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Abstract 

The successful invasion of freshwater and coastal lakes of South Africa by the recently introduced thiarid snail Tarebia granifera may be due in part 
to release from predatory pressure. This study aimed to determine the comparative vulnerability of T. granifera and the widespread native aquatic 
thiarid Melanoides tuberculata to predation. These species also account for many thiarid invasions in the Americas, Europe and parts of Africa. We 
quantified the shell crushing resistance of these snails, as well as the maximal shell crushing capability of native freshwater crab predators, 
Potamonautes sidneyi and P. perlatus. Using an Instron isometric transducer, we showed that Tarebia granifera shells were significantly stronger 
than Melanoides shells, and exceeded the crushing strength we documented for both potential predatory crabs. The greater shell strength of Tarebia 
granifera was due to shape, sculpture and thickness characteristics. Shell strength of Melanoides, however, remained within the range of crushing 
strength of their potential predators. Assuming crushing to be the main form of crab predation on snails, we inferred T. granifera to be less 
vulnerable to durophagous attack and that their population growth is thus not limited by predation pressure. 
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Introduction 

Interspecific interactions, such as predation, can affect 
the invasion success of alien species (see MacNeil et 
al. 2013). The enemy release hypothesis (i.e., escape 
from predators, parasites and pathogens) is one 
mechanism often proposed to explain why alien 
species exhibit higher competitive ability and 
therefore successfully invade certain habitats (Elton 
1958; Tilman 1999). However, native predators can 
affect the success of invasions by feeding less on the 
alien species and more on the native competitors 
(Shinen et al. 2009; Lopez et al. 2010). The practical 
usefulness of the concept of biotic resistance to 
invasion has long been criticised and debated in 
invasion ecology because factors such as propagule 
pressure and repeated introductions from multiple 
source populations greatly increase the chance of 

establishment (Alpert 2006; Heger et al. 2013; 
Ricciardi et al. 2013). To address how predation may 
affect the invasion process, the strength of interactions 
between native predators and alien species, as well 
as their native competitors and native prey, must be 
determined. This information will provide evidence 
for whether predator-prey interactions can control an 
alien invasive population (Grason and Miner 2012; 
Macneil et al. 2013). 

As species are increasingly introduced to new 
habitats across the world through human activities, 
more opportunities arise to study the strength of novel 
interspecific interactions. Native predators may be able 
to easily feed on or even prefer alien species, quickly 
incorporating them into their diet and thus potentially 
increasing biotic resistance to invasion (Lopez et al. 
2010; Barrios-O'Neill et al. 2014a). However, if alien 
prey are harder to handle, predators may ignore the 
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alien, and continue to focus on native species, which 
may also have to deal with additional new competition 
from the invasive (Lopez et al. 2010). For example, if 
the newly introduced alien species has previously 
developed defence mechanisms, such as an unusually 
hard shell, it will remain shielded from predation 
pressure. Shell crushing predation by crabs has been 
shown to affect shell morphology of prey gastropods 
(Brookes and Rochette 2007; Cox 2013; Weigand 
and Plath 2014) and is considered a driver of snail 
biodiversity and evolution (Vermeij 1987, 1994; West 
and Mitchel 2000; Harper 2006; Covich 2010 and 
references therein). The co-evolutionary relationship 
between crab predators and snail prey has been 
shown to vary in relation to heavier predation 
pressure leading to the formation of stronger shells 
(West and Cohen 1994, 1996). 

The thiarid gastropod Tarebia granifera (Lamarck, 
1822) is originally from South-East Asia but has 
successfully invaded rivers and lakes in North, 
Central, and South America, the Caribbean, and Africa 
(Appleton et al. 2009). In the 1990s, T. granifera 
was accidentally introduced to South Africa and has 
rapidly invaded eastern parts of the country, 
including the Kruger National Park and iSimangaliso 
Wetland Park (Appleton 2003). It has been suggested 
that T. granifera invasion success is attributed to 
release from predatory pressure due to its thick shell 
and operculum (Appleton et al. 2009). However, the 
predation release of T. granifera in South Africa may 
be only temporary and due to naïve responses of 
native crabs to this newly introduced alien species. 
Crabs may learn to use other methods to extract 
snails from their shells, such as peeling or hooking 
through the aperture. Over longer time periods, if the 
selection pressure is strong enough they might evolve 
stronger chelae to capitalise on the new resource 
presented by growing T. granifera populations.  

