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Summary 

 

Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent chronic liver disease in Western 

countries and is considered the hepatic manifestation of the Metabolic Syndrome (MetS). Its 

heterogeneous nature ranges from hepatic steatosis through steatohepatitis to advanced fibrosis and 

cirrhosis where the ingestion of significant amounts of alcohol has been excluded. The disease 

profile of NAFLD and its necro-inflammatory subset Nonalcoholic Steatohepatitis (NASH) were 

described in the parent study, which provided a clinically well-characterised patient cohort for the 

present investigation. South African patients with NASH had significantly higher mean serum 

cholesterol and triglyceride levels than those with fatty liver only.  

 

The objective of this study was to implement a high-throughput real-time polymerase chain reaction 

(PCR) method in our laboratory to enable the assessment of cardiovascular genetic risk factors in 

NAFLD patients.  The specific aims were to determine the clinical utility and perform analytical 

validation of each mutation included in the multi-gene cardiovascular disease (CVD) screening 

assay. The Pathology Supported Genetic Testing (PSGT) concept developed at our department 

provides a practical approach to personalized medicine. The CVD multi-gene screen analyses key 

metabolic pathways relating to atherogenic dyslipidaemia, chronic inflammation, hypercoagulation 

and iron dysregulation implicated in insulin resistance, which is known to be a universal factor in 

the pathogenesis of NAFLD. Deleterious low-penetrance mutations in the APOE (APOE2 and E4 

alleles), MTHFR (677C>T and 1298A>C), F2 (20210G>A), FV (1691G>A, Leiden) and HFE 

(C282Y and H63D) genes were included for analysis due to their important role as genetic 

contributors to these biological processes. A total of 178 patients diagnosed with NAFLD and 75 

controls were studied using direct DNA sequencing and a RT-PCR system for mutation detection. 

In addition, two patients with high ferritin levels were included as case studies.  

 

A significant association was found between HFE mutations and elevated Alanine Transaminase 

(ALT) levels in the NAFLD population (p = 0.04). This discovery is interpreted as the identification 

of a subset of patients at greater risk of developing progressive liver damage who would benefit 

most from genetic testing to direct more aggressive therapy at an earlier stage. The necessity of an 

integrative, systems-based network approach was demonstrated to more accurately distinguish 

between Hereditary Haemochromatosis (HH) and Insulin Resistance-associated Hepatic Iron 

Overload (IR-HIO) syndrome in obese patients. The PSGT approach to personalized medicine 

facilitates diagnosis of CVD subtypes, prevention of cumulative risk and the formulation of gene-

based intervention programs tailored to the needs of the patient.  



 

 

These findings support the clinical utility of the CVD multi-gene test to guide chronic disease risk 

management in patients with NAFLD. The HFE mutation detection component of this test is of 

particular relevance in directing an effective treatment strategy in patients with a medical history of 

CVD and/or high iron stores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Opsomming 

 

Nie-Alkoholiese Vettige Lewer Siekte (NAFLD) is die mees algemene kroniese lewer siekte in 

Westerse lande en word bestempel as die hepatiese manifestasie van die Metaboliese Sindroom 

(MetS). Die heterogene natuur van NAFLD strek van hepatiese steatose deur steatohepatietis tot 

gevorderde fibrose en sirrose waar grootskaalse alkohol inname uitgesluit is. Die siekte-profiel van 

NAFLD en sy nekro-inflammatoriese subtipe Nie-Alkoholiese Steatohepatietis (NASH) is reeds 

beskryf in die ouer studie, wat ‗n klinies goed-gekarakteriseerde pasiënt groep vir die huidige 

ondersoek daar gestel het. Suid-Afrikaanse pasiënte met NASH het beduidend hoër gemiddelde 

serum cholesterol en trigliseried vlakke in vergelyking met slegs vettige lewer.  

 

Die doel van hierdie studie was om ‗n hoë deurvoer rieëltyd polimerase kettingreaksie (RT-PCR) 

metode in ons laboratorium te implimenteer om kardiovaskulêre genetiese risiko faktore in NAFLD 

pasiënte te ondersoek. Die spesifieke mikpunte was om die kliniese nut en analitiese geldigheid van 

elke mutasie wat ingesluit is in die multi-geen kardiovaskulêre siekte (KVS) siftings toets vas te 

stel. Die Patologie Ondersteunde Genetiese Toetsing (PSGT) konsep wat by ons departement 

ontwikkel is, verskaf ‗n praktiese benadering tot persoonlike medisyne. Die KVS multi-geen toets 

analiseer belangrike metaboliese weë verwant aan atherogene dyslipidemie, kroniese inflammasie, 

oormatige bloedstolling en yster disregulering wat betrokke is by insulien weerstand wat bekend is 

as ‗n universele factor in the patogenese van NAFLD. Nadelige lae-penetrasie mutasies in die 

APOE (APOE2 en E4 allele), MTHFR (677C>T en 1298A>C) F2 (20210G>A), FV (1691G>A, 

Leiden) en HFE (C282Y en H63D) gene was ingesluit vir analise as gevolg van hul belangrike rol 

as genetiese bydraers tot die bogenoemde biologiese prosesse. ‗n Totaal van 178 pasiënte 

gediagnoseer met NAFLD en 75 kontroles is bestudeer deur gebruik te maak van direkte DNA 

volgordebepaling en ‗n RT-PCR metode vir mutasie opsporing. Twee pasiënte met verhoogde 

ferritien vlakke is ook as gevalle studies ingesluit.  

 

‗n Beduidende assosiasie is gevind tussen HFE mutasies en verhoogde Alanien Transaminase 

(ALT) vlakke in die NAFLD studiepopulasie (p = 0.04) wat aanduidend is van ‗n subgroup van 

pasiënte wat die meeste baat sal vind uit genetiese toetsing om meer aggressiewe behandeling te rig 

op' n vroeër stadium. Die noodsaaklikheid van 'n geïntegreerde, stelsels-gebaseerde netwerk 

benadering is gewys om meer akkuraat te onderskei tussen Oorerflike Hemochromatose (HH) en 

Insulien Weerstand-geassosieerde Hepatiese Yster Oorlading (IR-HIO) sindroom in vetsugtige 

pasiënte. Die PSGT benadering tot persoonlike medisyne formuleer geen-gebaseerde intervensie 



 

 

programme aangepas tot die behoeftes van die pasiënt ek maak diagnose van KVS-subtipes en 

voorkoming van kumulatiewe risiko moontlik.  

 

Hierdie bevindinge ondersteun die kliniese nut van die KVS multi-geen toets om riglyne vir die 

risikobestuur van kroniese siektes soos NAFLD daar te stel. Die HFE mutasie opsporings 

komponent van hierdie toets is van besondere belang om 'n effektiewe strategie vir die behandeling 

van pasiënte met 'n mediese geskiedenis van KVS en/of hoë yster vlakke daar te stel.  
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1.1. Non-Alcoholic Fatty Liver Disease  

 

Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent chronic liver disease in Western 

countries, with an incidence of 25 to 37% among the general population. NAFLD is considered the 

hepatic manifestation of the metabolic syndrome and its heterogeneous nature ranges from hepatic 

steatosis through steatohepatitis to advanced fibrosis and cirrhosis where the ingestion of significant 

amounts of alcohol has been excluded (Farrell et al. 2005; Mishra et al. 2008). The histology of 

NAFLD is indistinguishable from alcoholic hepatitis (Matteoni et al. 1999), as it is characterized by 

macrovesicular hepatic steatosis (Sanyal, 2002). NAFLD is frequently associated with Insulin 

Resistance (IR) (Angelico et al. 2005; Svegliati-Baroni et al. 2007; Kruger, 2008; Tilg and 

Moschen, 2008) and hyperferriteinaemia (Lee D et al. 2007; Valenti et al. 2007), while a slight yet 

significant increase in overall mortality [hazard ratio (HR) = 1.038; P < 0.0001] and a considerable 

increase in liver-related mortality (HR = 9.32; P < 0.0001) have also been discovered (Ong et al. 

2008).  

 

Due to the heterogeneous nature of NAFLD, the true incidence and prevalence of the disorder 

remain highly debatable. An autopsy-based study found steatohepatitis in 2.7% of lean and 18.5% 

of obese, apparently non-alcoholic, patients (Wanless and Lents, 1990). A study of predominantly 

healthy young adults who were evaluated for adult living-related orthotropic liver transplantation 

found fatty liver disease (FLD) in 20% of the 126 subjects (Markos et al. 2000). The prevalence of 

NAFLD in the general population of the United States of America has been estimated at 20% to 

30% based on data from the National Health and Nutrition Examination Survey (NHANES; 

Younossi, 2008). The universality of IR among NAFLD cases was corroborated in South Africa 

with an ethnically diverse, overweight/obese population from the Western Cape. Disease severity 

was not associated with the degree of obesity (Kruger et al. 2010). Studies performed in South 

Africa (Kruger et al. 2010) and elsewhere (Petersen et al. 2010; Tian et al. 2010) suggest a strong 

genetic component in the development and progression of NAFLD.  

 

Nonalcoholic Steatohepatitis (NASH) is a subset of NAFLD, characterized by necro-inflammatory 

injury and steatosis (Brunt, 2001). NASH differs from simple, non-progressive steatosis by virtue of 

its frequent development to cirrhosis. A study conducted on a large, urbanized American population 

revealed that Hispanics have the highest frequency of hepatic steatosis (45%), followed by 

European-Americans (33%) and African-Americans (24%; Browning et al. 2004b). The prevalence 

of cirrhosis and steatohepatitis is also greatest amongst Hispanics, while the probability of liver 
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failure in African-Americans is reduced (Browning et al. 2004a). Steatohepatitis includes 

ballooning degeneration, lobular neutrophilic inflammation and sporadic Rappaport zone III 

perisinusoidal fibrosis, while Mallory bodies are less common in NASH than in alcoholic 

steatohepatitis (Sanyal, 2002). Atypical features such as lymphocytic inflammation or portal 

fibrosis are also seen in some individuals (Sanyal, 2002). The progression of steatosis to NASH 

may be induced by inflammatory cytokines produced by elevated rates of lipid peroxidation in the 

presence of IR (Angelico et al. 2005; Day and James, 1998).  

 

 

1.2. NAFLD and the Metabolic Syndrome  

 

The Metabolic Syndrome (MetS) is a collection of interconnected metabolic risk factors that 

directly contribute to the development of atherosclerotic cardiovascular disease (CVD), 

significantly increase the risk for developing type 2 diabetes mellitus and promote inflammation 

and thrombosis (Grundy et al. 2005).  

 

According to the National Cholesterol Education Program (NCEP) of the United States, MetS is 

defined as the presence of at least three of the following five fundamental symptoms:  

1.) Increased waist circumference (≥ 102 cm in men or ≥ 88 cm in women);  

2.) Increased triglyceride concentrations (≥ 1.7 mmol/L) or active therapeutic drug intervention;  

3.) Decreased high-density lipoprotein-cholesterol (HDL-C) concentrations (< 1.0 mmol/L in 

men or < 1.3 mmol/L in women) or active therapeutic drug intervention;  

4.) Increased blood pressure (≥ 130mmHg systolic or ≥ 85mmHg diastolic) or on active 

therapeutic drug intervention;  

5.) Increased fasting glucose (≥ 5.6 mmol/L) or on active therapeutic drug intervention (Grundy 

et al. 2005).  

 

MetS may result from abnormal deposition of fat in the liver, muscles and pancreatic b-cells instead 

of compartmentalization to adipose tissue which in turn causes dyslipidaemia, steatosis, insulin 

secretory failure and both hepatic and peripheral IR (Lewis et al. 2002). The alterations in IR that 

are associated with MetS may provide the biochemical foundation for the link with NAFLD, for 

example IR may cause steatosis by promoting fatty acid flux from adipose tissue to the liver. The 

severity of steatosis has been found to increase in parallel with IR in a statistically significant 

manner while the five biochemical and clinical features of MetS are strongly associated (P < 0.001) 
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with severe steatosis in the absence of diabetes (Angelico et al. 2005). Presence of MetS 

considerably increases the probability of NAFLD development among men and women (P < 0.001 

for both), while regression of the disorder is 50% less likely to occur (Hamaguchi et al. 2005). 

NAFLD, NASH, advanced fibrosis and diabetes are all associated with morbid obesity (Ong et al. 

2005). Increased fasting plasma glucose levels are associated with greater prevalence of NAFLD 

and the levels of albumin, glycosylated haemoglobin (HbA1C), liver enzymes, mean fasting plasma 

glucose, total protein and triglyceride are considerably elevated while the high-density lipoprotein-

cholesterol (HDL-C) concentrations are reduced (Jimba et al. 2005). NAFLD may become an 

increasingly important clinical problem, especially in terms of increased CVD risk, due to the 

increasing prevalence of MetS and its close link with NAFLD. The metabolic abnormalities 

inherent in these disorders may also influence disease progression and response to treatment, for 

example in hepatitis C virus infection, where IR is associated with a reduced Sustained Virological 

Response (SVR) and SVR is associated with decreased IR (Romero-Gomez et al. 2005; 

Conjeevaram et al. 2007; Kawaguchi et al. 2007). SVR is also affected by the body mass index 

(BMI), fibrosis, steatosis and waist circumference (WC) which further illustrates the pervasive 

effects of metabolic abnormalities traditionally associated with MetS and NAFLD (Bressler et al. 

2003; Tarantino et al. 2006; Poynard et al. 2003; Svegliati-Baroni et al. 2007).  

 

 

1.3. NAFLD and Cardiovascular Disease  

 

The close association between the symptoms of NAFLD and the diagnostic criteria of MetS confer 

numerous risk factors for cardiovascular disease (CVD) development and progression (Angulo, 

2002; Marchesini et al. 2008; Kotronen and Yki-Järvinen, 2008; de Alwis and Day, 2008; Targher 

et al. 2008b). NAFLD induces the development of two reliable markers of subclinical 

atherosclerosis independently of obesity or other established risk factors, namely impaired flow-

mediated vasodilatation (Villanova et al. 2005) and increased carotid-artery intimal medial 

thickness (Targher et al. 2004; Brea et al. 2005; Völzke et al. 2005a; Targher et al. 2006; Fracanzani 

et al. 2008; Kim et al. 2009). Carotid-artery intimal medial thickness differs according to the 

severity of steatosis and is lowest in the complete absence of the disorder, greater in the presence of 

simple steatosis and the greatest in NASH. The degree of carotid-artery intimal medial thickness is 

associated with the histologic severity of NASH independently of classic CVD risk factors, IR and 

MetS (Targher et al. 2006). Evidence against the association of NAFLD with either increased 

carotid-artery intimal medial thickness or increased prevalence of carotid-artery calcium 
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(McKimmie et al. 2008; Petit et al. 2009) has been strongly rebuked by the findings of a meta-

analysis of seven cross-sectional studies involving 3497 subjects (Sookoian and Pirola, 2008). 

Cardiac phosphorus-31 magnetic resonance spectroscopy has revealed echocardiographic features 

of early left ventricular dysfunction (Goland et al. 2006) and impaired left ventricular energy 

metabolism (Perseghin et al. 2008) in young NAFLD patients independent of diabetes, hypertension 

and/or obesity.  

 

Ischaemic heart disease is more prevalent in ultrasonographically diagnosed cases of NAFLD, 

independent of traditional risk factors (Lin et al. 2005). NAFLD is associated with a 2-fold 

increased prevalence of coronary heart disease among children (Schwimmer et al. 2005) and 

decreased myocardial perfusion independent of insulin sensitivity, traditional risk factors and 

visceral fat mass among patients with type-2 diabetes mellitus who were also known to have 

coronary artery disease (Lautamäki et al. 2006). The severity of coronary artery disease is greater 

among NAFLD patients repeatedly referred for elective coronary angiography, independently of 

established risk factors (Mirbagheri et al. 2007). NAFLD – concurrent with either type-1 or type-2 

diabetes mellitus – is associated with increased prevalence of cerebrovascular, coronary and 

peripheral vascular disease independent of traditional risk factors, MetS, extent of glycaemic 

control, duration of diabetes and lipid-lowering, hypoglycaemic, antiplatelet or antihypertensive 

medications (Targher et al. 2007b; Targher et al. 2010).  

 

The exact nature of the complex associations between abdominal obesity, IR and NAFLD which 

result in elevated CVD risk may be linked to the accelerated atherogenesis seen among NAFLD 

cases. In this regard, the liver may be both the target of the systemic abnormalities induced by 

expanded visceral adipose tissue and provide the pro-atherogenic molecules that amplify the arterial 

damage. The biological mechanisms potentially involved in these processes are summarized in 

figure 1.   
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Figure 1: CVD in NAFLD Patients – Possible Biological Mechanisms.  

The underlying mechanisms linking NAFLD and CVD might derive from the expanded and 

inflamed visceral adipose tissue, with the liver acting as both the source of several 

proatherogenic factors and the target of the resulting systemic abnormalities. NAFLD and 

especially NASH might affect the pathogenesis of CVD through the systemic release of several 

haemostatic, inflammatory and oxidative-stress mediators or through the contribution of 

NAFLD to atherogenic dyslipidaemia and IR.  

(HDL = high-density lipoprotein, IR = insulin resistance, LDL = low-density lipoprotein, 

NAFLD = non-alcoholic fatty liver disease, NASH = nonalcoholic steatohepatitis)  

[Used with the permission of Dr Giovanni Targher from Targher et al. (2010)] 
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Inflammation, Insulin Resistance and Obesity  

The development of atherosclerosis and IR may be caused by any of a variety of molecules released 

by expanded and inflamed visceral adipose tissue, such as free fatty acids, interleukin- 6, monocyte 

chemotactic protein 1, Tumour Necrosis Factor α (TNF-α) and numerous other proinflammatory 

cytokines (Day, 2006; Badman and Flier, 2007; Shoelson et al. 2007; Stefan et al. 2008; Tilg and 

Moschen, 2008). Adipocytes, macrophages, or a combination of both may serve as the source of 

these cytokines (Day, 2006; Badman and Flier, 2007; Shoelson et al. 2007; Stefan et al. 2008; Tilg 

and Moschen, 2008). The adipose-tissue inflammation caused by these cytokines is among the most 

fundamental events resulting in IR, particularly in obese and overweight individuals (Shoelson et al. 

2007; Tilg and Moschen, 2008). The gatekeepers of the innate immune system are cytokine 

receptors and pattern-recognition receptors, such as toll-like receptors and receptors for advanced 

glycation end products. Receptors of this nature mediate the activation of proinflammatory 

pathways (Kiechl et al. 2002; Shoelson et al. 2007; Tilg and Moschen, 2008), which converge on 

two primary intracellular transcription factor signalling pathways: the Nuclear Factor κB (NF-κB) 

pathway and the c-Jun N-terminal Kinase (JNK) pathway (Day, 2006; Shoelson et al. 2007; Stefan 

et al. 2008; Tilg and Moschen, 2008). The association of IR in the liver and activation of the JNK 

pathway in adipose tissue has been proven experimentally in mice (Sabio et al. 2008). Cellular lipid 

accumulation in skeletal muscle and the inhibition of the insulin-signalling cascade may be 

responsible for the apparent dissociation of IR from adipose-tissue inflammation in the earliest 

stages of the disorder among lean persons (Savage et al. 2007). IR in skeletal muscle is associated 

with hyperinsulinaemia in peripheral and portal veins, which causes hepatic IR and steatosis 

through several mechanisms, including inhibition of fatty acid oxidation and induction of hepatic 

lipogenesis mediated by sterol regulatory element-binding protein 1c (Petersen et al. 2007; Savage 

et al. 2007).  

 

Inflammation, Insulin Resistance and Hepatic Steatosis  

IR plays an instrumental role in the development and progression of CVD, MetS (Bonora, 2006) 

and NAFLD (Angulo, 2002; Day, 2006; Shoelson et al. 2007; de Alwis and Day, 2008; Kotronen 

and Yki-Järvinen, 2008; Marchesini et al. 2008; Stefan et al. 2008; Tilg and Moschen, 2008). 

Hepatic steatosis is caused by elevated uptake of free fatty acids by the liver, primarily from the 

hydrolysis of abundant adipose-tissue triglycerides due to IR, but also from dietary chylomicrons 

and hepatic lipogenesis (Angulo, 2002; Day, 2006; Shoelson et al. 2007; de Alwis and Day, 2008; 

Kotronen and Yki-Järvinen, 2008; Marchesini et al. 2008; Stefan et al. 2008; Tilg and Moschen, 

2008). The over-production of proinflammatory cytokines, such as interleukin-6, by hepatocytes 
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and non-parenchymal cells is associated with hepatic steatosis (Day, 2006; Shoelson et al. 2007; 

Stefan et al. 2008; Tilg and Moschen, 2008). Carotid-artery intimal medial thickness is significantly 

increased in the presence of NASH and/or chronic viral hepatitis, which is consistent with the role 

of liver inflammation in the pathogenesis of CVD (Targher et al. 2007a). The liver is both a 

contributor to and the target of systemic inflammatory changes in the presence of increased free 

fatty acid flux and chronic, low-grade inflammation which is aggravated by the activation of the 

NF-κB pathway in the liver of patients with NASH which leads to amplified transcription of several 

proinflammatory genes (Stefan et al. 2008; Tilg and Moschen, 2008). Fat-derived factors and 

hepatocellular damage mediate the activation of the NF-κB pathway within the liver, which causes 

elevated intrahepatic cytokine expression that may be instrumental in the progression of both CVD 

(de Alwis and Day, 2008; Targher et al. 2008b) and NAFLD (Day, 2006; Shoelson et al. 2007; 

Stefan et al. 2008; Tilg and Moschen, 2008). NAFLD is associated with the overexpression of many 

genes involved in coagulation, fatty acid metabolism, inflammation, lipolysis, and both macrophage 

and monocyte recruitment (Targher et al. 2009). The serum concentrations of several inflammatory 

(including C-reactive protein [CRP], interleukin-6, TNF-α), procoagulant (such as Plasminogen 

Activator Inhibitor 1 [PAI-1], fibrinogen, factor VII) and oxidative stress markers (e.g. 

nitrotyrosine, oxidized Low-Density Lipoprotein Cholesterol [LDL-C], thiobarbituric acid-reacting 

substances,) are proportional to the severity of steatosis independently of traditional risk factors, 

with the absence of steatosis corresponding to the lowest marker levels, followed by elevated values 

in cases of simple steatosis and the greatest excess in the presence of NASH (Targher et al. 2009).  

 

Histologic Severity  

The histologic severity of NAFLD has been strongly associated with the intrahepatic messenger 

Ribonucleic Acid (mRNA) expression of CRP, interleukin-6 and PAI-1 (Yoneda et al. 2007; 

Wieckowska et al. 2008; Thuy et al. 2008). NASH is associated with elevated atherogenic risk 

beyond the contribution of visceral adiposity as increased plasma CRP, fibrinogen and PAI-1 

activity levels with lower adiponectin levels have been reported, while visceral adiposity remained 

unaffected. Independent association of the histologic severity of NASH with the plasma 

concentrations of inflammatory and procoagulant markers support this additional pathogenic 

mechanism (Targher et al. 2008a). NASH is associated with a greater risk of CVD relative to simple 

steatosis as well as increased serum liver enzyme concentrations due to the necro-inflammatory 

nature of the disorder (Matteoni et al. 1999; Adams et al. 2005; Ekstedt et al. 2006; Rafiq et al. 

2009; Söderberg et al. 2010). NAFLD and especially NASH can promote the development of 

atherogenic dyslipidaemia and the progression of both hepatic and systemic IR, which greatly 
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increase the risk of CVD (Targher et al. 2006; Shoelson et al. 2007; de Alwis and Day, 2008; 

Kotronen and Yki-Järvinen, 2008; Stefan et al. 2008; Targher et al. 2008b). Defective lipoprotein 

metabolism, particularly during the postprandial phase, is yet another mechanism by which NAFLD 

may elevate CVD risk (Musso et al. 2003; Matikainen et al. 2007). Iron and lipids are both vital to 

the processes that affect and are influenced by NAFLD, while the same is true for CVD. The 

combination of increased body iron stores and hypercholesterolaemia, as measured by transferrin 

saturation and LDL (respectively), was demonstrated to exacerbate CVD mortality risk by two 

independent studies (Salonen et al. 1992; Wells et al. 2004).  

 

 

1.4. NAFLD and Hereditary Haemochromatosis  

 

Excessive iron accumulation due to defective export is frequently related to inflammatory responses 

or the iron overload disorder known as Hereditary Haemochromatosis (HH). A fundamental 

element of NAFLD pathogenesis, IR, is also a common feature of HH (Valenti et al. 2003).  

 

Detection of a genetic predisposition in the presence of high serum ferritin and transferrin saturation 

levels is usually sufficient to diagnose HH. However, care must be taken to prevent misdiagnosis of 

HH in patients with hyperferriteinaemia, which might be caused by the Insulin Resistance Hepatic 

Iron Overload (IR-HIO) syndrome, also known as dysmetabolic iron overload. Ferritin 

concentrations, which reflect iron stores, are independent predictors of vascular damage in NAFLD 

(Kruger, 2008). The mechanism may involve up-regulation of hepcidin by increased iron stores in 

patients not carrying HFE mutations and iron compartmentalization into macrophages (Valenti et 

al. 2010).  

 

Deleterious HFE genotypes, which are responsible for approximately 80% of all HH cases, induce 

NAFLD progression irrespective of the severity of metabolic abnormalities (Valenti et al. 2003; 

Nelson et al. 2007). Genetic susceptibility to the development and progression of NAFLD is 

supported by the discovery of inter-ethnic variation of HH (de Villiers et al. 1999b), while the 

combined effects of various environmental and genetic risk factors could explain the divergent 

disease phenotype (Kruger, 2008).  

 

The role of HFE in oxidative stress and inflammation is the primary reason for its inclusion as one 

of the candidate genes studied in the context of NAFLD.  
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1.4.1. Hereditary Haemochromatosis  

HH was regarded as a clinically and genetically unique entity for much of the 20th century. A 

German pathologist named Von Recklinghausen first described the classic findings on presentation 

– including diabetes, bronze pigmentation of the skin and cirrhosis – in 1889 and coined the term 

"haemochromatosis" (Von Recklinghausen, 1889). By 1935 it was clear that the disease was 

hereditary in nature and was caused by excess deposits of iron in various tissues (Sheldon, 1935). In 

the 1970s and 1980s it was recognized as an autosomal recessive disorder linked to the region of the 

short arm of chromosome 6 encoding the major histocompatibility complex class 1 A. The 

―haemochromatosis gene" designated HFE, was finally identified in 1996 by Feder et al. HFE has 

since become known as the high-iron gene owing to its role in iron metabolism.  

 

In the years since the discovery of HFE, our collective understanding of HH – and that of human 

iron metabolism in general – has improved dramatically. We know that mutations in other genes 

that control iron metabolism can cause similar forms of iron overload (defined in terms of excess 

body iron levels) that lead to deposits of iron in especially parenchymal tissues with distinct 

patterns and organ-damaging potential, as is often observed among NAFLD patients. The genetic 

age has revolutionized the diagnosis of HH and revealed that the phenotypic expression of any 

given mutation in an iron-metabolism gene may vary significantly. Such advances have stretched 

the limits of the historical definition of HH to the point where a new classification of this disorder 

has arisen. HH is defined today as a hereditary iron loading disorder of multigenic nature, caused by 

a genetically determined inability to prevent the excessive influx of iron into the circulatory pool. It 

is characterized by progressive parenchymal iron overload with the potential for significant multi-

organ damage and disease (Pietrangelo, 2006).  

 

HH is one of the most common forms of hereditary defects in iron metabolism among Caucasian 

populations of northern European descent on a global scale (Sheldon, 1935; Edwards et al. 1988). 

Approximately one in 100 individuals of European ancestry are affected in the South African 

population (Meyers et al. 1987; de Villiers et al. 1999a). Efficient DNA-diagnostics are made 

possible for patients of European descent due to the identification of two mutations (C282Y and 

H63D) in the HFE gene, cloned in 1996, which are the cause of HH in more than 80% of Caucasian 

HH patients (Feder et al. 1996; Potekhina 2005). The C282Y mutation is exceedingly rare in Asian, 

Australian, Amerindian and African populations, with documented cases of its complete absence 

(Beckman et al. 1997; Chang et al. 1997; Merryweather-Clarke et al. 1997; Agostinho et al. 1999; 

Rochette et al. 1999; Sodha et al. 1999; Barut et al. 2003; Zorai et al. 2003; Karimi et al. 2004; 
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Kotze et al. 2004a; Sassi et al. 2004; Leone et al. 2005). Novel mutations are constantly being 

identified in a number of genes that have been implicated in iron homeostasis and different forms of 

HH (Beutler, 2005). The development and implementation of rapid mutation detection tests is vital 

for the efficient identification of the principal causes of HH in patients without the typical C282Y 

homozygous status (Kotze et al. 2004a). This will also reduce the risk of HH misdiagnosis in 

NAFLD cases, thereby drastically improving clinical management and outcome for affected 

individuals.  

 

1.4.1.1. Genetic Classification  

There are four types of HH that are currently recognized by the international scientific and medical 

communities, as indicated by the Online Mendelian Inheritance in Man (OMIM) database. 

