
ASSESSMENT OF COASTAL VEGETATION DEGRADATION USING 

REMOTE SENSING IN FALSE BAY, SOUTH AFRICA 

by 

CIKIZWA MBOLAMBI 

(15455203))

Thesis submitted in fulfilment of the requirements for the degree Masters of 

Science in Geography and Environmental Studies in the faculty of Science at 

Stellenbosch University 

SUPERVISOR: Dr M Lück-Vogel 

December 2016 

DEPARTMENT OF GEOGRAPHY AND ENVIRONMENTAL STUDIES 



i 

DECLARATION 

By submitting this thesis electronically, I declare that the entirety of the work contained 

therein is my own, original work, that I am the owner of the copyright thereof (save to the 

extent explicitly otherwise stated) that reproduction and publication thereof Stellenbosch 

University will not infringe any third party rights and that I have not previously in its entirety 

or in part submitted it for obtaining any qualification. 

December 2016 

Copyright © 2016 Stellenbosch University 

All rights reserved 

Stellenbosch University  https://scholar.sun.ac.za



ii 

ABSTRACT 

The coastal zone, the interface between land and sea, faces much pressure from human 

activities. These coastal pressures make it difficult for the coastal zones to fulfil their natural 

functions, so threatening the state of coastal environments and making them vulnerable to 

coastal disasters and degradation. This study aimed to test whether remote sensing techniques 

can be implemented to assess the intactness of terrestrial coastal vegetation at the high spatial 

resolution required for coastal management. The study focused on the northern False Bay 

coast, Western Cape, South Africa. The research used is a modification of the method 

developed by Lück-Vogel, O’Farrell & Roberts (2013) which involved image segmentation 

and a habitat intactness index using image derivatives. The procedure used Worldview-2 

(WV-2) images of high spatial, spectral and temporal resolution acquired on 25 February 

2014 and 11 October 2014. Both images were pre-processed and segmented into meaningful 

objects using object-based image analysis (OBIA). Five image derivatives and the eight 

spectral bands were stacked into a single image to extract field-informed training points. 

Regression analysis was performed on eight spectral bands and five image derivatives to 

evaluate the most suitable bands to produce a habitat intactness index in a subsequent 

decision tree classification. Decision tree classification was generated using two spectral 

bands, namely the RED and NIR1 bands. These bands were chosen because they gave the 

best regression results and they are available in most sensors. The bands were also chosen 

because the study deals with vegetation assessment. The overall accuracy of the results was 

80.5% which was a satisfactory result with a kappa value of 0.75 (75%) that indicates a 

substantial agreement between the remotely sensed result and the reference data. A key 

finding is the importance of seasonality to delineate natural and alien vegetation which is 

better achieved in the dry season. Validation of the results was done using the field-validation 

points of a field visit conducted in June 2016. The output maps generated for habitat 

intactness consisted of five habitat intactness classes namely highly, moderately and lightly 

degraded, intact vegetation and alien vegetation. The output maps can be used to inform 

coastal managers about conservation at a local scale. It is recommended that validation of 

remote sensing results be done in the same season that satellite images were taken. 

KEYWORDS AND PHRASES 

Alien vegetation, coastal zone, coastal vegetation, False Bay, habitat intactness, remote 

sensing, WV-2  
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OPSOMMING 

Die koppelvlak tussen die land en die see, ook bekend as die kussone, verkeer onder druk 

weens antropologiese invloede. Menslike bedrywighede belemmer die kus se natuurlike 

funksie en stel die kus en sy nabygeleë omgewing bloot aan kusrampe en degradasie. Hierdie 

studie probeer bepaal of afstandswaarnemingstegnieke toegepas kan word om 

habitatsongeskondenheid langs die kus, teen ‘n geskikte resolusie vir kusbestuurdoeleindes, 

te modelleer. Ons fokus spesifiek op die noordelike deel van Valsbaai in die Wes-Kaap 

Provinsie van Suid-Afrika. Ons bou voort op metodes wat oorspronklik deur Lück-Vogel, 

O’Farell & Roberts (2013) gedoen is. Die voorgenoemde studie gebruik beeldsegmentasie en 

beeldafgeleides ten einde ‘n habitatsongeskondenheidsindeks op te stel. Die metode wat in 

hierdie studie gebruik word maak gebruik van twee WorldView-2 (WV-2) beelde wat teen ‘n 

hoë ruimtelike-, spektrale- en tydsresolusie, onderskeidelik, op 25 Februarie en 11 Oktober 

geneem is. Voorwerpgebasseerde beeldverwerking is toegepas om die voorverwerking en 

segmentasie op hierdie beelde te doen om sodoende sinvolle beeldvoorwerpe te verkry. Vyf 

beeldafgeleides en agt spektrale bande is gestapel om ‘n enkele beeld te vorm ten einde die 

toetspunte te isoleer. Regressie-analise is gedoen om die mees toepaslike bande te bepaal om 

‘n habitatsongeskondenheidsindeks daar te stel deur van ‘n klassifikasie-beslissingsboom 

gebruik te maak. Die RED en NIR1 spektraalbande is gebruik om 

beslissingsboomklassifikasie te doen.  Hierdie bande is gekies omdat hulle die beste regressie 

resultate gelewer het, beskikbaar is op die meeste sensors en omdat hierdie studie 

plantegroei-assesering behels. Die algehele akkuraatheid van ons bevindinge is 80.5% en 

word beskou as ‘n bevredigende resultaat met ‘n kappa waarde van 0.75 (75%) wat aandui 

dat daar ‘n wesenlike ooreenkoms tussen die afstandswaargenome resultaat en die 

verwysingsdata is. Een van die sleutelbevindinge is die belangrike rol wat seisonaliteit speel 

in die beskrywing van inheemse en uitheemse plantegroei. Sulkse beskrywings is meer 

wesenlik in die droë seisoen. Bevestiging van die resultate is gedoen deur van veld-validasie 

punte, wat tydens ‘n veldbesoek in 2016 geneem is, gebruik te maak. Die gegenereerde 

habitatsongeskondenheidskaarte bestaan uit vyf habitatsongeskondenheidsklasse naamlik 

hoog, matig- en ligtelik gedegradeer, ongeskonde plantegroei en uitheemse plantegroei. 

Hierdie afvoerkaarte kan gebruik word om kusbestuurders in te lig oor bewaring op 'n lokale 

skaal. Dit word aanbeveel dat die validasie van die afstandswaarnemingsresultate gedoen 

word in dieselfde seisoen waarin die satelliet beelde geneem is. 
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CHAPTER 1.  INTRODUCTION 

Chapter one provides a brief background on the study, representing the research problem, 

research question, aims and objectives as well as research methods and the structure of the 

thesis. 

1.1 BACKGROUND  

The coastal zone is the area where the land and sea meet (Nelson 2008; Leewis et al. 2012). 

The area is characterised by different habitats such as sandy beaches, dunes, cliffs and 

headlands, mangroves, coral reefs, estuaries, lagoons and salt marshes (Miththapala 2013). 

These coastal habitats are highly productive areas supporting a variety of biodiversity 

(Constanza et al. 1997). Moreover, these coastal habitats provide support services for natural 

ecosystems, for example for shoreline stabilisation, spawning grounds for marine life and 

buffers against natural hazards; they provide regulation services for climate, nutrient cycles, 

for detoxification of polluted waters; and coastal provision services like fuelwood, timber, 

food, coastal protection, natural products, energy resources and recreational activities; and 

cultural services for religious activities among others (Constanza et al. 1997). These roles 

highlight the importance of coastal systems and emphasise why they should be studied (EEA 

2006; Thompson & Schlacher 2008).  

For thousands of years human activities have impacted on coastal environments (Constanza 

et al. 1997). According to Millennium Ecosystem Assessment (2005), approximately 60% of 

the world’s population is situated within 100 km of the coast. In South Africa, around 40% of 

the population lives within 100 km of the coast (DEA 2014). Coastal habitats worldwide are 

encountering rapid environmental change through increasing population and developmental 

pressures (Nayak & Bahuguna 2001). Global trends show that urbanisation is one of the 

primary causes of degradation in coastal environments (Nayak et al. 1989). Residential 

construction in coastal areas exposes them to coastal hazards that impair the functionality of 

coastal environments. Disturbances of coastal environments caused by anthropogenic factors 

due to increased population, urban coastal development and urban sprawl cause damage to 

coastal landscapes through habitat loss, pollution and increased vulnerability to events 

(Syvitski et al. 2002).  

The key pressures affecting terrestrial coastal vegetation include unregulated public access 

and trampling. Unregulated activities can create pathways on dunes that eventually lead to 

vegetation destruction that in turn promotes erosion (Moulis & Barbel 1999). Other pressures 
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arise from sand mining, logging of firewood, motorised vehicles driving through vegetated 

habitats, urban sprawl, urban development, inappropriate waste deposits and the introduction 

of invasive species that degrade these habitats (Nayak & Bahuguna 2001). Given all these 

threats imposed by human activities and the importance of coastal zones, especially regarding 

the delivery of ecosystem services, there is urgent need to monitor and assess the degradation 

of terrestrial coastal vegetation to help conserve the natural resources provided by the system 

for future human generations. Based on the brief background provided in Section 1.1, Section 

1.2 states the research problem. 

1.2 RESEARCH PROBLEM 

Coastal management in South Africa is primarily governed under the National Environmental 

Management: Integrated Coastal Management Act No. 24 of 2008 (South Africa 2009) as 

amended in 2014 (DEA 2014; South Africa 2014). Although this Act was the first to mandate 

the development of coastal management programmes and institutions for cooperative coastal 

governance, South Africa already had other legislation governing aspects of coastal 

management (Taljaard 2011; Glavovic & Cullinan 2009; McLean & Glazewski 2009).  

Management of the terrestrial coastal zone, delineated as an area above the high water mark 

(HWM) from the sea inland up to 100 m in urban areas and 1 km in rural areas (South Africa 

2009), is largely the responsibility of the respective municipalities (DEA 2014). Under the 

Municipal Systems Act No. 32 of 2000 (South Africa 2000) municipalities are required to 

prepare integrated development plans (IDPs) and spatial planning frameworks (SPFs) for the 

planning and development of their municipalities. A major handicap to municipal managers 

is the lack of appropriate data and information on the intactness of coastal vegetation at a 

high spatial resolution suitable for local management. Such high spatial resolution data and 

information are required to assess existing impacts and to plan conservation in coastal areas 

(Nayak & Bahuguna 2001). However, assessing the state of degradation of coastal vegetation 

in the required detail is usually unfeasible given the lack of skilled personnel and limited 

budgets. Readily available general remote sensing maps usually lack detail on degradation 

status. Therefore, the problem addressed in this study was the lack of a method to efficiently 

and cost-effectively measure the intactness of terrestrial coastal vegetation in South Africa at 

a resolution suitable for local management. 
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1.3 RESEARCH AIM AND OBJECTIVES 

The aim of this research was to test whether remote sensing techniques can be implemented 

to assess the intactness of terrestrial coastal vegetation at a high spatial resolution required for 

local management. The study focused on the northern part of the False Bay (FB) coast 

situated along the south-western coast of the Western Cape Province of South Africa. 

The following research question was addressed: 

Can multispectral Satellite (MS) imagery, such as Worldview-2 (WV-2), be used to assess 

the intactness of terrestrial coastal vegetation at the northern part of False Bay?  

The research aim and associated research question were pursued through the following 

objectives: 

1. Identify pristine areas and types of degradation in the study area (e.g. pathways, alien 

vegetation and fire scars) and identify areas with highest and lowest intactness. 

2. Derive the spectral, structural and textural information for the intactness gradient of 

the natural terrestrial coastal vegetation along the northern coast of False Bay from 

the multi-spectral satellite images. 

3. Develop and validate a habitat intactness index (HII) based on the spectral, structural 

and textural information. 

4. Evaluate the remote sensing results. 

1.4 RESEARCH METHODS AND RESEARCH DESIGN 

1.4.1 Research methods 

This study followed a quantitative approach to derive terrestrial coastal vegetation 

degradation along the northern coast of False Bay. According to Creswell (2003) and Fox 

(2008), quantitative research methods answer research questions and problems by numerical 

values to determine, for example, how much a certain area or object has been degraded or to 

what degree degrading has occurred, that is badly, moderately or slightly degraded using MS 

imagery. The research was carried out in an untransformed coastal landscape to develop a HII 

based on the structural, spectral and textural characteristics of environmental features along 

the northern coast of False Bay. The method implemented in this study was adapted from 

Lück-Vogel, O’Farrell & Roberts (2013) where it was applied in a study of habitat intactness 

around Elandsbay in the Sandveld region in the Western Cape Province. 
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High spatial resolution WorldView-2 (WV-2) imagery with 2x2 m pixel size was acquired 

from the South African National Space Agency (SANSA). The high resolution of WV-2 

imagery was considered suitable for assessing the intactness of terrestrial coastal vegetation 

by deriving spectral, structural and textural image properties along the northern coast of False 

Bay. Global position system (GPS) referenced field data were collected for training purposes 

in the application of the remote sensing processes and for validation of the results. The 

quantitative method applied in this study used high spatial resolution WV-2 imagery.  

1.4.2 Research design 

Creswell (2003) describes a research design as a systematic plan or stages of decision used by 

researchers to answer the research question and to achieve the aim and objectives of the 

research. The systematic plan employed in this study is shown in Figure 1.1. The research 

began with a search for and reviews of relevant literature. The second step was the 

acquisition of high-resolution WV-2 images, as well as field and ancillary data and 

information from the National Land Cover (NLC) map of 2014 and the geographical 

information system (GIS) of the City of Cape Town (CoCT) data about habitat condition. 

Next, the WV-2 imagery was pre-processed to minimise atmospheric and satellite distortions, 

and subsetted to minimise computation time. A major step was the processing of WV-2 

imagery which involved segmenting the imagery as input for developing a HII derived from a 

decision tree classification. The next step was performing accuracy assessment using field-

informed training points and field visit to assess and validate the quality of the remote 

sensing results. 
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Figure 1.1 The Research design used in this study. Numbers in circles on the right indicate thesis chapters. 
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1.5 STRUCTURE OF THESIS 

This thesis is structured into five chapters. Chapter one introduces the thesis and provides a 

brief background to the study as well as the research problem, research question, aims and 

objectives. Chapter two commences with a literature review on coastal terrestrial vegetation 

and its distribution in South Africa and continues with an overview of the application of 

remote sensing in mapping in general vegetation and coastal vegetation specifically. Chapter 

three outlines the study area and methods used in the study to achieve the final results. 

