
Deep Learning for Tabular Data: An
Exploratory Study

by

Jan André Marais

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Commerce (Mathematical Statistics)
in the Faculty of Economic and Management Sciences at

Stellenbosch University

Supervisor: Dr. S. Bierman

April 2019

The financial assistance of the National Research Foundation (NRF) towards this research is hereby
acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not
necessarily to be attributed to the NRF.

Declaration

By submitting this thesis electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the sole author
thereof (save to the extent explicitly otherwise stated), that reproduction and
publication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date: April 2019

Copyright © 2019 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Deep Learning for Tabular Data: An Exploratory Study
J. A. Marais

Thesis: MCom (Mathematical Statistics)
April 2019

From about 2006, deep learning has proven to be very successul in ap-
plication areas such as computer vision, natural language processing, speech
and audio recognition, machine translation, bioinformatics, and social network
filtering. These successes were undoubtedly facilitated by many advances in
neural network architectures. In contrast, deep learning has not yet been found
to excel in the context of tabular datasets.

Many key machine learning tasks make use of tabular data, where currently
the best machine learning models for tabular data use classification or regression
trees as base learners. Therefore, the objective of this study is to identify,
discuss and explore recent developments in deep learning which may be used
to enhance the accuracy of deep neural networks in the tabular data domain.
All major developments in the deep learning field are discussed and critically
considered, with a view to improving deep learning in the context of tabular
data. The challenges of applying deep learning to tabular data are identified,
and on each of these fronts, potential improvements are proposed.

The most promising modern deep learning architectures are further explored
by means of empirical work. We also evaluate the validity of findings reported
in the literature, and comment on the effectiveness of recent proposals. A useful
byproduct of the study is the development of a code base that may be used
to implement the latest deep learning techniques, as well as for comparative
model selection experiments.

ii

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Diepleer Tegnieke vir Gestruktrueerde Data: ’n
Verkennende Studie

(“Deep Learning for Tabular Data: An Exploratory Study”)

J. A. Marais

Tesis: MCom (Wiskundige Statistiek)
April 2019

Vanaf ongeveer 2006 is die sukses van diepleer-tegnieke in toespassings-areas
soos rekenaarvisie, taalprosessering, spraak- en klankherkenning, masjienver-
taling, bio-informatika, en om sosiale netwerk te filtreer, alombekend. Die
sukses van diepleer-metodes is ongetwyfeld aangehelp deur baie ontwikkelings
rondom die argitektuur van neurale netwerke. Nogtans is bevind dat diep
neural netwerke tot dusver nie goed vaar in die konteks van die gebruik van
gewone matriksvorm data nie.

Verskeie belangrike masjienleer take maak gebruik van matriksvorm data,
waar die beste masjienleer modelle in hierdie konteks klassifikasie- of regressie-
bome gebruik as basis. Derhalwe is die doelwit van hierdie studie om onlangse
ontwikkelings in diepleer (wat gebruik kan word om die akkuraatheid van diep
neural netwerke te verbeter in die konteks van matriksvorm-data), te identifi-
seer, te bespreek, en empiries te ondersoek. Alle belangrike ontwikkelings in die
diepleer veld word bespreek, en krities beskou, ten einde diepleer te verbeter
in die konteks van matriksvorm data. Die uitdagings wat die toepassing van
diepleer op matriksvorm data bied, word geidentifiseer, en op elkeen van hierdie
fronte word potensiële verbeterings voorgestel.

Die belowendste moderne diepleer argitekture word deur middel van em-
piriese werk verder verken. Ons evalueer ook die geldigheid van bevindings
wat in die literatuur rapporteer word, en lewer kommentaar op die effektiwiteit

iii

Stellenbosch University https://scholar.sun.ac.za

UITTREKSEL iv

van onlangse voorstelle. ’n Nuttige byproduk van die studie is die ontwikkeling
van ’n kodebasis wat gebruik kan word vir die implementering van die nuutste
diepleer-tegnieke, asook vir vergelykende eksperimente rondom modelseleksie.

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people and
organisations:

• Dr. S. Bierman for her guidance and patience as a supervisor and for
allowing me freedom in the choice of research directions.

• The National Research Foundation (NRF) for financial support. Opinions
expressed and conclusions arrived at, are those of the author and are not
necessarily to be attributed to the NRF.

• The UCI Machine Learning Repository (Dheeru and Karra Taniskidou,
2017) for hosting a platform to share datasets.

• My parents and close family for believing in me and motivating me.

• Most importantly, my partner, for her never-ending support, love and
understanding.

v

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uittreksel iii

Acknowledgements v

Contents vi

List of Figures x

List of Tables xiii

List of Abbreviations and/or Acronyms xiv

Notation xvi

1 Introduction 1
1.1 Deep Learning . 1
1.2 Tabular Data . 3
1.3 Challenges of Deep Learning for Tabular Data 5
1.4 Overview of Statistical Learning Theory 7
1.5 Outline . 13

2 Neural Networks 15
2.1 Introduction . 15
2.2 The Structure of a Neural Network 16

2.2.1 Neurons and Layers . 16
2.2.2 Activation Functions . 19

vi

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vii

2.2.3 Size of the Network . 21
2.3 Training a Neural Network . 23

2.3.1 Weight Initialisation . 23
2.3.2 Optimisation . 24
2.3.3 Optimisation Example 26
2.3.4 Backpropagation . 27

2.4 Basic Regularisation . 30
2.5 Adaptive Learning Rates . 31
2.6 Representation Learning . 32

3 Deep Learning 37
3.1 Introduction . 37
3.2 Autoencoders . 39
3.3 Transfer Learning . 41
3.4 More Regularisation . 43

3.4.1 Dropout . 43
3.4.2 Data Augmentation . 45

3.5 Modern Architectures . 47
3.5.1 Normalisation . 47
3.5.2 Skip Connections . 49
3.5.3 Embeddings . 50
3.5.4 Attention . 52

3.6 Super-Convergence . 54
3.7 Model Interpretation . 58

3.7.1 Neural Network Specific 58
3.7.2 Model Agnostic . 59

4 Deep Learning for Tabular Data 62
4.1 Introduction . 62
4.2 Input Representation . 63

4.2.1 Numerical Features . 64
4.2.2 Categorical Features . 66
4.2.3 Combining Features . 69

4.3 Learning Feature Interactions 70
4.3.1 Attention . 73
4.3.2 Self-Normalising Neural Networks 74

4.4 Sample Efficiency . 75

Stellenbosch University https://scholar.sun.ac.za

CONTENTS viii

4.4.1 Data Augmentation . 75
4.4.2 Unsupervised Pretraining 79
4.4.3 Regularisation . 80

4.5 Interpretation . 81
4.6 Hyperparameter Selection . 85

5 Experiments 88
5.1 Introduction . 88
5.2 The Dataset . 89
5.3 General Methodology . 94

5.3.1 Loss Function and Evaluation Metric 94
5.3.2 Cross-validation . 94
5.3.3 Preprocessing . 96
5.3.4 Hyperparameter Specification 97

5.4 Input Representation . 98
5.4.1 Embedding Size . 98

5.5 Feature Interactions . 99
5.5.1 Attention . 99
5.5.2 SeLU Activations . 100
5.5.3 Skip Connections . 101

5.6 Sample Efficiency . 102
5.6.1 Data Augmentation . 103
5.6.2 Unsupervised Pretraining 104

5.7 Summary . 106

6 Conclusion 107
6.1 Summary . 107
6.2 Limitations . 109
6.3 Future Directions . 111

Appendices 112

A Hyperparameter Search 113
A.1 Width and Depth of Network 113
A.2 Dropout . 113

B Software and Code 115
B.1 Development Environment . 115

Stellenbosch University https://scholar.sun.ac.za

CONTENTS ix

B.2 Code and Reproducibility . 115

Bibliography 116

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 The exponential growth of published papers and Google search
terms containing the term Deep Learning. Sources: Google Trends,
Semantic Scholar . 2

1.2 Linear model on simple binary classification dataset. 12

2.1 Neuron comparison. 17
(a) Biological . 17
(b) Artificial . 17

2.2 A simple neural network accepting p-sized inputs, with one hidden
layer consisting of two neurons. 18

2.3 Activation functions. 20
(a) Function . 20
(b) Local Derivative . 20

2.4 Plots of the gradient descent example. (a) The training data points
in input space. The shades in the background represent the class
division in input space, with the decision boundary determined by
least squares estimation. The dashed lines represent the gradient
descent decision boundaries at different iterations. (b) The loss
function at each iteration. 27

2.5 Simple dataset with two linearly inseparable classes. 34
2.6 Decision boundary of a single-layer neural network. 35
2.7 Decision boundary of a two-layer neural network. 35
2.8 Hidden representation of a two-layer neural network. 36

3.1 A simple single hidden layer autoencoder with four-dimensional
inputs and with two neurons in the hidden layer. 40

3.2 Visualising the first layer convolutional filters leared by a neural
network in a large image dataset. 43

x

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xi

3.3 The effect that dropout has on connections between neurons. 46
3.4 An example of data augmentation for images. 47
3.5 Diagram conceptualising a skip connection. 50
3.6 Learned word embeddings in a two-dimensional space. 51
3.7 Attention applied to image captioning. 52
3.8 Attention applied to machine translation. 53
3.9 The learning rate schedule of the 1cycle policy. 56
3.10 An example output of a learning rate range test. 56
3.11 Reduced training iterations and improved performance facilitated

by the super-convergence principle. 57

4.1 The effect of normalisation on continuous variables. 65
(a) Original . 65
(b) Gaussian Norm . 65
(c) Power Norm . 65

4.2 PCA of the ‘Education’ entity embedding weight matrix. 69
4.3 Combined representation of continuous and categorical features. . . 70
4.4 Illustration of the data points created by mixup augmentation. . . . 78
4.5 A display of the attention weights for a single observation in the

dataset. 82
4.6 A permutation importance plot of an NN trained on the Adult dataset. 84
4.7 Feature importance values obtained from a boosted model trained

on NN predictions. 84
4.8 Constant learning rate vs the 1cycle schedule. 86
4.9 A learning rate range test with different weight decays. 87
4.10 A full training run with different weight decays. 87

5.1 Kernel density estimation plots for each of the continuous features
in the Adult dataset. 92

5.2 Bar plot for each of the categorical features in the Adult dataset. . 93
5.3 An example of an ROC curve related to one of the best models on

the Adult dataset. 95
5.4 5-Fold Cross-validation dataset split schematic. 96
5.5 Effect of the embedding size if all categorical features are mapped

to the same number of dimensions. 99
5.6 Effect of variable sizes on the performance of the NN model. 99
5.7 Comparing the attention mechanism with a simple MLP. 100

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xii

5.8 The average performance of ReLU and SeLU activation functions for
shallow and deep networks as a function of the number of training
epochs. 101

5.9 The average performance of ReLU and SeLU activation functions
for shallow and deep networks. 101

5.10 Average performance at each epoch for shallow and deep neural
networks, with and without skip connections. 102

5.11 Overall performance of the skip connections used in a shallow and
deep neural network. 102

5.12 Effect of the number of training samples on the performance of
neural networks. 103

5.13 Average performance of models using various mixup and weight
decay parameters. 104

5.14 Performance per epoch for models with different weight decays and
mixup ratios. 104

5.15 The effect of unsupervised pretraining on supervised classification
for tabular data. 105

A.1 Effect of the layer width and network depth on the performance on
the Adult dataset. 114

A.2 The effect of dropout on wide and narrow neural networks. 114

Stellenbosch University https://scholar.sun.ac.za

List of Tables

1.1 Preview of the Adult dataset. 4

4.1 Swap Noise Example. 77

xiii

Stellenbosch University https://scholar.sun.ac.za

List of Abbreviations and/or
Acronyms

ANN Artificial Neural Network

AUC Area Under a Curve

CNN Convolutional Neural Network

CTR Click-through Rate

CV Computer Vision

DNN Deep Neural Network

DL Deep Learning

GAN Generative Adversarial Network

kNN k-Nearest Neighbour

mAP Mean Average Precision

MI Multiple Imputations

ML Machine Learning

MLP Multi-layer Perceptron

NLP Natural Language Processing

NN Neural Network

OLS Ordinary Least Squares

RNN Recurrent Neural Network

xiv

Stellenbosch University https://scholar.sun.ac.za

LIST OF ABBREVIATIONS AND/OR ACRONYMS xv

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SLT Statistical Learning Theory

SotA State-of-the-Art

VAE Variational Autoencoder

Stellenbosch University https://scholar.sun.ac.za

Notation

N number of observations in a dataset
p input dimension or the number of features for an observation
K number of labels in a dataset
x p-dimensional input vector (x1, x2, . . . , xp)ᵀ

λ label
L complete set of labels in a dataset L = {λ1, λ2, . . . , λK}

Y labelset associated with x, Y ⊆ L
Ŷ predicted labelset associated with x, Ŷ ⊆ L
y K-dimensional label indicator vector, (y1, y2, . . . , yK)ᵀ, associ-

ated with observation x
(xi, Yi)Ni=1 multi-label dataset with N observations
D dataset
h(·) multi-label classifier h : Rp → 2L, where h(x) returns the set of

labels for x
θ set of parameters for h(·)
θ̂ set of parameters for h(·) that optimise the loss function
L(·, ·) loss function between predicted and true labels
f(·) label prediction module, f : Rp → RK

t(·) thresholding function, t : RK → {0, 1}K

N (x) points in the input space neighbourhood of x

xvi

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Deep Learning
This thesis is concerned with the study of deep learning approaches to solve
machine learning (ML) tasks. More specifically, our interest lies in machine
learning tasks that may be solved using tabular data inputs. The deep learning
field is an extention of the class of machine learning algorithms called Artificial
Neural Networks (NNs). Whereas until relatively recently, the neural network
field was not an over-active research field, rapid development in computing
power and the growing abundance of data lead to advances in neural network
optimisation and architecture. These advances constitutes the deep learning
field as we know it today (Lecun et al., 2015).

Currently, deep learning is receiving a remarkable amount of attention, both
in research and in practice (see Figure 1.1). Much of the deep learning hype
stems from the tremendous value neural networks have shown in application
areas such as computer vision (Hu et al., 2017), audio processing (Battenberg
et al., 2017), and natural language processing (NLP) (Devlin et al., 2018).
In these application areas, deep learning methods have reached a maturity
level sufficient to be able to run these systems in a production or commercial
environment. Examples of the application of deep learning in commercial
applications include voice assistants like Amazon Alexa (Sarikaya, 2017), face
recognition with Apple iPhones 1, and language translation with Google (Wu
et al., 2016).

1https://www.apple.com/business/site/docs/FaceID_Security_Guide.pdf
2https://trends.google.com/trends/
3https://www.semanticscholar.org/

1

Stellenbosch University https://scholar.sun.ac.za

https://www.apple.com/business/site/docs/FaceID_Security_Guide.pdf
https://trends.google.com/trends/
https://www.semanticscholar.org/

CHAPTER 1. INTRODUCTION 2

2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

Nu
m

be
r o

f h
its

 (n
or

m
al

ise
d)

Deep Learning Trends
Semantic Scholar
Google Trends

Figure 1.1: The exponential growth of published papers and Google search
terms containing the term Deep Learning. Sources: Google Trends2, Semantic
Scholar3

One of the most attractive attributes of deep learning is its ability to model
almost any input-output relationship. This has lead to the use of deep learning
in a very wide array of applications.
For example, deep learning has been used to generate art (Gatys et al., 2015)
and music (Mogren, 2016), to control various modules in autonomous cars
(Fridman et al., 2017), to play video games (Mnih et al., 2013), to recommend
movies (Covington et al., 2016), to improve the quality of images (Shi et al.,
2016), and to beat the world’s best Go player (Silver et al., 2017).

A common characteristic of all of the above deep learning applications
is that the data used to construct them contain the same type of values or
measurements. That is, in computer vision the data represent pixel values,
whereas in NLP and in audio processing the data represent words and sound
waves. This is not a criterion for deep learning algorithms to be successful, but
may be viewed as a driver for their success in these application domains. It is
simpler to model data consisting of the same type of measurements, since each
input feature may be treated the same. Furthermore in the above deep learning
applications, it is found that in each of these domains, universal patterns exist.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

This allows for knowledge to be transferred between tasks belonging to the
same domain. The knowledge to be transferred is both the knowledge aquired
by humans, and the knowledge acquired by a deep learning model. For example,
in computer vision, advances in classifying pictures of pets will most likely also
facilitate improved identification of tumors in X-rays. That is, patterns learned
by a deep learning model when attempting one task, may also be useful in a
different, but related task. This phenomenon constitutes a second reason for
the successful application of deep learning methods, and is studied in the field
of transfer learning.

A data domain in which deep learning have not yet been very successful, is
that of tabular data. A tabular dataset can be represented by a two-dimensional
table, where each of the rows of the table corresponds to one observation and
where each column denotes an individual meaningful feature. We further
explain the use of tabular data in Section 1.2 below.

Some research have recently been done on the use of deep learning models for
tabular data. See for example Shavitt and Segal (2018) and Song et al. (2018).
However, state-of-the-Art (SotA) results are reported only rarely (de Brébisson
et al., 2015), and in the Kaggle competition found at the following website4).
Therefore it can be said that the area is nowhere near as mature or receiving as
much attention as is the case with deep learning for computer vision or for NLP.
In a comprehensive study in the paper by Fernández-Delgado et al. (2014), it was
found that ML tasks that make use of tabular data are typically more effectively
solved using tree-based methods. This is also evident when one considers the
winning solutions of relevant Kaggle competitions5. A possible explanation for
the superior performance of tree-based metods, is the heterogeneity of tabular
data (Shavitt and Segal, 2018), which forms part of the discussion in the next
section.

1.2 Tabular Data
In this section we make use of the so-called Adult6 dataset in order to discuss
the use of tabular data. The reader may refer to Table 1.1 for an excerpt of
this dataset. Note that the data were collected during an American census

4https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629
5https://www.kaggle.com
6http://archive.ics.uci.edu/ml/datasets/Adult

Stellenbosch University https://scholar.sun.ac.za

https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629
https://www.kaggle.com
http://archive.ics.uci.edu/ml/datasets/Adult

CHAPTER 1. INTRODUCTION 4

where the aim was to predict whether or not an indivdual earns more than
$50,000 a year.

age occupation education race sex >=50k
1 49 Assoc-acdm White Female 1
2 44 Exec-managerial Masters White Male 1
3 38 HS-grad Black Female 0
4 38 Prof-specialty Prof-school Asian-Pac-Islander Male 1
5 42 Other-service 7th-8th Black Female 0
6 20 Handlers-cleaners HS-grad White Male 0

Table 1.1: Preview of the Adult dataset.

Table 1.1 represents a typical tabular dataset, where the columns contain
measurements on different features. Therefore different columns may contain
different data types: some columns may consist of continuous measurements,
whereas other columns may contain discrete or categorical measurements.
Furthermore, in tabular data, the rows and columns occur in no particular
order. This of course stands in contrast to image or text data.

Many important ML applications make use of tabular data. Some of these
applications are listed below:

• Various tasks that make use of Electronic Health Records. These include
the prediction of in-hospital mortality rates, and of prolonged length of
stay (Rajkomar et al., 2018);

• Recommender systems for items like videos (Covington et al., 2016) or
property listings (Haldar et al., 2018);

• Click-through rate (CTR) prediction in web applications, i.e. predicting
which item a user will click on next (Song et al., 2018);

• Predicting which clients are at risk of defaulting on their accounts7;
• Predicting store sales (Guo and Berkhahn, 2016); and
• Drug discovery (Klambauer et al., 2017).

Tabular datasets take on various shapes and sizes: the number of rows
may range from hundreds to millions, and the number of columns also has no
limits. Other complicating characteristics of tabular datasets include: - That
it is not unusual for tabular datasets to be noisy; - That a proportion of the

7https://www.kaggle.com/c/loan-default-prediction

Stellenbosch University https://scholar.sun.ac.za

https://www.kaggle.com/c/loan-default-prediction

CHAPTER 1. INTRODUCTION 5

observations may have missing features and/or incorrect values; and - That
continuous measurements may be based upon vastly different scales, some even
containing outliers, whereas categorical features may have high cardinality
which in turn leads to sparse data.

During the construction of models for tabular datasets, the most important
step in terms seeking improvements in model performance, is pre-processing
and manipulation of the input features (Rajkomar et al., 2018). This includes
data merging, customising, filtering and cleaning. In a process called feature
engineering, one strives to create new features from the original features based
on some domain knowledge. The idea is that such engineered features enables a
model to learn interactions between features, thereby facilitating more accurate
prediction. Feature engineering is an extremely laborious process with no clear
recipe to follow and therefore typically cannot succesfully be implemented
without some domain expertise.

Ensemble methods based upon trees are currently viewed as the most
effective machine learning models for tabular datasets. As mentioned above, a
possible reason for this may be their robustness to different feature scales and
data types, linked with their ability to effectively model interactions among
features with different data types.

Indeed, in the context of tabular data, classical neural network approaches
are no match for tree ensembles. Although the deep learning field has advanced
and matured a lot in recent years, it is not yet clear how to leverage these
modern techniques to effectively build and train deep neural networks (DNNs)
on tabular datasets. In this thesis we explore ways of doing so. By reviewing
the most recent literature on the topic, and through empirical work, we aim to
summarise best practices when using deep learning for tabular data.

1.3 Challenges of Deep Learning for Tabular
Data

Some of the challenges of deep learning for tabular data have been alluded
to in earlier sections of this chapter. These will form the framework for our
literature review later on. Therefore, some of the important questions to ask
when applying deep learning for tabular data (which relates to these challenges),
are summarised below.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

• How should input features be represented numerically? We have
mentioned that tabular data consist of mixed feature data types, i.e. a
combination of categorical and continuous features. The question here
relates to how these heterogeneous features should be processed and
presented to the model during training.

• How can we exploit feature interactions? Once we have found the
optimal feature representation for all feature data types, we will need a
way to effectively learn the interactions among them, and also a way to
learn how they relate to the target. This is a crucial step towards the
effective application of deep learning models to tabular data.

• How can we be more sample efficient? Tabular datasets are typically
smaller than datasets used in computer vision and in NLP. Moreover,
no general large dataset with universal properties exists to be used by a
model to learn from (as is the case in for example in transfer learning for
image classification). Thus, a key challenge is to facilitate learning from
less data.

• How do we interpret model decisions? The use of deep learning is
often restricted by its perceived lack of interpretability. Therefore we
need ways of explaining the model output in order for it to be useful in a
wider array of applications.

Clearly there are several considerations when it comes to using deep learning
for tabular data. The main objective of this thesis is to find the best ways of
answering the above questions. Towards this objective, the study should lead
to a thorough understanding of the status quo of the field, and of the necessary
factors in order to ensure deep learning to be as effective in other data domains
as it currently is in fields such as computer vision and NLP.

The study is divided in two parts. We start by first providing an overview
of the relevant literature. Subsequently, we make use of experimental work in
order to compare various deep learning algorithms (and possible improvements)
on relevant datasets. Here an important aim will be to ensure our experiments
to be rigorous. The importance of rigorous research has relatively recently
again been emphasised during an NIPS talk8, during which researchers in
the deep learning field have been criticised for the growing gap between the
understanding of its techniques, and practical successes. Currently much

8Talk given at NIPS2017 - https://www.youtube.com/watch?v=Qi1Yry33TQE

Stellenbosch University https://scholar.sun.ac.za

https://www.youtube.com/watch?v=Qi1Yry33TQE

CHAPTER 1. INTRODUCTION 7

more emphasis is placed on the latter. The speakers urged the deep learning
community to be more rigorous in their experiments where, for them, the
most important part of rigor is better empiricism, not more mathematical
theories. Better empiricism in classification may include, for example, practices
such as using cross-validation to estimate the generalisation ability of a model,
and reporting standard errors. Empirical studies should involve more than
simply attempting to beat the benchmark. For example, where possible, they
should also involve simple experiments that facilitate understanding why some
algorithms are successful, while others are not.

In addition, we want the empirical work in this study to be as reproducible
as possible. This aspect is often overlooked. However, it is a crucial aspect,
ensuring transparent and accountable reporting of results. Reproducibility add
to the value of research, since without it, researchers are not able to build on
each other’s work. Hence all code, data and necessary documentation in order
to reproduce the experiments done in this study are available 9.

Having stated the objectives of this study, we now turn to a discussion of
the fundamental concepts of Statistical Learning Theory. This is followed by a
more detailed overview of the thesis.

1.4 Overview of Statistical Learning Theory
Machine- or statistical learning algorithms (here used interchangeably) are used
to perform certain tasks that are too difficult to solve with fixed rule-based
programs. Hence, statistical learning algorithms are able to use data in order
to learn how to perform difficult tasks. For an algorithm to learn from data
means that it can improve its ability to perform an assigned task with respect
to some performance measure, by processing data. In this section we discuss
some of the important types of tasks, data and performance measures in the
statistical learning field.

A learning task describes the way in which an algorithm should process an
observation. An observation is a collection of features that have been measured,
corresponding to some object or event that we want the system to process,
for example an image. We will represent an observation by a vector x ∈ Rp,
where each element xj of the vector is an observed value of the j-th feature,

9Shared publicly at https://github.com/jandremarais/tabularLearner

Stellenbosch University https://scholar.sun.ac.za

https://github.com/jandremarais/tabularLearner

CHAPTER 1. INTRODUCTION 8

j = 1, . . . , p. For example, the features of an image are usually the color
intensity values of the pixels in the image.

Many kinds of tasks can be solved using statistical learning. One of the
most common learning tasks is that of classification, where it is expected of an
algorithm to determine which of K categories an input belongs to. In order
to complete the classification task, the learning algorithm is usually asked to
produce a function f : Rp → {1, . . . , K}. When y = f(x), the model assigns
an input described by the vector x to a category identified by the numeric code
y, called the output or response. In other variants of the classification task, f
may output a probability distribution over the possible classes.

Regression is another main learning task and requires the algorithm to
predict a continuous value given some input. This task requires a function
f : Rp → R, where the only difference between regression and classification is
the format of the output.

Learning algorithms learns such tasks by observing a relevant set of data
points. A dataset containing N observations of p features is commonly denoted
by a data matrix X : N × p, where each row represents a different observation
and where each column corresponds to a different feature of the observations,
i.e.

