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ABSTRACT  

 

Mid rotation fertiliser application is generally practised in forestry to enhance nutrient 

availability in areas were soils are impoverished and do not provide sufficient nutrients 

for high productivity. Generally speaking there is great potential for mid rotation fertiliser 

in pine plantations, but stand and site characteristics such as water availability, soil 

depth, stand density and available nutrients need to be considered before fertiliser 

treatments are implemented. Foliar nutrient analyses were used to estimate nutrient 

availability. These levels were measured throughout the study and were used to 

implement specific fertiliser treatments that would boost nutrient availability. Treatments 

consisted of an unfertilised control, a single fertiliser application (1F) and two fertiliser 

applications over two consecutive years (2F). Leaf area index (LAI) and stem volume 

increment were measured in order to evaluate its influence on growth efficiency. LAI 

was estimated using the gap fraction method with the use of a ceptometer. Volume 

increment was calculated with diameter and height measurements. Basal area was 

calculated by means of diameter measurements. These growth responses were used to 

determine the effect of increased nutrient availability and although increases were found 

in LAI, volume increment, basal area increment and growth efficiency, none were 

significant. The lack of significance may be due to relatively large variations in other 

factors such as stand density and initial volume of the experimental plots. The 18 month 

monitoring period apparently did not allow complete reaction time to increased nutrient 

availability and limited our understanding of the responses somewhat. Despite this, the 

magnitude of some growth responses was large as nutrient ratios in the foliage 

increased to levels within the norms range. Increases in current annual volume 

increment (CAI) of 3.48 m3 ha-1 a-1 and 3.62 m3 ha-1 a-1 in 1F plots at Grabouw and La 

Motte plantations indicated that it may be economically feasible to fertilise at mid rotation 

age as the NPV and IRR increased over a projected 25 year rotation. The Grabouw site 

had the most significant response with regards to CAI in 2F treatment with a mean 

volume increment of 5.43 m3 ha-1 a-1. The mechanism of the response was examined 

further by taking water availability and soil characteristics into account. The seasonal 
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climatic effect (length of the moisture growing season) had a significant influence on the 

response to fertilisation.  
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OPSOMMING (AFRIKAANS) 

 

Die toediening van mid-rotasie bemesting word algemeen in bosbou toegepas om 

voedingstofbeskikbaarheid te verhoog in areas waar voedingstowwe onvoldoende is vir 

hoë produktiwiteit. Daar is oor die algemeen ruim potensiaal vir mid-rotasie bemesting in 

denne plantasies, maar eienskappe soos waterbeskikbaarheid, gronddiepte, 

opstanddigtheid en beskikbaarheid van voedingstowwe moet in ag geneem word voor 

optimum bemestingtoedienings bepaal kan word. Blaaranalise is gebruik om 

voedingstofbeskikbaarheid in plantasies te skat. Hierdie voedingstofvlakke is deurgans 

gemeet en is gebruik om spesifieke bemestingsbehandelings te implementeer wat 

voedingstofbeskikbaarheid kon opstoot. Behandelings het bestaan uit ‘n onbemeste 

kontrole, ‘n eenmalige kunsmistoediening (1F) en twee kunsmistoedienings in 

opeenvolgende jare (2F). Blaar oppervlak indeks en toename in stamvolume is gemeet 

om die invloed daarvan op die effektiwiteit van groei te bepaal. Blaaroppervlakindeks is 

bepaal deur middel van die gapingfraksie metode met behulp van ‘n stralingsmeter. 

Toename in volume is bereken met stamdeursnee en hoogte meetings. Basale 

oppervlakte is bereken deur middel van deursnee metings. Hierdie groeireaksies is 

gebruik om die effek van verbeterde voedingstofbeskikbaarheid te bepaal. Al die 

groeireaksies het toegeneem maar was nie statisties beduidend nie. Die gebrek aan 

beduidende toename kan toegeskryf word aan variasies in opstandsdigtheid en 

oorspronklike volume van die bome in die navorsingspersele. Die toetstydperk van 18 

maande het moontlik nie genoeg tyd gegee vir die bome om op die toename in 

voedingstofbeskikbaarheid te reageer nie. ‘n Goeie groeirespons is wel waargeneem 

waar die voedingstofverhoudings in die naalde aanvaarbare norme bereik het. Die 

toename in volume aanwas van tussen 3.48m3 ha-1 a-1 en 3.62 m3 ha-1 a-1 in 1F persele 

by Grabouw en La Motte plantasies het aangedui dat dit ekonomies lewensvatbaar is 

om op mid-rotasie ouderdom bemesting toe te dien aangesien die netto teenswoordige 

waarde en die interne opbrengs koers toegeneem het op ‘n geprojekteerde 25 jaar 

rotasie. Die persele op Grabouw plantasie het die mees beduidende respons getoon 

met betrekking tot huidige jaarlikse aanwas (5.43 m3 ha-1 a-1 in die 2F perseel). Die 

meganisme van die respons is verder nagevors met inagneming van 
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waterbeskikbaarheid en grondeienskappe. Die seisoenale klimaatseffek (lengte van die 

vog-groeiseisoen) het ‘n beduidende impak op die respons tot bemesting. 
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CHAPTER  I  GENERAL INTRODUCTION 

 

Sustainability is a key objective in the forestry industry, and the ability of the industry to 

reach this objective financially and environmentally is vital for its longevity. Research 

globally and in South Africa in understanding plantation dynamics and its interaction with 

fluctuating climatic conditions has strengthened managers with knowledge and 

information to manage plantations sustainably.  

 

In the Western Cape, forestry’s sustainability or its shear existence is threatened by a 

lack of productivity which is mainly due to impoverished soils and climatic conditions 

(Donald, 1987). Large areas in the Western Cape were identified by the state to be 

phased out because of the poor economic performance of the business in 1998 (du 

Preez, personnel correspondence, 20 Nov 2009). The decision was taken to convert the 

unprofitable forestry areas to so called appropriate land uses which include agriculture, 

tourism and conservation. Most of these areas are situated on steep slopes that do not 

only provide challenges towards growth potential but also towards accessibility. It is a 

fact that fertility is a major problem in this area but by improving stand nutrition and 

productivity through fertilisation the viability of the forestry industry can be re-evaluated, 

instead of managing it to finality.  

 

The study focuses on long rotation P. radiata stands which is managed to supply the 

saw timber market. MAI’s average 10 m3 ha-1 a-1, and rotation ages range between 25-

40 years according to site productivity. The majority of the annual precipitation occurs 

between May and August during which time temperatures do not encourage rapid 

growth. The growing season is very short, as summers are characterised by very hot, 

dry and windy conditions which can start as early as November and last until mid April. 

These conditions are not conducive for nutrient accretion and rapid growth. With due 

consideration to the growing conditions, good timing of a fertiliser application with 

regards to season, and silvicultural operations can allow the crop to make full use of the 

optimum window for growth. We set out to measure the growth responses that can be 

obtained under these conditions.  
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The outcomes of this project could thus serve as initial attack towards developing 

practical methods for the industry to identify areas with potential nutrient deficiencies, 

and the subsequent prerequisites to ensure sustainable responses after fertilisation with 

regards to volume growth. This study could also serve as building blocks for further 

research to ensure that a good understanding of mechanisms involved are known which 

will help to develop strategies that will enhance productivity in the future. 

 

The main task of any Forester is to enhance growth through management activities to 

strive for an increasingly positive rate of return on the investment. In order to obtain 

satisfactory growth rates on such sites, fertilisation should be a prerequisite rather than 

a possible counteractive measure when the soil reserves run down. The Mediterranean 

climate however only allows for a short growing season and this, coupled with sandy, 

nutrient-poor soils, adds to the challenge of optimising management strategies in terms 

of fertilisation to improve productivity.  

 

1. Study objectives 

 

The objective of this study was to provide information that can be utilised by 

management to improve stand nutrition and productivity. Experimentally, it was achieved 

by applying fertilisers to mid rotation Pinus radiata plantations, and measuring growth 

responses that occurred as a product of the increased nutrient availability. The growth 

responses tested were limited to stem and leaf area index increases and supporting 

information was examined to propose possible explanations for responses. The 

economic feasibility of applying fertilisers to mid rotation stands was examined by 

means of net present value (NPV) and internal rate of return (IRR) calculations. 
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In order to establish how the Pinus radiata stands will react to mid rotation fertilisation in 

a Mediterranean climate, consideration has to be given to the timing of the availability of 

different resources.  

 

2. Key concepts with respect to growth responses 

 

To establish whether responses are evident seasonal measurements of specific growth 

indicators need to be done. In this study three main growth indicators were measured in 

order to establish whether fertilisation of mid rotation P.radiata could increase the needle 

growth in order to sustain an increased carbon allocation in the stem. These growth 

indicators included leaf area index (LAI), volume increment (IV), and growth efficiency 

(GE). Foliar analyses were used in determining the nutrient content of the foliage in 

order to establish optimum fertiliser treatment.  

 

 Leaf area index (LAI) is the projected leaf area (A1) per unit land area, and could 

be defined as the radiation absorbing surface of a tree canopy. 

 Growth efficiency (GE) is the stem volume growth per unit of LAI, and is thus 

related to the net primary production (NPP) and the partitioning of carbohydrates 

to stem wood. 

   

3. Hypotheses (HP) and key questions (KQ) 

 

HP 1 Increased nutrient availability in mid-rotation P. radiata stands will improve the 

foliar nutrient profile, and hence, increase both leaf area index and growth efficiency 

across a range of sites in the Boland region. 

 

KQ 1 How does the foliar nutrient profile of the trees in the fertilised plots 

 change after application? Does it come closer to optimum norms? 
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KQ 2  Does the change in foliar nutrition improve both leaf area index and 

growth efficiency? Is the response mechanism dominated by any one of 

these response mechanisms? 

 

HP 2 Mid-rotation fertiliser application in P. radiata stands can increase volume 

increment across a range of sites in the Boland region, thus making plantation  

forestry more profitable. 

 

 KQ 3 Can volume increment be improved with fertilisation across all  

experimental sites and what is the magnitude of this improvement? 

 

KQ 4 Does the increase in yield justify the cost of fertiliser and its 

application in terms of net present value and internal rate of return? 
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CHAPTER II  LITERATURE REVIEW 

 
 
The productivity and growth efficiency of most forests is limited simultaneously by a 

variety of resources including light, water, and one or more nutrients (Fisher & Binkley, 

2000; Turner et al., 1995). The supply rates of nutrients are variable changing naturally 

across biomes, with changes in climate, vegetation and under management influences. 

These patterns and influences directly affect the ability of trees to uptake resources that 

determine growth efficiency and carbon allocation. 

 

In conifers a clear decrease in mineral nutrient concentration occurs during the growing 

season as nutrients are re-translocated to the youngest foliage for further growth (Fife & 

Nambiar, 1982).  This supports Miller’s (1981) findings that growth prior to canopy 

closure depends primarily on nutrient uptake from the soil and after canopy closure 

nutrients continues to re-translocate within the crown and is withdrawn from the lower 

crown prior to leaf fall. Fluctuations do however occur seasonally, and may not 

necessarily be similar throughout the lifetime of coniferous species.  

 

Forests tend to increase growth following fertiliser application, and it has been found that 

in many cases substantial profits are made (Donald, 1987; Fisher & Binkley, 2000). 

Fertiliser application has increased volume production in mid rotation pines by 3 to 10 

m³ ha-1 over periods of 5 to 10 years with largest increases on dominant trees (Fisher & 

Binkley, 2000).  

