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Abstract

Point Spread Function Engineering for Fluorescence
Microscopy

R. Holinirina Dina Miora
Department of Physics,
Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc
March 2018

A tool for biological imaging is developed within this work. It consists of
engineering the point spread function (PSF) of a fluorescent molecule or a
nanoparticle emitter by modulating the phase of the fluorescence emission.
The engineered PSF developed in this current work is called the double helix
point spread function (DH-PSF). Information about the three dimensional
position of an emitter and its orientation can be extracted using this PSF with
a very high precision and accuracy. Other modalities, such as the pyramidal
PSF and the bisected PSF, are also simulated and compared theoretically with
the efficiency of the DH-PSF.
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Uittreksel

Puntverspreidingsfunksie Verstelling in Fluoressensie
Mikroskopie

R. Holinirina Dina Miora
Fisika Departement,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc
Maart 2018

‘n Afbeeldingstegniek vir biologiese materie word in hierdie projek ontwikkel.
Die tegniek behels die verstelling van die puntverspreidingsfunksie (PVF) van
‘n fluoresserende molekuul of nanopartikel deur die fase van die emissie te
moduleer. In die huidige projek word daar gefokus op ‘n spesifieke PVF ge-
naamd, dubbel helix puntverspreidingsfunksie (DH-PVF). Deur die korrekte
toepassing van die DH-PVF is dit moontlik om hoë presisie en akkurate drie
dimensionele posisie asook orientasie inligting van enkel fluoresserende voor-
werpe te bepaal. Verder word daar ook ander modaliteite naamlik piramidale
PVF en verdeelde PVF gesimuleer en met die DH-PVF vergelyk.
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Chapter 1

Introduction

Over the past two decades, progress in super-resolution microscopic techniques
allowed for biological investigations in living cells to nanometer length scales
and milliseconds timescales [1]. This advancement in microscopy meant that
apart from the structural and morphological characterization of cells, intracel-
lular transport mechanism and interaction mapping are now readily investi-
gated [2]. For that reason super-resolution microscopy is currently an essential
tool for all research laboratories in the area of applied biophotonics.

Therefore, the aim of this work is to extend the capabilities of a wide-field flu-
orescence microscope to achieve simultaneous 3D localization, and to find the
orientation of a single emitter with a high accuracy and precision by engineer-
ing the point spread function (PSF) of the emitter light source. A fluorescent
nanoparticle, embedded in a polymer media, is used as emitter source. The
technique consists of modulating the phase of the fluorescence emission of the
emitter using a Fourier processing imaging technique.

The work is divided into three chapters. The first chapter introduces readers
to a theoretical study of wide-field fluorescence microscopy, the propagation
of light, and an introduction to Fourier imaging. A modelisation of the dipole
emission and the phase modulation of the radiation into a double helix point
spread function (DH-PSF) in order to retrieve the axial position of the dipole
is also developed in the first chapter. The second chapter describes the ex-
perimental apparatus for experimental validation of the theory developed in
chapter one. A 4f-type imaging system is used for such kind of experiment and
is coupled with a piezoelectric stage to control the axial position. The sample
preparation and description and calibration are given in details in this chapter.
The third chapter highlights the localization results of single emitters using a
DH-PSF engineering technique. A theoretical study of the Fischer information
matrix is developed to determine the limit of the localization precision. The
lateral and axial position for typical emitters are investigated. Other PSFs:
bisected PSF and pyramidal PSF are illustrated as a path towards improved
optical resolution in fluorescence microscopy.

1
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Chapter 2

Theory

Engineering the emission pattern of a single emitter requires sufficient under-
standing of the generation of light, the propagation of light and the relevant
mathematical models to describe the aforementioned. This section gives a the-
oretical background of a wide-field fluorescence microscopy, electromagnetic
radiation, and an introduction to Fourier imaging.

2.1 Fluorescence microscopy
Fluorescence microscopy is a technique which uses fluorescence properties of
molecules in order to achieve high resolution optical imaging. Fluorescent
molecules are often used in imaging as probes or as dyeing objects for bio-
logical molecules. There are many types of fluorescent objects such as or-
ganic dyes, semiconductor nanoparticles, nanoparticles with size-dependent
optical and physicochemical properties, gold nanoparticles and green fluores-
cent proteins [3]. The terms of use of a specific fluorescent molecule depends
on its optical and physicochemical properties. Physicochemical properties re-
group the size and the ability of the molecule to react with its environment,
while optical properties refer to the interaction of the molecule with an elec-
tromagnetic radiation field such as a laser source. Optical properties consist of
the excitation spectrum, extinction coefficient, emission spectrum, fluorescence
quantum yield (QY), molecular brightness and photostability of the molecule
[4].

In a large number of applications it is required for a fluorescent object to be
photostable. However in practice it is readily observed that the fluorescence
intensity typically shows a steady decline (photobleaching) with time or in
the case of single fluorescent molecules also a rapid on and off (photoblinking)
switching. In order to understand the photo-physical origin of the effects
consider the Jablonski diagram in Figure 2.1. Fluorescence, photobleaching,
and photoblinking are described by the transition between three level states:
singlet state S, triplet state T , and an anion state D. Fluorescence is observed

2
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CHAPTER 2. THEORY 3

between two singlet states. A fluorescent molecule is excited from its ground
state S0 to an excited state S1 when it absorbs light from an external source,
usually called an excitation source. An excited state is an unstable state, thus
the molecule emits fluorescent light in order to reach the stable ground state
S0 [5]. Furthermore, it must be noted that the number of emitted photons in a
fluorescence process is characterized by the quantum yield and the extinction
coefficients of the fluorescent emitter, and the excitation source.

Figure 2.1: Jablonski diagram indicating fluorescence, photobleaching and photo-
blinking electronic state transition. S, T, D, and B denote singlet, triplet, anion, and
bleaching state respectively. Black arrows indicate the absorption of energy yielding
a higher energy level. The orange arrow corresponds to the fluorescence emission
between two singlet states. Blue arrows indicate non-radiative internal conversion.
Green arrows indicate non-radiative intersystem crossing, transitions between states
with different spin multiplicity. A radiative intersystem crossing is a phosphorescence
process. Red arrows show the transitions yielding the bleaching state. Photoblinking
process happens when there is a non-stationary reversible transitions between states.

Photobleaching and photoblinking happen once a triplet and/or anion state
are involved [6]. Photobleaching is an irreversible process where the emitter’s
ability to fluoresce decreases with time. The photobleaching rate depends on
the intensity of the excitation source and its reaction or interaction with its
environment [5]. An emitter embedded in two different medias therefore does
not bleach or blink at the same rate. The state B in Figure 2.1 corresponds
to the bleaching state. A bleaching state is a state where the molecule cannot
fluoresce anymore. On the other hand, photoblinking is an on/off random
switch process characterized as non-stationary reversible transitions between
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CHAPTER 2. THEORY 4

states. Thus, when the molecule blinks, it fluoresces, then does not fluoresce,
and so on.

Forming an image of fluorescent objects requires the effective separation of
the fluorescence and the excitation source. The fluorescence has a lower pho-
ton energy than the excitation light, and therefore propagates with a longer
wavelength. Accordingly, there is an energy difference between the emitted
and excitation light. This energy difference is commonly referred to as the
Stokes shift and is a very important parameter to consider when designing a
microscope.

The separation of the excitation light and emitted light is achieved using a
dichroic beam splitter and filters (Figure 2.2). A dichroic beam splitter and
filters work based on the optical thin film interference principle. A dichroic
beam splitter selectively reflects light within a certain range of wavelengths
and transmit light out of that wavelength range while a filter blocks the light
within an unwanted wavelength range.

Figure 2.2: Dichroic beam splitter. The excitation source is incident on the ex-
citation filter F1 and passes through the dichroic beam splitter (DBS) to excite the
sample. When the sample is excited, it emits fluorescent light. The fluorescent light
is reflected by the DBS, while the excitation light is transmitted. The second filter F2
serves as an emission filter.

The localization precision and accuracy of each single fluorescent object is
very important in fluorescence microscopy. The localization precision is pro-
portional to the standard deviation of the estimated molecule’s position around
the average position, and inversely proportional to the square root of the num-
ber of photons collected from an emitter. Whilst the localization accuracy is
defined as the distance between the average position and the true position.
When a fluorescent object bleaches, the number of emitted photons decreases
with time so imaging the emitter becomes difficult and is not accurate. A
bright emitter allows a precise and accurate localization.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. THEORY 5

There are quite a number of basic microscopy techniques for imaging fluo-
rescence radiation such as confocal microscopy, two-photon microscopy and
wide-field microscopy [7]. In this project, a wide-field fluorescence microscope
is used, because of its ability to excite and image uniformly over a large area
of sample without the need for scanning, and as such, results in high detection
speeds [7].

A basic understanding of electromagnetic radiation is required in order to gain
insight into the behaviour and nature of the fluorescent emission of objects. In
the next section, this is addressed by introducing the theoretical foundations
of electromagnetic radiation as well as an overview of Fourier imaging.

2.2 Electromagnetic radiation
The theory of electromagnetic radiation is introduced in the first part of this
section. This is then followed by the derivation of the electromagnetic field
of a dipole radiator. The radiation from a dipole radiator is considered as an
approximation to the single molecule fluorescent emission.

2.2.1 Electromagnetic theory

The electromagnetic theory has its origin in Coulomb’s law, first stated by a
French physicist named Charles Augustin de Coulomb around 1985 [8]. The
law describes the fundamental interaction of electric charges through the elec-
trostatic force. At rest, a point charge qi exerts a force

−→
Fi on a charge Q with

magnitude

|
−→
Fi(ri)| =

1

4πε0

qiQ

r2
i

, i ∈ N (2.2.1)

where ri is the distance between qi and Q, and ε0 is the permittivity of free
space.

The electrostatic force experienced by the two charged objects is mediated
through the inherent electric field of each object. This connection between
force and field for a point charge is summed up in the definition of the electric
field for a charge Q as the force per unit charge [9].

−→
E (r) =

−→
F (r)

Q
, (2.2.2)

where r is the magnitude of the position vector −→r .
The Lorentz force law followed Coulomb’s law. It states that when a charge
is in motion, it will also experience a magnetic force due to a magnetic field−→
B [9]. The magnetic force on a charge qi moving with vector velocity −→v is
defined as −→

F mag(ri, t) = qi(
−→v ×

−→
B (ri, t)), (2.2.3)
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CHAPTER 2. THEORY 6

where
−→
B is the magnetic-flux density.

In the presence of both the electric field and the magnetic field, the total force
on the charge Q is given by

−→
F (r, t) = Q[

−→
E (r, t) + (−→v ×

−→
B (r, t))]. (2.2.4)

In around 1820, Ampere, Biot and Savart discovered experimentally a re-
lation between the magnetic fields and the electric currents. Those experi-
ments pointed towards the interdependence between the magnetic and electric
fields [9].

Following the work of many physicists in the nineteenth century on the electric
and magnetic fields, Maxwell established four equations describing the combi-
nation of an electric field and magnetic field in 1873: the electromagnetic field
[10]. The four equations are given as follows:

∇ ·
−→
E (r, t) =

ρ

ε0
(2.2.5)

∇ ·
−→
B (r, t) = 0 (2.2.6)

∇×
−→
E (r, t) = −∂

−→
B (r, t)

∂t
(2.2.7)

∇×
−→
B (r, t) = µ0

−→
J (r, t) + ε0µ0

∂
−→
E (r, t)

∂t
(2.2.8)

where ρ is the source charge density, µ0 is the vacuum permeability, and
−→
J is

the current per unit area.

