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Abstract

A relativistic plane wave model is developed for electromagnetic production of unbound

hyperons with free kaons from nuclei. The differential cross section is expressed as a

contraction of leptonic and hadronic tensors. The leptonic tensor is constructed by using

the helicity representation of a free Dirac spinor. A model for the corresponding elementary

process is used to calculate the hadronic tensor, in which the hadronic current operator

Ĵµ is written as a linear combination of six invariant amplitudes and six Lorentz and

gauge invariant quantities. The kinematics for this process is assumed to be a quasi-free

process i.e., the electron interacts with only one bound nucleon inside the nucleus. The

bound state wavefunction of the bound nucleon is calculated within the framework of the

relativistic mean-field approximation. The unpolarized differential cross section for the K+

electroproduction process, e+ A −→ e+K+ + Λ + Aresidual is calculated as a function of

the hyperon scattering angle.



Opsomming

Die elektromagnetiese produksie van mesone en vrye hiperone word bestudeer deur gebruik

te maak van ’n relatiwistiese vlakgolf model. Die differensiële kansvlak word geskryf as die

kontraksie van ’n leptoniese en ’n hadroniese tensor. Die leptoniese tensor word bereken

deur gebruik te maak van die helisiteitsvoorstelling van die vrye Dirac spinore. ’n Model

vir die ooreenstemmende elementêre verstrooiingsproses word gebruik om die hadroniese

tensor te bereken. Die hadroniese stroomoperator Jµ word uitgebrei in terme van ses

Lorentz- en ykinvariante hoeveelhede. Daar word aanvaar dat die reaksie verloop volgens

kwasievrye kinematika, met ander woorde die elektron wisselwerk slegs met een gebonde

nukleon in die nukleus. Die golffunksie vir die gebonde nukleon word bereken deur gebruik

te maak van die relatiwistiese gemiddeldeveld benadering. Die nie-gepolariseerde kansvlak

vir die K+ elektromagnetiese proses, e + A −→ e + K+ + Λ + Aresidual word bereken as

funksie van die hiperon se verstrooiingshoek.
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Chapter 1

Introduction

The essential goal of physicists has focused on the fundamental building blocks of matter,

and to establish the properties of the constituents of matter, as well as to investigate the

forces through which they interact. The electron was the first building block of the atom

to be identified in 1897 by Thomson, by producing electrons as beams of free particles in

discharge tubes. The discovery of the electron and radioactivity marked the beginning of

a new era in the investigation of matter. At this time the atomic structure of matter was

already visible. These discoveries began to shed light on the structure of matter. However,

the full picture turned out to be much more complicated than had been imagined [1, 2].

The modern view is that three types of fundamental particles (leptons, quarks and gauge

bosons) form the building blocks of matter. These particles interact via forces carried by

exchange bosons: gluons for strong interactions (QCD), the photon for electromagnetic

interactions (QED) and W±,Z0 bosons for weak interactions [3, 4, 5].

Mesons were originally predicted as carriers of the force that bind protons and neutrons.

When first discovered, the muon was identified with this family from its similar mass and

was named “µ-meson”, however it did not show a strong attraction to nuclear matter and

is actually a lepton. The pion was the first true meson to be discovered. In 1949 Hideki

Yukawa was awarded the Nobel Prize in Physics for predicting the existence of the meson

[1, 4].

A meson is a particular type of fundamental particle which is made up of a quark and an

anti-quark. Today physicists define quarks as the elementary particles which constitute

1



Chapter 1. Introduction 2

fundamental building blocks of matter. Pseudoscalar mesons form a subgroup of mesons

that have zero spin (namely scalars) and behave in a particular fashion under the action

of symmetry operations, that is they have parity P = −1 [6, 7, 8]. Under the symmetry

operation of spatial inversion the pseudoscalar meson wavefunction φ transforms to −φ .

Table: 1.1 illustrates the quark content of different states of the pseudoscalar mesons (as

pion (π), eta (η), and kaon (K)) [9].

Pseudo-scalar Meson Quark content Mass (MeV/c2)

Kaon K+ ≈ s̄u 493.677 ± 0.016

K− ≈ sū 493.677 ± 0.016

K0 ≈ s̄d 497.648 ± 0.022

K̄0 ≈ d̄s 497.648 ± 0.022

Pion π+ ≈ d̄u 139.57018 ± 0.00035

π− ≈ dū 139.57018 ± 0.00035

π0 ≈ (uū− dd̄)/
√

2 134.9766 ± 0.0006

Eta η ≈ (uū+ dd̄− 2s̄s)/
√

6 547.51 ± 0.18

TABLE. 1.1. Quark content and masses of kaon, pion and eta pseudo-scalar mesons.

1.1 Motivations and Objectives

The production of mesons from nuclei is an established field of research in nuclear and

particles physics. Both theoretical and experimental studies of mesons and their interac-

tions with nucleons have been of great interest for nuclear and particles physics research

in recent years [10, 11, 12, 13]. In this work we develop a theoretical model for analyz-

ing the exclusive, quasifree electroproduction of pseudoscalar-mesons from nuclei, denoted
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symbolically by

e+ A −→ e+ PS + Λ + Ares , (1.1)

where PS can be one of the pseudoscalar mesons illustrated in Table. 1.1. The name

“quasifree” refers here to the process that occurs in kinematic and physical circumstances

similar to those of the process that produces a meson from a free unbound nucleon, and

“exclusive” means that the outgoing particles are detected in coincidence [11, 14]. This

allows one to consider just one bound nucleon in the nucleus and all others are viewed

as spectators. This means that the process can be considered as taking place on a single

nucleon inside the nucleus [15, 16]. The basic picture of this process is the follows: A

virtual photon emitted by the electron beam, penetrates the target nucleus and couples to

an individual nucleon via the latter’s charge and magnetic moment. This coupling causes

oscillation of the nucleon, followed by the expulsion of kaons. The produced K-mesons,

along with the nucleons that also exit the system, subsequently rescatter from the remaining

nucleons before finally escaping and reaching the detector [17, 18]. The understanding of

the way in which the kaon is produced from a bound nucleon, namely the photoproduction

of the kaon from a single nucleon must be well known. Electroproduction describes a

process where elementary particles are produced as a result of the action of an incident

electron interacting with a target nucleus via exchange of virtual photons (electromagnetic

waves) [10, 11, 19, 20]. In our model, the incident electron is assumed to interact with

only one bound nucleon. As a result, a pseudoscalar meson is produced along with other

particles. In this picture the meson is produced in association with a nucleon (or an excited

state of the nucleon such as a lambda hyperon) and some new recoil “daughter” nucleus.

Starting with an incident electron and some nucleus, we end up with an outgoing electron,

a meson, a free nucleon (or an excited state of it), and a new (residual) nucleus.

The study of the above interactions provides an understanding of the fundamental strong

force which plays an important role in interactions between elementary particles at very

small distance scales [11, 14, 16]. There are four forces that drive all interactions in

nature: gravitational, electromagnetic, weak, and strong forces. At present, we have a

good understanding of the nature of the electromagnetic and the weak forces, while the

gravitational and strong forces still elude a satisfactory and complete description [21, 22].

Many papers [12, 23, 24] are available on photoproduction of pseudoscalar mesons, in which

the use of a real photon beam is employed. Recently η photoproduction from nuclei has
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been studied via the reaction A(γ, ηN)B in the quasifree regime [25, 26, 27].

One of the goals in our study of the reaction in Eq. (1.1), is to illuminate our understanding

of multiple areas of nuclear physics research such as meson-nucleon and the nucleon-nucleus

interactions, quasi-free electron scattering from nuclei and also the electromagnetic pro-

duction of mesons from nucleons [2, 13].

The electroproduction of pseudoscalar mesons from nuclei has not been studied in detail,

and very few papers in this subject are available. The use of electrons instead of photons has

the added the advantage of probing the longitudinal response and longitudinal-transverse

response, but with the price of dealing with a more complicated structure in the cross

section [11, 16, 21, 28]. Our hope is that in the near future experimental data will be

available in order to confront our theoretical understanding with the experimental results.

In developing our formalism we will use as guidance studies of the electroproduction of

pions from nuclei, specifically the reaction: A(e, e π N)B [11, 29].

The use of the Feynman diagrams and rules helps us to compute the transition matrix

element employing the helicity representation of the Dirac spinor. We also find a detailed

expression for the leptonic tensor, in which all kinds of situations are taken into account

for massive and massless leptons. A canonical model-independent parameterization is

used for the elementary process γN −→ K+Λ. This parameterization is constructed in

terms of a linear combination of six invariant amplitudes and six Lorentz- and gauge-

invariance quantities. Because of the pseudoscalar nature of the K+ meson, the transition

matrix element is expanded using the well known Chew-Goldberger-Low-Nambu (CGLN)

amplitudes [7, 30, 31]. The spin dependence is expressed via the hadronic current operator

Ĵµ produced by the strongly interacting hadron in terms of Lorentz covariant pseudo-

vectors. The bound state wave function of the bound nucleon is calculated within the

framework of the relativistic mean field approximation to the Walecka model.

The main objective of this work is to study quasifree electroproduction of the K+ meson

or Λ-hyperon from nuclei. The kinematics for this process is to be assumed as a quasifree

kinematics i.e., the electron interacts with only one bound nucleon inside the nucleus. The

unpolarized differential cross section for the K+ electro-production process, e + A −→
e+K+ + Λ + Aresidual is calculated as function of the hyperon scattering angle.
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1.2 Outline of the thesis

This thesis is divided into five chapters. After the introduction, chapter two explains

general concepts in the investigation of electromagnetic interactions between particles. In

chapter three we discuss the formalism and the basic ideas of the quasifree electromagnetic

production of mesons and unbound hyperon from nuclei. Here we will also briefly discuss

the Relativistic Mean Field (RMF) model which incorporates nuclear structure aspects of

our problem. We also concentrate on the derivation of the differential cross section and

show that the transition matrix element can be written as a contraction of the leptonic and

hadronic tensors. The leptonic tensor is derived using the helicity representation of the free

Dirac spinor wavefunction. The bound state wavefunction is used in the calculation of the

hadronic tensor taking into account nuclear structure for the hadronic current operator. In

the fourth chapter we present the results of our theoretical investigation while the summary

and conclusions are presented in chapter five.



Chapter 2

Generalities

In this chapter we review some basic concepts used in the treatment of interactions between

particles. We also review some basic ideas about the electromagnetic field, since we will

be focussing on electromagnetic production. The importance of the Dirac equation in the

treatment of our model comes from the fact that we will be dealing with fermions. The

bound state wave function will be introduced in order to describe the behaviour of the

bound nucleon inside the nucleus.

2.1 Scattering Process

Scattering presents a useful tool for the investigation of interactions between particles

[32]. In our scattering process we have the leptonic part represented by the incident and

scattered electron on one side and the hadronic part represented by the target nucleus, the

produced kaon and the Λ-hyperon on the other side. Here we illustrate this concept by

considering a simple two-body scattering process [33].

