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Brueckner-Hartree-Fock theory allows one to derive the G matrix as an effective interaction between nucleons
in the nuclear medium. It depends on the center-of-mass momentum P of the two particles and on the two
relative momenta ¢ and ¢’ before and after the scattering process. In the evaluation of the total energy per
particle in nuclear matter, usually the angle-averaged center-of-mass momentum approximation has been used.
We derive in detail the exact expressions of the angular integrations of the momentum P within relativistic
Brueckner-Hartree-Fock (RBHF) theory, especially for the case of asymmetric nuclear matter. In order to assess
the reliability of the conventional average momentum approximation for the binding energy, the saturation
properties of symmetric and asymmetric nuclear matter are systematically investigated based on the realistic
Bonn nucleon-nucleon potential. It is found that the exact treatment of the center-of-mass momentum leads
to non-negligible contributions to the higher order physical quantities. The correlations between the symmetry
energy Ep,, the slope parameter L, and the curvature Ky,,, of the symmetry energy are investigated. The results
of our RBHF calculations for the bulk parameters characterizing the equation of state are compared with recent

constraints extracted from giant monopole resonance and isospin diffusion experiments.
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I. INTRODUCTION

The investigation of the nuclear equation of state (EoS), es-
pecially its properties under extreme conditions, is one of the
most crucial issues in both nuclear physics and astrophysics. It
is important to understand a variety of interesting phenomena
including supernova explosions, the mass-radius correlations
of neutron stars, the collective motion of nucleons within the
nuclei, the neutron skin thickness of heavy nuclei, as well as
some other topics [1-8]. In recent years, with the establish-
ment of many facilities for radioactive ion beams in terrestrial
laboratories, such as the Cooling Storage Ring (CSR) Facility
in China, the Radioactive Ion Beam (RIB) Factory at RIKEN
in Japan, the GSI Facility for Antiproton and Ion Research
(FAIR) in Germany, SPIRAL2 at the Grand Accelerateur
National d’Ions Lourds (GANIL) in France, and the Facility
for Rare Isotope Beams (FRIB) in the United States, it has
become possible to explore experimentally the EoS of nuclear
matter at large isospin asymmetry; in particular, the density
dependence of the nuclear symmetry energy.

Theoretical models which are used to investigate the
properties of the nuclear EoS can roughly be divided into
two methods: phenomenological and ab initio methods. Phe-
nomenological methods, either nonrelativistic or relativistic,
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are based on density functionals such as Skyrme [9,10],
Gogny [11], or relativistic mean-field (RMF) models [12-16]
that are constructed for the purpose of reproducing properties
of finite nuclei and nuclear matter. Ab initio methods are based
on realistic nucleon-nucleon (NN) interactions with nuclear
many-body techniques used for a microscopic treatment of the
nuclear system.

There are a variety of formulations of the NN interactions,
such as Bonn [17], AV18 [18], CD Bonn [19], and chiral
potentials [20-23]. Recently, more and more ab initio methods
have been developed to study the nuclear many-body system;
these include the quantum Monte Carlo method [24], the
coupled-cluster method [25], the no-core shell model [26], the
self-consistent Green’s function method [27], the lattice chiral
effective field theory [28], the in-medium similarity renormal-
ization group [29], the Monte Carlo shell model [30,31], and
the Brueckner-Hartree-Fock (BHF) theory [32]. Among these,
the relativistic Bonn potential has been successfully applied
in relativistic Brueckner-Hartree-Fock (RBHF) theory [33], to
study both nuclear matter [34—42] and, more recently, finite
nuclei [43-47].

Comparing with nonrelativistic BHF, RBHF theory in nu-
clear matter is relatively complicated and time-consuming.
Therefore, in order to reduce the complexity of this method, in
the earlier investigations the so called average center-of-mass
(c.m.) momentum approximation was used for the calculation
of the binding energy per particle [40,48—50]. With the rapid
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increase of computational power, however, it is now possible
to avoid this approximation. In the present work we derive
exact and analytic formulations of the angular integrations
for the c.m. momentum P in the framework of RBHF the-
ory, especially for asymmetric nuclear matter. In addition,
we systematically study both the density dependence of the
energy in symmetric nuclear matter and the symmetry energy
at the saturation density pg. For the calculations we use the
Bonn potentials [17] and compare results with and without
the averaged c.m. momentum approximation. In particular
we examine the effect of the exact treatment of the c.m.
momentum for the higher order physical quantities in both the
energy in symmetric nuclear matter and the symmetry energy.

