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Acacia mangium Willd: benefits and threats
associated with its increasing use around
the world
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Abstract

Background: Acacia mangium, a fast-growing tree native to parts of Indonesia, Papua New Guinea and Australia,
has been cultivated outside its native environment and introduced into humid tropical lowland regions of Asia,
South America and Africa over the last few decades. It is a multipurpose tree used in agroforestry, forestry and for
restoration of degraded lands. It is also highly invasive in many regions where it has been introduced outside its
native range. This paper reviews evidence of its obvious benefits and its negative impacts on biodiversity.

Methods: A literature review on Australian acacias and especially on A. mangium was undertaken to highlight both
benefits and threats associated with their increasing worldwide use outside their native ranges.

Results: Through N2 fixed from the atmosphere, A. mangium improves soil fertility, especially by increasing N status
and soil C accretion when introduced to N-limited areas; it thus has the potential to restore nutrient cycling in
degraded systems. No studies have, however, been done to assess the effectiveness of A. mangium in restoring
biodiversity of degraded lands. Most Australian acacias have traits that facilitate invasiveness, and 23 species have
been recorded as invasive to date. A. mangium has been reported as invasive in Asia, Indonesia, Pacific Islands,
Indian Ocean Islands, southern Africa and Brazil. Research on other invasive Australian acacias in several parts of the
world has elucidated the types of impacts that are likely in different types of ecosystems and key options for
mitigating impacts.

Conclusions: A. mangium has the potential to restore nutrient cycling in degraded systems, but is highly invasive
wherever it is planted. Many parts of the world have a large invasion debt for this species. Experience with other
invasive acacias around the world suggests a suite of interventions that could be used to reduce invasions and
mitigate impacts. Careful risk assessments should be undertaken prior to any new plantings of this species.
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Background
Due to their diverse uses, tropical Australian acacias are
widely planted around the world – in Asia where they
were first introduced (Midgley and Turnbull 2003; Inagaki
et al. 2011; Richardson et al. 2011), Africa (Bernhard-Re-
versat 1993; Tassin et al. 2012; Dubliez et al. 2018) and
South America (Franco and de Faria, 1997; Chaer et al.
2011; Attias et al. 2013). They are used in agriculture, for-
estry and agroforestry to improve soil fertility (especially
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soil nitrogen), to sequester carbon and potentially to
restore nutrient cycling in degraded lands and forests, but
also for commercial forestry, for ornamental purposes,
and to supply wood and charcoal (Bernhard-Reversat
1993; Franco et al. 1994; Parrotta and Knowles, 1999;
Fuentes-Ramírez et al. 2011; Bouillet et al. 2013; Sitters
et al. 2013; Permadi et al., 2017). Forest productivity or
crop yields usually increase on N-limited sites in the pres-
ence of N-fixing species (NFS) such as Australian acacias
(Binkley 1992; Khanna 1998; Bouillet et al. 2013; Nambiar
and Harwood 2014; Paula et al. 2015; Dubliez et al. 2018),
as does soil N status (Sanginga et al. 1986; Binkley 1992;
Parrotta, 1999; Kaye et al. 2000; Resh et al. 2002; Ludwig
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et al. 2004; Hagos and Smit 2005; Sitters et al. 2013). Most
Australian acacias have the capacity to sequester C in both
soil and biota which also addresses goals associated with
climate-change mitigation (Binkley 1992; Kaye et al. 2000;
Resh et al. 2002; Lee et al. 2015; Forrester et al. 2013),
though soil C storage may not occur in some cases (Voig-
tlaender et al. 2012; Oelofse et al. 2016).
Most Australian acacias have traits associated with

invasiveness. Twenty-three species have been recorded
as invasive to date, and some are major invasive species
in many geographical areas (Richardson and Rejmánek
2011; Gibson et al. 2011; Rejmánek and Richardson
2013; Richardson et al. 2015). In documenting the global
biogeography and invasion ecology of Australian acacias,
Richardson et al. (2011) showed that all species that have
been widely planted for forestry or other uses have
become invasive. Whether an alien species becomes
invasive depends on many factors, including life-history
traits and the extent, level, and duration of species usage
in the new environment. Considerable work has been
done in this regard on Australian acacias. Interactions
between traits, human usage, and residence time explain
the extent of invasiveness for acacias (Castro-Díez et al.
2011). There is usually a long time lag between introduc-
tion and planting and the start of invasive spread; this
results in a substantial ‘invasion debt’ in many areas
where the widespread planting of alien species has oc-
curred recently (Rouget et al. 2016).
A. mangium, one of the Australian acacias that is