 

It has been found that increases in stem growth following fertiliser application are 

ascribed to increases in leaf area and net primary production, thus leading to increases 

in foliar photosynthesis and shifts in allocation of photosynthates from root production to 

stem production (Colter Burkes et al., 2003). Fertiliser application has also been found 

to directly influence stand characteristics by increased growth rates, dominance and self 

thinning of stands (Linder, 1985). 
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1. Characterisation of the nutritional status of stands by means of foliar 

analysis 

 

Plant tissue analysis, particularly foliar analysis is a preferred method of evaluating plant 

nutritional status since it provides an integrated assessment of many factors that 

influence nutrition. Nutrient deficiencies are most widely expressed in terms of critical 

levels (Needham et al., 1990). A critical level is defined as the nutrient concentration 

required in a plant tissue for optimum growth, yield, or quality, assuming that no other 

factor is limiting or suboptimal (Ulrich & Hills, 1967; Mead, 1984). Different methods exist 

to establish and evaluate critical levels or norms. One of these is the Diagnosis and 

Recommendation Intergrated System (DRIS) index and is used as a mechanism for 

defining optimum nutrient levels and balance (Beaufils, 1973). DRIS norms are 

developed for ratios of nutrients rather than individual nutrient concentrations. Other 

methods include vector analyses (Timmer & Morrow, 1984). This method graphically 

plots foliar concentration versus unit needle weight versus unit foliar content. In this 

study, foliar nutrient levels are interpreted and evaluated against critical ratios that were 

developed by Linder (1995). This methodology evaluates N using the critical level 

approach and then expresses all other nutrients as a ratio relative to N (e.g. P/N) which 

is then compared to a set of established norms.    

 

2. The effect of management activities on the availability and uptake of 

nutrients 

 

Carlyle (1995) studied the influence of fertilising Pinus radiata before a thinning 

operation.  That study found that the soil mineral N content was increased rapidly with 

the application of fertiliser.   Berg and associates (1987) further found the N release from 

the nutrient rich litter of fertilised trees to be greater and more rapid than that of the litter 

from unfertilised trees.  These studies indicate that in a P. radiata stand available N 

could be increased with a fertiliser treatment whether it is directly following an 

application or by release from the nutrient rich biomass, but that this does not 

necessarily induce the uptake of mineral N. The N requirement of a rapidly developing 
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canopy places a high demand on the soil as a source of N, but after canopy closure the 

canopy mass stabilises and net N requirement from soil reserves declines as internal 

cycling and N release from the litter resume dominance (Miller, 1981). 

 

Carlyle (1995) indicated that the foliar N concentrations were significantly higher after 

fertilisation, but suggested that the majority of the N was stored in the upper canopy.  

According to that study, 51% of the N taken up following fertilisation was stored in the 

tree biomass.  This accentuates the importance of timing of fertiliser application in 

relation to thinning.  Fertiliser applications before thinning may increase N uptake and 

reduce leaching.  Such a strategy may be particularly appropriate for soils that have a 

low capacity to retain applied N (Carlyle, 1995).  This further motivates that nutrients lost 

from a thinning operation will be available at a later stage, while the tree retains the 

biomass with the greatest nutrient concentration. By avoiding fertiliser application 

directly after thinning as done in this study, the effect of leaching is likely to be minimal. 

 

Turner et al. (1995) and Donald (1987) supports Carlyle’s (1995) findings that significant 

productivity gains are achievable when applying fertilisers to P. radiata plantations after 

thinning. Turner et al. (1995) however, found that by combining NP treatments, the 

effects are generally more pronounced. It is evident that timing of fertiliser with regards 

to water availability is important, but the fact that an application of fertiliser in mid 

rotation trees could induce uptake is reassuring. It will thus be important to determine 

whether sufficient nutrients can be taken up to achieve optimum nutrient concentrations. 

 

3. Effects of nutrition on biomass production and growth efficiency 

 

3.1 Nutrient uptake and content in tree biomass 

 

In older stands, re-translocation and mineralisation of litter are likely to be more 

important sources of nutrients for growth of new tissues than nutrients derived directly 

from the mineral soil pool (Turner et al., 1995; Miller, 1981).  Turner and Lambert (1983) 
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found that the net annual removal of nitrogen from the soil in a 27-year-old stand of 

Eucalyptus grandis was 30 kg ha-1 compared to a total requirement of 100 kg ha-1.  This 

indicates that the total quantity of nutrients available for new growth includes the uptake 

from mineral soil, internal re-translocation and mineralisation of organic matter. 

 

In younger stands, however, a significant portion of nutrients have to be taken up from 

the soil. Raison and associates (1989) estimated that a 10-year-old Pinus radiata stand 

would take up 166 kg ha-1 N during the first year of fertilisation.  The estimation is very 

high considering that the annual uptake of N is 24-28 kg ha-1 in unfertilised temperate 

coniferous forests (Cole & Rapp, 1981).  When fertility is high, accumulation of N by 

young forests stands with rapidly developing canopy components can be as high as 213 

kg ha-1 a-1 by Poplar and 100 kg ha-1 a-1 by radiata pine (Anonymous, 1985). When 

irrigated with wastewater, accumulation of N has been found to increase up to 400 kg 

ha-1 a-1 by Poplar (Cole, 1981).  When considering that direct measurements of 100 kg 

ha-1 N in the crown and 20 kg ha-1 N in the wood during the first year of fertilisation in P. 

radiata,  (Raison et al., 1989) together with litter transfer of 15 kg ha-1 N, totalling up to 

135 kg ha-1, a 166 kg ha -1 N uptake is not unrealistic.   

 

According to Carlyle (1995), based on biomass relationships, 180 kg ha-1 N was present 

in the above ground biomass before fertilisation.  Carlyle (1995) further found that an N 

uptake of 103 kg ha-1 occurred in the same compartment over a period of 24 months. On 

relatively infertile sites with low growth rates, where canopy closure is absent, responses 

to fertiliser are likely irrespective of stocking, while on better sites, thinning returns the 

canopy to an aggrading phase and may be a prerequisite for a fertiliser response (Miller, 

1981; Woolons, 1985; Snowdon & Waring, 1990). This observation explains the change 

in the requirement of N and other nutrients after canopy closure (Carlyle, 1995).  Carlyle 

(1995) and Raison et al. (1992) concluded that the high uptake was due to the existence 

of an established canopy, N deficiency, and the ideal conditions for N uptake and tree 

growth that was present during the first growing season. These findings give an 

indication that high levels of nitrogen application could be taken up by the trees, which 
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further highlights the potential of substantial, even repeated fertiliser applications as 

tested in this study. 

 

The time between first treatment and repeated treatment also needs to be taken into 

consideration, as the concentration of nutrients present in the tree also plays a role in 

determining additional quantities that may be taken up. Raison and associates (1992) 

observed that N uptake in a 10-year-old Pinus radiata plantation stopped between 72 

and 118 days after application of 400 kg ha-1 N and uptake of 130 kg ha-1 N.  This was 

despite a high concentration of mineral N in the soil and ideal conditions for growth and 

uptake.  They concluded that there was an active discrimination against further N uptake 

because of high concentration of N in the tree. 

 

Others (Jones et al., 1991; Jensen & Petterson, 1978) supported such discrimination in 

well-documented and controlled studies for N and K. The aforementioned citations 

suggest that foliar analysis could serve as a tool to avaluate nutrient concentration in the 

foliage and the potential of further uptake. However, Carlyle (1995) found that even 

though uptake rates fell after an initial uptake of 103 kg ha-1 N, the fall in uptake was 

associated with a period of low soil moisture when conditions were not conducive to 

uptake.  This was the only period that high soil mineral N concentrations coincided with 

a period of low uptake.  This suggests that there is no active discrimination of the type 

suggested by Raison and associates (1992). Carlyle (1995) and Raison et al. (1992) 

found similar N uptake in their studies.  The basal area of the former was 1.8 times more 

than that of the latter, which indicates that there was a much greater capacity to 

sequester N.  

 

Cromer and associates (1995), investigating fertiliser applications to young stands of E. 

grandis, found that the mass of the nitrogen in the foliage of trees in plots without 

fertiliser application accumulated quite slowly with an increase from 23 kg ha-1 to 27 kg 

ha-1 in 18 months.  By comparison, the plots that received fertiliser developed rapidly to 

130 kg ha-1 in the first year and increased up to 150 kg ha-1 in the second year.  They 

also found that the pattern of nitrogen accumulation in live branches was similar to that 
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of foliage although being 75% less than that of the foliage. Cromer and associates 

(1993a) found that the nitrogen content of foliage and live branch components increased 

rapidly over the first year as individual tree canopies developed in relative isolation.   

They found that once these canopies started competing for light, height growth 

continued but foliage and branches in the lower canopy died progressively so that 

nitrogen mass in foliage and branches became relatively stable.  By comparison, the 

nitrogen content of the stem bark and stem wood continued to increase steadily over 

time. In the unfertilised plots, the rate of nutrient supply does not only limit the rate of 

tree growth prior to canopy closure, but also limits the absolute amount of nitrogen 

accumulated by their canopies after canopy closure.  This leads to restriction of foliage 

mass, leaf area index and consequently, growth rate (Cromer et al., 1993a).  Trees that 

did not originally receive fertiliser may respond to fertiliser application after canopy 

closure, but physiological mechanisms involved may limit responses after canopy 

closure.  

 

It is thus evident that fertiliser treatment in fast-growing plantations with aggrading 

canopies could induce uptake of nutrients in large quantities ( > 100 kg N ha-1 a-1) when 

sufficient water is available. The question is whether optimal nutrient concentrations can 

be utilised to increase the growth efficiency. 

 

3.2 The effect of canopy closure and season with respect to nutrient uptake 

 

Various studies have found that fertiliser can play a major role in the accumulation of 

nutrients, leading to higher concentrations in the biomass of a tree (Waring, 1981).  

Waring (1981) found that the dry-matter production of young P. radiata in southern 

Australia increased after fertilising with phosphorus (P) and nitrogen (N).  Mead and Will 

(1976), as well as other studies (Nambiar & Bowen, 1986), indicated that in a 

Mediterranean climate N and P concentrations in the foliage of P. radiata are generally 

the highest in winter when more water is available and the lowest in summer when less 

water is available.  Nambiar and Bowen (1986) and Theodorou (1986) found that N 

leaches rapidly in sandy soils.  Theodorou (1986) further indicated that N uptake may 
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increase when applied to P. radiata in the spring rather than in autumn when fertilising in 

a Mediterranean climate. In a study by McGrath and McArthur (1989) in a Mediterranean 

climate, above ground biomass increased throughout the year, but the rate of production 

varied both seasonally and among fertiliser treatments.  They found that the most rapid 

growth occurred in spring.  This conclusion derived from comparing spring-fertilised 

trees with autumn fertilised and unfertilised trees.  The latter treatment proved to 

decrease in growth rate.  McGrath and McArthur (1989) found that autumn fertilised and 

spring fertilised trees respectively, had an increase of 80% and 133% in dry-matter 

above that of the control plots by end-harvest. It suggests that fertilisation in a 

Mediterranean climate such as the Western Cape should focus on a springtime 

application.  

 

3.3 Biomass production and carbohydrate allocation 

 

In their study on the effect of fertilisation on above ground biomass on similar species 

and conditions, Cromer and associates (1993a) found that even after the mass of the 

foliage and branches reached a plateau or even declined in growth after canopy cover 

was reached, the mass of stem wood and  stem bark steadily increased.  The fertilised 

plots also showed a higher increase in mass of all above ground components (Cromer 

et al., 1993a).  It is evident that the nutrients are translocated from foliage and live 

branches to stem wood and stem bark, after canopy closure, to put all growth resources 

into height growth as trees begin to compete for sunlight. The canopy closure of given 

plantation could be accelerated by increasing leaf area development. Carlyle (1995) 

found that the increase in nutrient uptake influenced LAI. 

