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Abstract

Design Methodology for an Inflatable Membrane Aerofoil
Using Numerical Shape Optimisation

B. Bezuidenhout

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mech)

March 2020

The use of inflatable wings for unmanned aerial vehicles over their fixed-winged 
counterparts has many advantages such as the wing’s ability to be folded up 
when deflated, this saves storage s pace. However, there are challenges associ-
ated with predicting the profile of the inflatable wing, which makes achieving a 
desirable aerofoil profile n on-trivial. This research aimed to formulate a design 
methodology which would determine the uninflated geometry for an inflatable 
aerofoil profile, a ccurately fi tting th at of  a ta rget, pr escribed ae rofoil profile. 
The uninflated geometry can then be used to construct a physical m odel. The 
methodology involved performing numerical shape optimisation on finite ele-
ment models. Once the methodology had been established, its robustness was 
tested by utilising numerical models with differing numbers of inflation cav-
ities, altering the thickness of the target aerofoil profile a s well a s increasing 
its complexity. For each case, the methodology successfully satisfied i ts aim, 
producing accurate fits b etween t he i nflated numerical model and th e target 
aerofoil profile. When fitting a fifteen cavity numerical model to a NACA 0030 
aerofoil, an R2 fit o f 0 .990 was a chieved. When validated, the i nflated shape 
of the numerical model proved to predict that of its corresponding physical 
model accurately. For an eight cavity model, the fit between the physical and 
numerical model produced an R2 value of 0.988. Future work should focus on 
a more comprehensive material model that will allow for a larger load-bearing 
capacity of the inflated structure.
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Uittreksel

Ontwerpmetodologie vir ’n Opblaasbare
Membraanlugvlerkprofiel met Gebruik van Numeriese

Vormoptimalisering

B. Bezuidenhout

Departement Meganiese en Megatroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Meg)

March 2020

Die gebruik van opblaasvlerke vir onbemande lugvaartuie bo-oor die regstreeks 
gevleuelde weergawes het veelvulgide voordele. Daar is vele kompleksiteit in 
akkurate profiel voorspelling van opblaasvlerke, wat veroorsaak dat die berei-
king van ’n gewenste lugvliefprofiel ontriviaal i s. Die doel van die navorsing is 
gemik om die formulering van ’n ontwerpmetodologie wat die afgeblaasde meet-
kunde van ’n opblaasbare-aëroolieprofiel s ou b epaal. D ie a fgeblaasde meet-
kunde kan dan gebruik word om ’n fisiese model t e k onstrueer. Die betrokke 
metodologie maak gebruik van numeriese vorm optimalisering op eind element 
modelle. Nadat die metodologie vasgestel is, was die robuustheid daarvan ge-
toets deur die gebruik van numeriesemodelle van verskeie kompleksiteite, deur 
die dikte van die teiken lugvliegprofiel te verander en die kompleksiteit te ver-
hoog. Vir elke getoetsde geval, het die metodologie sy doelwit bereik deur ’n 
akkurate pas tussen die opgeblaasde numeriesemodel en die teiken aëroolie-
profiel. By die montering van ’n numeriese model van die vyftien holtes op ’n 
NACA 0030 aërool, word die R2 pas van 0.990 behaal. Na validasie, het die 
opgeblaasde vorm van die numeriesemodel met akkuraatheid die vorm van die 
fisiesemodel b epaal. Vir ’ n model met agt holtes i s d ie pas t ussen d ie fisiese 
en numeriese model geproduseer teen R2 waarde van 0.988. Toekomstige na-
vorsing moet gebruik maak van ’n meer ingewikkelde model, wat sal toelaat 
vir ’n beter draëvermoë van die opgeblaasde struktuur.
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Chapter 1

Introduction

1.1 Background
The concept of inflatable wings entails applying an internal pressure to a mem-
brane to stiffen the structure and enables it to support a load during flight.
An instance of an inflatable-winged plane can be seen as far back as the 1950s
with the Goodyear Model GA-468 Inflatoplane, shown in Figure 1.1. The In-
flatoplane, with a wingspan of 6.7 m, was developed by the military as a rescue
plane. It could be dropped behind enemy lines to rescue downed pilots (Brown
et al., 2001).

Figure 1.1: The Goodyear Model GA-468 Inflatoplane in flight (Cleveland-
Magazine, 2015)

More recently, the focus for inflatable wings has shifted to unmanned aerial
vehicles (UAVs), such as the I2000. The I2000 was a UAV with a wingspan of
1.5 m that was created and flight-tested by researchers at NASA (Murray et al.,
2002). The skeleton of the wing was made of inflatable tubes, surrounded by
crushable foam to provide the aerofoil profile. The wings were able to go from
deflated to fully inflated in 700 ms which was tested in an air launch sequence,
as seen in Figure 1.2.

1
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CHAPTER 1. INTRODUCTION 2

Figure 1.2: The air launch sequence and wing inflation for the I2000 UAV
(Murray et al., 2002)

The air-launch sequence of the I2000 showcases one of the many advantages of
inflatable wings, with it having the ability to be folded up when deflated and
then rapidly inflated. This allows space to be saved when transporting the
plane as the space is not taken up by the wings. The inflatable wings are also
more impact-resistant compared to fixed wings. For example, if the wing were
to hit a tree it would be able to deform upon impact and then return to its
original position. This was verified with impact tests performed by Cadogan
et al. (2006). If the inflatable wing was punctured during the impact it could
then be replaced at a reduced cost compared to a fixed-wing (Simpson, 2008).

Another advantage of inflatable wings is for the potential of the aircraft to be
lighter than a fixed-winged aircraft. This bearing in mind the different infla-
tion mechanism configurations. However, this advantage comes at a reduced
load-bearing capacity of the wing. These advantages have enabled inflatable-
winged UAVs to be used in aerospace applications where minimising weight
and storage space is a key factor. They also have the potential to be used in
agricultural applications for flying over fields, to gather data on the condition
of the crops. The UAV can be landed in areas where there is no clear landing
strip and there is a probability of it crashing into a bush or tree.

In the past, authors have explored the possibility of altering inflatable wing’s
shape during flight as a means of in-flight directional control. A paper by
Cadogan et al. (2004) explored multiple wing shape altering methods rang-
ing from mechanical actuation to pressure controlled actuation. The pressure
controlled actuation boasts great potential in its ability to actuate the wing
without the need for a mechanical actuator that, if placed on the wing surface,
could hinder the aerodynamic performance. This is therefore an additional

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

potential advantage if correctly incorporated.

There are, however, difficulties associated with inflatables, one of them being
that once an inflation pressure is applied to the membrane, the membrane
deforms. The amount of deformation the membrane undergoes is unknown due
to complexities associated with inflated membranes. This makes accurately
predicting the inflated shape of an inflatable wing non-trivial. Achieving an
aerofoil profile that accurately fits that of a target aerofoil profile is important,
as deviations from the intended profile could alter its intended aerodynamic
performance.

1.2 Aim and Objectives
The work proposed in this research aims to formulate a design methodology to
determine the uninflated geometry for an inflatable aerofoil profile, accurately
fitting that of a prescribed target aerofoil profile. This will be done through
the use of numerical shape optimisation where a numerical model will be used
to simulate the physical model in terms of its inflated shape. The project
objectives are defined as follows:

1. Formulate a finite element (FE) model of single cavity inflatable bags
and simulate the inflated shapes.

2. Validate the inflated shapes of the single cavity inflatable bag FE models
through physical tests.

3. Increase the complexity of the FE models and perform shape optimisa-
tion on them.

4. Validate the inflated shape of the more complex FE models through
physical tests.

5. Test the robustness of the shape optimization.

6. Build confidence in the FE model through stiffness validation.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 4

1.3 Project Scope
It is important to note that this research focuses on the design methodology of
fitting the inflated shape of an inflatable wing to a prescribed aerofoil shape,
and not finding the optimal inflatable wing design. Therefore, certain aspects
of the inflatable wing were omitted from the scope of the research, these consist
of:

• A detailed study on an ideal membrane material to be used, instead the
material used was chosen due its availability and its benefits in the design
process, such as the constructibility of the models.

• Aerodynamic testing, however, aerodynamic performance aspects of in-
flatable wings from previous literature were considered.

• Choosing the optimal wing dimensions, as the methodology focuses on
fitting the model to a target aerofoil profile. Therefore, the wing dimen-
sions specific to each case can be prescribed by the designer.

Stellenbosch University https://scholar.sun.ac.za



Chapter 2

Literature Review

2.1 Inflatable Membrane Structures
Air-inflated structures consisting of air beams, where the pressurised space is
not occupied, have been used in the past for many different engineering appli-
cations. One of these applications is using multiple inflatable beams connected
to one another in order to form an aerofoil shape (Johansen, 2011; Rowe, 2007;
Santhanakrishnan and Jacob, 2005). Gaining an understanding of simple in-
flatable beams is paramount, as they make up the foundation of inflatable
wings.

Inflatable beams are membranes that, by themselves, have no stiffness. How-
ever, when an internal pressure is applied to the membrane, it becomes pre-
tensioned and is stiffened. The stiffness of the beam is dependant on three
factors: the internal pressure, the dimensions of the beam and the membrane
material properties. The classic equations for hoop and longitudinal stresses
acting on the walls of a cylindrical thin-walled pressure vessel can be used to
determine the pre-tensioned state of the bag. The hoop stress equation can be
seen in Equation 2.1:

σ =
Pr

t
, (2.1)

where σ is the hoop stress, P is the internal pressure, t is the membrane
thickness and r is the radius of the wall. The longitudinal stress occurring
under the same conditions would be half the hoop stress’s value (Wang and
Li, 2017).

Membranes are generally very thin and due to their small thickness they have
very little to no bending stiffness. Therefore, when a compressive stress is
present in the membrane, it is diminished through a local instability in the

5
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CHAPTER 2. LITERATURE REVIEW 6

form of out-of-plane buckling. This local buckling is referred to as wrinkling.
These wrinkles lie perpendicular to the applied compressive stress (Bletzinger,
2008).

An FE model of a 126 mm diameter and 1.32 m long beam under a three-point
bending load was created by Barsotti and Ligaro (2011). The contact points
were simply supported at the ends by constraining a single node at the corners
of the ends of the bag. The deformed state of the symmetric FE model can be
seen in Figure 2.1. The elements experiencing a compressive stress are shown
in red, thus hinting at where the wrinkles would occur.

Figure 2.1: Elements in an FE model during a three-point bending test in a
wrinkled state, shown in red (Barsotti and Ligaro, 2011)

Other examples of inflatable beams being modelled through analytical or FE
models were published by Veldman (2005), Zhu et al. (2008) and Thomas
et al. (2016). The first two studies performed cantilever tests on their models,
whereas the third study tested three different test configurations for three-
point bending tests. All of these models were each validated through physical
testing with the operating pressures above 100 kPa.The tests were carried out
by applying a load to the beam and then measuring the deflection.

The force vs. displacement curves for the experiments performed in Barsotti
and Ligaro (2011), Veldman (2005) and Zhu et al. (2008) all showed similar
trends. Initially, the relationships were linear and as the displacement in-
creased and the wrinkles appeared, the relationship became non-linear as the
beam lost its stiffness. The aforementioned models were all modelled using a
constant pressure applied to the membrane. However, this pressure modelling
method did not take into account the change in volume of the structure due
to deformation, that would in turn cause a change in the pressure.

In research by Cavallaro et al. (2007), four-point bending tests were performed
on numerical models of uncoated, plain-woven fabric inflatable tubes. These
tests were performed using ABAQUS’ explicit solver in order to explore the
contributions of strain energy and pressure-volume work (PV-work) on the
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CHAPTER 2. LITERATURE REVIEW 7

bending behaviour of the tubes. The governing energy balance equation for
the four-point bending tests is expressed in Equation 2.2:

∆Eint = ∆Estrain + ∆Ekinetic + ∆

∫
PV + ∆Edis, (2.2)

where:

∆Eint =

∫
Freactdδload_pt = Wext. (2.3)

In Equation 2.2, ∆Eint represents the change in internal energy of the tube
which is equal to the external work (Wext) done on the beam during the test.
This value can be calculated by integrating the force vs. displacement (Freact

vs. δload_pt) graph for the four-point bending test, as shown in Equation 2.3.
The other energy components that make up ∆Eint are: the fabric strain energy
(Estrain), the kinetic energy of the system mass (Ekinetic), the work done by
compressing the air (PV ) and the viscous dissipation energy due to damping
(Edis).

Multiple four-point bending simulations were performed on a model with a
linear elastic Young’s modulus at differing pressures. The strain energy, PV-
work and the external work values were plotted against each other at the
respective pressures, forming the graph seen in Figure 2.2. The kinetic energy
and the viscous dissipation energy were omitted from the plot, due to the
negligible effect they had in this instance.

Figure 2.2: Energy & work vs. pressure graph for an inflatable tube during a
four-point bending test (Cavallaro et al., 2007)
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CHAPTER 2. LITERATURE REVIEW 8

From the results, it was found that at pressures below 30 psi (∼206 kPa), the
PV-work contributed to less than 10 % of the external work and the strain
energy contributed to more than 90 %. However, as the pressure increased,
the contribution of the strain energy to the external work reduced to nearly
nothing. Therefore, this showed that at higher pressures the PV-work dictated
the bending behaviour and the effect of the material properties were minimal.
However, at lower pressures, the material properties dictated the behaviour.

A set of tests involving numerical models inflated using an airbag model were
performed by Venter (2011). Unlike the pressure load model, airbag models
entail filling a closed volume with an air mass. This air mass behaves accord-
ing to the ideal gas laws; therefore, when the air mass inside the bag is kept
constant and the volume changes, the pressure inside the bag changes respec-
tively. An additional update of the stiffness matrix is also performed after
every iteration when making use of an airbag model. This stabilises an almost
completely flexible structure (Schweizerhof, 2005).

The aforementioned tests were performed on dunnage bags and simulated us-
ing LS-DYNA’s explicit solver. Dunnage bags are generally used in shipping
scenarios where they are placed in the gap between two objects and then in-
flated to keep the objects in place during transportation.

In order to validate the numerical model, different sets of tests were performed
and the results compared to that of the physical tests. The one set of tests
entailed placing the dunnage bag in between rigid planes and then inflating
it, see Figure 2.3. The bag dimensions, the pressure and the distance between
the planes varied for the different tests.

Figure 2.3: Numerical model of an inflated dunnage bag in between two rigid
supports (Venter, 2011)
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CHAPTER 2. LITERATURE REVIEW 9

The contact forces for both the numerical and the physical tests were compared
and the average error between the two was found to be 6 %, with a standard
deviation of 8 %. These results verified that the model could give strong trend
information for a simulated loading.

2.2 Aerofoil Profiles
In the aerospace community, wings are used extensively with their shapes and
sizes varying widely. In order to describe these shapes and sizes, standard
aerofoil nomenclature is used. An asymmetric aerofoil profile labelled with its
respective nomenclature can be seen in Figure 2.4. The leading and trailing
edges of a wing are the front and rear of the aerofoil profile respectively, where
the distance between the two edges is called the chord. The span of a wing
refers to the length of the wing from the one tip to the other.

The ratio of the span to chord length is often used, as the ratio plays a role
in many facets of the performance of the wing; whether it be in terms of load
bearing capacity or aerodynamic performance. This ratio is called the aspect
ratio. Another important ratio to consider is the taper ratio, which is the ratio
of the chord length at the tip to the chord length at the root of the wing. If
the chord lengths remain the same size then the ratio is unity.

