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Abstract 
 

Multi-label classification problems arise in scenarios where every data case can be associated 

with multiple labels simultaneously. Compared to single-label data, multi-label data possess 

unique characteristics which result in additional challenges when analysing the data. The aim 

of this dissertation is to address two of these challenging aspects of multi-label data. The first 

is the exploitation of label correlations to achieve accurate classification of unseen data cases. 

Secondly, strategies for input variable ranking within multi-label data are considered to allow 

for more interpretable results. 

Effective exploitation of correlation amongst labels can be a vital attribute of an accurate multi-

label classification method. However, label correlations are not necessarily shared globally by 

all data cases. Despite this, existing methods mostly focus on global exploitation of label 

correlations. Therefore, a new tree-based ensemble method for multi-label classification is 

proposed in this dissertation, Label-Dependent splitting (LDsplit). LDsplit aims to implicitly 

exploit local higher-order label correlations within multi-label data by dividing the data into 

subgroups. The algorithm fits an ensemble of trees based on differently ordered label subsets. 

For each tree, different labels are used at different levels of the tree, as determined by the 

label order applicable to that tree. The tree-levels are made up of nodes that are split using 

any binary classifier. Since a tree-level depends on its label as well as previous splits made 

when parent nodes were formed using other labels, higher-order label correlations are 

implicitly incorporated into the model in a simple manner. Depending on whether random or 

predetermined label orders are used to fit the ensemble, either Random LDsplit or Conditional 

LDsplit is fit. An extensive empirical study is performed on a range of multi-label benchmark 

datasets. The empirical evidence shows that despite the simple framework, both Random 

LDsplit and Conditional LDsplit offer very competitive classification performance in 

comparison with existing multi-label classification methods.  
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For multi-label data, an input variable is globally important if it is deemed important for several 

or all labels. However, an input variable can also be deemed locally important for a specific 

label. Few proposals for input variable ranking within multi-label data consider both global and 

local importance of variables. Moreover, existing methods mostly neglect to exploit label 

dependencies within the data. Therefore, different ways are outlined how an LDsplit ensemble 

can produce global and local input variable rankings and effectively allow for better 

interpretation of the data. Results obtained from synthetically generated multi-label datasets 

demonstrate that both the novel global and local importance measures give favourable 

performance. 

 

Keywords: multi-label classification, ensemble method, tree, label order, label correlation, 

local label correlation, input variable ranking, global importance, local importance. 
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Opsomming 

Multi-etiket klassifikasie probleme ontstaan in scenario’s waar elke datageval gelyktydig met 

verskeie etikette geassosieer kan word. In vergelyking met enkel-etiket data, beskik multi-

etiket data unieke eienskappe wat tot addisionele uitdagings lei wanneer die data ontleed 

word. Die doelwit van hierdie skripsie is om twee van hierdie uitdagende aspekte van multi-

etiket data aan te spreek. Die eerste is die benutting van etiket-korrelasies, sodat akkurate 

klassifikasie van ongesiene datagevalle bereik kan word. Tweedens word strategieë vir inset-

veranderlike rangskikking binne multi-etiket data beskou vir meer interpreteerbare resultate. 

Effektiewe benutting van korrelasie tussen etikette kan ‘n noodsaaklike eienskap van ‘n 

akkurate multi-etiket klassifikasie-metode wees. Tog word etiket-korrelasies nie noodwendig 

globaal deur alle datagevalle gedeel nie. Ten spyte hiervan fokus bestaande metodes meestal 

op globale benutting van etiket-korrelasies. Daarom word ‘n nuwe boom-gebaseerde 

ensemble metode vir multi-etiket klassifikasie in hierdie skripsie voorgestel, naamlik Etiket-

Afhanklike splitting (LDsplit). LDsplit beoog om implisiet plaaslike hoër-orde etiket-korrelasies 

binne multi-etiket data te benut deur die data in subgroepe te verdeel. Die algoritme pas ‘n 

ensemble van bome gebaseer op verskillende gerangskikte etiket-subversamelings. Vir elke 

boom word verskillende etikette by verskillende vlakke van die boom gebruik, soos gebaseer 

op die toepaslike etiket-rangskikking van die boom. Die boom-vlakke bestaan uit nodusse wat 

verdeel word deur gebruik te maak van enige binêre-klassifiseerder. Aangesien ‘n boom-vlak 

afhanklik is van sy etiket, sowel as vorige verdelings wat gemaak was toe voorouer-nodusse 

gevorm het deur van ander etikette gebruik te maak, word hoër-orde etiket-korrelasies 

implisiet op ‘n eenvoudige manier in die model geïnkorporeer. Afhangende of ewekansige of 

voorafbepaalde etiket-rangskikkings gebruik word om die ensemble te pas, word óf 

Ewekansige LDsplit óf Voorwaardelike LDsplit gepas. ‘n Omvangryke empiriese studie word 

uitgevoer op ‘n reeks standaard multi-etiket datastelle. Die empiriese resultate dui daarop dat, 

ten spyte van die eenvoudige raamwerk, beide Ewekansige LDsplit en Voorwaardelike LDsplit 
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baie kompeterende klassifikasie-prestasie bied in vergelyking met bestaande multi-etiket 

klassifikasie-metodes.  

Vir multi-etiket data is ‘n inset-veranderlike globaal belangrik as dit belangrik geag word vir 

verskeie of alle etikette. Dog kan ‘n inset-veranderlike ook lokaal belangrik geag word vir ‘n 

spesifieke etiket. Min strategieë vir inset-veranderlike rangskikking binne multi-etiket data 

beskou beide globale en lokale belangrikheid van inset-veranderlikes. Bowendien, vir die 

bestaande metodes word die benutting van etiket-afhanklikheid binne die data meestal 

uitgelaat. Derhalwe word verskillende maniere uiteengesit hoe ‘n LDsplit ensemble globale en 

lokale inset-veranderlike rangskikkings kan genereer en sodoende beter interpretasie van die 

data toelaat. Resultate verkry op grond van sintetiese gegenereerde multi-etiket datastelle 

wys dat beide die nuwe globale en lokale belangrikheids-maatstawwe goed presteer. 

 

Sleutelwoorde: multi-etiket klassifikasie, ensemble metode, boom, etiket-orde, etiket-

korrelasie, plaaslike etiket-korrelasie, inset-veranderlike rangskikking, globale belangrikheid, 

lokale belangrikheid. 
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Chapter 1: Introduction 
 

1.1 Classification 

Today the modern term “machine learning” comes up in conversations held in laboratories, 

boardrooms, factories, universities, classrooms, and everyday kitchens. However, looking 

back as recently as 15  years ago, this was not the case. A simple Google Trend search of the 

term “machine learning” depicts the explosive rate at which worldwide interest in machine 

learning has grown in recent years (Figure 1.1). 

The term “machine learning” was coined in 1959 by Arthur Samuel, an American pioneer in 

the field of computer gaming and artificial intelligence (Samuel, 1959). However, learning from 

data, i.e. statistical learning, has been the job of statisticians for decades (Hastie et al., 

2009:xi). In broad terms machine learning can be defined as the process of solving a practical 

problem by gathering a dataset and algorithmically building or training a statistical model 

based on that dataset (Burkov, 2019). Machine learning can be divided into four types of 

learning: supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning. This dissertation falls within the sphere of supervised learning. More 

specifically, the supervised learning task of multi-label classification is considered. 

 

 

Figure 1.1   Google Trend search results for the term “machine learning” 
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Supervised learning is one of the most widely researched and investigated areas of machine 

learning (Levatić et al., 2015). Suppose a dataset consists of a collection of N  data 

observations and each data observation, , 1,2,..., ,i i Nx  is represented by a set of p  input 

variables, 1 2, , ..., .pX X X  In some scenarios these input variables may influence one or more 

output or response variables, 1 2, ,..., .KY Y Y  In that case the collection of input and output pairs, 

  , , 1,2,..., ,i i i Nx y  may be used to solve a supervised learning problem. Supervised 

learning refers to the machine learning task of learning or training a model,  1 2, ,..., ,pf X X X  

from this data that relates the input variables to the response(s). The estimated function, 

 1 2
ˆ , ,..., ,pf X X X  is used to predict responses for data cases which are represented by only 

the input variables (Hastie et al., 2009:9). 

Depending on how the response variables are defined, supervised learning problems can be 

subdivided into classification and regression problems. Regression problems have numeric 

response variables, i.e. 1 2, ,..., KY Y Y  are quantitative. However, if the response variables are 

specified in terms of classes, i.e. 1 2, ,..., KY Y Y  are qualitative, a classification task arises (Hastie 

et al., 2009:10). For a classification task the response variables, 1 2, ,..., ,KY Y Y  can be referred 

to as labels, where K  denotes the total number of labels.  

Traditional single-label classification tasks, such as binary and multi-class classification, have 

1.K    For binary classification, each data observation is associated with one of two disjoint 

classes. The collection of input and output pairs is denoted by   , , 1,2,..., ,i iy i Nx  with 

 0,1 .Y    If ix  is included in the first class, 1,iy   else 0.iy   Many classification problems 

can take this form. For example, a challenging aspect in breast cancer research is to classify 

tumours either as malignant (cancerous) or benign (non-cancerous) (Wolberg et al., 1992). 

Multi-class classification extends binary classification to settings where each data observation 

is associated with one of 2G   disjoint classes. In this case the collection of input and output 
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pairs is denoted by   , , 1,2,..., ,i iy i Nx  with  1,2,..., .Y G  If ix  is included in the thg  

class, ,iy g  where 1,2,..., .g G  The Oxford-IIIT-Pet dataset is an example of a multi-class 

classification dataset (Parkhi et al., 2012). The dataset consists of a collection of cat images 

where each image is appropriately classified according to 12G   cat breeds such as 

American Shorthair, Maine Coon, Egyptian Mau and Ragdoll. 

The wide range of research on single-label data has led to a variety of learning algorithms 

proposed for single-label classification. Some of the most well-known algorithms are Linear 

Discriminant Analysis (LDA), logistic regression, decision trees, Support Vector Machines 

(SVMs), k Nearest Neighbour ( k NN) classifiers, neural networks, and boosting methods 

such as AdaBoost.  

In traditional single-label classification each data case is associated with one class. However, 

there are many scenarios where several labels may be associated simultaneously with a data 

case. For example, in video annotation it might be that the aim is to assign video tags to 

videos. A video of a lioness stalking a herd of wildebeest in the Serengeti may require multiple 

tags such as Lion, Wildebeest, Africa and Grassland. Multi-label classification is an extension 

of single-label classification to scenarios such as this. 

Multi-label classification has 1K   so that multiple non-disjoint labels exist, 1 2, ,..., .KY Y Y  In 

this case the collection of input and output pairs is denoted by   , , 1,2,..., ,i i i Nx y  with 

 0,1 ,kY   1,..., .k K  Each , 1,..., ,i i Nx  is annotated with multiple or none of the K  

labels by setting the thk  entry of iy  either equal to 1 (if ix  has kY  present) or equal to 0  (if 

kY  is absent for ix ). In this way each data observation is associated with a set of relevant and 

irrelevant labels. Therefore, the task of multi-label classification is to learn a function which 

can predict the set of labels for unseen data observations that are represented by only the 

input variables (Zhang and Zhou, 2013). 
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A related task to multi-label classification is that of label ranking. Label ranking requires an 

ordered set of labels ranked from most to least relevant for a given observation (Tsoumakas 

and Katakis, 2007). For example, in a news-filtering application users can be presented with 

a ranking of important to less important news articles depending on the terms they search for 

when using the application (Tsoumakas et al., 2010). Models trained on a multi-label dataset 

that provide a query data case with both a bipartition of the labels into relevant and irrelevant 

sets, as well as an ordering of the labels from most to least important, are referred to as multi-

label ranking methods (Madjarov et al., 2012). Although the novel multi-label classification 

method proposed in Chapter 3 can provide a ranking of the labels of a multi-label dataset, the 

main focus of this dissertation is multi-label classification.  

In certain classification problems the classes may have a hierarchical structure. In this case 

each label is composed of multiple class-levels. The top class is the most general and is 

subdivided into more specific classes. The hierarchical structure that formalises the 

relationship among classes can assume the form of a tree or of a Directed Acyclic Graph 

(DAG) (Ramírez-Corona et al., 2014). A data case that belongs to a certain class automatically 

belongs to all its so-called super-classes. This is referred to as the hierarchy constraint. 

Hierarchical multi-label classification describes the scenario where a data case can be 

associated with several different paths of the class hierarchy (Wehrmann et al., 2018). Ren et 

al. (2014) give an example of a hierarchical multi-label classification problem of social text 

streams. This dissertation however focuses on non-hierarchical multi-label classification 

(sometimes also referred to as flat multi-label classification).  

1.2 Notation 

In this section, multi-label classification is described in more detail by summarising the notation 

used throughout this dissertation. 

Denote by X  a p  dimensional input space of input variables 1 2, ,..., pX X X  and by Y  a 

K  dimensional output space of labels 1 2, ,..., .KY Y Y  The collection of K  labels is denoted by 
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.L  In this dissertation, a multi-label training dataset containing N  input and output pairs is 

denoted by 1{( , ), , 2,..., }.i i i Nx y  Therefore the thi  multi-label example pair is denoted by 

 , ,i ix y  where ,1 ,2 ,, , ... ,i i i i px x x   x  is a row-vector of the values of the p  input variables, 

1 2, , ... , ,pX X X  and ,1 ,2 ,, , ... ,i i i i Ky y y   y  is a row-vector of the values of the K  labels, 

 0,1 ,kY   1,..., .k K  If ix  has kY  present, , 1,i ky   otherwise , 0.i ky    

The multi-label data can also be summarised using matrices, 
N p N K 

 
  
X Y . Here X  represents 

the matrix of N  data cases, ix , 1,..., ,i N  given as rows in .X  Similarly Y  represents the 

matrix of label classifications with each iy , 1,...,i N , given as a row in .Y  

In other words: 

1 1

2 2

N p N K

N N

 

 
 

       
 
 

x y

x y
X Y

x y

 

1,1 1,2 1, 1,1 1,2 1,

2,1 2,2 2, 2,1 2,2 2,

,1 ,2 , ,1 ,2 ,

p K

p K

N N N p N N N K

x x x y y y

x x x y y y

x x x y y y

 
 
 
 
 
  

 
 

       
 

. 

Furthermore, in this dissertation, each unique set of labels that exists within the multi-label 

dataset is referred to as a labelset. As an example, consider the simple multi-label dataset 

(consisting of 5N   data observations and 4K   labels) summarised in the left panel of 

Figure 1.2. The right panel of Figure 1.2 gives all the unique labelsets present in this dataset. 

 
       

Data 
cases 1Y  2Y  3Y  4Y  

1x  0  1 1 0  

2x  1 0  0  0  

3x  0  1 1 1 

4x  1 0  1 0  

5x  1 0  0  0  

 
 

 

Unique 
labelsets 

 

0 1 1 0  i.e. 2Y  and 3Y  present 

1 0 0 0  i.e. 1Y  present 

0 1 1 1  i.e. 2 3,Y Y  and 4Y  present 

1 0 1 0  i.e. 1Y  and 3Y  present 

 
 

Figure 1.2    Unique labelsets present in simple multi-label dataset 
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The goal of multi-label classification is to construct a predictive model : X Yf   that provides 

an unseen data case, X,newx  with a vector of label classifications,  Y= 0,1 .
K

new y  In 

some cases the estimated function,  ˆ . ,f  provides newx  with a degree of confidence for each 

of the labels, 1 2, ,..., .KY Y Y  In this case newy  represents a K  dimensional vector of confidence 

values in the range  0,1 .  A threshold (either a global threshold or a threshold value per label) 

can be used to convert newy  to a K  dimensional 0 /1 vector. For example, if 
kY

t  denotes the 

threshold applied for ,kY  ky  is transformed to 1 if ,
kk Yy t  otherwise ky  is transformed to 0  

if .
kk Yy t  

1.3 The upsurge in multi-label data 

Early research in multi-label classification mainly considered multi-label problems within the 

text domain. Examples include McCallum (1999), Schapire and Singer (2000) and Ueda and 

Saito (2002). In the multi-label text domain, each data case represents a text document and 

each document is assigned multiple labels. For example, a news-filtering problem may assign 

multiple topics such as Finance, Sport and Entertainment to news articles. An article about a 

famous sportsperson starring in an upcoming film may be tagged with both the labels Sport 

and Entertainment. Multi-label classification within the text domain is therefore a specific 

Natural Language Processing (NLP) problem. 

The upsurge in online content has resulted in an upsurge in multi-label text datasets in recent 

years. As a simple example, current online archives of scientific papers contain thousands of 

papers each covering a range of topics. A multi-label text dataset resembling this form is 

available on the online data-sharing platform Kaggle1. The dataset consists of a collection of 

abstracts and paper titles that are each labelled with six possible topics namely Computer 

Science, Physics, Mathematics, Statistics, Quantitative Biology and Quantitative Finance 

(Kaggle: NLP on research articles, 2020). More recent examples of multi-label problems within 

 
1 https://www.kaggle.com/ (accessed 10 October 2022) 
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the text domain appear in Katakis et al. (2008), Loza Mencía and Fürnkranz (2008), Sajnani 

et al. (2013) and Rivolli et al. (2017).  

The range of multi-label classification domains has expanded in the last two decades due to 

the dramatic increase in the number of available multi-label datasets and the diversity of the 

corresponding multi-label problems. Apart from the text domain, multi-label datasets are found 

in a variety of domains such as image annotation, bioacoustics, biology, music research and 

medical diagnostics.  

In image annotation each data case represents an image that is tagged with multiple labels. 

Well-known research in multi-label image annotation include that of Duygulu et al. (2002), 

Boutell et al. (2004) and Qi et al. (2008). A typical multi-label image annotation example 

considers photographs of worldly scenes that are to be labelled with possible tags such as 

City, Sea, Grass, Bridge, Person, Dog, and Athlete. However, image annotation is not limited 

to this framework. An interesting multi-label image classification dataset is given by Chu and 

Guo (2017). The dataset consists of a collection of film posters where each poster is labelled 

with possibly more than one genre such as Action, Adventure, Animation and Comedy.  

Research in multi-label bioacoustics is presented by Briggs et al. (2013). Their work considers 

an audio dataset where the data observations represent audio recordings of bird species. In 

each recording, multiple bird species may appear. Recently, a competition on the data-sharing 

platform Kaggle was presented by Rainforest Connection2. Rainforest Connection is an 

acoustic monitoring platform built to protect and study remote ecosystems. In the multi-label 

competition dataset, observations represent audio files that include sounds from numerous 

animal species. The challenge is to accurately tag real-time audio clips with the appropriate 

species present in the clips. In this case, multi-label learning models with high predictive 

performance could enable earlier detection of human environmental impacts and help make 

 
2 https://rfcx.org/ (accessed 10 October 2022) 
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environmental conservation swifter and more effective (Kaggle: Rainforest Connection 

Species Audio Detection, 2020). 

Well-known work in the multi-label biology domain is that of Elisseeff and Weston (2001). In 

their work a multi-label dataset is considered where each observation is a gene associated 

with possibly 14  biological functional groups. Other examples of multi-label research in the 

biology domain are Lin and Xu (2016) and Zhou et al. (2017). 

Examples of multi-label music research include instrument recognition (Spyromitros-Xioufis et 

al., 2011), tagging music pieces with appropriate music genres (Sanden and Zhang, 2011), 

and classification of music pieces into the emotions they provoke (Trohidis et al. 2008). 

In medical diagnostics patients may be suffering from multiple diseases or disorders at once 

so that multi-label datasets are formed (Shao et al. 2013). Pestian et al. (2007) give an 

example of a medical dataset where each observation is a description of a patient’s symptoms 

history, and each patient is tagged with their diagnosed diseases from a collection of 45  

possible diseases. Ratnarajah and Qiu (2014) give another example of multi-label 

classification research in the medical domain. In their work multiple anatomical labels of brain 

white matter bundles can be assigned to a voxel. Here accurate classification can result in 

better understanding of brain development and can help detect white matter abnormalities. 

The above paragraphs give a few examples of the vast number of multi-label datasets 

available today. Note that popular multi-label benchmark datasets and multi-label benchmark 

data repositories are discussed in detail in Section 2.3.  

With the upsurge in multi-label applications, multi-label research has become increasingly 

important. Consequently, the increase in the number of available multi-label datasets has 

coincided with an increase in multi-label research. Figure 1.3 illustrates this by summarising 

the number of papers with the keyword “multi-label classification” over the past 15  years 
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available in the SCOPUS database3. Despite the almost exponential curve of growth depicted 

in Figure 1.3, there still remain some shortcomings in the multi-label literature. This is a 

consequence of the challenges faced when analysing multi-label data, as discussed in the 

next section. 

 

 

Figure 1.3   Increase in multi-label classification research on the SCOPUS database 

 

1.4 Challenging aspects of multi-label data 

Compared to traditional single-label data, multi-label data possess unique characteristics. 

These aspects result in additional challenges when analysing multi-label data. This 

dissertation considers several of these challenging aspects; however, two areas receive 

significant attention. The first is the consideration of label correlation to aid in achieving 

accurate multi-label classification of new unseen data cases. The second is the aspect of 

variable importance for inference and variable selection in multi-label data. The following 

sections give brief descriptions of both challenges as well as others faced when analysing 

multi-label data. 

 
3 http://www.scopus.com/ (accessed 10 October 2022) 
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1.4.1 Label correlations 

It is reasonable to assume that most multi-label datasets have dependencies amongst the 

labels. This implies that information from one label may assist in uncovering information from 

another related label. For example, in video annotation, if a video has the labels Wildebeest 

and Grassland present, the probability of also having the label Africa present may be higher 

than that of another label such as Urban. Therefore, research widely considers the 

incorporation of label correlation into the multi-label learning method as a fundamental 

element, since the possible extra information that emerges could be very beneficial for 

classification performance (Huang and Zhou, 2012).  

Although many papers have recently emerged where authors claim that their proposed multi-

label learning methods exploit label correlations (see Section 2.7.), it remains a very difficult 

task to do so effectively. One challenge is for example that the label correlations present in 

the data (if any) are unknown in the case of non-hierarchical labels. Therefore, in most cases 

the label correlations are learned from the data instead of relying on external knowledge 

sources to specify the label correlations. Furthermore, it is difficult to know if an average 

improvement achieved by a multi-label classifier which exploits label correlation is because of 

the incorporation of label correlations or because of other factors instead. Another challenge 

is that the unknown label correlation structure may be complicated. For example, the labels 

Africa and Urban may be negatively correlated in videos of animals in the Serengeti, but a 

video showcasing tourist activities in The City of Cape Town may have both labels Africa and 

Urban present. This pertains to the belief that label correlations are not necessarily shared 

globally by all data cases (Huang and Zhou, 2012).  

Figure 1.4 gives a simple image annotation example. As shown in the left panel of Figure 1.4, 

labels such as Grass and Tree may often occur together for many images. It could therefore 

be beneficial to exploit this co-occurrence relationship between Grass and Tree. For example, 

in images where trees are perhaps more prominent than grass, such as images (b) and (c), 

models that incorporate label relationships may still detect the Grass label. However, this co-
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occurrence between Grass and Tree is not shared globally by all observations, as illustrated 

in the right panel of Figure 1.4. As a result, if a model assumes that a global positive correlation 

exists between Grass and Tree, performance can weaken. The fact that the Tree label is 

present for the images in the right panel of Figure 1.4 could be misleading when deciding 

whether or not Grass is present in these images. Different label correlation structures exist 

within subgroups of the observations.  

In existing work, however, multi-label learning methods mostly focus on global label correlation 

exploitation (Zhu et al., 2017). This presents a possible limitation of existing work. 

 

 

Figure 1.4  Simple image annotation example to illustrate non-global label correlations 

 

1.4.2 Variable importance and variable selection 

Accurate prediction of unseen data cases is not the only desirable property of a machine 

learning model. Many data mining applications require interpretable results instead of only 

predicting the response by means of some “black-box” model. This is true for single-label 

classification as well as multi-label classification. One way in which a model can be more 

interpretable is if the relative importance of input variables for classification can be determined. 

In this way the most important input variables for classification can be identified, which can 

lead to valuable insight concerning the classification problem at hand. The medical domain is 

one example where such insight could be especially important. Better understanding of input 
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variables can lead to successful early interventions that may prevent or delay diseases such 

as Alzheimer's disease (Cheng et al., 2019). 

As it has become easier to collect and store data, many modern datasets suffer from “the 

curse of dimensionality”. This describes the phenomenon that an increase in the number of 

input variables can add more valuable information; however, the large set of input variables 

may also include more redundant and irrelevant variables as well. In some scenarios so-called 

wide datasets form where the number of input variables exceeds the number of observations. 

However, if the number of observations does not increase with the dimensionality of the 

dataset, predictive performance of models can become unreliable. Hastie et al. (2009:57) state 

that usually only a fraction of the input variables is important for classification. Other variables 

may be irrelevant and such variables do not provide useful information for the classifier. Some 

input variables may even hinder the learning process. Therefore, not only can a classifier be 

learned faster, but predictive performance can also sometimes improve when a classifier is 

learned on only a subset of the available input variables (Hastie et al., 2009:57). The aim of 

variable selection is to effectively reduce the dimensionality of the input space by removing 

irrelevant and redundant input variables. Variable selection may for example be useful in the 

text domain where data are represented in the bag-of-words framework. In this case the set 

of unique words found throughout the dataset forms the “bag-of-words” of the dataset. For 

each text observation it is noted how many times each of these words occur. Since the size of 

the bag-of-words is usually large, variable selection could be useful in such scenarios to 

eliminate uninformative words (Sun et al., 2013).  

Note that the two above-mentioned concepts of variable importance and variable selection are 

related in supervised learning. Variable importance measures can provide information 

regarding the relationship between the input variables and the response of a dataset. 

However, since it is desirable for a variable selection strategy to keep important variables and 

eliminate irrelevant variables, variable importance measures can also be used to perform 
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variable selection. In this case only the most important variables (according to an importance 

measure) are selected.  

For single-label classification, an important input variable can effectively discriminate between 

the disjoint classes. However, additional complexity arises for variable importance within multi-

label data. For example, a variable may be good at discriminating between values of one label, 

but at the same time may provide little or no insight in discriminating between the values of 

other labels. Due to this, one can identify two forms of variable importance within multi-label 

data. Firstly, a variable can be declared locally important for a label if it is deemed important 

for the specific label, irrespective of its importance for any of the other labels. Secondly a 

variable can be declared globally important if it is deemed important for several or all of the 

labels in the dataset. 

Multi-label variable selection is more difficult than single-label variable selection since the 

interactions of the data are not limited to the set of input variables and a single label. Because 

the variables can be globally and locally important, the question arises if a variable should only 

be selected if it is globally important for a large subset of labels, or should other locally 

important variables be included as well? 

Many proposals exist to measure variable importance and perform variable selection for 

single-label data. In comparison, the body of work on variable importance and variable 

selection for multi-label data is smaller (Spolaôr et al., 2013). As a result of the increase in the 

popularity of multi-label classification in recent years, more research in these areas have 

started to emerge (Pereira et al., 2018). Limited proposals are however found that consider 

both global and local importance of input variables. Furthermore, many of the available 

methods transform the multi-label data in such a way that single-label variable importance and 

selection methods can be applied (Kocev et al., 2013). This strategy does not fully exploit the 

possible label dependencies in the multi-label data.  
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1.4.3 Other challenging aspects of multi-label data 

 Label imbalance 

Many real-word multi-label scenarios give rise to imbalanced datasets. The number of 

instances associated with each label is often notably dissimilar and the label space is generally 

characterised as sparse. This imbalance can influence the classification performance of a 

classifier. The class-imbalance problem has been more extensively studied within single-label 

classification scenarios. Imbalance within multi-label datasets has only recently received more 

attention. 

Due to the more complex structure of multi-label data (compared to single-label data), it is 

important to distinguish between different types of imbalance that may exist in a multi-label 

dataset. Daniels and Metaxas (2017) distinguish between imbalance between labels and 

imbalance within labels. Note that between-label imbalance considers the imbalance that 

exists when different labels are compared (e.g. Label 1 appears seven times more than 

Label 2), whereas within-label imbalance considers how imbalanced individual labels are (e.g. 

Label 1 is marked absent for far more of the observations than for which it is marked present).  

Charte et al. (2015) refer to three main approaches used in the literature to address the 

imbalance problem for multi-label data: data resampling, algorithmic adaptations and cost 

sensitive classification. Data resampling aims to rebalance the class distribution and may 

therefore involve addition of observations belonging to the infrequent class (oversampling) or 

exclusion of observations belonging to the frequent class (undersampling). Since this is a pre-

processing approach, these methods may be used along with any classification algorithm. In 

contrast, algorithmic adaptations are classifier dependent since these approaches aim to 

adapt the classification algorithm to handle the class imbalance. Finally, cost sensitive 

classification is a combination of the two previous approaches and incorporates 

misclassification costs for labels. 
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 Synthetic data generation and benchmark data 

Properties of single-label methods are often systematically investigated on synthetic single-

label data. However, very little has been published regarding the generation of synthetic multi-

label data in comparison. This might be because multi-label data generation is more 

challenging. Ideally a multivariate distribution from which to generate the input variables 

should be specified, and similarly, a multivariate distribution with a correlation structure should 

be specified from which to generate the label variables. However, one should also be able to 

specify a dependence structure between the input variable space and label space. This may 

be less straightforward if users desire control over the specification of global and local variable 

importance. Some approaches for synthetic multi-label data generation are presented in Read 

et al. (2012), Luaces et al. (2012) and Tomás et al. (2014). Although these approaches offer 

users control over certain properties of the generated synthetic data, each approach 

possesses some limitations. For example, Mldatagen (Tomás et al., 2014) does not allow for 

data cases that have all labels absent, offers no option for specifying a multivariate distribution 

(for example multivariate normal) for the input variables, allows no direct control over the label 

densities, and no way of controlling correlations amongst the label variables. Furthermore, no 

distinction is made between globally and locally important input variables. 

Since it is difficult to generate synthetic multi-label data, it has become common practice in 

multi-label literature to make use of standard publicly available multi-label benchmark datasets 

to investigate or compare properties of multi-label methods. These benchmark datasets cover 

a range of domains and vary in size as well as other measurable properties as described in 

Section 2.2. Many online repositories exist to provide easy access to these benchmark 

datasets for researchers. Some examples of common benchmark datasets and repositories 

are given in Section 2.3. 
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 Number of labels 

The output space of multi-label datasets sometimes consists of many labels. Examples of 

multi-label benchmark datasets with many labels are Corel5k (Duygulu et al., 2002), Delicious 

(Tsoumakas et al., 2008), and the three-part collection of text documents about European 

Union law, EUR-Lex, consisting of EUR-Lex-dc, EUR-Lex-ev and EUR-Lex-sm (Loza Mencía 

and Fürnkranz, 2008). These datasets have 374,  983,  412,  3993  and 201  labels 

respectively.  

Large values of K  increase the computational complexity of the multi-label problem.  In most 

cases the time and computer memory needed to train a classifier, and to classify an unseen 

data case, increases with an increase in .K  This could be a serious concern if applications 

require fast/efficient computation. Furthermore, the multi-label problem also becomes more 

imbalanced since normally only a few observations are annotated with each of the many 

labels. Consequently, the predictive performance of models may suffer when K  is large 

(Bogatinovski et al., 2022). It is therefore an advantage if a multi-label learning method can 

scale to settings with large .K  

Many modern multi-label image and text datasets are characterised by extremely large label 

collections. For example, Wikipedia has over a million curator-generated category labels of 

which only a handful are usually applicable per article (Liu et al., 2017). This development has 

resulted in a new subfield of multi-label classification, namely extreme multi-label classification 

(XMLC). XMLC refers to the problem of assigning relevant labels to observations from a label 

collection consisting of hundreds of thousands or millions of labels (Liu et al., 2021). XMLC 

falls beyond the scope of this dissertation. When K  is referred to as “large” in this dissertation, 

this implies that the number of labels is similar to that of the Corel5k, Delicious and EUR-Lex 

datasets.  
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 Missing labels 

Certain multi-label applications may require human annotators to annotate appropriate labels 

to each of the data observations of a multi-label dataset. Since annotating labels is time 

consuming, expensive and requires expertise, in some real-world applications labels are only 

partially observed (Wang et al., 2014). Multi-label learning with limited supervision has 

attracted more attention recently. Different assumptions concerning the structure of the multi-

label data exist in this setting. For example, the label collection could be considered fixed, so 

that the classifier only learns to complete the missing entries of certain labels. In other 

scenarios one might assume that there exists an entire collection of missing labels so that the 

classifier is trained for unseen data. Multi-label learning with missing labels is however not 

studied in this dissertation. Liu et al. (2021) provide a detailed discussion of this topic. 

1.5 Overview of dissertation 

In this introductory chapter the goal of multi-label classification is defined. Emphasis is also 

placed on the importance of multi-label research due to the increase in multi-label datasets 

and the diversity of modern multi-label applications. Compared to single-label data, multi-label 

data possesses unique characteristics. Despite the increase in multi-label research, there are 

still some shortcomings within the literature, some of which this dissertation aims to address. 

The first is that few models aim to exploit local label correlation to aid in achieving accurate 

multi-label classification. The second is the lack of global and local importance measures for 

input variables to allow for better understanding of the multi-label data. The few available 

measures of variable importance mostly neglect to exploit label dependencies. 

In the next chapter an in-depth overview of multi-label learning is given. This includes 

definitions of various multi-label descriptive properties and evaluation measures, summaries 

of popular multi-label benchmark datasets, references to popular software for multi-label 

learning, a comprehensive discussion of label correlation, and descriptions of multi-label 

learning methods related to the novel multi-label learning method proposed in this dissertation. 
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In Chapter 3 a new tree-based ensemble method for multi-label classification is proposed, 

namely Label-Dependent splitting (LDsplit). With each tree-structure in the LDsplit ensemble, 

the aim is to split the data in a label-dependent way so that local label correlations are implicitly 

exploited. For each tree, different labels are used at different levels of the tree, as determined 

by the label order applicable to that tree. A detailed description of the fitting and classification 

procedures of two label ordering strategies are given, namely Random LDsplit and Conditional 

LDsplit. The chapter concludes with a discussion of the distinctive and favourable properties 

of LDsplit compared to related methods. 

Chapter 4 presents an extensive empirical study performed on standard publicly available 

multi-label benchmark datasets. The study investigates the properties of the newly proposed 

Random and Conditional LDsplit models and compares the predictive performance of the 

models to that of other well-known and related multi-label learning methods. The study 

provides proof that LDsplit is competitive with state-of-the-art multi-label learning methods in 

terms of predictive performance. 

In Chapter 5 the discussion of LDsplit is extended beyond its satisfying predictive performance 

by considering aspects of variable importance and variable selection. First an overview of 

traditional variable importance measures for single-label trees is presented as well as 

discussions of approaches for variable importance and variable selection in multi-label data. 

Hereafter variable importance measures of single-label trees are extended to multi-label data 

by using the LDsplit framework. Novel LDsplit measures for both global and local importance 

of variables are proposed. Since the proposed variable importance measures are influenced 

by label correlations, the shortcoming identified in the multi-label literature in this regard is 

addressed. The chapter concludes with a discussion of the advantages of the proposed 

variable importance measures, which includes the fact that the input variable rankings can be 

used to perform variable selection. 

Chapter 6 presents empirical properties and applications of the LDsplit variable importance 

measures proposed in Chapter 5. Firstly, multi-label synthetic data are generated by using the 
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algorithm proposed by Sandrock and Steel (2017). This algorithm is particularly useful since 

it has the option of specifying locally and globally relevant input variables. The proposed 

LDsplit global and local variable importance measures are therefore effectively assessed in 

this chapter. To investigate the performance of the measures in different settings, several 

synthetic multi-label datasets are generated considering a range of configurations determined 

by label densities, label correlation, input variable correlation and the strength of the signal of 

the data. Satisfactory results confirm the ability of the LDsplit model to produce interpretable 

results regarding global and local importance of input variables. Chapter 6 concludes with a 

short benchmark dataset application of the proposed LDsplit variable importance measures.  

Finally, concluding remarks and opportunities for future research are presented in Chapter 7. 
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Chapter 2: Multi-label learning 
 

2.1 Introduction 

The aim of this chapter is to present an overview of the literature of multi-label learning and 

data, and to provide a summary of the current resources available. Note that a reader versed 

in the multi-label literature can bypass this chapter.  

The chapter includes popular measures of descriptive properties of multi-label data, a 

summary of well-known publicly available multi-label benchmark datasets, definitions of 

multi-label evaluation measures and a summary of currently used multi-label software.  

Hereafter attention is directed to the important issue of label correlation. A detailed 

discussion is given on label correlation and how this concept is currently viewed in the 

literature and incorporated within multi-label learning methods. This is followed by 

descriptions of fitting and classification procedures of different learning methods related to 

the novel approach proposed in Chapter 3, namely LDsplit. 

2.2 Describing multi-label datasets 

A multi-label dataset can be characterised by various properties including the number of 

observations, input variables, labels and unique labelsets, as well as the average number of 

relevant labels per observation and the label imbalance in the dataset. Therefore, when 

describing a multi-label dataset, it is important to refer to such descriptive properties of the 

dataset. Standard definitions exist in the multi-label literature to measure descriptive 

properties of multi-label data. This section provides a summary of the most well-known 

measures, also referred to as meta-features (Kostovska et al., 2022). 

Kostovska et al. (2022) separate the measurable properties of a multi-label dataset into 

three major groups: dataset-specific properties, attribute-specific properties, and label-

specific properties.  
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Dataset-specific properties describe the multi-label dataset using general statistics. This 

includes the number of observations, ,N  the number of labels, ,K  the number of labelsets, 

the number of input variables, ,p  as well as the different types of input variables (qualitative 

or numeric) and various ratios between these quantities (Kostovska et al., 2022). Attribute-

specific properties provide a detailed insight into the properties of the input variables. This 

for example includes the average absolute correlation between numeric variables or the 

mean of kurtosis between numeric variables. Finally, label-specific properties aim to 

describe the label space of a multi-label dataset. These label-specific properties were 

specifically developed for multi-label data, since it is exactly the label space structure of 

multi-label data which distinguishes multi-label data from single-label data. 

One such label-specific property is the bound which represents the maximum number of 

labelsets that may exist in the dataset. This bound is 2K  (if it is assumed that some data 

observations may have all labels marked absent). Diversity on the other hand represents the 

percentage of labelsets present in the dataset considering the total possible number of 

labelsets. Another label-specific property is referred to as label cardinality, which gives the  

average number of relevant labels per observation (Tsoumakas et al., 2010). Label  

cardinality is therefore computed as 1

1

,
N

iN
i
 y where iy  denotes the number of entries in  

iy  that are equal to 1,  i.e. the number of relevant labels of .ix  For some datasets the label 

cardinality may be small compared to ,K  whereas for other datasets it can be large. Label 

density of a multi-label dataset is defined as the average number of relevant labels per 

observation divided by .K  By considering the size of the label space, label density gives the 

frequency of the labels among all the instances. Label cardinality and label density are often 

used to describe the label spaces of multi-label datasets in the literature. However, to 

quantify the imbalance of a multi-label dataset, specific multi-label imbalance measures have 

also been proposed, as outlined next. 
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For single-label classification an Imbalance Ratio (IR) can simply be defined as the ratio 

between the number of observations belonging to the majority class and the number of 

observations belonging to the minority class. Thus, the higher the IR, the larger the level of 

imbalance in a single-label classification dataset (Charte et al., 2013). A similar procedure 

can be followed per label for a multi-label dataset. This would evaluate the within-label 

imbalance of the dataset. However, to consider between-label imbalance, Charte et al. 

(2013) define another imbalance ratio per label,   ,IRperLabel k  given as: 

   1

, '
' 1

,
1

max
K

N

i k
k i

N

i k
i

y

IRperLabel k
y





 
 
 



 . 

For the most frequent label,   1IRperLabel k   and all other labels will have a value greater 

than 1.  Higher values indicate more imbalance. The highest imbalance ratio of a dataset is 

denoted by .MaxIR   

Furthermore, Charte et al. (2013) define MeanIR  (the average value of  IRperLabel k ) 

and CVIR  (the coefficient of variation of  IRperLabel k ). These measures are defined as 

follows: 

  1

1

K

K
k

MeanIR IRperLabel k


   

and 

SDIR
CVIR

MeanIR
     where  

  2

1

1

K

k

IRperLabel k MeanIR
SDIR

K








. 

Another aspect to consider when evaluating the imbalance of a multi-label dataset is the 

concurrence of the labels. In this case it is investigated whether there are some labels that 
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often jointly occur with other imbalanced labels. Charte et al. (2014) designed the 

SCUMBLE  (Score of ConcUrrence among iMBalanced LabEls) measure. The measure 

aims to quantify the imbalance variation among the labels present in each observation. It 

provides a score in the range  0,1  where higher scores imply more concurrence among 

imbalanced labels. The measure is based on  IRperLabel k  as well as the Atkinson index 

(Atkinson, 1970), which is an econometric measure used to assess social inequalities 

among individuals in a population. 

SCUMBLE  is defined as follows: 

 
1

1

N

N ins i
i

SCUMBLE SCUMBLE


   

where        
1

, ,
1

1

1

1
K

yi k i k
k

K
y

ins i i
k

SCUMBLE IRperLabel k IRperLabel k







 
   

 
  

and     
  ,

1

,
1

K

i k
k

K

i k
k

y IRperLabel k

i
y

IRperLabel k 







 . 

For a measure of relative spread of concurrence over the instances, the coefficient of 

variation, . ,SCUMBLE CV  is calculated as:  

. SCUMBLE
SCUMBLESCUMBLE CV    where    2

1
1

ins i
N SCUMBLE SCUMBLE

N
i

SCUMBLE





   . 

Table 2.1 provides a summary of the above-mentioned label-specific properties of multi-label 

data. 
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Table 2.1 
Summary of label-specific properties of multi-label data 

Measure Description Definition 

Bound  

The maximum 
number of labelsets 
that may exist in the 
dataset 

2KBound   

Diversity  

The percentage of 
distinct labelsets 
present in the dataset 
considering the total 
possible number of 
labelsets 

number of distinct labelsets
BoundDiversity   

Label cardinality  
The average number 
of relevant labels per 
observation 

1

1

N

iN
i

Label cardinality


  y , 

where iy  denotes the number of entries in iy  that are equal to 1 

Label density  

The average number 
of relevant labels per 
observation divided by 
the total number of 
labels 

1 1

1

,
N

iK N
i

Label density


   
 
 y  

where iy  denotes the number of entries in iy  that are equal to 1 

 IRperLabel k  
Imbalance ratio for 

label kY     1

, '
' 1

,
1

max
K

N

i k
k i

N

i k
i

y

IRperLabel k
y





 
 
 



 

MaxIR  
The highest 
imbalance ratio of a 
dataset  

  
1

max
K

k
IRperLabel k  

MeanIR  
The average 
imbalance ratio of the 
dataset  

  1

1

K

K
k

MeanIR IRperLabel k


   

CVIR  

The coefficient of 
variation of the 
imbalance ratios of 
the dataset 

,
SDIR

CVIR
MeanIR

   

where 

  2

1

1

K

k

IRperLabel k MeanIR
SDIR

K








 

SCUMBLE  
The score of 
concurrence among 
imbalanced labels 

 
1

1

,
N

N ins i
i

SCUMBLE SCUMBLE


   

 

where  ins iSCUMBLE is defined as 
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2.3 Multi-label benchmark datasets 

As referred to in Section 1.4.3, standard publicly available multi-label benchmark datasets 

are used for experimentation and comparison of multi-label learning methods. When 

selecting datasets for research, it is important to select a diverse set of benchmark datasets. 

Fortunately, as discussed in Section 1.3, these benchmark datasets cover a range of 

domains including but not limited to image, text, video, music, biology and audio. The 

datasets also differ with respect to size and other measurable descriptive properties as 

defined in the previous section. Furthermore, these datasets come pre-divided into standard 

training and testing parts. This allows for easy comparison between different research 

papers. 

Online multi-label dataset repositories give researchers easy access to multi-label 

benchmark datasets. In this dissertation the Mulan4 repository is used, since it is also used 

by Madjarov et al. (2012), and the empirical study outlined in Chapter 4 considers their work. 

In addition, Mulan is a very popular and frequently cited repository for multi-label data. 

Another popular online multi-label dataset repository is Cometa5 (Charte et al., 2018). Charte 

et al. (2018) also developed the R-package mldr.datasets. This package allows users to 

import multi-label datasets from web-based repositories and view properties of the datasets 

such as the list of labels and labelsets, as well as a list of descriptive measures such as 

those outlined in Section 2.2. Other multi-label dataset repositories include KEEL6 (Alcalá-

Fdez et al., 2011) and MEKA7. Recently, Kostovska et al. (2022) also introduced an online 

catalogue8 of 89  benchmark datasets. Their web-based system allows users to interactively 

inspect the available datasets. Kostovska et al. (2022) claim that their catalogue links to the 

largest number of publicly available multi-label classification datasets.  

 
4 http://www.uco.es/kdis/mllresources/ (accessed 14 October 2022) 
5 https://cometa.ujaen.es/datasets/ (accessed 14 October 2022) 
6 https://sci2s.ugr.es/keel/multilabel.php (accessed 14 October 2022) 
7 https://sourceforge.net/projects/meka/files/Datasets/ (accessed 14 October 2022) 
8 http://semantichub.ijs.si/MLCdatasets/home (accessed 14 October 2022) 
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Table 2.2 summarises some of the most well-known and widely used benchmark datasets in 

the multi-label literature. A short description of each of these datasets is provided below 

Table 2.2.  

Table 2.2 
Summary of well-known publicly available multi-label benchmark datasets 

Dataset Domain 
Training 

cases, N  

Testing 

cases 
p  K  

Label 

cardinality 

Label 

density 
MaxIR  MeanIR  CVIR  

Emotions music 391 202 72 6 1.868 0.311 1.784 1.478 0.180 

Scene image 1 211 1 196 294 6 1.074 0.179 1.464 1.254 0.122 

Yeast biology 1 500 917 103 14 4.237 0.303 53.412 7.197 1.884 

Medical text 645 333 1449 45 1.245 0.028 266.000 89.501 1.148 

Enron text 1 123 579 1001 53 3.378 0.064 913.000 73.953 1.960 

Corel5k image 4 500 500 499 374 3.522 0.009 1120.000 189.568 1.527 

Tmc2007 text 21 519 7 077 49060 22 2.220 0.101 41.980 17.134 0.814 

Mediamill video 30 993 12 914 120 101 4.376 0.043 1092.550 256.400 1.175 

Birds audio 322 323 260 19 1.014 0.053 17.167 5.407 0.817 

Delicious text 12 920 3 185 500 983 18.936 0.019 923.286 72.563 0.777 

 

 Emotions 

For the Emotions data (Trohidis et al., 2008) each observation is a piece of music. Each 

piece of music is labeled according to the emotions it provokes when it is listened to. Six 

possible emotions exist, namely: Sad-Lonely, Angry-Aggressive, Amazed-Surprised, 

Relaxing-Calm, Quiet-Still, and Happy-Pleased.  

 Scene 

The Scene dataset (Boutell et al., 2004) is a scene classification dataset. Each observation 

is a scene that can be annotated in the following six contexts: Beach, Sunset, Field, Fall-

foliage, Mountain and Urban.  

 Yeast 

Yeast (Elisseeff and Weston, 2001) is a widely used dataset where each observation is a 

gene and each gene can be associated with the following 14  biological functional groups: 

Metabolism, Energy, Transcription, Protein synthesis, Protein destination, Cell growth, 

Stellenbosch University https://scholar.sun.ac.za



27 
 

Transport facilitation, Cell transport, Cellular biogenesis, Ionic homeostasis, Cellular 

organization, Transportable elements, Cell communication and Cell death & ageing.  

 Medical 

Medical (Pestian et al., 2007) is a text dataset where each observation is a document that 

gives a summary of a patient’s symptoms history. These documents are represented using 

the bag-of-words strategy. The labels of the dataset represent 45  possible diseases. The 

goal is therefore to build a classifier that can annotate a document containing a patient’s 

symptoms with the probable diseases the patient could have.  

 Enron 

Enron (Klimt and Yang, 2004) is a dataset containing e-mails where each e-mail is 

represented using the bag-of-words strategy. Each e-mail is annotated with a selection of 

53  possible topics. Some of these topics for example include: Company strategy, Legal 

advice and Humour. 

 Corel5k 

The Corel5k dataset (Duygulu et al., 2002) consists of a total of 5000  images obtained 

through the software company Corel. Each image is segmented using the normalised-cuts 

method. The segmented regions are then clustered into 499  bins which are further used to 

describe the images. The images are assigned to a wide range of 374  possible labels. 

Some examples of these labels include: City, Sea, Grass, Bridge, People, Dog, Tiger, 

Athlete, Spider, Tent, Clouds, Plane and Runway. 

 Tmc2007 

Tmc2007 (Srivastava and Zane-Ulman, 2005) is a text dataset where each observation is an 

aviation safety report obtained by crew members about various events during a flight. These 

documents are represented using the bag-of-words method. The 22  labels of this dataset 

represent the problems being described by these reports. 
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 Mediamill 

The Mediamill dataset (Snoek et al., 2006) is a video indexing dataset. The training dataset 

contains 85  hours of international broadcast news data. Each video instance is represented 

as a 120 -dimensional input variable vector of numeric variables. There is a total of 101 

possible labels for each video. Examples of these labels include: Aircraft, Building, Court, 

Anchor, Flag, Weather, Truck and Explosion.  

 Birds 

Birds (Briggs et al., 2013) is an audio dataset consisting of recordings of bird species. In 

each recording, multiple bird species may appear. The labels represent 19  different bird 

species. 

 Delicious 

Delicious (Tsoumakas et al., 2008) is a text dataset obtained from the social bookmarking 

web service “del.ico.us”.  In a nutshell, social bookmarking is used to organise discussion 

topics into specific rooms or threads so that users can follow content that interest them. The 

dataset consists of web pages represented in the bag-of-words format and the labels of each 

observation correspond to the different tags that appear on the bookmarking website. 

2.4 Multi-label classification evaluation measures 

In supervised learning it is common practice to train a classifier on the so-called training 

dataset and thereafter evaluate the performance of the model using the separate testing 

dataset. Conventional metrics for evaluating the performance of a single-label classifier 

include misclassification error, accuracy, F-score, and the area under the Receiver 

Operating Characteristic (ROC) curve. However, due to the complexity of the label space of 

multi-label data, it is more difficult to evaluate the performance of a multi-label classifier. 

Consequently, a range of multi-label evaluation measures have been proposed that assess 

different aspects of the performance of a multi-label classifier. 

In general, multi-label classification evaluation measures can be grouped into two main 

categories: example-based measures and label-based measures (Tsoumakas et al., 2010). 
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Example-based measures consider each data observation individually and computes the 

metric for each. The final performance value is given by the average performance across the 

individual observations. On the other hand, label-based metrics consider each label 

individually and computes the metric for each label.  

Consider a multi-label test dataset 1{( , ), , 2,..., },i i newi Nx y  and suppose the multi-label 

classifier gives classifications   , 1,2,...,i i newf i N x z  where  0,1 .
K

i z  Furthermore, 

denote by kTP , kTN , kFP , and kFN  the number of true positive, true negative, false positive 

and false negative classifications after binary evaluation of , 1,2,..., .kY k K  The confusion 

matrix (Figure 2.1) summarises the classification types.  

 

 
True 

1 0 

Predicted 
1 TP  FP  

0 FN  TN  

Figure 2.1    Confusion matrix 

 

Multi-label example-based measures and label-based measures are defined and discussed 

in Section 2.4.1 and Section 2.4.2 respectively. 

2.4.1 Example-based evaluation measures 

Example-based measures used in this work are Hamming loss, accuracy, precision, recall, 

F-score and subset accuracy. 

Hamming loss is defined by: 

 Hamming loss 1 1
, ,

1 1

new

new

N K

i k i kN K
i k

y z
 

   
 

  . 
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Therefore, for each observation, the true set of classifications is compared to the predicted 

set of classifications to calculate the proportion of incorrectly predicted labels. Hamming loss 

is therefore defined as the average proportion of incorrectly predicted labels across the test 

data observations. Consequently, smaller values for Hamming loss indicate better 

performance and a value of 0  shows perfect classification. For all other evaluation 

measures used in this work, higher values indicate better performance.      

Accuracy is defined by: 

 accuracy 1

1

new

new

N
i i

N
i i i





y z

y z
. 

In other words, for each test observation the average Jaccard similarity coefficient between 

the predicted set of labels and the true set of labels is calculated. Accuracy is defined by the 

average of these values across the test data observations.  

Note that accuracy is undefined once both iy  and iz  consist of only 0  entries. 

Precision is defined by: 

precision
, ,

1

,
1

1

1

K

new i k i k
k

K
new

i k
k

N y z

N
zi










 . 

Precision gives the average proportion of labels that are predicted to be present which are in 

truth present. Models that give high precision are characterised as more conservative since 

they give a small number of false positive classifications. 

Note that in the above expression precision is undefined if ,
1

0.
K

i k
k

z


  In this case  if x   

gives all K  labels as absent for .ix  Therefore, denote by z presentN   the collection of 

observations for which iz  has at least one non-zero entry. Precision is then defined by: 
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precision
, ,

1

,
1

1 ,

K

i k i k
k

K
z present

i kz present
k

y z

N
zi N













  

where z presentN   is the number of observations in .z presentN   

Recall is defined by: 

  recall
, ,

1

,
1

1

1

K

new i k i k
k

K
new

i k
k

N y z

N
yi










 . 

Recall gives the average proportion of truly relevant labels that are predicted to be present. 

Models with high recall therefore give a small number of false negative classifications.  

Recall is undefined if ,
1

0.
K

i k
k

y


  In this case ix  has all K  labels absent in truth. Therefore,  

denote by y presentN   the collection of observations for which iy  has at least one non-zero 

entry. Recall is then defined by: 

 recall
, ,

1

,
1

1 ,

K

i k i k
k

K
y present

i ky present
k

y z

N
yi N













  

where y presentN   is the number of observations in .y presentN   

A trade-off exists between precision and recall. For example, although many labels that are 

classified as present by models with high precision are truly relevant, the model may 

simultaneously leave out relevant labels by wrongly classifying labels as absent. This gives 

high precision and low recall. On the other hand, many truly relevant labels are classified as 

present by models with high recall. However, besides the labels that are truly relevant, the 

model may also classify non-relevant labels as present. This gives high recall and low 

precision. 
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The F-score is a harmonic mean that captures the trade-off between precision and recall 

and it is calculated as: 

F score 2 precision recall
precision recall
 

 . 

Finally, subset accuracy is defined by:         

 subset accuracy  1

1

new

new

N

i iN
i

I


  z y . 

In the above expression   1,I true   whereas   0.I false   Therefore, subset accuracy is a  

very strict evaluation measure as it requires the predicted set of labels to be an exact match 

to the true set of labels. 

2.4.2 Label-based evaluation measures 

The label-based measures used in this work are macro-precision, macro-recall and macro-

F1, as well as micro-precision, micro-recall and micro-F1.  

Note that if a binary evaluation measure, calculated from the number of TP , TN , FP  and 

FN  classifications, is denoted by  , , , ,B TP TN FP FN  the so-called macro-averaged and 

micro-averaged versions of B  are given by: 

 1

1

, , ,
K

macro k k k kK
k

B B TP TN FP FN


    and   

1 1 1 1

, , , .
K K K K

micro k k k k
k k k k

B B TP TN FP FN
   

   
 
     

In other words, with macro-averaging the measure is calculated per label and thereafter 

averaged across the labels. However, with micro-averaging all the TP , TN , FP  and FN  

are added across the labels and used to calculate the measure. 
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Consequently, macro-precision, macro-recall and macro-F1 are computed as: 

macro precision 1

1

k

k k

K
TP

K TP FP
k




  ,   

macro recall 1

1

k

k k

K
TP

K TP FN
k




    and 

1macro F 21

1

k k

k k

K
P R

K P R
k

 




   ,  

where kP  and kR  denote the precision and recall for  .kY  

Note that macro-precision is undefined if one or more of the labels are never classified as 

present by the multi-label classifier. Therefore, macro-precision only takes an average over 

those labels classified as having at least one non-zero entry. Similarly, macro-recall is 

undefined if one or more of the labels are never present. Therefore, when calculating macro-

recall, the average is taken over those labels that have at least one non-zero entry. 

Finally, micro-precision, micro-recall and micro-F1 are computed as: 

micro precision 1

1 1

K

k
k

K K

k k
k k

TP

TP FP



 





 

 ,          

micro recall 1

1 1

K

k
k

K K

k k
k k

TP

TP FN



 





 

   and 

1micro F 2 ( ) ( )
( ) ( )

micro precision micro recall
micro precision micro recall

   
   . 

Note that the area under the ROC curve is not often considered in the multi-label literature. 

For traditional single-label classification, the ROC curve is constructed by plotting the True 

Positive Rate (TPR) against the False Positive Rate (FPR) of a classifier when various 

classification thresholds are applied. However, it is not a straightforward task to construct a 

similar curve for a multi-label classifier, due to the complexity of the label space. For 
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example, the TPR and FPR can be calculated in either an example-based manner or a label-

based manner when a multi-label classifier is considered. Furthermore, either a global 

threshold can be applied for all labels or different thresholds can be considered per label.  

2.5 Multi-label software 

A range of multi-label software exists for different programming languages. The different 

software often include functions for fitting well-known multi-label classifiers and functions for 

calculating evaluation measures such as those outlined in the previous section. Some 

software also provide easy access to a range of multi-label benchmark datasets and give 

specialised plots for closer investigation of the label space. Researchers can therefore 

conveniently fit and compare the performance of different multi-label learning methods by 

making use of the available software.  

In this dissertation the programming language R is preferred. Therefore, all empirical work, 

such as that of Chapter 4 and Chapter 6, are done in R. A useful R-package designed to 

handle multi-label datasets is the package mldr (Charte and Charte, 2019). The package 

allows users to load multi-label datasets, obtain characteristics from the data such as those 

defined in Section 2.2, and contains built-in functions to produce specialised plots from the 

data. Charte and Charte (2015) provide a useful guideline for working with mldr. 

Furthermore, a useful R-package for multi-label classification is the utiml package (Rivolli, 

2021). The package contains built-in functions to fit popular multi-label learning models and 

to calculate standard multi-label evaluation measures. Rivolli and de Carvalho (2018) give a 

detailed description of the utiml package. 

