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Abstract

Modelling and Performance Evaluation of a Pseudo-Random Impulse Sequence 
for In situ Parameter Estimation in Energy Applications

FM Mwaniki
Promotor: Prof. H. J. Vermeulen

Faculty of Engineering
Department of Electrical & Electronic Engineering

Dissertation: PhD (Electrical Engineering)
March 2020

System identification and parameter estimation procedures involve the use of experiments to 
find an accurate model for a  target s ystem. These experiments typically involve excitation of 
the target system with a perturbation signal and recording and analysing the system’s input 
and output waveforms. The time- and frequency-domain characteristics of the perturbation 
signal can have a significant influence on  the system response and the accuracy of  the para-
meter estimation experiment. An optimal perturbation signal should persistently excite all the 
relevant modes of the target system. Although a significant amount of research has been car-
ried out on perturbation signals, the case of a suitable signal for high power, high voltage, in 
situ applications has not been thoroughly investigated.

This study discusses the novel concept of a Pseudo-Random Impulse Sequence (PRIS) as 
a wideband perturbation signal for in situ parameter estimation in energy field applications. 
The time- and frequency-domain properties of the PRIS are analyzed and the effects of the 
various model parameters, including the time constants, sequence length and clock frequency 
are investigated through mathematical analysis and simulations to determine the suitability of 
the signal for system identification and parameter estimation a pplications. It is demonstrated 
that the time- and frequency-domain properties of the PRIS can be controlled by manipulating 
the associated clock frequency, time constants and sequence length. This controllability of the 
PRIS is highly desirable as it allows the user to focus the perturbation energy to suit a wide 
range of applications.

Perturbation signals for use in the high power applications should be generated efficiently 
using circuit topologies that are compatible with the associated high voltage environment. A 
perturbation source circuit topology for generating the proposed PRIS signal is developed and 
analysed. It is shown that the PRIS can be generated using a compact and efficient design with 
highly reduced average losses compared to conventional sources such as the Pseudo-Random 
Binary Sequence (PRBS) topologies. The circuit topology is, furthermore, demonstrated to be 
optimal for in situ high power, high voltage applications. The circuit design considerations for 
the proposed PRIS source are discussed in detail.

Accurate information on the grid impedance characteristics, especially from a particular 
Point of Connection (POC) is essential for harmonic penetration studies, compliance with 
harmonic limits for the grid integration of renewable energy sources, transient analysis, har-
monic filter design and controller design. The performance of the PRIS signal is demonstrated 
successfully for an in situ case study application involving wideband characterization of the 
Thevenin equivalent grid impedance of a supply network. A novel experimental approach is 
proposed to improve the grid impedance estimation results by minimizing the effects of the 
non-stationary nature of the grid.
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Uittreksel

Modellering en prestasiebeoordeling van ’n pseudo-ewekansige impulsreeks vir 
textit In situ Parameterberaming in energietoepassings

FM Mwaniki
Promotor: Prof. H. J. Vermeulen

Fakulteit Ingenieurswese
Departement Elektriese & Elektroniese Ingenieurswese

Proefskrif: PhD (Elektriese Ingenieurswese)
Maart 2020

Stelselidentifikasie e n p arameterberamingsprosedures b ehels d ie g ebruik v an eksperimente 
om ’n akkurate model vir ’n teikensisteem te vind. Hierdie eksperimente behels tipies die 
aandryf van die teikenstelsel met ’n steursein en die opname en ontleding van die stelsel se 
intree- en uittreegolfvorms. Die tyd- en frekwensiegebied eienskappe van die steursein kan 
’n beduidende invloed hê op die stelselweergawe en die akkuraatheid van die parameteresti-
masie eksperiment. ’n Optimale steursein moet al die relevante modusse van die teikenstelsel 
volhoudend aktiveer. Alhoewel ’n beduidende hoeveelheid navorsing oor steurseine uitge-
voer is, is die geval van ’n geskikte sein vir hoëdrywing, hoogspanning, in situ toepassings nie 
deeglik ondersoek nie. In hierdie studie word die nuwe konsep van ’n Kwasie-Lukrake Impuls 
Reeks (KLIR) as ’n wyeband steursein vir in situ parameter afskatting in energie toepassings be-
spreek. Die tyd- en frekwensiegebied eienskappe van die KLIR word ontleed en die uitwerking 
van die verskillende modelparameters, insluitende die tydkonstantes, reekslengte en klokfre-
kwensie, word ondersoek deur wiskundige analise en simulasies om die geskiktheid van die 
sein vir stelselidentifisering en parameterafskatting te b epaal. Daar word gedemonstreer dat 
die tyd- en frekwensiegebied eienskappe van die KLIR beheer kan word deur die gepaard-
gaande klokfrekwensie, tydkonstantes en reekslengte te manipuleer. Hierdie beheerbaarheid 
van die KLIR is uiters wenslik, aangesien dit die gebruiker in staat stel om die steurenergie te 
fokus om ’n wye verskeidenheid toepassings te pas.

Steurseine vir gebruik in die hoëdrywing toepassings moet doeltreffend opgewek word 
deur gebruik te maak van stroombaantopologieë wat versoenbaar is met die gepaardgaande 
hoogspanningsomgewing. ’n stroombaantopologie vir die opwekking van die voorgestelde 
KLIR sein word ontwikkel en ontleed. Daar word aangetoon dat die KLIR opgewek kan word 
met ’n kompakte en effektiewe ontwerp met hoogs verminderde gemiddelde verliese in ver-
gelyking met konvensionele bronne soos die Kwasi-Lukrake Binêre Reeks (KLBR) topologieë. 
Verder word aangetoon dat die stroombaantopologie optimaal is vir in situ hoëdrywing, hoog-
spanning toepassings. Die stroombaan ontwerpsoorwegings vir die voorgestelde KLIR bron 
word breedvoerig bespreek.

Akkurate inligting oor die netwerk impedansie-eienskappe, veral vanuit ’n bepaalde punt 
van verbinding, is noodsaaklik vir harmoniese penetrasiestudies, die nakoming van harmo-
niese limiete vir die netwerkintegrasie van hernubare energiebronne, dinamiese analise, har-
moniese filterontwerp en die ontwerp van b eheerstelsels. Die gedrag van die KLIR sein word 
suksesvol gedemonstreer vir ’n in situ gevallestudie toepassing wat die wyebandkarakterise-
ring van die Thevenin ekwivalente netwerkimpedansie van ’n toevoernetwerk behels. ’n Nuwe 
eksperimentele benadering word voorgestel om die afskatting van die netwerkimpedansie te 
verbeter deur die uitwerking van die nie-stasionêre aard van die netwerk te minimeer.
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CHAPTER 1

Introduction

1.1 Overview

System identification is the field of mathematical modelling of systems from experimental data

[1]. In the field of electrical energy, system identification, parameter estimation and digital sig-

nal processing techniques are typically used for modelling power system grid impedance and

apparatus such as motors, transformers, generators, excitation systems and power converters

[2], [3].

This dissertation discusses the characterisation and application of a novel wideband per-

turbation signal, namely the Pseudo-Random Impulse Sequence (PRIS), for application in high

power, High Voltage (HV) in situ system identification and parameter estimation applications.

The time- and frequency-domain properties of the PRIS signal are analyzed and a suitable per-

turbation source topology is proposed. The performance of the proposed signal is evaluated

for a case study involving in situ system identification and parameter estimation to characterise

a wideband grid impedance model for a rural Medium Voltage (MV) network.

1.2 Project motivation

The classical experimental methodologies used in system identification and parameter estima-

tion applications typically involve the application of an excitation signal with suitable time-and

frequency-domain properties. The input waveforms and system responses are recorded over

a time interval for subsequent processing, using signal analysis and parameter estimation al-

gorithms to extract the relevant model parameters [4], [5]. The perturbation signal is selected

based on the dynamic responses and frequency responses of the target system, and it is gener-

ally acknowledged that the time- and frequency-domain properties of perturbation signal can

have a notable influence on the accuracies of the estimated model parameters [6], [7].

An optimal perturbation signal should, ideally, persistently excite all relevant modes of the

target system [1], [6]. The parameters that need to be considered in selecting a perturbation sig-

nal include bandwidth, Signal to Noise Ratio (SNR), dynamic range and frequency resolution

[6], [8], [9]. The ability to control the time-and frequency-domain properties of a perturbation

signal is highly desirable, as it allows for the excitation energy to be focussed on the frequency

1
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band of interest. Applications involving electromagnetic equipment such as transformers, for

instance, require that the low frequency components of the perturbation signal be limited to

avoid core saturation effects [10].

An extensive range of excitation signals has been proposed in literature for wideband para-

meter estimation applications [4] - [10], [11], [12]. These signals include periodic signals such

as the stepped sine, swept sine and multi-sine, transient signals such as the random burst and

impulse signals, pseudo-random signals such as the PRBS, periodic noise and the Discrete In-

terval Binary Sequence (DIBS) and aperiodic signals such as the random noise signal. Many

of these conventional perturbation signals used in the field of system identification and para-

meter estimation are, however, unsuitable for high power, high voltage applications, especially

in the sense that the signals are unsuitable for in situ application and due to the inefficient and

impractical nature of the associated source topologies.

In situ measurements, i.e. without disconnecting the device under test from service, are

highly desirable in power system applications [10], [13]. It allows for the effects of operating

conditions to be tracked, whilst interruption of the supply network is avoided and downtimes

are minimized. This is particularly important in an application such as characterising network

impedance. In some cases, In situ perturbation is also important in distributed generation,

where islanding conditions need to be detected through impedance variations [11].

In high power, high voltage applications, the perturbation signal must, furthermore, have

appropriate voltage and current levels relative to the ratings of the target system to ensure an

acceptable SNR. This implies that it is essential that the signal is generated using a compact,

energy-efficient circuit topology.

Increased energy demand and global environmental degradation concerns are giving rise to

increasing penetration of renewable energy sources such as utility-size wind and solar photo-

voltaic (PV) generation [14]. These distributed power sources are typically interfaced to the

power grid through power electronic converters [15]. Due to the inherent switching behaviour

of power electronics converters, the current waveforms injected into the grid include harmonic

components that are superimposed on the fundamental frequency component [3], [12]. These

harmonic current emissions induce harmonic voltage distortion, which impacts negatively on

the overall Quality of Supply (QOS).

The grid connection codes that apply for renewable energy systems, therefore, include com-

pliance standards for the harmonic current emissions and harmonic voltage distortion allowed

at the Point of Common Coupling (PCC) [16]. In South Africa, for instance, the NRS 084 stand-

ard provides guidance on the technical procedures to be followed for the connection of new

generators and users of electricity, as well as performance evaluation of existing customers,
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CHAPTER 1. INTRODUCTION 3

regarding harmonic distortion and voltage quality parameters [17], [18], [19].

The harmonic emissions associated with power-electronic converters can be mitigated by

implementing active or passive harmonic filters. In practice, however, the performance of these

filters are affected by the interaction between the filter circuits and the grid impedance. This

interaction gives rise to complex series and/or parallel resonant circuit topologies. When a

minimally damped resonant point in the system’s impedance is excited by a harmonic current

or a transient event, current and/or voltage amplification results. Overvoltages and overcur-

rents may lead to damage to equipment connected to the grid. The dynamic and frequency

response characteristics of the grid impedance, furthermore, influence both the inner current

control loop and voltage control loop of the inverters connected to the grid [15], [20]. In severe

cases, the overvoltages and overcurrents can cause instability in inverter operation [12]. It is

generally accepted that the wideband properties of the grid, as reflected at the PCC, are be-

coming increasingly complex as the penetration of non-linear loads on the demand side and

grid-tied converters on the supply side increases. This is compounded by the increasing di-

versity of energy sources, the stochastic nature of renewable generation and the time-variance

of modern networks.

A good understanding of the wideband grid impedance characteristics, especially at a PCC,

is of particular importance for the following applications:

• Harmonic filter design: Passive and active filters are used extensively in modern power

systems to mitigate harmonic distortion, especially in the context of the power convert-

ers associated with wind and solar PV renewable energy sources [21]. The design of

these filters requires good insight into the wideband characteristics and time-dependent

behaviour of the system impedance at the PCC [12], [22].

• Controller design: The design of controllers for power electronics systems, including con-

verters and Flexible AC Transmission Systems (FACTS) devices such as Static Synchron-

ous Compensators (STATCOMs) and Static VAR Compensators (SVCs), must take cognis-

ance of the wideband properties of the system impedance to guarantee system stability

and appropriate dynamic behavior [12], [20], [23], [24].

• Grid code compliance for Renewable Power Producers (RPPs): RPPs can demonstrate grid code

compliance by conducting impedance measurements in their network with the view to

ensure that the interaction with the grid impedance does not give rise to harmful reson-

ant points [12], [22], [25]. The maximum impedance resonance should not exceed the re-

quired base harmonic impedance indicated in the grid code. In South Africa, for instance,
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the grid code [17] states that the resulting impedance at the Point of Connection (POC)

should not exceed 3 times the base harmonic impedance limit for any frequency below

the 50th harmonic. In this case, therefore, the RPP may not connect equipment, e.g. capa-

citor banks, that will cause resonance of more than 3 times at the POC at any frequency. In

this regard, the Network Service Provider (NSP) is required to make available sufficient

information about the grid to allow the RPP to design for grid code compliance. This

includes information such as the network topology of the various lines, transformers,

reactors, capacitors, and other relevant equipment [17].

• Design of protection systems: The design of protection systems requires accurate knowledge

of the system impedance at the fundamental frequency to determine short-circuit power

[12].

• Detecting islanding conditions: System impedance can be used to detect islanding condi-

tions in a network with distributed generation [11], [14], [20], [25]. During an islanding

condition, a distributed generator feeds a local sub-grid, while the main grid is switched

off. In this case, islanding can be detected through sudden impedance variation.

The grid impedance at the fundamental system frequency is typically determined by calcu-

lations based on the short-circuit power observed at a given voltage level. Wideband modelling

of grid impedance, however, has received considerable attention in recent years [12], [14], [21]

- [26]. Power system simulation software, such as DIgSILENT PowerFactory, represents a con-

venient tool to simulate the frequency responses of system impedance [12], [27]. The accuracy

of computer-based power system studies is, however, highly dependent on the accuracies of

the model topologies and parameter sets used to represent the system components, such as

lines, cables, transformers, rotating machines, etc. In practice, manufacturer specified values

are used often in these studies. Many crucial parameter values are, however, often not spe-

cified. The available parameter values may, furthermore, be inaccurate as parameters may

change over time or with operating conditions [28].

The development of methodologies and procedures for estimating the parameters of wide-

band models of power system apparatus is therefore of major importance in the context of

grid impedance frequency response studies. The grid topology is, furthermore, nonstation-

ary in nature, especially due to the presence of dynamic loads and the dynamic nature of the

power electronic systems associated with modern FACTS devices, which further complicates

the simulation approach. In situ system identification and parameter estimation investigations

are therefore of importance in characterising the wideband characteristics of grid impedance.
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The wideband modelling of power transformers is not only of major importance in the

context of the modelling the frequency domain characteristics of grid impedance but also for

applications such as condition monitoring. The behaviour of power transformers under tran-

sient conditions, or at frequencies other than the nominal frequency, are complex. The fre-

quency responses of a transformer are determined by equivalent circuit elements such as the

leakage inductances, winding resistances, winding capacitances and the non-linear core com-

ponents [29]. Frequency response measurements have, therefore, found extensive application

in determining parameter values for wideband lumped parameter equivalent circuit models

of power transformers, potential transformers and current transformers [30], [31], especially

in power quality studies. Frequency Response Analysis (FRA) has, furthermore, been used

extensively for condition monitoring of power transformers for power network reliability ap-

plications [30], [32], [33].

The FRA approach typically makes use of measured frequency responses of the primary

and secondary input impedances under open-circuited and/or short-circuited conditions, primary

to secondary, and secondary to primary transformation ratios, etc. It has been shown that FRA

is suitable for detecting a range of problems, including winding displacement or deformation

due to physical damage to a transformer.

1.3 Research focus

1.3.1 Research objectives

This investigation focuses on the analysis and performance evaluation of a novel perturbation

signal, namely the Pseudo-Random Impulse Sequence (PRIS), for in situ application in the field

of high power, high voltage system identification and parameter estimation studies. This gives

rise to the following research objectives:

• Mathematical modelling and analysis of the time-domain properties of the PRIS signal: Time-

domain models are developed for the unipolar and bipolar PRIS signals with reference to

the classical impulse signal and the PRBS signal. The effects of the various time-domain

model parameters, including the impulse time constants and PRBS clock frequency, are

investigated through mathematical analysis and simulations with the view to determine

the suitability of the signal for in situ system identification and parameter estimation

applications.

• Mathematical modelling and analysis of the frequency-domain properties of the PRIS signal: The

frequency-domain properties of the proposed perturbation signal are explored through
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mathematical analysis and simulations with the view to determine the suitability of the

signal for persistent excitation in wideband system identification and parameter estim-

ation applications. The controllability of the frequency spectrum in comparison with

existing perturbation signals is investigated.

• Development of a perturbation source circuit topology that is optimal for in situ high power, high

voltage applications: An energy-efficient circuit topology is proposed and the performance

of the circuit for in situ excitation of active systems is investigated. A detailed mathemat-

ical analysis of the perturbation source is presented and important design considerations

identified.

• Performance evaluation of the proposed PRIS signal and perturbation source for wideband charac-

terisation of grid impedance: The PRIS signal is applied in situ for wideband characterisation

of the grid impedance of a supply network. The effects of harmonic voltage distortion

and the non-stationary nature of the Thevenin equivalent grid model are investigated.

1.3.2 Original contributions

The original contributions associated with the research can be summarised as follows:

• Introduction of the PRIS waveform as wideband perturbation signal for high power, high voltage

applications: The proposed PRIS signal represents a novel concept, that combines a PRBS

gate signal with the classical impulse excitation waveform used extensively in high voltage

engineering.

• Time-domain model and analysis of the PRIS signal: The time-domain properties of the PRIS

signal have not been investigated in the literature. It is shown that the signal is highly

suitable for in situ application in high power, high voltage environment.

• Frequency-domain model and analysis of the PRIS signal: The frequency-domain properties

of the PRIS signal have not been investigated in the literature. It is shown that the power

spectrum of the PRIS has a good degree of controllability in comparison with the classical

PRBS and impulse signals, especially in the sense that the frequency spectrum can be

manipulated by adjusting the impulse time constants and PRBS clock frequency to focus

the spectral energy in the frequency band of interest.

• Development and performance evaluation of a PRIS source circuit topology: A novel circuit to-

pology, using a power electronic H-bridge in combination with a series RLC network, is

proposed to generate the PRIS signal. It is shown that the circuit represents an efficient

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 7

and compact perturbation source that has the potential to operate at voltages in the kV

range. The effects of the target system to be estimated on the PRIS perturbation current

are investigated. The impedance of the target is shown to have considerable influence on

the time- and frequency-domain characteristics of the perturbation current. The initial

energy in the inductor and capacitor associated with a practical PRIS source are further-

more shown, through mathematical analysis of the PRIS source, to affect the shape of the

chopped impulse waveforms that constitute the PRIS.

• Application of the PRIS signal for wideband characterisation of grid impedance: The proposed

PRIS signal is applied for wideband characterisation of the grid impedance of a supply

network, where the supply voltage exhibits a fair degree of harmonic voltage distortion

and stochastic behaviour. A novel experimental approach is proposed to minimize the

effects of voltage distortion and the time-dependent variation of the supply voltage on

the estimated frequency responses and model parameters.

1.4 Dissertation layout

The remainder of this dissertation is organized as follows:

Chapter 2: The properties and performance metrics that typically apply for determining the

suitability of a perturbation signal for system identification and parameter estim-

ation experiments in the energy field are introduced and an overview of classical

perturbation signals is presented. The circuit topologies typically used for in situ

perturbation of active ac systems are reviewed and critically discussed.

Chapter 3: The time-domain modelling and analysis of the PRIS signal are presented. The

results are discussed in the context of the suitability of the signal for system iden-

tification and parameter estimation applications in the field of power engineering.

Chapter 4: The frequency-domain modelling and analysis of the PRIS signal are presented.

The results are discussed in the context of the suitability of the signal for system

identification and parameter estimation applications in the field of power engin-

eering.

Chapter 5: A practical circuit topology for a bipolar PRIS perturbation source is proposed. The

design considerations of the source are discussed.

Chapter 6: The performance of the PRIS perturbation signal and perturbation source for con-

ducting in situ frequency response measurements of the grid impedance of an MV

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 8

case study network is evaluated. Results are presented for the grid impedance fre-

quency responses derived for the target network. A wideband lumped-parameter

equivalent circuit model is proposed for the network and parameter estimation al-

gorithms are applied to estimate the associated circuit parameters using the meas-

ured frequency responses of the grid impedance.

Chapter 7: The results of the investigation are critically reviewed and conclusions are presen-

ted with reference to the original research objectives. Proposals for further research

are presented.
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CHAPTER 2

Critical Overview of Signals and Topologies for

in situ Perturbation of Energy Systems

2.1 Overview

System identification and parameter estimation methodologies typically involve excitation of a

target system with a wideband perturbation signal, such that the input and output signals cap-

ture all relevant dynamic modes of the system under test [34], [35]. In non-parametric system

identification, the measured response of the system is cross-correlated with the measured input

signal, or a transfer function is estimated using the discrete Fourier transforms of the input and

output signals [5], [36]. In the model-based parametric estimation, on the other hand, a system

model is assumed and the identification involves estimation of the model parameters [35].

These experiments are affected in practice by disturbance noise, including environmental

noise, digitizer noise, system noise, etc. The effects of noise on the estimated results are in-

versely proportional to the SNR of the measured signals. The spectral energy of the per-

turbation signal, therefore, needs to be sufficient throughout the frequency band of interest to

achieve an acceptable SNR [4], [37]. In comparison with system identification and parameter

estimation experiments targeting electronic circuitry and control systems, experiments target-

ing high power, high voltage AC applications present several unique additional challenges,

including the following:

• The perturbation signal should not introduce bias such that the normal operating re-

gion of the device under test is disturbed excessively. This is particularly important for

applications targeting electromagnetic components, where DC bias or high-amplitude,

low-frequency excitation can give rise to core saturation effects.

• The perturbation signal should not result in excessive measurement times. This can lead

to inaccurate results in cases where operating conditions are dynamic and change during

the measurement period. This is of interest for systems operating in situ under dynamic

conditions, such as machines and loads, or systems reflecting stochastic behaviour, such

as grid impedance.