Chapter four presents and discusses the results of the research. Finally, Chapter five provides 

the study’s conclusions and recommendations. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter is subdivided into two sections. Firstly it provides a review of literature based on 

coastal environments, its coastal vegetation, the influencing factors and characteristics shaping 

the coastal environment and vegetation, followed by the description of terrestrial coastal 

habitats and the key impacts influencing the intactness of these habitats. Secondly the chapter 

provides the use of remote sensing in coastal environments, based on the selection of different 

spatial, spectral and temporal resolutions and lastly the classification methods used in 

vegetation mapping and examples of coastal degradation assessment. 

2.1 THE COASTAL ENVIRONMENT 

2.1.1 Definition of the coastal zone 

The coastal zone is defined internationally as the interface between land and sea (Nelson 2008). 

Carter (1988) describes the coastal zone as space in which terrestrial environments influence 

marine environments. The coastal zone has also been characterised as a band of dry land next 

to ocean space where land use activities directly affect the ocean and vice versa (Ketchum 

1972). The National Environmental Management: Integrated Coastal Management Act of 

South Africa (South Africa 2009), as amended in the National Environmental Management: 

Integrated Coastal Amendment Management Act (ICMA) (South Africa 2014) defines the 

coastal zone as a space having the exclusive economic zone (EEZ) (200 nautical miles offshore 

from the coastline) as the seaward boundary and an area 1 km inland from the HWM in rural 

areas and 100 m inland from the HWM in urban areas as its landward boundary, as illustrated 

in Figure 2.1. This definition includes coastal terrestrial habitats, the seashore (area between 

low- and high-water marks), as well as coastal waters and waterbodies up to the EEZ.  
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Figure 2.1 The coastal zone of South Africa according to the Integrated Coastal Management Act in South Africa 

2014  

This thesis focuses on the coastal zone inland from the high-water mark (highest level reached 

by the seawater inland) as defined by the ICMA (South Africa 2014), hereafter referred to as 

the terrestrial coast. It is of importance to understand the key environmental factors shaping the 

coastal environments and its vegetation, therefore the next Section 2.2 describes the factors. 

2.2 KEY ENVIRONMENTAL FACTORS SHAPING THE COASTAL 

ENVIRONMENT AND VEGETATION 

The terrestrial coast is influenced by environmental factors ranging from geology and soil 

types, climate (e.g. rain, wind and temperature) to oceanographic (e.g. waves, currents and 

tides) conditions (Nicholls et al. 2007; Zhang 2002; Mucina & Rutherford 2006). Geology and 

particularly soil type are controlling factors in the distribution of coastal vegetation at local 

scale (Maun 2004, 2009; Frederiksen et al. 2006; Forey et al. 2008) so that variations in rock 

and soil types determine the distribution of different vegetation types along the coast. For 

Source: Adapted Celliers et al. (2009) 

Stellenbosch University  https://scholar.sun.ac.za



9 

example, certain areas along the coast of South Africa are composed of fine-grained sand with 

limestone and Cape granite that favour the growth of Strandveld vegetation (Jackson 1991).  

Variations in rainfall, temperature and wind are the most common climatic factors influencing 

the distribution of coastal vegetation at regional scale (Cowling et al. 1997; Maun 1998, 2004; 

Maun & Perumal 1999). Nakamura et al. (2007), Zhao et al. (2007) and Ji et al. (2009) found 

that rainfall was the most significant environmental factor influencing the distribution of 

coastal vegetation at regional scale. Wind influences evaporation, transpiration and transport of 

sand, sandblast and salt spray which occur along the dune profile so influencing the distribution 

of coastal vegetation (Maun 1998, 2004; Maun & Perumal 1999). Different types of coastal 

plant communities adapted to strong winds namely southeasters in summer and northwesters in 

winter also contribute to the distribution of vegetation along the coast (Branch et al. 1994). 

Section 2.3 outlines the terrestrial coastal habitats, since the study will be focusing in these 

habitats. 

2.3 TERRESTRIAL COASTAL HABITATS 

The South African coastline is about 3000 km long (Mucina & Rutherford 2006). The 

terrestrial coastal habitat is mainly composed of rocky shores consisting of coastal cliffs and 

headlands, sandy shores and dunes (Mucina & Rutherford 2006). According to Lubke et al. 

(1997) 70% of South Africa’s coastline is sandy shores and 30% rocky shores. Less than 1% of 

the country’s coastline consists of pebbles or shingle beaches (Mucina & Rutherford 2006; 

Tinley 1985a). Rocky shores include areas between the low-water mark and high-water mark 

(intertidal) that feature solid rocks (Denny & Gaines 2007). Rocky shores consist of different 

types of habitats, namely headlands, cliffs and rocky pools (Mucina & Rutherford 2006; 

Palmer, Van der Elst &Parak 2011). Headlands are coastal structures usually found at the end 

of bays extending out to the sea. The steep cliffs, also called coastal cliffs, are coastal structures 

formed along shorelines by erosive wave action. Rocky shore environments are conducive to 

stress-tolerant plants and animals because of the direct influences of the ocean (such as waves 

and salt spray) (Mucina & Rutherford 2006). The habitat zones of sandy shores are illustrated 

in Figure 2.2. 

The inshore zone lies below the intertidal zone and is covered by water. The inshore zone is not 

the focus of this study. Above the inshore zone lies the foreshore zone comprising the intertidal 

zone (between the low- and high-water marks) that forms the transition zone between the land 

and the sea (Levinton 1995). The foreshore zone is also not the concern of this study. The 
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backshore zone extends from the high-water mark inland. The backshore zone of a sandy shore 

includes sandy beaches and dune habitats (Levinton 1995). The backshore is the focus of this 

study. It comprises dune habitats that are subdivided into foredunes and backdunes which are 

the primary and secondary dune habitats respectively. The backshore zone includes five habitat 

zones, namely plant-free beach zone, strand plant zone, shrub zone, scrub thicket zone and the 

thicket or forest zone. The five vegetated habitat zones are described in  Section 2.3.1. 

 

 

Figure 2.2 Habitat zones in sandy shores  

The primary dune habitats consist of bare, plant-free areas and the foredunes that support 

pioneer plants. The secondary dunes are stabilised backdunes (Levinton 1995). This study 

focuses on vegetation landward of the high-water mark here referred to as the terrestrial coastal 

habitat. In terrestrial coastal habitats, it is important to understand the characteristics of 

vegetation the habitat mainly consists of. Section 2.3.1 briefly provides a description in 

characterisation of coastal vegetation. 

Source: Adapted from Tinley (1985a) 
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2.3.1 Characterisation of coastal vegetation 

The classification of vegetation is done across the dune profile (Tinley 1985b; Mucina & 

Rutherford 2006). The terrestrial coastal habitat consists of five vegetated zones, namely the 

strand plant zone, the shrub zone, the scrub thicket zone and the thicket or forest zone and an 

unvegetated zone (see Figure 2.2). 

The strand plant zone is the most dynamic zone above the high-water mark in the foredune 

area. Strand plants are specialised pioneer dune flora that can withstand the extreme conditions 

of foredune areas (Tinley 1985a). This zone is especially exposed to wave movement and 

wind. The zone consists of short-lived plant communities (pioneers) that are destroyed at 

seasonal intervals as a result of storm events while reforming in phases of sand accretion, i.e. in 

summer (Tinley 1985a). Herbaceous plants and grasses such as sea wheat (Thinopyrum 

distichum) occur in this plant zone. The plants trap windblown sand to form small mounds 

called hummocks which initiate the development of foredunes (Tinley 1985a). Sea wheat grass 

is native to South Africa and dominantly found along the south-western coast of South Africa. 

This grass has been used successfully in dune stabilisation (Cowling et al. 1997; Lubke et al. 

1997). 

The shrub zone is situated on more established foredunes, a bit further inland from the strand 

plant zone. The plant life forms in this zone include annuals, graminoids, geophytes and 

succulents (Tinley 1985a; DEA 2014). The scrub thicket zone is located in the older and more 

stabilised dunes behind the shrub zone. This stabilised zone consists of dense dwarf shrubs and 

shrubs with compact canopies (Tinley 1985a). Examples of plants found in this zone are 

milkwood (Sideroxylon inerme) and sea guarri (Euclea racemosa) (Tinley 1985a; DEA 2014). 

The thicket or forest zone occurs on developed older dunes farther away from the sea (Tinley 

1985a; DEA 2014). This zone is only found in areas of higher rainfall and well-developed soils 

(DEA 2014). The thicket or forest zone comprises a climax plant community representing the 

final stage of succession (Tinley 1985a). The zone is populated by mature closed coastal dune 

vegetation composed of between 50% and 60% dense trees (Tinley 1985a).  
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2.3.2 Biogeographical regions of the South African coast 

The South African coast is divided into three biogeographical regions (Figure 2.3), namely the 

cool temperate west coast, warm temperate south coast and subtropical east coast (Brown & 

Jarman 1978). In the cool temperate west coast region, the climate is semi-arid with extended 

periods of low to no rainfall interspersed with short flash-rain events. The south-western part of 

this region experiences a Mediterranean climate dominated by winter rainfall (Brown & 

Jarman 1978). In the warm temperate south coast region, rainfall is mainly bimodal with peaks 

in spring and autumn. The (humid) subtropical region along the east coast is dominated by 

summer rainfall (Davies & Day 1998).  

 

 

Figure 2.3 Biogeographical regions of South Africa  

Along the coast temperatures are moderated by the influence of the ocean which neither gains 

nor loses heat as quickly as the land does. As a result temperatures at the shore fluctuate less 

between high and low as experienced inland (Branch et al. 1994; Zhao et al. 2007). Key 

oceanographic factors that influence the distribution of terrestrial vegetation are currents, 

waves and tides (Palmer, Van der Elst &Parak 2011). The oceanographic factors control the 

presence and adaptability of terrestrial coastal vegetation (Frederisksen et al. 2006). South 

Source: Adapted from DEAT 2008 
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Africa’s oceanographic patterns are controlled by two major ocean currents, namely the cold 

Benguela Current which flows northwards along the west coast and the warm south-flowing 

Agulhas Current along the east and south coasts. 

Waves and tides shape the coastline and associated terrestrial coastal vegetation (Palmer, Van 

der Elst &Parak 2011). The tides control the extent of wave action along the shore (Tinley 

1985a) and the state of tides influences the maximum storm level and associated erosion risk at 

the coast (Barwell 2011). The wave characteristics (e.g. height, length and frequency) 

determine the presence and type of coastal vegetation along a coastal area (Palmer, Van der 

Elst &Parak 2011). 

2.4 COASTAL VEGETATION TYPES ALONG SOUTH AFRICA’S COASTLINE 

The coastal vegetation of South Africa is subdivided into seven regions each comprising 

characteristic coastal vegetation types (see Figure 2.4) (Lubke et al. 1997). The West Coast 

region extends from Alexander Bay in the north to the Olifants River mouth in the south (see 

Figure 2.4). The region has low rainfall mainly in winter. Fine grained sandy shores with desert 

or strandveld vegetation are predominant (Lubke et al. 1997). 

 

Figure 2.4 The coastal vegetation regions of South Africa  

Source: Adapted from Tinley (1985a) and Lubke et al. 

(1997) 
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The South West Coast region extends from the Olifants River Mouth in the north to Cape 

Agulhas in the south (see Figure 2.4). The region has a cool temperate climate with most of its 

rainfall in winter (Lubke et al. 1997). This coastal region has fine-grained sandy beaches with 

exposed rocky shores and it is characterised by fynbos patches, dune thicket vegetation and 

strandveld (Lubke et al. 1997). 

The South Coast region extends from Cape Agulhas to Cape St. Francis (see Figure 2.4). The 

region’s warm temperate climate gives rise to all-season rainfall with western parts 

experiencing mostly winter rainfall (Lubke et al. 1997). This coastal region consists of wave-

cut rocky shores and the occasional fine-grained sandy shores (Tinley 1985a). The dune fynbos 

of the South Coast is characterised by a mosaic of thicket and Afromontane patches (Tinley 

1985a). 

The South East Coast extends from Cape St. Francis to Kei River (see Figure 2.4). The warm 

temperate climate gives rise to spring, autumn and summer rainfall (Lubke et al. 1997). This 

region consists of fine-grained sandy shore habitats with dune fynbos vegetation in the western 

areas and dune thicket with forest vegetation in the eastern parts (Lubke et al. 1997). 

The Wild Coast region, previously known as the Transkei Coast, extends from Kei River to the 

Mtamvuna River (see Figure 2.4) (Tinley 1985a; Lubke et al. 1997). The climate in this region 

is subtropical, characterised by summer rainfall. The Wild Coast has rocky shore habitats and 

occasional coarse-grained sandy shore habitats. The region’s vegetation is characterised by 

coastal grassland, dune thicket and coastal forests vegetation (Tinley 1985a; Lubke et al. 1997). 

The former KwaZulu-Natal coastal region is now subdivided into the KwaZulu-Natal Coast 

and Maputaland Coast (Lubke et al. 1997). The KwaZulu-Natal Coast region stretches from the 

Mtamvuna River to the Mtunzini River (see Figure 2.4). This coastal region is subtropical, 

characterised by summer rainfall. It consists of coarse-grained sandy shore habitats and 

occasionally-exposed headlands. The vegetation is dune thicket and coastal forests such as 

mangroves (Tinley 1985a; Lubke et al. 1997).  

The Maputaland Coast extends from the Mtunzini River to Mozambique in the north (see 

Figure 2.4). Maputaland receives summer rainfall influenced by the subtropical climate. It is 

characterised by coarse-grained sandy shores and occasionally exposed headlands. The 

subtropical climate allows lush growth of dune thicket and coastal forest vegetation (Lubke et 

al. 1997). Tinley (1985b) first described six coastal regions of coastal vegetation, grouping the 

KwaZulu–Natal and Maputaland regions into one KwaZulu-Natal Coast region which was then 
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split by Lubke et al. (1997) into two separate regions. The coastal environment is under a lot of 

pressure mainly caused by humans worldwide. Section 2.5 provides a brief description of the 

key impacts influencing the intactness of terrestrial coastal vegetation. 

