

If E > 1 for both colours, the board is certainly not in a terminal state,
since both players must have at least two connected components. However,
if E ≤ 1 for either colour, there can be one connected component or n
connected components with h ≥ n − 1 holes. Therefore, when the Euler
number for either colour is less than one, another method (such as the
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one outlined at the beginning of this section) must be used to determine
terminality.

By using the quad heuristic with incremental quad updates (see Sec-
tion 4.1.2 for a more detailed discussion) in his LOA program MIA, Mark
Winands found a 10-15% speedup in terminal state evaluation over breadth-
first search.

2.5 Summary

In this chapter, we provided the necessary background required to under-
stand the remainder of the thesis. We defined combinatorial games and
discussed how the classical combinatorial search algorithms—minimax and
αβ pruning—use game trees to make optimal decisions in these games.

We introduced MCTS, and discussed how the algorithm is able to ap-
proximate the values of non-terminal nodes in the game tree by performing
simulations in the search space, and defined UCT—the most prevalent selec-
tion policy for MCTS which models the selection process as a multi-armed
bandit problem.

Following this, we examined three enhancements to standard UCT, de-
fined them as domain-dependent or domain-independent, and discussed
the use of transposition tables to efficiently store the search tree without
having multiple nodes represent the same game state.

In Section 2.2.4, we introduced three MCTS parallelisation techniques
in an environment-agnostic setting: leaf parallelisation, root parallelisation
and tree parallelisation. We highlighted that leaf and root parallelisation
are easy to implement and increase the playout rate, but do not build larger
trees than sequential MCTS in the same amount of time. Tree parallelisation
can build a larger tree, but requires careful steps to be taken to prevent data
corruption caused by simultaneous memory updates.

We concluded the chapter with a summary of the rules of our test
domain—Lines of Action—and introduced the quad heuristic for detecting
non-terminal states.

In the following chapter, we will discuss the state of the art for extending
leaf, root and tree parallelisation to distributed-memory clusters.
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Related Work

The leaf, root and tree parallelisation techniques discussed in Section 2.2.4
were initially proposed for symmetric multiprocessing (SMP) systems that
consist of a single machine with a single processor consisting of two or more
identical cores that share the machine’s memory. In general, distributed
memory clusters provide far greater CPU and memory resources than a
single SMP machine, and parallelising MCTS for these environments has
the potential for significant performance gains.

A compute cluster consists of multiple machines, or compute nodes (CNs)
connected to each-other through a local area network (LAN). Each CN in
a cluster has one or more processors, each with one or more cores, that
share the CNs memory. Network communication is necessary for inter-CN
message passing, and mitigating the resulting communication overhead is
one of the most significant concerns in distributed MCTS. In light of this, a
good distributed MCTS implementation should:

1. Take advantage of increased CPU resources to perform more playouts
per second (PPS) when more CNs are available.

2. Take advantage of increased memory resources by building a larger
tree when more CNs are available.

3. Produce stronger play when more CNs are available.

In this chapter, we outline the existing literature for applying the par-
allel MCTS algorithms presented in Section 2.2.4 to distributed memory
environments. In order to do this, we begin this chapter with a section

34
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on performance measures and scalability (Section 3.1), where we discuss
the metrics used to measure the performance of distributed MCTS algo-
rithms. Following this, we discuss the existing work on distributed leaf
parallelisation (Section 3.2), distributed root parallelisation (Section 3.3) and
distributed tree parallelisation (Section 3.4) in terms of the metrics defined
in Section 3.1.

3.1 Performance Measures and Scalability

As discussed in Section 2.2.4, the effectiveness of a parallel algorithm is
determined by its scalability. In a distributed setting, a parallel program is
said to scale to N CNs if the program performs better with N CNs than N−1
CNs. In the literature, the effectiveness of the distributed MCTS algorithms
presented in this chapter were measured in terms of either PPS or playing
strength (win-rate), or both.

In addition to scalability, some authors present their results in terms of
speedup: a metric that measures the relative improvement in performance of
a distributed algorithm with N CNs over the same algorithm with 1 CN. PPS
speedup for an algorithm with N CNs is determined by dividing the PPS
achieved by the algorithm with N CNs by the PPS achieved by the algorithm
with 1 CN. Although a method to measure speedup in terms of playing
strength has been proposed and used in other MCTS literature [17, 55], it
was not used as a metric for testing in any of the publications discussed in
this chapter.

In summary, scalability measures how many CNs a distributed algorithm
can run on with a noticeable improvement over fewer CNs while speedup
measures the extent of that improvement.

3.2 Distributed Leaf Parallelisation

The application of leaf parallelisation to distributed memory environments
was first proposed by Cazenave and Jouandeau [15] as an improvement
on their previous work [14], and was the first occurrence of MLMP leaf
parallelisation (see Section 2.2.4) in the literature.
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Their implementation consists of a single-threaded traverser running on
one CN and up to four simulators running on each of the remaining CNs. At
the start of the search, the traverser descends the tree, expands a node, and
sends the position associated with the new node to a single simulator until
all simulators have received a position from which to perform a simulation.
Once a simulator receives a position and completes a simulation, it sends the
result of the simulation to the traverser. Upon receiving a simulation result
from some simulator S, the traverser backpropagates the result, descends
the tree, adds a new node, sends the newly expanded position to S and waits
for another result.

Using Go as a test domain, their experimental results show a significant
performance increase up to 16 simulators against GNUGo [13] version 3.6
on a 9 × 9 board, with a speedup of 14 with 16 simulators and a win-rate
improvement from 40.5% with one simulator to 70.5% with 16 simulators
at 5 seconds per move. The scalability of this approach is limited by the
communication overhead incurred by the traverser, and they note that better
results could be obtained by optimising the traverser.

Another approach to distributed leaf parallelisation was investigated by
Kato and Takeuchi [31] with a focus on clusters of inexpensive personal
computers and game consoles that may be added or removed from the
system at any time. When their traverser expands a node, the position
is broadcast to all available simulators and a new playout is immediately
started from the root, as opposed to Cazenave’s approach which only starts
a new playout upon receiving a simulation result.

Their experimental setup consisted of a single CN housing the traverser
and 3 simulators, and up to 16 CNs housing four simulators each. Using
Go as a test domain, they saw improvements in winning rate against GNUGo
version 3.7.11 up to 8 CNs on a 9 × 9 board and up to 16 CNs on a 13 × 13
board.

3.3 Distributed Root Parallelisation

Extending root parallelisation to distributed memory environments is a rel-
atively simple process, with the seminal work on root parallelisation being
tested on a “parallel virtual machine” – a cluster that is simulated on a single
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machine [14].
Root parallelisation was first applied to a physical compute cluster by

Gelly et al. [25]. Their approach was later termed slow-tree parallelisation
and extended by Bourki et al. [8].

In slow-tree parallelisation, each CN maintains an independent tree and
node statistics are periodically synchronised with frequency f as follows:

1. Select a subtree at each CN consisting of all nodes with depth at most
d that were involved in at least p percent of the total playouts at that
CN

2. Broadcast the statistics for the nodes selected above to all other CNs.

3. Sum the total rewards and visit counts received for each of these nodes
on all CNs. If the node in question does not exist on a CN, it is
initialised with the provided statistics.

Gelly’s implementation made use of up to 4 cores per CN by applying
tree parallelisation with local mutexes (see Section 2.2.4) on each CN. Their
approach was only tested on up to 9 CNs, but was shown to scale linearly
up to this point on 19 × 19 Go with f = 3Hz and d = 1 (only the statistics
for children of the root are shared, so it is more similar to the slow-root
parallelisation discussed in Section 2.2.4).

Bourki et al. found linear scaling up to 64 single-threaded CNs for
f = 3Hz, p = 5% and d = 3 on 19 × 19 Go, and showed that the perfor-
mance gained when moving from d = 1 to d = 2 is slight (only up to 2.3%),
indicating that d = 1 is sufficient in some cases. Their slow-tree parallelisa-
tion achieved a 94% win rate against a version of root parallelisation without
periodic sharing of node statistics, suggesting that optimal performance is
not possible without mitigating the search overhead incurred when statistics
are not shared.

Van Niekerk et al. [56] performed additional experiments on distributed
root parallelisation, and observed scaling up to 64 single-threaded CNs with
p = 5%, d = 3 and f = 5Hz or f = 10Hz.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. RELATED WORK 38

3.4 Distributed Tree Parallelisation

While root and leaf parallelisation are relatively easy to implement in a
distributed memory setting and are successful in increasing playout rate,
they do not search deeper given more resources, and therefore fail to take
full advantage of a cluster’s memory by building a larger tree than sequential
MCTS.

Out of the three MCTS parallelisation techniques, tree parallelisation is
the only one to build a larger tree than sequential MCTS given the same
time constraints. However, tree parallelisation is difficult to implement in
a distributed memory environment because sharing the tree among CNs
incurs a massive communication overhead [47, 62].

Nevertheless, two approaches for extending tree parallelisation to clus-
ters have been developed: Depth-First UCT (df-UCT) [62] and UCT-Treesplit
[47]. Both of these use Transposition Table Driven Scheduling (TDS) [44, 32]
to share the tree.

This section begins with an overview of TDS (Section 3.4.1), followed by
an outline of df-UCT (Section 3.4.2 and UCT-Treesplit (Section 3.4.3).

3.4.1 Transposition Table Driven Scheduling

Implementing an efficient distributed transposition table (2.2.3.4) is difficult
because a CN may not always have local access to the transposition table
entries it requires. In the past, the transposition table would be partitioned
among the CNs in the cluster, and a CN would perform a remote lookup for
any entry that is not present in its local memory by sending a request over
the network [24]. Since these requests are synchronous, the time that passes
between the request being sent and the transposition table entry becoming
available is wasted. Additionally, this approach can lead to thousands
of inter-CN messages being passed per second, which introduces a large
communication overhead [44].

Transposition table driven scheduling (TDS) was introduced in an attempt
to mitigate these issues by integrating the search and the transposition table
accesses. Instead of having a CN remotely request the transposition table
entry for the node to be searched, the CN sends the node to be searched
to the CN that manages its transposition table entry. The CN with the
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transposition table entry then performs the search. In this way, TDS makes
use of a distributed transposition table to share a single tree representation
among the CNs in a compute cluster and eliminates the need for synchronous
remote lookups [44, 32].

In TDS, each CN manages a disjoint subset of the transposition table and
a hash function is used to map each table entry to a single CN (the home
processor for the entry). If the total size of the transposition table is |T| in a
cluster with N CNs, each CN holds approximately M = |T|

N entries. For a
compute cluster where each CN has a unique index in the range 0 . . .N−1, the
home processor index p(s) for a game state s with hash h(s) (see Section 2.2.3.4
for details) is determined using the following formula:

p(s) =

⌊(
h(s)
M

)⌋
mod N (3.1)

In TDS, work is moved to the CN where the relevant transposition table
entry is located by sending it a job message containing the hash of s. For
example, if a CN encounters a game state s, it asynchronously sends a
message to the home processor of s so that the transposition table entry can
be looked up and used to move the search forward. Since all messaging is
asynchronous, a CN can continue processing messages immediately after
sending a job message to a remote CN. This mitigates the synchronisation
overhead incurred by the work-stealing approach.

The number of inter-CN messages generated in a single playout can
be as large as the number of tree nodes that are encountered during the
playout. This implies that TDS may perform poorly due to a consider-
able network communication overhead. However, since message-passing
is asynchronous, a CN is able to start working on a new task immediately
after sending a message. This allows network latency to be hidden by over-
lapping communication and computation [44].

In spite of this, TDS suffers from high communication overhead at fre-
quently accessed near-root nodes [32]. Two independently developed tech-
niques to solve this problem have been proposed–df-UCT [62] and UCT-
Treesplit [47].
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3.4.2 Depth-First UCT

Yoshizoe et al. [62] proposed df-UCT to alleviate some of the overhead
incurred by network communication at near-root nodes in TDS. df-UCT is
based on the observation that once UCT finds a promising part of the tree, it
frequently performs playouts in that part. In order to take advantage of this,
df-UCT does not propagate results back to the root node at each iteration.
Instead, it delays backpropagation until it can determine that it is no longer
on the most promising path.

For each node n encountered during selection, df-UCT determines n’s
best move mb and second-best move ms according to 2.3 and pushes the
reward and visit count for each of these moves, as well as n’s visit count
onto a stack. After expansion and simulation, df-UCT iterates through the
stack and updates the visit counts and rewards that are stored in the stack.
If, after the update, UCT(ms) > UCT(mb) holds for some node n encountered
during selection, it means that ms has become the best move at n, and df-
UCT performs backpropagation of the collected results until reaching n,
from where selection begins again.

The operation of df-UCT is based on the assumption that the second best
move ms will always become the best move when mb becomes too weak. This
is not always the case, as more inferior moves do sometimes become the best
move instead of ms, but the authors noted that this occurs infrequently, and
that investigating the effect of storing more than the best two moves on the
stack is a possible avenue for future work [62].

Consider the tree shown in Figure 3.1. Assume that it satisfies UCT(B) >
UCT(C), UCT(D) > UCT(E) and UCT(F) > UCT(G) i.e. the left-most child is
the best for each node. Now assume that df-UCT has descended the tree and
performed a simulation starting at F. It checks its local stack to determine
whether it is still on the best possible path or if it must backpropagate
simulation results to an ancestor. This process is as follows:
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A

CB

ED

GF

Figure 3.1: A simple tree where the left-most child of every node has the
best UCT value

• If UCT(C) > UCT(B), the simulation result is backpropagated to A and
C is selected.

• If UCT(E) > UCT(D), the simulation result is backpropagated to B and
E is selected.

