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ABSTRACT 

 

The young internodes of sugarcane are ideal targets for altering metabolism, through genetic 

manipulation, to potentially control known fungal diseases such as Smut or to increase sucrose 

yields in these regions that are currently being discarded.  At present, no regulatory sequences 

that specifically drive transgene expression in young developing sugarcane tissues are available.  

The objective of this study was therefore to isolate and evaluate such a sequence.  The promoter 

targeted for isolation in this study regulates the expression of UDP-glucose dehydrogenase (EC 

1.1.1.22), an enzyme which catalyses the oxidation of UDP-glucose to UDP-glucuronic acid, a 

precursor for structural polysaccharides which are incorporated into the developing cell wall.  A 

strong correlation between the expression of UDP-glucose dehydrogenase and a demand for 

structural polysaccharides in developing tissues could therefore be expected.    

 

The first part of this study addressed the general practicality of promoter isolation from 

sugarcane, a complex polyploid.  A gene encoding UDP-glucose dehydrogenase was isolated 

from a sugarcane genomic library.  The gene contains an open reading frame (ORF) of 1443 bp, 

encoding 480 amino acids and one large intron (973 bp), located in the 5’-UTR.  The derived 

amino acid sequence showed 88 – 98% identity with UDP-glucose dehydrogenase from other 

plant species, and contained highly conserved amino acid motifs required for cofactor binding 

and catalytic activity.  Southern blot analysis indicates a low copy number for UDP-glucose 

dehydrogenase in sugarcane.  The possible expression of multiple gene copies or alleles of this 

gene was investigated through comparison of sequences amplified from cDNA prepared from 

different tissues.  Although five Single Nucleotide Polymorphisms (SNP) and one small-scale 

insertion/deletion (INDEL) were identified in the aligned sequences, hundred percent identity of 

the derived amino acid sequences suggested the expression of different alleles of the same gene 

rather than expression of multiple copies.  The finding that multiple alleles are expressed to 

provide the required level of a specific enzyme, rather than the increased expression of one 

dominant allele, is encouraging for sugarcane gene and promoter isolation. 

 

In the second part of the study the suitability of UDP-glucose dehydrogenase as a target for the 

isolation of a developmentally regulated promoter was investigated.  The contribution of UDP-
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glucose dehydrogenase to pentan synthesis, as well as the expression pattern and subcellular 

localisation of the enzyme in mature sugarcane plants was studied at the tissue and cellular level. 

Radiolabelling with positionally labelled glucose was used to investigate the relative 

contributions of glycolysis, the oxidative pentose phosphate pathway and pentan synthesis to 

glucose catabolism.  Significantly (P=0.05) more radiolabel was released as CO2 from [6-14C]-

glucose than [1-14C]-glucose in younger internodes 3, 4 and 5, demonstrating a significant 

contribution of UDP-glucose dehydrogenase to glucose oxidation in the younger internodes.  In 

addition, there was significantly (P=0.05) more radiolabel in the cell wall (fiber) component 

when the tissue was labelled with [1-14C]-glucose rather than [6-14C]-glucose. This also 

demonstrates a selective decarboxylation of glucose in position 6 prior to incorporation into the 

cell wall and is consistent with a major role for UDP-glucose dehydrogenase in cell wall 

synthesis in the younger internodes.   

 

Expression analysis showed high levels of expression of both the UDP-glucose dehydrogenase 

transcript and protein in the leafroll, roots and young internodes.  In situ hybridisation showed 

that the UDP-glucose dehydrogenase transcript is present in virtually all cell types in the 

sugarcane internode, while immunolocalisation showed that the abundance of the protein 

declined in all cell types as maturity increased.  Results obtained confirmed that this enzyme 

plays an important role in the provision of hemicellulose precursors in most developing tissues of 

the sugarcane plant, indicating that UDP-glucose dehydrogenase was indeed a suitable target for 

promoter isolation.   

 

Lastly, the promoter region and first intron, located in the 5’-untranslated region (UTR) of this 

gene, were isolated and subsequently fused to the GUS reporter gene for transient expression 

analysis and plant transformation.  Transient expression analysis showed that the presence of the 

intron was essential for strong GUS expression. Analysis of stably transformed transgenic 

sugarcane plants, evaluated in a green house trial, showed that the isolated promoter is able to 

drive GUS expression in a tissue specific manner under these conditions.   
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OPSOMMING 

 

Die jong internodes van suikerriet is ideale teikens vir genetiese manipulering om sodoende 

bekende siektes soos suikerriet brand, te beheer, of om die suikerinhoud in hierdie weefsels wat 

tans weggegooi word, te verhoog.  Daar is geen regulerende elemente of promotors, wat 

transgeenuitdrukking in jong ontwikkelende suikerrietweefsel kan aandryf, huidiglik beskikbaar 

nie.  Die doel van hierdie studie was dus om so ‘n volgorde te isoleer en te evalueer.  Die 

promotor wat  in hierdie studie geteiken is, reguleer die uitdrukking van UDP-glukose 

dehidrogenase (EC 1.1.1.22), ‘n ensiem wat die oksidering van UDP-glukose na UDP-

glukoroonsuur kataliseer.  UDP-glukoroonsuur is ‘n voorloper vir strukturele polisakkariede wat 

in die ontwikkelende selwand geïnkorporeer word.  ‘n Sterk korrelasie tussen die uitdrukking van 

UDP-glukose dehidrogenase en ‘n behoefte aan strukturele polisakkariede in ontwikkelende 

weefsels kan dus verwag word.    

 

Die eerste gedeelte van hierdie studie ondersoek die praktiese aspekte verbonde aan 

promotorisolering uit suikerriet, ‘n komplekse poliploïed.  ‘n Geen wat kodeer vir UDP-glukose 

dehidrogenase is uit ‘n suikerriet genomiese biblioteek geïsoleer.  Hierdie geen bevat ‘n oop 

leesraam van 1443 bp, wat vir 480 aminosure kodeer, en een groot intron (973 bp) wat in die 5’-

ongetransleerde gebied geleë is.  Die afgeleide aminosuurvolgorde is 88 – 98% soortgelyk aan 

UDP-glukose dehidrogenases van ander plantspesies en bevat hoogs gekonserveerde motiewe 

wat vir kofaktorbinding en katalitiese aktiwiteit vereis word.  ‘n Southern-hibridiseringsanalise 

het ‘n lae kopiegetal vir UDP-glukose dehidrogenase in suikerriet aangedui.  Die moontlike 

uitdrukking van veelvoudige kopieë of allele van hierdie geen, is ondersoek deur volgordes wat 

geamplifiseer is uit kDNS afkomstig van verskillende weefsels, te vergelyk.  Alhoewel daar vyf 

enkel-nukleotied polimorfismes en een kleinskaalse invoeging/delesie geïdentifiseer is, was die 

afgeleide aminosuurvolgorde van die geamplifiseerde fragmente identies.  Die uitdrukking van 

verskillende allele en nie verskillende kopiëe van die geen, is dus hiermee bevestig.  Die 

bevinding dat vereisde ensiemvlakke eerder dmv die uitdrukking van veelvoudige allele as deur 

die verhoogde uitdrukking van ‘n enkele alleel bereik word, is bemoedigend vir die isolering van 

promotors en geenvolgordes uit suikerriet.   
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In die tweede gedeelte van die studie word die geskiktheid van UDP-glukose dehidrogenase as 

teiken vir die isolering van ‘n jong weefselspesifieke promotor, ondersoek.  Die bydrae van UDP-

glukose dehidrogenase tot pentaansintese sowel as die uitdrukkingspatroon en subsellulêre 

lokalisering van die ensiem in volwasse suikerrietplante, is bepaal.  Glukose wat radioaktief 

gemerk is in verskillende posisies, is gebruik om die relatiewe bydraes van glikolise, die 

oksidatiewe pentosefosfaatweg en pentaansintese tot die katabolisme van glukose te bepaal.  In 

die jonger internodes, 3, 4 en 5, is beduidend (P=0.05) meer radioaktiwiteit vanaf [6-14C]-glukose 

as [1-14C]-glukose in CO2 vrygestel, wat op ‘n aansienlike bydrae van UDP-glukose 

dehidrogenase tot die oksidering van glukose in jonger internodes dui.  Daar was ook beduidend 

(P=0.05) meer radioaktiwiteit in die selwandkomponent (vesel) waar die weefsel eerder met [1-
14C]-glukose as [6-14C]-glukose gemerk is.  Daar vind dus ‘n selektiewe dekarboksilering van 

glukose in posisie 6 voor inkorporering in die selwand plaas, wat op ‘n belangrike rol vir UDP-

glukose dehidrogenase in selwandsintese in jong internodes dui.   

 

Hoë uitdrukkingsvlakke van beide die UDP-glukose dehidrogenase geentranskrip en -proteïen is 

dmv uitdrukkingsanalises in die blaarrol, wortels en jong internodes bevestig.  In situ-

hibridisering het gewys dat die UDP-glukose dehidrogenase transkrip in feitlik elke seltipe in die 

suikerriet internode teenwoordig is.  Immunolokalisering het verder aangedui dat die hoeveelheid 

proteïen met toenemende volwassenheid in alle seltipes afneem.  Hierdie resultate bevestig dat 

die UDP-glukose dehidrogenase ensiem ‘n belangrike rol in die verskaffing van voorlopers vir 

hemisellulose in meeste ontwikkelende weefsels van die suikerrietplant speel.  Dit beteken dat 

die promotor van hierdie geen ‘n geskikte teiken vir die doel van hierdie studie was.    

 

Laastens is die promotor en eerste intron van hierdie geen geïsoleer.  Promotoraktiwiteit is op 

beide tydelike sowel as stabiele vlakke geëvalueer deur van die GUS-verklikkergeen gebruik te 

maak.  Tydelike uitdrukkingsanalises het gewys dat sterk GUS-uitdrukking van die 

teenwoordigheid van die intron afhanklik was.  Analise van stabiel-getransformeerde 

transgeniese suikerrietplante het verder aangedui dat die geïsoleerde promotor onder 

glashuiskondisies, GUS-uitdrukking op ‘n weefselspesifieke manier kon reguleer.     



 viii

CONTENTS 

 

Declaration                     ii 

 

Acknowledgements                   iii 

 

Abstract                    iv 

 

Opsomming                    vi 

 

List of figures                   xii 

 

List of tables                  xiii 

 

CHAPTER 1 Introduction                   1 

 

CHAPTER 2 Literature Review                  6 

2.1 Introduction                   6  

2.2 Plant Transformation                   7 

2.2.1 Direct transformation                 7 

2.2.2 Indirect transformation                8 

2.2.3 Regulation of transgene expression               9 

2.3 Transformation of sugarcane               10 

2.3.1 Transformation methodology                                                                     10 

2.3.2 Availability of regulatory sequences                        11 

2.3.3 Promoter silencing in sugarcane             12 

2.4 The role of transcribed sequences in the regulation of gene expression                14 

2.4.1 The role of introns               15 

2.4.1.1 Intron-mediated enhancement             15 

2.4.1.2 Intron-mediated tissue specificity            15 

2.4.1.3  Conservation of introns within the 5’-untranslated region            16 



 ix

2.4.1.4 Intron mediated enhancement in monocotyledonous vs. 

dicotyledonous plants              17 

2.4.1.5 Features and mechanisms of intron-mediated enhancement          19 

2.5 UDP-glucose dehydrogenase               21 

2.5.1 Function of UDP-glucose dehydrogenase             21 

2.5.2 Expression of UDP-glucose dehydrogenase            21 

2.6 References                 24 

 

CHAPTER 3 Molecular Cloning and Characterisation of a Gene Encoding    38 

 UDP-Glucose Dehydrogenase in Sugarcane 

3.1 Abstract                 38 

3.2 Introduction                 39 

3.3 Materials and methods               41 

3.3.1 Screening of genomic library              41 

3.3.2 Characterisation of positive genomic library clones           42 

3.3.3 Isolation of the sugarcane UDP-glucose dehydrogenase gene         43 

3.3.4 Southern blot analysis               44 

3.3.5 Isolation of RNA               45 

3.3.6 Preparation of cDNA               45 

3.3.7 Amplification of UDP-glucose dehydrogenase from cDNA from              45 

different tissues 

3.3.8 Analysis of UDP-glucose dehydrogenase from cDNA from different       46 

tissues 

3.4 Results   47 

3.4.1 Isolation of the sugarcane UDP-glucose dehydrogenase gene                    47 

3.4.2 Southern blot analysis   48 

3.4.3 Analysis of UDP-glucose dehydrogenase from cDNA prepared from       48 

different tissues 

3.5 Discussion   53 

3.6 References   57 

 



 x

CHAPTER 4 Tissue Specific Expression of UDP-Glucose Dehydrogenase in Sugarcane    61     

4.1 Abstract   61 

4.2 Introduction   62 

4.3 Materials and methods   64 

4.3.1 Plant material   64 

4.3.2 14C Labelling studies   64 

4.3.3 Production of antibody   65 

4.3.4 Enzyme extraction   65 

4.3.5 Immuno-inactivation of UDP-glucose dehydrogenase activity   66 

4.3.6 Protein extraction and protein blot analysis   66 

4.3.7 RNA extraction   67 

4.3.8 Northern blot analysis   68 

4.3.9 In situ hybridisation   69 

4.3.10 Immunohistochemistry   70 

4.4 Results   71 

4.4.1 Carbon partitioning of [1-14C] glucose and [6-14C] glucose   71 

4.4.2 Immuno-inactivation of UDP-glucose dehydrogenase activity   71 

4.4.3 Expression analysis of sugarcane UDP-glucose dehydrogenase   72 

4.4.4 Cellular localisation of UDP-glucose dehydrogenase   73 

4.5 Discussion   76 

4.6 Acknowledgements   78 

4.7 References   78 

 

CHAPTER 5 Isolation and Evaluation of a Developmentally Regulated Sugarcane            81 

Promoter 

5.1 Abstract   81 

5.2 Introduction   81 

Materials and methods   83 

5.2.1 Isolation of UDP-glucose dehydrogenase promoter   83 

5.2.2 Construction of UDP-glucose dehydrogenase promoter and chimeric       84 

GUS reporter gene constructs 



 xi

5.2.3 Particle bombardment of 5 day old maize coleoptiles for transient            85 

expression analysis 

5.2.4 Sugarcane tissue culture                                                                              86  

5.2.5 Sugarcane transformation                                                                            86 

5.2.6 Analysis of GUS activity                                                                             87 

5.2.7 PCR amplification and Southern blot analysis of transgenic plants            87 

5.2.8 Results                                                                                                          88 

5.2.9 Isolation and characterisation of the sugarcane UDP-glucose                     88    

dehydrogenase promoter 

5.2.10 Transient expression analysis   90 

5.2.11 Sugarcane transformation   90 

5.2.12 Southern blot analysis   94 

5.3 Discussion   95 

5.4 References   99 

 

CHAPTER 6 Conclusions 105 

 

Appendix 1  Nucleotide sequence of the UDP-glucose dehydrogenase promoter, intron      I  

pp and 5’-UTR 

 

Appendix 2 Schematic representation of reporter gene constructs    II 

 



 xii

LIST OF FIGURES 

 

Figure 3.1 Nucleotide and derived amino acid sequence of a sugarcane gene encoding        50 

UDP-glucose dehydrogenase 

Figure 3.2 Southern analysis of sugarcane and sorghum UDP-glucose dehydrogenase         50 

Figure 4.1 Immuno-removal of UDP-glucose dehydrogenase                                                72 

Figure 4.2 Expression of UDP-glucose dehydrogenase in sugarcane tissues                         74 

Figure 4.3 Investigation of cellular location of UDP-glucose dehydrogenase transcripts      74   

by in situ hybridisation 

Figure 4.4 Distribution of UDP-glucose dehydrogenase, detected by antibody binding,       75 

on sections of sugarcane culm 

Figure 5.1   Graphic representation of a Not I Xba I fragment containing the sugarcane         83 

UDP-glucose dehydrogenase promoter and gene  

Figure 5.2   Nucleotide sequence around the transcription initiation site of the sugarcane      89 

UDP-glucose dehydrogenase gene 

Figure 5.3   Transient expression analysis following particle bombardment of 5 day    

90 

  old maize coleoptiles    

Figure 5.4   Confirmation of the presence of the promoter, GUS reporter gene and nptII        91  

selectable marker gene by PCR amplification from genomic DNA isolated 

transgenic sugarcane plants 

Figure 5.5    Histochemical assays of GUS expression in transgenic sugarcane transformed   93 

with pBGUS UGDip 

Figure 5.6   Southern blot analysis of transgenic sugarcane plants   

94 



 xiii

LIST OF TABLES 

 

Table 3.1 Homology of UDP-glucose dehydrogenase from sugarcane to  other                   47 

 plant species 

Table 3.2 Sequence polymorphisms inside the sugarcane UDP-glucose dehydrogenase      52 

gene 

Table 4.1 Incorporation of 14C in CO2 production and the cell wall (fibre) component        71 



 1

CHAPTER 1 

 

INTRODUCTION 
 

The South African sugar industry is one of the world’s leading producers of high quality sugar.  

Current commercial sugarcane varieties are obtained through a multi-stage selection scheme over 

a period of approximately 10 years to identify a few elite clones in a very large group of 

seedlings.  Some elite clones have to be abandoned because of a single fault such as disease 

susceptibility.  Genetic transformation can correct single faults in elite cultivars, possibly by the 

insertion of a single gene to complement, rather than replace traditional breeding methods.  It can 

also provide a better understanding of the role of specific sugarcane genes in complex processes 

such as sugar accumulation, and can introduce valuable novel genes for new properties in 

sugarcane.   

 

Although the transformation of sugarcane is well established (Birch and Franks, 1991), a major 

obstacle limiting progress in this area is the availability of promoters.  An absolute prerequisite 

for the use of genetic engineering for sugarcane varietal improvement is the stable and 

predictable expression of introduced genes.  Very simply, gene expression is controlled by 

promoter sequences, generally located immediately upstream of the coding region, which 

determine the strength, developmental timing and tissue specificity of expression of the adjacent 

coding region (a detailed discussion of the regulation of gene expression is presented in Chapter 

2).  The shortage of such promoter sequences, as well as patent considerations (Birch, 1997), has 

made it necessary to isolate novel promoters that could be used for sugarcane transformation.    

 

Several promoters that direct near-constitutive expression in monocotyledonous plants have been 

isolated.  These include promoters isolated from plants, such as the maize polyubiquitin (ubi-1) 

promoter (Christensen and Quail, 1996) and the rice actin (Act1) promoter (McElroy et al., 

1990), and viral promoters such as the cauliflower mosaic virus (CaMV) 35S promoter (Benfey 

et al., 1990; Terada and Shimamoto, 1990), sugarcane bacilliform badnavirus promoter (Tzafrir 

et al., 1998), and promoters isolated from the banana streak badnavirus (Schenk et al., 2001).  

Though constitutive expression of a transgene may sometimes be required, targeting the 
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expression to a specific tissue where the action of the transgene is required will greatly decrease 

the metabolic load resulting from transformation.   

 

When sugarcane is harvested, the top internodes are traditionally discarded due to low juice 

purity.  Increasing the sucrose content in these internodes, thereby providing additional tissue 

from which sucrose can be extracted, could result in an increased sucrose yield per cane.  

Increasing sucrose yields is one of the main goals of sugarcane breeders.  The top of the cane is 

also the point of infection for Smut, the most important fungal disease of sugarcane in South 

Africa.  Genetic manipulation has the potential to alter metabolism in these tissues to increase the 

sucrose yield, or to control Smut, possibly through the insertion of a single gene.   The main aim 

of this study was therefore to provide a promoter, which could be used to regulate the expression 

of a transgene exclusively in developing sugarcane tissues. 

 

One possible approach to obtain promoters which direct specific levels and distribution of 

expression is to identify endogenous genes already expressed in the desired pattern in the 

organism targeted for transformation, in this instance, sugarcane.  The corresponding promoter 

can then be isolated from the genome of the target organism.  Following this approach, the 

promoter of a gene encoding uridine 5-diphosphate-glucose dehydrogenase (UDP-glucose 

dehydrogenase) was selected as a potential target for promoter isolation in this study, based on 

what is known about the function of the enzyme that it encodes. 

 

UDP-glucose dehydrogenase (EC 1.1.1.22) catalyses the oxidation of UDP-glucose to UDP-

glucuronic acid (Nelsestuen and Kirkwood, 1971), a precursor for sugar nucleotides which are 

incorporated into pectin and hemicelluloses.  Both pectin and hemicellulose are key components 

of cell walls, providing a matrix that strengthens the cell wall structure (Gibeaut, 2000).  As 

UDP-glucose dehydrogenase is required for growth and development, the promoter of this gene 

could possibly be used to drive transgene expression in young developing tissues.   

 

Promoter isolation is technically difficult in most species.  In sugarcane this process is further 

complicated by a highly polyploid genome.  Modern sugarcane cultivars (Saccharum spp. 

Hybrids) appear to have a basic chromosome number of 10 and 2n chromosome numbers of 
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between 100 and 130 (Butterfield et al., 2001).  This implies that for each single copy of a gene, 

up to ten alleles can be present.  It is not currently known, however, whether all these alleles are 

expressed.  It is possible, even likely, that some of the gene copies have accumulated sequence 

changes inhibiting their expression.  As a result the sugarcane genome may contain many 

sequences that represent silent copies of a specific gene, adjacent to non-functional promoters.  

The first part of this study addressed this potential problem by investigating the possible 

expression of multiple alleles of the gene targeted for promoter isolation, and thereby the general 

practicality of promoter isolation from sugarcane and other polyploids.  Chapter 3 describes the 

isolation of a gene encoding UDP-glucose dehydrogenase from a sugarcane genomic library, and 

provides evidence for the simultaneous expression of distinct alleles of this gene in a single 

sugarcane plant.  The finding that multiple alleles are expressed to provide the required level of a 

specific enzyme, rather than the increased expression of one dominant allele, is encouraging for 

sugarcane gene and promoter isolation.   

 

The next part of the study investigated the suitability of UDP-glucose dehydrogenase as a target 

for the isolation of a developmentally regulated promoter.  The distribution of the target gene in 

different tissue types, and different cell-types within a specific tissue will determine the 

usefulness of the promoter for transgene expression.  A strong correlation between the expression 

of UDP-glucose dehydrogenase and a demand for structural polysaccharides in tissues that are 

actively synthesising cell walls, has been reported for several plant species (Tenhaken and 

Thulke, 1996; Seitz et al., 2000; Johansson et al., 2002).  UDP-glucose dehydrogenase has 

previously been purified from rapidly expanding culm tissues of sugarcane (Turner and Botha, 

2002).  Although the kinetic properties of the sugarcane enzyme were studied, no information is 

currently available about the distribution of the enzyme in sugarcane.  It was previously shown 

that significant levels of UDP-glucose are present in the sugarcane culm (Whittaker and Botha 

1997).  However, to date, most carbon partitioning research in sugarcane has focussed on the 

accumulation of sucrose and partitioning within the sugar pool, and little attention has been paid 

to the allocation of carbon to structural components such as the cell wall.  In Chapter 4 the role of 

UDP-glucose dehydrogenase in pentan synthesis in younger and more mature internodes was 

investigated.  In addition, the distribution of the enzyme in different cell types present in the 

sugarcane internode was examined by in situ hybridisation, while immunolocalisation in 
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internodal sections from different developmental stages was used to investigate the abundance of 

the protein as tissue maturity increases.  Results obtained in this part of the study indicated that 

UDP-glucose dehydrogenase was indeed a suitable target for promoter isolation.   
 

Having found that promoter isolation from a complex polyploid such as sugarcane is viable, and 

that the proposed target gene was expressed in the desired pattern in sugarcane, the next part of 

the study involved the isolation of the promoter sequence adjacent to the isolated UDP-glucose 

dehydrogenase coding region.  Chapter 5 describes the characterisation of this promoter.  The 

isolated sequence was evaluated for its ability to drive transgene expression in a transient system 

and stably transformed sugarcane.  It was demonstrated that an active promoter, able to drive 

highly tissue specific expression in transgenic sugarcane, was isolated.  Also, the sequence of the 

promoter was investigated through computer analysis for possible clues relating to the regulation 

of the expression of UDP-glucose dehydrogenase.  As this study presents the first demonstrated 

isolation of a developmentally regulated promoter from sugarcane, valuable knowledge about the 

regulation of gene expression in sugarcane can be gained. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1 INTRODUCTION 
 

The successful transformation of any organism is dependent on reliable methodology for the 

introduction of a foreign gene, and the predictable and stable expression of such a gene.  This 

chapter will provide a short overview of plant transformation, with a specific focus on progress 

made towards the successful transformation of sugarcane.  Transformation strategies, as well as 

the availability of regulatory sequences will be briefly discussed.   

 

In addition to regulatory sequences, transcribed sequences, including the 5’- and 3’-untranslated 

region, introns and the coding region, also appear to play an important role in the regulation of 

gene expression, particularly in monocotyledonous plant species.  The occurrence and importance 

of these sequences, and specifically the role of introns in the regulation of gene expression will be 

discussed in this chapter.    