9
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• The voltage and current ratings of the perturbation source must be compatible with the

operating conditions that apply for the target system. This implies that the perturbation

signal should ensure an acceptable SNR, but should not cause the voltage and current

ratings of the system under test to be exceeded.

• The perturbation source should employ an energy-efficient, low-cost circuit topology.

The metrics that are commonly used in literature to characterise the signal quality of a

perturbation signal include the following [6], [34]:

• Crest factor: The crest factor CF of a signal x is defined as the ratio of the peak value xpk

to the effective RMS value xRMSe. This yields

CF =
xpk

xRMSe
. (2.1)

The Root Mean Square (RMS) value xRMSe reflects the spectral power over the frequency

band of interest. Signals with an impulse characteristic have a large crest factor. Although

the peak amplitude xpk may be high, the RMS value xRMSe may be insufficient to ensure

an acceptable SNR over the frequency band of interest.

• Time factor: The time factor of a perturbation signal represents the power distribution of

the signal over the frequency band of interest. Unequal distribution of the spectral power

of the perturbation signal with respect to the noise level results in poor measurement

results at some frequencies. The SNR should, ideally, be constant over the frequency

band of interest to achieve uniform accuracy. A system presenting noise with a flat power

spectrum, for instance, should be excited with a perturbation signal with a flat amplitude

spectrum.

It follows that an optimum perturbation signal should have a low crest factor and low time

factor.

Schoukens et al. [4] divided the excitation signals used in system identification and para-

meter estimation applications into three categories, namely periodic signals, transient signals,

and aperiodic signals. The excitation signals applied in the early 1960s focussed predomin-

antly on the swept sine wave [4], [8], [34]. In this method, a sinusoidal signal with slowly

varying frequency is injected into the target system, while measurements are conducted using

a tracking filter. Various other excitation signals based on sinusoidal waveforms have been

proposed in the literature, including the stepped-sine signal, periodic chirp signal and multi-

sine signal. Perturbation signals based on sinusoidal signals are, however, not well suited for

high power applications in practice. These signals require that the active components of the
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perturbation source circuitry operate in linear mode. This gives rise to high voltage, current

and power ratings for these components. Digital signal processing algorithms, however, have

made it possible to use complex input signals. These signals have broadband spectrums, which

allows for the required spectral information to be collected from a single measurement [4], [8].

This facilitates shorter measurement periods, but signal processing errors such as aliasing and

leakage may be introduced if no precautions are taken [8].

2.2 Classical perturbation signals

2.2.1 Periodic signals

2.2.1.1 Stepped sine signal

The stepped sine signal implements a pure sinusoidal waveform, as defined by the relationship

x(t) = A sin(ωt), (2.2)

where the radian frequency ω changes in discrete steps through the measurement period or

from measurement to measurement. The stepped sine signal has been applied successfully to

measure the impedance of energized grids for the frequency range between the fundamental

grid frequency and frequencies in the kHz range [38]. The stepped sine has also been applied

in transformer FRA for the detection of faults and wideband modelling [32], [39], [40]. The

signal is characterised by good SNR, but the sequence of frequency changes gives rise to long

measurement periods [8], i.e. of the order of several minutes. The measurement is likely to be a

manual process, with magnitude and phase information collected after each frequency change.

The transient responses associated with the instances where the frequency changes occur have,

furthermore, to be omitted from the analysis to ensure accurate results. The methodology is

thus not well suited for online measurements where the target system exhibits non-stationary

stochastic behaviour over time [24].

2.2.1.2 Swept sine signal

In the case of the swept sine signal, the frequency of a sinusoidal excitation signal is swept up

and/or down over the measurement period [4]. The signal is defined by the relationship

x(t) = sin[(at + b)t] 0 ≤ t ≤ T, (2.3)

where T denotes the period, a = 2π( f2 − f1)/T, b = 2π( f1), and f1 and f2 represent the

lower and upper frequencies respectively of the frequency band that applies. If the frequency
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is swept slowly, steady-state frequency response measurements are obtained over the measure-

ment interval. The periodic chirp signal represents a swept sine signal where the sweeping is

performed rapidly and repetitively such that a periodic signal is created with the same period

as the measurement period.

The swept sine has been applied extensively in transformer FRA for the detection of faults

and wideband modelling [30], [32], [39], [40].

2.2.1.3 Multi-sine signal

The multi-sine signal is represented by a sum of harmonically related sinusoidal signals [1], [4]

[8]. It is defined by the relationship

x(t) =
m

∑
k=1

Ak sin(ωkt + φk), (2.4)

where Ak, ωk and φk denote the amplitude, radian frequency and phase respectively of the kth

sinusoidal component. Perturbation using a multi-sine signal reduces the measurement time

in comparison to the stepped sine and swept sine, whilst retaining good SNR. The amplitudes,

frequencies, and phases of the harmonic components can, furthermore, be optimised using

numerical optimisation routines to achieve an optimal power spectrum and crest factor. In

this context, the amplitudes determine the power spectrum, while the phases influence the

peak value of the signal [8]. Optimization of these signal parameters, however, complicates the

design of the perturbation source [34]. Multi-sine signals are also not suitable for applications

where the input transducers cannot cope with an infinite number of discrete amplitudes [7].

2.2.2 Transient signals

2.2.2.1 Random burst signal

The random burst signal is represented by a white noise sequence injected during a part of the

measurement period, with zero input injected for the rest of the measurement duration [34].

Similar to other stochastic signals, a large number of averages are required to obtain acceptable

accuracy. The signal is defined by the mathematical relationship

x(t) = g(t)h(t), (2.5)

where
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g(t) =


1 0 ≤ t < T1

0 T1 ≤ t < T,

and g(t) and h(t) denote a window function and a random variable respectively.

2.2.2.2 Impulse excitation signal

The ideal impulse signal contains spectral energy throughout the entire frequency band, and

can, therefore, be used to extract information at all frequencies. The signal, therefore, repres-

ents the ideal perturbation signal. The ideal impulse signal can, however, not be generated in

practice. The practical impulse signal used in system identification applications has a wave-

form that mimics the impulse waveshape that is widely used in high voltage testing, in the

sense that it has a fast rise time and a slow fall time, thereby providing wideband excitation.

Impulse perturbation signals have been used extensively for identification of system im-

pedance [3], [21], [23] and power transformers [30], [32], [41]. Impulse perturbation offers the

advantage of short measurement periods, which makes the method suitable for applications

of dynamic nature, such as grid impedance measurements. A relatively high voltage pulse

impacts positively on the SNR, even in the presence of interference from nearby energized

transformers in a substation environment. The signal, furthermore, ensures a relatively broad

frequency spectrum [32].

Impulse excitation is, however, not ideal in some applications. Impulse perturbation in

transformer FRA measurements, for instance, exhibits noisy results for the low-frequency range

below 1 kHz [41]. In the case where a short impulse perturbation is applied to a transformer,

the transformer core will not complete a full cycle through the B-H curve [41]. This results

in insufficient information in the transformer response to achieve a good estimate of the time-

varying magnetizing inductance. The spectral energy of the impulse signal cannot be easily

controlled and decays rapidly with frequency [26]. The dynamic operation point of the sys-

tem under test may also be compromised in measurements where a high impulse amplitude is

injected to achieve a high SNR. The impulse signal is, furthermore, a unipolar signal. This in-

troduces a degree of DC bias, which may impact negatively on the response of electromagnetic

apparatus such as transformers and electrical machines.
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2.2.3 Pseudorandom signals

2.2.3.1 Pseudo-random noise signals

The pseudo-random noise signal consists of a sum of sinusoids with random phase values [4].

The signal is similar to the multi-sine signal but differs in respect of the optimisation of the

phase angles of the sine components. The signal is defined by the mathematical expression

x(t) =
m

∑
k=1

Ak sin(ωkt + φk), (2.6)

where the phase angle φk is a uniformly distributed and random in the interval [0, 2π].

2.2.3.2 Periodic noise signal

A periodic noise signal is generated by periodically repeating a noise sequence. The meas-

urements are conducted when the transients associated with the transitions between the noise

periods and zero periods are damped out. The signal exhibits the same behaviour as random

noise, except for the lack of leakage problems due to periodicity of the signal [4]. Due to the

stochasticity of this signal, its amplitude spectrum is not flat. Averaging is necessary to obtain

acceptable accuracy.

2.2.3.3 Pseudo-random binary sequence

A PRBS is a form of a deterministic and periodic white noise signal based on Maximum Length

Binary (MLB) sequences. The signal can be readily generated using a Linear Feedback Shift Re-

gister (LFSR). It consists of a bitstream of ones and zeros that occur pseudo-randomly over a

period T, after which the sequence is repeated. The binary transitions occur at discrete inter-

vals, which are multiples of the PRBS clock period, Tclk [1], [34]. The repetition period, T, is

defined by the number of clock periods, N, that occur before the sequence repeats, such that

T = N × Tckl , where N = 2n − 1 bits, with n an integer number greater than 1 representing the

number of shift registers.

The power spectral density (PSD) of the PRBS is defined by the mathematical expression

[13]

S(ω) =
a2(N + 1)Tclk

N

[sin(ω Tclk
2 )

ω Tclk
2

]2
, (2.7)

where a is the signal amplitude and ω is the frequency.

Figure 2.1 shows a plot of the PSD of the PRBS. The spectrum is composed of line spectral

components with a harmonic separation or frequency resolution of 1/T [13], [42], [43]. The
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signal exhibits an almost uniform PSD over the frequency band from f = 1
T to the upper -3dB

cut-off frequency located at 1
3 × fclk. The upper frequency sidelobes are defined by the zeros

occurring at f = n/Tclk, where n is an integer as shown in Figure 2.1. The PSD of a PRBS signal

decays rapidly above the -3dB cut-off frequency, which might result in low SNR, especially in

FRA measurements. This can, however, be mitigated by selecting a PRBS clock frequency, fclk,

such that the frequency range of interest is accommodated.

Figure 2.1: Power spectral density of the PRBS [43].

Measurements performed with the PRBS are repeatable due to the deterministic properties

of the signal. The pseudo-random property associated with the PRBS signal ensures a wide-

band frequency spectrum so that the target system dynamics can be excited uniformly over a

predetermined frequency band [44]. Periodic averaging can, furthermore, be implemented to

reduce the leakage problem associated with random signals.

The PRBS has been used for the testing of measurement transducers and system identific-

ation in the fields of acoustics and biology [43]. The use of PRBS signals has been extended

to parameter estimation for the circuit models of electrical equipment such as generators, mo-

tors, transformers and power converters [2], [9], [10], [28], [41]. Jordan et al. [15] and Roinola

et al. [26], [45] proposed the use of the PRBS and multilevel PRBS for grid impedance meas-

urements. The proposed methodology presents some advantages in comparison to impulse

excitation, including low signal amplitude requirements, cost-effectiveness, and ease of signal

generation and data acquisition [26]. MLB based sequences have, furthermore, been shown to

produce good results, even under low SNR conditions and tight restrictions on the amplitude

of the perturbation signal.

The flat frequency spectrum exhibited by the PRBS makes it suitable for many applications

that require excitation with a uniform PSD distribution [46]. Unipolar excitation is, however,

not ideally suited for applications involving electromagnetic power system apparatus, such as

transformers and electrical machines, due to the possibility of injecting low-frequency com-

ponents that can result in core saturation. The unipolar PRBS signal may, furthermore, drive
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the system under test towards a biased offset point from the operating point prevailing at the

start of the perturbation [2]. This would typically occur if a long PRBS sequence is used [10].

In this context, Vermeulen et al. [2] proposed the use of a bipolar PRBS as a perturbation signal

in a study aimed at online parameter estimation of a synchronous generator model.

2.2.3.4 Discrete-interval binary sequence

The discrete-interval binary sequence (DIBS) represents a class of pseudorandom sequences

that can be optimised [26]. In the DIBS, the energy of a number of harmonic frequencies is

maximized at the expense of the remainder of harmonic frequencies. The energy associated

with the specified frequencies is increased without increasing the time-domain amplitude of

the sequence, thereby giving rise to a low crest factor. The frequency resolution of such a

sequence is, however, reduced. Roinila et al. [24] applied DIBS for online identification of grid

impedance, by injecting the sequence into the reference signal of an inverter. As in the case of

the PRBS, perturbation with a DIBS signal can result in nonlinear saturation, especially when

used to identify power equipment with electromagnetic components.

2.2.4 Aperiodic signals

2.2.4.1 Random noise signal

The random noise signal basically consists of a sequence of white noise. The power spectrum

of this signal can be controlled by using digital filters [34]. Random noise perturbation signals

have the advantage of uniform excitation over the frequency band of interest. The signal is, fur-

thermore, relatively easy and safe to implement. Random signals, however, have a disadvant-

age in the form of the leakage problem that occurs in the frequency domain after windowing.

Averaging is necessary to eliminate non-coherent noise [47].

2.3 Overview system topologies for in situ application of PRBS

perturbation signals

In situ identification implies that the system under test remains connected to the normal sup-

ply voltage while the perturbation signal is applied, and the input and output waveforms of

interest are recorded. The target system thus does not need to be taken offline, which minim-

izes disruption and avoids production losses. The effects of the normal operating conditions

are, furthermore, taken into account in the in situ approach. The perturbation signal is super-

imposed on the normal operating signal. Its amplitude has to be optimised such that it is low
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enough to ensure that the target system is not disturbed too far from the optimum operating

condition thus avoiding disturbance to connected equipment and customers, whilst it is also

high enough to ensure an acceptable SNR.

Figure 2.2 illustrates a common system topology for applying a perturbation signal in situ

to a system operating with a sinusoidal supply voltage waveform. The AC supply source

is represented by a Thevenin equivalent circuit consisting of an AC voltage source, vTh(t),

and series impedance, ZTh. The perturbation source is connected in parallel with the target

system. Due to the voltage drop induced across ZTh, the perturbation current, ip(t), induces

a voltage perturbation on the supply voltage waveform, vT(t), of the target system. System

identification and parameter estimation are performed using the supply waveforms vT(t) and

iT(t). The frequency response of the input impedance of the target system, ZT(w), is given by

the relationship

ZT(w) =
F{vT(t)}
F{iT(t)}

, (2.8)

where F denotes the Fourier transform.

The topology shown in Figure 2.2 can, in principle, also be applied to characterise the

Thevenin equivalent source impedance ZTh. In this application, ZTh is determined from the

dynamic voltage and current responses of the supply network, i.e. vT(t) and is(t), and the

open-circuit waveform of the Thevenin equivalent source, vTh(t). The frequency response of

the Thevenin equivalent source impedance, ZTh(w), is given by the relationship

ZTh(w) =
F{vTh(t)− vT(t)}

F{is(t)}
. (2.9)

vTh(t)

is(t) iT(t)

vT(t) zT

zTh
ip(t)

Perturbation 
Source

Perturbation 
Source

+

Figure 2.2: System topology for in situ application of a perturbation signal to an AC system.

Figure 2.3 shows the system topology typically used for in situ application of a PRBS current

perturbation source to an AC target system. Van Rooijen et al [10] applied the topology shown

in Figure 2.3, using a bi-directional PRBS current source, to derive a wideband model for a
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magnetic voltage transformer. The bi-directional PRBS current source applied in the investig-

ation consists of a uni-directional PRBS current source connected to the target system through

an H-bridge, where the switches of the H-bridge are activated by PRBS gate signals. The topo-

logy offers the advantage of a controllable and well-defined PRBS current perturbation signal.

The active elements of the current source, however, operate in linear mode, which gives rise to

high power losses. This limits the scope of application of this approach in the high power, high

voltage environment.

vTh(t) ip(t)

is(t) iT(t)

zT

zTh

vT(t)
+

Figure 2.3: System topology for in situ application of a PRBS current source to an AC system.

Figure 2.4 shows a system topology for in situ application of a PRBS voltage perturbation

source to an AC target system. The PRBS voltage source typically consists of a DC source

connected through an H-bridge and a series impedance, Z, where the switches of the H-bridge

are activated by PRBS gate signals, as shown in Figure 2.5. This topology has the advantage

that the power electronic elements do not operate in linear mode, which reduces the power

ratings of the associated source circuitry. The arrangement, however, also has a disadvantage

in the sense that the waveform of the perturbation current, ip(t), is highly dependent on the

series impedance Z and parallel impedance of the Thevenin equivalent AC source and the

target.

vTh(t)

ip(t)

is(t) iT(t)

zT

zTh
Z

+
vprbs(t)
-

vT(t)
+

Figure 2.4: System topology for in situ application of a PRBS voltage source to an AC system.
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Z ip(t)
+

−
Vprbs(t)

+

−

Vdc

PRBS Generator

S1

S2

S3

S4

Figure 2.5: Circuit diagram of a H-bridge configuration controlled by PRBS gate signals.

In the PRBS voltage source perturbation applications reported in literature, the series im-

pedance Z shown in Figure 2.4 is typically represented by a purely resistive element, as shown

in Figure 2.6 [15], [48]. This arrangement offers limited control over the frequency spectrum

characteristics of the perturbation current. It has the further disadvantage that the AC source

can induce a large sinusoidal current component in the PRBS voltage source, especially in high

power, high voltage applications. This increases the current ratings of the active elements com-

prising the H-bridge and DC voltage source. The topology can, furthermore, give rise to high

losses in the series resistor.

vTh(t)

ip(t)

is(t) iT(t)

zT

zTh

+
vprbs(t)
-

vT(t)
+ R

Figure 2.6: System topology in situ application of a PRBS voltage source to an AC system through series

resistive element.

Figure 2.7 shows simulated results for the PRBS voltage signal vprbs(t), perturbation current

ip(t) and target voltage vT(t) for the circuit topology shown in Figure 2.6. The simulation is

conducted for Vprbs = 50V and R = 50Ω, and a 50 Hz single-phase supply network where

VTh = 220Vrms and ZTh = 0.4 + j0.25Ω. The target is represented by a pure resistive load of

100Ω. The results confirm that the perturbation current ip(t) has a significant 50 Hz sinus-

oidal component. This gives rise to high power losses in resistor R and in the active elements

associated with the PRBS voltage source. Overall, this increases the physical size of the per-

turbation source, especially in power applications [48]. The results, furthermore, show that

the perturbation signal imposed on the voltage waveform applied to the target system, vT(t),
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differs substantially from the ideal PRBS waveform. This impacts on the frequency-domain

properties of the perturbation signal which can, in turn, be expected to impact on the overall

success of the associated system identification or parameter estimation experiment.
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Figure 2.7: Simulated PRBS voltage signal vprbs(t), perturbation current ip(t) and target voltage vp(t)

for the circuit topology shown in Figure 2.6.

2.4 Conclusion

The perturbation signals that are commonly used for system identification and parameter es-

timation are discussed. In the context of power system applications, it is desirable that the

spectral characteristics of the perturbation signal can be controlled to suit various applications,

for instance, to reduce or increase power in certain frequency bands to avoid saturation or in-

crease SNR. Wideband signals such as random noise and PRBS have a flat spectrum below

the -3dB point and offer limited control parameters. The multi-sine and DIBS signals have

complex spectral optimisation techniques and are also not feasible for direct injection into an

active source. In high power applications, a bipolar perturbation signal is desired as it ensures

that the system under test is not driven towards a biased offset point from the operating point

existing at the start of the excitation.

An overview of system topologies for in situ application of PRBS perturbation signals is also

presented. These include the PRBS current source and the PRBS voltage source. It is noted that

these two topologies have a limitation of high power losses and therefore unsuitable for high

power applications. In the case of the PRBS current source, for example, the power electronic

switching elements operate in linear mode, thereby giving rise to high losses. The PRBS voltage
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source uses a resistive coupling to the system under test. This resistor increases power losses

in the topology and reduces the controllability of this perturbation source. Furthermore, when

used in in situ applications, the perturbation signal generated by this source has a high sinus-

oidal current component which increases power losses and current ratings of the perturbation

source circuit.
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CHAPTER 3

Time-Domain Modelling of the

Pseudo-Random Impulse Sequence

3.1 Introduction

Section 2.2 reviewed a wide range of perturbation signals that have been successfully applied

for system identification and parameter estimation applications in the literature. Overall, how-

ever, most of these signals are not ideally suited for application in the field of electrical energy

systems, where the target systems typically reflect high power and high voltage operating con-

ditions. These considerations are of particular importance in the case of in situ applications,

where the perturbation signal is injected into an active high power, high voltage system. Al-

though some of the classical signals have been applied successfully in high power applications,

the range of application is often limited due to the inherent constraints that are imposed on the

design of the associated perturbation sources. These constraints include design complexity,

power losses and efficiency, controllability, etc.

This chapter introduces a novel perturbation signal for high power, high voltage system

identification and parameter estimation applications, namely the pseudo-random impulse se-

quence (PRIS). The PRIS signal seeks to combine the most advantageous characteristics of the

classical PRBS signal and the classical impulse waveform used in high voltage engineering.

The time-domain properties of the PRIS signal, including the mathematical formulation, wave

shape properties and source design considerations, are discussed.

3.2 Time-Domain modelling of the pseudo-random impulse

sequence

3.2.1 Time-shifted chopped impulse waveform

The classical impulse waveform fi(t) is characterised by an exponential front and an exponen-

tially decaying tail [49]. Figure 3.1 shows that the wave shape can be represented as the sum

of a positive exponential component and negative exponential component, as defined by the

expression

22
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fi(t) = U[e−(t)/τ2 − e−(t)/τ1 ], (3.1)

where U denotes the amplitude of the exponential functions, and τ1 and τ2 denote the time

constants of the negative and positive exponential terms respectively. The rise time of the

impulse is dominated by τ1, while fall time is dominated by τ2.

t

fi(t)

Umax

U

-U

e-t/τ2

-e-t/τ1

U(e-t/τ2 -e-t/τ1)

Figure 3.1: Representation of the impulse waveform as the sum of two exponential functions.

The impulse waveform defined by (3.1) can be shifted in time to yield the expression

fi(t− ti) = U[e−(t−ti)/τ2 − e−(t−ti)/τ1 ], (3.2)

where ti denotes the time delay to the start of the impulse.

In order to derive a time-shifted, chopped impulse waveform, fic(t − ti), the time-shifted

impulse waveform fi(t− ti) is multiplied by a delayed finite-width pulse fp,ti ,ti+1(t), where

fp,ti ,ti+1(t) = u(t− ti)− u(t− ti+1). (3.3)

u(t− ti) and u(t− ti+1) denote unit step functions delayed by t = ti and t = ti+1 respectively.

