Extending SAFT-VR Mie to the global phase behaviour of CO2 and its mixtures

Date
2022-04
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: Understanding the phase behaviour of CO2-containing mixtures is important for many industrial processes, amongst others supercritical fluid fractionation and enhanced oil recovery. These mixtures are complicated by the CO2 quadrupole moment, and, because these processes are often conducted near CO2’s critical point, critical phenomena. These characteristics make thermodynamic modelling of CO2-containing systems challenging. Many equations of state (EoSs) with firm theoretical foundations have been developed. The Statistical Associating Fluid Theory, or SAFT EoS, is rooted in statistical mechanics where macroscopic properties are calculated by considering the energy contributions of molecular interactions. The SAFT with Variable Range Mie-potential (SAFT-VR Mie) model was the focus of this project, because it is arguably the most advanced of the SAFT-variants and shows promise as a holistic predictive tool. The industrially relevant Cubic Plus Association (CPA) model was included for comparative purposes. The overarching aim of this project was to improve the predictive modelling of CO2- containing mixtures, thereby developing a single model that describes the global phase behaviour of these mixtures. To achieve this, the models’ descriptions of quadrupolar interactions and of the critical region needed improvement. To account for quadrupolar interactions, SAFT-VR Mie (VRM) and CPA were extended with the quadrupolar terms of Gross (G) and Larsen & coworkers (L), and three new models were proposed: VRM-G, VRM-L, and CPA-G. CPA extended with the Larsen quadrupolar term was developed in previous work (Bjørner & Kontogeorgis, Fluid Phase Equilibria 2016;408:151􀀀69), and is called qCPA. The quadrupolar models were evaluated by modelling the phase equilibria of binary mixtures containing CO2 or benzene + n-alkanes, 1-alkanols, water, or esters. The quadrupolar models’ improvements are most pronounced in the CO2 + n-alkane systems. The quadrupolar models predict these systems’ phase behaviour accurately at subcritical conditions, and offer improved qualitative descriptions at supercritical conditions. In the CO2 + 1-alkanol systems, good predictions are obtained when accounting for both quadrupolar and cross-association interactions. A single set of CO2 association parameters, determined from a sensitivity analysis, were used to predict the VLE behaviour of CO2 + 1-alkanol mixtures ranging from ethanol to 1-decanol. There is still room for improvement, specifically regarding the water- and ester mixtures. In the water mixtures, the additional quadrupolar terms do not improve the descriptions of the nonpolar models. To obtain good qualitative descriptions of the phase boundaries, the cross-association description is the most important. In the ester mixtures, the polar models do not capture the balance between dipolar, quadrupolar, and dipole-quadrupole interactions adequately. Based on the results for the CO2 + n-alkane and CO2 + 1-alkanol mixtures, VRM-G and qCPA were identified as the best quadrupolar model options in SAFT-VR Mie and CPA, respectively. These models are based in mean-field theory, and therefore cannot describe the critical region. To this end, VRM-G and qCPA were treated with renormalisation corrections, yielding VRM-G + RG and qCPA + RG. Both models improve the description of pure component properties in and around the critical region, without losing accuracy outside the critical region. The RG-models were extended to mixtures using the isomorphism approach and applied to binary n-alkane and CO2 + n-alkane systems. qCPA + RG only offers significant improvement for the more symmetric systems; this improvement, however, does not worsen prediction of binary VLE outside the critical region. In VRM-G + RG, remarkable predictions of the critical loci are obtained without binary interaction parameters. VRM-G + RG also describes the phase behaviour of these systems outside the critical region accurately, thus achieving the overarching aim of developing a global model for CO2-containing mixtures. The following contributions stem from this research: 1. The development of VRM-G and VRM-L, published in Journal of Chemical & Engineering Data 2020;65(12):5778 􀀀 5800; 2. The development of CPA-G, published in Fluid Phase Equilibria 2021;528:112848; 3. The development of VRM-G + RG.