A Python library for performing multi-label classification is scikit-multilearn (Szymanski and 

Kajdanowicz, 2018). The library conveniently provides popular multi-label classification 

algorithms, fast calculation of multi-label evaluation measures, as well as other operations to 

inspect the label space of a multi-label dataset. Szymanski and Kajdanowicz (2019) give a 

detailed discussion of scikit-multilearn. 
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Another well-known software package for multi-label learning is the Java library Mulan 

(Tsoumakas et al., 2011b). Similar to the above-mentioned software, Mulan provides a 

range of multi-label classification algorithms and evaluation measures.  

Furthermore, MEKA (Read et al., 2016) is based on the WEKA machine learning toolkit (a 

collection of machine learning algorithms from the University of Waikato) and provides open-

source implementation of multi-label learning methods such as Classifier Chains (CC) and 

Ensemble of Classifiers Chains (ECC) which are discussed in Section 2.7.2 and 

Section 2.7.5 respectively. 

Finally, the CLUS system (Blockeel and Struyf, 2002) implements the predictive clustering 

framework discussed in Section 2.7.3. 

Note that to conduct the extensive experimental comparison of different multi-label learning 

methods in Madjarov et al. (2012), the authors make use of the Mulan library, as well as the 

MEKA extension for the WEKA framework, and the CLUS system. The empirical study 

outlined in Chapter 4 considers their work. 

2.6 Categorisation of multi-label learning methods based on label correlation 

This section provides more detail with regards to label dependency and label correlation in 

multi-label data.  

It should be noted that the term “label correlation” is often used in an intuitive manner in 

multi-label literature to indicate a kind of non-independence between labels (Dembczynski et 

al., 2010). Few authors consider a precise formal definition. Consequently, a wide range of 

classification proposals are found in the literature that explicitly or implicitly explore label 

correlations (Wang et al., 2014). 

Methods that explicitly exploit label correlations include those that for example model the 

dependencies among labels using a Bayesian Network (BN) (Wang et al., 2014), group 

dependent labels based on 2  scores such as the ChiDep method of Tenenboim-Chekina 

et al. (2010), or estimate label correlations by the co-occurrence of labels in training data 

Stellenbosch University https://scholar.sun.ac.za



36 
 

(Petterson and Caetano, 2011). On the other hand, methods that implicitly exploit label 

correlations include those that for example extend the input variable space with the label 

indicator variables (Read et al., 2011) or with label outputs of a first level classifier (also 

referred to as multi-label stacking – see Tsoumakas et al. (2009)).  

Apart from this distinction between explicit and implicit utilisation of label correlation, a 

distinction is also drawn between global and local label correlations in the multi-label 

literature. As explained in Section 1.4.1, when label correlations are viewed globally, it is 

assumed that the label correlations are shared globally by all instances. However, when 

label correlations are viewed locally, label correlations are assumed to be shared only by 

subsets of instances. Since existing multi-label learning methods mostly focus on global 

label correlation exploitation, a method for local correlation exploitation is proposed in this 

dissertation, namely LDsplit.  

One previous proposal for the exploitation of local correlations between labels is given by 

Nasierding et al. (2009). The Clustering-Based Multi-Label Classification (CBMLC) 

framework proposed by the authors consists of two steps. In the first step the training 

instances are clustered into k  clusters by using a clustering algorithm such as k means 

clustering. The label space is not considered in this step. Each cluster is hereafter annotated 

with only those labels that are present for at least one of the training observations in the 

cluster. Nasierding et al. (2009) argue that similar observations should be associated with 

similar labels, so that this step would reduce the label space associated with each cluster. In 

the second step a multi-label classifier is fit to each cluster considering its associated label 

space. A possible disadvantage of this approach is that the label space is excluded in the 

clustering step.  

Another previous proposal for the exploitation of local correlations between labels is given by 

Huang and Zhou (2012), who argue that it can be beneficial to exploit label correlations 

locally by dividing the data into subgroups. In their work the training data are divided into 

subgroups by applying clustering on the label space. From these clusters a LOC (Local 
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Correlation) code is developed for each data case and these LOC codes are then used as 

an additional input variable for the multi-label classification task. However, since these LOC 

codes are based on co-occurrence in the label space, the original input variables are 

excluded when determining the local correlation structure. Furthermore, in situations where 

the dimensionality of the input space is large, such a code may be less discriminative and 

could end up being dominated by the original input variables (Zhu et al., 2017).  

The novel multi-label classification method proposed in this dissertation, LDsplit, also aims to 

exploit label correlations locally by dividing the data into subgroups. However, LDsplit uses a 

tree-based structure to do so. In general, decision trees divide data into subgroups by taking 

local decisions about how best to model label dependency. This property therefore provided 

a natural starting point for developing a multi-label classification method that aims to 

implicitly exploit local label correlations by dividing the data into subgroups. As will become 

clear in Chapter 3, LDsplit improves upon the methods of Nasierding et al. (2009) and 

Huang and Zhou (2012), since interactions of original input variables and labels are 

considered when determining the data subgroups. Furthermore, LDsplit requires no input 

variable augmentation.  

A further means of categorisation of learning methods with regard to label correlation is 

given by Zhang and Zhang (2010). These authors outline three categories that are based on 

the order of label correlations considered by the learning method: first-order, second-order 

and higher-order approaches. First-order approaches do not exploit label correlations in the 

fitting process. These methods decompose the multi-label classification problem into multiple 

independent binary classification problems. Second-order approaches consider pairwise 

relations between labels, whereas higher-order approaches consider an even higher order of 

correlation between labels than the first- or second-order approaches. Higher-order 

approaches include methods with a random style of forming an ensemble of classifiers that 

addresses correlations among random subsets of labels. Unfortunately, inconsistencies 

were found in the literature regarding the categorisation of learning methods (especially tree-
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based methods) into these three categories. This could be a consequence of the absence of 

a standard definition of label correlation in the multi-label literature. Consequently, when 

these categories are referred to in this dissertation, brief reasonings will be included to 

motivate the specific categorisation of the learning method. Interestingly, by referencing the 

work of Tsoumakas et al. (2010), Zhang and Zhang (2010) also refer to the term “label 

correlation” in an intuitive manner to indicate a kind of non-independence between labels. 

However, in their proposed model, Zhang and Zhang (2010) exploit label correlations 

explicitly by making use of a BN to model the dependencies among labels. 

The categorisation of learning methods outlined by Madjarov et al. (2012) are in general 

preferred in this dissertation. These categories of Madjarov et al. (2012) are used as a 

framework in the next section to discuss various multi-label classifications methods related 

to LDsplit. 

In conclusion, Figure 2.2 provides a summary of the different viewpoints in the multi-label 

literature for the categorisation of learning methods based on label correlation. 

It is motivated in Chapter 3 that LDsplit aims to implicitly exploit local higher-order label 

correlations. 

 

 

 

 

Figure 2.2   Different viewpoints for the categorisation of learning methods based on 

                    label correlation 
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2.7 Multi-label learning methods 

Due to the increase of multi-label datasets in recent years, more research proposing new 

multi-label classification methods have emerged. This section refers to some of these 

methods that are related to the work presented in other chapters of this dissertation. 

2.7.1 Categories 

In general, Madjarov et al. (2012) group multi-label learning methods into three categories: 

problem transformation methods, algorithm adaptation methods and ensemble methods.  

Problem transformation methods are algorithm independent. The multi-label learning task is 

transformed into one or more single-label classification tasks so that single-label 

classification methods can be applied. Some well-known problem transformation methods 

are described in Section 2.7.2, including Binary Relevance (BR) (Tsoumakas and Katakis, 

2007), Classifier Chains (CC) (Read et al., 2011), Label Powerset (LP) (Tsoumakas and 

Katakis, 2007), and pairwise methods such as Calibrated Label Ranking (CLR) (Fürnkranz 

et al., 2008) and the adaptation of the Quick Weighted Voting algorithm for multi-label 

learning (QWML) (Mencía et al., 2010). 

Algorithm adaptation methods adapt a single-label learning algorithm to handle multi-label 

data directly. Examples include an adaptation of the popular k Nearest Neighbours 

algorithm to multi-label data (ML- k NN) (Zhang and Zhou, 2007), adaptations of the Support 

Vector Machine (SVM) namely Rank-SVM (Elisseeff and Weston, 2001), extensions of 

AdaBoost for multi-label data namely AdaBoost.MH and AdaBoost.MR (Schapire and 

Singer, 2000) and neural networks for multi-label data such as BackPropagation for Multi-

Label Learning (BP-MLL) (Zhang and Zhou, 2006) and an adaptation of deep Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) in CNN-RNN (Wang et al., 

2016). Decision trees have also been adapted for multi-label learning. Some examples of 

multi-label tree-based methods found in the literature are Multi-Label C4.5 (ML-C4.5) (Clare 

and King, 2001), Multi-Objective Decision Trees (MODTs) (Kocev et al., 2007), which are an 

instantiation of Predictive Clustering Trees (PCT) (Blockeel et al., 1998), LaCova (Al-Otaibi 
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et al., 2014b), a hybrid decision tree utilising local SVMs (ML-SVMDT) (Gjorgjevikj et al., 

2013) and Hierarchy Of Multi-label learnERs (HOMER), initially presented in Tsoumakas et 

al. (2008). In Chapter 3, a new tree-based multi-label classification method is proposed, 

namely LDsplit. Therefore, tree-based methods are of particular interest in this work and are 

discussed in more detail in Section 2.7.3.  

Finally, multi-label ensemble schemes use several multi-label classifiers and combine them 

in a specified way to build one powerful classifier. By doing this the generalisation ability is 

improved and the risk of overfitting reduced (Moyano et al., 2018). A necessary condition for 

an ensemble to be more accurate than any of its individual members, is that the classifiers 

are accurate and diverse (Kocev et al., 2007). Here a classifier is considered “accurate” if it 

does better than random guessing on new observations. Furthermore, two classifiers are 

“diverse” if these classifiers make different errors on new observations. 

Such statistical ensemble methods can be compared to the concept of “the wisdom of 

crowds”. Suppose for example information on a certain subject is needed. There likely exists 

an individual with vast knowledge on the subject compared to most individuals with limited 

knowledge. However, the highly informed individual may be difficult to track down for 

questioning. In that case, instead of asking a single less informed individual for information, 

a better strategy may be to ask a crowd of little-informed individuals and combine all the 

information received from the crowd. This relates to the three reasons given by Dietterich 

(2000) why statistical ensemble methods can be better than a single classifier namely: (i) a 

bad classifier can be the one selected if only one classifier is used, (ii) since learning 

algorithms often use local search, running the algorithm many times and combining the 

output may result in a better approximation of the unknown optimal classifier, and (iii) for 

many problems the optimal function cannot be found, but a combination of several classifiers 

may give a close approximation. 

LDsplit fits an ensemble of trees. Therefore, multi-label tree ensemble methods are of 

particular interest in this work, such as Random Forests of ML-C4.5 (RFML-C4.5), Random 
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Forests of Predictive Clustering Trees (RF-PCT) (Kocev et al., 2007), Sparse Oblique 

Structured Hellinger Forests (SOSHF) (Daniels and Metaxas, 2017) and Multi-Label Forests 

(ML-Forests) (Wu et al., 2016). These methods are discussed in Section 2.7.4. Other well-

known multi-label ensemble methods related to LDsplit are discussed in Section 2.7.5, 

namely Ensemble of Binary Relevance (EBR) (Read et al., 2011), Ensemble of Classifier 

Chains (ECC) (Read et al., 2011), and Random k  labelsets (RAk EL) (Tsoumakas et al., 

2011a). 

Figure 2.3 summarises the three categories of multi-label learning as given by Madjarov et 

al. (2012), including examples of learning methods found in each category. As outlined in 

Figure 2.3, methods related to LDsplit are discussed in the next four sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3   Categories of multi-label learning 
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2.7.2 Problem transformation methods 

Tsoumakas and Katakis (2007) and Tsoumakas et al. (2010) give detailed discussions of 

problem transformation methods. However, in this section some of the most popular 

transformations are briefly described. Table 2.3 gives a simple multi-label dataset with 

5N   data cases and 4K   labels which will be used to illustrate the transformations 

throughout this section. 

Table 2.3 
Summary of a simple multi-label dataset with 5N   observations and 4K   labels 

Data cases 1Y  2Y  3Y  4Y  

1x  0  1 1 0  

2x  1 0  0  0  

3x  0  1 1 1 

4x  1 0  1 0  

5x  1 0  0  0  

 

 Binary Relevance (BR) 

One of the simplest problem transformation methods may be the one-against-all strategy, 

BR. BR fits one binary classifier for each of the K  labels separately by decomposing the 

multi-label dataset into K  independent binary classification datasets (Tsoumakas and 

Katakis, 2007). This gives K  binary classifiers    : 0,1 ,k kf Y x x  1,..., .k K   An 

illustration of the decomposition of the multi-label dataset of Table 2.3 for BR is given by 

Figure 2.4. To find a multi-label classification for a data case, each of the K  binary 

classifiers classifies the data case independently and the K  classifications (one for each 

label) are combined. In other words, the multi-label classification of a data case, ,newx  is 

given by      1 2 ... .new new K newf f f  x x x   
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Data cases 1Y  

1x  0  

2x  1 

3x  0  

4x  1 

5x  1 
 

Data cases 2Y  

1x  1 

2x  0  

3x  1 

4x  0  

5x  0  
 

Data cases 3Y  

1x  1 

2x  0  

3x  1 

4x  1 

5x  0  
 

Data cases 4Y  

1x  0  

2x  0  

3x  1 

4x  0  

5x  0  
 

 

 

Figure 2.4   Data from Table 2.3 transformed by using BR  

 

It is unanimously agreed in the multi-label literature that since BR fits a binary model for 

each label independently, label correlations are not explicitly exploited when fitting the 

model. Therefore, considering the order of label correlations, BR is a first-order approach. 

BR does however remain an important baseline method for comparison of other multi-label 

learning methods. In fact, a recent study by Bogatinovski et al. (2022), conducted on 42  

multi-label benchmark datasets comparing 26  multi-label learning methods, identified BR 

with random forest decision trees as one of the top five methods considering the average 

predictive performance across the different problems. 

 Classifier Chains (CC) 

CC is a problem transformation method introduced with the aim to improve on BR (Read et 

al., 2011). CC fits one binary model for each label as BR does; however, label correlations 

are incorporated into the model by allowing a random label order to define a chain of K  

binary classifiers. The input space of each binary classifier is extended with the 0 /1 label 

relevancies of all previous classifiers in the chain. Since each label is in turn used to extend 

the input space, CC is regarded as a higher-order label correlation method that exploits label 

correlations implicitly. Furthermore, for CC it is assumed that label correlations are shared by 

all the data cases at once, so that CC exploits global label correlations.  

Binary classifier Binary classifier Binary classifier Binary classifier 

1f  2f  3f  4f  
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Figure 2.5 illustrates the decomposition of the multi-label dataset of Table 2.3 using CC with 

label order  2 3 1 4Y Y Y Y .  

In general, a fitted CC model can be used to classify an unseen data case, ,newx  as follows. 

Start with the first classifier, 1 ,f  and obtain the 0 /1 classification,  1̂ .newf x  Now 2f  

produces the relevance of the second label in the chain for the data case ,newx  given the 

input space augmented by  1̂ .newf x  Continuing in this way, Kf  produces the relevance of 

the last label in the chain given the input space augmented by all previous classifiers in the 

chain. 

Read et al. (2021) give a general definition of CC by discarding the property that a chain 

should be fully connected. Instead they define CC under two properties. First, one classifier 

is fit per label which is considered as a node in a chain. Secondly, the chain is any directed 

acyclic structure in which the output of one classifier becomes input to the subsequent 

classifier to which it is connected in that structure. With this definition, many extensions and 

variations of CC exist as outlined in Read et al. (2021).  
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1x  1 1 0  0  
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Figure 2.5   Data from Table 2.3 transformed by using CC  

Binary classifier 

1f  2f  3f  4f  
Binary classifier Binary classifier Binary classifier 
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 Label Powerset (LP) 

The LP approach is a problem transformation method that incorporates label correlation into 

the model by recognising each unique set of labels as a class. The multi-label data are thus 

transformed to a multi-class structure allowing any multi-class classifier to be used for 

classification. Figure 2.6 illustrates how the multi-label data of Table 2.3 is transformed to a 

multi-class dataset with four classes considering the four unique labelsets of Table 2.3. 

Unfortunately in practice, the transformation of the multi-label data to a multi-class structure 

may lead to a dataset with many classes and few observations per class. The total number 

of possible classes for the multi-class version of the data has an upper bound at 

 min ,2 .KN  Furthermore, LP can only classify observations to a labelset present in the 

training data.  

 

 

Unique labelsets 
 

0 1 1 0  i.e. 2Y  and 3Y  present 

1 0 0 0  i.e. 1Y  present 

0 1 1 1  i.e. 2 3,Y Y  and 4Y  present 

1 0 1 0  i.e. 1Y  and 3Y  present 

 

Transformation to multi-class data 

Data cases 2Y  and 3Y  present 1Y  present 
2 3,Y Y  and 4Y  present 1Y  and 3Y  present 

1x  1 0  0  0  

2x  0  1 0  0  

3x  0  0  1 0  

4x  0  0  0  1 

5x  0  1 0  0  

 

Figure 2.6   Data from Table 2.3 transformed to multi-class data using LP  
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 Calibrated Label Ranking (CLR)  

Fürnkranz et al. (2008) introduce CLR as an extension of Ranking by Pairwise Comparison 

(RPC) (Hüllermeier et al., 2008). RPC applies a pairwise approach (as outlined in Figure 2.7) 

to extend binary classification algorithms to give a finite ranking of the labels per 

observation. A total of  1

2

K K
 binary datasets are formed, one for each pair of labels  , ,a bY Y

1 .a b K    A dataset constructed for a pair of labels contains all those observations that 

have one of the two corresponding labels present. A binary classifier fit to such a dataset 

consequently gives a preference between the two corresponding labels for a new 

observation. After finding these preferences for a new observation using each of the  1

2

K K
 

datasets, a label ranking is produced by counting the votes received for each label. Ties can 

be broken randomly. CLR extends such a ranking to the multi-label scenario by introducing 

an artificial calibration label to separate the relevant and irrelevant labels within the ranking. 

CLR fits K  additional binary classifiers that discriminate between each of the original labels 

and the artificial label. Note that these K  additional binary classifiers correspond to the BR 

model given by Figure 2.4. This is because each observation that has a particular original 

label present is annotated with “1” for this label and “0 ” for the artificial label, while each 

observation that has a particular original label absent is annotated with “0 ” for this label and 

“1” for the artificial label. The position of the artificial label in the label ranking of a new 

observation provides a separation point between relevant and irrelevant labels for this 

observation.  

CLR produces both a ranking and a bipartition of the labels. However, the main 

disadvantage of CLR is that the method is not suitable for datasets with many labels due to 

the large exploration space and time complexity (Bogatinovski et al., 2022). 

Since CLR considers pairwise correlations between labels, it is categorised as a second-

order label correlation approach in the multi-label literature. 
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1x  0  1 

2x  1 0  
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Figure 2.7   Data from Table 2.3 transformed by using RPC  

 

 Quick Weighted Voting algorithm for multi-label learning (QWML) 

Loza Mencía and Fürnkranz (2008) introduce the Multi-Label Pairwise Perceptron (MLPP) 

algorithm as an instantiation of RPC with the perceptron algorithm as base classifier. This is 

done in an attempt to speed up the classification process. Mencía et al. (2010) extend this 

MLPP algorithm using an adaptation of the Quick Weighted Voting (QWeighted) algorithm 

proposed by Park and Fürnkranz (2007). 

The QWeighted algorithm was initially developed for multi-class data. However, instead of 

stopping once the single top class has been determined, Mencía et al. (2010) extend the 

QWeighted algorithm to multi-label data by repeatedly fitting the algorithm after removing the 

top class found in each iteration. Similar to CLR, Mencía et al. (2010) include an artificial 

label so that the iterations of the QWeighted algorithm stop once the artificial label is 

returned as the top class. All labels obtained prior to the artificial label are relevant for the 

observation, whereas the remaining labels are all irrelevant. 

Binary classifier 

Binary classifier 
Binary classifier 

1f  
2f  3f  

Binary classifier Binary classifier 

Binary classifier 4f  
5f  

6f  
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2.7.3 Tree-based methods 

In traditional single-label classification, tree-based methods apply recursive binary splitting to 

the data cases by partitioning the input space. For each split the input variable and split-point 

are identified that achieves the largest information gain (i.e. decrease in node impurity) after 

the split. Information gain can for example be measured as the difference between the 

Shannon entropy of the set of training observations being considered for splitting and the 

weighted sum of the Shannon entropy of the subsets resulting from splitting the 

observations. The learning method is appropriately named since a tree-like structure is 

formed. The root node contains the full set of data cases. By moving down either the left or 

right branches of nodes (as determined by the splitting rules of the nodes) data cases are 

recursively split into sub-nodes. Tree-growing can be stopped once a minimum node-size is 

reached. Some methods also make use of post- or pre-pruning. With post-pruning a large 

tree is grown but pruned backwards by collapsing those nodes which cause the smallest 

increase in impurity. This is normally guided by a cost complexity criterion. In the case of 

pre-pruning, node-splitting stops if a given split does not result in a significant reduction in 

variance. This is for example determined by conducting an F-test. 

The terminal nodes of a fitted tree determine the classification of new data cases. The 

majority class can for example be assigned to each terminal node by considering the training 

observations found in the node. New data cases that filter down the tree by following the 

splitting rules are classified to the majority class of the terminal node they end up in. 

Popular traditional single-label tree-based methods are CART and C4.5 (Hastie et al., 

2009:305). Figure 2.8 gives an example of a binary classification tree fit to a binary 

classification dataset where each instance is a recorded voice sample of either a male or 

female voice. Figure 2.8 shows that the first splitting variable is “meanfun” with a splitting-

value of 0.14.  The terminal nodes indicate the gender assigned to the voice samples that 

end up in each node. 
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The conceptionally simple framework of single-label trees have led to adaptations for multi-

label data. This section summarises a selection of previously proposed multi-label tree-

based classifiers. Note that this section specifically focuses on algorithm adaptations of trees 

for multi-label data. It does not include problem transformation methods, such as those 

mentioned in the previous section, with a single-label tree as base classifier. 

 

 

 

  

 

 

 

Figure 2.8   Example of fitted binary classification tree 

 

 Multi-Label C4.5 (ML-C4.5) 

Clare and King (2001) adapt the well-known C4.5 algorithm (Quinlan, 1995) for multi-label 

data by modifying the formula for calculating Shannon entropy (Shannon, 1948) as a sum of 

entropies of individual labels.  

Let  kp Y  be the probability (relative frequency) of label kY  and    1k kq Y p Y   be the 

probability of not having kY  present. Clare and King (2001) calculate the entropy of a subset 

as: 

        
1

log log
K

k k k k
k

p Y p Y q Y q Y


  . 

By using this formula for entropy, for each split of the ML-C4.5 tree, the input variable and 

split-point are identified that achieve the largest information gain after the split. Note that in 

this case when the information gain of a split is calculated, the weighted sum means that if 

an item appears twice in a subset because it belongs to two classes, it is counted twice.  
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After an ML-C4.5 tree has been fit, each terminal node can for example be assigned the 

majority labelset of the training observations in that node. To classify a new observation, the 

observation moves through the nodes of the ML-C4.5 tree by following the splitting rules and 

is assigned the labelset of the terminal node in which it ends. 

Such an ML-C4.5 tree can identify input variables that are relevant when considering all the 

labels simultaneously. However, node-splitting is not explicitly guided by label correlation 

since the splitting criterion is the sum of individual label entropies. Due to this, the majority of 

multi-label work that were examined categorise ML-C4.5 as a first-order label correlation 

method. However, Wu et al. (2016) and Bogatinovski et al. (2022) categorise ML-C4.5 as a 

higher-order label correlation method. Bogatinovski et al. (2022) state that multi-label trees 

have a built-in mechanism to deal with label correlation. Although the authors do not expand 

on this statement, it is surmised that they reason as follows. Each node of the ML-C4.5 tree 

depends on the splitting rules that sent the specific observations to the node. Suppose  

jI  denote the indices of the data cases in the thj  node.  Then:  

     1 2 3 4 5 6 71, 2, ,I N I I I I I I         . 

Assume that the first split is on variable 1 ,X  with split-point 1 ,s  resulting in the two subsets 

of data,   2 ,1 1, :i i iD x sx y  and   3 ,1 1, : .i i iD x sx y  A change in the values of Y  will 

influence 2D  and 3 ,D  and therefore also the splits of the data occurring lower in the tree. In 

other words, when calculating the sum of individual label entropies for lower-level nodes, this 

sum is calculated conditional on the previous splits. Consequently, the previous splits, which 

are based on more than one label, influence the lower-level splits of the observations. Label 

correlations can therefore be exploited implicitly by the model. 
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 Multi-Objective Decision Trees (MODTs) 

Blockeel et al. (1998) describe a Predictive Clustering Tree (PCT) as a hierarchy of clusters. 

The root node corresponds to one cluster containing all the data, which is recursively 

partitioned into smaller clusters while moving down the tree. A variance function, which 

measures cluster impurity, is defined, and used to form the hierarchy of clusters with 

maximum homogeneity. This is done by maximising the variance reduction achieved when 

partitioning the training observations into smaller clusters. With this general framework, 

PCTs can be used for a variety of applications, including multi-label classification. In this 

case the so-called prototype function would define a multi-label classification for each 

terminal node of a PCT. Therefore, the main difference between a PCT and a standard 

decision tree is that the former treats the variance function and the prototype function as 

parameters that can be instantiated for a given learning task (Kocev et al., 2007). 

Kocev et al. (2007) explain how MODTs are an instantiation of PCTs where the variance and 

prototype functions are extended to multi-label data. In this setting cluster impurity, as  

defined by the variance function, can for example be specified as the sum of the Gini indices 

of the labels,  
1

, .
K

k
k

Gini Y

 X  The input variable and split-point are therefore identified per 

cluster that maximises the reduction in  
1

,
K

k
k

Gini Y

 X  achieved after the split. 

Here,  
1

,
K

k
k

Gini Y

 X  is computed as: 

   
1

2
K

k k
k

p Y q Y

 , 

where  kp Y  is the probability (relative frequency) of label kY  and    1k kq Y p Y   is the 

probability of not having kY  present. 

If instead the variance function is defined as the sum of entropies per label, and the same 

node-splitting stopping criterion is used as that of ML-C4.5, the MODT model would fit an 

ML-C4.5 tree as described in the previous section. 
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To classify a new observation by means of the fitted MODT, the observation moves through 

the nodes of the MODT by following the splitting rules until it reaches a terminal node. To 

produce a multi-label classification, the prototype function of the MODT can for example be 

defined as the majority vote or posterior probability of each label within the cluster.  

The order of label correlations considered by the MODT depends on the definition of the 

variance function. For example, if the variance function is taken as the sum of Gini indices or 

label entropies of the labels, the same arguments regarding label correlations hold as given 

for ML-C4.5 in the previous section. 

 LaCova 

Although less well-known than ML-C4.5 and MODTs, Al-Otaibi et al. (2014b) introduce a 

multi-label tree-based method, LaCova, that uses a splitting criterion based on a label 

covariance matrix. For a set of K  labels, the K K  label covariance matrix has the 

respective label variances on the diagonal and the pairwise covariances on the off-diagonal 

entries of the matrix. At each node of a LaCova tree a label dependency test is conducted. 

This test uses the label covariance matrix of the node to implement a three-way splitting 

criterion. 

Firstly, Al-Otaibi et al. (2014b) argue that tree-growing should stop if the sum of variances of 

the labels is low. According to their experiments, a variance threshold of 0  works well. If the 

sum of variances is not considered small, the sum of absolute covariances is computed. If 

this sum is lower than a threshold value, ,  BR with a decision tree base classifier is 

applied. This is referred to as a vertical split. The argument is that since labels show signs of 

independence, it is better to fit a single tree for each label. If the sum of absolute 

covariances is larger than ,  a single tree is grown for the labels. In other words, the input 

variable and splitting-value are found which best partitions the data at this stage according to 

all the labels. This is referred to as a horizontal split. Here, to find the “best” partitioning, the 

quality of a partition is measured by the minimum of two quantities: the sum of label 
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variances resulting from the partition and the sum of absolute label covariances resulting 

from the partition.  

Figure 2.9 gives an example of a fitted LaCova tree where the root node is split horizontally 

followed by a vertical and horizontal split for the respective child nodes. Tree-growing stops 

after the horizontal split of the one child node results in two vertical splits. 

A new observation is classified by following the rules of the fitted LaCova tree. If a new 

observation is for example dropped into the root node of the LaCova tree of Figure 2.9, the 

observation moves down either the left or right branch of the tree depending on its value for 

the splitting variable of the root node. If the observation moves down the left branch, the BR 

model of this node defines the classification for the observation. On the other hand, if the 

observation initially moves down the right branch of the tree, the splitting rule of this node is 

considered to determine which branch the observation moves through next. In this case, the 

final classification is given by the BR model of the node in which it lands. 

The decision between a vertical and horizontal split at a node of a LaCova tree is guided by 

the observed pairwise correlations between the labels. However, the order of label 

correlations considered by the fitted LaCova tree depends on the three-way splitting criteria 

of the model, as outlined next. 

First, if the sum of absolute covariances at the root node is smaller than ,  BR with a 

decision tree base classifier is applied at the root node. In such a scenario, LaCova does not 

include label correlations when fitting the model, and therefore a first-order label correlation 

model is fit. However, if the sum of absolute covariances at the root node exceeds ,  the 

observations in the root node are split into two disjoint nodes. The splitting criterion 

considers pairwise interactions between labels. Therefore, if the two resulting nodes are not 

split again due to low label variance sums, or if the two nodes each apply a vertical split, 

LaCova fits a second-order label correlation model. Lastly, if at least one of the two child 

nodes of the root node apply a horizontal split, LaCova implicitly includes higher-order label 
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correlations in the model. The motivation for this is the following. Since the label covariance 

matrix of each node is calculated using the label vectors of the observations at the node, the 

matrix is dependent on the splitting rule that sent those specific observations to the node. 

The covariance matrix of a node is therefore calculated conditional on the previous split. In 

this work, this is recognised as an implicit way of including higher-order label correlations in 

the model. 

 

 

Figure 2.9   Example of a fitted LaCova tree 
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 SVM-based decision trees for multi-label learning (ML-SVMDT)  

Gjorgjevikj et al. (2013) introduce a hybrid tree for multi-label data. The model applies 

ML-C4.5 to split the training observations and uses SVMs as base classifiers when solving 

partial binary classification problems. 

Initially the training data are split into a training subset, ,trainS  and validation subset, .valS  

The fitting procedure consists of three phases.  

In the first phase an ML-C4.5 tree (as described above) is fit to .trainS  Three stopping criteria 

are used by Gjorgjevikj et al. (2013), namely that a node becomes terminal if all observations 

in the node have the same labelset, no partitioning provides any information gain, or that the 

number of observations in any of the child nodes after the split would be below some 

predetermined minimum. Each terminal node of the fitted ML-C4.5 tree is assigned a 

labelset based on the majority vote per label for the training observations in the node. 

After the ML-C4.5 tree has been fit, it is pruned back in the second phase by using .valS  This 

is done by allowing the set of observations in valS  to filter down the fitted ML-C4.5 tree until 

each observation reaches some terminal node. For each node of the ML-C4.5 tree, two 

quantities are estimated using the corresponding validation observations found in the node. 

The first of these quantities is referred to as “leaf error”, which is an estimate of classification 

error if the current node had been a terminal node. The second quantity is referred to as 

“tree error” and gives the weighted sum of the estimates of classification error of all sub-

nodes of the current node. Any multi-label evaluation measure can be used to estimate the 

classification error of a node. If the tree error exceeds the leaf error of a node, this node 

becomes a terminal node. 

In the third phase BR with an SVM base classifier is fit to all terminal nodes of the pruned 

ML-C4.5 tree. These local models are fit using the trainS  observations found in the respective 

nodes. The classification error of each of these local models can be estimated by using the 

validation observations found in the terminal nodes. The final ML-SVMDT will not necessarily 
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have a local model at each terminal node. Local model replacement only takes place if the 

local model error is smaller than the leaf error of the terminal node. In this case, the trainS  

and valS  observations in the node are joined first, after which a new local model is fit that is 

learned on the combined set of observations. This new local model replaces the previous 

local model of the terminal node to increase the predictive performance of the local models. 

A new observation obtains a multi-label classification by moving through the nodes of the 

ML-SVMDT by following the splitting rules until it ends in a terminal node. If the node 

contains a local model, this model is used to classify the observation, else the multi-label 

classification assigned to the node defines the classification of the observation.  

Since an ML-SVMDT is fit by initially splitting the training observations based on ML-C4.5, 

the same arguments with regards to label correlations hold as given for ML-C4.5. 

 Hierarchy of multi-label learners (HOMER) 

Initially presented in Tsoumakas et al. (2008), the well-known method HOMER aims to 

transform a multi-label classification task into a tree-shaped hierarchy of simpler multi-label 

classification tasks that deal with a small number of labels per node.  

A tree-shaped label hierarchy is formed by recursively partitioning the original labels of a 

multi-label dataset into smaller disjoint subsets which form the nodes. The labels are 

partitioned by means of clustering. In Papanikolaou et al. (2018) balanced k means is 

used, but the procedure allows for the implementation of other clustering methods as well. 

Similarity of labels is based on co-occurrence of training observations. More precisely, if the  

multi-label data is given by ,
N p N K 

 
  
X Y  the hierarchy of labels is formed by successively  

clustering the K  column-vectors of Y  into increasingly smaller clusters. The process 

continues until every label ends up on its own, or until a prescribed minimum node cluster 

size is reached. The set of labels making up a cluster at Node n  is referred to as the meta-

label, .nM  The full input dataset, ,X  is also partitioned into (possibly overlapping) subsets. 
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The subset of data cases for which at least one of the labels in nM  is present, is denoted by 

.nD  The recursive label clustering procedure therefore determines how training 

observations are partitioned into sub-nodes. Once the hierarchy has been constructed, a 

local multi-label classification model is fit at every node considering the meta-labels, input 

variables and the corresponding data subset.  

As an example, consider a dataset with 12K   labels at the root node of a HOMER label 

hierarchy and suppose the labels are split into two disjoint clusters. The resulting meta-

labels are, for example,  1 1 2 7 9 10 12, , , , ,M Y Y Y Y Y Y  and  2 3 4 5 6 8 11, , , , , ,M Y Y Y Y Y Y  as 

indicated in Figure 2.10. The dataset is also partitioned into two (possibly overlapping) 

subsets, 1D  and 2 ,D  where 1D  represents the subset of data cases for which at least one 

of the labels in 1M  is present and a similar interpretation holds for 2.D  Now the labels in 1M  

are clustered once more, forming meta-labels 3M  and 4M  with corresponding data subsets 

of 1D  denoted by 3D  and 4 .D  Similarly 2M  is clustered into meta-labels 5M  and 6 ,M  

while 2D  is partitioned into data subsets 5D  and 6 .D  As seen in Figure 2.10, the process 

continues until every label ends up on its own.  

Local multi-label classifiers are fit at the nodes of a HOMER-tree using the relevant meta-

labels and corresponding data subsets. Using Figure 2.10 as an example, the first local 

multi-label dataset has 1M  and 2M  as labels and each data case in X  is annotated with 

one, both or none of these labels, depending on if the observation is present in 1 ,D  2 ,D  

both 1D  and 2 ,D  or do not have any labels present. Similarly 3M  and 4M  are used as 

labels for the second local multi-label dataset and each observation in 1D  is annotated with 

one or both of these labels depending on if the observation is present in 3 ,D  4 ,D  or found 

in both 3D  and 4.D   
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Figure 2.10   Example of HOMER tree-shaped hierarchy 

 
After all the local multi-label classifiers have been fit, a new data case can undergo 

classification. This would entail the data case to be classified into none, one, or more of the 

meta-labels at each of the nodes using the local multi-label classifiers. Suppose for example 

at the root node of the HOMER tree in Figure 2.10, the multi-label classifier assigns a value 

of 1 to 1M  and 0  to 2 .M  The implication is that this observation is classified to have the 

labels in 2M  all absent, while the classifications for labels in 1M  are still to be determined. 

Further down the tree only the nodes corresponding to the labels in 1M  are considered. 

Suppose at Node 1 a value of 1 is assigned for both meta-labels,  3 7 10 12, ,M Y Y Y  and 

 4 1 2 9, , .M Y Y Y  This implies that the multi-label classifiers of both Node 3 and Node 4 

should be considered next. If these classifiers respectively assign a 0  for 7M  and 10 ,M  and 

a 1 for 8M  and 9 ,M  the final multi-label classification for the new case is given by 

 1 0 0 0 0 0 0 0 0 1 0 0 .  
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Node 3 Node 4 Node 5 Node 6 
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As seen with the above example, the design of HOMER gives large importance to the first 

clustering split of the labels. The fact that the local multi-label classifier assigned a 0  to 2M

resulted in an immediate final classification of 0  for all the labels in this meta-label. If the 

local multi-label classifier would have also assigned a 0  to 1M , this would have immediately 

resulted in a final classification of 0  for all the labels of the dataset. The other local multi-

label classifiers deeper down the tree would not even be considered for the observation. 

Explicit higher-order label correlations are considered within HOMER since the tree-shaped 

hierarchy is formed in a recursive manner with clustering based on co-occurrence of labels. 

Furthermore, HOMER implicitly deals with the multi-label imbalanced problem since 

imbalance will be less severe for a meta-label than for a single label. It is also particularly 

efficient for datasets with many labels (Papanikolaou et al., 2018). However, it has been 

found that HOMER does not reach its full potential when fit to datasets with a small to 

moderate number of labels (Bogatinovski et al., 2022).  

 

2.7.4 Tree-based ensemble methods 

In this work, multi-label tree-based ensemble methods are defined as learning methods that 

form an ensemble of trees where each of the tree base classifiers give a multi-label 

classification. This section refers to some of these methods found in the literature. 

 Random Forests of ML-C4.5 (RFML-C4.5) and Random Forests of Predictive 
Clustering Trees (RF-PCT) 

Two well-known ensemble methods often considered in the context of single-label decision 

trees are bagging and random forests. For bagging, each classifier in the ensemble is 

trained on a different bootstrap sample taken from the training data. Similar to bagging, 

when fitting a random forest each classifier is also trained on a bootstrap sample, however 

additional diversity among classifiers is obtained by sampling candidate input variables from 

the input set. Specifically, if a decision tree is used as base classifier, at each node only a 

random subset of input variables is considered as candidates for splitting the data. Kocev et 
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al. (2007) explain how bagging and random forests can be extended to multi-label data by 

using a multi-label tree as base classifier. This has led to the development of Random 

Forests of ML-C4.5 (RFML-C4.5) and Random Forests of MODT, more commonly referred 

to in multi-label literature as Random Forests of Predictive Clustering Trees (RF-PCT). 

 Sparse Oblique Structured Hellinger Forests (SOSHF) 

Daniels and Metaxas (2017) propose SOSHF by extending structured forests, a type of 

random forest used for structured prediction, to multi-label data. The structured random 

forests are based on the proposal by Dollár and Zitnick (2013) developed for structured 

learning. Structured learning addresses the problem of learning a mapping where the input 

or output space may be arbitrarily complex, for example represented by sequences or 

graphs. In the work by Dollár and Zitnick (2013), only the output space is structured. Daniels 

and Metaxas (2017) argue that the higher-order correlations between labels of multi-label 

data represent a special “structure”, and that structured forests can learn how to identify and 

utilise these correlations. 

In general, the structured forests of Dollár and Zitnick (2013) differ from traditional random 

forests only in how the splitting functions are learned. At each node during training, 

structured forests learn a transformation that maps the multiple structured labels to a single 

discrete label, so that a standard single-label-based splitting criterion can be optimised. The 

mapping is two-stage. The first stage entails mapping the structured labels of the label 

space, Y,  to an intermediate space, ,Z  where distance is easily measured. This first 

mapping of Y ,Z  is followed by a second mapping of ,Z C  by using k means 

clustering for example. Here C  denotes the cluster space that defines the single discrete 

label. 

SOSHF aims to address imbalance within multi-label data. Therefore, Daniels and Metaxas 

(2017) modify the clustering step of the structured forests of Dollár and Zitnick (2013) by 

using cost-sensitive clustering to address between- and within-label class imbalance. 
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Instead of directly applying the clustering on the label-space, each label is assigned a 

corresponding cost and weighted k means clustering is performed.  

The weight of label AY  is given as: 

 

  
 

   
 

 
log 1 log 1

1
max log 1 max log 1

g l

g A l A

g l

g j l j

N N
n n

N N
j jn n

IDF A  
 

  
 

. 

 

In the above expression gN  denotes the total number of training observations, while lN  

denotes the total number of training observations at the node. The total number of all 

observations that have AY  present is denoted by ,g An  and the number of observations that 

have AY  present at the current node is denoted by .l An  The parameter  0,1   is used to 

find a compromise between the importance of global imbalance (considering all 

observations) and imbalance at the current node. Daniels and Metaxas (2017) found that 

0.5   works well. Since  IDF A  increases the importance of the minority class for each 

label, the impact of within-label imbalance is reduced. Furthermore, since  IDF A  gives 

more importance to labels with significant imbalance problems, it adjusts for between-label 

imbalance as well. 

By setting 2k   when performing weighted k means clustering at a node, the clustering 

step transforms the original multi-label problem into a single-label problem. However, even 

when applying the above cost-sensitive clustering approach, the newly formed single-label 

problem is often still imbalanced. Consequently, Daniels and Metaxas (2017) propose using 

a splitting criterion that is well suited for imbalanced single-label data, such as Hellinger 

distance. It has however been empirically observed that Hellinger Distance Decision Trees 

(HDDT) produce deeper trees. This is because HDDT more finely partition the data. To 

account for this, Daniels and Metaxas (2017) propose using oblique trees.  
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Different from standard trees that find axis parallel hyperplanes, each node of an oblique 

tree contains a hyperplane that can take any orientation in input space. An exhaustive 

search for the best hyperplane at each node is often not feasible, therefore approximate 

solutions are used. SOSHF uses a first-order gradient-based method to perform the 

optimisation at a node. A differentiable loss function that approximately maximises the 

squared Hellinger distance is constructed. For a detailed description of the derivation of this 

loss function and the optimisation per node, refer to Daniels and Metaxas (2017).  

The training observations of a terminal node are used to calculate the labelset assigned to 

the node. This is done using the original label indicator variables of the observations. To 

classify new observations per tree, the observations are assigned the labelsets of the 

terminal nodes in which they end. 

When fitting the forest of trees, Daniels and Metaxas (2017) randomly sample 75%  of the 

input variables, training observations and labels, without replacement per tree. Every tree 

predicts all the labels simultaneously, even though all labels are not used for fitting each 

tree. In Daniels and Metaxas (2017), if a label is used in learning a tree, that tree’s prediction 

for that label is weighted five times higher than for trees where the label is not used in the 

training procedure.   

 Multi-Label Forest (ML-Forest)  

Wu et al. (2016) propose ML-Forest which learns an ensemble of hierarchical multi-label tree 

classifiers. Each tree is learnt on a bootstrap sample of the training data. 

The root node of such an ML-Forest tree contains all the data. Disjoint child nodes sprout 

from the root node by recursively splitting the data. Wu et al. (2016) refer to this splitting 

process as SplitTest, which is implemented as follows. 

Initially, BR is applied to the observations in the root node. This gives K  binary classifiers 

(one for each label). K  confidence scores are calculated for each observation in the root 

node by using the K  fitted classifiers. Each observation is then classified to the class with 
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maximum confidence score. If the maximum confidence score corresponds to more than one 

class, the observation is classified to the class with the largest prior. This produces the first 

level of the tree with potentially as many as K  child nodes. A label purity vector, 

1 2, , ... , Kp p p   p , is calculated for each of these child nodes. Here  0,1kp   denotes  

the purity of the node with respect to the thk   label calculated as  1 ,
i

k k
iD

D

p y


 
x

  where D  

gives the collection of observations at the node and D  the number of observations at the 

node. The purity vector of a node is used to calculate a relevant label vector for the node, 

1 2, , ... , ,Kb b b   b  with 

1

0

k
k if p

b
otherwise

 
 


     

the relevant label indicator for the thk  label and  0.5 , 1  a purity threshold. Wu et al. 

(2016) select   at random in the range  0.5,1  for each tree in the ensemble.  

Wu et al. (2016) make use of a label transfer mechanism to recursively propagate the 

relevant label vector to lower levels of the tree. This preserves the relevant label vector of a 

parent node and incorporates it as an additional indicator when forming the relevant label 

vector of the child node. In other words, once a label purity vector, ,p  of a node is 

transformed to a relevant label vector, ,b  this relevant label vector is updated using the 

relevant label vector of the node’s parent node by letting 

1 1 1

0

k k
k parent
updated

if b or b
b

otherwise

  
 


. 

Note that the root node has .b 0  

Hereafter each node is potentially split into child nodes by applying BR at the node using 

only those labels with 0.k
updatedb   In other words, the relevant labels identified for parent 
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nodes are used as priors to reduce the label space when splitting child nodes. Once again, 

each data observation moves to only one child node corresponding to the maximum 

confidence score achieved considering the classifiers of the BR model. This splitting process 

continues until the data cannot be further split by the induced classifiers, thus forming a set 

of terminal nodes that are each associated with an (updated) relevant label vector.  

To classify an unseen data observation, ,newx  this observation is dropped into each tree in 

the ensemble and reaches some terminal node within each. Suppose the ensemble consists 

of M  trees. Since each terminal node has a corresponding relevant label vector, newx   

obtains M  relevant label vectors, 1,..., .Mb b  A confidence value, ,kc  is calculated for each  

of the K  labels as 1

1

.
M

k k
jM

j

c b


   To obtain a final multi-label classification, conclude that the  

thk  label is present for newx  if kc  exceeds a predefined threshold value, .
kY

t  

With their approach, Wu et al. (2016) argue that the relevant labels at higher levels of ML-

Forest trees capture more discriminable label concepts which are then transferred to child 

nodes that are harder to evaluate. Furthermore, since learning models at different levels of 

the tree work together to reveal multiple label concepts, ML-Forest implicitly exploits label 

correlations and is regarded as a higher-order label correlation method (Wu et al., 2016).  

Since nodes of an ML-Forest tree are potentially split into many child nodes, a shallow tree 

with very few training data cases found in some nodes may easily arise. This poses a risk of 

overfitting, especially in cases with large .K  Wu et al. (2016) comment on the risk of 

overfitting and therefore suggest fitting a bagged ensemble of trees. It is unclear if this 

strategy alone sufficiently prevents overfitting. Furthermore, little information is given by Wu 

et al. (2016) regarding the stopping criteria of an ML-Forest tree. Wu et al. (2016) provide 

readers with a link which they claim lead to the code of ML-Forest; however, this link opens 

the homepage of one of the authors and the code is unfortunately not openly available. 
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2.7.5 Other ensemble methods 

Multi-label ensemble methods are not limited to ensembles of tree-based classifiers. Other 

ensembles have also been introduced that are based on common problem transformation 

methods or algorithm adaptation methods. This section highlights three ensemble methods 

often considered in the multi-label literature. These methods are also related to LDsplit 

(proposed in Chapter 3). 

 Ensemble of Binary Relevance (EBR) 

Read et al. (2011) consider an ensemble of BR models (EBR).  Each BR model in the 

ensemble is trained on a bootstrap sample taken from the training data.  

To classify a new data case, each BR model produces a multi-label classification for the data 

case as outlined in Section 2.7.2. Hereafter the mean of the binary predictions over the 

ensemble is found per label. This gives one confidence output per label. A label is 

considered present for the data case if the confidence output of the label exceeds a 

predefined threshold value.  

Even though EBR can improve on BR due to the diversity among base classifiers, label 

correlations remain unexploited so that EBR is a first-order label correlation method (Moyano 

et al., 2018). 

 Ensemble of Classifier Chains (ECC) 

Read et al. (2011) extend CC (as described in Section 2.7.2) to an ensemble of differently 

ordered classifier chains referred to as Ensembles of Classifier Chains (ECC). 

Instead of considering only one order of the labels to fit one CC model, ECC considers M  

random orders of the K  labels. For each of these M  random chain orders a single CC 

model is trained using a bootstrap sample of the training data. Read et al. (2009) initially 

suggested using a subset of the training data to fit each classifier, however Read et al. 

(2011) state that a bagging approach can achieve higher predictive performance with only a 

small increase in computation cost.  
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Some label orders may produce poorer CC models in terms of prediction accuracy than 

other orders. However, determining an optimal order is a difficult task. Instead of running the 

risk of randomly selecting a single poor CC model, Read et al. (2011) argue that by 

implementing an ensemble of CC models, the overall negative impact of poorer orders is 

reduced and the difficult task of determining a single optimal order is obviated. 

To classify a new data case, ,newx  the M  CC models each give a multi-label classification 

for newx  as outlined in Section 2.7.2. The mean of the binary predictions over the M  

classifications is found per label. This gives a single confidence output per label. A label is 

considered present for newx  if the confidence output of the label exceeds a predefined 

threshold value. 

 Random k  labelsets (RA k EL) 

Tsoumakas et al. (2011a) propose RA k EL, an ensemble method which attempts to improve 

on the limitations of LP. RA k EL divides the multi-label data into smaller multi-label datasets 

by considering random subsets of the labels. Two different versions of RA k EL exist, 

depending on if the label subsets are disjoint or overlapping: RA k EL d  and RA k EL .o  

For RA k EL ,d  K
kM      disjoint subsets of size k  are formed from the K  labels of a multi-

label dataset. Here a    denotes the ceiling function of a real number .a  For example if 

3.2 ,a   3.2 4.    Note that if K
k  is not an integer, the thM  label subset contains modK k  

labels. Hereafter, M  multi-label datasets are formed by separately considering the input 

observations, , 1,..., ,i i Nx  with their corresponding label indicator variables of the labels 

that make up each label subset. Tsoumakas et al. (2011a) apply LP to each sub-dataset. 

This gives rise to M  multi-label classifiers that can be used to classify a new observation. In 

this case, each of the M  classifiers give a multi-label classification for the new observation. 

Since the label subsets are disjoint, the M  classifications can simply be gathered to 

produce a final multi-label classification for all K  labels.  
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In the case of RA k EL ,o  the M  label subsets may overlap. Therefore, M  possibly 

overlapping subsets of size k  are formed from the K  labels. Hereafter a similar procedure 

is followed as for RAk EL .d  In other words, M  multi-label datasets are formed on which LP 

models are fit, consequently giving rise to M  multi-label classifiers for prediction. However, 

since the label subsets possibly overlap, the M  multi-label classifications of a new 

observation cannot simply be gathered. Instead, the M  multi-label classifications produced 

for the observation are considered and, for each label, the mean of all binary predictions 

produced for the label is found. If the mean exceeds a predefined threshold value, the label 

is deemed present for the observation. 

2.8 Conclusion 

This chapter provided a comprehensive overview of the literature of multi-label data and the 

current software available in the field.  

Summaries were provided for measures of descriptive properties of multi-label data, popular 

multi-label benchmark datasets, as well as definitions of multi-label evaluation measures. 

These summaries are referred to in later chapters of this dissertation where empirical studies 

are conducted.  

Furthermore, an outline was provided of the different viewpoints of label correlation in multi-

label literature. It is generally agreed that exploitation of label correlation is a desirable 

property of a multi-label classification method. However, as a result of the different 

viewpoints of label correlation exploitation, a wide range of methods exist that exploit label 

correlations in some way. Nonetheless, most existing multi-label learning methods focus on 

global label correlation exploitation. Since decision trees divide data into subgroups by 

taking local decisions, an appropriate multi-label tree-based classifier may be able to 

effectively exploit local label correlations. 

 Several multi-label learning methods were discussed in this chapter. This included a 

detailed discussion of previously proposed multi-label tree-based methods and multi-label 
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tree-based ensemble methods. A new tree-based ensemble method for multi-label 

classification is presented in the next chapter, namely LDsplit. As will become clear, LDsplit 

differs from the previously proposed multi-label tree-based methods discussed in this 

chapter in several ways. 
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Chapter 3: Label-Dependent splitting (LDsplit) 
 

3.1 Introduction 

A new tree-based ensemble method for multi-label classification is proposed in this chapter. 

This method uses a divide-and-conquer strategy by constructing an ensemble of tree-

structures that are based on different label subsets. With each tree-structure, the aim is to split 

the data in a label-dependent way, thereby implicitly incorporating local label correlations. The 

multi-label classification method is therefore referred to as Label-Dependent splitting (LDsplit). 

Considering the three categories of multi-label classification methods based on the order of 

the label correlations (Zhang and Zhang, 2010), LDsplit is a higher-order method.  

A detailed description of the fitting and classification procedure of LDsplit is given in the 

following sections. In general, an LDsplit tree-structure consists of levels, each containing a 

collection of nodes. A different label is used at each level of a tree-structure, and each node 

is split by considering a binary classification problem. However, a specific level is not only 

dependent on its label; it also depends on previous splits made when parent nodes were 

formed using other labels. The main contribution of the strategy is not only that possible shared 

information and higher-order label correlation are implicitly exploited locally by dividing the 

data into subgroups, but that it is done in a simple and clear-cut manner by using hierarchical 

tree-structures of labels. Any off-the-shelf binary classifier can be used to perform the splitting. 

Binary classifiers may even be selected per label. This contributes to the flexibility of the 

method. 

Since LDsplit tree-structures are dependent on the label ordering used to construct the 

different levels of the trees, two different ordering strategies are implemented in this work: 

Random LDsplit and Conditional LDsplit. The simplest of these is Random LDsplit which uses 

a random label ordering for the construction of each tree-structure. Conditional LDsplit on the 

other hand includes a theoretically motivated strategy that determines a set of label orders for 

the tree-structures.  
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For the initial description of the LDsplit methodology, Random LDsplit is introduced in the next 

section. This includes a detailed discussion of the fitting and classification procedure of 

Random LDsplit. The discussion is extended to Conditional LDsplit in Section 3.3.  Scaling 

aspects of LDsplit for large K  is considered in Section 3.4. Section 3.5 gives a short note on 

fitting LDsplit in R. To further highlight the contribution of this work, distinctive and favourable 

properties of LDsplit, as opposed to some related methods, are given in Section 3.6.  

3.2 Random LDsplit 

Consider a multi-label dataset, 1{( , ), , 2,..., },i i i Nx y  with N  p  component input 

observations, ,ix  and their corresponding K  component multi-label response vectors, .iy

Denote by m  a positive integer smaller than or equal to .K  Recall that the collection of all 

labels, 1 2, ,..., ,KY Y Y  is denoted by L  and denote by mL  the set of all m  permutations of the 

elements in .L  The size of mL  is therefore  
!

!
K

K m   Specification of the tuning parameter, ,m  

is discussed in Section 3.2.4. Before LDsplit is implemented, each label in L  is also allocated 

a classification threshold, 
1 2
, ,...,

KY Y Yt t t - more on this later.  

To implement Random LDsplit, start by randomly sampling from ,mL  without replacement, M  

label permutations, ,jP  1,2,..., .j M  M  therefore denotes the size of the LDsplit ensemble. 

If  
!

!

K

K m
M    all the permutations in mL  are selected. Specifying a value for the tuning 

parameter, ,M  is also discussed in Section 3.2.4. Each permutation, ,jP  has m  entries, 

denoted by , , 1, 2,..., ,j sP s m  corresponding to m  of the labels in .L  For each of the M  

permutations a tree-structure, , 1, 2,..., ,jT j M  is constructed as follows. 
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3.2.1 Fitting tree-structure, jT  

The tree-structure, ,jT  for a given permutation, ,jP  is constructed by first forming the root 

node of the tree. The root node consists of all N  input observations, ,ix  along with the N  

corresponding response entries of label ,1 ,jP  i.e. the first label of the permutation. This node 

is referred to as Node 1. Note that the data in Node 1, 1{( , ), , 2,..., },i iy i Nx  represent a 

binary classification dataset, and that any binary classifier can be fit to these data. By doing 

so each ix  in Node 1 is assigned a posterior probability for label ,1jP  as given by the fitted 

binary classifier. These posterior probabilities can be used to split  , 1,2,...,i i Nx  into two 

disjoint groups, called Node 2 and Node 3. Observations for which the posterior probabilities 

are less than 
,1
,

jP
t  move down the left branch of the tree and form Node 2. Similarly, 

observations for which the posterior probabilities of label ,1jP  exceed 
,1
,

jP
t  move down the 

right branch of the tree and form Node 3. This first splitting of the data cases forms Level 1 of 

the tree. 

Continuing in this way, another binary classification problem is created by all the ix  cases 

found in Node 2 along with their corresponding response entries for the next label in 

permutation ,jP  i.e. label ,2 .jP  Again, a binary classifier can be fit and used to split the data 

cases of Node 2 into two disjoint nodes by using 
, 2
.

jP
t  A similar procedure is applied to the 

data cases in Node 3 and their response entries for label ,2 .jP  This second series of splitting 

gives the four nodes in Level 2.  

As a simple example consider a multi-label dataset with 10N   observations and 6K   

labels, 1 2 6, ,..., .Y Y Y   The example-data are summarised in Table 3.1. By setting 3,m   3L  

gives the collection of all label permutations of size 3.m   Suppose the permutation  3 6 1Y Y Y  
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is sampled from 3 .L  Figure 3.1 gives an example of an LDsplit tree-structure constructed from 

this permutation. Since 3Y  is the first label of the permutation, in Node 1 a binary classifier is 

fit to all the data cases and their corresponding response entries of 3 .Y  The observations are 

then split into Node 2 and Node 3 based on the posterior probabilities given by the fitted binary 

classifier. Two separate binary classification problems are formed at Level 1 by considering 

the observations found in Node 2 and Node 3 along with their corresponding response entries 

for the second label in the permutation, i.e. 6.Y  A binary classifier is fit to each node and the 

data are split based on the posterior probabilities so that Level 2 is formed. 