Haemochromatosis Type 1 (HFE1) is the most common form and is caused by mutations in the 

HFE gene on chromosome 6 (Sheldon, 1935; Simon et al. 1975; Simon et al. 1987; Feder et al. 

1996). Type 2 haemochromatosis is divided into subtypes 2A (HFE2A) and 2B (HFE2B). HFE2A 

is the more common of the two and is caused by mutations in the Hemojuvelin (HJV) gene on 

chromosome 1 (Roetto et al. 1999; Papanikolaou et al. 2004). HFE2B is caused by mutations in the 

Hepcidin Anti-Microbial Peptide (HAMP) gene on chromosome 19 (Roetto et al. 2003; 

Merryweather-Clarke et al. 2003). Haemochromatosis Type 3 (HFE3) is caused by mutations in the 

Transferrin Receptor 2 (TFR2) gene on chromosome 7 (Camaschella et al. 2000b; Mattman et al. 

2002; Girelli et al. 2002; Hattori et al. 2003). Type 4 haemochromatosis (HFE4) is also known as 

ferroportin disease and is caused by mutations in the Solute Carrier 40 (iron-regulated transporter) 

member 1 gene (SLC40A1) on chromosome 2 (Pietrangelo et al. 1999; Montosi et al. 2001; Njajou 

et al. 2001).  

 

HFE1, 3 and 4 are further categorized as Adult-onset haemochromatosis. They are characterized by 

gradual iron loading, a relatively late onset of parenchymal iron deposition and predominantly 

hepatic organ damage (Pietrangelo, 1998). Juvenile Haemochromatosis (JH) is characterized by 

onset of more severe iron overload, occurring typically in the first to third decades of life (Cazzola 

et al. 1983). Affected individuals have been reported worldwide and both males and females are 

equally affected. HFE2A and 2B are the only current examples of this disease sub-class.  

 

The adult and juvenile forms are merely two points on a phenotypic range with the same underlying 

syndrome as well as identical targets of iron toxicity: liver, heart and endocrine glands. The earlier 

onset of hypogonadism or cardiopathy in JH as compared to the ―adult‖ forms is simply related to 
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the rapidity and extent of massive circulatory and tissue iron overload due to marked hepcidin loss. 

This also suggests that endocrine organs and the heart are particularly susceptible to iron toxicity 

and the rapid iron accumulation noted in these organs may be less tolerated than in other tissues. 

For example, the liver has superior protection against the toxic effects of iron due to its unique 

physiology.  

 

Adult-Onset Haemochromatosis  

HFE1 is the most common form of HH in most populations of European descent and is caused by 

deleterious mutations in several of the six exons of the HFE gene at locus 6p21.3 (Feder et al. 

1996). The HFE protein encoded by this gene is a 343-residue type 1 transmembrane glycoprotein. 

It is similar, in both sequence and three-dimensional structure, to Major Histo-compatibility 

Complex (MHC) class I-type proteins (Lebron et al. 1998).  

 

The HFE and MHC class 1 proteins contain three extracellular domains (α1, α2 and α3), consisting 

of a transmembrane domain and a short cytoplasmic tail. The α1 and α2 globular domains form an 

eight-stranded anti-parallel β-sheet platform topped by two α helices which is maintained on the 

surface of an immunoglobulin constant-like α3 domain. Cell surface expression of this molecule is 

made possible by the binding of the α3 domain to β2-microglobulin to form a heterodimer. While 

the α1 and α2 helices create a groove for peptide binding in the case of MHC proteins, HFE does 

not bind peptides. Crystallographic studies have proven that the HFE α1 helix is located close to the 

α2 helix, forming a shallower and narrower groove than the MHC peptide-binding groove. 

Differences in physical structure between these proteins indicate that each one has a different role in 

cellular transferrin-mediated iron uptake (Feder et al. 1998). A cluster of four histidine residues 

which resembles the structure of iron-binding sites in numerous proteins has been identified on the 

surface of the α1 domain (Lebron et al. 1998). The exact molecular mechanism by which HFE 

regulates iron uptake has not been determined, although it is thought to form a complex with the 

Transferrin Receptor 1 (TfR1) and influence intracellular iron delivery (Parkkila et al. 1997, Feder 

et al. 1998). The association of HFE with TfR1 significantly reduces the binding affinity of TfR1 

for transferrin (Feder et al. 1998, Gross et al. 1998, Ikutu et al. 2000).  

 

The ―classic‖ form of HH, known as HFE1, is an autosomal recessive iron-overload disorder. In 

most documented cases the causative mutation is a guanine to adenine Single Nucleotide 

Polymorphism (SNP) in exon 4 of HFE (845G>A), resulting in the substitution of tyrosine for 

cysteine in the α3 domain at amino acid position 282. This mutation is designated Cys-282-Tyr, or 
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C282Y with a Single Nucleotide Polymorphism Database identification number (dbSNP rs# ID) of 

rs1800562 (Feder et al. 1996). C282Y seems to have originated by chance in a single Celtic or 

Viking ancestor in north-western Europe approximately 2000 years ago. This genetic defect, which 

evidently caused no serious obstacle to reproduction and may even have conferred some advantages 

(e.g. resistance to dietary iron deficiency and certain infectious diseases) was passed on and spread 

by population migration. Homozygosity for the C282Y mutation is now found in approximately 5 

of every 1000 persons of northern European descent - a prevalence 10 times that of cystic fibrosis 

genotypes (Merryweather-Clarke et al. 1997, Rochette et al. 1999). Relative to wild type 

individuals, C282Y homozygotes have twice the risk of breast and colorectal cancer. The risk of 

developing hepatocellular carcinoma is increased 200-fold, with serum ferritin concentration >1000 

µg/L identified as the strongest predictor of cirrhosis (Osborne et al. 2010).  

 

Heterozygosity for the C282Y mutation is associated with increased risk of acute myocardial 

infarction in men (Tuomainen et al. 1999) and with cardiovascular death in postmenopausal women 

(Roest et al. 1999). This correlation was strengthened in the latter population in the presence of 

hypertension or smoking, while the combination of both factors resulted in a nearly 20-fold 

increased risk. This discovery emphasizes the importance of analysing multiple risk factors when 

low-penetrance mutations are investigated.  

 

The H63D mutation (rs1799945) results from a cytosine to guanine base change in exon 2 at 

nucleotide position 187 (187C>G) which causes a substitution of aspartic acid for histidine at amino 

acid position 63 (His-63-Asp) of the protein (Feder et al. 1996). In the homozygous state, H63D 

rarely results in disease expression unless complications such as excessive alcohol intake, 

haemolytic anaemia or ineffective erythropoiesis are present (Best et al. 2001). When both H63D 

and C282Y are present in an individual, a state known as compound heterozygosity, a mild 

phenotype is observed (Bacon et al. 1999). The effect of the H63D mutation on HFE is localized in 

the α1 domain where the amino acid substitution (aspartic acid for histidine) interferes with the 

formation of a His-Asp salt bridge, disrupting the local protein structure (Waheed et al. 1997). 

H63D is expressed at the cell surface, but lacks the Tansferrin Receptor (TfR) interaction of the 

wild type protein (Feder et al. 1998). Under normal circumstances, cells depend on HFE to 

modulate iron intake, but the mutation results in deposition of excess iron in the cells. This supports 

the deduction that H63D disrupts the function of the wild type protein.  

 



Chapter 1: Literature Review 

 

14 
 

Many studies have been conducted to establish the effects of the C282Y and H63D mutations on 

protein structure and function (Feder et al. 1996, Waheed et al. 1997, Feder et al. 1998, Lebron et 

al. 1998). C282Y prevents the formation of a disulphide bond and modifies HFE protein folding, 

thereby rendering the mutant molecule incapable of binding β2-microglobulin (Waheed et al. 1997). 

For normal protein processing, transport and cell surface expression HFE must bind to β2-

microglobulin. Consequently, mutant HFE remains confined to the endoplasmic reticulum and mid-

Golgi compartments where it cannot undergo late Golgi processing and is degraded rapidly 

resulting in the loss of protein function.  

 

A second mutation in exon 2 of the HFE gene, S65C, involves an adenine to thymine base change 

at nucleotide position 193 (rs1800730, 193A>T), resulting in a substitution of cysteine for serine at 

amino acid position 65 (Ser-65-Cys) (Mura et al. 1999). The allele frequency of S65C in 

Caucasians is highly variable, ranging from 1.6% to 5.5% (Rochette et al. 1999). S65C appears to 

be a benign polymorphism, as affected individuals homozygous for this mutation have not been 

reported. In the presence of C282Y, however, it may confer a slight disease risk resulting in a mild 

HH phenotype (Mura et al. 1999). Other HFE mutations which have been proven to cause HFE1 are 

I105T (Barton et al. 1999), G93R (Barton et al. 1999) and Q283P (Le Gac et al. 2003). Two 

polymorphisms have not yet been associated with development of a disease state, V53M and V59M 

(de Villiers et al. 1999a). Discovery of the HFE intronic polymorphism 5569G>A jeopardized the 

results of previous mutation detection studies of HFE (Jeffrey et al. 1999), as it is located within the 

binding area of one of the primers used by Feder et al. (1996) in the detection of the C282Y 

mutation in a sample population. The European Haemochromatosis Consortium (1999), 

representing 11 laboratories, retyped hundreds of samples with a new primer external to the 

5569G>A polymorphism or by DNA sequencing. Non-amplification of the polymorphic allele was 

not found, thereby verifying their previous publications.  

 

The vast majority of individuals that are clinically affected by HH are either homozygous for the 

C282Y mutation or are compound heterozygotes for the C282Y/H63D mutations (Feder et al. 

1996). These individuals are genetically predisposed to a sequence of events that may end in severe 

damage to multiple organs, but it is currently impossible to predict whether or to what extent the 

mutation will be phenotypically expressed. The natural history of classic HH involves a gradual and 

highly variable stepwise progression that is dependent upon many variables (Pietrangelo, 2004). An 

example of the extreme variability in phenotypic expression of this disorder can be found in the 

laboratory evidence that a small percentage of C282Y homozygotes never develop altered iron 
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metabolism. This is true for an even greater percentage of C282Y/H63D compound heterozygotes. 

When symptomatic organ involvement does occur it generally begins in midlife, often with non-

specific symptoms such as unexplained fatigue or joint pain (Tavill, 2001). Liver disease usually 

predominates in the later stages, ranging from slightly elevated amino-transferase levels – with or 

without hepatomegaly – to cirrhosis and even hepatocellular carcinoma. Endocrine disorders 

(diabetes, hypogonadotropic hypogonadism, hypothyroidism and impotence) and cardiac problems 

(arrhythmias and heart failure) as well as joint disease (destructive arthritis) are also found. Even 

though iron metabolism is abnormal, haematologic anomalies are not usually seen as erythropoiesis 

is not jeopardized by HH (Pietrangelo, 2004). Therapeutic phlebotomy is usually effective in 

reducing both plasma iron and tissue iron stores and even aggressive phlebotomy generally poses no 

risk of anaemia to the patient (Tavill, 2001).  

 

HFE3 is a relatively rare iron-overload phenotype with symptoms that are very similar to those of 

HFE1 (Camaschella et al. 2000b; Mattman et al. 2002; Girelli et al. 2002; Hattori et al. 2003). It is 

caused by mutations in TFR2 which maps to chromosome position 7q22 and contains 18 exons 

(Kawabata et al. 1999). The mutations associated with the development of HFE3 are Y250X 

(Camaschella et al. 2000b), M172K (Roetto et al. 2001), Q690P (Mattman et al. 2002) and a 1-bp 

insertion of a cytosine residue in exon 2 in a polyC tract (g.84_88insC). g.84_88insC causes a 

frameshift followed by a premature stop codon, a Glutamic acid-60-to-Termination or E60X 

mutation (Roetto et al. 2001). The R455Q mutation has been found to modify the progression and 

expression of the HFE1 disease state (Hofmann et al. 2002). TFR2 is a member of the transferrin 

receptor-like family and encodes a single-pass type II membrane protein with a protease associated 

domain, an M28 peptidase domain and a transferrin receptor-like dimerization domain (Kawabata et 

al. 1999). This protein, TfR2, regulates cellular uptake of transferrin-bound iron (Fleming et al. 

2000). Alternatively spliced variants of TFR2 have been identified, with each one encoding a 

different protein isoform. The exact nature of these variants has yet to be fully elucidated.  

 

Ferroportin-associated iron overload, also known as ferroportin-disease, is currently classified in the 

OMIM database as HFE4 and was first clinically recognized in 1999 (Pietrangelo et al. 1999). The 

disorder was linked to SLC40A1, which encodes ferroportin (Montosi et al. 2001). Ferroportin is a 

cell membrane protein involved in cellular iron export from duodenal epithelial cells and acts as the 

primary iron export protein in mammals (Njajou et al. 2001). SLC40A1 encompasses 8 exons and 

maps to chromosome position 2q32 (Montosi et al. 2001). Mutations in SLC40A1 associated with 

the development of HFE4 are N144H (Njajou et al. 2001), A77D (Montosi et al. 2001), D157G, 
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Q182H, G323V (Hetet et al. 2003), D181V, G80V, G267D (Cemonesi et al. 2005) and a 3-bp 

(TTG) deletion in exon 5 which results in the loss of a valine residue at amino acid position 162 

(Wallace et al. 2002). These mutations cause a hereditary iron storage disease distinct from the 

other types of HH in that it is an autosomal dominant inherited disorder of iron metabolism which 

induces progressive iron retention primarily in reticulo-endothelial cells of the spleen and liver 

(Montosi et al. 2001). HFE4 is characterized by gradually increasing concentrations of serum 

ferritin, disproportionately high when compared to the degree of serum transferrin saturation, as 

well as marginal anaemia and minor organ damage (Pietrangelo, 2004).  

 

This disorder has been reported in many countries worldwide and in many different ethnic groups 

which differs considerably from the apparently restricted distribution of HFE mutations among 

Caucasians of northern European ancestry. The current model for the pathogenicity of HFE4 

involves mutations in SLC40A1 which cause a slight yet substantial impairment to the iron 

recycling capacity of reticulo-endothelial macrophages (Montosi et al. 2001). These cells normally 

process and release large quantities of iron which they derive from the lysis of senescent 

erythrocytes. As the enterocyte manages relatively small quantities of iron daily, mutations in 

SLC40A1 may not be limiting for iron transport and residual protein activity could be sufficient to 

maintain normal function. This possibility is reinforced by the discovery that absorbing enterocytes 

do not show excess iron deposits in HFE4 (Corradini et al. 2005). The retention of iron by 

macrophages results in tissue iron accumulation, as indicated by high serum ferritin concentrations. 

This reduces the availability of iron for bone marrow and circulating transferrin, which lowers 

transferrin saturation. As this condition progresses, the cellular iron retention combined with the 

activation of feedback mechanisms to increase intestinal absorption might contribute to more 

prominent symptoms of iron overload. This pathophysiologic model is supported by the discovery 

that patients with mutations in SLC40A1 have significantly elevated reticulo-endothelial iron stores 

from those with other forms of HH (Pietrangelo, 2006).  

 

Even though patients affected by HFE4 are not anaemic, signifying adequate iron availability for 

normal erythropoiesis, they have a reduced tolerance to phlebotomy and may become anaemic on 

therapy despite persistently elevated serum ferritin concentrations (Montosi et al. 2001; Pietrangelo, 

1999). Different mutations in SLC40A1 may affect the function of ferroportin in diverse ways and 

thereby indirectly cause variability in clinical expressivity. This view is partially supported by 

anecdotal evidence which implies that mutations in SLC40A1 may also be linked to parenchymal 

iron overload similar to that observed in HFE1 (Sham et al. 2005). Recent in vitro studies propose 
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that a subgroup of SLC40A1 mutations might induce hepcidin ―resistance‖ and increased rather than 

diminished iron export (De Domenico et al. 2005; Drakesmith et al. 2005; Schimanski et al. 2005). 

This situation may result in a subgroup of HFE4 patients with ―gain-of-function‖ mutations that 

enhance iron release from enterocytes and macrophages, resulting in a phenotype similar to HFE1. 

This hypothesis awaits confirmation from additional experimental data and more extensive clinical 

studies.  

 

Juvenile Haemochromatosis  

HFE2A is caused by mutations in the Hemojuvelin gene (HJV) at locus 1q21 (Roetto et al. 1999; 

Papanikolaou et al. 2004). It encompasses 4 exons and codes for the hemojuvelin protein, which 

contains 426 amino acids and is predicted to be approximately 41 kD in size. A 35-amino acid 

hydrophobic signal peptide was identified at the N-terminal through bioinformatic analyses, with a 

transmembrane domain and a glycophosphatidyl inositol addition signal sequence at the C-terminal 

end (Zhang et al. 2005). Significant discoveries in the structure of hemojuvelin include a tri-amino 

acid arginine-glycine-aspartic acid domain at position 98 which is believed to be vital to cell 

adhesion and a partial von Willebrand Factor-like domain that spans the central portion of the 

protein (from amino acid 167 to 253). Furin and Repulsive Guidance Molecule (RGM) autocatalytic 

sites are among numerous cleavage sites predicted in hemojuvelin. There are two isoforms of 

hemojuvelin: the full-length, membrane-bound protein and a soluble variant. This soluble form of 

hemojuvelin has disulphide bonded N- and C-terminal chains cleaved at the aspartic acid-proline 

RGM autocatalytic cleavage site and competes with the membrane-bound form (Lin et al. 2005). 

Known mutations in HJV associated with the development of HFE2A are G320V, R326X, I222N, 

I281T (Papanikolaou et al. 2004), C80R (Barton et al. 2002, Lee et al. 2004b), L101P (Lee et al. 

2004b), C321X (Lee et al. 2004a), R54X (Murugan et al. 2008) and a 4-bp deletion at nucleotide 

position 980. This deletion is predicted to result in a premature termination codon at amino acid 

residue 337 (Gehrke et al. 2005).  

 

HFE2B is caused by mutations in HAMP which encodes the protein hepcidin, also known as the 

iron-hormone. HAMP contains 3 exons and maps to chromosome position 19q13.1 (Roetto et al. 

2003; Merryweather-Clarke et al. 2003). Expression of hepcidin mRNA occurs nearly exclusively 

in the liver, but has been detected in much lower concentrations in other tissues including the heart, 

brain and lung (Pigeon et al. 2001). This protein is produced by hepatocytes in response to 

inflammatory stimuli and iron (Lamon et al. 1979, Cazzola et al. 1983, Roetto et al. 2003). Hepdicin 

is vital to the maintenance of iron homeostasis, particularly in the regulation of iron storage in 
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macrophages and intestinal iron absorption. It has been classified as a member of the cysteine-rich, 

cationic, anti-microbial peptides which includes the thionins and defensins due to the significant 

anti-bacterial and anti-fungal activities of the C-terminal peptide. The 84 amino acid pre-proprotein 

is post-translationally cleaved into mature peptides of 20, 22 and 25 amino acids (Krause et al. 

2000, Park et al. 2001). An N-terminal signal sequence and a penta-arginyl proteolysis site are used 

to produce the active C-terminal 25 amino acid peptide encoded by exon 3 (Park et al. 2001, 

Nemeth et al. 2006). It contains eight cysteines involved in disulfide bridge formation, with strong 

intra-molecular bonds that stabilize their β-sheet structures (Pigeon et al. 2001). Hepcidin is filtered 

by the kidneys and can be detected in urine due to its small size (Krause et al. 2000).  

 

HAMP mutations associated with the development of HFE2B include R56X (Roetto et al. 2003), 

G71D (Merryweather-Clarke et al. 2003), two deletions and a 5-prime untranslated region (UTR) 

defect. One of these deletions was that of a guanine residue in exon 2 at amino acid position 93 

(HAMP, 1-BP DEL, 93G) which caused a frameshift and generated an abnormally elongated (179 

residues) pro-hepcidin peptide (Roetto et al. 2003). The second deletion results in a frameshift due 

to the loss of a 4-bp sequence (HAMP, 4-BP DEL, ATGG) containing the last codon of exon 2 

(methionine-50) and the first base of the splice donor site of intron 2 [IVS+1(-G)]. Retention of the 

splice consensus site was predicted to be the effect of this mutation, but it was instead found to 

extend the reading frame beyond the end of the normal transcript (Merryweather-Clarke et al. 

2003). Another cause of HFE2B involves a homozygous guanine-to-adenine transition at position 

+14 of the 5-prime UTR relative to the cap site of the mRNA for HAMP (HAMP, +14G-A, 5-

PRIME UTR). A new initiation codon was thus created at position +14 of the 5-prime UTR, 

resulting in a shift of the reading frame and the subsequent translation of an abnormal protein 

(Matthes et al. 2004).  

 

No particular ethnic background appears to have a higher frequency, however a clustering of HJV 

mutations occurs in Italy and Greece. A much smaller number of individuals of Arab, Greek, Italian 

and Portuguese descent with HAMP-related JH have been reported. Few documented cases exist 

though, as it is a very rare disease. Prominent clinical features include arthropathy, cardiomyopathy, 

hypogonadotropic hypogonadism and liver fibrosis or cirrhosis. Hepatocellular carcinoma has not 

been reported. The main cause of death is cardiac disease. Curiously, the parenchymal iron 

distribution remains similar to adult-onset haemochromatosis. If JH is detected early enough and 

blood is removed regularly through the process of phlebotomy to achieve iron depletion, morbidity 

and mortality are greatly reduced. Mutations in HJV represent the majority of worldwide cases of 
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JH (Roetto et al. 1999), while HAMP mutations account for the most severe form of any HH. 

Plasma iron loading (reflected by increased transferrin saturation values) and tissue iron excesses 

(indicated by increased serum ferritin levels) are evident early in life in both sexes.  

 

Functional iron-metabolism data from patients with JH are limited, but estimated rates of iron 

accumulation markedly exceed those observed in the adult-onset forms (Cazzola et al. 1998). Liver 

biopsies and autopsies reveal a parenchymal iron distribution resembling that seen in both HFE- 

and TFR2-related disease (De Gobbi et al. 2002) even though symptomatic organ involvement 

occurs as early as the second decade of life. Although liver involvement is a constant feature, 

arrhythmias, cardiomyopathy, diabetes, heart failure and hypogonadotropic hypogonadism are far 

more evident than in the adult-onset form (Lamon et al. 1979, Cazzola et al. 1983). This difference 

may reflect different susceptibilities to massive iron overload among the developing organs. Death 

is usually caused by intractable heart failure and it is not uncommon for patients to pass on at the 

young age of 30 years. Rare cases of JH have been linked to homozygous for R56X (Roetto et al. 

2003) mutation in HAMP (approximately 10%), but the vast majority of juvenile-onset cases are 

caused by deleterious mutations in HJV (approximately 90%).  

 

 

1.5. Genetic Testing for NAFLD  

 

While the clinical and biochemical markers for NAFLD are universally accepted and fairly well 

documented, the genetics underlying this disorder are still quite speculative. Due to the close 

association between CVD and NAFLD, the biochemical and genetic determinants for pathogenesis 

can be ascertained through similar testing protocols. Deleterious mutations in many genes have 

been implicated in CVD and by extension in NAFLD. Significant associations have been reported 

for the genes that encode Apolipoprotein E; 5, 10-Methylenetetrahydrofolate Reductase and both 

Coagulation Factors II and V. The clinical expression of these genes depends to a large extent on 

gene-gene and gene-environment interaction. The role of iron as an environmental trigger for 

expression of mutations in the HFE gene is well established and provides a model for a new 

approach in healthcare termed Pathology Supported Genetic Testing (PSGT; Kotze et. al. 2009). 

Variation in the HFE gene is associated with disease risks in the vascular and other biological 

systems, thus supporting its inclusion in the genetic analysis of NAFLD (see section 1.4).  
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1.5.1. Apolipoprotein E (MIM ID +107741)  

Apolipoprotein E (Apo-E) is a major apoprotein of the chylomicron and binds to a specific receptor 

on liver and peripheral cells, facilitating the rapid removal of triglyceride-rich chylomicron- and 

Very Low-Density Lipoprotein (VLDL) remnants from the circulation by receptor-mediated 

endocytosis in the liver (Schaefer et al. 1986). It has been found to influence patient response to 

cholesterol-lowering drugs (e.g. reduced efficacy of statins) and antiretroviral therapy (e.g. 

development of dyslipidaemia). This protein is hyper-sensitive to lifestyle intervention, with 

differential effects on cholesterol and triglyceride levels stimulated by environmental triggers as 

diverse as alcohol, antiretroviral therapy, diabetes, high-calorie diet, hypothyroidism, obesity and 

physical inactivity (NCBI, Gene ID: 348). The mature protein is a 299-amino acid polypeptide with 

a molecular mass of approximately 34 kilo-Dalton (kD) (Rall et al. 1982a). Apo-E production and 

accumulation is greatly increased in response to peripheral nerve injury as well as during the 

regenerative process, indicating the significant role that it plays in the redistribution of cholesterol 

to the neurites for membrane biosynthesis during axon elongation and to the Schwann cells for 

myelin formation (Mahley, 1988).  

 

Mapping  

The APOE gene maps to 19q13.2 and was first theoretically localised to chromosome 19 by Olaisen 

et al. (1982), then definitely mapped by Southern blot analysis through the efforts of Das et al. 

(1985). Lusis et al. (1986) used a reciprocal whole arm translocation between the long arm of 

chromosome 19 and the short arm of chromosome 1 to map APOE to a cluster on the q-arm.  

 

Molecular Genetics  

The APOE gene is divided into several different isoforms. The 3 most significant variants (APOE2, 

-E3 and -E4) were initially identified by isoelectric focusing and are encoded by 3 alleles (Epsilon 

2, 3 and 4). These isoforms differ in amino acid sequence at 2 sites, known as residue 112 (site A) 

and residue 158 (site B). At sites A/B, the APOE2, -E3 and -E4 alleles contain cysteine/cysteine, 

cysteine/arginine and arginine/arginine, respectively (Weisgraber et al. 1981, Rall et al. 1982b). The 

3 alleles have varying electric charges (0, 1+ and 2+), which accounts for the observed 

electrophoretic differences (Margolis, 1982). APOE3 is the most common, or ―wild type,‖ isoform.  

 

APOE4 differs from APOE3 by a cysteine-to-arginine change at amino acid position 112, earning it 

the designation of cys112-to-arg (C112R) and dbSNP rs# ID of rs429358 (Smit et al. 1990). 

Presence of the APOE4 allele results in decreased plasma concentrations of Apo-E with increased 
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plasma cholesterol, low density lipoprotein-cholesterol, apolipoprotein B, lipoprotein (a), a 

significantly increased risk of Alzheimer‘s disease development and more than 40% greater risk of 

coronary heart disease (Weisgraber et al. 1981; Das et al. 1985; Paik et al. 1985).  

 

The APOE4 allele has been consistently associated with the development of Alzheimer‘s disease 

(Saunders et al. 1993a; Corder et al. 1993; Myers et al. 1996; Tang et al. 1996; Mori et al. 2002), 

general cognitive decline (Caselli et al. 2004; Farlow et al. 2004; Blair et al. 2005), worse response 

to cerebral trauma (Teasdale et al. 1997; Friedman et al. 1999; Crawford et al. 2002; Liberman et al. 

2002; Koponen et al. 2004) and greater deterioration of multiple sclerosis patients (Enzinger et al. 

2004; De Stefano et al. 2004).  

 

A recent study by Genin et al. (2011) demonstrated that the APOE4 allele confers a significantly 

increased risk of developing Alzheimer‘s disease which resembles the dangers associated with 

Breast Cancer 1 Gene (BRCA1) mutations and cancer. The APOE4 allele displayed high penetrance 

in the homozygous state in a similar manner to traditionally major genes associated with Mendelian 

disorders even though individual deleterious variations in APOE are generally of the low-

penetrance variety. This discovery emphasizes the complexities of biological systems and their 

interactions which determine the functionality of genes and their proteins. While individual 

mutations may not cause substantial dysfunction, the cumulative risk of multiple detrimental 

alterations to a particular biological system may result in both localized and diffuse disease.  

 

A band at the APOE2 position, obtained through isoelectric focussing, has been ascribed to 4 

different mutations: E2 (arg158-to-cys, R158C), E2 (lys146-to-gln, L146Q), E2 (arg145-to-cys, 

R145C) and E2-Christchurch (arg136-to-ser, R136S). The E2 arg158-to-cys (R158C) mutation, 

rs7412, is the most common, while all APOE2 variants are associated with dyslipidaemia in the 

presence of diabetes, hypothyroidism or obesity. Development of the genetic disorder familial 

dysbetalipoproteinaemia, or type III hyperlipoproteinaemia (HLP III) would depend on the level of 

unhealthy fats and refined carbohydrates in the diet (Rall et al. 1983a; Gill et al. 1985; Smit et al. 

1990).  