In Sec. II, we will first describe the general properties of
nuclear matter, and then give a brief review of the RBHF
framework. Next, we will derive an exact and analytic ex-
pression of the angular integrations for the c.m. momentum
P. Results and discussions are presented in Sec. III and a
summary is finally given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Saturation properties of nuclear matter

The binding energy per nucleon of isospin asymmetric
nuclear matter can be generally expressed as a power series
in the asymmetry parameter o = (p, — 0,)/p, wWhere p =
Pn + pp is the total density with p, and p, expressing the
neutron and proton densities:

E(p,a) = E(p,0) + Eym(p)a® + O(4). ey

Here E(p, 0) is the binding energy per nucleon of symmetric
nuclear matter and Egy, () is the so-called nuclear symmetry
energy,

19?E(p, o)

Esym(p) =3

2 a2 @

a=0
The binding energy per nucleon in symmetric nuclear
matter can be expanded around the saturation density po,

K _ 2
E(p.0) = E(py, 0) + -2 L2
2 3p0
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where E(pg, 0) denotes the binding energy per nucleon. The
second and third derivatives of E(p, 0) with respect to p
are given by the incompressibility K (p) and the skewness
parameter Q(p),

3
) + 0, 3

3’ E(p,0)
K(p) = 9p§8—p2, )
O*E(p,0)
Q(p) = 27,,37, ©)

and K, and Qy are their values at the saturation density py,

respectively. The slope of the nuclear matter incompressibility

is given by [51]

K (p)
p

M(p) =3p ©)

and, at saturation density, we find
Mo = M(po) = 12K + Q. (7

In Ref. [52], the investigation of these quantities shows a
strong correlation of the neutron star radii with the slope of
the incompressibility.

Similarly, in the vicinity of the saturation density pg, the
symmetry energy can also be characterized in terms of a few
bulk parameters:

p—p
Eqm(p) = Eqym(po) + L( °)
3p0

K sym ( 0 — Po
2 3p0
where Egym(0o) is the value of the symmetry energy at sat-

uration density and L and Ky, are the slope parameter and
curvature parameter of the nuclear symmetry energy at py:

2
) + 00), ®)
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L = 3py Eam)} ©)
8,0 P=pPo
32 Eqym(p)
Koym = 9,)38;[)2 (10)

P=P0

The nuclear matter incompressibility K., is not a directly
measurable quantity. Instead, one can also define an incom-
pressibility K4 for a finite nucleus with mass number A
by measuring the excitation energy of the isoscalar giant
monopole resonance (ISGMR) [53],

12K,

M v

Esomr =
where M is the nucleon mass and (r?) is the mean square
radius of the ground state. This incompressibility for finite
nuclei can be parametrized by means of a similar expansion to
the liquid drop mass formula with volume, surface, symmetry,
and Coulomb terms [53]:

2

VA
Ko~ Koo + Kaut A~ + K,0? + chm. (12)

The symmetry term K, and the Coulomb term K¢, are
related to nuclear matter properties as [53-56]

Qo

K. =Ksym—6L—K—ooL, (13)
Keon = 35(—8 -2) (14)
5 ro KOO
where ry is the radius constant defined by
1/3
()

If one uses the parabolic approximation in Eq. (3) (Q¢ = 0),
then K, can be simplified to

K: ~ Kagy = Koym — 6L. (16)

This equation has been widely used to characterize the isospin
dependence of the incompressibility of asymmetric nuclear
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matter in Refs. [6-8,57—60]. Obviously, if the skewness pa-
rameter Qy is negligible or the magnitude of the slope pa-
rameter L is very small, then the coefficient K,z could be a
good approximation to K. Therefore it is important to study
in a microscopic approach how the term Q affects the value
of K.

As mentioned before, in this investigation we use RBHF
theory. In the following, the concepts of this theory in nuclear
matter will be briefly reviewed.

B. Relativistic Brueckner-Hartree-Fock theory

To evaluate the in-medium nucleon-nucleon potential, one
needs a Dirac spinor which is the solution of the Dirac
equation for the description of the single-particle motion in
the nuclear medium,

E:<p>+M:>“2< !

: v )x (17)
2E; E(p)+M;

MT(P,S) = (

Here M} = M + Us,; and E;‘Z(p) = M;*Z + p?. Us.; denotes
the scalar potential. 7 is the isospin quantum number, and y;
a Pauli spinor. The normalization is ul(p, Su.(p,s)=1.

One of the most widely used equations in the RBHF ap-
proach is the Thompson equation [61], which is a relativistic
three-dimensional reduction of the Bethe-Salpeter equation
[62]. The in-medium Thompson equation describes the scat-
tering of two nucleons in nuclear matter. It allows one to
derive the G matrix as an effective interaction in the medium
from the solution of the following equation in the momentum
space:

G (q'.q|P. W)

/ d3k /
- ‘L'l‘rz(q ﬂq)+ m V‘E]‘L’z(q 7k)

y O, (k, P)
Wi, — E

T2

Gor, (k. q| P, Weyr,),  (18)

where 7117, = nn, pp, or np. V.., denotes a realistic bare
nucleon-nucleon interaction [17] and it is constructed in terms
of effective Dirac states (in-medium spinors) as explained in
Eq. (17). Equation (18) deviates from the Thompson equation
(6) in Ref. [35] by the factor M?/E?, because we use the Dirac
spinors (17) normalized according to u'u = 1, as is usual
in many-body physics (see for instance Serot and Walecka
in Ref. [63]). Wy, is the starting energy and E7 , is the
total energy of intermediate two-nucleon states. P is the
c.m. momentum and ¢, ¢’, and k are the initial, final, and
intermediate relative momenta,

ki+k
P— 1+ 2’ (19)

2

ki —k
k:%. (20)

The momenta of the two interacting particles k; and k;
in nuclear matter can be expressed in terms of the relative
momentum k and the c.m. momentum P. The Pauli operator
QO+, (k, P)avoids the scattering into occupied states, i.e., into

states with |ky| < kj or |ka| < k7. Itis defined as

1, |P+k|>kjor|P—k|>kg,

. (21
0, otherwise.

