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ABSTRACT 

An overview of modern and historical interest rate model theory is given with the 

specific aim of derivative pricing.  A variety of stochastic interest rate models are 

discussed within a South African market context.  The various models are 

compared with respect to characteristics such as mean reversion, positivity of 

interest rates, the volatility structures they can represent, the yield curve shapes 

they can represent and weather analytical bond and derivative prices can be found.  

The distribution of the interest rates implied by some of these models is also found 

under various measures.  The calibration of these models also receives attention 

with respect to instruments available in the South African market.  Problems 

associated with the calibration of the modern models are also discussed. 

OPSOMMING 

'n Oorsig van moderne en histories belangrike rentekoersmodelle word gegee met 

die oog op die prysing van afgeleide instrumente.  Die modelle word bespreek in 'n 

Suid-Afrikaanse konteks en die onderskeie modelle word vergelyk met betrekking 

tot, rentekoers strukture, volatiliteits strukture en terugkeer eienskappe.  Formules 

vir effekte en rentekoers-afgeleides onder die verskillende modelle word ook 

ondersoek.  Die statistiese verdelings van rentekoerse onder verskillende mate en 

of die verskillende modelle positiewe rentekoerse toelaat geniet ook aandag.  Dit 

word geillustreer hoe die modelle gekalibreer kan word met behulp van 

instrumente wat beskikbaar is in die Suid-Afrikaanse mark.  Probleme met die 

kalibrasie van die moderne modelle word ook bespreek. 
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NOTATION 

Probability Measures �
 Real world probability measure. �
  Traditional risk neutral measure (when M(t) is the numéraire). � � ���

 Risk neutral measure when the asset N(t) is the numéraire. � ��
 T-forward risk neutral measure when the bond B(t,T) is the numéraire. 

 

Expectations  � �� �
  Expectation with respect to 

�
. � � �� �

  Expectation with respect to 
�
 . �  ! " #$% &

  Expectation with respect to 
� � ���

. ' ( )*+ ,
  Expectation with respect to - ./

. 

 

Partial Derivatives are denoted by a subscript 0 1 234 5 6
 7 8 9: ; < =>>  ? @ ABC D E
 F G HI J K LMM  N O PQ QR S T
 U U V W XY Z [ \]]  

 

Interest Rates ^ _` a
 The short rate. b c de f g

 The continuously compounded spot rate. h i i jk l m n
 The continuously compounded forward rate. o p qr s t

 The instantaneously compounded forward rate. u v w xy z {
 The market instantaneously compounded forward rate. | } ~� � �
 The simply compounded spot rate. � � � �� � � �

 The simply compounded forward rate. 
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GLOSSARY 

ALBI.... All Bond Index.  An index consisting of the 20 largest S.A. government and corporate bonds.  
The ALBI is also subdivided into two other indices, the GOVI and the OTHI.  Also see GOVI, OTHI. 

BESA.... Bond Exchange of South Africa 

Cap.... An interest rate derivative that is made up of a sequence of caplets.  A cap can be seen as a 
European call option on the forward rate over a specified period.  It is primarily used to hedge the 
risk of a surge in interest rates.  Also see Floor, Caplet. 

Caplet.... An interest rate derivative that forms the basic building block of a cap.  A caplet can be 
seen as a European call option on a simply compounded forward rate over a single tenor period.  
Also see Cap, Floor, Floorlet. 

CIR.... Cox-Ingersoll-Ross 

Day Count Convention.... The convention according to which the distance between two dates are 
measured. 

DFB.... Default-Free Bond 

Floor.... An interest rate derivative that is made up of a sequence of floorlets.  A floor can be seen as 
a European put option on the forward rate over a specified period.  It is primarily used to hedge 
the risk of a decline in interest rates.  Also see Cap, Floorlet. 

Floorlet.... An interest rate derivative that forms the basic building block of a floor.  A floorlet can be 
seen as a European put option on a simply compounded forward rate over a single tenor period.  
Also see Floor, Cap, Caplet. 

Forward Curve.... The yield curve of instantaneous forward rates.  Also see Yield Curve. 

Forward Rate Agreement.... A bilateral agreement that fixes the interest rate over a future time 
period on a fixed size loan. 

FRA.... Forward Rate Agreement 

GOVI.... An index consisting of all government bonds used in the construction of the ALBI index.  
Also see ALBI, OTHI. 

IRS.... Interest Rate Swap 

Interest Rate Swap.... See Swap. 

HJM.... Heath-Jarrow-Morton 

JIBAR.... Johannesburg Inter Bank Acceptance Rate 

Market Makers.... Those institutions that are always willing to buy and sell and earn their income 
from a bid-offer spread.  These institutions provide liquidity to the market.. 

MtM.... Mark to market 

Numéraire.... The numéraire can be any strictly positive non-dividend paying asset price process. 

LIBOR.... London Inter Bank Offer Rate. 

OTHI.... An index consisting of all corporate bonds used in the construction of the ALBI index.  Also 
see ALBI, GOVI. 
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PDE.... Partial Differential Equation 

SAONIA.... South African Over Night Interbank Average 

SDE.... Stochastic Differential Equation 

Spot Curve.... The yield curve of instantaneous spot rates.  Also see Yield Curve. 

SVD.... Singular Value Decomposition 

Swap.... A bilateral agreement between two parties to exchange a fixed rate of interest for a 
floating rate on some nominal amount N. 

Swaption.... An option on a swap contract.  The strike price of the option is the swap rate at which 
the swap contract will be initiated.  The tenor of the swap is the period over which the swap 
contract will be in effect. 

Term Structure of Interest Rates.... See, Yield Curve. 

Volatility Structure.... A function associating some aspect of a derivative (usually the time to 
maturity) with a volatility.  In the case of swaptions it is the two dimensional function associating 
the time to maturity and the tenor length with a volatility  

Yield Curve.... A real valued function associating interest rates with time.  Can also be used to refer 
to a family of equivalent definitions of the same function, e.g. a function for the instantaneous 
forward rate and the equivalent function for the instantaneous spot rate and the equivalent 
function for the simple compounded spot rate etc. 

Zero Curve.... See Spot Curve. 

ZCB.... Zero Coupon Bond 

 



 

 

C h a p t e r  1  

INTRODUCTION 

1.1 Overview 

Though the literature on interest rate modelling is vast, this dissertation attempts to highlight 

fundamental academic and practical concepts surrounds a few important models to serve as a 

general but informative introduction to interest rate modelling theory with reference to 

derivative pricing. 

In the pricing of equity and exchange rate derivatives, there are two main factors that affect the 

derivative price, 

1) volatility of equity prices and  

2) volatility of interest rates. 

For these derivatives, the second factor is often assumed to be deterministic because the effect of 

interest rate fluctuations on the derivative price is overshadowed by the effect of fluctuations of 

equity prices on the derivative price. 

When dealing with interest rate derivatives however, the volatility of interest rates is the only 

factor affecting the price of the derivative and the assumption that the yield curve follows a 

known function of time will prove inaccurate.  Therefore, from the need for accurate interest rate 

derivative pricing stems the need for stochastic interest rate modelling. 

Chapter 3 introduces descriptive yield curve models that do not incorporate randomness but 

reflect the current state of the yield curve implied by market instruments.  This will be used to 

calibrate the models in chapters 4 and 5.  Considerations for models selection and calibration are 

discussed in section 3.3. 

Chapter 4 introduces endogenous yield curve models and compares the characteristics of three 

historically important yield curve models, the Vasicek model, the Dothan model and the Cox-

Ingersoll-Ross model. 
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Chapter 5 introduces exogenous yield curve models and elaborates on the current "state of the 

market" interest rate models.  The Hull-White model, the Heath-Jarrow-Morton framework and 

the LIBOR market models are inspected and their place in the market is discussed. 

Finally Chapter 6 concludes with some foresight into the direction of current research and briefly 

discusses the state of interest rate modelling in the South-African market as well as the 

applicability of the models from chapters 4 and 5 to the South African environment. 



 

 

C h a p t e r  2  

DEFINITIONS 

2.1 Introduction 

The chapter starts with a list of general definitions that are important throughout this 

dissertation.  Section 2.3 gives defines the various incarnations of interest rates and yield curves.  

The chapter ends with an overview of the important explanations for the shape of the yield curve 

observed in markets. 

2.2 General Definitions 

The following is a list of fundamental definitions which will prove essential for a thorough 

understanding of the later chapters. 

Definition 2.2.1 Short Rate 

The short rate, R(t), is an � ���
-measurable quantity representing the annualised, 

instantaneous rate of interest that will be earned over an infinitesimally small time 

increment following t. 

Remark 2.1: This will be the primary quantity of interest for an entire class of interest rate models, 

some of which will be discussed in chapters 4 and 5.  The short rate will be modelled with an Ito 

process. 

Definition 2.2.2 Money Market Account 

The money market account, � �� �
, is  an � ���

-measurable quantity representing the value 

at time t, of an investment of 1 at time 0, in a bank account which accumulates interest at 

the short rate.  An expression for � �� �
, in terms of the short rate, is given by (2.1). 

 � � �� � � � � � �� � �� �  (2.1) 

Remark 2.2: � �� �
 is the numéraire in the traditional risk neutral world.  All general asset price 

processes expressed with � �� �
 as the denominator will be martingales in the traditional risk 

neutral world. 
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Definition 2.2.3 Stochastic Discount Process 

The stochastic discount process, �  ¡ ¢
, is the value at time 0 of an investment of 1 at time t, 

in a bank account which accumulates interest at the short rate.  An expression for �  ¡ ¢
 in 

terms of the short rate is given by (2.2). 

 £ ¤ ¥¦ § ¨ © ª « ª¬ ­ ® ¯° ±  (2.2) 

Multiplying a time t cashflow by �  ¡ ¢
 gives the equivalent cashflow at time 0.   

Remark 2.3: Note that ²³ ´µ ¶ · ¸¹ º »
. 

Definition 2.2.4 Default-Free Zero Coupon Bond 

A zero coupon bond, ¼ ½ ¾¿ À Á
, is an Â ÃÄÅ

-measurable quantity representing the no-arbitrage 

value at time t, of a payoff of 1 at time T.  An expression for Æ Ç ÈÉ Ê Ë
 in terms of the short 

rate is given by (2.3). 

 ÌÍ Î Ï Ð Ñ Ò Í Ï Ó Í ÏÔ
ÕÖ × Ø Ù Ú Û Ü Û ×Ý Þß àáâã äå æ áâ áã äâ áâç èé êë ì

 (2.3) 

Remark 2.4:  In accordance with the fundamental theorem of asset pricing, the expectation is 

taken under the traditional risk neutral measure, i.e. the measure under which discounted stock 

prices are martingales.  All general asset price processes expressed with Æ Ç ÈÉ Ê Ë
 as the 

denominator will be martingales under the T-Forward measure, í îï
. 

Default-Free zero coupon bonds are the fundamental building blocks of default-free bonds which 

trade in the market.  The values of these bonds are dependent on unknown future interest rates 

and since these bonds trade in the market today they must reflect investors' expectation of future 

interest rates. 

Definition 2.2.5 Day Count Conventions 

The method by which the distance between two dates, t and T, is expressed as a fraction of a 

year, is referred to as the day count convention. 

The number of years between two dates t and T will be defined by ð ñ òó ôõ  where t < T.  Exactly 

how ð ñ òó ôõ  should be calculated depends on the specific day count convention.  This text does 

not commit to a specific day count convention and merely refers to ð ñ òó ôõ  whenever a day count 
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convention is appropriate.  An important application of day count conventions is in the 

determination of the accrued interest between two dates for coupon bearing bonds. 

Remark 2.5: When T and t are very close together ö ÷ øù ú ú ùû ü ý . 

Example 2.1 (Day Count Conventions).  All South African bonds use the day count convention of 

þ ÿ �� � � � � �
.  This convention assumes that there are 365 days in a year and interest is accrued for each 

day in the compounding period.  The R153 bond issued by the South African government has a 

coupon rate of 13% per annum and coupons are paid biannually on the 28th of February and the 

31st of August.  Suppose we are interested in finding the amount of interest accrued on the 15th 

of June 2005 since the last coupon date.  The actual number of days between the 28th of February 

2005 and the 15th of June 2005 is 107.  Therefore the total amount of interest accrued on the 

15th of June is 
� � 	
 � � 
 � � � � 
� � . 

Definition 2.2.6 Default-Free Fixed Coupon Bond 

The value of default-free coupon bond, � � � � � � � � �� � � � � � � � �� , is an � � !
-measurable 

quantity representing the value at time t of a notional N at time T and coupon payments at 

rate C with coupon intervals given by the day count convention " # $% &' . 

The present value at time t of a default-free bond can be constructed using default-free zero 

coupon bonds as follows, 

 (() * * ) * + * * + ) * + ) * + , ) * +- . . ../ 0 1 2 3 2 3 4 5 5 4 3 3 1 2 3 5 1 2 36 6 789 :;
. (2.4) 

Remark 2.6: In this dissertation it is assumed that all South African government bonds are default-

free and can be constructed from default-free zero coupon bonds.  The allowance for default risk 

on these bonds is beyond the scope of this text.  The terms default-free bonds, government bonds 

and bonds will be used synonymously throughout this dissertation. 

Definition 2.2.7  Stock Price Process 

In a market with d sources of uncertainty represented by a d-dimensional Brownian motion 

vector < => ?
, let the short rate process be given by R(t), the filtration be given by @ ABC

 and 

let D EFG  and D EFH  be measurable processes.  The stock price process is given by (2.5) and its 

differential form is given by (2.6). 
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 I JKLKM MN O N P O Q R S N O N O N O N OT TU V U W W X W W X Y WZ [ [\ ] ^ _` `
 (2.5) 

 ab c b c b c b c b c b c b c b c b c b c b cd e eef g h h g h f h g h h f i h h g h f h g h h f i hj k j klm n m n op
 (2.6) 

2.3  Interest Rates Definitions 

There are two features which define an interest rate quotation, 

(1) The Day Count Convention and 

(2) The Compounding Frequency. 

Every interest rate quotation must specify both these quantities to be uniquely identifiable.  Any 

interest rate quotation can be transformed into an equivalent quotation for a different day count 

convention or compounding frequency.  These compounding frequencies fall into two broad 

categories, 

(1) Continuously compounded and 

(2) Simply Compounded. 

These two categories are described below. 

Definition 2.3.1  Continuously Compounded Spot Rate 

The continuously compounded spot rate of interest between t and T, q r st u v
,  is  an w xyz

-

measurable quantity representing the constant implied rate of interest associated with a 

zero coupon bond { | }~ � �
, expressed as the rate at which interest accrues continuously over 

the life of the contract.  An expression for � � �t u v
 in terms of { | }~ � �

 is given by (2.7). 

 �� � �� � � � � � � �� �� � � � � ��� �  (2.7) 

Remark 2.7: Note that (2.7) can be rewritten in the form, 

 � � � � � � � � � � � � � �� � � � � � � � ¡ ¢ .  

Definition 2.3.2  Simply Compounded Spot Rate 

The simply compounded spot rate of interest between t and T, £ ¤ ¥¦ § ¨
, is an w xyz

-

measurable quantity representing the constant implied rate of interest associated with a 
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zero coupon bond B(t,T), expressed as the rate proportional to the length of the contract.  An 

expression for © ª «¬ ­ ®
 in terms of ¯ ° ±² ³ ´

 is given by (2.8). 

 µ ¶ · ¸¶ · ¸ ¶ · ¸¹ º » ¼ ½ ¾½ ¾ ¼ ½ ¾¿ À Á Â ÃÄ  (2.8) 

Remark 2.8: Note that (2.8) can be rewritten in the form, 

 ÅÆ Ç È Æ É Æ Ç È Æ Ç È ÈÊ Ë Ì Ë Ì Í Ë ÌÎ ÏÐ Ñ .  

Definition 2.3.3  Forward Rate Agreement 

An FRA is a bilateral agreement at time t between parties A and B, where A agrees to borrow 

N from B over [S,T] at an interest rate K with day count convention of Ò Ó ÔÕ Ö× .  The value of 

the FRA at time t is given by 2.9. 

      
Ø Ù Ù Ù Ø Ù Ú Ù Ù ÚÛ Ü Ý Þ ß à ß à á âã  (2.9) 

The payoff of the contract for counterparty B at maturity T will be, 

 ä å æ ç ä å æ èé ê ë ì í ê ëî ï .  

A logical question can now be raised.  What will constitute a fair value for K?  The fair value for K 

will be that value for which the contract value is zero at the outset.  Therefore K = ð ñ òó Õ Ö
 will be 

fair.  Unfortunately ð ñ òó Õ Ö
 is unknown at the outset (i.e. time t) since it is a future spot rate.  The 

expected value of ð ñ òó Õ Ö
 will be determined using arbitrage arguments. 

Suppose large institutions can always borrow and lend at the risk free rate, then any large 

institution can effectively lock in the rate of interest, under the current term structure for a future 

period.  Suppose they wish to lock in the rate at which they can borrow N over the future period 

[S,T].  In order to receive N at S,  

a) they borrow N. ô õ ö÷ ø ù
 up until time T and  

b) lend out N. ô õ ö÷ ø ù
 up until time S.  

Table 2.1 shows the institution's capital flows over the life of the contract. 
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Table 2.1: Cashflows in an FRA contract 

Time Capital Inflow Capital Outflow Net 

t N.B(t,S) -N.B(t,S) 0 

S N 0 N 

T 0 -N.(1+ ú û üý þÿ K) -N.(1+ ú û üý þÿ K) 

 

K can be solved using the fundamental theorem of asset pricing.  The fair value of K will be that 

value which makes the expected value of the net cashflows equal to zero under the traditional 

risk neutral measure.  The net present value of the cashflows is, 

 � � � �� � � � � �� �� �	 
 � 
 	 
 � 
� 
 � � � � 
�� �� �� �
  

Each of the net cashflows in Table 2.1 is discounted back to time t.  The expectation of this 

quantity has must be taken to infer the value of K, since it depends on unknown future short 

rates.  Taking the expectation yields, 

 

�
� �

� � � �
� � � �

� � � � � � � � � � �  
� � � �  � � � � � � � � � �  !

" #$ $" #$ $
% & ' & % & ' &

% & ' & % & ' &
( ) * ) + , - * .
( * . + , - ( * .

/
/

0 0
0 0

1 2 3
1 2 3

4 4
4 4 5

5 5   

The remaining expectations have the form as in Definition 2.2.4 of the zero coupon bond and the 

above expression can therefore be written as, 

6 7 8 9 7 : 7 8 9 9 7 8 9; < = = > ? ; < >@A B C . 

From this the fair value of K can be solved, 

D E F D E FGD E F D E FH I J H I KJ K H I KL M NO . 

Remark 2.9: An FRA is an interest rate derivative and an important building block of many other 

interest rate derivatives such as swaps, caps and floors. 

Definition 2.3.4  Simply Compounded Forward Rate 
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The simply compounded forward rate of interest, P Q Q RS T U V
, represents the fair borrowing 

rate implied by an FRA(t, S, T, W X YZ [\ , K, 1) contract.  An expression for P Q Q RS T U V
 is given by 

(2.10). 

 ] ^ _ ] ^ _`] ^ _ ] ^ _a b b c d e f d e gf g d e gh i j k l mn  (2.10) 

Remark 2.10: From the arbitrage arguments leading to the fair value of an FRA we can see that P Q Q RS T U V
 can be intuitively interpreted as our best guess of W X Yo Z [

 given the information 

available at time t.  This is the prime modelling quantity underlying a whole class of interest rate 

models and will receive further attention in chapter 5 when the LIBOR market models are 

discussed. 

Definition 2.3.5  Continuously Compounded Forward Rate 

The continuously compounded forward rate, p q q rs t u v
, is the simply compounded forward 

rate P Q Q RS T U V
, expressed with continuous compounding.  An expression for p q q rs t u v

, in 

terms of the corresponding simply compounded rate P Q Q RS T U V
, is given by (2.11). 

 wx y z{ | | } ~ � { � { | } { | | } }� �� � � � � � � � � �� �� �  (2.11) 

Remark 2.11: Note that expression (2.11) can be rewritten as, 

 � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � �� �� �
.  

Definition 2.3.6  Instantaneous Forward Rate of Interest 

The instantaneous forward rate, � � �� �  
, is the instantaneous continuously compounded 

forward rate at time T implied by the term structure of interest rates at  time t.  An 

expression for the instantaneous forward rate in terms of the simply compounded forward 

rate is given by (2.12). 

 ¡ ¢ £ ¤ ¥ ¦ ¡ ¢ ¢ £§ ¨© ª « ¬ ª ­ «®¯  (2.12) 

Remark 2.12: The instantaneous forward rate is the prime modelling quantity for an entire class of 

interest rate models.  These models will receive further attention in chapter 5 when the Heath-

Jarrow-Morton framework is discussed. 