2.5 KEY IMPACTS INFLUENCING INTACTNESS OF TERRESTRIAL COASTAL 

VEGETATION 

Coastal environments are among the most productive and valued ecosystems in the world 

(Constanza et al. 1997). These coastal environments provide services to humans to sustain our 

well-being. The provision of services involves the benefits people obtain from coastal 

environments. These benefits include food (fishing), fuelwood, timber, coastal protection 

(buffer against storms), natural products, energy resources and recreational opportunities 

(Dayton 2003). Unfortunately, these environments are often heavily degraded by increasing 

human activity (Millennium Ecosystem Assessment 2005; Dayton 2003). Anthropogenic 

factors are the main cause of coastal destruction. Loss and degradation of coastal environments 

occurs through urban development, overgrazing, mining (sand and minerals), pollution (oil 

spill, dumping, waste disposal), deforestation, informal settlements and introduction of alien 

invasive species (Constanza et al. 1997). 

The consequences of these human activities are erosion and flooding due to the removal of 

coastal vegetation through inappropriate development along the dune areas and logging of 

wood (Constanza 1998). The result is that coastal environments can no longer provide their 

service of coastal protection against storms due to overgrazing and the removal of coastal 

vegetation that acts as a buffer (Myers 1993; Constanza 1998; Lotze et al. 2006). Mapping and 

monitoring of coastal environments using field-based assessments is frequently unfeasible, due 

to the vast extent of the coastline, remoteness or physical inaccessibility. Remote sensing might 

provide a suitable tool for spatially continuous assessments of the coast.  

The loss of vegetation in coastal environments due to human activities has led to an increase in 

coastal vulnerability. This loss limits the role of coastal vegetation to act as a buffer protecting 

coastal environments against storms, erosion and wind-blown sand into settlements, habitat 

loss and fragmentation. Although remote sensing technologies cannot directly reduce the 

environmental risks, they play an important role in the monitoring and assessment of change 

and the destruction of coastal environments. 
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2.6 REMOTE SENSING AND VEGETATION ASSESSMENT 

2.6.1 Background 

Fischer et al. (1976) describe remote sensing as the acquisition of physical data of an object 

without direct contact. Lillesand et al. (2008) define remote sensing as “the science of 

obtaining information on the earth’s land and water surfaces, about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with object, 

area, or phenomenon under investigation using electromagnetic radiation.” 

When electromagnetic radiation hits a surface, some of its energy is absorbed and some is 

transmitted through the surface and the rest of the energy is reflected back (Ramachandran et 

al. 1998). Remote sensing is based on the detection of transmitted and reflected 

electromagnetic radiation by sensors (e.g. cameras and scanners) (Provost et al. 2005). These 

sensors are attached to platforms (aircrafts and satellites) moving at considerable heights above 

the earth surface where they record the observations on a suitable medium (Ramachandran et 

al. 1998). This remotely-sensed data can assist with mapping the present situation, evaluate 

environmental degradation trends at local and regional scales over time and provide a scientific 

basis for the management and protection of vegetation (Hantson et al. 2012).  

In the past the most commonly used type of remote sensing of the coastal environment had 

been aerial photographs since the early 1920’s (Edwards et al. 2000) as done to map 

mangroves (Reark & Ross 1975) or changes in the coastline. The major drawback of aerial 

photography is their limited area of coverage (Friel & Haddad 1992, Mumby et al. 1997). For 

example, if the area of interest is large the use of aerial photographs is prohibitively expensive 

(Friel & Haddad 1992, Mumby et al. 1997). Since the launch of Landsat in 1972 remote 

sensing of coastal areas has proliferated in the 1980s (Edwards et al. 2000) when it was widely 

used to detect change in coastal environments and for environmental-sensitivity mapping. 

Other applications are mapping of mangrove areas sensitive to oil spills and the extent of 

mangrove deforestation, assessment of coastal resources such as salt marshes, coral reefs, 

mangroves and coastal wetlands, and mapping of boundaries of coastal management zones and 

aquaculture activities in coastal habitats. The application of coastal remote sensing has been 

done using different satellites covering areas of interest at regional scale with different spatial, 

spectral and temporal resolutions such as Landsat Thematic Mapper (TM), Landsat 

Multispectral Scanner System (MSS) and French Systeme Pour Observation de la Terre (SPOT 
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XS) (Kenchington & Claasen 1988; Ibrahim & Yosuh 1992; Biňa et al. 1980; Green et al.1997; 

Loubersac & Populus. 1986). 

The application of remote sensing in coastal environments has limitations, the most common 

being cloud infestation in the images and the turbidity of the coastal waters. In the past the cost 

of obtaining multiple sets of imagery was high but Landsat imagery is now available at no cost. 

Most early studies used Landsat images with a medium spatial resolution that gave satisfactory 

results, but more recently images with high spatial resolution (i.e. WV-2 and IKONOS) for 

coastal environments are yielding good results in mapping saltmarshes (Wang 2010; McCarthy 

& Halls 2014). Limitations vary with the use of different sensors where the spatial or spectral 

resolutions can be too coarse and the temporal resolution too infrequent. Ultimately the 

suitability depends on the nature of the research problem (Edwards et al. 2000). 

2.7  Selection of appropriate sensor resolution 

The selection of the appropriate sensor for coastal remote sensing calls for careful 

consideration of a range of factors relating to spatial, spectral and temporal resolution. These 

are discussed in the following subsections. 

2.7.1.1 Spatial resolution 

Spatial resolution is the minimum distance between two objects that a sensor can record 

(Fischer et al. 1976). Spatial resolution determines the level of detail visible in a satellite image 

(Gao 1999; Campbell 2006). The higher the spatial resolution of an image, the greater is the 

visual interpretability (Gao 1999; Nagendra 2001). Therefore, the level of detail required in 

specific study determines whether fine or coarse spatial resolution imagery is required (Hengl 

2006). Cho et al. (2015), for example, used high spatial resolution imagery to identify and map 

gaps in the tree canopy and pathways in a terrestrial coastal environment.  

The first earth-observation satellite launched was Corona in 1960 which used a KH-1 camera 

with a resolution of 7.5m (Campbell 2011). Subsequently in 1972, Landsat was launched with 

a medium spatial resolution of 30 m and the imagery has been widely used in mapping and 

assessing land-cover changes at a regional to global scale. It is currently available at no cost. 

High-resolution satellite imagery from IKONOS (launched 1999), Quick Bird (launched 2001) 

and WorldView-2 (launched 2008), is available at 2-m to a 5-m resolution at least and it is used 

for mapping at regional to local scales (Boyle et al. 2014). Although the high spatial resolution 

satellite imagery is not free it outperforms medium-resolution (Landsat) imagery by capturing 
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small habitat patches and its ability to detect forest disturbance and degradation (selective 

logging) and coastal degradation features (Cho et al. 2015; Mahlalela 2013).  

Medium spatial resolutions of satellite imagery such as SPOT 4 with a 20-m pixel size and 

moderate resolution imaging spectrometer (MODIS) with a pixel size of 250 m to a 1 km have 

been widely used to map land cover at regional scale (Xie et al. 2008). Studies by Lopez-

Portillo & Ezcurra (2008) and Gao (1999) used SPOT data to accurately map mangrove 

degradation and the impacts of flooding along coastal environments. 

2.7.1.2 Spectral resolution 

Al-Wassai & Kalyankar (1999), Gao (1999) and Lefsky & Cohen (2001) define spectral 

resolution as the dimension and number of specific wavelength intervals of a sensor in the 

electromagnetic spectrum. Spectral resolution denotes the number of spectral bands in which a 

sensor can collect reflected radiance and the width of the bands in the electromagnetic 

spectrum. A higher spectral resolution results in a narrower bandwidth. Low spectral resolution 

ranges from four to eight bands called multispectral imagery and a higher spectral resolution of 

bands in hundreds is referred to as hyperspectral imagery (Al-Wassai & Kalyankar1999; 

Campbell 2006). The disadvantage of most high spatial resolution satellite images such as 

RapidEye, IKONOS and QuickBird is poor spectral resolution, but this does not apply to WV-

2 with eight spectral bands. Even though the spatial resolution is high the spectral capabilities 

of RapidEye and SPOT 5 imagery are limited (Carleer et al. 2004). 

2.7.1.3 Temporal resolution 

Lefsky & Cohen (2001) see temporal resolution as the time taken by the satellite sensor to 

complete one orbit cycle and obtain imagery in a certain area. For example, the Landsat 

satellites view the same area of the world every 16 days. The Landsat sensors are regarded as 

having low temporal resolution because of the greater number of days they take to revisit an 

area (Lefsky & Cohen 2001). The French Systeme Pour Observation de la Terre (SPOT 5) 

sensor is regarded as a high temporal sensor thank to just three days taken to revisit the same 

area (Al-Wassai & Kalyankar 1999). Oetter et al. (2001) used SPOT 5 satellite images 

recorded in the same season to detect change in forest structure and biomass. By using multi-

date Landsat 7 ETM+ imagery with low temporal resolution, De Colstoun et al. (2003) 

successfully discriminated natural vegetation in terrestrial coastal habitats.  
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2.7.2 Examples of mapping of remote sensing coastal degradation 

Coastal degradation occurs through human activities such as trampling, pollution, waste 

disposal, agriculture, mining, deforestation (mangroves) and coastal urban development. The 

application of remote sensing in this space helps map and monitor the degradation of coastal 

environments (Nayak 2004). 

2.7.2.1  Very high spatial resolution sensors  

Very-high resolution sensors such as WV-2, IKONOS and QuickBird can be used to identify 

and map fine-scale changes in the coastal environment (McCarthy & Halls 2014). All three 

mentioned sensors were used to map coastal habitat change over a year on Barrier Island in 

2014. All the sensors yield good results (McCarthy & Halls 2014). QuickBird was used to map 

the erosion and disappearing of salt marshes in Jamaica Bay in 2002 (Wang 2010). IKONOS 

was used to map the deforestation of mangroves in the Caribbean coast of Panama in 2004 

(Wang 2010). 

2.7.2.2 Medium spatial resolution sensors  

Landsat imagery has the longest history of use for monitoring the earth’s surface in coastal 

environments (Nayak 2004). In the 1980s Landsat Thematic Mapper (TM) and SPOT XS were 

used to distinguish mangroves from adjacent thorn scrub in the Turks and Caicos Island 

(Ranganath et al. 1989). Biňa et al. 1980 used Landsat Multispectral Scanner System (MSS) in 

a change-detection study to monitor the clearance of mangroves in the Philippines. Ibrahim & 

Yosuh (1992) used Landsat to map the impact of deforestation on mangroves in Pulau Redang 

Marine Park in Malaysia and it was applied to monitor aqua-cultural activities in mangrove 

forests in the Gulf of Nicoya, Costa Rica (Kapetsky et al. 1990; Loubersac & Populus. 1986). 

In the year 2001 Landsat was used to map the destruction of mangroves through deforestation 

in India (Nayak & Bahuguna 2001). Landsat 7 ETM+ and SPOT 5 were used in combination in 

South Africa’s coastal region to assess the status of the ecosystem (Lück-Vogel, O’Farrell & 

Roberts 2013). Osei, Merem & Twumasi (2013) used Landsat TM to map the influence of 

urban development on mangroves in the Nigerian coast. A study in Kenya mapped the impact 

of coastal development on mangroves using SPOT 5 (Bosire et al. 2014).  
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2.7.2.3 LiDAR 

The light detection and ranging (LiDAR) system is an active sensor that is able to measure 

surface height and vegetation structure (Campbell 2011). Because it is an active sensor LiDAR 

does not depend on natural sunlight (Froese & Mei 2008). LiDAR is put to use for various 

research and commercial purposes. For example, it has been used in coastal environments to 

map different types of coastal degradation (Wang 2010) and a study of the Norfolk Coast in 

Great Britain erosion and landslides were monitored (Lee. 2001). Moreover LiDAR was used 

to assess the impacts of mining on the West Coast of South Africa (Mpe 2015) and to map 

human-induced changes in coastal wetlands and salt marshes in northern California due to 

waste disposal (Wang 2010). Further, Lück-Vogel et al. (2016) used LiDAR in combination 

with high-resolution multispectral satellite imagery to classify coastal and estuarine vegetation 

in St Lucia. 

 

2.7.3  Classification methods applied in vegetation mapping 

Image classification uses the spectral information contained within spectral bands by grouping 

pixels into different classes (Campbell 2011; Perumal & Bhaskaran 2010). Pixel-based and 

object-based classification methods apply supervised and unsupervised classification 

techniques where supervised classifying involves prior knowledge of land cover. The most 

commonly used supervised classification algorithms are maximum likelihood, parallelepiped 

and minimum distance classifiers used with multispectral and hyperspectral data sets 

respectively (Oldeland et al. 2010). Maximum likelihood uses training data to calculate the 

probability of a given pixel by estimating the mean and variance and then assigning the pixel to 

the class that it most probably belongs to (Liu & Xia 2010; Lu & Weng 2007; Perumal & 

Bhaskaran 2010). This algorithm calculates the probability through assuming that the data are 

normally distributed. Vegetation mapping using remotely sensed images yields better results 

from supervised classification using samples of known identity such as pixels assigned to 

informational classes to classify pixels of unknown identity than by unsupervised classification 

(Zak & Cabido 2002). Supervised classification considers manual identification of a number of 

areas that are representative for the different classes desired; these are known as training areas 

(Campbell 2002; Perumal & Bhaskaran 2010). Selection of suitable training areas is essential 

to instruct the classifier to identify and recognise different classes for classification (Campbell 

2002, 2011; Gao et al. 2006; Perumal & Bhaskaran 2010).  
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Apart from the former stated classifier for land cover identification, there is a method used for 

classification of remote sensing data called decision tree classification (DTC). DTC originates 

from machine learning theory. It is regarded an efficient method for solving classification and 

regression difficulties (De Colstoun et al. 2003; Xu et al. 2005; Zhu et al. 2006). It is based on 

a hierarchical structure similar to that one of a tree shown in Section 3.4.4. DTC uses 

continuous data or variables and is regarded as more accurate classification for remote sensing 

data either using low or high spatial resolution data (Huang et al. 2002). The DTC comprises of 

nodes and internal nodes that contain the data to derive the classification. The accuracy of the 

DTC can be assessed using an error matrix (Xu et al. 2005; Campbell 2007). 