 

At least thirty APOE variants have been characterized, 14 of which are associated with familial 

dysbetalipoproteinaemia characterized by elevated plasma cholesterol and triglyceride levels with 

an increased risk for atherosclerosis development (de Knijff et al. 1994). Polymorphisms in the 

APOE gene have been associated with increased survival and longevity (Gerdes et al. 2000). Potent 
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transcriptional activation of APOE by the Zinc finger protein of the Cerebellum- 1 (ZIC1) and 2 

(ZIC2) transcription factors have been linked to stimulation of binding sites in the APOE promotor 

(Salero et al. 2001). The differential abilities of the Apo-E isoforms to form a stable folding 

intermediate (known as a molten globule structure) may contribute to the isoform-specific effects of 

this in disease (Morrow et al. 2002), e.g. the 22 kD N-terminus of APOE4 forms a molten globule 

more readily than does APOE3 or APOE2. Transmission of the APOE2 allele, which is associated 

with a lower risk of CVD, is significantly reduced in babies born with growth restriction and 

provides a possible explanation for the higher risk generally associated with development for such 

disease later in life (Infante-Rivard et al. 2003). APOE and Transforming Growth Factor Beta-1 

(TGFB1) are associated with obesity phenotypes (Long et al. 2003). Both the APOE2 and APOE4 

alleles have been found to reduce the likelihood of chronic hepatitis C virus infection, possibly 

through facilitating increased clearance of the virus (Price et al. 2006). The APOE4 allele has been 

identified as a determinant of AIDS pathogenesis, with homozygosity for APOE4 facilitating an 

accelerated disease course and progression to death when compared with APOE3 homozygosity 

(Burt et al. 2008).  

 

Disease Association  

Genetic and/or structural variations within Apo-E have been identified as a major contributing 

factor in the development, progression and/or severity of many disorders, as illustrated by table 1.1.   

 

Table 1.1. A summary of the disorders that have been associated with defective APOE.  

Associated Disorder References 

Abnormalities of blood lipids (see below) 

Cardiovascular disease (see below) 

Abnormal immunologic response Van den Elzen et al. 2005 

Acute ischaemic stroke Broderick et al. 2001 

Alzheimer‘s disease Saunders et al. 1993a; Agosta et al. 2009 

Cerebral amyloid angiopathy Greenberg et al. 1995; O'Donnell et al. 2000 

Coagulation inhibition Riddell et al. 1997 

Cognitive impairment Reiman et al. 1996; van Vliet et al. 2009 

Creutzfeldt-Jakob disease Saunders et al. 1993b; Amouyel et al. 1994 

Dystonia Matsumoto et al. 2003 

Foetal iodine deficiency disorder Wang et al. 2000 

Frontotemporal dementia Verpillat et al. 2002; Acciarri et al. 2006 

Huntington disease Kehoe et al. 1999 

Inclusion body myositis Garlepp et al. 1995 

Ischaemic cerebrovascular disease McCarron et al. 1999; Frikke-Schmidt et al. 2001 

Medically intractable temporal lobe epilepsy Busch et al. 2007 

Multiple sclerosis Chapman et al. 2001; Ghaffar et al. 2010 

Non-Alzheimer dementia Dufouil et al. 2005 
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Obstructive sleep apnea Gottlieb et al. 2004; Gozal et al. 2007 

Parkinson disease Marder et al. 1994; Huang et al. 2004 

Pick disease Farrer et al. 1995 

Progressive supranuclear palsy Tabaton et al. 1995 

Schizophrenia Harrington et al. 1995 

Sleep-disordered breathing Kadotani et al. 2001 

Subarachnoid haemorrhage Lanterna et al. 2007 

Traumatic brain injury Teasdale et al. 1997; Koponen et al. 2004 

Vascular dementia 
Frisoni et al. 1994; Mahieux et al. 1994; Frikke-

Schmidt et al. 2001 

Primary open-angle glaucoma Copin et al. 2002; Zetterberg et al. 2007 

Age-related macular degeneration Anderson et al. 2001; Bojanowski et al. 2006 

 

The diverse spectrum of associated conditions and the link with longevity emphasize the 

multifunctional role of APOE in health and disease. This observation highlights the necessity of a 

systems approach when including this gene in disease risk assessments.  

 

Role of APOE in Abnormalities of Blood Lipids and in CVD  

In HLP III, impaired clearance of chylomicron- and VLDL remnants by defective Apo-E or its 

receptor results in increased plasma cholesterol and triglycerides (NCBI, Gene ID: 348). 

Accumulation of these remnants can also cause xanthomatosis and premature coronary and/or 

peripheral vascular disease. HLP III may develop from primary heritable defects in apolipoprotein 

metabolism or due to complications induced by secondary conditions such as diabetic acidosis, 

hypothyroidism or systemic lupus erythematosus. The majority of patients suffering from HLP III 

are homozygous for the APOE2 isoform (E2/E2) while the heterozygous phenotypes (E3/E2 and 

E4/E2) rarely result in the disorder (Breslow et al. 1982). Homozygosity for APOE2 results in poor 

binding efficiency of chylomicron- and VLDL remnants to hepatic lipoprotein receptors (Schneider 

et al. 1981; Rall et al. 1982b) and delayed clearance from plasma (Gregg et al. 1981), whereas the 

E3 and E4 isoforms bind well due to a positively charged amino acid residue at variable site B 

(Weisgraber et al. 1982). While nearly all HLP III patients are homozygous for the APOE2 allele, 

95% to 99% of E2 homozygotes have neither the disorder nor increased plasma cholesterol levels. 

Furthermore, the APOE2 protein variant found in hypo-, normo- and hypercholesterolaemic 

subjects contains the same severe functional abnormalities (Rall et al. 1983a). This indicates the 

presence of additional environmental and/or genetic factors in the development of the disease and 

the potential for disease prevention. Examples of such factors include: menopause in women which 

renders the patients especially sensitive to oestrogen therapy; hypothyroidism and thyroid hormone 

are known to enhance receptor-mediated lipoprotein metabolism and exacerbate type III HLP; age, 

diabetes and obesity are associated with increased hepatic synthesis of VLDL and/or cholesterol 
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(HLP III in APOE2 homozygotes may be explained by these factors). Hepatic overproduction of 

cholesterol and VLDL may be the defect in familial combined hyperlipidaemia, which is combined 

with APOE2 homozygosity in the production of type III HLP (Utermann et al. 1979; Hazzard et al. 

1981). While Familial Hypercholesterolaemia (FH), known to be highly prevalent in South Africa 

due to a founder effect (Kotze et al. 1991; Kotze et al. 2003), is a genetic defect of the Low-Density 

Lipoprotein (LDL) receptor, familial dysbetalipoproteinaemia is a genetic defect in a ligand (Brown 

and Goldstein, 1983). A possible explanation for the observation that all APOE2 homozygotes do 

not have extremely high plasma levels of Apo-E containing lipoproteins (intermediate density 

lipoprotein and chylomicron remnants) is that lipoprotein levels are highly sensitive to factors that 

reduce hepatic LDL receptors (such as age, the genetic defect of FH and reduced levels of thyroid 

hormone and oestrogen) and elevated concentrations of hepatic LDL receptors may compensate for 

the genetic binding defect inherent in E2 homozygotes.  

 

The most characteristic biochemical feature of HLP III is the abnormal separation profile of Apo-E 

achieved by isoelectric focusing, especiall the absence of the E3 isoform. The fractional catabolic 

rate in vivo of Apo-E isolated from subjects with HLP III is decreased in both type III HLP patients 

and normal individuals (Gregg et al. 1981). Other biochemical features of HLP III include 

noticeably elevated VLDL and decreased LDL. Patients with this disease may show increased 

plasma cholesterol concentrations and the presence of an abnormal lipoprotein called beta-VLDL. 

As this disorder is induced by a defect in the exogenous cholesterol transport system, the level of 

hypercholesterolemia is affected by the dietary intake of cholesterol (Brown et al. 1981). 

Carbohydrate consumption induces or exacerbates the hyperlipidaemia which results in noticeable 

variability in plasma levels. This quality also provides the foundation for a dietary treatment option 

to manage the disorder. Planar, tendon and especially tuberous and tuberoeruptive xanthomas are 

particularly characteristic of HLP III, often in conjunction with abnormal glucose tolerance and 

precocious atherosclerosis (Levy and Morganroth, 1977). The genetically heterogeneous nature of 

this phenotype was proven by description of specific biochemical alterations in apolipoprotein 

structure and metabolism. Immunoassays employed in the analysis of apoprotein revealed that the 

arginine-rich variant of Apo-E is high in the VLDLs of HLP III (Kushwaha et al. 1977). While 

exogenous oestrogen typically stimulates triglyceride production in normal women and in those 

with endogenous hypertriglyceridaemia, a contradictory hypotriglyceridaemic effect occurs in 

patients suffering from HLP III (Kushwaha et al. 1977). Among VLDLs, the ratio of iso-

apolipoprotein E3 to E2 is determined by two APOE3 alleles designated ―d‖ and ―n.‖ These alleles 

produce 3 phenotypes – namely apoE3-d, apoE3-nd and apoE3-n – which correspond to the low, 
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intermediate and high ratios of the isoforms, respectively (Hazzard et al. 1981). Deficiency of wild 

type Apo-E, or presence of high quantities of abnormal variants of the protein, has been identified 

as contributory factors in the development of HLP III (Ghiselli et al. 1981). Dominant expression of 

type III HLP has been associated with compound heterozygosity for the wild type APOE3 and a 

variant APOE3 with 2 substitutions: cystein-to-arginine at residue 112 and arginine-to-cysteine at 

residue 142. The latter APOE3 variant is defective in its ability to bind to lipoprotein receptors, a 

functional defect probably contributing to expression of type III HLP (Havel et al. 1983; Rall et al. 

1989; Horie et al. 1992).  

 

Apo-E deficiency may result from defective transcription or processing of the primary transcript, as 

well as instability on the part of the mRNA (Anchors et al. 1986). An example of such a defect is a 

mutation identified in the acceptor splice site in intron 3 of APOE (Cladaras et al. 1987). Premature 

CVD, tuberoeruptive xanthomas and HLP III are associated with familial Apo-E deficiency 

(Schaefer et al. 1986). Both the APOE2 and -E4 alleles are associated with an elevated risk of 

ischemic heart disease as compared with the E3 allele (Eto et al. 1989). The APOE4 allele promotes 

premature atherosclerosis (Schachter et al. 1994) and homozygosity is associated with coronary 

angioplasty (van Bockxmeer and Mamotte, 1992). Xanthomas of the elbows, interphalangeal joints 

and interdigital webs of the hands may be indicative of double heterozygosity for HLP III and FH 

(Feussner et al. 1996). APOE genotype and birth weight may be significant determinants for the 

development of atherosclerosis (Garces et al. 2002). Increasing age and the presence of the APOE4 

allele may be significant predictors of aortic stenosis (Novaro et al. 2003). Apo-E may play a role in 

the modulation of embryonic development and malformations as maternal APOE genotype is 

associated with the efficiency of cholesterol transport from the mother to the embryo (Witsch-

Baumgartner et al. 2004). Significantly increased risk of ischemic heart disease is associated with 

combinations of SNPs in APOE and the lipoprotein lipase genes beyond that bestowed by 

environmental factors such as diabetes, hypertension and smoking (Frikke-Schmidt et al. 2007). 

APOE genotype may be an important marker for clinical responses to statin drugs (Donnelly et al. 

2008).  

 

A study by Kathiresan et al. (2008) on several SNPs in 9 genes among 5 414 subjects from the 

cardiovascular cohort of the Malmo Diet and Cancer Study led to the development of a genotype 

score based on the number of unfavourable alleles. These SNPs were all associated with increased 

LDL or decreased High-Density Lipoprotein (HDL) concentrations, a combination of factors which 

greatly exacerbate CVD development and progression. Increasing genotype scores corresponded to 
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elevated LDL and reduced HDL-C. At 10-year follow-up, the genotype score proved to be an 

independent risk factor for incident CVD, including ischemic stroke, myocardial infarction or death 

from coronary heart disease. Risk discrimination was not improved by application of the scoring 

system, but the clinical risk reclassification for individual subjects was moderately improved 

beyond standard clinical factors.  

 

Population Genetics  

The APOE3 allele is the most common among all human populations, especially amid groups with 

a long-established agricultural economy such as those of the Mediterranean basin. A variable allele 

frequency is present in this region, ranging from 0.849 to 0.898. The ancestral allele, APOE4, has a 

higher frequency among populations where a foraging economy still exists, or in areas with 

relatively scarce or sporadically available food sources. Examples of such groups are the aborigines 

of Australia (0.26) and Malaysia (0.24), Khoi San (0.37), Lapps (0.31), some Native Americans 

(0.28), Papuans (0.368) and Pygmies (0.407). The scarcest of the alleles, APOE2, has a frequency 

which fluctuates in an undetermined fashion (0.145 - 0.02). It is also absent in Native Americans. It 

has been suggested that APOE4, due to several functional properties, may be a 'thrifty' allele. 

Exposure of APOE4 to certain environmental factors, such as a longer life expectancy than in many 

other world regions and a Western diet, may have rendered it a susceptibility allele for Alzheimer‘s 

disease and coronary artery disease. This hypothesis is strongly supported by the absence of the 

same association of APOE4 with either disorder among sub-Saharan Africans and the presence of 

the association in African Americans (Corbo and Scacchi, 1999). The allele frequencies among 

white South Africans have been reported as 0.08 for APOE2, 0.75 for APOE3 and 0.17 for APOE4 

(Kotze et al. 1993). Although the APOE4 allele was shown to be associated with significantly 

higher cholesterol levels in the South African population, an additive effect could not be 

demonstrated due to the severely elevated levels already present in FH patients.  

 

Animal Model Discoveries  

Apo-E is a key regulator of cholesterol-rich lipoprotein metabolism and is primarily synthesized by 

the liver, but also by several extrahepatic tissues, including macrophages. As macrophages derive 

from hematopoietic cells, bone marrow transplantation may be a viable therapeutic approach in the 

treatment of defective or deficient Apo-E production (Boisvert et al. 1995; Linton et al. 1995). 

Isoforms of human Apo-E protein may reduce the aggregation or increase the clearance of amyloid-

beta relative to a setting in which mouse apoE or no Apo-E is present (Holtzman et al. 1999). Beta-

VLDL has been found to stimulate cholesteryl ester accumulation by macrophages which may 
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accelerate vascular disease as they are converted into the foam cells of atherosclerotic lesions 

(Bersot et al. 1983). The mechanism which stabilises the synapto-dendritic apparatus may be 

maintained by Apo-E (Masliah et al. 1995). Hypercholesterolemia and hypertriglyceridaemia have 

been associated with defective clearance of beta-migrating VLDL particles and spontaneously 

developed atherosclerotic plaques in APOE2 homozygotes on an average diet, while an atherogenic 

diet (high in cholesterol and fat) exacerbates development of atherosclerosis and xanthomas 

(Sullivan et al. 1998).  

 

Secretion of the apoE protein in mice has been found to significantly decrease total plasma 

cholesterol concentrations and markedly reduce the development of atherosclerosis (Mitchell et al. 

2000). DNA sequencing analysis and the pattern of haplotype relationships among the chimpanzee 

and human APOE genes have identified the human APOE4 variant as the closest homologous 

match to the chimpanzee counterpart. The evolutionary history of allelic divergence within humans, 

as inferred from sequence analysis, suggests that the APOE3 and APOE2 alleles were derived from 

the ancestral APOE4 and that the APOE3 group of haplotypes have increased in frequency relative 

to APOE4 in the past 200,000 years. Reduced levels of isoprostanes in artery walls, LDLs and urine 

have been attributed to the antioxidant properties of Apo-E (Tangirala et al. 2001). The lipid- and 

receptor-binding regions of the apoE protein, amino acids 241-272 and 135-150 respectively, have 

been associated with the mitochondrial dysfunction and neurotoxicity of the apoE4 isoform (Chang 

et al. 2005). The delta-9-tetrahydrocannabinol (THC) or cannabinoids with activity at the CB2 

receptor have been identified as possible targets for treatment of atherosclerosis (Steffens et al. 

2005).  

 

1.5.2. 5, 10-Methylenetetrahydrofolate Reductase (MIM ID *607093)  

Methylenetetrahydrofolate reductase (MTHFR) is a 150 kD homodimer spanning 656 amino acids 

that catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate which 

acts as a cosubstrate for homocysteine remethylation to methionine (Goyette et al. 1998). Defects in 

this protein are associated with MTHFR deficiency and increased risk of acute leukaemia, colon 

cancer, neural tube defects and occlusive vascular disease (NCBI, Gene ID: 4524). Transcripts of 

varying sizes are expressed in different tissues and at diverse concentrations due to alternative 

transcription start sites and polyadenylation signals (Gaughan et al. 2000).  
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Mapping  

The MTHFR gene, which encodes the MTHFR protein, was first localized to chromosome position 

1p36.3 by Goyette et al. (1994) using fluorescence in situ hybridization. The 11 exons of MTHFR 

were first identified by Goyette et al. (1998), while the close linkage with chloride channel 6 

(CLCN6) was discovered by Gaughan et al. (2000). MTHFR does not contain a TATA box in its 

promoter region, but rather CpG islands and binding sites for several transcription factors including 

multiple potential SP1 sites (Gaughan et al. 2000).  

 

Molecular Genetics  

A reduction in the enzymatic activity of MTHFR is associated with several genetic variations in the 

encoding gene. The two most common, extensively studied and functionally relevant mutations are 

known as MTHFR 677 and MTHFR 1298.  

 

MTHFR 677 is a cytosine to thymine transition at nucleotide position 677 in exon 4 of MTHFR 

(677C>T; rs1801133) that results in an alanine to valine substitution at amino acid position 222 

(A222V). Presence of the mutant allele induces thermolability in the enzyme, decreases its activity 

and creates HinfI restriction site. This restriction site enables genotyping to be performed by 

Restriction Fragment Length Polymorphism (RFLP). The thermolabile feature of the mutant 

enzyme is neutralized by the stabilizing effect of folate. Homozygosity for MTHFR 677 results in 

significantly elevated concentrations of homocysteine in the plasma, representing a major genetic 

risk factor for CVD (Frosst et al. 1995).  

 

MTHFR 677, in the presence of low folate status, may be the most prevalent cause of 

hyperhomocysteinemia and daily treatment with low-dosage folic acid as part of a B-vitamin 

complex may restore normal homocysteine levels (Guttormsen et al. 1996). The deleterious effects 

of MTHFR 677 may be neutralized by serum folate concentrations is excess of 15.4 nM (Jacques et 

al. 1996). Homozygosity for MTHFR 677 may protect against anaemia as well as explain the 

dissociation between haematologic and neurologic disease observed among some patients with 

vitamin B12 deficiency (Kvittingen et al. 1997). The apparent change in distribution of folate in red 

blood cells may be caused by the reduced in vivo activity of the thermolabile MTHFR generated in 

the presence of MTHFR 677 (Bagley and Selhub, 1998). The scarcity of the homozygous state 

among the elderly may be indicative of the predominantly detrimental effects associated with the 

mutant allele (Heijmans et al. 1999). MTHFR 677 alters DNA methylation via manipulation of 

folate status (Friso et al. 2002). Heterozygosity for this mutation reduces enzymatic activity to 65% 
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of normal, while homozygotes have only 30% activity (Tajouri et al. 2006). Furthermore, the 

homozygous state for MTHFR 677 may confer heightened sensitivity to disturbances in B vitamin 

status, necessitating a treatment centred on personalized nutritional intervention (Hustad et al. 

2007).  

 

MTHFR 1298 is an adenine to cytosine transition at nucleotide position 1298 in exon 7 of MTHFR 

(1298A>C; rs1801131) that results in a glutamic acid to alanine substitution at amino acid position 

429 (E429A). Unlike MTHFR 677 which occurs within the catalytic domain of MTHFR, this 

mutation resides in the regulatory domain. Presence of MTHFR 1298 obliterates an MboII 

restriction site, which enables RFLP-based genotyping. Homozygosity for this mutation results in 

an appreciable reduction in enzymatic activity to 60% of normal (Weisberg et al. 1998), while the 

effect of the heterozygous state is less pronounced. Neither state is associated with the characteristic 

features of MTHFR 677, namely elevated plasma homocysteine or reduced plasma folate levels. 

However, compound heterozygosity for both mutations results in decreased enzymatic activity, 

plasma folate concentrations and increased plasma homocysteine levels (van der Put et al. 1998).  

 

The MTHFR 677 mutation locus may in actuality be nucleotide 665 of the coding region, with the 

MTHFR 1298 locus at nucleotide position 1289 due to past inconsistencies in SNP naming 

conventions (Donelly, 2000; van der Put and Blom, 2000). Presence of three (677CT/1298CC) or 

four (677TT/1298CC) mutant alleles of MTHFR 677 and 1298 may reduce foetal viability (Isotalo 

et al. 2000). The magnitude of the selective disadvantage conferred by three mutant alleles 

(677CT/1298CC) may be significantly less than that induced by four (677TT/1298CC), as the latter 

has not yet been documented (Volcik et al. 2001). Enzymatic activity is decreased by 10% to 36% 

of normal in the presence of three (MTHFR 677CT/1298CC) mutant alleles (Sibani et al. 2003). 

While MTHFR 1298 does not appear to affect the biochemical properties of the encoded protein, 

MTHFR 677 does increase the dissociation of the protein into monomers and promote loss of its 

flavin adenine dinucleotide cofactor. Compound heterozygosity has no additive effects on the 

protein (Yamada et al. 2001), but enzymatic activity is decreased by 50% of normal (Tajouri et al. 

2006). Embryogenesis may be negatively affected by mutant MTHFR alleles when the requirements 

for folate are high (Zetterberg et al. 2002). Treatment with betaine, hydroxocobalamin, 

methyltetrahydrofolic acid and pyridoxine may improve the activity of mutant MTHFR (Tonetti et 

al. 2001). Non-synonymous coding SNPs may influence the function of MTHFR by altering the 

concentration of protein available for metabolic activity (Martin et al. 2006).  
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Disease Association  

Defects in MTHFR are associated with a wide variety of disorders, as illustrated by table 1.2.  

 

Table 1.2. A summary of the disorders that have been associated with defective MTHFR.  

Associated Disorder References 

Budd-Chiari syndrome Li et al. 2002 

Cancer Paz et al. 2002; Castro et al. 2004; Hubner et al. 2007 

Cleft lip/palate 
Shaw et al. 1998; Gaspar et al. 2004; Zhu et al. 2006; 

Mostowska et al. 2006 

Depression Bjelland et al. 2003; Lewis et al. 2006 

Down syndrome 
Hobbs et al. 2000; O‘Leary et al. 2002; Hobbs et al. 2002; 

Boduroglu et al. 2004 

Glaucoma Junemann et al. 2005 

Hypertension Nishio et al. 1996; Qian et al. 2007 

Ischemic stroke Casas et al. 2004 

Migraine with aura Kowa et al. 2000; Scher et al. 2006; Todt et al. 2006 

Neural tube defects 
Ou et al. 1996; Mornet et al. 1997; Speer et al. 1997; 

Christensen et al. 1999 

Preeclampsia susceptibility Sohda et al. 1997; Kobashi et al. 2000 

Retinal artery occlusion Talmon et al. 1997; Weger et al. 2002 

Schizophrenia 
Lewis et al. 2005; Muntjewerff et al. 2005; Muntjewerff et al. 

2006; Allen et al. 2008; Roffman et al. 2008 

Thrombosis Tonetti et al. 2002; Zalavras et al. 2002 

 

Homozygosity for MTHFR 677 results in a 7.2-fold increased risk for developing neural tube 

defects (Ou et al. 1996). Presence of the mutant alleles of both MTHFR 677 and FV Leiden increase 

the risk of recurrent venous thrombosis to a greater extent than either mutation alone (Keijzer et al. 

2002). Severe MTHFR deficiency is associated with a wide variety of mutations throughout 

MTHFR (Rozen, 1996; Kluijtmans et al. 1998; Sibani et al. 2000; Sibani et al. 2003; Tonetti et al. 

2003). Nitrous oxide anaesthesia in the presence of MTHFR deficiency, MTHFR 677, 1298 and 

1755G>A (M581I) may be associated with neurologic deterioration and death (Selzer et al. 2003).  

 

MTHFR 677 and 1298 in CVD  

Homozygosity for MTHFR 677 is associated with a 3-fold increased risk of premature CVD 

(Kluijtmans et al. 1996). The association of MTHFR 677 with coronary artery disease among the 

Japanese (Morita et al. 1997) appears to be absent among whites (van Bockxmeer et al. 1997; 

Schwartz et al. 1997). MTHFR 677 and hyperhomocysteinemia are strongly associated with an 

elevated risk of ischemic stroke (Kelly et al. 2002; Casas et al. 2004; Schürks et al. 2008). 

Homozygosity for MTHFR 677, especially in the presence of diminished folate status, is associated 

with a considerably elevated risk of coronary heart disease (Lee et al. 2011; Wald et al. 2011). This 
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discovery further strengthens the hypothesis that defective folate metabolism and high 

homocysteine concentrations are causally linked to greater risk of coronary heart disease (Klerk et 

al. 2002). MTHFR 1298 may be associated with protection against congenital heart defects (Hobbs 

et al. 2006).  

 

Population Genetics  

The frequency of 677T, which is the mutant allele of MTHFR 677, is approximately 0.30 to 0.35 

among Caucasians and 0.10 among African Americans (McAndrew et al. 1996; Stevenson et al. 

1997; van der Put et al. 1998). While MTHFR 677 has been observed in every population tested and 

the allele frequencies are relatively high throughout, there is significant variation between ethnic 

groups and homozygosity for this mutation is (McAndrew et al. 1996; Stevenson et al. 1997; 

Schneider et al. 1998). Homozygosity for this mutation is greatest in northern China (20%), 

southern Italy (26%) and Mexico (32%) while it is exceedingly rare among Africans (Wilcken et al. 

2003). The distribution of MTHFR 677 is suggestive of a founder haplotype with a selective, 

evolutionary advantage (Rosenberg et al. 2002; Wilcken et al. 2003). The exceedingly rare MTHFR 

haplotype 677T/1298C may be increased in some regions of Canada and the United Kingdom due 

to a founder effect (Ogino and Wilson, 2003). Homozygosity for MTHFR 1298 appears to be 

significantly increased among Indians at 19.46%, which is considerably greater than has been 

reported for Caucasian (9.4%), Chinese (3.3%) or Japanese (1.6%) populations (Kumar et al. 2005).  

 

Animal Model Discoveries  

The amino acid sequence of MTHFR is approximately 90% identical between humans and mice, 

while significant homology exists with the bacterial ―metF‖ genes and pigs. Human MTHFR is 

largely analogous to the murine version in terms of exon and intron sizes as well as intronic 

boundary locations (Goyette et al. 1998).  

 

1.5.3. Coagulation Factor II (MIM ID *176930)  

Coagulation factor II (also known as prothrombin) is a vitamin K-dependent glycoprotein produced 

in the liver as an inactive zymogen, prothrombin. Prothrombin is a 622 amino acid pre-propeptide 

with a molecular mass of approximately 70 kD while the mature circulating protein, thrombin, 

consists of 579 amino acid residues (Meeks and Abshire, 2008). Prothrombin contains 5 domains: 

the propeptide (residues -43 to -1), the Gla domain (residues 1 to 40), a kringle domain (residues 41 

to 155), a kringle-2 domain (residues 156 to 271) and a serine protease domain (residues 272 to 

579). Prothrombin is activated to the serine protease thrombin by factor Xa, which is the active 
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form of coagulation factor X, in the presence of phospholipids, calcium and factor Va, which is the 

active form of coagulation factor V (see section 1.5.4). The active enzyme, alpha-thrombin, consists 

of a light (alpha) and heavy (beta) chain covalently linked by a disulfide bond (Degen and Davie, 

1987). The activated thrombin enzyme is essential to haemostasis and thrombosis: it proteolytically 

cleaves fibrinogen to fibrin for blood clot formation, promotes platelet aggregation, activates factor 

XIII to cross-link the fibrin clot, enhances clot stability by activating thrombin-activated fibrinolysis 

inhibitor, up-regulates its own synthesis by activating coagulation factors V, VIII and IX. Thrombin 

also inhibits coagulation by activating protein C (Goodnight and Hathaway, 2001; Davie and 

Kulman, 2006; Sambrano et al. 2001; Lancellotti and De Cristofaro, 2009).  

 

The complete absence of prothrombin, a condition known as aprothrombinaemia, is considered to 

be incompatible with life (review by Meeks and Abshire, 2008). The alpha subunit of glycoprotein 

1B (GP1BA), on the surface of platelets, has been found to form a complex with thrombin via 

analysis of the crystal structure at 2.3 angstrom resolution. Two sites that bind to exosite II and 

exosite I of 2 distinct alpha-thrombin molecules have also been defined. The interactions between 

these exosites and thrombin molecules may regulate alpha-thrombin function and limit fibrinogen 

clotting (Celikel et al. 2003). Crystal structure analysis at a resolution of 2.6 angstrom revealed a 

periodic arrangement of GP1BA-thrombin complexes in the crystal lattice which mirrors a scaffold 

that may serve as a driving force for tight platelet adhesion (Dumas et al. 2003). The von 

Willebrand factor-binding protein (VWFBP) produced by Staphylococcus aureus (S. aureus) has 

been identified as a strong non-enzymatic conformational activator of prothrombin. VWFBP is 

homologous to another prothrombin activator protein secreted by S. aureus, namely 

staphylocoagulase. The difference in activation mechanism between VWFBP and 

staphylocoagulase suggest a unique method for deposition of fibrin during S. aureus endocarditis 

(Kroh et al. 2009).  

