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Abstract

Investigations on the Wigner derivative and on an integral formula for 

the quantum 6j symbols

Hosana Ranaivomanana

Department of Mathematical Sciences,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: PhD

April 2022

Two separate studies are done in this thesis:

1. The Wigner derivative is the partial derivative of dihedral angle with respect

to opposite edge length in a tetrahedron, all other edge lengths remaining

fixed. We compute the inverse Wigner derivative for spherical tetrahedra,

namely the partial derivative of edge length with respect to opposite dihedral

angle, all other dihedral angles remaining fixed. We show that the inverse

Wigner derivative is actually equal to the Wigner derivative.

2. We investigate a conjectural integral formula for the quantum 6j symbols sug-

gested by Bruce Bartlett. For that we consider the asymptotics of the integral

and compare it with the known formula for the asymptotics of the quantum 6j

symbols due to Taylor and Woodward. Taylor and Woodward’s formula can

be rewritten as a sum of two quantities: ins and bound. The asymptotics of

the integral splits into an interior and boundary contribution. We successfully
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ABSTRACT iii

compute the interior contribution using the stationary phase method. The re-

sult is indeed quite similar to although not exactly the same as ins. Though

we expect the boundary contribution to be similar to bound, the computation

is left for future work.
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Uittreksel

Investigations on the Wigner derivative and on an integral formula for 

the quantum 6j symbols

(“Investigations on the Wigner derivative and on an integral formula for the quantum 6j symbols”)

Hosana Ranaivomanana

Departement Wiskuudige Wetenskappe,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: PhD

April 2022

Twee afsonderlike studies word in hiedie tesis gedoen:

1. Die Wigner-afgeleide is die parsiële afgeleide van ’n tweevlakshoek met be-

trekking tot die teenoorgestelde kandlengte in ’n tetraëder, terwyl alle ander

kandlengtes onveranderd bly. Ons bereken die inverse Wigner-afgeleide vir

sferiese tetraëders, naamlik die parsiële afgeleide van die kandlengte met be-

trekking tot teenoortaande tweevlakshoek, terwyl alle ander tweevlakshoeke

konstant bly. Ons wys dat die inverse Wigner-afgeleide inderdaad gelyk is

aan die Wigner-afgeleide.

2. Ons ondersoek ’n beweerde integralformule vir die kwantum 6j simbole, wat

deur Bruce Bartlett as moontlikheid voorgestel is. Daarvoor oorweeg ons die

asimptotika van die integraal en vergelyk dit met die bekende formule van

die kqantum 6j simbole as gevolg van Taylor en Woodward. Taylor en Wood-

ward se formule kan herskryf word as ’n som van twee hoeveelhede: ins en

iv
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bound. Die asimptotika van die integraal verdeel in ’n binne- en grensby-

drae. Ons het die interne bydrae suksesvol met behulp van die stilstaande

fase metode bereken. Die resultaat is inderdaad baie soortgelyk aan hoewel

nie presies dieselfde as ins nie. Alhoewel ons verwag dat die grensbydrae

soortgelyk aan bound sal wees, word die berekening gelaat vir toekomstige

werk.
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Rn The set of all vectors of size n with real entries.

S3 The unit three sphere.
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< a, b >X The inner product between a and b in X.
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∼ refers to asymptotic.
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Chapter 1

Introduction

Note: Only the normalized classical and quantum 6j symbols are considered through-

out the thesis.

Classical 6j symbols, for examplem12 m02 m01

m03 m13 m23


with non-negative integer entries, are known to be the coefficients in the change of

basis of a certain vector space of morphisms in the category Rep(SU(2)) of repre-

sentations of SU(2). They are real numbers. For instance,

m12 m02 m01

m03 m13 m23

 are

the coefficients for a certain change of basis in

HomRep(SU(2))(Vm13 , Vm12 ⊗Vm02 ⊗Vm03)

where Vmij denotes the (mij + 1)−dimensional irreducible representation of SU(2).

There are at least two ways to compute the classical 6j symbols namely, [3][35][20][12]

via Penrose’s spin network calculus (which is closely related to the Kauffman bracket)

and via integration,m12 m02 m01

m03 m13 m23


2

=
∫
(SU(2))4

∏
i<j

χmij(gjg−1
i )[

3

∏
i=0

dgi],

where χmij denotes the character of the irreducible representation Vmij . This method

was introduced by Barrett [5] in 1998 for the evaluation of relativistic spin net-

works.

1
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CHAPTER 1. INTRODUCTION 2

Appearing in the diagrammatic/combinatorial way of computing the classical

6j symbols [3][20] and nicely explained in [35], a classical 6j symbol can be geo-

metrically associated to a non-degenerate Euclidean tetrahedron where the lengths

of its edges are given by the entries of the symbol. For instance, our example is

geometrically represented by Figure 1.1.

{
m12 m02 m01
m03 m13 m23

}
≡

v1

v2

v0

v3

m12

m02 m03

m13

m01

m23

g3

g0

θ03

g1

g2

Figure 1.1: Relationship between a non-degenerate Euclidean tetrahedron with
edge lengths mij and the classical 6j symbol with entries mij.

Definition 1.0.1. Let f and g be two real-valued functions. The quantities f (k) and g(k),

where g(k) is non-zero, are said to be asymptotic, which in our notation

f (k) ∼ g(k),

when k tends to infinity, if

f (k)− g(k) = o(
1
k
)g(k).

Initially, Wigner [44] gave an average approximation of the square of a classical

6j symbol with large entries.

In 1968 Ponzano and Regge [32] conjectured and empirically checked a more

refined formula for the non-degenerate asymptotics of the classical 6j symbols.

In 1999 this asymptotic formula was proven by Roberts [35] through geometric

quantization, and in 2003 Freidel and Louapre re-proved it via the integral formula

for the classical 6j symbols with integer entries.
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Figure 1.2: Exact values of the classical 6j symbols (dots) with entries m12 = 14,
m02 = 16, m01 = 18, m03 = 12, m13 = 18 and m23 = j where j varies from 6 to 24 in
steps of 2 versus its non-degenerate asymptotic approximation (continuous curve).
This is generated by the author using Mathematica (see [33]). It corresponds to
Ponzano and Regge’s original example [32, Figure 5].

The non-degenerate asymptotic formula for the classical 6j symbols is stated as

follows:

Theorem 1.0.2 ([35]). Let m01, m02, m03, m12, m13, m23 be six non-negative integers such

that the triples (m12, m01, m02), (m01, m13, m03), (m02, m23, m03), and (m12, m13, m23) are

admissible (see Equation (2.3)). Let k ∈ N, and τ be a non-degenerate Euclidean tetrahe-

dron with edge lengths mij associated to the classical 6j symbolm12 m02 m01

m03 m13 m23

 .

Let θij be the exterior dihedral angle of τ at the edge of length mij, which is opposite to the

edge of length mij. Then, the non-degenerate asymptotic formula for the classical 6j symbols

is km12 km02 km01

km03 km13 km23

 ∼
√

2
3πVk3 cos{(kmij + 1)

θij

2
+

π

4
} (1.1)

when k tends to infinity, where V is the volume of τ.
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As an overview of the proof, we would like to draw the reader’s attention to

focus on Freidel and Louapre’s technique.

In 2003, Freidel and Louapre [17] used the SO(4) symmetry of the integral to

rewrite Barrett’s twelve-dimensional integral formula for the square of the classical

6j symbols as a six-dimensional one:m12 m02 m01

m03 m13 m23


2

=
2

π4

∫
Dπ

∏i<j sin
(
(mij + 1)lij

)√
det([cos lij])

[∏
i<j

dlij],

where [cos lij] is a unitary matrix whose off-diagonal entries are cos lij and

Dπ = {(l01, l02, l03, l12, l13, l23) ∈ [0, π]6, [cos lij] is positive definite }.

Then, they studied the asymptotic of the integral for large k given by

I(k) =
2

π4

∫
Dπ

∏i<j sin
(
(kmij + 1)lij

)√
det([cos lij])

[∏
i<j

dlij]

via the stationary phase approximation. As a starter, they divided Dπ into two

components:

D>
π,ε = [ε, π − ε]6 ∩ Dπ

and

D<
π,ε = Dπ − D>

π,ε

where ε > 0 is sufficiently small, knowing that this separation is a clear way to

explain the approximation contributed by the interior stationary points and those

from the boundary critical points.

Here, we call interior contribution the asymptotic approximation of the integral

obtained by considering the stationary point inside the region D>
π,ε. It was com-

puted [17] to be:

cin = − 1
3πk3V

sin

(
∑
i<j

(kmij + 1)θij

)
.

Whereas, on the domain D<
π,ε, the asymptotic approximation of the integral ob-

tained by considering the boundary critical point, the boundary contribution, is given

by

cbd =
1

3πk3V
.
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CHAPTER 1. INTRODUCTION 5

This way, the sum cin + cbd results to the non-degenerate asymptotic formula for

the square of the classical 6j symbols

m12 m02 m01

m03 m13 m23

:

km12 km02 km01

km03 km13 km23


2

∼ 2
3πVk3 cos2{(kmij + 1)

θij

2
+

π

4
} (from(1.1))

= cin + cbd.
(

using cos2 θ =
1
2
(1 + cos 2θ)

)
Explaining the painstaking process for the transformation of Barrett’s twelve-

dimensional integral formula for the square of the classical 6j symbols into a six-

dimensional one, of which not all the details are present in [17], is the aim of Chap-

ter 2. A similar transformation is also used in our main calculation in Chapter 4.

1.1 Reciprocity of the Wigner derivative

The first aim of this thesis is to compute the inverse Wigner derivative for spherical

tetrahedra.

The Wigner derivative is the partial derivative of dihedral angle with respect to

opposite edge length, in a spherical tetrahedron, all other lengths remaining fixed. It

plays a crucial role in a possible geometric proof, which was later made rigorous by

Marché and Paul [27], for the non-degenerate asymptotic formula for the quantum

6j symbols proposed by Taylor and Woodward in [41, 38].

As follows is the formula for the Wigner derivative.

Theorem 1.1.1 (Taylor-Woodward [41]). The Wigner derivative for a spherical tetrahe-

dron is
∂β(lij)

∂l′
=

sin l sin l′√
det G

,

where β is the interior dihedral angle at the edge with length l, l′ is the length of the opposite

edge (see Fig. 3.2), and G is the edge Gram matrix (see Definition 2.3.11) associated to the

spherical tetrahedron.

The inverse Wigner derivative is the partial derivative of edge length with re-

spect to opposite dihedral angle, all other dihedral angle held constant, in a spherical

tetrahedron.
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CHAPTER 1. INTRODUCTION 6

l

l′

β

Figure 1.3: Spherical tetrahedron showing the interior dihedral angle β at the edge
of length l and the edge of length l′, opposite to β.

In 2008 Feng Luo, in [25], showed that any partial derivative of edge length with

respect to dihedral angle in a spherical tetrahedron may be expressed in terms of

the inverse Wigner derivative. Hence, the result of the inverse Wigner derivative is

essential should anyone be interested in the computing the signature of the matrix

H = [
∂lij
∂βst

] theoretically. Here, lij denotes the edge lengths of a spherical tetra-

hedron and βij denotes its dihedral angles. We will show that H is the Hessian

matrix associated to the phase of the integrals contributing to the stationary phase

approximation of the asymptotic of a conjectural integral formula for the square of

the quantum 6j symbols. See Chapter 4.

The following is the formula we derive for the inverse Wigner derivative. Al-

though it seem to appear in [41], it is new in the literature. An elaborated discussion

on that will be given in Section 3.4.

Theorem 1.1.2. The inverse Wigner derivative for a spherical tetrahedron is

∂l′(βij)

∂β
=

sin l sin l′√
det G

,

where β is the interior dihedral angle at the edge with length l, l′ is the length of the opposite

edge (see Fig. 3.2), and G is the edge Gram matrix (see Definition 2.3.11) associated to the

spherical tetrahedron.

As a corollary, by comparing Theorem 1.1.1 and Theorem 1.1.2, we have shown

that the Wigner derivative and the inverse Wigner derivative are in fact equal. The

details explaining this fact are found in Chapter 3.
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1.2 A conjectural integral formula for the quantum 6j

symbols

Let r ≥ 3 and q = ei π
r .

Quantum 6j symbols, explicitly defined in Section 4.2, for examplem12 m02 m01

m03 m13 m23


q

with non-negative integer entries, are known to be the coefficients in the change

of basis of a certain vector space of morphisms in the category Rep(Uq(sl2)) of

representations of the quantum group Uq(sl2). They are real numbers. For instance,m12 m02 m01

m03 m13 m23


q

are the coefficients for a certain change of basis in

HomRep(Uq(sl2))(Ṽm13 , Ṽm12 ⊗ Ṽm02 ⊗ Ṽm03)

where Ṽmij denotes the (mij + 1)−dimensional irreducible representation of Uq(sl2).

Analogously to the classical 6j symbols, Taylor and Woodward found a non-

degenerate asymptotic formula for the quantum 6j symbols1, relating them to the

geometry of a non-degenerate spherical tetrahedron (see Definition 2.3.8). Their for-

mula is equivalent (asymptotically) to a slightly different formula given by Roberts

(see [36] and also Appendix C.3). We will adopt a modified version of Roberts’

formula in this thesis (see Remark 4.1.5):

Theorem 1.2.1 ([36] [41]). Let r0
ij be an element of Q ∩ [0, 1]. Let k be a natural number.

Let T0 be a non-degenerate spherical tetrahedron whose edge lengths are l0
ij = πr0

ij and

whose exterior dihedral angle at the edge (ij), opposite to the edge (ij), is denoted by θ0
ij.

Then,kr0
12 kr0

02 kr0
01

kr0
03 kr0

13 kr0
23


2

q=e
iπ

k+2

∼ 4π2

k3
√

det([cos l0
ij])

cos2{∑
i<j

(kr0
ij + 1)

θ0
ij

2
+

k + 2
π

V(T0)+
π

4
}

(1.2)

when k −→ ∞, where kr0
ij are integers and [cos l0

ij] is the edge Gram matrix (see Definition

2.3.11) of T0.
1An error has surfaced in the original formula and what is found here is the corrected version.

The details on the refinement are found in Chapter 4.
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It is a fact that the right hand side of Equation 1.2 may be written as a sum

ins + bound,

where

ins = − 2π2

k3
√

det([cos l0
ij])

sin{∑
i<j

(kr0
ij + 1)θ0

ij +
2(k + 2)

π
V(T0)}, (1.3)

and

bound =
2π2

k3
√

det([cos l0
ij])

. (1.4)

We reckon that ins is the interior contribution for an asymptotic integral formula for

the square of the quantum 6j symbols and bound the boundary contribution. This

sum is obtained from the fact that cos2 θ = 1
2 (1 + cos 2θ).

Taylor and Woodward proved their asymptotic formula by showing that both

sides of the equation satisfy a second-order difference equation as one entry of the

symbol is varied.

Is it possible to re-prove this asymptotic formula via an integral formula for the

quantum 6j symbols? In other words, is there an analogue, for quantum 6j symbols,

of the elegant integral formula for the square of the classical 6j symbolsm12 m02 m01

m03 m13 m23


2

=
∫
(SU(2))4

∏
i<j

χmij(gjg−1
i )[

3

∏
i=0

dgi]?

Shouldn’t there be a geometric formula for the quantum 6j symbols which directly

involves the Lie group SU(2), its irreducible representations Vn and its characters?

Since, from the diagrammatic perspective, we can realize the quantum hom-sets as

subspaces of the classical hom-sets, i.e.

HomRepq(SU(2))(Wi, Wj ⊗Wk) ⊆ HomVect(Vi, Vj ⊗Vk)

where Vi, Vj, Vk are irreducible representations of SU(2). And, this inclusion sug-

gests that one should be able to express the quantum 6j symbols using the classical

irreducible representations of SU(2).

The second aim of this thesis is to investigate the veracity of a conjectural inte-

gral formula for the square of the quantum 6j symbols 2:
2The conjecture was introduced by Bartlett in 2019.
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CHAPTER 1. INTRODUCTION 9

{
m12 m02 m01
m03 m13 m23

}
q
←→

v1

v2

v0

v3

l12

l02 l03

l13

l01

l23

g3

g0

θ03

g2

g1

Figure 1.4: A non-degenerate spherical tetrahedron T with edge lengths lij (lij =
πmij

k in Roberts’ formula and lij =
π(mij+1)

k+2 in Taylor and Woodward’s formula)
associated to the quantum 6j symbols with entries mij.

Conjecture 1.2.2 (Strong form). Let m01, m02, m03, m12, m13, m23 be six natural numbers

such that the triples (m12, m01, m02), (m01, m13, m03), (m02, m23, m03) and (m12, m13, m23)

are q-admissible (see Equations (4.7), (4.8), (4.9)). Let g0, g1, g2, g3 be four elements in

SU(2). Due to the diffeomorphism between SU(2) and S3 they may be thought as four

unit vectors in R4. Let T be a spherical tetrahedron whose outward normal vectors to each

face are the gi’s. Then,m12 m02 m01

m03 m13 m23


2

q=e
iπ

s+2

=
∫

SU(2)4
∏
i<j

χmij
(gjg−1

i )e
2
π (s+2)iV(T)[∏ dgi],

where V(T) denotes the volume of the spherical tetrahedron T and ij means neither i nor j

features3 in the index ij.

The idea is to look for an appropriate asymptotic version of the integral in Con-

jecture 1.2.2, then use the stationary phase approximation to obtain its interior and

boundary contributions and procure the non-degenerate asymptotic formula for the

square of the quantum 6j symbols. The expectation is that the asymptotic formula

coincides with that of Taylor and Woodward/Roberts.

An asymptotic form of the conjectural integral formula for the square of the

quantum 6j symbols in Conjecture 1.2.2 is indeed given by:
3Example: 01 = 23 when considering the set of indices {0, 1, 2, 3}
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Conjecture 1.2.3 (Asymptotic form). Let r0
ij ∈ Q ∩ [0, 1] and k ∈ N such that kr0

ij is

integer. Then as k→ ∞,kr0
12 kr0

02 kr0
01

kr0
03 kr0

13 kr0
23


2

q=e
iπ

k+2

∼ 2
π4

∫
Dπ

[∏
i<j

dθij]
∏i<j sin((kr0

ij
+ 1)θij)√

det([cos θij])
cos(

2
π
(k+ 2)V(T)),

where V(T) denotes the volume of the spherical tetrahedron with exterior dihedral angles

θij, and ij means neither i nor j features in the index ij. Here, the domain of integration is

defined by

Dπ = {(θ01, θ02, θ03, θ12, θ13, θ23) ∈ [0, π]6, [cos θij] is positive definite },

where [cos θij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal elements are

cos θij.

Now that a conjectural asymptotic integral formula for the quantum 6j symbols

is at hand, let us investigate it and see if it reproduces the non-degenerate asymp-

totic formula for the quantum 6j symbols by Taylor and Woodward/Roberts. The

strategy is to apply the stationary phase approximation on that conjectural asymp-

totic integral formula to obtain the interior and boundary contributions. Then, we

expect that the non-degenerate asymptotic formula for the square of the quantum

6j symbols would be the sum of the interior contribution and the boundary contribu-

tion, similarly to the asymptotic approximation of the classical 6j symbols by Freidel

and Louapre. We were able to procure the interior contribution. It is obtained from

the stationary point inside Dπ, and its expression is given in the following theorem.

Theorem 1.2.4. Let r0
ij ∈ Q ∩ [0, 1]. Let T0 be a non-degenerate spherical tetrahedron

whose edge lengths l0
ij = πr0

ij and whose exterior dihedral angles at the edge (ij), opposite

to the edge (ij), is denoted by θ0
ij. Then,

int =
−π2

4k3 .
1√

det([cos l0
ij])

cos{∑
i<j

(kr0
ij + 1)θ0

ij +
2
π

kV(T0)} (1.5)

when k −→ ∞, where [cos l0
ij] is the edge Gram matrix (see Definition 2.3.11) of T0.

However, after numerical and theoretical computation attempts, it is unfortu-

nate that we could not draw any conclusion about the boundary contribution.
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Regarding the interior contribution (1.5), its comparison with the reckoned inte-

rior contribution in Equation (1.3) shows that its amplitude is off by a factor of eight

(8) and its phase by π
2 . These two shortcomings show that the integral formula for

the quantum 6j symbols (Conjecture 1.2.2) is close to being correct and might only

have minor correction(s) to be taken into account.

The details on the calculation of the interior contribution (Equation (1.5)), via

our conjectural asymptotic integral formula for the quantum 6j symbols, is found

in Chapter 4.

1.3 Outline of the thesis

In summary, the thesis is outlined as follows:

• Chapter 2 contains the painstaking process for the transformation of Barrett’s

twelve-dimensional integral formula for the square of the classical 6j symbols

into a six-dimensional one.

• Chapter 3 encloses the calculation of the inverse Wigner derivative and the

proof of the reciprocity of the Wigner derivative.

• Chapter 4 presents the investigation on Bartlett’s conjectural integral formula

for the square of the quantum 6j symbols.

• Chapter 5 is the conclusion. It contains the summary of the main results in

the thesis and some plans for future research.

On another note, quite a number of small mistakes were discovered to appear

in different references used during the preparation of the thesis. They will be pre-

sented and discussed in each chapter accordingly.

Some necessary proofs that don’t appear in the main chapters, plus the MATH-

EMATICA code for our numerical checking and backing up some arguments in

Chapter 4 are presented in the Appendices.
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Chapter 2

An integral formula for the

classical 6j symbols

2.1 Introduction

The integral formula for the classical 6j symbols first appeared in the literature in

1998. It is a result of Barrett’s work on the classical evaluation of relativistic spin

networks [5], and is formulated as an integral over four copies of SU(2) shown in

the theorem below.

Consider the 6j symbols (see Definition 2.2.4)m12 m02 m01

m03 m13 m23


whose entries are integers. Recall that the 6j symbols are real numbers.

Theorem 2.1.1. Let g0, g1, g2, g3 ∈ SU(2) and χmij denote the character of the (mij + 1)-

dimensional irreducible representation of SU(2). Thenm12 m02 m01

m03 m13 m23


2

=
∫
(SU(2))4

∏
i<j

χmij(gjg−1
i )[

3

∏
i=0

dgi]. (2.1)

In 2003, as a tool to generate the asymptotic formula for the classical 6j symbols

[17], Freidel and Louapre transformed Barrett’s integral in the following way.

12
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Theorem 2.1.2. The twelve-dimensional integral on the right hand side of Equation (2.1)

can be re-expressed as a six-dimensional integral over the space of edge lengths of equiva-

lence classes of spherical tetrahedra as follows:

I =
2

π4

∫
Dπ

∏i<j sin((mij + 1)lij)√
det([cos lij])

[∏
i<j

dlij]. (2.2)

Explicitly, the region of integration is

Dπ = {(l01, l02, l03, l12, l13, l23) ∈ [0, π]6, [cos lij] is positive definite },

where [cos lij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal elements are

cos lij.

Remark 2.1.3. There has been a little confusion about the description of Dπ in [17]. Fur-

ther discussion about that will be found in Section 2.9.

We show that the integral (2.2) is done over the SO(4) equivalence classes (see

Definition 2.8.3) of all positively oriented non-degenerate spherical tetrahedra in

S3. Although Freidel and Louapre explained the steps for transforming the inte-

gral (2.1) to (2.2) in [17], not all the details were provided in their paper. Therefore,

the aim of this chapter is to go through the transformation meticulously. That is be-

cause we will use this result in Chapter 4 when investigating a conjectural integral

formula for the square of the quantum 6j symbols.