Equations (2.2.5) and (2.2.6) are Gauss’s law for electricity and magnetism
respectively, which underpin the source of electric fields, and also illustrate
the nature of magnetic fields [10]. Equation (2.2.7) is Faraday’s law of in-
duction. As the negative rate of the magnetic field through the electric field
lines changes, the circulation of the electric field changes as well. Thus, a
time-varying magnetic field generates an electric field [11]. The last Maxwell’s
equation generalizes Ampere’s law. The second term on the right hand side
of Equation (2.2.8) states that a time-varying electric field also generates a
magnetic field. Also, in the presence of an electric current per unit cross-
section area

−→
J , there is always a magnetic field. If the rate of change of the

electric field is constant, then the magnetic field remains invariant [8]. In free
space,

−→
J and ρ are zero which leads to a symmetry in Maxwell’s equations

and an interdependence between the electric and magnetic field. Solving the
four Maxwell’s equations leads to the wave equation which illustrates the wave
nature of electromagnetic radiation.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. THEORY 7

2.2.2 Electric field of a Dipole

Electromagnetic radiation within the visible spectrum is commonly referred
to as light and can be described as waves propagating through space carry-
ing energy. A dye molecule emits light (fluorescence) when it is excited from
its ground state to another state. In this work, it is assumed that the fluo-
rescence of a single dye molecule can be approximated as being akin to that
of dipole radiation. A typical electric dipole is characterized by its moment
which measures the separation between the “positive” and “negative” ends of
a system [8].

Figure 2.3: A dipole, oriented along the vector η̂, and its position vectors, r̂− and
r̂+, indicating the points where the electric field is to be evaluated. The position
vector r̂ is the vector sum of the two position vectors, r̂− and r̂+.

Dipole moment

A dipole consists of two charged particles with same magnitude charge, but
opposite sign (+q and −q), and separated by a distance d (or displacement
vector

−→
d = dη̂). A dipole moment −→p is a vector quantity equal to qdη̂

(Figure 2.3). This quantity reveals the orientation of the dipole in space. In
polar coordinates, the orientation is read as

η̂ =

sin Θ cos Φ
sin Θ sin Φ

cos Θ

 , (2.2.9)

where Θ is the polar angle, and Φ the azimuthal angle.

Static dipole

Firstly, let us consider a static dipole with a dipole moment −→p . Here static
implies that the dipole moment is assumed to be independent of time. We
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CHAPTER 2. THEORY 8

shall evaluate the electric field of a static dipole at a given position r along the
vector r̂ defined by

r̂ =

sin θ cosφ
sin θ sinφ

cos θ

 , (2.2.10)

where θ and φ are the polar and the azimuthal angles respectively. The electric
field from a static dipole evaluated at a given position with magnitude r is:

−→
E (r) =

1

4πε0

(
3(−→p · r̂)r̂ −−→p

r3

)
− 1

3ε0

−→p δ3(r), (2.2.11)

where δ3 is the three dimensional delta function [12].

Oscillating dipole

For a time dependent dipole, we consider the case where the dipole is harmon-
ically oscillating in time with an angular frequency ω. The dipole moment,
which remains along the η̂ vector with a magnitude of p0, is then defined as

−→p (t) = p0e
−iwtη̂. (2.2.12)

The electric field produced by this oscillating dipole [12] is given by

−→
E (r, t) = 1

4πε0

(
w2

c2r
(r̂ ×−→p )× r̂ +

(
1
r3
− iw

cr2

)
[3r̂(r̂ · −→p )−−→p ]

)
e
iwr
c e−iwt . (2.2.13)

The magnetic field on the other hand is obtained from the retarded potential
formulation as

−→
B (r, t) =

w2

4πε0c3
r̂ ×−→p

(
1− c

iωr

) e iωrc
r
e−iωt. (2.2.14)

Further simplifications of the magnetic and electric field at large distance from
the source, in the so-called “radiation zone” where r � c

w
yield

−→
B (r, t) =

w2

4πε0c3
r̂ ×−→p e

iωr
c

r
e−iωt (2.2.15)

and

−→
E (r, t) = c

−→
B × r̂. (2.2.16)

Equation (2.2.15) and (2.2.16) are theoretical expressions of the electric and
magnetic field of a dipole. In much the same way, the electric field generated by
a dipole can also be derived using Green’s function which results in a treatment
which is trivial to implement in computer simulations. For this reason a short
summary of the derivation for the electric field of a dipole is shown.
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CHAPTER 2. THEORY 9

2.2.3 Derivation of the electric field using Green’s
function

Green’s function is a valuable tool for solving non-homogeneous linear equa-
tions. Let us assume that the electric field is proportional to the Green’s
function such that

−→
E (r) = w2µ0µG(r)−→η , (2.2.17)

whereG is the dyadic Green’s function, and µ0 is the vacuum permeability [10].

A linear inhomogeneous equation for the Green’s function is of the form

L
−→
Gi(r) = n̂iδ(r), (2.2.18)

where L is a linear operator,
−→
Gi is the Green’s function along the i−axis

directed by the unit vector n̂i and δ is the Dirac delta function, which is zero
except at r = 0. In terms of the unit dyadic I, the Equation (2.2.18) can be
written as

LG(r) = Iδ(r). (2.2.19)

The unit dyadic is the unit tensor represented by a 3 × 3 identity matrix. A
dyadic product is a tensor.

The linear operator L is the Helmholtz operator. The inhomogeneous Helmholtz
equation allows a derivation of the scalar Green’s function G0

[∇2 + k2]G0(r) = −δ(r), (2.2.20)

where k is the wave number. Solving Equation (2.2.20) for an homogeneous
space yields to the only physical solution in free space [10]

G0(r) =
e±ikr

4πr
. (2.2.21)

Thus,

G(r) =

[
I +

1

k2
∇∇

]
G0(r). (2.2.22)

In cartesian coordinates, the dyadic Green’s function can be written as

G(r) =

[(
1 +

ikr − 1

k2r2

)
I +

3− 3ikr − k2r2

k2r2

rr†

r2

]
G0(r), (2.2.23)

† is the adjoint operator.
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CHAPTER 2. THEORY 10

This expression can be splitted into three [10]:

G(r) =

(
I − rr†

r2

)
G0(r) +

i

kr

(
I − 3

rr†
r2

)
G0(r) +

i

k2r2

(
−I + 3

rr†
r2

)
G0(r).

(2.2.24)

The dyadic Green’s function is a 3×3 matrix. The first term, the second term
and the third term of Equation (2.2.24) are respectively proportional to r−1,
r−2, and r−3. In the far field where r � λ, only the first term remains. The
second and the last term correspond to the intermediate field where r ≈ λ and
the near field where r � λ respectively.

In a non-dispersive medium with refractive index n, the scalar Green’s function
G0 can be substituted by einkr

4πr
[10].

Therefore, the electric field of a radiating dipole in a non-dispersive medium
with refractive index n can be approximated in terms of the Green’s function
as follows

−→
E (r) = w2µ0µ

einkr

4πr

(
I − rr†

r2

)
−→η . (2.2.25)

In the following section, a Fourier imaging technique for modulating the phase
or amplitude or polarization of an electric field is developed.

2.3 Fourier imaging
Imaging of an object is seen as a one-to-one mapping from an object space
to an image space. This mapping can be described mathematically through
appropriate Fourier formulations [13]. In this project, we focus on a particular
case of Fourier analysis for the propagation of light through optical elements
(like lenses).

A Fourier transform F of a function g of three independent variables x, y, z is
the complex-valued function G defined by

G(fx, fy, fz) = F [g(x, y, z)]

=

∫∫∫ ∞
−∞

g(x, y, z)exp[−2πi(fxx+ fyy + fzz)] dx dy dz,
(2.3.1)

where fx, fy, fz are the frequencies for each channel x, y, z respectively.
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The inverse Fourier transform F−1 of the function G is

g(x, y, z) = F−1[G(fx, fy, fz)]

=

∫∫∫ ∞
−∞

G(fx, fy, fz)exp[2πi(fxx+ fyy + fzz)] dfx dfy dfz.
(2.3.2)

The Fourier transform of the function g exists if the following conditions are
satisfied [14]

• g is absolutely integrable over the infinite space,

• g has only a finite number of discontinuities and a finite number of min-
ima and maxima in any finite subspace,

• g has no infinite discontinuities.

Electromagnetic fields generally satisfies these three conditions. In the next
section, the Fourier property of a thin lens and its use to form an image of a
field source are demonstrated.

2.3.1 Optical image formation with a thin lens

A lens is the most useful optical element in optical imaging. Lenses are mostly
made of glass, which is characterised by a given refractive index. In this section,
let consider a lens with refractive index n and whose radius of curvature of the
left-hand and right-hand surface are R1 and R2 respectively (Figure 2.4). Let
us assume that the incident rays on one surface of the lens and the emergent
rays on the opposite surface are approximately at the same point (x, y). Within
such an assumption, the lens is assumed to be thin [13]. The phase delay,
φ(x, y) at (x, y), caused by the lens depends on the thickness, ∆(x, y), of the
lens at that position.

Transfer function of a thin lens

A lens is characterized by its thickness function. The thickness is maximum
and equal to ∆0 at the lens axis. Goodman demonstrates in detail in his book
[13], that the expression of the thickness function can be generated by splitting
the lens into two parts within the paraxial approximation. The thickness
function of a thin lens is given by

∆(x, y) = ∆0 −
x2 + y2

2

(
1

R1

− 1

R2

)
. (2.3.3)

Since the surface of the lens is not planar, the phase delay φ(x, y) caused by
the lens is set to be equal to the sum of the phases due to the free space
between the transverse plane at the center of lens and the transverse plane at
(x, y), and the phase due to the lens itself. The free space is usually air with
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Figure 2.4: Thin lens. It has two surfaces with respective radius of curvatures R1

and R2. The thickness ∆(x, y) of the lens is maximum at the lens axis and equal to
∆0 at that position.

refractive index equal to 1. Taking this into consideration leads to a phase
delay of

φ(x, y) = k[∆0 −∆(x, y)] + kn∆(x, y)

= k[∆0 + (n− 1)∆(x, y)]
(2.3.4)

Hence the transfer function1 of the lens is given by

tl(x, y) = eik∆0eik(n−1)∆(x,y) (2.3.5)

Here, k is the magnitude of the vacuum wave vector (propagation vector).
The transfer function of the lens illustrates that the lens acts as an optical
device which ideally only alters the phase of light. In the next section, it is
demonstrated, that together with the derived transfer function (2.3.5), a lens
can act a Fourier transform operator.

Fourier property of a lens

In order to understand the Fourier property of a lens, the propagation of an
electric field from a point source object to an imaging plane, passing through
a thin lens is explained step by step. Let U0 = At0 be the transmitted field
of light from an object placed at distance d0 in front of the lens where A is
the amplitude and t0 the transmittance of the object. The field U0 is incident
on the lens and propagates like an electromagnetic field in space (Figure 2.5).
The phase and amplitude of the incident field may change along the way as it
propagates depending on the medium in which it travels.

1A transfer function is a mathematical formulation representing a material, such as lens,
whose operation gives a corresponding output for each input on the material.
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Figure 2.5: Field propagation through a thin lens. U0 : transmitted field from an
object placed at distance d0 in front of a thin lens, Ul : field in front of the lens, Ul′ :
field just after passing through the lens, and UI : field at the image plane.

During the propagation over the distance d0, the light is subject to the Fresnel
approximation where d0 is sufficiently large and much greater than the finite
region, defined as the region of interest, illuminated by the field on the lens.
The transfer function for this region is given in spatial frequency domain [13]
by

H(dx, dy) = eikd0e−ikλd0(d2x+d2y), (2.3.6)

where dx = x
λd0

and dy = y
λd0

are the spatial frequencies along the x and
y direction respectively, and (x, y) constitute the coordinates system on the
lens.

The Fourier spectrum of the transmitted field U0 is defined as

F0(dx, dy) = F [At0]

= A

∫∫ +∞

−∞
t0(x0, y0)e−i2π(x0dx+y0dy) dx0 dy0.