 

Mapping  

The F2 gene, which encodes prothrombin, was first localized to chromosome 11p11-q12 by Royle 

et al. (1987) through analysis of a panel of somatic cell hybrid DNAs and in situ hybridization with 

both cDNA and genomic probes. The approximately 27.3 kb nucleotide sequence (NCBI: 

NG_008953.1), consisting of 14 exons, 30 Alu repeats and 2 Kpn repeats which constitute about 

40% of the gene, was ascertained by Degen and Davie (1987).  
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Molecular Genetics  

A guanine to adenine substitution in the 3-prime untranslated (propeptide) region of the F2 gene 

(20210G>A, rs1799963) results in increased plasma prothrombin concentrations and an elevated 

risk of venous thrombosis (Degen and Davie, 1987; Poort et al. 1996; Franco et al. 1999). This 

mutation (F2 20210) is associated with a 50% elevated risk of myocardial infarction in men and a 

4-fold increase in women (Rosendaal et al. 1997; Doggen et al. 1998). Idiopathic cerebral vein 

thrombosis is associated with F2 20210 and the disease risk becomes elevated in the presence of 

oral contraceptive usage (Martinelli et al. 1998). This discovery emphasizes the importance of 

endogenous (genetic) and exogenous factors in disease pathogenesis (Bertina and Rosendaal, 1998). 

Compound heterozygosity for F2 20210 and the FV Leiden mutation significantly increases the risk 

of recurrent thrombosis relative to carriers of either mutation alone (De Stefano et al. 1999; 

Martinelli et al. 2000). The F2 20210 mutation is a gain-of-function mutation which counteracts the 

inefficient physiologic F2 3-prime end cleavage signal by increasing cleavage site recognition, 3-

prime end processing, mRNA accumulation and protein synthesis (Gehring et al. 2001). The F2 

20210 mutation induces a moderately thrombophilic state and is associated with defects in both the 

arterial and venous systems, unlike FV Leiden (Pihusch et al. 2001). The predictive value of genetic 

testing for F2 20210 in recurrent venous thromboembolism appears limited when used in isolation 

(Segal et al. 2009).  

 

Disease Association  

Presence of the mutant allele of F2 20210, 20210A, may increase the risk of developing Budd-

Chiari syndrome (Bucciarelli et al. 1998) and perception deafness (Mercier et al. 1999). 

Heterozygosity for F2 20210 is associated with a greater risk of spontaneous abortions, possibly 

due to the elevated prothrombin concentrations which may affect placental function by altering 

essential mechanisms such as cell adhesion, smooth muscle proliferation and vasculogenesis 

(Pihusch et al. 2001). The F2 20210 mutation is associated with ischemic stroke (Casas et al. 2004). 

A greater risk of prothrombin deficiency exists among ethnic groups or in regions with elevated 

incidence of consanguinity, due to the autosomal recessive nature of the disorder (Acharya et al. 

2004).  

 

The rare autosomal recessive disorder hypoprothrombinaemia, or congenital prothrombin 

deficiency, is characterized by severe bleeding manifestations, decreased prothrombin antigen 

levels and reduced enzyme activity (below 10% of normal). Similarly, dysprothrombinaemia is 

characterized by a dysfunctional prothrombin molecule, but normal antigen levels. The latter 
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condition has greater variability in bleeding tendency and often displays a good correlation between 

the levels of prothrombin activity and clinical severity. Such abnormalities are typically caused by a 

defect in the activation of the protease or within the protease molecule itself (reviews by Girolami et 

al. 1998 and Lancellotti and De Cristofaro, 2009).  

 

Population Genetics  

The observed allele frequencies of F2 20210 indicate a single, relatively recent origin event after 

divergence of Africans from non-Africans and Caucasoids from Mongoloid subpopulations (Zivelin 

et al. 1998). F2 20210 has a prevalence of 3.0% in southern- and 1.7% in northern Europe 

(Rosendaal et al. 1998), while the variant is exceedingly rare among other ethnic groups, such as 

Africans and Asians (Zivelin et al. 1998; Rosendaal et al. 1998; Rees et al. 1999).  

 

The age of F2 20210 has been estimated at 23 720 years through linkage disequilibrium analysis 

between the subject and several flanking SNPs and microsatellites, placing its origin toward the end 

of the last ice age. The age and prevalence of this prothrombin variant among whites may be 

explained by selective evolutionary advantages, such as diminished blood loss or protection against 

infections. The selected disadvantage from thrombosis would have been irrelevant to ancient 

mankind as a species due to the average human life expectancy which, until recent centuries, has 

not been long enough for the incidence of thrombosis to manifest in a significant manner (Zivelin et 

al. 2006).  

 

Animal Model Discoveries  

Inactivation of the F2 gene and the subsequent complete deficiency of prothrombin has been shown 

to be incompatible with life in knockout mice, where embryonic death was most common and no 

homozygous mutants survived beyond a few days from birth. F2 plays an essential role in the 

maintenance of vascular integrity, both during development and in postnatal life (Sun et al. 1998).  

 

1.5.4. Coagulation Factor V (MIM ID *612309)  

Coagulation factor V (also known as proaccelerin, labile factor, protein C cofactor, activated protein 

C cofactor), is a large 330 kD glycoprotein that circulates in the plasma with little or no activity. 

Conversion to the activated form of this protein, Va, is dependent on the release of thrombin (see 

section 1.5.3) during coagulation. Va is an essential cofactor of the blood coagulation cascade and 

consists of a heavy- and a light chain connected by calcium ions. Prothrombin is activated to 

thrombin by the combined action of Va and activated coagulation factor X (Xa). Va is inactivated 
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by activated protein C (Kane and Davie, 1986; Cripe et al. 1992). The amino acid sequence of Va 

consists of 2224 residues, which includes a 28 residue leader peptide, and contains a triplicate A 

domain and duplicated C domain which are nearly 40% identical to the corresponding regions in 

coagulation factor VIII. There are also 19 cysteine residues and 37 potential N-linked glycosylation 

sites, of which 25 are in the B domain (Jenny et al. 1987). The C2 domain of Va exists in two 

isoforms of a conserved beta-barrel framework which acts as a scaffold for three protruding loops. 

The binding mechanism of Va and activated factor VIII (VIIIa) to phospholipid membranes may be 

calcium-independent and stereospecific due to the favourable electrostatic contacts of basic side 

chains with negatively charged membrane phosphate groups, the immersion of hydrophobic 

residues at the peaks of the three protruding loops in the non-polar membrane core and the specific 

interactions with phosphatidylserine head groups in the groove enclosed by these loops (Macedo-

Ribeiro et al. 1999).  

 

Mapping  

The FV gene, which encodes coagulation factor V, was first localized to chromosome 1q21-q25 by 

Riddell et al. (1987) and Wang et al. (1988) through Southern hybridization to somatic cell hybrid 

DNAs and in situ hybridization. The approximately 81.5 kb (NCBI: NG_011806.1) gene was 

finally assigned to position 1q23 through linkage data analysis of the FV locus by McAlpine et al. 

(1989). The 25 exons that constitute the FV gene were ascertained by Cripe et al. (1992).  

 

Molecular Genetics  

A guanine to adenine transition at nucleotide position 1691 in exon 10 of the FV gene (1691G>A, 

rs6025) results in an arginine to glutamine substitution at amino acid position 506 (R506Q). This 

mutation is also known as FV Leiden, named after the town in the Netherlands where it was first 

identified. FV Leiden causes a hypercoagulability disorder known as Activated Protein C (APC) 

resistance, in which APC becomes incapable of deactivating Va, which upsets the coagulation 

cascade and increases the incidence of thrombosis (Bertina et al. 1994). FV Leiden has been 

associated with recurrent thromboembolism (Voorberg et al. 1994). Heterozygosity for FV Leiden 

and a mutation in the protein C gene confers an elevated risk of thrombosis relative to either variant 

alone (Koeleman et al. 1994). FV Leiden is associated with a 4- to 5-fold greater risk of recurrent 

thrombosis (Ridker et al. 1995). Oral contraceptive use in the presence of prothrombotic conditions, 

such as FV Leiden, significantly increases the risk of cerebral venous sinus thrombosis in women 

(De Bruijn et al. 1998).  
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A pseudohomozygous state for FV Leiden, in which heterozygosity for the mutation is combined 

with the presence of a Va deficiency allele, is associated with thromboembolism (Castaman et al. 

1997; Castoldi et al. 1998) and thrombophilia (Zehnder et al. 1999). Compound heterozygosity for 

FV Leiden and F2 20210 (see section 1.5.3) confer a significantly increased risk of thrombosis, 

greater than either mutation alone (Gerhardt et al. 2000). FV Leiden and F2 20210 are both 

associated with an approximate 3-fold increased risk of late foetal loss (Martinelli et al. 2000). 

Alteration to the molecular structure of FV which result in the absence or dysfunction of Va are 

associated with hemorrhagic disease, while mutations that increase the longevity of the active 

species are associated with thrombosis (Mann and Kalafatis, 2003). Thrombophilia due to APC 

resistance has been associated with three other mutations in the FV gene. These mutations are: an 

arginine to threonine substitution at amino acid residue 306 (R306T; Williamson et al. 1998), an 

isoleucine to threonine substitution at residue 359 (I359T; Mumford et al. 2003) and a nonsense 

mutation at amino acid position 119 (E119X; Mumford et al. 2003). Heterozygosity for FV Leiden 

confers an approximate 2.7-fold greater risk of thromboembolism, while homozygosity increases 

the risk to 18-fold, as compared with non-carriers (Juul et al. 2004). FV Leiden is associated with 

incidence and prevalence of ischemic stroke (Casas et al. 2004).  

 

Disease Association  

The Haemolysis, Elevated Liver enzymes and Low Platelet count (HELLP) syndrome may be 

associated with pseudohomozygosity for FV Leiden (Brenner et al. 1996). FV Leiden may play a 

significant role in the pathogenesis of Budd-Chiari syndrome (Mahmoud et al. 1997; Leebeek et al. 

1998; Gurakan et al. 1999). Retinal arterial occlusion is associated with heterozygosity for FV 

Leiden combined with homozygosity for thermolabile methylenetetrahydrofolate reductase 

(MTHFR 677C>T; Talmon et al. 1997). Idiopathic venous thrombosis may be associated with 

double homozygosity for FV Leiden and F2 20210 (Meinardi et al. 1999).  

 

Va deficiency has been ascribed to two specific genotypes for different mutations in the FV gene, 

namely: homozygosity for a 4 bp deletion in exon 13 which results in a frameshift and premature 

protein truncation (Guasch et al. 1998) and compound heterozygosity for two mutations known as 

FV Seoul-1 and -2. The former is an 8 bp deletion in exon 7 (nucleotides 1131 – 1139) which 

results in a frameshift and subsequent generation of a premature stop codon, while the latter is an 

adenine to guanine transition at nucleotide position 5279 in exon 15 resulting in a tyrosine to 

cysteine (Y1702C) substitution (van Wijk et al. 2001). Genetic variations in the FV gene other than 

FV Leiden may contribute to disease susceptibility, as may be the case with preeclampsia and the 
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FV SNP, R485K (Faisel et al. 2004). Deleterious variants of the FV gene are associated with 

preterm delivery (Hao et al. 2004).  

 

Population Genetics  

Positive selection pressure may explain the relatively high prevalence of FV Leiden among the 

Dutch (2% to 4%) and Swedish (7%) populations, possibly due to a slight advantage in foetal 

implantation conferred by elevated thrombotic tendency (Majerus et al. 1994). APC resistance, such 

as that conferred by FV Leiden, is associated with reduced risk of intrapartum bleeding 

complications. This may explain the abnormally high prevalence of hazardous mutations in the FV 

gene, as evolutionary selection mechanisms would inevitably retain genetic variants which confer 

such survival advantages (Lindqvist et al. 1998).  

 

FV Leiden has been identified among African American (0.87%; Gregg et al. 1997), Hispanic 

American (1.65%; Gregg et al. 1997) as well as Ashkenazi Jewish and European populations 

(small, family studies only; Greenberg et al. 1994). Heterozygosity for the mutation within the 

general British population has been reported as 3.5% (Beauchamp et al. 1994), while 7.8% of a 

study population in southern Germany were mutation carriers (Braun et al. 1996). FV Leiden has 

not been reported among Asian- or Native Americans (Gregg et al. 1997), nor Hong Kong Chinese 

(Chan et al. 1998), indicating that it segregates in primarily Caucasian populations and is rare in 

genetically distant non-European groups.  

 

The age of FV Leiden has been estimated at 21 340 years through linkage disequilibrium analysis 

between the subject and several flanking SNPs and microsatellites, placing its origin toward the end 

of the last ice age (Zivelin et al. 2006). The age and prevalence of FV Leiden among whites may be 

explained by selective evolutionary advantages, such as reduced mortality from postpartum 

haemorrhage, haemorrhagia associated with severe iron deficiency anaemia and port-traumatic 

bleeding (Lindqvist et al. 1998; Lindqvist et al. 2001). The selected disadvantage from thrombosis 

would have been irrelevant to ancient mankind as a species due to the average human life 

expectancy which, until recent centuries, has not been long enough for the incidence of thrombosis 

to manifest in a significant manner (Zivelin et al. 2006).  

 

Animal Model Discoveries  

Complete absence of Va in mice has been found to be incompatible with life. Embryonic death is 

commonplace, possibly due to abnormalities in the yolk-sac vasculature. Massive haemorrhage 
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results in death within hours after birth for any embryos that develop to term. The vital role of the 

coagulation pathway and the essential requirement for functional Va in prothrombinase activity is 

thus demonstrated, while alluding to additional functions of the coagulation system in early 

mammalian development (Cui et al. 1996). Homozygosity for the R504Q mutation in mice, 

equivalent to FV Leiden (R506Q), results in viable embryos and normal survival with a significant 

increase in spontaneous fibrin deposition in various tissues. Disseminated intravascular thrombosis, 

which develops during the perinatal period, causes substantial mortality shortly after birth. This 

may explain the extensive conservation of the R504/R506 APC cleavage site within the Va among 

mammals (Cui et al. 2000).  

 

 

1.6. NAFLD and Environmental Factors  

 

In addition to the elevated risk of CVD and the frequent coexistence of MetS, several environmental 

factors may affect the clinical severity of NAFLD. Impaired iron homeostasis and alcohol 

consumption are instrumental in liver disease progression. Liver damage results from a synergistic 

interaction between these two factors, which provides a possible explanation for the relative scarcity 

of Alcoholic Liver Disease (ALD) among individuals who consume large quantities of alcohol over 

extended periods of time (Harrison-Findik, 2009).  

 

1.6.1. Iron and NAFLD  

Iron is an essential nutrient involved in a multitude of physiological processes, with immune 

function and respiration chief among them. Deleterious changes in the homeostasis of this element 

– such as excessive accumulation and/or incorrect compartmentalisation – may result in production 

of Reactive Oxygen Species (ROS) which are hazardous to cells and tissues (Bothwell et al. 1979). 

ROS may cause damage by way of direct or indirect mutagenesis: the former presents as strand 

breakage or disruption of DNA structure while the latter disrupts immunological processes such as 

tumour surveillance and macrophage-mediated disposal of transformed cells (Brock et al. 1994). 

Cirrhosis and hepatocellular carcinoma are associated with iron deposition in the liver. Tissue 

damage and disease severity may be amplified when increased production of ROS is present in a 

liver already compromised by a disorder such as ALD or NAFLD. The oxidative stress induced by 

elevated levels of ROS may also inhibit hepatic hepcidin transcription, which increases liver iron 

storage and intestinal iron transport (Harrison-Findik, 2009). The exact mechanisms involved in the 

hepatic iron accumulation observed in NAFLD/NASH cases have not yet been fully elucidated and 
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may include defective iron-regulatory mechanisms/molecules, erythrophagocytosis by Kupffer 

cells, genetic factors and/or IR (Sumida et al. 2009). IR and serum transaminase activity in 

NAFLD/NASH patients may be reduced by iron reduction therapies, including dietary iron 

restriction and phlebotomy. The latter is used extensively to treat metabolic disturbances, resulting 

in improved liver function tests and reduced serum iron load (Aigner and Datz, 2008). Many 

environmental, genetic and nutritional factors are involved in a stringent regulatory system to 

protect against the potentially toxic effects of iron and to limit its biological availability 

(Papanikolaou et al. 2004).  

 

Iron Homeostasis  

Iron exists in a wide range of oxidation states, form -2 to +6. The most common and stable form is 

the trivalent Fe
3+

 also known as ferric iron. Fe
3+

 is obtained from the diet by way of digestion and is 

reduced to the divalent Fe
2+

 or ferrous form by vitamin C or duodenal cytochrome b which is 

located on the cell membranes of enterocytes. Fe
2+

 is absorbed via the Divalent Metal Transporter 

(DMT1) from food by the enterocytes lining the duodenum (Kemna et al. 2008).  

 

Iron status is determined by a complex system of integrated proteins and relayed to affector 

proteins, which allows the absorption of iron within enterocytes to be stored in ferritin molecules if 

not required by other tissues of the body or prepared for transport if needed. When sufficient iron is 

available in the body, ferritin-bound iron may be excreted when the enterocytes slough off. If iron is 

needed, it can be loaded onto the iron-transporter molecule transferrin (Tf) through the combined 

action of ferroportin and haephestin. Ferroportin is the only known cellular iron exporter and 

haephestin is a copper-containing protein that oxidises Fe
2+

 to Fe
3+

 for incorporation into Tf 

molecules.  

 

The regulation of iron absorption and storage is mediated by a small (25 amino acid) protein that is 

produced in the liver, circulates in the plasma and is excreted in the urine. This small regulatory 

protein is known as hepcidin and it is instrumental in the maintenance of optimal iron levels (Park 

et al. 2001). When iron overload takes place, hepcidin is secreted and modulates the plasma iron 

concentration by preventing iron uptake in the intestines and iron release from macrophages. In the 

case of clinical iron deficiency, hepcidin is suppressed to promote intestinal iron absorption. 

Hepcidin down-regulates iron efflux from the intestines and macrophages via its interaction with 

ferroportin. This interaction involves the internalization and consequent degradation of the 

ferroportin protein (Nemeth et al. 2004). This mechanism allows excess iron absorption by the 
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intestines to be prevented while promoting iron delivery to all body cells according to the functional 

requirements of the respective tissues.  

 

Iron absorption from dietary sources is needed to establish and maintain a sufficient metabolic 

quantity of the element (approximately 4g to 5g in total), but very little is lost (approximately 1mg 

daily by men and 1.5mg - 2.0mg by women) through sweating, shedding of skin cells and mucosal 

cells lining the gastrointestinal tract. Most of the iron is recycled by the reticuloendothelial system 

which breaks down old red blood cells. The heme released in this manner is absorbed by 

enterocytes via heme-carrier protein-1 and the iron is liberated by heme oxygenase-1 (Shayeghi et 

al. 2005).  

 

Irrespective of the initial source, the mechanism that binds iron to Tf is identical, while each 

molecule of Tf can bind two atoms of iron. Iron-depleted Tf is called apo-Tf and loaded Tf is 

known as holo-Tf. Holo-Tf molecules transport their cargo to cells in need of the iron for their 

metabolic activities. Entry into a cell requires Tf to be bound to a TfR. TfR is presented on the 

membrane surface of a target cell that is iron-deficient and the resultant Tf-TfR complex is 

endocytosed. The pH in the vesicles produced by the endocytosis process is lowered, which releases 

the iron and allows apo-Tf and TfR to be re-circulated to the blood and cell membrane, respectively. 

The exact sensory mechanisms that identify iron status and trigger hepcidin activity when required 

have not yet been ascertained. The transcription of hepcidin is upregulated by bone morphogenetic 

proteins, inflammatory cytokines and iron while hypoxia, ineffective erythropoiesis and iron 

deficiency induce downregulation (Lee and Beutler, 2009). The HFE protein forms a complex with 

TfR2 and is associated with transcriptional regulation of hepcidin by holo-TfR (Gao et al. 2009).  

 

Cellular iron availability is optimised by the Iron-Regulatory Proteins 1 and 2 (IRP1 and IRP2), 

which regulate the expression of multiple iron metabolism genes via their interactions with Iron-

Responsive Elements (IREs). Increased iron absorption and transport, as well as decreased storage 

are induced by the binding of IRPs to IREs on the mRNAs of ferritin, Tf and other iron metabolism 

transcripts in cells that are iron-deficient. This results in downregulation of ferritin synthesis and 

upregulation of TfR1, while high iron status triggers the reverse of this mechanism (Rouault, 2006).  
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1.6.2. Alcohol and NAFLD  

Alcohol consumption increases iron uptake considerably, which may both amplify and mask the 

effects of disorders such as HH and NAFLD. In particular, the synthesis of hepcidin is inhibited by 

alcohol in hepatic parenchymal cells, which may induce liver disease progression (Harrison-Findik, 

2009). Low to moderate alcohol consumption may be associated with reduced IR among obese 

patients with NAFLD, but no discernable effect on the stage or severity of liver disease has been 

reported (Cotrim et al. 2009).  

 

 

1.7. Diagnosis  

 

The initial diagnosis of NAFLD is based on the presence of MetS features, exclusion of significant 

alcohol consumption and the results of various laboratory tests and imaging studies. Confirmation 

of the diagnosis is achieved through liver biopsy. The use of nuclear medicine as a diagnostic tool 

has fallen into disfavour in recent times, due to the advancements in modern imaging systems such 

as ultrasound examination, Computerised Tomography (CT), Magnetic Resonance (MR) imaging 

and MR spectroscopy. The sensitivity, specificity and operational cost of these systems differ 

considerably in an increasing fashion from ultrasound to CT to MR. They often provide the first 

evidence that a patient has otherwise unsuspected NAFLD, but their use is generally restricted to 

identification of steatosis and cirrhosis while fibrosis and necro-inflammatory injury cannot be 

accurately determined by current instruments and protocols. Recent attempts at improving MR- 

imaging and spectroscopy in this regard have produced encouraging results (Aubé et al. 2007; Kato 

et al. 2007; Friedrich-Rust et al. 2010).  

 

The consumption of as much as 20 grams (g) of alcohol per day is not considered sufficient for the 

development of liver disease, while an intake of 60 g/day may contribute to disease development. 

The effects of the intermediate range, >20 g/day but <60 g/day, are not yet well established.  

 

Laboratory tests include measurement of aminotransferases (Alanine Transaminase [ALT]; 

Aspartate Transaminase [AST]; ALT/AST ratio), cholestatic enzymes (Alkaline Phosphatase 

[ALP]; Gamma Glutamyl Transferase [GGT]), lipids (total cholesterol; triglycerides) and IR using 

either the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) or the Quantitative 

Insulin sensitivity Check Index (QUICKI). Supplementary assays are also employed to exclude 

other causes of liver disease such as auto-immune hepatitis, hepatitis C and Wilson‘s disease. 
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Aspartate Aminotransferase to Platelet Ratio Index (APRI) was shown to be a simple bedside 

marker for advanced fibrosis that can avoid liver biopsy in patients with NAFLD/NASH (Kruger et 

al. 2011).  

 

 

1.8. Treatment  

 

The pathogenesis and underlying mechanism of NAFLD remains elusive. Current therapeutic 

intervention strategies are focused on managing the underlying metabolic risk factors as there is no 

ideal pharmacotherapy available for effective treatment of this disorder. Lifestyle intervention to 

achieve weight loss and increase exercise is consistently associated with improved liver histology 

(Cheung and Sanyal, 2009). Loss of more than 5% of total body mass over a nine month period has 

been associated with improved IR and steatosis, while loss of 9% or more results in improved IR, 

steatosis and NASH-based inflammation (Harrison et al. 2009). Anti-obesity medications such as 

the enteric lipase inhibitor orlistat (Harrison et al. 2004) and the selective serotonin re-uptake 

inhibitor sibutramine (Sabuncu et al. 2003) show potential for future development of similar drugs 

as a viable treatment option. Bariatric surgery to achieve weight loss is employed in cases of morbid 

obesity and has been shown to reduce hepatic steatosis and even fibrosis (Silverman et al. 1995; 

Clark et al. 2005).  

 

Experimental pharmacological treatments to improve IR, which is prevalent in NAFLD and has 

been associated with the grade of steatosis and even fibrosis (Matteoni et al. 1999), with members 

of the angiotensin II type 1 receptor blockers (Kudo et al. 2007), thiazolidinediones (Caldwell et al. 

2001; Neuschwander-Tetri et al. 2003b; Promrat et al. 2004; Reynaert et al. 2005; Belfort et al. 

2006) and metformin (Uygun et al. 2004) have yielded mixed results. Additional drug therapies 

with potential application in NAFLD include compounds that prevent fat accumulation in the liver 

(Song et al. 2007), antioxidants (Hasegawa et al. 2001; Kugelmas et al. 2003; Harrison et al. 2003; 

Ersöz et al. 2005) and cytokine response inhibitors (Buranawuti et al. 2007).  
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1.9. Aims and Objectives of this Study  

 

The objective of this study was to implement a high-throughput real-time polymerase chain reaction 

(RT-PCR) method in our laboratory to enable the assessment of cardiovascular genetic risk factors 

in NAFLD patients.  

 

The specific aims related to each mutation included in the multi-gene cardiovascular disease (CVD) 

screening assay were as follows:  

 

1.) Evaluation of clinical utility based on the biological importance of the individual genes, 

functionality of the genetic variations, their allele frequencies in the population, replication 

of important disease associations, combined effects (gene-gene and gene-environment 

interaction) and potential risk reduction strategies that may be applicable in clinical practice. 

2.) Genotyping to standardize mutation detection in the Pathology Research Facility laboratory, 

using direct sequencing of PCR amplified fragments for analytical validation of high-

throughput RT-PCR SNP assays.  

 

The Pathology Supported Genetic Testing (PSGT) concept developed at our department provides a 

practical approach to personalized medicine. The PSGT approach combines the vast knowledge and 

experience of specialists from all healthcare disciplines to enable effective, personalized disease 

management that would not be possible for any single discipline to achieve alone due to the 

complexities inherent to biological systems.  
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2.1. Study population  

 

Study participants were recruited at the Gastroenterology Unit of the Department of Internal 

Medicine, Tygerberg Academic Hospital and the University of Stellenbosch as well as from 

clinicians working at other academic and private hospitals. Subjects were grouped according to 

those who fulfilled the criteria for NASH and fatty liver disease. Fatty liver disease is defined as 

steatosis only or steatosis with inflammation but not fulfilling the criteria for NASH.  

 

The study population consisted of 178 patient samples diagnosed with NAFLD by liver biopsy, 

representing an extension (67) of the study population (111) used by Kruger et al. (2010) to 

describe the disease profile of NAFLD in the South African population. In addition, two patients 

(GMX1 and GMX2) with high ferritin levels were included as case studies for real world evaluation 

of the clinical utility of the CVD multi-gene test.  

 

The sample size was increased relative to that used by Kruger et al. (2010) to augment the statistical 

power following DNA analysis (not performed in all participants during the initial study) and sub-

classification of NAFLD patients into clinical subgroups for comparative analyses (Kleiner et al. 

2005). Gene profiles in patients with type 1 and type 2 histological changes were compared with 

patients with more advanced liver disease. Clinical outcome was also correlated with relevant risk 

factors (genetic, biochemical parameters and lifestyle factors including alcohol intake).  

 

A total of 75 DNA samples were included for analytical validation of eight mutations included in a 

multi-gene assay previously developed for application in patients at risk of CVD (Kotze et al. 2003, 

Kotze and Thiart, 2003; Kotze and Badenhorst, 2005). These controls were selected based on the 

presence or absence of metabolic syndrome features.  

 

Clinical and biochemical assessments  

High risk individuals were screened by standard liver function tests and liver ultrasonography.  

Blood, saliva and/or swab samples were collected from all the screened patients after obtaining 

informed consent, in cases where DNA was not already available from the parent study. Only 

patients with histology confirming NAFLD were enrolled in this study.  

 

Inclusion criteria: Patients with written informed consent. 

Histology with features of NAFLD.  
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Exclusion criteria:  Women with alcohol intake above 20 g/day and males with alcohol intake 

above 30 g/day.  

Histology and/or blood investigations suggestive of another liver disease.  

Patients with a secondary cause for fatty liver disease.  

 

A questionnaire was used to denote alcohol intake and other personal details (including lifestyle, 

drugs and dietary factors, family history, and clinical characteristics for patients not already 

included in the study).  Disease severity was compared between NAFLD patients with no alcohol 

intake versus low-to-moderate alcohol intake of less than 20 g/day in women and less than 30 g/day 

in men in relation to genotype.  

 

The following assays were performed using standard methods: Lipogram including total 

cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, LDL particle size, serum iron status 

(ferritin, serum iron, Tf), glucose and insulin. Fasting glucose and insulin levels were determined 

(for patients not already done) and the results evaluated to exclude other liver diseases. Insulin 

resistance was determined for each patient by using HOMA-IR (fasting insulin [µU/ml] x [fasting 

glucose {mmol/l}/22.5]).   