• If UCT(G) > UCT(F), the simulation result is backpropagated to D and
G is selected.

• If none of the above statements hold, df-UCT is still on the best path F
is expanded.

By delaying backpropagation in this way, the communication overhead
incurred by TDS at the home processor of near-root nodes is mitigated.
However, there is also an implicit search overhead introduced by df-UCT:
although some parallel searches may determine that a node has little value,
others may waste time searching the node since they only have their local
stack statistics available to them.

Yoshizoe et al. performed experiments with artificial P-game [53] game
trees, which simulate real game trees and support varying branching factors
and time per playout. PPS scalability was tested on a cluster of up to 100 CNs
with 12 CPU cores per CN and an independent instance of their program
running on each CPU core. In order to make sure that the CPU cores are
always busy, 20N searches are run simultaneously, where N is the number
of CPUs in the cluster.

For all combinations of branching factor b ∈ {8, 40, 150} and time per
playout t ∈ {0.1, 1}, their implementation scaled up to 100CNs (1200 cores),
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and vastly outperformed vanilla TDS. df-UCT achieved a speedup of 741.2
with 100CNs while vanilla TDS only managed a speedup of 69.5, indicating
that the communication overhead incurred by vanilla TDS is significantly
reduced when applying the df-UCT modification.

3.4.3 UCT-Treesplit

Where df-UCT reduces the update frequency of near-root nodes by delay-
ing backpropagation, UCT-Treesplit reduces communication overhead by
duplicating frequently visited nodes on all CNs in the cluster so that mes-
sages only need to be sent to the home processor of a node when it has not
been duplicated [47]. This prevents the home processors of near-root nodes
from being overwhelmed with messages.

Similarly to root parallelisation (see Sections 2.2.4 and 3.3), statistics for
duplicated nodes are periodically synchronised so that CNs always have
reasonably up-to-date statistics for duplicated nodes. In order to facilitate
the duplication and synchronisation of tree nodes, UCT-Treesplit maintains
an additional reward and visit count (v∆

i and n∆
i , respectively) for each node

that represent the statistics that are yet to be synchronised. Therefore, the
actual accumulated, local reward for child i of a shared node is v∆

i + vi and
the actual local number of visits for child i is n∆

i + ni.
Four additional parameters are used to assist duplication and synchro-

nisation of near-root nodes:

• ndup: The minimum number of times a node must be visited before it
can be considered for duplication

• nsync(i) = α(ni + n∆
i ): The minimum value that at least one n∆

i must
have for synchronisation to take place for the parent of i, where α is an
adjustable constant.

• nmin
sync: A lower bound for nsync(i).

• nmax
sync: An upper bound for nsync(i).

This means that the statistics for a node are synchronised when there is
at least one child i of the node that satisfies the following inequality:
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n∆
i ≥ min

(
nmax

sync,max
(
nmin

sync, α
(
ni + n∆

i

)))
(3.2)

The value of α can be chosen to ensure a uniform reduction per syn-
chronisation of the standard error SEi of a child i’s mean estimated reward,
which leads to less frequent synchronisation of more settled statistics and
more frequent synchronisation at nodes with volatile statistics. Given a re-
duction rate p ∈ (0, 1) of the standard error, Schaefers and Platzner derive
that α = (1/p2) − 1 [47].

Node duplication and synchronisation are handled by additional CNs
referred to as broadcast ranks, while search ranks are responsible for managing
the transposition table and performing the search. The use of additional
CNs to handle broadcasting and synchronisation greatly reduces the work-
load at search ranks—Schaefers and Platzner empirically determined that
there should be one broadcast rank for every four search ranks for their
domain and hardware setup [47]. Each search rank is assigned a single
broadcast rank to send synchronisation messages to, and synchronisation
messages originating at other CNs are communicated to the search rank via
this broadcast rank.

Upon receiving a synchronisation message from another CN, a broad-
cast rank does not immediately send this information to its associated search
ranks. Instead, the broadcast rank delays sending the synchronisation mes-
sage for a tree node so that, if it receives additional synchronisation mes-
sages for the same tree node, the statistics can be merged before being sent to
the search ranks. This significantly reduces the number of synchronisation
messages that a search rank receives and processes, thereby improving scal-
ability [47]. Schaefers and Platzner used single-threaded broadcast ranks
as a proof of concept but note that the implementation of multi-threaded
broadcast ranks is a topic for future research.4

Their experiments involved matches against open-source Go programs
as well as UCT-Treesplit itself with differing configurations (self-play). Their
implementation was able to scale—in terms of playing strength—up to 128
search ranks with 16 CPU cores per CN and 32 broadcast ranks in self-
play experiments using Go as a test domain (playing on a 19 × 19 board
against a version with 8 search ranks and 2 broadcast ranks). Experiments

4We present our implementation of multi-threaded broadcast ranks in section 4.4.3.3
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against the open source programs Fuego and Pachi showed scaling up to 32
search ranks and 8 broadcast ranks – significantly worse than self-play. The
difference in scalability is attributed to the increased likelihood that node
statistics accumulated during the opponent’s turn can be re-used when the
opponent performs a similar search [47].

3.5 Summary

In this chapter, we presented the state of the art for distributed MCTS. We
discussed the existing techniques for extending leaf, root and tree parallelisa-
tion to distributed memory environments. We noted that a good distributed
MCTS algorithm should make effective use of the increased compute re-
sources in a cluster by increasing the playout rate, building a larger tree,
and mitigating the communication overhead incurred by inter-CN message
passing.

We noted that the distributed leaf parallelisation agents developed by
Cazenave and Jouandeau [15] and Kato and Takeuchi [31] each scaled to
16 simulators, with Cazenave and Jouandeau stating that the scalability of
their approach was limited by a single-threaded traverser.

We discussed three studies of distributed root parallelisation and showed
that root parallelisation scales better than distributed leaf parallelisation in
all cases, with two of the analyses showing scalability up to 64 CNs.

The remainder of the chapter discussed distributed tree parallelisation.
While distributed root parallelisation shows impressive scalability, it fails to
build a larger tree than serial MCTS because CNs tend to expand the same
tree nodes. TDS was introduced as a technique to efficiently share a search
tree among CNs so that a larger tree can be built with an increase in CNs,
but it was shown to suffer from network communication overhead incurred
at near-root nodes.

df-UCT was the first technique proposed to limit the impact of this com-
munication overhead, and proved to be an effective modification to vanilla
TDS. Yoshizoe et al. showed that df-UCT managed a PPS speedup of 741.2
with 100CNs when applied to artificial game trees while vanilla TDS only
managed a speedup of 69.5.

The second technique to mitigate the communication overhead incurred
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by TDS—UCT-Treesplit—showed playing strength scalability up to 128
search ranks and 32 single-threaded broadcast ranks, making this approach
the best distributed MCTS algorithm developed so far in terms of scalability.

In the following chapter, we will discuss our implementation of these
distributed MCTS algorithms, as well as some modified versions, in prepa-
ration to present our experimental findings in Chapter 5, where we will
compare our implementations on a common domain.
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Chapter 4

Design and Implementation

In this chapter, we discuss the design decisions and implementation de-
tails of our test domain, Lines of Action, and each of our distributed MCTS
agents. Section 4.1 presents the data structures and algorithms we imple-
ment for move generation, terminal state detection and incorporation of
knowledge in Lines of Action. In Section 4.2, we discuss our MCTS tree
node structure and transposition table implementation. In Section 4.3, we
provide background on the tools we use to facilitate distributed computing
and a high-level overview of our test framework. The implementation of
each of our distributed MCTS agents is detailed in Section 4.4.

4.1 Lines of Action

In this section, we discuss the implementation of our test domain, Lines of
Action. Our MCTS implementations require access to a data structure that
represents a LOA game state and allows for efficient move generation and
terminal state detection. We implement a LOABoard class that achieves this
through the use of data structures that are incrementally updated whenever
a move is applied to the board.

Since our distributed MCTS agents are able to take advantage of do-
main knowledge through progressive unpruning and progressive bias (see
Sections 2.2.3.2 and 2.2.3.3, respectively), we implement a static evaluation
function and move categories to facilitate these enhancements.

In Sections 4.1.1 and 4.1.2, we discuss the data structures we implement
to efficiently generate legal moves for a given LOABoard instance and detect

46
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terminal board positions, respectively. In Section 4.1.3, we discuss our eval-
uation function implementation and the techniques we use to determine
move categories and their values.

4.1.1 Move Generation

In MCTS, node expansion (Section 2.2.1) generally entails generating a list
of legal moves for the game state associated with the node. Additionally, in
the simulation phase (Section 2.2.1), a random move must be generated for
every game state encountered in the simulation. Since strong MCTS engines
typically expand thousands of nodes per second and every expansion is
followed by a simulation, it is important to implement data structures and
algorithms to facilitate efficient move generation.

In LOA, move generation is not a straightforward process, since pieces
may move in any direction and the distance a piece may move in a given
direction is dependent on the number of pieces in the line of motion.

Our approach to move generation is adapted from the LOA program
MIA [58], and is built on the idea that the legality of a move along some line
is independent of where the line is positioned on the board. For example, in
Figure 4.1, the configuration of rank b and rank d are identical. Since b2b6 is
a legal move for black, d2d6 is implicitly legal as well.

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 4.1: Since the move b2b6 is legal and rank d has the same configura-
tion as rank b, it is implied that d2d6 is legal as well.
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We take advantage of this property by populating a MoveMap at program
initialisation that we use to retrieve legal moves throughout the search.
Once populated, the MoveMap consists of a four-dimensional array where
each entry holds a list of legal moves for a particular line on the board, from
the perspective of a particular colour.

The properties we use to index into the MoveMap are as follows:

1. An integer representing the colour of the player to move.

2. An integer representing the orientation of the line for which legal
moves should be retrieved (horizontal, vertical, positive-gradient di-
agonal or negative-gradient diagonal).

3. An integer representing the position of the line on the board.

4. An integer encoding of the configuration of the pieces on the line. We
map the configuration of a line of length n to an integer hash as follows:

encoding =

n−1∑
i=0

(pi × 3i) (4.1)

where i is the position of the piece on the line as depicted in Figure 4.2
and pi is the integer representation of the colour at i (0 for an empty
square, 1 for black and 2 for white).

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 6

0 1 2 3 4 5 5 5

0 1 2 3 4 4 4 4

0 1 2 3 3 3 3 3

0 1 2 2 2 2 2 2

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

6 6 5 4 3 2 1 0

5 5 5 4 3 2 1 0

4 4 4 4 3 2 1 0

3 3 3 3 3 2 1 0

2 2 2 2 2 2 1 0

1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0

Figure 4.2: Line decompositions for horizontal, vertical and diagonal line
orientations.

The encodings for each line on the board are maintained by the LOABoard
and updated every time a move is applied to the board. This requires us
to update a maximum of 8 line encodings per move, which is a significant
improvement over the naïve approach of recomputing every line’s encoding

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. DESIGN AND IMPLEMENTATION 49

whenever a move is made. Additionally, updating a line encoding when
a piece is added or removed does not require a full re-computation of the
encoding as shown in Equation 4.1 since each piece in each position is
represented by an individual term that can be added or subtracted from the
encoding.

Although the MoveMap contains all possible legal moves in LOA, we
do not need to explicitly compute a list of legal moves for every possible
game state. Instead, we compute the legal moves for each possible line
configuration and insert these moves into the appropriate MoveMap entries.

For example, once we have computed the two legal white moves for the
line configuration shown in Figure 4.3, we can insert them into the MoveMap

entries for each horizontal and vertical line position, as well as the two main
diagonals.

0 1 2 3 4 5 6 7

Figure 4.3: Given this line configuration, white may move two places in
either direction along the line.

Then, if we were to encounter this line configuration on rank c, we would
retrieve the list of legal moves for white along the rank using the following
statement:

Listing 4.1: Retrieval of legal moves for the line configuration in Figure 4.3
at rank c

1 List<Move> movesForLine = moveMap

2 [Colour.WHITE]

3 [Orientation.HORIZONTAL]

4 [Rank.C]

5 [line.getIntEncoding()];

4.1.1.1 Generating All Legal Moves

The MoveMap allows us to retrieve a list of legal moves for a single line on
the board in constant time. However, in order to populate a list of all legal
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moves for a given game state, we must consider all lines that intersect at
least one of the moving player’s pieces. Therefore, the LOABoard maintains a
set of co-ordinates for each colour that indicates where its pieces are located.

In order to generate all legal moves for a colour, we concatenate the
legal moves for every line that intersects one of the colour’s pieces. An
abbreviated version of this procedure is provided in Listing 4.2. Line 6
ensures that we do not add duplicate moves if the same line is encountered
more than once and lines 7-10 retrieve the legal moves for the current line
from the MoveMap.

Listing 4.2: A function that returns a full list of legal moves for a game state

1 List<Move> getAllLegalMoves(){

2 List<Move> allLegalMoves = new ArrayList <Move >();

3 Set<Line> linesAlreadyChecked = new HashSet<Line>;

4 for (Coord pieceCoord : getCurrentPlayerPieces()){

5 for (Line line : getIntersectingLines(pieceCoord)){

6 if (linesAlreadyChecked.add(line)) {

7 List<Move> movesForLine = moveMap

8 [getCurrentPlayer()]

9 [line.getOrientation()]

10 [line.getPosition()]

11 [line.getIntEncoding()];

12 allLegalMoves.addAll(movesForLine);

13 }

14 }

15 }

16 return allLegalMoves;

17 }

4.1.1.2 Generating A Random Legal Move

During the simulation phase of MCTS, our agents apply a random legal
move to the board until a terminal position is reached. This type of move gen-
eration occurs far more frequently than the one described in Section 4.1.1.1,
so it is important that it is performed as efficiently as possible.