Remark 2.13: If the definition of the simply compounded forward is substituted into the definition 

of the instantaneous forward rate, it follows that, 
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° ± ² ³ ± ² ³´ ± ² ³° ± ² ³ ± ² ³´± ² ³ °´± ² ³

µ ¶ · ¸ ¹ º µ ¶ ¶ ·
¸ ¹ º

¸ ¹ º
µ ¶ ·

» ¼ » ½ ¼ » ½ »» ¼ » ½ »» ¼ » ½ ¼ » ½ »»¼ » ½ » ½¼ » ½

¾ ¿ À Á ¿ À À ¿

Â ¿ À

Ã ÃÃ ÃÃ ÃÃÃ

ÄÅ Æ ÇÇÅ Æ Ç
Å ÈÈ

É Ê
É
É
É Ë

  

finally, recognising that this is the derivative of the natural logarithm, leads to  

 Ì Í Î Ï Ð Ì Í Î ÑÒÓ Ô Õ Ö Ô Õ××Ø Ù  (2.13) 

Remark 2.14: By integrating the above expression the value of a zero coupon bond can be written 

as, 

 Ú Û ÜÝ Þ ß àá â ã ä å äæ ç è é êë ì  (2.14) 

But the definition of a zero coupon bond states that, 

 í î ïð ñ ò ó ô ð ò õö÷ ø ù ú ùû ü ý þ ÿ ü�� � �
  

Therefore, just like � � � �� � 	 

 is our best guess of � � 
� � �

 so also is � � �� � �
 our best guess of � �� �

 

given the information up to time t. 

Remark 2.15: Also note that, from (2.14) it follows that, 

 � � �� � � � � � � � � � � � � � � � � � � � � �� � �
��  ! " # "$ ! % ! & ' ! & ! % ' ! % % & ' ! % &$ ! & ( ( () ) )*+ + +,

 (2.15) 

so that - . . /0 1 2 3
 can also be rewritten in the following form, 

 4 5 6 4 5 6 4 5 6 4 5 64 5 6
7 8 8 9 : ; < : ; : = < : == ;> ? @ A B BB CD . (2.16) 

Remark 2.16: It has been mentioned that for small intervals [t,T] it will be assumed that E F GH I I HJ K L .  From this an alternative expression can be derived for M N OP Q R
. Starting at (2.13), 

 

S T U V W S T U
S S T U S T U U
S S T U S U U X

Y
Y
Y

Z [ \ ] [ \
^ [ \ [ \
^ [ \ \ [

_
`` `` ``

a b
a b b
a b b b

  

Finally, using the chain rule, expression (2.17) is obtained. 
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 c d e c d e c e c d efg h i j h i i h j h ikkl m n  (2.17) 

This is why a forward curve always intersects the equivalent spot curve at the turning points in 

the spot curve.  Figure 2.1 illustrates this phenomenon.  It can also clearly be seen how the 

instantaneous forward curve magnifies movements in the corresponding spot curve and is 

effectively more volatile.  It is due to this characteristic that the market forward curve is often 

used for model-fitting rather than the corresponding spot curve. 

Table 2.2 summarises the interest rate relations derived in this section. 

Intersection of Spot and Forward Curves

0 2 4 6 8 10 12

Time to maturity (years)

Spot Yield Curve Forward Yield Curve

 

Figure 2.1: An illustration of how the continuously compounded forward curve always intersects the 
continuously compounded spot curve at the turning points. 
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Table 2.2: Relations Between Interest Rate Definitions 

 Zero Coupon Bond 
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Compounded Forward 
Rate 

Instantaneous Forward 
Rate 

Spot Rate Short Rate 
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Definition 2.3.7  Floating Rate Note 

A floating rate note provides a series of interest payments on the dates � �� �� � � � � � �� � �
.  The 

interest rate that will be paid on the dates ��
 are reset on the dates ��� �

 for � � � � � �� �� .  At 

each reset date, ��� �
, the rate that will be paid at ��

 is set equal to the prevailing LIBOR rate, 

��   ¡¢ ¢£ ¤ ¤¥ .  At maturity the notional is repaid along with the floating interest rate. 

The period, ¦§ ¨ ©ª ª« «¬ ­  over which the rates are fixed is called the tenor of the note and is usually 

equal to 3 or 6 months. 

Example: A floating rate note that has a tenor of 3 months and maturity of 12 months will pay ®̄° ± ² ³´
 at the end of month 3, µ µ¶ ·¸ ¹ º»

 at the end of month 6, µ ¼· ¶¸ ¹ º»
 at the end of month 9 and 

½̄° ² ¾ ³´
 at maturity in one year's time. 

Definition 2.3.8  Caplet 

A caplet ¿À Á Á Á ÂÃ Ä ÄÅ Æ Ç È ÈÉ  is the value at time t of a European call option on the simply 

compounded forward rate ÊË Ì ÍÎ ÎÏ Ð ÐÑ  over one tenor period, ÒÓ Ô ÕÖ Ö× ×Ø Ù , with a strike price of 

ÚÛ
 and maturity ÜÝ

. 

For the strike price ÚÛ
 the payoff of a caplet at time ÜÝ

 is, 

Þ ßà àá â ã ä å æ á â ã â çè è è è éê ê ë ê ê ëì í í î . 

It can be shown that, when ïð ñ òó óô õ õÑ  can be assumed to be log-normally distributed at maturity, 

by taking expectations and discounting the above expression, will yield the well know Black-

Scholes stock pricing formula.  Though this assumption is seldom realistic, it is the market 

convention to price caplets using the Black-Scholes formula. 

The purpose of a caplet is to provide insurance against a rise in the interest rate above the level LK, 

that is paid by a floating rate note. 

Definition 2.3.9  Cap 

A cap ö÷ ø ø ø ùú û ûü ý þ ÿ ÿ�  is the value of an insurance contract that provides protection against 

the interest rate of a floating rate note rising above LK. 

The value of a cap is merely the sum of the corresponding sequence of caplets. 
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Definition 2.3.10  Yield Curve 

A real valued function that associates interest rates with a future time T, is referred to as a 

yield curve. 

If the function associates the time T with the spot rate 
� � �� � �

, it is called a spot yield curve or a 

zero coupon yield curve. 

   ,0� � 	 
 � 	 �
 � � � � � � �� � �  (2.18) 

If the function associates the time T with the forward rate � � �� � �
, it is called a forward yield curve. 

   ,0� � 	 
 � 	 �
 � � � � � � �� � �  (2.19) 

Remark 2.17: The yield curve at time t will be the primary modelling quantity of chapter 3.  Figure 

2.1 shows the yield curve on the 5th of December 2005 as quoted by the Bond Exchange of South 

Africa. 

Spot Yield Curve (5 December 2005)
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Figure 2.2: Government Bond Yield Curve on 5 December 2005. 

The South African bond market often represents a humped yield curve.  The three most common 

shapes for yield curves are, 

(1) Increasing, 

(2) Decreasing and 

(3) Humped 
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When modelling interest rates it is important that the proposed model is capable of representing 

all possible shapes which can be expected from a given market.  When the various models are 

discussed in future chapters, specific attention will be paid to this feature. 

2.4 Term Structure Theories 

Numerous theories exist which explain the different shapes of yield curves observed in financial 

markets.  The four most prevalent theories and the possible shapes that they allow will be 

discussed in turn. 

2.4.1 The Expectations Theory 

Under the expectations theory, the expectations of investors with regards to future interest rate 

movements are the primary driving factor of the term structure.  If short term interest rates are 

expected to fall, there will be an increased demand for investments with a longer maturity.  

Consequently the demand for long term bonds will rise and the term structure will be decreasing.  

The inverse will be true if investors expect a decrease in the short term interest rates. 

The most common approach to making this theory mathematically tractable is by setting, 

   S < T
� � � � � � � �� � ! "  ! "# $ #% &  (2.20) 

This has the following two implications, 

Due to the fact that ex is a convex function, we know from Jensen's inequality that ' ( ) ) * + ' ) * ,- . / 0 - . /1
.  Therefore the current forward rate is greater than the expected future 

spot rate. 

From the relation between the continuously compounded forward rate and the instantaneous 

forward rate in table 2.2, it can be seen that, 

                     

                    

232
3 23 32 2 33 32 2

4 5 6 6 7 8 4 5 6 8
4 5 6 8 4 5 6 8

4 5 6 6 9 8 4 5 6 9 6 7 8

:
: : :
: :

; < < = > ? >
= > ? > = > ? >

; < < ; < <

@
@ @

@

A B
B A
B A A A A

C
C C

  

Multiplying both sides of the above equation by two and using relation (2.20) it can be seen that, 
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D E F G G D H E F G G I H E F G I G D H
E G I H E I G D HJ K J K

L M M L M M L M M
L M M L M M

N N
O N O N

P P P P P
P P P

Q
Q  (2.21) 

However it is also follows from (2.20) that, 

 R S T U U R V R S U R VW XY Z Z Y Z Z[ \ [] ]^ . (2.22) 

Now, from the relation between the continuously compounded spot rate _ ` ab c d
 and the 

instantaneous forward rate e f gh i j
 in table 2.2, it is clear that, 

                     

                    

klk l kl lk k ll lk k

m n o p m n p
m n p m n p

m n q p m q n o p

r
r r r
r r

s t t u t v w v
u t v w v u t v w v

s t t s t t

x
x x

x

y z
z y
z y y y y

{
{ {

  

Substituting this into the right hand side of (2.22) yields, 

 | } ~ � � | � } � � � } � � | �� �� � � � � � � � �� � �� � � � ��  (2.23) 

Therefore equating (2.21) and (2.23) it can be seen that, 

 � � � � � � � � � � � � � � � � � �� � � � � �� � � � � � � � � � � �� � � � � �� � � � � � ��   

That implies that � � � � �� � � �
� � � � � �� � �   and ¡ ¢ £ ¤ ¥ ¢¡ ¢ £ ¤ ¥

¦ § § ¨ § §© ª ª ª ª«  are uncorrelated, which is 

unlikely.  This deficiency is addressed by the arbitrage-free pricing theory. 

2.4.2 The Liquidity Preference Theory 

Under the liquidity preference theory, investors prefer more liquid investments and require 

additional compensation for holding investments with a longer term to maturity.  Consequently, 

there will be a risk premium associated with long term bonds because they are more sensitive to 

interest rate movements.  The liquidity preference theory gives rise to an increasing term 

structure curve. 

2.4.3 The Market Segmentations Theory 

The demand for bonds of various maturities is the primary driving factor of the term structure of 

interest rates.  Some investors (such as banks) have a high demand for short termed instruments 

while other investors (such as pension funds) have a high demand for longer termed instruments.  
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The relative demands for the various types of instruments ultimately determine the term 

structure.  The market segmentation theory can give rise to a humped yield curve. 

2.4.4 Arbitrage-Free Pricing Theory 

This extensive theory is based on the law of one price and assumes that no arbitrage 

opportunities must persist in efficient markets.  Arbitrage-free pricing theory can be used to pull 

together the expectations, liquidity preference and market segmentations theories.  All three yield 

curve shapes can be attained under the arbitrage free pricing theory given a sufficiently complex 

model is used.  This text will focus on this theory and its application with respect to interest rate 

models. 

2.5 Summary 

This chapter introduced the various incarnations of interest rates and yield curves and also 

presented some basic interest rate derivatives which will be referenced in the forthcoming 

chapters.   

The next chapter will introduce the concept of a non-stochastic, descriptive yield curve model 

which will be used to calibrate the stochastic interest rate models of chapters 4 and 5. 

 



 

 

C h a p t e r  3  

DESCRIPTIVE YIELD CURVE MODELS 

3.1 Introduction 

Descriptive yield curve models reflect a static view of the yield curve based solely on the latest 

market data.  No historical data is used in the construction of a descriptive mode and the primary 

goal of these models is to give an accurate reflection of the yield curve implied by current prices.  

Descriptive yield curve models have many uses but cannot explain the evolution of the yield curve 

into the future.  In order to forecast this evolution, more sophisticated stochastic models like 

those in chapters 4 and 5 are required.  If interest rates are thought of as a movie, then descriptive 

models will try to reflect a single frame of that film whereas a stochastic yield curve model will try 

to reflect the entire flow of interest rates.  Practitioners that price interest rate derivatives prefer 

stochastic models which return prices that are consistent with today's market prices.  Therefore 

the more sophisticated models of chapter 5 have to be calibrated using, amongst others, a 

descriptive yield curve model. 

This chapter represents the first step in the calibration process of some of the more advanced 

stochastic models.  It starts with a brief overview of the application areas of descriptive models 

and a discussion of how market data for model calibration should be selected.  This follows with 

an in depth look at the yield curve methodology currently used by all major South African 

investors, the Bond Exchange of South Africa's (BESA) yield curve methodology.  The chapter ends 

with a worked example of the BESA yield curve methodology. 

3.2 Applications of Descriptive Yield Curve Models 

The most important applications of descriptive models are: 

(1) They can be used to identify arbitrage opportunities between over- and under-priced 

bonds. 

(2) They give an idea of which term structure of interest rates is implied by market data e.g. 

swap rates, bond prices or Johannesburg Inter Bank Average Rates (JIBAR) rates. 

(3) They can be used to value forward contracts on bonds. 

(4) They can be used as input for the calibration of exogenous interest rate models. 
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(5) They can be used to inspect monetary policy. 

(6) They can be used to construct yield indices. 

3.3 Considerations for Calibration 

Before constructing a descriptive yield curve model, it is important to understand the objective of 

the model.  If the primary aim of the model is to assist with bond pricing, then bonds should be 

used as calibration securities.  If on the other hand the goal is to price swap contracts then market 

swap rates should be used in its construction. 

Three broad classes of rates are used when constructing descriptive yield curve models: 

(1) Money Market Rates, 

(2) Forward/Swap Rates and 

(3) Default Free Interest Rates. 

The literature has proven it difficult to build a single model that produces market consistent prices 

across all three classes of underlying instruments.  Consequently, separate models must be 

constructed and the derivatives that are to be priced will determine which instruments must be 

included in the calibration procedure.  Table 3.1 shows which descriptive yield curve models can 

be constructed and which South African securities are used to extract the required data. 

Table 3.1: Calibration Securities for descriptive yield curve models 

 (1) Money Market Rates (2) Forward / Swap Rates (3) Default Free Rates 

Calibration 
Securities 

Overnight and Inter-

bank rates. 

Swap contracts, FRA's 

and futures1 

Government Bonds 

Securities 
used in the 

South-African 
Market 

SAONIA, JIBAR rates 2, 3, 4, 5, 10 year2 swap 

rates.  FRA rates for all 3-

month periods up to 1 

year. 

R194, R153, R157, R186, 

R201, R203, R204 

 

                                                        
 
 
1
 A convexity adjustment is required for converting futures rates into an equivalent FRA rates. 

2
 6-9 year swap rates are also available but are insufficiently liquid to be used for calibration purposes. 
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These are not the only considerations when selecting calibration instruments, risk premiums and 

liquidity preferences should also be taken into account.  Suppose a model of the default free rates 

is required, then defaultable bonds cannot be used for calibration since they include a risk 

premium, using illiquid riskless instruments will also pose a problem since they include a liquidity 

premium.  Using either of these securities will lead to a skewed view of the risk free yield curve. 

Due to the small size and liquidity constraints of the South African market, some of these curves 

may be joined after taking account of some liquidity or risk premium adjustment.  For example, it 

is often found that the short end of the descriptive yield curve constructed from government 

bonds has a poor resolution.  This is because there are usually few government bonds with 

imminent maturity.  This can be remedied by joining the short end of the swap curve with the 

bond curve. 

There are two approaches to descriptive yield curve modelling, 

a) Parametric Modelling and 

b) Spline Based Modelling. 

Parametric modelling is primarily used in econometric and actuarial applications where 

parsimony is of greater concern.  Spline based models on the other hand is more concerned with 

goodness-of-fit.  For derivative pricing it is important that the calibrated model reflects current 

market prices and not admit arbitrage opportunities.  Consequently, spline based models are 

preferred for derivative pricing. 

There is a vast amount of literature surrounding spline based interpolation methods.  

Unfortunately a detailed explanation and comparison of the various techniques is beyond the 

scope of this document.  The interested reader can consult Hagan and West (2006) for comparison 

of various interpolation methods applicable to the South African market. 

In the South African market there is no consensus regarding construction of descriptive yield 

curves based on forward and swap rates.  There is however a method for the construction of bond 

yield curves which enjoys widespread appeal.  This technique is described by Quant Financial 

Research (2003) and can also be used to construct swap curves.  It is used by BESA as well as by 

various other market makers. 
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3.4 BESA Yield Curve Methodology 

In 2001 BESA commissioned Quant Financial Research to develop a methodology for constructing 

zero coupon yield curves, specifically suited to the South African market.  These curves had to 

provide suitable accuracy in the relatively small and illiquid South African market.  The 

development process took nearly three years to complete but the methodology, though quite 

technical, is very robust and flexible.  Not only can this yield curve methodology be applied to 

extract yield curves from bonds but also from swaps, futures or any number of different 

instruments for which the cashflows and present values are known.  In fact, since it is usually the 

case that there are no bonds that expire within the next day, week or month, the bond yield curve 

is often augmented by the short end of the swap curve.  The BESA methodology provides a 

combined approach to constructing such an augmented curve.  The swap and bond prices are 

simultaneously used by the procedure and a curve is extracted from all inputs provided.  It is not 

necessary to construct two separate curves and then join them. 

This section gives an overview of the BESA methodology which is followed in the next section by a 

worked example using bond data from the 12th of December 2005.  This approach to finding the 

yield curve is formulated as a multidimensional optimisation problem.  Such problems are usually 

characterised by: 

(1) The solution space to be searched. 

(2) The objective function, measuring the quality of a candidate solution. 

(3) An optimisation algorithm used for searching the solution space. 

(4) A convergence criterion, signalling the end of the procedure. 

3.4.1 The Solution Space 

The set of financial calibration instruments from which the yield curve must be extracted is 

denoted by, 

 ¬ ­® ¯ °± ± ² ² ² ±³ ³ ³ ³´ . (3.1) 

The set µ  is not limited to any specific type of instrument.  The set of all cashflow dates from set 

µ  will be denoted by, 

 ¶ ·¸ ¹º º » » » º ¼½ ¾ ½ ¾ ½ ¾ ½ ¾¿ . (3.2) 

Also define, 
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 À Á ÂÃ Ä Å ÆÇ È È È Ç Ç ÉÊ Ë Ê ËÌ ÍÎ Ï Ï Ï ÐÑ Ñ . (3.3) 

From the set Ò , a cashflow matrix is constructed with a row for each instrument and a column for 

each cashflow date.  The cashflow matrix is denoted by, 

 i j where  is the cashflow of  on date ÓÔ Õ Ô ÕÖ × × Ø ÙÚ ÛÜ Ý Þß à . (3.4) 

The methodology prescribes that cashflows be entered in such a fashion that the present value of 

each row should be zero when discounting under the desired yield curve.  Consequently the first 

entry is equal to minus the market value of the instrument.  The reason for this will become clear 

once the multi-dimensional optimisation problem is stated below. 

Denote the (n+1) dimensional spot curve corresponding to the cashflow dates of á â  by, 

 ã äå æç ç è è è çé êë ë ë ëì , (3.5) 

where í î ç ïð ðë ñ òì  from Definition 2.3.1. 

Also define, 

 ó ôõ ö÷ ÷ ø ø ø ÷ù úû û û ûü  (3.6) 

where ý þ ÿ �� �� � ��  and 

 � �� 	
 
 � � � 
� 
� � � �� , (3.7) 

where ��  is a discreet approximation to � � � ��� �
 (the instantaneous forward rate from Definition 

2.3.6).  The construction of �  using � , is discussed in appendix A. 

Denote the (n+1) dimensional discount vector as a function of the spot yield curve �  by, 

 � �� � � ��  ! ! " " " ! # #$ % & % & % &' ( ) ) )* * *+ . (3.8) 

The optimisation problem can now be formulated as follows. 

Multidimensional Optimisation Problem: Let , -. /  be an objective function and take 0 1
 where 2 3 4 4 4 3 3 56 78 8 8 89 : ; Find an n+1 dimensional vector <  that optimises , -. /  such 

that equation (3.9) holds within some tolerance level = . 

 > ? @A B C DE F  (3.9) 



Chapter 3: Descriptive Yield Curve Models 

 

23

Remark 3.1: From this formulation it is clear why the cashflow matrix C had to be constructed 

such that the present values of the rows are zero.  The problem reduces to one of finding the rates G  which brings H IJ K L
 close enough to zero. 

Note that this is an underdetermined system with more unknowns than equations.  As such BESA 

provides two different zero curves on a daily basis.  These curve are calculated from the daily close 

prices of bonds in the GOVI index.  The first is a "Perfect Fit" curve for which MN O  and the second 

is a "Best Decency" curve for which MN P .  Finding solutions to each problem follows a similar 

course and thus only the "Perfect Fit" case will be discussed since practitioners who wish to price 

derivatives are only interested in those solutions that give a "perfect fit", in other words, which 

price the calibration securities perfectly.  The "perfect fit" restriction imposes a constraint on the 

solution space for each calibration security and will consequently decrease the degrees of freedom 

of the solution space by the number of securities, m. 

Since the system is underdetermined i.e. C has strictly more columns than rows, no unique 

solution exists for the discount vector Q RS T
.  Singular value decomposition (SVD) can however be 

used to find the null-space of C, i.e. the space consisting of all vectors U  such that VW X Y
.  The 

SVD form of C is given in (3.10). 

 Z Z Z Z Z Z
[\ ] ^ _

` a ` a a a a ab c cd e d e e d e e d e
 (3.10) 

where f fg g h h ij j  and W is a diagonal matrix of the singular values of C. 

Let B contain those columns of V corresponding to the diagonal entries of W that are zero.  It can 

be shown that the columns of B form a basis for the null-space of C.  The multidimensional 

optimisation problem can now be reformulated for the "Perfect Fit" case, 

Multidimensional Optimisation Problem: Let k lm n  be an objective function and take o p
 where q r s s s r r tu vw w w wx y .  Since z{ | } ~

 holds for all n-m+1 dimensional vectors � , 

find that �  that optimises � �m n . 