 

Ethical approval for research on the NAFLD samples used in this study was granted by the Ethics 

Review Committee of the University of Stellenbosch under project number N04/02/033 (appendix 

A) and the control samples used for analytical validation were approved by the same regulatory 

body under project number N09/08/244 (appendix B).  

 

 

2.2. DNA Extraction  

 

2.2.1. DNA extraction from Whole Blood using the QIAGEN QIAamp
® 

DNA Blood Mini Kit 

(Spin protocol)  

The DNA extraction procedure started with the addition of the QIAGEN Proteinase K stock 

solution (20 µl) into the bottom of a 1.5 ml microcentrifuge tube. The protease is an enzyme, which 

is responsible for lysing the cells in the sample to release their DNA into the solution. A blood 

sample was then added (200 µl) to the tube, followed by Buffer AL (200 µl) and mixed thoroughly 

(through pulse-vortexing) yield a homogeneous solution that ensures adequate lysis of the sample.  
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The homogenized solution was then incubated at 56°C on a dry block for 10 minutes. After removal 

from the dry block, the tube was briefly centrifuged to remove drops from the inside of the lid. 

Ethanol (96-100%) was added to the sample (200 µl) and mixed by pulse-vortexing for 15 seconds, 

then briefly centrifuged to remove drops from the inside of the lid. A homogeneous solution, 

obtained by thoroughly mixing the sample after addition of ethanol, is required to ensure efficient 

binding of the lysate to the membrane (QIAamp
®
 Mini spin column). The resultant solution was 

then carefully transferred onto the QIAamp
®
 Mini spin column (in a 2 ml collection tube) and 

centrifuged at 8000 rpm (6000 x g) for 1 minutes. The QIAamp
®
 Mini spin column was transferred 

to a clean 2 ml collection tube and the tube containing the filtrate was discarded. This is essential to 

prevent the nozzle of the QIAamp
®
 Mini spin column from being submerged in the filtrate, which 

would reduce the washing efficacy.  

 

Wash buffer AW1 was added (500 µl) to the QIAamp
®
 Mini spin column and centrifuged at 8000 

rpm (6000 x g) for 1 minute. The QIAamp
®
 Mini spin column was transferred to a clean 2 ml 

collection tube and the tube containing the filtrate was discarded. Thereafter, buffer AW2 was 

added (500 µl) to the QIAamp
®
 Mini spin column and centrifuged at 14 000 rpm (20 000 x g) for 3 

minutes. The filtrate was then discarded and the tube centrifuged again at 14 000 rpm (20 000 x g) 

for 1 minute. The QIAamp
®
 Mini spin column was then placed in a clean 1.5 ml microcentrifuge 

tube and the tube containing the filtrate was discarded. Nuclease-free water (150 µl) was added 

directly onto the membrane of the QIAamp
®
 Mini spin column and incubated at room temperature 

(15-25°C) for 5 minutes, followed by centrifugation at 8000 rpm (6000 x g) for 2 minutes. The final 

solution, containing purified DNA, was then incubated on a shaker at room temperature (15-25°C) 

overnight to ensure homogenization of the newly extracted DNA and then stored at 4ºC.  

 

2.2.2. DNA extraction from Buccal Swabs using QIAGEN QIAamp
®
 DNA Blood Mini Kit 

(Spin protocol)  

Cotton and DACRON swabs were used in this study. For each sample, buccal swabs were placed 

into a 2 ml microcentrifuge tube and PBS solution (400 µl) added. QIAGEN Protease (20 µl) and 

then buffer AL (400 µl) were added and mixed by vortexing for 15 seconds. The tubes were then 

incubated for 10 minutes at 56ºC on a dry block, followed by brief centrifugation to remove drops 

from the lid. A measure of the swab mixture (700 µl) was added to a QIAamp
®
 Mini spin column 

(in a 2 ml collection tube) and centrifuged at 8000 rpm (6000 x g) for 1 minute. The QIAamp
®
 Mini 
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spin column, containing the unpurified DNA, was then transferred to a clean 2 ml collection tube 

and the previous step was repeated.  

 

Wash buffer AW1 (500 µl) was applied to the QIAamp
®
 Mini spin column and centrifuged at 8000 

rpm (6000 x g) for 1 minute. The QIAamp
®
 Mini spin column was placed in a clean 2 ml collection 

tube and wash buffer AW2 (500 µl) was added to it, followed by centrifugation at 14 000 rpm 

(20 000 x g) for 3 minutes. The QIAamp
®

 Mini spin column was transferred to a 1.5 ml 

microcentrifuge tube and nuclease-free water (100 µl) was added. This was followed by incubation 

at room temperature (15-25°C) for 5 minutes and centrifugation for 2 minutes at 8000 rpm (6000 x 

g). The final solution, containing purified DNA, was then incubated on a shaker at room 

temperature (15-25°C) overnight to ensure homogenization of the newly extracted DNA and then 

stored at 4ºC.  

 

2.2.3. DNA extraction from Whole Blood using the QIAGEN QIAamp
®
 DNA Blood Midi Kit 

(Spin Protocol)  

This protocol was used for purification of genomic DNA from larger volumes (2 ml) of whole 

blood. The DNA extraction procedure started with the addition of the QIAGEN Protease stock 

solution (200 µl) into the bottom of a 15 ml centrifuge tube. The protease is an enzyme, which is 

responsible for lysing the cells in the sample to release their DNA into the solution. A blood sample 

was then added (2 ml) and briefly mixed through vigorous shaking (i.e. vortexing) to distribute the 

protease throughout the solution, which increases the efficacy of the lysing reaction. Buffer AL was 

added to the tube (2.4 ml) and mixed thoroughly. Mixing was achieved by inverting the tube 15 

times, followed by vortexing for approximately 1 minute. This degree of mixing was necessary to 

yield a homogeneous solution that ensures adequate lysis of the sample. The homogenized solution 

was then incubated at 70°C on a dry block for 10 minutes. After removal from the dry block, 

ethanol (96-100%) was added to the sample (2 ml) and mixed by inverting the tube 10 times 

followed by additional vigorous shaking. A homogeneous solution, obtained by thoroughly mixing 

the sample after addition of ethanol, is required to ensure efficient binding of the lysate to the 

membrane (QIAamp
®

 Midi spin column).  

 

Half of the solution was then carefully transferred onto the QIAamp
®
 Midi spin column (in a 15 ml 

collection tube) and centrifuged at 3000 rpm (1850 x g) for 3 minutes. The filtrates were then 

discarded and the remainder of the solution was loaded on the QIAamp
®

 Midi spin column and 

centrifuged for 3 minutes at 3000 rpm (1850 x g). The QIAamp
®
 Midi spin column was transferred 
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to a clean 15 ml collection tube and the tube containing the filtrate was discarded. Removal of the 

filtrate is essential to prevent the nozzle of the QIAamp
®

 Midi spin column from being submerged 

in the filtrate, which would reduce the washing efficacy.  

 

Wash buffer AW1 was added (2 ml) to the QIAamp
®
 Midi spin column and centrifuged at 5000 

rpm (4500 x g) for 1 minute. Thereafter, buffer AW2 was added (2 ml) to the QIAamp
®
 Midi spin 

column and centrifuged at 5000 rpm (4500 x g) for 15 minutes. The QIAamp
®
 Midi spin column 

was then placed in a clean 15 ml collection tube and the tube containing the filtrate, was discarded. 

Nuclease-free water (300 µl) was equilibrated to room temperature (15-25°C) and added directly 

onto the membrane of the QIAamp
®
 Midi spin column. Incubation was then carried out at room 

temperature (15-25°C) for 5 minutes, followed by centrifugation at 5000 rpm (4500 x g) for 2 

minutes. To maximize the DNA concentration achieved through extraction, the eluate was reloaded 

onto the QIAamp
®
 Midi spin column and incubated at room temperature (15-25°C) for 5 minutes. 

This was followed by centrifugation at 5000 rpm (4500 x g) for 2 minutes. The final solution, 

containing purified DNA, was then incubated on a shaker at room temperature (15-25°C) overnight 

to ensure homogenization of the newly extracted DNA and then stored at 4ºC.  

 

2.2.4. DNA extraction from saliva using the Oragene-DNA / Saliva Kit  

The Oragene-DNA/saliva sample in the Oragene-DNA vial was mixed thoroughly by inversion for 

several seconds and incubated at 50ºC for 2 hours on a dry block. A volume of the Oragene-

DNA/saliva sample (500 l) was then transferred to a 1.5 ml microcentrifuge tube. The Oragene-

DNA purifier (OG-L2P) was added to the tube (20 l) and was mixed by vortexing for a few 

seconds, followed by incubation on ice for 10 minutes. Centrifugation was then carried out at room 

temperature (15-25°C) for 5 minutes at 13 000 rpm (15000 x g), resulting in separation of the DNA-

containing supernatant from the pelletized impurities. The clear supernatant was carefully 

transferred into a new 1.5 ml microcentrifuge tube and an equal volume of ethanol (95-100%) was 

added (500 l), followed by gentle mixing by inverting the tube 10 times.  

 

The sample was then incubated at room temperature (15-25°C) for 10 minutes to allow for DNA 

precipitation. The tube was loaded in a centrifuge in a known orientation (in order to position the 

resulting DNA pellet at the tip of the tube below the hinge as it is nearly invisible to the naked eye) 

and spun for 2 minutes at 13 000 rpm (15 000 x g). The supernatant was then carefully removed and 

discarded. Thereafter, ethanol (70%) was added (250 l) and the resulting mixture incubated at 

room temperature (15-25°C) for 1 minute. The ethanol was then carefully removed without 
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disturbing the pellet. After addition of nuclease-free water (100 l), the tube was vortexed for 5 

seconds to dissolve the DNA pellet. Additional vigorous pipetting and vortexing was followed by 

overnight incubation on a shaker at room temperature (15-25°C) to ensure homogenization of the 

newly extracted DNA and then stored at 4ºC.  

 

 

2.3. DNA Quantification  

 

The Nanodrop
®
 ND-1000 Spectrophotometer (Nanodrop Technologies, USA) with the v3.5.2 

software package was used to measure the quality and quantity of DNA in the extracts. All genomic 

DNA samples were diluted to a concentration of 10 ng/l using nuclease-free water. The ratio 

absorbance reading at 260/280 for all the samples ranged from 1.6 to 1.9. Values within this range 

indicate absence of contaminants such as salts or phenols in a sample 

(http://www.nanodrop.com/Library/nd-1000-v3.8-users-manual-8%205x11.pdf).  

 

 

2.4. Polymerase Chain Reaction Amplification  

 

2.4.1. Oligonucleotide Primers  

Oligonucleotide primers were designed to detect specific mutations in the APOE (2 & 4), F2 

(20210G>A), FV (1691G>A, Leiden), HFE (C282Y and H63D) and MTHFR (677 and 1298) genes 

using the LightCycler


 Probe Design Software 2.0 (Version 1.0. R.36). The genomic reference 

sequences for APOE (NG_007084), F2 (NG_008953), FV (NG_011806), HFE (NG_008720) and 

MTHFR (NG_013351) were obtained from the National Centre for Biotechnology Information 

(NCBI, www.ncbi.nlm.nih.gov). The primers used in the conventional PCR experiments and direct 

DNA sequencing reactions are specified in table 2.1.  

 

 

 

http://www.nanodrop.com/Library/nd-1000-v3.8-users-manual-8%205x11.pdf
http://www.ncbi.nlm.nih.gov/
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 Table 2.1. Details of the primers used in the conventional PCR and DNA sequencing.  

Gene SNP Primer Nucleotide Sequence (5' to 3') 

G/C  

Content  

(%) 

TM  

(°C) 

TA  

(°C) 

SNP  

Position/s 

Amplicon  

Size (bp) 

APOE 
rs7412 &  

rs429358 

Forward GAGACCATGAAGGAGTTG 50.00 49.80 
50-62 

4075 
473 

Reverse TCGCGGATGGCGCTGAG 70.50 61.20 3937 

F2 rs1799963 
Forward GGGATGGGAAATATGGCTTC 50.00 53.30 

61 20210 432 
Reverse GCCCTGCTCTGAAGATAGAT 50.00 53.90 

FV rs6025 
Forward GCAGTTCAACCAGGGGAAA 52.60 55.50 

61 1691 409 
Reverse CACTCTAGACTTGCCTTCG 52.60 52.50 

HFE 

rs1800562 
Forward TGGCAAGGGTAAACAGATCC 50.00 54.80 

56 

845 396 

Reverse TACCTCCTCAGGCACTCCTC 60.00 57.90 

rs1799945 
Forward ACATGGTTAAGGCCTGTTGC 50.00 55.90 

187 208 

Reverse GCCACATCTGGCTTGAAATT 45.00 53.90 

MTHFR 

rs1801133 
Forward ATCCCTCGCCTTGAACA 52.90 53.60 

56 677 256 

Reverse TCACCTGGATGGGAAAGAT 47.30 53.10 

rs1801131 
Forward CTCTGTCAGGAGTGTGC 58.80 52.40 

61 1298 383 

Reverse GGTGGAGGTCTCCCAACTTA 55.00 56.10 
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2.4.2. PCR Reaction Mixture and Thermal Cycling Conditions  

With the exception of the APOE2&4 primer set, amplification of the various amplicons was 

performed with the Promega GoTaq
®
 Flexi DNA Polymerase PCR kit and the Applied Biosystems

®
 

2700, 2720 and 9700 thermal cyclers in 25 μl reactions. For APOE2&4, the Roche FastStart PCR 

kit was used. The reaction mixture, universal for all the primer sets employed, consisted of 100 ng 

template DNA, 1x Colourless GoTaq
®
 Flexi buffer (Promega), 0.2 mM of each dNTP (dATP, 

dTTP, dGTP, dCTP) (Fermentas), 1.5 mM MgCl2 (Promega), 60 pmol of each primer and 1.25 U 

GoTaq
®
 DNA Polymerase (Promega). For APOE2&4, the FastStart DNA Polymerase (Roche) was 

used instead of the GoTaq
®
 DNA Polymerase.  

 

APOE2 & E4 Thermal Cycling Conditions  

The PCR conditions were as follows: an initial denaturation step at 95°C for 2 minutes; 40 cycles of 

denaturation at 95°C for 30 seconds, annealing at a gradient of 50 to 62°C for 30 seconds and 

extension at 72°C for 30 seconds; with a final extension step at 72°C for 4 minutes.  

 

MTHFR 677 Thermal Cycling Conditions  

The PCR conditions were as follows: an initial denaturation step at 95°C for 2 minutes; 40 cycles of 

denaturation at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and extension at 72°C for 30 

seconds; with a final extension step at 72°C for 5 minutes.  

 

MTHFR 1298 Thermal Cycling Conditions  

The PCR conditions were as follows: an initial denaturation step at 95°C for 2 minutes; 40 cycles of 

denaturation at 95°C for 30 seconds, annealing at 61°C for 30 seconds, and extension at 72°C for 30 

seconds; with a final extension step at 72°C for 5 minutes.  

 

F2 20210 Thermal Cycling Conditions  

The PCR conditions were as follows: an initial denaturation step at 95°C for 2 minutes; 40 cycles of 

denaturation at 95°C for 30 seconds, annealing at 61°C for 30 seconds, and extension at 72°C for 30 

seconds; with a final extension step at 72°C for 5 minutes.  

 

FV Leiden Thermal Cycling Conditions  

The PCR conditions were as follows: an initial denaturation step at 95°C for 2 minutes; 40 cycles of 

denaturation at 95°C for 30 seconds, annealing at 61°C for 30 seconds, and extension at 72°C for 30 

seconds; with a final extension step at 72°C for 5 minutes.  



Chapter 2: Detailed Experimental Procedures 

 

53 
 

HFE C282Y and H63D Thermal Cycling Conditions  

The PCR conditions were as follows: an initial denaturation step at 95°C for 2 minutes; 40 cycles of 

denaturation at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and extension at 72°C for 30 

seconds; with a final extension step at 72°C for 5 minutes. 

 

 

2.5. Gel Electrophoresis  

 

PCR products were resolved on a 2% (w/v) agarose gel to test for successful amplification. The gel 

mixture consisted of 2g agarose in 100 ml 1xTBE buffer (90 mM Tris-HCl, 90 mM boric acid 

[H3BO3] and 2.2 mM Ethylenediaminetetraacetic Acid [EDTA] at a pH of 8.0). To enable 

visualization of the PCR products, 0.0001% (v/v) Ethidium Bromide (EtBr) was added to the 

1xTBE electrophoresis buffer (70 μl of EtBr in 700 ml 1xTBE). A total volume of 8 μl was loaded 

onto a gel consisting of Ficoll Orange G loading buffer (0.1% [w/v] Orange G, 20% [w/v] Ficoll, 10 

mM EDTA at pH 7.0) and PCR product (5 μl and 3 μl, respectively). To ascertain the amplification 

of the correct PCR product, a molecular size marker (100 bp DNA ladder, Promega, Wisconsin, 

USA) was loaded along with the PCR products on the agarose gel. Electrophoresis of the PCR 

products was performed for approximately 1 hour at 80 V in 1xTBE buffer. Visualization was 

achieved by ultraviolet light trans-illumination using a GibcoBRL Life Technologies TFX-35M UV 

Transilluminator (California, USA).  

 

 

2.6. DNA Sequencing and Analysis  

 

The PCR products were sent to the Central DNA Sequencing Facility of Stellenbosch University for 

post-PCR clean-up and sequencing. The electropherograms were analysed using FinchTV Version 

1.4.0 (developed by the Geospiza Research Team).  
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2.7. Real-Time Polymerase Chain Reaction Amplification  

 

2.7.1. Applied Biosystems
®
 TaqMan

®
 SNP Genotyping Assays  

The ABI
™

 TaqMan
® 

SNP Genotyping assays are standardised mixtures of PCR reagents, with 

unlabelled primers and TaqMan
®
 Minor Groove Binder (MGB) probes (FAM

™
 and VIC

® 
dye-

labelled). These pre-designed assays are used for end-point genotyping by allelic discrimination 

analysis for SNPs and were employed in conjunction with two different RT-PCR instruments, 

namely the ABI
™

 7900HT Fast Real-Time PCR System and the Corbett Rotor-Gene 6000 / 

QIAGEN
®
 Rotor-Gene™ Q. The assays employed in this study were APOE2 (C_904973_10, 

rs7412), APOE4 (C_3084793_20, rs429358), F2 20210 (C_8726802_20, rs1799963), FV Leiden 

(C_11975250_10, rs6025), HFE C282Y (C_1085595_10, rs1800562), HFE H63D (C_1085600_10, 

rs1799945), MTHFR 677 (C_1202883_20, rs1801133) and MTHFR 1298 (C_850486_20, 

rs1801131). Prior to any reaction setup, the 40x TaqMan
® 

SNP Genotyping assay mixture was 

diluted to 20x in sterile SABAX water (double distilled water).  

 

2.7.2. Applied Biosystems
®
 7900HT  

The ABI
™ 

7900HT Fast Real-Time PCR System with ABI
™

 TaqMan
® 

SNP Genotyping assays was 

employed for genotyping of large sample batches obtained during this study. Total reaction 

volumes of 10 l were used, consisting of: 10 ng/l template DNA (2.0 l), 5 l of TaqMan
® 

Genotyping Master Mix (P/N 4371355), 20x TaqMan
® 

SNP Genotyping Assay (0.5 l) and 2.5 l 

nuclease-free water. The thermal cycling program used in the amplification run was as follows: an 

initial hold step at 95C for 10 minutes followed by 45 cycles of denaturation at 92C for 15 

seconds and annealing/extension at 60C for 1 minute. Thereafter, an end-point genotyping allelic 

discrimination scan was carried out.  

 

2.8. Statistical Analysis  

 

Population frequencies of the mutations studied were estimated from allele counts and deviation 

from Hardy-Weinberg equilibrium was assessed using the Chi-square test. All data were analysed 

using the StatSoft Inc. STATISTICA Data Analysis Software System (www.statsoft.com). For 

comparison of ordinal/continuous measurements between different genetic groupings, one-way 

ANOVA was used. Where necessary, log transformations were used when deviations from 

normality were deemed to be a problem. Comparison of categorical responses was done using cross 

tabulation and the Chi-square test.  

http://www.statsoft.com/
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Eight mutations in five genes (table 3.1) were evaluated in patients with NAFLD, which represents 

a significant CVD risk factor.  The literature review supported the clinical utility of these mutations 

for subtyping of complex multi-factorial diseases such as CVD and NAFLD for more directed 

treatment and lifestyle intervention.  

 

Table 3.1. A synopsis of the mutations evaluated in this study and their metabolic associations.  

Biological Pathway Gene Genetic Variation 

Lipid and Lipoprotein 

Metabolism 
APOE 

3937 T>C, allele E4 (rs429358) 

4075 C>T, allele E2 (rs7412) 

Homocysteine and Folate 

Metabolism 
MTHFR 

677 C >T, A222V (rs1801133) 

1298 A>C, E429A (rs1801131) 

Haemostasis 
F2 20210 G>A (1799963) 

FV 1691 G>A, Leiden (rs6025) 

Iron Overload HFE 
845 G>A, C282Y (rs1800562) 

187 C>G, H63D (rs1799945) 

 

Following the analytical validation of each genotyping assay employed in the SNP analysis of the 

test using 75 DNA control samples, a total of 178 samples of patients diagnosed with NAFLD were 

genotyped using RT-PCR.  

 

 

3.1. Conventional Sequencing – Gels and Electropherograms  

 

The amplicons obtained through conventional PCR amplification of the control samples for the 

APOE (2 and 4), MTHFR 677, MTHFR 1298, F2 20210, FV Leiden, HFE C282Y and HFE H63D 

mutations were visualized with EtBr in an agarose gel after electrophoresis and are presented in 

figures 3.1.1, 3.1.4, 3.1.6, 3.1.8, 3.1.10, 3.1.12 and 3.1.14, respectively. An example of the 

sequencing results is presented as an electropherogram for one of the control samples in figures 

3.1.2 (APOE2), 3.1.3 (APOE4), 3.1.5 (MTHFR 677), 3.1.7 (MTHFR 1298), 3.1.9 (F2 20210) 3.1.11 

(FV Leiden), 3.1.13 (HFE C282Y) and 3.1.15 (HFE H63D). Forward (sense) and reverse (anti-

sense) sequencing reactions were carried out after PCR clean-up, with only the former shown as the 

latter always corroborated the result obtained.  
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Figure 3.1.1. A 2% (w/v) agarose gel depicting the PCR amplicons synthesized with the APOE 

primer set, which screens for both APOE2 and APOE4, visualized with 0.0001% (v/v) EtBr. Lane 1 

contains a 100-bp DNA ladder, lanes 2 to 5 contain amplicons of 473 bp and lane 6 contains the 

PCR blank. (Abbreviations: bp = base pairs)  
 

 

 

 

 

 

 

 

 

Figure 3.1.2. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the APOE primer set. The red arrow indicates the APOE2 mutation position 

(nucleotide 229). The ―C‖ at the highlighted position corresponds to a Wild Type CC genotype.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1.3. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the APOE primer set. The red arrow indicates the APOE4 locus (nucleotide 91). The 

―T‖ at the highlighted position corresponds to a Wild Type TT genotype.  
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Figure 3.1.4. A 2% (w/v) agarose gel depicting the PCR amplicons synthesized with the MTHFR 

677 primer set visualized with 0.0001% (v/v) EtBr. Lane 1 contains a 100-bp DNA ladder, lanes 2 

to 6 contain amplicons of 256 bp and lane 7 contains the PCR blank. (Abbreviations: bp = base 

pairs)  

 

 

 

 

 

 

 

Figure 3.1.5. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the MTHFR 677 primer set. The red arrow indicates the mutation position (nucleotide 

138). The ―Y‖ at the highlighted position corresponds to a Heterozygous CT genotype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.6. A 2% (w/v) agarose gel depicting the PCR amplicons synthesized with the MTHFR 

1298 primer set visualized with 0.0001% (v/v) EtBr. Lane 1 contains a 100-bp DNA ladder, lanes 2 

to 6 contain amplicons of 383 bp and lane 7 contains the PCR blank. (Abbreviations: bp = base 

pairs)  
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Figure 3.1.7. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the MTHFR 1298 primer set. The red arrow indicates the mutation position 

(nucleotide 134). The ―A‖ at the highlighted position corresponds to a Wild Type AA genotype.  
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Figure 3.1.8. A 2% (w/v) agarose gel depicting the PCR amplicons synthesized with the F2 20210 

primer set visualized with 0.0001% (v/v) EtBr. Lane 1 contains a 100-bp DNA ladder, lanes 2 to 6 

contain amplicons of 432 bp and lane 7 contains the PCR blank. (Abbreviations: bp = base pairs)  

 

 

 

 

 

 

 

 

 

Figure 3.1.9. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the F2 20210 primer set. The red arrow indicates the mutation position (nucleotide 

153). The ―G‖ at the highlighted position corresponds to a Wild Type GG genotype.  
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Figure 3.1.10. A 2% (w/v) agarose gel depicting the PCR amplicons synthesized with the FV 

Leiden primer set visualized with 0.0001% (v/v) EtBr. Lane 1 contains a 100-bp DNA ladder, lanes 

2 to 6 contain amplicons of 409 bp and lane 7 contains the PCR blank. (Abbreviations: bp = base 

pairs)  

 

 

 

 

 

 

 

 

 

Figure 3.1.11. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the FV Leiden primer set. The red arrow indicates the mutation position (nucleotide 

155). The ―G‖ at the highlighted position corresponds to a Wild Type GG genotype.  
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Figure 3.1.12. A 2% (w/v) agarose gel depicting the PCR amplicons synthesized with the HFE 

C282Y primer set visualized with 0.0001% (v/v) EtBr. Lane 1 contains a 100-bp DNA ladder, lanes 

2 to 6 contain amplicons of 396 bp and lane 7 contains the PCR blank. (Abbreviations: bp = base 

pairs)  
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Figure 3.1.13. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the HFE C282Y primer set. The red arrow indicates the mutation position (nucleotide 

281). The ―G‖ at the highlighted position corresponds to a Wild Type GG genotype.  
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Figure 3.1.14. A 2% (w/v) agarose gel depicting the PCR amplicons synthesized with the HFE 

H63D primer set visualized with 0.0001% (v/v) EtBr. Lane 1 contains a 100-bp DNA ladder, lanes 

2 to 6 contain amplicons of 208 bp and lane 7 contains the PCR blank. (Abbreviations: bp = base 

pairs)  

 

 

 

 

 

 

 

 

 

Figure 3.1.15. Electropherogram of the forward (sense) sequencing reaction of a PCR amplicon 

obtained with the HFE H63D primer set. The red arrow indicates the mutation position (nucleotide 

112). The ―C‖ at the highlighted position corresponds to a Wild Type CC genotype.  
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3.2. RT-PCR Genotyping with the ABI


 7900HT  

 

The ABI™ 7900HT Fast Real-Time PCR System was used with ABI
™

 TaqMan
®
 SNP Genotyping 

assays to determine the genotypes of the various control- and patient samples screened in this study. 

The instrument is controlled by the ABI™ SDS Software version 2.3 (Foster City, California, 

USA), which acts as the user interface and performs analysis of the fluorescence data obtained after 

amplification. Assay validation was achieved using the control samples with known genotypes and 

12 Non-Template Controls (NTCs; with nuclease-free H2O instead of DNA) per 96-well reaction 

plate. Thereafter, NAFLD patient samples were divided into three sample batches and screened for 

genetic variants by the same protocol. The RT-PCR runs also included 12 NTCs and five control 

samples that had previously been genotyped via conventional PCR and DNA sequencing for quality 

assurance purposes. Genotyping was achieved in three phases. The first involved an amplification 

run using the Standard Curve (AQ) setting, during which PCR products are exponentially 

synthesized and the associated fluorescence plotted as a graph by the ABI
™

 SDS software 

displaying ―ΔRn (unit of fluorescence) versus cycles.‖ The second phase was a post-amplification 

scan with the allelic discrimination setting. The SDS software presents the results on an allelic 

discrimination scatterplot by contrasting the fluorescence values obtained from the FAM
™

 and 

VIC
®
 dyes. After signal normalization and multi-component analysis, the software plots the data 

obtained from every well on the 96-well plate, each as a single datapoint on the scatterplot. The 

allelic discrimination analysis displays the results as an ―Allele Y (―Assay ID and Specific Allele‖) 

versus Allele X (―Assay ID and Specific Alternate Allele‖)‖ graph. Analysis and verification of the 

results constituted the final phase of the genotyping process.  

All eight assays employed in the mutation screening yielded clear amplification of the polymorphic 

target sequence for all samples investigated. The specificity of the assays were verified by the 

internal control samples included in each of the RT-PCR runs, yielding identical genotype calls to 

those obtained through DNA sequencing. The tight and distinct clustering of the NTCs revealed that 

no contamination was present in the reaction setups, ensuring the credibility of the results. Due to 

the sheer volume of genotyping data generated by this study, only one sample batch for each assay 

is provided in this section to illustrate the results obtained through successful application of this RT-

PCR genotyping system.  