(2.3.7)

The Fourier spectrum of the incident field on the lens is then obtained by

Fl(dx, dy) = H(dx, dy)F0(dx, dy). (2.3.8)

Also,

Fl(dx, dy) = F [Ul]. (2.3.9)
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On the other hand, the field just after passing through the lens is given by

Ul′(x, y) = tl(x, y)Ul(x, y), (2.3.10)

where tl is the transfer function of the lens defined in Equation (2.3.5).

Over the region between the lens and the observation region or image plane
illustrated in Figure 2.5, the field Ul′ is influenced by the law of the Fresnel
diffraction [13]. Hence, the field at distance dI behind the lens is given by

UI(xI , yI) = eikdI
iλdI

e
ik
2dI

(x2I+y2I ) ∫∫ +∞
−∞ Ul′(x, y)e

ik
2dI

(x2+y2)
e
− i2π
λdI

(xxI+yyI)
dx dy, (2.3.11)

(xI , yI) are coordinates in the image plane.

Using the Equation (2.3.10), and evaluating the field at distance dI = f , where
f is the focal length of the lens, Equation (2.3.11) becomes

Uf (xf , yf ) =
eikf

iλf
e
ik
2f

(x2f+y2f )

∫∫ +∞

−∞
Ul(x, y)e−

i2π
λf

(xxf+yyf ) dx dy. (2.3.12)

From this expression, we notice that∫∫ +∞

−∞
Ul(x, y)e−

i2π
λf

(xxf+yyf ) dx dy = F [Ul] (2.3.13)

which is the Fourier spectrum of Ul.
Equation (2.3.8), (2.3.9), and (2.3.12) give us the equality

Uf (xf , yf ) =
eikf

iλf
e
ik
2f

(x2f+y2f )H(dx, dy)F [At0]. (2.3.14)

Using the paraxial approximation, it can be shown that (x2
f + y2

f ) ≈ (x2 + y2)

for k = 2π
λ
. Thus, the field at the back focal plane of the lens is

Uf (xf , yf ) = A eik(f+d0)

iλf
e
ik
2f

(x2f+y2f )(1− f
d0

) ∫∫ +∞
−∞ t0(x0, y0)e−i2π(x0dx+y0dy) dx0 dy0. (2.3.15)

If the object is placed at distance d0 = f in front of the lens, the field at the
image plane is exactly the Fourier transform of the transmitted field U0 within
a factor e2ikf

iλf

Uf (xf , yf ) = A
e2ikf

iλf

∫∫ +∞

−∞
t0(x0, y0)e−i2π(x0fx+y0fy)dx0dy0 (2.3.16)

with spatial frequencies fx =
xf
λf

and fy = xy
λf
.

Hence, a lens has a particular Fourier property, which is very useful in op-
tical imaging. The next section generalizes the inherent phase modulation
capabilities within Fourier imaging.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. THEORY 15

2.3.2 Phase modulation

Convolution theorem

The convolution theorem describes a modulation process. Let us define two
functions u = u0e

iφ and v = v0e
iϕ whose Fourier transforms exist under the

three conditions stated in Section 2.3 [14]. A convolution is, by definition, the
operation on two given functions u and v deriving a new function such that
the shape of this new function is basically the shape of u (v respectively), but
modified by v (u respectively) (Figure 2.6).

⊗ =

Figure 2.6: Illustration of a convolution. The image illustrated as v object is like a
paint brush for u, giving u⊗ v.

The convolution theorem is stated mathematically as follows

F [u⊗ v] = F [u]F [v], (2.3.17)

and

F [uv] = F [u]⊗F [v]. (2.3.18)

The operator ⊗ denotes the convolution operation.
Equation (2.3.18) is the frequency convolution and is known as a modulation.
A wave can be modulated by varying its phase or its amplitude. Amplitude
modulation is a well known technique in electronic communication such as
signal transmission by a radio. On the other hand, phase modulation is mostly
used in imaging techniques such as beam shaping [15]. Combination of both
amplitude and phase modulation is called complex amplitude modulation [15].
Beam interaction with any optical element such as lenses or gratings can be
described as a phase modulation.

Let u1 = u01 e
iφ1 be the initial electric field of a light source and u2 = u02 e

iφ2

be the final field after modulation of the initial field, where φ1 and φ2 are the
phases. Modulation consists of finding the transfer function of the modulator
field v given by

v =
u02

u01

ei(φ2−φ1). (2.3.19)
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In cases where there is phase-only modulation, the amplitude of both fields
are equal i.e. u01 = u02. Thus, the phase of the modulator field is given by

ϕ = mod(φ2 − φ1,Υ), (2.3.20)

where Υ is the period of the phase modulation (usually equal to 2π in most
cases), and mod is the modulo operator. If the initial field has flat phase, then
ϕ = mod(φ2,Υ).

Amplitude modulation, on the other hand, consists of decreasing the amplitude
of the light point by point by distributing it in different orders. By diffraction,
the zeroth order does not contain any modulated light. Most of the modulated
light goes to the first order. In that case, modulating the amplitude consists
of distributing the undesired light onto the zeroth order or higher orders.

There is a device which is able to modulate the phase, and the amplitude of
light in order to get a particular shape or to correct aberrations. It is called a
spatial light modulator. This device can replace many optical elements. The
next section gives an overview of its functionality and illustrates its usefulness
for point spread function engineering.

Spatial light modulator

A spatial light modulator (SLM) is a liquid crystals (LC) microdisplay. LC is a
particular class of molecules in which the liquid and crystal phases separated by
at least one liquid crystalline phase. They are rod-like molecules, and have the
mechanical properties of liquid, but behave optically like crystals [16]. There
are two main types of LCs based on their structure: ferroelectric and nematic.
Optical properties of LCs are modified by means of an applied electric field
[17]. Ferroelectric and nematic LCs show an electric polarization which is a
function of the strength of the applied electric field.

Nematic LCs are used more often compared to ferroelectric materials in the
design of SLMs, because ferroelectric LCs have only two different molecular
orientations and require high speed switching frequencies in the kHz range,
which is not the case for a nematic LC. Their structure can be parallel or
twisted and there is an orientation order of the molecules [16]. In twisted
nematic LCs, molecules at one edge are typically oriented 90◦ about the orien-
tation of the molecules on the other edge. The layers are parallel and share the
same properties. When an electric field is applied, the nematic LC molecules
tend to rotate from their initial orientation. The crystalline directions depend
on the electric field applied on the LC molecules (Figure 2.7).

Nematic LCs hold the anisotropy properties of each molecule which results in a
object with severe birefringence [16]. Birefringence means the refractive index
varies as a function of the crystallographic directions. It has two refractive in-
dices: the extraordinary refractive index ne, and the ordinary refractive index
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Figure 2.7: Nematic liquid crystal microdisplay in a (a) parallel aligned structure
and (b) twisted structure before and after an electric field is applied.

no. Applying an external electric field over the LCs, therefore alters the bire-
fringence by a specific amount allowing for programmable phase modulation.
Furthermore, a liquid crystal spatial light modulator (LC-SLM) is polarization
sensitive because of the molecular orientation of the LC modulation material.

Two addressing modes are available for controlling an incident beam, com-
monly referred to as the “read beam”. The first type of addressing mode is
done optically. A control beam called “write beam” interferes with the “read
beam”, and results in a new beam (Figure 2.8). The second addressing mode
is done electrically where a particular phase mask, in form of an image, is
computer generated. Each individual pixel of the phase mask is associated
to an applied voltage on each cell of the LC [17]. The incident beam is then
by transitivity changed using an electrical signal. The spatial light modulator
used in this project uses this second mode where the LC layers are arranged
on silicon substrate (LCOS) and on an electrically addressing mode. LCOS
can be controlled from a computer [18].

A liquid crystal spatial light modulator works as an extended screen, a second
monitor device. It is a pixelated display whose resolution depends on the total
number of pixels. Each pixel can be manipulated independently. It modulates
the phase or amplitude pixel by pixel. A phase mask is usually in the form of
a 8-bit gray scale image loaded onto the SLM where black color corresponds to
0 phase and white, with 256 depth color, corresponds to 2π. Each gray level is
associated to an increment of phase. One should be aware of the choice of the
graphic format of the phase mask as it can affect the quality of the modulated
beam. Images in .jpg format are more compressed than images in another
format such as .png and .bmp. Their uses for modulation are not advisable.

The spatial light modulator’s efficiency is function of its fill factor, which is
the surface area that can actively be used. The interpixel gap can be an
origin of an undesired diffraction in the imaging process. That diffraction can
be eliminated by loading a phase mask of a grating onto the SLM in order
to separate the desired light in the 1st order from the 0th order, which is
unmodulated (Figure 2.9).

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. THEORY 18

Figure 2.8: Addressing mode: (a) Electrical. An electric field v(x, y) with a partic-
ular phase mask is generated as image by a device connected to a computer and used
to modulate the input field u(x, y) (b) Optical. Modulation of the input beam u(x, y)
comes from an optical write-in image beam v(x, y)

Figure 2.9: A phase grating to improve the efficiency of an SLM. The role of a phase
grating is to separate the modulated beam in the first order from the unmodulated light
on the zeroth order. (a) Phase grating correcting the diffraction along the x-axis. (b)
Phase for blazed grating correcting the diffraction in both directions x and y.

The transfer function of a grating along the x−direction is given by

t = e2πiFxx, (2.3.21)

where Fx is the grating frequency and x is the position along the x−direction.
It follows the same for y−direction. The sum of the transfer function in both
directions x and y corresponds to a blazed grating

tΣ = e2πi(Fxx+Fyy). (2.3.22)

One last parameter of a spatial light modulator that one should not neglect is
its flatness. An SLM is not perfectly flat. For a LETO phase only spatial light
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modulator, the peak valley value of the whole active area is (0.76± 0.11) µm
whereas the peak valley value of a circle with radius 3.15 mm and same center
as the active area is (0.19± 0.03) µm [18]. The flatness parameter of the SLM
may be a cause of a certain aberration to the incident light. Therefore, distor-
tions and aberrations must be taken into account and corrected if possible.

There are several factors that can affect the optical resolution of an imaging
system. Even a point source cannot be imaged as it is, like a point at the
image plane, but instead a point source is imaged like an Airy pattern, called
the point spread function (PSF). We believe that modulating the phase of an
emitter’s PSF, using an SLM, can result an improved resolution, and provide a
means to determine the three dimensional localization of an object as well as its
orientation. A theoretical background of a PSF, followed by PSF engineering,
is discussed in the following section.

2.3.3 Point Spread Function Engineering

A point spread function is the spread of a point source at the image plane.
Differently stated, it is the image detected when observing a point source [4].
A 4f-type imaging system is used to illustrate this concept (Figure 2.10).

Figure 2.10: Point Spread Function in a 4f-type imaging system. It images the
spread of a point source at the image plane. This spreading can be understood by
imaging the point object at the back focal plane of a tube lens following an objective
lens.

A point object is placed at the front focal point of an objective lens. It emits
light in the form of diverging spherical waves. The waves propagate along
the optical axis and are collected by the objective lens which transform the
spherical waves onto plane waves. A tube lens, positive lens whose focal length
is longer than the objective lens’s focal length, is placed after the objective lens.
The distance between the two lenses is set to be equal to the sum of their focal
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lengths. As the tube lens collects plane waves, it is clear that it converges the
waves at its back focal point.

According to the Huygens principle, each point of the converging spherical
wave can be assumed to be a point source called a Huygens wavelet [11].
Huygens wavelets are coherent and synchronized, since they come from the
same source. They interfere constructively with each other if the path lengths
Di and Dj for wavelet i and j respectively are multiple of the wavelength.
However, they interfere destructively if the path length difference is of the
form (1

2
+ n)λ, n ∈ N where λ is the wavelength.

Evaluating the interference at the focal plane of the tube lens enables one to
get a successive pattern of dark and bright rings [11]. At the image plane,
shown in Figure 2.10, a black color illustrates a constructive interference and
white rings correspond to a destructive interference. Huygens wavelets inter-
fere constructively more at the center due to the symmetrical nature of the
spherical wavefront. The intensity of light is maximum at the center and is
decreasing for further distance from the center.