It has been reported that T. granifera tends to 
outcompete or displace other widespread native 
gastropods in South Africa, such as Melanoides 
tuberculata (O. F. Müller, 1774) (Miranda and 
Perissinotto 2014a, b). However, T. granifera and 
M. tuberculata are sometimes sympatric and both 
are considered global invasive species (Pointier et al. 
2003; Karatayev et al. 2009; López-López et al. 2009; 
Work and Mills 2013). Moreover, there is strong 
evidence that what is referred to as M. tuberculata is 
in fact a species complex (Genner et al. 2004, 2007), 
with some clades clearly polyphyletic.  

This study assessed the comparative vulnerability 
to native crab predation of alien and a native aquatic 
snail species by: 1) determining if there are significant 
differences in shell morphology and crushing 
resistance between T. granifera and the native thiarid 

 
Figure 1. Shells of Melanoides tuberculata (A) and Tarebia 
granifera (B). See also Raw et al. 2016. 

snail M. tuberculata; and 2) determining the maximal 
crushing capabilities of two native freshwater crabs: 
Potamonautes sidneyi (Rathbun, 1904) and 
Potamonautes perlatus (H. Milne Edwards, 1837). 

Methods 

Species selection and field collections 

In 2014, P. sidneyi crabs, M. tuberculata and T. 
granifera snails were collected from Kosi Bay’s Lake 
Nhlange (26º57′37″S 32º49′'36″E), Lake Sibaya 
(27º22′11″S 32º42′56″E) and False Bay (27º57′7″S 
32º22′37″E) in the St Lucia Estuary, KwaZulu-Natal. 
Potamonautes perlatus crabs were collected from 
the vicinity of Port Elizabeth, Eastern Cape 
(34º2′42″S 25º34′7″E). Potamonautes sidneyi occurs 
in Swaziland and Mozambique as well as in the 
Northern Cape, Eastern Cape, Mpumalanga, North-
West, Gauteng, Free State, and KwaZulu-Natal 
provinces of South Africa. This species was also 
selected because of its common occurrence in 
freshwater bodies and observed crushing predation 
potential. The range of P. perlatus is restricted to the 
Western, Eastern and Northern Cape provinces of 
South Africa and possibly Namibia (Barnard 1935, 
1950). Potamonautes perlatus is morphologically 
similar to P. sidneyi but attains greater sizes. 
Melanoides tuberculata was selected because it 
occurs within the combined range of both native 
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crab species and is morphologically similar and 
closely related to T. granifera (Figure 1). Melanoides 
tuberculata originates in subtropical and tropical 
Africa and southern Asia (Brown 1994; Genner et al. 
2004, 2007). However, its invasion history is 
complex, as it has been repeatedly introduced across 
the world (Pointier et al. 2003; Facon et al. 2003, 
2005; 2006, 2008; Genner 2004, 2007; De Kock and 
Wolmarans 2009; Oscoz et al. 2010; Strayer 2010; 
Van Bocxlaer et al. 2015). Although we are not in a 
position to resolve the nomenclatural and taxonomic 
issues for this group, we are confident that our work 
is addressing a single taxonomic unit, which is also 
considered a native morph in South Africa (see Raw 
et al. 2016; Figure 1). Here we use the name M. 
tuberculata sensu lato, with the recognition that this 
may be updated with future research (see also Raw 
et al. 2013, 2015, 2016; Appleton and Miranda 
2015; Van Bocxlaer et al. 2015). Tarebia granifera 
has a wide native distribution in South-East Asia and 
has been introduced in North, Central and South 
America, as well as throughout the Caribbean 
islands, and most recently to Africa (Abbott 1958; 
Pointier et al. 2003; Ben-Ami 2006; Appleton et al. 
2009; Karatayev et al. 2009). 