 

The main aim of this study was to identify, isolate and characterise a promoter that could be used 

to regulate the expression of a foreign gene in developing sugarcane tissues.  The approach 

followed was firstly to identify an endogenous gene expressed in the desired pattern, and then to 

isolate the corresponding promoter from the sugarcane genome.  The promoter of a gene 

encoding UDP-glucose dehydrogenase was selected for isolation, based on what is known about 

the function of the enzyme it encodes.  UDP-glucose dehydrogenase catalyses the oxidation of 

UDP-glucose to UDP-glucuronic acid, a precursor for structural polysaccharides which are 

incorporated into the developing cell wall.  This enzyme was previously purified from rapidly 

expanding culm tissues of sugarcane (Turner and Botha, 2002).  The promoter of this gene 

provides a possible candidate for a regulatory sequence specific for young developing tissues.  

Some background information about this enzyme is therefore also included in this chapter.     
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2.2 PLANT TRANSFORMATION   
 

Plant transformation is an essential research tool in plant biology (Stitt and Sonnewald, 1995) and 

a practical tool for cultivar improvement (Birch, 1997; Newell, 2000; Mendoza, 2002).  The 

requirements for the successful transformation of any organism include dependable methodology 

for the introduction of a foreign gene, and the predictable and stable expression of such a gene.       

 

2.2.1 Direct transformation  

Many methods have been devised to introduce DNA into plant cells.  There are two types of gene 

transfer systems: direct gene transfer in which naked DNA is introduced into cells via any 

physical and/or chemical treatment, and indirect gene transfer in which another organism is used 

as a vector to effect the transfer and/or integration.  Several direct gene transfer methods have 

been developed to transform plant species. The most popular of these seems to be microprojectile 

bombardment, which involves high velocity acceleration of microprojectiles carrying foreign 

DNA, penetration through the cell wall and membrane by the microprojectile, and the delivery of 

the associated DNA into plant cells.  The method of microprojectile bombardment has 

demonstrated its broad utility and appears to be effective for all plant species tested so far (for 

reviews see  Vasil, 1994; Casas et al., 1995; Birch, 1997; Maenpaa et al., 1999; Taylor and 

Fauquet, 2002; Lorence and Verpoort, 2004).  Other direct gene transfer methods include 

electroporation, infiltration, and microinjection (reviewed by Newell, 2000; Rakoczy-

Trojanowska, 2002). 

 

An advantage of direct gene transfer is that any piece of DNA may be transferred without using 

specialised vectors.  Direct transformation is also very useful for transient expression analysis.  

When stable transformation is not the objective, a transgene can be transcribed in the nucleus and 

translated in the cytosol, independent of integration of the transgene into the host nuclear 

genome.  Such transient expression can be used, for example, for promoter analysis ( Rathus et 

al., 1993; Wei et al., 1999; Atienzar et al., 2000; Basu et al., 2003; Ono et al., 2004).  A 

drawback of direct genetic transformation is that transformed cells will often contain multiple 

insertions of the transgene of interest, as well as fragmented copies of the transgene and vector ( 

Pawlowski and Somers, 1996; Makarevitch et al., 2003).  Multiple insertions could lead to co-

suppression (Matzke and Matzke, 1995; Wu and Morris, 1999). 
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2.2.2 Indirect transformation 

Indirect gene transformation relies almost exclusively on the use of the soil bacterium, 

Agrobacterium tumefaciens.  This bacterium has the natural ability to transfer a particular DNA 

segment (transferred DNA or T-DNA) into the nucleus of an infected cell, where it is then stably 

integrated into the host genome and transcribed (Binns and Tomashow, 1988).  Initial studies of 

the T-DNA transfer process to plant cells demonstrated that foreign DNA placed between the T-

DNA borders could be transferred into plant cells, regardless of the origin of the DNA.  This 

allowed for the first vector and bacterial strain systems for plant transformation to be developed 

(for review, see Hooykaas and Shilperoort, 1992).   

 

Monocotyledonous plants, and particularly graminaceous crop species, were initially considered 

to be outside the Agrobacterium host range, since these plants are not natural hosts for this 

bacterium (Binns and Tomashow, 1988; DeCleene, 1985; Potrykus, 1990).  Only a few years 

later Agrobacterium-mediated transformation of maize (Gould et al., 1991; Ishida et al., 1996) 

and rice (Chan et al., 1993; Hiei et al., 1994) proved that this was not true.  Since then, many 

other monocotyledonous species have successfully been transformed following Agrobacterium-

mediated gene transfer (Komari et al., 1998).  The use of Agrobacterium tumefaciens in plant 

transformation and the molecular mechanisms involved have been reviewed extensively (De la 

Riva et al., 1998; Gelvin, 2000; Tzfira and Citovsky, 2000; Zupan et al., 2000; Tzfira and 

Citovsky, 2002; Gelvin, 2003; Tzfira et al., 2004). 

 

Agrobacterium-mediated transformation has some advantages over direct transformation 

methods.  Relatively large segments of DNA can be transferred with little rearrangement, and 

integration of low numbers of gene copies occurs in the host genome (Ishida et al., 1996).  A 

disadvantage of Agrobacterium-mediated transformation is that the remaining infecting bacteria 

must be removed after transformation (for review see Lorence and Verpoort, 2004). 

 

 

 

 

 



 9

2.2.3 Regulation of transgene expression 

To efficiently introduce a foreign gene to a plant, or to manipulate a metabolic process, the gene 

must be expressed in a suitable and predictable manner (Birch, 1997).  Successful transformation 

is therefore, to a large extent, dependent on the availability of different promoters to achieve 

specific or induced expression.  Practical application of most potentially useful new genes will 

require not only sustained expression without silencing over many vegetative generations, but 

also tailored levels and developmental or inducible patterns of expression, appropriate to the 

desired effect of the transgene product (Laporte et al., 2001). 

 

Appropriate genetic constructs containing a promoter, the transgene and a terminating signal (An 

and Kim, 1993), are required to facilitate the integration and expression of foreign DNA in 

plants.  Promoters are regions within a genome, located upstream of a gene transcription start 

site.  Promoter elements determine the transcription initiation point, transcription specificity and 

rate.  Previous studies suggest that promoters are constructed as a linear array of promoter 

elements, or cis-acting elements, each recruiting different transcription factors.  Depending on the 

distance from the transcription initiation site, these elements form part of the ‘proximal’ or 

‘distal’ promoter.  Both proximal and distal promoters contribute to the process of cell-, tissue-, 

developmental stage-, and organ-specific regulation of transcription (for a review on promoter 

structure, see Guilfoyle, 1997; Lefebvre and Gellatly, 1997).   

 

Traditionally, promoter elements were identified by fusing the putative promoter region to a 

reporter gene, such as GUS, and then making a deletion series of the promoter driving expression 

of the reporter gene (An and Kim, 1993).  After transformation and determination of the 

expression level and pattern of the reporter gene, promoter regions required for regulation of 

transcription are identified.  A good example of such an analysis is the dissection of the CaMV 

35S promoter (Benfey et al., 1990).  Use of deletion analysis has identified a whole array of plant 

promoter elements.  Several public databases containing a collection of these cis-acting elements 

have been established, e.g. PlantProm DB (http://mendel.cs.rhul.ac.uk/mendel.php), PLACE 

(www.dna.affrc.go.jp/PLACE), PlantCARE (http://intra.psb.ugent.be:8080/PlantCARE), and 

TRANSFAC (http://www.gene-regulation.com/pub/databases.html).  A new bioinformatics-

based approach, which makes use of such databases in conjunction with motif-detection software 
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and an increasing number of large scale expression-profiling techniques, is fast replacing 

traditional deletion analysis.  New promoter elements are being identified based on the 

hypothesis that the transcription of genes with a similar expression profile will be regulated by 

the same transcription factors.  Computational, or in silico, analysis of the promoter regions of 

such genes is then used to identify over-represented elements.  These and other related methods 

have recently been reviewed (Hehl and Wingender, 2001; Aarts and Fiers, 2003; Rombauts et al., 

2003; Venter and Botha, 2004). 

 

 

2.3 TRANSFORMATION OF SUGARCANE 

 

During the twentieth century, highly productive sugarcane varieties with enhanced resistance to 

disease and insect pests were successfully developed in conventional breeding programs, but few 

modern crop varieties retain the same degree of resistance as exhibited by their wild relatives.    

Important traits, such as resistance to insect pests and herbicides, appear to be absent from the 

sugarcane parental germplasm.  Also, many elite varieties produced by traditional breeding 

methods have to be abandoned due to a single “fault”, such as susceptibility to a specific disease. 

The use of plant transformation methods to introduce new genes, and thereby new traits, into the 

sugarcane genome may have an important impact on sugarcane yields.     

 

2.3.1 Transformation methodology 

Methodology for the stable transformation of sugarcane is well established.  In 1992, Rathus and 

Birch (1992) produced stably transformed sugarcane callus by electroporation of protoplasts, but 

no plants could be regenerated.  A few months later, Bower and Birch (1992) reported the 

production of the first transgenic sugarcane plants by particle bombardment of embryogenic calli.  

Around the same time Arencibia and coworkers (1992) recovered transgenic sugarcane plants 

following electroporation of meristematic tissue.  This group later also developed a method for 

sugarcane transformation by electroporation of intact cells (Arencibia et al., 1995).  Some years 

later the first successful Agrobacterium-mediated transfer of DNA to sugarcane meristems was 

demonstrated ( Enríques-Obregón et al., 1997; Arencibia et al., 1998).  Since then, successful 
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Agrobacterium-mediated transformation of sugarcane callus (Elliott et al., 1998; Santosa et al., 

2004) and axillary buds (Manickavasagam et al., 2004) has also been achieved.   

 

Most sugarcane cultivars tested to date have yielded regenerable calli (Ingelbrecht et al., 1999), 

making the introduction of specific desirable traits directly into elite sugarcane varieties a 

realistic goal.  The feasibility of using transformation technology to introduce specific genetic 

improvements into sugarcane is further demonstrated by the fact that all of the above-mentioned 

transformation methods have subsequently been used to introduce specific traits into sugarcane, 

specifically herbicide-resistance (Gallo-Meagher and Irvine, 1996; Enríques-Obregón et al., 

1998; Snyman et al., 1998; Falco et al., 2000; Manickavasagam et al., 2004) and insect-

resistance (Arencibia et al., 1997; Arencibia et al., 1999; Setamou et al., 2002; Tomov and 

Bernal, 2003).  

 

2.3.2 Availability of regulatory sequences  

Although the transformation of sugarcane is well established, a major obstacle limiting the use of 

genetic transformation for the varietal improvement of sugarcane is the availability of regulatory 

sequences, or promoters, to drive stable transgene expression.  Most studies to date, including 

those mentioned above, have made use of three promoters to regulate the constitutive expression 

of the gene of interest and/or the selectable marker gene.  These are the maize ubiquitin promoter 

(Ubi-1) (e.g. Gallo-Meagher and Irvine, 1996; Enríques-Obregón et al., 1998; Falco et al., 2000), 

the 35S promoter from the cauliflower mosaic virus (CaMV) (modified for use in sugarcane, see 

2.4.1.4) e.g.(Arencibia et al., 1997; Elliott et al., 1998; Enríques-Obregón et al., 1998) and the 

artificial Emu promoter (e.g. Bower and Birch, 1992).  This artificial promoter is made up of a 

truncated maize adh1 promoter with additional enhancer elements including six anaerobic 

response elements from the adh1 gene of maize and four ocs-elements from the ocs gene of 

Agrobacterium tumefaciens (Last et al., 1991). 

 

Three other promoters have been shown to drive constitutive (or near-constitutive) expression of 

reporter genes in green house-grown transgenic sugarcane.  These are the rice ubiquitin promoter 

(RUBQ2) (Liu et al., 2003) and two promoters (Cv and My promoters) derived from Australian 

banana streak badnavirus (Schenk et al., 2001), though expression from the My promoter was 
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relatively weak.  Only one case of tissue-specific transgene expression in sugarcane has been 

reported to date.  Preliminary analysis of a stem-specific promoter isolated from sugarcane 

demonstrated reporter gene expression in the top half of the stems of transformed plants (Hansom 

et al., 1999).  These promoters, however, have not been widely utilised in subsequent studies.       

 

Other promoters that could possibly be used for sugarcane transformation include the pPLEX 

series, derived from the subterranean clover stunt virus (SCSV) genome, modified for use in 

monocotyledonous plants (Schünmann et al., 2003b).  Although these promoters have not been 

evaluated for their usefulness in sugarcane, their activity in other monocotyledonous species 

suggests that they may be active in a wide range of species.  Another promoter that may be useful 

is the sugarcane badnavirus promoter (ScBV) (Tzafrir et al., 1998).  This promoter was only 

evaluated in transformed rice, but as it was derived from a virus that infects both rice and 

sugarcane, it is very likely that this promoter would also be active in transgenic sugarcane.   

 

Although the lack of regulatory sequences present a major obstacle hindering sugarcane 

transformation, the above-mentioned studies do prove that promoters derived from different 

sources, i.e. viral, artificial, closely related species and the sugarcane genome, can be used 

successfully to drive transgene expression in transgenic sugarcane and that these sources can be 

further exploited to obtain a wider range of regulatory sequences for sugarcane transformation. 

 

2.3.3 Promoter silencing in sugarcane 

Levels of transgene expression in transgenic plants are often unpredictable and many transgenic 

plants become silenced.  Many promoters tested to date have been silenced in transgenic 

sugarcane, even though some of these were able to drive strong transient expression and 

expression in transformed callus.  These include promoters isolated from different sources.  The 

sugarcane polyubiquitin promoters, Ubi4 and Ubi9 (Wei et al., 1999), drove high-level GUS 

expression in sugarcane callus, but were silenced in regenerated plants (Wei et al., 2003).  

Interestingly, the ubi-9 promoter was active in transgenic rice.  Two other promoters isolated 

from sugarcane were also silenced in transgenic sugarcane plants.  A promoter from a peroxidase 

gene was not functional in callus or plants (Hansom et al., 1999).  The promoter from a 

metallothionein gene (Rsg) was progressively silenced in transgenic callus, and silent in resulting 
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plants (Hansom et al., 1999).  Silencing in transgenic sugarcane has also been reported for 

promoters isolated from other monocotyledonous plants.  The rice actin promoter, previously 

shown to drive strong constitutive expression in transgenic rice (McElroy et al., 1990; Wang et 

al., 1992), was silenced when introduced into sugarcane (Hansom et al., 1999).  The root-specific 

rice RCg2 promoter, active in transgenic rice (Xu et al., 1995), was also silenced in sugarcane 

(Hansom et al., 1999).   

 

These findings show that the use of homologous or heterologous promoters does not necessarily 

provide protection against transgene silencing in sugarcane.  Also, promoters are not generally 

active in all monocotyledonous species.  One study found that silencing in sugarcane is promoter-

dependent and copy number independent (Hansom et al., 1999).  Even when high copy numbers 

(>10 integration sites) of genes driven by the Maize Ubi1 promoter integrated into the genome of 

sugarcane, there was no evidence of gene silencing, while other promoters, viz. the rice actin 

promoter and artificial Osa promoter, were silenced regardless of the copy number.  The authors 

concluded that the problem of gene silencing in sugarcane might derive from the type of 

promoter used to drive the gene rather than number of integration sites (Hansom et al., 1999).  In 

contrast with these findings, another group found that gene expression under the control of Maize 

Ubi1 promoter was greatly reduced after regeneration of transformed sugarcane (Wang et al., 

2002).  An investigation of the mechanisms of gene silencing in sugarcane by both of these 

groups, however, found that silencing was due to post-transcriptional effects.  This means that the 

introduced gene is still active, but the RNAs transcribed from the transgene are targeted for 

degradation by a currently unclear process.  Therefore no protein product is produced from the 

transgene.  This was an unexpected finding, as the apparent promoter dependence and often-

observed developmental onset of silencing in sugarcane appears more consistent with 

transcriptional silencing. 

 

Post-transcriptional silencing is a natural regulatory mechanism in plants that can specifically 

recognize foreign RNA and target it for degradation (Vance and Vaucheret, 2001).  This process 

is also the underlying molecular mechanism in many cases of engineered virus resistance in 

plants (Baulcombe, 1999), e.g. in sugarcane (Ingelbrecht et al., 1999).  Detailed reviews have 

been published about both transcriptional and post-transcriptional gene-silencing (Iyer et al., 
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2000; Sijen and Kooter, 2000; Vaucheret and Fagard, 2001; Matzke et al., 2002).  However, 

further investigation of the mechanisms of transgene silencing is required before predictions can 

be made about the silencing of specific promoters.  To date, no specific promoter sequences or 

features have been identified that could explain why some promoters are silenced and others not.  

Until such time promoters for sugarcane transformation will have to be evaluated on a ‘trial and 

error’ basis.     

 

 

2.4 THE ROLE OF TRANSCRIBED SEQUENCES IN THE REGULATION OF GENE 

EXPRESSION 

 

Traditionally, research into the regulation of gene expression in plants has focused on the role of 

promoters (Guilfoyle, 1997).  More recently, however, the importance of sequences located 

downstream of the transcription initiation site has been recognised.  These sequences have been 

found to contribute to both the level and the location of expression of the gene with which they 

are associated.  Research to date has mainly considered the role of introns, although regulation of 

expression by other transcribed sequences has also been demonstrated.  Enhancement of gene 

expression by sequences located within the 5’-untranslated leader has been demonstrated for 

several plant genes, including the maize Shrunken-1 gene (Clancy et al., 1994), the spinach PetE, 

PsaF and PetH genes for thylakoid proteins (Bolle et al., 1994), the rice actin (Act1) (Zhang et 

al., 1991) and sucrose phosphate synthase (sps1) (Martnez-Trujillo et al., 2003) genes.  

Regulation of tissue specificity by transcribed sequences has also been reported.  The pea 

ferrodoxin (Fed-1) gene, for example, requires the 5’-leader sequence (Dickey et al., 1998) and 

exon sequences (Elliott et al., 1989) for light responsiveness.  Another pea gene that requires 

both the 5’-leader sequence and the coding region for light regulation is the plastocyanin (PetE) 

gene (Helliwell et al., 1997).  A light responsive element has also been found in the coding 

region of the tobacco psaDb gene (Yamamoto et al., 1997).  Examples of tissue specificity 

mediated by sequences located in the 3’-untranslated region include the Flaveria bidentis Me1 

gene which contains an enhancer-like element in its 3’-untranslated region that confers high-level 

expression in leaves (Marshall et al., 1997), and nodule parenchyma-specific expression of the 

Sesbania rostrata early nodulin (SrEnod2) gene (Chen et al., 1998).   
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2.4.1 The role of introns  

 Introns have been found to play a role in the regulation of gene expression in a broad range of 

organisms, including nematodes (Okkema et al., 1993), insects ( Schultz et al., 1991; Meredith 

and Storti, 1993), birds (Sorkin et al., 1993), fungi (Xu and Gong, 2003) and mammals (Luo et 

al., 1998; Chan et al., 1999; Chen et al., 2000).  Introns can affect gene expression in different 

ways. 

 

2.4.1.1 Intron-mediated enhancement 

Stimulation of gene expression by introns in plants was first demonstrated by Callis and co-

workers (1987) who showed that the maize Adh1 first intron increased the expression of several 

genes, a phenomenon later termed intron-mediated enhancement (Mascarenhas et al., 1990).  

Subsequently, many introns that mediate enhanced gene expression in plants have been 

identified.  Other introns known to enhance gene expression in monocotyledonous species 

include those from the maize Bz1, (Callis et al., 1987), AdhI (Mascarenhas et al., 1990), ShI 

(Vasil et al., 1989), UbiI (Christensen et al., 1992), Hsp82  and GapAI (Donath et al., 1995)  

genes, and the rice SalT (Rethmeier et al., 1997), Wx (Li et al., 1995), tpi (Xu et al., 1994), and 

Ostub 16 (Morello et al., 2002) genes.  Similarly, introns contained in genes of dicotyledonous 

species that elevate expression include those from the petunia rbcS (Dean et al., 1989) and 

PhADF1 (Mun et al., 2002), the potato Sus3 (Fu et al., 1995a) and Sus4 (Fu et al., 1995b), and 

the Arabidopsis UBQ3, UBQ10 (Norris et al., 1993), PAT1 (Rose and Beliakoff, 2000), and At 

eEF-1β (Gidekel et al., 1996) genes.   

 

2.4.1.2 Intron-mediated tissue specificity 

In addition to enhancement of expression, cases in which introns were required for tissue-specific 

expression of plant genes have also been reported.  For example, an intron sequence is required 

for plastid and light-dependant expression of the PsaD gene of the spinach plant (Bolle et al.,  

1996).  Expression of the AGAMOUS (AG) floral homeotic gene in Arabidopsis flowers requires 

an enhancer sequence located within an intron (Busch et al., 1999).  Tissue preferential 

expression in actively dividing tissues of the rice OsTubA1 gene is mediated by the first intron 



 16

(Jeon et al., 2000).  An intron also contains the sequence responsible for endosperm-specific 

expression of the barley SbeIIb gene during seed development (Ahlandsberg et al., 2002).   

 

Another example of introns affecting the pattern of plant gene expression is found in higher-plant 

sucrose synthase genes.  With the exception of one gene in Arabidopsis (Martin et al., 1993), 

higher-plant sucrose synthase genes cloned to date all contain a very large intron conserved in 

position in the 5’-untranslated region (UTR), located between a non-coding first exon and a 

coding second exon.  These include sucrose synthase genes from potato (Fu et al., 1995a), maize 

(Shaw et al., 1994; Vasil et al., 1989), Arabidopsis (Chopra et al., 1992), and citrus (Komatsu et 

al., 2002).  Removal of this intron from two classes of sucrose synthase genes from potato, Sus3 

(Fu et al., 1995a) and Sus4 (Fu et al., 1995a), results in changes in the pattern of expression, 

though alterations in tissue-specific expression observed on removal of the intron are dependant 

on the presence of promoter and 3’-UTR sequences.  This intron therefore confers positive and 

negative tissue-specific regulated expression.  The 5’-UTR intron of the maize sucrose synthase 

gene, ShI, is also extremely important for ShI (Vasil et al., 1989) expression in maize and can 

confer a dramatic enhancement of gene expression to heterologous genes (Maas et al., 1991; 

Clancy et al., 1994). 

 

2.4.1.3 Conservation of introns within the 5’-untranslated region 

The occurrence of an intron within the 5’-UTR, which separates a first non-coding exon from a 

second coding exon, was until recently, believed to be very rare (Hawkins, 1988; Vasil et al., 

1989).  The conservation of large introns in the 5’-UTR of plant genes is, however, not a 

phenomenon restricted to sucrose synthase genes.  A large intron is present in the 5’-leader 

sequence of two soybean actin genes (Pearson and Meagher, 1990).  This led to the suggestion 

that an intron in this position could be a common feature in plant actin genes based on the 

conservation of a potential intron acceptor site in the 5’-UTR of other soybean actin genes, as 

well as sequences from maize, Arabidopsis, rice and petunia.  Introns in this position have 

subsequently been found in actin genes isolated from rice (McElroy et al., 1990), Arabidopsis 

(An et al., 1996; Huang et al., 1997) and tobacco (Thangavelu et al., 1993).   Higher plant 

polyubiquitin genes (from Arabidopsis (Norris et al., 1993), maize (Christensen et al., 1992), 

sunflower (Binet et al., 1991), tomato (Hoffman et al., 1991), potato (Garbarino et al., 1995), 
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tobacco (Plesse et al., 2001), sugarcane (Wei et al., 1999) and rice (Wang et al., 2000)) also 

possess a conserved intron in their 5’-UTR.  Many of these introns have been shown to contribute 

to the regulation of the level and pattern of the expression of the associated genes (Vasil et al., 

1989; McElroy et al., 1990; Christensen et al., 1992; Norris et al., 1993; Fu et al., 1995a; Fu et 

al., 1995b; Wei et al., 1999).  Other introns that occur in this position and enhance expression 

include the rice SalT (Rethmeier et al., 1997), Wx (Li et al., 1995) and Ostub16 (Morello et al.,  

2002) first introns.  The significance of the intron position in the 5’-UTR is not known, but a 

functional requirement for the presence of such an intron may be correlated with the conservation 

of the 5’-non-coding exon. 

 

2.4.1.4 Intron-mediated enhancement in monocotyledonous  vs dicotyledonous plants 

Intron-mediated enhancement occurs in both monocotyledonous and dicotyledonous plants, but it 

is generally greater in monocotyledonous plants where intron-mediated enhancement of up to a 

100-fold is not uncommon (e.g. Callis et al., 1987; Vasil et al., 1989; Maas et al., 1991). In 

dicotyledonous plants it commonly ranges from 2- to 10-fold (e.g. Dean et al., 1989; Tanaka et 

al., 1990; León et al., 1991; Norris et al., 1993; Rose and Beliakoff, 2000).  Also, introns which 

significantly enhance expression in monocotyledonous species, have little or no effect when 

tested in dicotyledonous plants (Li et al., 1995; Maas et al., 1991; Tanaka et al., 1990).  Although 

many promoters are active in both dicotyledonous and monocotyledonous plant species, 

modification of the promoters is often required to achieve high levels of expression in 

monocotyledonous species (Schünmann et al., 2003).  The most widely used strategy is the 

addition of an intron, usually derived from a monocotyledonous plant gene, between the 

promoter and the transgene.   