Let us consider the following process,

e+ p→ e+ p , (2.1)

whereby an electron (e) scatters elastically from a proton (p). Fig. 2.1 describes this

process, in which we have assumed the laboratory framework, i.e., the target proton is

at the rest, and hence its three-momentum is zero. We also assume for simplicity that

6
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all particles involved in this process are unpolarized. The angle θe represents the electron

scattering angle and φ is the azimuthal angle.

e(Ek,k)

p(Mp, 0)
ẑ

e(Ek′ ,k′)

p(Ep′ ,p
′)

θe

φ

FIG. 2.1. Electron-proton elastic scattering process

2.1.1 Electron Scattering

Electron scattering is probably the best tool for investigating the structure of hadronic

systems such as atomic nuclei and their constituents. The electromagnetic interaction

is known from quantum electrodynamics (QED) and is weak compared with strength of

the interaction between hadrons. Thus electron scattering is adequately treated assuming

the validity of the Born approximation i.e., the one-photon exchange mechanism between

electron and the target.

Let us consider Fig. 2.1, where an electron beam with four-momentum k = (Ek,k) in the

laboratory frame is incident on a rest proton target with four-momentum p = (Mp, 0). If

the incident electron e is scattered through an angle θe to the outgoing electron e with

the four-momentum k′ = (Ek′ ,k′), due to the relative weakness of the electromagnetic

interaction, the electron scattering can be treated as the exchange of a virtual photon

which carries energy ω = Ek − Ek′ and three-momentum q = k − k′. Then the four-

momentum transfer is given by q = k− k′ = (ω, q). The four-momentum transfer squared
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is space-like (invariant) and given by

q2 = ω2 − |q|2 = −4EkEk′ sin2 θe

2
. (2.2)

We can also define the quantity

Q2 = −q2 ≥ 0 . (2.3)

Here we have made use of the ultra-relativistic limit, where the electron mass me is very

small with respect to its energy E, and therefore can be neglected. According to the

kinematics of this process, momentum conservation law can be written as

k = k′ + p′ , (2.4)

and energy conservation given by

Ek +Mp = Ek′ + Ep′ . (2.5)

One can use the above equations to calculate all kinematical quantities of the process [34].

But since we have different situations before and after the collision, the investigation of

the dynamics of this process needs the incorporation of a new quantity which gives us all

information about the way in which the interaction between the initial states and final

states occurs. This quantity is called the scattering transition matrix element. There is no

exact expression for this quantity, nevertheless the use of Feynman diagrams greatly helps

us to evaluate it in some approximate manner.

2.1.2 Scattering Matrix Element

The scattering (transition) matrix element contains all dynamical information of the scat-

tering. In electroproduction for example, this gives information about nuclear structure,

and also the nuclear effect responsible for the production of mesons and other particles.

Feynman diagrams remain a useful pictorial technique for analysing elementary particle

interactions. As an example, Fig. 2.2 represents the Feynman diagram for electron-proton

elastic scattering.
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U(k)

V(p)

γ(q)

U(k′) V(p′)

FIG. 2.2. Lowest-order Feynman diagram for an elastic scattering between a free electron
and free proton

In this figure, U(k) represents the wavefunction of the incident electron with four momen-

tum k, while the outgoing electron is represented by U(k′) with momentum k′. The proton

target is represented by V(p) and the recoil proton is represented by V(p′). Here we have

used the simplest mechanism to illustrate the usefulness of Feynman diagrams. In the

framework of the Relativistic Plane Wave Impulse Approximation, the expression of the

transition matrix element for this simplest Feynman diagram can be written as

M ≈ [U(k′) γµ U(k)]
1

q2
[V(p′) Jµ V(p)] , (2.6)

where Jµ represents the proton current operator.

2.2 Electromagnetic Interaction

In this section we present the basic formalism for the description of the electromagnetic

field and its interaction with hadronic matter for real and virtual photons [35].

2.2.1 Electromagnetic Field and Potentials

The complete description of the interaction between charged particles and the electro-

magnetic field can be made by controling the scalar potential Vs and the vector potential

Vv. The electric and magnetic fields are given in a unique way using the above potentials
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through the equations

E = −∇Vs −
∂Vv

∂t
,

H = ∇ × Vv .

(2.7)

However, for a variety of scalar and vector potentials, one can describe the fields E and H

when the charge and current densities ρc and jc are given [2, 36].

2.3 Lorentz Gauge

The transformation which leaves unchanged the equations in Eq. (2.7), is known as a gauge

transformation, i.e.

V ′
s(t, r) = Vs(t, r) − ∂λ(t, r)

∂t
,

V ′
v(t, r) = Vv(t, r) + ∇λ(t, r) .

(2.8)

With the right choice of the function λ(t, r), one can satisfy the Lorentz condition

∂Vs

∂t
+ ∇ · Vv = 0 , (2.9)

dealing with potentials which are solutions to the following Maxwell equations

(
∂2

∂t2
− ∇

2

)

Vs = ρc

(
∂2

∂t2
− ∇

2

)

Vv = jc .

(2.10)

Hence, the Maxwell equations and the Lorentz condition are written as

(
∂2

∂t2
− ∇

2

)

V µ = jµ
c

∂µV
µ = 0 ,

(2.11)

where the four-vector potential V µ is defined as

V µ(x) = V µ(t, r) = (Vs,Vv) , (2.12)

and jµ
c = (ρc, jc) is the four-vector current density.
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2.4 Free Dirac Spinor

2.4.1 Dirac Equation

In quantum mechanics we define the Dirac equation as a relativistic wave equation describ-

ing an elementary spin-1
2

particle such as an electron in an electromagnetic field, whereby

the wavefunction has four components. In natural units the Dirac equation without a

potential (free equation) can be written as

i
∂ψ

∂t
= Ĥfψ = (α · p̂ +mβ)ψ , (2.13)

where Ĥf is the free Hamiltonian [37, 38], m is the rest mass of the particle, where

p̂ = −i∇ , (2.14)

is the three dimensional momentum operator and ψ(t,x) is a four component wave-

function, and the 4 × 4 matrices α and β are given by

α =

(

0 σ

σ 0

)

and β =

(

1 0

0 −1

)

. (2.15)

Equation Eq. (2.13) has solutions

ψλ(t,x) = ψ(x)e−iλEt , (2.16)

where λ = ±1, and then

Ĥfψ = iψ(x)(−iλE)e−iλEt = λEψ . (2.17)

Splitting the 4-component spinors into two-2-component spinors φ and χ gives

ψ =









ψ
1

ψ
2

ψ
3

ψ
4









=

(

φ

χ

)

, (2.18)

where

φ =

(

ψ
1

ψ
2

)

and χ =

(

ψ
3

ψ
4

)

. (2.19)
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Substitution into the free Dirac Equation, Eq. (2.13), gives

λEφ = σ · p̂χ+mφ , (2.20)

and then

λEχ = σ · p̂φ−mχ . (2.21)

States with definite momentum can be written as
(

φ

χ

)

=

(

φ
0

χ
0

)

eip·x , (2.22)

which are eigenfunctions of the momentum operator

p̂ψ
pλ

(t,x) = pψ
pλ

(t,x) . (2.23)

Equations Eq. (2.20) and Eq. (2.21) become

(λE −m)φ
0
− σ · pχ

0
= 0 , (2.24)

and

−σ · pφ
0
+ (λE +m)χ

0
= 0 . (2.25)

The solution requires that

λ2E2 −m2 − (σ · p)2 = 0 . (2.26)

Finally, we have that

E =
1

λ

√

m2 + p2 , (2.27)

where we have used the fact that (~σ · p)2 = p2. One must be careful with the sign of λ

when solving both cases at once.

We also have that

φ
0

=
σ · p

λE +m
χ

0
, or χ

0
=

σ · p
λE −m

φ
0
, (2.28)
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and let us denote the two-component spinor χ
0

by

χ
0

= U =

(

u
1

u
2

)

,

where u
1

and u
2

are complex and U is normalized according to

U †U = u∗
1
u

1
+ u∗

2
u

2
= 1 . (2.29)

The complete set of positive- and negative-energy free solutions is

ψ
pλ

(t,x) = N




1

σ · p
λE +m



U e[i(p·x−λEt)] , (2.30)

where N is the normalization constant determined from
∫

d3xψ†
pλ(t,x)ψ

p
′
λ
′ (t,x) = δλλ

′δ(p − p′) , (2.31)

and yielding

N =

√

λE +m

2λE
. (2.32)

2.4.2 The helicity representation of the Free Dirac Spinor

Helicity is the projection of spin onto the direction of the momentum. It is a quantum

number used to classify free one-particle states.

The helicity representation of a free positive-energy Dirac spinor can be written as

U(k, h) =

(
Ek +M

2Ek

)1/2








φh(k̂)

h|k|
Ek +M

φh(k̂)







, (2.33)

where Ek is the energy of a particle of three momentum k and the mass M , k̂ is the

direction of momentum and h = ±1 is the helicity. φh(k̂) represents a Pauli-spinor and is

defined for an electron propagating in the z-direction (i.e. k = (0, 0, |k|) ) as

φh(k̂) =

(

1

0

)

for h = +1 , (2.34)
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and

φh(k̂) =

(

0

1

)

for h = −1 . (2.35)

For massless particles (i.e., M = 0), where |k| = Ek, one can readily derive the following

expression

U(k, h)U(k, h) =
6k

4Ek

(I
4
− hγ5) , (2.36)

where 6k = γµ k
µ, and I

4
and γ5 are respectively defined as

I
4

=







I
2

0

0 I
2







and γ5 =







0 I
2

I
2

0






. (2.37)

2.5 Bound state wavefunction

In this section we use the relativistic mean-field approximation to the Walecka model [39]

to obtain an expression of the bound state wave-function for the bound nucleon.

We start by recalling that the Dirac equation with external potentials is given by

[α · p + β(m+ Vs) + Vv]ψ = ǫψ , (2.38)

where α and β are given by Eq. (2.15) and Vs and Vv represent scalar and vector potentials

respectively.

Considering relativistic mean field theory with spherical symmetry for which the scalar

and vector potentials depend only on the radial coordinate, the orbital angular momentum

is not a conserved quantum number. Instead the Dirac bound-state spinor of the nucleon

moving in a spherical relativistic field can be classified with respect to a generalized angular

momentum κ, which represent the eigenvalue of the operator [38, 40, 41]

κ̂ = −β(σ · L̂ + 1) , (2.39)

with κ = ±(j+ 1
2
), where (−) for aligned spin (s1/2 , p3/2 , etc ); and (+) for unaligned spin

(p1/2 , d3/2 , etc ). The operator κ̂ determines, in the non-relativistic limit, whether the
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projection of the spin is parallel to the total angular momentum. Thus, the quantum num-

ber κ and the projection of the total angular momentum j on the z-axis, m, are sufficient

to label the orbitals. These states can be expressed in a two-component representation as:

U
Eκm

(x) =
1

x







g
Eκ

(x)Y
+κm

(x̂)

if
Eκ

(x)Y
−κm

(x̂)






, (2.40)

where the spin-angular functions are defined as

Y
κm

(x̂) ≡ 〈x̂|ℓ 1

2
j m〉; j = |κ| − 1

2
; ℓ =







κ if κ > 0

−1 − κ if κ < 0
, (2.41)

and g
Eκ

and f
Eκ

are the upper and lower component of the radial Dirac equation given by

[42, 43, 44]

[
d

dr
+

1 + κ

r

]

g
Eκ

= [1 + E − V (r)]f
Eκ
, (2.42)

and
[
d

dr
+

1 − κ

r

]

f
Eκ

= [1 − E + V (r)]g
Eκ
, (2.43)

where E represents the energy of the bound nucleon, and V (r) is the coulomb pontential.