widely planted in many parts of the world, has clear
benefits in agricultural, agroforestry and forestry ecosys-
tems (Bernhard-Reversat 1993; Franco et al. 1994;
Parrotta and Knowles, 1999; Richardson et al. 2004; Kull
et al. 2011; Epron et al. 2013). Key reasons for the
widespread planting of A. mangium, in commercial
monoculture plantations or in mixed plantings with
other tree species or crops in areas with infertile soils,
are its capacity to improve soil fertility (Wang et al.
2010; Forrester et al. 2013; Koutika et al. 2014; Machado
et al. 2017; Tchichelle et al. 2017), change the soil faunal,
microbial and bacterial communities (Bernhard-Reversat
1993; Bini et al. 2012, 2013; Huang et al. 2014; Pereira
et al. 2017), and to stimulate crop or tree growth and
forest productivity (Bouillet et al. 2013; Epron et al.
2013; Paula et al. 2015). The species is considered useful
for these purposes due to the enhanced nutrient cycling,
higher nutrient availability and microbial activities that
accrue from its presence (Khanna 1998; Bini et al. 2012;
Rachid et al. 2013; Santos et al., 2017a, b). Introduction
of A. mangium to agricultural, agroforestry or large open
areas is, however, increasingly being shown to trigger
major biological invasions. The number of publications
documenting the invasive spread of A. mangium from
planting sites is increasing rapidly; the species is currently
recorded as an invasive species in Asia, Indonesia,
southern Africa and South America (Richardson and
Rejmánek 2011; Ismael and Metali 2014; Aguiar et al.
2014; Meira-Neto et al. 2018; Souza et al. 2018). Such
invasions are reducing the overall benefit from using the
species and is creating conflicts of interest between (agro)
foresters on the one hand and conservationists and
natural resource managers on the other. Such conflicts are
arising in many temperate regions of the world where
other Australian Acacia species (and other legume trees)
have been planted outside their native range. Management
initiatives are underway in many areas to reduce such
conflicts (e.g. Kull and Rangan 2008; Dickie et al. 2014;
van Wilgen and Richardson 2014; Shackleton et al. 2018
and references therein).
Australian acacias are favoured for planting because of

their high adaptability; climatic modelling shows that
roughly a third of the world’s land areas are suitable for
growth of Australian acacias (Richardson et al. 2011). The
largest area of plantations of tropical Australian acacias is
in South East Asia where plantings cover about 2 Mha
(Midgley and Turnbull 2003; Arisman and Hardiyanto
2006; Kull and Rangan 2008). A. mangium Willd., a large
tree which can reach 30m in height, is native to parts of
Indonesia, Papua New Guinea and Australia. The species
produces many flowers and is mainly pollinated by bees
(Midgley and Turnbull 2003). It grows in coastal, tropical
lowlands (at altitudes below 300m) and in a range of for-
est types (rainforests to open forests), but also in wood-
lands disturbed by fire (Midgley and Turnbull 2003). The
natural distribution of A. mangium overlaps with the
warm and hot tropical climatic zones where the tempera-
tures are high and equable throughout the year, with the
mean maximum temperature during the hottest month
between 31 °C and 34 °C and the mean minimum
temperature during the coolest month between 15 °C and
22 °C (Otsamo et al. 1997; Midgley and Turnbull 2003).
Mean annual rainfall across its natural range is between
1500 and 3000mm, with summer (January to March) be-
ing the wettest period. This fast-growing species prefers
well-drained soils of moderate to low fertility (Franco
et al. 1994; Cole et al. 1996; Bouillet et al. 2013; Aguiar
et al. 2014). Extended dry season and sandy and nutrient-
poor soils outside its native range may, however, trigger
growth during the first year (Koutika et al. 2018). Like
many acacia species, A. mangium is adapted to acidic
soils, and grows in soils with pH below 4 (Franco and de
Faria, 1997; Midgley and Turnbull 2003).
This paper reviews the benefits and threats of A. man-

gium in areas where it is planted outside its native range,
and discusses whether it is feasible to promote planting
of the species to encourage the benefits it provides while
reducing current and potential future negative impacts
due to invasiveness.
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Methods
Literature review
Using keywords associated with ‘Australian acacias’ and ‘A.
mangium’ we undertook a detailed review of peer-re-
viewed papers, books, book chapters, conference proceed-
ings, online publications and the grey literature. We used
Google, Google Scholar, Web of Science, and the data-
bases of research institutions, notably EMBRAPA (Brazil-
ian Agricultural Research Corporation), CIMMYT (The
International Maize and Wheat Improvement Center),
Université de Lorraine (France), and the Centre for Inva-
sion Biology (Stellenbosch University) to source informa-
tion on the benefits and impacts associated with the use
of Australian acacias, and particularly A. mangium, out-
side their native ranges.

Acacia mangium and its changing global distribution
A. mangium is widely used in commercial plantations
to provide products such as pulp, firewood, charcoal,
Table 1 First introduction of Acacia mangium and current levels of
mangium were also dispatched from Australian Tree Seed Centre to
not available (decade that seeds were first dispatched in brackets): C
(1980s), Cote d’Ivoire (1980s), India (1980s), Laos (1980s), Mexico (198
Tanzania (1980s), Thailand (1980s), Uganda (1980s) and Venezuela (1

Countries / Time First introduction & purpose(s) Initi
area

Asia

China 1979 NA

Indonesia Native (eastern part) 1960s NA

Malaysia 1966, Forestry& restoration 15,0
deg
land

Philippines 1977 NA

Vietnam 1960s (southern part), 1980s (northern part), Genetic
improvement, reforestation, reclamation

580

Africa

Cameroon 1980, Planting program NA

DR Congo 1980s, Agroforestry NA

Kenya 1980s NA

Republic of
the Congo

1990s, Experimental plantations NA

America

Brazil
(Roraima)