2.7.3.1 Pixel-based classification 

Pixel-based classification is a traditional method based on classifying individual pixels using 

supervised and unsupervised classification (Liu & Xia 2010; Gao et al. 2006). However, 

traditional pixel-based classifications based on spectral dissimilarities are not suited to 

discriminate vegetation species with similar spectral responses. Another problem is that the 

classification results obtained from pixel-based methods frequently have a salt and pepper 

effect (Rapinel et al. 2014). The salt-and-pepper effects related to vegetation heterogeneity can 

be resolved by applying a filtering algorithm on the classification (Rapinel et al. 2014).  

2.7.3.2 Object-based classification 

Object-based classification is a method that groups pixels into spectrally-homogenous objects 

through image segmentation and then classifies the individual objects (Gao et al. 2006; Liu & 

Xia 2010; Campbell 2011). Object-based classification is based on information derived from a 

set of similar pixels called objects in the image (Syvitski et al. 2002). Image segmentation 

enables the additional use of various attributes such as shape, colour, size, texture and 

contextual information to analyse the image objects (Darwish et al. 2003; Syvitski et al. 2002). 

The performance of object-based classification relies on the quality of the image segments and 

the accuracy of the segmentation process. 

The object-based approach has advantages over the pixel-based approach in two respects. First, 

the change of classification units from pixels to image objects reduces within-class spectral 

variation and minimises salt-and-pepper effects that occur in pixel-based classification. 

Secondly, a large set of features characterising the object’s spatial, textural and contextual 

properties can be derived as complementary information to the direct spectral observations so 

improving classification accuracy (Gao et al. 2006). Several studies have adopted the object-
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based method to monitor vegetation condition and change over time in terrestrial and coastal 

environments (Blaschke 2004; Gao 2006; 2011; Cho et al. 2015; Lück-Vogel, O’Farrell & 

Roberts 2013). The study conducted by Lück-Vogel, O’Farrell & Roberts (2013), used an 

object-based method for assessing the habitat state or the natural vegetation intactness, using 

segmented multispectral medium spatial resolution satellite imagery. The approach was based 

on the spectral (brightness), structural (compactness) as well as textural (NIR standard 

deviation) land cover features. The premises used in Lück-Vogel, O’Farrell & Roberts (2013) 

are further discussed in Section 3.4.2. The approach yielding sufficient results with an overall 

accuracy of 76% using Landsat and 70 to 80% for SPOT 5, depending on the habitat type. 

Lück-Vogel, O’Farrell & Roberts (2013) described the approach as basis for further 

development to be adopted and modified depending on the respective land cover and land use 

features. 

Whichever method is chosen, there are always limitations. In object-based classification the 

limitations include errors that occur when performing segmentation either by over-

segmentation or under-segmentation (Moller et al. 2007; Kampouraki et al. 2008). The 

limitations of pixel-based classification are within-class spectral variation, mixed pixels and the 

salt-and -pepper effect (Liu & Xia 2010). Other methods used for mapping vegetation include a 

hybrid approach that uses both pixel-based and object-based methods. An example is a study of 

the French Atlantic coastline using a hybrid method to map the condition of coastal vegetation 

(Rapinel et al. 2014).  

2.7.3.3 Vegetation indices 

The ability to measure biomass and vegetative energy by combining two or more spectral 

bands has been exercised in various ecological studies (Jackson & Huete1991; Jensen 1996; 

Chaudhury 1990; Campbell 2011). Studies such as that of Pettorelli et al. (2005) have 

measured the intensity of light reflected off the earth in visible and near-infrared (NIR) 

wavelengths and quantified the photosynthetic capacity of vegetation in a given pixel of land 

surface. If the reflected radiation in near-infrared wavelength is much higher than in the visible 

wavelengths, the vegetation in that pixel is dense and may contain some type of forest 

vegetation. If there is a little more radiation in the near-infrared than in the red wavelength 

reflected, the vegetation is probably sparse and may consist of grassland, tundra or desert. 

Healthy vegetation tends to absorb more visible light due to the chlorophyll in the leaves and 

reflects greater amounts of NIR energy due to mesophyllic leaf structure and unhealthy 
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vegetation or sparse vegetation reflecting more visible light and less infrared (Holme et al. 

1987). Vegetation indices use a variety of formulas to quantify the density of plant growth and 

health on earth. 

The Normalized Difference Vegetation Index (NDVI) is a frequently applied vegetation index 

(Jensen 2007; Du Plessis 1999) which uses the red and NIR bands of a sensor. It is employed to 

assess to which degree the target observed contains live green vegetation (Jackson &Huete 

1991). NDVI was first used by Rouse et al. (1973) of the Remote Sensing Centre of Texas 

University (Jackson & Huete 1991) to study vegetation biomass. NDVI is routinely used as a 

vegetation index in ecological and conservation studies (Pettorelli et al. 2005). NDVI is a 

reliable correlative measure for vegetation vigour and functions in a range of diverse 

ecosystems (Running 1990). NDVI values range from -1.0 to 1.0, where values below zero 

represent vegetation absence and values above 0.5 represent dense vegetation and much lower 

values represent inundated areas (Pettorelli et al. 2005; Guerschman et al. 2009). The formula 

for NDVI is:  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

NIR is near-infrared and RED is visible red bands (Jackson et al. 1991). NDVI was used by 

Shalaby & Tateishi (2007) and Nagendra & Rocchini (2008) to assess vegetation health in 

ecological studies conducted in both terrestrial and coastal habitats. Other studies have shown 

NDVI to be a good predictor of disturbances to land cover caused by fire drought (Singh, Roy 

& Kogan 2003) and floods (Wang 2010). Despite the usefulness of NDVI in ecological studies, 

it has a limitation. NDVI saturates at high biomass, especially in temperate and tropical forests 

(Huete et al. 2006).  

2.8  CONCLUSION 

The review has shown that the attributes of different types of image resolutions are key 

considerations in coastal vegetation mapping (Rapinel et al. 2014). High spatial resolution has 

been the choice in mapping coastal vegetation in many contexts. However, not all high spatial 

resolution images have sufficient spectral resolution (Rapinel et al. 2014). Although satellite 

images such IKONOS at 3 m and QuickBird at 2 m provide high spatial resolutions, they do 

not possess high spectral resolution. IKONOS images are for example, only provide four 

spectral bands, namely blue, green, red and near infrared. 
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Among the very-high spatial resolution sensors, only WV-2 provides both high spatial 

resolution at 2 m and high spectral resolution with eight spectral bands. WV-2 has been used to 

map coastal terrestrial vegetation in European studies with good results (Al-Wassai & 

Kalyankar 1999). Object-based methods are used for classification because of more contextual 

information on degradation (Marangoz et al. 2009). An efficient and cost-effective method that 

is object-based has been applied successfully in South Africa to assess habitat intactness (Lück-

Vogel, O’Farrell & Roberts 2013). In the light of the successfulness of this method and given 

the lessons learnt and the insights gained from the literature review, this study investigated the 

suitability of WV-2 as an efficient tool to assess the intactness of terrestrial coastal vegetation 

for local management in South Africa. The next chapter provides description of the study and 

methods used in the study to obtain final results. 
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CHAPTER 3. RESEARCH METHODS 

Chapter 3 provides the outline of methods used in the study as well as the description of the 

study area with its associated vegetation. A brief description of the input data and its sourcing 

is included. The data went through pre-processing steps preparing it for further analysis. The 

analysis of data was followed by an accuracy assessment performed on the derived HII 

classification. 

3.1 STUDY AREA 

3.1.1 Selection of the study area 

False Bay (FB) was selected as a study area for four reasons. First, FB has a relatively 

accessible coastal environment for collecting data in the field. Second, given the study’s aim of 

assessing degradation of coastal vegetation, FB is a prime case of coastal environment 

activities. Third, activities involve some land-use types and alien plants that pose threats to 

existing areas of pristineness, so providing special interest for investigation. Last, satellite 

imagery the principal source of data, is available for the study area.  

3.1.2 Description of the study area 

The area under study is situated in False Bay which is a large, partly protected bay (Figure 3.1-

A), situated south of Cape Town in the Western Cape Province of South Africa (Theron & 

Schoones 2007). The study area extends from Muizenberg to Strand and is surrounded by one 

of South Africa’s fast growing townships called Khayelitsha. The study area extends between 

34º04’and 34º23’ South and 18º26’ and 18º52’ East and measures about 35 km by 35 km. False 

Bay is flanked by two mountain ranges namely the Peninsula mountain chain on the western 

and the Hottentots Holland Mountains on the eastern side (Spargo 1991).  
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Figure 3.1 Study area: A is the position of the study in the Western Cape; B is the study area on Landsat 8 satellite 

imagery with band combination R-G-B: bands 5-3-2 (Near Infrared-Green-Blue). 

3.1.3 Physical Environment  

3.1.3.1 Geology and Soils  

The False Bay geology comprises five rock types, namely Greywacke of the Malmesbury 

Group (MG), Granite of the Cape Granite group, Quartzite of the Table Mountain Group 

(TMG), Siltstone of the Bokkeveld Group and Limestone of the Cenozoic Cover (Du Plessis & 

Glass 1991). On western side of False Bay are rocky outcrops of the TMG. The northern part 

of the Bay is relatively flat with fine sand and the eastern side features rocky outcrops of the 

MG (Du Plessis & Glass 1991). The study area shown in Figure 3.1 has of two types of soils 

namely limestone and sandy soil (Du Plessis & Glass 1991). 
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3.1.3.2 Climate 

The southwestern Cape has a different climate from the rest of South Africa. FB has a 

Mediterranean climate with dry, hot summers from October to March and wet cold winters 

from April to September (Clark et al. 1996). The minimum and maximum average 

temperatures in summer are 18ºC and 23ºC respectively. The minimum and maximum average 

temperature in winter ranges from 11ºC to 15ºC. Figure 3.2 shows a climate diagram of Cape 

Town with a dry season from October to March. 

 

 

Figure 3.2 Climate diagram of Cape Town with monthly average precipitation and average temperature. Designed 

by author from data at http://cdnisclimategraphs.blogspot.com. 

3.1.4 Coastal vegetation types of northern False Bay 

FB has many types of vegetation but this study is focused on the northern part extending from 

Muizenberg to Strand where the main coastal vegetation is Cape Flats Dune Strandveld 

(CFDS) shown in Figure 3.3 (Mucina & Rutherford 2006). Further description of the CFDS 

coastal vegetation is discussed below. 
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3.1.4.1 Cape Flats Dune Strandveld 

Strandveld is an Afrikaans word meaning beach vegetation (Mucina & Rutherford 2006). 

CFDS vegetation occurs along the Cape West Coast, Cape Flats to the north of False Bay and 

between Gordon’s Bay and Muizenburg including Macassar and Monwabisi (Figure 3.3). At 

the Cape Flats, CFDS reaches as far inland as north of Bellville, Silverstroomstrand-Table Bay, 

Atlantis dune plume and small pockets on Cape Peninsula and Robben Island. The study is 

focused on the CFDS occurring in the Macassar and Monwabisi area. Figure 3.3 shows CFDS 

in Wolfgat Nature Reserve found in the Monwabisi area. 

 

Figure 3.3 Strandveld vegetation in Wolfgat Nature reserve 

This type of vegetation grows in deep and well-drained sand along the coast. The sand has a 

high pH originating from ground seashells which are rich in calcium making the sand alkaline 

(Mucina & Rutherford 2006; Holmes et al. 2012). Strandveld vegetation grows in habitats 

under the direct influences of salt spray and other factors associated with seawater, therefore 

coastal vegetation is azonal (Mucina & Rutherford 2006). Azonal vegetation is vegetation less 

determined by certain climate conditions, rather by soil types, salt spray and habitats formed in 

and around stagnant waterbodies exposed to flooding that give rise to the formation of special 
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soils (Mucina & Rutherford 2006). Strandveld vegetation such as CFDS differs from fynbos 

and renosterveld in structure, composition and functioning (Holmes et al. 2012; Mucina & 

Rutherford 2006). Strandveld does not burn easily due to its succulence (high water content). 

Moreover, Strandveld is not fire dependent for its persistence, as the case of fynbos (Mucina & 

Rutherford 2006; Holmes et al. 2012). 

The Strandveld has tertiary or recent calcareous sands of marine origin mainly blown in as sand 

dunes. These cover various rock types, but mainly the Tygerberg Formation of the Malmesbury 

Group. Outcrops of limestone from the Sandveld Group occur at Silwerstroomstrand, on the 

Cape Peninsula and in the Macassar-Wolfgat area.  

The climate of the Strandveld has a winter-rainfall regime, with rainfall peaking from May to 

August, and varying from an average of 350 mm per annum at Atlantis to 560 mm at Gordon’s 

Bay. The mean daily maximum temperature is 26.7°C in February and the mean daily 

minimum is 7.5°C in July (Holmes et al. 2012). Strandveld vegetation comprises tall, 

evergreen, hard-leaved shrubland with abundant grasses and annual herbs growing in a flat to 

slightly undulating landscape such as dunes (Mucina & Rutherford 2006).  

Figure 3.4 is a typical profile of zonation of coastal vegetation in a terrestrial coastal habitat. 

The vegetation profile starts at the foredunes consisting of pioneer vegetation which acts as a 

buffer for terrestrial coastal habitats against wind and wave impact. The Strandveld grows from 

sparse vegetation along the foredunes to dense shrubs and trees at the backdunes which are the 

old stabilised dunes.  

 

 

Figure 3.4 Vegetation zonation in a terrestrial coastal habitat  

Typically, Strandveld plants include plants such as Bietou (Chrysanthemoides monilifera), 

Candelabra Lily (Brunsvigia orientalis), Sour fig (Carpobrotus edulis) and occasional dense 

Source: Adapted from Lubke et al. 1997 

Stellenbosch University  https://scholar.sun.ac.za



30 

Milkwood (Sideroxylon inerme) forest like those that occurred historically in Noordhoek, 

Olifantsbos and Macassar, and presently found in Nature’s Valley Gordon’s Bay ( 

Figure 3.5). 