O, (K, P)={

where Q. ., (k, P) depends not only on the magnitude of the
c.m. and relative momenta but also on their relative direc-
tions. To simplify such an angular dependence, one usually
replaces the Pauli operator Q,,,,(k, P) by an angle-averaged
Pauli operator QY (k, P) [see Eq. (Al) in Appendix A].
Several nonrelativistic investigations have been carried out to
calculate the nuclear matter properties using the exact Pauli
operator Q- (k, P), and almost all the results have assessed
the reliability of this angle-averaged approximation in the
nonrelativistic framework [64-66]. Therefore we use this
approximation also in the relativistic case. For asymmetric
nuclear matter this value has to be carefully investigated, and
the details are given in the Appendix A.

After the solution of Eq. (18) for the positive energy solu-
tions, the knowledge of the G matrix allows us to calculate the
self energy:

1
U (m) = Z W/o &k (mn| Gy, (W, lmn — nim),

(22)
for the positive energy solutions. Here m specifies a state be-
low or above the Fermi surface with momentum k,, and spin
Sm. Wi, 1s the starting energy and we use in the following
calculations the “continuous choice” [67,68],

W‘L’]'L’z = E;k] (pm) + E:;kl (pl’[)‘

Before solving the relativistic Hartree-Fock equations in a
self-consistent way, one needs the full relativistic single-
particle potential U(p) and the full self-energy, i.e., matrix
elements not only for the positive energy solutions given in
Eq. (22), but also the elements coupling positive with negative
energy solutions and those for the negative with negative
energy solutions. Following the usual prescriptions [35,49],
where the Thompson equation is solved only for the positive
energy solutions, and neglecting the spacelike component of
the vector field because of time-reversal invariance, we use the
following ansatz for the single-particle potential:

(23)

U(p) =Us +nUy. (24)

Furthermore, the momentum dependence of the scalar and
vector fields is very weak and neglected. The two constants
Us and Uy are adjusted to the positive energy solutions in
Eq. (22) at the Fermi momentum. This leads to the relativistic
Hartree-Fock equation

{o - p+ Uy + BM*}u(p) = E(p)u(p),

where o = ypy and B = y, are the Dirac matrices, M* =
M + Us is the effective mass, and u(p) are the Dirac spinors
given in Eq. (17). The eigenvalues E(p) = Uy + E*(p) are
used for the solution of the Thompson equation (18) in the
next step of the iteration.

Considering the isospin dependence, it is evident that U,
and U, in Eq. (22) are coupled through the np component of

(25)
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the potential:

Un = Urm + Unp7 (26)
Uy =Upp+ Upy. 7)

Therefore they must be solved simultaneously, and the relativistic G,,,;, matrix is self-consistently evaluated with the single-
particle potentials and the single-particle energies in the standard RBHF iterative procedure. Once the solution has converged,
the total energy per nucleon in nuclear matter can be calculated by [35]

E 1 1 ki
— = d’ky, ky + BM|m) — M

1 1 e K
+55 Z (27t)6/ d%,,/ Ak (mn| G oyry (W, 2, ) Imn — nim). (28)

0

SmsSn»T1,T2

As mentioned above, we will focus on the calculation of the potential energy.

C. Potential energy

As previously mentioned, the G matrix is directly obtained from the Thompson equation (18) which is written in the c.m.
frame of the two scattering nucleons. Thus, Eq. (28) should be transformed to the c.m. frame. This yields for the potential energy,

the second line of Eq. (28),

T lg + P| <k}
Ey I 8 (ki +k)/2 lg — P < kp?
SRR TYers f g " T d3P(gmn|Ge g, (P, We,)lgmn — nm), (29)

with the total density o = p, + p, and the momenta P =
(km + ku)/2,q = (kyy — ky)/2. The factor 8 is caused by the
transformation from the laboratory frame to the c.m. frame.
The integral over the c.m. momentum P in Eq. (29) cannot be
performed separately because of the momentum dependence
of the G matrix. Obviously, the angular integrations [ dQ2p in
[ d* P depends not only on the magnitude of the total and the
relative momenta but also on their relative directions.

In the literatures, the averaged c.m. momentum approxima-
tion has been used [40,48], where the average c.m. momentum
is defined as

&K [y PR P?8(q — Lk — ko)
T8 @3k, [ d3kas (g — Ly — Kal)

It does not depend on the direction, and this value is usually
applied in the G matrix in Eq. (29) (for further details see
Appendix C).

