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Abstract

In this thesis, higher order numerical methods for weak approximation of so-
lutions of stochastic differential equations (SDEs) are presented. They are
motivated by option pricing problems in finance where the price of a given
option can be written as the expectation of a functional of a diffusion process.
Numerical methods of order at most one have been the most used so far and
higher order methods have been difficult to perform because of the unknown
density of iterated integrals of the d-dimensional Brownian motion present in
the stochastic Taylor expansion. In 2001, Kusuoka constructed a higher order
approximation scheme based on Malliavin calculus. The iterated stochastic
integrals are replaced by a family of finitely-valued random variables whose
moments up to a certain fixed order are equivalent to moments of iterated
Stratonovich integrals of Brownian motion. This method has been shown to
outperform the traditional Euler-Maruyama method. In 2004, this method
was refined by Lyons and Victoir into Cubature on Wiener space. Lyons and
Victoir extended the classical cubature method for approximating integrals
in finite dimension to approximating integrals in infinite dimensional Wiener
space. Since then, many authors have intensively applied these ideas and the
topic is today an active domain of research. Our work is essentially based on
the recently developed higher order schemes based on ideas of the Kusuoka
approximation and Lyons-Victoir “Cubature on Wiener space” and mostly ap-
plied to option pricing. These are the Ninomiya-Victoir (N-V) and Ninomiya-
Ninomiya (N-N) approximation schemes. It should be stressed here that many
other applications of these schemes have been developed among which is the
Alfonsi scheme for the CIR process and the decomposition method presented
by Kohatsu and Tanaka for jump driven SDEs.

After sketching the main ideas of numerical approximation methods in
Chapter 1 , we start Chapter 2 by setting up some essential terminologies
and definitions. A discussion on the stochastic Taylor expansion based on
iterated Stratonovich integrals is presented, we close this chapter by illustrating
this expansion with the Euler-Maruyama approximation scheme. Chapter 3
contains the main ideas of Kusuoka approximation scheme, we concentrate on
the implementation of the algorithm. This scheme is applied to the pricing of
an Asian call option and numerical results are presented. We start Chapter 4
by taking a look at the classical cubature formulas after which we propose in
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ABSTRACT iii

a simple way the general ideas of “Cubature on Wiener space” also known as
the Lyons-Victoir approximation scheme. This is an extension of the classical
cubature method. The aim of this scheme is to construct cubature formulas for
approximating integrals defined on Wiener space and consequently, to develop
higher order numerical schemes. It is based on the stochastic Stratonovich
expansion and can be viewed as an extension of the Kusuoka scheme. Applying
the ideas of the Kusuoka and Lyons-Victoir approximation schemes, Ninomiya-
Victoir and Ninomiya-Ninomiya developed new numerical schemes of order 2,
where they transformed the problem of solving SDE into a problem of solving
ordinary differential equations (ODEs). In Chapter 5 , we begin by a general
presentation of the N-V algorithm. We then apply this algorithm to the pricing
of an Asian call option and we also consider the optimal portfolio strategies
problem introduced by Fukaya. The implementation and numerical simulation
of the algorithm for these problems are performed. We find that the N-V
algorithm performs significantly faster than the traditional Euler-Maruyama
method. Finally, the N-N approximation method is introduced. The idea
behind this scheme is to construct an ODE-valued random variable whose
average approximates the solution of a given SDE. The Runge-Kutta method
for ODEs is then applied to the ODE drawn from the random variable and
a linear operator is constructed. We derive the general expression for the
constructed operator and apply the algorithm to the pricing of an Asian call
option under the Heston volatility model.



Opsomming

In hierdie proefskrif, word ’n hoërorde numeriese metode vir die swak benader-
ing van oplossings tot stogastiese differensiaalvergelykings (SDV) aangebied.
Die motivering vir hierdie werk word gegee deur ’n probleem in finansies, naam-
lik om opsiepryse vas te stel, waar die prys van ’n gegewe opsie beskryf kan word
as die verwagte waarde van ’n funksionaal van ’n diffusie proses. Numeriese
metodes van orde, op die meeste een, is tot dus ver in algemene gebruik. Dit is
moelik om hoërorde metodes toe te pas as gevolg van die onbekende digtheid
van herhaalde integrale van d-dimensionele Brown-beweging teenwoordig in
die stogastiese Taylor ontwikkeling. In 2001 het Kusuoka ’n hoërorde benader-
ings skema gekonstrueer wat gebaseer is op Malliavin calculus. Die herhaalde
stogastiese integrale word vervang deur ’n familie van stogastiese veranderlikes
met eindige waardes, wat se momente tot ’n sekere vaste orde bestaan. Dit is
al gedemonstreer dat hierdie metode die tradisionele Euler-Maruyama metode
oortref. In 2004 is hierdie metode verfyn deur Lyons en Victoir na volume-
berekening op Wiener ruimtes. Lyons en Victoir het uitgebrei op die klassieke
volumeberekening metode om integrale te benader in eindige dimensie na die
benadering van integrale in oneindige dimensionele Wiener ruimte. Sedertdien
het menige outeurs dié idees intensief toegepas en is die onderwerp vandag
’n aktiewe navorsings gebied. Ons werk is hoofsaaklik gebaseer op die on-
langse ontwikkelling van hoërorde skemas, wat op hul beurt gebaseer is op die
idees van Kusuoka benadering en Lyons-Victoir "Volumeberekening op Wiener
ruimte". Die werk word veral toegepas op die prysvastelling van opsies, naam-
lik Ninomiya-Victoir en Ninomiya-Ninomiya benaderings skemas. Dit moet
hier beklemtoon word dat baie ander toepassings van hierdie skemas al on-
twikkel is, onder meer die Alfonsi skema vir die CIR proses en die ontbinding
metode wat voorgestel is deur Kohatsu en Tanaka vir sprong aangedrewe SDVs.
Na ’n skets van die hoof idees agter metodes van numeriese benadering in Hoof-
stuk 1 , begin Hoofstuk 2 met die neersetting van noodsaaklike terminologie
en definisies. ’n Diskussie oor die stogastiese Taylor ontwikkeling, gebaseer op
herhaalde Stratonovich integrale word uiteengeset, waarna die hoofstuk afsluit
met ’n illustrasie van dié ontwikkeling met die Euler-Maruyama benaderings
skema. Hoofstuk 3 bevat die hoofgedagtes agter die Kusuoka benaderings
skema, waar daar ook op die implementering van die algoritme gekonsentreer
word. Hierdie skema is van toepassing op die prysvastelling van ’n Asiatiese
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call-opsie, numeriese resultate word ook aangebied. Ons begin Hoofstuk 4 deur
te kyk na klassieke volumeberekenings formules waarna ons op ’n eenvoudige
wyse die algemene idees van "Volumeberekening op Wiener ruimtes", ook bek-
end as die Lyons-Victoir benaderings skema, as ’n uitbreiding van die klassieke
volumeberekening metode gebruik. Die doel van hierdie skema is om volume-
berekening formules op te stel vir benaderings integrale wat gedefinieer is op
Wiener ruimtes en gevolglik, hoërorde numeriese skemas te ontwikkel. Dit is
gebaseer op die stogastiese Stratonovich ontwikkeling en kan beskou word as
’n ontwikkeling van die Kusuoka skema. Deur Kusuoka en Lyon-Victoir se
idees oor benaderings skemas toe te pas, het Ninomiya-Victoir en Ninomiya-
Ninomiya nuwe numeriese skemas van orde 2 ontwikkel, waar hulle die prob-
leem omgeskakel het van een waar SDVs opgelos moet word, na een waar
gewone differensiaalvergelykings (GDV) opgelos moet word. Hierdie twee ske-
mas word in Hoofstuk 5 uiteengeset. Alhoewel die benaderings soortgelyk is, is
daar ’n beduidende verskil in die algoritmes self. Hierdie hoofstuk begin met ’n
algemene uiteensetting van die Ninomiya-Victoir algoritme waar ’n arbitrêre
vaste tyd horison, T, gebruik word. Dié word toegepas op opsieprysvastelling
en optimale portefeulje strategie probleme. Verder word numeriese simulasies
uitgevoer, die prestasie van die Ninomiya-Victoir algoritme was bestudeer en
vergelyk met die Euler-Maruyama metode. Ons maak die opmerking dat die
Ninomiya-Victoir algoritme aansienlik vinniger is. Die belangrikste resultaat
van die Ninomiya-Ninomiya benaderings skema word ook voorgestel. Deur die
idee van ’n Lie algebra te gebruik, het Ninomiya en Ninomiya ’n stogastiese
veranderlike met GDV-waardes gekonstrueer wat se gemiddeld die oplossing
van ’n gegewe SDV benader. Die Runge-Kutta metode vir GDVs word dan
toegepas op die GDV wat getrek is uit die stogastiese veranderlike en ’n lineêre
operator gekonstrueer. ’n Veralgemeende uitdrukking vir die gekonstrueerde
operator is afgelei en die algoritme is toegepas op die prysvasstelling van ’n
Asiatiese opsie onder die Heston onbestendigheids model.
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Chapter 1

Introduction

Stochastic Differential Equations (SDEs) are equations obtained by allowing
randomness in the coefficients of differential equations. They provide powerful
models for a multitude of phenomena and processes encountered in a wide
variety of disciplines. In filtering, they permit one to build models which help
to filter the noise from some observations. In numerical analysis, they help
to solve parabolic or elliptic Partial Differential Equations in situations where
the deterministic algorithms become difficult or inefficient to use. In optimal
stopping, one problem is to find a stopping strategy that gives the best result in
long run. In Mathematical Finance, they are important tools in the modelling
of risky securities, most notably in option pricing. As differential equations,
since the class of stochastic differential equations that admits explicit solutions
is rather limited, it is crucial to construct fast, accurate and robust algorithms
for their numerical approximation.

Let B =
(
B1, · · · , Bd

)
be a d-dimensional standard Brownian motion de-

fined on the filtered probability space
(

Ω, F , F = (Ft)t≥0 , P
)
, which is as-

sumed to satisfy the usual conditions.
Let V̄0, V1, . . . , Vd ∈ C∞b

(
RN ;RN

)
, where C∞b

(
RN ;RN

)
denotes the space of

RN -valued infinitely differentiable functions defined on RN whose derivatives
of any order are bounded. Each element of C∞b

(
RN ;RN

)
can be viewed as

a differential operator through Remark 1.0.3 below. We consider the corre-
sponding Itô stochastic differential equations (SDEs)

dXx
t = V̄0 (Xx

t ) dt+

d∑
j=1

Vj (Xx
t ) · dBj

t (1.0.1)

with initial value Xx
0 = x ∈ RN .

Throughout this thesis we will refer to a stochastic process X by the notation
(Xx

t )t≥0 or (X (t, x))t≥0.

1



CHAPTER 1. INTRODUCTION 2

Definition 1.0.1. We define a (strong) solution of the SDE (1.0.1) as an
F-adapted stochastic process (X (t, x))t≥0 with continuous paths such that

X (t, x) = x+

∫ t

0
V̄0 (Xx

s ) ds+
d∑
j=1

∫ t

0
Vj (Xx

s ) · dBj
s , (1.0.2)

for all t.

Remark 1.0.2. The Lebesgue and the Itô integrals in the above definition have
to be well-defined, e.g. we may require that

E

∫ t

0

‖ V̄0 (Xx
s ) ‖ +

d∑
j=1

‖ Vj (Xx
s ) ‖2

 ds

 <∞

for all t, where ‖ · ‖ denotes the euclidean norm.

We will often work on a finite time horizon T > 0 and in this case, all
considered processes are defined on [0, T ]. By the solution to a SDE, we will
always understand a strong solution as defined above.

Even though Definition 1.0.1 considers a SDE in terms of the Itô stochastic
integral, it is useful to reformulate it in terms of the Stratonovich integral as
explained here. For this we introduce the smooth map V0 : RN → RN defined
in a compact notation by

V0 = V̄0 −
1

2

d∑
j=1

DVj (x) · Vj (x) (1.0.3)

where

DVj =


∂V 1

j

∂x1

∂V 1
j

∂x2
· · · ∂V 1

j

∂x
N

...
...

. . .
...

∂V Nj
∂x1

∂V Nj
∂x2

· · · ∂V Nj
∂x
N


and V k

j ∈ C∞b
(
RN ;R

)
is the k-component of Vj for k = 1, · · · , N . More

precisely, we have

V i
0 = V̄ i

0 −
1

2

d∑
j=1

N∑
k=1

V k
j

∂V i
j

∂x
k

, (1.0.4)

for i = 1, 2, · · · , N .
A (strong) solution of the following SDE in Stratonovich form,

dX (t, x) = V0 (Xx
t ) dt+

d∑
j=1

Vj (Xx
t ) ◦ dBj

t , (1.0.5)
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with initial condition X (0, x) = x is the process (X (t, x))t which satisfies the
integral equation

X (t, x) = x+

∫ t

0
V0 (Xx

s ) ds+

d∑
j=1

∫ t

0
Vj (Xx

s ) ◦ dBj
s . (1.0.6)

In the above equations, “ ◦ ” denotes the Stratonovich integral (see Definition
2.2.1 for more details). In this thesis, we are mainly concerned with SDEs in
Stratonovich form, except for a few cases where we use the Itô form.

Remark 1.0.3. A vector field V ∈ C∞b
(
RN ;RN

)
can be identified with a

first-order differential operator via

V f (x) =

N∑
j=1

V j (x)
∂f

∂xj
(x) , for f ∈ C∞b

(
RN ;R

)
, (1.0.7)

where V j ∈ C∞b
(
RN ;R

)
is the j-component of V for j = 1, · · · , N .

To point out the connection between SDEs and Partial Differential Equa-
tions (PDEs), we introduce the second-order differential operator

Lf (x) = V0f (x) +
1

2

d∑
i=1

V 2
i f (x) , x ∈ RN (1.0.8)

where V 2
i f (x) = Vi (Vif) (x). Let us consider the heat equation{

∂u
∂t (t, x) = Lu (t, x)
u (0, x) = f (x)

, (1.0.9)

where f : RN → R is a given function and the operator L is understood to
act on the x-variable of u only. The classical Feynman-Kac Formula gives
a probabilistic representation of the solution u of Equation (1.0.9). More
precisely, we have the following:

Proposition 1.0.4. (Feynman-Kac Formula). Under appropriate regularity
conditions on the vector fields and on f , the solution of the heat equation
(1.0.9) is given by

u (t, x) = E (f (Xx
t )) .

We also introduce the semi-group of linear operators {Pt}t∈[0,∞) defined by

(Ptf) (x) = E [f (Xx
t )] , t ∈ [0,∞) , f ∈ C∞b

(
RN
)
. (1.0.10)

The connection presented above is very important because it shows that it
is possible to get the expectation of a stochastic process by solving a par-
tial differential equation. So, if one is interested in a numerical solution of
that expectation, the Feynman-Kac Formula allows us to choose between two
ways to reach it. One can either do a Monte-Carlo simulation or construct a
discretisation scheme to solve the heat equation (1.0.9).



CHAPTER 1. INTRODUCTION 4

Approximation of SDEs

There are two types of numerical methods for approximating SDEs, namely
the strong and the weak approximations, (see Kloeden and Platen, 2000). The
objective of the strong approximation is to produce a path-wise approxima-
tion of the solution. The weak schemes, on the other hand are appropriate
when approximating the distribution of the solution at a specific instance in
time. For example, in many situations, the solution (Xx

t )t≥0 of the SDE is not
directly needed but the true quantity of interest is the expectation E [f (Xx

T )]
for some functions f : RN → R, (Xx

t )t≥0 being a diffusion process. Here, f
might be the pay-off function of a European option. Provided that Equation
(1.0.5) describes the dynamics of the underlying stock assets under a martin-
gale measure, E [f (Xx

T )] corresponds to an arbitrage-free price of the option.
It is sufficient, in this case, to obtain a good approximation of the distribution
of the random variable Xx rather than of its sample paths. It is mentioned
in Dan and Ghazali, 2007 that Milstein was the first to show that path-wise
schemes and L2 estimates of the corresponding errors are not relevant in this
context since the objective is to approximate the law of (Xx

t )t≥0.

Our interest in this thesis is to study weak approximations of SDEs, that
is to say the approximation of E [f (Xx

T )], for a given function f defined in
RN and a fixed time T . This problem has attracted a lot of attention because
of its practical importance. As already indicated above, this is equivalent in
solving the heat equation numerically

∂u

∂t
(t, x) = Lu (t, x)

with the initial condition u (0, x) = f (x), where L is the partial operator
defined in Equation (3.1.10) using the PDEs techniques. However, this method
is efficient only when working in relatively small dimensions as opposed to
the simulation approach. The simulation method is also referred to as the
probabilistic method where numerical discretization schemes of some order
based on the stochastic asymptotic expansion (see Section 2.2 for more details)
are applied in order to construct a random variable Xx,(n)

T that approximates
Xx
T .

Definition 1.0.5. A numerical scheme is said to be of order m if there exists
a positive constant C depending only on T, f , and x such that∣∣∣E (f (Xx

T ))− E
(
f
(
X
x,(n)
T

))∣∣∣ ≤ C

nm
,

where the random variable Xx,(n)
T is obtained through the discretisation scheme{

X
x,(n)
ti

}n
i=0

, with 0 = t0 < t1 < · · · < tn = T and n ∈ N∗.
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The most popular probabilistic method to approximate E (f (Xx
T )) is the

Euler-Maruyama method (presented in Section 2.3) which is known to be of
order at most 1 under some regularity conditions on the function f . Talay
and Tubaro, 1990 showed that under the Hörmander condition (see Defini-
tion 3.1.1), this order 1 estimate holds for smooth functions f . Bally and
Talay, 1996 proved this result under a much weaker hypothesis on f , namely
that f needs to be only measurable and bounded, (the boundedness condition
could even be relaxed). The above situation implies that if one wants to re-
duce the error caused by the discretisation, one has to increase the number
of discretising points and one then faces the problem of numerical integration
in a huge dimensional space. To overcome this problem several variance re-
duction techniques and Quasi-Monte Carlo methods have been proposed and
we refer the interested reader to the following works (Ninomiya and Tezuka,
1996; Niederreiter, 1992). In 1999, Shigeo Kusuoka (Kusuoka, 2001) intro-
duced a new weak approximation scheme based on Malliavin calculus and
higher order stochastic Taylor expansion with discrete random variables. This
method works even when the function f is Lipschitz continuous. This scheme
is known as the Kusuoka approximation, it transforms the problem of calcu-
lation of E (f (Xx

T )) into the numerical integration over a finite set of points.
Syoiti Ninomiya reported, (Ninomiya, 2003a) that for some finance problems,
the Kusuoka algorithm is many thousands of times faster than the traditional
Euler-Maruyama method. Lyons and Victoir extensively developed the scheme
(Lyons and Victoir, 2004), by using the notion of free Lie algebra. Since then,
many other schemes (see Ninomiya and Victoir, 2008; Ninomiya and Ninomiya,
2009) have been developed and are based on the Kusuoka approximation and
the Cubature on Wiener space. This topic has today become an active domain
of research.



Chapter 2

Stochastic Taylor Expansion

In this Chapter, we present the Stochastic Taylor Expansion which is the
central tool in the study of numerical schemes of SDEs. After setting some
notation and definitions which we routinely use throughout this thesis, we
state and give a detailed proof of the stochastic Stratonovich expansion due to
Platen and Wagner, 1982. This expansion provides a theoretical justification
in the construction of higher order approximations schemes. The classical
Euler-Maruyama scheme presented in Section 2.3 is given as an illustrative
example.

2.1 Notations

A row vector α = (αi1 , αi2 , . . . , αik) where ij ∈ {0, 1, . . . , d}, for j = 1, . . . , k, is
called a multi-index, where d is the dimension of the Brownian motion under
consideration. Notice that ij is the jth element of the multi-index α. We
denote by A the set of all multi-indices. Furthermore, A0 and A1 denote
A\{∅} and A\{∅, 0} , respectively.

Definition 2.1.1. Given a multi-index α, we define

1. The length of the multi-index α denoted by |α| is equal to the number of
components contained in the multi-index. That is, for α = (αi1 , αi2 , . . . , αik),
|α| = |(αi1 , αi2 , . . . , αik)| := k. For example, | (α0, α0, α0) | = 3,
| (α2, α0, α1) | = 3, | (α0, α1, α0, α0, α2) | = 5.

2. The norm of the multi-index α is the function ‖·‖ : A → N defined by

‖α‖ = |α|+ card {1 ≤ j ≤ |α| ; ij = 0} .

For example we have ‖(α0, α0, α0)‖ = 3 + 3 = 6,
‖(α2, α0, α1)‖ = 3 + 1 = 4, ‖(α1, α3, α4)‖ = 3.

6
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3. For two multi-indices α = (αi1 , αi2 , . . . , αik) and β = (βi1 , βi2 , . . . , βil),
we define the concatenation of multi-indices as the function
∗ : A×A → A given by

α ∗ β = (αi1 , αi2 , . . . , αik) ∗ (βi1 , βi2 , . . . , βil)

= (αi1 , αi2 , . . . , αik , βi1 , βi2 , . . . , βil) .

As an example, for α = (α2, α0, α1) , β = (β1, β3) we have

α ∗ β = (α2, α0, α1, β1, β3)

β ∗ α = (β1, β3, α2, α0, α1) .

4. The right and the left decrement are defined for α ∈ A with |α| ≥ 1 as
α− and −α by deleting, respectively, the last and the first component of
the multi-index α. This is, for α = (αi1 , αi2 , . . . , αik),

α− =
(
αi1 , αi2 , . . . , αik−1

)
−α = (αi2 , αi3 , . . . , αik) .

Thus

− (α0, α1, α2, α1, α3) = (α1, α2, α1, α3)

(α1, α3, α0, α1, α2)− = (α1, α3, α0, α1) .

Then A becomes a semi-group with respect to the product (∗) with the
identity ∅. Also, for each m ≥ 1, A (m) = {α ∈ A : ‖α‖ ≤ m} with A0 (m) =
{α ∈ A0 : ‖α‖ ≤ m} and A1 (m) = {α ∈ A1 : ‖α‖ ≤ m}.

Definition 2.1.2. Let V and W be two vector fields, i.e V,W ∈ C∞b
(
RN ;RN

)
The Lie bracket of V and W is a new vector field denoted by [V,W ] and defined
by

[V,W ] = ∂W.V − ∂V.W,

where ∂V is the N ×N matrix
(
∂jV

i
)

1≤i,j≤N with ∂jV i = ∂V i

∂xj
and "." is the

matrix multiplication.

We now define the vector field concatenation V[α] as follows:

Definition 2.1.3. For all α ∈ A, we define the vector field V[α], inductively
by

V[∅] = 0, V[(αi)] = Vi, i = 0, 1, . . . , d

V[α] =
[
V[α−], V[ik]

]
for α = (αi1 , . . . , αik)

where
[
V[α−], V[ik]

]
is the Lie bracket of V[α−] and V[αik ].
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2.2 Iterated Stratonovich Integrals

The iterated Itô-Stratonovich integrals of a d-dimensional Brownian motion
are important given the fact that they appear in the stochastic Taylor expan-
sion. They play a similar role as polynomials do in the deterministic Taylor
expansion. For this reason, they have a central role in the numerical anal-
ysis of SDEs, in particular for the construction of higher order (order ≥2)
approximation schemes. Moreover, the recent theory of Terry Lyons, "rough
path theory" (Lyons, 1998) has shown the significant position of the iterated
integrals in the theory of stochastic differential equations.