 

Other studies also found that nutrition had a marked influence on patterns of dry matter 

allocation in seedlings of E. grandis (Cromer & Jarvis, 1990; Kirschbaum et al., 1992).  

These studies proved that increased allocation in foliage occurred at the expense of 

roots at high addition rates of both nitrogen (Cromer & Jarvis, 1990) and phosphorus 

(Kirschbaum et al., 1992).  Studies on 15 to 20-year-old Pinus sylvestris showed there 

was a substantial decrease in the carbon allocated to the roots, following the application 
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of fertiliser.  This helps to explain large increases in above ground biomass following 

fertilisation (Linder & Rook, 1984). 

 

The growth responses of E. grandis seedlings are dependent on nutrients required to 

increase specific leaf area, CO2 assimilation rate and/or allocation of carbon to foliage at 

the expense of fine root growth.  High rates of CO2 assimilation occurred in fertilised 

plots, due to high nutrient concentrations in the foliage in the first year, but lessened 

over time as nutrient concentrations decreased (Leuning et al., 1991).  Plantations with 

species that grow rapidly have the potential to deplete soil nutrient reserves, especially 

when intervals between harvests are short and when components such as bark, 

branches or foliage are removed (Wise & Pitman, 1981).  Reducing this effect entails 

increasing rotation length, as heartwood formation withdraws nutrients and the 

proportion of heartwood increases over time (Crane & Raison, 1980; Florence, 1986). 

 

Others found that compared with infertile sites, fertile sites or those that have been 

fertilised, produce a greater mass of wood with higher phosphorus concentrations 

(Ferreira et al., 1984; Raison et al., 1982), but often with lower concentrations of 

nitrogen (Birk & Turner, 1992).  Hunt (1982) observed that the net gain in plant biomass 

results from the proportion of total biomass partitioned to foliage that fixes carbon 

(allocation), the distribution of leaf mass to intercept radiant energy and assimilatory 

efficiency of that foliage.  Experiments have enabled researchers to examine the roles 

these mechanisms play in growth responses to nitrogen (Cromer & Jarvis, 1990) and 

phosphorus (Kirshbaum & Tompkins, 1990; Kirshbaum et al., 1992).  

  

Cannell (1985) concluded in his studies that decreased partitioning to fine roots was one 

of the most important mechanisms by which improved nutrition increased above ground 

dry matter production.  In contrast, a study by Sanantonio (1989), found that no 

evidence exists that fine root production affects foliage production. 

 

The annual net primary production (NPP) is directly related to annual nitrogen and 

phosphorus uptake in coniferous forests (Miller, 1984). The gross primary production in 
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a plant community can be defined as the balance between carbon fixed via 

photosynthesis and the amount lost in respiration (Linder, 1985). Foresters try to 

manipulate the way in which the accumulated carbohydrates are partitioned to the 

different parts of the tree for growth with silvicultural activities (Shepherd, 1985).  

 

The above-mentioned studies indicate that yield could potentially be increased with 

correct timing of fertiliser applications concerning age, thinning, season and stocking. 

There is also ample evidence to suggest that the response to improved nutrition may (at 

least partly) be attributed to changes in the allocation patterns of carbohydrates.  With 

due consideration of the above, positive growth responses could be found when 

applying N and P, with correct amounts to ensure that optimal ratios between these two 

nutrients are present in the stem and leaves in both conifers and hardwood species. 

 

3.4 Determination of LAI through direct and indirect methods 

 

It is clear that fertiliser can induce high levels of nutrient uptake into the biomass of a 

tree, in this case P. radiata, which in turn induces canopy production (Mcgrath & 

McArthur, 1989; Hunt, 1982). Canopies set limits to production as in the case of several 

studies (Miller, 1981; Woolons, 1985; Snowdon & Waring, 1990). There is a linear 

relationship between biomass production and light interception (Cannell, 1989) and the 

configuration of the canopy will determine the amount of light which is intercepted. The 

growth of leaves and their longevity combine to determine the extent of the canopy. 

Canopy size or LAI is also positively correlated with the rate of accumulation of biomass. 

LAI could thus serve as an excellent growth indicator after fertiliser application over a 

period of 18 months where insufficient growth with regards to diameter and height is 

likely. 

 

LAI could be measured or estimated directly or indirectly. Direct estimates can be made 

from litter fall data or from sequential harvests. In harvests the leaf area of several trees 

representative of the size-class distribution is measured. An allometric relationship is 

then applied to plots to estimate LAI. One commonly used relationship is that between 
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leaf area and sapwood area.  Indirect methods usually require calibration against a 

direct method.  Direct methods can potentially estimate LAI with greater accuracy 

because they are independent of assumptions made in the application of direct 

methods. Indirect methods are based on the optical properties of canopies. The gap 

fraction method relates leaf area to the probability of light passing uninterrupted through 

the canopy (Lang et al., 1985) by comparing the radiation environment at the base of the 

canopy with simultaneous measurement above (or outside) the canopy. Their ratio 

measures the amount of light which is transmitted through the canopy. Radiometric 

instruments are used to obtain the gap fraction. This can be done linearly by 

measurement of sun fleck area with an array of sensors (Bolstad & Gower, 1990). 

 

Assumptions in gap fraction methods include: (i) foliage is optically black, that is any 

transmitted or reflected radiation measured at the base of the canopy is negligible; (ii) 

foliage is randomly distributed (if the foliage is clumped, leaves will tend to overlap 

others and these leaves will only receive partial radiation); (iii) stem branch make a 

negligible contribution to the measurement of the canopy. Branch interception may be 

small where the presence of foliage effectively masks the branch area. Stem 

interception below the canopy is usually negligible. An assumption specific to 

measurement of diffuse beam penetration is that sky brightness is azimuthally uniform. 

 

A common finding is that indirect methods are well suited for examining seasonal 

changes in LAI and differences between treatments in relative terms. In absolute terms, 

they could systematically underestimate LAI. Underestimates of LAI occur because 

foliage is grouped rather than being randomly distributed leading to a greater degree of 

mutual shading than is assumed by the random model. Incorporation of a grouping 

parameter improves the estimate of LAI but it may still be less than the direct estimate 

(Chason et al., 1991). LAI is usually poorly predicted by indirect methods in stands with 

high LAI, and in stands with a low LAI and large stem and branch component, indirect 

methods may over estimate LAI (Deblonde et al., 1994). To increase the utility of indirect 

methods and to reduce the need for calibration against direct methods, conversion 

factors are derived which allow for the difference between the two estimates. 
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4. LAI and stand growth efficiency 

 

Two relationships are often used to evaluate the impact of LAI on growth. One simply 

expresses dry mass production as a function of LAI; the other relates foliar efficiency to 

LAI. Foliar efficiency is incremental growth as a ratio of mean LAI during that period of 

growth. Both relationships are empirical and in many instances will be site specific. 

Foliar efficiency is a convenient parameter for interpreting results from comparative 

studies for evaluating changes in efficiency with canopy size and development. Foliar 

efficiency will also change if there is a change in allocation favouring above ground or 

below ground biomass (Heilmann & Xie, 1994) and is as such a good means of 

determining activity of the stand in relation to site resources (Beadle, 1997).  

 

 

Canopy size is a key variable determining energy capture. The relationship between dry 

mass production and light interception gives a good indication on how LAI impacts 

productivity (Beadle, 1997). According to Smethurst and associates (2003), the LAI-

growth relationship does not indicate any site specificity, suggesting that LAI may be a 

better predictor of growth on sites where the lack of confidence in the basal area growth 

relationship exists. They found that this difference arises because LAI is an indicator of 

the current status of a plantation and its potential to grow in the immediate future, 

whereas basal area is the cumulative record of the past status that may be less related 

to the potential for future growth. Further finding’s by Smethurst and associates (2003) 

indicated that there is a minimum LAI required to maintain the tree metabolism without 

stem growth. 

 

High productivity is dependent on the maintenance of high leaf area index, to intercept 

large quantities of solar radiation (Cromer et al., 1993a). Nutrient uptake strongly 

influences leaf mass and area (Cromer & Williams, 1982).  Therefore, the development 

of highly productive tree growing area will depend on strategies that enhance nutrient 

availability. 



 

16 
 

 

While LAI determines energy capture, the efficiency with which captured energy is 

channeled to stem growth will lead to the production of a certain utilisable volume in a 

given stand. Growth efficiency (GE) is thus defined as the stem volume growth of a 

stand over a period of time, expressed per unit of LAI (du Toit & Dovey, 2005) and the 

units will thus be m3 ha-1 a-1 LAI-1. The growth efficiency will thus be a barometer of 

physiological changes that may take place in a stand following treatment. Several 

studies have shown that the stand may respond to improvements in nutrition through an 

increase in LAI, an increase in GE, or a simultaneous increase in both LAI and GE (Brix, 

1981; Colter Burkes et al., 2003; Smith & Long, 1989).  
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CHAPTER III  MATERIAL AND METHODS 

 

This section deals with the methods used in the selection and description of the study 

sites. Methods that were used in selecting the compartments and sampling sites are 

described. Fertiliser application, data capturing, mean value calculations and statistical 

analyses methods are also described. 

 

1. Site and compartment selection 

 

The area of study consists of plantations situated on different topographical areas, soils 

and annual precipitation in the Western Cape. 

 

The four different plantations stretch from the Eastern Slopes of Table Mountain (Tokai) 

to Grabouw which is situated in the Elgin basin. The other two plantations are La Motte 

on the bottom lands of the Drakenstein valley and Kluitjieskraal which is situated on the 

footslopes of the Waterval Mountains in the Breë River Valley. The altitudes range 

between 200 – 500 m above sea level. The mean annual precipitation ranges between 

837mm and 1100 mm and the average annual temperature is 18 ˚C. A description of the 

biophysical factors are indicated in Table 3.1 and 3.2 
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Table 3.1: Study site characteristics and conditions 

Study Site Compartment  Age Latitude Longitude Altitute MAT  
Actual annual 

rainfall  
Soil 

depth  
MAI  

  no (yr)     (m) (˚C) (mm) (cm) (m³.ha⁻¹.a⁻¹) 

Grabouw 

 
D16 12 18⁰58' 34⁰08'       50-70 8 

 
D17 9 18⁰58' 34⁰08' 436 18 1100 mm 70-100 8 

 
J22 12 19⁰08' 34⁰12'       80-100 8 

Kluitjieskraal 

 
F31a 16 19⁰05' 33⁰23' 

   
70-120 10 

 
F31b 16 19⁰05' 33⁰23' 442 18 1100mm 90-150 10 

 
F31c 16 19⁰05' 33⁰23'       110-130 8 

La Motte 

 
G2a 14 19⁰00' 35⁰50'       110-150 8 

 
G4a 18 19⁰00' 35⁰51' 169 19 837 mm 130-180 10 

 
G8a 13 19⁰00' 35⁰51'       110-150 10 

 

The compartments were all planted at 3.0 m x 3.0 m with a planting density of 1111 

trees/ha.  

 

The site (originally Mediterranean fynbos) had been planted to Pinus species from as 

early as the late 1800's. Figure 1 shows a schematic representation of the study area. 

La Motte plantation is situated between Franschoek and Paarl. The La Motte plantation 

is scattered into many parts, and was chosen because it is least variable in terms of 

topography because it is situated on a flat area. All three trail compartments have similar 

biophysical conditions. The Kluitjieskraal plantation is beside the town Woseley, 

approximately forty kilometres North West of Worcester. The trail compartments are in a 

section that is not situated in the Breë River Valley called Suurvlakte. The climate is 

relatively uniform with high mean annual precipitation. The Grabouw plantation is 

surrounding the town Grabouw, with two trail compartments situated on the foot slopes 

of Grabouw Mountain, and one in the Lebanon plantation. The reason for this was the 

lack in visual nutrient deficiencies in the foliage in more than one area of the Grabouw 

plantation.  
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Figure 1: Schematic representation of the study area showing sawmills and pine 

plantations. 