This yields a time-shifted chopped classical impulse waveform which can be expressed as

fic(t− ti) = fi(t− ti) fp,ti ,ti+1(t) (3.4)
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The development of a time-shifted chopped impulse waveform defined by (3.4) is illustrated in

Figure 3.2. The time-shifted chopped classical impulse waveform represents the main building

block for the proposed PRIS signal.

t

fi(t-ti)
Umax Umax

t

fic(t)

ti ti+1t

fp,ti,ti+1(t)X

ti ti+1

=

ti

Figure 3.2: Development of the time-shifted chopped impulse waveform fic(t− ti).

Figure 3.3 shows the waveforms associated with the impulse waveform fi(t), the time-

shifted impulse waveform fi(t− ti) and the time-shifted chopped impulse waveform fic(t− ti).

The maximum amplitude, Umax, of the time-shifted impulse function fi(t− ti) occurs at time

t = tmax.

t

fi(t)
Umax

ti ti+1 t t

fic(t)
Umax Umax

tmax ti ti+1

fi(t-ti)

Figure 3.3: Impulse waveform, time-shifted impulse waveform and time-shifted chopped impulse

waveform.

An expression can be derived for tmax by equating the first derivative of (3.2) to zero at time

t = tmax. From (3.2), the derivative of fi(t− ti) is given by the relationship

d[ fi(t− ti)]

dt
= U

[
(− 1

τ2
)e
−(t−ti)

τ2 − (− 1
τ1
)e
−(t−ti)

τ1

]
. (3.5)

Let t = tmax and
d[ fi(t− ti)]

dt
= 0 in (3.5). This yields

1
τ1

e
−(tmax−ti)

τ1 =
1
τ2

e
−(tmax−ti)

τ2 , (3.6)

which can be rearranged so that

etmax
(τ1−τ2)

τ1τ2 =
τ1

τ2
eti

(τ1−τ2)
τ1τ2 . (3.7)

This yields

tmax =
τ1τ2

τ1 − τ2
ln
[τ1

τ2

]
+ ti. (3.8)
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The value of Umax for tmax < ti+1 is obtained by substituting (3.8) into (3.2). This yields

Umax = U
[(τ2

τ1

) τ1
τ1−τ2 −

(τ2

τ1

) τ2
τ1−τ2

]
(3.9)

Equation (3.9) shows that the peak value of the time-shifted impulse signal is dependent on the

peak value of the two exponential functions and the time constants τ1 and τ2.

3.2.2 Pseudo-random binary sequence waveform

Figure 3.4 shows the waveform of the PRBS signal, fPRBS(t), introduced in Section 2.2.3.3, to-

gether with the associated clock signal, fclk(t). The signal is generated by a deterministic al-

gorithm, but emulates the statistical properties of a random sequence, since the occurrence and

duration of the binary states are random. The PRBS is typically generated by a feedback shift

register driven by a clock signal fclk(t). The PRBS is periodic in the sense that the random se-

quence repeats after several clock cycles, N, which is determined by the configuration of the

feedback register. A PRBS with a repetition period of N clock cycles contains 2n−1 or (N + 1)/2

logic one states and 2(n−1)− 1 logic zero states. The number of state transitions is 2n−1. A single

PRBS period incorporates 2n−1 or (N + 1)/2 runs, where a run denotes the sequence between

two successive state transitions. One-half of these runs are one clock period long, one quarter

are two clock periods long, one eighth are three clock periods long, etc [13].

t

1

fclk(t)

t

fPRBS(t)

1

t1 t2 t3 tit0 ti+1 t[(N+1)/2]-1 t(N+1)/2t4 t5

Figure 3.4: A pseudo-random binary sequence, fPRBS(t), and the associated PRBS clock signal, fclk(t).

The PRBS waveform can be considered as a sequence of pulses of the form defined by (3.3),

where ti and ti+1 are associated with two successive state transitions of the PRBS. In the context

of the PRIS proposed in this investigation, pairs of successive state transitions of the PRBS are

used to trigger and chop the time-delayed impulse wave shapes defined by (3.2). The state
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transitions represented by ti and ti+1 are pseudo-random variables, that are generated using

the relationship

ti+1 = ti + kTclk 1 ≤ k ≤ n (3.10)

where Tclk = 1
fclk

denotes the period of the PRBS clock signal, k denotes a random integer

number and n denotes the number of stages in the shift register used to generate the PRBS. In

this context, kTclk represents the length of the ith PRBS run and nTclk represents the length of

the longest PRBS run.

3.2.2.1 Unipolar pseudo-random impulse sequence

The unipolar pseudo-random impulse sequence, f U
PRIS(t), consists of a pseudo-random se-

quence of time-shifted, chopped impulse waveforms of the form defined by (3.4). The signal

is derived by initiating a positive impulse waveform of the form defined by (3.2) at each state

transition of the PRBS, which is chopped by the state transition that initiates the next impulse

waveform, as illustrated in Figure 3.5.

t

f U
PRIS(t)

Umax

t

fPRBS(t)

1

t1 t2 t3 tit0 ti+1 t[(N+1)/2]-1 t(N+1)/2

t0 t1 t2 t3 ti ti+1 t[(N+1)/2]-1 t(N+1)/2

t4 t5

t4 t5

Figure 3.5: A pseudo-random binary sequence, fPRBS(t), and the associated unipolar pseudo-random

impulse sequence, f U
PRIS(t).

The unipolar PRIS sequence is defined by the mathematical expression

f U
PRIS(t) =

((N+1)/2)

∑
i=0,1,2...

fi(t− ti) fp,ti ,ti+1(t), (3.11)

where fi(t− ti) denotes the time-shifted impulse waveform defined in (3.2) and

fp,ti ,ti+1(t) = u(t− ti)− u(t− ti+1), (3.12)
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where ti and ti+1 denote the time instances of the ith and (i + 1)th state transitions of the PRBS

respectively.

The PRBS state transitions are pseudo-random variables. The impulses associated with the

unipolar PRIS signal are therefore pseudo-randomly located and are also pseudo-randomly

chopped. The shapes of the individual chopped impulse waveform are determined by the

pulse lengths, i.e. ti+1 − ti, of the PRBS and the time constants, τ1, τ2 of the impulse signal.

Higher values of fclk result in shorter pulse lengths, and consequently in early chopping of the

impulses wave shapes. This may cause front-chopping of the impulse wave shapes, i.e. before

the maximum point Umax is reached. Higher values of τ1 may give rise to a similar effect. The

time-domain properties of the PRIS can thus be controlled by varying fclk, n, τ1 and τ2.

3.2.2.2 Bipolar pseudo-random impulse sequence

The bipolar pseudo-random impulse sequence, f B
PRIS(t), consists of a pseudo-random sequence

of alternating positive and negative time-shifted, chopped impulse waveforms of the form

defined by (3.4). The signal is derived by initiating a positive impulse waveform of the form

defined by (3.2) at each positive state transition of the PRBS and a negative impulse waveform

at each negative state transition of the PRBS, each of which is chopped by the state transition

that initiates the next impulse waveform, as illustrated in Figure 3.6.

The bipolar PRIS sequence is defined by the mathematical expression,

f B
PRIS(t) =

((N+1)/2)−1

∑
i=0,2,4...

fi(t− ti) fp,ti ,ti+1(t)−
((N+1)/2)

∑
i=1,3,5...

fi(t− ti) fp,ti ,ti+1(t), (3.13)

where

fp,ti ,ti+1(t) = u(t− ti)− u(t− ti+1), (3.14)

where ti and ti+1 denote the time instances of the ith and (i + 1)th state transitions of the PRBS

respectively.

3.3 Simulation of the pseudo-random impulse sequences

3.3.1 Overview

The waveforms associated with the expressions defined by (3.11) and (3.13) for the unipolar

and bipolar pseudo-random impulse sequences respectively can be readily simulated, using

several approaches. The time instances at which the impulse waveforms are initiated and

chopped, i.e. ti and ti+1 respectively, are pseudo-random variables that are determined by the
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t

Umax

t

fPRBS(t)

1

t1 t2 t3 tit0
ti+1 t[(N+1)/2]-1 t(N+1)/2

t0 t1 t2 t3 ti ti+1 t[(N+1)/2]-1 t(N+1)/2

t4 t5

t4 t5

f B
PRIS(t)

Figure 3.6: A pseudo-random binary sequence, fPRBS(t), and the associated bipolar pseudo-random

impulse sequence, f B
PRIS(t).

PRBS sequence that is implemented. The values of ti and ti+1 are thus derived from a feedback

shift register driven by a clock signal with frequency fclk(t).

The Simulink platform represents a convenient tool for time-domain analysis of the ideal

PRIS, that also offers extensive support for frequency-domain analysis. The PRBS shift register

can be implemented using unit delays and are configured with a sample time equal to the

clock period Tclk(t). A feedback path is provided via modulo-two gates, with binary inputs

that are tapped after appropriate unit delays. The overall length of the PRBS is determined by

the number of unit delays used. The PRBS waveform is thus dependent on the clock period

Tclk =
1

fclk
and the number of unit delays n. Figure 3.7 illustrates the implementation of a PRBS

shift register in Simulink, where n= 4, with a period length of N = 15 bits.

Unit delays

XOR

PRBS4

Figure 3.7: Implementation of a feedback shift register with n= 4 in Simulink.
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3.3.2 Simulation of the pseudo-random impulse sequences in Simulink

Figure 3.8 and Figure 3.9 show block diagrams for simulating the unipolar and bipolar PRIS

waveforms defined by (3.11) and (3.13) respectively in Simulink, using a feedback shift register

n= 4, zero-crossing detection, transfer function blocks to implement the exponential functions,

and a switch to select the alternative positive and negative time-shifted exponential functions.

The two HitCrossing blocks detect the rising and falling edges respectively of the PRBS, thereby

generating pseudo-random pulses. These pulses act as inputs to exponential transfer functions

with time constants τ1 and τ2, which are summed to generate an impulse signal as defined

by (3.1). A switch block with three inputs is used to generate a bipolar PRIS. The switch is

configured to pass a signal into the top input port when the input into the middle port satisfies

a selected criterion, otherwise the signal into the bottom input port is passed. In the case of

the PRIS, the signal into the top input consists of a sequence of unchopped positive impulses

occuring on every rising edge of the PRBS waveform. The signal into the bottom input port

consists of a sequence of unchopped negative impulse waveforms. The signal into the middle

port is a PRBS which controls the switching operation. Whenever there is a rising edge on the

PRBS, a positive impulse waveform is passed, which is chopped when the PRBS logic changes.

A negative impulse is passed at the falling edge of the PRBS, which is then chopped when the

PRBS logic changes.

Figure 3.10 shows PRBS and PRIS waveforms simulated in Simulink using a model similar

to the one shown in Figure 3.9, for fclk= 10 kHz, τ1 = 0.05Tclk and τ2 = 0.4Tclk.

1/(s+1/τ2) 

Unit delays

XOR

Hit Crossing 

1/(s+1/τ1) 

+
-

+
-

Unipolar 
PRISPRBS

Figure 3.8: Simulink model for simulating a unipolar PRIS with n= 4.
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1/(s+1/τ2) 

-1

Unit delays

XOR

Hit Crossing 2

Hit Crossing 1

Switch

1/(s+1/τ1) 

1/(s+1/τ2) 

1/(s+1/τ1) 

+
-

+
-

+
-

+
-

Bipolar 
PRIS

PRBS

Figure 3.9: Simulink model for simulating a bipolar PRIS with n= 4.
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Figure 3.10: Simulated PRBS and bipolar PRIS waveforms using the Simulink model shown in Fig-

ure 3.9.

3.4 Conclusion

A novel concept of a PRIS as a perturbation signal is introduced. The signal is derived from

the classical impulse waveform and the PRBS. By initiation the impulse waveform at each state

transition of the PRBS and chopping it at the next PRBS state transition, a PRIS signal is de-

veloped. The PRIS waveform consists of a sequence of randomly occurring, randomly chopped

impulses. The two variations of the PRIS, the unipolar and bipolar PRIS signals are introduced

and the time-domain analysis presented. It is shown that the time-domain characteristics of the

PRIS can be controlled by varying the clock frequency and the length of the PRBS as well as the
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two time constants associated with the classical impulse waveform. An approach of simulating

the proposed PRIS waveform using the Simulink platform is also presented.
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CHAPTER 4

Frequency-Domain Modelling of the

Pseudo-Random Impulse Sequence

4.1 Introduction

System identification and parameter estimation applications require the implementation of a

perturbation signal with suitable frequency-domain properties. In this chapter, the proposed

PRIS signal is modelled and analyzed in the frequency-domain. The results are discussed in

the context of the suitability of the PRIS for system identification and parameter estimation

applications in the field of power engineering.

4.2 Mathematical modelling of the pseudo-random impulse

sequence in the frequency-domain

4.2.1 Time-shifted impulse waveform

The Fourier transform of the time-shifted impulse waveform fi(t− ti) defined by (3.2) can be

obtained by applying the Fourier integral as follows

Fi,ti(ω) = U
∫ ∞

ti

[
e−

(t−ti)
τ2 − e−

(t−ti)
τ1

]
e−jωtdt (4.1)

Equation(4.1) can be expressed as

Fi,ti(ω) = U
∫ ∞

ti

e−
(t−ti)

τ2 e−jωtdt−U
∫ ∞

ti

e−
(t−ti)

τ1 e−jωtdt (4.2)

The integrals in (4.2) can be solved to yield

Fi,ti(ω) =
−Ue

ti
τ2

1
τ2
+ jω

[
e−t( 1

τ2
+jω)

]∞

ti

+
Ue

ti
τ1

1
τ1
+ jω

[
e−t( 1

τ1
+jω)

]∞

ti

(4.3)

Equation 4.3 can be further formulated to obtain

Fi,ti(ω) = U
[ e−jωti

1
τ2
+ jω

− e−jωti

1
τ1
+ jω

]
(4.4)

The righthand side of (4.4) can be simplified to yield the expression

Fi,ti(ω) = Ue−jωti
[ τ2 − τ1

(1 + jωτ1)(1 + jωτ2)

]
. (4.5)

32
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4.2.2 Time-shifted pulse waveform

The Fourier transform of the time-shifted pulse waveform fp,ti ,ti+1(t) defined by (3.3) is given

by the expression

fp,ti ,ti+1(t) = u(t− ti)− u(t− ti+1)⇔
[
e−jωti(πδ(ω)− j

ω
)
]
−
[
e−jωti+1(πδ(ω)− j

ω
)
]
. (4.6)

The righthand side of (4.6) can be rearranged to yield

Fp,ti ,ti+1(ω) = (πδ(ω)− j
ω
)(e−jωti − e−jωti+1). (4.7)

4.2.3 Time-shifted chopped impulse waveform

The Fourier transform of the chopped time-shifted impulse waveform fic(t − ti) defined by

(3.4) is obtained by convolution of the Fourier transforms Fi,ti(ω) and Fp,ti ,ti+1(ω) defined by

(4.5) and (4.7) respectively. This yields

fic(t− ti)⇔ Fic,ti ,ti+1(ω) = Ue−jωti
[ τ2 − τ1

(1 + jωτ2)(1 + jωτ1)

]
∗
[
(πδ(ω)− j

ω
)(e−jωti − e−jωti+1)

]
.

(4.8)

Alternatively, the frequency domain expression of the chopped time-shifted impulse wave-

form can be obtained by applying the Fourier integral to the time-shifted impulse waveform

fi(t− ti) defined by (3.2) on a closed interval ti to ti+1 as follows

Fic,ti ,ti+1(ω) = U
∫ t(i+1)

ti

[
e−

(t−ti)
τ2 − e−

(t−ti)
τ1

]
e−jωtdt (4.9)

Equation (4.9) can be solved to yield

Fic,ti ,ti+1(ω) =
−Ue

ti
τ2

1
τ2
+ jω

[
e−t( 1

τ2
+jω)

]ti+1

ti

+
Ue

ti
τ1

1
τ1
+ jω

[
e−t( 1

τ1
+jω)

]ti+1

ti

(4.10)

Equation (4.10) can be solved to yield

Fic,ti ,ti+1(ω) =
−Ue

ti
τ2

1
τ2
+ jω

[
e−ti+1(

1
τ2
+jω) − e−ti(

1
τ2
+jω)

]
+

Ue
ti
τ1

1
τ1
+ jω

[
e−ti+1(

1
τ1
+jω) − e−ti(

1
τ1
+jω)

]
(4.11)

By simplifying (4.11), the following expression can be obtained

Fic,ti ,ti+1(ω) =
U
[
e−jωti − e

ti
τ2
−ti+1(

1
τ2
+jω)

]
1
τ2
+ jω

−
U
[
e−jωti − e

ti
τ1
−ti+1(

1
τ1
+jω)

]
1
τ1
+ jω

(4.12)

By simplifying (4.12) further, the frequency-domain expression of the chopped time-shifted

impulse waveform can be obtained as

Fic,ti ,ti+1(ω) =
Aτ1τ2(

1
τ1
+ jω)− Bτ1τ2(

1
τ2
+ jω)

(1 + jωτ1)(1 + jωτ2)
. (4.13)
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where

A = U
[
e−jωti − e

ti
τ2
−ti+1(

1
τ2
+jω)

]
. (4.14)

and

B = U
[
e−jωti − e

ti
τ1
−ti+1(

1
τ1
+jω)

]
. (4.15)

4.2.4 Unipolar pseudo-random impulse sequence

The unipolar PRIS, f U
PRIS(t), consists of a pseudo-random sequence of time-shifted impulses,

as defined by (3.11). By using the superposition property of the Fourier transform, the Fourier

transform, FU
PRIS(ω), of f U

PRIS(t) can be expressed as

FU
PRIS(ω) =

((N+1)/2)

∑
i=0,1,2...

Ue−jωti
[ τ2 − τ1

(1 + jωτ2)(1 + jωτ1)

]
∗
[
(πδ(ω)− j

ω
)(e−jωti − e−jωti+1)

]
. (4.16)

Using (4.13), the frequency domain expression for the unipolar PRIS can also be expressed as

FU
PRIS(ω) =

((N+1)/2)

∑
i=0,1,2...

Aτ1τ2(
1
τ1
+ jω)− Bτ1τ2(

1
τ2
+ jω)

(1 + jωτ1)(1 + jωτ2)
. (4.17)

Equations (4.16) and (4.17) show that the spectral characteristics of the unipolar PRIS are de-

pendent on the amplitude U and time constants τ1 and τ2 of the exponential functions that

constitute the impulse, and the pseudo-random time variables ti and ti+1, which are functions

of the clock frequency fclk.

4.2.5 Bipolar pseudo-random impulse sequence

The bipolar PRIS, f B
PRIS(t), consists of a pseudo-random sequence of alternating positive and

negative time-shifted, chopped impulse waveforms, as defined by (3.13). The Fourier trans-

form of the sequence of positive time-shifted chopped impulses can be expressed as

FP
i (ω) =

((N+1)/2)−1

∑
i=0,2,4...

Ue−jωti
[ τ2 − τ1

(1 + jωτ2)(1 + jωτ1)

]
∗
[
(πδ(ω)− j

ω
)(e−jωti − e−jωti+1)

]
. (4.18)

or by using (4.13) the Fourier transform of the sequence of positive chopped time-shifted im-

pulses can also be expressed as

FP
i (ω) =

((N+1)/2)−1

∑
i=0,2,4...

Aτ1τ2(
1
τ1
+ jω)− Bτ1τ2(

1
τ2
+ jω)

(1 + jωτ1)(1 + jωτ2)
. (4.19)

The Fourier transform of the sequence of negative time-shifted chopped impulses can be ex-

pressed as
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FN
i (ω) = −

((N+1)/2)

∑
i=1,3,5...

Ue−jωti
[ τ2 − τ1

(1 + jωτ2)(1 + jωτ1)

]
∗
[
(πδ(ω)− j

ω
)(e−jωti − e−jωti+1)

]
. (4.20)

Equation(4.20) can also be expressed as

FN
i (ω) = −

((N+1)/2)

∑
i=1,3,5...

Aτ1τ2(
1
τ1
+ jω)− Bτ1τ2(

1
τ2
+ jω)

(1 + jωτ1)(1 + jωτ2)
. (4.21)

The frequency spectrum of the bipolar PRIS is thus obtained by summing the Fourier trans-

forms of the sequences of positive and negative time-shifted chopped impulses. This yields

FB
PRIS(ω) =

((N+1)/2)−1

∑
i=0,2,4...

Ue−jωti
[ τ2 − τ1

(1 + jωτ2)(1 + jωτ1)

]
∗
[
(πδ(ω)− j

ω
)(e−jωti − e−jω(ti+1))

]

−
((N+1)/2)

∑
i=1,3,5...

Ue−jωti
[ τ2 − τ1

(1 + jωτ2)(1 + jωτ1)

]
∗
[
(πδ(ω)− j

ω
)(e−jωti − e−jωti+1)

]
.

(4.22)

Equation(4.22) can also be expressed as

FB
PRIS(ω) =

((N+1)/2)−1

∑
i=0,2,4...

Aτ1τ2(
1
τ1
+ jω)− Bτ1τ2(

1
τ2
+ jω)

(1 + jωτ1)(1 + jωτ2)
−

((N+1)/2)

∑
i=1,3,5...

Aτ1τ2(
1
τ1
+ jω)− Bτ1τ2(

1
τ2
+ jω)

(1 + jωτ1)(1 + jωτ2)
.

(4.23)

Equation (4.23) shows that the spectral characteristics of the bipolar PRIS are dependent on

the amplitude U and time constants τ1 and τ2 of the exponential functions that constitute the

impulse, and the random time variables ti and ti+1, which are functions of the clock frequency

fclk.

4.3 Spectral properties of the pseudo-random impulse sequence

4.3.1 Introduction

The mathematical expressions derived for the Fourier transform of the unipolar and bipolar

pseudo-random sequences, i.e. (4.17) and (4.23) respectively, are complex. The parameters

denoted by ti and ti+1 are, furthermore, pseudo-random variables that have to be expressed

with reference to the properties of the PRBS that generates the sequences. This represents a

major complication in deriving closed-form mathematical expressions for the frequency spec-

trums associated with these signals. A simulation approach is therefore adopted to investigate
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the spectral properties of the PRIS. This approach involves simulation of time-domain repres-

entations of the PRIS, using Simulink models as proposed in section 3.3, followed by spectral

analysis. A parametric approach is adopted, whereby parameters such as the PRBS clock fre-

quency fclk and the impulse time constants τ1 and τ2 are varied with the view to investigate the

effects of these parameters on the spectral properties of interest. This approach, furthermore,

supports the design processes associated with implementing a practical PRIS source for a given

application well.