Relativistic mean-field models have been successful in describing and predicting properties

of finite nuclei. The (QHD-I) model based on baryons and vector and scalar mesons, was

introduced in 1974 by Walecka to discuss high-density matter [45]. The model QHD-II,

which includes a renormalizable description of the interaction of charged vector (ρ) and

pseudoscalar (π) fields was developed later by Serot and applied to finite nuclei [46]. Other

models have been successfully developed in recent years providing mean-field descriptions

of the properties of medium to heavy nuclei and have enjoyed enormous success. An

example of such a successful development is the NL3 parameter set of Lalazissis. In this

work we invoke the FSUGold parameter set [47]. This model provide a good agreement

with experimental data [48].

The upper g(r) and the lower f(r) radial wave functions in position space are obtained

from the FSUGold model for orbitals . As an example the upper and lower components
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FIG. 2.3. Upper and lower radial wave function g(r) and f(r) for the orbitals 1s1/2 and
1p3/2 of 12C and the orbitals 1s1/2, 1p1/2 and 1p3/2 of 16O
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FIG. 2.4. Upper and lower radial wave function g(r) and f(r) for the orbitals 1s1/2, 2s1/2,
1p3/2, 1p1/2, 1d5/2, 1d3/2 of 40Ca and the orbitals 1s1/2, 2s1/2, 1p3/2, 1p1/2, 1d5/2, 1d3/2 of
208Pb

for the 1p3/2 and 1s1/2 of the 12C nucleus and for the orbitals 1p3/2, 1p1/2 and 1s1/2 of the
16O nucleus is shown in Fig. 2.3.

We also display the upper and lower radial wave functions in position space for all orbitals

of 40Ca and 208Pb, [see Figs. (2.4 - 2.5)]
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Chapter 3

Quasifree Electroproduction of

Mesons from Nuclei

In this chapter we present our theoretical model for quasifree meson electroproduction from

nuclei. The process we consider in this work can be viewed as the interaction between an

incident electron with a bound nucleon via the exchange of a virtual photon. As a result

of this interaction, a pseudo-scalar meson (like K, π or η) is produced in association with

a nucleon (or an excited state of the nucleon like the lambda hyperon Λ) and some new

recoil “daughter” nucleus. Starting with an incident electron on some nucleus, we end

up with an outgoing electron, a meson, a free nucleon (or an excited state of it), and a

new recoil nucleus. This process is named ”quasifree” since the interaction is assumed to

take place from only one of the nucleons inside the nucleus. It will be shown that the

scattering differential cross section can be written in the form of a contraction between

a leptonic and a hadronic tensor. Also the transition current responsible for the meson-

electroproduction will be constructed in terms of six invariant amplitudes and six Lorentz-

and gauge invariant quantities.

3.1 Schematic picture

The case we are considering in this work is the quasifree electroproduction of the K+ meson

and an unbound Λ-hyperon from nuclei, and it is shown schematically in Fig. 3.1, in which

19
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the basic reaction process is schematically written as

e(k, h) + A(P ) −→ e(k′, h′) +K+(p′
1) + Λ(p′

2) + Ares(P
′) , (3.1)

where A and Ares represent the initial and the residual nucleus respectively. Here K+

is considered to be free and Λ to be an unbound excited state of the nucleon. The recoil

nucleus is viewed here as a spectator, i.e, this means that there will be no effect (correction)

between the recoil nucleus and the outgoing particles.

e(k, h)

K+(p′
1)

γ(q)

e(k′, h′)

Λ(p′
2, s

′
2)

Ψ(P )

Ψ(P ′)

FIG. 3.1. Lowest order Feynman diagram for the electroproduction of mesons and hyperons
from nuclei

3.2 Basic ingredients

We assume the extreme relativistic limit, where the electron energy is much larger than

the electron mass. We use the helicity representation of the free Dirac spinor, U(k, h),

[see Sec. 2.4.2]. In the laboratory frame, the four-momentum of the incoming electron is

k = (Ek,k), and the outgoing electron four-momentum is k′ = (Ek′ ,k′). The virtual photon

exchanged between the incident electron and the target nucleus has a four-momentum

q = k − k′ = (ω, q). The produced K+-meson and Λ-hyperon have four momenta of

p′1 = (Ep′1
,p′

1) and p′2 = (Ep′2
,p′

2) , respectively. The target nucleus is at rest, hence the

four momentum is P = (M, 0) and the recoiling residual nucleus has mass of M ′ with three-

momentum P ′ = q−p′
1−p′

2. We employ the relativistic plane wave impulse approximation,

where we neglect distortion effects on the produced meson and the outgoing hyperon.
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3.3 Cross section for pseudoscalar-meson

electroproduction

Let us consider the electromagnetic production of a pseudoscalar K+ meson and a free

Λ-hyperon [see Eq. (3.1)] as illustrated in Fig. 3.1. In order to derive the differential

cross section for this process, we need to make some assumptions for our model. We

define the position space representation φ(x) = N
V
e−ip.x for the free spin-0 particles, and

ψ(x) = N
V
U(p, s)e−ip.x for the spin-1

2
particles, where N

V
is the normalization constant

that is concerned with the particle density and has nothing to do with spinor normalization.

In order to take in account both massless and massive particles, we normalize the spinor

as follows

U †U = 1 .

Using Fermi’s golden rule the differential cross section can be written as [3, 11, 49]

dσ =
(2π)4 δ4 (k + P − k′ − p′1 − p′2 − P ′)

|v1 − v2|
d3k′

(2π)3

d3p′
1

2Ep′1
(2π)3

d3p′
2

(2π)3

d3P ′

(2π)3 |M|2 (3.2)

where |v1 − v2| is the relative initial velocity. In the extreme relativistic limit where the

electron mass can be neglected with respect to the electron energy, the initial flux in the

laboratory frame is equal to one. Then we can rewrite the Eq. (3.2) as:

dσ =
1

(2π)8
d3k′ d

3p′
1

2Ep′1

d3p′
2 d

3P ′ δ4(k + P − k′ − p′1 − p′2 − P ′) |M|2 . (3.3)

The spatial part of the four-dimensional Dirac δ-function allows the integral over d3P ′ to

be performed. This fixes the three-momentum of the recoil nucleus to be

P ′ = k − k′ − p′
1 − p′

2 = q − p′
1 − p′

2 , (3.4)

where q = k − k′ is the three momentum transfer to the target nucleus. Hence the

differential cross-section Eq. (3.3) becomes:

dσ =
1

(2π)8
d3k′ d

3p′
1

2Ep′1

d3p′
2 δ
(
Ek +M − Ek′ − Ep′1

− Ep′2
− EP ′

)
|M|2 . (3.5)

Now using the geometry of the process, we can write :

d3k′ = (E2
k′ −m2

e)
1/2Ek′dEk′dΩk′ = 2πE2

k′dEk′d(cos θe) (3.6a)

d3p′
1 = (E2

p′1
−M2

K+)1/2Ep′1
dEp′1

dΩp′1
(3.6b)

d3p′
2 = (E2

p′2
−M2

Λ)1/2Ep′2
dEp′2

dΩp′2
. (3.6c)
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In Appendix A it is shown that the differential cross section for the electromagnetic produc-

tion of a meson and a hyperon from the electron-nucleus laboratory-frame can be written

as
d5σ

dEk′ d(cos θe) dEp′1
dΩp′1

dΩp′2

= K |M|2 , (3.7)

where K is the kinematic quantity given in Eq. (3.17), that is fully determined by the

energies and masses of the reaction particles, as well as the scattering angles of the ejected

particles.

3.4 The kinematics

Let us now discuss the kinematics for the production of an unbound nucleon from a nucleus.

We assume quasifree kinematics, i.e., the electron interacts with only one bound proton.

This is depicted in Fig. 3.2,

k

θe

k′ p′
1

p′
2

θ′1

θ′2

φ

x̂ŷ

ẑqα

Hadronic planLeptonic plan

FIG. 3.2. The coordinate system of the reaction A(e, eK+ Λ)Ares in the laboratory frame .

where the direction of the virtual photon three-momentum q defines the ẑ axis, as:

ẑ =
q

|q| . (3.8)
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The leptonic plane is defined by the unit vectors x̂ and ẑ, and the right-handed coordinate

system completed by defining

ŷ = x̂ × ẑ . (3.9)

The direction of the incident electron beam with respect to the z-axis is defined by the

angle α, while the electron scattering angle is θe. The hadronic plane makes an angle φ with

respect to the leptonic plane. The K+ and unbound Λ particles scatter in the hadronic

plane with angles θ
′

1 and θ′2 with respect to the z-axis. Next we derive expressions that

fully specify the following four-vectors in the laboratory frame:

qµ = (ω, 0, 0, qz)

kµ = (Ek, kx, 0, kz)

k′
µ

= (Ek′ , k′x, 0, k
′
z)

p′1
µ

= (Ep′1
, p′1x, p

′
1y, p

′
1z)

p′2
µ

= (Ep′2
, p′2x, p

′
2y, p

′
2z) .

(3.10)

Assuming massless electrons, the magnitude of the three momenta of the incident and

outgoing electron in the laboratory frame are given by:

|k| = Ek and |k′| = Ek′ . (3.11)

From Fig. 3.2 we also have that

k = (Ek,k) = Ek ( 1 , sinα, 0 , cosα) (3.12)

k′ = (Ek′ , k′) = Ek′ ( 1 , sin (α+ θe) , 0 , cos (α+ θe)) . (3.13)

In addition, we require that the virtual photon moves only following the z-axis, such that

the three-momentum (or the three-momentum transfer) will only have a z-component, and

the angle α is given by

sinα = ±
[

E2
k′ sin2 θe

E2
k + E2

k′ − 2EkEk′ cos θe

]1/2

. (3.14)

Geometric arguments from Fig. 3.2 can be used to determine the four-vectors momentum

of the K+-meson and the outgoing nucleon. In the laboratory frame, for the K+-meson

we have that

p′
1 = |p′

1| sin θ′1 cosφ x̂ + |p′
1| sin θ′1 sinφ ŷ + |p′

1| cos θ′1 ẑ (3.15)
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where |p′
1| =

√

E2
p′1
−M2

K+ . The three-momentum of the hyperon is given by

p′
2 = |p′

2| sin θ′2 cosφ x̂ + |p′
2| sin θ′2 sinφ ŷ + |p′

2| cos θ′2 ẑ (3.16)

with |p′
2| =

√

E2
p′2
−m2

Λ . Finally we find the following expression for the kinematics factor

K =
E2

k′

(2π)7
(E2

p′1
−M2

K+)1/2 (E2
p′2
−M2

Λ)1/2 δ[f(Ep′2
)] dEp′2

, (3.17)

where f(Ep′2
) is the function given in Eq. (A.29), [See Appendix A]. Thus far we have only

considered kinematics. Next we focus on dynamical aspects underlying the interaction

process.

3.5 Dynamics of the process

All dynamical information concerning the scattering process is contained in the transition

matrix element M which is defined as:

M =
[
Ū(k′, h′) γµ U(k, h)

]
(
e2

q2

)

〈p′
1; p′

2, s
′
2; Ψf (P

′)|Ĵµ(q)|Ψi(P )〉 , (3.18)

where h and h′ are the helicity states for spin parallel or anti-parallel to the direction of the

momentum. In Eq. (3.18) Ĵµ is the hadronic current operator, and U(k, h) and U(k′, h′)

are respectively the plane wave Dirac spinor for the incident and ejectile electrons. |Ψi(P )〉
represents the many-body state for the target nucleus, and |p′

1; p′
2, s

′
2; Ψf (P )〉 represents

the final state consisting of many-body residual nucleus state, outgoing meson and hyperon.