We recall that given a stochastic process (Xx
t )t∈[0,T ] satisfying Equation

(1.0.1), and a smooth function f ,

f (Xx
t ) = f (x) +

∫ t

0

d∑
i=0

Vif (Xx
s ) ◦ dBi (s) , (2.2.1)

where Xx
0 = x is the initial value of X. As usual, V0, . . . , Vd ∈ C∞b

(
RN ;RN

)
are C∞-bounded vector fields on RN . Below is Itô’s idea to define Stratonovich
integrals within the class of Itô processes (Kuo, 2005).

Definition 2.2.1. Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two Itô processes. We
define the Stratonovich integral of Xt with respect to Yt as∫ t

0
Xs ◦ dYs =

∫ t

0
XsdYs +

1

2
〈X,Y 〉t for 0 ≤ t ≤ T

where
∫ t

0 XsdYs is the Itô integral and 〈X,Y 〉 is the quadratic covariation pro-
cess.

As an example of the above definition, we have that∫ t

0
Xs ◦ dXs =

1

2
X2
t

provided that X0 = 0, which shows that the Stratonovich integrals behave like
the integral in classical calculus. The Stratonovich integral does not have the
martingale property which turns out to be crucial in stochastic analysis, but it
obeys the usual transformation rules of classical calculus and this is the reason
for our interest in the integral in the Stratonovich form.

The following notation will help us to write down many formulas in a more
concise way.

Definition 2.2.2. Let f : [0, T ] → Rd, f (t) =
(
f1 (t) , . . . , fd (t)

)
. We define

the 0th component of f by setting

f0 (t) = t, t ∈ [0, T ] .
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f is said to have bounded variation components if for i = 1, . . . , d,
f i : [0, T ]→ R is of bounded variation, that is to say for i = 0, 1, . . . , d,

sup
π

m∑
j=1

|f i (tj)− f i (tj−1) | <∞

where each π = {t0, . . . , tm} , 0 = t0 < t1 < · · · < tj < tj+1 < · · · < tm = T is
a partition of [0, T ]. In particular, for a d-dimensional Brownian motion, we
set B0 (t) = t.

We define the iterated Stratonovich integrals in the following way

Definition 2.2.3. Let t ∈ [0, T ] , α ∈ A. B◦α (t) is defined inductively by

B◦∅ (t) = 1, B◦(αi) (t) = Bi (t) , i ∈ {0, . . . , d}

for α = (αi1 , . . . , αik)

B◦α (t) =

∫ t

0
B◦α− (s) ◦ dBik (s)

=

∫
0<t1<···<tk<t

◦dBi1
t1
◦ · · · ◦ dBik

tk

=

∫ t

0

∫ tk

0
· · ·
∫ t2

0
◦dBi1

t1
◦ · · · ◦ dBik

tk

and for a given smooth function f and an integrable process (Xx
t )t∈[0,T ],

B◦α (f (Xx
t )) =

∫
0<t1<...<tk<t

f
(
Xx
t1

)
◦ dBi1

t1
◦ · · · ◦ dBik

tk
.

More generally, we make the following definition:

Definition 2.2.4. Let f : [0, T ]→ Rd be either a deterministic function with
bounded variation components, or a d-dimensional standard Brownian motion.
For α = (αi1 , . . . , αik) ∈ A0, we define the iterated integral of f by

f◦α (t) = f(αi1 ,...,αik) (t)

=

∫
0<t1<···<tk<t

df i1 (t1) · · · df ik (tk)

=

∫ t

0

∫ tk

0
· · ·
∫ t2

0
df i1 (t1) · · · df ik (tk) .

Moreover, f◦∅ (t) = 1. If f is a Brownian motion, the integrals are understood
in the sense of iterated Stratonovich integrals.
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In the same way we define the Itô iterated integrals as

Dα (t) =

∫
0<t1<···<tk<t

dBi1
t1
· · · dBik

tk

Dα (f (Xx
t )) =

∫
0<t1<···<tk<t

f
(
Xx
t1

)
dBi1

t1
· · · dBik

tk
.

Notice that B◦α (t) is equal in law to

t‖α‖/2B◦α (1) = t‖α‖/2
∫

0<t1<···<tk<1
◦dBi1

t1
◦ · · · ◦ dBik

tk

which is a generalization of the fact that Bt is equal in law to
√
tB1 for Brow-

nian motion. To derive a general relation between iterated Stratonovich inte-
grals and Itô integrals, we need the following relation between multi-indices:

Definition 2.2.5. (Lyons and Gyurko, July 23, 2008) Let α ∈ A be a multi-
index, let

(
α1, . . . , αk

)
∈ Ak be a partition of α i.e α = α1 ∗ α2 ∗ · · · ∗ αk

for k ∈ N, such that
∥∥αi∥∥ ≤ 2 for i = 1, . . . , k. Suppose that there exists a

multi-index β which can be partitioned such that β = β1 ∗ · · · ∗βk. We will say
that β is related to α through the partitions

(
β1, . . . , βk

)
and

(
α1, . . . , αk

)
of

length k if for each i = 1, . . . , k,

αi = βi with
∥∥αi∥∥ = 1 =

∥∥βi∥∥
or

αi =
(
αil, α

i
l

)
and βi =

(
βi0
)

for some l ∈ {1, . . . , d} .
We will denote this relationship by α ∼k β, where k is the number of sub-indices
in the related partitions.

If α ∼k β, we define the function ν : A×A → N by

ν (α, β) := card
{
i|1 ≤ i ≤ k, αi 6= βi

}
.

From Definition 2.2.1, we have the following useful equation:∫ t

0
f (Xx

s ) ◦ dBi
s =

∫ t

0
f (Xx

s ) dBi
s + (1− δi,0)

1

2

∫ t

0
Vif (Xx

s ) ds

valid for a smooth function f and an integrable process (Xx
t )t∈[0,T ]. δi,0 = 1 if

i = 0 and δi,0 = 0 if i 6= 0. By iterating this equation, we obtain the following
Lemma:

Lemma 2.2.6. (Lyons and Gyurko, July 23, 2008) For any multi-index α,

B◦α (f (Xx
t )) =

∑
α∼kβ
k∈N

1

2ν(α,β)
Dβ (f (Xx

t ))

+ (1− δi1,0)
1

2

∑
−α∼kβ
k∈N

Dβ
(
D0 (Vα1f (Xx

t ))
)
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where Dβ (f (Xx
t )) =

∫
0<t1<···<tk<t f

(
Xx
t1

)
dBj1

t1
· · · dBjl

tk
is the Itô iterated

integral, α = (αi1 , . . . , αik) and β = (βj1 , . . . , βjl) .

Remark 2.2.7. Lemma 2.2.6 expresses the fact that the iterated integral∫
0<t0<t1<···<tk<t

Vi0 · · ·Vikf
(
Xx
t0

)
◦ dBi0

t0
◦ · · · ◦ dBik

tk

is equal to a sum of terms in the form∫
0<t0<t1<···<tk<t

Vi0 · · ·Vikf
(
Xx
t0

)
dBi0

t0
· · · dBik

tk

and terms in the form
1

2

∫
0<t0<t1<···<tk<t

VijVi0 · · ·Vikf
(
Xx
t0

)
dBi0

t0
· · · dBij−1

tj−1
dtjdB

ij+1

tj+1
· · · dBik

tk
.

We introduce this useful Lemma which gives using the Itô isometry and
the Hölder inequality, the L2 boundedness of the Itô iterated integrals. It is a
key point in the proof of Proposition 2.2.9.

Lemma 2.2.8. Given a multi-index α = (αi0 , αi1 , . . . , αik) ∈ A and a bounded
smooth function f , we have

E

[(∫
0<t0<t1<···<tk<t

Vi0 · · ·Vikf
(
Xx
t0

)
dBi0

t0
· · · dBik

tk

)2
]
≤ t‖α‖

∥∥∥∥Vi0 · · ·Vikf∥∥∥∥2

∞
(2.2.2)

Proof. We prove this lemma by induction on k.
For k = 0, we distinguish between two cases

1. i0 = ik = 0
Let h be a bounded smooth function

E

[(∫ t

0
h (Xx

s ) dB0
s

)2
]

= E

[(∫ t

0
h (Xx

s ) ds

)2
]

≤ E

[(∫ t

0
|1| · |h (Xx

s )|ds
)2
]

which by Hölder inequality is

≤ E

√∫ t

0
12ds ·

√∫ t

0
h (Xx

s )2 ds

2
= t

∫ t

0
E
[
h (Xx

s )2
]

ds

≤ t

∫ t

0
‖h‖2∞ ds

= t2 ‖h‖2∞ .



CHAPTER 2. STOCHASTIC TAYLOR EXPANSION 12

2. i0 = ik = i, i ∈ {1, . . . , d}
By Itô isometry, we obtain

E

[(∫ t

0
h (Xx

s ) dBi
s

)2
]

= E
[∫ t

0
h (Xx

s )2 ds

]
=

∫ t

0
E
(
h (Xx

s )2
)

ds

≤ t ‖h‖2∞ .

Setting h = Vi0f
(
Xx
t0

)
, we have the proof for k = 0. We now proceed to the

induction step, we suppose that we have the result for all p ≤ k for a fixed
k ∈ N. We want to prove that

E

(∫
0<t0<···<tk<tk+1<t

Vi0 · · ·VikVik+1
f
(
Xx
t0

)
dBi0

t0
· · · dBik

tk
dB

ik+1

tk+1

)2


≤ t‖α∗αk+1‖ ‖Vi0 · · ·Vikf‖
2
∞

Considering the same development as before, and replacing h by∫
0<t0<···<tk<tk+1

Vi0 · · ·VikVik+1
f
(
Xx
t0

)
dBi0

t0
· · · dBik

tk
, we obtain the result.

The stochastic Taylor expansion generalizes both the deterministic Taylor
formula and the Itô formula. It was first introduced by Platen and Wagner,
1982 for the class of Itô processes and based on the use of multiple stochastic
integrals. It is the starting point of stochastic numerical analysis. There
are several possibilities for such an expansion. One is based on the iterated
application of the Itô formula and is called the Itô-Taylor expansion. The other
one takes the Stratonovich representation of the process into consideration and
is called the Stratonovich-Taylor expansion, see Kloeden and Platen, 2000 for
details on stochastic Taylor expansions and many methods originating from
it. The Stratonovich-Taylor expansion has a simpler structure which makes
it a more natural generalization of the deterministic Taylor formula and more
convenient to use in stochastic numerical analysis. The following proposition
states the stochastic Stratonovich-Taylor expansion:

Proposition 2.2.9. Let m be a natural number and f ∈ Cm+1
b

(
RN
)
. Con-

sider the solution Xx
t of the SDE (1.0.1). Then

f (Xx
t ) = f (x)+

∑
α∈A(m)

Vi1 · · ·Vikf (x)

∫
0<t1<···<tk<t

◦dBi1
t1
◦· · ·◦dBik

tk
+Rm (t, x, f)

(2.2.3)
where the remainder term Rm satisfies

sup
x∈RN

√
E
(
Rm (t, x, f)2

)
≤ Ct

m+1
2 sup

α∈A(m+2)\A(m)
‖Vi1 · · ·Vikf‖∞ , (2.2.4)
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for some positive constant C depending only on d and m, provided that t ≤ 1.

Remark 2.2.10. The previous inequality means that the remainder is of order
O
(
tm+1/2

)
.

Proof. The key idea of the proof is the iterated application of the Itô formula.
Indeed, for a smooth function f and a process (Xx

t )t∈[0,T ], the Stratonovich
form of this formula yields

f (Xx
t ) = f (x) +

d∑
i=0

∫ t

0
Vif (Xx

s ) ◦ dBi
s. (2.2.5)

Since each function Vif : RN → R is smooth, using equation (2.2.5) we obtain,

Vif (Xx
s ) = Vif (x) +

d∑
j=0

∫ s

0
VjVif (Xx

u) ◦ dBj
u. (2.2.6)

We first establish that the remainder term Rm (t, x, f) can be written as

Rm (t, x, f) =
∑

α=(αi1 ,...,αik)∈A(m)

(αi0 ,αi1 ,...,αik)6∈A(m)

∫
0<t0<t1<···<tk<t

Vi0 · · ·Vikf
(
Xx
t0

)

◦dBi0
t0
◦ · · · ◦ dBik

tk
. (2.2.7)

This fact is proved by induction on m. Indeed, for m = 1, taking in account
Equations (2.2.5) and (2.2.6), we obtain

f (Xx
t ) = f (x) +

d∑
i=0

Vif (x)

∫ t

0
◦dBi

s +
d∑
i=0

d∑
j=0

∫ t

0

∫ s

0
VjVif (Xx

u) ◦ dBj
u ◦ dBi

s

that is

f (Xx
t ) = f (x) +

d∑
i=1

Vif (x)

∫ t

0
◦dBi

s +

∫ t

0
V0f (x) ds

+
d∑
i=0

d∑
j=0

∫ t

0

∫ s

0
VjVif (Xx

u) ◦ dBj
u ◦ dBi

s

= f (x) +
∑

α=(αi)∈A(1)

Vif (x)

+
∑

α=(αi)∈A(1)
(αj ,αi)6∈A(1)

∫ t

0

∫ s

0
VjVif (Xx

u) ◦ dBj
u ◦ dBi

s.
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We now proceed to the induction step. We assume that the formula is true for
all p ≤ m for a fixed m ∈ N, this means,

f (Xx
t ) = Tm (t, x, f) +Rm (t, x, f) ,

where

Tm (t, x, f) = f (x) +
∑

α∈A(m)

Vi1 · · ·Vikf (x)

∫
0<t1<···<tk<t

◦dBi1
t1
◦ · · · ◦ dBik

tk

and Rm (t, x, f) is as in Equation (2.2.7). Let us prove the formula for m+ 1.
By replacing f by Vi0 · · ·Vikf

(
Xx
t0

)
in Equation (2.2.5), we get

Vi0 · · ·Vikf
(
Xx
t0

)
= Vi0 · · ·Vikf (x) +

d∑
i=0

∫ t0

0
ViVi0 · · ·Vikf (Xx

s ) ◦dBi
s (2.2.8)

and by applying this identity to the induction hypothesis Rm (t, x, f), we
obtain

f (Xx
t ) = Tm (t, x, f)

+
∑

α=(αi1 ,...,αik)∈A(m)

(αi0 ,αi1 ,...,αik)6∈A(m)

Vi0 · · ·Vikf (x)

∫
0<t0<t1<···<tk<t

◦dBi0
t0
◦ · · · ◦ dBik

tk

+
∑

α=(αi1 ,...,αik)∈A(m)

(αi0 ,αi1 ,...,αik)6∈A(m)

d∑
i=0

∫
0<t0<t1<···<tk<t

∫ t0

0
ViVi0 · · ·Vikf (Xx

s )

◦dBi
s ◦ dBi0

t0
◦ · · · ◦ dBik

tk
.

α ∈ A (m) and (αi0 , α) 6∈ A (m) means that ‖α‖ ≤ m and ‖(αi0 , α)‖ > m;
There are three possibilities:

1. ‖α‖ = m and i0 ∈ {1, . . . , d}

2. ‖α‖ = m− 1 and i0 = 0

3. ‖α‖ = m and i0 = 0.

For the first and the second cases, we have that (αi0 , α) ∈ A (m+ 1), thus,

Vi0 · · ·Vikf (x)

∫
0<t0<t1<···<tk<t

◦dBi0
t0
◦ · · · ◦ dBik

tk

occurs in Tm+1 (t, x, f) and∫
0<s<t0<t1<···<tk<t

ViVi0 · · ·Vikf (Xx
s ) ◦ dBi

s ◦ dBi0
t0
◦ · · · ◦ dBik

tk
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occurs in Rm+1 (t, x, f), for any i ∈ {0, 1, . . . , d}. In the last case,
(i0, α) ∈ A (m+ 2) \ A (m+ 1), and the corresponding term is

V0Vi1 · · ·Vikf (x)

∫
0<t0<t1<···<tk<t

◦dB0
t0 ◦ · · · ◦ dBik

tk

+
d∑
i=0

∫
0<s<t0<t1<···<tk<t

ViV0Vi1 · · ·Vikf (Xx
s ) ◦ dBi

s ◦ dt0 ◦ · · · ◦ dBik
tk

=

∫
0<t0<t1<···<tk<t

[
V0Vi1 · · ·Vikf (x) +

d∑
i=0

∫ t0

0
ViV0Vi1 · · ·Vikf (Xx

s ) ◦ dBi
s

]
◦dt0 ◦ · · · ◦ dBik

tk

which is, regarding Equation (2.2.8) equal to∫
0<t0<t1<···<tk<t

V0Vi1 · · ·Vikf
(
Xx
t0

)
◦ dt0 ◦ · · · ◦ dBik

tk

and this term occurs in Rm+1 (t, x, f). And so, we have the desired result.
The proof of Inequality (2.2.4) is based on Remark 2.2.7 and Lemma 2.2.8 .

For the terms in the form

1

2

∫
0<t0<···<tk<t

VijVi0 · · ·Vikf
(
Xx
t0

)
dBi0

t0
· · · dBij−1

tj−1
dtjdB

ij+1

tj+1
· · · dBik

tk
,

we show, using the same idea as in the Proof of Lemma 2.2.8 that,

E

[(∫
0<t0<t1<···<tk<t

VijVi0 · · ·Vikf
(
Xx
t0

)
dBi0

t0
· · · dBij−1

tj−1
dtjdB

ij+1

tj+1
· · · dBik

tk

)2
]

≤ t‖α‖+1
∥∥VijVi0 · · ·Vikf∥∥2

∞ .(2.2.9)

Let us recall our original problem which is to find the upper-bound of

Rm (t, x, f) =
∑

α=(αi1 ,...,αik)∈A(m)

(αi0 ,αi1 ,...,αik)6∈A(m)

∫
0<t0<t1<···<tk<t

Vi0 · · ·Vikf
(
Xx
t0

)

◦dBi0
t0
◦ · · · ◦ dBik

tk
.

Taking Equations (2.2.2) and (2.2.9) into account, we have

E
[
(Rm (t, x, f))2

]
≤ c1t

m+1
∑

(αi1 ,...,αik)∈A(m+1)\A(m)

∥∥Vi0 · · ·Vikf∥∥2

∞

+c2t
m+2

∑
(αi1 ,...,αik)∈A(m+2)\A(m+1)

∥∥Vi0 · · ·Vikf∥∥2

∞
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that is,(
E
[
(Rm (t, x, f))2

]) 1
2 ≤ c1t

m+1
2

∑
(αi1 ,...,αik)∈A(m+1)\A(m)

∥∥Vi1 · · ·Vikf∥∥∞
+c2t

m+2
2

∑
(αi1 ,...,αik)∈A(m+2)\A(m+1)

∥∥Vi1 · · ·Vikf∥∥∞.
Considering the fact that for t ≤ 1, t

m+2
2 ≤ t

m+1
2 . This implies that(

E
[
(Rm (t, x, f))2

]) 1
2 ≤ c1t

m+1
2

∑
(αi1 ,...,αik)∈A(m+1)\A(m)

∥∥Vi1 · · ·Vikf∥∥∞
+c2t

m+1
2

∑
(αi1 ,...,αik)∈A(m+2)\A(m+1)

‖Vi1 · · ·Vikf‖∞

≤ Ct
m+1

2 sup
(αi1 ,...,αik)∈A(m+2)\A(m)

‖Vi1 · · ·Vikf‖∞ .

We then conclude that

sup
x∈RN

√
E
[
(Rm (t, x, f))2

]
≤ Ct

m+1
2 sup

(αi1 ,...,αik)∈A(m+2)\A(m)

‖Vi1 · · ·Vikf‖∞ .

Remark 2.2.11.

• The Taylor Stratonovich expansion remains correct if we replace ◦dBt by
any continuous semi-martingales.

• Furthermore, the expansion still works when ◦dBt is replaced by dxt
where xt is a rough path (see Lyons (1998) for more details).

Notice that these expansions once again underline the importance of iterated
integrals.

2.3 Euler-Maruyama Scheme

The aim of this section is to briefly introduce the Euler-Maruyama scheme
which can be directly deduced from the stochastic Taylor expansion. It is
the most familiar and simple numerical approximation scheme. The standard
reference for the approximation of SDEs is Kloeden and Platen, 2000. Let us
once again consider the SDE (1.0.1),

dXx
t = V̄0 (Xx

t ) dt+
d∑
j=1

Vj (Xx
t ) · dBj

t . (2.3.1)
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The stochastic Euler method for solving this equation is given as follows: We
first fix a partition 0 = s0 < s1 < · · · < sN = T of [0, T ], with size N . Then
we define recursively a discrete-time stochastic process

(
XN
k

)N
k=0

as follows:

XN
0 = x

XN
k+1 = XN

k + V̄0

(
XN
k

)
∆sk +

d∑
i=1

Vi
(
XN
k

)
∆Bi

k

k = 0, 1, . . . , N − 1. Here, ∆sk = sk+1 − sk = T/N, for k = 0, 1, . . . , N − 1
is called the step size, and ∆Bi

k = Bi
sk+1
− Bi

sk
, for k = 0, 1, . . . , N − 1.

Notice that ∆Bi
k is equal in law to

√
∆skY , where Y is a one-dimensional

standard normal random variable. One can then show that for an arbitrary
C4 function f ,

∣∣E (f (XN
N

))
− E (f (Xx

T ))
∣∣ = O

(
1

N

)
,

that is to say, the Euler-Maruyama scheme is of order 1. A way to obtain
higher order approximation schemes (order greater than 1) is based on taking
into account more terms in the stochastic Taylor expansion. In the general
case, one needs to understand how to weakly approximate the increments of
the Brownian motion together with its iterated integrals. Considering the
stochastic Taylor expansion in terms of the Stratonovich integrals presented
in Proposition 2.2.9, one could think of the extension of the Euler method and
obtain

XN
k+1 = XN

k +
∑

α∈A(m)

(Vi1 · · ·Vik)
(
XN
k

)
×
∫ sk+1

sk

∫ tk

sk

· · ·
∫ t2

sk

◦dBi1
t1
· · · ◦ dBik

tk
.

However, the joint density of the iterated stochastic integral is not known, so
this make the implementation of this method difficult. High order approxima-
tion based on the stochastic Taylor expansion was successfully done by Talay
(1990), and recently by Kusuoka (2001), Kusuoka and Ninomiya, 2004, and
then generalised with the method Cubature on Wiener space by Lyons and
Victoir, 2004. This will be detailed in the next chapters.

Remark 2.3.1. Consider a scheme
(
XN
k

)N
k=0

of order p with size N such that
for any smooth function f , there exists a constant Kf such that

E
[
f
(
XN
N

)]
= E [f (Xx

T )] +Kf
1

Np
+O

(
1

Np+1

)
.

Then, we can obtain a scheme of order p+1 by the method of Romberg Extrap-
olation as follows: We consider our approximation scheme of order p with size
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N and 2N , that is we obtain two processes
(
XN
k

)N
k=0

and
(
X2N
k

)2N
k=0

. It can
be shown that

2p

2p − 1
E
[
f
(
X2N

2N

)]
− 1

2p − 1
E
[
f
(
XN
N

)]
(2.3.2)

provides a scheme of order p+ 1.
Talay and Tubaro, 1990 have shown that the Romberg Extrapolation method
can be applied to the Euler-Maruyama scheme.