 

Intron-mediated enhancement has been used extensively for virus-derived promoters, such as the 

cauliflower mosaic virus (CaMV) 35S promoter.  In its native form, the promoter is only poorly 

active in monocotyledonous plants (McElroy et al., 1991; Rathus et al., 1993; Vasil et al., 1989), 

but the addition of an intron taken from maize Adh1 (Callis et al., 1987; Mascarenhas et al., 

1990; Cornejo et al., 1993), Sh1 (Vasil et al., 1989; Maas et al., 1991; Clancy et al., 1994), Bz1 

(Callis et al., 1987), Ubi1 (Vain et al., 1996), rice SalT  (Rethmeier et al., 1997; Rethmeier et al. 

1998), Wx (Li et al., 1995), and Act1 (Vain et al., 1996) dramatically improved expression in rice, 
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maize and various grasses.  Interestingly, introns derived from dicotyledonous genes also 

enhanced expression of the CaMV 35S promoter in monocotyledonous, but not in dicotyledonous 

plants, e.g. the french bean phaseolin intron (Mitsuhara et al., 1996), the castorbean catalase cat-1 

intron (Tanaka et al., 1990), and the petunia chalcone synthase intron chsA (Vain et al., 1996).   

 

A suite of promoters isolated from the subterranean clover stunt virus (SCSV) shown to be active 

in a number of dicotyledonous species (Schünmann et al., 2003a), were also modified for use in 

monocotyledonous plant transformation.  While the original viral vectors exhibited low levels of 

activity in transgenic rice, insertion of the maize Ubi1, Adh1 or rice Act1 introns increased the 

level of expression by 10- to 50-fold (Schünmann et al., 2003b).  Addition of the maize Ubi1 

intron significantly increased GUS expression directed by promoters derived from the banana 

bunchy top virus (BBTV) in transgenic banana plants (Dugdale et al., 2000).  Addition of an 

intron from maize Adh1, rice Act1 and sugarcane rbcS genes also significantly enhanced 

promoter activity of BBTV promoters in embryogenic banana cells (Dugdale et al., 2001).  The 

sugarcane bacilliform badnavirus (ScBV) promoter coupled to the maize Adh1 intron was able to 

drive near-constitutive expression in transgenic rice (Tzafrir et al., 1998), although the promoter 

was not evaluated in the absence of the intron.  Addition of a monocotyledonous plant-derived 

intron, rice Act1 intron, also enhanced expression of a dicotyledonous promoter, potato pin2 

promoter, in transgenic rice (Xu et al., 1993).  

 

Quantitative differences in intron-mediated enhancement between monocotyledonous and 

dicotyledonous plants indicate differences in underlying mechanisms.  Supporting this, 

differences have also been observed between monocotyledonous and dicotyledonous plants in the 

processing of heterologous introns.  Introns of dicotyledonous plant origin, and even mammalian 

introns, appear to be accurately and efficiently processed when expressed in monocotyledonous 

plant cells (Tanaka et al., 1990; Goodall and Filipowicz, 1991).  In contrast, several introns of 

monocotyledonous plant origin are inefficiently processed or not processed at all when 

introduced into dicotyledonous plant cells ( Keith and Chua, 1986; Goodall and Filipowicz, 1991; 

Mitsuhara et al., 1996).  Differences in intron composition between monocotyledonous and 

dicotyledonous plants have also been observed (Goodall and Filipowicz, 1991).  These findings 
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may indicate that different mechanisms exist for intron-mediated enhancement in 

monocotyledonous and dicotyledonous plants. 

 

2.3.1.5 Features and mechanisms of intron-mediated enhancement 

The mechanisms of intron-mediated enhancement are not yet fully understood.  However, some 

common features have emerged from cases in which these mechanisms have been explored: 

Introns must be contained within transcribed sequences and in the proper orientation to elevate 

gene expression, unlike transcriptional enhancers which are usually position and orientation 

independent (Callis et al., 1987; Vasil et al., 1989; Mascarenhas et al., 1990; McElroy et al., 

1990; Maas et al., 1991; Clancy et al., 1994; Li et al., 1995; Bourdon et al., 2001; Rose, 2002).  

The ability of introns to enhance expression declines as distance from the promoter increases 

(Rose 2004).  The length (Sinibaldi and Mettler, 1992) and composition (Luehrsen and Walbot, 

1991; Maas et al., 1991; Clancy et al., 1994; Carle-Urioste et al., 1994; Donath et al., 1995) of 

flanking sequences, as well as the coding region of the expressed gene (Rethmeier et al., 1997; 

Rethmeier et al., 1998; Sinibaldi and Mettler, 1992) influence the degree of stimulation.  Intron-

mediated enhancement is generally greater for weaker promoters (Callis et al., 1987; 

Mascarenhas et al., 1990; Luehrsen and Walbot, 1994; Bourdon et al., 2001).  The same introns 

can evoke different levels of expression in the context of different promoters (Callis et al., 1987; 

Vasil et al., 1989), and different introns may evoke different levels of expression in the context of 

the same promoter (Vasil et al., 1989; Mascarenhas et al., 1990).  Enhancement also depends on 

the tissue type and physiological conditions ( Tanaka et al., 1990; Sinibaldi and Mettler, 1992; 

Gallie and Young, 1994; Fu et al., 1995a; Fu et al., 1995b; Plesse et al., 2001).  Large, 

overlapping internal deletions can be made without affecting the ability of the intron to enhance 

expression (Clancy et al., 1994; Luehrsen and Walbot, 1994; Rose and Beliakoff, 2000; Clancy 

and Hannah, 2002), indicating that specific sequences required for enhancement must be present 

in multiple copies, making them redundant.   

 

Very few specific intron sequences required for enhancement have been identified to date.  A 

study of the maize GapA1 gene showed that an octameric sequence motif contained within the 

first intron, which appeared to bind a maize nuclear factor, partially restored intron-dependent 

gene expression in the absence of the intron (Donath et al., 1995).  The authors note that the same 
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motif is also present in the maize Adh1 and Sh1 first introns, both of which are known to enhance 

gene expression.  A more recent study of the maize Sh1 first intron revealed the presence of a 

redundant 35 bp T-rich motif which enhanced expression (Clancy and Hannah, 2002).  It is not 

clear whether the above-mentioned octameric sequence forms a part of the 35 bp motif or not.  

The presence of redundant sequence motifs, however, is consistent with the finding that every 

part of an intron is individually dispensable for enhancement (Rose and Beliakoff, 2000).      

 

Most observations to date suggest that intron-mediated enhancement occurs by cotranscriptional 

or posttranscriptional mechanisms.  An increase in mRNA levels resulting from the presence of 

an intron has often been observed (Callis et al., 1987; Dean et al., 1989; Luehrsen and Walbot, 

1991; Rethmeier et al., 1997; Rose and Last, 1997).  This increase in steady state mRNA is not a 

result of increased transcription (Dean et al., 1989; Rose and Last, 1997).  Studies have also 

shown that the half-life of the mRNA was the same with or without the intron (Nash and Walbot, 

1992; Rethmeier et al., 1997).  Extended mRNA persistence is therefore not a defining 

characteristic of intron-mediated enhancement.  Also, increased mRNA levels do not always 

sufficiently account for increased enzyme activity (Mascarenhas et al., 1990; Tanaka et al., 1990; 

Bourdon et al., 2001; Rose, 2004).  It was therefore suggested that pre-mRNA splicing must 

somehow improve the quality, as well as the quantity of the mRNA (Mascarenhas et al., 1990).   

 

Although splicing seems to be required for intron-mediated enhancement, it alone is not enough, 

as introns that vary in their ability to enhance expression are all efficiently spliced (Rose, 2002).  

Reduced splicing efficiency, as a result of the deletion of 5’-exon sequences, mutation of splice 

junctions or intron deletions which block splicing, causes a decrease in enzyme activity 

(Luehrsen and Walbot, 1994; Clancy and Hannah, 2002).  When splicing of the Arabidopsis 

PAT1 intron was prevented, the intron retained some ability to increase mRNA accumulation 

(Rose, 2002).  The simultaneous elimination of branch points and the 5’-splice site, structures 

involved in the first two steps of spliceosome assembly (Simpson and Filipowicz, 1996), 

completely abolished enhancement (Rose, 2002).  These results suggest that although intron 

recognition by the splicing machinery is required, splicing per se is not enough to enhance 

expression.   
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Introns could stimulate expression in several different ways, or by a combination of mechanisms.  

Several mechanisms have been suggested.  Association with the spliceosome may increase 

mRNA stability by influencing RNA events such as capping, polyadenylation, RNA turnover and 

transport to the cytoplasm (Simpson and Filipowicz, 1996; Snowden et al., 1996).  Introns could 

possibly promote transcript elongation, thereby increasing the probability that full-length 

transcripts will be produced, leading to increased mRNA accumulation without affecting 

transcription initiation (Rose, 2002).  As different introns could influence expression by different 

mechanisms, a complete understanding of intron-mediated enhancement will require a detailed 

analysis of different introns in the context of different promoters and genes, in different species.  

A better understanding of the role of these sequences can provide new insights into the complex 

processes that act together to regulate gene expression.    

 

 
2.5 UDP-GLUCOSE DEHYDROGENASE 
 

2.5.1 Function of UDP-glucose dehydrogenase 

UDP-glucose dehydrogenase (EC1.1.1.22) catalyses the oxidation of UDP-glucose to UDP-

glucuronic acid with the concomitant reduction of two molecules of NAD+ (Nelsestuen and 

Kirkwood, 1971; Turner and Botha, 2002).  UDP-glucuronic acid serves as substrate for 

glycosyltransferases and for nucleotide sugar interconversion enzymes which produce precursors 

for hemicellulose and pectin, including arabinans, arabinogalactans, glucuronoarabinoxylans, 

rhamnogalacturonans, xylans and xyloglucans (Carpita, 1996; Bolwell, 2000; Gibeaut, 2000).  

Both hemicellulose and pectin are key components of plant cell walls, providing a matrix that 

strengthens the cell wall.  It has previously been shown that the enzyme structure of UDP-glucose 

dehydrogenase is highly conserved between plants and animals, even though the product of the 

reaction is utilised to produce entirely different polysaccharides in plants (Gibeaut, 2000) and 

animals (Hempel et al., 1994).  This suggests strict structural requirements for the correct 

functioning of the enzyme.   

 

2.5.2 Expression of UDP-glucose dehydrogenase 

A general correlation between the expression of UDP-glucose dehydrogenase and a demand for 

structural polysaccharides in tissues that are actively synthesising cell walls, has been reported 
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for several species, including sycamore, poplar (Dalessandro and Northcote 1977a; Johansson et 

al., 2002), Catharanthus roseus (Amino et al., 1985), the liverwort Reilla helicophylla (Witt,  

1992), French bean (Robertson et al., 1995a), soybean (Stewart and Copeland, 1998; Tenhaken 

and Thulke, 1996), and Arabidopsis (Seitz et al., 2000).  These and other studies have also shown 

that UDP-glucose dehydrogenase is also often the least active enzyme involved in the nucleotide 

sugar interconversion pathway, suggesting that this enzyme is rate-limiting for the provision of 

precursors for the expanding cell wall (Amino et al., 1985; Dalessandro and Northcote, 1977c; 

Robertson et al., 1995a; Robertson et al., 1995b).  In addition, this reaction may represent a 

control point for the irreversible flow of carbon into the pool of UDP sugars required for the 

synthesis of structural polysaccharides, as the activity of UDP-glucose dehydrogenase is 

controlled by feedback inhibition by UDP-xylose, the decarboxylation product of UDP-

glucuronic acid (Dalessandro and Northcote1977a; Dalessandro and Northcote1977c; Stewart 

and Copeland, 1999; Hinterberg et al., 2002; Turner and Botha, 2002).      

 

Early investigations of the expression of UDP-glucose dehydrogenase in gymnosperms 

(Dalessandro and Northcote, 1977b) and angiosperms (Dalessandro and Northcote, 1977a) found 

that the activity of UDP-glucose dehydrogenase varied during differentiation of cambium to 

xylem according to the type of polysaccharide synthesised.  In the angiosperms, sycamore and 

poplar, the activity and concentration of UDP-glucose dehydrogenase increased threefold from 

cambial cells to differentiating and differentiated xylem cells (Dalessandro and Northcote, 

1977a), correlating with an increased demand for UDP-glucuronic acid and UDP-xylose during 

secondary cell wall thickening.   In the gymnosperms pine and fir, activity and concentration of 

UDP-glucose dehydrogenase was much lower than in the angiosperms.  Also, in pine a decrease 

in the activity of UDP-glucose dehydrogenase was observed during differentiation (Dalessandro 

and Northcote, 1977b).  According to the authors, this variation reflects a difference in the 

composition of the cell walls of angiosperms (more xylan polymers) and gymnosperms (very low 

amounts of xylan polymers), and the type and amount of polysaccharide formed is controlled by 

the adjustment of the relevant enzyme activities.   This could mean that manipulation of the level 

of UDP-glucose dehydrogenase expression may permit the modification of cell wall material by 

changing the availability of monosaccharide precursors. 
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A study of elicitor-stressed French bean showed a significant induction of UDP-glucose 

dehydrogenase in response to elicitor treatment (Robertson et al., 1995b).  The same group 

subsequently purified a 40 kDa UDP-glucose dehydrogenase with alcohol dehydrogenase 

activity, from French bean (Robertson et al., 1996).  An antibody raised against this enzyme 

localised it to the vascular tissues of French bean hypocotyls, and protein blots confirmed 

induction of this enzyme by elicitor treatment.  It has since been suggested by several authors that 

this enzyme is not a genuine UDP-glucose dehydrogenase (Tenhaken and Thulke, 1996; Turner 

and Botha, 2002).  Alternatively, it has been suggested that there are two types of 

dehydrogenases (Bolwell, 2000).  However, no further evidence to support the existence of a 

second type of dehydrogenase has been presented to date. 

 

The highest level of UDP-glucose dehydrogenase gene expression in soybean seedlings was 

detected in root tips and lateral roots, with moderate expression in the epicotyl and expanding 

leaves, all actively growing tissues (Tenhaken and Thulke, 1996).  Activity of the enzyme was 

also shown to be maximal during initial stages of nodule growth and development in soybean 

nodules (Stewart and Copeland, 1998).  As observed for soybean, UDP-glucose dehydrogenase 

activity in Arabidopsis was especially high in roots.  In addition, many but not all growing tissues 

showed high activity levels of the enzyme.  Hypocotyledons and cotyledons of young seedlings, 

for instance, did not show significant UDP-glucose dehydrogenase activity.  As many seeds 

contain phytic acid as a storage compound, it has been suggested that the inositol oxidation 

pathway (discussed in more detail in Chapter 3, p39) is predominantly active in seedlings to 

metabolise the inositol liberated from the phytic acid (Tenhaken and Thulke, 1996).  In poplar, 

UDP-glucose dehydrogenase was expressed predominantly in differentiating xylem and young 

leaves with very low levels detected in phloem tissues (Dalessandro and Northcote1977a; 

Johansson et al., 2002).  Surprisingly, lower levels of expression were found in leaf meristems 

than in mature leaves.  This finding provides further evidence for the dominance of the inositol 

oxidation pathway in some actively growing tissues or organs ( Johansson et al., 2002). 

 

Significant levels of UDP-glucose dehydrogenase have also been detected in some mature 

tissues, such as the leaf axil meristem of young and old Arabidopsis plants, even when these 
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tissues are considered to be quiescent (Seitz et al., 2000).  The role of UDP-glucose 

dehydrogenase in mature tissues is not yet understood.   
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CHAPTER 3 

 

MOLECULAR CLONING AND CHARACTERISATION OF  A 

GENE ENCODING UDP-GLUCOSE DEHYDROGENASE IN 

SUGARCANE 
 

3.1 ABSTRACT 

 

UDP-glucose dehydrogenase (EC 1.1.1.22) catalyses the oxidation of UDP-glucose to UDP-

glucuronic acid, a precursor for structural polysaccharides incorporated into the cell wall.  A gene 

encoding this enzyme was isolated from a sugarcane genomic library.  The gene contains an open 

reading frame (ORF) of 1443 bp, encoding 480 amino acids with a predicted molecular weight of 

52 kDa, which is in agreement with that reported for the sugarcane enzyme (Turner and Botha, 

2002).  The gene contains one large intron (973 bp), located in the 5’-UTR.  The derived amino 

acid sequence showed 88 – 98% identity with UDP-glucose dehydrogenase from other plant 

species, and contained highly conserved amino acid motifs required for cofactor binding and 

catalytic activity.  Southern blot analysis indicates a low copy number for UDP-glucose 

dehydrogenase in sugarcane.  The possible expression of multiple gene copies or alleles of a 

single gene was investigated through comparison of sixteen 550 bp fragments, corresponding to 

the 5’ end of the isolated gene, amplified from cDNA prepared from different tissues.   Putative 

Single Nucleotide Polymorphisms  (SNP) and small-scale insertion/deletion (INDEL) were 

identified from the aligned sequences.  A total of 5 bi-nucleotide SNPs and one INDEL sequence 

were identified.  Three of these SNPs are located within the coding region of UDP-glucose 

dehydrogenase and all correspond to synonymous amino-acid substitutions.  A one hundred 

percent identity of the derived amino acid sequences suggests the expression of different alleles 

of the same gene rather than expression of multiple copies of UDP-glucose dehydrogenase.  This 

study provides the first evidence for the simultaneous expression of multiple alleles of a single 

gene in the complex polyploid, sugarcane. 
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3.2 INTRODUCTION 
 

Nucleotide sugar interconversion pathways represent a series of enzymatic reactions by which 

plants synthesise activated monosaccharides for incorporation into plant cell wall material 

(Gibeaut, 2000).  In general, sugars are activated by conversion into nucleotide sugars, which act 

as substrates for the generation of other monosaccharides (Bolwell, 2000; Reiter and Vanzin, 

2001).  The first step in this series of nucleotide sugar interconversion reactions takes place in the 

cytosol and is catalysed by UDP-glucose dehydrogenase (EC 1.1.1.22), forming UDP-glucuronic 

acid in an irreversible reaction (Dalessandro and Northcote, 1977; Nelsestuen and Kirkwood, 

1971).  UDP-glucose dehydrogenase utilises UDP-glucose, produced either by sucrose synthase 

or UDP-glucose pyrophosphorylase (Quick and Schaffer, 1997), to form UDP-glucuronic acid in 

a four-electron oxidation reaction (Nelsestuen and Kirkwood, 1971; Turner and Botha, 2002).  

The latter is subsequently imported to the Golgi (Gerardy-Schahn et al., 2001) where it serves as 

substrate for both glycosyltransferases and for nucleotide sugar interconversion enzymes which 

produce precursors for hemicellulose and pectin, including arabinans, arabinogalactans, 

glucuronoarabinoxylans, rhamnogalacturonans, xylans and xyloglucans (Carpita, 1996; Bolwell, 

2000; Gibeaut, 2000).  Both hemicellulose and pectin are key components of cell walls, 

providing a matrix that reinforces the cell wall structure.   

 

UDP-glucuronic acid can also be formed by an alternate pathway, which involves the conversion 

of myo-inositol into glucuronic acid in a reaction catalysed by inositol oxygenase.  Glucuronic 

acid is then conjugated to UDP by a monosaccharide kinase and an uridylyltransferase (pathway 

in plants reviewed by Loewus and Murthy (2000)).  Both of these pathways may exist in plants, 

their importance depending on the plant species and tissue (Seitz et al., 2000). 

 

cDNAs encoding UDP-glucose dehydrogenase have been isolated from soybean (Tenhaken and 

Thulke, 1996), Arabidopsis (Seitz et al., 2000) and poplar (Johansson et al., 2002).  These studies 

all showed that the enzyme structure of UDP-glucose dehydrogenase is highly conserved 

between plants and animals, even though the product of the reaction is utilised to produce entirely 

different polysaccharides in plants (Gibeaut, 2000) and animals (Hempel et al., 1994).  This 

suggests strict structural requirements for the correct functioning of the enzyme.  Based on 

Southern blots, UDP-glucose dehydrogenase from the three plant species were all believed to 
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represent a single copy gene.  However, a subsequent evaluation of the Arabidopsis database 

after completion of the genome project indicated the presence of three more copies (Reiter and 

Vanzin, 2001).  The four sequences are highly homologous, with amino acid sequence identities 

between 83% and 93%.  Matching sequences in EST databases show that these genes are all 

transcribed.  Though additional gene copies have not been identified for other species, it is 

unlikely that Arabidopsis is the exception in this regard. 

 

The aim of this study was to isolate and characterise a gene encoding UDP-glucose 

dehydrogenase from sugarcane.  Modern sugarcane cultivars (Saccharum spp. Hybrids) are 

derived from early crosses between Saccharum officinarum L, a domesticated species, and 

Saccharum spontaneum L, a wild and vigorous relative (reviewed by Grivet and Arruda, 2001).  

The resulting hybrids have highly complex aneuploid polyploid genomes.  S. officinarum usually 

has 2n=80 chromosomes.  S. spontaneum has been found to have between 2n=40 and 2n=128.  

Commercial sugarcane cultivars appear to have 2n chromosome numbers of between 100 and 130 

(Butterfield et al., 2001), 15% to 25% of which has been inherited from S. spontaneum (D'Hont 

et al., 1996).  Molecular cytogenetics has shown that the basic chromosome number (x) for S. 

officinarum is x=10 and x=8 for S. spontaneum (D’Hont et al., 1998).  This implies that for each 

single copy of a gene, up to ten alleles can be present, each of which potentially corresponds to a 

distinct haplotype.  Among the ten alleles, eight to nine should be inherited from S. officinarum 

and one or two from S. spontaneum.  Knowledge of sugarcane molecular genetics, however, is 

insufficient to predict whether all these alleles are expressed, or if some of them may have 

accumulated sequence changes inhibiting their expression.  This complexity potentially 

complicates gene isolation, as many sequences contained in a genomic library, for example, may 

represent silent copies of a specific gene.   

 

A recent study by Grivet et al (2003), in which ESTs are investigated as a source for sequence 

polymorphism discovery in sugarcane, provides the first evidence for the expression of multiple 

alleles of a single gene in sugarcane.  This study, however, is based on EST sequences obtained 

from 27 libraries prepared from 10 sugarcane varieties, so whether these alleles are expressed 

simultaneously in a single plant is not known.  In the present study, a sugarcane gene encoding 

UDP-glucose dehydrogenase was isolated and characterised.  The possible expression of multiple 
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gene copies and alleles of this gene was also investigated.  This is the first UDP-glucose 

dehydrogenase sequence reported from a monocotyledonous plant. 

 

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Screening of genomic library 

A partial cDNA encoding UDP-glucose dehydrogenase (accession number AA525658) was 

identified by random sequencing of clones from a cDNA library, prepared from the leaf roll of 

sugarcane cultivar NCo376 (Carson and Botha, 2000).  This sequence was used to screen a 

sugarcane genomic library constructed from sugarcane cultivar N19.  The genomic library was 

prepared in the Lambda Fix II (Stratagene) cloning vector and had a titre of 1.7 x 108 pfu ml-1.  

Insert sizes ranged from 9 to 23 kb.   

 

The genomic library was prepared in host cells XL1-Blue MRA (P2).  These cells were grown to 

an OD600 of 1.0 in Luria Broth (1% (w/v) NaCl; 1% (w/v) tryptone; 0.5% (w/v) yeast extract) 

supplemented with 0.2% (w/v) maltose and 10 mM MgSO4.  Cells were then centrifuged and 

resuspended in 10 mM MgSO4.  Before use, cells were diluted to an OD600 of 0.5 with MgSO4.  

In the first round, 250 000 plaque forming units (pfu) were screened using 10 plates.  For each 

plate, 200 μl of diluted cells were added to the calculated volume of library (containing 25 000 

pfu) and incubated at 37 °C for 15 min.  Four ml of melted top agarose (1% (w/v) NZ-amine; 

0.5% (w/v) NaCl; 0.5% (w/v) yeast extract; 0.2% (w/v) MgSO4.7H2O; 0.7% (w/v) agarose) was 

added to the cell-phage suspension and poured onto pre-warmed NZCYM plates (1% (w/v) NZ-

amine; 0.5% (w/v) NaCl; 0.5% (w/v) yeast extract; 0.2% (w/v) MgSO4.7H2O; 1.5% (w/v) agar).  