 

 

Figure 3.5 Strandveld plants  

According to Mucina & Rutherford (2006) and Holmes et al. (2012), Strandveld is highly 

endangered by the invasion of alien plants such as Acacia cyclops (Rooikrans) and Acacia 

saligna (Port Jackson wattle), mining, trampling, urban sprawl and coastal development. Yet 

only 19% of the vegetation is conserved and 51% has already been transformed (Figure 3.6).  

Source: Adapted from Mucina & Rutherford (2006) 
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The benefit of CFDS is that it provides the communities with ecosystem services such as 

coastal protection, flood attenuation, recreational space, tourism opportunities, and 

opportunities for educational programmes, furniture and firewood (Holmes et al. 2012). 

3.1.5 Human induced impacts in the study area 

The northern FB area (Monwabisi, Wolfgat Nature Reserve and Macassar dune system) is 

heavily subjected to the influences of human activities that detrimentally affect the surrounding 

environment. The area comprises dune systems that help to shelter Khayelitsha from flooding 

and erosion. Khayelitsha’s total population in 2011 was greater than 391 700 and continues to 

grow (Spargo 1991).The detrimental human activities and creations in the area of interest are:  

 Informal footpaths 

 Illegal woodcutting (selective logging) 

 Illegal sand mining 

 Informal settlements  

 Alien invasive plants 

 Overgrazing 

 Bush fires 

 Illegal waste disposal 

The observed human activities in the study area have slow but detrimental effects on coastal 

intactness. Bush fires are frequent hazards in this coastal environment, especially in areas with 

a high incidence of Acacia cyclops (Rooikrans) invasion. Rooikrans is the dominant alien plant 

in the study area, although Acacia saligna (Port Jackson) invasions are another cause for 

concern. 
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Figure 3.6 Remaining CFDS and transformed areas. (CoCT 2015) 

The coastal environment is put under much pressure from human-induced impacts. Figure 3.6 

shows the transformed areas and the remaining CFDS vegetation in the study area. This map 

was derived using the National Land Cover (NLC) of 2014 from the CoCT. The following 

section describes the input data and methodology used to derived the HII. 

3.2 INPUT DATA 

3.2.1 Satellite data WorldView-2 

The main input data consist of WV-2 satellite images. The WV-2 sensor was launched in 

October 2009 (see Table 3.1). WV-2 is a Digital Globe owned commercial high-resolution 

satellite image with eight spectral bands. WV-2 has four standard bands (i.e. blue, green, red, 

near-infrared1) and four new bands (i.e. coastal, yellow, red edge and near-infrared2). The 

multispectral bands of the WV-2 image have a 2 m spatial resolution and a temporal resolution 

(revisit time) of 1 to 2 days. WV-2 has a 16-bit data range which means the image potentially 

has 65 536 grey values. 
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WV-2 level 3A data were acquired from the South African National Space Agency (SANSA). 

Level 3A data means that the images are geometrically corrected and orthorectified. The 

projection used in orthorectification of the images is Universal Transverse Mercator (UTM) 

zone 34 south. Radiometric correction was not performed by SANSA. 

Table 3.1 Characteristics of the WV-2 sensor  

 

 

Two WV-2 images from the 25 February 2014 and 11 October 2014 were used in the study for 

the assessment of terrestrial coastal vegetation degradation. The input images were acquired in 

a tile format. The February image was provided in five individual tiles, and the October image 

in six individual tiles. The names of the respective tiles are listed in Table 3.2.   

Data WorldView-2 Spatial resolution  

Band-width interval 

(micrometres) 

Band µm 

2 m 

1 Coastal 0.4-0.45 

2 Blue 0.45-0.51 

3 Green 0.51-0.58 

4 Yellow 0.58-0.63 

5 Red 0.63-0.69 

6 Red Edge 0.70-0.74 

7 NIR1 0.77-0.89 

8 NIR2 0.89-1.04 

Pan 0.45-0.80 0.6 m 

Radiometric resolution (bit) 16 bit 

 Temporal resolution (days) 1-2 days 

Swath width (km) 16.4 km 
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Table 3.2 Image tiles of WV-2 per acquisition date 

Acquisition date (WV-2) Tile name 

25 February 2014 

14FEB25091310-M2AS_R1C1-054626232010_01_p002.tif 

14FEB25091310-M2AS_R1C2-054626232010_01_p002.tif 

14FEB25091310-M2AS_R2C1-054626232010_01_p002.tif 

14FEB25091310-M2AS_R2C2-054626232010_01_p002.tif 

14FEB25091310-M2AS_R2C3-054626232010_01_p002.tif 

11 October 2014 

14OCT11090443-M2AS_R1_C1-054626232010_01_p001.tif 

14OCT11090443-M2AS_R1_C2-054626232010_01_p001.tif 

14OCT11090443-M2AS_R1_C3-054626232010_01_p001.tif 

14OCT11090443-M2AS_R2_C1-054626232010_01_p001.tif 

14OCT11090443-M2AS_R2_C2-054626232010_01_p001.tif 

14OCT11090443-M2AS_R2_C3-054626232010_01_p001.tif 

 

Further pre-processing was performed on the image tiles as described in Section 3.3.1.1 below. 

3.2.2 Biodiversity network data 

The data were also acquired from the CoCT. The data consists of a biodiversity network which 

provides the subtypes of vegetation in FB such as vegetation growing on limestone and sand. 

Ancillary data used are habitat condition layer containing different grading. The habitat 

conditions vary from poor to high. Ancillary data used in the study are in an Environmental 

Systems Research Institute (ESRI) shapefile format. The data were used for pre-processing the 

satellite imagery including masking out transformed areas (built-up areas and roads) that are 

not of immediate interest to the study.  

3.2.3 LiDAR data 

A LiDAR derived Digital Surface Model (DSM) was acquired from the CoCT that contains the 

elevation of the area of interest. The DSM acquired from CoCT was pre-processed for the 

validation of results. Additional data from CoCT, namely biodiversity network and habitat 

condition were pre-processed to improve the quality of the data. 
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3.2.4 Field Data 

Field reference data were collected in the field to validate the accuracy of remote sensing 

results in the study. Two field visits were conducted as mentioned in section 3.1 for training 

and validation as referred to in section 3.4.5.2. 

3.2.4.1 Reference data of field-informed random points 

A total of 180 field-informed random points were collected in the field. The points were 

collected based on observations made in the field. The points were collected according to the 

habitat condition classes observed in the field using WV-2 for visual observation shown in 

Figure 3.7. Twenty random points were collected per class. The points were later arranged into 

levels of intactness used for training and validation and as indictors of intactness. A further 

discussion about the eight field classes is to be found in section 3.4.5.1. The field points in 

geographical co-ordinates were captured using a GPS and later converted into a shapefile (.shp) 

to allow for further processing of the data.  

 

Figure 3.7 Field-informed classes 

The points were collected randomly in areas that are accessible. The data was split into training 

and reference data. 
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3.3 SATELLITE DATA PRE-PROCESSING  

3.3.1 Image pre-processing 

Pre-processing of satellite images is an important step prior to image analysis. When satellite 

images are captured they contain geometric and radiometric distortions. Therefore, it is 

essential to remove this noise to increase the interpretability of the satellite images. To improve 

the satellite image quality several pre-processing steps have to be performed before further 

analysis of the images (Campbell 2011). They are image mosaicking, radiometric correction, 

subsetting and masking. They are treated in the next section. 

3.3.1.1 Mosaicking of satellite imagery 

Image mosaicking is the combining of multiple image tiles into one image (Capel 2001). WV-2 

images of the two dates (25 February 2014 and 11 October 2014) were used in the study. Both 

images came in a number of tiles as shown in Table 3.2. The WV-2 image tiles were 

mosaicked per acquisition date to enhance further processing. Mosaicking on the WV-2 image 

tiles was performed using ERDAS IMAGINE 2014 (version 14.0) mosaic tool resulting in one 

image composite per date. 

3.3.1.2 Radiometric correction 

The mosaicked images were radiometrically corrected. The radiance measured in W∙m-2∙sr-1 by 

the sensor is stored in the images as digital numbers (DN). The unitless DNs stored by the 

sensor are not correct representations of ground reflectance. The procedure of radiometric 

correction involves the conversion of DN values of the image back to spectral radiance. This 

process requires information of the ‘gain and bias’ of the sensor in each spectral band (Richter 

& Schläpfer 2014). The information about the sensor’s gain and bias is found in the metadata 

files. The at sensor radiance 𝐿λ is calculated using the following linear expression 

(𝑅𝑖𝑐ℎ𝑡𝑒𝑟 & Schläpfer 2014): 

𝐿λ = 𝑔𝑎𝑖𝑛 ∗ 𝐷𝑁 + 𝑏𝑖𝑎𝑠  

Radiometric corrections are performed on the WV-2 images to correct for effects caused by the 

sensor, atmosphere and illumination to convert sensor radiance into desired surface reflectance 

(%). The software used for atmospheric correction is ATCOR2 for multispectral sensors at flat 

terrain embedded in ENVI IDL (Richter & Schläpfer 2014). 
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3.3.1.3 Subsetting and masking 

Subsetting is the process of reducing an image to an area of interest (AOI). The input data used 

for creating a mask were the non-corrected WV-2 images. The Biodiversity network (.shp) 

from the CoCT consist of vegetation classes 1 and 2. The vegetation class 1 is vegetation 

growing on sand and vegetation class 2 is vegetation growing on limestone. The Biodiversity 

network (.shp) was rasterised using the import tool in ERDAS to convert it to an image, to 

enable subset creation. The projection used for creating a subset was UTM. The subset was 

created using the spatial modeller (the either-if condition) tool in ERDAS IMAGINE 2014. 

Buildings, ocean water and other land-use types were masked out using the same dataset since 

they were not of interest for this study. The subset was created to minimise computation time 

and to avoid biases in the accuracy of the HII as suggested by Lück-Vogel, O’Farrell & 

Roberts (2013). The output subset and masked-out images are shown in Figure 3.8. This 

procedure was conducted on the 25 February 2014 and 11 October 2014 WV-2 images. 

Analysis of the images is discussed in section 3.4. 

 

Figure 3.8 Subset and mask output of the WV-2 image. A: Original WV-2 image; B: subsetted WV-2 image 

Stellenbosch University  https://scholar.sun.ac.za



38 

This procedure was conducted on the 25 February 2014 and 11 October 2014 WV-2 images. 

Analysis of the images is discussed in section 3.4. 

3.4 SATELLITE DATA PROCESSING 

3.4.1 Image segmentation 

Darwish et al. (2003), Wang (2010) and Dragut (2010) define image segmentation simply as 

dividing the image into spatially and spectrally homogenous regions. Segmentation is the first 

essential processing step in OBIA through the aggregation of pixels to objects. Segmentation 

uses image attributes such as shape, colour, size, texture and contextual information to 

delineate the image objects (Darwish et al. 2003). 

Segmentation of image objects was run on the 11 October 2014 and 25 February 2014 WV-2 

subsets using eCognition Developer (version 9) software (Definiens 2007). The multiresolution 

segmentation algorithm was chosen to delineate the image objects of interests. The scale 

parameter used was 150 as shown in Figure 3.9. The multiresolution segmentation algorithm 

allows for different individual band weightings. More weight was given to the individual bands 

important for the extraction of vegetation information, i.e. a weighting of 1 for near-infrared 

and RED. All other spectral bands were given a weighting of 0.5. The NDVI was calculated in 

eCognition. 

 

Stellenbosch University  https://scholar.sun.ac.za



39 

 

Figure 3.9 WV-2 segmented image and segmented NDVI  

Further, the extraction of five image derivatives (Brightness, Compactness, Area, NDVI and 

NIR standard deviation) was performed to derive additional spectral, structural, textural and 

contextual properties. This procedure was conducted on both WV-2 images. 

3.4.2 Generating image derivatives 

The method for deriving the HII using image derivatives was adapted from Lück-Vogel, 

O’Farrell & Roberts (2013). The modified method aims at assessing how intact or degraded the 

habitat is using high spatial resolution satellite imagery, whereas Lück-Vogel, O’Farrell & 

Roberts (2013) used Landsat and SPOT images with medium resolution. This study used high 

spatial resolution imagery (WV-2) to assess the intactness or degradation of CFDS coastal 

vegetation. The image derivatives are based on different properties such as spectral, structural, 

spatial and textural information (Lück-Vogel, O’Farrell & Roberts 2013). An additional 

derivative was added, namely NDVI and NIR1 standard deviation. The purpose of extracting 

the image derivatives was to obtain the HII. The procedure of generating image derivatives was 

performed on both WV-2 images using ERDAS 2014 and eCognition software. The image 

derivatives and other procedures are set out in the following subsections. 
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3.4.2.1 Spectral derivative 

The spectral derivative is based on the hypothesis that landscapes with less or no vegetation 

will have higher reflectance in the bands compared to areas with dense vegetation cover. Areas 

with no vegetation are regarded as degraded but this is no exception for sand dunes (foredunes) 

which are a natural dune landscape for coastal areas. All transformed areas were masked out as 

recommended by Lück-Vogel, O’Farrell & Roberts (2013), because they could be confused 

with degraded areas in terms of brightness. Mean Brightness values were used as proxy for 

spectral derivative measurement. 

3.4.2.2 Structural derivative 

In the Sandveld paper Lück-Vogel, O’Farrell & Roberts (2013) hypothesised that the more 

linear geometry a landscape has, the more degraded it would be due to more anthropogenic 

factors compared to irregular shapes of natural landscapes. Observations made from satellite 

images show that man-made features such as buildings and plantations have more square or 

circular shapes as compared to natural areas which show more irregular shapes. Compactness 

was used in the Sandveld study by Lück-Vogel, O’Farrell & Roberts (2013) as proxy for 

vegetation degradation. Compactness is calculated in eCognition (2007) as the ratio of the area 

of a polygon to the area of a circle with the same perimeter using the formula:  

Compactness =  
4𝜋 ×  𝐴𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 

Therefore, anthropogenic structures frequently have a high compactness in relation to natural 

areas that appear less compact (Lück-Vogel, O’Farrell & Roberts 2013). This study tested if 

this assumption was true in the CFDS as well. 