Figure 2.4: A side view of an asymmetric aerofoil labelled with its respective
nomenclature (Cleynen, 2011)

The line that is situated in the middle of the top and bottom surface is called
the camber line. The largest distance that occurs between the top and bottom
surface is called the thickness. The thickness is a parameter that is used when
selecting a National Advisory Committee for Aeronautics (NACA) aerofoil.
For a symmetric four-digit NACA aerofoil the shape is expressed by "NACA
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00xx" with xx replaced by the percentage of the thickness to the chord. The
corresponding aerofoil profile’s top half can be plotted with Equation 2.4:

y = 5t[0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4], (2.4)

where y is half the thickness at a given x value, t is the maximum thickness
as a fraction of the chord and x is the position along the chord, ranging from
0 to 1.

For an asymmetric aerofoil’s thickness, more specifically a cambered four-digit
NACA aerofoil, the same equation as the symmetric profile is used. However,
the difference is that the camber line is not straight along the chord line. The
new asymmetric camber line is expressed by them and p in the "NACAmpxx"
description. The m and p represent the maximum camber height (m/100) and
the position along the chord of the maximum camber height (p/10) respec-
tively. The equation for the height of the camber line, yc, at its corresponding
chord position, x, can be seen in Equation 2.5:

yc =

{
m
p2

(2px− x2) , 0 ≤ x ≤ p,
m

(1−p2) ((1− 2p) + 2px− x2) , p ≤ x ≤ 1.
(2.5)

The lift and drag forces acting on an aerofoil are the forces perpendicular
and parallel respectively to the direction of flow. Each of the forces consist
of pressure and skin friction components. Altering the angle the chord line
makes relative to the direction of flow, known as the angle of attack (α), the
lift and drag acting on the aerofoil is either increased or decreased depending
on the orientation of the specific aerofoil.

The drag and lift forces depend on the fluid density (ρ), the upstream veloc-
ity (V ), and the size, shape and orientation of the body, and it is thus not
practical to list these forces for a variety of situations. Therefore, it is more
convenient to work with drag and lift characteristics of the body in the form of
dimensionless values. The coefficient of lift and drag (CL and CD respectively)
are dimensionless values that characterise the lift and drag of a body. This
relationship can be seen in Equation 2.6:

CL,D =
FL,D

1
2
ρV 2A

. (2.6)

The ratio of the CL to the CD is often plotted against the angle of attack for a
specific aerofoil at a specific Reynold’s number. This plot generally increases
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with the angle of attack until the aerofoil stalls and the ratio starts decreasing.
This stalling of the aerofoil is due to a phenomenon called flow separation. This
phenomenon is when the fluid separates from a body and forms a separated
region between the body and the fluid stream, that contains backflows and
recirculated fluid. When flow separation occurs on the top surface of a wing it
increases the drag and drastically reduces the lift produced, thus causing the
stall. Therefore, the aerofoil profile should be carefully selected to reduce the
degree of flow separation (Cengel and Cimbala, 2014).

2.3 Inflatable Aerofoils
Previously, Simpson (2008) explored numerous material configurations for in-
flatable wings, consisting of: an unsupported film (for example polyethylene),
a restraint and bladder combination (consisting of vectran as the restraint
and polyurethane as the bladder), and finally, a coated fabric (for example
polyurethane coated nylon).

(a) Unsupported film (b) Restraint and bladder (c) Coated fabric

Figure 2.5: Different material layups used for inflatable wings (Simpson, 2008)

The restraint and bladder configurations, as well as the coated fabric con-
figurations, are able to support a larger inflation pressure, compared to the
unsupported film; and thus, provides the inflatable object with a larger stiff-
ness. A problem with these two layups is that physical samples are difficult
and time-consuming to construct. This is the case for the restraint and bladder
configuration because for each physical model the bladder and restraint need
to be constructed separately.

The coated fabric option could also potentially pose a problem due to the large
thickness relative to the unsupported film. This might make sealing methods
(such as heat sealing) problematic, due to the large amount of material required
to be heated as well as the difference in melting points for the fabric and the
material coating it.

Many of the inflatable wings constructed in the past were made using multiple
inflation cavities separated by the spars of the wing. The restraint components
of an inflatable wing using a restraint and bladder configuration can be seen
in Figure 2.6. For the other two configurations, the same structure has also
been used.
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Figure 2.6: Internal structure of the restraint for a restraint and bladder in-
flatable wing configuration (Rowe, 2007)

Two different trailing edge configurations for inflatable wings have been used in
the past, see Figure 2.7. The first consists of the trailing edge consisting of the
inflation cavities of the aerofoil (Rowe, 2007). This is a simpler design, however,
it creates a blunt trailing edge possibly hindering aerodynamic performance.
The second configuration consists of a rigid structure attached near the trailing
edge in order to produce a sharper tip (Haight et al., 2006). This sharper edge
allows the profile to fit that of the ideal profile better than the blunt edge.
However, the complexity of the wing’s construction is increased.

(a) Trailing edge without rigid struc-
ture (Simpson, 2008)

(b) Trailing edge with rigid structure
(adapted from Simpson (2008))

Figure 2.7: Two different trailing edge configurations used for inflatable wings

For inflatable aerofoils with multiple inflation cavities, thicker aerofoil profiles
were used even though the thinner aerofoils are more desirable for good aero-
dynamic performance. This is due to the fact that thicker wings are easier to
manufacture and there is less of a trailing edge reduction, thus maintaining
the aerofoil profile better (Simpson, 2008).

In aerofoil theory, it can be seen that the larger the relative thickness of the
aerofoil, the better the stalling characteristic. However, for aerofoils with a
relative thickness of more than 30 %, the drag force increases substantially
(Li, 2017). For the case of wings of UAVs on the micro or mesoscale with low
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chord lengths, the Reynolds number remains relatively low (between 1.5×104
and 5×105). This can be seen in Figure 2.8, showing a plot of the Reynolds
number vs. Mach number for a wide range of flying objects.

Figure 2.8: Reynolds number vs. Mach number for a wide range of flying
objects (Lissaman, 1983)

In order to keep the inflated aerofoil shape close to the ideal aerofoil shape,
skins were attached to the wing by Haight et al. (2006) to reduce the bumpy
profile of the aerofoil. However, Santhanakrishnan and Jacob (2005) shows
that the bumpy profile improves the aerofoil performance, as the surface rough-
ness from the bumpy profile trips the laminar flow into turbulent flow over the
wing. This turbulent boundary layer was found to be more resistant to flow
separation and therefore the flow rejoins downstream producing a smaller pres-
sure drag compared to the ideal aerofoil profile. This is confirmed in Figure 2.9
which visualises the streamlines of the flow over an ideal and bumpy aerofoil at
Re = 5×104 and α = 4◦. This improvement in the aerodynamic performance
of the bumpy aerofoil, as opposed to the its smooth counterpart. in the low
Re region can be seen in Figure 2.10.

For the wing shown in Figure 2.6, an FE model was also created by Rowe
(2007). The bladder of the wing was omitted from the model and only the
restraint was modelled in ANSYS as shell elements. The wing was created
with the aerofoil geometry as the target inflated shape. Four different internal
pressures were separately applied to the elements of the wing as an outward
pressure loading. Two different explicit load cases were applied to the wing,
the first was a cantilever bending test with a vertical force applied to a node at
the position corresponding to the position of the force in the physical model.
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Multiple simulations were run using the lowest pressure in order to find the
optimal configuration.

(a) Ideal aerofoil (b) Bumpy aerofoil

Figure 2.9: Figures comparing the flow separation occurring between an ideal
and bumpy aerofoil at Re = 5×104 and α = 4◦ (Santhanakrishnan and Jacob,
2005)

Figure 2.10: CL/CD vs. Re number for smooth and bumpy aerofoil (San-
thanakrishnan and Jacob, 2005)

Initially, the simulation did not converge as it was thought that the difference
between the Young’s modulus and shear modulus of the material was too large.
The difference between the two moduli was decreased and different sizes for
the two moduli were tested. It was found that the shear modulus had very
little effect on the stiffness of the wing.
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For all of the wing simulations at the lowest pressure, the numerical and the
physical models initially correlated well and then diverged as the point load
value increased, with the numerical model being stiffer than that of the physical
model. The numerical results for the wing at the second-lowest pressure were
nearly equivalent to the physical results. However, the numerical results for
the lowest and second-lowest pressures were also nearly equivalent. Therefore,
this indicated that the bending stiffness of the wing did not increase with an
increase of pressure as the physical model did. No results were obtained for
the wing inflated to the highest two pressures as they both failed to converge.

The second load case consisted of a wing twist case where, just like the bending
test, the wing root was fixed in all degrees of freedom (DOF). Two equal but
opposite vertical loads were applied to the nodes at the leading and trailing
ends of the wing tip. The angle of twist was computed using the calculated
deflections of the leading and trailing edge points. Again, the two lowest pres-
sures were tested and it was found that the numerical model was stiffer than
the physical model. On average, the numerically determined angle of twist
was only 16 % and 29 % of the experimental results for the lowest and second-
lowest pressures respectively. However, unlike the bending tests, increasing
the internal pressure seemed to increase the torsional stiffness of the wing.

2.4 Summary of Literature
The work presented in this chapter aimed to provide a background to the
problem at hand. The previous work and concepts from the literature aided
in the decision making process when formulating the design methodology.

A basic overview of the stiffness for inflatables is encapsulated in the hoop
stress in Equation 2.1. This also serves as a means for determining the pressure
at which the membrane material will yield due to over-inflation. In the tests
performed in the previous literature, which compared the stiffness of bending
beams under load, it was found that the onset of wrinkling dictated the stiffness
of the beam. Therefore, if the wrinkling is not properly captured then the
results could vary from the physical. A testing method therefore needed to be
chosen that would not be dependant on the accuracy of the wrinkle prediction
(discussed further in Section 3.2).

For the numerical modelling of inflatables, the inflation model used proved to
make a significant difference to the results. Traditional pressure loads applied
to the elements did not seem to do well in the stiffness prediction of the model,
especially seen in the FE model of the wing by Rowe (2007). However, when
using an airbag model for the inflation, more accurate stiffness results were
acquired, as seen in the tests done by Venter (2011).

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 16

Finally, for the inflatable wing, the unsupported material configuration was
chosen over the other two due to the simplicity of the configuration’s con-
struction. For this same reason, the trailing edge configuration made up of the
inflation cavities was chosen. The UAV’s are intended to operate in the low
Re number range as seen in Figure 2.8. Therefore, the bumpy aerofoil profile
was chosen due to its ability to trip the downstream flow into turbulence and
thus, decrease the flow separation.
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Chapter 3

Methods and Materials

3.1 Membrane Material
As discussed in Section 2.3, three different membrane configurations were con-
sidered; however, the configuration chosen for this research was an unsupported
film, in the form of low-density polyethylene (LDPE). It was chosen as multiple
designs needed to be constructed and there was an abundance of the material
available. However, this choice compromised the maximum inflation pressure
of the bag and thus the stiffness of the inflated bag.

3.1.1 Low-Density Polyethylene

The mechanical properties of the LDPE were initially unknown and therefore
testing was required to determine them. Uni-axial tensile tests were performed
on the LDPE film, according to the ASTM D882–12 standard, in order to
determine the stress vs. strain behaviour of the material. Due to the manu-
facturing process of the film, where the material undergoes large permanent
deformations from its isotropic state when it is drawn through a die, the film
has orthotropic material properties. Therefore, ten samples were tested for
each of the two principle directions.

The stress vs. strain data from the tensile testing of the two principle directions
can be seen in Figure 3.1. The averages of the two data sets are represented by
solid lines, where a 99 % confidence interval of the data is plotted as a shaded
area. The plot shows that in the linear region of the two curves, they are
very similar; however, as plasticity sets in, around 5 MPa, the curves start to
deviate. This confirms the assumption of the orthotropic material properties.

The Poisson’s ratio for the film was not tested, instead a Poisson’s ratio was
chosen based on literature by Nitta and Yam (2012). This is due to the lack of
equipment needed to perform the tests. The elongation rate during the testing

17
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Figure 3.1: Tensile test results of the LDPE film in the two principle directions

was at 20 mm/min, and it was found that as the sample elongated, so changed
the Poisson’s ratio. From these tests, the Poisson’s ratio was found to vary
between 0.3 and 0.5.

3.1.2 Manufacturing

Before a complex inflatable structure consisting of multiple, different sized
inflation cavities is constructed a simpler model first had to be used. This
entailed initially using a single cavity model. Once it had been found that the
numerical model represents the physical model well, then the model’s com-
plexity could be increased.

The single cavity bags were constructed using a single sheet of polyethylene,
heat welded together. The first weld is made along the length of the bag,
creating the diameter of the bag. The ends of the bag were then simply
welded together with a flat weld, a visualisation of the bag construction can
be seen in Figure 3.2. The black lines represent the polyethylene film, where
the red lines and circles represent the welds parallel and perpendicular to the
view respectively.

As the geometries of the model change with an increase in complexity, making
use of heat welds to seal the membrane will continue to be used. However,
with an increase in geometry complexity, the positioning of these welds will
change. These changes will be addressed when the change is encountered.
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Figure 3.2: A visualisation of the construction of a single cavity bag using a
single sheet of LDPE, heat welded together

3.2 Experimental Techniques
This research was reliant on the use of numerical models for the numerical
shape optimisation to acquire the aerofoil profile; however, tests were per-
formed on physical models for the validation of the numerical models. These
tests were performed to validate the model’s inflated shape as well as its in-
flated stiffness under load. Break downs on the methods used and the reasons
why they were used are encompassed in this section.

3.2.1 3D Scanning

In order to validate the inflated shape of the numerical models, the geometry of
the physical models needed to be captured. This was done by making use of the
HP 3D Structured Light Scanner which has a maximum resolution of 0.05 mm
(Hewlett-Packard, 2016). This 3D scanner works by projecting a black and
white pattern onto an object and then capturing the patterns on the object
using high-resolution cameras. The scanning setup, seen in Figure 3.3, made
use of two cameras mounted on sliders on either side of the projector. The
angle between each camera and its respective slider was adjustable. A single
camera could have been used, however, the use of two cameras increased the
accuracy of the scans (Hewlett-Packard, 2016).
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Figure 3.3: The 3D scanning setup used throughout the research, with two
cameras positioned on either side of the projector

Once the object geometry had been scanned, the geometry was exported as a
Standard Tessellation Language (STL) file. The geometry of the STL object
consisted of an unstructured triangular mesh which could be extracted using
the Python package, numpy-stl.

3.2.2 Four-Point Bending

The testing method used to validate the stiffness of the single cavity inflatable
bags was the four-point bending test. This method was also used to deform the
model, in order to compare the single cavity bags’ shape under deformation.
The four-point bending tests were used as the presence of wrinkles in the
membrane did not diminish the structural integrity of the model as much as
cantilever tests. This is important, as accurately capturing the behaviour of
the wrinkles is non-trivial and the structural stiffness is dependant on the
wrinkling behaviour, as discussed in Section 2.1.

Displacement control was also used to mitigate accelerated failure in the mod-
els as force control has the chance for large increases in corresponding dis-
placement, due to global buckling of the membrane. Therefore, this would
not accurately capture the stiffness of the models. The displacement control
method used consisted of using a tensile testing machine and a 1 kN load cell
to gather the respective force data. A four-point bending test rig that attached
to the tensile testing machine was created for this purpose.
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The isometric and dimensioned front view of the four-point bending test rig
assembly, in its test configuration, can be seen in Figures 3.4a and 3.4b re-
spectively. Additionally, the drawings used to construct the different parts of
the four-point bending rig can be found in Appendix A.

