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Abstract

As an introduction to point-free topology, we will explicitly show the connection
between topology and frames (locales) and introduce an abstract notion, which
in the point-free setting, can be thought of as a subspace of a topological space.
In this setting, we refer to this notion as a sublocale and we will show that there
are at least four ways to represent sublocales.

By using the language of category theory, we proceed by investigating closure
in the point-free setting by way of operators. We define what we mean by a co-
closure operator in an abstract context and give two seemingly different examples
of co-closure operators of Frm. These two examples are then proven to be the
same.

Compactness is one of the most important notions in classical topology and
therefore one will find a great number of results obtained on the subject. We
will undertake a study into the interrelationship between three weaker compact
notions, i.e. feeble compactness, pseudocompactness and countable compactness.
This relationship has been established and is well understood in topology, but
(to a degree) the same cannot be said for the point-free setting. We will give the
frame interpretation of these weaker compact notions and establish a point-free
connection. A potentially promising result will also be mentioned.
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Uittreksel

As ’n inleiding tot punt-vrye topologie, sal ons eksplisiet die uiteensetting van
hierdie benadering tot topologie weergee. Ons definieer ’n abstrakte konsep wat,
in die punt-vrye konteks, ooreenstem met ’n subruimte van ’n topologiese ruimte.
Daar sal verder vier voorstellings van hierdie konsep gegee word.

Afsluiting, deur middel van operatore, word in die puntvrye konteks ondersoek
met behulp van kategorie teorie as taalmedium. Ons sal ’n spesifieke operator
in ’n abstrakte konteks definieer en twee oënskynlik verskillende voorbeelde van
hierdie operator verskaf. Daar word dan bewys dat hierdie twee operatore die-
selfde is.

Kompaktheid is een van die mees belangrikste konsepte in klassieke topologie
en as gevolg daarvan geniet dit groot belangstelling onder wiskundiges. ’n Studie
in die verwantskap tussen drie swakker forme van kompaktheid word onderneem.
Hierdie verwantskap is al in topologie bevestig en goed begryp onder wiskundiges.
Dieselfde kan egter, tot ’n mate, nie van die puntvrye konteks gesê word nie. Ons
sal die puntvrye formulering van hierdie swakker konsepte van kompaktheid en
hul verbintenis, weergee. ’n Resultaat wat moontlik belowend kan wees, sal ook
genoem word.
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Introduction

I hope that by giving a historical survey of the subject known as “point-
less topology” I shall succeed in convincing the reader that it does after
all have some point to it. - Peter Johnstone (1983)

Pointless or (as it is also known) point-free topology has been the focus of math-
ematicians since the early 1910’s. Initial interest was sparked by the German
mathematician Felix Hausdorff [14] who is believed to be the first to consider,
instead of points in the space, the “notion of (open) set (or neighbourhood) as
primitive...” [19]. Consequently, after 1914, it was common knowledge that a
topological space gives rise to a lattice of open sets. A detailed outline of the
history and development of point-free topology can be found in Johnstone [19].

The early part in the point-free development of topology can, to a large ex-
tent, be credited to the study of the connection between algebra (lattice theory)
and topology by mathematicians. We mention the research by the American
mathematician, Marshall Stone, who published papers on the topological repre-
sentation of Boolean algebras [1936, 1934] and distributive lattices [1937]. Stone
showed that the sets of prime ideals can be represented as open sets.

Another American mathematician, Henry Wallman, published a paper enti-
tled “Lattices and topological spaces” [1938] where he applied lattice theory to
define a compactification of a T1 topological space. Authors such as the Polish
mathematician Tarski, the American logician McKinsey and the Austrian Karl
Menger, published articles [1944, 1940] that specifically focused on the algebra
(lattice theory) of topology, and thereby narrowing the gap between these two
fields of study. In addition, the first textbook, in which general topology was
considered consistently from a lattice-theoretic point of view, was written by the
German Georg Nöbeling [1954].
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Articles published in the late 1950’s and afterward, show that a fundamental
shift came about the view mathematicians had of research in topology. Instead of
inquiring about a set of points equipped with a topology, in the classical sense, an
“indirect” lattice theoretic approach was considered, now known as frame theory
(locale theory). Interest amongst authors grew rapidly after a few initial papers
and consequently a good many results were produced.

The paper by Bénabou [6] contains some earlier work in frame theory and
Isbell [16] published a paper showing that products behave better in this setting
than in topology. Great emphasis was put on enriching the point-free setting
by providing the frame (locale) counterpart of classical notions in topology, e.g.
separation axioms, sums and products. Authors such as B. Banaschewski [1969],
C.H. Dowker, D. Papert Strauss [1974, 1976] and J. Isbell [1981] deserve mention-
ing. Stone spaces by P.T. Johnstone [1982] is still a primary source of reference
to point-free topology for students today.

Since the mid 1980’s, extensive research has gone into frame and locale the-
ory, with notions such as closure, compactness and completion being studied.
Point-free structures including uniform, nearness and σ-frames have also enjoyed
interest amongst authors and continue doing so.

Compactness is one of the most important notions in topology and conse-
quently enjoyed keen interest amongst researchers with a large number of results
produced. Compactness and other weaker properties which have been studied
extensively in general topology include pseudocompactness, countable compact-
ness, sequential compactness and Lindelöf. Given their importance, research into
compactness properties in the point-free context is not a surprising consequence.
Particularly, since in the point-free setting, proofs are generally constructive and
require no choice principles. (See Johnstone [19] for a more detailed account.)

The subject of our focus is the interrelationship between three weaker notions
of compactness, i.e. feeble compactness, pseudocompactness and countable com-
pactness and a brief account of more recent developments will be given.

In topology, the interrelationship between pseudocompact and countable com-
pact spaces has been established as it is well-known, see Engelking [13], that every
countably compact Tychonoff space is pseudocompact and every pseudocompact
normal space is countably compact. Also, in 1984, Porter and Woods showed that
for Tychonoff spaces feeble compactness and pseudocompactness are equivalent
notions. This result however stretches back to 1955, when Mardešić and Papić
first proved it as a characterization of pseudocompactness by means of a cover
property.
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Our interest, however, lies in the point-free setting. Category theory provides
the appropriate language for such a pursuit and the category of frames a suitable
setting. We give a frame translation of three of the classical axioms of separation,
i.e. regular, completely regular and normal, which is due to Dowker and Strauss
[10].

In order to define the point-free counterpart of pseudocompactness, one needs
to introduce the classical reals without referring to points. This is done by John-
stone [18] and referred to as the frame of reals L(R). Banaschewski and Gilmour
[5] contains a more recent account. The translation from topology to frames is
then immediate and is taken as our definition:

A frame L is said to be pseudocompact if every ϕ : L(R) → L is
bounded.

Depending on one’s need, this definition might not be ideal as it characterizes
pseudocompactness by means of an external property and not as an attribute of
the frame itself. In 1996, however, Banaschewski and Gilmour (and a year later
Banaschewski [4]) provided three characterizations for completely regular pseu-
docompact frames without referring to the reals. Two of these characterizations
involve the notion of a cozero part of a frame and we preferred utilizing the third:

A frame L is pseudocompact iff any sequence a1 ≺≺ a2 ≺≺ ... such
that

∨
ai = 1 in L terminates, that is, there is ak = 1 for some k.

Since the topological definition of countable compactness (see Engelking [13])
rests upon the use of open sets, the point-free definition can be taken as the
direct frame translation:

A frame L is said to be countably compact if every countable cover of
L has a finite subcover.

Likewise, the definition of feeble compactness is taken as the frame counterpart of
the topological one. In 1984, Porter and Woods gave a topological definition and
also provided a characterization of feeble compact spaces. The frame counterpart,
as taken from Hlongwa [15], can readily be seen to be equivalent to

A frame L is feebly compact if every countable cover of L has a finite
subset the join of which is dense in L.

Feeble compactness has received some more recent interest amongst authors such
as Hlongwa (2004) and Dube (2008). In his PhD dissertation, Hlongwa attempted
to show an equivalence between all three weaker compact notions, for completely
regular frames, without assuming any additional notion. However, a closer look
at his proof revealed a flaw in his reasoning.
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In 2007, Dube and Matutu established a connection between pseudocompact-
ness and countable compactness for normal frames. They assumed an additional
notion, i.e. paracompactness. In light of this and our knowledge of the connec-
tion between the three compact notions in topology, one can argue that to hope
for an equivalence, assuming complete regularity alone, might seem too ambitious.

We conclude by giving a brief outline of the remaining chapters that the reader
will find in this thesis:

Chapter 1 contains the necessary background content on lattice theory, topol-
ogy and category theory respectively. Very little prior knowledge is assumed.
For a detailed introduction to Order theory we recommend the book by [7]. The
theory of general topology and related topics can be found in [13], and the book
by [1] will provide the reader with the introductory concepts of category theory.

As our introduction to point-free topology, the reader will be shown the con-
nection between topology and frames (locales) explicitly in chapter 2. We will
give a motivation behind regarding the category of locales as a generalization of
the category of topological spaces. This is a well-known result and can also be
found in Picado and Pultr [25].

In chapter 3 we will introduce an abstract notion, which in the point-free
setting, can be thought of as a subspace of a topological space. In this setting,
we refer to this notion as a sublocale and we will show that there are at least four
ways to represent sublocales. Some of the representations were already known by
Johnstone [18], but a complete survey is given by Pultr [27].

By using the language of category theory, we investigate closure in the point-
free setting by way of operators. Closure operators and their related properties
are well set out in the book by Dikranjan and Tholen [8] and is our focus in
chapter 4. We will define what we mean by a co-closure operator in an abstract
context and give two seemingly different examples of co-closure operators of Frm.
These two examples are then proven to be the same.
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Chapter 1

Preliminaries

In this chapter the reader will find the essential background material, with little
prior knowledge assumed, on the content in succeeding chapters. In addition, the
aim is to agree on terminology and notation.

1.1 Order Theory

1.1.1 Partially ordered sets

Let B be a set. A partial order on B is a binary relation ≤ on B with the
following properties: For all a, b, c εB,

(1) a ≤ a (reflexivity),

(2) a ≤ b and b ≤ c imply a ≤ c (transitivity) and

(3) a ≤ b and b ≤ a imply a = b (antisymmetry).

A set B with a partial order ≤ defined on it will be denoted by (B,≤) or, more
often, by B. We will say B is a partially ordered set or a poset, for short. Let A
be any subset of a poset B. An element

b′ εA is a maximal element of A if b′ ≤ b εA implies b′ = b.

b∗ εA is the maximum (or greatest) element of A if b ≤ b∗ for all b εA.

Similar definitions can be made for a minimal and the minimum (or least) ele-
ment of A, by interchanging ≤ with ≥.

Remark For a given poset B, we form a new poset Bop be defining x ≤ y in
Bop if and only if y ≤ x in B. The poset Bop is called the dual or opposite of B.

Let S be any subset of a poset B. We define the following sets:

1



Su = { b εB | ∀ s ε S, b ≥ s} and Sl = { b εB | ∀ s ε S, b ≤ s}.

Su and Sl are read as ‘S upper’ and ‘S lower’ respectively. An element of Su is
called an upper bound of S and an element of Sl is called an lower bound of S.

1.1.2 Supremum and infimum

An element s′ εB is called the supremum (if it exists) of S ⊆ B, B a poset, if
s′ is the minimum of Su. Similarly, an element s∗ εB is called the infimum (if it
exists) of S ⊆ B if s∗ is a lower bound of S and s∗ ≥ s for all s ε Sl. Commonly
used notation for the supremum (resp. infimum) of a set S ⊆ B, is supS (resp.
infS).

If a non-empty poset B has a greatest element, we quite naturally call this
element the top element of B. Dually, if B has a least element, it is called the
bottom element of B. Notation is 1 and 0 respectively.

1.1.3 Lattices

Let B be a non-empty poset.

If sup{a, b} and inf{a, b} exist for any two a, b εB, then B is called a
lattice.

If supS and infS exist for any S ⊆ B, then B is called a complete lattice.

For a complete lattice, the definition can be stated as a poset in which each subset
has a supremum (or infimum). A complete lattice is necessarily bounded, i.e. it
has a top 1 and a bottom 0.

Remark More often we will denote sup{a, b} (resp. inf{a, b}) by a ∨ b (resp.
a ∧ b). Similarly supS and infS will be denoted by

∨
S and

∧
S respectively,

which is read as “join S” and “meet S”. We denote the empty set by ∅.

1.1.4 Distributive lattices, pseudocomplemented lattices
and complements

A lattice L is distributive if for all a, b, c ε L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

This property is then also equivalent to the formula in which meet and join are
interchanged.

2



Let L be a lattice with 0 and let a εL. We say a∗ is the pseudocomplement of a if

x ∧ a = 0 ⇐⇒ x ≤ a∗.

One can readily show that an element has at most one pseudocomplement and a
lattice L with 0 is said to be pseudocomplemented if each element of L has a pseu-
docomplement. A few interesting and important rules in a pseudocomplemented
lattice (The proofs for all rules and formulas in the following two subsections can
be found in Pultr [27]):

(1) 0∗ = 1 and 1∗ = 0,

(2) a ≤ b⇒ b∗ ≤ a∗,

(3) a ≤ a∗∗,

(4) a∗ = a∗∗∗.

Let L be a bounded distributive lattice. An element a εL satisfying

a ∧ a = 0 and a ∨ a = 1

is said to be the complement of a εL. One can readily show that in a distributive
lattice the complement (if it exists) of an element is unique. We say that a εL is
complemented if a exists.

1.1.5 Heyting algebras

A Heyting algebra is a lattice L with an additional binary operation, →, some-
times referred to as the Heyting arrow, that satisfies for all a, b, c ε L,

c ≤ a→ b⇐⇒ a ∧ c ≤ b.

In addition, if L is a complete lattice with the Heyting operation defined on it,
then we say L is a complete Heyting algebra. Note that a (complete) Heyting
algebra is necessarily distributive and pseudocomplemented. Some interesting
and useful Heyting formulas:

(1) a→ a = 1 and 1→ a = a,

(2) a ≤ b iff a→ b = 1,

(3) b ≤ a→ b,

(4) a ∧ (a→ b) = a ∧ b,

(5) a→
∧
bi =

∧
(a→ bi).

3



1.1.6 Galois connection

A map f : L → M between posets L and M is said to be monotone if for all
a, b ε L,

a ≤ b⇒ f(a) ≤ f(b).

Let f : L → M and g : M → L be monotone maps between posets L and M .
We say that the pair (f, g) is a Galois connection if for all a εL, b εM ,

f(a) ≤ b⇐⇒ a ≤ g(b).

The above condition can also be equivalently given as

fg(b) ≤ b and gf(a) ≥ a, for all a εL, b εM.