X =

x11 x12 . . . x1p

x21 x22 . . . x2p
...

xN1 xN2 . . . xNp

 .

Often the dataset includes annotations for each observation in the form of a
label (i.e. in classification) or in the form of a target value (i.e. in regression).
These N annotations are represented by the vector y, where the element yi
is associated with the i-th row of X. Therefore the response vector may be
denoted by

y =

y1

y2
...
yN

 .

Note that in the case of multiple labels or targets, a matrix representation
Y : N ×K is required.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 9

Statistical learning algorithms can be divided into two main categories,
viz. supervised and unsupervised algorithms. This categorisation is determined
by the presence (or absence) of annotations in the dataset to be analysed.
Unsupervised learning algorithms learn from data consisting only of features,
X, and are used to find useful properties and structure in the dataset (see
Hastie et al., 2009, Ch. 14). On the other hand, supervised learning algorithms
learn from datasets which consist of both features and annotations, (X, Y), with
the aim to model the relationship between them. Therefore, both classification
and regression are considered to be supervised learning tasks.

In order to evaluate the ability of a learning algorithm to perform its
assigned task, we have to construct a quantitative performance measure. For
example, in a classification task we are usually interested in the accuracy of the
algorithm, i.e. the percentage of times that the algorithm assigns the correct
classification. We are mostly interested in how well the learning algorithm
performs on data that it has not seen before, since this demonstrates how well it
will perform in real-world situations. Thus, we typically evaluate the algorithm
on a test set of data points. This dataset is independent of the training set of
data points that was used during the learning process.

For a more concrete example of supervised learning, and keeping in mind
that the linear model is one of the main building blocks of neural networks,
consider the learning task underlying linear regression. The objective here is
to construct a system which takes a vector x ∈ Rp as input and which predicts
the value of a scalar y ∈ R as response. In the case of linear regression, we
assume the output to be a linear function of the input. Let ŷ be the predicted
response. We define the output to be

ŷ = ŵᵀx,

where ŵ = [w0, w1, . . . , wp] denotes a vector of parameters and where x =
[1, x1, x2, . . . , xp]. Note that an intercept is included in the model (also known
as a bias in machine learning). The parameters are values that control the
behaviour of the system. We can think of them as a set of weights that
determine how each feature affects the prediction. Hence the learning task can
be defined as predicting y from x through ŷ = ŵᵀx.

We of course need to define a performance measure to evaluate the linear
predictions. For a set of observations, an evaluation metric tells us how
(dis)similar the predicted output is to the actual response values. A very

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 10

common measure of performance in regression is the mean squared error (MSE),
given by

MSE = 1
N

N∑
i=1

(yi − ŷi)2.

The process of learning from data (or fitting a model to a dataset) can
be reduced to the following optimisation problem: find the set of weights, ŵ,
which produces a ŷ that minimises the MSE. Of course this problem has a
closed form solution and can quite trivially be found by means of ordinary least
squares (OLS) (see Hastie et al., 2009, p. 12). However, we have mentioned
that we are more interested in the algorithm’s performance evaluated on a test
set. Unfortunately the least squares solution does not guarantee the solution
to be optimal in terms of the MSE on a test set, rendering statistical learning
to be much more than a pure optimisation problem.

The ability of a model to perform well on previously unobserved inputs is
referred to as its generalisation ability. To be able to fit a model that generalises
well to new unseen data cases is the key challenge of statistical learning. One
way of improving the generalisation ability of a linear regression model is to
modify the optimisation criterion J , to include a weight decay (or regularisation)
term. That is, we want to minimise

J(w) = MSEtrain + λwᵀw,

where J(w) now expresses preference for smaller weights. The parameter λ is
non-negative and needs to be specified ahead of time. It controls the strength
of the preference by determining how much influence the penalty term, wᵀw,
has on the optimisation criterion. If λ = 0, no preference is imposed, and
the solution is equivalent to the OLS solution. Larger values of λ force the
weights to decrease, and thus referred to as a so-called shrinkage method ((cf.
for example Hastie et al., 2009, pp. 61-79) and (Goodfellow et al., 2016).

We may further generalise linear regression to the classification scenario.
First, it is important to note the different types of classification schemes.
Consider G, the discrete set of values which may be assumed by G, where G
is used to denote a categorical output variable (instead of Y). Let |G| = K

denote the number of discrete categories in the set G. The simplest form of
classification is known as binary classification and refers to scenarios where
the input is associated with only one of two possible classes, i.e. K = 2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 11

When K > 2, the task is known as multiclass classification. In contrast, in
multi-label classification an input may be associated with multiple classes (out
of K available classes), where the number of classes that each observation
belongs to, is unknown. In the remainder of this section, we introduce the two
single label classification setups, viz. binary and multiclass classification.

In multiclass classification, given the input values X, we would like to
accurately predict the output, G, where our prediction is denoted by Ĝ. One
approach would be to represent G by an indicator vector YG : K × 1, with
all elements zero except in the G-th position, where it is assigned a 1. That
is, Yk = 1 for k = G and Yk = 0 for k 6= G, k = 1, 2, ..., K. We may
then treat each of the elements in YG as quantitative outputs, and predict
values for them, denoted by Ŷ = [Ŷ1, . . . , ŶK]. The class with the highest
predicted value will then be the final categorical prediction of the classifer, i.e.
Ĝ = arg maxk∈{1,...,K} Ŷk.

Within the above framework we therefore seek a function of the inputs
which is able to produce accurate predictions of the class scores, i.e.

Ŷk = f̂k(X),

for k = 1, . . . , K. Here f̂k is an estimate of the true function, fk, which is
meant to capture the relationship between the inputs and output of class
k. As with the linear regression case described above, we may use a linear
model f̂k(X) = ŵᵀ

kX to approximate the true function. The linear model for
classification partitions the input space into a collection of regions labelled
according to the predicted classification, where regions are created by linear
decision boundaries (see Figure 1.2 for an illustration). The decision boundary
between classes k and l is the set of points for which f̂k(x) = f̂l(x). These set
of points form an affine set or hyperplane in the input space.

After the weights are estimated from the data, an observation represented
by x (including the unit element) may be classified as follows:

• Compute f̂k(x) = ŵᵀ
kx for k = 1, . . . , K.

• Identify the largest component and classify to the corresponding class,
i.e. Ĝ = arg maxk∈{1,...,K} f̂k(x).

One may view the predicted class scores as estimates of the conditional
class probabilities (or posterior probabilities), i.e. P (G = k|X = x) ≈ f̂k(x).
However, these values are not the best estimates of posterior probabilities.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 12

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Feature 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Fe
at

ur
e

2
Class 1
Class 2
Decision Boundary

Figure 1.2: Linear model on simple binary classification dataset.

Although the values sum to 1, they do not lie in the interval [0,1]. A way
to overcome this problem is to estimate posterior probabilities using the logit
transform of f̂k(x). That is,

P (G = k|X = x) ≈ ef̂k(x)∑K
l=1 e

f̂l(x)
.

Through this transformation, the estimates of the posterior probabilities sum
to 1 and are contained in [0,1]. The above model is the well-known logistic
regression model (Hastie et al., 2009, p. 119). With this formulation there is
no closed form solution for the weights. Instead, the weight estimates may be
searched for by maximising the log-likelihood function. One way of doing this
is by minimising the negative log-likelihood using gradient descent, which will
be discussed in the next chapter.

Finally in this section, note that any supervised learning problem can also be
viewed as a function approximation problem. Suppose we are trying to predict
a variable Y given an input vector X, where we assume the true relationship
between them to be given by

Y = f(X) + ε,

where ε represents the part of Y that is not predictable from X, because of, for
example, incomplete features or noise present in the labels. Then in function

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 13

approximation we are estimating f by f̂ . In parametric function approximation,
for example in linear regression, estimation of f(X, θ) is equivalent to estimating
the optimal set of weights, θ̂. In the remainder of the thesis, we refer to f̂ as
the model, classifier or learner.

1.5 Outline
This chapter provided the context and some theoretical background for this
study. An outline of the remainder of the thesis follows below:

In Chapter 2, the theory underlying neural networks is described. The
building blocks of neural networks are discussed, thereby introducing neurons,
basic layers and the way in which neural networks are trained. The important
concept of regularisation is also discussed. Using the perspective of represent-
ation learning, we then attempt to gain insight into what happens inside a
neural network.

Chapter 3 continues the discussion by focusing on the key advances in
neural networks in recent times. The idea is that all concepts introduced in this
chapter should potentially be able to facilitate the construction of improved
deep neural networks on tabular data. Improved ways of preventing overfitting,
such as data augmentation, the use of dropout and transfer learning, as well as
the SotA training policy called 1cycle are analysed here. New developments in
architectural design are also highlighted. The chapter concludes with approaches
towards interpreting neural networks and their predictions.

Chapter 4 may be viewed as a core chapter of the thesis. It mainly serves as
a literature review of all research with regard to deep learning for tabular data.
The chapter is organised according to the modelling challenges faced when
using deep learning for tabular data, investigating and comparing what other
researchers have done in order to overcome these challenges. It will be seen that
the key concept involves finding the right representation for tabular data. This
may be done through embeddings, and by means of designing architectures
that can efficiently learn feature interactions. This is for example done with
attention models, possibly with the help of unsupervised pretraining.

In Chapter 5 we empirically investigate several claims made in the literature.
The aim of the chapter is to evaluate and compare different approaches towards
tackling the various challenges. Hence the main experiments involve evaluating
neural networks at various samples sizes, evaluating potential gains from

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 14

doing unsupervised pretraining and using data augmentation, and comparing
attention modules with classic fully-connected layers. We also make use of
permutation importance and knowledge distillation in order to illustrate a way
in which neural networks may be interpreted.

The thesis concludes in Chapter 6, where we summarise our work, some
highlights and the main take-home points. The limitations of this study are
discussed, and promising future research directions identified.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Neural Networks

2.1 Introduction
Not unlike most supervised machine learning models, an artificial neural network
is a function which maps inputs to outputs, i.e. f : x→ y. The structure of f
is often loosely compared to the structure of the human brain. Oversimplified,
the brain consists of a collection of interconnected neurons. Each neuron can
generate and receive signals. A received signal may be described as an input
to a neuron, whereas a sent signal may be described as an output from that
neuron. If two neurons are connected, it means that the output from the one
neuron serves as input to the other. In a very simple model of the brain, one
may argue that a neuron receives several signals, which it weighs and combines,
and if the combined value of the inputs is higher than a certain threshold, the
neuron sends an output signal to the next neuron. Figure 2.1 (a) provides a
schematic of a biological neuron1.

An artifical neural network tries to mimic this model of the human brain:
it is set up to consist of several layers of connected units (or neurons). With
exception of units in the first and final layers, each unit outputs a weighted
combination of its inputs, combined with a simple non-linear transformation.
In each layer of the neural network, the input is passed through each of the
neurons. In turn, their output is passed to the next layer.

The transformation at each neuron is controlled by a set of parameters, also
known as weights. Training a neural network involves tuning these weights
in order to obtain some desired output. During training, the neural network

1Image credit: https://www.jeremyjordan.me/intro-to-neural-networks/

15

Stellenbosch University https://scholar.sun.ac.za

https://www.jeremyjordan.me/intro-to-neural-networks/

CHAPTER 2. NEURAL NETWORKS 16

receives as input a set of training data. The neural network weights are then
learned in such a way that, when given a new set of inputs, the output predicted
by the neural network matches the corresponding response of interest as closely
as possible. The process of using the training data to tweak the weights is
done by means of an optimisation algorithm called Stochastic Gradient Descent
(SGD).

Although recently there has been plenty of excitement around advances
in neural networks, it is well known that they were invented many years ago.
The development of neural networks dates back at least as far as the invention
of perceptrons in Rosenblatt (1962). It is also interesting to compare modern
neural networks with the Projection Pursuit Regression algorithm in statistics
(Friedman and Stuetzle, 1981). Only recently a series of breakthroughs caused
neural networks to become more effective, leading to the renewed interest in
the field.

The aim of this chapter is to provide an overview of neural networks,
emphasising their basic structure §2.2 and the way in which they are trained
§2.3. This is done with a view to discuss modern neural network structures and
training policies in Chapter 3, which in turn will help us shed light on Deep
Learning for tabular data. In §2.4 and §2.5, regularisation for neural networks
and the use of adaptive learning rates are discussed. These are necessary
components for regulating the generalisation performance of NNs, as well as
for keeping the required training time at bay. The chapter concludes with a
section on representation learning §2.6, which is an important topic toward
understanding the inner workings of neural networks.

2.2 The Structure of a Neural Network

2.2.1 Neurons and Layers

In basic terms, a neural network processes an input x by sending it through a
series of layers. The neurons in each layer apply some transformation to their
inputs, resulting in a set of outputs which are again passed on to the next layer
of neurons. Eventually, the final layer produces the neural network output. In
this section we provide more detail regarding the neural network structure. We
start with a description of the operations inside each neuron, followed by a
discussion of the way in which the neurons may be connected in layers in order

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 17

to form a complete neural network structure. Our discussion is based upon a
simple regression example.

Suppose we are in pursuit of a function which is able to estimate some
continuous target, y, given a p-dimensional input x, e.g. estimating the taxi fare
from features such as distance travelled, time elapsed and number of passengers.
A single neuron may act as such a function. It models y by computing a weighted
average of the input features. This operation is illustrated in Figure 2.1 (b).

(a) Biological (b) Artificial

Figure 2.1: Neuron comparison.

In equation form, this function may be written as

w1 · x1 + w2 · x2 + · · ·+ wp · xp + b = y,

where {wk}pk=1, are the weights applied to each of the inputs {xk}pk=1 and where
b denotes the constant bias term. Clearly, this equation is simply the very
common linear model and thus also can be written as

wᵀx+ b = y,

where x = [x1 x2 . . . xp]ᵀ represents the input, and where resepctively
w = [w1 w2 . . . wp]ᵀ and y denote the weights and output. We may
of course compress the above equation to wᵀx = y, where w is amended
to include the bias term, and where x is amended to include a 1, i.e. x =
[1 x1 . . . xp]ᵀ is the input, and w = [b w1 . . . wp]ᵀ is the weight
vector.

The weights convey the importance of each input feature in predicting the
target. Larger values of |wk| indicate greater contributions of xk toward the
output. If wk = 0, xk has no influence on the target. However the weights are
unknown and need to be estimated.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 18

As discussed in Chapter 1, in linear regression this is done by means of OLS.
However, since a neural network consists of many inter-conncected neurons,
an alternative estimation procedure is required. This is the topic of the next
section.

Often a linear model will be too rigid to model a certain response of interest.
In order to fit a more flexible model, we may add more neurons. Consider the
use of two neurons, z1 and z2, where the second neuron (z2) accepts the same
input as the first neuron (z1), but uses a different set of weights. Thus, we
have two different outputs produced by the two neurons, i.e. z1 = wᵀ

1x and
z2 = wᵀ

2x. In order to produce a final estimate from the initial two estimates,
viz. z1 and z2, they are passed to a third neuron. That is, y = wᵀ

3z, where
z = [z1 z2]ᵀ. Figure 2.2 illustrates this pipepline in network form.

Figure 2.2: A simple neural network accepting p-sized inputs, with one hidden
layer consisting of two neurons.

The first two neurons each received all p inputs and each produced a single
output. These two outputs were received by the third neuron, and combined
in order to produce the final output, viz. y. The operations performed by z1
and z2 may be expressed as z = Wxᵀ, where

W =
wᵀ

1

wᵀ
2

 =
w10 w11 w12 . . . w1p

w20 w21 w22 . . . w2p

 and z = [z1 z2]ᵀ.

The collection of z1 and z2 is called a layer. Since our third neuron (which
is also a layer but with a single neuron) receives the output of this layer as
input, it is possible to express the complete input-output relationship in one
equation, i.e.

y = wᵀ
3z = wᵀ

3Wx.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 19

Note here that the weights from the first layer, viz. W , and the weights
from the third neuron, viz. w3, may be collapsed into a single vector w,
effectively reducing all of the neuron operations to a single neuron representation.
Therefore the fitted model is still linear. In order to fit a non-linear model,
a non-linear transformation function has to be applied to the output of each
layer. This function is called an activation function.

Incorporating an activation function, the neural network equation may be
written as

y = a2 (wᵀ
3a1(Wx)) ,

where a1 denotes the activation function applied after the first (linear) layer,
and where a2 denotes the activation function applied after the final layer.

The introduction of non-linear activation functions serves to enlarge the
class of functions that can be approximated by the network. That is, activiation
functions enable the network to learn complex non-linear relationships between
inputs and outputs. Next, we briefly discuss various activation functions.

2.2.2 Activation Functions

Since any simple non-linear and differentiable function can be used as activation
function, there are plenty of activation functions to choose from. Originally,
the sigmoid activation function, viz. sigmoid(x) = 1

1+e−x , was a common choice
(Rumelhart et al., 1988). The S-shape of the sigmoid activation function, and
its range between 0 an 1 is illustrated in Figure 2.3 (a). Note that the reason
why the sigmoid function fell out of favour in terms of its use as activation
function in neural networks is because of issues related to the gradient based
optimisation procedure of NNs. For example, gradient weight updates that veer
to far in different directions are caused by the values of sigmoid activations that
are not centered around zero. Some other issues with the sigmoid activiation
function are discussed in more detail in Section 2.3.

The hyperbolic tangent or tanh activation function, on the other hand,
does return outputs centered around zero. It takes the form tanh(x) = ex−e−x

ex+e−x

and its shape is illustrated in Figure 2.3 (a). However, the problem with both
the sigmoid and tanh activation functions is that they may lead to saturated
gradients during training. To see this, consider the tails of the sigmoid and tanh
functions, which indicate that the gradients of both these functions tend to
zero as |x| → ∞. During training, this may cause weight updates to be nearly

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 20

3 2 1 0 1 2 3
x

1

0

1

2

3
a(

x)
Activation Function

tanh
sigmoid
ReLU

(a) Function

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

a'
(x

)

Activation Function
tanh
sigmoid
ReLU

(b) Local Derivative

Figure 2.3: Activation functions.

zero, resulting in the network getting stuck at a certain point in the parameter
space. Furthermore, the maximum gradient of the sigmoid activation function
turns out to be only 0.25 (at x = 0.5). The nature of the chain rule therefore
causes lower layers in the network to train much slower than higher layers.
The tanh activation function typically have larger derivatives than the sigmoid
function. Thus, it is not as susceptible to this vanishing gradient problem.
However, it is still not immune to it. The local derivatives of the activation
functions discussed in this section are illustrated in Figure 2.3 (b). The form
of these functions will become more apparent in Section 2.3.

To date, the most popular choice in activation function is the Rectified
Linear Units (ReLU) non-linearity. It is defined as:

relu(x) =

x if x > 0

0 otherwise
.

The shape of the ReLU activiation and of its derivative are illustrated in
Figure 2.3 (a) and (b), respectively. Use of the ReLU alleviates the gradient
vanishing problem as the derivative of this function is always 1 (for positive x
values). This results in significantly shorter steps to convergence, as found by
the authors in (Krizhevsky et al., 2012). However, ReLUs may suffer from the
“dead ReLU” problem, which is, if a ReLU neuron is assigned a zero weight,
its weights receive zero gradients. In this way, neurons may be “clamped to
zero” and may remain permanently “dead” during training. This sparsity of
the activations is what some believe is the reason for the effectiveness of ReLUs
(Sun et al., 2014). If dead activations needs to be avoided, alternative activation
functions to apply include PReLUs (He et al., 2015a) and Leaky ReLUs (Maas

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 21

et al., 2013).
Selecting an appropriate activation function for a specific task typically

involves a trial-and-error process. For general tasks, the use of ReLUs after each
linear layer may suffice and has to some extent become standard practice. In
the context of classification, for each class, it is often useful to produce outputs
between 0 and 1 as estimates of conditional class probabilities. Therefore
one often uses a sigmoid activation function on the output layer for a binary
classification task. In the context of (single label) multiclass classifcation, it is
also desirable for these ouputs to sum to 1, therefore in this case, an activation
function called softmax is typically used. Note that the softmax activation, viz.
softmax(x)k = exk∑K

l=1 xl

is simply the logit transformation introduced in §1.4. In
a regression context, we mostly omit the use of an activation function on the
output layer.

In our empirical work, we will experiment with the use of the different
activation functions discussed in this section, and compare their performance
to that of Scaled Exponential Linear Units (SELUs) (Klambauer et al., 2017),
where the latter is supposed to facilitate more effective training of deeper neural
networks. Note that the depth of a neural network refers to its number of
hidden layers, whereas the width of a layer refers to the number of neurons it
consists of. Selecting network depth and layer width is the topic of the next
section.

2.2.3 Size of the Network

The network depth and the width of its hidden layers (i.e. the size of the
network) are hyperparameters of the model. They control the ability of a
neural network to model complex functions, which is also often referred to as its
flexibility. In statistical learning it is well known that increasing the flexibility
of a model is typically only beneficial up to a certain point, whereafter a further
increase in flexibility will be detrimental to its prediction performance on new
unseen data cases. Suboptimal test performance due to a too flexible model is
known as overfitting. Appropriate selection of the flexibility of the model is also
important in the case of neural networks. The challenge is to find a network
size which is large enough to capture all the complexities in the data, but small
enough to avoid overfitting. In addition, whereas more layers facilitate a more
flexible fit, larger networks require more time and more hardware capacity in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 22

order to train them.
Currently the best way of finding the optimal size of a network for a given

problem is by means of experimentation. Note therefore that for many of the
components of neural networks in deep learning, hyperparameter values are
selected through a process of trial-and-error. Whereas appropriate specification
of the size of a neural network is certainly important, in §2.4, we will see
why tuning the size of a network is not necessarily the best way to control
overfitting.

Theoretically, according to the universal approximation theorem (Cybenko,
1989), a neural network with a single hidden layer and with a finite number of
neurons can approximate any continuous function. This begs the question: why
are additional hidden layers required? As stated in Ba and Caurana (2013),
although a neural network can represent any function, it does not mean that
the available learning algorithm is able to find these optimal weights. Moreover,
it may be the case that the number of neurons needed in order for a single
hidden layer network to represent a specific function of interest, is infeasibly
large. By choosing deeper networks we are assuming that the function we are
trying to learn is composed of several simpler functions. Incorporating this
prior belief has empirically been shown to be useful (Goodfellow et al., 2016,
pp.197-198). This is especially true in the case of tasks that may be partitioned
into smaller subtasks, for example in computer vision.

In our empirical work we investigate the effect of network depth and layer
width on the generalisation performance of neural networks. We also analyse
why networks used in the case of tabular data are typically much shallower than
in the case of computer vision or NLP applications. For some additional insight
in the matter, later on in this chapter we view the problem of the specification
of the network size from a representation learning perspective.

Note, that there also exists other classes of neural networks besides the
basic feed-forward network focussed on thus far. The convolutional neural
network (CNN) is a very common choice in computer vision (Krizhevsky et al.,
2012) and only recently in NLP applications (Devlin et al., 2018). Its main
difference to standard NNs is the use of a convolutional layer that performs
a cross-correlation operation on its inputs with a set of learnable filters. The
recurrent neural network (RNN) (Mikolov et al., 2010) is a class of neural
networks that are helpful for modelling variable length inputs or outputs, for
example in machine translation or video classification. A RNN has loops in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 23

them, allowing information to persist. It can also be thought of as multiple
copies of the same network, each passing a message to its successor, if one
were to “unfold” the loops. These classes of neural networks are not within the
scope of this work since they have no clear benefit for using with tabular data.

2.3 Training a Neural Network
Briefly, basic training of a neural network entails the following four steps:

1. Initialisation: random numbers are assigned to the network parameters.
2. Forward propagation: the input is passed through the network layers in

order to produce an output.
3. Error calculation: the predicted output is compared to the true output,

and the difference measured by means of an appropriate objective function.
4. Backward propagation: the gradients of the objective function with

respect to the weights are obtained, and the network weights are updated
accordingly.

The above steps are typically repeated until the loss function is found to
converge. Note however that convergence may require many training epochs.
The following four subsections are each devoted to a discussion of one of the
aforementioned steps.

2.3.1 Weight Initialisation

Taining a neural network starts with a weight initialisation step. A poorly
initialised network hampers the training procedure: it increases the number
of iterations needed, reduces the quality of the local optima found and makes
convergence more difficult. In order to think about sensible initialisation, first
note that we expect the number of positive and negative weights of a well
trained neural network to be equal. If we initialise all weights to be zero, each
neuron will compute the same output. Consequently, each neuron will produce
the same gradient and undergo the same weight update. Hence we want to
initialise the weights as small as possible, but each weight should be unique.
Sampling the initial weights from the standard normal distribution seems to be
a natural choice. However it turns out that the variance of the outputs from
randomly initialised neurons grows as the number of inputs increase. Therefore

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 24

an option is to scale the weight vector generated from the standard normal
distribution by the square root of its number of inputs. Such a scaling step will
normalise the variance of the output, ensuring that all neurons in the network
initially have approximately the same output distribution. In addition, it serves
to improve the rate of convergence when training the network.

Very deep neural networks have difficulties to converge when using the above
mentioned initialisation (Simonyan and Zisserman, 2014). He et al. (2015b)
propose an alternative initialisation, which was made specifically in the context
of using ReLU activation functions and making it easier to train deep neural
networks.

2.3.2 Optimisation

We have briefly seen in Chapter 1 that there is a connection between statistical
learning and optimisation. Optimisation refers to the task of altering x in order
to either minimise or maximise some objective function J(x). When we are
minimising the objective function, the latter is often also referred to as the loss
function, or the cost. In the remainder of the thesis, note that these different
terms for the loss function will be used interchangeably.

As mentioned in Chapter 1, parameter estimation (or optimisation) of a
linear (or logistic regression) model is usually done using OLS or maximum
likelihood estimation (MLE). In this section, however, we discuss an alternative
parameter estimation method which is also relevant in the optimisation of
neural networks.

Therefore consider the MSE loss function:

L =
N∑
i=1

Li

=
N∑
i=1

K∑
k=1

(yik − fk(xi))2

=
N∑
i=1

K∑
k=1

(yik −wᵀ
kxi)2,

where in this case fk(·) denotes the linear model used to predict the k-th
class posterior probability. Note that although the MSE loss is mostly used in
regression and not really well suited for classification, we make use of it here
for illustration purposes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 25

In order to find the weights w that minimise L, we follow a process of
iterative refinement. That is, starting with a random initialisation of w, one
iteratively updates the values such that L decreases. The updating steps
are repeated until the loss converges. To minimise L with respect to w, we
calculate the gradient of the loss function at the point L(x;w). The gradient
(or slope) of the loss function indicates the direction in which the function has
the steepest rate of increase. Once we have determined this direction, we can
update the weights by a step in the opposite direction - thereby reaching a
smaller value of L.