(a) Isometric view of four-point bend-
ing test rig assembly

(b) Front view of four-point bending
test rig with dimensions

Figure 3.4: Four-point bending test rig constructed for stiffness testing of
inflatable tubes

3.3 Considerations for Non-Linear Finite
Element Analysis

Multiple FE models were created and simulated for this research, whether it be
for the prediction of the inflated shape of a membrane or for determining the
stiffness of a model through four-point bending tests. Due to the nature of the
membrane inflation and the four-point bending tests being time dependant,
dynamic FE analyses were used for both aforementioned cases. The equation
governing the force equilibrium for a linear dynamic response can be seen in
Equation 3.1:

[M][ẍ] + [C][ẋ] + [K][x] = [r]. (3.1)

In Equation 3.1, the matrices M, C and K represent the mass, damping and
stiffness matrices respectively with x representing the displacement vector and
the r force vector. The configuration for the static analysis is the same as the
dynamic, barring the time dependant terms ẍ and ẋ (nodal accelerations and
velocities respectively).
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For non-linear dynamic FE analysis, the same equation observed in Equa-
tion 3.1 is used. However, instead of the matrices and the force vector staying
constant, one or more become dependant on x or a derivative thereof. There-
fore, for each iteration the new matrix or vector needs to be calculated prior to
solving the equations, increasing the computation time. There are a number
of non-linearities that can be encountered in FE analysis. However, only the
non-linearities that are present in the FE analyses in this research shall be
discussed in this section.

In the simulations performed, there were two instances where contact was used:
the contact between the supports and the inflated membrane during the four-
point bending test simulations; as well as the self-contact of the membrane
when it undergoes wrinkling. When contact is used in the simulation, the
computational costs involved are increased. This is because, for every time
step, an algorithm searches for potential penetration of slave nodes through
a master segment. If penetration is found, then a force proportional to the
penetration depth and the contact stiffness is applied in order to eliminate the
penetration. This concept is illustrated in Figure 3.5.

(a) Slave nodes displacing towards mas-
ter surface prior to penetration

(b) Penetration of the slave nodes
through the master surface

(c) Forces applied to the slave nodes proportional to the contact stiffness and the
penetration distance

Figure 3.5: An illustration of how a contact algorithm works in FE analysis

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. METHODS AND MATERIALS 23

Another type of non-linearity encountered in the models was geometric non-
linearity. This is attributed to the displacement dependent loading with re-
gards to the pressure inside the membranes and the large element rotations/displacements
occurring in the simulations.

In order to accurately model the change in stiffness of the inflated membrane
while under load, an airbag model was used. This entailed modelling the air
in the bag as an ideal gas with a fixed mass whereby a change in volume
(bag undergoing deformation) would cause a change in the internal pressure.
Therefore, for each time step, the new volume needed to be determined for
the membrane before its pressure could be determined. This is a highly non-
linear process as the membrane’s pressure is displacement dependant, thus
significantly contributing to the overall computation time.

The simulation of the inflation of the membrane initially consists of the deflated
shape being flat and rectangular and then once it is inflated the bag takes a
more cylindrical shape. The elements on the edge of the bag therefore undergo
large deformations as they flatten out during the inflation. No large stresses
are imposed on the edge elements straightening out during the inflation, due
to the lack of bending stiffness in the membrane.

A source of instability in the simulation could occur if there is too large of
a displacement in a single iteration, as the accuracy of the solution decreases
with large deformations. As the iterations continue the accuracy and stability
will continue to decrease whereby the instability could ultimately lead to a lack
of convergence of the solution. In order to mitigate this, smaller time steps
could be used (for smaller increments) or the bag could be inflated gradually,
instead of a rapid inflation.

3.4 Implicit vs. Explicit Solvers
In order to solve for the response of the dynamic simulations, either an implicit
or explicit solver needed to be used. For implicit analysis, the solution for each
time step is iteratively calculated in order to establish an energy equilibrium
within a certain tolerance. This is done by solving for the x values in Equa-
tion 3.1, which can be computationally expensive when K is large, especially
when there are non-linearities. Explicit analyses entails solving for the nodal
accelerations at each time step, directly and cheaply, as the mass matrix is
lumped (consists of only diagonals). Once the accelerations are calculated,
central-differencing or a similar method is used to determine the velocities and
displacements, and henceforth the strains.

The time steps for both solvers are also different. Implicit solvers are un-
conditionally stable and their time steps are generally orders of magnitude
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larger than that of the explicit solvers (Livermore Software Technology Cor-
poration, 2019). Explicit solvers are, however, only conditionally stable and
their stability depends on their time steps being less than the Courant time
step. This time step can be changed by altering a number of parameters and
can, therefore, ultimately speed up simulation times (to be discussed further
in Section 3.6).

An explicit solver was chosen to compute the response for the dynamic sim-
ulations. This was chosen over an implicit solver due to the explicit solver’s
ability to potentially speed up simulation times. It has also been found that
when using the Newton-Raphson method for the implicit integration during
a slow inflation process, large non-physical oscillations can occur and cause a
lack of convergence (Jetteur and Bruyneel, 2008). This is due to the buckling
of the membrane which causes wrinkling and makes it difficult to reach an
energy balance, as the buckling pattern is sensitive to change and with each
different pattern, the forces change.

The software package chosen to carry out the simulations was LS-DYNA due
to it having an explicit solver as well as it being extensively used for airbag
inflation. A feature in LS-DYNA, dynamic relaxation, is also used to improve
the accuracy and stability of the simulations during the initial inflation stage.

3.5 Dynamic Relaxation
The solutions to most non-linear dynamic problems are path-dependent, thus
results obtained in the presence of dynamic oscillations may not be accurate
and they may diverge from reality. A method used in order to amend this is
dynamic relaxation, which is an explicit method that consists of introducing
an artificial mass dependent damping and inertia to the system. This improves
the convergence to a steady-state solution by attenuating the oscillations in
the steady-state response. The use of artificial inertia and damping during
the transient part of the simulation will, however, not be physical. Therefore,
using dynamic relaxation should be restricted to where the objective of the
simulation is the final equilibrium position of the structure (Rodriguez, 2011).

Due to its explicit nature, dynamic relaxation is especially attractive in highly
non-linear problems in FE analysis, as there is no need for solving large systems
of equations. Although the number of iterations to obtain convergence may
be quite large, the computation cost for each iteration is very low, making it
a very efficient method for non-linear problems.
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Due to the number of non-linearities present in the simulations as previously
mentioned, using dynamic relaxation was an ideal solution. Additionally, the
increased accuracy of the simulations at a small computational cost contributed
to the selection. The fact that the transient part is not physical did not
influence the simulations performed, as only the final state was required.

3.6 Mass Scaling
As previously mentioned, the Courant time step is the largest time step that
an explicit solver can progress per iteration in order to maintain stability. The
smaller the time steps, the longer the simulation runs. However, the goal of
the FE simulations is to aid the design process; therefore, multiple simulations
are required to be run in a relatively short time frame. A good compromise of
run time and accuracy was required, and thus mass scaling was incorporated
into the model.

The Courant time step is given by:

∆t =
Lc

C
, (3.2)

with

Lc =
(1 + β)As

max(L1, L2, L3, (1− β)L4)
(3.3)

and

C =

√
E

ρ(1− ν2)
. (3.4)

The characteristic length for a shell element is shown in Equation 3.3 where β =
0 if it is a quad element and β = 1 if it is a triangular element. The different
lengths of the element’s side are represented as L1–L4, with As representing
the area of the element.

Equation 3.4 represents the speed of sound through the element with E, ρ and
ν being the Young’s modulus, the density and the Poisson’s ratio respectively.
Therefore, according to Equation 3.2, by increasing the element size the time
step is increased and so speeds up the simulation. However, since the bag’s
mesh size will have to be smaller than a certain size in order to maintain
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a degree of accuracy, the constants in Equation 3.4 can be changed. The
constants in Equation 3.4 will therefore be altered in order to speed up the
simulation time.

Changing the Young’s modulus and the Poisson’s ratio of the material could
potentially increase the step size. However, changing the mechanical prop-
erties of the material would influence the stiffness of the material and thus
the simulation results. By increasing the density, and thus the mass, it has
been found that simulation times have been reduced while not significantly
changing the response of the system (Olovsson et al., 2005). Mass scaling was
therefore adopted in this research, bearing in mind that the increased mass
would introduce larger inertia into the system.

3.7 Metamodelling
Metamodeling consists of fitting a mathematical model to the responses of sim-
ulations in order to create a model of the response vs. design variables. They
are able to model the response accurately with relatively few design points.
This saves time as optimisations can instead be performed on the metamodel.
Additionally, the responses with the changes in variables can be visualised,
thus aiding the designer. However, in order to achieve a high accuracy for the
metamodel the correct mathematical model needs to be selected for the data.
These mathematical models take different forms such as low-order polynomi-
als, neural networks and others that shall not be discussed in this thesis but
are discussed by Wang and Shan (2006).

3.7.1 Low-Order Polynomial Functions

The optimisations in this research were all performed using LS-OPT, unless
otherwise specified. LS-OPT is an optimisation software that works well in
conjunction with LS-DYNA and thus was the main reason for using it. How-
ever, a downside to using LS-OPT was that the use of metamodels, optimisers
and point selection algorithms were limited to the ones available in the pro-
gram. Therefore, the only metamodels, optimisers and point selection algo-
rithms considered were the ones available in the program.

Polynomials, mostly in the form of linear and quadratic functions, are often
used in metamodels to model problems that either have a linear trend or a
slightly non-linear trend. An example of a metamodel with two design pa-
rameters can be seen in Figure 3.6. These metamodels are cheap, and easy
to construct and interpret (Wang and Shan, 2006). Due to the low fit order
of the model, it is less susceptible to noise and over-fitting compared to the
higher-order models.
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(a) Design of experiments (b) Function evaluations (c) Built metamodel

Figure 3.6: Process of building a metamodel (Ryberg, 2017)

Over-fitting occurs when the model is too complex and the noise of the data
is captured. With over-fitting, the fits can be very accurate for a particular
set of data, but fail to accurately fit additional data. An example of different
model fits can be seen in Figure 3.7. However, the low order models have a
downfall, as it is not able to accurately model highly non-linear relationships.
This can cause the model to under-fit the data. The applications for low-order
polynomial metamodels are therefore limited.
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Figure 3.7: Comparison of different model fits

3.7.2 Radial Basis Function Neural Network

Neural networks model the relationship between a set of input variables and
an outcome with hidden layers in between. These hidden layers are made up of
small computing elements called neurons. A transfer function is then evaluated
by the neuron from the biased and weighted input values and an output value
is produced (Louis, 2001). The general structure of a neural network can be
seen in Figure 3.8.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. METHODS AND MATERIALS 28

Figure 3.8: The general structure of a neural network with the weighted inputs
to the neurons

The radial basis function (RBF) neural network is a common type of neural
network which consists of only one hidden layer of radial units. Each of these
units model a response function that is peaked at the center and then mono-
tonically varies outwards. A RBF metamodel consists of a linear combination
of radially symmetric functions to approximate highly non-linear responses
(Ma et al., 2008). The model can be expressed as:

yRBF (x) =
n∑

i=1

wiφ(||x− xi||), (3.5)

where x and xi are the vector of the input variables and the vector of input
variables at the ith sampling point respectively. A weighting function, wi, is
applied to the RBF, represented by φ. This is a function of the Euclidean
norm which represents the radial distance. The RBFs can come in many
forms; however, the two most commonly used are the Gaussian function and
Hardy’s multiquadratics (Ryberg, 2013). These two functions are represented
in Equations 3.6 and 3.7 respectively:

φ(r) = −exp
(r
c

)
, (3.6)

φ(r) =
√
r2 + c2, (3.7)

where c is a shape parameter that controls the smoothness of the curves and
r is the Euclidean distance.

A correctly weighted sum of sufficient radial functions will always be enough
to model any set of training data, this is why RBFs are extremely good at

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. METHODS AND MATERIALS 29

modelling highly non-linear data (Stander et al., 2010). The formal proofs can
be found in the form of Hartman et al. (1990) and Park and Sandberg (1993).

Therefore, RBFs are able to achieve the same metamodel accuracies as the
feedforward neural network, another neural network commonly used in meta-
modelling (Terrence, 1999); however, it can be trained orders of magnitude
faster.

3.8 Design of Experiments
Experimental design is the process of selecting design points in the design space
that are to be used in the simulations. There are many different point selection
algorithms available, such as the factorial, D-optimal, Latin Hypercube and
distance-based. Each of these algorithms have their specific advantages. For
the simulations performed here, a distance-based algorithm was used for every
instance and therefore, a detailed breakdown will be provided. A description
of the remaining algorithms will not be specified; however, more information
on these algorithms can be found in Santner et al. (2003) and Pronzato and
Müller (2012).

The distance-based algorithms are commonly used when there is no need to
impose a strong bias on the spread of the sample points in the design space
(Stander et al., 2010). Instead, the points are uniformly scattered. This there-
fore allows the design space to be filled with sufficient points with a moderate
number of experimental points, requiring fewer evaluations to create the meta-
model. This uniform spread characteristic is particularly useful when utilised
with a non-parametric model such as a neural network.

There are many different distance-based algorithms available such as the min-
imax and maximin distribution, to name two. The maximin distribution was
the distance-based algorithm chosen as it was the only distance-based algo-
rithm available in LS-OPT. It entails maximising the minimum distance be-
tween points in the design space. The minimax distribution is very similar;
however, it minimises the maximum distance between design points. A com-
parison between these two distributions can be seen in Figure 3.9.
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(a) A maximin distribution (b) A minimax distribution

Figure 3.9: Comparison between the maximin and minimax space-filling dis-
tributions (Ryberg, 2013), with R representing the radial distance

3.9 Optimisation Algorithms
Once the metamodel has been built, optimisations are then able to be per-
formed on it. Just as the selection of the metamodel is important and case-
specific, so is the selection of the optimiser used in conjunction with it.

3.9.1 Leapfrog Optimiser

The unconstrained leapfrog optimiser is a gradient-based method developed by
Snyman (1982), in which no explicit line searches are performed. The optimiser
attempts to minimise a n variable function by considering the dynamics of a
mass particle in a n-dimensional force field, where the function value to be
minimised is the potential energy of the particle at point x(t) at time t.

The equations of motion of the particle that are subject to an initial position
and velocity are calculated by approximating the associated trajectory using
the "leapfrog" method, explained in more detail by Snyman (1983). Another
aspect of the method entails reducing the kinetic energy of the particle as it
moves uphill. The potential energy of the particle is also systematically re-
duced, allowing the particle to settle in a local minimum. This method was
proven robust, as it is relatively insensitive to local inaccuracies and discontinu-
ities, making it effective for minimising problems that produce noisy function
values (Snyman, 2000).
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The constrained leapfrog algorithm entails utilising the same formulation as
the unconstrained algorithm but with a penalty function applied to it. This
involves increasing the objective function value of the sample if the value falls
outside the specified constraints. The application of the penalty function oc-
curs in three phases:

• Phase 1 entails applying mild penalty factors to the active constraints
and performing the optimisation. If no constraints are active upon con-
vergence, optimisation can be terminated as the optimum is found. If
any constraints are active then it proceeds to Phase 2.

• Phase 2 increases the penalty factor to penalise violations of the con-
straints more strictly and the optimisation is performed again.

• In order for Phase 3 to be initiated the number of active constraints
has to be larger than the number of design variables. In this case, a
compromised solution is determined, otherwise, if Phase 3 is not initiated
the solution from Phase 2 is the optimal value.