Mathematically, the field of a PSF, evaluated at the distance r from the optical
axis, is described by the Airy pattern whose function is given by the Bessel
function of the first kind [4]

E(r) ∝ E0
J1(2π sin β/λ)

2π sin β/λ
, (2.3.23)

where E0 is the amplitude of the electric field, J1 is the Bessel function of the
first kind, β is the half of the opening angle of the tube lens, and λ is the
wavelength of the light.

As the point object is moved forward or backward along the optical axis, the
shape of the Airy pattern generally stays the same. However, if the phase of the
light emerging from the point source is altered in someway, the Airy pattern
itself could be altered as to give information of the object’s position along the
optical axis. This technique of altering the emitted light to gain unambiguous
information is PSF engineering. The phase modulation technique, described
in Section 2.3.2, is the method used for engineering a PSF. An SLM is placed
at the Fourier plane, the back focal plane of the objective lens illustrated in
Figure 2.10, and a specific phase pattern is loaded onto the SLM in electrical
addressing mode.

An engineered PSF has a very important application in three-dimensional
localization of single molecule and single particle tracking. The technique is
used to recover inaccessible information such as the depth information and the
orientation of an emitting dipole. The axial position of the molecule can be
deduced from the shape of the point spread function. On the other hand, its
intensity pattern is sensitive to its orientation. There are many PSF techniques
for finding the axial localization and the orientation of a single molecule such as
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the double helix PSF [19], astigmatism PSF [20], corkscrew PSF [21], tetrapod
PSF [22], and pyramidal PSF [23]. Each of those PSFs behave differently as
the focus and defocus of the PSF is changing. The main focus of this project
is to study the double helix PSF, because of its ability to give an accurate
localization for axial position and orientation of a single molecule.

2.3.4 Double helix point spread function (DH-PSF)

A DH-PSF is a three-dimensional rotating point spread function. It exhibits
two lobes which are able to rotate about the optical axis under defocus. Also,
the number of photons in each lobe and the lobe asymmetry lead to gaining
information of the orientation of the point source.

Phase mask design

The phase mask for generating a DH-PSF consists of a superposition of vortex
point spread functions. It is a combination of a given number N of annular
Fresnel zones. The phase mask is characterized by the number of rings and
its outer radius rmask. The m−th ring, m ∈ N ∪ [2, N ], is bounded by circles
of radius rm−1 and rm, where the outer radius of the m−th ring is rm =
rmask

(
m
N

)τ , τ ∈ Q. The first ring is a disk with radius equal to rmask
(

1
N

)τ [19].

(a) (b) (c)

Figure 2.11: Phase mask for generating a DH-PSF. A phase mask of a DH-PSF
is a superposition of vortex-PSFs in a particular configuration which consists of an
order of the rings, and an existence of two lines, L1 and L2, with same gray phase
values (green and red). (a) and (c) allow to get a DH-PSF, but (b) will not give a
DH-PSF.

Physically, a superposition of vortex-PSFs is described by the interference of
the vortex-PSFs. The phase of a vortex is given by

P (h) = hφ, h ∈ Z∗, (2.3.24)

where φ is azimuthal angle and h is helical charge.
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The transfer function of the vortex-PSFs is then as follows

t(h) = eiP (h) ζ(ρ), (2.3.25)

where ζ(ρ) is a circular function equal to 1 if ρ belongs to the phase ring region
and 0 otherwise.

In order to visualize the intensity pattern for the above mentioned transfer
function, let us first consider the two distinct phase patterns which are illus-
trated in Figure 2.11. The two phases 2.11(a), and 2.11(b) each have three
phase rings with helical charges 1, 3, and 5. The phases 2.11(a), and 2.11(b)
differ by the radius of each ring containing the helical charges 1, 3, and 5. The
field from each phase ring are evaluated. Let tm(h) denote the transfer func-
tion of ring m with helical charges h. The interference of the three fields with
transfer functions t1(1), t2(3), and t3(5) are evaluated at the focal plane. The
total field is given by the sum

tΣ = t1(1) + t2(3) + t3(5). (2.3.26)

The intensity pattern at the focal plane is given by the amplitude of the Fourier
transform of tΣ. On one hand, the intensity pattern, which corresponds to the
phase mask illustrated in Figure 2.11(a), is shown in Figure 2.12. We see
that as the helical charge is increasing with the outer radius of the ring, the
diameter of the intensity pattern of each field is expanding and we get a double
lobe.

Figure 2.12: Intensity pattern of a DH-PSF formed with a phase pattern composed
by three rings with helical charges 1, 3, and 5. The interference of the transfer func-
tions of three rings with increasing helical charge and outer radius permits to get a
double-lobbed pattern. The smallest ring is with one helical charge, second ring with
three helical charges, and the largest ring with five helical charges.
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On the other hand, if we reverse the order of the rings, i.e. the smallest
ring is with a higher helical charge (Figure 2.11(b)), the double lobe shape is
not obtained (Figure 2.13). A ring with higher helical charge requires higher
numerical aperture to focus. That means, an higher helical charge should be
associated to a bigger outer radius in order to get a double-lobbed pattern.

Figure 2.13: Intensity pattern of an engineered PSF formed with a phase pattern
composed by three rings with helical charges 5, 3, and 1 respectively. A ring with
higher helical charge requires higher numerical aperture to focus. As the smallest
ring is with five helical charges, the second ring with three helical charges, and the
largest ring with one helical charge, a different PSF from a DH-PSF is obtained by
interference of the transfer functions of the three vortex-PSFs.

An effective phase mask for DH-PSF therefore depends on the size of the outer
radius rm of each optical vortex. The size of rm is function of the exponent
parameter τ (described earlier in the first paragraph of this section). The
common rotation, hence the rotational rate α of the DH-PSF is a result of any
change in the exponent τ in each ring. Furthermore, it is related to the phase
offset Ψm that each ring m of the phase mask experiences under defocus due
to a lens:

αm =
Ψm

m
. (2.3.27)

The phase offset, Ψm, is proportional to the squared outer radius, r2
m, of each

ring [19]. As a result, the rotational rate of the ring m is given by

αm = r2
mask

(m
N

)2τ 1

m
. (2.3.28)

If τ = 1
2
, the rotation that each ring experiences is independent of its index, m.

That yields to a rotational invariance of the rotational rate, α, of the DH-PSF
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α =
r2
mask

N
. (2.3.29)

However, the two lobes are not compact comparing to the case where τ = 3
4
,

as seen in Figure 2.14. In this second case, the rotational rate is dependent of
the ring index, m, but the two lobes are more intense and compacts.

Figure 2.14: Comparative images for different τ parameter. Left hand side and
right hand side correspond to τ = 1

2 and τ = 3
4 respectively.

The exponent τ plays an important role in the compactness of the two lobes.
τ = 1

2
is advisable if the imaging system requires an invariant rotation, but

τ = 3
4
is better if compact lobes are needed.

Alternatively, although the phase mask illustrated in Figure 2.11(c) also per-
mits to get a DH-PSF, the intensity profile of the double lobes patterns is
slightly different from the one generated from the phase mask in Figure 2.11(a)
(Figure 2.15).

Figure 2.15: Image comparative of the double lobes intensity profile generated from
a phase mask with helical charges [1, 3, 5] and [2, 4, 6].

The distance between the two peaks of the double lobes using the phase with
helical charges [2, 4, 6] in 2.11(c) is larger than the one using 2.11(a). For
this reason, the location of the double lobes corresponding to [2, 4, 6] can be
achieved accurately than the ones corresponding to [1, 3, 5]. However, the
intensity of the two peaks for [2, 4, 6] are lower compared to the intensity of
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the two peaks for [1, 3, 5]. Use of the phase mask with helical charges [1, 3, 5]
is therefore more advantageous in photon-limited imaging.

A simulation of an imaging using a DH-PSF engineering is developed in the
next section.

DH-PSF for a single radiating dipole

In this section we apply the DH-PSF phase mask to the emission of a radiating
dipole through simulation in order to illustrate the rotational behaviour of the
PSF. The intrinsic benefit of this DH PSF will be discussed in Chapter 4.
Assume the dipole is oriented along the unit vector η̂ and emits light in r̂
direction (Figure 2.16).

Figure 2.16: Dipole orientation.

The dipole, acting like a point source, is initially placed at the front focal plane
of an objective lens, with focal length equal to f1 = 20 cm (Figure 2.17), of a
4f−type imaging, where the optical axis is along the z−axis.
The electric field of a dipole radiation at the focus is given in terms of the
Green’s function by Equation (2.2.25). As long as the dipole is moved forward
or backward by a distance d, the system is under defocus, and the field expe-
riences an additional phase factor nkd cos θ where k = 2π

λ
is the wavenumber,

λ is the wavelength [23], and n is the refractive index of the medium where
the dipole is embedded. The field then becomes

−→
E obj(θ, φ, d) = Aeinkd cos θ e

inkr

4πr

(
I − rr†

r2

)
−→η , (2.3.30)

where A is a constant,

−→r =

sin θ cosφ
sin θ sinφ

cos θ

 is the vector propagation and r is its magnitude,

n = 1.5 is assumed to be the value of the refractive index of the medium
between the sample and the objective, which is the dipole’s embedding media
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Figure 2.17: Schematic representation of the 4f imaging system employed to inves-
tigate the single dipole DH-PSF. The emitter is initially placed at the focal point of
an objective lens L1. L1 acts as a rotation matrix denoted by R. The axial position
of the dipole is defined by the defocus distance d. A non-zero value of d causes an
additional phase on the electric field of a dipole emitter. An SLM is set at the back
focal plane of L1 to modulate the phase of the emitted light. The 3D electric field
Eobj is projected onto the surface plane of the SLM by setting ρ = sin θ. A second
lens L2 with focal length f2 > f1 serves to complete the modulation.

and the immersion oil,

I =

1 0 0
0 1 0
0 0 1

 is the unit dyadic.

The objective lens L1 is a thin lens and can only collect light within a cir-
cular region limited by the polar angle θmax, derived from the relation NA =
n sin θmax, where NA is the numerical aperture of the microscope objective,
and n is the refractive index above mentioned. In our simulation, NA is set
to be 1.3. The distance d is in order of µm and assumed to be small com-
pared to the focal length f1 = 20 cm. Therefore, we assume that the rays
collected by the lens become parallel at the back focal plane of L1. Thus, L1

acts mathematically like a rotation matrix [23] defined by

R =
√

n
n0 cos θ

cos(θ)− sin2(φ)(cos θ − 1) sin(2φ)(cos(θ)− 1)/2 − cos(φ) sin(θ)
sin(2φ)(cos(θ)− 1)/2 1− 2 sin2( θ

2
) sin2(φ) − sin(φ) sin(θ)

cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)

 , (2.3.31)

where n0 is the refractive index at the back focal plane and set to be equal to
the refractive index of air.

In addition, the emitted light propagates along the focal length distance f1.
The field at the back focal plane becomes

−→
E bfp(θ, φ, d, f1) =

einkf1

4πf1

R
−→
E obj(θ, φ, d). (2.3.32)
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The SLM has plane surface and can only modulate field in two dimensions.
Hence, we set ρ = sin θ which yields to the projection of the 3D electric field
onto a surface plane at the back focal plane. The intensity pattern at the back
focal plane is therefore

Ibfp(ρ, φ, d, f1) =
−→
E bfp(ρ, φ, d, f1) ·

−→
E bfp(ρ, φ, d, f1)†. (2.3.33)

The intensity pattern is function of the orientation of the dipole emitter. Figure
2.18 shows the intensity pattern, evaluated at the back focal plane, within
different dipole orientations.

Figure 2.18: Intensity pattern of the field from a dipole emitter with different ori-
entations evaluated at the back focal plane. It is function of the polar and azimuthal
angle of the dipole moment.