Using Eq. (3.18) it follows that

|M|2 = MM∗ =

(
e2

q2

)2

Lµν W
µν , (3.19)

where we have introduced the leptonic tensor

Lµν =
∑

h,h′=±1

[
Ū(k′, h′)γµU(k, h)

] [
Ū(k′, h′)γνU(k, h)

]∗
, (3.20)

and the hadronic tensor

W µν =
∑

s′2

[

〈p′1; p′2, s′2; Ψf (P
′)|Ĵµ(q)|Ψi(P )〉

] [

〈p′1; p′2, s′2; Ψf (P
′)|Ĵν(q)|Ψi(P )〉

]∗

.(3.21)



Chapter 3. Quasifree Electroproduction of Mesons from Nuclei 25

3.5.1 Leptonic tensor

Using the helicity representation of the free Dirac spinor, the leptonic tensor is given by

Lµν =
∑

h,h′=±1

[U (k′, h′) γµ U (k, h) ][U (k′, h′) γν U (k, h) ]∗ , (3.22)

where

U(k, h) =

(
Ek +M

2Ek

)1/2








φh(k̂)

h|k|
Ek +M

φh(k̂)








(3.23)

For the massless leptons we have that

U(k, h) =
1√
2







φh(k̂)

hφh(k̂)







(3.24)

where the matrix φh(k̂) is given by

φh(k̂) =







(cos θ
2
)δh,1 − e−iφ(sin θ

2
)δh,−1

eiφ(sin θ
2
)δh,1 + (cos θ

2
)δh,−1






. (3.25)

Using Eqs. (3.24)-(3.25), we obtain the following identity

U(k, h)U(k, h) =
1

4E
6 k[(I4 − hγ5)] . (3.26)

According to the helicity dependence of the incoming and outgoing leptons, four cases for

the leptonic tensor may be considered:

• unpolarized incident and outgoing leptonic beams [Eq. (3.27a)]

• polarized incident and unpolarized outgoing leptonic beans [Eq. (3.27b)]

• unpolarized incident and polarized outgoing leptonic beams [Eq. (3.27c)]

• polarized incident and outgoing leptonic beams [Eq. (3.27d)]
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L(0)
µν (k; k′) =

1

EkEk′

[
kµk

′
ν + k′µkν − k · k′gµν

]
(3.27a)

L(1)
µν (k, h; k′) =

1

2EkEk′

[
kµk

′
ν + k′µkν − gµνk · k′ − ihkαk′βǫµναβ

]
(3.27b)

L(2)
µν (k; k′, h′) =

∑

h=±1

Lµν = L(1)
µν (k′, h′; k) (3.27c)

Lµν(k, h; k
′, h′) =

1

4EkEk′

[

(1 + hh′)(kµk
′
ν + k′µkν − k · k′gµν) − i(h+ h′)kαk′

β
ǫµναβ

]

,

(3.27d)

The derivation of the above expressions is done in appendix B. One can use those expression

to verify the preservation of the helicity.

3.5.2 Hadronic tensor

The hadronic tensor is given by

W µν =
∑

s′2

[

〈p′1; p′2, s′2; Ψf (P
′)|Ĵµ(q)|Ψi(P )〉

] [

〈p′1; p′2, s′2; Ψf (P
′)|Ĵν(q)|Ψi(P )〉

]∗

.

(3.28)

The hadronic matrix element can be written as

Jµ =
∑

s′2

〈p′1; p′2, s′2; Ψf (P
′)|Ĵµ(q)|Ψi(P )〉 , (3.29)

where Ĵµ(q) is the transition current of the process.

The general structure of the transition current for the K+-meson and the unbound Λ

electromagnetic production is dictated by Lorentz- and gauge invariant quantities, and

this is a very complicated quantity to deal with. The approximation illustrated in Fig. 3.3

shows that hadronic current of the electromagnetic production process of mesons and

hyperons can be determined from the elementary process

γ(virtual) + nucleon −→ meson + hyperon . (3.30)
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K+(p′
1)K+(p′

1) Λ(p′
2)Λ(p′

2)

Ψ(P )

Ψ(P ′)

γ(q) γ(q)

Vertex

Approximation

N(pα)

Spectators

Spectators

FIG. 3.3. Approximation employed at the hadronic vertex in order to obtain a tractable
form of the matrix element for the electromagnetic production of meson and unbound
hyperon from the single bound nucleon.

In general there are six reaction channels which may be explored using this formalism,

namely

e+ p −→ e+K+ + Λ (3.31a)

e+ n −→ e+K0 + Λ (3.31b)

e+ p −→ e+K+ + Σ0 (3.31c)

e+ n −→ e+K0 + Σ0 (3.31d)

e+ p −→ e+K0 + Σ+ (3.31e)

e+ n −→ e+K+ + Σ− . (3.31f)

Our developed formalism will only consider the case for the electroproduction of hyperons.

We make a number of assumptions for the hadronic vertex. We first assume that only one

single bound proton couples to the photon emitted by the scattering electron. Here, we

neglect two- and many-body corrections to the hadronic current operator. As a second

assumption, we neglect two- and many- body rescattering processes in the final channel.

We also neglect all nuclear distortion effects on the produced kaon and hyperon, so that

they can be treated as free particles. All these simplifying assumptions and approximations

enable us to express the hadronic current operator in the following form

Jµ =
∑

m,s′2

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm) , (3.32)
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where α denotes the collection of quantum numbers associated with a particular bound

nucleon coupled to the photon, and Ĵµ(q) represents the hadronic current operator.

The hadronic current operator for the electroproduction of hyperons can be written as

a linear combination of six invariant amplitudes and six Lorentz- and gauge invariant

quantities as follows [2, 50, 49]

Ĵµ =
6∑

i=1

Ai(s, t, q
2)Mµ

i , (3.33)

where s and t represent Mandelstam variables defined as

s = (q + p)2 =(p′1 + p′2)
2 (3.34a)

t = (q − p
′

1)
2 =(p′2 − p)2 (3.34b)

u = (q − p′2)
2 =(p′1 − p)2 . (3.34c)

The six Lorentz- and gauge invariant quantities Mµ
i are given by

Mµ
1 =

1

2
γ5(γµ 6q− 6qγµ) (3.35a)

Mµ
2 =

1

2
γ5[(p · q + p′2 · q)(2p′µ1 − qµ) − (2p′1 · q − q2)(pµ + p′µ2 )] (3.35b)

Mµ
3 = γ5(p′1 · qγµ − p′µ1 · 6q) (3.35c)

Mµ
4 = −i ǫαλβν p

′β
1 q

ν γα gµλ (3.35d)

Mµ
5 = γ5(p′µ1 q

2 − p′1 · qqµ) (3.35e)

Mµ
6 = γ5(qµ 6q − q2γµ) (3.35f)

The bound nucleon four-momentum is denoted by p and defined using the approximation

made in the hadronic vertex in accordance with momentum conservation:

p = p′1 + p′2 − q . (3.36)

3.6 Nuclear Structure

The relativistic mean field approximation to the Walecka model [39] is used to determine

the nuclear structure for the bound state function of the bound nucleon. As we have seen
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in Sec. 2.5 the Dirac bound-state spinor of the nucleon moving in a spherical relativistic

field can be classified with respect to a generalized angular momentum κ, the eigenstates

of the Dirac equation can be expressed in a two component representation as:

U
Eκm

(x) =
1

x







g
Eκ

(x)Y
+κm

(x̂)

if
Eκ

(x)Y
−κm

(x̂)






, (3.37)

where the spin-angular functions are defined as

Y
κm

(x̂) ≡ 〈x̂|ℓ 1

2
j m〉; j = |κ| − 1

2
; ℓ =







κ , if κ > 0

−1 − κ , if κ < 0
. (3.38)

Since the scattering matrix element is proportional to the bound-nucleon wave function in

momentum space, it is instructive to examine the momentum content of the wave function.

The Fourier transform of the relativistic bound-state spinor, allowing the transformation

from the spatial representation to the momentum representation, can be written as:

U
Eκm

(p) ≡
∫

dx e−ip·x U
Eκm

(x)

=
4π

p
(−i)ℓ







g
Eκ

(p)

f
Eκ

(p) (~σ · p̂)







Y
+κm

(p̂) ,

(3.39)

where the Fourier transforms of the radial wave functions are given by

g
Eκ

(p) =

∫ ∞

0

dx g
Eκ

(x) ĵℓ(px) , (3.40)

and

f
Eκ

(p) = (signκ)

∫ ∞

0

dx f
Eκ

(x) ĵℓ′ (px) . (3.41)

In the above expression we have incorporated the Riccati-Bessel function in terms of the

spherical Bessel function ĵℓ(z) = z jℓ(z) and ℓ
′

being the orbital angular momentum cor-

responding to −κ. We employ in this work the FSUGold model parameter set [47] to

determine the momentum space wave function using the Eq. (3.40) and Eq. (3.41). The

results for the upper g(p) and the lower f(p) for the proton orbitals as function of momen-

tum are displayed in Fig. 3.4 and Fig. 3.6 for 12C, 16O, 40Ca and 208Pb. In all these figures

we can evidently see that most of the wave-functions have the maximum approximately

around 100 MeV and they only be appreciable in the range of momentum p ≤ 300 MeV.
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FIG. 3.4. Upper g(p) and lower f(p) component of the radial bound state wave-function of
the bound nucleon in the momentum space representation for the orbitals 1s1/2 and 1p3/2

of 12C and 1s1/2, 1p1/2 and 1p3/2 of 16O
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FIG. 3.5. Upper g(p) and lower f(p) component of the radial bound state wave-function
of the bound nucleon in the momentum space representation for the orbitals 1s1/2, 2s1/2,
1p3/2, 1p1/2, 1d5/2, 1d3/2 of 40Ca and 1s1/2, 2s1/2, 1p3/2, 1p1/2, 1d5/2, 1d3/2 of 208Pb
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FIG. 3.6. Upper g(p) and lower f(p) component of the radial bound state wave-function
of the bound nucleon in the momentum space representation for the orbitals 3s1/2, 2p1/2,
2p3/2, 2d5/2, 2d3/2 of 208Pb and 1h11/2, 1g9/2, 1g7/2, 1f7/2, 1f5/2 of 208Pb
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3.7 Bound State Propagator

Next we find an expression for the bound state propagator of the bound nucleon. We start

by invoking the algebraic “trick” introduced for the first time by Casimir [51], which allows

one to express the spin projector of the free particle in terms of Dirac gamma matrices as

S(p′) ≡
∑

s′

U(p′, s′)U(p′, s′) =
6p′ +M ′

2Ep′
, (3.42)

where M ′ is the mass of the free particle and its energy is defined as

p′0 ≡ Ep′ =
√

p′2 +M ′2 . (3.43)

This trick is very useful because it allows one to use the trace algebra techniques developed

by Feynman to compute free polarization observables. Secondly we invoke the useful trick

introduced by Gardner and Piekarewicz [52], which shows a similarity of the spin projector

of the bound state with the spin projector of the free particle. The spin projector of the

bound nucleon can be written in terms of Dirac gamma matrices, using the identities

∑

m

Y±κm(p̂)Y∗
±κm(p̂) = ±2j + 1

8π







1

σ · p̂
, (3.44)

which enable us to introduce the concept of a bound state propagator, expressed as:

Sα(p) =
1

2j + 1

∑

m

Uα,m(p)Uα,m(p)

=

(
2π

p2

)(

g2
α(p) −gα(p)fα(p)σ · p̂

gα(p)fα(p)σ · p̂ −f 2
α(p)

)

= (6pα +Mα) ; (α = {E, κ}) .

