Design and Investigation of a Semi-Partitioned Bioreactor for Extractive Fermentation using Computational Fluid Dynamics simulations and experimental studies

Date
2022-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Fermentation technology is employed to convert substrates to products with the help of micro-organisms in various industries (food, pharmaceutical, cosmetic and chemical industries) with some successful examples including pharmaceutical production, bioethanol production for fuel, and beer production. Although this technology is used in industry, micro-organism mediated conversion still faces challenges. For instance, product or by-product inhibition can lead to low product yields and productivity. One route to circumvent product inhibition is via extractive fermentation. This combines a fermentation unit and an extraction unit with the aim of continuous in-situ product recovery. To facilitate extractive fermentation, different separation principles (gas-liquid, solid-liquid and liquid-liquid), modes of operation, and physical bioreactor configurations have been explored. For the most part, many research studies have focused on separation principles (dominated by liquid-liquid separation) and mode of operations, with less attention on the design of novel physical bioreactor configurations. Hence, advancing extractive fermentation technology requires new or modified bioreactor configurations or systems that will aid future optimization studies. This dissertation proposes an adapted fermentation system with the design and investigation of a Semi-Partition Bioreactor (SPB) for in-situ liquid-liquid extractive fermentation based on both Computational Fluid Dynamics (CFD) simulations and experimental studies. The first objective towards achieving the aim was to design, develop and demonstrate the operation of the SPB in the abiotic production of lactic acid (LA). This was done through adapting a standard bioreactor (the mixer) with the addition of an inserted tube (the settler). By investigating three physical configurations, results showed that mixing will be affected with the settler’s inclusion as seen with a decrease in mixing time. In addition, increasing the settler diameter was found to be better for continuous settling and removal of the organic liquid in the SPB. During abiotic production of LA, a stable concentration of 1 g/L of the latter was recorded in the SPB, illustrating the workability in in-situ extractive fermentation. Building from objective 1, objective 2 was focussed on understanding the hydrodynamics of the SPB based on a single-phase CFD model and experimental investigations. The hydrodynamic results showed that the presence of the settler led to a destruction of macro-flow patterns which could have had an influence on SPB mixing. Also, it was shown that when modelling an SPB, a transient approach should be preferred over one that assumes a constant mass flux (exchange) between the mixer and settler as seen with a 14.8% and 57% accuracy between experiment and CFD modelling of the mixing time by these two approaches respectively. With several insights on the SPB hydrodynamics obtained from conducting experiments in line with objective 2, the single-phase model was extended to a multiphase two-fluid model in objective 3. This was done in order to understand the SPB's hydrodynamics and mass transfer behaviour in a more realistic set-up that accounts for the different phases that would be in an extractive fermentation process. The results showed that a minimum agitation speed was necessary for sufficient liquid-liquid mixing. Also, the effectiveness of the SPB in lowering the concentration of the target product was shown to be due to liquid-liquid partitioning or mass transfer as opposed to a dilution effect arising from recycling the extractant phase. In the final objective (objective 4), key learnings from experiments conducted in the previous objectives were employed to come up with an SPB that was used to produce lactic acid as the bioproduct. Lactic acid production is usually prone to product inhibition and so the principles of extractive fermentation were put to the test. The results showed an increased concentration of the overall LA produced, with better yield and productivity of lactic acid (25.10 g/L, 0.75 g/g and 0.35 g/g, respectively) in an SPB as opposed to a standard bioreactor (14.94 g/L, 0.60 g/g and 0.20 g/g, respectively). From these results, the SPB design is recommended to be used to produce bioproducts susceptible to product inhibition.