The dimensionality of the problem has now been reduced from n+1 to n-m+1. 

Remark 3.2: Note that any solution � , can be transformed back to a zero curve � , by calculating 

the discount vector, 
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 � ��� � � � � � � �� � � � � �� � . (3.11) 

Hence, the zero rates can be computed using: 

 � � � � � � � � � � � � � � ��� ��� ��   . (3.12) 

3.4.2 The Objective Function 

This section defines a measure called Decency, which will be used as the objective function, ¡ ¢£ ¤ , 

specified in the formulation of the multi-dimensional optimisation problem. 

Each candidate solution is characterised by the n-m+1 points.  The candidate solution space is 

therefore an n-m+1 dimensional vector space that has to be searched for the "best" candidate.  

The BESA methodology defines three criteria which characterise a solution, 

(1) Global Smoothness, 

(2) Local Smoothness and 

(3) Goodness of Fit. 

These three criteria are combined into a single expression called the Decency.  This Decency is 

defined to be the objective function of a multidimensional minimisation problem.  The "best" 

candidate will then be the one with the "best" Decency. 

3.4.2.1 Global Smoothness 

As the name suggests, the global smoothness criterion is a measure of the overall roughness of a 

candidate yield curve.  The global smoothness is defined as the quadratic variation of the 

quadratic forward curve and can be calculated as: 

 ¥ ¦ §¨§
© ª « ¬ ¬¬­ ® ¯ ° ± ± ± ²³´ µ¶

. (3.13) 

It has been shown that forward curves are more volatile than their implied spot curves.  It is due to 

this fact that forward curves actually magnify deficiencies in the spot curves, that the global 

smoothness is defined on ·  rather than the ¸ . 

Remark 3.3: In general a candidate with a lower Global Smoothness will be better. 
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3.4.2.2 Local Smoothness 

In contrast, the local smoothness is a measure of roughness between the individual points of the 

quadratic forward.  The local smoothness is defined as the quadratic variation of the first 

derivative of the quadratic forward curve given by: 

 ¹ º» ¼¼½ ¾ ¿ ¿ÀÁ Á ÁÂ Â ÂÃÄ Å Æ Ç ÈÉ É ÉÉ É ÉÊË ÌÍ
. (3.14) 

Remark 3.4: In general a candidate with a lower Local Smoothness will be better. 

3.4.2.3 Goodness of Fit 

The goodness of fit is a measure of how accurately a candidate solution prices the calibration 

securities.  The goodness of fit is defined as: 

 ÎÏÐ Ñ ÑÑÒ Ó ÒÔÕ Ö , (3.16) 

where × ØÙ Ú Û Û Û Ú ÜÝ Ý ÝÞ  is the solution of: 

 ß à áâ ã ä åæ ç
. (3.15) 

Remark 3.5: Note that gi is the required parallel shift in the yield curve in order to price èé
 

precisely.  For the BESA "Perfect Fit" curve êë ì  and for the "Best Decency" curve êë í .  In 

general a lower g is associated with a higher goodness-of-fit and therefore a candidate with a 

lower g generally will be better. 

3.4.2.4 Decency 

The Decency combines the above three criteria into a single objective function to be minimised.  

The Decency is given by: 

 îï ð î ïñ ñ ò ñ ò ò óô õö õ÷ ø ù ú û ü ù ø ù ú û ü ø ý øþþ ÿ� � � � . (3.17) 

For the "perfect fit" case this reduces to: 

 �� � �� � � � � � �� 	
 	� � 
 � � � 
 � 
 � � � ��� �� � � . (3.18) 

The choice of weights will not be subjective and is discussed in section (3.4.5). 

Remark 3.6: A candidate with a lower Decency value will be better. 
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3.4.3 The Multidimensional Optimisation Algorithm 

Our multidimensional minimisation problem for the "Perfect Fit" case is now as follows, 

Multidimensional Minimisation Problem: Since �� � � �
 holds for all n-m+1 dimensional 

vectors � , find the �  that minimises the Decency when w3 = 0. 

The BESA methodology assumes that the solution space contains only one global minimum and 

no local minima.  The BESA methodology further recommends the use of the Conjugate Gradient 

search method of Fletcher and Reeves, as amended by Polak and Ribiere as the optimisation 

algorithm, see Numerical Recipes in C (1992).  A detailed explanation of this technique is beyond 

the scope of this document but the basic principle is fairly intuitive.  The algorithm essentially 

starts out at an initial point in the solution space and then uses an intelligent scheme for 

traversing this space in search of the global minimum of some objective function (in this case, 

Decency). 

Algorithm: Polak-Ribiere Conjugate Gradient Minimisation Algorithm 

Inputs: An objective function � �� �  !  and a starting point " #$ $ % $ $ %& ' ' ' & ( )* * * +, . 

Outputs: That -.  which minimises the objective function. 

 
(1) Determine the direction of movement for the next step.  All conjugate gradient algorithms 

start out by moving in the steepest decent direction on the first iteration i.e. the direction in 

which the objective function decreases the fastest.  The steepest decent direction is given by 

the vector of partial derivatives of the objective function i.e. Decency, at /0 , 

 1 23 3 33 3 4 3 3 45 6 7 7 7 68 8 89 :; ; ;< = > >? @A A AA A AB B . (3.19) 

Since the optimisation procedure is a minimisation problem, it moves down this slope.  In the 

case of a maximisation problem one would move up the slope.  The direction of movement 

on the first iteration is therefore, 

 C CD EF G . (3.20) 

(2) Calculate the next candidate HI  using 3.21. 

 J J JK K K KL L MNO O OP Q  (3.21) 
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RS  is the optimal distance to be travelled as given by some line search algorithm.  A 

discussion of the various line search algorithms is beyond the scope of this text but the 

interested reader can refer to Numerical Recipes in C (1992) for further information. 

(3) Determine the direction of movement for the next step.  It can be shown that moving in the 

steepest decent direction on each iteration is not optimal.  A direction is chosen which is 

conjugate to the previous one.  Set the direction of movement for the next step to, 

 TU U U UV W VX YZ [ \ . (3.22) 

Various choices of ]^
 exist and some can be shown to be optimal for certain types of 

problems.  The Polak-Ribiere form for ]^
 is, 

 __ _
` a bc c cbc cd d de d df gg gh iij . (3.23) 

Steps 2 & 3 are iterated until the differences between the decencies of successive candidates 

decrease to below a certain threshold for a sufficient number of iterations. 

3.4.4 The Convergence Criteria 

The BESA methodology defines the concept of "Blur" as convergence criterion.  Blur is measured on 

the path along which each point on the zero curve has moved over past iterations.  The algorithm 

will only converge if each point of the latest candidate is "close enough" to its historical 

exponentially weighted mean. 

Let kl  be the ith candidate solution in a Polak-Ribiere execution cycle.  For each kl  the 

corresponding spot yield curve must be calculated.  Let 

m no p oq r s t t t su u u u vw x y z w w{ { , 

where |}  is the spot yield curve corresponding to candidate ~�  and �� ��
 is the discount factor 

corresponding to candidate ~�  with maturity tj.  Also define, 

�� �� � � � � � � � � � � � � ��� � � ��� �� � , 

where �� ��  is the continuously compounded spot rate corresponding to candidate ~�  with maturity 

tj. 
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The search path � ���  of the Polak-Ribiere algorithm has now been transformed into an 

equivalent set of yield curves �  ¡¢ .  The exponentially weighted mean and standard deviation of 

each point on the yield curve is sought.  The weighting parameter is £ . 

Define, 

 ¤¥ ¦¦§ ¨©ª « , (3.25) 

 ¬­ ® ¯ ° ± ® ² ² ² ® ³´ µ¶ ¶ ´ µµ· ¸¹ º»¼ ½  and (3.26) 

 ¾¿À Á Â Ã Ä Á Å Å Å Á ÆÇ ÈÉ É Ç ÈÈÊ Ê ËÌ ÍÎÏ Ð . (3.27) 

Next, calculate the exponentially weighted mean and standard deviation of each point on the 

yield curve, along the search path of the Polak-Ribiere algorithm by using (3.28) and (3.29). 

 Ñ Ò Ó Ô Ñ Õ Õ Õ Ñ Ö×ØÙ ÚÛ Ü  (3.28) 

 Ý Þ ß à á Þ â â â Þ ãä ä äå å æ åç èé êêë  (3.29) 

The distance of each point of the current candidate from the far tail of its distribution is calculated 

using, 

 ì ì í î ï ð í ñ ñ ñ í òó ó ó óôõ ö ÷ø ù ú û
, (3.30) 

 where BESA currently recommends ü ý þÿ � .  This distance, at each point, is then converted into a 

mispricing per R1m.  The blur is defined as the maximum mispricing over all points on the 

candidate curve and is defined by: 

 
� ��� � � � � 	 � 
 � � �� �
 � � � � � �� � �  (3.31) 

Convergence occurs once the blur becomes less than some predetermined tolerance. 

Blur can be understood as follows.  The final solution will be found only once the value of blur is 

small enough.  This value will only be small if each point in the final solution is fairly close to it's 

long run average.  The "weight of past candidates" or the "influence of past candidates" in the long 

run mean and standard deviation decays exponentially fast according to the choice of � .  This 

means that initial candidates will have little impact on the shape of the final solution after a 

sufficient number of iterations.  This in turn allows the candidate solutions to settle into the true 

average/best solution before the final candidate gets accepted. 
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3.4.5  The Minimisation Procedure 

Once the objective function, the optimisation algorithm and the convergence criteria have been 

defined, it is possible to formulate a minimisation routine. 

Algorithm: BESA Minimisation Procedure 

Inputs: A starting point �� , from which to begin the optimisation process.  Other inputs are 

defined below. 

Outputs: A vector ��  which minimises Decency and for which the blur is within tolerance. 

(1) Initialise the weights for the objective function and reset the blur value.  Currently BESA 

prescribes an equal initial weighting. 

(2) Perform a fixed number of conjugate gradient iterations. 

(3) Recalculate the weights for the objective function.  If the change in the weights remain 

unchanged up to within two decimal places, continue to Step 4 else return to Step 1 and 

initialise the procedure with the new weights.  The reweighing procedure is not difficult but 

quite tedious, refer to the original article Quant Financial Research, (2005) for full details. 

(4) Calculate the blur on the current history since the last time new weights were established 

and the procedure was reset.  If the blur value is not within tolerance, return to Step 2.  This 

tolerance is another input variable to the algorithm and currently equal to a maximum 

mispricing at any point of R5 per R1m.  If this blur value is within tolerance, tighten the 

tolerance, return to Step 2 and reset the conjugate gradient algorithm until the tolerance has 

been tightened n times.  The value of n is another input to the procedure and presently, BESA 

recommends a value of 5.  If the tolerance has been tightened n times, the minimisation is 

complete. 

Once the minimisation routine had finished, the final solution ��  can be converted into a set of 

points on the continuously compounded spot yield curve, using expression (3.13).  This spot curve 

will be denoted by �� .  Finally, since a continuous curve is required and not merely a set of points 

on the curve, the points have to be interpolated. 

Remark 3.7: It is recommended that ��  be calculated using (3.32), where ��  is calculated using the 

bootstrap procedure discussed in Appendix B. 

 � � !"# $ % &'  (3.32) 
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3.4.6 Interpolation 

It has been shown, see Adams and Van Deventer (1994), that the interpolation function which 

yields the smoothest continuously compounded forward curve is a quartic spline.  This is in 

contrast with a cubic spline which can be shown to yield the smoothest continuously 

compounded spot curve.  Yet a smooth forward is more desirable due to the aforementioned 

reasons that the forward curve magnifies blemishes in the spot curve.  A quartic spline will be fit 

to () , the final solution of the minimisation procedure of the previous section. 

A quartic spline is a series of fourth order polynomials fitted between each two dates. 

 * + , - . /0 1 2 3 2 2 4 2 5 5 5 26 6 6 6 6 6 67 8 9 : 8 ; 8 < 8 = 8 8 8 8 > ?@ A A A A B B @  (3.33) 

From the relation between the continuously compounded spot and forward in table 2.2, the spot 

curve can be calculated as, 
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 (3.34) 

Since there are n+1 points that must be interpolated, n polynomials must be fitted, one between 

each two points.  Each polynomial has 5 unknown parameters a, b, c, d and e.  Consequently, 5 

restrictions must be placed on each polynomial in order to solve the system. 

Firstly, it is required that each polynomial go through one of the points in () .  In other words it is 

required that the quartic forward of (3.33), integrate to a zero curve that goes through the points 

given by the minimisation algorithm.  Equation (3.35) represents these restrictions 
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�
 (3.35) 

This accounts for n equations. 
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Secondly, it is required that the polynomials agree at the knot points for the spline to be 

continuous.  Implicit in the second requirement is that each polynomial pass through both knot 

points between which they are defined.  (3.36) accounts for n-1 equations. 

 � �
  j=1,..,n-1

�� � � � � �� � � � �
� � �   � � �  ¡ ¡¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¢ £ ¢ £
¤ ¥ £ ¦ £ § £ ¨ £ ¤ ¥ £ ¦ £ § £ ¨ £©© © © © ©

ª« « « « ª « « « «  (3.36) 

Thirdly, it is required that the spline be continuous in the first, second and third derivatives.  This 

implies that the first, second and third derivatives of neighbouring polynomials must agree at 

their joint.  Each of (3.37), (3.38) and (3.39) account for n-1 equations. 

 ¬ ¬
  j=1,..,n-1

­® ¯ ® ¯° ° ° °
± ² ³ ´ ± ² ³ ´µ µ¶ ¶¶ ¶· · · · · · · · · · · · · ·

¸ ¹ ¸ ¹
º » ¹ ¼ ¹ ½ ¹ º » ¹ ¼ ¹ ½ ¹¾¿ ¿¿ ¿

À À À À
Á

Â Â Â Á Â Â Â  (3.37) 

 Ã Ã
  j=1,..,n-1
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×
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 Ù Ù
  j=1,..,n-1

Ú ÚÚ Ú ÛÜ Ü
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ä å ä åæ ç å æ ç å è
é éé é

ê ê
ëì ë ì  (3.39) 

All polynomials now have 5 restrictions each, except the first and last which only have 3.  The first 

derivative of the forward at íî
 will be set equal to the first derivative at ïð

 (3.40) and the second 

derivative of the forward at íî
 will be set equal to zero (3.41).  This implies a constant slope for the 

spline between íî
 and ïð

.  The change in the quartic forward between ñò
 and óôõ ö

 will be set 

equal to the change in the quadratic forward between ñò
 and óôõ ö

 (3.42) and the second 

derivative at ñò
 will be set equal to zero (3.43).  This implies a constant slope for the spline 

between óôõ ö
 and ñò

. 

 ÷ øù ú  (3.40) 

 û û ûü ý þÿ � �� �
 (3.41) 

 
�� � �� � � � �	 
 � � �
 
 �

 (3.42) 

 
� � � �� � � � � � � �� � � �� � � � � �� �� � �  (3.43) 

These equations can be written in the form � � ��  and solved using  !  decomposition.  Firstly 

A is decomposed into its LU form " # $%  using a statistical program such as the Matlab function 
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lu().  Now &  is a lower triangular and '  is an upper triangular matrix.  The original problem has 

now been reduced to two problems involving triangular matrices.  The following two systems 

have to be solved, 

 (
) * +
, - *

.

.  (3.43) 

such that / 0 1 2 0 1 3 45 5 5 .  Linear systems with triangular matrices can easily be solved via 

Gauss-Jordan elimination. 

Remark 3.8: Even though it would be more accurate to used the quartic forward instead of the 

quadratic forward in the multidimensional minimisation problem, it can be seen that calculating 

the quartic forward is much more intensive.  Since the quadratic forward has to be fit on each 

iteration of the minimisation algorithm, substituting this with the quartic forward is infeasible. 

3.5 Example 

The zero curve implied by the government bonds in the ALBI index are calculated daily and is 

available from the BESA website.  This section will give an example of the construction of the 

"Perfect Fit" zero curve using bond data on 12 December 2005. 

The set of instruments that is applicable to our example are listed in table 3.2 and comprise those 

government bonds in the ALSI index on the 12th of December 2005. 

Table 3.2: GOVI bonds on 12 December 2005 

6 7 8 9: 7 9 ; : 7 < = 7 8> ? @ ; A ? @ < B C @ D E 8 @ ; B ; F @G ? D ? H I ; J E 8 @ ; B ; F @G ? D ? H I ; K 6 7 7 L F: I 7 F ; 9 J 6 7 7 L F: I 7 F ; 9 K E F F < ; M ? @ ; A @ A 7 8J K N J K N K O O P G B C Q ; 7 8J K N J K N K O O P
R S T U S V W V V V X Y Z [ \ ] Z V Y X Y Z [ \ ] ^ S Z _ ` a S Y Z [ \ ] X S Z _ ` a V S Z _ b c Z V S d W X e f R S V Y W ^ U
R S g ^ S ^ W V V V ^ S Z _ ` a Z S V X Y Z [ \ ] ^ S Z _ ` a S Y Z [ \ ] X S Z _ ` a X X Z h ` i Z Y T d W ^ T f R S X g W e d
R X V S Y W d g V X S Z j \ k Z S U X S Z h ` i X S Z j \ k S S Z h ` i S S Z j \ k X d Z l m n Z V ^ d W g e f R S V d W U d
R S g d S ^ W g V V S g Z o \ b Z S g S g Z l m c S g Z o \ b V g Z l m c V g Z o \ b S Y Z h m i Z T S d W g T f R S U ^ W U d
R X V ^ Y W X g V S g Z o \ b Z S d S g Z o \ b S g Z l m c V g Z o \ b V g Z l m c V d Z l m n Z V U d W g Y f R S V d W V U
R X V U Y W V V V X S Z j \ k Z S Y X S Z j \ k X S Z h ` i S S Z j \ k S S Z h ` i S S Z _ ` a Z V U d W g g f R S V V W V T
R S Y e S V W g V V X S Z j \ k Z X e X S Z h ` i X S Z j \ k S S Z h ` i S S Z j \ k V S Z _ b c Z T Y d W X g f R S ^ U W g U

 

The above prices were calculated from the market quoted MtM yields using the BESA bond pricing 

formula. 
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For this example m = 7.  When a bond is bought today, the price that must be paid will be today's 

quoted price but settlement will only occur within three business days.  Therefore dt0 will be 

Thursday the 15th of December 2005.  The set p  as given by table 3.2 has 77 different cashflow 

dates, consequently n = 77. 

The cashflows for fixed coupon government bonds will therefore take the from given in table 3.3.  

The Matlab program "createBond", given in Appendix D section D.1, was written to construct a 

matrix, with contents defined by table 3.3, for each bond. 

Table 3.3: Cashflow structure of a single bond 

dt0 dti dtmaturity 

-(All In Bond Price on dt0) Coupon/2 100 + Coupon/2 
 

The first 10 columns of the cashflow matrix C: 7x77, given in expression 3.4, is listed in table 3.4.  

The Matlab program "buildCashflowMatrix", given in Appendix D section D.1, was written to 

construct the cashflow matrix for a given set of cashflows as defined by table 3.3. 

Table 3.4: An extract from the cashflow matrix C 

q r s t u v s w r x y s z u { s w | q r s } ~ � s w | x q s � � � s w | � q s � � � s w | q r s � u � s w | x q s t u v s w | x y s z u { s w � q r s } ~ � s w � x q s � � � s w �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

 

The reason why there are no coupon payments for the R201, R204 and R186 on 21 December 2005 

is because these bonds were ex-dividend on 12 December 2005. 

The bootstrapped zero, forward and quadratic curves are given in figure 3.1. 
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Figure 3.1: Bootstrapped Yield Curves 

At first glance this graph may look somewhat disproportional with a large spike at the 12 year 

mark.  This has however been a characteristic of the South African interest rate market for the 

years leading up to the period under consideration.  Had there been more liquid securities for the 

bootstrapping procedure, a gentler slope would have prevailed.  The large spike is an anomaly of 

the bootstrapping algorithm.  Consider what happens when the bootstrapping is performed.   

Ì For the bond with the earliest maturity, the interest rate is sought which makes its 

discounted cashflows equal to its current market value.  This interest rate is then 

fixed for the period up to the maturity date of this bond. 

Ì For the bond with the second earliest maturity date, the interest rate remains fixed 

for the period between its maturity and the maturity of the first bond.  The rate at 

which the interest rate is fixed, is that rate for which the second bond's discounted 

cashflows are equal to its current market value. 

Ì This process continues for each subsequent bond, each time calculating a new 

interest rate for the period spanning the maturities of two bonds. 
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Note that in the example above the maturities of the R203 and the R204 are very close together.  

Furthermore, the discounted present value of the cashflows of the R204 up to the maturity for the 

R203 is nearly equal to the market value of the R204.  The discounted value of the remaining 

cashflows for the R204, between their maturities, has to make up this difference.  Consequently, 

since this difference is small, the interest rate over this period has to be high. 

Using expression (3.32) ÍÎ  can be calculated from ÏÐ  and is given in table 3.5. 