(3.45)

In the above equations, gα(p) and fα(p) are the Fourier transforms of the upper and lower

components of the bound-state Dirac spinor respectively [see Eq. (3.40) and Eq. (3.41)].

We have also defined the mass-, energy- and momentum-like quantities as

Mα =

(
π

p2

)
[
g2

α(p) − f 2
α(p)

]
, (3.46a)

Eα =

(
π

p2

)
[
g2

α(p) + f 2
α(p)

]
, (3.46b)

pα =

(
π

p2

)

[2gα(p) fα(p) p̂] , (3.46c)
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which satisfy the ”on-shell relation”

p2
α = E2

α − p2
α = M2

α , (3.47)

where p expresses the missing-momentum and it defined as the magnitude of the bound

nucleon three momentum, which will be given by momentum conservation using our ap-

proximation at the hadronic vertex. We have examined the behaviour of the mass-, energy-

and momentum-like quantities: Mα, Eα and |pα|. In Fig. 3.7 we present the variables

Mα × p2, Eα × p2 and |pα| × p2 as function of momentum, while in Fig. 3.8 we display the

variables Mα, Eα and |pα|. Note that here we only use the orbital 1p3/2 in a 12C nucleus.

The radial component of the wave function of the bound-nucleon (proton in our case) in

momentum space for this orbital is plotted in Fig. 3.9. Next we determine an expression
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FIG. 3.7. The effective mass-, energy, and momentum-like quantities: Mα, Eα and pα as
a function of the momentum (p)

for the free hyperon wave function. Since it is a spin-1
2

particle, it must be described by a
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free Dirac spinor given by

U(p′
2, s

′
2) =

(
Ep′2

+MΛ

2Ep′2

) 1

2






1
~σ · p′

2

Ep′2
+MΛ




φ(s′2) . (3.48)

Now we can write a tractable form of the hadronic tensor for the elementary process as

W µν =
∑

m

∑

s′2

[

U(p′
2, s

′
2)Ĵ

µ(q)Uα,m(pm)
] [

U(p′
2, s

′
2)Ĵ

ν(q)Uα,m(pm)
]∗

=
∑

m

∑

s′2

{

U(p′
2, s

′
2)

(
6∑

i=1

AiMµ
i

)

Uα,m(pm)

}

×
{

U(p′
2, s

′
2)

(
6∑

j=1

AjMν
j

)

Uα,m(pm)

}†

.

(3.49)
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FIG. 3.9. The radial component gα(p) and gα(p) of the wave function of the bound-nucleon
(proton in our case) in momentum space for orbital 1p3/2 of the 12C nucleus

Using the properties of matrix multiplication and recalling the Casmir method Eq. (3.42),

and the Gardner and Piekarewicz method Eq. (3.45), the hadronic tensor can be written

as [see Appendix C]

W µν =
2j + 1

2Ep′2

6∑

i,j=1

AiA
∗
jTr
[

Mµ
i (6pα +Mα)Mν

i (6p′2 +M
′

2)
]

, (3.50)

where Mµ
i = γ0 (Mµ

i )† γ0. Now we are in position to employ powerful trace algebra

techniques developed by Feynman to compute all observables, and using the invariant

amplitudes provided by the model and the six Lorentz- and gauge-invariant quantities

given in Eqs. (3.35a) - (3.35f). Then the hadronic tensor can be written as

W µν =
2j + 1

2Ep′2

6∑

i,j=1

wµν
ij , (3.51)
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where wµν
ij is a particular combination of i and j. For example,

wµν
11 = |A1|2 Tr

[

Mµ
1(6pα +Mα)Mν

1(6p′2 +M
′

2)
]

=
|A1|2

4
Tr
[

γ5(γµ 6q− 6qγµ)(6pα +Mα)(γν 6q− 6qγν)γ5(6p′2 +M
′

2)
]

,

(3.52)

which gives

wµν
11 = |A1|2 ×

[

q2
(
pµ

αp
′ν
2 + p′µ2 p

ν
α − [p′2 · pα −MαM

′
2] g

µν
)

− (q · pα)
(
qµp′ν2 + p′µ2 q

ν − (q · p′2) gµν
)

− (q · p′2) (qµpν
α + pµ

αq
ν − (q · pα) gµν)

+ (p′2 · pα −MαM
′
2) q

µqν

]

.

(3.53)

Detailed expressions of all quantities wµν
ij are presented in appendix C.
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Results

The results that will be presented in this work is related with the application of the

formalism developed in chapter three. The calculation of the hadronic tensor is relatively

complex, but with the approximations already made we are able to calculate the hadronic

tensor for the elementary electromagnetic production of pseudo-scalar-meson and hyperon

process

e+ A −→ e+K+ + Λ + Ares . (4.1)

Since the hadronic tensor depends strongly on the behaviour of the bound state wave

function and the binding energy of the bound nucleon, it is interesting to consider different

nuclei and different orbital levels.

4.1 Kinematic setup

The kinematic setup for the electromagnetic production of pseudoscalar mesons and free

hyperons is very complicated to deal with, since the kinematics depend on various quanti-

ties. We first make use of energy conservation

Ek +MA = Ek′ + Ep′1
+ Ep′2

+ EP ′ , (4.2)

in order to simplify the δ-function in the relation for the differential cross section [see

Eq. (3.5)]. In the laboratory frame the total energy of the recoil nucleus is given by

EP ′ =
√

P ′2 +M2
A−1 =

√

(q − p′
1 − p′

2)
2 +M2

A−1 , (4.3)

38
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where MA is the mass of the target nucleus, MA−1 the mass of the recoil nucleus, Mp is

the mass of the bound nucleon. The proton mass and the binding energy of the bound

nucleon Eb are related as follows:

MA−1 = MA − (Mp − Eb) . (4.4)

The δ-function can be written as a function of only one kinematic variable. In our case,

we have chosen the hyperon energy Ep′2

δ
(
Ek +M − Ek′ − Ep′1

− Ep′2
− EP ′

)
≡ δ

(
f [Ep′2

]
)
. (4.5)

The complete evaluation of f [Ep′2
] is provided in appendix A. The tractable kinematic

setup was made possible by use of the solution of the quadratic equation

f [Ep′2
] = 0 , (4.6)

that gives and fixes the acceptable values for different input parameters such as the inci-

dent and scattered electron energies and angles, the produced kaon angle and energy, the

unbound hyperon outgoing angle, etc ... In Table 4.1, we present the acceptable kinematics

used for this work. Note that these values have been fixed using only one orbital namely

the orbital 1p3/2 of the 12C nucleus. By fixing the value of the incoming and outgoing

Ek(GeV) Ek′(GeV) Ep′1
(MeV) θ(deg) θ′1(deg)

3 − 5 2 − 4 500 − 1500 0 ≤ θ ≤ 15 0 ≤ θ′1 ≤ 20

TABLE. 4.1. Acceptable kinematics

electron energies Ek and Ek′ , the electron scattering angle θe, the produced kaon angle θK+

and energy Ep′1
, the angle between the leptonic and the hadronic planes φ, we are able to

compute the value of the outgoing hyperon as a function of the hyperon outgoing angle

θΛ. Once we get the value of the hyperon energy, this allows us to construct the hyperon

four vector [see Eq. (3.16)].

Next we construct the bound nucleon four-vector using the approximation made in

Sec. 3.5.2, where the bound nucleon has a four-momentum is given by

p = p′1 + p′2 − q . (4.7)
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The magnitude of the three-momentum of this quantity is used to compute the mass-,

energy and momentum-like quantities given by Eqs. (3.46a - 3.46c). Hence, by constructing

these quantities one is able to calculate the hadronic tensor which takes in account the

bound state wave function of the bound nucleon.

In the formalism developed in this work, nuclear structure effects enter exclusively in terms

of the momentum distribution of the bound nucleon. We make use of a relativistic mean-

field approximation to compute the momentum distribution. In particular, we employed

the FSUGold parameter set [47]. The hadronic tensor is calculated using the formalism

described in Sec. 3.5.2. Since the momentum distribution depends on the missing momen-

tum, which itself depends on the momentum of the virtual photon, the produced kaon and

the outgoing free hyperon, it is difficult to find a suitable set of these values. We first fixed

the incident electron energy at 3 GeV corresponding to the beam energy used at JLab and

scattered electron energy of 2 GeV, the electron scattering angle was fixed to 5◦ and the

kaon angle to 10◦. Then we calculate the hyperon energy as function of the hyperon angle

from 0◦ to 180◦, for each single orbital for the nuclei used in this work, namely the 12C, 16O,
40Ca and 208Pb. Since the momentum space wave function of the bound nucleon (proton

for our case) is only appreciable for the missing momentum p ≤ 300MeV, the differential

cross section is also affected by this condition. This will be seen later on in our results. In

Fig. 4.1 we present the momentum distribution of the bound nucleon for the orbitals 1s1/2

and 1p3/2 of the 12C nucleus, for a kaon energy of 700 MeV and 720 MeV. This is done for

all nuclei of interest. The results for 16O are presented in Fig. 4.2.
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FIG. 4.1. Upper g(p) and lower f(p) components of the proton bound state wave-function
in the momentum space for the orbitals 1s1/2 and 1p3/2 of 12C for EK+=700 MeV and 720
MeV
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FIG. 4.2. Upper g(p) and lower f(p) components of the proton bound state wave-function
in the momentum space for the orbitals 1s1/2, 1p3/2 and 1p1/2 of 16O for EK+=700 MeV
and 720 MeV
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We can see in these figures how the momentum distribution decreases with kaon energy.

This gives an indication of the behaviour of the differential cross section, since the mo-

mentum distribution of the bound nucleon plays a dominant role. The orbital 1p3/2 has

an important contribution to the differential cross section compared to the contribution of

orbital 1s1/2. We present the results of the different combinations for the differential cross

section. To compare the influence of the nucleon distributions within orbitals we present

our results for different orbital levels in the nucleus, using the four nuclei considered in

this work. According to the shell model the 12C nucleus has six protons distributed as two

protons bound in the orbital 1s1/2 with a binding energy of 39.19 MeV and four protons

to the orbital 1p3/2 with 13.69 MeV binding energy, Table 4.2 gives the shell structure of

the orbitals and binding energies for the 12C nucleus.

Orbitals j l Kappa (κ) Proton number Eb (MeV)

1s1/2 1/2 0 −1 2 39.19

1p3/2 3/2 1 −2 4 13.69

TABLE. 4.2. Shell structure parameters of 12C for relativistic mean-field model

Fixing the electron scattering angle θe, the produced kaon energy Ep′1
and angle θ+

K, we

compute the outgoing hyperon energy Ep
′

2
as the solution of the equation Eq. (4.6) for

different hyperon angles. We first present in Figs. [(4.3) and (4.4)], the behaviour of the

differential cross section for different energy transfers for the orbital 1s1/2 and 1p3/2 of 12C

as function of the hyperon angle. These results show clearly that the peak of the differential

cross section increases as the energy transfer increases and it is higher for the orbital with

a large number of nucleons.
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FIG. 4.3. The differential cross section for the electro-production of K+ and unbound
hyperon using the orbital 1s1/2 of the 12C nucleus

More explicitly we present the results of the differential cross section for all considered

nuclei showing the contribution of each orbital level. In Fig. 4.5 we present the result for
12C and 16O nuclei. 16O has eight protons distributed as two in 1s1/2, four in 1p3/2 and two

in 1p1/2 or orbitals with 38.92 MeV, 18.36 MeV, 11.99 MeV binding energies respectively:

Table 4.3 gives the shell structure of the orbitals and binding energies for the 16O nucleus.