The gradient of Li is computed by obtaining the partial derivative of Li
with respect to wk, i.e.:

∂Li
∂wk

= −2(yik −wᵀ
kxi)xi.

The above gradient is obtained for the loss at each data point, whereafter
an update of the weight vector at the (r + 1)-th iteration may be obtained as

w
(r+1)
k = w

(r)
k − γ

n∑
i=1

∂Li

∂w
(r)
k

,

where γ determines the size of the step taken towards the optimal direction
and is called the learning rate. Of course γ needs to be specified by the user.
One typically would like to set the learning rate small enough so that one does
not overshoot the minimum, but large enough to limit the number of iterations
before convergence. The learning rate is a crucial parameter when training
neural networks. Its significance is discussed in §2.5.

The procedure of repeatedly evaluating the gradient of the objective function,
followed by a parameter update, forms the basis of the optimisation procedure
for neural networks and is called gradient descent (Cauchy, 1847).

Note that a weight update is made by evaluating the gradient over a subset
of the training observations, viz. {xi, i = 1, . . . , n}. One of the advantages
of gradient descent is that during each iteration, the gradient need not be
computed over the complete training dataset, i.e. n ≤ N . When updates
are iteratively determined using subsets of the training data, the process is
called mini-batch gradient descent. Of course the gradient obtained using
mini-batches is only an approximation of the gradient of the full loss but it
seems to be sufficient in practice (Li et al., 2014). The option of using mini-
batch gradient descent is extremely helpful in large-scale applications, since it

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 26

obviates computation of the loss function over the entire training dataset. This
leads to faster convergence, because of more frequent parameter updates, and
allows processing of data sets that are too large to fit in a computer’s memory.
A choice regarding batch size depends on the computation power available.
Typically a batch consists of 64, 128 or 256 data points, since in practice many
vectorised operation implementations work faster when their inputs are sized
in powers of 2. Note at this point that the collection of iterations needed to
make one sweep through the training dataset is called an epoch.

An extreme case of mini-batch gradient descent is when the batch size is
selected to be 1. This is called Stochastic Gradient Descent (SGD). Recently
SGD has been used much less, since it is more efficient to calculate the gradient
in larger batches of training data cases. However, note that it remains common
to use the term SGD when actually referring to mini-batch gradient descent.
The use of gradient descent in general has often been regarded as slow or
unreliable. SGD will most probably not even find a local minimum of the
objective function, however it typically finds a very low value of the cost
function quickly enough to be useful. Thus, gradient descent has been proven
to be efficient for optimising neural networks.

2.3.3 Optimisation Example

In order to illustrate the SGD algorithm, we consider the linear model in a
binary classification context, i.e. K = 2. Also in our example, suppose the
training data are generated in the way described in (Hastie et al., 2009, pp. 16-
17), where the inputs are two-dimensional, i.e. p = 2. Suppose we want to fit a
linear regression model to the training data and classify an observation to the
class with the highest predicted score. Of course in the binary classification
case it is only necessary to model one class probability: an observation is then
assigned to the corresponding class if the score exceeds some threshold (usually
0.5). Therefore the decision boundary is given by {x : xᵀŵ = 0.5}.

Optimisation of the regression weights by means of gradient descent is
illustrated in Figure 2.4. The colour-shaded regions represent the regions of the
input space classified to the respective classes, as determined by the decision
boundary based upon the OLS parameter estimates. Since the number of
training observations are small, it was not necessary to make use of mini-batch
gradient descent. Note that the learning rate was set equal to 0.001. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 27

decision boundaries defined by the gradient descent parameter estimates at
different iterations are represented by the dashed lines in Figure 2.4. Initially
the estimated decision boundary lies far from the OLS solution. However, after
convergence (29 iterations later), the gradient descent line matches the OLS
line.

i=0

i=4 i=9 i=29

X1

X
2

(a)

0 4 9 29

iteration

lo
ss

(b)

Figure 2.4: Plots of the gradient descent example. (a) The training data points
in input space. The shades in the background represent the class division in
input space, with the decision boundary determined by least squares estimation.
The dashed lines represent the gradient descent decision boundaries at different
iterations. (b) The loss function at each iteration.

2.3.4 Backpropagation

Currently, SGD is the most effective way of training deep neural networks.
Recall that in Section 2.3.2 we described how to fit a linear model using the
SGD optimisation procedure. We have seen that SGD optimises the parameters
θ of a network to minimise the loss function. That is,

θ = arg min
θ

1
N

N∑
i=1

l(xi, θ).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 28

Using SGD, training a neural network involves several iterations. During
each iteration we consider a mini-batch consisting of n ≤ N training examples.
The mini-batch is used to approximate the gradient of the loss function with
respect to the parameters via the following derivative:

1
n

∂l(xi, θ)
∂θ

.

Using a mini-batch of training examples instead of one training example
at a time produces a better estimate of the gradient over the full training set,
and is computationally much more efficient.

In this section we discuss the same procedure, but applied to a simple single
hidden layer NN for multiclass classification, which may be decomposed as
follows:

fk(x) = gk(βᵀ
kz), k = 1, . . . , K

zm = σ(αᵀ
mx), m = 1, . . . ,M

where σ(·) is the sigmoid activation and where g(·) is the softmax activation.
Here there are two sets of unknown adjustable weights that defines the input-
output function of the network. They are the parameters of the linear function
of the inputs, viz. αm = (α0m, α1m, . . . , αpm), and also the parameters of the
linear transformation of the derived features, viz. βk = (β0k, β1k, . . . , βmk). If
we denote the complete set of parameters by θ, then recall that the objective
function for regression may be chosen to be the sum of squared errors, i.e. we
have

L(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2 ,

whereas in the context of classification, the loss function may be specified
as the so-called cross-entropy. The latter loss function is defined as follows:

L(θ) = −
N∑
i=1

K∑
k=1

yik log fk(xi),

with the corresponding classifier denoted by G(x) = arg maxk fk(x). Since
a neural network for classification takes the form of a linear logistic regression
model in the hidden units, note that the parameters may be estimated using
maximum likelihood. According to Hastie et al. (2009, p. 395) however, the
global minimiser of L(θ) is most likely an overfit solution. Therefore, we require
regularisation techniques when minimising L(θ). Furthermore, as the size of
the network increases, MLE soon becomes intractable.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 29

Therefore, one rather uses gradient descent and the backpropagation al-
gorithm (Rumelhart et al., 1988) to minimise L(θ). This is possible because of
the modular nature of a neural network, allowing the gradients to be derived
through iteration of the chain rule for differentiation. In broad terms, the
iterative calculation of derivatives occur during a forward and backward sweep
over the network, keeping track only of quantities local to each unit.

In more detail, the backpropogation algorithm for the sum-of-squared error
objective function, previously given as

L(θ) =
N∑
i=1

Li

=
N∑
i=1

K∑
k=1

(yik − fk(xi))2,

is as follows. We start by obtaining the derivatives required in order to
implement gradient descent. For this example, following the chain rule, the
relevant derivatives are

∂Li
∂βkm

= −2(yik − fk(xi))g′k(β
ᵀ
kzi)zmi,

∂Li
∂αml

= −
K∑
k=1

2(yik − fk(xi))g′k(β
ᵀ
kzi)βkmσ′(αᵀ

mxi)xil.

Given these derivatives, a gradient descent update at the (r+1)-th iteration
takes the form

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Li

∂β
(r)
km

,

α
(r+1)
ml = α

(r)
ml − γr

N∑
i=1

∂Li

∂α
(r)
ml

.

We may now rewrite the gradients as follows:

∂Li
∂βkm

= δkizmi,

∂Li
∂αml

= smixil.

Note that the quantities δki and smi are errors from the current model at the
output and hidden layer units respectively. From their definitions it can be
seen that

smi = σ′(αᵀ
mxi)

K∑
k=1

βkmδki,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 30

which is known as the so-called backpropagation equations. Using the above
set of equations, weight updates proceed by means of an algortihm consisting
of a forward and a backward pass over the network. In the forward pass, the
current weights are fixed and the predicted values f̂k(xi) are computed. In
the backward pass, the errors δki are computed, and then channelled via the
backpropogation equations in order to specify smi. These values are then used
to update the weights.

We have seen that backpropagation is a simple algorithm. It can easily be
implemented on any size network and differentiable layers. Its local nature
(each hidden unit only passes information to and from its connected units)
allows it to be implented efficiently in parallel. Another advantage is that the
computation of the gradient can be done on a batch of training observations.
This allows the network to be trained on very large datasets.

Having discussed basic NN training, we now turn to a discussion of two
components that are very important in ensuring neural networks to be useful.
Basic ways to regularise a neural network, and the use of adaptive learning
rates are discussed in the following two sections.

2.4 Basic Regularisation
In §2.2.3 the importance of selecting an appropriate size for a neural network was
emphasised. It may seem that smaller networks should generally be preferred
in order to prevent an overfit. However, smaller networks are harder to train
with local methods such as gradient descent because their loss functions have
poor local minima that are easy to converge to. In contrast, local minima of
larger networks are typically smaller (Choromanska et al., 2014).

There are indeed more effective ways of regularising neural networks. We
briefly discuss these methods in the remainder of this section, and in Chapter
3. One of the preferred ways of preventing overfitting in neural networks is by
using L1 or L2 regularisation, i.e. by adding a penalty term to the objective
function, where the penalty term is proportional to the magnitude of the NN
weights. The role of the penalty term is to encourage the weight estimates to be
small. This is of course the same strategy as the one followed when regularising
the least squares linear model by means of Ridge Regression or the Lasso
(Hastie et al., 2009, Ch. 4). The difference between L1 and L2 regularisation
lies in the form of the penalty term, which is λ|w| in L1 regularisation, and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 31

1
2λw

2 in the case of L2 regularisation. Specification of the λ parameter is
important since it determines the severity of the penalty of large NN weight
values. Note that the “1

2” in front of the L2 penalty is added for the sake of
convenience since it renders the derivative of the penalty term equal to λw. The
latter form implies a linear decay of the weights towards zero, i.e. w′ = w−λw,
which is also known as weight decay. In practice, L2 regularisation typically
outperforms L1 regularisation in neural network applications.

An alternative way of preventing a neural network to overfit is so-called early
stopping of the training process. That is, one refrains from training the network
until the training loss converges. Since the training loss after convergence is
not equivalent to the test loss, the loss function on a validation set should be
monitored during training. Early stopping involves terminating the training
process as soon as the validation loss stops decreasing.

As mentioned before, the learning rate also plays a big part in finding the
optimal weights. Next we discuss how we can tune the learning rate to train
faster and to find better local minima. More advanced regularisation techniques
are discussed in Chapter 3.

2.5 Adaptive Learning Rates
Although in the neural network literature it is known that a more optimal
learning rate may reduce the time to train the network and improve its test
performance, optimal specification of this parameter is not such an easy task. A
small learning rate slows down the training time, but is safer against overfitting
and overshooting the optimal solution. With a large learning rate, convergence
may be reached quicker, but the optimal solution may not have been found.
Toward appropriate specification of the learning rate one may consider doing
a line search over a range of possible values. However, in the case of large
networks such an approach is typically too time consuming.

In contrast to a once-off specification of the learning rate, an alternative
approach is to allow the learning rate to be adapted during the training process.
A popular approach is to decrease the learning rate by a fraction after a fixed
number of epochs, or as soon as the validation loss starts to converge (cf. for
example He et al., 2015a). The intuition is that larger steps may be afforded
while the weight estimates are still far away from an optimal position on the
loss surface, while smaller steps need to gradually be taken once closer to the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 32

optimal weight vector value in order to take care not to overshoot it. Note that
an adaptive learning rate requires one to also tune the rate of decrease and
the time steps of each decrease during training. Fortunately it is believed that
neural network learning algorithms are not very sensitive to these choices.

In addition, there are ways of manipulating the learning rates at a local
level, as opposed to the aforementioned global method. SGD maintains a single
learning rate for all weight updates in the network during training (global).
However, one may wish to maintain individual learning rates for different
weights dependending on some behaviour or property exhibited by the weight
during training (local) in order to speed up training and reach better local
optima. Adagrad (Duchi et al., 2011) is an adaptive learning rate method which
magnifies the learning rate at neurons with small gradients and shrinks the
learning rate at neurons with large gradients. Adam (Kingma and Ba, 2014)
is the most commonly used weight update approach and builds on Adagrad
by incorporating momentum (Bengio et al., 2012). It also uses the magnitude
of the gradient to control each weight update, in addition to the previous
iteration’s gradients and it combines them in a smooth fashion. The algorithm
updates exponential moving averages of the gradient, mt, and the squared
gradient, vt, where the exponential decay rates of these moving averages are
controlled by the hyperparameters β1, β2 ∈ [0, 1). Since the moving averages
are initialised as zero, the gradient and the squared gradient moving averages
are biased corrected (m̂t, v̂t). The weight update for Adam is given by the
following equations:

θt ← θt−1 − γ ·
m̂t√
v̂t + ε

where
m̂t = mt

1− βt1
, mt = β1 ·mt−1 + (1− β1) · gt

and
v̂t = vt

1− βt2
, vt = β2 · vt−1 + (1− β2) · g2

t ,

where gt is the vector of partial derivatives of ft w.r.t. θ evaluated at time step
t. Adam was found to empirically outperform all other optimisation procedures
in Ruder (2016).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 33

2.6 Representation Learning
We are now familiar with the mathematical operations of basic layers, how
they are connected and how their weights are tweaked to minimise a loss
function. In this section we discuss why this works and what the neural
network is actually doing to model the data. The central idea is that of a data
representation (Bengio et al., 2013) and that at each layer of the network the
data is transformed into a higher-level abstraction of itself. Understanding and
interpreting neural networks remains a challenge (Frosst and Hinton, 2017),
but the notion of learning an optimal data representation allows us to gain a
deeper intuition of the inner mechanics of neural networks.

Machine learning models are very sensitive to the form and properties of
the input it is presented with. Thus, a large part of constructing machine
learning models is to find the best way of representing the raw data in order
to simplify the extraction of useful information. This feature engineering
process typically is a laborious manual task which entails creating, analyzing,
evaluating and selecting appropriate features2. There is therefore unfortunately
no systematic recipe for feature engineering. Instead, it is a trial-and-error
process which requires practitioner expertise and domain-specific knowledge.
In representation learning, the idea is to find a way of effectively automating
the feature engineering process. That is, the goal is to automatically learn
representations of the data that make it easier to extract useful information for
classifiers or other predictors (Bengio et al., 2013). Such automation seems to
have the potential of saving a lot of time and raising the performance ceiling of
machine learning models.

Importantly, a neural network may be viewed from the perspective of
representation learning. To see this, consider a classification task. Since the
final layer of a neural network is a linear model, in order for the network to
produce accuracte predictions, the previous layers should be able to project the
data into a space where the classes are linearly separable. Thus, the network
needs to learn a representation of the data that is optimal for classification.

Starting with the raw input, each of the simple (but non-linear) modules
of a neural network transforms the data representation at one level into a
representation at a higher, slightly more abstract level. Each transformation
may create and/or emphasise features that are important for discrimination,

2http://blog.kaggle.com/2014/08/01/learning-from-the-best/

Stellenbosch University https://scholar.sun.ac.za

http://blog.kaggle.com/2014/08/01/learning-from-the-best/

CHAPTER 2. NEURAL NETWORKS 34

and drop those which are redundant. When a sufficient number of such
transformations are combined, very complex functions may be learned by a
neural network (Lecun et al., 2015).

In order to illustrate the data representations learned by a neural network,
consider the following simple example. Suppose we have available a dataset
with two classes, viz. the two curves on a plane as displayed in Figure 2.5.
In their original form, clearly the observations from the two classes are not
linearly separable. If we fit a single layer neural network to these data (i.e. a
network with only an output layer), the resulting decision boundary can only
be linear (as shown in Figure 2.6) and will thus be unsatisfactory. However, if
we fit a two-layer neural network to the same dataset (where the hidden layer
has two neurons and a sigmoid activation), the resulting decision boundary
perfectly separates the two classes (as shown in Figure 2.7).

X1

X2

class 1
class 2

Figure 2.5: Simple dataset with two linearly inseparable classes.

Since the hidden layer consists of only two neurons, we are able to plot
the output from the hidden layer after the raw data has passed through it.
This is depicted in Figure 2.8. From Figure 2.8 it can be seen how the hidden
layer projects the input data into a space where the observations from the two
classes are linearly separable, which then leaves it to the final layer to find the
best hyperplane between the two classes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 35

X1

X2

class 1
class 2

Figure 2.6: Decision boundary of a single-layer neural network.

X1

X2

class 1
class 2

Figure 2.7: Decision boundary of a two-layer neural network.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. NEURAL NETWORKS 36

Hidden Dimension 1

Hi
dd

en
 D

im
en

sio
n

2
class 1
class 2

Figure 2.8: Hidden representation of a two-layer neural network.

Although the above example represents a very simple data setup and neural
network architechture, the same concepts apply to more complicated datasets
and models. It should however be noted that although it is technically possible
to separate any arrangement of points with a sufficiently large network3, in
reality it can become quite challenging to find such representations. This is
where the need for more data, regularisation, smarter optimisation procedures
and architecture design arises. Without the aforementioned, it is likely that
the network will get stuck in a sub-optimal local minimum, unable to find
the optimal representation of the data. In the chapters to follow we explore
the approaches available to find optimal representations for tabular data in
regression and classification contexts.

3http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Stellenbosch University https://scholar.sun.ac.za

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Chapter 3

Deep Learning

3.1 Introduction
Deep learning is a broadly used term. To many, the difference between a
classical neural network and a deep neural network lies merely in the number
of network layers. Even a network with two hidden layers is sometimes referred
to as ‘deep’. From this perspective, deep (multilayer) neural networks were
already proposed by Alexei Ivakhnenko and colleagues more than half a century
ago (Ivakhnenko and Lapa, 1966). In the paper by Vincent et al. (2008) it is
stated that “the belief that additional levels of functional decomposition will
yield increased representational and modeling power is not new”. The authors
then cite Rumelhart and McClelland (1986), Hinton (1990), and Utgoff and
Stracuzzi (2002).

Still the boom in deep learning research may be said to have started only a
bit more than a decade ago, since effective training of a multi-layer network was
only made possible after a breakthrough presented in the papers by Hinton et al.
(2006), Hinton and Salakhutdinov (2006), Ranzato et al. (2006), Bengio et al.
(2007), and Lee et al. (2008). From around 2006 onwards, tons of contributions
have been made to the neural network field. New types of layers, more effective
training strategies, and novel approaches to guard against overfitting have
since been proposed. A more general definition of deep learning therefore
encompasses all modern developments in the neural network space. Because of
the large number of deep learning contributions during the past decade, note
that in this chapter we restrict attention to developments that form a basis
for improving deep learning in the context of tabular data. The developments

37

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 38

chosen to be focussed on are a result of our own extensive research and practical
experience in the field deep learning.

Conceptual categorisation of modern contributions to the deep learning
field is a difficult task. Perhaps one way to order some of the more important
developments, is to use the aim or effect of their implementation as criterion.
Since representation learning is such an important characteristic of NNs, many
deep learning developments focus on this aspect. As mentioned before, neural
networks are able to approximate any function. However, learning algorithms
are not necessarily able to find these solutions, therefore we need more efficient
ways to learn from the available data. An example is the class of neural
networks called autoencoders §3.2. These neural networks are mostly used as
unsupervised learning methods with the aim of aiding us to learn more robust
data representations, which may subsequently be transferred to supervised
learning algorithms. We have mentioned in Chapter 1 that the process of
transferring knowledge from one network to another is called transfer learning.
More detail regarding transfer learning is provided in §3.3.

A large number of deep learning developments are explicitly geared toward
regularisation in order to prevent overfitting. We discuss two important modern
proposals that fall in this category, viz. the use of the so-called dropout method
in §3.4.1 and the use of data augmentation in §3.4.2.

A group of modern deep learning architectural proposals that succeed
in hitting several targets, are discussed in §3.5.1, §3.5.2, §3.5.3 and §3.5.4.
Amongst others, the successes of this group of developments include better
regularisation, decreased training time, reduced sensitivity to starting weights,
improved accuracy, representing and visualising categorical variables, more
robust representation learning and more useful interpretability of NNs. The
use of these modern architectures are present in almost all of the SotA deep
learning models in the computer vision and NLP domains.

With regard to optimisation of neural networks, a method has been proposed
which provides a way of almost automatically finding a good learning rate. This
leads to a drastic reduction in the number of training iterations needed. The
aforementioned training method (referred to as the 1cycle policy) is discussed
in §3.6.

We conclude the chapter with a discussion on the interpretability of neural
networks in §4.5.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 39

3.2 Autoencoders
Autoencoders play a pertinent role in deep learning. According to Goodfellow
et al. (2014), the idea of autoencoders have been around since the late 1980’s -
see for example Lecun (1987), Bourlard and Kamp (1988) and Hinton and Zemel
(1994). In those years, autoencoders were used for dimensionality reduction and
for learning important features in a more general domain than neural networks.
From 2006 onwards, their application in neural networks facilitated efficient
training of deep neural nets, which in turn caused an upsurge in deep learning
research (Hinton et al., 2006; Bengio et al., 2007). Autoencoders are also used
to facilitate transfer learning, which we will see is an important way of ensuring
efficient training in deep neural networks.

Some of the most popular types of autoencoders are so-called denoising
autoencoders (Vincent et al., 2008), sparse autoencoders (Makhzani and Frey,
2013), contractive autoencoders (Rifai et al., 2011), semi-supervised recursive
autoencoders (Socher et al., 2011), and variational autoencoders (Kingma and
Welling, 2013). In this section, we start with an explanation of a plain vanilla
autoencoder. This is followed with a brief description of denoising, sparse,
variational and contractive autoencoders for reference.

A basic autoencoder is a neural network which is trained to attempt to
reconstruct its inputs. The simplest form of an autoencoder is a neural network
with one hidden layer and with an output layer having the same size as the
input layer. This architecture is illustrated in Figure 3.1. The linear layer
transforming the input to the hidden layer is referred to as the encoder, viz.
z = f(x), and the layer producing the output from the hidden layer is called
the decoder, viz. x′ = g(z). The autoencoder can be trained in the same way
as any other neural network, with a slight change in the type of loss function to
be minimised. The loss function used for a common autoencoder is called the
reconstruction loss. The reconstruction loss function measures the difference
between the reconstructed and actual input, hence the MSE loss function
is a common choice in the case of continuous data. Hence technically, note
that autoencoders belong to the self- (or semi-) supervised class of methods,
although many still think of it as unsupervised. It is unsupervised in the sense
that it does not require labelled data, but it is supervised in the sense that it
does predict an ouput.

If the number of neurons in the hidden layer of an autoencoder is greater

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 40

Figure 3.1: A simple single hidden layer autoencoder with four-dimensional
inputs and with two neurons in the hidden layer.

than or equal to the number of input features, it is possible to perfectly
reconstruct x from z, i.e. x′ = x. This is however not a very useful model. A
useful autoencoder is an NN that succeeds in finding latent representations of
the data that are of a smaller dimension than that of the input domain, thereby
learning useful hidden data features. These data features may then be carried
over to neural networks for supervised learning tasks. In this way, autoencoders
are frequently use to initialise the weights of a supervised learning network.
That is, the learned weights of the autoencoder are use to initialise the weights
of the supervised learning network (of the same size) (Larochelle et al., 2009).

Note that in order to encourage representation learning by means of autoen-
coders, they are typically constructed with some type of constraint imposed.
A common option is to restrict the number of neurons in the hidden layer to
be smaller than the number of input features. This forces the autoencoder to
capture only the most useful properties of the data in the hidden representation
and can thus effectively be used as a way of dimensionality reduction (Hinton
and Salakhutdinov, 2006). Indeed, if there are no non-linear activation func-
tions after the linear layers, one can show that this autoencoder is equivalent
to the application of Principal Component Analysis (PCA) to the inputs. Of
course there is no restriction to the number or the size of the layers used in the
encoder and decoder, and if activation functions are used, one can potentially
learn a more powerful non-linear generalisation of PCA. It is difficult to verify
whether or not an autoencoder has learned a useful latent representation of the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 41

data. One way to evaluate the representation is to use the features extracted by
the encoder in a supervised learning task and to then compare its performance
to that of a model using only the raw data as inputs.

An alternative way of imposing constraints in autoencoders, is to add noise
to the inputs before passing it to the encoder. This is the strategy implemented
by denoising autoencoders (DAEs) (Vincent et al., 2008). Thus, in order to
minimise the reconstruction loss, DAEs are required to learn how to reconstruct
the original inputs from a corrupted version of themselves. The choice of the
type of noise added to the inputs depends on the available data types. One
may block out inputs with zeros if zeros have no other meaning in the data, or
one might want to add Gaussian noise to continuous outputs as long as it falls
within the true range of the features. The type and amount of noise to be used
are factors that practitioners typically experiment with. If too much noise is
added in the corruption step, the DAE might not learn anything useful. The
interested reader is referred to the paper by Alain and Bengio (2014), where it
is shown how DAEs are able to learn useful data structures.

Instead of limiting the number of neurons in the hidden layer, one may
instead use a hidden layer with more neurons than the number of inputs.
However, the number of hidden neurons that may be active at the same
time, is restricted. The restriction is enforced by means of the addition of a
regularisation term in the reconstruction loss, or one may manually set all but
k of the weights with largest absolute value equal to zero. In this way we may
fit a so-called sparse autoencoder.

Another type of autoencoder is a variational autoencoder (VAE). In VAEs,
it is assumed that the input is generated by a directed graphical model p(x|z).
The aim is then to learn the posterior distribution p(z|x). In the decoding
step, observations are sampled from the learned distribution before passing it
to the set of fully connected layers.

Finally in this section, in a contractive autoencoder (CAE), one encourages
learning useful features by means of the use of a regularised reconstruction loss
function.