 

Table 3.1 
Summary of a simple multi-label dataset with 10N   data cases and 6K   labels 

Data cases 
1Y  2Y  3Y  4Y  5Y  6Y  

1x  0  1 1 0  1 0  

2x  1 0  0  0  1 1 

3x  0  1 1 1 0  0  

4x  1 0  1 0  0  0  

5x  1 1 0  0  1 1 

6x  0  0  1 1 0  0  

7x  1 1 0  0  0  1 

8x  1 1 1 0  0  0  

9x  0  0  0  1 0  1 

10x  1 0  0  1 1 0  
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Figure 3.1    Example of an LDsplit tree-structure with three levels 
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In the simplest case, splitting continues until Level m  is reached. In other words, splitting 

continues until each node of Level 1m   forms a binary classification problem with ,j mP  and 

splits into two new nodes by using 
,
.

j mPt  However, two constraints must be added. 

Firstly, a binary classifier is only fit to a node if the data at the node displays impurity regarding 

the relevant label, i.e. there are observations at the node that have 1iy   as well as 

observations that have 0,iy   so that both classes are represented.  If this requirement is not 

met, the node is pure and becomes a terminal node, with no further splitting. An example of 

such a terminal node in Figure 3.1 is Node 5.  

Secondly, it may happen that all the observations in a node move to only one of the resulting 

sub-nodes, so that the other sub-node is empty. It is evident that a binary classifier cannot be 

fit to an empty node. In addition, it may also happen that some splits cause a very small 

number of observations to be present in one (or both) of the resulting sub-nodes. Even though 

it is possible to fit a binary classifier to nodes containing few observations, the resulting 

classifier may be unstable and not very informative. For these reasons, a minimum node-size, 

denoted by ,n  is chosen before the M  tree-structures are fit. When constructing a tree-

structure, binary classifiers are only fit to nodes of size more than .n  If this threshold size is 

not exceeded, the node becomes terminal. For simplicity, 2n   in Figure 3.1, therefore 

Node 4 is an example of a node that is terminal because its size did not exceed .n  Note that 

Node 7 is also a terminal node since it is both pure and the node-size does not exceed .n  
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3.2.2 Algorithm 

By using the procedure of Section 3.2.1, LDsplit fits M  tree-structures. Each tree-structure 

consists of a set of numbered nodes at each of its m  levels. In general, at Level ,s  the nodes 

numbered 12 , 2 1 , ... , 2 1s s s   are present, resulting in 2s  nodes at this level. If splitting 

continues along every branch, a complete tree-structure has a total of 12 1m   nodes after a 

total of 2 1m   splits have been made. To avoid confusion in this work, even if a node becomes 

terminal at one of the levels preceding Level ,m  the numbering of the nodes does not change. 

Nodes that would have sprouted from a node that became a terminal node at an earlier stage, 

keep their numbers and are simply regarded as being empty. The total number of splits will 

however be less than 2 1m   in this case. For example, the terminal nodes of Figure 3.1 are 

Node 4, Node 5, Node 7, Node 12 and Node 13. Therefore Node 4, Node 5 and Node 7 are 

examples of terminal nodes that occur on a level preceding Level m  (in this case 3m  ). 

Node 8, Node 9, Node 10, Node 11, Node 14 and Node 15 however keep their numbers even 

though they are regarded as empty, since they would have sprouted from Node 4, Node 5 and 

Node 7 had these nodes not been terminal. 

 

The Random LDsplit algorithm is outlined in Algorithm 3.1. 
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Algorithm 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

3.2.3 Classification of new cases 

Given a set of (unseen) observations, the M  fitted tree-structures, , 1, 2,..., ,jT j M  are  

used as follows to generate multi-label classifications. The classification procedure resembles 

that of a binary classification tree, but is adjusted to handle the multi-label design of the fitted 

tree-structures. 

For each tree-structure the new observations are dropped into the root node of the tree and 

these filter down to the terminal nodes by means of the tree-structure rules. While a given 

observation moves through the nodes of ,jT  it collects a posterior probability for each of the 

labels , , 1, 2,..., ,j sP s m  as follows.  

Random LDsplit algorithm 

The following algorithm summarises fitting M  m  level tree-structures , 1, 2,..., ,jT j M  using 

Random LDsplit. 

1) Specify .m K   

2) Sample M  times without replacement from ,mL  producing , 1, 2,..., .jP j M  

3) For 1,2,..., :j M   

a) Producing Level 1: Fit a binary classifier to all observations , 1,2,..., ,i i Nx  and 

label ,1jP  . Use this classifier to split the observations into Node 2 and Node 3 based 

on the threshold 
,1
.

jP
t  

b) For 2,3,..., :l m   

Producing level l : Consider each node, ,  where   node number 

12 , ... ,l node number 2 1.l    

 When node   displays impurity for label ,j lP  and the number of 

observations in   ,n  fit a binary classifier to the observations in 

node   along with their corresponding response entries for label 

, .j lP  Use this classifier to split observations based on 
,
.

j lPt  

 When node   displays purity for label ,j lP  or the number of 

observations in   ,n  no binary classifier is fit to node   and node 

  does not split. This node then becomes a terminal node. 
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During fitting of the model, each node at Level s , 1,2,..., ,s m  of tree-structure, ,jT  is 

assigned a posterior probability for label , ,j sP  by calculating the proportion of training 

observations in that node that have label ,j sP  present. When a terminal node occurs at a level 

preceding Level ,m  say at Level ,t  this proportion is also found for the labels , 1 ,,..., .j t j mP P   

Therefore, an (unseen) observation that ends up in a terminal node at Level r  collects the 

assigned posterior probabilities for labels ,1 ,2 ,, ,...,j j j rP P P  by moving through nodes at Level 1 

to Level .r  If r m  the posterior probabilities of the remaining labels, , 1 ,,..., ,j r j mP P  are the 

posterior probabilities obtained from the training observations in the terminal node. It is 

important to realise that these collected posterior probabilities are not related to the posterior 

probabilities used to determine how observations move through nodes as based on the tree-

structure rules.  

Figure 3.2 extends the example of Figure 3.1 by calculating the proportion of training 

observations in each node that have the appropriate label present. At Level 1 this label is 3Y  

while 6Y  and 1Y  are considered for Level 2 and Level 3 respectively. Node 4, Node 5 and 

Node 7 are terminal nodes that appear before Level 3 (in this case all occurring at Level 2). 

Therefore, the training observations in these terminal nodes are also used to calculate the 

posterior probabilities of 1Y  at Level 3. As an example, a new data case that ends up in 

Node 13 collects the posterior probabilities  0.8 0 1  for labels 3 ,Y  6Y  and 1Y  respectively, 

while a data case that ends up in Node 4 collects the posterior probabilities  0.2 0 0.5 .  
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Figure 3.2    Example of an LDsplit tree-structure used for classification 

 

Note that in some cases during training, splitting a node may cause all the observations in a 

node to move to only one of the two sub-nodes. Due to the LDsplit constraints, the 

corresponding empty node becomes a terminal node. However, when assigning posterior 

probabilities to all existing nodes, there are no training observations in this terminal node to 

base the posterior probability calculations on. Nevertheless, during classification, the binary 

model of such a split may send some new observations to the node that is empty in training. 
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Though there may be different ways of handling this, in this work the training observations in 

the parent node of such an empty terminal node are used to calculate the posterior probability 

assigned to the node. Figure 3.3 illustrates this using a three-level tree-structure constructed 

for the permutation  4 2 6 .Y Y Y  The simple example data summarised in Table 3.1 are once 

again used to fit the tree-structure. In this case 3n  .  

The tree-structure in the left panel of Figure 3.3 shows which data cases are found in which 

nodes based on the fitted binary classifiers and label thresholds. The figure shows that the 

binary classifier fit to Node 3 finds posterior probabilities smaller than 
2Y

t  for all the data cases 

in the node. Therefore, even though a binary classifier is fit to Node 3, all training observations 

move to Node 6 making Node 7 an empty terminal node. The tree-structure in the right panel 

of Figure 3.3 gives the posterior probabilities assigned to each node. Since Node 7 is an empty 

terminal node, the training observations in Node 7’s parent node (Node 3) are used to 

calculate the posterior probabilities assigned to Node 7. Note that this strategy causes Node 6 

and Node 7 to have the same assigned posterior probability for 2 .Y  

After an observation has collected a set of posterior probabilities by filtering through all M  

tree-structures, this set is converted to a final multi-label classification. Since a tree-structure 

typically does not provide a classification for all K  labels, denote by ,k iR  the collection of 

tree-structures that produce a posterior probability for label kY  for data case ,ix  and let ,k iR  

be the number of elements in this collection. Also, let  ˆ ,j iT kx  be the posterior probability of 

label kY  for observation ix  given by the thj  tree-structure. To classify ix  for label ,kY  calculate 

 
,

,

1 ˆ ,
k i

k i

j iR
j R

T k

 x  and conclude that the label is present if this quantity exceeds .

kY
t  
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Figure 3.3    LDsplit tree-structure where a split results in an empty node 
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3.2.4 Tuning parameters 

To fit Random LDsplit, one must specify: the number of tree-levels, ,m  the size of the 

ensemble, ,M  a minimum node-size, ,n  classification thresholds, , 1,..., ,
kY

t k K  as well as 

a binary classifier for node-splitting. 

For large values of ,m  more labels are used to construct each tree-structure, fitting larger 

tree-structures taking more label correlations into account. The maximum number of levels 

per tree-structure is .m K  In this case, each label is represented in each tree-structure. Due 

to the limitation implied by ,n  using a large value of m  may lead to several terminal nodes 

occurring on levels preceding Level .m  For large m  it may even be that the terminal nodes 

are all at levels preceding Level m  and that many levels are empty. Simply using the training 

observations in the terminal nodes to make classifications for many labels that correspond to 

empty levels, seems inappropriate. Intuitively, a better strategy may be to fit many smaller 

tree-structures, setting M  large while m  is relatively small. The empirical study given in 

Chapter 4 investigates this hypothesis and provides some guidelines for setting the values of 

m  and .M   

The empirical study of Chapter 4 also investigates the classification performance of two binary 

classifiers, namely an SVM and a standard single-label decision tree. As will be seen in 

Chapter 4, the SVM classifier yields the best performance for most of the multi-label 

benchmark datasets considered.  

Furthermore, for simplicity 5n   and a classification threshold of 0.5  is used throughout this 

dissertation. Therefore, the influence of n  and , 1,..., ,
kY

t k K  on classification performance 

are avenues for future research. 
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3.2.5 Approximation of multi-label posterior probabilities  

Denote the probabilities of the label combinations given the specific input vector, ,x  by 

 1 1 2 2P , , ..., | .K KY y Y y Y y   X x  This section discusses how the posterior probabilities 

are approximated using an LDsplit tree-structure. 

For this discussion, suppose that each label is represented in the LDsplit tree-structure, i.e. 

.m K  Therefore, KL  denotes the set of all K  permutations of the elements in .L  However, 

the discussion could also be extended for .m K  Furthermore, suppose the sampled 

permutation, ,jP  from KL  is denoted by   for simplicity, i.e. .jP   

The conditional probability of the label combination given an input vector can be written as: 

 1 1 2 2P , , ..., |K KY y Y y Y y   X x  

   
1 1 2 2 1 1

P | P , ... , | ,
K K

Y y Y y Y y Y y             X x X x  

     
1 1 2 2 1 1 3 3 1 1 2 2

P | P | , P , ... , | , ,
K K

Y y Y y Y y Y y Y y Y y Y y                       X x X x X x  

  

   
1 1 1 1 1 1

2

P | P | , ... , ,
k k k k

K

k

Y y Y y Y y Y y        


      X x X x . 

Therefore, based on the above formulation,  1 1 2 2P , , ..., |K KY y Y y Y y   X x  can be 

estimated by multiple steps, with each step for one class. 

The LDsplit tree-structure approximates  
1 1 1 1

P | , ... , ,
k k k k

Y y Y y Y y      
   X x  as: 

 
1

P |
k

k k

J

k r
r

Y y R
 



  X . 

Here  
1

kJ

k r r
R


 are mutually exclusive and exhaustive sub-regions of the input space at the thk  
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level of the tree-structure, and kJ  denotes the total number of nodes at the thk  level of the 

tree-structure. 

LDsplit imposes that all the regions,   1 1

,
k

KJ

k r r k

R

 
 be represented in the form of a tree- 

structure with  
1

kJ

k r r
R


 contained in the thk  level of the tree-structure. The regions and 

posterior probabilities are approximated in a top-down greedy manner. Furthermore, the 

approximation of the posterior probabilities is affected by the permutation, ,  with each 

permutation in KL  being equally valid. The final step is to calculate the posterior probability 

estimates as an average over the ensemble of M  tree-structures. 

3.3 Label-Dependent splitting with predefined label orders 

The LDsplit method is highly dependent on the order of the labels used to construct the tree-

structures. Random LDsplit uses an ensemble of many different permutations of labels in an 

attempt to stabilise performance and produce a classification for all K  labels in a 

straightforward way. However, the question arises whether certain label orders produce better 

performing tree-structures than others. If so, can a collection of these orders be identified 

before implementing LDsplit and will an ensemble of the corresponding tree-structures lead to 

poorer, similar, or better predictive performance than Random LDsplit? Furthermore, if 

predictive performance does not suffer severely, fitting a smaller number of tree-structures 

based on a smaller set of label orders would be computationally more efficient. Consequently, 

in this section an extension of LDsplit is introduced, referred to as Conditional LDsplit. 

Conditional LDsplit incorporates a strategy to determine informative label orders used for fitting 

tree-structures.  

3.3.1 Label ordering problem 

As mentioned in Section 2.7.2, although different to LDsplit, CC is a multi-label classification 

method for which label order is important. The label order of the CC model defines the order 

in which the input space is sequentially extended. This is fundamentally different to LDsplit 

since no input space augmentation takes place when fitting LDsplit. However, both CC and 
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LDsplit are highly dependent on the label order used for fitting. Read et al. (2011) acknowledge 

that the order of the classifier chain will normally affect its accuracy. However, determining an 

optimal order is a difficult task. Read et al. (2011) therefore suggest employing an ensemble 

of differently ordered classifier chains to overcome the issue, leading to ECC being introduced 

(as outlined in Section 2.7.5). This strategy is comparable to the multiple random label orders 

used when fitting Random LDsplit. 

In recent years, this label ordering problem received more attention with research focusing on 

extensions and variations of CC (see for example Read et al. (2021)). The motivation for much 

of this research is the issue of error propagation (Senge et al., 2014). The concern is that 

uncertainty at some part of the chain can lead to an error which is then propagated down the 

chain causing further errors. An ensemble of random label orders possibly alleviates the 

negative effect of poor label orders. However, proposals have also been made where authors 

aim to determine optimal label orders.  

Jun et al. (2019) define two main types of methods to determine label order: single order and 

multiple orders. Single order methods use a single order of classifiers for the chain, whereas 

multiple order methods use multiple classifier chains with different orders to bypass the 

problem of determining one optimal label order.  

Jun et al. (2019) propose a single order method which considers pairwise conditional entropies 

of labels. This method is outlined in Section 3.3.2 below. Other examples of single order 

methods include those that aim to find an optimal label order under a particular loss function 

and base classifier. Examples of these methods include the following: 

 Dynamic Programming based Classifier Chain (CC-DP) as given in Liu and Tsang 

(2015). 

 Genetic algorithms for optimising the label ordering as given in Gonçalves et al. 

(2013) and Gonçalves et al. (2015).  
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 Novel Monte Carlo schemes as presented in Read et al. (2013) and Read et al. 

(2014).  

ECC, as discussed in Section 2.7.5, is an example of a multiple order method. Other examples 

of multiple order methods include the following: 

 One-to-One Classifier Chains (OOCC) as presented by Da Silva et al. (2014). This 

method uses a distinct label order for each new observation to be classified. By 

using a nearest neighbour approach, training observations are identified which 

resemble the new observation. The label orders that perform well for these 

neighbour observations in training are considered as candidates for the new 

observation for testing.    

 Bayesian Network (BN) methods form a sub-category of multiple order methods. 

Such methods build a BN (Koller and Friedman, 2009) or DAG to characterise the 

joint probability of all labels conditioned on the input space. A binary classifier is 

trained for each label by considering its parent labels in the DAG as additional input 

variables. By considering conditional independence conditions, these methods can 

form multiple label orders where each order is not necessarily a fully connected 

chain of all K  labels. Examples of these methods include the following: 

 Bayesian Chain Classifiers (BCC) in Zaragoza et al. (2011). This method 

learns a BN that represents the label dependency structure of the data. 

Hereafter a CC model is fit where the order of the labels is consistent with the 

BN. The simplest version of BCC is implemented in Zaragoza et al. (2011), 

since each label has at most one parent label. Therefore, only one label is 

incorporated as an additional input variable for each classifier in the chain. 

Enrique Sucar et al. (2014) present a deeper analysis of BCC to get insights 

into its behaviour. 

 Learning by Exploiting lAbel Dependency (LEAD) in Zhang and Zhang (2010). 

The authors note that all labels inherently depend on the input space, so that 
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X  is a common parent of all labels in the BN. Therefore, labels become 

dependent even if they are conditionally independent given .X  Zhang and 

Zhang (2010) attempt to remove this effect of X  on all labels as follows. First 

a binary classifier is fit for each label separately and the errors of the classifiers 

are computed. If no error is made 0.e   However, if the observation is in truth 

from class 1,  but is classified to class 0,  1.e   Similarly, if the observation is 

in truth from class 0,  but is classified to class 1,  1.e    A BN of the computed 

errors is treated as an approximation of that of the labels with X  as a common 

parent. This BN is used to determine the parents of each label which are used 

as additional input variables when fitting the classifier for each label.    

Any sensible label ordering strategy can be used for Conditional LDsplit. In this work, the 

conditional entropy-based method of Jun et al. (2019) is used to define a set of orders for 

fitting tree-structures. This method seemed particularly attractive as it is straightforward and 

easily adapts to the LDsplit framework. The conditional entropy-based method is outlined in 

the next section. 

3.3.2 Conditional entropy-based label ordering method 

Consider two labels, aY  and .bY  Let  ap Y  be the probability (relative frequency) of label aY   

and    1a aq Y p Y   be the probability of not having aY  present. Furthermore, denote by  

 aH Y  the entropy of label aY  estimated on the training data.  aH Y  is therefore calculated 

as: 

         log loga a a a aH Y p Y p Y q Y q Y   . 

 

Jun et al. (2019) argue that if     ,a bH Y H Y  then order a bY Y  is better than ,b aY Y  so that a  

label with higher entropy (higher uncertainty) is placed behind those with lower entropy (lower 

uncertainty). The argument is that a label with higher entropy, would probably lead to greater 

difficulty in classification. Therefore, labels with lower entropy should be considered first to 
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reduce the risk of error propagation. However, instead of only evaluating label entropies 

separately, Jun et al. (2019) go further and include label relationships by extending their 

argument to conditional entropies. 

Let  |a bH Y Y  denote the conditional entropy of aY  conditioned on ,bY  estimated on the  

training data.  |a bH Y Y  is therefore calculated as: 

     
,

| , log |
a b

a b a b a b
y y

H Y Y p y y p y y  , 

where  ,a bp y y  is the value of the joint probability mass function of aY  and ,bY  and  

 |a bp y y  is the value of the conditional probability mass function of aY  given .bY   

By theoretically extending their arguments of entropy to conditional entropy, Jun et al. (2019) 

show that if    | | ,a b b aH Y Y H Y Y  order a bY Y  is better than order .b aY Y  With some intuitive 

generalisations, the argument is extended to more than two labels.  

Jun et al. (2019) construct a K K  matrix of conditional entropies where entry  ,a b  gives 

 | ,b aH Y Y  after which the sum of each row is calculated. If row a  has the smallest row sum 

among the K  rows of the matrix, aY  should be placed at the end of the label ordering. The 

tha  row and tha  column of the conditional entropy matrix is now deleted. Again, the row sums 

of the now    1 1K K    matrix is calculated to find the minimum row sum. The 

corresponding label takes the  1 th
K   position in the label ordering after which the matching 

row and column are deleted from the matrix. This is repeated until all the labels have been 

ordered. 

Although it is possible to use this single ordering to fit one K  level LDsplit tree-structure, the 

method of Jun et al. (2019) is slightly adapted in this work so that multiple m  level tree-

structures can be fit, where .m K   
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3.3.3 Conditional LDsplit 

Conditional LDsplit implements a strategy that determines a set of label orders to fit LDsplit 

tree-structures. Denote such a set of orders by .orderL  Since m  level tree-structures are 

constructed for LDsplit, where ,m K  each element of orderL  is an ordering of m  distinct 

labels. The size of orderL  is dependent on the label ordering strategy that is used.  

In general, to fit M  m  level tree-structures, randomly sample M  orderings without 

replacement from orderL  and use these to fit the corresponding tree-structures as before. In 

other words, step 3 of Algorithm 3.1 is applied to the sampled label orders. 

As mentioned, different strategies may be used to determine .orderL  In this work the label 

ordering strategy of Jun et al. (2019) outlined in Section 3.3.2 above is applied to each of the 

K

m

 
 
 

 possible combinations of selecting m  labels from ,K  thus forming a collection of 
K

m

 
 
 

 

orders. 

Note that in this work if the minimum row sum of the conditional entropy matrix corresponds 

to two or more rows, the label of the first of these rows is used for the next position in the label 

ordering and the corresponding row and column of this label are deleted from the conditional 

entropy matrix. 

3.4 Considerations for datasets with large K  

With the upsurge in online content, modern multi-label datasets often have many labels. This 

challenging aspect of multi-label data was also discussed in Section 1.4.3. For many multi-

label learning methods, as the number of labels increases the methods become more 

computationally expensive. This is also true for LDsplit. It would therefore be valuable to 

outline how LDsplit can be scaled for such settings so that the computation time and computer 

memory needed to fit LDsplit for datasets with larger ,K  remains reasonable. Two scaling 

concerns of LDsplit are highlighted in this section. The first scaling concern is that if M  is not 
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set sufficiently large for datasets with large ,K  some labels may be excluded from the 

ensemble entirely, and no classification would be produced for these labels. Secondly, in this 

work, the sizes of mL  and orderL  are dependent on .K  In settings with large ,K  considerable 

computation time and computer memory is needed if all label orders are to be generated first, 

before randomly sampling M  of these label orders for fitting tree-structures. These two 

concerns are discussed in the following two sections. For each concern, the scaling technique 

applied in this work is given. 

3.4.1 Setting M  sufficiently large to ensure all labels are represented 

Since M  label orders are randomly sampled from mL  or orderL  to fit Random LDsplit or 

Conditional LDsplit, choosing M  too small could cause some labels to be excluded from all 

the selected label orders in the ensemble. Consequently, no classification would be produced 

for such excluded labels. Generally, M  should be so that at least K
mmM K M   . 

However, this will not be sufficient to ensure that all labels are represented at least once in the 

ensemble.  

For any label, the probability to be included in a label order is given by .m
K  Furthermore, since 

each of the M  label orders are sampled independently, the probability distribution of the  

number of times any label is represented in the ensemble is given by  , .m
Kbinomial M  As a  

result, the probability of a label being excluded from the ensemble is given by  1 .
Mm

K  

Consequently, by increasing M  the probability of excluding a label from the ensemble 

decreases.  

As a simple example, consider a dataset with 5000K   labels and suppose the number of 

tree-levels is set to 3.m   Figure 3.4 illustrates how the probability of excluding a label 

decreases as the ensemble grows. To ensure the probability of excluding a label is smaller 

than 0.001  for example, approximately 12000  tree-structures will have to be fit. 
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Figure 3.4    Probability of excluding a label when 5000K   and 3m   

 

It does however remain difficult to know at what point M  is set sufficiently large. Moreover, 

for datasets with large K  a sufficiently large value of M  will most likely require substantial 

computation time. Therefore, in this work the following strategy is used to ensure all K  labels 

are represented at least once in the ensemble of tree-structures when K  is large ( 100K  ).  

 Scaling technique 

Let minM  denote a user-specified starting value for the size of the LDsplit ensemble. The value 

of minM  will be influenced by the value of K  and the computation time available. After minM  

label orders have been established for either Random LDsplit or Conditional LDsplit, the label 

orders are reviewed to verify which (if any) of the K  labels are excluded from all orders. The 

collection of excluded labels is denoted by excludedL  and the size of excludedL  is denoted by 

excludedL . 

For Random LDsplit, if 1,excludedL   excludedL  is randomly split up into excludedL

m
 
   

m   permutations that are then used to fit additional tree-structures. If excludedL  is not a 
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multiple of ,excludedL

m
 
   labels are randomly sampled from L  to augment the excluded

th
L

m
 
   

permutation. 

For Conditional LDsplit, if 1,excludedL   the collection of excluded labels is randomly split up 

into excludedL

m
 
   disjoint subsets of size .m  If excludedL  is not a multiple of ,excludedL

m
 
   labels are 

randomly sampled to augment the excluded
th

L

m
 
   set of labels. Each of the excludedL

m
 
   sets of labels 

is thereafter ordered using the conditional entropy-based method of Jun et al. (2019). These 

orders are used to fit excludedL

m
 
   additional tree-structures.  

3.4.2 Size of mL  and orderL  

In this work, the sizes of mL  and orderL  are   
!

!
K

K m  and 
K

m

 
 
 

 respectively. Consequently, the 

sizes of these collections increase as K  increases. Generating all label orders in these  

collections before randomly sampling M  of them without replacement, can take considerable 

computation time and computer memory for large .K  Therefore, in this work, to reduce 

computation time and computer memory needed for datasets with large K  ( 100K  ), the 

following strategy is used. 

 Scaling technique 

When fitting either Random LDsplit or Conditional LDsplit, minM  random samples of size m  

are initially taken from L  without replacement. 

For Random LDsplit, the order in which the labels appear for each of the minM  samples give 

the permutations ,jP  min1,2,..., .j M  Duplicates of permutations may occur, in which case 

the same permutation is used for more than one tree-structure. 
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For Conditional LDsplit, each of the minM  label samples is ordered using the conditional 

entropy-based method of Jun et al. (2019). Duplicates of orders may once again occur, 

causing the same label orders to be used for more than one tree-structure. 

After this technique is applied, the scaling technique outlined in the previous section can be 

applied to ensure all K  labels are represented in the ensemble. 

Since the sizes of mL  and orderL  are also influenced by the value of ,m  the scaling technique 

outlined here could also be applied when users want to consider large values of .m   

3.5 Fitting LDsplit in R 

As mentioned, in this dissertation the programming language R is preferred. Therefore, all R-

functions to fit Random and Conditional LDsplit (as described in Section 3.2 and Section 3.3), 

as well as functions to classify observations using the fitted LDsplit ensembles, are provided 

in Appendix C. For each subsection of Appendix C, a diagram that contains short descriptions 

of the functions is provided to summarise the interaction of the respective functions. 

To fit an LDsplit ensemble and obtain the appropriate output, the R-packages rlist (Ren, 2021) 

and combinat (Chasalow, 2012) are required. Furthermore, the written functions in 

Appendix C allow for two binary base classifiers within Random LDsplit and Conditional 

LDsplit. The first of these is an SVM, as implemented in the R-package e1071 (Meyer et al., 

2022). The default SVM-function arguments scale the data to zero mean and unit variance, 

use a soft margin and a radial basis kernel with 1
p   and 1.C   The second base classifier 

is a traditional binary classification decision tree, as implemented in the R-package rpart 

(Therneau et al. 2022). When a Conditional LDsplit model is fit, the conditional entropy-based 

ordering strategy of Jun et al. (2019) is implemented using the adaptation outlined in 

Section 3.3.3. The function condentropy() from the R-package infotheo (Meyer, 2022) is used 

to calculate conditional entropy. 
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Appendix C also contains functions to apply the two scaling techniques described in 

Section 3.4. To apply these techniques the R-package FRACTION (Ming, 2012) is required. 

It is possible to implement parallel processing in R when fitting an LDsplit ensemble, since 

tree-structures are fit independently. Each tree-structure considers the same data but applies 

a different label order. Consequently, the tree-structures can be fit simultaneously on different 

cores so that the total running time is reduced. The adaptations required to fit an LDsplit 

ensemble using parallel processing is given in Appendix C. Note that the R-package doParallel 

(Daniel et. al., 2022) is required.  

3.6 Distinctive and favourable properties of LDsplit compared to related methods 

In this section distinctive properties of LDsplit, compared to related methods such as those 

given in Section 2.6 and Section 2.7, are discussed. While doing so the favourable properties 

of LDsplit are brought to the foreground. The section concludes with a summary of the major 

contributions of LDsplit as a multi-label tree-based ensemble classifier. 

For LDsplit, one label is used per tree-level and simple binary classifiers are used to split the 

data. However, these resulting homogenous nodes are used as priors for estimation of the 

probability of another label. Therefore, observations that make up a node at a level of an 

LDsplit tree-structure do not only share information regarding the label used for that level, but 

also share information regarding the labels of parent levels. In this way, possible shared 

information and higher-order label correlations are included in an LDsplit tree-structure 

implicitly and in a simple manner. This is advantageous since it is widely acknowledged that 

effective exploitation of correlation among different labels is crucial for the success of a multi-

label classifier (Zhang and Zhang, 2010). Simple problem transformation methods such as BR 

or CLR and the ensemble method EBR, for example, only consider first- and second-order 

label correlations.  

The problem transformation method CC aims to improve upon BR by including higher-order 

label correlations through a chain of binary classifiers. Therefore, for both CC and LDsplit, 

label ordering helps to incorporate higher-order label correlation into the models. However, for 
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CC the label order determines the order in which the input space is sequentially extended, 

whereas for LDsplit the label order determines the labels used for the sequential levels of an 

LDsplit tree-structure. No input space augmentation takes place within LDsplit. Since LDsplit 

sequentially splits the data, this is also different to CC which uses all the data cases when 

fitting each binary classifier. For CC it is assumed that label correlations are shared by all the 

data cases at once, so that global label correlations are exploited. However, with LDsplit, it is 

assumed that label correlations are shared within subgroups of the data cases. This is a 

possible advantage of LDsplit over CC, since label correlations are not necessarily shared 

globally by all data cases. 

As mentioned in Section 2.6, Huang et al. (2012) argue that it can be beneficial to exploit label 

correlations locally by dividing the data into subgroups. However, in their work this is done by 

performing clustering on the label space alone to develop an additional LOC input variable. 

On the other hand, for CBMLC the clustering step is based only on the input space. Different 

to the LOC and CBMLC frameworks, LDsplit considers the interactions between both input 

variables and labels when attempting to exploit local label correlations by dividing the data 

into subgroups. The intention is that observations that make up a terminal node share label 

information. Figure 3.5 below illustrates this by extending the simple image annotation 

example of Figure 1.4 in Chapter 1 to LDsplit. The LDsplit tree-structure of Figure 3.5 splits 

the data based on the label order [Grass, Bird, Tree]. Notably, images in the respective 

terminal nodes share label information. For example, Node 4 images contain only trees, 

whereas Node 6 images contain both grass and trees but no birds. Since an LDsplit tree-

structure splits observations based on their posterior probabilities given by the fitted classifier, 

in a node some training observations may differ from the majority of observations with respect 

to the label of the level. This is illustrated by image 6x  which moves to Node 7 not Node 6, 

even though no birds are in truth present in the image. 
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Figure 3.5    Images split into subgroups based on LDsplit tree-structure 

 

Noticeably, LDsplit holds certain advantages over problem transformation methods. It is 

noteworthy that these advantages remain even in the specific case where decision trees are 

used as base classifiers for problem transformation methods. For example, when fitting BR 

with a random forest of decision trees as base classifier, no exploitation of label correlation 

takes place. For CC, by extending the input space of each decision tree classifier with the 

label relevancies of all previous classifiers in the chain, the label indicator variables become 

candidates for splitting the nodes. However, it could be that these label indicator variables are 
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never chosen as splitting variables, so that the splitting rules are dominated by the original 

input variables. In this case the CC model resembles a BR model. In another example, LP 

suffers from the disadvantage that the transformation of the multi-label data to a multi-class 

structure may lead to a dataset with many classes and few observations per class. Therefore, 

when fitting LP with a decision tree base classifier, this property could lead to few observations 

in tree-nodes and cause the splitting rules of the tree to be unstable. 

As mentioned in Section 2.7.5 two well-known ensemble methods aimed at improving the 

respective problem transformation methods CC and LP, are ECC and RA k EL. 

ECC fits an ensemble of M  CC models to reduce the overall negative impact of poorer label 

orders and to avoid the difficult task of determining a single optimal label order. This strategy 

is comparable to Random LDsplit, which randomly samples M  label permutations to fit the 

ensemble of LDsplit tree-structures. However, the implementation of an ensemble also gives 

rise to additional flexibility for the LDsplit model. When an ensemble is fit, it is non-compulsory 

for each tree to give a classification for all K  labels. Instead, each tree can be fit using a 

subset of m K  labels, and the M  classifications can be combined to obtain a final multi-

label classification for all K  labels (as outlined in Section 3.2.3). A large tree that uses all the 

labels may overfit the data. However, by setting ,m K  an ensemble of K  level trees, some 

of which have terminal nodes on levels far preceding level ,K  is prevented. A similar strategy 

could be applied to ECC, so that each member of the ensemble is not necessarily a fully 

connected chain of the K  labels. However, this is not the standard procedure of fitting ECC 

as given in Read et al. (2011). By only considering a subset of m  labels per tree-structure 

and one label per tree-level for binary splitting, LDsplit attempts to learn slowly from the data 

while simultaneously implicitly exploiting local higher-order label correlations. This is a 

distinctive property of LDsplit compared to ECC, which attempts to capture label dependencies 

in a global manner using all the labels and data observations when fitting each ensemble 

member. 
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For RA k EL, the multi-label data are divided into smaller multi-label datasets using random 

subsets of the labels. In Tsoumakas et al. (2011), LP is fit to each sub-dataset. If LDsplit tree-

structures, as defined in this work, are instead fit to each sub-dataset, RA k EL o  would build 

an LDsplit model.  

LDsplit also possesses unique properties when specifically compared to other multi-label tree-

based methods. Firstly, a binary split is produced for each LDsplit node using a binary 

classifier defined by a single label per level. Any binary base classifier can be applied. 

Therefore, node-splitting is not necessarily based on a single input variable and splitting-value 

(which is the case for traditional trees), unless a tree-stump is used as base classifier. A further 

unique property of LDsplit is the use of random or predetermined hierarchical label structures 

that implicitly incorporates higher-order label correlations by considering a single label per 

tree-level. Popular multi-label trees such as ML-C4.5 and MODT, as well as less well-known 

multi-label trees, ML-SVMDT and LaCova, consider all K  labels when defining a splitting rule 

for a node and uses no hierarchical label structure.  

HOMER is a multi-label tree-based method that exploits higher-order label correlations. 

Similar to LDsplit, HOMER transforms the initial learning task into several easier sub-tasks 

consisting of fewer training observations and labels by means of a tree-shaped hierarchy. 

However, different to LDsplit is the fact that HOMER performs balanced k means clustering 

on the label space to form this label hierarchy. Moreover, this recursive label clustering 

procedure, which is based solely on the label space, determines how training observations 

are split into sub-nodes. The reason for this is that the training observations used per node 

are all the training observations having at least one of the respective labels of the meta-label 

present. This allows the respective nodes at a given level of a HOMER hierarchy to not 

necessarily be disjoint. Node-splitting of training data is therefore not determined by a fitted 

single-label classifier at the parent node which incorporates input variable interaction with the 

original labels to create disjoint sub-nodes, such as that of LDsplit. Only after the HOMER 
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tree-shaped hierarchy has been formed, are local multi-label classifiers fit to the training data 

for classification of unseen observations. Furthermore, Papanikolaou et al. (2018) fit one 

HOMER tree-shaped hierarchy to the data which includes all K  labels. As illustrated in 

Section 2.7.3, the design of HOMER gives large importance to the first clustering split of the 

labels. If the multi-label classifier assigns a 0  to one of the meta-labels, an immediate final 

classification of 0  is assigned to all the labels in this meta-label. This is different to the slow 

learning approach of LDsplit where an ensemble of trees is formed, with each tree considering 

m K  labels and one label per tree-level for binary splitting. 

The multi-label tree-based ensemble methods of Section 2.7.4 apply bagging or random 

forests to form an ensemble of multi-label trees. Although not done in this work, it is possible 

to fit a bagged or random forest ensemble of LDsplit trees. However, for LDsplit diversity of 

ensemble members is achieved by means of a different label order and label subset per 

ensemble member.  

A further difference between LDsplit and the specific ensemble method, SOSHF, is that 

multiple structured labels are mapped to a single label per node when fitting SOSHF. LDsplit 

on the other hand considers simple label orderings of the original labels per tree. The two 

methods therefore make use of dissimilar single-label problems per node.  

An ML-Forest tree recursively splits data cases into disjoint sub-nodes so that learning models 

at different levels of the tree work together to reveal multiple label concepts belonging to the 

data (Wu et al., 2016). Even though an LDsplit tree is based on a similar objective, the splitting 

procedures of the two methods are markedly different. Firstly, an ML-Forest tree does not 

include a label ordering strategy that considers one label per tree-level; instead multiple labels 

are used to build a BR model per node.  Furthermore, node-splitting of an ML-Forest tree is 

most often not binary. Figure 3.6 illustrates the fundamental differences between LDsplit and 

ML-Forest in broad terms.  

 

Stellenbosch University https://scholar.sun.ac.za



99 
 

 

Figure 3.6    Differences between LDsplit and ML-Forest 

 

As shown in Figure 3.6, a BR model is fit at the root node of each ML-Forest tree and each 

observation is classified to the class with maximum confidence score considering the K  fitted 

classifiers. This splits the root node into potentially K  disjoint nodes. Hereafter each node is 

once again potentially split into many child nodes. In contrast, LDsplit considers an ordered 

label subset per tree and uses binary splitting to create disjoint sub-nodes. 

Since nodes of an ML-Forest tree are potentially split into many child nodes, a shallow tree 

with very few training data cases poses a risk for overfitting. Wu et al. (2016) attempt to combat 

this risk by fitting a bagged ensemble of ML-Forest trees. It may however be worthwhile to 

consider a similar strategy as that of LDsplit, so that each ML-Forest tree is fit considering only 

a subset of m K  labels. In this way each node of an ML-Forest tree would be split into a 

maximum of m  child nodes. Note that when applying this strategy, even in the simplest case 
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with 2,m   LDsplit and ML-Forest will continue to fit different trees. This is illustrated in 

Figure 3.7 using a simple example. 

Figure 3.7 gives an extract of a multi-label dataset consisting of 12N   data cases and their 

corresponding label indicator variables for two labels, AY  and .BY  A BR model is fit to the data. 

This produces confidence scores for each of the data cases regarding each of the two labels. 

Suppose that the label ordering for the LDsplit tree is  A BY Y  and 0.5.
AY

t   The root node of 

the LDsplit tree is therefore split considering only the confidence scores of .AY  Data cases for 

which the confidence score of AY  is less than 0.5  move down the left branch of the node and 

data cases with a confidence score exceeding 0.5  move down the right branch. If the same 

data are split using the ML-Forest method, a different partitioning is found. This is because an 

ML-Forest tree splits data cases based on their maximum confidence score. Since a different 

initial partitioning is found, the child nodes of the respective trees also differ.  
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Figure 3.7    Initial split for LDsplit and ML-Forest tree 
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In conclusion the following summary emphasises the main contributions of LDsplit as a multi-

label tree-based ensemble classifier:  

 LDsplit implicitly includes possible shared information and higher-order label 

correlations in a simple manner. This is advantageous since it is generally agreed 

that exploitation of label correlation is a desirable property of a multi-label 

classification method. 

 LDsplit exploits label correlations locally by splitting the data into subgroups. This 

is advantageous since label correlations are not necessarily shared globally by all 

observations. 

 Different to traditional multi-label trees, LDsplit uses a random or predetermined 

hierarchical label order to implicitly exploit higher-order label correlations in a 

simple manner.  

 By fitting an ensemble of trees, additional flexibility is achieved since each tree can 

be based on a subset of m K  labels. Therefore, diversity of ensemble members 

is achieved through a different label order and label subset per ensemble member. 

 An LDsplit ensemble learns slowly from the data by considering m K  labels per 

tree and one label per tree-level to perform binary splitting of observations. 

 This splitting process incorporates input variable interaction, so that the resulting 

hierarchy is not based on the label space alone. 

 Any binary base classifier can be applied for node-splitting. This allows for further 

flexibility since splitting rules are not necessarily based on single input variables 

and splitting-values, such as for traditional trees. Binary classifiers may also be 

selected per label. 

 Another important advantage of LDsplit is discussed in Chapter 5, namely that 

LDsplit can be useful for inference regarding global and local importance of 

variables. 
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3.7 Conclusion 

In this chapter a new tree-based multi-label ensemble method, LDsplit, was proposed. The 

method fits an ensemble of trees with each tree based on an ordered label subset. By 

considering one label per tree-level, a simple binary classifier is used to split the data cases 

in the nodes. However, possible shared information and local higher-order label correlations 

are implicitly included in the model, since a tree-level depends on its parent levels that were 

formed using other labels.  

Two different label ordering strategies were introduced, namely Random LDsplit and 

Conditional LDsplit. A detailed description of the fitting and classification procedures were 

given. Scaling techniques for large K  were also given for both strategies to extend the 

contribution of this work to settings with larger .K  The functions required to implement LDsplit 

are provided in Appendix C. 

Furthermore, distinctive and favourable properties of LDsplit compared to other related multi-

label learning methods were discussed in detail. LDsplit is a unique multi-label tree-based 

classifier since it applies an ensemble of random or predetermined hierarchical label structures 

and considers a single label per tree-level for binary splitting. One of the main advantages of 

LDsplit is that by using hierarchical label structures, higher-order label correlations are 

implicitly included in the model in a simple manner. Moreover, by splitting the data into 

subgroups using an ensemble of tree-structures, LDsplit models the dependence of labels in 

a local manner. Other multi-label classification models in the literature that attempt to capture 

label dependencies often do so in a global manner using all the labels and data observations 

at once. LDsplit attempts to learn slowly from the data by using only a subset of labels per tree 

and one label per tree-level for binary splitting. Furthermore, since input variable interaction is 

incorporated in the node-splitting process, the resulting hierarchy defined by each tree is not 

determined by the label space alone.  

The next chapter empirically evaluates Random LDsplit and Conditional LDsplit using multi-

label benchmark datasets. 
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Chapter 4: Empirical evaluation of LDsplit  
 

4.1 Introduction 

In this chapter an empirical study is performed on standard publicly available multi-label 

benchmark datasets. The study consists of three stages.  

Firstly, the properties of the Random and Conditional LDsplit tuning parameters, m  and ,M  

are investigated in Section 4.2. This tuning parameter study is performed on the standard 

training parts of the benchmark datasets by means of cross-validation. The Random LDsplit 

and Conditional LDsplit results are discussed in Section 4.2.1 and Section 4.2.2 respectively. 

Based on the cross-validation results, conclusions are drawn regarding the interactions 

between the tuning parameters m  and ,M  and general parameter recommendations are 

made. Furthermore, appropriate values for m  and M  are selected for each benchmark 

dataset based on the cross-validation results (see Table 4.1 and Table 4.2). 

In the second stage, Random and Conditional LDsplit are compared in Section 4.3. This is 

done by directly comparing the cross-validation results achieved on the training data by the 

two models. This gives insight into the label ordering problem and how predictive performance 

can be influenced when smaller ensembles of predefined label orders are considered. 

Finally, in the last stage, the predictive performances of Random LDsplit and Conditional 

LDsplit are compared to other well-known and related multi-label learning methods in 

Section 4.4. Up until this stage, only the standard training data parts of the benchmark 

datasets were considered by applying cross-validation. Therefore, in Section 4.4, the full set 

of training instances for each benchmark dataset is used to train the selected LDsplit models 

of Section 4.2. Hereafter each LDsplit model is used to classify the standard test datasets of 

each benchmark dataset. Performance is evaluated using multi-label evaluation measures as 

defined in Section 2.4. Since the models are trained and tested on the same standard train 

and test data splits, performance is directly comparable to that of the learning methods 
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considered in Madjarov et al. (2012) and Wu et al. (2016). In addition to the learning methods 

of Madjarov et al. (2012) and Wu et al. (2016), four models (as recommended in the recent 

study by Bogatinovski et al. (2022)) are trained on the standard training datasets, and their 

classification performance evaluated using the standard test datasets. Ultimately, the 

classification performance of the LDsplit models is compared to that of 17  previously 

proposed multi-label learning models across six different benchmark datasets considering 12  

evaluation measures. Furthermore, to assess the overall differences in performance of LDsplit 

compared to the other models, the corrected Friedman test (Iman and Davenport, 1980) and 

the post-hoc Nemenyi test (Nemenyi, 1963) are used. As will be seen in Section 4.4, both 

Random and Conditional LDsplit display very competitive results on the benchmark datasets. 

In some cases statistically significant improvements in predictive performance are observed 

(see Figure 4.3 and Figure 4.4). 

The six multi-label benchmark datasets used throughout this chapter are: Emotions, Scene, 

Yeast, Medical, Enron and Corel5k. A summary of all the dataset characteristics is given in 

Table 2.2 with detailed descriptions of each dataset given in Section 2.3. These datasets were 

selected based on the following motivations. Firstly, these datasets are frequently used in 

multi-label empirical studies. Therefore, by maintaining the standard train and test data splits 

from the literature, the results of this chapter are reproducible and comparable to other 

research. This makes the empirical study of this chapter more accessible and useful to 

researchers. Secondly, the datasets are from different domains namely, one dataset from the 

music domain, one dataset from the biology domain and two datasets from both the image 

and text domains respectively. Lastly, the datasets differ in size and other descriptive 

properties as outlined in Section 2.2. It can be noted that the number of training instances, 

,N  vary from 391 up to 4500,  the number of input variables, ,p  vary from 72  up to 1449,  

the number of labels, ,K  vary from 6  to 374,  and the average number of labels per sample 

vary from 1.074  up to 4.237.   
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In this chapter, all Random and Conditional LDsplit models are fit as described in Chapter 3. 

For simplicity, the minimum node-size of all LDsplit models fit in this chapter is fixed throughout 

at 5n   and a threshold of 0.5  is used for all labels. For all Conditional LDsplit models, the 

conditional entropy-based ordering strategy of Jun et al. (2019) (Section 3.3.2) is implemented 

using the adaptation outlined in Section 3.3.3. Furthermore, since the Corel5k data has 

100,K   the two scaling techniques described in Section 3.4 are applied when fitting all 

LDsplit models to this data.  

Two different binary classifiers are considered to split the nodes of LDsplit tree-structures in 

this chapter. The first of these is an SVM as implemented in the R-package e1071 (Meyer et 

al., 2022) and the second is a traditional binary classification decision tree as implemented in 

the R-package rpart (Therneau et al., 2022). The default SVM-function arguments scale the 

data to zero mean and unit variance, use a soft margin and a radial basis kernel with 1
p   

and 1.C   Furthermore, the Gini index measures node impurity when a decision tree is used 

as base classifier for LDsplit.  

Lastly, note that for the Medical, Enron and Corel5k data, some labels are absent for all 

training data cases. Since LDsplit nodes become terminal if the node is pure with respect to 

the current label, using such a purely absent label at any level of an LDsplit tree would 

immediately result in terminal nodes at this level. In this study, such labels are not allowed to 

be first in any label ordering. This prevents tree-structures having a root node as a terminal 

node. In particular, for Random LDsplit all permutations which have the first label entry equal 

to one of the purely absent labels, are removed. However, the same strategy cannot be 

implemented for Conditional LDsplit, since the conditional entropy-based label ordering 

method of Jun et al. (2019) often places such pure labels as the first entry in the label ordering. 

By removing all these label orders, some pure labels may be excluded from the ensemble 

entirely, and no classification for such labels can be produced. Instead, to overcome this, pure 

labels that make up the first entry of a label order are swapped with the subsequent label in 
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the ordering for Conditional LDsplit. Those orders which also have a pure label as the second 

label in the ordering are removed. This gives a set of label orders with no purely absent label 

as the first entry in any ordering. 

The following three sections outline and discuss the results of the three stages of the empirical 

study performed in this chapter. 

4.2 Empirical evaluation of LDsplit tuning parameters 

In this section the standard training datasets of the six benchmark datasets are used to 

examine the interaction between tuning parameters m  and M  of LDsplit. Based on the 

results, appropriate tuning parameter values are selected for each benchmark dataset for 

Random and Conditional LDsplit. These values are used in Section 4.4 to fit LDsplit models 

of which the predictive performance is compared to that of other multi-label learning methods. 

For each training dataset five-fold cross-validation is applied by randomly splitting the 

observations of each training dataset into five approximately equal folds. With each fold in turn 

used as a validation set, various Random and Conditional LDsplit models are fit by varying 

the values of m  and .M  The fitted models are used to classify the validation set after which 

performance is evaluated using standard multi-label evaluation measures. The results of four 

example-based evaluation measures (Hamming loss, accuracy, F-score and subset 

accuracy), as well as two label-based evaluation measures (macro-F1 and micro-F1), are 

considered. Detailed definitions of the evaluation measures can be found in Section 2.4.  

In this study, the grid of m  values ranges from 2m   to 6.m   For the Emotions and Scene 

data, this allows the LDsplit trees to reach their maximum number of levels, 6.m K   For 

some of the models and datasets, it did not appear beneficial to increase m  beyond 6,  since 

the results showed signs of overfitting. For this reason, the maximum number of tree-levels 

considered throughout this study is 6.m   Furthermore, the ensemble size is limited to 

1000M   throughout. This is an appropriate upper limit since ensemble sizes are not 

increased beyond 1000M   in Madjarov et al. (2012), Wu et al. (2016) or Bogatinovski et al. 
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(2022). Note that, unless otherwise stated, all M -values given for Corel5k results correspond 

to the user-specified minM  value. 

The following two sections summarise and discuss the Random and Conditional LDsplit 

results respectively. 

4.2.1 Evaluation of tuning parameters for Random LDsplit  

The detailed Random LDsplit cross-validation results for each benchmark dataset can be 

found in Appendix A.1. For all the datasets the average performance of each m  and M  

combination over the five cross-validation folds are provided considering each of the six 

evaluation measures. The standard deviation of performance over the five folds are given in 

brackets and the model that produces the best performance for each evaluation measure is 

given in bold for each dataset. The results are discussed in detail below. However, for a quick 

overall visual interpretation of the interaction between tuning parameters m  and M  for 

Random LDsplit, Figure 4.1 provides a summary for the Emotions, Scene and Yeast data 

when an SVM is used as base classifier. Since M  label permutations are randomly sampled 

from ,mL  a stabler representation of the Random LDsplit results over the five folds is obtained 

by refitting each model five times per fold. Therefore, the results in Figure 4.1 show the 

average performance of each m  and M  combination based on the five repetitions as well as 

the five-fold cross-validation.  

The variation in performance due to the random selection of M  label permutations can also 

be investigated. This is done as follows. A single validation fold of the Emotions data is 

considered, and the variation in performance is calculated after refitting each Random LDsplit 

model five times. The results for each m  and M  combination when an SVM is used as base 

classifier are given in Appendix A.2. The results for Hamming loss and F-score when 5m   

are given in Figure 4.2 to aid in the discussion of the general behaviour of these results. 
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Figure 4.1    Results for different choices of m  and M  for Random LDsplit 
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Emotions 5m   
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Figure 4.2    Average model performance and standard deviations based on five repeats  

 

 Overview of interaction between tuning parameters 

Figure 4.1 shows that for different values of ,m  performance stabilises after M  is increased 

beyond approximately 100M   for Emotions, Scene and Yeast. Increasing the value of M  

beyond 100  does not lead to a large increase or decrease in performance for these datasets. 

However, for the Emotions data, models with 3m   show a slight decrease in performance 

for accuracy and the F-score when M  is large. Nonetheless, in general overfitting does not 

seem to be a concern for large values of M  in Figure 4.1. Therefore, according to Figure 4.1, 

to ensure the optimal performance is achieved by Random LDsplit, M  should be set large 

with respect to .K  It could be that since labels are randomly permuted when fitting Random 

LDsplit, independent labels are sometimes grouped together to fit an LDsplit tree which 

models non-existing dependencies. However, when a large ensemble is considered, these 

non-existing dependencies should average out. 

Figure 4.2 illustrates that the variation in model performance due to the random selection of 

M  label orders is small and becomes less as the ensemble size increases. This result gives 

more incentive to set M  large in general. 
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Regarding the choice of ,m  slight differences for each performance measure are observed 

when M  is large in Figure 4.1. Subset accuracy for the Scene data appears to be the most 

sensitive to the choice of .m  However, when M  is not sufficiently large, the results for larger 

values of m  are more unstable than those for smaller values of .m  Consider the Macro-F1 

results of the Emotions data in Figure 4.1 as an example. When 20,M   the performances 

of models with 5m   and 6m   are much worse than those with 5.m   This implies that for 

large values of ,m  if M  is not set sufficiently large, the negative consequences are more 

severe compared to the case where m  is small and M  is not set sufficiently large.  

Since computation cost increases with the value of ,m  smaller values of m  are preferred in 

general, unless larger m  values lead to substantial performance improvements. In this case 

however, the results of Figure 4.1 indicate that large m  do not only lead to additional 

computation cost, they may also cause unstable model behaviour if M  is not set sufficiently 

large. Furthermore, if M  is in fact set sufficiently large for a large value of ,m  Figure 4.1 

shows that the performance of the model does not improve substantially from that of a model 

with a smaller value of .m  These findings also remain generally true when considering all the 

results of Appendix A.1.  

Additionally, results of Appendix A.1 indicate that m  can be set too large so that overfitting 

occurs in some cases. For example, accuracy, F-score, subset accuracy, macro-F1 and 

micro-F1 or the Emotions data become slightly unstable for Random LDsplit models with a 

decision tree base classifier and 6.m   Fitting an LDsplit model with a large value of m  can 

result in an ensemble of trees where each tree has many terminal nodes occurring on levels 

preceding Level .m  This could make the model more susceptible to error propagation since 

the low-level terminal nodes are used to determine classifications for a larger number of labels. 

Consequently, an error can be propagated to a greater number of labels. 
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In general, it appears that the choice of m  has a greater effect on classification performance 

than the choice of .M  For example, for small ,m  performance may improve by increasing m  

by 1,  while increasing M  by say 50  may have less influence on classification performance 

in comparison. 

By considering the above observations for m  and ,M  as a rule of thumb it appears best to 

set m  small ( 3 4m   ) while M  is large with respect to K  ( 5 10K M K  ) for Random 

LDsplit. This agrees with the hypothesis of Section 3.2.4. 

This rule of thumb provides a convenient guideline for setting the values of m  and M  for 

Random LDsplit; however, the predictive performance remains dependent on the multi-label 

dataset at hand. Therefore, if computation time allows for it, an adequate way to determine 

the values of m  and M  is by means of cross-validation. This is the approach followed in this 

study. Table 4.1 gives the selected m  and M  values for each Random LDsplit model across 

the six benchmark datasets. Unless otherwise stated, models with the lowest average 

Hamming loss across the five cross-validation folds are selected per dataset. If the minimum 

Hamming loss is given by more than one model, the model with the smallest values for m  and 

M  among them is selected.  

When determining an appropriate binary base classifier for LDsplit, the performance of 

candidate classifiers over validation folds of the training data can be considered. In this study, 

results from Appendix A.1 show that the Random LDsplit models with an SVM base classifier 

(R-LDsplit_SVM) achieve better performance than those with a decision tree base classifier 

(R-LDsplit_Tree), for all datasets except the Medical data. The less complex decision tree 

base classifier seems to underfit the Emotions, Scene, Yeast, Enron and Corel5k data. 

However, for the Medical data, R-LDsplit_Tree performs better overall. This indicates that the 

simpler decision tree classifier is a better choice for the bag-of-words data. Even though the 

Enron data is also summarised using a bag-of-words framework, R-LDsplit_SVM shows better 
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predictive performance for the data. Further differences between the performance of 

R-LDsplit_SVM and R-LDsplit_Tree are highlighted in Section 4.4 when their predictive 

performance on test data is compared to that of other previously proposed methods. 

A detailed discussion of the Random LDsplit cross-validation results of Appendix A.1 follows 

next. 

 Discussion of cross-validation results and summary of selected models 

For different values of ,m  Hamming loss of R-LDsplit_SVM does not vary substantially for the 

Emotions data. However, for models with 4,m   stable favourable performance is only 

achieved once 30.M   The choice of m  has a larger effect on the Hamming loss of 

R-LDsplit_Tree , since models with 4m   and large M  markedly improve compared to those 

models with 4.m   In this case, performance of R-LDsplit_Tree, which uses a less complex 

base classifier than R-LDsplit_SVM, can be improved by increasing the value of m  so that a 

more complex R-LDsplit_Tree model is fit. 

For each of F-score, subset accuracy, macro-F1 and micro-F1, R-LDsplit_SVM models with 

2m   show only slight differences for the Emotions data. The differences in accuracy due to 

the choice of m  for R-LDsplit_SVM models are more noticeable. However, models with 5m   

often achieve the best results for these measures.    

As indicated in Table 4.1, the chosen R-LDsplit_SVM model for the Emotions data has 5m   

and 100.M   Not only does this model achieve the lowest Hamming loss, it also achieves 

the best results for accuracy, F-score, macro-F1 and micro-F1.  

Accuracy, F-score, subset accuracy, macro-F1 and micro-F1 for the Emotions data become 

slightly unstable for R-LDsplit_Tree models with 6.m   This suggest that by increasing ,m  a 

more complex R-LDsplit_Tree model can improve performance, however overfitting can occur 

if m  is chosen too large. As indicated in Table 4.1, the chosen R-LDsplit_Tree model for the 
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Emotions data has 4m   and 240,M   as it is the smallest model with the lowest value for 

Hamming loss.  

For the Scene data, by increasing the value of ,m  R-LDsplit_SVM models show marked 

improvements in performance across all evaluation measures. However, performance is fairly 

stable for different values of .M  Similar behaviour is observed for R-LDsplit_Tree models. 