If such a situation exists, then f is said to be the left adjoint of g, and g the right
adjoint of f . The following are well-known and useful facts:

• g is uniquely determined by f ; which is also true the other way round,

• f preserves existing joins and g preserves existing meets,

• Each join preserving map f : L → M is a left adjoint and each meet
preserving map g : M → L is a right adjoint, with L and M complete
lattices.

1.2 Topology

1.2.1 Topological space

A topology on a set X is a collection of subsets of X, denoted by τ , which satisfies
the following three conditions:

(1) ∅ ε τ and X ε τ ,

(2) τ is closed under finite intersection (i.e. A,B ε τ ⇒ A ∩ B ε τ) and

(3) τ is closed under arbitrary union (i.e. A ⊆ τ ⇒
⋃
A ε τ).

The pair (X, τ) is called a topological space. We will refer to the elements of τ as
open sets. We will more often talk of the topological space X where it is to be
understood that we refer to the set with the topology on it.

4



1.2.2 Subspace

For a topological space (X, τ) and arbitrary subset A ⊆ X, we define the following
family of subsets of A:

τA := {A ∩ U |U ε τ}.

The family of sets τA satisfies the three conditions of a topological space, and
consequently (A, τA) is a topological space. We say that (A, τA) is a subspace
of (X, τ), or more concisely, A is a subspace of X. The topology itself is then
referred to as the subspace topology.

1.2.3 Neighbourhood, Closure and Cover

Let (X, τ) be a topological space. U ⊆ X is a neighbourhood of x εX if there
exists an open set A such that x εA ⊆ U . The collection of all neighbourhoods
of x will be denoted by Ux.

A subset A ⊆ X is said to be closed iff its complement is open, i.e. X\Aε τ .
For any set A ⊆ X, we define the closure of A by

A =
⋂
{B ⊆ X |B closed, A ⊆ B}.

We can also define a closed set A ⊆ X by:

A is closed iff A = A.

For a topological space (X, τ), a set {Ui | i ε I} ⊆ τ with
⋃
i ε I Ui = X is called an

open cover of X. An open cover {Ui | i ε I} of X is said to have a finite subcover
if there exists a finite family {i1, i2, ..., ik} ⊆ I such that Ui1 ∪Ui2 ∪ ...∪Uik = X.

1.2.4 Continuous map

We trust that the reader is familiar with the definitions of an injective, surjective
and inverse map. A map f : X → Y is continuous at x εX iff for any A ⊆ X

x εA =⇒ f(x) ε f(A).

We say that f is continuous iff f is continuous at x for every x εX. The following
three statements are equivalent for a map f :

(1) f : X → Y is continuous,

(2) A open in Y ⇒ f−1(A) open in X and

(3) B closed in Y ⇒ f−1(B) closed in X.

5



1.2.5 Axioms of separation

A topological space X is called a

(1) T0− space if for every pair of distinct points x1, x2 εX there exists an open
set U ⊆ X containing exactly one of these points.

(2) T1− space if for every pair of distinct points x1, x2 εX there exists an open
set U ⊆ X such that x1 ε U and x2 /∈ U .

(3) T2−space, or a Hausdorff space, if for every pair of distinct points x1, x2 εX
there exists open sets U1, U2 such that x1 ε U1, x2 ε U2 and U1 ∩ U2 = ∅.

(4) T3 − space, or a regular space, if X is a T1 − space and for every x εX and
every closed set A ⊆ X such that x /∈ A there exist open sets U1, U2 such
that x εU1, A ⊆ U2 and U1 ∩ U2 = ∅.

(5) T4 − space, or a normal space, if X is a T1 − space and for every pair of
disjoint closed sets A,B ⊆ X there exist open sets U, V such that A ⊆ U ,
B ⊆ V and U ∩ V = ∅.

1.3 Category Theory

1.3.1 Category

Let C denote the quadruple {ObjC, hom, ◦, id} where

(a) ObjC is a family of objects ;

(b) for every pair of objects A,B εObjC, the sets homC(A,B), whose elements
are called morphisms or arrows from A to B, are disjoint;

(c) for every A,B,C εObjC and every f ε homC(A,B) and g ε homC(B,C);

(f, g)→ g ◦ f ε homC(A,C)

yields morphisms called compositions.

We say C is a category if it satisfies the following two conditions:

(1) Associativity: For everyA,B,C,D εObjC and all f ε homC(A,B), g ε homC(B,C)
and h ε homC(C,D) we have

f ◦ (g ◦ h) = (f ◦ g) ◦ h.

(2) Identity: For every object AεObjC there is a morphism idA ε homC(A,A),
called the identity, such that if f ε homC(A,B) and g ε homC(C,A) we have

f ◦ idA = f and idA ◦ g = g.
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Remark Instead of writing f ε homC(A,B) we will more often write f : A→
B. If f : A → B, then A is the domain and B the codomain of f . MorC will
denote the family of all morphisms and is defined as the union of all the sets
homC(A,B). For each object AεObjC it is also common to denote the identity
morphism idA : A → A by 1A : A → A. homC(A,B) will be abbreviated by
hom(A,B) if it does not give rise to ambiguity and is sometimes referred to as a
“hom-set”.

We will often refer to the following examples of categories in chapters to come:

(1) Set: The category of sets and functions.

(2) Top: The category of topological spaces and continuous maps.

(3) Frm: The category of frames and frame homomorphisms.

(4) Loc: The category of locales and localic maps.

1.3.2 Duality

Let C be any category. We now construct the following category Cop:

(a) The family of objects of Cop is the family of objects of C,

(b) For every pair of objects A,B εObjCop, the set of morphisms is defined by:

homCop(A,B) := homC(B,A)

(c) For every f ε homCop(A,B) and g ε homCop(B,C), we define composition

(f, g)→ f ◦ g ε homCop(A,C)

with f ◦ g to be formed in C.

Verifying that this composition in Cop is associative and that the identities of Cop
are also the identities in C, we say that Cop is the dual or opposite category of
C. In essence the two categories have the same objects, but arrows are “turned
around” in the dual category.

Remark Not only does duality apply to categories, but also to statements
about categories. As a result we have the following Duality Principle:

(i) For each concept P, concerning a general category C, the dual concept is
obtained by applying this concept to the dual category Cop.

(ii) For each valid theorem on categories the dual theorem, which is obtained
be changing all the concepts in the original theorem to their duals, is also
valid.
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1.3.3 Functor

Covariant and Contravariant functor

Let C,D be categories. Let F from C to D consist of

(1) a map that associates each AεObjC with F (A) εObjD,

(2) a family of morphisms: for every A,B εObjC and each f ε homC(A,B),

f → F (f) ε homD(F (A), F (B)).

F is called a covariant functor if it satisfies the following two conditions:

(i) F (1A) = 1F (A) for all AεObjC,

(ii) For all A,B,C εObjC and every f ε homC(B,C), g ε homC(A,B) we have

F (f ◦ g) = F (f) ◦ F (g).

An assignment F
′

from C to D, where we replace, respectively, notions (2) and
(ii) with the two notions below, will be referred to as a contravariant functor.

(2
′
) a family of morphisms: for every A,B εObjC and each f ε homC(A,B),

f → F (f) ε homD(F (B), F (A)).

(ii
′
) For all A,B,C εObjC and every f ε homC(B,C), g ε homC(A,B) we have

F (f ◦ g) = F (g) ◦ F (f).

Remark One can think of functors as “morphisms” between categories. We
shall often write F : A → B if F is a functor from category A to category B.
Also, we will write FA and Ff instead of F (A) and F (f) respectively - that is if
there is no ambiguity. A covariant functor is also often referred to as a ‘functor’.

1.3.4 Special morphisms

Let f : X → Y be a morphism in a category C. f is called a monomorphism if
for all morphisms u, v εMorC

fu = fv ⇒ u = v.

We also say f is left cancellable. (Naturally, u and v must have the same domain
and the same codomain X.) An epimorphism is defined as the dual notion of a
monomorphism. That is, g is an epimorphism if for all morphisms u, v εMorC

ug = vg ⇒ u = v.

Dually, we would say g is right cancellable. (Naturally, u and v must have the
same codomain and the same domain Y .) We say f is an isomorphism if there
exists a morphism g : Y → X such that

fg = 1Y and gf = 1X .
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1.3.5 Special functors

Let F : C → D be a functor.

(1) F is called faithful if for all A,B εObjC and f, g εHom(A,B)

F (f) = F (g) =⇒ f = g.

(2) F is called full if for all f : FA→ FB

∃g : A→ B with Fg = f.

(3) F is an embedding if and only if it is faithful and injective on objects.

Remark A faithful functor is injective on hom-sets and a full functor is
surjective on hom-sets.

1.3.6 Natural transformations

Let F,G : A → B be functors. A natural transformation τ from F to G (denoted
by τ : F → G) is a map that assigns to each object AεObjA a morphism
τA : FA → GA in such a way that the following condition holds: for each
morphism f : A→ A

′
, the square below commutes.

FA
τA //

Ff

��

GA

Gf

��
FA′ τA′

// GA′

Figure 1.1: τA′ ◦ Ff = Gf ◦ τA

1.3.7 Adjoint situation

An adjoint situation (η, ε) : F a G : A → B consists of two functors G : A → B
and F : B → A and two natural transformations η : idB → GF (called the unit)
and ε : FG→ idA (called the co-unit) that satisfy the following conditions:

(1) G
ηG−→ GFG

Gε−→ G = G
idG−→ G,

(2) F
Fη−→ FGF

εF−→ F = F
idF−→ F.
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Remark We say F is a left adjoint for G and G is a right adjoint for F (in
symbols: F a G) if an adjoint situation, as above, exists. Note that a Galois
connection (f, g) is an adjoint situation in which we regard a poset as a category
and a monotone map as a functor (see 1.1.6).

1.3.8 Limits and Colimits

A source is a pair (A, (fi)i ε I) consisting of an object A in a category C, and a
family of morphisms fi : A → Ai with domain A, indexed by some class I. A
source is sometimes also referred to as a cone. The dual concept of a source will
be referred to as a sink or a co-cone.

A diagram in a category C is a functor D : I → C with codomain C. The
domain, I, is called the scheme of the diagram. A C-source (A, (fi)i εObjI) is said
to be natural for D provided that for each I-morphism d : i → j, the triangle
below commutes, that is, Dd ◦ fi = fj. We will write Di for Di.

Di
Dd // Dj

A

fi

__@@@@@@@@ fj

>>~~~~~~~

Figure 1.2: A natural source for D.

A limit of a diagram D : I → C is a natural source (L, (gi)i εObjI) for D
with the property that each natural source (A, (fi)i εObjI) for D uniquely factors
through it: that is, for every such source there exist a unique morphism f : A→ L
with fi = gi ◦ f for each i εObjI.

Examples Specific types of limits include (identities are omitted in schemes):

(1) products : products are limits of diagrams with discrete schemes,

(2) equalizers : equalizers are limits of diagrams with scheme •⇒ •,

(3) pullbacks : limits of diagrams with the scheme below, are called pullbacks.

•

��
• // •

We call the dual concept of a limit, a colimit. The dual formulation for the limits
mentioned above are coproducts, co-equalizers and pushouts, respectively.
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Chapter 2

Spaces, frames and locales

In this chapter we will establish the connection between topological spaces and
frames(locales). We will demonstrate how the category of locales can be consid-
ered as a generalization or extension of the category of topological spaces. In
addition, we will make some elementary but significant observations and come
across an adjoint situation.

Definition 2.1. A frame1 is a complete lattice L that satisfies the following
infinite distributive law: For all a εL and {bi | i ε I} ⊆ L,

a ∧ (
∨
i ε I

bi) =
∨
i ε I

(a ∧ bi).

If we consider the collection of open sets of a topological space and order it
by set inclusion, then the topology on X (see 1.2.1) can be viewed as a complete
lattice2. In addition, the open sets satisfy the infinite distributive law in 2.1 and
therefore a topological space forms a frame.

Consequently, we found an object which can serve as a generalization of a
topological space. But, to form a category, we are still in need of suitable mor-
phisms.

Definition 2.2. A map h : L −→ M between frames L and M , is said to be
a frame homomorphism3 if it preserves finite meets (including the top 1) and
arbitrary joins (including the bottom 0), that is, for any a, b, ci ε L,

h(a ∧ b) = h(a) ∧ h(b),

h(
∨
i ε I

ci) =
∨
i ε I

h(ci).

And now we make the connection more clear:
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There exists a functor (see 1.3.3) Ω : Top −→ Frm such that a topological
space is sent to its frame of open sets and a continuous map is sent to the inverse
image map:

Ω : Top −→ Frm,

X 7−→ Ω(X), and

f : X −→ Y 7−→ Ω(f) : Ω(Y ) −→ Ω(X),

where Ω(f)(U) = f−1(U).4

For the very optimistic reader, it might seem that we have found the category
which can serve as an extension for Top. Regrettably it is not so - the above-
mentioned functor is contravariant. As a result, the category in which we are
truly interested, is the dual (see 1.3.2) category Frmop. This category has locales
as objects and localic (continuous) maps as morphisms. It is more commonly
referred to as the category of locales and is denoted by Loc. Therefore we have
a covariant functor

Ω : Top −→ Loc.

Note that, as objects, frames and locales are the same objects. The morphisms
only differ in the respective categories. Although turning arrows around is math-
ematically trivial, to think “backwards” is not always clear and straightforward.
As [25] put it, “Morphisms5 in Loc are, of course, frame homomorphisms taken
backwards, which may obscure the intuition.”

Now might be as good a time as any to note that the reader can approach
point-free topology from two points of view: The first is the contravariant ap-
proach, where research is done in Frm but the intention is to acquire results in
Loc. The other is to work covariantly, that is, do research in the category Loc
itself. In his article, Johnstone [20] makes his choice clear, “frame theory is lat-
tice theory applied to topology, whereas locale theory is topology itself.” There
is however no preferential category amongst authors; many choose to operate in
Frm while others prefer Loc. Depending on their need, some authors operate in
both categories.

We have seen that the category Loc can successfully represent topological
spaces and continuous maps. But how well does Top represent locales (frames)
and localic maps (frame homomorphisms)? Before we give the answer, we first
need to define what we mean by a sober space:

Definition 2.3. A topological spaceX is said to be sober if every meet-irreducible6

open set A 6= X is X\{x} for a unique x εX.

We note that if a space is sober, then it is also T0. In all propositions to
follow, unless stated otherwise, the proofs have essentially been taken from Pultr
[27].
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Proposition 2.4. Let Y be a sober space and X a general one. Then for each
frame homomorphism h : Ω(Y ) −→ Ω(X) there is exactly one continuous map
f : X −→ Y such that h = Ω(f). Thus, the restriction Ω : Sob −→ Loc of Ω is
a full embedding7.