 

Symptoms of Fusarium circinatum developed during the two year measuring period at 

the Tokai site, and some of the research plots had a high mortality rate. Due to the 

confounding effect of the disease at Tokai, a decision was made to not include data 

captured from this site in the analysis. 

 

The University of Stellenbosch was approached by MTO Forestry to evaluate 

compartments in the Boland plantations which could have possible nutrient deficiencies 

in 2006. Site visits by the Forestry department at Stellenbosch University and the help of 

local foresters were used to gather information with regards to visual deficiencies as well 

as soil data for soils that are prone to nutrient deficiencies. The main emphasis being on 
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compartments between 12 and 18 years of age which has been reduced in stocking due 

to thinning operations. This evaluation yielded a list of potential sites that may respond 

to fertilisation at mid rotation. The current study was initiated to determine the magnitude 

and mechanism of the response to fertilisation in selected compartments identified by 

the 2006 evaluation. Soil texture, soil depth (from MTO database), mean annual 

precipitation including potential evaporation (Schulze, 1997) was used to characterise 

the relative availability of soil water as water availability can influence the effectiveness 

to fertilisation treatment (Brix, 1981, Sheriff, 1996, Carlyle, 1998). Table 3.2 indicates 

site biophysical factors, soil descriptions and conditions of the study area per plantation, 

per compartment. 
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Table 3.2: Fertiliser treatment per compartment at the three different study areas, Grabouw, Kluitjieskraal and La Motte 

plantations.  

 

Compartment Visual state of canopy and foliage 
Critical 
Nutrient 

Treatment 
Kg/ha 

N 
Kg/ha 

P 
Kg/ha 

K 

 
Soil 

description*  
Soil 

depth 
Stand 

density  
Stand 
age  

 
(cm) (s/ha) (yr) 

D16 Older foliage sparse. Tips clorotic and nerotic P, N DAP 38 50 50 0 Fc1 50-70 816 12 

D17 Foliage medium length, discolouration present (yellow) P, N DAP 38 50 50 0 Fc3 70-100 816 9 

J22 Canopy sparse, no old foliage present, needle tips clorotic P, N DAP 38 50 50 0 Cb1 80-100 816 12 

F31a Canopy fairly green, die back of older needles present.  P MAP 33 + 0.5 % Zn 25 50 0 Ga4 70-120 389 16 

F31b Clorose present in needle tips. P DAP 38 + 0.5 % Zn 45 50 0 Hc1 90-150 394 16 

F31c Clorose present in needle tips. P MAP 33 + 0.5 % Zn 25 50 0 Ga5 110-130 417 16 

G2a Canopy sparse, with clorotic needle tips P,K 234 (30) 20 30 40 Ga5 110-150 638 14 

G4a Canopy Sparse with short needle P,K 232 (30) 20 30 20 Ga6 130-180 497 18 

G8a Canopies sparse with short needles and clorose spots. P,K 234 (30) 20 30 40 Ga5 110-150 661 13 

 

*Codes refer to Forestry soils database (FSD) format, where Fc = lithocutanic soils; Cb = hydromorphic soils with an E 

horizon; Ga = hydromorphic podzols; Hc = E-horizons over neocutanic subsoils. 
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2. Sample plot selection 

 

Sample plots were chosen on the following base criteria; relatively even terrain which 

are similar for the three sample plots in each compartment, free of diseases and pests, 

uniform canopy, and a relatively weed free forest floor. In each compartment three plots 

were located and consisted of a control, one plot that received a single treatment (1F) 

and another that received a repeated treatment of fertiliser after 12 months of first 

treatment (2F). This basic layout was replicated in nearby compartments. The plots 

consisted of ten by ten rows with the inside eight by eight being the area where data 

was captured from. Figure 2 gives a schematic representation of how the plots were 

layed out. Kluitjieskraal plantation was used as an example. 

 

Figure 2: Schematic representation of the layout of the plots in the three trail  

  compartments at Kluitjieskraal. 
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As seen in the Kluitjieskraal situation, plots were not always distributed in the same 

manner in each compartment. The reason for this was to minimise variability due to 

stocking and tree size. 

 

None of the compartments received a thinning within 3 years prior to fertilisation but it 

was not possible to select plots of equal stocking between sites as natural site driven 

factors and mortality defines the actual stocking for each compartment. 

 

3. Data capturing 

 

Foliar analyses, diameter, height and LAI readings were measured on a six monthly 

basis from the time of treatment application. Foliar analyses were used to determine the 

nutrient status of the plots and used to determine the optimum fertiliser treatment. Foliar 

analyses were also used to assist in formulating the second fertiliser treatment, and to 

give an indication of the ongoing nutrient availability and uptake during the project. Foliar 

samples were taken in the winter months (June/July of 2006, 2007 and 2008) as it is the 

most suitable time to gather foliar samples in coniferous species (Payn & Clough, 1987). 

The accuracy of identifying nutrient deficiencies via foliar analyses is queried by some 

(Fisher & Binkley, 2000). With due consideration that physiological factors do play a role 

in foliar nutrient concentration fluctuations, variances due to season, age and position of 

foliage sampled were minimised.  

 

The samples were taken manually with tree pruning scissors with extending connections 

to enable sampling in the upper third of the crown. Six foliar samples were taken per plot 

and bulked to get a representative sample of needles. Current year needles fascicles in 

the upper third of the tree were collected, as it has been shown that it is a good predictor 

of subsequent tree growth response (Timmer & Morrow, 1984). Foliar analyses was 

done in a commercial laboratory and presented as nutrient concentrations. These 

concentrations were also compared as ratios with regards to N. The ratios indicate the 

relationship between nitrogen (N) and the other nutrients indicated.  
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3.1 Foliar sampling and analyses 

 

The critical values for these ratios were originally developed on Norway Spruce (Picea 

abies) but they are generally accepted to apply to most coniferous trees species (Linder, 

1995). The increase in growth rate after various levels of fertiliser application as noted 

by other research projects on P. radiata in South Africa, New Zealand, Australia, and 

elsewhere were used to estimate fertiliser levels to improve growth optimally (du Toit, 

2006). Although this method is not ideal it has found to be relatively successful where 

nutrient deficiencies are severe and where data from replicated fertiliser trial series does 

not exist. Further studies have more recently been commissioned in the same study 

area with a series of well designed fertiliser samples that take water availability into 

account. It will help to establish the true optimum fertiliser level that needs to be applied 

for optimum improvement of growth for future use. 

 

3.2 Diameter at breast height and height measurements 

 

Diameter and height measurements were taken on a six monthly basis. Measurements 

were taken with a calibrated diameter tape over bark for diameter measurements, and a 

vertex hypsometer calibrated at 1.3 m breast height for height measurements. To 

ensure that diameter measurements were taken on precisely the same height of the tree 

on each measurement of the total of four taken, a mark was left with loggers crayon 

around the circumference of the tree at breast height. In cases were knot whorls were 

present at breast height, measurements were taken either above or below the whorls to 

ensure that tree volumes were not unreliable. No height measurements were taken 

during windy periods and accuracy was optimised by insuring that the distance from the 

tree was as far as possible similar to the height of the tree. 
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3.3 Leaf area index estimation and measurement 

 

Leaf area index (LAI) was estimated using a radiometric instrument called an AccuPAR 

(LP-80) ceptometer which measures the sun fleck area with an array of sensors. The 

gap fraction relates leaf area to the probability of light passing uninterrupted through the 

canopy (Lang et al., 1985) by comparing the radiation environment at the base of the 

canopy with a simultaneous measurement above or outside the canopy.  This was done 

by measuring 20 readings outside the canopy and 80 readings 1m apart between the 8 

rows of the sample plot underneath the canopy. The AccuPAR calculates LAI based on 

the above and below-canopy photosynthetically active radiation (PAR) measurements 

along with other variables that relate to the canopy structure and position of the sun. 

These variables are zenith angle, a fractional beam measurement vale, and a leaf area 

distribution parameter (х) for the particular canopy. The AccuPAR uses х = 1.0 as its 

default and it was also used as such in this study.  

 

3.4 Moisture growing season and reference potential evaporation 

 

An adapted FAO (1978) approach was used with actual precipitation and evaporation 

data for the three geographical areas to determine the moisture growing season of each 

area. This approach assumes that during a period when precipitation (mm) is larger or 

equal to 0.3 x mean monthly Eapan, taken as the reference potential evaporation (Er), 

sustained plant growth can take place. It is important to note that this method does not 

account for any differences in soils. This data was compared with median long term data 

for each area, in order to detect any variances in the moisture growing season between 

the long term data and the measurement period. 

 

3.5 Net present value and internal rate of return calculations 

 

Net present value and internal rate of return calculations was used to determine whether 

the costs of fertiliser could be justified with increase in volume growth. Data taken from 



 

26 
 

Forestry Economics Services (2008) were used as costs incurred from establishment to 

harvesting and round log prices of products delivered at roadside. The internal rate of 

return was calculated using the average MAI of the Boland area (10 m³ ha-1 a-1) as the 

control and increases in CAI as found at the three plantations as seen in Table 4.4. 

Actual volume per product according to log classes were used as modeled for Pinus 

radiata sites with MAI 10.7, 11.6, 12.6, and 13.6 m³ ha-1 a-1 to calculate log prices at 

roadside and the change in log dimensions as MAI increased. A real rate of 5.95% was 

calculated from the average prime rate of 12.5% and average PPI (production price 

index) of 6.18 % in 2009. 

 

Four scenarios was used as possibilities of volume increase on an annual basis, and 

converted to mean annual increment for a 25 year rotation. A real rate was used for 

discounting (as by general consensus). In order to calculate the real rate or inflation free 

cost of capital the following relationship was used (Uys, 1991): 

 

(1+k) = (1+i) (1+f) 

 

k = nominal cost of capital (prime rate) 

i = real or inflation free cost of capital 

f = inflation rate according to a general price index (production price index) 

 

4. Statistic Analyses 

 

Microsoft Excel was used to capture the data and STATISTICA version 9 (StatSoft Inc. 

(2009) STATISTICA (data analysis software system) was used to analyse the data.  

  

Summary statistics were used to describe the variables.  Medians or means were used 

as the measures of central location for ordinal and continuous responses. Standard 

deviations and quartiles were used as indicators of spread during preliminary data 

anaylsis (not shown). 
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Relationships between continuous variables (like basal area, volume increment, leaf 

area index and growth efficiency), were analysed with regression analysis and the 

strength of the relationship measured with the Pearson correlation or Spearman 

correlation if the continuous variables are not normally distributed. If a continuous 

response variable (basal area, volume increment, leaf area index and growth efficiency) 

was related to several other continuous input variables, multiple regression analysis was 

used and the strength of the relationship measured with multiple correlation. 

 

The relationships between the growth responses (basal area, volume increment, leaf 

area index and growth efficiency) and treatments were analysed using appropriate 

analysis of variance (ANOVA). When the influence of a continuous covariate, for 

instance volume at time zero (V0), on a particular ANOVA was required, an appropriate 

analysis of covariance was done on the volume increment (Iv) versus the nominal factors 

(treatment and plantation) and the covariate, volume at time zero (V0).  V0 was also used 

as covariate for the analyses of covariance when testing leaf area index (LAI) and 

growth efficiency (GE) versus treatments and plantation. 