Table 3.5: Starting candidate for multidimensional optimisation algorithm 

ÍÎ  0.9085 0.9802 0.8471 0.8759 ... 0.2227 0.217 0.2114 -0.541 

 

A program was written in Matlab to perform the optimisation procedure and is given in Appendix 

D, section D.1 as "optDecency".  An alternative to the Polak-Ribiere Conjugate Gradient Algorithm 

was used.  A Levenberg-Marquardt line-search algorithm was used instead, since this is already 

implemented in Matlab.  Figure 3.2 shows the convergence of Decency using this line-search 

algorithm. 
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Figure 3.2: Convergence of Objective Function 
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The y-axis is defined as 1/Decency which implies that an increase in the graph is associated with a 

better candidate solution. 

Each discontinuity in figure 3.2 represents a change of weights for local and global smoothness in 

the Decency calculation.  Finally the optimised points on the zero curve is given in figure 3.3.  The 

Decency weights of the final solution, for local and global smoothness respectively, are: 

 w1 = 3.64 and w2 = 1.  

The Decency of the final solution is:  

e = 1.0516e-5. 

þ ÿ � þ � ÿ � þ � ÿþ � þ � �
þ � þ � �
þ � þ �

þ � þ � �
þ � þ � �
þ � þ � �
þ � þ � �
þ � þ �

þ � þ � �

� � 	 
 � � 	 
 � � � � � � � � 
 
 � � �

� �������
����

� � � � 	 � � 
 � � 
 � �  � � ! 


 

Figure 3.3: Optimised Zero Curve on 12 December 2005 

Finally the quartic forward curve is constructed which is given in figure 3.4.  A Matlab program 

was written to construct the linear system which must be solved to find the quartic forward 

parameters.  This program is given in Appendix D, section D.2. 
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Figure 3.4: Interpolated Instantaneous Forward Curve 

It can be seen that the quartic forward curve is unnaturally volatile for the perfect fit case.  This is 

due to the jagged sequence of points in figure 3.3.  A "best Decency" fit would have smoothed out 

this roughness because a perfect goodness of fit would not be required.  Judging by the shape of 

the quartic forward compared to the quadratic forward, it might be prudent to use the quadratic 

forward for model fitting in subsequent chapters, rather than the quartic forward. 

3.6 Summary 

This chapter explained the concept of a descriptive yield curve and discussed some of its 

applications.  Some considerations pertaining to its construction were also reviewed.  The primary 

focus, however, was the explanation of the BEASSA yield curve methodology which is widely 

implemented throughout the South African market. 

This descriptive yield curve will be a fundamental building block for the stochastic models of 

chapters 4 and 5. 

 



 

 

C h a p t e r  4  

ENDOGENOUS INTEREST RATE MODELS 

4.1 Introduction 

In the previous chapter a descriptive model of the yield curve was built based on the current 

market price of instruments.  This descriptive model was static and represented a snapshot of the 

yield curve, which is an evolving process through time.  This chapter introduces stochastic yield 

curve models which are used to model this evolutionary process.  Knowledge of this process is 

crucial for pricing interest rate derivatives which depend on the level of future interest rates. 

Three classic endogenous models will be presented.  Even though they are quite naive, they are 

useful for developing an intuition for the theory while not being overly complex.  The models of 

this chapter are called endogenous because the current term structure is not supplied as an input 

but can be calculated as a function of the model parameters.  For endogenous models this implied 

term structure cannot exactly reflect the current market term structure, no matter how the 

parameters are chosen.  This is in contrast with exogenous models which perfectly reproduce the 

current term structure of interest rates.  Exogenous models achieve this by accepting the entire 

current term structure as an input.  In this respect exogenous models can be considered as 

"infinite parameter" models.  Endogenous models on the other hand typically only have three or 

four parameters and therefore can only approximate the current term structure. 

Endogenous models are calibrated by finding those parameters that minimise the discrepancy 

between market prices or interest rates and model implied prices or interest rates.  For derivative 

pricing purposes these models often provide analytical expressions due to their relatively 

uncomplicated nature but admit arbitrage opportunities due to their inconsistency with market 

interest rates.  These models were popular during the 1980's but the growth in the derivatives 

market combined with the emergence of more sophisticated models have restricted these models 

to the realm of benchmarks and academic history. 

Table 4.1 gives a list of the most famous classical endogenous short rate models, i.e. the Dothan 

model (D), the Vasicek model (V) and the Cox-Ingersoll-Ross model (CIR). 



Chapter 4: Endogenous Yield Curve Models 

 

39

Table 4.1: Endogenous Short Rate Models 

Model Dynamics Strictly 
Positive 

Rates 

Short Rate 
Distribution 

Analytical 
Bond 
Prices 

Analytical 
Option 
Prices 

V LM N M O M N N M NP Q R S Q R P R P T RU VW X  No Normal Yes Yes 

D YZ [ Z [ Z [ Z [\ ] ^ ] ^ \ ^ ] ^ \ _ ^` ab c  Yes Log-Normal Yes No 

CIR de f e g e f f e f e fh i j k i j h j i j h l jm no p  Yes Non-Central qr  

Yes Yes 

 
Each of the entries in the table will be discussed in detail in the subsequent sub-section. 

All of the models in this chapter are also so called "single-factor" models.  In other words, there is 

only one source of uncertainty, the single Brownian motion in the dynamics of the model.  This 

implies that the short rate is modelled directly and not considered a consequence of various 

influences.  Multi-factor models, though very important, are not yet the standard for derivative 

pricing and therefore fall beyond the scope of this dissertation. 

This chapter will discuss each of the above models based on the characteristics outlined below.  

The Vasicek case serves as an example to illustrate how most of the calculations can be done. 

4.2 Characteristics of a Stochastic Interest Rate Model 

It has already been mentioned in Chapter 2 that stochastic interest rates will be modelled using 

an Ito process for the short rate dynamics.  The primary motivation for the stochastic modelling of 

interest rates is the pricing of interest rate derivatives.  With this goal in mind, the following 

features should be considered when selecting a short rate model. 

4.2.1 Mean Reversion 

Interest rates often reflect the property that the risk free rate varies around some long term 

average, never straying too farafield before it is "pulled back" by market forces.  There are some 

very compelling economic arguments in favour of this phenomenon.  Low interest rates are 

generally coupled with high investment spending by consumers which leads to an increased 

demand for money and an increase in the interest rate.  In contrast, investors tend to save money 

in a high interest rate environment and this slows down the economy and decreases the demand 

for money which eventually leads to lower interest rates. 
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4.2.2 Distribution 

It will be a desirable feature of the model if the distribution of the short rate can be found under 

both the traditional risk neutral measure as well as the T-Forward measure.  When pricing interest 

rate derivatives, expectations are often simplified under these measures which make knowledge 

of the distribution of the short rate under these measures extremely useful.  If the distribution can 

indeed be found, two questions regarding the distribution are important. 

(1) Does the distribution allow negative rates (e.g. Normal Distribution)? 

(2) Does the distribution have fat-tails? 

It is generally accepted that interest rate changes have heavier tails than that of the normal 

distribution. 

4.2.3 Positivity 

Interest rates are generally considered to be strictly positive.  Some models imply a normal 

distribution of the short rate which is often tolerated because of the analytical tractability of 

these models. 

4.2.4 Bond Prices 

It will be desirable if analytical expressions can be found for bond prices and hence (from the 

relations derived in chapter 2) for spot and forward rates. 

4.2.5 Derivative Prices 

It will be desirable if analytical expressions can be found for options on zero coupon bonds, caps, 

floors and swaptions.  The bulk of interest rate derivative markets consist of caps and swaptions, 

therefore practitioners will often prefer a model that produces such analytical expressions. 

4.2.6 Pricing Methods 

When the goal is the pricing of derivatives that requires the use of a recombining lattice, it is vital 

that the chosen model be suited to building these structures efficiently.  If Monte Carlo simulation 

is required, it is vital that these simulations are not too time consuming. 
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4.2.7 Realistic Shapes 

Another crucial requirement is that the model be able to reflect yield curve structures observed in 

the market.  The South African market has a humped yield curve which is a shape that some 

models cannot reflect.  In other markets an inverted yield curve has been observed which none of 

the models in this chapter can reflect.  An inverted yield curve is illustrated in figure 4.1.  Instead 

of one turning point like a humped yield curve, an inverted yield curve has two turning points. 

Inverted Yield Curve
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Figure 4.1: Inverted yield curve 

4.2.8 Realistic Volatility Structures 

Suppose a model is built with the specific aim of pricing swaptions.  It is important that a model 

be chosen which is capable of reflecting the volatility structure of the swaptions market.  In other 

words the volatilities of swaptions, priced using the model, should match the implied volatilities 

of swaptions in the market.  More attention will be paid to this feature in the next chapter, since 

the endogenous models of this chapter cannot match the current term structure, calibrating them 

to volatility structures is futile. 
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4.3 The Vasicek Model (1977) 

The Vasicek model dynamics are given by expression (4.1). 

 st u t v t u u t uw x y z x y w y w { y| }~ �  under ��  (4.1) 

The Vasicek model (Vasicek, 1997) was developed and was the first continuous time interest rate 

model to gain widespread acceptance.  The different features of the model will be outlined below 

with proofs where appropriate. 

4.3.1 Bond Prices 

As was stated in table 4.1, analytical formulas exist for the bond prices.  The proof however is 

quite long and will not be given here those interested can refer to Cairns (2004).  The bond prices 

are given by expression (4.2). 

 � � � � �� � � � � � � � � � �� � � � � � � ��  (4.2) 

where, 

 

� � � �� �� �� ���� ���   ¡ ¢ £ ¤ �   ¡ �   ¡�   ¡ ¥ ¦ §§§ ¨ ©§
ª « ¬ ­ « ¬ ¬ « ­ « ¬­ « ¬ ® ¯ ¯° ± ±² ³ ³ ´ ³µ ¶² ³· ¸¹ º   

This analytical tractability is a strong point of the Vasicek model. 

4.3.2 Distribution 

It will be shown that the Vasicek interest rate R(t) has a normal distribution under both the 

traditional risk neutral measure, »¼ , and the T-Forward measure ½ ¾¿
. 

4.3.2.1 Distribution under »¼  

Set  

 À Á À Â Â À ÂÃ ÄÅ Æ Ç Æ È Ç ÆÉ .  

Let the partial derivatives of Ê Ë ÌÍ Î Ï
 be defined by, 
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 andÐ Ð

Ñ Ò Ó Ñ Ò Ó Ò
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Ö ×× Ö ×Ø
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Ù Ú Û Ù Ú Û Ü Ý ÛÚÙ Ú Û Ù Ú Û ÝÛÙ Ú Û Ù Ú ÛÛ

Þß ßÞÞß ßÞÞß ßÞ   

Applying now the Ito formula to à á à â âã ä å ä
, leads to, 

 æ ç èè
éêë ì ë í í ë ì ë í í ë ì ë í í ë í ë ì ë í í î ì ï ë íë í ë í ë íë í ð

ñ ò ò òó ñ ó ñ ó ñó ñ ó ñ
ô õ ö ÷ ö õ ö ÷ ö ô ö õ ö ÷ ö ô ÷ ö õ ö ÷ ö ô ÷ ÷ öø ù ÷ ö ô ö ù ø ÷ ö ô ö ù ô ú öù ø ô ö ù ô ú öû üû ü

ý þ þý þ ÿ þý þ   

Integrating both sides of the above equation yields, �� � � � � � � � � � �� �� � � � � � � �� �� 	 
 	 � 
 	 � 
 � 
 � � � � � � �� �� � � �� �
. 

Finally, after dividing by � ��
, expression (4.3) is obtained for the short rate. 

 � � �� � � � � �� � � �  � �!" ! # " ! # " ! $#% & ' % ( ' ' ) * +, -. . . . ./ 0 1 0 2  (4.3) 

Given the information up to time s, the only random component of (4.3) is the Ito integral which 

has a normal distribution with mean zero and variance given by (4.4). 

 

3 4 567 8 9 9 7 89 7 89
: ; <

= => = ? > = ?@ @ > = @>
A B C D E F G D E GDHI IJ J J

K LMN OMN MMNNP Q O R
S S

 (4.4) 

Therefore, given the information T UVW
, the distribution of the short rate R(t) under the Vasicek 

model is represented by (4.5). 

 X Y X Y Z[ \ [ \ ] [ \]^ _ ^ _ ` a `b c d b c d b c dbe f g h e i h hjkl l l l lm no p pq rs tu  under vw  (4.5) 

4.3.2.2 Distribution under x yz
 

It is known that a change of numéraire changes the drift but not the volatility of a process.  When 

a change of measure is performed on the Vasicek process of (4.1) from the traditional risk neutral 

measure to the T-Forward measure, the new drift is found by applying Theorem C.7. 
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Theorem C.7 is employed with the substitutions in (4.6). 

 

{ | { | { | }{ | { ~ | { | { ~ | { ~ |{ | { | { |
� �

�
� � � � �� � � � � � � � � � � �� � � � �

� � �� �
� � �� � � �� � �  (4.6) 

The first and the last expressions are obvious but the middle one requires some thought.  Set 

 � � � � � � � �� � � � � � ��   

where � � �� � �
 is the Vasicek bond price expression (4.2).  Applying Ito's lemma to the above 

function yields expression (4.7), 

 

� �   ¡
¢£ ¤ ¥ £ ¤ ¥£ ¤ ¥ £ ¤ ¥ £ ¤ ¥ £ ¤ ¥¦ § ¨ ©§ © © ©ª « ¬ ­ « ® ¯° ª « ¬ ª « ¬ ° « ª « ¬ ° ¬ ª « ¬ ° ¬ ° ¬±²² ³ ³ . (4.7) 

Note that the partial derivative with respect to ´  will be the only one containing a Brownian 

motion.  Consequently, since it must be shown that the coefficient of the Brownian motion is 

given by (4.6), the other terms need not be calculated and can be grouped into the coefficient of µ ¶
.  This partial derivative w.r.t. ´  can now be calculated as, · ¸ ¹º » ¼ º » ¼º » ¼ º » ¼ ½¾ ¿ À ÁÁÂ Ã Ä Å Ã Æ ÇÄÈ Ã Æ Â Ã ÄÉÊË ÊË Ì  

This can be substituted into the Ito expansion of (4.7) to get, 

 ÍÍÍ

Î Ï Î Ð Ð Î Ñ Ñ Ñ Ð Î Ï Î Ð Ð Î ÐÎ Ñ Ñ Ñ Ð Î Ï Î Ð Ð Î Î Ò Î Ð Ð Î Ð ÐÎ Ñ Ñ Ñ Ð Î Ï Ð Î Ï Ð Î ÐÎ Ï Ð Î Ñ Ñ Ñ Ð Î Ï Ð Î Ï Ð Î Ð
ÓÓÔ Õ Ö × Ö Ô Ö Õ Ö × Ö Ô × ÖÔ Ö Õ Ö × Ö Ô Ø × Ö Ô Ö Ô Ù ÖÔ Ö Ú Ö Û Ü Ö Û Ô Ù ÖÔ Ü Ö Û Ô Ö Ú Ö Û Ü Ö Û Ô Ù Ö

Ý ÞÞÞ
ß àß à àß áß á   

Therefore the quadratic volatility coefficient of â ã äå æ ç
 is, 

 è é ê è é êë ì í î ì í ïð . (4.8) 

The expressions in (4.6) can be entered into Theorem C.7 to obtain the drift rate of ñ òó ô
 under 

numéraire â ã äå æ ç
 i.e. 
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 � � 	 � �

�
 � �
� �

�� � � �
� � � .  

Finally, since volatility does not change with a change in measure, the process of the short rate 

under the T-Forward measure will be, 

 
� � ��� � � � � � � � ���� � � �  � ! � � � � � " �#$ %& ' ' ( . (4.9) 

This expression has a similar form as the original Vasicek dynamics of (4.1) but with an 

adjustment to the original theta in the drift.  Therefore the distribution of the Vasicek short rate 

under the T-Forward measure can be found in the same way as under the traditional risk neutral 

measure.  This distribution is given by expression (4.10). 

 ) * + under 
,- . / - ./0 1 0 1 0 2 1 2 3 2 45 6 7 4 5 6 758 9 : 8 ; < = ; 9 <>? ? ?@ AB CD EF GH I  (4.10) 

where, 

 J K L MN NN NO P O P O Q PQR S T UV W X Y W V Y W V X YW WZ [ \ ] ] ]^ ^_ ` ` ` ` ` a `b cd e e f eg hi j .  

An explicit knowledge of the distribution of k lm n
 under o pq

 will be valuable when expectations 

need to be performed under this measure. 

4.3.3 Mean Reversion 

The distribution of r st u
 under the traditional and T-forward measures behaves in a similar way 

with respect to the mean reversion of the process.  Consider specifically the drift coefficient of the 

Vasicek model under the risk neutral measure, 

 v wx y x yz { | } {~ �� � .  

It is clear that when the current rate � �� �
 is below � , rates are expected to rise and when the 

current rate is above � , they are expected to fall.   

Next, consider the expectation of (4.5), 

 � � � under 
� � � �� � � � � � � �� � � � � �� � � � � � ��� � � �� � � � . (4.11) 

In the long run, this rate is expected to equal �  as t goes to infinity since, 
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   ¡¢ £ ¢ £¤ ¥ ¦ § ¨ © ª ¤ ¥ ¦ ¨ © «¬ ­ ® ¬ ­ ®­ ­¯ ° ± ² ° ³ ²´ ´µ µ µ µ¶ · ¶ ·¸ ¹ º ¸ , (4.12) 

From this it can be seen that the process is mean reverting with a long-run average of » .  The 

result under the T-Forward measure is exactly the same except that ¼¼½ ¾ ¿ À Á Â Ã ÄÅ Æ Ç È ÉÊË Ì Í Î . 

4.3.4 Positivity 

Unfortunately a normal distribution allows negative rates to occur which is undesirable for an 

interest rate model.  This is the major drawback of the Vasicek model as an endogenous model. 

4.3.5 Option Prices 

Analytical expressions for a European call and put options on a zero coupon bond is also available.  

The results have been derived by Jamshidian (1989) but a more intuitive derivation will be given.  

In order to derive the option prices the following well known result will be used. 

Proposition 4.1 

Given a log-normal variable V where VAR(ln(V))=s2, 

 Ï ÐÑÒ Ó Ô Õ Ö × Ø Ù Ñ Ù Õ Ø Õ Ø ÖÚ Û Ü Ú Û Ý Ü ÝÞ ß à Þ à  (4.13) 

where 

  and

( ) is the standard normal cumulative distribution function.

áâ ã äåä å
æ ç èé ê ëìí îí í î ïðð ñò ó  

Proof: See Hull, J.C., (2003) pp. 262-263. 

Consider a European call option on a zero coupon bond, with strike price K, maturity date S and 

bond maturity T.  The pricing formula under the T-forward measure is given in appendix C by 

expression C.10 where the price process V(t) is taken as a European call process, c(t), with payoff at 

maturity equal to ô õö ÷ ö ø ÷ù ú û ü ú ý þÿ � . 
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"
"  (4.14) 

Relating this to proposition 4.1 it can be seen that  
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 # $ % & ' % & ' % '( ) * + ) * , )- . /0  (4.15) 

Because R(S) has the normal distribution, V will be log-normal with s2 equal to, 

 1 23
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K L  (4.16) 

Finally note that,  

 M N O PN O PQ R S T U R T VW X Y WX Y Z[ \ ] ^ _ `a
 (4.17) 

Substituting (4.14), (4.15) and (4.16) into (4.13) the option prices are given by, 
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Because bond options are so popular in the market, processes that yield analytic formulas for 

these prices are preferred by practitioners.  This is another strength of the Vasicek model. 

4.3.6 Realistic Shapes 

Depending on the choice of the parameters  and x yz {
 the Vasicek model can have an increasing, 

decreasing or humped shape.   

Figure 4.2 shows the shape of the spot yield curve at time t=0 for |  ranging over (0.07-0.12) and 

keeping the other parameters constant at r0=0.05, k = 0.06 and |  = 0.07.  The Matlab program 

that was written to draw figures 4.2 and 4.3 is given in Appendix D, section D.4.  The top most 

yield curve in figure 4.2 corresponds to |  = 0.07 and the bottom yield curve corresponds to |  = 

0.12.  It can be seen that a greater volatility forces the yield curve away from the long run average.   

Figure 4.3 shows the shape of the spot yield curve at time t=0 for k ranging over (0.2-1) and 

keeping the other parameters constant at r0=0.05, }  = 0.08 and |  = 0.07.  It is clear that 

parameter k controls the speed of mean reversion, where a larger k speeds up and a smaller k will 

slow down the rate of convergence.  When k is small the volatility seems to dominate the shape of 
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the yield curve.  The top graph in figure 4.3 corresponds to a yield curve where k = 1 and the 

bottom graph corresponds to a yield curve where k = 0.2. 
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Figure 4.2: Vasicek spot yield curve with r
0
 = 0.05 k = 0.6, ¡  = 0.07, ¢  = (0.07,...,0.12) 
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Figure 4.3: Vasicek spot yield curve with r
0
 = 0.05 ¡  = 0.08, ¢  = 0.07,  k = (0.2,...,1) 
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4.3.7 Parameter Estimation 

There are various approaches to calibrating an interest rate model.  Two different approaches will 

be outlined below. 

4.3.7.1 Calibration to Historical Data 

It is important to realise that the statistical properties of historical data, characterise the 

distribution of the short rate process R(t) under the real world measure Ë .  Therefore calibrating a 

model to historical data requires knowledge of its dynamics under the real world measure.  