As the SLM can only modulate a specific polarization state, the incident field
is separated into a horizontal and a vertical polarized state. The second lens,
L2, serves to complete the modulation. It acts as a Fourier transform as it
relays the intermediate image placed at its front focal plane (Fourier plane) to
its back focal plane (image plane). The focal length of L2, f2, should be larger
than the focal length of the objective lens to ensure that the magnification
M = f2

f1
of the system is bigger than 1.

Therefore, the electric field at the image plane is given by

−→
E DH-PSF = F [

−→
E bfp(ρ, φ, d, f1) tDH-PSF(ρ, φ)], (2.3.34)

where

tDH-PSF(ρ, φ) = eiPDH-PSF(ρ,φ) × ζ(ρ), ζ(ρ) =

{
1 if ρ < sin θmax,

0 otherwise
(2.3.35)

is the transfer function of the modulator field loaded on the SLM. PDH-PSF is
the phase illustrated in Figure 2.11(a).

The intensity pattern at the image plane is given by

IDH-PSF =
−→
E DH-PSF ·

−→
E †DH-PSF. (2.3.36)
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A rotating DH-PSF is computationally simulated in the horizontal (H) and ver-
tical (V) channels over a depth range equal to 1.4 µm. The emission wavelength
is set to be equal to 550 nm and the dipole is oriented with (Θ,Φ) = (45◦, 90◦)
for this particular simulation. For the simulation, instead of rotating and re-
flecting the field on the vertical channel, rotating the phase mask displayed on
that channel seems more efficient (Figure 2.19).

Figure 2.19: Simulated DH-PSF for a dipole oriented with (Θ,Φ) = (45◦, 90◦) and
emitting light with wavelength λ = 550 nm. H and V denote the horizontal and
vertical channel respectively. The center value corresponds to a distance d = 0. The
system is at focus at that position.

An emitter does not always behave like a dipole. It can radiate uniformly
in all directions, which means it does not have any orientation. Such type
of emitter is isotropic, and its radiation propagation can be modelled using
the sum of the radiation from three orthogonal dipole superimposed [23]. The
experimental validation of what has been discussed theoretically in this section
will be developed in the next sections.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3

Experimental setup

This chapter describes the apparatus and the experimental setup for modu-
lating the phase of an emitter’s light in order to track the emitter in three
dimensional space. The first section gives an overview of the sample prepara-
tion and description. The sample is optically excited with a solid-state laser
with wavelength 532 nm in an inverted wide-field microscope and the fluores-
cence emission is imaged through a 4f-type imaging setup coupled to a sCMOS
digital camera. A piezoelectric stage with nanometer positional accuracies is
attached to the microscope to control the defocus and focus, hence axial posi-
tion, of the emitter.

3.1 Sample description
It is required for an emitter object to be bright enough to get an accurate
localization of its position. The brightness and photostability of nanoparticles
have been proved to be higher compared to other fluorescent molecules pho-
tostabilities [3]. The improved brightness and photostability of fluorescently
labelled nanoparticles (NP) versus single fluorescent molecules is expected as
each NP generally has a large number of fluorescent molecules attached to it.
For this reason it was decided to initially concentrate on the localization of
NPs. This section presents the sample preparation, and gives an overview of
the analysis of the photostabilities of the NPs.

3.1.1 Sample preparation

Three types of NPs are used in this work: 50 nm diameter fluorescent silica
NPs (Sigma Aldrich 797952), 300 nm and 600 nm polymer based NPs (ob-
tained from Prof Bert Klumperman Group, Stellenbosch University) which
are believed to have cross linked centers which give rise to strong fluores-
cence throughout the visible spectrum. The NPs are typically embedded in
a thin layer polymer on a glass cover slide. The polymer’s refractive index

29
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should be approximately the same as the refractive index of the immersion oil
(noil = 1.518) and glass slide (nglass = 1.5) of the microscope to avoid unnec-
essary aberrations, and to maintain high optical throughput. Polystyrene is
used as embedding media as it has a refractive index equal to 1.598 at the
excitation wavelength. [24].

The sample preparation starts by cleaning the cover glass slide on which the
sample will be spin coated. The cover glass slide with dimension 22× 22 mm
is cleaned to eliminate all the impurities which may affect our sample. For this
purpose the cover glass slide is submerged into a concentrated (300 mg/mL)
solution of KOH (potassium hydroxide) dissolved in 95% ethanol and allowed
to sonicate for 10 mn at a temperature of 30◦C. Distilled water is used to rinse
the cover slide afterwards.

The procedure of spin coating of NPs with polystyrene is done by following
three steps. The first step consists of mixing a solution of NPs in a given
solution of polystyrene. The concentration must be low enough to avoid any
overlap of NPs when imaging the sample. The solvent used to dissolve the
NPs and the embedding media must be the same. Here, toluene is used as
NPs solvent and polymer solvent. In the second step, the NPs and polystyrene
mixture is sonicated for few minutes at 30◦C to ensure that they are well mixed.
The last step is to drop a necessary volume (roughly 15 µL) of the mixture
onto the cleaned cover slide mounted on a spin coater device which spins the
slide at roughly 2000 rpm for 1 mn.

3.1.2 Nanoparticle’s photostabilities

A NP’s photostability is defined by its photoblinking and its ability to resist to
photobleaching when illuminated. However, of primary concern in this work
is the rate at which these NPs photobleach as this ultimately influences the
localization accuracy.

Assuming a mono-exponential decay in the fluorescence emission of a NP due
to photobleaching yields the following expression:

I(t) = I(0) exp(−γt), (3.1.1)

where I(t) is the fluorescence intensity at a given time t, I(0) the fluorescence
intensity at time t = 0, and γ the decay rate (bleaching rate).

As mentioned before, the photobleaching process affects the accuracy of the
localization of the emitter. Therefore, knowledge of γ is pivotal and allows us to
get an effective range of operation time of our sample. Figure 3.1 illustrates the
photobleaching behaviour of the 50 nm NPs captured using the experimental
setup (see Section 3.2) designed for this work. Photons emitted from the NPs
are collected and imaged on an sCMOS camera every 500 ms. The sum of the
pixels values in a region of interest of the image of the nanoparticle is assumed
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to be the number of photons collected by the camera. The background is
subtracted and the result is plotted in Figure 3.1.

Figure 3.1: Photobleaching decay of a 50 nm fluorescent silica nanobead. The
number of photons emitted by a nanoparticle is decreasing exponentially over its
exposure time. The solid red line is the model function of the experimental data
points in blue.

Using the photobeaching model in Equation (3.1.1), it was determined that
the photobleaching rate is 3.33× 10−3 the inverse thereof gives the bleaching
time constant of about 300 s, which suggests that consecutive measurements
should be kept far below 5 mn. In this work, the typical measurement time
was about one minute.

The next paragraph develops the elements of the apparatus for imaging the
NPs.

3.2 Imaging system
This section describes the experimental setup for imaging NPs in an inverted
wide-field fluorescence microscopy. A spatial light modulator (SLM) is placed
in the pathway of a 4f-type imaging system to modulate the phase of the
fluorescent light emitted by the NPs.

3.2.1 Experimental apparatus

The experimental setup is illustrated in Figure 3.2.
The sample, spin coated on a cover slide, is placed on a holder above the mi-
croscope objective (100X Nikon Plan Fluorite Oil Immersion Objective, NA
1.3). The microscope objective is housed in a nano-positioning piezoelectri-
cally driven holder, which is mounted on a re-purposed Zeiss Axiovert 100
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Figure 3.2: Schematic diagram of experimental setup. PC: piezo controller control-
ling the axial position of the sample along the z−axis. DBS: dichroic beam splitter
reflecting the fluorescence light and transmitting the excitation source λ = 532 nm.
NF: notch filter 532 nm. TL: tube lens. I: iris. BPF: bandpass filter with center
wavelength 565 nm and bandwidth 24 nm. L1, L2, L3: converging lenses with focal
length f1 = 200 mm, f2 = 300 mm, f3 = 60 mm respectively. PBS: polarizing beam
splitter encountered by four right angled prism mirrors. M: flat mirror. SLM: phase
only spatial light modulator. sCMOS: digital camera.

microscope. This piezoelectrically driven holder allows for easy image focus-
ing and defocusing. The positioning control is done with custom LabVIEW
code where position feedback and subsequent calibration is achieved through
implementing a home-built Michelson interferometer setup (see Section 3.3 for
more details).

The excitation source is a diode pumped solid state laser (Oxxuis, LCX-532L)
with wavelength λ = 532 nm with an output power of 518 mW. Light propa-
gates through a collection of lenses and diffusers (not shown on Figure 3.2) as
well as a dichroic beam splitter (DBS) before reaching the sample. The col-
lection of lenses and diffusers ensures a wide-field illumination with a typical
on sample intensity of 500 kW/m2.

The DBS separates the fluorescence emission from the excitation source. In
this setup, the excitation light is transmitted whilst the back-propagating (with
respect to the excitation light) fluorescence emission from the sample is re-
flected. However, the DBS is not 100% effective, as a result some of the laser
light is also reflected. For this reason, a notch filter (Thorlabs, NF533-17) with
blocking wavelength 532 nm and bandwidth of 17 nm is placed after the DBS to
illuminate background laser light. Apart from an infinity corrected microscope
objective, a paired tube lens (Thorlabs, TTL200) is placed at an appropriate
distance after the notch filter. An intermediate image of the sample is then
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formed at a position indicated by an iris.

The iris is used to limit the field of view. The maximum aperture thereof is
25 mm. The numerical aperture of the microscope is constant, but is reduced
by closing the iris aperture. Reducing the field of view increases the image
contrast by eliminating some of the out of focus light. After propagating
through the iris, the light passes through another bandpass filter (Thorlabs,
MF565-24), and then through a first converging lens L1 with focal length
f1 = 200 mm placed a distance exactly f1 after the iris.

The fluorescent light is then separated into horizontally and vertically polarized
orientations by a polarizing beam splitter (PBS). The horizontally polarized
light is transmitted whereas vertically polarized light is reflected. The ver-
tically polarized light is required to be parallel to the horizontally polarized
light, such that the SLM (which can only address one polarization direction)
imparts the correct phase onto the light. To achieve this, four right angled
prism mirrors (Thorlabs, MRA25-E02) are placed in such a way as to rotate
the polarization of the reflected light. The light from the two separated paths
are guided to a SLM (Holoeye, LETO phase only SLM) placed a distance f1

from lens L1.

The SLM is a display device and is connected to a computer in extended
monitor (1920× 1080 pixels) mode. Its pixel pitch and addressing bit depths
are 6.4 µm and 8 bits respectively. This specific SLM can only modulate the
phase of light within wavelength range 400 to 1100 nm [18]. The advantage
of this SLM is its fill factor, surface area which can actively be used. The fill
factor is 93%. The average reflectivity of this SLM is 75%. The unwanted
intensity of the 0th order is also reduced with a diffraction efficiency of more
than 80%. Hence, the total light efficiency is about 60% using this SLM. After
interacting with the SLM, the light from the two separate paths are reflected
onto a second lens L2 by a flat mirror, M.

The converging lens L2 with focal length f2 is placed a distance f2 from the
SLM. At this point, the light is either sent directly to the scientific grade sC-
MOS camera (Hamamatsu Photonics, C11440-22CU) for imaging the sample
plane or first sent through a third lens L3 (f3 = 60 mm) and then onto the
camera in order to image the phase mask on the SLM.

As a result of the collection of lenses and the complicated optical geometry
used in the system, it is practically more advisable to determine the over-
all magnification through appropriate experiments. This involves imaging an
object with known dimensions and determining a so called image calibration
factor.
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3.2.2 Imaging calibration factor

The calibration factor of our setup is achieved by imaging a USAF 1951 test
target (Thorlabs, R3L1S4P). The test target is placed at the exact same po-
sition as the sample described in the previous section. The target consists of
dark lines in a horizontal and vertical pattern with a clear background. The
vertical and horizontal lines are sub-divided into 6 groups with different line
spacing.