Chapter 3

Kusuoka scheme

Options pricing problems in mathematical finance are related to the numerical
computation of expectations of diffusion processes. For European options,
one needs to compute E [f (Xx

T )] where f is a R-valued function defined on
RN and Xx

T is the value at expiration time T ∈ ]0,∞[ of a diffusion process
(Xx

t )0≤t≤T given by the following stochastic differential equation written in
the Stratonovich form:

Xx
t = x+

d∑
j=0

∫ t

0
Vj (Xx

s ) ◦ dBj (s) (3.0.1)

where Vj ∈ C∞b
(
RN ;RN

)
, B0 (t) = t and

(
B1 (t) , · · · , Bd (t)

)
is the

d-dimensional standard Brownian motion. It is well known that under the
Hörmander condition on a diffusion process, the Euler-Maruyama method gives
a good approximation even for a bounded measurable function f . It is also
known that in this case the accuracy that one obtains is proportional to the
width of a discretisation unit. In other words, if one wants to make the error
due to the discretisation smaller, one has to increase the number of discretising
points and then, we find that we face the problem of numerical integration in
a huge dimensional space.

In 2001, Kusuoka introduced a new simulation scheme based on Malliavin
Calculus, higher-order stochastic Taylor expansion based on Lie algebra and
involves a non-uniform discretization of the time interval. This method is
constructed by assuming the so-called UFG condition (see definition 3.1.1)
which is weaker than the Hörmander condition.

In this chapter, we present the main idea of the Kusuoka approximation
scheme taken from Kusuoka (2001), Kusuoka (2004) and Kusuoka and Ni-
nomiya, 2004. It is based on the introduction of a "m-moment similar" family
of random variables with the property that the expectations of these random
variables are the same as the Stratonovich iterated integrals of Brownian mo-
tion of degree less than or equal to m (see Definition 3.1.4) . From this family

19
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of random variables, a Markov operator which approximates PT (1.0.10) is con-
structed (see Definition 3.1.10). In the last section, we implement the Kusuoka
approximation to the pricing of an Asian call option. Moreover, we compare
the numerical results obtained using the Kusuoka scheme with the traditional
Euler-Maruyama method. Our results show that, using the Kusuoka scheme,
we can reduce the number of dimensions required for the simulation and also
achieve faster calculations and this agrees with Ninomiya (2003a) and Ni-
nomiya (2003b).

3.1 Kusuoka’s Approximation Scheme

Considering the notation defined in Sections 2.1 and 2.2 , we make the following
definitions:

Definition 3.1.1.

1. Let α ∈ A1, the vector field V[α] is said to satisfy the UFG condition if
there exist some functions ϕα,β ∈ C∞b

(
RN
)
, for ` ∈ N and β ∈ A1 (`)

such that
V[α] =

∑
β∈A1(`)

ϕα,βV[β]. (3.1.1)

2. Consider a vector field V . The Uniform Hörmander condition (UH) is
said to be satisfied if there is an integer ` and a constant c > 0 such that∑

β∈A1(`)

〈
V[β], ε

〉2 ≥ c‖ε‖2

for all x, ε ∈ RN , where 〈V, ε〉 =
∑N

i=1 V
i · εi for V ∈ C∞b

(
RN ,RN

)
.

Remark 3.1.2. Let us think of C∞b
(
RN
)
-module M =

∑
α∈A0

C∞b
(
RN
)
V[α].

Then the UFG condition is equivalent to the assumption that M is finitely
generated as a C∞b

(
RN
)
-module.

Lemma 3.1.3. (Dan and Ghazali, 2007) The UH condition implies the UFG
condition.

Proof. We follow the proof of Proposition 5.1 in (Ter Elst and Robinson, 2009).
Suppose that the Uniform Hörmander condition is satisfied, that is, there exists
` ∈ N and c > 0 such that ∑

β∈A1(`)

〈
V[β], ε

〉2 ≥ c | ε |2 .

Let α ∈ A1, then we are looking for ϕα,β ∈ C∞b
(
RN
)
such that

V[α] =
∑

β∈A1(`)

ϕα,βV[β].
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V[α] is a C∞b -vector field so it can be written as

V[α] =

N∑
i=1

V i
[α]

∂

∂xi
,

that is
V[α] = a.∂, (3.1.2)

where a =
(
V 1

[α], · · · , V
N

[α]

)
and ∂ =

(
∂
∂x1

, · · · , ∂
∂xN

)′
. Also, for all β ∈

A1 (`), we have that V[β] = aβ.∂, where aβ =
(
V 1

[β], · · · , V
N

[β]

)
. We set t =

card (A1 (`)), we obtain
X = B.∂.

Here, X =
(
V[β1], · · · , V[βt]

)′ and B is the matrix (aβ1 , · · · , aβt)
′, and each

βi ∈ A1 (`) for i = 1, · · · , t. By assumption, for all ε ∈ RN , εTBTBε > c|ε|2,
this implies that BTB has a positive determinant and so is invertible. Let
A = BTB, we have

BTX = A∂,

that is
∂ = A−1BTX.

By replacing it in equation (3.1.2), we obtain

V[α] = a.∂ (3.1.3)

= a.A−1BTX. (3.1.4)

We can therefore choose

(ϕα,β1 , · · · , ϕα,βt) = a.A−1BT .

And one can easily observe that each ϕα,βi ∈ C∞b
(
RN
)
, for i = 1, · · · , t.

Throughout this chapter we assume that the UFG condition is satisfied.
For α ∈ A, let us define the differential operator Vα as follows:

Vα = Identity, if α = ∅

and
Vα = Vαi1 · · ·Vαik , if α = (αi1 , · · · , αik) .

We define the semi-norm ‖.‖V,n, n ≥ 1 on C∞0
(
RN ,R

)
by

‖f‖V,n =

n∑
k=1

∑
αi1 ,··· ,αik

‖αi1∗···∗αik‖=n

‖V[αi1 ] · · ·V[αik ]f‖∞.

We also define the semi-group of linear operators {Pt}t∈[0,∞) by

(Ptf) (x) = E [f (Xx
t )] , t ∈ [0,∞) , f ∈ C∞b

(
RN
)
.
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Definition 3.1.4. Let m ≥ 1 be an integer. A family of random variables
{Zα;α ∈ A0} is said to be m-moment similar if

Z(α0) = 1,

E [|Zα|n] < ∞ for any α ∈ A0 and n ≥ 1

and if
E [Zα1 · · ·Zαk ] = E [B◦α1 (1) · · ·B◦αk (1)]

for all k = 1, · · · ,m and α1, · · · , αk ∈ A0 which satisfy ‖α1‖+ · · ·+ ‖αk‖ ≤ m
where B◦αi (1) , i = 1, · · · , k are defined as in Definition 2.2.3.

We give some examples to illustrate the previous definition. These exam-
ples were introduced in Shunli (February 2003) and in Ninomiya (2003b).

Example 3.1.5. (1-dimensional 3-moment similar family )
Let η be a random variable defined by:

P (η = 1) =
1

2
, P (η = −1) =

1

2
.

Then we can easily see that, E
[
ηk
]

= 0 <∞ for all odd k and
E
[
ηk
]

= 1 < ∞ for all k even. We define the family of random variables
{Zα;α ∈ A0} as follows:

Z(α1) = η , Z(α0) = 1 , Z(α1,α1) =
1

2
η2

Zα = 0 for ‖α‖ ≥ 3.

Then {Zα;α ∈ A0} is a 3-moment similar family of random variables.

Example 3.1.6. (1-dimensional 5-moment similar family 1)
Let d = 1 and let η be a random variable such that

P (η = 0) =
1

2
, P

(
η = ±

√
2±
√

2

)
=

1

8
.

By symmetry, one can easily show that

E
[
ηk
]

= 0 <∞

for all odd k.

E
[
η4
]

= 0 ∗ 1

2
+

1

8

((√
2 +
√

2

)4

+

(
−
√

2 +
√

2

)4

+

(√
2−
√

2

)4

+

(
−
√

2−
√

2

)4
)

=
1

8

(
2 ∗
(

2 +
√

2
)2

+ 2 ∗
(

2−
√

2
)2
)

=
1

4

(
6 + 4 ∗

√
2 + 6− 4 ∗

√
2
)

= 3.
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In the same way, we can show that E [ηn] <∞ for all n even.
Now let us define the family of random variables {Zα;α ∈ A0} as follows:

Z(α1) = η , Z(α0) = 1 , Z(α1,α1) =
1

2
η2

Z(α0,α1) = Z(α1,α0) =
1

2
η , Z(α1,α1,α1) = 1

6η
3 , Z(α1,α1,α1,α1) =

1

8

Z(α0,α1,α1) = Z(α1,α1,α0) =
1

4
, Z(α0,α0) = 1

2 ,

Zα = 0 in the other cases.

Then the family of random variables {Zα;α ∈ A0} is a 1-dimensional 5-moment
similar family.

Example 3.1.7. (1-dimensional 5-moment similar family 2) Here again we
consider d = 1, let η be a random variable verifying

P (η = 0) =
2

3
, P

(
η = ±

√
3
)

=
1

6
.

As in the previous example, we can easily verify that E
[
ηk
]
<∞ for all k ≥ 1.

Let the family of random variables {Zα;α ∈ A0} be defined in the same way
as in Example 3.1.6. Then {Zα;α ∈ A0} is also a 1-dimensional 5-moment
similar family.

Example 3.1.8. (2-dimensional 5-moment similar family 1) Let d = 2 and
let η1, η2 and η12 be independent random variables defined by

P (η12 = ±1) =
1

2
, P (ηi = 0) =

2

3
and P

(
ηi = ±

√
3
)

=
1

6
.

We then define the family of random variables {Zα;α ∈ A0} as follows:

Z(α0) = 1, Z(α1) = η1, Z(α2) = η2,

Z(α1,α2) =
1

2
(η1η2 + η12) , Z(α2,α1) =

1

2
(η1η2 − η12) ,

Z(αi,αi) =
1

2
η2
i , Z(αi,α0) = Z(α0,αi) =

1

2
ηi, i ∈ {1, 2} ,

Z(αi,αi,αi) =
1

6
η3
i , i ∈ {1, 2} ,

Z(α1,α1,α2) = Z(α2,α1,α1) =
1

4
η2,

Z(α2,α2,α1) = Z(α1,α2,α2) =
1

4
η1,

Z(α0,α0) =
1

2
,

Z(αi,αi,αj ,αj) =
1

8
, Z(α0,αi,αi) = Z(αi,αi,α0) =

1

4
, i ∈ {1, 2} ,

Zα = 0 otherwise.

Then {Zα;α ∈ A0} is a 2-dimensional 5-moment similar family.
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In a more general point of view the following is an example of 5-moment
similar family for an arbitrary dimension d. This is taken from Kusuoka (2001):

Example 3.1.9. let d ≥ 1 be a fixed dimension, let ηi, i = 1, · · · , d and ηij , 1 ≤
i < j ≤ d be independent random variables defined by

P (ηij = ±1) =
1

2
, P (ηi = 0) =

1

2
and P

(
ηi = ±

√
2±
√

2

)
=

1

8
.

As in Example 3.1.6, we can easily check that E
[
ηk
]
<∞ for all k ≥ 1.

The family of random variables {Zα;α ∈ A0} in the following way:

1. if ‖α‖ = ‖(i)‖ = 1,

Z(αi) = ηi, i = 1, · · · , d

2. if ‖α‖ = 2,

Z(α0) = 1,

Z(αi,αj) =


1
2 (ηiηj + ηij) , 1 ≤ i < j ≤ d,
1
2 (ηiηj − ηij) , 1 ≤ j < i ≤ d,
1
2ηiηj , 1 ≤ i = j ≤ d.

3. if ‖α‖ = 3,

Z(αi,α0) = Z(α0,αi) =
1

2
ηi, Z(αi,αi,αi) =

1

6
η3
i , 1 ≤ i ≤ d

Z(αi,αi,αj) = Z(αj ,αi,αi) =
1

4
ηi, Z(αi,αj ,αi) = 0, 1 ≤ i 6= j ≤ d,

and Zα = 0 otherwise.

4. if ‖α‖ = 4,

Z(αi,αi,αj ,αj) =
1

8
, 1 ≤ i, j ≤ d,

Z(α0,αi,αi) = Z(αi,αi,α0) =
1

4
, 1 ≤ i ≤ d,

Z(α0,α0) =
1

2
,

and Zα = 0 otherwise.

5. if ‖α‖ ≥ 5,

Zα = 0

Then the family of random variables {Zα;α ∈ A0} is a d-dimensional
5-moment similar family.
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Considering the semi-group {Pt}t∈[0,∞) of linear operators defined previ-
ously, let H : RN ⇒ RN be the identity map given by H (x) = (x1, · · · , xN ),
x = (x1, · · · , xN ) ∈ RN. We introduce the operator Q(s) defined as follows:

Definition 3.1.10. Let m ∈ N and {Zα, α ∈ A0} be a m-moment similar
family. For f ∈ C∞b

(
RN
)
and 0 ≤ s < 1, we define

Q(s)f (x) =

E

[
f

(∑m
k=0

1
k!

∑
α1,··· ,αk∈A0

‖α1‖+···+‖αk‖≤m
s

1
2

(‖α1‖+···+‖αk‖)
(
P 0
α1
· · ·P 0

αk

) (
V[α1] · · ·V[αk]H

)
(x)

)]

where V[αi], i = 1, · · · , k are defined as in Definition 2.1.3 and

P 0
α =

1

|α|

|α|∑
k=1

(−1)k+1

k

∑
β1,··· ,βk∈A0
β1∗···∗βk=α

Zβ1 · · ·Zβk .

The operator Q(s) verifies: For any f ∈ C∞b
(
RN
)
,

• f (x) ≥ 0⇒ Q(s)f (x) = E [f (·)] ≥ 0

•
∥∥Q(s)

∥∥ = sup‖f‖=1

∥∥Q(s)f
∥∥ ≤ 1.

This means that, Q(s) is a Markov operator as defined in Horowitz (1974). We
have the following result,

Theorem 3.1.11. Kusuoka (2001) Let m be an integer and suppose that a
family of random variables {Zα;α ∈ A0} is m-moment similar. Let Q(s) be the
Markov operator as defined above. Then, for any n ≥ 1, there is a constant
C > 0 such that

∥∥Psf −Q(s)f
∥∥
∞ ≤ C

n(m+1)∑
k=m+1

s
k
2 ‖f‖V,k + s(m+1)/2 ‖∇f‖∞


s ∈ (0, 1] , f ∈ C∞b

(
RN
)
.

Considering Definition 3.1.10, the announced operator is constructed as
follows:

Definition 3.1.12. Let 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = T be a partition of

the interval [0, T ] defined by t(n)
k = kγn−γT where n ∈ N, γ is a positive

constant, and let sk = t
(n)
k − t

(n)
k−1. The operator QT which approximates PT is

defined by
QT f = Q(sn)Q(sn−1) · · · Q(s1)f (3.1.5)

for a given function f . Where Q(si) for i = 1, · · ·n, is as in Definition 3.1.10.
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The main result of this chapter is the following result due to Kusuoka
(2001).

Theorem 3.1.13. For f ∈ C∞b
(
RN
)
, we define

ε (f) = ‖PT f −QT f‖∞ .

Then, we have the following statements:

(i) If 0 < γ < m− 1, there exists a constant C > 0 such that

ε (f) ≤ Cn−γ/2 ‖∇ (f)‖∞ for all f ∈ C∞b
(
RN
)
and n ≥ 1.

(ii) If γ = m− 1, there exists a constant C > 0 such that

ε (f) ≤ Cn−(m−1)/2 log (n+ 1) ‖∇ (f)‖∞ for all f ∈ C∞b
(
RN
)
and n ≥ 1.

(iii) If γ > m− 1, there is a constant C > 0 such that

ε (f) ≤ Cn−(m−1)/2 ‖∇f‖∞ for all f ∈ C∞b
(
RN
)
and n ≥ 1.

We refer the interested reader to Kusuoka (2001) for the proofs of Theorems
3.1.13 and 3.1.11.

3.2 Application to an Option Pricing Problem

In this section, we apply the Kusuoka approximation scheme presented in the
previous section (Definition 3.1.12) to the computation of E [f (Xx

T )] where Xx
T

is the solution at time T of a given stochastic differential equation. We first
consider a very simple case (example taken from Shunli (February 2003)), in
order to show explicitly how to implement the Kusuoka approximation scheme.
Subsequently, we present an application to a more general problem taken from
Ninomiya (2003a), namely the pricing of an Asian call option.

3.2.1 Application to a Simple Case

We consider the trivial SDE

dX (t, x) = dB (t)

where (B (t))t is a standard one-dimensional Brownian motion.
We want to use the Kusuoka scheme to compute E [f (Xx

T )] = E [f (x+BT )].
Notice that

X (t, x) = x+

∫ t

0
V0 (Xx

s ) ds+

∫ t

0
V1 (Xx

s ) ◦ dB (s) ,
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with V0 = 0 and V1 = 1. In this example, we take m = 3 and we consider the
family of 3-moment similar random variables {Zα;α ∈ A0} defined in Exam-
ple 3.1.5 . According to Definition 3.1.10, the approximation operator Q(s) is
constructed as follows:

Q(s)f (x) = E

[
f

(
5∑

k=0

P k

)]
,

where

P k =
1

k!

∑
α1,··· ,αk∈A0

‖α1‖+···+‖αk‖≤5

s
1
2

(‖α1‖+···+‖αk‖)
(
P 0
α1
· · ·P 0

αk

) (
V[α1] · · ·V[αk]H

)
(x) .

More explicitly, we have

• k=0;
P 0 = x.

• k=1; α1 ∈ {(1), (0), (1, 1), (0, 1), (1, 0), (1, 1, 1)}

P 1 = s1/2P 0
(1)V1(x) + s

(
P 0

(0)V0(x) + P 0
(1,1)V[(1,1)](x)

)
+s3/2

(
P 0

(0,1)V[(0,1)](x) + P 0
(1,0)V[(1,0)](x) + P 0

(1,1,1)V[(1,1,1)](x)
)

After little algebra, we have

P 1 = s1/2η.

• k=2; (α1, α2) ∈ {((1), (1)) , ((0), (1)) , ((1), (0)) , ((1), (1, 1)) , ((1, 1), (1))}

P 2 =
1

2
sP 0

(1)P
0
(1)V1V1(x) +

1

2
s3/2

(
P 0

(0)P
0
(1)V0V1(x) + P 0

(1)P
0
(0)V1V0(x)

)
+

1

2
s3/2

(
P 0

(1)P
0
(1,1)V1V[(1,1)](x) + P 0

(1,1)P
0
(1)V[(1,1)]V1(x)

)
After little algebra, we have

P 2 =
1

2
sη2 +

1

2
s3/2η =

1

2
s+

1

2
s3/2η

• k=3; (α1, α2, α3) = ((1), (1), (1))

P 3 =
1

6
s3/2P 0

(1)P
0
(1)P

0
(1)V1V1V1(x)

=
1

6
s3/2η3 =

1

6
s3/2η.
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We then obtain that

Q(s)f (x) = E
[
f

(
x+ s1/2η +

1

2
s+

2

3
s3/2η

)]
.

Furthermore, we have

Q(s2)Q(s1)f (x) = E
[
f

(
x+ s

1/2
1 η1 +

1

2
s1 +

2

3
s

3/2
1 η1 + s

1/2
2 η2 +

1

2
s2 +

2

3
s

3/2
2 η2

)]
,

where η1, η2 are two independent random variables defined as in example 3.1.5.
More generally, we have

Q(sn)Q(sn−1) · · · Q(s1)f (x) = E
[
f

(
x+ s

1/2
1 η1 +

1

2
s1 +

2

3
s

3/2
1 η1 + s

1/2
2 η2

+
1

2
s2 +

2

3
s

3/2
2 η2 + · · ·+ s1/2

n ηn +
1

2
sn

+
2

3
s3/2
n ηn

)]
here, η1, η2, · · · , ηn are independent and sk = tk − tk−1 = kγn−γT − (k −
1)γn−γT .

3.2.2 The Pricing of an Asian Call Option

In Section 3.2.1, we have considered the simplest case for the implementation
of the Kusuoka scheme. We consider an Asian call option of European type
(exercised only at maturity) in the Black-Scholes market. More precisely, under
the risk neutral probability, we have dX1 (t, x1) = X1 (t, x1) (r′dt+ σdB (t))
where the interest rate of the risk-free asset r′ and the volatility σ are both
considered to be constants and B (t) is a one-dimensional standard Brownian
motion. We want to calculate the price of this option with maturity T and
strike price K written on the stock X1. The payoff at T of this option is

max

(
0,

1

T

∫ T

0
X1 (t, x1) dt−K

)
.

Let X2 (t, x2) = x2 +
∫ t

0 X1 (s, x1) ds and Xx
t = (X1 (t, x1) , X2 (t, x2)). The

situation can be summarised as follows:

Xx
t = x+

∫ t

0
V0 (Xx

s ) ds+

∫ t

0
V1 (Xx

s ) ◦ dB (s) ,

where x = (x1, 0), V0 (y1, y2) = (ry1, y1), r = r′ − σ2/2 and V1 (y1, y2) =
(σy1, 0). Then, the price of this call option is D ·E [f (Xx

T )] where D is the dis-
count factor given in this case by D = e−rT and f (y1, y2) = max

(
0, y2T −K

)
.
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3.2.2.1 Implementation of the Kusuoka Approximation

We now apply the Kusuoka approximation presented in Definition 3.1.10 to
calculate the price of this option. In this case, d = 1 and A0 = ∪∞k=1 {0, 1}

k.
First of all, we have to construct an m-moment similar family of random
variables. Here we consider m = 5 and let {Zα;α ∈ A0} be the 5-moment
similar family defined in Example 3.1.6. Following the Definition 3.1.10, the
approximation operator Q(s) is constructed as follows:(

Q(s)f
)

(x) = E [f (G (s, η, x))]

where G is defined by

G (s, η, x) =
5∑

k=0

1

k!

∑
α1,··· ,αk∈A0

‖α1‖+···+‖αk‖≤5

s
1
2

(‖α1‖+···+‖αk‖)
(
P 0
α1
· · ·P 0

αk

) (
V[α1] · · ·V[αk]H

)
(x)

(3.2.1)
with P 0

α defined in Definition 3.1.10. Let us evaluate explicitly G (s, η, x). We
set

P k =
∑

α1,··· ,αk∈A0

‖α1‖+···+‖αk‖≤5

s
1
2

(‖α1‖+···+‖αk‖)
(
P 0
α1
· · ·P 0

αk

) (
V[α1] · · ·V[αk]H

)
(x)

for k = 0, 1, · · · , 5 and

P kα1,··· ,αk = s
1
2

(‖α1‖+···+‖αk‖)
(
P 0
α1
· · ·P 0

αk

) (
V[α1] · · ·V[αk]H

)
(x) ,

where α1, · · · , αk ∈ A0 and ‖α1‖+ · · ·+ ‖αk‖ ≤ 5.
For k = 0, we have that P 0 = (x1, x2).
For k = 1, we have that α1 ∈ {(1); (0); (1, 1); (0, 1); (1, 0); (1, 1, 1); (0, 0); (0, 1, 1)
(1, 0, 1); (1, 1, 0); (1, 1, 1, 1); (0, 0, 1); (1, 0, 0); (0, 1, 0); (0, 1, 1, 1); (1, 0, 1, 1)
(1, 1, 0, 1); (1, 1, 1, 0); (1, 1, 1, 1, 1)}. We obtain that

P 1
(1) = s1/2Z(1)

(
V[(1)]H

)
(x)

= s1/2ηV1 (x)

P 1
(1) = s1/2η (σx1, 0) .