In Fig. ??, we display the differential cross section contributions for the orbitals 1p1/2 and

1p3/2 of 16O nucleus as function of outgoing hyperon angle. In these results we see that

for example the 1p3/2 orbital of 12C nucleus has a dominant contribution than the orbital

1p3/2. This also happened for the 16O nucleus, in this case the dominant orbital is the 1p1/2

which has also the lower binding energy followed by the 1p3/2. That can be an indication

that the reaction take place in prior in the lastest orbital according to the shell structure

parameters for relativistict mean-field model. We also emphasize that the peak of the
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FIG. 4.4. The differential cross section for the electro-production of K+ and unbound
hyperons using the orbital 1p3/2 of the 12C nucleus

Orbitals j l Kappa (κ) Proton number Eb (MeV)

1s1/2 1/2 0 −1 2 38.92

1p3/2 3/2 1 −2 4 18.36

1p1/2 1/2 1 +1 2 11.99

TABLE. 4.3. Shell structure parameters of the 16O for relativistic mean-field model

differential cross section has a high value for a high energy transfer to the bound nucleon

and also that this peak becomes narrower as we increase the energy transfer.

The 40Ca nucleus has 20 protons distributed as two in 1s1/2, four in 1p3/2, two in 1p1/2, six

in 1d5/2, two in 2s1/2 and four in the 1d3/2 orbitals. Table 4.4 gives the shell structure of

the orbitals and binding energies for the 40Ca nucleus.
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FIG. 4.5. Differential cross section for the K+ electro-production with free hyperon from
the 12C nucleus (top), using the orbital 1s1/2 and 1p3/2, and 16O (bottom), the orbital 1s1/2

and 1p3/2 using the orbital 1s1/2, 1p3/2 and 1p1/2 for different energies transfer ω

The results for 40Ca present in Fig 4.6 confirm our previous discussion, the results follow

the shell structure parameters for relativistic mean-field model. The contribution to the

differential cross section follows this decreasing order of the shell structure, i.e. 1d3/2, 2s1/2,

1d5/2, 1p1/2, 1p3/2 and 1s1/2.
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Orbitals j l Kappa (κ) Proton number Eb (MeV)

1s1/2 1/2 0 −1 2 46.17

1p3/2 3/2 1 −2 4 30.84

1p1/2 1/2 1 +1 2 27.05

1d5/2 5/2 2 −3 6 15.58

2s1/2 1/2 0 −1 2 9.31

1d3/2 3/2 2 +2 4 9.30

TABLE. 4.4. Shell structure parameters of 40Ca for relativistic mean-field model

The 208Pb nucleus contains about sixteen orbital levels: Table 4.5 gives the shell structure

of the orbitals and binding energies for 208Pb. It is very difficult to display all orbital

contributions in one figure, so we have grouped our results with respect to the shell struc-

ture for our relativistic mean-field model. The results of the differential cross section are

presented in Figs. 4.7 and 4.8. We can see that the external orbital gives the dominant

contribution to the differential cross section of the production process.
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FIG. 4.6. Differential cross section for the K+ electro-production with free hyperon from
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Orbitals j l Kappa (κ) Proton number Eb (MeV)

1s1/2 1/2 0 −1 2 48.00

1p3/2 3/2 1 −2 4 42.58

1p1/2 1/2 1 +1 2 41.99

1d5/2 5/2 2 −3 6 35.74

2s1/2 1/2 0 −1 2 30.57

1d3/2 3/2 2 +2 4 34.38

1f7/2 7/2 3 −4 8 27.86

1f5/2 5/2 3 +3 6 25.43

2p3/2 3/2 1 −2 4 20.61

2p1/2 1/2 1 +1 2 19.60

1g9/2 9/2 4 −5 10 19.28

1g7/2 7/2 4 +4 8 15.52

2d5/2 5/2 2 −3 6 10.80

1h11/2 11/2 5 −6 12 10.26

2d3/2 3/2 2 +2 4 9.18

3s1/2 1/2 0 −1 2 8.02

TABLE. 4.5. Shell structure parameters of 208Pb for relativistic mean-field model



Chapter 4. Results 50

0.30

0.30

0.24

0.18

0.12

0.06

0.00
180160140120100806040200

θΛ (deg)

208Pb

ω = 1.0 GeV

1p1/2
1p3/2
1s1/2

d
5
σ

d
E

k
d
(c

os
θ e

)d
E

p
′ 1
d
Ω

′ 1
d
Ω

′ 2

(m
b
G

eV
−

2
×

10
−

4
)

0.30

0.30

0.24

0.18

0.12

0.06

0.00
 0  20  40  60  80  100  120  140  160  180

θΛ (deg)

208Pb

ω = 1.2 GeV

1p1/2
1p3/2
1s1/2

0.30

0.20

0.60

0.50

0.10

0.20

0.00

0.40

 0  20  40  60  80  100  120  140  160  180

θΛ (deg)

208Pb

ω = 1.0 GeV

1d3/2
2s1/2
1d5/2

0.30

0.20

0.60

0.50

0.10

0.20

0.00

0.40

 0  20  40  60  80  100  120  140  160  180

θΛ (deg)

208Pb

ω = 1.2 GeV

1d3/2
2s1/2
1d5/2

FIG. 4.7. Differential cross section for the K+ electro-production with free hyperon from
the 208Pb nucleus, using the orbital 1s1/2, 1p3/2, 1p1/2 1d5/2, 1d3/2 and 2s1/2for different
energies transfer ω
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FIG. 4.8. Differential cross section for the K+ electro-production with free hyperon from
the 208Pb nucleus, using the remaining orbitals from 1f7/2 to 3s1/2 in the shell structure
for different energies transfer ω
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Summary and Conclusions

The results presented in this work represent one of the first attempts to investigate the be-

haviour of the differential cross section at the orbital level. We have developed a formalism

for describing the electromagnetic production of pseudo-scalar mesons and unbound hy-

perons from nuclei, A(e, eK+ Λ)Ares, and performed calculations in the quasifree regime.

The formalism is based on the scattering process constituted by a leptonic part represented

by the incident and scatterd electron on one side, and the hadronic part represented by the

target nucleus and the produced kaon and the Λ-hyperon on the other side. The relativistic

mean-field model [39] has been used to extract the bound state wavefunction of the bound

nucleon (proton).

The leptonic wavefunction is specified using a helicity representation of the free Dirac spinor

in order to take in account the polarizability of the electron beam. The energy range was

motivated by beam energies available at Jefferson lab. The dynamics of the process is

written in terms of the transition matrix element which is expressed as a contraction of

the leptonic tensor and the hadronic tensor. As shown in Appendix B, the leptonic tensor

is evaluated using the helicity representation for a free Dirac spinor. The hadronic tensor

is based on the model developed in Refs. [2, 50] as a linear combination of six invariant

amplitudes and six Lorentz- and gauge-invariant quantities.

Our investigation mainly focused on the calculation of the unpolarized differential cross

section for this production process, since this is the observable of primary interest to

experimentalists. We use Fermi’s golden rule to separate the kinematics to the dynamics

52
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of the process. The kinematics setup is difficult to deal with, since the kinematics from the

production process developed in this work depend on many parameters, namely the masses,

energies and scattering angles of the interacting and produced particles. All information

about the dynamics of the process is contained in the transition amplitude element which

is written in terms of the leptonic tensor and the hadronic one. The nuclear structure

calculations were performed using the relativistic mean field theory to the Walecka model.

We made use of the FSUGold parameters set in this work for the bound state wave-function

of bound nucleons.

We used Feynman diagrams and rules as well as trace algebra techniques to completely

write down the expression of the transition matrix element for our production process. The

valence orbital predicted by the shell structure for the relativistic mean-field model is well

respected by our results. Our hope is that experimental data will be available in the near

futur to test our theoretical model.



Appendix A

Derivation of the Differential Cross

section

The electro-production of pseudo-scalar-mesons from nuclei is represented by the following

reaction:

A(e, eK+ Λ)Ares or e+ A −→ e+K+ + Λ + Ares (A.1)

Let the position space representation of the free spin-0 particles be:

φ(x) = NV e
−ip·x (A.2)

where NV is a normalization constant that is concerned with the particle density and has

nothing to do with the spinor normalization. The associated density is given by:

ρ = 2E |NV |2 . (A.3)

Let the position space representation of the spin-1
2

particles be given by:

ψ(x) = NV u(p, s)e
−ip·x . (A.4)

The corresponding density is:

ρ = ψ†ψ ,

hence

ρ = |NV |2 u†(p, s)u(p, s) . (A.5)

We see that the spinor normalization is usual. Let now assume that:

u†(p, s)u(p, s) = C

54
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where C is a constant, then

ρ = CN2
V . (A.6)

The density satisfies

ρ = Number of particles per unit volume

=
Number of particles

V

=
n

V

Then

CN2
V =

n

V
⇒ NV =

√
n

CV
. (A.7)

We now define the transition rate Wfi per unit volume or transition probability per unit

time per unit volume:

Wfi =
|Tfi|
TV

(A.8)

where

Tfi = −i
Normalization factor for each particle

︷ ︸︸ ︷

NV1
NV2

NV3
NV4

NV5
NV6

(2π)4δ4(k+P−k′−p′1−p′2−P ′)M , (A.9)

then

Wfi =

(
N2

V1
N2

V2
N2

V3
N2

V4
N2

V5
N2

V6

)

TV

[
(2π)4δ(k + P − k′ − p′1 − p′2 − P ′)

]2 |M|2

=
(
N2

V1
N2

V2
N2

V3
N2

V4
N2

V5
N2

V6

)
(2π)4δ4(k + P − k′ − p′1 − p′2 − P ′) |M|2 .

(A.10)

Now we define:

dσ =
Wfi

Initial flux
(Number of final states)

1
1
V

(A.11)

The initial flux: |v1−v2|
V

where |~v1− ~v2| represents the relative velocity of the initial particles.

dσ =
WfiV

2

|~v1 − ~v2|

(
V d3k′

n (2π)3

)(
V d3p′

1

n (2π)3

)(
V d3p′

2

n (2π)3

)(
V d3P ′

n (2π)3

)

(A.12)
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One can use

|v1 − v2| =
4
[
(k · P )2 −m2

eM
2
]1/2

(2Ek) (2EP )
, (A.13)

then

dσ = Wfi

[

V 2(2Ek)(2EP )

4
[
(k · P )2 −m2

eM
2
]1/2

](
V d3k′

n (2π)3

)(
V d3p′

1

n (2π)3

)(
V d3p′

2

n (2π)3

)(
V d3P ′

n (2π)3

)

(A.14)

Using Eq. (A.10), the differential cross-section becomes:

dσ =

[

V 2(2Ek)(2EP )

4
[
(k · P )2 −m2

eM
2
]1/2

]

(2π)4δ4(k + P − k′ − p′1 − p′2 − P ′)

×
(
N2

V1
N2

V2
N2

V3
N2

V4
N2

V5
N2

V6

)
(
V d3k′

n (2π)3

)(
V d3p′

1

n (2π)3

)(
V d3p′

2

n (2π)3

)(
V d3P ′

n (2π)3

)

|M|2 .
(A.15)

Eq. (A.15) is very general. We now have to decide on:

1. How to normalize the boson density =⇒ Eq. (A.3)

2. How to normalize the fermion density =⇒ Eq. (A.5), which connected with spinor

normalization.