In this investigation we do not use this approximation and
we focus here on how to carry out the angular integrations
[ dQp = [sin6 d6 d¢ exactly, where 6 is the angle between
¢ and P. On the basis of the conditions |k,,| = |P + q| < ki
and |k,| = |P — q| < k7, this leads to restrictions on the
angle 6. First, in order to give a clearer understanding of the
calculations in detail, the Fermi sphere method [69] is adopted
as a powerful tool to calculate the angle integral f dQp in
Eq. (29). Assuming k% > k7., since the range of |g| is strongly
affected by the comparison between the values of kf. and
(k7. — k2)/2, i.e., by the relation between k- and 3k%, one
has to distinguish two cases:

2
PaV

(30)

(a) Kb >3kl (ora > 13/14), 31)

(b) Ky <3kh (ora <13/14), (32)

(

with the asymmetry parameter o = (0, — pp)/p = (k’[p3 —

k2%)/ (k> + kP*). Moreover, there exist three possible situ-
ations depending on the value of |g| in both of the cases (a)
and (b), and a more complicated problem is that at a given |q]|,
there are also several regions depending on the magnitude of
| P|. The details and the results of the exact angular integration
[ dQ2p in Eq. (29) are provided in Appendix B.

III. RESULTS AND DISCUSSION

We summarize our results for the properties of nuclear
matter in Table I. In the first row, we show our RBHF
results with (average) and without (exact) the approximation
of averaged c.m. momentum. The nonrelativistic BHF results
with and without three-body forces (TBF) are shown in the
second row. For comparison, empirical values are also listed.

In comparison with the results from nonrelativistic BHF
calculations without three-body forces, the saturation point
is shifted towards lower density for relativistic BHF theory
using the Bonn potentials. The result for potential Bonn A
even meets the empirical region [70,71]. In order to repro-
duce the saturation point of symmetric nuclear matter within
nonrelativistic BHF, one needs to introduce a three-body force
in Ref. [72]. This three-body force requires two phenomeno-
logical parameters that need to be fixed by requiring that the
BHF calculation reproduce the energy and saturation density
of symmetric nuclear matter. In Table I, two sets of such
parameters are presented: the original set of Ref. [73] (labeled
TBFa), and another new set of Ref. [72] (labeled TBFb), in
which the parameter associated with the two-pion attractive
term has been reduced by 10%, and the one associated with
the phenomenological repulsive term has been increased by
20% in order to get a smaller saturation density.
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TABLE I. Bulk parameters (as described in the text) of symmetric and asymmetric nuclear matter at saturation density py. Results
obtained in RBHF theory using the Bonn potentials A, B, and C with exact and averaged c.m. momentum are compared with those found
in nonrelativistic BHF theory with and without TBF [35,72,74]. The quantities A are defined as the differences between the exact and the

averaged treatments of the c.m. momentum. The empirical values are also listed in the last row.

Model Potential 0o E/A Ky Qo M, Egym L Kym Kasy K, Kcoul
(fm™) (MeV) MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
exact 0.180 —15.38 286 731 4163 33.7 75.8 =570 512 705 8.30
A average 0.182 —15.04 289 650 4118  32.6 747 —=53.1 -501 —669 —8.09
A —0.002 —-0.34 -3 81 45 1.1 1.1 -39 —11 -36 -0.21
exact 0.164 —13.44 222 547 3211 29.9 63.0 —56.3 —434 590 —7.98
RBHF B average 0.165 —13.08 220 791 3431 28.7 653 —47.5 —439 —-674 8.86
A —0.001 —0.36 2 —244 220 1.2 2.3 —8.8 5 84 0.88
exact 0.149 —12.12 176 260 2372 26.8 517 —-556 —366 —442  —7.00
C average 0.150 —11.75 168 638 2654 256 58.8 —41.1 -394 —-618 8.74
A —0.001 —0.37 8 —378 -282 1.2 -7.1 —145 28 176 1.74
A 0.428 —23.55 204 32.1
B 0.309 —18.30 160 31.8
BHF C 0.247 —15.75 143 28.5
AV18  without TBF 0.240 —17.30 214 -225 2343 358 63.1 —-27.8 —406 340 —6.01
AV18 TBFa 0.187 —15.23 196 281 2071 34.3 66.5 —-31.3 —430 -335 5.23
AV18 TBFb 0.176 —14.62 186 225 2007  33.6 66.9 —234 —425 344  —5.30
Empirical 0.166 —16 240 32 88 —550
+0.018 +1 +20 +2 +25 +100

In the sixth column of Table I we show the symmetry
energy at saturation density. For the exact calculation it turns
out to be 33.7 MeV, which is in good agreement with the
empirical value of 32 4+ 2 MeV [5].

Using the previously discussed RBHF method, the incom-
pressibility of nuclear matter at saturation density is 286 MeV
for the potential Bonn A and about 222 MeV for the po-
tential Bonn B, which is in satisfactory agreement with the
commonly accepted value of 240 + 20 MeV [56,75,76]. It
should be noted that, after including the three-body forces
within nonrelativistic BHF, the incompressibility coefficient
decreases considerably and reaches values far from the lower
bound of K, = 220 MeV imposed by experiments. It should
be mentioned here that the comparison of these two incom-
pressibilities is influenced by the fact that they are calculated
at different saturation densities.