Proof. Let h : Ω(Y )→ Ω(X) be a frame homomorphism. For x εX set

Fx = {U εΩ(Y ) |x /∈ h(U)} and Fx =
⋃
Fx.

Since h preserves arbitrary joins we have that x /∈ h(Fx), and hence, for U εΩ(Y ),

x /∈ h(U) if and only if U ⊆ Fx.

Since x /∈ h(Fx), we have that Fx 6= X and if Fx = U ∩V , then x /∈ h(U)∩h(V ),
because h preserves finite meet. Therefore, say x /∈ h(U), U ⊆ Fx and Fx is
meet-irreducible.

By the sobriety of Y , Fx = Y \ {y} for a unique y ε Y . If we choose such y for
f(x), we can write

x /∈ h(U) iff U ⊆ Y \ {y} iff f(x) /∈ U,

since U is open and therefore

x ε h(U) iff f(x) ε U, that is, x ε f−1(U).

Hence, f−1(U) = h(U) εΩ(X) and thus f is continuous and h = Ω(f). One can
readily show that f is unique, since Y is sober and therefore a T0-space.

Remark There are many sober topological spaces, and those that are not
sober can be replaced by its soberification8. Johnstone (1991) says that by pre-
tending that all spaces are sober, little harm comes to topology. He adds that
by replacing a space with its soberification the open-set lattice is left unchanged,
and very little damage is done to its topological properties.

Consequently, spaces and continuous maps represent locales and localic maps
to a considerable degree. This then justifies the remark that locales can be
regarded as “generalized spaces”. Nevertheless, there is a shortcoming - a com-
plete Boolean algebra9 is of the form Ω(X ), that is spatial10, if and only if it is
atomic11[27].

We conclude this chapter by showing how to reconstruct sober spaces and
continuous maps. In addition, we will give a proof of an adjoint situation.

Definition 2.5. A point of a frame L is a frame homomorphism h : L → 2.12

We denote by ΣL the set of all points of L. For a εL, set

Σa = {h : L→ 2 |h(a) = 1 }.
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Lemma 2.6. (ΣL, τ) is a topological space, where τ = {Σa | a εL}.

Proof. (1) Σ1 = {h : L→ 2 |h(a) = 1 } = ΣL ε τ and
Σ0 = {h : L→ 2 |h(0) = 1 } = ∅ ε τ.

(2) Σa ∩ Σb = {h : L→ 2 |h(a) = 1 } ∩ {h : L→ 2 |h(b) = 1 }
= {h : L→ 2 |h(a) = 1 and h(b) = 1 }
= {h : L→ 2 |h(a) ∧ h(b) = 1 }
= {h : L→ 2 |h(a ∧ b) = 1 }
= Σa∧b ε τ.

(3)
⋃

Σai =
⋃
{h : L→ 2 |h(ai) = 1 }

= {h : L→ 2 |
∨
h(ai) = 1 }

= {h : L→ 2 |h(
∨
ai) = 1 }

= Σ∨ai ε τ.

Remark As usual, we will more often talk about the topological space ΣL
instead of (ΣL, τ). This space is also known as the spectrum of L. There are
at least two more alternative descriptions of the spectrum: The first utilizes the
correspondence between a point of a frame L and complete filters on L, and the
other the correspondence between a point and the meet-irreducible elements of
L.13

Definition 2.7. For a frame homomorphism h : L → M , define the following
mapping Σh : ΣM → ΣL by (Σh)(α) = α ◦ h.

Lemma 2.8. For each a εL, (Σh)−1(Σa) = Σh(a).

Proof. α εΣh(a)

⇐⇒ α(h(a)) = 1
⇐⇒ (α ◦ h)(a) = 1
⇐⇒ α ◦ h εΣa

⇐⇒ (Σh)(α) εΣa.
⇐⇒ α ε (Σh)−1(Σa).
Therefore, Σh(a) = (Σh)−1(Σa).

Remark It can be shown that the map Σh : ΣM → ΣL is continuous and
consequently we have found a contravariant functor

Σ : Frm→ Top.

We have shown how to reconstruct topological spaces and continuous maps
from given frames and frame homomorphisms. But are these reconstructed spaces
truly sober? It can be proven, with necessary insight, that these spaces ΣL are
indeed sober 14. Ultimately, one might ask if there is any connection between the
functors Ω and Σ. After all, we have shown that spaces and continuous maps are
closely related to frames and frame homomorphisms. We have
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Proposition 2.9. Σ : Loc→ Top is a right adjoint to Ω : Top→ Loc.

Proof. For a topological space X define ηX : X → ΣΩX by setting

ηX(x)(U) = 1 if and only if x εU

Verifying that each ηX(x) is a frame homomorphism is straightforward, and we
have that ηX is continuous, since

η−1
X (ΣU) = {x | ηX(x) εΣU } = U.

For a frame L define εL : L → ΩΣL by setting εL(a) = Σa. From Lemma 2.6
it follows that εL is a frame homomorphism. If f : X → Y is a continuous
map, then we have (ΣΩf(ηX(x)))(U) = ηX(x)(Ωf(U)) = ηX(x)(f−1(U)) = 1 iff
x ε f−1(U) iff f(x) ε U iff ηY (f(x))(U) = 1.
If h : L→M is a frame homomorphism, then we have (ΩΣh(εL))(a) = ΩΣh(Σa)
= (Σh)−1(Σa) = Σh(a) = εM(h(a)). Consequently we have natural transforma-
tions (see 1.3.6) η : id→ ΣΩ and ε : id→ ΩΣ.

These natural transformations are adjunction units (see 1.3.7):

(1) (ΣεL(ηΣL(α)))(U) = ηΣL(α)(ηL(U)) = 1 iff α εΣU iff α(U) = 1, therefore
ΣεL ◦ ηΣL = id, and

(2) Ω(ηX)(εΩX(U)) = η−1
X (ΣU) = U, hence ΩηX ◦ εΩX = id.

15



Notes

1From an algebraic point of view, a frame is better known as a complete
Heyting algebra. This equivalence is established by a Galois connection. If the
reader favours a more algebraic approach, a brief outline can be considered in
[25].

2Finite meet and arbitrary join is given by finite intersection and arbitrary
union, respectively. The top is the set X and the bottom is given by ∅.

3Even though a frame and a complete Heyting algebra is the same object, a
frame homomorphism is not a homomorphism between complete Heyting alge-
bras. An additional property needs to be satisfied, that is, for all a, b ε L and
lattice homomorphism h : L→M ,

h(a→ b) = h(a)→ h(b).

4The inverse image map f−1 is a frame homomorphism as it preserves arbitrary
joins, including 0, and finite meets, including 1.

5In 2008, Picado and Pultr published an article in which locales were treated
by a covariant approach. Although it is not an approach the author pursued, we
point out the distinction for sake of being thorough: Since frame homomorphisms
preserve arbitrary joins, they have unique left adjoints - these maps are then the
maps which run in the “proper” direction. Localic maps are subsequently defined
as mappings f : L→M that have left adjoints f ∗ preserving meets.

6An open set A 6= X is meet-irreducible if

A = B ∩ C =⇒ A = B or A = C.

7A functor which is full and an embedding (see 1.3.5), we quite naturally call
a full embedding.

8We recommend the book, Stone spaces, by Johnstone [18] for a closer look
at soberification.

9A Boolean algebra is a distributive lattice with 0 and 1 in which every element
has a complement.

10A frame L which is isomorphic to an Ω(X) is said to be spatial.

11An element b of a lattice L is called an atom if for any c ε L it is true that

c ≤ b =⇒ c = 0 or c = b.
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L is said to be atomic if every element of L is the join of all atoms below it.

12We denote the two-element Boolean algebra {0, 1} by 2.

13The reader will find more detail on the alternative descriptions of the spec-
trum in Pultr [27].

14For a proof, we advise the reader to look in Johnstone [18] or Pultr [27]. In his
proof, Johnstone makes use of prime elements and proves that ψ : X → Σ(Ω(X))
is a bijection, while Pultr keeps to meet-irreducible elements and our definition
of sober.
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Chapter 3

Generalized subspaces

In this chapter we will define, from a categorical point of view, what is meant by
a subobject in a category and subsequently focus our attention on subobjects of
generalized spaces. We will prove that there are at least 4 ways of representing
subobjects of generalized spaces.

Definition 3.1. Assume a category C has a fixed family of monomorphismsM.
We define aM-subobject of an object X to be a morphism mεM with codomain
X, that is,

m : M −→ X, m εM, and let

M/X = {mεM| codomain m = X}.

If there is no ambiguity, we will rather refer to m as a subobject of an object
X. In concrete1 categories the monomorphisms are, roughly speaking, repre-
sented by the injective morphisms. Representing subobjects by monomorphisms
is, on occasion, to hope for too much - there are many categories in which the
monomorphisms fail at adequate representation of subobjects. We give two ex-
amples which will aid our understanding of a subobject:

(1) In the category Frm, one can prove that the family of monomorphismsM
can be represented by the injective frame homomorphisms2 m : A→ B with
A and B arbitrary frames. In this category we will refer to the subobjects
m of a frame B as subframes. It is worth mentioning that A can also
be considered as a frame contained in frame B: In our example, one can
readily prove that m(A) ⊆ B satisfies the frame definition (see 2.1), and
consequently is a frame. Moreover, m(A) is isomorphic to A and hence A
can be considered to be contained in B and therefore appropriately referred
to as a subframe.
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(2) For every subspace A of a topological space X, the mapping mA : A→ X
defined by mA(a) = a is continuous3 and injective. This mapping is called
the embedding of the subspace A in the space X. One can verify that the
subspace topology coincides with the topology generated by the mapping
mA.

Note that the subspace topology is the initial topology4 on the subspace. A
map mA : A → X is an embedding only if it is initial, injective and continuous.
It turns out that the subspace embeddings m : A→ X are exactly the extremal
monomorphisms in Top and not, as per usual, represented by monomorphisms.5

This fact is supported by the following result:

Consider a subspace Y of a topological space X. Then the embedding

j : Y ↪→ X 7−→ Ω(j) = (U 7→ U ∩ Y ) : Ω(X) −→ Ω(Y )

is associated with a surjective frame homomorphism Ω(j), where

Ω(Y ) = {U ∩ Y |U εΩ(X)}.

We will prove that the surjective frame homomorphisms are the extremal epi-
morphisms in Frm. Consequently they are extremal monomorphisms in the dual
category Loc. Before long we will define (see 3.4) what we mean by a subobject
of a locale. The association between embeddings, which are the subobjects in
Top, and onto frame homomorphism, by way of the functor Ω above, will serve
as our motivation.

To prove this result, we first need to introduce a new concept:

Definition 3.2. Let C be a category. For e,m εMorC, we will write e ⊥ m, and
say “e is orthogonal to m” if for every u, v εMorC with m◦u = v ◦e, there exists
a unique d with m ◦ d = v and d ◦ e = u.

A
e //

u

��

B

v

��

d

��~~~~~~~~~~~~~

C m
// D

Figure 3.1: e is orthogonal to m.
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We say that C has a (E ,M)-factorization system if the following conditions
hold:

(1) (E ,M) is a pre-factorization system, that is,
M↑ = {e εMorC | e ⊥ m,∀mεM} = E and
E↓ = {mεMorC | e ⊥ m,∀ e ε E} =M.

(2) C has (E ,M)-factorization of morphisms, that is,
each morphism f in C can be factorized, f = m ◦ e with mεM, e ε E .

A
e

��@@@@@@@
f // B

C

m

??~~~~~~~

Figure 3.2: (E ,M)-factorization of a morphism

In chapter 4 we will consider factorization systems in more detail, but for
now, when it comes to subobjects, our interest only truly lies in the familyM of
morphisms. In the two examples given earlier, we have seen that the morphisms
in this family, be it monomorphisms or extremal monomorphisms, possess the
necessary properties to preserve the structure of the object.

We can now proceed to prove our result:

Proposition 3.3. Let m : A → B be a morphism between frames A and B in
Frm. Then m is onto if and only if m is an extremal epimorphism6.

Proof. (⇒:) Assume m is onto frame homomorphism and f ◦ m = g ◦ m for
arbitrary f, g εMorFrm. By surjectivity, for every b εB there exists an a εA so
that m(a) = b. Hence

f(b) = f(m(a))

= (f ◦m)(a))

= (g ◦m)(a), by assumption ,

= g(m(a)) = g(b).

Therefore, f = g, since b was arbitrary and we have that m is an epimorphism.
Assume m = gh with h : A→ C, g : C → B and g a monomorphism. From the
surjectivity of m it follows that g is surjective, and therefore a bijection. Hence
there exists a frame homomorphism7 g−1 : B → C so that g ◦ g−1 = 1B and
g−1 ◦ g = 1C . Therefore, g is an isomorphism.
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(⇐:) Assume m is an extremal epimorphism. We can factorize m by m = f ◦g
where g : A → m(A) with g(a) = m(a) and f : m(A) → B with f(b) = b (see
figure 3.3 below).

A
g

"" ""EEEEEEEE
m // B

m(A)
- 
 f

<<yyyyyyyy

Figure 3.3: Factorization of a frame homomorphism

It is easy to see that f is an injective frame homomorphism and hence a
monomorphism in Frm. By our assumption that m is an extremal epimorphism,
it follows that f is an isomorphism. Therefore m is an onto frame homomorphism,
since g is surjective.

Remark It can be proven that Frm has a (extremal epi, mono)-factorization
system. Therefore the dual category Loc has a (epi, extremal mono)-factorization
system8. For a detailed introduction and an enlightening outline of factorization
systems, we recommend the book Concrete and abstract categories by Adámek
et al. [1].

We continue this chapter by formally introducing four ways to represent sub-
objects of locales. All proofs, if not explicitly stated otherwise, are the result of
the author’s own work.

Sublocale maps

Definition 3.4. We define a sublocale (map) of a locale L as an onto frame
homomorphism

h : L −→M.

The reason for such a definition has previously been motivated. Note that
frames, locales and complete Heyting algebras are entirely synonymous when con-
sidered as objects. However, the difference is more evident when we refer to the
objects with their morphisms in the respective categories.

The reader may be tempted to think of subframes and sublocales as synony-
mous as well. This, however, is not the case and as we continue this chapter we
trust that the distinction will become more apparent.
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The set of sublocales of L can be ordered by the pre-order

h ≤ k if and only if there exists an l such that h = lk.

L
k

��@@@@@@@
h //M

N
l

>>||||||||

Figure 3.4: h ≤ k

Two sublocales h, k with h ≤ k and k ≤ h are said to be equivalent.

Allowing this equivalence to mean equality, the set of sublocales of L give rise
to a poset. Joins will be denoted by h t k,

⊔
hi, and meets by h u k,

d
hi. We

will denote this complete lattice9 by S(L).