 

A p-value of p < 0.05 represents statistical significance in hypothesis testing and 95% 

confidence intervals were used to describe the estimation of unknown parameters. 
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CHAPTER IV  RESULTS 

 

By reviewing the literature it is clear that the growth efficiency of plantation trees could 

be increased through fertiliser application. It now remains to be seen how different 

compartments in the Boland region will react as influenced by different rainfall patterns 

and soil types, with respect to growth indicators such as LAI, GE and volume growth. 

 

1. Nutrient status  

 

Foliar analyses is a very good diagnostic technique to use for evaluating pronounced 

deficiencies as it provides an integrated assessment of the many factors that influence 

nutrition (Needham et al., 1990).  

 

Table 4.1(a) shows the concentration of the nutrients and their critical norms (Boardman 

et al., 1997) in the upper crown that were analysed in June 2006. Dark shaded, light 

shaded and non-shaded areas define which values are higher, lower and within the 

optimum range.  The corresponding nutrient ratios (relative to N) for foliar analysis done 

in 2006 are shown in section (b). The ratios indicate the relationship between nitrogen 

(N) and the other nutrients.  
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Table 4.1: Nutrient concentrations (a) and ratios relative to nitrogen (b) of foliar 

analyses of control plots taken in June 2006.  

compartment N  P  K  Ca  Mg Mn Fe Cu Zn B 

 (a) % mg/kg 

D16 1.23 0.09 0.75 0.30 0.17 116 222 4 38 31 

D17 1.23 0.10 0.64 0.26 0.17 129 243 5 42 33 

J22 1.18 0.09 0.78 0.26 0.19 58 217 4 35 49 

F31a 1.43 0.10 0.72 0.30 0.20 88 243 3 15 20 

F31b 1.34 0.12 0.57 0.23 0.22 134 225 5 14 27 

F31c 1.55 0.09 0.83 0.21 0.17 103 229 4 17 41 

G2a 1.62 0.15 0.58 0.32 0.26 237 208 5 34 37 

G4a 1.73 0.10 0.59 0.38 0.29 440 320 7 26 46 

G8a 1.60 0.12 0.46 0.30 0.24 274 166 5 29 32 

NORMS 1.21 0.14 0.51 0.09 0.10 25 71 2.4 14 17 

(b) 

          compartment P/N  K/N Ca/N Mg/N % Mn/N Fe/N Cu/N Zn/N B/N 

D16 7 61 24 14   0.9 1.8 0.03 0.31 0.25 

D17 8 52 21 14   1.0 2.0 0.04 0.34 0.27 

J22 8 66 22 16   0.5 1.8 0.03 0.30 0.42 

F31a 7 50 21 14   0.6 1.7 0.02 0.10 0.14 

F31b 9 43 17 16   1.0 1.7 0.04 0.10 0.20 

F31c 6 54 14 11   0.7 1.5 0.03 0.11 0.26 

G2a 9 36 20 16   1.5 1.3 0.03 0.21 0.23 

G4a 6 34 22 17   2.5 1.8 0.04 0.15 0.27 

G8a 8 29 19 15   1.7 1.0 0.03 0.18 0.20 

NORMS 10 35 2.5 4 % 0.05 0.2 0.03 0.05 0.05 

 

Fertiliser treatments were applied according to deficiencies as seen in Table 4.1, but 

focused on improving the most acute deficiencies. Visual aspects such as shortened 

needles, discolouration, tip die back, and the premature loss of older needles were 

found in all the sites (Table 3.2). The largest single problem that existed in all of the 
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compartments studied was the acute deficiency in P (Table 4.1). These deficiencies are 

worsened by low N, Mg and Ca concentrations (Table 4.1). The nutrient balance in 

Table 4.1 indicates that the P levels are very low especially when expressed as a P/N 

ratio. Payn et al. (1988) and De Ronde (1992) recorded positive responses to P 

application on a variety of radiata pine sites were foliar P levels were deficient.  

 

Foliar nutrient data collected 18 months after treatment (January 2008) are shown in 

Table 4.2. It gives an indication that the fertiliser treatments had a positive effect on 

foliar nutrient concentration and foliar nutrient ratios relative to nitrogen. P 

concentrations generally moved closer to the norms, with the N/P relationship in most 

cases also moved closer to or higher than the norm. This means that little dilution effect 

of N was found and sufficient amounts of P were applied to have a positive effect on 

stand nutritional status.  
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Table 4.2: Nutrient concentrations (a) and ratios relative to nitrogen (b) sampled in 

June 2008 in plots that were treated with fertiliser. 

(a) 

compartment N  P  K  Ca  Mg Mn Fe Cu Zn B 

  % mg/kg 

D16 1.27 0.13 0.67 0.63 0.15 227 219 4 39 36 

D17 1.45 0.13 0.59 0.45 0.17 209 194 3 36 31 

J22 1.05 0.16 0.71 0.47 0.15 119 183 3 24 36 

F31a 1.23 0.12 0.50 0.48 0.27 351 124 15 18 32 

F31b 1.14 0.10 0.46 0.44 0.31 194 104 25 16 47 

F31c 1.22 0.12 0.74 0.53 0.22 227 121 4 18 28 

G2a 1.23 0.12 0.51 0.47 0.21 372 101 2 18 26 

G4a 1.34 0.09 0.65 0.36 0.20 381 140 2 14 25 

G8a 1.68 0.20 0.61 0.41 0.23 230 154 4 28 28 

NORMS 1.21 0.14 0.51 0.09 0.10 25 71 2.4 14 17 

 

(b) 

          compartment P/N  K/N Ca/N Mg/N % Mn/N Fe/N Cu/N Zn/N B/N 

D16 10 53 50 12   1.8 1.7 0.03 0.31 0.28 

D17 9 41 31 12   1.4 1.3 0.02 0.25 0.21 

J22 15 68 45 14   1.1 1.7 0.03 0.23 0.34 

F31a 10 41 39 22   2.9 1.0 0.12 0.15 0.26 

F31b 9 40 39 27   1.7 0.9 0.22 0.14 0.41 

F31c 10 61 43 18   1.9 1.0 0.03 0.15 0.23 

G2a 10 41 38 17   3.0 0.8 0.02 0.15 0.21 

G4a 7 49 27 15   2.8 1.0 0.01 0.10 0.19 

G8a 12 36 24 14   1.4 0.9 0.02 0.17 0.17 

NORMS 10 35 2.5 4 % 0.05 0.2 0.03 0.05 0.05 
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2. Effects of fertilisation on LAI 

 

A wide range of LAI’s existed before treatment implementation on sites that varied in 

age and soil types. An analysis of variance, with LAI at time zero as covariate, was used 

to give unbiased results as in some cases stocking (stand density) also varied.  

 

The differences in growth responses were assessed by subjecting data to analyses of 

variance (ANOVA) and F test with vertical bars denoting 95% confidence intervals. A 

summary of the statistical parameters are given. The three different study areas 

responded differently in LAI after fertiliser treatment. No significant difference was found 

between plots not treated and plots fertilised, despite using the mean LAI at time zero 

(LAI0) for all three plantations as covariate [F (4, 17) =0.47; p>0.76] (Figure 3; Table 4.3) 
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Figure 3: Mean leaf area index (LAI) measured between June 2006 and January 

2008 in control (C), single fertiliser treatment (1F), and repeated fertiliser 

treatment (2F) with mean LAI at treatment implementation (LAI0) of all 

three plantations as covariate (vertical bars denote 0.95 confidence 

intervals). 

 

 

Mean leaf area index values were calculated for control (C), single treatment (1F) and 

repeated treatment (2F) per seasonal measurement (Figure 4). The mean value of all 

treatments were included to indicate the seasonal effect as no significant difference was 

found in LAI between treatments across fertiliser treatments in Figure 3. Figure 4 does 

however provide a good indication on the seasonal development and loss of foliage. It is 

clear that the LAI is higher in the winter when more water is available and lower in the 

summer when little water is available. A very low LAI value was present at the Grabouw 
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site at project initiation. Even though no significant difference exists between treatments, 

LAI exhibits a clear seasonal trend [F (6, 24) = 3.18; p > 0.019].  
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Figure 4: Mean LAI per plantation of all plots measured between June 2006 and 

January 2008 (vertical bars denote 0.95 confidence intervals). 

 

The moisture growing season (MGS) was calculated for all three plantations with the 

FAO (1978) approach that was adapted for South Africa. Actual precipitation and 

evaporation data was used for the period January 2006 to January 2008. At the La 

Motte (Figure 5) and Kluitjieskraal (Figure 6) sites the moisture growing season lasted 

for 6 months between April 2006 and September 2006 as was the case in 2007. This 

corresponds well with the long term average data for La Motte and Kluitjieskraal (Long 

term data not shown). 
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Figure 5: Moisture growing season (MGS; where monthly P> 0.3Er) over 24 months 

between January 2006 and January 2008 at La Motte plantation. 
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Figure 6: Moisture growing season (MGS; where monthly P> 0.3Er) over 24 months 

between January 2006 and January 2008 at Kluitjieskraal plantation. 

  

At the Grabouw site (Figure 7) the moisture growing season lasted for 6 months 

between April 2006 and September 2006 (i.e. it followed a similar trend as with the long 

term average data in Appendix E), however, the moisture growing season lasted for 11 

months in 2007. The data shows that the moisture growing season differed quite 

substantially at Grabouw between 2006 and 2007.   
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Figure 7: Moisture growing season (MGS; where monthly P> 0.3Er) over 24 months 

between January 2006 and January 2008 at Grabouw plantation. 

 

To rule out any seasonal effect a univariate test of significance was calculated for LAI in 

control (C) and LAI in fertilised (1F) plots for measurements taken in June 2006 and 

June 2007, to establish whether LAI increases are significantly influenced by increased 

nutrient availability (Figure 8). No significant difference was however found between 

untreated plots and treated plots between June 2006 and June 2007 [F (2, 11) = 0.021; 

p > 0.98] but minor increases were present for all treatments. 
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Figure 8: Mean leaf area index increment over a 12 month period (MEAN LAI INC 

12) from June 2006 to June 2007, with mean leaf area index at time zero 

(LAI0) as covariate (vertical bars denote 0.95 confidence intervals). 

 

3. The effects of fertiliser treatment on volume increment and basal area 

increment 

 

The utilisable volume was calculated from measured diameter at breast height and 

height data on a six monthly basis. Basal area increment (IG) was also calculated using 

diameter at breast height. A greater volume increment (IV) was present in the plots that 

received fertiliser at all three plantations (Figure 9). No significant differences in IV were 

found between treatments for any of the plantations (with mean volume at time zero (V0) 

for all three plantations being used as covariate); [F (4, 17) = 0.19; p > 0.94]. When 

testing IV per treatment using volume at time zero (V0) per plantation as covariate no 
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significant difference was found either even though a large increase in current annual 

increment (CAI) between treatments were recorded (Table 4.3).  
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Figure 9: Mean volume increment (IV) with initial mean volume (V0) of all three 

plantations as covariate (vertical bars denote 0.95 confidence intervals).  

 

Even though the basal area increment (IG) increased more in 1F plots than that of C 

plots at all three plantations no significant difference was found with basal area at time 

zero (G0) as covariate [F (4,17) = 0.81; p > 0.54].  At Grabouw a further non significant 

IG increase was found from 1F to 2F plots but no such trend was found at La Motte or 

Kluitjieskraal (Figure 10) (Table 4.3). 
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Figure 10: Mean basal area increment (IG) with the mean basal area at time zero (G0) 

of all three plantations as covariate (vertical bars denote 0.95 confidence 

intervals).  