Therefore, the chosen R-LDsplit_SVM model for the Scene data has 6m   and 100,M   

whereas the chosen R-LDsplit_Tree model has 6m   and 300.M    

Similar to the Emotions data, for different values of ,m  Hamming loss of R-LDsplit_SVM does 

not vary substantially for the Yeast data. However, for R-LDsplit_Tree, by increasing m  

Hamming loss values continue to improve. Furthermore, for R-LDsplit_SVM no marked 

improvements in accuracy, F-score, subset accuracy, macro-F1 or micro-F1 are observed by 

increasing m  beyond 3.m   It does however appear best to set 500,M   as performance 

slightly decreases for  R-LDsplit_SVM models with 500.M   Consequently, the selected 

R-LDsplit_SVM model for the Yeast data has 3m   and 200.M   For R-LDsplit_Tree the 

best results for accuracy, F-score, subset accuracy, macro-F1 and micro-F1 are achieved 

when 4 5.m   Even though this is the case, the selected R-LDsplit_Tree model for the Yeast 

data has 6m   and 300,M   since this model achieves the minimum Hamming loss. 

For the Medical data, Hamming loss of R-LDsplit_SVM is especially stable. For no obvious 

reason, all models, except the model with 6m   and 500,M   achieve a Hamming loss of 

0.012.  Since R-LDsplit_SVM with 6m   and 500M   achieves a Hamming loss of 0.011,  

it is the selected R-LDsplit_SVM model for the Medical data. For all other evaluation 

measures, performance across different values of m  are very much the same once 100.M   

Therefore, R-LDsplit_SVM with 6m   and 500M   also remains an appropriate choice when 

considering these evaluation measures. 
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Considering the performance of R-LDsplit_SVM on the Medical data, marked improvements 

in accuracy, F-score, subset accuracy, macro-F1 and micro-F1 are observed when 

R-LDsplit_Tree is instead fit. Hamming loss for R-LDsplit_Tree is fairly stable, however more 

variation in performance is observed compared to that of R-LDsplit_SVM. Apart from accuracy 

and F-score, performance across different values of m  for R-LDsplit_Tree is stable once 

100.M   The R-LDsplit_Tree model with 4m   and 500M   is selected for the Medical 

data. This model is the second smallest model which achieves the minimum value of Hamming 

loss. It is preferred above the smallest model, as it achieves high performance over all 

evaluation measures and only requires a small increase in computation cost.  

Hamming loss cannot be used to select the R-LDsplit_SVM model for the Enron data, since, 

for no obvious reason, the same value of 0.047  is found for all the fitted models. The standard 

error over the five cross-validation folds is also constant for all models at a low value of 0.001.  

Even though the other evaluation measures show a similar pattern of stable behaviour, these 

measures are used to select an appropriate R-LDsplit_SVM model for the Enron data. The 

R-LDsplit_SVM model with 3m   and 100M   is selected since it is a small model that gives 

good performance across all evaluation measures, and additionally achieves the best 

performance for subset accuracy and micro-F1. 

When R-LDsplit_Tree models are fit to the Enron data, performance generally weakens 

compared to R-LDsplit_SVM. However, apart from this difference, the observations regarding 

the values of m  and M  are similar to that of R-LDsplit_SVM. Performance across the different 

evaluation measures are very stable regardless of the values of m  and .M  Since Hamming 

loss shows some variation over ,m  the smallest model which produces the lowest value for 

Hamming loss is selected. This model has 6m   and 80.M   

Since Corel5k has 374,K   only min 500M   were considered. However, the results appear 

very stable with regards to M  and .m  Therefore, for R-LDsplit_SVM and R-LDsplit_Tree, the 
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number of levels per tree-structure is selected as 2m   and the ensemble size is set to 

min 500.M   This implies that only pairwise label correlations are considered for the Corel5k 

data in Section 4.4.  

Table 4.1 
Random LDsplit models selected for each dataset based on five-fold cross-validation  

Dataset Model m  M  

Emotions 
Random LDsplit (SVM) 5 100 

Random LDsplit (Decision Tree) 4 240 

Scene 
Random LDsplit (SVM) 6 100 

Random LDsplit (Decision Tree) 6 300 

Yeast 
Random LDsplit (SVM) 3 200 

Random LDsplit (Decision Tree) 6 300 

Medical 
Random LDsplit (SVM) 6 500 

Random LDsplit (Decision Tree) 4 500 

Enron 
Random LDsplit (SVM) 3 100 

Random LDsplit (Decision Tree) 6 80 

Corel5k 
Random LDsplit (SVM) 2 500 

Random LDsplit (Decision Tree) 2 500 

 

4.2.2 Evaluation of tuning parameters for Conditional LDsplit 

The Conditional LDsplit results for the respective benchmark datasets are summarised in 

Appendix A.3. The results in Appendix A.3 are the average performance over the five cross-

validation folds, with the standard deviation of performance over the five folds given in 

brackets. Once again, the model that produces the best performance for each evaluation 

measure is given in bold.  

For the Emotions and Scene data, where 6,K   orderL  contains a small number of elements.  

Consequently, for each value of ,m  only the results of one Conditional LDsplit model are  

reported by setting M 
6

m

 
 
 

 for 2,...,6.m    For the Yeast, Medical, Enron and Corel5k data,  

orderL  contains a larger number of elements. Therefore, multiple Conditional LDsplit models 

are reported for each value of m  by increasing the value of .M  The cross-validation results 
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of Appendix A.3 are used to select an appropriate Conditional LDsplit model for each dataset. 

The selected models are summarised in Table 4.2. Once again, unless otherwise stated, 

models with the lowest average Hamming loss across the five cross-validation folds are 

selected per dataset. If the minimum Hamming loss is given by more than one model, the 

model with the smallest values for m  and M  among them is selected.  

Note that the remarks of this study could be dependent on the label ordering strategy used for 

Conditional LDsplit. In this case, these remarks pertain to the conditional entropy-based 

ordering strategy of Jun et al. (2019). 

 Overview of interaction between tuning parameters 

Similar to Random LDsplit, results from Appendix A.3 show that the Conditional LDsplit models 

with an SVM base classifier (C-LDsplit_SVM) achieve better performance compared to those 

with a decision tree base classifier (C-LDsplit_Tree), for all datasets except the Medical data. 

In Section 4.4, further differences between the performance of C-LDsplit_SVM and 

C-LDsplit_Tree are highlighted.  

Results from Appendix A.3 show that even though the Emotions and Scene data are similar 

in label space size (both having 6K   labels), model behaviour is different depending on the 

value of .m  For the Emotions data, models with 4m   perform similarly. However, when 

5m   performance starts to deteriorate compared to the best performing models over all the 

evaluation measures. Slightly different behaviour is observed for the Scene data as models 

with 2m   and 3m   are not the top performers, especially in terms of accuracy and subset 

accuracy. This motivates that cross-validation may be the best method for determining m  in 

practice for Conditional LDsplit.  

In most cases; however, if a dataset displays an improvement in performance due to a larger 

value of ,m  this improvement is small in comparison to the large deterioration observed for 

some datasets when m  is chosen too large. For example, performance in terms of all 
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evaluation measures greatly deteriorate when 6m   for the Yeast data. For the Medical data, 

once 4,m   a deterioration in performance is observed for all evaluation measures except 

macro-F1.  

Furthermore, as is the case for Random LDsplit, overfitting does not seem to be a concern for 

large M  for Conditional LDsplit. In Appendix A.3, the Yeast data models with 100M   

generally show better performance than models having 40.M   For the Medical data, models 

that have 5m   and 300M   generally show better performance than models having 5m   

and 100.M   For Enron and Corel5k, performance appears generally stable regardless of 

the value of .M   

Considering the above remarks on m  and M  for Conditional LDsplit, the same general rule  

of thumb may be followed as that for Random LDsplit, namely that m  should be set small 

( 3 4m   ) while M  is large compared to .K  For smaller datasets, it may be possible to 

set M  to its maximum value of 
K

m

 
 
 

. It is however noted in Section 4.3 that a similar level of 

performance than Random LDsplit can be achieved by a Conditional LDsplit model with a 

smaller value of .M  

The rule of thumb is a convenient guideline for setting the values of m  and M  in practice. 

However, as computation time allows for it in this study, cross-validation is used to determine 

the appropriate model per dataset. Some remarks considering the chosen Conditional LDsplit 

models are given below, after which a summary of the selected models per dataset is given 

in Table 4.2. 
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 Discussion of cross-validation results and summary of selected models  

As mentioned, for both C-LDsplit_SVM and C-LDsplit_Tree, models with 4m   perform 

similarly on the Emotions data. However, when 5m   performance starts to deteriorate 

compared to the best performing models over all the evaluation measures. Note that if 6,m   

only a single tree-structure is fit using one ordering of all the labels. This model does not 

produce good results for the Emotions data, especially when a decision tree is used as base 

classifier. Consequently, as given in Table 4.2, the selected C-LDsplit_SVM model and 

C-LDsplit_Tree model for the Emotions data both have 3m   and 20.M    

Conversely, for the Scene data models with 2m   and 3m   are not the top performers, 

especially in terms of accuracy and subset accuracy. In this case, for both C-LDsplit_SVM and 

C-LDsplit_Tree, the model that fits a single tree-structure of one ordering of all the labels 

achieves the best performance for accuracy and subset accuracy. Overall it appears best to 

set 4m   when a Conditional LDsplit model is fit to the Scene data. Therefore, the selected 

C-LDsplit_SVM model and C-LDsplit_Tree model for the Scene data both have 4m   and 

15.M    

Note that in Table 4.2, the C-LDsplit_SVM model selected for the Yeast data is the model with 

4m   and 100.M   Although this model is not the smallest of those that produce the 

minimum Hamming loss for the Yeast data, it achieves high performance for all evaluation 

measures with only a small increase in computation cost. A similar argument holds for the 

C-LDsplit_SVM model selected for the Medical data and Enron data. For all other models, 

the smallest models are selected that give the lowest average Hamming loss across the five 

cross-validation folds.  
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Table 4.2 
Conditional LDsplit models selected for each dataset based on five-fold cross-validation  

Dataset Model m  M  

Emotions 
Conditional LDsplit (SVM) 3 20 

Conditional LDsplit (Decision Tree) 3 20 

Scene 
Conditional LDsplit (SVM) 4 15 

Conditional LDsplit (Decision Tree) 4 15 

Yeast 
Conditional LDsplit (SVM) 4 100 

Conditional LDsplit (Decision Tree) 4 1000 

Medical 
Conditional LDsplit (SVM) 2 500 

Conditional LDsplit (Decision Tree) 2 100 

Enron 
Conditional LDsplit (SVM) 3 100 

Conditional LDsplit (Decision Tree) 6 100 

Corel5k 
Conditional LDsplit (SVM) 2 500 

Conditional LDsplit (Decision Tree) 2 500 

 

4.3 Comparison of Random LDsplit and Conditional LDsplit  

In this section Random LDsplit and Conditional LDsplit are compared using the five-fold cross-

validation results obtained for the training datasets of Emotions, Scene, Yeast, Medical and 

Enron. Since the Corel5k results appear stable regardless of fitting Random or Conditional 

LDsplit, the dataset is not considered in this section. Note that a comparison in performance 

between Random and Conditional LDsplit as based on test data is drawn in Section 4.4.  

In this section, for all datasets except the Medical data, comparison is drawn between models 

that use an SVM base classifier. This is because an SVM is found to be the appropriate base 

classifier for these datasets in Section 4.2.  For the Medical data comparison is drawn between 

models that use a decision tree base classifier. 

For each value of m  (2 6m  ), the results of one Conditional LDsplit model is compared to 

that of two Random LDsplit models. The first of these Random LDsplit models has a similar 

ensemble size as the Conditional LDsplit model, whereas the second Random LDsplit model 

fits a larger ensemble. This is done for two reasons. Firstly, to evaluate the difference in 

performance of Random LDsplit and Conditional LDsplit when ensembles of similar sizes are 

fit, and secondly, to evaluate if a Conditional LDsplit model with a smaller ensemble can 

Stellenbosch University https://scholar.sun.ac.za



121 
 

produce similar or better predictive performance than a large Random LDsplit model that uses 

the same value for .m  Note that since the size of a Random LDsplit model is upper bounded 

by  
!

!
,K

K m  for the Emotions and Scene data, the ensemble size of the second Random LDsplit 

model remains relatively small. 

The results for all five datasets are summarised in Appendix A.4. To ease the interpretation of 

these results, for each value of ,m  the model that produces the best performance for each 

evaluation measure is given in bold and the percentage decrease in performance is reported 

in brackets for the other two models. Furthermore, for each evaluation measure, the model 

that gives the best performance across all values of m  is highlighted.  

For the Emotions data, the three models compared for 2m   achieve very similar 

performance for all the evaluation measures; however, Conditional LDsplit does achieve the 

best performance for four of the six evaluation measures. When 3,m   the Conditional LDsplit 

model outperforms the Random LDsplit model of similar ensemble size and achieves the same 

or better performance than the large Random LDsplit model. Performance of Conditional 

LDsplit deteriorates once 4,m   so that the Conditional LDsplit models are generally 

outperformed by the Random LDsplit models for 4.m    

Similar to the Emotions data, for the Scene data the models compared at 2m   and 3m 

achieve very similar performance for all the evaluation measures; however, Conditional 

LDsplit achieves slightly better performance for all six evaluation measures. For 4,m   the 

Conditional LDsplit model continues to outperform the Random LDsplit model of similar 

ensemble size and achieves the same or better performance than the large Random LDsplit 

model. It appears that accuracy and subset accuracy benefit the most from the implementation 

of a label ordering strategy on the Scene data. For 4m   a 2.4%  decrease in accuracy and 

4.1%  decrease in subset accuracy are observed when a Random LDsplit model is fit instead 

of a Conditional LDsplit model of the same size. Furthermore, by increasing the ensemble size 
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of the Random LDsplit model, this decrease in accuracy and subset accuracy only amount to 

2.1%  and 3.8%  respectively. Therefore, despite the larger ensemble for Random LDsplit, the 

Conditional LDsplit model achieves better performance for accuracy and subset accuracy. A 

similar level of accuracy and subset accuracy as the Conditional LDsplit model with 4m   is 

only achieved by a Random LDsplit model with 5.m   Nonetheless, accuracy and subset 

accuracy of Conditional LDsplit models fit to the Scene data continue to increase as m  

increases. A deterioration in other evaluation measures does however occur once 5m   for 

Conditional LDsplit. 

For the Yeast data, even though the models compared at 2m   achieve similar performance, 

Conditional LDsplit achieves the best performance for all six evaluation measures. For 

3 5m   the Conditional LDsplit models are competitive with the Random LDsplit models; 

however, the large Random LDsplit models achieve the best results across most of the 

evaluation measures. Once 6,m   performance of Conditional LDsplit dramatically 

deteriorates compared to that of the Random LDsplit models with 6.m   It is noteworthy that 

for 4,m   a 6.3%  decrease in subset accuracy is observed when a Random LDsplit model 

is fit instead of a Conditional LDsplit model of the same size. By increasing the ensemble size 

of the Random LDsplit model, this decrease in subset accuracy is reduced to 1.8%.  Therefore, 

despite the larger ensemble for Random LDsplit, the Conditional LDsplit model achieves the 

best value for subset accuracy when 4.m   This gives another example where subset 

accuracy benefits from the implementation of a label ordering strategy in LDsplit. 

The performance of Conditional LDsplit dramatically deteriorates once 3m   for the Medical 

and Enron data. It is only the macro-F1 measure of Conditional LDsplit that remains 

competitive with the Random LDsplit models fit to these datasets. 

In conclusion, the results of Appendix A.4 indicate that if an appropriate value of m  is selected 

for Conditional LDsplit (in most cases a small value of 3m  ), the model can produce better 
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results than a Random LDsplit model of the same size. Moreover, a level of performance 

similar to or even better than that of Random LDsplit can be achieved by a Conditional LDsplit 

model with a smaller ensemble. As stated in Section 4.2, overfitting does not seem to be a 

concern for large values of M  and it is therefore recommended to set M  large to reach high 

levels of performance. Unfortunately, this strategy could be problematic if computation cost is 

a concern. However, it seems that the Conditional LDsplit model may hold an advantage  

here. By implementing the conditional entropy-based ordering strategy of Jun et al. (2019),  

orderL  is limited to 
K

m

 
 
 

 label orders and contains fewer elements than the larger collection of  

random label orders of ,mL  
!

!
.K

K m  Therefore, by fitting a Conditional LDsplit model, the  

maximum value of M  is reduced. However, not only is the maximum value of M  reduced, a 

level of performance similar to or even better than that of Random LDsplit can be achieved by 

a Conditional LDsplit model with a smaller ensemble. Some datasets also show that subset 

accuracy benefits from the implementation of a label ordering strategy in LDsplit. 

 

4.4 Comparison of LDsplit models to other multi-label learning methods  

In this section a comparative study is conducted on the six benchmark datasets. The aim of 

the study is to experimentally determine if LDsplit is a competitive multi-label learning method 

in general by comparing the performance of LDsplit to that of other previously proposed 

learning methods. 

Up until this stage, only the training datasets of the six benchmark datasets have been used 

in this chapter. By using the appropriate values for m  and M  as determined in Section 4.2, 

a single R-LDsplit_SVM, C-LDsplit_SVM, R-LDsplit_Tree and C-LDsplit_Tree model are fit to 

the standard training datasets of each of the six benchmark datasets. Note that the entire set 

of training data is used to fit these models in each case. The fitted models are used to classify 

the standard test data after which performance is evaluated using standard multi-label 

evaluation measures as defined in Section 2.4. Different methods might favour the 

optimisation of certain evaluation measures. Therefore, for an unbiased view of performance, 
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one needs to consider multiple evaluation measures in a comparative study. In this study the 

results of six example-based evaluation measures (Hamming loss, accuracy, precision, recall, 

F-score and subset accuracy), as well as six label-based evaluation measures (macro-

precision, macro-recall, macro-F1, micro-precision, micro-recall and micro-F1) are 

considered.  

A summary of the fitted LDsplit models is given in Table 4.3. For Corel5k the minM  values are 

given with the actual value of M  in brackets. Table 4.3 also includes the time taken in minutes 

to train (i.e. learn the model on the training data) and test (i.e. classify the test data) each 

model. The execution times are dependent on the machine used for fitting the model, the 

values of m  and ,M  as well as the binary classifier used for LDsplit. Despite these 

dependencies, the times are provided in Table 4.3 to give practitioners an indication of the 

time needed to train and test LDsplit models. Note that the machine used to train and test 

each model has CPU at 3 GHz and 50 GB RAM. 
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Table 4.3 
LDsplit models with train and test time in minutes for each benchmark dataset 

Dataset Model m  M  
Training time 
(in minutes) 

Testing time 
(in minutes) 

Emotions 

Random LDsplit (SVM) 5 100 0.600 0.050 

Conditional LDsplit (SVM) 3 20 0.083 0.017 

Random LDsplit (Decision Tree) 4 240 1.033 0.300 

Conditional LDsplit (Decision Tree) 3 20 0.050 0.017 

Scene 

Random LDsplit (SVM) 6 100 10.233 1.283 

Conditional LDsplit (SVM) 4 15 1.300 0.150 

Random LDsplit (Decision Tree) 6 300 14.833 1.517 

Conditional LDsplit (Decision Tree) 4 15 0.533 0.050 

Yeast 

Random LDsplit (SVM) 3 200 17.167 1.267 

Conditional LDsplit (SVM) 4 100 11.650 0.850 

Random LDsplit (Decision Tree) 6 300 12.433 0.917 

Conditional LDsplit (Decision Tree) 4 1000 23.533 1.067 

Medical 

Random LDsplit (SVM) 6 500 6.100 0.417 

Conditional LDsplit (SVM) 2 500 2.867 0.167 

Random LDsplit (Decision Tree) 4 500 13.700 3.267 

Conditional LDsplit (Decision Tree) 2 100 1.550 0.35 

Enron 

Random LDsplit (SVM) 3 100 21.350 1.283 

Conditional LDsplit (SVM) 3 100 22.817 1.383 

Random LDsplit (Decision Tree) 6 80 7.517 0.783 

Conditional LDsplit (Decision Tree) 6 100 8.883 0.817 

Corel5k 

Random LDsplit (SVM) 2 500 (593) 307.950 3.850 

Conditional LDsplit (SVM) 2 500 (516) 271.450 3.450 

Random LDsplit (Decision Tree) 2 500 (600) 16.100 3.133 

Conditional LDsplit (Decision Tree) 2 500 (518) 13.883 2.583 
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The comparative study compares the predictive performance of the LDsplit models in 

Table 4.3 to that of a collection of previously proposed multi-label learning methods. To 

present a comparative study of a high standard, the collection of previously proposed multi-

label models should be carefully constructed. Firstly, based on their previous usage in the 

multi-label literature, one must ensure that the most well-known methods in the community 

are included in the comparative study. Secondly, as LDsplit is a new tree-based ensemble 

method, it is important that it is compared to a range of previously proposed tree-based 

methods. Lastly, it is important that state-of-the-art methods are included which have been 

shown to produce high predictive performance on average for a range of different problems. 

A recent study by Bogatinovski et al. (2022) compares the average performance of 26  multi-

label models on 42  multi-label benchmark datasets. The authors identify RF-PCT, BR with a 

random forest base classifier, ECC with a decision tree base classifier, EBR with a decision 

tree base classifier and AdaBoost.MH as the best-performing methods across the spectrum 

of evaluation measures. Therefore, to ensure that the comparative study is unbiased, the 

collection of previously proposed multi-label models should include these methods. 

By taking the above-mentioned criteria into consideration, the predictive performance of 

LDsplit is compared to that of 17  multi-label models as summarised in Table 4.4. The LDsplit 

models are therefore compared to the problem transformation methods BR, CC, CLR and 

QWML, the algorithm adaptation methods ML- k NN and AdaBoost.MH, tree-based methods 

such as ML-C4.5, MODT/PCT, HOMER, RFML-C4.5, RF-PCT and ML-Forest as well as other 

related ensemble methods namely EBR, ECC and RA k EL. For each of the 17  models, the 

base classifiers and parameter instantiation of the models are given in Table 4.4.  

Note that although different cross-validation splits are used on the training data to determine 

the parameter instantiation for LDsplit and models of Madjarov et al. (2012), the final models 

are trained and tested on the same standard train and test data splits. Therefore, the LDsplit 

results are directly comparable to that of the learning methods considered in Madjarov et al. 

(2012) and ML-Forest in Wu et al. (2016). The results found by Madjarov et al. (2012) and Wu 
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et al. (2016) are therefore used in the comparative study (as appropriately referenced in 

Table 4.4). In addition, BR with a random forest base classifier, ECC with a decision tree base 

classifier, EBR with a decision tree base classifier and AdaBoost.MH are fit to the standard 

training data of each benchmark dataset, since these models are not included in the study by 

Madjarov et al. (2012). The first three of these models are fit by implementing the functions 

br() and ecc() of the R-package utiml (Rivolli, 2021). These functions conveniently allow for 

both a random forest and decision tree base classifier. The function adaboost() in the R-

package JOUSBoost (Olson, 2017) is used to fit AdaBoost.MH. The fitted models are used to 

classify the standard test data of each benchmark dataset after which their performance is 

evaluated using the standard multi-label evaluation measures. In Table 4.4, these four models 

are appropriately referenced as “Own”. 

For each of the models in Table 4.3 and Table 4.4, performance across the 12  multi-label 

evaluation measures are summarised in Table 4.5, Table 4.6, Table 4.7, Table 4.8, Table 4.9 

and Table 4.10 for the Emotions, Scene, Yeast, Medical, Enron and Corel5k data respectively. 

The model that produces the best performance for each evaluation measure is given in bold 

per table. Since Wu et al. (2016) exclude micro-precision, micro-recall and micro-F1 in their 

reported results, all ML-Forest models are marked with NA for these evaluation measures in 

the respective tables. Similarly, since Enron was excluded in the study by Wu et al. (2016), all 

the evaluation measures are marked with NA for the ML-Forest model in Table 4.9. 
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Table 4.4 
Multi-label models with their corresponding base classifiers and parameter instantiations 

 

Method 
Base 

classifier 
Parameter instantiation Reference 

BR SVM 

10-fold CV with radial basis kernel and candidates: 

Gamma= 15 13 1 32 ,2 ,..., 2 , 2   

Penalty= 5 3 13 152 ,2 ,..., 2 , 2   

Madjarov et al. (2012) 

BR 
Random 
Forest 

100M   and p  inputs considered per node, as recommended by 

Bogatinovski et al. (2022) 
Own 

CC SVM 

10-fold CV with radial basis kernel and candidates: 

Gamma= 15 13 1 32 ,2 ,..., 2 , 2   

Penalty= 5 3 13 152 ,2 ,..., 2 , 2   

Madjarov et al. (2012) 

CLR SVM 

10-fold CV with radial basis kernel and candidates: 

Gamma= 15 13 1 32 ,2 ,..., 2 , 2   

Penalty= 5 3 13 152 ,2 ,..., 2 , 2   

Madjarov et al. (2012) 

QWML SVM 

10-fold CV with radial basis kernel and candidates: 

Gamma= 15 13 1 32 ,2 ,..., 2 , 2   

Penalty= 5 3 13 152 ,2 ,..., 2 , 2   

Madjarov et al. (2012) 

ML- k NN - 
Number of neighbours per dataset determined from the values 6 to 20 
with step 2. 

Madjarov et al. (2012) 

AdaBoost.MH 
Decision 
stump 

300,M  as recommended by Bogatinovski et al. (2022) Own 

ML-C4.5 - 
Uses sub-tree raising as a post-pruning strategy with pruning 
confidence set to 0.25 

Madjarov et al. (2012) 

MODT/PCT - Uses a pre-pruning strategy that employs the F-test Madjarov et al. (2012) 

HOMER SVM 

2-6 clusters were considered in experiments and the best results 
reported.  
For SVM: 10-fold CV with radial basis kernel and candidates: 

Gamma= 15 13 1 32 ,2 ,..., 2 , 2   

Penalty= 5 3 13 152 ,2 ,..., 2 , 2   

Madjarov et al. (2012) 

RFML-C4.5 ML-C4.5 
100M   fully grown trees used with minimum node size 10 and 

 2log 1p     inputs considered per node 
Madjarov et al. (2012) 

RF-PCT MODT/PCT 
100M   fully grown trees used with minimum node size 10 and 

0.1 1p     inputs considered per node 
Madjarov et al. (2012) 

ML-Forest SVM 

50M   trees are fit, with   randomly selected in the range 

 0.9,0.95  for each tree. 

For SVM: linear kernel is used with Penalty= 52 . 

Wu et al. (2016) 

EBR 
BR, Decision 

tree 
100M   BR models as recommended by Bogatinovski et al. (2022) Own 

ECC  CC, SVM 

10M   random CC models. For SVM: 

10-fold CV with radial basis kernel and candidates: 

Gamma= 15 13 1 32 ,2 ,..., 2 , 2   

Penalty= 5 3 13 152 ,2 ,..., 2 , 2   

Madjarov et al. (2012) 

ECC  
CC, Decision 

Tree 
 min 2 ,50M K  random CC models as recommended by 

Bogatinovski et al. (2022) 
Own 

RA k EL LP, SVM 

RA k EL o  is fit. 

 min 2 ,100M K  and 2
Kk  .  

For SVM: 10-fold CV with radial basis kernel and candidates: 

Gamma= 15 13 1 32 ,2 ,..., 2 , 2   

Penalty= 5 3 13 152 ,2 ,..., 2 , 2   

Madjarov et al. (2012) 
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Table 4.5 
Predictive performance of 21models fit to the Emotions data 

Emotions 
 

H
am

m
in

g 
lo

ss
 

A
cc

ur
ac

y 

Pr
ec

is
io

n 

Re
ca

ll 

F-
sc

or
e 

Su
bs

et
-

ac
cu

ra
cy

 

M
ac

ro
-P

 

M
ac

ro
-R

 

M
ac

ro
-F

1 

M
ic

ro
-P

 

M
ic

ro
-R

 

M
ic

ro
-F

1 

R-LDsplit_SVM 0.191 0.558 0.741 0.636 0.685 0.317 0.751 0.626 0.673 0.743 0.639 0.687 
C-LDsplit_SVM 0.191 0.550 0.755 0.630 0.687 0.317 0.756 0.625 0.676 0.747 0.637 0.687 
R-LDsplit_Tree 0.211 0.470 0.727 0.531 0.613 0.252 0.737 0.539 0.615 0.742 0.549 0.631 
C-LDsplit_Tree 0.226 0.472 0.661 0.556 0.604 0.223 0.680 0.558 0.608 0.690 0.569 0.624 
BR (SVM) 0.257 0.361 0.550 0.409 0.469 0.129 0.721 0.378 0.440 0.684 0.406 0.509 
BR (RF) 0.202 0.508 0.724 0.585 0.647 0.287 0.751 0.583 0.644 0.742 0.591 0.658 
CC (SVM) 0.256 0.356 0.551 0.397 0.461 0.124 0.581 0.364 0.420 0.698 0.393 0.503 
CLR (SVM) 0.257 0.361 0.538 0.410 0.465 0.144 0.677 0.381 0.443 0.685 0.409 0.512 
QWML (SVM) 0.254 0.373 0.548 0.429 0.481 0.149 0.660 0.398 0.458 0.680 0.431  0.528 
ML-kNN 0.294 0.319 0.502 0.377 0.431 0.084 0.518 0.334 0.385 0.584 0.376 0.457 
AdaBoost.MH 0.224 0.505 0.680 0.613 0.645 0.208 0.674 0.599 0.630 0.677 0.609 0.641 
ML-C4.5 0.247 0.536 0.606 0.703 0.651 0.277 0.602 0.702 0.630 0.607 0.712 0.655 
MODT/PCT 0.267 0.448 0.577 0.534 0.554 0.223 0.628 0.533 0.568 0.607 0.539 0.571 
HOMER 0.361 0.471  0.509 0.775 0.614 0.163 0.464 0.775 0.570 0.471 0.782 0.588 
RFML-C4.5 0.198 0.488 0.625 0.545 0.583 0.272 0.828 0.532 0.620 0.783 0.551 0.647 
RF-PCT 0.189 0.519 0.644 0.582 0.611 0.307 0.802 0.569 0.650 0.783 0.589 0.672 
ML-Forest 0.256 0.429 0.662 0.489 0.524 0.168 0.604 0.477 0.525 NA NA NA 
EBR (Tree) 0.204 0.507 0.717 0.592 0.649 0.267 0.740 0.593 0.642 0.730 0.604 0.661 
ECC (SVM) 0.281 0.432 0.580 0.533 0.556 0.168 0.531 0.508 0.500 0.579 0.531 0.554 
ECC (Tree) 0.195 0.560 0.721 0.656 0.687 0.307 0.719 0.648 0.674 0.722 0.664 0.692 
RAkEL (SVM) 0.282 0.419 0.564 0.491 0.525 0.208 0.547 0.462 0.488 0.586 0.489 0.533 

 

Table 4.6 
Predictive performance of 21models fit to the Scene data 

Scene 
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R-LDsplit_SVM 0.077 0.728 0.839 0.728 0.780 0.692 0.838 0.718 0.771 0.840 0.708 0.769 
C-LDsplit_SVM 0.076 0.733 0.840 0.735 0.784 0.695 0.839 0.724 0.775 0.839 0.716 0.773 
R-LDsplit_Tree 0.099 0.551 0.869 0.551 0.674 0.523 0.859 0.540 0.654 0.869 0.533 0.661 
C-LDsplit_Tree 0.116 0.532 0.773 0.545 0.639 0.492 0.753 0.536 0.619 0.758 0.530 0.624 
BR (SVM) 0.079 0.689 0.718 0.711 0.714 0.639 0.844 0.703 0.765 0.843 0.694 0.761 
BR (RF) 0.091 0.568 0.905 0.574 0.702 0.537 0.887 0.567 0.682 0.899 0.560 0.690 
CC (SVM) 0.082 0.723 0.758 0.726 0.742 0.685 0.817 0.716 0.762 0.814 0.708 0.757 
CLR (SVM) 0.080 0.686 0.714 0.712 0.713 0.633 0.835 0.704 0.762 0.835 0.695 0.758 
QWML (SVM) 0.081 0.683 0.711 0.709 0.710 0.630 0.832 0.701 0.759 0.832 0.692 0.756 
ML-kNN 0.099 0.629 0.661 0.655 0.658 0.573 0.784 0.647 0.692 0.691 0.634 0.661  
AdaBoost.MH 0.087 0.661 0.833 0.704 0.763 0.596 0.807 0.696 0.747 0.800 0.690 0.741 
ML-C4.5 0.141 0.569 0.592 0.582 0.587 0.533 0.635 0.573 0.596 0.619 0.570 0.593 
MODT/PCT 0.129 0.538 0.565 0.539 0.551 0.509 0.682 0.529 0.593 0.512 0.521 0.516 
HOMER 0.082 0.717 0.746 0.744 0.745 0.661 0.807 0.734 0.768 0.804 0.727 0.764 
RFML-C4.5 0.116 0.388 0.403 0.388 0.395 0.372 0.963 0.381 0.514 0.960 0.572 0.717 
RF-PCT 0.094 0.541  0.565 0.541 0.553 0.518 0.919 0.533 0.658 0.930 0.523 0.669 
ML-Forest 0.097 0.719 0.757 0.744 0.740 0.656 0.749 0.730 0.738 NA NA NA 
EBR (Tree) 0.098 0.548 0.875 0.563 0.685 0.511 0.854 0.556 0.667 0.860 0.550 0.671 
ECC (SVM) 0.085 0.735 0.770 0.771 0.771 0.665 0.785 0.757 0.770 0.773 0.751 0.762 
ECC (Tree) 0.106 0.644 0.743 0.672 0.706 0.589 0.746 0.659 0.697 0.728 0.659 0.692 
RAkEL (SVM) 0.077 0.734 0.768 0.740 0.754 0.694 0.835 0.727 0.777 0.831 0.721 0.772 
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Table 4.7 
Predictive performance of 21models fit to the Yeast data 

Yeast 
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R-LDsplit_SVM 0.187 0.530 0.726 0.604 0.660 0.207 0.730 0.368 0.476 0.737 0.598 0.660 
C-LDsplit_SVM 0.187 0.539 0.721 0.620 0.667 0.226 0.717 0.379 0.479 0.728 0.613 0.666 
R-LDsplit_Tree 0.201 0.478 0.733 0.535 0.619 0.128 0.759 0.296 0.480 0.732 0.531 0.616 
C-LDsplit_Tree 0.204 0.484 0.715 0.557 0.626 0.140 0.577 0.330 0.472 0.712 0.551 0.622 
BR (SVM) 0.190 0.520 0.722 0.591 0.650 0.190 0.628 0.355 0.392 0.733 0.587 0.652 
BR (RF) 0.194 0.501 0.732 0.563 0.636 0.156 0.776 0.319 0.411 0.739 0.557 0.635 
CC (SVM) 0.193 0.527 0.727 0.600 0.657 0.239 0.602 0.357 0.390 0.726 0.588 0.650 
CLR (SVM) 0.190 0.524 0.719 0.601 0.655 0.195 0.614 0.361 0.392 0.729 0.595 0.655 
QWML (SVM) 0.191 0.523 0.718 0.600 0.654  0.192 0.614 0.361  0.394 0.727 0.595 0.654 
ML-kNN 0.198 0.492 0.732 0.549 0.628 0.159 0.600 0.308 0.336 0.736 0.543 0.625 
AdaBoost.MH 0.210 0.492 0.684 0.581 0.628 0.156 0.527 0.364 0.458 0.684 0.573 0.624 
ML-C4.5 0.234 0.480 0.620 0.608 0.614 0.158 0.377 0.375 0.370 0.618 0.603 0.610 
MODT/PCT 0.219 0.440 0.705 0.490 0.578 0.152 0.479 0.269 0.293 0.698 0.492 0.577 
HOMER 0.207 0.559 0.663 0.714 0.687 0.213 0.471 0.466 0.447 0.647 0.702 0.673 
RFML-C4.5 0.205 0.453 0.738 0.491 0.589 0.129 0.533 0.257 0.283 0.747 0.491 0.593 
RF-PCT 0.197 0.478 0.744 0.523 0.614 0.152 0.674 0.286 0.322 0.755 0.521 0.617 
ML-Forest 0.199 0.501 0.717 0.573 0.609 0.166 0.393 0.320 0.333 NA NA NA 
EBR (Tree) 0.197 0.497 0.728 0.558 0.632 0.161 0.716 0.319 0.413 0.733 0.555 0.631 
ECC (SVM) 0.207 0.546 0.667 0.673 0.670 0.215 0.391 0.388 0.350 0.662 0.655 0.658 
ECC (Tree) 0.201 0.501 0.708 0.573 0.633 0.181 0.738 0.326 0.403 0.712 0.569 0.633 
RAkEL (SVM) 0.192 0.531 0.715 0.615 0.661 0.201 0.480 0.352 0.359 0.720 0.602 0.656 

Table 4.8 
Predictive performance of 21models fit to the Medical data 

Medical 
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R-LDsplit_SVM 0.011 0.740 0.865 0.797 0.830 0.639 0.774 0.397 0.827 0.826 0.787 0.806 
C-LDsplit_SVM 0.011 0.740 0.861 0.800 0.829 0.636 0.735 0.399 0.833 0.820 0.789 0.804 
R-LDsplit_Tree 0.010 0.761 0.876 0.808 0.841 0.669 0.868 0.364 0.853 0.838 0.784 0.810 
C-LDsplit_Tree 0.010 0.760 0.870 0.810 0.839 0.666 0.828 0.369 0.815 0.830 0.787 0.808 
BR (SVM) 0.077 0.206 0.211 0.735 0.328 0.000 0.399 0.423 0.361 0.225 0.725 0.343 
BR (RF) 0.015 0.530 0.914 0.531 0.672 0.471 0.927 0.197 0.635 0.913 0.526 0.668 
CC (SVM) 0.077 0.211 0.217 0.754 0.337 0.000 0.391 0.428 0.371 0.229 0.739 0.350 
CLR (SVM) 0.017 0.656 0.695 0.795 0.742 0.486 0.288 0.307 0.281 0.669 0.782 0.721 
QWML (SVM) 0.012 0.658 0.697 0.801 0.745 0.480 0.285 0.324 0.286 0.667 0.787 0.722 
ML-kNN 0.017 0.528 0.575 0.547 0.560 0.462 0.267 0.163 0.192 0.807 0.522 0.634 
AdaBoost.MH 0.009 0.785 0.883 0.835 0.858 0.700 0.778 0.525 0.783 0.844 0.816 0.830 
ML-C4.5 0.013 0.730 0.797  0.740 0.768  0.646 0.263 0.249 0.250 0.796 0.720 0.756 
MODT/PCT 0.023 0.228 0.285 0.227 0.253 0.177 0.018 0.022 0.020 0.826 0.227 0.356 
HOMER 0.012 0.713 0.762 0.760 0.761  0.610 0.287 0.282 0.282 0.807 0.742 0.773 
RFML-C4.5 0.022 0.250 0.284 0.251 0.267 0.216 0.190 0.040 0.058 0.884 0.237 0.374 
RF-PCT 0.014 0.591 0.635 0.599 0.616 0.538 0.269 0.176 0.207 0.885 0.569 0.693 
ML-Forest 0.012 0.759 0.845 0.782 0.795 0.654 0.367 0.327 0.336 NA NA NA 
EBR (Tree) 0.010 0.757 0.871 0.801 0.835 0.667 0.868 0.363 0.852 0.839 0.775 0.806 
ECC (SVM) 0.014 0.611 0.662 0.642 0.652 0.526 0.266 0.179 0.203 0.834 0.624 0.714 
ECC (Tree) 0.011 0.696 0.878 0.714 0.787 0.622 0.886 0.267 0.783 0.864 0.701 0.774 
RAkEL (SVM) 0.012 0.673 0.730 0.679 0.704 0.607 0.269 0.183 0.210 0.881 0.600 0.714 

Stellenbosch University https://scholar.sun.ac.za



131 
 

Table 4.9 
Predictive performance of 21models fit to the Enron data 
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R-LDsplit_SVM 0.046 0.436 0.740 0.486 0.587 0.147 0.417 0.133 0.414 0.726 0.453 0.558 
C-LDsplit_SVM 0.045 0.439 0.743 0.488 0.589 0.149 0.458 0.128 0.398 0.729 0.456 0.561 
R-LDsplit_Tree 0.049 0.397 0.681 0.461 0.550 0.085 0.557 0.106 0.362 0.665 0.453 0.539 
C-LDsplit_Tree 0.049 0.417 0.675 0.475 0.558 0.118 0.433 0.114 0.347 0.671 0.445 0.535 
BR (SVM) 0.045 0.446 0.703 0.497 0.582 0.149 0.258  0.120 0.143 0.721 0.464 0.564 
BR (RF) 0.046 0.441 0.731 0.493 0.589 0.135 0.399 0.142 0.366 0.714 0.467 0.564 
CC (SVM) 0.064 0.334 0.464 0.507 0.484 0.000 0.260 0.146 0.153 0.492 0.472 0.482 
CLR (SVM) 0.048 0.459 0.650 0.557 0.600 0.117 0.205 0.139 0.149 0.652 0.532 0.585 
QWML (SVM) 0.048 0.388 0.624 0.453 0.525 0.097 0.242 0.120 0.143 0.687 0.438 0.535 
ML-kNN 0.051 0.319 0.587 0.358 0.445 0.062 0.170 0.075 0.087 0.684 0.353 0.466 
AdaBoost.MH 0.048 0.407 0.707 0.477 0.570 0.111 0.357 0.154 0.363 0.686 0.459 0.550 
ML-C4.5 0.047 0.418 0.623 0.487 0.546 0.140 0.142 0.107 0.115 0.613 0.440 0.512 
MODT/PCT 0.058 0.196 0.415 0.229 0.295 0.002 0.023 0.030 0.026 0.601 0.246 0.349 
HOMER 0.051 0.478 0.616 0.610 0.613 0.145 0.241 0.163 0.167 0.597 0.585 0.591 
RFML-C4.5 0.053 0.374 0.690 0.398 0.505 0.124 0.245 0.082 0.102 0.768 0.366 0.496 
RF-PCT 0.046 0.416 0.709 0.452 0.552 0.131  0.233 0.100 0.122 0.738 0.422 0.537 
ML-Forest NA NA NA NA NA NA NA NA NA NA NA NA 
EBR (Tree) 0.046 0.456 0.701 0.521 0.598 0.135 0.594 0.126 0.424 0.698 0.494 0.578 
ECC (SVM) 0.049 0.462 0.652 0.560 0.602 0.131 0.249 0.129 0.140 0.642 0.532 0.582 
ECC (Tree) 0.046 0.448 0.686 0.504 0.581 0.147 0.602 0.103 0.466 0.705 0.471 0.565 
RAkEL (SVM) 0.045 0.428 0.708 0.469 0.564 0.136 0.222 0.097 0.115 0.743 0.435 0.548 

Table 4.10 
Predictive performance of 21models fit to the Corel5k data 

Corel5k 
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R-LDsplit_SVM 0.009 0.070 0.580 0.073 0.130 0.008 0.709 0.029 0.345 0.646 0.076 0.135 
C-LDsplit_SVM 0.009 0.069 0.603 0.072 0.128 0.008 0.734 0.028 0.344 0.663 0.074 0.133 
R-LDsplit_Tree 0.009 0.022 0.524 0.022 0.043 0.000 0.487 0.009 0.312 0.554 0.023 0.045 
C-LDsplit_Tree 0.009 0.022 0.524 0.022 0.043 0.000 0.487 0.009 0.312 0.554 0.023 0.045 
BR (SVM) 0.017 0.030 0.042 0.055 0.047 0.000 0.052 0.023 0.021 0.061 0.057 0.059 
BR (RF) 0.010 0.049 0.260 0.051 0.085 0.000 0.737 0.006 0.247 0.275 0.052 0.087 
CC (SVM) 0.017 0.030 0.042 0.056 0.048 0.000 0.053  0.023 0.021 0.061 0.057 0.059 
CLR (SVM) 0.012 0.195 0.329 0.264 0.293 0.010 0.059 0.039 0.042 0.338 0.258 0.293 
QWML (SVM) 0.012 0.195 0.326 0.264 0.292 0.012 0.059 0.039 0.042 0.339 0.258 0.293 
ML-kNN 0.009 0.014 0.035 0.014 0.021 0.000 0.031 0.006 0.010 0.730 0.015 0.030 
AdaBoost.MH 0.009 0.037 0.490 0.039 0.072 0.000 0.435 0.020 0.260 0.525 0.041 0.077 
ML-C4.5 0.010 0.002 0.005 0.002 0.003 0.000 0.004 0.005 0.008 0.160 0.002 0.004 
MODT/PCT 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
HOMER 0.012 0.179 0.317 0.250 0.280 0.002 0.044 0.041 0.036 0.308 0.248 0.275 
RFML-C4.5 0.009 0.005 0.018 0.005 0.008 0.008 0.007 0.001 0.001 0.750 0.005 0.010 
RF-PCT 0.009 0.009 0.030 0.009 0.014 0.000 0.015 0.002 0.004 0.696 0.009 0.018 
ML-Forest 0.010 0.119 0.268 0.142 0.172 0.010 0.052 0.030 0.035 NA NA NA 
EBR (Tree) 0.009 0.016 0.552 0.017 0.032 0.000 0.561 0.005 0.239 0.556 0.017 0.033 
ECC (SVM) 0.009 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.333 0.001 0.002 
ECC (Tree) 0.009 0.006 0.455 0.006 0.012 0.000 0.756 0.002 0.168 0.478 0.006 0.012 
RAkEL (SVM) 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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The corrected Friedman test (Iman and Davenport, 1980) and the post-hoc Nemenyi test 

(Nemenyi, 1963) assess the overall differences in performance across the datasets. These 

tests are often used in multi-label comparative studies such as Madjarov et al. (2012) and 

Bogatinovski et al. (2022). The tests determine if the differences in performance of the LDsplit 

models are statistically significant.  

The Friedman test is a non-parametric test for multiple hypotheses testing. For each dataset, 

the respective models are ranked according to their performance on a specific evaluation 

measure. The best performing model is allocated a rank of 1,  the second-best performing 

model is allocated a rank of 2,  and so on until all the models are ranked. In situations where 

ties occur, average ranks are assigned. The mean ranks of the models are then compared by 

calculating the Friedman statistic. Iman and Davenport (1980) propose a corrected F-statistic 

that is distributed according to the F-distribution with 1A  and    1 1A B   degrees of 

freedom. Here A  denotes the number of models and B  denotes the number of datasets. If a 

statistically significant difference in performance is found, the post-hoc Nemenyi test 

determines between which models those differences appear. To implement this test a critical 

distance is computed. The critical distance depends on the number of models, the number of 

datasets and a critical value based on the Studentised range statistic computed for a given 

significance level. Two classifiers are significantly different if their average ranks differ by more 

than the critical distance. In this work the R-package tsutils (Kourentzes et al., 2022) is used 

to implement these tests as detailed by Hollander et al. (2014) at a confidence level of 0.95.

The critical distance of the Nemenyi test is therefore calculated as: 

 
0.95 ,

1

6A

A A
q

B


, 

where the Studentised range statistic for infinite degrees of freedom divided by 2  is used to 

calculate 0.95 , .Aq  
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In this study the results of the Friedman and Nemenyi tests are summarised with mean rank 

diagrams. Such a diagram vertically lists the respective models such that the best ranking 

model is at the bottom of the diagram. The diagram gives the mean rank (denoted by a dot) 

and the bounded critical distance (denoted with a horizontal line to the left and right of the 

mean rank) of each model. If the bounded critical distances of two models cross, there is no 

evidence of a statistically significant difference between the models. However, if the bounded 

critical distances of two models do not cross, there is evidence that the two models perform 

significantly different for the evaluation measure. 

Figure 4.3 and Figure 4.4 give the mean rank diagrams for the respective evaluation 

measures. Since no ML-Forest results are available for the Enron data, the diagrams in 

Figure 4.3 and Figure 4.4 are based on the Friedman and Nemenyi tests conducted using all 

the models of Tables 4.5 – Table 4.10 except ML-Forest. Consequently, the tests are based 

on the performance of 20A   models across 6B   datasets. To assess the overall 

differences in performance when ML-Forest is included in the analysis, the Enron data must 

be excluded. Consequently, Appendix A.5 gives the mean rank diagrams based on the 

Friedman and Nemenyi tests conducted using the performance of 21A   models across 

5B   datasets. Since no ML-Forest results are available for micro-precision, micro-recall and 

micro-F1, no mean rank diagrams are given for these evaluation measures in Appendix A.5. 
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Figure 4.3    Mean rank diagrams for the example-based evaluation measures  
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Figure 4.4    Mean rank diagrams for the label-based evaluation measures 
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In terms of general predictive performance across all six benchmark datasets, the Random 

and Conditional LDsplit models with an SVM base classifier are very satisfactory.  

Figure 4.3 and Figure 4.4 illustrate that for six of the evaluation measures namely Hamming 

loss, accuracy, F-score, subset accuracy, macro-F1 and micro-F1, C-LDsplit_SVM and 

R-LDsplit_SVM are the first- and second-best performing models in terms of mean rank. It is 

noteworthy that for Hamming loss, subset accuracy and macro-F1, the mean ranks achieved 

by the LDsplit models with an SVM base classifier are much better than the mean rank of the 

third highest ranking model. Although these are not statistically significant differences, this 

illustrates that the LDsplit models are consistently highly ranked for Hamming loss, subset 

accuracy and macro-F1, unlike any of the other models of this study. Since subset accuracy 

is a very strict evaluation measure that requires the predicted set of labels to be an exact 

match to the true set of labels, it is interesting that the LDsplit models are consistently highly 

ranked for this measure. 

Furthermore, C-LDsplit_SVM and R-LDsplit_SVM achieve the second- and third-best mean 

ranks for four evaluation measures namely precision, recall, macro-recall and micro-recall. In 

other words, C-LDsplit_SVM and R-LDsplit_SVM are found within the top three models in 

terms of mean rank for 10  of the 12  evaluation measures considered in the study. 

R-LDsplit_SVM and C-LDsplit_SVM are also within the top five models in terms of mean rank 

for macro-precision. This makes C-LDsplit_SVM and R-LDsplit_SVM the top two performing 

models on average across the six benchmark datasets.  

The above remarks also agree with the results of Appendix A.5, since C-LDsplit_SVM and 

R-LDsplit_SVM are the first- and second-best performing models for Hamming loss, accuracy, 

F-score, subset accuracy and macro-F1 in terms of mean rank. Furthermore, C-LDsplit_SVM 

and R-LDsplit_SVM achieve the second- and third-best mean ranks for recall and macro-recall 

and are found within of the top five models for precision and macro-precision. In addition, 

R-LDsplit_Tree achieves the best and second-best mean rank for precision and macro-

precision respectively. Note that no mean rank diagrams are available for micro-precision, 
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micro-recall and micro-F1 in Appendix A.5. In addition, Appendix A.5 shows that ML-Forest is 

ranked below C-LDsplit_SVM and R-LDsplit_SVM on average for all evaluation measures. 

Therefore, unless otherwise stated, the remainder of this discussion refers to the mean rank 

diagrams of Figure 4.3 and Figure 4.4. 

In general, Figure 4.3 and Figure 4.4 show that LDsplit models with an SVM base classifier 

achieve better performance than the previously proposed tree-based methods ML-C4.5, 

MODT/PCT, RFML-C4.5 and RF-PCT. In fact, when compared to MODT, C-LDsplit_SVM 

achieves a statistically significant improvement in performance for all evaluation measures 

except micro-precision. In addition, R-LDsplit_SVM achieves a statistically significant 

improvement in performance for all evaluation measures except micro-precision and 

Hamming loss when compared to MODT. Furthermore, both C-LDsplit_SVM and 

R-LDsplit_SVM achieve statistically significant improvements in performance compared to 

RFML-C4.5 for F-score, macro-recall and macro-F1. Compared to ML-C4.5, both 

C-LDsplit_SVM and R-LDsplit_SVM achieve a statistically significant improvement in macro-

precision. Although the differences in performance between RF-PCT and LDsplit models with 

an SVM base classifier are not statistically significant, the LDsplit models show better mean 

ranks for many of the evaluation measures. For example, while the LDsplit models are found 

within the top three ranked models for accuracy, recall, F-score, macro-recall, and micro-

recall, RF-PCT is found within the bottom four models for these measures. The ensembles of 

multi-label trees, RFML-C4.5 and RF-PCT, do however achieve the best mean ranks for 

micro-precision. In fact, RFML-C4.5 significantly outperforms ML-C4.5, PCT, HOMER, 

ECC_SVM and CC, while RF-PCT significantly outperforms ML-C4.5, PCT and HOMER. High 

precision indicates that the labels that are classified as present by the models are in truth 

present. However, since micro-averaging uses the sum of all true positives across all labels, 

micro-precision can be dominated by common labels. R-LDsplit_SVM and C-LDsplit_SVM 

achieve the fourth- and sixth-best mean rank values for micro-precision.  
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Apart from the above-mentioned statistically significant improvements in performance of 

LDsplit compared to tree-based methods, LDsplit also significantly outperforms the algorithm 

adaptation method ML- k NN. Compared to ML- k NN, R-LDsplit_SVM and C-LDsplit_SVM 

achieve statistically significant improvements in F-score. In addition, C-LDsplit_SVM also 

achieves statistically significant improvements in performance compared to ML- k NN for 

subset accuracy, macro-F1 and micro-F1.  

The tree-based method, HOMER, achieves the best mean rank for recall, macro-recall and 

micro-recall while LDsplit models with an SVM base classifier achieve the second- and third-

best mean ranks for these measures. Upon closer inspection, the results of Table 4.5, 

Table 4.7 and Table 4.9 show that HOMER achieves the highest recall, macro-recall and 

micro-recall for Emotions, Yeast and Enron, while also achieving high performance for the 

other datasets considering these three measures. Conversely, LDsplit models achieve high 

performance for precision, macro-precision and micro-precision across the different datasets. 

High recall indicates that a HOMER model classifies many of the originally relevant labels as 

present, therefore causing a small number of false negatives. At the same time, some non-

relevant labels are classified as present which therefore results in a larger number of false 

positives and lower precision. Compared to HOMER, LDsplit models are more conservative 

to classify labels present. In most cases, labels that are predicted as present by an LDsplit 

model are truly relevant. This allows for a smaller number of false positives and higher 

precision than HOMER. However, this conservative approach results in a larger number of 

false negatives and lower recall than HOMER. Since C-LDsplit_SVM and R-LDsplit_SVM 

achieve the best and second-best mean ranks for F-score, macro-F1 and micro-F1, the LDsplit 

models allow for a better trade-off between precision and recall than HOMER in this study. 

The above remarks confirm that C-LDsplit_SVM and R-LDsplit_SVM are highly competitive 

with state-of-the-art multi-label learning methods in terms of predictive performance. For the 

remainder of this section the general performance of the four LDsplit models are compared. 
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Since C-LDsplit_SVM and R-LDsplit_SVM are the top two performing models on average 

according to Figure 4.3 and Figure 4.4, it is clear that LDsplit models with an SVM base 

classifier generally achieve better performance than those with a decision tree base classifier. 

This also corresponds to the conclusion of the cross-validation study performed on the training 

data in Section 4.2. In Section 4.2, when a decision tree base classifier is used instead of an 

SVM base classifier, performance only improves for the Medical data. The same is true for the 

test data results of Table 4.8. Considering the test performance of the four LDsplit models on 

the Medical data, apart from recall, macro-recall and micro-recall, R-LDsplit_Tree achieves 

the highest performance for all the evaluation measures. R-LDsplit_Tree also outperforms 

many of the other methods on the Medical data. AdaBoost.MH however remains the overall 

best-performing model on the Medical data. In general, these results motivate that a cross-

validation study, such as that performed in Section 4.2, can be used to select an appropriate 

base classifier for LDsplit. However, this is a computationally expensive strategy.  

Even though an SVM base classifier is a better choice in general for LDsplit, according to the 

Friedman and Nemenyi tests, the LDsplit models with a decision tree base classifier are not 

significantly outperformed by any of the models in this study. In fact, R-LDsplit_Tree achieves 

a statistically significant improvement in performance for macro-precision compared to the 

tree-based methods MODT and ML-C4.5. 

Figure 4.3 and Figure 4.4 show that the general difference in performance between Random 

and Conditional LDsplit models with an SVM base classifier is very small. Considering all the 

evaluation measures, the mean ranks of R-LDsplit_SVM and C-LDsplit_SVM do not differ by 

more than 1.  C-LDsplit_SVM however achieves the better mean rank for most of the 

evaluation measures. According to the Friedman and Nemenyi tests, C-LDsplit_SVM also 

significantly outperforms more models for more evaluation measures than R-LDsplit_SVM. As 

seen in Table 4.3, this good performance of C-LDsplit_SVM is achieved by a smaller LDsplit 

model which requires less training time than R-LDsplit_SVM in most cases. Only for the Enron 

data did C-LDsplit_SVM take longer to learn than R-LDsplit_SVM. However, this additional 
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time is less than 1.5  minutes. Therefore in practice, C-LDsplit_SVM may not only lead to 

slightly better predictive performance than R-LDsplit_SVM, the model may also require less 

computation time.  

Random and Conditional LDsplit models with a decision tree base classifier show some 

differences in performance for precision, macro-precision and micro-precision. However, 

these differences are not statistically significant. Apart from these measures, the mean ranks 

of R-LDsplit_Tree and C-LDsplit_Tree do not differ by more than 2  in Figure 4.3 and 

Figure 4.4.  

The mean ranks of R-LDsplit_SVM and R-LDsplit_Tree, as well as that of C-LDsplit_SVM and 

C-LDsplit_Tree differ by between 4  and 9  ranks in most cases. This illustrates that the 

difference in performance observed for two LDsplit models with different base classifiers is 

more severe than the difference in performance observed for Random LDsplit and Conditional 

LDsplit. It can therefore be concluded that the performance of LDsplit is very dependent on 

the chosen binary base classifier.   

4.5 Conclusion  

In this chapter a three-stage empirical study was performed on six multi-label benchmark 

datasets.  

In the first stage the standard training datasets of the six benchmark datasets were used to 

examine the influence of the LDsplit tuning parameters, m  and .M  In general, for both 

Random and Conditional LDsplit, overfitting does not seem to be a concern for large values 

of .M  The Random LDsplit results show that for each value of ,m  performance stabilises 

when M  is large. Furthermore, for large ,M  in most cases only small differences in 

performance occur when the number of tree-levels increases. For Conditional LDsplit the 

cross-validation results show that for some datasets large m  can improve performance, but 

for other datasets large m  can cause a drastic decrease in performance. Therefore, since the 
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results are dependent on the multi-label dataset at hand, an adequate way to determine m  

and M  in practice is by means of cross-validation. However, as a general rule of thumb, m   

should be set small ( 3 4m   ) while M  is large with respect to .K  For smaller datasets it 

may be possible to set M  to its maximum value of 
K

m

 
 
 

 when fitting Conditional LDsplit.  

