Carnitine metabolism and biosynthesis in the yeast Saccharomyces cerevisiae
Date
2009-12
Authors
Franken, Jaco
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : University of Stellenbosch
Abstract
ENGLISH ABSTRACT: Carnitine plays an essential role in eukaryotic metabolism by mediating the shuttling of activated acyl residues between intracellular compartments. This function of carnitine, referred to as the carnitine shuttle, is supported by the activities of carnitine acyltransferases and carnitine/acylcarnitine transporters, and is reasonably well studied and understood. While this function remains the only metabolically well established role of carnitine, several studies have been reporting beneficial effects associated with dietary carnitine supplementation, and some of those beneficial impacts appear not to be directly linked to shuttle activity. This study makes use of the yeast Saccharomyces cerevisiae as a cellular model system in order to study the impact of carnitine and of the carnitine shuttle on cellular physiology, and also investigates the eukaryotic carnitine biosynthesis pathway. The carnitine shuttle of S. cerevisiae relies on the activity of three carnitine acetyltransferases (CATs), namely Cat2p (located in the
peroxisome and mitochondria), Yat1p (on the outer mitochondrial membrane) and Yat2p (in the
cytosol), which catalyze the reversible transfer of activated acetyl units between CoA and
carnitine. The acetylcarnitine moieties can be transferred across the intracellular membranes of
the peroxisomes and mitochondria by the activity of the carnitine/acetylcarnitine translocases.
The activated acetyl groups can be transferred back to free CoA-SH and further metabolised. In
addition to the carnitine shuttle, yeast can also utilize the glyoxylate cycle for further
metabolisation of in particular peroxisomally generated acetyl-CoA. This cycle results in the net production of succinate from two molecules of acetyl-CoA. This dicarboxylic acid can then enter
the mitochondria for further metabolism. Partial disruption of the glyoxylate cycle, by deletion of
the citrate synthase 2 (CIT2) gene, generates a yeast strain that is completely dependent on the
activity of the carnitine shuttle and, as a consequence, on carnitine supplementation for growth on fatty acids and other non-fermentable carbon sources. In this study, we show that all three CATs are required for the function of the carnitine shuttle. Furthermore, overexpression of any of the three enzymes is unable to crosscomplement deletion of any one of the remaining two, suggesting a highly specific role for each CAT in the function of the shuttle. In addition, a role for carnitine that is independent of the carnitine shuttle is described. The data show that carnitine can influence the cellular response to oxidative stresses. Interestingly, carnitine supplementation has a protective effect against
certain ROS generating oxidants, but detrimentally impacts cellular survival when combined with thiol modifying agents. Although carnitine is shown to behave like an antioxidant within a cellular context, the molecule is unable to scavenge free radicals. The protective and detrimental impacts are dependent on the general regulators of the cells protection against oxidative stress such as Yap1p and Skn7p. Furthermore, from the results of a microarray based screen, a role for the cytochrome c heme lyase (Cyc3p) in both the protective and detrimental effects of carnitine is described. The requirement of cytochrome c is suggestive of an involvement in apoptotic processes, a hypothesis that is supported by the analysis of the impact of carnitine on genome wide transcription levels. A separate aim of this project involved the cloning and expression in S. cerevisiae of the four genes encoding the enzymes from the eukaryotic carnitine biosynthesis pathway. The cloned genes, expressed from the constitutive PGK1 promoter, were sequentially integrated into the yeast genome, thereby reconstituting the pathway. The results of a plate based screen for carnitine production indicate that the engineered laboratory strains of S. cerevisiae are able to convert trimethyllysine to L-carnitine. This work forms the basis for a larger study that aims to
generate carnitine producing industrial yeast strains, which could be used in commercial
applications.