3.3 Transfer Learning
Semi-supervised (or unsupervised) learning exploited for example in autoen-
coders played a key part in the rise of deep learning. This is also stated in the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 42

paper by Vincent et al. (2010): “Training a deep network to directly optimise
only the supervised objective function of interest by gradient descent, starting
from random initialised parameters, does not work very well. What works
much better is to use a local unsupervised criterion to (pre)train each layer in
turn, with the goal of learning to produce a useful higher-level representation
from the lower-level presentation output by the previous layer. From this
starting point on, gradient descent on the supervised objective leads to much
better solutions in terms of generalisation performance.” Indeed, autoencoders
and related methods facilitated successful deep neural networks using transfer
learning or pretraining. For example, it is possible to use a DAE to learn the
latent features from unlabelled data, and then to use these features to initialise
a deep neural net for a related supervised learning task based on the same type
of inputs.

Note that instead of using autoencoders in pretraining, one may also do
supervised pretraining. This is for example done by first training the network
to estimate a certain target variable (say y) of dataset D, and by then using
those weights of the trained network as an initialisation when trying to predict
a different target variable (say y′) of dataset D′. This is most effective when
there is overlap between the structure, semantics and properties of D and D′.

Unsupervised pretraining for supervised learning is very common in NLP
(Devlin et al., 2018, Howard and Ruder (2018)), whereas supervised pretraining
for supervised learning is widely used in computer vision (Yosinski et al., 2015,
He et al. (2015a)). To our knowledge, theoretical proofs towards understanding
why pretraining works, cannot yet be found in the literature. It is postulated
that using the pretrained weights as initialisation to the supervised model
provides a better starting position on the loss surface, thereby inducing regu-
latory effects (Goodfellow et al., 2016, Ch. 14). Pretraining is most effective in
scenarios where a relatively small dataset is available for the supervised task,
but where a lot of data are available for the pretraining task.

We conclude this section with the following illustration of pretraining and
transfer learning, taken from Zeiler and Fergus (2014). By observing the types
of features extracted from a trained image model (Figure 3.2), one gains insight
into why they are also effective in other image analysis tasks. The learned
filters seem to identify generic image features such as edges and color gradients
which should prove useful in most computer vision tasks.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 43

Figure 3.2: Visualising the first layer convolutional filters leared by a neural
network in a large image dataset.

3.4 More Regularisation
In §2.4 we discussed basic regularisation methods for neural networks. There
are however many alternative ways of combatting overfitting. Here we discuss
two regularisation techniques proven to be extremely powerful in almost every
application of deep learning.

3.4.1 Dropout

Regularisation by means of dropout was proposed in a paper by Srivastava
and co-authors (Srivastava et al., 2014). The term refers to the process of
temporarily removing sets of neurons and their connections during NN training.
In Srivastava et al. (2014), the authors explain that the dropout invention
started with the challenge of attempting to optimise neural networks by means of
averaging multiple neural networks. This pursuit was motivated by the following
two notions. First, it may be viewed as a gold standard for ‘regularising’ the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 44

network across all possible parameter values. Here the idea is to train a huge
number of fixed size neural networks, where each network is optimised using a
different parameter value. This is done for all possible settings of the parameter
values. Conceptually, one would then obtain the final NN by averaging the
weights of all these neural networks, where the output corresponding to each
parameter setting should be weighted by its posterior probability given the
training data. Of course obtaining this oracle is impracticable, but in dropout
Srivastava et al. (2014) found a way to approximate it. Second, it is well known
in statistical learning and in machine learning that model averaging typically
leads to an improvement in generalisation performance. Construction of an
ensemble neural network using the classical ensemble framework is however
infeasible. For ensemble models to be successful, predictions resturned by base
learners should be as uncorrelated as possible. In order to obtain uncorrelated
outputs, neural networks should either be trained using different training
datasets, or different architectures. The former idea requires huge amounts
of data during training, which may not be available, whereas the latter idea
implies the daunting task of experimenting with and finding the optimal set of
parameters for a large number of networks. Dropout solves both of the above
problems.

The following explanation of dropout follows the description in Srivastava
et al. (2014). Consider a neural network with r nodes. Note that this network
can be seen to consist of 2r thinned neural networks, where each thinned network
consists of the neurons that survived dropout. Importantly, the weights in
each thinned network are shared by the other thinned networks, therefore the
number of weights remain in the order of r2 at the most. During training, with
each input presented to the network, dropout reoccurs. That is, each neuron is
temporarily omitted from the network with probability p. This implies that
with each input presented, a new thinned network is trained. Fortunately
during testing, only a single neural network needs to be fitted. No nodes are
dropped and the weights of the network are obtained by reducing the weights
from the thinned models by a factor p, thereby obtaining an approximate
estimate of the average weights of the thinned models. The reader may refer to
Figure 3.3 for an illustration of how dropout affects the connections between
neurons.

In Srivastava et al. (2014), note that p = 0.5 is suggested to work well for
hidden nodes, whereas a p value closer to 1 is recommended for visible nodes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 45

In practice the exact optimal value of p depends on the use case and is typically
found via experimentation.

In mathematical notation, note that the dropout model may be described as
follows. Consider a NN with L hidden layers, each indexed with l ∈ {1, . . . , L}.
Let z(l) and z(l+1) denote the vector of inputs and outputs to layer l respectively.
W (l) and b(l) are the weights and biases at layer l. Then the feed-forward
operation for any hidden unit i can be expressed as

z
(l+1)
i = a

(
w

(l+1)
i z(l) + b

(l+1)
i

)
,

where a(·) is any activation function. With dropout, this operation becomes

r
(l)
j ∼ Bernoulli(p)
z̃(l) = r(l) ∗ z(l)

z
(l+1)
i = a

(
w

(l+1)
i z̃(l) + b

(l+1)
i

)
r(l) is a vector of independent Bernoulli random variables each of which has
probability p of being 1. This vector is sampled and multiplied element-wise (∗)
with the outputs of that layer to create the thinned outputs z̃(l). The thinned
outputs are then used as inputs to the next layer. At test time the weights are
scaled as W (l)

test = pW (l).
In summary of this section, dropout removes a neuron from a network

with probability p. The neurons that are omitted do not contribute to the
forward pass and do not participate in backpropogation. Every time an input is
presented, the neural network samples a different set of neurons to be dropped
out. This ensures that a neuron does not rely on the signals of a particular
set of other neurons, and discourages neurons to co-adapt. Thereby the neural
network is forced to learn more robust features that are useful in conjunction
with many different random subsets of the other neurons (Krizhevsky et al.,
2012).

Furthermore, we have seen that there are parallels to be drawn between
dropout and ensembling approaches (Hinton et al., 2012). In each training
iteration a unique set of neurons are active, and a unique network is fitted.
During testing these different models are combined. This is of course the same
paradigm as in ensemble learning.

It has been shown that dropout does tremendously well in guarding against
overfitting. Unfortunately however, it slows down the convergence time of
training.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 46

Figure 3.3: The effect that dropout has on connections between neurons.

3.4.2 Data Augmentation

Recall that our aim with predictive models is to generalise well to an unseen
test set. In an ideal world we would train a model on all possible variations
of the data in order to capture all interactions and relationships. This is of
course not possible in the real world. Such a dataset is not available and would
be infinitely large. Of course if it were available, machine learning would be
unnecessary, since all possible observations would be available and one could
simply use a lookup in order to predict outcomes.

In reality we have a finite subset of the full data distribution to train on.
Any new samples with unique feature combinations will likely improve the
model’s ability to generalise. If the collection of new samples is not available,
we can try to artificially create these through data augmentation. This is a
standard approach followed especially in computer vision applications. For
example, a single image can be rotated, flipped horizontally or vertically, shifted
in any direction, and cropped. Many other transformations are also possible
without destroying the semantic content of the image. By means of such
transformations we are able to artificially increase the size of the training set
in order to avoid overfitting.

Consider for example Figure 3.4, used to illustrate the way in which a
single image of a cat may be converted into eight images through random
transformations of the original image. In all of these images, a cat is still
recognisable. Of course data augmentation cannot be as effective as observing
genuine new data samples. Still it is a very effective and efficient substitute
(Perez and Wang, 2017). In fact, it is well known that data augmentation
consistently leads to improved generalisation.

Data augmentation may be formalised by means of the Vicinal Risk Min-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 47

Figure 3.4: An example of data augmentation for images.

imisation principle (Chapelle et al., 2001). According to this principle, human
knowledge is required to describe a vicinity around each observation in the
training data so that artificial examples can be drawn from the vicinity distri-
bution of the training sample in order to enlarge it. In image classification one
may define the vicinity of an image as, for example, the set of its horizontal
reflections and minor rotations.

With respect to the types of data augmentations that may be applied, one is
typically guided by the dataset and application domain, since all augmentations
should preserve the semantic content or the signal in the original observations.
For example, making too small crops of an image will ignore the context and
may make it impossible to recognise its objects. Moreover, augmentations that
are suitable for image data are not necessarily sensible for text data.

3.5 Modern Architectures
In the following sections we highlight some of the recently developed neural
network layers and modules. Amongst others, these operations were designed
to make training more robust and efficient, to help learn more robust repres-
entations, and to be able to model more useful features.

3.5.1 Normalisation

A factor which complicates the training of neural networks is the fact that
hidden layers have to adapt to the continuously changing distribution of their
inputs. The inputs to each layer are affected by the parameters of all preceding
layers, and a small change in a preceding layer can lead to a much bigger
difference in output as the depth of the network increases. When the input

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 48

distribution to a learning system changes, it is said to experience covariate
shift (Shimodaira, 2000).

The use of ReLUs, careful weight initialisation, and small learning rates
should all help a network to deal with internal covariate shifts. However, a
more effective approach is to ensure that the distribution of inputs remains
more stable while training the network. For this purpose Ioffe and Szegedy
(2015) proposed batch normalisation (BN).

A batch normalisation layer normalises its inputs to a fixed mean and
variance (similar to the way in which the inputs of the network are normalised).
Therefore BN can be applied before any hidden layer in a network in order to
prevent internal covariate shift. The addition of BN layers facilitates the use of
higher learning rates, thereby dramatically accelerating the training process
of deep neural networks. Moreover, implementing batch normalisation assists
with regularisation (Ioffe and Szegedy, 2015), so much so that in some cases its
use obviates the need for dropout.

In more detail, the normalising transform over a batch of univariate inputs,
x1, . . . , xn, where n < N is performed as follows:

1. The mini-batch mean, µ, and variance, σ2 are obtained:

µ = 1
n

n∑
i=1

xi

σ2 = 1
n

n∑
i=1

(xi − µ)2

2. The inputs are normalised, i.e.

x̂i = xi − µ√
σ2 + ε

,

where ε is a constant to ensure numerical stability.

3. The output values are scaled and shifted, i.e.

yi = γx̂i + β,

where γ and β are the only two learnable parameters in a batch normal-
isation layer.

The motivation for Step 3 is to allow the layer to represent the identity
transform in cases where the normalised inputs are not suitable for the following

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 49

layer. That is, the scale-and-shift step will reverse the normalisation step if
γ =
√
σ2 + ε and β = µ. Note that the application of batch normalisation has

become standard practice when training deep convolutional NNs.

3.5.2 Skip Connections

A further modern architecture which speeds up training of deep neural networks
considerably, is the use of so-called skip connections or shortcut connections.
The invention of skip connections is attributed to He et al. (2015b), He et al.
(2016), Huang et al. (2016) and Srivastava et al. (2015). Note that our discussion
is largely based on the exposition given in He et al. (2015b). The inspiration
for skip connections was the occurrence of the degradation problem, whereby
from a certain point, the addition of hidden layers in deep neural networks
leads to a decrease in their training accuracy. Since any deep neural network
can be made shallower by means of setting the transformations in some hidden
layers equal to the identity function, intuitively deeper neural networks should
always be able to achieve higher training accuracy than shallower networks.
Therefore the occurrence of the degradation problem indicates that multiple
non-linear transformations in deep neural networks are unable to learn identity
mappings.

In He et al. (2016), the degradation problem is addressed by rephrasing the
learning objective of a deep neural network. Instead of requiring a group of
layers to learn some undefined non-linear mapping, say H(x), the objective is
to learn a residual function, viz. F (x) = H(x)− x.
In their paper He et al. (2016) postulate that it is more tractable to find F (x)
than H(x). For example, in the problematic scenario where H(x) should be
H(x) = x, it is easier to truncate F (x) to zero than for multiple non-linear
layers to learn the identity mapping. This is indeed supported by the results of
empirical work in their paper. The original sought after function H(x) may
subsequently be found via the mapping H(x) = F (x) + x.

The above framework is referred to as deep residual learning. Residual
Networks (ResNets) became very popular after they were used in the winning
model of one of the ImageNet competitions (He et al., 2015a). It is in these
models that skip connections come into play. Very simply, skip connections
are additional connections between different layers in NNs that bypass one or
more layers of non-linear transformations (Emin and Xaq, 2018). This idea is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 50

illustrated in Figure 3.5.

Figure 3.5: Diagram conceptualising a skip connection.

In feedforward neural networks, if skip connections output identity mappings,
they can efficiently be used to obtain H(x) via F (x) + x: the skip connection
output x is just added to the F (x) output obtained from a set of stacked layers.
Note that although here, the skip connection and stacked layer output are
combined using addition, other ways such as multiplication or concatenation
may also be used.

Multiple benefits to using skip connections have been reported in the
literature. They have been shown to alleviate the vanishing-gradient problem,
strengthen feature propagation, encourage feature reuse, and may also reduce
the number of parameters required (Huang et al., 2016). Furthermore, it is
interesting to note that one can draw a parallel between ResNets and boosting
methods since both are approaches for fitting models to residuals (Huang et al.,
2017).

For a final word on skip connections in this chapter, we refer to the remark
in Emin and Xaq (2018), viz. that a completely satisfactory explanation for
the success of skip connections remains elusive. The authors then proceed

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 51

by proposing a novel explanation for being able to substantially improve the
performance of deep neural networks.

3.5.3 Embeddings

An embedding is a layer which maps a discrete input to a numeric vector
representation. It was first used in NLP in order to represent words as numbers
so that they may be processed by numeric models. For instance the word
‘woman’ may be represented by the vector [1, 3, 5], and the word ‘man’ by
[2, 4, 6]. In finding appropriate embeddings, the objective is to map discrete
inputs to a meaningful vector space wherein items with similar meanings are
found in close proximity to each other. This is in contrast to using a so-called
one-hot encoded representation of words, where all words lie equally far apart.
The reader may refer to Figure 3.6 for an illustration of such a space1.

Figure 3.6: Learned word embeddings in a two-dimensional space.

Initially, mappings were configured independenty of neural networks using
approaches based upon co-occurences (Mikolov et al., 2013). The real break-
through came when mappings were defined as learnable layers in the network
(Howard and Ruder, 2018; Devlin et al., 2018). Thus, embeddings may now be
tuned just like any other parameter in the network. Of course the parameters
of the embedding function (or layer) first need to be (randomly) initialised.

1https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

Stellenbosch University https://scholar.sun.ac.za

https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

CHAPTER 3. DEEP LEARNING 52

Thereafter during training, they are tuned along with the rest of the neural
network weights.

An embedding operation can either be viewed as a table lookup or a matrix
multiplication of the discrete input in a one-hot encoded form, i.e. e = Wx,
where x is a discrete input in one-hot encoded form, and where W : k × p is
the matrix containing the embedding, with p the number of discrete categories
and k the embedding size. An embedding layer may be re-used by all input
features having the same input type, thereby improving efficiency and reducing
the memory footprint of the model.

3.5.4 Attention

The incorporation of attention modules in networks is one of the standout
breakthroughs made in deep learning in recent times. They especially played
an integral part in advances in NLP and other sequence related tasks (Vaswani
et al., 2017; Devlin et al., 2018). Attention was first popularised in the neural
machine translation field (Bahdanau et al., 2014). Currently it is almost used
ubiquitously in NLP applications. Also in computer vision applications, the
use of attention modules have been found extremely useful. Examples include
image captioning (Xu et al., 2015) and audio processing tasks (Duong et al.,
2016).

The main idea of an attention module is to force a layer to only focus on a
certain subset of its inputs at different stages of computation. For example, in
image captioning, one may use a recurrent neural network (RNN) to sequentially
output words describing the image. With the use of an attention module, the
network is at each step restricted to only consider certain parts of an image,
thereby avoiding to have to consider the full image every time. This is illustrated
in Figure 3.7 (Source: Xu et al., 2015). Notice how the network focuses on the
bird part of the image when predicting the word “bird” and “flying”, whereas
it focuses on the water part of the image when predicting the words “body”
and “water”. Similarly, when used in machine translation, we may visualise
attention weights to capture the way in which a network focuses on a different
subset of words when predicting each word in the target language (Figure 3.8).
Source: Bahdanau et al. (2014).

An insightful discussion of attention modules may be found in Xu et al.
(2015). In this section however, a summary of the core of an attention module

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 53

Figure 3.7: Attention applied to image captioning.

Figure 3.8: Attention applied to machine translation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 54

through the following three equations suffices:

z = f(x)
α = softmax(fatt(x))
y = z ⊗α,

where z denotes the ordinary activations produced by a layer f given input x.
The symbol α represent the weights produced by the attention layer, fatt, after
a logit transform to ensure the weights to sum to 1. The output of the attention
module, y, is then obtained through an elementwise multiplication ⊗ of z and
α, although it should be noted that alternative combinatorial operations may
also be used.

Finally in this section, note that we elaborate on the concepts of self-
attention (Cheng et al., 2016b) and multi-head attention (Vaswani et al., 2017)
in Section 4.3.1.

3.6 Super-Convergence
Specifying the hyperparameters to be used in learning algorithms is a difficult
process. It requires expertise, typically involves extensive trial-and-error and
is often described as more of an art form than a science. Moreover, in NNs
there are many hyperparameters that need to be considered: thus far in the
thesis we have encountered learning rate, batch size, momentum and weight
decay. Although there are no easy ways to find them, appropriate parameter
values do have a huge effect on training time and on the performance of neural
networks. A grid search or random search in the parameter space seems not to
be an option because of its computational expense.

In this section we summarise the work on structuring specification of NN
hyperparameters presented in the papers by Smith in 2015 and 2018, and
by Smith and Topin in 2017. Through these approaches, the necessity of
running complete grid or random searches is eliminated, rendering tremendous
improvements in training time and accuracy.

In Smith (2017), the author considers specification of the learning rate
parameter. This is a worthwhile enterprise: in Chapter 2 the importance of the
appropriately specifying the learning rate became evident. To re-emphasise, the
learning rate is viewed as the hyperparameter whose appropriate specification
is most important compared to all other neural network hyperparameter values.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 55

We saw that one may choose to keep its value fixed throughout training, or to
allow it to decrease from a certain point in training onwards. The latter was
the preferred approach until cyclical learning rates (CLR) were proposed in
Smith (2015).

In CLR, as training of a network progresses, the learning rate is varied
cyclically between two boundary values. A cycle consists of two steps, viz. a
stage when the learning rate increases to a pre-specified maximum value, and a
stage where the learning rate decreases to a chosen minimum value. Different
cyclical functions of the learning rate were experimented with. Since they
performed very similarly, the simplest function, viz. the so-called triangular
learning rate policy was adapted. In a triangular function, the learning rate
increases linearly up to the maximum, and then decreases linearly back to
the minimum. Note that during training, many cycles of learning rates are
traversed.

In order to implement cyclical learning rates, one needs to specify the
number of epochs during each stage (also known as the step size), as well as
the minimum and maximum learning rates to be attained. In Smith (2015), a
simple method for finding reasonable learning rate boundaries is provided. In
this learning rate range test, training starts with a small learning rate which
is then slowly increased in a linearly fashion throughout a pre-training run.
Typically with an increase in the learning rate, the training loss decreases until
a point where the network converges. After this point the learning rate becomes
too large, causing the loss to start increasing. Hence this is the largest learning
rate one should consider using during training. In CLR it is suggested that the
lower bound of the learning rate be set to a factor of 3 or 4 times less than
the maximum learning rate. For an update of the CLR proposal, the reader is
referred to Smith and Topin (2017).

Importantly, during application of the learning rate range test towards
fitting ResNets to specific image datasets, Smith and Topin (2017) discovered
that the test loss remains constant up to very large values for the learning rate.
This surprising phenomenon is called super-convergence.

The implication of super-convergence is that in some setups one may simply
use a single learning rate cycle together with unusually large learning rate
values in order to train neural networks an order of magnitude faster than
when using standard training methods. Whether or not super-convergence
may occur in a specific network architecture may be verified using the learning

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 56

rate range test, similar to the way in which the super-convergence discovery
was made. If super-convergence is possible, Smith and Topin (2017) suggest a
slight modification of CLR, viz. to “use a single cycle that is smaller than the
total number of iterations/epochs and to allow the learning rate to decrease
several orders of magnitude less than the initial learning rate for the remaining
iterations”. Note that the initial learning rate is an abnormally large value.
The unusually large learning rate used leads to an additional benefit, viz. the
facilitation of regularisation. The above learning rate methodology is called
1cycle, and its learning rate setting is illustrated in Figure 3.9.

Figure 3.9: The learning rate schedule of the 1cycle policy.

Clearly also in the 1cycle regime, bounds for the learning rate need to be
set. For this purpose the learning rate range test may be used, but with the
lower bound of the learning rate set to a factor of about 10 times less than the
maximum learning rate. Figure 3.10 illustrates an example of output obtained
from the learning rate range test and of how to determine the learning rate
bounds to be used in the 1cycle policy.

Note that one should be careful of specifying a too small step size since
this increases the rate by which the learning rate parameter increases, which in
turn might render the training process unstable.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 57

Figure 3.10: An example output of a learning rate range test.

Next consider Figure 3.11, taken from Smith and Topin (2017). Here the
test loss over each training iteration in the 1cycle methodology is compared to
that of a fixed learning rate policy.

From Figure 3.11 it is clear that using the proposed method, the model
achieves improved accuracy compared to the standard approach. This is done in
an eigth of the number of training iterations required in the original framework.

In his most recent work, Smith (2018) considers a more comprehensive
methodology which recognises the interdependence of specification of the learn-
ing rate, batch size and other regularisation techniques such as weight decay.
An important remark in this paper is that contributions to the amount of
regularisation on a network should be balanced across the various hyperpara-
meter values. For example, since large learning rates also act as a form of
regularisation (Smith, 2015), if one uses a large learning rate in the 1cycle
regime, one would have to reduce some of the other regularisation controls.

In the 2018 paper, specification of batch size and of weight decay is also
considered. It is shown that larger batch sizes allow for training with larger
learning rates, thus convergence can be reached quicker. Therefore, when

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 58

Figure 3.11: Reduced training iterations and improved performance facilitated
by the super-convergence principle.

setting the batch size, the recommendation is to select the largest possible size
that fits into memory.

The weight decay parameter is another important value that needs to be
properly specified during the 1cycle policy. Since it is a regularisation parameter
it should be in balance with the learning rate. The proposed way of setting
the weight decay is by means of a grid search. A few short training runs are
performed at different weight decay values. The validation loss function is
then inspected for any hints with regard to a preferred choice. Alternatively,
various weight decay values may be used during the learning rate range test
and their behaviour compared. The preferred weight decay value is the one
which produces the most stable loss and which allows the use of the largest
learning rate. Note that in our experiments we follow the above suggestions in
order to tune the hyperparameter values specific to each different model.

3.7 Model Interpretation
Although deep learning has become the state-of-the-art approach in many ma-
chine learning tasks, it is still trailing behind other algorithms in terms of model
interpretability. This is however is not an unusual occurrence: in statistical
learning the trade-off between prediction performance and interpretability is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 59

well known. Deep neural networks are occasionally referred to as “black boxes”
since it is very difficult to interpret what is going on inside the stacks of linear
and non-linear layers. This is one of the biggest criticisms against the deep
learning field, and often a stumbling block for deployment in production envir-
onments. For example, in the clinical domain, model transparency is of utmost
importance, given that predictions might be used to affect real-world medical
decision-making and patient treatments (Shickel et al., 2017). Fortunately
some work has been done in order to enable one to gain insight from neural
networks. This topic is briefly discussed in the following two sections.

3.7.1 Neural Network Specific

We have showed in §2.6 that it is possible to inspect activations and weights of
layers at different levels of a neural network. If the network is small, one might
gain insight into what the network has learned, or into why it is making certain
decisions. However, most useful neural networks are at least three layers deep,
rendering its activations and weights more complex to interpret.

When fully convolutional networks are used, there are ways to visualise
which parts of the inputs are important in making certain decisions. These
visualisations are called class activation maps (Zhou et al., 2016; Selvaraju
et al., 2017). They can unfortunately only be used with fully convolutional
networks, and not with fully connected layers.

Another common interpretation tool in order to gain insight into what
specific neurons are looking for, is to rank inputs by the magnitude of their
activations. Then, if it is possible to spot similarities between the highest ranked
inputs, this provides a potential description of patterns triggering neurons. The
above approach is called activation maximisation (Erhan et al., 2009). Since it
relies on human inspection, activation maximisation is typically infeasible in
the face of many neurons to investigate.

An interesting take on model interpretation is described in Frosst and
Hinton (2017) and Che et al. (2016). Their ideas are based on the process of
knowledge distillation (Hinton et al., 2015) and leverages the fact that decision
trees are easier to interpret. Knowledge distillation entails the process of
transferring knowledge from one model (or an ensemble of models) to another
model by means of training the target model to estimate the predictions of the
source model (or ensemble). Frosst and Hinton (2017) and Che et al. (2016)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 60

respectively use a soft-decision tree and boosted trees to learn the mapping
between the inputs and the neural network predictions. Once the tree based
methods have been trained, the usual intepretation tools of tree based models,
like feature importance or evaluating the way in which a sample traverses
the tree, may be used in an attempt to understand the neural network. It is
interesting that in both publications the authors note that tree based models
trained on the neural network predictions achieved improved performances
over the ones trained using the actual targets. This is indicative of the value
knowledge distillation is able to add.

3.7.2 Model Agnostic

Besides interpretation tools specifically designed for neural networks, one may
of course also make use of model agnostic tools, i.e. methods that may be used
in combination with any machine learning model. The so-called permutation
importance algorithm is such a tool, computing feature importance scores
corresponding to each input feature. The importance measure of a feature is
determined by the sensitivity of that feature to random permutations of its
values. The expectation is that when a feature with a strong signal is shuffled
before input to a model, the performance of the model will drop significantly.
On the other hand, if a feature has little effect on the target predictions,
shuffling its values will not exhibit a major effect on its performance.