Plates were incubated for 16 h at 37 °C, and then cooled at 4 °C for 2 hours before the phages 

were transferred to nylon membranes.  Dry nylon membranes (MagnaGraph nylon membranes; 

MSI), were cut to size and placed on top of the agar and were left for 20 min.  The phage DNA 

was denatured by soaking the membrane in denaturing solution (1.5 M NaCl; 0.5 M NaOH) for 2 

min, neutralised in neutralisation solution (1.5 M NaCl; 0.5 M Tris, pH 8.0) for 5 min and rinsed 

in 2X SSC (1.75% (w/v) NaCl; 0.88% (w/v) sodium citrate), 0.2 M Tris, pH 7.5 for 30 s.  Finally, 

DNA was linked to the membrane by exposing it to UV light for 2.5 min at 120 mJ cm-2. 
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Prehybridisation and hybridisation was done in RapidHyb buffer (Amersham) at 42 °C, 

according to the manufacturers instructions.  The probe was prepared by random primer 

incorporation of α32P-dCTP (Prime It II Random Labeling kit, Stratagene).  Following 

hybridisation, membranes were washed twice with 2x SSC, 0.1% (w/v) SDS at 42 °C for 20 min, 

followed by 2 x SSC, 0.1% (w/v) SDS at 50 °C for 20 min, and finally, 0.5% SSC, 0.1% (w/v) 

SDS for 20 min.  Membranes were then sealed in plastic wrap and exposed to X-ray film (Kodak) 

in cassettes fitted with intensifying screens (Amersham) for 24 hours.   After visualising the 

hybridisation results, positive plaques were punched out of the agar plates with the back of a 

Pasteur pipette.  These agar plugs were placed in 500 μl of SM-buffer (0.58% (w/v) NaCl; 0.2% 

(w/v) MgSO4.7H2O; 50 mM Tris (pH7.5); 0.1% (v/v) gelatin) with 20 μl chloroform.  Second 

and third round screening were performed as described above, except that fewer pfu’s were 

plated on each plate to allow single plaque isolation.   

 

After three rounds of screening, four positive genomic clones were isolated. Lambda DNA of 

these clones was isolated using the QIAGEN Lambda mini kit. Plate lysates were prepared 

according to the method described in Sambrook et al (1989) and these lysates were then used 

directly for the isolation of Lambda DNA.   

 

3.3.2 Characterisation of positive genomic library clones 

The Deletion Factory ™ system Version 2.0 (GibcoBRL) was used, according to the 

manufacturer’s instructions, to generate nested deletions, in both directions, across the isolated 

genomic DNA inserts. Deletions are created by intermolecular transposition of an engineered 

transposon, Transposon γδ, resulting in a set of overlapping deletion derivatives.  Deletion 

derivatives are then recovered by plating on microbiological media and selecting for loss of a 

contra-selectable marker (the pDELTA2 cosmid vector used in this system contains two pairs of 

contra-selectable and selectable genes for isolating nested deletions in both directions).  This 

selection in conjunction with screening for a downstream selectable marker, results in nested 

deletions that extend various distances from one transposon end into the cloned insert DNA. 

Screening for deletions in this system allows access to both ends of the cloned DNA in the same 

experiment.  Four steps are involved in the Deletion Factory System, namely cloning of the insert 
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DNA into the cosmid pDELTA 2, transforming competent cells, screening for deletions and 

isolating plasmid DNA for sequencing.  Deletion derivatives were sequenced using the Dye 

Terminator Cycle Sequencing Ready Reaction with AmpliTaq DNA Polymerase FS (Perkin 

Elmer Applied Biosystems) with vector specific primers.  DNASIS for Windows version 2.1 

(Hitachi Software) was used to identify overlaps in the sequences.    

 

3.3.3 Isolation of the sugarcane UDP-glucose dehydrogenase gene 

Sequences comparison with sequences in international databases using the BLAST program at 

the National Center for Biological Information (NCBI) showed that the entire coding region, and 

690 bp of an intron located in the 5’UTR (and therefore only part of the 5’UTR), had been 

isolated.   

 

To obtain the rest of the gene, a gene specific reverse primer, UGDRev3 (5’-

CTCTTCTGGTAGTCGTTGATC; 902-923 bp downstream of the translation initiation codon, 

ATG), was used with a forward primer, UGDFw3 (5’-ACGCATCGCGCCAAGGAAGA, 

approximately 110-90 bp upstream of the translation initiation codon on the cDNA sequence), 

based on a conserved sequence in the 5’UTR of closely related species (EST sequences obtained 

from international databases), to amplify the intron located within the 5’-UTR from sugarcane 

genomic DNA.  The PCR reaction was performed in a volume of 50 μl using 50 ng of gDNA as 

template.  The PCR mixture also contained: 1 x PCR buffer, 1.5 mM MgCl2, 200 μM each of 

dATP, dCTP, dGTP and dTTP, 1 U of Taq DNA polymerase (all purchased from Promega) and 

0.2 μM of each primer.  PCR was performed under the following conditions:  94 °C for 45 s (1 

cycle), 94 °C for 45 s and 55 °C for 45 s and 72 °C for 45 s (10 cycles), 94 °C for 30 s and 50 °C 

for 30 s and 72 °C for 30 s (25 cycles), 72 °C for 2 min (1 cycle).  Excess nucleotides and primers 

were removed using a Qiagen PCR Purification system. This fragment was sequenced and then 

used to screen the sugarcane genomic library, as described above.  

 

One further genomic clone was obtained.  Lambda DNA of this clone was isolated as described 

above, and digested with Not I (all restriction enzymes used were obtained from Promega, and 

used according to the protocols recommended by them) to remove the insert from the Lambda 

phage arms.  Two restriction fragments were obtained and cloned into the pDELTA2 cosmid 
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vector. The resulting cosmids were subsequently re-digested using Not I in combination with 

other enzymes. Restriction fragments were then separated on a 1.2 % (w/v) agarose gel, followed 

by capillary blotting and probing the same probe used to screen the library (transfer of DNA, 

probe labeling, pre-hybridisation and hybridisation were performed as described for Southern 

blot analysis below).  Positive fragments were subcloned into a pCR-Script (SK+) cloning vector 

(Promega) according to the manufacturers instructions, and sequenced using vector specific 

primers. A Not I Xba I fragment of approximately 4600 bp, containing the complete coding 

region, as well as the 5’-UTR containing an intron of 973 bp, and a further 1600 bp of the 

promoter region was identified in this way.  

 

3.3.4 Southern blot analysis 

Genomic DNA was isolated from 6 g of sugarcane leafroll or young sorghum leaves, according 

to Dellaporta et al. (1983), and quantified with a spectrophotometer.  Five micrograms of 

genomic DNA was digested with EcoR I, EcoR V and Xba I respectively.  The digested DNA 

was separated in a 0.8 % (w/v) agarose gel and transferred overnight to a positively charged 

nylon membrane by downward capillary blotting in 10x SSC.  DNA was cross-linked to the 

membrane through exposure to UV light for 2.5 min at 120 mJcm-2. 

 

Primer UGDRev3 (described above) was used with UGDFw4 (5’-

GCTCGATATCTGGTCACAGATCTATCTG, located between 12 – 22 bp upstream of the 

ATG; the primer contains an Eco RV restriction site (underlined) which was subsequently used to 

clone the promoter) to amplify a probe of 955 bp from the isolated genomic clone containing a 

sugarcane UDP-glucose dehydrogenase gene.  PCR was performed as described above.  The 

probe was labeled using the Prime-It II random primer labeling kit (Stratagene) and [α-32P] dCTP 

(Amersham).   

 

Pre-hybridisation and hybridisation were performed in ULTRAhybTM buffer (Ambion) at 42 °C, 

according to the manufacturer’s instructions.  Following hybridisation, the membrane was 

washed twice in 2x SSC, 0.1% (w/v) SDS for 5 min at 42 °C, then twice in 0.1x SSC, 0.1% (w/v) 

SDS for 15 min at 42 °C, and finally twice in 0.1x SSC, 0.1% (w/v) SDS for 15 min at 65 °C.  

The washed membranes were exposed to a Multi Purpose Phosphor Screen for 16 hours and 
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visualised using a phospho-imager and analysis system (Packard Cyclone; Packard Instrument 

Company Inc, USA). 

 

3.3.5 Isolation of RNA 

Total RNA was isolated from the leafroll, internode 7, roots and buds (from young and old 

internodes) of mature field grown sugarcane.  RNA was extracted from 5 g of each tissue sample 

according to a method modified from Bugos et al. (1995).  Tissues were ground to a fine powder 

in liquid nitrogen and added to 25:24:1 phenol:chloroform:isoamyl alcohol.  After vortexing, an 

equal volume of homogenisation buffer (0.1 M Tris-HCl (pH 7.5), 1 mM EDTA, 0.1 M NaCl and 

1% (w/v) SDS) was added.  Sodium acetate (pH 5.2) was then added to a final concentration 0.1 

M.  The emulsion was mixed, incubated on ice for 15 min and centrifuged at 4 °C (12 000 g, 15 

min).  The aqueous phase was subsequently transferred to a new tube and RNA precipitated 

through the addition of one volume of isopropanol followed by incubation at – 70 °C for at least 

30 min.  Precipitated RNA was recovered by centrifugation at 4 °C (10 000 g, 10 min).  Excess 

salts were removed from the pellet by washing with 70% (v/v) ethanol.  The pellet was air-dried 

and resuspended in 750 μl of diethyl pyrocarbonate (DEPC) treated water.  Insoluble particles 

were removed by centrifugation (10 000 g, 5 min).  The supernatant was transferred to a 

microcentrifuge tube, and RNA precipitated again using LiCl at a final concentration of 2 M.  To 

maximize RNA precipitation, samples were incubated overnight at 4 °C.  RNA was pelleted by 

centrifugation at 4 °C (12 000 g, 15 min).  The pellet was again washed with 70 % (v/v) ethanol, 

and resuspended in DEPC treated water.  Remaining insolubles were removed by centrifugation 

(10 000 g, 5 min).  RNA concentration was determined spectrophotometrically. 

 

3.3.6 Preparation of cDNA  

First strand cDNA synthesis was performed from 5 μg of total RNA using SUPERSCRIPTTM II 

Rnase H- Reverse Transcriptase (GibcoBRL) according to the manufacturers instructions.  The 

resulting cDNA was further purified using a Qiagen PCR Purification kit.   

 

3.3.7 Amplification of UDP-glucose dehydrogenase from cDNA from different tissues 

Primers UGDFw3 and UGDRev3 were used to amplify a 1042 bp fragment of the UDP-glucose 

dehydrogenase gene from 1 ng of total cDNA prepared from field-grown sugarcane leafroll, 
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internode 7, roots and buds (taken from young and old internodes).  Four duplicate reactions were 

performed for each tissue (PCR was performed as described above).  Amplified fragments from 

the same tissues were pooled, cloned using a pGEM®-T Easy Vector System (Promega) and used 

to transform DH10B competent cells (GibcoBRL).   

 

Plasmid DNA was isolated from 4 separate positive colonies per tissue using the Qiagen High 

Pure Plasmid Purification kit.  Sixteen cloned amplified fragments were purified, and the 

orientation of the inserts was determined by restriction digestion.  Clones were all sequenced 

once from the 5’-end using vector specific primers and a Dye Terminator Cycle Sequencing 

Ready Reaction with AmpliTaq DNA Polymerase FS (Perkin Elmer Applied Biosystems).   

 

3.3.8 Analysis of UDP-glucose dehydrogenase from cDNA from different tissues 

DNASIS for Windows version 2.1 (Hitachi Software) was used to align and compare the first-

pass 5’ sequences.  To avoid poor quality sequences only 550 bp, including 114 bp of the 5’-UTR 

and the first 436 bp of the ORF, of each sequence was retained.   Putative Single Nucleotide 

Polymorphisms  (SNP) and small-scale insertion/deletion (INDEL) were identified from the 

aligned sequences.  A SNP or INDEL site was only retained if the surrounding adjacent 

sequences were perfectly homologous for all the sequences, and the least frequent variant at the 

site occurred at least twice.   

 

Homologous sugarcane ESTs from different sugarcane varieties and libraries, encoding UDP-

glucose dehydrogenase genes, were identified using the BLAST program at the NCBI.  The 

threshold was a BLASTN score ≥ 800 with the query sequence.  Sequences that met this criteria 

were retrieved from GenBank and investigated for the presence or absence of the SNPs and 

INDELs identified in the ESTs produced from sugarcane variety N19 leafroll, internode 7, roots 

and buds. 
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3.4 RESULTS 

 

3.4.1 Isolation of the sugarcane UDP-glucose dehydrogenase gene 

Initial screening of a sugarcane genomic library using a partial cDNA encoding UDP-glucose 

dehydrogenase as a probe led to the isolation of four clones.  Sequence analysis of these clones 

revealed that only one of them contained the complete coding region of the gene with an 

additional 720 bp of the upstream sequence.  The clone contained an open reading frame (ORF) 

of 1443 bp, encoding 480 amino acids with a predicted molecular weight of 52 kDa, similar to 

that reported for sugarcane UDP-glucose dehydrogenase (Turner and Botha, 2002). Comparison 

to sequences in international databases confirmed that this sequence showed extensive homology 

to UDP-glucose dehydrogenases from other species.  Near perfect homology was observed 

between the query sequence and a partial sorghum sequence.  This sequence is part of BAC clone 

170F8 (GenBank accession number AF503433) and only contains the first 650 nt of the coding 

region.  In this area, an identity of 97% on a nucleotide level and 100% at an amino acid level 

was observed.  Identity to other species for which the full-length sequences were available is 

shown in Table 3.1. 

 
Table 3.1 Identity of UDP-glucose dehydrogenase from sugarcane to other plant species at a nucleotide (nt) (ORF 

only) and amino acid (aa) level.   

% Identity (similarity)  
UGDH source GenBank 

accession number nt aa 

Zea Mays AY103689 95 98 (99) 
Oryza Sativa AK103919 87 95 (97) 
Glycine Max GMU53418 78 91 (95) 
Arabidopsis Thaliana AYO88902 77 89 (95) 
Populus Tremula AF053973 76 88 (94) 

% Identity refers to identical residues, % similarity refers to residues with similar properties 

 

Analysis of the deduced amino acid sequence revealed that all the structural features, initially 

identified for the bovine enzyme (Hempel et al., 1994), were present.  These include the NAD 

cofactor binding site, the catalytic site with a centered Cys residue, and the two Pro residues 

believed to represent the main chain bends in the protein structure (Figure 3.1).      
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The right border of an intron was found 24 bp upstream of the translation initiation site.  

Although the complete sequence of the coding region was obtained, the left border of the intron, 

as well as the rest of the 5’-UTR sequence, was not contained in the genomic clone.  To obtain 

the missing sequence, a primer was designed based on a conserved sequence, located 

approximately 110 – 90 bp upstream of the translation initiation site in the 5’UTR region of the 

closely related species maize and sorghum, and used in conjunction with a sugarcane gene 

specific primer to amplify a fragment of approximately 1200 bp from sugarcane genomic DNA.  

Sequence analysis confirmed that this fragment contained an intron sequence of 973 bp (located 

within the 5 ‘UTR) as well as a part of the 5’ end of a sugarcane UDP-glucose dehydrogenase 

gene.  This fragment was used to re-screen the sugarcane genomic library. One further genomic 

clone was obtained.  From this clone a restriction fragment of approximately 4600 bp, which 

contained the complete coding region, 5’-UTR and intron, as well as 1600 bp of upstream 

sequence, was cloned.  Figure 3.1 shows the nucleotide and deduced amino acid sequences of the 

gene.   

 

3.4.2 Southern blot analysis 

The genomic complexity of sugarcane and sorghum UDP-glucose dehydrogenase was 

investigated by digesting genomic DNA with selected restriction enzymes, followed by analysis 

on a Southern blot using a sugarcane UDP-glucose dehydrogenase probe.  Restriction enzymes 

used to prepare the genomic DNA all had a restriction site outside of, but close to the coding 

region.  A very simple and very similar banding pattern was observed for both of the species 

investigated, which probably reflects a low copy number (Figure 3.2).   

 

3.4.3 Analysis of UDP-glucose dehydrogenase from cDNA prepared from different tissues 

Gene specific primers were used to amplify a fragment of the UDP-glucose dehydrogenase gene 

from cDNA prepared from sugarcane leafroll (LR), internode 6 (I6), roots (RT) and buds (BD).  

Four cloned sequences per source tissue were sequenced from the 5’ end.   DNASIS for 

Windows version 2.1 (Hitachi Software) was used to align and compare 550 bp, including 114 bp 

of the 5’-UTR and the first 436 bp of the ORF, of the first-pass 5’ sequences.  
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TGCTTCTGGTTTCTGACCAGCCTTGACGCGGTTACTATTTTTTTTTTCTACGGGACACGGCACGGTTATTTTTTG         -80 

AAGCCGAGGGGTAGATCTGGTTCGGTGGGTTTGCGGGCCGGGGTATTTAAGGACTCGTGGCCTCGCTTCTCCTCT        -15

GCACACACACAAAGCGAGCTCCTCTTCTCCCACGCATCGCGCCAAGGAAGAGAGAGATCGCCGCTCCTCTTCTCT        60

TCGTCGCCTCTACTGGTGTGGGTGCCCGAGATCTTGCTGCAGTTCCTCGATATCTGGTGAGACTCGCCCACGCTG        135

TTACCGCCCTGATTTCAATTTTTTTTCCTTTCTGATGAGTCCCGCGCCTGATCATG c t a g t t g a g g a t c g t g a t t      210

t c a t t c t g g g g c t a g t t t g t t c c t c g g c t t c g t t c t g c t g c a a g c a g t t g t c t c c t c g a g t t c g t t c t c t g a g g a      285

c g a c c c t g t c t t c a g a t c t g g a a g t t t c g t g g t t t g g a t c t g a t a g g a g t t a c g g t t a c g c g t t g t a g t g g c t g a      360

a g a g g a t t t g c g c c c c c c t a a t g t t g c c t t t g c a c c c c t a c t g g a t c a g a g t t t c a g a t c t t t c t g t c t g g t c g c      435

a g t t t t a a a c g c c t t g a c g g t g c t c a t a t a c g a g t a a a t t t c a t t t t a t a a t t c g g t g g t c a t g g a t c t g t a t c c       510

t g c g a t t c c t g c c c t t c a c t c t g t t t a g g t g g t g t t t g t g t c a g g t a a c g g c a g t g c a c g t a a t g g g a a t g g g a t       585

c a c a g c t g c c t g g t t g t g t a a t a g g t g g t t g c t t a a t t t g t c t g g t t t t t c t t a g a a a a g g t t t t a g a a a g c a t t        660

a a t t t c a c a t g t a t t c g g t g g a g a a g a g g g g c c a t c c c a a t c t t g a t c a g c a g a a a a c c t g a g a t g t g c c g t g c c       735

t g c t t t a a c a a a t a t g a g t t c t g a t g a a t g t g t c c t a a c a c t t c c a c c c a a a a c a a a c c t t t t t a g a t g t g g t t t       810

g a c c t g g t c g g t a g a t g t t g c c a a t t g c t a t a c c t a g t a t a t c c g a a c t c c t a t t t a t t c a g t t c a c t t a a g t a a       885

c c t t c t c g g a a c a t g c t t a g c t a t g c t c t g t t a t t t c a g t c g t g c a c t a g t a g t c t a g t g t t c a g g a t c t g g t g c      960

t t t t g c t t g t g a a t c c t g a t t g c t t c t g t t a a c t t g g g a a a c t t g g t t g a c a t g t c t c a t c t g t c a g a t a t t c t c    1035

a g g g t a t g t g c t c t a t t t t a c a a t c c a c t a a t g a a g c a c c t t t t g c a a t t a c a g GTCACAGATCTATCTGACAAG   1110

ATGGTGAAGATCTGCTGCATCGGTGCTGGCTATGTCGGTGGCCCGACCATGGCCGTCATTGCCCTCAAGTGCCCA     1185
M V K I C C I G A G Y V G G P T M A V I A L K C P     25

GACATTGAGGTTGTTGTTGTTGACATCTCCAAGCCCCGCATTGAGGCCTGGAACAGCGACACCCTCCCGATCTAC     1260
D I E V V V V D I S K P R I E A W N S D T L P I Y         50

GAGCCTGGCCTCGATGATGTTGTGAAGCAGTGCAGGGGGAAGAACCTCTTCTTCAGCACTGATGTTGAAAAGCAT   1335
E P G L D D V V K Q C R G K N L F F S T D V E K H        75

GTCGCTGAGGCTGACATTATTTTCGTCTCGGTGAACACCCCCACCAAGACCCGTGGGCTTGGAGCTGGCAAGGCT    1410
V A E A D I I F V S V N T P T K T R G L G A G K A       100

GCCGACCTCACCTACTGGGAGAGTGCTGCTCGTATGATCGCTGATGTCTCCAAGTCTGACAAGATTGTTGTTGAG     1485
A D L T Y W E S A A R M I A D V S K S D K I V V E       125

AAGTCCACCGTCCCTGTCAAGACTGCTGAGGCCATTGAGAAGATCTTGACCCACAACAGCAAGGGCATCAACTAC   1560
K S T V P V K T A E A I E K I L T H N S K G I N Y         150 

CAGATCCTTTCCAACCCAGAGTTCCTTGCGGAGGGCACTGCTATTGAGGACCTGTTCAAGCCTGACAGAGTGCTC     1635
Q I L S N P E F L A E G T A I E D L F K P D R V L      175

ATCGGTGGTCGGGAGACCCCTGAGGGCAGGAAGGCCGTCCAGGCTCTCAAGGATGTGTACGCTCACTGGGTTCCC   1710
I G G R E T P E G R K A V Q A L K D V Y A H W V P     200

GAGGACAGGATCCTCACCACCAACCTGTGGTCTGCTGAGCTCTCCAAGCTCGCTGCCAACGCGTTCTTGGCACAA    1785
E D R I L T T N L W S A E L S K L A A N A F L A Q        225

AGGATCTCCTCTGTGAATGCCATCTCCGCCCTCTGCGAAGCAACTGGTGCCAATGTGTCTGAGGTGGCTTACGCC      1860
R I S S V N A I S A L C E A T G A N V S E V A Y A       250

GTGGGCAAGGACACCAGGATTGGCCCCAAGTTCCTGAACGCCAGTGTTGGGTTCGGTGGCTCTTGCTTCCAGAAG    1935
V G K D T R I G P K F L N A S     V G F G G S C F Q K          275

GACATCCTGAACTTGGTGTACATCTGCGAGTGCAATGGCCTGCCCGAGGTCGCCAACTACTGGAAACAGGTGATC    2010
D I L N L V Y I C E C N G L P E V A N Y W K Q V I      300

AAGATCAACGACTACCAGAAGAGCCGGTTCGTTAACCGCGTTGTGTCCTCCATGTTCAACACCGTCGCCGGCAAG    2085
K I N D Y Q K S R F V N R V V S S M F N T V A G K       325

AAGATCGCTGTCCTCGGCTTCGCCTTCAAGAAGGACACCGGTGACACCAGGGAGACCCCGGCCATTGACGTCTGC   2160
K I A V L G F A F K K D T G D T R E T P A I D V C      350
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Figure 3.1  Nucleotide (nt) and derived amino acid (aa) sequence of a sugarcane gene encoding UDP-

glucose dehydrogenase.  The gene contains a single  intron located in the 5’-UTR (lower case in figure), 

followed by a continuous open reading frame encoding 480 aa.  A putative transcription initiation site, based 

on homology to known full length cDNA sequences and ESTs, is numbered as nt 1, and underlined with an 

arrow.  The stop codon is indicated by an asterisk at base pair 2551.  The highly conserved NAD cofactor 

binding site (aa 8-18) is boxed.  Pro residues located at 89 and 156 (boxed) have been reported to represent 

main bends in the protein structure (Hempel et al., 1994).  The catalytic site (aa 267-278) with a centered 

Cys residue (aa 273) is shaded in gray.  Two conserved Lys residues (circled) are located at positions 216 

and 335.  The above-mentioned features are perfectly conserved for all known plant UDP-glucose 

dehydrogenases (Johansson et al., 2002). 

AAGGGCCTGTTGGGTGACAAGGCCCAGATCAGCATCTACGACCCCCAGGTGACGGAKGACCAGATYCAGCGGGAC      2235
K G L L G D K A Q I S I Y D P Q V T X D Q I Q R D        375

CTGGCCATGAACAAGTTCGACTGGGACCACCCGATGCACCTGCAGCCAACGAGCCCCACGGCCGTGAAGCAGGTG   2310
L A M N K F D W D H P M H L Q P T S P T A V K Q V     400 

AGATGCGTGTGGGACGCGTACGAGGCCACCAAGGGTGCCCACGGGCTGTGCATCCTGACCGAGTGGGACGAGTTC   2385
R C V W D A Y E A T K G A H G L C I L T E W D E F      425

AAGACCCTGGACTACCAGAAGATCTTCGACAACATGCAGAAGCCTGCCTTCGTCTTCGATGGCCGCAACATCGTC     2460
K T L D Y Q K I F D N M Q K P A F V F D G R N I V       450

GACGCCGAGAAGCTGAGGGAGATCGGCTTCATCGTCTACTCCATCGGCAAGCCGCTGGACGCCTGGCTCAAGGAC    2535
D A E K L R E I G F I V Y S I G K P L D A W L K D     475 

ATGCCCGCGGTCGCTTAATTCCACCCTTCATCCGAGGTGCTCCATGGATTGAATTCGGGGAACGAAGAGGAACTG     2610
M P A V A *                            480

GTTGACCATTCTTTATTGCAGTTTGTTTTTGCAGGCTACGCTACGATTTCTCTCGTGTCAGGCATAAAAGTAAAA         2685

GTTGGACGGCGCTGCTAGTATTCCCTGTTCGGTTGGTGTATTTCATGGTTGGAGGACGTCTGTAGATGTAACAAT       2760

CCTCAGGCCCTCGTGCTCTGCTTGAGGAAATTTCCGTGTACGGTTGTACCCTGGACCTGCTATAGCCGGTTGATT        2835

CTTCAATTGTATTCCTAAAAGTTATACGATCGATATGTTTCTTTTTTGCAGAATAACAATTCTTGCTCACGTTTC       2910

ACCCTTTT                            2918

Figure 3.2  Southern analysis of sugarcane (1-3) and sorghum (4-6) UDP-glucose dehydrogenase.  A 944 bp 

fragment of the 5’ end of the sugarcane gene (PCR product of primers UGD Fw4 and UGD Rev3) was used 

to probe 5 μg of completely digested gDNA:  (1, 4) Eco RI; (2, 5) Eco RV; (3, 6) Xba I. 