At present, there is no experimental constraint on Qy,
which is defined as the third density derivative of the sym-
metric nuclear matter energy at saturation. The microscopic
predictions of RBHF theory for Qg are large and positive,
in contrast to the nonrelativistic BHF results with negative
values. As a consequence, in Eq. (14) the values of Kcoy =

%j—;(—S — Ig—;) are larger for RBHF than those found in
nonrelativistic BHF. We also see that the approximate expres-
sion (16) K; ~ K,y = Kgym — 6L [7,8,58], which is quite
often used instead of K; = Kuy — (Qo/ Koo )L, can lead to
a remarkable difference in K. The results of this addendum
indicate that generally the higher order Qg contribution to K,
cannot be neglected, either in relativistic or in non-relativistic
BHEF, especially for larger L values.

It is shown that the saturation densities do not change sub-

stantially for the exact treatment of the c.m. momentum given

in Appendix B as compared to the results of the averaged c.m.
momentum approximation in Appendix C. It is a common
characteristic of the results for the three different nucleon-
nucleon potentials (Bonn A, B, and C) that the exact treatment
of the c.m. momentum produces small but non-negligible
contributions to the binding energy per nucleon at saturation
densities, as compared with the results of the conventional av-
eraged c.m. momentum approximation. These non-negligible
differences in the binding energy are important when studying
effects of higher order physical quantities in both the energy
in symmetric nuclear matter and the symmetry energy. For
some of the properties associated with the EoS, such as p,
E/A, K, Egym, and L, the differences are relatively small,
but they become significant for the remaining higher order
parameters. Especially we find significant differences for the
quantities Qo, Mo, Ksym, Kasy, Kcoul, and K.

In order to have accurate expressions for the various
quantities defined as the density derivatives of the energy of
symmetric nuclear matter and of the symmetry energy in Ta-
ble I, we parametrized the energy of symmetric nuclear matter
and the symmetry energy in the vicinity of the saturation
density pg. It has been found that the EoS can be accurately
represented using the following functional form [77]:

E « ;

S (2) (2

A Po 00
where E/A is the binding energy per nucleon as a function
of the nuclear density p, and the parameters a, «, b, and
are obtained by fitting to the results of RBHF theory for the

different Bonn potentials. In a similar way, a two-parameter
representation for the symmetry energy around saturation

(33)
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TABLE II. Fit parameters for the nuclear matter properties de-
fined in Eqgs. (33) and (34) for RBHF theory using the Bonn poten-
tials A, B, and C.

Model Potential a o b B c y
(MeV) (MeV) (MeV)
A exact —19.25 0.64 3.87 3.21 33.72 0.75
average —19.53 0.70 4.49 3.05 32.63 0.76
RBHF B exact —16.23 0.56 2.79 3.26 29.92 0.70
average —15.15 0.51 2.07 3.69 28.73 0.76
C exact —14.89 0.55 2.77 2.94 26.85 0.64
average —13.15 041 140 3.86 25.57 0.77
density is frequently used [7]:
o\’
Lo

The results of these fits, i.e., the parametrization of the
equations of state obtained with and without c.m. momentum
approximation, are shown in Table II and in Fig. 1. Of course,
a fit of a given function does not guarantee that the derivative
of the fit is itself a good fit of the numerical derivative.
Therefore, in order to ensure the current results are reliable,
we also made numerical derivatives and we found that the
errors between the two methods were less than 5%, even for
the third order.

As we can see in Fig. 1, the binding energy calcu-
lated by RBHF theory using the potential Bonn A without
the c.m. momentum approximation agrees better with the
empirical value than the results based on the c.m. momentum
approximation.

In Fig. 2 we show the correlations between L and Egyp,
(left panel) and between L and Ky, (right panel), which

-6
'g(p)
S -10 |
Q L
= I
s L
w -14 |
| average|
-18 U S S R

0.15
p (fm?)

0.25

have been investigated in Refs. [72,80]. The values of Egyn
and K¢, obtained from both the nonrelativistic (squares)
and relativistic (circles) density functionals exhibit a linear
correlation with L. It should be mentioned that the result
of RBHF theory using the potential Bonn A is in excel-
lent agreement with this tight correlation. In addition, other
ab initio calculations, such as the results of nonrelativistic
BHF and the variational microscopic calculations of Akmal,
Pandharipande, and Ravenhall (hereafter APR) which incor-
porate relativistic boost corrections and three-nucleon inter-
actions (using the A18+4-8v 4+ UIX* interaction) [78] are also
given. It can be seen that these two correlations also exist in
microscopic approaches. Note that the RBHF results for L
are also located inside the region constrained by the isospin
diffusion data [7,58,80]. According to Fig. 2, it is clear that
the symmetry energy Egyn, and the curvature parameter Kgyn
are both sensitive to the slope parameter L, increasing almost
linearly with increasing L. There is no direct experimental
information on the Ky, parameter. However, as proposed in
Ref. [81], once accurate experimental information becomes
available for L, these correlations could be exploited to obtain
theoretical estimates for Kym.