Permutation importance was first introduced by Breiman (2001) in the
random forest algorithm, but may be generalised to other models. The steps
for calculating feature importances are provided below:

1. Train a neural network on a dataset with p input features.
2. Evaluate the network on a validation set in order to obtain a performance

metric m0.
3. For each of the p input features:

• Create a copy of the validation set and randomly shuffle the feature
in this copy.

• Evaluate the neural network on this version of the validation set,
thereby obtaining mj, j = 1, . . . , p.

4. Rank the features based upon mj −m0 (if a bigger m is preferred).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEEP LEARNING 61

Unfortunately note that permutation importance only produces sensical
results if the assumption of independent features holds. Permuting features
independently creates examples that never occurr in real life and the importance
of features in that invalid space may be misleading. The test however can still
be useful to identify inputs that are not important, i.e. features that are not
used by the model. If randomly permuting a feature does not affect the model
performance at all, it may be a good indication that the model does not depend
on that feature.

A second example of a interpretation tool that is independent of the partic-
ular model fitted, is the use of partial dependence plots. These graphs may be
used to visualise relationships between a target and input features (Friedman,
2001). Once a neural network is trained, we may evaluate the effect of a change
in any input feature on a single prediction by observing the change in the
prediction. Suppose for example we evaluate the way in which a feature X1

influences predictions. By taking a single observation from the data we can
evaluate how the model prediction changes by means of changing the value of
X1 to other possible values of X1. Since this behaviour will most likely vary
for different observations, the above process should be repeated for a subset of
observations from the dataset. The average effect on the predictions at different
values of X1 can subsequently be obtained, along with standard errors of these
effects.

For more model agnostic interpretation tools (for instance the use of so-
called SHAP values), the reader is referred to Lundberg and Lee (2017). Note
also that examples of implementation of these model interpretation techniques
may be found in the next two chapters.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Deep Learning for Tabular Data

4.1 Introduction
In Chapters 2 and 3 we covered the basics of neural networks, as well as the more
recent advances in deep learning. The aim of this chapter is to explore ways
in which the modern deep learning approaches in Chapter 3 may be leveraged
in the application of deep learning for tabular data (DLTD). In Chapter 1
we alluded to the differences of tabular data compared to unstructured data
(such as images, and data used in text and speech applications). The widely
acclaimed successes of deep learning typically occur in areas such as computer
vision, NLP and audio processing. However, in the literature only a handful of
publications report successful implementation of deep learning for tabular data.
In these papers, applications include recommender systems (Haldar et al., 2018);
click-through rate prediction1 (Song et al., 2018); analysis of electronic health
records (Rajkomar et al., 2018); and transport related problems (de Brébisson
et al., 2015). Not much research has been done in the area of deep learning
for tabular data, therefore it is often unclear how to solve certain modelling
challenges. Hence the tabular data domain is still dominated by tree-based
models such as random forests and gradient boosted trees. This begs the
question as to why deep learning is not nearly as effective here as it is in most
other data domains. The aim of this chapter is to help illuminate this issue,

1To predict the probability of a user clicking an an item, which is of critical interest in
online applications.

62

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 63

and to indicate promising directions towards improving current state-of-the-art
performances.

The structure of the chapter is based upon the challenges that occur when
using deep learning for tabular datasets, as identified and described in §1.3. For
each challenge, we reconsider the issue, review the literature to discuss current
methodology, and (where possible) provide suggestions towards improving these
approaches. We start in §4.2 by considering ways to represent input features in
tabular data. §4.3 is devoted to approaches that are used to leverage feature
interactions. A large part of this chapter is devoted to methodology which
facilitates sample efficiency; we discuss in detail in §4.4. This is followed by a
brief discussion of ways to interpret deep neural networks for tabular data in
§4.5. In the final section, the 1cycle policy and hyperparameter selection in
DLTD are discussed, in addition to a selection of miscellaneous topics that do
not fit into the above framework.

4.2 Input Representation
Recall in §1.2 that each row of a tabular dataset represents a single observation
and that each column is a feature describing the observations. The features may
consist of continuous or categorical measurements. In this study, we ignore the
scenarios of repeated measurements but the reader may refer to de Brébisson
et al. (2015) for an example of how such cases can be treated.

One of the key design considerations when constructing a deep neural
network for tabular data is the input representation, i.e. the way in which one
should numerically represent each feature. This choice may heavily influence
the ability of the neural net to extract patterns from the input, as well as
optimisation efficiency during training. This is a more difficult decision in the
case of tabular data, since here features are typically highly heterogeneous
(Shavitt and Segal, 2018). A representation may be optimal for some features,
but not for others, and we want to ensure that no feature dominates the others
during training. Moreover, a tabular dataset typically contains both continuous
and categorical features, where different approaches are needed to process
each. Tabular dataset are often high-dimensional and very sparse. This is
a scenario in which the adverse effects of improper input representations is
magnified, as noted by many (Song et al., 2018; Wang et al., 2017; Qu et al.,
2016; Cheng et al., 2016a; Covington et al., 2016). An example of an extremely

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 64

high-dimensional and sparse tabular dataset is the so-called Criteo dataset2.
Its feature dimension is ~30 million, with a sparsity of ~99%.

4.2.1 Numerical Features

A major advantage of tree-based methods is that the scale and distribution of
features hardly matter. The only requirement is that their relative ordering
should be meaningful. With neural networks we are not that fortunate. Neural
networks are very sensitive to the scale and distribution of its inputs (Ioffe and
Szegedy, 2015). If features are measured on different scales, a single feature
might dominate the weight updates. In this case, if a feature contains a large
value, it may throw off the optimisation procedure, thereby causing gradients
to ‘explode’ or to ‘vanish’ (Clevert et al., 2015). The implication is that proper
standardisation of all continuous features in tabular data is mandatory.

The optimal standardisation in DLTD varies between datasets. Hence the
only way to know for sure which normalisation to apply to numeric features is by
means of experimentation. The typical standardisation approach for numerical
features in deep learning is to do mean centering and variance scaling, i.e.
x̃ = (x − µ)/σ, where µ and σ are the mean and standard deviation of X
respectively (x ∈ X). One would expect this transformation to also be sufficient
for tabular data, but in practice it has often been found otherwise.

In Haldar et al. (2018) the authors propose first inspecting the distribution
of each feature. If a feature seems to follow a normal distribution, standard
normalisation, viz. (x−µ)/σ, may be performed. However, if a feature seems to
approximately follow a power law distribution, it should rather be transformed
via log ((1 + x)/(1 + median)). The above mapping ensures that the bulk of
the values lie within {-1,1}, and that the median feature value is close to
zero. Consider for example the effect of this transformation on two continuous
features (viz. Age and Hours-per-week) in the Adult dataset. This is illustrated
in Figure 4.1. We see in (a) that the features have roughly the same scale,
but their distributions are totally different; and in (b) that after applying
mean centering and unit variance scaling, the values of the Hours-per-week
feature mostly lie in {-1,1}, however many Age values remain outside {-1,1}.
Consequently, we apply the power distribution transformation in Haldar et al.
(2018), and observe that all Age values now lie within {-1,1}. Of course the

2https://www.kaggle.com/c/criteo-display-ad-challenge

Stellenbosch University https://scholar.sun.ac.za

https://www.kaggle.com/c/criteo-display-ad-challenge

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 65

downside of the above approach is that it involves a manual process and very
cumbersome in high-dimensional data setups.

20 30 40 50 60 70 80 90
age

0

20

40

60

80

100

ho
ur

s-
pe

r-w
ee

k

(a) Original

1 0 1 2 3 4
age

3

2

1

0

1

2

3

4

5

ho
ur

s-
pe

r-w
ee

k

(b) Gaussian Norm

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
age

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

ho
ur

s-
pe

r-w
ee

k

(c) Power Norm

Figure 4.1: The effect of normalisation on continuous variables.

With a view to reduce potential high variances exhibited by numeric features,
Song et al. (2018) suggests transforming a numeric feature via log2(x) if x > 2.
This was successful in their use-case, but it is hard to imagine that this solution
will generalise to many other applications. Note that the Song et al. (2018)
transformation causes a discontinuity at x = 2, as well as a possible overlap
between values that were originally less than 2 with those that were greater
than 2. In addition, it does not take care of extreme values on the negative
side. Wang et al. (2017) simply use the standard log transform, i.e. log x, to
normalise continuous features.

Covington et al. (2016) also report appropriate normalisation of numeric
features critical for DLTD to converge. Their approach is to transform numeric
features to be equally distributed in [0,1). This is done using the cumulative
distribution x̃ =

∫ x
∞ df , where f is the distribution of x. The integral is

approximated using linear interpolation on the quantiles of the feature values
computed as a preprocessing step.

An option for numeric feature normalisation which we have not yet en-
countered in the DLTD literature, is to specify the initial layer to numeric
features to be a batch normalisation layer. This will affect the same type of
scaling as in the case of zero mean and unit variance transformation, but the
transformation parameters are learned from each batch. Hereby the need to
preprocess numeric features is removed. The caveat is that the transformation
quality depends on the batch statistics. That is, in cases where the batch is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 66

not representative of the full data distribution (which is likely if the batch size
is small), the training procedure might be negatively affected.

4.2.2 Categorical Features

Most of the sparsity in tabular datasets is induced by categorical features.
Since neural networks cannot process discrete categories or objects, we need
to find a numeric representation for each class. The standard approach is to
use one-hot encoded categorical features. That is, the one-hot encoded form
corresponding to a categorical feature with (say) three levels, is [1, 0, 0] for
Level 1; [0, 1, 0] for Level 2; and [0, 0, 1] for Category 3.

Multiple inefficiencies occur when using one-hot encodings in neural net-
works. Clearly its use introduces sparsity to the data: the dimension of the
one-hot encoded form is equal to the number or categories in a feature. Thus,
if a dataset consist of many high-cardinality features (i.e. features with a
large number of categories), the data will be extremely sparse and difficult to
model. If not handled properly, sparse data may easily cause neural networks
to overfit (Covington et al., 2016). The presence of categorical features with
many levels also increases size requirements of the first linear NN layer, which
in turn creates a need for more computing power and memory.

The other problem with one-hot encodings of categorical features is that
there is no notion of similarity and distances between categories. In this
representation, all categories lie equally far apart, no matter how semantically
similar or dissimilar they are. This makes it harder for the model to learn
useful patterns. In the case of truly nominal categorical data, the need for a
representation with intrinsic similarty between categories seems unecessary.

An alternative to one-hot encodings as representations of categorical features
for neural networks is the use of entity embeddings. The first publication on
entity embeddings in the context of deep learning followed as a result of a taxi
destination prediction challenge (de Brébisson et al., 2015). This was followed
by a paper by Guo and Berkhahn (2016), wherein the authors succesfully used
entity embeddings in order to predict the total sales of a store. Furthermore,
companies such as Instacart and Pinterest report the effective use of entity
embeddings on their internal datasets. Currently all research on deep learning
for tabular data facilitate entity embeddings - see for example Song et al. (2018),
Wang et al. (2017), Covington et al. (2016) and Zhou et al. (2017). The reason

Stellenbosch University https://scholar.sun.ac.za

https://tech.instacart.com/deep-learning-with-emojis-not-math-660ba1ad6cdc
https://medium.com/the-graph/applying-deep-learning-to-related-pins-a6fee3c92f5e

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 67

for their all-round use is the way in which they are able to ameliorate the issues
of one-hot encoded representations.

An entity embedding entails exactly the same operations as with (word)
embeddings (discussed in §3.5.3), only they are applied to categories instead of
words. Therefore, an entity embedding assigns a numeric vector representation
to each level in a categorical feature. For example, Level 1 is embedded as
[0.05,−0.1, 0.2]; whereas Levels 2 and 3 are embedded as [0.2, 0.01, 0.3] and
[−0.1,−0.2, 0.05] respectively. In a formulation similar to the one in §3.5.3,
note that the embedding for the j-th categorical feature is defined by

ej = Vjxj,

where xj denotes the one-hot encoded vector representation of the j-th cat-
egorical input, where and Vj is the associated embedding/weight matrix. The
weights in Vj are learned along with all of the other parameters in the network.
Once all categorical features have been embedded, their representations may
be concatenated and passed on to the network layers that follow.

Entity embeddings have been found to significantly speed up the training
process and to reduce the memory footprint of a neural network. This in turn
serves to further improve the generalisation ability of a network as stated in
Covington et al. (2016) and Guo and Berkhahn (2016). The above advantages
are especially useful when working with high-dimensional and sparse inputs
(in tabular data). Suppose we have available a dataset with two categorical
features, X1 and X2, with cardinality C1 and C2, respectively. Furthermore,
suppose that the first hidden layer in the neural network is presented with
inputs of size q. Hence, we need to project an observation with these two
features into a vector representation of the same size. If we were to use one-hot
encoded representations of X1 and X2,we would need a weight matrix of size
(C1 + C2) × q. However, if we use entity embeddings of X1 and X2, we may
create two weight matrices of sizes C1 × q/2 and C2 × q/2, which is half the
number of parameters needed in the case of one-hot encoded representation.

The size of an embedding (i.e. the number of features that represent
similarities between inputs) is a hyperparameter of the model and again there
is no way to specify this value a priori. Therefore, most publications rely on a
grid search in order to find the optimal size. For example, Song et al. (2018)
experiment with embedding sizes 8, 16, 24 and 32; and found the value 16 to
work the best, whereas Cheng et al. (2016a) reported an embedding size of 32

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 68

to be optimal in their use-case. Thus, it is clear that appropriate specification
of the size hyperparameter depends on the data at hand, and on the network
architecture to be used.

Wang et al. (2017) and de Brébisson et al. (2015) made use of different
embedding sizes for each categorical feature. Intuitively it seems to make sense
to incorporate different embedding sizes for categorical features with different
levels of complexity. In the above papers, the following sizes are proposed:

• 6× (cardinality) 1
4 (Wang et al., 2017)

• max(2,min(cardinality/2, 50)) (de Brébisson et al., 2015)

In addition to advantages in terms of speed and memory usage, the use
of entity embeddings as opposed to one-hot encoding maps similar values to
lie close to each other in the embedding space. Hence it reveals the intrinsic
properties of categorical variables, which cannot be obtained by using one-hot
encoding. This allows us to interpret the classes of the categorical features.
Embeddings may also easily be visualised, thereby facilitating interpretation of
the data and of the decision making process of the network. In more detail,
the weights associated with the projection of each category onto the embedded
space may be plotted using any dimension reduction technique (such as t-sne
or PCA). We may subsequently compare categories based on relative distances
and positions in the reduced space. To illustrate, reconsider the ‘Education’
categorical feature in the Adult dataset (introduced in Chapter 2). In Figure 4.2
a two-component PCA of its embedding matrix is plotted. From this figure it
is clear that the school categories all lie in the bottom-right corner of the space,
with some notion of ranking from Grade 5 (top-right) to Grade 12 (bottom-left).
The tertiary education classes lie in a separate cluster and very conveniently,
their levels of education coincide with the vertical axis.

In order to verify whether entity embeddings are able to learn useful
information, besides plotting the embedding matrix, one may also feed them
(along with the continuous features) to other learning algorithms and observe
the change in model performance. Along these lines Guo and Berkhahn (2016)
tested the use of embeddings from trained NNs as inputs to a set of machine
learning methods. They report that the use of embeddings improved the
performance of all tested ML procedures by a significant margin. Moreover,
these embeddings may be re-used in different machine learning tasks, obviating
the need for them to be re-learned in other data scenarios.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 69

Figure 4.2: PCA of the ‘Education’ entity embedding weight matrix.

The entity embedding approach is very flexible. If, for example, two features
have overlapping categories, one may re-use the embedding for the one feature
on the second feature. Zhou et al. (2017) holds and interesting view of the case
of multi-hot categorical features. That is, where an observation of a categorical
feature may simultaneously be assigned more than one level. The embedding
layer for that instance then outputs a list of embeddings having the same length
as the number of categories associated with that instance and feature. Using
some pooling operation, the list of embeddings are subsequently projected back
to a fixed-length representation.

4.2.3 Combining Features

Once all continuous and categorical features have been processed and embedded,
since the continuous and categorical features were processed separately, we
need a way to combine them before their input may be transmitted to the
rest of the network. The standard approach is to create one long vector by
concatenating all categorical variable embeddings in addition to the continuous

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 70

variables, as was done in Haldar et al. (2018) and Wang et al. (2017) for
example. This is illustrated in Figure 4.3. The potential problem with this
approach, however, is that the categorical features might be over-represented in
the resulting vector, since the embedding vectors take up more space than the
continuous features that each just get one unit in the vector and the categorical
embeddings, potentially more than one. Suppose for example that one of the
continuous features is very important for prediction. When the continuous
feature is concatenated with the entity embeddings, since all entity embeddings
each take up more space in the combined representation, it may happen that
the contribution of the continuous predictor may be diluted by the greater
dimensional categorical representations.

In Song et al. (2018) the authors embed both numerical and categorical
features into the same embedded space so that the representation of a continuous
feature is of the same dimension as each of the categorical feature representations.
Mapping both types of features into the same feature space facilitates more
effective learning of interactions between the mixed set of features. Here the
embedding for the j-th numerical features is obtained by

ej = vjxj

where xj is a scalar and where vj denotes the associated weight vector.

Figure 4.3: Combined representation of continuous and categorical features.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 71

4.3 Learning Feature Interactions
In most machine learning tasks it is known that the greatest performance
gains are typically achieved by means of feature engineering, whereas improved
algorithms often only result in incremental performance boosts. In feature
egineering one strives to use the original features to create a new set of features.
This is done using domain expertise or by exploiting a priori knowledge of the
data at hand. Using more informative features obtained in this way facilitates
simpler estimation of the target, and capturing high-order interactions between
features. Hence feature engineering is viewed as a crucial step in order to learn
as much as possible from a training dataset. Unfortunately it entails a very
laborious process.

Indeed, it is widely stated that in predictive modelling, typically 80% of the
effort is devoted to steps involved during preprocessing, merging, customising,
and cleaning of datasets (Rajkomar et al., 2018). Perhaps this is party due to
the fact that feature engineering is not a structured process and usually consists
of many unsuccesful trials and experimentation before more useful features
are found. The effort associated with feature engineering could have been
alleviated by more domain knowledge, but this is not always readily accessible.

A huge advantage of using neural networks on tabular data (and other
data structures) is that the feature engineering process can be automated
to some extent. That is, a neural network can learn these optimal feature
transformations and interactions implicitly during the training process. In this
way, the hidden layers of a neural network may be viewed as a feature extractor
which is optimised to map the network inputs into the best possible feature
space for the final layer of the network to operate in.

The traditional approach towards automatic feature engineering in NNs is
to stack a few fully-connected layers in order to map the input representation
to the output, as was done in Covington et al. (2016). The set of fully
connected layers are used to implicitly model all feature interactions and in
ideal world, we would expect this architecture to be sufficient. In practice
however, without current learning algorithms, a simple MLP is not good enough
to learn all types of interactions. A fully connected model structure leads to
very complex optimisation hyperplanes, thereby increasing the risk of falling
into local optimums.

Therefore, it is necessary to explicitly leverage expressive feature combina-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 72

tions, or to encourage the network to learn better high-order feature interactions.
The above objective receives attention in publications such as Song et al. (2018),
Wang et al. (2017), Qu et al. (2016) and Guo et al. (2017). The restrictions
that we impose on a fully connected structure may further assist in limiting
the size of the network, in turn causing learning to be more efficient.

Having motivated the importance of feature engineering, and emphasised
the importance of further developing feature extraction methodology for neural
networks, in the remainder of this section we focus on ways to assist a network
to determine which features to combine in order to form meaningful high-order
features. We briefly review some of the suggestions in the literature, whereafter
we discuss the methodology which we believe to be the most powerful in terms
of learning feature interactions.

In Wang et al. (2017), the authors make a case for finding a bounded-
degree of feature interactions. They argue that all Kaggle competions are
won when feature engineering comprises low-degree interactions. This stands
in contrast to automatic feature engineering in deep neural networks, where
highly non-linear interactions are typically learned. Therefore, in Wang et al.
(2017) an automated way of constructing cross-features is proposed, and called
a cross-network. A feature cross is a synthetic feature that encodes nonlinearity
in the feature space by multiplying two or more input features together. In a
cross-network, each layer produces higher-order interactions based on existing
ones, and keeps the interactions from previous layers. More specifically, a
cross-network consists of cross-layers which may be formalised as follows:

xl+1 = x0x
ᵀ
lwl + bl + xl,

where xl denotes the output from the l-th cross-layer and the input to the
(l + 1)-th cross-layer, and where x0 is the combined input representation.
Furthermore, wl and bl represent the associated weight and bias parameters
respectively. Each cross-layer adds back its input after a feature crossing in
the same fashion as a skip-connection. Hence the degree of cross-features
grows with increasing cross-network depth. The authors experimented with 1-6
cross-layers and found a depth of six to yield the best results. In parallel with
the cross-networks in Wang et al. (2017), the authors also train a standard
deep neural network in order to learn highly non-linear feature interactions.
The DNN accepts the same input, and its output is then concatenated with
that of the cross-network.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 73

In Qu et al. (2016), the idea of a so-called product layer is proposed.
A product layer calculates pairwise inner or outer products of all feature
combinations and concatenate them to all linear combinations. The output is
then sent to two fully connected layers.

In contrast to the approach in Wang et al. (2017), in Guo et al. (2017)
and Cheng et al. (2016a) the authors aim to capture both low and high-order
interactions. In both papers this is achieved by means of introducing two
parallel networks, and by learning the high-order interactions by means of
a deep neural network. For the low order interactions, Cheng et al. (2016a)
use a shallow but wide neural network, and Guo et al. (2017) use a separate
supervised learning model called a factorisation machine (Rendle, 2010). Again
the output of the two streams are concatenated, and the resulting output is
transmitted to the classification layer.

4.3.1 Attention

Based on the results presented in the paper by Song et al. (2018) and on
findings reported in deep learning research in general, we deem attention to be
the most promising mechanism to model feature interactions. In this section,
note that we focus on a recent contribution by Song et al. (2018). In this paper
a so-called multi-head self-attention mechanism is used. This mechanism is
referred to as the interacting layer. Broadly, within the interacting layer each
feature is allowed to interact with every other feature. During training, the
interacting layer then automatically determines which of those interactions
are relevant to the output. Multiple identical self-attention modules (“heads”)
are used, but each allowed to have different weights since a feature is likely
involved in different combinatorial features.

In order to further explain the attention mechanism, consider a feature j
and suppose that we want to determine which high-order interactions (which
involve feature j) are meaningful. We start by first defining the correlation
between features j and k under attention head h as follows:

α
(h)
j,k =

exp
(
φ(h)(ej, ek)

)
∑L
l=1 exp (φ(h)(ej, el))

,

where el, l = 1, . . . , L denotes the embedding of the l-th features, and where
φ(h)(., .) is an attention function which defines the similarity between two
features. An attention function may either be defined by a trainable layer, or

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 74

by a simple inner product:

φ(h)(ej, ek) =
〈
W (h)

queryej,W
(h)
keyek

〉
,

where W (h)
query and W

(h)
key are transformation matrices which map the original

embedding space into new spaces of the same dimension. The representation
of feature j in subspace h is then updated by combining all relevant features,
as guided by the coefficients α(h)

j,k . That is:

ẽ
(h)
j =

K∑
k=1

α
(h)
j,kW

(h)
valueek,

where ẽ(h)
j denotes the combination of feature j and its relevant features under

attention head h. Note that α(h)
j,k for k = 1, . . . , K sum to 1 after undergoing

a logit transform (or softmax operation). From the above, ẽ(h)
j thus denotes

a learned combinatorial feature. Since a feature may be involved in various
different combinations, we use multiple heads to extract multiple combinations,
i.e. {ẽ(h)

j }Hh=1, where H is the number of self-attention heads chosen. In
Song et al. (2018) the value of H is set equal to 2, but this is typically a
hyperparemeter that needs to be fine-tuned. After finding the combinatorial
features, they are all concatenated into a single vector, viz. ẽj. The output is
then finally combined with the original raw input, and sent through a ReLU
activation:

eres
j = ReLU (ẽj +Wresej) .

Note that the above mapping from ej to eres
j is performed for each feature. In

this way the interacting layer is formed. Clearly therefore, activations of the
interacting layer forms a representation of the high-order features of its inputs.
Multiple interacting layers may be stacked on-top of each other in order to
form arbitrary order combinatorial features.

In a similar idea to attention, in Zhou et al. (2017) the attention weights
to apply to the input of an attention layer is produced by a linear layer and
learned along the rest of the network. Interestingly in this paper, the authors
remove the softmax layer as a way to mimic probabilities and to reserve the
intensity of activations.

Skip connections are also used in both Song et al. (2018) and Wang et al.
(2017) to connect features modelling low level interactions with features model-
ling high order interactions. Their conclusion is that the use of skip connections
improves the performance of a neural network.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 75

4.3.2 Self-Normalising Neural Networks

In the DLTD literature, one rarely encounters an optimal network depth higher
than three of four layers. The reason is that a fully connected model result
in very complex optimisation hyperplanes which increases the risk of falling
into local optima. A proposed way of training deeper neural networks is to
make use of self-normalising neural networks (Klambauer et al., 2017). These
networks were developed as alternatives to the use of batchnorm layers, since
the latter often become unstable when using SGD or stochastic regularisation
techniques such as dropout. This is especially the case in fully connected neural
networks, where the resulting instability manifests in terms of high-variance
training errors.