AFRIKAANSE OPSOMMING: Karnitien vervul ‘n noodsaaklike rol in eukariotiese metabolisme deur die pendel van asiel residue tussen intersellulêre kompartemente te medieer. Hierdie funksie van karnitien heet “die karnitien-pendel“ en word ondersteun deur verskeie karnitien asieltransferases en karnitine/asielkarnitien oordragsprotiëne. Die rol van die karnitien-pendel is redelik goed gekarakteriseer en is tot op hede die enigste bevestigde rol van karnitien in eukariotiese metabolisme. Verskeie onlangse studies dui egter op voordele geasosieer met karnitien aanvulling, wat in sommige gevalle blyk om onafhanklik te wees van die pendel aktiwiteit van karnitien. Hierdie studie maak gebruik van die gis, Saccharomyces cerevisiae, as ‘n sellulêre model sisteem om die impak van karnitien op sel fisiologie asook die eukariotiese karnitien biosintese pad te bestudeer. Die karnitien-pendel van S. Cerevisiae is afhanklik van die aktiwiteite van drie afsonderlike karnitien asetieltransferases (CATs), naamlik Cat2p (gelokaliseer in die peroksisoom en die mitochondria), Yat1p (op die buitenste membraan van die mitochondria) en Yat2p (in die sitosol). Die drie ensieme kataliseer die omkeerbare oordrag van asetielgroepe tussen CoA en karnitien. Die terugwaartse reaksie stel CoA-SH vry om sodoende verbruik te word in verdere metaboliese reaksies. Gis is in staat om, afsonderlik van die karnitien-pendel, gebruik te maak van die glioksilaat siklus vir verdere metabolisme van asetiel-CoA wat gevorm word in die peroksisoom. Gedeeltelike onderbreking van hierdie siklus deur uitwissing van die sitraat sintase (CIT2) geen, genereer ’n gisras wat afhanklik is van die funksie van die karnitienpendel en ook van karnitien aanvulling vir groei op vetsure en nie-fermenteerbare koolstofbronne. Hierdie studie dui daarop dat al drie CATs noodsaaklik is vir die funksionering van die karnitien-pendel. Ooruitdrukking van enige van die drie ensieme lei slegs tot selfkomplementasie en nie tot kruis-komplementasie van die ander twee CATs nie. Hieruit word ’n hoogs spesifieke rol vir elk van die drie ensieme afgelei. ’n Pendel-onafhanklike rol vir karnitien word ook in hierdie werk uitgewys in die bevordering van weerstand teen oksidatiewe stres. Dit is noemenswaardig dat karnitien ’n beskermende effek het in kombinasie met oksidante wat ROS genereer en ’n nadelige effek in kombinasie met sulfhidriel modifiserende agente. Dit word aangedui dat karnitien antioksidant funksie naboots in die konteks van ’n gis sel terwyl die molekuul nie in staat is om vry radikale te deaktiveer nie. Beide die beskermende asook die nadelige inwerking van karnitien is afhanklik van Yap1p en Skn7p, wat reguleerders is in die algemene beskerming teen oksidatiewe stres. Die resultate van ’n “microarray“ gebaseerde studie dui op ’n rol vir die sitokroom c heem liase (Cyc3p) in beide die beskermende en nadelige gevolge van karnitien aanvulling. Die vereiste vir sitochroom c dui op ’n moontlike rol vir apoptotiese prosesse. Hierdie hipotese word verder versterk deur ‘n analise van die impak van karnitien op genoomwye transkripsievlakke. ’n Afsonderlike doelwit van hierdie studie was toegespits op die klonering en uitdrukking van die vier ensieme betrokke in eukariotiese karnitien biosintese in S. cerevisiae. Die gekloneerde gene, uitgedruk vanaf die konstitutiewe PGK1 promotor, was geïntigreer in die gisgenoom om die pad op te bou. Die resultate van ’n plaat gebaseerde karnitien produksie toets dui aan dat die geneties gemanipuleerde gisrasse wel in staat is om trimetiellisien oor te skakel in Lkarnitien. Hierdie werk vorm die hoeksteen van ’n studie wat die ontwikkeling van karnitien produserende kommersiële gisrasse as doelwit stel.