One approach to generating a single legal move for a given game state
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is to generate all legal moves as described in Section 4.1.1.1 and select a
random move from the resulting list. This would be time-consuming due to
list concatenation and iteration through piece sets.

In order to reduce the time spent generating random moves, we first
attempt to select a random piece from the piece set, retrieve the legal moves
for that piece, and select a random one. If there are no legal moves for
the piece, we repeat this process. If this approach fails three times we use
full move generation, although this occurs so infrequently that the resulting
performance degradation is negligible.

4.1.2 Terminal State Detection

Whenever a move is applied to a game state during the search, an MCTS
agent must determine whether the resulting state is terminal. This can occur
hundreds of times in a single simulation, so it is important that the agent
has an efficient mechanism for determining when the game is over.

As discussed in Section 2.4.1, the quad heuristic is an efficient tech-
nique for identifying non-terminal LOA game states. We leverage the quad
heuristic by implementing a QuadTable class that can be used to determine
a colour’s Euler number. The LOABoard stores a QuadTable for each player
and updates them every time a move is applied to the board.

A QuadTable consists of two 2-dimensional arrays of quads. A quad is
represented as a 4-bit number where a bit is on if and only if the correspond-
ing corner of the quad is occupied by one of the player’s pieces. Figure 4.4
depicts each bit’s position in the quad for the bit-string b0b1b2b3.

b0 b1

b2 b3

Figure 4.4: The quad represented by the bit-string b0b1b2b3

When a move is applied to the board, both QuadTables must be updated
to reflect the change in state. When a piece is added to or removed from a
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quad at corner bx, the quad is xored with a mask that has bx on and all other
bits off. This process is depicted in Figure 4.5.

1		0		1		0 1		1		1		0 0		1		1		0

xor	0	1	0	0 xor	1	0	0	0

Figure 4.5: A quad being updated by xoring in a piece at b1, then xoring out
a piece at b0.

By incrementally updating each colour’s QuadTable in this way, the
LOABoard is able to use Euler numbers to determine if the game state is
non-terminal in most cases, as described in Section 2.4.1. If the quad heuris-
tic is inconclusive, we use the depth-first search technique presented in
Section 2.4.1 to determine terminality.

4.1.3 Incorporation of Knowledge

The progressive bias and progressive unpruning MCTS enhancements func-
tion by attaching values to moves before they are explored by the agent.
These values are determined by incorporating domain knowledge—pre-
existing knowledge of the test domain that is supplied to the agent before
program execution.

In this section, we describe the two forms of heuristic knowledge we
incorporate: a static evaluation function and move categories.

4.1.3.1 Evaluation Function

The purpose of an evaluation function is to assign a heuristic value to a
game state from the perspective of the player to move. Since the progres-
sive strategies we implement must attach values to moves rather than game
states, we determine the value of a move by applying the move and evalu-
ating the resulting state from the perspective of the player that applied the
move.
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We implement a simple, non-incremental evaluation function that makes
use of the concentration component of Mark Winands’ LOA evaluation
function [61]. Our evaluation function computes the value of a move m
from the perspective of a player p by performing the following steps:

1. Apply m to the game state.

2. Compute the centre of mass for each player’s pieces.

3. For each colour, compute the distance of every piece from the centre of
mass for that colour and sum the distances. This is referred to as the
sum-of-distances (SOD).

4. For each number of pieces N, there is a value we call the sum-of-
minimal-distances (SOMD(N)) that denotes the smallest possible SOD
when there are N pieces on the board. We retrieve the SOMD(N) for
both players from a pre-populated table.

5. Determine the excess-of-distances (EOD = SOD − SOMD(N)) for both
players.

6. Determine each player’s concentration—the reciprocal of its EOD.

7. Subtract the concentration of the opponent’s pieces from the concen-
tration of p’s pieces to determine the value of m from the perspective
of p.

4.1.3.2 Move Categories

The move category approach to incorporating domain knowledge assigns
values to moves by partitioning them into pre-determined categories and
using a database of expert matches to determine a transition probability for
each category. The transition probability P(c) of a move category c is given
by the following formula [59]:

P(c) =
nplayed(c)

navailable(c)

where nplayed(c) is the number of game positions in the database where a
move belonging to category c was played, and navailable(c) is the number
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of positions in the database where a move belonging to category c could
legally be played.

We partition the board into the four regions depicted in Figure 4.6: the
four corners of the board (region A), the remainder of the 8x8 outer rim
(region B), the borders of the 4x4 and 6x6 inner squares (region C) and the
2x2 inner square (region D). Moves are categorised according to the regions
that their source and destination co-ordinates occupy. Moves are further
classified into capture and non-capture moves. This results in a total of 32
possible move categories, and we assign a transition probability to each of
them by parsing match logs that were obtained from Darse Billings’ LOA
page [6]. These transition probabilities can be found in Appendix A.
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Figure 4.6: Board regions used for move classification.

4.2 Game Tree Representation

As described in Section 2.2.2, MCTS constructs and traverses a game tree
with nodes representing game states and outgoing edges representing pos-
sible moves from a state. When an agent visits a node during tree descent,
it must have access to the total reward and number of simulations accu-
mulated for every move from the node so that the UCT formula can be
applied.

All of our implementations use a transposition table to store the game
tree. Each entry in the transposition table is a single tree node and contains
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the statistics necessary to apply the UCT formula. We discuss the details of
our tree node and transposition table implementations in Section 4.2.1 and
Section 4.2.2, respectively.

4.2.1 Tree Node

We implement a TreeNode interface to define the necessary operations that
are performed on a node during the search. Since some of our implemen-
tations have multiple threads that simultaneously modify a shared tree, we
implement a VolatileTreeNode that synchronises access to node statistics
for these agents while other agents make use of a SimpleTreeNode. This pre-
vents agents that do not require volatile statistics from incurring an overhead
through frequent memory accesses.

Since UCT-Treesplit and root parallelisation frequently synchronise node
statistics, they must maintain those statistics that have been communicated
to remote ranks and those that have not in separate data structures. Instead
of adding more TreeNode implementations to facilitate this, we separate
synchronised and un-synchronised statistics for all agents. Agents that do
not perform node synchronisation simply do not instantiate the secondary
data structures.

Our TreeNode implementations consist of the following fields:

1. nodeHash: A Zobrist hash (Section 2.2.3.4) that identifies the game state
associated with the node.

2. allMoves: An array consisting of all moves that may be legally made
from the game state associated with the TreeNode.

3. nodeVisits: An integer that keeps track of the total number of times
the node has been visited.

4. unsynchronisedVisits: An array that holds the number of visits that
must still be communicated to remote CNs for every move in allMoves.

5. synchronisedVisits: An array that holds the number of visits that
have already been synchronized for each move in allMoves.
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6. unsynchronisedRewards: An array that holds the total accumulated
reward that must still be communicated to remote CNs for each move
in allMoves.

7. synchronisedRewards: An array that holds the total accumulated re-
ward that has already been synchronised for each move in allMoves.

8. knowledgeValues: An array that holds the knowledge value for each
move in allMoves. This may either be a transition probability as dis-
cussed in Section 4.1.3.2, or the output of our static evaluation function
as discussed in Section 4.1.3.1.

Both TreeNode constructors take a LOABoard parameter that represents
the game state associated with the TreeNode. This parameter is used to
populate allMoves and knowledgeValues by employing the procedures dis-
cussed in Section 4.1.1 and Section 4.1.3, respectively. The remaining move
statistic arrays are filled with zeroes at initialisation.

During node initialisation, we order the list of moves in descending order
of knowledge value. Moves with the same knowledge value are ordered
according to their positions in the MoveMap (Section 4.1.1) so that the ordering
of allMoves is deterministic. This ordering policy has the following two
purposes:

1. If progressive unpruning is used and the unpruning window is N, only
the first N moves need to be considered during tree descent since they
are implicitly the moves with the best knowledge values.

2. For implementations that require sharing of node statistics, we can
be sure that the order of a node’s children is the same on every CN,
thereby simplifying the synchronisation procedure.

4.2.2 Transposition Table

All of our agents make use of a transposition table to store the game tree
representation. The transposition table contains a one-dimensional array
with each entry mapping to a single TreeNode.

Our transposition table implementation is derived from the one devised
for UCT-Treesplit [47], and allows for automatic replacement of stale nodes
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during the search. This prevents the need for an explicit element deletion
phase between turns.

The transposition table maintains an integer variable lookupCount that
is incremented with every table lookup. Additionally, we store the value of
lookupCount at the start of the current turn in an integer variable start-

Time. At transposition table initialisation, the array of entries is filled with
TTEntry objects that each contain a TreeNode reference and an integer vari-
able lastAccess that stores the value of lookupCount when the TreeNode

was last accessed. Before the search begins, all TTEntry objects have a null
TreeNode and a lastAccess value of 1, indicating an empty index.

When an agent encounters a game state s, it performs a transposition
table lookup that either finds and returns the TreeNode associated with s, or
creates a new TreeNode for s and inserts it into an appropriate table index.
This lookup procedure is divided into two phases: finding the best index
for insertion/retrieval and updating the transposition table accordingly. We
discuss the two phases in Section 4.2.2.1 and Section 4.2.2.2, respectively.

4.2.2.1 Best Index Retrieval

We use Zobrist hashing (Section 2.2.3.4) to map a game state to a 64-bit
integer that is used to compute an index into the transposition table for the
given game state. The size of our table is always a power of two so that
table indices can be determined using a bitwise and operation instead of
modulo. For example, to compute the table index for a game state s, we use
the following formula:

index(s) = hash(s) & (ttsize − 1)

The transposition table can not be made large enough to accommodate
every possible LOA game state. This means that multiple game states may
map to the same table index. Our table lookup operation uses linear probing
to resolve such collisions. When performing a lookup for a game state s, we
iterate through the table entries in the index range [index(s), index(s)+K−1]
to either find the table index for the TreeNode associated with s or a viable
index to insert a new TreeNode for s. In the original literature, K is set
to 10. [47] We choose to use the same value so that we can conserve the
computational resources required to tune this parameter.
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If we find that the transposition table does not have an entry for s, we
find the first unoccupied table index in the range [index(s), index(s) + K− 1].
If there is no free index, we use the index of the oldest element (the entry
with the smallest lastAccess value) as long as it has not been accessed
during the current turn (lastAccess < startTime). The reason we choose
to overwrite the least recently accessed element is because it is more likely
that more recently accessed nodes will be encountered in the future. If
all entries in the range are occupied by a recently used node, the table is
considered full, the node is not inserted into the table, and the search moves
on to the simulation phase of MCTS.

The procedure we use to find the table index for a node with a given
Zobrist hash is provided in Listing 4.3. It returns an IndexProbeResult—a
pair containing the best index for insertion and the index of the entry with
the given Zobrist hash, if one exists. This is used in the second phase of the
lookup that we discuss in Section 4.2.2.2.

4.2.2.2 Table Update

After computing an IndexProbeResult for a game state s, the lookup pro-
cedure either adds a TreeNode to the transposition table or updates the
lastAccess field of the TTEntry for s. The procedure returns a LookupRe-

sult that contains the index of the TTEntry for s if the lookup is successful
as well as one of the following return states:

• FOUND: Indicates that the transposition table contains an entry for s at
the provided index.

• FULL: Returned if findIndex was unable to find an entry for s, an
empty table entry, or an entry old enough to be over-written.

• BUSY: Indicates that the entry has been updated by another thread.
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Listing 4.3: A function to find the table index for a node with the given
Zobrist hash, where K is a program parameter that determines the number
of entries that are searched and startTime is the value of lookupCnt at the
start of the current turn.

1 IndexProbeResult findIndex(long hash){

2 int index = (int)(hash & (ttsize - 1));

3 int bestFitIndex = 0;

4 int foundIndex = 0;

5 int oldestElement = Integer.MAX_VALUE;

6 for (int i = 0; i < K; i++){

7 // 0 is used as an implicit lock value

8 index = Math.max(index, 1);

9 TTEntry entry = entries[index];

10 int lastAccess = entry.getLastAccess();

11 if ((lastAccess == 1) && (oldestElement > 0)){

12 // First free index

13 bestFitIndex = index;

14 oldestElement = 0;

15 } else if ((lastAccess < startTime) &&

16 (lastAccess < oldestElement)){

17 // Old element

18 bestFitIndex = index;

19 oldestElement = lastAccess;

20 }

21 if ((entry.getHash() == hash) &&

22 (lastAccess > 1)) {

23 // Found node

24 foundIndex = index;

25 break;

26 }

27 index = (index + 1) & (ttsize - 1);

28 }

29 return new IndexProbeResult(bestFitIndex ,

30 foundIndex);

31 }
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Our lookup procedure is provided in Listing 4.4 and can be broken down
as follows:

1. Lines 2-5: Call findIndex to determine the index of the TTEntry for
the given Zobrist hash. If the IndexProbeResult has foundIndex ==

0 and bestFitIndex == 0, we return FULL. If foundIndex != 0, we set
index = foundIndex; Otherwise, we set index = bestFitIndex.

2. Lines 8-26: A loop that is executed when the entry at index is stale
or empty. The loop repeats until the entry is successfully updated.
If an entry with the given hash already exists, its lastAccess field
is updated in line 17 with an atomic compare-and-swap operation to
prevent corruption caused by simultaneous updates. If a new node
is to be added to the TTEntry at index, we set its lastAccess to 0—
preventing other threads from updating the same TTEntry—add a new
TreeNode to the entry, and finally set itslastAccess to the current value
of lookupCnt.