In the second stage of this study, performance of Random and Conditional LDsplit were 

compared considering the training data. Results show that a Conditional LDsplit model with 

an appropriately small value of m  (in most cases 3m  ) can produce better results than a 

Random LDsplit model of the same size. Moreover, a level of performance similar or even 

better than that of Random LDsplit can be achieved by a Conditional LDsplit model that fits a 

smaller ensemble. Therefore, by fitting a Conditional LDsplit model, the maximum value of 

M  is not only reduced, a small Conditional LDsplit ensemble can also achieve similar or 

better performance than a large Random LDsplit ensemble. Some datasets also show that 

subset accuracy benefits from the implementation of a label ordering strategy in LDsplit.  

Since computation time allowed for it in this study, appropriate values of m  and M  were 

determined per dataset for Random and Conditional LDsplit by means of cross-validation. 

These values were used to fit four LDsplit models per training dataset namely R-LDsplit_SVM, 

C-LDsplit_SVM, R-LDsplit_Tree and C-LDsplit_Tree. Predictive performances of these 

models on the test datasets were compared to that of 17  other multi-label learning methods 

in the final stage of the empirical study. To assess the overall differences in performance for 

each of the 12  evaluation measures, the corrected Friedman and post-hoc Nemenyi tests 

were used.  

Results show that the predictive performance of LDsplit models across all six benchmark 

datasets is very satisfactory. However, LDsplit models with an SVM base classifier generally 

achieve better performance than those with a decision tree base classifier. Even though this 
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is the case, the LDsplit models with a decision tree base classifier are not significantly 

outperformed by any of the models in this study. 

In terms of mean rank, C-LDsplit_SVM and R-LDsplit_SVM are the first- and second-best 

performing models for six of the evaluation measures and are found within the top three 

models for ten of the evaluation measures. This makes C-LDsplit_SVM and R-LDsplit_SVM 

the top two performing models on average in the empirical study. It is apparent that 

C-LDsplit_SVM and R-LDsplit_SVM consistently achieve good ranks for Hamming loss, 

subset accuracy and macro-F1 across all datasets. 

Furthermore, C-LDsplit_SVM and R-LDsplit_SVM perform significantly better than the tree-

based methods ML-C4.5, MODT and RFML-C4.5 as well as the algorithm adaptation method, 

ML- k NN, for many evaluation measures. Results also show that while LDsplit models achieve 

high precision in general, HOMER achieves high recall. LDsplit models are therefore more 

conservative to classify labels present than HOMER. However, since C-LDsplit_SVM and 

R-LDsplit_SVM achieve the best and second-best mean ranks for F-score, macro-F1 and 

micro-F1, the LDsplit models generally allow for a better trade-off between precision and recall 

than HOMER. 

C-LDsplit_SVM achieves slightly better performance on the test data and required less training 

time than R-LDsplit_SVM in most cases. Even though this is the case, results show that when 

the tuning parameters are appropriately determined, Random and Conditional LDsplit do not 

differ markedly. A much larger inequality in performance is observed between the different 

base classifiers of LDsplit. Therefore, attention in practice should be given to ensure that an 

appropriate base classifier is selected for LDsplit. 

LDsplit uses hierarchical label structures to implicitly exploit local higher-order label 

correlations of multi-label data in a simple manner. This chapter illustrates that despite its 

simplicity, LDsplit is highly competitive with state-of-the-art multi-label learning methods in 

terms of predictive performance. In the next chapter a further challenging aspect of multi-label 
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data is considered, as described in Section 1.4.2, namely that of variable importance and 

variable selection within multi-label data. The next chapter outlines an additional advantage of 

LDsplit, namely that LDsplit can be useful for inference regarding global and local importance 

of variables. 
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Chapter 5: Multi-label variable importance and variable selection - 

existing methods and new approaches based on LDsplit 

 
5.1 Introduction 

It is desirable that learning methods achieve good predictive performance on unseen 

observations. However, another desirable property of a learning method is to produce 

interpretable results. Models are more interpretable if the relationship between the input 

variables and the response variables can be described by the model in an understandable 

way. For example, a traditional single-label tree (as described in Section 2.7.3) is highly 

interpretable since the entire model can be represented as a two-dimensional tree graphic 

such as that of Figure 2.8. Other models, for example a neural network, may not produce 

highly interpretable results even if the model can achieve good predictive performance (Hastie 

et al., 2009:352).  

In the previous chapters LDsplit is introduced as a new tree-based ensemble method that 

implicitly exploits local higher-order label correlation to aid in achieving accurate multi-label 

classification. The empirical evaluation of LDsplit confirms that the approach is competitive 

with state-of-the-art multi-label learning methods in terms of predictive performance. In this 

chapter the discussion of LDsplit is extended beyond its satisfying predictive performance by 

considering aspects of variable importance and variable selection. 

As LDsplit is a tree-based method for multi-label data, variable importance measures of single-

label trees can be extended to multi-label data by using the LDsplit framework. Consequently, 

traditional variable importance measures for single-label trees are discussed in Section 5.2. 

Hereafter, to illustrate how the challenging aspects of variable importance and variable 

selection within multi-label data are currently addressed, approaches for variable importance 

and variable selection in multi-label data are described in Section 5.3 and Section 5.4 

respectively.  
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In contrast to single-label data, multi-label data allow for a distinction between global and local 

importance of variables. An input variable is globally important if it is deemed important for 

several or all labels. However, an input variable can also be deemed locally important for a 

specific label. In addition to classification, an LDsplit ensemble can also provide inference 

regarding global and local importance of input variables. Consequently, Section 5.5 outlines 

ways in which an LDsplit ensemble can produce global and local input variable rankings.   

Apart from interpretability, an additional contribution of the LDsplit variable ranking strategies 

is that measures for both global and local importance of variables are given. Few proposals 

for measuring global and local importance of variables are found in the multi-label literature. 

Furthermore, since LDsplit implicitly exploits local higher-order label correlations when an 

ensemble of tree-structures is fit, the variable importance measures derived for LDsplit are 

influenced by the correlations between labels. This is advantageous since the few previously 

proposed multi-label variable importance measures, such as those based on the problem 

transformation paradigm, mostly neglect to exploit possible label dependencies. In Section 5.6 

these and other advantages of the input variable ranking strategies of LDsplit are discussed. 

Furthermore, it is explained how the input variable rankings of LDsplit can be used to perform 

variable selection. In this setting the strategy is regarded as a pre-processing method to 

reduce the dimensionality of a multi-label dataset. Technically, after the dimensionality of the 

dataset has been reduced by means of the LDsplit variable selection method, any multi-label 

learning algorithm can be applied to the reduced set. The LDsplit variable selection method 

therefore qualifies as a so-called filter approach since it reduces the input space independently 

of the learning algorithm used for classification. In contrast to many other filter approaches for 

multi-label data, the LDsplit approach advantageously utilises correlations between labels. 
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5.2 Traditional variable importance measures for single-label trees 

Two major variable importance measures have been derived from ensembles of single-label 

trees (Scornet, 2020). The first is based on improvements in node impurity after splitting the 

tree-nodes. This measure is sometimes referred to as Mean Decrease Impurity (MDI). The 

second measure is based on prediction accuracy before and after input variables are 

permuted. This second strategy is sometimes referred to as Mean Decrease Accuracy (MDA). 

The following two sections summarise these two well-known variable importance measures 

for single-label trees. 

5.2.1 Variable importance based on Mean Decrease Impurity (MDI) 

Assume that for a single-label tree, ,T  at node t  an input variable,   ,v tX  and corresponding 

split-point, split the node into two new nodes. The chosen splitting variable and split-point are 

the variable and split-point that allow for maximal estimated improvement in node impurity 

after the split. If the impurity of the node which contains N  observations is for example 

denoted by   and the impurity of its two children nodes of sizes 1N  and 2N  (where 

 1 2N N N  ) are denoted by 1  and 2 ,  the improvement in impurity is defined by 

 1 2

1 2 .N N
N N     For binary classification, examples of measures of node impurity include 

misclassification error, the Gini index and Shannon entropy.  

Breiman et al. (1984) propose a measure of relative importance of input variables, 

, 1,..., ,lX l p  in predicting the class response in a single-label tree. In this setting, for a 

single-label decision tree, ,T  the measure of relevance for an input variable lX  is given as: 

    
1

1

ˆ
J

l t
t

I T v t l




    . 

Here  lI T  denotes the relative importance of variable lX  computed using the single-label 

tree, .T  This measure sums over the 1J   internal nodes of .T  The improvement in node 

impurity after the split on variable  v tX  is denoted by ˆ .t  Therefore, the relative importance of 
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variable lX  is the sum of improvements over all internal nodes where lX  is the splitting 

variable. Note that the Gini index is often used in the literature as a measure of node impurity 

when  lI T  is computed. 

If a bagged or random forest ensemble of M  single-label trees is fit, , 1,..., ,jT j M  the 

relative importance of each variable for each tree in the ensemble is computed and denoted 

by   ,l jI T  where 1,...,l p  and 1,..., .j M  In this case the relative importance of variable 

lX  across the ensemble is simply the average of the relative importance computed for each 

tree. Therefore: 

 1

1

.
M

l l jM
j

I I T


   

5.2.2 Variable importance based on Mean Decrease Accuracy (MDA) 

During the bootstrap stage of fitting a bagged or random forest ensemble of single-label trees, 

a so-called Out-Of-Bag (OOB) set is formed per tree. The OOB set of a tree includes all the 

observations in the dataset not included in the bootstrap sample used to fit the tree. An OOB 

observation can be used to compute an OOB error. This is done as follows. For each 

observation  ,i i iyw x , 1,...,i N  obtain the classification given by the ensemble by 

averaging only those trees corresponding to bootstrap samples in which iw  did not appear 

(Hastie et al., 2009:593). This classification is then compared to the true classification of iw  

and a classification error (for example, misclassification error) is calculated. 

As outlined in Breiman (2001), OOB observations can also be used to define a measure of 

variable importance. To do so the following is done for each tree in the ensemble. 

For a fitted tree, the OOB set of the tree is dropped into the root node. The observations filter 

down the tree by following the splitting rules until each observation reaches a terminal node. 

The classifications defined by the terminal nodes are compared to the true classifications of 
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the OOB set and a classification error rate is calculated. Now, to calculate the importance of 

lX  for this tree, the values of lX  in the OOB set are permuted (i.e. rearranged) while 

1 1 1,..., , ,...,l l pX X X X   are left unchanged. This permuted OOB set is dropped into the root 

node of the fitted tree to obtain the classifications of the OOB set after lX  has been permuted. 

Once again, these classifications are compared to the true classifications of the OOB set and 

a classification error rate is calculated.  

For each variable, , 1,..., ,lX l p  the difference in classification accuracy, before and after 

the variable is permuted, is computed per tree. Breiman (2001) defines the importance of 

variable lX  as the average difference in accuracy computed over the ensemble. 

The rationale is that by permuting ,lX  its relationship with the response is broken. Therefore, 

a large increase in the classification error of the OOB set after lX  is permuted, indicates that 

lX  is an important variable for accurate classification.  

In Section 1.4.2 the two related concepts of variable importance and variable selection are 

outlined. The section also highlights that, in comparison to single-label data, additional 

complexity arises for variable importance and variable selection within multi-label data. In the 

following two sections brief summaries are given of previous approaches to variable 

importance and variable selection for multi-label data. First, approaches for variable 

importance in multi-label data are given in Section 5.3 and thereafter the discussion is 

extended to variable selection in Section 5.4. After this literature review is complete, 

Section 5.5 proposes ways in which an LDsplit ensemble can produce global and local input 

variable rankings.  
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5.3 Approaches for variable importance within multi-label data 

In this dissertation, input variables that provide some useful information for the classifier are 

defined as relevant, so that input variables that do not provide any useful information are 

regarded as irrelevant. In some cases an input variable may also be redundant. This means 

that although the variable provides some useful information for the classifier, the information 

is already contained in one or more of the other input variables in the dataset. In multi-label 

data a distinction can also be made between globally relevant variables and locally relevant 

variables. An input variable is globally relevant if it is deemed important for several or all labels. 

However, an input variable can also be deemed locally relevant for a specific label.  

In practice the true relevancies of input variables are unknown. Different approaches therefore 

exist that aim to evaluate input variables in terms of their importance. Spolaôr et al. (2013) 

state that the importance of input variables can be evaluated in two main ways, namely 

individual evaluation and subset evaluation, as shown in Figure 5.1. 

With individual evaluation each input variable is assessed individually and assigned a weight 

according to its degree of class prediction. The degree of class prediction can be measured 

by different relevancy measures. Examples of such relevancy measures are given in 

Section 5.3.1 below. The weight or relevance score of an input variable assesses how 

dependent the response values are on the input variable (Petković et al., 2020). The relevance 

scores of input variables therefore provide a measure of variable importance. Variables that 

obtain a larger relevance score are regarded as more important. An input variable ranking is 

produced by ranking all input variables from most to least important based on their relevance 

scores. Subset evaluation, on the other hand, defines the evaluation measures for a subset of 

input variables, instead of evaluating each input variable individually. Consequently, the 

approach is more computationally expensive than individual evaluation. However, the 

disadvantage of the individual evaluation approach is that it does not provide an explicit 

distinction between relevant, irrelevant and redundant variables within the variable ranking. 
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In Section 5.5 input variable ranking strategies based on LDsplit are given. Consequently, the 

remainder of this section focuses on previously proposed strategies for input variable ranking 

within multi-label data. Petković et al. (2020) state that similar to multi-label classification, 

approaches for input variable ranking within multi-label data can be divided into problem 

transformation approaches and algorithm adaptation approaches. Problem transformation 

approaches transform the multi-label data so that a single-label variable ranking method can 

be applied. This strategy is discussed in more detail in Section 5.3.1 below. On the other hand, 

algorithm adaptation methods are directly applied to the multi-label data to produce an input 

variable ranking. Examples of such methods are given in Section 5.3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1   Approaches for evaluating the importance of input variables 
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Individual evaluation 

 BR with ReliefF or IG as relevancy 
measure (Spolaôr et al., 2013) 
 

 LP with ReliefF or IG as relevancy 
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 PPT-ReliefF (Reyes et al., 2015) 

 

 ReliefF adaptations (Reyes et al., 2015): 
o ReliefF-ML 
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5.3.1 Variable importance measures based on problem transformations 

Variable importance measures for multi-label data often follow a problem transformation 

approach. Firstly, the multi-label data are transformed so that single-label variable importance 

measures can be implemented. Spolaôr et al. (2013) apply BR and LP (described in 

Section 2.7.2) to the multi-label data, whereas Kong et al. (2012) decompose the multi-label 

problem into a set of pair-wise single-label problems, and Reyes et al. (2015) use the Pruned 

Problem Transformation (PPT) method proposed in Read (2008). The relevance of each input 

variable for the single-label response is then quantified. Several previously proposed 

relevancy measures can be used to quantify the importance of an input variable for 

classification. Some of the most popular of these measures include ReliefF and Information 

Gain (IG). These measures are described below. Further examples include the Fisher score 

(Sun et al., 2021), chi-square score (Chen and Chen, 2011), Gini index (as described in 

Section 5.2.1 (Breiman et al., 1984)), mutual information (Doquire and Verleysen, 2013), 

category contribution (Zhang and Duan, 2019) and rough sets (Liu et al., 2018). Most 

measures do not make use of dependencies amongst the input variables (Petković et al., 

2020). However, it is worth mentioning that ReliefF has the advantage of taking dependencies 

among input variables into account.  

 Single-label relevancy measures 

In this section two well-known relevancy measures are described, namely ReliefF and IG. 

The original Relief algorithm (Kira and Rendell, 1992) is limited to binary classification 

problems. ReliefF (Kononenko, 1994) extends the Relief algorithm to the multi-class scenario. 

For each input variable, ,lX 1,..., ,l p  ReliefF gives a weight in the interval [ 1 , 1]  as 

output. The larger the weight assigned to the input variable, the more useful the input variable 

according to the ReliefF algorithm (Reyes et al., 2015). Suppose that a randomly selected 

data instance, ,rx  has .Y y  By using Euclidean distance, the t  nearest neighbours of rx  

are identified that have .Y y  This set of nearest neighbours are referred to as “hits”. 

Similarly, for all other classes (excluding the class for which Y y ) the t  nearest neighbours 
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of rx  are identified. This set of neighbours are referred to as “misses”. Robnik-Šikonja and 

Kononenko (2003) state that for most purposes t  can be safely set to 10.   

Suppose that rx  has .lX x  In essence, ReliefF considers lX  important for Y  if the hit-

values of rx  have lX  values that are close to ,x  and the miss-values of rx  have lX  values 

that are far away from .x  In other words, lX  is rewarded if it gives different values for misses 

and similar values for hits, whereas lX  is penalised if it gives similar values for misses and 

different values for hits. By randomly selecting different instances, ,rx  1,..., ,r R  the ReliefF 

algorithm is iterated for a user-specified number of times, .R  The detailed ReliefF algorithm 

is available in Robnik-Šikonja and Kononenko (2003).  

Turning to IG, this is a single-label relevancy measure often used in papers related to multi-

label variable importance and selection (Spolaôr et al., 2013). Let D  denote a single-label 

classification dataset with discrete input variables , 1,...,lX l p  and let the response variable 

Y  consist of G  disjoint classes. Then the entropy of D  is calculated as: 

     
1

log
G

g g
g

entropy D p Y p Y


  . 

In the above expression  gp Y  denotes the probability (relative frequency) of the thg  class. 

The IG for each of , 1,...,lX l p  for Y  is obtained by calculating the difference between the 

entropy of the dataset D  and the weighted sum of the entropy of each subset ( ) ,vD D  

where ( )vD  is composed of the data cases where lX  has the value v  (Zdravevski et al., 2015). 

In other words, if lX  consists of 20  distinct values, the weighted sum is applied to 20  different 

( )vD  datasets (Spolaôr et al., 2013). Therefore, IG for ,lX  calculated on the single-label 

classification dataset ,D  is defined by: 
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   ( )

( ), ( )
l

v

l v
X v

D
IG D X entropy D entropy D

D

   . 

In the above expression D  denotes the number of data cases in ,D  and ( )vD  denotes the 

number of data cases in ( ) .vD  Furthermore note that   ventropy D  gives the entropy 

calculated over all data cases that have .lX v  A large value of  , lIG D X  signifies that lX  

is important for .D  

This measure could be useful when the data are represented in the bag-of-words framework. 

 The BR approach 

When BR is used to transform the multi-label data, K  binary classification datasets are 

formed, one for each of the K  labels, 1 2, ,..., .KY Y Y  For each of the p  input variables, 

1 2, , ..., ,pX X X  the relevance of each of the labels, 1 2, ,..., ,KY Y Y  is calculated by means of a 

relevancy measure such as ReliefF or IG.  Results can be stored in a p K  matrix F  where 

entry  ,l k  gives the relevance of lX  for kY  as determined by the relevancy measure. The 

matrix F  can be used to construct global and local input variable rankings.  

Let kf  denote the thk  column-vector of .F  A local input variable ranking for kY  can be obtained 

by arranging the entries of kf  in descending order. If for example 
T

1, 2, 3, 4,k k k k kf f f f   f is 

arranged as 
T

2, 1, 4, 3,k k k kf f f f    the local input variable ranking for kY  is 2 1 4 3, , ,X X X X  with  

respective importance values of 2, 1, 4, 3,, , , .k k k kf f f f   

The simplest way to obtain a global input variable ranking from F  is to aggregate the 

importance obtained by each variable for the respective labels by taking the average 

importance. An average importance value is obtained for each input variable by computing 

the p  row averages of .F  These averages reflect the relevancies of the input variables with 

respect to all of the labels, and can be ordered to produce a global input variable ranking. 

Other aggregation strategies are discussed in Spolaôr and Tsoumakas (2013). 
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Suppose the ReliefF algorithm is used as the relevancy measure for the BR approach. In this 

case the ReliefF algorithm is iterated R  times for each of , 1,...., .kY k K  In each case the 

ReliefF algorithm gives as output a weight in the interval [ 1 , 1]  for each input variable ,lX

1,..., .l p  The results are stored in the p K  matrix F  so that entry  ,l k  gives the 

relevance of lX  for .kY   

Similarly, if IG is used as the relevancy measures for the BR approach,  ,k lIG D X  can be 

computed for each of , 1,...,lX l p  for each label , 1,..., .kY k K  Once again the results 

can be stored in a p K  matrix .F  

Note that if BR is used to transform the data, the global and local input variable ranking 

strategies outlined above do not utilise label correlations.  

 The LP approach 

If LP is used to transform the multi-label data, the data are converted to multi-class data with 

a maximum of 2K  possible disjoint classes. Relevancy measures suitable for multi-class data 

can then be used to quantify the importance of each input variable for the multi-class response.  

Such an LP strategy incorporates label correlation in the ranking strategy; however, only a 

global input variable ranking is produced. Furthermore, the same disadvantage of LP for 

classification (namely that classes can become sparse due to the large number of possible 

classes) could result in an unstable input variable ranking.  

In general, the disadvantage of variable importance rankings based on the problem 

transformation paradigm is that high computation cost arises in settings with many input 

variables and labels. 
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5.3.2 Variable importance measures based on algorithm adaptations 

Multi-label variable importance measures based on algorithm adaptations include all methods 

that produce an input variable ranking directly from the multi-label data. In this section 

examples of algorithm adaptation methods for multi-label input variable ranking are given, 

such as ReliefF (Reyes et al., 2015) and tree-based ensemble (Petković et al., 2020) 

adaptations. Compared to the range of problem transformation methods outlined in 

Section 5.3.1, few algorithm adaptation methods exist (Petković et al., 2020).  

 ReliefF adaptations 

Reyes et al. (2015) outline two strategies, ReliefF-ML and RReliefF-ML, that adapt the classic 

ReliefF algorithm (discussed in Section 5.3.1) to directly handle multi-label data.  

ReliefF-ML adapts the ReliefF weighting mechanism of an input variable. Suppose that a 

randomly selected data observation rx  has ry  as its corresponding vector of multi-label  

classifications and ,r ky  gives the classification of kY  for .rx  For each relevant ( , 1r ky  ) and  

irrelevant ( , 0r ky  ) label of rx  a collection of t  nearest neighbours of rx  is formed. Reyes et  

al. (2015) define the collections of hits  krH  and misses  krM  with respect to the data 

observation rx  and label kY  by the following: 

k
rH : t  nearest neighbours of rx  that have the relevant label kY  of rx  as relevant label. 

k
rM : t  nearest neighbours of rx  that have the irrelevant label kY  of rx  as relevant label. 

In other words, if , 1,r ky   k
rH  contains the t  nearest neighbours of rx  that have 1,kY   

whereas if , 0,r ky   k
rM  contains the t  nearest neighbours of rx  that have 1.kY    

To determine if lX  is important for ,kY  ReliefF-ML does not only consider whether the hit-

values of rx  have lX  values that are close to ,r lx  and whether the miss-values of rx  have 

lX  values that are far away from , .r lx  With ReliefF-ML, the distances of the labelsets are also 

Stellenbosch University https://scholar.sun.ac.za



156 
 

considered when a weight of an input variable is calculated. Given two observations ax  and 

,bx  the Hamming distance of their corresponding label vectors, ay  and ,by  is calculating as: 

  1, a bKd a b  y y . 

Note that in the above expression   denotes the symmetric difference between the two sets. 

A small value of  ,d a b  represents a major similarity between ay  and .by  Based on the 

collections, k
rH  and ,k

rM  Reyes et al. (2015) define the following probabilities: 

 1
,k

r k
r

H
s H

P d r s
t 

   

and 

 1
,k

r k
r

M
s M

P d r s
t 

   . 

k
rH

P  represents the probability that nearest neighbours of rx  that share kY  as relevant belong 

to different sets of labels. Furthermore, k
rM

P  represents the probability that nearest neighbours 

of rx  that have kY  as relevant while , 0r ky   belong to different sets of labels. These 

probabilities are incorporated within the ReliefF-ML weighting mechanism of an input variable 

so that a variable obtains larger importance if it shows different values for observations with 

dissimilar labelsets and similar values for observations of similar labelsets. The detailed 

ReliefF-ML algorithm is given in Reyes et al. (2015). 

RReliefF-ML is based on the ReliefF adaptation to regression problems (RReliefF). Reyes 

et al. (2015) outline in detail how the unified view of ReliefF for the importance of an input 

variable in classification and regression is extended to multi-label data. Different to the 

previous algorithms that form hit and miss collections, for each of the randomly selected 

instances, ,rx  1,..., ,r R  RReliefF-ML retrieves only t  nearest neighbours for rx  
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considering the input space. Let rN  denote the set of nearest neighbours of .rx  When 

calculating the weight of ,lX  the distances between rx  and its nearest neighbours are 

considered with respect to both lX  and the label space by incorporating three probabilities 

within the RReliefF-ML weighting mechanism. Firstly, the probability that nearest instances 

have different values for lX  is computed as: 

 , ,
1

1
,

r

R

r l s l
r s N

x x
t


 
 . 

Here  , ,,r l s lx x  calculates the difference between the values of lX  considering rx  and one 

of its nearest neighbours .s rNx  Reyes et al. (2015) do not specify if the sign of the 

difference is included in the calculation. Secondly, the probability that nearest instances have 

different sets of labels are computed as: 

 
1

1
,

r

R

r s N

d r s
t  
  . 

Here  ,d r s  calculates the Hamming distance between the label vectors ry  and .sy  Finally, 

the probability that nearest instances have different values for lX  and have different sets of 

labels are computed as: 

   , ,
1

1
, . ,

r

R

r l s l
r s N

x x d r s
t


 
 . 

With RReliefF-ML, an input variable receives higher importance if it has different values for 

observations with dissimilar labelsets and similar values for observations with similar 

labelsets.  

 

 

Stellenbosch University https://scholar.sun.ac.za



158 
 

 Tree-based ensemble adaptations 

Kocev et al. (2013) use a random forest of PCTs to obtain an input variable ranking directly 

from multi-label data. Their work is motivated by the success of input variable rankings 

attained from traditional single-label trees, such as those outlined in Section 5.2.  

By fitting a random forest of M  PCTs the OOB set of each PCT is used to calculate an 

importance value for each input variable , 1,..., .lX l p  For each PCT in the ensemble an 

MDA strategy (as given in Section 5.2.2) is used as outlined next.  

Each PCT in the ensemble, , 1,..., ,jPCT j M  is used to classify all observations in the OOB 

set of the PCT. These classifications are compared to the true classifications of the OOB set 

and an OOB-error is computed for each PCT,   , 1,..., .jErr OOB j M  Any multi-label 

evaluation measure can be used to calculate the error. In the experiments of Kocev et al. 

(2013), jErr  is computed using several different evaluation measures namely: accuracy, 

micro-precision, micro-recall, micro-F1, macro-precision, macro-recall, and macro-F1. 

To compute the importance of lX  for ,jPCT  the values of lX  in the OOB set of the PCT are 

permuted while 1 1 1,..., , ,...,l l pX X X X   are left unchanged. jPCT  is used to classify the 

permuted set and these classifications are compared to the true classifications to obtain an 

OOB-error,   .j lErr OOB X  The importance of lX  is calculated as the increase of the OOB-

error after lX  has been permuted, i.e.     j l jErr OOB X Err OOB  gives the importance of 

lX  calculated using .jPCT  Note that the importance of lX  is calculated by including the sign 

of the difference of the evaluation measure after permuting .lX  This process is repeated for 

all input variables for each of the M  PCTs in the ensemble. The overall importance of lX  is 

calculated as the average importance obtained for lX  across the M  PCTs in the ensemble.  
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Note that the above approach of Kocev et al. (2013) produces a global input variable ranking. 

Kocev et al. (2013) make no mention of the possibility of local importance of input variables. 

Consequently, no local input variable ranking strategy is given by Kocev et al. (2013). 

Petković et al. (2020) extend the work of Kocev et al. (2013). In their work three different 

ensemble strategies are used: random forests, bagged ensembles, and so-called extra trees. 

Extra trees are similar to random forests. For both random forests and extra trees only a 

random subset of input variables is considered as candidates for splitting the data at each 

node of the tree. In addition, extra trees only consider one random splitting-value per input 

variable per node. Furthermore, extra-trees do not use bootstrapping.  

Apart from the three ensemble strategies, Petković et al. (2020) also consider three different 

methods for determining the importance of input variables within the different ensembles. The 

first is the MDA PCT strategy as proposed by Kocev et al. (2013) and explained above. For 

the second strategy, Petković et al. (2020) apply an MDI strategy (as given in Section 5.2.1) 

by using the average of the normalised Gini indices of the respective labels as a measure of 

node impurity when calculating the improvement in node impurity. Petković et al. (2020) 

propose a third importance strategy which calculates the importance of an input variable based 

on the number of times the variable is selected as the splitting variable across the ensemble. 

In the simplest case, the importance of lX  is given as the number of times lX  is selected as 

a splitting variable across the ensemble. 

The approaches by Petković et al. (2020) discussed above give global input variable rankings. 

Petković et al. (2020) also make no mention of the possibility of local importance of input 

variables. 

In general, the identified shortcoming of the algorithm adaptation methods for variable 

importance is that these methods do not consider both the global and local importance of input 

variables. 
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5.4 Approaches for variable selection within multi-label data 

In the previous section approaches for variable importance within multi-label data are 

discussed. In this section attention shifts to the related concept of variable selection within 

multi-label data. 

The aim of variable selection is to find a smaller set of input variables that describe the dataset 

as well as the full original set of input variables (Liu and Motoda, 2007). With the reduction in 

dimensionality, the learning process of a model is not only faster, predictive performance of 

the model may also improve and important interpretations can be made. Traditional variable 

selection techniques can generally be categorised into three approaches: wrapper, embedded 

and filter (Pereira et al., 2018). The differences between the three approaches pertain to the 

interaction of the variable selection process and the learning algorithm used for classification. 

These approaches are explained in the following section. 

5.4.1 Categorisation of traditional variable selection techniques 

The wrapper approach identifies input variables that are best suited for the specific learning 

algorithm that is implemented. Wrapper methods need to fit the classifier many times to assess 

the quality of the selected input variables. Examples of wrapper methods include the iterative 

methods of forward selection and backward elimination (Kohavi and John, 1997). Forward 

selection starts with an empty model and iteratively adds the input variable that most improves 

the performance of the learning method (Hastie et al., 2009:58). In contrast, backward 

elimination starts with a full model that contains all input variables and iteratively removes 

those input variables that has the least impact on the fit. The candidate for dropping is the 

variable with the smallest Z-score (Hastie et al., 2009:59). Wrapper approaches suffer from 

the disadvantage of being computationally expensive.  

With the embedded approach, variable selection is embedded within the specific learning 

algorithm as part of the training process. For example, when a traditional decision tree is fit, 

an appropriate input variable is determined to split each node of the tree. 
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Filter approaches are independent of the learning algorithm. Irrelevant variables are filtered 

out by considering other general characteristics of the data. The importance values obtained 

from an input variable ranking strategy can for example be used to select appropriate input 

variables. This can be done by selecting a fixed number of the most important variables 

according to their importance values (Petković et al., 2020). Another possibility is to apply a 

threshold strategy. In this case, all input variables with importance values exceeding the 

threshold are selected, while the other input variables are discarded. It is however not a 

straightforward task to determine an appropriate number of variables to select or threshold to 

apply. In addition, a disadvantage of the filter approach is that redundant variables are not 

easily identified since these variables are likely to have similar importance values. However, 

the main advantage of the filter approach is that it is relatively fast and simple to implement. 

These three approaches to variable selection also apply to multi-label data. Similar to multi-

label classification strategies and multi-label variable ranking strategies, methods for variable 

selection in multi-label data can also be divided into problem transformation approaches and 

algorithm adaptation approaches (Pereira et al., 2018). With a problem transformation 

approach the multi-label data are divided into one or more single-label datasets by using any 

problem transformation method (such as those outlined in Section 2.7.2). A wrapper, 

embedded or filter approach appropriate for single-label data can then be applied to the 

transformed data. The results found in this way can either be combined to obtain one reduced 

multi-label dataset on which a multi-label classifier is fit, or a single-label classifier can be 

applied to (each of) the reduced single-label dataset(s). With an algorithm adaptation 

approach the variable selection method is directly applied to the multi-label data. Generally, 

such a technique would then be categorised as either a wrapper, embedded or filter approach 

depending on its interaction with the learning algorithm used for classification. 

The input variable rankings of LDsplit (given in Section 5.5) can be used to perform variable 

selection. In this setting an LDsplit variable ranking strategy is used as a pre-processing 

method for variable selection. No problem transformation method is applied before the LDsplit 
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strategy is implemented. The method can therefore be considered as an algorithm adaptation 

method for variable selection. Furthermore, any multi-label classifier can be applied to the 

reduced input variable set, so that the LDsplit variable selection strategy is independent of the 

learning algorithm used for classification. Consequently, the proposed method also 

categorises as a filter approach. Filter approaches for variable selection within multi-label data 

are therefore of interest in this work and are discussed in more detail in the next section. Note 

that the filter approach for multi-label variable selection is the most commonly used approach 

(Spolaôr and Tsoumakas, 2013). 

5.4.2 The filter approach for multi-label variable selection 

A variable importance ranking (either obtained by using a problem transformation strategy as 

explained in Section 5.3.1, or by using an algorithm adaptation strategy as explained in 

Section 5.3.2) can be used to filter input variables from a multi-label dataset. 

Spolaôr et al. (2013) apply both BR and LP transformations and consider both ReliefF and IG 

as relevancy measures, thus giving rise to four global input variable rankings (obtained in the 

manner outlined in Section 5.3.1). In their work a conservative threshold value of 0.01  is used 

throughout to perform variable selection. In other words, for each ranking all input variables 

with a global importance value exceeding 0.01  are selected while the remaining variables are 

filtered out. Empirical results on benchmark datasets show that methods with ReliefF often 

produce a smaller subset of input variables than the ones that use IG (Spolaôr et al., 2013). 

The satisfactory performance of ReliefF could be owed to the fact that the measure 

incorporates input variable interaction. In general, the fixed threshold value of 0.01  causes 

large variation in the number of input variables selected for the respective measures and 

datasets (Spolaôr et al., 2013).  

Reyes et al. (2015) compare various ReliefF algorithms and use their respective variable 

rankings to perform variable selection. In their empirical work, the four problem transformation 

methods listed in Figure 5.1 for input variable ranking are considered, as well as two algorithm 

adaptation methods namely ReliefF-ML and RReliefF-ML. Consequently, for each of the 
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benchmark datasets considered by Reyes et al. (2015), six input variable rankings are 

obtained by applying the respective algorithms. To perform variable selection, Reyes et al. 

(2015) use the strategy outlined in Ruiz et al. (2005). Therefore, for each input variable 

ranking, the top 100  ranked input variables are selected to which a wrapper approach is 

applied to determine an appropriate subset of input variables. The wrapper approach is 

applied to the entire set of input variables for datasets that have 100.p   Hereafter, a multi-

label classifier is fit to the full set of input variables as well as to each of the six reduced sets. 

The classification performance of the respective models are then compared based on four 

multi-label evaluation measures. Results show that the proposed methods of Reyes et al. 

(2015), namely PPT-ReliefF, ReliefF-ML and RReliefF-ML, generally perform better than the 

model that uses the full set of input variables. 

In general, it is not a straightforward task to select an appropriate threshold for filter 

approaches or alternatively to determine the number of variables to be selected.  As a simple 

example, the median importance can be used as a threshold. This would regard the top 50%  

of input variables as relevant. However, the (unknown) true percentage of relevant input 

variables may be more or less than 50% . Both Spolaôr et al. (2013) and Reyes et al. (2015) 

ignore this concern since they simply specify a threshold or a fixed number of variables to 

select. Ideally, a selection method should also be tested on simulated data, where the true 

number of relevant variables is known.  

Work by Bi et al. (2003), Stoppiglia et al. (2003), and Tuv et al. (2008) consider using 

independent probe variables to determine appropriate cut-off points for filter approaches. The 

idea of independent probes is to augment the input space with several randomly generated 

variables that are independent of the response variable(s). These variables are referred to as 

probe variables. Probes can be generated using a probability distribution such as the standard 

normal distribution (Dreyfus and Guyon, 2006). However, Tuv et al. (2008) argue that 

permuting (i.e. rearranging) the values of input variables is a better strategy, as it takes into 

account the possible special structure of the input variables. Note that this is a similar strategy 
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as that used for MDA of traditional single-label trees (Section 5.2.2). These previous proposals 

for generating probe variables for the purpose of variable selection do not consider multi-label 

data. However, Sandrock and Steel (2016) give an approach for generating independent 

probes for the purpose of variable selection for multi-label data. In order to apply  

their method, a p K  matrix is required, for which entry  ,l k  gives the local importance of  

variable lX  for label .kY  The argument is that an effective variable ranking strategy would 

rank relevant variables higher than the probe variables, so that the probe variables assist in 

determining an appropriate cut-off point.  

5.5 Variable importance within LDsplit 

As seen in Section 5.3, many of the current methods for input variable ranking within multi-

label data are based on the problem transformation paradigm. However, these methods 

mostly neglect to exploit label dependencies fully. A further shortcoming identified in the 

literature is that few proposals consider both global and local importance of variables. In fact, 

no local importance measures could be found in the literature that incorporate label 

correlations. Consequently, this section outlines how an LDsplit ensemble can be used to 

address these shortcomings. 

As LDsplit is a tree-based method for multi-label data, variable importance measures of single-

label trees, as described in Section 5.2, can be extended to multi-label data by using the 

LDsplit framework. Examples of such extensions are given in Section 5.5.1 and Section 5.5.2 

below.  

5.5.1 LDsplit MDA variable importance  

This section outlines how the single-label MDA method of random forests (Section 5.2.2) can 

be extended to multi-label data by means of an LDsplit ensemble.  

Suppose the multi-label training dataset is given by 1{( , ), , 2,..., },i i i Nx y  with N  p 

component input observations, ,ix  and their corresponding K  component multi-label 

response vectors, .iy  
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To implement an MDA strategy, each of the M  tree-structures in the LDsplit ensemble, 

, 1,..., ,jT j M  requires an OOB set. These sets can be obtained by basing the fit of each 

tree-structure on a random subsample of the N  training observations. Denote the proportion 

of observations sampled from 1{( , ), , 2,..., }i i i Nx y  to fit jT  by ,IBprop  i.e. the In-Bag (IB) 

proportion. Those observations not included in the subsample used to fit ,jT  form the OOB 

set of jT  denoted by   ,
j

OOB  where 1,..., .j M  In other words, the proportion of 

observations that form the OOB set per tree-structure is given by 1 .OOB IBprop prop   

Therefore, apart from one additional step which is to subsample  IBprop N  training 

observations before fitting each of , 1,..., ,jT j M the LDsplit ensemble is fit as described in 

Chapter 3. For simplicity the Random LDsplit algorithm is used in this work; however, either 

of the Random or Conditional LDsplit algorithms could be implemented. 

The LDsplit framework allows for the development of both a global and local MDA input 

variable ranking. These are described next.  

 Global importance 

To determine a global importance value for each input variable, , 1,..., ,lX l p  proceed as 

follows. 

For the fitted m level tree-structure ,jT  find the posterior probabilities of labels ,1 ,,...,j j mP P  

for   jOOB  by implementing the LDsplit classification strategy outlined in Section 3.2.3. 

These posterior probabilities can be transformed to a set of multi-label classifications for 

  jOOB  over the labels, ,1 ,,...,j j mP P , by applying the predetermined thresholds, 
,1 ,
,...,

j j mP Pt t . 

By doing so, classifications are easily compared to the true set of classifications of   jOOB  

over ,1 ,,...,j j mP P  by using any multi-label evaluation measure (for example Hamming loss). 
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Now permute the values of lX  within   jOOB  while 1 1 1,..., , ,...,l l pX X X X   are left 

unchanged. Use jT  and thresholds 
,1 ,
,...,

j j mP Pt t  to find the multi-label classifications of the 

labels ,1 ,,...,j j mP P  for this permuted set of   .
j

OOB  This set of classifications is compared to 

the true set of classifications of   jOOB  by once again using the chosen multi-label evaluation 

measure.  

The difference in the value of the evaluation measure after permuting each of , 1,..., ,lX l p  

reflects the variable importance of lX  given by .jT  The reasoning is that a large decrease in 

performance in terms of the evaluation measure after lX  has been permuted shows that lX  

has a large influence on the success of jT  and that lX  is arguably important for .jT   

Doing this for all M  tree-structures give M  variable importance values for each input variable 

, 1,..., .lX l p  The global importance of lX  is given by the average of these values over the 

M  trees. 

Note that the value of the evaluation measure is not necessarily worse after a variable is 

permuted. Due to randomness, it is possible for the value of the evaluation measure to slightly 

improve after a noise variable is permuted. In this case the recorded difference is negative. 

To prevent such information from being lost, the importance of a variable is calculated by 

including the sign of the difference of the evaluation measure after permuting the variable. 

The resulting global variable importance values of , 1,..., ,lX l p  can be ranked from most 

to least important. They can also be transformed to positive values and can be represented 

on a chosen scale (for example:0 100 ). 
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 Local importance 

A local importance value for each input variable and label combination is determined by 

tracking input variable behaviour over the ensemble for each label. 

Again tree-structure jT  and thresholds, 
,1 ,
,..., ,

j j mP Pt t  are used to find the multi-label 

classifications of labels ,1 ,,...,j j mP P  for   jOOB  as described in Section 3.2.3. However, since 

the overall multi-label performance of jT  is not of interest in this case, a multi-label evaluation 

measure is not used to compare the classifications given by jT  to the true classifications of 

  .
j

OOB  Instead, each of ,1 ,,...,j j mP P  is considered separately, and the proportion of correctly 

classified observations over the set of   jOOB  is noted for each label. 

To find the local importance of , 1,..., ,lX l p  permute lX  within   jOOB  while 

1 1 1,..., , ,...,l l pX X X X   are left unchanged, and use jT  and thresholds 
,1 ,
,...,

j j mP Pt t  to find the 

multi-label classifications of labels ,1 ,,...,j j mP P  for the permuted set. The set of classifications 

is compared to the true set of classifications of   jOOB  by finding the proportion of correct 

classifications for each of the labels ,1 ,,..., .j j mP P   

A large decrease in the proportion of correct classifications of a label after lX  is permuted, 

indicates that lX  has a large influence on the successful classification of this label. This 

implies that lX  should be regarded as important for such a label.  

Therefore, for tree-structure ,jT  the difference in proportion of correct classifications for each 

of the labels ,1 ,,...,j j mP P  is calculated after each of , 1,..., ,lX l p  is permuted. The results 

can be represented in a p m  matrix where entry  ,l s  gives the difference in proportion of 

correct classification of label , ,j sP  1,..., ,s m  after input variable lX  is permuted. Such a 
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matrix is constructed for each of , 1,..., .jT j M  Since  , 1,...,j s KP Y Y  the local importance 

of variable lX  for label kY  is calculated as the average importance over all matrix entries that 

link variable lX  and label .kY  The results are stored in a p K  matrix, ,F  where entry  ,l k  

gives the local importance of variable lX  for label .kY  To identify important input variables per 

label, a variable importance ranking can be constructed for each column of .F  

It is important to note that the local variable importance method outlined above implicitly 

considers label correlation, even though proportions of correct classifications are calculated 

separately per label. This is due to the label dependency of the fitted LDsplit ensemble. 

5.5.2 Other approaches for variable importance within LDsplit 

One main advantage of the LDsplit MDA variable importance method is that it allows any 

binary base classifier within LDsplit. Therefore, LDsplit MDA can provide variable importance 

rankings for any fitted LDsplit model, irrespective of the base classifier used. It is therefore the 

preferred variable importance strategy for LDsplit in this work. A direct adaptation of the MDI 

approach of Section 5.2.1 for LDsplit may for example require a stump (i.e. a tree containing 

only one split-point) as binary base classifier.  

Even though the LDsplit MDA variable importance method is preferred in this work, this section 

briefly describes two additional approaches which could also be considered for LDsplit. 

 LDsplit MDI variable importance  

Node-splitting in a traditional single-label classification tree is based on one variable per node 

that gives maximum estimated improvement in node impurity after the split. This allows the 

relative importance of variable lX  in a traditional single-label tree to be defined as the sum of 

improvements over all internal nodes where lX  is the splitting variable.  

Since each split of an LDsplit tree-structure is based on a binary classification problem 

involving one label, it is possible to calculate the improvement in node impurity per split based 

on this label. However, for LDsplit, the binary base classifier generally defines each split using 
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all the input variables. A general variable importance approach that appropriately allocates the 

improvement in node impurity per split across all the input variables, may be complicated to 

define. A simpler way in which the MDI approach could be adapted for LDsplit is to use a 

stump as binary base classifier. In this way each splitting rule of LDsplit would be defined by 

a single input variable (given by the fitted stump) and label (given by the corresponding label 

of the tree-level) combination. This gives rise to a simple global, as well as a simple local 

variable importance measure.  

In this setting, the global importance of variable lX  is given by the sum of improvements over 

all internal nodes where lX  is used for the splitting rule. On the other hand, the local 

importance of variable lX  for label kY  is given by the sum of improvements over the collection 

of splitting rules that combine variable lX  and label .kY  

 Conditional permutation schemes for LDsplit variable importance 

Strobl et al. (2008) state that correlation between input variables affect the original random 

forest variable importance measures discussed in Section 5.2, since random forests show a 

preference for correlated variables. Strobl et al. (2008) reason that the random forest 

measures can be considered as measures of marginal importance even though what is of 

interest in most applications is the conditional effect of each variable. A positive value of the 

importance could correspond to deviation of independence between lX  and Y  or deviation 

of independence between lX  and 1 1 1,..., , ,..., .l l pX X X X   Strobl et al. (2008) therefore 

introduce a conditional permutation scheme with the aim of only measuring the impact of lX  

on Y  under a given correlation structure between lX  and the other input variables. This 

scheme permutes lX  only within groups of observations with 1 1 1,..., , ,...,l l pX X X X    

1 1 1,..., , ,...,l l px x x x   to preserve the correlation structure between lX  and the other input 

variables.  
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Apart from other aspects that are investigated in the synthetic study of Chapter 6, the effect of 

correlated input variables on the LDsplit MDA approach is also considered. The results prove 

it unnecessary to develop an LDsplit conditional permutation scheme. 

5.6 Advantages of LDsplit MDA variable importance  

This section highlights various advantages of the proposed LDsplit MDA method given in 

Section 5.5.1. 

Many multi-label classification applications require interpretable results. As mentioned, in the 

medical domain, successful early interventions may prevent or delay diseases (Cheng et al., 

2019). Furthermore, a good understanding of important input variables can also be beneficial 

if the data collection is difficult or expensive. In such a scenario the available resources can 

be directed at only the most important variables. Therefore, input variable ranking for multi-

label data is an important area of research as it provides insight regarding the importance of 

the input variables. 

Since variables can be globally as well as locally relevant, it is advantageous that the LDsplit 

MDA strategy provides both a global and local input variable ranking. As indicated in 

Section 5.3, few previously proposed variable importance measures for multi-label data 

consider this distinction. Moreover, both the global and local LDsplit MDA measures are 

influenced by label correlations since they are dependent on a fitted LDsplit ensemble which 

implicitly exploits local higher-order label correlations. When BR is for example applied with 

an appropriate relevancy measure, the resulting global and local input variable rankings are 

not influenced by label correlations. No local importance measure could be found in the 

literature that utilises label correlations.  

In practice, the p K  local importance matrix, ,F  produced by LDsplit MDA can be used to 

identify important input variables per label. This can be done by constructing a variable ranking 

for each column of .F  Depending on the multi-label problem at hand, it may be insightful to 

identify sets of input variables that are important for subsets of labels. Furthermore, insight 
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may be found if some labels demonstrate distinct behaviour by displaying a ranking of 

important variables very different to that of other labels. Additionally, F  can be used to 

compare the importance of a particular input variable across the different labels. In this case, 

a variable may be regarded as important for several labels but may show a higher importance 

towards a few labels in particular. Other tree-based ranking methods for multi-label data, such 

as those proposed by Kocev et al. (2013) and Petković et al. (2020), only provide global input 

variable rankings. The authors do not consider the possibility of local importance of input 

variables. Therefore, the above examples of insight regarding the local importance of input 

variables can not be obtained from those measures. 

It is important to realise that by basing the fit of each LDsplit tree-structure in the ensemble on 

a random subsample of the training observations, the LDsplit MDA method can be 

implemented whilst simultaneously fitting an LDsplit model useful for classification of unseen 

data. This allows for computation efficiency as the LDsplit MDA method is not a stand-alone 

variable importance method. The LDsplit MDA method can provide valuable insight towards 

the importance of the different input variables, while the fitted LDsplit model can classify 

unseen data. Since the variable importance values obtained with LDsplit MDA are dependent 

on the fitted LDsplit model, the measures allow for better interpretability of the LDsplit model 

used for classification. 

Furthermore, the LDsplit MDA variable importance method allows any binary base classifier 

within LDsplit which makes the method more flexible. Since no restriction exists in terms of 

the choice of binary base classifier, LDsplit MDA can provide variable importance rankings for 

any fitted LDsplit model. As seen in Chapter 4, the classification performance of LDsplit 

appears to be very dependent on the chosen binary base classifier. One might therefore prefer 

to determine a good base classifier based on classification performance on validation sets. 

However, irrespective of the chosen base classifier, LDsplit MDA can provide variable 

importance rankings for the fitted model, allowing better interpretation of the model. In 
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contrast, an LDsplit MDI strategy can for example only provide variable rankings for LDsplit 

models that use a stump as binary base classifier. 

When LDsplit MDA is applied to an ensemble of M  LDsplit tree-structures, the OOB sets, 

  ,
j

OOB 1,..., ,j M  are dropped into the respective tree-structures 1p   times (one 

unpermuted set and p  permuted sets for each of , 1,...,lX l p  respectively). This increases 

the computation cost of the strategy. Fortunately, the testing times provided in Table 4.3 

obtained in the empirical study of Chapter 4 show that an LDsplit ensemble generally requires 

little computation time to classify sets of unseen data. 

Apart from the insight that the LDsplit MDA rankings can provide in terms of variable 

importance, the values can also be used within so-called lazy learning algorithms. Lazy 

learning algorithms depend on the definition of a distance function defined on the input space 

that determines the k  nearest neighbours of a query instance (Reyes et al., 2015). In this 

case the global importance values obtained for each input variable using LDsplit MDA define 

an input variable weight vector. This weight vector can potentially reduce the negative impact 

of irrelevant variables on the distance computation of the lazy learning algorithm. 

Finally, the LDsplit MDA input variable rankings can be applied as a filter approach for variable 

selection. Spolaôr and Tsoumakas (2013) state that the filter approach is the most common 

approach for multi-label variable selection. However, different from many other filter 

approaches for multi-label variable selection, the LDsplit MDA strategy incorporates label 

correlation into the selection process. 

The variables can be selected based on the global and local importance values in different 

ways. For example, the LDsplit MDA global importance ranking can be used for variable 

selection by selecting a fixed number of top-ranked variables, applying a threshold, or by 

making use of probe variables. The local importance matrix, ,F  can be used for variable 

selection by selecting a fixed number of variables per label or by applying a threshold strategy 
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per label. Determining an appropriate threshold per label does remain a challenge. However, 

since the local importance matrix, ,F  defines a p K  matrix for which entry  ,l k  gives the 

local importance of variable lX  for label ,kY  the independent probe strategy for multi-label 

variable selection given by Sandrock and Steel (2016) can be applied, thereby addressing the 

problem of threshold specification.  

Note that LDsplit MDA local variable selection strategies are different from a binary relevance 

approach where variable selection is performed separately for each label, because F  of 

LDsplit MDA incorporates label dependencies. 

All the required R-functions to apply LDsplit MDA are given in Appendix D. 

5.7 Conclusion 

In this chapter aspects of variable importance and variable selection within multi-label data 

were considered.  

Firstly, by investigating the current approaches for variable importance and variable selection 

for multi-label data, shortcomings in the literature were identified. It was found that many 

variable importance measures are based on problem transformations that neglect to exploit 

label correlations and that few proposals exist for measuring both the global and local 

importance of variables. Moreover, no measures for local importance of input variables could 

be found in the literature that incorporate label correlations. Consequently, different strategies 

were given in this chapter to address these shortcomings by using an LDsplit ensemble. 

Input variable ranking strategies were proposed for LDsplit by adapting traditional variable 

importance measures of single-label trees. Advantageously, both global and local measures 

could be established due to the LDsplit structure. Furthermore, the global and local measures 

are influenced by label correlations since they are dependent on a fitted LDsplit ensemble 

which implicitly exploits local higher-order label correlations.  
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The LDsplit MDA variable importance method is the preferred strategy of this work since it 

allows any binary base classifier within LDsplit. LDsplit MDA can therefore provide a variable 

importance ranking for any fitted LDsplit model used for classification. The strategy therefore 

allows for better interpretation of LDsplit models. This is advantageous since interpretability 

can be a sought-after property in many multi-label classification scenarios.  

Finally, the LDsplit MDA input variable rankings may potentially be applied as a filter approach 

for variable selection. For either the global or local input variable rankings this can be done by 

selecting a fixed number of top-ranked variables, applying a threshold or by making use of 

probe variables. Advantageously, different from many other filter approaches for multi-label 

variable selection, LDsplit MDA incorporates label correlation into the selection process. 

In the next chapter multi-label synthetic data are generated to evaluate the performance of the 

global and local LDsplit MDA measures. A short benchmark dataset application is also given.  
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Chapter 6: Empirical properties and application of LDsplit MDA 
 

6.1 Introduction 

In this chapter the performance of the LDsplit MDA strategy is investigated.  

An ideal way to assess a variable importance measure is by generating synthetic data. In this 

way the relationship between the input variables and the response can be specified, and the 

variable importance measure can be accurately assessed since the true input variable 

relationship with the response is known. However, as mentioned in Section 1.4.3, few 

proposals for generating synthetic multi-label data exist in the literature due to the additional 

challenges faced when generating the data.  

In Section 6.2 the algorithm of Sandrock and Steel (2017) is used to generate synthetic multi-

label data to conduct an extensive study of the performance of LDsplit MDA. The algorithm of 

Sandrock and Steel (2017) is used as it has the option of specifying locally and globally 

relevant input variables. It is therefore possible to evaluate the proposed global and local 

variable importance measures of LDsplit MDA. 

In Section 6.3, a short benchmark dataset application is given by applying LDsplit MDA to the 

benchmark dataset, Emotions. In this case it is unknown which variables are in truth globally 

and locally most important since the benchmark dataset is not simulated. However, this 

section illustrates how LDsplit MDA makes an LDsplit model more interpretable in terms of 

variable importance. Furthermore, since Emotions is a simple music dataset where each piece 

of music is labelled with the emotions it provokes, it may be possible to assess if the results 

appear reasonable based on intuition and background knowledge of the respective emotion 

labels. 
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6.2 LDsplit MDA synthetic study 

In this section the performance of LDsplit MDA is investigated by conducting an extensive 

study on synthetic multi-label data. 

Firstly, in Section 6.2.1, the algorithm of Sandrock and Steel (2017) is described for generating 

multi-label synthetic data. In Section 6.2.2 the design and configuration of the synthetic study 

are outlined. The global and local LDsplit MDA importance results are given and discussed in 

Section 6.2.3 and Section 6.2.4 respectively. Some remarks on LDsplit MDA as a method for 

variable selection are given in Section 6.2.5 before concluding remarks of the synthetic study 

are given in Section 6.2.6. 

6.2.1 Generating synthetic multi-label data 

Consider a multi-label data pair,  ,i ix y , where ix  represents a vector of the input variables 

1 2, ,..., pX X X  and iy  represents a vector of the binary labels 1 2, ,..., .KY Y Y  To generate 

 , ,i ix y  one can either start by generating ix  from its marginal distribution followed by 

generating iy  from its conditional distribution given ,ix  or iy  can be generated first from its 

marginal distribution followed by generating ix  from its conditional distribution given .iy  The 

algorithm of Sandrock and Steel (2017) starts by generating the label matrix, ,Y  consisting 

of N  K  component label vectors. This is done using the auto-regressive or AR(1) approach 

of Oman (2009) for generating correlated Bernoulli variables. The equi-correlation amongst 

the label variables is user-specified and given by .Y  The K  label densities for each of 

1 2, ,..., KY Y Y  are also user-specified. Sandrock and Steel (2017) denote  1kP Y   by ,kp  

where 1,..., .k K  

Once the label space has been generated, a conditional multivariate normal distribution is 

used by Sandrock and Steel (2017) to generate the input matrix, ,X  consisting of N  p 

component input observations. The mean vector of the multivariate normal distribution 
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depends on the label space, whereas the covariance matrix is constant. The equi-correlation 

between the (relevant) input variables is given by .X   

To ensure the mean vector specification reflects the dependency between the labels and the 

input variables, a p K  binary matrix A  is introduced. The interpretation of this matrix is that 

if entry  ,l k  is equal to 1,  lX  is relevant for ,kY  otherwise this entry of the matrix equals 0.

In this case “relevant” means that the distribution of lX  will be different if 1kY   from that 

when 0.kY   The dependence is modelled by taking: 

   |l i l iE X y y  

                          , ,
1

, 1,..., .
K

l k i k
k

c a y l p


   

Therefore, by setting , 0l ka   when lX  is irrelevant for ,kY   l i y  does not depend on ,i ky  

in such cases. On the other hand setting , 1l ka   when lX  is relevant for kY  allows  l i y  to 

depend on , ,i ky  increasing by a positive quantity c  if ,i ky  changes from 0  to 1.  

Since c  controls the extent to which ,i ky  changing from 0  to 1 influences   ,l i y  c  is used 

to regulate the strength of the signal of the input variables for .Y  The signal is defined as 

 
2

2

1

| .
p

l
l

s Var E X


 
    
 
 Y  Using the fact that   , ,

1

| , 1,...,
K

l i l k i k
k

E X c a y l p


 y  and by 

completing some algebraic extensions, Sandrock and Steel (2017) give the signal as an 

expression which is dependent on ,c  A  and .Y  Since it is undesirable for the signal to 

depend on ,Y  Sandrock and Steel (2017) calculate c  in such a way that the user-specified 

signal, 2 ,s  is independent of .Y   
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The proposal is to calculate c  using: 

   

1

2
21

2
, , , , , ,

1 11 1 1 1 1

1 1
p K K K K K K

l k k Y l k l r k k r r l k l r k r l k k
k kl k r r k
k r k r

c s a p a a p p p p a a p p a p
     
 

 
               

 

      

where  1 , 1,..., .k kp P Y k K    

It appears that a general problem when generating correlated Bernoulli variables is that the 

realised correlations differ from those specified once the univariate probabilities are not equal. 