1990s, Commercial forestry 30,0

Costa Rica 1980, Planting program NA

Dominican
Republic

1980s, Social forestry NA

Hawaii 1979, Planting program NA

NA Not Available
construction material; it is also used for soil protection
and ecological restoration purposes and as a food source
for bees (Awang and Taylor 1993; Franco and de Faria,
1997; Otsamo et al. 1997; Midgley and Turnbull 2003;
Eyles et al. 2008; Kull and Rangan 2008; Coetzee et al.
2011; Hai et al. 2015). Key life-history traits of the spe-
cies are its rapid growth, prolific production of hard
-coated, heat-tolerant and long-lived seeds with the cap-
acity for long dormancy and long-distance dispersal by
birds (Awang and Taylor 1993; Franco et al. 1994; Gib-
son et al. 2011; Low 2012). A. mangium has been widely
cultivated outside its native range in the last century,
mainly in the humid tropical lowlands of Asia, South
America and Africa (Bernhard-Reversat 1993; Otsamo
et al. 1997; Franco and de Faria, 1997; Kull et al. 2007;
Hai et al. 2015; Oelofse et al. 2016, Table 1). The species
was first introduced to Malaysia in 1966 where it was
initially planted for firebreaks and to protect pine planta-
tions, but its rapid growth suggested potential for wood
planting in some countries around the world. Seeds of A.
the following countries for which detailed planting details are
ambodia (1980s), Central African Republic (2000s), Colombia
0s), Mozambique (1980s), Myanmar (1980s), Sri Lanka (1980s),
980s)(Australian Tree Seed Centre, unpublished data)

al planted
s

Current level
of plantings

Key references

NA Yang et al. 2009

300,000–500,000 ha
(2013)

Midgley and Turnbull 2003; Nambiar &
Harwood 2014; Nambiar et al. 2018

00 ha
raded
s

250,000 ha
(2013)

National Research Council 1983; Midgley
and Turnbull 2003;
Nambiar & Harwood 2014;
Nambiar et al. 2018

NA National Research Council 1983

,000 ha 600,000 ha
(2013)

Kull et al. 2011; Nambiar et al. 2014;
Nambiar & Harwood 2014;
Frey et al. 2018

NA National Research Council 1983

NA Tassin et al. 2012

NA Kenya Forestry Research Organization
(KEFRI)

NA Bernhard-Reversat 1993

00 ha NA Souza et al. 2018

NA National Research Council 1983

NA Kull et al. 2011

NA National Research Council 1983
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production (Midgley and Turnbull 2003). Kull and Ran-
gan (2008) reported that in the 2000s, both Malaysia and
Indonesia had nearly 850,000 ha of commercial planta-
tions of A. mangium. In South America, A. mangium
has been introduced for different purposes. Commercial
cultivation for pulpwood production and tannin and
plantings for the reclamation of degraded lands were
main reasons for the introduction of A. mangium to
Brazil (Franco and de Faria, 1997; Attias et al. 2013),
while in northeastern Costa Rica the species has been
used mainly for restoration plantations (Chazdon 2008).
In South East Asia, species such as A. mangium and

A. auriculiformis are used mainly for solid wood produc-
tion and short-rotation fibre (Midgley and Turnbull
2003). Due to their large canopies and ability to increase
soil N and soil organic matter (SOM), to improve condi-
tions for photosynthesis, and to buffer air and soil tem-
peratures, A. auriculiformis and A. mangium have been
widely planted in degraded areas to serve as nurse trees
for understorey plants in South China (Yang et al. 2009).
In Central Africa, A. auriculiformis and A. mangium
have been planted as part of Project Makala (http://
makala.cirad.fr/le_projet_makala) for fuel and wood en-
ergy e.g., in DR Congo and the Republic of the Congo.
Both species were also planted for agroforestry and for-
estry in the two countries. A. auriculiformis is valued by
farmers for both agricultural and wood-energy produc-
tion in agroforestry or forestry systems in DR Congo
(Kasongo et al. 2009; Shure et al. 2010; Dubliez et al.
2018), while A. mangium is mainly used to sustain euca-
lypt plantations to provide pulp, fuel and wood energy in
the Congolese coastal plains of the Republic of the
Congo (Shure et al. 2010; Bouillet et al. 2013; Epron
et al. 2013; Tchichelle et al. 2017).

History and extent of invasiveness of A. mangium
In some countries, A. mangium is considered an invasive
tree species (Richardson and Rejmánek 2011; Low 2012;
Rejmánek and Richardson 2013; Attias et al. 2013;
Aguiar et al. 2014; Sampaio and Schmidt 2013; Richard-
son et al. 2015; Witt 2017; Souza et al. 2018). We could
find no statistics on the extent of invasions or the area
invaded in different regions. In northeastern Roraima
State, Brazilian Amazonia, invasions commenced within
a decade of the establishment of large plantations, and
invading plants were recorded up to 900 m from the
plantation edge (Aguiar et al. 2014). Table 1 shows that
introductions and major plantings of A. mangium are re-
cent in most parts of the world; experience in South Af-
rica has shown that major invasions of Australian
acacias typically occur only several decades after major
plantings began (Richardson et al. 2015). This means
that most of the countries mentioned in Table 1 have a
major invasion debt (Rouget et al. 2016) for A. mangium
and that large-scale invasions are likely to occur over the
next few decades.