Congruences

Definition 3.5. An equivalence relation E10 on a frame L (subset of L × L)
that is closed under finite meet and arbitrary join (expressed below), is called a
(frame) congruence on L.

(a, b), (c, d) εE =⇒ (a ∧ c, b ∧ d) εE,

(ai, bi) εE =⇒ (
∨

ai,
∨

bi) εE.

Consequently, a frame congruence is a subset of L×L that is both an equiv-
alence relation and a subframe. The set of all congruences on L, ordered by
inclusion, will be denoted by CL.

Proposition 3.6 (Picado and Pultr 2008). There is an invertible correspon-
dence between S(L) and C(L). This correspondence is given by

h 7−→ Eh = {(x, y) |h(x) = h(y)},
E 7−→ hE = {x 7→ xE} : L −→ L/E.11

Proof. (⇒:) Let h : L→M be an arbitrary sublocale map. Define a congruence
Eh ⊆ L× L by

Eh = {(x, y) |h(x) = h(y)}.
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(1) Equivalence relation:

• reflexive: h(x) = h(x) =⇒ xEhx.

• transitive: Assume xEhy and yEhz. Then h(x) = h(y) and h(y) =
h(z). Consequently, h(x) = h(z), that is xEhz.

• symmetric: Assume xEhy. Then h(x) = h(y), which implies that
h(y) = h(x). Therefore, yEhx.

(2) Subframe: (1, 1) εEh and (0, 0) εEh.

• (x, y) ∧ (s, t) = (x ∧ s, y ∧ t):
h(x ∧ s) = h(x) ∧ h(s) = h(y) ∧ h(t) = h(y ∧ t)
=⇒ (x ∧ s, y ∧ t) εEh.
•
∨

(xi, yi) = (
∨
xi,
∨
yi):

h(
∨
xi) =

∨
h(xi) =

∨
h(yi) = h(

∨
yi).

=⇒ (
∨
xi,
∨
yi) εEh.

(⇐:) Let E ⊆ L× L be a congruence on frame L. Define a sublocale map by

hE : L −→ L/E,

x 7−→ xE.

(1) Onto: Trivial.

(2) hE(0) = 0E = 0L/E and hE(1) = 1E = 1L/E.

(3) hE(x ∧ y) = hE(x) ∧ hE(y) :
hE(x ∧ y) = (x ∧ y)E = xE ∧ yE = hE(x) ∧ hE(y).

(4) hE(
∨
xi) =

∨
hE(xi) :

hE(
∨
xi) = (

∨
xi)E =

∨
(xiE) =

∨
hE(xi).

Ultimately we have,

• h ≤ k if and only if Ek ⊆ Eh,
((⇐:) If h : L → M and k : L → K are sublocales, define l : K → M as
l := h◦k−1. One can verify that l is a frame homomorphism and h = l ◦k.)

• hEh(x) = h(x) and xEhEy ⇐⇒ xEy.

It can be shown that the arbitrary intersections of frame congruences is again
a frame congruence. Consequently, CL is a complete lattice. Therefore, S(L) is
(complete lattice) isomorphic to C(L)op.
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Nucleus

Definition 3.7. A nucleus12 on a frame L is a map ν : L −→ L satisfying for all
x, y ε L:

(1) x ≤ ν(x),

(2) x ≤ y =⇒ ν(x) ≤ ν(y),

(3) ν(ν(x)) = ν(x),

(4) ν(x ∧ y) = ν(x) ∧ ν(y).

The set of all nuclei on L endowed with the natural pointwise order will be
denoted by N (L).

Lemma 3.8. 1. If xi = ν(xi) for all i, then
∧
ν(xi) = ν(

∧
xi).

2. ∀x εL, x ε ν(L)⇐⇒ ν(x) = x.

Proof. 1. [≤:]
∧
ν(xi) ≤ ν(

∧
ν(xi)) = ν(

∧
xi).

[≥:] xi ≥
∧
xi, for all xi ε L.

=⇒ ν(xi) ≥ ν(
∧

xi), by the monotonicity of a nucleus,

=⇒
∧

ν(xi) ≥ ν(
∧

xi).

2. (⇐:) Trivial.
(⇒:) Assume y ε ν(L). Then there exists x εL so that ν(x) = y. Therefore

ν(b) = ν(ν(a)),

= ν(a), by property (3) of a nucleus,

= b.

We note that, in general, a nucleus ν : L→ L is not a frame homomorphism.
However, we will show that the restriction ν : L→ ν(L) is. The proof of the next
proposition has essentially been taken form Pultr [27].

Proposition 3.9 (Pultr 2003). The subset ν(L) ⊆ L is a frame with infima co-

inciding with those of L and the suprema given by
∨′
xi = ν(

∨
xi); the restriction

ν : L→ ν(L) is a (onto) frame homomorphism.

Proof. By Lemma 3.8, ν(L) is closed under arbitrary meet. We have xj ≤ ν(
∨
xi)

for all j, and if xj ≤ y ε ν(L) for all j,
∨
xi ≤ y and

∨′
xi = ν(

∨
xi) ≤ ν(y) = y.

The mapping ν : L→ ν(L) preserves
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• finite meets since it is a nucleus,

• arbitrary joins: ν(
∨
xi) ≤ ν(

∨
ν(xi)) =

∨′
ν(xi), by monotonicity and

xi ≤ ν(xi) implies
∨′
xi ≥

∨′
ν(xi).

Ultimately, ν : L→ ν(L) is clearly onto and as it preserves all joins and all finite
meets, ν(L) satisfies the infinite distributive law.

Proposition 3.10 (Pultr 2003). The correspondences

E 7−→ νE = {x 7→
∨

xE} : L −→ L,

ν 7−→ Eν = {(x, y) | ν(x) = ν(y)},

establish an isomorphism of the posets C(L) and N (L).

Proof. (⇒:) Let E be an arbitrary congruence on L. Define a nucleus on L by

νE : L −→ L,

x 7−→
∨

xE.

(1) x ≤ νE(x): Clearly x ε {y | (x, y) εE}, since xEx. Therefore, x ≤
∨
{y | (x, y) εE},

that is, x ≤ νE(x).

(2) νE(νE(x)) = νE(x):
[≥:] From (1) we have x ≤ νE(x), for x εL. But νE(x) ε L, therefore
νE(x) ≤ νE(νE(x)).
[≤:] Consider {y | (x, y) εE}, with x fixed. Then (x,

∨
y) εE, since E a

congruence. Consequently, {z | (
∨
y)Ez} ⊆ {y |xEy}, by symmetry and

transitivity.
As a result we have

νE(νE(x)) = νE(
∨
{y |xEy})

=
∨
{z |(

∨
{y |xEy})Ez}

≤
∨
{y |xEy}

= νE.

(3) x ≤ y =⇒ νE(x) ≤ νE(y): Assume x ≤ y and let νE(x) = {t |xEt} and
νE(y) = {s | yEs}. Then for every t ε νE(x) and s ε νE(y), we have that
yE(t ∨ s), by assumption. Therefore

∨
{t |xEt} ≤

∨
{s | yEs}, that is,

νE(x) ≤ νE(y).

(4) νE(x ∧ y) = νE(x) ∧ νE(y) :
[≤:] Follows from (3).
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[≥:] νE(x) ∧ νE(y) =
∨
{t |xEt} ∧

∨
{s | yEs}

=
∨
{t ∧ s |xEt, yEs}

≤
∨
{z | (x ∧ y)Ez}

= νE(x ∧ y).

(⇐:) Let ν be any nucleus on L. Define a congruence Eν ⊆ L× L on L by

xEνy ⇐⇒ ν(x) = ν(y).

(1) Equivalence relation: See proof of Prop. 3.6.

(2) Subframe: Trivially, (0, 0) εEv and (1, 1) εEv. Also, from Prop. 3.6 one
readily sees that Ev is closed under taking finite meet.

•
∨

(xi, yi) = (
∨
xi,
∨
yi):

ν(
∨
xi) ≤ ν(

∨
ν(xi)) =

∨′
ν(xi) =

∨′
ν(yi) ≤ ν(

∨
yi).

If we interchange xi with yi above, then we have ν(
∨
xi) = ν(

∨
yi).

It is easy to see that the correspondence E 7→ νE is monotone. Ultimately we
have, and the reader can verify,

• xEνEy iff
∨
xE = yE iff xEy,

• νEν (x) =
∨
xEν =

∨
{y | ν(y) = ν(x)} = ν(x).

Remark We have noted in Proposition 3.6 that C(L) is a complete lattice.
Consequently, N (L) is a complete lattice.

Sublocale sets

Definition 3.11. A subset S of a frame L is said to be a sublocale set if

(1) for each A ⊆ S,
∧
AεS (specifically, 1 =

∧
∅ ε S),

(2) for each x εL and y ε S, x→ y ε S.

The family of all sublocale sets ordered by inclusion will be denoted by S ′(L).

Proposition 3.12 (Picado and Pultr 2008). There is an invertible one-one
correspondence between N (L) and S ′(L). This correspondence is given by

ν 7−→ Sν = {ν(x) |x εL} = ν(L),

S 7−→ νS = {x 7→
∧
{y ε S |x ≤ y}} : L −→ L.
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Proof. (⇒:) Let ν : L→ L be an arbitrary nucleus on L. Define a sublocale set
Sν ⊆ L by

Sν = {ν(x) |x εL} = ν(L).

(1) Take an arbitrary A ⊆ ν(L). By Lemma 3.8, arbitrary meets exist in ν(L).

(2) Take any x εL and y ε ν(L). We use the following result:

a ε ν(L)⇐⇒ ν(a) = a.

Therefore we need to show that ν(x→ y) = x→ y :
[≥:] ν(x→ y) ≥ x→ y, since ν is a nucleus.
[≤:] ν(x → y) ≤ x → y ⇐⇒ x ∧ ν(x → y) ≤ y, by definition. By the first
property of a nucleus, we have x ≤ ν(x). Therefore

x ∧ ν(x→ y) ≤ ν(x) ∧ ν(x→ y)

= ν(x ∧ (x→ y)), by the third property of a nucleus,

≤ ν(y), by Heyting formula (5), see 1.1.5,

= y.

(⇐:) Given an arbitrary sublocale set S ⊆ L, define a nucleus on L by

νS : L → L,

x 7→
∧
{y ε S |x ≤ y}.

(1) x ≤ νS(x) : x ≤ y, for all y ε S. Therefore x ≤
∧
{y ε S |x ≤ y} = νS(x).

(2) νS(x) = νS(νS(x)) :
[≤:] Trivial, by (1).
[≥:] Let y

′
=
∧
{y ε S |x ≤ y}. Then y

′
ε {z ε S | y′ ≤ z}. Consequently,∧

{z ε S | y′ ≤ z} ≤ y
′
, that is, νS(νS(x)) ≤ νS(x).

(3) x ≤ y =⇒ νS(x) ≤ νS(y):

{z ε S |x ≤ z} ⊇ {z′ ε S | y ≤ z
′}, since x ≤ y.

=⇒
∧
{z ε S |x ≤ z} ≤

∧
{z′ ε S | y ≤ z

′},
=⇒ νS(x) ≤ νS(y).

(4) νS(x ∧ y) = νS(x) ∧ νS(y):
[≤:] Trivial, since {z′ ε S |x ≤ z

′} ⊆ {z ε S |x ∧ y ≤ z} and
{z′′ ε S | y ≤ z

′′} ⊆ {z ε S |x ∧ y ≤ z}.
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[≥:] Since ν is a nucleus, x ∧ y ≤ νS(x ∧ y). By definition of the Heyting
arrow, we then have x ≤ y → νS(x∧ y). Since S is a sublocale set, we have
that y → νS(x∧ y) ε S. By the third property of a nucleus, νS(x) ≤ νS(y →
νS(x∧y)) = y → νS(x∧y). This in turn gives, νS(x)∧y ≤ νS(x∧y). And if
we now repeat the process: νS(x)∧y ≤ νS(x∧y)⇐⇒ y ≤ νS(x)→ νS(x∧y),
and therefore νS(y) ≤ νS(νS(x)→ νS(x ∧ y)). This gives νS(y) ≤ νS(x)→
νS(x ∧ y). Ultimately, we have νS(x) ∧ νS(y) ≤ νS(x ∧ y).

Ultimately we have that

• S1 ⊆ S2 =⇒ νS2 ≤ νS1 ,

• x ε SνS ⇐⇒ x = νS(x)⇐⇒ x ε S,

• νSν (x) =
∧
{y ε ν(L) |x ≤ y} = ν(x),

and consequently S ′(L) is isomorphic to N (L)op.

Remark Even though it is not absolutely necessary, for sake of being thor-
ough, we refer the reader to the notes at the end of this chapter for the three
remaining correspondences.13

We have seen now that the posets S(L), C(L), N (L) and S ′(L) give rise to
complete lattices. To conclude this chapter, we will show that these lattices are
also (co-)frames. First, however, we need:

Lemma 3.13. For arbitrary Si εS ′(L), i ε I, we have

(1)
∧
i ε I Si =

⋂
i ε I Si and

(2)
∨
i ε I Si = {

∧
A |A ⊆

⋃
i ε I Si }.

Proof. (1) Trivial, since one can readily see that the intersection of sublocale sets
is a sublocale set.
(2) Take arbitrary B ⊆ S where S = {

∧
A |A ⊆

⋃
i ε I Si }. Then B ⊆

⋃
i ε I Si

and therefore
∧
B εS.

Take a εL and b ε S, then a → b ε S ⇐⇒ a → b =
∧
A for some A ⊆

⋃
i ε I Si.

But, for A = {bj | j ε J}, a →
∧
bj =

∧
(a → bj), by formula (5) in 1.1.5, and

a→ bj ε
⋃
Si, since a→ bj ε Si, for some i ε I.

Remark The reader can verify that in S ′(L) the least element is given by
0 = {1} and L is the greatest element.
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Proposition 3.14 (Pultr 2003). S ′(L) is a co-frame14.

Proof. We need to show that for Ai, B εS ′(L),

(
⋂
i ε I

Ai) ∨B =
⋂
i ε I

(Ai ∨B).

[⊆:] Let x ε (
⋂
Ai) ∨B. Then

x ε {
∧

D |D ⊆ (
⋂

Ai ∪B)},

=⇒ x ε {
∧

D |D ⊆ (Ai ∪B)}, for all i,

=⇒ x ε Ai ∨B, for all i,

=⇒ x ε
⋂

(Ai ∨B).