3. Lines 27-32: If the entry at index is not stale and points to a TreeNode

with the correct hash, return the entry’s index and FOUND. If not, return
BUSY as the entry has been updated by another thread.
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Listing 4.4: Our transposition table lookup procedure.

1 LookupResult lookup(long hash, Board board){

2 IndexProbeResult ipr = findIndex(hash);

3 int index = ipr.foundIndex;

4 if (index == 0) index = ipr.bestFitIndex;

5 if (index == 0) return new LookupResult(0, FULL);

6 incrementLookupCount();

7 int lastAccess = entries[index].getLastAccess();

8 while (lastAccess <= startTime){

9 if (lastAccess == 0){

10 // 0 is used as an implicit lock value

11 lastAccess = entries[index].getLastAccess();

12 continue;

13 }

14 if (ipr.foundIndex != 0){

15 // An entry for this hash exists.

16 // Update the entry’s last access.

17 entries[index]

18 .CASLastAccess(lastAccess , getLookupCount());

19 } else if (entries[index]

20 .CASLastAccess(lastAccess , 0)){

21 // Set last access to 0 to prevent other threads

22 // from writing to the index and insert a new

23 // node

24 TreeNode node = makeNode(board, hash);

25 entries[index].setNode(node);

26 entries[index].setLastAccess(getLookupCount());

27 }

28 lastAccess = entries[index].getLastAccess();

29 }

30 if (entries[index].getLastAccess() > startTime &&

31 entries[index].getHash() == hash){

32 entries[index].setLastAccess(getLookupCount());

33 return new LookupResult(index, FOUND);

34 }

35 return new LookupResult(0, BUSY);

36 }
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4.3 System Overview

Our system is implemented in Java and we make use of the Akka frame-
work (see Section 2.3) for all inter-CN message passing and concurrency.
In this section, we provide design and implementation details for our test
framework. Additionally, we describe and depict the sequence of events
that make up a match within the framework.

4.3.1 Cluster Design

We make use of Akka clustering (see Section 2.3) to implement a test frame-
work that runs matches between two distributed LOA agents on a compute
cluster with N ≥ 3 CNs and M CPU cores per CN. Each agent a consists of
an Akka cluster with one seed node and Na ≥ 1 member nodes—one for
every CN available to the agent—that are used to perform the search.

At a high-level, our test framework consists of five components: Ref-

eree, ClusterManager, ClusterMember, RankManager and Worker. While
the Referee is a simple Java class and the ClusterMember class is general
to all our implementations, the other three components are abstract Akka
actors whose implementations are specific to each of our distributed MCTS
agents. This section does not concern itself with the details of every im-
plementation, but rather focuses on the high-level responsibilities of each
component and the interactions between them.

The structure of our test framework is depicted in Figure 4.7, the cluster
initialisation procedure is presented in Section 4.3.2, and the individual
responsibilities of the aforementioned components are as follows:

• Referee: A non-actor Java class that is responsible for initialising a
seed node and ClusterManager for each agent and running a match
by requesting moves from them in an alternating fashion until the
match is over.

• ClusterMember: Each agent a has Na ClusterMembers that are launched
before the match starts. A single ClusterMember is executed on each
of the CNs available to the agent. Before the ClusterMember actor is
instantiated, this class is responsible for creating an actor system that
automatically joins the agent’s seed node. Once the actor system is
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created, a ClusterMember actor is added to the system and used to
instantiate a specific RankManager implementation based on an initial-
isation message that it receives from the ClusterManager.

• ClusterManager: The sole actor in the seed node for an agent’s clus-
ter. Responsible for sending initialisation messages to ClusterMem-

bers when they join the cluster, facilitating communication with the
Referee, and shutting down the cluster upon match completion. Both
ClusterManagers are instantiated by the Referee, and these three com-
ponents run on a single CN. The types of initialisation messages that are
sent by the ClusterManager depend on the type of agent being tested,
and each of our distributed MCTS agents has a unique ClusterMan-

ager implementation. A detailed discussion of each implementation
is provided in Section 4.4.

• RankManager: An actor that instantiates and manages the Workers
on a CN. Different distributed MCTS implementations require their
RankManagers to perform specific tasks. For example, leaf parallelisa-
tion requires one CN to manage the tree and Na − 1 CNs to perform
simulations while UCT-Treesplit requires some search ranks and some
broadcast ranks. Therefore, every ClusterMember is assigned a role
by the ClusterManager once it has successfully joined, and this role
determines the type of RankManager that is instantiated on the CN. A
detailed discussion of our RankManager implementations is provided
in Section 4.4.

• Worker: The actors that perform the majority of an agent’s work. The
number and types of Workers that are instantiated by the RankManager
depend on the number of CPU cores available on the CN, as well as
the member’s role. The details of each Worker implementation are
discussed in Section 4.4.
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Figure 4.7: A high-level overview of our test framework. Dark rectangles are
CNs, rounded single rectangles depict actors, rounded double rectangles are
actor systems, and a hexagon represents a non-actor Java class. Solid arrows
indicate instantiation and dotted arrows represent cluster join commands
from remote CNs.

4.3.2 Cluster Initialisation and Match Execution

The process of running a match in our test framework begins by launching a
Referee on one CN and a ClusterMember on each of the remaining CNs. The
hostname, port and UID to be used for each agent’s seed node is provided
to the Referee as a program argument. When running a match between
agents a and b, we provide Na ClusterMembers with the hostname, port and
UID of a’s seed node, and the remaining Nb ClusterMembers are launched
with the hostname, port and UID of b’s seed node.

Once all ClusterMembers and the Referee have been launched, each
agent’s Akka cluster must be initialised before the match begins. We imple-
ment the following four message types to facilitate cluster initialisation:

• ClusterInitRequestMessage: An empty message, sent by the Ref-
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eree, that aClusterManagermust respond to with anInitCompleteMes-

sage when all ClusterMembers have joined the cluster.

• ClusterMemberRegistrationMessage: An empty message that aClus-
terMember sends to the ClusterManager so that it has access to the
member’s ActorRef.

• ClusterMemberInitMessage: An interface whose implementation de-
termines the type of RankManager that a ClusterMember creates, as
well as any other information that is required by that RankManager.
The specifics for each implementation of this interface are discussed in
Section 4.4.

• InitCompleteMessage: An empty message signalling that a compo-
nent has been fully initialised.

The initialisation process for a single agent is depicted as a sequence
diagram in Figure 4.8 and proceeds as follows:

1. The Referee creates an actor system to be used as the agent’s seed node
and instantiates a ClusterManager within the newly created actor sys-
tem. The type of ClusterManager that the Referee creates depends on
the type of agent being tested, and is provided as a program argument.

2. Each ClusterMember executable creates an actor system, joins the seed
node, and instantiates a ClusterMember actor which sends a Cluster-

MemberRegistrationMessage to the ClusterManager.

3. Upon receiving a ClusterMemberRegistrationMessage, the Cluster-
Manager replies with an implementation-specificClusterMemberInitMes-
sage.

4. Depending on the type of ClusterMemberInitMessage it receives, a
ClusterMember instantiates a RankManager implementation with the
arguments provided in the ClusterMemberInitMessage.

5. The RankManager instantiates its Workers. The number of Workers that
are created depends on the number of CPU cores available at each CN
and the type of the RankManager.
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6. Each Worker sends an InitCompleteMessage to its RankManager once
it is fully initialised. When all Workers are initialised, the RankMan-

ager sends an InitCompleteMessage to the ClusterMember, which
forwards it to the ClusterManager.

7. Once the ClusterManager has received InitCompleteMessages from
all ClusterMembers, it sends an InitCompleteMessage to the Referee,
signalling that the agent is ready for the match.

Figure 4.8: A sequence diagram depicting the initialisation process for an
agent’s cluster.

Once the Referee has received an InitCompleteMessage from both
ClusterManagers, the match begins. We supply the referee with an initial-
isation timeout parameter that determines how long it waits for an Init-

CompleteMessage after sending a ClusterInitRequestMessage. If there is
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no response within this time frame, it indicates that there was a problem
during initialisation and the system is shut down.

If both clusters are successfully initialised, the Referee sends both Clus-

terManagers a MatchStartMessage—an empty message that signals to an
agent that it should begin searching from the starting LOA position.

Once an agent receives aMatchStartMessage, its search is not interrupted
until the match is over i.e. our agents ponder during an opponent’s thinking
time. It is the responsibility of the agent to keep an up-to-date representation
of the current game state at all RankManagers that maintain the search tree
representation. We call this type of RankManager a SearchRank.

The Referee requests moves from agents in an alternating fashion, start-
ing with the agent playing black. We make use of the following four message
types during an agent’s turn in a match:

• GenMoveMessage: A message that signals to an agent that its turn has
begun. Contains the previous move made in the match, if there is
one. Upon receiving this message, an agent must apply the move
contained in the message to its game state representation and provide
the Referee with a legal move from the resulting board state within
some pre-defined time constraint (provided as a program argument).

• FinalMoveMessage: The Referee expects this message in response to
a GenMoveMessage. It contains the agent’s chosen move and the total
number of simulations it performed since receiving the GenMoveMes-

sage

• SearchResultMessage: A message containing the statistics that aSear-
chRank has accumulated for every move from the root, as well as the
number of simulations it performed since the last GenMoveMessage.
A ClusterManager uses these messages to determine the agents final
move and construct the FinalMoveMessage.

• ApplyMoveMessage: Communicates the final move selected by the
ClusterManager to all SearchRanks.

A sequence diagram depicting a single turn in a match is provided in
Figure 4.9 and proceeds as follows:
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1. The Referee sends a GenMoveMessage to the ClusterManager of the
agent that must make a move. If it is the first move in the match, the
message is empty, otherwise it contains the move that was received in
the previous FinalMoveMessage.

2. The ClusterManager forwards the GenMoveMessage to all SearchRanks
in the agent’s cluster.

3. SearchRanks apply the move contained in the GenMoveMessage to their
internal game state representation and send an ApplyMoveMessage

to each of their Workers. Instead of sharing the SearchRank’s game
state representation, Workers maintain their own internal game state
representations to prevent simultaneous updates from corrupting the
SearchRank’s game state representation.

4. When the agent’s allotted time per move is near completion, each
SearchRank retrieves the statistics it has accumulated for moves from
the root, constructs a SearchResultMessage, and sends it to the Clus-
terManager. If the SearchRank does not have statistics for the root
node, it sends an empty SearchResultMessage.

5. When the ClusterManager has received all SearchResultMessages, it
combines the results if necessary, sends a FinalMoveMessage to the
Referee, and sends an ApplyMoveMessage to all SearchRanks. The
manner in which results are combined is specific to each of our imple-
mentations and is discussed in Section 4.4.

6. Each SearchRank applies the move contained in the ApplyMoveMessage
to their internal game state representation and forwards the message
to each of its Workers. The Workers then apply the move to their own
game state representations.

This process is repeated until an agent either: makes a move that leads to
a terminal position, fails to make a move within its allotted time, or makes
an illegal move. At this point, the Referee sends a MatchOverMessage

to both ClusterManagers and logs the winner of the match, the reason
for termination, and the average simulations per second that each agent
achieved at every turn.
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Figure 4.9: A sequence diagram depicting a single move being made in a
match.

Upon receiving a MatchOverMessage, a ClusterManager forwards the
message to all cluster nodes, causing them to terminate their actor systems.
Finally, the last running components are shut down when both Cluster-

Managers terminate their respective actor systems. A sequence diagram de-
picting a full match—from cluster initialisation to shut down—is provided
in Figure 4.10.
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Figure 4.10: A sequence diagram depicting a full match being run.

4.4 Distributed MCTS Agents

As discussed in Section 4.3, an agent a consists of one ClusterManager

and Na ClusterMembers that each instantiate a RankManager based on the
type of ClusterMemberInitMessage it receives from its ClusterManager.
RankManagers instantiate and manage a number of Workers that carry out
the majority of the search operations.

In Section 4.3, we provided an overview of the system in terms of these
abstract components without providing agent-specific implementation de-
tails. In this section, we discuss the implementation of the ClusterMan-

agers, RankManagers, Workers and ClusterMemberInitMessages that make
up each of our distributed MCTS agents.
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4.4.1 Distributed Leaf Parallelisation

Our distributed leaf parallelisation implementation is based on the MLMP
strategy developed by Cazenave and Jouandeau [15] that is discussed in Sec-
tion 2.2.4.1. While the initial proposal of MLMP leaf parallelisation consisted
of a single-threaded traverser and a number of single-threaded simulators,
our implementation uses parallelised traversers and simulators to take ad-
vantage of multiple CPU cores on a single CN.

A leaf parallelisation agent a with Na CNs and Ma ≥ 2 CPU cores per CN
consists of one TraverserRank—the single SearchRank in our leaf paralleli-
sation agent—and (Na − 1) SimulatorRanks. The responsibilities of these
RankManager implementations are as follows:

• TraverserRank: Responsible for managing the transposition table and
performing selection, expansion and backpropagation. It is initialised
with a TraverserRankInitMessage that contains the ActorRef of all
the SimulatorRanks and instantiates Ma − 1 TraverserWorkers that
share the transposition table. The remaining CPU core is responsible
for communicating with SimulatorRanks and delegating search tasks
to TraverserWorkers.

• SimulatorRank: Responsible for performing the simulation phase of
MCTS. It is initialised with a SimulatorRankInitMessage that contains
the ActorRef of the TraverserRank and instantiates Ma Simulator-

Workers that perform Ma simulations in parallel when a simulation
request is received. When the simulations are complete, the sum of the
rewards is sent to the TraverserRank.