One can see in Fig. 3 the values of K., L, and K, for
the present RBHF calculations using the Bonn potentials,
compared with the predictions of BHF and APR as given in
Table 1. The shaded rectangular regions encompass the re-
cent values of Ko, =240 +20MeV [56,75], K, = —550 +
100 MeV [56,75], and L = 88 +25MeV [7,58,80]. The ex-
perimental values obtained from the ISGMR and from isospin
diffusion for K, K, and L together provide a way to choose
the most appropriate interaction used in the EoS calculations.
Although a majority of the interactions fail to meet the regions
established by these measurements, it is worth mentioning
here that the results of RBHF theory using the potential
Bonn B without c.m. momentum approximation lie within this

S
[«}]
2
<
LLl

exact

-18 P R SR S —

0.05 0.15 0.25

p (fm™)

FIG. 1. Binding energy per nucleon for nuclear matter as a function of the total density p. Results for Bonn potentials A, B, C with (left
panel) and without (right panel) c.m. momentum approximation are shown. The RBHF results are represented by open and solid circles, where
open circles stand for the data used in the fit and solid circles indicate the validity of the results of the fit (solid curves). The red stars indicate

the saturation points obtained from RBHF results.
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FIG. 2. Egy, (left panel) and Ky, (right panel) as a function of L calculated by RBHF theory using the potential Bonn A (red star), in
comparison with results obtained by BHF (triangles) [72], variational methods (APR, diamond) [78], and various density functionals (circles
and squares) [54,79]. The shaded regions denote the constraints on L from isospin diffusion [7,58,80]. The blue line is the linear fit to the

results of density functionals.

region. It was shown by Sagawa et al. [54], that K is largely
negative and shows an anticorrelation with incompressibility
of nuclear matter K, for both nonrelativistic and relativistic
density functionals; that is, any approach that has a larger K,
gives a smaller K. The same conclusions have been verified
in the microscopic calculations.

As noted previously in Eq. (12), the incompressibility K 4
of finite nuclei may be parametrized as [53]

2

Z
Ka =~ Koo + Kaut A™'? + Koo + Kcou—=

e 69

Kcou 1s essentially a model-independent term (in the sense
that the deviations from one theoretical model to another are
quite small) [54]. Therefore, in order to obtain K., an approx-
imately quadratic relation between K4 — KcouZ2A™*3 and
the asymmetry parameter « can be used to fit the experimental

data. In Refs. [75,82], a value of —5.2 4+ 0.7 MeV was used
for Kcou, derived from 13 parameter sets of the Skyrme
interaction [54], and the uncertainty in the value of Kcoy
contributes ~15 MeV to K, for the measurement of the
ISGMR in even-A Sn isotopes and ~20 MeV in even-A Cd
isotopes.

As discussed earlier, we can see in Fig. 4 that the values
of Kcou derived from RBHF theory using the Bonn potentials
are larger than those derived from BHF because the skewness
parameters Qg are large and positive for RBHF theory. In
addition, the values of Kcoy provided by the relativistic
approaches including RBHF are larger than —5.2 £ 0.7 MeV,
which indicates that higher order corrections (e.g., Qo) play
an important role in K¢,y . Therefore it is important to study
the effects on K, derived from relativistic approaches when
using different values of Kcoy-

-200 ————1——1—— -200 ~————————T——
=300 | AV18(LBFa) - =300 | AV18(TBFa) -
I < AV18 | | Av1s |
400 _AV18?]TBFb) i 400 F AV18(TBFb) i
— * —
> Bonn C ! fim > Bonn C Isospin
é’ -500 ' $:i:ft|2ion GMR‘_ é’ '500_' idiffusion GMR‘_
;1 -600 [ s XL oarR - ;’., -600 [ ppg o Bonn B i
* *
=700 | k BomA - -700 | K % Bonn A .
800 1 1 3°r ditlon ]
-900 N 1 N 1 N 1 N Q00 b
150 200 250 300 350 30 80 130 180
K, (MeV) L (MeV)

FIG. 3. Correlations between the parameters K, and K, (left panel) and between K, and L (right panel) calculated by RBHF theory using
the Bonn potentials with (open star) and without (solid star) averaged c.m. momentum approximation. The results are compared with BHF
(triangles) [72] and with APR (diamond) [78]. The shaded regions indicate the experimental ranges of K, and K, derived from from the
ISGMR of Sn isotopes [56,75] and of K, and L determined in Refs. [7,58,80] from isospin diffusion.
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FIG. 4. Values of K¢,y and K, calculated by RBHF theory
using the Bonn potentials with (open star) and without (solid star)
averaged c.m. momentum approximation, compared with BHF (tri-
angles) [72] and APR (diamond) [78]. The shaded regions denote the
constraints on K, from the ISGMR of Sn isotopes [56,75].