P 1
(1,0,1,1) =

1

4
s5/2

(
−1

2
Z(1)Z(0,1,1) −

1

2
Z(1,0)Z(1,1) −

1

2
Z(1,0,1)Z(1)

+
1

3
Z(1)Z(0)Z(1,1) +

1

3
Z(1)Z(0,1)Z(1) +

1

3
Z(1,0)Z(1)Z(1)

−1

4
Z(1)Z(0)Z(1)Z(1)

)(
V[(1,0,1,1)]H

)
(x)

=
1

4
s5/2

(
−1

8
η − 1

8
η3 +

1

6
η3 +

1

6
η3 +

1

6
η3 − 1

4
η3

)(
V[(1,0,1,1)]H

)
(x)

=
1

4
s5/2

(
−1

8
η +

1

8
η3

)(
V[(1,0,1,1)]H

)
(x)
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(
V[(1,0,1,1)]H

)
(x) = ([[[V1, V0] , V1] , V1]H) (x)

=
(
0, σ3x1

)
that is,

P 1
(1,0,1,1) =

1

4
s5/2

(
−1

8
η +

1

8
η3

)(
0, σ3x1

)
.

Performing similar computations, we obtain

P 1
(0) = s (µx1, x1) ; P 1

(0,1,1) = s2

(
1

12
− 1

18
η2

)(
0, σ2x1

)
P 1

(0,1,0) =
1

3
s5/2

(
−1

6
η

)
(0, µσx1) ; P 1

(1,0,0) =
1

3
s5/2

(
−1

6
η

)
(0,−µσx1)

P 1
(0,1,1,1) =

1

4
s5/2

(
1

24
η3 − 1

8
η

)(
0,−σ3x1

)
; and P 1

αk
= 0 otherwise.

So we can conclude that

P 1 = s1/2η (σx1, 0) +
1

4
s5/2

(
−1

8
η +

1

8
η3

)(
0,−σ3x1

)
+ s (µx1, x1)

+s2

(
1

12
− 1

18
η2

)(
0, σ2x1

)
+

1

3
s5/2

(
−1

6
η

)
(0, µσx1)

+
1

3
s5/2

(
−1

6
η

)
(0,−µσx1) +

1

4
s5/2

(
1

24
η3 − 1

8
η

)(
0, σ3x1

)
+

1

3
s2

(
−1

6
η2

)(
0,−σ2x1

)
.

For k = 2,

P 2 = sη2
(
σ2x1, 0

)
+ s3/2η (µσx1, σx1) + s3/2

(
µ2x1, µx1

)
+s3/2η (µσx1, 0) + s5/2

(
− 1

18
η3

)(
0,−σ3x1

)
+s5/2

(
1

12
η − 1

18
η3

)(
0, σ3x1

)
.

For k = 3,

P 3 = s3/2η3
(
σ3x1, 0

)
+ s2η2

(
µσ2x1, σ

2x1

)
+ s2η2

(
µσ2x1, 0

)
+s2η2

(
µσ2x1, 0

)
+ s5/2η

(
µ2σx1, σx1

)
+ s5/2η

(
µ2σx1, σx1

)
+s5/2η

(
µ2σx1, 0

)
.

For k = 4,

P 4 = s2η4
(
σ4x1, 0

)
+ s5/2η3

(
µσ3x1, σ

3x1

)
+ s5/2η3

(
µσ3x1, 0

)
+s5/2η3

(
µσ3x1, 0

)
+ s5/2η3

(
µσ3x1, 0

)
.
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For k = 5,
P 5 = s5/2η5

(
σ5x1, 0

)
.

Finally, we obtain

G (s, η, x) = (x1, x2) + s1/2η (σx1, 0) + s5/2

(
η

32
− η3

32

)(
0, σ3x1

)
+s (µx1, x1) + s2

(
1

12
− η2

18

)(
0, σ2x1

)
+s5/2

(
η3

96
− η

32

)(
0, σ3x1

)
+ s2

(
η2

18

)(
0, σ2x1

)
+s

(
η2

2

)(
σ2x1, 0

)
+ s3/2

(η
2

)
(µσx1, σx1)

+
1

2
s2
(
µ2x1, µx1

)
+ s3/2

(η
2

)
(µσx1, 0)

+s5/2

(
η3

36

)(
0, σ3x1

)
+ s5/2

(
1

24
η − 1

36
η3

)(
0, σ3x1

)
+s3/2

(
η3

6

)(
σ3x1, 0

)
+ s2

(
η2

6

)(
µσ2x1, σ

2x1

)
+s2

(
η2

3

)(
µσ2x1, 0

)
+ s5/2

(η
3

) (
µ2σx1, µ ∗ σx1

)
+s5/2

(η
6

) (
µ2σx1, 0

)
+ s2

(
η4

24

)(
σ4x1, 0

)
+s5/2

(
η3

24

)(
µσ3x1, σ

3x1

)
+ s5/2

(
η3

8

)(
µσ3x1, 0

)
+s5/2

(
η5

120

)(
σ5x1, 0

)
.

We now implement the calculation of E [f (Xx
t )] by computing

Q(sn)Q(sn−1) · · · Q(s1)f , where(
Q(si)f

)
(x) = E [f (G (si, η, x))] , (3.2.2)

for i = 1, · · · , n.
Let (w0, w1, w2, w3, w4) =

(
0,
√

2 +
√

2,−
√

2 +
√

2,
√

2−
√

2,−
√

2−
√

2
)

and pi = P (η = wi). We then compute
(
Q(si)f

)
(x) = E [f (G (si, η, x))] as

follows:

E [f (G (si, η, x))] =

4∑
k(i)=0

pk(i)f
(
G
(
si, wk(i), x

))
(3.2.3)
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that is, considering equation (3.2.2) and equation (3.2.3),

(
Q(s2)Q(s1)f

)
(x) =

4∑
k(2)=0

pk(2)

(
Q(s1)f

) (
G
(
s2, wk(2), x

))
=

4∑
k(2)=0

pk(2)

4∑
k(1)=0

pk(1)f
(
G
(
s1, wk(1), G

(
s2, wk(2), x

)))
=

4∑
k(2)=0

4∑
k(1)=0

pk(2).pk(1)f
(
G
(
s1, wk(1), G

(
s2, wk(2), x

)))
.

By recurrence, we obtain

(
Q(sn)Q(sn−1) · · · Q(s1)f

)
(x) =

4∑
k(n)=0

4∑
k(n−1)=0

· · ·
4∑

k(1)=0

 n∏
j=1

pk(j)

 f
(
G
(
s1, wk(1),

G
(
s2, wk(2), G

(
· · · , G

(
sn, wk(n), x

)
· · ·
))))

.

3.2.2.2 Numerical Results

We numerically compare the Kusuoka scheme with the traditional Euler-Maruyama
scheme.

In this experiment, we consider

E [max (X2 (T, x) /T −K, 0)] = 1.7780997× 10−2

which is taken from Ninomiya (2003a) as our benchmark (obtained with the
Monte Carlo method with more than 108 sample point).
Figure 3.1 shows the relation between n the number of partitions and the
approximation error that comes from the discretization. The plots are done on
a log-log scale which enable us to obtain linear plots and to easily interpret the
results. We set, respectively, γ = 2 and γ = 4 and the numbers of sample points
for the Monte Carlo calculation is M = 104. The results are the following:

(1) In the case of the Kusuoka approximation with γ = 2, n = 8 is enough to
achieve 10−4 accuracy and for the Euler-Maruyama approximation with
104 sample size Monte-Carlo, n must be greater than 2500.

(2) The approximation error of the Kusuoka approximation is almost con-
sistent with Theorem 3.1.13 and that of the Euler approximation is pro-
portional to n−1, also consistent with the theoretical result.

(3) It takes 2.462×104 seconds to compute the result using the Euler scheme
and only 19.73 seconds when using the Kusuoka approximation. There-
fore, we can affirm that in this experiment the Kusuoka scheme has
achieved 1245 times faster calculation than the traditional Euler approx-
imation.
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Figure 3.1: Comparison of errors of the Kusuoka and Euler schemes.

The approximation considered in our example is realized by a relatively
small number of points, so we were able to proceed with the calculation by
hand. That is to say, we do not need any partial sampling scheme such
as Monte Carlo or Quasi-Monte Carlo methods for our new approximation
scheme.
In general, the number of points used in the approximation is very large es-
pecially when the dimension of the process Xx

t under consideration is greater
than one or the length of the period to be simulated (T ) becomes longer and
in such cases, we need a partial sampling from a finite set of points. Ninomiya
(2003b) reported that by using the tree-based branching algorithm (TBBA)
in the Kusuoka approximation, we can achieve a several hundred times faster
calculation. However, with the Kusuoka scheme, there are still some problems
such as:

• it is not easy to construct moment similar families of random variables.

• the construction of the approximation operator Q(s) is very difficult, es-
pecially when the dimension of the Brownian motion under consideration
is high.

In the next chapters, we present other approximation schemes which can be
viewed as a generalisation of the Kusuoka scheme.



Chapter 4

Cubature Formula on Wiener
Space

It is well known that in finite dimension, cubature formulas provide good ap-
proximative values for integrals with respect to a given measure. The theory
of cubature formulas in a finite dimension was recently extended by Lyons and
Victoir, 2004 to provide approximative values for integrals defined on Wiener
space. This provides another weak approximation scheme to stochastic differ-
ential equations which is similar to the Kusuoka approximation presented in
Chapter 3 . Cubature formulas on Wiener space are based on the basic ob-
servation that any diffusion can be constructed up to given high-order asymp-
totic, by a superposition of iterated Stratonovich integrals in well-specified
directions. Hence it is sufficient to obtain Cubature results for those iterated
Stratonovich integrals in order to obtain the results for any diffusion. The
cubature method is very attractive according to the mathematical point of
view because it combines results from different areas such as Numerical Anal-
ysis (classical cubature formula), Algebra and Differential Geometry, together
with Stochastic Analysis.

In this chapter we outline the main results of this new approximation
scheme. For more detail on the topic we refer the interested reader to Lyons
and Victoir, 2004; Bayer and Teichmann, 2008 and references therein. We start
the presentation of the method with a look at the classical cubature formulas
in Section 4.1. In Section 4.2 we present the extension of the classical cubature
formulas to Wiener space by Lyons and Victoir. The algorithm of this new
approximation scheme is presented in Section 4.3. We distinguish between
the case where the function f in consideration is smooth and when it is only
Lipschitz continuous. We close this chapter by looking at some examples of
the construction of cubature formula on Wiener space.

34
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4.1 Classical Cubature Formula

A cubature formula is a classical technique of numerical integration. It provides
approximate values for integrals over finite dimensional spaces with respect to
a given measure. Let us recall that the support of a positive measure µ on
Rd, denoted by supp µ, is the complement of the biggest open set O ∈ Rd
with µ (O) = 0. We denote by Rm [X1 , . . . , Xd

] the space of polynomials p in
d variables and of degree less than or equal to m.

Definition 4.1.1. Given a positive measure µ on Rd, and a natural number
m ∈ N such that all moments of µ up to order m exist, i.e.∫
Rd ‖x‖

k µ (dx) <∞, k = 0, . . . ,m. A finite sequence of points x1 , . . . , xn in
the support of µ, and positive weights λ1, . . . , λn is said to define a cubature
formula of degree m with respect to the measure µ if, and only if,∫

Rd
p (x)µ (dx) =

n∑
i=1

λip (xi) (4.1.1)

for all polynomials p ∈ Rm [X1 , . . . , Xd
].

Remark 4.1.2. When d = 1, one talks about a quadrature formula rather than
a cubature formula.

Even though construction of cubature formulas is a non trivial task, espe-
cially in higher dimensions, there is a very general existence result which is
given by

Theorem 4.1.3. Let m be a positive integer and µ a positive measure on Rd
with the property that all moments up to order m exist. Then there is an integer
n with 1 < n ≤ dimRm [X1 , . . . , Xd

], a sequence of points x1 , . . . , xn ∈ Rd and
positive weights λ1, . . . , λn such that for all p ∈ Rm [X1 , . . . , Xd

], the cubature
relation (4.1.1) holds.

Theorem 4.1.3, also known as the Tchakaloff Theorem, was first proved by
Tchakaloff in 1957 where he considered compactly supported Borel measures
and later on, the proof was extended to more general cases (non-compactly
supported measures) by many other authors among whom was Putinar (1997).
It states that the cubature formula exists and moreover, that the formula can
be constructed with the number of points (n in our case) being less than, or
equal to dimRm [x1 , . . . , xd ].

Given a cubature formula as in Definition 4.1.1 and a function f , one
would then use expression

∑n
i=1 λif (xi) to approximate

∫
Rd f (x)µ (dx). The

accuracy of such approximation depends on whether or not f can be well
approximated by polynomials. This shows, considering Taylor’s formula, that,
for smooth functions, a cubature formula is an efficient method for numerical
integration. (Note that f only needs to be defined on supp µ for the integral
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∫
fdµ to make sense). Therefore, we require that all points of a cubature

formula lie in supp µ, (see Bayer and Teichmann, 2008 and references therein
for more information on these points). Unfortunately, Theorem 4.1.3 is only
an existence theorem, it does not provide any approach to construct such a
cubature formula. Indeed, the construction of cubature formulas remains a
highly non-trivial task, especially if the size should be close to the optimal
size for the particular measure. We refer to Victoir (2004) for ideas about
construction of cubature formulas in any given dimension.

In order to present the cubature on Wiener space, let us make the prob-
abilistic representation of parabolic PDEs precise. Consider the probabil-
ity space (Ω,F ,P), where Ω ≡ C0

0

(
[0, T ] ,Rd+1

)
is the Wiener space, that

is the space of Rd-valued continuous functions defined on [0, T ] and start-
ing at zero. F is its Borel σ-algebra, and P is the Wiener measure. For
ω ∈ Ω, we set ω0 (t) = t. We define the coordinate mapping process Bi

t (ω) =
ωi (t) for t ∈ [0, T ] , ω ∈ Ω. Notice that under the Wiener measure, B =(
B1
t , . . . , B

d
t

)
t∈[0,T ]

is a d-dimensional standard Brownian motion. We fix
B0 (t) = t. We want to compute

E (f (Xx
T )) =

∫
Ω
f (Xx

T (ω))P (dω) (4.1.2)

where f : RN → R is a given function and Xx
t is a stochastic process verifying

Xx
t = x+

d∑
j=0

∫ t

0
Vj (Xx

s ) ◦ dBj
s (4.1.3)

Vj ∈ C∞b
(
RN ;RN

)
. (4.1.4)

Let us define the map,

Φt,x : Ω→ RN (4.1.5)
ω 7→ Xx

t (ω) (4.1.6)

and consider u (t, x) to be the solution at time t of{
∂u
∂t (t, x) = Lu (t, x)
u (0, x) = f (x)

(4.1.7)

where the operator L is defined as in Equation (3.1.10). Then,

u (T, x) =

∫
Ω
f (ΦT,x (ω))P (dω) .

Hence, to approximate the solution of a parabolic partial differential equa-
tion, we have to approximate an integral over the Wiener space (an infinite
dimensional space). Therefore, the question is whether the classical cubature
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formula can be extended in order to help integrating (4.1.2). We see from
the stochastic Taylor’s formula, presented in Proposition 2.2.9, that f (Xx

t ) is
approximated by a sum of Stratonovich iterated integrals,∑

α∈A(m)

Vα1
· · ·Vα

k
f (x)

∫
0<t1<···<tk<t

◦dBα1
t1
◦ · · · ◦ dB

α
k

t
k
.

In the same way as in the deterministic case, a smooth function g is approxi-
mated at a point x by a sum of polynomials,

g (x) '
∑
k≤m

g(k) (x0)
(x− x0)k

k!
.

It now appears natural to give the definition of a cubature formula on Wiener
space, this by replacing the polynomials we have in classical cubature formula
by the Stratonovich iterated integrals and by fixing a positive measure on
Wiener space.

4.2 Cubature Formula on Wiener Space

We denote by C0
0,bv

(
[0, T ] ,Rd+1

)
the subset of C0

0

(
[0, T ] ,Rd+1

)
consisting of

bounded variation paths.

Definition 4.2.1. Let m,n ∈ N. A finite sequence of paths ω1, . . . , ωn ∈
C0

0,bv

(
[0, T ] ,Rd+1

)
and positive weights λ1, . . . , λn ∈ R+ is said to define a

cubature formula on Wiener space of degree m at a fixed time T if,

E (B◦α (T )) =

n∑
i=1

λi

∫
0<t1<···<tk<T

dω
αi1
i (t1) · · · dω

αik
i (t

k
) (4.2.1)

for all α =
(
αi1 , . . . , αik

)
∈ A (m).

Here, B◦α (T ) is given by Definition 2.2.3, as

B◦α (T ) =

∫
0<t1<···<tk<T

◦dB
αi1
t1
◦ · · · ◦ dB

αik
t
k

(4.2.2)

Through all this chapter we will denote B◦α (T ) by B◦αT .

Remark 4.2.2. Definition 4.2.1 also means that the expectation of the
Stratonovich iterated integrals of degree less than or equal to m under the
Wiener measure is the same as under the probability measure

Q =
n∑
j=1

λiδωj .
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Remark 4.2.3. The integrals on the right hand side of Equation (4.2.1) are
well-defined because the cubature paths considered are required to be of bounded
variation on [0, T ]. Considering the definition of ωi (t), given by Bi

t (ω) =
ωi (t), we define ωα (t) as:

ωα (t) :=

∫
0<t1<···<tk<T

dω
αi1
i (t1) · · · dω

αik
i (t

k
) .

This may be view as the evaluation of the random variable B◦αT (ω) for a path
ω ∈ C0

0,bv

(
[0, T ] ,Rd+1

)
. Then Equation (4.2.1) can be written as

E (B◦αT ) =
n∑
i=1

λiB
◦α
T (ωi) ; (4.2.3)

which looks more similar to equation 4.1.1 in Definition 4.1.1.

By the scaling property of the Brownian motion, it is enough to construct
a cubature formula on Wiener space at time 1, as detailed in the following:

Proposition 4.2.4. (Lyons and Victoir, 2004). Assume the paths ω1, . . . , ωn ∈
C0

0,bv

(
[0, 1] ,Rd+1

)
and positive weights λ1, . . . , λn define a cubature formula

on Wiener space of degree m at time 1. For i = 1, . . . , n, we define the
paths ωT,i by ω

j
T,i

(t) =
√
Tωji (t/T ), for j = 1, . . . , d. Then the paths ωT,i ∈

C0
0,bv

(
[0, T ] ,Rd+1

)
and the same weights λ1, . . . , λn define a cubature formula

on Wiener space of degree m at time T .

The existence of a cubature formula on Wiener space was obtained by
Lyons and Victoir, 2004 and it is stated in the following theorem:

Theorem 4.2.5. (Lyons and Victoir, 2004). Letm be a natural number. Then
one can find n paths of bounded variation ω1, . . . , ωn ∈ C0

0,bv

(
[0, T ] ,Rd+1

)
and

n positive weights λ1, . . . , λn, with n ≤ cardA (m) such that ωi and λi, i =
1, . . . , n define a cubature formula on Wiener space of degree m at time T .

This result is an extension of Tchakaloff’s theorem and we refer to Bayer
(2004) for a proof.

4.3 Algorithm for Cubature Formulas on Wiener
Space

Consider the paths ω1, . . . , ωn ∈ C0
0,bv

(
[0, 1] ,Rd+1

)
and positive weights λ1, . . . , λn.

Assume that ωi and λi, i = 1, . . . , n define a cubature formula on Wiener
space of degree m at time 1 and define, for i = 1, . . . , n, the paths ωT,i in
C0

0,bv

(
[0, 1] ,Rd+1

)
by ω0

T,i
(t) = t and ωj

T,i
(t) =

√
Tωji (t/T ) for j = 1, . . . , d.
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Lemma 4.3.1. Considering the construction of the paths ωT,i and by the scal-

ing property, we have that for all α =
(
αi1 , . . . , αin

)
∈ A (m),

E

(∫
0<t1<···<tk<T

◦dB
αi1
t1
◦ · · · ◦ dB

αik
t
k

)
= EQT

(∫
0<t1<···<tk<T

◦dB
αi1
t1
◦ · · · ◦ dB

αik
t
k

)
(4.3.1)

where QT is the probability measure defined by

QT =
n∑
i=1

λiδω
T,i
.

Proof. By Proposition 4.2.4, the paths ωT,i and the positive weights λi,
i = 1, . . . , n define a cubature formula on Wiener space of degree m at time
T , so

E

(∫
0<t1<···<tk<T

◦dB
αi1
t1
◦ · · · ◦ dB

αik
t
k

)
=

n∑
i=1

λi

∫
0<t1<···<tk<T

dω
αi1
T,i (t1) · · · dω

αik
T,i (t

k
)

= EQT

(∫
0<t1<···<tk<T

◦dB
αi1
t1
◦ · · · ◦ dB

αik
t
k

)
.

Lemma 4.3.2. We adapt the stochastic Taylor’s formula by considering the
new probability measure QT and we derive an upper bound for the remainder
process Rm (T, x, f) as:

sup
x

EQT (|Rm (T, x, f) |) ≤ Cd,m,QT T
(m+1)/2 sup

α∈A(m+2)\A(m)

∥∥∥Vαi1 · · ·Vαik f∥∥∥∞
(4.3.2)

where the constant C depends only on d, m and QT .

Since each path ωj ∈ C0
0,bv

(
[0, 1] ,Rd+1

)
, the following remark on Riemann-

Stieltjes integrals will be useful in the proof of the Lemma 4.3.2 .

Remark 4.3.3. Let f be a smooth function and g be a function of bounded
variation. Then ∣∣∣∣∫ t

0
f (s) dg (s)

∣∣∣∣ ≤ sup
s∈[0,t]

|f (s)| |g|TV ;[0,t] (4.3.3)

where |g|TV ;[0,t] denotes the total variation of g on the interval [0, t], i.e.

|g|TV ;[0,t] = sup
p

{
n∑
i=1

|g (ti)− g (ti−1)|

}
,

where p is the set of all partitions {ti}i=0,...,n of the interval [0, t].
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Proof. In the proof of Proposition 2.2.9 , we showed that

Rm (T, x, f) =
∑

α=
(
αi1

,...,αik

)
∈A(m)(

αi0
,αi1

,...,αik

)
6∈A(m)

∫
0<t0<t1<···<tk<T

Vαi0
· · ·Vαik f

(
Xx
t0

)

◦dB
αi0
t0
◦ · · · ◦ dB

αik
t
k
.