The chapter is outlined as follows: the definition of the classical 6j symbols will

be recalled in Section 2.2. Section 2.3 will comprise all the results from spherical

triangles and spherical tetrahedra necessary to our calculation. Since the notion

of links [25] is crucial to our computation, it will be elaborated in Section 2.4. A

set of tetrahedral related variables called here "box variables", used by Freidel and

Louapre in [17], will be expounded in Section 2.5. They are employed to transition

from the integral (2.1) to (2.2). Section 2.6 is dedicated to the explanation of the

Lebesgue measure on S3. The painstaking process to show the equality between

Barrett’s integral, and Freidel and Louapre’s is explained in Section 2.7. The mate-

rials to describe the domain of integration will be provided in Section 2.8. And, the

clarification on the domain of integration plus the discussion on Remark 2.1.3 are

found in Section 2.9.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. AN INTEGRAL FORMULA FOR THE CLASSICAL 6J SYMBOLS 14

2.2 The classical 6j symbols

For a background, let us recall the definition of a classical 6j symbol.

There are several ways to define the classical 6j symbols (see [35]) but in this

section we are going to use the graphical calculus introduced by Penrose in [30].

So, let us remind ourselves on how to use them.

2.2.1 Manual for maps

• Here, the maps are pictured vertically and read from bottom to top. For in-

stance, let A and B be two vector spaces and f : A −→ B a linear map be-

tween them. Then, f is depicted as

f

B

A

• The tensor product of two linear maps are drawn side by side starting from

left to right. For example, let A, B, C and D be four vector spaces and f :

A −→ B, g : C −→ D be two linear maps. Then the tensor product

f ⊗ g : A⊗ C −→ B⊗ D

is drawn as

f

B

A

g

D

C

• Let A be a vector space, the identity map idA : A −→ A is graphically repre-

sented by
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A

A

• The composition of two linear maps f and g, f ◦ g consists of drawing them

on top of each other such that g would be at the bottom and f at the top. For

instance, let A, B, C be three vector spaces and f : B −→ C, g : A −→ B be

two linear maps. Then, the composite f ◦ g : A −→ C is visualized as

f

C

B

g

A

• For linear maps from the base field of the vector space, some examples would

explain it better. So, let A be a complex vector space and f : C −→ A (resp.

g : C −→ A⊗ A); their graphical representation are respectively given by

f

A

C

Figure 2.1: The map f

A

g

A

Figure 2.2: The map g

That is done, let us now focus on the representations of SU(2) as the vector spaces.

2.2.2 The 6j symbols

Let V1 with basis {e1, e2} be the fundamental representation of SU(2). As men-

tioned in [35] and [12, page 9, Theorem 2.2.1], the other irreducible representations
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are given by the n−th symmetric power of V1 (see Section A.2 for a review). Let us

denote by Rep(SU(2)) the category of all representations of SU(2) and by

HomRep(SU(2))(V, W)

the collection of morphisms from V to W in that category.

The definition of the classical 6j symbols solely depends on the Clebsh-Gordan

mapping. So, let us first remind ourselves of its graphical definition.

To start with, let us consider the map

γ1 : C −→ V1 ⊗V1

in Rep(SU(2)), depicted in the graphical calculus as follows:

γ1

V1 ⊗V1

C

≡

V1 V1

which is defined in such a way that

γ1(1) = i(x⊗ y− y⊗ x)

where i2 = −1.

Next, let the identity map from V1 to V1 be defined graphically as

id

V1

V1

≡

Then, let us recall the symmetrizing projector

sn : V⊗n
1 −→ V⊗n

1

graphically depicted as
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· · ·

sn

· · ·

n strands

n strands

≡

V⊗n
1

V⊗n
1

such that

sn :=
1
n! ∑

σ∈Sn

ρ(σ),

where Sn is the permutation group of n elements and ρ(σ) is the map

V⊗n
1 −→ V⊗n

1 implementing the permutation σ by swapping the factors. For

example

1 2 3

1 2 3

ρ

1 2 3

3 1 2

 =

Let in : Vn ↪→ V⊗n
1 (resp. πn : V⊗n

1 −→ Vn) be the inclusion of the n−th irreducible

representation Vn into V⊗n
1 (resp. the projection of V⊗n

1 into Vn). Drawn as follows:

πn

V⊗n
1

Vn

≡

Vn

· · ·

n strands

in

Vn

V⊗n
1

≡

Vn

· · ·

n strands

such that the maps in and πn satisfy in ◦ πn = sn i.e.
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Vn

· · ·

n strands

· · ·

n strands

=

· · ·

sn

· · ·

n strands

n strands

,

and πn ◦ in = idn, i.e.

Vn

· · ·

· · ·

Vn

=

Vn

Vn

Let a, b, j ∈N>0 obeying the conditions

a ≤ b + j, b ≤ a + j, j ≤ a + b, (2.3)

a + b + j ∈ 2Z, (2.4)

and Va, Vb, Vj objects in Rep(SU(2)). Such triplet (a, b, j) is called admissible. Then,

there exists a unique way [3] to connect the a + b + j strands below using the iden-

tity and γ1 map.

· · · · · ·

Va

· · · · · ·

Vb

· · · · · ·

Vj

The rules to follow in joining them are as follows:
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1. no crossing is allowed,

2. looping back is forbidden.

Let us look at two examples where the first one is a "allowed" connection and the

second a "forbidden" one.

Example 2.2.1. Let a = 3, b = 5 and j = 4. They are admissible. Then, the "allowed"

connection is shown as:

V3 V5

V4

Whereas an example of a forbidden connection is depicted by

V3 V5

V4

looping back

crossing

Remark 2.2.2. The way to have an "allowed" connection is unique. For more details see

[3].

Now that everything is settled, the Clebsch-Gordan map may be defined.

Definition 2.2.3. Let Va, Vb, Vj be three representations of SU(2) such that the triplet

(a, b, j) is admissible. The SU(2)−invariant Clebsch-Gordan map

CGab
j : Vj −→ Va ⊗Vb

is defined as (πa ⊗ πb) ◦ (idnaj ⊗ γnab ⊗ idnbj) ◦ ij, or in diagrams:
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a b

j

:=

· · · · · ·

Va

· · · · · ·

Vb

· · · · · ·

Vj

Here idp denotes the p− fold tensor product of id, γr is the r−fold tensor product of γ1, the

number of strands connecting V⊗a
1 and V⊗j

1 is naj =
a+j−b

2 , those linking V⊗a
1 with V⊗b

1

is nab =
a+b−j

2 and those joining V⊗b
1 and V⊗j

1 are of number nbj =
b+j−a

2 .

Let Va, Vb, Vc, Vd, Ve, Vf be six objects in Rep(SU(2)) such that (a, b, f ), ( f , d, e), (b, d, c)

and (a, c, e) are admissible (a, b, c, d, e, f non-negative integers). Then, depending

on the association of the tensor product Va ⊗ Vb ⊗ Vd two "fundamental" bases for

HomRep(SU(2))(Ve, Va ⊗Vb ⊗Vd) may be considered [41]. Namely,

B = {b(ab)d
e : Ve −→ (Va ⊗Vb)⊗Vd}

whose element b(ab)d
e is graphically defined as

a b d

f

e

:=

Va

· · ·· · ·

Vb

· · · · · ·

· · · · · ·

Vd

· · ·

· · · · · ·

VdVf

· · · · · ·

Ve

· · ·· · ·

and

B′ = {ba(bd)
e : Ve −→ Va ⊗ (Vb ⊗Vd)}

whose element ba(bd)
e is depicted in the graphical calculus as
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a b d

c

e

:=

Va

· · ·

Va

Vb

· · · · · ·

Vd

· · · · · ·

· · · · · ·

Vc

· · · · · · · · · · · ·

· · · · · ·

Ve

The classical 6j symbol is known [41][12][20][3] to be the coefficients in the

change from the basis B to B′. It is stated formally as follows:

Definition 2.2.4. Let a, b, d, e, f be five positive integers such that (a, b, f ) and ( f , d, e)

are admissible. Let Va denote the (a+ 1)−dimensional irreducible representation of SU(2).

Let B and B′ be the two "fundamental" bases for HomRep(SU(2))(Ve, Va⊗Vb⊗Vd). Then,

Classical 6j symbols are the coefficients while changing from B to B′ i.e.

a b d

f

e

= ∑c

a b c

d e f


0︸ ︷︷ ︸

6j symbol

a

c

db

e

where the sum ranges over all c ∈ N such that (b, d, c) and (a, c, e) are admissible. It is a

finite sum.

To be completely clear, let us explain this definition in alternative words. An

element of a basis in HomRep(SU(2))(Ve, Va ⊗ Vb ⊗ Vd), the morphism depicted on

the left hand side of the equation in Definition 2.2.4, can be written as a linear

combination of the elements of the other basis formed by the morphisms depicted

on the right hand side of the equation in Definition 2.2.4. Here the sum ranges over

all c ∈N such that (b, c, d) and (a, c, e) are admissible. The coefficients in the linear

combination are the classical 6j symbols.
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For the symbol to represent a Euclidean tetrahedron (that is what we need)

which is SO(4)−invariant, it has to be normalized. The definition of a normalized

classical 6j symbols is given below.

Definition 2.2.5. Let a, b, c, d, e, f be six non-negative integers such that (a, b, f ), ( f , d, e), (b, d, c)

and (a, c, e) are admissible. Then, the normalized classical 6j symbols is defined asa b c

d e f

 =
(−1)

a+b+d+e
2

f + 1

√∣∣∣∣ Θ(a, b, c)Θ(c, d, e)
Θ(a, e, f )Θ(a, d, f )

∣∣∣∣
a b c

d e f


0

where

Θ(x, y, z) =
nxz!nxy!nyz!(nxz + nxy + nyz + 1)!

(−1)nxz+nxy+nyz x!y!z!

and

nxz =
x + z− y

2
, nxy =

x + y− z
2

, nyz =
y + z− x

2

for any admissible triples (x, y, z) ∈N3.

For further reading on classical 6j symbols and graphical calculus [20], [12] and

[3] are recommended. And for general knowledge on classical 6j symbols see [43].

2.3 Spherical simplices

Given n vectors of unit length in Rn, there are at least two ways of defining an

(n − 1)-dimensional spherical simplex. To wit, by considering the vectors as the

vertices of the simplex [21], or by looking at each of them as the unit normal vectors

to each face of the simplex [28, page 286, Proof of Lemmas 1 and 2]. When n = 3, the

simplex is a spherical triangle and for n = 4 it is a spherical tetrahedron. Only these

two instances are looked at in this section. There are at least two ways to define a

non-degenerate spherical simplex, one is given in [21] and the other in [28]. Both of

these definitions will be looked at since one ([21]) is more appropriate when dealing

with the classical 6j symbol and the other ([28]) when dealing with the quantum 6j

symbols. Besides, the notion of cosine and sine laws in a spherical triangle will be

reminded since they play an important role in our inner calculations.
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v1

B

a

v2
C

c

v0
A

b

Figure 2.3: Spherical triangle S

2.3.1 Spherical triangle

The aim of this subsection is to recall the definition of a spherical triangle, the cosine

law, the dual cosine law and sine law from spherical geometry.

Definition 2.3.1. Let v0, v1, v2 be three non-zero vectors in R3 which direct the cone de-

fined by C = {α0v0 + α1v1 + α2v2, αi ≥ 0}. A spherical triangle with vertices v0, v1, v2

is defined by C ∩ S2 where S2 is the unit two sphere.

Remark 2.3.2. [45] From spherical geometry, there are at least three results regarding a

spherical triangle specifically, the cosine law, the dual cosine law and the sine law. Let’s

consider the spherical triangle S in Figure 2.3. Then,

1. by conceptually taking A as an example, the cosine law reads

cos A =
cos a− cos b cos c

sin b sin c
. (2.5)

2. Similarly, the dual cosine law is defined to be

cos a =
cos A + cos B cos C

sin B sin C
. (2.6)

3. And the sine law is known as

sin A
sin a

=
sin B
sin b

=
sin C
sin c

. (2.7)

2.3.2 Spherical tetrahedron

The two ways of defining a non-degenerate spherical tetrahedron from [21] and

[28] constitute the content of this subsection.
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v1

v2

v0

v3

l12

l02 l03

l13

l01

l23

α0
12

α0
13

α0
23

β23

Figure 2.4: Spherical tetrahedron T showing the vertices, lengths of the edges, the
interior angles around the vertex v0 and an example of interior dihedral angle (β23).

Definition 2.3.3 (Definition of a spherical tetrahedron from its vertices). [21] Let

v0, v1, v2, v3 be four non-zero vectors in R4 which direct the cone defined by

C = {α0v0 + α1v1 + α2v2 + α3v3, αi ≥ 0}.

A spherical tetrahedron with vertices v0, v1, v2, v3 is the intersection of C with S3 where

S3 is the unit three sphere.

Remark 2.3.4. The following terminology will be used throughout this thesis:

• The lengths of the edges which here are labeled by lij are the edge lengths

• The angle between two edges named αk
ij will be called interior angles

• The dihedral angle between two faces of the tetrahedron βij on the figure are the

interior dihedral angles.

A different way to define a spherical tetrahedron is:

Definition 2.3.5 (Definition of a spherical tetrahedron from the outward normal

vectors to each of its faces). [28] Let g0, g1, g2, g3 be four unit vectors in R4. Consider

the set

Hi = {x ∈ R4 : x.gi ≤ 0}.

A spherical tetrahedron T is defined to be the intersection of
3⋂

i=0
Hi with the unit sphere

S3.
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v1

v2

v0

v3

l12

l02 l03

l13

l01

l23

g3

g0

θ03

g1

g2

Figure 2.5: Spherical tetrahedron T including the outward normal vectors.

Remark 2.3.6. • The vectors g0, g1, g2, g3 are the outward normal vectors to each face

of the spherical tetrahedron.

• Let θij be the angle between gi and gj. By definition θij is called the exterior dihedral

angle of T.

Remark 2.3.7. The definitions 2.3.3 and 2.3.5 are equivalent. This equivalence amounts

to say that given the vertices of a spherical tetrahedron T, its unit outward normal vectors

may be computed and vice versa. So, let us denote the set of vertices of T by

V = {vertices v0, v1, v2, v3 of T}

and the set of its unit outward normal vectors by

O = {unit outward normal vectors g0, g1, g2, g3 of T}.

Given a vertex vi of T, then its dual v∗i is defined by

〈v∗i , vj〉 = δij. (2.8)

Then, let us set

gi := −
v∗i∥∥v∗i
∥∥ .

It follows from (2.8) that gi is normal to the hyperplane formed by the vectors vj, vk, vl

where j, k, l 6= i in the opposite direction to vi. By repeating that process for i = 0, · · · , 3

one would obtain the four outward normal vectors to each face of the tetrahedron.
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Let us consider the four unit outward normal vectors g0, g1, g2, g3 ∈ R4 to T i.e. they

define the hyperplanes

Hi := {x ∈ R4 : x.gi ≤ 0}.

Let g∗i be the dual to gi, and let us set

vi := −
g∗i∥∥g∗i
∥∥ .

Therefore, by definition

〈vi, gj〉 = −
1∥∥g∗i
∥∥δij

which indicates that vi ∈
3⋂

i=0
Hi
⋂

S3, with norm one (1) and is indeed the point where the

H′i s intersect. Hence, the vector vi is a vertex of the spherical tetrahedron T. This way,

when i varies from 0 to 3, all the vertices of T are recovered.

Definition 2.3.8. A spherical tetrahedron T is called non-degenerate if its vertices, equiv-

alently its outward normal vectors, are linearly independent as unit vectors in R4. It is

otherwise called degenerate.

Definition 2.3.9. Let T be a spherical tetrahedron with vertices v0, v1, v2, v3. Let v∗0 , v∗1 , v∗2 , v∗3

be four unit vectors in R4 such that

〈vi, v∗j 〉R4 = δij

where δij denotes the Kronecker delta. Then the spherical tetrahedron T∗ with vertices

gi := −
v∗i∥∥v∗i
∥∥

is called the dual tetrahedron of T.

Remark 2.3.10. Geometrically, the four unit outward normal vectors g0, g1, g2, g3 ∈ R4

to the spherical tetrahedron defined by Definition 2.3.5 constitute the vertices of the dual

tetrahedron to T. And a spherical tetrahedron T is non-degenerate if and only if its dual is.

Let us recall that this Chapter aims to reproduce the six-dimensional integral

formula for the classical 6j symbols by Freidel and Louapre. From Equation (2.2),

the matrix [cos lij] in the denominator of the integrand actually corresponds to the

edge Gram matrix of a spherical tetrahedron. Hence, let us look at the definition of
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the edge Gram matrix. Here, Luo’s definition found in [24] which is expressed in

terms of the dot product between the vertices of the tetrahedron is adopted.

Definition 2.3.11. Let T be a spherical tetrahedron with vertices v0, v1, v2 and v3 (see

Figure 2.4). The edge Gram matrix of T is the 4× 4 matrix defined by Gij = vi.vj, which

is equivalent to

G =


1 cos l01 cos l02 cos l03

cos l01 1 cos l12 cos l13

cos l02 cos l12 1 cos l23

cos l03 cos l13 cos l23 1

 ,

where lij is the length of the edge (vivj).

Besides the edge Gram matrix, there is also the angle Gram matrix which in turn

is composed by the negative cosine of the interior dihedral angles of the tetrahe-

dron T. Recall its definition:

Definition 2.3.12. Let T be a spherical tetrahedron with vertices v0, v1, v2, v3 and interior

dihedral angles βij around the edge (vkvl) where {i, j} 6= {k, l}, as shown in Figure 2.4.

The angle Gram matrix is defined as

G1 =


1 − cos β01 − cos β02 − cos β03

− cos β01 1 − cos β12 − cos β13

− cos β02 − cos β12 1 − cos β23

− cos β03 − cos β13 − cos β23 1

 .

2.4 Links

In his paper [25], Feng Luo presented the beautiful concept of a link which is often

used in this Chapter. However, he did not explain why the interior angles of the

link are the same as the suitable interior dihedral angles of the spherical tetrahe-

dron. Hence, we give an explanation on that in this section.

Definition 2.4.1. Let T be a spherical tetrahedron with vertices v0, v1, v2 and v3 as shown

in Figure 2.4. Let i, j, k ∈ {0, 1, 2, 3} and denote by αk
ij the interior angle of T at the vertex

vk and opposite to the edge (vivj). The link at vertex vk, denoted by Lk(vk), is the spherical
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vj

Γk
ilαk

ij

vi
Γk

jl

αk
jl

vl
Γk

ij

αk
il

Figure 2.6: Link Lk(vk)

triangle with edge lengths αk
ij, αk

il , αk
jl . Let us set Γk

ij, Γk
il , Γk

jl to be its interior angles such

that Γk
ij is opposite to αk

ij as shown in Figure 2.6 .

By looking at the spherical tetrahedron Figure 2.4, the portion of circle repre-

senting each interior angle around the vertex v0 cross at one point of a specific

edge. The guess is that the angle between them is the interior dihedral angle along

the edge of crossing. And the lemma below, which was not made clear by Luo,

formalises that concept.

Lemma 2.4.2. Let Γk
il be an interior angle in the link Lk(vk). Let βil be the interior dihedral

angle of T at the edge (vjvk). Then,

Γk
il = βil .

Proof. In this proof, let us pick one example of a link namely Lk(v0) but the proof

may be adapted for any link.

By acting with an appropriate element of SO(4), T may be rotated so that its

vertices are in standard position:

v0 = (1, 0, 0, 0), vi = (cos θi, sin θini) i = 1, · · · , 3

here ni ∈ S2 are the vertices of Lk(v0) as in Figure 2.7:

n1 = (0, 0, 1), n2 = (sin α0
12, 0, cos α0

12), n3 = (sin α0
13 cos α0

23, sin α0
13 sin α0

23, cos α0
13).

By definition,

cos β23 = −w2.w3,
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n3n2

n1

α0
12 α0

13

α0
23

Γ0
23

a2a3

Figure 2.7: The link at v0

v1

β23
α0

12

v2
β13

α0
13

v3
β12

α0
23

Figure 2.8: Link Lk(v0)

where w2, w3 ∈ R4 are the outward unit normal vectors to the faces v0v1v3 and

v0v1v2 of T respectively. Clearly we have

w2 = (0, a2), w3 = (0, a3)

where a2, a3 ∈ R3 are the outward unit vectors normal to the edges n1n3 and n1n2

of Lk(v0) respectively (see Figure 2.7). But by definition

cos Γ0
23 = −a2.a3

which shows that Γ0
23 = β23.

Therefore, from now on the link at v0 will be represented by the Figure 2.8 and

the other links follow accordingly.
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2.5 Box variables

The notion of box variables is not new in the literature. They feature in [17] but are

not explicitly mentioned as box variables. In this section, we reintroduce the box

variables and express the quantities related to a spherical tetrahedron such as edge

lengths and interior dihedral angles as functions of them. Although the expression

of the determinant of the edge Gram matrix of a spherical tetrahedron in terms of

the box variables is present in [17], the detailed calculation was not given. Hence,

we provide it in this section as well. The use of the box variables in our integration

induces the integration domain to be the entire cube and the integration measure

to be a product measure which makes life simpler for numerical calculations. In

addition, the determinant of the edge Gram matrix has a "nicer" expression in terms

of the box variables. These are some of the reasons why the notion of box variables

is re-introduced here.

Definition 2.5.1. Let T be a spherical tetrahedron with vertices v0, v1, v2, v3. We call box

variables the set

B = {l01, l02, l03, α0
12, α0

13, β23}

where l01, l02, l03 are the respective lengths of the edges (v0v1), (v0v2), (v0v3), α0
12, α0

13 the

respective interior angle between the edges (v0v1), (v0v2) and (v0v1), (v0v3), and β23 the

interior dihedral angle around the edge (v0v1) as shown in Figure 2.4.

Given four unit vectors v0, v1, v2, v3 in R4. They may be expressed in spherical

coordinates as:

vi = (cos xi, sin xi sin yi cos zi, sin xi sin yi sin zi, sin xi cos yi).

And, formally explained in Definition 2.3.3 v0, v1, v2, v3 may be considered as

the vertices of a spherical tetrahedron T. Let

Lg :S3 −→ S3

v 7−→ gv

be the restriction to S3 of the linear action of SO(4) on R4 . Under this action these

vectors may be rotated in such a way that the edge lengths and interior dihedral

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. AN INTEGRAL FORMULA FOR THE CLASSICAL 6J SYMBOLS 31

angles of T are preserved. In other words, rotating the vectors is equivalent to

rotating T. Let g ∈ SO(4) such that [4]

ṽ0 := gv0 = (1, 0, 0, 0),

ṽ1 := gv1 = (cos x1, 0, 0, sin x1),

ṽ2 := gv2 = (cos x2, sin x2 sin y2, 0, sin x2 cos y2),

ṽ3 := gv3 = (cos x3, sin x3 sin y3 cos z3, sin x3 sin y3 sin z3, sin x3 cos y3),

where x1, x2, x3, y2, y3 ∈ [0, π] and z3 ∈ [0, 2π]. By using these new coordinates,

each vector may be expressed in terms of the box variables as follows:

Proposition 2.5.2. Suppose z3 ∈ [0, π]. Then the variables xi are equal to the edge lengths

l0i of the spherical tetrahedron T ( see Figure 2.9), the variables yi overlap with the interior

angles α0
1i at ṽ0 and z3 with the interior dihedral angle β23 i.e.

x1 = l01, x2 = l02, x3 = l03,

y2 = α0
12, y3 = α0

13,

z3 = β23.