3.9.2 Genetic Algorithm

Evolutionary algorithms are those that aim to mimic nature and have the
characteristics of being extremely robust, have an increased chance of finding
the global minimum (compared to local optimisers) and are able to deal with
discrete optimisation problems very well (Venter, 2010). However, the compu-
tational cost of these algorithms is high compared to gradient-based methods.
Genetic algorithms (GAs) are one of the more established evolutionary al-
gorithms inspired by Darwin’s principle of "survival of the fittest" (Holland,
1976).

The optimisation loop for the GA implemented in LS-OPT can be seen in the
flow chart in Figure 3.10. The initialisation of the loop starts by generating an
initial parent population of a set of individuals (design points). The individuals
are made up of chromosomes (design vectors) which consists of a random set
of genes (design variables). The population is then evaluated and ranked
according to their fitness value (function value). Once all of the fitness values
have been calculated, a selection operator is used in order to determine which
individuals are to be used for mating, of which the higher ranked individuals
have a larger probability of being selected.

Thereafter, crossover occurs which involves randomly selecting parents for mat-
ing with a probability to create children. These children share the genes from
their parents, where the genes are passed down according to the method used.
Once the genes had been crossed over, there is a probability of mutation of the
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child’s genes where, if mutated, then random changes will occur to the chro-
mosome. Subsequently, the new child population will then undergo evaluation
and the fitness values ranked.

In order for high fitness value individuals not to be lost during mating, elitism
is applied which entails replacing the worst-ranked individuals in the child pop-
ulation with the best-ranked individuals from the parent generation. Choosing
the number of elites should be done carefully, as too many can drive the search
to a local minimum. Once elitism has been applied the child population be-
comes the parent population and the stopping criteria is checked. If it is
met, the optimisation is terminated and the results are reported. If not, the
optimisation loop starts again at the beginning of the genetic operators.

Figure 3.10: Optimisation loop of the genetic algorithm utilised in LS-OPT

3.10 Error Measures
In this research the error occurring between two sets of data was often mea-
sured, using different error measures depending on the situation. This section
contains the error measures used in this research and a description of each of
them.
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3.10.1 Root Mean Squared Error

The first measure of error is the root mean square error (RMSE) that represents
the standard deviation of the errors between two, equal sized data sets. The
definition for the error measure can be found in Equation 3.8:

RMSE =

√∑n
i=1(yi − ŷi)2

n
, (3.8)

where yi and ŷi are the actual and predicted responses respectively and n is
the number of design points. One of the advantages of the RMSE is that the
RMSE values for data sets of different sizes can be compared as the sum of
squares in Equation 3.8 is averaged.

3.10.2 Hausdorff Distance

The second of the error measures is the Hausdorff distance which is the max-
imum distance of a set to the nearest point in the other set (Agarwal, 2007).
For example, if comparing sets A and B then the Hausdorff distance would
be:

δH(A,B) = max
a∈A
{min

b∈B
{||a− b||}} (3.9)

The fact that δH(A,B) does not equal δH(B,A) needs to be taken into ac-
count when calculating the Hausdorff distance. Both instances thus need to
be calculated and the largest value used. Unlike the RMSE, the Hausdorff
distance does not require the two data sets to be of the same size nor does
it have to have only one unique y value for every x value. Even though the
Hausdorff distance is more robust than the RMSE, the computational power
demands are higher and therefore it should only be used when necessary. A
visual representation of the Hausdorff distance between two sets can be seen
in Figure 3.11.
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Figure 3.11: Visual representation of the Hausdorff distance from set A to B
as well as from B to A represented as δH(A,B) and δH(B,A) respectively

3.10.3 Metamodel Validation

A popular validation technique for metamodels, which was used in this re-
search, is cross-validation. The leave-out-one cross-validation consists of build-
ing multiple metamodels, but each time a different design point is omitted.
The predicted value for each design point would therefore be its value on the
metamodel built without that specific design point.

There are many different methods for measuring the accuracy of metamodels.
However, only one measure, coefficient of determination (R2), shall be used.
The R2 value is a measure of how well a model is able to capture the variability
in a dataset for which R2 ∈ [0, 1], where 1 indicates a perfect fit. The coefficient
of determination is defined as follows:

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

, (3.10)

where ȳ is the mean actual value.
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Chapter 4

Shape Validation of the Finite
Element Model

4.1 Development of the Finite Element Model
In order to determine whether the inflated shape of a physical inflatable wing
could be predicted using a numerical model, preliminary tests were performed
on simplified models. These tests entailed constructing and inflating numer-
ical models of single cavity inflatable bags. Their inflated geometries would
then be compared to that of their corresponding physical models to validate
the numerical model. Only the FE model for the shape validation of the sin-
gle cavity bag will be detailed within, whereas adaptations to this model for
different applications shall be detailed in Section 6.1.

4.1.1 Material and Element Properties

From literature and the tests performed on the LDPE in Subsection 3.1.1,
material properties for the numerical model could be derived. These properties
can be seen in Table 4.1.

35
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Table 4.1: Material properties of the low density polyethylene film used in the
FE model

Property LDPE film

Material model Linear elastic
Thickness 85 µm
Elastic modulus 0.24 GPa
Poisson’s ratio 0.4
Density* 1.8 ×107 kg/m3

*The concept of mass scaling, discussed in Section 3.6, is the reason for the
high density of the LDPE film. This specific density was chosen as if it were
increased more, then it would not further decrease the simulation times due
to the element size being the constraining factor.

To simplify the FE model material, the strains occurring in the material would
be restricted to the linear region by limiting the magnitude of the applied loads.
Therefore, the stresses occurring in the material could not exceed 5 MPa. Since
the stiffnesses of the LDPE in the two principle directions were very similar
in the linear region, it was decided to make the material model a linear elastic
isotropic model as opposed to a linear elastic orthotropic model.

Since the Poisson’s ratio varies between 0.3 and 0.5, it was decided to test its
influence on the inflated shape when performing the analysis. However, the
value of 0.4 was given as a starting point for the iterative method. Due to
the LDPE film being very thin and not being able to support a bending load,
fully integrated membrane elements were chosen to represent the inflatable
bag. The shear factor that scales the transverse shear stress was also changed
to 0.83 as it suggested for isotropic materials by Hallquist (1986).

4.1.2 Bag Inflation

As discussed in Section 2.1, two different inflation models have been used in
the past for FE models of inflatable structures, a pressure load applied to the
elements and an airbag model, which applies an air mass to a closed volume
and treats the air as an ideal gas. The airbag model has no advantage over the
pressure model in terms of modelling the inflated shape of structures; however,
it can model the stiffness of the inflated structure when deformed more accu-
rately. The stiffness of the inflated model is not of immediate concern; however,
being able to accurately predict the deformation of the inflated structure due
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to a load could be useful if the model’s applications were to be extended. For
this reason, the airbag model was chosen.

In order for the airbag model to function correctly, it requires the structure
to have a closed volume with the shell normals pointing outwards. Due to the
model requiring a closed volume, a full model had to be used instead of a model
that uses symmetry. The mass inside the bag is controlled by a mass flow rate
vs. time curve, this curve can be seen in Figure 4.1. Instead of altering the
load curve each time to change the internal pressure of the model, the scale
factor of the ordinate (SFO) was parametrised.

Figure 4.1: Load curve for the mass flow of air into the inflatable bag

4.1.3 Control

In order to maintain accurate and stable simulations, measures were taken by
activating certain features. Dynamic Relaxation, as discussed in Section 3.5,
was used in the transient phase of the simulation, in conjunction with a global
damping of the system to attenuate the oscillations in the simulation. Due
to the additional mass from the mass scaling, there was a large amount of
inertia in the system which caused the transient phase to exhibit unrealistic
responses. Therefore, the simulation was run until the kinetic energy in the
system was zero and then those results were extracted.

4.2 Shape Validation
As discussed in Section 3.2, a 3D scanner was used to capture the geometry of
the inflated structures to validate the inflated shape of the numerical models.
For the shape validation of the single cavity bags, three different sized bags
were tested. These bags were 50, 75 and 100 mm in diameter, each with a
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length of 600 mm. The shape validation tests were performed by inflating
both the physical and numerical models with no loads, besides the inflation,
applied to them and their inflated shapes compared. For the inflation, all of
the bags were inflated to the same internal pressure, 5.75 kPa. This pressure
was chosen for each of the bags, as it was less than the maximum allowable
inflation pressure before the material yields, calculated using Equation 2.1.

4.2.1 Physical Tests

The 3D scanner scans the object by projecting a black and white light onto
it. However, for the case of clear polyethylene sheets, the light passes straight
through it. The light is therefore not reflected and cannot be captured by the
cameras. In order to amend this, a white penetrant developer was sprayed onto
the bag which dried quickly and left behind a white powder residue. Since the
solution evaporated in a few seconds, it was not in contact with the material
long enough to soften the material. This white residue allowed the projected
pattern to be reflected off the bag and the image captured with the camera.

Once the geometry of the bags were scanned and saved to an STL file, the
bags’ coordinates were extracted. The STL files are made up of triangular
meshes, therefore three nodal points exist for each element. In order to reduce
the number of points, each element’s three nodal coordinates were averaged to
a single coordinate in the center of the element.

4.2.2 Numerical Tests

Once the numerical simulation of the bag inflation had terminated, the nodal
coordinates of the model at its final time step were extracted. The file that
contained this data is the nodout file.

The inflated shape of the numerical model was symmetric about all three
Cartesian planes; however, this was not the case for the physical model which
was orientated in an arbitrary position. The physical model was rotated and
translated about the x, y and z axes in order to align its geometry with the
numerical models. The alignment was performed by means of rigid body trans-
formations where the rotation matrices about the x, y and z axes can be found
in Equations 4.1 to 4.3:
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Rx =

1 0 0
0 cos(A) −sin(A)
0 sin(A) cos(A)

 , (4.1)

Ry =

 cos(B) 0 sin(B)
0 1 0

−sin(B) 0 cos(B)

 , (4.2)

Rz =

cos(C) −sin(C) 0
sin(C) cos(C) 0

0 0 1

 , (4.3)

where A, B and C are the angles of rotation about the x, y and z axes respec-
tively.

The three rotation matrices were multiplied together in order to form a sin-
gle rotation matrix, which was then used to multiply with an untransformed
coordinate matrix to form a 3×n transformed coordinate matrix. The rows
of the transformed coordinate matrix consisted of the x, y and z coordinates
respectively and n being the number of coordinates for the bag. Once the bag
was rotated, the coordinates of the bag were translated about the three axes.

In order to visualise the shape of the inflatable bags, 2D plots were created
for the points near each of the symmetry planes (≤ 2.5 mm on either side
of the symmetry plane). This created an outline of the bag shape near each
of the symmetry planes. The nodal coordinates were initially transformed by
eye. This was an iterative process which entailed manually transforming the
coordinates of the physical point cloud to match the numerical model’s point
cloud for the best fit.

Once it was thought that the models were manually aligned as best as they
could be, a metamodel based optimisation was performed in order to minimise
the sum of the Hausdorff distances between the two point clouds for each of the
symmetry plane plots. This optimisation used an RBF as the metamodel and
an optimiser that used a GA initially to search for the global minimum and
then switched to an LFOP to search for the local minimum. The optimisation
entailed parametrising the rotation angles about the three axes as well as the
translations along the three axes. The optimisation was performed until the
difference between the successive Hausdorff distances was less than 0.01 mm.
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4.2.3 Point Cloud Comparison

A mesh convergence study was performed on the numerical models in order
to determine a suitable mesh size. The model chosen for the study was the
50 mm diameter bag as the mesh would affect its accuracy the most. The
study entailed comparing the effect of the mesh size on the Hausdorff distance
between the two point clouds with the physical model in its optimised orien-
tation. The size of the model’s elements were initially 10 mm and then halved
in size until the sum of the Hausdorff distances of the three profiles converged.
The results of the mesh convergence study can be seen in Figure 4.2 in the
form of an element length vs. Hausdorff distance plot.
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Figure 4.2: A plot displaying the element length vs. Hausdorff distance from
the mesh convergence study

From the results of the mesh convergence study, an element size of 2.5 mm was
chosen for the remainder of the models due to the small change in Hausdorff
distance when decreasing the element size to 1.25 mm. By halving the element
size to 1.25 mm, the number of elements quadrupled. Therefore, it would not
have made the utilisation of such small elements feasible, due to the large
increase in simulation times for a small accuracy gain.

Just as the influence of the mesh density on the model’s inflated shape was
tested, different Poisson’s ratios were used to determine their effect on the
inflated shape. The 50 mm diameter model was once again used and the three
different Poisson’s ratios tested: 0.3, 0.4 and 0.49 (0.5 was not tested as it
caused an error in LS-DYNA). The results for the different Poisson’s ratios
using the 2.5 mm mesh can be seen in Table 4.2.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. SHAPE VALIDATION OF THE FINITE ELEMENT MODEL 41

Table 4.2: The influence of the Poisson’s ratio on the Hausdorff distance be-
tween the numerical and physical point clouds for a 50 mm model

Poisson’s ratio Hausdorff distance [mm]

0.3 8.07
0.4 8.03
0.49 8.04

Changing the Poisson’s ratio had a small influence on the Hausdorff distances
between the two data sets as seen in Table 4.2. However, the ratio of 0.4
did produce the smallest Hausdorff distance, even if it was only by a small
difference, and therefore it was chosen for the remaining models. The inflated
shape of the 75 mm bag using the finalised material properties and an element
size of 2.5 mm can be seen in Figure 4.3.

Figure 4.3: Inflated diameter 75 mm bag with 2.5 mm quad elements

A breakdown of the Hausdorff distances of the different symmetry plane plots
for the different sized models can be found in Table 4.3. The plot of the points
of the physical and numerical models lying near the three symmetry planes for
the 75 mm diameter single cavity model can be found in Figure 4.4. The plots
comparing the 50 and 100 mm diameter bags can be found in Appendix B.
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Table 4.3: The Hausdorff distances between the physical and numerical point
clouds for the different sized models, near their respective symmetry planes

Bag Plane Hausdorff [mm]

�50 xz 3.30
yz 2.08
xy 2.65

�75 xz 3.99
yz 2.3
xy 5.8

�100 xz 5.2
yz 2.34
xy 3.7
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Figure 4.4: Symmetry plane plots comparing the shape of the numerical and
physical model of a 75 mm inflated bag under no load
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As seen in Table 4.3, as the model size increases, so does the Hausdorff dis-
tances. This was true except for the plots on the xy plane, as there was a
large increase from the 50 to 75 mm bag and then it decreased again at the
100 mm bag. This large value for the 75 mm bag at first seems out of place;
however, when looking at the graph in Figure 4.4c, the shapes of the curves
are found to be very similar and if the numerical curve were shifted to the left
the error would be smaller. Shifting the numerical model to the left, however,
would increase the error in the xz plane. This is what was most probably
done by the optimizer for the 100 mm bag and thus would explain the large
difference between the errors for the 100 and 75 mm bags, compared to the 75
and 50 mm bags.

Even though the Hausdorff distances increased with the model size, the in-
crease was not linearly proportional to the scaling of the model. This meant
that the accuracy is not lost when using larger models and that they are able to
produce results as accurate as the smaller models. Upon viewing the inflated
profiles compared in Figure 4.4, for the 75 mm bag as well as the plots for the
50 and 100 mm bag, the physical models all seem to be slightly more inflated
than the numerical model. This could be attributed to the numerical model
being slightly more stiff than the physical model. Deviations in the models
near the ends of the bag could also be attributed to the material properties
being altered during heat welding.