Once the cluster has been successfully initialised and the LeafClus-

terManager—the ClusterManager implementation for leaf parallelisation—
sends a MatchStartMessage to the TraverserRank, the search progresses as
follows:

1. For each SimulatorRank r, the TraverserRank descends the tree, adds
a new TreeNode containing the final game state s(r), and sends a Sim-

ulationRequestMessage to r that contains the Zobrist hash of every
game state encountered during descent (the descent path—used for
backpropagation in step 5) as well as the LOABoard for s(r).
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2. Upon receiving a SimulationRequestMessage, the SimulatorRank r
forwards the message to each of its SimulatorWorkers so that Ma sim-
ulations can be performed in parallel for s(r). When aSimulatorWorker
has completed a simulation, it sends a SimulationResponseMessage

to its SimulatorRank.

3. When theSimulatorRankhas received all Ma SimulationResponseMes-

sages, the sum of the simulation rewards and the descent path is placed
in a new SimulationResponseMessage and sent to the TraverserRank.

4. Upon receiving a SimulationResponseMessage from a Simulator-

Rank, the TraverserRank forwards the message to the Traverser-

Worker with the fewest messages in its message queue via Akka’s
built-in SmallestMailboxPool.

5. When aTraverserWorker receives aSimulationResponseMessage from
a SimulatorRank r, it backpropagates the total simulation reward and
Ma visits to every TreeNode on the descent path, performs selection
and expansion again, and sends a new SimulationRequestMessage to
r.

4.4.2 Distributed Root Parallelisation

Our distributed root parallelisation implementation performs a decoupled
search on every CN available to the agent while using the slow-tree paral-
lelisation approach to sharing node statistics. As discussed in Section 3.3,
slow-tree parallelisation periodically shares statistics for nodes up to a cer-
tain depth that have been involved in a pre-defined percentage of the total
playouts. The maximum depth for sharing d, the minimum percentage
of total playouts p, and the sharing frequency f , are provided as program
arguments.

The search performed on each CN is parallelised using either leaf paral-
lelisation or tree parallelisation to take full advantage of the available CPU
cores. The ClusterManager implementation used by a root parallelisation
agent is called a RootClusterManager, and it assigns the same role to every
ClusterMember during initialisation.
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We implement two RankManagers for root parallelisation. The RankMan-

ager implementation that an agent uses depends on the parallelisation
technique used at each CN. Tree parallelisation is performed by a Root-

TreeSearchRank while leaf parallelisation is performed by a RootLeaf-

SearchRank. The functionality of each RankManager implementation for
a root parallelisation agent a with Na CNs and Ma CPU cores per CN is as
follows:

• RootLeafSearchRank: Instantiated when a ClusterMember receives
a RootLeafRankInitMessage containing the ActorRef of every other
RootLeafSearchRank in the cluster. Spawns a single TraverserWorker
and Ma − 2 SimulatorWorkers that perform MLMP leaf parallelisa-
tion as described in Section 2.2.4.1 and Section 4.4.1. The remaining
CPU core is responsible for sending node statistics to other RootLeaf-
SearchRanks, as well as receiving node statistics from other RootLeaf-
SearchRanks and updating the tree accordingly.

• RootTreeSearchRank: Instantiated when a ClusterMember receives
a RootTreeRankInitMessage containing the ActorRef of every other
RootTreeSearchRank in the cluster. Spawns Ma − 1 TreeWorkers that
perform individual searches on a shared transposition table as de-
scribed in Section 2.2.4.3. The remaining CPU core is responsible for
communicating node statistics to other RootTreeSearchRanks and in-
corporating remote statistics.

During the search, periodic sharing of node statistics is achieved through
the use of an Akka scheduler that enables an actor to periodically send a
message with some interval between messages. The scheduler is managed
by the search rank actor and sends the search rank an empty StartStat-

ShareMessage message every 1
f seconds. Upon receiving this message, the

search rank performs a depth-first search (DFS) on the search tree up to
depth D. When a node is encountered with a playout contribution of at
least p, the search rank broadcasts a NodeStatShareMessage containing the
node’s hash, the LOABoard associated with the node, and both arrays of
unsynchronised statistics (see Section 4.2.1) to all other search ranks and
incorporates these values into the TreeNode’s synchronised statistic arrays.
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Upon receiving a NodeStatShareMessage, a search rank retrieves the
TreeNode with the given hash from the transposition table. If it does not
exist, a new TreeNode is added to the transposition table using the LOABoard
contained in the message. The visit and reward arrays contained in the
message are then added to the TreeNode’s synchronised statistic arrays.

4.4.3 Distributed Tree Parallelisation

Our distributed tree parallelisation agents rely on the Transposition Table
Driven Scheduling (TDS) approach to sharing the tree as discussed in Sec-
tion 3.4.1. We implement vanilla TDS, depth-first UCT (see Section 3.4.2)
and UCT-Treesplit (see Section 3.4.3). This section begins with a discus-
sion of our vanilla TDS implementation in Section 4.4.3.1. Sections 4.4.3.2
and 4.4.3.3 focus on our implementation of df-UCT and UCT-Treesplit as
enhancements to vanilla TDS, respectively.

4.4.3.1 Vanilla TDS

As discussed in Section 3.4.1, TDS partitions the transposition table among
an agent’s CNs. When a game state s is encountered during the search, a
message is sent to the CN that manages the transposition table entry for s so
that the necessary operation can be performed on the TreeNode associated
with s.

The ClusterManager implementation used by vanilla TDS—the TD-

SClusterManager—assigns the same role to every CN in the cluster. The
RankManager implementation that is instantiated at every CN is called a
TDSSearchRank. For a vanilla TDS agent a and Ma CPU cores per CN, ev-
ery TDSSearchRank instantiates Ma − 1 TDSWorkers that are responsible for
performing the search. The remaining CPU core is responsible for commu-
nicating with remote CNs and delegating work to its TDSWorkers.

Our vanilla TDS implementation uses the the following two messages to
perform playouts:

• TDSSearchMessage: Signals to a TDSSearchRank that it must perform
the selection, expansion or simulation phase of MCTS. Contains a
LOABoard that represents the current board state, as well as a list of
TDSSelections that constitute the path in the tree leading up to the
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current state. Each TDSSelection consists of a Zobrist hash of a board
state and the index of the selected move. The deterministic nature
of our approach to move generation allows us to pass move indices
between CNs instead of full move representations (see Section 4.1.1).

• TDSReportMessage: When a TDSSearchRank performs a random sim-
ulation and obtains a reward, a TDSReportMessage is sent to the home
processor of every node encountered during tree descent so that these
nodes’ reward statistics can be updated. Each message contains a TDS-
Selection that indicates the node whose statistics should be updated
and the specific move index to update, as well as the reward obtained
after simulation.

The search begins when the TDSSearchRank that manages the transposi-
tion table entry for the starting LOA position receives a MatchStartMessage.
For an agent with Na CNs and Ma CPUs per CN, it initiates Npar×Na×(Ma−1)
playouts, where Npar is a parameter that determines the number of parallel
searches the agent performs. The choice of Npar has a substantial influence
on agent performance, and we provide an outline of our tuning process in
Section 5.2.3.

The TDSSearchRank initiates a playout by sending a TDSSearchMessage

with an empty selection list and a LOABoard for the starting LOA game state
to its TDSWorker with the fewest messages in its message queue via Akka’s
built-in SmallestMailboxPool.

When a TDSWorker receives a TDSSearchMessage, it performs a transpo-
sition table lookup for the Zobrist hash of the LOABoard contained in the
message. If the node exists, the selection procedure finds the move with
the highest UCT value (or an unexplored move if one exists) and adds a
new TDSSelection with the node’s hash and the chosen move index to
the list contained in the message. It then applies the chosen move to the
LOABoard and forwards the message to the TDSSearchRank that manages the
transposition table entry for the resulting game state.

If there is no transposition table entry for the LOABoard contained in the
TDSSearchMessage, a new TreeNode is added for the LOABoard and a simu-
lation is performed. After simulation, the TDSWorker iterates through the list
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of TDSSelections in the TDSSearchMessage and sends a TDSReportMessage

to the home processor of each Zobrist hash in the list.
Upon receiving a TDSReportMessage, a TDSSearchRank forwards the

message to its TDSWorker with the smallest number of messages in its mes-
sage queue so that the node’s statistics can be updated. If the TDSReportMes-
sage is targeted at the root of the tree, the TDSSearchRank initiates a new
playout from the root.

4.4.3.2 df-UCT

df-UCT inherits most of its functionality from vanilla TDS. As discussed in
Section 3.4.2, df-UCT aims mitigates the network communication overhead
incurred at the home processors of near-root nodes in TDS by implementing
a depth-first variation of UCT that delays backpropagation until the search
is no longer focused on the most promising path.

The ClusterManager and RankManager implementations used by df-
UCT—DFUCTClusterManager and DFUCTSearchRank—behave in the same
way as vanilla TDS. However, the DFUCTSearchRank instantiates DFUCT-

Workers that incorporate functionality to manage the df-UCT stack described
in Section 3.4.2. As in vanilla TDS, the df-UCT search is driven by search
messages and report messages. While df-UCT uses the same report message
type as vanilla TDS—the TDSReportMessage—for backpropagation, we im-
plement a DFUCTSearchMessage that contains the full df-UCT stack instead
of a list of TDSSelections.

When a DFUCTWorker receives a DFUCTSearchMessage and performs se-
lection on a node n, it constructs a DFUCTSelection and pushes it onto the
df-UCT stack contained in the message. Each DFUCTSelection contains the
following data:

• The Zobrist hash of n.

• The index of the move with the highest UCT value, as well as its visit
count, total reward and knowledge value.

• The index of the move with the second highest UCT value, as well as
its visit count, total reward and knowledge value.
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When a DFUCTWorker adds a new TreeNode to the transposition table and
performs a simulation, it does not immediately backpropagate the reward to
every node encountered in the playout. Instead, the DFUCTWorker performs
the following tasks:

1. For each DFUCTSelection in the stack, update the reward of the best
move and increment its visit count.

2. If the UCT value of the second best move becomes greater than that of
the best move for any DFUCTSelection s in the stack, or if a new move
should be unpruned in the case of progressive unpruning, pop every
DFUCTSelection on the path from the leaf up to and including s, send
a TDSReportMessage to their respective DFUCTSearchRanks, and send
a DFUCTSearchMessage to the home processor of s with the remaining
stack so that selection can resume there.

3. If the best move remains the same for every entry in the stack, send a
TDSReportMessage to the parent of the newly expanded TreeNode and
initiate selection there.

4.4.3.3 UCT-Treesplit

Similarly to df-UCT, UCT-Treesplit inherits most of its functionality from
vanilla TDS, but mitigates the communication overhead incurred by TDS
by duplicating and periodically synchronising statistics for near-root nodes
(see Section 3.4.3). The initial UCT-Treesplit proposal made use of dedicated
broadcast ranks to handle node duplication and synchronisation. However,
their broadcast ranks are single-threaded, and are presented as a proof-of-
concept as opposed to an ideal solution [47]. We implement UCT-Treesplit
with broadcast ranks that take advantage of all the CPU cores available at a
CN in order to increase the number of search ranks that an agent may use.

The ClusterManager and SearchRank implementations used by a UCT-
Treesplit agent are called TreesplitClusterManager and TreesplitSear�

chRank, respectively. Additionally, some CNs in a UCT-Treesplit agent’s
cluster are TreesplitBroadcastRanks. A TreesplitSearchRank spawns
TreesplitSearchWorkers and a TreesplitBroadcastRank instantiates Tr�
eesplitBroadcastWorkers.
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The initial UCT-Treesplit implementation assigned one broadcast rank
for every four search ranks [47]. Since we implement multi-threaded broad-
cast ranks, the number of TreesplitBroadcastRanks in our UCT-Treesplit
cluster is dependent on the number of CPU cores available at each CN, and
we assign one TreesplitBroadcastWorker for every four search ranks.

In addition to the subset of the transposition table that is maintained
at every TreesplitSearchRank, we implement a separate cache to hold
duplicated nodes that are shared by all of the search rank’s Treesplit-

SearchWorkers.
The search performed by UCT-Treesplit is identical to that of vanilla TDS

until a node becomes eligible for duplication or synchronisation (see Sec-
tion 3.4.3). When this happens, the TreesplitSearchWorker that encoun-
tered the node sends a NodeStatShareMessage to it’s dedicated Treesplit-

BroadcastWorker. This message is identical to the one used by our root
parallelisation implementation discussed in Section 4.4.2.

As discussed in Section 3.4.3, broadcast ranks in UCT-Treesplit artifi-
cially delay forwarding node statistics to remote search ranks so that mes-
sages originating from different search ranks can be merged, thereby re-
ducing the number of messages processed by search ranks. In our imple-
mentation, NodeStatShareMessages received by a TreesplitBroadcast-

Worker are stored in a HashMap with Zobrist hashes as a keys and a list of
NodeStatShareMessages as values. The TreesplitBroadcastWorker peri-
odically merges the messages for each Zobrist hash in the map to construct
new NodeStatShareMessages that are then sent to all other Treesplit-

SearchRanks via their dedicated TreesplitBroadcastWorkers.
When aTreesplitSearchRank receives aNodeStatShareMessage, it adds

a new cache entry for the provided game state if none exists and incorporates
the node’s statistics as discussed in Section 4.4.2.

4.5 Summary

In this chapter, we presented the design and implementation of our test
domain, Lines of Action, as well as our distributed MCTS agents.

In Section 4.1, we discussed our implementation of Lines of Action.
This included our approach to move generation via incremental updates
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to line configurations and terminal state detection via the quad heuristic in
Sections 4.1.1 and 4.1.2, respectively. We also discussed our incorporation
of knowledge through static evaluation and move categories derived from
expert play databases in Sections 4.1.3.1 and 4.1.3.2, respectively.