Proof. Let −→ni be the unit vector tangent to the edge (ṽ0ṽi) at ṽ0 (see Figure 2.9 be-

low). Here,

−→n1 = (0, 0, 1),

−→n2 = (sin y2, 0, cos y2),

−→n3 = (sin y3 cos z3, sin y3 sin z3, cos y3).

By definition the cosine of xi is given by

cos xi = ṽ0.ṽi

= cos l0i,

thus, xi = l0i when xi ∈ [0, π] .

To understand yi and z3, let’s use the fact that by definition

−→ni .−→nj = cos α0
ij.
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An application of that equality is

−→n1 .−→n2 = cos y2

= cos α0
12,

which implies that

y2 = α0
12 (2.9)

when y2 ∈ [0, π].

Similarly to the case of y2,

−→n1 .−→n3 = cos y3

= cos α0
13.

That implies,

y3 = α0
13 (2.10)

when y3 ∈ [0, π] .

For the case of z3,

−→n2 .−→n3 = sin y2 sin y3 cos z3 + cos y2 cos y3

= cos α0
23.

This equality amounts to say that

sin α0
12 sin α0

13 cos z3 + cos α0
12 cos α0

13 = cos α0
23

because of (2.9) and (2.10).

Lastly, by applying Equation (2.5) from Remark 2.3.2 to the link Lk(ṽ0) one ob-

tains

cos z3 = cos β23

i.e. z3 = β23 when z3 ∈ [0, π] .

Remark 2.5.3. It is important to keep in mind that only when z3 ∈ [0, π], then the box

variables may be used. This is important while dealing with the integration later.
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−→n1

−→n2

−→n3

ṽ1

ṽ2

ṽ0

ṽ3

l12

l02

l03

l13

l01

l23

α0
12

α0
13

α0
23

β23

Figure 2.9: Spherical tetrahedron T with the tangent vectors −→ni .

It is a fact that the edge lengths, the interior angles and interior dihedral angles

may be expressed as functions of the box variables. The upcoming results are not

only used in the computation of the determinant of the edge Gram matrix, but also

in our numerical calculation.

Lemma 2.5.4. The edge lengths, the interior angles and the interior dihedral angles of a

tetrahedron may be expressed as functions of the box variables.

Proof. By applying the cosine law to all the links and faces of the tetrahedron, the

following results, which are supposed to be read consecutively from top to bottom

hold:

1. cos α0
23 = cos α0

12 cos α0
13 + sin α0

12 sin α0
13 cos β23,

2. cos β13 =
cos α0

13−cos α0
12 cos α0

23
sin α0

12 sin α0
23

,

3. cos β12 =
cos α0

12−cos α0
13 cos α0

23
sin α0

13 sin α0
23

,

4. cos l23 = cos l03 cos l02 + sin l03 sin l02 cos α0
23,

5. cos α2
03 = cos l03−cos l02 cos l23

sin l02 sin l23
,

6. cos l12 = cos l02 cos l01 + sin l02 sin l01 cos α0
12,

7. cos α1
02 = cos l02−cos l01 cos l12

sin l01 sin l02
,

8. cos α2
01 = cos l01−cos l02 cos l12

sin l02 sin l12
,
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9. cos α2
13 = cos α2

01 cos α2
03 + sin α2

01 sin α2
03 cos β13,

10. cos β01 =
cos α2

01−cos α2
03 cos α2

13
sin α2

03 sin α2
13

,

11. cos β03 =
cos α2

03−cos α2
01 cos α2

13
sin α2

01 sin α2
13

,

12. cos β02 = − cos β23 cos β03 + sin β23 sin β03 cos α1
02,

13. cos l13 = cos l01 cos l03 + sin l01 sin l03 cos α0
13,

14. cos α1
03 = cos l03−cos l01 cos l13

sin l01 sin l13
,

15. cos α2
13 = cos l13−cos l12 cos l23

sin l12 sin l23
,

16. cos α2
03 = cos l03−cos l02 cos l23

sin l02 sin l23
,

17. cos α1
23 =

cos β23−cos α1
03 cos α1

02
sin α1

03 sin α1
02

,

18. cos α3
01 = cos l01−cos l03 cos l13

sin l03 sin l13
,

19. cos α3
02 = cos l02−cos l03 cos l23

sin l03 sin l23
,

20. cos α3
12 = cos l12−cos l13 cos l23

sin l13 sin l23
.

In particular, as the edge lengths l12, l13, l23 are frequently used throughout the

thesis, let us emphasize their expression in terms of the box variables.

cos l12 = cos l01 cos l02 + sin l01 sin l02 cos α0
12, (2.11)

cos l13 = cos l01 cos l03 + sin l01 sin l03 cos α0
13, (2.12)

cos l23 = cos l02 cos l03 + sin l02 sin l03(cos α0
12 cos α0

13 + sin α0
12 sin α0

13 cos β23).

(2.13)

These were obtained by manipulating the cosine law from the faces ∆012, ∆013,

∆023 of the spherical tetrahedron and the link Lk(v0).

If computed directly from the Definition 2.3.11, the expression of the determi-

nant of the edge Gram matrix, which is in terms of the edge lengths of the tetrahe-

dron, is long, heavy and almost impossible to remember. And that may lead to a
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difficulty in identifying it in the middle of a calculation. However, in terms of the

box variables it is short and easy to catch. Therefore, let us express the determinant

of the edge Gram matrix in terms of the box variables. For that, one more step

needs to be considered.

For the following lemma and proposition, let us consider T to be the spherical

tetrahedron with vertices v0, v1, v2, v3, conform to Figure 2.4.

Lemma 2.5.5. The following equality holds

sin2 α0
12 sin2 α0

13 sin2 β23 = 1− cos2 α0
23 − cos2 α0

12 cos2 α0
13 + 2 cos α0

12 cos α0
13 cos α0

23.

Proof. By using the equality sin2 x + cos2 x = 1 in the first step of the equalities,

and by applying Equation (2.5) to Lk(v0) in the third equality one obtains

sin2 α0
12 sin2 α0

13 sin2 β23 = sin2 α0
12 sin2 α0

13(1− cos2 β23)

= sin2 α0
12 sin2 α0

13 − sin2 α0
12 sin2 α0

13 cos2 β23

= sin2 α0
12 sin2 α0

13 − (cos α0
23 − cos α0

12 cos α0
13)

2

= sin2 α0
12 sin2 α0

13 − cos2 α0
23 + 2 cos α0

23 cos α0
12 cos α0

13 + cos2 α0
12 cos2 α0

13

= sin2 α0
12(1− cos2 α0

13)− cos2 α0
23 + 2 cos α0

23 cos α0
12 cos α0

13

+ cos2 α0
12 cos2 α0

13

= sin2 α0
12 − sin2 α0

12 cos2 α0
13 − cos2 α0

23 + 2 cos α0
23 cos α0

12 cos α0
13

+ cos2 α0
12 cos2 α0

13

= sin2 α0
12 − cos2 α0

13 − cos2 α0
23 + 2 cos α0

23 cos α0
12 cos α0

13

= 1− cos2 α0
12 − cos2 α0

13 − cos2 α0
23 + 2 cos α0

23 cos α0
12 cos α0

13.

At last, the determinant of the edge Gram matrix of the tetrahedron T as func-

tion of the box variables is given by:

Proposition 2.5.6. The determinant of the edge Gram matrix of T may be expressed in

terms of the box variables as

det[cos lij] = sin2 l01 sin2 l02 sin2 l03 sin2 α0
12 sin2 α0

13 sin2 β23.
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Proof. Let’s compute the determinant of [cos lij]. Note that the Cosine law (2.5) is

used while moving from the second to the third equality.

det[cos lij] = det


1 cos l01 cos l02 cos l03

cos l01 1 cos l12 cos l13

cos l02 cos l12 1 cos l23

cos l03 cos l13 cos l23 1



= det


1 cos l01 cos l02 cos l03

0 1− cos2 l01 cos l12 − cos l01 cos l02 cos l13 − cos l01 cos l03

0 cos l12 − cos l01 cos l02 1− cos2 l02 cos l23 − cos l02 cos l03

0 cos l13 − cos l01 cos l03 cos l23 − cos l02 cos l03 1− cos2 l03



= det


sin2 l01 sin l01 sin l02 cos α0

12 sin l01 sin l03 cos α0
13

sin l01 sin l02 cos α0
12 sin2 l02 sin l02 sin l03 cos α0

23

sin l01 sin l03 cos α0
13 sin l02 sin l03 cos α0

23 sin2 l03


= sin2 l01(sin2 l02 sin2 l03 − sin2 l02 sin2 l03 cos2 α0

23)

− sin l01 sin l02 cos α0
12(sin2 l03 sin l01 sin l02 cos α0

12 − sin l02 sin l01 sin2 l03 cos α0
23 cos α0

13)

+ sin l01 sin l03 cos α0
13(sin l01 sin l03 sin2 l02 cos α0

12 cos α0
23 − sin2 l02 sin l01 sin l03 cos α0

13)

= sin2 l01 sin2 l02 sin2 l03(1− cos2 α0
23 − cos2 α0

12 cos2 α0
13 + 2 cos α0

12 cos α0
13 cos α0

23)

= sin2 l01 sin2 l02 sin2 l03 sin2 α0
12 sin2 α0

13 sin2 β23 (By Lemma 2.5.5).

2.6 Lebesgue measure on S3

The integral we would like to transform is over four copies of SU(2), and one of the

steps is to translate it to an integration over four copies of S3. Hence, the intention

of this section is to recall the Lebesgue measure on S3 and show its invariance under

the action of SO(4). That is done by the analysis of a volume form on S3. A general

reminder on volume forms and integration on a manifold is provided in Appendix

B.

Lemma 2.6.1. Consider the local parameterization

h−1 : (0, π)× (0, π)× (0, 2π) −→ S3
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such that

(θ, α, β) 7→ g = (cos θ, sin θ sin α cos β, sin θ sin α sin β, sin θ cos α).

Then,

ωg = sin2 θ sin αdθ ∧ dα ∧ dβ

is the volume form on S3.

Proof. As shown in Equation (B.4), the "main" coefficient of a volume form on a

manifold is determined by the square root of the determinant of the matrix whose

entries are the inner products of the tangent vectors. For S3 the basis of the tangent

space at g is given by

{ ∂

∂θ
,

∂

∂α
,

∂

∂β
},

hence the tangent vectors are

gθ :=
∂g
∂θ

(θ, α, β) = (− sin θ, cos θ sin α cos β, cos θ sin α sin β, cos θ cos α),

gα :=
∂g
∂α

(θ, α, β) = (0, sin θ cos α cos β, sin θ cos α sin β,− sin α sin β),

gβ :=
∂g
∂β

(θ, α, β) = (0,− sin θ sin α sin β, sin θ sin α cos β, 0).

Therefore, the matrix composed of the inner products of the tangent vectors

reads as follows:

G1 =


< gθ , gθ > < gθ , gα > < gθ , gβ >

< gα, gθ > < gα, gα > < gα, gβ >

< gβ, gθ > < gβ, gα > < gβ, gβ >



=


1 0 0

0 sin2 θ 0

0 0 sin2 θ sin2 α


with determinant

det G1 = sin4 θ sin2 α.

Thus, the square root of the determinant is given by

√
det G1 = sin2 θ sin α.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. AN INTEGRAL FORMULA FOR THE CLASSICAL 6J SYMBOLS 38

Which implies that the "main" volume form on S3 is given by

ωg = sin2 θ sin αdθ ∧ dα ∧ dβ.

Moreover, this volume form on S3 is left-invariant under the action of SO(4) on

S3.

Lemma 2.6.2. The Euclidean volume form ω ∈ Ω3(S3) is left-invariant under SO(4) i.e.

if g ∈ SO(4) and

Lg :S3 −→ S3

v 7−→ gv

be the restriction to S3 of the linear action of SO(4) on R4. Then, L∗gω = ω.

Proof. Let v ∈ S3, g ∈ SO(4) and v1, v2, v3 ∈ TvS3.

Therefore, by definition (see Definition B.1.6)

(L∗gωv)(v1, v2, v3) = ωgv((DvLg)v1, (DvLg)v2, (DvLg)v3)

= ωgv(Lgv1, Lgv2, Lgv3)

= ωgv(gv1, gv2, gv3) Lg linear

=
√

det(< gvi, gvj >R4)

=
√

det(< vi, vj >R4) as g preserves inner products

= ωv(v1, v2, v3).

Therefore L∗gω = ω.

Based on Proposition B.2.3, a volume form on S3 induces a measure µ which is

finite on S3 since S3 is a compact submanifold of R4. By definition that measure is

also positive. It is the Lebesgue measure on S3 such that

µ(H) :=
∫

H
ω

for a measurable subset H in S3. And from Lemma 2.6.2, that volume form is

invariant under the action of SO(4), hence so is the induced measure.
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2.7 Integral formula for the classical 6j symbols

Consider the equality∫
(SU(2))4

∏
i<j

χmij(gjg−1
i )[

3

∏
i=0

dgi] =
2

π4

∫
Dπ

∏i<j sin((mij + 1)lij)√
det([cos lij])

[∏
i<j

dlij]. (2.14)

Although it is proven in [17], a thorough process of the calculations is not provided.

So, we have the objective to prove Equation (2.14) meticulously in this section. The

strategy is first to convert the left hand side of (2.14) into an integration over the

box variables, that is done in Subsection 1, then transform the latter to the right

hand side of the equality, see Subsection 2.

Throughout this section, all integration are treated as Riemann integration.

2.7.1 Integral in terms of the box variables

Let us denote the integral on the left hand side of Equation (2.14) by

I =
∫
(SU(2))4

∏
i<j

χmij(gjg−1
i )[

3

∏
i=0

dgi]. (2.15)

The aim of this subsection is to rewrite the integral (2.15) in terms of the box vari-

ables. Our strategy is to first express it as an integral over (S3)4, then rewrite it in

terms of spherical coordinates.

Let g0, g1, g2, g3 be four elements in SU(2). Due to the diffeomorphism ( A.1)

f : S3 −→ SU(2),

let us set

v0 := f−1(g0),

v1 := f−1(g1),

v2 := f−1(g2),

v3 := f−1(g3).

Let g ∈ SO(4), recall the action of SO(4) on S3

Lg :S3 −→ S3

v 7−→ gv.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. AN INTEGRAL FORMULA FOR THE CLASSICAL 6J SYMBOLS 40

From (2.15) let us set the product of characters in the integrand of I to be

X = ∏
i<j

χmij(gjg−1
i ).

From Proposition A.2.3 the product X becomes

X = ∏
i<j

sin((mij + 1)lij)
sin lij

. (2.16)

Hence, X may be thought as a function of 〈vi, vj〉R4 since lij = arccos(〈vi, vj〉R4). In

other words, X can be seen as

X = F(〈vi, vj〉R4), (2.17)

where i, j ∈ {0, 1, 2, 3}. Therefore, the integral (2.15) is equivalent to

I =
∫
(S3)4

F(〈vi, vj〉R4)[
3

∏
i=0

dvi]. (2.18)

Lemma 2.7.1. The function F is invariant under the action of SO(4) i.e. for g ∈ SO(4)

F(〈vi, vj〉R4) = F(〈gvi, gvj〉R4),

where i, j ∈ {0, 1, 2, 3}.

Proof. It is obvious since 〈vi, vj〉R4 = 〈gvi, gvj〉R4 when g ∈ SO(4).

As unit vectors in R4, v0, v1, v2 and v3 may be written in spherical coordinates

as:

v0 = (cos x0, sin x0 sin y0 cos z0, sin x0 sin y0 sin z0, sin x0 cos y0),

v1 = (cos x1, sin x1 sin y1 cos z1, sin x1 sin y1 sin z1, sin x1 cos y1),

v2 = (cos x2, sin x2 sin y2 cos z2, sin x2 sin y2 sin z2, sin x2 cos y2),

v3 = (cos x3, sin x3 sin y3 cos z3, sin x3 sin y3 sin z3, sin x3 cos y3),

where xi ∈ [0, π], yi ∈ [0, π] and zi ∈ [0, 2π]. And accordingly, F may be expressed

in terms of xi, yi, zi, i.e.

F ≡ F(x0, x1, x2, x3, y0, y1, y2, y3, z0, z1, z2, z3).
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Furthermore, let us bring back from Lemma 2.6.1 that the normalized volume form

on S3 in spherical coordinates is given by

dvi =
1

2π2 sin2 xi sin yidxidyidzi,

since the volume of a three-sphere is 2π2.

From Definition 2.3.3 v0, v1, v2, v3 may be considered as the vertices of a spher-

ical tetrahedron T. And by using the same strategy in Section 2.5 they may be

rotated in such a way that the action is equivalent to rotating T i.e. [4] there exists

g ∈ SO(4) such that the rotation results in

ṽ0 := gv0 = (1, 0, 0, 0),

ṽ1 := gv1 = (cos x1, 0, 0, sin x1),

ṽ2 := gv2 = (cos x2, sin x2 sin y2, 0, sin x2 cos y2),

ṽ3 := gv3 = (cos x3, sin x3 sin y3 cos z3, sin x3 sin y3 sin z3, sin x3 cos y3).

Based on Lemma 2.6.2 the normalized volume form on S3 is invariant under the

action of SO(4). Additionally, the following lemma holds:

Lemma 2.7.2. [42] Let ω be an Euclidean volume form on S3 and f be a continuous

compactly supported function on S3. Let g ∈ SO(4) and the diffeomorphism

Lg :S3 −→ S3

m 7−→ gm.

Then, ∫
S3

L∗g( f )ω =
∫

S3
f ω,

where L∗g f := f ◦ Lg.

Altogether, Lemma 2.6.2 and Lemma 2.7.2 allow us to say that the twelve-dimensional

integral (2.15) may be re-expressed as a six-dimensional Lebesgue integral.

Proposition 2.7.3. The integral I can be re-written as

I =
2

π4

∫ π

0

∫ π

0

∫ π

0

∫ π

0

∫ π

0

∫ π

0
F(x1, x2, x3, y2, y3, z3) sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3

dz3dy3dy2dx3dx2dx1.
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Proof. By rewriting the integral (2.18) in terms of the spherical coordinates in step

one of the equality, and by applying Lemma 2.6.2 to the volume form, and Lemma

2.7.1 and Lemma 2.7.2 to F in the second step, the transformation of the integral in

Equation (2.15) reads as follows:

I =(
1

2π2 )
4
∫ π

x0,x1,x2,x3,y0,y1,y2,y3=0

∫ 2π

z0,z1,z2,z3=0
F(x0, x1, x2, x3, y0, y1, y2, y3, z0, z1, z2, z3)

3

∏
i=0

sin2 xi sin yidzidyidxi

=(
1

2π2 )
4
∫ π

x0,x1,x2,x3,y0,y1,y2,y3=0

∫ 2π

z0,z1,z2,z3=0
F(x1, x2, x3, y2, y3, z3)

3

∏
i=0

sin2 xi sin yidzidyidxi

=(
1

2π2 )
4
∫ π

x1,x2,x3,y2,y3=0

∫ 2π

z3=0
F(x1, x2, x3, y2, y3, z3) sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3

dz3dy3dy2dx3dx2dx1 ×
∫ π

x0,y0,y1=0

∫ 2π

z0,z1,z2=0
sin2 x0 sin y0 sin y1dz0dz1dz2dy0dy1dx0

=(2π)4.(
1

2π2 )
4
∫ π

x1,x2,x3,y2,y3=0

∫ 2π

z3=0
F(x1, x2, x3, y2, y3, z3) sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3

dz3dy3dy2dx3dx2dx1

=(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ 2π

z3=0
F(x1, x2, x3, y2, y3, z3) sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3

dz3dy3dy2dx3dx2dx1

=(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ π

z3=0
F(x1, x2, x3, y2, y3, z3) sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3

dz3dy3dy2dx3dx2dx1

+(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ 2π

z3=π
F(x1, x2, x3, y2, y3, z3) sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3

dz3dy3dy2dx3dx2dx1

=
2

π4

∫ π

x1,x2,x3,y2,y3=0

∫ π

z3=0
F(x1, x2, x3, y2, y3, z3) sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3

dz3dy3dy2dx3dx2dx1

The last equality is obtained by doing a change of variables u = 2π − z3 in the

second summand in the second last step.

Now that all the boundaries of the integrals are from 0 to π, the use of the box

variables may be incorporated in the calculation. Let us recall from Subsection

2.5 that B = {l01, l02, l03, α0
12, α0

13, β23}, where l0i are the lengths of the edges of the

spherical tetrahedron leaving from the vertex v0, α0
1i are the interior angles around
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the vertex v0 and opposite to the edges (v1vi), and β23 is the interior dihedral angle

along the edge (v0v1). Following Proposition 2.5.2, the angles x1, x2, x3, y2, y3 and

z3 in the spherical coordinates may be written in terms of the box variables as x1 =

l01, x2 = l02, x3 = l03, y2 = α0
12, y3 = α0

13 and z3 = β23. Therefore, the integral in

Equation (2.15) becomes:

Corollary 2.7.4. As function of the box variables B, the integral in Theorem 2.1.1 may be

expressed as

I =
2

π4

∫ π

0

∫ π

0

∫ π

0

∫ π

0

∫ π

0

∫ π

0
F(l01, l02, l03, α0

12, α0
13, β23) sin2 l01 sin2 l02 sin2 l03 sin α0

12 sin α0
13

dβ23dα0
13dα0

12dl03dl02dl01.

2.7.2 Freidel and Louapre’s integral

Following from Corollary 2.7.4 and Equation (2.16) the integral I is re-expressed as

I = 2
π4

∫ π
0

∫ π
0

∫ π
0

∫ π
0

∫ π
0

∫ π
0 ∏i<j

sin((mij+1)lij)
sin lij

sin2 l01 sin2 l02 sin2 l03 sin α0
12 sin α0

13dβ23dα0
13dα0

12dl03dl02dl01.

(2.19)

Let us be reminded of our goal which is to prove

I =
2

π4

∫
Dπ

∏i<j sin((mij + 1)lij)√
det([cos lij])

[∏
i<j

dlij].

Here, the domain of integration is

Dπ = {(l01, l02, l03, l12, l13, l23) ∈ [0, π]6, [cos lij] is positive definite },

where [cos lij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal entries

are cos lij. Hence, the variables of the integrand represent the edge lengths of a

spherical tetrahedron (Lemma 2.8.5). Therefore, from Lemma 2.5.4, they may be

re-written in terms of the box variables. Although, especially in the measure, the

"inverse expression" is what’s needed i.e. the process requires the expression of the

box variables as functions of the edge lengths. But that can easily be obtained from

playing around with the equations in Lemma 2.5.4. In other words,
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Lemma 2.7.5. The change in measure, from box variables to edge lengths, in the integral

is acquired from

dα0
12 =

sin l12

sin l01 sin l02 sin α0
12

dl12,

dα0
13 =

sin l13

sin l01 sin l03 sin α0
13

dl13,

dβ23 =
sin l23

sin l02 sin l03 sin α0
12 sin α0

13 sin β23
dl23.

Proof. From the proof of Lemma 2.5.4, the following results hold:

cos l12 = cos l01 cos l02 + sin l01 sin l02 cos α0
12,

cos l13 = cos l01 cos l03 + sin l01 sin l03 cos α0
13,

cos l23 = cos l02 cos l03 + sin l02 sin l03(cos α0
12 cos α0

13 + sin α0
12 sin α0

13 cos β23).

Therefore, by using the chain rule it follows

d(cos l12)

dα0
12

=− sin l12
dl12

dα0
12

=− sin l01 sin l02 sin α0
12

which leads us to

dα0
12 =

sin l12

sin l01 sin l02 sin α0
12

dl12.