Hence, by Lemma 4.3.1 , EQT (|Rm (T, x, f) |) is bounded by

n∑
j=1

λj
∑

α=
(
αi1

,...,αik

)
∈A(m)(

αi0
,αi1

,...,αik

)
6∈A(m)

∣∣∣∣∣
∫

0<t0<t1<···<tk<T
Vαi0

· · ·Vαik f
(
Xx
t0

(
ω
αi0
T,j

))

dω
αi0
T,j (t0) · · · dω

αik
T,j (t

k
)
∣∣∣ .

For t, t` ∈ [0, T ], we define

y =
t

T
and y

`
=
t`
T

for ` = 0, . . . , k.

This implies,
dω

αi`
T,j (t`) = dω

αi`
T,j (y

`
T ) =

√
Tdω

αi`
j (y

`
) (4.3.4)

for i
`

= 1, . . . , d and

dωα0
T,j

(ti) = dti = d (yiT ) = Tdyi .

By setting
h (t0) = Vαi0

· · ·Vαik f
(
Xx
t0

(
ω
αi0
T,j

))
,

we obtain,∫
0<t0<···<tk<T

h (t0) dω
αi0
T,j (t0) · · · dω

αik
T,j (t

k
)

=

∫ T

0

∫ t
k

0
· · ·
∫ t1

0
h (t0) dω

αi0
T,j (t0) · · · dω

αik
T,j (t

k
)

=

∫ 1

0

∫ t
k
/T

0
· · ·
∫ t1/T

0
h (y0)

√
T
‖β‖

dω
αi0
j (y0) · · · dω

αik
j (y

k
)

where β = αi0 ∗ α =
(
αi0 , αi1 , . . . , αik

)
.

Let H =
∣∣∣∫0<t0<···<tk<T

h (t0) dω
αi0
T,j (t0) · · · dω

αik
T,j (t

k
)
∣∣∣, considering the change

of variable (4.3.4), we have

H =
√
T
‖β‖
∣∣∣∣∣
∫

0<y0<···<yk<1
h (t0) dω

αi0
j (y0) · · · dω

αik
j (y

k
)

∣∣∣∣∣ .
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Applying (4.3.3) successively to the integrals we get

H ≤
√
T
‖β‖ ∣∣∣ωαikj

∣∣∣
TV ;[0,1]

sup
y
k
∈[0,1]

∣∣∣∣∫ y
k

0
· · ·
∫ y1

0
h (y0) dω

αi0
j (y0) · · · dω

αik−1

j

(
y
k−1

)∣∣∣∣
≤

√
T
‖β‖ ∣∣∣ωαikj

∣∣∣
TV ;[0,1]

sup
y
k
∈[0,1]

∣∣∣∣∣∣∣ωαik−1

j

∣∣∣
TV ;[0,yk ]

sup
y
k−1
∈[0,yk ]

∣∣∣∣∫ y
k−1

0
· · ·
∫ y1

0
h (y0)

dω
αi0
j (y0) · · · dω

αik−2

j

(
y
k−2

)∣∣∣∣∣∣∣
≤
√
T
‖β‖ ∣∣∣ωαikj

∣∣∣
TV ;[0,1]

∣∣∣ωαik−1

j

∣∣∣
TV ;[0,1]

sup
y
k−1
∈[0,1]

∣∣∣∣∫ y
k−1

0
· · ·
∫ y1

0
h (y0) dω

αi0
j

(
y)0

)
· · · dω

αik−2

j

(
y
k−2

)∣∣∣∣.
By iterating this procedure further, we obtain

H ≤
√
T
‖β‖ ∣∣∣ωαikj

∣∣∣
TV ;[0,1]

∣∣∣ωαik−1

j

∣∣∣
TV ;[0,1]

· · ·
∣∣∣ωαi0j

∣∣∣
TV ;[0,1]

sup
y0∈[0,1]

|h (y0)|

or

h (y0) = Vαi0
· · ·Vαik f

(
Xx
y0

(
ω
αi0
T,j

))
and Xx

y0

(
ω
αi0
T,j

)
∈ RN

so,

sup
y0∈[0,1]

|h (y0)| = sup
y0∈[0,1]

∣∣∣Vαi0 · · ·Vαik f (Xx
t0

(
ω
αi0
T,j

))∣∣∣
≤ sup

x∈RN

∣∣∣Vαi0 · · ·Vαik f (x)
∣∣∣

which implies that,

H ≤
√
T
‖β‖ ∣∣∣ωαikj

∣∣∣
TV ;[0,1]

∣∣∣ωαik−1

j

∣∣∣
TV ;[0,1]

· · ·
∣∣∣ωαi0j

∣∣∣
TV ;[0,1]

sup
x∈RN

∣∣∣Vαi0 · · ·Vαik f (x)
∣∣∣

=
√
T
‖β‖ ∣∣∣ωαikj

∣∣∣
TV ;[0,1]

∣∣∣ωαik−1

j

∣∣∣
TV ;[0,1]

· · ·
∣∣∣ωαi0j

∣∣∣
TV ;[0,1]

∥∥∥Vαi0 · · ·Vαik f∥∥∥∞ .
It follows that

EQT (|Rm (T, x, f) |) ≤
n∑
j=1

λj
∑

α=
(
αi1

,...,αik

)
∈A(m)(

αi0
,αi1

,...,αik

)
6∈A(m)

√
T
‖β‖ ∣∣∣ωαikj

∣∣∣
TV ;[0,1]

∣∣∣ωαik−1

j

∣∣∣
TV ;[0,1]

· · ·
∣∣∣ωαi0j

∣∣∣
TV ;[0,1]

∥∥∥Vαi0 · · ·Vαik f∥∥∥∞ .
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β ∈ Am+2 and β 6∈ Am, means that ‖β‖ = m+1 or ‖β‖ = m+2. So for t > 1,√
t
‖β‖ ≤

√
t
m+2 and for 0 < t ≤ 1,

√
t
‖β‖ ≤

√
t
m+1. Therefore, by setting

Cd,m,Q1 =

n∑
j=1

λj
∑

α=
(
αi1

,...,αik

)
∈A(m)(

αi0
,αi1

,...,αik

)
6∈A(m)

∣∣∣ωαikj

∣∣∣
TV ;[0,1]

∣∣∣ωαik−1

j

∣∣∣
TV ;[0,1]

· · ·
∣∣∣ωαi0j

∣∣∣
TV ;[0,1]

we obtain

EQT (|Rm (T, x, f) |) ≤ Cd,m,Q1

√
T
‖β‖ ∥∥∥Vαi0 · · ·Vαik f∥∥∥∞

which is the announced upper bound.

We now construct an approximation of E (f (Xx
T )) using the algorithm

presented in Section 4.3. We will distinguish the case where f is smooth and
where f is only Lipschitz.

4.3.1 Approximation of E (f (Xx
T )) when f is Smooth

Assume that the paths ωT,1 , . . . , ωT,n and the positive weights λ1, . . . , λn define
a cubature formula on Wiener space of degree m at time T , and let QT be the
probability measure with finite support defined by

QT =

n∑
i=1

λiδω
T,i
,

this is equivalent to EQT (f (Xx
T )) =

∑n
i=1 λif

(
Xx
T

(
ωT,i

))
. Recall that for

ω ∈ C0
0,bv

(
[0, T ] ,Rd+1

)
, ΦT,x (ω) = Xx

T (ω) defined by (4.1.5) is the solution
at time T of the ordinary differential equation

dyt,x =
d∑
i=0

Vi
(
yt,x
)

dωi (t) (4.3.5)

with initial condition y0,x = x ∈ RN . For a given smooth function f , we have

Proposition 4.3.4.

sup
x∈RN

∣∣∣∣∣E (f (Xx
T ))−

n∑
i=1

λif
(
ΦT,x

(
ωT,i

))∣∣∣∣∣
≤ c
√
T
m+1

sup
α∈A(m+2)\A(m)

∥∥∥Vαi1 · · ·Vαik f∥∥∥∞ , (4.3.6)

where c is a constant independent of T and α =
(
αi1 , . . . , αik

)
.
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Proof. From the definition of ΦT,x , we have

n∑
i=1

λif
(
ΦT,x

(
ωT,i

))
=

n∑
i=1

λif
(
Xx
T

(
ωT,i

))
= EQT (f (Xx

T )) .

Therefore,

E (f (Xx
T ))−

n∑
i=1

λif
(
ΦT,x

(
ωT,i

))
= E (f (Xx

T ))− EQT (f (Xx
T ))

= (E− EQT ) (f (Xx
T )) .

Using the fact that the stochastic Taylor expansion of f is given by

f (Xx
T ) =

∑
α∈A(m)

Vαi1
· · ·Vαik f (x)E (B◦αT ) +Rm (T, x, f) ,

where B◦αT =
∫

0<t1<···<tk<T
◦dB

αi1
t1
◦ · · · ◦ dB

αik
tk

, the previous expression be-
comes

(E− EQT ) (f (Xx
T )) = (E− EQT ) (Rm (T, x, f))

+ (E− EQT )

 ∑
α∈A(m)

Vαi1
· · ·Vαik f (x)E (B◦αT )

 .

This implies that,

|(E− EQT ) (f (Xx
T ))| ≤ |E (Rm (T, x, f))− EQT (Rm (T, x, f))|

+

∣∣∣∣∣∣
∑

α∈A(m)

Vαi1
· · ·Vαik f (x) (E− EQT ) (B◦αT )

∣∣∣∣∣∣ .
Using Lemma 4.3.1 , we have E (B◦αT ) = EQT (B◦αT ) and it follows∣∣∣∣(E− EQT ) (f (Xx

T ))

∣∣∣∣ ≤ ∣∣∣∣E (Rm (T, x, f))

∣∣∣∣+

∣∣∣∣EQT (Rm (T, x, f))

∣∣∣∣
≤ E

(∣∣∣∣Rm (T, x, f)

∣∣∣∣)+ EQT

(∣∣∣∣Rm (T, x, f)

∣∣∣∣)
≤

√
E
(
Rm (T, x, f)2

)
+ EQT

(∣∣∣∣Rm (T, x, f)

∣∣∣∣) .
Using Proposition 2.2.9 and Lemma 4.3.2 , we conclude that

sup
x∈RN

∣∣∣∣(E− EQT ) (f (Xx
T ))

∣∣∣∣ ≤ c1√Tm+1
sup

α∈A(m+2)\A(m)

∥∥∥∥Vαi1 · · ·Vαik f
∥∥∥∥
∞

+c2
√
T
m+1

sup
α∈A(m+2)\A(m)

∥∥∥∥Vαi1 · · ·Vαik f
∥∥∥∥
∞
,



CHAPTER 4. CUBATURE FORMULA ON WIENER SPACE 44

this is equivalent to

sup
x∈RN

∣∣∣∣E (f (Xx
T ))−EQT (f (Xx

T ))

∣∣∣∣ ≤ c√Tm+1
sup

α∈A(m+2)\A(m)

∥∥∥∥Vαi1 · · ·Vαik f
∥∥∥∥
∞
.

We observe from Proposition 4.3.4 that the quantity E (f (Xx
T )) is approx-

imated by a weighted sum of solutions of ODEs, ΦT,x (ω) . Therefore the
task of solving an SDE is replaced by the one of solving N ODEs . In order
for EQT (f (Xx

T )) to represent a good approximation of E (f (Xx
T )), the up-

per bound in Equation (4.3.6) needs to be as small as possible. This may
be done by dividing the interval [0, T ] into k small subintervals, and then we
consecutively apply the approximation to these intervals in the following way:
Consider 0 = t0 < t1 < · · · < t

k
= T and s

`
= t`− t`−1 for ` = 1, . . . , k . Define

a sequence of random variables (Y`)0≤`≤k by

P
(
Yj+1 = Φsj+1 ,x

(
ωsj+1 ,i

)
\ Yj = x

)
= λi (4.3.7)

for j = 0, . . . , k − 1 and i = 1, . . . , n . So, we obtain Yj+1 by following (with
probability λi) the solution of the ODE (4.3.5) driven by ωsj+1,i starting at Yj
until time sj+1 . Notice that (Y`)0≤`≤k satisfies the Markov property, i.e. the
distribution of Y`+1 given Y` is independent of Y0, . . . , Y`−1. We then have the
following theorem:

Theorem 4.3.5. (Lyons and Victoir, 2004). Consider the Markov chain
(Y`)0≤`≤k defined in Equation (4.3.7) . We have

sup
x∈RN

|E (f (Yk) \ Y0 = x)− E (f (Xx
T ))|

≤ c
k∑
j=1

s
(m+1)/2
j sup

α∈A(m+2)\A(m)

∥∥∥Vαi1 · · ·VαikPT−tj f∥∥∥∞ (4.3.8)

for some constant c and where Ptf (x) = E (f (Xx
t )) .

Considering the above notations, we define the path ωs1 ,i1 ⊗ · · ·⊗ωsk ,ik (t)
for 0 ≤ ` ≤ k − 1 and t` ≤ t ≤ t`+1 as

ωs1 ,i1 ⊗ · · · ⊗ ωsk ,ik (t) := ωs1 ,i1 + · · ·+ ωs
`
,i` + ωs

`+1
,i`+1

(t− t`)

where si = ti − ti−1, and i1, . . . , i`+1 ∈ {0, 1, . . . , k}. Notice that ωs1 ,i1 ⊗ · · · ⊗
ωs

k
,ik ∈ C0

0,bv

(
[0, T ] ,Rd+1

)
is the path obtained by, consecutively, following

the paths ωs1 ,i1 , . . . , ωsk ,ik . Here ωs2 ,i2 is understood to be attached to the
end point of the path ωs1 ,i1 and so on. Then, given the initial condition
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Y0 = x, the random variable Yk takes value ΦT,x

(
ωs1 ,i1 ⊗ · · · ⊗ ωsk ,ik

)
with

probability λi1λi2 · · ·λik . Therefore, E (f (Xx
T )) can be approximated by

E (f (Yk) \Y0 = x) =

n∑
i1=1

. . .

n∑
ik=1

λi1λi2 · · ·λikf
(

ΦT,x

(
ωs1 ,i1 ⊗ · · · ⊗ ωsk ,ik

))
= EQkT

(f (Xx
T ))

where

Qk
T =

n∑
i1=1

· · ·
n∑

ik=1

λi1λi2 · · ·λikδωs1 ,i1⊗···⊗ωsk ,ik .

One can see this algorithm as a n-ary tree. At each node, we save a weight
and an element of RN . We begin at time 0 from the root node (1, x). In
the first step, we construct at time s1 the first n nodes by computing the n
solutions

(
Φs1 ,x

(
ωs1 ,i

))
1≤i≤n of the ODEs (4.3.5) corresponding to the paths

ωs1 ,1, . . . , ωs1 ,n with initial value x and with probability λ1, . . . , λn, respec-
tively. Thus, we save{(

v1
1
, f1

1

)
, . . . ,

(
v1
n
, f1
n

)}
=
{(
λ1,Φs1 ,x

(
ωs1 ,1

))
, . . . ,

(
λn,Φs1 ,x

(
ωs1 ,n

))}
.

Then, for each 1 ≤ j ≤ n, we compute the n solutions at time s2 of the ODEs
corresponding to the paths ωs2 ,1, . . . , ωs2 ,n with initial value Φs1 ,x

(
ωs1 ,j

)
and

for each j, we save
(
v2,j
1
, f2,j

1

)
, . . . ,

(
v2,j
n
, f2,j
n

)
where v2,j

i
= v1

j
λi and f

2,j
i =

Φs2 ,f
1
j

(
ωs2 ,i

)
. This procedure is iterated k − 2 times. The last stage is ob-

tained as follows: From each node j, 1 ≤ j ≤ nk−1 of the stage k-1, we
obtain

(
vk,j
1
, fk,j1

)
, . . . ,

(
vk,jn , fk,jn

)
where

(
vk,j
i
, fk,j1

)
are computed as men-

tioned previously and the sum

∑
j

n∑
i=1

vk,ji fk,ji

is our approximation for E (f (Xx
T )).

Example 4.3.6. considering n = 2 and k = 2, we construct a cubature for-
mula with two paths by discretizing the interval [0, T ] into 2 small intervals.
Let [0, T ] = [0, s1 ] ∪ [s1 , s1 + s2 ] and

yi = Φs1 ,x

(
ωs1 ,i

)
yi,j = Φs2 ,Φs1 ,x(ωs1 ,i)

(
ωs2 ,j

)
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where Φt,x (ω) is defined as previously. We then have the following diagram:

x

λ1

{{xxxxxxxxxxxxxxxxxx

λ2

##FFFFFFFFFFFFFFFFFF

y1

λ1λ1

}}{{
{{

{{
{{ λ1λ2

!!CC
CC

CC
CC

y2

λ2λ1

}}{{
{{

{{
{{ λ2λ2

!!CC
CC

CC
CC

y1,1 y1,2 y2,1 y2,2

Then

EQ2
T

(f (Xx
T )) = λ1λ1f (y1,1) + λ1λ2f (y1,2) + λ2λ1f (y2,1) + λ2λ2f (y2,2)

4.4 Approximation of E (f (Xx
T )) when f is Lipschitz

In the case when f is only Lipschitz, we have the following regularity result
due to Kusuoka and Strook, 1987 and Kusuoka (2001). The proof is based on
Malliavin calculus.

Theorem 4.4.1. Let f be a Lipschitz function, α1 , . . . , αk ∈ A1 be k multi-
indices and V[α1 ], . . . , V[α

k
] be a family of vector fields satisfying the UFG con-

dition (1), that is, for each αi , i = 1, . . . , k there exists an integer li and a
function ϕαi ,β ∈ C

∞
b

(
RN
)
where β ∈ A1 (li) such that

V[αi ]
=

∑
β∈A1(li)

ϕαi ,βV[β].

Then, there exists a constant C such that∥∥∥V[α1 ] · · ·V[α
k

]Ptf
∥∥∥
∞
≤ Ct1/2

t‖α1∗···∗αk‖/2
‖∇f‖∞ . (4.4.1)

This theorem states, loosely speaking, that Ptf is smooth even when f is
not (see also Theorem 6.2 in Litterer and Lyons, 2006).

Corollary 4.4.2. Under assumptions of Theorem 4.4.1, let 0 = t0 < t1 <
. . . < tk = T and s

`
= t` − t`−1. Also, consider the Markov chain (Yi)0≤i≤k

defined in Equation (4.3.7). We have the following estimate:

sup
x∈RN

|E (f (Yk) \Y0 = x)− E (f (Xx
T ))|

≤ C ‖∇f‖∞

(
s1/2
k

+

k−1∑
i=1

s
(m+1)/2
i

(T − ti)m/2

)
(4.4.2)
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This corollary indicates that the algorithm described in the previous sec-
tion remains valid when f is considered to be only Lipschitz continuous. It
was pointed out in Litterer and Lyons, 2006 that the estimates in the above
proposition require V0 to have a formal degree at most 2 and that if V0 has a
higher formal degree, the estimate in Theorem 4.4.1 will change and the bound
in Corollary 4.4.2 will change accordingly. The proof of the Corollary 4.4.2 is
based on Proposition 4.3.4 and may be found in Lyons and Victoir, 2004 .

The cubature formula on Wiener space can be viewed as a restriction of
the more general framework presented in Chapter 3. In fact, the concept
of cubature formula on Wiener space is similar to the concept of m-moment
similar family presented in Chapter 3 in the following sense:
Let (ωi, λi)i=1,...,n be some paths and weights defining a cubature formula on
Wiener space of degree m. Define the random variable η by:

P (η = B◦αT (ωi)) = λi for i = 1, . . . , n.

Then, the family of random variables {Zα;α ∈ A0} defined as

Z(α0) = 1, Zα = η, if ‖α‖ ≤ m and Zα = 0 otherwise

is an m-moment similar family.

Remark 4.4.3. It is not difficult to verify that E
[
|Zα|k

]
<∞ for all α ∈ A0

and k ≥ 1. For k = 1, and by considering the fact that

E (B◦αT ) =
n∑
i=1

λiB
◦α
T (ωi) , (4.4.3)

we obtain E [Zα] = E (B◦αT ) . It is proved in Bayer (March 2008) that for all k
verifying ‖α1‖+ · · ·+ ‖αk‖ ≤ m, we have

E [Zα1 · · ·Zαk ] = E
(
B◦α1
T · · ·B◦αkT

)
.

Although the class of moment similar families of random variables is larger
than the class of cubature formulas on Wiener space, it is not easier to con-
struct them. Thus, it is also important to consider the class of cubature
formulas on Wiener space.

4.5 Examples of Constructions of Cubature on
Wiener Space

As mentioned by Bayer (March 2008) , the actual construction of cubature
paths is a difficult task. In this Section, we only present a few examples of
(piecewise linear) cubature paths on Wiener space of degree 3 and 5 obtained
by Lyons and Victoir, 2004 .
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4.5.1 Example of Cubature Formula of Degree 3 on Wiener
Space

We consider some given points x1 , . . . , xn ∈ Rd and positive weights λ1, . . . , λn
which are supposed to define a classical cubature formula of degree 3 with
respect to the standard d-dimensional Gaussian measure. The most classical
example is given by (xi , λi)i=1,...,n where n = 2d, xi are 2d points {−1,+1}d

and λi = 2−d (see Victoir (2004) for details).

Remark 4.5.1. The size of this cubature formula is not optimal since by
Tchakaloff’s theorem, one can construct a cubature formula of degree 3 with
the number of points n ≤ d(d+1)(d+2)

6 .

The cubature on Wiener space of degree 3 for a d-dimensional Brownian
motion is then given by (ωi, λi)i=1,...,n where ωi (t) = t

(
1, x1

i
, . . . , xd

i

)
for i =

1, . . . , n.

4.5.2 Example of Cubature Formula of Degree 5 on Wiener
Space

Let x1 , . . . , xn ∈ Rd and λ1, . . . , λn ∈ R+ be some points and weights defin-
ing a cubature formula of degree 5 with respect to a d-dimensional Gaussian
measure.

Example 4.5.2. Consider d = 1, and fix n = 3. The points (x1 , x2 , x3) =(
−
√

3, 0,
√

3
)
, and weights (λ1, λ2, λ3) =

(
1
6 ,

2
3 ,

1
6

)
define a classical cubature

formula of degree 5.

The construction of cubature formula of degree 5 on Wiener space is given
by the following theorem:

Theorem 4.5.3 (Lyons and Victoir, 2004). Let d ∈ N∗. Let the points
x1 , . . . , xn ∈ Rd and the positive weights λ1, . . . , λn define a cubature formula
of degree 5. Let ω =

(
ω1, . . . , ωd

)
∈ C0

0,bv

(
[0, 1] ,Rd

)
be such that

∀i ∈ {1, . . . , d} ,
∫ 1

0 ω
i (t) dt =

∫ 1
0 ω

i (t)2 dt = 1
2 ,

∀i ∈ {1, . . . , d} , ωi (0) = 0 and ωi (1) = 1,

for 1 ≤ i < j ≤ d,
∫ 1

0 ω
i (t) dωj (t)−

∫ 1
0 ω

j (t) dωi (t) = 1,

for 1 ≤ i < j ≤ d,
∫ 1

0 ω
i (t)2 dωj (t) +

∫ 1
0 ω

j (t)2 dωi (t) = 1.