IV. SUMMARY

Quantities like the binding energy of symmetric nuclear
matter and the symmetry energy and their density dependence
play an important role in modern nuclear physics and as-
trophysics. Nonrelativistic and relativistic Brueckner-Hartree-
Fock theory allows an ab initio derivation of these quantities
from the experimentally known bare nucleon-nucleon inter-
action. In the present paper, by employing the Fermi sphere

(a)

method we derived an exact and analytic expression of the
angular integrations for the c.m. momentum P, which is
important for a precise numerical calculation of the binding
energy, especially for asymmetric nuclear matter. In order
to examine the effect of the exact treatment of the c.m.
momentum and to assess the reliability of the averaged c.m.
momentum approximation, we have systematically studied
the density dependence of the energy of symmetric nuclear
matter and of the symmetry energy in the vicinity of the sat-
uration density py, within relativistic Brueckner-Hartree-Fock
theory using the Bonn potentials with and without averaged
c.m. momentum approximation.

Our results clarified that for some of the properties, such
as po, E/A, Ky, Egm, and L, the approximation of an
averaged c.m. momentum is quantitatively reliable, but for
the remaining higher order parameters, such as Qq, My,
Kym, Kasy, Kcoul, and K there are considerable discrepancies
between the exact treatment of the angle integrations and the
angle-averaged approximation.

Furthermore, the results of our relativistic calculations
were compared with those of nonrelativistic BHF theory. It
turns out that the saturation density pg, the binding energy
per particle E /A, and the incompressibility K, derived from
RBHEF theory agree better with the empirical values than those
from nonrelativistic BHF theory.

We have also studied the correlation between L and Egyp
and L and Kyp,. Itis found that the results of RBHF, BHF, and
variational calculations (APR) are in excellent agreement with
the tight correlations already obtained by other calculations
using nonrelativistic and relativistic density functionals. This
agreement suggests that these correlations are not only due to
the mean field nature of these approaches but also exist in the
microscopic methods. We have confirmed for the microscopic
methods that there is an anticorrelation between the symmetry

FIG. 5. Angle-averaged Pauli operator Qfl‘;’ of a proton and neutron with two different Fermi momenta. Left panel (a): (k. — k5)/2 >
P > 0. Right panel (b): (K} +k7)/2 > P > (k' — k%)/2. Green vector lines represent the c.m. momentum P and relative momentum k. The

maximum range of |k| for different parts are denoted by dashed lines, where I' = \/ (k';2 + k?z)/ 2 — P2. For reference, the Fermi spheres of

protons and neutrons are also given with two different Fermi momenta k., k%
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term K, and the incompressibility K, a trend pointed out by
Sagawa et al. [54]. In addition, we note that the microscopic
predictions for Q¢ from RBHF theory are large and positive,
in contrast to nonrelativistic BHF theory, where one finds
negative values. Our results indicate that generally the higher
order Q contribution to K, cannot be neglected, and that the
value of the higher order corrections Q¢ play an important
role for the evaluation of Kcgy.
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(@) (K% —kP)/2 > P > 0:

07
av _ SN iy
sz(k, P) = %( P
L
(b) (k% + kfé)/z = P> (k} — kﬁ)/zz
07
k2_1—~2
av _ ) 2Pk
sz(k’ p)= 1 (K2+P2—k1?
5( 2Pk
L,
(c) P > (ki —i—kfé)/Z:
0% (k, P) = 0. (A4)

TIT2

APPENDIX B: EXACT ANGULAR INTEGRATIONS
FOR THE c.m. MOMENTUM IN EQ. (29)

We discuss here details of the angular integration for the
evaluation of the potential energy in Eq. (29). As mentioned in
Egs. (31) and (32), we need to distinguish k% < 3k7 and k. >
3k} There exists a critical condition of k. = 3k, shown in
Fig. 6. Now we make use of two Fermi spheres in momentum
space displaced by ¢ relative to the origin and k! = |q]|.
Here one finds the origin of coordinates (i.e., the midpoint
between the two center points of the two Fermi spheres) on
the boundary of the red circle, and the two Fermi spheres are
perfectly tangent at the same time. According to Eq. (29) only

occupied states, i.e., only momenta with |k,,| = |P + ¢q| <
k% and |k,| = |P — q| < k. in the red region, contribute to

the integration [ d2p = [ sin6 df d¢. Therefore the angular
integrations can be calculated as

2 9() 90
/de =/ d¢>/ sinf df = —271/ dcos6. (Bl)
0 0 0

+1), kp—P<k<k}j+P,

+1),

APPENDIX A: ANGLE-AVERAGED PAULI OPERATOR

The definition of the angle-averaged Pauli operator is

Qrr,(k, P)dQ2
oY (k, P)= fﬁT (A1)
where 2 is the angle between k and P. In the following we
concentrate on the case 7| # 1p. The case 7| = 1, is simpler
and can be derived in an analogous way. As usual we assume
Ky > kfp. As shown in Fig. 5, we make use of two different
Fermi spheres in momentum space representing protons and
neutrons. They are displaced by £ P relative to the origin.
Taking the direction of the c.m. momentum P along the
horizontal axis, then the solid angle d€2 is linked with the
vector k. Because of the Pauli exclusion principle the vectors
P + k and P — k should be outside of the two solid black
spheres. This leads to several different angular interval regions
with different colors. We have to distinguish three cases,
depending on the values of k, P, kﬁ, and k..

k <k — P,
(A2)
kp+ P < k.

k<T,
I <k<ki+P,

ki + P <k <ki+P,
ki + P <k.