Similar calculations produce:

dα0
13 =

sin l13

sin l01 sin l03 sin α0
13

dl13,

dβ23 =
sin l23

sin l02 sin l03 sin α0
21 sin α0

13 sin β23
dl23.

Eventually, the integral formula for the square of the classical 6j symbols may

be rewritten as follows:

Theorem 2.7.6. The integral formula for the square of the classical 6j symbols may be re-

expressed as an integration over the equivalence classes of non-degenerate spherical tetra-

hedra in the following way:m12 m02 m01

m03 m13 m23


2

=
2

π4

∫
Dπ

∏i<j sin((mij + 1)lij)√
det([cos lij])

[∏
i<j

dlij].
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Here

Dπ = {(l01, l02, l03, l12, l13, l23) ∈ [0, π]6, [cos lij] is positive definite },

where [cos lij] is the 4 × 4 unidiagonal symmetric matrix whose off-diagonal entries are

cos lij.

Proof. Starting with Equation (2.19), followed by the expansion of the denominator,

and an appropriate cancellation in the numerator and the denominator the integral

becomes as follows:

I =
2

π4

∫ π

l01,l02,l03,α0
12,α0

13,β23=0
∏
i<j

sin((mij + 1)lij)
sin lij

sin2 l01 sin2 l02 sin2 l03 sin α0
12 sin α0

13

dβ23dα0
13dα0

12dl03dl02dl01

=
2

π4

∫ π

l01,l02,l03,α0
12,α0

13,β23=0

∏i<j sin((mij + 1)lij)
sin l12 sin l13 sin l23

sin l01 sin l02 sin l03 sin α0
12 sin α0

13

dβ23dα0
13dα0

12dl03dl02dl01

=
2

π4

∫
l01,l02,l03,l12,l13,l23

∏i<j sin((mij + 1)lij)
sin l12 sin l13 sin l23

×
sin l01 sin l02 sin l03 sin α0

12 sin α0
13 sin l12 sin l13 sin l23

sin l01 sin l02 sin α0
12 sin l01 sin l03 sin α0

13 sin l02 sin l03 sin α0
12 sin α0

13 sin β23
dl23dl13dl12dl03dl02dl01

=
2

π4

∫
l01,l02,l03,l12,l13,l23

∏i<j sin((mij + 1)lij)

sin l01 sin l02 sin l03 sin α0
12 sin α0

13 sin β23
dl23dl13dl12dl03dl02dl01

=
2

π4

∫
Dπ

∏i<j sin((mij + 1)lij)√
det([cos lij])

dl23dl13dl12dl03dl02dl01 (Lemma 2.5.6 and Lemma 2.7.5).

Here

Dπ = {(l01, l02, l03, l12, l13, l23) ∈ [0, π]6, [cos lij] is positive definite },

where [cos lij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal entries

are cos lij.

2.8 Tools to describe Dπ

As mentioned in the introduction of this chapter, geometrically the integral domain

of (2.2) is the set of all the SO(4)− equivalence classes of positively oriented non-

degenerate spherical tedrahedra. That observation is not obvious, hence, requires
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a bit of explanation. Some materials to understand this geometric description of

the domain of integration are provided in this section.

To start with, let us recall the classification of spaces by Milnor in [28].

Lemma 2.8.1. [28] A non-degenerate simplex must lie either in spherical space, Hyper-

bolic space, or Euclidean space according to as the determinant of its angle Gram matrix is

positive, negative or equal to zero.

Remark 2.8.2. Equivalently, Lemma 2.8.1 applies to edge Gram matrices too as referred

in [24, Lemma 2.5].

Let

T = {T, T non-degenerate spherical tetrahedron}

be the set of non-degenerate spherical tetrahedra.

Definition 2.8.3. Let T1, T2 ∈ T with respective vertices v0, v1, v2, v3 and w0, w1, w2, w3.

We say that T1 and T2 are SO(4)−equivalent i.e.

T1
SO(4)∼ T2

if there exists g ∈ SO(4) such that

(w0, w1, w2, w3) = (gv0, gv1, gv2, gv3).

It turns out that two elements in T are SO(4)−equivalent if and only if their

duals are. Details on that are provided in the lemma below.

Lemma 2.8.4. Let T1, T2 ∈ T and let us denote by T∗1 , T∗2 their respective duals. Then

T1
SO(4)∼ T2 ⇐⇒ T∗1

SO(4)∼ T∗2 .

Proof. (=⇒) Let v0, v1, v2, v3 be the vertices of T1 and suppose that

T1
SO(4)∼ T2.

By the definition of the equivalence relation (Definition 2.8.3), there exists g ∈

SO(4) such that the vertices of T2 are gv0, gv1, gv2, gv3. Hence, the vertices of T∗2
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are (gv0)∗, (gv1)
∗, (gv2)∗, (gv3)∗ (see Definition 2.3.9). Let v∗0 , v∗1 , v∗2 , v∗3 be the ver-

tices of T∗1 which are by Definition 2.3.9 the respective dual vectors to v0, v1, v2, v3.

Proving

T∗1
SO(4)∼ T∗2

is equivalent to show that

((gv0)
∗, (gv1)

∗, (gv2)
∗, (gv3)

∗) = (gv∗0 , gv∗1 , gv∗2 , gv∗3).

By the definition of dual vectors,

〈gvi, (gvj)
∗〉R4 = δij, δij is the Krönecker delta.

Since SO(4) acts linearly on R4,

〈gvi, gv∗j 〉R4 = 〈vi, v∗j 〉R4

= δij.

Therefore the following equality holds:

〈gvi, (gvj)
∗〉R4 = 〈gvi, gv∗j 〉R4 ,

which is equivalent to

〈gvi, (gvj)
∗ − gv∗j 〉R4 .

Since gvi 6= 0 and 〈−,−〉R4 is an inner product then

(gvj)
∗ − gv∗j = 0

i.e.

(gvj)
∗ = gv∗j .

(⇐=) Conversely, suppose that the duals T∗1 and T∗2 are SO(4)−equivalent i.e.

T∗1
SO(4)∼ T∗2 .

Let v∗0 , v∗1 , v∗2 , v∗3 be the vertices of T∗1 and w∗0 , w∗1 , w∗2 , w∗3 those of T∗2 . Then by

Definition 2.8.3, there exists g ∈ SO(4) such that

(w∗0 , w∗1 , w∗2 , w∗3) = (gv∗0 , gv∗1 , gv∗2 , gv∗3). (2.20)
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Let v0, v1, v2, v3 be the vertices of T1 and w0, w1, w2, w3 that of T2. Showing the

equivalence

T1
SO(4)∼ T2

amounts to prove that

wi = gvi.

On one hand, by definition of a dual vector to wi and by Equation (2.20), one

has

〈w∗i , wj〉R4 = 〈gv∗i , wj〉R4

= δij.

On the other hand, by using the linearity of the action of SO(4) on R4, the following

equality holds:

〈gv∗i , gvj〉R4 = 〈v∗i , vj〉R4 SO(4) acts linearly on R4 (2.21)

= δij. (2.22)

By using the expression of w∗i in (2.20) and the equalities (2.21) and (2.22)

〈gv∗i , wj〉R4 = 〈gv∗i , gvj〉R4 ,

which is equivalent to say that

〈gv∗i , wj〉R4 − 〈gv∗i , gvj〉R4 = 0.

In other words,

〈gv∗i , wj − gvi〉R4 = 0. (2.23)

By definition of an inner product, Equation (2.23) leads to

wj − gvj = 0.

Thus wj = gvj.

In the six-dimensional Lebesgue version of the integral formula for the square of

the classical 6j symbols (2.2), the condition on the domain of integration is that the

four by four matrix [cos lij], which is unidiagonal and symmetric should be positive
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definite. Indeed, that given data describe a non-degenerate spherical tetrahedron

with edge lengths lij up to rotation. That equivalence is carefully checked in the

lemma below.

Let

U =

 M, M 4× 4 unidiagonal symmetric positive definite

whose off-diagonal elements are in the interval (−1, 1)


be the set of four by four unidiagonal symmetric positive definite matrices whose

off-diagonal elements in the interval (−1, 1). Then, the following lemma holds:

Lemma 2.8.5. There is a one-to-one correspondence between the SO(4)−equivalence classes

of non-degenerate spherical tetrahedra and the set of unidiagonal four by four symmetric

positive definite matrices whose off-diagonal elements are in the interval (−1, 1) i.e.

U ←→ T / ∼ .

Proof. A full proof of the Lemma may be found in [23], [21] and [28], but since the

maps play an important role to understanding the description of Dπ, we will write

them here. In the one direction, the map from U to T / ∼ sends a unidiagonal four

by four symmetric positive definite matrix with off-diagonal elements in the inter-

val (−1, 1), [aij], to the non-degenerate spherical tetrahedron T with unit outward

normal g0, g1, g2, g3 satisfying 〈gi, gj〉R4 = aij i.e.

U −→ T / ∼

[aij] 7−→ T with unit outward normal g0, g1, g2, g3 such that 〈gi, gj〉R4 = aij.

In the other direction, the map sends a non-degenerate spherical tetahedron to its

angle Gram matrix, in other words

T / ∼ −→ U

T 7−→ Angle Gram matrix of T.

Equivalently, since the exterior dihedral angles of a spherical tetrahedron are equal

to the edge lengths of its dual, and by taking into account Lemma 2.8.4 the map

from U to T / ∼may be defined as

U −→ T / ∼

[aij] 7−→ T with vertices v0, v1, v2, v3 such that aij = 〈vi, vj〉R4 ,
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and that from T / ∼ to U determined by

T / ∼ −→ U

T 7−→ Edge Gram matrix of T.

2.9 Discussion and correction in the literature

The discussion on Remark 2.1.3 is provided in this section.

Let us recall the statement of Theorem 2.1.2 in [17].

Theorem 2.9.1.

I =
2

π4

∫
Dπ

∏i<j sin((mij + 1)lij)√
det([cos lij])

[∏
i<j

dlij],

where Dπ is the subset of [0; π]6 of angles satisfying the relations:

lij ≤ lik + ljk, (2.24)

lij + lik + ljk ≤ 2π (2.25)

for any triple (i, j, k) of distinct elements. Geometrically this domain is the set of all possible

spherical tetrahedra.

Regarding the domain of integration, we would like to point out that:

• a little confusion occurs in thinking that the conditions (2.24) and (2.25) de-

scribe the set of all possible spherical tetrahedra. In fact, some hyperbolic

tetrahedra obey to these conditions too. For instance, the tuple

(l01, l02, l03, l12, l13, l23) = (
π

4
,

π

8
,

π

8
,

π

6
,

π

8
,

π

8
)

satisfies the conditions (2.24) and (2.25) but det([cos lij]) < 0, of which from

Lemma 2.8.1 describes a hyperbolic tetrahedron.

• Next, we understand that what "all possible spherical tetrahedra" is really

what we mean by all the non-degenerate spherical tetrahedra. But taking
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all the non-degenerate spherical tetrahedra as the domain of integration al-

lows the possibility of counting one spherical tetrahedron several times due

to its invariance under the O(4)−action. Therefore, the geometrical descrip-

tion of the domain in [17] should slightly be modified to be the set of all

O(4)−equivalence classes of non-degenerate spherical tetrahedra.

These two remarks along with the Lemma 2.8.5 led us to conclude that the domain

Dπ is algebraically described as follows:

Dπ = {(l01, l02, l03, l12, l13, l23) ∈ [0, π]6, [cos lij] is positive definite},

where [cos lij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal entries

are cos lij.

Stellenbosch University https://scholar.sun.ac.za



Chapter 3

Reciprocity of the Wigner

derivative

Note: This Chapter is based on the article [8].

3.1 Introduction

In his seminal book on group theory and quantum mechanics from 1959 ([44], see

also [9]), Wigner studied the classical 6j symbols for SU(2) which encode the asso-

ciator data [35] for the tensor category of representations of SU(2). He related the

6j symbol m12 m02 m01

m03 m13 m23


to a Euclidean tetrahedron with side lengths given by m01, m02, m03, m12, m13, m23

and gave a heuristic argument that the square of this 6j symbol should (on average,

for large spins) be proportional to the partial derivative ∂θ01
∂m01

of the dihedral angle

θ01 at edge of length m23 with respect to the length of the opposite edge m01, all

other lengths being held fixed (see Figure 3.1).

In 1968 the physicists Ponzano and Regge conjectured a more refined formula

for the asymptotics of the classical 6j symbols, which included an oscillatory term.

This formula was first proved rigorously by Roberts in 1999, using geometric quan-

52
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m12

m02

m01

Pm23

m03

m13

Figure 3.1: If the lengths m03, m02, m13, m12, m23 are held constant, then P can still
traverse the indicated circle, changing m01. The probability of a given tetrahedron
occurring is proportional to ∂θ01(m23,··· ,m01)

∂m01
where θ01 is the dihedral angle at the edge

with length m23.

tization techniques [35], and since then a number of other proofs have been given

[2][6][16][18].

As mentioned in the introduction, in 2003 Taylor and Woodward gave a cor-

responding formula for the quantum 6j symbols, relating their asymptotics to the

geometry of spherical tetrahedra [41][38]. In their outline of a possible geometric

proof of their formula (this approach was later made rigorous by Marché and Paul

[27]), the partial derivative of dihedral angle with respect to opposite edge length

(this time for a spherical tetrahedron) again played a crucial role. Following Taylor,

we call this the Wigner derivative (see Figure 3.2).

Given a spherical tetrahedron with vertices v0, v1, v2, v3 and edge lengths lij, let

G be the edge Gram matrix, Gij = cos(lij). Taylor and Woodward’s formula for

the Wigner derivative is as follows, of which we also give an independent proof in

Section 3.3.

Theorem 3.1.1 (Taylor-Woodward [41]). The Wigner derivative for a spherical tetrahe-

dron is
∂β(lij)

∂l′
=

sin l sin l′√
det G

, (3.1)

where β is the interior dihedral angle at the edge with length l and l′ is the length of the
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l

l′

β

Figure 3.2: The Wigner derivative for a spherical tetrahedron is ∂β
∂l′ , the partial

derivative of dihedral angle with respect to opposite edge length, all other lengths
held fixed.

opposite edge (see Fig. 3.2) and G the edge Gram matrix of the tetrahedron.

Unlike a Euclidean tetrahedron, a spherical tetrahedron is determined up to

isometry by its six edge lengths as well as by its six dihedral angles. So there is a

1-1 correspondence,

(l01, l02, l03, l12, l13, l23)←→ (β01, β02, β03, β12, β13, β23),

that is due to the machinery of the cosine and dual cosine law. Therefore, it makes

sense to ask about the inverse Jacobian matrix ∂lij
∂βkl

and in particular the inverse

Wigner derivative ∂l′
∂β in Figure 3.2. Indeed, in our work we were led to consider

this inverse Jacobian as it shows up in the stationary phase approximation for a

conjectural integral formula for the quantum 6j symbols. The main result of this

chapter is as follows:

Theorem 3.1.2. The inverse Wigner derivative for a spherical tetrahedron is

∂l′(βij)

∂β
=

sin l sin l′√
det G

, (3.2)

where β is the interior dihedral angle at the edge with length l and l′ is the length of the

opposite edge (see Fig. 3.2) and G the edge Gram matrix of the tetrahedron.

Comparing (3.2) with the formula for the Wigner derivative (3.1), the corollary

below follows.
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Corollary 3.1.3 (Reciprocity of the Wigner derivative). For spherical tetrahedra, the

Wigner derivative and the inverse Wigner derivative are equal:

∂β(lij)
∂l′

=
∂l′(βij)

∂β
. (3.3)

Clarity on contributions Since the chapter is based on a joint paper of the author

with Bruce Bartlett, as follows are the contributions made by each of us:

• The author noticed from her numerical calculation that the Wigner deriva-

tive is indeed equal to the inverse Wigner derivative. She also checked the

veracity of the hypothesis numerically via different methods. Furthermore,

she did all the theoretical calculations and the proofs.

• Bruce Bartlett carefully checked Taylor and Woodward’s formula in[38, Page

17, Proposition 2.2.0.5] for the Wigner derivative to make sure that it is writ-

ten in a more explicit way, as given in (3.1). In this way, be clarified which

variables are changing and which variables are held constant in Taylor and

Woodward’s formula, thereby resolving the apparent contradiction with our

formula in Equation (3.2). He also noticed that the result is publishable and

proposed the idea of checking the Wigner reciprocity for spherical triangles.

Outline of the chapter In Section 3.2 we show, as a warm-up result, that the reci-

procity of the Wigner derivative holds for spherical triangles. In Section 3.3 we

consider spherical tetrahedra. And in Section 3.4 we will discuss about a confusion

in [41, Proposition 4.2.1, (n)].

3.2 Reciprocity of the Wigner derivative for spherical

triangles

For sake of precision in the statement of the results, let us choose the spherical

triangle ∆ as a prototype. However, the results may be applied to any spherical

triangle.

Let us consider the spherical triangle ∆ with vertices v0, v1, v2, edge lengths a, b, c

and interior angles A, B, C as shown in the Figure 3.3. Its edge Gram matrix is given
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v1

B

a

v2
C

c

v0
A

b

Figure 3.3: spherical triangle ∆

by:

G =


1 cos c cos b

cos c 1 cos a

cos b cos a 1

 .

By making G in row echelon form and using the cosine law appropriately, the

square root of the determinant of G may be expressed as a function of the edge

lengths b and c, and the interior angle A as shown in the lemma below.

Lemma 3.2.1. The square root of the determinant of the edge Gram matrix of ∆ may be

written as
√

det G = sin A sin b sin c.

Proof. By taking the first row as a pivot, the determinant of G becomes

det G = det


1 cos c cos b

0 1− cos2 c cos a− cos b cos c

0 cos a− cos b cos c 1− cos2 b


= sin2 b sin2 c− (cos a− cos b cos c)2

= sin2 b sin2 c− sin2 b sin2 c
(

cos a− cos b cos c
sin b sin c

)2

= sin2 b sin2 c (1− cos2 A)

= sin2 b sin2 c sin2 A,

where the cosine law (Equation 2.5 in Remark 2.3.2 ) was used to obtain the second

last step.
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Now, let us focus on one interior angle1, say A. From the cosine law, A is ex-

plicitly written in terms of the edge lengths a, b, c. The partial derivative of A with

respect to the edge length opposite to it, a, is given in the lemma below.

Lemma 3.2.2. For the spherical triangle ∆, the partial derivative of the angle A with

respect to its opposite edge length a is given by:

∂A(a, b, c)
∂a

=
sin a

sin A sin b sin c
.

Proof. Let us recall the cosine law

cos A =
cos a− cos b cos c

sin b sin c
. (3.4)

Taking the partial derivative of (3.4) with respect to a brings forth the result

∂ cos A
∂a

=
− sin a

sin b sin c

which by the chain rule is equivalent to say that

− sin A
∂A
∂a

= − sin a
sin b sin c

.

Hence the equation in Lemma 3.2.2 follows.

What about the inverse Wigner derivative for spherical triangles i.e. the deriva-

tive of edge length2 with respect to its opposite interior angle? Well, as before, let

us focus on an edge length of ∆, say a (a is chosen because it is opposite to A which

we chose as the example in Lemma 3.2.2). From the dual cosine law, a can explicitly

be expressed as a function of the interior angles A, B, C. Hence, an explicit expres-

sion of its partial derivative with respect to its opposite interior angle is given in

the lemma below.

Lemma 3.2.3. For the spherical triangle ∆, the partial derivative of the edge length a with

respect to its opposite angle A is given by:

∂a(A, B, C)
∂A

=
sin A

sin a sin B sin C
.

1Since A is chosen arbitrarily then the "Wigner derivative" formula holds for any interior angle
in the spherical triangle with proper adjustment in the notations.

2 Similarly as before, a is chosen arbitrarily so the formula may be adapted to the partial deriva-
tive of any edge length with respect to its opposite interior angle.
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Proof. Let us recall the dual cosine law

cos a =
cos A + cos B cos C

sin B sin C
. (3.5)

Taking the partial derivative of (3.5) with respect to A results into

∂ cos a
∂A

= − sin A
sin B sin C

which by the chain rule is equivalent to say that

− sin a
∂a
∂A

=
− sin A

sin B sin C
.

Hence the equation in Lemma 3.2.3 follows.

Although ∂A(a,b,c)
∂a and ∂a(A,B,C)

∂A seem to not have anything in common in their

expression, they are actually equal. And it follows that the partial derivative of any

edge length of ∆ with respect to its opposite interior angle is equal to the partial

derivative of that same interior angle with respect to its opposite edge length.

Theorem 3.2.4 (Wigner reciprocity for spherical triangles). For the spherical triangle

∆, by focusing on the angle A and its opposite edge length a the partial derivative of A with

respect to its opposite edge length a is equal to sin a over the square root of the determinant

of the edge Gram matrix of ∆, and is also equal to the partial derivative of the edge length a

with respect to its opposite angle A i.e.

∂A(a, b, c)
∂a

=
sin a√
det G

=
∂a(A, B, C)

∂A
.

Proof. The first equation follows from the Lemmas 3.2.1 and 3.2.3. Let us show that
∂A
∂a = ∂a

∂A .

Let us recall the sine law in the case of our spherical triangle

sin A
sin a

=
sin B
sin b

=
sin C
sin c

.

The quotient of ∂A
∂a with ∂a

∂A results to

∂A
∂a
∂a
∂A

=
sin2 a sin B sin C
sin2 A sin b sin c

(by the lemmas 3.2.2 and 3.2.3)

= 1. (by the sine law)

Hence, the equality ∂A
∂a = ∂a

∂A .
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β03

α2
13

α2
01

α2
03 α3

02

α3
12

α3
01

v1

v2

v0

v3

l12

l02 l03

l13

l01

l23β01

α0
12

α0
13

α0
23

β23

Figure 3.4: Spherical tetrahedron T

3.3 Reciprocity of the Wigner derivative for spherical

tetrahedra

Analogously to the strategy in Section 3.2 let us fix a non-degenerate spherical

tetrahedron T to work on but all the results are applicable for any non-degenerate

spherical tetrahedron.

As a mean to show that the results in this section hold for any edge length of the

tetrahedron and its opposite dihedral angle, let i, j, k, l ∈ {0, 1, 2, 3} be all distinct.

The aim of this section is to prove the reciprocity of the Wigner derivative for

spherical tetrahedra, i.e. the intention is to show that the partial derivative of a

dihedral angle in a spherical tetrahedron with respect to its opposite edge length

is equal to the partial derivative of that same edge length with respect to its oppo-

site dihedral angle. Although the results presented here are for interior dihedral

angles, the results while using exterior dihedral angles follow easily.

On one hand, the interior dihedral angles of the spherical tetrahedron T may

explicitly be expressed in terms of the edge lengths by appropriate use of the cosine

law on its faces. That leads to the statement of the formula for the Wigner derivative

in the following lemma.

Lemma 3.3.1. Let βkl be the interior dihedral angle at the edge (ij) opposite to the edge

(kl) of length lkl , then the partial derivative of βkl with respect to lkl is given by

∂βkl(l01, l02, l03, l12, l13, l23)

∂lkl
=

sin lkl

sin lil sin lik sin αi
jl sin αi

jk sin βkl
.
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Proof. For the sake of lighter notations, let us keep in mind that βkl and the links are

functions of the edge lengths but their full expression will be omitted. To start with,

as follows is the partial derivative of βkl with respect to its opposite edge length:

∂βkl

∂lkl
=

∂βkl

∂αi
kl

.
∂αi

kl
∂lkl

+
∂βkl

∂αi
jk

.
∂αi

jk

∂lkl
+

∂βkl

∂αi
jl

.
∂αi

jl

∂lkl

because from the cosine law to the link Lk(vi)(Figure 3.5)

cos βkl =
cos αi

kl − cos αi
jk cos αi

jl

sin αi
jk sin αi

jl
. (3.6)

However, by applying the cosine law to the spherical triangles ∆ijl (Figure 3.7) and

∆ijk (Figure 3.8) the following formulas hold

cos αi
jk =

cos ljk − cos lij cos lik
sin lij sin lik

,

cos αi
jl =

cos ljl − cos lij cos lil
sin lij sin lil

.