4.3 Summary
The simulated inflated shapes of the numerical models proposed in this chapter
produced accurate results when compared to the inflated profiles of the scanned
physical models, inflated to the same pressure. The inflated profile of the
numerical model on the yz plane produced the best fit for all of the different
sized models. The small error of the fit of this profile is very positive, as the
profile on this plane is the profile that will be used for the shape optimisation.

The Hausdorff distances between the profiles on the xy and xz plane produce
results slightly larger than those on the yz plane. A potential reason for this
could be due to the heat sealing of the ends of the bag. The heat sealing melts
the material and in turn, could possibly change its mechanical properties. The
small error of the fit of the yz profile is good, as the profile on this plane is
the profile that will be used for the shape optimisation. Therefore, due to the
small errors between the physical and the numerical model’s inflated shape,
the shape validation of the numerical model can be seen as successful.

Stellenbosch University https://scholar.sun.ac.za



Chapter 5

Shape Optimisation

5.1 Optimisation Problem
The methodology proposed in this research aims to solve an inverse problem.
This inverse problem entails determining the uninflated shape for an inflatable
aerofoil, which has an inflated profile that fits a target aerofoil profile. From the
uninflated shape, the dimensions could be used to construct a physical model.
Numerical shape optimisation was proposed as a solution to this dilemma due
to the non-trivial complexities associated with predicting the inflated shape.

The numerical shape optimisation entailed constructing multiple FE models
with a varying number of single cavity inflatable bags, connected to one an-
other. The models were inflated and the profiles compared to that of a pre-
scribed target aerofoil shape. To compare the target and numerical profiles,
the chord length of the numerical model was set to the distance from the
beginning of the first bag to the end of the last bag.

Another means of comparison that could have been used would entail the end
of the last bag not lining up with the trailing edge of the target profile. This
would allow a rigid trailing edge to be connected to the inflated model for
the remainder of the aerofoil. However, it was previously established that the
trailing edge would be made up of the inflation cavities. A comparison of these
two chord lengths can be seen in Figure 5.1.

In order to change the inflated shape of the model, the shape of the pre-
inflated model required changing. The initial pre-inflated shape of each model
consisted of square prisms with parametrised lines on the corners of the squares
along the span. These parametrised lines can be seen in Figure 5.2 for a model
made up of three cavities in the form of thick black lines with the black dots
representing the ends of the lines.

44
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(a) Chord length of inflated numerical
model equal to that of the target pro-
file (adapted from Simpson (2008))

(b) Chord length of inflated numerica
model less than that of the target pro-
file (adapted from Simpson (2008))

Figure 5.1: Two different methods for comparing the chord lengths of the
inflated numerical model and the target profile

These thick black lines’ coordinates were parametrised in the x and z direction,
as only the profile of the wings were matched. The aerofoil used as the target
aerofoil was the NACA 0030, for the reasons mentioned in Section 2.3. A
symmetric aerofoil was used as the lines on the top and bottom could use
the same parameter, due to the NACA 0030 aerofoil profile being symmetric
over the xy plane. This halved the number of parameters required which was
beneficial in terms of computational cost for simulations with a larger number
of cavities.

Figure 5.2: The pre-optimisation deflated shape of the numerical model of a
three cavity inflatable wing

Once the cavities were inflated, a set of nodes half way down the span and
around the entire surface of the wing was extracted, see red nodes in Figure 5.2.
The profile of the inflated models near the root and tip were found to be
affected due to the end effects. Therefore, the span of the model was created
in order for the extracted nodes not to be affected by the end effects, but were
also kept compact enough to limit the simulation times. The formulation of
the optimisation problem can be formulated as follows:
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min f(x, z) =

√∑n
i=1(z

∗
i − ẑ∗i )2

n
, (5.1)

subject to 0.5(3x1 − x2) + ε ≤ x1 ≤ 0.5(x1 + x2)− ε,
0.5(xi−1 + xi) + ε ≤ xi ≤ 0.5(xi+1 + xi)− ε, i = 2, . . . , k − 1,

0.5(xk−1 + xk) + ε ≤ xk ≤ 0.5(3xk − xk−1),
ε ≤ zi ≤ 0.5(t)(max(xk)−min(x1)), i = 1 . . . k.

The objective function, f(x, z), represents the RMSE between the positive z
nodal coordinates of the inflated numerical model and the NACA 0030 aerofoil
profile at the corresponding x coordinates. These values are represented as z∗
and ẑ∗ respectively, and n the number of coordinates compared. In order
to compare the two profiles, the numerical models’ dimensions needed to be
scaled so that x ∈ [0, 1] with the z coordinates scaled proportionally. A direct
comparison of the numerical models’ fits was possible due to the chord lengths
scaled to the same range.

The reason for using the RMSE as the error measure was due to the sum of
the squared error being divided by the number of points before it is square
rooted. This averaging of the sum of squared error allows the errors of profiles
consisting of an inconsistent number of nodes to be compared fairly.

In Equation 5.1, x and z represent the x and z vectors respectively of the
nodal coordinates for the parametrised lines of the model in the uninflated
shape. The number of parameters in these vectors are represented by k, and
i representing an index in between 1 and the maximum. The values in x were
constrained in such a way that the upper and lower bounds are an element’s
length less of half the distance between its initial adjacent points. For the
values in z, the maximum value was constrained to be half the thickness of
the NACA 0030 aerofoil when scaled to the ideal aerofoil (t representing the
aerofoil thickness), using the largest possible chord length. The minimum value
was set at an element’s length away from the symmetry plane.

The value for ε in Equation 5.1 represents the length of the elements in the
model. This is portrayed in a visual representation of the parameter constraints
that can be seen in Figure 5.3 for the three cavity model shown in Figure 5.2.
The red dots and lines in the figure represent the parametrised lines along the
y axis and the upper and lower bounds for each of the parameters respectively.

This optimisation formulation was used for the shape optimisation of three,
eight and fifteen inflatable cavity wings. This was done to observe the quality of
fit of the inflatable wings with varying the number of cavities. When increasing
the number of cavities used for the model, the sizes of each of the cavities were
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Figure 5.3: A visual representation of the parameter constraints of the pre-
inflated three cavity model

kept constant. The chord length of the models therefore increased as the
number of cavities increased. This was done to conserve the resolution of the
cavities in the numerical model, in order to maintain the accuracy of the final
shape.

An airbag inflation model was used to apply the inflation pressure to the model
due to the airbag model’s ability to more accurately simulate the inflated
stiffness of the structure under deformation, as discussed in Chapter 2. Even
though an accurate inflated stiffness is not required for shape prediction, if the
use of the model were to be extended to deflection prediction under a loading,
then it would be important.

Inflation pressures were applied to each of the cavities separately, with each
one having a closed volume. Throughout the shape optimisation simulations,
the air masses inside the cavities were kept constant with a mass that would
pressurise the bags to a sufficient pressure (a pressure at least a 1 kPa above
the ambient pressure) no matter the size. This was done as it was assumed
that the inclusion of the mass parameters would increase the computational
time without significantly improving the accuracy.

LS-PrePost was used for the construction of the numerical models and LS-
DYNA was used to perform the FE analysis. The role of these programs
in the numerical shape optimisation can be seen in the optimisation pipeline
in Figure 5.4. Metamodel-based optimisation was used to take advantage
of metamodelling’s ability to reduce simulation times and achieve accurate
results, provided the correct configuration was used. Domain reduction was
also used and decreased the range of the parameters after every iteration in
order to narrow the search for the minimum.
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Figure 5.4: The optimisation pipeline for the shape optimisation performed on
the three, eight and fifteen cavity wings

5.2 Finite Element Model Construction
The numerical model’s shape is required to change in order to fit the target
aerofoil profile; therefore, a new numerical model of the inflatable wing was
created for every design point. This was done by executing a macro in LS-
PrePost. This would create a model similar to that in Figure 5.2, but with
the coordinates of the parametrised lines updated for each design point. The
model was built every time instead of an initial model geometry being morphed
so that the mesh would not deform; which could make the solution unstable
and inaccurate.

The material properties for polyethylene found in Section 4.1 were once again
used for the model. Two different fully integrated membrane elements were
applied to the model. The outer elements had a thickness of 85 µm and the
elements representing the spar had a thickness of 42.5 µm. The spars consisted
of two equally sized parts placed in the same position therefore representing a
single full-thickness spar. This was done in order for the airbag model to work
correctly, as the element’s normals were required to point outwards from the
closed volume. With just a single part in between each cavity, the normals
would point inwards for one of the cavities.

Once created, some of the parts’ normals were not orientated in the correct
direction and therefore, in the macro file, the orientation of the incorrectly
aligned normals were reversed. The model was checked for duplicate nodes
and the nodes merged in order to connect the adjacent parts. The node-set
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for extraction post-simulation, seen in Figure 5.2, was created; along with the
different part sets to be used for the definition of the airbag inflation of the
cavities. At the end of the macro file, the model was saved to a temporary
keyword file. This file contained the model data specific to each design point
and would be used in the simulation of the model.

LS-OPT has the option of setting up a stage (blue shaded blocks in Figure 5.4)
to utilise LS-PrePost directly. However, for this instance, it did not work in
Microsoft Windows 10, as it created incomplete keyword files. The problem
was thought to be that the model-building stage was terminated before the
model was built, and not due to the deformity of the model. This was tested
and the geometries that failed to build through LS-OPT built successfully
when executing the macro directly through the LS-PrePost program.

To test whether the premature termination was the issue, the stage at which
the numerical model was built was specified to execute a user-defined program
instead of LS-PrePost. The user-defined program used was Python, which
executed the macro file with LS-PrePost. This fixed the issue.

5.3 Model Simulation and Function Value
Evaluation

As previously mentioned, the temporary keyword file contained the model data
for each specific design point. The remaining data, that was kept constant
throughout the design process, was stored in a main keyword file. The main
keyword file contained the following information: the termination time, the
global damping, the mass flow curves, the database output requests, the airbag
model and the material and element properties. The main keyword file for a
three inflation cavity wing can be found in Appendix C.

Upon completion of the numerical model’s simulation, a binary nodout file
was extracted to retrieve the nodal coordinates of the intended inflated profile
at the final timestep. The binary file was outputted, as LS-DYNA only creates
this data as binary files.

Unlike ASCII files, which are in a human-readable format, the format of binary
files are only readable by the computer. Therefore, it was converted to an
ASCII file before the data was extracted. In order to convert the binary
file, an executable that is available with the LS-DYNA build, l2a.exe, was
used. This executable was run through Python in the final stage ("Evaluate
Function Value" in Figure 5.4). In the same Python script, the function value
was computed once the file had been converted and the nodal coordinates
extracted.
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Multiple combinations of metamodels and optimisers were tested on the three
cavity model in order to determine the best configuration. The results from
these tests can be found in Appendix D. The configuration that was chosen for
the remaining simulations consisted of an RBF metamodel, using an optimiser
that used a GA to search for the global minimum then switched to an LFOP
to search for the local minimum. The RBF used a Gaussian distribution
and was constructed from the design points only from that iteration. This
configuration was chosen, as it yielded the smallest objective function value,
as well as producing consistently accurate metamodels.

The termination criteria for the optimisation was set so that it would terminate
if the change in the objective function value between two successive iterations
was less than 10−3. The termination criteria imposed on the shape optimisation
allowed the model to converge to a profile that resembles that of the target
aerofoil profile. However, it could have slightly restricted the convergence of
the model to its most optimal shape. For the purpose of this research, the
converged answers will suffice. However, if a more accurate fit is required,
the tolerance between each iteration’s function value can be changed. The
convergence plots for each model can be seen in Figure 5.5.
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Figure 5.5: Convergence of the shape optimisation for the different sized mod-
els

The inflated, shape optimised numerical models for the three, eight and fif-
teen cavity models can be seen as sectioned views in Figure 5.6. The fits
between these inflated numerical profiles and the target aerofoil profile can be
better visualised in Figures 5.7 to 5.9. In these plots the inflated numerical
model’s profile is represented in blue, the target profile in orange and the er-
ror between the two profiles represented by a green dashed line. These plots
were normalised so that x ∈ [0, 1], where x represents a coordinate on the
chord length. The fit between the two profiles is represented by the R2 value

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. SHAPE OPTIMISATION 51

displayed above the graph and a plot of the residual error between the two
profiles.

(a) Three cavity model (b) Eight cavity model

(c) Fifteen cavity model

Figure 5.6: Sectioned views of the inflated, shape optimised numerical models
for the three, eight and fifteen cavity models
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Figure 5.7: Comparison of the three cavity numerical model’s inflated profile
vs. NACA 0030 aerofoil profile
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Figure 5.8: Comparison of the eight cavity numerical model’s inflated profile
vs. NACA 0030 aerofoil profile
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Figure 5.9: Comparison of the fifteen cavity numerical model’s inflated profile
vs. NACA 0030 aerofoil profile

As the number of cavities used for the models increased, so improved the fit
of the numerical model to the target. This is evident upon referring to the
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decreasing residuals and the increasing R2 value. Upon viewing the difference
between the R2 values of the cavities, a larger difference was found between
the first two compared to the last two. Therefore, the effect of improving the
fit as the number of cavities increased seemed to have a diminishing return.

5.4 Pressure Matching
In order to determine whether the inflated profile can accurately represent
its corresponding physical model, the two profiles had to be compared. This
entailed constructing a physical model and capturing its geometry once the
model had been inflated to a uniform pressure. However, since the inflation
model consisted of applying an equal air mass to each of the cavities and
each of the cavities differed in volume, the pressures inside the cavities were
different. Therefore, another set of optimisations were performed to match
all the cavities’ pressures in the numerical models so that the profiles of the
physical and numerical models could be compared.

From the numerical tests performed on the single cavity numerical models for
the shape validation, it was found that when the bags were inflated to pressures
higher and lower than the 5.75 kPa there was not a large difference between
the inflated profiles. More specifically, it was not distinguishable to the eye.
However, as the pressures neared the yield pressure the profile displacements
began to be more evident. This was the same for when the pressure neared
1 kPa, where the bag was not sufficiently pressurised.

The pressure used for each of the different sized models was determined us-
ing the equation for the hoop stress acting on a thin-walled pressure vessel,
Equation 2.1. The σ used, was the yield strength of the polyethylene divided
by a safety factor of 1.5. The largest radius of the outer membrane of the
model was used as r in the equation, as the material would yield there first.
The largest radius of the cavity was calculated, with the circle through three
points equation using the nodal coordinate points of the inflated shape opti-
mised model. The formulation of the pressure matching optimisation problem
is as follows:

min f(m) =

√∑n
i=1(pi − p̂i)2

n
, (5.2)

In Equation 5.2, f(m) represents the RMSE of the pressures in the cavities
for a model with n cavities. The vector m represents the vector containing
mass scaling factors that control the amount of mass flow into the cavities.
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The pressure in the cavities and the target pressure are represented as p and
p̂ respectively.

The geometry of the shape optimised model was used for each design point
for the pressure matching optimisation. This was done as it was assumed
that small pressure changes in the cavities would not cause a large change in
the inflated profile. The termination criteria was set to terminate once the
function value was within 100 Pa of the target pressure. This value was used
as it was found that 100 Pa did not make a noticeable difference to the fit of
the aerofoil profile.

The pressure matching optimisation results for the eight and fifteen cavity
models both converged to within the constraints. Unlike the eight cavity
model, the fifteen cavity model was sensitive to the upper and lower limits
of the constraints, causing it to settle in local minimums. An iterative ap-
proach was therefore followed. This entailed narrowing the limits of the mass
scaling factors for each cavity, depending on whether the pressure inside its
corresponding cavity was above or below the target pressure.