The self-normalising neural network is simply a neural network which
implements a novel activation function called the SeLU. The SeLU activation
assists the network in maintaining zero mean and unit variance for activations
at all network levels. In addition to obviating the need for a BatchNorm
layer, SeLUs are much more immune to exploding or vanishing gradients. The
definition of the SeLU activation function follows below:

selu(x) = λ

x if x > 0

αex − α if x ≤ 0

where λ = 1.0507 and α = 1.6733 are special constants derived in the paper.
In Klambauer et al. (2017), the application of SeLUs were tested using 121

classification datasets from the UCI Machine Learning repository. Here the
performance of DNNs with SeLU activations were compared to the performance
of other DNNs, and to that of completely different classifiers (including random
forests and SVMs). The various models were compared using a pairwise
Wilcoxon test on their ranked accuracies. It was found that in the case of
datasets with less than 1000 obervations, random forests and SVMs performed
the best. However, in the case of datasets with more than 1000 observations,
DNNs with SeLU activations outperformed all other models. Despite the above
promising results, we have not yet seen SeLUs used in any tabular dataset
applications.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 76

4.4 Sample Efficiency
Application of deep learning neural networks to tabular data is hindered by
the typical size of these datasets. Tabular datasets are usually not nearly
as large as unstructured datasets used to train neural networks for image
and text classification. Moreover, in contrast to the ImagNet dataset for
computer vision, or the Wikipedia corpora for NLP, there exists no large
tabular dataset which may facilitate transfer learning. In this section we
propose two techniques towards overcoming the above problem, viz. data
augmentaion and unsupervised pre-training.

4.4.1 Data Augmentation

In the context of neural networks for tabular data, the topic of data augmenta-
tion is rarely studied. This is in part due to the fact that the augmentations
used in standard deep learning applications (such as computer vision and NLP)
do not make sense in the case of tabular data. For example, one cannot rotate
or scale an observation in a tabular data set without contorting its true nature
and/or meaning. There are however some transformations that do make sense
for tabular input. In this section we discuss is the injection of random noise by
means of so-called marginalised corrupted features (MCF), blank-out corruption,
swap noise and mixup augmentation.

When working with images, we may randomly perturb pixel intensities by a
small amount so that it is still possible to make sense of the image content. For
example, adding the value 1 to all pixels and colors in an image, will simply
brighten the image. Such a translation can however not be used in tabular data
application, since the inputs are mostly not measured on the same scale and
therefore the addition of noise might result in feature values that lie outside
the distribution that generated them. Thus, in order to inject random noise to
a tabular data sample, the values to be added should be scaled in relation to
the range of each input feature. Subsequently also, the validity of the resulting
value for a particular feature should be verified. Incorporating some noise may
potentially also cause a model to be more robust to small variations in the
data. Along these lines, Van Der Maaten et al. (2013) suggest an augmentation
approach called marginalised corrupted features. In the MCF approach, noise
are generated from some chosen distribution and used to transform the input
values. In Van Der Maaten et al. (2013), they experimented with Gaussian,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 77

Table 4.1: Swap Noise Example.

age occupation education race sex >=50k
Original Dataset

49 NA Assoc-acdm White Female 1
44 Exec-managerial Masters White Male 1
38 NA HS-grad Black Female 0
38 Prof-specialty Prof-school Asian-Pac-Islander Male 1
42 Other-service 7th-8th Black Female 0
20 Handlers-cleaners HS-grad White Male 0

Sample with swap noise
49 Prof-specialty Prof-school Asian-Pac-Islander Female 1

Laplace and Poisson distributions for generating noise. But it is typically
unclear beforehand which corruption distributions are useful for what types of
data. In addition, this corruption procedure is only applicable to numerical
features.

In the original ‘denoising autoencoders’ paper (Vincent et al., 2008), note
that a so-called blank-out corruption procedure is used. Blank-out corruption
entails the random selection of a subset of the input features, and masking their
values with zeros. This resembles dropout regularisation, but applied to the
inputs. The only problem with this approach is that for some features a zero
value actually carries some meaning. Hence, features should be ‘blanked out’
using some unique value that does not belong to the range of their distributions.

Another input corruption approach that has empirically been shown to
work well3, is the technique called swap noise (Kosar and Scott, 2018). The
swap noise procedure corrupts inputs by randomly swapping input values with
those of other samples in the datasets, thereby ensuring that the corrupted
input at least assume valid feature values. The use of swap noise is illustrated
in Table 4.1.

A novel alternative approach for data augmentation for tabular data is
based on the methodology of multiple imputations (MI) (Schafer and Graham,
2002). The approach can be divided into two steps. The first is to randomly
inject missing values for an input observation - identical to the blank-out
corruption explained previously. However, instead of assigning zero values to
the features selected to be missing, one can use simple statistical imputation

3https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629

Stellenbosch University https://scholar.sun.ac.za

https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/discussion/44629

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 78

methods, e.g. mean imputation or hot-deck imputation (see above reference).
At each sampling step, one can choose an imputation method at random. In
this way we can create multiple copies of the same observation, with slight
random variations and possibly with more valid feature values.

Finally in this section, we consider the mixup augmentation approach
(Zhang et al., 2017). Here artifical samples are created by means of the
following formulation:

x̃ = λxi + (1− λ)xjỹ = λyi + (1− λ)yj,

where x denotes an input vector, where y represents a one-hot encoded output
vector, and where λ ∈ [0, 1]. Furthermore, (xi,yi) and (xj,yj) are two samples
drawn at random from the training data. Thus, mixup assumes that linear
interpolations of input vectors lead to linear interpolations of corresponding
targets. We visualise the creation of artificial samples by means of mixup
augmentation on a toy dataset in Figure 4.4.

class 1
class 2

Figure 4.4: Illustration of the data points created by mixup augmentation.

The parameter λ governs the strength of the interpolation between the
input-output pairs. The closer λ lies to 0 or 1, the closer the artificial sample
will be to an actual training sample. The authors suggest using λ ∼ Beta(α, α)
for α ∈ (0,∞), since this makes it more likely for the mixed-up sample to lie

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 79

closer to one of the original samples (as opposed to midway inbetween two
samples). Best performances were obtained for α ∈ [0.1, 0.4]. In cases where
the α value was set too high, underfitting occur.

Typically data augmentation procedures depend on the dataset at hand and
requires expert knowledge. It is therefore difficult to invent novel, generic ways
to augment tabular data. Still, from the way in which mixup augmentation is
defined, it is clear that this procedure may be used in the context of any type
of data (including tabular datasets).

Mixup data augmentation may be understood in terms of a mechanism
encouraging a model to behave linearly inbetween training samples. Zhang
et al. (2017) show that this linear behaviour reduces the amount of undesirable
variation when predicting new samples lying further away from the set of
training samples. The authors also show empirically that training using mixup
augmentation is more stable in terms of both model predictions and gradient
norms. This is because mixup leads to decision boundaries that transition
linearly between classes, resulting in smoother predictions.

In Zhang et al. (2017), the use of mixup data augmentation was tested on
six tabular classification datasets from the UCI Machine Learning repository.
The network architecture that was used for this purpose involves a two-layer
MLP with 128 neurons in each layer, and a batch size of 16. It was found
that mixup improved prediction performance in the case of four out of the six
datasets considered.

In conclusion, it is important to note that all data augmentation metods
presented here require hyperparameters to be tuned. When using swap noise
and blank-out for example, the proportion of feature values to be corrupted
needs to be specified. In mixup augmentation, the mixup weight needs to be
set. Since these parameters control the strength of regularisation, their values
are important and should be carefully tuned.

4.4.2 Unsupervised Pretraining

Recall that unsupervised pretraining was described in §3.3, and presented as a
very effective way of training deep neural networks. There we have seen that, by
automatically learning useful feature combinations in an unsupervised fashion,
pretraining may also be used to address the feature engineering issue. However,
in the literature we only found two papers that make use of pretraining in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 80

the context of tabular data. These are Zhang et al. (2016) and Miotto et al.
(2016). Both papers made use of pretraining with DAEs. In the latter paper,
a stacked denoising autoencoder is used as feature learning method. The
representations derived from the DAE are subsequently passed on to supervised
learning algorithms, thereby enabling improved predictions. This approach is
used in a medical application, where general-purpose patient representations
facilitate clinical predictive modelling.

There are a lot of unknowns when it comes to using DAEs for pretraining.
First we need to decide on the structural hyperparameters of the network (for
example the number and sizes of layers). Thereafter we need to decide which
learning parameters to choose. Currently, parameter selection is an aspect
which have not yet been as thoroughly explored as hyperparameter selection
for supervised neural networks.

In addition we of course also need to decide which DAE loss function to use,
where in this regard, a choice depends on the type of inputs. If all inputs are
numeric, we may use the common MSE loss, but if the inputs include categorical
features, more consideration is needed. Miotto et al. (2016) transformed all
continuous features to lie within [0,1], whereas all categorical features were
one-hot encoded. This enabled the use of binary cross-entropy as loss function.
If we wish to use entity embeddings for categorical features, we can however
not use their approach. A suggestion is to, for each categorical feature, import
a separate multiclass cross-entropy loss function, and to use MSE loss for
continuous features. The losses for categorical and continuous features may
then be combined in order to obtain a total loss. The weights to be assigned
to the two losses is an aspect which has not yet been researched.

Instead of the feature extraction method followed in Zhang et al. (2016)
and Miotto et al. (2016), we propose treating unsupervised pretraining as a
transfer learning problem. That is, we suggest replacing the output layer of the
DAE with the required output layers for the supervised learning task. Then
one may first train the newly added layers, keeping the lower level DAE layers
fixed. Subsequently, all layers may be trained simultaneously. Rather using
this approach the feature extractor part of the DAE may still be tuned in order
to be optimal for the supervised learning task. We experiment with the above
approach in the following chapter.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 81

4.4.3 Regularisation

Since regularisation may also be used to facilitate sample efficiency, we provide
a brief discussion of the topic in this section. In Chapter 3, dropout was
discussed as a popular form of regularisation, which is also true for DLTD and
found in a lot of work such as Song et al. (2018), Zhang et al. (2016), Qu et al.
(2016), Guo et al. (2017). In the original paper by Srivastava et al. (2014), it
was advised that the dropout parameter p (which specifies the percentage of
neurons to discard), should lie between 0.5 and 1. The exact value for p is
typically determined using a grid search, and results in the literature indicate
the optimal percentage to be data- and model dependent (compare for example
the optimal p in Song et al. (2018), Zhang et al. (2016), Qu et al. (2016), Guo
et al. (2017)).

Interestingly, Haldar et al. (2018) reported that dropout was not effective in
their application. In their analysis of this result, they hypothesise that dropout
produces invalid input scenarious instead of mimicking valid scenarios that may
be missing in the training data. This may distract the model during training
causing it to be suboptimal for ‘real’ examples. Therefore, the authors rather
opt for hand-crafted noise shapes which takes into account the distribution of
a relevant feature, similar to the MCF approach.

The other form of regularisation used in the context of tabular data, is
weight decay, used in Song et al. (2018), Wang et al. (2017), Zhang et al. (2016),
Qu et al. (2016) and Zhou et al. (2017), Note that Zhang et al. (2016) compared
dropout with L2 regularisation, and found dropout to be better.

A different angle to regularisation makes use of the fact that the importance
of each feature with respect the target is different for tabular and unstructured
data. In computer vision for example, a large number of pixels have to change
before an image resembles an entirely different object. In tabular data, on the
other hand, a very small change in a single feature may result in large changes
with respect to predictions (Shavitt and Segal, 2018). In the latter paper, it is
mentioned that this aspect may be addressed by means of including a separate
regularisation term for each of the weights in the network. The learning loss is
thus:

L(D,W,Λ) = L(D,W) +
M∑
i=1

exp(λi) · ‖wi‖ ,

where D = {(xi, yi)}Ni=1 are the training samples, W the weights of the model
and Λ = {λi}Mi=1 are the regularisation coefficients for each of theM parameters

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 82

in the network. These regularisation terms are treated as additional model
hyperparameters. Unfortunately it is clear that the above approach is totally
impracticable. The only way to train these hyperpararmeters is through
repeated tweaking and validating and this is not possible in a gradient-based
method. A workaround is to make these regularisation parameters trainable, as
is the case with all other modules in the network. This is achieved by minimising
the so-called counterfactual loss function, a novel objective proposed by Shavitt
and Segal (2018). The counterfactual loss is the emprical loss L(D,W), where
the weights have already been updated using the regularised loss L(D,W,Λ).
Results obtained from empirical work in the paper by Shavitt and Segal
(2018) are promising. It was found that training neural networks by means of
optimising the counterfactual loss leads to the NNs outperforming all other
NN regularisation approaches.

4.5 Interpretation
The importance of model interpretation was mentioned in Chapter 3. A good
understanding of a model helps one to improve the model in the areas where
it is weak. Stated in another way, if one cannot explain the way in which a
prediction is arrived at, one cannot be sure about its accuracy. In most of
the literature for deep learning, thus far relatively little attention has been
given to model interpretability. Luckily in the context of tabular data, some
of the modern deep learning architecture provide more options in terms of
simpler interpretation. In terms of modern NN architectures, in this section,
we briefly discuss neural network interpretation as facilitated by the use of
entity embeddings and attention layers. We also discuss model independent
interpretation by means of permutation test, and illustrate this approach on
the Adult dataset introduced in Chapter 1.

With regard to the use of entity embeddings, note that these may easily
be visualised once projected into a low-dimensional space. This was done
Figure 4.2. For a second example, the interested reader may refer to an
illustration in the paper by Zhou et al. (2017).

An attention layer can also be used to provide insight into the relative
importance of certain feature combinations, as may be seen in the work by Song
et al. (2018) and Zhou et al. (2017). Relative importance measures are obtained
from the attention weights α, which in turn are based upon feature similarities.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 83

From these we may infer which features are combined to make predictions
for certain observations. As an example, the output after using the above
approach, as obtained in Song et al. (2018), is displayed in Figure 4.5. Also see
Shavitt and Segal (2018) for how feature importance were evaluated using the
regularisation strength of the learned per weight regularisation parameters λi,
i = 1, . . . ,M .

Figure 4.5: A display of the attention weights for a single observation in the
dataset.

Haldar et al. (2018) applied a model agnostic model interpretation algorithm
in the context of DLTD. The authors made use of the permutation importance
algorithm in order to evaluate the importance of features. However, they
reached the same conclusion as stated in §3.7.2, viz. that the permutation test
did not produce sensical results because the features were not independent.
Independent permutation of the features created examples that never occur
in real life, and the deduced importance of features in this invalid space is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 84

misleading. Subsequently the authors attempted to identify redundant features,
which to some extent alleviated the above issue.

For illustration purposes, the remainder of this section is devoted to an
implementation of a permutation importance plot on an NN fitted to the Adult
dataset. In order to obtain a more robust estimate and standard errors, we
perturbed each feature five times and measure the NN performance in terms
of the log-likelihood loss function. Our results are displayed in Figure 4.6
(note that the standard errors were too small to be incorporated in the figure).
The horizontal axis measures the average drop in the log loss function when a
feature is shuffled before prediction. The feature ranking makes intuitive sense.
It is reassuring to see that the features ‘gender’, ‘race’ and ‘native-country’ are
some of the less important features when predicting income.

Figure 4.6: A permutation importance plot of an NN trained on the Adult
dataset.

Next we compare permutation importance with feature rankings obtained
from knowledge distillation to a boosted trees algorithm (see §3.7.1). To recap
the process, we use the predictions of the neural network trained on the Adult
dataset as the target for a boosted model to predict. The inputs to the neural
network and boosted model are of course the same.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 85

Once the boosted model has been trained on these targets, we may extract
feature importances based upon the number of times that the individual trees
used a certain feature to split on. The obtained feature importance values are
displayed in Figure 4.7.

Figure 4.7: Feature importance values obtained from a boosted model trained
on NN predictions.

In the two approaches, the variable rankings are quite different. The big ex-
ception is the rankings obtained in the case of the ‘marital-status’ feature. This
difference might be caused by the permutation importance method not picking
up on multivariate feature interactions. Therefore, it incorrectly perceives
‘marital-status’ to be an important feature, although in reality the performance
drop is actually caused by another feature dependent on ‘marital-status’. The
above differences in interpretation illustrates that one should take care when
interpreting models. It seems to be a good idea to make use of more than one
source of information when possible.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 86

4.6 Hyperparameter Selection
Thus far, we have come across a plethora of hyperparameters to be tuned if we
want to sucessfully fit a deep neural network to tabular data. Broadly speaking,
there are structural hyperparameters to select, such as the number of layers and
the type of activation functions to use; and there are also learning algorithm
hyperparameters to specify, for example the learning rate or weight decay to be
used. In term of structural parameters, since there are no shared patterns among
diverse tabular datasets, it is very difficult to design a universal architecture to
use in all setups. In most of the literature, typically a grid search over many
combinations of hyperparameter values is performed (Song et al., 2018; Wang
et al., 2017; Zhang et al., 2016; Qu et al., 2016; Guo et al., 2017; Covington
et al., 2016). Most of these parameter values are very dependent on the dataset
and other modeling choices; hence the need to tune them. The main structural
hyperparameters tuned in the majority of the papers may be listed as follows:
hidden layer size, number of hidden layers, activation functions, and the shape
of fully-connected layers (i.e. a constant-, increasing-, decreasing- or diamond
shape). The optimal hyperparameter values found varied accross publications,
indicating once again the necessity of a hyperparameter tuning step in the case
of uncustomary datasets and models. With regard to hyperparameter selection,
we include some experiments of our own (similar to the experiments conducted
in the aforementioned papers) in Appendix A.

In terms of hyperparameters specific to the optimisation algorithm (like
learning rate, batch size, learning rate decay, etc.), not much experimentation
was done in the researched papers. The only choice that were shown was
selecting the learning rate over a grid of values, as in Zhang et al. (2016) and
Wang et al. (2017), and kept the selection constant during training. Most of
the work used the Adam optimiser and early stopping to prevent overfitting
(Song et al., 2018; Wang et al., 2017; Zhang et al., 2016). Large batch sizes were
chosen in Song et al. (2018) and Wang et al. (2017), 1024 and 512 respectively.

Clearly, the 1cycle policy and the concept of superconvergence has not yet
been tested in the tabular data setting. Therefore we will test its effectiveness
here using the Adult dataset. We compare it against a constant learning rate.
The evaluation method is described in Chapter 5. We first do a learning rate
range test and find that the optimal learning rate bounds for the 1cycle policy
is 0.01 and 0.1. In our experiment we compare training a neural network

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 87

with a fixed learning rate at the lower bound, 0.01, a neural network with
a fixed learning rate at the upper bound, 0.1 and a neural network with a
1cycle learning rate schedule in these bounds. The results are displayed in
Figure 4.8. From the green line, we see that when training with too large of
a (constant) learning rate, the validation loss struggles to converge. Training
with the smaller constant learning rate (blue line) works better in this case,
but the losses plateau quite early on and shows no sign of improving. The
1cycle learning rate update policy (orange line) shows the best validation loss
and accuracy of the three methods. This proves that the 1cycle policy is also
effective when working with tabular data.

Figure 4.8: Constant learning rate vs the 1cycle schedule.

Since the weight decay plays and important part in the super-convergence
phenomena, we do an experiment to find the optimal value and to see how it
influences the performance. By the suggestion of Smith (2018) we try weight
decay values for 10−3, 10−5 and 0. First we do a learning rate range test with
the different weight decays to identify the best value. The results are displayed
in Figure 4.9. From the range test it seems that a weight decay of 10−4 gives
the best performance. To check that this result holds during a full training run,
we do an experiment to compare the full training runs with the different weight
decays. The results are displayed in Figure 4.10. From the results it shows that
the learning rate range test is a good indicator of the optimal weight decay,
since in the full training run, the model with weight decay of 10−4 performed
the best in terms of accuracy. Note that the differences between the training
runs are very small, and thus if we were to choose one of the other weight
decays for this task, we would have only performed slightly worse.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DEEP LEARNING FOR TABULAR DATA 88

1e-02 1e-01 1e+00 1e+01
Learning Rate

0.45

0.50

0.55

0.60

0.65

0.70

Lo
ss

Weight Decay
1e-05
0.0001
0.001
0

Figure 4.9: A learning rate range test with different weight decays.

Figure 4.10: A full training run with different weight decays.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Experiments

5.1 Introduction
The main objective in this chapter is to better understand the behaviours of
certain neural network model architectures (and their parameters). The empir-
ical work presented here also serves as verification in terms of the observations
reported in the literature. Our focus is on the same deep learning modelling
challenges as discussed in Chapter 4. These are:

• appropriate input representation;
• learning from feature interactions; and
• enhancing sample efficiency.

The reader will note that the aspect of model interpretation is not listed
above, since this challenge was covered in §4.5.

Appropriate specification of more general hyperparameters such as learning
rate, batch size, layer size and layer depth does not form part of the focus in
our experimentations. The reason is that these do not form part of the main
challenges presented by the use of neural networks for tabular data, and also,
with some of these parameters we have already experimented in Chapter 4.
Nevertheless, since these parameters are tightly linked with each other and
with other model parameters, where appropriate, their specification is still done
using a hyperparameter grid search. Our findings with regard to these grid
searches may be found in Appendix A.

An outline of the remainder of the chapter is as follows: In §5.2 we discuss
the dataset that was used in the empirical study, and motivate the reason

89

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 90

for having selected this specific dataset. Thereafter, in §5.3, we discuss the
general methodology followed, as well as the measures of evaluation for each
method. The experiments may be found in §5.4, §5.5 and §5.6. In §5.4 we
compare the performance of various entity embedding sizes. §5.5 is devoted to
an investigation of the use of several approaches towards modelling high-order
feature interactions, whereas in §5.6 we evaluate the different approaches to
avoid overfitting in constrained data environments.

In this chapter we aim for good empiricism by exploring many hyperpara-
meters in various data scenarios and by performing cross-validation in order
to obtain unbiased performance measures along with standard errors. Our
goal is not necessarily to beat the benchmark, but instead consists of simple
experiments designed to aid in understanding techniques.

The code for developing the models and running the experiments were
written in Python. The deep learning library, Pytorch, was used to build the
different neural networks. Many of the common layers, like the linear layer or
the ReLU activation, for example, are provided by the library and we are left
with combining these layers to form the models we required. However, some of
the more modern layers/modules, like the attention mechanism or the SELU
activation for example, are not yet provided by the library and therefore we
wrote our own implementations thereof.

The optimisation of the neural networks were done with the help of the
Fastai library which provides convenient utility functions for training with the
1cycle policy. We wrote code that builds on this library to perform various tasks
required for these experiments, for example: cross-validation, hyperparameter
selection, pretraining, data augmentation, transfer learning and visualising
results. One may refer to Appendix B for more detail on the code and where
to access it.

5.2 The Dataset
We chose to conduct our empricial work on the Adult dataset. This was done
for the following reasons:

• Simplicity: The Adult dataset is representative of a real-world scenario,
while not having specific modelling challenges (such as plenty of missing
values or highly imbalanced classes). This fits in with our goal of evaluat-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 91

ing models on a generic tabular dataset (as opposed to one that requires
special attention or the skills of a domain expert). Thus, when in terms
of prediction performance, a specific network architecture is found to fall
short, we may know that this may be attributed to the model, and not
to some peculiarity inherent in the data.

• Minimal preprocessing: We want to focus our time on training the
algorithms and not on preprocessing the data. The Adult dataset is a
relatively ‘clean’ dataset.

• Open access: Since we want our work to be reproducible, we want the
dataset that we use to be accessible to everyone.

• Good size: We have seen that fitting deep neural networks requires
large datasets. Hence, in order to yield optimal performance we prefer at
least a medium sized dataset. If one wants to test models using smaller
datasets, one may simply run the experiments on a subset of the data.

• Strong baselines: The Adult dataset has been used in other deep neural
network studies, and therefore the performance of several methods on
this dataset have been reported in the literature. In order to know how
well we are doing, we need to be able to compare our performances with
those of others.

The Adult dataset, originally used in Kohavi (1996), is data that was
extracted from the census bureau database1 and can be accessed from this
link2. The task here is to predict whether or a not a certain person’s income
exceeds $50,000 per year. Thus, it is posed as a binary classifcation problem.

In total there are 14 features and 48,842 observations. Two-thirds of the
observations were randomly selected to form the training set and the rest
allocated to the test set. Note, that we will not use any of the observations
in the test set during our experiments. Hyperparemeter and model selection
decisions are made based on the validation dataset performance and then if we
wish we can evaluate the selected models on the test set for the most accuracte
estimation of the generalisation ability of the models.

The details for each of the features are listed below. We indicate the
continuous features and the classes for the categorical features.

• age: continuous
1http://www.census.gov/en.html
2http://archive.ics.uci.edu/ml/datasets/Adult

Stellenbosch University https://scholar.sun.ac.za

http://www.census.gov/en.html
http://archive.ics.uci.edu/ml/datasets/Adult

CHAPTER 5. EXPERIMENTS 92

• workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov,
State-gov, Without-pay, Never-worked

• education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-
acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate,
5th-6th, Preschool

• marital-status: Married-civ-spouse, Divorced, Never-married, Separated,
Widowed, Married-spouse-absent, Married-AF-spouse

• occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-
managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct,
Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv,
Protective-serv, Armed-Forces

• relationship: Wife, Own-child, Husband, Not-in-family, Other-relative,
Unmarried

• race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

• sex : Female, Male

• capital-gain: continuous

• capital-loss: continuous

• hours-per-week: continuous

• native-country: United-States, Cambodia, England, Puerto-Rico, Canada,
Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South,
China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vi-
etnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos,
Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua,
Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru,
Hong, Holand-Netherlands

Note, we removed the following variables from the analysis: education-num
and fnlwgt. The effect of the continuous features on the target are plotted
in Figure 5.1 with the use of kernel density estimations. A kernel density
estimate plot shows the distribution of a single variable and can be thought
of as a smoothed histogram (it is created by computing a kernel, usually a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 93

Gaussian, at each data point and then averaging all the individual kernels to
develop a single smooth curve). The counts of the categories for each of the
categorical features, partitioned by the response, can be found in Figure 5.2.
The highest reported accuracy in the original paper (Kohavi, 1996) was 85.9%
by the NBTree algorithm and in an unpublished experiment3 one researcher
achieve ~88% accuracy with boosted trees.

Figure 5.1: Kernel density estimation plots for each of the continuous features
in the Adult dataset.

3https://www.kaggle.com/kanav0183/catboost-and-other-class-algos-with-88-accuracy

Stellenbosch University https://scholar.sun.ac.za

https://www.kaggle.com/kanav0183/catboost-and-other-class-algos-with-88-accuracy

CHAPTER 5. EXPERIMENTS 94

Figure 5.2: Bar plot for each of the categorical features in the Adult dataset.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 95

5.3 General Methodology

5.3.1 Loss Function and Evaluation Metric

Recall the learning problem associated with the Adult dataset, viz. to predict
whether or not an indivdual earns more than $50,000 a year. Since this is a
binary classification task, we train a neural network to optimise the binary
cross-entropy loss function, as defined in §2.3.4 (where of course we set K = 2).
This is the standard loss function typically optimised when fitting NNs for
binary classification (Song et al. (2018), Wang et al. (2017), Zhang et al.
(2016), Qu et al. (2016)). Note that during training, the accuracy of the neural
network will also be monitored. Accuracy is used when monitoring the training
process since this measure is often simpler to interpret. Note however that the
neural network is not trained to optimise its accuracy. In this sense the binary
cross-entropy may be seen to act as differentiable proxy to the accuracy.