Furthermore, for purposes of derivative pricing, knowledge of the dynamics of the short rate R(t) 

under the real world measure is of little use, since all pricing is done under the risk neutral 

measure.  It should also be kept in mind that a model that has been calibrated to historical data 

will reflect the characteristics of the data into the future.  This is not always realistic and 

practitioners prefer to calibrate models based on current prices alone, since current prices reflect 

the market's expectations of the future.  Nevertheless, historical data can be employed to find an 

initial estimate of the volatility term of a market process, which can prove especially useful when 

data is scarce and few calibration securities are available.  The reason why the volatility term can 

be estimated is because it does not change with a change in measure, it is the same under both 

the real world and traditional risk neutral measures.  Also, it can only serve as an initial estimate 

since it is a reflection of the past, though in the case of the Vasicek model, it is a constant.  A 

procedure will therefore be presented through which this volatility can be estimated based on 

historical data. 

Firstly, the dynamics of R(t) has to be found under the real world measure Ë .  The Vasicek 

dynamics in (4.1) was defined under the traditional risk neutral measure ÌÍ  and in section 4.3.2.2 

an equivalent model (4.9) was found under the T-Forward measure ÎÏ
.  Now in order to find the 

equivalent dynamics under the real world measure another change of measure has to be 

performed.  Under the assumption that the market is complete and arbitrage free, there exists a 

square integrable function Ð ÑÒÓ
 such that the Girsanov theorem (C.1) can be employed to make 

the change from the risk neutral world to the real world.  The Girsanov change of measure is 

illustrated by (4.19). 
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 (4.19) 

The Vasicek model (4.1) can now be restated under the real world measure by substituting (4.19) 

into the Vasicek dynamics to obtain expression (4.20). 
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� �
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� 	 �  (4.20) 

Again it can be seen that only the drift changes and the volatility of the process stays intact.  An 

assumption on 
 ��

 is required to make this model tractable.  The following assumption will be 

placed on the shape of 
 ��

, 

 � � � �� � �� �� . (4.21) 

This assumption is not necessarily realistic but it is required to make the model tractable.  This 

restricted model is given in (4.22). 

 � � � � � � � � � � �� � � � � � � � � � � �� � � ��    under !  (4.22) 

The parameters in the drift of (4.22) are of little importance and, as long as the volatility remains 

intact, the model can be reparameterised.  Since there is no way to separate the parameters in the 

drift anyway, (4.22) will be rewritten in the form of (4.23), where  and 
" # $ #% & '( ( ) . 

 * + * , * + + * +- . / 0 1 . / - / - 2 /34 5  (4.23) 

The market data that will be used to calibrate the model are the South African Overnight 

Interbank Acceptance (SAONIA) rate which is an average of the over-nightly borrowing rates 

between SA banks.  The SAONIA rate is equivalent to the simply compounded spot rate 

L(1,1+1/252) from definition 2.3.2, which is a fair approximation of R(t).  Since the model (4.23) is 

in a similar form to the original model, the earlier results from section 4.3.2 regarding the 

distribution of R(t) will still hold.  Therefore, the short rate R(t) will have the normal distribution 

under the real world measure as presented in (4.24) below, where 6  = 1/252. 
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Let the SAONIA rates be represented by ] ^_ ` a a a ` bc c
.  Assuming the SAONIA rates have 

approximately the same distribution as the short rate R(t) above, maximum likelihood estimates 

of the parameter values can be found.  However, the model is first rewritten in a form that will 

simplify the estimation procedure.  Substituting (4.25), (4.26) and (4.27) into (4.24) leads to (4.28). 

 de fg hi  (4.25) 

 jkl m
 (4.26) 

 no oo p q rsst u vw xy z  (4.27) 

 { | }~� � � � � � � � � � � � �� �� � � �� � ��� �� �� ��
 (4.28) 

The log-likelihood function and its derivative with respect to each parameter is given by (4.29). 
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In each case the derivative is set equal to zero and the parameter estimates follow as, 

 ² ³ ´µ µµ µ µ¶¶ µµ µ
· · ·¸ ¸ ¸ ¸¸ ¸ ¸· ·¸ ¸¸ ¸

¹ º º º º
¹ º º» ¼ ¼½ ½ ½

¼½ ½
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À À À
À À , (4.30) 
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 (4.32) 

Using these expressions it follows directly that ç  can be estimated as: 
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The 260 SAONIA values between 6 December 2004 and 5 December 2005 were used to calculate 

this volatility estimate.  The calculated value was 0.187. 

4.3.7.2 Calibration to Current Data 

A more widely accepted method of model calibration is by using only current market data.  The 

yield curve from chapter 3 can be used since it was constructed using only current bond data.  As 

mentioned earlier, the single factor models of this chapter do not have enough degrees of 

freedom to allow calibration of the volatility structure; therefore the best case scenario is a rough 

representation of the primary characteristics of the current term structure of interest rates.  The 

model will be calibrated to market data using a conventional least squares approach. 

Procedure: General Least Squares Interest Rate Model Calibration 

Inputs: Market values ø ùú ûü ü ý ý ý ü þÿ ÿ ÿ
.  Initial parameter values k0, � 0 and � 0. 

Outputs: Calibrated parameter values km, � m and � m.  

(1) Calculate the fair values of the market instruments under the model 
� �� �� � � � � � �	 	 	
 
 


.  These 

fair values can be calculated using the following expectations, 

 

� �� 
 � � under  or

 under 

� � � � �� �� � � � � � � � � �� � � � � � � � � � � � � � � � ��� � � �� � �� �� �� � � �  � ! �� � � � " � # ! � # � # �$ %& ' () *&++ , ,- -  (4.34) 

(2) Calculate the sum of the squares of the errors in the prices.  A weighting can be applied if 

certain instruments are considered more important than others.  It is common practice to 

place a heavier weighting on instruments with a longer maturity since they are more 

sensitive to changes in the interest rate.  A mispricing of a longer dated security is more 

dangerous since it can lead to a greater mispricing of derivative securities.  The greater 

weight will force the least squares procedure to provide a better fit to the longer dated 

securities. 

 ./ 0 12 33 334 5 6 678 9: ;
  

(3) If  < the error is within tolerance or  < the maximum allowed number of iterations has expired or  < the decrease in Q is below a certain threshold, 
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the procedure stops, otherwise the parameter values are adjusted and the procedure returns 

to step 1. 

The choice of instruments = >? @A A B B B A CD D D
 will determine the quality of the fit.  It is preferable that 

instruments be chosen that 

(1) are liquid and consequently do not contain any illiquidity premia, 

(2) can easily be priced using 4.18.  It is preferable if an analytic formula can be found. 

For calibration purposes a range of choices of the calibration securities is available. 

(1) Bond Options: An analytical formula for ZCB options was presented by (4.18).  

Unfortunately bond options are not actively traded in the South African market which 

makes the use of bond options as the choice of calibration securities impractical. 

(2) Zero Coupon Bonds:  Zero coupon bonds are also not actively traded in the South African 

market but their implied market values can be inferred from the descriptive yield curve of 

chapter 3.  Unfortunately a problem might arise during the optimisation procedure.  The 

bond price expression (4.2) is very non-linear in the parameter values.  This might make it 

difficult for an optimisation routine to find the best-fit values. 

(3) Instantaneous Forward Rates: Using instantaneous forward rates is the most direct 

approach to calibrating a short rate model. 

(4) Forward Rates: These are the rates quoted for FRAs in the market.  Forward Rates are 

defined as the integral of the instantaneous forward rate which makes them less variable 

than the instantaneous forwards rates.  Using forward rates is a viable alternative to 

instantaneous forward rates, but a less direct approach. 

(5) Swap Rates: These are the rates quoted in swap contracts.  It can be shown that swap rates 

can be expressed as a weighted average of forward rates.  Therefore using swap rates will 

be a viable alternative to instantaneous forward rates, but a less direct approach. 

Instantaneous forward rates will be used to calibrate the model.  Proposition 4.2 will be employed 

which is a well known result in the interest rate literature. 
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Proposition 4.2 

The expected value of the future instantaneous short rate, under the T-forward measure is equal to 

the related instantaneous forward rate. 

 EF G H I F H J F H KLM N O P Q O NR S  (4.35) 

Proof: Utilising the two pricing formulas of (4.34) 
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 (4.36) 

Another motivation for using the instantaneous forward rates is that it is much more sensitive to 

changes in the short rate than zero coupon bond prices.  From the earlier calculation of the 

expectation of R(t) under the T-Forward measure it can be seen that the instantaneous forward 

rate at time t under the Vasicek model is, 

 u v w xy z { y z { y z { y z {y y| } ~ � } � � � �� ��� � � � � � � �� �� � � � � �� �� �� �� �� � � � � � � ��� � � � � � �
 (4.37) 

A change of parameters was applied to the above expression to obtain an expression that is more 

linear in the parameters.  Expressions (4.38) is substituted into (4.37) to obtain (4.39). 

 � ��
�
����� ��  (4.38) 
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 (4.39) 

Upon completion of the minimisation procedure these substitutions were inverted to obtain the 

parameter values. 

The set of market rates that were used in the minimisation procedure was the quadratic forward 

rates obtained after the BESA optimisation procedure was performed.  This set is denoted by Á Â
1 nq ,...,q .  The model rates that was used were calculated from the above expression for the 
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corresponding maturities and is denoted by Ã ÄÅÆ Ç È É È Ê Ê Ê È Æ Ç È ÉËÌ Í Ì ÍÎ Î
.  The starting values for the 

minimisation procedure were as follows, Ï the starting value for r0 was q1,  Ï the starting value for Ð  was 0.187, which was calculated from historical data, and Ï the starting value for Ñ  was ÒÓ ÔÔÕ ÕÖ× ØÙÚ , the average over the quadratic forward 

rates. 

The procedure was performed multiple times for various starting values of k.  The general least 

squares procedure as it was performed in the Vasicek case is outlined below. 

Procedure: Vasicek Least Squares Interest Rate Model Calibration 

Inputs: Market values Û ÜÝ Þ ß ß ß Þ àá á
.  Initial parameter values r0= q1, k0=[0.01,...,1], â 0 = 0.187 and ã

0= q . 

Outputs: Calibrated parameter values rm, km, â m and 
ã

m.  

(1) Calculate the fair values of the forward rates under the model ä åæç è é ê é ë ë ë é ç è é êìí î í îï ï
.  These fair 

values can be calculated using expectation under ð ñò
 where óô õö  as, 

 ÷ ø ù úû ü ý þ û þÿ�� �� � � � ��  (4.40) 

(2) Calculate the sum of the squares of the errors in the prices.  A subjective weighting equal to 

the square root of the "maturity" of the forward rate was used to emphasise the importance 

of a decent fit at later maturities.  This weighted sum of squares can be calculated using, 

 
�

 where 
�	 	
 
 � � 
 
 �� ��� � � �� ��

�� � � � � � �� �� � �� � .  

(3) The multi-dimensional minimisation algorithm in Matlab, "fminunc" was used to find the 

parameter values. 

This minimisation procedure was performed twice.  The first time the �  parameter was kept fixed 

at 0.187, this is the broken line in figure 4.4.  On the second execution the �  parameter was 

allowed to vary and the resulting model can be seen as the solid line in figure 4.4.  It is clear that 

the Vasicek model is not nearly flexible enough to reflect the quadratic forward curve.  Further 

problems arise for the model where �  was kept constant, since the yield curve drops to zero at 

short maturities.  A model with more parameters will be required to reflect the subtleties of the 

quadratic forward curve. 
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Figure 4.4: Best fit 1 - Vasicek Model with: r
0
 = 0.0598  k= 0.0389,   = 0.7406,   = 0.0378, Best fit 2 - Vasicek 

Model with: r
0
 = 0.0545  k= 0.0474,   = 0.6815,   = 0.0428, 

4.4 The Dothan Model (1978) 

The Dothan model is given below by (4.41). 

 GH I H I H I H IJ K L K L J L K L J M LN OP Q  (4.41) 

This is the continuous time version of the Rendleman and Bartter model which was developed in 

Dothan (1978).  This model is immediately familiar since it has exactly the same form as a stock 

price process with constant drift and volatility. 

4.4.1 Bond Prices 

The Dothan model is the only model in the literature that has log-normal short rates and 

analytical formulas for the zero coupon bond prices.  The ZCB price is given by, 

 R S ST S UV VW X Y Z [ \ W ] Z [ \ ^ W Y Y W Y Z [ \ W Y W ] Y_ `a ``b c d e f g h f h i h i f e j ek l l mn op p
 (4.42) 



Chapter 4: Endogenous Yield Curve Models 

 

57

where K2p is the modified Bessel function of the second kind of order 2p and 
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See Brigo and Mercurio (2001).  Even though this expression is analytical, it is computationally 

intensive to calculate. 

4.4.2 Distribution 

The model can be integrated by applying the Ito formula to the natural logarithm of R(t), to obtain 

the familiar expression. 

 � � � � � �� �� � ¡ ¢ £ ¢ £ ¤ ¥ ¦ ¢ £ ¢ £§ ¨ § © ¨ © ª ¨ ª ©« ¬ ¬­ ® ® ¯ ®  (4.43) 

The Dothan short rate therefore has a log-normal distribution given by (4.44). 

 ° ±²³ ´ µ µ ³ ´ ³ ´¶ · ¸ ¹ º ¶ · » ¶ · ¼½ ¾ ½ ¾ ½ ¾¿ À Á ¿ Â Ã ¿ Â Ã ÃÄ Ä ÅÆ Æ Æ ÆÇ ÈÉÊ ËÌ ÍÎ  under ÏÐ  (4.44) 

Calculating the distribution under the T-Forward measure can be done in a similar fashion to the 

example in the Vasicek case. 

4.4.3 Positivity 

Due to the log-normality of the Dothan model, the short rate will always be positive.  This 

addresses one of the flaws of the Vasicek model. 

4.4.4 Mean Reversion 

The process will be mean reverting if the expectation tends towards a fixed value as t tends to 

infinity.  This will only be the case if a < 0 and then the long run average of the Dothan model will 

be zero.  This is one of the drawbacks of the Dothan model. 

4.4.5 Option Prices 

No analytical formula for the prices of options on zero coupon bonds has been found for this 

model or log-normal models in general.  This is another drawback of the Dothan model which 

makes it unpopular amongst practitioners. 
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4.5 The Cox-Ingersoll-Ross Model (1985) 

The CIR dynamics are given by  

 ÑÒ Ó Ò Ô Ò Ó Ó Ò Ó Ò ÓÕ Ö × Ø Ö × Õ × Ö × Õ Ù ×Ú ÛÜ Ý  (4.45) 

The CIR model was developed by Cox et al (1985), and at first glace it seems very similar to the 

Vasicek model but, with a square root term in the volatility.  It will be shown that this has a 

dramatic impact on the characteristics of the process.  The CIR process combined the strengths of 

the Vasicek and Dothan models. 

4.5.1 Bond Prices 

The price at time t of a zero coupon bond maturing at time T under the CIR model is  

 Þ ß à Þ àá â ã á â ã ä å æ ç åè é ê ë é ê ì íî  (4.46) 

where 

  and
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The proof however is quite long, see Cairns (2004), and will not be given here.  This has the same 

analytical form as that of the Vasicek model.  It is also much less arduous than the Dothan 

formula. 

4.5.2 Distribution 

The distribution of the CIR can be shown to be non-central chi-squared under both the traditional 

risk neutral and T-Forward measures.  The interested reader can refer to Brigo and Mercurio (2001) 

for further details. 

4.5.3 Positivity 

The square root term in the volatility is responsible for keeping the interest rate positive.  Consider 

what happens when the interest rate approaches zero.  The volatility becomes negligible 
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compared to the drift which will force the process back towards its long run average.  This is the 

major advantage this model has over the Vasicek model. 

4.5.4 Mean Reversion 

Similar to the Vasicek model, the CIR model is also mean reverting with long run average equal to �
.  This is an improvement on the Dothan model. 

4.5.5 Option Prices 

Analytic expression for ZCB options are also available, see Brigo and Mercurio (2001) for further 

details. 

All of these features combine to make the CIR model the most realistic of the single-factor 

endogenous interest rate models in this chapter. 

4.6 Summary 

The three most prominent classical interest rate models were reviewed in this chapter.  It was 

seen that the Vasick model is quite tractible but has the drawback of allowing negative interest 

rates.  The CIR model solves this problem, yet in practice it is only a slight improvement over the 

Vasicek model and judging by the results of section 4.3, these models are not flexible enough for 

the pricing of exotic interest rate derivatives.  Many of the calculations that were presented for 

the Vasicek model can be repeated for the Dothan and CIR models, with only slight adjustments in 

each case.  For this reason they have been left out since neither of the subsequent models show a 

dramatic improvement or departure from the Vasicek case. 

In the next chapter exogenous models will be presented which can be calibrated to fit the current 

term structure of interest rates exactly and will prove much more useful for valuing interest rate 

derivatives. 



 

 

C h a p t e r  5  

EXOGENOUS INTEREST RATE MODELS 

5.1 Introduction 

The previous chapter introduced three endogenous interest rate models and it was shown that 

these models have insufficient parameters to accurately reflect the current term structure of 

interest rates.  This deficiency results in bond and derivative prices which are inconsistent with 

market prices and consequently allow arbitrage opportunities.  Though such models can be useful 

for speculative purposes to determine which securities are cheap or dear (under the assumptions 

of the model), they are not used by market makers.  This chapter discusses exogenous interest 

rate models that can be calibrated to exactly fit the current term structure and to approximate the 

volatility structure of certain securities.  Section 5.2 introduces the different approaches to 

stochastic yield curve modelling.  Sections 5.3-5.5 discusses three exogenous models, the Hull-

White model (HW), the Heath-Jarrow-Morton modelling framework (HJM) and the log-normal 

LIBOR forward model (LFM).  The dynamics of these models are presented in table 5.1 

Table 5.1: Dynamics of three exogenous interest rate models 

Model Dynamics Strictly 
Positive 

Shot Rate 

Distribution 
of the Short 

Rate 

Analytical 
Bond 
Prices 

Analytical 
Option 
Prices 

HW �� � � � � � � � � � �� � � � � � � � � � � �� �� �  No Normal Yes Yes 

HJM �� � � � � � � � � � � � � �� �� � �  �  �  � � �  � � �� � �� �  - - - - 

LFM !    for   
" # # $ " # # $ " $ " $%& ' ( ) * ' ( ) * ( & + ( ( ),- .  Yes Log-Normal Yes Yes 

5.2 Three Approaches to Stochastic Interest Rate Modelling 

In the interest rate literature three approaches have emerged for defining the dynamics of 

stochastic interest rates. 

(1) The dynamics are defined on the short rate R(t). 

(2) The dynamics are defined on the instantaneous forward rate F(t,T). 

(3) The dynamics are defined on the zero coupon bond prices B(t,T). 
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The first case was inspected in the previous chapter and will be further analysed under the Hull-

White model.  The second case is the departure point of the Heath-Jarrow-Morton framework and 

the LIBOR market model which will be discussed in sections 5.4. and 5.5.  The relation between 

these approaches will be discussed in section 5.5. 

5.3 The Hull-White Model (1990) 

Hull and White (1990) proposed an extension to the Vasicek model which allows the current term 

structure to be fit exactly.  The model dynamics are given below, 

 /0 1 0 0 1 2 0 1 1 0 13 4 5 5 6 4 5 3 5 3 7 58 9: ;  (5.1) 

The principal difference between this model and the Vasicek model is that the theta parameter is 

now function of time.  The functional form is assumed to be known. 

5.3.1 Bond Prices 

Hull and White (1990) have shown that ZCB prices can be calculated using the explicit formula, 
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 (4.47) 

Here the ZCB prices g h i jkl m
, can be calculated directly from the descriptive yield curve n o p qrs m

 

which was found in chapter 3. 

5.3.2 Distribution 

The distribution of the Hull-White model is calculated by analogy to section 4.3.2.1 where the 

distribution of the Vasicek model was found. 

5.3.2.1 Distribution under tu  

Set  

 v w v x x v xy z{ | } | ~ } |�   

Applying the Ito formula to � � � � �� � � �
 yields, 
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 � � ��
��� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � �� � � � �

� � � �� � � � � �� � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � �� �� �

� � �� � � �� �   

Integrating both sides of the above expression yields, 

  ¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢£ £¤ £ ¤ ¥ ¤ ¦ ¤ ¦¥ ¥§ ¨ © § ¨ ª § « ¬ « § ¬ ­ «® ¯° ± ±² ²
.  

Finally dividing both sides by ³ ´µ  it follows that, 

 ¶· ¸¹ º ¹ º ¹ º ¹ º» »¼ » ½ ¼ » ¼ ¾ ¼ » ¼ ¾½ ½¿ À Á ¿ Â Á Á Ã Ä Ã Á Á Ä Å ÃÆ ÇÈ È È ÈÉ Ê ÊË Ë
 (5.2) 

Just like the Vasicek model, the Hull-White short rate has a normal distribution with mean and 

variance given by (5.3) and (5.4) respectively. 

 Ì Í ÎÏ Ð Ñ Ò Ð Ñ Ð ÑÓÔ Ó Õ Ô Ó Ô ÖÕ× Ø Ù Ú Ø Û Ú Ú Ü Ý ÜÞß ß ßà á â  (5.3) 

 ã äå æ ç èæé ê ë ì í î ï ðîñ ò ó ó ô õö ÷ ÷ø ù  (5.4) 

5.3.2.2 Distribution under ú ûü
 

Following exactly the same arguments as in the Vasicek case, the drift rate of the Hull-White 

dynamics is amended under the T-Forward measure to yield expression (5.5). 