Figure 3.3: Use of the USAF 1951 test target for finding the imaging calibration
factor. Left hand side: The USAF 1951 test target. The numbers aligned horizontally
denote the group whereas the increasing numbers along the vertical axis are elements
of the group. Each group is associated to a particular resolution. The background is
clear for a positive USAF 1951 (Image source: Thorlabs). Right hand side: element
6 of group 7 is the smallest pattern of the target imaged in vertical channel (upper
disk) and horizontal channel (lower disk). d is the size of a line pair.

The resolving power and magnification of the system is determined by iden-
tifying and imaging each line pair in a group of the pattern. A line pair is
defined as the thickness of a dark line plus the thickness of its adjacent bright
line. A bright line here means the distance between two dark lines and has the
same thickness as a dark line. Using knowledge of the line pair together with
the experimentally obtained image thereof (Figure 3.3 right) both the overall
magnification and image calibration factor is calculated.

Therefore, let di and do be the size of one line pair in image plane and in
object plane respectively. The distance di is expressed in terms of pixels in
image plane and do is in terms of resolution line pair per millimeter. In order
to determine the magnification, both di and do must have the same unit. Thus,

di = np × sp and do =
1

r
, (3.2.1)

where np : number of pixels for a line pair in image plane,
sp : the pixel size, equal to 6.5 µm for our system,
r : resolution factor in line pair per millimeter (lp/mm) and differs for each
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element of each group. Its value is equal to 228 lp/mm for the smallest element
6 of group 7.

The magnification of the imaging is given by M = di
do
. Its value is approx-

imately equal to 161 for our system. Theoretically, the magnification of a
4f−type imaging is equal to M = f2

f1
= 150 where f1 = 200 mm and f2 = 300

mm are the focal length of the achromatic lenses L1 and L2 described previ-
ously.

Finally, we define the calibration factor C to be the size of the object imaged
per pixel:

C =
do
np
, (3.2.2)

C is approximately equal to 40.22 nm/pixel for our system. The knowledge
of C factor allows us to identify whether we are imaging only one NP or
not. However, the smallest distance we can image is still diffraction limited.
Furthermore, the image calibration factor is used to map images to the “real”
two dimensional space (lateral space). Information of the third dimension
(axial) is obtained through engineering the phase of the single emitters. Still
in order to quantify the axial position of an emitter, it is required to have
appropriate nano-positioning capabilities.

3.3 Axial positioning
A piezoelectric stage in conjunction with a home-built Michelson interferome-
ter setup is used in this project to verify and quantify axial translations.

Figure 3.4 shows a picture of the interferometer developed for this project. The
light source is a laser diode with center wavelength λ = 854.3 nm. Mirrors
M1, M2, M3 and M4 are mounted on compact kinematic mirror mounts per-
mitting them to be adjusted such that the light follows the right path and that
the amount of light reaching mirrors D1 and D2 have equal intensities. The
position of D2 is controlled by a piezoelectric stage as it is directly mounted
to it. It can move up or down depending on the applied voltage.

When a voltage is applied on the piezo, the D2 mirror moves and causes a
path length difference between the reflected light from D1 and D2. Hence, a
shift is noticed in the interference pattern imaged on the digital camera. To
understand the origin of the interference pattern and the shift as well as how
this is used to determine the amount by which the piezoelectric stage moved,
the scalar addition of the monochromatic reflected beams from D1 and D2 will
be considered.

Let E1 = E01 exp [i(k1r − wt+ φ1)] and E2 = E02 exp [i(k2r − wt+ φ2)] be
the reflected electromagnetic waves from D1 and D2 respectively, where E01

and E02 are the amplitudes, w is the angular frequency, k1 = k2 = 2π
λ

is the
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Figure 3.4: Michelson interferometer for measuring optical pathlength difference
between two mirrors D1 and D2. M1, M2, M3, are M4 are mirrors for reflecting
light. The iris serves to reduce the diffraction and to focus the light onto the non
polarizing beam splitter (NPBS). DL is a diverging lens.

wavenumber, λ is the wavelength of the light source, r is the propagation
distance of light, and φ1 and φ2 are additional phases. Since the amount of
light distributed on the two mirrors are experimentally set to be equal, we
assume that E01 = E02 = E0. The superposition of those two fields, E1 and
E2, gives the interference pattern on the image plane which is described by
Etot:

Etot = E1 + E2

= E0 exp[i(kr − wt)] (exp[iφ1] + exp[iφ2]) .
(3.3.1)

The time-average intensity of some position r of the superposition is given by
the modulus square of the total electromagnetic field and can be expressed as
follows:

Itot =< Etot · E∗tot >

=< E0 · E∗0 > (exp[iφ1] + exp[iφ2]) (exp[−iφ1] + exp[−iφ2])

= I0 (2 + exp[−iδ] + exp[+iδ]) , where δ = φ2 − φ1

= 2I0(1 + cos δ)

= 4I0 cos2

(
δ

2

)
.

(3.3.2)

The intensity is maximum and the interference is constructive if δ = ±2mπ,m ∈
N. Destructive interference occurs when δ = ±(2m + 1)π,m ∈ N. The phase
parameter δ therefore controls the amount of interference, and for the setup
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is thought of as the phase difference of light reflecting of D1 and D2. As the
mirrors move with respect to one another this phase difference changes and
results in a shift in the interference pattern. It is a shift parameter.

The calibration factor of the piezoelectric system consists of finding the phase
shifting per volt applied to the piezoelectric stage.

Five images of interference pattern of the two beams reflected from the two
mirrors D1 and D2 are collected and averaged after every 1 V increase applied
to the piezo. The intensity of the interference pattern for a given applied
voltage is fitted with a model function yV given by

yV = A cos2(
2π

λ
x+ δV ) +B, (3.3.3)

where A represents the amplitude, 2π
λ
x is a constant phase change in time, δV

is the phase shifting of the interference pattern and B is baseline, a vertical
offset.

The Levenberg Marquardt algorithm for nonlinear least square curve1 fitting
described in [25] is used to minimize the error between model function and
data such that the model parameters A, λ, δV , and B can be extracted.

The choice of the initial guess of the parameters for a fit function model is
very important. The initial guess for the amplitude is the maximum value of
the intensity whereas the baseline is initially set to be the minimum value.
The wavelength, λ, is initially assumed to have the same value, 854.3 nm, as
the diode laser wavelength. The guess for the phase shifting δ is achieved by
doing a pattern matching. This last consists of finding δ such that |y(x =

1 The Levenberg Marquardt method is a combination of the gradient descent method
and the Gauss-Newton method. It minimizes the sum of squared errors, χ2(p) =∑m
j=1

[
y(tj)−f(tj ,p)

σyj

]2
, by solving the following equation in terms of the perturbation fac-

tor hlm [25] [
JTWJ + ϑI

]
hlm = JTW (f(p)− y), (3.3.4)

where {(tj , yj), j ∈ [1,m]} is a set of data points of length m, and t is an independent
variable,
f(t, p) is a model function with a vector parameter p of size n,
σyj is a parameter related to the weighting matrix W whose diagonal is equal to Wjj = 1

σ2
yj

,

J = ∂y
∂p is a m×n Jacobian matrix representing the variation of the data points in terms of

the modal parameter p and JT is its transpose,
I is an identity matrix, and ϑ is a determinant parameter.

If the determinant parameter, ϑ, is small, we get a Gauss-Newton update where it is
assumed that the objective function χ2 is approximately quadratic in the parameters and
the parameters values are close to their optimal values. A large value of ϑ results to a
Gradient descent update function where the parameters are far from their optimal values.
Updating the modal parameters is executed in the opposite direction of the gradient of the
objective function. Details of this technique have been developed elsewhere [25].
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Figure 3.5: Interference intensity profile as a function of the applied voltage on the
piezoelectric. Left: Experimental data. Right: Fitted data. The slope of the two lines
(black and red) is approximately equal to 7.23−1 V/nm.

0) − yV (x = 0, δ)| is minimum, where y(x = 0) is the experimental intensity
value at position x = 0, yV is the function defined in Equation (3.3.3) and
evaluated at x = 0 for different values of δ in range of 0 to 2π.

The optical path length difference of the light that reflects off from D1 and
D2 is double the physical distance between the two mirrors. The calibration
factor of the piezoelectric can therefore be deduced from the half of the inverse
of the slope of a line, made up from data points with approximately same
intensity in Figure 3.5, which is approximately equal to 3.62 nm/V, or using
the interference shift parameter δ (Figure 3.6).

Figure 3.6: Phase shifting parameter as a function of the applied voltage.

A phase shift equal to ∆δ = 2π corresponds to a wave traveled distance equal to
the wavelength 854.3 nm and a voltage ∆V = 117.44 volts (using the equation
on Figure 3.6). That yields to a conversion factor equal to 7.27 nm/V. The
axial calibration factor is therefore equal to 3.64 nm/V using the interference
shift parameter.
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Chapter 4

Localization analysis

The position of an emitter over time can vary either in a predictable fashion
or randomly, therefore localization analysis of the emitter’s position may be
approached through appropriate statistical models. There are many factors
limiting the localization of a single emitter such as the optical system itself
and the emission properties of the emitter. In this chapter, those factors are
developed, the experimentally obtained single emitter images are analyzed to
determine the lateral and axial positions, and a theoretical study of a bisected
and a pyramidal engineered PSFs are compared with the DH-PSF in order to
reveal the depth information and the orientation of an isotropic and a dipole
emitter.

4.1 Statistical models
A key goal of the wide-field fluorescence microscopy technique developed for
this work is to achieve a very high localization precision and accuracy in order
to get precise information about the emitter’s position in three dimensional
space. When tracking an isotropic emitter, such as a spherical nanoparticle,
or a radiating dipole, such as a single fluorescent molecule, the localization
precision and accuracy are very important.

Let us define the true position of a single particle p by (xp, yp). This true
position is experimentally unknown. The set of the estimates positions of the
particle p over a given number of frame images, n, is denoted by {(xp|i, yp|i), i ∈
[1, n]}. The position (x, y) here is defined in terms of pixel position in an image.
By definition, the localization precision is a measure of the deviation of each
estimate position, (xp|i, yp|i), around the average of the estimate positions,
(xp, yp), while the localization accuracy is the measure of the deviation of the
average of the estimate positions, (xp, yp), around the true position, (xp, yp)
[26]. Since (xp, yp) is experimentally unknown, and is needed to be estimated,
the localization accuracy can be defined in terms of the number of occurrences
of the deviation (∆xi,∆yi) = (xp|i − xp, yp|i − yp).

39
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The location of a particle can be estimated using the center of mass technique
or by fitting the intensity distribution of the image by means of a model, such
as the Airy pattern (PSF) as the smallest object, which is a point source, that
can be imaged appears like an Airy pattern (Section 2.3.3). The center of
mass technique consists of finding the intensity-weighted mean of the x and
y coordinates in a given region of interest. This technique is computationally
fast but not precise and accurate enough in presence of noise in the images.
Also, information that can be extracted from a set of data from a center of
mass technique, such as the emitter size, are very limited [27]. In our case, we
consider the second approach; the use of a model to fit the intensity distribution
to obtain the location of a particle.

4.2 Localization limits
When an emitter emits a given number of photons N0, a portion N ′0 of N0 is
collected by the camera as detector within an exposure time t, and converted
into a digital image. Let N(t) denote the number of converted photons, which
is less than the collected photons N ′0, due to the efficiency of the camera
and the exposure time. An image is characterized by the number of photons
N(t) collected and converted within a given exposure time t, t > 0. The
photon number is influenced by factors such as the efficiency of the system
and detector, the exposure time of the detector, and some noise and vibration
sources due to the environment where the measurement is conducted [28].