These two equalities imply that all the partial derivatives of αi
jk and αi

jl with respect

to the length lkl are null. Therefore, the partial derivative of βkl with respect to lkl

boils down to
∂βkl

∂lkl
=

∂βkl

∂αi
kl

.
∂αi

kl
∂lkl

. (3.7)

From Equation (3.6), the partial derivative of cos βkl with respect to αi
kl results to

∂ cos βkl

∂αi
kl

=
− sin αi

kl

sin αi
jk sin αi

jl
. (3.8)

Hence, by application of the chain rule on the left hand side of (3.8) the partial

derivative of βkl with respect to αi
kl is given by

∂βkl

∂αi
kl

=
sin αi

kl

sin αi
jk sin αi

jl sin β23
. (3.9)

From the cosine law applied to ∆ikl (Figure 3.6)

cos αi
kl =

cos lkl − cos lil cos lik
sin lil sin lik

. (3.10)
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By direct computation of a partial derivative of (3.10) with respect to lkl , the follow-

ing equality is immediate

∂ cos αi
kl

∂lkl
=
− sin lkl

sin lil sin lik
. (3.11)

Applying the chain rule on the left hand side of (3.11),

∂ cos αi
kl

∂αi
kl

.
∂αi

kl
∂lkl

=
− sin lkl

sin lil sin lik
.

The latter induces the expression of the partial derivative of αi
kl with respect to lkl ,

which is
∂αi

kl
∂lkl

=
sin lkl

sin lil sin lik sin αi
kl

. (3.12)

By substituting (3.9) and (3.12) in Equation (3.7), the partial derivative of βkl with

respect to lkl becomes

∂βkl

∂lkl
=

sin αi
kl

sin αi
jk sin αi

jl sin βkl
.

sin lkl

sin lil sin lik sin αi
kl

.

The latter equality implies the final formula for the partial derivative of βkl with

respect to lkl , which is

∂βkl

∂lkl
=

sin lkl

sin lil sin lik sin αi
jk sin αi

jl sin βkl
. (3.13)

vj

βkl
αi

jk

vk
β jl

αi
jl

vl
β jk

αi
kl

Figure 3.5: Lk(vi)

vk

αk
illik

vi
αi

kl

lkl

vl
αl

ik

lil

Figure 3.6: ∆ikl

vj

α
j
illij

vi
αi

jl

ljl

vl
αl

ij

lil

Figure 3.7: ∆ijl

vj

α
j
iklij

vi
αi

jk

ljk

vk
αk

ij

lik

Figure 3.8: ∆ijk

On the other hand, the edge lengths of the spherical tetrahedron T may be ex-

plicitly expressed in terms of the interior dihedral angles by appropriate use of the

dual cosine law on its faces. That leads to the statement of the formula for the

inverse Wigner derivative provided in the following lemma.
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Lemma 3.3.2. The partial derivative of the edge length lkl with respect to its opposite

dihedral angle βkl is given by

∂lkl(β01, β02, β03, β12, β13, β23)

∂βkl
=

sin βkl

sin lkl sin αl
ik sin αk

il sin β jl sin β jk
.

Proof. Similarly to the method in the proof of Lemma 3.3.1, the partial derivative of

lkl with respect to βkl may be reduced to

∂lkl

∂βkl
=

∂lkl

∂αi
kl

.
∂αi

kl
∂βkl

. (3.14)

This equality is true from the use of the dual cosine law on ∆ikl (Figure 3.6)

cos lkl =
cos αi

kl + cos αl
ik cos αk

il

sin αl
ik sin αk

il
, (3.15)

and αl
ik and αk

il do not depend on βkl (see the links Lk(vk) and Lk(vl)).

From Equation (3.15) a direct computation of the partial derivative of cos lkl with

respect to αi
kl results to

∂ cos lkl

∂αi
kl

=
− sin αi

kl

sin αl
ik sin αk

il
. (3.16)

And application of the chain rule to the left hand side of (3.16) implies

∂lkl

∂αi
kl
=

sin αi
kl

sin αl
ik sin αk

il sin lkl
. (3.17)

The consideration of the dual cosine law applied to Lk(vi) leads to the expression

cos αi
kl =

cos βkl + cos β jl cos β jk

sin β jl sin β jk
. (3.18)

By applying the chain rule to the left hand side of (3.18) the result below follows:

∂ cos αi
kl

∂αi
kl

.
∂αi

kl
∂βkl

=
− sin βkl

sin β jl sin β jk
.

The latter leads to the expression of the partial derivative of αi
kl with respect to βkl :

∂αi
kl

∂βkl
=

sin βkl

sin αi
kl sin β jl sin β jk

. (3.19)

Thus, by substituting (3.17) and (3.19) into Equation (3.14) the partial derivative of

lkl with respect to βkl is given by

∂lkl

∂βkl
=

sin βkl

sin lkl sin αl
ik sin αk

il sin β jl sin β jk
. (3.20)
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An expression of the Wigner derivative is introduced in Lemma 3.3.1. However,

it can be re-written in a simpler way3, in terms of the edge Gram matrix of the

spherical tetrahedron. Indeed, that simpler expression is given as follows:

Theorem 3.3.3. The Wigner derivative for a spherical tetrahedron T (see Figure 3.4) is

expressed as
∂βkl

∂lkl
=

sin lkl sin lij√
det G

,

where G is the edge Gram matrix of T.

Proof. As seen in Lemma 3.3.1, the partial derivative of βkl with respect to its oppo-

site edge length lkl is given by

∂βkl(l01, l02, l03, l12, l13, l23)

∂lkl
=

sin lkl

sin lil sin lik sin αi
jl sin αi

jk sin βkl

=
sin lkl sin lij

sin lij sin lil sin lik sin αi
jl sin αi

jk sin βkl
.

And let us remind ourselves that the determinant of the edge Gram matrix of T in

terms of the box variables (Lemma 2.5.6) is given by

det G = det[cos lij] = sin2 l01 sin2 l02 sin2 l03 sin2 α0
12 sin2 α0

13 sin2 β23.

Notice that the edge Gram matrix is expressed in terms of specific edge lengths,

interior angles and an interior dihedral angle, namely l01, l02, l03, α0
12, α0

13 and β23.

However, in the expression of ∂βkl
∂lkl

, since it’s arbitrary, the variables in the denomi-

nator are also arbitrary. Therefore, it remains to be proven that

sin lij sin lil sin lik sin αi
jl sin αi

jk sin βkl =
√

det G

for some i, j, k, l. Due to the fact that lab = lba, αs
ab = αs

ba and βab = βba there are

six ways to choose i, j, k, l such that they are all distinct and in {0, 1, 2, 3}. In this

proof, let us select one example where k = 0, l = 1, i = 2, j = 3, but the method

used to prove the other cases is the same. For this particular example, the Wigner

derivative is

β01(l01, l02, l03, l12, l13, l23)

∂l01
=

sin l01 sin l23

sin l23 sin l12 sin l02 sin α2
13 sin α2

03 sin β01
.

3Taylor and Woodward in [41] initiated the idea of re-writing it in a simpler way by using the
determinant of the edge Gram matrix of a spherical tetrahedron.
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Comparing its denominator with the square root of the determinant of the edge

Gram matrix of T results to

sin l23 sin l12 sin l02 sin α2
13 sin α2

03 sin β01

sin l01 sin l02 sin l03 sin α0
12 sin α0

13 sin β23
=

sin l23 sin l12 sin α2
03 sin α2

01 sin β13

sin l01 sin l03 sin α0
12 sin α0

23 sin β13

sine law on Lk(v0), Lk(v2)

Fig. 3.9, 3.10


=

sin l23 sin l12 sin l03 sin α2
01

sin l01 sin l03 sin l23 sin α0
12

(sine law on ∆023, Fig. 3.11)

= 1. (sine law on ∆012, Fig. 3.12)

Thus,
β01(l01, l02, l03, l12, l13, l23)

∂l01
=

sin l01 sin l23√
det G

.

And, the general result in Theorem 3.3.3 follows for different choices of i, j, k, l.

v1

β23
α0

12

v2
β13

α0
13

v3
β12

α0
23

Figure 3.9: Lk(v0)

v1

β03
α2

01

v0
β13

α2
13

v3
β01

α2
03

Figure 3.10: Lk(v2)

v2

α2
03l02

v0
α0

23

l23

v3
α3

02

l03

Figure 3.11: ∆023

v1

α1
02l01

v0
α0

12

l12

v2
α2

01

l02

Figure 3.12: ∆012

Similarly to the Wigner derivative, the expression of the inverse Wigner deriva-

tive given in Lemma 3.3.2 may be re-expressed in terms of the determinant of the

edge Gram matrix. That is stated in the following theorem.

Theorem 3.3.4. The inverse Wigner derivative for the spherical tetrahedron T (see Figure

3.4) in terms of the edge Gram matrix is given by

∂lkl(β01, β02, β03, β12, β13, β23)

∂βkl
=

sin lkl sin lij√
det G

.

Proof. Let us look at the sine law applied to the link Lk(vi),

sin αi
kl

sin βkl
=

sin αi
jk

sin β jk
=

sin αi
jl

sin β jl
.
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The quotient of the Wigner derivative in Lemma 3.3.1 with the inverse Wigner

derivative in Lemma 3.3.2 results to the following:

∂lkl
∂βkl

∂βkl
∂lkl

=
sin βkl

sin lkl sin αl
ik sin αk

il sin β jl sin β jk
.
sin lil sin lik sin αi

jk sin αi
jl sin βkl

sin lkl

=
sin2 βkl

sin2 lkl
.
sin αi

jk

sin β jk
.
sin αi

jl

sin β jl
.
sin lik
sin αl

ik
.
sin lil
sin αk

il

=
sin2 βkl

sin2 lkl
.
sin2 αi

jk

sin2 β jk
.
sin2 lik
sin2 αl

ik

(
sin αi

jk

sin β jk
=

sin αi
jl

sin β jl
sine law on Lk(vi), Fig. 3.5

)

=
sin2 βkl sin2 αi

jk

sin2 β jk sin2 αl
ik

.
sin2 αl

ik

sin2 αi
kl

(
sin lik
sin lkl

=
sin αl

ik

sin αi
kl

, sine law on ∆ikl, Fig. 3.6

)

=
sin2 βkl

sin2 αi
kl

.
sin2 αi

jk

sin2 β jk

= 1.

(
sin αi

jk

sinβ jk
=

sin αi
kl

sin βkl
, sine law on Lk(vi), Fig. 3.5

)

Hence the expression of the inverse Wigner derivative:

∂lkl(β01, β02, β03, β12, β13, β23)

∂βkl
=

sin lkl sin lij√
det G

.

Remark 3.3.5. Even though the expression of the inverse Wigner derivative seems to ap-

pear in [41][38] but was given a different value, it is new in the literature. Further expla-

nation on that will be provided in Section 3.4.

From the expressions of the inverse Wigner derivative given in Theorem 3.3.4

and the Wigner derivative in Theorem 3.3.3, we conclude:

Corollary 3.3.6 (Reciprocity of the Wigner derivative). For spherical tetrahedra, the

Wigner derivative is equal to the inverse Wigner derivative.

3.4 Discussion and correction in the literature

The aim of this section is to compare Taylor and Woodward’s Wigner derivative in

[38, Page 17, Proposition 2.2.0.5] with our inverse Wigner derivative in Theorem

3.1.2 and clarify a slight confusion between [38, Page 17, Proposition 2.2.0.5], [41,
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Proposition 2.4.1, (n)] and [40, Theorem 4.0.1, (f)]. Let us look at the comparison

first.

3.4.1 The nature of the partial derivative

The term Wigner derivative was referred to by Taylor in [38, Page 17, Proposition

2.2.0.5] and Taylor and Woodward in [41, Proposition 2.4.1, (n)]. Let us recall the ex-

act statement of the formula, taken verbatim from [38, Page 17, Proposition 2.2.0.5].

Proposition 3.4.1 (Wigner derivative).

∂lab

∂θcd
=

√
det G

sin lcd sin lab

where lab are the edge length of the spherical tetrahedron S(1234), θab is the exterior dihe-

dral angle around the edge eab for a, b, c, d ∈ {1, 2, 3, 4} and G its edge Gram matrix.

At first glance, one might think that the formula in [41, Prop 2.4.1.(n)] as well

as in [38, Prop 2.2.0.5] and [40, Theorem 4.0.1 (f)] which may be rewritten as

∂l′

∂β
=

√
det G

sin l sin l′
, (3.21)

contradicts our formula for the inverse Wigner derivative presented in Theorem

3.1.2,
∂l′(βij)

∂β
=

sin l sin l′√
det G

.

However, that is not the case, as these two partial derivatives are completely differ-

ent. The difference may be understood in knowing what variables are held fixed in

(3.21) while performing the partial derivative.

To prove (3.21) Taylor and Woodward argued as follows.

Let ga, gb, gc, gd ∈ SU(2) such that

ga =

1 0

0 1

 , gb =

elab 0

0 e−lab

 , gc =

 c1 + ic2 c3 + ic4

−c3 + ic4 c1 − ic2

 , gd =

 d1 + id2 d3 + id4

−d3 + id4 d1 − id2


where ci, di ∈ R. Set vi = f−1(gi) where f is the diffeomorphism between S3

and SU(2) described in Section A.1, and consider the spherical tetrahedron with

vertices va, vb, vc, vd as shown in the Figure 3.13. Let us fix the vertices va, vb, vd,
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W⊥

βcd

vb

va

vd

vc

lab

lad lcd

lbc
lbd

lacβbd

βac

Figure 3.13: The spherical tetrahedron with vertices va, vb, vc, vd where the projec-
tion of vc on W⊥ = Span{a, b}⊥ rotates along the red circle.

consider the plane spanned by va and vb, i.e. W = Span{va, vb}, take the projection

of vc on W⊥ and rotate it along the circle in W⊥ centered at (0, 0) = prW⊥(va) where

pr denotes the projection map.

They described that succession of action as the "rotation of vc around Eab (the

edge (ab))". Then the proof carries on as in [41, Prop 2.4.1., Proof (n)].

Let us observe the following feature of their construction. When rotating vc

around the edge (ab), the interior dihedral angles (so are the cosine of the exterior

dihedral angles) change accordingly. Let us give an example of why that is the case.

By the use of cosine law, the cosine of the interior dihedral angle βac which is not

opposite to the edge (cd) is expressed in terms of the edge length lcd as

cos βac =

cos lac−cos lad cos lcd
sin lad sin lcd

−
(

cos lab−cos lbd cos lad
sin lbd sin lad

) (
cos lbc−cos lcd cos lbd

cos lcd cos lbd

)
√

1−
(

cos lab−cos lbd cos lad
sin lbd sin lad

)2
√

1−
(

cos lbc−cos lcd cos lbd
sin lcd sin lbd

)2
.

Furthermore, the other interior dihedral angles are also expressed as functions of

lcd (but whose expressions will not be presented here). Hence, during that process

of rotation most of the dihedral angles vary. Therefore, the dihedral angles are not

held constant in (3.21), whereas in Theorem 3.1.2 they are. In fact, five of the edge

lengths that are fixed in (3.21). Indeed, if we write out the partial derivative on the

left hand side of (3.21) explicitly, making clear what the dependent variables are,

then it says that
∂l′(lab, lac, lad, lbc, lbd, β)

∂β
=

√
det G

sin l sin l′
(3.22)
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where β is the rotation angle of vc around the edge (ab) i.e. the interior dihedral

angle around the edge (ab).

In conclusion, there is no contradiction between the result in Theorem 3.1.2 and

(3.21). They are just two entirely different partial derivatives. This also proves that

our formula for the inverse Wigner derivative is new in the literature.

3.4.2 Correcting some typos

Let us now clarify the confusion between [38, Page 17, Proposition 2.2.0.5], [41,

Proposition 2.4.1, (n)] and [40, Theorem 4.0.1, (f)].

The formula for the Wigner derivative (Proposition 3.4.1) is also present in [41,

Proposition 2.4.1, (n)] but seem to have different results. Namely,

Proposition 3.4.2 (Taylor-Woodward [41]). The derivative of dihedral angle with respect

to opposite edge length is (
∂θcd

∂lab

)−1

= −sin lcd sin lab√
det G

. (3.23)

Here,
(

∂θcd
∂lab

)−1
is understood (see Remark 3.4.3 below) to be ∂lab

∂θcd
. Hence, Equa-

tion (3.23) really means
∂lab

∂θcd
= −sin lcd sin lab√

det G
. (3.24)

However, this appears to contradict Proposition 3.4.1. Some remarks follow

immediately.

Remark 3.4.3. • On one hand, it is understood that the proof of Proposition 3.4.1 pre-

sented in [41, Proposition 2.4.1, (n)] is the same as that of Proposition 3.4.2 presented

in [38, Page 17, Proposition 2.2.0.5]. However, as shown in the two propositions, the

statement of the results are different. Hence, a conclusion may be drawn that one

of them must present an error. But, according to the proof the output given in [38,

Page 17, Proposition 2.2.0.5] which is here presented as Proposition 3.4.1 is more

convincing. We claim that the error is just a typo which occurs in [41, Proposition

2.4.1, (n)], confirmed by one of the authors [11]. In fact we suggest that the left hand

side of Equation (3.23) should be ∂θcd
∂lab

instead of
(

∂θcd
∂lab

)−1
. This way, Equation (3.23)
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becomes
∂θcd(lab, lac, lad, lbc, lbd, lcd)

∂lab
= −sin lcd sin lab√

det G
(3.25)

with all edge lengths other than lab remaining fixed. Indeed, taking the reciprocal of
∂θcd
∂lab

is the same as

∂lab(θcd, lac, lad, lbc, lbd, lcd)

∂θcd
= −

√
det G

sin lab sin lcd
. (3.26)

• On the other hand, a little oversight occurred in [38, Page 17, Proposition 2.2.0.5]

(see Proposition 3.4.1). In fact, the proposition states that the angle taken into ac-

count is the exterior dihedral angle. Although the calculation in its proof is done by

considering the interior dihedral angle. That oversight led to a sign error in the final

result. In other words, we suggest that

∂lab(θcd, lac, lad, lbc, lbd, lcd)

∂θcd
=

√
det G

sin lab sin lcd
(Proposition 3.4.1)

should be
∂lab(θcd, lac, lad, lbc, lbd, lcd)

∂θcd
= −

√
det G

sin lab sin lcd
,

which is consistent with Equation (3.26).

This same formula in Proposition 3.4.1 appears in [40, Theorem 4.0.1, (f)] which

is recalled below.

Theorem 3.4.4 (Taylor-Woodward). The derivative of an edge length lab in a spherical

tetrahedron τ with respect to its opposite dihedral angle θcd is given by

∂lab

∂θcd
= ±

√
det G

sin lab sin lcd
.

So, following Remark 3.4.3 the formula for the Wigner derivative in Theorem

3.4.4 should be
∂lab

∂θcd
= −

√
det G

sin lab sin lcd

since θcd is here understood to the exterior dihedral angle opposite to the edge of

length lab.
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Chapter 4

A conjectural integral formula for

the quantum 6j symbols

Note: Throughout this chapter ij means neither i nor j features in the index ij. For

example, 01 = 23 while considering the set of indices {0, 1, 2, 3}.

4.1 Introduction

In 1968 Ponzano and Regge conjectured an asymptotic formula for the classical 6j

symbol [32]. The non-degenerate version involves the volume of a non-degenerate

Euclidean tetrahedron.

In 1999, Roberts, in [35], reformulated and proved Ponzano and Regge’s conjec-

ture.

The non-degenerate version of the asymptotic formula reads as follows:

Theorem 4.1.1 ([35]). Let m01, m02, m03, m12, m13, m23 be six non-negative integers such

that the triples (m12, m01, m02), (m01, m13, m03), (m02, m23, m03), and (m12, m13, m23) are

admissible. Let k ∈N, and τ be a non-degenerate Euclidean tetrahedron with edge lengths

mij associated to the classical 6j symbolm12 m02 m01

m03 m13 m23

 .

70
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{
m12 m02 m01
m03 m13 m23

}
≡

v1

v2

v0

v3

m12

m02 m03

m13

m01

m23

g3

g0

θ03

g1

g2

Let θij be the exterior dihedral angle of τ at the edge of length mij, which is opposite to the

edge of length mij. Then, the non-degenerate asymptotic formula for the classical 6j symbols

is km12 km02 km01

km03 km13 km23

 ∼
√

2
3πVk3 cos{(kmij + 1)

θij

2
+

π

4
}

when k tends to infinity, where V is the volume of τ.

In 1999 Barrett introduced a twelve-dimensional integral formula for the square

of the classical 6j symbols [5]:m12 m02 m01

m03 m13 m23


2

=
∫
(SU(2))4

[dgi]∏
i<j

χmij(gjg−1
i ). (4.1)

In 2003 Freidel and Louapre, [17], re-wrote Barret’s twelve-dimensional integral

formula as a six-dimensional integral. Then, they proposed and used an asymptotic

version of it to give an alternative proof for Roberts’ version of the non-degenerate

asymptotic formula for the square of the classical 6j symbols. The stationary phase

method was adopted for that. The asymptotic integral formula is given as follows:

I(k) =
2

π4

∫
Dπ

[∏
i<j

dlij]
∏i<j sin((kmij + 1)lij)√

det([cos lij])
. (4.2)

Explicitly, the region of integration is

Dπ = {(l01, l02, l03, l12, l13, l23) ∈ [0, π]6, [cos lij] is positive definite },
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where [cos lij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal ele-

ments are cos lij.

When applying the stationary phase method to an integral, one must consider

the critical points of its integrand inside the region of integration and those at the

boundary as explained in [15] and [13]. We will call interior contribution the

asymptotic expansion of the integral contributed by the critical points inside the

region and boundary contribution that related to the ones on the boundary. The

sum of interior and boundary contributions constitute the asymptotic expansion

formula for the integral.

From the stationary phase method applied to I(k) (4.2), the non-degenerate

asymptotic formula for the square of the classical 6j symbols is presented in the

following corollary.

Corollary 4.1.2 ([17]). Let m01, m02, m03, m12, m13, m23 be six natural numbers such that

the triples (m12, m01, m02), (m01, m13, m03), (m02, m23, m03), and (m12, m13, m23) are ad-

missible. Let k ∈ N. And, let τ be a non-degenerate Euclidean tetrahedron with edge

lengths mij associated to the classical 6j symbolsm12 m02 m01

m03 m13 m23

 .

Let θij be the exterior dihedral angle of τ at the edge of length mij, opposite to the edge of

length mij. Then, the non-degenerate asymptotic formula for the classical 6j symbols iskm12 km02 km01

km03 km13 km23


2

∼ − 1
3πk3V

sin

(
∑
i<j

(kmij + 1)θij

)
+

1
3πk3V

when k tends to infinity, where V is the volume of τ.