3.4.2.3 Textural derivative 

The assumption was made that high spectral heterogeneity is represented by a natural 

landscape comprising of species that are different in age, height and form of structure per 

polygons as compared to anthropogenic landscapes that have uniform (homogenous) 

landscapes (Lück-Vogel, O’Farrell & Roberts 2013). However, anthropogenic landscapes such 

as agricultural fields were masked out in this study. Standard deviation of NIR range is a proxy 

for vegetation texture (Lück-Vogel, O’Farrell & Roberts 2013) where an increase in texture is 

assumed to indicate an increase in ecosystem intactness. This study tested if this assumption 

was true in the CFDS as well. 
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3.4.2.4 Area derivative 

The area derivative was based on the assumption that natural landscapes have bigger polygons. 

Degraded areas such as settlements have smaller polygons and were masked out in this study. 

Area excluding inner polygon in the eCognition software can be used as proxy for the area 

derivative with the area calculation being: 

𝐴𝑟𝑒𝑎 =
1

2
∑ 𝑎𝑖

𝑥−1

𝑖=0

 

Where: 

𝑎𝑖 = 𝑋𝑖𝑌𝑖+1 − 𝑋𝑖+1𝑌𝑖 

This study tested if this assumption was true in the CFDS as well. 

3.4.2.5 Normalized Difference Vegetation Index 

NDVI is a vegetation index used to indicate vegetation density and activity. The assumption is 

that vegetation with low plant activity will have low a NDVI compared to vegetation with high 

plant activity. NDVI values range from -1.0 to 1.0, where negative NDVI values indicate that 

water is present (Pettorelli et al. 2005). NDVI values of 0 indicate areas of barren rock and 

sand, 0.2 to 0.5 indicate sparse vegetation and 0.6 to 0.9 indicate dense vegetation. NDVI is 

calculated using the following equation:  

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑟𝑒𝑑)

(𝑁𝐼𝑅 + 𝑟𝑒𝑑)
 

NDVI was used as additional spectral derivative. 

 

3.4.2.6 Rasterise image derivatives and WV-2 spectral bands 

The segmented eight spectral bands and five image derivatives (Brightness, Compactness, 

Area, NDVI and NIR1 standard deviation) were exported using eCognition export vector layer 

function. The spectral bands and image derivatives were exported as smoothed polygons and 

rasterised in ArcGIS (version 10.1) (ESRI 2010) with a 2 m pixel size using the ‘feature to 

raster’ function. The output was an ArcGRID format. The “GRID” was then converted into 

IMG format in ERDAS using the import tool “GRID” read direct. This procedure was 

performed on both WV-2 images. 
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3.4.2.7 Layer stack 

In the last pre-processing step the eight rasterised spectral bands and the five image derivatives 

(Brightness, Compactness, Area, NDVI and NIR standard deviation) were stacked (see Table 

3.3) to generate a single composite image. The stacked images were used to perform DTC in 

ERDAS. This procedure was performed on the 25 February 2014 and the 11 October 2014 

images. 

Table 3.3 Layer stack of all WV-2 spectral bands and image derivatives 

 

 

3.4.3 Creating training points 

As a first attempt, training points were created using the habitat condition (poor, medium and 

high) obtained from the CoCT biodiversity network data. A total of 160 stratified random 

points were generated in ERDAS imagine using the accuracy assessment tool based on the 

CoCT habitat condition (poor, medium and high) data as defined by the CoCT. Layer stack 

values for each point were extracted using the signature editor tool in ERDAS. The values were 

exported to Microsoft Excel to determine a relationship between the CoCT habitat condition 

and 13 layers using linear regression analysis as indicated in Figure 3.10 using the RED band 

as example. 

Figure 3.10 indicates a poor relationship between the habitat condition classes and the red 

band, with coefficient of determination (R2) value of 0.14. This attempt failed to produce any 

significant relationship between the variables and the CoCT habitat condition classes. It failed 

because the habitat condition data from the CoCT were only presented at a coarse scale. The 

polygons representing each habitat condition had multiple degradation types per polygon 

shown in Figure 3.11 i.e. fire scars and pathways. Assumptions made by the CoCT 

Band no Spectral range Band no Image derivatives 

1 Coastal 9 Brightness 

2 Blue 10 Compactness 

3 Green 11 Area 

4 Yellow 12 NDVI 

5 Red 13 Standard deviation NIR1 

6 Red edge   

7 NIR1   

8 NIR2   
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management regarding each habitat condition were based on course scale and not fine detailed 

scale. This approach was therefore abandoned. 

 

 

Figure 3.10 Relationship between habitat condition classes and RED spectral values 

A second alternative approach was to create random points based on field observations. Points 

were determined by field-trip observations related to the classes referred to in Table 3.4 

according to degree of intactness or degradation. The classes were defined according to the 

levels of intactness which range from highly degraded (little or no plant cover) to intact 

(pristine high plant cover) and with the addition of alien vegetation as listed in Table 3.4.  

Table 3.4 Identified vegetation classes relating to level of intactness 

Number Description Levels of intactness 

1 Bare Soil 1 

2 Cleared vegetation 2 

3 Fire scar on limestone 3 

4 Fire scar on sand 3 

5 Herbaceous vegetation 4 

6 Natural vegetation on limestone 4 

7 Natural vegetation on sand 4 

8 Alien vegetation  5 
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Alien vegetation is regarded as being not intact vegetation even though it has high plant cover. 

In this study alien vegetation was placed last on the list. 

 

Figure 3.11 CoCT habitat condition polygon outlines versus visible intactness classes on WV-2 image 

A total of 160 random points were collected for the eight classes that were visible in the field 

(Table 3.4). Sample sizes of 20 random points per class were collected. The random points 

were collected and arranged into levels of intactness as shown in Table 3.4. The collection of 

random training points was performed using the signature editor tool in ERDAS. The field-

informed points were exported to MS Excel for further regression analysis. The results are 
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dealt with in Section 3.4.4. This procedure was performed on the 25 February 2014 WV-2 

image. 

The training point values for all eight spectral bands and five image derivatives were exported 

into MS Excel for further analysis. The correlation between the field-defined classes, spectral 

bands and image derivatives were assessed using regression analysis (coefficient of 

determination R2). The regression analysis values (R2) range from -1.0 to 1.0. An R2 value of -

1.0 indicates a negative correlation between the variables and a value of 1.0 indicates a positive 

correlation between the variables. A polynomial regression analysis was used to determine the 

correlation between the dependent (Y) and independent variables (X). The points were evenly 

split (“thirds out”), where other points were used as training points for multiple regression 

analysis and other points used for validation of the DTC. 

The resulting spectral signatures from the collected random training points were cleaned to 

remove spectral outliers that could contribute to bias in the spectral statistics. The spectral 

mean signatures for the field classes are displayed in Figure 3.12 for the spectral bands. 

 

 

Figure 3.12 Spectral signature of identified classes (mean values)  

Figure 3.12 shows typical spectral signatures of the eight observed land cover classes. The bare 

soil is class assumed the worst state of degradation whereas vegetation growing on sand and 
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limestone was most pristine, except for alien invasive vegetation. All other classes assumed in-

between gradients, with increasing soil signal indicating a decrease in vegetation cover. 

3.4.4 Decision tree classification 

The regression graphs in Figure 3.14 and Figure 3.15 show the relationship between five 

intactness classes (X-axis) and mean layer reflectance values for RED and NIR1 respectively 

(Y-axis). The intactness classes were sorted from highly degraded on the left with an increase 

in intactness to the right. With exception class 5 (alien vegetation) the relationship between the 

two variables was determined using polynomial regression analysis. The regression graphs 

show a smooth curve in the degraded classes with high reflectance values. 

The first five spectral bands out of eight spectral bands produced the same regression results 

just like the one shown in the RED band in Figure 3.14. Therefore, the RED and the NIR1 

bands where used to generate the DTC. The choice for using these two bands was based on that 

most sensors have the RED and NIR band, which are most important for vegetation related 

studies. 

The DTC was generated using the RED and NIR1 multispectral bands. A threshold was created 

in MS Excel, where the habitat condition classes were split according to degrees of 

degradation. RED values lower than (<) 757 were regarded as intact vegetation and values 

greater than (>) 757 but less than 1884 were regarded as lightly degraded. The red band was 

used since it showed a higher R2 and smooth, levelled relationship in all habitat condition 

classes. Figure 3.13 illustrates steps taken to perform a decision tree classification. 
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Figure 3.13 Decision tree classification systematic diagram 

In order to delineate between intact and alien vegetation habitat condition classes, the NIR 

band was used. The band was used primary because alien vegetation shows high reflectance in 

the NIR band while primarily in the RED band looking the same as intact vegetation.  

 

Figure 3.14 Relationship between levels of intactness and each spectral band in the Red band 
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Figure 3.15 Relationship between levels of intactness and each spectral band in the NIR1 band 

The five image derivatives were omitted, because they did not produce good regression results 

to perform the DTC. This procedure was performed separately on the 25 February and 11 

October 2014 images. 

3.4.5 Validation of results  

Two approaches were used to assess the accuracy of the classification results. This included an 

accuracy assessment using field informed random points and field visit. 
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3.4.5.1 Accuracy assessment using random points 

Accuracy assessment involves evaluating the validity of results derived from remote sensing 

against ground truth data in order to assess how well the former represent the real world 

(Congalton & Green 2009). This technique is commonly used to measure the spatial accuracy 

and help determine the quality of remote sensing outputs. For this study a thematic accuracy 

assessment was used to measure the accuracy of the outputs of the HII using ground truthing 

points as reference data.  

For the derived DTC an error matrix including kappa statistics, overall, producer’s and user’s 

accuracy were calculated analysed using ERDAS’s accuracy assessment tool. An error matrix 

is a comparison between remote sensing results and ground truth data (reference data). It 

identifies misclassification errors and their quantity. Accuracy of the results is represented not 

only by overall accuracy but by kappa statics information. 

Kappa is a measure of agreement between the remotely sensed classification and the reference 

data (Congalton & Green 2009). A kappa statistical value greater than 0.80 (80%) indicates a 

strong agreement between a remotely sensed classification and reference data, while a kappa 

value between 0.40 (40%) and 0.80 represents a moderate agreement. Kappa value below 0.40 

indicates a poor agreement between classification and reference data (Landis & Koch 1977; 

Congalton & Green 2009).  
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In order to perform accuracy assessment, a set of validation points derived from field data are 

needed. Reference data needs to be categorized according to the class values used to create the 

map (Congalton & Green 2009). The class names are arranged according to levels of 

intactness, ranging from highly degraded to most intact class. These classes are highly 

degraded, moderately degraded, lightly degraded, intact vegetation and alien vegetation. A total 

number of 42 references were used. The accuracy assessment output ASCII tables were 

exported to MS Excel for further analyses. Results are presented in Section 4.2. 

3.4.5.2 Field validation 

Further field validation points were collected in the field to assess the validity of the HII 

results. The printed map results of both February and October 2014 were taken to the field for 

the selection of points of interest for validation. Investigated points were marked with the GPS. 

This was done to effectively determine and establish comparable relationship between the HII 

results and the field validation points. A total number of 31 field validation points were 

captured and labelled using a GPS. The GPS points were saved and exported to MS Excel and 

later converted to a shapefile (.shp) for further analysis. Correspondence between appearance 

in the field and the classification output was analysed. Results are presented and discussed in 

section 4.1. 

 

Stellenbosch University  https://scholar.sun.ac.za



51 

CHAPTER 4. RESULTS AND DISCUSSION 

The chapter begins with a presentation and discussion of the findings of the DTC of the two 

WV-2 images. Section 4.2 represents the results of the accuracy assessment that used field-

informed random points. The research question whether WV-2 can efficiently assess the 

intactness of terrestrial coastal vegetation is dealt with. The chapter ends with a detailed 

exposition and discussion of the results of accuracy assessment based on field validation 

points. 

4.1 THE DERIVED HABITAT INTACTNESS INDEX 

Figure 4.1 shows HII derived using DTC of WV-2 image captured on the 25 February 2014 

shown in Figure 4.1. The image represents the dry summer season. Five classes were classified, 

namely highly, moderately and lightly degraded classes, intact vegetation and alien vegetation. 

The classification identified areas ranging from high degradation to high intactness. Red 

denotes highly degraded areas which are bare areas of footpaths, pathways (due to vehicles) 

and open patches without vegetation. Yellow represents moderately degraded areas of cleared 

alien vegetation that are left bare with in between patches of vegetation.  Areas of open low-

lying (in vegetation height) herbaceous vegetation in CFDS vegetation are represented by light 

green. These areas mainly represent regrowth of vegetation recovering from human-caused 

fires that occur frequently in areas invaded by alien vegetation species such as Acacia cyclops. 

The dark green shading indicates intact indigenous vegetation of the CFDS vegetation growing 

on limestone and on sand. Purple indicates areas infested with alien invasive Acacia cyclops 

(Rooikrans). 

Figure 4.2 demonstrates the HII results derived from the decision tree classification WV-2 

image of 11 October 2014. The image represents the wet winter season. The decision tree 

classification produced five classes that range from highly degraded to highly intact with an 

exception made for an alien vegetation class. Red shows areas that are highly degraded or bare 

soil. Close to the coast the areas of open, bare soil are typical natural dune and beach landscape 

of coastal environments (Lück-Vogel, O’Farrell & Roberts 2013), but farther landward they are 

due to footpaths and illegal pathways and vehicles tracks. Moderately degraded areas shown in 

yellow indicate areas with patches of removed vegetation through alien clearing and minimal 

regrowth of CFDS vegetation. Light green indicates areas of open, low-lying (in vegetation 

height) herbaceous CFDS vegetation that has not reached its climax stage (full-grown 

vegetation). Dark green shows areas of high intactness of the CFDS vegetation. Purple again 
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shows areas infested by Acacia cyclops which is the most dominant alien plant species found in 

Wolfgat Nature Reserve and Macassar dune conservation areas and the entire Monwabisi area. 