The change in the pressure for the three cavity model had a large influence on
the inflated profile. This is seen from the 103 % increase of the RMSE value
from the shape optimised profile to the pressure matched profile. Therefore, in
order to maintain a low error fit of the inflated profile to the ideal, a different
optimisation formulation was created. This formulation entailed parametrising
the x and z coordinates of the features parametrised in the shape optimisation
as well as the mass scaling parameters. The optimisation formulation is seen
in Equation 5.3:

min f(x, z,m) =

√∑n
i=1(z

∗
i − ẑ∗i )2

n
, (5.3)

subject to − 100 Pa ≤ g(x, z,m) ≤ 100 Pa,
0.5(3x1 − x2) + ε ≤ x1 ≤ 0.5(x1 + x2)− ε,
0.5(xi−1 + xi) + ε ≤ xi ≤ 0.5(xi+1 + xi)− ε, i = 2, . . . , k − 1,

0.5(xk−1 + xk) + ε ≤ xk ≤ 0.5(3xk − xk−1),
ε ≤ zi ≤ 0.5(t)(max(xk)−min(x1)), i = 1 . . . k.

The objective function of the optimisation, f(x, z,m), was the RMSE value
between the inflated profile of the numerical model and the ideal profile. The
RMSE of the pressures, g(x, z,m), was constrained in order for it to be within
100 Pa of the specified target pressure. The termination criteria for the op-
timisation was set to terminate the optimisation once the difference between
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the successive optimised RMSE value was less than 10−3.

The pressure matching optimisations were performed on all three models with
the eight and fifteen cavity models making use of the formulation in Equa-
tion 5.2 and the three bag model making use of the formulation in Equation 5.3.
The pressures for all three of the models converged to within 100 Pa where the
R2 fits between the numerical and target profile for the post-pressure matching
optimisation models can be found in Table 5.1. The R2 fits for the pre-pressure
matched models were also included for a comparison.

Table 5.1: The R2 fits between the three, eight and fifteen cavity models and
the target aerofoil profile for both pre- and post-pressure matching

Three Eight Fifteen

Pre-pressure matching 0.557 0.961 0.990
Post-pressure matching 0.557 0.969 0.988

The pressure matching optimisations for the three, eight and fifteen cavity
models successfully altered the pressures inside the cavities to within 100 Pa
of its target pressure. There was also not a significant change in the R2 fit
between the numerical model’s inflated profile and the target profile for the
models pre- and post-pressure matching. In future cases, these optimisations
should therefore be utilised to acquire the air masses for the shape optimised
geometry to take advantage of the airbag model’s ability to accurately predict
the model’s inflated stiffness under load.

5.5 Physical Models of the Inflatable Aerofoils
The design methodology was formulated in such a way that the dimensions
of the uninflated profile of an optimised inflatable wing could be measured
onto a membrane film, cut out and heat welded together. The construction
method would dictate the cut-out pattern used for the wing. In the case of this
research, the wing construction consisted of each inflation cavity constructed
from an individual sheet. An example of how the sheets for the three cavity
physical model from Figure 5.2 were connected is shown in Figure 5.10. The
black and red lines in Figure 5.10 represent the film sheets and the places
on the sheets that were heat welded together. The red circles in the figure
represent the heat welds perpendicular to the view.

The root and tip of the model could not be sealed as they were in the numerical
model due to the complexity of the seal and the time required to achieve this.
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Instead, each of the cavities’ ends were extended separately with the extended
sections not welded to another cavity. The extended sections were welded
closed along the span as well as at the tip, which was welded into a flat line
with the line orientated vertically. The ends were constructed this way so that
the straight seal at the ends did not affect the inflated aerofoil profile. Just
as the span of the numerical model was chosen so that it was long enough for
the end effects not to influence the profile, the same was done for the physical
model.

Figure 5.10: An example of the polyethylene sheet cut out for the deflated
profile of a three cavity inflatable physical model

As discussed in Section 5.3, the physical model was designed to maintain a
constant pressure throughout the model. This entailed applying the air into a
single cavity which would inflate the other cavities, by allowing the air to flow
through small holes created in the spars. The number of holes created were
kept to a minimum to not affect the tensile stiffness of the spar.

A pressure transducer was connected to an inflation cavity on the opposite end
of the chord length to the initially inflated cavity. This was done to account for
the pressure drop across the cavities due to potential leaks. From the geometry
of the uninflated pressure matched numerical models of the three, eight and
fifteen cavity wings, physical models were constructed and inflated to their
target pressure. The inflated physical model of the fifteen cavity aerofoil can
be seen in Figure 5.11 and the Figures E.1 and E.2 for the three and eight
cavity aerofoils.
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Figure 5.11: The inflated physical model of the fifteen cavity aerofoil

Once the physical models were constructed, the inflated profiles for each of
the aerofoils were compared to the inflated numerical models’ profiles. This
was once again done by 3D scanning the objects. As the 3D scanned objects
were positioned in an arbitrary position, the optimisation method discussed in
Section 4.2 was applied to the aerofoil point clouds to achieve the fit.

The plots comparing the numerical and physical aerofoils can be seen in Fig-
ures 5.12 to 5.14 with the R2 value displayed representing the fit between the
two. Since the numerical model consisted of substantially less points than
the physical model, The R2 value was calculated by linearly-interpolating the
numerical model’s nodes to match the number of points of the physical model.
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Figure 5.12: Comparison of the inflated profiles of the three cavity numerical
and physical models
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Figure 5.13: Comparison of the inflated profiles of the eight cavity numerical
and physical models
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Figure 5.14: Comparison of the inflated profiles of the fifteen cavity numerical
and physical models

Upon increasing the number of cavities, the goodness of fit between the nu-
merical and physical profiles improved, with only a slight increase in fit quality
between the eight and fifteen cavity models. In Figures 5.12 to 5.14, the in-
flated profiles of the physical models were found to be more inflated than the
numerical models. This was also seen in the validation on the single cavity
models and was thought to be because due to the numerical model being stiffer
than the physical model.

In order to test this hypothesis, a different construction method was proposed
to see whether it was the numerical model causing the discrepancies between
the fits or the construction type. The new construction type entailed using a
single sheet to represent the outer membrane of the model and the individual
baffles heat welded to the outer membrane. The new construction method for
the model in Figure 5.2 is shown in Figure 5.15. An eight cavity model using
the new construction method was built and can be seen in Figure 5.16.

This new method was simpler than the previous one in terms of the seals at
the tips of the wing and the number of welds required. Sealing the wing tips
using only the one seal along the chord also created a more practical wing
shape. Instead of holes in the baffles, the air is passed through to the other
cavities at the wing tips where no baffles are separating the cavities.
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Figure 5.15: An example of the new membrane film cut out for the deflated
profile of a three cavity inflatable physical model

Figure 5.16: The inflated physical model of the eight cavity wing using the
new construction method

This construction method was initially considered, however, it was not used as
it was thought that the heat welds on the surface of the profile would harden
the material and affect the inflated profile. The new eight bag model was 3D
scanned and upon comparing the inflated profiles, it was found that the seals
did not negatively affect the physical model. On the contrary, the fit to the
numerical model improved, as seen in Figure 5.17.

The increase in the R2 value from 0.962 to 0.988 also indicates the improvement
of fit when using the new construction method. Referring back to the former
method, a possible reason for the over-inflation of the model could have been
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Figure 5.17: Comparison of the inflated profiles of the eight cavity numerical
model and the new physical model

attributed to the holes in the baffles decreasing their stiffness. This would thus
cause them to elongate more than predicted. The new construction method
was simpler as well as more accurate; therefore, it was established as the
recommended methodology.

5.6 Robustness of the Design Methodology
Using the NACA 0030 aerofoil profile, the shape optimisation methodology
was able to achieve an accurate fit of the inflated numerical model’s profile to
the target profile. This was the case for the eight and fifteen cavity models,
with the three cavity model’s fit being significantly lower.

As mentioned in Section 2.3, the NACA 0030 aerofoil provides a good balance
between induced drag on the wing and the fit at the trailing edge. However, if
the designer wishes to use a thicker or thinner profile, the methodology should
be able to fit the numerical model to that profile. To test this, two different
aerofoil profiles were used; one thicker and one thinner than the NACA 0030
profile (the NACA 0040 and NACA 0015 respectively). The profiles were
limited to symmetric profiles to maintain the relatively low computational
cost of the optimisation by keeping the number of variables to a minimum.

The same optimisation formulation used in Section 5.1 was used to fit the
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numerical model to the new profiles. Even though using this formulation
caused problems in terms of a large deviation between the profile of the pressure
matched model compared to the pre-pressure matched model, it was only
substantial for the three cavity model. Therefore, using a model with eight or
more cavities would not experience this problem. The shape optimisation prior
to the pressure matching was therefore performed on an eight bag model where
the shape optimised profiles for the two new cases can be seen in Figures 5.18
and 5.19.
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Figure 5.18: Comparison of the eight cavity numerical model’s inflated profile
vs. NACA 0040 aerofoil profile

Initially, it seemed the optimiser had successfully fitted the numerical model to
the two profiles, however, the shape of the NACA 0015 aerofoil’s trailing edge
suggested that this was not the case. The trailing edge had been elongated to
best fit the target aerofoil. This significant elongation of the cavity increased
the total volume which decreased the pressure inside the cavity. The gauge
pressure inside the trailing edge cavity was less than 100 Pa and therefore
would not be sufficiently inflated to support any load.
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Figure 5.19: Comparison of the eight cavity numerical model’s inflated profile
vs. NACA 0015 aerofoil profile

A minimum pressure was not required in the cavities previously, thus the
optimiser was able to take advantage of the airbag inflation model to achieve
the best fit. A potential amendment to this problem was to apply a pressure
load to the model for inflation instead of the airbag model. This would ensure
that the minimum internal pressure is always met. However, in order to make
use of the pressure load, one needed to be ensured that the inflated shape due
to the pressure load is the same as when using the airbag model.

To test whether the two inflation models created the same inflated profiles,
the geometry of the uninflated shape optimised three cavity model was used.
The pre-pressure matched internal pressures were used to test the inflated
shapes at multiple pressures. For the airbag model, the air masses used in the
model’s shape optimisation were applied and their internal pressures recorded.
The recorded pressures inside each of the cavities were then applied to the
model in the form of a pressure load instead of as an air mass. The inflated
profiles of the three bag model using both the airbag model and a pressure
load were plotted together to compare their profiles. These profiles can be
seen in Figure 5.20.

The inflated profiles of the three cavity model using the two different inflation
models compared very well, with an R2 fit of 0.997. The three cavity model was
used over the eight or fifteen cavity models to illustrate the effect of using the
two different inflation models due to it being more sensitive to pressure changes
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Figure 5.20: Comparison of the three cavity model’s inflated profile using an
airbag inflation model vs. using a pressure load model

than the others. This was indicated with the large increase in RMSE post-
pressure matching compared to the other models. Therefore, if the fit between
the two profiles for the worst case (three cavity model) met the criteria, then
the less sensitive cases should produce better fits. This was tested with the
fifteen cavity model as it produced an R2 fit between the two profiles of 0.999,
thus validating the initial assumption.

As the inflated profile using the pressure load was barely distinguishable to
the profile using the airbag model, the pressure load was used for the shape
optimisation of the eight cavity NACA 0015 aerofoil. The new, shape opti-
mised, eight cavity model for the NACA 0015 aerofoil using the pressure load
can be seen in Figure 5.21.

The new inflated profile of the eight cavity numerical model produced a fit with
an R2 value less than that produced by the previous iteration using the airbag
model. Even though the goodness of fit decreased when using the pressure
inflation, it ensured that the internal pressure remained constant at its desired
value. For this reason, it was decided that for future shape optimisations the
pressure load model would be used instead of the airbag model for the cavity
inflation. Once the uninflated, shape optimised geometry was found, pressure
matching could then be performed with the airbag model. This would allow
the designer to make use of the model’s stiffness prediction capabilities when
under load.
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Figure 5.21: Comparison of the eight cavity numerical model’s inflated profile
vs. NACA 0015 aerofoil profile, using a pressure load as an inflation model

5.7 Asymmetric Aerofoil
The proposed numerical shape optimisation methodology showed its robust-
ness in its ability to fit the inflated numerical model’s profile to that of a target
aerofoil profile for two different cases. The first case testing the fit when the
number of inflation cavities differed and the second testing the fit when using
symmetric aerofoils with varying thicknesses. However, in order to further test
the robustness of the methodology, the target aerofoil profile was extended to
an asymmetric profile, more specifically a cambered four-digit NACA aerofoil.
The aerofoil profile used was the NACA 3430, which was the target profile for
an eight cavity numerical model.

Due to the asymmetry, the number of design parameters used in the optimi-
sation increased. The parametrised lines at the bottom of the aerofoil (see
Figure 5.2) were therefore not a mirror of the top lines about the chord line.
Instead, the z coordinates of both the top and bottom lines were parametrised
independently of each other, while the x coordinates of the corresponding lines
at the top and bottom used the same parameter. For the shape optimisation
of an eight cavity model, the number of parameters increased from 18 to 27.
Since the pressure load model worked well in the shape optimisation of the
NACA 0015 aerofoil, it was used for the NACA 3430 as well.

Another adaptation to the methodology for the asymmetric aerofoil was the
calculation of the function value. Instead of calculating the RMSE using only
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the one surface, the RMSE was calculated taking into account the error on both
the top and bottom surfaces. The formulation of the new RMSE can be found
in Equation 5.4. Other than the stipulated changes, the shape optimisation
configuration remained unchanged.

RMSEnew =

√∑n
i=1(z

∗
i − ẑ∗i )2 +

∑m
i=1(zi − ẑi)2

n+m
(5.4)

In the formulation in Equation 5.4, the z coordinates of the numerical model
and the target aerofoil profile on the top surface are represented by z∗ and ẑ∗

respectively, where the z and ẑ without (∗) represent the coordinates on the
bottom surface. The number of coordinates compared for the top and bottom
surfaces are represented by n and m respectively.

Due to the increased number of design parameters, it was assumed that the
optimisation would require more time to converge to a satisfactory function
value. The termination criteria was once again set to terminate the optimi-
sation if the change of the function value between two successive iterations
was less than 10−3. The optimisation using the asymmetric aerofoil converged
after sixteen iterations (compared to eleven for the symmetric aerofoil) where
the plot of the converged numerical model’s inflated profile vs. target profile
from the optimisation can be seen in Figure 5.22.
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Figure 5.22: Comparison of the eight cavity numerical model’s inflated profile
vs. NACA 3430 aerofoil profile
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Due to the asymmetry of the profile, two different error plots, for the top
and bottom, were presented in Figure 5.22. The green and black dashed lines
represented the error on the top and bottom surfaces respectively. The plot
showed that the errors on the top and bottom surfaces were similar in mag-
nitude and therefore no bias was imposed on either side in the optimisation.
The R2 value for the fit of the asymmetric aerofoil was found to be very close
to that of the symmetric aerofoil with the same thickness, 0.958 and 0.961
respectively. This therefore shows that the optimiser was able to produce a fit
for the asymmetric aerofoil of near-equal quality of a symmetric aerofoil. This
is when the increase in optimisation time is accounted for with respect to the
number of parameters.