[⊇:] We can assume I 6= ∅. Let x ε
⋂

(Ai ∨ B), then x = ai ∧ bi with ai εAi and
bi εB for each i ε I, by definition. If we let b =

∧
bi, then we have

x = (
∧

ai) ∧ b ≤ ai ∧ b ≤ ai ∧ bi = x,

and therefore x = ai ∧ b for all i ε I. Hence we can write, by Heyting formula (4)
in 1.1.5, x = (b → ai) ∧ b and we see15 that b → ai = a does not depend on i.
Therefore, x = a∧ b with b εB and a ε

⋂
Ai, since a = b→ ai εAi for each i.

Remark Consequently, S(L) and S ′(L) are co-frames, while C(L) and N (L)
are frames.
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Notes

1A category is said to be concrete if it is equipped with a faithful functor to
the category of sets.

2The forward implication of the proof is trivial, for the reverse implication,
however, one needs to define a suitable frame. It turns out to be the three
element chain or, from a topological perspective, the frame formed by taking the
Sierpinski topology, on a set with 2 elements, with set-inclusion (see Johnstone
[18]).

3This mapping is continuous since m−1
A (U) = A ∩ U , for every open set U .

4If two topologies, τ1 and τ2, defined on a set X are ordered by inclusion, then
we say that τ1 is coarser than τ2 if τ1 ⊆ τ2. A continuous map f : X → Y is
initial if τX is the coarsest topology on X for which f is continuous.

5This result is taken from Dikranjan and Tholen [8].

6An epimorphism f is called an extremal epimorphism if

f = gh and g monomorphism implies that g isomorphism.

7One can easily show that the inverse function g−1 : B → C preserves arbi-
trary join (including 0) and finite meet (including 1), and therefore is a frame
homomorphism.

8Note that while Top has a (onto continuous maps, embeddings)-factorization
system, the couple of families (onto localic maps, one-one localic maps) constitute
a factorization system in Loc. We refer the reader to Picado and Pultr [25] for
a proof.

9As taken from Pultr [27], the category Frm is complete: The products in
Frm are given by the cartesian products∏

i ε I

Li = { f : I →
⋃
i ε I

Li | f(i) ε Li,∀ i ε I }

with standard projections ∏
Li → Lj : f 7→ f(j).

The order, and consequently meets and joins, are defined coordinatewise.
If h1, h2 : L → M are frame homomorphisms, then it can be shown that
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K = {x |h1(x) = h2(x) } is a subframe of L and the embedding j : K ⊆ L
is the equalizer of h1, h2. Pultr also provides a construction of coproducts and
coequalizers in Frm - consequently Frm is also cocomplete.

10An equivalence relation E on a set X is a binary relation on X which is
reflexive, transitive and symmetric.

11We denote a quotient frame by L/E := {xE |x εL}, where xE = {y | (x, y) εE} =
{y |xEy}. It is defined from an algebraic point of view:

xE ∧ yE := (x ∧ y)E and
∨

(xiE) := (
∨

xi)E.

The reader can verify that these definitions are well-defined and that the infinite
distributive law in 2.1 holds. Consequently, L/E is a frame with elements xE
called equivalence classes.

12Some authors exclude condition (2) from their definition. This is done inten-
tionally, as one can readily show that (2) is a consequence of conditions (1) and
(4). Even though it might be less beneficial, it can be shown, see Johnstone [20],
that a nucleus can be characterized by a single identity: it is the map ν : L→ L
which for all x, y ε L satisfies

x→ ν(b) = ν(x)→ ν(y).

13The following correspondences can be found in Picado and Pultr [25]: The
correspondence between sublocale maps and nuclei is given by

h 7→ νh = (x 7→ h∗h(x)) : L→ L with h∗ the corresponding right adjoint,

ν 7→ hν = the restriction ν : L→ ν(L).

Given a sublocale set S ⊆ L we can construct the congruence ES by

xESy ⇐⇒ (∀s ε S, x ≤ s ⇐⇒ y ≤ s)

and given a congruence E, we have the associated sublocale set

SE = {xEmax |x εL} where xEmax =
∨
{y | yESx}.

Ultimately, the translation between sublocale maps h : L → M and sublocale
sets S ⊆ L is given by

h 7→ h∗(M) ⊆ L,

j 7→ j∗ : L→ S for j : S ⊆ L and j∗ the corresponding left adjoint.

14That is, the dual poset S ′(L)op is a frame. The proof has essentially been
taken from Pultr [27].

15Given a Heyting algebra L and a, b, c ε L, then

a ∧ b = a ∧ c⇐⇒ a→ b = a→ c.
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Chapter 4

Closure and co-closure operators

In this chapter we seek a closure operator in the category of generalized spaces.
We will therefore explore the notion of a co-closure operator in Frm. First, how-
ever, we will consider the theory of factorization structures (systems), as it lays
the foundation for closure operators, and mention a few types of closure operators.

Factorization structures

In chapter 3 we gave a short introduction to factorization systems, we will now
consider it in more detail. Our first step is to give an equivalent definition:

Definition 4.1. Let E and M be classes of morphisms in a category C. C is
called (E , M)-structured provided that

(1) each of E and M is closed under composition with isomorphisms,1

(2) C has (E ,M)-factorization of morphisms,

(3) C has the unique (E ,M)-diagonalization property, that is, for mεM, e ε E
and for every u, v εMorC with m ◦ u = v ◦ e, there exists a unique d with
m ◦ d = v and d ◦ e = u. (See also Def. 3.2.)

We also say that (E , M) is a factorization structure2 for morphisms in C.
The reader might already have suspected it - there is a duality principle: If a
category C is (E ,M)-structured, then the dual category Cop is (M, E)-structured.
Specifically, if a property holds for E , then the dual property holds for M.

Examples Let IsoC denote the family of all isomorphisms in category C. One
can easily verify that

(i) for any category C, (IsoC,MorC) and (MorC, IsoC) are (trivial) factor-
ization structures for morphisms,
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(ii) Frm is (extremal epi, mono)-structured, this we saw in chapter 3,

(iii) by the duality principle, Loc is (epi, extremal mono)-structured and

(iv) Top has a (surjection, embedding)-factorization structure.

The next two propositions reveal some of the interesting properties of factoriza-
tion structures. The result with its proof has essentially been taken from Adámek
et al. [1].

Proposition 4.2. Let category C be (E,M)-structured. Then (E ,M)-factorizations
of morphisms are, up to isomorphism, unique.

Proof. (1) Given two factorizations of a morphisms f = mi ◦ ei with f : A→ B,
ei = A → Ci and mi = Ci → B, i = 1, 2. We can construct two commutative
diagrams and by the diagonalization property we have two unique diagonals d1 :
C1 → C2 and d2 : C2 → C1.

A
e1 //

e2

��

C1

m1

��

d1

~~}}}}}}}}}}}}}

C2
m2 // B

A
e2 //

e1

��

C2

m2

��

d2

~~}}}}}}}}}}}}}

C1
m1 // B

Figure 4.1: Two unique diagonals d1 and d2.

As a result, the following two diagrams commute,

A
e1 //

e1

��

C1

m1

��

d2◦d1

~~}}}}}}}}}}}}}

C1
m1 // B

A
e2 //

e2

��

C2

m2

��

d1◦d2

~~}}}}}}}}}}}}}

C2
m2 // B

Figure 4.2: Two unique diagonals d1 ◦ d2 and d2 ◦ d1.

and since e1 ⊥ m1 and e2 ⊥ m2, diagonals are unique. Consequently d1 ◦ d2 = id
and d2 ◦ d1 = id and the factorization is unique.

Remark Even though the factorization of morphisms is essentially unique
for a given (E , M) factorization structure; there can however be many differ-
ent factorization structures for a fixed category. For example, Set has, besides
the two trivial factorization structures, a (epi, mono)-factorization structure for
morphisms, as well. None of these structures coincide, since their morphisms are
different.
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Lemma 4.3. Let C be (E,M)-structured and let e ε E and mεM. If the diagram
below commutes, then e is an isomorphism and f εM.

A

id

��

e // B

m

��

d

��~~~~~~~~~~~~~

C
f // D

Figure 4.3: e is an isomorphism and f εM.

Proof. The diagram below commutes for g = id and for g = e ◦ d, since by
assumption d ◦ e = id and m ◦ (e ◦ d) = m. Therefore, by the uniqueness of
the diagonal, we have e ◦ d = id. Consequently, e is an isomorphism. By our
assumption, f = m ◦ e and since e is an isomorphism and m is closed under
composition with isomorphisms, f εM.

A

e

��

e // B

m

��

g

��~~~~~~~~~~~~~

B
m // D

Figure 4.4: g = id and g = e ◦ d.

Proposition 4.4. If C is (E, M)-structured, then the following hold:

(1) E ∩M = IsoC,

(2) each of E and M are closed under composition.

Proof. (1) [⊆:] Take arbitrary f : A→ B with f ε E ∩M. We can construct

A

id

��

f // B

id

��
A

f // B

Figure 4.5: There exists a unique diagonal d : B → A.

34



a commutative diagram (see Figure 4.5) and hence there exists a unique diagonal
d : B → A such that d ◦ f = id and f ◦ d = id. Therefore, f ε IsoC.

[⊇:] Take arbitrary g : A→ B with g ε IsoC. Since C has (E ,M)-factorization
of morphisms, we can write g = m ◦ e for e : A→ C and m : C → B where e ε E
and mεM. The diagram

A

id

��

e // C

m

��

d

��~~~~~~~~~~~~~

A
g // B

Figure 4.6: The diagram commutes for d = g−1 ◦m.

commutes for d = g−1 ◦ m, g is an isomorphism and hence g−1 exists. Conse-
quently, by Lemma 4.3, g εM. By duality we have that g ε E .

(2) Let m1,m2 εM where m1 : A→ B and m2 : B → C. Since C is (E , M)-
structured, we can write m2 ◦m1 = m ◦ e with e : A → D in E and m : D → C
in M. Hence there exists two unique diagonals d1 and d2

A
e //

m1

��

D

m

��

d1

��~~~~~~~~~~~~~

B
m2 // C

A
e //

id

��

D

d1

��

d2

��~~~~~~~~~~~~~

A
m1 // B

Figure 4.7: Diagonals d1 and d2 can be constructed.

such that the diagrams (see Figure 4.7) commute. As a result the diagram in
Figure 4.8 commutes and, by Lemma 4.3, we have that m2 ◦m1 εM. E is also
closed under composition, by duality.

A

id

��

e // D

m

��

d2

��~~~~~~~~~~~~~

A
m2◦m1 // C

Figure 4.8: m2 ◦m1 εM.
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The foundation for closure operators has now been set, we will however briefly
mention, for the sake of interest, the relationship between factorization structures
and limits. For a proof3, the reader may want to consider Adámek et al. [1].

Proposition 4.5 (Adámek, Herrlich and Strecker 1990). If C is (E, M)-
structured, then

(1) M is closed under the formation of products and pullbacks,

(2) M∩MonoC is closed under the formation of intersections4.

Remark If M is closed under the formation of pullbacks, then we also say
that M is pullback stable.

Closure operators

We will now introduce the concept of a closure operator from a category theoretic
point of view. First, however, we recall the definition of a M-subobject and
define what we mean by the image and inverse image of a subobject m under a
morphism:

Definition 4.6. Assume a category C is (E ,M)-structured withM⊆MonoC5.
We define aM-subobject of an object X to be a morphism mεM with codomain
X, that is

m : M −→ X, m εM, and let

M/X = {mεM| codomain m = X}.

We can define a binary relation on M/X given by

m ≤ n⇐⇒ (∃j) with m = n ◦ j.

M
j

  AAAAAAAA
m // X

L

n

??~~~~~~~

Figure 4.9: m ≤ n⇐⇒ (∃j) with m = n ◦ j.

Two M-subobjects (or subobjects, for short) m,n with m ≤ n and n ≤ m are
said to be isomorphic. Allowing this isomorphism to mean equality, the class of
all subobjects M/X give rise to a partially ordered class. In fact, one can say
more, M/X is a complete lattice6 if intersections exist and are again in M.
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M
e

""FFFFFFFF
f◦m // Y

f(M)
m
′

<<yyyyyyyy

Figure 4.10: (E ,M)-factorization of f ◦m.

Definition 4.7. Assume a category C is (E ,M)-structured. Then, for f : X → Y
inMorC and m : M → X inM, the composite can be factorized f ◦m = m

′ ◦ e
with e ε E (see Figure 4.10) and m

′
εM. We define the image of m under f by

f(−) :M/X −→ M/Y

m : M −→ X 7−→ m
′
= f(m) : f(M) −→ Y.

For every morphism f : X → Y and every n εM/Y , if a pullback diagram

M

f
′

��

m // X

f

��
N

n // Y

Figure 4.11: Inverse images are given by pullback.

exists in C, then we say C has M-pullbacks. We call m the inverse image of n
under f and denote it by f−1(n) : f−1(N)→ X where f−1(−) :M/Y →M/X.
If for every family (mi)i ε I in M/X a multiple pullback

M

ji

  AAAAAAAAAAAAA
m // X

Mi

mi

>>}}}}}}}}}}}}}

Figure 4.12: C has M-intersections.

diagram exists in C with mεM/X, then we say C has M-intersections.

Remark One can show that f(−) is left-adjoint to f−1(−) (see 1.1.6).
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Examples

(i) For the categories Frm, with M the class of injective frame homomor-
phisms, and Top, choose M to be the class of embeddings, the image of a
subobject7 M of X, with f : X → Y , is given by set-theoretic image f(M)
considered as a subobject of Y .

(ii) Set, with M the class of injective functions, has inverse-images of subob-
jects A of Y , with f : X → Y , given by set-theoretic inverse-image f−1(A)
considered as a subobject of X.

We can now state the definition of a closure operator. Throughout we assume
two properties:

• M ⊆MonoC and C has M-pullbacks.

Definition 4.8. Assume a category C has a (E , M)-factorization structure. A
closure operator C of the category C with respect to the class M of subobjects
is given by a family C = (cX)X εObjC of maps cX :M/X →M/X such that for
every X εObjC:

(1) (Extension) m ≤ cX(m) for all mεM/X,

(2) (Monotonicity) if m ≤ m
′

in M/X, then cX(m) ≤ cX(m
′
),

(3) (Continuity) f(cX(m)) ≤ cY (f(m)) for all f : X → Y in MorC and
mεM/X.

For anM-subobject m : M → X, the domain of its closure cX(m) will be denoted
by cX(M). It can be shown that conditions (2) and (3) combined, is equivalent
to:

f(m) ≤ n implies f(cX(m)) ≤ cY (n)

for all f : X → Y,m εM/X and n εM/Y .