This seems to be inevitable (Oman, 2009). Note that for all cases where the univariate label 

probabilities are set to be unequal, this issue is taken into account when the results of the 

synthetic study are discussed in Section 6.2.3 and Section 6.2.4. In general, this problem 

illustrates one of the many challenges faced when generating synthetic multi-label data. It also 

highlights two challenging research areas not covered in this work, namely imbalanced multi-

label data generation and variable selection within imbalanced data. Research on variable 

selection within imbalanced data is limited and the few existing works mainly focus on single-

label data. Dfuf et al. (2020), Chen et al. (2019) and Yin et al. (2013) give information regarding 

variable selection within imbalanced single-label data, and Xie et al. (2017) give more 

information regarding variable selection within imbalanced multi-label data. 

6.2.2 Design and configurations of synthetic study 

To investigate the performance of the LDsplit MDA approach (Section 5.5.1), the method 

outlined in Section 6.2.1 above is used to generate several synthetic multi-label datasets. All 

the generated datasets have 6K   labels, 2000N   observations and 10p   input 

variables. Of the 10  input variables, only the first six are relevant, so that variables 7 8 9, ,X X X  

and 10X  are noise variables. The four irrelevant variables are generated from a standard 

normal distribution independently of the label variables. The following matrix, ,A  is used to 

specify the input variable relevancies that are fixed throughout: 
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1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

A . 

Defining A  in this way reflects the irrelevance of variables 7 10,..., .X X  It also specifies that 

1X  is locally only important for 1 ,Y  2X  is locally important for both 1Y  and 2 ,Y  3X  is locally 

important for 1 2,Y Y  and 3Y  and so forth.  

Since 6X  is locally important for all six labels, 6X  is regarded as globally most important, 

followed by 5 4 1, ,..., .X X X  

To investigate the performance of the LDsplit MDA approach in different settings, a total of 96  

configurations are considered, as given in Table 6.1. The influence that the label densities, 

label correlation   ,Y  input variable correlation   ,X  and the strength of the signal of the 

data  2s  have on performance, are examined. The influence of the choice of LDsplit tuning 

parameters m  and M  are also considered. 
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Table 6.1  
Configurations of the 96  cases considered 

 
Label densities 

 0.2 0.2 0.2 0.2 0.2 0.2   0.2 0.3 0.4 0.2 0.3 0.4  

m  M  signal X  0Y   0.6Y   0Y   0.6Y   

3m   

50  

2 10s   
0X   Case 1 Case 2 Case 3 Case 4 

0.6X   Case 5 Case 6 Case 7 Case 8 

2 100s   
0X   Case 9 Case 10 Case 11 Case 12 

0.6X   Case 13 Case 14 Case 15 Case 16 

100  

2 10s   
0X   Case 17 Case 18 Case 19 Case 20 

0.6X   Case 21 Case 22 Case 23 Case 24 

2 100s   
0X   Case 25 Case 26  Case 27 Case 28 

0.6X   Case 29 Case 30 Case 31 Case 32 

4m   

50  

2 10s   
0X   Case 33 Case 34 Case 35 Case 36 

0.6X   Case 37 Case 38 Case 39 Case 40 

2 100s   
0X   Case 41 Case 42 Case 43 Case 44 

0.6X   Case 45 Case 46 Case 47 Case 48 

100  

2 10s   
0X   Case 49 Case 50 Case 51 Case 52 

0.6X   Case 53 Case 54 Case 55 Case 56 

2 100s   
0X   Case 57 Case 58 Case 59 Case 60 

0.6X   Case 61 Case 62 Case 63 Case 64 

5m   

50  

2 10s   
0X   Case 65 Case 66 Case 67 Case 68 

0.6X   Case 69 Case 70 Case 71 Case 72 

2 100s   
0X   Case 73 Case 74 Case 75 Case 76 

0.6X   Case 77 Case 78 Case 79 Case 80 

100  

2 10s   
0X   Case 81 Case 82 Case 83 Case 84 

0.6X   Case 85 Case 86 Case 87 Case 88 

2 100s   
0X   Case 89 Case 90 Case 91 Case 92 

0.6X   Case 93 Case 94 Case 95 Case 96 
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For each case given in Table 6.1, the following steps are performed. Fifty multi-label datasets 

are generated based on the configurations, after which a Random LDsplit model with an SVM 

binary base classifier is fit to each by setting m  and M  as specified. The default SVM-function 

arguments of the R-package e1071 (Meyer et al., 2022) are used that scales the data to zero 

mean and unit variance and use a radial basis kernel with 1
10   and 1 .C   The fit of each 

LDsplit tree-structure is based on a random subsample of two thirds of the total generated 

observations, allowing one third of the observations to be used as the OOB set of the tree, i.e. 

1
3 .OOBprop   For simplicity, the LDsplit minimum node-size is fixed throughout at 5n   and a 

threshold of 0.5  is used for all labels. After the specified Random LDsplit model has been fit 

to a synthetic dataset, the LDsplit MDA approach is applied to the ensemble. For the global 

importance calculations, Hamming loss is used as the multi-label evaluation measure. This 

produce a global importance value for each input variable as well as a local importance p K  

matrix, ,F  for each of the 50  synthetic datasets of a case.  

In the next section the global importance results are summarised and discussed. Hereafter 

the local importance results are summarised and discussed in Section 6.2.4.  

6.2.3 Global importance results and remarks 

Figure 6.1, Figure 6.2 and Figure 6.3 summarise the average global importance results of 

variables 1 10,...,X X  for Cases 1 32,  33 64  and 65 96.   

In these figures, for each input variable the value associated with a case is found as follows. 

First the average global importance of the input variable across the 50  synthetic datasets of 

that case is calculated. After having done this for all 10  input variables, across all 96  cases, 

the average values are transformed by assigning the lowest a value of 0  and shifting the 

others accordingly. Figure 6.1, Figure 6.2 and Figure 6.3 show the results for 3,m   4m   

and 5m   respectively. To ease the general interpretation, for each variable, its mean 

importance over the 32  scenarios represented in the figure is indicated in red.  
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By representing the global importance results in this way, the average global importance 

values achieved by the different input variables can be compared per case. This allows the 

opportunity to examine per case if the LDsplit MDA method can detect the true global 

importance relationship between input variables. In addition, by comparing performance 

across different cases, insight is found into how data signal, input variable correlation, label 

correlation, label densities and the choice of m  and M  can affect performance.  

For each input variable the standard deviation of global importance across the 50  synthetic 

datasets of the case was also calculated. The results indicate that the global importance 

obtained for each input variable does not vary substantially across the 50  synthetic datasets 

of the case. These standard deviations range between 0.0002  and 0.0113.  
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Figure 6.1    Average global variable importance for Cases 1 32  
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Figure 6.2    Average global variable importance for Cases 33 64  

 

 

 

 

33 34353637 383940414243444546474849505152535455565758596061626364

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 

3334 3536 3738 3940 4142 4344 4546 47484950 5152 5354 5556 5758 5960 6162 6364
3334 3536 3738 3940 4142 4344 4546 47484950 5152 5354 5556 5758 5960 6162 6364

3334 3536 3738 3940 4142 4344 4546 47484950 5152 5354 5556 5758 5960 6162 6364

3334 3536 3738 3940 4142 4344 4546 47484950 5152 5354 5556 5758 5960 6162 6364

33 34 3536 3738 3940 4142 4344 4546 474849 50 5152 5354 5556 5758 5960 6162 6364

33 3435 3637 3839 4041 4243 4445 4647 4849 5051 5253 5455 5657 5859 6061 6263 64

3334353637383940414243444546474849505152535455565758596061626364
3334 353637383940414243444546474849 5051525354 55565758596061626364
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Figure 6.3    Average global variable importance for Cases 65 96  
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6566 6768 6970 7172 7374 7576 7778 79808182 8384 8586 8788 8990 9192 9394 9596

6566 6768 6970 7172 7374 7576 7778 79808182 8384 8586 8788 8990 9192 9394 9596

6566 6768 6970 7172 7374 7576 7778 79808182 8384 8586 8788 8990 9192 9394 9596

6566 6768 6970 7172 7374 7576 7778 79808182 8384 8586 8788 8990 9192 9394 9596

65 6667 6869 7071 7273 7475 7677 7879 8081 8283 8485 8687 8889 9091 9293 9495 96

6566676869 7071727374757677787980818283 84858687 888990919293949596
6566676869707172737475767778798081828384858687888990919293949596

65666768 6970 7172 7374757677787980818283 84858687 8889909192939495 96
65666768 69707172737475767778798081828384858687888990919293949596
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Since the data signal, input variable correlation, label correlation, and label densities are 

unknown or fixed in real-world and benchmark multi-label datasets, an ideal conclusion of this 

study would be that the LDsplit MDA method allows for good performance in most settings. A 

discussion of the global LDsplit MDA variable importance results is given next. 

The mean lines of Figure 6.1, Figure 6.2 and Figure 6.3 reflect the true global relevancies of 

the input variables, since importance increases from 1X  to 6X  and no importance is found for 

the irrelevant variables 7 10,..., .X X  This confirms good general performance of the LDsplit 

MDA method. Moreover, Figure 6.1, Figure 6.2 and Figure 6.3 demonstrate that the LDsplit 

MDA method has no trouble in distinguishing between relevant and irrelevant input variables, 

as little to no importance is found for irrelevant variables 7 10,...,X X  across all 96  cases. Due 

to this result, the remainder of the global importance discussion below is based on the relevant 

variables, 1 6,..., .X X   

Upon closer inspection it appears that the choice of M  and m  for LDsplit does not have a 

large effect on the global importance performance of LDsplit MDA. Results of Figure 6.1, 

Figure 6.2 and Figure 6.3 show similar behaviour for the varying values of M  and .m  

However, a change in the number of levels of the LDsplit tree-structures, ,m  does give some 

small changes in importance results. Variable 6X  appears to be the most affected. It is unclear 

why 6X  shows this behaviour. Results show that the global LDsplit MDA method is particularly 

insensitive to the choice of the number of trees in an ensemble, .M  Advantageously, these 

observations indicate that good global importance performance of LDsplit MDA is not 

dependent on a particular choice of m  and .M   

Since different values of m  and M  give very similar global results, the remarks of the 

following paragraphs are supported by examples using cases found in Figure 6.1, although 
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the same conclusions can be made using the corresponding cases in Figure 6.2 and 

Figure 6.3. 

Results show that an increase in input variable correlation, ,X  has a very small effect on the 

global importance performance of the LDsplit MDA method. Cases with smaller input variable 

correlation give relatively smaller global importance across variables than cases with higher 

input variable correlation. However, the ranking of the input variables remains the same. This 

can be seen by comparing Cases 2  and 6  (as well as many other examples). Case 6  leads 

to higher importance values for all relevant variables compared to Case 2.  However, the 

ranking of the variables are the same for both cases, i.e. that variable importance increases 

from 1X  to 6.X  This result leads to the conclusion that LDsplit MDA can capture the true 

global importance of variables even when input variable correlation is high.  

Label correlation appears to have a larger effect on global performance of LDsplit MDA than 

input variable correlation has. The results suggest that it is easier for LDsplit MDA to capture 

the true global importance relationship between variables when label correlation is higher. 

Results of cases with high label correlation reflect the true global relationship between 

variables, since the global importance values of these cases generally increase from 1X  to 

6 .X  This is true for datasets with 2 10s   and 2 100.s   However, datasets with high label 

correlation as well as high signal show clearer distinction between relevant global variables. 

When Case 2  and Case 10  are for example compared, it is noticeable that 1 2,X X  and 3X  

display very similar global importance when the signal is lower ( 2 10s  ). 

When label correlation is low, the ability of LDsplit MDA to reflect true global importance 

becomes more volatile. For some cases with low label correlation as well as low signal, the 

method struggles to reflect the true global importance distinction between relevant variables. 

Examples of such cases are Case 1,  Case 5  and Case 7 ,  which give similar global 

importance for all relevant variables 1 6,..., .X X  It is therefore possible to distinguish between 
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globally relevant and globally irrelevant variables in settings such as this; however, it may be 

difficult to conclude which of the relevant variables are globally more relevant. As data signal 

increases, cases with low label correlation give more distinction between relevant variables; 

however, the true global relationship between variables is not reflected as 6X  is often not 

identified as globally most important in these settings. Examples of such cases are Case 9,  

Case 13  and Case 15  which give larger global importance to 5 4,X X  and 3 .X  It is unclear 

why this behaviour occurs. 

The previous two paragraphs outline the influence that data signal together with changes in 

label correlation have on the behaviour of LDsplit MDA. However, if only the data signal is 

considered, the following is observed. Generally, cases with higher data signal show relatively 

higher importance towards all relevant variables. Therefore, higher data signal leads to the 

method giving better distinction between relevant and irrelevant variables, as the differences 

between the importance values of relevant and irrelevant variables become larger. 

Varying label densities seem to cause no substantial difference in global performance of 

LDsplit MDA. Only slight differences in results can be identified once label densities are 

different.  To demonstrate this, compare Case 10  to Case 12  as well as Case 14  to Case 16.  

For Case 10  and Case 14 , global importance values increase from 1X  to 6 ,X  however for 

Case 12  and Case 16  a slight fall in importance is observed from 3X  to 4.X   
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6.2.4 Local importance results and remarks 

The local LDsplit MDA variable importance approach gives a p K  matrix, ,F  as output, 

where entry  ,l k  gives the local importance of variable lX  for label .kY  In this synthetic 

study, each of the 96  cases considered have 50  F  matrices storing the local importance 

results for each of the 50  synthetic datasets of a case.  

The heatmaps of Appendix B.1 – B.6 are constructed to investigate the local importance 

performance of LDsplit MDA on the synthetic data and to illustrate how performance is 

influenced by the different configurations outlined in Table 6.1. Since the data are synthetic 

and matrix A  is defined as given in Section 6.2.2, it is known which of the variables are in 

truth relevant per label and how many variables are in truth relevant per label. Therefore, the 

local importance heatmaps in Appendix B.1 – B.6 are found as follows. For each of the 50  F  

matrices found for a case, the six, five, four, three, two and one most important variables for 

1 2 3 4 5, , , ,Y Y Y Y Y  and 6Y  respectively, are marked “relevant”. The  ,
th

l k  entry of a heatmap in 

Appendix B.1 – B.6 gives the proportion of time variable lX  is considered “relevant” for label 

kY  across the 50  local importance matrices of that case. This allows the opportunity to 

investigate if LDsplit MDA can identify the truly locally important variables per label conditioned 

on the fact that the correct number of relevant variables are chosen per label. Even though 

the number of relevant variables per label is unknown in practice, this may be an acceptable 

way to represent the local results for interpretation and evaluation of LDsplit MDA in the 

different settings. Figure 6.5 given in Section 6.2.5 shows how successful locally relevant 

variables can be identified using LDsplit MDA once a simple median threshold is applied per 

label. More on this later. 

A discussion of the LDsplit MDA local importance results of Appendix B.1 – B.6 is given next. 

For convenience, Table 6.2 gives a selection of heatmaps that illustrate some changes 

observed due to the different configurations. 
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Table 6.2 (a)  
Comparison of selection of local importance results 

Influence of  

Y  

Case 1 

 

Case 2 

 

 

Case 9 

 

Case 10 

 

X  

Case 3 

 

Case 7 

 

m  

Case 1 

 

Case 33 

 

Case 65 

 
Case 11 

 

Case 43 

 

Case 75 
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Table 6.2 (b) 
Comparison of selection of local importance results 

 

Influence of  

M  

Case 2 

 

Case 18 

 
Case 34 

 

Case 50 

 

Label densities 

Case 25 

 

Case 27 

 
Case 26 

 

Case 28 
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A heatmap of a case that perfectly reflects the true local importance of the synthetic data would 

have the form of Figure 6.4 below. In this way, the six most important variables identified for 

1Y  are 1 2 3 4 5, , , ,X X X X X  and 6X  for all 50  of the F  matrices found for the case. Similarly 

the five most important variables for 2Y  are 2 3 4 5, , ,X X X X  and 6 ,X  for all 50  of the F  

matrices found for the case, and so on until the one most important variable for 6Y  is 6X  for 

all 50  of the F  matrices found for the case. 

 

 

Figure 6.4    Heatmap displaying true local importance of synthetic data 

 

In general, Appendix B.1 – B.6 show favourable local performance of LDsplit MDA as the 

heatmaps generally show a similar form to that of Figure 6.4. 

The most striking observation in Appendix B.1 – B.6 is that the importance of variable 6X  for 

all the labels is not clearly identified once 0.Y   Heatmaps for which 0Y   better reflect 

the true local importance of variables. As an example, consider Case 1 and Case 2.  These 

two cases have low X  and low signal. In Case 1,  6X  is not correctly identified as important 

for 2 3 4, ,Y Y Y  and 5 .Y  Instead 1X  is incorrectly identified as important for 2 ,Y  2X  is incorrectly 

identified as important for 3 ,Y  3X  is incorrectly identified as important for 4 ,Y  4X  is incorrectly 

identified as important for 5 ,Y  and 5X  is incorrectly identified as important for 6 .Y  However, 
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an increase in Y  from Case 1 to Case 2  causes 6X  to be correctly identified as important 

for 2 3 4, ,Y Y Y  and 5 ,Y  while 1 2 3, ,X X X  and 4X  are respectively correctly identified as 

unimportant for labels 2 3 4, ,Y Y Y  and 5 .Y  For all other values of signal and X  the pattern 

remains the same; however, results appear slightly more unstable. As an example, compare 

Case 9  and Case 10.  For Case 10, 6X  is correctly identified as important for 2 3 4, ,Y Y Y  and 

5Y  after Y  increases from Case 9.  However, in Case 10,  1X  remains incorrectly identified 

as important for 2 .Y  Furthermore, the importance proportion of 4X  for 2Y  drops from 1.00  to 

0.38  from Case 9  to Case 10,  even though 4X  is in truth locally important for 2.Y  Favourably 

however, 1 3,X X  and 4X  are respectively correctly identified as unimportant for labels 3 4,Y Y  

and 5Y  in Case 10  and the importance proportion of 2X  for 3Y  drops to 0.56.  

It appears that the local importance performance of LDsplit MDA may be more affected by a 

change in input variable correlation compared to the results of Section 6.2.3 for global 

importance. The local importance results show that high input variable correlation together 

with low signal can cause a decrease in performance. Some variables that are correctly 

identified as important (unimportant) for a label are incorrectly identified as unimportant 

(important) once X  increases. Examples can be seen when comparing Case 3  and Case 7  

by specifically considering the local importance of variables 1X  and 5X  for 3Y  as well as the 

local importance of variables 4X  and 6X  for 5.Y  Fortunately, for specifications where a strong 

signal is present in the realisation of the data, an increase in X  leads to only small changes 

in performance. 

The choice of m  and M  have a small influence on the local importance performance of 

LDsplit MDA. In some cases, the local importance results of LDsplit MDA are slightly better 

when 3.m   For example, for 1 ,Y  results show lower importance proportions for the irrelevant 
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variables ( 7 8 9, ,X X X  and 10X ) in Case 1 than in Case 33  or Case 65.  On the other hand, 

in some cases the local importance results of LDsplit MDA are slightly better when m  is larger. 

For example, when comparing Case 11,  43  and 75,  results for 1Y  show lower importance 

proportions for the irrelevant variables ( 7 8 9, ,X X X  and 10X ) when m  is larger. As no drastic 

increase or decrease in performance is observed due to the choice of ,m  it is recommended 

to set m  small to allow for less computation time.  

Only a few examples in Appendix B.1 – B.6 benefit from increasing .M  Most cases show 

almost no change in performance after M  increases (see Case 2  and Case 18  as an 

example). An example where an increase in M  proved beneficial is Case 34  to Case 50.  

The results of Case 50  are more accurate and stable since the heatmap shows larger 

proportions for truly relevant variables per label and smaller proportions for truly irrelevant 

variables per label compared to Case 34.  Due to the above observations and since no 

examples illustrate a drastic decrease in performance after an increase in ,M  it is 

recommended to set M  large if computation time allows for this.  

It is difficult to pinpoint exactly what influence differing label densities have on the local 

importance performance of LDsplit MDA. The local results are adequate for settings with equal 

label densities as well as those with differing label densities. However, once 0,Y   the 

differing label densities appear to influence local performance more. It seems as if local results 

of 3Y  and 4Y  suffer the most in these settings. As an example, compare Case 25  and Case 27  

which both have 0.Y   The two heatmaps are very similar even though the label densities 

change from Case 25  to Case 27.  However, when Case 26  and Case 28  are compared, 

which both have 0,Y   the change in label densities appears to influence the results. From 

Case 26  to Case 28  the importance proportion of 2X  for 3Y  incorrectly increases and the 

importance proportion of 5X  for 3Y  incorrectly and drastically decreases. The local results of 
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4Y  also appear less accurate and stable in Case 28  with the importance proportion of 3X  

incorrectly increasing and the importance proportion of 6X  incorrectly decreasing. It is 

important to note that the observed behaviour could be related to the way in which the 

synthetic data are generated. As mentioned in Section 6.2.1, the general problem when 

generating correlated Bernoulli variables which make up the label space is that the realised 

correlations differ from those specified once the univariate probabilities are not equal.  

6.2.5 Using LDsplit MDA for variable selection on synthetic data 

Figure 6.1, Figure 6.2 and Figure 6.3 given in Section 6.2.3 show that the global LDsplit MDA 

method is very effective in distinguishing between globally relevant and irrelevant variables on 

the synthetic data. This suggests that the global LDsplit MDA values could be useful for 

variable selection. Thresholding strategies or a probe variable strategy could be applied to the 

global LDsplit MDA values to distinguish globally relevant variables from irrelevant variables 

since the results show such a clear distinction between relevant and irrelevant variables. 

In general, the local results of Appendix B.1 – B.6 show that LDsplit MDA does well in 

identifying local importance relationships between input variables and labels in the different 

settings. The figures also indicate that LDsplit MDA may be useful for identifying locally 

relevant variables per label. However in practice, the true number of relevant variables per 

label will not be known. In this setting a threshold or probe variable can be used per label to 

distinguish relevant variables from irrelevant variables. Figure 6.5 aims to show how 

successful locally relevant variables can be identified across the 50  synthetic datasets of a 

case when a simple median threshold strategy is applied. The heatmaps of Figure 6.5 are 

therefore found as follows. 

For each local importance matrix of a case, the median importance value is found per label 

and all input variables that exceed this importance value per label are marked as “relevant” 

for the label. In other words, since 10p   in the synthetic study, the top five most important 

variables are marked as relevant per label. With this method of determining relevancy, the 
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 ,
th

l k  entry of a heatmap in Figure 6.5 gives the proportion of time variable lX  is considered 

relevant for label kY  across the 50  local importance matrices of that case. Cases 17 32  are 

represented in Figure 6.5 with Cases 1 16,  33 48,  49 64,  65 80  and 81 96  available 

in Appendix B.7, Appendix B.8, Appendix B.9, Appendix B.10 and Appendix B.11 respectively.  

In general, the results of Figure 6.5 confirm that LDsplit MDA could be useful for local variable 

selection. Keeping in mind that some labels have more than five or less than five locally 

relevant variables in truth, results show that the selected variables generally include those 

variables that are truly relevant per label. Consider for example the results of labels 4 5,Y Y  and 

6Y  throughout in Figure 6.5. Apart from 6X  having a 0.96  selection proportion for 4Y  in 

Case 23,  for all other cases the truly locally relevant variables have a perfect selection 

proportion for the respective labels. For labels 1 2,Y Y  and 3 ,Y  similar to what was observed in 

Appendix B.1 – B.6, Figure 6.5 shows that the local relevancy of 6X  appears to be better 

detected once 0.Y    

Generally, the noise variables, 7 10,..., ,X X  are seldomly selected as locally relevant when 

using the simple median threshold strategy. Even for those labels which have less than five 

truly important variables ( 3 4 5 6, , ,Y Y Y Y ), it appears that the five variables that are marked 

relevant with the median threshold strategy often consist of globally relevant variables, 

1 6,..., .X X  Once the data signal increases the truly globally relevant variables are consistently 

marked relevant and no noise variables are selected (as can be seen when for example 

comparing Case 20  with Case 28  in Figure 6.5). It would be interesting to investigate if results 

can be improved by using a more complicated thresholding strategy or probe variable strategy.  
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Figure 6.5    Local heatmaps for Case 17 32  using a median threshold strategy
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6.2.6 Conclusions of the LDsplit MDA synthetic study 

This section highlights the most important conclusions of the LDsplit MDA synthetic study. 

In general, both the global and local importance measures of LDsplit MDA display very 

favourable performance on the synthetic data. For all configurations of input variable 

correlation, label correlation, data signal and label densities, LDsplit MDA adequately displays 

the true global and local importance of input variables. This is especially the case with higher 

label correlation. 

The synthetic results show that both the global and local importance measures of LDsplit MDA 

fare better once 0.Y   When 0,Y   the synthetic results are unstable and the true global 

and local importance of input variables are not clearly identified. The results of the globally 

most important variable, 6 ,X  appear to suffer the most.  Since LDsplit was developed with 

the aim of implicitly exploiting label correlation, this could contribute to the reason why the 

LDsplit MDA method better reflects true global and local variable importance once 0.Y   

Advantageously, the synthetic results show that high input variable correlation has a very small 

effect on the global importance performance of the LDsplit MDA method in all settings. The 

same cannot be said for the local importance results. In settings with low data signal, local 

importance performance may be sensitive to high input variable correlation. Some variables 

that are correctly identified as important (unimportant) for a label are incorrectly identified as 

unimportant (important) once X  increases. Fortunately, the synthetic results show minor 

differences in local performance if X  increases while data signal is stronger. These 

observations motivate why the development of an LDsplit conditional permutation importance 

method, such as that mentioned in Section 5.5.2, is not a large priority at this stage.  

LDsplit MDA gives adequate results for settings with equal label densities as well as settings 

with unequal label densities. Global results are not considerably influenced by a change in 

label densities, while local results may be more sensitive to such changes. Because results 

Stellenbosch University https://scholar.sun.ac.za



199 
 

are based on correlated Bernoulli variables which prove difficult to generate once the 

univariate probabilities are not equal, it would be beneficial to investigate the performance of 

LDsplit MDA on imbalanced multi-label data more extensively in future studies. 

In general, LDsplit MDA performs adequately for all values of m  and M  used in the study. 

Therefore, LDsplit MDA can be applied to any fitted LDsplit model in order to better interpret 

the LDsplit model used for classification. On the other hand, if LDsplit MDA is specifically 

applied as a measure for better understanding the multi-label data or as a filter approach for 

variable selection, guidelines can be given regarding the specification of m  and M  to ensure 

optimal performance. 

Results show that good global performance of LDsplit MDA is not reliant on the choice of m  

and M  for LDsplit. Little to no difference in global performance is observed when the number 

of trees in the ensemble, ,M  is increased from 10  to 100.  Although this indicates no global 

benefit for setting M  large, it does demonstrate that overfitting is not a concern for large .M  

For the number of tree-levels, ,m  the global importance of 6X  is slightly unstable for large 

;m  however, in general the choice of m  does not appear to be a large concern for adequate 

global importance performance. Local performance of LDsplit MDA is slightly more sensitive 

to the choice of m  and .M  The general parameter recommendation of LDsplit MDA is 

therefore based on the observed local importance results.  

In Section 6.2.4 some examples demonstrate improvements in local importance results once 

M  increases. As is the case for global importance performance, no evidence of overfitting is 

found due to large .M  Therefore, it is recommended to set M  large. For the number of tree-

levels, ,m  examples can be given for an increase in performance as well as a decrease in 

performance due to larger .m  However, since no clear benefit is observed for large m  and 

since some results indicate slightly unstable behaviour once m  is large, it is recommended to 
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set m  small to allow for less computation time as well as favourable global and local 

performance of LDsplit MDA.  

Advantageously, the above tuning parameter recommendations for m  and M  correspond 

with those given in Chapter 3 and Chapter 4. In other words, an LDsplit model that generally 

gives good classification performance could simultaneously describe the importance of the 

input variables well. 

Furthermore, the clear distinction shown between relevant and irrelevant variables in the 

synthetic study confirms the potential of LDsplit MDA as a filter approach for variable selection. 

The favourable results obtained with the simple median thresholding strategy in Section 6.2.5 

encourages further investigations that make use of more sophisticated thresholding strategies 

or probe variable strategies for variable selection. It should be noted, however, that in the 

synthetic study the irrelevant variables are generated from a standard normal distribution 

independently of the label variables. Therefore in practice, such a drastic distinction in 

importance may not necessarily exist, for example if all the input variables are more or less 

equally relevant.  

6.3 Applying LDsplit MDA to the Emotions benchmark dataset 

In this section the LDsplit MDA method is applied to an LDsplit ensemble fit on the standard 

training dataset of the benchmark dataset Emotions. The method is used to determine globally 

and locally important input variables for the Emotions data. This section therefore illustrates 

how LDsplit MDA allows an LDsplit model to be more interpretable in terms of variable 

importance. 

To conduct this study, a Random LDsplit model with 4m   and 100M   is fit to the Emotions 

training dataset. The rule of thumb (Section 4.2.1) is applied to set the LDsplit tuning 

parameters m  and .M  The fit of each LDsplit tree-structure is based on a random subsample 

of two thirds of the training data, allowing one third of the observations to form the OOB set of 

the tree, i.e. 1
3 .OOBprop   The minimum node-size is specified as 5n   and a threshold of 
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0.5  is used for all labels. A radial basis function kernel SVM with 1
72   and 1C   is used as 

binary base classifier within LDsplit. Hereafter, LDsplit MDA is applied to the fitted LDsplit 

ensemble. For the global importance calculations, the performance of both Hamming loss and 

F-score are considered. The global importance values obtained using the respective 

measures are appropriately transformed to a 0 100  scale. Figure 6.6 gives the global 

importance ranking of the top 30  variables found by applying LDsplit MDA with Hamming loss 

and F-score as the respective evaluation measures. Similarly, for each label the local 

importance values are appropriately transformed to a 0 100  scale. Figure 6.7 gives the top 

30  locally important variables per label as determined by using the LDsplit MDA strategy. 

As summarised in Table 2.2 of Section 2.3 the Emotions dataset consists of 391N   training 

observations, each corresponding to a piece of music. The music pieces are described using 

72p   input variables as outlined in Trohidis et al. (2008). A complete overview of audio 

variable extraction is beyond the scope of this dissertation. Therefore, only a brief description 

of the audio input variables is given next. 

Variables 65 72X X  of the Emotions data are so-called rhythmic variables (Trohidis et al., 

2008). These rhythmic variables are formed by extracting periodic changes from a beat 

histogram (Tzanetakis and Cook, 2002). First an algorithm that identifies peaks using 

autocorrelation is implemented to select the two highest peaks. The amplitudes and Beats Per 

Minute (BPM) of the two respective peaks are computed and define variables 65 66 67, ,X X X  

and 68.X  The high-to-low ratio of these BPMs defines 69.X  Furthermore, variables 70 71,X X  

and 72X  are respectively calculated by summing the histogram bins between 

40 90, 90 140   and 140 250  BPMs. The remaining 64  variables, 1 64 ,X X  are so-called 

timbre variables (Trohidis et al., 2008). The Short-Term Fourier Transform (STFT) (Rabiner 

and Juang, 1993) is used to determine the spectral centroid, spectral roll-off and the spectral 

flux (Tzanetakis and Cook, 2002). Additionally, Mel Frequency Cepstral Coefficients (MFCCs) 

Stellenbosch University https://scholar.sun.ac.za



202 
 

(Hasan et al., 2004) are derived of which the first 13  are selected. Note that this gives rise to 

16  audio representations. 1 64X X  are formed by calculating the mean, standard deviation, 

mean standard deviation and standard deviation of standard deviation over all frames of the 

16  representations. 

Since the Emotions data are not simulated, it is difficult to know which input variables are truly 

globally and locally important. However, it may be possible to assess if the results appear 

reasonable based on intuition and background knowledge of the six emotion labels: Amazed-

Surprised, Happy-Pleased, Relaxing-Calm, Quiet-Still, Sad-Lonely and Angry-Aggressive. For 

example, one could argue that the emotions Relaxing-Calm and Quiet-Still have similarities, 

so that it could be expected that these labels have some locally important input variables in 

common. On the other hand, two intuitively contrasting emotions such as Amazed-Surprised 

and Relaxing-Calm may have sets of locally important variables that are very different. It is 

certainly possible that the same variables are important for intuitively contrasting emotions as 

well. The variable may for example aid in recognising distinguishing properties between the 

emotions.  

 

Global importance ranking using Hamming loss 

 

Global importance ranking using F-score 

 

Figure 6.6   Top 30  globally important variables for Emotions when using LDsplit MDA 
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Figure 6.7    Top 30  locally important variables per label for the Emotions data   

                             based on LDsplit MDA 
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Figure 6.6 shows that regardless of whether Hamming loss or the F-score is used to calculate 

global importance with LDsplit MDA, the collections of globally most important variables are 

very similar. For both cases in Figure 6.6, variables 5X  and 4X  are found to have the highest 

and second highest global importance. Furthermore, Figure 6.6 shows that in both cases, 5X  

and 4X  display noticeably higher global importance than the other variables of the dataset. 

Upon closer inspection of the two sets of top 30  variables, 26  variables are identified that 

appear in both sets. Furthermore, when only the top ten globally most important variables of 

the two respective cases are considered, nine variables appear in both sets. These variables 

are: 5 4 1 30 3 39 24 48, , , , , , ,X X X X X X X X  and 17 .X  

Figure 6.7 shows that for most labels there are a handful of variables that are noticeably more 

important than the others. Amazed-Surprised and Quiet-Still each have one such variable. For 

Angry-Aggressive the top three variables show noticeable importance, whereas for Sad-

Lonely the top four variables are noticeably more important. The Happy-Pleased label shows 

slightly different behaviour compared to the other labels since a total of eight variables display 

noticeably higher importance. 

Figure 6.7 also shows that 5X  is regarded as a highly important variable for all the labels 

except for Amazed-Surprised where it is ranked in the 23rd  position. Recall that 5X  is 

identified as the globally most important variable in Figure 6.6. Since 5X  is regarded as locally 

important for many of the labels, it could justify why this variable is globally most important. 

Interestingly, 4X  is identified as the second most globally important variable in Figure 6.6; 

however, the variable is not found to be locally important for all the labels. The local results of 

Figure 6.7 show high local importance of 4X  for Amazed-Surprised, Relaxing-Calm and 

Quiet-Still, but 4X  is ranked 15th  for the Angry-Aggressive label and is not found within the 

top 30  locally important variables for Happy-Pleased and Sad-Lonely. Other examples of 
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globally important variables that only show local importance for a selection of labels are 39 ,X

24 ,X 1X  and 30 .X  For example, 39X  is identified as the locally most important variable for 

Relaxing-Calm and the second most locally important variable for Angry-Aggressive, while it 

is simultaneously ranked 24th  for Quiet-Still and not found within the top 30  locally important 

variables for Amazed-Surprised, Happy-Pleased and Sad-Lonely. This illustrates the 

advantage of defining both a global and local importance measure, since information such as 

this may have been lost if only the global importance of variables were considered. 

Figure 6.8 is constructed to support Figure 6.7 and to allow for quick comparisons between 

locally important variables per label. In Figure 6.8 the top ten locally most important variables 

for each label are used to construct several Venn diagrams with the total number of variables 

per section given in the diagrams. Based on these figures some further remarks are given 

next. 

Firstly, it is noteworthy that the collection of top ten locally important variables identified for 

Amazed-Surprised differs very much from that of the other five labels in the dataset. When 

comparing the respective collections of Amazed-Surprised and Quiet-Still, only 4X  and 2X  

are found within both collections. Furthermore, the collections of Amazed-Surprised and 

Relaxing-Calm have only 4X  in common, and the collections of Amazed-Surprised and 

Happy-Pleased have only 62X  in common. Moreover, none of the top ten locally most 

important variables of Amazed-Surprised correspond to that of Sad-Lonely or Angry-

Aggressive. Intuitively, this could be a reasonable result if music pieces that evoke the 

Amazed-Surprised emotion are regarded as fairly different from music pieces that evoke the 

other emotions. 

On the other hand, the collections of top ten locally most important variables identified for 

Relaxing-Calm, Quiet-Still, Sad-Lonely and Happy-Pleased show more overlap. For example, 

the collections of top ten locally important variables identified for Quiet-Still and Sad-Lonely 
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have six variables in common and Relaxing-Calm and Quiet-Still have five locally important 

variables in common within their collections. Furthermore, Happy-Pleased has four locally 

important variables in common with Relaxing-Calm and Quiet-Still within their top ten locally 

most important variables. The last Venn diagram given in Figure 6.8 (c) is constructed to better 

investigate the relationship between the four emotion labels, Relaxing-Calm, Quiet-Still, Sad-

Lonely and Happy-Pleased. The diagram shows that all four labels have a number of unique 

variables within their top ten locally most important variables as well as three variables that 

appear within the top ten of all four labels, namely 1 ,X 3X  and 5 .X  As seen in Figure 6.6, 

these three variables are ranked among the top five globally important variables. It is also 

noteworthy that 1X  and 3X  do not appear to be very important for the other two labels 

Amazed-Surprised and Angry-Aggressive (as seen in Figure 6.7). 

Finally, it is interesting that, within their top ten locally most important variables, Angry-

Aggressive has five locally most important variables in common with Relaxing-Calm. These 

variables are 5 ,X  39 ,X  41 ,X  29X  and 47 .X  Note that 5X  is the globally most important 

variable as given by Figure 6.6 while 39X  is regarded as the sixth globally most important 

variable. Furthermore, 39X  is found locally most important for Relaxing-Calm and the second 

most important variable for Angry-Aggressive (Figure 6.7). However, 39X  is arguably only 

important for Relaxing-Calm and Angry-Aggressive as it does not appear within the top 20  

locally important variables for any of the other labels. The same is true for 41.X  One would 

intuitively expect a music piece that evokes an Angry-Aggressive emotion to sound different 

from a music piece which evokes a Relaxing-Calm emotion. Therefore, it may be insightful to 

investigate in future work if 39X  and 41X  for example provide an important distinction between 

the Angry-Aggressive and Relaxing-Calm labels. 
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Figure 6.8 (a)   Venn diagrams for top ten locally important variables of different labels 
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Figure 6.8 (b)   Venn diagrams for top ten locally important variables of different labels 
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Figure 6.8 (c)   Venn diagrams for top ten locally important variables of different labels 
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6.4 Conclusion 

LDsplit MDA is a novel input variable ranking approach for multi-label data that produces both 

global and local input variable rankings and that exploits label correlations within the data. In 

this chapter, empirical properties and different applications of the newly proposed method 

were considered. 

Firstly, the performance of LDsplit MDA was evaluated on synthetically generated multi-label 

data. The extensive study consisted of 96  configurations. The influence that label densities, 

label correlation, input variable correlation, data signal and LDsplit tuning parameters (m  and 

M ) have on performance were investigated. For each of the 96  cases, 50  multi-label 

synthetic datasets were generated to which a Random LDsplit model (as specified) was fit. 

Hereafter the LDsplit MDA approach was applied to each of the fitted LDsplit ensembles, and 

the results were appropriately combined per case. 

Results demonstrated that both the global and local importance measures of LDsplit MDA 

display very favourable performance in all settings; however, cases with higher label 

correlations produce the best results. This could be regarded as a reasonable result since 

LDsplit was precisely developed to implicitly exploit label correlations. The absence of label 

correlations therefore weakens the performance of LDsplit MDA. 

Since LDsplit MDA shows adequate performance for all values of m  and M  used in the study, 

the conclusion is made that LDsplit MDA can be applied to any fitted LDsplit model for better 

interpretability of the model, as good performance of LDsplit MDA is not dependent on the 

choice of m  and .M  In addition, general guidelines for the values of m  and M  were also 

provided for settings in which LDsplit MDA is merely used as a filter approach for variable 

selection. In this case it is recommended to set m  small while M  is large. 

The chapter concluded with an illustration of how LDsplit MDA can be applied to a fitted LDsplit 

ensemble for better interpretability of non-synthetic data. For this purpose, the well-known 

Emotions dataset was used. In general, this section highlighted the advantage of obtaining 
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both global and local input variable rankings with LDsplit MDA. By simultaneously considering 

both the global ranking and the local rankings of each variable, interesting patterns were 

identified from the data. For example, the study demonstrated that some of the globally 

important variables only show local importance for a selection of labels. Furthermore, the local 

importance rankings of some labels were very different or very similar to that of the other 

labels. This allowed for additional insight into the relationship between the different emotion 

labels. 

The subsequent chapter concludes this dissertation with a summary of the main findings and 

contributions of the research. Opportunities for future research are also provided. 
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Chapter 7: Conclusions and opportunities for future research 

 

7.1 Summary 

In this dissertation the supervised learning task of multi-label classification was considered. 

Chapter 1 provided a brief introduction to the field. It was found that a dramatic increase in the 

number of available multi-label datasets in recent years and the immense diversity of the 

different problems have led to an increase in multi-label research. However, since multi-label 

data possess unique characteristics in comparison to single-label data, multi-label learning 

poses additional challenges. Therefore, despite the observed increase in multi-label research, 

some shortcomings within the literature could be identified. Emphasis was placed on two 

shortcomings in particular. 

Firstly, it was found that research widely considers the incorporation of label correlation into a 

multi-label learning method as a fundamental element for good classification performance. 

However, as illustrated, label correlations are not necessarily shared globally by all data cases. 

Despite this, it was observed that limited research is based on local label correlation 

exploitation for accurate multi-label classification. Secondly, some multi-label classification 

applications require interpretable results. Therefore, input variable ranking for multi-label data 

is an important area of research as it provides insight regarding the importance of the 

respective input variables. Such input variable rankings can also be used to perform variable 

selection. However, it was observed that few variable importance measures for multi-label 

data consider a distinction between global and local relevancy. Moreover, the few available 

measures mostly neglect to exploit label dependencies. 

To allow for a better understanding of the current resources available, and to provide 

background knowledge so that the first shortcoming could be addressed, Chapter 2 gave an 

in-depth overview of multi-label learning. This included the definitions of multi-label evaluation 

measures, summaries of popular multi-label benchmark datasets and references to popular 

software for multi-label learning. Furthermore, different viewpoints of label correlation in the 
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multi-label literature were outlined, namely the explicit and implicit exploitation viewpoint, the 

global and local label correlation viewpoint, as well as differences between first-, second- and 

higher-order methods. Hereafter, extensive research was undertaken on how existing multi-

label learning methods exploit label correlations according to the different viewpoints. Within 

each of the three categories of multi-label learning (problem transformation methods, 

algorithm adaptation methods and ensemble methods) different multi-label learning methods 

were discussed in detail.  

In Chapter 3 a new tree-based ensemble method for multi-label classification was proposed, 

namely LDsplit. LDsplit was developed with the aim to implicitly exploit local higher-order label 

correlations within multi-label data to achieve good multi-label classification. Different to other 

previously proposed multi-label tree-based ensembles, LDsplit implicitly exploits higher-order 

label correlations in a simple manner by making use of label hierarchies. Observations that 

make up a node at a level of an LDsplit tree-structure do not only share information regarding 

the label used for that level, they also share information regarding the labels of parent levels. 

In this way higher-order label correlations were implicitly incorporated in the proposed model. 

Moreover, the proposed node-splitting procedure allows for the exploitation of local label 

correlations since the data are divided into subgroups that share label information. It was 

described how Random LDsplit and Conditional LDsplit can be fit depending on whether 

random or predetermined label hierarchies are used. Furthermore, the chapter included a 

detailed discussion of the distinctive and favourable properties of LDsplit compared to other 

well-known and related multi-label learning methods. Scaling techniques for larger values of  

K  were also given. All the required R-functions for LDsplit are given in Appendix C. 

Chapter 4 presented an extensive empirical evaluation of LDsplit on six diverse benchmark 

datasets. In the first stage of the study, where the interactions between the tuning parameters 

were investigated, a general rule of thumb was provided for setting the values of m  and .M  

It was specified that m  should be set small (3 4m  ) while M  is large with respect to .K  

However, since results are dependent on the multi-label dataset at hand, an adequate way to 
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determine m  and M  in practice is by means of cross-validation, if computation time allows 

for this.  

When comparing Random and Conditional LDsplit in the second stage of the empirical study 

of Chapter 4, it was found that a small Conditional LDsplit ensemble can achieve similar or 

better performance than a large Random LDsplit ensemble.  

Furthermore, results of Chapter 4 indicated a considerable dependence on the chosen binary 

classifier for LDsplit. In fact, a much smaller difference in performance is observed between 

the random and predetermined label ordering strategies in comparison. Since this is the case, 

care should be taken to ensure that an appropriate base classifier is selected for LDsplit. This 

can be done by using cross-validation as illustrated in Chapter 4. However, this is a 

computationally expensive strategy. Therefore, it may be beneficial to conduct an extensive 

study with regards to binary classifiers within LDsplit in future work, so that a general 

recommendation can be made. 

Finally, in the last stage of the empirical study of Chapter 4, the predictive performances of 

Random and Conditional LDsplit models with both an SVM or decision tree as base classifier 

were compared to 17  other well-known and related multi-label learning methods considering 

12  evaluation measures across the six benchmark datasets. The corrected Friedman test and 

the post-hoc Nemenyi test were used to assess the overall differences in performance of 

LDsplit models compared to the other previously proposed models. In general, the LDsplit 

models produced very satisfactory predictive performance. Results showed that in terms of 

mean rank, Conditional LDsplit and Random LDsplit models with an SVM base classifier were 

the first- and second-best performing models for six of the evaluation measures and were 

found within the top three models for ten of the evaluation measures. Furthermore, these 

LDsplit models achieved statistically significant improvements in performance compared to 

the tree-based methods ML-C4.5, MODT and RFML-C4.5 as well as the algorithm adaptation 

method, ML- k NN, for many evaluation measures. Based on these results, these two LDsplit 
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models were found to be the top two performing models on average in the empirical study. 

This emphasises the contribution of this dissertation in terms of local label correlation 

exploitation for better classification performance.  

In Chapter 5 attention shifted to the second identified shortcoming of the multi-label literature 

on which this dissertation was based. Firstly, traditional variable importance measures for 

single-label trees, as well as previous proposals to measure variable importance and perform 

variable selection for multi-label data, were discussed. The discussion highlighted that many 

of the current methods for input variable ranking within multi-label data are based on the 

problem transformation paradigm and therefore mostly neglect exploitation of label 

dependencies. Moreover, few proposals consider both global and local importance of 

variables. In fact, no local importance measures could be found in the literature that 

incorporate label correlations. Consequently, to address these shortcomings, different ways 

were outlined to show how an LDsplit ensemble can produce global and local input variable 

rankings. Advantageously, the proposed global and local input variable importance measures 

are influenced by label correlations since they are derived from a fitted LDsplit ensemble which 

implicitly exploits local higher-order label correlations. LDsplit MDA can provide a global and 

local variable importance ranking for any fitted LDsplit model used for classification. LDsplit 

MDA was therefore established as the preferred strategy of this work as it can be used for 

better interpretability of LDsplit models in general. Furthermore, the derived input variable 

rankings can also be used to apply a filter approach for variable selection. 

Chapter 6 considered empirical properties and applications of the proposed LDsplit MDA 

method. Firstly, an extensive synthetic study that consisted of 96  configurations was 

performed to evaluate whether the proposed LDsplit MDA measures can detect truly globally 

and locally relevant variables. When considering the influence that label densities, label 

correlation, input variable correlation, data signal and the LDsplit tuning parameters, m  and 

,M  have on performance, it was found that LDsplit MDA is able to best detect truly globally 

and locally important variables when label correlations in the data are larger. However, this 
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may have been anticipated since LDsplit was developed with the aim to implicitly exploit label 

correlations. It was furthermore concluded that LDsplit MDA can allow for better interpretation 

of any fitted LDsplit model, since it adequately detected truly globally and locally important 

input variables for most cases in the synthetic study and did not show large dependence on 

the values of m  and .M  If the values of m  and M  are to be specified for LDsplit MDA, the 

same general rule of thumb as provided for LDsplit classification was found to hold. Lastly, the 

clear distinction shown between relevant and irrelevant variables in the synthetic study 

confirms the potential of LDsplit MDA as a filter approach for variable selection.  

The second application of LDsplit MDA in Chapter 6 consisted of a short benchmark dataset 

application on the well-known Emotions dataset. It was illustrated how the proposed global 

and local LDsplit MDA measures can be used to detect interesting relationships between input 

variables and labels. Some of the observed findings may have been lost if only previously 

proposed global importance measures were used to interpret the data. For example, the study 

demonstrated that some of the globally important variables only show local importance for a 

selection of labels, and that some local importance rankings are very similar to or very different 

from that of other labels. This highlights the contribution of this dissertation in terms of 

providing both global and local measures for variable importance that are dependent on label 

correlations. 

7.2 Opportunities for future research 

This section provides several possible avenues for future research. 

In the first stage of the empirical study presented in Chapter 4, the standard training datasets 

of six multi-label benchmark datasets were used to examine the properties of the LDsplit 

tuning parameters, m  and .M  In a similar manner the influence of the minimum node-size, 

,n  can be investigated in future work, since a fixed value of 5n   was used throughout this 

dissertation. It would also be interesting to investigate the relationship between n  and the 

binary classifier used for LDsplit. For example, in practice, some nodes may operate close to 
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the minimum node-size. In this case, a binary classifier that does not require a large set of 

observations to produce good performance, may be a better choice.  

Two binary base classifiers within LDsplit were considered in the empirical study of Chapter 4, 

namely a decision tree and an SVM. In general, LDsplit models with an SVM base classifier 

gave better classification performance. In fact, the Conditional LDsplit and Random LDsplit 

models with an SVM base classifier were identified as the top two performing models on 

average in the empirical study. It would be interesting to investigate whether classification 

performance of these two models can be improved by performing cross-validation to 

determine the values of the SVM tuning parameters,   and .C  Note that, since only the 

default hyper-parameters of the SVM algorithm are used, LDsplit performs at least as well as 

reflected in the results in the dissertation. Such possibilities confirm the opportunities for 

further research into and improvements of LDsplit, but pursuing all of these was deemed to 

be too much for a single dissertation. 

It may also be interesting to investigate how performance is affected when threshold 

strategies, such as those given in Al-Otaibi et al. (2014a), are used to determine the values of 

the threshold applied per label, 
1 2
, ,..., .

KY Y Yt t t  One can for example consider selecting random 

threshold values in the range  0.5,1  for each label per tree-structure. This would result in 

higher diversity of ensemble members and possibly better generalisation ability. In general, it 

should be noted that by increasing a threshold, stronger evidence is required to declare a label 

present. This can naturally lead to a label being wrongly declared absent. Therefore, 

depending on the specific application, adjustments may be made to the thresholds to reduce 

the probability of an error that could have serious consequences. 

Since the results of this dissertation demonstrated that LDsplit is very dependent on the 

chosen binary classifier, it would be interesting to investigate how classification performance 

is influenced when other binary base classifiers are used. For example, one might consider 

using a random forest of decision trees, a hard margin SVM, logistic regression, or AdaBoost 
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as base classifier. One can also consider allocating different base classifiers per label, as the 

flexibility of the LDsplit framework makes this possible. In this case a label that defines the 

binary classification problem at a node has an associated base classifier which is thereupon 

used to split the node. Wever et al. (2020) propose a label-wise base learner selection method, 

LiBRe, that optimises label-wise macro averaged performance measures. Therefore, in future 

work, LiBRe can for example be used to determine the base classifier used per label. Rivolli 

et al. (2020) state that the influence of base classifiers on the predictive performance of multi-

label classifiers has not been considered in depth by many empirical studies. This therefore 

establishes an avenue for future research. 

In the third stage of the empirical study presented in Chapter 4, the classification performance 

of four LDsplit models were compared to 17  other well-known and related multi-label learning 

methods across six benchmark datasets. The study can be improved by including additional 

LDsplit models, for example those that make use of other base classifiers or other label 

ordering strategies for Conditional LDsplit, such as BN strategies (Section 3.3.1). One can 

also consider adding a comprehensive complexity analysis to the study. Furthermore, it may 

be valuable to consider the performance of the models on additional multi-label benchmark 

datasets as well. 

The empirical work presented in Chapter 6 included a synthetic study to evaluate the 

performance of LDsplit MDA as a multi-label input variable importance method that produces 

global and local input variable rankings. In future the global input variable ranking strategies 

of Kocev et al. (2013) and Petković et al. (2020) can be applied to the synthetic data of 

Chapter 6 to evaluate how these methods compare to LDsplit MDA. Local input variable 

rankings may also be obtained by applying a similar strategy as outlined in Section 5.5.1 to 

the tree-based ensembles of Kocev et al. (2013) and Petković et al. (2020). LDsplit MDI (as 

discussed in Section 5.5.2) can also be applied to the synthetic data to evaluate how this 

strategy compares to the other ranking strategies. One can also consider the global and local 

MDA strategy (as outlined in Section 5.5.1) as a general approach to be applied with other 
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well-known multi-label classifiers as well. For example, for EBR each BR model in the 

ensemble has a corresponding OOB set.  Therefore, the BR model can be used to classify 

the OOB sample before and after permuting an input variable. The global importance of an 

input variable can be defined as the average difference in the value of a multi-label evaluation 

measure before and after the input variable was permuted across the ensemble. However, for 

the local importance of an input variable the difference in performance is considered per label. 

Since the LDsplit MDA and LDsplit MDI global and local input variable rankings are influenced 

by label correlations, it would be interesting to see how these rankings compare to that of other 

models. 

The synthetic study of Chapter 6 predominantly evaluated the performance of LDsplit MDA as 

a multi-label input variable importance method that produces global and local input variable 

rankings. In future work it would be advantageous to evaluate the performance of LDsplit MDA 

more extensively as a filter approach for variable selection. An independent probe strategy, 

such as that given by Sandrock and Steel (2016), can for example be applied to the importance 

values of LDsplit MDA to perform variable selection. In this case the performance of LDsplit 

MDA can be compared to that of other previously proposed multi-label variable selection 

methods. Synthetic data as well as multi-label benchmark datasets could be used for this 

purpose.   

All empirical work presented in Chapter 4 and Chapter 6 were executed in R. The code written 

to fit the Random and Conditional LDsplit models and to classify observations based on the 

models are available in Appendix C. Furthermore, the code of LDsplit MDA is given in 

Appendix D. However, to allow for more convenient access to this code, future research can 

focus on the development of a GitHub page and a complete R-package for LDsplit. Ideally, 

the R package would include functions to fit Random LDsplit and Conditional LDsplit, classify 

data observations based on the fitted models, and allow for easy calculations of global and 

local LDsplit MDA variable importance measures. The functions would also ideally be flexible 

and allow for quick and simple specification of the number of tree-levels (m ), the size of the 
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ensemble (M ), the label threshold values (
1 2
, ,...,

KY Y Yt t t ), the minimum node-size (n ), the 

label ordering strategy for Conditional LDsplit, and per label specification of a binary base 

classifier selected from a range of options such as SVM, decision tree, random forest and 

AdaBoost. It may also be valuable to extend the developed LDsplit R-package to other 

programming languages such as Python. 

Within the general framework of LDsplit as proposed in Chapter 3, some adaptations can be 

considered in future work. For example, instead of applying a minimum node-size stopping 

criterion when fitting an LDsplit tree, post- or pre-pruning strategies can be considered in future 

work. Another possible adaptation to the LDsplit algorithm is the allocation of contributing 

weights to the respective LDsplit trees in the ensemble. Currently, after an observation obtains 

a set of posterior probabilities based on the LDsplit ensemble, a final posterior probability is 

found per label by averaging the probabilities obtained for each of the respective labels across 

the ensemble. However, it might be interesting to investigate if results can improve if a 

weighted average is instead taken by allowing certain LDsplit trees to contribute more to the 

final multi-label classification. The motivation is that some LDsplit trees in the ensemble may 

consist of a label subset or label ordering that allows for better predictive performance. 

Consequently, by allowing such a tree a larger contributing weight, classification performance 

of unseen cases may improve. It may also be possible to allow for a label weight per LDsplit 

tree. Such contributing weights can be derived in different ways. For example, Xia et al. (2021) 

give a general approach that can be applied to any multi-label ensemble method to provide a 

label weight for each classifier in the ensemble. Xia et al. (2021) develop an optimisation 

algorithm to find the optimal solution of a regularised objective function that requires 

minimisation. 

For LDsplit, diversity of ensemble members is achieved by a different label order and label 

subset per tree-structure. However, it would be interesting to investigate the effect that 

ensemble learning techniques such as bagging and random forest have on the classification 

performance of LDsplit in future studies. To fit a bagged ensemble of LDsplit trees, each tree-
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structure in the ensemble would be fit as before but would be based on a bootstrap sample of 

the training observations instead of the full set of training data. The same holds true when a 

random forest of LDsplit trees is fit; however, the binary classification problems formed at 

nodes would only be based on subsets of the available input variables as well. Note that this 

relates to the Triple-Random Ensemble Multi-Label Classification (TREMLC) framework 

(Nasierding et al., 2010). TREMLC is an algorithm independent ensemble method for multi-

label classification that bases the fit of each classifier in the ensemble on a randomly selected 

input variable subset, label subset and instance subset. In this way TREMLC uses three ways 

to obtain diversity between ensemble members. However, if a random forest of LDsplit trees 

is fit, the label order used for each tree gives a fourth way of obtaining diversity between 

ensemble members. Furthermore, since bootstrap sampling is used to obtain bagged and 

random forest ensembles, an OOB set would be formed per LDsplit tree when these ensemble 

techniques are applied. It would therefore be possible to use these OOB sets to implement 

LDsplit MDA. In this dissertation LDsplit MDA was implemented by basing the fit of each 

LDsplit tree on a random subsample of the training observations. Therefore, in future studies 

the results of this dissertation can be compared to that obtained when a bagged or random 

forest ensemble is instead used. This can help to establish which strategy is generally best for 

LDsplit MDA. 