We presented our game tree implementation in Section 4.2, beginning
with a summary of the TreeNode interface in Section 4.2.1. We noted that we
required two TreeNode implementations: a VolatileTreeNode for agents
that share the game tree representation, and a SimpleTreeNode for agents
that do not. We provided a list of data structures that are stored in each
TreeNode in order to maintain the statistics required to perform the search,
and concluded the section with a brief overview of our node initialisation
procedure.

We provided an overview of our test framework in Section 4.3. We
noted that our system is implemented in Java, and that we make use of the
Akka framework for message passing and concurrency. In Section 4.3.1,
we provided a high-level overview of the Akka cluster that enables our test
framework and distributed MCTS agent implementations. We presented
the five high-level components that make up our cluster, described their
responsibilities, and discussed how they are executed on a physical com-
pute cluster. We depicted and discussed our cluster initialisation and match
execution procedures in Section 4.3.2. We provided a detailed description
of the messages that are passed between members of the cluster in order
to execute a match, and supplied supporting sequence diagrams for clar-
ity. Additionally, we noted that each of our distributed MCTS agents must
implement a ClusterManager, a RankManager, a Worker and a ClusterMem-

berInitMessage in order to function within the cluster.
Finally, in Section 4.4, we present the ClusterManagers, RankManagers,

Workers and ClusterMemberInitMessages that make up each of our dis-
tributed MCTS agents. We gave details on the design and implementation
of distributed leaf parallelisation, root parallelisation and tree parallelisa-
tion in Sections 3.2, 3.3 and 3.4, respectively. Section 3.4 was partitioned
into discussions of our TDS, df-UCT and UCT-Treesplit implementations in
Sections 4.4.3.1, 4.4.3.2 and 4.4.3.3, respectively.

In the following chapter, we will provide experimental results and anal-
yse the scalability of each of our distributed MCTS implementations.
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Experiments and Results

In Chapter 3, we mentioned that there are at least three scaling properties
that a good distributed MCTS algorithm should satisfy:

1. It should take advantage of increased CPU resources to perform more
playouts per second (PPS) when more CNs are available.

2. It should take advantage of increased memory resources by building
a larger tree when more CNs are available.

3. Its playing strength should improve when more CNs are available.

In this chapter, we present our experimental setup as well as the scalabil-
ity of each of the distributed MCTS implementations discussed in Chapter 4
in terms of the three metrics above. Section 5.1 outlines our experimental
setup. Section 5.2 discusses the parameter tuning procedure and the results
obtained. Finally, Section 5.3 presents and analyses the scalability of each of
our implementations in terms of the three properties above.

5.1 Experimental Setup

The goal of our experiments is to compare the scalability of the distributed
MCTS implementations discussed in Chapter 4 up to 128 CNs. Specifi-
cally, we consider leaf parallelisation (Section 4.4.1), root/leaf parallelisation
(Section 4.4.2), root/tree parallelisation (Section 4.4.2), TDS (Section 4.4.3.1),
df-UCT (Section 4.4.3.2) and UCT-Treesplit (Section 4.4.3.3). Since prior

80
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implementations of these algorithms were presented and evaluated on dis-
parate domains and different network architectures, and are therefore diffi-
cult to compare, we aim to provide a fair comparison of these algorithms on
a common domain and compute infrastructure.

In our experiments, each of the implementations plays 100 Lines of Action
(LOA, Section 2.4) matches (50 as black, 50 as white) per CN allotment
against a reference opponent with each player having one second allowed
per move. In order to conserve computational resources, our choice of
reference opponent should ideally use only 1 CN. Our initial experiments
revealed that root parallelisation combined with tree parallelisation is our
strongest implementation when running on 1 CN, so we use this as our
reference opponent.

For each turn in a match, the system logs playouts per second, unique
nodes searched, and, for TDS, df-UCT and UCT-Treesplit, the number of
ReportMessages received at the home processor of the root (Section 4.4.3)
for each agent. At the end of the match, the system outputs the winner of the
match, and this data is used to generate the graphs depicted in Section 5.3.

We performed our experiments on the Lengau cluster of the Centre for
High Performance Computing (CHPC) at the Council for Scientific and In-
dustrial Research (CSIR) [1]. This homogeneous cluster consists of 1368
nodes, each with two 12-core CPUs and 128GB RAM, all interconnected
using FDR 56 Gb/s InfiniBand. In order to adhere to the CHPC’s usage lim-
itations, we execute two ClusterMembers (Section 4.4) on a node—one per
CPU—and assign half the node’s memory to each of these ClusterMembers.
For the remainder of this chapter, we refer to the hardware that a Cluster-

Member has available to it as a CN. Thus, a CN has access to 12 CPU cores
and 64GB RAM.

5.2 Parameter Tuning

Most strong game-playing AIs have a large number of algorithm parameters
that can drastically effect their performance [19, 22]. Therefore, choosing
good values for these parameters—or tuning—is imperative to maximising
the playing strength of a game-playing AI.

Although it is often possible to make educated guesses on good values
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for some parameters, the results will, in general, not be optimal [19]. An
alternative approach to such manual tuning is to simulate matches against
a reference opponent with varying parameter value combinations, record
the win rates achieved by each combination, and choose the one that yields
the best results. Since the number of simulated matches that is required in
order to obtain a reliable win rate estimate for each parameter combination
is large [19], such a gridsearch approach is a time-consuming and compu-
tationally expensive process that many authors of game-playing AIs try to
avoid [22].

In order to avoid wasting time and computational resources on tuning
using this approach, we automate the tuning process using Rémi Coulom’s
optimization program, CLOP [22].

5.2.1 Tuning with CLOP

Our distributed MCTS implementations have a number of parameters that
can be tuned to adjust performance. These include UCT parameters (Sec-
tion 2.2.2), MCTS enhancement parameters (Section 2.2.3) and parameters
for individual parallelisation techniques (Section 2.2.4). Due to time and
resource constraints, we limited the parameters that we tuned using CLOP
to the following set:

• the UCT constant Cuct (Equation 2.3);

• the FPU constant (Section 2.2.3.1);

• the progressive bias constant Cpb (Equation 2.5); and

• the initial window size U0 and unpruning rate µ to be used for pro-
gressive unpruning (Equation 2.4).

The remaining parameters that are present in this thesis are all specific to
some MCTS parallelisation technique, and were set to the values presented
in their respective publications, with a single exception: the constant Npar
that determines the number of parallel searches performed for TDS, df-UCT
and UCT-Treesplit (Sections 4.4.3.1, 4.4.3.2 and 4.4.3.3, respectively). The
tuning of Npar is discussed later in Section 5.2.3.
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An issue with tuning our chosen parameters is that some of them cannot
be used simultaneously. More specifically, FPU and progressive unpruning
are attempted solutions for the same problem and are therefore incompatible.
Also, move categories and static evaluation cannot simultaneously be used
to determine Hi for progressive bias. Therefore, we used CLOP to tune the
following four agents independently:

• A serial agent with FPU that uses our evaluation function to determine
Hi (FPU-EF)

• A serial agent with FPU that uses move categories to determine Hi

(FPU-MC)

• A serial agent with progressive unpruning that uses our evaluation
function to determine Hi (PU-EF)

• A serial agent with progressive unpruning that uses move categories
to determine Hi (PU-MC)

We chose to limit our tuning to serial versions of each agent in order to
limit the computational expense and time spent tuning. We made the as-
sumption that the parameters chosen for the serial agents would be effective
choices for the distributed agents as well, but we note that they may not
be optimal, so that individually tuning each agent is a potential avenue for
future work.

The parameter sets obtained by CLOP for the four agents above are
shown in Table 5.1.
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Table 5.1: Parameters obtained for each of our candidate agents with CLOP.

Agent Cuct Cpb FPU U0 µ

PU-MC 1.0748 12.3619 - 1 2.5365

PU-EF 0.8610 14.2020 - 2 2.6011

FPU-MC 0.6838 16.0458 1.1050 - -

FPU-EF 1.1077 10.8757 1.1734 - -

5.2.2 Final Parameter Choices

Once CLOP had tuned each of the agents’ parameters, we ran a round-robin
tournament to determine which combination of parameters to use in our
final parameter set. In the tournament, each agent played 1000 matches—
500 as black and 500 as white—against each other agent. The results of this
tournament are shown in Table 5.2.

The results of the tournament show clear dominance by progressive un-
pruning over FPU and a slight advantage of move categories over the eval-
uation function. Since the agents with progressive unpruning will unprune
the children of a node in decreasing order of transition probability/position
evaluation (Section 4.1.3), the dominance of these agents over FPU is to be
expected. The advantage that move categories have over our static evalu-
ation function may be a result of the simplicity of our evaluation function
and/or the computational overhead incurred by a large number of evaluation
function calls. Determining the precise reason for this advantage is a possi-
ble avenue for future work, as are experiments with a more comprehensive
evaluation function.

Since the combination of progressive unpruning and move categories
performed the best in the round-robin tournament, we use these enhance-
ments with the parameters obtained in Section 5.2.1 for all of our subsequent
experiments.
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Table 5.2: Results of the round-robin tournament with the four agents from
Section 5.2.1. Cell values indicate the number of times the agent in the row
defeated the agent in the column.

PU-MC PU-EF FPU-MC FPU-EF

PU-MC 640 963 992

PU-EF 360 933 972

FPU-MC 37 67 710

FPU-EF 8 28 290

5.2.3 Tuning Npar

As discussed in Section 4.4.3.1, the number of simultaneous searches per-
formed by our TDS, df-UCT and UCT-Treesplit agents are determined by
the value of Npar—a parameter that, when multiplied by the number of
CPUs available to the agent, determines the number of parallel searches
performed. In their original papers, the authors of UCT-Treesplit and df-
UCT presented their results with Npar = 5 and Npar = 20, respectively,
while the authors of TDS did not specify a value [47, 62, 44].

In our initial experiments, we used Npar = 20, but found the resulting
scalability of these agents to be unsatisfactory, which led us to experiment
with other values of Npar.

When we initially decided to tune Npar, we wanted to limit the compu-
tational resources used for the tuning process. Since playing strength is a
computationally expensive metric to accurately estimate (see Section 5.2.1),
we decided to use playout rate scalability as a proxy metric for tuning. The
results of these initial experiments are presented in Section 5.2.3.1.

Once we had tuned Npar using the results of these PPS experiments,
we continued with the playing strength scalability experiments provided in
Section 5.3.3. However, we found that setting Npar to the relatively large
values obtained through tuning did not lead to stronger play. Therefore,
we decided that it would be necessary to tune the parameter using playing
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strength scalability after all. The results of these experiments are presented
in Section 5.2.3.2.

5.2.3.1 Playout Rate

As discussed in Section 5.2.1, using playing strength as a metric for manual
tuning is incredibly time-consuming and computationally expensive, and
this becomes an even greater deterrent when each experiment involves a
large number of compute nodes. In order to limit the resources used for
tuning Npar, we initially decided to use scalability in terms of playouts per
second (PPS) from the opening LOA position as a proxy metric for tuning.

Our initial experiments indicated that an agent’s playout rate from the
starting LOA position does not vary significantly given constant computa-
tional resources and time constraints. Therefore, the average PPS achieved
by an agent with some Npar across 10 one-second searches from the initial
LOA position was considered sufficient to gauge the effectiveness of the
given Npar.

We depict the turn 1 PPS scalability of TDS, df-UCT and UCT-Treesplit
with varying values of Npar in Figures 5.1, 5.2 and 5.3, respectively.

All three of our implementations achieve better PPS scalability with
greater values of Npar than those presented in the literature. Most notably,
out of our candidate values, our implementation of UCT-Treesplit performs
best when Npar = 500—an order of magnitude larger than in the original
paper. There are a number of possible reasons for our implementations
benefiting from greater Npar. One such possibility is that we suffer a higher
network communication overhead due to Akka’s lack of RDMA support—
something that the original authors of UCT-Treesplit made use of [47]. Other
possibilities include Akka’s message serialization being less performant than
MPI and large message payloads forcing our agents to spend more time se-
rializing and de-serializing messages. The exact reason is not obvious and
difficult to investigate while also controlling for hardware and implementa-
tion differences. Determining the relationship between hardware/software
specifications and good choices of Npar is a possible avenue for future work.

Another interesting result is the poor performance of TDS and df-UCT
for large Npar—we note that these agents are unable to complete a single
playout with 64 CNs and above with Npar = 500. This can be attributed
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to the sheer number of SearchMessages that the home processor of the
root must handle at the start of the match. UCT-Treesplit does not suffer
from this because its SearchMessages are distributed among the available
SearchRanks (Section 4.4.3).

Figure 5.1: PPS achieved by TDS at turn 1 for varying values of Npar and
an increasing number of CNs.
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Figure 5.2: PPS achieved by df-UCT at turn 1 for varying values of Npar
and an increasing number of CNs.

Figure 5.3: PPS achieved by UCT-Treesplit at turn 1 for varying values of
Npar and an increasing number of CNs.
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5.2.3.2 Playing Strength

The results discussed in Section 5.2.3.1 indicate that larger Npar leads to im-
proved PPS scalability as long as the home processor of the root node is able
to handle the initial set of SearchMessages. However, in our initial playing
strength experiments with Npar set to these large values, we found that all
three of the agents performed very poorly in terms of playing strength, with
none of the agents managing a win-rate of greater than 10% for any number
of CNs greater than 1 against a serial agent.