Matching the emission pattern over an adequate number of pixels is also very
important. If the magnification of the system is low, the pattern is distributed
over a few pixels. This decreases information about the emission pattern [28].
If the magnification is too large, some information might be lost, because the
finite size of the pixels implies that the emission pattern will spread over a
large number of pixels thus decreasing the signal strength. [28]. Due to these
factors, the precision and accuracy for a localization are limited. Therefore,
it is beneficial to know what is the smallest achievable error for a particular
measurement. As error in a given measurement corresponds to the precision
of the localization.

The smallest achievable localization precision has been derived in many text-
books and journal papers [10, 26, 28, 29] using the Fischer information matrix.
The Fischer information matrix is the measure of information about a vector
parameter (x, y) in observed data {(xp|i, yp|i), i ∈ [1, n]} where n is the number
of estimate positions, which also corresponds to the number of frames when a
stack of images are recorded. Higher Fischer information about one parameter
means higher precision for measuring that parameter. The Fischer information
matrix in two dimensional space, within an assumption that the existing noise
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follow a Poisson distribution, is given by the following expression [29]

I(x, y) =

(
I11 I12

I21 I22

)
= γE[N ′0]

∫
R2

1
q(x,y)

[
∂q(x,y)
∂x

, ∂q(x,y)
∂y

]T [
∂q(x,y)
∂x

, ∂q(x,y)
∂y

]
dx dy,

(4.2.1)
where the exponent T indicates the transpose operator, γ is the efficiency of
the detector system, E[N ′0] denotes the average value of the collected photons
N ′0, which is equivalent to the emission rate of the emitter multiplied by the ex-
posure time t of the detector, and therefore γE[N ′0] corresponds to the photon
number N(t).

If the image function q is symmetric, i.e. q(−x, y) = q(x,−y), then I12 = I21 = 0,
but I11 = I22 is not necessarily true. The limit of the localization precision is
given by the inverse of the square root to the Fischer information matrix,
defined as the Cramer-Rao Lower Bound (CRLB) [30].

Consider the standard Airy PSF image distribution approximated by an ap-
propriate Bessel function, the image function is defined as

q(x, y) =
J 2

1 (α(x2 + y2)1/2)

π(x2 + y2)
, (4.2.2)

where J1 is the Bessel function first kind, (x, y) ∈ R2, and α = 2πNA
λemission

, with
NA: numerical aperture of the microscope objective in the imaging setup, and
λemission: emission wavelength [28]. Equation (4.2.2) is symmetric and the
Fischer information is given by

I(x, y) = N(t)

(
2πNA
λemission

)2(
1 0
0 1

)
. (4.2.3)

Using the CRLB, the limit of the localization precision for a standard PSF
image function is given by

δx = δy =
λemission

2πNA
√
N(t)

. (4.2.4)

This result suggests that the localization precision in both x and y directions
are improved when choosing a large numerical aperture microscope objective
and very bright emitters (largeN(t)). Also the smaller the emission wavelength
the better for localization, however this is not always practically possible.

Furthermore, this PSF has several secondary maximas (intensity rings on a
2D image). Experimentally speaking, the intensity at the center of a PSF
is dense, and its rings may become unclear due to background noise in a
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measurement [28]. An alternative solution for quantifying the localization pre-
cision consists of using a Gaussian function for fitting the intensity distribution
of the emitter. The Gaussian image function is given by

q(x, y) =
1

2πw2
g

e
−x

2+y2

2w2
g , (4.2.5)

where wg is the standard deviation of the distribution [30]. The function q is
symmetric and the Fischer information in x and y directions are equal [30].

I11 = I22 = γE[N ′0]

∫ 2

R

1

q(x, y)

[
∂q(x, y)

∂x

]2

dx dy

=
N(t)

w2
g

.

(4.2.6)

Hence, the limit of the localization precision, defined by the CRLB, is

δx = δy =
wg√
N(t)

. (4.2.7)

As the Gaussian distribution is narrower, its standard deviation wg is smaller,
and the limit of the localization precision is smaller. In both cases, using a PSF
model or a Gaussian model, the limit of the localization precision is inversely
proportional to the square root of the photon number N(t).

Generally, the localization precision of an emitter p over a given number of
images n can be defined in terms of the following standard deviation:

σx =

√√√√ 1

n− 1

n∑
i=1

(xp|i − xp)2. (4.2.8)

As the number of measurements, defined by the number of recorded images,
n, is larger, the parameter σx is smaller and tends to the limit δx defined in
Equation (4.2.7).

On the other hand, the localization precision can also be determined differently.
The number of occurrences m, of the deviation ∆xi = xp|i− xp, i ∈ [1, n] [26],
follows a Normal distribution centered at 0, and with a standard deviation σx,
for a large n. Here a large σx implies that, the number of estimate positions
which are far from the mean position is also large, hence the localization is not
precise, but not necessarily inaccurate.

The same principle can be applied to the position of the particle along the
y direction, and the theory can be generalized for a 3−D spatial coordinates
(x, y, z).
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In the next section, the lateral positions of three different NPs with different
sizes (600 nm, 300 nm, and 50 nm) are analyzed. The corresponding localiza-
tion precision and accuracies are compared with the limit of the localization
precision defined by the CRLB. The three NPs are assumed to be spherical
and that the emission is isotropic.

4.3 Lateral localization precision and accuracy
Three isolated NPs with different sizes; polymer based NPs with size of about
600 nm, polymer based NPs with size in range of 300 nm and 400 nm, and
50 nm fluorescent silica nanobeads, are embedded in a polystyrene media, and
are imaged with the setup described in Section 3.2. The NPs radiate in both
channels: horizontal and vertical (Figure 4.1). As described in the schematic
diagram of the experimental setup 3.2, the light from the emitter is split into
horizontal and vertical polarized orientations using a polarizing beam splitter
(PBS). The horizontal light is transmitted and reflected horizontally on the
screen of the SLM by two prisms whereas the vertically polarized light is
reflected by the PBS, first flipped by one prism, then rotated horizontally by
90◦ by another prism. The light from the two paths exit the system {PBS + 4
prisms} parallely, and arrive horizontally on the SLM. The SLM’s inclination
is adjusted in such a way that the light from the two paths fit on the SLM’s
screen, and with the same path length. Images of the fluorescence emission
are recorded with the sCMOS digital camera.

Figure 4.1: Single nanoparticle emission. Left: Image of the horizontal polarization
and vertical polarization channels. Right: Intensity profile along the x axis of one
emitter, plus a Gaussian fit with FWHM of 292 nm.

To evaluate the localization of the isolated NPs, a sample containing the NPs,
a stack of images is recorded within a pre-defined exposure time of the cam-
era. As discussed in the previous section, the localization is more precise if the
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number of acquisitions or/and the number of collected photons are large. A
large photon number can be obtained by increasing the exposure time. How-
ever, a long exposure time permits a higher probability of photodamage that
leads to a quick destruction of the localization precision and accuracy. A bal-
ance between the exposure time, the photobleaching rate of the NP, and the
sampling size, which corresponds to the number of images to record, must
then be taken into account. Accordingly, the acquisition time is set to be 500
ms for all the measurements conducted in our experimentation. The number
of recorded images, which defines the number of the estimate positions of the
emitter, is chosen in function of the size of the NP. The 600 nm polymer based
NPs are imaged in a stack of 100 images. Whilst 50 images for the 300 nm
polymer based NPs, and 30 images are recorded for the fluorescent silica 50
nm nanobeads.

Image processing is required before conducting any imaging analysis so as to
increase the signal-to-noise ratio, which improves the precision and accuracy of
any localization [28]. The process of image processing is carried out using free
software, called ImageJ (imagej.net). A region of interest (ROI) containing the
image of one emitter is selected. Another region with the same size as the ROI
is selected, either on the horizontal channel region or on the vertical channel,
which contains only background noise. The background noise is subtracted
from the ROI containing the image of an emitter. The background free image
is ready to be analyzed after minor additional filtering. There are several
techniques for filtering an image in fluorescence microscopy. The nonlinear
smoother LULU operator, described in [27], is a good filter for fluorescence
imaging. The ImageJ software also possesses different kind of built-in function
filters such as the Gaussian blur filter, median filter or maximum and minimum
filter.

In Figure 4.1(Right), the intensity profile of a single fluorescent NP along
the x-axis is fitted with a Gaussian function. This fit is a line-out of the
two dimensional fit procedure employed for this work. The two dimensional
Gaussian function for the least squares fit procedure is given as follows

G(x, y) = A e
−

(x−xp|i)
2+(y−yp|i)

2

2w2
g +B, (4.3.1)

where A is the amplitude of the Gaussian function, B is an offset, wg is the
width, and (xp|i, yp|i) corresponds to the estimate position of the nanoparticle
emitter p at a given image frame i, whose initial guess can be extracted by
finding the center of mass position of the selected ROI in image i. The Gaussian
fitting is done using a non-linear least square technique [27]. The full width
half maximum (FWHM) of the Gaussian function may be used to estimate
the size of the emitter (provided that the expected width is greater than the
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diffraction limit), and is given by

Size(NP) = 2
√

2 log 2 wg C, (4.3.2)

where C is the conversion factor of the system, and calculated be equal to
40.22 nm/pixel in Section 3.2.2.

Furthermore, the limit of the localization precision for a particular measure-
ment can be derived using Equation (4.2.7). It is proportional to the width
wg, of the Gaussian function, and inversely proportional to the square root of
the number of photons N(t). A large width wg corresponds to a bigger limit
of the localization precision. The number of photons on the other hand is
determined using a simple conversion formula provided with the camera

N(t) =
CF (PIX −Off)

Q(λ)/100
, (4.3.3)

where CF is the conversion factor, and equal to 0.47 electrons/count, PIX is
the intensity pixels of interest, which is known from the emitter’s image, Off
is an offset value, and equal to 110 for our system, and Q(λ) is the quantum
efficiency of the detector which is equal to 81% for the corresponding emission
wavelength 550 nm.

Note that a precise localization is not necessarily accurate, and vice versa. As
such, apart from determining the localization precision, one also need to eval-
uate the localization accuracy. As already mentioned in the above section, the
localization accuracy may be defined in terms of the number of occurrences
of the deviation, (∆xi,∆yi) = (xp|i − xp, yp|i − yp). This number of occur-
rences can be considered as a random variable; knowing the distribution of
this variable allows us to derive its probability density function, thus enables
the determination of the localization accuracy. A distribution with a mean
equal to or close to 0, concentrated at the 0 mean, and symmetric about the
0 mean is equivalent to a more accurate system.

The probability distribution of the deviation of the estimate positions from
the mean for each of the three isolated nanoparticles is plotted in Figure 4.2.
As can be seen in this figure, the deviation of the estimate positions from the
mean for each case follows a normal distribution. The underlying mean is thus
equal to 0. The localization of the 300 nm nanoparticle is less accurate than
the localization of the 600 nm and 50 nm nanoparticles, where one can say
that a more desirable localization accuracy is achieved.

From the Table 4.1, the physical size of the silica nanoparticle is calculated
to be bigger than 50 nm. This is due to the fundamental diffraction limit
described by the Rayleigh criterion1.

1 The Rayleigh criterion defines the minimal resolved distance d between two objects or
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Figure 4.2: Localization accuracy of nanoparticle emitters. The first row corre-
sponds to the data collected from the horizontal channel while the second row corre-
sponds to the vertical channel. The first, second, and third columns are associated to
the distribution (colored red for localization along the x-axis and blue for localization
along the y-axis) of the deviation of the estimate positions from the mean for 600 nm,
300 nm, and 50 nm nanoparticles respectively. The probability that a deviation with
respect to a particular range ∆x (∆y respectively) will happen is determined by the
underlying area defined under the probability density function (block diagram orange
for localization along x-axis and cyan along the y-axis).