Examples Throughout we assume that the category C has a (E ,M)-factorization
structure. One can verify that the following are examples of closure operators:

(i) S = (sX)X εObjC with sX(m) = m for all mεM/X (called the discrete
closure operator),

(ii) T = (tX)X εObjC with tX(m) = 1X for all mεM/X (called the trivial closure
operator)

(iii) For a poset (X,≤), we call a function c : X → X a closure operation of X
if for all m,m

′
εX we have

m ≤ c(m) and m ≤ m
′
=⇒ c(m) ≤ c(m

′
).
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If we consider (X,≤) as a category8 C, then every closure operation induces
a closure operator C = (cx)x εX of the category C w.r.t. M with

cx(m) = c(m) ∧ x for all m ≤ x in X .

(iv) For a subset M of a topological space9 X, we define the (Kuratowski)
closure of M in X by

kX(M) = {x εX : U ∩M 6= ∅ for every open set U 3 x }10 = M.

If you choose M to be the class of embeddings, then this defines a closure
operator K = (kX)X εObjTop of Top.

(v) For M/X thought of as the class of subframes L ⊆ X, we can define
the closure of L in X by cX(L) =

⋂
{QεM/X |L′ ⊆ Q } where L

′
=

{ a εX | a εL or a εL }. This then defines a closure operator C = (cX)X εObjFrm
of Frm11.

Remark A closure operator C is then a family of maps that takes a subob-
ject, say of X, and maps it to another subobject of X such that certain properties
hold. In Set, a subset A of a set B will then be mapped to an intermediate subset
cX(A) ⊆ B, and in Frm, a subframe A of a frame L will be mapped to a (larger)
subframe cX(A) ⊆ L.

There is a narrow relationship between a closure operator in Top and a topol-
ogy. We will make this relationship clear, however, we are in need of:

Definition 4.9. An M-subobject m : M → X is called C-closed (in X) if it is
isomorphic to its C-closure, that is, if jm : M → cX(M) is an isomorphism. m
is called C-dense in X if its C-closure is isomorphic to 1X , that is, if cX(m) :
cX(M)→ X is an isomorphism.

M
jm

∼= ##GGGGGGGGGG
m // X

cX(M)

cX(m)

;;xxxxxxxxxx

Figure 4.13: m is C-closed.

M
jm

##GGGGGGGGGG
m // X

cX(M)

cX(m)

∼=
;;xxxxxxxxxx

Figure 4.14: m is C-dense.

Remark One can verify that for subspace inclusion M ↪→ X, K-closed and
K-dense, w.r.t the Kuratowski closure operator K of Top, agree with the usual
topological definitions of closed and dense12.

We now introduce three types of closure operators:
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Definition 4.10. Assume category C has finiteM-unions13. A closure operator
C of category C is said to be

(1) idempotent if the C-closure of a M-subobject of X is C-closed, that is,
cX(cX(m)) = cX(m) for all m : M → X in M,

(2) grounded (for X εObjC) if cX(0X) = 0X
14,

(3) additive (for X) if cX(m ∨ n) = cX(m) ∨ cX(n) for m,n εM/X.

Remark One can show that the Kuratowski closure operator K of Top, w.r.t
the class of embeddings, enjoys all of the above properties. We now make our
point clear with respect to the relationship between a closure operator and a
topology:

In topology, for A ⊆ X, a closure operator is defined as a map cτ : P(X) →
P(X) with cτ (A) = A, that is grounded, extensive, additive and idempotent.
The Kuratowski closure operator K of Top is an example of such closure opera-
tor in topology. Hence we can use an idempotent, grounded and additive closure
operator to characterize closed sets. In turn, we know a topology can be defined
(equivalently) by closed sets, that is, A ⊆ X closed ⇐⇒ X \ A open.

A logical consequence is that in Top an idempotent, grounded and additive
closure operator should characterize a topology15. This is true and we can say
more - the converse is also true: A topology τ

′
can be used to define a closure

operator cτ ′ , where A = X \
⋃
{B ε τ

′ |A ⊆ X \B } with cτ ′ (A) = A.

We have presented the introductory theory to closure operators with a handful
of examples - our aim however is to find a closure operator of Loc. As we restrict
ourselves to the dual category Frm for the remainder of this chapter, a family of
maps in this category should have properties dual to that of a closure operator
of Loc. We will refer to this family of maps as a co-closure operator of Frm.
Before we define it formally, we will need:

Definition 4.11. Let a be an element of frame L. We define sublocales

(1) â = (x 7→ a ∧ x) : L→↓a (referred to as an open sublocale),

(2) ă = (x 7→ a ∨ x) : L→↑a (referred to as a closed sublocale).

One can readily show that the sublocale set associated with the closed sublo-
cale is given by c(a) =↑a. We quite naturally call this the closed sublocale set16.

Let h : L → M be a frame homomorphism and γ : M → N be a sublocale.
The image of γ under h, denoted by h(γ), is the projection homomorphism
(x 7→ xE) : L→ L/E of the congruence

xEy ⇐⇒ γh(x) = γh(y).
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Assume a category C is (E ,M)-structured. Let X/E denote the class of all E-
morphisms with domain X, and define a binary relation on X/E given by

m ≤ n⇐⇒ (∃j) with m = j ◦ n.

X
n

  AAAAAAAA
m //M

N
j

>>||||||||

Figure 4.15: m ≤ n⇐⇒ (∃j) with m = j ◦ n.

Co-closure operators

Definition 4.12. Assume a category C has a (E , M)-factorization structure. A
co-closure operator C of the category C with respect to the class E is given by a
family C = (cX)X εObjC of maps cX : X/E → X/E such that for every X εObjC:

(1) (Extension) m ≤ cX(m) for all mεX/E ,

(2) (Monotonicity) if m ≤ m
′

in X/E , then cX(m) ≤ cX(m
′
),

(3) (Continuity) f(cX(m)) ≤ cY (f(m)) for all f : Y → X in MorC and
mεX/E .

Remark Due to manner in which we defined a binary relation on X/E , the
formulation of the three conditions above is similar to that for a closure operator
with ≤ not being interchanged with ≥. A co-closure operator is nothing but a
closure operator of Cop with respect to Eop.

Examples

(i) For a sublocale set S ⊆ L of frame L, it can be shown that the least closed
sublocale set containing S is given by S =↑

∧
S. Translating this to sublo-

cales, the closure17 of sublocale h : L→M that corresponds to the closure
S is given by c̆ : L→↑c with c =

∨
{x |h(x) = 0 }.

Let E be the class of surjective frame homomorphisms (sublocales) in Frm.
Then the family C = (cX)X εObjC of maps cX : X/E → X/E with

cX(m) = c̆ with c =
∨
{x |m(x) = 0 }

defines a co-closure operator C of Frm with respect to Eop.
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(ii) If we define

cX(m) := m∗m : X → m∗m(X) for every X εObjFrm,

then the family of maps cX : X/E → X/E also constitutes a co-closure
operator C

′
= (cX)X εObjFrm of Frm with respect to Eop.

Note that the right adjoint m∗ is not necessarily a frame homomorphism,
since it does not necessarily preserve existing joins. If m : X → M is a
sublocale, then one can show that m∗m : X → X is a nucleus (see notes
on chap. 3). Furthermore, by Prop. 3.9, m∗m : X → m∗m(X) is an onto
frame homomorphism. We will more often write m instead of cX(m).

Proof. (1) m ≤ m : Let m : X →M εX/E . We need to find a frame homomor-
phism m

′
: cX(X)→M such that j ◦m = m. Define m

′
to be m restricted

to cX(X) := m(X). m
′

is clearly a frame homomorphism.

X
m

""FFFFFFFF
m //M

m(X)
m
′

;;xxxxxxxx

Figure 4.16: m
′

is m restricted to m(L).

Then, for any a εX,

(m
′ ◦m)(a) = m

′
(m(a))

= m
′
(m∗m(a))

= m(m∗m(a))

= (mm∗m)(a) = m(a).

(2) m ≤ n =⇒ m ≤ n: Let m : X → Y , n : X → Z εX/E and assume
m ≤ n. Define a frame homomorphism k : n(X)→ m(X) (see Figure
4.17) by k := m ◦m∗ ◦ j ◦ n

′
= m∗ ◦ j ◦ n

′
. For arbitrary x εX, we have

(k ◦ n)(x) = ((m∗ ◦ j ◦ n
′
) ◦ n)(x)

= (m∗ ◦ j)(n
′
(n(x)))

= (m∗ ◦ j)(n(x))

= m∗(j(n(x))

= m∗(m(x))

= m(x).
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m(X)
m
′

**UUUUUUUUUUU

X
m //

m

bbFFFFFFFF

n

��????????

n||xxxxxxxx
Y

n(X)

k

OO�
�
�
�
�
�
�

n
′

//_______ Z

j

??�
�

�
�

Figure 4.17: Define frame homomorphism k := m∗ ◦ j ◦ n
′
.

k preserves finite meet, since each map in the composite does, and we can
write ai = n(xi) ε n(X), i ε I, since n is onto. Therefore we have
k(
∨
ai) = k(

∨
n(xi)) = (k ◦ n)(

∨
xi) = m(

∨
xi) =

∨
m(xi) =

∨
k(ai).

(3) f(m) ≤ f(m): Let m : X →M εX/E and f : Y → X εMorC. Then
we have f(m) : Y → Y/E (respectively f(m) : Y → Y/E

′
) given by the

congruence xEy ⇐⇒ mf(x) = mf(y) (respectively xE
′
y ⇐⇒

mf(x) = mf(y)) and f(m) := f(m)∗f(m) : Y → f(m)(Y ) (see Figure
4.18 below).

M X
moo

m
������������

Y
foo

f(m)

�����������

f(m)
��<<<<<<<<<<

f(m)

**TTTTTTTTTTTTTTTTTTTTTTTTTTTT
f // X

m //M

m(X)

\\9999999999

Y/E
′oo f(m)(Y )

h
oo_ _ _ _ _ // Y/E

OO

Figure 4.18: f(m) ≤ f(m)

We need to find a frame homomorphism h : f(m)(Y )→ Y/E
′
. Define h to

be f(m) restricted to f(m)(Y ). Clearly this h is a frame homomorphism.
Now we show that h ◦ f(m) = f(m): This will only be true if for arbitrary
y ε Y we have

(f(m)(y))E
′
= yE

′ ⇐⇒ (mf)(y) = (mf)(f(m)(y)).

m(mf(f(m)(y))) = mm(ff(m)(y))

= m(ff(m)(y))

= mf(f(m)(y))

= jf(m)(f(m)(y))

= j(f(m)f(m)(y))

= j(f(m)(y)) = m(f(y))
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Since m∗ preserves order, we have m∗(m(mf(f(m)(y)))) = m∗(m(f(y))).
Consequently, m(mf(f(m)(y)))) = m∗(m(f(y))) and ultimately we have
m(f(f(m)(y))) = m(f(y)), since m is a nucleus.

Remark Since we started out with an arbitrary sublocale m, any nucleus
m∗m formed in this way will give rise to a co-closure operator.

We will conclude this chapter by proving that in fact we only have one example
of a co-closure operator of Frm with respect to E :

Lemma 4.13. The frame homomorphism ν : L → ν(L), formed by the nucleus
ν : L→ L, has right-adjoint the inclusion ν(L)→ L.

Proof. (⇒:) For x εL and y ε ν(L),

x ≤ y =⇒ ν(x) ≤ ν(y) = y.

(⇐:) Trivially, if ν(x) ≤ y then x ≤ y.

Proposition 4.14. Let m : X → L be in X/E. Then the sublocales m∗m : X →
m∗m(X) and c̆ : X →↑c with c =

∨
{x |m(x) = 0 }, are equivalent.

X

m∗m

##GGGGGGGGGGGG
c̆ // ↑c

m∗m(X)

k

;;w
w

w
w

w
w

Figure 4.19: c̆ ≤ m∗m

X

c̆

��???????????
m∗m //m∗m(X)

↑c
h

;;w
w

w
w

w
w

Figure 4.20: m∗m ≤ c̆

Proof. Define k : m∗m(X) →↑c to be c̆ restricted to m∗m(X). Clearly k is a
frame homomorphism. Then for arbitrary x εX we have

(k ◦m∗m)(x) = k(m∗m(x)) = m∗m(x) ∨ c = x ∨ c.
(Trivially, m∗m(x) ∨ c ≥ x ∨ c. Since x ≤ x ∨ c, by Lemma 4.13 we have
m∗m(x) ≤ x ∨ c. Also c ≤ x ∨ c and consequently m∗m(x) ∨ c ≤ x ∨ c.)

Define h :↑c → m∗m(X) to be m∗m restricted to ↑c. Trivially, h is a frame
homomorphism. For arbitrary x εX we have

(h ◦ c̆)(x) = h(c̆(x))

= h(x ∨ c)
= m∗m(x) ∨m∗m(c)

= m∗m(x), since m(x) ≥ m(c).
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Notes

1We can replace condition (1) with:

• if e ε E and h ε IsoC, and h ◦ e exists, then h ◦ e ε E ,

• if mεM and h ε IsoC, and m ◦ h exists, then m ◦ h εM.

2Some authors prefer the terminology factorization system (as defined in chap-
ter 3), while others use factorization structure. These are equivalent notions and
can therefore be used interchangeably.

3The proof rests upon the use of (E ,M)-factorization of morphisms, the di-
agonalization property and Lemma 4.3.

4Let A be a family of subobjects (Ai,mi) of an object B, indexed by a class I.
A subobject (A,m) of B is called an intersection of A provided that the following
two conditions are satisfied:

(1) m factors through each mi, that is, for each i there exists an fi with m =
mi ◦ fi,

(2) if a morphism f : C → B factors through each mi, then it factors through
m.

5MonoC denotes the class of monomorphisms in a category C.
6Arbitrary meet exists (and therefore arbitrary join) and is given by intersec-

tion in M/X. The reader will find a detailed outline of the structure of M/X
in Dikranjan and Tholen [8].

7We can think of a subobject m : M → X as M ⊆ X.

8The objects in C are all x εX and the morphisms are given by f : x→ y ⇐⇒
x ≤ y. One readily sees that there is only one such morphism and therefore every
morphism in MorC is a monomorphism. Consequently, a (E , M)-structure for
morphisms is given by (IsoC,MorC).

9Top is (E ,M)-structured and has M-pullbacks.

10The closure of M can also described as in 1.2.3.

11This category has a (E ,M)-structure for morphisms where E is the class of
surjective frame homomorphisms and M represents the class of injective frame
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homomorphisms. We note that since Frm is complete (this we saw in chapter 3)
it has M-pullbacks.

12A set A ⊆ X is called dense in X if A = X.

13Note that if a category C has M-pullbacks and M-intersections, then C has
M-unions.

140X denotes the least element of M/X.

15One can prove that if c : P(X) → P(X) is an idempotent, grounded and
additive closure operator in Top, then τc := {X \ A |A = c(A) } is a topology
on X.