 

The IV was 3.62 m3 ha-1 a-1 and 3.48 m3 ha-1 a-1 more than IV values in C plots at 

Grabouw and La Motte respectively. At the Kluitjieskraal site a good IV in 2F plots of 

2.50 m3 ha-1 a-1 more than IV in C plots was found with the largest IV of 5.43 m3 ha-1 a-1 

over the control occurring at Grabouw in 2F plots. On a management perspective the 

increase is substantial as the CAI was increased by a minimum of 2.33 m³ ha-1 a-1 in 1F 

plots and a maximum 5.43 m³ ha-1 a-1 in 2F plots (Table 4.3) when a volume increase of 

only 0.4 m³ ha-1 a-1 needs to be attained to justify the cost of fertiliser treatment as 

discussed later in this section.  
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Table 4.3: Mean leaf area index (LAI), mean basal area increment (IG) mean volume 

increment (IV) and mean growth efficiency (GE) in C, 1F and 2F plots over 

the measurement period from June 2006 to January 2008 (None of the 

treatments are statistically significant at the level of p< 0.05).  

 

Plantation Treatment 
Mean LAI 
(m

2
 m

-2
) 

Mean IG  
(m

2 
ha

-1 
a

-1
) 

Mean IV 

(m
3
 ha

-1
 a

-1
) 

Mean GE  

(m
3
 ha

-1
 a

-1 
LAI

-1
) 

Grabouw 

C 2.42 1.27 13.55 6.03 

1F 2.54 1.68 17.17 7.66 

2F 2.32 2.29 18.98 8.99 

Kluitjieskraal 

C 2.23 2.07 22.11 9.58 

1F 2.09 2.35 24.44 10.26 

2F 2.35 2.36 24.61 9.89 

La Motte 

C 2.68 1.44 12.21 4.86 

1F 2.82 1.71 15.69 5.27 

2F 2.89 1.61 14.12 5.34 

 

4. The effects of LAI and volume increment on growth efficiency 

 

The growth efficiency (GE) comparison in the C, 1F and 2F plots of each plantation is 

presented in Figure 11 and Table 4.3. The GE is clearly higher in 1F and 2F plots than 

the C plot at the Grabouw site, albeit not statistically significant. At the La Motte and 

Kluitjieskraal sites GE is slightly higher in 1F plots but little difference in GE is found 

between control and 2F plots. No significant differences in GE exists between C, 1F and 

2F plots when using mean volume at time zero (V0) for all three plantations as covariate 

[F (4, 17) = 0.67; p > 0.62]. Suffice to say that at Grabouw the GE increases 

substantially in 1F and further in 2F plots as no difference is found in LAI from C to 2F 

plots. The growth response at Grabouw is mainly in IV.  
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Figure 11: Mean growth efficiency (GE) in control (C), single treatment (1F), and 

repeated treatments (2F), with mean volume at time zero (V0) as covariate 

(vertical bars denote 0.95 confidence intervals). 

 

5. Quantification of CAI increase to evaluate financial feasibility 

 

The net present value (NPV) and internal rate of return (IRR) when no fertiliser 

treatment is given (MAI 10.7) are contrasted to cases where CAI increases with 2 (MAI 

11.6), 4 (MAI 12.6) and 6 (MAI 13.6) m³ ha-1 a-1 respectively as a potential result when 

fertiliser is applied, and these results are presented in Appendices A, B, C and D. A 

summary of the key data in the appendices is given in Table 4. 4.  
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Table 4.4: Net present value (NPV) and internal rate of return (IRR) calculated at a 

real rate of 5.95%, over a 25 year rotation age. 

Scenario 
      

Treatment 
Improvement in 

CAI (m³ ha⁻¹ a⁻¹) 
MAI (m³ ha⁻¹ a⁻¹) NPV (Rand) IRR (%) 

(Ref. to appendix no.) 

C (A) 
0 10.7 R -5,978.70 4.25% 

1F (B) 
2 11.6 R -4,156.05 4.86% 

1F & 2F (C) 
4 12.6 R -2,143.33 5.42% 

2F (D) 
6 13.6 R 351.38 6.03% 

 

 

It is clear that the IRR can be increased closer to the real rate of 5.95% (break even 

rate) and even pass the real rate to give a profit margin of R 351.38 ha-1 at MAI 13.6 

(Appendix D). Even though (according to the cost data used) a profit is only gained 

when CAI increases by 6 m³ ha-1 a-1 (e.g. from 10 to 13.6 MAI) in fertilised plots, a 

decrease in profit lost of R 4156.05 ha-1 occurs when only a 2 m³ ha-1 a-1 (12.6 MAI) 

increase is realised (Appendix B). The fact that the IRR is increased when fertiliser is 

applied indicates that it is economically feasible and desirable to apply fertiliser under 

the conditions tested. 
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CHAPTER V DISCUSSION 

 

1. Nutrition and tree growth 

 

The three different sites studied in the Boland area are all on sandy soils, but differ in 

soil type/depth, water availability and nutrient availability. Compartments are situated on 

sandy soils with depths between 50 – 100 cm at the Grabouw site and G (podzols), Fc 

(lithocutanic) soils with depths between 80-180cm with high rainfall at the Kluitjieskraal 

site and lower rainfall on deep sands at the La Motte site. Nutrient deficiencies in the 

form of nitrogen, and potassium and some micro nutrients existed on specific sites 

(Table 4.1), but all the sites had acute phosphorus deficiencies. Other similarities 

between the growth areas were sparse foliage in terms of needle length and low needle 

longevity (i.e. premature needle fall), (Table 3.2). The latter is apparently caused by a 

critical shortage of available nutrients (Table 4.1 and 4.2) whereas low LAI’s can stem 

from a combination of nutrient shortages and low levels of available water. Undergrowth 

in some cases further worsened water and nutrient availability, causing a snowball effect 

as canopies cannot develop sufficiently to shade out undergrowth. This competition for 

resources limits canopy development, thus decreasing the amount of sunlight captured 

for photosynthesis and therefore carbon fixation which reduces the yearly volume 

increment (Table 4.3). 

 

The canopy nutrition was evaluated before fertilisation, one year after fertilisation, and 

18 months after initial fertilisation, with separate evaluations on control (C), single 

treatment (1F), and repeated treatments (2F) in the last evaluation (Table 4.1). 

Phosphorus concentration was found to be critically low at all the sites (Table 4.1). 

Although this was the only critically deficient nutrient, a study by Donald (1987) in the 

sandy soils of Grabouw indicated an optimum response is found when applying N and P 

together, as increased growth with application of the critical deficient nutrient P could 

cause dilution of N. This was the case at Grabouw and Kluitjieskraal, whereby at La 

Motte P and K was applied with low levels of N also being applied. Others (Payn et al., 
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1988 and Turner et al., 1995) also found that growth responses were limited when only 

applying P, and that better results were found when applying N and P together, in cases 

where P was the critically deficient nutrient.  

 

As presented in the results the magnitude of the growth responses differed at each site 

after fertiliser and re-application of fertiliser after one year. The growth efficiency (GE) of 

sites Kluitjieskraal and La Motte had a similar trend: GE increased very slightly after 

fertilisation but remained unchanged after re-fertilisation. In contrast, GE at Grabouw 

increased following fertilisation, and increased even further with re-fertilisation (Figure 

4.4), (Table 4.3). Growth efficiency is the quotient of volume increment and LAI (Iv/LAI), 

which means that if volume increment increases at a higher rate than LAI the growth 

efficiency will increase as in the Grabouw case.  

 

2. Moisture, Growth and LAI 

 

The moisture growing season at Grabouw is longer than that of the other sites (Figure 7) 

and is supported by long term moisture growing season data (Appendix E). Kluitjieskraal 

and Grabouw have a similar annual rainfall, but at Grabouw water availability is present 

for a longer period after winter.  This means that the trees have a longer time in which 

nutrients could be translocated to the upper stem due to available water, especially in 

the case of re-application. It also means that stand response to fertilisation will not be as 

strongly limited by water availability, as is probably the case on many other sites.  

 

The seasonal effect in this study played a major role in the increase in LAI (Figure 4). It 

was found that LAI differed significantly when water availability was higher in the winter 

months, but no significant difference occurred between C and 1F plots over a 12 month 

period (Figure 8). Although the fertilised plots had a higher LAI it was not significantly 

higher. This emphasises that without water being available nutrient increases will not be 

as effective. The shorter moisture growing season that was present in 2006 at Grabouw 

could play a role in the low LAI value that was measured there at project initiation.  
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Consideration must be given to the fact that the La Motte and Kluitjieskraal sites where 

older stands than the Grabouw site. Further consideration must be given to the fact that 

the La Motte (±650 stems per hectare) and Kluitjieskraal (±400 stems per hectare) sites 

had received more than one thinning operation where the Grabouw sites (±800 stems 

per hectare) had only received one thinning operation. Trees generally respond with 

increased growth when fertiliser is applied to stands that are thinned before fertiliser 

treatment (Donald, 1987), which indicates that the stand density could play a role in the 

response mechanisms found in this study. 

 

Colter Burkes and Associates (2003) found that growth efficiency increased with an 

increase in stand density even though studies by others (Brix, 1981, Binkley & Reid, 

1984, Sheriff, 1996) found that the amount of stem production per unit of foliage was 

greater due to higher average irradiance per unit foliage in stands with lower stand 

densities. In the Colter Burkes et al. (2003) study it has to be considered however that 

earlier measurements of light saturated net photosynthesis on foliage from the upper 

half of the canopy indicated no difference in photosynthetic capacity occurred due to 

planting density, and that other mechanisms or differences in sites could thus be 

possible in this study. Given these apparently contradicting results, it is thus difficult to 

speculate whether the increase in GE at the Grabouw site was partly due to stand 

density or not.  

 

Linder and Exelsson (1982) indicated a shift in carbon allocation in cases where 

irrigation and fertilisation took place, which further pronounces the fact that the trees 

benefit from an increase in nutrient availability but adjusts the mechanism of response 

according the conditions present. Further evidence supports increase in growth 

efficiency as found in this study that fertilised stands converted more of the absorbed 

energy into stem wood than did unfertilised stands (Table 4.4). 

 

Growth responses such as volume, LAI and growth efficiency give a good indication of 

whether a stand has been positively influenced by fertiliser treatment. The manner in 

which the growth responses react could be explained by physiological processes, as 
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indicated by Landsberg (2003) that are driven by environmental elements such as 

radiation, nutrient availability, and water. 

 

Photosynthesis is affected by many environmental factors, but primarily by incident 

radiant energy, temperature, water and nutrient availability. The basis of this study in 

essence was to increase the conversion of photosynthetically active radiant energy to 

carbohydrates by optimising the nutrient status of nutrient deficient growing areas. 

Nutrient availability in this case is the only factor that was enhanced. Others (Sheriff et 

al., 1986, Reid et al., 1983, Mooney et al., 1978) found that a very close relationship 

exists between maximum photosynthesis rates and leaf nitrogen and phosphorus 

concentrations.  It is possible to say that the photosynthetically active radiant energy 

conversion of carbohydrates was increased in this study in different magnitudes to the 

stem and foliar biomass of the stands. Water availability, seasonal changes, and 

ambient temperatures are some of the few variables known.  