The limit of the localization precision in the three cases are different for hor-
izontal and vertical channel even though the width of the image Gaussian
function wg is the same for both channels for the silica NP. This means, the
amount of light in both channels are not identical. Furthermore, due to the
slight offset angle in the placement of the SLM in the experimental setup, the
imaging of the two channels are not the same.

The localization precision (error) obtained for the 3 objects compares well with
literature [31] where Grover et. al. managed to locate a bright fluorescent

minimal resolved object size [11]:

d = 0.61
λemission

NA
,

where λemission is the wavelength emission and is equal to 550 nm in our case, and NA is
1.3. A distance or object size smaller than d will be imaged slightly bigger or within the
same size as d.
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Table 4.1: Results for lateral localization analysis. N and LLP denote the average
photon number over a first five measurements with a standard error σN and the limit
of the localization precision respectively.

600 nm 300 - 400 nm 50 nm
(100 images) (50 images) (30 images)

H V H V H V

N 33366 39196 6125 7253 7387 7820

σN 876 869 338 399 199 407

wg (pixels) 7.51 9.39 3.61 3.45 3.24 3.24

σwg 0.35 1.33 0.24 0.25 1.00×10−4 1.00×10−4

LLP δx = δy 1.65 1.91 1.86 1.63 1.52 1.47

Size (nm) 711 889 342 327 307 307

σx (nm) 30 25 12 9 15 10

σy (nm) 18 31 12 9 18 7

molecule (N= 6985± 1390) with lateral errors of (σx, σy) = (18nm, 30nm).

Furthermore, the localization precision in the horizontal and vertical channels
differs. This is a consequence of slight astigmatism in the optical system. The
astigmatism can be corrected by displaying an appropriate phase mask on the
SLM. However, this is beyond the scope of the work [20].

4.4 Experimental results for axial position
using DH-PSF engineering

The third dimension, indicating the location of an emitter along the optical
axis, can be accessed by modulating the phase of the light in such a way
that the intensity pattern at the image plane is sensitive to the axial position.
Several techniques have been developed to achieve the axial localization of
an emitter. The DH-PSF has been proved to surpass many techniques in
achieving a better localization precision over 2 µm range [32]. Correspondingly,
this section shows and discusses the experimental results for DH-PSF phase
modulation.

Depth information via the axial position

The sample used for testing the ability of the DH-PSF modality consist of the
600 nm polymer based NPs embedded in a thin polystyrene film. This choice
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is based on its high photon emission rate compared to the other NP samples.
Stated in the experimental setup, the piezoelectric stage is connected to the
microscope objective. Therefore when a voltage is applied to it, the objective
moves up or down changing the relative axial position between the stationary
emitter and the focal plane. This defocusing and focusing by translating the
objective has the same effect at the image plane (on the camera) as moving
the emitter instead of the objective. Thus, it is thought of that the emitter’s
axial position is controlled by the piezoelectric stage by an amount d either up
or down along the z−axis. The applied voltage is increased in steps of 20 V
and 3 images are taken per step. In total, 14 voltage steps were recorded, five
of which are shown in Figure 4.3. Using the calibration factor of the piezo
in Section 3.3, we can say that an increase of applied voltage equal to 20 V
corresponds to a displacement of 0.145 ± 0.028 µm in z.

Figure 4.3: Image comparatives of the DH-PSF from experimental results and sim-
ulated DH-PSFs of an isotropic emitter with NA = 0.86 and NA = 1.3 for different
defocus distances d. The simulated results rotate more than the experimental results
due to the NA used for the simulation. The NA has been reduced experimentally by
closing the iris on the pathway.

From Figure 4.3, it is clear that as the distance of defocus increases, the two
lobes rotate around the axial axis. The angle between a horizontal line and
the line passing by the two lobes is thus a function of d which corresponds to
a specific axial position z (Figure 4.4). In order to find the rotation angle of
the two lobes about a horizontal line, the intensity pattern of the two lobes is
fitted in a non-linear least square fitting by a double Gaussian (DG) function
given by

DG(x, y) = A1 exp[− (x−x1)2+(y−y1)2

2w2
1

] + A2 exp[− (x−x2)2+(y−y2)2

2w2
2

], (4.4.1)
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where Ai, wi, and (xi, yi) are the amplitude, width, and centroid of the lobe
i, i ∈ [1, 2] respectively. The lateral position (xc, yc) of the emitter is given by
the mean of the two lobe centroids. Therefore, the 3 points, {(x1, y1), (xc, yc), (x2, y2)},
form the required line for determining the rotation angle of the two lobes. The
experimental results are plotted in Figure 4.4.

(a) (b)

(c)

Figure 4.4: The angle of the rotation line of the two lobes changes monotonically as
a function of the z position. (a) Angle between the horizontal line and the line of the
two lobes with respect to the z position. (b) Fluorescence emission of two emitters
with different defocus distances. (c) 3D estimate positions of one emitter.

The rotation rate α of the experimental data has been shown smaller than
the rotation rate of the simulated data with the NA of the microscope objec-
tive which is equal to 1.3 (45.32◦/µm against 78.27◦/µm). This difference is
attributed to the smaller effective numerical aperture of the optical system,
as is evident in Figure 4.4(a) where a comparable simulated rotation rate is
achieved using a NA between 0.86 and 1.3. The numerical aperture and hence
the field of view on the image plane is decreased using an iris (Figure 3.2) in
order for the polarized beams (transmitted and reflected) to fit on the screen
on the SLM. Interestingly this implies that the rotation rate can be increased
or decreased by playing with the size of the diameter of the iris. Therefore, if
precise information about the axial position in a small range of z is required,
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one need only increase the NA by increasing the diameter of the iris. How-
ever if deep imaging is important, a lower rotation rate (small NA, small iris
diameter) is chosen.

Additionally, the defocus distances, hence axial positions z, of different emit-
ters can be determined simultaneously (Figure 4.4(b)), and the estimate posi-
tions of one emitter in 3D is shown in Figure 4.4(c). The localization precision
(error) of the axial position is equal to σz = 31 nm in the horizontal channel and
30 nm in the vertical channel. On the other hand, the localization precision in
the lateral position is (σx, σy) = (92 nm, 45 nm) and (σx, σy) = (66 nm, 107 nm)
in the horizontal and vertical channels respectively. These results can be im-
proved by increasing the sampling size. Care also must be taken when de-
termining the lateral position of an emitter in such a fashion, because if the
emission is anisotropic, erroneous localization can result in severe mislocaliza-
tion [33].

The next section gives an overview of how one can find the orientation of an
emitter using DH-PSF and compared to other PSF phase masks.

4.5 Simulated results of the orientation of a
dipole emitter

In the previous section DH-PSF engineering is used to determine the axial
position of an emitter. However, from the theoretical studies in Section 2.3.4
and specifically the simulated results in Figure 2.19, it was clear that the
imaged emission of a single dipole is sensitive to its orientation as the two
lobes had different intensities. This section focuses on the differences of the
lobe intensities and how it depends on the orientation of a single dipole emitter.

Determination of the orientation of a dipole emitter

The orientation of a dipole emitter can be determined using (a look-up table
of) the linear dichroism (LD) and the lobe asymmetry (LA) of the double lobes
in each channel horizontal and vertical. These two parameters are defined as
follows

LD =
NH −NV

NH +NV

and LAH,R =
AH,R|1 − AH,R|2
AH,R|1 + AH,R|2

, (4.5.1)

where NH , NV are the total number of photons in the horizontal (transmitted
light) and vertical channels (reflected light) respectively, and AH,R|1 and AH,R|2
are the amplitudes of lobe 1 and lobe 2 in each channel horizontal (H) and
vertical (V) [23]. Here the amplitudes are determined using a two-dimensional
double Gaussian fit function.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. LOCALIZATION ANALYSIS 51

Simulations of a dipole emitter with different orientation and imaged around
the focal plane using DH-PSF engineering is computed. The LD and LA
values are determined and plotted in Figure 4.5. The results in Figure 4.5 can
be used as a look-up table for pattern matching to deduce the orientation of
the emitter, because each orientation gives unique LA and LD values for a
given axial position.

Accurate and precise pattern matching consists of finding the orientation for
different defocus distances. Care must however be taken as the LA changes
drastically for a given orientation under varying defocus values.

Figure 4.5: Lobe asymmetry of the two lobes in horizontal channel and vertical
channel, and linear dichroism at the focal plane with defocus distance 0.

Alternative PSFs can also be useful for finding the axial position, lateral posi-
tion, and orientation of an emitter: bisected and pyramidal PSFs.

Bisected and pyramidal PSFs

The phase masks for generating a bisected PSF and a pyramidal PSF are
plotted in Figure 4.6. A bisected phase mask is given by the equation

φBisected = C0 −
C0

sin θmax
|y|, (4.5.2)

where θmax is the maximal aperture of the field of view derived from the ex-
pression of the NA, and C0 is the maximum phase whose the minimal effective
value associated with NA = 1.3 is equal to 3π. The constant C0 can be tuned
to control the slope and magnitude of the phase. On the other hand, the
pyramidal phase mask is given by

φPyramidal = C0 −
C0

sin θmax
(|x|+ |y|), (4.5.3)

where the effective minimal value of C0 corresponds to 6π [23].
The results on the phase modulation of an isotropic and a dipole emitter,
with emission wavelength 550 nm, are plotted in Figure 4.7. The bisected
PSF consists of two lobes whose interlobe distance is a function of the defocus
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Figure 4.6: Phase masks for bisected and pyramidal PSFs.

distance whereas the pyramidal PSF is formed of four lobes expanding with
increase of distance d. The asymmetry on the two PSFs for d positive and d
negative make them extremely useful in a number of fluorescence microscopy
techniques [23].

Figure 4.7: Bisected and pyramidal PSF of an isotropic and a dipole emitter at
different defocus distance d. The intensity of each lobe of the PSF is function of
the orientation of the emitter whereas the distance between each lobes determines its
defocus distance.

Experimentally, a bisected PSF is more advisable for finding the axial position,
because pyramidal PSF requires a high emitted photon number as the light
is split into eight spots in the horizontal and vertical channels. However, the
pyramidal PSF, also called quadrated PSF, is more efficient for finding the
orientation of an emitter [23].
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Conclusion

In conclusion, a phase modulation of fluorescence emission is modeled compu-
tationally through this project in order to achieve a double helix point spread
function (DH-PSF) imaging. The main goal of the work consists of locating
a fluorescent emitter in three dimensional space with a high accuracy and
precision, and to find its orientation. A particular model with experimental
parameters (wavelength emission λ = 550 nm, numerical aperture NA = 1.3,
refractive index of 1.5) is chosen as a reference for further experimental valida-
tion of the work. Experimentally, a 4f -type imaging system is implemented to
image fluorescent emitter objects, which consist of 50 nm diameter fluorescent
silica nanoparticles, 300 nm and 600 nm polymer based nanoparticles embed-
ded in polystyrene media. The phase modulation is achieved using a spatial
light modulator (SLM) device.

Many factors limiting the measurement are discussed and the limit of the
localization precision, defined using the Fischer information matrix, is shown
experimentally to be less than 2 nm in three directions (x, y, z). The lateral
position is found with a high accuracy and precision in the order of 10 − 30
nm. Furthermore, the DH-PSF engineering has been proved experimentally
to be able to retrieve simultaneously the axial and the lateral position of the
emitter. The localization errors using the DH-PSF imaging seem bigger and
are in order of 0.1 µm, but can still be improved by correcting the aberrations
and distoritions in the system using the SLM. However, the errors are still
small compared to the size of the emitter object (∼ 0.6 µm). In addition, the
DH-PSF imaging has also been shown to be able to give information about
the orientation of an anisotropic emitter such a dipole.

Lastly, this work can be generalized for studying single molecule diffusion
in three dimensional space. Experimental comparisons of the efficiency of
the three PSFs: bisected PSF, pyramidal PSF, and the DH-PSF or/and a
new engineered PSF are envisaged for the future in order to achieve a high
resolution fluorescence microscopy.

53
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