The objective of spectral estimation is to determine how the total power from a finite length

of a stationary data sequence is distributed over frequency. There are two broad classes of spec-

tral estimators, namely nonparametric or classical methods, and parametric methods. Para-

metric methods assume a model for the data, which then provides a way of parameterising the

spectrum by estimating the parameters for the assumed model. Parametric methods may of-

fer more accurate estimates compared to the nonparametric methods for cases where the data

satisfy the assumed model. Parametric methods are, however, sensitive to incorrectly specified

models. It is also more likely that the data does not satisfy the chosen model, making nonpara-

metric methods outperform the parametric ones [50].

The behaviour of a random signal, such as the proposed PRIS can be described in terms of

its statistical information. This makes it possible to characterise the signal in terms of a Power

Spectral Density (PSD), using the autocorrelation function, Rxx(τ), of the signal. The PSD,

Pxx( f ), of a signal x(t) is defined by the relationships [36], [51]

Pxx( f ) =
∫ ∞

−∞
Rxx(τ)e−j2π f τdτ, (4.24)

and

Rxx(τ) = lim
T→∞

1
T

∫ ∞

−∞
x(t)x(t + τ)dτ, (4.25)

where Rxx(τ) denotes the autocorrelation function of the signal.

Equation (4.24) shows that Power Spectral Density (PSD) represents the Fourier transform

of the autocorrelation function of a signal. In practice, the PSD has to be estimated using a finite

temporal frame size of the sampled data. Truncation and sampling, however, introduce leakage

and aliasing problems [50]. Measured data are, furthermore, often contaminated by noise, and

some form of averaging may be required to obtain consistent results by eliminating stochastic

noise components. PSD is typically estimated using a classical spectral estimator in combin-

ation with an appropriate window function. Windowing reduces leakage and measurement

noise. The magnitude of the PSD at frequencies far from the signal frequency, i.e. the leak-

age or sidelobe magnitude, at the expense of an increased bandwidth of the main lobe. The
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variance and bias of the estimator represent two of the most important considerations when

choosing an estimator. Others considerations include the mean and computational complexity.

The bias is defined as the difference between the expected value obtained with estimator and

the true value of the estimated parameter. Variance is defined as the mean square value minus

the square of the mean of the estimated parameter. Choosing a suitable estimator requires a

compromise between bias and variance errors. Reducing the bias, thereby improving resolu-

tion and dynamic range, increases the variance, thereby increasing the noise, and vice versa

[52], [50].

Some of the popular non-parametric power spectral estimators are summarised below:

• Periodogram : The periodogram is relatively simple to implement, but it represents an

inconsistent estimator in the sense that, although the mean value of the estimated para-

meter converges to the true PSD value as the data frame becomes large, the variance is

constant and does not decrease with the length of the data record [52]. The variance of

the periodogram estimate is, furthermore, not a function of the window used to suppress

leakage.

• Blackman-Tukey: The performance of the periodogram can be improved by weighting

the autocorrelation estimates with a real sequence, known as a lag window. This reduces

the variance of the spectral estimator at the expense of increasing the bias. The lag win-

dows commonly used in this method include the rectangular window, Bartlett window,

Hann window, Hamming window and Blackman window. The chosen window should

reduce leakage effects sufficiently, and the window length is chosen to achieve a com-

promise between spectral resolution and variance [52], [50].

• Bartlett: The Bartlett method reduces fluctuations in the periodogram by dividing the

available data sample into subsamples, determining the periodogram of each subsample,

and then averaging the periodograms obtained from the subsamples. The Bartlett method

has a lower spectral resolution compared to the periodogram due to splitting of the data

into segments. A reduction in variance is thus expected [53].

• Welch: The Welch method refines the Bartlett method in the sense that the data segments

are allowed to overlap and that each data segment is windowed before computing the

periodogram. There are thus two parameters affecting the quality of the Welch estima-

tion, namely the amount of overlap and length of each segment. Overlapping the data

segments decreases the variance while windowing the data segments provides control

over the bias, or resolution, of the estimated PSD. The optimum overlap occurs when the

variance is at a minimum and depends on the shape of the windowing function used [52],

[53].
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The Welch method is used in this investigation, as it presents the most parameters for op-

timising the accuracy of the estimation. The commonly used Hann window, which offers good

frequency resolution and reduced spectral leakage is selected. The Hann window has lower

sidelobes compared to many of the other window types, which offers a better dynamic range.

An overlap percentage of 62.5% is used, as it represents the optimum overlap percentage for

the Hann window, as shown by Najafi et al [50].

In order to verify the performance of the simulation approach proposed above, the spec-

trum derived by estimation from a PRIS waveform simulated using the time-domain model

shown in Figure 3.9 is compared to the spectrum obtained from (4.23). To obtain the analyt-

ical frequency curve from (4.23), the random variable ti is simulated using random numbers

for the chosen PRBS. Figure 4.1 compares the results obtained with the two approaches, for

a PRIS with fclk=15kHz, τ1 = 1.5Tclk, τ2 = 5Tclk and n=4. The results obtained with the two

approaches show a good correlation. There are however differences in damping at zero nodes

with the simulated waveform indicating more damping as a result of spectral estimation.
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Figure 4.1: Comparison of simulated frequency spectra obtained from a time-domain PRIS waveform

and analytical expression from (4.23), for fclk=15kHz, τ1 = 1.5Tclk and τ2 = 5Tclk.

4.3.2 Spectral properties of the impulse waveform.

The frequency-domain properties of the classical impulse waveform are of interest in the con-

text of this investigation, as it has a significant influence on the frequency spectrum of the asso-

ciated PRIS. In this section, the properties of the impulse waveform are demonstrated through

parametric simulations of the time-domain waveform defined by (3.1) and the associated fre-

quency response for the impulse waveform which can be expressed as
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Fi(ω) = U
[ τ2 − τ1

(1 + jωτ1)(1 + jωτ2)

]
. (4.26)

Figures 4.2(a) and 4.2(b) show the simulated time-domain waveform and the associated fre-

quency response curves for the impulse waveform plotted for varying values of τ1 with τ2 fixed

at 100µs. These results show that as the ratio τ2
τ1

increases, which indicates a decreasing value of

τ1, the amplitude of the time-domain impulse waveform increases. This, consequently, results

in higher spectral energy levels as τ1 decreases. Figures 4.3(a) and 4.3(b), on the other hand,

show the simulated time-domain waveform and the associated frequency response curves for

the impulse waveform plotted at varying values of τ2 with τ1 fixed at 1µs. In this case, it can

be seen that high values of τ2 relative to τ1 result in higher spectral energy levels. As τ1
τ2

de-

creases, the amplitude of both the time-and frequency-domain responses drops. These effects

of the time constants on amplitude of the impulse waveform agree with (3.9) which presents

the relationship between the impulse peak magnitude value and the time constants.

The frequency spectrum of the impulse waveform, however, decays rapidly with frequency

as shown in Figures 4.2(b) and 4.3(b). This results in low spectral energy, and therefore low

SNR, at higher frequencies. As a result, in the context of parameter estimation, a high impulse

amplitude may be required to improve the SNR. This increases the crest factor, which may

cause interference with the normal operation of the system under test.
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Figure 4.2: Simulated time- and frequency responses of the impulse waveform for varying values of τ1

with τ2 fixed at 100µs

4.3.3 Comparison of the spectral properties of the PRBS and the bipolar PRIS

Figure 4.4 compares the estimated frequency spectrums of a unipolar PRBS and bipolar PRIS

for τ1 = 1.5Tclk, τ2 = 5Tclk and fclk=15 kHz. Whereas the PRBS presents a flat spectrum in
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Figure 4.3: Simulated time- and frequency responses of the impulse waveform for varying values of τ2

with τ1 fixed at 1µs

the frequency range below fclk, the bipolar PRIS exhibits a bandpass frequency characteristic

where the energy is focused in a band centred around f = fclk
3 . The upper side lobes of both

the PRBS and bipolar PRIS have a width of fclk, with minima located at integer multiples of

fclk. As will be shown in the following sections, the shape of the PRIS spectrum is a function

of τ1, τ2 and fclk. These parameters can, therefore, be used to focus the spectral energy of the

bipolar PRIS into a specific band. Compared to PRBS, the amplitude of the bipolar PRIS spec-

trum drops towards the lower frequencies. The bipolar PRIS, therefore, offers an advantage

for applications where a low dc component is desirable, e.g. electromagnetic systems such as

transformer and electrical machine windings,
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Figure 4.4: Simulated power spectral densities of the PRBS and bipolar PRIS for τ1 = 1.5Tclk, τ2 = 5Tclk

and fclk=15 kHz.
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4.3.4 Effects of the clock frequency on the spectral properties of the bipolar PRIS

The effects of the clock frequency, fclk, on the spectral properties of the bipolar PRIS are in-

vestigated by observing PSDs obtained from PRIS signals generated with different values of

fclk and fixed values of τ1 and τ2. Figure 4.5 shows simulated PSDs of the bipolar PRIS for fclk

values of 10 kHz, 15 kHz and 30 kHz, with τ1 = 1µs and τ2 = 100µs. As expected, the results

show that the bandwidth of the main lobe increases as fclk increases. This is accompanied by

a moderate upwards shift in the magnitude around the region where the spectral energy is fo-

cused. In the low-frequency range, lower values of fclk exhibit higher levels of spectral energy

compared to higher values of fclk. The results suggest that the clock frequency can be used to

shape the spectrum of the PRIS such that the spectral energy is focussed around the frequency

band of interest. This is useful for system identification applications, such as control design,

where it is desirable to obtain an accurate model around the crossover frequency.
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Figure 4.5: Effects of the clock frequency, fclk, on the frequency spectrum of the bipolar PRIS, for τ1 =

1µs and τ2 = 100µs.

4.3.5 Effects of the impulse rise-time constant on the spectral properties of the

bipolar PRIS

The effects of the PRIS rise-time constant, τ1, on the spectral properties of the bipolar PRIS are

investigated by observing PSDs obtained from PRIS signals generated with different values of

τ1 and fixed values of fclk and τ2. Figure 4.6 shows simulated PSDs of the bipolar PRIS for

τ1 = 0.1Tclk, τ1 = Tclk, τ1 = 10Tclk and τ1 = 100Tclk, with fclk = 15kHz and τ2 = 0.1Tclk.

The results show that a lower impulse rise-time constant increases the average level of spectral
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energy substantially. The is attributed to the fact that a lower ratio of τ1
τ2

increases the max-

imum values reached by the impulse waveforms associated with the PRIS waveform, before

being chopped by the PRBS state transitions, thereby increasing the total spectral energy. The

relationship between Umax and the two time constants is indicated in (3.9). The effects of τ1

on the PRIS spectrum can also be interpreted with reference to the relationships expressed in

(3.9) and (4.23). Low values of τ1 result in high magnitudes of the frequency components in the

spectrum of the PRIS.

The results presented in Figure 4.6, furthermore, suggest that the impulse rise-time constant

does not have a major effect on the shape of the frequency spectrum of the PRIS.
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Figure 4.6: Effects of the impulse rise-time constant, τ1, on the frequency spectrum of the bipolar PRIS,

for fclk = 15kHz and τ2 = 0.1Tclk.

4.3.6 Effects of the impulse fall-time time constant on the spectral properties of

the bipolar PRIS

The effects of the PRIS fall-time constant, τ2, on the spectral properties of the bipolar PRIS are

investigated by observing PSDs obtained from PRIS signals generated with different values of

of τ2 and fixed values of fclk and τ1. Figure 4.7 shows simulated PSDs of the bipolar PRIS for

τ2 = 0.1Tclk, τ2 = Tclk, τ2 = 10Tclk and τ2 = 100Tclk, with fclk = 15kHz and τ1 = 0.1Tclk. The

results show that a lower impulse fall-time constant decreases the spectral energy in the low

frequency band. Overall, this results in a more defined focus of the spectral energy in a specific

frequency band.
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The impulse fall-time constant does not, however, have a major effect on the spectral en-

ergy around the frequency of maximum energy for τ2 > Tclk. This is expected because as τ2

increases, the PRIS starts to resemble the PRBS.
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Figure 4.7: Effects of the impulse fall-time constant, τ2, on the frequency spectrum of the bipolar PRIS,

for fclk = 15kHz and τ1 = 0.1Tclk.

4.4 Conclusion

This chapter begins by deriving the frequency-domain mathematical expression of the pro-

posed PRIS waveform. The derived expression shows that the frequency spectrum of the PRIS

is dependent on the amplitude and the two time constants that make up the impulse, and the

PRBS clock frequency.

Spectral estimation presents a problem of determining the spectral content of a random pro-

cess from a finite set of recorded data from that process. The power spectral density function,

that describes the distribution of power with the frequency of a random process, is introduced

and popular classical estimators discussed. It is noted that it is necessary to strike a balance

between bias and variance of the estimator.

The spectral properties of the classical impulse waveform, the PRBS and the proposed PRIS

waveforms are presented and discussed. It is clear from the presented results that the wide-

band frequency response characteristics of the PRIS are strong functions of the chosen PRBS

clock frequency and impulse time constants. These parameters can be adjusted to control the

spectral characteristics of the PRIS, thus providing a fair degree of signal controllability in com-

parison to popular perturbation signals such as swine sweep, impulse and the PRBS. The PRBS,
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for example, has a flat frequency spectrum below the -3dB point, i.e. white noise. Adjusting the

bandwidth of the PRBS does not change this and, thus, does not allow any further focussing of

the perturbation energy. The PRIS signal, on the other hand, has fclk, τ1 and τ2 that impact on

the shape of the frequency spectrum. This is an important aspect of the PRIS which can ensure

persistent excitation for a wide range of identification applications.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5

System Topology, Analysis and Design of

Bipolar PRIS Perturbation Source for In Situ

applications

5.1 Introduction

The bipolar PRIS perturbation signal proposed in this investigation can be generated in practice

by the system topology shown in Figure 2.4, by replacing the series impedance Z with an

overdamped series RLC circuit. This gives rise to the system topology shown in Figure 5.1,

where Z is represented by the series combination of resistor R, capacitor C and inductor L.

This topology offers a number of advantages for in situ high power, high voltage applications,

including the following:

• The circuit can be optimised such that the power losses associated with the series resist-

ance, R, are minimised.

• The AC current component induced in ip(t) by the AC source can be reduced through

filtering, thereby reducing the current ratings of the PRBS voltage source components

and the overall power losses.

• The topology offers good control over time constants τ1 and τ2, through optimisation of

the series reactive circuit elements, i.e. C and L. This facilitates control over the frequency-

domain properties of the perturbation signal, as explained in sections 4.3.5 and 4.3.6.

Figure 5.2 shows simulated results for the PRBS voltage signal vprbs(t), perturbation current

ip(t) and target voltage vT(t) for the system topology shown in Figure 5.1, for Vprbs = 50V, R =

50Ω, C = 1µF and L = 47µH, and a 50 Hz single phase supply network with VTh = 220Vrms

and ZTh = 0.4 + j0.25Ω. The target is represented by a purely resistive load of ZT = 100Ω.

The results show that the perturbation current, iprbs(t), represents a bipolar PRIS waveform as

depicted in Figure 3.6. The current waveform, furthermore, confirm that the 50 Hz sinusoidal

component in ip(t) is reduced significantly compared to the waveform shown in Figure 2.7 for

the case of a PRBS voltage source connected through a purely resistive element. The amplitude

45
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Figure 5.1: System topology of the proposed PRIS source.

of the PRIS current perturbation signal can be controlled by adjusting the PRBS source voltage

Vprbs, while the spectral energy can be focussed by controlling the PRBS clock frequency and

the time constants series RLC network. The mean value of the perturbation current is close to

zero.
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Figure 5.2: Simulated PRBS voltage signal vprbs(t), perturbation current ip(t) and source voltage vT(t)

for the system topology shown in Figure 5.1, for n = 14, fclk = 15kHz, Vprbs = 50V, R = 50Ω, C = 1µF,

and L = 47µH, VTh = 220Vrms, ZTh = 0.4 + j0.25Ω and ZT = 100Ω.

Figure 5.3 compares the spectral characteristics of the perturbation current signals shown

in Figure 2.7 and Figure 5.2. The results show that in comparison with the topology where Z

is represented by a resistor, the low frequency components, including the 50Hz component in-

duced by the Thevenin equivalent AC source, are reduced substantially in the case of the PRIS

topology. The frequency spectrum of the perturbation current produced by the PRIS source,

furthermore, reflects the bandpass characteristic shown in Figure 4.4. Overall, the results con-
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firm that the system topology shown in Figure 5.1 has the potential to generate a perturbation

current with the time- and frequency-domain properties attributed to the PRIS signal.
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Figure 5.3: Estimated power spectrums of the simulated current perturbation signals obtained with the

system topologies shown in Figure 5.1 and Figure 2.6.

5.2 Analysis of the PRIS system topology for in situ applications

5.2.1 Introduction

The PRIS source topology proposed in Figure 5.1 essentially applies a DC voltage source, Vdc,

to the target system through a series RLC arrangement at the state transitions of the PRBS

drive signal. The current induced by the PRBS voltage source can be derived by applying the

principle of superposition, i.e. by short-circuiting the AC source in the analysis. This gives rise

to the circuit topology shown in Figure 5.4, where Vdc represents the DC voltage of the PRIS

source and ZL represents the equivalent load impedance reflected by the parallel combination

of the Thevenin equivalent source impedance, ZTh, and the target impedance, ZT. The switch

in Figure 5.1 is controlled by a PRBS drive signal.

The circuit topology presented in Figure 5.4 shows that the perturbation current waveform,

ip(t), is not only dependent on the PRBS voltage source and the impedance represented by the

series RLC network, but also on the equivalent load impedance, ZL. The properties of ZL are,

however, typically unknown in practice, and also vary from application to application. The

dynamic behaviour of the circuit is therefore analysed for short-circuit conditions, i.e. ZL =

0. While this scenario represents an approximation to the real-world application, it provides

valuable insight into the time- and frequency-domain behaviour of the proposed PRIS source
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topology. The short-circuit analysis is also useful from a design perspective, as it represents a

worst-case scenario with reference to the magnitude of the perturbation current.

S

ip(t) R L
C

ZL

+

−

Vdc

Figure 5.4: Simplified circuit topology for dynamic analysis of the PRIS perturbation system.

5.2.2 Short-circuit analysis of the PRIS source

5.2.2.1 Current waveforms

Under short-circuit conditions, i.e. for ZL = 0, the circuit shown in Figure 5.4 can be represen-

ted by the circuit shown in Figure 5.5. Figure 5.6 presents the Laplace domain representation

of the circuit shown in Figure 5.5.

S ip(t) R L

C

+

−

Vdc

Figure 5.5: Short-circuited circuit topology for dynamic analysis of the PRIS perturbation system.

Ip(s) R sL

1
sC

+

−

Vdc
s

Figure 5.6: Laplace domain representation of the circuit shown in 5.5.

Figure 5.6 gives rise to the following equation in the Laplace domain:
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Vdc(s)
s

= Ip(s)R + sLIp(s)− LI0 +
Ip(s)
sC

+
V0

s
, (5.1)

where I0 denotes the initial current through the inductor and V0 denotes the initial voltage

across the capacitor. These initial values are determined in practice by the final state of the

previous switching interval. Rearranging (5.1) yields the relationship

Ip(s) =
Vdc(s)−V0

L + sI0

s2 + R
L s + 1

LC

. (5.2)

Equation (5.2) represents a single positive impulse waveform of the form shown in Fig-

ure 3.1. The denominator in (5.2) represents the characteristic equation of a series RLC circuit.

The roots of this equation are given by

1
τ1,2

= s1,2 = −α±
√

α2 −ω2
0, (5.3)

where α = R
2L and ω0 = 1√

LC
.

The circuit elements comprising the RLC coupling circuit, i.e. R, L and C, determine the

time constants τ1,2 in (5.3). These circuit elements, therefore, impact significantly on the time

constants τ1 and τ2 associated with the exponential functions comprising the impulse wave-

forms contained in the PRIS perturbation current, ip(t). Depending on whether ω2
0 < α2, ω2

0 >

α2, or ω2
0 = α2, the circuit shown in Figure 5.4 exhibits the following overdamped, under-

damped or critically damped solutions for ip(t):

ip(t) = K1es1t + K2es2t (Overdamped), (5.4)

ip(t) = K3e−αt cos ω0t + K4e−αt sin ω0t (underdamped) (5.5)

and

ip(t) = K5te−αt + K6e−αt (critically damped), (5.6)

where K1 to K6 denote constants defined in terms of the circuit parameters.

Figure 5.7 shows simulated examples of overdamped, critically damped and underdamped

waveforms for ip(t). In the case of an underdamped waveform, the PRIS impulses oscillate and

pass below zero, which causes undershoots of opposite polarity. Increased damping by increas-

ing the value of R reduces these oscillations but also decreases the peak values of the impulses.

The PRIS proposed in this research has the characteristics of an overdamped waveshape. Ex-

cessive damping reduces the maximum amplitude of the current impulse signal, which in turn

reduces the associated voltage perturbation. The circuit should, ideally, be designed such that

impulse current waveform ip(t) is close to critically damped. This yields optimised values for
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the passive elements, especially in the sense that R is sized such that the power the loss asso-

ciated with the circuit is minimised. By appropriately sizing the three series-connected passive

elements in the circuit, an impulse signal with appropriate values of τ1 and τ2 can be generated.
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Figure 5.7: Simulated overdamped, critically damped and underdamped current waveforms for the the

circuit topology shown in Figure 5.2.