Gastropod shell morphometrics  

Snail shell height (SH) and width (SW) were measured 
with Vernier callipers (to the nearest 0.01 mm). The 
thickness of shells broken in the laboratory was 
measured at various locations along the height of the 
mid-dorsal region of the body whorl, using a Nikon 
SMZ25 microscope with NIS elements measuring 
software (to the nearest 0.01 mm). The presence-
absence of shell sculpture which could influence 
shell breaking strength was also recorded. Analysis 
of covariance (ANCOVA) was used to compare 
size-standardized (covariate = shell width) differences 
in shell thickness between species. Untransformed 
data were used as model residuals conformed to 
assumptions of normality and equal variances. All 
statistical analyses were performed using the open 
source software R, version 2.14.1. 

Gastropod shell breaking resistance 

Forces were measured with an isometric transducer 
(type 9023, Kistler Inc., Winterthur, Switzerland) 
connected to a charge amplifier (type 5058a, Kistler 
Inc.) and set in a customised rig attached to a servo-
hydraulic testing system (type 8801, Instron, Norwood, 
U.S.A.) in the laboratory. Live snails were positioned 
with the aperture down between two steel plates and 
subjected to increasing downward crushing forces at 

a constant rate (20 N/sec). The maximum force in 
newtons (N) resulting in shell failure (i.e., breaking of 
the body whorl) was recorded (Edgell and Rochette, 
2008). Fifty snails of each species, with a similar SH 
and collected from the same locality (i.e., Lake Nhlange) 
were used. ANCOVA was used to test for differences 
in shell breaking resistance between species (covariate 
= shell width). Data were log transformed to satisfy 
assumptions of normality and equal variances. 

Crab morphometrics 

Crab carapace widest width (CWW), and the propodus 
height (PH) of the crushing (or major) chela were 
measured with Vernier callipers (to the nearest 0.1 
mm). Digital images of the crushing chela were 
analysed with ImageJ software to estimate relative 
percentage of occlusion type according to Brown et 
al. (1979) and also to measure the distance from the 
dactyl fulcrum to the insertion of the dactyl closer 
muscle apodeme (L1) and the distance from the 
fulcrum to the dactyl tip (L2), so that mechanical 
advantage (MA) could be calculated for each sex 
(Elner and Campbell 1981). 

Crushing chela closing force 

Measurements were done in vivo using the Kistler 
system and a protocol described in detail in other 
studies (Herrel et al. 1999; Singh et al. 2000; Lailvaux 
et al. 2009). Crabs were induced to pinch down with 
their crushing chela on plates set at a gape of 6 mm 
(based on the average SW of available gastropod 
prey) and positioned on the proximal region of the 
chelae. Closing force was measured five times per 
individual, with a resting period of 20 minutes 
between measures. Because the objective of this 
study was to estimate maximal capabilities of crabs, 
only the maximum closing force measurements (N) 
of the most cooperative individuals were considered 
(see Losos et al. 2002). Hence the data from 13 P. 
sidneyi crabs and 15 P. perlatus crabs are presented. 