Let’s assume that the spinors are normalized to:

ū(p, s)u(p, s) = 1

then

u†(p, s)u(p, s) =
E

M
= C .

Let’s assume we normalize the fermion to one particle per unit volume: n = 1, so

• N2
V1

= me

EkV
=⇒ initial electron

• N2
V2

= M
EP V

=⇒ initial nucleus

• N2
V3

= me

E′

k
V

=⇒ outgoing electron

• N2
V5

= MΛ

Ep′
2
V

=⇒ unbound hyperon
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• N2
V6

= M ′

EP ′V
=⇒ recoil nucleus .

If we also normalize the bosons to one particle per unit volume then: n = 1, so

• N2
V4

= 1
2Ep′

1
V

=⇒ ejected pseudoscalar-meson .

Therefore the differential cross-section takes the form:

dσ =

[

V 2(2Ek)(2EP )

4
[
(k · P )2 −m2

eM
2
]1/2

](
me

EkV

)(
M

EPV

)(
me

E ′
kV

)(
1

2Ep′1
V

)

×
(

Mp

Ep′2
V

)(
M ′

EP ′V

)(
V d3k′

(2π)3

)(
V d3p′

1

(2π)3

)(
V d3p′

2

(2π)3

)(
V d3P ′

(2π)3

)

(2π)4δ4(k + P − k′ − p′1 − p′2 − P ′) |M|2

(A.16)

dσ =
1

(2π)8

m2
eMM ′Mp

[
(k · P )2 −m2

eM
2
]1/2

d3k′

Ek′

d3p′
1

2Ep′1

d3p′
2

Ep′2

d3P ′

EP ′

× δ4(k + P − k′ − p′1 − p′2 − P ′) |M|2 .
(A.17)

For massless fermions the normalization is given by:

u†(p, s)u(p, s) = 1 = C ,

and the differential cross-section given by Eq. (A.17) becomes

dσ =
1

(2π)8
d3k′ d

3p′
1

2Ep′1

d3p′
2 d3P ′ δ4(k + P − k′ − p′1 − p′2 − P ′) |M|2 . (A.18)

We now can use the momentum conservation to establish an expression for the differential

cross-section. Momentum conservation tells us that

k + P = k′ + p′
1 + p′

2 + P ′

then, since the recoil nucleus will not be observed, we can perform the integral over his

momentum P ′, using the fact that

δ4 (k + P − k′ − p′1 − p′2 − P ′) = δ
(
Ek +M − Ek′ − Ep′1

− Ep′2
− EP ′

)

× δ3 (k + P − k′ − p′
1 − p′

2 − P ′) .
(A.19)
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Therefore the differential cross-section Eq. (A.17) becomes

dσ =
1

(2π)8
d3k′ d

3p′
1

2Ep′1

d3p′
2 δ(Ek +M − Ek′ − Ep′1

− Ep′2
− EP ′) |M|2 . (A.20)

Now using the geometry of the process, we can write :

• d3k′ = (Ek′ −me)
1/2Ek′dEk′dΩk′ = 2πE2

k′dEk′d(cos θe)

• d3p′
1 = (Ep′1

−MK+)1/2Ep′1
dEp′1

dΩp′1

• d3p′
2 = (Ep′2

−MΛ)1/2Ep′2
dEp′2

dΩp′2
.

Let’s assume that our input is:

• MP the nucleon (proton) mass

• MΛ the mass of unbound hyperon

• MK+ the free kaon mass

• θe the scattering angle of the electron

• θ1 the ejected angle of mesons

• θ2 the outgoing angle of hyperon

• Ek′ the energy of outgoing electron

• Ep′1
the free meson energy

• φ angle between the leptonic and the hadronic planes

If we only detect the unbound hyperon, Eq. (A.20) can be written as

dσ = Kδ(Ek +M − Ek′ − Ep′1
− Ep′2

− EP ′)dEk′d(cos θe)dEp′1
dΩp′1

dEp′2
dΩp′2

|M|2 ,(A.21)

where K is a kinematic factor given by:

K =
E2

k′Ep′2
(E2

p′1
−M2

K+)1/2(E2
p′2
−M2

Λ)1/2

2 (2π)7
.
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Then

d6σ

dEk′d(cos θe)dEp′1
dΩp′1

dΩp′2

= Kδ(Ek +M − Ek′ − Ep′1
− Ep′2

− EP ′)dEp′2
|M|2 , (A.22)

Let’s now express the δ-function in Eq. (A.22) as a function of Ep′2
, the unbound hyperon

energy. For this purpose we use energy conservation, namely

Ek +M = Ek′ + Ep′1
+ Ep′2

+ EP ′ .

Let us consider:

A = Ek +M − Ek′ − Ep′1
,

so that

δ(Ek +M − Ek′ − Ep′1
− Ep′2

− EP ′) −→ δ(A− Ep′2
− EP ′) . (A.23)

We know that EP ′ =
√

P ′2 +M ′2 and in the rest frame of the initial nucleus we have that:

P ′ = k − k′ − p′
1 − p′

2 ,

but

q = k − k′ ,

so

EP ′ =
√

(q − p′
1 − p′

2)
2 +M ′2 . (A.24)

Performing (q − p′
1 − p′

2)
2, we have to use the geometry of the process, and one can find:

(q − p′
1 − p′

2)
2 = B0 − 2B2 |p′

1| + |p′
1|

2

where

B0 = |q|2 + |p′
1|

2 − 2q ·p′
1 , B2 = |q| cos θΛ − |p′

1| cos(θΛ + θK+) and |p′
2|

2
= E2

p′2
−M2

Λ .

Then we can write

EP ′ = [B0 − 2B2

√

E2
p′2
−M2

Λ + E2
p′2
−M2

Λ +M ′2]1/2

or

EP ′ = [B1 − 2B2

√

E2
p′2
−M2

Λ + E2
p′2

]1/2 , (A.25)
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with B1 = B0 −M2
Λ +M ′2. One can easily see that EP ′ is function of Ep′2

:

EP ′ = g(Ep′2
) . (A.26)

Substituting Eq. (A.26) in Eq. (A.23) we get

δ(A− Ep′2
− EP ′) = δ(A− Ep′2

− g(Ep′2
)) = δ(f(Ep′2

)) . (A.27)

Now the differential cross section Eq. (A.22) becomes

d5σ

dEk′dΩk′dEp′1
dΩp′1

dΩp′2

= K δ[f(Ep′2
)] dEp′2

|M|2 , (A.28)

which can be derived by using the following property of delta function:

∫

dxδ(f(x)) =
∑

k

1/

∣
∣
∣
∣

df

dx

∣
∣
∣
∣
xk

with xk the roots of f(x) within the interval of integration. Let us consider Ep′2
= z, so

f(z) = A− z − g(z) = A− z − [B1 − 2B2(z
2 −M2

Λ)1/2 + z2]1/2 . (A.29)

Finding the roots of Eq. (A.29) f(z) = 0, we get the quadratic equation of form

A0z
2 + A1z + A2 = 0

with

A0 = 4(A2 −B2
2) , A1 = −4A(A2 −B1) , A2 = (A2 −B1)

2 − 4B2
2M

2
Λ .

Of these two solutions, only one will correspond to a physically acceptable value of the

energy.
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Leptonic tensor

In the following we want to derive the leptonic tensor using the helicity representation of

free Dirac spinors ū(k, h) of momentum k and helicity h. We know that the leptonic tensor

can be written as,

Lµν = [ū(k′, h′)γµu(k, h)][ū(k
′, h′)γνu(k, h)]

∗ , (B.1)

but

[ū(k′, h′)γνu(k, h)]
∗ = [ū(k, h)γνu(k

′, h′)] , (B.2)

so Eq. (B.1) becomes,

Lµν = [ū(k′, h′)γµu(k, h)][ū(k, h)γνu(k
′, h′)] , (B.3)

or this can be expressed in terms of a trace as:

Lµν = Tr[γµ (u(k, h)ū(k, h)) γν (u(k′, h′)ū(k′, h′))] . (B.4)

The helicity representation of a free Dirac spinor is given by

U(k, h) =

(
Ek +M

2Ek

)1/2








φh(k̂)

h|k|
Ek +M

φh(k̂)







, (B.5)

or for the massless leptons

U(k, h) =
1√
2







φh(k̂)

hφh(k̂)






, (B.6)
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where the matrix φh(k̂) is given by

φh(k̂) =







(cos θ
2
)δh,1 − e−iφ(sin θ

2
)δh,−1

eiφ(sin θ
2
)δh,1 + (cos θ

2
)δh,−1






. (B.7)

Using the Eq. (B.6) and Eq. (B.7), we obtain the following identity

U(k, h)U(k, h) =
1

4E
6 k[(I4 − hγ5)] . (B.8)

Let us first use Eq. (B.8) to derive an expression of the leptonic tensor fo the massless case.

Let define the following,

i) L
(0)
µν as the completely unpolarized leptonic tensor given by,

L(0)
µν = Tr[γµ

∑

h=±1

(u(k, h)ū(k, h)) γν

∑

h′=±1

(u(k′, h′)ū(k′, h′))] ,

which means that both incoming and outgoing leptons are unpolarized. So we have,

L(0)
µν = Tr[γµ

∑

h=±1

(u(k, h)ū(k, h)) γν

∑

h′=±1

(u(k′, h′)ū(k′, h′))]

= Tr[(
1

2Ek

γµ 6k)( 1

2Ek′

γν 6k′)]

=
1

4EkEk′

Tr [γµ 6kγν 6k′]

=
1

EkEk′

[
kµk

′
ν + k′µkν − gµνk · k′

]

(B.9)

ii) L
(1)
µν as a first partial polarization, when only the incoming beam is polarized, we have

L(1)
µν = Tr[γµ (u(k, h)ū(k, h)) γν

∑

h′=±1

(u(k′, h′)ū(k′, h′))]

= Tr

[
1

2Ek

γµ 6k(1
2
(I4 − hγ5))γν

1

2Ek′

6k′
]

=
1

8EkEk′

Tr
[
γµ 6kγν 6k′ − hγµ 6kγ5γν 6k′

]

=
1

8EkEk′

[
Tr (γµ 6kγν 6k′) − hTr

(
γ5γµ 6kγν 6k′

))
]

=
1

2EkEk′

[
kµk

′
ν + k′µkν − gµνk · k′ − ihkαk′βǫµναβ

]

=
1

2
L(0)

µν − ih

2EkEk′

kαk′βǫµναβ .