We believe that the reason for this is that tree parallelisation suffers from
an inherent search overhead. If multiple threads perform playouts starting
from the same tree node and the node is found to be unfavourable by one of
the threads, the work done by the other threads are wasted. This is known as
the parallel effect, and the extent to which this effect hinders playing strength
is largely determined by the degree of parallelism present in the system [56]
and the delay between starting a search and incorporating the results for
future selection.

These disappointing initial results led us to rethink our tuning strategy
and sacrifice some computational resources to tune Npar using playing
strength instead of using PPS as a proxy for playing strength. We ran 50
matches per agent (25 as white and 25 as black) against a reference serial
opponent with each player having 1 second per move. The resulting playing
strength results for TDS, df-UCT and UCT-Treesplit are provided in Figures
5.4, 5.5 and 5.6 respectively. We did not perform experiments using 1 CN
because the poor playing strength we observed in our initial experiments
were obtained with configurations that had more than 1 CN. Therefore, we
omitted the 1 CN agents from these experiments to conserve computational
resources.

In order to conserve computational resources, we limited our candidate
Npar to 1, 5, 10, 20, 50. We did not include the larger values of Npar
attained in Section 5.2.3.1 because we had already determined that they
yield poor playing strength scalability. As seen in Figures 5.4, 5.5 and
5.6, playing strength scalability is already limited with Npar = 50, so using
valuable computational resources to test with larger values would have been
wasteful.

For Npar > 1, TDS scales up to 16 CNs, with more CNs incurring a
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decline in playing strength. However, our implementation scales up to
128 CNs with Npar = 1, with a dip in win-rate at 64 CNs that may be
attributed to chance. Since the playing strength scalability of TDS declines
consistently with increased Npar, we attribute the improved scalability at
Npar = 1 to reduced communication overhead at the home processor of the
root node. Another possible explanation is search overhead incurred by
more parallelism, but the cause cannot be determined for certain without
further experimentation.

For Npar = 1, df-UCT scales up to 128 CNs, and has no scaling to speak of
for higher Npar. A possible reason for this is the inherent search overhead
already present in df-UCT being exacerbated by the massive parallelism
for Npar > 1. Since the seminal paper on df-UCT did not present playing
strength experiments, their choice of Npar = 20 did not negatively influence
their results, and analysing the search overhead inherent to the algorithm—
as well as the effect that Npar has on this overhead—is a possible avenue
for future research.

UCT-Treesplit scales very well up to 128 CNs for Npar = 5, with higher
values having poor scalability after 32 CNs. The dip in playing strength
from 2 CNs to 4 CNs can be attributed to the introduction of a second
SearchRank, which necessitates inter-CN communication throughout the
search (our 2 CN UCT-Treesplit implementation consists of one SearchRank
and one BroadcastRank). We can see the same dip in the PPS and NPS and
playing strength graphs provided in Figures 5.7, 5.8 and 5.9, respectively.

Based on these results, we choose Npar = 1 for TDS and df-UCT and
Npar = 5 for UCT-Treesplit.
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Figure 5.4: Win-rate achieved by TDS after 50 matches versus a serial agent
for varying values of Npar and an increasing number of CNs. Each win-rate
is slightly offset in order to improve legibility and provided with a 95%
confidence interval.

Figure 5.5: Win-rate achieved by df-UCT after 50 matches versus a serial
agent for varying values of Npar and an increasing number of CNs. Each
win-rate is slightly offset in order to improve legibility and provided with a
95% confidence interval.
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Figure 5.6: Win-rate achieved by UCT-Treesplit after 50 matches versus a
serial agent for varying values of Npar and an increasing number of CNs.
Each win-rate is slightly offset in order to improve legibility and provided
with a 95% confidence interval.

5.2.4 Transposition Table Size

As mentioned at the beginning of this chapter, one of our criteria for com-
paring the distributed MCTS implementations is whether or not they take
advantage of increased memory resources by building a larger tree when
more CNs are available. The simplest way to do this is to artificially limit
the memory available to an agent by reducing the size of its transposition
table (Section 4.2.2) such that it fills up throughout the course of the match
and then measure the size of the tree the agent is able to construct with
increasing CNs.

By doing this, we expect to observe that the scalability of distributed
root and leaf parallelisation are limited because, as long as each CN’s trans-
position table is full, adding more CNs will not allow the agent to search
any deeper in the tree. In contrast, we expect that TDS, df-UCT and UCT-
Treesplit will be able search deeper when they are supplied with more CNs.

Since our transposition table implementation overwrites nodes encoun-
tered in previous turns, we must limit the number of entries in each CN’s
transposition table such that we expect it to be filled with new nodes every
turn. Additionally, we would like our distributed tree parallelisation im-

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTS AND RESULTS 93

plementations to overtake our root/tree implementation in terms of unique
nodes searched at some CN setting so that we can determine the effect this
has on playing strength. In order to fulfill these criteria, we limit the number
of entries in each CN’s transposition table to 213. Although this number is
small considering the large amount of memory available at each CN, this
artificial memory limit is required to perform our comparisons.

5.3 Scalability Analysis

This section presents and analyses the scalability of distributed root paral-
lelisation, leaf parallelisation and tree parallelisation in terms of the three
scaling properties presented at the beginning of the chapter.

Playout rate scalability is discussed and analysed in Section 5.3.1 and
an analysis of scalability in terms of tree size is presented in Section 5.3.2.
Finally, in Section 5.3.3, we present the playing strength scalability for each
of the distributed MCTS implementations and consider how playout rate
and tree size contribute to playing strength.

5.3.1 Playout Rate

The playouts per second (PPS) achieved by an agent measures the number
of full MCTS playouts (Section 2.2) that the agent is capable of performing
in a second. This metric should provide a good indication of program
performance since one would expect that an increase in playout rate will lead
to faster node expansion, which in turn will allow the agent to search deeper
in the tree within some time constraint and hopefully produce stronger play.
Additionally, the value estimates of tree nodes will be more statistically
significant, which will allow the agent to prioritise more beneficial parts of
the tree and make better move choices.

Ideally, the PPS achieved by an agent will double with a doubling in
CNs, but this is not always the case because some parallelization techniques
may not be optimally efficient. Additionally, communication overhead in
distributed implementations can prohibit PPS scalability [44, 62, 47].

Figure 5.7 depicts the average PPS achieved by each of our distributed
MCTS implementations at turn 1 with an increasing number of CNs. It
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shows that the root parallelisation-based agents have linear PPS scaling.
This is because, for root parallelisation, doubling the CN count will implic-
itly double the number of independent parallel searches performed. This,
combined with minimal network communication—only three broadcasts
per second in our implementation (Section 4.4.2)—leads to impressive PPS
scalability.

Figure 5.7: Playouts per second (PPS) achieved by our distributed MCTS
agents with an increasing number of CNs.

The combination of root and tree parallelisation is dominant in terms of
PPS. We believe that this is because root/tree parallelisation parallelises all
four phases of MCTS, and all of the workers on a CN can perform playouts
completely independently of each other (Section 4.4.2). This can be con-
trasted with root/leaf parallelisation, which only parallelises the simulation
phase and consists of a single worker that must wait for simulation results
before performing backpropagation, selection and expansion (Section 4.4.2).

The strong PPS scalability of root parallelisation can be contrasted with
our TDS agent, which performs poorly in terms of raw PPS. As discussed in
Section 3.4.1, TDS suffers from massive communication overhead incurred
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at the home-processors of near-root tree nodes, which we believe is the cause
of the agent’s limited scalability.

The improved PPS scalability of our df-UCT and UCT-Treesplit agents
over TDS highlights the benefit of mitigating the aforementioned overhead.
When comparing the overhead reduction strategies of UCT-Treesplit and
df-UCT, we note that UCT-Treesplit has a slight advantage over df-UCT.
Nevertheless, these agents perform relatively poorly in terms of PPS even
though they all scale linearly after 4 CNs. Since the major difference between
these agents and the root and leaf parallelisation agents is the massive num-
ber of messages passed over the network during the search, we believe that
their relatively poor PPS performance can be attributed to one or more of
the following reasons:

• Large message payloads causing serialization and de-serialization to
take up time that would otherwise be used for searching

• Our choice of serialization framework being less performant than the
MPI implementation that is widely used in the literature (Section 3.4)

• Akka’s lack of RDMA support (also discussed in Section 5.2.3)

The theory that the relatively poor PPS scalability of distributed tree par-
allelisation can be attributed to a communication-related overhead is fur-
ther supported by the dip in PPS achieved by these agents when a second
SearchRank (Section 4.4) is introduced (2 CNs for TDS and df-UCT and 4 CNs
for UCT-Treesplit). When there is more than one SearchRank, SearchMes-
sages and ReportMessages must be transferred between SearchRanks in
order to perform the search (Section 3.4), which we believe leads to this dip
in PPS.

Finally, we note that our distributed leaf parallelisation agent scales well
in terms of PPS even though it performs poorly with few CNs. With 2 CNs,
leaf parallelisation consists of one traverser rank and one simulator rank
(Section 4.4.1). This configuration only allows for a single sequential search,
with the traverser rank being completely idle while it waits for simulation
results from the simulator rank, leading to poor PPS. With 4 CNs, there
are three simulator ranks and three parallel searches. Since the number of
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parallel searches is actually tripled with a doubling of CNs from 2 to 4, we
see a steep increase in PPS here.

This behaviour continues until 16 CNs, at which point the increase in
PPS with each doubling in CNs tapers off drastically. We believe that this
decline in PPS improvement is caused by the traverser rank becoming a
bottleneck because it only has 11 traversers available to perform more than
11 parallel searches (Section 4.4.1). We believe that adding more traverser
ranks to the configuration when this bottleneck is encountered will improve
the scalability of leaf parallelisation—testing this theory is a possible avenue
for future work.

5.3.2 Tree Size

As discussed in Section 5.3.1, increasing the PPS achieved by an MCTS agent
strengthens the statistics of nodes in the tree. This, in turn, should allow
the agent to make better decisions during the search and better moves in a
match. However, it is not always the case that increasing an agent’s playout
rate increases its playing strength [17]. Another potential indication of an
agent’s performance is the size of the tree that the agent constructs [62, 47].

For a standard serial implementation of MCTS where a single tree node
is expanded per playout, the PPS achieved by an agent will be very similar
to the number of nodes in the tree (there will be a slight difference due to
the selection phase sometimes ending on a terminal tree node, which will
prevent a new node from being expanded) (Section 2.2). However, this is
not the case for parallel implementations since some compute entities will
expand nodes that have already been explored by other compute entities,
thereby incurring some search overhead (Section 2.2.4).

In order to measure and compare this overhead, we count the number
of unique nodes expanded per second by each of our agents. We achieve
this by introducing a Java HashSet at each SearchRank (Section 4.4) that
contains the Zobrist hashes (Section 2.2.3.4) of states that the SearchRank has
encountered during the search. The contents of these maps are periodically
flushed and forwarded to a CN that is dedicated to counting the unique
nodes encountered for the agent—the NodeCounter. Upon receiving a set
of Zobrist hashes from each of the agent’s CNs, the NodeCounter adds these
sets to its own HashSet that is used to determine the number of unique
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nodes encountered across the agent’s cluster. Although this process should
introduce some communication overhead, we found it to be insignificant
and we did not see any noticeable performance degradation with this feature
enabled.

We depict the number of unique nodes expanded per second (NPS)
by each of our implementations in Figure 5.8. If the same game state is
encountered by multiple CNs, it is only counted once. We note that TDS,
df-UCT and UCT-Treesplit scale far better in terms of NPS as opposed to
PPS, which highlights the benefit of distributing a single search tree across
the cluster as opposed to constructing multiple independent trees (as in root
parallelisation) or dedicating a single CN to tree management (as in leaf
parallelisation).

Figure 5.8: Unique nodes expanded per second by our distributed MCTS
agents with an increasing number of CNs.

Root parallelisation scales worse than df-UCT and UCT-Treesplit in terms
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of NPS, with df-UCt and UCT-Treesplit achieving more NPS after 16 CNs
even though root parallelisation is dominant when comparing PPS (Sec-
tion 5.3.1). This can be attributed to the search overhead incurred by CNs
constructing their trees in a similar fashion and thereby searching the same
nodes, which in turn limits the number of unique nodes these agents en-
counter across the cluster. Although our experiments reveal somewhat
limited NPS scalability for root parallelisation, we would have expected the
NPS achieved by these agents to be even less than our results show. This
indicates that the aforementioned search overhead does not have as much of
an impact as we had initially assumed. Further experimentation with larger
time constraints may reveal a more clear distinction between distributed
tree parallelisation and root parallelisation. Performing such experiments
and quantifying this search overhead is a possible avenue for future work.

As in our PPS graph (Figure 5.7), we see the limited scalability of TDS in
comparison with df-UCT and UCT-Treesplit after 16 CNs, further highlight-
ing the benefit of mitigating the communication overhead incurred by TDS
at near-root tree nodes.

Finally, we note that leaf parallelisation performs particularly poorly in
terms of NPS. It scales sharply up to 8 CNs then plateaus. As explained in
Section 5.3.1, the performance of our leaf parallelisation implementation is
inherently poor for few CNs. This effect is more noticeable when looking at
NPS as opposed to PPS because the agent adds only one node to the tree for
every 12 simulations it performs—one per Simulator (Section 4.4.1). The
NPS scalability of leaf parallelisation flattens after 16 CNs because at this
configuration, the TraverserRank begins to fill its transposition table each
turn. We believe that this could be resolved by using configurations with
more than one TraverserRank, and this is a possible avenue for future work.