Depending on the damping scenario that applies, the time-domain expression associated

with ip(t) can be derived from the expressions given by (5.4) to (5.6). For the overdamped case,

ip(t) is derived as follows:

In terms of the roots of the denominator defined by (5.3), (5.2) can be expressed as

Ip(s) =
Vdc−V0

L

(s + 1
τ1
)(s + 1

τ2
)
+

sI0

(s + 1
τ1
)(s + 1

τ2
)

. (5.7)

The inverse laplace transform of (5.7) is be obtained as

ip(t) =
(Vdc −V0)(e−t/τ2 − e−t/τ1)

L( 1
τ1
− 1

τ2
)

+

I0e−t/τ1

τ1

( 1
τ1
− 1

τ2
)
−

I0e−t/τ2

τ2

( 1
τ1
− 1

τ2
)

. (5.8)

Equation (5.8) can be rearranged to yield

ip(t) =

[
e−t/τ1(V0 −Vdc +

I0L
τ1
)− e−t/τ2(V0 −Vdc +

I0L
τ2
)
]
τ1τ2

L(τ2 − τ1)
. (5.9)

Similarly, the time domain expression of a negative impulse waveform can be expressed as,

ip(t) = −

[
e−t/τ1(V0 −Vdc +

I0L
τ1
)− e−t/τ2(V0 −Vdc +

I0L
τ2
)
]
τ1τ2

L(τ2 − τ1)
. (5.10)
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A bipolar PRIS is generated through repetition of several PRBS switching intervals. In this case,

a series of chopped positive and negative impulse are created. A bipolar PRIS over one PRBS

period can thus be expressed as

iB
pris(t) =

((N+1)/2)−1

∑
i=0,2,4...

[
e−t/τ1(V0 −Vdc +

I0L
τ1
)− e−t/τ2(V0 −Vdc +

I0L
τ2
)
]
τ1τ2

L(τ2 − τ1)
×
[
u(t− ti)− u(t− ti+1)

]

−
((N+1)/2)

∑
i=1,3,5...

[
e−t/τ1(V0 −Vdc +

I0L
τ1
)− e−t/τ2(V0 −Vdc +

I0L
τ2
)
]
τ1τ2

L(τ2 − τ1)
×
[
u(t− ti)− u(t− ti+1)

]
.

(5.11)

where u(t− ti)− u(t− ti+1) represents the random PRBS switching intervals of the switches.

The equation shown in 5.9 represents a positive overdamped impulse waveform, such as

the one illustrated in Figure 3.1. This equation shows that in practice, the impulse waveform

will be influenced by the initial state of the capacitor and inductor after every switching cycle.

For instance, V0, like the DC voltage Vdc, influences the maximum amplitude level of the im-

pulse waveform. I0, on the other hand, has an influence on the starting point of the impulse

waveform. Since the switching is performed pseudo-randomly using the PRBS , the values of

V0 and I0 will subsequently be pseudo-random. Therefore, although the shape of the practical

PRIS waveform is similar to that of the ideal case presented in Figures 3.5 and 3.6, the consec-

utive chopped impulses in a practical PRIS waveform will have subtle differences in amplitude

level and the point where each impulse starts.

The time constants for an overdamped condition, which is the case proposed for parameter

estimation in this work, can be expressed in terms of the series RLC elements. This yields the

relationships

τ1 =
1
s1

=
1

| − R
2L −

√
( R

2L )
2 − 1√

LC
|

(5.12)

and

τ2 =
1
s2

=
1

| − R
2L +

√
( R

2L )
2 − 1√

LC
|
. (5.13)

5.2.2.2 Impedance of the series RLC circuit

The impedance of the series RLC circuit is given by the relationship

Z(ω) = R + jωL +
1

jωC
. (5.14)
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Equation (5.14) can be rearranged to yield

Z(ω) =
jωRC−ω2LC + 1

jωC
. (5.15)

The magnitude of the series RLC impedance, |Z|, is given by the expression

|Z(ω)| =
√
[(1−ω2LC)2 + (ωRC)2]

ωC
. (5.16)

Equation (5.16) can be used to optimise the values of the reactive elements of the series RLC

circuit to achieve the desired attenuation factor in a given frequency band. This is illustrated

in Figure 5.8 where, using (5.16), the frequency responses of |Z(ω)| for various ratios of L/C

are compared. The results are presented for the same value of R, i.e. R = 50Ω, for all cases and

L fixed at 50µH. The straight line represents the response of the topology shown in Figure 2.6,

where a purely resistive coupling circuit applies. In this case, in order to increase the attenu-

ation of the AC component induced by the Thevenin equivalent AC supply source, the series

resistance must be increased, which will result in increased power losses in the circuit.

The magnitude response of the impedance of the series RLC circuit exhibits a bandpass

characteristic, with high impedance in the lower and upper frequency ranges. By varying the

ratio of the reactive components, the resonant frequency and magnitude response of the series

impedance can be controlled. The resonant frequency can be derived using the expression

fr =
1

2π
√

LC
(5.17)

The resonant frequency of the RLC network shifts to the right as the L
C is increased. This af-

fects the spectral shape of the PRIS perturbation current ip(t) in the low-frequency region and

influences the attenuation of the AC component in the perturbation current. Overall, these ob-

servations support the conclusions derived in the spectral analysis of the PRIS signal discussed

in section 4.3.3, especially in the sense that the spectral content of the signal can be focussed by

reducing excitation in the lower and upper frequency regions.

The results presented in Figure 5.9 illustrate the relationship between the magnitude of the

impedance of the series RLC circuit at 50 Hz, i.e. |Z(50Hz)|, and the PRIS time constants for the

case where L
C = 10. These curves illustrate that the impedance increases with decreasing values

of τ1 and decreasing values of τ2. This is associated with increased attenuation of the sinusoidal

component induced by the AC voltage source in the PRIS current signal ip(t). Curves such as

shown in Figure 5.8 and 5.9 can be used in the design of the PRIS source, especially with

reference to the following:

• Derive optimal values for time constants τ1 and τ2, such that adequate excitation energy

is achieved in the desired frequency band.
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Figure 5.8: Frequency responses of the magnitude of the impedance of the series circuit, |Z(ω)|, as a

function of the ratio L
C , for R=50Ω and L=50µH.

• Ensure sufficient attenuation of the AC component in the perturbation current, such that

the power ratings of the PRBS source components are optimised and the power losses are

minimised.
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Figure 5.9: Relationships between the magnitude of the impedance of the series RLC circuit at 50Hz,

|Z(50Hz)|, and time constants τ1 and τ2.
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5.2.3 Effects of the target system on the PRIS perturbation signal

5.2.3.1 Overview

It can be expected in practice that the systems targeted in wideband system identification

and parameter estimation experiments exhibit complex frequency-dependent input impedance

characteristics. The input impedance of the system under test can have considerable influence

on the time- and frequency-domain characteristics of the resultant perturbation current. Diffe-

rent scenarios are therefore investigated with the view to gain insight into these influences.

5.2.3.2 PRIS perturbation current characteristics for a capacitive target system impedance

Figure 5.10 shows an equivalent circuit representation for the case where the input imped-

ance of the target system is capacitive. Circuit elements Rs, Ls and Cs represent the series RLC

components of the PRIS source, while CT denotes the input capacitance of the target system.

The effects of a capacitive target system on the PRIS perturbation current are investigated by

simulations performed for different ratios of the target capacitance CT to the PRIS source capa-

citance Cs. The equivalent capacitance, Ceq, of the circuit shown in Figure 5.10 is given by the

relationship

Ceq =
Cs

Cs
CT

+ 1
. (5.18)

Equation (5.18) shows that Ceq → Cs as CT → ∞, while Ceq → 0 as CT → 0. In general,

for very low values of CT, the equivalent capacitance Ceq is also low, which gives rise to a high

capacitive reactance for the combination.

Rs
Ls

Cs

ip(t)

CT

+
−Vprbs(t)

Figure 5.10: Circuit topology of the PRIS source with a capacitive target system input impedance.

Figure 5.11 and Figure 5.12 show simulated time-and frequency-domain responses respect-

ively for varying values of the ratio of the capacitance of the target system, CT, to the capacit-

ance of the PRIS source, Cs. The responses for a pure resistive target is also shown for compar-

ison. The results show that, as CT decreases relative to Cs, the magnitude of the perturbation
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current decreases, while the time-domain waveform assumes an underdamped response. The

spectral energy in the main lobe also decreases. As the value of CT increases, the value of Ceq

increases to assume the value of Cs. The results presented in Figure 5.11 and Figure 5.12 show,

furthermore, that the time-and frequency-domain responses do not change significantly for
CT
Cs
≥ 1× 102.
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Figure 5.11: Time-domain responses of the PRIS perturbation current as a function of ratio of the target

system capacitance CT to the PRIS source capacitance Cs.
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Figure 5.12: Frequency-domain responses of the PRIS perturbation current as a function of ratio of the

target system capacitance CT to the PRIS source capacitance Cs.
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5.2.3.3 PRIS perturbation current characteristics for an inductive target system impedance

Figure 5.13 shows an equivalent circuit representation for the case where the input imped-

ance of the target system is inductive. Circuit elements Rs, Ls and Cs represent the series RLC

components of the PRIS source, while LT denotes the input inductance of the target system.

The effects of an inductive target system on the PRIS perturbation current are investigated by

simulations performed for different ratios of the target inductance LT to the PRIS source in-

ductance Ls. The equivalent inductance, Leq, of the circuit shown in Figure 5.13 is given by the

relationship

Leq = LT + Ls. (5.19)

Equation (5.19) shows that Leq → LT as LT → ∞, while Leq → Ls as LT → 0. In general, for

very high values of LT, the equivalent inductance Leq is also high, which gives rise to a high

inductive reactance for the combination.

Rs
Ls

Cs

ip(t)

LT
+
−Vprbs(t)

Figure 5.13: Circuit topology of the PRIS source with an inductive target system input impedance.

Figure 5.14 and Figure 5.15 show simulated time-and frequency-domain responses respect-

ively for varying values of the ratio of the inductance of the target system, LT, to the inductance

of the PRIS source, Ls. The responses for a pure resistive target is also shown for comparison.

The results show that, as LT increases relative to Ls, the magnitude of the perturbation cur-

rent decreases, while the time-domain waveform assumes an underdamped response. The

spectral energy in the main lobe also decreases. As the value of LT decreases, the value of

Leq decreases to assume the value of Ls. The results presented in Figure 5.11 and Figure 5.12

show, furthermore, that the time-and frequency-domain responses do not change significantly

for LT
Ls
≤ 1× 102.

Unlike in the case of a capacitive target system, the inductive system has a significant effect

on the location and damping of the series resonant point introduced in (5.17). A high value

of LT shifts this resonant frequency towards the lower frequency region and decreases the
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damping ratio. While this phenomenon may be detrimental in some applications, it can be

an advantage in other applications.
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Figure 5.14: Time-domain responses of the PRIS perturbation current as a function of ratio of the target

system inductance LT to the PRIS source inductance Ls.
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Figure 5.15: Frequency-domain responses of the PRIS perturbation current as a function of ratio of the

target system inductance LT to the PRIS source inductance Ls.

5.2.3.4 PRIS perturbation current characteristics for a complex target system impedance

Practical target systems, such as an AC network or transformer targeted under in situ oper-

ating conditions, typically exhibit complex input impedance frequency responses, that vary

with frequency through resistive, inductive and capacitive domains. Complex target systems
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may reflect successive combinations of these scenarios across the frequency range of interest.

The behaviour of the PRIS topology in these regions can be interpreted with reference to the

scenarios presented in 5.2.3.2 and 5.2.3.3.

5.2.4 Comparison of power loss between the PRBS voltage source and a PRIS

source in an in situ application

In the context of high power, high voltage in situ applications, it is of interest to compare the

power losses associated with a PRBS voltage source connected through a series resistive ele-

ment versus a series RLC circuit. Figure 5.16 compares the instantaneous power losses in the

series resistor for the PRBS voltage source topology shown in Figure 2.6 and the PRIS source

topology shown in Figure 5.1, for the same RLC values used for the simulation results presen-

ted in Figure 2.7 and 5.2. The instantaneous power waveforms reflect one cycle of the sinus-

oidal source supply voltage. The results show, that for equal values of Vprbs and R, the source

topology with resistive coupling presents significantly higher losses compared to the PRIS per-

turbation source topology. The ratio of the average power loss in resistor R in the PRIS source

to that in the PRBS voltage source, calculated over one PRBS period for this simulation, is ap-

proximately1:35. This suggests that the PRIS can be generated using a compact and efficient

design with highly reduced average power losses, compared to conventional sources such as

the PRBS current source and a PRBS voltage source connected through a series resistor.
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Figure 5.16: Instantaneous power loss in resistor R for (a) the PRBS perturbation source topology shown

in Figure 2.6, and (b) the PRIS perturbation source topology shown in Figure 5.1.
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5.3 Design considerations for a practical PRIS source

5.3.1 Introduction

The PRIS source topology shown in Figure 5.1 consists of a bipolar PRBS voltage source and a

series RLC circuit. The PRBS voltage source implements a classical active H-bridge to switch

the polarity of a DC source, where the gate signals are controlled by a unipolar PRBS wave-

form, as shown in Figure 5.18. The H-bridge features four semiconductor switches, i.e S1 to

S4, and the two switches in each leg of the bridge switch complementarily to each other, such

that when one is in the "on" state, the other one is in the "off" state. The operation of this PRIS

source exhibits two switching intervals. In the first interval, switches S1 and S4 conduct, while

S3 and S2 are open. In the second interval, switches S3 and S2 conduct, while switches S1 and

S4 are open. Switches S1 and S4 are activated on the positive transitions of the PRBS signal,

while switches S2 and S3 are activated on the negative transitions. Inverting logic gates are im-

plemented on switches S2 and S3 to invert the unipolar PRBS signal applied to these switches.

The waveforms shown in Figure 5.18 illustrates the operation of the switching sequence.

The switches operate in off/on mode, which reduces losses and thereby enhances the scope

of application for high power/high voltage applications. The lengths of each of the switching

intervals are pseudo-random, as it is determined by the PRBS run. The shortest switching

interval will be equal to the PRBS clock period, Tclk, while the longest interval will be equal to

nTclk, where n is the number of shift registers used in PRBS generation.

R L C
iPRIS(t)

+

−

Vdc ZT

PRBS Generator

S1

S2

S3

S4

Figure 5.17: Configuration of the active H-bridge for generating the bipolar PRBS voltage signal.

5.3.2 Design of a programmable PRBS generator

Figure 5.19 shows a block diagram of the n-stage LFSR topology that is commonly used to

generate a PRBS . The feedback paths are implemented through a modulo-two gate [13], and

the order of the PRBS states depends on the feedback configuration. The number of shift re-

gisters, n, determines the length, N, of the PRBS , such that N = 2n − 1. The stages of the LFSR

are cross-connected and are simultaneously triggered by a clock pulse of length Tclk. When the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. SYSTEM TOPOLOGY, ANALYSIS AND DESIGN OF BIPOLAR PRIS PERTURBATION SOURCE
FOR IN SITU APPLICATIONS 60

t

S1 & S4

1

t1 t2 t3 tit0
ti+1 t[(N+1)/2]-1 t(N+1)/2t4 t5
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ti+1 t[(N+1)/2]-1 t(N+1)/2t4 t5

S2 & S3

Figure 5.18: Switching sequence of the bipolar PRBS voltage source.

clock pulse is applied, the logic content of each LFSR stage are transferred to the next, and a

new logic state is introduced to the input of the first stage through the feedback circuit. The

contents of the LFSR, therefore, move in a cyclic manner and the output, which is normally

taken from the final stage, forms a serial sequence of logic states. A scenario in which all the

stages in the LFSR contain a logic 0 should be avoided. This is because the output of the exclus-

ive OR (XOR) yields a logic 0 state, and the shift register would remain in this state, thereby

generating an infinite zero sequence.

Figure 5.19: Generation of a PRBS using a linear feedback shift register topology.

An LFSR can mathematically be described in terms of a polynomial equation, from which

the points of feedback connections can be determined. Table 5.1 summarises the polynomials

and PRBS lengths for 4-stage PRBS (PRBS 4) to a 9-stage (PRBS 9) LFSR configurations [13],

[54]. The input of the XOR gate for a 4-stage LSFR, for example, is the third and fourth stage of

the LFSR, as illustrated in Figure 5.20.

A PRBS generator can be implemented in practice either through a hardware implementa-

tion or through a software implementation. Hardware implementations include the use of shift

registers and flip-flops or a Field Programmable Gate Array (FPGA). Software implementations

typically use a microcontroller or a development environment such as LabVIEW, by realising a
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Table 5.1: LFSR polynomials for different PRBS lengths [13]

n Polynomial N = 2n − 1 n Polynomial N = 2n − 1

4 X4 + X3 + 1 15 5 X5 + X3 + 1 31

6 X6 + X5 + 1 63 7 X7 + X6 + 1 127

8 X8 + X6 + X5 + X4 + 1 255 9 X9 + X5 + 1 511

Figure 5.20: PRBS waveform generation with 4-stage LFSR [55].

Host Computer Microcontroller
USB Interface PRBS

PRBS
Clock Signal

Gate drivers input

Figure 5.21: Block diagram illustration of a PRBS source

virtual instrumentation design. Microcontrollers with high clock speeds are readily available,

which allows for a PRBS generator with a high bandwidth to be realised. In order to ensure a

PRIS source with a high degree of controllability, it is necessary to implement a programmable

PRBS signal generator, where parameters such as the length of the PRBS shift register, n, and

clock frequency, fclk, can be defined by the user to suit a particular application.

In order to ensure the desired degree of controllability, a software implementation using a

microcontroller is selected for the PRBS generator designed in this investigation. The system

uses an ATmega328 microcontroller, with a clock speed of 16 MHz, which is sufficient for the

frequency band considered in this work. Figure 5.21 shows an overview of the PRBS generator.

A Graphical User Interface (GUI) is implemented on the host computer using the Python pro-
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gramming language, where the control parameters of the LSFR are selected. These parameters

include the number of shift registers n, clock frequency fclk and length of the desired PRBS

sequence.

The host computer communicates with the microcontroller via a Universal Serial Bus (USB).

The LFSR is implemented on the microcontroller, using the C programming language. The bin-

ary polynomials are initialised as variables and XOR gates are implemented using the bitwise

operators. A bitshifter() function is implemented to shift the PRBS bits to the right, thereby

generating the PRBS sequence. The microcontroller generates two complementary PRBS sig-

nals, i.e. PRBS and PRBS, that are available at the digital output pins of the controller. These

signals, with logic level one of 5 V, serve as the input signals to the gate driver circuits that

control the switching of the H-bridge switches. The PRBS generator implemented using the

above approach can generate PRBS signals from PRBS with n= 4 to 14, with a maximum clock

frequency in excess of 500 kHz.

Figure 5.22 shows measured waveforms for the clock signal, PRBS signal and PRBS signal

for the system, where fclk =10 kHz and n=4. The waveforms shown in Figure 5.22 represent

two periods of a PRBS 4 waveform, where the total sequence length is given by 2× ( 2n−1
fclk

)= 3

ms.
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Figure 5.22: Measured clock signal, PRBS signal and PRBS signal for fclk =10 kHz and n=4 bits.

5.3.3 Design of the H-bridge

The voltage level of the DC input to the PRIS generator determines the dynamic range of the

PRIS current impulses produced by the system. The DC voltage level used in an in situ system

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. SYSTEM TOPOLOGY, ANALYSIS AND DESIGN OF BIPOLAR PRIS PERTURBATION SOURCE
FOR IN SITU APPLICATIONS 63

identification experiment should be high enough to ensure a good SNR, but low enough to

ensure that the target system is not disturbed too far from the normal operating condition.

It is therefore desirable that the DC voltage can be adjusted to suit various applications. In

the source topology implemented for this investigation, the DC input voltage, Vdc, is derived

from a variable transformer, using a rectifier and smoothing filter, or from a variable DC power

supply.

The H-bridge designed for the purposes of this investigation has a voltage rating of 1 kV,

with a peak current rating of 20 A. Figure 5.23 shows the circuit implementation of the com-

plete H-bridge circuit. The semiconductor switches are implemented using Insulated Gate

Bipolar Transistors (IGBTs), due to their high voltage and current ratings. IGBTs, furthermore,

have the advantage of a low on-state voltage, VCE(sat), even for devices with large voltage rat-

ings. This reduces on-state power losses, especially in high voltage, high current applications.

The switching elements are controlled by the complementary digital PRBS control signals, i.e.

PRBS and PRBS. These signals are interfaced to the IGBT gate circuits via gate drivers, that

translates the digital control signals to voltage and current levels that are suitable to drive the

IGBT switches, and also provide galvanic isolation between the microcontroller and the power

electronic circuit.

The chopped impulse waveform associated with the PRIS perturbation current shows that

the switches interrupt the inductive perturbation current for short PRBS periods. This necessit-

ates the implementation of appropriate snubber circuitry to prevent high voltage pulses during

switching. Anti-parallel diodes are therefore implemented to protect the IGBTs from high re-

verse voltages. An RC snubber circuit is included in the circuit to suppress the overvoltages

that may arise due to the parasitic inductance, Lp, associated with the connection between the

DC voltage source and the H-bridge. The parameters of the RC snubber circuit are determined

from an estimated value of the parasitic inductance. The instantaneous energy stored in this

inductor depends on the instantaneous magnitude of the impulse current, which varies ran-

domly from switching interval to switching interval. This energy should be transferred to the

snubber circuit during the switching transitions. The snubber capacitor can be approximated

by equating the energy stored in the parasitic inductor to that stored in the snubber capacitor,

which yields the expression, Cs =
Lp I2

s
V2

dc
, where Is denotes the peak value of the switching cur-

rent. The snubber resistor is chosen such that Rs =
Vdc
Is

. The snubber resistor can be fine-tuned

further to reduce ringing if the value of R is found to be insufficient.

The Silicon Labs SI8233 isolated driver is selected due to its low propagation delay at a

maximum of 60ns and compact nature [56]. The power switches used are the IXGH24N170

IGBTs which are rated to block voltages up to 1700V and conduct a continuous current of
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up to 50A [57]. The freewheeling diodes are implemented using the 30 A, 1200 V hyperfast

RHRP30120 diodes [58].

+

−

Vdc A B

Figure 5.23: Circuit diagram of the H-bridge implementation.

Figure 5.24 shows the measured voltage waveform produced by the practical H-bridge con-

figuration for a DC input voltage of 48 V, and using a PRBS 4 signal with a clock frequency of

10 kHz.
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Figure 5.24: Measured voltage waveform produced by the practical H-bridge configuration for a DC

input voltage of 48 V, and using a PRBS 4 signal at a clock frequency of 10 kHz.

5.3.4 Optimization of the RLC circuit

The design of an optimum PRIS source for a system identification experiment is highly de-

pendent on the characteristics of the system targeted in the experiment. In this context, the

design of the series RLC circuit should take cognisance of the following considerations:

• The analysis presented in chapters 3 and 4 show that time constants τ1 and τ2 must be

selected such that an optimal distribution of spectral energy for the system targeted in

the investigation is realised. The results presented in section 5.2.2 detail the relationships
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between these time constants and the time- and frequency-domain properties of the res-

ultant PRIS perturbation waveform for the short-circuited PRIS source. In practice, the

considerations highlighted in section 5.2.3 with reference to the effects of the target sys-

tem, must also be considered.

