The adsorption characteristics of precious and base metals on four different ion-exchange resins

Date
2000-12
Authors
Els, Ellis Raymond
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Adsorption tests were conducted with four different ion-exchange resins to determine the equilibrium adsorption of a range of precious and base metals. The adsorption characteristics were determined for synthetic single metal, as well as for multicomponent and base metal solutions. The effect of the el- concentration on the equilibrium adsorption was established for three different Hel concentrations in the above solutions. From the ion-exchange characteristics determined, a selective adsorption sequence is proposed for the separation of precious and base metals. Pure platinum, palladium and gold were dissolved in aqua regia and diluted to 2000 ppm (as metal) in 4M Hel. Ruthenium, rhodium and iridium were dissolved from pure salts in Hel. A 2000 ppm base metal solution was prepared by dissolving all the required components, including precious metals, to match an in-plant industrial basemetals solution composition. For each precious metal the equilibrium adsorption was determined for a couple of solution concentrations. Data points for adsorption curves were established by varying the amount of resin added to the test solution of a specific concentration. The equilibrium solution concentrations were determined by Iep analysis after 24 hours of exposure, using the bottle-roll technique. The experimental results obtained indicate a possible process route for the separation of precious metals with ion-exchange resin. The XAD7 resin is highly selective for gold from mixed solutions containing precious and base metals. It is also evident that, with the gold removed from the solution, the A22 resin adsorbs only palladium. IR200 resin adsorbs only the base metals from the solution. With all other precious metals removed from the solution (platinum and ruthenium must be extracted by other means), iridium can be adsorbed from the solution by IRA900 resin which is highly selective for iridium over rhodium. For all of the anion resins, XAD7, IRA900, and A22, the chloride concentration of the solution did not have a big effect on the adsorption capacity. However, the adsorption of base metals on IR200 is sensitive to chloride concentration, with a rapid reduction in adsorption at higher chloride concentrations. Statistical models were developed for the adsorption of each of the precious metals, as well as for the base metal solution. All adsorption data, obtained for a resin (typically 250 equilibrium data points), was used in the development of the model. The SPSS statistical software package was used to develop linear regression models. The interaction between all the input parameters, e.g. the interaction of gold and chloride ions, was modelled by specifying the product of the gold and the chloride concentrations as an input variable. The variables that determine the adsorption quantities were identified. High solution concentrations of the target adsorption component increase the adsorption quantity. It has been established that a higher platinum concentration increases the adsorption quantity of gold on XAD7 resin. However, the adsorption quantity is reduced at higher ruthenium concentrations. The adsorption quantity of iridium on IRA900 is reduced with increased rhodium concentration. The adsorption quantity of palladium on A22 is increased by the presence of rhodium and decreased by larger concentrations of iridium and platinum. The adsorption of base metals on IR200 is decreased at higher acid concentrations. Higher concentrations of gold in the base metal solution also decrease the adsorption quantity of base metals. The model predicted adsorption of each component compares well with the actual measured values. In batch adsorption tests the counter ion is not removed from the resin. The resin capacity for a specific ion concentration could therefore not be determined. As such, the adsorption models are only valid for the initial part of the ion-exchange process. The effect of kinetics on the adsorption was not determined.
AFRIKAANSE OPSOMMING: Adsorpsietoetse is gedoen met vier verskillende ioonuitruilharse om die ewewig adsorpsie van edelmetale en basismetale te bepaal. Die adsorpsie karakteristieke is bepaal vir sintetiese enkelmetaal-, meermetaal-, en basismetaaloplossings. Die effek van die Cl konsentrasie op die ewewigadsorpsie is bepaal vir drie soutsuurkonsentrasies in al die bogenoemde oplossings. 'n Prosesvloeidiagram vir die selektiewe adsorpsie van edelmetale en basismetale met behulp van die vier verskillende ioonuitruilharse word voorgestel. Suiwer platinum, palladium en goud is opgelos in koningswater en verdun na 2000 dpm (uitgedruk as metaal) in 4 molaar HCl. Rutenium-, rodium- en iridiumoplossings is verkry deur die oplos van suiwer edelmetaalsoute in HCl. 'n Basismetaaloplossing van 2000 dpm is voorberei deur die individuele komponente, wat die edelmetale ingesluit het, in die regte verhouding te kombineer om die samestelling van 'n industriële basismetaaloplossing te verkry. Vir elke edelmetaal is die ewewigadsorpsie bepaal vir tipies twee konsentrasies van edelmetaaloplossings. Verskillende data punte by 'n spesifieke edelmetaalkonsentrasie is bepaal deur die hoeveelheid hars wat by die toets oplossing gevoeg word te varieer. Die oplossingkonsentrasies by ewewig is bepaal deur IGP analise na 24 uur blootstelling met die roterende botteltegniek. Die resultate wat verkry is dui op 'n moontlike ioonuitruiigebaseerde proses vir die skeiding van edelmetale. Die XAD hars is selektief vir goudadsorpsie uit gemengde oplossings wat al die edelmetale, asook basismetale bevat. Dit is ook bevind dat indien goud uit die gemengde oplossing verwyder word, die A22 hars slegs palladium adsorbeer uit die oplossing. Die IR200 hars adsorbeer slegs basismetale. Wanneer al die ander edelmetale uit die oplossing verwyder is (platinum en rutenium moet met alternatiewe prosesse verwyder word) kan iridium geadsorbeer word met !RA900 hars vanuit 'n iridium- en rodium- gemengde oplossing. Vir al drie die anioonharse wat getoets is, naamlik, XAD7, !RA900 en A22, het die chloriedkonsentrasie nie 'n groot effek op die adsorpsie gehad nie. Die hoeveelheid basismetale wat op IR200 hars geadsorbeer word is egter baie sensitief vir die chloriedkonsentrasie, met 'n vinmge afname In adsorpsie by hoër chloriedkonsentrasies. Statistiese modelle is ontwikkel vir elke hars en vir elk van die edelmetale, asook die basismetaaloplossing. Al die eksperimentele data wat vir elke hars verkry is, tipies 250 ewewigspunte, is gebruik in die ontwikkeling van lineêre regressie modelle vir die primêre absorberende spesie op die hars. Hoër konsentrasies van die teiken adsorpsie komponent verhoog die adsorpsie daarvan. Hoër platinumkonsentrasies verhoog die adsorpsie van goud op XAD7, maar die teenwoordigheid van rutenium verlaag adsorpsie. Die adsorpsie van iridium op IRA900 word verlaag met hoër rodiumkonsentrasies. Die adsorpsie van palladium op A22 verhoog met die teenwoordigheid van rodium, maar neem af met hoër konsentrasies van iridium en platinum. Die adsorpsie van basismetale op IR200 neem af by hoër suurkonsentrasies. 'n Hoër goudkonsentrasie verlaag ook die adsorpsie van basismetale. Die gemodelleerde adsorpsie hoeveelhede vergelyk goed met die gemete waardes. Aangesien die uitgeruilde ioon nie verwyder word uit die toetsoplossing nie, kon die harskapasiteit vir 'n spesifieke ioonkonsentrasie nie bepaal word nie. Die modelle is derhalwe slegs getoets vir die aanvanklike deel van die ewewigsdata en die kinetika van adsorpsie is nie in ag geneem nie.
Description
Dissertation PhD--University of Stellenbosch, 2000.
Keywords
Adsorption, Metals, Separation (Technology), Ion exchange resins, Dissertations -- Chemical engineering, Theses -- Chemical engineering
Citation