Here, the interior contribution is

cin = − 1
3πk3V

sin

(
∑
i<j

(kmij + 1)θij

)
,

and the boundary contribution is given by

cbd =
1

3πk3V
.
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In 2003 Taylor and Woodward found the asymptotic formulae (based on the

possible entries of the symbol) for the quantum 6j symbols , relating them to the

geometry of spherical tetrahedra (see [41] and [38]). But in this Chapter, we are

only interested in the non-degenerate asymptotic formula which is related to the

geometry of a non-degenerate spherical tetrahedron. Their formula is asymptotically

equivalent to a slightly different formula given by Roberts in [36]. Roberts’ version

is what we will adopt in this Chapter:

Theorem 4.1.3 ([36] [41]). Let r0
ij be an element of Q ∩ [0, 1]. Let k be a natural number.

Let T0 be the non-degenerate spherical tetrahedron with edge lengths l0
ij = πr0

ij and whose

exterior dihedral angle at the edge (ij), opposite to the edge (ij), is denoted by θ0
ij. Then,kr0

12 kr0
02 kr0

01

kr0
03 kr0

13 kr0
23


2

q=e
iπ

k+2

∼ 4π2

k3
√

det([cos l0
ij])

cos2{∑
i<j

(kr0
ij + 1)

θ0
ij

2
+

k + 2
π

V(T0)+
π

4
}

(4.3)

when k −→ ∞, where kr0
ij are integers and [cos l0

ij] is the edge Gram matrix of T0.

Remark 4.1.4. The equivalence between Taylor and Woodward’s asymptotic formula for

the quantum 6j symbols and that of Roberts will be empirically shown in Section C.3.

Remark 4.1.5. The asymptotic formula present in Theorem 4.1.3 is slightly different from

the one given by Roberts in [36], as well as that of Taylor and Woodward in [41] and [38].

In fact,

• a minor slip up has surfaced in the original formula in [36]. Inside the sum, it is

written lij when it’s expected to be r0
ij

.

• In [36], q = e
i2π
k+2 but the formula is only equivalent to that in [41] (as stated in

Remark 4.1.4) when q = e
iπ

k+2 and the coefficient in front of the volume term is k+2
π ,

not k
π . So, we will consider those as typos as well.

• It seems there was a bit of oversight regarding the Schläfli identity in [41, page

550, Proposition 2.4.1 (l)] which led to a sign error in the volume term in the non-

degenerate asymptotic formula for the quantum 6j symbols in [41],[36] and later

adopted in [27]. More explanation on that will be provided in Section 4.3. That

oversight on the Schläfli formula also occurs in [40, Theorem 4.0.1, (f)].
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Remark 4.1.6. As cos2 θ = 1
2 (1+ cos 2θ), an immediate way of re-writing the right hand

side of Equation (4.3) as a sum iskr0
12 kr0

02 kr0
01

kr0
03 kr0

13 kr0
23


2

q=e
iπ

k+2

∼ 1
2

4π2

k3
√

det([cos l0
ij])

(
1 + cos{∑

i<j
(kr0

ij + 1)θ0
ij +

2(k + 2)
π

V(T0) +
π

2
}
)

=
2π2

k3
√

det([cos l0
ij])

(
1− sin{∑

i<j
(kr0

ij + 1)θ0
ij +

2(k + 2)
π

V(T0)}
)

=− 2π2

k3
√

det([cos l0
ij])

sin{∑
i<j

(kr0
ij + 1)θ0

ij +
2(k + 2)

π
V(T0)}

+
2π2

k3
√

det([cos l0
ij])

.

We guess that if there was an asymptotic integral formula for the square of the quantum 6j

symbols, the interior contribution would be

ins = − 2π2

k3
√

det([cos l0
ij])

sin{∑
i<j

(kr0
ij + 1)θ0

ij +
2(k + 2)

π
V(T0)}

and the boundary contribution

bound =
2π2

k3
√

det([cos l0
ij])

.

Contrarily to the integral formula for the square of the classical 6j symbols, to

the best of our knowledge, an analogous integral formula for the square of the

quantum 6j symbols is nowhere to be found in the literature.

In early 2019 Bruce Bartlett (the author’s supervisor) proposed a conjecture for

the square of the quantum 6j symbols and suggested the investigation of that con-

jecture to be the author’s Ph.D. project.

Consider the quantum 6j symbol (see Definition 4.2.1)m12 m02 m01

m03 m13 m23


q

,

where q = ei π
s+2 with i2 = −1, s ∈ N>0, and whose entries are non-negative inte-

gers. The conjecture is as follows:

Conjecture 4.1.7 (Strong form). Let m01, m02, m03, m12, m13, m23 be six natural numbers

such that the triples (m12, m01, m02), (m01, m13, m03), (m02, m23, m03), and (m12, m13, m23)
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are q-admissible (see the Equations (4.7), (4.8), (4.9)). Let g0, g1, g2, g3 be four elements in

SU(2). Due to the diffeomorphism between SU(2) and S3 they may be thought as four

unit vectors in R4. Let T be the spherical tetrahedron whose outward normal vectors to

each face are the gi’s. Then,m12 m02 m01

m03 m13 m23


2

q=e
iπ

s+2

=
∫

SU(2)4
∏
i<j

χmij
(gjg−1

i )e
2
π (s+2)iV(T)[∏ dgi], (4.4)

where V(T) denotes the volume of the spherical tetrahedron T.

Our aim is to investigate the veracity of Conjecture 4.1.7. For that, we adopt

Freidel and Louapre’s strategy:

1. transform the conjectural twelve-dimensional integral formula for the quan-

tum 6j symbols (4.4) to a six-dimensional one,

2. look for an asymptotic analogue of that six-dimensional integral,

3. compute the asymptotic expansion of that asymptotic integral via the station-

ary phase method and compare it with the known non-degenerate asymp-

totic formula for the quantum 6j symbols found in [41], [36], and [27].

The integral on the right hand side of Equation (4.4) can be transformed to an

integral over a subspace of R6. The six-dimensional integral is presented in the

lemma below.

Lemma 4.1.8. The twelve-dimensional integral on the right hand side of Equation (4.4)

can be re-expressed as a six-dimensional integral over the set of SO(4)−equivalence classes

of non-degenerate spherical tetrahedra as follows:

I(s) =
2

π4

∫
Dπ

[∏
i<j

dθij]
∏i<j sin

(
(mij + 1)θij

)
√

det
(
[cos θij]

) cos
(

2
π
(s + 2)V(T)

)
,

where V(T) denotes the volume of the non-degenerate spherical tetrahedron with exterior

dihedral angles θij.

Explicitly, the region of integration is

Dπ = {(θ01, θ02, θ03, θ12, θ13, θ23) ∈ [0, π]6, [cos θij] is positive definite },
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where [cos θij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal elements are

cos θij.

An asymptotic form of the conjectural integral formula for the quantum 6j sym-

bols (4.4) is stated as follows:

Conjecture 4.1.9 (Asymptotic form). Let r0
ij ∈ Q ∩ [0, 1] and k ∈ N such that kr0

ij is

integer. Then as k→ ∞,kr0
12 kr0

02 kr0
01

kr0
03 kr0

13 kr0
23


2

q=e
iπ

k+2

∼ 2
π4

∫
Dπ

∏i<j sin
(
(kr0

ij
+ 1)θij

)
√

det([cos θij])
cos

(
2
π
(k + 2)V(T)

)
[∏
i<j

dθij],

(4.5)

where V(T) denotes the volume of the non-degenerate spherical tetrahedron with exterior

dihedral angles θij. Here, the domain of integration is defined by

Dπ = {(θ01, θ02, θ03, θ12, θ13, θ23) ∈ [0, π]6, [cos θij] is positive definite },

where [cos θij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal elements are

cos θij.

Let us set the integral on the right hand side of Equation (4.5) to be

Ic(k) =
2

π4

∫
Dπ

[∏
i<j

dθij]
∏i<j sin

(
(kr0

ij
+ 1)θij

)
√

det([cos θij])
cos

(
2
π
(k + 2)V(T)

)
.

The next step is to compute the interior and boundary contributions for Ic(k).

The interior contribution for the integral Ic(k) is given as follows:

Theorem 4.1.10. Let r0
ij ∈ Q ∩ [0, 1]. Let T0 be the spherical tetrahedron whose edge

lengths l0
ij = πr0

ij and whose exterior dihedral angles at the edge (ij), opposite to the

edge (ij), is denoted by θ0
ij. Then, interior contribution for Ic(k) is

int =
−π2

4k3 .
1√

det([cos l0
ij])

cos{∑
i<j

(kr0
ij + 1)θ0

ij +
2
π
(k + 2)V(T0)} (4.6)

when k −→ ∞, where [cos l0
ij] is the edge Gram matrix of T0.

Despite our desire to provide both the interior and boundary contributions for

our conjecture, we only managed to explain the interior part. That is due to the
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observation that if the integral is expressed in terms of the box variables, we are

dealing with a critical surface at the boundary, not critical points. That makes the

problem more complex. And, if we consider the integral expressed in terms of the

exterior dihedral angles, the amplitude tends to infinity at the boundary and the

author does not have enough skill to deal with the problem. However, we would

like to draw the reader’s attention to the following remarks regarding the interior

contribution.

Remark 4.1.11. If we make the case that the decomposition of Equation (4.3) as a sum

of an "interior" contribution and a "boundary" contribution in Remark 4.1.6 is correct,

then the result in Theorem 4.1.10 shows that the interior contribution for the asymptotic

form of the conjectural integral formula for the quantum 6j symbols is indeed very close to

the interior contribution for the exact asymptotics (see Remark 4.1.6). There are only two

shortcomings: the amplitude is short of a factor of eight, and the phase is a cosine, not a

sine.

The aim of this chapter is to prove Theorem 4.1.10.

Here is a brief outline of the chapter: five main sections will be considered,

namely, Section 4.2 is about the definition of a quantum 6j symbol, and Section

4.3 contains the elaboration of Remark 4.1.5. The transformation of the integral on

the right hand side of Conjecture 4.1.7 to a six-dimensional Lebesgue integral is

done in Section 4.4. And, Section 4.5 is dedicated to the calculation of the interior

contribution for the asymptotic form of our conjectural integral formula for the

quantum 6j symbols.

4.2 The quantum 6j symbols

The aim of this section is to recall the definition of the quantum 6j symbols.

To start with, let us remind ourselves of the definition of a quantum integer.

Let r ≥ 3 be an integer and q = e
iπ
r . Then, for any integer n, the quantum integer

[n] is defined by

[n] =
qn − q−n

q− q−1 .
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Its associated quantum factorial is known to be

[n]! = [n][n− 1] · · · [1],

where [0]! = 1.

A triple of non-negative integers (a, b, j) is called q-admissible if they satisfy the

following requirements:

a ≤ b + j, b ≤ a + j, j ≤ a + b, (4.7)

a + b + j ∈ 2Z, (4.8)

a + b + j ≤ 2r− 4. (4.9)

Let a, b, c, d, e, f be non-negative integers such that (a, b, f ), ( f , d, e) are q-admissible.

Let Ṽa, Ṽb, Ṽc, Ṽd, Ṽe, Ṽf be six irreducible representations of the quantum group

Uq(sl2), where Ṽn is of dimension (n + 1). Analogously to the definition of the

classical 6j symbols (see Chapter 2), quantum 6j symbols are the coefficients for a

certain change of basis in

HomRepq(sl2)(Ṽe, Ṽa ⊗ Ṽb ⊗ Ṽd),

where Repq(sl2) denotes the category of representations of Uq(sl2). That change

may be depicted in the graphical calculus as

a b d

f

e

= ∑c

a b c

d e f


0

q︸ ︷︷ ︸
quantum 6j symbol

a

c

db

e

where c ranges for all natural numbers making (b, d, c), and (a, c, e) admissible.

Similarly to the classical 6j symbols, there is a normalized version of the quan-

tum 6j symbols. Below is the definition of a normalized quantum 6j symbol.
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Definition 4.2.1. Let a, b, c, d, e, f be non-negative integers such that (a, b, f ), ( f , d, e), (b, d, c),

and (a, c, e) are q-admissible. Then, a normalized quantum 6j symbol is defined asa b c

d e f


q

=
(−1)

a+b+d+e
2

[ f + 1]

√∣∣∣∣ Θq(a, b, c)Θq(c, d, e)
Θq(a, e, f )Θq(a, d, f )

∣∣∣∣
a b c

d e f


0

q

where

Θq(x, y, z) =
[nxz]![nxy]![nyz]![nxz + nxy + nyz + 1]!

(−1)nxz+nxy+nyz [x]![y]![z]!
and

nxz =
x + z− y

2
, nxy =

x + y− z
2

, nyz =
y + z− x

2

for any q-admissible triples (x, y, z) ∈N3.

The normalized version of a quantum 6j symbol presents some symmetries

[41][12][20] which enable one to relate the symbol to a spherical tetrahedron. From

now on, we will only consider the normalized quantum 6j symbols.

For further reading on the quantum 6j symbols [12] and [20] are recommended.

4.3 Correction in the literature

In this section, let us revise the asymptotic formula for a quantum 6j symbol found

in [41], [27] and [36], and expound on the hiccups mentioned in Remark 4.1.5. Note

that here, we will focus on the result presented in [41] since those of [27] and [36]

are its derivatives.

The statement of the asymptotic formula for a quantum 6j symbol in [41][27] for

the non-degenerate case is as follows:

Theorem 4.3.1 (Taylor-Woodward [41]). Let r > 2 be an integer. Let j01, j02, j03, j12, j13,

j23 ∈ [0, (r−2)
2 ] ∩ Z/2 (half-integers) such that each triple (j12, j01, j02), (j01, j13, j03),

(j02, j23, j03), and (j12, j13, j23) satisfies the triangle inequality and their respective sum

yields an integer less than r− 2. Suppose that a non-degenerate spherical tetrahedron ex-

ists with edge lengths lab(k) = 2π
kjab+

1
2

r(k) , and θab(k) denotes the exterior dihedral angle

at the edge (ab). Then,kj12 kj02 kj01

kj03 kj13 kj23


q=e

πi
r(k)

∼ 2π

r(k)
3
2 [det(cos lab)]

1
4

cos{ r(k)
2π

(∑
a<b

θab(k)lab(k)− 2V(τ(k)))+
π

4
}

(4.10)
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v1

v2

v0

v3

l12

l02 l03

l13

l01

l23

g3

g0

θ12

Figure 4.1: Spherical tetrahedron T associated to the classical 6j symbol with entries
j01, j02, j03, j12, j13, j23 having the exterior dihedral angles labeled according to Taylor
and Woodward’s notation.

as k −→ ∞. Here, r(k) = k(r− 2) + 2 and V(τ(k)) denotes the volume of the spherical

tetrahedron τ(k).

The spherical tetrahedron associated to

j12 j02 j01

j03 j13 j23

, when it exists, is de-

picted by Figure 4.1. Here, g0 and g3 are respectively the outward normal vectors

to the faces ∆123 and ∆012.

Remark 4.3.2. As the labeling of the spherical tetrahedron associated to a quantum 6j

symbol is delicate and unique up to rotation only, we suggest that the places of l14 and l23

in [41, Figure 1] should be switched if it’s expected to represent the quantum 6j symbolj12 j23 j13

j34 j14 j24

.

Although traditionally the word asymptotic refers to scaling the numbers by k

and letting k tend to infinity, the behaviour of the asymptotic formula can equally

be observed by taking large numbers in the expression of the quantum 6j symbols

and varying one number while keeping the five others constant.

When using integers instead of half-integers Equation (4.10) is equivalent to:

Theorem 4.3.3 (A version of Theorem 4.3.1 while using large integers). Let k ∈ N.

Let mij ∈N be large such that each triple (m12, m01, m02), (m01, m13, m03), (m02, m23, m03),

and (m12, m13, m23) satisfies the triangle inequality and their respective sum yields an even

integer less than 2k. In this case, let us decide to vary m23 and keep the rest constant.
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Suppose that the non-degenerate spherical tetrahedron T(m23) exists with edge lengths

lab = π mab+1
k+2 , exterior dihedral angle θab(m23) at the edge (ab) and volume V(m23). Then

the formula in Equation (4.10) translates into:m12 m02 m01

m03 m13 m23


e

πi
k+2

∼=
2π

(k + 2)
3
2 [det G(m23)]

1
4

cos{∑
a<b

(mab + 1)
θab(m23)

2
− k + 2

π
V(m23)+

π

4
}.

(4.11)

Here, G(m23) denotes its edge Gram matrix.

Remark 4.3.4. Corollary 4.3.3 is more convenient than Theorem 4.3.1 for numerical ma-

nipulation.

4.3.1 Numerical checking

A bit of a challenge occurred when we tried to reproduce Figure 3 in [41]. So, let’s

re-check the numerical calculation for the example

40 48 50

52 54 n


q

with k = 198

and q = e
iπ

k+2 .

The software we used is MATHEMATICA and the graph obtained while using

the formula in Equation (4.11) is given in Figure 4.2.

As shown on the graph, the plot of the asymptotic formula does not coincide

with the plot of the exact values of the quantum 6j symbols. We claim that the sign

of the volume in the summand should be changed to plus (+). That is,

Theorem 4.3.5 (Taylor-Woodward (Corrected)). Let k be a positive integer. Let mij ∈
N be large such that each triple (m12, m01, m02), (m01, m13, m03), (m02, m23, m03), and

(m12, m13, m23) satisfies the triangle inequality and their respective sum yields an even

integer less than 2k. In this case, let us decide to vary m23 and keep the rest constant.

Suppose that the non-degenerate spherical tetrahedron T(m23) exists with edge lengths

lab = π mab+1
k+2 , exterior dihedral angle θab(m23) at the edge (ab) and volume V(m23).

Then,m12 m02 m01

m03 m13 m23


e

πi
k+2

∼=
2π

(k + 2)
3
2 [det G(m23)]

1
4

cos{∑
a<b

(mab + 1)
θab(m23)

2
+

k + 2
π

V(m23)+
π

4
}

(4.12)

where G(m23) denotes the edge Gram matrix of T(m23).
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Figure 4.2: Exact values of the quantum 6j symbols vs its asymptotic (Equation
(4.11)) . Here, the dots represent the exact values of the quantum 6j symbols and
the continuous graph represents the asymptotic. See Appendix C.

When implementing the modified formula (4.12), in [41, Figure 3] is recovered,

see Figure 4.3.

Remark 4.3.6. • Although the formula for the asymptotics of the quantum 6j symbols

in [41, Proposition 2.4.1] The MAPLE code by Taylor and Woodward is not correct,

their figure [41, Figure 3] is correct and consistent with Figure 4.3. The reason is

that in the MAPLE code available in [39], if one looks under #the prediction for the

non-degenerate case, line 84, in the definition of predict, the sign used is plus (+)

instead of minus (-). That is why it produces Figure 4.3 and [41, Figure 3].

• The MATHEMATICA code generating these two graphs may be found in Appendix

C.
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Figure 4.3: Exact values of the quantum 6j symbols vs its asymptotic from Equation
(4.12). Here, the dots represent the exact values of the quantum 6j symbols and the
continuous graph that of the asymptotic. See Appendix C.

4.3.2 Theoretical argument

This is not a proof of Equation (4.12) but instead an argument on where the error

in (4.10) crept in. The full proof is available in [41] as well as in [38, Page 39].

As the area of work is a bit slippery, it can be easy to omit some precision by

mistake. In [41, page 550, Proposition 2.4.1, (l) Schläfli formula] as well as in [38,

Page 17, Theorem 2.2.0.4] the scenario happened when claiming that θF is the exte-

rior dihedral angle. This angle should be the interior dihedral angle as mentioned

in [28, page 281]. That little confusion led to the sign error in [41, page 555], in the

last equality in the calculation of dArea(γ), and in [38, Page 39], in the last equality

in the calculation of dφlab .

From now on, we are going to use Equation (4.3) as a reference for our calcula-

tions. And for the last two sections we will also use the method in Definition 2.3.5

to construct our spherical tetrahedron.
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v1

v2

v0

v3

l12

l02 l03

l13

l01

l23

g3

g0

θ03

g2

g1

Figure 4.4: Spherical tetrahedron T showing the outward normal vectors the gi’s,
in our notation.

4.4 Six-dimensional version of the integral

Let g0, g1, g2, g3 be four elements in SU(2). Because of the diffeomorphism between

SU(2) and S3 (Section B.1) they may be considered as four points in S3, hence seen

as four unit vectors in R4. Throughout this section, they will be considered as the

unit outward normal vectors to each face of the spherical tetrahedron T (see Figure

4.4).

Let us recall the Conjecture 4.1.7 that we are investigating:m12 m02 m01

m03 m13 m23


2

q=e
iπ

s+2

=
∫

SU(2)4
∏
i<j

χmij
(gjg−1

i )e
2i
π (s+2)V(T)[∏ dgi]. (4.13)

The aim here is also to transform the integral on the right hand side of Equation

(4.13), which at the moment is a twelve-dimensional integral, into a six-dimensional

Lebesgue integral. At first glance, the integral on the right hand side of Equation

(4.13) presents strong similarities with the right hand side of Equation (2.1) in The-

orem 2.1.1. Therefore, the strategy from Chapter 2 will be adopted verbatim. So, to

start with, let us set

Ic =
∫

SU(2)4
∏
i<j

χmij
(gjg−1

i )e
2i
π (s+2)V(T)[∏ dgi].
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Under the action of SO(4), the unit vectors g0, g1, g2, g3 transform to [4]:

g0 = (1, 0, 0, 0)

g1 = (cos x1, 0, 0, sin x1)

g2 = (cos x2, sin x2 sin y2, 0, sin x2 cos y2)

g3 = (cos x3, sin x3 sin y3 cos z3, sin x3 sin y3 sin z3, sin x3 cos y3)

where x1, x2, x3, y2, y3 ∈ [0, π] and z3 ∈ [0, 2π].

Since the integral Ic is similar to the right hand side of Equation (2.1) in Theorem

2.1.1, it can be expressed in terms of the spherical coordinates as below.

Lemma 4.4.1. The integral Ic may be expressed in terms of the spherical coordinates as

Ic =
2

π4

∫ π

x1,x2,x3,y2,y3,z3=0
F(x1, x2, x3, y2, y3, z3) cos

(
2
π
(s + 2)V(x1, x2, x3, y2, y3, z3)

)
sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1,

where F is exactly the function described in Section 2.7.1.

Proof. Taking from step 5 in the proof of Lemma 2.7.3 along with the argument that

the volume of a spherical tetrahedron remains invariant under the action of SO(4),
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the transformation of the integral Ic reads as follows:

Ic =(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ 2π

z3=0
F(x1, x2, x3, y2, y3, z3)ei 2

π (s+2)V(x1,x2,x3,y2,y3,z3)

sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1

=(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ π

z3=0
F(x1, x2, x3, y2, y3, z3)ei 2

π (s+2)V(x1,x2,x3,y2,y3,z3)

sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1

+(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ 2π

z3=π
F(x1, x2, x3, y2, y3, z3)ei 2

π (s+2)V(x1,x2,x3,y2,y3,z3)

sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1

=(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ π

z3=0
F(x1, x2, x3, y2, y3, z3)ei 2

π (s+2)V(x1,x2,x3,y2,y3,z3)

sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1

+(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ π

z3=0
F(x1, x2, x3, y2, y3, z3)ei 2

π (s+2)V(x1,x2,x3,y2,y3,2π−z3)

sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1

=(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ π

z3=0
F(x1, x2, x3, y2, y3, z3)ei 2

π (s+2)V(x1,x2,x3,y2,y3,z3)

sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1

+(
1
π
)4
∫ π

x1,x2,x3,y2,y3=0

∫ π

z3=0
F(x1, x2, x3, y2, y3, z3)e−i 2

π (s+2)V(x1,x2,x3,y2,y3,z3)

sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1

=
2

π4

∫ π

x1,x2,x3,y2,y3,z3=0
F(x1, x2, x3, y2, y3, z3) cos

(
2
π
(s + 2)V(x1, x2, x3, y2, y3, z3)

)
sin2 x1 sin2 x2 sin2 x3 sin y2 sin y3dz3dy3dy2dx3dx2dx1.