5.3.3 Playing Strength

The ultimate goal of parallelising an MCTS algorithm is to take advantage of
increased computational resources in order to make better decisions within
some time constraint and produce stronger play. Although the PPS and
NPS that an MCTS agent achieves is often used as a proxy metric to gauge
playing strength, it is often the case that increasing PPS or NPS does not
lead to stronger play [17]. In Sections 5.3.1 and 5.3.2, we presented the
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scalability of each of our implementations in terms of these proxy metrics.
In this section, we present the playing strength scalability of each agent and
compare these results with the PPS and NPS scalability presented earlier in
the chapter. We depict the win-rate achieved by each of our agents versus
our 1 CN root/tree reference opponent in Figure 5.9.

Firstly, we note that our root/tree agent has no discernable improvement
in playing strength beyond 1 CN even though it achieves clear PPS and NPS
scaling (see Figures 5.7 and 5.3.2, respectively). Nevertheless, root/tree par-
allelisation is our strongest implementation by a substantial margin. None
of our other implementations were able to achieve a win-rate greater than
50% at any CN configuration versus the 1 CN root/tree agent. These two
results indicate that our implementations do not benefit from an increase
in PPS past the number achieved by our 1 CN root/tree agent. The reason
for these diminishing returns is unclear, and further experimentation with
different transposition table sizes and enhancement configurations will be
needed in order to determine the root cause.

In contrast with root/tree, our root/leaf agent scales until 64 CNs, at which
point it drops sharply at 128CNs. We believe that the relatively poor win-
rates achieved by the 16 CN and 128 CN agents are due to chance. Although
our root/leaf agent achieves very similar PPS as the reference opponent at 8
CNs and expands more nodes than the reference opponent at 2 CNs, it only
achieves a near-50% win-rate at 32 CNs. A possible reason for this is that leaf
parallelisation suffers more from the parallel effect than tree parallelisation.
This assumption can be confirmed by comparing the degree to which each
agent suffers from the parallel effect [56], and we leave this as a possible
avenue for future work.

Our distributed leaf parallelisation scales well until 16 CNs, at which
point it tapers off at a win-rate of approximately 50%. This behaviour is
expected since this is the point at which the agent achieves the same PPS
and NPS as our reference opponent. In addition to the aforementioned
diminishing returns from increasing PPS, there are two reasons for the drop-
off in scalability after 16 CNs:

1. This is the point at which the agent fills its transposition table every
turn, so NPS does not increase at all after this point, and
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2. PPS scaling starts to taper off after 16 CNs because the traverser rank
becomes a bottleneck (see Section 2.2.4.1 for a more detailed explana-
tion).

When compared with our other agents, distributed leaf parallelisation shows
impressive playing strength scalability. We attribute the improved perfor-
mance of our leaf parallelisation over previous implementations (Section 3.2)
to the multi-threaded traverser. We believe that this performance could
be further improved by using configurations with more than one multi-
threaded traverser, and this is a possible avenue for future work.

Finally, we observe that our distributed tree parallelisation agents per-
form poorly in terms of playing strength. As mentioned in Section 5.2.3.2,
UCT-Treesplit shows a dip in playing strength at 4 CNs due to the intro-
duction of a second SearchRank, necessitating inter-CN communication to
drive the search. This effect can also be seen for TDS and df-UCT for 2 CNs.
Although TDS and UCT-Treesplit show scalability up to 64 CNs—similarly
to the results presented in Section 5.2.3.2—they are only able to achieve a 20-
40% win-rate at their strongest configurations. Although the differences in
win-rate observed between the three distributed tree parallelisation agents
might be a result of chance, we note that df-UCT’s performance is poorer
than TDS and UCT-Treesplit, with the agent achieving a win-rate of only
7-20% at its strongest configuration.

While the poor performance of TDS is expected since the agent never
achieves more PPS or NPS than our reference opponent, we would expect to
see df-UCT and UCT-Treesplit achieve a 50% win-rate at 32CNs since they
achieve similar PPS and NPS as our reference opponent at this configuration.

While the seminal df-UCT paper did not present playing strength re-
sults [62], UCT-Treesplit has been shown to scale well in terms of playing
strength [47]. We believe that the weakness of our implementation may
stem from our choice to set the duplication and synchronisation parameters
discussed in Section 3.4.3 to the values presented in the paper. It could be
the case that, since our implementation does not perform as many playouts
per second as their implementation, we are duplicating too few nodes and
synchronising statistics too infrequently. This would lead to a communica-
tion overhead at near-root nodes and a search overhead, respectively, and
may lead to the poor results shown in Figure 5.9. An important avenue for
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future work is to determine the effect that these parameters have on agent
performance.

A possible explanation for the poor performance of df-UCT is the inherent
search overhead incurred by delayed backpropagation (see Section 3.4.2).
This could be verified by peforming experiments to determine the extent to
which the agent suffers from the parallel effect [56]. Again we leave this as
a possible direction for future work.

Figure 5.9: Win-rates achieved by our distributed MCTS implementations
against our root/tree agent with 1CN. Each win-rate is slightly offset in order
to improve legibility and provided with a 95% confidence interval.

5.4 Summary

In this chapter, we presented our experimental setup, parameter tuning
procedure, and the scalability of our distributed MCTS implementations.

In Section 5.1, we presented our experimental setup. This included the
number of matches we ran, the hardware we used, our reference opponent
and the data logged by our system.

Section 5.2 discussed our parameter tuning process. We noted that we
use a serial agent for MCTS enhancement tuning and present the results of
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these experiments in Sections 5.2.1 and 5.2.2. Following this, in Section 5.2.3,
we discussed our procedure for tuning Npar. We began by using PPS as a
proxy metric for playing strength in order to tune the parameter. Our initial
results using the values obtained in Section 5.2.3.1 yielded poor results and
we thus opted to tune Npar using playing strength in Section 5.2.3.2. To
conclude the section, we provide reasoning for our choice of transposition
table size in Section 5.2.4.

In Section 5.3, we presented and analysed the scalability of our leaf,
root/leaf, root/tree, TDS, df-UCT and UCT-Treesplit implementations in
terms of PPS, NPS and playing strength. PPS scalability was discussed
in Section 5.3.1, with the root parallelisation agents showing dominance in
terms of this metric and the tree parallelisation agents performing relatively
poorly. Section 5.3.2 presented NPS scalability, and showed that distributed
tree parallelisation outperforms root parallelisation in terms of unique nodes
expanded. Finally, we presented playing strength scalability in Section 5.3.3.
We noted that none of our agents consistently achieve a win-rate greater than
50% against a 1CN version of root/tree—not even root/tree with higher CN
settings. We showed that leaf and root/leaf parallelisation scale well in terms
of playing strength, and that our distributed tree parallelisation agents per-
form poorly even though they do show an increase in playing strength with
an increase in CNs. We found our playing strength results for df-UCT and
UCT-Treesplit to be particularly disappointing, and some ideas to develop
our understanding of these results further were included.
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Conclusion

One way to improve the decision-making ability of an MCTS program is to
maximise the number of simulations that the program performs. Parallelis-
ing MCTS therefore plays an important role in the development of stronger
programs, especially since hardware that supports parallelism (multi-core
CPUs, multi-CPU machines and large computer clusters) has become com-
monplace in recent years.

The three most widely implemented parallel MCTS algorithms—leaf
parallelisation, root parallelisation and tree parallelisation—were initially
proposed and analysed for SMP environments. Later in the development of
parallel MCTS, these algorithms were successfully applied to large clusters
of computers with distributed memory. However, since the implementa-
tions were tested on different domains and hardware setups, they were
difficult to compare.

In light of this, we implemented the following distributed MCTS algo-
rithms and compared their scalability in terms of playout rate, number of
unique nodes expanded, and playing strength, using LOA as a common test
domain:

• distributed leaf parallelisation,

• distributed root parallelisation combined with leaf parallelisation,

• distributed root parallelisation combined with tree parallelisation,

• distributed tree parallelisation using TDS,

• distributed tree parallelisation using df-UCT, and
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• distributed tree parallelisation using UCT-Treesplit.

We implemented the first version of distributed leaf parallelisation with
a multi-threaded traverser in order to address the bottleneck that has been
discussed in previous publications. Additionally, we provide the first anal-
ysis of root parallelisation combined with leaf parallelisation. Other than
these implementations, our distributed MCTS agents were implemented as
described in the original literature.

In terms of PPS, we found that the root parallelisation-based agents
are dominant. Root/tree parallelisation achieved approximately 2.5 times
as many PPS as its closest competitor—root/leaf parallelisation—at all CN
configurations. This, combined with the agent’s exceptionally strong play
(even at lower CN settings) leads us to recommend root/tree parallelisation
for most distributed MCTS applications.

Root/leaf parallelisation was shown to scale similarly in terms of NPS as
root/tree parallelisation. However, root/leaf parallelisation achieves far less
PPS and shows weaker play than root/tree parallelisation. Therefore, we do
not recommend combining root and leaf parallelisation for distributed envi-
ronments when the combination of root and tree parallelisation is possible.
However, we note that root/leaf parallelisation would be a good option in
environments that do not support the shared mutable memory required for
the lock-free tree parallelisation that we have implemented.

We saw that leaf parallelisation performs well in terms of PPS, and scales
up to 128 CNs. However, we observed that, although its playing strength
scalability was steep for lower CN settings, it was limited by the single
TraverserRank that manages its tree. This is an expected result, and we
believe that adding more than one TraverserRank will lead to much better
results for leaf parallelisation. This would be an interesting avenue for future
work.

We showed that all three distributed tree parallelisation implementations
perform poorly in terms of PPS. Although df-UCT and UCT-Treesplit do al-
leviate the communication overhead incurred by TDS, our implementations
are still limited due to network communication overhead—a problem which
may be solved if RDMA is used. Although df-UCT and UCT-Treesplit show
the best NPS scalability of our implementations, we cannot recommend
either of these algorithms based on their disappointing playing strength
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results. We note that the poor performance of df-UCT and UCT-Treesplit
ould be due to an inherent search overhead and infrequent duplication and
synchronisation of node statistics, respectively. Performing a deeper analy-
sis into the weakness of these algorithms is an important avenue for future
work.

In addition to our scalability experiments, we analysed the effect of the
Npar parameter on the PPS and playing strength scalability. We found that
higher Npar invariably leads to more PPS until the agent is no longer able
to begin searching due to an initial overload of SearchMessages. However,
we determined that setting Npar to the maximum feasible value does not
yield good results, with the playing strength scalability being limited by the
influence of the parallel effect.

6.1 Future Work

While we were able to provide a fair comparison of distributed MCTS algo-
rithms on a common domain, we identified the following avenues for future
work that may yield better results:

• In order to explain the poor playing strength scalability achieved by
distributed tree parallelisation, we propose that experiments are run in
order to determine the extent to which the agents are influenced by the
parallel effect. This can be achieved by keeping the number of playouts
performed constant while increasing the number of CNs available to
each agent. In doing so, one should see a decline in win-rate with an
increase in CNs that will quantify the parallel effect.

• The parameters that determine the number of duplicated nodes and
the frequency that those nodes’ statistics are synchronised should be
tuned for our implementation. We believe that a reason for the poor
scaling of UCT-Treesplit may be the choice to set these parameters to
the values presented in the original paper. Since our implementation
achieves fewer playouts per second, it is possible that there are too few
duplicated nodes and infrequent synchronisation, leading the agent to
incur a communication overhead and search overhead, respectively.
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• Our leaf parallelisation implementation was shown to scale well with
a parallel TraverserRank until the rank’s transposition table becomes
full and the single rank becomes a bottleneck. This would be resolved
by having more than one TraverserRank. Ideally, the TraverserRanks
should share node statistics in a similar fashion to root parallelisation.
The implementation and analysis of such a leaf parallelisation – root
parallelisation hybrid should yield interesting results.

• It may be beneficial to tune the parameters that drive the MCTS en-
hancements we used in this work for each distributed MCTS algorithm.
We only tuned these parameters for a serial agent, but there may be
better options for the distributed implementations. It would be inter-
esting to determine how each algorithm reacts to adjustments in these
parameters, and if tuning for each algorithm individually is necessary
at all. Additionally, it may be helpful to consider the behaviour of
these algorithms with all enhancements turned off.

6.2 Final Remarks

This research aimed to provide a fair comparison of distributed MCTS al-
gorithms on the same domain and hardware setup. Therefore, we per-
formed experiments to determine the scalability of distributed leaf, root/leaf,
root/tree, TDS, df-UCT and UCT-Treesplit in terms of PPS, NPS and playing
strength.

We found that distributed root/tree parallelisation is the strongest of
our implementations, and recommend this algorithm for most distributed
MCTS implementations. We cannot recommend any of the distributed tree
parallelisation algorithms due to their disappointing playing strength re-
sults. However, we note that further analysis must be performed in order
to pinpoint the reason for these poor results. Finally, distributed leaf paral-
lelisation showed impressive scalability due to our multi-threaded traverser
implementation. However, we show that a single TraverserRank is not suf-
ficient for scaling to higher CN settings, and further experimentation with
more than one TraverserRank should yield interesting results.
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Appendix A

Move Categories

Table A.1: Transition probabilities for the move categories described in
Section 4.1.3.2

From Region To Region Capture No Capture

A A 0.0000 0.0000

A B 0.1975 0.0546

A C 0.3077 0.2233

A D 0.3833 0.1772

B A 0.0000 0.0052

B B 0.0245 0.0163

B C 0.2471 0.0453

B D 0.2665 0.0686

C A 0.0000 0.0005

C B 0.0142 0.0051

C C 0.1429 0.0231

C D 0.2164 0.0430

D A 0.0000 0.0011

D B 0.0180 0.0035

D C 0.1275 0.0146

D D 0.0000 0.0339
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