 

3. Fertilisation and economic benefits 

 

Growth efficiency gives a glimpse of the possible mechanism of volume growth 

responses. Other studies in Douglas fir forests in Northern America found that by 

alleviating soil nitrogen supply with fertiliser application growth was increased by 2 to 4 

m³ ha-1 annually for 8 to 15 years (Chappel et al., 1991). More evidence exists that by 

fertilisation of loblolly pine plantations with nitrogen and phosphorus could increase 

volume growth up 5 m³ ha-1 a-1 for 6 to 10 years. In New Zealand and Australia studies 

on Eucalyptus species have also found that fertiliser treatment in nitrogen and 

phosphorus poor areas increased growth by 4 to 8 m³ ha-1 a-1 for 5 years or more 

(Binkley et al., 1995).  Herbert and Schonau (1989) indicated growth increases from 6 to 

8m³ ha-1 annually, in South Africa, after fertilising with nitrogen, phosphorus and 

potassium in Eucalyptus stands. 
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The maximum CAI increase at Grabouw of 5.43 m³ ha-1 a-1 in the repeated fertiliser plots 

could probably be ascribed (at least in part) to the fact that the sites are established on 

deep sandy soils. Ingestad (1986) also found good results on similar soils in depth 1-100 

cm where water availability was good. Volume increase was up to four times greater in 

fertilised plots than control plots even though foliar nutrient levels remained fairly stable 

in that study. Volume increases at all three plantations were not statistically significant in 

the fertilised plots and could be due to stocking, age or soil type and further highlights 

the fact that study site uniformity with regards to stocking and age can minimise 

variations on response differences. Studies mentioned confirm that the growth increase 

found in this study over an 18 month measurement period could last up to 10 years 

taking into consideration that phosphorus was the main deficient nutrient.  

 

Although volume increases were not found to be significant between control plots and 

fertilised plots on a 95% confidence level, further examination into costs incurred and 

income received due to increased growth is positive. Fisher and Binkley (2000) found in 

a loblolly pine case study that growth increases kept pace with the compounding of 

interest on the fertiliser investment on a 30 year rotation basis. Growth in that case study 

was increased by only 1.4m³ ha-1 annually which compares well with findings in this 

study that with only a minor increase in growth due to fertiliser application the 

investment would be justified. An increase of up to 5.43 m³ ha-1 annually is attractive and 

provides large differences in profit margins when compared with control plots (Appendix 

D).  

 

This study could serve as a building block for future research especially with regards to 

LAI measurements with the gap fraction method, and its accuracy in relation to 

allometric measurements or vector analyses. The LAI increase with relation to volume 

increment in this study did not give sufficient indication that there is a positive 

relationship as sites responded differently in LAI to fertiliser treatment. The seasonal 

fluctuation of LAI (Figure 4) however indicates that water availability is low in the 

summer months, and limits growth to a large extent. Foliage needs to be re-established 
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before every growing season which limits the potential carbon allocation to stem 

biomass as energy is used to produce foliage.  

 

As mentioned in chapter 4, section 3 no significant difference was found in volume 

increment in the 18 months of measurement although some responses were rather 

large. It is therefore important to quantify the economics of the actual volume increase to 

evaluate whether mid-rotation fertiliser treatment would ensure a positive return on the 

investment. 

 

Donald (1987) found that fertiliser application to mid-rotation pine stands are more 

beneficial than application of fertiliser at planting describing the following reasons: (a) 

the quality of the additional wood is better than that derived from the first thinning, (b) 

the additional volume increment per ha occurs on fewer trees which therefore increases 

the value of each log, (c) the harvesting cost is less as log volumes are larger, and (d) 

the compound interest period is shorter. 

 

Fertilisation of specific compartments (e.g. Grabouw treatments 1F and 2F) yielded 

large responses in basal area and volume increments (Table 4.3), with equally large 

error bars (Figures 9 and 10). It follows that the lack of significance may stem from the 

large differences in basal area, stocking and leaf area existing between compartments 

and even between experimental plots within compartments at the onset of the 

experiment and the limited number of replications. It also needs to be considered that 

this study was not initiated as a pre-designed experiment, but rather as an effort to 

monitor the response and understand the response mechanism to fertilisation applied by 

management. The study thus relied on the rapid establishment of monitoring plots in 

specific compartments of plantations where a fertilisation program had already 

commenced. A larger number of replications per plantation may have been desirable 

and the lack of statistical significance in certain of the large responses may be (at least 

partly) due to the fact that replications per plantation and per compartment were limited. 

We have therefore discussed the practical and economic significance of the larger 
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responses obtained, despite the fact that they were not statistically significant in our 

(somewhat limited) statistical tests. 
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CHAPTER VI  CONCLUSIONS AND RECOMMENDATIONS 

 

The growth of a tree is determined by several environmental factors through their effects 

on physiological processes. These effects can be summarised in terms of the amount of 

light which is captured by canopies and with sufficient amounts of water and nutrients 

could be converted into biomass. In this study the nutritional status was estimated 

through foliar analyses, in order to establish which fertiliser treatment would alleviate 

deficiencies in order to increase growth efficiency. 

 

Taking into consideration that some shortcomings were present in this study with 

respect to variations in study sites, and statistically insignificant growth responses, many 

positive outcomes have been realised. This study covers a wide variation of forestry 

area in the Boland region of the Western Cape that is low in productivity, due to the lack 

of soil nutrition and a short growing season which is generally the case in a 

Mediterranean climate.  This emphasises that fertiliser application could enhance growth 

in an economically feasible manor when applied in the right areas.  

 

Foliar nutrient analysis could be used to show that the nutrient status of trees improved 

following fertilisation and that these treatments resulted in growth improvements. The 

foliar nutrient content confirmed that substantial quantities of the applied nutrients were 

taken up. 

 

Leaf area varied strongly with season with a magnitude of between 0.6 to 0.7 units 

between dry and wet seasons. This has implications for allometric work and future 

calibration of optically measured leaf area indices. While LAI responses were obtained 

in the first wet season following fertilisation, it is not clear if such responses will re-

appear in the second wet season after fertilisation. Resource and time constraints 

curtailed measurements and further research should therefore look into the longevity of 

the response, seeing that each dry season causes LAI to drop to very low levels.  
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Growth improvements with single fertiliser applications ranged from 2.33 to 3.62 m3 ha-1 

a-1 and all of these responses resulted in an improvement in NPV and IRR. Even 

comparatively small fertiliser responses at mid-rotation can thus be economically 

justifiable. An increase of 0.4 m3 ha-1 a-1 CAI on a MAI of 10.7 m3 ha-1 a-1 is found to be 

the breakeven point in this study. With consideration given to the increase in the 

stumpage value, it relates to a MAI of 10.9 m3 ha-1 a-1. Some growth responses were 

large (improvements of 5.43 m3 ha-1 a-1 in CAI) and I therefore recommend that in such 

areas it would be largely beneficial to apply fertiliser and consideration toward its 

implementation should be given despite them not being statistically significant.  

 

The largest growth responses were associated with stands where increases in growth 

efficiency were the main response mechanism, which also coincided with the longest 

moisture growing season which in this study is Grabouw. It has been found in 

Eucalyptus species that responses based on efficiency mechanisms appear to be larger 

in magnitude, and have greater longevity than responses to increased leaf area, 

especially in seasonally dry climates (du Toit, 2008). The fact that the Grabouw stand 

showed a strong improvement in GE with fertilisation, suggests a change in stand 

physiology that is likely to persist for some time. This finding is in keeping with the 

response obtained by Donald (1987) which was sustained for 10 years.  

 

Although positive responses were found in this study, accuracy and the potential of 

responses could be better researched under the following conditions: 

 

a) If the study area consisted of compartments with similar stocking and age it would 

minimise variables that could bias refinement of differences in growth response 

outcomes. Covariates for initial LAI and volume increment were only effective to 

remove some of the background variability statistically. Stocking and age 

apparently did play a role in some of the differences that were found in growth 

responses, but can also play an important role as a basis for future studies where 

specific mechanisms for growth responses need to be researched, 
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b) If measurement could take place over a longer period, the seasonality of LAI 

responses could be better understood, especially the LAI response in the second 

wet season. 

 

Until fertiliser recommendations can be bolstered with additional trial evidence, It would 

be recommended as an interim measure that fertilisation should take place on nutrient 

deficient sites (based on foliar analyses) where the duration of the moisture growing 

season is 6 months or longer. The limitation of water in the summer dry season is 

pronounced and has a significant influence on growth. Future research should focus on 

the interaction of water availability and fertiliser response to more clearly understand this 

interaction and to fine-tune recommendations for management.  

 

As a management tool outcomes in this study can give an indication of growth 

responses that could be expected when deficiencies are alleviated. On a scientific basis 

and in an attempt to acquire precision in a locally decreasing industry, further research 

into mechanistic processes need to be done in order to understand variance in 

responses to fertiliser application, as found in this study. 
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APPENDICES 

Appendix A – P radiata SAWTIMBER ROTATION (25 years) without fertiliser at MAI 

10.7 

Year Operation    R/ha 
  -1 Land Value   6170 
  0 Land Clearing   1669 
  0 Planting & plants   856 
  0 Fertilizing   551 
  0 Blanking   166 
  1 Weeding Cost   1138 
  2 Weeding Cost   1138 
  3 Prune to 2.5 m   436 
  5 Prune to 3.5 m   515 
  7 Prune to 5.5 m   576 
  9 Prune to 7.0 m   578 
  12 Marking trees to thin   289 
  13 Fertiliser Follow Up   0 
  All Years Noxious Weeds & pests   61 
  All Years Fire Protection incl insurance   149 
  All Years Fire extinguishing   16 
  All Years Conservation   35 
  All Years Road Maintenance incl harvesting roads   146 
  All Years Administration Overheads   573 
  Harvesting Operation    R/m³ 
  12 Thinning   129.78 
  25 Harvesting   63.24 
  Cost AT Roadside   193 
  Yield Product MAI m³/ha 
  12 Other (Thinning) 7.4 88.8 
  25 Saw timber 10.7 268 
  Selling Prices 

 
  R/m³ 

  12 Other (Thinning)   214.98 
  25 Saw timber   306.12 
  Stumpage Product    R/m³ 
  12 Other (Thinning)   85 
  25 Saw timber   243 
  

NPV - IRR Calculations        5.95% 

Year Operation Cost/ha Annual Costs Revenue/ha Net Cash flow 

-1 Land Value  R   6,170.00   R        572.76   R                 -     R   -6,742.76  

0 Land Clearing, Plants, Planting, Fertilizing  R   3,242.55   R        572.76   R                 -     R    -3,815.31  

1 Weeding Cost  R     1,137.50   R       979.84   R                 -     R    -2,117.34  

2 Weeding Cost  R     1,137.50   R       979.84   R                 -     R    -2,117.34  

3 Pruning to 2.5  R      435.86   R       979.84   R                 -    
 R     -

1,415.70  

4      R       979.84   R                 -     R      -979.84  

5 Pruning to 3.5  R       515.28   R       979.84   R                 -     R    -1,495.12  

6      R       979.84   R                 -     R      -979.84  

7 Pruning to 5.5  R      576.23   R       979.84   R                 -     R    -1,556.07  

8      R       979.84   R                 -     R      -979.84  

9 Pruning to 7.0  R       577.56   R       979.84   R                 -     R    -1,557.40  

10      R       979.84   R                 -     R      -979.84  

11 Marking trees to thin  R      289.12   R       979.84   R                 -     R   -1,268.96  

12 Thinning  R  11,524.46   R       979.84   R  19,090.22   R    6,585.92  

13    R               -     R       979.84   R                 -     R      -979.84  

14    R               -     R       979.84   R                 -     R      -979.84  

15    R               -     R       979.84   R                 -     R      -979.84  

16    R               -     R       979.84   R                 -     R      -979.84  

17    R               -     R       979.84   R                 -     R      -979.84  

18    R               -     R       979.84   R                 -     R      -979.84  

19    R               -     R       979.84   R                 -     R      -979.84  

20    R               -     R       979.84   R                 -     R      -979.84  

21    R               -     R       979.84   R                 -     R      -979.84  

22    R               -     R       979.84   R                 -     R      -979.84  

23    R               -     R       979.84   R                 -     R      -979.84  

24    R               -     R       979.84   R                 -     R      -979.84  

25 Clear fell  R               -     R       979.84   R    71,140.40   R   70,160.56  

  NPV       R -5,978.70 

  IRR       4.25% 
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Appendix B – P. radiata SAWTIMBER ROTATION (25 YEARS) with fertiliser 

application and increase in MAI by 2 m³ ha⁻¹ a⁻¹ 

 
       Year Operation    R/ha 

   -1 Land Value   6170 
   0 Land Clearing   1669 
   0 Planting & plants   856 
   0 Fertilizing   551 
   0 Blanking   166 
   1 Weeding Cost   1138 
   2 Weeding Cost   1138 
   3 Prune to 2.5 m   436 
   5 Prune to 3.5 m   515 
   7 Prune to 5.5 m   576 
   9 Prune to 7.0 m   578 
   12 Marking trees to thin   289 
   13 Fertiliser Follow Up   1200 
   All Years Noxious Weeds & pests   61 
   All Years Fire Protection incl insurance   149 
   All Years Fire extinguishing   16 
   All Years Conservation   35 
   All Years Road Maintenance incl harvesting roads   146 
   All Years Administration Overheads   573 
   Harvesting Operation    R/m³ 
   12 Thinning   129.78 
   25 Harvesting   57.73 
   Cost AT Roadside   188 
   Yield Product MAI m³/ha 
   12 Other (Thinning) 7.4 88.8 
   25 Saw timber 11.6 290 
   Selling Prices 