Another common way of representing classification results of models are
with the use of Receiver Operating Characteristic (ROC) curves. This is a
2-dimensional plot of the sensitivity and specificity of the classification model.
It thus presents an extra dimension of the classification. We computed the
ROC curve along with its (area under the curve) AUC score for one of the
better performing networks on the Adult dataset in Figure 5.3. The network
had three layers of 512 neurons each, ReLU activations, network-wide dropout
of 0.2 and trained with the 1cycle policy. We also followed the cross-validation
approach explained in the next section. This network and training configuration
was chosen after evaluating the results of this chapter. Although the ROC
curve is useful in general, we found very little variation between the curves
of different models and therefore decided to exclude it from the results of the
other experiments, since it added no clear value to the interpretation thereof.

5.3.2 Cross-validation

We made use of five-fold cross validation (Hastie et al., 2009, p. 241) to estimate
the performance of a model. Cross-validation is very often used to estimate
performance measures in tabular data applications. The approach is needed
since in small to medium sized datasets, there are not enough data points
to be able to split off a test dataset that may not be used during training.
Cross-validation involves randomly partitioning the dataset into five equal

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 96

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Receiver operating characteristic example

Chance
Mean ROC (AUC = 0.91 ± 0.00)
± 1 std. dev.

Figure 5.3: An example of an ROC curve related to one of the best models on
the Adult dataset.

parts. Each data part takes turns to be used for validation, while the remaining
four parts are then used to train the model.
Note that in this way, five model performance measurements are obtained. We
may subsequently compute the average over these five measurements, thereby
obtaining a less biased estimate of the performance of a model. The partitioning
and training steps in five-fold cross-validation are depicted in Figure 5.4.

Another advantage of cross-validation is that it yields a standard error
associated with the performance estimate. In our results, standard errors will
be displayed on figures, thereby providing confidence interval estimates of
performances via i.e. µ± σ. This should be helpful in terms of determining
the significance of reported differences in performance.

One may ask why we make use of cross-validation while in deep learning
research it is common practice to estimate performances using the validation
set approach. See for example Klambauer et al. (2017), Song et al. (2018) and
Zhang et al. (2016). In the validation set approach, a dataset is partitioned into
a training-, validation- and (sometimes) also into a test dataset. In contrast to
cross-validation, partitioning is performed only once. The problem with a once-
off split is that it provides only a single estimate of the performance of a model.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 97

0 20 40 60 80 100
Sample index

1

2

3

4

5

CV
 it

er
at

io
n

5-fold Cross-Validation
train
test

Figure 5.4: 5-Fold Cross-validation dataset split schematic.

Standard errors cannot be obtained, therefore the variance of a performance
estimate cannot be gaged. Also in terms of bias, cross-validation performs
better than the validation set approach, since the size of the training sets in
cross-validation is closer to the size of the original training set. Cross-validation
is therefore typically preferred to the validation set approach. However, bearing
the computation intensity of training neural networks in mind, the use of
cross-validation in deep learning seems to be very impractical. Repetitive
partitioning and training steps are much more costly than in the case of
tabular data. Fortunately, deep learning is mostly applied to large datasets. In
these cases, large test sets are available, thereby obviating the need for cross-
validation. Therefore in summary, we make use of cross-validation since our
tabular dataset allows (and calls for) its use. In deep learning, the validation
set method is practical and sufficient, since test datasets are large enough.

5.3.3 Preprocessing

As mentioned in §5.2, in our empirical analyses we aim to avoid feature en-
gineering and preprocessing to see if a neural network can learn these optimal
representations automatically. We therefore did not create any new feature
combinations or manipulated the existing ones. The only mandatory prepro-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 98

cessing steps involved: - mapping the text in categorical features to integer
values (this was of course necessary to be able to apply entity embeddings); -
standard normal scaling of the continuous features (which was necessary for
optimisation algorithms), - mean imputation of missing values in the case of
continuous features, and assign a “null” category to missing values in the case
of categorical features. Note that we did not perform any a priori feature
selection steps since we wanted the model to learn which features are relevant.

5.3.4 Hyperparameter Specification

If not stated otherwise, we made us of simple MLPs to map input representations
to income predictions. Based on our findings in §4.6, we decided to train all
networks using the 1cycle policy (and the Adam optimiser). Note that the
hyperparameter selection process suggested by Smith (2018) in this context
is a manual process. Therefore, we make use of the Smith (2018) approach
only during the first experiment, thereby finding appropriate values for the
learning rate, for the number of epochs, and for weight decay (called ‘training
hyperparameters’ in this section). These parameter values are then used
in all empirical work to follow. This initial search for appropriate training
hyperparameter values is reported in Appendix A. Note that in the second and
third experiments, the parameter selection process was rerun in cases where the
fitted model changed significantly from the previous experiment to the next.
Also, whenever we encountered instability of the loss function during training,
the parameter selection process was redone.

Following the above hyperparameter specification methodology, note that
in each experiment we definitely do not expect to find the optimal model.
The hyperparameter selection approach should however prove sufficient for
comparing performances. Luckily also, according to Smith (2018), NNs have
been found to be quite robust with respect to the specification of training
hyperparameter values.

With regard to the specification of structural hyperparameter values, we
experimented with the dropout percentage, and with the width and depth of
the network. Again we found optimal values for these parameters once off, viz.
in the first experiment. Thereafter, these parameter values were kept fixed.
More details regarding the specification of structural hyperparameter values
may be found in Appendix A.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 99

5.4 Input Representation

5.4.1 Embedding Size

In this section we report on our experimentation with respect to the effect of
embedding size on the prediction performance of a neural network. Specifically,
we consider the use of 2, 4 and 8 neurons in the embedding layers. These values
are chosen since in our setup, we expect the ideal embedding size to be a small
value, but not so small that it is unable to capture all of the signal conveyed
by the available features.

As stated in §5.4, we expect there to be an optimal embedding size for each
variable, depending on the cardinality of the variable, and on how complex
its relationship is with the other variables and with the target. Recall that
in §4.2.2 a set of rules for representation of categorical variables is proposed,
where these rules depend on the cardinality of each categorical feature. In
addition to experimenting with embedding sizes, we would therefore also like to
see whether these rules are able to, also in our data setup, provide reasonable
performances.

The results of the first experiment (in which we compared three pre-specified
embedding sizes) are displayed in Figure 5.5. In the left panel, note that the
loss function value, obtained for the validation data is plotted against the
number of epochs; whereas in the right panel the validation accuracy is plotted
on the y-axis. Shaded areas indicate standard errors. From this figure, since
the green line lies mostly below the red and blue lines in the left panel and
mostly above them in the right panel, it is clear that an embedding size of
8 is preferred. One reason for this may be that for these data, categorical
features are quite important in terms of enhancing prediction accuracy and
that a relatively large vector is needed to describe the categories.

In order to investigate the effect of cardinality dependence, we compared
the constant size 2 embeddings with the rules from Wang et al. (2017) and
de Brébisson et al. (2015). The results from this experiment are shown in
Figure 5.6. From the figure we infer there to be almost no difference between
the three approaches. In terms of accuracy, the fixed size of 2 performed the
best. In datasets where categorical features contain more information and vary
substantially in terms of its properties, one may however expect this result to
be different.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 100

Figure 5.5: Effect of the embedding size if all categorical features are mapped
to the same number of dimensions.

Figure 5.6: Effect of variable sizes on the performance of the NN model.

5.5 Feature Interactions

5.5.1 Attention

Since attention is so effectively used in other data domains, we believe it to be
the most promising approach towards modelling high-order interactions between
features for tabular data. In order to test this hypothesis, we implemented
our own multi-head attention module, as described in Song et al. (2018). In
this way, our results are comparable to those produced by a standard neural
network. We did not have the computing power to try different configurations
for this module and thus we went with the largest possible configuration that
could be run in reasonable time. We chose the number of head, H, to be 3,
and made use of embedding sizes of 3 throughout. Moreover, we only made
use of a single multi-head attention layer, and connected its output to a single
hidden layer of size 200, which in turn was connected to the output layer. The
performance of the above architecture was then compared to the performance

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 101

of simple MLP with a similar number of total parameters. The results of
this experiment are reported in Figure 5.7. The left panel plots the average
loss on the validation set over each of the five epochs and the right panel,
the average accuracy. Surprisingly, the model with the attention mechanism
(blue line, “attention=True”) performed worse than the MLP (orange line,
“attention=False”) on its own; its predictions exhibiting higher variance than
the MLP. A possible explanation is that the hyperparameter specification in
the attention layers was inadequate, or that the single attention layer is not
complex enough. In the future therefore, we would like to experiment with
more of the hyperparameters of the multi-head attention module and also try
out stacked attention layers. Moreover, one wonders in which way the above
results would have changed if a dataset with more features were used.

Figure 5.7: Comparing the attention mechanism with a simple MLP.

5.5.2 SeLU Activations

In Chapter 3 we have seen that deeper networks can help us learn higher-order
feature interactions. The SeLU activation function is supposed to help us train
deeper neural networks. Therefore, we compare use of SeLUs to use of the
ReLU activation using two networks. The first network was specified to have
two layers, whereas the second network had eight layers in total. The SeLU
activation function was implemented using its customised weight initialisation
method, but no dropout was used. In Figure 5.8 we plot the average (over
each fold) loss and accuracy on the validation set for each of the epochs for the
different models and in Figure 5.9 we plot the average loss and accuracy on
the validation set of the final models. We observe that in terms of validation
loss and accuracy, the model with eight layers using ReLU activations emerged

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 102

as the winner. However, the differences are so minor that, in the absence of
more evidence, we tend to still recommend the use of shallow ReLU networks.

Figure 5.8: The average performance of ReLU and SeLU activation functions
for shallow and deep networks as a function of the number of training epochs.

Figure 5.9: The average performance of ReLU and SeLU activation functions
for shallow and deep networks.

5.5.3 Skip Connections

Another mechanism which have contributed to the successful implementation
of deeper networks is skip connection. Apart from facilitating more efficient
neural network training, skip connections have been found to alleviate the
degradation problem, thereby improving the prediction performance of deep
neural networks. Skip connections are often also used to combine different
orders of feature interactions. Using this mechanism, elementwise addition (or
other concatenation functions) may be used in order to combine input and
output before and after a linear layer. In our empirical work, we investigate
the performances of both a shallow (with 2 hidden layers) and a deep network

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 103

(with 6 hidden layers) using skip connections. The results are summarised in
Figure 5.10 and in Figure 5.11, where the average (over each fold) loss and
accuracy is plotted for each epoch and for the final model, respectively. The
models with skip connections are indicated by “residual=True” in the figure
legend and “residual=False” otherwise. On average, the deeper neural network
with skip connections performed slightly better on the validation data, but
once again, performances of the different networks are very similar. At this
stage we therefore recommend the simpler design of not using skip connections.

Figure 5.10: Average performance at each epoch for shallow and deep neural
networks, with and without skip connections.

Figure 5.11: Overall performance of the skip connections used in a shallow and
deep neural network.

5.6 Sample Efficiency
In the next experiment we investigate the effect of the number of samples on
the prediction performance of a neural network. Therefore, the network was

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 104

optimised using training dataset of sizes of 1000, 2000, 4000, 8000, 16000 and
32000. The results are reported in Figure 5.12. As expected, the network
performs better with an increase in the training set size, where the enhancements
in performance diminishes in the case of higher sample size values.

Figure 5.12: Effect of the number of training samples on the performance of
neural networks.

5.6.1 Data Augmentation

From the literature review in Chapter 3, mixup augmentation emerged as
seemingly the most promising form of data augmentation. In this experiment
we wanted to investigate the way in which the application of mixup (own
implementation), using various mixup ratios, influences the performance of
neural networks on the Adult dataset. Since data augmentation also acts as a
form of regularisation, we also wanted to investigate the interaction between
weight decay and mixup ratios. We experimented with mixup α-ratios of 0 and
0.4, and with weight decays of [10−5, 10−3] in a neural network with 3 hidden
layers, consisting of 200 units each. The results of the experiment are displayed
in Figure 5.13 and in Figure 5.14.

The results indicate that mixup is not improving either the validation loss
or the accuracy of the models. The observed interaction between mixup and
weight decay is an interesting aspect of the experiment. Whereas one might
expect the use of mixup to reduce the need for weight decay and vice versa,
this notion is not supported by our results. Although from the literature mixup
seems to be a promising technique, its success seems to be domain specific.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 105

Our suggestion would be that for tabular data, mixup should only be used
when interpolating between samples makes sense.

Figure 5.13: Average performance of models using various mixup and weight
decay parameters.

Figure 5.14: Performance per epoch for models with different weight decays
and mixup ratios.

5.6.2 Unsupervised Pretraining

In our final experiment, we investigated whether or not the use of DAEs in
unsupervised pretraining yield output which may be beneficial to a (supervised)
neural network for tabular data. Therefore, we trained a DAE with swap noise
(own implementation) for 15 epochs on the Adult dataset. We set the swap noise
proportion equal to 15%, and the DAE had 3 hidden layers consisting of 500
units each. The learned weights were subsequently carried over to a supervised
learning network, where the latter also comprised 3 hidden layers consisting of
500 units each. Note that the supervised network had a different output layer
than that of the DAE. Therefore, we first kept the transferred weights fixed,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 106

and trained only the last layer of the supervised learning network. This is
done in order to initialise the network weights. Otherwise, if we simultaneously
trained all the weights from the start, random weights to the output layer might
have interfered with learned weights in the hidden layers. Once the output
layer is initialised with this process, we may train all layers of the network
simultaneously. This final stage of training is showed in Figure 5.15, where we
compare it to the final stage of training of a model without pretraining. In
terms of both accuracy and validation loss, we see that the pretrained model
has an advantage over the classifier that was trained-from-scratch. The above
result makes sense, since the pretrained model does not have to start from a
random initialisation. However as expected, as training continues, this gaps
gradually decreases.

Since there are still so many avenues to explore for unsupervised pretraining
with DAEs, we do not believe these results to be conclusive. We do not yet
know the best way to design DAEs in terms of their network architectures,
the amount of noise injected, and the lengths of training cycles. Furthermore,
investigation into the preferred way of transferring the learned knowledge from
a DAE to the supervised classifier, remains outstanding. The results of this
basic implementation seems to indicate that the use of unsupervised pretraining
in the context of tabular data warrants further exploration.

Figure 5.15: The effect of unsupervised pretraining on supervised classification
for tabular data.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS 107

5.7 Summary
This chapter was devoted to a discussion of the empirical work that was done
in order to test some of the latest successful mechanisms in the field of deep
learning. Specifically, application of these methodologies were investigated in
the context of tabular data.

Fairly disappointingly, in all 9 experiments, we did not find significant
differences between the performances of the techniques considered. Therefore,
regarding preferences with respect to methodologies for appropriate input
representation, for learning from feature interactions and for leveraging sample
efficiency, no clear recommendations could unfortunately be made.

Our one hypothesis is that the Adult dataset does not lend itself to more
advanced modelling techniques and that the basic neural network is close to
the best one can get. Our other concern is that the greedy fashion of our
hyperparameter selection has limited the various approaches. Since it was not
feasible to tune the required parameters for all models in all folds, we selected
a set of parameters from initial experiments and used them for most of the
experiments. But since these parameters are so inter-connected, changing one
already means that the others are not optimal anymore. We were aware of this
limitation from the start, but we still do not know however to what extent it
influenced our results.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Conclusion

In this study we set out to investigate a relatively under-explored area of deep
learning, viz. the application of deep learning approaches to tabular datasets.
We reviewed the best approaches for this task, and through empirical work,
aimed to gain a better understanding of each of the proposed methodologies.
In order to explore deep learning for tabular data, we provided an overview of
neural networks and discussed modern advancements in the deep learning field.
Some of the modern proposals could then be identified as potentially useful in
the context of tabular data.

This chapter provides a summary of our work. In §6.1 the contribution of
each chapter is discussed, and in §6.2, some limitations and avenues towards
possible improvements are indicated.

We conclude the thesis with a section on promising future directions for
research in the field of deep learning for tabular data §6.3.

6.1 Summary
In Chapter 1, the motivation and the objectives of the study were described. It
was stated that deep learning for tabular data is an important topic, but in our
opinion, also one that has not yet received sufficient attention in the literature.
Hence the main issues that need to be addressed in order to make progress
in the field, were highlighted. The chapter also provided an overview of the
fundamentals of Statistical Leaning Theory (SLT), including various learning
paradigms and loss functions; as well as aspects of optimisation and overfitting.
The SLT framework served as background for the problems we aimed to solve.

108

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. CONCLUSION 109

The focus in Chapter 2 included the core concepts in neural networks, and
neural network training. Neurons, layers, activation functions and network ar-
chitectures were described in order to gain an understanding of the mechanics of
neural networks. With regard to neural network training, the backpropogation
and stochastic gradient descent algorithms were introduced, and illustrated by
way of a few examples. The chapter included a brief look at basic regularisation
methods for neural networks, as well as a section on representation learning.
The aim of the latter section was to facilitate insight into the way that a neural
network learns from data, and into what concepts are actually learned. In
summary therefore, the contribution of the chapter was to equip us with the
fundamentals of neural networks in order to grasp the ideas underlying modern
developments in deep learning.

The topic in Chapter 3 was deep learning. The aim of the chapter was to
provide insight into the methodologies enabling deep learning to be successful
in the NLP and computer vision fields. This provided a good starting point for
contemplating ways of improving deep learning for tabular data. The chapter
started with an introduction to autoencoders and the concept of using them
for unsupervised pretraining in transfer learning. We also discussed the use of
data augmentation and dropout as highly effective regularisation techniques.
This was followed by a review of the more modern layers and architecture
designs in deep learning, which included normalisation layers, skip connections,
embeddings and the attention mechanism. The chapter included a section on
the concept of superconvergence. Here we discussed the 1cycle policy and more
effective hyperparameter selection as ways in which superconvergence may be
achieved. We concluded with a brief discussion (and examples) of both neural
network specific and model agnostic tools that may be used to interpret deep
neural networks.

Chapter 4 was devoted to the topic of deep learning for tabular data. This
chapter entailed a review of recent contributions with regard to the application
of deep neural networks to tabular data. As stated in Chapter 1, the review
was guided by the main challenges posed by tabular data in this context. We
explored various ways of preprocessing continuous features, and of optimally
embedding and presenting categorical features. We also investigated approaches
towards encouraging networks to learn better feature interactions. These
included the use of attention modules and cross-features. In terms of training
deeper neural networks for more complext feature learning, the SeLU activation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. CONCLUSION 110

function was discussed, along with the use of skip connections. Subsequently, we
described several approaches towards making deep neural networks more sample
efficient. In this section we focused on denoising autoencoders, and on data
augmentation techniques such as swap noise and mixup augmentation. The
penultimate section described ways of interpreting neural networks for tabular
data, and provided an illustration of interpretation by means of knowledge
distillation. We concluded with an empirical investigation of superconvergence
in the context of tabular data. Hence, Chapter 4 contributed to the technical
understanding necessary for tackling challenges in deep learning for tabular
data.

Our empirical work is summarised in Chapter 5. The experiments reported
on, complement the exploratory study of deep learning for tabular data. We
attempted to answer three main questions, viz. which approach to use for input
representation, for inferring feature interactions, and for enhancing sample
efficiency. In the input representation experiments, we evaluated the effect of
entity embedding sizes on the performance of neural networks. With regard
to feature interactions, we experimented with the attention mechanism, along
with use of the SeLU activation function, and of skip connections. Finally, in
the sample efficiency section, we attempted to gage the sensitivity of neural
networks to the number of training samples. We tested the use of unsupervised
pretraining towards alleviating this sensitivity, and investigated the use of
mixup- and swap noise data augmentation as a means to prevent overfitting.

6.2 Limitations
There are various aspects that limited the impact of this study. In this regard,
there were two main obstacles which we needed to overcome:

• Access to large compute: Deep learning techniques are notorious for
the computing power they require. We had limited access to cloud com-
puting providers on which some of the experiments were done. Therefore,
most experiments were conducted on a small personal machine without a
graphical processing unit (GPU). This significantly increased the running
time of the experiments, and hindered rapid execution of the various
approaches. In future one would want to ensure sufficient computing
power to be available, enabling higher quality empirical work.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. CONCLUSION 111

• Access to quality code: At the time of writing, many of the recent
developments discussed in this thesis were not accompanied by any official
implementation. This forced us to rewrite much of the code that was used
to validate the results reported in the literature in order to be able to
apply it to our data and models. Sometimes important technical details
were omitted from the original papers. This called for some improvisation
in order to obtain working examples. Unfortunately this approach brings
with it the risk of unintentionally departing from the original intention
of some of the proposed methodologies.

Further limitations were:

• Experiments on a single dataset: Due to the technical limitations
mentioned above, we only had capacity to process a single dataset in our
empirical study. This rendered our findings to be inconclusive, although
we believe there still to be value in our exploratory study. The possibility
remains that the strength of the signal in the Adult data does not make
the use of this particular dataset amenable to demonstrating the full
power of deep learning approaches. Naturally, repeating experimentation
on datasets with different properties, and to applications with different
tasks, would have facilitated clearer recommendations with regard to the
questions that arise during implementation of deep learning for tabular
data. Such an extention is possible, since we have made all or our code
available on-line.

• Based on pre-prints: Deep learning is such a fast developing area
of research and in an attempt to keep this work relevant, pre-prints of
publications were cited. Pre-prints are of course not peer-reviewed and
subject to change. We did our best to critically evaluate the work cited,
and to confirm findings with our own experiments. Although we tried to
keep up with the deluge of publications that are currently available, there
remains a possibility that new publications arised during the post-review
phase of the study.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. CONCLUSION 112

6.3 Future Directions
With a view to future research directions, in this final section we would like to
point the reader to the potential of using generative models in the context of
deep learning for tabular data. More specifically, it might be worthwhile to
study variational autoencoders (Kingma and Welling, 2013) and Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014). We propose studying
VAEs as a means to perform more effective unsupervised pretraining, and we
believe GANs to offer a good alternative to generating new training samples.
In conclusion, therefore, a brief overview of VAEs and GANs follows below.

VAEs provide a probabilistic manner of describing observations in a latent
space. That is, instead of using a single value to describe an attribute in the
latent space, as is the cases with standard autoencoders, VAEs use probability
distributions to describe a latent space attribute. When using DAEs for
unsupervised pretraining, we have seen that they need to be injected with some
noise. However, we have seen that neither of the two best noise schemes that
we could find (viz. swap noise and blank-out), makes complete sense in the
tabular dataset environment. We postulate that VAEs may provide a more
robust way of doing unsupervised pretraining, since its decoding function learns
probabilistic output. Thus, it is not reliant on noise injection. In addition, once
trained, the latent probabilistic distribution of VAE can be used to generate
additional training samples.

GANs consist of two neural networks, viz. a generator (G) and a discrim-
inator (D). Given random noise as input, the task given to G is to generate
artificial samples of the data that are indistinguishable from a set of genuine
training samples. The task assigned to D is to attempt to discriminate between
the artificial and genuine samples. GANs have shown tremendous value in data
synthesis, especially in the domains of computer vision and speech synthesis,
producing lifelike faces (Karras et al., 2017) and voices (Donahue et al., 2018).
We postulate that GANs may be able to achieve similar successes in data
synthesis for tabular data, which may be used to artificially enlarge training
datasets for supervised learning.

Stellenbosch University https://scholar.sun.ac.za

Appendices

113

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Hyperparameter Search

A.1 Width and Depth of Network
This is a very common hyperparameter to train, for exmaple, done by (Guo
et al., 2017; Qu et al., 2016; Zhang et al., 2016). Here we investigate the effect of
the size of the network on the different datasets. We compare the performance
of the models at different numbers and sizes of layers. Larger networks are
more flexible and therefore we expect it to act similarly to any learning model
flexibility parameter. Increasing the network size will be beneficial up until
a certrain point until it becomes too big and be more prone to overfitting.
We also want to get a feel for how important these hyperparameters are. On
the Adult dataset we experimented with layer depths of 1, 3, 6 and 12, and
layer widths of 32, 128, 512, 2048. Note, we give all layers the same width
as this is found to work good enough in practice (Guo et al., 2017, Qu et al.
(2016), Zhang et al. (2016)). The results of the experiment are displayed in
Figure A.1. The results are mixed between the accuracy and the validation
loss and there is not much separating any of the models. The 3 layer network
seemed consistently outperform the other networks in terms of accuracy. We
observe that increasing layer width reaches a point of diminishing returns. For
the sake of simplicity we would recommend to use a 3-layer network with either
128 or 512 units.

114

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. HYPERPARAMETER SEARCH 115

Figure A.1: Effect of the layer width and network depth on the performance
on the Adult dataset.

A.2 Dropout
Dropout is almost always used in deep learning and it is a typical parameter
to tune before modelling. We wanted to find out what the best dropout ratio
is for our models and how the performance varies over different values. We
tested dropout proportions of [0.1,0.3,0.5,0.7,0.9] on a wide and narrow network
respectively. The results are given in Figure A.2. From these results we see that
any dropout ratio between 0.2 and 0.5 will suffice for both types of networks.

Figure A.2: The effect of dropout on wide and narrow neural networks.

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Software and Code

B.1 Development Environment
• Deep Learning Libraries: Pytorch and Fastai

• Hardware:

– MacBook Air (2017)
– Cloud Providers: AWS EC21, SalamanderAI2, Google Compute

Engine3.

• Programming Language: Python

• github for version control

• RMarkdown for writing and compiling the thesis document

B.2 Code and Reproducibility
Note that all of the code used in the thesis, including the source documents, is
made available in the tabularLearner Github repository 4. More instructions
on how to implement the code is contained in the file named README.md, in
the repository.