5.8 Summary
To conclude with the results obtained in this chapter, the formulation of the
numerical shape optimisation using the airbag inflation model was able to
produce numerical models with an inflated shape fitting that of a NACA 0030
aerofoil. The fit of the numerical model to the target profile increased as the
number of inflation cavities the model consisted of increased. The fits of the
three, eight and fifteen cavity models to the target aerofoil represented by R2

values of 0.557, 0.961 and 0.990 respectively.

Once the pressure inside all the cavities in the model were equalised, the
inflated shapes of the numerical models were compared to physical models at
the same pressure. It was found that as the number of cavities in the models
increased, the fit of the numerical model to the physical model improved.
Two different construction methods were compared when building the physical
models where it was found that the two models produced different fits to the
numerical model. For an eight cavity model, the first method produced an R2

value of 0.962 and the second produced a value of 0.988.

Upon using different aerofoil profiles to test the robustness of the shape op-
timisation formulation, it was found that the airbag inflation model had a
drawback as it does not ensure that the cavities were always sufficiently pres-
surised. However, when using the pressure load to simulate the internal pres-
sure, it produced an inflated profile indistinguishable from that created using
the airbag model. The problem of the cavities not being sufficiently inflated
was thus amended.

The shape optimisation could therefore be performed using the pressure in-
flation model to achieve the correct inflated shape and volume. Once the
uninflated shape optimised geometry was obtained, the pressure matching op-
timisation could then be performed using the airbag model. In order to further
test the methodology’s robustness, the target aerofoil profile was changed to
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an asymmetric profile. This increased the number of parameters and subse-
quently the run time. Bearing in mind the increase in number of iterations
required to achieve the same change in successive function value tolerance, the
optimiser was able to produce a fit for the asymmetric profile very similar to
that of a symmetric profile with the same thickness.
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Chapter 6

Stiffness Validation

6.1 Finite Element Model Adaptation
As previously mentioned, the airbag model was chosen to represent the infla-
tion of the membrane as it was found to more accurately model the inflated
stiffness of the numerical model under load when compared to using a stan-
dard pressure load. Therefore, in order to confirm that the airbag model can
indeed accurately model the inflated stiffness, stiffness validation tests were
performed on the numerical model. These tests were in the form of four-point
bending tests performed on single cavity bags instead of the inflated aerofoils,
as the variable thickness of the aerofoils would make the tests more complex.
However, before the tests could be performed, the numerical model had to be
adapted. This section contains the adaptations made to the model.

6.1.1 Four-Point Bending Supports

In order to simulate the four-point bending tests, four cylindrical parts were
created to represent the supports used in the test with the parts modelled as
shell elements. The dimensions and the spacing of these supports were the
same as the physical model, as shown in Section 3.2 and Appendix A.

The four-point bending test rig was constructed from mild steel and therefore
the supports were modelled as such. The material properties of the mild steel
used was not determined through testing, instead, they were taken from an
online source, EngineeringToolbox (2001). The reason for this is because it
was assumed that due to the large difference in stiffness between the steel and
the polyethylene film, the steel supports will have a negligible deflection during
the tests. Therefore, a slight deviation in the material properties will not affect
the results. This assumption was confirmed after the supports deformed by
less than 0.1 mm after the four-point bending tests. The material properties
used for mild steel can be found in Table 6.1.

69
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Table 6.1: Material properties of the mild steel used in the FE model

Mild steel supports

Material model Linear elastic
Thickness 2 mm
Elastic modulus 200 GPa
Poisson’s ratio 0.3
Density* 2 ×106 kg/m3

*The reason for the steel having a smaller density than the LDPE film was due
to the support’s mesh being coarser than that of the bag. Since the mesh size
also contributes to the simulation times, even though the steel had the lower
density, the mesh size of the LDPE bag caused a bottleneck in the simulation
times. This is because the supports were declared as the master surface in the
contact algorithm used and therefore the penetration was searched for through
its surface. Subsequently, the mesh density was not very important. However,
the mesh did have to be dense enough to form the general cylindrical shape.
This element size was found to be 5 mm.

6.1.2 Boundary Conditions

Two different types of boundary conditions were applied in the four-point
bending test simulations, the first set of conditions were symmetry constraints
which kept the inflatable bag symmetric about all the axes during inflation.
Once the bag was fully inflated, the boundary conditions were removed and
the supports displaced for the four-point bending test. The second type was a
boundary condition applied to each of the supports, which used a displacement
vs. time curve input that controlled the displacement of the supports from
their original position in the z direction.

The boundary conditions applied to the models for the four-point bending tests
can be seen on the model of the 75 mm bag in Figure 6.1. The constrained
degrees of freedom for boundary conditions of the bag symmetry can be found
in Table 6.2. The translation constraint is represented by T and the rotation
constraints are represented by R.
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Figure 6.1: Boundary conditions applied to the model in its state prior to
inflation

Table 6.2: Constrained degrees of freedom for each node set for the simulation
of the four-point bending tests

Node set description Constrained degrees of freedom

Along x-axis down the center Ty,Rx,Rz

Along y-axis down the center Tx,Ry,Rz

Along x-axis on the edge Tz

Along y-axis on the edge Tz

6.1.3 Contact

Two different types of contact were used in the simulation of the four-point
bending tests. The first of the types was a surface to surface option. This
contact algorithm was responsible for the contact between the supports and
the inflatable bag. As previously mentioned, the slave nodes were represented
by the bags’ nodes and the master surface was the surface of the mild steel
supports. This type of contact is a two-way contact algorithm and therefore,
instead of it searching only for penetration of the slave nodes through the
master surface, penetration of the master nodes through the slave surface was
also searched for.

Using two-way contact did increase the computation time due to the extra
searching, however, it was necessary as the master nodes penetrated through
the slave surface when one-way contact was used. This was found to be the
case whether the slave nodes were those on the bag or the supports.
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The SOFT contact option was enabled for the surface to surface contact as
it is used when a soft material is in contact with a stiff material or when
the mesh densities of the two contact surfaces are dissimilar (Hallquist, 1986).
This was the case, as the steel is much stiffer than the polyethylene film.
The SOFT = 1 option in LS-DYNA is not very different from the penalty-
based constraint except for the way the contact stiffness is determined. When
using the SOFT = 1 constraint, the maximum of the stiffnesses between the
SOFT = 1 and penalty-based constraint is used.

The second type of contact used was the single surface contact which was
applied to the inflatable bag. This contact type was responsible for the self-
contact of the inflatable bag when wrinkling occurred. An alternative contact
option was considered for the self-contact of the bag, this type of contact
is generally used for airbag inflation, however, it involves performing more
frequent searches for penetration. Since the inflatable bags are not being
inflated rapidly, it was decided that this specific contact type was not necessary.

6.2 Four-Point Bending Tests
Using the adapted FE model, four-point bending tests were simulated and
compared to that of physical tests to validate the stiffness of the numerical
model. These tests were performed on each of the different sized bags with
each of the bags being tested at three different pressures. For the physical
tests, three physical models of each bag size were built and tested, with each
model tested three times. This was done to establish confidence in the test
results.

6.2.1 Physical Tests

The inflation pressures of the bags were dependant on the maximum allowable
inflation pressure of each bag. Once the maximum pressure was found, the
highest working pressure was chosen to be a few kPa less than the maximum
allowable pressure to allow for a safety factor. The remaining two pressures
were chosen by selecting pressures in between the highest working pressure
and 0 kPa. At least one of the pressures of a bag overlapped with another bag
to compare the effect of a change in diameter, with a constant pressure. The
pressures for each of the bags can be seen in Table 6.3.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. STIFFNESS VALIDATION 73

Table 6.3: Pressures in kPa corresponding to the different bag sizes

50 mm 75 mm 100 mm

Maximum allowable pressure 17 11.3 8.5
Pressure 1 5.75 5.75 4.75
Pressure 2 9.00 6.75 5.75
Pressure 3 15.00 9.00 6.75

The setup for the inflation of the bag consisted of a pressure input tube con-
nected to the one end of the bag and another tube leading into a pressure
transducer on the other end. Once the target pressure was reached, a valve
controlling the airflow into the bag was turned off, stopping airflow to and
from the bag, and the four-point bending tests commenced. During the tests,
the top supports were displaced 45 mm downwards from the point where it
initially made contact with the bag while the force vs. displacement data was
recorded.

The results from the four-point bending tests for the three different sized mod-
els can be found in Figure G.1. This is in the form of force vs. displacement
curves, with a 99 % confidence interval of all nine tests performed for each bag
size plotted as a shaded area surrounding a solid line representing the average.
For each of the different sized models, all three pressures were plotted on the
same graph. This was done to visualise the effect of pressure on the bags at a
constant bag size.

In Figure G.1, the 99 % confidence bands showed that there was a slight vari-
ability in the physical results of the 50 mm bag. However, this slight variation
diminished as the bag sizes increased, producing force vs. displacement curves
for the 75 and 100 mm bags where there was almost no confidence bands. As
expected from literature discussed in Section 2.1, it was also found that with
an increase in pressure the stiffness of the bag also increased.

Another set of plots was created in Figure G.2 where the force vs. displacement
data of the different sized bags were plotted on the same figure at overlapping
pressures. At 40 mm for the tests of the bags at 5.75 kPa, the 50 mm bag
exhibited a corresponding force value of 8.36 N whereas the 100 mm bag had a
value of 39.78 N. Therefore, by doubling the bag diameter, the force at 40 mm
increased by 375 %.

When comparing the results at 40 mm for the tests at a constant bag size of
50 mm, the corresponding force values only increased from 8.36 N to 12.20 N
when increasing the pressure from 5.75 kPa to 15.00 kPa. That is a 46 %
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increase in force from a 160 % increase in gauge pressure. From these results,
it was found that the bag size, and thus air mass inside the closed volume, has
a larger effect on the stiffness of the inflated model compared to the internally
applied pressure.

6.2.2 Numerical Tests

Using the new, adapted FE model, four-point bending test simulations were
performed on all three different sized models at each of their three pressures. In
order to acquire the force acting on the supports, data from the rcforce output
file was extracted which contains the contact force at each of the nodes. The
forces for each of the nodes at a support were summed together to determine
the reaction forces.

Due to the added inertia from the mass scaling, the dynamic aspect of the
simulation was non-real and therefore the simulation was run until the kinetic
energy of the system was zero. For each test, the supports were displaced to
5, 10, 20, 30 and 40 mm, the kinetic energy allowed to dissipate and then the
contact forces recorded at each displacement. The recorded values were then
plotted on the force vs. displacement curves of their respective physical tests.
An image of the 75 mm numerical model with the supports displaced to 40 mm
during the four-point bending test can be found in Figure 6.2.

Figure 6.2: A 75 mm bag during a four-point bending test simulation

The force vs. displacement curves for the four-point bending tests performed
on the 75 mm bag at its three pressures can be seen in Figure 6.3, whereas the
plots for the 50 and 100 mm models can be seen in Figures G.3 and G.4.

Figure 6.3 represents the force vs. displacement results of the 75 mm bag under
four-point bending and at low displacements, the numerical model can predict
the physical model’s corresponding force value with a low error. However, as
the displacement of the supports increase, so deviates the corresponding force
values.
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(a) Inflatable bag at 5.75 kPa. (b) Inflatable bag at 6.75 kPa.

(c) Inflatable bag at 9.00 kPa.

Figure 6.3: The numerical force vs. displacement values for the 75 mm bags
plotted with the data from the physical tests

A similar trend was also found for the 50 and 100 mm bags as the results
correlated well at some points, however, they still deviated at other points.
For example, the 50 mm model correlated well for most of the points but
deviated at a displacement of approximately 20 to 30 mm. The results from
the 100 mm model initially deviated, however at the larger displacements it
showed a better correlation.

In order to statistically represent the deviation between the physical and nu-
merical force vs. displacement data, the RMSE value between the force value
at their corresponding displacement values were determined. These RMSE
values for each bag size at all their pressures can be found in Table 6.4.
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Table 6.4: A statistical measure of the deviations in resulting force between
the numerical and physical model for all three bags under a four-point bending
load

Bag Pressure [kPa] RMSE [N]

50 5.75 0.48
9.00 0.38
15.00 0.79

75 5.75 1.63
6.75 2.04
9.00 1.75

100 4.75 3.14
5.75 2.22
6.75 3.42

From the data in Table 6.4, the RMSE between the numerical and physical
data was found to increase as the bag size, and subsequently, the stiffness
increased. However, it was found that with an increase in pressure, there was
not necessarily an increase in RMSE. Even though the airbag model was not
able to perfectly model the inflated stiffness of the structure, as seen in the
slight difference in the shapes of the plots created by the data, it was able to
model it with a low error. The size of the error is considered low bearing in
mind the scales of the forces.

6.3 Shape Validation Under Load
In order to build further confidence in the numerical model, the geometries of
the single cavity bags under a four-point bending load were captured whilst
the supports were displaced to 40 mm and compared to that of the numerical
model. This was done in the same way as the bags under no load in Sec-
tion 4.2. The geometry of all three of the bags were compared with all of them
pressurised to 5.75 kPa.

6.3.1 Point Cloud Comparison

Unlike the bag under no load, the entire bag could not be scanned whilst under
a four-point bending load due to the pillars of the tensile testing rig getting
in between the line of sight of the bag and the 3D scanner. Therefore, only a
quarter of the bag was scanned, which was acceptable due to the symmetry
of the bag. Instead of the bags being scanned in their original position in the
tensile testing machine, as seen in Figure 6.4a, rotation parts were manufac-
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tured which rotated the four-point bending rig to enable a better field of view
for the scanning. The drawings for these parts can be found in Appendix F
and the rotated four-point bending rig can be seen in Figure 6.4b.

(a) The original orientation of the four-
point bending test rig in the tensile testing
machine machine

(b) The rotated orientation of the four-
point bending test rig in the tensile testing
machine

Figure 6.4: The four-point bending test rig positioned in different orientations
in the tensile testing machine

Instead of all three symmetry planes for the bags being plotted, only two
were plotted for the bags under load. This is because the points lying near
the xy plane produced noisy plots due to the deformation of the model. The
symmetry plane plots on the xz and yz planes for the 75 mm bag can be
seen in Figure 6.5 and the plots for the 50 and 100 mm bags can be found in
Figures B.3 and B.4.

As previously mentioned, the test rig was rotated to achieve a better line of
sight between the bag and the 3D scanner. Even though it did improve the line
of sight, the position of the bag in the rig made it difficult to scan. This can
be seen as the missing data in the point clouds in the plots. Visually, there
seemed to be a good correlation between the point clouds of the numerical
model and that of the physical model. However, in order to gain a better
understanding, the Hausdorff distances between the data sets were referred to.
Table 6.5 contains the Hausdorff distances for each of the different sized bags
on both of the planes.
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Figure 6.5: Symmetry plane plots comparing the shape of the numerical and
physical model of a 75 mm inflated bag under four-point bending

Table 6.5: Hausdorff distances for the different sized bags under a four-point
bending load on the respective symmetry planes

Bag Plane Hausdorff [mm]

�50 xz 4.23
yz 2.24

�75 xz 5.3
yz 2.74

�100 xz 5.43
yz 2.78

When looking at the Hausdorff distances in Table 6.5 it can be seen that
as the bag sizes increase, the Hausdorff distances also increase; however, the
increase in Hausdorff distance is much smaller than the corresponding increase
in diameter. This is positive as it shows that the numerical model is still able
to maintain a small error even when scaling up the model. The Hausdorff
distances also show that there is a larger deviation between the shapes of the
physical and numerical model on the xz plane compared to the yz plane. This
is also evident when looking at the plots in Figure 6.5.