Let (x, y, z, t) denote the positive orientation of R4. Let us represent the spherical

tetrahedron T with outward normal vectors g0, g1, g2, g3 by the tuple (g0, g1, g2, g3).

Changing z3 to 2π − z3 is equivalent to taking into account the mirror image of g3,

hence that of (g0, g1, g2, g3), with respect to the (xyt)−hyperplane. That amounts

to say that the spherical tetrahedron changes its orientation. Therefore, the sign of

the volume of the spherical tetrahedron T changes i.e.

V(x1, x2, x3, y2, y3, 2π − z3) = −V(x1, x2, x3, y2, y3, z3).

Thus, the second last equality holds. And the last equality follows from the Euler’s

formula cos x = eix+e−ix

2 .
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g1

g2

g0

g3

θ12

θ02

θ03

θ13

θ01

θ23

η0
12

η0
13

η0
23

ζ23

Figure 4.5: The dual spherical tetrahedron T∗ of T.

Let us denote by T∗ the dual to the spherical tetrahedron T. As stated in Re-

mark 2.3.10 its vertices are composed by the vectors g0, g1, g2, g3. Let the Figure 4.5

illustrate T∗.

From the fact that T∗ itself is a spherical tetrahedron, one may identify its box

variables. For the case of Figure 4.5, the box variable is given by

B∗ = {θ01, θ02, θ03, η0
12, η0

13, ζ23}

where θ01, θ02, θ03 indicates the edge lengths of the dual tetrahedron T∗ with com-

mon vertex g0, the variables η0
12, η0

13 its interior angles around g0, and the interior

dihedral angle ζ23 of T∗.

The integral Ic may be re-expressed in terms of the box variables for T∗ as fol-

lows:

Corollary 4.4.2. Let θ01, θ02, θ03, η0
12, η0

13, ζ23 ∈ [0, π]. The integral in Conjecture 4.1.7

may be re-written as a function of the box variables in the following way:

Ic =
2

π4

∫ π

0

∫ π

0

∫ π

0

∫ π

0

∫ π

0

∫ π

0
f (θ01, θ02, θ03, η0

12, η0
13, ζ23) cos

(
2
π
(s + 2)V(θ01, θ02, θ03, η0

12, η0
13, ζ23)

)
sin2 θ01 sin2 θ02 sin2 θ03 sin η0

12 sin η0
13dζ23dη0

13dη0
12dθ03dθ02dθ01.

Furthermore, the twelve-dimensional conjectural integral formula for the square

of a quantum 6j symbol in Conjecture 4.4 may be re-written as a six-dimensional

integral. That is shown in the lemma below.
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Lemma 4.4.3. The twelve-dimensional integral on the right hand side of Equation (4.4) can

be re-expressed as a six-dimensional integral over the space of exterior dihedral angles of

SO(4)−equivalence classes of non-degenerate spherical tetrahedra as follows:

I(s) =
2

π4

∫
Dπ

∏i<j sin((mij + 1)θij)√
det([cos θij])

cos
(

2
π
(s + 2)V(θ01, θ02, θ03, θ12, θ13, θ23)

)
[∏

i<j
dθij].

(4.14)

Explicitly, the region of integration is

Dπ = {(θ01, θ02, θ03, θ12, θ13, θ23) ∈ [0, π]6, [cos θij] is positive definite },

where [cos θij] is the 4× 4 unidiagonal symmetric matrix whose off-diagonal elements are

cos θij.

Proof. The proof goes hand in hand with that of Theorem 2.7.6.

4.5 Interior contribution for the asymptotic

Let r0
ij ∈ Q∩ [0, 1] and k ∈N such that kr0

ij is integer.

Let’s consider the integral

Ic(k) =
2

π4

∫
Dπ

∏i<j sin
(
(kr0

ij
+ 1)θij

)
√

det([cos θij])
cos

(
2
π
(k + 2)V(T)

)
[∏
i<j

dθij]. (4.15)

We are investigating the conjecture (Conjecture 4.1.9) which states thatkr0
12 kr0

02 kr0
01

kr0
03 kr0

13 kr0
23


2

q=e
iπ

k+2

∼ Ic(k). (4.16)

The aim of this section is to generate the interior contribution for the integral in

Equation (4.15). So, the critical points taken into account are within the domain of

integration not at the boundary. The interior contribution is computed by using the

stationary phase approximation.
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4.5.1 Stationary phase method

The stationary phase method is often used to approximate n−dimensional inte-

grals of the form ∫
D

a(x)eikp(x) dx. (4.17)

It has been studied by several authors including Nicholas Chako [13] and Wong

[46]. For handy examples, Cooke’s paper [15] is recommended. The approxima-

tion mainly depends on the nature of either the critical points of the phase p(x)

or that of the amplitude a(x). But in this subsection, we are only interested in the

contribution from the stationary points of the phase. For more practicality to our

case, we will use the approximation of an n−dimensional integral from [4] which

reads: ∫
D

a(x)eikp(x) dx ∼ (2π)
n
2 ∑

i

a(xi)

|det H(xi)|
1
2

eiS(xi)+
iπ
4 σ(H(xi)), (4.18)

where the sum is done over the stationary points xi of S = kp, H(xi) is the matrix

whose entries are the second partial derivatives of S at the point xi and σ(H(xi))

its signature.

For instance, in our case we have a six dimensional integral, so Equation (4.18)

becomes ∫
D

a(x)eiS(x) dx ∼ (2π)3 ∑
i

a(xi)

|det H(xi)|
1
2

eiS(xi)+
iπ
4 σ(H(xi)). (4.19)

4.5.2 Tools for the approximation

4.5.2.1 The Schläfli formula

As mentioned in the beginning of this section, the stationary phase method will be

observed. Therefore, the knowledge of the interior stationary points of the phase is

required, in our case the Schläfli formula plays an important role in their computa-

tion. Hence, let us recall the Schläfli identity formula.

Lemma 4.5.1 (Schläfli identity, see [28]). Let T be a spherical tetrahedron with edge

lengths lij and interior dihedral angles βij at the edge (ij). Then

dV =
1
2 ∑ lij dβij

where V is the volume of T.
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4.5.2.2 Relationship between the Jacobian and the Gram matrices

While looking at the denominator
√

det([cos θij]) of the integrand in (4.15), one

would expect that the final result of the asymptotic approximation of the integral

will remain a function of the exterior dihedral angles. But the aim is to reproduce

the right hand side of Equation (4.3), whose denominator is the determinant of the

edge Gram matrix of a specific spherical tetrahedron. To convert from one expres-

sion of the denominator to the other, Kaminski and Steinhaus, in [19], provided a

formula which is recalled in the following lemma.

Lemma 4.5.2. [19] Let T be a spherical tetrahedron with edge lengths lij and interior

dihedral angle βij around the edge (ij). Then

det([
∂βij

∂lst
]) = −

det([− cos βij])

det([cos lij])
, (4.20)

where [
∂βij
∂lst

] is the matrix whose entries are the derivatives of the interior dihedral angles

with respect to the edge lengths, the symbol [cos lij] (resp [cos βij]) denotes the 4×4 matrix

which has 1 on the diagonal and cos lij (resp cos βij) elsewhere.

By adapting Equation (4.20) to our situation, Lemma 4.5.2 is equivalent to:

Corollary 4.5.3. Let T be a spherical tetrahedron with edge lengths lij and exterior dihe-

dral angle θij around the edge (ij) opposite to the edge (ij). Then

det([
∂lij
∂θst

]) = −
det([cos lij])
det([cos θij])

,

where [ ∂lij
∂θst

] is the matrix whose entries are the derivatives of the edge lengths with respect

to the exterior dihedral angles, and [cos lij] (resp [cos θij]) denotes the 4×4 matrix which

has 1 on the diagonal and cos lij (resp cos θij) elsewhere.

Proof. By considering the dual tetrahedron T∗ of T, the edge lengths are θij and π−

lij are the interior dihedral angles at the edge (ij). Then Equation (4.20) becomes

det([
−∂lij
∂θst

]) = −
det([cos lij])
det([cos θij])

.

But since we are in dimension four [
−∂lij
∂θst

] is a six dimensional matrix, therefore

det[−∂lij
∂θst

] = det[ ∂lij
∂θst

].
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4.5.3 Approximation of the integral

Notice that the integral Ic(k) in Equation (4.15) may be rewritten as

Ic(k) =
1

π4

∫
Dπ

∏i<j sin
(
(kr0

ij
+ 1)θij

)
√

det([cos θij])
ei 2

π (k+2)V(θ01,θ02,θ03,θ12,θ13,θ23)[∏
i<j

dθij]

+
1

π4

∫
Dπ

∏i<j sin
(
(kr0

ij
+ 1)θij

)
√

det([cos θij])
e−i 2

π (k+2)V(θ01,θ02,θ03,θ12,θ13,θ23)[∏
i<j

dθij]

=Ic1(k) + Ic2(k).

In this subsection, the intention is to provide asymptotic expansions for Ic1(k)

and Ic2(k), then add them up to obtain the asymptotic expansion for Ic(k). That

method makes sense since the sum is not null.

4.5.3.1 Asymptotic expansion of Ic1(k)

The strategy here is to transform the product of sinuses in the integrand of Ic1(k)

into a product of exponential functions. By doing so, Ic1(k) becomes a sum of 64

integrals. But, upon analysis only one integral contributes to the stationary phase

approximation. That is given in the proposition below.

Proposition 4.5.4. The only integral contributing to the stationary phase approximation

of Ic1(k) is

Ic1,εij=1(k) =
1

(2i)6
1

π4

∫
Dπ

ei(∑i<j θij+
4
π V(θij))√

det([cos θij])
eik(∑i<j r0

ij
θij+

2
π V(θij))[∏

i<j
dθij].

Proof. When expanding ∏i<j sin((kr0
ij
+ 1)θij) to an exponential form, it produces a

sum of 64 integrals of the form

1
(2i)6

1
π4

∫
Dπ

ei(∑i<j εijθij+
4
π V(θij))√

det[cos θij]
eik(∑i<j εijr0

ij
θij+

2
π V(θij))[∏

i<j
dθij],

where εij = ±1.

Let us set

S(θ01, θ02, θ03, θ12, θ13, θ23) = k(∑
ij

εijr0
klθij +

2
π

V(θij)).
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Then, from the Schläfli identity in Lemma 4.5.1 the partial derivatives of S with

respect to θij are given by

∂S
∂θij

= εijr0
ij −

2
π

.
1
2

lij. (θij = π − βij)

To procure the stationary points of S, one needs to equate ∂S
∂θij

to zero. That is,

∂S
∂θij

= 0⇐⇒ εijr0
ij −

1
π

lij = 0.

The latter equality implies

lij = πεijr0
ij.

This argument means that the stationary points are spherical tetrahedra with edge

lengths πεijr0
ij

. However, our region is Dπ ⊂ [0, π]6. Therefore, the only allowed

length for a tetrahedron is lij = πr0
ij

i.e. all εij = 1. Hence, the only integral which

contributes to the stationary phase method for the inside contribution of Ic1(k) is

that given in Proposition 4.5.4.

By taking the result in Proposition 4.5.4 into consideration, the asymptotic ex-

pansion of the integral Ic1(k) may now be computed. And the following proposi-

tion shows the output.

Proposition 4.5.5. Let r0
ij ∈ Q∩ [0, 1]. Let T0 be the non-degenerate spherical tetrahedron

whose edge lengths l0
ij = πr0

ij and whose exterior dihedral angles at the edge (ij) opposite

to the edge (ij) is given by θ0
ij. Let the phase function of Ic1,εij=1(k) be denoted by

S1(θ01, θ02, θ03, θ12, θ13, θ23) = k(∑
i,j

r0
ijθij +

2
π

V(θij)).

Then the asymptotic expansion of Ic1(k) is

Ic1(k) ∼
−π2

8k3 .
ei π

4 σ(H1(θ
0
ij))√

det([cos l0
ij])

ei(∑i<j(kr0
ij
+1)θ0

ij+
2
π (k+2)V(T0))

,

where [cos l0
ij] denotes the edge Gram matrix of T0, H1 is the Hessian matrix of the phase

S1.
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Proof. From Proposition 4.5.4 the stationary phase approximation of Ic1,εij=1(k) is

the same as that of Ic1(k). So, this proof is all about the asymptotic expansion of

Ic1,εij=1(k). Let the phase function be denoted by

S1(θ01, θ02, θ03, θ12, θ13, θ23) = k(∑
i,j

r0
ijθij +

2
π

V(θij)).

Then, from the Schläfli identity in Lemma 4.5.1,

∂S1

∂θij
= k(r0

ij −
2
π

.
1
2

lij) (θij = π − βij).

Therefore, the partial derivative of S1 with respect to θij is given by

∂S1

∂θij
= 0⇐⇒ r0

ij −
1
π

lij = 0.

That is equivalent to say

lij = πr0
ij,

which means that our critical point is the non-degenerate spherical tetrahedron T0.

Since the Hessian matrix of S1 is required, the derivative of S1 with respect to

the θij’s at the point

E := (θ01, θ02, θ03, θ12, θ13, θ23)

is needed. That is given by:

( ∂S1
∂θ01

, ∂S1
∂θ02

, ∂S1
∂θ03

, ∂S1
∂θ12

, ∂S1
∂θ13

, ∂S1
∂θ23

)|E = (kr0
23 − k

π l23, kr0
13 −

k
π l13, kr0

12 −
k
π l12, kr0

03 − k
π l03, kr0

02 − k
π l02, kr0

01 −
k
π l01).

Notice that lij are functions of θij. Hence the Hessian matrix H1 of S1 is

H1(θij) = (
−k
π

)6



∂l23
∂θ01

∂l23
∂θ02

∂l23
∂θ03

∂l23
∂θ12

∂l23
∂θ13

∂l23
∂θ23

∂l13
∂θ01

∂l13
∂θ02

∂l13
∂θ03

∂l13
∂θ12

∂l13
∂θ13

∂l13
∂θ23

∂l12
∂θ01

∂l12
∂θ02

∂l12
∂θ03

∂l12
∂θ12

∂l12
∂θ13

∂l12
∂θ23

∂l03
∂θ01

∂l03
∂θ02

∂l03
∂θ03

∂l03
∂θ12

∂l03
∂θ13

∂l03
∂θ23

∂l02
∂θ01

∂l02
∂θ02

∂l02
∂θ03

∂l02
∂θ12

∂l02
∂θ13

∂l02
∂θ23

∂l01
∂θ01

∂l01
∂θ02

∂l01
∂θ03

∂l01
∂θ12

∂l01
∂θ13

∂l01
∂θ23


.
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Therefore, from Equation (4.19) the asymptotic expansion of the integral Ic1,εij=1(k)

arises as

Ic1,εij=1(k) ∼
(2π)3

π4(2i)6 .
ei(∑i,j θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])|det H1(θ
0
ij)|

1
2

e
ik(∑i,j r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H1(θ
0
ij))

=
23

π(2i)6
ei(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])
(k3)
π3 |det([

∂lij
∂θst

]|θ0
ij
)| 12

e
ik(∑i,j r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H1(θ
0
ij))

=
23π2

k3(2i)6
ei(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])|det([
∂lij
∂θst

]|θ0
ij
)| 12

e
ik(∑i,j r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H1(θ
0
ij))

=
−π2

8k3
ei(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])|det([
∂lij
∂θst

]|θ0
ij
)| 12

e
ik(∑i,j r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H1(θ
0
ij))

=
−π2

8k3
ei(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos l0

ij])
e

ik(∑i<j r0
ij

θ0
ij+

2
π V(T0))+i π

4 σ(H1(θ
0
ij)) (by Lemma 4.5.3)

=
−π2

8k3 .
ei π

4 σ(H1(θ
0
ij))√

det([cos l0
ij])

e
i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

.

Remark 4.5.6. The stationary phase approximation to the integral Ic1(k) produces a Ja-

cobian determinant det([ ∂lij
∂θst

]) in the denominator, while the asymptotics of the quantum

6j symbols have a Gram determinant det([cos l0
ij]) in the denominator. It is therefore not

obvious that the one has anything to do with the other. Hence, Lemma 4.5.3 is a nontrivial

step and is perhaps evidence that the conjecture is on the right track.

4.5.3.2 Asymptotic expansion of Ic2(k)

Similarly to the argument for Ic1(k), the integral Ic2(k) is equal to the sum of 64 in-

tegrals when changing the sine terms in its integrand into their exponential expres-

sion. However, only one of these sixty four integrals contributes to its asymptotic

expansion. That is,

Proposition 4.5.7. The only integral contributing to the stationary phase approximation

of Ic2(k) is

Ic2,εij=−1(k) =
1

(2i)6
1

π4

∫
Dπ

e−i(∑i<j θij+
4
π V(θij))√

det[cos θij]
e−ik(∑i<j r0

ij
θij+

2
π V(θij))[∏

i<j
dθij].
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Proof. The statement of the proof goes hand in hand with that of Proposition 4.5.4.

The only difference is that in this case all εij = −1.

By taking the result in Proposition 4.5.7 into consideration, let us now derive the

asymptotic expansion of the integral Ic2(k). The latter is provided in the following

proposition.

Proposition 4.5.8. Let r0
ij ∈ Q∩ [0, 1]. Let T0 be the non-degenerate spherical tetrahedron

whose edge lengths l0
ij = πr0

ij and whose exterior dihedral angle at the edge (ij) opposite to

the edge (ij) is given by θ0
ij. Let the phase function of Ic2,εij=−1(k) be denoted by

S2(θ01, θ02, θ03, θ12, θ13, θ23) = −k(∑
i,j

r0
ijθij +

2
π

V(θij)).

Then the asymptotic expansion of the integral Ic2(k) is

Ic2(k) ∼
−π2

8k3 .
ei π

4 σ(H2(θ
0
ij))√

det([cos l0
ij])

e−i(∑i<j(kr0
ij
+1)θ0

ij+
2
π (k+2)V(T0))

,

where [cos l0
ij] denotes the edge Gram matrix of T0, H2 the Hessian matrix related to S2.

Proof. The proof of Proposition 4.5.8 can be considered to go hand in hand with

that of Proposition 4.5.5. However, to be careful in the result let us do it separately.

From Proposition 4.5.7 the stationary phase approximation of Ic2,εij=−1(k) is the

same as that of Ic2(k). So, this proof is all about the approximation of Ic2,εij=−1(k).

Let us consider the phase function of Ic2,εij=−1(k),

S2(θ01, θ02, θ03, θ12, θ13, θ23) = −k(∑
i,j

r0
ijθij +

2
π

V(θij)).

Then, from the Schläfli identity in Lemma 4.5.1 the partial derivative of S2 with

respect to θij is given by

∂S2

∂θij
= −k(r0

ij −
2
π

.
1
2

lij) (θij = π − βij). (4.21)

As the aim is to find the stationary point of S2, equating the partial derivative to

zero (0) gives

∂S2

∂θij
= 0⇐⇒ r0

ij −
1
π

lij = 0.
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This latter equality amounts to say that

lij = πr0
ij,

which means our critical point is the spherical tetrahedron T0. The next thing to do

is look for the Hessian matrix of S2 at the point E := (θ01, θ02, θ03, θ12, θ13, θ23). For

that, let us first recall from (4.21) the derivative of S2 with respect to the θij’s

( ∂S2
∂θ01

, ∂S2
∂θ02

, ∂S2
∂θ03

, ∂S2
∂θ12

, ∂S2
∂θ13

, ∂S2
∂θ23

)|E = (−kr0
23 +

k
π l23, −kr0

13 +
k
π l13, −kr0

12 +
k
π l12, −kr0

03 +
k
π l03, −kr0

02 +
k
π l02, −kr0

01 +
k
π l01).

Notice that lij are functions of θij. Therefore, the Hessian matrix H2 of S2 is

H2(θij) = (
k
π
)6



∂l23
∂θ01

∂l23
∂θ02

∂l23
∂θ03

∂l23
∂θ12

∂l23
∂θ13

∂l23
∂θ23

∂l13
∂θ01

∂l13
∂θ02

∂l13
∂θ03

∂l13
∂θ12

∂l13
∂θ13

∂l13
∂θ23

∂l12
∂θ01

∂l12
∂θ02

∂l12
∂θ03

∂l12
∂θ12

∂l12
∂θ13

∂l12
∂θ23

∂l03
∂θ01

∂l03
∂θ02

∂l03
∂θ03

∂l03
∂θ12

∂l03
∂θ13

∂l03
∂θ23

∂l02
∂θ01

∂l02
∂θ02

∂l02
∂θ03

∂l02
∂θ12

∂l02
∂θ13

∂l02
∂θ23

∂l01
∂θ01

∂l01
∂θ02

∂l01
∂θ03

∂l01
∂θ12

∂l01
∂θ13

∂l01
∂θ23


.

Thus, from Equation (4.19) the asymptotic expansion of the integral Ic2(k) reads

Ic2,εij=−1(k) ∼
(2π)3

π4(2i)6 .
e−i(∑ij θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])|det H2(θ
0
ij)|

1
2

e
−ik(∑ij r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H2(θ
0
ij))

=
23

π(2i)6
e−i(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])
(k3)
π3 |det([

∂lij
∂θkl

]|θ0
ij
)| 12

e
−ik(∑ij r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H2(θ
0
ij))

=
23π2

k3(2i)6
e−i(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])|det([
∂lij
∂θkl

]|θ0
ij
)| 12

e
−ik(∑ij r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H2(θ
0
ij))

=
−π2

8k3
e−i(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos θ0

ij])|det([
∂lij
∂θkl

]|θ0
ij
)| 12

e
−ik(∑ij r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H2(θ
0
ij))

=
−π2

8k3
e−i(∑i<j θ0

ij+
4
π V(θ0

ij))√
det([cos l0

ij])
e
−ik(∑i<j r0

ij
θ0

ij+
2
π V(T0))+i π

4 σ(H2(θ
0
ij)) (by Lemma 4.5.3)

=
−π2

8k3 .
ei π

4 σ(H2(θ
0
ij))√

det([cos l0
ij])

e
−i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

.
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4.5.3.3 Asymptotic expansion of Ic(k)

Eventually, since the asymptotic expansion of Ic1(k) added up with that of Ic2(k)

is non-zero then, the asymptotic expansion of Ic(k) can be considered as this sum.

Hence, we are now ready to prove Theorem 4.1.10.

Remark 4.5.9. We empirically computed the signature of σ(H1(θ
0
ij)) of H1 which is the

same as that of H2 and it gave us zero (0). The MATHEMATICA code may be found in

Appendix C.

Proof of Theorem 4.1.10. As we set from the beginning, the integral Ic(k) may be

written as the sum of two integrals Ic1(k) and Ic2(k) i.e.

Ic(k) = Ic1(k) + Ic2(k).