16The open sublocale set is given by o(a) = {a → x |x εL}. A proof can be
found in Pultr [27].

17The closure of h is the smallest closed sublocale ă such that h ≤ ă.
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Chapter 5

Compactness

In this final chapter we begin with a comparison between three weaker notions
of compactness in the topological setting. We then proceed onto the point-free
setting in which the frame translation of three of the separation axioms serve
as introduction. The chapter concludes with a comparison between the weaker
notions of compactness in this setting.

In chapter 4 our focus centered around closure - we now turn to compactness
which is a very important notion in topology. This importance is reflected in the
keen interest it enjoys amongst researchers and the good many results produced
to date. A brief topological overview of a few well-known weaker notions of
compactness will serve as introduction.

Definition 5.1. A topological space X is called a Tychonoff, T3 1
2

or completely

regular space if X is a T1-space and for every closed set A ⊆ X and x /∈ A there
is a continuous map f : X → [0, 1] with f(x) = 0 and f(y) = 1 for y εA (see
1.2.5).

Remark Note that in the definition the codomain of the map f could also
have been given by [a, b] or R. Also, we see that T3 1

2
⇒ T3 ⇒ T2 ⇒ T1.

We recall that a topological space X is said to be compact if X is a Hausdorff
space and every open cover of X has a finite subcover. We now introduce our
first weaker notion of compactness, called pseudocompactness :

Definition 5.2. A topological space X is called pseudocompact if X is a Ty-
chonoff space and every continuous real-valued function defined on X is bounded.
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Proposition 5.3. Let X be a Tychonoff space. Then X is pseudocompact if and
only if every countable open cover contains a finite subcollection whose union is
dense in X.

Proof. (⇐:) Assume f : X → R is continuous. Define Cn := f−1((−n, n)) for
all n εN. Then Cn is an open cover of X and by assumption there exists a

k εN such that
⋃k
i=1 Ci = Ck = X. Therefore f(X) = f(Ck) ⊆ f(f−1(−k, k))

⊆ (−k, k) = [−k, k] and f is bounded.

(⇒:) Let C = {Cn |n εN } be an open cover of X with n ≤ m ⇒ Cn ⊆ Cm
and assume Cn 6= X for all n εN. For each n there exists xn εX \Cn and therefore
we have a separating map f : X → [0, 1] so that f(Cn) ⊆ {0} and f(xn) = n.
Note that since C is a cover, for all x εX there exists nx = min{n |x εCn }.

For x εX define F (x) :=
∑∞

n=1 fn(x) =
∑nx

n=1 fn(x). Given x εX and for all
n εN such that n ≤ nx we have that fn : X → R is continuous. Thus for ε > 0
and n ≤ nx there exists a neighbourhood Un of x so that for all y ε Un,

| fn(x)− fn(y) | < ε

nx

.

Let U :=
⋂nx
n=1 Un ∩Cnx . Then U is a neighbourhood of x such that for all y ε U ,

|F (x)− F (y) | = |
nx∑
n=1

fn(x)−
nx∑
n=1

fn(y) | < nx �
ε

nx
= ε,

since y εCnx implies that fn(y) = 0, for all n ≥ nx.

One will find a handful of equivalent notions characterizing a pseudocompact
space in Engelking [13]. These characterizations are, depending on one’s need,
more suitable since they utilize the internal properties of the space to define
pseudocompactness - unlike our definition (see 5.2) earlier. We mention one in
particular:

A space X is pseudocompact if and only if for every countable family
{Ui}∞i=1 of open subsets which has the finite intersection property1 the
intersection

⋂∞
i=1 Vi is non-empty.

By using the contrapositive the statement can be rephrased:

A space X is pseudocompact if and only if for every countable family
{Vi}∞i=1 of non-empty open subsets of X with

⋂∞
i=1 Vi = ∅, there exists

a finite set {i1, i2, ..., ik} ⊆ I such that Vi1 ∩ Vi2 ∩ ... ∩ Vik = ∅.
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We will now use this formulation to give an alternative proof to Prop. 5.3:

Proof. (⇐:) Assume every countable open cover of X contains a finite subcol-
lection whose union is dense in X. Assume furthermore that

⋂∞
i=1 Vi = ∅ for a

countable family {Vi }∞i=1 of open subsets of X. Then

∞⋂
i=1

Vi = ∅ =⇒ X \
∞⋂
i=1

Vi = X =⇒
∞⋃
i=1

X \ Vi = X.

X \Vi is open, since Vi is closed. Hence {Wi }∞i=1 := {X \Vi }∞i=1 is a countable
open cover of X. Therefore, there exists a finite set, say {i1, i2, ..., ik} such that

k⋃
m=1

Wim = X

=⇒
k⋃

m=1

Wim = X

=⇒
k⋂

m=1

X \X \ Vim = ∅

=⇒
k⋂

m=1

(Vim)◦ = ∅.

But
⋂k
m=1(Vim)◦ ⊇

⋂k
m=1 Vim , since Vim is open and consequently

⋂k
m=1 Vim = ∅.

(⇒:) Assume that for every countable family {Vi}∞i=1 of non-empty open sub-
sets of X with

⋂∞
i=1 Vi = ∅, there exists a finite set {i1, i2, ..., ik} ⊆ I such that

Vi1 ∩ Vi2 ∩ ... ∩ Vik = ∅. Let {Wi }∞i=1 be an arbitrary open cover of X. Then

∞⋃
i=1

Wi = X =⇒
∞⋂
i=1

Wi = X =⇒
∞⋂
i=1

X \Wi = ∅.

Since Vi is closed, X \Vi is open and hence {Vi }∞i=1 := {X \Wi }∞i=1 is a countable
family of open subsets of X.

We now show that
⋂∞
i=1 Vi = ∅ :⋃∞

i=1Wi ⊆
⋃∞
i=1(Wi)

◦, since Wi is open. But, by assumption,
⋃∞
i=1Wi = X

and therefore
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∞⋃
i=1

(Wi)
◦ = X

=⇒
∞⋃
i=1

X \X \Wi = X

=⇒
∞⋂
i=1

X \Wi = ∅

=⇒
∞⋂
i=1

Vi = ∅.

Hence there exists a finite set {i1, i2, ..., ik} ⊆ I such that Vi1 ∩ Vi2 ∩ ...∩ Vik = ∅.
Furthermore,

k⋂
m=1

Vim = ∅ =⇒
k⋂
i=1

Wi = X =⇒
k⋃

m=1

Wim = X.

Porter and Woods published a paper in 1984 wherein the definition of a feebly
compact space is given as a (Hausdorff) space in which every locally finite family
of open subsets of X is finite. This definition of feeble compactness is attributed
to Mardešić and Papić [21] and Bagley et al. [2] called such a space lightly com-
pact. Included in the paper by Porter and Woods are notions proven equivalent
to feeble compactness - one of these will serve as our definition:

Definition 5.4. A space X is called feebly compact if every countable open cover
of X contains a finite subcollection whose union is dense in X.

Remark If one momentarily recalls the previous proposition, then it is clear
that for a Tychonoff space X, pseudocompactness and feeble compactness are
equivalent notions.

We direct our attention to the third weaker notion of compactness in the topo-
logical setting:

Definition 5.5. A topological space X is called a countably compact space if X
is a Hausdorff space and every countable open cover has a finite subcover.
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Proposition 5.6. Every countably compact space X is feebly compact. Conse-
quently, a countably compact Tychonoff space is pseudocompact.

Proof. Assume X is a countably compact space and let C = {Cn |n εN } be
a countable open cover of X. Then there exists a finite subcover, say C ′ =

{Ci1 , Ci2 , ..., Cik } ⊆ C, and hence
⋃k
j=1 Cij = X.

The following proposition shows that for a normal space, pseudocompactness
implies countable compactness. The proof has been taken from Engelking [13].

Proposition 5.7. Every pseudocompact normal space X is countably compact.

Proof. Assume that X is a normal space which is not countably compact. Thus
there exists a decreasing sequence2 F1 ⊇ F2 ⊇ F3 ⊇ ... of non-empty closed
subsets of X so that

⋂∞
i=1 Fi = ∅.

Choose xi ε Fi, xi 6= xj whenever i 6= j and let A = {x1, x2, ... }. We also have
Ad = ∅3.

Clearly A is a discrete closed subspace of X, and by the Tietze-Urysohn theorem
there exists a continuous function f : X → R such that f(xi) = i for i = 1, 2, 3, ....
Since f is not bounded, the space X is not pseudocompact.

Remark Trivially, every compact space is countably compact and we have
seen that for Tychonoff spaces, countably compactness implies pseudocompact-
ness (feeble compactness). Therefore, a compact Tychonoff space is pseudocom-
pact (feebly compact).

We now continue this chapter by introducing the above-mentioned compact
notions in the point-free setting. We trust that this can be done, provided that
we restrict ourselves to notions and formulations involving open sets. We begin
this transition to the point-free setting by presenting the frame counterpart of
three separation axioms of classical topology:

Definition 5.8. Let x, y be elements of a frame L. We will say x is rather below
y in L and denote it by

x ≺ y if x∗ ∨ y = 14.

We refer the reader to Pultr [27] for a proof of the following Lemma:
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Lemma 5.9. (1) a ≺ b =⇒ a ≤ b and for any a, 0 ≺ a ≺ 1.

(2) x ≤ a ≺ b ≤ y =⇒ x ≺ y.

(3) If a ≺ b, then b∗ ≺ a∗.

(4) If a ≺ b, then a∗∗ ≺ b.

(5) If ai ≺ bi for i = 1, 2 then a1 ∨ a2 ≺ b1 ∨ b2 and a1 ∧ a2 ≺ b1 ∧ b2.

Definition 5.10. A frame L is said to be regular if for each a εL we have

a =
∨
{ b | b ≺ a }.

Lemma 5.11. For U εΩ(X), we have U∗ = X\U .

Proof. We will show that V ⊆ X\U ⇐⇒ U ∩ V = ∅, for V εΩ(X).

(⇒:) Assume V ⊆ X\U . Since U ⊆ U , we have V ⊆ X\U ⊆ X\U and hence
U ∩ V = ∅.

(⇐:) Assume U ∩ V = ∅. This implies that U ⊆ X\V . We know that X\U
= X\

⋂
{B ⊆ X |B closed, U ⊆ B} =

⋃
{X\B ⊆ X |B closed, U ⊆ B}. Then

V ε {X\B ⊆ X |B closed, U ⊆ B} and consequently V ⊆ X\U .

Proposition 5.12. Let X be a topological space. For arbitrary U, V ε Ω(X)

V ≺ U if and only if V ⊆ U.

Proof. Take arbitrary U, V ε Ω(X) with V ≺ U ,

⇐⇒ V ∗ ∪ U = X,

⇐⇒ X\V ∪ U = X, by Lemma 5.11

⇐⇒ V ∩ X\U = ∅,
⇐⇒ V ⊆ U.

Considering frame homomorphisms and the “rather below” notion, it can
readily be seen that these homomorphisms are well behaved with respect to it:

Proposition 5.13. For any frame homomorphism h : L→M , we have that

x ≺ y =⇒ h(x) ≺ h(y).

Proof. The proof is an immediate consequence of h(x∗) ≤ h(x)∗.
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Definition 5.14. Let x, y be elements of a frame L. We will say that x is
completely below y in L and denote it by

x ≺≺ y

if there are xr ε L for r dyadic rational in the interval [0,1] such that x0 = x, x1 =
y and xr ≺ xs for r < s.

The proof of the following lemma follows directly from the definition of “com-
pletely below” and Lemma 5.9:

Lemma 5.15. (1) a ≺≺ b =⇒ a ≤ b and for any a, 0 ≺≺ a ≺≺ 1.

(2) x ≤ a ≺≺ b ≤ y =⇒ x ≺≺ y.

(3) If a ≺≺ b, then b∗ ≺≺ a∗.

(4) If a ≺≺ b, then a∗∗ ≺≺ b.

(5) If ai ≺≺ bi for i = 1, 2 then a1 ∨ a2 ≺≺ b1 ∨ b2 and a1 ∧ a2 ≺≺ b1 ∧ b2.

Definition 5.16. A frame L is said to be completely regular if

for each a εL, a =
∨
{ b | b ≺≺ a }.

Frame homomorphisms not only behave well with respect to the “rather be-
low” notion, we have that:

Proposition 5.17. For any frame homomorphism h : L→M ,

x ≺≺ y =⇒ h(x) ≺≺ h(y).

Proof. For x, y ε L assume x ≺≺ y. By definition there are xr ε L for r dyadic
rational in [0,1] with xr ≺ xs for r < s.

By Prop. 5.13 there are h(xr) εM for r dyadic rational in [0,1] with h(xr) ≺
h(xs) for r < s. Therefore h(x) ≺≺ h(y).

Definition 5.18. We say that a frame L is normal if whenever a ∨ b = 1 for
a, b ε L, there exists u, v ε L such that

u ∧ v = 0, u ∨ b = 1 and a ∨ v = 1.

Remark We know from classical topology that if a space X is completely
regular, then it is also regular. One would naturally like to know if this property
is transfered to the point-free setting. It can readily be verified that it is indeed
the case. However, contrary to our expectation from topology, normality in the
point-free setting does not imply complete regularity.5
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Definition 5.19. A relation R is said to be interpolative if

aRb =⇒ ∃ c, aRcRb.

The proof of the following Lemma was taken from Pultr [27]:

Lemma 5.20. The relation ≺ in a normal frame is interpolative.

Proof. Let a ≺ b in a normal frame L. Then there are u, v such that u ≤
v∗, u ∨ b = 1 and a∗ ∨ v = 1. Thus, a ≺ v and v∗ ∨ b ≥ u ∨ b = 1 so that also
v ≺ b.

Remark As a consequence of Lemma 5.20 one has:

If a frame L is normal and regular, then it is completely regular6.

A question lingers in the back of our minds: How well does the frame transla-
tion of the separation axioms relate to the topological notion? We would like this
relation to be an equivalence, but cannot expect it for all the separation axioms:
Pultr argues that since separation axioms T1 and T2 rely heavily on points, no ex-
act translation to the point-free setting should be expected7. On the other hand,
it is well-known that the notions of regularity, complete regularity and normality
in frames, are equivalent to their topological counterpart.

We will prove the equivalence for complete regularity. Our proof contains an
imitation of the standard construction utilized in the proof of the well-known
Urysohn lemma.

Proposition 5.21. A space X is completely regular if and only if the frame Ω(X)
is completely regular.

Proof. (⇒:) Assume X is completely regular. We must show that

A =
⋃
{B |B ≺≺ A }, for all AεΩ(X).

Since X is completely regular, we have that for every x εX and every neighbour-
hood U of x, there exists a continuous function f : X → [0, 1] such that f(x) = 0
and f(y) = 1 for y εX\U .