 ýþÿ � ÿ ÿ � ÿ � � ÿ � � ÿ ��� � � � � � � � � � � � � 	 �
 � �� 
 
 �  (5.5) 

Applying the Ito formula again to � �� �� �� � � �
 to solve the above stochastic differential equation 

yields, 

 �� � �� � � � � � � � � � �   !  " !  ! # !  ! # !  ! # $" " "% & ' % ( ' ' ) * ) ' ' + ) , * ) ' ' * - ). / /0 0 0 0 01 2 3 24 4 4
. (5.6) 

Under the T-Forward measure the distribution is again normal but with an adjusted drift rate.  

Under the T-Forward measure the mean and variance of the Hull-White short rate is given by (5.7) 

and (5.8) respectively. 

 5 6 7 89 : ; < : ; : ; : = ;> >? @ > A @ > @ B @ > @ BA AC D E F D G F F H I H F F J H K I HL MN N N NO P QR R
 (5.7) 

 S T U VTW X Y Z X [ Y\ ] ^\_ ` a a b cd e ef g  (5.8) 
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5.3.3 Mean Reversion 

Similar to the Vasicek model, the Hull-White model is also mean reverting with a long term 

average dictated by h ijk
.  With careful choice of the h ijk

 function, the model will fit the current 

term structure perfectly.  The correct choice of h ijk
, is the one that satisfies (5.9) according to 

proposition 4.2.  Here the instantaneous forward rate is taken as the quadratic or quartic forward 

curves l m n op q r
,from chapter 3.  

 s tu v w x u w y u w z{| } ~ � � ~ }� �  or equivalently � �� � � � � � � ��� � � � ��  (5.9) 

This expectation under the T-Forward measure has already been calculated in (5.7).  By 

substituting equation (5.7) into (5.9) it follows that, 

 � � � �� � � � � � � � � � �� �� � � � � � � � � � �� �� � �   ¡ � � ¢ £ ¢ � � ¤ ¢ � £ ¢¥ ¦§ § § §¨ © ª« «
. (5.10) 

The last term on the right hand side can be integrated to yield, 

 ¬ ­® ¯
°°°° ° ° °° ° °

± ± ² ³´µ µ ² ± ³µ ² ± ³´ ´±µ µ´ ´± ±±± ±

¶ · ¸ ¶ ¹ ¸
¹ º

» »¼ » ¼ ½ ¼ » ¼ ½ ¼ » ½¼»¼ » ¼ ½ ¼ » ½¼ »»¼ » ¼ ½ ¼ » ½¼ ¼ ¼¼ » ¼ » ¼ » ¼ »¼ ¼ » ¼ »¼ ¼ ¼

¾ ¾ ¿ À Á Â À ¾ ¾ ¾ Â À¾ ¾ ¾ Â À¾ ¾ ¾¾ ¾ ¾ ¾¾ ¾
ÃÃÃÃ Ã Ã

Ä ÄÅ Å Å ÅÅ Å ÅÅ Å ÅÅ ÅÅ Å

Æ ÇÆ ÇÆ ÇÆ Ç Ç ÈÆ Ç È

É ÉÉ
  

Substituting this into (5.10) yields, 

 Ê Ë Ë ËË Ë ËÌ Í ÎÎ ÎÏÐ Ñ Ò Ó Ð Ñ Ó Ð ÓÔÕ Ô Ö Õ Ô Õ × Õ Ô Õ ÔÕ Õ ÕØ Ù Ú Û Ú Ú Ü Ý Ü Ú ÚÞ Þ Þßà à à à àá â ã â ãä
. (5.11) 

Remember that an expression is sought for å æçè
 in terms of the market instantaneous forward 

curve é ê ë ì íî ï
.  Differentiate the above expression with respect to t to obtain, 

 ð ñ ñò ó ôõö ÷ ø ù ö ÷ ù ö ù ö ùúû ú ü û ú û ý û ú û ú û ú û úú û ûþ ÿ � � � � � � � � � � � ÿ � �� �� �� � � � � �� 	 	 
 	 
�
. (5.12) 

Using expression (5.11) and (5.12) it can be seen that, 
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 � � 
 ��� � � � � � � � � � � � �� �� �� � � � � � ��� �� � � �
.  

Finally, making  !"#
 the object of the equation, expression (5.13) is obtained. 

 $ $ % &&' ( ' ) * ( ' ) * ( ' + (, -- ,. / . 0 / . 123 45 6 6 7  (5.13) 

For this choice of  !"#
, the term structure implied by the ZCBs under this model will be exactly the 

current term structure defined by the descriptive yield curve 8 9 : ; <= >
.  It is interesting to 

contemplate the dynamics under this choice of ? @AB
.  The final term is generally quite small and 

will be ignored for now.  The dynamics can be written as, 

 C CD EF G HI J I K L J I K L J I J I JMN O P Q P R Q P O P N P N S PTU V W V  (5.14) 

On average the drift will be the slope of the market instantaneous forward curve, adjusted 

upward if the model short rate is below the market forward rate and adjusted downward if the 

model short rate is above the market forward rate.  Therefore when it strays from the market 

curve, it reverts at a speed determined by k. 

5.3.4 Positivity 

Due to the fact that the short rate has a normal distribution, negative rates are attainable.  In fact 

the probability of attaining a negative interest rate at any future time t is given by, 

 X Y Z [ \ ]^_ ` a _ `ab c d b de b d fb d c e b d f g hi h j i h i kji h jil m l l n o np m qr m q s t m m q lu vw w w w w
x yz{ | zx y { z{z{ zz {{ z} ~ � � ~ � �z { z{ z { z{ zz{ z{� � � z{ z{ z{� �z{

�
 (5.15) 

5.3.5 Option Prices 

Explicit formulas are also available for European put and call options on ZCBs, see Hull (2003).  

There are also explicit formulas available for the pricing of caps, floors and swaptions, see Brigo 

and Mercurio (2001). 

5.3.6 Realistic Shapes 

By definition, any exogenous model gives a perfect fit to any shape of the current yield curve.  The 

problem of realistic shapes therefore becomes naught and it is a realistic volatility structure that 

becomes the focus of attention.  There is a vast amount of literature covering the topic of volatility 
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structure of yield curve models and interest rate derivatives.  Unfortunately such detail is beyond 

the scope of this dissertation and the interested reader can refer to Amin. and Morton (1994), 

Andersen and Andreasen (2000) and Brace et al (1997). 

5.3.7 Parameter Estimation 

Compared to the Vasicek model the calibration of the Hull-White model poses somewhat of a 

problem.  In the Vasicek case the model was calibrated to the instantaneous forward rates given 

by the descriptive yield curve of chapter 3.  This cannot be done with the Hull-White model since 

the descriptive yield curve is entirely incorporated into the model, that is, the instantaneous 

forward rates under the model will always match those of the market, independent of the choice 

of k and � .  Consequently a different set of calibration securities has to be employed.  The choice 

of calibration securities will depend on the purpose of the model for instance, if the goal is 

swaption pricing, the model should be calibrated to the prices of swaptions in the market.  Again 

it is important that the model be calibrated to prices that are liquid and do not contain any risk 

premia.  Unfortunately, since there are no liquidly traded interest rate derivatives in the South 

African market that can serve as calibration securities, none of the conventional calibration 

techniques can be used.  This will be a good area for future research and would be of specific 

interest to institutions that wish to start trading interest rate derivatives. 

5.4 The Heath-Jarrow-Morton Framework (1992) 

In Heath, Jarrow and Morton (1992) a framework was presented that takes a different approach 

to the modelling of interest rates than the previous models.  The HJM-framework models the 

evolution of the instantaneous forward curve instead of the spot curve.  The HJM dynamics are 

given by the following, 

 ��� � � � � � � � � � �� � � � � � � �� � � � � � � � � � � � �� � � �� �� ��  (5.16) 

where � � � � �� �
 is a boundary condition at time zero to the stochastic dynamics and represents the 

descriptive yield curve at time zero.  An advantage of this formulation is that the current market 

term structure is incorporated into the model at construction.  There is a restriction that must be 

placed on the drift parameter, � � �� �  , for the dynamics to be arbitrage free, this is the so called 

"Heath-Jarrow-Morton No Arbitrage Condition".  Armed with this condition, the HJM-framework 

provides a completely general specification of all arbitrage-free interest rate models. 
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5.4.1 The Heath-Jarrow-Morton No-Arbitrage Condition 

To see why the dynamics of (5.16) are not arbitrage free, the dynamics are deduced in an 

arbitrage-free setting in two steps, 

(1) Define a completely general ZCB price process in an arbitrage-free risk neutral world, 

(2) Find the general form of the instantaneous forward rate process in this setting. 

Firstly the zero coupon bond dynamics will be constructed in an arbitrage free setting.  Under the 

assumption that the market is arbitrage free, Theorem C.4 shows that there exists an ¡ ¢£¤
-

measurable volatility process ¥ ¦ §¨ ©ª  such that, 

 «¬ ­ ® ¬ ® ¬ ­ ® ¬ ­ ® ¬ ­ ® ¬ ®¯ ° ± ² ³ ± ° ± ² ¯ ± ± ² ° ± ² ¯ ´ ±µ¶ · . (5.17) 

In (5.17) the term R(t) represents the ¡ ¢£¤
-measurable risk free, short rate process.  This 

expression of the ZCB dynamics is equivalent to that of the general stock price process.  By 

applying Ito's formula the log-dynamics can be written as, 

 ¸ ¹ º»¼»½ ¾ ¿ À Á ¿ Á ¿ À Á ¿ À Á ¿ ÁÂ Ã Ä Å Æ Ä Ä Å Â Ä Ä Å Â Ç ÄÈ ÈÉ Ê Ë . (5.18) 

Note that, since all default-free zero coupon bonds have a value of 1 at maturity, their volatility 

must be zero at maturity, therefore, 

 Ì Í Î ÏÐ ÐÑ Ò . (5.19) 

Now that a completely general expression of the ZCB dynamics was found in an arbitrage free 

world, a contingent expression for the instantaneous forward rate process is sought.  An 

expression will first be found for the continuously compounded forward rate Ó Ô Ô ÕÖ × Ø Ø ×ÙÚ
 of 

Definition 2.3.5 and then the dynamics of the instantaneous forward rate Û Ü ÝÞ ß à
 of Definition 

2.3.6 will be found using the limiting argument á áâ ã ä å æ ç â ã ã ä å æ ç â ã ã äè èé ê ë ì ê ë ë ê í ê ë ë êî îï ïð ðñ ò ñ ò . 

From table 2.2 the following relation between the forward rate and the ZCB prices can be seen, 

 ó ô õó õ ó ô ô õ ó ô õö ÷ ø÷ ù ÷ ø ø ÷ ö ÷ ø ÷ú û û ûü üý . (5.20) 

By writing the continuously compounded forward rate on the right hand side it is clear that, 
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 þ ÿ � � � � � þ ÿ � � � � �
� � � � � � � � � � �� � � � � �

�� �� 		 
 . (5.21) 

Therefore the differential form of the continuously compounded forward rate process will be, 

 

� � 
 
 � � � � � 
 
 � � �
 � � � � � � � � � � � �� � � � � � �
�� �� �� � . (5.22) 

After substituting these log-dynamics of the bond price dynamics, (5.18), into (5.22), the dynamics 

of the forward rate can be written as, 

�
�

� �
� � � � � � � � � � � � � �� � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
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'' '( ' ( ( ( '' '( ' ( ( ( ' ( ( '' '
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* ) ) *+ *, - , -* * ) * ) *. ./ /+ *. ./ /. .. ./ /0 1 0 1

(5.23) 

The instantaneous forward rate, 2 3 45 6 7
, is obtained by letting 89: ;

.  Each of the coefficients of 

expression (5.23) has the following limiting values, 
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where the subscript denotes the corresponding partial derivative.  Therefore the dynamics of the 

instantaneous forward curve can finally be written as, 

 PQ R S Q R S Q R S Q R S Q ST TU V W X W X W X U W W X U Y WZ Z Z[ \ . (5.24) 

Writing the volatility process as an integral and remembering that ] ^ _ `a ab c  it can be seen that, 

 

  and
d e f d e f d e f

d e f d e f g
h hi h hi

j k j j j l m l
j k j l m l

n n n
n n

o p
p

q
q  (5.25) 

Therefore the instantaneous dynamics can be written as, 

 rs t u s t u s t u s t u s uvv v vwx y z { z { z | x | x z z { x } z~ ~ ~� ��
. (5.26) 
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Finally, setting � � � � � ��� � � �� �� , the no-arbitrage condition on the drift becomes clear.  If zero 

coupon bond prices are represented by a no-arbitrage process (5.17), the instantaneous forward 

rate dynamics must be, 

 �� � � � � � � � � � � � � ���� � � � � � � � � � � � � � � � �� � ��� �� �� �� �� ��� � 
. (5.27) 

This no-arbitrage condition is formally stated below. 

The HJM No-Arbitrage Condition 

Let F(t,T) be a term structure model for the instantaneous forward rate of all maturities in 

(0,T] and driven by a single Brownian motion with dynamics given by, 

 ¡¢£ ¤ ¥ £ ¤ ¥ £ ¤ ¥ £ ¥£ ¦ ¤ ¥ £ ¦ ¤ ¥ §¨ © ª « ª « ¨ ª ª « ¨ ¬ ª© ª © ª­ ®¯ °¯  (5.28) 

This model does not admit arbitrage if ± ² ³ ± ² ³ ± ² ³´µ¶ · ¶ · ¶ ¸ ¹ ¸º » »¼ ½ . 

This is the fundamental result of Heath, Jarrow and Morton which can be extended to a market 

with multiple sources of uncertainty.  It implies that, given knowledge of the volatility process, the 

drift is completely determined in an arbitrage free setting.  In other words, the volatility is the only 

quantity that needs to be calibrated for the entire process to be known.  Furthermore, since the 

volatility does not change with a change in measure, it can be approximated from historical data.  

It has been shown that all arbitrage free models can be represented by the HJM-framework, 

therefore a few questions are now of immediate interest, 

(1) For an arbitrary volatility structure ¾ ¿ ÀÁ ÂÃ , what are the dynamics on the short rate? 

(2) What choices of ¾ ¿ ÀÁ ÂÃ  correspond to each of the earlier short rate models? 

(3) What choices of ¾ ¿ ÀÁ ÂÃ  result in a Markov process for the short rate? 

Each of these questions will be answered in turn. 

5.4.1.1 For an arbitrary volatility structure ¾ ¿ ÀÁ ÂÃ , what are the dynamics of the short rate? 

The first question can be answered by noting that, 
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Substitute expression (5.26) in the above to obtain, 

 ÓÔ Õ Ô Ö × Õ Ô × Õ Ô × Õ Ô × Õ Ô ÕØ ØÙ ÙÚ ÚÛ Ü Ý Ü Ü Ü Þ Ü Þ ßà á à á á à á áâ ã ãä ä
. (5.29) 

The dynamics of the short rate can be found by differentiating the above expression with respect 

to t to obtain the following expression, 

 å æ çè é è ê ë é è ë é è ë é è ë é è éì ìí íî îï ð ñ ï ò ñ ï ñ ñ ï ï ñ ï óô õ ô õ õ ô õ õö ÷ ö ÷ø øù ùú û ûø øù ùø øø øù ùù ùü ý ü ýþ þ
. (5.30) 

Each of the three terms on the right hand side of (5.30) is differentiated separately and listed as 

(5.31), (5,32) and (5.33) respectively. 

 ÿ � � � ÿ � � ��� � � � � � ��  (5.31) 
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  (5.32) 

 ! ! !" # $ " $ " # $ " $ " # $ " $% %& & & & %' '( ) ( * ) ( * ( ) ) ( * )+, - - , - - , - ./ 0 / 01 12 23 41 12 21 11 12 22 25 6 5 67 7
 (5.33) 

Substituting (5.31), (5,32) and (5.33) back into (5.30) yields the dynamics of the short rate, 
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8
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These are the dynamics of an general short rate process in an arbitrage free market.  Each of the 

drift parameters can be interpreted to some degree. 

T U V W XYZ [
 is the slope of the time zero descriptive forward curve. 
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\ ]^ _ ` ^ _ ` ^ _ `a b b bc d d d ef g f g f g ghi
 though a specific interpretation is difficult this 

quantity depends on the history of the volatility process. 

\ jk l m k mn o op q r st u uv
 this process depends on the history of both the volatility and the 

Brownian motion processes. 

From this it is clear that, in general, the drift is dependent on the entire history of R(t) and not just 

on the value of R(t) in the previous instant, in other words, this process is non-Markovian for most 

choices of the volatility. 

5.4.1.2 What choices of w x yz {|  correspond to each of the earlier short rate models? 

The answer to the second question requires a more comprehensive overview of the topic an will 

not be given here, but a discussion on this subject can be found in Brigo and Mercurio (2001). 

5.4.1.3 What choices of w x yz {|  result in a Markov process of the short rate? 

The third question is of practical importance.  When pricing derivatives, the interest rates are 

often modelled using a binomial tree.  In the case where the interest rate process is Markov, a 

recombining binomial tree can be built which has a size of O(N), where N is the number of time 

steps to maturity.  When the interest rate process is not Markovian, the tree usually grows at a 

rate of O(2N) and accurate evaluation becomes infeasible for long dated instruments.  Hull and 

White (1993) has shown that the short rate process will be Markovian if and only if w x yz {|  has the 

functional form, 

 } ~ � } � � } � } � �� � � � � � � �� � �   

5.4.2 Other Characteristics 

The distribution, mean reversion, positivity, along with all the other characteristics that define an 

interest rate model, will be determined by the choice of the volatility function � � �� �� .  Certain 

choices of � � �� ��  will yield models like that of Hull and White that have a normal distribution and 

are mean reverting while other choices might yield models that have a fat-tailed distribution of 

the short rate.  The fact that the HJM-framework and the no-arbitrage condition gives structure to 

the form of all no-arbitrage interest rate models make this approach especially powerful and of 

great academic value.  The question that needs to be answered, and which is currently the source 
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of much research, is, what choice of � � �� ��  constitutes a very realistic model whilst remaining 

computationally feasible. 

5.4.3 Model Calibration 

All conventional methods of calibrating a model based on the HJM framework requires a range of 

prices for interest rate derivatives that trade liquidly in the market.  The volatility function � � �� �� , 

has to be found which most accurately reflects the prices observed in the market.  Suppose caps, � �� � � � ��� � � � �
 are trading in the market at time t.  The cap � �� � � � ��� � � � �

, fixes the interest rate at � 
 for the period following T1 up to time T2.  Suppose these prices are available for various values 

of T1 < T2 up to a maturity of Tn.  The prices of these instruments can be calculated under the model 

as ¡ ¢ £¤ ¥ ¥ ¥ ¦§¨ © ª « «
, given some initial choice of the volatility function.  It might be the case that 

analytical expressions for the cap prices are not available, then tree based methods, numerical 

techniques or simulation have to be used to value the derivatives.  The volatility function can be 

parameterised and the parameters can then be found by following the general least squares 

minimisation procedure outlined in chapter 4.  Let ¬  be the parameter that defines some 

volatility function ­ ® ® ¯° ±² ³ .  Then the optimisation problem is that of finding the minimum for 

(5.34). 

 ´µ ¶ ·¸
·

¸
·

¹ º » ¼ ½ ½ ½ ¾ ¼ ½ ½ ½ ¾¿ À ÀÁ Á Á Â Ã Ä Å Å Â Ã Ä Å ÅÆ Ç È É Ê Ë ÌÍÎ ÏÐ ÑÒ
 (5.34) 

5.5 The LIBOR Market Models (1997) 

The LIBOR market models will not be discussed in depth since a detailed overview will require a 

thorough review of stochastic calculus and interest rate theory which is beyond the scope of this 

study but a discussion of the reasons for their popularity will be given. 

In order to address the problem of finding a practically appealing choice of the HJM volatility, 

Brace et al (1997) proposed what has become known as the LIBOR market models.  In the same 

way that the HJM-model has become very popular amongst academics due to its attractive 

theoretical properties, the market models have become very popular amongst practitioners due to 

their analytical tractability.  The problem with the HJM-framework is that it can be difficult to 

calibrate because the instantaneous forward curve is not directly observable in the market.  

Quantities that are observable are the LIBOR (and JIBAR) rates.  These are not instantaneous rates 

but rather the simply compounded forward rates, L(t, S, T) from Definition 2.3.4.  Furthermore, the 
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most prolific interest rate derivatives, namely caps, floors and swaptions, are defined on these 

forward rates.  It is also the convention of the market to value these derivatives using Black's 

formula which assumes that these forward and swap rates are log-normally distributed.  With the 

introduction of market models they were the only interest rate models which were compatible 

with either Black's formula for caps or Black's formula for swaptions.  Traditionally, when these 

formulas were used by practitioners they were based on inexact assumptions of the interest rate 

distribution but under the market models Black's formula is based on rigorous interest rate 

dynamics.  These market models are not without problems however.  In the formulation of these 

models a critical inconsistency has arisen.  When the model is formulated such that simply 

compounded forward rates are log-normal, the corresponding swap rates cannot be log-normal as 

well.  Yet Black's formula is used to value both swaptions, which implies log-normal swap rates, 

and caps which require log-normal forward rates.  This sometimes leads practitioners to build two 

separate incarnations of the market model, 

Ó The log-normal forward-LIBOR model (LFM) that prices caps with Black's formula, and  Ó The log-normal forward-swap model (LSM) that prices swaption with Black's 

formula. 

Unfortunately this double standard leads to arbitrage opportunities between the models. 