Benefits of using A. mangium for ecosystems and the
environment
Improving soil nitrogen status
Nitrogen-fixing species (NFS) have the ability to improve
soil N status. For example, Leucaena leucocephala
(Lam.) de Wit, a NFS, provided more than 500 kg of N
ha·y− 1 (Sanginga et al. 1986). Parrotta (1999) reported
higher N accretion in L. leucocephala stands relative to
pure eucalypt stands or when grown in association with
another NFS, Casuarina equisetifolia L. Acacia auriculi-
formis, established as fallow in the mixed crop food sys-
tems on sandy arenosols in DR Congo, increases soil N
(Kasongo et al. 2009). A. auriculiformis and A. mangium
were planted to serve as nurse trees for understorey
plants in degraded soils in South China (Yang et al.
2009). Higher soil N status was found in A. mangium
relative to A. auriculiformis - a total soil nitrogen of
0.103 ± 0.02% vs. 0.092 ± 0.01% and a hydrolysed nitro-
gen of 105.7 ± 16.9 mg·kg− 1 vs 89.3 ± 3.78mg·kg− 1

(Table 2). Soil N status improved in the pure A. man-
gium relative to pure eucalypt stands with the cumula-
tive net production of mineral N over the two first years
in the second rotation of 7 years i.e., 343 kg·ha− 1 in aca-
cia and only 189 kg·ha− 1 in eucalypt stands in the Con-
golese coastal plains (Tchichelle et al. 2017). This has
been confirmed by the 30% higher N concentration in
coarse particulate organic matter (POM, 4000–250 μm),
an active part of soil organic matter, in pure A. mangium
stands compared to pure eucalypt stands at year 2 of the
second rotation (Koutika et al. 2017). These findings are
in accordance with the reduction in N-limitation to
growth shown by an increase in N: P ratio of eucalypt
leaves from 9.4 ± 0.5 (end of the 7 first year rotation) to
13.1 ± 0.6 (year 2 of the second rotation) (Koutika et al.
2016), and the improvement in soil N status of affor-
ested stands containing acacias compared to natural sa-
vannas (Koutika and Mareschal 2017).

Potential to restore degraded lands
We found no published evidence to support the conten-
tion that the planting of Australian acacias aids in
restoring biodiversity levels or the conservation value of
degraded ecosystems. Several Australian acacias do,
however, have the potential to restore elements of nutri-
ent cycling in degraded ecosystems (Franco and de Faria,
1997; Yang et al. 2009; Sang et al. 2013; Machado et al.
2017). NFS, including A. mangium, have the potential to
rehabilitate degraded lands (Otsamo et al. 1997; Wang
et al. 2010; Richardson et al. 2015; Permadi et al., 2017,
Table 2), unmanaged secondary forests (Sang et al. 2013)
and understorey plants (Yang et al. 2009). The ability to

http://makala.cirad.fr/le_projet_makala
http://makala.cirad.fr/le_projet_makala


Table 2 Benefits of planting Acacia mangium in terms of land restoration, C sequestration, soil fertility and tree production in
different ecosystems

Original ecosystem /
habitat

Current
ecosystem

Country Soil type Soil fertility Tree
productivity

Reference

Nitrogen status Phosphorus
status

Carbon
status

Soil fauna/
microbial
status

Savannas Acacia
plantations

Republic
of
Congo

Arenosols NA NA NA Higher
activity of
macroar-
thropods,
incl.
Cockroaches

NA Bernhard-
Reversat
1993

Degraded
areas

Revegetating
tailing tanks

Brazil Tropical
soils

Increased
(190 kg
of N ha−1∙y−1)

NA Increased NA NA Franco
and de
Faria, 1997

Eucalyptus
siebiri

Mixed-species
plantations

Australia Sandy
clay loam

+ NA Increased
soil C

NA Increased Forrester
et al.
2013

Pinus
massoniana
plantation

Eucalypt and
acacia
plantations
(1978)

China Oxisol Increase in
NH4-N,
NO3-N,
and total
N in the
mixed
species
plantations

NA Increase in
total C

Changes in
microbial
communities

NA Huang
et al. 2014

Plantations Mixed-
species
plantations
with A.
mangium

Malaysia Haplic
Alisols

More N
in the
litterfall

Less P in the
litterfall

NA NA NA Inagaki
et al. 2011

Savannas/
Eucalypt
plantations
(1984)

Eucalypt and
acacia
plantations
(2004)

Republic
of
Congo

Arenosols Increase in
N
stocks
(0–0.25 m)/
Increase in
N contents
of coarse
POM
(4–0.25 mm)
Increase in
N mineralization
in pure acacia

Decrease in
available P
in the
mixed
species
stands (0–
0.15 m)

Increase in C
stocks
(0–0.25 m)

NA Eucalypt
benefits
from N2

fixed by
acacia

Koutika
et al. 2014;
Koutika
et al. 2017;
Epron et al.
2013;
Tchichelle
et al. 2017

Degraded
lands with
low fertility

A. mangium
plantations

Malaysia NA NA Increased NA Increased Lee et al.
2015

Eucalyptus Eucalypt and
acacia
plantations

Brazil Ferralsol – – – Higher activity
of microbial
and bacterial
communities

– Pereira
et al. 2017,
Pereira
et al. 2018

Degraded
tropical
lands

A. mangium Vietnam – Increased NA NA NA NA Sang et al.
2013

Fallow for
more than
15 years

Eucalypt and
acacia
plantations

Brazil Haplic
Planosol

More N in
the litterfall
of acacia vs
eucalypt

More P in
the litterfall
of eucalypt
vs acacia

NA NA
High
microbial
activity

Eucalypt
benefits
from N2

fixed by
acacia

Santos
et al.
2017a;
Santos
et al.
2017b;