The amplification plot for APOE2 is presented in figure 3.2.1 and features the raw fluorescence 

data acquired during amplification. The APOE2 allelic discrimination plot is a graphical 

representation of the genotypes of each sample tested and can be found in figure 3.2.2, with black 

dots representing NTCs, red dots equivalent to wild types, green dots indicative of heterozygotes 

and the less prevalent blue dots signifying homozygotes.  
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Figure 3.2.1. Typical amplification achieved using the ABI TaqMan
®
 assay for 

APOE2 (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of fluorescence)  

Figure 3.2.2. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for APOE2 [Allele Y (C_904973_10-T) vs 

Allele X (C_904973_10-C)]. Black = NTC, Red = Wild Type CC 

and Green = Heterozygous CT.  
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The genotype distribution observed for APOE2 among all NAFLD (178) and control (75) samples 

is summarized and contrasted in figure 3.2.3. The total study population, which includes NAFLD 

patients and controls for a total of 253 samples, was found to be 86.96% Wild Type CC, 13.04% 

Heterozygous CT and 0.0% Homozygous TT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The amplification plot for APOE4 is presented in figure 3.2.4 and features the raw fluorescence 

data acquired during amplification. The APOE4 allelic discrimination plot is a graphical 

representation of the genotypes of each sample tested and can be found in figure 3.2.5, with black 

dots representing NTCs, red dots equivalent to wild types, green dots indicative of heterozygotes 

and the less prevalent blue dots signifying homozygotes.  

 

 

Figure 3.2.3. Genotype distribution of 253 samples obtained using the ABI 

TaqMan
®

 APOE2 assay. 178 NAFLD samples presented with 155 Wild Type 

CC (87.08%), 23 Heterozygous CT (12.92%) and 0 (0.00%) Homozygous TT. 

Among the 75 control samples, 65 (86.67%) were Wild Type CC, 10 (13.33%) 

Heterozygous CT and 0 (0.00%) Homozygous TT.  
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Figure 3.2.4. Typical amplification achieved using the ABI TaqMan
®
 assay for 

APOE4 (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of fluorescence)  

Figure 3.2.5. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for APOE4 [Allele Y (C_3084793_20-T) 

vs Allele X (C_3084793_20-C)]. Black = NTC, Red = Wild Type 

TT, Green = Heterozygous TC and Blue = Homozygous CC.  
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The genotype distribution observed for APOE4 among all NAFLD (178) and control (75) samples 

is summarized in figure 3.2.6. The total study population, which includes NAFLD patients and 

controls for a total of 253 samples, was found to be 66.14% Wild Type TT, 30.28% Heterozygous 

TC and 3.59% Homozygous CC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The genotypes of one of the NAFLD patient samples and one of the control samples analysed could 

not be determined through the RT-PCR protocol employed in this study even though they were re-

tested several times. These samples were subsequently excluded from further analysis after the 

DNA quality within the amplification loci were called into question. The amplification plot for 

MTHFR 677 is presented in figure 3.2.7 and features the raw fluorescence data acquired during 

amplification. The MTHFR 677 allelic discrimination plot in figure 3.2.8 presents the sample 

genotypes as groups, where black dots = NTCs, red = wild types, green = heterozygotes, blue = 

homozygotes. The MTHFR 677 assay probes bind to the reverse (anti-sense) strand. Therefore, the 

―C_1202883_20-G‖ and ―C_1202883_20-A‖ alleles presented on the allelic discrimination plot in 

figure 3.2.8 correspond to the forward (sense) nucleotides ―C‖ and ―T,‖ respectively.  

Figure 3.2.6. Genotype distribution of 253 samples obtained using the ABI 

TaqMan
®

 APOE4 assay. 178 NAFLD samples presented with 116 Wild Type 

TT (65.54%), 53 Heterozygous CT (29.94%), 8 (4.52%) Homozygous TT and 

1 could not be determined. Among the 75 control samples, 50 (67.57%) were 

Wild Type TT, 23 (31.08%) Heterozygous T, 1 (1.35%) Homozygous CC and 

1 could not be determined.  
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Figure 3.2.7. Typical amplification achieved using the ABI TaqMan
®
 assay for 

MTHFR 677 (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of 

fluorescence)  

Figure 3.2.8. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for MTHFR 677 [Allele Y (C_1202883_20-

A) vs Allele X (C_1202883_20-G)]. Black = NTC, Red = Wild 

Type CC, Green = Heterozygous CT and Blue = Homozygous TT.  
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The genotype distribution observed for MTHFR 677 among all NAFLD (178) and control (75) 

samples is summarized in figure 3.2.9. The total study population, which includes NAFLD patients 

and controls for a total of 253 samples, was found to be 64.82% Wild Type CC, 28.46% 

Heterozygous CT and 6.72% Homozygous TT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The amplification plot for MTHFR 1298 is presented in figure 3.2.10 and features the raw 

fluorescence data acquired during amplification. The MTHFR 1298 allelic discrimination plot is a 

graphical representation of the genotypes of each sample tested and can be found in figure 3.2.11, 

with black dots representing NTCs, red dots equivalent to wild types, green dots indicative of 

heterozygotes and the less prevalent blue dots signifying homozygotes.  

 

The probes employed by the MTHFR 1298 assay are designed to bind to the reverse (anti-sense) 

strand. Therefore, the ―C_850486_20-T‖ and ―C_850486_20-G‖ alleles presented on the allelic 

discrimination plot in figure 3.2.11 correspond to the forward (sense) nucleotides ―A‖ and ―C,‖ 

respectively.  

Figure 3.2.9. Genotype distribution of 253 samples obtained using the ABI 

TaqMan
®

 MTHFR 677 assay. 178 NAFLD samples presented with 127 Wild 

Type CC (71.35%), 42 Heterozygous CT (23.60%) and 9 (5.06%) Homozygous 

TT. Among the 75 control samples, 37 (49.33%) were Wild Type CC, 30 

(40.00%) Heterozygous CT and 8 (10.67%) Homozygous TT.  



Chapter 3: Results 

 

69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.10. Typical amplification achieved using the ABI TaqMan
®
 assay for 

MTHFR 1298 (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of 

fluorescence)  

Figure 3.2.11. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for MTHFR 1298 [Allele Y (C_850486_20-

T) vs Allele X (C_850486_20-G)]. Black = NTC, Red = Wild Type 

AA, Green = Heterozygous AC and Blue = Homozygous CC.  
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The genotype distribution observed for MTHFR 1298 among all NAFLD (178) and control (75) 

samples is summarized in figure 3.2.12. The total study population, which includes NAFLD 

patients and controls for a total of 253 samples, was found to be 46.64% Wild Type AA, 43.87% 

Heterozygous AC and 9.49% Homozygous CC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The amplification plot for F2 20210 is presented in figure 3.2.13 and features the raw fluorescence 

data acquired during amplification. The F2 20210 allelic discrimination plot is a graphical 

representation of the genotypes of each sample tested and can be found in figure 3.2.14, with black 

dots representing NTCs, red dots equivalent to wild types, green dots indicative of heterozygotes 

and the less prevalent blue dots signifying homozygotes.  

 

 

Figure 3.2.12. Genotype distribution of 253 samples obtained using the ABI 

TaqMan
®

 MTHFR 1298 assay. 178 NAFLD samples presented with 85 Wild 

Type AA (47.75%), 80 Heterozygous AC (44.94%) and 13 (7.30%) 

Homozygous CC. Among the 75 control samples, 33 (44.00%) were Wild Type 

AA, 31 (41.33%) Heterozygous AC and 11 (14.67%) Homozygous CC.  
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Figure 3.2.13. Typical amplification achieved using the ABI TaqMan
®
 assay 

for F2 20210 (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of 

fluorescence)  

Figure 3.2.14. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for F2 20210 [Allele Y (C_8726802_20-

G) vs Allele X (C_8726802_20-A)]. Black = NTC, Red = Wild 

Type GG and Green = Heterozygous GA.  
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The genotype distribution observed for F2 20210 among all NAFLD (178) and control (75) samples 

is summarized in figure 3.2.15. The total study population, which includes NAFLD patients and 

controls for a total of 253 samples, was found to be 98.80% Wild Type GG, 1.20% Heterozygous 

GA and 0.00% Homozygous AA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The genotypes of three of the NAFLD patient samples analysed could not be determined through 

the RT-PCR protocol employed in this study even though they were re-tested several times. These 

samples were subsequently excluded from further analysis after the DNA quality within the 

amplification loci were called into question. The amplification plot for FV Leiden is presented in 

figure 3.2.16 and features the raw fluorescence data acquired during amplification. The FV Leiden 

allelic discrimination plot is a graphical representation of the genotypes of each sample tested and 

can be found in figure 3.2.17, with black dots representing NTCs, red dots equivalent to wild types, 

green dots indicative of heterozygotes and the less prevalent blue dots signifying homozygotes. The 

FV Leiden assay probes bind to the reverse (anti-sense) strand. Therefore, the ―C_11975250_10-C‖ 

and ―C_11975250_10-T‖ alleles presented on the allelic discrimination plot in figure 3.2.17 

correspond to the forward (sense) nucleotides ―G‖ and ―A,‖ respectively.  

Figure 3.2.15. Genotype distribution of 253 samples obtained using the ABI 

TaqMan
®

 F2 20210 assay. 178 NAFLD samples presented with 173 Wild Type 

GG (98.86%), 2 Heterozygous GA (1.14%), 0 (0.00%) Homozygous AA and 3 

could not be determined. Among the 75 control samples, 74 (98.67%) were 

Wild Type GG, 1 (1.33%) Heterozygous GA and 0 (0.00%) Homozygous AA.  
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Figure 3.2.16. Typical amplification achieved using the ABI TaqMan
®
 assay for 

FV Leiden (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of 

fluorescence)  

Figure 3.2.17. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for FV Leiden [Allele Y (C_11975250_10-

T) vs Allele X (C_11975250_10-C)]. Black = NTC, Red = Wild 

Type GG and Green = Heterozygous GA.  
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The genotype distribution observed for FV Leiden among all NAFLD (178) and control (75) 

samples is summarized in figure 3.2.18. The total study population, which includes NAFLD 

patients and controls for a total of 253 samples, was found to be 97.63% Wild Type GG, 2.37% 

Heterozygous GA and 0.00% Homozygous AA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The amplification plot for HFE C282Y is presented in figure 3.2.19 and features the raw 

fluorescence data acquired during amplification. The HFE C282Y allelic discrimination plot is a 

graphical representation of the genotypes of each sample tested and can be found in figure 3.2.20, 

with black dots representing NTCs, red dots equivalent to wild types, green dots indicative of 

heterozygotes and the less prevalent blue dots signifying homozygotes.  

 

Figure 3.2.18. Genotype distribution of 253 samples obtained using the ABI 

TaqMan
®

 FV Leiden assay. 178 NAFLD samples presented with 173 Wild 

Type GG (97.19%), 5 Heterozygous GA (2.81%) and 0 (0.00%) Homozygous 

AA. Among the 75 control samples, 74 (98.67%) were Wild Type GG, 1 

(1.33%) Heterozygous GA and 0 (0.00%) Homozygous AA.  
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Figure 3.2.19. Typical amplification achieved using the ABI TaqMan
®
 assay for 

HFE C282Y (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of 

fluorescence)  

Figure 3.2.20. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for HFE C282Y [Allele Y (C_1085595_10-

A) vs Allele X (C_1085595_10-G)]. Black = NTC, Red = Wild 

Type GG, Green = Heterozygous GA and Blue = Homozygous AA.  
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The genotype distribution observed for HFE C282Y among all NAFLD (178) and control (75) 

samples is summarized in figure 3.2.21. The total study population, which includes NAFLD 

patients and controls for a total of 253 samples, was found to be 92.49% Wild Type GG, 6.72% 

Heterozygous GA and 0.79% Homozygous AA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The amplification plot for HFE H63D is presented in figure 3.2.22 and features the raw 

fluorescence data acquired during amplification. The HFE H63D allelic discrimination plot is a 

graphical representation of the genotypes of each sample tested and can be found in figure 3.2.23, 

with black dots representing NTCs, red dots equivalent to wild types, green dots indicative of 

heterozygotes and the less prevalent blue dots signifying homozygotes.  

 

 

Figure 3.2.21. Genotype distribution of 253 samples obtained using the ABI 

TaqMan
®

 HFE C282Y assay. 178 NAFLD samples presented with 170 Wild 

Type GG (95.51%), 7 Heterozygous GA (3.93%) and 1 (0.56%) Homozygous 

AA. Among the 75 control samples, 64 (85.33%) were Wild Type GG, 10 

(13.33%) Heterozygous GA and 1 (1.33%) Homozygous AA.  
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Figure 3.2.22. Typical amplification achieved using the ABI TaqMan
®
 assay for 

HFE H63D (ΔRn vs number of cycles). (Abbreviations: ΔRn = unit of 

fluorescence)  

Figure 3.2.23. Typical allelic discrimination analysis using the 

ABI TaqMan
®
 assay for HFE H63D [Allele Y (C_1085600_10-G) 

vs Allele X (C_1085600_10-G)]. Black = NTC, Red = Wild Type 

CC, Green = Heterozygous CG and Blue = Homozygous GG.  
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The genotype distribution observed for HFE H63D among all NAFLD (178) and control (75) 

samples is summarized in figure 3.2.24. The total study population, which includes NAFLD 

patients and controls for a total of 253 samples, was found to be 82.94% Wild Type CC, 15.87% 

Heterozygous CG and 1.19% Homozygous GG.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The genotype of one of the NAFLD patient samples analysed could not be determined through the 

RT-PCR protocol employed in this study even though it was re-tested several times. This sample 

was subsequently excluded from further analysis after the DNA quality in the amplification loci 

was called into question. 

 

 

 

Figure 3.2.24. Genotype distribution of 253 samples obtained using the 

ABI TaqMan
®
 HFE H63D assay. 178 NAFLD samples presented with 

151 Wild Type CC (85.31%), 25 Heterozygous CG (14.12%), 1 (0.56%) 

Homozygous GG and 1 could not be determined. Among the 75 control 

samples, 58 (77.33%) were Wild Type CC, 15 (20.00%) Heterozygous CG 

and 2 (2.67%) Homozygous GG.  
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3.3. Comparative Analysis in NAFLD Patients 

 

The clinical characteristics of the NAFLD patients included in the study are shown in Table 3.2, 

subdivided into the Coloured and White population groups.  

 
 

Table 3.2. Clinical Characteristics of 107 Coloured and 49 White patients included in this 

study.  

Characteristics* 
Coloured Patients 

(Mean ± STD) 

White Patients 

(Mean ± STD) 

Total Patients 

(Mean ± STD) 

Males  21 (19.63%) 27 (55.10%) 48 (30.77%) 

Females  86 (80.37%) 22 (44.90%) 108 (69.23%) 

Mean Age (years) 50.79 ± 11.19 52.25 ± 10.99 51.24 ± 11.11 

Alcohol user (yes) 9 (8.82%) 17 (36.17%) 26 (17.45%) 

Smoker (yes) 27 (26.21%) 10 (20.41%) 37 (24.34%) 

Physically active (yes) 10 (9.80%) 11 (23.40%) 21 (14.09%) 

Mean BMI (kg/m
2
) 37.06 ± 7.75 32.66 ± 5.69 35.63 ± 7.42 

Waist circumference (cm) 107.94 ± 14.77 109.73 ± 12.44 108.49 ± 14.08 

LDL particle size (B/small) 24 (26.37%) 10 (27.78%) 34 (26.71%) 

Total Cholesterol (mmol/l) 5.80 ± 1.30 5.61 ± 1.17 5.75 ± 1.26 

LDL Cholesterol (mmol/l) 3.64 ± 0.96 3.46 ± 1.02 3.58 ± 0.98 

HDL-Cholesterol (mmol/l) 1.34 ± 0.37 1.17 ± 0.29 1.29 ± 0.35 

Triglycerides (mmol/l) 2.02 ± 2.33 2.21 ± 1.03 2.07 ± 2.04 

C-Reactive Protein (mg/l) 11.99 ± 21.85 13.32 ± 23.64 12.52 ± 22.31 

Fasting Glucose (mmol/l) 7.82 ± 3.67 6.84 ± 3.06 7.53 ± 3.52 

Insulin (pmol/L) 26.98 ± 45.27 25.61 ± 32.84 26.55 ± 41.58 

HbA1c (%) 7.95 ± 2.38 6.66 ± 1.79 7.61 ± 2.30 

AST/ALT ratio 0.82 ± 0.22 0.78 ± 0.33 0.81 ± 0.26 
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Tf Saturation (%) 18.70 ± 10.59 21.52 ± 10.84 19.44 ± 10.68 

**Family history (yes) 90 (90.00%) 31 (81.58%) 121 (87.68%) 

NAFLD Severity    

Fatty Liver 25 (40.98%) 17 (45.95%) 42 (42.86%) 

NASH 23 (37.71%) 18 (48.65%) 41 (41.84%) 

Cirrhosis 2 (1.85%) 8 (16.67%) 10 (6.41%) 

***Heart Disease (yes) 3 (2.80%) 7 (14.29%) 10 (6.41%) 
 

*NAFLD patient tallies differ between individual characteristics due to incomplete biochemical, 

clinical and environmental records. Calculations were performed on all available data.  

**Family history of cardiovascular disease, hypertension, diabetes, liver disease.  

***Heart Disease = angina and ischaemic heart disease.  

 

 

3.3.1. Allelic and Genotype Distributions  

Allele frequencies and genotype distributions were determined for all mutations investigated and 

were found to be in Hardy Weinberg Equilibrium in the patient and control groups studied (table 

3.3).  

 

 

Table 3.3. P-values of Hardy Weinberg Equilibrium for the eight mutations studied.  

 

Mutations White Patients Coloured Patients White Controls 

APOE2, E4 0.2836 0.7212 0.4603 

MTHFR 677, 1298 0.7664 0.7478 0.3544 

FV Leiden 1.0000 1.0000 1.0000 

F2 20210 1.0000 1.0000 1.0000 

HFE C282Y, H63D 0.7806 0.4739 0.8788 

 

 

In tables 3.4 (APOE gene), 3.5 (HFE gene) and 3.6 (MTHFR gene) the allele frequencies are 

compared between Coloured and White patients with NAFLD, and between the White NAFLD 

patients and White controls. A control group for the Coloured population was not available for this 

study.  
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Table 3.4. Comparison of APOE genotype distribution and allele frequencies between the 

Control, White and Coloured study groups.  

APOE 

Genotype 

Control 

group 

(n=74) 

White patient 

group (n=49) 

Coloured 

patient group 

(n=106) 

White 

patients to 

controls: 

White to 

Coloured 

patients: 

E2/E2 0 0 0 

P = 0.19985 P = 0.10894 

E2/E3 10 (0.14) 5 (0.10) 10 (0.09) 

E3/E3 40 (0.54) 31 (0.63) 58 (0.55) 

E3/E4 23 (0.31) 9 (0.18) 30 (0.28) 

E4/E4 1 (0.01) 4 (0.08) 3 (0.03) 

E2/E4 0 0 5 (0.05) 

Allele  

E2 10 (0.07) 5 (0.05) 15 (0.07) 

P > 0.05 E3 113 (0.76) 76 (0.78) 156 (0.74) 

E4 25 (0.17) 17 (0.17) 41 (0.19) 

Table 3.5. Comparison of MTHFR genotype distribution and allele frequencies between the 

Control, White and Coloured study groups.  

MTHFR 

Genotype 

Control 

group 

(n=74) 

White patient 

group (n=49) 

Coloured 

patient group 

(n=107) 

White 

patients to 

controls: 

White to 

Coloured 

patients: 

W/W 13 (0.18) 9 (0.18) 34 (0.32) 

P = 0.51299 P = 0.07450 

W/C 13 (0.18) 14 (0.29) 40 (0.37) 

W/T 12 (0.16) 7 (0.14) 15 (0.14) 

C/C 10 (0.14) 5 (0.10) 6 (0.06) 

C/T 18 (0.24) 9 (0.18) 9 (0.08) 

T/T 8 (0.11) 5 (0.10) 3 (0.03) 

Allele  

W 51 (0.34) 39 (0.40) 123 (0.57) 

P > 0.05 C 51 (0.34) 33 (0.34) 61 (0.29) 

T 46 (0.31) 26 (0.27) 30 (0.14) 



Chapter 3: Results 

 

82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.6. Comparison of HFE genotype distribution and allele frequencies between the 

Control, White and Coloured study groups.  

HFE 

Genotype 

Control 

group 

(n=75) 

White patient 

group (n=49) 

Coloured 

patient group 

(n=107) 

White 

patients to 

controls: 

White to 

Coloured 

patients: 

W/W 49 (0.66) 34 (0.69) 92 (0.86) 

P = 0.78570 P = 0.12349 

W/G 13 (0.17) 11 (0.22) 12 (0.11) 

W/A 8 (0.11) 3 (0.06) 2 (0.02) 

G/G 2 (0.03) 0 1 (0.01) 

G/A 2 (0.03) 1 (0.02) 0 

A/A 1 (0.01) 0 0 

Allele  

W 121 (0.80) 82 (0.84) 198 (0.93) 

P > 0.05 A 12 (0.08) 4 (0.04) 2 (0.01) 

G 19 (0.12) 12 (0.12) 14 (0.07) 
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3.3.2. Genotype-Phenotype Correlation  

The effect of the individual mutations analysed was correlated with biochemical parameters 

previously found to be altered in the presence of relevant environmental risk factors.  

 

A significant increase (p = 0.04) in Alanine Transaminase (ALT) levels was identified between 

HFE mutation carriers (hetero- and homozygous individuals for the C282Y and H63D mutations of 

the HFE gene) and wild types among stage 3 and 4 NAFLD patients (figure 3.3.1).  

 

 

Figure 3.3.1. Comparison of log-corrected ALT levels [log10 (ALT)] between NAFLD patients 

with (n=10) and without (n=34) mutations in the HFE gene. Mean ± STD: HFE Mutation Carriers = 

1.89 ± 0.25; Wild Types = 1.67 ± 0.26. F (1, 42) = 4.4499; p = 0.04; Mann-Whitney U p = 0.05.  

 

Trends were observed in the prevalence of APOE2 and APOE4 mutations relative to the levels of 

triglyceride and cholesterol (respectively), while MTHFR mutations also tended to differ slightly in 

frequency between control individuals and patients. However, none of these observations reached 

statistical significance.  
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29 years – Myocardial Infarction; 
HFE C282Y - Homozygous 

60 years - CVD 

 

60 years – Kidney Cancer;  
88 years – Alzheimer’s Disease 

  

Thalassemia 

 

3.4. Clinical Application  

 

The clinical utility of pathology supported genetic testing was demonstrated in an obese patient 

with a medical history of myocardial infarction. The pedigree of this patient (GMX1) with several 

family members that have been diagnosed with diseases ranging from Alzheimer‘s disease to CVD 

and kidney cancer to thalassemia, is presented in figure 3.4.1. He was referred by a 

gastroenterologist for the CVD multi-gene test that includes both a diagnostic and risk management 

component based on gene-environment and gene-gene interactions, using a combined service and 

research approach.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.4.1. Pedigree of the 40 year old index case, GMX1, diagnosed with Hereditary 

Haemochromatosis.  
 

 

The genetic test was performed in conjunction with a medical and lifestyle assessment to identify a 

combination of risk factors that, if left untreated, could cause or contribute to disease development 

or recurrence. Table 3.7 provides a summary of the clinical characteristics and lifestyle risk factors 

entered into the Gknowmix Database at referral. The patient tested positive for two copies of 

mutation C282Y in the HFE gene through application of the RT-PCR end-point genotyping method 

evaluated in this study. Due to the relative scarcity of homozygotes and the disease risks associated 

with this genotype, DNA sequencing was conducted to verify the RT-PCR result (data not shown).  

 

Figure 3.9: 
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Table 3.7. Clinical and lifestyle information documented at referral of GMX1.  

GENETIC TEST RESULTS 

RISK AREA GENE GENETIC 

VARIATION 
RESULTS 

Lipid and lipoprotein 

metabolism 

APOE 3937 T > C, allele E4  Not Detected  

4075 C > T, allele E2  Not Detected 

Homocysteine and 

folate metabolism 

MTHFR 677 C > T, A222V Heterozygous  

1298 A > C, E429A Not Detected  

Haemostasis and 

thrombophilia 

FV  1691 G > A, Leiden  Not Detected  

F2 20210 G > A  Not Detected  

Iron overload HFE 845 G > A, C282Y  Homozygous  

187 C > G, H63D  Not Detected  

FAMILY HISTORY 

Family Medical Conditions Diagnosis Relationship 

Alzheimer's Disease 88 years  Grandfather 

Cardiovascular Disease 60 years  Grandmother 

Kidney cancer 60 years  Grandfather 

Thalassemia  Uncle 

HEALTH STATUS 

Personal Medical Conditions Diagnosis Therapy 

Haemochromatosis / High Iron 40 years Phlebotomy treatment 

Myocardial Infarction 29 years  Bayer Cardio 

Clinical Assessment Value Evaluation Values  

Cholesterol, total 4.1 mmol/l 3.21-5.20 mmol/l 

Glucose, fasting 4.9 umol/dl 3.3-5.5 umol/dl 

Serum ferritin 252 ng/ml (Pre-

treatment: 671 ng/ml) 

15-300 ng/ml 

Transferrin saturation 75 % - High (Pre-

treatment: 83 %) 

20-55 % 

Blood pressure - Systolic 129 mmHg  < 140 mmHg 

Blood pressure - Diastolic 79 mmHg  < 90 mmHg 

Weight 92 kg   

Height 1.75 m   

Body mass index (BMI) Adult 30.04 kg/m
2
 - High  18.5-24.9 kg/m

2
 

Lifestyle Assessment Score 

Physical activity 4 or more times / week , Daily: Sedentary  - High  

Smoker Current: No , Previous: Not Applicable  

Alcohol consumption       1-2 Units Occasionally - Low  

Nutrition Assessment Score 

Fat intake, saturated & trans fats 9 - Very Low (excellent)  

Fruit, vegetables, fibre intake 14 - Moderate  

Folate intake 5 - Very Low  

 

The index patient (GMX1) was one of the first two individuals with high ferritin levels referred for 

genetic testing during the course of this translational research project. In the second referral 

(GMX2) normal transferrin saturation (36%) in the presence of high ferritin (498 ng/ml) and fasting 

glucose levels (6.6 mmol/l) was consistent with wild type HFE mutation status (data not shown).  
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This study was based on the hypothesis that the simultaneous analysis of multiple Single Nucleotide 

Polymorphisms (SNPs) associated with an increased risk of Cardiovascular Disease (CVD) would 

increase the clinical utility of their individual applications and constitute an improved risk-profiling 

system for individuals with Non-Alcoholic Fatty Liver Disease (NAFLD). This possibility is 

supported by extensive literature, as reviewed in Chapter 1 of this thesis and further discussed 

hereafter in a more integrative manner.  

 

The translation of scientific findings into therapeutic recommendations requires a multi-disciplinary 

approach, where pathological determinations are essential to measure gene expression and response 

to the intervention strategy advised. This study represents an extension of the work by Kruger et al. 

(2010), who were the first to describe the clinical characteristics of Non-Alcoholic Fatty Liver 

Disease (NAFLD) among individuals of the Western Cape province of South Africa. Insulin 

resistance was identified as the universal factor, while the degree of obesity was not associated with 

disease severity. Increasing age was associated with more advanced fibrosis, while no correlation 

was observed with Nonalcoholic Steatohepatitis (NASH). South African Patients with NASH 

showed significantly higher mean serum cholesterol (p < 0.01) and triglyceride (p = 0.03) levels 

than those with fatty liver only. Low-Density Lipoprotein (LDL) particle size was also found to 

decrease significantly from fatty liver disease to NASH (p = 0.03). The undefined nature of genetic 

risk factors on disease development and severity underscored the necessity of further studies on 

NAFLD. This mission was undertaken in the present study by building on a clinically well-

characterized study population.  

 

Genotyping using RT-PCR was performed for the APOE2, APOE4, MTHFR 677, MTHFR 1298, 

F2 20210, FV Leiden, HFE C282Y and HFE H63D mutations previously included in a CVD multi-

gene strip assay test (Kotze et al. 2003; Kotze and Thiart, 2003) following optimization and 

standardization of high-throughput mutation detection to assess the genetic contributions to the 

associations identified by Kruger et al. (2010).  

 

Analytical validation of the Real-Time Polymerase Chain Reaction (RT-PCR) mutation detection 

system was achieved by comparison with DNA sequencing and inclusion of the sequenced samples 

as internal controls during patient screening (see section 4.1). The clinical utility of the CVD multi-

gene test in guiding chronic disease risk management in patients with NAFLD was evaluated by 

genotype-phenotype association testing with a special focus on the role of the HFE gene (see 

section 4.2). The necessity of an integrative, systems-based network approach was assessed in 
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context of the rapidly expanding fields of network medicine, translation research and personalized 

medicine (see sections 4.3, 4.4 and 4.5). A Pathology Supported Genetic Testing (PSGT) approach 

to the latter was shown to assist in clear differentiation between Hereditary Haemochromatosis 

(HH) and Insulin Resistance-associated Hepatic Iron Overload (IR-HIO) syndrome in obese 

patients (see section 4.5).  