In a different line of work, LDsplit may be extended to address the multi-label imbalance 

problem (discussed in Section 1.4.3). Moyano et al. (2020) state that when an ensemble of 

multi-label classifiers is fit that considers only a subset of labels per classifier, the number of 

possible combinations of labels per subset is lower, so that the imbalance of the output space 

is consequently reduced in each of the ensemble members. Therefore, it is noteworthy that 

by currently basing the fit of each tree in an LDsplit ensemble on a subset of labels, each 

classifier arguably has lower imbalance in the output space compared to the full label space. 

This property of LDsplit and how it influences the class imbalance problem can be more 

extensively investigated in future studies.  
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Many modern multi-label image and text datasets are characterised by extremely large label 

collections. Therefore, research of XMLC (as discussed in Section 1.4.3) has become 

increasingly important. According to You et al. (2019) methods for XMLC can be categorised 

into the following four types: one-against-all, embedding-based, deep-learning based, and 

instance or label tree-based methods. An example of a tree-based method for XMLC is given 

in Prajapati and Thakkar (2022). Another tree-based method that fairs well in settings with 

many labels is HOMER (as described in Section 2.7.3). In future it would be interesting to 

investigate how LDsplit can be adapted to handle XMLC, since it appears that tree-based 

methods can perform well in these settings. 

Lastly, since LDsplit fits an ensemble of hierarchical trees, it would be interesting to investigate 

in future if the LDsplit framework can be extended to handle hierarchical multi-label 

classification (as defined in Section 1.1). 
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Appendix A: Detailed results for empirical study of Chapter 4 
 

This appendix contains the detailed results of the Random and Conditional LDsplit empirical 

study described in Chapter 4.  

Appendix A.1 gives the detailed Random LDsplit cross-validation results as described in 

Section 4.2. For all the datasets the average performance of each m  and M  combination 

over the five cross-validation folds are provided. The standard deviation of performance over 

the five folds is given in brackets and the model that produces the best performance for each 

evaluation measure is given in bold for each dataset. 

 
Appendix A.2 illustrates the average model performance and standard deviation after refitting 

each of the Random LDsplit models five times to classify a single validation fold of the 

Emotions data. 

Appendix A.3 gives the detailed Conditional LDsplit cross-validation results as described in 

Section 4.2. For all the datasets the average performance of each m  and M  combination 

over the five cross-validation folds are provided. The standard deviation of performance over 

the five folds is given in brackets and the model that produces the best performance for each 

evaluation measure is given in bold for each dataset. 

Appendix A.4 gives a comparison of the cross-validation results of Random and Conditional 

LDsplit as described in Section 4.3. For each value of ,m  the model that produces the best 

performance for each evaluation measure is given in bold and the percentage decrease in 

performance is reported in brackets for the other two models. Furthermore, for each evaluation 

measure, the model that gives the best performance across all values of m  is highlighted.  

Appendix A.5 gives the mean rank diagrams as described in Section 4.4. The diagrams are 

based on the Friedman and Nemenyi tests conducted using the performance of 21A   

models across 5B   datasets, namely Emotions, Scene, Yeast, Medical and Corel5k.  
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A.1 Results for different choices of m  and M  for Random LDsplit 

EMOTIONS (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy Macro-F1 Micro-F1 

m
=2

 6 0.190 (0.009) 0.508 (0.028) 0.652 (0.021)  0.279 (0.047) 0.619 (0.016) 0.649 (0.017) 

18 0.194 (0.014) 0.493 (0.037) 0.639 (0.033) 0.271 (0.035) 0.605 (0.037) 0.636 (0.039) 

30 0.196 (0.015) 0.488 (0.033) 0.633 (0.032) 0.268 (0.035) 0.603 (0.035) 0.632 (0.038) 

m
=3

 

6 0.189 (0.009) 0.513 (0.015) 0.648 (0.021) 0.289 (0.039) 0.622 (0.015) 0.648 (0.024) 

18 0.194 (0.013) 0.505 (0.030) 0.647 (0.029) 0.279 (0.029) 0.608 (0.031) 0.640 (0.034) 

30 0.192 (0.015) 0.507 (0.030) 0.648 (0.032) 0.284 (0.029) 0.613 (0.035) 0.643 (0.038) 

60 0.192 (0.017) 0.506 (0.034) 0.647 (0.033) 0.279 (0.026) 0.610 (0.035) 0.643 (0.041) 

100 0.191 (0.017) 0.503 (0.037) 0.646 (0.035) 0.281 (0.041) 0.613 (0.036) 0.642 (0.041) 

m
=4

 

6 0.199 (0.008) 0.509 (0.029) 0.642 (0.024) 0.274 (0.036) 0.598 (0.037) 0.639 (0.027) 

18 0.195 (0.013) 0.501 (0.033) 0.640 (0.028) 0.279 (0.027) 0.609 (0.032) 0.639 (0.035) 

30 0.191 (0.016) 0.524 (0.031) 0.656 (0.035) 0.294 (0.023) 0.616 (0.037) 0.650 (0.039) 

60 0.191 (0.013) 0.517 (0.034) 0.652 (0.028) 0.289 (0.036) 0.620 (0.034) 0.650 (0.036) 

100 0.192 (0.016) 0.517 (0.029) 0.654 (0.029) 0.279 (0.023) 0.616 (0.035) 0.648 (0.035) 

240 0.189 (0.017) 0.514 (0.034) 0.653 (0.034) 0.286 (0.040) 0.620 (0.038) 0.650 (0.040) 

300 0.190 (0.015) 0.515 (0.030) 0.651 (0.030) 0.286 (0.032) 0.617 (0.034) 0.649 (0.037) 

m
=5

 

6 0.203 (0.010) 0.499 (0.019) 0.624 (0.018) 0.274 (0.026) 0.576 (0.040) 0.617 (0.021) 

18 0.196 (0.015) 0.517 (0.023) 0.648 (0.027) 0.281 (0.031) 0.609 (0.035) 0.642 (0.037) 

30 0.190 (0.018) 0.521 (0.040) 0.654 (0.033) 0.291 (0.046) 0.624 (0.040) 0.652 (0.042) 

60 0.192 (0.018) 0.520 (0.029) 0.655 (0.028) 0.279 (0.042) 0.614 (0.036) 0.648 (0.039) 

100 0.186 (0.018) 0.532 (0.038) 0.667 (0.035) 0.294 (0.042) 0.624 (0.041) 0.659 (0.043) 

240 0.190 (0.018) 0.519 (0.031) 0.654 (0.033) 0.284 (0.027) 0.614 (0.039) 0.649 (0.042) 

300 0.190 (0.016) 0.521 (0.028) 0.654 (0.029) 0.286 (0.028) 0.617 (0.037) 0.651 (0.038) 

720 0.191 (0.016) 0.521 (0.029) 0.653 (0.030) 0.286 (0.035) 0.617 (0.037) 0.649 (0.038) 

m
=6

 

6 0.209 (0.021) 0.496 (0.044) 0.620 (0.046) 0.263 (0.024) 0.576 (0.049) 0.611 (0.063) 

18 0.196 (0.016) 0.523 (0.041) 0.647 (0.036) 0.289 (0.054) 0.611 (0.042) 0.644 (0.041) 

30 0.192 (0.013) 0.523 (0.023) 0.649 (0.024) 0.279 (0.025) 0.611 (0.027) 0.648 (0.033) 

60 0.190 (0.018) 0.524 (0.030) 0.657 (0.026) 0.286 (0.034) 0.618 (0.038) 0.652 (0.040) 

100 0.189 (0.015) 0.531 (0.023) 0.660 (0.024) 0.291 (0.034) 0.620 (0.035) 0.656 (0.035) 

240 0.189 (0.016) 0.531 (0.023) 0.661 (0.025) 0.297 (0.027) 0.619 (0.035) 0.655 (0.036) 

300 0.190 (0.015) 0.526 (0.025) 0.655 (0.027) 0.291 (0.033) 0.616 (0.033) 0.651 (0.034) 

720 0.188 (0.016) 0.532 (0.026) 0.661 (0.029) 0.297 (0.029) 0.620 (0.036) 0.655 (0.036) 
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EMOTIONS (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 6 0.234 (0.019) 0.438 (0.062) 0.576 (0.047) 0.202 (0.084) 0.558 (0.046) 0.577 (0.044) 

18 0.228 (0.020) 0.451 (0.051) 0.601 (0.042) 0.187 (0.050) 0.579 (0.038) 0.598 (0.042) 

30 0.230 (0.017) 0.455 (0.051) 0.602 (0.046) 0.194 (0.048) 0.579 (0.039) 0.598 (0.040) 

m
=3

 

6 0.236 (0.014) 0.447 (0.047) 0.585 (0.051) 0.192 (0.036) 0.568 (0.046) 0.579 (0.042) 

18 0.217 (0.018) 0.468 (0.042) 0.601 (0.037) 0.233 (0.042) 0.577 (0.047) 0.605 (0.047) 

30 0.215 (0.014) 0.463 (0.032) 0.600 (0.023) 0.228 (0.042) 0.593 (0.035) 0.603 (0.035) 

60 0.217 (0.019) 0.467 (0.052) 0.600 (0.039) 0.230 (0.072) 0.592 (0.052) 0.603 (0.039) 

100 0.213 (0.013) 0.475 (0.041) 0.610 (0.029) 0.238 (0.056) 0.600 (0.038) 0.610 (0.031) 

m
=4

 

6 0.235 (0.012) 0.426 (0.029) 0.567 (0.032) 0.184 (0.024) 0.539 (0.041) 0.565 (0.031) 

18 0.207 (0.018) 0.476 (0.032) 0.608 (0.030) 0.261 (0.049) 0.576 (0.033) 0.613 (0.031) 

30 0.207 (0.016) 0.482 (0.038) 0.616 (0.037) 0.251 (0.047) 0.602 (0.038) 0.617 (0.032) 

60 0.209 (0.011) 0.465 (0.035) 0.598 (0.023) 0.235 (0.054) 0.590 (0.039) 0.605 (0.029) 

100 0.206 (0.012) 0.476 (0.035) 0.607 (0.024) 0.241 (0.054) 0.591 (0.041) 0.609 (0.030) 

240 0.204 (0.015) 0.479 (0.039) 0.614 (0.031) 0.243 (0.066) 0.603 (0.045) 0.617 (0.027) 

300 0.207 (0.016) 0.475 (0.044) 0.609 (0.034) 0.243 (0.058) 0.595 (0.051) 0.612 (0.031) 

m
=5

 

6 0.206 (0.020) 0.470 (0.045) 0.611 (0.039) 0.233 (0.069) 0.576 (0.051) 0.610 (0.050) 

18 0.207 (0.007) 0.469 (0.027) 0.603 (0.018) 0.238 (0.044) 0.565 (0.027) 0.607 (0.019) 

30 0.209 (0.014) 0.470 (0.038) 0.605 (0.027) 0.233 (0.059) 0.591 (0.045) 0.607 (0.029) 

60 0.212 (0.020) 0.473 (0.048) 0.605 (0.036) 0.246 (0.069) 0.584 (0.053) 0.596 (0.048) 

100 0.213 (0.025) 0.475 (0.053) 0.604 (0.045) 0.256 (0.059) 0.575 (0.064) 0.596 (0.046) 

240 0.211 (0.017) 0.474 (0.041) 0.603 (0.042)  0.246 (0.044) 0.611 (0.053) 0.603 (0.035) 

300 0.217 (0.014) 0.458 (0.025) 0.596 (0.022) 0.228 (0.046) 0.598 (0.048) 0.593 (0.017) 

720 0.215 (0.013) 0.461 (0.027) 0.596 (0.025) 0.235 (0.045) 0.586 (0.033) 0.600 (0.019) 

m
=6

 

6 0.224 (0.027) 0.427 (0.051) 0.555 (0.057) 0.215 (0.048) 0.506 (0.061) 0.558 (0.054) 

18 0.218 (0.019) 0.435 (0.038) 0.578 (0.044) 0.207 (0.048) 0.527 (0.035) 0.561 (0.040) 

30 0.210 (0.006) 0.450 (0.028) 0.586 (0.018) 0.235 (0.046) 0.562 (0.034) 0.585 (0.020) 

60 0.206 (0.014) 0.458 (0.031) 0.590 (0.039) 0.240 (0.034) 0.562 (0.025) 0.593 (0.038) 

100 0.204 (0.018) 0.461 (0.052) 0.597 (0.039) 0.243 (0.069) 0.563 (0.045) 0.595 (0.042) 

240 0.210 (0.014) 0.443 (0.043) 0.580 (0.027) 0.225 (0.050) 0.545 (0.044) 0.578 (0.035) 

300 0.208 (0.013) 0.450 (0.036) 0.588 (0.032) 0.233 (0.045) 0.555 (0.036) 0.584 (0.031) 

720 0.206 (0.014) 0.450 (0.039) 0.590 (0.030) 0.230 (0.049) 0.553 (0.044) 0.585 (0.031) 
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SCENE (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 6 0.083 (0.007) 0.677 (0.026) 0.761 (0.019) 0.637 (0.031) 0.754 (0.021) 0.745 (0.021) 

18 0.082 (0.007) 0.677 (0.026) 0.764 (0.019) 0.635 (0.032) 0.758 (0.021) 0.748 (0.021) 

30 0.082 (0.007) 0.677 (0.028) 0.763 (0.020) 0.634 (0.034) 0.758 (0.021) 0.748 (0.022) 

m
=3

 

6 0.080 (0.006) 0.691 (0.022) 0.767 (0.014) 0.656 (0.030) 0.764 (0.016) 0.754 (0.016) 

18 0.081 (0.006) 0.689 (0.026) 0.767 (0.017) 0.650 (0.034) 0.763 (0.019) 0.752 (0.019) 

30 0.081 (0.006) 0.683 (0.026) 0.766 (0.018) 0.642 (0.032) 0.759 (0.020) 0.750 (0.019) 

60 0.081 (0.006) 0.686 (0.027) 0.768 (0.016) 0.645 (0.034) 0.763 (0.018) 0.752 (0.019) 

100 0.081 (0.007) 0.684 (0.031) 0.768 (0.019) 0.643 (0.038) 0.762 (0.021) 0.752 (0.022) 

m
=4

 

6 0.081 (0.008) 0.701 (0.026) 0.767 (0.022) 0.668 (0.033) 0.764 (0.023) 0.754 (0.024) 

18 0.082 (0.006) 0.699 (0.023) 0.766 (0.016) 0.663 (0.030) 0.761 (0.018) 0.751 (0.018) 

30 0.081 (0.006) 0.693 (0.024) 0.766 (0.017) 0.655 (0.030) 0.761 (0.019) 0.752 (0.019) 

60 0.080 (0.006) 0.700 (0.027) 0.769 (0.017) 0.663 (0.033) 0.766 (0.019) 0.755 (0.020) 

100 0.079 (0.006) 0.701 (0.023) 0.773 (0.016) 0.665 (0.030) 0.768 (0.018) 0.759 (0.018) 

240 0.080 (0.006) 0.697 (0.027) 0.771 (0.017) 0.660 (0.034) 0.767 (0.019) 0.757 (0.019) 

300 0.080 (0.006) 0.698 (0.026) 0.771 (0.017) 0.660 (0.032) 0.766 (0.020) 0.756 (0.020) 

m
=5

 

6 0.080 (0.007) 0.712 (0.025) 0.766 (0.023) 0.684 (0.029) 0.765 (0.022) 0.755 (0.022) 

18 0.080 (0.006) 0.712 (0.021) 0.769 (0.018) 0.680 (0.028) 0.768 (0.019) 0.757 (0.019) 

30 0.079 (0.006) 0.713 (0.024) 0.771 (0.018) 0.684 (0.030) 0.771 (0.020) 0.760 (0.020) 

60 0.077 (0.008) 0.722 (0.026) 0.778 (0.021) 0.694 (0.032) 0.776 (0.024) 0.766 (0.023) 

100 0.078 (0.007) 0.716 (0.028) 0.774 (0.021) 0.686 (0.034) 0.773 (0.022) 0.763 (0.023) 

240 0.077 (0.007) 0.717 (0.026) 0.777 (0.020) 0.685 (0.032) 0.774 (0.021) 0.764 (0.021) 

300 0.077 (0.007) 0.718 (0.028) 0.775 (0.021) 0.689 (0.033) 0.773 (0.022) 0.764 (0.022) 

720 0.077 (0.007) 0.720 (0.029) 0.777 (0.022) 0.690 (0.034) 0.776 (0.023) 0.766 (0.023) 

m
=6

 

6 0.079 (0.005) 0.715 (0.013) 0.768 (0.013) 0.690 (0.022) 0.766 (0.015) 0.757 (0.014) 

18 0.080 (0.006) 0.723 (0.020) 0.769 (0.012) 0.697 (0.030) 0.768 (0.015) 0.759 (0.016) 

30 0.077 (0.005) 0.735 (0.021) 0.777 (0.016) 0.709 (0.025) 0.778 (0.016) 0.768 (0.015) 

60 0.077 (0.008) 0.731 (0.032) 0.776 (0.025) 0.705 (0.038) 0.776 (0.025) 0.766 (0.025) 

100 0.076 (0.006) 0.735 (0.024) 0.782 (0.017) 0.709 (0.030) 0.782 (0.019) 0.771 (0.018) 

240 0.076 (0.007) 0.736 (0.025) 0.781 (0.021) 0.712 (0.028) 0.780 (0.023) 0.769 (0.022) 

300 0.076 (0.006) 0.731 (0.025) 0.778 (0.019) 0.706 (0.030) 0.778 (0.020) 0.768 (0.020) 

720 0.076 (0.007) 0.735 (0.025) 0.781 (0.021) 0.710 (0.030) 0.781 (0.022) 0.770 (0.022) 
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SCENE (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 6 0.135 (0.004) 0.443 (0.023) 0.576 (0.018) 0.385 (0.024) 0.569 (0.020) 0.555 (0.017) 

18 0.131 (0.009) 0.465 (0.014) 0.602 (0.020) 0.396 (0.024) 0.587 (0.019) 0.579 (0.023) 

30 0.130 (0.005) 0.473 (0.011) 0.611 (0.016) 0.400 (0.015) 0.598 (0.017) 0.587 (0.017) 

m
=3

 

6 0.120 (0.009) 0.496 (0.030) 0.621 (0.029) 0.446 (0.027) 0.610 (0.029) 0.605 (0.029) 

18 0.119 (0.011) 0.498 (0.027) 0.628 (0.027) 0.448 (0.035) 0.617 (0.030) 0.609 (0.033) 

30 0.117 (0.008) 0.502 (0.026) 0.627 (0.027) 0.457 (0.028) 0.616 (0.029) 0.609 (0.028) 

60 0.115 (0.010) 0.503 (0.019) 0.632 (0.026) 0.461 (0.023) 0.624 (0.028) 0.615 (0.027) 

100 0.117 (0.010) 0.498 (0.023) 0.627 (0.027) 0.453 (0.025) 0.618 (0.029) 0.609 (0.030) 

m
=4

 

6 0.118 (0.009) 0.503 (0.016) 0.616 (0.016) 0.471 (0.028) 0.611 (0.015) 0.603 (0.020) 

18 0.110 (0.007) 0.522 (0.026) 0.641 (0.025) 0.493 (0.026) 0.639 (0.029) 0.627 (0.026) 

30 0.108 (0.008) 0.515 (0.026) 0.644 (0.023) 0.485 (0.030) 0.638 (0.027) 0.629 (0.027) 

60 0.107 (0.008) 0.523 (0.030) 0.647 (0.023) 0.494 (0.032) 0.642 (0.028) 0.634 (0.027) 

100 0.108 (0.009) 0.519 (0.022) 0.644 (0.028) 0.488 (0.024) 0.640 (0.031) 0.631 (0.029) 

240 0.109 (0.009) 0.513 (0.028) 0.638 (0.029) 0.484 (0.031) 0.633 (0.032) 0.624 (0.031) 

300 0.108 (0.008) 0.517 (0.026) 0.642 (0.028) 0.487 (0.027) 0.637 (0.031) 0.628 (0.029) 

m
=5

 

6 0.111 (0.010) 0.513 (0.028) 0.633 (0.028) 0.485 (0.035) 0.626 (0.030) 0.619 (0.031) 

18 0.110 (0.009) 0.514 (0.026) 0.638 (0.026) 0.482 (0.027) 0.632 (0.030) 0.624 (0.029) 

30 0.106 (0.006) 0.524 (0.025) 0.649 (0.023) 0.495 (0.026) 0.645 (0.025) 0.636 (0.024) 

60 0.110 (0.011) 0.520 (0.026) 0.642 (0.030) 0.487 (0.033) 0.637 (0.034) 0.628 (0.032) 

100 0.112 (0.005) 0.515 (0.013) 0.639 (0.021) 0.480 (0.012) 0.635 (0.024) 0.622 (0.019) 

240 0.111 (0.005) 0.508 (0.016 0.633 (0.020 0.476 (0.019)  0.628 (0.022) 0.620 (0.020 

300 0.111 (0.010) 0.514 (0.027) 0.639 (0.028) 0.481 (0.027) 0.637 (0.031) 0.625 (0.032) 

720 0.108 (0.011) 0.524 (0.029) 0.645 (0.029) 0.493 (0.035) 0.642 (0.033) 0.632 (0.029) 

m
=6

 

6 0.109 (0.007) 0.495 (0.035) 0.622 (0.034) 0.476 (0.028) 0.621 (0.033) 0.611 (0.034) 

18 0.103 (0.005) 0.530 (0.017) 0.650 (0.017) 0.513 (0.014) 0.647 (0.020) 0.640 (0.020) 

30 0.104 (0.011) 0.525 (0.036) 0.648 (0.036) 0.509 (0.033) 0.643 (0.039) 0.635 (0.040) 

60 0.101 (0.007) 0.528 (0.022) 0.654 (0.021) 0.513 (0.022) 0.651 (0.024) 0.643 (0.024) 

100 0.101 (0.006) 0.527 (0.024) 0.654 (0.026) 0.511 (0.021) 0.652 (0.027) 0.642 (0.025) 

240 0.101 (0.006) 0.530 (0.023) 0.655 (0.025) 0.514 (0.018) 0.653 (0.024) 0.644 (0.024) 

300 0.099 (0.005) 0.534 (0.021) 0.662 (0.021) 0.517 (0.018) 0.659 (0.021) 0.651 (0.021) 

720 0.100 (0.005) 0.532 (0.019) 0.659 (0.021) 0.516 (0.014) 0.656 (0.020) 0.647 (0.020) 
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YEAST (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 
20 0.190 (0.005) 0.527 (0.016) 0.658 (0.015) 0.202 (0.026) 0.498 (0.034) 0.656 (0.014) 

40 0.188 (0.007) 0.529 (0.015) 0.659 (0.014) 0.205 (0.022) 0.495 (0.024) 0.658 (0.014) 

60 0.188 (0.008) 0.530 (0.018) 0.660 (0.017) 0.204 (0.027) 0.488 (0.035) 0.659 (0.016) 

80 0.188 (0.007) 0.527 (0.016) 0.658 (0.016) 0.200 (0.024) 0.494 (0.026) 0.658 (0.016) 

100 0.188 (0.008) 0.527 (0.017) 0.659 (0.016) 0.199 (0.024) 0.488 (0.035) 0.658 (0.016) 

m
=3

 

20 0.191 (0.006) 0.528 (0.015) 0.658 (0.014) 0.203 (0.025) 0.483 (0.025) 0.655 (0.013) 

40 0.187 (0.007) 0.531 (0.019) 0.662 (0.017) 0.207 (0.026) 0.498 (0.034) 0.660 (0.017) 

60 0.185 (0.009) 0.535 (0.020) 0.665 (0.016) 0.218 (0.031) 0.509 (0.040) 0.664 (0.018) 

80 0.185 (0.010) 0.538 (0.022) 0.666 (0.017) 0.215 (0.038) 0.516 (0.014) 0.667 (0.020) 

100 0.186 (0.009) 0.534 (0.019) 0.662 (0.016) 0.213 (0.033) 0.503 (0.027) 0.663 (0.018) 

200 0.184 (0.009) 0.538 (0.016) 0.667 (0.013) 0.213 (0.037) 0.486 (0.031) 0.667 (0.015) 

300 0.184 (0.009) 0.538 (0.017) 0.667 (0.014) 0.216 (0.037) 0.490 (0.027) 0.667 (0.016) 

500 0.188 (0.008) 0.529 (0.017) 0.660 (0.016) 0.204 (0.026) 0.488 (0.037) 0.658 (0.016) 

1000 0.188 (0.008) 0.529 (0.017) 0.659 (0.017) 0.204 (0.026) 0.487 (0.035) 0.658 (0.016) 

m
=4

 

20 0.188 (0.008) 0.532 (0.019) 0.661 (0.017) 0.210 (0.034) 0.489 (0.033) 0.660 (0.017) 

40 0.189 (0.006) 0.530 (0.015) 0.660 (0.015) 0.207 (0.025) 0.495 (0.041) 0.659 (0.013) 

60 0.185 (0.007) 0.535 (0.016) 0.665 (0.013) 0.221 (0.030) 0.508 (0.040) 0.664 (0.015) 

80 0.186 (0.009) 0.534 (0.019) 0.662 (0.017) 0.218 (0.030) 0.516 (0.022) 0.662 (0.017) 

100 0.187 (0.009) 0.531 (0.019) 0.660 (0.017) 0.209 (0.029) 0.513 (0.028) 0.661 (0.018) 

200 0.186 (0.009) 0.537 (0.015) 0.666 (0.013) 0.216 (0.035) 0.491 (0.045) 0.665 (0.014) 

300 0.184 (0.009) 0.539 (0.016) 0.667 (0.014) 0.219 (0.034) 0.482 (0.028) 0.667 (0.014) 

500 0.188 (0.007) 0.529 (0.016) 0.660 (0.016) 0.204 (0.029) 0.502 (0.042) 0.658 (0.015) 

1000 0.188 (0.008) 0.529 (0.017) 0.660 (0.016) 0.207 (0.029) 0.495 (0.047) 0.659 (0.016) 

m
=5

 

20 0.189 (0.008) 0.529 (0.021) 0.659 (0.017) 0.205 (0.030) 0.508 (0.042) 0.658 (0.018) 

40 0.189 (0.007) 0.526 (0.019) 0.657 (0.017) 0.206 (0.025) 0.495 (0.037) 0.655 (0.017) 

60 0.185 (0.008) 0.535 (0.016) 0.665 (0.012) 0.220 (0.030) 0.518 (0.049) 0.663 (0.015) 

80 0.187 (0.009) 0.533 (0.019) 0.661 (0.017) 0.217 (0.031) 0.513 (0.022) 0.661 (0.018) 

100 0.186 (0.010) 0.533 (0.021) 0.661 (0.017) 0.220 (0.038) 0.536 (0.036) 0.661 (0.019) 

200 0.192 (0.019) 0.509 (0.067) 0.643 (0.052) 0.179 (0.102) 0.502 (0.047) 0.640 (0.061) 

300 0.184 (0.008) 0.537 (0.016) 0.666 (0.014) 0.218 (0.037) 0.486 (0.042) 0.665 (0.014) 

500 0.188 (0.007) 0.529 (0.017) 0.659 (0.017) 0.209 (0.030) 0.499 (0.039) 0.658 (0.015) 

1000 0.188 (0.008) 0.529 (0.017) 0.660 (0.016) 0.208 (0.029) 0.501 (0.042) 0.658 (0.016) 

m
=6

 

20 0.190 (0.004) 0.520 (0.019) 0.653 (0.021) 0.180 (0.026) 0.510 (0.039) 0.650 (0.016) 

40 0.189 (0.007) 0.527 (0.017) 0.657 (0.016) 0.211 (0.028) 0.502 (0.062) 0.656 (0.015) 

60 0.185 (0.010) 0.535 (0.021) 0.665 (0.015) 0.222 (0.037) 0.519 (0.042) 0.663 (0.019) 

80 0.186 (0.009) 0.533 (0.019) 0.661 (0.014) 0.213 (0.040) 0.542 (0.044) 0.661 (0.017) 

100 0.187 (0.009) 0.528 (0.019) 0.656 (0.017) 0.209 (0.030) 0.508 (0.030) 0.657 (0.017) 

200 0.185 (0.011) 0.532 (0.026) 0.661 (0.022) 0.216 (0.044) 0.514 (0.045) 0.661 (0.022) 

300 0.184 (0.008) 0.538 (0.014) 0.538 (0.011) 0.223 (0.035) 0.518 (0.054) 0.666 (0.012) 

500 0.189 (0.008) 0.527 (0.017) 0.657 (0.016) 0.209 (0.029) 0.519 (0.054) 0.656 (0.015) 

1000 0.188 (0.007) 0.528 (0.017) 0.658 (0.015) 0.209 (0.030) 0.503 (0.044) 0.656 (0.015) 
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YEAST (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 
20 0.230 (0.010) 0.446 (0.025) 0.594 (0.023) 0.081 (0.015) 0.436 (0.020) 0.590 (0.020) 

40 0.222 (0.005) 0.453 (0.014) 0.602 (0.013) 0.079 (0.018) 0.453 (0.031) 0.599 (0.011) 

60 0.224 (0.007) 0.448 (0.016) 0.599 (0.014) 0.077 (0.022) 0.459 (0.017) 0.595 (0.013) 

80 0.225 (0.006) 0.448 (0.016) 0.598 (0.016) 0.073 (0.018) 0.447 (0.020) 0.595 (0.011) 

100 0.227 (0.005) 0.444 (0.014) 0.594 (0.012) 0.071 (0.016) 0.454 (0.031) 0.591 (0.011) 

m
=3

 

20 0.215 (0.005) 0.457 (0.020) 0.604 (0.017) 0.096 (0.022) 0.440 (0.016) 0.603 (0.016) 

40 0.214 (0.006) 0.463 (0.018) 0.608 (0.014) 0.098 (0.020) 0.462 (0.017) 0.607 (0.015) 

60 0.212 (0.007) 0.469 (0.019) 0.615 (0.018) 0.101 (0.023) 0.484 (0.040) 0.613 (0.016) 

80 0.214 (0.006) 0.458 (0.012) 0.605 (0.012) 0.089 (0.016) 0.467 (0.030) 0.604 (0.011) 

100 0.212 (0.006) 0.466 (0.016) 0.612 (0.014) 0.097 (0.017) 0.475 (0.014) 0.611 (0.014) 

200 0.212 (0.008) 0.465 (0.018) 0.612 (0.016) 0.095 (0.026) 0.470 (0.025) 0.610 (0.016) 

300 0.212 (0.006) 0.467 (0.014) 0.611 (0.011) 0.097 (0.028) 0.490 (0.032) 0.611 (0.011) 

500 0.212 (0.006) 0.465 (0.016) 0.611 (0.012) 0.093 (0.021) 0.485 (0.025) 0.609 (0.014) 

1000 0.211 (0.007) 0.466 (0.015) 0.612 (0.013) 0.098 (0.021) 0.488 (0.027) 0.610 (0.013) 

m
=4

 

20 0.212 (0.011) 0.470 (0.023) 0.616 (0.021) 0.101 (0.017) 0.468 (0.038) 0.611 (0.020) 

40 0.211 (0.005) 0.463 (0.018) 0.603 (0.016) 0.110 (0.019) 0.471 (0.038) 0.606 (0.014) 

60 0.208 (0.008) 0.470 (0.018) 0.613 (0.016) 0.106 (0.023) 0.476 (0.029) 0.611 (0.017) 

80 0.205 (0.008) 0.473 (0.023) 0.614 (0.018) 0.121 (0.029) 0.483 (0.035) 0.615 (0.019) 

100 0.208 (0.006) 0.465 (0.017) 0.607 (0.016) 0.106 (0.020) 0.473 (0.036) 0.606 (0.015) 

200 0.206 (0.006) 0.475 (0.017) 0.617 (0.015) 0.113 (0.024) 0.485 (0.032) 0.617 (0.013) 

300 0.205 (0.009) 0.474 (0.020) 0.616 (0.014) 0.114 (0.037) 0.482 (0.012) 0.615 (0.017) 

500 0.205 (0.008) 0.476 (0.015) 0.618 (0.011) 0.119 (0.026) 0.476 (0.026) 0.617 (0.013) 

1000 0.206 (0.009) 0.472 (0.018) 0.613 (0.014) 0.116 (0.028) 0.488 (0.027) 0.614 (0.016) 

m
=5

 

20 0.212 (0.011) 0.470 (0.023) 0.616 (0.021) 0.101 (0.017) 0.468 (0.038) 0.611 (0.020) 

40 0.211 (0.005) 0.463 (0.018) 0.603 (0.016) 0.110 (0.019) 0.471 (0.038) 0.606 (0.014) 

60 0.208 (0.008) 0.470 (0.018) 0.613 (0.016) 0.106 (0.023) 0.476 (0.029) 0.611 (0.017) 

80 0.205 (0.008) 0.473 (0.023) 0.614 (0.018) 0.121 (0.029) 0.483 (0.035) 0.615 (0.019) 

100 0.208 (0.006) 0.465 (0.017) 0.607 (0.016) 0.106 (0.020) 0.473 (0.036) 0.606 (0.015) 

200 0.206 (0.006) 0.475 (0.017) 0.617 (0.015) 0.113 (0.024) 0.485 (0.032) 0.617 (0.013) 

300 0.205 (0.009) 0.474 (0.020) 0.616 (0.014) 0.114 (0.037) 0.482 (0.012) 0.615 (0.017) 

500 0.205 (0.008) 0.476 (0.015) 0.618 (0.011) 0.119 (0.026) 0.476 (0.026) 0.617 (0.013) 

1000 0.206 (0.009) 0.472 (0.018) 0.613 (0.014) 0.116 (0.028) 0.488 (0.027) 0.614 (0.016) 

m
=6

 

20 0.210 (0.010) 0.451 (0.021) 0.597 (0.020) 0.096 (0.026) 0.468 (0.032) 0.597 (0.021) 

40 0.207 (0.009) 0.457 (0.020) 0.601 (0.016) 0.100 (0.017) 0.476 (0.066) 0.600 (0.018) 

60 0.204 (0.008) 0.466 (0.019) 0.607 (0.018) 0.114 (0.026) 0.459 (0.030) 0.609 (0.016) 

80 0.203 (0.008) 0.460 (0.017) 0.600 (0.014) 0.111 (0.023) 0.459 (0.059) 0.604 (0.016) 

100 0.201 (0.007) 0.466 (0.018) 0.607 (0.016) 0.113 (0.017) 0.461 (0.026) 0.610 (0.016) 

200 0.202 (0.008) 0.466 (0.020) 0.607 (0.014) 0.113 (0.024) 0.473 (0.046) 0.608 (0.016) 

300 0.200 (0.009) 0.470 (0.016) 0.609 (0.011) 0.118 (0.025) 0.471 (0.048) 0.612 (0.014) 

500 0.202 (0.009) 0.465 (0.020) 0.605 (0.014) 0.115 (0.026) 0.463 (0.051) 0.608 (0.017) 

1000 0.201 (0.008) 0.469 (0.016) 0.608 (0.013) 0.119 (0.021) 0.467 (0.047) 0.611 (0.015) 
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MEDICAL (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 
60 0.012 (0.002) 0.712 (0.038) 0.802 (0.036) 0.614 (0.043) 0.828 (0.042) 0.783 (0.037) 

80 0.012 (0.002) 0.712 (0.050) 0.802 (0.041) 0.617 (0.059) 0.827 (0.029) 0.785 (0.044) 

100 0.012 (0.002) 0.714 (0.044) 0.803 (0.037) 0.623 (0.051) 0.832 (0.031) 0.787 (0.039) 

200 0.012 (0.002) 0.710 (0.046) 0.801 (0.038) 0.614 (0.053) 0.831 (0.032) 0.783 (0.040) 

300 0.012 (0.002) 0.713 (0.047) 0.803 (0.038) 0.616 (0.055) 0.832 (0.033) 0.786 (0.040) 

500 0.012 (0.002) 0.711 (0.044) 0.802 (0.038) 0.616 (0.050) 0.829 (0.034) 0.786 (0.040) 

1000 0.012 (0.002) 0.713 (0.047) 0.803 (0.039) 0.617 (0.054) 0.829 (0.035) 0.786 (0.038) 

m
=3

 

60 0.012 (0.003) 0.695 (0.066) 0.794 (0.052) 0.589 (0.088) 0.828 (0.032) 0.774 (0.058) 

80 0.012 (0.003) 0.698 (0.072) 0.793 (0.057) 0.595 (0.092) 0.834 (0.031) 0.774 (0.062) 

100 0.012 (0.002) 0.714 (0.044) 0.803 (0.037) 0.619 (0.053) 0.837 (0.028) 0.787 (0.039) 

200 0.012 (0.002) 0.715 (0.047) 0.804 (0.039) 0.620 (0.051) 0.835 (0.029) 0.787 (0.040) 

300 0.012 (0.002) 0.712 (0.044) 0.802 (0.037) 0.617 (0.049) 0.826 (0.037) 0.786 (0.040) 

500 0.012 (0.002) 0.709 (0.046) 0.801 (0.038) 0.612 (0.053) 0.831 (0.033) 0.784 (0.041) 

1000 0.012 (0.002) 0.713 (0.049) 0.803 (0.040) 0.617 (0.058) 0.827 (0.036) 0.786 (0.041) 

m
=4

 

60 0.012 (0.002) 0.697 (0.042) 0.795 (0.032) 0.603 (0.053) 0.831 (0.035) 0.780 (0.033) 

80 0.012 (0.002) 0.694 (0.030) 0.787 (0.030) 0.606 (0.031) 0.841 (0.024) 0.773 (0.032) 

100 0.012 (0.002) 0.711 (0.041) 0.802 (0.036) 0.616 (0.048) 0.822 (0.031) 0.785 (0.036) 

200 0.012 (0.002) 0.712 (0.046) 0.802 (0.040) 0.617 (0.052) 0.845 (0.026) 0.784 (0.041) 

300 0.012 (0.002) 0.714 (0.043) 0.803 (0.037) 0.622 (0.048) 0.831 (0.032) 0.787 (0.039) 

500 0.012 (0.002) 0.714 (0.043) 0.804 (0.036) 0.622 (0.051) 0.837 (0.026) 0.787 (0.039) 

1000 0.012 (0.002) 0.711 (0.044) 0.801 (0.038) 0.616 (0.048) 0.830 (0.031) 0.784 (0.039) 

m
=5

 

60 0.012 (0.002) 0.697 (0.042) 0.795 (0.032) 0.603 (0.053) 0.831 (0.035) 0.780 (0.033) 

80 0.012 (0.002) 0.694 (0.030) 0.787 (0.030) 0.606 (0.031) 0.841 (0.024) 0.773 (0.032) 

100 0.012 (0.002) 0.711 (0.041) 0.802 (0.036) 0.616 (0.048) 0.822 (0.031) 0.785 (0.036) 

200 0.012 (0.002) 0.712 (0.046) 0.802 (0.040) 0.617 (0.052) 0.845 (0.026) 0.784 (0.041) 

300 0.012 (0.002) 0.714 (0.043) 0.803 (0.037) 0.622 (0.048) 0.831 (0.032) 0.787 (0.039) 

500 0.012 (0.002) 0.714 (0.043) 0.804 (0.036) 0.622 (0.051) 0.837 (0.026) 0.787 (0.039) 

1000 0.012 (0.002) 0.711 (0.044) 0.801 (0.038) 0.616 (0.048) 0.830 (0.031) 0.784 (0.039) 

m
=6

 

60 0.012 (0.003) 0.698 (0.059) 0.792 (0.048) 0.612 (0.074) 0.840 (0.046) 0.779 (0.050) 

80 0.012 (0.002) 0.706 (0.048) 0.800 (0.039) 0.614 (0.064) 0.825 (0.039) 0.783 (0.043) 

100 0.012 (0.002) 0.694 (0.038) 0.788 (0.036) 0.609 (0.044) 0.817 (0.022) 0.773 (0.038) 

200 0.012 (0.002) 0.705 (0.041) 0.797 (0.036) 0.612 (0.052) 0.829 (0.025) 0.780 (0.039) 

300 0.012 (0.002) 0.698 (0.049) 0.794 (0.036) 0.609 (0.065) 0.836 (0.026) 0.781 (0.041) 

500 0.011 (0.002) 0.715 (0.047) 0.802 (0.039) 0.627 (0.055) 0.838 (0.026) 0.787 (0.042) 

1000 0.012 (0.002) 0.711 (0.044) 0.800 (0.038) 0.622 (0.053) 0.839 (0.033) 0.785 (0.042) 
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MEDICAL (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 
60 0.011 (0.002) 0.733 (0.068) 0.815 (0.050) 0.650 (0.061) 0.859 (0.030) 0.796 (0.045) 

80 0.011 (0.002) 0.732 (0.067) 0.817 (0.045) 0.650 (0.057) 0.860 (0.029) 0.798 (0.041) 

100 0.011 (0.002) 0.732 (0.069) 0.815 (0.051) 0.648 (0.063) 0.859 (0.030) 0.797 (0.045) 

200 0.011 (0.002) 0.730 (0.066) 0.816 (0.047) 0.647 (0.062) 0.863 (0.027) 0.797 (0.044) 

300 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

500 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

1000 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

m
=3

 

60 0.011 (0.002) 0.707 (0.058) 0.799 (0.041) 0.628 (0.057) 0.856 (0.030) 0.783 (0.041) 

80 0.010 (0.002) 0.722 (0.071) 0.814 (0.050) 0.644 (0.073) 0.872 (0.032) 0.797 (0.046) 

100 0.011 (0.002) 0.730 (0.068) 0.814 (0.051) 0.650 (0.068) 0.869 (0.028) 0.796 (0.048) 

200 0.011 (0.002) 0.734 (0.068) 0.817 (0.049) 0.652 (0.062) 0.859 (0.030) 0.798 (0.044) 

300 0.011 (0.002) 0.734 (0.068) 0.817 (0.048) 0.652 (0.062) 0.859 (0.030) 0.799 (0.043) 

500 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

1000 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

m
=4

 

60 0.012 (0.002) 0.707 (0.078) 0.795 (0.059) 0.625 (0.076) 0.857 (0.030) 0.775 (0.056) 

80 0.011 (0.002) 0.722 (0.061) 0.814 (0.046) 0.641 (0.056) 0.864 (0.032) 0.795 (0.042) 

100 0.011 (0.002) 0.729 (0.070) 0.812 (0.051) 0.647 (0.066) 0.854 (0.030) 0.794 (0.047) 

200 0.011 (0.002) 0.733 (0.068) 0.817 (0.048) 0.652 (0.062) 0.862 (0.033) 0.798 (0.043) 

300 0.011 (0.002) 0.733 (0.070) 0.817 (0.049) 0.652 (0.068) 0.867 (0.029) 0.798 (0.045) 

500 0.010 (0.002) 0.730 (0.064) 0.817 (0.046) 0.650 (0.059) 0.862 (0.030) 0.799 (0.042) 

1000 0.011 (0.002) 0.733 (0.069) 0.817 (0.048) 0.650 (0.064) 0.859 (0.031) 0.798 (0.043) 

m
=5

 

60 0.012 (0.002) 0.707 (0.078) 0.795 (0.059) 0.625 (0.076) 0.857 (0.030) 0.775 (0.056) 

80 0.011 (0.002) 0.722 (0.061) 0.814 (0.046) 0.641 (0.056) 0.864 (0.032) 0.795 (0.042) 

100 0.011 (0.002) 0.729 (0.070) 0.812 (0.051) 0.647 (0.066) 0.854 (0.030) 0.794 (0.047) 

200 0.011 (0.002) 0.733 (0.068) 0.817 (0.048) 0.652 (0.062) 0.862 (0.033) 0.798 (0.043) 

300 0.011 (0.002) 0.733 (0.070) 0.817 (0.049) 0.652 (0.068) 0.867 (0.029) 0.798 (0.045) 

500 0.010 (0.002) 0.730 (0.064) 0.817 (0.046) 0.650 (0.059) 0.862 (0.030) 0.799 (0.042) 

1000 0.011 (0.002) 0.733 (0.069) 0.817 (0.048) 0.650 (0.064) 0.859 (0.031) 0.798 (0.043) 

m
=6

 

60 0.012 (0.002) 0.684 (0.096) 0.782 (0.064) 0.606 (0.103) 0.858 (0.035) 0.765 (0.065) 

80 0.012 (0.002) 0.667 (0.087) 0.774 (0.068) 0.594 (0.078) 0.870 (0.044) 0.760 (0.064) 

100 0.012 (0.003) 0.630 (0.096) 0.750 (0.074) 0.558 (0.096) 0.859 (0.049) 0.745 (0.071) 

200 0.010 (0.002) 0.724 (0.063) 0.812 (0.046) 0.653 (0.061) 0.878 (0.030) 0.797 (0.046) 

300 0.011 (0.002) 0.716 (0.057) 0.808 (0.041) 0.641 (0.053) 0.874 (0.030) 0.794 (0.037) 

500 0.011 (0.002) 0.704 (0.067) 0.801 (0.048) 0.628 (0.070) 0.876 (0.029) 0.787 (0.049) 

1000 0.011 (0.002) 0.703 (0.048) 0.800 (0.034) 0.633 (0.048) 0.873 (0.035) 0.788 (0.036) 
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ENRON (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 
60 0.047 (0.001) 0.418 (0.012) 0.578 (0.012) 0.120 (0.026) 0.471 (0.052) 0.551 (0.011) 

80 0.047 (0.001) 0.415 (0.011) 0.576 (0.011) 0.115 (0.027) 0.457 (0.049) 0.550 (0.011) 

100 0.047 (0.001) 0.418 (0.010) 0.578 (0.010) 0.116 (0.024) 0.456 (0.044) 0.552 (0.011) 

200 0.047 (0.001) 0.419 (0.011) 0.578 (0.010) 0.118 (0.027) 0.463 (0.051) 0.552 (0.009) 

300 0.047 (0.001) 0.417 (0.010) 0.577 (0.010) 0.115 (0.027) 0.450 (0.049) 0.551 (0.010) 

500 0.047 (0.001) 0.417 (0.010) 0.577 (0.011) 0.115 (0.025) 0.460 (0.041) 0.551 (0.010) 

1000 0.047 (0.001) 0.417 (0.010) 0.577 (0.010) 0.115 (0.027) 0.462 (0.054) 0.551 (0.009) 

m
=3

 

60 0.047 (0.001) 0.407 (0.018) 0.566 (0.023) 0.112 (0.022) 0.462 (0.048) 0.538 (0.025) 

80 0.047 (0.001) 0.416 (0.011) 0.576 (0.011) 0.115 (0.026) 0.451 (0.053) 0.550 (0.010) 

100 0.047 (0.001) 0.419 (0.009) 0.579 (0.010) 0.121 (0.025) 0.442 (0.041) 0.553 (0.008) 

200 0.047 (0.001) 0.417 (0.011) 0.577 (0.011) 0.115 (0.025) 0.465 (0.053) 0.551 (0.010) 

300 0.047 (0.001) 0.418 (0.013) 0.578 (0.012) 0.116 (0.025) 0.459 (0.038) 0.552 (0.011) 

500 0.047 (0.001) 0.417 (0.010) 0.577 (0.010) 0.115 (0.026) 0.465 (0.052) 0.551 (0.010) 

1000 0.047 (0.001) 0.417 (0.010) 0.577 (0.010) 0.115 (0.025) 0.466 (0.051) 0.551 (0.009) 

m
=4

 

60 0.047 (0.001) 0.420 (0.012) 0.580 (0.011) 0.117 (0.028) 0.466 (0.056) 0.552 (0.009) 

80 0.047 (0.001) 0.417 (0.015) 0.577 (0.014) 0.118 (0.030) 0.456 (0.045) 0.551 (0.010) 

100 0.047 (0.001) 0.417 (0.008) 0.577 (0.010) 0.115 (0.026) 0.467 (0.052) 0.551 (0.009) 

200 0.047 (0.001) 0.417 (0.012) 0.577 (0.012) 0.116 (0.028) 0.466 (0.047) 0.551 (0.011) 

300 0.047 (0.001) 0.419 (0.014) 0.579 (0.013) 0.118 (0.029) 0.455 (0.037) 0.551 (0.011) 

500 0.047 (0.001) 0.416 (0.011) 0.577 (0.010) 0.115 (0.028) 0.464 (0.052) 0.550 (0.009) 

1000 0.047 (0.001) 0.418 (0.010) 0.578 (0.010) 0.115 (0.025) 0.467 (0.052) 0.552 (0.010) 

m
=5

 

60 0.047 (0.001) 0.420 (0.012) 0.580 (0.011) 0.117 (0.028) 0.466 (0.056) 0.552 (0.009) 

80 0.047 (0.001) 0.417 (0.015) 0.577 (0.014) 0.118 (0.030) 0.456 (0.045) 0.551 (0.010) 

100 0.047 (0.001) 0.417 (0.008) 0.577 (0.010) 0.115 (0.026) 0.467 (0.052) 0.551 (0.009) 

200 0.047 (0.001) 0.417 (0.012) 0.577 (0.012) 0.116 (0.028) 0.466 (0.047) 0.551 (0.011) 

300 0.047 (0.001) 0.419 (0.014) 0.579 (0.013) 0.118 (0.029) 0.455 (0.037) 0.551 (0.011) 

500 0.047 (0.001) 0.416 (0.011) 0.577 (0.010) 0.115 (0.028) 0.464 (0.052) 0.550 (0.009) 

1000 0.047 (0.001) 0.418 (0.010) 0.578 (0.010) 0.115 (0.025) 0.467 (0.052) 0.552 (0.010) 

m
=6

 

60 0.047 (0.001) 0.415 (0.010) 0.573 (0.007) 0.116 (0.032) 0.470 (0.044) 0.548 (0.008) 

80 0.047 (0.001) 0.415 (0.011) 0.576 (0.012) 0.115 (0.026) 0.469 (0.041) 0.550 (0.011) 

100 0.047 (0.001) 0.416 (0.008) 0.577 (0.009) 0.114 (0.024) 0.463 (0.054) 0.551 (0.008) 

200 0.047 (0.001) 0.417 (0.012) 0.577 (0.013) 0.116 (0.026) 0.473 (0.047) 0.551 (0.012) 

300 0.047 (0.001) 0.418 (0.012) 0.577 (0.013) 0.116 (0.026) 0.480 (0.043) 0.551 (0.011) 

500 0.047 (0.001) 0.417 (0.012) 0.577 (0.011) 0.115 (0.027) 0.464 (0.052) 0.551 (0.010) 

1000 0.047 (0.001) 0.417 (0.009) 0.577 (0.010) 0.115 (0.025) 0.465 (0.051) 0.551 (0.009) 
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ENRON (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 
60 0.051 (0.002) 0.402 (0.021) 0.561 (0.022) 0.086 (0.013) 0.432 (0.034) 0.546 (0.015) 

80 0.051 (0.002) 0.402 (0.023) 0.558 (0.025) 0.089 (0.012) 0.438 (0.026) 0.546 (0.016) 

100 0.051 (0.002) 0.399 (0.024) 0.556 (0.025) 0.085 (0.013) 0.442 (0.027) 0.544 (0.016) 

200 0.051 (0.002) 0.398 (0.026) 0.556 (0.027) 0.085 (0.013) 0.436 (0.023) 0.544 (0.019) 

300 0.051 (0.002) 0.401 (0.024) 0.559 (0.026) 0.085 (0.013) 0.438 (0.028) 0.547 (0.017) 

500 0.051 (0.002) 0.400 (0.024) 0.558 (0.026) 0.085 (0.013) 0.439 (0.024) 0.546 (0.017) 

1000 0.051 (0.002) 0.401 (0.024) 0.559 (0.026) 0.085 (0.013) 0.440 (0.026) 0.546 (0.017) 

m
=3

 

60 0.050 (0.002) 0.399 (0.022) 0.556 (0.023) 0.089 (0.014) 0.441 (0.034) 0.542 (0.018) 

80 0.051 (0.003) 0.387 (0.031) 0.544 (0.032) 0.082 (0.015) 0.438 (0.022) 0.530 (0.029) 

100 0.051 (0.003) 0.401 (0.026) 0.558 (0.028) 0.085 (0.015) 0.440 (0.026) 0.546 (0.018) 

200 0.051 (0.002) 0.400 (0.021) 0.558 (0.023) 0.084 (0.012) 0.440 (0.028) 0.547 (0.015) 

300 0.051 (0.002) 0.401 (0.024) 0.559 (0.026) 0.087 (0.014) 0.443 (0.028) 0.547 (0.017) 

500 0.051 (0.002) 0.400 (0.024) 0.558 (0.027) 0.085 (0.013) 0.432 (0.029) 0.546 (0.017) 

1000 0.051 (0.002) 0.401 (0.024) 0.559 (0.026) 0.085 (0.013) 0.452 (0.022) 0.547 (0.016) 

m
=4

 

60 0.050 (0.002) 0.396 (0.018) 0.554 (0.017) 0.084 (0.013) 0.441 (0.016) 0.541 (0.008) 

80 0.050 (0.002) 0.395 (0.026) 0.552 (0.028) 0.085 (0.017) 0.434 (0.024) 0.540 (0.021) 

100 0.050 (0.001) 0.395 (0.024) 0.551 (0.027) 0.084 (0.013) 0.436 (0.028) 0.541 (0.017) 

200 0.050 (0.002) 0.400 (0.026) 0.558 (0.026) 0.088 (0.016) 0.439 (0.024) 0.546 (0.016) 

300 0.050 (0.002) 0.399 (0.022) 0.557 (0.022) 0.084 (0.012) 0.447 (0.021) 0.544 (0.014) 

500 0.050 (0.002) 0.401 (0.023) 0.559 (0.026) 0.084 (0.012) 0.447 (0.020) 0.548 (0.017) 

1000 0.050 (0.002) 0.402 (0.024) 0.560 (0.027) 0.086 (0.014) 0.444 (0.025) 0.548 (0.017) 

m
=5

 

60 0.050 (0.002) 0.396 (0.018) 0.554 (0.017) 0.084 (0.013) 0.441 (0.016) 0.541 (0.008) 

80 0.050 (0.002) 0.395 (0.026) 0.552 (0.028) 0.085 (0.017) 0.434 (0.024) 0.540 (0.021) 

100 0.050 (0.001) 0.395 (0.024) 0.551 (0.027) 0.084 (0.013) 0.436 (0.028) 0.541 (0.017) 

200 0.050 (0.002) 0.400 (0.026) 0.558 (0.026) 0.088 (0.016) 0.439 (0.024) 0.546 (0.016) 

300 0.050 (0.002) 0.399 (0.022) 0.557 (0.022) 0.084 (0.012) 0.447 (0.021) 0.544 (0.014) 

500 0.050 (0.002) 0.401 (0.023) 0.559 (0.026) 0.084 (0.012) 0.447 (0.020) 0.548 (0.017) 

1000 0.050 (0.002) 0.402 (0.024) 0.560 (0.027) 0.086 (0.014) 0.444 (0.025) 0.548 (0.017) 

m
=6

 

60 0.050 (0.002) 0.395 (0.024) 0.552 (0.023) 0.087 (0.014) 0.431 (0.011) 0.538 (0.019) 

80 0.049 (0.001) 0.396 (0.023) 0.554 (0.023) 0.086 (0.016) 0.442 (0.012) 0.541 (0.015) 

100 0.049 (0.002) 0.396 (0.027) 0.551 (0.029) 0.084 (0.019) 0.443 (0.023) 0.540 (0.021) 

200 0.050 (0.002) 0.394 (0.033) 0.552 (0.032) 0.084 (0.017) 0.430 (0.015) 0.541 (0.024) 

300 0.049 (0.002) 0.400 (0.021) 0.556 (0.022) 0.085 (0.009) 0.444 (0.017) 0.545 (0.014) 

500 0.049 (0.002) 0.399 (0.025) 0.555 (0.025) 0.090 (0.014) 0.434 (0.025) 0.545 (0.015) 

1000 0.050 (0.001) 0.396 (0.023) 0.553 (0.023) 0.085 (0.013) 0.438 (0.011) 0.543 (0.015) 

 
 
 
 
 
 
 
       
 

Stellenbosch University https://scholar.sun.ac.za



252 
 

COREL5K (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset 

Accuracy 
Macro-F1 Micro-F1 

m
=2

 500 0.009 (<0.001) 0.054 (0.005) 0.104 (0.011) 0.008 (0.002) 0.256 (0.016) 0.105 (0.011) 

1000 0.009 (<0.001) 0.053 (0.005) 0.102 (0.011) 0.008 (0.002) 0.249 (0.025) 0.103 (0.011) 

m
=3

 

500 0.009 (<0.001) 0.053 (0.006) 0.102 (0.011) 0.008 (0.002) 0.250 (0.024) 0.103 (0.012) 

1000 0.009 (<0.001) 0.053 (0.006) 0.102 (0.011) 0.009 (0.002) 0.252 (0.023) 0.103 (0.012) 

m
=4

 

500 0.009 (<0.001) 0.053 (0.004) 0.102 (0.008) 0.009 (0.002) 0.253 (0.018) 0.103 (0.009) 

1000  0.009 (<0.001) 0.053 (0.005) 0.102 (0.010) 0.008 (0.002) 0.257 (0.017) 0.103 (0.011) 

m
=5

 

500 0.009 (<0.001) 0.053 (0.007) 0.102 (0.014) 0.009 (0.003) 0.256 (0.019) 0.104 (0.014) 

1000 0.009 (<0.001) 0.053 (0.005) 0.102 (0.010) 0.008 (0.002) 0.254 (0.021) 0.104 (0.011) 

m
=6

 

500 0.009 (<0.001) 0.052 (0.006) 0.101 (0.012) 0.008 (0.002) 0.255 (0.021) 0.102 (0.013) 

1000 0.009 (<0.001) 0.052 (0.005) 0.101 (0.010) 0.008 (0.002) 0.252 (0.018) 0.102 (0.011) 

 

COREL5K (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score Subset 
Accuracy 

Macro-F1 Micro-F1 

m
=2

 500 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.184 (0.026) 0.037 (0.006) 

1000 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.184 (0.026) 0.037 (0.006) 

m
=3

 

500 0.009 (0.000) 0.018 (0.003) 0.036 (0.006) 0.001 (0.001) 0.179 (0.028) 0.036 (0.006) 

1000 0.009 (0.000) 0.018 (0.004) 0.036 (0.008) 0.001 (0.001) 0.176 (0.029) 0.036 (0.008) 

m
=4

 