• In high power, high voltage in situ applications, the AC current component induced by

the Thevenin AC supply source in the perturbation current must be sufficiently attenu-

ated in order to reduce the current and power ratings of the switching elements. This can

be achieved by considering the insights presented in section 5.2.2.2.

Equations (5.12), and (5.13) can be used iteratively to determine appropriate values for R,

L and C, by assigning a value to one of the elements and then invoking appropriate practical

constraints, including the following:

• To avoid front chopping of the PRIS impulses, which would result in low dynamic range,

the design should ensure that τ1 is small compared to Tclk.

• τ2 should be large compared to the longest PRBS run, nTclk, such that the PRIS impulses

are not allowed to decay rapidly on the falling edge.

• From equation (5.16), the impedance value at the fundamental frequency should be high

enough to provide sufficient attenuation of the sinusoidal component in the perturbation

current by an in situ target system.

The choice of these two time constants will influence the PRIS spectrum, as is illustrated in

Figures 4.6 and 4.7. To ensure suitable damping of the PRIS waveform, the RLC circuit can

further be optimised, such that the damping ratio ζ ≤ R
2

√
C
L .

5.4 Conclusion

A system topology that can be used for in situ system identification using the proposed PRIS

signal is described and analyzed. The design considerations for a practical PRIS source are

discussed. The design of the PRIS source involves designing a programmable PRBS generator,

H-bridge circuit design and sizing of the RLC network. The PRBS generator should be designed

such that the PRBS clock frequency and length can be controlled as this has an influence on the

frequency characteristics of the PRIS current. The series RLC network, which influences the

value of the PRIS time constants and hence the shape of the waveform, should be optimised to

ensure that perturbation energy is sufficient across the desired frequency band.
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The advantages of the PRIS source circuit topology for high power, high voltage in situ

perturbation applications, from a practical circuit perspective, include:

• The power electronic switches in the PRIS source operate in an on/off mode, thereby

reducing power losses.

• The PRIS source can make use of the reactive elements, particularly the series capacitor,

to attenuate the fundamental frequency current component induced by the AC system

under test. This translates into reduced power losses and lower power ratings of the

power electronic switches used in the circuit.

• The PRIS time constants are functions of the reactive elements in the PRIS source circuit.

The time constants can be used to control the spectral properties of the PRIS signal. It is,

therefore, possible to practically control the frequency properties of the PRIS by varying

the values of the reactive elements to achieve more perturbation energy at the frequency

band of interest.

The interaction of the PRIS source with the target system is investigated. It is shown that the

system under test can have considerable influence on the time-and frequency-domain charac-

teristics of the perturbation current. The design of the PRIS source should, therefore, be guided

by the nature of the characteristics of the target system.
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CHAPTER 6

Application of the Pseudo-Random Binary

Impulse Sequence to In Situ Identification of

Grid Impedance

6.1 Introduction

The PRIS perturbation signal developed in this research has good potential for in situ system

identification and parameter estimation applications. To verify the proposed signal and the

associated source topology for a practical case study, the PRIS signal is applied to determine

the grid impedance characteristics of a 50 Hz supply network for the frequency range up to

the 50th harmonic. A novel experimental procedure is proposed to perform in situ frequency

response measurements of the grid impedance in the presence of the stochastic variations of

the system voltage and frequency. The measured frequency responses are used to estimate

parameters for an approximate lumped parameter circuit model of the grid topology.

6.2 Overview of system identification and parameter estimation

principles

System identification encompasses the field of mathematical modelling of systems using meas-

ured input and output signals [1]. System identification, parameter estimation and digital sig-

nal processing techniques have been applied extensively in the field of energy systems, in-

cluding the modelling and identification of power system impedance and equipment such as

motors, transformers, generators, excitation systems and power converters [11]-[12], [20]-[45],

[48]. These models are used in a range of power system studies, including stability studies, ma-

chine control, spectral analysis, fault detection, pattern recognition and linear prediction. The

success of these studies is, however, dependent on accuracies the associated model structures

and parameters.

The identification process typically consists of the following series of steps [34], [59]:

1. Getting information about the target system

67
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To build a model for a target system it is necessary to obtain information about the sys-

tem. This information can be obtained from the normal operation of the system, through

experimental measurements, or a combination of both. Experimental measurements typ-

ically use a dedicated perturbation source to excite the target system. An optimal excita-

tion is selected by considering cost, measurement time and power consumption, as well

as the accuracy, repeatability and reliability of the results. The signals to be measured and

the associated measurement procedures also require careful consideration. These choices

are made within the constraints of the experimental design to obtain informative data.

2. Choosing the model structure to represent the target system A system model can be

broadly defined as an assumed relationship between observed signals [59]. The models

that are of interest for the dynamic systems can be classified into mental models, graph-

ical models, software models and mathematical models [1]. A mathematical modelling

approach is adopted for the case study considered in this investigation. Mathematical

models also referred to as analytical models, describe the relationships between system

variables in terms of mathematical expressions, such as difference or differential equa-

tions.

An analytical approach is adopted and the system is described using the laws of physics.

These models are well suited to the analysis, prediction, and design of dynamic sys-

tems. Mathematical models are typically developed by defining a model structure, i.e.

the grey-box modelling approach, or by system identification, i.e. the black-box model-

ling approach, or a combination of both. In the grey-box modelling approach, the system

is broken into subsystems, of which the properties are known from previous experience

or earlier empirical work. These subsystems are then joined mathematically to obtain the

complete system model. The black box approach, however, implements an experimental

approach where input and output signals are recorded. A model is then fitted to the

recorded data by assigning suitable parameter values [1].

3. Estimating unknown model parameters

Unknown model parameters, such as the coefficients in the differential equation or circuit

parameters, are estimated. Figure 6.1 shows a block diagram that illustrates the para-

meter estimation process. A parametric model is initialised with values derived from

datasheets and a priori knowledge of the system. The measured output of the system, y,

and the simulated output of the model, ȳ, are compared and a cost function, ε is derived

as a measure of the difference between the measured and simulated responses. The model
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parameters, θ, are then optimised by minimising the cost function, using an appropriate

parameter estimation algorithm [1].

Figure 6.1: Parameter Estimation block diagram.[1]

4. Validating the model

Model validation aims to assess how well the estimated model reproduces measured

data. The process is iterative in the sense that inadequate models are rejected and the

identification process is repeated until an acceptable solution is achieved. A model may

be inadequate due to the following [59]:

• An insufficient model structure choice.

• Uninformative data. The system may not have been perturbed persistently for es-

timation purposes.

• Insufficient identification criterion, i.e. optimization algorithm, chosen for fitting.

6.3 Grid impedance identification

6.3.1 Overview

There are numerous applications where the wideband modelling of grid impedance is of in-

terest for the modern power system, including the following [3], [21], [22], [36], [60]:

• Harmonic filter design

• Harmonic penetration studies

• Transient analysis
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• Design of protection systems

• Verification of grid compliance, especially with reference to harmonic distortion limits

• Prediction of power system resonance

The hierarchy depicted in Figure 6.2 shows that the system identification methods that are

typically applied for characterising grid impedance can be broadly categorised into passive

and active methods, based on the influence that they have on the system under test. Passive

methods [20], [25], [61] are non-invasive and rely on existing network components to generate

the perturbation signal. Wideband perturbation is, for instance, induced during switching op-

erations. Passive methods are cost-effective and easy to implement, as no external perturbation

sources are necessary. The grid impedance can, however, only be determined for the frequen-

cies that are present in the waveform of the system voltage. Passive methods, therefore, have

a limited frequency resolution and range. The perturbation is not controllable, and the occur-

rence and amplitude of the perturbation signal cannot be guaranteed. This may result in a low

SNR [11]. Active methods, however, are invasive in the sense that an external source is used to

inject a perturbation signal [3], [11], [21], [24], [26]. Although they are more costly compared to

passive methods, active methods are becoming more popular. This is because active perturba-

tion signals have some degree of controllability. The amplitude, for example, can be adjusted

to improve the SNR, thereby improving the accuracy of the system identification experiment.

Active methods can be categorised further into transient and steady-state methods, de-

pending on the nature of the perturbation signal. Transient methods, such as proposed by

Cespendes et al. [23], involve the application of an impulse perturbation, while Girgis and

McManis [36] proposed the use of a transient excitation is introduced by switching a capa-

citor. Sumner et al. [21] measured grid impedance using a transient perturbation by injecting a

short current spike at the POC. Transient perturbation methods require the use of a high-speed

data acquisition system. In steady-state methods, a periodic perturbation such as sine wave

is applied and the measurements are repeated at different frequencies. Steady-state methods

based on wideband perturbations, such as random sequences, have also been reported [12].

Both the transient and steady-state methods employ Fourier analysis to obtain the frequency

components in the injected signal, which is usually a current signal, and the resulting voltage

response.

The bipolar PRIS perturbation signal proposed in this research falls in the category of an

active, steady-state grid impedance identification methodology.
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System impedance 
identification 

methods

Passive methods e.g. 
switching of existing system 

linear or non-linear loads.

Active methods

Steady-state methods 
e.g. sine sweep 

perturbation

Transient methods 
e.g. impulse 
perturbation

Figure 6.2: Hierarchy of grid impedance identification methods.

6.3.2 In situ grid impedance frequency response measurements

6.3.2.1 Measurement arrangement

Figure 6.3 shows the circuit topology of the test arrangement implemented for in situ identific-

ation of the frequency response of the Thevenin equivalent impedance, ZTh, of a single-phase

network. The PRIS perturbation source is connected at the PCC.

vTh(t)

ZTh S ip(t)

PRIS sourceVPCC(t)

Figure 6.3: Impedance measurement of grid impedance using PRIS perturbation.

The impedance measurement method proposed in this research is conducted in two stages,

which are controlled by the switch, S, that allows for the perturbation signal to be connected

to the network. The measurement is initiated with S in an open position. In this state, the

pre-excitation open circuit voltage waveform associated with vTh(t) is recorded at the PCC.

After several cycles, S is closed to apply the PRIS perturbation source. During this state, the

perturbation current, ip(t), induces a perturbation signal on the voltage waveform at the PCC,

vPCC(t), due to the voltage drop induced across ZTh. The post-excitation data, i.e. the perturbed

voltage vp(t) and perturbation current ip(t), are recorded. This results in two sets of recorded

data i.e. the pre-excitation and post-excitation data. The voltage drop ∆v(t) across the Thevenin

equivalent grid impedance, ZTh, is defined by the relationship
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∆v(t) = vTh(t)− vp(t). (6.1)

In practice, the Thevenin equivalent voltage source, vTh(t), is typically represented by a sinus-

oidal AC grid supply voltage waveform, with some degree of harmonic distortion caused by

the interaction of harmonic currents drawn by the nonlinear loads with the supply impedance.

This gives rise to the following mathematical formulation for vTh(t):

vTh(t) =
∞

∑
n=1,2,3...

Vn sin(2πn fot) + φn, (6.2)

where Vn and φn denote the RMS value and phase angle respectively of the nth harmonic com-

ponent.

The frequency response of ZTh is estimated from the Thevenin equivalent voltage waveform

vTh(t), the perturbed supply voltage waveform at the PCC vp(t), and the perturbation current

ip(t). Two frequency-domain methods can be used to model ZTh [36], [60]. In the first approach

the impedance is obtained by dividing the Fast Fourier Transform (FFT) of ∆v(t) by the FFT of

ip(t), as given by

ZTh(w) =
F{∆v(t)}
F{ip(t)}

. (6.3)

The FFT approach is, however, affected by system nonlinearities and noise in practice [36],

[60]. The second approach of estimating the frequency response of ZTh involves the use of

correlation methods, using the PSD as discussed in Section 4.3. With this method, it is possible

to improve the SNR by averaging out the uncorrelated noise in the measurements. The absolute

errors in the estimated frequency spectrum at frequencies where the measured voltage and

current signals are low can thereby be reduced significantly.

6.3.3 Challenges associated with grid impedance measurements

The Thevenin equivalent grid impedance ZTh and source voltage VTh are both stochastic in

nature. The grid impedance changes with changes in the network topology and with vary-

ing load. The source voltage variation is a result of variations in the fundamental frequency,

harmonic components and non-characteristic sub-harmonic components. This non-stationary

nature of the power system has been identified as a problem for characterising grid impedance

[3], [21], [22], [23], [60]. The supply voltage fundamental frequency and harmonic compon-

ents, for example, can appear in the estimated frequency spectrum of the impedance [3]. This

distorts the frequency response curve of the estimated system impedance, especially in the har-
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monic frequency band. The practical problems encountered in grid impedance measurements

can be summarised as follows:

• Synchronization of pre-and post-Excitation voltages vTh(t) and vp(t): If it is assumed that

vTh(t) is stationary and repetitive, ∆v(t) can be calculated as formulated in (6.1). This

can be done by recording an equal number of cycles of pre-excitation voltage vTh(t) and

post-excitation voltage vp(t) and applying (6.1). In a real power system, however, time

varying nonlinear loads induce dynamic voltage harmonics. The voltages vTh(t) and

vp(t) phasors are, furthermore, not likely to be measured on the same reference angle,

which gives rise to errors in the calculated impedance response [3], [21], [22], [23], [60] .

• Frequency variation of the supply voltage : The fundamental frequency of a power system

rarely remains stationary. A change in the fundamental frequency during a measurement

period results in a phase shift between the pre-and post-excitation waveforms [21], [22].

This translates into significant phase shifts at harmonic frequencies. Due to the presence

of the phase errors, the recorded pre- and post-excitation data are not synchronised suffi-

ciently to provide maximum cancellation of harmonics.

• Variation of the voltage harmonic components: The time-varying nonlinear loads connected

to the supply network result in voltage harmonics and subharmonics that are stochastic

in nature. The amplitudes of these components can thus change during the measurement

period. This results in inaccuracies in the estimated frequency response of the system.

The following solutions have been reported in the literature to the problems mentioned

above :

• Short observation windows: This solution involves the use of impulse or transient perturb-

ations to excite the network under test and using short sections of recorded data to com-

pute the impedance. The assumption in this case, however, is that the system under test

is stationary within the selected data window. Staroszczyk [3] proposed the use of an

impulse perturbation signal and a 40 ms observation window to compute the imped-

ance. Sumner et al [21] used a triangular current pulse as excitation signal, with an 80 ms

observation window. Xu et al [22] proposed the use of transient excitation obtained by

switching a capacitor, and recorded the pre- and post-excitation waveforms in one con-

tinuous record. Windows of the pre-excitation and post-excitation data, which are one

fundamental frequency period in length and start from a reference time such as the first

zero-crossing point, are then selected for analysis.
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Although this method has been shown to improve the results, the assumption that short

data windows will be insensitive to the non-stationary nature of the power system is not

always correct. Due to the short measurement periods, the frequency resolution of the

results is, furthermore, poor. Since the transients used in the excitation are rapid, the

methods require high-speed data acquisition instrumentation. Céspedes et al [23] noted

that, with online impulse excitation, the grid impedance could not be approximated well

beyond 2 kHz due to insufficient resolution in the recorded perturbation impulse.

• Discarding the impedance estimated at the fundamental and harmonic frequencies: The errors

in the impedance frequency response due to synchronisation and grid variations typic-

ally appear at the fundamental and harmonic frequencies. Sumner et al [21] proposed

discarding the impedance values around the fundamental and harmonic frequencies and

extrapolating the linear part of the impedance from the inter-harmonic frequencies.

• Detecting and correcting errors caused by changes in supply frequency: Methods such as those

reported by Sumner et al [21] and Xu et al [22] can be used to detect and correct errors

caused by changes in supply frequency. The phase difference between the first and the

last steady-state cycles of the pre-excitation or the post-excitation fundamental voltage

waveforms are calculated and used to correct the recorded data section that is used for

impedance calculation.

6.3.4 Measuring instrumentation

Due to the requirements imposed by wideband excitation and data acquisition at relatively

high voltages, grid impedance measurements require dedicated instrumentation. The meas-

urement equipment should have high bandwidth, high accuracy and high dynamic range, and

the data acquisition instrumentation should have a high sample rate and resolution. The meas-

urements conducted for this investigation made use of the following commercial products:

(a) Voltage and current measurements: The voltage signals were measured using GwInSTEK

GDP-025 differential probes. This probe has a bandwidth of ranging from dc to 25 MHZ,

with an accuracy of ±2% over this frequency range, and can be used for voltage measure-

ments up to 1400 Vp−p. The current signals were measured using Tektronix A622 current

probes. This probe has a bandwidth ranging from dc to 100 kHz and can measure currents

from 50 mA to 100 A peak.

(b) Data acquisition system: The CompactDAQ data acquisition platform manufactured by Na-

tional Instruments is used in the investigation. The CompactDAQ chassis can accommod-

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. APPLICATION OF THE PSEUDO-RANDOM BINARY IMPULSE SEQUENCE TO IN SITU
IDENTIFICATION OF GRID IMPEDANCE 75

ate several input modules, that provide direct sensor connectivity, and controls the timing,

synchronisation and data transfer between these modules and an external host computer.

The CompactDAQ chassis features USB, Ethernet or WiFi connectivity. Table 6.1 summar-

ises the specifications of the NI 9223 input module used in the investigation. The mod-

ule implements simultaneous analogue-to-digital converters (ADCs) and the current and

voltage probes are connected to the module via a Bayonet Neill Concelman (BNC) con-

nector interface.

Table 6.1: Specifications of the NI 9223 input module.

Number of channels 4 analog input channels ADC Resolution 16 bits

Maximum sampling rate 1 MS/s/channel Input signal level ±10V

(c) Software: The CompactDAQ platform can be used with LabVIEW or Matlab software in-

stalled on a host computer. This allows for data acquisition, analysis, visualisation and

management to be customised. A dedicated Matlab application was developed to acquire

the sampled data from the DAQ system for this investigation. The Matlab application im-

plements various functions to configure and run a data acquisition session. Parameters

such as the number of input channels, sampling rate and duration of acquired data can be

set in the Matlab code.

Figure 6.4 shows a block diagram of the data acquisition arrangement used for the experi-

mental procedures.

Host Computer
NI Compact-

DAQ chassis

NI 9223

module

USB

Communication

bus Analog

Inputs

Figure 6.4: Block diagram of the data acquisition system.

6.3.5 Proposed grid impedance measurement and data preprocessing

methodology

A novel data acquisition methodology is proposed to synchronise the pre-excitation and post-

excitation voltage waveforms with the view to address the challenges described in section 6.3.3.

The variations in the background harmonics can be described as random noise that can be
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reduced using the statistical technique of signal averaging, thereby enhancing the quality of

the grid impedance measurements. Averaging is a useful technique for noise signals with an

expected value of zero [62]. The assumption made in applying the averaging technique is, that

although both the impedance ZTh and the source voltage VTh are stochastic, the variations in

VTh are random and much faster compared those of ZTh, and can thus be described as white

noise. The true grid impedance should, therefore, be consistent when repeated measurements

are conducted in rapid succession.

The frequency response of the grid impedance can be represented by the relationship

ZTh(ω) = ZTh,desired(ω) + Znoise(ω), (6.4)

where ZTh,desired(ω) denotes the desired frequency response and Znoise(ω) denotes the fre-

quency response of the noise due to the stochastic nature of the power system.

An interleaved perturbation and data capturing scheme, with averaging of multiple esti-

mated impedance responses, is proposed with the view to achieving improved grid imped-

ance measurements. In the case of interleaved data capture, a long measurement at VPCC

is recorded, during which switch S in Figure 6.3 is alternately switched on and off at inter-

vals of approximately 1 second. Multiple pre-excitation and post-excitation data sequences are

thereby captured. The consecutive pairs of the sampled pre-excitation and post-excitation se-

quences of vTh(t), vp(t) and ip(t) are then used to calculate the ZTh(w). Multiple impedance

responses, which can later be averaged, are thereby obtained. The pre-excitation and post-

excitation sequences occur in close temporal proximity, thereby minimising adverse effects

due to grid variations. The interleaved measurement methodology is illustrated in Figure 6.5,

which shows how the sampled waveform of VPCC(t) is partitioned into multiple sections of

pre-excited voltage and post-excited sections.

t (sec)
ZTh1 ZTh2 ZThi ZThn

VTh1(t) Vp1(t) VTh2(t) Vp2(t) VThi(t) Vpi(t) VThn(t) Vpn(t)

· · ·

· · ·

· · ·

· · ·

Figure 6.5: Interleaved pre-excitation and post-excitation sequences of the unperturbed voltage VTh(t)

and perturbed voltage Vp(t).

The impedance frequency responses calculated for the consecutive pairs of the sampled

pre-excitation and post-excitation partitions are averaged to obtain the estimated frequency
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response. Random noise adds destructively in this process. The averaging process is defined

by the relationship

ZTh,desired(ω) =
∑n

i=1 ZThi(ω)

n
, (6.5)

where ZThi(ω) denotes the impedance response calculated for the ith partition.

In order to calculate ∆v(t) as formulated in 6.1, it is necessary to extract vTh(t) and vp(t)

from the waveform recorded for vPCC(t). The waveforms extracted for vTh(t) and vp(t) must

be synchronised in the time domain before ∆v(t) is calculated. This is achieved by subject-

ing vPCC(t) to a low pass filter to obtain the fundamental component. From the fundamental

voltage waveform, instances of positive zero-crossings are identified. The zero-crossing points

are utilised to extract sections of equal length, synchronised at the zero crossings of the funda-

mental frequency, from the unperturbed and perturbed sections of vPCC(t), as shown in Fig-

ure 6.6. Figure 6.7 presents a block diagram of process proposed for extracting the frequency

response of the grid impedance.

t

t

t
vTh(t) vp(t)

vPCC,measured (t)

vPCC,filtered (t)

Perturbed 
voltage

Figure 6.6: Extraction of vTh(t) and vp(t) waveforms from the measured vPCC(t) waveform.