5.5.1 Formulation of the Log-Normal Forward-LIBOR Model (LFM) 

Consider the expression for the simply compounded forward rate from Definition 2.3.4, 

 Ô Õ Ö Ô Õ Ö×Ô Õ Ö Ô Õ ÖØ Ù Ù Ú Û Ü Ý Û Ü ÞÝ Þ Û Ü Þß à á â ã äå .  

Rewrite this as, 

 æ çèé ê ëì í î ì í í î ì í î ì í îï ðñ ò ó ô ò õ ó ñ ò õ ñ ò óö÷ ø .  

The right hand side is clearly a tradable security, it is the value of a portfolio consisting of a short 

position in ùú û üý þÿ  units of � � �� � �
 and a long position in �� � 	
 ��  units of 
 � �� � �

.  Under the 

assumption that the market is complete and arbitrage free, the right hand side has to be a 

martingale under the traditional risk neutral measure.  Equivalently, if the T-maturity ZCB price is 

taken as the numéraire, this asset must be a martingale under the T-Forward measure.  Therefore, 

 

� � � � � � � � � � �� � �� � � � � � � � � � �� � � � .  
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The simply compounded forward rate must be a martingale under the T-forward measure and its 

dynamics can be written as, 

 �    for   
� � � � � � � � � � � � ! " # $ % " # $ % # ! & # # $'( ) .  

This is also a geometric Brownian motion process which implies that the simply compounded 

forward rate has a log-normal distribution under the T-Forward measure. 

Caps provide insurance against the risk that the interest rate will rise above a certain level for a 

floating rate note.  Let * +, -. . / / / . 01 1 1
 be the reset dates on the underlying floating rate note and 

let T0 be the settlement date. Let 23 4 56 67 78 9  be the corresponding tenor.  The simply compounded 

forward rates can now be written as, 

 :    for   ; ; ;< = = > < = = > < > < > = ? = @ @ @ =ABC C C C CD E F G G E F G G F D H F F G I JKL L LM N M .  

A cap consists of a sequence of caplets where each caplet fixes the simply compounded forward 

rate over one tenor period.  A caplet can therefore be seen as a European call option on the simply 

compounded forward rate with some strike rate Lk.  Therefore according to Definition 2.3.8, the 

payoff of a caplet with maturity OPQ R
, can be written as, 

 S TU U UV W X Y Z [ V W W X W \] ] ] ] ] ^_ _ ` _ _ _ `a b b b c .  

Therefore according to (C.8) in Definition C.3, the present value of this payoff can be calculated 

from, 

 d e fg g g gh i j k h j k l m n h j j k j iopq q q q q q rs t u t t v t t t vwx y y yz {|} ~ .  

Since the simply compounded forward has the log-normal distribution, proposition 4.1 can again 

be employed which results in the standard Black option pricing formula given below. 

 � �� � � � �� � � � � � � � � � � � � � � � �� � � � � �� � � � � � � � � �� � � � � � �   

where � �� � � �� � �� � � �� � �  is the volatility of � �� � � � �  ¡ ¡ ¡¢ £ £ £¤ ¤  and 

¥ ¦§ § §§ §§ §
¨ © ª ª « ¬­ ¨ ª ª «¬­ ¨ ª ª «¬ ­ ¨ ª ª «

® ¯ °
±

² ² ² ² ²³ ² ² ²² ² ²
´ µ µ ¶ ´ µ µ µ´ ¶ ´ µ µ µ¶ ´ µ µ µ

·¸ ·¸ ¸ ·
¹¹¹

º º ºº ºº º
»¼
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A cap is priced by valuing the corresponding series of caplets.  From the above formulation the 

practical appeal of the model is obvious since it prices the most common interest rate derivatives 

using the same formula as the market. 

The corresponding formulation of the LSM will not be given since it follows a similar approach. 

5.6 Summary 

This chapter introduced the most prominent exogenous models that are currently used for 

derivative pricing.  The models address the inadequacies of the models in chapter 4 by allowing an 

entire descriptive yield curve to be used as a calibration input.  It was shown that the HJM 

framework provides a general way of presenting all no-arbitrage interest rate models and it is 

therefore of great academic value.  It was also shown how market conventions are reflected by 

the LIBOR market models, which make them of great practical value. 

The next chapter will reference some researchers that are attempting to amalgamate these 

approaches. 

 



 

 

C h a p t e r  6  

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This dissertation set out to give an overview of the current state of interest rate model theory with 

specific attention to its applicability to the South African market and derivative pricing. 

Chapter 3 introduced descriptive yield curve models.  Throughout the following chapters the 

importance of a proper descriptive model was witnessed, specifically for the purpose of 

calibrating stochastic yield curve models.  It was shown that the BESA methodology are quite 

general and very flexible since any fixed income market instruments can be used together to 

extract a yield curve. 

Chapter 4 gave an overview of three famous single factor endogenous short rate models.  It was 

shown that these models are analytically tractable but of little practical value for derivative 

pricing since they provide a poor fit to the current yield curve and therefore allow arbitrage 

opportunities. 

Chapter 5 reviewed three exogenous models that are currently used by practitioners for derivative 

pricing.  It was shown that the Hull-White model extended the Vasicek model in order to perfectly 

fit the current term structure.  The drawback of the Hull-White model was that it allowed 

negative interest rate and only had two free parameters for the calibration of the volatility 

structure of market instruments.  The HJM-framework was shown to be the primary focus of 

current academic activity due to its characterisation of the entire family of arbitrage free models.  

The LIBOR market models were shown to be primarily used by practitioners due to the fact that 

they reflect market standards for derivative pricing such as Black's formula for caps and 

swaptions.  It was also shown that the LIBOR market models have the drawback that they are not 

compatible and cannot hold simultaneously. 

The current state of the interest rate derivatives market in South Africa is such that stochastic 

interest rate models are implemented by very few institutions.  Through discussions with SANLAM 

and CADIZ it was learned that such models can only be found in large banking institutions since 

they are the main market markets in South Africa.  Even so it will be unlikely that they employ any 

of the sophisticated models in it will be extremely difficult, if not impossible to calibrate the 
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sophisticated models in any meaningful way.  However as soon as these derivative products 

become more popular so also will their calibration become more viable. 

6.2 Current and Future Research 

The models that have been discussed are the most popular and widely implemented amongst 

both academics and practitioners but scores of variants have been proposed. 

For researchers interested in the development of the short rate under the real world measure a 

three-factor model has been developed by Balduzzi et al (1996). 

Another model which is gaining much attention is the Positive Interest model by Flesaker and 

Hughston (1996).  The Positive Interest model develops a process for the bank account numéraire 

M(t).  The result is a model that always provides positive interest rates, has an elegant formula for 

the ZCB prices and prices caps and swaptions analytically using formulas that are similar but 

different to Black's formula.  The model works especially well in cases where yield curves of 

different currencies are involved. 

Research continues, in search of a model that marries the theoretical qualities of the HJM-

framework with the practical requirements of market participants. 

 



 

 

A p p e n d i x  A  

QUADRATIC FORWARD 

The quadratic forward curve gives a discrete approximation of the instantaneous forward curve 

implied by a set of discrete points on the zero curve.  The quadratic forward will be denoted by, 

 ¾ ¿À ÁÂ Â Ã Ã Ã ÂÄ ÅÆ Æ Æ ÆÇ .  

Define the zero rates at times È ÉÊ ËÌ Ì Í Í Í Ì ÎÏ Ï Ï
 to which the forward curve must be fit as, 

 Ð ÑÒ ÓÔ Ô Õ Õ Õ ÔÖ ×Ø Ø Ø ØÙ .  

Define the following spline, 

 Ú   for  
Û Ü ÝÞ ß à á â â â â âã ä å æ ä ç ä ä ä äè é é ê ê   

The spline consists of a series of parabolas between each two points tj-1 and tj on the zero curve.  

The ë ì ë ì ë ì and íî î îï ð ñ parameters of the spline has to be solved by fitting the spline to the zero 

rates ò .  Each of these parabolas will be fitted to three successive point on ò .  The following three 

simultaneous equations are obtained for each parabola, 

   for    
óô ô ô õ ö ÷ ÷ ÷ öø ø ø ø ø øù ú û ü ý ü þ ÿ� � �� � � � ,  

   for    
� � � � � � �� � � � � �� 	 
 � � � 
 �� � � �  and  

   for    
�� � � � � � � � �� � � � � �� � � � � � � �� � ��   � .  

From these the values of cj and bj can be found for j=1...n as, 

 ! !
! !

" #$ $ $ $$ $ $ $ $
% & % &' & & & &( (
( (

) ) * ) )+ ) ) ) , )  and  

 -. /00 0 0 00
12 3 4 44 5

67 8 96   

where :; ; ;< < < => ? @
.   
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Remark: Note that the instantaneous forward rate is expressed in terms of A B C D EF G G GH HI J K L JMM N O  

and it is therfore unnecessary to calculate PQ . 

From remark (2.13). under the definition of the instantaneous forward curve. it can be seen that, 

 R S T U R S T U R S T U VW W W X XY Z [ Z Z [ Z\\] ^ .  

From this relation the quadratic forward curve can be found using, 

 

_ ` a b c
` d c efg g g h h

g g g g g
i j k l k

j k m n k
oop q

p q r   

 



 

 

A p p e n d i x  B  

BOOTSTRAPPING 

Bootstrapping is the most rudimentary method of finding the yield curve implied by the market 

prices of a set of fixed income securities.  Bootstrapped curves are often discontinuous and if 

continuous, they are discontinuous in their derivatives.  The bootstrapping procedure 

recommended by the BESA methodology follows the series of steps outlined below. 

Step 0: Sort the instrument set I in order of increasing time to maturity.  No instruments with 

equal time to maturity are allowed.  Let their times to maturity be, 

 s t u u u t vw w
. B.1 

Step 1: Calculate the required, constant rate of interest such that the future value of the first 

instrument at its maturity is zero via (B.2). 

 x x xy z{ | {|} ~ ��� � � ���� � � � � ��� ��
 B.2 

where � �� �� � �
 is the future value of all cashflows of security i at time tj. 

Remark: Each instrument has a cashflow at t0 equal to minus its market value. 

Step 2: For each subsequent instrument, calculate their future value on the maturity date of the 

previous instrument and find the value of fj that will make it zero. 

 � �
� �

� � � �� � �� � �� � � � � �
� � � �

�     �    ¡ ¡ ¡ ¢ ¡ ¢¢     ¢    £ ¤ ¥ ¦ § ¦ §¨ ¨
¨ ¨

© © ©© ª «¬ ­ ¬® ®
 B.3 

The interest rates in the first term of B.3 are known.  There are two alternatives for modelling the 

forward rates in the second term.  Let the interest rate in the second term be constant over the 

period [ti-1, ti] and find the rate that solves B.3.  This gives a discontinuous forward curve.  Let the 

forward rate over the interval [ti-1, ti] be, 

 ¯ ¯° ±² ³ ´ ³µ µ ¶ · ·¸ ¸¹ º » . B.4 

Then solve B.3 for the slope sj.  This gives a continuous forward curve with discontinuous 

derivatives.



 

 

A p p e n d i x  C  

STOCHASTIC CALCULUS PRIMER 

Some fundamental theorems and results are listed below which are used throughout chapters 4-

7. 

Finding the Traditional Risk Neutral Measure 

Consider an arbitrage free market with d sources of uncertainty represented by a d-dimensional 

Brownian motion vector ¼ ½¾ ¿
 and the m stocks, 

 ÀÁ Â Á Â Á Â Á Â Á Â Á Â Ã Ä Å Æ Ç È È È ÇÉÊ Ê Ê Ê Ê Ë ËËÌ Í Î Î Í Î Ì Î Í Î Î Ì Ï Î Ð ÑÒ ÓÔÕ Ö Õ×
.  

The corresponding discounted stock price processes are, 

 Ø Ù ÚÛ Ü Û Ü Û Ü Û Ü Û Ü Û Ü Û Ü Û Ü Û Ü Û Ü Ý Þ ß à á â â â áãä ä ä ä ä å ååæ ç è é è è ê è ç è é è æ è ç è é è è æ ë è ì íî ïðñ ò ó ñô
.  

It can be shown that the "market price of risk equations" can always be solved for õ ö÷ø
, in a 

market that does not admit arbitrage.  These equations are given by, 

 ùú û ú û ú û ú û ü ý þ ÿ � � � � ��� � � ��� � � � � � � � 	
 � �
� � ��
. (C.1) 

The discounted stock price processes can then be rewritten as, 

 � ��� � � � � � � � � � � � � � � � � � � � � � ��� � � � � ���  ! " !  ! " ! ! ! � ! � # ! $ %& '() * )+
. (C.2) 

A change of measure is now performed using Theorem C.2 below and the traditional risk neutral 

measure is given by, 

 , - . - . - . - . /01 2 3 1 45 56 7 89: : ;
 (C.3) 

where, 

< =>?>@ @A B C D E D E D EF FG H I J H H I HK KL M N MO O
. 

The discounted stock price processes are now martingales under PQ , 
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 R
R

S
T

U V U V U V U V U V U V W X Y Z [ \ \ \ [ ] ^ _ Y _
U V U V U V W X Y Z [ \ \ \ [

` ab b b aacb b b
d e f g f e f g f f d h f i j

h f h f k d k i d
l

m n
o o
o p o

q
r  (C.4) 

Theorem C.1 : Fundamental Theorem of Asset Pricing 

Let V(t) be the price process of an asset in a complete market.  Then the discounted asset 

price process is a martingale under the risk neutral measure. 

 st u t u v t ut u t uw x w yz x{ x { y| }~ � �� �� ��
 (C.5) 

Remark C.1: Note that the differential form of the discounted stock price process is, 

 �� � � � � � � � � � � �� � � � � � � � � � � � ��� �  (C.6) 

Proof: See Shreve (2004) chapter 5. 

Theorem C.2 : Multi-dimensional Girsanov Theorem 

Let � �� �� ��
 be a probability space and � �� �

 be a d-dimensional standard Brownian 

motion over � � �� �
 under �� .  Also let �   ¡¢ £ ¤ ¥¦ § §¨

 be the filtration generated by this 

process and © ª «¬ ­ ® ¯°± ² ²
 be an adapted d-dimensional process. Define, 

 ³
´

     and

 for 

µ¶µ¶ · · µ¶µ· ·

·

¸ ¹ º » ¼ ¸ ¹ ¸ ¹ ¸ ¹
º » ¼ ¸ ¹ ¸ ¹ ¸ ¹ ½

¸ ¹ ½
¸ ¹ ¸ ¹ ¸ ¹ ¸ ¹
¸ ¹ ¸ ¹ ¸ ¹ ¾ ½ ¿ ¿ ¿ ½ ¿

À ÀÁ Â Â ÂÂ
À À

Ã ÀÄ Ä Ä

Å Æ Ç È É Ç Ç È Ç
Ç È É Ç Ç È Ç

Å Å Ê
Ë Å È Ë Ê

É Æ É Æ Ç È Ç Ì È

Í Í
Í Í

Î Î
Í

Ï Ð ÑÒÓÔ Õ Õ ÒÓ ÒÒÓÓÖ ×
Ð ÑÒÓÔ Õ Ø Õ ÒÓ ÒÒÓÓÖ ×Ô

Ô Ù Ú
Ô Û Ô

Ü Ý Ý
Ý Ý

Ý
Ý

Þ Þ ß   

Subject to the restriction that 

 à àá â ã â ãäå æ ç æ è æéê ë ì íî ïð ñò
  

ó ô õö ÷
will be a d-dimensional standard Brownian motion over ø ù úû û

 under üý . 

Proof: See Shreve (2004) chapter 5. 
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Theorem C.3 : Multi-dimensional Martingale Representation Theorem 

Let þ ÿ� �� ��
 be a probability space and � �� �

 be a d-dimensional standard Brownian 

motion over � 	 
� �
 under � .  Also let 
 � �� � � �� � ��

 be the filtration generated by this 

process, � � �� � � ���   
 be an adapted d-dimensional process, ! "# $

 be a martingale over % & '( (
 under )  and * + ,- .

 be a martingale over 
% & '( (

 under /0 .  Then there exists 

a d-dimensional adapted process 1 234
 such that 

 56 7 6 8 7 6 7 6 79: ; : < = > <? @ A BC
  

Similarly, there exist a d-dimensional adapted process D E FGH
 such that 

 I I J KLM N M O N M N M NPQ R Q S T U SV W X YZ
.  

Proof: See Shreve (2004) chapter 5. 

Theorem C.4 : Stochastic Representation Theorem 

Let [ \] ]^ _`
 be a probability space and N(t) be a strictly positive non-dividend paying asset 

price process (either a stock or derivative).  In a market with d sources of uncertainty 

represented by a d-dimensional Brownian motion vector a b cd e
, there exists an adapted 

volatility vector f ghi , such that 

 

j jjk l
jk lmnmo o mnmo o

p q p q p q p q p q p qp q p q p q p q p q p qp q p q p r q s t u p q p q p qp q p q p r q s t u p q p q p q p q
v vv v

w x y z y x y z y y w { yw z y | y z y w y z y y w { yx y z y z } w { } } w }x y z y z } w { } | } } w }
~ ~~ ~~ ~

� � �� � � �� � � �� � � �
� �� �   

Proof: See Shreve (2004) chapter 6. 

Theorem C.5 : Change of Measure 

Let S(t) and N(t) be asset price processes with respective volatility vectors � ���  and f ghi .  

Such that, 

 � � � � � �� � � � � �
� � � �� � � �� � � �� � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � �� � � �� � � �� � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� �� �� � � � �� � � � �   
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A change of measure such that N(t) is the numéraire instead of M(t).  Define, 
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Then 

 Ë Ì Ë Ì Í Î ÏÐ Ñ Ð ÑÐ Ñ Ð Ñ Ò Ó Ò Ó Ò ÓÔÕ Ö Õ ÖÔ Ö Ô Ö× Ø Ø × Ù ØÚ ÛÜ Ý Þ
 (C.7) 

Proof: See Shreve (2004) chapter 9. 

Remark C.2: Note that this theorem applies the multi-dimensional Girsanov theorem with ß à ß àá áâ ãä å . 

Also note that, when discounting is done by the money market process M(t), the discounted stock 

price process æ çæ çè éê é , is a martingale under the traditional risk neutral measure ëì .  But when 

"discounting" is done by the asset N(t), the discounted stock price process í îí îï ðñ ð , is a martingale 

under measure ò ó ôõö
. 

Definition C.3 : T-Forward Measure 

Apply the change of measure result with N(t) = B(t, T).  Then, 

 ÷ ÷
ø ù ø ú ùø û ú ù ø ùø û ú ùüø û ú ù

ý þ ý þ ÿ � � � � � ý ÿ þ �ý þ ý þ ý þ ý þ ý þ
� � � � 	� 	 � 	� 		 � 	 


� �
� � 
 � 
 


� � 
 � � 
� �
�
� � �
� � ��� � �   

Remark C.3: The T-forward measure often simplifies calculations when pricing derivatives in a 

stochastic interest rate environment.  Consider the asset price under the traditional risk neutral 

measure (when the numéraire N(t) = M(t)), 

 � � �� �� � � � � � ��  !  " # $ # % #& '( ) *+ ,-
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In order to calculate this expectation, the interaction between the asset price process and the 

interest rate process must be modelled.  Compare this with asset price under the T-forward 

measure (when the numéraire N(t) = B(t,T)), 

 . / 01 2 1 3 2 1 2 4 1 256 7 8 7 9 : 6 9 7; <  (C.8) 

Discounting now occurs outside the expectation and the interaction between the processes does 

not need to be modelled. 

Theorem C.6 : Feynman-Kac 

Consider the stochastic differential equation, 

 = > = ? = > > = ? = > > = >@ A B B A B @ B B A B @ C BD EF G   

Define, 

  for  and h( ) borrel-measurable
H I J K H H J L H J M I K N I M IO P Q R S T U T P Q P UV V W X   

then g(t,x) satisfies the partial differential equation, 

 YZY[ \ ] [ \ ] [ \ ] [ \ ] [ \ ] ^_ ` ` `a b c b c a b c b c a b cd ef f g
,  

with terminal condition, 

 h i j h j ik l m n m mo p q r .  

Proof: See Shreve (2004) chapter 6. 

Theorem C.7 : The Change of Drift implied by a change of Numéraire 

Assume that the two numéraire N and U evolve under s t uvw
 according to, 

 x
x

y z
y z

{ | { } } } | { | { |
{ | { } } } | { | { |

~�� ~�~
� � � � � � � � � �
� � � � � � � � � �

�
�

� �
� �   

where � �� ��  and � �� ��  are n x 1 volatility vectors and � � � � ��� �
 is an n-dimensional 

standard Brownian motion and �  is the covariance matrix for the Brownian motions such 

that �� � �  
.  Then the drift of a process ¡ ¢£ ¤

 under numéraire U is, 

 ¥ ¦§ ¨ § ¨§ ¨ § ¨© ª © ª © ª « ¬­ ­® ¯ °± ± ± ¯ ­ ® ­² ² ² ³ ³´ ´ µ¶ · ¸ ·   

Proof: See Brigo and Mercurio (2001) chapter 2. 