(4.5.1)

Then, for i = 1, . . . , n, the paths defined by

ωi (t) =
(
t, x1

i
ω1 (t) , . . . , xd

i
ωd (t)

)
,

ωn+i (t) =
(
t, x1

i
ωd (t) , . . . , xd

i
ω1 (t)

)
,

and the positive weights λ̃1, . . . , λ̃2n given by λ̃i = λi/2 = λ̃n+i define a cubature
formula on Wiener space of degree 5.
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Lyons and Victoir, 2004 constructed piecewise linear solutions for Equa-
tions (4.5.1). For example, for a one dimension Brownian motion (i.e d = 1),
they obtained that the paths

(
t,−
√

3ω
[1]
1 (t)

)
, (t, 0) ,

(
t,
√

3ω
[1]
1 (t)

)
and the

positive weights 1
6 ,

2
3 ,

1
6 define a quadrature formula on Wiener space of degree

5, where

ω
[1]
1 : [0, 1] −→ R

t 7−→


1
2

(
4−
√

22
)
t, 0 ≤ t ≤ 1

3 ,
1
6

(
4−
√

22
)

+
(
−1 +

√
22
) (
t− 1

3

)
, 1

3 ≤ t ≤
2
3 ,

1
6

(
2 +
√

22
)

+ 1
2

(
4−
√

22
) (
t− 2

3

)
, 2

3 ≤ t ≤ 1.



Chapter 5

Applications of Kusuoka and
Lyons-Victoir Approximation
Schemes

As mentionned in Chapter 3, the higher-order scheme introduced by Kusuoka
greatly improves the speed and the accuracy of the numerical weak approxi-
mation of SDEs. In this Chapter, we present high-order schemes developed by
Ninomiya and Victoir, 2008 and Ninomiya and Ninomiya, 2009 . An intuitive
explanation of these schemes is as follows: Consider the semi-group of linear
operators Pt defined in (1.0.10) by

(Ptf) (x) = E [f (Xx
t )] , where t ∈ [0, T ] , f ∈ C∞b

(
RN
)

and

X (t, x) = Xt (x) = Xx
t = x+

d∑
j=0

∫ t

0
Vj (Xx

s ) ◦ dBj (s) . (5.0.1)

In order to compute E [f (Xx
T )], we want to construct a linear operator Qt

such that Qt approximates Pt in the sense that (Pt −Qt) f (x) = O
(
tm+1

)
for small t, this gives us an m-th order approximation of Pt. The key idea
here is to construct a Markov process

(
X̄t (x)

)
t∈[0,T ]

starting at x such that
Qtf (x) = E

(
f
(
X̄t (x)

))
and for any partition 0 = t0 < t1 < · · · < tn = T of

[0, T ],

QT f (x) = E
[
f
(
X̄sn ◦ · · · ◦ X̄s1 (x)

)]
where sk = tk − tk−1, for k = 1, . . . , n and X̄sk ◦ X̄sk−1

(x) = X̄sk

(
X̄sk−1

(x)
)
.

An algebraic structure of this idea is taken from Tanaka (2008) as follows:
Consider the solution u (t, x) to the heat equation{

∂u
∂t (t, x) = Lu (t, x)
u (0, x) = f (x)

, (5.0.2)

50
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where

Lf = V0f +
1

2

d∑
i=1

V 2
i f.

u (t, x) = E [f (Xx
t )] = Ptf (x) .

Briefly speaking, for small t, u (t, x) =
(
etLf

)
(x). Thus, the operator

Pt = etL =
m∑
j=0

tj

j!
Lj +O

(
tm+1

)
.

For L0f (x) = V0f (x) and Lif (x) = 1
2V

2
i f (x) for i = 1, . . . , d, we have

etLi =
m∑
j=0

tj

j!
Lji +O

(
tm+1

)
.

The operator Qt is then constructed as a combination of Li through

Qt =
k∑
j=1

ξje
t1,jL1,j · · · et`j ,jL`j ,j

such that

etL −
k∑
j=1

ξje
t1,jL1,j · · · et`j ,jL`j ,j = O

(
tm+1

)
(5.0.3)

where ti,j > 0, Li,j ∈ {L0, L1, . . . , Ld} and ξj are points in [0, 1] with
∑k

j=1 ξj =
1. We finally obtain

Ptf = etLf '
k∑
j=1

ξj e
t1,jL1,j · · · et`j ,jL`j ,jf

'
k∑
j=1

ξjE
[
f

(
X̄1

(
t1,j , X̄2

(
t1,j , · · · X̄`

(
t`j ,j , ·

)
· · ·
)))]

.

For examples, we have the following:

Example 5.0.4. • for d = 1, we have

etL = I + tL+
t2

2
L2 +O

(
t3
)

etL0etL1 =

(
I + tL0 +

t2

2
L2

0 +O
(
t3
))(

I + tL1 +
t2

2
L2

1 +O
(
t3
))

= I + tL+
t2

2

(
L2

0 + L2
1 + 2L0L1

)
+O

(
t3
)
.
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Then

etL − etL0etL1 = O
(
t2
)

etL − 1

2
etL0etL1 − 1

2
etL1etL0 = O

(
t3
)
.

Finally, one needs to obtain a stochastic representation for 1
2e
tL0etL1 +

1
2e
tL1etL0.

• For d = 2, we have

etL = I + tL+
t2

2
L2 +O

(
t3
)

e
t
2
L0etL1 =

(
I +

t

2
L0 +

t2

8
L2

0 +O
(
t3
))(

I + tL1 +
t2

2
L2

1 +O
(
t3
))

= I + t

(
1

2
L0 + L1

)
+
t2

2

(
1

4
L2

0 + L2
1 + L0L1

)
+O

(
t3
)

etL2e
t
2
L0 =

(
I + tL2 +

t2

2
L2

2 +O
(
t3
))(

I +
t

2
L0 +

t2

8
L2

0 +O
(
t3
))

= I + t

(
1

2
L0 + L2

)
+
t2

2

(
1

4
L2

0 + L2
2 + L2L0

)
+O

(
t3
)
.

Let A = e
t
2
L0etL1etL2e

t
2
L0. We obtain,

A = I+tL+
t2

2

(
L2

0 + L2
1 + L2

2 + L2L0 + 2L1L2 + L1L0 + L0L2 + L0L1

)
+O

(
t3
)
.

which implies that

etL − e
t
2
L0etL1etL2e

t
2
L0 = O

(
t2
)
, (5.0.4)

etL − 1

2
e
t
2
L0etL1etL2e

t
2
L0 − 1

2
e
t
2
L0etL2etL1e

t
2
L0 = O

(
t3
)

(5.0.5)

and one will now have to find a stochastic representation for 1
2e

t
2
L0etL1etL2e

t
2
L0+

1
2e

t
2
L0etL2etL1e

t
2
L0 in order to obtain a second-order approximation.

The Ninomiya-Victoir and Ninomiya-Ninomiya schemes can be viewed in
a non-trivial way as particular cases of Lyons-Victoir’s methodology and thus
of Kusuoka. The idea is to transform the problem of solving an SDE into a
problem of solving ODEs. The two schemes are quite similar but the algo-
rithms themselves differ significantly. This Chapter is organised as follows:
In Section 5.1, we develop the Ninomiya–Victoir scheme. The algorithm of
this approximation scheme is then applied to solve an option pricing problem
and then to solve an optimal portfolio strategies problem. Numerical simula-
tions are performed at the end of this section and results obtained using the
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new approximation scheme are compared with the traditional Euler-Maruyama
scheme.
The Ninomiya–Ninomiya approximation scheme is presented in Section 5.2.
The algorithm is utilized to solve a problem of pricing Asian options under the
Heston stochastic volatility model.

5.1 Ninomiya–Victoir Scheme

We consider the stochastic differential equation (5.0.1) . We want to compute
E (f (X (T, x))) where f is a given function and T > 0. The purpose of this
Section is to present the numerical scheme due to Ninomiya and Victoir, 2008.
The construction of the scheme is based on Theorem 5.1.1 .

5.1.1 Presentation of the New Algorithm

Theorem 5.1.1. Let (Λi, ζi)i∈{1,...,n} be n independent random variables, where
each Λi denotes a Bernoulli random variable and ζi a standard d-dimensional
normal random variable. Each Λi is independent of ζi, i ∈ {1, . . . , n}. Con-
sider the family

{
X̄(k)

}
k=0,...,n

of random variables defined as

X̄(0) = x,

X̄(k+1) = exp

(
T

2n
V0

)
exp

(√
T

n
ζ1
kV1

)
· · · exp

(√
T

n
ζdkVd

)
exp

(
T

2n
V0

)
X̄k

if Λk = +1,

and

X̄(k+1) = exp

(
T

2n
V0

)
exp

(√
T

n
ζdkVd

)
· · · exp

(√
T

n
ζ1
kV1

)
exp

(
T

2n
V0

)
X̄k

if Λk = −1 .

Then, for an arbitrary Lipschitz continuous function f ,∣∣E [f (X̄(n)

)]
− E [f (X (T, x))]

∣∣ ≤ cf
n2
, (5.1.1)

that is, the new algorithm is of order 2.

Considering the fact that for a smooth vector field V , exp (tV ) (x) is the solu-
tion at time t of the ODE

dY

dt
(t, x) = V (Y (t, x)) ,

Y (0, x) = x,
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at each stage k, 1 ≤ k ≤ n, one will have to solve d+ 2 ODEs in order to

compute exp
(
T
2nV0

)
exp

(√
T
n ζ

d
kVd

)
· · · exp

(√
T
n ζ

1
kV1

)
exp

(
T
2nV0

)
X̄k. First,

along the vector field V0 from t = 0 to t = T
2n with starting point X̄k, then

along Vd from t = 0 to t =
√

T
n ζ

d
k with starting point the solution we have

obtained from solving the previous ODE. We repeat similar operations d+2
times.

Remark 5.1.2. As mentioned by Ninomiya and Victoir, 2008 , if there are no
closed form solutions to these ODEs, one will need to use numerical methods
in order to approximate the solutions. these methods have to be of order O

(
s3
)

and O
(
s6
)
for exp (sV0) and exp (sVi), respectively.

Once the random variable X̄(n) is constructed using the algorithm presented
above, one can use Monte Carlo or Quasi-Monte Carlo methods in order to
approximate E

[
f
(
X̄(n)

)]
.

5.1.2 Implementation

We implement the Ninomiya-Victoir approximation scheme to two different
financial problems. First, to an option pricing problem where we consider
the pricing of an Asian call option (Ninomiya and Victoir, 2008). Then, to
an optimal portfolio strategies problem where we consider a Stock-Bond-Cash
allocation problem presented in Fukaya (2006).

5.1.2.1 Option Pricing

We consider the price of an Asian call option of European type. We assume
that the option is written on an asset whose price process follows the Heston
stochastic volatility model. More precisely, we have

X1 (t, x) = x1 +

∫ t

0
µX1 (s, x) ds+

∫ t

0
X1 (s, x)

√
X2 (s, x)dB1 (s) ,

X2 (t, x) = x2 +

∫ t

0
κ (θ −X2 (s, x)) ds

+

∫ t

0
σ
√
X2 (s, x)

(
ρdB1 (s) +

√
1− ρ2dB2 (s)

)
, (5.1.2)

where X1 describes the asset price movement and X2 is the diffusion process
for the volatility. Here x = (x1, x2) ∈

(
R∗+
)2 is the initial value for price and

volatility, respectively.
(
B1 (t) , B2 (t)

)
is a two-dimensional Brownian motion

with correlation ρ, (−1 < ρ < 1) and κ, θ and µ are some positive coefficients
such that

2κθ − σ2 > 0.
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This condition is to ensure the existence and uniqueness of a positive solu-
tion for Equation (5.1.2) . The pay-off of an Asian call option on the above-
mentioned asset at the maturity T with strike price K is max

(
X3(T,x)

T −K, 0
)

where (X3 (t, x))t is a new process defined by:

X3 (t, x) =

∫ t

0
X1 (s, x) ds.

Therefore, the price of the option is D×E
[
max

(
X3(T,x)

T −K, 0
)]

where D is
an appropriate discount factor.
We introduce the following notation in order to express the model in Itô form
and then transform it into Stratonovich form.

B0 (t) = t

X (t, x) = (X1 (t, x) , X2 (t, x) , X3 (t, x))′

=

 X1 (t, x)
X2 (t, x)
X3 (t, x)

 .

The Itô form of the model is then

X (t, x) = x+

2∑
i=0

∫ t

0
Ṽi (X (s, x)) dBi (s) , (5.1.3)

where x = (x1, x2, 0)′ and Ṽ0, Ṽ1, Ṽ2 : R3 → R3 are defined as follows:

Ṽ0 (y) = Ṽ0

(
(y1 , y2 , y3)′

)
= (µy1 , κ (θ − y2) , y1)′ (5.1.4)

Ṽ1 (y) = Ṽ1

(
(y1 , y2 , y3)′

)
=

(
y1
√
y2 , ρσ

√
y2 , 0

)′ (5.1.5)

Ṽ2 (y) = Ṽ2

(
(y1 , y2 , y3)′

)
=

(
0, β

√
1− ρ2√y2 , 0

)′
. (5.1.6)

The next step is to transform Equation (5.1.3) into Stratonovich form.

X (t, x) = x+
2∑
i=0

∫ t

0
Vi (X (s, x)) ◦ dBi (s) , (5.1.7)

where x is defined as previously. Using the formula equation (1.0.4) we have
that

V i
0 = Ṽ i

0 −
1

2

2∑
j=1

3∑
k=1

Ṽ k
j

∂Ṽ i
j

∂xk
,

V i
j = Ṽ i

j , j = 1, 2 .
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That is,

V 1
0 (y) = µy1 −

1

2

(
√
y2y1
√
y2 +

1

2

y1√
y2
ρσ
√
y2

)
= µy1 −

1

2

(
y1y2 +

1

2
ρσy1

)
= y1

(
µ− 1

2
y2 −

1

4
ρσ

)
V 2

0 (y) = κ (θ − y2)− 1

2

(
1

2

ρσ
√
y2
ρσ
√
y2 +

σ
√

1− ρ2

2
√
y2

σ
√

1− ρ2√y2

)

= κ (θ − y2)− 1

2

(
1

2
ρ2σ2 +

1

2
σ2
(
1− ρ2

))
= κ (θ − y2)− 1

4
σ2

V 3
0 (y) = y1 .

So

V0

(
(y1 , y2 , y3)′

)
=

(
y1

(
µ− 1

2
y2 −

1

4
ρσ

)
, κ (θ − y2)− 1

4
σ2, y1

)′
,

V1

(
(y1 , y2 , y3)′

)
=

(
y1
√
y2 , ρσ

√
y2 , 0

)′
,

V2

(
(y1 , y2 , y3)′

)
=

(
0, σ

√
1− ρ2√y2 , 0

)′
.

As we have equations in the Stratonovich form mentioned in Equation (5.1.7),
we can now introduce the implementation of the algorithm.

Computation of exp(sV )

For exp (sV1) and exp (sV2), the ODEs obtained can be solved directly, so we
avoid problems caused by numerical approximation procedures. This is not
the case for exp (sV0) where we are obliged to use an approximation method.

1. exp (sV1)

We know that exp (sV1) (y1, y2, y3) is the solution at time s of the ODE

dY

dt
(t) = V1 (Y (t)) , (5.1.8a)

Y (0) = (y1, y2, y3) , (5.1.8b)

which is equivalent to the following system:
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dY1

dt
(t) = Y1 (t)

√
Y2 (t), (5.1.9)

dY2

dt
(t) = ρσ

√
Y2 (t), (5.1.10)

dY3

dt
(t) = 0. (5.1.11)

Considering Equation (5.1.11), we have that Y3 (t) = c1, where c1 is a
constant. And by taking into account the initial condition we obtain
c1 = y3, that is,

Y3 (t) = y3.

Solving Equation (5.1.10), we obtain

Y2 (t) =

(
max

(
0,

1

2
ρσt+ c2

))2

=

(
1

2
ρσt+ c2

)2

for ρ ≥ 0,

we then use the initial condition Y2 (0) = y2 > 0 and get c2 =
√
y2. This

gives

Y2 (s) =

(
1

2
ρσs+

√
y2

)2

where we consider ρ ≥ 0 .

The solution to Equation (5.1.9) is given by

Y1 (s) = y1 exp
(
s
√
y2 +

ρσ

4
s2
)
.

We conclude that

exp (sV1)
(
(y1, y2, y3)′

)
=

(
y1 exp

(
s
√
y2 +

ρσ

4
s2
)
,

(
1

2
ρσs+

√
y2

)2

, y3

)′
.

(5.1.12)

2. exp (sV2)

exp (sV2) is computed in the same way as previously and we obtain

exp (sV2)
(
(y1, y2, y3)′

)
=

y1,

(
sσ
√

1− ρ2

2
+
√
y2

)2

, y3

′ .
(5.1.13)

3. exp (sV0)

For exp (sV0) there is no closed solution, we use an approximation in
order to compute it.
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We have V0

(
(y1, y2, y3)′

)
=
(
y1

(
µ− 1

2y2 − 1
4ρσ

)
, κ (θ − y2)− 1

4σ
2, y1

)′.
Let us consider the following system of ODEs:

dY1

dt
(t) = Y1 (t)

(
µ− Y2 (t)

2
− ρσ

2

)
, (5.1.14)

dY2

dt
(t) = κ (θ − Y2 (t))− σ2

4
, (5.1.15)

dY3

dt
(t) = Y1 (t) . (5.1.16)

We first solve the first-order ordinary differential (5.1.15) and obtain

Y2 (t) = (y2 − J) exp (−κt) + J where J = θ − σ2

4κ
.

We now consider Equation (5.1.14),

dY1

dt
= Y1

(
µ− Y2

2
− ρσ

4

)
= Y1

(
µ− J

2
− 1

2
(y2 − J) exp (−κt)− ρσ

4

)
;

when solving, we obtain

Y1 (t) = c. exp

[(
µ− J

2
− ρσ

4

)
t+

1

2κ
(y2 − J) exp (−κt)

]
,

where c is a constant. Taking into account the initial condition y (0) = y1,
we obtain

c = y1 exp

(
− 1

2κ
(y2 − J)

)
,

that is,

Y1 (t) = y1. exp

[(
µ− J

2
− ρσ

4

)
t+

1

2κ
(y2 − J) (exp (−κt)− 1)

]
.

(5.1.17)
In order to solve Equation (5.1.16) , we expand exp (−κt) in (5.1.17) and
we obtain

Y1 (t) = y1. exp

[(
µ− J

2
− ρσ

4

)
t+

1

2κ
(y2 − J)

(
1− κt+O(t2)− 1

)]
,

= y1. exp
[(
µ− y2

2
− ρσ

4

)
t
]

+O(t2),

which implies that Equation (5.1.16) is

dY3

dt
= y1e

At +O(t2)
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where A = µ− y2
2 −

ρσ
4 . Therefore

Y3 (t) = y3 +
y1

A

(
eAt − 1

)
+O(t3).

We conclude that

exp (sV0)
(
(y1, y2, y3)′

)
= (g1 (s) , g2 (s) , g3 (s))′ , (5.1.18)

where

g1 (s) = y1. exp

[(
µ− J

2
− ρσ

4

)
s+

1

2κ
(y2 − J)

(
e−κs − 1

)]
,(5.1.19)

g2 (s) = (y2 − J) e−κs + J, (5.1.20)

g3 (s) = y3 +
y1

A

(
eAs − 1

)
+O(s3), (5.1.21)

with

J = θ − σ2

4κ
, and A = µ− y2

2
− ρσ

4
. (5.1.22)

The new random variable X̄(n) is then constructed as follows:

X̄(0) = x,

X̄(k+1) =

exp (s0V0) exp
(
sk
1
V1

)
exp

(
sk
2
V2

)
exp (s0V0) X̄(k) if Λk = +1,

exp (s0V0) exp
(
sk
2
V2

)
exp

(
sk
1
V1

)
exp (s0V0) X̄(k) if Λk = −1 .

where exp (siVi)x is computed as previously, s0 = T
2n , sk

1
=
√

T
n ζ

1
k and sk

2
=√

T
n ζ

2
k with

(
ζij

)
i,j

being independent standard normal random variables. We

can now use Monte Carlo or Quasi-Monte Carlo method in order to compute
E
[
f
(
X̄(n) (T, x)

)]
. We compare the results of the above implementation with

the Classical Euler-Maruyama algorithm. We consider as control value,

E [max (X3 (T, x) /T −K , 0)] = 0.0604194813

obtained by the new algorithm with extrapolation, number of discretization
points n = 150 and number of sample points for Monte Carlo M = 4.0× 104 .
We set T = 1, K = 1.05, µ = 0.05, κ = 2.0, σ = 0.1, θ = 0.09, ρ = 0 and
x = (1.0, 0.09, 0).
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Figure 5.1: Comparison of the Ninomiya-Victoir and Euler schemes.

Figure 5.1 illustrates the relation between the error due to the two approx-
imations schemes and the numbers of points needed for the discretization. We
observe the following:

To achieve an order 4 accuracy, we only need n = 13 when using the new
algorithm (Ninomiya-Victoir), whereas in the Euler-Maruyama scheme
n has to be greater than 2000.

We also obtain that the new algorithm (computation time = 1.8 ×102

seconds) is about 60 times faster than the traditional Euler method (com-
putation time = 1.1 ×104 seconds).
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Figure 5.2: Comparison of the Ninomiya-Victoir and Euler schemes with extrapo-
lation.

In order to reduce the number of points needed for the simulations, we
consider the two algorithms with Romberg extrapolation.

The result is presented in Figure 5.2, from which we observe that the num-
ber of discretization points needed to achieve an order 4 accuracy is 7 in the
case of the Ninomiya-Victoir algorithm whereas we need about 32 points for the
Euler algorithm. We also obtained that the Ninomiya-Victoir algorithm with-
out extrapolation is still faster and needs less points than the Euler-Maruyama
method with extrapolation. A summary of these observations is given in Table
5.1 .

Table 5.1: Results of simulations (to achieve order 4 accuracy.)

Algorithm Number of points Computation time (sec)
Euler 2000 1.1 ×104

Ninomiya-Victoir 13 1.8 ×102

Euler + Extrapolation 32 2.56 ×103

Nino-Victoir + Extra 7 81.18
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5.1.2.2 Optimal Portfolio Strategies

As for many financial problems, it is difficult to obtain an analytical solution
and one is then obliged to use numerical methods. In this section, we consider
a Stock-Bond-Cash allocation problem introduced by Fukaya (2006) where
he constructed an optimal solution to this problem as an expected value of
some Markovian-types diffusion processes. Let’s denote by ϕ̂ (t) the solution
at time t to this problem. Based on ideas presented in Fukaya (2005), we
derive a general expression for ϕ̂ (0) and then implement the Ninomiya-Victoir
algorithm for its computation.

1. Settings and Derivation of ϕ̂ (0)

Without going into detail around the mathematical background of the deriva-
tion of ϕ̂ (0), we can outline the general settings and results as follows:
Consider a market modelled by an Ornstein-Uhlenbeck process
{S (t)}0≤t≤T satisfying

dS (t, x0) = −aS (t, x0) dt+ bdB1 (t) ,

that is S (t, x0) = x0e
−at + be−at

∫ t
0 e

asdB1 (s) , where a > 0, b 6= 0, B1 (t) is
a one-dimensional Brownian motion and x0 is the initial value of the process.
The utility function is considered to be of power type (γ, β, 0, 0) and the risk-
free rate is a function of time and is given at time t by

r (t, x0) = r (S (t, x0)) = c
(

log
(

1 + eS(t,x0)
))α

(5.1.23)

for some α ∈ (0, 1) and c > 0.
We introduce the following processes:

• The risk-free asset also called money account S0 (t, x0) is defined by

S0 (t, x0) = exp

{∫ t

0
r (s, x0) ds

}
. (5.1.24)

• The stock price process S1 (t, x0) satisfying

S1 (t, x0) = s1 exp

{(
µ− 1

2

(
ρ2 + σ2

))
t+ ρB1 (t) + σB2 (t)

}
,

(5.1.25)
where σ > 0 , ρ 6= 0 and B2 (t) is a one-dimensional Brownian motion
independent of B1 (t).