AFRIKAANSE OPSOMMING: Karnitien vervul ‘n noodsaaklike rol in eukariotiese metabolisme deur die pendel van asiel residue tussen intersellulêre kompartemente te medieer. Hierdie funksie van karnitien heet “die karnitien-pendel“ en word ondersteun deur verskeie karnitien asieltransferases en karnitine/asielkarnitien oordragsprotiëne. Die rol van die karnitien-pendel is redelik goed gekarakteriseer en is tot op hede die enigste bevestigde rol van karnitien in eukariotiese metabolisme. Verskeie onlangse studies dui egter op voordele geasosieer met karnitien aanvulling, wat in sommige gevalle blyk om onafhanklik te wees van die pendel aktiwiteit van karnitien. Hierdie studie maak gebruik van die gis, Saccharomyces cerevisiae, as ‘n sellulêre model sisteem om die impak van karnitien op sel fisiologie asook die eukariotiese karnitien biosintese pad te bestudeer. Die karnitien-pendel van S. Cerevisiae is afhanklik van die aktiwiteite van drie afsonderlike karnitien asetieltransferases (CATs), naamlik Cat2p (gelokaliseer in die peroksisoom en die mitochondria), Yat1p (op die buitenste membraan van die mitochondria) en Yat2p (in die sitosol). Die drie ensieme kataliseer die omkeerbare oordrag van asetielgroepe tussen CoA en karnitien. Die terugwaartse reaksie stel CoA-SH vry om sodoende verbruik te word in verdere metaboliese reaksies. Gis is in staat om, afsonderlik van die karnitien-pendel, gebruik te maak van die glioksilaat siklus vir verdere metabolisme van asetiel-CoA wat gevorm word in die peroksisoom. Gedeeltelike onderbreking van hierdie siklus deur uitwissing van die sitraat sintase (CIT2) geen, genereer ’n gisras wat afhanklik is van die funksie van die karnitienpendel en ook van karnitien aanvulling vir groei op vetsure en nie-fermenteerbare koolstofbronne. Hierdie studie dui daarop dat al drie CATs noodsaaklik is vir die funksionering van die karnitien-pendel. Ooruitdrukking van enige van die drie ensieme lei slegs tot selfkomplementasie en nie tot kruis-komplementasie van die ander twee CATs nie. Hieruit word ’n hoogs spesifieke rol vir elk van die drie ensieme afgelei. ’n Pendel-onafhanklike rol vir karnitien word ook in hierdie werk uitgewys in die bevordering van weerstand teen oksidatiewe stres. Dit is noemenswaardig dat karnitien ’n beskermende effek het in kombinasie met oksidante wat ROS genereer en ’n nadelige effek in kombinasie met sulfhidriel modifiserende agente. Dit word aangedui dat karnitien antioksidant funksie naboots in die konteks van ’n gis sel terwyl die molekuul nie in staat is om vry radikale te deaktiveer nie. Beide die beskermende asook die nadelige inwerking van karnitien is afhanklik van Yap1p en Skn7p, wat reguleerders is in die algemene beskerming teen oksidatiewe stres. Die resultate van ’n “microarray“ gebaseerde studie dui op ’n rol vir die sitokroom c heem liase (Cyc3p) in beide die beskermende en nadelige gevolge van karnitien aanvulling. Die vereiste vir sitochroom c dui op ’n moontlike rol vir apoptotiese prosesse. Hierdie hipotese word verder versterk deur ‘n analise van die impak van karnitien op genoomwye transkripsievlakke. ’n Afsonderlike doelwit van hierdie studie was toegespits op die klonering en uitdrukking van die vier ensieme betrokke in eukariotiese karnitien biosintese in S. cerevisiae. Die gekloneerde gene, uitgedruk vanaf die konstitutiewe PGK1 promotor, was geïntigreer in die gisgenoom om die pad op te bou. Die resultate van ’n plaat gebaseerde karnitien produksie toets dui aan dat die geneties gemanipuleerde gisrasse wel in staat is om trimetiellisien oor te skakel in Lkarnitien. Hierdie werk vorm die hoeksteen van ’n studie wat die ontwikkeling van karnitien produserende kommersiële gisrasse as doelwit stel.
Description
Thesis (PhD (Science) (Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2009.
Keywords
Yeast, Carnitine, Metabolism, Oxidative stress, Dissertations -- Wine biotechnology, Theses -- Wine biotechnology, Saccharomyces cerevisiae, Eukaryotic metabolism