AFRIKAANS OPSOMMING: ’n Goeie begrip van die fasegedrag in CO2-houdende mengsels is noodsaaklik vir vele industriële prosesse, onder andere superkritiese vloeier fraksionering en verhoogde olie-herwinning. Hierdie mengsels word gekompliseer deur die kwadrupoolmoment van CO2 en, aangesien baie van hierdie prosesse bo die kritiese temperatuur van CO2 uitgevoer word, kritiese verskynsels. Hierdie eienskappe bemoeilik die termodinamiese modellering van CO2-houdende sisteme. Baie toestandsvergelykings met vasstaande teoretiese fondasies is reeds ontwikkel. Die Statistical Associating Fluid Theory, of SAFT, het sy oorsprong in statistiese meganika, waar makroskopiese eienskappe bereken word deur die energiebydrae van molekulêre interaksies te oorweeg. Die SAFT met ’n reëlbare rekwydte Mie-potensiaal (SAFT-VR Mie) was die fokus van hierdie projek, aangesien dit stellig die mees gevorderde weergawe van die SAFT-variante is en ’n belowende instrument vir holistiese voorspellings is. Die industrieel-relevante Cubic Plus Association (CPA) toestandsvergelyking is vir vergelykende doeleindes ook gebruik. Die oorkoepelende doel van hierdie projek was om die modellering van CO2-houdende mengsels te verbeter, om sodoende ’n enkele model te ontwikkel wat die globale vloeiergedrag van hierdie mengsels kan beskryf. Om hierdie doel te bereik, het die modelle se beskrywing van kwadrupolêre interaksies en dié van die kritiese gebied verbetering benodig. Om die kwadrupolêre interaksies in ag te neem, is SAFT-VR Mie (VRM) en CPA met die kwadrupolêre terme van Gross (G) en Larsen & medewerkers (L) uitgebrei, en drie nuwe modelle is voorgestel: VRM-G, VRM-L en CPA-G. Die uitbreiding van CPA met die Larsen kwadrupolêre term is reeds in vorige werk uitgevoer (Bjørner & Kontogeorgis, Fluid Phase Equilibria 2016;408:151 􀀀 69) en word qCPA genoem. Die kwadrupolêre modelle is geëvalueer deur die fase-ekwilibrium van binêre mengsels wat CO2 of benseen + n-alkane, 1-alkanole, water, of esters bevat, te modelleer. Die verbetering wat die kwadrupolêre modelle meebring is duidelik sigbaar in die CO2 + n-alkaansisteme. Die kwadrupolêre modelle lewer akkurate voorspellings van hierdie sisteme se fasegedrag by subkritiese toestande, en lewer verbeterde kwalitatiewe beskrywings van superkritiese gedrag. In die CO2 + 1-alkanolsisteme word goeie resultate behaal wanneer beide die kwadrupolêre- en kruis-assossiatiewe interaksies in ag geneem word. ’n Enkele stel CO2- assosiasie parameters, wat deur middel van ’n sensitiwiteitsanalise bepaal is, is gebruik om die damp-vloeistof-ewewigsgedrag van CO2 + 1-alkanol mengsels (etanol tot 1-dekanol) te voorspel. Daar is egter nog steeds ruimte vir verbetering, spesifiek ten opsigte van die water- en estermengsels. In die watermengsels verbeter die addisionele kwadrupolêre terme nie die beskrywings van die nie-polêre modelle nie. Om goeie kwalitatiewe beskrywings van hierdie fasegrense te behaal is die beskrywing van kruis-assosiasie die belangrikste. In die estermengsels is die polêre modelle nie daartoe instaat om die balans tussen die dipolêre-, kwadrupolêre-, en dipoolkwadrupool interaksies voldoende te beskryf nie. Op grond van die resultate wat vir die CO2 + n-alkaan- en CO2 + 1-alkanolmengsels behaal is, is VRM-G en qCPA as die beste kwadrupolêre modelopsies in onderskeidelik SAFT-VR Mie en CPA geïdentifiseer. Hierdie modelle is gebaseer op gemiddelde-veld teorie (mean-field theory), en kan daarom nie die kritiese gebied beskryf nie. Hernormaliseringsverbeteringe is dus op VRM-G en qCPA toegepas, wat die nuwe modelle VRM-G + RG en qCPA + RG opgelewer het. Beide modelle verbeter die beskrywing van suiwerkomponenteienskappe in en rondom die kritiese gebied, sonder om akkuraatheid buite die kritiese gebied in te boet. Die RG-modelle is deur middel van die isomorfie-benadering na mengsels uitgebrei en op binêre n-alkaan- en CO2 + n-alkaanmengsels toegepas. qCPA + RG verbeter slegs die beskrywing van simmetriese sisteme; hierdie verbetering verswak egter nie die voorspellings van binêre damp-vloeistof-ewewig buite die kritiese gebied nie. VRM-G + RG lewer merkwaardige voorspellings van die kritiese lokusse sonder binêre interaksieparameters. VRM-G + RG lewer ook akkurate beskrywings van hierdie sisteme se fasegedrag buite die kritiese gebied, en behaal dus die oorkoepelende doel van hierdie projek: om ’n globale model vir CO2-mengsels te ontwikkel. Hierdie navorsing lewer die volgende bydraes: 1. Die ontwikkeling van VRM-G en VRM-L, wat in Journal of Chemical & Engineering Data 2020;65(12):5778 􀀀 5800 gepubliseer is; 2. Die ontwikkeling van CPA-G, wat in Fluid Phase Equilibria 2021;528:112848 gepubliseer is; 3. Die ontwikkeling van VRM-G + RG.
Description
Thesis (PhD)--Stellenbosch University, 2022.
Keywords
Thermodynamics -- Mathematical models, Quadrupole moments, Global phase behaviour, Supercritical fluids, Thermal oil recovery, UCTD
Citation