Prey handling time 

To gain some insight into the behaviour and handling 
ability of crabs exhibiting the highest maximal shell 
crushing capabilities, a simple post hoc experiment 
was also conducted. Four large (60 – 80 mm CWW) 
male P. perlatus crabs were individually acclimated 
to 10 L buckets for a week, kept in a temperature 
controlled room (25 ± 1°C) with 12:12 photoperiod. 
Water was changed every 48 h and crabs were fed 
20 g (wet weight) of fish muscle tissue daily. Crabs 
were then starved for 72 h before being presented 
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with 10 live snails of 5 mm SW over a period of 60 
minutes whilst being filmed with a small digital 
camera mounted on the edge of the bucket. Two of 
the crabs were presented with 10 T. granifera snails 
as prey and two were presented with 10 M. 
tuberculata snails (SW of all snails ≈ 5 mm). The 
footage was analysed and handling times were 
recorded with a stopwatch. Handling time in a 
successful attack was recorded as the time from first 
clasp with the chela to the time the crab consumed 
the prey entirely. If the attack was unsuccessful (i.e. 
ending in the rejection of the prey which remained 
intact or suffered only minor damage to the shell lip 
or tip), handling time was recorded as the time from 
first clasp to the time the prey was dropped. The 
number of attempted attacks and percentage 
successful attacks was also recorded (Rheinallt and 
Hughes 1985; Yamada and Boulding 1998). 

Results 

Gastropod shell morphometrics and breaking 
resistance 

The body whorl shell thickness of M. tuberculata 
snails used in the study was significantly different 
from that of T. granifera snails (ANCOVA: F1,50 = 
32.91, P < 0.001; Figure 2a). Tarebia granifera 
snails had thicker shells, with an average body whorl 
shell thickness of 0.16 mm ± 0.01 SE, versus 0.11 
mm ± 0.003 SE in M. tuberculata. 

In terms of shell sculpture, T. granifera shells have 
conspicuous knobs whereas M. tuberculata shells are 
smoother. In this study, Melanoides tuberculata 
shell height to shell width ratio (SH/SW) ranged 
from 2.17 to 4.71 mm, average 3.09 mm ± 0.05 SE, 
whereas the shells of T. granifera were comparatively 
less elongated with SH/SW range from 1.64 to 2.71 
mm, average 2.14 mm ± 0.03 SE. The shell crushing 
resistance of T. granifera was significantly different 
from that of M. tuberculata (ANCOVA: F1,50= 269.53, 
P< 0.001; Figure 2b). Tarebia granifera shells resisted 
an average crushing force of 100 N ± 6 SE, while M. 
tuberculata only resisted an average of 31 N ± 4 SE. 

Crab morphometrics, crushing chela closing force 
and prey handling time 

Potamonautes perlatus crabs (47.0 – 86.1 mm CWW, 
average 60.5 mm ± 3.4 SE) exhibited crushing chela 
maximum closing forces ranging from 18 to 598 N, 
average 130 N ± 39 SE (Figure 3). Crushing chela 
maximum closing forces of smaller P. sidneyi crabs 
(26.8 – 49.2 mm CWW, average 37 mm ± 1.9 SE) 
ranged from 8 to 43 N, average 20 N ± 3 SE (Figure 3). 
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Figure 2. Comparison of a) shell width by body whorl shell 
thickness allometry, and b) log shell width by log shell crushing 
resistance, between sympatric populations of M. tuberculata 
and T. granifera. 
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Figure 3. Crushing chela propodus height by maximum closing 
force, of P. perlatus and P. sidneyi crabs measured in vivo. 

The crushing chelae of P. perlatus and P. sidneyi 
exhibited similar occlusive geometry (Figure 4), 
consisting of 32 to 36 % rounded or molariform 
area, 59 to 62 % asymmetrical occlusive area and 
ending  in  a pointed  tip.  The  average  mechanical 
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Figure 4. Occlusive geometry of the crushing chela of female and male P. perlatus and P. sidneyi (total n = 40, n = 10 for each sex) 
presented as average percentage rounded or molariform area (rm), asymmetrical occlusive area (as) and pointed tip (pt). 

Table 1. Prey handling time, attack rate and % successful attacks by male P. perlatus crabs (60 – 80 mm CWW) under controlled conditions. 