The red block in Figure 4.1 delineates the area of overlap between the DTC results from 25 

February and 11 October 2014. The differentiation of classes in the overlapping areas is shown 

enlarged in Figure 4.3-A. There is minimal presence of alien vegetation in this area in the 

February image. The classification shows more alien vegetation in the wet season (October) 

image compared to the dry season (February) image.  

The February classification shows a clear distinction between natural and alien vegetation. This 

is due to the low plant activity in the natural vegetation in summer as opposed to alien 

vegetation which is thriving under these environmental conditions. Seasonality is clearly 

another factor in the classifications of intactness in terrestrial coastal vegetation. The variation 

caused by seasonality in a period of eight months. 
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Figure 4.1 HII derived from 25 February 2014 image (dry season). 

Stellenbosch University  https://scholar.sun.ac.za



54 

 

Figure 4.2 HII derived from 11 October 2014 image (wet season). 
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Figure 4.3 A) HII classified areas for the 25 February 2014; B) HII classification of the same area for the 11 

October 2014. 
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The number of pixels per habitat class for each image is given in Table 4.1 which lists the area 

coverage and area difference between the habitat classes derived for the DTC. Alien vegetation 

covered a relatively small area of 17.52 ha on the 25 February 2014 image whereas the 11 

October 2014 image shows a 1.73 times larger (30.3 ha) total coverage of alien vegetation. 

These areas are shown in Figure 4.3-A and Figure 4.3-B. 

Table 4.1 Area coverage of habitat classes 

 

In the case of number of pixel between the February and October image, the highly degraded in 

February has a greater number of pixels of 1817 compared to 1722 of October. Again the 

variation in seasonality is the primary reason. The moderately degraded class in October has 5 

487 pixels compared to the 12 176 pixel for February. The lightly degraded class for February 

has 39 962 pixels compared to 30 450 pixels in October. In February the intact vegetation class 

has 55 431 pixels in comparison to the 38 997 pixels for the October image. The October 

image has more alien pixels, and fewer pixels for intact vegetation. 

The dry-season case shown in Figure 4.3-A exhibits areas with sparse vegetation and more 

patches without vegetation. The February dry-season image also records less plant activity in 

natural vegetation. There is also better detection of the alien invasive plant species Acacia 

cyclops. The environmental conditions in February are conducive to the growth of the alien 

invasive plants. Compared to the October image in Figure 4.3-B, there is less alien invasion 

shown in purple in the February image Figure 4.3-A of the dry, hot season as. A probable 

explanation for this difference is that in the dry season there is low plant activity in the natural 

CFDS vegetation. 

The wet-season case depicted in Figure 4.3-B shows fewer areas of sparse vegetation and less 

patches without vegetation cover. Clearly there is a high degree of plant activity in alien 

invasive vegetation. Seasonality is the main reason for the greater areal coverage of aliens 

compared to natural CFDS vegetation after eight months. The high plant (i.e. high biomass) 

activity of both indigenous and alien invasive vegetation makes it difficult to detect and 

distinguish between aliens and natural vegetation in this season (wet). This is quite likely due 

to the spectral confusion between the spectral bands used to produce the DTC. The best season 

Colour 

coding Class names

Number 

of pixels Area (ha) %

Number 

of pixels Area (ha) %

Feb - Oct

Difference (ha) %

Highly degraded 1817 0.73 1.19 1722 0.69 1.13 0.04 0.15

Moderately degraded 12 176 4.87 7.95 5487 2.19 3.60 2.68 10.34

Lightly degraded 39 962 15.98 26.09 30 450 12.18 19.98 3.80 14.70

Intact vegetation 55 431 22.17 36.19 38 997 15.60 25.58 6.57 25.39

Alien vegetation 43 798 17.52 28.59 75 783 30.31 49.71 12.79 49.42

OctoberFebruary
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to better detect alien vegetation from the natural CFDS is the dry season (February) image 

where there is not much spectral confusion. 

Table 4.1 records the greater area coverage of 30 ha (49.71%) alien vegetation in October 

compared to 17.52 ha (28.59%) in the February image. Table 4.1 shows the areal difference 

between the February and October images in the area of overlap outlined in Figure 4.3-A and 

4.3-B. The difference between the two images is 12.8 compared to the difference of other 

habitat classes. The accuracy assessment of the classification based on field-informed points 

and field visit with discussion are dealt with in Sections 4.2 and 4.3. 

 

4.2 ACCURACY ASSESSMENT BASED OF FIELD-INFORMED RANDOM 

POINTS 

The error matrix (Table 4.2) provides evidence of whether classification results reported in 

Section 4.1 represent actual classes on the ground. The overall accuracy of the classification 

using field informed random points was high at 80.50 %, yielding a kappa value of 0.75. This 

kappa value indicates substantial agreement (Congalton & Green 2009; Landis & Koch 1977), 

that is there is a marked relationship between the classifications results and the reference data. 

Moreover, the overall accuracy of 80.50 % generated using field-informed random points 

shows how well the classification worked. The high overall accuracy can be ascribed to the 

high spatial resolution of 2 metres and the high spectral resolution of the bands of the WV-2 

image, as well as the exclusion of transformed areas and non-strandveld vegetation as per 

recommendation by (Lück-Vogel, O’Farrell & Roberts 2013). 
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Table 4.2 Error matrix for the classification results of the 25 February 2014 WV-2 image based on random field-

informed points. 

Classified 

Reference 

Bare 
soil 

Cleared 
vegetation 

Fire 
scars 

Intact 
vegetation 

Alien 
vegetation 

Row 
total 

Bare soil 4 0 0 0 0 4 

Cleared 
vegetation 

2 4 0 0 0 6 

Fire scars 0 1 6 0 0 7 

Intact 
vegetation 

0 0 0 12 0 12 

Alien 
vegetation 

0 0 0 5 7 12 

Column total 6 5 6 17 7 41 

Overall 
accuracy 

80.50%      

Overall kappa 
statistics 

0.75 

 

Forty-one field-informed random points were used to generate the error matrix. The shaded 

diagonal cells in Table 4.2 indicate the number of points correctly classified. Four out of six 

reference points were correctly classified as bare soil; four out of five reference points were 

correctly classified as cleared vegetation; six out of six reference points were correctly 

classified as fire scars; twelve out of seventeen reference points were correctly classified as 

intact vegetation; and seven out of seven reference points were correctly classified as alien 

vegetation in the WV-2 image for 25 February 2014. 

Of the six bare soil reference points two were incorrectly classified as cleared vegetation. A 

main reason for this error is probably the similarity of the spectral properties of the two classes 

(Foody 2002). Furthermore, a misclassification of cleared vegetation and fires occurred and 

there was confusion about intact vegetation and alien vegetation owing to the two classes being 

spectrally similar. But a clear distinction of alien vegetation on the image was identified as 

dense homogenous from visual observations. 
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Table 4.3 summarises the habitat intactness accuracies and kappa values. Forty-one reference 

points were used to calculate the accuracy of the classification. Thirty-three reference points 

were correctly classified. The best user’s accuracy of the classification was achieved for intact 

vegetation at 100%, followed by fire scars at 85%. The minimum user’s accuracy was achieved 

for alien vegetation at 58.33% which is considered to be below the desired level for satisfactory 

accuracy. 

Table 4.3 Overall accuracy of the calculated classification results and kappa values 

Class names 
Reference 

total 
Classified 

total 
Number 
correct 

Producer’s 
accuracy 

(%) 

User’s 
accuracy 

(%) 

Kappa 
values 

Bare soil 6 4 4 66.7 100 1.0 

Cleared 
vegetation 

5 6 4 80 66.7 0.6 

Fire Scars 6 7 6 100 85.71 0.8 

Intact 
vegetation 

17 12 12 70.6 100 1.0 

Alien 
vegetation 

7 12 7 100 58.33 0.5 

Totals 41 41 33    

 

The best producer’s accuracy was achieved for alien vegetation and fire scars at 100%, with 

intact vegetation scoring 80%. The least producer’s accuracy was registered for bare soil at 

66.7%. Kappa values were calculated for each habitat intactness class. Overall the kappa values 

indicate the level of satisfactory agreement between the reference data and classification 

results. The best kappa values were achieved for intact vegetation and bare soil at 1.0 and fire 

scars at 0.8, both values representing marked agreement according to Landis & Koch (1977) 

and Congalton & Green (2009). Moderate kappa values were achieved for cleared vegetation at 

0.6 and alien vegetation at 0.5. The results shown in Table 4.3 confirm the success of the 

regression analysis for developing a decision tree classification approach for assessing habitat 

intactness. Although there were some misclassifications, the results allow one to confidently 

conclude that WV-2 imagery does efficiently assess the intactness of terrestrial coastal 

vegetation. Section 4.3 represents the validation of the classification results using field visit 

data. 
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4.3 ACCURACY ASSESSMENT BASED ON FIELD VALIDATION POINTS 

Field validation was conducted for both 25 February 2014 and 11 October 2014 images on 

June 2016 along areas of interest in the study area. Thirty-one field-validation points were 

collected and captured using GPS. Figure 4.4 gives an overview of the classification results 

based on the two images. Figure 4.4 shows the thirty-one captured field-validation called 

waypoints at points of interest in the study area. The detailed presentation of Figure 4.4 per 

field-validation waypoint is further discussed from Figure 4.4 to Figure 4.19. 
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Figure 4.4 Mosaic of the HII classification of WV-2 MS imagery for 25 February 2014 and 11 October 2014. 
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Figure 4.5-A is a WV-2 satellite image showing the classified validated region for February. 

The marked waypoint 18 in Figure 4.5-B is a validation point. The validation point represents 

class 2 of the HII which is a moderately degraded area. Figure 4.5-C is a photograph of 

waypoint 18 taken during the field-validation visit showing class 2 characterized by dry, 

cleared alien vegetation stands interspersed with herbaceous vegetation. Apparently, an alien 

vegetation clearing programme was performed in the area prior to the acquisition of the WV-2 

image as confirmed by the CoCT experts. The classification results in Figure 4.5-B are not the 

same as seen in the field photograph of (Figure 4.5-C) because the alien vegetation that had 

been cleared had started to recover by the time of the field visit. Therefore, HII classification 

correctly coincides with the photograph. According to Lück-Vogel et al. (2016), environmental 

dynamics play a role in validating the classification results. The miss-match between 

acquisition date of satellite images and field-validation is the main reason for wrongly detected 

change in the landscapes or environment. 

 

Figure 4.5 (A) is the WV-2 image subset on 25 February 2014 (B) is the classified HII image of the small blocked 

area in (A); and (C) is a photograph of the star marked validation point in (B).  

Figure 4.6-A is a WV-2 satellite image showing a marked region of the validation point in the 

February image. Figure 4.6-B represents waypoint 19 of class 4 which is intact vegetation and 
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Figure 4.6-C is a field photograph captured during field visit at waypoint 19 and shows mixture 

of natural (green) and alien vegetation (brown). 

 

Figure 4.6 (A) is the WV-2 subset image on 25 February 2014; (B) is the classified HII image of the small blocked 

area in (A) and (C) is a photograph of the star-marked validation point 19 in (B). 

The HII classification did not identify alien vegetation at waypoint 19 as shown in Figure 4.6-

C. The main reason for this oversight is that waypoint 19 does not show pure alien vegetation 

class 5 but a mixture of classes 4 and class 5. This is because the NIR1 spectral values used for 

classification were not high enough to be picked up as pure alien signature. 

The WV-2 subset of 25 February 2014 (Figure 4.7-A) shows the area of interest for validation. 

Figure 4.7-B shows the classified region for waypoint 21 of class 2, the moderately degraded 

class. Figure 4.7-C is the photograph of the same area taken during the field validation in June 

2016 of and shows sparse, grassy vegetation with bare soil bordering the transformed area 

which is masked out in the satellite image. 
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Figure 4.7 (A) is the WV-2 subset image on 25 February 2014; (B) is the showing a classified HII image of the 

blocked area in (A) and (C) is a photograph validation point 21 in (B) 

This confirmed that the HII classification correctly identified class 2 because the spectral 

values of the NIR band in the segmented polygons in eCognition were able to pick out class 2 

clearly. 

Figure 4.8-A is the WV-2 subset of 25 February 2014 showing the marked area of interest, 

Figure 4.8-B shows waypoint 22 classified as intact vegetation (class 4) and Figure 4.8-C is the 

field photograph of the same area showing dense Rooikrans (Acacia cyclops) and Port Jackson 

(Acacia saligna). The HII classification and the photographed vegetation at waypoint 22 do not 

agree. The reason is that the NIR1 spectral values for generating the classification were not 

high enough to identify a pure alien vegetation signature (Foody 2002; Campbell 2002; Xu et 

al. 2005). 
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Figure 4.8 A WV-2 subset image of 25 February 2014 presented in (A), with (B) showing a classified image with 

the marked validation waypoint 22. A photograph of the marked validation point is shown in (C) captured on the 7 

June 2016. 

Also, the aliens were not very dense, so causing confusion with pristine vegetation. The plant 

with yellow flowers is alien Rooikrans (Acacia cyclops), mostly used for firewood and building 

material for informal housing. 