       1              2              3        4  5   6 
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Using the criteria described under materials and methods, putative SNPs and INDELs were 

identified from the aligned sequences.  A total of 4 bi-nucleotide SNPs were identified in this 

way.  Three of these SNPs are located within the coding region of UDP-glucose dehydrogenase 

and all correspond to synonymous amino-acid substitutions.  The fourth SNP is located in the 

non-coding 5’-UTR.  Another SNP, which did not meet the selection criteria as it occurred in 

only one of the sequences, LR2, was also retained.  This putative SNP, located in the 5’-UTR, 30 

bp upstream of the translation initiation site (ATG), can either be a ‘G’ (15/16 sequences) or a T 

(1/16 sequences).  A ‘T’ at this position creates an Eco RV restriction site.   This restriction site 

was present in the genomic sequence isolated after screening a sugarcane genomic library, and 

was therefore retained as a legitimate SNP for further investigation.  Only one INDEL of 6 bp, 

located in the 5’-UTR, was detected.  This INDEL was present in half of the sequences (i.e. 8) 

and only one variant was observed.  Combining the five SNPs and the INDEL leads to the 

identification of seven distinct haplotypes.  These results are summarised in Table 3.2.   

 

To investigate whether these alleles were also expressed in other sugarcane varieties, the BLAST 

program at the NCBI was used to identify homologous sequences from the Brazilian Sugarcane 

EST Project (SUCEST).  This project recently produced about 230 000 randomly cloned cDNAs 

from 27 libraries prepared from 10 sugarcane varieties (http://sucest.lad.ic.unicamp.br/en/).  

Sequences with a BLASTN score ≥ 800 with the query sequence, were retrieved from GenBank 

and investigated for the presence or absence of the SNPs and INDEL described above.  Seventy-

one sequences that covered the 550 bp of the UDP-glucose dehydrogenase gene originally 

aligned were retrieved.  With regards to the four SNPs and the INDEL, sixty-nine of these 

sequences matched one of the seven putative alleles (Table 3.2).  One allele, initially represented  

by only one sequence, was not matched by any of the ESTs.  Though the probability that a 

specific SNP, only retained if the surrounding adjacent sequences were perfectly homologous for  

all the sequences, and the least frequent variant at the site occurred at least twice, is quite high, 

the appearance of an allele, i.e. the combination of several SNPs and INDELS, may still be the 

result of a sequencing error as all the aligned sequences were first-pass 5’ sequences.  Also, the 

reliability of SNP detection, and therefore detection of specific alleles, increases with the volume 

of sequences available.  Sugarcane ESTs identical to the other 6 putative alleles (with regards to 

the SNPs and INDEL) support the validity of the results obtained. 
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Table 3.2 Sequence polymorphisms inside the sugarcane UDP-glucose dehydrogenase gene, observed in partial 

cDNA sequences derived from the leafroll (LR), internode 6 (I6), roots (RT) and buds (BD) of sugarcane cultivar 

N19.  Putative SNPs and an INDEL were identified after alignment of the 16 sequences identified in column 1 

(selection criteria described in the text).  The position of each site is given relative to the translation initiation site.  

The consensus line gives the majority variant observed at each site (only one variant of the INDEL sequence was 

observed therefore this sequence is given in the consensus line).  A ‘*’ indicates that the cDNA sequence is identical 

to the consensus line.  The presence of the INDEL is indicated by a ‘+’ and it’s absence by a ‘-’.  Seven distinct 

haplotypes are identified in column eight. Homologous sugarcane 1ESTs from different sugarcane varieties and 

libraries were identified using the BLAST program at the NCBI.  Seventy-one highly homologous sequences 

(BLASTN score ≥ 800) were retrieved from GenBank and investigated for the presence or absence of the observed 

SNPs and INDEL. Sixty-nine of these matched one of the seven identified haplotypes (shown in the last column).   

Sequence INDEL SNP 

Consensus CTCTAC C G C A T 

Position -65 -30 -27 180 210 247 

Haplotype 

Number of 

matching ESTs 

retrieved from 

GenBank 
LR 1 - T * * G C 1 40 

LR 2 + * T * * * 2 7 

LR 3 + * * G * * 3 3 

LR 4 + * * * * * 4 9 

I6 1 + * * G * * 3 3 

I6 2 - T * G * * 5 0 

I6 3 + * * * * * 4 9 

I6 4 - T * * G C 1 40 

RT 1 - T * * G C 1 40 

RT 2 + * * * * * 4 9 

RT 3 - T * * G C 1 40 

RT 4 + * * * * * 4 9 

BD 1 + * * G * * 3 3 

BD 2 - * * * G C 6 4 

BD 3 - T * * G C 1 40 

BD 4 - * * * * * 7 6 

1ESTs retrieved from GenBank all came from the Brazilian Sugarcane EST Project (SUCEST), which recently 

produced about 230 000 randomly cloned cDNAs from 27 libraries prepared from 10 sugarcane varieties  

(http://sucest.lad.ic.unicamp.br/en/).   
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3.5 DISCUSSION 

 

UDP-glucose dehydrogenase catalyses the oxidation of UDP-glucose to UDP-glucuronic acid, a 

precursor for sugar nucleotides, which are incorporated into pectin and hemicelluloses.  Enzyme 

activity of UDP-GlcDH is correlated with growing and expanding tissue that have a demand for 

hemicellulose precursors.  UDP-glucose dehydrogenase was recently purified from sugarcane 

(Turner and Botha, 2002).  Characterisation of the kinetic properties of this enzyme revealed 

significant differences between UDP-glucose dehydrogenase from sugarcane (Turner and Botha, 

2002), the first UDP-glucose dehydrogenase isolated from a monocot, and those previously 

isolated from dicotyledonous plant species (Robertson et al., 1996; Stewart and Copeland, 1998).  

It was suggested that these differences may represent divergence between monocotyledonous and 

dicotyledonous plant species.  In the current study a gene encoding UDP-glucose dehydrogenase 

was isolated from sugarcane, representing the first sequence of this gene isolated from a 

monocotyledonous species.  The gene contains a single intron of 973 bp located in the 5’-UTR, 

followed by a continuous open reading frame encoding 480 aa.  A predicted molecular mass for 

the derived amino acid sequence of 52 kDa is in agreement with that found for sugarcane UDP-

glucose dehydrogenase (Turner and Botha, 2002).  Introns located in the 5’-UTR have been 

documented in many cases to have a large positive effect on gene expression, especially in 

monocots (Christensen et al., 1992; Luehrsen and Walbot, 1991; Maas et al., 1991; McElroy et 

al., 1991; Rethmeier et al., 1997; Rethmeier et al., 1998).  As all plant sequences that encode 

UDP-glucose dehydrogenase isolated to date have been cDNA sequences, an intron in this 

position has not been reported for other plant species.  However, PCR amplification from 

genomic DNA of sugarcane, maize and sorghum, using primers located on either side of the 

intron (UGDRev3 and UGDFw3, as described in materials and methods), resulted in a product of 

similar size for all three species (results not shown).  This indicates that UDP-glucose 

dehydrogenase genes from these closely related monocots contain this 5’-UTR intron.  Also, an 

investigation of sequences available in Genbank confirms the presence of an intron in this 

position for UDP-glucose dehydrogenase from sorghum, rice and Arabidopsis (GenBank 

accession numbers AF503433, AL731873 and AL391143, respectively).  All these species 

contain a large intron (sugarcane, 973 bp, sorghum 962 bp, rice 651 bp, and Arabidopsis 773 bp) 

 located 20 to 30 bp upstream of the translation initiation site. 
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Within the coding region, the isolated sequence contains all of the conserved motifs previously 

described for UDP-glucose dehydrogenases from plant (Johansson et al., 2002; Tenhaken and 

Thulke, 1996) and animal sources (Franzen et al., 1981; Hempel et al., 1994).  The highly 

conserved GXGXXGG pattern of the NAD cofactor binding site is found near the N-terminus (aa 

8-14).  This cofactor binding site and the following four amino acids (aa 15-18) are conserved for 

all plant species examined (Johansson et al., 2002).  Similarly conserved are two Pro residues, 

located at positions 89 and 156 for sugarcane, believed to represent main bends in the protein 

structure (Hempel et al., 1994).  Two Lys residues (aa 216 and 335), which correspond to Lys 

219 and Lys 338 of bovine UDP-glucose dehydrogenase, are also found in the sugarcane 

sequence.  One of these Lys residues is probably catalytically involved in the first half-reaction of 

the enzyme (conversion of UDP-glucose to UDP-aldehydoglucose) (Hempel et al., 1994).  The 

main catalytic site (Figure 3.1, aa 267-278) of UDP-glucose dehydrogenase was initially 

identified for the bovine enzyme by chemical modifications of amino acids and subsequent 

peptide sequencing (Franzen et al., 1981).  For bovine UDP-glucose dehydrogenase, a centered 

Cys residue (aa 273 in sugarcane) supposedly involved in the second-half of the reaction 

catalysed by UDP-glucose dehydrogenase (conversion of UDP-aldehydoglucose to UDP-

glucuronate) is essential for the functioning of the enzyme (Hempel et al., 1994).  A recent study 

of soybean UDP-glucose dehydrogenase (Hinterberg et al., 2002) showed that this enzyme is 

strongly inhibited by reagents that modify cystein groups in proteins, confirming the essential 

role of this residue in plant UDP-glucose dehydrogenases.   

 

Besides these conserved motifs, the entire sugarcane sequence is highly homologous to 

sequences isolated from other plant species (Table 3.1).  Identity of 91% (with a similarity of 

95%) between the sugarcane and soybean sequences suggests that the differences observed in the 

kinetic properties of UDP-glucose dehydrogenase purified from these two species (Stewart and 

Copeland, 1999; Turner and Botha, 2002), is probably not a result of structural differences in the 

protein.   

 

The genomic complexity of sugarcane and sorghum UDP-glucose dehydrogenase was 

investigated by Southern blot analysis.  Sorghum appears to be an excellent model for sugarcane, 

as it is a closely related diploid with a monoploid genome size very close to that predicted for 
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sugarcane (Butterfield et al., 2001), and its chromosomes are collinear with sugarcane (Dufour et 

al., 1997). Restriction enzymes used to prepare the genomic DNA all had a restriction site outside 

of, but close to the coding region.  A very simple and very similar banding pattern was observed 

for both of the species investigated, which probably reflects a low copy number (Figure 3.2).  

Based on Southern blots, UDP-glucose dehydrogenase from soybean (Tenhaken and Thulke, 

1996), Arabidopsis (Seitz et al., 2000) and poplar (Johansson et al., 2002) were all believed to 

represent a single copy gene.  However, a subsequent evaluation of the Arabidopsis database 

after completion of the genome project indicated the presence of three more copies (Reiter and 

Vanzin, 2001).  The four sequences are highly homologous (83% - 93% identity) and are all 

transcribed.  This means that Southern blot analysis is not an accurate technique for determining 

the exact copy number of a gene within a genome.  It can at best indicate a relatively high or low 

copy number. 

 

Commercial sugarcane cultivars appear to have 2n chromosome numbers of between 100 and 130 

(Butterfield et al., 2001).  This implies that for each single copy of a gene, up to ten alleles can be 

present, each of which potentially corresponds to a distinct haplotype.  Not enough is known 

about sugarcane molecular genetics to predict whether all these alleles are expressed.  To 

investigate the possibility that sugarcane expresses multiple alleles or more than one homologous 

copy of UDP-glucose dehydrogenase, a 550 bp fragment of the 5’ end of the gene, including 114 

bp of the 5’-UTR and the first 436 bp of the ORF, was amplified from cDNA prepared from 

different tissues.  In total, sixteen sequences amplified from four different tissues were compared.  

Though differences were observed between sequences, a 100% identity of the derived amino acid 

sequences of all the clones indicated allelic variation within a single gene rather than multiple 

different homologous gene copies.  As it is possible, even likely, that sugarcane, like 

Arabidopsis, contains more than one gene copy of UDP-glucose dehydrogenase, it could be that 

the primers used to amplify the 5’ end of the gene are specific for one of these copies.  Also, an 

inducible UDP-glucose dehydrogenase or highly tissue specific copy may not be represented in 

the cDNA pools used.  Sugarcane EST projects are currently underway in South Africa (Carson 

and Botha, 2000; Carson and Botha, 2002; Carson et al., 2002), Australia (Casu et al., 2003) and 

Brazil (http://sucest.lad.ic.unicamp.br/en/).  More than 230 000 sugarcane EST sequences are 
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currently available at the NCBI.  A search of these sequences will probably reveal additional 

expressed copies of UDP-glucose dehydrogenase. 

 

Putative Single Nucleotide Polymorphisms  (SNP) and small-scale insertion/deletion (INDEL) 

were identified from the aligned sequences.  A total of 5 bi-nucleotide SNPs and one INDEL 

sequence were identified (Table 3.2).  Three of these SNPs are located within the coding region 

of UDP-glucose dehydrogenase and all correspond to synonymous amino-acid substitutions.  The 

mean density of SNPs in the part of the coding region examined was therefore one every 145 bp, 

similar to that reported by Grivet et al. (2003) for sugarcane Adh genes (one every 122 bp).  This 

is much higher than the one every 1500 (Deutsch et al., 2001) or 3330 bp (Garg et al., 1999) 

reported for human ESTs.  The other two SNPs are located in the non-coding 5’-UTR.  One of 

the SNPs in the 5’-UTR creates or removes an Eco RV restriction site.  Although only one 

amplified sequence contained this restriction site, the presence of this SNP gives a plausible 

explanation for the presence of an additional fainter band (one allele rather than one gene copy) 

observed on the Southern blot when genomic DNA is digested using Eco RV.  Only one INDEL 

of 6 bp, located in the 5’-UTR, was detected.  This INDEL was present in half of the sequences 

(i.e. 8) and only one variant was observed.  The particularly high density of polymorphisms 

detected within the 5’-UTR, 3 in 114 bp of 5’-UTR, is consistent with the findings of Grivet et al. 

(2003). The two SNPs and INDEL occur within a 40 bp fragment of the 5’-UTR.  Based on 

results obtained for sugarcane Adh genes and other unpublished results, Grivet et al. (2003) 

suggest that the high level of variation, detected over short sequence of the 5’-leader, may be a 

common feature of sugarcane genes.  Combining the five SNPs and the INDEL leads to the 

identification of seven distinct haplotypes.  It is, of course, necessary to consider that it is 

possible to confuse alleles of the same gene, occupying the same locus on a particular 

chromosome, with recently diverged paralogous loci.  However, the fact that all of these SNPs 

located within the coding region correspond to synonymous amino-acid substitutions, therefore 

encoding an identical protein (at least for the first 145 amino acids) supports that these 

haplotypes represent different alleles of the same gene.   

 

To investigate whether these alleles were also expressed in other sugarcane varieties, homologous 

sequences from the Brazilian Sugarcane EST Project (SUCEST) were identified.  Seventy-one 
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sequences that covered the 550 bp of the UDP-glucose dehydrogenase gene originally aligned, 

were retrieved.  With regards to the four SNPs and the INDEL, sixty-nine of these sequences 

matched one of the seven putative alleles (Table 3.2).  Almost two thirds of these sequences 

(40/69) corresponded to a single haplotype.  In the current study, this haplotype was also 

represented by the most sequences (5/16) and amplified from every tissue.  There are two 

possible explanations for the frequent occurrence of a specific sequence.  It could be that this 

allele occurs more frequently than others.  Another possibility is that the expression of this allele 

is regulated by a stronger promoter than that of other alleles.  Further studies of allelic variation 

and expression of these alleles in sugarcane are required to fully explain this phenomenon. 

 

This study provides the first evidence for the simultaneous expression of distinct haplotypes in 

one sugarcane plant.  As the reliability of detected polymorphisms, and therefore detection of 

specific alleles, increases with the volume of sequences available, the presence in the SUCEST 

database of expressed sequences homologous to the identified haplotypes (with regards to the 

SNPs and INDEL), supports the validity of the results obtained.  Whether this is a common 

feature of sugarcane genes is not known at present.  However, the possibility that multiple alleles 

are expressed to provide the required levels of a specific enzyme, rather than the increased 

expression of one dominant allele is encouraging for sugarcane gene and promoter isolation, as 

many sequences contained in a genomic library, for example, may represent expressed copies of 

a specific gene adjacent to active promoters.     
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CHAPTER 4 
 

TISSUE SPECIFIC EXPRESSION OF UDP-GLUCOSE 

DEHYDROGENASE IN SUGARCANE 
 

4.1 ABSTRACT 

 

Most hemicelluloses and pectins that are incorporated into the cell wall are derived from a 

common precursor, namely UDP-glucuronic acid.  UDP-glucuronic acid can be produced by the 

enzyme UDP-glucose dehydrogenase (EC 1.1.1.22).  In this study the contribution of UDP-

glucose dehydrogenase to pentan synthesis, as well as the expression pattern and subcellular 

localisation of the enzyme in mature sugarcane plants was studied at the tissue and cellular level.  

Radiolabelling with positionally labelled glucose was used to investigate the relative 

contributions of glycolysis, the oxidative pentose phosphate pathway and pentan synthesis to 

glucose catabolism.  Significantly (P=0.05) more radiolabel was released as CO2 from [6-14C]-

glucose than [1-14C]-glucose in internodes 3, 4 and 5.  This demonstrates a significant 

contribution of UDP-glucose dehydrogenase to glucose oxidation in the younger internodes.  In 

addition, there was significantly (P=0.05) more radiolabel in the cell wall (fiber) component 

when the tissue was labelled with [1-14C]-glucose rather than [6-14C]-glucose. This also 

demonstrates a selective decarboxylation of glucose in position 6 prior to incorporation into the 

cell wall and is consistent with a major role for UDP-glucose dehydrogenase in cell wall 

synthesis in the younger internodes.  This implies that the production of UDP-glucuronic acid 

through the UDP-glucose dehydrogenase reaction is only important in the developing internodes.  

High levels of expression of both the UDP-glucose dehydrogenase transcript and protein were 

detected in the leafroll, roots and young internodes of the sugarcane culm.  In situ hybridisation 

showed that the UDP-glucose dehydrogenase transcript is present in virtually all cell types 

present in the sugarcane internode, while immunolocalisation in internodal sections from 

different developmental stages showed that the abundance of the protein declined in all cell types 

as maturity increased.  The abundance of UDP-glucose dehydrogenase in developing tissues 

confirms that this enzyme plays an important role in the provision of hemicellulose precursors in 

most developing tissues of the sugarcane plant.    
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4.2 INTRODUCTION 

 

Plant cells are surrounded by a network of interwoven polysaccharides that make up the cell wall.  

This cell wall, involved in the control of cell growth, cell signalling and defence, is essential for 

every aspect of plant life and represents a major carbon sink.  The carbohydrate components of 

the cell wall are derived from a common precursor, namely UDP-glucose (Carpita, 1996). UDP-

glucose is probably present in all plant cells and can be produced by either sucrose synthase (EC 

2.4.1.13) or UDP-glucose pyrophosphorylase (EC 2.7.7.9) (Quick and Schaffer, 1997).  

Nucleotide sugar interconversion pathways represent a series of enzymatic reactions by which 

plants synthesise activated monosaccharides for incorporation into plant cell wall material 

(Gibeaut, 2000).  In general, sugars are activated by conversion into nucleotide sugars, which act 

as substrates for the generation of other monosaccharides (Bolwell, 2000; Reiter and Vanzin, 

2001).  

 

The first step in this series of nucleotide sugar interconversion reactions takes place in the cytosol 

and produces UDP-glucuronic acid.  UDP-glucuronic acid can either be produced directly from 

UDP-glucose by UDP-glucose dehydrogenase (EC 1.1.1.22) (Nelsestuen and Kirkwood,1971; 

Dalessandro and Northcote, 1977b), or can be formed by an alternate pathway, which involves 

the conversion of myo-inositol into glucuronic acid in a reaction catalysed by inositol oxygenase  

(reviewed by Loewus and Murthy, 2000).  Both of these pathways may exist in plants, their 

importance depending on the plant species and tissue (Seitz et al., 2000).  UDP-glucuronic acid is 

imported to the Golgi (Gerardy-Schahn et al., 2001) where it serves as substrate for both 

glycosyltransferases and for nucleotide sugar interconversion enzymes which produce precursors 

for hemicellulose and pectin, including arabinans, arabinogalactans, glucuronoarabinoxylans, 

rhamnogalacturonans, xylans and xyloglucans (Carpita, 1996; Bolwell, 2000; Gibeaut, 2000).   

 

Significant levels of UDP-glucose are present in the sugarcane culm (Whittaker and Botha 1997).  

The cycling of carbon between sucrose and hexoses (Batta and Singh, 1986), resulting from the 

simultaneous synthesis and degradation of sucrose (Whittaker and Botha, 1997, Vorster and 

Botha, 1999) probably ensures that a significant pool of UDP-glucose, not only the precursor for 

the synthesis of structural polysaccharides, but also a respiratory substrate and a substrate for 



 63

sucrose synthesis, is maintained.  As sugarcane is cultivated for its sugar-rich stalks, most carbon 

partitioning research in this plant has focussed on the accumulation of sucrose and partitioning 

within the sugar pool.  Relatively little attention has been paid to the allocation of carbon to 

structural components of the cell such as the cell wall.   

 

Studies of enzymes involved in the nucleotide sugar interconversion pathway found that UDP-

glucose dehydrogenase is often the least active enzyme of the pathway suggesting that this 

enzyme may be rate-limiting for the provision of precursors for the expanding cell wall (Amino 

et al., 1985; Dalessandro and Northcote, 1977b; Robertson, Beech and Bolwell, 1995; Robertson, 

McCormack and Bolwell, 1995).  Also, control of the activity of UDP-glucose dehydrogenase by 

feedback inhibition by UDP-xylose, the decarboxylation product of UDP-glucuronic acid, 

supports the idea that the reaction catalysed by this enzyme may represent a control point for the 

irreversible carbon flux into the pool of UDP sugars required for the biosynthesis of matrix 

polysaccharides (Dalessandro and Northcote 1977a; Dalessandro and Northcote1977c; 

Hinterberg et al., 2002; Stewart and Copeland, 1999; Turner and Botha, 2002).     

 

A strong correlation between the expression of UDP-glucose dehydrogenase and a demand for 

structural polysaccharides in tissues that are actively synthesising cell walls, has been reported 

for several plant species ( Dalessandro and Northcote, 1977a; Amino et al., 1985; Witt, 1992; 

Robertson, Beech, and Bolwell, 1995; Tenhaken and Thulke, 1996; Stewart and Copeland, 1998; 

Seitz et al., 2000; Johansson et al., 2002).  In soybean seedlings the highest level of UDP-glucose 

dehydrogenase gene expression was detected in actively growing tissues such as root tips and 

lateral roots, with moderate expression in the epicotyl and in expanding leaves (Tenhaken and 

Thulke, 1996).  The activity of the enzyme was also shown to be maximal during initial stages of 

nodule growth and development in soybean nodules (Stewart and Copeland, 1998).  Promoter-

reporter gene fusions, as well as protein blots, activity assays and histochemical activity staining 

in Arabidopsis showed that UDP-glucose dehydrogenase expression is regulated at a 

transcriptional level (Seitz et al., 2000).  Also, many but not all growing tissues showed high 

activity levels of the enzyme.  Hypocotyledons and cotyledons of young seedlings, for instance, 

did not show significant UDP-glucose dehydrogenase activity.  In these tissues UDP-glucuronic 

acid is synthesised through the alternative inositol oxidation pathway.  As observed for soybean, 
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UDP-glucose dehydrogenase activity in Arabidopsis was especially high in roots (Seitz et al., 

2000).  In poplar UDP-glucose dehydrogenase was expressed predominantly in differentiating 

xylem and young leaves with very low levels detected in phloem tissues (Dalessandro and 

Northcote, 1977a; Johansson et al., 2002).   