6.4 Validation of the proposed PRIS perturbation signal and

methodology for measuring grid impedance

6.4.1 Introduction

Two case studies are conducted with the view to determine the performance of the PRIS per-

turbation signal and the proposed methodology for determining the frequency response of a
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Start

Measure vPCC(t) and ip(t)

(Includes interleaved

sections of unperturbed and

perturbed data)

Apply a low pass filter on

vPCC(t) to obtain the funda-

mental voltage

Determination of the indices

pointing to the positive zero

crossings

Indices pointing to all the

positive zero crossings

Use the zero crossing points

to extract vTh(t), vp(t) and

ip(t), each containing 50

cycles

Calculate ∆v(t) for each

vTh(t) and vp(t) pair

Estimate multiple imped-

ance spectrums from the

interleaved data sections

ZTh1(ω), ZTh2(ω)... ZThn(ω) Impedance averaging

ZTh,desired(ω)

Figure 6.7: Overview of the grid impedance frequency response identification procedure used in this

study

Thevenin equivalent grid impedance from in situ measurements. The first case study targets

the impedance of an experimental network constructed under laboratory conditions, while the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. APPLICATION OF THE PSEUDO-RANDOM BINARY IMPULSE SEQUENCE TO IN SITU
IDENTIFICATION OF GRID IMPEDANCE 79

second case study targets a three-phase, 50 Hz, rural supply network. The PRIS source used

in the experimental work is designed using the approaches outlined in section 5.3 to achieve

persistent excitation of the dynamic modes associated with the target networks. As indicated

in section 4.3.3 and shown in Figure 4.4, the spectral energy of the PRIS decreases towards the

lower frequency range. Parameters fclk, τ1 and τ2 must be chosen to ensure good estimation

accuracy over a wide frequency range, including the low frequency range. The relevant voltage

and current waveforms are recorded using a sampling frequency of 1 MHz. The frequency re-

sponses of the target impedances are estimated from the measured voltage and current wave-

forms in using the Welch estimator with a Hann window, implemented in Matlab.

6.4.2 Case study I: Laboratory network

6.4.2.1 Network model

This case study targets a network constructed under laboratory conditions to emulate a single-

phase LV AC supply network. The frequency response of the Thevenin equivalent impedance

of the target network circuit is identified by perturbing the network with a PRIS perturbation

current. The frequency spectrum obtained from the experimental approach is compared with

responses obtained through a sine sweep simulation and mathematical analysis of the circuit.

The target circuit consists of an inductive Thevenin equivalent AC source and a Pi equi-

valent cable model. Figure 6.8 shows a lumped parameter circuit model of the arrangement.

This topology is commonly found in industrial and residential reticulation systems. It has an

application in determining the frequency domain characteristics of a network for applications

such as modelling the performance of grid-connected inverters in reticulation systems.

The Thevenin voltage source, vTh(t), is represented by a relatively stiff AC supply grid with

a fair degree of harmonic distortion, as is typical for an industrial supply network. The actual

Thevenin equivalent impedance of the laboratory supply grid is unknown and is neglected in

this application on the basis that it is relatively small compared to the impedance of the cable

model. A Thevenin equivalent source impedance is, however, incorporated by including R1

and L1 in series with the AC voltage source. The objective of the exercise is to demonstrate the

use of the PRIS perturbation system for determining the frequency response of the Thevenin

equivalent impedance of a simple LV, 220Vrms, 50 Hz AC supply network topology. Table 6.2

summarises the relevant circuit parameters.

The PRIS source used in this study is realised using a 50Ω resistor, a 100µH inductor, and

a 2µF capacitor for the series RLC network. The source is programmed for a PRBS clock fre-

quency, fclk(t), of 10 kHz. The DC input voltage of the PRIS source can be controlled to obtain
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an optimum PRIS perturbation current level, that does not exceed the maximum rating of the

target elements but provide sufficient excitation. This yielded a value of 60 V for Vdc for this

experiment.

vTh(t)

R1 L1 R2 L2 ip(t)

PRIS sourceC1 C2

PCC

VPCC(t)

S

Thevenin equivalent source Cable model

Figure 6.8: Lumped parameter equivalent circuit topology of the supply network implemented for case

study 1.

Table 6.2: Parameter values implemented for the circuit topology shown in Figure 6.8.

Parameter Value Parameter Value Parameter Value

C1 1µF R1 17.3Ω L1 48.22mH

C2 1µF R2 0.7Ω L2 0.981mH

6.4.2.2 Analytical solution for the Thevenin equivalent impedance

The Thevenin equivalent impedance, ZTh, of the circuit topology shown in Figure 6.8, as ob-

served from the PCC, can be derived analytically as follows:

• The series combination of R1 and L1 form a parallel network with C1. This impedance is

denoted as Z1, and is represented in the Laplace domain by the relationship

Z1 =
R1 + sL1

s2L1C1 + sR1C1 + 1
. (6.6)

• Impedance Z1 appears in series with the series combination of R2 and L2. This impedance

is denoted as Z2, and is represented by the relationship

Z2 =
R1 + sL1

s2L1C1 + sR1C1 + 1
+ R2 + sL2. (6.7)

• Impedance Z2 appears in parallel with C2. This impedance is denoted as ZTh, and is

represented by the relationship

ZTh =
1

sC2
−
[ 1

s2C2
2(R2 +

R1+sL1
s2L1C1+sR1C1+1 + sL2 +

1
sC2

)

]
. (6.8)
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The frequency response of ZTh can be determined by substituting s with jω in 6.8, and

inserting the relevant component values.

Figure 6.9 shows a measured section of the waveforms of the PRBS gate drive signal and

the PRIS perturbation current obtained for the circuit shown in Figure 6.8. Figures 6.10(a) and

6.10(b) show measured waveforms for a section of the perturbed voltage Vp(t). The results

reflect that a bipolar PRIS perturbation signal is superimposed on the sinusoidal supply voltage

to the target system.

5V

5A

-5A

Figure 6.9: Measured waveforms for the PRBS drive signal and the bipolar PRIS perturbation current

for case study 1.

Perturbed voltage

PRBS

(a) PRBS drive signal and perturbed supply voltage

waveform vp(t).

PRBS

Perturbed voltage

(b) Zoomed PRBS drive signal and perturbed supply

voltage waveform vp(t).

Figure 6.10: Measured waveforms for the PRBS drive signal and perturbed supply voltage vp(t) for case

study 1

Figure 6.11 shows the PSD responses of vTh(t), vp(t) and ip(t) obtained with the PRIS per-

turbation signal. The fundamental component at 50 Hz and harmonic components present in
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the harmonic frequency range are evident in the plots. As expected, the ip(t) frequency re-

sponse shows that its spectral energy is affected by the impedance characteristics of the target

system.
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Figure 6.11: PSD responses of the measured perturbation current ip(t), pre-excitation voltage vTh(t) and

post-excitation voltage vp(t) obtained through PRIS excitation.

The frequency response of the impedance of the circuit shown in Figure 6.8, with the para-

meter values given in Table 6.2, was simulated using a frequency sweep simulation conducted

with DIgSILENT PowerFactory software. The frequency responses, obtained through simu-

lation, the PRIS perturbation measurements and impedance transfer function given by (6.8)

are compared in Figure 6.12 for the frequency range between 10 Hz and 60 kHz. The simu-

lated, experimental and analytical results show excellent agreement. The frequency response

of ZTh exhibits three resonant frequencies. These resonant frequencies can be derived using the

approximate expression

fr =
1

2π
√

LC
, (6.9)

where fr denotes the resonant frequency, and L and C denote the inductance and capacitance

respectively implicated in the resonant circuit.

The first resonant peak occurs at 517 Hz and is attributed to the parallel resonance of L1

and a parallel combination of C1 and C2. The second resonant peak occurs at 7229 Hz and is

attributed to the parallel resonance of L2 and a series combination of C1 and C2. A resonant dip

occurs at 5100 Hz and is attributed to the series resonance of L2 and C1. Beyond the resonant

peak at 7229 Hz, the impedance is predominantly capacitive.
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Figure 6.12: Magnitude frequency responses of the Thevenin impedance of the topology shown in Fig-

ure 6.8 obtained through a sine sweep simulation, PRIS perturbation measurements and analytical trans-

fer function represented by (6.8).

6.4.3 Case study II: Rural network

6.4.3.1 Network model

Figure 6.13 shows a single line diagram of the three-phase, 50 Hz, rural supply network tar-

geted in case study 2. The network represents an 11kV supply grid feeding agricultural loads

denoted by L1 and L2, which are connected at Bus 2 and Bus 5 respectively, and an experi-

mental wind generation facility that is connected at Bus 1. Bus 5 is supplied from the 11 kV

utility supply through an 11 kV/400 V step-down transformer. Bus 2 is supplied from Bus 5 via

a 400 V/3.3 kV step-up transformer, a 3.3 kV cable, and a 3.3 kV/400 V step-down transformer.

The 3.3 kV cable, denoted as cable 2, consists of three XLPE insulated 35mm2 aluminium

conductors. Bus 1 is supplied from Bus 2 via cable 1, which consists of four XLPE insulated

70mm2 aluminium conductors rated at 600/1000 V. Load L1 consists of fifteen 400 W halogen

floodlights distributed across the three phases. Load L2 consists of fifteen 400 W halogen flood-

lights distributed across the three phases, four 0.25 kW single-phase induction motors, a 2.2 kW

single-phase induction motor, a 37 kW three-phase induction motor, and a 45 kW three-phase

induction motor. The motors are operated intermittently. The objective of the study is to char-

acterise the grid impedance observed for each phase at the PCC, which is located at Bus 1, with

the wind plant disconnected.
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Figure 6.13: Single line diagram of the rural grid targeted in case study 2.

6.4.3.2 Characteristics of the Thevenin voltage source

To investigate the dynamic behaviour of the Thevenin voltage source associated with the target

network, a 10 seconds long measurement of the Line to Neutral (L-N) phase voltages VTh(t) is

recorded at the PCC at a sampling rate of 1 MHz. The zero-crossing points of the fundamental

voltage components are obtained and used to calculate the RMS values of VTh(t) for every

cycle.

Figure 6.14 shows a plot of the Probability Density Functions (PDFs) of the RMS voltages

for the three phases, together with the expected values, µ, and the Standard Deviation (SD), σ.

The PDFs exhibit the properties of Gaussian density functions of the form given by [51]

FV(x) =
1

σ
√

2π
exp
[
− (x− µ)2

2σ2

]
,−∞ < x < ∞ (6.10)

where µ and σ denote the mean and the standard deviation respectively. The Gaussian PDF

attains a maximum value of 1
σ
√

2π
at x = µ.

The statistical results show that the open-circuit phase voltages at the PCC have a significant

random component that is normally distributed. The RMS voltage magnitudes exhibit signi-

ficant dispersion for all phases, with the largest SD value of 0.412 recorded for phase C. The

high variances in the RMS values of the source voltage confirm the presence of non-stationary

random variations with white noise characteristics. The difference between the highest and

lowest mean values observed for the RMS voltage distributions is of the order of 0.41%. This

can be attributed to unbalanced load distributions across the three phases.

The variation in the fundamental frequency is investigated by calculating the frequency

of each cycle for the recorded measurement of VTh(t). Figure 6.15 shows a plot of the PDF

of the fundamental frequency for each cycle, together with the expected values and standard

deviations for each phase. As expected, all of the phases reflect the same mean fundamental

frequency, i.e. 49.167 Hz. The frequency PDF exhibits a slight dispersion around the mean, as

indicated by the SD value of 0.0037. The results confirm that the grid frequency exhibits a small

nonstationary component over the recording interval.
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Figure 6.14: Probability density functions of the RMS phase voltages measured over a period of 10

seconds.
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Figure 6.15: Probability density function of the grid frequency measured over a period of 10 seconds.

6.4.3.3 Lumped parameter equivalent circuit grid model

The network depicted in Figure 6.13 is represented in the simulation studies by a lumped

parameter equivalent circuit grid model. The cables and transformers are modelled using

the generic lumped-parameter equivalent circuit models shown in Figure 6.16(a) and 6.16(b)

respectively. Table 6.3 summarises parameter definitions for the model topologies shown in

Figure 6.16.

Figure 6.17 shows an approximate circuit model for the network shown in Figure 6.13,

with the loads neglected. The interwinding capacitances between the primary and second-

ary windings of the transformers, denoted by CT
ps, are relatively small compared to the cable
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Figure 6.16: Lumped parameter equivalent circuit models implemented for the cables and transformers.

Table 6.3: Parameter definitions for the lumped parameter equivalent circuit cable and transformer

models.

Component Definition

CC
1 , CC

2 Cable capacitances

RC, LC Cable series resistance and inductance

CT
p , CT

s , CT
ps Transformer primary winding, secondary winding and interwinding capacitances

RT
s , LT

s Transformer winding resistance and leakage inductance

RT
e , LT

m Transformer core losses resistor and magnetizing inductance

and transformer winding capacitances and are neglected in a first-order approximation. The

transformer core losses resistances, denoted by RT
e , are large compared to the winding resist-

ances denoted by RT
s , and are neglected in a first-order approximation. The adjacent parallel

capacitors formed by the cables and transformer windings are combined to form equivalent

capacitances denoted by Ceq1, Ceq2, Ceq3 and Ceq4. The 11 kV supply voltage source is repres-

ented by a short circuit and the associated source impedance is ignored, as it is assumed to be

comparatively small compared to the impedance represented by the rest of the network. These

simplifications give rise to the reduced circuit model shown in Figure 6.18.

Approximate parameter values can be estimated for the circuit elements associated with

the cable and transformer models shown in Figure 6.17, using manufacturer data sheets and

nameplate specifications. The resultant parameter values for the reduced circuit model shown

in Figure 6.18 are summarised in Table 6.4.

The frequency responses of the network impedance observed at various nodes in the model

shown in Figure 6.18 are simulated over the frequency range from 10 Hz to 1 MHz with the

view to gain insight into the resonant modes and the effects of the various circuit components.
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Figure 6.17: Equivalent circuit model for the network shown in Figure 6.13.
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Figure 6.18: Simplified equivalent circuit model for the model shown in Figure 6.17.

Table 6.4: Approximate parameter values for the simplified equivalent circuit model shown in Fig-

ure 6.18.

Parameter Value Parameter Value Parameter Value

CC1
1 4.05nF LT1

s 0.463mH RC1 0.0027Ω

Ceq1 8.55nF LC2 2.08mH RT1
s 0.01344Ω

Ceq2 84nF LT2
s 10mH RC2 0.78825Ω

Ceq3 0.6µF LT3
s 0.05mH RT2

s 0.915Ω

Ceq4 2.47nF LC1 2.4µH RT3
s 0.0148Ω

CT3
s 0.27µF LT1

m 100H LT2
m , LT3

m 100H, 100H

These nodes are indicated as Z1, Z2, Z3, Z4 and ZTh respectively in Figure 6.18. The impedance

simulations are conducted with the parameter values given in Table 6.4, using DIgSILENT

PowerFactory software. The simulated impedance responses are shown in Figure 6.19.

The simulated frequency response for ZTh exhibits five resonance frequencies, labeled as

R1, R2, R3, R4 and R5 respectively. These resonance frequencies also appear partially in the fre-

quency responses observed for Z2, Z3 and Z4. The resonant subcircuits associated with the vari-
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ous resonance frequencies can be identified by perturbing the parameter values of the circuit

model and observing the effects on the simulated frequency responses. Table 6.5 summarises

the resonance frequencies observed in the responses shown in Figure 6.19, and the resonant

subcircuits associated with these frequencies.
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Figure 6.19: Simulated frequency responses for the network impedances observed at nodes Z1, Z2, Z3,

Z4 and ZTh in Figure 6.18.

Table 6.5: Resonant frequencies and the associated resonant subcircuits for the frequency responses

shown in Figure 6.19.

Resonance Frequency ( fr) Resonant subcircuits

R1 1.9 kHZ Parallel resonance of (LC2 + LT2
s + LT3

s ) and Ceq3

R2 4.1 kHZ Series resonance of (LC2 + LT1
s ) and Ceq3

R3 12 kHZ Parallel resonance of LC2 and Ceq2

R4 27 kHZ Series resonance of LT1
s and Ceq2

R5 79 kHZ Parallel resonance of (LC1 + LT1
s ) and Ceq1

6.4.3.4 Impedance response results obtained with the PRIS perturbation methodology

The experimental results for in situ application of the PRIS perturbation to the target network

shown in Figure 6.13 are obtained by applying the PRIS perturbation signal successively to the

phases at the PCC, with the wind plant disconnected. In each case, the PRIS source is connected

between the phase conductor and the neutral point. The procedure described in section 6.3.5
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is applied to record the voltage waveform vPCC(t) and current waveform ip(t). Figure 6.20

shows extracts of the time-domain waveforms recorded for vPCC(t) and ip(t) at the PCC, using

the interleaved perturbation strategy. The measured waveforms show the pre-perturbation

and post-perturbation periods of length 1 s clearly. The waveforms for vp(t) and vTh(t) can

be extracted and synchronised from the waveform recorded for vPCC(t), using the procedure

proposed in section 6.3.5.

1 2 3 4 5 6 7 8
-500

0

500

V
ol

ta
ge

 (
V

)

Measured voltage, v
PCC

(t)

0 1 2 3 4 5 6 7
Time (s)

-1

0

1

2

C
u

rr
en

t
(A

)

Measured current, i
p
(t)

Figure 6.20: Time-domain waveforms measured at the PCC for vPCC(t) and ip(t) during application of

the interleaved perturbation strategy.

Due to the non-stationary nature of the power grid, the length of the data window used for

computing the frequency response of the grid impedance influences the results obtained. This

is illustrated using measured results from one phase, where the frequency response of the grid

impedance is computed using varying lengths of the measured data window. Figures 6.21(a),

6.21(b), 6.21(c), 6.21(d) and 6.21(e) show the estimated magnitude responses of the grid im-

pedance ZTh( f ) obtained with data window lengths 0.1 s, 0.2 s, 0.5s, 1 s and 3 s respectively.

Due to the interleaved perturbation strategy, this means that the combined duration of the pre-

excitation and post-excitation data capture windows are twice these lengths. The frequency

responses are focussed in the frequency range from about 100 Hz to 10 kHz to provide a clear

view of the harmonic frequency range. The responses obtained for the various data window

lengths exhibit a similar general shape, with a coherent parallel and series resonances at ap-

proximately 2 kHz and 3.3 kHz respectively. The response obtained using a data window of

0.1 s, which represents 5 cycles for the system frequency of 50 Hz, shows a smooth response
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with a frequency resolution of 10 Hz. The limited resolution associated with a relatively short

data window, however, affects the accuracy of the estimated frequency response. As the length

of the data window increases, the frequency resolution of the estimated responses improves,

and the resonance points are more clearly defined. This, however, also results in noise degrada-

tion of the responses, especially in the harmonic frequency range. This can be partly attributed

to the time-varying nature of the power system harmonics, and possibly supply frequency vari-

ations, during the measurement period. As the length of data window increases to 3 sec, the

estimated responses exhibit increased noise, especially in the harmonic region.

The proposed averaging strategy is applied for three successive measurements with a data

window length of 1 sec, using the interleaved procedure described in section 6.3.5. The data

window length of 1 s is selected as it provides a compromise between frequency resolution and

spectral noise. Figure 6.21(f) shows the average response obtained from the three individual

responses. The result shows that the averaging procedure improves the estimated response

in the sense that a smoother, less noisy curve is obtained. The effects of the non-stationary

harmonic components are cancelled, which improves the impedance response in the lower

harmonic frequency band. The averaging procedure also improves the estimated response in

the high-frequency region through noise cancellation. As expected for an inductive supply

grid, the estimated grid impedance response is predominantly inductive in the frequency band

below 2 kHz, with a gradient of 20dB/decade.

Figures 6.22(a), 6.22(b), and 6.22(c) show the power spectral densities of the measured

voltage and current waveforms for phases A, B and C respectively. The fundamental com-

ponent at 50 Hz and the associated harmonic components are clearly evident in the plots. Fig-

ure 6.22(d) shows the estimated impedance magnitude responses for the three phases for the

frequency range from 10 Hz to 500 kHz. The phase impedances exhibit well-defined paral-

lel and series resonances at approximately 2 kHz and 3.3 kHz respectively. Phase B shows a

second parallel-series resonant pair at 10 kHz and 25 kHz respectively. This second resonant

pair is, however, completely damped in phase A and phase C. This can possibly be attributed

to the effects of unbalanced loading across the phases due to the presence of single-phase loads.

Phases A and C show a further parallel resonant peak at approximately 70 kHz, followed by a

series resonance at approximately 130 kHz. Minor parallel and series resonances are observed

in phase B at frequencies between 30 kHz and 100 kHz and in phases A and C beyond 200

kHz. The results demonstrate the complexity and variability of the impedance response char-

acteristics of a practical supply network, especially for the frequency range above 10 kHz. This

accentuates the importance of a reliable methodology for determining the wideband responses

of grid impedance from in situ measurements conducted under dynamic conditions.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. APPLICATION OF THE PSEUDO-RANDOM BINARY IMPULSE SEQUENCE TO IN SITU
IDENTIFICATION OF GRID IMPEDANCE 91

102 103 104

Frequency (Hz)

10-1

100

101

102

M
a

g
n

it
u

d
e
 (

O
h

m
s)

Phase B impedance computed from a 0.1 sec observation window

(a) Estimated impedance magnitude response for a

data window of 0.1 seconds.

102 103 104

Frequency (Hz)

10-1

100

101

102

M
a
g
n

it
u

d
e
 (

O
h

m
s)

Phase B impedance computed from a 0.2 sec observation window

(b) Estimated impedance magnitude response for a

data window of 0.2 seconds.

102 103 104

Frequency (Hz)

100

102

M
a

g
n

it
u

d
e
 (

O
h

m
s
)

Phase B impedance computed from a 0.5 sec observation window

(c) Estimated impedance magnitude response for a

data window of 0.5 seconds.

102 103 104

Frequency (Hz)

10-1

100

101

102

M
a
g
n

it
u

d
e
 (

O
h

m
)

Phase B impedance computed from a 1 sec observation window

(d) Estimated impedance magnitude response for a

data window of 1 second.

102 103 104

Frequency (Hz)

10-1

100

101

102

M
a
g
n

it
u

d
e
 (

O
h

m
s)

Phase B impedance computed from a 3 sec observation window

(e) Estimated impedance magnitude response for a

data window of 3 seconds.

102 103 104

Frequency (Hz)

100

102

M
a

g
n

it
u

d
e
 (

O
h

m
s)

Averaged impedance response

20
dB/decade

(f) Average impedance magnitude response of three re-

sponses obtained with a data window of 1 second.

Figure 6.21: Effects of data window length and averaging on the estimated magnitude response of the

grid impedance.