 Handling time (seconds)   

Prey species (SW ≈ 5 mm) 
Successful attack 

(average ± SE) 
Unsuccessful attack 

(average ± SE) 
No. attempted attacks 

in 60 mins 
Overall % 

successful attacks 

Melanoides tuberculata 167 ± 40 87 ± 19 6 – 9 67 

Tarebia granifera 117 ± 10 159 ± 168 8 – 12 8 

 

advantage (MA) of the crushing chela for both species 
was also similar: 0.26 for females (n = 10) and 0.25 
for males (n = 10) in P. perlatus, 0.25 for both 
females (n = 10) and males (n = 10) in P. sidneyi. 
Large male P. perlatus crabs were able to completely 
crush the shells of M. tuberculata and T. granifera in 
successful attacks. However, P. perlatus had more 
difficulty in handling T. granifera, often dropping 
these snails or spending time trying to crack the shell 
of certain individuals with no success (Table 1). 
Evidence of crab attack included damage to the shell 
lip and tip which were often broken off. The overall 
attack success of large crabs on T. granifera was low 
despite a slightly elevated attack rate when compared 
with M. tuberculata (Table 1). 

Discussion 

Tarebia granifera snails exhibit thick rotund shells 
with knobs which are significantly more crush-
resistant than shells of M. tuberculata (Figures 1 and 
2). Thick shells can deter crab crushing predation 
(Trussell 1996; West and Cohen 1996). Furthermore, 

knobs may spread crushing force over an increased 
surface area or reduce the muscular leverage of the 
predator (West et al. 1991; SäLgeback and Savazzi 
2009). Similarly, more rotund shells, with a lower 
SH/SW ratio, may be more crush-resistant (DeWitt 
et al. 2000). The crushing force resistance estimates 
in the current study are within the range of those 
reported by West et al. (1991) for M. tuberculata. 
Tarebia granifera has been estimated to have 
diverged from the Melanoides clade around 8.6 Ma 
in Asia (Genner et al. 2007) where the diversity of 
freshwater crabs is the largest in the world (Yeo et 
al. 2008; Shih and Ng 2011). Tarebia granifera has 
developed thicker shells compared to African M. 
tuberculata populations. However, thicker shells 
require additional calcium which may be limiting or 
difficult to sequester in certain habitats, thus making 
snails more vulnerable to shell crushing predators. 
Consistent with this, unusually small or eroded 
shells have been reported by Miranda et al. (2011) in 
the St Lucia Estuary and Lake Sibaya. Further studies 
may address intraspecific differences in crushing 
resistance in different habitats. 
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Shell damage, particularly scars, can represent 
failed crushing or peeling attacks by predators, so 
their frequency in a population can be used to assess 
predation pressure (see Edgell and Rochette 2008). 
No noticeable damage of this kind has been observed 
in T. granifera shells from natural environments in 
South Africa (Miranda et al. 2011). Indeed, West et 
al. (1991) commented that regeneration scars are only 
rarely found in African thiarids, with the exception 
of specimens from Lake Tanganyika which are also 
thought to have been involved in a co-evolutionary 
arms race with native crabs, resulting in unusually 
strong shells and armament (West and Cohen 1994). 
However, scars on shells are likely to be size-specific. 
Smaller shells are more likely crushed, whereas 
intermediate sizes may escape if dropped during 
attempted predation, and the largest individuals may 
only be vulnerable to attacks from the largest crabs. 
Furthermore, it is expected that predation pressure 
from shell-breaking predators such as crabs will be 
most intense on smaller individuals. 