 

UDP-glucose dehydrogenase has previously been purified from rapidly expanding culm tissues 

of sugarcane (Turner and Botha, 2002).  Although the kinetic properties of the sugarcane enzyme 

were studied, no information is currently available about distribution of the enzyme in the plant.  

Here we report that UDP-glucose dehydrogenase plays an important role in pentan synthesis in 

younger compared to the more mature internodes.  In addition, the data clearly show that the 

enzyme is expressed in all cell types present in the sugarcane internode and that expression is 

highest in actively growing tissues. 

 

 

4.3 MATERIALS AND METHODS 

 

4.3.1 Plant material  

Mature, non-flowering, field-grown (in Stellenbosch, South Africa) sugarcane of cultivar N19, 

was used the isolation of nucleic acids and proteins and for the preparation of tissue sections.  

RNA and proteins were isolated from the same tissue samples.  Tissues were sampled from roots, 

leaves and internodes.  The internode above the natural break point of the sugarcane stalk was 

defined as internode 3.  Internodes below this point were numbered sequentially through to 17 as 

maturity increased. Young and mature leaves were defined as actively growing, and actively 

photosynthesising, respectively. 

 

4.3.2 14C Labelling studies  

For analysis, selected internodes were excised and longitudinal cores were sectioned mid-way 

between the core and periphery of the internode, using a cork borer 6 mm in diameter. One mm 

slices were sectioned, using a hand microtome and immediately placed in 50 ml buffer containing 

25 mM K-MES (pH 5.7), 250 mM mannitol and 1 mM CaCl2 (Lingle, 1989) and washed for 15 

min. Excess buffer was blotted from tissue discs, and the discs transferred to 1.5 ml buffer 
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containing 25 mM K-MES (pH 5.7), 250 mM mannitol, 5 mM glucose and 5mM fructose in 250 

ml Erlenmeyer flasks. In all the labelling experiments the specific activity of glucose was 23 Bq 

nmol-1 (Vorster and Botha, 1999).  Discs were vacuum-infiltrated for 5 seconds and the flasks 

sealed with rubber stoppers. Samples were incubated for 3 h on a rotary shaker at 115 rpm. 14CO2 

released over the incubation period was collected in 500 µl 12% (w/v) KOH contained in a 

central well.  After incubation, discs were transferred to 15 ml ice-cold 1% (m/v) CaCl2. 

Unincorporated sugars were removed in three consecutive 2 min washes. The first two washes 

removed 98% of unincorporated label. Discs were transferred to 20 ml 80% (v/v) EtOH in sealed 

50 ml centrifuge tubes, and incubated in an 80ºC water-bath overnight. The extracts were 

centrifuged at 12 000 g in a Sorvall SLA-600TC rotor for 15 min at 25°C. The EtOH-soluble 

supernatant was removed and discarded.  

 

The insoluble component was fractionated as described previously (Dickson, 1979). Pellets were 

homogenised in a mortar and pestle at room temperature, transferred to 2 ml Eppendorf tubes and 

dried down in a vacuum centrifuge to remove any remaining EtOH.  Proteins and starch were 

removed as described previously (Bindon and Botha, 2002).  The final insoluble material, 

representing the cell wall components (fibre), was added to 1 ml Soluene®-350 (Packard) and 

vortexed. Samples were left at room temperature for 24 h, after which the 14C cpm were 

determined. 

 

4.3.3 Production of anti-body 

UDP-glucose dehydrogenase was purified to homogeneity as previously described (Turner and 

Botha, 2002).   Rabbits were immunised through injection of eight fractions containing 100 μg of 

purified protein, according to the method described by Bellstedt et al. (1987).  Polyclonal 

antiserum was obtained from whole blood, collected after 38 days. 

 

4.3.4 Enzyme extraction 

The rind was removed from excised sugarcane internodes and the tissue ground to a fine powder 

in liquid nitrogen.  Protein was extracted at 4°C using approximately 2 ml extraction buffer per 

gram tissue.  The extraction buffer contained 50 mM Tris-Cl (pH 8.2), 10% (v/v) ethanediol, 8 

mM DTT, 1 mM EDTA, 50 mM KCl and 2% (w/v) polyvinylpolypyrrolidone (PVPP). The 
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extract was filtered through muslin cloth and centrifuged (20 000 g, 15 min) to remove coarse 

material and then desalted on a prepacked PD-10 desalting column equilibrated with the same 

buffer. 

 

UDP-glucose dehydrogenase was assayed routinely by monitoring NAD+ reduction at 340 nm in 

a BioTech (CA, USA) microtitre plate reader maintained at 25ºC.  UDP-glucose dehydrogenase 

activity was linear with respect to enzyme concentration.  Reaction mixtures contained Tris-Cl 

(50 mM, pH 8.4), NAD+ (4 mM), KCl (50 mM), ethanediol (10 % v/v), and UDP-glucose (5 

mM) in a total volume of 250 µl.   Reactions were started by the addition of NAD+. One unit of 

enzyme activity was defined as the amount of enzyme resulting in the production of 1 µmol 

UDP-glucose per min at 25ºC. 

 

4.3.5 Immuno-inactivation of UDP-glucose dehydrogenase activity 

The effect of anti-UDP-glucose dehydrogenase IgG on the sugarcane enzyme activity was 

determined in a 150 µl reaction mixture containing crude protein extract (0.015 units of enzyme) 

and 2.5 to 50 μl of antiserum.  After incubation for 45 min at 22oC, 10 μl of insoluble Protein A 

was added, and the extract incubated for a further 30 min (Cawood et al., 1988).  The sample was 

then centrifuged and residual enzyme activity measured as described above.  Percentage 

inactivation by the antibody was expressed as a percentage of the UDP-glucose dehydrogenase 

activity in extracts, which were similarly incubated, but treated with pre-immune serum and 

insoluble Protein A. 

 

4.3.6 Protein extraction and protein blot analysis 

Total soluble protein was extracted from sugarcane leafroll, young leaves, mature leaves, 

internodes 3, 6, 9, 12, 15, 17, and roots.  Tissues were ground to a fine powder in liquid nitrogen 

and soluble proteins extracted in approximately 1:4 (w/v) extraction buffer containing 100 mM 

Hepes (N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid, pH 7), 1 mM EDTA, 10 mM DTT, 

0.5 mM Pefabloc SC (4-(2-aminoethyl)-benzenesulfonyl fluoride, hydrogenchloride), 10% (v/v) 

glycerol and 2% (w/v) insoluble PVPP. Samples were briefly vortexed and then centrifuged to 

remove insoluble cell components (16 000 g, 10 min). Protein concentrations were determined 
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spectrophotometrically using the technique described by Bradford (1976), adjusted for microtiter 

plate application, using immunoglobulun G (IgG) as a standard.   

 

Proteins representing sugarcane leafroll, young leaves, mature leaves, internodes 3, 6, 9, 12, 15, 

17, and roots were separated using SDS-PAGE electrophoresis.  Twenty micrograms of each 

sample were resolved in a discontinuous 12 % (v/v) gel, followed by a 4 % (v/v) stacking gel 

(Laemmli, 1970).  A premixed protein molecular weight marker (Roche) was used as a standard.  

The gel was then equilibrated in transfer buffer (48 mM Tris, 39 mM (v/v) glycine, 20 % (v/v) 

methanol and 0.0375 % (v/v) SDS) for 20 min at 4oC.  The protein was transferred onto a 

Hybond-C (Amersham) membrane using a Transfer blot, Semi-dry transfer cell (BioRad) at 10-

15 V for an hour.  The membrane was stained with Ponceau-S solution (0.2 % (w/v) in 3 % (v/v) 

trichloroacetic acid), and destained with TBST buffer (20 mM Tris (pH 7.6), 137 mM (w/v) NaCl 

and 0.1 % (v/v) Tween-20).  Blocking was performed overnight with 4% (w/v) BSA in TBST 

buffer.   

 

The primary antibody against sugarcane UDP-glucose dehydrogenase was diluted 1: 2000, 

inoculated into the blocking buffer and incubated for 6 h at room temperature.  The membrane 

was then washed three times for 15 min with TBST buffer.  The secondary antibody, Anti-rabbit 

IgG (whole molecule) conjugated to alkaline phosphatase (Roche), was diluted 1: 2000 in 3 % 

(w/v) fat free milk in TBST and added to the membrane for an hour at room temperature.  

Thereafter the membrane was washed thoroughly, once in TBST and twice for 5 min each in 

TBST containing 10 % (w/v) SDS.  The membrane was washed in TBST again and the signal 

was developed using a detection buffer (1 Nitroblue tetrazolium/5-Bromo-4-chloro-

indolylphosphate (NBT/BCIP) tablet per 10 ml Milli-Q water). 

 

4.3.7 RNA extraction 

Total RNA was isolated from sugarcane leafroll, young leaves, mature leaves, internodes 3, 6, 9, 

12, 15, 17, and roots.  RNA was extracted from 5g of each tissue sample according to a method 

modified from Bugos et al. (1995).  Tissues were ground to a fine powder in liquid nitrogen and 

added to 25:24:1 phenol:chloroform:isoamyl alcohol.  After vortexing, an equal volume of 

homogenisation buffer (0.1 M Tris-HCl (pH 7.5), 1 mM EDTA, 0.1 M NaCl and 1% (w/v) SDS) 
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was added.  Sodium acetate (pH 5.2) was then added to a final concentration 0.1 M.  The 

emulsion was mixed, incubated on ice for 15 min and centrifuged at 4 °C (12 000 g, 15 min).  

The aqueous phase was subsequently transferred to a new tube and RNA precipitated through the 

addition of one volume of isopropanol followed by incubation at – 70 °C for at least 30 min.  

Precipitated RNA was recovered by centrifugation at 4 °C (10 000 g, 10 min).  Excess salts were 

removed from the pellet by washing with 70% (v/v) ethanol.  The pellet was air-dried and 

resuspended in 750 μl of diethyl pyrocarbonate (DEPC) treated water.  Insoluble particles were 

removed by centrifugation (10 000 g, 5 min).  The supernatant was transferred to a 

microcentrifuge tube, and RNA precipitated again using LiCl at a final concentration of 2 M.  To 

maximise RNA precipitation, samples were incubated overnight at 4 °C.  RNA was pelleted by 

centrifugation at 4 °C (12 000 g, 15 min).  The pellet was again washed with 70 % (v/v) ethanol, 

and resuspended in DEPC treated water.  Remaining insolubles were removed by centrifugation 

(10 000 g, 5 min).  RNA concentration was determined spectrophotometrically. 

 

4.3.8 Northern blot analysis 

Six micrograms of total RNA from each tissue sample were separated in a 1.2 % (w/v) agarose 

gel.  The samples were denatured through the addition of 50 % (v/v) formaldehyde and 1x MOPS 

buffer (200mM 3-[N-morpholino] propanesulphonic acid; 50 mM NaOAC; 5 mM EDTA) and 

subsequent incubation at 65 °C for 10 min before loading.  The RNA was then transferred 

overnight to a positively charged Nylon membrane (Boehringer Mannheim) by upward capillary 

blotting in 10x SSC.  RNA was further linked to the membrane by UV cross-linking at 120 mJ 

cm-2 for 2.5 min.  

 

Primers UGD Fw4 and UGD Rev3 were used to amplify a fragment of 944 bp of the 5’ end of 

the gene.  This PCR amplified probe was labelled using the Prime-It II random primer labelling 

kit (Stratagene) and [α-32P] dCTP (Amersham).  Pre-hybridisation and hybridisation were 

performed in ULTRAhybTM buffer (Ambion) at 42 °C, according to the manufacturer’s 

instructions.  Following hybridisation, the membrane was washed twice in 2x SSC, 0.1% (w/v) 

SDS for 5 min at 42 °C, then twice in 0.1x SSC, 0.1% (w/v) SDS for 15 min at 42 °C, and finally 

twice in 0.1x SSC, 0.1% (w/v) SDS for 15 min at 65 °C.  The washed membranes were exposed 
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to a Multi Purpose Phosphor Screen for 16 hours and visualised using a phospho-imager and 

analysis system (Packard Cyclone; Packard Instrument Company Inc, USA). 

 

4.3.9 In situ hybridisation 

Cellular localisation of the UDP-glucose dehydrogenase transcript was investigated using in situ 

hybridisation with DIG-labelled sense and anti-sense RNA riboprobes.  Briefly, hand sectioned 

tissue slices of internode 7 were prepared as described above.  Internodal tissue sections were 

fixed in 4 % (w/v) paraformaldehyde, pre-treated to reduce non-specific binding and dehydrated 

through a graded ethanol series.  Pre-treatment included exposure of the tissue sections to 0.2 M 

HCl for 15 min; 0.125 mg.ml-1 pronase (Sigma-Aldrich Chemie, GmbH Steinheim, Germany) in 

50 mM Tris-HCl (pH 7.5), 0.5 mM EDTA for 10 min; 0.2 % (v/v) glycine for 2 min and 1 % 

(v/v) acetic anhydride in triethanolamine (pH 8) for 10 min before a final dehydration through a 

graded ethanol series.   

 

A 561 bp Bam H1-Pst 1 restriction fragment was excised from the UDP-glucose dehydrogenase 

cDNA, and used to generate single stranded DIG-labelled sense and antisense probes by in vitro 

transcription of linearised template DNAs in the presence of DIG-labelled dUTP as described by 

the manufacturer (Boehringer Mannheim, GmbH Mannheim, Germany). These probes were 

diluted in hybridisation buffer (Sigma-Aldrich Chemie, GmbH Steinheim, Germany) to a final 

concentration of 200 ng.ml-1.  Following overnight hybridisation at 37 °C and washing at 50 °C 

in 2 x SSC in 50 % formamide, sections were treated with 1 % blocking agent (Roche Molecular 

Biochemicals, GmbH Mannheim, Germany) in 100 mM Tris-HCl (pH 7.5) in 150 mM NaCl for 

1 hour before incubation for an additional hour with the antibody (Anti-DIG Fab fragments, 

Roche Molecular Biochemicals, GmbH Mannheim, Germany) diluted in the blocking solution 

(1:3000).  Tissue sections were finally subjected to a detection buffer containing one tablet of 

NBT/BCIP tablet (Roche) in 10 % (w/v) polyvinyl alcohol (MW=70 000 –100 000) for 30-90 

min.  Sections were studied using a Nikon Eclipse E400 Microscope and photographed with a 

Nikon Coolpix 990 digital camera.   
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4.3.10 Immunohistochemistry 

Internodes 3, 7, 10 and 13, were sampled as representatives of young, immature, mature and old 

tissues respectively.  The selected internodes were excised and longitudinal cores were sectioned 

mid-way between the core and periphery of the internode, using a cork borer 6 mm in diameter.  

These cylindrical tissue sections were bisected lengthways and incubated overnight at 4 °C in a 

fixative (4% (w/v) paraformaldehyde in phosphate buffered saline (PBS; 130 mM (w/v) NaCl, 7 

mM (w/v) Na2HPO4, 3 mM (w/v) NaH2PO4.2H2O), pH 7, with 0.1 % (v/v) Triton X 100 and 0.1 

% (v/v) Tween 20).  The following day transverse sections were sliced by hand at a thickness of 

approximately 0.5 mm, and rinsed in PBS buffer for at least 15 min.  Tissue sections were 

blocked in 100 mM Tris (pH 7.5) containing 150 mM NaCl, 15 mg.ml-1 gelatin, 10 mg.ml-1 BSA 

and 0.1 % (w/v) sodium azide for 2 hours at 37 °C with gentle agitation (all further incubation 

steps were performed at this temperature).   

 

The primary antibody against sugarcane UDP-glucose dehydrogenase was diluted 1: 2000 in the 

blocking buffer and incubated for one hour.  Pre-immune serum was used as a negative control at 

a dilution of 1:3000.  Tissue sections were then washed three times for 15 min with PBS buffer 

(pH 7.5) containing 0.5 μl Tween 20 per ml buffer.  A commercial secondary antibody, Anti-

rabbit IgG (whole molecule) conjugated to alkaline phosphatase (Roche), diluted 1: 2000 in 

blocking buffer, was added and sections were incubated for one hour.  Sections were washed as 

described above and the bound antibodies detected after incubation in a staining buffer, 

comprising of one NBT/BCIP tablet (Roche) per 10 ml of 10% (w/v) polyvinyl alcohol (MW=70 

000-100 000) solution (Sigma), for 30 min (or until significant colouration occurred).  The 

reaction was stopped in tap water containing 0.1 M EDTA.  Sections were studied with a Nikon 

Eclipse E400 microscope and photographed with a Nikon Coolpix 990 digital camera. 
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4.4 RESULTS 

 

4.4.1 Carbon partitioning of [1-14C] glucose and [6-14C] glucose 

To estimate the relative contributions of glycolysis, the oxidative pentose phosphate (OPP) 

pathway and pentan synthesis to glucose catabolism we used two approaches.  Firstly, 14CO2 

production was measured from tissues specifically labelled with [1-14C] glucose and [6-14C] 

glucose.   The ratio of CO2 evolution from carbon 1 and carbon 6 of glucose was used as an 

indicator of the relative importance of the different pathways. Secondly, the partitioning of label 

to the fiber component of the cell wall was analysed.  Evidently the C-6/C-1 ratio exceeded unity 

in the young internodes, which strongly suggested contribution of pentan synthesis to CO2 

production (Table 4.1).  In the older internodes the C-6/C-1 ratio was below unity and this 

indicated an increased importance of the OPP pathway relative to glycolysis and pentan 

synthesis.  A larger contribution of carbon 1 than carbon 6 was evident in the insoluble matter for 

the young internodes (Table 4.1).   This data clearly demonstrate a larger contribution by pentan 

synthesis to cell wall synthesis in the younger internodes compared to the more mature internodes 

7 and 9.   

 
Table 4.1   Incorporation of 14C in CO2 production and the cell wall (fiber) component of internodal tissue slices 

from N19 supplied with [1-14C]-glucose and [6-14C]-glucose for 3 h. Each value represents the average of three 

labelling experiments.  

CO2 C6/C1 Fiber Internode 
C1 C6   C1 C6 

 kBq mg-1 protein  kBq mg-1 protein 
3 1.33 ± 0.15 3.20 ± 0.34 2.40 4.27 ± 0.50 3.30 ± 0.31 
4 1.03 ± 0.12 2.37 ± 0.27 2.29 3.41 ± 0.39 2.40 ± 0.31 
5 0.97 ± 0.09 1.56 ± 0.12 1.61 3.20 ± 0.37 2.40 ± 0.27 
7 0.72 ± 0.10 0.61 ± 0.10 0.85 2.40 ± 0.30 2.12 ± 0.21 
9 0.52 ± 0.08 0.41 ± 0.09 0.79 2.10 ± 0.31 1.97 ± 0.19 

 

 

4.4.2 Immuno-inactivation of UDP-glucose dehydrogenase activity 

UDP-glucose dehydrogenase was previously purified from sugarcane (Turner and Botha, 2002).  

This protein was used to produce an anti-body by immunising rabbits.  Polyclonal antiserum was 
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obtained from whole blood, collected after 38 days. A serial dilution of anti-UDP-glucose 

dehydrogenase was used to immunoprecipitate UDP-glucose dehydrogenase from a crude protein 

extract.  Following precipitation, residual enzyme activity was measured.  The enzyme activity 

could be completely precipitated by the polyclonal antibody (Figure 4.1). 

 

4.4.3 Expression analysis of sugarcane UDP-glucose dehydrogenase 

The abundance of the UDP-glucose dehydrogenase transcript and protein was studied in different 

sugarcane tissues at various stages of development.  Transcript levels detected in young leaves, 

mature leaves and internodes 3-18, showed that expression levels of UDP-glucose dehydrogenase 

correlated with growing and expanding tissues (Figure 4.2 B).  The highest levels of transcript 

were detected in the leafroll and internode 3.  Expression rapidly declined down the culm, with 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1   Immuno-removal of UDP glucose dehydrogenase.  Percentage inactivation by the 

antibody is expressed as a percentage of the UDP-glucose dehydrogenase activity in extracts, which 

were similarly incubated, but treated with pre-immune  serum and insoluble Protein A. 
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almost no transcript detected in internode 18.  Expression also declined in older leaves, but a 

signal was still visible.  A relatively high level of expression was observed in root tissue. Protein 

levels followed a similar trend, with the highest levels of protein detected in young developing 

tissues (Figure 4.2 C).  The observed molecular mass of the protein corresponds to that 

previously reported (Turner and Botha, 2002) for sugarcane UDP-glucose dehydrogenase (ca. 52 

kDa). 

 

4.4.4 Cellular localisation of UDP-glucose dehydrogenase 

The cellular localisation of the UDP-glucose dehydrogenase transcript and protein was 

investigated by in situ hybridisation and immunolocalisation, respectively.  The presence of both 

the transcript and the protein was visualised on tissue sections as dark blue staining.  In situ 

hybridisation was used to investigate the distribution of the UDP-glucose dehydrogenase 

transcript in tissue sections prepared from internode 7 (Figure 4.3).   Results showed high 

transcript levels in the vascular tissues of the stem, specifically in the companion cells of the 

phloem, in the xylem parenchyma and in cells of the vascular parenchyma.  Strong labelling was 

also detected in the sucrose storing parenchyma cells, where blue staining was restricted to the 

cytoplasm.   

 

Immunolocalisation was used to study abundance of the protein in internodal sections from 

different developmental stages (Figure 4.4).  Distribution of the protein was similar to that of the 

transcript, i.e. the protein was detected in virtually all cell types found in internodal tissues, 

specifically the vascular tissues and sucrose storing parenchyma cells.  Tissue sections prepared 

from different developmental stages showed that abundance of the protein rapidly declined down 

the stem (as maturity increased), with almost no protein detected in tissues from internode 13.  In 

control experiments (sense RNA probe and pre-immune serum), only weak background colour 

was detected.   
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Figure 4.2   Expression of UDP-glucose dehydrogenase in sugarcane tissues.  EtBr stain of extracted RNA 

used for membrane preparation (A).  UDP-glucose dehydrogenase expression at a transcript (B) and protein 

(C) level, demonstrated by northern and western blot techniques, respectively.  Each lane represents a 

different tissue:  LR: leaf roll; YL: young leaf; ML: mature leaf; I3 - I18: internodal tissue; and Rt: root.  
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Figure 4.3  Investigation of cellular location of UDP-glucose dehydrogenase transcripts by in situ 

hybridisation on sections of sugarcane culm (internode 7).  In a section hybridised to the antisense probe 

(A), transcripts were detected in the xylem parenchyma (xp), vascular parenchyma (vp), the phloem 

companion cells (cc), and the cytosol (cy) of the sucrose storing parenchyma cells (pc).  A similar section 

hybridised to the sense control probe (B) showed no labelling (vc, vacuole; mx, metaxylem; px, protoxylem; 

se, sieve elements; sf, sclerenchymatous fibres; bar equals 150 μm)
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4.5 DISCUSSION 

 

Hemicelluloses and pectins that are incorporated into the cell wall are derived from a common 

precursor, namely UDP-glucuronic acid.  Two alternative pathways can supply UDP-glucuronic 

acid.  UDP-glucose dehydrogenase utilises UDP-glucose to form UDP-glucuronic acid 

(Nelsestuen and Kirkwood, 1971; Turner and Botha, 2002).  Alternatively, UDP-glucuronic acid 

can also be formed by the conversion of myo-inositol into glucuronic acid, which is subsequently 

conjugated to UDP in a reaction catalysed by inositol oxygenase (Loewus and Murthy, 2000).    

 

In sugarcane the cycling of carbon between sucrose and hexoses results in a significant pool of 

UDP-glucose (Whittaker and Botha 1997). Radiolabelling was used to investigate the relative 

contributions of glycolysis, the oxidative pentose phosphate pathway and pentan synthesis to 

glucose catabolism. Selective decarboxylation of carbon 6 from glucose is an important source of 

released CO2 in younger internodes and this leads to the C-6/C-1 ratios higher than unity.  This 

most probably indicates that pentan synthesis is a more important component of metabolism in 

the young tissue.  The net conversion of UDP-glucuronic acid to UDP-xylose results in the 

release of CO2 from carbon number 6 (Davies et al., 1964).  Usually, a C-6/C-1 ratio of unity is 

the predicted maximum value and is indicative of the sole contribution of glycolysis, since an 

increasing contribution of the oxidative pentose phosphate pathway to CO2 release merely serves 

to decrease the ratio below unity (Davies et al.,1964).  Ratios (C-6/C-1) of CO2 release exceeding 

unity are indicative of increased pentan synthesis associated with growth (Hill and ap Rees, 

1994).    

 

UDP-glucose dehydrogenase was recently purified from rapidly expanding culm tissues of 

sugarcane (Turner and Botha, 2002).  Although the kinetic properties of the sugarcane enzyme 

were studied, no information is available about the distribution of the enzyme in the plant.  In this 

study the expression pattern and subcellular localisation of UDP-glucose dehydrogenase in 

mature sugarcane plants was studied at the tissue and cellular levels.     