 

 

A p p e n d i x  D  

MATLAB SOURCE CODE 
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È É Ê Ë Ì Í Î Ï Ð Ñ Ñ Ð Ò Ó Ô Ì Í Î Ï Ð Ñ Ñ Ð Í Õ Ì Í Î Ï Ð Ñ Ñ Ð Ò Ö Î × Ô Ô Ò Ø Ì Í Î Ù È Ð Ö Î Õ Ì Í Î Ù È Ð Ö Ú
Û Ü Ý Þ Ð È ß Ë Û Ü Ñ Ô Ý Ê Ü à á È É Ê Ö Ú

â Ù ã Ù Í ã Ì Ù Û Ë ä Ù à É Û Ô å æ ç Ò Ò Ò Ö Ú
Ê É É è Û Ë å Ú

é ß Ì Ê Ù Ô Û Ü Ý Þ Ð È ß á Ë Ì Í Î Ù È Ð Ö
â Ì Û è Ô ê ë ì È Ð à È Ì Í Ï Û Ü Ý í è Ð È ß î ë æ Ì Í È ï Û È à Ô Û Ü Ý Þ Ð È ß Ö æ ë Î Î Î ë ð Ö Ú
É è È Ì É Í Û Ë É è È Ì Ñ Û Ù È Ô ë ñ Ì Û è Ê Ð ò ë æ ë ó Ì Í Ð Ê ë æ ë ô Ð à Ï Ù ì ã Ð Ê Ù ë æ ë É ó ó ë æ ë õ Ð ö ÷ È Ù à ë æ Ì È Ù à Û æ Î Î Î

ë ø É Ê ù Ü Í ë æ å Ò Ù í å Ò æ ë ø É Ê ú ë æ å Ò Ù í å Ò æ ë õ Ð ö ù Ü Í û ü Ð Ê Û ë æ Ì Í ó æ ë ý Ü È è Ü È ù ã Í ë æ þ ã Ð Ê ã ÿ Ê Ü à Ö Ú
ê ö æ ó ü Ð Ê � Ù é ð Ë Ê Û � Í É Í Ê Ì Í Ô ë Ñ Ì Í Þ ù ñ Ù ã Ù Í ã ò ë æ ö æ ê ð æ ê ð æ É è È Ì É Í Û æ ÿ æ È æ é Ö Ú
â Ù ã Ù Í ã Ì Ù Û Ô Ê É É è Û Ö Ë ó ü Ð Ê � Ù é Ú
Ê É É è Û Ë Ê É É è Û � å Ú
Ì È Ù à � É Ü Í È Ë Ì È Ù à � É Ü Í È � Ì È Ù à Û Ú
Ì ó Ô Ì È Ù à � É Ü Í È � Ì Í Î Ì È Ù à ô Ì Ñ Ì È Ö

Ý à Ù Ð � Ú
Ù Í â

Ì ó Û Ü Ñ Ô Ð Ý Û Ô é ý Ê â í é � Ù é Ö Ö á Ò Î Ò å
é � ò ã Ê Ù Ë å Ú

Ù Í â

Ì ó � Ô Ì Í Î É Ñ Ù Ï Ð Ë Ë å Ö
â é Ë Ñ Ð ö Ô Ð Ý Û Ô Ô é � Ù é Î Õ Û Ü Ñ Ô é � Ù é Ö Ö Î Õ Ô é Î Õ Û Ü Ñ Ô é Ö Ö í å Ö Ö � Ì Í Î É Ñ Ù Ï Ð Ú

Ù Ê Û Ù
é ý Ê â Ë é Ú é � Ù é Ë é Ú

Ù Í â

Ì ó Ô ó ü Ð Ê ý Ê â Ë Ë ó ü Ð Ê � Ù é Ö
Ì ó Ô é Ë Ë é � Ù é Ö

ó Ê Ð Ï Ë å Ú
Ý à Ù Ð � Ú

Ù Í â
â é Ë å Ú

Ù Í â

Ì ó â é � � � é � ò ã Ê Ù
é ý Ê â Ë é Ú é Ë é � Ù é Ú Û Ü Ý Þ Ð È ß Ë Ò Ú â Ì Û è Ô ê ë ì È Ð à È Ì Í Ï Ð Í Ù é è Ð È ß é Ì È ß é Ù Ì Ï ß È Û ë

æ Í Ü Ñ ï Û È à Ô é æ � Ö æ ë Î Î Î ë ð Ö Ú
Ý Ê Ü à Ë Ì Í ó Ú ö Ë ö Ò Ú è Ð È ß Ë ö Ò Ú ó ü Ð Ê ý Ê â Ë Ì Í ó Ú Ì È Ù à Û Ë Ì Í Î ó Ì à Û È ì È Ù è Ú
Û Ü Ý Þ Ð È ß Ë Û Ü Ñ Ô Ý Ê Ü à á È É Ê Ö Ú

Ù Ê Û Ù Ì ó Ì Û Ù � Ü Ð Ê Ô é æ é � Ù é Ö
â Ì Û è Ô ë Þ Ù à ó É à Ñ Ì Í Ï Ð â â Ì È Ì É Í Ð Ê Ì È Ù à Ð È Ì É Í Û Î Î Î ë Ö Ú
Ì Í Î ó Ì à Û È ì È Ù è Ë ã Ù Ì Ê Ô Ì Í Î ó Ì à Û È ì È Ù è Ó å Î å Ö Ú
Ì Í Î Ê Ð È Ù à ì È Ù è Ë ã Ù Ì Ê Ô Ì Í Î Ê Ð È Ù à ì È Ù è Ó å Î å Ö Ú
Ì È Ù à Û Ë ã Ù Ì Ê Ô Ì Í Î Ê Ð È Ù à ì È Ù è Õ å Ò Ö Ú

Ù Ê Û Ù
	 Ý Ê Ü à Ë ã Ð Ê ã ÿ Ê Ü à Ô ÿ æ È æ è Ð È ß æ Ì Í Î Ð Ê è ß Ð æ Ì Í Î � Ð è è Ð Ö Ú
â Ì Û è Ô ê ë ÿ Ê Ü à Ë ë æ Í Ü Ñ ï Û È à Ô Ý Ê Ü à æ 
 Ö ð Ö Ú
ó ü Ð Ê ý Ê â Ë ó ü Ð Ê � Ù é Ú Ì È Ù à Û Ë Ì Í Î Ê Ð È Ù à ì È Ù è Ú
Û Ü Ý Þ Ð È ß Ë Û Ü Ñ Ô Ý Ê Ü à á È É Ê Ö Ú

Ù Í â
Ù Í â

Ì ó ó Ê Ð Ï
â Ì Û è Ô ë Þ Ð È ß ß Ð Û ã É Í ü Ù à Ï Ù â È É Ñ Ð ã ß Ì Í Ù è à Ù ã Ì È Ì É Í ë Ö Ú

Ù Ê Û Ù Ì ó Ô Ì È Ù à � É Ü Í È � Ì Í Î Ì È Ù à ô Ì Ñ Ì È Ö
â Ì Û è Ô ë � É ã É Í ü Ù à Ï Ù Í ã Ù Ð ó È Ù à Ñ Ð ö Ì Ñ Ü Ñ Ð Ê Ê É é Ù â Ì È Ù à Ð È Ì É Í Û ë Ö Ú

Ù Í â

ä Ë ö ï ä Ô ÿ æ È æ ö Ö Ú

Ù Í â
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{ } y � s x r y � � v s z t � u v s z { u v s z � u v s z � � � r r s t s u v w � ~ � | z s � r � �

| � � z y � s � � ~ � �
{ � � z u r t � � � | � �
s � � z u r t � � � | � �
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± ² ³ ´ µ ¶ · ¸ ¹ ³ º · » ¼ ¹ ¶ » · ´ ¹ ² ¼ ½ ¶ ¾ ¿ » ¾ ¹ ³ ¸ À ³ ¼ Á ¿ ¸ ¶ » Â ¼ Â ¾ Á ¶ ¼ ´ ¸ º » » ¼ ´ Ã º · ¿ ³ · Ä ¹ º ¾ Å ¼ » º ¸ º ¶ Ã º ·
À ³ ¼ Á ¿ ¸ ¶ » Â ¼ ¶ ´ ³ · Ä ¹ ² ¼ Ã » º ¸ ¼ ¿ ¶ » ¼ ¿ ¼ µ ³ · ¼ ¿ ³ · Æ Ã Ã ¼ · ¿ ³ Ç Æ È ± ² ¼ Å ¼ » º ¸ º ¶ Ã º · À ³ ¼ Á ¿ ¸ ¶ » Â ¼ ³ ´
¿ ¼ µ ³ · ¼ ¿ É À ¹ ² ¼ ³ · Ã ¶ ¹ Â ¼ ¸ ¹ º » ´
Å Ê ¸ º · ¹ ¾ ³ · ³ · Ä ¹ ² ¼ Å ¼ » º ¸ º ¶ Ã º · Â ¾ Á ¶ ¼ ´ ¾ · ¿
¹ Ê ¸ º · ¹ ¾ ³ · ³ · Ä ¹ ² ¼ ¸ º » » ¼ ´ Ã º · ¿ ³ · Ä ¹ ³ Ë ¼ ´ º µ ¹ ² ¼ Å Ê » ¾ ¹ ¼ ´ È

Ì Í Î Ï Í Ð Í Ñ Í Ò Ó Ó Ó Í Ô Õ Ö × Î Ï × Ð × Ñ × Ò Ó Ó Ó × Ô Õ
Ø Ù Ô Ú Í Û Ü Ô Ý Þ ß Ù à Í Î á Ù â ã Ý â Í Û Ú ä Í å × æ

Ì ç Ü Í Þ Í è â Í × ä Ñ æ Û ß × Ð Ö × ä Þ Ô ã æ Û ß × Ô
ã Í Î Í ä Ò é Þ Ô ã æ ê Í ä Ñ é ä Þ Ô ã ê Ñ æ æ ë
ã × Î × ä Ò é Þ Ô ã æ ê × ä Ñ é ä Þ Ô ã ê Ñ æ æ ë
Ì ç Ü ì ã × ä Ñ æ Î × Ñ ê × Ð Î × ä Ò æ ê × ä Ñ æ
Ô Î à Þ Ô í Í è ä ã × æ ë

Ú Î × Þ Ý Ü ß ä Ñ å Ô ê Ò æ ë
î Î × Þ Ý Ü ß ä Ñ å Ô ê Ò æ ë
á Î × Þ Ý Ü ß ä Ñ å Ô æ ë
á ä Ñ æ Î × ä Ñ æ ï Í ä Ñ æ ð ã × ä Ò æ ñ ã Í ä Ò æ ë
Ø Ü Ý ò Î Ò é ä Ô ê Ñ æ

Ú ä ò æ Î ä ã × ä ò ï Ñ æ ð ã Í ä ò æ ê ã × ä ò æ ð ã Í ä ò ï Ñ æ æ ñ ä ã Í ä ò æ ð ã Í ä ò ï Ñ æ ð ä ã Í ä ò æ ï ã Í ä ò ï Ñ æ æ æ ë
î ä ò æ Î ã × ä ò æ ñ ã Í ä ò æ ê Ú ä ò æ ð ä Í ä ò æ ï Í ä ò ê Ñ æ æ ë
á ä ò æ Î × ä ò æ ï Í ä ò æ ð ä î ä ò æ ï Ò ð Ú ä ò æ ð Í ä ò æ æ ë

Þ Ô ã
á ä Ô æ Î × ä Ô æ ï Í ä Ô æ ð ã × ä Ô æ ñ ã Í ä Ô æ ë

Ý Þ ß Ù à Í Î á ë
Þ Ô ã

 

± ² ³ ´ µ ¶ · ¸ ¹ ³ º · ³ ´ ¶ ´ ¼ ¿ É À ó º Ã ¹ ô ¼ ¸ ¼ · ¸ À ó ¹ º ¶ Ã ¿ ¾ ¹ ¼ ¹ ² ¼ É Á ¶ » Â ¾ Á ¶ ¼ ¾ µ ¹ ¼ » ¼ ¾ ¸ ² ³ ¹ ¼ » ¾ ¹ ³ º · º µ
¹ ² ¼ Ë ³ · ³ Ë ³ ´ ¾ ¹ ³ º · Ã » º ¸ ¼ ¿ ¶ » ¼ È

Ø Ù Ô Ú Í Û Ü Ô ß Í Ü õ Î Ú â à Ú ö à Ù Ý ä ÷ å Ü õ Í Û ø ù â à Ù Þ ß å ß Í â Í Þ å ö å Í å ì æ
í à Ü î â à ú ú ú û î à Ù Ý â à õ è â ü â õ õ â ë

Û Ø ä â à õ è â ý Ð æ
â Î Ñ ê Ñ ñ â à õ è â ë

Þ à ß Þ
â Î Ñ ë

Þ Ô ã

× Î ÷ Ò × ä ö å Í å ÷ æ ë
û Î â ð û ï Ñ ë
ú Î â ð ú ï × ë
ú ú Î â ð ú ú ï × Ó ð × ë

ø Ù Î ú Ó ñ û ë
ß Û í Î ä ä ú ú ê ø Ù Ó ð ú æ Ó ñ ä û ê Ñ æ æ Ó þ Ð Ó ÿ ë

ã × Î ü â õ õ â ð ß Û í ï â î ß ä × ê ø Ù æ ë
ã � Î Ñ Ð Ð Ð Ð Ð Ð Ó ð Í Ó ð ã × ë
î à Ù Ý Î ø â ÷ ä ã � æ ë

ß Í Ü õ Î Ð ë

Þ Ô ã
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V W X Y Z W [ \ X X ] ^ _ ` a a b Z W b c W Z ] ` a ] ^ ` V W X Y Z W a \ X X ] ^ _ ` a a Z a a X b d Z ] ` e f d ] ^ ] ^ ` g c Z ] h Z ] d b i d ` W e
h Z ] ` a V d j ` _ Y i g k
l m n o p q r n s q n t u v w x y r z { y | } r r p ~ n t � � � � �

n w y t n x p ~ � � � �
� � w � � � � t n � � � � � � � � t n � � � � � �
q n w � m } � � � � � � � �
t u w � � � � � � � q n � � n � � � � � � � � �

t n �
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� w � m { � � { p q o � p � � � �
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D.2 Source code for the construction of the Quartic yield curve 
¸ ¹ º » ¼ ½ ¹ ¾ ¿ À º Á Â ¾ À º Ã Ä Ã Å ¹ º » ¼ ½ ¹ ¾ ¿ À º Á Â ¾ À ¿ º Æ Á Ç È À ¿ ¹ Á À É À Ê Ä » º È Ä ¾ ¿ É Ë É À Ä Ì À Ê ¾ À Ì ¹ É À ¸ Ä
É Ç » Í Ä ¼ À Ç Î Ä È Ä ¿ ¾ À Ä À Ê Ä Ï ¹ ¾ ¿ À º Á Ë º Ä » ¼ Á ¹ ¿ Í Ä Ð ¿ Ç Ì À Ê Ä Ñ ¾ ¿ ¾ Ì Ä À Ä ¿ É
À Ò À º Ì Ä Í Ä Á À Ç ¿
Ó Ò É Ñ Ç À º È À Ä ¿ Ä É À ¿ ¾ À Ä É Á Ç ¿ ¿ Ä É Ñ Ç È ¼ º È Î À Ç À Ê Ä À º Ì Ä É º È À
Ï Ò Ï ¹ ¾ ¿ À º Á º È À Ä ¿ Ä É À ¿ ¾ À Ä É Á Ç ¿ ¿ Ä É Ñ Ç È ¼ º È Î À Ç À Ê Ä À º Ì Ä É º È À

Ô Õ Ö × Ø Ù Ú Ö Û Ü Ý Þ ß Ý Õ Ù à á â Õ ã ä Ø Ù × å ã Ø æ Ø ç è ç é ê

Ö ß à ë Ö ì Ø í æ Ø ê î ï ð
ñ ï ß è ë ä Ú ò æ Ö ç ó ô Ö ê ð
ñ õ ß è ë ä Ú ò æ Ö î ï ç ó ô Ö ê ð
ñ ö ß è ë ä Ú ò æ Ö î ï ç ó ô Ö ê ð
ñ ÷ ß è ë ä Ú ò æ Ö î ï ç ó ô Ö ê ð
ñ ó ß è ë ä Ú ò æ Ö î ï ç ó ô Ö ê ð
ñ ø ß è ë ä Ú ò æ ÷ ç ó ô Ö ê ð
Ø õ ß Ø ù ú õ ð
Ø ö ß Ø ù ú ö ð
Ø ÷ ß Ø ù ú ÷ ð
Ø ó ß Ø ù ú ó ð

û â Õ ã ä Ø Ù × ò ü à Ù Ö ë ñ Õ ò Ø Ô Ù Ø è ë ä Ú ä ã Ø ë ò è
ý ß Û Ø þ Ø õ þ ù ÿ õ Ø ö þ ù ÿ ö Ø ÷ þ ù ÿ ÷ Ø ó þ ù ÿ ó Þ ð
ý ß ý æ õ � ë Ö á ç � ê î ý æ ï � æ ë Ö á î ï ê ç � ê ð
Ô Ú ä Ù ß ï � Ö

ñ ï æ Ù ç æ ï � ó ô æ Ù î ï ê ê � æ ó ô Ù ê ê ß ý æ Ù ç � ê ð
ë Ö á

û â Õ ã ä Ø Ù × ò ü à Ù Ö ë ñ Õ ò Ø Ý ë × Ú Ö Ø Ù Ö Õ Ú Õ ò
ý ß Û Ú Ö ë ò æ Ö � ï ç ï ê Ø þ Ø õ þ Ø ö þ Ø ÷ þ Þ ð
Ô Ú ä Ù ß ï � æ Ö î ï ê

ñ õ æ Ù ç æ ï � ó ô æ Ù î ï ê ê � æ ó � æ ó ô Ù ê ê ê ß Û î ý æ Ù � ï ç � ê ý æ Ù � ï ç � ê Þ ð
ë Ö á

û â Õ ã ä Ø Ù × ò ü à Ù Ö ë ñ Õ ò Ø í ã � ë × Ú Ö Ø Ù Ö Õ Ú Õ ò Ô Ù ä ò Ø á ë ä Ù � ã Ø Ù � ë ò
ý ß Û Ú Ö ë ò æ Ö � ï ç ï ê õ ô Ø þ ö ô Ø õ þ ÷ ô Ø ö þ Þ ð
Ô Ú ä Ù ß ï � æ Ö î ï ê

ñ ö æ Ù ç æ ï � ó ô æ Ù î ï ê ê � æ ó � æ ó ô Ù ê ê ê ß Û � î ý æ Ù � ï ç � ê � ý æ Ù � ï ç � ê Þ ð
ë Ö á

û â Õ ã ä Ø Ù × ò ü à Ù Ö ë ñ Õ ò Ø í ã � ë × Ú Ö Ø Ù Ö Õ Ú Õ ò ò ë × Ú Ö á á ë ä Ù � ã Ø Ù � ë ò
ý ß Û Ú Ö ë ò æ Ö � ï ç ï ê ö ô Ø þ ø ô Ø õ þ Þ ð
Ô Ú ä Ù ß ï � æ Ö î ï ê

ñ ÷ æ Ù ç æ ï � ó ô æ Ù î ï ê ê � æ ó � æ ó ô Ù ê ê ê ß Û � � î ý æ Ù � ï ç � ê � � ý æ Ù � ï ç � ê Þ ð
ë Ö á

û â Õ ã ä Ø Ù × ò ü à Ù Ö ë ñ Õ ò Ø í ã � ë × Ú Ö Ø Ù Ö Õ Ú Õ ò Ø í Ù ä á á ë ä Ù � ã Ø Ù � ë ò
ý ß Û Ú Ö ë ò æ Ö � ï ç ï ê ÷ ô Ø þ Þ ð
Ô Ú ä Ù ß ï � æ Ö î ï ê

ñ ó æ Ù ç æ ï � ó ô æ Ù î ï ê ê � æ ó � æ ó ô Ù ê ê ê ß Û � � � î ý æ Ù � ï ç � ê � � � ý æ Ù � ï ç � ê Þ ð
ë Ö á

ñ ø æ ï ç ö ê ß ï ð
ñ ø æ õ ç ö � ÷ ê ß Û ö ÷ ô Ø æ õ ê Þ ð
ñ ø æ ö ç æ ë Ö á î õ ê � ë Ö á ê ß Û ï ö ô Ø æ ë Ö á ê ø ô Ø õ æ ë Ö á ê Þ ð
ñ ø æ ÷ ç æ ë Ö á î � ê � ë Ö á ê ß Û î ï î Ø æ ë Ö á î ï ê î Ø õ æ ë Ö á î ï ê î Ø ö æ ë Ö á î ï ê î Ø ÷ æ ë Ö á î ï ê ï Ø æ ë Ö á ê Ø õ æ ë Ö á ê

Ø ö æ ë Ö á ê Ø ÷ æ ë Ö á ê Þ ð

Ü ß Û ñ ï ð ñ õ ð ñ ö ð ñ ÷ ð ñ ó ð ñ ø Þ ð

ä ß æ è ù ô Ø ê þ ð
Ý ß è ë ä Ú ò æ Ö ô ó ç ï ê ð
Ý æ ï � Ö ç ï ê ß ä æ õ � ë Ö á ê î ä æ ï � æ ë Ö á î ï ê ê ð
Ý æ ë Ö á ç ï ê ß é æ ë Ö á ê î é æ ë Ö á î ï ê ð

ë Ö á
 



Appendix C: Stochastic Calculus Primer 

 

95

D.3 Source code for fitting of a Vasicek yield curve to input data 
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D.4 Source code for functions plotting spot and forward Vasicek yield curves 
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