Disturbed
evergreen
broadleaved
forest

Restored
forest with
A. mangium
and A.
auriculiformis

China Red soil + NA + + Good nurse
plants for
understory
species

Yang et al.
2009
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Table 2 Benefits of planting Acacia mangium in terms of land restoration, C sequestration, soil fertility and tree production in
different ecosystems (Continued)

Original ecosystem /
habitat

Current
ecosystem

Country Soil type Soil fertility Tree
productivity

Reference

Nitrogen status Phosphorus
status

Carbon
status

Soil fauna/
microbial
status

Degraded
lands

Mixed
species
plantations

China – 20%–50%
higher N than
non-N-fixers
counterpart

– 40%–50%
higher
SOM than
non-N-
fixers counter-
part

NA Land
restoration

Wang et al.
2010

NA Not Available
“+” and “-” indicate positive and negative effects, respectively
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form symbioses with nodulating N2-fixing bacteria and
arbuscular mycorrhizal fungi of leguminous trees is key
in this regard (Chaer et al. 2011). Franco and de Faria
(1997) showed that A. mangium may provide around 12
tons of dry litter and 190 kg of N ha− 1·y− 1 to restore de-
graded lands in Brazil. The effects of monospecific plan-
tations of A. mangium, Dipteryx odorata, Jacaranda
copaia, Parkia decussata, and Swietenia macrophylla
established in pasture areas on soil chemical properties
were evaluated in the Brazilian state of Amazonas
(Machado et al. 2017). These authors advised planting A.
mangium and S. macrophylla to rehabilitate degraded
areas because of their important role in cycling of N and
P, the most limiting nutrients in the soil for tropical for-
est productivity. Re-establishment of soil C and N cyc-
ling processes were reported after planting of A. auricu
liformis and A. mangium in southern China (Wang et al.
2010). For economic reasons (e.g., low cost of reforest-
ation, the positive correlation between C sequestration,
N and P amounts and aboveground biomass production)
A. mangium is considered superior to Eucalyptus uro-
phylla across edaphic and climate gradients in Vietnam
(Sang et al. 2013).

Enhancing carbon sequestration
NFS often have beneficial impacts on climate change
mitigation in reducing atmospheric CO2 by sequestering
C in both soil and biota (Binkley 1992; Chen et al. 2011;
Sang et al. 2013). In most cases, carbon sequestration in
soil and biomass occurs when NFS are introduced to
agricultural, agroforestry, and forestry systems (Binkley
1992; Resh et al. 2002; Kasongo et al. 2009; Chen et al.
2011; Forrester et al. 2013; Sang et al. 2013; Dubliez
et al. 2018). C sequestration occurred in both soil and
aboveground biomass in A. mangium plantations in
Malaysia, with higher soil C stocks, ranging between
52.2% to 87.5% of the total C (soil and biomass) stocks,
while the overall C stocks were 74.9, 89.9 and 138.9
t·ha− 1 for 1-, 3-, and 5-year-old stands (Lee et al. 2015).
C accretion has been reported down to 25 cm in the
mixed-species (50% acacia and 50% eucalypt) stands
(17.8 ± 0.7 t·ha− 1) compared to pure acacia (16.7 t·ha− 1)
and eucalypt stands (15.9 t·ha− 1) at the end of the first
7-year rotation in the Congo (Koutika et al. 2014). This
may be attributed to both the lower turnover of old C
and a higher accretion of new C (Resh et al. 2002). An-
other beneficial impact of A. mangium is its ability to
contribute to climate-change mitigation goals, since
emissions of N2O, one of the main greenhouse gases,
may be reduced by the application of its bark tannins in
water-saturated soil (Matsubara and Ohta 2015).
Stimulating microbial activity and P availability
Accrual in nutrients as soil N, P and C in A. mangium
monocultures or in A. mangium mixed with non-N-
fixing species is due to more effective and higher nutri-
ent cycling and availability (Santos et al. 2017a) and
greater stimulation of microbial activity and dynamics
in the litter (Bini et al. 2012; Pereira et al. 2018, Table
2). Distinct microbial communities have been reported
in mixed A. mangium/E. urograndis plantations, which
specific role for each species e.g., inducing an increase
in nitrate amounts in the pure A. mangium stands
(Rachid et al. 2013). Microbiological and chemical
changes occurring in soil due to leaf litter accumulation
in the intercropped plantations of eucalypt and A. man-
gium stimulate and favour plant growth (Bini et al.
2013). Litter decomposition depended on C quality i.e.,
water soluble compounds and lignin content, but also
on the activity of decomposers, which may be limited
by energy starvation and by P deficiency, common in
most tropical planted forests (Bachega et al. 2016). This
common P deficiency may be partly alleviated by intro-
ducing tree NFS and non-fixing species in nutrient
poor ecosystems such as savannas or grasslands (Sitters
et al. 2013; Koutika and Mareschal 2017). Planting aca-
cias and eucalypts in nutrient-poor savanna soils in the
coastal Congolese plains, induced an increase in soil
available P in the coarse particulate organic matter
(4000–250 μm) relative to savannas (Koutika and Mar-
eschal 2017).