The largest deviation between the plots on the xz plane appears to be at
the top left and the bottom left of the bag. These are the areas where the
supports come into contact with the bag. The membrane of the numerical
model shows a more gradual gradient on the lead up to the indentation caused
by the support, compared to the physical model. The plots on the yz plane
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show a very good correlation between the two models which is confirmed when
referring to the Hausdorff distances.

6.4 Summary
The four-point bending tests performed on the physical models provided an
understanding of the influence of the bag size and the internal pressure on the
inflated stiffness of the model. The results showed that the volume of the bag
contributed more to the inflated stiffness compared to the pressure of the bag.
This conclusion was drawn after observing a 375 % increase in corresponding
force when increasing the bag’s volume by 100 % and observing only a 46 %
increase in force with a 160 % increase in pressure.

Upon comparing the inflated stiffnesses of the numerical models, determined
through four-point bending tests, to that of their corresponding physical mod-
els, a strong correlation between the values were found. This was through
observing the close fits of the numerical and physical force vs. displacement
data in Figures 6.3, G.3 and G.4. The RMSE values between the two data
sets were also found to be small, however, they increased the larger the bag
size and subsequently, the inflated stiffness increased. Due to the errors being
low relative to the models’ stiffnesses, the numerical model’s ability to predict
the inflated stiffness was deemed to be acceptable.

Further confidence in the model’s ability to predict its corresponding physi-
cal models’ stiffness was built upon referring to the shape comparison of the
numerical and physical inflatable bags under four-point bending load. The
geometry of the models on the symmetry planes were compared and a strong
correlation between the geometries were found. This strong correlation was
confirmed by the small Hausdorff distances between the two data sets.
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Concluding Remarks

7.1 Conclusion
The numerical shape optimisation methodology proposed in this thesis was
able to determine the uninflated, shape optimised geometry of numerical mod-
els with inflated shapes fitting that of a target aerofoil profile. The influence
of the differing number of inflation cavities on the numerical model’s fit was
tested and it was found that as the number of cavities increased, so improved
the fit. However, the improvement in fit after each subsequent model dimin-
ished as the number of inflation cavities increased. This was determined upon
comparing the R2 fits between the inflated numerical and target profiles for
the three, eight and fifteen cavity models which were 0.557, 0.961 and 0.990
respectively. This shows a larger difference between the R2 values of the three
and eight cavity models compared to that between the eight and fifteen cavity
models.

Initially, the NACA 0030 aerofoil profile was used as the target profile as it
provided a good balance between thickness and fit potential of the numerical
model. However, in order to determine the robustness of the methodology, op-
timisations were performed using a profile thinner and thicker than the NACA
0030 as the target aerofoil profile (NACA 0015 and NACA 0040 respectively).
The inflated profiles of the numerical models with eight cavities produced R2

fits of 0.869 and 0.938 respectively. However, the former profile showed a draw-
back to using the airbag inflation model, as it was able to produce a good fit
at the trailing edge at the cost of barely being inflated.

In order to amend the problem of the cavity not being inflated properly, a
pressure load inflation model was used instead. This made sure that the cavity
was fully inflated. In order to determine whether the pressure load produced
an inflated shape identical to when the airbag model is used, the three and
fifteen cavity models were inflated to the same pressures using both inflation
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models and the profiles compared. Upon comparing the profiles, it was found
that they were indistinguishable and therefore the pressure inflation model was
used to rerun the shape optimisation of the NACA 0015 aerofoil.

The problem of the low pressures in the inflation cavities was amended by using
the pressure load inflation model. Therefore, it was decided that the pressure
load inflation model was the better option for the initial shape optimisation.
Once the shape optimised geometry had been determined, a pressure matching
optimisation could be performed to acquire the correct pressures using the
airbag model.

The shape optimisation was proven to work well when the target aerofoil profile
was symmetric. However, to further test the capabilities of the methodology,
an asymmetric aerofoil profile was used as the target profile (the NACA 3430).
Due to the increase in design parameters, the optimiser required more itera-
tions, when compared to the symmetric profile, to reach a converged solution.
The fit of the inflated numerical model profile to the target profile was very
similar to that of a symmetric profile with an R2 value of 0.952. This large R2

value thus showed that the shape optimisation could be accurately extended
to instances where the target aerofoil profile is asymmetric.

Since the aim of the methodology was to acquire an uninflated geometry which
could be used to construct a physical model, the numerical model had to ac-
curately predict the inflated shape of its corresponding physical model. The
shape of the inflated numerical model was validated in two separate instances.
Firstly, by comparing the inflated profiles of single cavity numerical and physi-
cal bags, it was found that the error between the numerical and physical point
clouds was low. Secondly, the inflated profiles of an eight cavity physical and
numerical model were compared where the R2 fit between the profiles was
0.988. These results showed that the numerical model was able to accurately
predict the inflated shape of its corresponding physical model.

Airbag inflation was used to inflate the final shape optimised model due to it
being able to accurately predict the inflated stiffness of the model. To test
whether this was the case, four-point bending tests were performed on single
cavity bags and the force vs. displacement data of physical tests were compared
to that from numerical simulations.

The shape of the force vs. displacement curves produced from the physical
and numerical tests were similar, as well as the RMSE values between the
corresponding forces being small. An increase in the internal pressure of the
model also yielded an increase in inflated stiffness. These results show that
even though using the airbag model does require additional work compared to
the pressure load model, it can accurately predict the inflated stiffness of the
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physical model.

The design methodology had proven to meet the stipulated aim and objec-
tives as well as incorporate additional elements that add value, such as the
methodology’s ability to accurately predict the stiffness of its corresponding
physical model when under load. This will allow the numerical model’s use to
be extended to applications that require predicting its deflection under load.
The methodology also demonstrated that physical models, accurately fitting
that of a target aerofoil profile, could be constructed. This, along with the
supporting results, strongly suggests that this is a viable approach to solve the
problem of accurately predicting the inflated profile of an inflatable aerofoil.

7.2 Recommendations and Future Work
The research presented in this thesis aimed to create a design methodology
that would determine the uninflated geometry for an inflatable aerofoil profile,
accurately fitting that of a target aerofoil profile. This was to be accomplished
using a numerical model that can accurately predict the inflated shape of its
corresponding physical model. This aim was met, in addition to it being able to
accurately predict the inflated stiffness of its corresponding numerical model.
The basic construct of the design methodology can be adapted to extend to
different design scenarios.

As mentioned in Section 4.1, the unsupported film was selected for construc-
tion of the physical models due to its ease of use during the design process.
However, a drawback of this is that the configuration does not allow for large
inflation pressures. Future work could entail amending this problem by con-
verting the material model from an unsupported film to a bladder and restraint
configuration. Even though this will make the model more complex and could
increase simulation times, the load-bearing capacity of the structure would
increase due to the larger inflation pressure and possibly stiffer material.

Additional future work could entail performing aerodynamic simulations on
the profiles produced by the current design methodology to gain a better un-
derstanding of the aerodynamic effects of the bumps on the different profiles.
Physical models can also be subjected to wind tunnel tests to determine the
response of the model under an aerodynamic load. The ability of the model to
accurately predict the stiffness of its physical model would also allow for static
load tests to be numerically simulated. This would benefit the designer, in
terms of the reduced time spent on construction and performing the physical
tests.
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Appendix B

Symmetry Plane Plots
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Figure B.1: Symmetry plane plots comparing the shape of the numerical and
physical model of a 50 mm inflated bag under no load
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Figure B.2: Symmetry plane plots comparing the shape of the numerical and
physical model of a 100 mm inflated bag under no load
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Figure B.3: Symmetry plane plots comparing the shape of the numerical and
physical model of a 50 mm inflated bag under a four-point bending
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Figure B.4: Symmetry plane plots comparing the shape of the numerical and
physical model of a 100 mm inflated bag under a four-point bending
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$# LS-DYNA Keyword file created by LS-PrePost(R) V4.6.4 -
20Mar2019
$# Created on May-27-2019 (16:50:25)
*KEYWORD
*TITLE
$#                                                                         
title
LS-DYNA keyword deck by LS-PrePost
*CONTROL_ENERGY
$#    hgen      rwen    slnten     rylen     
         2         2         2         2
*CONTROL_TERMINATION
$#  endtim    endcyc     dtmin    endeng    endmas     nosol     
       2.0         0       0.0       0.0       0.0         0
*DAMPING_GLOBAL
$#    lcid    valdmp       stx       sty       stz       srx       
sry       srz
         0     20.0        0.0       0.0       0.0       0.0       
0.0       0.0
*CONTROL_TIMESTEP
$#  dtinit    tssfac      isdo    tslimt     dt2ms      lctm     
erode     ms1st
       0.0       0.9         0       0.0       0.0         0         
0         0
$#  dt2msf   dt2mslc     imscl    unused    unused     rmscl     
       0.0         0         0                           0.0
*DEFINE_CURVE_TITLE
Mass_In_1
$#    lcid      sidr       sfa       sfo      offa      offo    
dattyp     lcint
         1         0       5.0       0.6       0.0       0.0         
0         0
$#                a1                  o1  
                 0.0                 0.0
                0.02               0.001
                0.04               0.001
                0.06                 0.0
                 0.1                 0.0
*DEFINE_CURVE_TITLE
Mass_In_2
$#    lcid      sidr       sfa       sfo      offa      offo    
dattyp     lcint
         2         0       5.0       0.6       0.0       0.0         
0         0
$#                a1                  o1  
                 0.0                 0.0
                0.02               0.001
                0.04               0.001
                0.06                 0.0
                 0.1                 0.0
*DEFINE_CURVE_TITLE
Mass_In_3
$#    lcid      sidr       sfa       sfo      offa      offo    
dattyp     lcint
         3         0       5.0        0.6      0.0       0.0         
0         0
$#                a1                  o1  

1
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                 0.0                 0.0
                0.02               0.001
                0.04               0.001
                0.06                 0.0
                 0.1                 0.0
*INCLUDE
$#                                                                      
filename
Temp.k
*DATABASE_NODOUT
$#      dt    binary      lcur     ioopt   option1   option2       
         2         2         0         1       0.0         0
*DATABASE_ABSTAT
$#      dt    binary      lcur     ioopt     
         2         2         0         1
*DATABASE_BINARY_D3PLOT
$#      dt      lcdt      beam     npltc    psetid      
         1         0         0         0         0
$#   ioopt     
         0
*DATABASE_HISTORY_NODE_SET
$#     id1       id2       id3       id4       id5       id6       
id7       id8
         1         0         0         0         0         0         
0         0
*AIRBAG_SIMPLE_AIRBAG_MODEL_ID
$#      id                                                                 
title
         1Tube_1
$#     sid    sidtyp      rbid      vsca      psca      vini       
mwd      spsf
         1         1         0       1.0       1.0       0.0       
0.0       0.0
$#      cv        cp         t      lcid        mu      area        
pe        ro
     717.0    1004.0     300.0         1       0.7       0.0  
101300.0     1.204
$#     lou      text         a         b        mw      gasc    
         0       0.0       0.0       0.0       0.0       0.0
*AIRBAG_SIMPLE_AIRBAG_MODEL_ID
$#      id                                                                 
title
         2Tube_2
$#     sid    sidtyp      rbid      vsca      psca      vini       
mwd      spsf
         2         1         0       1.0       1.0       0.0       
0.0       0.0
$#      cv        cp         t      lcid        mu      area        
pe        ro
     717.0    1004.0     300.0         2       0.7       0.0  
101300.0     1.204
$#     lou      text         a         b        mw      gasc    
         0       0.0       0.0       0.0       0.0       0.0
*AIRBAG_SIMPLE_AIRBAG_MODEL_ID
$#      id                                                                 
title
         3Tube_3

2
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$#     sid    sidtyp      rbid      vsca      psca      vini       
mwd      spsf
         3         1         0       1.0       1.0       0.0       
0.0       0.0
$#      cv        cp         t      lcid        mu      area        
pe        ro
     717.0    1004.0     300.0         3       0.7       0.0  
101300.0     1.204
$#     lou      text         a         b        mw      gasc    
         0       0.0       0.0       0.0       0.0       0.0
*SECTION_SHELL_TITLE
Outer
$#   secid    elform      shrf       nip     propt   qr/irid     
icomp     setyp
         1         9     0.833         2       1.0         0         
0         1
$#      t1        t2        t3        t4      nloc     marea      
idof    edgset
8.50000E-58.50000E-58.50000E-58.50000E-5       0.0       0.0       
0.0         0
*SECTION_SHELL_TITLE
Inner
$#   secid    elform      shrf       nip     propt   qr/irid     
icomp     setyp
         2         9     0.833         2       1.0         0         
0         1
$#      t1        t2        t3        t4      nloc     marea      
idof    edgset
4.25000E-54.25000E-54.25000E-54.25000E-5       0.0       0.0       
0.0         0
*MAT_ELASTIC_TITLE
Polyethylene
$#     mid        ro         e        pr        da        db  
not used        
         11.800000E72.400000E8       0.4       0.0       0.0       
0.0
*END

3
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Appendix D

Metamodel Optimisation Results

The results for the different configurations tested on the three bag model are
in Table D.1. The optimisations for the different configurations were each run
for seven iterations with each iteration consisting of 80 design points. The
maximin space filling algorithm was used to populate the design space. The
metamodels tested were the RBF and linear metamodel. The quadratic model
was considered, however, it required a minimum of 118 design points in order
to formulate the model. It was thus omitted as it required a significant increase
in design points compared to the other models.

The RBF metamodel had the option to include the design points from the
previous iterations into the current iteration’s metamodel. The configurations
with the RBF metamodels were therefore tested with the previous points both
included and excluded.

Table D.1: Results of the different optimisation configurations for the shape
optimisation of the three bag numerical models

Test 1 Test 2 Test 3 Test 4 Test 5

Metamodel RBF RBF RBF RBF Linear
Optimiser GA GA LFOP LFOP LFOP
Old points Excluded Included Excluded Included

Last R2 0.911 0.959 0.794 0.950 0.851
Mean R2 0.867 0.914 0.848 0.913 0.745
Best R2 0.976 0.959 0.924 0.954 0.851
Min f(x) 0.0260 0.0379 0.0298 0.0360 0.0334
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Appendix E

Physical Models

Figure E.1: The inflated physical model of the three cavity aerofoil
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Figure E.2: The inflated physical model of the eight cavity aerofoil
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Rotation Pieces for Four-Point
Bending Test Rigs
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Appendix G

Four-Point Bending Tests Results

(a) Inflatable bags with 50 mm diameter (b) Inflatable bags with 75 mm diameter

(c) Inflatable bags with 100 mm diameter

Figure G.1: The force vs. displacement curves from the four-point bending
tests displaying the influence of pressure at constant bag size where the differ-
ent pressures for each the same bag size are plotted on the same graphs
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(a) Inflatable bags at 5.75 kPa (b) Inflatable bags at 6.75 kPa

(c) Inflatable bags at 9.00 kPa

Figure G.2: The force vs. displacement curves from the four-point bending
tests displaying the influence of bag size for a constant pressure where different
bag sizes at the same pressure are plotted on the same graph
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(a) Inflatable bag at 5.75 kPa (b) Inflatable bag at 9.00 kPa

(c) Inflatable bag at 15.00 kPa

Figure G.3: The numerical force vs. displacement values for the 50 mm bags
plotted with the data from the physical tests
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(a) Inflatable bag at 4.75 kPa (b) Inflatable bag at 5.75 kPa

(c) Inflatable bag at 6.75 kPa

Figure G.4: The numerical force vs. displacement values for the 100 mm bags
plotted with the data from the physical tests
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