 

A significant association was found between HFE mutations and elevated Alanine Transaminase 

(ALT) levels in the NAFLD population, which might define a subset of patients who would benefit 

most from genetic testing to direct more aggressive therapy at an earlier stage. These findings 

emphasize the importance of the HFE mutation detection component of the CVD multi-gene test as 

it may facilitate an effective treatment strategy in patients with a medical history of CVD and/or 

high iron stores (see section 4.2.5).  

 

 

4.1. Analytical Validation  

 

Methods currently available for routine genotyping of patients include Polymerase Chain Reaction 

(PCR) Restriction Fragment Length Polymorphism (RFLP) analysis, PCR mediated site-directed 

mutagenesis, oligonucleotide ligation, reverse hybridization line-probe assay, DNA sequencing, 

allele-specific PCR and Real-Time PCR (RT-PCR) using Fluorescence Resonance Energy Transfer 

(FRET) probes or High-Resolution Melt (HRM) analysis.  

 

The most popular modern technique consists of PCR amplification of the suspected site of a 

mutation and subsequent DNA sequencing. This combination has proven to be the most reliable, 

efficient and cost-effective for individual samples or small batches (dozens). RT-PCR has gained 

considerable support in recent years as a high-throughput alternative to the aforementioned 

standard, especially for analysis of larger sample batches (hundreds to thousands).  

 

In this study, PCR amplification was used in conjunction with DNA sequencing to determine the 

genotypes of the control samples for each of the eight mutations investigated. Verified samples 

(wild type, heterozygous and homozygous) were then used as internal controls in the 

standardization of a high-throughput RT-PCR multi-gene screen and the subsequent 

implementation of this system in the genotyping of the NAFLD patient samples.  
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4.1.1. Polymerase Chain Reaction Amplification  

A Polymerase Chain Reaction (PCR) is a laboratory procedure in which millions of copies of a 

specific section of DNA are synthesized (Brown, 2007: 2.3). It is an amplification method in which 

minute amounts of DNA obtained from blood, hair, saliva or tissue can be copied to provide 

sufficient quantities for analysis. The reaction is carried out in an automated device able to rapidly 

and precisely increase and decrease the temperature to exact values, known as a thermal cycler. 

This method is named after the key component which carries out the replication of the DNA, an 

enzyme known as a DNA polymerase. The most commonly used of which is Taq polymerase, 

obtained from the bacterium Thermus aquaticus. This enzyme functions optimally at a temperature 

of approximately 70°C. It can create a new DNA strand by using the original DNA as a template 

and employing DNA oligonucleotide primers. The primers used in PCR are short (20 to 30 

nucleotides), artificial sequences of DNA that are designed to match the ends of the DNA region to 

be copied exactly. The reaction is initiated by heating until the two strands of DNA separate 

(denaturation phase), the primers then bind to their intended locations (annealing phase) and the 

DNA polymerase commences elongation of the primers (extension or elongation phase).  

 

PCR has replaced previous methods of DNA replication that used bacteria and could take several 

weeks to produce adequate amounts of product for practical application. PCR is a very rapid assay 

and can accomplish the goals of the former methods in a matter of hours (typically two to three 

hours). Speed is often required in a diagnostic setting when urgent results are necessary. The PCR 

technique was developed around 1983 by Kary Mullis (Mullis et al. 1994), who won a Nobel Prize 

in Chemistry for the invention in 1993. Since then, PCR has been widely used as a diagnostic and 

research tool. The variety of applications for this technique are constantly expanding throughout 

many scientific disciplines, including clinical diagnostics, environmental science, forensic science, 

microbiology, molecular biology and paternity testing.  

 

PCR is extensively used in analysing clinical specimens for the presence of infectious agents such 

as Human Immunodeficiency Virus (HIV), hepatitis, human papillomavirus (which causes genital 

warts and cervical cancer), Epstein-Barr virus (which causes glandular fever), malaria (Yang and 

Rothman, 2004) and anthrax (Hoffmaster et al. 2002). Cancer diagnostics have also been aided by 

the implementation of PCR in the identification of causative mutations, providing information on 

the prognosis of a patient as well as predictions concerning response or resistance to therapy 

(Bernard and Wittwer, 2002).  
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The sensitivity of PCR enables it to be used with great success in analysing mutations that occur in 

many genetic diseases (for example cystic fibrosis, sickle cell anaemia, phenylketonuria, muscular 

dystrophy). A DNA template for the amplification can be obtained from a single cell taken from an 

embryo before birth. Paternity tests are essentially performed by PCR. A cheek swab can for 

example be taken from inside the mouth of both parents and the child, the DNA extracted from the 

cells obtained and then analysed by PCR. The basic DNA sequence in every cell of the body is 

identical, varying in amount between somatic (non-reproductive) and gametic (reproductive) cells. 

Sequence variance between cells is caused by genetic alterations (polymorphisms, cytogenetic 

changes, etc.) that take place during the life of an organism, whether natural (error during 

replication, mitosis, meiosis) or induced by mutagens (UV light, chemicals such as ethidium 

bromide, etc.). The DNA of a child should be a combination of the genomes of its parents, with 

minimal variation. Several locations referred to as ‗loci‘ on the child's DNA are examined and the 

sequences of these loci are compared to those of the mother and father. The conclusions regarding 

the paternity of the child are based on the degree of identity found.  

 

For this study, it was essential to have an in-depth understanding of the PCR procedure to facilitate 

the optimization and standardization of the high-throughput mutation detection system evaluated for 

implementation of the CVD multi-gene test.  

 

A PCR is conducted using a solution known as a reaction master mixture, which contains very 

specific amounts of all the essential reagents for the reaction to take place. All of the components 

are mixed together in minute volumes in a single tube. These reagents are nuclease-free water, a 

buffer solution, magnesium chloride (MgCl2) salt solution, deoxyribonucleotide triphosphates 

(dNTPs), oligonucleotide primers, template DNA and a DNA polymerase. The nuclease-free water 

is very highly purified H2O intended for laboratory research or diagnostic use. The buffer solution 

creates an optimized and chemically stabile environment for the reaction. MgCl2 is used to provide 

Mg
2+

-ions for use in the PCR. These divalent cations promote DNA/DNA interactions and form 

complexes with dNTPs which are the actual substrates for Taq Polymerase. When the concentration 

of Mg
2+

 in the PCR is too low, primers are unable to anneal to the target DNA. When Mg
2+

 is over-

abundant the base-pairing becomes too strong and the amplicon fails to denature completely when 

heated to 95°C (Williams, 1989; Ellsworth et al. 1993). The dNTPs are the core components used 

by the polymerase to synthesize new DNA strands. The primers are used in sets, consisting of a 

forward (―sense‖) and reverse (―anti-sense‖) oligonucleotide. The template DNA contains the 

sequence to be amplified and is usually extracted and purified from blood, saliva or tissue. The 
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DNA polymerase is the enzyme that synthesizes the PCR products and is most often a member of 

the Taq polymerase group.  

 

There are three basic steps involved in performing a PCR. These steps are repeated 30-40 times in 

cycles of heating and cooling, each step at a different temperature. Prior to the first step an initial 

denaturation is performed at a high temperature (about 95°C) for several minutes (usually two to 

five), then the three basic steps are repeated in cycles followed by a final round of extension at 

72°C for several minutes (usually five to ten). Collectively, this protocol is known as the PCR- or 

thermal cycling programme.  

 

The first step is known as the denaturation step and is carried out at approximately 95°C. The DNA 

molecule exists in nature in a double stranded confirmation, with the strands linked together by 

weak hydrogen bonds. To be able to copy any section of DNA, the helix must be separated into 

single strands. This process of separation is called denaturation and can be initiated by heating the 

molecule to a temperature above 90°C.  

 

The second step is the annealing step and is typically carried out at 50°C - 60°C. During this step 

the oligonucleotide primers attach (―anneal‖) to their matching sequence on the original DNA 

strand. Excess amounts of primer preclude restoration of the double helix structure even though the 

temperature of the denatured DNA is lowered.  

 

The third step is called the extension or elongation step and carried out at about 72°C. Taq DNA 

polymerase binds to the annealed primer and travels along the DNA strands, extending the primer 

sequence by adding complementary dNTPs and other components in the reaction mix. This step 

completes the replication process.  

 

Once synthesis has been completed, the entire mixture is heated again to approximately 95°C to 

melt (denature) the newly formed DNA complexes, resulting in twice the amount of template 

available for the next round of amplification. Repeated heating and cooling quickly amplifies the 

DNA segment of interest with about one million copies synthesized after 20 cycles. PCR products 

can be used in a variety of applications, most notably separation by gel electrophoresis and/or DNA 

sequencing (see section 1.9.2). Gel electrophoresis is a widely used technique for the analysis of 

nucleic acids and proteins. It refers to the separation of charged particles (for example DNA, amino 

acids, peptides) located in an electrophoretic medium (the gel) when an electric current is applied. 



Chapter 4: Discussion 

 

92 
 

A gel is a colloid, a suspension of minute particles in a medium, occurring in a solid form similar to 

gelatine. Agarose gel electrophoresis is routinely used for the analysis of DNA fragments where the 

success of a PCR experiment may be evaluated by the intensity, quantity and width of the observed 

bands.  

 

4.1.2. DNA Sequencing  

DNA sequencing was developed in 1975 and has since become a powerful technique in molecular 

biology (Brown, 2007: 4). It has been applied to many areas of research, as it enables the user to 

analyse genes at the nucleotide level. DNA sequencing is the determination of the precise sequence 

of nucleotides in a sample of DNA and is considered the ―gold standard‖ for mutation detection. 

Unlike PCR, the starting material used for sequencing is not genomic DNA but mostly PCR 

fragments or cloned genes. There are two competing methods for determination of DNA sequence, 

namely chemical degradation and chain termination. The chain termination method has become the 

dominant DNA sequencing technique in use worldwide due to several major disadvantages of the 

chemical degradation method. These include the increased technical complexity which prohibits its 

use in standardized molecular biology kits, the extensive use of hazardous chemicals and 

difficulties in the expansion of the technique.  

 

The chemical degradation (or Maxam - Gilbert) method was developed in 1976-1977 by Allan 

Maxam and Walter Gilbert (Maxam and Gilbert, 1977). It entails the end-labelling of a DNA 

sequence with 
32

P-phosphate followed by selective, sequential removal of specific nucleotide bases 

from one end of the single-stranded DNA (ssDNA) molecules via specialized chemical treatments. 

This process generates a series of fragments, of different lengths, which are separated by 

electrophoresis on a gel. The relative lengths of these fragments are then determined by reading the 

DNA bands by autoradiography after visualization. Interpretation of these results then allows for 

the determination of the DNA sequence.  

 

The chain termination method (also known as the Sanger method or cycle sequencing) was 

developed by Frederick Sanger in 1975 and refined in 1977 (Sanger and Coulson, 1975; Sanger et 

al. 1977). It involves the sequential addition of bases to an oligonucleotide primer annealed to a 

complementary strand of DNA. The template used in this technique is ssDNA, obtained by 

denaturing double-stranded DNA (dsDNA) at high temperature (above 90°C) during the initial 

denaturation step of the sequencing reaction. Precisely defined primers with radioactive 
32

P-

phosphate labels at their 5' ends were initially used in this method, but were replaced by non-
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radioactive primers and chain-terminating dideoxynucleotide triphosphates (ddNTPs) labelled with 

fluorescent dyes in recent years. This technique is known as Dye Terminator Labelling. An 

alternative labelling method, Dye Primer Labelling, involves end-labelling of the oligonucleotide 

primers with four different fluorescent dyes and four separate synthetic reactions (adenine, A; 

cytosine, C; guanine, G; thymine, T) are carried out in the presence of appropriate dNTPs and 

ddNTPs. This technique is rarely employed because four different reactions, in four different tubes 

must be conducted and the results combined for interpretation to obtain the sequence for a single 

DNA template.  

 

The sequencing reaction is identical to PCR, except that only one primer is used per reaction (not a 

set of two) and the extension step is carried out at a temperature of 60°C instead of 72°C. The 

temperature is lowered during extension to facilitate the incorporation of ddNTPs, which are 

chemically modified with a fluorescent label and require more time for the polymerase to 

successfully integrate them. The reaction mixture includes the template DNA, free nucleotides 

(dNTPs and ddNTPs), an enzyme (usually a variant of Taq polymerase) and a single primer. Each 

primer is then extended by the DNA polymerase using a mixture of dNTP and ddNTP molecules.  

 

Four different colours of fluorescence are used to distinguish the four ddNTP molecules (ddATP, 

ddCTP, ddGTP and ddTTP). The bases (dNTPs or ddNTPs) are coupled to the 3‘-end of the primer 

and thus added in the 5‘-to-3‘ direction, which is complementary to the 3‘-to-5‘ direction on the 

template DNA. When a ddNTP is incorporated, the extension reaction stops because a ddNTP 

contains a hydrogen atom (H) instead of a hydroxyl group (OH
-
) on the third carbon of the 

molecule. This OH
-
-group is required for attachment of the next nucleotide. The fragments 

produced by this reaction are then separated by Polyacrylamide Gel Electrophoresis (PAGE). 

Polyacrylamide provides higher resolution separation than agarose and can resolve single 

nucleotide differences in DNA molecules. Since the ddNTPs are fluorescently labelled, it is 

possible to detect the colour of the last base of each fragment on an automated sequencer. The 

fluorescently labelled fragments that migrate through the gel pass a laser beam at the bottom of the 

electrophoretic medium. Excitation by the laser causes the fluorescent molecule to emit light of a 

distinct wavelength (colour). That light is collected and focussed by lenses into a spectrograph. 

Based on the wavelength, the spectrograph separates the light across a Charge Coupled Device 

(CCD) camera. The colour peaks are interpreted by the sequencer, which determines the order of 

the bases in the sequenced molecule and outputs the data in the form of an electropherogram. 
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Automated DNA sequencing utilizes the chain termination method as described above and has 

largely replaced the antiquated manual technique.  

 

The greatest obstacle to researchers when converting from manual to automatic DNA sequencing is 

in learning how to effectively use the required computer software to interpret the results obtained. 

The vital importance of computers and information technology contributed to the development of 

bioinformatics to resolve the complications imposed by the advent of the digital age. Bioinformatics 

is the division of the biological sciences that facilitates efficient analysis of acquired data through 

application of computer science and information technology to living systems. The complex, 

systems-based research made possible by the effective implementation of bioinformatic models and 

theories has transformed the biological and medical sciences.  

 

A comprehensive understanding of DNA sequencing facilitated the analytical validation of the 

high-throughput mutation detection system evaluated in this study, as the control samples employed 

were first genotyped by DNA sequencing.  

 

4.1.3. Real-Time Polymerase Chain Reaction Amplification  

The reproducible quantitation of amplification products has long been the goal for many scientists 

and researchers. The traditional process requires the end-point analysis of amplification products 

via gel electrophoresis. This method allows for the identification of target and competitor product 

sizes, estimation of purity and subjective measuring of band intensities. However, the 

reproducibility of amplification end products is highly variable due to limiting reagents, which 

compound the difficulties with this process. It is the exponential phase of amplification that 

provides the most useful and reproducible data. There is a quantitative relationship between the 

amount of starting target DNA and the amount of amplification product during the exponential 

phase of a cycling program. This is the very basis for Real-Time PCR (RT-PCR) amplification. 

Aided by intercalating DNA dyes and probe specific chemistries, the study of the amplification 

process has improved exponentially as a result of real-time detection.  

 

The practical method of RT-PCR is nearly identical to that of conventional PCR, except that FRET- 

or hybridization probes are included in the reaction mixtures and more specialized instruments are 

employed in the thermal cycling (Lee et al. 1993; Livak et al. 1995). Two labelled oligonucleotide 

probes, traditionally referred to as FRET and anchor probes, bind to the PCR product in a head-to-

tail fashion. One of these probes is labelled with a donor dye at the 3' end and the other is labelled 
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with an acceptor dye at the 5' end. As the probes hybridize to adjacent regions in the same strand, 

their fluorophores come into close proximity, which allows energy transfer from a donor to an 

acceptor fluorophore to take place. The acceptor fluorophore then emits light in a longer 

wavelength, which is used for signal detection (Hiyoshi, 1994; Chen et al. 1997). The requirement 

of a spectral overlap of donor emission and acceptor excitation results in an overlap of the emission 

bands, since it is a general feature of fluorescent dyes that they exhibit broad emission spectra. This 

cross-talk must be compensated in dual-colour experiments by a colour-compensation calibration.  

 

Modern RT-PCR instruments consist of a fluorometer and a thermal cycler for the detection of 

fluorescence during the cycling process. A computer that communicates with the real-time machine 

collects fluorescence data. These data are displayed in a graphical format through software 

developed for real-time analysis. Popular RT-PCR instruments among researchers worldwide 

include the Applied Biosystems
®
 (ABI

™
) 7900HT Fast Real-Time PCR System (Foster City, 

California, USA), the Corbett Rotor-Gene
™

 6000 Series 5-Plex HRM Multiplexing System 

(originally by Corbett Research, Australia now the Rotor-Gene
™

 Q by QIAGEN
®
, Germany) and 

the Roche LightCycler
®
 480 II System (Roche Applied Science, Germany).  

 

Fluorescence data are collected at least once during each cycle of amplification allowing for real-

time monitoring of amplification. A user is able to determine which samples are amplifying on a 

cycle-by-cycle basis. This instant data allows them to see how individual samples amplify in 

relation to known standards, positive controls and negative controls. Not only is the user able to 

monitor the whole reaction during the amplification process, but they can truly optimize their 

protocols based on the information they receive. This leads to increased sensitivity, specificity and 

efficiency. After raw data are collected, the analysis can begin. The software for the real-time 

instrument normalizes the data to account for differences in background fluorescence. Once 

normalization is complete, a threshold level can be set. This is the level at which fluorescence data 

are analysed. The number of cycles it takes for a sample to reach the threshold level is the Ct-value 

(threshold cycle). The threshold is set at a level where the rate of amplification is the greatest during 

the exponential phase. This allows for the most accurate and reproducible results. If standards with 

corresponding concentrations are run, a linear regression analysis produces a standard curve from 

which the concentration of unknown samples can be determined.  

 

The advantage of RT-PCR over other mutation detection methods lies in its ability to rapidly 

analyse many samples simultaneously at a relatively low cost per individual reaction. Depending on 
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the instrument employed, as many as 384 reactions (with e.g. the ABI
™

 7900HT) can be performed 

simultaneously in a single device and no post-processing is required. This reduces the overall costs 

of performing mutation analyses. Conclusive results are obtained faster than with any other 

technique (typically one to two hours) and the progression of the reactions can be monitored in real-

time which aids in the optimization of the protocol and in troubleshooting (if necessary). 

Quantitative and qualitative data can be obtained due to the versatility of both the software and 

hardware. The data collection and analysis phases of RT-PCR can be automated, while controls and 

standards can be built into the system to ensure objectivity. The cleaved FRET probes provide a 

permanent record of the amplification of any particular amplicon and can be stored for future 

reference or downstream applications. The dynamic range of detection attributed to RT-PCR is 

greater than in most other detection methods and the small amplicon size results in increased 

amplification efficiency. Samples with as little as 1 ng/µl of DNA can be used as a template for 

successful amplification. Once fully standardized, RT-PCR has proven to be a precise, highly 

sensitive and reproducible method with broad applicability.  

 

All eight assays employed in the mutation screening yielded clear amplification of the polymorphic 

target sequence for all samples investigated. The specificity of the assays was verified by the 

internal control samples included in each of the RT-PCR runs, yielding identical genotype calls to 

those obtained through DNA sequencing. The tight and distinct clustering of the NTCs revealed that 

no contamination was present in the reaction setups, ensuring the credibility of the results.  

 

4.1.4. Allele Frequencies and Genotype Distributions  

Hardy Weinberg equilibrium was demonstrated for all mutations investigated through statistical 

analysis of the Coloured and White patient populations with NAFLD as well as the White control 

group (table 3.3). Allele frequencies and genotype distributions for the APOE mutations (table 3.4) 

among the White patient and control populations closely resembled those found by Kotze et al. 

(1993). In the case of the HFE mutations (table 3.5), the Coloured patients and both White patients 

and controls were found to be similar to those previously recorded for the South African population 

by de Villiers et al. (1999b). The coagulation factor mutations (those of the F2 and FV genes) 

among the White controls and NAFLD patients were comparable to those observed by Schneider et 

al. (2000). The mutation frequencies of the MTHFR gene (table 3.6) matched up with those 

quantified by Scholtz et al. (2002) for three South African population subgroups investigated.  
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The heterogeneous distribution observed in allele frequencies and genotypes between the different 

ethnic groups as confirmed in this study may be caused by dietary, environmental and/or genetic 

factors influenced by cultural variation. Such variation must be accounted for through an 

integrative, systems-based approach incorporating all relevant factors if personalized medicine is to 

become a reality.  

 

 

4.2. Clinical Utility  

 

The limited sensitivity of preclinical disease identification and often inadequate specificity of 

unequivocal disease definition obtained through conventional, non-molecular techniques may be 

significantly enhanced through the use of genetic testing protocols, especially in developing 

countries (Pahwa et al. 2005). This will greatly improve disease prevention and therapeutic 

intervention to remove, reduce or defer the risk of disease development. The application of genetic 

testing is limited by its ability to improve the diagnostic and therapeutic capabilities of healthcare 

practitioners. This restriction may be overcome by the implementation of Pathology Supported 

Genetic Testing (PSGT) to integrate the diverse characteristics of an individual and direct effective 

management through prevention of cumulative risk (Kotze et al. 2009).  

 

The genes and specific mutations evaluated in this study for their clinical utility are each associated 

with key elements in the pathogenesis of NAFLD and are proven risk factors for CVD and the 

Metabolic Syndrome (MetS). These key pathogenic elements include atherogenic dyslipidaemia, 

chronic inflammation, hypercoagulation and iron dysregulation implicated in insulin resistance.  

 

Atherogenic dyslipidaemia is characterized by increased triglycerides, decreased HDL cholesterol, 

postprandial lipaemia and elevated levels of small, dense LDL cholesterol. APOE2 and E4 are 

associated with this disorder (see section 1.5.1), while the MTHFR variants (677 and 1298) may 

alter the functional qualities and bio-availability of the proteins involved through epigenetic 

manipulation of translational processes (see section 1.5.2).  

 

Chronic inflammation involves elevated levels of C-reactive protein, interleukin-6, tumour necrosis 

factor α and other acute-phase proteins. APOE4 (see section 1.5.1) and both MTHFR 677 and 1298 

(see section 1.5.2) are known to affect the inflammatory process which may initiate or contribute to 

the metabolic insult causing the chronic manifestation of the disorder.  



Chapter 4: Discussion 

 

98 
 

Hypercoagulation increases levels of fibrinogen, factor VII, plasminogen activator inhibitor 1 and 

other coagulation factors. These conditions have been linked to genetic variations in the coagulation 

factor genes, especially F2 20210 (see section 1.5.3) and FV Leiden (see section 1.5.4), as well as 

MTHFR 677 (see section 1.5.2).  

 

Dysglycaemia and hepatic insulin resistance have been correlated with functional deviations of 

iron-regulatory proteins such as HFE, in which the C282Y and H63D mutations induce 

considerable adverse effects (see section 1.4).  

 

In this study, the clinical value of the CVD multi-gene test (Kotze et al. 2003; Kotze and Thiart, 

2003) was evaluated in a South African NAFLD patient group with a special focus on the 

contribution of the HFE gene component of the test. To this end, the role of possible genetic 

determinants was assessed relative to biochemical deviations and their effect on the risk profile. A 

similar pattern was followed with all other markers and genes, first evaluating individual gene 

effects, then the impact of certain combinations on the risk profile and in relation to family history, 

personal medical history/status, environmental factors, genotypes and biochemistry. The relative 

lack of associations detected in this study with most of the metabolic pathways related to the genes 

discussed below, underscores the necessity for a PSGT approach to direct investigations in the 

South African population.  

 

4.2.1. APOE  

Defective ApoE is most strongly associated with abnormal lipid metabolism due to its crucial role 

in receptor-mediated endocytosis of chylomicron and Very Low-Density Lipoprotein (VLDL) 

remnants in the liver. Deleterious mutations in the APOE gene are often correlated with structural 

variations that disrupt the function of the protein. The two most prominent genetic variations in this 

regard, are APOE2 and APOE4. The APOE2 allele is known to be associated with elevated 

triglycerides, while the APOE4 allele is correlated with increased total- and LDL-cholesterol. Other 

significant associations include the effect of APOE polymorphism on LDL particle size and the 

impact of APOE4 on inflammation. The latter is especially apparent in the presence of 

environmental triggers such as alcohol use, diabetes, elevated glucose, insulin, obesity and 

smoking. These effects all impact directly on CVD and NAFLD risk.  

 

Recent investigation into the effect of APOE polymorphism among NASH patients elsewhere 

(Sazci et al. 2008) has identified the wild type APOE3 allele as representative of the increased risk 



Chapter 4: Discussion 

 

99 
 

group. This peculiarity emphasizes the limitations of the current predominant protocol for genetic 

research in the field of human disease and the necessity of expanding investigations to encompass 

wider biological systems. The impact of relevant disease-modifying genes and environmental 

factors must be evaluated in combination with the apparent principal molecular abnormalities, 

which together constitute a greater biological network that must be understood (Loscalzo et al. 

2007).  

 

In a recent animal study (Karavia et al. 2011) it was found that apoE-deficient mice displayed 

resistance to diet-induced obesity, which is a major risk factor for both NAFLD and CVD. This 

discovery highlights possible selective evolutionary mechanisms, whereby the immediate advantage 

(heightened metabolism) of the abnormal protein proved more advantageous to the species than the 

reduced life expectancy due to eventual CVD. This observation has yet to be confirmed among 

humans.  

 

4.2.2. MTHFR  

MTHFR is directly involved in homocysteine metabolism and deleterious structural variations in 

this enzyme significantly increase the risks for development of many different cancers as well as 

cardiovascular and neurological diseases. The two most prominent mutations associated with 

reduced enzymatic activity, elevated homocysteine levels and inflammation are MTHFR 677 and 

1298. From the established literature it is clear that the MTHFR 677 genetic variant induces the 

greatest loss of function in the protein, especially in the homozygous state. Compound 

heterozygosity for both mutations constitutes the second most severe phenotypic expression, while 

the influence of homozygosity for MTHFR 1298 constitutes a 40% reduction in enzymatic activity.  

 

In a study by Sazci et al. (2008), numerous associations were found between NASH and MTHFR 

1298. The mutant allele of MTHFR 1298 was identified as significantly elevated among NASH 

patients, while homozygosity was especially prominent in the female patients and heterozygosity in 

the males. It was concluded that the deleterious allele of MTHFR 1298 increases the risk for 

development of NASH. While the association with homozygosity may be expected from the 

diminished functional capacity of the mutant protein, the significance of heterozygosity for MTHFR 

1298 represents a deviation from the established literature. This may well be due to the limited 

scope of the study methodology, where relevant disease-modifying genes (e.g. all other 

homocysteine-related genes) and environmental factors (e.g. alcohol use, obesity and smoking) 

have not been included to account for the natural variations (both genetic and environmental) 
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observed between populations. To solve this dilemma an integrative, systems-based approach is 

needed to further genetic research, particularly in the field of human disease.  

 

The importance of evaluating the clinical, environmental and genetic factors affecting certain 

metabolic pathways in a patient is illustrated by the interactions of MTHFR, folate and diet. High 

homocysteine levels are a marker of folate- and vitamin B12 deficiency, providing valuable 

information when determined in combination with MTHFR genotyping and nutritional assessment 

of folate status. However, the predictive value of mutations in susceptibility genes is limited when 

used in isolation, as dietary advice based on detection of variation in the MTHFR gene can be 

harmful when the clinical picture of the patient is not taken into account. For example, high-dose 

folate supplementation is inadvisable for cancer patients irrespective of the genetic status of the 

individual.  

 

The effect of MTHFR on coagulation is discussed further in section 4.2.4.  

 

4.2.3. HFE  

The HFE protein plays an essential role in iron metabolism which impacts numerous metabolic 

processes with deleterious structural variations in this molecule influencing diverse diseases of 

highly variable phenotypic expression (from haemochromatosis to diabetes mellitus to 

hepatocellular carcinoma). The two most prominent genetic variations in the HFE gene, which 

directly affect the structure and function of the protein, are C282Y and H63D. These mutations are 

associated with increased ferritin and transferrin saturation levels, although this is primarily the case 

in C282Y homozygotes and to a lesser extent evident among C282Y/H63D compound 

heterozygotes. The phenotypic penetrance is so varied that heterozygous carriers for either variant 

are rarely influenced. The same is often true of H63D homozygotes. In stark contrast to the 

observed phenotype among many Whites, Lee et al. (2010) reported the presence of H63D 

mutations as an independent factor associated with NAFLD and elevated transferrin saturation in a 

Korean cohort. They concluded that H63D may increase the risk of NAFLD development, possibly 

through peripheral iron overload (especially among men). This observation again emphasizes the 

necessity of expanded investigations encompassing wider biological systems with careful attention 

to relevant disease-modifying genes (e.g. genes of the Iron Regulator Proteins and Iron Responsive 

Elements) and environmental factors (e.g. alcohol use, obesity and smoking). Such biological 

networks are at the core of all health and disease mechanisms which require a new research 

approach for their potential to be fully realized (Barabási, 2007).  
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Insulin resistance is also associated with abnormal HFE and measurements of fasting glucose, 

insulin and the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) may be prudent 

when conducting detailed studies (Martínez-García et al. 2009). Liver enzymes (ALT and AST) 

may also be assessed in relation to HFE genotype due to the hepatic derangements caused by HFE-

related damage (see section 1.4).  