Koutika and Richardson Forest Ecosystems             (2019) 6:2 Page 7 of 13
Sustaining forest productivity
A. mangium has a positive impact on tree growth and
forest productivity (Epron et al. 2013; Forrester et al.
2013; Nambiar and Harwood, 2014; Santos et al. 2017a).
At the end of the first 7-year rotation of A. mangium
and Eucalyptus urophylla × grandis plantations estab-
lished in the Congolese coastal plains, eucalypt growth
had benefitted from the N2 fixed by A. mangium, as
shown by the higher wood biomass in the mixed-species
than in pure eucalypt stands (Epron et al. 2013). Using
15N pulse-labelling, Paula et al. (2015) demonstrated the
below-ground transfer of N from A. mangium to Euca-
lyptus grandis trees in the field in the first few days after
labelling in a Brazilian planted forest, revealing the facili-
tation process which may ensure a significant amount of
required N to neighbour trees. A. mangium increased
the capacity of forest plantations to exploit soil deep
layers when introduced alone or in mixtures with
non-fixing species trees (Germon et al. 2018). Since A.
mangium is not only renowned for its commercial uses
for wood (pulp and solid) and energy, but also for its
capacity to establish easily and grow rapidly in marginal
land, it has been adopted and is widely preferred over
other acacia species and other NFS for enhancing affor-
estation strategies and for improving the social welfare
of smallholders in various forest transition stages in
Indonesia (Permadi et al., 2017).

Limitations of A. mangium: From benefits to threats
The multipurpose tree A. mangium has shown many
benefits outside its native range as described above. A.
mangium may, however, have limitations for improving
soil fertility and forest productivity, sequestering C, and
driving land restoration. Monospecific plantations of
four native species (Dipteryx odorata, Jacaranda copaia,
Parkia decussata, and Swietenia macrophylla) and the
exotic A. mangium established to restore pasture areas,
have shown a decline in silvicultural performance e.g.,
biometric data, crown projection area, total height, com-
mercial cylinder volume etc. of A. mangium compared
to other species (Machado et al. 2018). These authors
did not recommend A. mangium for restoration because
of its limited performance in relation to most of the var-
iables that were assessed. Similarly, Parrotta and
Knowles (1999) reported poor performance of fast-
growing species (i.e. eucalypt and acacia species) in fa-
cilitating the rehabilitation of mined areas in Brazil. A.
mangium does not benefit the successional processes in
Amazonian forest, compared to other restoration cri-
teria. Although tree basal-area development of mixed
commercial species was superior to all other species,
they had low species richness (Parrotta and Knowles,
1999). Similarly, A. mangium did not sequester C in an
experimental plantation at Itatinga in Sao Paulo State,
Brazil; soil C stocks were 44% lower in the forest floor of
A. mangium stands than in eucalypt stands (Voigtlaen-
der et al. 2012).
Large plantations of fast-growing exotic species on the

Congolese coastal plains may exclude colonial breeding
bird species such as rosy bee-eater Merops malimbicus
and Congo River martin Pseudochelidon eurystomina
which rely on large open grassy plains on the coast for
their breeding colonies (Hugo Rainey, Wildlife Conser-
vation Society, pers. comm.). Such findings reinforce the
concerns that have been expressed regarding the wide-
spread planting of Australian acacias outside their native
range (Richardson and Rejmánek 2011; Wilson et al.
2011; Aguiar et al. 2014; Ismael and Metali 2014).
In the absence of empirical evidence of significant

long-term benefits to native biodiversity levels following
the introduction of A. mangium, recommendations re-
garding its use for the purpose of ‘rehabilitation’ in areas
where the conservation of biodiversity is the primary ob-
jective should be informed by the ‘Precautionary
Principle’ as outlined in the Rio Declaration in 1992
(Raffensberger and Tickner 1999). Principle 15 of this
Declaration states that ‘in order to protect the environ-
ment, the precautionary approach shall be widely applied
by States according to their capabilities. Where there are
threats of serious or irreversible damage, lack of full sci-
entific certainty shall be not used as a reason for post-
poning cost-effective measures to prevent environmental
degradation’. In practice, the ‘Postcautionary Principle’
which is states as ‘Where there are threats of serious or
irreversible damage, the lack of full scientific certainty
shall be used as a reason for not implementing cost-ef-
fective measures until after the environmental degrad-
ation has actually occurred’ (Paull 2007), is often applied
in ecological impact assessments.