(A3)

(

Using the cosine law

k}1;2 . q2 _p?
2q P

the final result of this special case is obtained as

kp2_ 2_ p2
/dszpzzn(w% for 0 < P < 2k%.

cosfy = — , (B2)

(B3)

For the cases k7. < |q| and k7. > |q|, even though they are
more complex, a similar analysis can be done. As we can see,
considering the case of k. = 3k, one only needs to compare
the values of k% and |q|. However, when extending to the case
of k. < 3k% and k} > 3k, we should compare the values
between |g| and k7., (K% — k&)/2, (k' + k7.)/2, as shown in
the following formulas (B5)—-(B10).

Here we first give an example shown in Fig. 7 for the
case of k. < 3kb, k7 > |q| > (K} — kF)/2. We make use of
two different Fermi spheres in momentum space to represent
protons and neutrons, displaced by +¢ relative to the origin.
Taking the direction of the relative momentum ¢ along the
horizontal axis, the solid angle d2p is linked with the vector
P. Considering the integration of the ground state energy in
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FIG. 6. The c.m. momentum angular integrations in the case of
k. = 3k%, k5 = |q|. Only the red region contributes to the integral.

Eq. (29), the vectors P + ¢ = k,,, and P — q = k,, should be
inside the two solid black Fermi spheres with the radii k.
and k7. This is possible in three different angular intervals
with different colors (orange, blue, and red). The maximum
range of | P| for the three different parts is represented as k}, —

12
g, kKt —gq, and T =[(k}> + K%y — g2 / , respectively.

FIG. 7. Different regions contributing to the c.m. momentum an-
gular integrations in the case of K+ < 3k%, kb > |q| > (K% — k5)/2.
Only the overlap (orange, blue, and red) contributes to the integral.
The orange, blue, and red regions denote three angular intervals of
integration, which separate the whole space into four parts as given
in Eq. (B4). Green vector lines represent the c.m. momentum P and
relative momentum ¢. The maximum range of | P| for three different
parts are denoted by dashed lines. For reference, the Fermi spheres
of protons and neutrons are also given with two different Fermi

momentum k7., k7.

Finally we have

47, 0< Pékl’;—q,

2 ki{Z*l]z*PZ P _ <k —
[ N R

27 (“5), ki —q<P<T,

0, <P

(B4)

In a more general case we have the following possibilities.

1. k% > 3kD
@0 < g <k

4, 0< P<kp—gq,
dQ = 2
/ P e (1 SR K — g < P <KD+ 4.

2gP
(B5)
(b) kb < g < (Kh — kb)/2:
kl?2 2 PZ
/dQP=2N(1+—F 1 )
2g P
qg—ki <P <q+kb. (B6)
(©). (kp —kp)/2 < q < (K +k})/2
2
/dszp e+ ), gk <P <K g
2n(r2q_PP2), kg —q < P <T.
(B7)

2. k< 3kh
(@) 0 < g < (K —k7)/2:

0< P<kp—gq,

4,
dQp = P2__2_p2
/ r {2n(1+’%), k?—q<P§k£+q.

(B8)
(b) (K —kp)/2 < q < kp:
o 0< P <kp—gq,
P2__ 2 p2
/dQP = 127(1+5555), ki —q < P <k —q.
27 (), kf —q <P <T.
(B9)
(©) k< g < (K +kp)/2:
P2__ 2 p2
/dszpz (14 %557), g—k <P <kp—gq,
2_p2
n(rqpp)’ k. —g<P<T
(B10)
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APPENDIX C: AVERAGED CENTER-OF-MASS MOMENTUM

The definition of the average c.m. momentum is given in Ref. [48]:

e _ D A J AP (g — L1k — Kal)

= Cl)
av o kP (
Jo! d3ki fOFd3k28( - %|k1 —kal)
To simplify the final expressions, we introduce in the integral the following notations:
x=ki4+q, y=kbh—q, s=ki—q, t=kii+gq. (C2)
The final expressions are as follows.
1. K% > 3k
2
$(kE)" + 4%, 0< g <k,
§quertSJrs)ct4fssx+Zs(‘f51(’ P n p
pﬁ = §5qs3+2yz3+2sxzz—2s3x3+s4—32t4’ kp <q < (kF - kF)/z’ (C3)
8 5 5 1 31206 6 5 5
840" +°)+ 35 (ty+55)° +3 (58 +30) = (1y°+x5%) no__ P n P
) (O tsx P )20y s (ki — ki) /2 < a < (Ki +kp) /2,
0, (k}—i—kf;)/2<q.
2. kL < 3k%
2
s(kp)"+ %, 0<q < (K —kp)/2,
P2, = $q( 0 ) 5 (y+sx )P +3 (O +y0)—(1y° +x5”) (C4)

0,

3q(s3+y3)+ 1 (ty+sx)2+(s*+yH) 2@ty +xs3) (

G- kE)/2 < g < (K +KE) /2
¥ +k§)/2 <q.
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