 
  R/m³ 

   12 Other (Thinning)   214.98 
   25 Saw timber   319.97 
   Stumpage Product    R/m³ 
   12 Other (Thinning)   85 
   25 Saw timber   262 
   

NPV - IRR Calculations       5.95% 
 Year Operation Cost/ha Annual Costs Revenue/ha Net Cash flow 
 -1 Land Value  R   6,170.00   R        572.76   R                 -     R   -6,742.76  
 0 Land Clearing, Plants, Planting, Fertilizing  R   3,242.55   R        572.76   R                 -     R    -3,815.31  
 1 Weeding Cost  R     1,137.50   R       979.84   R                 -     R    -2,117.34  
 2 Weeding Cost  R     1,137.50   R       979.84   R                 -     R    -2,117.34  
 3 Pruning to 2.5  R      435.86   R       979.84   R                 -     R     -1,415.70  
 4      R       979.84   R                 -     R      -979.84  
 5 Pruning to 3.5  R       515.28   R       979.84   R                 -     R    -1,495.12  
 6      R       979.84   R                 -     R      -979.84  
 7 Pruning to 5.5  R      576.23   R       979.84   R                 -     R    -1,556.07  
 8      R       979.84   R                 -     R      -979.84  
 9 Pruning to 7.0  R       577.56   R       979.84   R                 -     R    -1,557.40  
 10      R       979.84   R                 -     R      -979.84  
 11 Marking trees to thin  R      289.12   R       979.84   R                 -     R   -1,268.96  
 12 Thinning  R  11,524.46   R       979.84   R  19,090.22   R    6,585.92  
 13 Fertiliser Follow Up  R   1,200.00   R       979.84   R                 -     R   -2,179.84  
 14    R               -     R       979.84   R                 -     R      -979.84  
 15    R               -     R       979.84   R                 -     R      -979.84  
 16    R               -     R       979.84   R                 -     R      -979.84  
 17    R               -     R       979.84   R                 -     R      -979.84  
 18    R               -     R       979.84   R                 -     R      -979.84  
 19    R               -     R       979.84   R                 -     R      -979.84  
 20    R               -     R       979.84   R                 -     R      -979.84  
 21    R               -     R       979.84   R                 -     R      -979.84  
 22    R               -     R       979.84   R                 -     R      -979.84  
 23    R               -     R       979.84   R                 -     R      -979.84  
 24    R               -     R       979.84   R                 -     R      -979.84  
 25 Clear fell  R               -     R       979.84   R  82,219.60   R  81,239.76  
   NPV       R -4,156.05 
   IRR       4.86% 
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Appendix C – P. radiata SAWTIMBER ROTATION (25 YEARS) with fertiliser 

application and increase by 4 m³ ha⁻¹ a⁻¹ 

 
      Year Operation    R/ha 

  -1 Land Value   6170 
  0 Land Clearing   1669 
  0 Planting & plants   856 
  0 Fertilizing   551 
  0 Blanking   166 
  1 Weeding Cost   1138 
  2 Weeding Cost   1138 
  3 Prune to 2.5 m   436 
  5 Prune to 3.5 m   515 
  7 Prune to 5.5 m   576 
  9 Prune to 7.0 m   578 
  12 Marking trees to thin   289 
  13/14 Fertiliser Follow Up   1200 
  All Years Noxious Weeds & pests   61 
  All Years Fire Protection incl insurance   149 
  All Years Fire extinguishing   16 
  All Years Conservation   35 
  All Years Road Maintenance incl harvesting roads   146 
  All Years Administration Overheads   573 
  Harvesting Operation    R/m³ 
  12 Thinning   129.78 
  25 Harvesting   53.10 
  Cost AT Roadside   183 
  Yield Product MAI m³/ha 
  12 Other (Thinning) 7.4 88.8 
  25 Saw timber 12.6 316 
  Selling Prices 

 
  R/m³ 

  12 Other (Thinning)   214.98 
  25 Saw timber   331.70 
  Stumpage Product    R/m³ 
  12 Other (Thinning)   85 
  25 Saw timber   279 
  

NPV - IRR Calculations       5.95% 

Year Operation Cost/ha Annual Costs Revenue/ha Net Cash flow 

-1 Land Value  R   6,170.00   R        572.76   R                   -     R   -6,742.76  

0 Land Clearing, Plants, Planting, Fertilizing  R   3,242.55   R        572.76   R                   -     R    -3,815.31  

1 Weeding Cost  R     1,137.50   R       979.84   R                   -     R    -2,117.34  

2 Weeding Cost  R     1,137.50   R       979.84   R                   -     R    -2,117.34  

3 Pruning to 2.5  R      435.86   R       979.84   R                   -     R     -1,415.70  

4      R       979.84   R                   -     R      -979.84  

5 Pruning to 3.5  R       515.28   R       979.84   R                   -     R    -1,495.12  

6      R       979.84   R                   -     R      -979.84  

7 Pruning to 5.5  R      576.23   R       979.84   R                   -     R    -1,556.07  

8      R       979.84   R                   -     R      -979.84  

9 Pruning to 7.0  R       577.56   R       979.84   R                   -     R    -1,557.40  

10      R       979.84   R                   -     R      -979.84  

11 Marking trees to thin  R      289.12   R       979.84   R                   -     R   -1,268.96  

12 Thinning  R  11,524.46   R       979.84   R    19,090.22   R    6,585.92  

13 Fertiliser Follow Up  R   1,200.00   R       979.84   R                   -     R   -2,179.84  

14 Fertiliser Follow Up  R   1,200.00   R       979.84   R                   -     R   -2,179.84  

15    R               -     R       979.84   R                   -     R      -979.84  

16    R               -     R       979.84   R                   -     R      -979.84  

17    R               -     R       979.84   R                   -     R      -979.84  

18    R               -     R       979.84   R                   -     R      -979.84  

19    R               -     R       979.84   R                   -     R      -979.84  

20    R               -     R       979.84   R                   -     R      -979.84  

21    R               -     R       979.84   R                   -     R      -979.84  

22    R               -     R       979.84   R                   -     R      -979.84  

23    R               -     R       979.84   R                   -     R      -979.84  

24    R               -     R       979.84   R                   -     R      -979.84  

25 Clearfell  R               -     R       979.84   R   94,068.93   R 93,089.09  

  NPV       R -2,143.33 

  IRR       5.42% 
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Appendix D – P. radiata SAWTIMBER ROTATION (25 YEARS) with fertiliser 

application and increase by 6m³ ha⁻¹ a⁻¹ 

 
      Year Operation    R/ha 

  -1 Land Value   6170 
  0 Land Clearing   1669 
  0 Planting & plants   856 
  0 Fertilizing   551 
  0 Blanking   166 
  1 Weeding Cost   1138 
  2 Weeding Cost   1138 
  3 Prune to 2.5 m   436 
  5 Prune to 3.5 m   515 
  7 Prune to 5.5 m   576 
  9 Prune to 7.0 m   578 
  12 Marking trees to thin   289 
  13/14 Fertiliser Follow Up   1200 
  All Years Noxious Weeds & pests   61 
  All Years Fire Protection incl insurance   149 
  All Years Fire extinguishing   16 
  All Years Conservation   35 
  All Years Road Maintenance incl harvesting roads   146 
  All Years Administration Overheads   573 
  Harvesting Operation    R/m³ 
  12 Thinning   129.78 
  25 Harvesting   51.15 
  Cost AT Roadside   181 
  Yield Product MAI m³/ha 
  12 Other (Thinning) 7.4 88.8 
  25 Saw timber 13.6 340 
  Selling Prices 

 
  R/m³ 

  12 Other (Thinning)   214.98 
  25 Saw timber   345.04 
  Stumpage Product    R/m³ 
  12 Other (Thinning)   85 
  25 Saw timber   294 
  

NPV - IRR Calculations       5.95% 

Year Operation Cost/ha Annual Costs Revenue/ha Net Cash flow 

-1 Land Value  R   6,170.00   R        572.76   R                   -     R    -6,742.76  

0 Land Clearing, Plants, Planting, Fertilizing  R   3,242.55   R        572.76   R                   -     R      -3,815.31  

1 Weeding Cost  R     1,137.50   R       979.84   R                   -     R      -2,117.34  

2 Weeding Cost  R     1,137.50   R       979.84   R                   -     R      -2,117.34  

3 Pruning to 2.5  R      435.86   R       979.84   R                   -     R      -1,415.70  

4      R       979.84   R                   -     R       -979.84  

5 Pruning to 3.5  R       515.28   R       979.84   R                   -     R      -1,495.12  

6      R       979.84   R                   -     R       -979.84  

7 Pruning to 5.5  R      576.23   R       979.84   R                   -     R      -1,556.07  

8      R       979.84   R                   -     R       -979.84  

9 Pruning to 7.0  R       577.56   R       979.84   R                   -     R      -1,557.40  

10      R       979.84   R                   -     R       -979.84  

11 Marking trees to thin  R      289.12   R       979.84   R                   -     R    -1,268.96  

12 Thinning  R  11,524.46   R       979.84   R    19,090.22   R      6,585.92  

13 Fertiliser Follow Up  R   1,200.00   R       979.84   R                   -     R     -2,179.84  

14 Fertiliser Follow Up  R   1,200.00   R       979.84   R                   -     R     -2,179.84  

15    R               -     R       979.84   R                   -     R       -979.84  

16    R               -     R       979.84   R                   -     R       -979.84  

17    R               -     R       979.84   R                   -     R       -979.84  

18    R               -     R       979.84   R                   -     R       -979.84  

19    R               -     R       979.84   R                   -     R       -979.84  

20    R               -     R       979.84   R                   -     R       -979.84  

21    R               -     R       979.84   R                   -     R       -979.84  

22    R               -     R       979.84   R                   -     R       -979.84  

23    R               -     R       979.84   R                   -     R       -979.84  

24    R               -     R       979.84   R                   -     R       -979.84  

25 Clear fell  R               -     R       979.84   R   105,947.01   R   104,967.17  

  NPV       R 351.38 

  IRR       6.03% 
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Appendix E – Average long term moisture growing season (MGS; where average 

P> 0.3Er) at Grabouw. 
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