Threats to ecosystems and the environment from
introducing A. mangium
Negative impacts on biodiversity
Despite the many reported benefits of A. mangium in
agricultural, agroforestry and forestry systems, there is
increasing evidence that because of its invasive proper-
ties, this species can exert profound negative impacts on
soil, biodiversity, and human wellbeing. Commercial for-
estry plantations are mostly established in large open
areas which are highly susceptible to invasions of alien
trees (Richardson and Rejmánek 2011; Attias et al. 2013;
Aguiar et al. 2014; Rundel et al. 2014). Osunkoya et al.
(2005) argued that Australian acacias can easily invade
disturbed and degraded forests, especially those that ex-
perience drought and fire. δ15N isoscapes, a useful
framework for evaluating the impacts of an invasive
N2-fixing species on the surrounding plants, has pro-
vided the means for quantifying the impact of invasive
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NFS by combining range, abundance and per-capita ef-
fects (Rascher et al. 2012). Aguiar et al. (2014) docu-
mented that A. mangium may rapidly threaten the
biodiversity of Amazonian savannas surrounding large-s-
cale plantations, based on experiments conducted aro
und five plantations in Roraima, Brazil. According to
these authors, one of the reasons for its wide expansion
in Brazil is its use in large commercial plantations in
Amazonian savannas in the 1990s without a prior assess-
ment of the risk of invasiveness. This is also the case in
some Asian countries, notably Malaysia and Vietnam
(Richardson and Rejmánek 2011; Richardson et al. 2015).
Invasions of A. mangium started only recently, and no

detailed assessment has been done to determine the
types of impacts that these invasions have on aspects of
biodiversity and ecosystem functioning. However, Le
Maitre et al. (2011) reviewed the types of impacts as-
cribed to other invasive Australian acacias in many parts
of the world. They found that acacias have a wide range
of impacts on ecosystems that increase with time and
disturbance, and frequently transform ecosystem func-
tioning, thereby altering and reducing the delivery of
ecosystem services. The accumulation of massive stores
of long-lived acacia seeds in the soil ensures persistence
of the invader even with frequent and severe distur-
bances. This is the fundamental mediator of thresholds
that facilitate major biotic and abiotic impacts (Gaertner
et al. 2014). Widespread invasions of Australian acacias
in many parts of the world have led to increasing con-
flicts of interest regarding the benefits and negative
impacts of the species (Kull and Rangan 2008; Richard-
son and Rejmánek 2011; Wilson et al. 2011; Tassin et al.
2012; Ismael and Metali 2014; Aguiar et al. 2014; Kull
et al. 2018; Souza et al. 2018).

Threats to human wellbeing
Research on the negative impacts of A. mangium inva-
sions on human wellbeing began only very recently. In
savanna areas surrounding indigenous lands in Roraima
State, Brazil where 30,000 ha of A. mangium were
planted for commercial purposes, Souza et al. (2018)
undertook interviews in three communities. They found
that A. mangium was perceived to have negative effects
on the natural environment and on human livelihoods
in the subsistence of their communities.

Negative impacts on soils
Changes in the functional diversity of soil microorgan-
isms (mycorrhizal fungi and rhizobia) inhibited the
growth of the native tree species Faidherbia albida and
Quercus suber while restoring degraded lands in Senegal
and Algeria with two Australian acacias, A. holosericea
and A. mearnsii (Duponnois et al. 2013). Another Aus-
tralian acacia, A. dealbata, established positive plant-soil
feedbacks which are important mechanisms for its fur-
ther invasion (Gaertner et al. 2014), and showed a strong
competitive ability relative to the native trees (Rodrigue-
z-Echeverria et al. 2013). A. mangium may have negative
impacts on the concentrations of soil nutrients and
neighbouring plants (Liu et al. 2017; Meira-Neto et al.
2018). In its early invasion stage, A. mangium is able to
alter both soil and leaf nitrogen, increase shade and en-
able a wider range of light variation, which is facilitated
by the nitrogen taken up and transferred to neighbour-
ing plants (Meira-Neto et al. 2018). In plantations of
acacia and eucalypt in the Congolese coastal plains, soil
resin P availability decreased in the top soil in the
mixed-species (50% acacia and 50% eucalypt) compared
to pure eucalypt stands at the end of the first 7-year ro-
tation (Koutika et al. 2014). This change in P was no-
ticed further by a decrease in soil readily available
inorganic P (resin and Pi-HCO3) in acacia relative to
pure eucalypt stands at year 2 of the second rotation
compared to the end of the first rotation (Koutika et al.
2016). In the eucalypt and acacia plantations located in
Rio de Janeiro state, Brazil, Santos et al. (2017b) demon-
strated that eucalypt deposited greater quantities of P
via litter, but little N, while acacia did the opposite. In
subtropical China, Liu et al. (2017) showed that NFS (A.
mangium and Ormosia pinnata) had higher P uptake
capacity than non-NFS under ambient N deposition.
These findings may reveal a possible risk of shifting from
N-limitation to soil P limitation in the longer term in-
volving a decrease in forest productivity. This may occur
in pure acacia stands in the Congolese coastal plains
(Koutika et al. 2016), or when N deposition continue
since high amounts of N may decrease soil microbial ac-
tivity of NFS in subtropical China (Liu et al. 2017). It
has to be noted that A. mangium is mostly introduced in
the tropical climates and nutrient-poor soils, where N is
the most limited nutrient, and also where P availability
is reduced by strong adsorption due to the large
amounts of Al and Fe oxide surfaces in most of tropical
soils (Sanchez and Uehara 1980).