 

Earlier studies demonstrated that the demand for hemicellulose precursors was highest in actively 

dividing and rapidly expanding cells ( Dalessandro and Northcote, 1977a; Amino et al., 1985; 



 77

Witt 1992; Robertson, Beech, and Bolwell, 1995; Tenhaken and Thulke, 1996; Stewart and 

Copeland, 1998; Seitz et al., 2000; Johansson et al., 2002).  A similar correlation between the 

expression of UDP-glucose dehydrogenase and a demand for structural polysaccharides was 

observed for sugarcane in the present study.  High levels of expression of both the UDP-glucose 

dehydrogenase transcript and protein were detected in the leafroll, roots and young internodes of 

the sugarcane culm.  The expression of both the transcript and protein decreased along the length 

of the culm (with increasing maturity) to undetectable levels in older internodes.  A similar trend 

was observed in Arabidopsis (older plants) (Seitz et al., 2000) and soybean (Tenhaken and 

Thulke, 1996; Stewart and Copeland, 1998) where UDP-glucose dehydrogenase was active in 

young growing tissues but not in the mature tissues.  The absence of UDP-glucose 

dehydrogenase in mature tissues is thought to be correlated with the lack of demand for UDP-

glucuronic acid derived sugars in differentiated cells (Tenhaken and Thulke, 1996).   

 

The sugarcane culm is composed of storage parenchyma tissue permeated by numerous vascular 

bundles.  In situ hybridisation showed that the UDP-glucose dehydrogenase transcript is present 

in virtually all cell types present in the sugarcane internode.  As in other plant species (Stewart 

and Copeland, 1998) the sugarcane enzyme is only detected in the cytosol.  Immunolocalisation 

in internodal sections from different developmental stages showed that abundance of the protein 

declined in all cell types as maturity increased, with almost no protein detected in internode 13.  

The abundance of UDP-glucose dehydrogenase in developing tissues confirms that this enzyme 

plays an important role in the provision of hemicellulose precursors in most developing tissues of 

the sugarcane plant.   

 

Based on these results it is likely that UDP-glucose dehydrogenase dominates over the myo-

inositol pathway in the provision of UDP-glucuronic acid as precursor for structural 

polysaccharides in most actively growing sugarcane tissues.  To further investigate the 

importance of UDP-glucose dehydrogenase in the formation of cell walls in sugarcane, various 

transgenic plants in which UDP-glucose dehydrogenase is expressed in an anti-sense orientation, 

are currently being analysed.  It is currently not understood why cell wall polysaccharides from 

grasses are so different from those of dicotyledonous plants (Carpita, 1996).  Transgenic plants 
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with modified hemicellulose contents resulting from altered levels of UDP-glucose 

dehydrogenase, could provide some novel insights into this phenomenon.  
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CHAPTER 5 

 

ISOLATION AND EVALUATION OF A DEVELOPMENTALLY 

REGULATED SUGARCANE PROMOTER 
 

 

5.1 ABSTRACT 

 

The young internodes of sugarcane are ideal targets for altering metabolism, through genetic 

manipulation, to potentially control known fungal diseases such as Smut or to increase sucrose 

yields in these regions that are currently being discarded.  At present, no regulatory sequences 

that specifically drive transgene expression in young developing sugarcane tissues are available.  

The objective of this study was therefore to isolate and evaluate such a sequence.  The approach 

followed was firstly, to identify an endogenous gene expressed in the desired pattern, and then to 

isolate the corresponding promoter from the sugarcane genome.  The promoter of a gene 

encoding UDP-glucose dehydrogenase was selected for isolation, based on what is known about 

the function of the enzyme it encodes.  The promoter region (1700 bp), including an intron (973 

bp) located in the 5’-untranslated region (UTR) of this gene, was isolated and subsequently fused 

to the GUS reporter gene for transient expression analysis and plant transformation.  Transient 

expression analysis showed that the presence of the intron was essential for strong GUS 

expression. Analysis of stably transformed transgenic sugarcane plants, grown in a green house, 

indicates that the promoter is able to drive GUS expression in a tissue specific manner under 

these conditions.   

 

 

5.2 INTRODUCTION 

 

When sugarcane is harvested, the top internodes are traditionally discarded due to low juice 

purity. The top of the cane is also the point of infection for Smut, the most important fungal 

disease of sugarcane in South Africa.  Genetic manipulation has the potential to alter metabolism 

in these tissues to increase the sucrose yield, or to control Smut, possibly through the insertion of 
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a single gene.  Although the transformation of sugarcane is well established (Arencibia et al.,  

1995; Arencibia et al., 1998; Bower and Birch, 1992), a major obstacle limiting progress in this 

area is the availability of promoters.  

 

Efficient genetic manipulation is dependant on the availability of promoter elements that allow 

the control of transgene expression in different tissues and at different developmental stages.  The 

shortage of these regulatory elements, as well as patent considerations (Birch, 1997), has made it 

necessary to isolate specific promoters from sugarcane.  Several promoters that direct near-

constitutive expression in monocots have been isolated.  These include promoters isolated from 

plants, such as the maize polyubiquitin (ubi-1) promoter (Christensen and Quail, 1996) and the 

rice actin (Act1) promoter (McElroy et al., 1990), viral promoters such as the cauliflower mosaic 

virus (CaMV) 35S promoter (Benfey et al., 1990; Terada and Shimamoto, 1990), sugarcane 

bacilliform badnavirus promoter (Tzafrir et al., 1998), and promoters isolated from the banana 

streak badnavirus (Schenk et al., 2001).  Though constitutive expression of a transgene may 

sometimes be required, targeting the expression to a specific tissue where the action of the 

transgene is required will greatly decrease the metabolic load resulting from transformation.  At 

present, no regulatory sequences are available that specifically drive transgene expression in 

developing sugarcane tissues.  The aim of this study was to isolate and evaluate a 

developmentally regulated sugarcane promoter.   

 

One possible approach to obtain promoters which direct specific levels and distribution of 

expression is to identify endogenous genes already expressed in the desired pattern in the 

organism targeted for transformation, in this instance, sugarcane.  The corresponding promoter 

can then be isolated from the genome of the target organism.  The promoter of a gene encoding 

UDP-glucose dehydrogenase was selected as a potential target for promoter isolation, based on 

what is known about the function of the enzyme that it encodes. 

 

UDP-glucose dehydrogenase catalyses the oxidation of UDP-glucose to UDP-glucuronic acid 

(Nelsestuen and Kirkwood, 1971), a precursor for sugar nucleotides, which are incorporated into 

pectin and hemicelluloses.  Both pectin and hemicellulose are key components of cell walls, 

providing a matrix that strengthens the cell wall structure (Gibeaut, 2000).  As UDP-glucose 
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dehydrogenase is required for growth and development, the promoter of this gene could possibly 

be used to drive transgene expression in young developing tissues.   

 

In this study the promoter and first intron, located in the 5’-untranslated region, of an UDP-

glucose dehydrogenase gene was isolated from sugarcane.  The isolated sequence was evaluated 

for its ability to drive transgene expression in a transient system and stably transformed 

sugarcane.  Results indicate that the UDP-glucose dehydrogenase promoter can drive highly 

tissue specific expression in transgenic sugarcane.  Also, the presence of the intron is essential for 

promoter activity. 

 

 

5.3 MATERIALS AND METHODS 

 

5.3.1 Isolation of UDP-glucose dehydrogenase promoter 

As described in Chapter 3, a genomic clone containing the UDP-glucose dehydrogenase gene and 

upstream sequence was isolated after screening a sugarcane genomic library, prepared from 

sugarcane variety N19.  From this genomic clone, a Not I-Xba I fragment of approximately 4600 

bp, containing the complete coding region, as well as the 5’-UTR containing an intron of 973 bp, 

and a further 1600 bp of the promoter region was sub-cloned (Figure 5.1).  An Eco RV restriction 

site was located in the 5’-UTR, 5 bp upstream of the left border of the intron.  This site was used 

to further digest the cloned sequence to yield two fragments of approximately 1700 (named 

Not IXba I EcoR V

Fw4

Rev7

Rev3Fw3

436bp1443bp973bp1560bp
Not IXba I EcoR V

Fw4

Rev7

Rev3Fw3

436bp1443bp973bp1560bp

 

Figure 5.1  Graphic representation of a Not I Xba I fragment containing the sugarcane UDP-glucose 

dehydrogenase promoter and gene.  Gene specific primers and restriction sites used to construct the 

promoter cassettes are also shown. 

promoter 5’UTR intron ORF 3’UTRpromoter 5’UTR intron ORF 3’UTR
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UGD10SLL, containing the promoter) and 2900 bp (named UGD10SS, containing the 5’-UTR 

intron and coding sequence of the gene), respectively.    

 

5.3.2 Construction of UDP-glucose dehydrogenase promoter and chimeric GUS reporter gene 

constructs 

Reporter constructs were made by placing the bacterial uidA gene, coding for β-glucuronidase 

(GUS), and the Agrobacterium nopaline synthase (nos) terminator (Jefferson et al., 1987), under 

the control of the sugarcane UDP-glucose dehydrogenase promoter, with or without the 5’-intron.  

Two promoter-reporter gene constructs were prepared: one containing the UDP-glucose 

dehydrogenase promoter, 5’-UTR and intron, namely pBGUS UGDip, and one that only 

contained the promoter and 5’-UTR, pBGUS UGDp.  A BamH I-Eco RI fragment containing the 

GUS gene and adjacent nos terminator, was removed from the construct, pAHC27 (Christensen 

and Quail, 1996) and cloned into a pBluescript II SK + cloning vector (Stratagene).  The resulting 

promoterless vector was named pBGUS 000.   

 

To prepare pBGUS UGDip, the promoter sequence (approximately 1700 bp) was PCR amplified 

from cloned fragment UGD10SLL, using the vector-specific primers, T3 and T7.  The intron, 5’-

UTR and first 3 codons of the UDP-glucose dehydrogenase gene (approximately 1000 bp) were 

PCR amplified from the cloned fragment UGD10SS using one vector specific primer, T7, and 

one gene-specific primer that included the translation initiation codon, ATG, and contained a 

BamH I restriction site, UGDRev7 (5’-GCACGGATCCTTCACCATCTTGTCAGATAG, 

restriction site underlined, ATG in bold).  The PCR reaction was performed in a volume of 50 μl 

using 2ng of plasmid DNA as template.   The PCR mixture also contained: 1 x PCR buffer, 1.5 

mM MgCl2, 200 μM each of dATP, dCTP, dGTP and dTTP, 1 U of Taq DNA polymerase (all 

purchased from Promega) and 0.2 μM of each primer.  PCR was performed under the following 

conditions:  94 °C for 45 s (1 cycle), 94 °C for 45 s and 55 °C for 45 s and 72 °C for 45 s (10 

cycles), 94 °C for 30 s and 50 °C for 30 s and 72 °C for 30 s (25 cycles), 72 °C for 2 min (1 

cycle).  For each fragment, four identical PCR reactions were performed, subsequently pooled 

and excess nucleotides and primers were removed using a Qiagen PCR Purification system.  

Equimolar amounts of the two purified PCR products (1.5 μg of PCR product of UGD10SLL and 

0.75 μg of PCR product of UGD10SS) were pooled and digested with Eco RV for 2 hours at 37 
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°C.  The restriction enzyme was removed using a Qiagen quick spin column.  The two fragments 

were then ligated through the addition of T4 DNA Ligase and a Rapid Ligation Buffer 

(Promega).  The ligation reaction was performed at room temperature and allowed to proceed for 

2 hours.  The reaction mixture was again purified using a Qiagen quick spin column.  The 

ligation product was then double digested using Xba I and BamH I and cloned into pBGUS 000 

(prepared using the same restriction enzymes).   

 

To prepare the intronless promoter construct, pBGUS UGDp, the promoter sequence 

(approximately 1700 bp) was again amplified from cloned fragment UGD10SLL, as described 

above.  To remove the intron at the intron splice sites, thereby keeping the 5’-UTR intact, two 

gene specific primers were used in a PCR reaction to amplify a second fragment containing the 

first 955 bp of the open reading frame, using UGD10SS as template.  Primer UGDRev3 (5’-

CTCTTCTGGTAGTCGTTGATC; 902-923 bp downstream of the translation initiation codon, 

ATG) was used with UGDFw4 (5’-GCTCGATATCTGGTCACAGATCTATCTG, located 

between 12 – 22 bp upstream of the ATG).  UGDFw4 is homologous to the 5’-UTR as it occurs 

in the cDNA, including the intron splice site (bold), and contains the Eco RV restriction site 

(underlined) located in the 5’-UTR, 5 bp upstream of the left border of the intron.  The two 

amplified fragments were digested with Eco RV and ligated to each other as described above.  

The ligation product was then used as a template for a third PCR reaction.  Vector primer T3 

(used to amplify the PCR product of UGD10SLL), was used with the gene-specific primer 

UGDRev7, described above.  This PCR product was then double digested using Xba I and BamH 

I and cloned into pBGUS 000 (prepared using the same restriction enzymes).   

 

5.3.3 Particle bombardment of 5 day old maize coleoptiles for transient expression analysis 

Transient expression assays were done to verify whether an active promoter had been isolated.  

Two sugarcane promoter constructs, pBGUS UGDip and pBGUS UGDp, and a control plasmid, 

pAHC27 (Christensen, Sharrock, and Quail, 1992), which contains the maize polyubiquitin (ubi-

1) promoter and first intron, fused to the GUS reporter gene, were used in transient expression 

assays.  Maize seeds were germinated in the dark on wet tissue paper.  Five days after 

germination, coleoptiles were removed with a scalpel and placed in petri dishes containing wet 

filter paper.  The constructs were delivered by microprojectile bombardment using DNA-coated 
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tungsten particles.  Bombarded tissues were kept in the dark on wet filter paper and assayed for 

GUS activity after 24 hours. 

 

5.3.4 Sugarcane tissue culture 

Standard tissue culture protocols (Bower and Birch, 1992; Snyman et al., 1996) were used to 

produce and maintain embryogenic sugarcane callus from mature field grown plants of variety 

NCo310.  Briefly, sugarcane callus was initiated in the dark from leafroll sections on callus 

initiation medium, MSC3 (MS basal medium (Sigma) with 2 % (w/v) sucrose, 0.05% (w/v) casein 

hydrolysate, 0.6 % (w/v) agargel, and 3 mg l-1 2.4-dichloro-phenoxyacetic acid (2.4-D) (Sigma)).  

Callus was transferred to fresh medium every 2 weeks. 

 

5.3.5 Sugarcane transformation 

Actively growing embryogenic calli (predominantly globular pro-embryoids) was transformed by 

particle bombardment, using a particle inflow gun (PIG) (Snyman et al., 1996) and DNA-coated 

tungsten particles (Grade M-10, Bio-Rad Laboratories).  Four hours prior to bombardment, the 

callus was placed onto osmoticum medium (MSC3 supplemented with 3.64 % (w/v) sorbitol and 

3.64 % (w/v) mannitol). A CaCl2/spermidine coprecipitation method (Birch and Franks, 1991) 

was used to bind DNA to tungsten particles.  Calli were co-transformed with either pBGUS 

UGDip or pBGUS UGDp, and the pEmuGN plasmid (Last et al., 1991) containing the neomycin 

phosphotransferase gene, nptII (the ratio of the two plasmids was 1:1 and the total amount of 

DNA 10 μg).  Four hours after bombardment, callus was transferred from the osmoticum medium 

to MSC3 medium. Two days later callus was placed on a selection medium (MSC3 containing 50 

mg.l-1 geneticin (G418)). After a selection period of 8 – 12 weeks in the dark, geneticin resistant 

callus was transferred onto antibiotic-containing regeneration medium (MS basal medium 

(Sigma) supplemented with 2 % (w/v) sucrose, 0.05% (w/v) casein hydrolysate, 0.6 % (w/v) 

agargel, with 50 mg l-1 geneticin) and incubated in the light. Geneticin resistant plantlets were 

then rooted and hardened off on regeneration medium without antibiotic, and subsequently grown 

under green house conditions. 
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5.3.6 Analysis of GUS activity  

The same method was used for histochemical staining of maize seedling for transient assays 

(Section5.3.3), and for transformed sugarcane plants (Section 5.3.5).  Transgenic plant tissues 

that were assayed include whole (tissue culture-grown) plants, sectioned leafroll tissue 

(transverse hand sections approximately 1 cm in length) and transverse stem sections (sliced by 

hand at a thickness of approximately 0.5 mm) from green house grown plants.  Bombarded 

tissues, whole transgenic plants, or transgenic plant tissue sections were incubated for 24 hours at 

37 °C (Jefferson et al., 1987) in substrate-containing GUS assay solution (100 mM sodium 

phosphate buffer (pH 7.0); 5 mM potassium ferrocyanide; 5 mM potassium ferricyanide; 2 mM 

X-Gluc (5-bromo-4-chloro-3-indolyl-β-glucuronic acid); 0.3 % (v/v) Triton X-100) which was 

introduced into the cells by a brief vacuum infiltration.  The incubation was followed by 

dehydration in an ethanol series or clearing with chlorallactophenol (CLP, 2:1:1 chloral hydrate: 

lactic acid: phenol) as described by Beeckman and Engler (1994).  Tissues were studied using a 

Leica Fluo III (whole plant and sectioned leafroll assays) or Nikon Eclipse E400 (stem sections) 

Microscope and photographed with a Nikon Coolpix 990 digital camera. 

 

5.3.7 PCR amplification and Southern blot analysis of transgenic plants 

Genomic DNA was isolated from young leaves of green house-grown transgenic sugarcane 

plants according to Dellaporta et al. (1983).  The presence of the promoter and GUS reporter 

gene, as well as the nptII selectable marker gene was determined by PCR.  For plants transformed 

with pBGUS UGDip and pBGUS UGDp, a promoter-specific forward primer, UGDFw3 (5’-

ACGCATCGCGCCAAGGAAGA, located approximately 100-80 bp upstream of the left border 

of the intron), was used in combination with the reporter gene specific reverse primer, GUSp (5’-

GCTTTCCCACCAACGCTGATC).  Successful amplification from plants transformed with 

pBGUS UGDip should result in an amplified fragment of 1220 bp, while plants transformed with 

the intronless pBGUS UGDp should yield an amplification product of 250 bp.  In addition, 

primers Npt II F (5’-ACCATGGTTGAACAAGATGGATTG) and Npt II R (5’-

CTCAGAAGAACTCGTCAAGAAGG) were used to amplify an 799 bp fragment of the nptII 

gene from all transgenic plants. 
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For Southern blot analysis, 5 μg of genomic DNA was digested with Xba I, which has a single 

restriction site in both of the transformation vectors.  The digested DNA was separated in a 0.8 % 

(w/v) agarose gel and transferred overnight to a positively charged nylon membrane (Roche) by 

downward capillary blotting in 10x SSC.  DNA was cross-linked to the membrane through 

exposure to UV light for 2.5 min at 120 mJcm-2.  A Sac I-Eco RV restriction digest of pBGUS 

UGDip was used to isolate a fragment of 1074 bp of the GUS reporter gene. This fragment was 

labeled using the Prime-It II random primer labeling kit (Stratagene) and [α-32P] dCTP 

(Amersham).  Pre-hybridisation and hybridisation were performed in ULTRAhybTM buffer 

(Ambion) at 42 °C, according to the manufacturer’s instructions.  Following hybridisation, the 

membrane was washed twice in 2x SSC, 0.1% (w/v) SDS for 5 min at 42 °C, then twice in 0.1x 

SSC, 0.1% (w/v) SDS for 15 min at 42 °C, and finally twice in 0.1x SSC, 0.1% (w/v) SDS for 15 

min at 65 °C.  The washed membranes were exposed to a Multi Purpose Phosphor Screen for 16 

hours and visualized using a phospho-imager and analysis system (Packard Cyclone; Packard 

Instrument Company Inc, USA). 

 

 

5.4 RESULTS 

 

5.4.1 Isolation and characterisation of the sugarcane UDP-glucose dehydrogenase promoter 

After several rounds of screening a genomic library, a clone containing the UDP-glucose 

dehydrogenase gene and upstream sequence was isolated.  A 2.7 kb fragment upstream of the 

translation initiation site was isolated.  Sequence analysis of this region revealed the presence of 

an intron of 973 bp located within the 5’-UTR, 21 bp upstream of the translation initiation site, 

and preceded by an untranslated exon of approximately 122 bp (The exact location of the 

transcription initiation site was not determined experimentally, but putatively assigned based on 

comparison with other full-length cDNAs and homologous ESTs).  A further 1700 bp of putative 

promoter sequence was retained for further analysis.   

 

Examination of the nucleotide composition of the untranslated leader exon revealed two C/T-

elements with the core sequence CTCCTCTTCTC (Figure 5.2), separated by 32 bp.  A 15 bp 
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G/A-rich sequence (i.e. C/T in the non-coding strand of the DNA) is located between the C/T 

elements.  A partial inverted repeat of the core sequence of the C/T sequence is also found in the 

promoter region (-12 - -21, relative to the putative transcription initiation site).   Although the 

core sequence of the C/T-element does not correspond to a known transcription factor binding 

site, C/T rich sequences located in the 5’-UTR are believed to play an important role in 

enhancing the expression of some genes (Mun et al., 2002; Pearson and Meagher, 1990).   

 

Computational analysis of the promoter region (Higo et al., 1999) revealed the presence of many 

putative transcription factor binding sites (TFBS).  A TATA box-like motif (TATTTAA) is found 

between 43 and 37 bp upstream of the transcription initiation site (Figure 5.2).  Although this 

sequence does not correspond exactly to the eukaryotic TATA box consensus sequence 

TATA(T/A)A(T/A), a TATA box of the same sequence has previously been shown to be 

functional in the rice PAL promoter (Zhu et al., 1995).  An 5’-AAAG-3’ motif is repeated six 

times within 400 bp of the transcription start site, i.e. the proximal promoter region.  This motif 

has previously been described as the core binding site for a group of plant-specific transcription 

factors, Dof proteins (for DNA binding with one finger) (Yanagisawa, 1996; Yanagisawa and 

Schmidt, 1999).  The arrangement of the motifs includes one tandem repeat and a further two 

binding sites seperated by 7 bp.  The grouping of these motifs close together and their location 

close to the transcription initiation site in the absence of other obvious TFBS, suggests a possible 

role for Dof transcription factors in the regulation of the expression of UDP-glucose 

dehydrogenase.      

 

 

 
 
 
 
 

 
Figure 5.2  Nucleotide sequence around the transcription initiation site of the sugarcane UDP-glucose 

dehydrogenase gene.  The putative transcription start site is designated as +1.  A putative TATA box is underlined.  

Two C/T elements located in the leader exon and one in the promoter region are boxed.  The G/A rich sequence 

found between the C/T elements is shaded. 

      promoter        +1    leader exon    20 
gggccggggtatttaaggactcgtggcctcgcttctcctctgcacacacacaAAGCGAGCTCCTCTTCTCCC 
               82 

ACGCATCGCGCGAAGGAAGAGAGAGATCGCCGCTCCTCTTCTCTTCGTCGCCTCTACTGGTGTGGGTGCCCG 
      leader exon    intron              154 

AGATCTTGCTGCAGTTCCTCGATATCTGgtgagactcgcgccctgatcccacgctgttacttcaattttttt 
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5.4.2 Transient expression analysis 

To directly assay promoter activity, two different expression cassettes containing the GUS 

reporter gene fused to the putative UDP-glucose dehydrogenase promoter with (pBGUS UGDip) 

and without (pBGUS UGDp) the intron, were prepared.  These two constructs and a control 

plasmid, pAHC27 (Christensen et al., 1992), which contains the maize polyubiquitin (ubi-1) 

promoter and first intron fused to the GUS reporter gene, were delivered to 5 day old maize 

coleoptiles by microprojectile bombardment using DNA-coated tungsten particles.  Transient 

gene expression, as indicated by blue spots, was observed for all the constructs (Figure 5.3).  

pAHC27 was used as a reference as ubi-1 has previously been shown to be one of the most 

efficient promoters for driving GUS expression in sugarcane (Gallo-Meagher and Irvine, 1993).  

Similar (high) levels of transient GUS expression were observed resulting from bombardment 

with the intron-containing construct, pBGUS UGDip, and pAHC27.  Bombardment with the 

intronless construct, pBGUS UGDp, resulted in very weak transient expression.   

5.4.3 Sugarcane transformation  

To determine whether the sugarcane UDP-glucose dehydrogenase promoter could produce high, 

stable gene expression, transgenic sugarcane plantlets, expressing pBGUS UGDip or pBGUS 

UGDp, were regenerated from geneticin resistant callus.  Transformation of embryogenic 

sugarcane calli with pBGUS UGDip and pBGUS UGDp resulted in 4 and 6 transgenic lines, 

respectively.  PCR was carried out to confirm the transformation status of these plants.  Results 

 

 

 

 

 

 

 

Figure 5.3  Transient expression analysis following particle bombardment of 5 day old maize coleoptiles. 

Two constructs, pBGUS-UGDip (a), and pBGUS-UGDp (b(i) and b(ii), were tested for their ability to drive 

transgene expression.  pAHC27 (c), which contains the maize polyubiquitin (ubi-1) promoter and first intron, 

was included as a positive control. 