 

A recent mouse study by Tan et al. (2011) demonstrated that Hfe-deficiency promotes development 

of severe NAFLD resulting from defective hepatic-intestinal iron and lipid signalling. These iron 

and lipid abnormalities predispose subjects toward diet-induced hepatic lipotoxicity and an 

accelerated progression of injury to fibrosis through activation of Tnf-α, mitochondrial respiratory 

complex, hypoxia-related steatohepatitis and antioxidant dysfunction with early fibrogenesis. This 

discovery may have a significant impact on our understanding of the underlying mechanisms of not 

only NAFLD, but all similarly complex diseases once confirmed among humans.  

 

4.2.4. Coagulation Factors  

Prothrombin and coagulation factor V, the proteins encoded by the F2 and FV genes respectively, 

are crucial cofactors in the coagulation cascade. The most prominent variations in these genes are 

F2 20210 and FV Leiden. These mutations are relatively rare, even in the heterozygous state, which 

may be explained by the severity of dysfunction in their proteins. The complete absence of 

prothrombin is considered to be incompatible with life while a similar observation has been 

reported for coagulation factor V among mice. Less extreme deleterious variations may contribute 

to severe cardiovascular abnormalities by disrupting thrombosis, which in turn could facilitate 

systems-wide damage. Important environmental risk factors are alcohol use, obesity and smoking. 

The literature study has shown that the risk of venous thrombosis imposed by the FV Leiden 

mutation is significantly increased in patients with high cholesterol levels, with dire implications for 

disease severity and age of onset for NAFLD patients (Völzke et al. 2005b).  

 

Deleterious variations in MTHFR are also associated with abnormal coagulation in the context of 

elevated homocysteine levels while F2 20210 and FV Leiden may affect the strength of the 

MTHFR-induced disturbance. The hazardous influence posed by multiple mild genetic defects was 

illustrated by Talmon et al. (1997), where retinal arterial occlusion was discovered in a child 

heterozygous for the coagulation factor V R506Q mutation and homozygous for thermolabile 

MTHFR. The coexistence of these relatively mild hereditary thrombophilic contributors resulted in 
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severe thrombotic manifestations. Elevated triglycerides (possibly due to APOE2) and APOE4 are 

also associated with reduced coagulation tendency (Riddell et al. 1997).  

 

In a study of the thrombotic risk factors in patients with NAFLD subdivided into three groups 

(those with fatty liver, NASH or chronic viral hepatitis only), Assy et al. (2005) discovered 

associations with protein S (lower in NASH patients than in fatty liver alone) and protein C levels 

(higher in patients with NAFLD and mild or severe fibrosis than in cases with only chronic viral 

hepatitis). No correlations between NAFLD and F2 20210, FV Leiden, MTHFR 677 or 1298 were 

found. These results again emphasize the need for expanded investigations guided by an integrative, 

systems-based approach to further genetic research by critically analysing relevant disease-

modifying genes and environmental factors in concert with clinical characteristics and the principal 

molecular abnormalities.  

 

4.2.5. Genotype-Phenotype Correlation Analysis  

A significant increase (p = 0.04) in Alanine Transaminase (ALT) levels was identified between 

HFE mutation carriers (hetero- and homozygous individuals for the C282Y and H63D mutations of 

the HFE gene) and wild type individuals among stage 3 and 4 NAFLD patients (figure 3.3.1). ALT 

is a marker for liver damage as it is present only in hepatocytes and is thus expected to increase in 

the latter stages of NAFLD development with mounting cellular damage releasing more of the 

enzyme into the bloodstream. This correlation with adverse HFE genotypes indicates a greater 

degree or onset of liver damage in the presence of the mutations and demonstrates that a subset of 

NAFLD patients at increased risk of NASH may be identified through genetic testing. Such a 

pathology-supported genetic evaluation may improve the clinical outcome of NAFLD patients 

belonging to this elevated risk group as more aggressive therapy will be required at an earlier stage 

to prevent irreversible hepatic damage.  

 

Alcohol consumption was evaluated as a possible environmental risk factor affecting disease 

severity in patients already diagnosed with NAFLD. However, as only eight of the 44 members of 

the stage 3 and 4 NAFLD patient population were alcohol users (18%), the association found was 

primarily relevant to abstinent individuals. Since the sample number of NASH patients was 

relatively small, the analysis was not done separately for the Coloured and White patients. This 

decision is justified as there were no significant differences in the allele frequencies between the 

ethnic groups (tables 3.4, 4.5 and 3.6).  
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A trend was observed in the prevalence of APOE2 mutation carriers among stage 3 and 4 NAFLD 

patients where triglyceride levels were elevated relative to the lower stage patients and control 

individuals (data not shown). Similar to the APOE2-triglyceride trend, cholesterol levels showed a 

marginal increase relative to the prevalence of APOE4 mutation carriers among the same severely 

affected patients when compared to the lower stage 1 and 2 patients, as well as the control 

individuals (data not shown). The more severely deleterious MTHFR genotypes, namely 

homozygosity for MTHFR 677 and compound heterozygosity for MTHFR 677/1298, tended to 

present more often among NAFLD patients (stages 1 – 4) than control subjects (data not shown). 

None of these inclinations were statistically significant, but they were shown to be independent of 

racial variation and are in compliance with expected observations from the established literature. 

The small percentage of the study population found to be carriers of the functionally detrimental 

genotypes reduced the statistical power available for examination of association.  

 

 

4.3. Network Medicine  

 

Recent advances in the mapping of networks has transformed our understanding of highly 

interconnected systems such as biology, society and technology resulting in the discovery that 

common designs governed by relatively simplistic and quantifiable organizing principles are 

universal (Barabási, 2003). When this development is considered in the current global context of an 

increased desire for interconnectedness, the pervasiveness of networks throughout all aspects of 

human health becomes apparent. The need for an integrative, systems-based approach is supported 

by Barabási (2007) in his conclusion that disease mechanisms can only be fully understood when 

the ―detailed wiring diagram‖ of all cellular and molecular elements involved has been determined. 

The concept of network medicine has gained considerable support in recent years, partly due to its 

acknowledgement of the true complexities and diversity of associations inherent in biological 

systems that were historically considered and treated as isolated entities. As an emerging field, a 

framework for future research is currently being developed to encompass the totality of 

environmental, genomic, pathologic and proteomic factors affecting disease development (Pawson 

and Lindin, 2008; Zanzoni et al. 2009; Barabási et al. 2011). The structural variations affecting 

protein function were assessed through biochemical measurements in this study due to the limited 

availability of proteomic evaluations in South Africa.  
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The contemporary classification of human disease and medical diagnosis, which is based on 

inductive generalization predicated on Occam‘s razor, was challenged on numerous accounts by 

Loscalzo et al. (2007) for its universal acceptance in spite of its many inadequacies in the so-called 

―postgenomic‖ era.  

 

While observational correlations between clinical syndromes and pathological analyses by 

Cartesian reductionism have proven to be the most effective past methodology, the dominant focus 

on observational skills and simple laboratory tools to define the disease phenotype are 

fundamentally lacking in risk management and disease prevention capabilities. Significant 

limitations in the sensitivity of preclinical disease identification and the specificity of explicit 

disease definition emphasize the need for a new classification of human disease that relies on a 

combination of conventional reductionism and the non-reductionist approach of systems 

biomedicine.  

 

Medical science has relied on the structure provided by reductionism in much the same manner, 

largely due to its analytical and experimental viability resulting in many successful applications of 

basic molecular medicine over the past 50 years. However, genomics has transformed the biological 

sciences into a vast data-generating industry where the enormity of potentially valuable functional 

information cannot readily be analyzed optimally with the conventional approach.  

 

This development has placed tremendous strain and high expectations on the crucial role of 

bioinformatics to store, analyse, interpret and predict every facet of living systems. As 

bioinformatics is itself a systems-based and highly networked field, it has transcended its origins as 

a mere informational database and now serves as the hub of all biological research and development 

while providing a model for all associated disciplines.  

 

The advantages of an integrative, systems-based approach to human disease classification and 

treatment can be summarized in five key points (Loscalzo et al. 2007):  

 

1. Such a protocol can determine those elements or combinations of elements with a 

significant effect on network behaviour and disease expression,  

2. Reductionist principles may not be capable of reaching and confirming the associations 

of such elements which might result in a deeper understanding of disease mechanisms 

and the discovery of new targets for therapeutic intervention,  
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3. This approach allows all aspects of the network genome, environmental exposures and 

environmental effects on the posttranslational proteome to be methodically investigated 

for their role in determining the pathophenotype,  

4. The exact disease phenotype can be defined more precisely by the application of this 

process through the analysis of the distinctive genetic and environmental factors that 

determine intermediate phenotypes which contribute to disease expression,  

5. This method provides a novel perspective for discovering individual- or combinations of 

therapeutic targets that may influence the disease phenotype.  

 

 

4.4. Translation Research  

 

An initiative launched at the Department of Pathology at the University of Stellenbosch in April 

2009 incorporates the ideals of an integrative, systems-based network approach to genetic testing. 

This enterprise seeks to integrate the service- and research sectors via the common thread of 

pathology with the development of Pathology Supported Genetic Testing (PSGT; 

www.gknowmix.com). The aim is to combine the clinical aspects, environmental risk factors, 

genetic characteristics and pathology of the patient to improve disease diagnosis and therapeutic 

design. PSGT holds great promise for the management of complex diseases, as proven in the case 

of haemochromatosis (Kotze et al. 2009). The genetic mechanisms and modifying factors 

influencing the development of Hereditary Haemochromatosis (HH) provide an excellent example 

of the complexities inherent to pathogenic processes. The current approach to the diagnosis and 

treatment of HH involves the initial determination of the exact biochemical, clinical and pathologic 

profile of a patient. An optimal treatment is then devised, implemented and the response is 

monitored according to the specific genetic and pathologic parameters provided by the testing 

phase. This information is made available to the patient and any relevant physicians or specialists as 

needed.  

 

This study is modelled on the PSGT approach which is founded on the concept of translation 

research which was well-characterized and divided into four progressive phases by Khoury et al. 

(2007). While the types of research conducted within each of the individual phases often overlap in 

practice, the fundamental organizational structure employed to achieve the desired end result in 

each level remains accurate.  

 

http://www.gknowmix.com/
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These four phases are:  

 Phase 1 research, also designated Tier 1 or Type 1 (T1), focuses on the application of a 

genomic medicine discovery to the healthcare setting. The patented CVD multi-gene test is 

an example of such a genomic application.  

 T2 research concerns the development of evidence-based practice guidelines to maximize 

the value of a specific healthcare application. The publications by Kotze et al. (2005) on 

genetic testing of HH and the CVD multi-gene test as described by Kotze and Badenhorst 

(2005) for chronic disease risk management, provide examples of guideline development 

based on established literature and extensive research in the local population.  

 T3 research is centred on the evaluation of the evidence-based practice guidelines within 

health practice. Of the 75 control individuals (without NAFLD), at least 15 were referred 

from medical doctors who registered for the distance-learning Integrative Medicine course 

offered by the University of Stellenbosch during 2011. Their evaluation of the clinically-

integrated patient reports resulted in requests from most of these doctors (and their spouses) 

to be tested using the CVD multi-gene test as part of a wellness screen (unpublished data).  

 T4 research assesses the impact of the practice on the health of populations. This process is 

underway using a combined research and service approach (appendix B) as demonstrated in 

the two case studies representing a ―real-world‖ situation.  

 

The PSGT system encompasses several tests developed via the pathology supported protocol for 

genetic testing, with each of these tests focussed on a specific major health concern or CVD 

subtype. This system exists to improve patient care by furthering medical research and 

incorporating it in a practical manner within the contemporary healthcare system. The majority of 

biological research conducted throughout modern history is of the T1 or T2 variety, while T3 and 

T4 are exceedingly rare due in part to the complexities associated with the interconnectivity of 

information necessary for success at such a level (Khoury et al. 2007). New tests that form part of 

the PSGT system are constantly being developed for inclusion in T4 research, while existing 

protocols are amended and improved upon through T1, T2 and T3 research.  

 

According to the above criteria, the PSGT system has reached T4-status in light of the degree of 

monitoring achieved through annual workshops that include questionnaire-based surveys, case 

studies and feedback sessions. The results of a questionnaire-based survey among physicians were 

presented at the Joint African and Southern African Congress for Human Genetics held in March of 

2011 in Cape Town, South Africa (Vogel S et al. 2011).  
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A recent study by Kotze et al. (2011) employed the PSGT approach to investigate the genotype 

associations in South African patients with the MetS where a statistically significant association 

was observed between presence of the APOE2 allele and an increasing number of MetS features (p 

< 0.03). A similar correlation was noted with the presence of deleterious MTHFR genotypes (p < 

0.02). Based on these results, it was concluded that biochemical and clinical anomalies could be 

explained by the combined effects of unfavourable genotypes and environmental factors. It was 

suggested that gene expression could be gauged by monitoring specific biochemical parameters and 

that evaluation of the response to treatment should be based on the overall risk profile of each 

individual. This study illustrates the complex interconnectivity of genetic and environmental 

factors, as well as the overlapping nature of the various phases of translation research and the 

progressive inclination of the healthcare industry to the establishment of personalized medical 

doctrine.  

 

 

4.5. Personalized Medicine through Pathology Supported Genetic Testing  

 

Personalized medicine is a medical model in which individual patients receive customized 

preventative and therapeutic care based on their own biochemical, clinical, environmental and 

genetic information. The standards and practices of the contemporary healthcare system are 

principally determined by epidemiological studies of large cohorts, resulting in a medical industry 

that is limited in both sensitivity and specificity in diagnosing, preventing or treating patients whose 

conditions fall outside the established disease definition. These deviations are caused by any 

number of discrete or interconnected factors that differ among individuals and are rarely fully 

accounted for in modern practice. Personalized medicine aims to resolve this dilemma by 

modifying healthcare through an integrative, systems-based approach to suit the needs of every 

patient. A diverse array of diagnostic systems will converge in this medical model to provide the 

data necessary to develop specific prophylactic strategies or therapeutic interventions to manage an 

individual's condition. This may be achieved by monitoring the disease status, determining the 

appropriate medication and tailoring dosages to a patient's specific requirements. Such diagnostic 

systems will include molecular assays to identify specific mutations, measure gene expression 

levels and determine the functional efficacy of key proteins related to the disease in question. A 

thorough risk assessment is also made possible by the application of these methods and individual 

preventative treatments for recognized disorders may thus be formulated and applied prior to 

symptomatic pathogenesis.  
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The case study (GMX1) presented in section 3.4 illustrates the clinical utility of the PSGT approach 

to personalized medicine in a 40 year old patient who had a myocardial infarction at the age of 29 

years. Detection of two copies of mutation C282Y in the HFE gene in the presence of high serum 

ferritin and transferrin saturation levels confirms a diagnosis of HH. Therapeutic phlebotomy was 

recommended to reduce the abnormally elevated serum iron stores of the index patient, while 

regular monitoring of transferrin saturation, serum ferritin and haemoglobin levels is advisable due 

to the reported family history of thalassemia. As indicated in table 3.8, transferrin saturation 

decreased modestly (from 83% to 75%) following treatment while the serum ferritin was reduced 

(from 671 ng/ml to 252 ng/ml). This result was achieved within three months of therapeutic 

intervention, emphasizing the efficiency of the intervention. The swift reduction in serum ferritin is 

of greater immediate benefit to the prevention of organ damage than transferrin saturation, while the 

slower rate of normalization of the latter may be due to the functional role of the protein as a 

transport molecule. The risk of hepatocellular carcinoma is increased 200-fold when serum ferritin 

concentration exceeds 1000 ug/L; therefore it is important to keep the ferritin levels below this 

threshold representing a strong predictor of cirrhosis in HH patients (Osborne et al. 2010). 

 

The index patient was particularly interested in a diet plan to minimize long-term iron absorption 

while avoiding any possible side-effects from pharmacological agents and improving his overall 

state of health. This goal was facilitated by the dieticians affiliated with the PSGT system, who then 

provided a personalized dietary strategy supported by his physician and the chief medical scientist 

overseeing the HH-test. General recommendations provided included the following:  

 

 Increase calcium intake as it lowers body iron stores by inhibiting the absorption of haem 

and non-haem iron (Aranda et al. 2010). Foods rich in calcium include almonds, broccoli, 

canned salmon, cheese, figs, milk, sardines, tofu and yogurt. E.g. a single cup of skimmed 

milk contains 300 mg of calcium.  

 Oxalates also impair the absorption of iron and can be found in foods such as beets, 

chocolates, kale, nuts, rhubarb, spinach, strawberries, tea, wheat bran and herbs such as 

basil, oregano and parsley (Benito and Miller, 1998).  

 Phytate, a compound found in soy protein and fibre, affects the bioavailability of iron by 

reducing its absorption by 50 to 65% and is especially prevalent in almonds, cereals, dried 

beans, lentils, peas, sesame, walnuts and whole grains (Conrad and Umbreit, 1993).  



Chapter 4: Discussion 

 

109 
 

 Polyphenols and tannins are also major inhibitors of iron absorption and may be found in 

cocoa, coffee, fruit (e.g. apples, black-, rasp- and blueberries), herbal teas (e.g. black tea), 

peppermint and walnuts (Hurrel et al. 1999).  

 Ceramic and glass cookware should be used to avoid iron filings from contaminating the 

food, as cast iron skillets and some grills may provide contaminant iron in sufficiently 

bioavailable form to influence iron status (Adish et al. 1999).  

 

Diagnosis of iron-related disorders is frequently complicated by MetS features and steatosis in the 

presence of increased iron levels and HFE mutations. The combination of these factors is indicative 

of the Insulin Resistance-associated Hepatic Iron Overload (IR-HIO) syndrome, also known as 

dysmetabolic iron overload (Riva et al. 2008). This disorder is characterized by the co-existence of 

hepatic steatosis, normal transferrin saturation levels and two or more components of the MetS. 

Inclusion of hyperferritinaemia in the diagnostic criteria for IR-HIO syndrome has fallen into 

disfavour in recent years due to the non-specific nature of elevated ferritin levels, especially in the 

presence of metabolic abnormalities (George et al. 1998; Fargion et al. 2001; Bugianesi et al. 2004).  

 

Biochemical and clinical manifestation of HH, IR-HIO syndrome and NAFLD may sometimes be 

so similar that the risk of misdiagnosis is significantly increased (Kruger, 2008; Kotze et al. 2009). 

The index patient (GMX1) presented as a case study to demonstrate this point, was one of the first 

two individuals with high ferritin levels referred for participation in this translational research 

project. In the second patient referral (GMX2), normal transferrin saturation levels in the presence 

of high ferritin and fasting glucose levels was consistent with the wild type HFE mutation status 

found. These findings facilitated discriminative diagnosis of HH (GMX1) and NAFLD in the 

presence of the IR-HIO syndrome (GMX2), respectively. 

 

HH patients are frequently identified as a result of being investigated for early, non-specific 

symptoms such as chronic fatigue, joint pain and liver disease, or as a result of having an affected 

family member.  This was indeed the case for patient GMX1 diagnosed with HH, while patient 

GMX2 was referred for HFE mutation analysis due to a previous finding of C282Y heterozygosity 

in his father. The necessity of an integrative, systems-based network approach combining the 

clinical aspects, environmental risk factors, genetic characteristics and pathology of the patient to 

improve disease diagnosis and therapeutic intervention was thus exemplified by these cases.  
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The nature of the PSGT approach may nullify the requirement of clinical trials, similar to HFE 

mutation screening performed within a clinical context without any randomised clinical trials 

performed to first demonstrate the effectiveness of avoiding iron overload through treatment 

(phlebotomy) and/or diet intervention. The targets for PSGT as applied with use of the CVD multi-

gene test are well established in the scientific continuum while the interventions are non-invasive 

and focussed on improving health by directed promotion of a healthier lifestyle. This may involve 

modification of diet, physical exercise regiments, nutritional supplements or contra-indication of 

pharmacological interventions. Several studies have for example indicated that metformin may 

increase homocysteine levels, which may be particularly relevant in patients with deleterious 

mutations in the MTHFR gene (de Jager et al. 2010; Palomba et al. 2010). Another key element of 

the PSGT approach to consider is the vast knowledge and experience of professionals from 

traditionally distinct fields of healthcare that are all combined by this system to provide a truly 

individualized service to a patient. From physicians to medical scientists and bioinformaticians to 

genetic counsellors, all could be actively involved in the diagnosis, treatment and monitoring 

stages, thereby providing dynamic medical support to each and every patient.  
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As a result of this study, a high-throughput diagnostic test for detection of multiple mutations 

contributing to the development or progression of Non-Alcoholic Fatty Liver Disease (NAFLD) 

and Cardiovascular Disease (CVD) through gene-gene and gene-environment interactions is now 

available in South Africa. This detection system facilitates early diagnosis at the DNA level and 

allows for individual preventative treatments to be formulated and applied for recognized disorders 

prior to the development of severe symptoms.  

 

The significant association between HFE mutations and elevated Alanine Transaminase (ALT) 

levels found in the NAFLD patient population studied with the severe form of the disease (NASH) 

resulted in the definition of a subset of patients who would benefit most from genetic testing to 

direct more aggressive therapy at an earlier stage. Previous studies have shown that NASH is an 

independent risk factor for CVD, and the risk is also increased in NAFLD patients with elevated 

ALT levels (Kruger et al. 2011). The association between HFE mutations and increasing ALT 

levels is therefore in agreement with evidence from the literature that mutations in the HFE gene 

may play a role in CVD risk (Tuomainen et al. 1999; Roest et al. 1999). 

 

The necessity of an integrative, systems-based network approach was demonstrated where 

misdiagnosis of Insulin Resistance-associated Hepatic Iron Overload (IR-HIO) syndrome and 

NAFLD was prevented in an obese, Hereditary Haemochromatosis (HH) patient homozygous for 

the C282Y mutation in the HFE gene.  

 

This study also illustrates the clinical utility of the Pathology Supported Generic Testing (PSGT) 

approach to personalized medicine. This approach may nullify the traditional requirement for 

clinical trials, as the targets for testing are well established in the scientific continuum while the 

interventions are non-invasive and focussed on improving health by directed promotion of a 

healthier lifestyle. This may involve modification of diet, physical exercise regiments, nutritional 

supplements or contra-indication of certain medication (e.g. prescription of Metformin in patients 

with deleterious MTHFR genotypes and high homocysteine levels). Another key element of the 

PSGT approach to consider is the vast knowledge and experience of professionals from traditionally 

distinct fields of healthcare that are all combined by this system to provide a truly individualized 

service to a patient. From physicians to medical scientists and bioinformaticians to genetic 

counsellors, all could be actively involved in the diagnosis, treatment and monitoring stages, 

thereby providing dynamic medical support to each and every patient.  
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Ethical Considerations  

While the assessment of genetic variation may improve the diagnosis, treatment or prevention of a 

disease such as NAFLD, ethical issues may arise when a genetic predisposition is identified in a 

healthy individual without a family history of the risk factors for NAFLD or NASH. Such 

complications include the effect of a multi-gene screen on health insurance, as discussed in the 

South African context in a paper by Kotze et al. (2004b) where medical advisors of the insurance 

industry were approached on the subject. Effective Standard Operating Procedures (SOPs) and a 

secure digital database were developed in parallel to this study to ensure the confidentiality of 

patient information. This matter is vital to any medically related field and especially where genetic 

testing is concerned, as it may influence entire families.  

 

The following issues should be explained to all prospective study participants before any specimens 

are collected for laboratory testing to alleviate the development of any ethical complications that 

may otherwise arise during the investigation:  

 

 The genetic test will only screen for specific genetic alterations expected to provide useful 

information in relation to diagnosis and/or treatment strategies,  

 Detection of genetic alterations (positive test) implies that other family members may also 

have the genetic change(s),  

 Failure to detect a specific genetic alteration (negative test result) does not exclude 

undefined gene mutations or other risk factors not tested for,  

 Genetic testing may result in better motivation for lifestyle changes or targeted treatment, or 

possibly anxiety when genetic risk factors are identified in an individual without clinical 

symptoms of a disease,  

 Identification of genetic alterations in individuals with a family history or clinical features of 

the associated disease will not impact further on insurance, while exclusion of a genetic 

defect in a family member could be beneficial for insurance purposes in some instances,  

 A positive genetic test does not mean that the person has a genetic disease or will develop 

the condition, but it can increase the risk of disease in the absence of appropriate risk 

reduction intervention or inappropriate medication,  

 In the event that genetic testing is performed in families, non-paternity may be revealed and 

it is therefore important that adoption be reported at the time that specimens are obtained for 

genetic testing.  
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Study Limitations  

Detailed information on clinical, biochemical and environmental factors relevant to the 

development of NAFLD were not available for all the patients investigated for genetic variations in 

this study. Similarly, patient DNA samples were not accessible in several cases where other 

valuable information was provided. These issues resulted in a severely reduced total study 

population for statistical analysis and may explain the scarcity of significant genotype-phenotype 

associations detected.  

 

The ABI
™

 TaqMan
®
 SNP Genotyping Assays employed in this study are only capable of detecting 

a single genetic variation per genotyping reaction, thereby necessitating separate reactions for each 

polymorphism screened. Each of the 253 samples was tested for eight different mutations, which 

resulted in a total of 2024 separate genotyping reactions, excluding positive and negative control 

reactions. This has a significant effect on the cost and turnover time of sample testing. Also, 

individual samples cannot be screened for all genetic variations simultaneously, necessitating the 

practice of sample batching which is not ideal for diagnostic purposes when patients require their 

genotyping results quickly as batching may delay the process substantially.  

 
 

Recommendations and Future Prospects  

All study participants should be evaluated for all relevant biochemical, clinical, environmental and 

genetic variables that may be associated with the central focus of any subsequent studies and the 

data should be stored in a secure, well-maintained digital database. Due to the high costs and large 

scale associated with clinical trials, they are incapable of demonstrating the effectiveness of such 

dynamic studies where careful individual monitoring of patients and a versatile database must be 

employed.  

 

Multiplexing of the ABI
™

 TaqMan
®
 SNP Genotyping Assays employed in this study was not 

possible, as all of the assays use the same fluorophores in their probes and thus have identical 

emission spectra. High-Resolution Melt (HRM)-based allelic discrimination could be investigated 

in future for its ability to screen for all eight mutations simultaneously. However, Jalali Sefid Dashti 

(2010) reported difficulties in the optimization and standardization of HRM assays, which suggests 

that multiplexing with similar probes may be impractical or even impossible for eight mutations. 

Alternatives include PCR arrays and SNP genotyping chips, which may each screen a sample for 

dozens (PCR arrays) to thousands (genotyping chips) of individual polymorphisms at the same 

time. The issue of rapid, individual sample turnover may also be addressed by application of such 
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methods, as previously employed for the CVD multi-gene assay using reverse-hybridisation strip-

assay technology (Kotze et al. 2003, Kotze and Thiart, 2003).  Although the CVD strip-assay 

enables simultaneous analysis of the eight mutations screened for in the NAFLD patients and 

controls included in this study, transferral to a new test platform using real-time TaqMan
®

 

technology for analytical validation of high-throughput genotyping proved to be more cost-

effective.  

 

Further investigations are required to corroborate the association found between HFE mutations and 

elevated Alanine Transaminase (ALT) levels within NAFLD patients and to expand the possible 

clinical utility of such a correlation.  

 

Recent studies on the genetic basis of NAFLD have revealed that structural variations in 

Apolipoprotein C-III (Petersen et al. 2010) and Patatin-like Phospholipase domain-containing 

protein 3 (Romeo et al. 2008) may be instrumental in its pathogenesis. These proteins are encoded 

by the APOC3 and PNPLA3 genes, respectively. Further investigation of these determinants may 

prove vital to understanding, treating and even preventing this highly prevalent disorder.  

 

Development of a risk score that includes the genetic contribution to multi-factorial diseases such as 

NAFLD may aid healthcare professionals in monitoring and managing the disorder in question. 

This may be realized once the limitations encountered in this study relating to the statistical analysis 

of complex systems can be overcome. Such a score should consist of all relevant biochemical, 

clinical, environmental and genetic factors with each contribution weighted for its individual and 

joint effects on the risk of pathogenesis. It is envisaged that the findings presented in this study 

would form an important component of such a genotype risk scoring system, to be developed for 

early diagnosis of treatable CVD subtypes and prevention of cumulative risk in NAFLD patients.  

 

The clinical utility of the CVD multi-gene test to guide chronic disease risk management in patients 

with NAFLD, with particular relevance to the HFE mutation detection component of this test, has 

been demonstrated in this study. This extends the application of the CVD multi-gene test developed 

initially to better distinguish between hypercholesterolaemics with familial hypercholesterolaemia 

versus less severe forms of dyslipidaemia that can be treated effectively by diet and lifestyle 

modification alone.  
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