6.4.3.5 Parameter estimation results obtained with the PRIS perturbation methodology

The results presented in Figure 6.22(d) for the impedance responses obtained with PRIS per-

turbations show a fair degree of similarity with the simulation results presented in Figure 6.19,
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(a) PSD responses of the measured perturbation current
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102 103 104 105

Frequency (Hz)

-100

-50

0

50

M
a

g
n

it
u

d
e
 (

d
B

)

i
p
(t) v

p
(t) v

Th
(t)

(b) PSD responses of the measured perturbation cur-

rent ip(t), pre-excitation voltage vTh(t) and post-

excitation voltage vp(t) for phase B.
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(c) PSD responses of the measured perturbation current

ip(t), pre-excitation voltage vTh(t) and post-excitation

voltage vp(t) for phase C.
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Figure 6.22: Power spectral density responses of the measured perturbation current ip(t), pre-excitation

voltage vTh(t) and post-excitation voltage vp(t), and the magnitude responses of the Thevenin equival-

ent impedance estimated for phases A-N, B-N and C-N.

especially for the lower frequency band. This suggests, that by using the estimated frequency

responses of the grid impedance obtained from the proposed experimental procedure, together

with the available a priori knowledge of the perturbed network, the parameters of the simpli-

fied model structure shown in Figure 6.18 can be estimated.

Figure 6.23 shows an overview of the parameter estimation procedure that is implemen-

ted for this purpose. The procedure is implemented in Matlab, using a Simulink model for

the simplified network representation shown in Figure 6.18. The model is initialised with the

parameter values given in Table 6.4. The model takes the measured perturbation current wave-

form, ip(t), as the input, and the voltage waveform at the PCC, vs(t), is simulated. The PSDs

of the input current waveform ip(t) and the simulated voltage waveform at the PCC vs(t) are
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estimated. The simulated frequency response of the Thevenin equivalent network impedance,

Zs(ω), is subsequently determined using the relationship defined in (6.3). A cost function, ε, is

derived from the simulated impedance response, Zs(ω), and the estimated response obtained

by the PRIS perturbation approach, Zm(ω), using the relationship

ε =
n

∑
i=1

(Zs(ωi)− Zm(ωi)

Zm(ωi)

)2
. (6.11)

where n denotes the number of discrete frequency points in the estimated impedance responses.

The cost function returns the normalised sum of the squared errors between Zs(ω) and

Zm(ω), that acts as the input to an optimisation algorithm. The optimisation algorithm seeks

to minimise the cost function by iteratively updating the Simulink model with new parameter

values.

Measured impedance 
response, Zm(ω )

Estimated 
impedance, Zs(ω )

Estimated 
voltage, Vs(t)

Spectral 
Estimator

Model 
(C,L,R)

Cost 
Function

Optimisation 
Algorithm

Error
+

-Measured 
perturbation 
current, ip(t) Impedance 

estimation

Spectral 
Estimator

Vs(ω )

ip(ω )

Figure 6.23: Block diagram of the parameter estimation procedure.

The parameter estimation process can be optimised by specifying constraints on the per-

missible parameter values, based on the a priori understanding of the network. For instance,

the total leakage inductance, referred to the primary side, for transformer T1, denoted by LT1
s , is

less than the total leakage inductance referred to the primary side for transformer T2, denoted

by LT2
s . In such a case, an inequality constraint LT1

s < LT2
s is implemented in the parameter

estimation algorithm. Constraints are also implemented to avoid negative and zero-valued

parameter values.

A variety of optimisation algorithms exist, including those that are based on the gradient

method, Newton’s method or quasi-Newton methods in solving the cost function [63], [64]. In

choosing an appropriate algorithm, factors such as robustness, efficiency, and accuracy should
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be considered. The ideal algorithm should, ideally, be able to solve a wide range of problems in

its class and use the available computing power efficiently. Generally, however, a compromise

has to be made since different arguments can be made in favour of one algorithm over another.

It is, furthermore, important to consider whether there is a need to apply any constraints in the

estimation problem while selecting an optimisation algorithm.

The fmincon solver implemented in Matlab is adopted in this investigation due to its capab-

ility to efficiently minimise a constrained multivariable objective function. The fmincon solver

is a nonlinear solver that implements various algorithms, including the Sequential Quadratic

Programming (SQP) algorithm, interior-point algorithm, trust-region-reflective algorithm, sqp-

legacy algorithm and active-set algorithm. The SQP has faster execution time and consumes

less memory compared to the rest and is hence adopted in this investigation.

The model parameters for the individual phase networks are estimated separately to cap-

ture the phase-dependent load characteristics. The estimation procedure focusses on the fre-

quency band between 10 Hz and 10 kHz. A multi-step approach is implemented, whereby the

parameters that dominate the lower frequency band are estimated first, and the estimation is

extended from there to include more parameters.

A total of 15 parameters from Figure 6.18 are estimated. These include 5 capacitors, 5 in-

ductors, and 5 resistors. The parameters for each phase are estimated separately. The damping

effects at the various resonance points were used to approximate the total connected load im-

pedance. This can be done by including loads at the appropriate points on the network model

as indicated in Figure 6.8. The loads are initially adjusted manually and their effects on the

frequency response of the impedance are observed. The parameter estimation procedure is

then performed with the loads included, once a reasonable agreement between simulated and

experimental frequency response is achieved.

Very similar results were obtained for the estimated cable and transformer parameters

across the three phases. The load values for the individual phases, however, differ consid-

erably, with phase A and phase C showing similar load characteristics. Table 6.6 summarises

the parameter values estimated for phase B cable and transformer models. Table 6.6 presents

the estimated load values.

The accuracy of the parameters and load values given in Tables 6.6 and 6.7 can be evalu-

ated by comparing the measured and simulated impedance frequency responses of the grid

impedance magnitude. Figure 6.24(a) and Figure 6.24(b) show the measured and simulated

frequency responses of the impedance magnitude obtained for phase A using the initial and

estimated parameter sets respectively. Figure 6.25(a) and Figure 6.25(b) show the measured

and simulated frequency responses of the impedance magnitude obtained for phase B using
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Table 6.6: Phase B parameters estimated for the simplified model given in Figure 6.18.

Parameter Value Parameter Value Parameter Value

CC1
1 4.05nF LT1

s 90µH RC1 0.0015Ω

Ceq1 0.603µF LC2 0.12mH RT1
s 0.0133Ω

Ceq2 2.11µF LT2
s 0.252mH RC2 0.092Ω

Ceq3 19µF LT3
s 30µH RT2

s 0.12Ω

Ceq4 4.59nF LC1 0.0369nH RT3
s 0.01446Ω

Table 6.7: Estimated load impedance for the network given in Figure 6.8.

Load Phase A Phase B Phase C

L1 10Ω 23Ω 10Ω

L2 15Ω 38Ω 15Ω

the initial and estimated parameter sets respectively. The responses obtained for phase C are

similar to those obtained for phase A. The results presented in Figures 6.24(b) and 6.25(b) for

phase A and phase B respectively, show good agreement between the measured responses and

the simulated responses obtained with the estimated parameter sets. The damping associated

with the series resonance is, however, predicted less accurately. This can be, possible, attributed

to the assumption of purely resistive loads in the estimation process.
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initial parameter set.
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Figure 6.24: Measured and simulated frequency responses of the impedance magnitude obtained for

phase A.
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Figure 6.25: Measured and simulated frequency responses of the impedance magnitude obtained for

phase B.

6.5 Conclusion

The importance of grid impedance measurements is discussed and it is noted that accurate

knowledge of the grid impedance characteristics is of importance for power system power

quality studies, harmonic filter design and the design of protection systems. It is noted that

there are challenges associated with grid impedance identification in relation to measurements

conducted on a real distribution system. This is because the power system is non-stationary in

the sense that the Thevenin voltage source exhibits variations in its magnitude and frequency.

The grid impedance is also influenced by the connected loads. These variations are shown to

have a component that is stochastic in nature.

The proposed PRIS source is used in situ to perturb an active network with the aim of de-

termining the Thevenin grid impedance frequency response. The spectral energy of the PRIS

perturbation current can be controlled to improve the accuracy of the measurement results by

manipulating the clock frequency, sequence length and the time constants. A in situ measure-

ment arrangement is presented and it is shown that the experiment is conducted in two stages,

thus producing two sets of data described as pre-excitation and post-excitation data. To im-

prove the accuracy of the impedance estimation, a novel data acquisition methodology is pro-

posed to perturb the network and synchronise the pre-excitation and post-excitation voltage

waveforms. This method aims at reducing the adverse effects of the dynamic nature of the

grid on the identified impedance response. The presented results demonstrate the distortion
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of the impedance response characteristics of a real supply network, especially in the harmonic

frequency range due to the dynamic nature of the grid. The proposed interleaved data capture

and impedance averaging procedure is shown to improve the estimated impedance responses

through the cancellation of the effects of the non-stationary harmonic components.

The estimated grid impedance characteristics are, furthermore, used to estimate the val-

ues of a lumped parameter equivalent circuit of a supply network and the connected loads.

The estimation procedure, which includes comparing a measured and simulated impedance

response and invoking an optimisation algorithm to minimise the error, is presented. The esti-

mated parameter values are used to obtain responses, which are shown to agree well with the

measured responses for the considered frequency band between 10 Hz and 10 kHz.
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CHAPTER 7

Conclusions

7.1 Introduction

This chapter summarises the achievements and conclusions of the research presented in this

dissertation with reference to the original research objectives. These objectives include the

following:

7.2 Research conclusion

7.2.1 Mathematical modelling and analysis of the time-domain properties of the

PRIS signal

In the electrical energy field, system identification is typically used for modelling power system

grid impedance and apparatus such as transformers, motors, power converters and generat-

ors. The methodology used in these system identification and parameter estimation applic-

ations involves exciting the target system using a perturbation signal with suitable time-and

frequency-domain characteristics. An optimal perturbation signal should persistently excite

all relevant modes of the target system. Despite the recent attention on perturbation signals,

the case of a suitable signal for high power, high voltage in situ applications has not been stud-

ied sufficiently as motivated in Chapter 1 and 2.

The research described in this dissertation proposes a unique waveform, namely the pseudo-

random impulse sequence (PRIS) as a perturbation signal that is suitable for wideband in situ

system identification and parameter estimation applications in the power system environment.

The PRIS signal seeks to combine the most advantageous characteristics of the classical PRBS

signal and the classical impulse waveform used in high voltage engineering. The time-domain

properties of the PRIS signal, including the mathematical formulation and wave shape proper-

ties, are discussed. The PRIS waveform is shown to consists of a sequence of pseudo-randomly

occurring, pseudo-randomly chopped impulses. The two variations of the PRIS, the unipolar

and bipolar PRIS signals are introduced and the time-domain analysis presented. The derived

time-domain mathematical functions indicate that the PRIS time-domain properties can be con-

trolled by manipulating the clock frequency and length associated with the PRBS as well as the

two time constants associated with the impulse waveform.

98
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An approach to simulate the PRIS is presented in Simulink, a platform that represents a con-

venient tool for time-domain analysis and that offers extensive support for frequency-domain

analysis. The simulation of the PRIS is implemented using a linear feedback shift register,

modulo-two gates, transfer function blocks, HitCrossing blocks and a switch that allows selec-

tion of positive and negative impulses based on the PRBS logic.

7.2.2 Mathematical modelling and analysis of the frequency-domain properties of

the PRIS signal

System identification and parameter estimation applications require the implementation of a

perturbation signal with suitable frequency-domain properties. The proposed PRIS signal is

modelled and analysed in the frequency-domain and the results discussed in the context of the

suitability of the PRIS for system identification and parameter estimation applications in the

field of power engineering. The derived frequency-domain mathematical function is shown to

agree well with simulation results. The PRIS has several advantages which make it attractive

for frequency response measurement applications:

• As it is a wideband signal, the PRIS ensures that measurements can be conducted rapidly.

This is an advantage especially in power system measurements where grid parameters

change with operating time.

• The derived frequency-domain mathematical expressions and simulation results indicate

that the PRIS has a fair degree of controllability in the sense that the frequency-domain

properties can be adjusted by manipulating the associated parameters including the PRBS

clock frequency, PRBS length and the two time constants, τ1 and τ2. The controllability of

the PRIS allows it to be adjusted to improve the crest and time factors of the signal. Per-

sistent excitation for a wide range of applications can, therefore, be achieved. The PRIS

parameters can also be adjusted such that its spectral energy is focussed in the frequency

band of interest, thereby improving the signal-to-noise ratio (SNR) and accuracy of the

measurements. Applications, especially in systems involving electromagnetic compon-

ents such as transformers, perform best where perturbation energy is focussed towards

the upper frequency band and the low frequency excitation is limited. The PRIS, by con-

trolling its parameters, can facilitate such an application.

• The PRIS, is deterministic yet random within each period. The deterministic character-

istic of the PRIS facilitates repeatable experiments.
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• The proposed PRIS signal is bipolar which is advantageous because the target system is

not driven towards a biased offset point from the operating point prevailing at the start

of the measurement.

7.2.3 Development of a perturbation source circuit topology that is optimal for in

situ high power, high voltage applications

It is important to generate the perturbation signals for use in energy applications efficiently

using circuit topologies that are compatible with the associated high power and high voltage

environments. The conventional methodologies in the literature such as the sine sweep, clas-

sical PRBS current source and the PRBS voltage source connected through a resistor have in-

herent limitations in this environment. Such limitations include lack of suitability for in situ

experiments and high power ratings of the associated perturbation sources. For instance, gen-

erating signals with binary states such as the PRBS for a current injection perturbation source

requires the state switches to operate in linear mode, which gives rise to high power ratings for

the switching components.

A novel and efficient circuit topology for generating the PRIS for high power applications

is proposed and analysed. The circuit topology consists of an H-bridge and a series RLC circuit

connection to the target. The merits of the proposed PRIS circuit topology for high power in

situ perturbation applications can be summarized as follows:

• It is shown that the power electronic switches used in the H-bridge are controlled, using

a PRBS logic signal, in an on/off mode, thereby reducing power losses and allowing an

efficient circuit to be designed to operate in the kV range.

• The series RLC circuit attenuates the fundamental frequency current component induced

by the Thevenin voltage source in case of in situ measurements, preventing the circulation

of the AC current in the perturbation source circuit. This, furthermore, reduces power

losses in the PRIS source circuit. Comparison of the PRIS current and the PRBS voltage

source circuit topologies indicated at fundamental frequency component attenuation to

the tune of 40 dB in the PRIS source. The average power loss across the resistor, over

one PRBS period, is shown to be approximately 35 times less in the PRIS source circuit in

comparison to the PRBS voltage source circuit.

• From a practical circuit perspective, the PRIS time constants τ1 and τ2 are controlled by

adjusting the reactive elements in the PRIS source circuit. The series RLC circuit, there-
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fore, offers the capability of controlling the time-and frequency-domain properties of the

PRIS to suit various identification applications.

• The DC input voltage source of the PRIS source circuit allows for control of the PRIS

excitation level. To improve the SNR, the dynamic range of the PRIS can be increased

by increasing the DC voltage. In cases where a low perturbation level is required to

avoid nonlinear distortion, the excitation level can also be reduced by decreasing the DC

voltage.

The input impedance of the system under test can have considerable influence on the time-

and frequency-domain characteristics of the resultant perturbation current. In practice, the

system under test is expected to exhibit complex frequency-dependent input impedance char-

acteristics. The effects of the target system on the PRIS perturbation signal are investigated.

The design considerations for a practical PRIS source are presented and it is noted that the

design of an optimum PRIS source for a system identification experiment is highly dependent

on the characteristics of the target system.

Mathematical analysis of the proposed PRIS source reveal that in a practical PRIS source,

the initial energy in the series inductor and capacitor has an influence on the shape of the

chopped impulses of the PRIS waveform. The initial energy in these two elements depends on

the length of each switching cycle in the PRIS source, which is pseudo-random. This will cause

the maximum amplitude of the chopped impulse waveforms associated with the PRIS to differ

slightly.

7.2.4 Performance evaluation of the proposed PRIS signal and perturbation

source for wideband characterization of grid impedance

The performance of the PRIS perturbation system in in situ applications is evaluated using

two case studies involving the estimation of the impedance spectrum of a complex Thevenin

source in the presence of harmonic voltage distortion. The challenges associated with grid im-

pedance measurements, due to the non-stationary nature of a real power system network, are

highlighted. This research demonstrates that the grid Thevenin source voltage has amplitude

and frequency variations that can be described as stochastic in nature and imitating white noise

characteristics. These variations distort the measured grid spectrum in the harmonic frequency

band resulting in erroneous results.

To improve the grid impedance frequency response results, this research proposes a novel

procedure for grid perturbation, data recording, synchronization of pre-and post-excitation

and impedance computation. An interleaved method of perturbing the network using the PRIS
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at the point of common coupling (PCC) is demonstrated. This technique involves taking a long

measurement that contains alternating pre-and post-excitation data. An advantage of this ap-

proach is that multiple impedance responses can be computed from pre-and post-excitation

data that occur in quick succession. Averaging of these impedance responses is shown to im-

prove the estimated response in the sense that a smoother, less noisy curve is obtained.

It is shown that the length of the data window that is used in the analysis affects the quality

of computed grid impedance frequency response. The use of a short length of data, which is

one of the methods that is proposed in the literature as a way of improving impedance results,

is shown to present impedance results with a poor resolution which affects the accuracy of the

impedance spectrum. Long data windows, on the other hand, are influenced by the harmonic

changes in the power system resulting in distortion of the impedance spectrum. It is, therefore,

necessary to strike a compromise between resolution and distortion while selecting the length

of the data window for impedance response computation.

In the first case study, a PRIS perturbation system is used to estimate the impedance fre-

quency response of a test circuit that is built in the laboratory to emulate a single-phase AC

supply network. The presented results show that the PRIS waveform excites the various dy-

namic modes of this system persistently and the frequency spectrum of the impedance is ex-

tracted accurately from the perturbed voltage and current signals. The results are shown to

agree well with those obtained from a mathematical transfer function representing the network

impedance and frequency sweep simulation of the network using DIgSILENT PowerFactory

software.

In the second case study, a PRIS perturbation system is used to estimate the phase to neut-

ral impedance spectrum of a complex Thevenin source in a three-phase rural network. The

obtained frequency responses are subsequently used to estimate the lumped parameter val-

ues of the associated network components including the transformers, cables and loads. The

presented results show that the PRIS waveform and the proposed perturbation and data ana-

lysis procedure can provide reliable impedance estimation results, even on a real power system

network where harmonic voltage distortion is prevalent.

The proposed method has application in renewable energy systems for characterizing grid

impedance for grid compliance studies, harmonic filter design and the modelling of harmonic

distortion phenomena. The proposed PRIS perturbation signal has, furthermore, excellent po-

tential for system identification and parameter estimation in applications that target power

apparatus such as transformers, electrical machines, etc. It can, however, also be applied for

small-signal applications such as control systems.
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7.3 Recommendation for future work

This study revealed several areas for further investigation.

• The power cost comparison between the PRIS source with that of the conventional per-

turbation sources such as the PRBS source is worthy of attention. In practice, this is quite

complicated as the comparative performance is dependent on operating conditions such

as the DC source voltages used. Furthermore, the actual losses are dependent on the mag-

nitude of the excitation current required which is a function of the estimation application.

An aspect of future work is to compare the power cost of a PRIS source with that of the

conventional PRBS sources for various experimental applications and conditions.

• A good understanding of the grid impedance characteristics and its variations through-

out the day is of importance for applications such as filter design. In this case, a real-time,

in situ, wideband grid impedance measurement arrangement using the PRIS perturbation

source should be designed to capture the grid impedance variations over a long period.

The measurement should, furthermore, be conducted such that all the three phases are

perturbed simultaneously.

7.4 Novel contribution and research publications

The original contributions associated with this research are listed below:

• Introduction of the PRIS waveform as wideband perturbation signal for high power, high voltage

applications: The proposed PRIS signal represents a novel concept, that combines a PRBS

gate signal with the classical impulse excitation waveform used extensively in high voltage

engineering.

• Time-domain model and analysis of the PRIS signal: The time-domain properties of the PRIS

signal have not been investigated in the literature. It is shown that the signal is highly

suitable for in situ application in high power, high voltage environment.

• Frequency-domain model and analysis of the PRIS signal: The frequency-domain properties

of the PRIS signal have not been investigated in the literature. It is shown that the power

spectrum of the PRIS has a good degree of controllability in comparison with the classical

PRBS and impulse signals, especially in the sense that the frequency spectrum can be

manipulated by adjusting the impulse time constants and PRBS clock frequency to focus

the spectral energy in the frequency band of interest.
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• Development and performance evaluation of a PRIS source circuit topology: A novel circuit to-

pology, using a power electronic H-bridge in combination with a series RLC network, is

proposed to generate the PRIS signal. It is shown that the circuit represents an efficient

and compact perturbation source that has the potential to operate at voltages in the kV

range. The effects of the target system to be estimated on the PRIS perturbation current

are investigated. The impedance of the target is shown to have considerable influence on

the time- and frequency-domain characteristics of the perturbation current. The initial

energy in the inductor and capacitor associated with a practical PRIS source are further-

more shown, through mathematical analysis of the PRIS source, to affect the shape of the

chopped impulse waveforms that constitute the PRIS.

• Application of the PRIS signal for wideband characterization of grid impedance: The proposed

PRIS signal is applied for wideband characterization of the grid impedance of a rural

supply network, where the supply voltage exhibits a fair degree of harmonic voltage

distortion and stochastic behaviour. A novel experimental approach is proposed to min-

imize the effects of voltage distortion and the time-dependent variation of the supply

voltage on the estimated frequency responses and model parameters.

This research has generated the following publications:

• F. M. Mwaniki, H. J. Vermeulen, and J. P. Viljoen "Evaluation of a pseudo-random impulse

sequence as an excitation signal for power system equipment," Proc. 26th South African

Universities Power Engineering Conference, Jan. 2018.

• F. M. Mwaniki and H. J. Vermeulen, "Characterization and Application of a Pseudo-

random impulse sequence for parameter estimation applications,” IEEE Transactions on

Instrumentation and Measurement, Early Access.

• F. M. Mwaniki and H. J. Vermeulen, "Grid Impedance Frequency Response Measure-

ments Using Pseudo-Random Impulse Sequence Perturbation,” 2019 9th International Con-

ference on Power and Energy Systems (ICPES), Perth, Australia, 10-12 December 2019.
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