Figure 4.9-A shows a WV-2 subset of 25 February 2014, Figure 4.9-B is the classified result 

for the block in Figure 4.9-A. Waypoint 23 is classified as the lightly degraded class 3 and field 

observations during the accuracy assessment correctly recorded by the photograph in Figure 

4.9-C the open grass. 
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Figure 4.9 (A) is a WV-2 subset image on 25 February 2014 in Monwabisi; (B) is a HII classified image of habitat 

intactness with a marked validation waypoint 23; and (C) is a photograph (7 June 2016) of open grass representing 

class 3 at the same area 

Figure 4.10-A shows a subsetted WV-2 satellite image of 25 February 2014 and Figure 4.10-B 

is the HII classification result for the marked block (waypoint 24), namely class 3 (lightly 

degraded) and characterised by low, shrubby CFDS vegetation. The photograph in Figure 4.10-

C indicates low herbaceous vegetation with dwarf, burnt shrubs. The classified result and field 

observation agree according to CoCT field experts as the dynamics of the CFDS vegetation 

after a fire event or clearing of alien vegetation is a succession process that takes time for the 

natural vegetation to reach its climax (fully-grown stage). The class 3 vegetation is too small to 

be clearly visible in Figure 4.10-C. 
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Figure 4.10 (A) is a WV-2 subset image on 25 February 2014 of Wolfgat Nature Reserve (B) is a classified image 

of the HII with a marked validation waypoint 24, and (C) is photograph (7 June 2016) of open grass representing 

class 3  

Figure 4.11-A is a WV-2 subset of 25 February 2014 and while Figure 4.11-B is the HII 

classification result for the marked waypoint 25, namely alien vegetation of (class 5). Figure 

4.11-D is a photograph of the same area taken during field observation that shows intact 

vegetation characterised by low, dense shrubby CFDS growing on moist valley-like landscape 

in a (class 3) lightly degraded condition shown in Figure 4.11-C. The classification is incorrect 

compared to the evidence from field observation. This area was misclassified as alien 

vegetation because of the high reflective value in the NIR1 band in the regression analysis 

before deriving the DTC and the inclusion of valley-like area. 
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Figure 4.11 (A) is a WV-2 subset image of 25 February 2014 of Wolfgat Nature Reserve; (B) is a classified image 

of the HII with a marked validation waypoint 25; and (C) is an elevation model for the area in (B) and (D) is a 

photograph (7 June 2016) of open grass representing class. 

Figure 4.12-A is the subsetted WV-2 satellite image from 25 February 2014 and Figure 4.12-B 

extracted from the marked frame in Figure 4.12-A. It shows the classified result represented by 

waypoints 26 and 27. Waypoint 26 represents class 2, i.e. moderately degraded. Visual image 

(WV-2) and field inspections with CoCT vegetation experts showed that north of waypoints 26 

is waypoint 27 (marked in a red star) shows a fire scar that occurred in late December 2012. 

Therefore, the HII classification correctly identified class 3. 
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Figure 4.12 (A) is a WV-2 subset image on 25 February 2014 of Wolfgat Nature Reserve; (B) is a classified image 

of the HII with marked validation waypoints 26 (is a red star marking a previous fire scar) and 27; and (C) is 

photograph (7 June) of open grass representing class 3.  

The marked waypoint 27 in Figure 4.12-B is a validation point for HII classification results of 

class 3 (lightly degraded). Waypoint 27 is characterised by low CFDS vegetation. The field 

observation photograph in Figure 4.12-C shows low grassy vegetation with small patches of 

open sand. The classification and the photographed evidence agree.  
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Figure 4.13 (A) is a WV-2 subset image on 25 February 2014 of Wolfgat Nature Reserve; (B) is a classified image 

of the HII with a marked validation waypoint 28; and (C) is photograph (7 June 2016) of open grass representing 

classes 1 and 2. 

Figure 4.13-A is a WV-2 subsetted image of 25 February 2014 marked with a frame. Figure 

4.13-B shows the classified HII results for the frame representing waypoint 28 which indicates 

a highly degraded class 1. Figure 4.13-C a field-observation photograph of the area recorded 

during field-visit. The field-validation was conducted during the wet, cold winter when the 

highly degraded area was filled with water. By comparison the February image taken during 

the dry, hot summer shows a bare soil, with high spectral reflectance. Figure 4.13-C shows the 

same area surrounded by open shrubby vegetation. Therefore, the classification is accurate. 
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Figure 4.14 (A) is a WV-2 subset image on 25 February 2014 of Wolfgat Nature Reserve;(B) is a classified image 

of the HII with a marked validation waypoint 29 (B) and (C) is a photograph (7 June 2016) of open grass 

representing class 5. 

Figure 4.14-A is the WV-2 subset image on 25 February 2014 showing the classified result of 

the HII region marked by the block. Figure 4.14-B is class 5 habitat intactness representing 

dense alien vegetation. Figure 4.14-C is the field-observation photograph at waypoint 29 which 

shows dense natural vegetation. The misclassification as alien vegetation arose from the 

segmentation polygons NIR being spectrally confused as alien vegetation. This error is similar 

to spectral confusion in Figure 4.5-B. 
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Figure 4.15 (A) is a WV-2 subset image on 25 February 2014 Wolfgat Nature Reserve; (B) is a classified image of 

the HII with a marked validation waypoint 30; and (C) is photograph (7 June 2016) of open grass representing 

class 4.  

Figure 4.15-A is a subsetted WV-2 image from on 25 February 2014 and Figure 4.15-B shows 

the classification result of the intact vegetation class 4 (Intact vegetation) in the marked block. 

Figure 4.15-C, the field-observation photograph, shows dense alien vegetation although the 

CoCT experts indicated it to be natural CFDS vegetation. The Field visual-observation 

confirmed that the classification was correct. 

Visual observation and the classification results of 11 October 2014 at waypoint 31 indicated 

the presence of alien vegetation. Due to environmental dynamics and time lag between the 

dates of the satellite image and field-observations, the field-validation photograph (Figure 4.16-

C) recorded during field visit shows herbaceous vegetation regrowth after a fire in November 

2015 (CoCT Noxolo Sidzumo and Ludwe Ntantiso field experts). 
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Figure 4.16 (A) is a WV-2 subset image on 11 October 2014 in Monwabisi; (B), is a classified image of HII 

marked with a field-validation waypoint 31; and (C) is a field validation photograph (7 June 2016) of the marked 

region  

The Rooikrans (Acacia cyclops) is the dominant alien plant species occurring in the area. Field 

validation was not possible because most of the vegetation at waypoint 31 had burnt after 

image acquisition (alien vegetation is very susceptive to fire). According to Mucina & 

Rutherford (2006) the regeneration time by Strandveld vegetation to maturity is longer than 

fynbos vegetation. This explains the dominance of class 3 (lightly degraded) by herbaceous 

CFDS vegetation and confirms that classification of the satellite image was correct at 

acquisition time. 
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Figure 4.17 (A) is a WV-2 subset image of Macassar dunes on 11 October 2014; (B) is a classified image of HII 

with a field-validation waypoint 32 and. (C) is a field-validation photograph (7 June 2016) of the marked point 

Figure 4.17-A shows the WV-2 subset of 11 October 2014. The HII class of the vegetation at 

waypoint 32 in Figure 4.17-B is class 2 (moderately degraded). The photograph recorded 

during field visit shows rubble from building material. The areas next to the field-validation 

waypoint 32 are the surrounding of shrubby CFDS vegetation. Therefore, the satellite 

classification was correct as shown by Figure 4.17-C. 
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Figure 4.18 (A) is a WV-2 subset image of the Macassar Dunes on 11 October 2014; (B) is a classified image of 

HII three field-validation waypoints points (33-35) and class 3; (C) is a field-validation photograph (7 June 2016) 

of the marked areas  

Figure 4.18-A indicates a WV-2 subset from the October image. The HII class of the 

vegetation at field-validation waypoint 33-35 in Figure 4.18-B is class 3 (Lightly degraded). 

The three waypoints represent the same HII class. The photograph Figure 4.18-C shows open, 

low-lying CFDS vegetation in the Macassar backdunes. The image was correctly classified 

with reference to the field photograph. 
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Figure 4.19 (A) is a WV-2 subset image on 11 October 2014 of Wolfgat Nature Reserve; (B) is a classified image 

of HII with a marked validation waypoint 36 and (C) is a photograph of the same area (7 June 2016) of open grass 

representing class 2 

Figure 4.19-A is the subsetted WV-2 image of 11 October 2014 and Figure 4.19-B portrays the 

HII for the area marked with the black frame in Figure 4.19-A. The classification at waypoint 

36 is class 2 which indicates moderately degraded vegetation. Field observation for accuracy 

assessment revealed open bare soil and low grassy vegetation Figure 4.19-C. The image 

classification is correct. Throughout the results, the method adopted from Lück-Vogel, 

O’Farrell & Roberts (2013) was suitably modified for the study, because all the land-use 

activities were masked not to decrease the accuracy of the results. 

The following chapter 5 briefly gives a summary by revisiting the aims and objectives of the 

study, setting out limitations of the study and outlining the recommendations and conclusions 

of the study. 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarises conclusions drawn in this study. The aim and objectives of the study 

are revisited, the limitations of the study are discussed and recommendations made for future 

coastal vegetation related studies. 

5.1 REVISITING THE OBJECTIVES 

The first objective was to identify pristine areas and types of degradation. It was achieved by 

using WV-2 satellite imagery with 2 m spatial resolution and high spectral resolution with 

eight spectral bands to identify these areas. The remaining total of intact vegetation is 61%. Not 

only were satellite data used but field visits were carried out to better characterise these areas. 

Field-informed classes of interest were identified. The field-informed classes were bare soil, 

cleared vegetation, fire scars on sand and limestone, intact or pristine herbaceous vegetation, 

pristine woody or shrubby vegetation growing on sand and limestone and alien invasive 

Rooikrans (Acacia cyclops) vegetation. Prior to the field visits WV-2 images for 25 February 

2014 and 11 October 2014 were used to visually identify areas of interest for the field visits. 

The satellite imagery used worked well in identifying different types of degradation. 

The second objective was to derive spectral, structural and textural properties for the intactness 

gradient of natural terrestrial coastal vegetation using WV-2 satellite images from 25 February 

2014 and 11 October 2014. In order to carry out this objective, the WV-2 satellite images were 

pre-processed to improve the quality required further analyses. Pre-processing involved 

mosaicking, atmospheric correction and subsetting of both the 25 February 2014 and 11 

October 2014 images. A trial-and-error experiment was done to determine segmentation 

parameters for both images. Following segmentation five image derivatives namely Brightness 

(spectral derivative), Compactness (structural derivative), NIR1 standard deviation (textural 

derivative), Area derivative and NDVI and eight spectral bands were used to develop a HII 

derived using DTC. The image pre-processing and the segmentation enabled the identification 

of the respective image objects of interest. 

The third objective was to develop and validate a HII based on the spectral, structural and 

textural information. This information together with additional properties (Area and NDVI) 

was the basis for developing the HII through regression analyses and to perform a DTC. The 

classification was derived from field-informed classes arranged according to levels of 

vegetation intactness ranging from highly degraded to most pristine. From the eight WV-2 
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spectral bands and five image derivatives, only two spectral bands (RED and NIR1) were used 

to derive the DTC in the end. 

The fourth and last objective was to evaluate the remote sensing results. An accuracy 

assessment was performed to assess the quality and accuracy of the results using ground truth 

data. Prior field data collection, intactness maps were produced and taken with to the field. The 

results showed that the approach can effectively and efficiently be done on high spatial 

resolution satellite imagery. The overall accuracy of the results was 80% with kappa statistical 

value of 0.75 (75%), which represents a strong agreement between remote sensing results and 

reference data. The objectives were achieved using the transferable modified approach adopted 

from Lück-Vogel, O’Farrell & Roberts (2013) in producing sufficient results WV-2. The 

modified method adopted from Lück-Vogel, O’Farrell & Roberts (2013) worked well for the 

study, since most transformed areas were masked-out in order to increase the accuracy of the 

results. Two spectral bands namely RED and NIR1 bands were used as ruleset in the DTC to 

distinguish between intact and alien vegetation.  

5.2 LIMITATIONS OF THE STUDY 

Difficulties were experienced during field-data collection to identify and establish sufficient 

and appropriate validation points for assessing the quality of the classification results. Areas of 

in the field showed variations of intactness in the HII maps due to several environmental 

dynamics and human-induced factors. Access to validation points in the field was often 

constrained due to the steep terrain and no road access. Safety during field data collection was 

also an issue that had to be faced. The major difficulty experienced in the study is the 

differences between image acquisition dates and field data causing difficulties in proper 

validation of the results. 

5.3 CONCLUSION  

On the approach adopted from Lück-Vogel, O’Farrell &Roberts (2013); this study is the first of 

its kind to be applied in a coastal environment using satellite imagery with high spatial 

resolution in South Africa. The modification of the methodology in this study has proven that 

vegetation intactness on CFDS can be assessed with using WV-2. However, during data 

analysis it was clearly established that seasonality plays an important role for deriving HII 

since this was a key factor in explaining differences between the classification results based on 

the two WV-2 images. A major finding regarding the satellite data used in the study revealed 

that the two-year difference between the images and field observation made ground truthing 
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confusing due to interim effects of environmental dynamics such as, clearing of alien invasive 

vegetation and frequent bush fires. The study results revealed that images taken in the dry, 

summer season better detected invasive alien vegetation. The three image derivatives 

(brightness, compactness and standard deviation for NIR) adapted from Lück-Vogel, O’Farrell 

& Roberts (2013) however, did not yield satisfactory regression results for deriving a 

classification for the coastal environment. This is because of transformed features such as, 

buildings, play-grounds and agricultural land-uses were masked out in the study. However, the 

spectral bands important for vegetation assessment, namely the RED, NIR1 and NIR2 worked 

appropriately and yielded good results in the DTC. The CoCT habitat condition data layer was 

found to be too coarse for this study thus resulting in low regression results which were not 

used further for the DTC. This was because to the habitat condition polygons included several 

types of intactness or degradation. 

From this study it can therefore be concluded that the use of high spatial resolution satellite 

imagery and the masking-out of transformed areas and other vegetation improve the accuracy 

of the habitat intactness classification results. Areas such as formal urban and informal 

settlements, roads, camping resorts, playgrounds and other vegetation types were also excluded 

to improve results accuracy. It was found that the natural dune landscape, which is naturally 

bare and brightness could be misclassified as habitat degradation. 

5.4 RECOMMENDATIONS 

The research findings and limitations led to the following recommendations: 

 For CFDS vegetation it is better to use WV-2 satellite images of the dry season, not 

only to better detect alien vegetation but for general classification with the HII.  

 HII assessment is best done by using satellite images that match the date of field visit as 

closely as possible.  

 Elevation and relief models should be included in the classification procedures to avoid 

misclassification between classes occurring in valleys.  

 Should the method be applied into a different vegetation type, recalibration of the 

decision tree threshold for DTC will be required.  

 It will be beneficial to test the algorithm or method on a Sentinel-2 satellite image 

because of cost factor (Sentinel-2 is available for free) and different spatial and spectral 

resolution. 
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 Further studies of vegetation assessment are well advised to choose areas that are easily 

accessible and safe for efficient field data collection. 

[24 423 words]  
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