• A zero bond process S2 (t, x0) modelled by

S2 (t, x0) = EQ
[
exp

{
−
∫ T

t
r (s, x0) ds

}
|Ft
]
, (5.1.26)
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where Q is the risk neutral probability measure considered to be defined
by the market price of risk processes (α1 (t, x0) , α2 (t, x0)) given here by

α1 (t, x0) = α1 = constant; α2 (t, x0) = c1 − c2r (t, x0) ,

where c1 = (µ− ρα1) /σ and c2 = 1/σ.

• The state price density process is

Π (t, x) = exp

{
−
∫ t

0
r (s, x) ds−

∫ t

0
α1dB1 (s)−

∫ t

0
(c1 − c2 r (s, x)) dB2 (s)

−1

2

∫ t

0

(
α2

1
+ (c1 − c2 r (s, x))2

)
ds

}
. (5.1.27)

The previous equation is equivalent to

dΠ (t, x) = Π (t, x)
(
−r (t, x) dt− α1dB1 (t)− (c1 − c2r (t, x)) dB2 (t)

)
.

We also introduce the process

π (t, x) = −
∫ t

0

{
c1c2 − 1− c2

2
r (s, x)

}
r′ (s, x) e−asds+c2

∫ t

0
r′ (s, x) e−asdB2 (s) .

(5.1.28)
The volatility matrix of S1 (t, x) and S2 (t, x) at time 0 is given by

$ (0, x) =

(
ρ σ

σ2 (x) 0

)
,

where
σ2 (x) =

b

S2 (0, x)
· ∂S2

∂x
(0, x) , (5.1.29)

with

S2 (0, x) = E [Π (T, x)] and
∂S2

∂x
(0, x) = E [π (T, x) Π (T, x)] .

Assuming that the investor has a utility function of power type (γ, β, 0, 0)
where γ ∈ (0, 1) and β > 0, we introduce the following:

Θ (t, x) = exp

{
β1

∫ t

0
r (s, x) ds

}
(5.1.30)

∆ (t, x) = exp

{
β2

∫ t

0
r (s, x) ds

}
× exp

{
β3

((
µ− 1

2

(
ρ2 + σ2

))
t

+ρB1 (t) + σB2 (t)

)}
(5.1.31)

η (t, x) = β1

∫ t

0
r′ (s, x) e−asds (5.1.32)

δ (t, x) = β2

∫ t

0
r′ (s, x) e−asds. (5.1.33)
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Having defined all the above processes, we have the following result for the
optimal portfolio strategy at time t = 0 taken from Fukaya (2005):

ϕ̂ (0) =

(
ρs
ρ
b

)
=

1

γ


1
σ (c1 − c2r (0, x0))− β3A2(0)

β1/γA1(0)+A2(0)

α1

σ2(x0)
− ρ(c1−c2r(0,x0))

σσ2(x0)
− b

σ2(x0)
D(0)

β1/γA1(0)+A2(0)

 ,

(5.1.34)
where ρs is the optimal portfolio strategy on the stock, ρ

b
is the optimal

portfolio strategy on the bond and

A1 (0) = E
[∫ T0

0
Π (s, x0)1−1/γ Θ (s, x0)−1/γ ds

]
(5.1.35)

A2 (0) = E
[
Π (T0, x0)1−1/γ ∆ (T0, x0)−1/γ

]
(5.1.36)

D (0) = (1− γ)E
[
β1/γ

∫ T0

0
π (s, x0) Π (s, x0)1−1/γ Θ (s, x0)−1/γ ds

+π (T0, x0) Π (T0, x0)1−1/γ ∆ (T0, x0)−1/γ
]

+E
[
β1/γ

∫ T0

0
η (s, x0) Π (s, x0)1−1/γ Θ (s, x0)−1/γ ds

+δ (T0, x0) Π (T0, x0)1−1/γ ∆ (T0, x0)−1/γ
]

(5.1.37)

and σ2 (x) is defined as in (5.1.29).

2. Implementation of the Ninomiya-Victoir Algorithm

We now apply the Ninomiya-Victoir scheme for the numerical computation of
ϕ̂ (0). Numerical results for the stock are presented. We first set up a system
SDEs derived from the expression of ϕ̂ (0).
We consider

X (t, x0) =

(
S (t, x0) , Π (t, x0) , π (t, x0) , ∆ (t, x0) , δ (t, x0) ,

Θ (t, x0) , η (t, x0) , G (t, x0) , H (t, x0) , I (t, x0) , e−at
)′

where

G (t, x0) =

∫ t

0
Π (s, x0)1−1/γ Θ (s, x0)−1/γ ds

is the term appearing in (5.1.35),

H (t, x0) =

∫ t

0
π (s, x0) Π (s, x0)1−1/γ Θ (s, x0)−1/γ ds and

I (t, x0) =

∫ t

0
η (s, x0) Π (s, x0)1−1/γ Θ (s, x0)−1/γ ds are the terms
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appearing in (5.1.37). The other processes are defined as previously.

We then obtain a system of stochastic differential equations which in Itô
form is written as

dX (t, x) =

2∑
j=0

V̄j (X (t, x)) dBj (t)

where dB0 (t) = dt and the vectors field V̄0, V̄1, V̄2 are defined from R11 into
R11 as follows:

V̄ 1
0 (X) = −aX1, V̄ 2

0 (X) = −r (X1)X2,

V̄ 3
0 (X) = −

{
c1c2 − 1− c2

2
r (X1)

}
r′ (X1)X11,

V̄ 4
0 (X) =

(
β3µ+ β2r (X1) +

1

2
β3

(
ρ2 + σ2

)
(β3 − 1)

)
X4,

V̄ 5
0 (X) = β2X11r

′ (X1) , V̄ 6
0 (X) = β1X6r (X1) , V̄ 7

0 (X) = β1r
′ (X1)X11,

V̄ 8
0 (X) = X

1−1/γ
2 X

−1/γ
6 , V̄ 9

0 (X) = X3X
1−1/γ
2 X

−1/γ
6 ,

V̄ 10
0 (X) = X7X

1−1/γ
2 X

−1/γ
6 , V̄ 11

0 (X) = −aX11

V̄ 1
1 (X) = b, V̄ 2

1 (X) = −α1X2, V̄ 3
1 (X) = 0,

V̄ 4
1 (X) = ρβ3X4, V̄ 5

1 (X) = · · · = V̄ 11
1 (X) = 0

V̄ 1
2 (X) = 0, V̄ 2

2 (X) = − (c1 − c2r (X1))X2, V̄ 3
2 (X) = c2r

′ (X1)X11,

V̄ 4
2 (X) = β3σX4, V̄ 5

2 (X) = · · · = V̄ 11
2 (X) = 0.

When transforming the system into Stratonovich form, we have

dX (t, x) =
2∑
j=0

Vj (X (t, x)) ◦ dBj (t) (5.1.38)

where V1 = V̄1, V2 = V̄2 and V0 is computed as in the previous section and is
given by

V 1
0 (X) = −aX1, V 2

0 (X) =
(
−r (X1)− 1

2α
2
1
− 1

2 (c1 − c2r (X1))2
)
X2,

V 3
0 (X) = −

{
c1c2 − 1− c2

2
r (X1)

}
r′ (X1)X11,

V 4
0 (X) =

(
β3µ+ β2r (X1)− 1

2β3ρ
2 − 1

2β3σ
2
)
X4,

V 5
0 (X) = β2r

′ (X1)X11, V 6
0 (X) = β1r (X1)X6, V 7

0 (X) = β1r
′ (X1)X11,

V 8
0 (X) = X

1−1/γ
2 X

−1/γ
6 , V 9

0 (X) = X3X
1−1/γ
2 X

−1/γ
6 ,

V 10
0 (X) = X7X

1−1/γ
2 X

−1/γ
6 , V 11

0 (X) = −aX11.
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The next step is to compute the solution of our system of stochastic differential
equations (5.1.38) using the Ninomiya-Victoir algorithm. In the following, we
compute exp (sV ).

• exp (sV1) (x)

We know from the previous section that exp (sV1) (x) is the solution at
time s of the ODE

dY

dt
(t) = V1 (Y (t))

Y (0) = x.

It is equivalent to the following system of equations:

dY1

dt
(t) = b, (5.1.39)

dY2

dt
(t) = −α1Y2 (t) , (5.1.40)

dY3

dt
(t) = 0, (5.1.41)

dY4

dt
(t) = ρY4 (t)β3 , (5.1.42)

dY5

dt
(t) = · · · = dY11

dt
(t) = 0. (5.1.43)

The solutions to these equations are given, for i ∈ {3, 5, 6, 7, 8, 9, 10, 11},
by Yi (t) = xi .
Considering the Equation (5.1.39), we have

Y1 (t) = bt+ c.

Taking the initial condition into account, we obtain c = x1 , so

Y1 (t) = bt+ x1 .

We also have the following result for Equation (5.1.40) and (5.1.42).

Y2 (t) = x2e
−α1 t and Y4 (t) = x4e

ρβ3 t.

The result can be summarized as

exp (sV1) (x) =



1 0
e−α1s

1
eρβ3s

1
. . .

0 1


x+


bs
0
...
0

 . (5.1.44)
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• exp (sV2) (x)

Performing a similar calculation as for exp (sV1) (x), we obtain

exp (sV2) (x) =



1 0

e−(c1−c2r(x1))s

1
eσβ3s

1
. . .

0 1


x+

+



0
0

c2r
′ (x1)x11s

0
...
0


. (5.1.45)

One can easily check that

exp (sV1) ◦ exp (sV2) = exp (sV2) exp (sV1) .

Therefore, Theorem 5.1.1 can be stated as follows:

Proposition 5.1.3. Let (ζi)i∈{1,...,n} be n independent standard 2-dimensional
normal random variables. The family of random variable

{
X̄(k)

}
k=0,...,n

is defined as follows:

X̄(0) = x,

X̄(k+1) = exp

(
T

2n
V0

)
exp

(√
T

n
ζ1
kV1

)
exp

(√
T

n
ζ2
kV2

)
exp

(
T

2n
V0

)
X̄(k) .

Then, we have an order 2 approximation.

• exp (sV0) (x)

Considering the ODE

dY

dt
(t) = V0 (Y (t)) (5.1.46)

Y (0) = x,

we use the 2-stage 2-order Runge-Kutta method taken from Butcher
(2008) in order to compute exp (sV0) (x) which is the solution at time
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s of the ODEs (5.1.46). For small s, the 2-stage 2-order Runge-Kutta
method is written as

exp (sV0) (x) = Y (s) ' x+
1

2
(k1 + k2) , where k1 = sV0 (x) and

k2 = sV0 (x+ k1), that is

exp (sV0) (x) ' x+
1

2
(sV0 (x) + sV0 (x+ sV0 (x))) .

We have now succeeded to compute exp (sVi)i=0,1,2. Considering the expres-
sion ofX (t, x0), we have the following expressions for S2 (0, x0) ; ∂S

2

∂x (0, x0) ;A1 (0) ;A2 (0)
and D (0):

S2 (0, x0) = E [X2 (T, x)] ,

∂S2

∂x
(0, x0) = E [X3 (T, x)X2 (T, x)] ,

A1 (0) = E [X8 (T0, x)] ,

A2 (0) = E
[
X2 (T0, x)1−1/γ X4 (T0, x)−1/γ

]
,

D (0) = (1− γ)
{
β1/γE [X9 (T0, x)]

+E
[
X3 (T0, x)X2 (T0, x)1−1/γ X4 (T0, x)−1/γ

]}
+β1/γE [X10 (T0, x)] + E

[
X5 (T0, x)X2 (T0, x)1−1/γ X4 (T0, x)−1/γ

]
.

We now introduce the function φ defined from R11 → R5 by φ (x) = (φ1 (x) , · · · , φ5 (x))
where

φ1 (x) = x2 ; φ2 (x) = x3x2 ; φ3 (x) = x8 ; φ4 (x) = x1−1/γ
2

x−1/γ
4

;

φ5 (x) = (1− γ)
{
β1/γx9 + x3x

1−1/γ
2

x−1/γ
4

}
+
{
β1/γx10 + x5x

1−1/γ
2

x−1/γ
4

}
.

We can now perform the computation of φ
(
X̄(n)

)
where X̄(n) is constructed

as in Proposition 5.1.3 and then use Monte Carlo methods to obtain the final
result.

Simulation Results

For the numerical simulation, we consider the fixed parameters given in Table
5.2. In this experiment, we consider as control value ρs = 1.20798645 for the
stock which is obtained by the Ninomiya-Victoir algorithm with extrapolation,
n = 1500 discretization points and M = 2× 104.
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Table 5.2: Fixed parameters

x0 a b α c µ ρ σ

1.0 1.0 2.0 0.9 0.01 0.08 -0.14 0.20
T T0 α1 γ β β1 β2 β3

2.0 1.0 -0.165 0.9 2.0 0.1 0.05 0.05

Figure 5.3: Error coming from the discretization: Stock.

As in the case of an option pricing problem, Figure 5.3 shows the relation
between the number of partitions and the errors of the methods. We observe
that the Ninomiya-Victoir method requires n = 10 and n = 24 when consid-
ered with and without extrapolation, respectively, while the Euler-Maruyama
scheme with extrapolation needs n = 14 and the simple Euler-Maruyama
method requires about n = 220 discretization points. A summary of the com-
putation time to achieve order 6 accuracy is given in Table 5.3 . From the
table, we observe that the Ninomiya-Victoir method as in the previous exam-
ple is much faster than the Euler-Maruyama method. However, notice that
in this example, some Vj are not elements of C∞b

(
RN
)
. Therefore this prob-

lem does not satisfy conditions of the Ninomiya-Victoir approximation scheme
but this implementation shows that there is a great need of extension of the
Ninomiya-Victoir approximation scheme under a much weaker hypothesis on
the vector fields Vj .
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Table 5.3: Results of simulations (to achieve order 6 accuracy.)

Algorithm Number of points Computation time (sec)
Euler 220 1.1 ×104

Ninomiya-Victoir 24 8.12 ×102

Euler + Extrapolation 14 7.56 ×103

Nino-Victoir + Extra 10 5.45 ×102

5.2 Ninomiya–Ninomiya Scheme

In this last Section, we present another new approximation scheme which is
the algorithm constructed by Ninomiya and Ninomiya, 2009. An intuitive
explanation of the scheme is as follows: We construct an ODE-valued random
variable whose average approximates the solution of a given SDE. From this
new random variable, an ODE is then drawn and the conventional Runge-
Kutta method is applied in order to approximate the ODE. We illustrate this
approximation scheme by applying the algorithm to the problem of pricing the
Asian option presented in Subsection 5.1.2.1.

5.2.1 Notations

Let A be the set of all multi-indices. We define the R-algebra of formal series
and the free R−algebra with basis A by R 〈〈A〉〉 :=

{
X =

∑
α∈A xαα|aα ∈ R

}
and R 〈A〉 :=

{
X =

∑
α∈A xαα ∈ R 〈〈A〉〉 |∃k ∈ N such that aα = 0 if |α| ≥ k

}
,

respectively. Then, R 〈A〉 is a sub-R-algebra of R 〈〈A〉〉. Let R 〈A〉m =
{X ∈ R 〈A〉 |xα = 0, if ‖α‖ 6= m}.
For X,Y ∈ R 〈〈A〉〉, we define the algebra structure as

Z = X.Y =

(∑
α∈A

xαα

)∑
β∈A

yββ

 =
∑
γ∈A

zγγ,

where
zγ =

∑
γ=αβ
γ∈A

xαyβ ,

and the Lie bracket by [X,Y ] = XY −XY . For all X ∈ R 〈〈A〉〉, set

X|k :=
∑
|α|=k

xαα

and

JA :=

{
K ⊂ R 〈A〉 |A ⊂ K and [X,Y ] ∈ K, for all X,Y ∈ K

}
.



CHAPTER 5. APPLICATIONS OF KUSUOKA AND LYONS-VICTOIR
APPROXIMATION SCHEMES 71

We define L (A) :=
⋂
K∈JA K as the set of Lie polynomials in R 〈A〉 and

L ((A)) :=

{
X ∈ R 〈〈A〉〉 such that X|k ∈ L (A) , ∀k ∈ N

}
as the set of Lie series.
We introduce the following definition:

Definition 5.2.1. • For m ∈ N, jm is the map defined by

jm

(∑
α∈A

xαα

)
=

∑
‖α‖≤m

xαα .

• Let’s denote by AV the R-algebra consisting of smooth differential op-
erators over RN . We define the homomorphism φ from R 〈A〉 to AV

as

φ (X) = Id, for X = ∅
φ (X) = Vi1 · · ·Vik for X = α = (αi1 , αi2 , · · · , αik)

and
φ (X) =

∑
α∈A

xαφ (α) for X =
∑
α∈A

xαα .

• For s ∈ R∗+, we define the rescaling operator ψs : R 〈〈A〉〉 → R 〈〈A〉〉 as

ψs

( ∞∑
m=0

Xm

)
=

∞∑
m=0

s
m
2 Xm ,

where Xm ∈ R 〈A〉m .

We illustrate the use of the above defined operators in the following exam-
ple:

Example 5.2.2. Consider the computation of φ
(
ψs
(
α0 + 1

2α1 + 1
3α2

))
.

According to the definition of ψs ,

ψs

(
α0 +

1

2
α1 +

1

3
α2

)
= sα0 +

1

2

√
sα1 +

1

3

√
sα2 ,

so
φ

(
ψs

(
α0 +

1

2
α1 +

1

3
α2

))
= sV0 +

1

2

√
sV1 +

1

3

√
sV2 .
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For a smooth vector field V we define the following norms:

‖V ‖ = sup
{
|V (x) |;x ∈ RN

}
,

‖V (n)‖ = sup
{
|V (n)

(x) (a1, a2, . . . , an) |;x ∈ RN and |ai| = 1, for i = 1, . . . , n
}
,

‖V ‖cn =
n∑
i=0

‖V (i)‖,

where V (n)
(x) (a1, a2, . . . , an) =

∑N
i=1

∑N
j1=1 · · ·

∑N
jn=1

∂nVi
∂xj1 ···∂xjn

(x) aj11 · · · a
jn
n ei,

with each ei being an N -dimensional unit vector, and ajk is the jth component
of ak ∈ RN .
Based on these norms, we introduce the following definition.

Definition 5.2.3. An application g from C∞b
(
RN ,RN

)
to the set of all func-

tions from RN to RN is called an integration scheme of order m if the following
condition is satisfied: There exists a positive constant cm such that

supx∈RN |g (V ) (x)− exp (V ) (x) | ≤ cm‖V ‖m+1
cm+1 ,

for all V ∈ C∞b
(
RN ,RN

)
. We denote by IS (m) the set of all integration

schemes of order m.

g (V ) (x) defined above can be viewed as the approximation of exp (V ) (x). For
V ∈ C∞b

(
RN ,RN

)
, exp (tV ) (x) is the solution at time t of the ODE

dY

dt
(t, x) = V (Y (t, x)) , (5.2.1)

Y (0, x) = x.

The construction of an integration scheme of order m is then equivalent to
finding an mth order solution at time 1 to the ODE (5.2.1).

5.2.2 Result of the Ninomiya-Ninomiya Scheme

Before we state the results of the Ninomiya-Ninomiya scheme, we introduce
the definition of the Hausdorff product.

Definition 5.2.4. Let X1, X2 ∈ L ((A)), we define the Hausdorff product of
X1, X2 as follows:

X1 àX2 := log (exp (X1) exp (X2)) ,

more generally, for X1, . . . , Xn ∈ L ((A)),

X1 àX2 à · · · àXn = log (exp (X1) · · · exp (Xn)) .
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The results of the Ninomiya-Ninomiya scheme are given by

Theorem 5.2.5. Let m ≥ 1 and n ≥ 2. For i = 1, . . . , d, and j = 1, . . . , n,
let θij be R-valued Gaussian random variables and for j, j′ = 1, . . . , n, let γj
and ζjj′ be real numbers such that

∑n
j=1 γj = 1 , E

[
θij

]
= 0 , and E

[
θijθ

i′
j′

]
=

ζjj′δii′ for i, i′ = 1, . . . , d. We set θ0
j = γj . For all family of random variables

Z1, . . . , Zn defined by

Zj = γjα0 +
d∑
i=1

θijαi for j = 1, . . . , n (5.2.2)

and such that

E [jm (exp (Z1) · · · exp (Zn))] = jm

(
exp

(
α0 +

1

2

d∑
i=1

α2
i

))
. (5.2.3)

We have that for p ∈ [1,∞) and arbitrary g1, . . . , gn ∈ IS (m) there exists a
positive constant Cm,n depending on m and n such that

‖supx∈RN |g1 (φ (ψs (Z1))) ◦ · · · ◦ gn (φ (ψs (Zn))) (x)

− exp (φ (ψs (jm (Zn à · · · àZ1)))) (x) ‖Lp ≤ Cm,Ms(m+1)/2 .

Here, s ∈ (0, 1], and for any functions f and g, f ◦ g (x) denotes f (g (x)) .

Remark 5.2.6. It is proved in Ninomiya and Ninomiya, 2009 that for any
m ≥ 2 there exists a set of random variable Z1, . . . , Zn that satisfies Equation
(5.2.2) and (5.2.3) . For example, when m = 5 and n = 2, we can construct
(Zj)j=1,2 by taking

γ1 =
∓
√

2 (2a− 1)

2
, γ2 = 1±

√
2 (2a− 1)

2
, ζ11 = a

ζ22 = 1 + a±
√

2 (2a− 1), ζ12 = −a∓
√

2 (2a− 1)

2

for some a ≥ 1
2 .

The next step of the algorithm is to construct the integration schemes
g1, . . . , gn. Let us consider the following ODE:

dY

dt
(t, Y0) = V (Y (t, Y0)) , Y (0, Y0) = Y0, (5.2.4)

where V ∈ C∞b
(
RN ,RN

)
and Y0 ∈ RN . For a fixed M, r ∈ N∗, an rth order

approximation of the solution of (5.2.4) is given by the M -stage rth order
Runge-Kutta method as

Y (Y0;V, h) = Y0 + h
M∑
i=1

biV (Yi (V, h)) (5.2.5)
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where Yi (V, h) is defined inductively by

Y1 (V, h) = Y0; Yi (V, h) = Y0 + h
i−1∑
j=1

aijV (Yj (V, h)) .

h is a small positive real number and (aij , bi)i,j=1,...,M satisfy the rth order
conditions defined in Section 4 of Ninomiya and Ninomiya, 2009 and we refer
the reader to Butcher (2008) for their explicit constructions.

Proposition 5.2.7. Let g (V ) (Y0) = Y (Y0;V, 1) be the result of the Runge-
Kutta method (5.2.5) with h = 1. Then g belongs to IS (r).