 

a b(ii)b(i) c 
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showed that all the putative transgenic plants contained the selection gene, nptII, and that all but 

one of the plants contained the relevant promoter reporter-gene construct (Figure 5.4).  One line 

transformed with pBGUS UGDip only contained the selection gene.  This plant line, ip2.1, was 

included as a negative control in all histochemical assays.  As a result, only three transgenic plant 

lines for pBGUS UGDip were available for further analysis. 

 

Regenerated plantlets with shoots of approximately 10 cm, still growing on media in tissue 

culture, were histochemically assayed for GUS activity, followed by clearing through an ethanol 

series.  Shoots developed from callus bombarded with the intronless pBGUS UGDp showed no 
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Figure 5.4  Confirmation of the presence of the promoter, GUS reporter gene and nptII selectable marker gene by 

PCR amplification from genomic DNA isolated from transgenic sugarcane plants.  A: For plants transformed with 

pBGUS UGDip and pBGUS UGDp, a promoter specific forward primer, UGDFw3 was used in combination with a 

reporter gene specific reverse primer, GUSp.  Successful amplification from plants transformed with the intronless 

pBGUS UGDp should give an amplification product of 250 bp, while plants transformed with pBGUS UGDip should 

result in an amplified fragment of 1220 bp.  B: Primers Npt II F  and Npt II R were used to amplify an 799 bp 

fragment of the nptII gene from all transgenic plants. 
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detectable GUS staining.  In the three lines transformed with pBGUS UGDip, however, similar, 

highly tissue specific GUS expression was observed.  Blue staining was observed in cells at the 

base of developing leaves, on the midrib, just above the leaf sheath (Figure 5.5 a, b).  Gus 

expression was also seen in the developing leafroll, increasing in intensity towards the centre of 

the leafroll.  Under a microscope, the highest level of GUS expression in this tissue is visible in 

the guard cells of the developing stomata (Figure 5.5 d).  Although GUS expression was clearly 

limited to the same cell- and tissue- type for all three the lines, a difference was observed in the 

intensity of blue staining.  In one line, ip3.4 (Figure 5.5 a), GUS expression was consistently 

stronger than that observed for the other two lines, ip2.2 and ip3.0, respectively (Figure 5.5 b left 

and right, respectively).   Blue staining of similar intensity was always observed for these two 

lines.  No GUS expression was detected for the negative control, ip2.1 (Figure 5.5 c).   

 

Histochemical GUS assays of tissue-culture grown plantlets (with shoots of approximately 10 

cm) were repeated for the transgenic line containing pBGUS UGDip which showed the most 

intense blue staining after clearing through an ethanol series, namely ip3.4, one line transformed 

with pBGUS UGDp, clone p14, and the negative control, ip2.1.   Stained tissues were then 

cleared with CLP.  Clearing with CLP revealed high levels of background blue staining in the 

negative control (Figure 5.5 e, on right), and expression above background level could not be 

detected for clone p14 (results not shown).  Clearing with CLP did, however, unmask significant 

GUS activity not previously detected for transgenic plant line ip3.4 (Figure 5.5 e, on left).  Blue 

staining was observed in most tissues types of ip3.4, including the leaves, culm and roots.   

     

Transgenic plants were then hardened off on regeneration medium without antibiotic, and 

subsequently grown under green house conditions. Green house grown sugarcane plants with 

between 10 and 12 internodes, were examined for GUS expression in the leafroll and young 

internodes.  Assayed tissues were passed through an ethanol series and examined for blue 

staining.  As before, no GUS expression was observed for transgenic lines transformed with the 

intronless pBGUS UGDp and the negative control, ip2.1 (Figure 5.5 f (right), h, j).  In three 

transgenic lines produced by bombardment with pBGUS UGDip blue staining was observed in 

both tissue types that were assayed.  In leafroll sections, blue staining in clone ip3.4 (Figure 5.5 f, 

left) was again more intense than the other two lines (ip2.2 Figure 5.5 f, middle).   GUS activity  
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a b c

 

g h i j 

d e f

Figure 5.5   Histochemical assays of GUS expression in transgenic sugarcane transformed with pBGUS UGDip.  

When whole plants (taken from tissue culture) were assayed for GUS activity followed by clearing in an ethanol 

series, blue staining was observed at the base of developing leaves on the midrib just above the leaf sheath, for clones 

ip3.4 (a), ip2.2 (b, left) and ip3.0 (b, right).  No such expression was observed in a negative control (c).  GUS activity 

was also detected in developing leafroll of these clones, specifically in the guard cells of the stomata (ip3.4, d).  

Clearing of clone ip3.4 with CLP unmasked more GUS activity (e, left).  CLP clearing also unmasked background 

staining in a negative control (e, right).  In the leafroll of green house-grown clones ip3.4 (f, left) and ip2.2 (f, 

middle) GUS activity was detected, but not in a negative control (f, right).  Stem sections of the same clones showed 

high levels of GUS activity in parenchyma cells (g) and vascular bundles (i).  No blue staining was detected in a 

negative control (h, j).          
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was also observed in transverse culm sections taken from internode 4 of these lines.  As expected, 

blue staining was observed in the cytosol of the sucrose storing parenchyma cells (Figure 5.5 g), 

as well as in the vascular bundles (Figure 5.5 i) (only results for clone ip3.4 are shown).   

 

5.4.4 Southern blot analysis 

To confirm stable integration of the transgenes, transgenic plants were subjected to Southern blot 

analysis.  Southern blot hybridisation confirmed the PCR, which showed the presence of the 

reporter gene in three and six independent lines of pBGUS UGDip, and pBGUS UGDp, 

respectively (Figure 5.6).  The enzyme used for digestion of genomic DNA has a single 

restriction site in both of the transformation vectors.  The presence of multiple hybridisation 

bands is therefore consistent with integration of the transgene at multiple locations and/or a 

complex transgene array at a single locus.  Based on the different hybridisation profiles observed, 

all the plants were derived from independent transformation events.    

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.6  Southern blot analysis of transgenic sugarcane plants resulting from particle bombardment  

with (A) pBGUS UGDip and (B) pBGUS UGDp.  A 1074 bp restriction fragment of the GUS gene was 

used to probe 5 μg of gDNA completely digested with  Xba I, which has a single restriction site in both 

of the transformation vectors.  The number of the clone represented is given at the top of each lane. 
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5.4 DISCUSSION 

 

In the current study a 2.7 kb fragment upstream of a UDP-glucose dehydrogenase gene was 

isolated through screening a genomic library, and subsequently fused to a GUS reporter gene.  

The fragment was found to contain a large intron located 24 bp upstream of the translation start 

site, preceeded by an untranslated leader exon, and a further 1700 bp of putative promoter 

sequence.  Examination of the nucleotide composition of the untranslated leader exon and 

surrounding sequences showed the presence of several C/T-rich sequences.  C/T rich sequences 

located in the 5’-untranslated leaders of genes have been shown to play an important role in 

enhancing the expression of some genes (Bolle et al., 1994; Martinez-Trujillo et al., 2003; Zhang 

et al., 1991).  Interestingly, C/T repeat sequences have also been detected in the untranslated 

leader exon, directly upstream of a 5’-leader intron, of most plant actin genes (An et al., 1996; 

McElroy et al., 1990; Nairn et al., 1988; Pearson and Meagher, 1990; Wang et al., 1992). 

Although most of these authors have suggested that the C/T repeats may act as transcriptional 

enhancers of plant actin genes, this has not been demonstrated experimentally.    

 

Computational analysis of the promoter region (Higo et al., 1999) revealed the presence of many 

putative transcription factor binding sites (TFBS), providing further evidence that an active 

promoter sequence was indeed isolated.  A putative TATA box is found between 43 and 37 bp 

upstream of the transcription initiation site.  Six possible Dof protein binding sites were identified 

within the proximal promoter region.  Dof  proteins are a family of plant-specific transcription 

factors whose actions are believed to be related to biological processes unique to plants 

(Yanagisawa, 1996).  These transcription factors have been shown to contribute to the regulation 

of genes involved in photosynthesis (Yanagisawa and Sheen, 1998), response to stress and 

hormone signals (Mena et al., 2002) and carbon metabolism (Yanagisawa, 2000).  A possible 

role for Dof proteins in the regulation of UDP-glucose dehydrogenase, an enzyme involved in a 

process unique to plants, i.e. cell-wall synthesis, is therefore not surprising.  Interestingly, Dof 

transcription factors have also been shown to regulate guard cell-specific gene expression (Plesch 

et al., 2000; 2001).  As discussed later, in the current study most of the GUS expression detected 

in the developing leafroll of transgenic plants containing a promoter-GUS fusion was limited to 

the guard cells.  Though several other consensus binding sites for known plant transcription 
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factors were also identified within the promoter sequence, the location of these motifs in the 

distal promoter region indicates a less significant role in the regulation of UDP-glucose 

dehydrogenase.  It must be noted that the highly conserved core sequences of TFBS are relatively 

short and thus occur at a statistically predictable frequency in any give sequence.  The 

functionality of the observed motifs was not tested as a part of this study.  However, as more 

promoter sequences become available, a comparison of putative TFBS located in the promoters 

of genes with similar expression profiles could confirm the possible involvement of Dof 

transcription factors in the regulation of genes involved in cell-wall synthesis, and thereby 

provide more refined targets for deletion- or mutational analysis  

 

Transient GUS expression assays showed that the 2.7 kb fragment had strong promoter activity in 

5 day old maize coleoptiles, comparable to activity of the maize ubi-1 promoter.  Ubi-1 has 

previously been shown to be one of the most efficient promoters for driving GUS expression in 

sugarcane (Gallo-Meagher and Irvine, 1993).  This result indicated that all the major elements 

required for high gene expression levels were present in the isolated fragment.  Deletion of the 

intron from the 2.7 kb fragment, leaving the untranslated exon and the 24 bp of exon 2 

preceeding the translation initiation site intact, reduced expression of the reporter gene to barely 

detectable levels.  Introns are documented in many cases to have a large positive effect on gene 

expression, especially in monocotyledonous species.  Examples include introns from the maize 

AdhI, Bz1, (Callis et al., 1987) and GapAI (Donath et al., 1995) genes, and the rice SalT 

(Rethmeier et al., 1997), Wx (Li et al., 1995), tpi (Xu et al., 1994), and Ostub 16 (Morello et al., 

2002) genes.   

 

An investigation of sequences available in Genbank confirms the presence of an intron in this 

position for UDP-glucose dehydrogenase from sorghum, rice and Arabidopsis (GenBank 

accession numbers AF503433, AL731873 and AL391143, respectively).  All these species 

contain a large intron (sugarcane, 973 bp, sorghum 962 bp, rice 651 bp, and Arabidopsis 773 bp) 

located 20 to 30 bp upstream of the translation initiation site.  Also, PCR amplification (described 

in Chapter 3) indicates that UDP-glucose dehydrogenase from sorghum also contains this 5’-

UTR intron.  Conservation in different species of an intron in this possition suggests an important 

role for this intron in the regulation of the expression of UDP-glucose dehydrogenase in plants.  
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As discussed in Chapter 2, other examples of the conservation of large introns in the 5’-UTR 

between a non-coding first exon and a coding second exon have also been found.   Introns are 

found in this position in plant sucrose synthase (Fu et al., 1995a, b; Vasil et al., 1989; Shaw et 

al., 1994; Chopra et al., 1992; Komatsu et al., 2002), actin (McElroy et al., 1990; Pearson and 

Meagher, 1990; An et al., 1996; Huang et al., 1997; Thangavelu et al., 1993) and polyubiquitin 

(Norris et al., 1993; Christensen et al., 1992; Binet et al., 1991; Hoffman et al., 1991; Garbarino 

et al., 1995; Plesse et al., 2001; Wei et al., 1999; Wang et al., 2000) genes.  Many of these 

introns have been shown to contribute to the regulation of the level and pattern of the expression 

of the associated genes (Christensen et al., 1992; Fu et al., 1995a,b; McElroy et al., 1990; Norris 

et al., 1993; Vasil et al., 1989; Wei et al., 1999).      

 

Analysis of GUS expression in transgenic sugarcane plants showed that the 2.7 kb fragment 

retained promoter activity when reintroduced into plants.  Deletion of the intron (as described 

above) resulted in a loss of all GUS expression (detectable above background GUS activity) in 

transgenic plants.  When immature plants (with shoots of approximately 10 cm), transformed 

with the 2.7 kb fragment fused to a GUS reporter gene, were assayed for GUS expression, blue 

staining was observed in cells at the base of developing leaves, on the midrib, just above the leaf 

sheath.  Transgene expression seemed to be limited to a specific cell type.  A possible 

explanation is that certain sugarcane varieties, including the Nco310, the variety used in this 

study, develop a group of hairs in this position (Artschwager, 1940), which would require the 

deposition of a thick secondary cell wall.  As expected, GUS expression was also seen in the 

developing leafroll, increasing in intensity towards the centre of the leafroll.  Under a 

microscope, the highest level of GUS expression in this tissue is visible in the guard cells of the 

developing stomata where thick cell walls are actively being synthesised.  GUS expression was 

clearly limited to the same cell- and tissue- types for all three the lines, confirming that the tissue 

specificity of the promoter was retained after transformation. 

 

In whole plant preparations, the pigments present in plant tissues can partially or completely 

mask the sites of GUS activity.  Stained tissues were passed through an ethanol series, which is 

known to remove pigments such as chloroform from the tissues without affecting the ClBr-

indigo.  Ethanol, however, makes the inherently opaque cell membranes of the plant tissue even 
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more opaque, thereby hindering GUS detection.  To unmask more GUS activity, clearing with 

chlorallactophenol (CLP), which has been shown to make plant tissues transparent while not 

affecting the ClBr-indigo precipitate (Beeckman and Engler, 1994), was used as an alternative 

technique.  Clearing with CLP unmasked significant GUS activity not previously detected in a 

transgenic plant where GUS expression was regulated by the 2.7 kb fragment.  As can be 

expected from a promoter associated with actively growing tissues, blue staining was observed in 

most tissues types of this clone, including the leaves, stem and roots.  Clearing with CLP, 

however, leaves tissues transparent, making it difficult to distinguish between areas of high and 

low GUS activity.  Without the first intron no GUS expression above background could be 

visualized even after clearing with CLP. 

 

Histochemical assays of leafroll material and transverse stem sections confirmed that the reporter 

gene was still actively expressed in mature plants.  Blue staining was observed in the cytosol of 

the sucrose storing parenchyma cells as well as in the vascular bundles.  UDP-glucose 

dehydrogenase expression in these tissues was demonstrated in chapter 4.  This provides further 

evidence for the retention of tissue specificity after reinsertion of the transgene into the sugarcane 

genome.     

 

According to the Southern blot analysis, the clone for which the highest levels of GUS expression 

were detected contains a single copy of the transgene.  Two other clones which expressed similar 

levels of GUS, but at a lower level, contained 1 and 5 copies of the transgene respectively.   

Although only three transgenic lines containing the UDP-glucose dehydrogenase promoter were 

considered, at least for these lines there seems to be no correlation between GUS activity in 

transgenic plants and the copy number of the transgene.  Similar findings were previously 

reported for the maize polyubiquitin (ubi-1) promoter (Hansom et al., 1999).      

 

Transgenic plant lines that showed GUS expression are currently being evaluated in field trials.  

Although the results of this study are only valid for green house grown plants, this is the first 

demonstrated isolation of a developmentally regulated promoter from sugarcane.  Given that 

many promoters are silenced when introduced into sugarcane (Birch et al., 1996; Hansom et al., 
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1999), retention of promoter activity and specificity driving foreign gene expression when 

reintroduced into sugarcane is a very encouraging result.     
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CHAPTER 6 

 

CONCLUSIONS 
 

The aim of this study was to isolate a developmentally regulated promoter, specific for young 

tissues that could be used for sugarcane transformation.  For this purpose an endogenous gene 

that is expressed in the desired pattern in sugarcane, was selected.  As sugarcane is a complex 

polyploid where a single gene copy can be represented by up to ten alleles, it was necessary to 

first establish whether promoter isolation from sugarcane is a viable option.  At the start of this 

study, it was not known whether all of these alleles are expressed or if some of the gene copies 

have accumulated sequence changes inhibiting their expression, which would result in many 

sequences that represent silent copies of a specific gene, adjacent to non-functional promoters.  If 

this were the case, it would greatly complicate promoter isolation from the sugarcane genome, as 

many sequences would have to be evaluated for promoter activity in order to find a single active 

promoter, making it a costly and time consuming exercise.  This study provides the first evidence 

for the simultaneous expression of distinct haplotypes corresponding to a single gene in one 

sugarcane plant.  Whether this is a common feature of sugarcane genes is not known at present.  

An interesting finding was that certain haplotypes seem to be represented at a greater frequency 

than others.  It could be possible that these alleles occur more frequently than others, or that 

stronger promoters regulate the expression of these alleles.  Further studies of allelic variation 

and expression of these alleles in sugarcane are required to fully explain this phenomenon.  

However, the possibility that multiple alleles are expressed to provide the required levels of a 

specific enzyme, rather than the expression of one dominant allele is encouraging for sugarcane 

gene and promoter isolation.  

 

The promoter that was targeted for isolation in this study regulates the expression of UDP-

glucose dehydrogenase.  Based on evidence from other species, it was expected that expression 

of this gene would be strongly correlated with a demand for structural polysaccharides in the 

developing tissues of sugarcane.  To ensure that this gene represented a suitable target for the 

isolation of a developmentally regulated promoter, the distribution of this enzyme in different 

sugarcane tissues and cell-types was investigated.  A promoter that could be used to alter 
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metabolism in young developing tissues to increase the sucrose yield, for example, would have to 

be active in sucrose storing tissues i.e. the storage parenchyma.  Results showed that the UDP-

glucose dehydrogenase transcript is present in virtually all cell types present in sugarcane 

internodes and that abundance of the protein decreased in all cell types with increasing tissue 

maturity.  It is therefore likely that UDP-glucose dehydrogenase dominates over the myo-inositol 

pathway in the provision of UDP-glucuronic acid as precursor for structural polysaccharides in 

the most actively growing sugarcane tissues, making its promoter an ideal candidate for the 

purposes of this study.  This work represents the first reported isolation and analysis of a gene 

encoding UDP-glucose dehydrogenase from a monocotyledonous species.  The importance of 

UDP-glucose dehydrogenase in the formation of cell walls is currently being investigated by 

expressing the isolated gene in an anti-sense orientation in transgenic sugarcane.  It is not yet 

understood why cell wall polysaccharides from grasses are so different from those of 

dicotyledonous plants.  Transgenic plants with modified hemicellulose contents resulting from 

altered levels of UDP-glucose dehydrogenase could provide some novel insights into this 

phenomenon.  

   

The sequence upstream of the UDP-glucose dehydrogenase coding region was isolated and 

evaluated for its ability to drive transgene expression in both a transient system and stably 

transformed sugarcane.  This sequence was found to contain a large intron preceded by a non-

coding first exon.  Introns in this position have often been shown to play an important role in the 

regulation of expression of the adjacent coding region.  Results from this study demonstrated that 

an active promoter was indeed isolated, and that the presence of the intron was essential for 

strong reporter gene expression.  Tissue specific expression was observed in transgenic sugarcane 

where expression of the reporter gene was regulated by the UDP-glucose dehydrogenase 

promoter and first intron.  Deletion of the intron resulted in reduced expression of the reporter 

gene to barely detectable levels.  Interestingly, an intron in this position in the gene was also 

demonstrated for several other plant species, including maize, sorghum, rice and Arabidopsis.  

Further characterisation of the intron sequence, for example by placing it in the context of 

different promoters, could clarify the role of this intron in the expression of UDP-glucose 

dehydrogenase in plants.  If the intron is found to contribute to the regulation of the gene 

expression pattern, the sequences it contains could possibly be used to obtain tissue specific 
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expression in transgenic sugarcane, by combining these sequences with promoters that are known 

to be active in sugarcane.  Given the fact that many promoters are silenced when introduced into 

sugarcane, redirecting the expression by promoters that are not could provide an attractive 

alternative.   

 

The sequence of the promoter was also investigated using in silico analysis for possible clues 

relating to the regulation of UDP-glucose dehydrogenase gene expression.  Deletion analysis to 

confirm the role of identified cis-acting sequence elements required for optimal activity can now 

be done. Also, as more promoter sequences become available, a comparison of putative 

transcription factor binding sites located in the promoters of genes with similar expression 

profiles could confirm the involvement of the identified motifs in the regulation of genes 

involved in cell wall synthesis.   In this study the first developmentally regulated promoter was 

isolated from sugarcane.  Further analysis of this promoter could provide valuable knowledge 

about the regulation of gene expression in sugarcane.      
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APPENDIX 1 
 
Nucleotide sequence of the UDP-glucose dehydrogenase promoter, intron and 5’-UTR. 
The intron sequence is shaded in grey and the 5’-UTR is underlined.   
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T C G T T T C G C T G G T T T A T T G T G G C T A A A A G T A C T G T T C G C T A G T T T G T T G T G A G A G A A A A A C A C T G 
T T G G A T G G C T G C T G A T T C C G C T G A A T A G C T C A A C C C A A C A G A G A C T T G G T A G C T T C A A C A T G T G 
C C G A T C C A T G A C T T A G A A C T G T G G A A A T T A T T G A A C T T T C T C A C T A G A G T C T T T T C G T A A A C G G T 
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A A A A G T C A A C A G C T T T T A A C T T T A A C C A A A T A T A T T T A A C A A A A T A T T A A T A T T T A T G G T A C A T 
A A T T A G T A T C T T A G G T A G A T C T T T G A A T A T A C T T T C A T A A T A A A C T T A T T T A A A G A T A T A A A T G T 
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APPENDIX 2 
 
Schematic representation of reporter gene constructs.  A pBGUS000: A BamH I-Eco RI 

fragment containing the GUS gene and adjacent nos terminator, was removed from the construct, 

pAHC27 (Christensen et al., 1992) and cloned into a pBluescript II KS + cloning vector 

(Stratagene).  B  pBGUS UGDip: The Xba I - BamH I treated 2700 bp fragment containing the 

putative UDP-glucose dehydrogenase promoter and 5’-UTR intron was cloned into the 

promoterless pBGUS 000 vector, prepared using the same restriction enzymes.  C  pBGUS 

UGDp:  The Xba I - BamH I treated 1700 bp fragment containing the putative UDP-glucose 

dehydrogenase promoter without the 5’-UTR intron was cloned into the promoterless pBGUS 

000 vector, prepared using the same restriction enzymes 

 
 
 
 A 

NgoM I 133
Nae I 135

BsaA I 238
Dra III 241

Kpn I 658
EcoO109 I 661
Apa I 664
Sal I 675
Cla I 685

EcoR V 698

Spe I 2821
Xba I 2827

Not I 2834
Eag I 2834

Xma III 2834

Sac II 2846
BstX I 2847
Sac I 2855

Sap I 3133

Afl III 3249
Nsp7524 I 3249

NspH I 3253

AlwN I 3665

HgiE II 3828

Ahd I 4142
Bsa I 4203

Sca I 4622

Aha II 4679
BsaH I 4679
HinI I 4679

Xmn I 4741

Amp

ori

lacZ
f1 ori

GUS

BamH I 2816

nos

EcoR I 702

pBSGUS000
5053 bp

Sac I 964

Sma I 2811

EcoR V 2274

EcoR V 2043

Hind III 690
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 B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

C 

 

NgoM I 133
Nae I 135

BsaA I 238
Dra III 241

Kpn I 658
EcoO109 I 661
Apa I 664
Sal I 675
Cla I 685

EcoR V 698

Not I 5822
Eag I 5822

Xma III 5822

Sac II 5834
BstX I 5835

Sac I 5843

Sap I 6121

Afl III 6237
Nsp7524 I 6237

NspH I 6241
AlwN I 6653

HgiE II 6816

Ahd I 7130
Bsa I 7191

Sca I 7610

Aha II 7667
BsaH I 7667
HinI I 7667

Xmn I 7729

Amp

ori

lacZ
f1 ori

GUS

BamH I 2816

nos

EcoR I 702

Sac I 964

Sma I 2811

EcoR V 2274

EcoR V 2043

Hind III 690

UGD prom

pBGUS UGDip
8041 bp

Xba I 5815

UGD intron

NgoM I 133
Nae I 135

BsaA I 238
Dra III 241

Kpn I 658
EcoO109 I 661
Apa I 664
Sal I 675
Cla I 685

EcoR V 698

Not I 4806
Eag I 4806

Xma III 4806

Sac II 4818
BstX I 4819
Sac I 4827

Sap I 5105

Afl III 5221
Nsp7524 I 5221

NspH I 5225

AlwN I 5637

HgiE II 5800

Ahd I 6114
Bsa I 6175

Sca I 6594

Aha II 6651
BsaH I 6651
HinI I 6651

Xmn I 6713

Amp

ori

lacZ
f1 ori

GUS

nos

EcoR I 702

Sac I 964

EcoR V 2274

EcoR V 2043

Hind III 690

UGD prom

EcoR V 2826

UGD 5'utr

Xmn I 706

pBGUS UGDp
7025 bp

BamH I 2800
Sma I 2795
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