Although they overlap in general distribution and 
can be found in the same habitat, the two native 
freshwater crabs used in this study can be inferred as 
not having a significant impact on T. granifera 
populations. The current study demonstrates that 
native crabs have difficulty in overcoming the 
stronger shell defences of T. granifera. The strength 
estimates in the current study are in line with those 
reported by Marijnissen (2007) for P. platynotus 
(Cunnington, 1907) and the strongest P. perlatus 
crabs exhibit a crushing chela maximum closing 
force similar to that of mud crabs (genus Scylla) and 
lobsters (Elner and Campbell 1981; Yap et al. 2013). 
Large P. sidneyi crabs are able to crush the weaker 
shelled M. tuberculata, but they are unlikely to 
successfully prey on T. granifera. However, even 
some of the largest and strongest P. perlatus have a 
much lower attack success rate on T. granifera than 
on M. tuberculata (Table 1). Strength, chela gape 
and time limitations may cause hungry crabs to reject 
prey (Yamada and Boulding 1998). In accordance 
with optimal foraging theory, even if peeling is 
employed as an alternative handling technique to 
overcome stronger shell defence, it may be more 
cost effective to spend that handling time consuming 
other prey or food items (Hughes and Seed 1995; 
Yamada and Boulding 1998). Further noteworthy 
preliminary observations were made during the 
current study. After the prey handling experiment, 
the large P. perlatus crabs were presented with both 
T. granifera and M. tuberculata in the lab. Interes-
tingly, crabs seemed to attack the closest snail and 
move on to the next if unsuccessful. No preference 
or selection for either species was apparent despite 

the continued high attack success on M. tuberculata. 
Like P. lirrangensis (Rathbun, 1904) of Lake Malawi 
(Weigand and Plath 2014), P. sidneyi and P. perlatus 
could be considered opportunistically carnivorous 
scavengers. Their occlusive geometry, indicative of 
a serrate rather than molariform dentition, as well as 
low mechanical advantage, suggest that they are 
adapted to an omnivorous diet (Yamada and 
Boulding 1998). However, there is evidence that T. 
granifera is part of P. sidneyi diet in Lake Sibaya 
(Peer et al. 2015). It is likely that M. tuberculata was 
predated upon by P. sidneyi in the past, but the 
native snail appears to have either disappeared from 
that area or its population is currently below 
detection threshold (Miranda and Perissinotto 2012). 
Further studies on the ecological interactions that 
occur in the field between predators and thiarids are 
needed. Population-level predator impacts should be 
addressed, as well as local adaptations in different 
habitats, such as the development of different 
armament and handling strategies. 

The spread of T. granifera, like that of other alien 
invasive gastropods (Alonso and Castro-Díez 2008), 
is undoubtedly driven by a combination of factors 
such as changes in its migration regime as a result of 
human activity (Facon et al. 2006; Appleton and 
Miranda 2015), high rate of parthenogenetic repro-
duction (Facon et al. 2008; Miranda and Perissinotto 
2012), ability to dominate benthic invertebrate 
assemblages in various habitats (Dussart and 
Pointier 1999; Miranda and Perissinotto 2014a, b), 
the production of chemical cues which deter other 
potential competitive snails (Raw et al. 2013, 2015) 
and escape from native predators. According to 
Appleton et al. (2009), the strong shell defences of 
T. granifera may even facilitate endozoochorous 
dispersal by waterfowl. Although M. tuberculata is 
native to South Africa, it has a complex global 
invasion history and alien morphs may be present in 
South Africa (Genner et al. 2004; Van Bocxlaer et 
al. 2015). Although they can be found in the same 
habitat, the interactions between T. granifera and M. 
tuberculata seem to result in mutual exclusion, 
where one displaces the other (Pointier et al. 1998; 
Contreras-Arquieta and Contreras-Balderas 1999; 
Karatayev et al. 2009; López-López et al. 2009). 

Some aspects of the potential for biotic resistance 
to alien invasion can be quantified in terms of the 
mechanisms involved in interspecific interactions, 
e.g., the crushing strength of predators and crushing 
resistance of prey. This information could be 
incorporated into a functional response approach 
addressing the strength of predator-prey interactions 
involving native and alien species (MacNeil et al. 
2013; Barrios-O'Neill et al. 2014b). Further insight 
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into the invasion success and ecological effects of 
alien invasive species can be gained by continuing to 
monitor these interactions in different habitats, whilst 
also taking evolutionary trajectories and relationships 
into consideration (Sakai et al. 2001; Smith 2004; 
Shine 2012). 
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