Take arbitrary non-empty AεΩ(X) and x εA. Then A is a neighbourhood of

x and hence we have a continuous real function f̃ : X → R such that f̃(x) = 0

and f̃(y) = 1 for y εX\A.

Let Bx := f̃−1([0, 1
2
)). Then Bx is open and Bx ⊆ A. We also have f(x) < 1

2

for all x εBx and f(y) ≥ 1 for all x /∈ A. Therefore Bx ≺≺ A8.
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Since x εA was arbitrary, we have that⋃
{Bx |Bx ≺≺ A } = A.

(⇐:) Assume Ω(X) is completely regular. Take arbitrary x εX and neigh-
bourhood U of x. We need to show that there exists a continuous function
f : X → [0, 1] such that f(x) = 0 and f(y) = 1 for y εX\U .

There exists an open V ≺≺ U with x ε V , since by assumption U =
⋃
{V |V ≺≺

U }. Hence we have the family

{Vi | i ε {0,
1

2n
,

2

2n
, ...,

2n − 1

2n
, 1}, n εN }9,

with V0 = V , and V1 = U . Also each Vi is open and Vi ⊆ Vj for all i < j.

Now define Vt for every t ε [0, 1] by

Vt :=
⋃

r εA,r≤t

Vr.

This Vt is well-defined and Vt is open for each t ε [0, 1] with the property

Vt ⊆ Vt′ , ∀ t, t
′
ε [0, 1], t < t

′
.

Now define a function f : X → [0, 1] by

f(x) :=

{
inf{ t ε [0, 1] |x ε Vt }
1 if x /∈ Vt, ∀ t ε [0, 1]

Since x ε V0 ⊆ Vt this implies that f(x) = 0. Also for y εX\U we have f(y) = 1,
since Vt ⊆ U,∀ t ε [0, 1].

We still have to show that f is continuous:

Pick x εX and put tx := f(x) ε [0, 1]. Let ε > 0. We must show that there
exists W εUx such that ∀ y εW ,

| tx − f(y) | ≤ ε.

Define W by W := Vtx+ε ∩ (X\V tx−ε) where we set

Vtx+ε = X if tx + ε > 1,

Vtx−ε = ∅ if tx − ε < 0.

Clearly W is open and we now show that x εW :
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(i) x ε Vtx+ε: This is clear if tx = 1, since then V1+ε = X. If tx ε [0, 1] then by
definition of f there is a t ε [0, 1] with x ε Vt and tx < t < tx + ε.

(ii) x /∈ Vtx−ε: This is clear if tx − ε < 0, since then Vtx−ε = ∅. If tx − ε ≥ 0,
then by definition of f we have x /∈ Vtx− ε2 , but then x /∈ V tx−ε.

By definition of f , yε Vtx+ε implies that f(y) ≤ tx + ε and y /∈ V tx−ε implies that
f(y) ≥ tx − ε. Consequently we have

| tx − f(y) | ≤ ε

for all y εW and thus f is continuous.

We can now introduce the weaker notions of compactness in the point-free
setting. We start off with a frame translation of classical pseudocompactness
(see 5.2) - it is therefore necessary to introduce the reals in a point-free way:

Definition 5.22. The frame of reals is the frame L(R) generated by all ordered
pairs (p, q) where p, q εQ subject to the following relations:

(1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),

(2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,

(3) (p, q) =
∨
{ (r, s) | p < r < s < q },

(4) 1 =
∨
{ (p, q) | p, q εQ }.

Remark One notes that this bears a likeness to the interval topology of the
real line.

Definition 5.23. For a frame L, a frame homomorphism ϕ : L(R) → L is said
to be bounded if there exists p, q εQ such that ϕ(p, q) = 1. We say that L is
pseudocompact whenever all these ϕ are bounded.

One might ask if this notion of pseudocompactness is an equivalent transla-
tion of the topological one. It is indeed10:

One can show that there is a one-one onto map

Frm(L(R),Ω(X))→ Top(X,R)

defined by taking ϕ to ϕ̃ such that

p < ϕ̃(x) < q ⇐⇒ x εϕ(p, q).

Therefore ϕ is bounded (∃ p, q with ϕ(p, q) = X) if and only if ϕ̃ is bounded (for
some p, q, p < ϕ̃(x) < q for all x). As a result we can immediately say
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The space X is pseudocompact if and only if the completely regular
frame Ω(X) is pseudocompact.

Definition 5.24. An element a of L is said to be dense if a∗ = 0.

Proposition 5.25. If every countable cover of a frame L contains a finite subset
whose join is dense, then L is pseudocompact.

Proof. Assume every countable cover of L contains a finite subset whose join is
dense. Furthermore, assume there exist a frame homomorphism ϕ : L(R) → L
which is not bounded.

Let A = { (−n, n) |n εN }. Clearly A is a countable cover of L(R) and conse-
quently ϕ(

∨
A) =

∨
(ϕ(A)) = 1, where ϕ(A) = {ϕ(−n, n) |n εN }.

Therefore ϕ(A) is a countable cover of L. By assumption there exists a finite
subset B ⊆ ϕ(A) such that (

∨
B)∗ = 0.

For n ≤ m, where n,m εN we have that (−n, n) ≤ (−m,m) and therefore
ϕ(−n, n) ≤ ϕ(−m,m), since ϕ preserves order. Therefore B has to attain a
maximum, which we denote by n0 = max{n |ϕ(−n, n) εB }.

Then h(−n0, n0) =
∨
B and consequently we have h((−n0, n0)∗) ≤ h(−n0, n0)∗

= (
∨
B)∗ = 0. As a result, h((−n0, n0)∗) = 0 and thus h((−,−n0)∨ (n0,−)) = 0,

since for any p < q, (p, q)∗ = (−, p) ∨ (q,−).11

But h((−n0 − 1, n0 + 1) ∨ a) = h(1) = 1, where a = (−,−n0) ∨ (n0,−), and
hence h(−n0 − 1, n0 + 1) ∨ h(a) = 1. Since we have that h(a) = 0, this implies
that h(−n0 − 1, n0 + 1) = 1.  

Pseudocompactness has been researched to a great extent and consequently
many results have been obtained. We mention that Gilmour and Banaschewski
(1996) characterized pseudocompactness in terms of the co-zero part of a frame
(Prop. 2), while in a more recent article by Dube and Matutu [12], one will
find pseudocompactness characterized by both external (Prop. 3.5) and internal
(Prop. 4.1) properties. We mention that, in both articles, these characterizations
are shown for a general frame, complete regularity is not imposed.

For our purposes, an external characterization of pseudocompactness is not
ideal and consequently we will more often favour the following internal charac-
terization:

Proposition 5.26 (Banaschewski and Gilmour 1996). A frame L is pseu-
docompact if and only if any sequence a1 ≺≺ a2 ≺≺ ... such that

∨
ai = 1 in L

terminates, that is, there is ak = 1 for some k.
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One can now give an alternative proof of Prop. 5.25 by using this internal
characterization:

Proof. Let a1 ≺≺ a2 ≺≺ ... be an arbitrary sequence such that
∨
ai = 1 in L.

Then A = { ai | i εN } is a countable cover of L. From our assumption, there
exists a finite subset B = { a2, a2, ...., ak } ⊆ A with (

∨
B)∗ = 0.

Since ai ≺≺ ai+1 for all i, we have that ai ≤ ai+1 for all i and consequently
(
∨
B)∗ = (ak)

∗ = 0. But also ak ≺≺ ak+1 which implies that ak ≺ ak+1 and
hence ak+1 = 1.

Remark Note that we have not utilized the full potential of the “completely
below” notion in the proof: If we substitute ≺≺ with ≺, then the proof will still
hold.

The frame translation of the topological definition of feeble compactness, as
afforded by Mardešić and Papić [21], is given as: a frame L is feebly compact
if every locally finite12 subset of L is finite. For our purposes, a more useful
characterization is given by:

Proposition 5.27 (Hlongwa 2004). A frame L is feebly compact if and only
if for every countable cover U of L there exists a finite W ⊆ U such that∧
{w∗i |w εW } = 0.

Since
∧
{w∗i |w εW } = (

∨
W )∗, one notices that the notion above is equiva-

lent to:

Definition 5.28. A frame L is feebly compact if every countable cover of L has
a finite subset the join of which is dense in L.

Remark Since the point-free definition of feeble compactness is taken as the
direct translation of its topological counterpart, an immediate consequence is:

A space X is feebly compact if and only if Ω(X) is feebly compact.

Before introducing the third and final weaker notion of compactness in the point-
free setting, we mention that a frame L is compact if every cover of L has a finite
subcover.

Definition 5.29. A frame L is said to be countably compact if every countable
cover of L has a finite subcover.

Trivially, every compact frame is countably compact. One would also expect
the following result:

Proposition 5.30. If a frame L is countably compact, then it is also feebly
compact.
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Proof. Assume frame L is countably compact and take an arbitrary countable
cover A = { ai | i εN } of L. By our assumption there exists a finite B =
{ a1, a2, ..., ak } ⊆ A with

∨k
i=1B = 1. Hence (

∨
B)∗ = 0.

Remark We have shown that countable compactness implies feeble compact-
ness, and by Proposition 5.25, feeble compactness in turn implies pseudocom-
pactness. Consequently, a countably compact frame is pseudocompact.

For a Tychonoff space X, pseudocompactness and feeble compactness were
shown to be equivalent notions. One might ask if this property is transferred to
the point-free setting. The one direction is immediate and has been proven. In
his Ph.D thesis, Hlongwa (2004) attempted the reverse direction, but unfortu-
nately his proof (Prop. 5.2.7) fails.

Hlongwa assumed a completely regular frame L to be pseudocompact, but
not feebly compact. His aim was then to show that the σ-frame Coz(L) is not
compact. To prove this, he defined a cover S of Coz(L) as the countable union
of sets Si of co-zero elements. The error lies in the fact that since each Si is not
necessarily countable, S is not necessarily a countable set.

When considering the scheme below, one will note the strikingly similar rep-
resentation between the definition of pseudocompactness (1) and feeble compact-
ness (3), with an additional notion (2) (to make the point more clear) included
in between.

a1 ≺≺ a2 ≺≺ .... with
∨
ai = 1 =⇒ ∃ ak = 1 for some k. (1)

⇑
a1 ≺ a2 ≺ .... with

∨
ai = 1 =⇒ ∃ ak = 1 for some k. (2)

⇑
a1 ≤ a2 ≤ .... with

∨
ai = 1 =⇒ ∃ (ak)

∗ = 0 for some k. (3)

This similarity then served as motivation to further consider the potential
equivalence between pseudocompactness and feeble compactness in the category
of completely regular frames. Through private communication it is believed to
be true and the proof is in process of verification.

One might wonder if there is any equivalence between countable compactness
and the other (weaker) compact notions. Hlongwa (2004) attempted to prove
that for a completely regular frame, pseudocompactness implies countable com-
pactness. Regrettably his proof (Prop. 5.3.4) is based on the same erroneous
reasoning as before and therefore the conjecture still stands unproven.

Also, if one briefly recalls Prop. 5.7, then we can arguably say that to hope for
an equivalence, assuming complete regularity alone, might seem too ambitious.
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However, assuming an additional notion, i.e. paracompactness13, an equiva-
lence does exist:

Proposition 5.31 (Dube and Matutu 2007). A completely regular frame is
countably compact iff it is pseudocompact and countably paracompact.

And without assuming any additional compact notion or imposing a sepa-
ration axiom, one will find (as a Corollary in Dube and Matutu [12]) that the
Boolean frames14 are exactly the frames in which countable compactness and
pseudocompactness are equivalent notions:

Corollary A Boolean frame is pseudocompact if and only if it is
countably compact.
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Notes

1We say that a family F of subsets of a set X has the finite intersection
property if F 6= ∅ and

⋂
F ′ 6= ∅ for every finite set F ′ ⊆ F .

2This condition is equivalent to a space X not being countably compact. See
Engelking [13] for more details.

3A point x in a topological space X is called an accumulation point of a set
A ⊆ X if x εA\{x}; and we denote the set of all accumulation points of A by
Ad.

4The definition can also be formulated, equivalently, as:

x ≺ y if x ∧ z = 0 and y ∨ z = 1 for some z ε L.

5An additional property, referred to as subfitness, is required. See Pultr [27]
for more detail.

6Provided we assume the Axiom of Dependent Choice:
Given any relation R on a set E such that, for each x εE, (x, y) εR for some y εE,
there exists a sequence x0, x1, ... in E such that (xn, xx+1) εR for all n = 0, 1, 2, ....

7We refer the reader to Pultr [27] wherein point-free notions broadly related
to T1 and T2 are considered.

8We made use of the following Corollary from Banaschewski [4]:

Corollary For any space X, U ≺≺ V in Ω(X) iff there exists a
continuous real function f on X such that f(x) < 1

2
for all x εU and

f(x) ≥ 1 for all x /∈ V .

9This follows from the frame definition for completely regular and also from
Prop. 5.12.

10The reader will find a more detailed account of this fact in Banaschewski and
Gilmour [5].

11We refer the reader to Banaschewski [4] for a proof of this result.

12A subset A of a frame L is locally finite if there exists a cover C of L such
that each element of C meets only finitely many elements of A.
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13A frame L is said to be paracompact if it is regular and if each cover of L
has a locally finite refinement. One will find a detailed account of the theory of
paracompactness in Pultr [27].

14A Boolean frame is a frame in which every element is regular, i.e. a∗∗ = a.
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Final remarks

In the earlier chapters the introductory ideas and concepts in the point-free set-
ting were presented and the notion of a co-closure operator was introduced in our
pursuit to better understand closure in this context. The benefit of such a pursuit
was that closure can be studied in the comfort of the category of frames, rather
than locales. In the final chapter the interrelationship between three weaker no-
tions of compactness in frames were uncovered. As a whole, this thesis has lain
the foundation for study plans to come.

Such future plans include exploring the option of finding co-closure operators,
essentially different from those previously mentioned, in frames and studying the
properties of these operators.

A closer look at the relationship between the three weaker (and other) com-
pact notions will be taken on. Pseudocompactness and its connection to feeble
compactness will receive a more comprehensive inquiry and how to use an appro-
priate notion of closure to express this as a type of compactness in the categorical
sense.

Thereafter, we will proceed to seek“Kuratowski-Mrowka” type theorems (sim-
ilarly to that done in Pultr and Tozzi [28]) for other well known compactness like
properties - countable compactness, Lindelöf and sequentially compact being the
first candidates. Providing a unified framework for better understanding of these
compact properties in the category of frames, will be undertaken.
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Matemática. Série B [Texts in Mathematics. Series B], 12. Universidade de
Coimbra Departamento de Matemática, Coimbra.
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