Negative effects on water availability
In some dry or water-limited areas, introducing alien
NFS such as Australian acacias may change seasonal
water use patterns (Rascher et al. 2011; Siddiq and Cao
2016). Siddiq and Cao (2016) evaluated the seasonal
water use and stand-level transpiration of eight, ever-
green, dipterocarps in tropical Southwest China during
the wet and dry seasons with six species in monoculture
and two species in mixture. The introduced fast-growing
species, such as eucalypts and A. mangium, consumed
much more water than dipterocarp trees and forests,
which are more suitable as plantation timber crops for
the region (Siddiq and Cao 2016).
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Can potential negative impacts of A. mangium
due to invasiveness be mitigated?
Is it possible to plan for the sustainable use of A. man-
gium i.e., reaping benefits yet limiting negative impacts?
The threats of A. mangium on ecosystems and biodiver-
sity outside its native environment are obvious (Wilson
et al. 2011; Low 2012; Attias et al. 2013; Sampaio and
Schmidt 2013; Aguiar et al. 2014; Richardson et al. 2015;
Nambiar et al. 2018). From experience in parts of the
world with a long history of plantings of Australian aca-
cias, three main issues warrant careful attention when
considering issues relating to invasiveness and manage-
ment of invasive acacias: 1) the role of residence time
and invasion debt; 2) massive seed production; and 3)
biological control (van Wilgen et al. 2011; Richardson
et al. 2015).

Residence time and invasion debt
All species of Australian acacias that have been widely
planted outside their native range over decades have be-
come invasive and have caused negative impacts. Inva-
sions and associated impacts typically manifest only
several decades after large-scale plantings (Richardson
et al. 2011; Richardson et al. 2015). Given the relatively
recent expansion of A. mangium plantings (Table 1), the
lack of major problems with invasiveness until now in
some areas has probably led to the assumption that the
species poses limited problems with invasiveness. As far
as we know, little or no attention was given to issues
pertaining to invasiveness when planning major plant-
ings in any of the areas listed in Table 1. Several life-
history traits of A. mangium are strongly associated with
invasiveness in woody plants: these include rapid
growth, and the capacity to produce very large numbers
of hard-coated, heat-tolerant and long-lived seeds that
are adapted for long-distance dispersal by birds (Awang
and Taylor; 1993; Franco et al. 1994; Gibson et al. 2011).
Suhaili et al. (2015) argued that invasions of A. mangium
into tropical heath forests of Borneo may be controlled
by a proper management of plantations and monitoring
of soil seed banks, but we could find no evidence that
this has been attempted or is likely to be practical.
The massive seed production of A. mangium in the

absence of native enemies is the fundamental driver of
invasions. Research on plantings and invasions of other
Australian acacias has shown that the type and configur-
ation of plantings is important for determining the tra-
jectory of invasions (Donaldson et al. 2014). Biological
invasions proceed more quickly and are more likely to
result in landscape-scale invasions when plantings take
the form of large commercial plantations which provide
a massive propagule source. In most cases, such planta-
tions are situated in open vegetation (grassland or scrub-
lands) and/or in areas adjoining natural vegetation which
ensures large areas of habitat that are open to invasion.
Plantings for ornamentation or for other purposes gener-
ally provide smaller propagule sources and have less
chance of seeding massive invasions (Donaldson et al.
2014). A. mangium has been mainly introduced for pulp-
wood, soil fertility improvement and land restoration in
Asia, Africa and South America (Franco and de Faria,
1997; Epron et al. 2013; Permadi et al., 2017). This may
partly explain the rapid and widespread spread.

Biological control
The use of seed-attacking insects and fungi for biological
control is a key component of integrated control strat-
egies against Australian acacias, especially in South Af-
rica (Richardson and Kluge 2008; Impson et al. 2009).
These efforts have, over several decades, significantly re-
duced seed production of several invasive acacias, have
reduced the density of some invasive populations, and
seem to be reducing the spread rates, thereby contribut-
ing to overall control aims. Many other types of control
are also being used to deal with current and potential fu-
ture problems with invasive Australian acacias. These in-
clude: risk assessment (to help identify highly invasive
species that are not yet in the country); eradication (to
totally remove populations of those species that still
occur over small areas and at low densities, e.g. Kaplan
et al. 2012, 2014); containment using mechanical and
chemical control; exploitative harvesting of invasive pop-
ulations (e.g. for fire wood); research to develop of sterile
cultivars of commercially important species (Wilson
et al. 2011; Harbard et al. 2012;); spatial prioritization of
control operations (Roura-Pascual et al. 2009); education
and raising awareness; the use of legislation to assign re-
sponsibility of control and legislation to prohibit cultiva-
tion (Aguiar et al. 2014), prohibition of trade of some
species in certain areas (van Wilgen et al. 2011). All of
these components of management could reduce prob-
lems associated with invasiveness of A. mangium and
should be considered when assessing risks associated
with plantings and in compiling management plans for
reducing problems that already exist.

Conclusions
A. mangium has obvious benefits for improving soil fer-
tility in agriculture, agroforestry and forestry in areas
with nutrient-poor soils, and for restoring degraded
lands and ecosystems. However, the species has the po-
tential to cause major negative impacts to biodiversity
and ecosystem functioning when it becomes invasive.
The ecology of the species in most parts of its intro-
duced range remains poorly understood. Experience in
those parts of the world with long histories of planting
A. mangium and other Australian acacias provide useful
previews of future problems, and such insights must be
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considered when evaluating costs and benefits of new
plantings.
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NFS: Nitrogen fixing species; POM: Particulate organic matter; SOM: Soil
organic matter
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