(B.10)
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Note that L
(1)
µν = L

(1)
µν (k, k′, h) .

iii) L
(2)
µν as the second partial polarization, when only the outgoing beam is polarized, we

have,

L(2)
µν = Tr[γµ

∑

h=±1

(u(k, h)ū(k, h)) γν (u(k′, h′)ū(k′, h′))] , (B.11)

and we can show that L
(2)
µν = L

(1)
µν (k, k′, h′) . So we obtain,

L(2)
µν =

1

2
L(0)

µν − ih′

2EkEk′

kαk′βǫµναβ , (B.12)

iv) Lµν the complete tensor, when the both incoming and outgoing leptons are polarized:

Lµν = Tr[γµ (u(k, h)ū(k, h)) γν (u(k′, h′)ū(k′, h′))]

=
1

16EkEk′

Tr
[
γµ 6kγν 6k′ − hγ5γµ 6kγν 6k′ − h′γ5γµ 6kγν 6k′ + hh′γµ 6kγν 6k′

]

=
1

16EkEk′

[
(1 + hh′)Tr(γµ 6kγν 6k′) − (h+ h′)Tr(γ5γµ 6kγν 6k′)

)
]

=
1

4EkEk′

[

(1 + hh′)(kµk
′
ν + k′µkν − k · k′gµν) − i(h+ h′)kαk′

β
ǫµναβ

)

]

=
1 + hh′

4
L(0)

µν − i(h+ h′)

4EkEk′

kαk′
β
ǫµναβ ,

(B.13)

where, we used the fact that

Tr(γ5γµγνγαγβ) = −4iǫµναβ .
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The Hadronic tensor

The hadronic matrix element can be written as

Jµ =
∑

s′2

〈p′1; p′2, s′2; Ψf (P
′)|Ĵµ(q)|Ψi(P )〉 , (C.1)

so that the hadronic tensor is written as:

W µν = Jµ (Jν)∗ . (C.2)

where Ĵµ(q) is the hadronic current given by Eq. (3.33) . The approximation in chapter

three [see Eq.(3.32)] leads to

Jµ =
∑

m,s′2

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm) , (C.3)

then Eq. (C.2) can be written as

W µν =
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

U(p′
2, s

′
2) Ĵ

ν(q) Uα,m(pm)
]∗

. (C.4)

W µν =
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

U(p′
2, s

′
2) Ĵ

ν(q) Uα,m(pm)
]†

=
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

U †(p′
2, s

′
2)γ

0 Ĵν(q) Uα,m(pm)
]†

=
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

(Uα,m)†(pm)(Ĵν(q))† (γ0)† (U †)†(p′
2, s

′
2)
]

=
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

(Uα,m)†(pm)(Ĵν(q))† (γ0)† (U †)†(p′
2, s

′
2)
]

.

(C.5)
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But (γ0)† = γ0, (U †)† = U and U = U † γ0 then it follows that

W µν =
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

(Uα,m)†(pm)γ0 γ0(Ĵν(q))† γ0 U(p′
2, s

′
2)
]

=
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

Uα,m(pm) γ0(Ĵν(q))† γ0 U(p′
2, s

′
2)
]

=
∑

m,s′2

[

U(p′
2, s

′
2) Ĵ

µ(q) Uα,m(pm)
] [

Uα,m(pm) Ĵν(q) U(p′
2, s

′
2)
]

,

(C.6)

where we define Ĵν(q) = γ0(Ĵν(q))† γ0. It follows that

W µν =
∑

m,s′2

[

(U)i(p
′
2, s

′
2) (Ĵµ)ik(q) (Uα,m)k(pm) (Uα,m)λ(pm) (Ĵν)λσ(q) (U)σ(p′

2, s
′
2)
]

=
∑

s′2

[

U i(p
′
2, s

′
2) Ĵ

µ
ik(q)

∑

m

(Uα,m)k(pm) (Uα,m)λ(pm) Ĵν
λσ(q) Uσ(p′

2, s
′
2)

]

=
∑

s′2

[

U i(p
′
2, s

′
2) Ĵ

µ
ik(q) (2j + 1)(6pα +Mα)kλ Ĵν

λσ(q) Uσ(p′
2, s

′
2)
]

= (2j + 1)



Ĵµ
ik(q) (6pα +Mα)kλ Ĵν

λσ(q)
∑

s′2

Uσ(p′
2, s

′
2)U i(p

′
2, s

′
2)





=
2j + 1

2Ep′2

[

Ĵµ
ik(q) (6pα +Mα)kλ Ĵν

λσ(q) (6p′2 +M
′

2)σi

]

,

(C.7)

and that allows one to write it as trace

W µν =
2j + 1

2Ep′2

Tr
[

Ĵµ(q) (6pα +Mα) Ĵν(q) (6p′2 +M
′

2)
]

. (C.8)

Now using the form of the quantity Ĵµ(q), we can write

W µν =
2j + 1

2Ep′2

6∑

i,k=1

AiA
∗
kTr

[

Mµ
i (6pα +Mα)Mν

k(6p′2 +M
′

2)
]

, (C.9)

We define

wµν
ik = AiA

∗
kTr

[

Mµ
i (6pα +Mα)Mν

k(6p′2 +M
′

2)
]

, (C.10)
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where the quantities Mµ
i are given Eq. [(3.35a) - (3.35f)]. Then one can write

wµν
11 = A1A

∗
1Tr
[

Mµ
1(6pα +Mα)Mν

1(6p′2 +M
′

2)
]

, (C.11a)

wµν
12 = A1A

∗
2Tr
[

Mµ
1(6pα +Mα)Mν

2(6p′2 +M
′

2)
]

, (C.11b)

wµν
13 = A1A

∗
3Tr
[

Mµ
1(6pα +Mα)Mν

3(6p′2 +M
′

2)
]

, (C.11c)

wµν
14 = A1A

∗
4Tr
[

Mµ
1(6pα +Mα)Mν

4(6p′2 +M
′

2)
]

, (C.11d)

wµν
15 = A1A

∗
5Tr
[

Mµ
1(6pα +Mα)Mν

5(6p′2 +M
′

2)
]

, (C.11e)

wµν
16 = A1A

∗
6Tr
[

Mµ
1(6pα +Mα)Mν

6(6p′2 +M
′

2)
]

, (C.11f)

which gives

wµν
11 = |A1|2 × 4

[

q2
(
pµ

αp
′ν
2 + p′µ2 p

ν
α − [p′2 · pα −MαM

′
2] g

µν
)

− (q · pα)
(
qµp′ν2 + p′µ2 q

ν − (q · p′2) gµν
)

− (q · p′2) (qµpν
α + pµ

αq
ν − (q · pα) gµν)

+ (p′2 · pα −MαM
′
2) q

µqν

]

(C.12)

wµν
12 = A1A

∗
2 × 4

[
[
q · pα p

′µ
2 − q · p′2 pν

α

]

× (q · pα + q · p′2) (2 p′ν1 − qν) −
(
2 q · p′1 − q2

)
(pν

α + p′ν2 )

] (C.13)

wµν
13 = A1A

∗
3 × 4

[

Mα

[
q · p′1 p′µ2 qν + q · p′2 qµp′ν1 − q2 p′µ2 p

′ν
1 − q · p′1 q · p′2 gµν

]

+M
′

2

[
q · pα q

µp′ν1 + q · p′1 pµ
αq

ν − q2 pµ
αp

′ν
1 − q · pα q · p′1 gµν

]
] (C.14)

wµν
15 = A1A

∗
5 × 4

[(
q · pα p

′µ
2 − q · p′2 pν

α

)
× (q2p′ν1 − q · p′1 qν)

]
(C.15)

wµν
16 = A1A

∗
6 × 4

[
(q2 gµν − qµ qν) ×

(
Mα q · p′2 +M

′

2 q · pα

)]
(C.16)
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wµν
22 = |A2|2

[[

pα · p′2 −MαM
′

2

]

×
[
(q · pα + q · p′2)

(
2 p′µ1 − qµ

)
−
(
2 q · p′1 − q2

) (
pµ

α + p′µ2
)]

×
[
(q · pα + q · p′2) (2 p′ν1 − qν) −

(
2 q · p′1 − q2

)
(pν

α + p′ν2 )
]
]

(C.17)

wµν
23 = A2A

∗
3 × 2

[
[
(q · pα + q · p′2)

(
2 p′µ1 − qµ

)
−
(
2 q · p′1 − q2

) (
pµ

α + p′µ2
)]

×
[

Mα (q · p′1 p′ν2 − q · p′2 p′ν1 ) +M
′

2 (q · pα p′ν1 − q · p′1 pα)
]] (C.18)

wµν
25 = A2A

∗
5 × 2

[
[
(q · pα + q · p′2)

(
2 p′µ1 − qµ

)
−
(
2 q · p′1 − q2

) (
pµ

α + p′µ2
)]

×
[(

pα · p′2 −MαM
′

2

) (
q2p′ν1 − q · p′1 qν

)]
] (C.19)

wµν
26 = A2A

∗
6 × 2

[
[
(q · pα + q · p′2)

(
2 p′µ1 − qµ

)
−
(
2 q · p′1 − q2

) (
pµ

α + p′µ2
)]

×
[

Mα

(
q · p′2 qν − q2 p′ν2

)
+M

′

2

(
q2 pν

α − q · pα q
ν
)]
] (C.20)

wµν
33 = |A3|2 × 4

[

(q · p′1)2
[

pµ
α p

′ν
2 + p′µ2 p

ν
α −

(

pα · p′2 +MαM
′

2

)

gµν
]

− (q · p′1)
[
(q · pα)

(
p′µ1 p

′ν
2 + p′µ2 p

′ν
1

)
+ (q · p′2)

(
p′µ1 p

ν
α + pµ

α p
′ν
1

)]

+ (q · p′1)(pα · p′2 +MαM
′

2)
[
qµ p′ν1 + p′µ1 q

ν
]

+
[

2 (q · pα)(q · p′2) − q2(pα · p′2 +MαM
′

2) p
′µ
1 p

′ν
1

]]

(C.21)

wµν
35 = A3A

∗
5 × 4

[[

Mα

(
q · p′2 p′µ1 − q · p′1 p′µ2

)
+M

′

2

(
q · pα p

′µ
1 − q · p′1 pµ

α

)]

×
[(

pα · p′2 −MαM
′

2

) (
q2p′ν1 − q · p′1 qν

)]
] (C.22)
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wµν
36 = A3A

∗
6 × 4

[

q2
(
(q · pα) p′µ1 p

′ν
2 + (q · p′2) p′µ1 pν

α

)

− (q · p′1)q2
[

pµ
α p

′ν
2 + p′µ2 p

ν
α −

(

pα · p′2 +MαM
′

2

)

gµν
]

+
[
(q · pα)(q · p′1) p′µ2 + (q · p′2)(q · p′1) pµ

α − 2 (q · pα)(q · p′2) p′µ1
]

− (q · p′1)
[

pα · p′2 +MαM
′

2

]

qµqν

]

(C.23)

wµν
55 = |A5|2 × 4

[

pα · p′2 −MαM
′

2

] (
q2p′µ1 − q · p′1 qµ

) (
q2p′ν1 − q · p′1 qν

)
(C.24)

wµν
56 = A5A

∗
6 × 4

[
(
q2p′µ1 − q · p′1 qµ

)

×
[

Mα

(
q · p′2 qν − q2p′ν2

)
+M

′

2

(

q2p
′ν
α − q · pα q

ν
)] ] (C.25)

wµν
66 = |A6|2 × 4

[

q4
[

pµ
αp

′ν
2 + p′µ2 p

ν
α −

(

pα · p′2 −MαM
′

2

)

gµν
]

− q2
[
q · pα

(
qµp′ν2 + p′µ2 q

ν
)

+ q · p′2 (qµpν
α + pµ

αq
ν)
]

+
[

2 q · pα q · p′2 + q2
(

pα · p′2 −MαM
′

2

)]

qµqν

]

.

(C.26)
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