The proof of the above Proposition can be found in Ninomiya and Ni-
nomiya, 2009 . Once these integration schemes have been constructed, one can
now use the Monte Carlo or Quasi-Monte Carlo method in order to perform
final computation. The order of this new approximation scheme is then given
by the following Corollary (see Ninomiya and Ninomiya, 2009 for more details):

Corollary 5.2.8. For j = 1, . . . , n, consider Zj be L ((A))-valued random
variables constructed as in Theorem 5.2.5. Let us define the linear operator
Q(s) for s ∈ (0, 1] as(

Q(s)f
)

(x) = E
[
f
(
g(s) (Z1) ◦ · · · ◦ g(s) (Zn) (x)

)]
, (5.2.6)

where f ∈ C∞b
(
RN ,R

)
, and g(s) (Zi) = g (φ (ψs (Zi))) for g ∈ IS (m), and

φ, ψs defined as in Definition 5.2.1. Then

‖Psf −Q(s)f‖∞ ≤ cs(m+1)/2‖grad (f) ‖∞ (5.2.7)

where c is a positive constant.

Remark 5.2.9. It is shown in Kusuoka, 2009 that

1. For a Lipschitz continuous function f , the inequality (5.2.7) still holds.

2. For the operator Q(s) defined in the above corollary, there exists a con-
stant c such that

(Psf) (x)−
(
Q(s)f

)
(x) = cs(m+1)/2 +O

(
s(m+3)/2

)
holds. This implies that the Romberg extrapolation can be applied to the
Ninomiya-Ninomiya algorithm.

Following Corollary 5.2.8, we have the following theorem which presents
the main result the Ninomiya-Ninomiya approximation scheme.
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Theorem 5.2.10. Let n ∈ N∗ be given and fixed and consider 0 = t0 < · · · <
tn = T a partition of [0, T ] and let sk = tk − tk−1, k = 1, . . . , n.
Then

‖PT f −Q(sn)Q(sn−1) · · ·Q(s1)f‖∞ ≤
CT

n(m−1)/2
‖f‖∞,

where CT is a positive constant, each Q(si)f is defined as in Equation (5.2.6)
with g ∈ IS (m).

5.2.3 Application

In this Subsection, we illustrate the implementation of the algorithm proposed
in the previous Section. We apply the Ninomiya-Ninomiya weak approxima-
tion scheme to the pricing of the Asian call option presented in Subsection
5.1.2.1 . Following Equation (5.1.7), the SDE we consider here is given in
Stratonovich form as

X (t, x) = x+

2∑
i=0

∫ t

0
Vi (X (s, x)) ◦ dBi (s) , (5.2.8)

with

V0 (X) =

(
X1

(
µ− 1

2
X2 −

1

4
ρσ

)
, κ (θ −X2)− 1

4
σ2, X1

)′
,

V1 (X) =
(
X1

√
X2, ρσ

√
X2, 0

)′
,

V2 (X) =
(

0, σ
√

1− ρ2
√
X2, 0

)′
,

where

X = (X1, X2, X3)′ =

 X1

X2

X3

 and x = (x1, x2, x3)′ .

From Remark 5.2.6 and taking a = 3
4 , in order to implement the algorithm,

we choose the following quantities:

γ1 =
1

2
, γ2 =

1

2
, ζ11 =

3

4
, ζ12 = −1

4
, and ζ22 =

11

4
.

We construct the family
(
θij

)
i,j=1,2

of R-valued Gaussian random variables

which verifies
E
[
θij
]

= 0, and E
[
θijθ

i′
j′

]
= ζjj′δii′ (5.2.9)

as follows: Let η1 , η2 , η3 , η4 be four independent standard normal random
variables and set

θ1
1 =

√
3

2
η1, θ

1
2 = −

√
3

6
η1 +

2
√

6

3
η2 , θ

2
1 = −

√
3

2
η3 , θ

2
2 =

√
3

6
η3 −

2
√

6

3
η4 .
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For details about this construction see Section A.1 in Appendix.
It is not difficult to verify that the above random variables satisfy (5.2.9) as
desired. The next step is to now derive random variables Z1, Z2 as defined in
Equation (5.2.2),

Z1 =
1

2
α0 +

√
3

2
η1α1 −

√
3

2
η3α2 , (5.2.10)

Z2 =
1

2
α0 −

√
3

6
η1α1 +

2
√

6

3
η2α1 +

√
3

6
η3α2 −

2
√

6

3
η4α2 , (5.2.11)

where (α0 , α1 , α2) is a multi-index. We compute the functions φψs (Z1) and
φψs (Z2), for s > 0. Set

φ1
s = φψs (Z1) ,

φ2
s = φψs (Z2) ,

by the definition of ψs, we have that

ψs (Z1) =
1

2
sα0 +

√
3

2
η1
√
sα1 −

√
3

2
η3
√
sα2 ,

ψs (Z2) =
1

2
sα0 −

√
3

6
η1
√
sα1 +

2
√

6

3
η2
√
sα1 +

√
3

6
η3
√
sα2 −

2
√

6

3
η4
√
sα2

and using the definition of φ we obtain

φ1
s =

1

2
sV0 +

√
3

2
η1
√
sV1 −

√
3

2
η3
√
sV2,

φ2
s =

1

2
sV0 −

√
3

6
η1
√
sV1 +

2
√

6

3
η2
√
sV1 +

√
3

6
η3
√
sV2 −

2
√

6

3
η4
√
sV2 .

To compute g(s) (Z1) = g
(
φ1
s

)
and g(s) (Z2) = g

(
φ2
s

)
, we consider the systems

of ODE

dY

dt
(t, Y0) = φks (Y (t, Y0)) , Y (0, Y0) = Y0, k = 1, 2 s > 0 (5.2.12)

and using the Runge-Kutta method presented in Equation (5.2.5) with h = 1
we obtain

Yi

(
φks , 1

)
= Y0 +

M∑
j=1

aijφ
k
s

(
Yj

(
φks , 1

))
,

Y
(
Y0;φks , 1

)
= Y0 +

M∑
i=1

biφ
k
s

(
Yi

(
φks , 1

))
,

and by setting g
(
φks
)

(Y0) = Y
(
Y0;φks , 1

)
. We have by Proposition 5.2.7 that

g
(
φks
)

(Y0) = Y
(
Y0;φks , 1

)
, so

g(s) (Z1) ◦ g(s) (Z2) (x) = g
(
φ1
s

) (
g
(
φ2
s

)
(x)
)

= Y
(
Y
(
x;φ2

s, 1
)

;φ1
s, 1
)
.
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We then conclude by setting gs (x) = g(s) (Z1) ◦ g(s) (Z2) (x) that

Q(s)f (x) = E [f (gs (x))]

where the payoff function f (x) = max
(
0, x3T −K

)
. This implies

Q(sn)Q(sn−1) · · ·Q(s1)f (x) = E
[
f
(
gsn
(
gsn−1 · · · gs1 (x)

))]
.

To obtain integration schemes of order at least 5 we consider the Runge-Kutta
method with r = 5 and then the Ninomiya-Ninomiya new approximation
scheme is of order 2. For the Romberg extrapolation we take r = 7.
The coefficients (aij)i,j and (bj)j for the fifth and the seventh order are taken
from (Butcher, 2008) as:

The fifth order coefficients

a21 =
1

4
, a31 =

1

8
, a32 =

1

8
, a43 =

1

2
, a51 =

3

16
, a52 = −3

8
, a53 =

3

8

a54 =
9

16
, a61 = −3

7
, a62 =

8

7
, a63 =

6

7
, a64 = −12

7
, a65 =

8

7
aij = 0 otherwise,

b =

(
7

90
, 0,

32

90
,

12

90
,

32

90
,

7

90

)
.

The seventh order coefficients

a21 =
1

6
, a32 =

1

3
, a41 =

1

8
, a43 =

3

8
, a51 =

148

1331
, a53 =

150

1331

a54 = − 56

1331
, a61 = −404

243
, a63 = −170

27
, a64 =

4024

1701
, a65 =

10648

1701

a71 =
2466

2401
, a73 =

1242

343
, a74 = −19176

16807
, a75 = −51909

16807
, a76 =

1053

2401

a81 =
5

154
, a84 =

96

539
, a85 = − 1815

20384
, a86 = − 405

2464
, a87 =

49

1144

a91 = −113

32
, a93 = −195

22
, a94 =

32

7
, a95 =

29403

3584
, a96 = −729

512

a97 =
1029

1408
, a98 =

21

16
, aij = 0 otherwise,

b =

(
0, 0, 0,

32

105
,

1771561

6289920
,

243

1560
,

16807

74880
,

77

1440
,

11

70
,

)
.

5.3 Conclusion

In this thesis, our main concern has been the presentation of recently de-
veloped higher order schemes for weak approximation of SDEs. Our main
concern has been the presentation of recently developed higher order schemes.
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We have started with the Kusuoka approximation scheme which can be viewed
as the starting point of all the presented approximation schemes. It is based
on the concept of a m-moment similar family of random variables. Remark-
able improvements in the speed and accuracy have been observed when using
the Kusuoka approximation scheme instead of the traditional Euler-Maruyama
method. This scheme was intensively developed by Lyons and Victoir. The
main results of the Lyons-Victoir approximation scheme, namely cubature on
Wiener space have also been explored. The construction of cubature formulas
on Wiener space has appeared to be the main problem in the implementation
of the cubature on Wiener space method. We have presented the main re-
sults of the Ninomiya-Victoir and Ninomiya-Ninomiya approximation schemes.
These two schemes are of second order and can be viewed as extensions and
applications of the Kusuoka and cubature on Wiener space methods. From
the implementation of the Ninomiya-Victoir method, we have observed that,
compared to the Euler-Maruyama method, the Ninomiya-Victoir algorithm is
much faster, needs fewer number of discretization points and is more accurate.
Despite the fact that the simulation of the Ninomiya-Ninomiya algorithm has
not been performed to compare the two algorithms, we have observed that the
Ninomiya-Ninomiya implementation method is complete and distinct mainly
because the computation of exp (Zj) is part of the algorithm whereas it is not
the case in the Ninomiya-Victoir method.

We have only focused this work on the presentation of general ideas and
algorithms of these approximation schemes. There is still a lot to investigate
such as:

(1) Improving these approximation schemes in order to obtain schemes of
order greater than 2.

(2) Adapting these results to the case where the function f does not satisfy
even Lipschitz continuity or the vector fields in consideration are not
smooth.

Another area of particular interest for future work is the extension of appli-
cations by adapting these algorithms to other financial problems such as the
computation of Greeks or the pricing of risk.
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A.1 Construction of the Family of R-valued
Gaussian Random Variables

In this section, we construct the family
(
θij

)
i,j

for i = 1, 2 and j = 1, 2 of

R-valued Gaussian random variables defined in Theorem 5.2.5. We fix

γ1 =
1

2
, γ2 =

1

2
, ζ11 =

3

4
, ζ12 = −1

4
, ζ22 =

11

4
.

Let η1, η2, η3, η4 be four independent standard normal random variables and

θ1
1 = a1η1, θ1

2 = a2η1 + a3η2, θ2
1 = a4η3, θ2

2 = a5η3 + a6η4.

θij satisfy the conditions

E
[
θij
]

= 0, and E
[
θijθ

i′
j′

]
= ζjj′δii′

is equivalent to a1, a2, a3, a4, a5 and a6 satisfy

a2
1 = a2

4 = ζ11 (A.1.1)
a2

2 + a2
3 = a2

5 + a2
6 = ζ22 (A.1.2)

a1a2 = a4a5 = ζ12. (A.1.3)

Equation (A.1.1) implies a1, a4 ∈
{√

3
2 ,−

√
3

2

}
, we then fix a1 =

√
3

2 and

a4 = −
√

3
2 . We use equation (A.1.3) to compute a2 = −

√
3

6 and a5 =
√

3
6 .

Equation (A.1.2) gives a3 = 2
√

6
3 and a6 = −2

√
6

3 so

θ1
1 =

√
3

2
η1, θ1

2 = −
√

3
6 η1 + 2

√
6

3 η2,

θ2
1 = −

√
3

2
η3, θ2

2 =
√

3
6 η3 +−2

√
6

3 η4.

79



APPENDIX A. 80

A.2 Python Codes for Simulations

A.2.1 Code for Kusuoka Approximation

%\begin{verbatimbreakchar{\char’\%}
"""
This program computes the price of an asian option using Kusuoka approximation.
"""
from __future__ import division
import math
from scipy import *
from scipy.stats import *
from random import *

# we implement random variables needed for kusuoka scheme
w = [0,sqrt(2+sqrt(2)), -sqrt(2+sqrt(2)), sqrt(2-sqrt(2)),-sqrt(2-sqrt(2))]
#we compute the probability list
P = [1/2, 1/8, 1/8, 1/8, 1/8]

def ar(a,b):
"""this function returns the array([a,b])
"""
c = array([a,b])
return c

def funcg(s,etha,x):
"""this function returns G(s, etha, x) we have in the formula where x = [x_1,x_2]
"""

G= ar(x[0],x[1]) + sqrt(s)*etha*ar(sigma*x[0],0) + s*ar(mu*x[0],x[0]) +
s**2*(1/12 - etha**2/18)*ar(0,sigma**2*x[0]) + s**2*etha**2/18*ar(0,x[0]*sigma**2) +
sqrt(s**5)*((-etha+etha**3)/32)*ar(0,x[0]*sigma**3) + sqrt(s**5)*(etha**3/96-etha/32)
*ar(0,-x[0]*sigma**3) + s*etha**2/2*ar(x[0]*sigma**2,0) + sqrt(s**3)*etha/2
*ar(mu*sigma*x[0],sigma*x[0]) + sqrt(s**3)*etha/2*ar(mu*sigma*x[0],0) +
sqrt(s**5)*etha**3/36*ar(0,x[0]*sigma**3) + sqrt(s**5)*(etha/24 - etha**3/36)
*ar(0,x[0]*sigma**3) + 1/6*etha**3*sqrt(s**3)*ar(x[0]*sigma**3,0) +
s**2*etha**2/6*ar(mu*x[0]*sigma**2,x[0]*sigma**2) + s**2*etha**2/3*ar(mu*x[0]
*sigma**2,0) + sqrt(s**5)*etha/3*ar(mu**2*x[0]*sigma,mu*sigma*x[0]) +
sqrt(s**5)*etha/6*ar(mu**2*x[0]*sigma,0) + s**2*etha**4/24*ar(x[0]*sigma**4,0) +
sqrt(s**5)*etha**3/24*ar(mu*x[0]*sigma**3,sigma**3*x[0]) + 1/8*sqrt(s**5)
*etha**3*ar(mu*x[0]*sigma**3,0) + 1/120*sqrt(s**5)*etha**5*ar(sigma**5*x[0],0)

#print "G=", G
return G
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def list_s(n):
""" this function returns the partitioning of the interval [0,T]
t_k = k^gamma * n^-gamma *T and s_k = t_k - t_k-1
"""
s = zeros(n)
t = zeros(n+1)
t[0] = 0
for j in range(1,n+1):
t[j] = ((j/n)**gamma)*T
s[j-1] = t[j] - t[j-1]
return s

def som(l,x):
"""this function returns the computation of G(s[0],w[l[0]],G(s[1],w[l[1]],G(...,
G(s[n-1],w[l[n-1]],x)...)))), x is the initial value into consideration.
"""
s = list_s(n)
comp = x
for i in range(n-1,-1,-1):
comp = funcg(s[i],w[l[i]],comp)
return comp

def prod(l):
"""this function returns the value of the product we have to compute, that is:
pro_j=1^n p[l[j]]
"""
pro = 1
for k in range(n):
i = int(l[k])
pro = pro*P[i]
return pro

def maxs(x):
"""this function returns the max between x_2/T-k and 0, x here a list off
two elements
"""
c = x[1]/T
f = max(c-K, 0)
return f

def loop(n,N):
"""
Loop over base N number of length n
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00..0 -> NN..N
"""
# use array k
k=zeros(n)
M = zeros([N**n,n])

for i in range(N**n): # max size of baseN number of length n
M[i] = k
#print "M= ", M
#print k # do your calculation with k here
# Increment by one (modulo N)
k[n-1] = (k[n-1]+1) % N
# carry bits
for j in range(n-1,-1,-1): # right-to-left
if k[j] == 0:
k[j-1] = (k[j-1]+1) % N
else:
break
return M

# main ===============================================
if __name__ == "__main__":
# constants
r = 0.05
sigma = 0.3
mu = r-(sigma**2)/2
K = 1.05
T = 0.25
x_1 = 1
x_2 = 0
X = array([x_1,x_2])
# we discretize the interval [0,T]
gamma = 2
n = 8 # for the loop function and also the number of discretization points
N = 5 # for the loop function
s = list_s(n)

Sum = 0
M = loop(n,N) # we call for the loop function
ni = len(M)
#print ni
for j in range(ni):
l = list(M[j])
#print l



APPENDIX A. 83

for i in range(len(l)):
b = int(l[i])
l[i] = b
#print l
comp = som(l,X)
pro = prod(l)
com = maxs(comp)
Sum = Sum + pro*com
#print Sum
ku_price = exp(-r*T)*Sum
print ku_price .

A.2.2 Code for Ninomiya-Victoir Algorithm Applied to
Option Pricing

"""
This program computes the price of an asian option under heston volatility
using Ninomiya-victoir algorithm.
"""
from __future__ import division
import math
from scipy import *
from scipy.stats import *
from random import *

def expV0(s,l):
"""this function returns the value of exp(sV0)(l), l=[y_1,y_2,y_3].
"""
v = zeros(3)
v[0] = l[0]*exp(B*s +(exp(-alpha*s)-1)*(l[1]-J)/(2*alpha))
v[1] = (l[1] -J)*exp(-alpha*s) + J
v[2] = l[2] + (exp(A*s)-1)*l[0]/A
return v
def expV1(s,l):
"""this function returns the value of exp(sV0)(l), l=[y_1,y_2,y_3].
"""
v = zeros(3)
v[0] = l[0]*exp(s*sqrt(l[1]) + (s**2)*rho*beta/4)
v[1] = (rho*beta*s/2 + sqrt(l[1]))**2
v[2] = l[2]
return v
def expV2(s,l):
"""this function returns the value of exp(sV0)(l), l=[y_1,y_2,y_3].
"""
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v = zeros(3)
v[0] = l[0]
v[1] = (sqrt(1-(rho**2))*beta*s/2 + sqrt(l[1]))**2
v[2] = l[2]
return v
# main ===============================================
if __name__ == "__main__":
# constants
mu = 0.05
beta = 0.1
rho = 0.7
theta = 0.09
alpha = 2.0
K = 1.05
T = 1

# we implement the algorithm.
d = 2 #input("enter the dimension of the brownian motion.")
n = 13 #input("enter the numbers of partition")
y_1 = 1.0 #input("enter the first initial condition")
y_2 = 0.09 #input("enter the second initial condition")
y_3 = 0.0 #input("enter the third initial condition")
# here a some useful coefficients for the the computation
J = theta - beta**2/(4*alpha)
A = mu - y_2/2 - rho*beta/4
B = mu - J/2 - rho*beta/4
X = [y_1,y_2, y_3]
monte = 40000 # numbers of sample points used for the monte carlo simulation
k = monte

Sum1 = 0
Sum2 = 0
l3 = zeros(5)
for p in range(5):
Sum1 = 0
for j in range(0,k):
X = [y_1,y_2, y_3]
for i in range(1,n+1):
# here we compute X considering the new approximation scheme
#we ask for bernoulli and normal random variables
ber = randint(0,1) #this choose randomlly 0 or 1
nor = zeros(d)
for l in range(0,d):
nor[l] = gauss(0,1) # this choose a normal random variable.
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if ber == 0:
# we compute exp(sV)

X = expV0(1/(2*n),expV2(nor[1]/sqrt(n),expV1(nor[0]/sqrt(n),expV0(1/(2*n),X))))
else:
# we compute exp(sV)

X = expV0(1/(2*n),expV1(nor[0]/sqrt(n),expV2(nor[1]/sqrt(n),expV0(1/(2*n),X))))
# we now compute the payoff of this call option.
#print X[2]
Average1 = X[2]/T
# here we compute the Payoff for the Ninomiya-victoir scheme
if Average1>K:
Pf1 = Average1 - K # here we denote the payoff by Pf
else:
Pf1 = 0

Sum1 +=Pf1 # adding the previous Sum with the new value of the payoff

#print Sum1
# we compute the result (Res) which is the average of the Sum and which
gives the expectation value using monte carlo
Res1 = Sum1/k
#print ’Res1=’, Res1
#print ’k=’, k
l3[p] = Res1
Sum2 = Sum2+Res1
tot = Sum2/5
print "tot = ", tot
error = tot - 0.0604194813
print "error with n = ", n, "= ", error

A.2.3 Code for Euler-Maruyama Method Applied to Option
Pricing

"""
This program computes the price of an asian option under heston volatility
using Euler-maruyama algorithm.
"""
from __future__ import division
import math
from scipy import *
from scipy.stats import *
from random import *
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# main ===============================================
if __name__ == "__main__":
# constants
mu = 0.05
beta = 0.1
rho = 0.7
theta = 0.09
alpha = 2.0
K = 1.05
T = 1

# we implement the algorithm.
d = 2 #input("enter the dimension of the brownian motion.")
n = 2000 #input("enter the sample points to use")
y_1 = 1.0 #input("enter the first initial condition")
y_2 = 0.09 #input("enter the second initial condition")
y_3 = 0.0 #input("enter the third initial condition")
Y = [y_1,y_2, y_3]
monte = 40000 # numbers of sample points used for the monte carlo simulation
k = monte
Sum2 = 0
for j in range(0,k):
Y = [y_1,y_2, y_3]
for i in range(1,n+1):
# here we compute X considering the new approximation scheme
#we ask for bernoulli and normal random variables
nor = zeros(d)
for l in range(0,d):
nor[l] = gauss(0,1) # this choose a normal random variable.
# here we compute X considering the euler-maruyama scheme
Y1 = Y[0] + mu*Y[0]/n + Y[0]*sqrt(Y[1])*sqrt(1/n)*nor[0]
Y2 = Y[1] + alpha*(theta-Y[1])/n + beta*sqrt(Y[1])*(rho*sqrt(1/n)*nor[0] +
sqrt(1-(rho**2))*sqrt(1/n)*nor[1])

Y3 = Y[2] + Y[0]/n
Y[0] = Y1
Y[1] = Y2
Y[2] = Y3
# we now compute the payoff of this call option.
#print Y[2]
Average2 = Y[2]/T
#here we compute the Payoff for the Euler-Maruyama scheme
if Average2>K:
Pf2 = Average2 - K # here we denote the payoff by Pf
else:
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Pf2 = 0

Sum2 +=Pf2 # adding the previous Sum with the new value of the payoff
# we now do the computation for the negative part
#print sum2
# we compute the result (Res) which is the average of the Sum and which
gives the expectation value using monte carlo
Res2 = Sum2/k
print ’Res2 with n= ’, n, ’ = ’, Res2
error = Res2-0.0604194813
print "error = ", error

A.2.4 Codes for Ninomiya-Victoir Method Applied to
Optimal Portfolio Strategies

A.2.5 Codes for Euler-Maruyama Method Applied to
Optimal Portfolio Strategies
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