AFRIKAANS OPSOMMING: Fermentasietegnologie word aangewend om substrate om te sit na produkte met die hulp van mikro-organismes in verskeie industrieë (voedsel, farmaseuties, kosmeties en chemiese industrieë) met sommige suksesvolle voorbeelde insluitend farmaseutiese produksie, bio-etanolproduksie vir brandstof, bierproduksie. Al word hierdie tegnologie in industrie gebruik, staar mikro-organisme-bemiddelde-omsetting steeds uitdagings in die gesig. Byvoorbeeld, produk- of byprodukinhibisie kan lei tot lae produkopbrengste en produktiwiteit. Een roete om produkinhibisie te ontduik is via ekstraktiewe fermentasie. Dit kombineer ’n fermentasie-eenheid en ekstraksie-eenheid met die doel van aaneenlopende in-situ produkherwinning. Om ekstraktiewe fermentasie te fasiliteer, moet verskillende skeidingsbeginsels (gas-vloeistof, vastestof-vloeistof, en vloeistof-vloeistof), modes van bedryf en fisiese bioreaktorkonfigurasies verken word. Vir die grootste deel het meeste navorsingstudies op skeidingsbeginsels (gedomineer deur vloeistof-vloeistof skeiding) en mode van bedryf gefokus, met minder aandag op die ontwerp van nuwe fisiese bioreaktorkonfigurasies. Daarom, om ekstraktiewe fermentasietegnologie te verbeter, vereis nuwe of gemodifiseerde bioreaktorkonfigurasies of sisteme wat toekomstige optimaliseringstudies sal bystaan. Hierdie verhandeling stel ’n aangepaste fermentasiesisteem voor met die ontwerp en ondersoek van ’n Semi-Verdeelde Bioreaktor (SPB) vir in-situ vloeistof-vloeistof ekstraktiewe fermentasie gebaseer op beide Rekenkundige Vloeistof Dinamika (CFD) simulasies en eksperimentele studies. Die eerste mikpunt om die doelwit te bereik was om die bedryf van die SPB in die abiotiese produksie van melksuur (LA) te ontwerp, ontwikkel en demonstreer. Hierdie is gedoen deur ’n standaard bioreaktor (die menger) aan te pas met die byvoeging van ’n buis (die besinker) wat ingesit word. Deur ondersoek van drie fisiese konfigurasies, het resultate getoon dat menging geaffekteer sal word met die besinker se insluiting soos gesien met ’n afname in mengingtyd. Hiermee saam is gevind dat die verhoging van die besinker se deursnit beter is vir aaneenlopende besinking en verwydering van die organiese vloeistof in die SPB. Gedurende abiotiese produksie van LA is ’n stabiele konsentrasie van 1 g/L van die laasgenoemde waargeneem in die SPB, wat die werkbaarheid in in-situ ekstraktiewe fermentasie illustreer. Deur te bou op doelwit 1, het doelwit 2 gefokus op die verstaan van die hidrodinamika van die SPB gebaseer op ’n enkelfase CFD-model en eksperimentele ondersoeke. Die hidrodinamiese resultate het getoon dat die teenwoordigheid van die besinker gelei het tot ’n afbreking van makrovloeipatrone wat ’n invloed kon gehad het op SPB-vermenging. Dit is ook gewys dat wanneer ’n SPB gemodelleer word, ’n oorgangsbenadering verkies moet word oor een wat aanneem dat ’n konstante massafluks (ruiling) tussen die menger en besinker bestaan, soos gesien word met ’n 14.8% en 57% akkuraatheid tussen eksperiment en CFD-modellering van die vermengingstyd by hierdie twee benaderinge onderskeidelik. Met verskeie insigte in die SPB-hidrodinamika verkry uit die uitvoer van eksperimente in lyn met doelwit 2, is die enkelfasemodel uitgebrei na ’n multifase twee-vloeistofmodel in doelwit 3. Hierdie is gedoen om die SPB se hidrodinamika en massa-oordraggedrag in ’n meer realistiese opstel te verstaan wat rekening hou met die verskillende fases wat in ’n ekstraktiewe fermentasieproses sou wees. Die resultate wys dat ’n minimum beroeringspoed nodig was vir voldoende vloeistof-vloeistof vermenging. Die doeltreffendheid van die SPB in die verlaging van die konsentrasie van die mikpuntproduk is bewys om as gevolg van die vloeistof-vloeistofverdeling of massa-oordrag te wees, teenoor ’n verdunningseffek wat onstaan uit herwinning van die ekstraktiewe fase. In die finale doelwit (doelwit 4) is sleutelkennis opgedoen uit eksperimente uitgevoer in die vorige doelwitte, gebruik om vorendag te kom met ’n SPB wat gebruik is om melksuur as die bioproduk te produseer. Melksuurproduksie is gewoonlik geneig tot produkinhibisie en so is die beginsels van ekstraktiewe fermentasie op die toets gestel. Hierdie resultate het ’n verhoogde konsentrasie van die algehele LA geproduseer, getoon, met beter opbrengs en produktiwiteit van melksuur (25.10 g/L, 0.75 g/g en 0.35 g/g, onderskeidelik) in ’n SPB teenoor ’n standaard bioreaktor (14.94 g/L, 0. 0.60 g/g en 0.2 g/g, onderskeidelik). Uit hierdie resultate word voorgestel dat die SPB-ontwerp gebruik word om bioprodukte vatbaar vir produkinhibisie te gebruik.
Description
Thesis (PhD) -- Stellenbosch University, 2022.
Keywords
Mass transfer, Extraction apparatus, Computational fluid dynamics, Lactic acid, Hydrodynamics, Chemical inhibitors, UCTD
Citation