1https://aws.amazon.com/ec2/
2https://salamander.ai/
3https://cloud.google.com/compute/
4https://github.com/jandremarais/tabularLearner

116

Stellenbosch University https://scholar.sun.ac.za

https://aws.amazon.com/ec2/
https://salamander.ai/
https://cloud.google.com/compute/
https://github.com/jandremarais/tabularLearner

Bibliography

Alain, G. and Bengio, Y. (2014). What regularized auto-encoders learn from the
data-generating distribution. The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 3563–3593.

Ba, L.J. and Caurana, R. (2013). Do deep nets really need to be deep? CoRR, vol.
abs/1312.6184. 1312.6184.
Available at: http://arxiv.org/abs/1312.6184

Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. CoRR, vol. abs/1409.0473. 1409.0473.
Available at: http://arxiv.org/abs/1409.0473

Battenberg, E., Chen, J., Child, R., Coates, A., Gaur, Y., Li, Y., Liu, H., Satheesh,
S., Seetapun, D., Sriram, A. and Zhu, Z. (2017). Exploring neural transducers for
end-to-end speech recognition. CoRR, vol. abs/1707.07413. 1707.07413.
Available at: http://arxiv.org/abs/1707.07413

Bengio, Y., Boulanger-Lewandowski, N. and Pascanu, R. (2012). Advances in
optimizing recurrent networks. CoRR, vol. abs/1212.0901. 1212.0901.
Available at: http://arxiv.org/abs/1212.0901

Bengio, Y., Courville, A. and Vincent, P. (2013 Aug). Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1798–1828. ISSN 0162-8828.

Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In: Advances in Neural Information Processing Systems
19, pp. 153–160. MIT Press.

Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics, vol. 59, no. 4-5, pp. 291–294.

Breiman, L. (2001). Random forests. Machine learning, vol. 45, no. 1, pp. 5–32.

117

Stellenbosch University https://scholar.sun.ac.za

1312.6184
http://arxiv.org/abs/1312.6184
1409.0473
http://arxiv.org/abs/1409.0473
1707.07413
http://arxiv.org/abs/1707.07413
1212.0901
http://arxiv.org/abs/1212.0901

BIBLIOGRAPHY 118

Cauchy, A. (1847). Méthode générale pour la résolution des systèmes d’équations
simultanées. pp. 536–538.

Chapelle, O., Weston, J., Bottou, L. and Vapnik, V. (2001). Vicinal risk minimiza-
tion. In: Leen, T.K., Dietterich, T.G. and Tresp, V. (eds.), Advances in Neural
Information Processing Systems 13, pp. 416–422. MIT Press.
Available at: http://papers.nips.cc/paper/1876-vicinal-risk-minimization.pdf

Che, Z., Purushotham, S., Khemani, R.G. and Liu, Y. (2016). Interpretable deep
models for icu outcome prediction. AMIA ... Annual Symposium proceedings.
AMIA Symposium, vol. 2016, pp. 371–380.

Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson,
G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu,
X. and Shah, H. (2016a). Wide & deep learning for recommender systems. CoRR,
vol. abs/1606.07792. 1606.07792.
Available at: http://arxiv.org/abs/1606.07792

Cheng, J., Dong, L. and Lapata, M. (2016b). Long short-term memory-networks for
machine reading. CoRR, vol. abs/1601.06733. 1601.06733.
Available at: http://arxiv.org/abs/1601.06733

Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B. and LeCun, Y. (2014). The
loss surface of multilayer networks. CoRR, vol. abs/1412.0233. 1412.0233.
Available at: http://arxiv.org/abs/1412.0233

Clevert, D.-A., Unterthiner, T. and Hochreiter, S. (2015 November). Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). ArXiv
e-prints. 1511.07289.

Covington, P., Adams, J. and Sargin, E. (2016). Deep neural networks for youtube
recommendations. In: Proceedings of the 10th ACM Conference on Recommender
Systems. New York, NY, USA.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314.

de Brébisson, A., Simon, É., Auvolat, A., Vincent, P. and Bengio, Y. (2015). Artificial
neural networks applied to taxi destination prediction. CoRR, vol. abs/1508.00021.
1508.00021.
Available at: http://arxiv.org/abs/1508.00021

Stellenbosch University https://scholar.sun.ac.za

http://papers.nips.cc/paper/1876-vicinal-risk-minimization.pdf
1606.07792
http://arxiv.org/abs/1606.07792
1601.06733
http://arxiv.org/abs/1601.06733
1412.0233
http://arxiv.org/abs/1412.0233
1511.07289
1508.00021
http://arxiv.org/abs/1508.00021

BIBLIOGRAPHY 119

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Donahue, C., McAuley, J. and Puckette, M. (2018). Synthesizing audio with generat-
ive adversarial networks. arXiv preprint arXiv:1802.04208.

Duchi, J., Hazan, E. and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159.

Duong, L., Anastasopoulos, A., Chiang, D., Bird, S. and Cohn, T. (2016). An
attentional model for speech translation without transcription. In: Proceedings
of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 949–959.

Emin, O. and Xaq, P. (2018). Skip connections eliminate singularities. In: Interna-
tional Conference on Learning Representations.

Erhan, D., Bengio, Y., Courville, A. and Vincent, P. (2009). Visualizing higher-layer
features of a deep network.

Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014). Do we
need hundreds of classifiers to solve real world classification problems? Journal of
Machine Learning Research, vol. 15, pp. 3133–3181.
Available at: http://jmlr.org/papers/v15/delgado14a.html

Fridman, L., Brown, D.E., Glazer, M., Angell, W., Dodd, S., Jenik, B., Terwilliger,
J., Kindelsberger, J., Ding, L., Seaman, S., Abraham, H., Mehler, A., Sipperley,
A., Pettinato, A., Seppelt, B., Angell, L., Mehler, B. and Reimer, B. (2017). MIT
autonomous vehicle technology study: Large-scale deep learning based analysis
of driver behavior and interaction with automation. CoRR, vol. abs/1711.06976.
1711.06976.
Available at: http://arxiv.org/abs/1711.06976

Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of statistics, pp. 1189–1232.

Friedman, J.H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of
the American statistical Association, vol. 76, no. 376, pp. 817–823.

Frosst, N. and Hinton, G.E. (2017). Distilling a neural network into a soft decision
tree. CoRR, vol. abs/1711.09784. 1711.09784.
Available at: http://arxiv.org/abs/1711.09784

Stellenbosch University https://scholar.sun.ac.za

http://jmlr.org/papers/v15/delgado14a.html
1711.06976
http://arxiv.org/abs/1711.06976
1711.09784
http://arxiv.org/abs/1711.09784

BIBLIOGRAPHY 120

Gatys, L.A., Ecker, A.S. and Bethge, M. (2015). A neural algorithm of artistic style.
CoRR, vol. abs/1508.06576. 1508.06576.
Available at: http://arxiv.org/abs/1508.06576

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. (2014). Generative adversarial nets. In: Advances in
neural information processing systems, pp. 2672–2680.

Guo, C. and Berkhahn, F. (2016). Entity embeddings of categorical variables. CoRR,
vol. abs/1604.06737. 1604.06737.
Available at: http://arxiv.org/abs/1604.06737

Guo, H., Tang, R., Ye, Y., Li, Z. and He, X. (2017). Deepfm: A factorization-machine
based neural network for CTR prediction. CoRR, vol. abs/1703.04247. 1703.04247.
Available at: http://arxiv.org/abs/1703.04247

Haldar, M., Abdool, M., Ramanathan, P., Xu, T., Yang, S., Duan, H., Zhang,
Q., Barrow-Williams, N., Turnbull, B.C., Collins, B.M. and Legrand, T. (2018
October). Applying Deep Learning To Airbnb Search. ArXiv e-prints. 1810.09591.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The elements of statistical
learning: data mining, inference and prediction. 2nd edn. Springer.
Available at: http://www-stat.stanford.edu/~tibs/ElemStatLearn/

He, K., Zhang, X., Ren, S. and Sun, J. (2015a). Deep residual learning for image
recognition. CoRR, vol. abs/1512.03385. 1512.03385.
Available at: http://arxiv.org/abs/1512.03385

He, K., Zhang, X., Ren, S. and Sun, J. (2015b). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. CoRR, vol. abs/1502.01852.
1502.01852.
Available at: http://arxiv.org/abs/1502.01852

He, K., Zhang, X., Ren, S. and Sun, J. (2016 10). Identity mappings in deep residual
networks. vol. 9908, pp. 630–645.

Hinton, G., Vinyals, O. and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531.

Hinton, G.E. (1990). Connectionist learning procedures. In: Machine learning, pp.
555–610. Elsevier.

Stellenbosch University https://scholar.sun.ac.za

1508.06576
http://arxiv.org/abs/1508.06576
http://www.deeplearningbook.org
1604.06737
http://arxiv.org/abs/1604.06737
1703.04247
http://arxiv.org/abs/1703.04247
1810.09591
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
1512.03385
http://arxiv.org/abs/1512.03385
1502.01852
http://arxiv.org/abs/1502.01852

BIBLIOGRAPHY 121

Hinton, G.E., Osindero, S. and Teh, Y.-W. (2006 July). A fast learning algorithm for
deep belief nets. Neural Comput., vol. 18, no. 7, pp. 1527–1554. ISSN 0899-7667.
Available at: http://dx.doi.org/10.1162/neco.2006.18.7.1527

Hinton, G.E. and Salakhutdinov, R.R. (2006). Reducing the dimensionality of data
with neural networks. science, vol. 313, no. 5786, pp. 504–507.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
CoRR, vol. abs/1207.0580.
Available at: http://arxiv.org/abs/1207.0580

Hinton, G.E. and Zemel, R.S. (1994). Autoencoders, minimum description length
and helmholtz free energy. In: Advances in neural information processing systems,
pp. 3–10.

Howard, J. and Ruder, S. (2018). Fine-tuned language models for text classification.
arXiv preprint arXiv:1801.06146.

Hu, J., Shen, L. and Sun, G. (2017). Squeeze-and-excitation networks. CoRR, vol.
abs/1709.01507. 1709.01507.
Available at: http://arxiv.org/abs/1709.01507

Huang, F., Ash, J., Langford, J. and Schapire, R. (2017). Learning deep resnet
blocks sequentially using boosting theory. arXiv preprint arXiv:1706.04964.

Huang, G., Liu, Z. and Weinberger, K.Q. (2016). Densely connected convolutional
networks. CoRR, vol. abs/1608.06993. 1608.06993.
Available at: http://arxiv.org/abs/1608.06993

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, vol. abs/1502.03167.
Available at: http://arxiv.org/abs/1502.03167

Ivakhnenko, A. and Lapa, V. (1966). Cybernetic Predicting Devices. JPRS 37, 803.
Purdue University School of Electrical Engineering.
Available at: https://books.google.co.za/books?id=l38DHQAACAAJ

Karras, T., Aila, T., Laine, S. and Lehtinen, J. (2017). Progressive growing of
gans for improved quality, stability, and variation. CoRR, vol. abs/1710.10196.
1710.10196.
Available at: http://arxiv.org/abs/1710.10196

Stellenbosch University https://scholar.sun.ac.za

http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://arxiv.org/abs/1207.0580
1709.01507
http://arxiv.org/abs/1709.01507
1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167
https://books.google.co.za/books?id=l38DHQAACAAJ
1710.10196
http://arxiv.org/abs/1710.10196

BIBLIOGRAPHY 122

Kingma, D.P. and Ba, J. (2014). Adam: A method for stochastic optimization.
CoRR, vol. abs/1412.6980. 1412.6980.
Available at: http://arxiv.org/abs/1412.6980

Kingma, D.P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S. (2017). Self-normalizing
neural networks. CoRR, vol. abs/1706.02515. 1706.02515.
Available at: http://arxiv.org/abs/1706.02515

Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: a decision-tree
hybrid. Citeseer.

Kosar, R. and Scott, D.W. (2018 January). The Hybrid Bootstrap: A Drop-in
Replacement for Dropout. ArXiv e-prints. 1801.07316.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). Imagenet classification with
deep convolutional neural networks. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems, NIPS’12, pp. 1097–1105.
Curran Associates Inc., USA.
Available at: http://dl.acm.org/citation.cfm?id=2999134.2999257

Larochelle, H., Bengio, Y., Louradour, J. and Lamblin, P. (2009). Exploring strategies
for training deep neural networks. Journal of machine learning research, vol. 10,
no. Jan, pp. 1–40.

Lecun, Y. (1987 6). PhD thesis: Modeles connexionnistes de l’apprentissage (connec-
tionist learning models). Universite P. et M. Curie (Paris 6).

Lecun, Y., Bengio, Y. and Hinton, G. (2015 5). Deep learning. Nature, vol. 521, no.
7553, pp. 436–444. ISSN 0028-0836.

Lee, H., Chaitanya, E. and Andrew, N. (2008). Sparse deep belief net model for visual
area v2. In: Platt, J.C., Koller, D., Singer, Y. and Roweis, S.T. (eds.), Advances
in Neural Information Processing Systems 20, pp. 873–880. Curran Associates,
Inc.

Li, M., Zhang, T., Chen, Y. and Smola, A.J. (2014). Efficient mini-batch training for
stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pp. 661–670.
ACM, New York, NY, USA. ISBN 978-1-4503-2956-9.
Available at: http://doi.acm.org/10.1145/2623330.2623612

Stellenbosch University https://scholar.sun.ac.za

1412.6980
http://arxiv.org/abs/1412.6980
1706.02515
http://arxiv.org/abs/1706.02515
1801.07316
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://doi.acm.org/10.1145/2623330.2623612

BIBLIOGRAPHY 123

Lundberg, S. and Lee, S. (2017). A unified approach to interpreting model predictions.
CoRR, vol. abs/1705.07874. 1705.07874.
Available at: http://arxiv.org/abs/1705.07874

Maas, A.L., Hannun, A.Y. and Ng, A.Y. (2013). Rectifier nonlinearities improve
neural network acoustic models.

Makhzani, A. and Frey, B. (2013). k-sparse autoencoders. CoRR, vol. abs/1312.5663.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J. and Khudanpur, S. (2010).
Recurrent neural network based language model. In: Eleventh Annual Conference
of the International Speech Communication Association.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In: Advances in
neural information processing systems, pp. 3111–3119.

Miotto, R., Li, L., Kidd, B.A. and Dudley, J.T. (2016). Deep patient: An unsupervised
representation to predict the future of patients from the electronic health records.
In: Scientific reports.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and
Riedmiller, M.A. (2013). Playing atari with deep reinforcement learning. CoRR,
vol. abs/1312.5602.
Available at: http://arxiv.org/abs/1312.5602

Mogren, O. (2016). C-RNN-GAN: continuous recurrent neural networks with ad-
versarial training. CoRR, vol. abs/1611.09904.
Available at: http://arxiv.org/abs/1611.09904

Perez, L. and Wang, J. (2017). The effectiveness of data augmentation in image
classification using deep learning. CoRR, vol. abs/1712.04621. 1712.04621.
Available at: http://arxiv.org/abs/1712.04621

Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y. and Wang, J. (2016). Product-
based neural networks for user response prediction. CoRR, vol. abs/1611.00144.
1611.00144.
Available at: http://arxiv.org/abs/1611.00144

Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Liu, P.J., Liu, X., Sun, M.,
Sundberg, P., Yee, H., Zhang, K., Duggan, G.E., Flores, G., Hardt, M., Irvine, J.,
Le, Q.V., Litsch, K., Marcus, J., Mossin, A., Tansuwan, J., Wang, D., Wexler, J.,
Wilson, J., Ludwig, D., Volchenboum, S.L., Chou, K., Pearson, M., Madabushi,

Stellenbosch University https://scholar.sun.ac.za

1705.07874
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1611.09904
1712.04621
http://arxiv.org/abs/1712.04621
1611.00144
http://arxiv.org/abs/1611.00144

BIBLIOGRAPHY 124

S., Shah, N.H., Butte, A.J., Howell, M., Cui, C., Corrado, G. and Dean, J. (2018).
Scalable and accurate deep learning for electronic health records. CoRR, vol.
abs/1801.07860. 1801.07860.
Available at: http://arxiv.org/abs/1801.07860

Ranzato, M., Poultney, C., Chopra, S. and LeCun, Y. (2006). Efficient learning
of sparse representations with an energy-based model. In: Proceedings of the
19th International Conference on Neural Information Processing Systems, pp.
1137–1144. MIT Press, Cambridge.

Rendle, S. (2010). Factorization machines. In: Data Mining (ICDM), 2010 IEEE
10th International Conference on, pp. 995–1000. IEEE.

Rifai, S., Vincent, P., Muller, X., Glorot, X. and Bengio, Y. (2011). Contractive
auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the
28th International Conference on International Conference on Machine Learning,
pp. 833–840. Omnipress.

Rosenblatt, F. (1962). Principles of neurodynamics: perceptrons and the theory of
brain mechanisms. Report (Cornell Aeronautical Laboratory). Spartan Books.
Available at: https://books.google.ca/books?id=7FhRAAAAMAAJ

Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR,
vol. abs/1609.04747. 1609.04747.
Available at: http://arxiv.org/abs/1609.04747

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1988). Neurocomputing: Found-
ations of research. chap. Learning Representations by Back-propagating Errors,
pp. 696–699. MIT Press, Cambridge, MA, USA. ISBN 0-262-01097-6.
Available at: http://dl.acm.org/citation.cfm?id=65669.104451

Rumelhart, D.E. and McClelland, J.L. (1986). Parallel distributed processing:
explorations in the microstructure of cognition.

Sarikaya, R. (2017 Jan). The technology behind personal digital assistants: An
overview of the system architecture and key components. IEEE Signal Processing
Magazine, vol. 34, no. 1, pp. 67–81. ISSN 1053-5888.

Schafer, J.L. and Graham, J.W. (2002). Missing data: our view of the state of the
art. Psychological methods, vol. 7, no. 2, p. 147.

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. et al.
(2017). Grad-cam: Visual explanations from deep networks via gradient-based
localization. In: ICCV, pp. 618–626.

Stellenbosch University https://scholar.sun.ac.za

1801.07860
http://arxiv.org/abs/1801.07860
https://books.google.ca/books?id=7FhRAAAAMAAJ
1609.04747
http://arxiv.org/abs/1609.04747
http://dl.acm.org/citation.cfm?id=65669.104451

BIBLIOGRAPHY 125

Shavitt, I. and Segal, E. (2018 May). Regularization Learning Networks: Deep
Learning for Tabular Datasets. ArXiv e-prints. 1805.06440.

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D.
and Wang, Z. (2016). Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1874–1883.

Shickel, B., Tighe, P., Bihorac, A. and Rashidi, P. (2017). Deep EHR: A survey of
recent advances on deep learning techniques for electronic health record (EHR)
analysis. CoRR, vol. abs/1706.03446. 1706.03446.
Available at: http://arxiv.org/abs/1706.03446

Shimodaira, H. (2000). Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of Statistical Planning and Inference,
vol. 90, no. 2, pp. 227 – 244. ISSN 0378-3758.
Available at: http://www.sciencedirect.com/science/article/pii/
S0378375800001154

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A. et al. (2017). Mastering the game of go
without human knowledge. Nature, vol. 550, no. 7676, p. 354.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. CoRR, vol. abs/1409.1556. 1409.1556.
Available at: http://arxiv.org/abs/1409.1556

Smith, L.N. (2017). Cyclical learning rates for training neural networks. In: 2017
IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–
472. IEEE.

Smith, L.N. (2018). A disciplined approach to neural network hyper-parameters:
Part 1 - learning rate, batch size, momentum, and weight decay. CoRR, vol.
abs/1803.09820. 1803.09820.
Available at: http://arxiv.org/abs/1803.09820

Smith, L.N. and Topin, N. (2017). Super-convergence: Very fast training of residual
networks using large learning rates. CoRR, vol. abs/1708.07120. 1708.07120.
Available at: http://arxiv.org/abs/1708.07120

Socher, R., Pennington, J., Huang, E.H., Ng, A.Y. and Manning, C.D. (2011).
Semi-supervised recursive autoencoders for predicting sentiment distributions. In:

Stellenbosch University https://scholar.sun.ac.za

1805.06440
1706.03446
http://arxiv.org/abs/1706.03446
http://www.sciencedirect.com/science/article/pii/S0378375800001154
http://www.sciencedirect.com/science/article/pii/S0378375800001154
1409.1556
http://arxiv.org/abs/1409.1556
1803.09820
http://arxiv.org/abs/1803.09820
1708.07120
http://arxiv.org/abs/1708.07120

BIBLIOGRAPHY 126

Proceedings of the conference on empirical methods in natural language processing,
pp. 151–161. Association for Computational Linguistics.

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M. and Tang, J. (2018).
Autoint: Automatic feature interaction learning via self-attentive neural networks.
CoRR, vol. abs/1810.11921. 1810.11921.
Available at: http://arxiv.org/abs/1810.11921

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal of
machine learning research, vol. 15, no. 1, pp. 1929–1958.

Srivastava, R.K., Greff, K. and Schmidhuber, J. (2015). Training very deep networks.
In: Advances in Neural Information Processing Systems 28, pp. 2377–2385.

Sun, Y., Wang, X. and Tang, X. (2014). Deeply learned face representations are
sparse, selective, and robust. CoRR, vol. abs/1412.1265. 1412.1265.
Available at: http://arxiv.org/abs/1412.1265

Utgoff, P. and Stracuzzi, D. (2002). Many-layered learning. Neural Computation,
vol. 14, no. 10, pp. 2497–2529.

Van Der Maaten, L., Chen, M., Tyree, S. and Weinberger, K.Q. (2013). Learning with
marginalized corrupted features. In: Proceedings of the 30th International Confer-
ence on International Conference on Machine Learning - Volume 28, ICML’13,
pp. I–410–I–418. JMLR.org.
Available at: http://dl.acm.org/citation.cfm?id=3042817.3042865

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L. and Polosukhin, I. (2017). Attention is all you need. CoRR, vol. abs/1706.03762.
1706.03762.
Available at: http://arxiv.org/abs/1706.03762

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In: Proceedings of the
25th International Conference on Machine Learning, ICML ’08, pp. 1096–1103.
ACM, New York, NY, USA. ISBN 978-1-60558-205-4.
Available at: http://doi.acm.org/10.1145/1390156.1390294

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.-A. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with a
local denoising criterion. Journal of machine learning research, vol. 11, no. Dec,
pp. 3371–3408.

Stellenbosch University https://scholar.sun.ac.za

1810.11921
http://arxiv.org/abs/1810.11921
1412.1265
http://arxiv.org/abs/1412.1265
http://dl.acm.org/citation.cfm?id=3042817.3042865
1706.03762
http://arxiv.org/abs/1706.03762
http://doi.acm.org/10.1145/1390156.1390294

BIBLIOGRAPHY 127

Wang, R., Fu, B., Fu, G. and Wang, M. (2017). Deep & cross network for ad click
predictions. CoRR, vol. abs/1708.05123. 1708.05123.
Available at: http://arxiv.org/abs/1708.05123

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X.,
Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G.,
Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O.,
Corrado, G., Hughes, M. and Dean, J. (2016). Google’s neural machine translation
system: Bridging the gap between human and machine translation. CoRR, vol.
abs/1609.08144. 1609.08144.
Available at: http://arxiv.org/abs/1609.08144

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel, R.S.
and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation
with visual attention. CoRR, vol. abs/1502.03044. 1502.03044.
Available at: http://arxiv.org/abs/1502.03044

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. and Lipson, H. (2015). Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.06579.

Zeiler, M.D. and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In: European conference on computer vision, pp. 818–833. Springer.

Zhang, H., Cissé, M., Dauphin, Y.N. and Lopez-Paz, D. (2017). mixup: Beyond
empirical risk minimization. CoRR, vol. abs/1710.09412. 1710.09412.
Available at: http://arxiv.org/abs/1710.09412

Zhang, W., Du, T. and Wang, J. (2016). Deep learning over multi-field categorical
data: A case study on user response prediction. CoRR, vol. abs/1601.02376.
1601.02376.
Available at: http://arxiv.org/abs/1601.02376

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A. (2016). Learning deep
features for discriminative localization. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2921–2929.

Zhou, G., Song, C., Zhu, X., Fan, Y., Zhu, H., Ma, X., Yan, Y., Jin, J., Li, H. and
Gai, K. (2017 June). Deep Interest Network for Click-Through Rate Prediction.
ArXiv e-prints. 1706.06978.

Stellenbosch University https://scholar.sun.ac.za

1708.05123
http://arxiv.org/abs/1708.05123
1609.08144
http://arxiv.org/abs/1609.08144
1502.03044
http://arxiv.org/abs/1502.03044
1710.09412
http://arxiv.org/abs/1710.09412
1601.02376
http://arxiv.org/abs/1601.02376
1706.06978

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations and/or Acronyms
	Notation
	Introduction
	Deep Learning
	Tabular Data
	Challenges of Deep Learning for Tabular Data
	Overview of Statistical Learning Theory
	Outline

	Neural Networks
	Introduction
	The Structure of a Neural Network
	Neurons and Layers
	Activation Functions
	Size of the Network

	Training a Neural Network
	Weight Initialisation
	Optimisation
	Optimisation Example
	Backpropagation

	Basic Regularisation
	Adaptive Learning Rates
	Representation Learning

	Deep Learning
	Introduction
	Autoencoders
	Transfer Learning
	More Regularisation
	Dropout
	Data Augmentation

	Modern Architectures
	Normalisation
	Skip Connections
	Embeddings
	Attention

	Super-Convergence
	Model Interpretation
	Neural Network Specific
	Model Agnostic

	Deep Learning for Tabular Data
	Introduction
	Input Representation
	Numerical Features
	Categorical Features
	Combining Features

	Learning Feature Interactions
	Attention
	Self-Normalising Neural Networks

	Sample Efficiency
	Data Augmentation
	Unsupervised Pretraining
	Regularisation

	Interpretation
	Hyperparameter Selection

	Experiments
	Introduction
	The Dataset
	General Methodology
	Loss Function and Evaluation Metric
	Cross-validation
	Preprocessing
	Hyperparameter Specification

	Input Representation
	Embedding Size

	Feature Interactions
	Attention
	SeLU Activations
	Skip Connections

	Sample Efficiency
	Data Augmentation
	Unsupervised Pretraining

	Summary

	Conclusion
	Summary
	Limitations
	Future Directions

	Appendices
	Hyperparameter Search
	Width and Depth of Network
	Dropout

	Software and Code
	Development Environment
	Code and Reproducibility

	Bibliography