500 0.009 (0.000) 0.018 (0.003) 0.036 (0.006) 0.001 (0.001) 0.184 (0.026) 0.036 (0.006) 

1000 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.186 (0.027) 0.037 (0.006) 

m
=5

 

500 0.009 (0.000) 0.018 (0.003) 0.036 (0.006) 0.001 (0.001) 0.184 (0.026) 0.036 (0.006) 

1000 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.186 (0.027) 0.037 (0.006) 

m
=6

 

500 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.184 (0.026) 0.037 (0.006) 

1000 0.009 (0.000) 0.018 (0.004) 0.036 (0.007) 0.001 (0.001) 0.181 (0.026) 0.036 (0.007) 
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A.2 Classifying a single validation fold of the Emotions data multiple times 

RESULTS 2m  

Hamming loss 

 

Accuracy 

 
F-score 

 

Subset Accuracy 
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0.16

0.18

0.20

0.22

0.24

10 20 30

M

0.44

0.46

0.48

0.50

0.52

10 20 30

M

0.58

0.60

0.62

0.64

0.66

10 20 30

M

0.22

0.24

0.26

0.28

0.30

10 20 30

M

0.56

0.58

0.60

0.62

0.64

10 20 30

M

0.60

0.62

0.64

0.66

0.68

10 20 30

M

Stellenbosch University https://scholar.sun.ac.za



254 
 

RESULTS 3m   

Hamming loss 
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RESULTS 4m  

Hamming loss Accuracy 
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RESULTS 5m   

Hamming loss Accuracy 
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RESULTS 6m   

Hamming loss 
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A.3 Results for different choices of m  and M  for Conditional LDsplit 

EMOTIONS (SVM base classifier) 

 Hamming loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m=2 M=15 0.195 (0.011) 0.499 (0.026) 0.640 (0.023) 0.274 (0.040) 0.603 (0.027) 0.636 (0.030) 

m=3 M=20 0.194 (0.011) 0.514 (0.029) 0.649 (0.023) 0.281 (0.027) 0.613 (0.028) 0.644 (0.031) 

m=4 M=15 0.196 (0.016) 0.511 (0.031) 0.643 (0.033) 0.279 (0.028) 0.606 (0.032) 0.633 (0.039) 

m=5 M=6 0.212 (0.019) 0.488 (0.036) 0.609 (0.037) 0.258 (0.024) 0.569 (0.051) 0.595 (0.049) 

m=6 M=1 0.224 (0.025) 0.490 (0.052) 0.603 (0.049) 0.262 (0.050) 0.572 (0.049) 0.586 (0.061) 

 

EMOTIONS (Decision Tree base classifier) 

 Hamming loss Accuracy F-score 
Subset-

accuracy 
Macro-F1 Micro-F1 

m=2 M=15 0.227 (0.015) 0.474 (0.053) 0.611 (0.039) 0.220 (0.069) 0.588 (0.036) 0.610 (0.038) 

m=3 M=20 0.217 (0.015) 0.465 (0.017) 0.605 (0.025) 0.225 (0.023) 0.579 (0.019) 0.608 (0.025) 

m=4 M=15 0.225 (0.020) 0.446 (0.027) 0.581 (0.031) 0.212 (0.032) 0.567 (0.025) 0.590 (0.032) 

m=5 M=6 0.225 (0.020) 0.446 (0.027) 0.581 (0.031) 0.212 (0.032) 0.567 (0.025) 0.590 (0.032) 

m=6 M=1 0.292 (0.024) 0.376 (0.052) 0.497 (0.059) 0.149 (0.053) 0.478 (0.042) 0.480 (0.038) 

 

SCENE (SVM base classifier) 

 Hamming loss Accuracy F-score 
Subset-

accuracy 
Macro-F1 Micro-F1 

m=2 M=15 0.081 (0.007) 0.680 (0.031) 0.765 (0.021) 0.638 (0.038) 0.760 (0.023) 0.749 (0.024) 

m=3 M=20 0.080 (0.006) 0.691 (0.029) 0.768 (0.019) 0.655 (0.034) 0.764 (0.020) 0.754 (0.021) 

m=4 M=15 0.079 (0.008) 0.716 (0.037) 0.768 (0.025) 0.691 (0.044) 0.769 (0.025) 0.758 (0.027) 

m=5 M=6 0.082 (0.009) 0.739 (0.041) 0.767 (0.029) 0.714 (0.047) 0.769 (0.028) 0.758 (0.029) 

m=6 M=1 0.087 (0.014) 0.744 (0.041) 0.755 (0.039) 0.719 (0.049) 0.761 (0.037) 0.748 (0.039) 

 

SCENE (Decision Tree base classifier) 

 Hamming loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m=2 M=15 0.123 (0.008) 0.499 (0.023) 0.628 (0.024) 0.430 (0.029) 0.616 (0.027) 0.608 (0.025) 

m=3 M=20 0.112 (0.010) 0.525 (0.045) 0.643 (0.044) 0.486 (0.041) 0.632 (0.045) 0.629 (0.044) 

m=4 M=15 0.110 (0.008) 0.546 (0.049) 0.649 (0.042) 0.514 (0.045) 0.640 (0.039) 0.636 (0.038) 

m=5 M=6 0.110 (0.008) 0.546 (0.049) 0.649 (0.042) 0.514 (0.045) 0.640 (0.039) 0.636 (0.038) 

m=6 M=1 0.129 (0.012) 0.571 (0.042) 0.624 (0.038) 0.537 (0.040) 0.626 (0.037) 0.611 (0.038) 
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YEAST (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset-

accuracy 
Macro-F1 Micro-F1 

m
=2

 40 0.188 (0.007) 0.531 (0.014) 0.661 (0.014) 0.205 (0.024) 0.498 (0.027) 0.660 (0.014) 

91 0.188 (0.008) 0.530 (0.018) 0.661 (0.017) 0.207 (0.028) 0.490 (0.036) 0.659 (0.017) 

m
=3

 40 0.188 (0.006) 0.535 (0.016) 0.664 (0.015) 0.210 (0.023) 0.494 (0.032) 0.661 (0.014) 

100 0.188 (0.007) 0.534 (0.015) 0.662 (0.014) 0.214 (0.026) 0.498 (0.024) 0.661 (0.014) 

300 0.188 (0.007) 0.536 (0.016) 0.664 (0.014) 0.217 (0.030) 0.493 (0.034) 0.662 (0.014) 

m
=4

 

40 0.190 (0.005) 0.534 (0.018) 0.662 (0.014) 0.212 (0.031) 0.506 (0.033) 0.660 (0.015) 

100 0.188 (0.006) 0.538 (0.016) 0.666 (0.014) 0.223 (0.028) 0.501 (0.026) 0.663 (0.014) 

300 0.189 (0.005) 0.537 (0.013) 0.665 (0.012) 0.219 (0.027) 0.493 (0.032) 0.662 (0.011) 

500 0.189 (0.006) 0.537 (0.015) 0.665 (0.013) 0.219 (0.030) 0.494 (0.033) 0.662 (0.012) 

1000 0.188 (0.006) 0.538 (0.014) 0.666 (0.012) 0.221 (0.030) 0.494 (0.033) 0.663 (0.012) 

m
=5

 

40 0.195 (0.017) 0.518 (0.056) 0.650 (0.042) 0.184 (0.091) 0.483 (0.051) 0.644 (0.048) 

100 0.189 (0.006) 0.538 (0.017) 0.665 (0.014) 0.220 (0.032) 0.500 (0.023) 0.663 (0.015) 

300 0.188 (0.006) 0.538 (0.015) 0.666 (0.012) 0.219 (0.035) 0.501 (0.025) 0.663 (0.013) 

500 0.189 (0.006) 0.537 (0.015) 0.665 (0.013) 0.219 (0.030) 0.494 (0.033) 0.662 (0.012) 

1000 0.188 (0.006) 0.538 (0.014) 0.666 (0.012) 0.221 (0.030) 0.494 (0.033) 0.663 (0.012) 

m
=6

 

40 0.205 (0.021) 0.464 (0.077) 0.606 (0.067) 0.119 (0.103) 0.459 (0.049) 0.602 (0.067) 

100 0.197 (0.016) 0.498 (0.051) 0.634 (0.039) 0.155 (0.091) 0.472 (0.052) 0.631 (0.045) 

300 0.204 (0.021) 0.477 (0.068) 0.617 (0.058) 0.132 (0.109) 0.466 (0.047) 0.612 (0.060) 

500 0.197 (0.019) 0.499 (0.074) 0.636 (0.062) 0.163 (0.097) 0.475 (0.028) 0.631 (0.067) 

1000 0.195 (0.007) 0.507 (0.043) 0.642 (0.038) 0.164 (0.081) 0.485 (0.029) 0.639 (0.035) 

 
YEAST (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m
=2

 40 0.223 (0.006) 0.450 (0.019) 0.601 (0.017) 0.074 (0.016) 0.449 (0.027) 0.597 (0.015) 

91 0.222 (0.007) 0.448 (0.018) 0.598 (0.019) 0.077 (0.022) 0.451 (0.026) 0.596 (0.013) 

m
=3

 40 0.215 (0.007) 0.461 (0.015) 0.609 (0.016) 0.097 (0.016) 0.454 (0.024) 0.607 (0.013) 

100 0.212 (0.007) 0.472 (0.015) 0.618 (0.016) 0.101 (0.011) 0.459 (0.029) 0.616 (0.012) 

300 0.211 (0.006) 0.472 (0.016) 0.616 (0.018) 0.107 (0.012) 0.457 (0.027) 0.615 (0.012) 

m
=4

 

40 0.210 (0.006) 0.472 (0.021) 0.614 (0.023) 0.109 (0.022) 0.459 (0.023) 0.614 (0.017) 

100 0.205 (0.005) 0.482 (0.010) 0.622 (0.012) 0.131 (0.011) 0.445 (0.018) 0.621 (0.009) 

300 0.205 (0.007) 0.479 (0.016) 0.621 (0.018) 0.125 (0.012) 0.458 (0.029) 0.621 (0.014) 

500 0.206 (0.006) 0.479 (0.014) 0.618 (0.016) 0.131 (0.014) 0.444 (0.022) 0.619 (0.013) 

1000 0.204 (0.007) 0.483 (0.016) 0.622 (0.017) 0.135 (0.011) 0.453 (0.035) 0.623 (0.014) 

m
=5

 

40 0.210 (0.006) 0.472 (0.021) 0.614 (0.023) 0.109 (0.022) 0.459 (0.023) 0.614 (0.017) 

100 0.205 (0.005) 0.482 (0.010) 0.622 (0.012) 0.131 (0.011) 0.445 (0.018) 0.621 (0.009) 

300 0.205 (0.007) 0.479 (0.016) 0.621 (0.018) 0.125 (0.012) 0.458 (0.029) 0.621 (0.014) 

500 0.206 (0.006) 0.479 (0.014) 0.618 (0.016) 0.131 (0.014) 0.444 (0.022) 0.619 (0.013) 

1000 0.204 (0.007) 0.483 (0.016) 0.622 (0.017) 0.135 (0.011) 0.453 (0.035) 0.623 (0.014) 

m
=6

 

40 0.218 (0.014) 0.429 (0.046) 0.573 (0.042) 0.091 (0.037) 0.420 (0.041) 0.574 (0.043) 

100 0.210 (0.007) 0.449 (0.020) 0.593 (0.019) 0.111 (0.021) 0.419 (0.007) 0.594 (0.015) 

300 0.208 (0.008) 0.452 (0.015) 0.595 (0.015) 0.119 (0.014) 0.419 (0.025) 0.597 (0.015) 

500 0.207 (0.007) 0.458 (0.014) 0.601 (0.014) 0.121 (0.016) 0.430 (0.015) 0.602 (0.013) 

1000 0.205 (0.007) 0.459 (0.015) 0.602 (0.016) 0.123 (0.020) 0.427 (0.018) 0.603 (0.014) 
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MEDICAL (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset-

accuracy 
Macro-F1 Micro-F1 

m
=2

 
100 0.012 (0.002) 0.713 (0.043) 0.803 (0.037) 0.619 (0.049) 0.834 (0.030) 0.787 (0.039) 

300 0.012 (0.002) 0.712 (0.043) 0.803 (0.037) 0.617 (0.049) 0.829 (0.034) 0.787 (0.038) 

500 0.012 (0.002) 0.715 (0.050) 0.804 (0.041) 0.620 (0.056) 0.833 (0.032) 0.787 (0.042) 

990 0.012 (0.002) 0.713 (0.047) 0.803 (0.039) 0.619 (0.053) 0.829 (0.034) 0.786 (0.040) 

m
=3

 

100 0.014 (0.002) 0.623 (0.046) 0.738 (0.045) 0.536 (0.044) 0.826 (0.040) 0.729 (0.049) 

300 0.012 (0.003) 0.698 (0.064) 0.792 (0.052) 0.611 (0.066) 0.831 (0.030) 0.780 (0.052) 

500 0.012 (0.003) 0.675 (0.069) 0.778 (0.058) 0.583 (0.072) 0.833 (0.036) 0.767 (0.060) 

1000 0.012 (0.002) 0.712 (0.047) 0.802 (0.039) 0.619 (0.055) 0.831 (0.033) 0.786 (0.042) 

m
=4

 

100 0.017 (0.006) 0.464 (0.234) 0.579 (0.257) 0.389 (0.210) 0.828 (0.040) 0.564 (0.251) 

300 0.014 (0.004) 0.593 (0.141) 0.714 (0.116) 0.511 (0.148) 0.844 (0.031) 0.706 (0.118) 

500 0.013 (0.004) 0.612 (0.129) 0.729 (0.111) 0.528 (0.135) 0.841 (0.049) 0.723 (0.112) 

1000 0.013 (0.004) 0.613 (0.110) 0.728 (0.091) 0.520 (0.118) 0.837 (0.030) 0.719 (0.090) 

m
=5

 

100 0.017 (0.006) 0.464 (0.234) 0.579 (0.257) 0.389 (0.210) 0.828 (0.040) 0.564 (0.251) 

300 0.014 (0.004) 0.593 (0.141) 0.714 (0.116) 0.511 (0.148) 0.844 (0.031) 0.706 (0.118) 

500 0.013 (0.004) 0.612 (0.129) 0.729 (0.111) 0.528 (0.135) 0.841 (0.049) 0.723 (0.112) 

1000 0.013 (0.004) 0.613 (0.110) 0.728 (0.091) 0.520 (0.118) 0.837 (0.030) 0.719 (0.090) 

m
=6

 

100 0.021 (0.002) 0.320 (0.075) 0.465 (0.087) 0.261 (0.058) 0.815 (0.031) 0.464 (0.091) 

300 0.020 (0.007) 0.340 (0.261) 0.445 (0.287) 0.292 (0.241) 0.715 (0.137) 0.432 (0.284) 

500 0.021 (0.005) 0.291 (0.163) 0.420 (0.190) 0.247 (0.142) 0.830 (0.054) 0.409 (0.199) 

1000 0.021 (0.005) 0.281 (0.204) 0.403 (0.207) 0.228 (0.182) 0.765 (0.072) 0.405 (0.202) 

 
MEDICAL (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score Subset-
accuracy 

Macro-F1 Micro-F1 

m
=2

 

100 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

300 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

500 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

990 0.011 (0.002) 0.731 (0.068) 0.814 (0.050) 0.647 (0.062) 0.859 (0.030) 0.795 (0.045) 

m
=3

 

100 0.013 (0.002) 0.595 (0.091) 0.725 (0.067) 0.520 (0.090) 0.878 (0.034) 0.720 (0.065) 

300 0.012 (0.002) 0.677 (0.072) 0.784 (0.049) 0.597 (0.082) 0.867 (0.039) 0.769 (0.052) 

500 0.012 (0.002) 0.670 (0.063) 0.777 (0.048) 0.602 (0.064) 0.866 (0.035) 0.768 (0.053) 

1000 0.011 (0.001) 0.704 (0.044) 0.799 (0.034) 0.627 (0.039) 0.860 (0.025) 0.785 (0.034) 

m
=4

 

100 0.017 (0.003) 0.468 (0.116) 0.612 (0.100) 0.394 (0.112) 0.874 (0.033) 0.606 (0.090) 

300 0.014 (0.003) 0.567 (0.100) 0.697 (0.080) 0.489 (0.102) 0.869 (0.033) 0.687 (0.081) 

500 0.014 (0.002) 0.563 (0.081) 0.701 (0.065) 0.486 (0.087) 0.870 (0.042) 0.692 (0.072) 

1000 0.013 (0.004) 0.591 (0.122) 0.719 (0.096) 0.530 (0.127) 0.888 (0.025) 0.717 (0.103) 

m
=5

 

100 0.017 (0.003) 0.468 (0.116) 0.612 (0.100) 0.394 (0.112) 0.874 (0.033) 0.606 (0.090) 

300 0.014 (0.003) 0.567 (0.100) 0.697 (0.080) 0.489 (0.102) 0.869 (0.033) 0.687 (0.081) 

500 0.014 (0.002) 0.563 (0.081) 0.701 (0.065) 0.486 (0.087) 0.870 (0.042) 0.692 (0.072) 

1000 0.013 (0.004) 0.591 (0.122) 0.719 (0.096) 0.530 (0.127) 0.888 (0.025) 0.717 (0.103) 

m
=6

 

100 0.020 (0.005) 0.323 (0.158) 0.463 (0.166) 0.267 (0.151) 0.824 (0.057) 0.472 (0.165) 

300 0.020 (0.003) 0.297 (0.107) 0.442 (0.128) 0.245 (0.101) 0.863 (0.069) 0.441 (0.120) 

500 0.022 (0.004) 0.235 (0.152) 0.354 (0.189) 0.194 (0.132) 0.848 (0.054) 0.345 (0.190) 

1000 0.021 (0.004) 0.266 (0.146) 0.399 (0.174) 0.211 (0.131) 0.874 (0.040) 0.408 (0.177) 
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ENRON (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset-

accuracy 
Macro-F1 Micro-F1 

m
=2

 
100 0.047 (0.001) 0.414 (0.013) 0.574 (0.011) 0.116 (0.026) 0.454 (0.039) 0.548 (0.013) 

300 0.047 (0.001) 0.420 (0.014) 0.580 (0.012) 0.118 (0.025) 0.459 (0.049) 0.553 (0.011) 

500 0.047 (0.001) 0.417 (0.011) 0.577 (0.010) 0.116 (0.026) 0.462 (0.054) 0.551 (0.010) 

1000 0.047 (0.001) 0.418 (0.012) 0.578 (0.011) 0.116 (0.026) 0.467 (0.050) 0.551 (0.010) 

m
=3

 

100 0.047 (0.001) 0.421 (0.012) 0.581 (0.012) 0.117 (0.026) 0.458 (0.043) 0.554 (0.010) 

300 0.047 (0.001) 0.417 (0.012) 0.578 (0.012) 0.115 (0.026) 0.460 (0.037) 0.551 (0.011) 

500 0.047 (0.001) 0.418 (0.013) 0.578 (0.012) 0.115 (0.029) 0.461 (0.056) 0.552 (0.012) 

1000 0.047 (0.001) 0.417 (0.012) 0.577 (0.011) 0.117 (0.029) 0.460 (0.054) 0.551 (0.010) 

m
=4

 

100 0.047 (0.001) 0.419 (0.014) 0.578 (0.013) 0.119 (0.029) 0.465 (0.051) 0.549 (0.009) 

300 0.047 (0.001) 0.419 (0.015) 0.579 (0.013) 0.115 (0.029) 0.465 (0.048) 0.551 (0.012) 

500 0.047 (0.001) 0.418 (0.012) 0.579 (0.012) 0.115 (0.028) 0.467 (0.052) 0.552 (0.011) 

1000 0.047 (0.001) 0.418 (0.012) 0.578 (0.011) 0.115 (0.028) 0.466 (0.051) 0.552 (0.011) 

m
=5

 

100 0.047 (0.001) 0.419 (0.014) 0.578 (0.013) 0.119 (0.029) 0.465 (0.051) 0.549 (0.009) 

300 0.047 (0.001) 0.419 (0.015) 0.579 (0.013) 0.115 (0.029) 0.465 (0.048) 0.551 (0.012) 

500 0.047 (0.001) 0.418 (0.012) 0.579 (0.012) 0.115 (0.028) 0.467 (0.052) 0.552 (0.011) 

1000 0.047 (0.001) 0.418 (0.012) 0.578 (0.011) 0.115 (0.028) 0.466 (0.051) 0.552 (0.011) 

m
=6

 

100 0.047 (0.001) 0.423 (0.012) 0.581 (0.013) 0.120 (0.023) 0.464 (0.053) 0.552 (0.009) 

300 0.047 (0.001) 0.421 (0.011) 0.581 (0.012) 0.120 (0.025) 0.466 (0.053) 0.553 (0.011) 

500 0.047 (0.001) 0.421 (0.015) 0.581 (0.014) 0.120 (0.029) 0.463 (0.055) 0.552 (0.013) 

1000 0.047 (0.001) 0.420 (0.010) 0.579 (0.011) 0.119 (0.025) 0.464 (0.054) 0.551 (0.010) 

 

ENRON (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m
=2

 

100 0.051 (0.002) 0.392 (0.019) 0.552 (0.021) 0.084 (0.014) 0.431 (0.032) 0.539 (0.015) 

300 0.051 (0.002) 0.401 (0.024) 0.559 (0.025) 0.084 (0.012) 0.435 (0.028) 0.546 (0.017) 

500 0.051 (0.002) 0.400 (0.024) 0.559 (0.026) 0.085 (0.013) 0.435 (0.028) 0.546 (0.017) 

1000 0.051 (0.002) 0.401 (0.024) 0.401 (0.026) 0.085 (0.013) 0.436 (0.028) 0.546 (0.017) 

m
=3

 

100 0.051 (0.001) 0.391 (0.022) 0.548 (0.020) 0.088 (0.013) 0.424 (0.023) 0.536 (0.013) 

300 0.051 (0.002) 0.398 (0.021) 0.556 (0.023) 0.082 (0.011) 0.429 (0.030) 0.543 (0.015) 

500 0.051 (0.002) 0.398 (0.023) 0.555 (0.025) 0.085 (0.013) 0.435 (0.028) 0.543 (0.016) 

1000 0.051 (0.002) 0.399 (0.023) 0.557 (0.025) 0.084 (0.012) 0.434 (0.027) 0.545 (0.016) 

m
=4

 

100 0.050 (0.002) 0.394 (0.017) 0.551 (0.019) 0.080 (0.015) 0.433 (0.023) 0.537 (0.012) 

300 0.050 (0.002) 0.396 (0.024) 0.553 (0.027) 0.084 (0.011) 0.439 (0.021) 0.542 (0.017) 

500 0.050 (0.002) 0.400 (0.020) 0.559 (0.021) 0.085 (0.005) 0.433 (0.030) 0.546 (0.015) 

1000 0.050 (0.002) 0.400 (0.025) 0.558 (0.027) 0.086 (0.013) 0.435 (0.027) 0.545 (0.019) 

m
=5

 

100 0.050 (0.002) 0.394 (0.017) 0.551 (0.019) 0.080 (0.015) 0.433 (0.023) 0.537 (0.012) 

300 0.050 (0.002) 0.396 (0.024) 0.553 (0.027) 0.084 (0.011) 0.439 (0.021) 0.542 (0.017) 

500 0.050 (0.002) 0.400 (0.020) 0.559 (0.021) 0.085 (0.005) 0.433 (0.030) 0.546 (0.015) 

1000 0.050 (0.002) 0.400 (0.025) 0.558 (0.027) 0.086 (0.013) 0.435 (0.027) 0.545 (0.019) 

m
=6

 

100 0.049 (0.002) 0.397 (0.023) 0.552 (0.021) 0.087 (0.012) 0.439 (0.027) 0.543 (0.017) 

300 0.049 (0.001) 0.400 (0.021) 0.556 (0.021) 0.089 (0.014) 0.435 (0.025) 0.545 (0.017) 

500 0.049 (0.001) 0.396 (0.022) 0.553 (0.023) 0.081 (0.006) 0.431 (0.020) 0.541 (0.018) 

1000 0.049 (0.001) 0.400 (0.020) 0.557 (0.022) 0.091 (0.010) 0.430 (0.010) 0.544 (0.015) 
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COREL5K (SVM base classifier) 

 M Hamming loss Accuracy F-score 
Subset-

accuracy 
Macro-F1 Micro-F1 

m
=2

 500 0.009 (<0.001) 0.054 (0.005) 0.103 (0.010) 0.009 (0.002) 0.257 (0.019) 0.105 (0.010) 

1000 0.009 (<0.001) 0.053 (0.005) 0.102 (0.011) 0.009 (0.002) 0.259 (0.019) 0.104 (0.011) 

m
=3

 500 0.009 (<0.001) 0.050 (0.001) 0.096 (0.003) 0.008 (0.002) 0.247 (0.014) 0.097 (0.003) 

1000 0.009 (<0.001) 0.053 (0.006) 0.102 (0.011) 0.008 (0.002) 0.257 (0.019) 0.104 (0.012) 

m
=4

 500 0.009 (<0.001) 0.053 (0.005) 0.102 (0.010) 0.008 (0.004) 0.258 (0.012) 0.103 (0.011) 

1000 0.009 (<0.001) 0.053 (0.005) 0.102 (0.011) 0.009 (0.002) 0.258 (0.019) 0.104 (0.012) 

m
=5

 500 0.009 (<0.001) 0.052 (0.005) 0.100 (0.001) 0.008 (0.002) 0.256 (0.018) 0.102 (0.010) 

1000 0.009 (<0.001) 0.053 (0.005) 0.102 (0.001) 0.009 (0.002) 0.257 (0.015) 0.103 (0.011) 

m
=6

 500 0.009 (<0.001) 0.052 (0.006) 0.100 (0.012) 0.008 (0.002) 0.261 (0.017) 0.101 (0.012) 

1000 0.009 (<0.001) 0.052 (0.005) 0.101 (0.010) 0.008 (0.002) 0.252 (0.020) 0.102 (0.011) 

 

COREL5K (Decision Tree base classifier) 

 M Hamming loss Accuracy F-score Subset-
accuracy 

Macro-F1 Micro-F1 

m
=2

 500 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.184 (0.026) 0.037 (0.006) 

1000 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.184 (0.026) 0.037 (0.006) 

m
=3

 500 0.009 (0.000) 0.017 (0.004) 0.033 (0.008) 0.001 (0.001) 0.172 (0.023) 0.033 (0.008) 

1000 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.186 (0.028) 0.037 (0.006) 

m
=4

 500 0.009 (0.000) 0.015 (0.002) 0.030 (0.003) 0.001 (0.001) 0.182 (0.035) 0.030 (0.003) 

1000 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.185 (0.025) 0.037 (0.006) 

m
=5

 500 0.009 (0.000) 0.015 (0.002) 0.030 (0.003) 0.001 (0.001) 0.182 (0.035) 0.030 (0.003) 

1000 0.009 (0.000) 0.019 (0.003) 0.037 (0.006) 0.001 (0.001) 0.185 (0.025) 0.037 (0.006) 

m
=6

 500 0.009 (0.000) 0.018 (0.003) 0.035 (0.006) 0.001 (0.001) 0.184 (0.028) 0.035 (0.005) 

1000 0.009 (0.000) 0.018 (0.003) 0.035 (0.006) 0.001 (0.001) 0.184 (0.029) 0.035 (0.006) 
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A.4 Comparison of Random and Conditional LDsplit cross-validation results 

 

EMOTIONS (SVM base classifier) 

 Hamming 
loss 

Accuracy F-score Subset-
accuracy 

Macro-F1 Micro-F1 
m

=2
 

Random 
M=18 

0.194 
0.493 
(1.2%) 

0.639 
(0.2%) 

0.271 
(1.1%) 

0.605 0.636 

Random 
M=30 

0.196 
(1.0%) 

0.488 
(2.2%) 

0.633 
(1.1%) 

0.268 
(2.2%) 

0.603 
(0.3%) 

0.632 
(0.6%) 

Conditional 
M=15 

0.195 
(0.5%) 0.499 0.640 0.274 

0.603 
(0.3%) 0.636 

m
=3

 

Random 
M=18 

0.194 
(1.6%) 

0.505 
(1.8%) 

0.647 
(0.3%) 

0.279 
(0.7%) 

0.608 
(0.8%) 

0.640 
(0.6%) 

Random 
M=100 

0.191 
0.503 
(2.1%) 

0.646 
(0.5%) 

0.281 0.613 
0.642 
(0.3%) 

Conditional 
M=20 

0.194 
(1.6%) 

0.514 0.649 0.281 0.613 0.644 

m
=4

 

Random 
M=18 

0.195 
(1.6%) 

0.501 
(3.1%) 

0.640 
(2.1%) 

0.279 
0.609 
(1.1%) 

0.639 
(1.4%) 

Random 
M=100 0.192 0.517 0.654 0.279 0.616 0.648 

Conditional 
M=15 

0.196 
(2.1%) 

0.511 
(1.2%) 

0.643 
(1.7%) 0.279 

0.606 
(1.6%) 

0.633 
(2.3%) 

m
=5

 

Random 
M=6 

0.203 
(9.1%) 

0.499 
(6.2%) 

0.624 
(6.4%) 

0.274 
(6.8%) 

0.576 
(7.7%) 

0.617 
(6.4%) 

Random 
M=100 

0.186 0.532 0.667 0.294 0.624 0.659 

Conditional 
M=6 

0.212 
(14.0%) 

0.488 
(8.3%) 

0.609 
(8.7%) 

0.258 
(12.2%) 

0.569 
(8.8%) 

0.595 
(9.7%) 

m
=6

 

Random 
M=6 

0.209 
(10.6%) 

0.496 
(6.6%) 

0.620 
(6.1%) 

0.263 
(9.6%) 

0.576 
(9.6%) 

0.611 
(6.9%) 

Random 
M=100 0.189 0.531 0.660 0.291 0.620 0.656 

Conditional 
M=1 

0.224 
(18.5%) 

0.490 
(7.7%) 

0.603 
(8.6%) 

0.262 
(10%) 

0.572 
(10.0%) 

0.586 
(10.7%) 
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SCENE (SVM base classifier) 

 
Hamming 

loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m
=2

 
Random 

M=18 
0.082 
(1.2%) 

0.677 
(0.4%) 

0.764 
(0.1%) 

0.635 
(0.5%) 

0.758 
(0.3%) 

0.748 
(0.1%) 

Random 
M=30 

0.082 
(1.2%) 

0.677 
(0.4%) 

0.763 
(0.3%) 

0.634 
(0.6%) 

0.758 
(0.3%) 

0.748 
(0.1%) 

Conditional 
M=15 0.081 0.680 0.765 0.638 0.760 0.749 

m
=3

 

Random 
M=18 

0.081 
(1.3%) 

0.689 
(0.3%) 

0.767 
(0.1%) 

0.650 
(0.8%) 

0.763 
(0.1%) 

0.752 
(0.3%) 

Random 
M=100 

0.081 
(1.3%) 

0.684 
(1.0%) 

0.768 
0.643 
(1.8%) 

0.762 
(0.3%) 

0.752 
(0.3%) 

Conditional 
M=20 

0.080 0.691 0.768 0.655 0.764 0.754 

m
=4

 

Random 
M=18 

0.082 
(3.8%) 

0.699 
(2.4%) 

0.766 
(0.9%) 

0.663 
(4.1%) 

0.761 
(1.0%) 

0.751 
(1.1%) 

Random 
M=100 0.079 

0.701 
(2.1%) 0.773 

0.665 
(3.8%) 

0.768 
(0.1%) 0.759 

Conditional 
M=15 

0.079 0.716 
0.768 
(0.6%) 

0.691 0.769 
0.758 
(0.1%) 

m
=5

 

Random 
M=6 

0.080 
(2.6%) 

0.712 
(3.7%) 

0.766 
(1.0%) 

0.684 
(4.2%) 

0.765 
(1.0%) 

0.755 
(1.0%) 

Random 
M=100 

0.078 0.716 
(3.1%) 

0.774 0.686 
(3.9%) 

0.773 0.763 

Conditional 
M=6 

0.082 
(5.1%) 0.739 

0.767 
(0.9%) 0.714 

0.769 
(0.5%) 

0.758 
(0.7%) 

m
=6

 

Random 
M=6 

0.079 
(3.9%) 

0.715 
(3.9%) 

0.768 
(1.8%) 

0.690 
(4.0%) 

0.766 
(2.0%) 

0.757 
(1.8%) 

Random 
M=100 

0.076 
0.735 
(1.2%) 

0.782 
0.709 
(1.4%) 

0.782 0.771 

Conditional 
M=1 

0.087 
(14.5%) 

0.744 
0.755 
(3.5%) 

0.719 
0.761 
(2.7%) 

0.748 
(3.0%) 
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YEAST (SVM base classifier) 

 
Hamming 

loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m
=2

 
Random 

M=40 
0.188  

0.529 
(0.4%) 

0.659 
(0.3%) 

0.205 
0.495 
(0.6%) 

0.658 
(0.3%) 

Random 
M=100 

0.188 0.527 
(0.8%) 

0.659 
(0.3%) 

0.199 
(2.9%) 

0.488 
(2.0%) 

0.658 
(0.3%) 

Conditional 
M=40 

0.188 0.531 0.661 0.205 0.498 0.660 

m
=3

 

Random 
M=100 

0.186 
(1.1%) 

0.534 
(0.7%) 

0.662 
(0.7%) 

0.213 
(1.4%) 

0.503 
0.663 
(0.6%) 

Random 
M=300 0.184 0.538 0.667 0.216 

0.490 
(2.65) 0.667 

Conditional 
M=100 

0.188 
(2.2%) 

0.534 
(0.7%) 

0.662 
(0.7%) 

0.214 
(0.9%) 

0.498 
(1.0%) 

0.661 
(0.9%) 

m
=4

 

Random 
M=100 

0.187 
(1.6%) 

0.531 
(1.5%) 

0.660 
(1.0%) 

0.209 
(6.3%) 0.513 

0.661 
(0.9%) 

Random 
M=300 

0.184 0.539 0.667 0.219 
(1.8%) 

0.482 
(6.0%) 

0.667 

Conditional 
M=100 

0.188 
(2.2%) 

0.538 
(0.2%) 

0.666 
(0.1%) 0.223 

0.501 
(2.3%) 

0.663 
(0.6%) 

m
=5

 

Random 
M=100 

0.186 
(1.1%) 

0.533 
(0.9%) 

0.661 
(0.8%) 

0.220 0.536 0.661 
(0.6%) 

Random 
M=300 

0.184 
0.537 
(0.2%) 

0.666 
0.218 
(0.9%) 

0.486 
(9.3%) 

0.665 

Conditional 
M=100 

0.189 
(2.7%) 

0.538 
0.665 
(0.2%) 

0.220 
0.500 
(6.7%) 

0.663 
(0.3%) 

m
=6

 

Random 
M=100 

0.187 
(1.6%) 

0.528 
(1.9%) 0.656 

0.209 
(6.3%) 

0.508 
(1.9%) 

0.657 
(1.4%) 

Random 
M=300 

0.184 0.538 0.538 
(18.0%) 

0.223 0.518 0.666 

Conditional 
M=100 

0.197 
(7.1%) 

0.498 
(7.4%) 

0.634 
(3.4%) 

0.155 
(30.5%) 

0.472 
(8.9%) 

0.631 
(5.3%) 
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MEDICAL (Decision Tree base classifier) 

 
Hamming 

loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m
=2

 
Random 
M=300 

0.011 0.731 0.814 0.647 0.859 0.795 

Random 
M=500 0.011 0.731 0.814 0.647 0.859 0.795 

Conditional 
M=300 0.011 0.731 0.814 0.647 0.859 0.795 

m
=3

 

Random 
M=300 

0.011 0.734 0.817 0.652 0.859 
(0.9%) 

0.799 

Random 
M=500 

0.011 
0.731 
(0.4%) 

0.814 
(0.4%) 

0.647 
(0.8%) 

0.859 
(0.9%) 

0.795 
(0.5%) 

Conditional 
M=300 

0.012 
(9.1%) 

0.677 
(7.8%) 

0.784 
(4.0%) 

0.597 
(4.5%) 

0.867 0.769 
(3.8%) 

m
=4

 

Random 
M=300 

0.011 
(10.0%) 

0.733 0.817 0.652 
0.867 
(0.2%) 

0.798 
(0.1%) 

Random 
M=500 0.010 

0.730 
(0.4%) 0.817 

0.650 
(0.3%) 

0.862 
(0.8%) 0.799 

Conditional 
M=300 

0.014 
(40.0%) 

0.567 
(22.6%) 

0.697 
(14.7%) 

0.489 
(25.0%) 

0.869 
0.687 

(14.0%) 

m
=5

 

Random 
M=300 

0.011 
(10.0%) 0.733 0.817 0.652 

0.867 
(0.2%) 

0.798 
(0.1%) 

Random 
M=500 

0.010 0.730 
(0.4%) 

0.817 0.650 
(0.3%) 

0.862 
(0.8%) 

0.799 

Conditional 
M=300 

0.014 
(40.0%) 

0.567 
(22.6%) 

0.697 
(14.7%) 

0.489 
(25.0%) 0.869 

0.687 
(14.0%) 

m
=6

 

Random 
M=300 

0.011 0.716 0.808 0.641 0.874 
(0.2%) 

0.794 

Random 
M=500 

0.011 
0.704 
(1.7%) 

0.801 
(0.9%) 

0.628 
(2.0%) 

0.876 
0.787 
(0.9%) 

Conditional 
M=300 

0.020 
(81.8%) 

0.297 
(58.5%) 

0.442 
(45.3%) 

0.245 
(61.8%) 

0.863 
(1.5%) 

0.441 
(44.5%) 
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ENRON (SVM base classifier) 

 
Hamming 

loss Accuracy F-score 
Subset-

accuracy Macro-F1 Micro-F1 

m
=2

 
Random 
M=300 

0.011 0.731 0.814 0.647 0.859 0.795 

Random 
M=500 0.011 0.731 0.814 0.647 0.859 0.795 

Conditional 
M=300 0.011 0.731 0.814 0.647 0.859 0.795 

m
=3

 

Random 
M=300 

0.011 0.734 0.817 0.652 0.859 
(0.9%) 

0.799 

Random 
M=500 

0.011 
0.731 
(0.4%) 

0.814 
(0.4%) 

0.647 
(0.8%) 

0.859 
(0.9%) 

0.795 
(0.5%) 

Conditional 
M=300 

0.012 
(9.1%) 

0.677 
(7.8%) 

0.784 
(4.0%) 

0.597 
(4.5%) 

0.867 0.769 
(3.8%) 

m
=4

 

Random 
M=300 

0.011 
(10.0%) 

0.733 0.817 0.652 
0.867 
(0.2%) 

0.798 
(0.1%) 

Random 
M=500 0.010 

0.730 
(0.4%) 0.817 

0.650 
(0.3%) 

0.862 
(0.8%) 0.799 

Conditional 
M=300 

0.014 
(40.0%) 

0.567 
(22.6%) 

0.697 
(14.7%) 

0.489 
(25.0%) 

0.869 
0.687 

(14.0%) 

m
=5

 

Random 
M=300 

0.011 
(10.0%) 0.733 0.817 0.652 

0.867 
(0.2%) 

0.798 
(0.1%) 

Random 
M=500 

0.010 0.730 
(0.4%) 

0.817 0.650 
(0.3%) 

0.862 
(0.8%) 

0.799 

Conditional 
M=300 

0.014 
(40.0%) 

0.567 
(22.6%) 

0.697 
(14.7%) 

0.489 
(25.0%) 0.869 

0.687 
(14.0%) 

m
=6

 

Random 
M=300 

0.011 0.716 0.808 0.641 0.874 
(0.2%) 

0.794 

Random 
M=500 

0.011 
0.704 
(1.7%) 

0.801 
(0.9%) 

0.628 
(2.0%) 

0.876 
0.787 
(0.9%) 

Conditional 
M=300 

0.020 
(81.8%) 

0.297 
(58.5%) 

0.442 
(45.3%) 

0.245 
(61.8%) 

0.863 
(1.5%) 

0.441 
(44.5%) 
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A.5 Mean rank diagrams based on the Friedman and Nemenyi tests  

 

Hamming loss 

 

Accuracy 

 
Precision 

 

Recall 
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F-score 

 

Subset Accuracy 

 
Macro-Precision 

 

Macro-Recall 

 
Macro-F1 

 
 

Friedman: 0.002 (Ha: Different) 
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Appendix B: Additional results for synthetic data study of Chapter 6 
 

This appendix contains the additional heatmaps referred to in Section 6.2.4 and Section 6.2.5.  

The local importance heatmaps in Appendix B.1 – Appendix B.6 are found as follows. For 

each of the 50  F  matrices found for a case in the synthetic study of Section 6.2, the six, five, 

four, three, two and one most important variables for 1 2 3 4 5, , , ,Y Y Y Y Y  and 6Y  respectively, are 

marked “relevant”. The  ,
th

l k  entry of a heatmap in Appendix B.1 – Appendix B.6 gives the 

proportion of time variable lX  is considered “relevant” for label kY  across the 50  local 

importance matrices of that case.  

The local importance heatmaps in Appendix B.7 – Appendix B.11 are found as follows. For 

each LDsplit MDA local importance matrix of a case obtained in the synthetic study of 

Section 6.2, the median importance value is found per label and all input variables that exceed 

this importance value per label are marked as “relevant” for the label. With this method of 

determining relevancy, in Appendix B.7 – Appendix B.11, the  ,
th

l k  entry of a heatmap gives 

the proportion of time variable lX  is considered relevant for label kY  across the 50  local 

importance matrices of that case. Note that Cases 17 32  are represented in Figure 6.5. in 

Section 6.2.5 and are therefore not given in this appendix. 
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B.1 Local heatmaps for Case 1 16  
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B.2 Local heatmaps for Case 17 32  
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B.3 Local heatmaps for Case 33 48  
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B.4 Local heatmaps for Case 49 64  
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B.5 Local heatmaps for Case 65 80  
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B.6 Local heatmaps for Case 81 96  
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B.7 Local heatmaps for Case 1 16  using a median threshold strategy 
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B.8 Local heatmaps for Case 33 48  using a median threshold strategy 
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B.9 Local heatmaps for Case 49 64  using a median threshold strategy 
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B.10 Local heatmaps for Case 65 80  using a median threshold strategy 

Case 65 

 

Case 66 

 

Case 67 

 

Case 68 

 
Case 69 

 

Case 70 

 

Case 71 

 

Case 72 

 
Case 73 

 

Case 74 

 

Case 75 

 

Case 76 

 
Case 77 

 

Case 78 

 

Case 79 

 

Case 80 

 
 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

281 
 

B.11 Local heatmaps for Case 81 96  using a median threshold strategy 
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Appendix C: R-functions for LDsplit as introduced in Chapter 3 
 

This appendix contains all written R-functions to fit LDsplit as introduced in Chapter 3 and to 

classify observations using a fitted LDsplit ensemble. For each subsection of the appendix a 

diagram is provided to summarise the interaction of the functions.  

Appendix C.1 contains all functions required to fit Random LDsplit as described in 

Section 3.2 when an SVM is used as base classifier. 

Appendix C.2 contains additional functions required to fit Random LDsplit as described in 

Section 3.2 when an SVM is used as base classifier and functions run parallel. 

Appendix C.3 contains additional functions required to fit Conditional LDsplit as described 

in Section 3.3.3 when an SVM is used as base classifier. 

Appendix C.4 contains additional functions required to fit Conditional LDsplit as described 

in Section 3.3.3 when an SVM is used as base classifier and functions run parallel. 

Appendix C.5 contains additional functions required to fit Random LDsplit as described in 

Section 3.2 when a decision tree is used as base classifier. 

Appendix C.6 contains additional functions required to fit Conditional LDsplit as described 

in Section 3.3.3 when a decision tree is used as base classifier. 

Appendix C.7 contains additional functions required to apply the scaling techniques as 

outlined in Section 3.4 when fitting Random LDsplit with an SVM base classifier. 

Appendix C.8 contains additional functions required to apply the scaling techniques as 

outlined in Section 3.4 when fitting Conditional LDsplit with an SVM base classifier.  

Appendix C.9 contains additional functions required to apply the scaling techniques as 

outlined in Section 3.4 when fitting Random LDsplit with a decision tree base classifier. 

Appendix C.10 contains additional functions required to apply the scaling techniques as 

outlined in Section 3.4 when fitting Conditional LDsplit with a decision tree base classifier.  
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C.1 Functions to fit Random LDsplit with an SVM base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pallcombs() 

Pfitmodelsvm() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletesvmpart2() 

Function to find all possible m-
permutations from a vector of 
1 to K elements. 

 
This function fits one tree-
structure. It makes use of 
the R-packages rlist and 
e1071 with svm(). 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Random LDsplit ensemble of M 
tree-structures (with SVM as base classifier). 

R-packages required: 
 rlist 
 combinat 
 e1071 

combn(x,m) 
From R-package combinat. 
Generates all combinations of 
the elements of x taken m times. 

Pperm() Generates all possible 
permutations of the (integer) 
elements of the input vector avec. 

Predictcompletegeneral() 

Dropobsgeneral() 

Makeapred() 

Function to determine which new 
observations are in which nodes 
of a fitted tree-structure. 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble. 
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Pallcombs: 
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Pperm: 
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Pfitmodelsvm: 
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Findnodeprob: 
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Findterminalpart2: 
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Findpathpart2: 
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Fillmissingnodespart2: 
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Fitcompletesvmpart2: 
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Dropobsgeneral: 
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Makeapred: 
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Predictcompletegeneral: 
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C.2 Functions to fit Random LDsplit with an SVM base classifier (written in parallel) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pallcombs() 

Pfitmodelsvm()  

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletesvmparallel() 

Function to find all possible m-
permutations from a vector of 
1 to K elements. 

 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Random LDsplit ensemble of M tree-
structures in parallel (with SVM as base classifier). 
Note: requires the written functions nuut1(), nuut2(), 
nuut3(), nuut4() and nuut5() to run. Also requires 
package doParallel. 

R-packages required: 
 rlist 
 combinat 
 e1071 
 doParallel 

combn(x,m) 
From R-package combinat. 
Generates all combinations of 
the elements of x taken m times. 

Pperm() Generates all possible 
permutations of the (integer) 
elements of the input vector avec. 

Predictcompletegeneral() 

Dropobsgeneral() 

Makeapred() 

Function to determine which new 
observations are in which nodes 
of a fitted tree-structure. 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble. 

This function fits one tree-
structure. It makes use of 
the R-packages rlist and 
e1071 with svm(). 
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Fitcompletesvmparallel: 
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nuut1, nuut2, nuut3, nuut4, nuut5: 
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C.3 Functions to fit Conditional LDsplit with an SVM base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conditionalorder() 

Pfitmodelsvm() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletesvmpart2order() 

Function to find the collection of 
label orders using the conditional 
entropy method of Jun et al. (2019). 
Note: Uses function condentropy() 
from package infotheo. 

This function fits one tree-
structure. It makes use of 
the R-packages rlist and 
e1071 with svm(). 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Conditional LDsplit ensemble of M 
tree-structures (with SVM as base classifier). 

R-packages required: 
 rlist 
 combinat 
 e1071 
 infotheo 

combn(x,m) 
From R-package combinat. 
Generates all combinations of 
the elements of x taken m times. 

Dropobsgeneral() 

Makeapred() 

Function to determine which new 
observations are in which nodes 
of a fitted tree-structure. 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble. 

Predictcompletegeneral() 
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conditionalorder(): 
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Fitcompletesvmpart2order: 
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C.4 Functions to fit Conditional LDsplit with an SVM base classifier (written in 

parallel) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pfitmodelsvm()  

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletesvmparallelorder() 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Conditional LDsplit ensemble of M tree-
structures in parallel (with SVM as base classifier). 
Note: requires the written functions nuut1(), nuut2(), 
nuut3(), nuut4() and nuut5() to run. Also requires 
package doParallel. 

R-packages required: 
 rlist 
 combinat 
 e1071 
 doParallel 
 infotheo 

Predictcompletegeneral() 

Dropobsgeneral() 

Makeapred() 

Function to determine which new 
observations are in which nodes 
of a fitted tree-structure. 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble. 

This function fits one tree-
structure. It makes use of 
the R-packages rlist and 
e1071 with svm(). 

combn(x,m) 
From R-package combinat. 
Generates all combinations of 
the elements of x taken m times. 

conditionalorder() 

Function to find the collection of 
label orders using the conditional 
entropy method of Jun et al. (2019). 
Note: Uses function condentropy() 
from package infotheo. 
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Fitcompletesvmparallelorder: 
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C.5 Functions to fit Random LDsplit with a decision tree base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pallcombs() 

Pfitmodeltree() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletetree() 

Function to find all possible m-
permutations from a vector of 
1 to K elements. 

 
This function fits one tree-
structure. It makes use of the 
R-packages rlist and rpart. 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Random LDsplit ensemble of M tree-
structures (with decision tree as base classifier). 

R-packages required: 
 rlist 
 combinat 
 e1071 
 rpart 

combn(x,m) 
From R-package combinat. 
Generates all combinations of 
the elements of x taken m times. 

Pperm() Generates all possible 
permutations of the (integer) 
elements of the input vector avec. 

Predictcompletegeneraltree() 

Dropobsgeneraltree() 

Makeapred() 

Function to determine which new 
observations are in which nodes of a 
fitted tree-structure when a decision 
tree is used as base classifier 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble when a decision tree is used as 
base classifier. 

Stellenbosch University https://scholar.sun.ac.za



312 
 

Pfitmodeltree: 
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Fitcompletetree: 
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Dropobsgeneraltree: 
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Predictcompletegeneraltree: 
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C.6 Functions to fit Conditional LDsplit with a decision tree base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conditionalorder() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletetreepart2order() 

Function to find the collection of 
label orders using the conditional 
entropy method of Jun et al. (2019). 
Note: Uses function condentropy() 
from package infotheo. 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Conditional LDsplit ensemble of M tree-
structures (with decision tree as base classifier). 

combn(x,m) 
From R-package combinat. 
Generates all combinations of 
the elements of x taken m times. 

Makeapred() 
Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Pfitmodeltree() 
This function fits one tree-
structure. It makes use of the 
R-packages rlist and rpart. 

R-packages required: 
 rlist 
 combinat 
 e1071 
 rpart 
 infotheo 

Predictcompletegeneraltree() 

Dropobsgeneraltree() 

Function to determine which new 
observations are in which nodes of a 
fitted tree-structure when a decision 
tree is used as base classifier 

Function finds classifications of observations based 
on LDsplit ensemble when a decision tree is used as 
base classifier. 
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Fitcompletetreepart2order: 
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C.7 Functions to apply scaling techniques when fitting Random LDsplit with an 

SVM base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

someperms2.0() 

Pfitmodelsvm() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletesvmpart2someperms() 

This function fits one tree-
structure. It makes use of 
the R-packages rlist and 
e1071 with svm(). 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Random LDsplit ensemble of at least 
Mmin tree-structures (with SVM as base classifier). 

R-packages required: 
 rlist 
 combinat 
 e1071 
 FRACTION 

Dropobsgeneral() 

Makeapred() 

Function to determine which new 
observations are in which nodes 
of a fitted tree-structure. 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble. 

Predictcompletegeneral() 

 Function to find (at least) Mmin m-permutations 
without first generating all possible 
permutations of selecting m elements from K 
elements. 

 Also checks that all labels are represented. 
(Adds permutations if needed.) 

 With argument “vec”, vector is given of labels 
not to split on first. 

 Uses function is.wholenumber() from R-package 
FRACTION. 
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someperms2.0: 
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Fitcompletesvmpart2someperms: 
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C.8 Functions to apply scaling techniques when fitting Conditional LDsplit with an 

SVM base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

someperms() 

Pfitmodelsvm() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 
Fitcompletesvmpart2ordersomep() 

This function fits one tree-
structure. It makes use of 
the R-packages rlist and 
e1071 with svm(). 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Conditional LDsplit ensemble of at least 
Mmin tree-structures (with SVM as base classifier). 

R-packages required: 
 rlist 
 combinat 
 e1071 
 FRACTION 
 infotheo 

Dropobsgeneral() 

Makeapred() 

Function to determine which new 
observations are in which nodes 
of a fitted tree-structure. 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble. 

Predictcompletegeneral() 

conditionalorder2.0() 
swaporders() 

Function uses output from 
conditionalorder2.0 to swap 
label with second label in 
ordering if the first label is 
one of the labels not allowed 
to be split on first. 

 Function to find (at least) Mmin label orders of size 
m, without first generating all possible ways of 
choosing m elements from K elements. 

 Also checks that all labels are represented. (Adds 
orders if needed.) 

 Uses function is.wholenumber() from R-package 
FRACTION. 

 Note: different to function someperms2.0, this 
function does not include an argument “vec” that 
gives the labels not to split on first. The function 
swaporders() is used for this purpose. 

 Function forms the collection 
of label orders using the 
conditional entropy method of 
Jun et al. (2019). 

 Note: function applies function 
someperms() as well as the 
function condentropy() from 
package infotheo. 
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someperms: 
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conditionalorder2.0: 
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swaporders: 
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Fitcompletesvmpart2ordersomep: 
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C.9 Functions to apply scaling techniques when fitting Random LDsplit with a 

decision tree base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

someperms2.0() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletetreepart2someperms() 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Random LDsplit ensemble of at least Mmin 
tree-structures (with decision tree as base classifier). 

R-packages required: 
 rlist 
 combinat 
 e1071 
 FRACTION 
 rpart 

 Function to find (at least) Mmin m-permutations 
without first generating all possible 
permutations of selecting m elements from K 
elements. 

 Also checks that all labels are represented. 
(Adds permutations if needed.) 

 With argument “vec”, vector is given of labels 
not to split on first. 

 Uses function is.wholenumber() from R-package 
FRACTION. 

Pfitmodeltree() 

This function fits one tree-
structure. It makes use of the 
R-packages rlist and rpart. 

Makeapred() 
Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Predictcompletegeneraltree() 

Dropobsgeneraltree() 

Function to determine which new 
observations are in which nodes of a 
fitted tree-structure when a decision 
tree is used as base classifier 

Function finds classifications of observations based 
on LDsplit ensemble when a decision tree is used as 
base classifier. 

Stellenbosch University https://scholar.sun.ac.za



336 
 

Fitcompletetreepart2someperms: 
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C.10 Functions to apply scaling techniques when fitting Conditional LDsplit with a 

decision tree base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 
Fitcompletetreepart2ordersomep() 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Conditional LDsplit ensemble of at least Mmin 
tree-structures (with a decision tree as base classifier). 

R-packages required: 
 rlist 
 combinat 
 e1071 
 FRACTION 
 infotheo 
 rpart 

conditionalorder2.0() 
swaporders() 

Function uses output from 
conditionalorder2.0 to swap 
label with second label in 
ordering if the first label is 
one of the labels not allowed 
to be split on first. 

 Function to find (at least) Mmin label orders of size 
m, without first generating all possible ways of 
choosing m elements from K elements. 

 Also checks that all labels are represented. (Adds 
orders if needed.) 

 Uses function is.wholenumber() from R-package 
FRACTION. 

 Note: different to function someperms2.0, this 
function does not include an argument “vec” that 
gives the labels not to split on first. The function 
swaporders() is used for this purpose. 

 Function forms the collection 
of label orders using the 
conditional entropy method of 
Jun et al. (2019). 

 Note: function applies function 
someperms() as well as the 
function condentropy() from 
package infotheo. 

someperms() 

Makeapred() 
Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Predictcompletegeneraltree() 

Dropobsgeneraltree() 

Function to determine which new 
observations are in which nodes of a 
fitted tree-structure when a decision 
tree is used as base classifier 

Function finds classifications of observations based 
on LDsplit ensemble when a decision tree is used as 
base classifier. 

Pfitmodeltree() 
This function fits one tree-
structure. It makes use of the 
R-packages rlist and rpart. 
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Fitcompletetreepart2ordersomep: 
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Appendix D: R-functions for LDsplit MDA introduced in Chapter 5 
 

This appendix contains all written R-functions to fit LDsplit MDA as introduced in Chapter 5. 

Appendix D.1 contains two functions required to apply the additional step of subsampling 

 IBprop N  training observations before fitting each of , 1,..., ,jT j M  tree-structures of the 

Random LDsplit ensemble (Section 5.5.1). To summarise the interaction between the 

functions, a diagram similar to those provided in Appendix C is given. 

Appendix D.2 contains the four functions required to obtain the global and local LDsplit MDA 

input variable rankings as described in Section 5.5.1. 
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D.1 Functions to fit Random LDsplit with an SVM base classifier when the adaptation 

for LDsplit MDA is implemented 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pallcombs() 

Pfitmodelsvmsample() 

Findnodeprob() 

Findterminalpart2() 

Fillmissingnodespart2() 

Findpathpart2() 

Fitcompletesvmsample() 

Function to find all possible m-
permutations from a vector of 
1 to K elements. 

 
This function fits one tree-structure by 
sampling a proportion of training 
observations from the full set. It makes 
use of the R packages rlist and e1071. 

Function to find the posterior probabilities 
of the labels associated with each node. 

Function finds the terminal nodes 
of a tree-structure.  

Function that augments output from 
Findnodeprob() to include posterior 
probabilities of labels when a terminal 
node occurs before Level m. 

Function finds all the possible 
paths to all the terminal nodes, 
given the number of levels of 
the tree.  

Function fits Random LDsplit ensemble of M tree-
structures (with SVM as base classifier) based on 
the IB set of each tree. Also provides the OOB set 
of each tree-structure as output. 

Pperm() Generates all possible 
permutations of the (integer) 
elements of the input vector avec. 

R packages required: 
 rlist 
 combinat 
 e1071 

combn(x,m) 
From R package combinat. 
Generates all combinations of 
the elements of x taken m times. 

Predictcompletegeneral() 

Dropobsgeneral() 

Makeapred() 

Function to determine which new 
observations are in which nodes 
of a fitted tree-structure. 

Based on a fitted tree-structure, function 
finds posterior probability for each label for 
each observation to be classified. 

Function finds classifications of observations based 
on LDsplit ensemble. 
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Pfitmodelsvmsample: 
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Fitcompletesvmsample: 
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D.2 Functions to obtain global and local LDsplit MDA input variable rankings 

permimportance: 
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Pmeasures: 

 

Stellenbosch University https://scholar.sun.ac.za



350 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



351 
 

calculateGLOBALimportance: 
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calculateLOCALimportance: 
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