Since the sum of the asymptotics of Ic1(k) and Ic2(k) is non-zero, it will constitute

the asymptotic approximation of Ic(k). In other words,

Ic(k) ∼
−π2

8k3 .
ei π

4 σ(H1(θ
0
ij))√

det([cos l0
ij])

e
i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

− π2

8k3 .
ei π

4 σ(H2(θ
0
ij))√

det([cos l0
ij])

e
−i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

=
−π2

8k3 .
1√

det([cos l0
ij])

e
i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

− π2

8k3 .
1√

det([cos l0
ij])

e
−i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

=
−π2

4k3 .
1√

det([cos l0
ij])

 e
i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

+ e
−i(∑i<j(kr0

ij
+1)θ0

ij+
2
π (k+2)V(T0))

2


=
−π2

4k3 .
1√

det([cos l0
ij])

cos{∑
i<j

(kr0
ij + 1)θ0

ij +
2
π
(k + 2)V(T0)}.

Note that the first equality results from Remark 4.5.9 and the last equality follows

from cos x = 2 cos2( x
2 )− 1.
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Remark 4.5.10. The integral in Lemma 4.1.8 has been approximated numerically using a

form of Gaussian quadrature [7]. For the sequence of 6j symbols

Ik =

 k
3

k
3

k
6

k
6

k
6

k
3


q=e

πi
k+2

k = 12, 16, 36, · · ·

the following results were obtained:

k Ik

12 0.0038215

24 0.0005396

36 0.00041512

However, the numerical calculation proved to be very expensive for larger k and it was not

possible to reliably compute the boundary contribution using this approach.

Stellenbosch University https://scholar.sun.ac.za



Chapter 5

Conclusion

5.1 Summary

The computation of the partial derivative of an angle with respect to the length of

its opposite edge and the partial derivative of the length of an edge with respect to

its opposite angle in a spherical triangle, provided in Theorem 3.2.4, are presented

as warm up calculations leading to the first main result in this thesis.

For spherical tetrahedra, Taylor and Woodward in [41] [38] called Wigner deriva-

tive the partial derivative of a dihedral angle with respect to the length of its oppo-

site edge, all other edge lengths remaining fixed. They gave a formula for it which

is also found in Theorem 3.1.1, of which the author calculated independently in

Lemma 3.3.1. The first main theorem in this thesis is the formula for the inverse

Wigner derivative, which is the partial derivative of the length of an edge with re-

spect to its opposite dihedral angle, all other dihedral angles remaining fixed. It is

found in Theorem 3.1.2 This result plays an important role in a the calculation of an

asymptotic expansion of a possible integral formula for the square of the quantum

6j symbols. As a corollary, see Corollary 3.1.3, the equality between the Wigner

derivative and the inverse Wigner derivative is concluded.

The second main theorem in this thesis arises from a conjectural integral for-

mula for the square of the quantum 6j symbols by Bruce Bartlett, found in Con-

jecture 4.1.7. The aim was to compute the asymptotic expansion of the conjectural

integral formula and compare it with the corrected version of the known asymp-
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totic formula for the quantum 6j symbols by Taylor and Woodward [41][38], which

is asymptotically equivalent to the corrected version of Roberts’ in [36], found in

Theorem 4.1.3. The strategy is to use the stationary phase method to asymptoti-

cally approximate the integral. A partial result is obtained, which is the asymptotic

expansion of the integral from the critical point inside the domain of integration.

That is given in Theorem 4.1.10.

5.2 Future plans

1. As the reciprocity of the Wigner derivative is correct for spherical triangles

and spherical tetrahedra, it is natural to ask if it stands for an n−dimensional

spherical simplex as well as for hyperbolic simplices. These areas may be

explored in the future.

2. Regarding the investigation on the conjectural integral formula for the square

of the quantum 6j symbols, the asymptotic expansion of the integral con-

tributed by the critical points at the boundary of the domain of integration

remains a mystery. So, this is still open for investigation.

3. The numerical computation of the integral also remains incomplete. So, that

may be carried on as a part of future research.

Stellenbosch University https://scholar.sun.ac.za



Appendices

101

Stellenbosch University https://scholar.sun.ac.za



Appendix A

The characters of SU(2)

The aim of Chapter 2 was to transform the integral over SU(2)4 in Theorem 2.1.1

into an integral over the set of a 6-tuple ∈ [0, π]6 representing the edge lengths

of non-degenerate spherical tetrahedra as described in Theorem 2.1.2. This action

requires the transition from one integrand to the other. Recall the equation,∫
(SU(2))4 ∏

i<j
χmij(gjg−1

i )[
3

∏
i=0

dgi] =
2

π4

∫
Dπ

∏i<j sin((mij + 1)lij)√
det([cos lij])

[∏
i<j

dlij].

While the left hand side involves the product of characters χn(gh−1) (g, h ∈

SU(2)), the right hand side involves sines. The link between those two is suggested

in [22], [42] and [17] by

χn(gh−1) =
sin((n + 1)φ)

sin φ
, (A.1)

where φ denotes the angle between the vectors f (g) and f (h) of S3. Here, f is the

diffeomorphism between SU(2) and S3, and n a positive integer. Since this equality

is not obvious the aim of this Appendix is to provide a rigorous proof for it.

Should the reader be interested in more details on the materials present in this

section, they may be found in [37], [22], [42] and [35]. And, assume that the reader

is familiar with the notion of representation theory of groups.

A.1 The Lie group SU(2)

The aim of this section is to show that there is an equivalence between the inner

product in S3 and that of SU(2). This is crucial for the identification of the angle φ
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in
sin((n + 1)φ)

sin φ
.

So, to start with let us recall the definitions of the group SU(2), Lie group and

eventually look at the relationship between the inner products.

By definition, SU(2) is the group of complex matrices U such that U†.U = 1

with det U = 1, where U† is the transpose of the complex conjugate of U. It can

explicitly be written as

SU(2) = {

a −b̄

b ā

 : a, b ∈ C, |a|2 + |b|2 = 1},

where the bar denotes complex conjugation. And a Lie group is a smooth manifold

G equipped with a group structure so that the maps

µ :G× G −→ G

(x, y) 7−→ xy

and

i :G −→ G

x 7−→ x−1

are smooth. Van den Ban, in [42, page 7, Example 2.10 and page 9-10, Example 2.19],

explicitly shows how SU(2) is a Lie group. In addition, there is a diffeomorphism

between SU(2) and S3 as manifolds. It is defined by

f : S3 −→ SU(2)

such that

(a1, b2, b1, a2) 7→

 a1 + ia2 b1 + ib2

−b1 + ib2 a1 − ia2

 ,

whose inverse is given by:

f−1 : SU(2) −→ S3

such that  a1 + ia2 b1 + ib2

−b1 + ib2 a1 − ia2

 7→ (a1, b2, b1, a2).
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Let a, b ∈ R4 and denote by < a, b >R4 their dot product. Let A, B ∈ SU(2); their

inner product is defined by

< A, B >SU(2):= Tr(AB†).

Then, f induces an equivalence between the inner product in S3 and SU(2) by

considering S3 as a subset of R4. That is shown in the lemma below.

Lemma A.1.1. Let g and h be elements of SU(2). Then the cosine of the angle between g

and h as elements of S3 is equal to the trace of the matrix gh−1 i.e.

cos θ =
1
2

Tr(gh−1).

Proof. Let g =

 g1 + ig2 g3 + ig4

−g3 + ig4 g1 − ig2

, and h =

 h1 + ih2 h3 + ih4

−h3 + ih4 h1 − ih2

. It follows

Tr(gh−1) = 2Re[(h1 + ih2)(g1 − ig2) + (h3 + ih4)(g3 − ig4)]

= 2(h1g1 + h2g2 + h3g3 + h4g4)

= 2 < f−1(g), f−1(h) >R4

= 2 cos θ.

A.2 The irreducible representations of SU(2)

Let g, h ∈ SU(2) and recall the diffeomorphism f : S3 −→ SU(2) from Section A.1.

It is not obvious that the character χn(gh−1) may be written in terms of φ (angle

between f−1(g) and f−1(h) in S3) as

χn(gh−1) =
sin((n + 1)φ)

sin φ
.

This expression is key for the transformation of the integral over SU(2)4 from

Theorem 2.1.1 into its six-dimensional version in Theorem 2.1.2. Hence, the aim of

this subsection is to prove this equality. We assume that the reader is familiar with

the notion of representation theory of groups. However, below is a lemma which

plays a crucial role in our proof.

Stellenbosch University https://scholar.sun.ac.za



APPENDIX A. THE CHARACTERS OF SU(2) 105

Lemma A.2.1. Let G be a group and V, V ′ be two representations of G such that V and V ′

are isomorphic. Suppose V is irreducible. Then, V ′ is an irreducible representation of G.

Proof. Let

ρ : G −→ GL(V)

π : G −→ GL(V ′)

be two respective linear representations of G and consider the isomorphism

i : V −→ V ′.

By definition, V ′ is irreducible if and only if its only stable subspace under G are 0

and V ′. So, let W ′ be a subspace of V ′ such that πs(W ′) ⊆ W ′ for all s ∈ G, and let

us prove that either W ′ = 0 or W ′ = V ′. The proof will be conducted in a direct

way. It is a fact that i−1(W ′) is a subspace of V, and every element in W ′ is of the

form i(w) where

w ∈ i−1(W ′).

Let s ∈ G. Therefore,

πs(i(w)) ∈W ′.

Hence,

i−1(πsi(w)) ∈ i−1(W ′).

Since i is an isomorphism,

ρs = i−1πsi

which implies

ρs(w) ∈ i−1(W ′)

i.e. i−1(W ′) is stable. But V is irreducible so, i−1(W ′) = 0 or i−1(W ′) = V. Thus,

W ′ = 0 or W ′ = V ′ since i is an isomorphism.

Let

ρ : SU(2) −→ End(V1)

be the fundamental representation of SU(2) on V1 = C2. Its dual is defined as the

vector space

V∗1 := { f : V1 −→ C, f linear}
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which may be identified as the vector space of homogeneous polynomial of degree

one, P1(C
2), with basis {z, w}. Let {e1, e2} be a basis for V1 and by respectively

sending e1 to z, e2 to w, V1 is isomorphic to V∗1 .

Let us define the vector space

n
⊗V1 := V1 ⊗V1 ⊗ · · · ⊗V1︸ ︷︷ ︸

n times

,

which is the tensor product of n copies of V1. Recall that an element of the basis for
n
⊗V1 is of the form

ei1 ⊗ · · · ⊗ ein

where ij ∈ {1, 2}.

Note that
n
⊗V1 is also a representation of SU(2) by the tensor product action (see

[37]) defined by

ρn : SU(2) −→
n
⊗V1

such that

ρn
g(v1 ⊗ · · · ⊗ vn) = ρg(v1)⊗ · · · ⊗ ρg(vn),

for g ∈ SU(2).

Let us consider the projection

sn :
n
⊗V1 −→

n
⊗V1

defined on tensor product of vectors in V1 by:

v1 ⊗ · · · ⊗ vn 7−→
1
n! ∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n).

The image of sn is called the n-Symmetric power of dimension n + 1 which we call

here Vn, i.e.

Vn := Im(sn).

Note that Vn is an invariant subspace, i.e. it is a representation of SU(2) in its

own right.

Lemma A.2.2 ([35][12]). Every irreducible representation of SU(2) is isomorphic to some

Vn.
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Consider V∗n to be the dual vector space of Vn. Similarly to the case for V∗1 , V∗n

may be identified with the vector space of homogeneous polynomials of degree n,

Pn(C2), with basis

{zkwn−k; 0 ≤ k ≤ n}.

Let us set the isomorphism

in : Pn(C
2) −→ Vn

such that

zkwn−k 7−→ ∑
σ∈Sn

eσ(i1) ⊗ · · · ⊗ eσ(in),

where Sn denotes the symmetric group of n elements, ij ∈ {1, 2} and the number

of e1 occurring in the expression eσ(i1) ⊗ · · · ⊗ eσ(in) is k whereas that of e2 is n− k.

The knowledge of these results is required for the proof of the equality

χn(gh−1) =
sin((n + 1)φ)

sin φ
.

Now that everything is settled, let us state Equation A.1 as a proposition, then

proceed to its proof.

Proposition A.2.3. For n > 0 and g, h ∈ SU(2), the character of the n-th representation

of SU(2) at the element gh−1 is the same as the quotient of the sine of the angle between

f−1(g) and f−1(h) scaled by n + 1 with the sine of the angle between f−1(g) and f−1(h)

, i.e.

χn(gh−1) =
sin((n + 1)φ)

sin φ
,

where f : S3 −→ SU(2), φ is the angle between f−1(g) and f−1(h) and φ ∈ [0, π].

Proof. Let

W = {wθ =

eiθ 0

0 e−iθ

 , θ ∈ R}.

It is obvious that W is a subgroup of SU(2).

Let pk = zkwn−k ∈ Pn(C2), and consider the representation of W given by:

ρ :W −→ End(Pn(C
2))

wθ 7−→ ρwθ
: Pn(C

2) −→ Pn(C
2)
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such that

ρwθ
(pk) = e(2k−n)θ pk.

Then, two cases occur:

Case 1: n is even

The matrix representing ρwθ
is given by

ρwθ
= Diag(einθ , ei(n−2)θ , ei(n−4)θ , · · · , ei2θ , 1, e−i2θ , · · · , e−i(n−4)θ , e−i(n−2)θ , e−inθ).

Hence the trace of ρwθ
is given by,

Tr(ρwθ
) =2[

einθ + e−inθ

2
+

ei(n−2)θ + e−i(n−2)θ

2
+

ei(n−4)θ + e−i(n−4)θ

2
+ · · ·+ ei2θ + e−i2θ

2
] + 1

=2 cos nθ + 2 cos(n− 2)θ + 2 cos(n− 4)θ + · · ·+ 2 cos 2θ + 1

=
2 sin θ cos nθ + 2 sin θ cos(n− 2)θ + 2 sin θ cos(n− 4)θ + · · ·+ 2 sin θ cos 2θ + sin θ

sin θ

=
sin(n + 1)θ

sin θ
(since sin(a + b) + sin(a− b) = 2 sin a cos b).

Case 2: n is odd

The endomorphism ρwθ
may be identified as

ρwθ
= Diag(einθ , ei(n−2)θ , ei(n−4)θ , · · · , eiθ , e−iθ , · · · , e−i(n−4)θ , e−i(n−2)θ , e−inθ).

Therefore the trace of ρwθ
is computed as,

Tr(ρwθ
) =2[

einθ + e−inθ

2
+

ei(n−2)θ + e−i(n−2)θ

2
+ · · ·+ ei3θ + e−i3θ

2
+

eiθ + e−iθ

2
]

=2 cos nθ + 2 cos(n− 2)θ + · · ·+ 2 cos 3θ + 2 cos θ

=
2 sin θ cos nθ + 2 sin θ cos(n− 2)θ + · · ·+ 2 sin θ cos 3θ + 2 sin θ cos θ

sin θ

=
sin(n + 1)θ

sin θ
(since sin(a + b) + sin(a− b) = 2 sin a cos b).

So, in all cases

Tr(ρwθ
) =

sin(n + 1)θ
sin θ

.

As explicitly explained in [22, page 76, Section 2.2] every element of SU(2) is

conjugate to an element in W i.e. ∀A ∈ SU(2), ∃w ∈ W such that A = SwS−1,
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where S ∈ SU(2). Hence, there exists S ∈ SU(2) and θ ∈ R such that

gh−1 = S

eiθ 0

0 e−iθ

 S−1.

On one hand,

Tr(gh−1) = 2 cos θ.

On the other hand from Lemma A.1.1,

Tr(gh−1) = 2 cos φ.

So, if θ ∈ [0, π] then θ = φ. Which is the case considered here. Therefore,

gh−1 = S

eiφ 0

0 e−iφ

 S−1,

where φ is the angle between f−1(g) and f−1(h) in S3.

And from the property of characters, χ(xyx−1) = χ(y). Thus,

χn(gh−1) =
sin((n + 1)φ)

sin φ
.
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Volume form and integration on a

manifold

Note: Some of the materials presented here were extracted from [34]. And for

further reading [26], [1] are recommended.

Let us remind ourselves that the target of Chapter 2 was to transform the inte-

gral formula for the square of classical 6j symbols given bym12 m02 m01

m03 m13 m23


2

=
∫
(SU(2))4

[
3

∏
i=0

dgi]∏
i<j

χmij(gjg−1
i ), (B.1)

which is an integration over SU(2)4 into a six-dimensional Lebesgue integral

over the region Dπ ⊂ [0, π]6,

I =
2

π4

∫
Dπ

[∏
i<j

dlij]
∏i<j sin((mij + 1)lij)√

det([cos lij])
. (B.2)

In order to reach that goal, one of the steps is to compute the Euclidean volume

form on S3 via the spherical coordinates. In addition, the integration of differential

forms will be needed in Chapter 4. Hence, this appendix is set as a reminder on the

volume forms on a manifold and the integration of differential forms on manifolds.

B.1 Volume form on a manifold

We suppose that the reader is familiar with the notion of manifolds and charts.

110
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Let M be an n-dimensional oriented Riemannian manifold. From [26, page 86]

the volume form on M determines a measure µM on M analogous to the Rieman-

nian measure on Rn. Therefore, this idea may be exploited to generate a Lebesgue

measure on S3. The process requires the knowledge of differential forms on a man-

ifold, volume form and orientation on a manifold, hence the notion on those will

be reminded before proceeding to the computation of the volume form on S3. More

details on the materials present here may be found in [26] and [1].

As the definition of a differential form depends solely on the knowledge of an

alternating form on the tangent space of M at a point p, let us recall the definition

of alternating forms on a vector space, and that of the tangent space Tp M of M at p.

Definition B.1.1. Let V be a vector space over R. A k-linear map ω : Vk −→ R is said

to be alternating if ω(v1, · · · , vk) = 0 whenever vi = vj for some pair i 6= j. The vector

space of alternating k−linear maps is denoted by Altk(V).

Notice that Alt0(V) = R.

Let p ∈ M and (U, h) a smooth chart in the neighbourhood of p. Let

C = {γ : I −→ M, γ(0) = p, I open interval in R around 0}

be the vector space of smooth curves on M passing through p. An equivalence

relation may be defined in C as follows:

γ1 ∼ γ2 ⇐⇒
dh(γ1(t))

dt |t=0

=
dh(γ2(t))

dt |t=0

. (B.3)

Remark B.1.2. The equivalence relation is independent of the choice of (U, h).

Definition B.1.3. The set of equivalence classes with respect to the equivalence relation

(B.3) is called the tangent space Tp M at the point p in M.

Remark B.1.4. • The tangent space of a manifold at a point p is a vector space of

dimension equal to the dimension of the manifold.

• Given a smooth chart (U, h) around p ∈ M, a basis for Tp M is given by

(
∂

∂x1
)p, · · · , (

∂

∂xn
)p,

where ( ∂
∂xi

)p is the image under Dh(p)h−1 : Rn −→ Tp M of the i-th standard basis

vector ei ∈ Rn.
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Let us now define a differential form on a manifold.

Let M be a smooth manifold of dimension n. A local parameterization is the

inverse of a smooth chart. Let ω = {ωp}p∈M be a family of alternating k−forms

on Tp M i.e. ωp ∈ Altk(Tp M). Let g : W −→ M be a local parameterization, and

x ∈W.

The map

Dxg : Rn −→ Tg(x)M

is an isomorphism, therefore it induces an isomorphism

Altk(Dxg) : Altk(Tg(x)M) −→ Altk(Rn)

defined as Altk(Dxg)(ω)(ζ1, · · · , ζk) = ω(Dxg(ζ1), · · · , Dxg(ζk)), ζi ∈ Rn.

Consider the map g∗(ω) : W −→ Altk(Rn) whose value at x is

g∗(ω)x = Altk(Dxg)(ωg(x)).

Definition B.1.5. Let M be a smooth manifold of dimension n, and W be an open subset

of Rn. A family ω = {ωp}p∈M of alternating k−forms on Tp M is said to be smooth if

g∗(ω) : W −→ Altk(Rn) is a smooth function for every local parameterization (W, g).

The set of such smooth families is a real vector space Ωk(M), it is the vector space of

differential forms on M.

Being used later to procure the volume form on S3, as follows is the definition

of a "pullback" of a smooth map between two smooth manifolds.

Definition B.1.6. Let M, N be smooth manifolds and φ : M −→ N be a smooth map. It

induces a map

φ∗ : Ωk(N) −→ Ωk(M)

such that if τ ∈ Ωk(N), and p ∈ M,

φ∗(τ)p = Altk(Dpφ)(τφ(p))

where τφ(p) lives in Altk(Tφ(p)N).
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To generate a volume form on a manifold, an orientation on that manifold is

required. And as this notion is key in our calculation, let us recall its definition.

Definition B.1.7. 1. A smooth manifold M of dimension n is called orientable, if there

exists a differential form ω ∈ Ωn(M) with ωp 6= 0 for all p ∈ M. Such form is

called an orientation form on M.

2. An equivalence relation on the set of orientation forms on M may be defined as: two

orientation forms ω, τ on M are equivalent if τ = s.ω, for some s ∈ Ω0(M) with

s(p) > 0 for all p ∈ M. An orientation of M is an equivalence class of orientation

forms on M.

Remark B.1.8. • On the Euclidean space Rn, the form

dx1 ∧ · · · ∧ dxn

represents the standard orientation of Rn.

• If M is connected, then there are precisely two orientations on M.

Later, when dealing with the integration on a manifold, the concept of oriented

charts needs to be understood. Hence, below is its definition.

Definition B.1.9. Let M be an n−dimensional oriented smooth manifold, p ∈ M and

(U, h) a chart around p such that h(U) = U′. Let ω be the orientation form on U′. Then

(U, h) is called an oriented chart if the orientation determined by h∗(ω) is the same as

that determined by ω.

Definition B.1.10. Let M be a manifold oriented by the orientation form ω ∈ Ωn(M),

p ∈ M and suppose {b1, · · · , bn} is a basis for Tp M. Then the basis is positively (resp.

negatively ) oriented with respect to ω if ωp(b1, · · · , bn) is positive (resp. negative). If for

every p ∈ M and an oriented basis (b1, b2, · · · , bn) for Tp M, ωp(b1, b2, · · · , bn) > 0, the

form ω is called a volume form.

As a handy method to compute a volume form, let S be a k−dimensional sub-

manifold of Rn and B be a k−dimensional box spanned by v1, v2, · · · , vk ∈ TpS.
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Let

Gr =


< v1, v1 > < v1, v2 > · · · < v1, vk >

...
... · · ·

...

< vk, v1 > < vk, v2 > · · · < vk, vk >

 ,

where < vi, vj > denotes the inner product of vi and vj in Rn.

A volume form ω on S may be obtained by:

ωp(v1, v2, · · · , vk) = Vol(B)

=
√

det(Gr).

Which in local coordinates x1, x2, · · · , xk for S near p translates into

Φ∗ωp =
√

det A dx1 ∧ dx2 ∧ · · · ∧ dxk, (B.4)

where

Aij =<
∂

∂xi
,

∂

∂xj
>,

Φ : W −→ S is the local parameterization at p and Φ∗ : Ωk(S) −→ Ωk(Rk).

B.2 Integration on a manifold

The whole point of differential forms is to use them for integration. When forget-

ting about orientation, the Riemann integral has been used in calculus. Now, when

orientation is taken into account, i.e. when dealing with integration of differential

forms, the Riemann integral may still be adapted but with a slight change. The in-

tegration of differential forms are recalled in this subsection. The materials present

here are fully covered in [26] and [10] should the reader would like to explore.

As integration on manifolds requires a compactly supported differential form,

let us remind ourselves of its definition. But before that, let us look at the definition

of the support of a differential form.

Definition B.2.1. Let M be a smooth manifold. Let ω ∈ Ωp(M). The support of ω is

defined by supp(ω) = {p ∈ M, ωp 6= 0}.

Definition B.2.2. Let M be a smooth manifold and ω ∈ Ωk(M). The differential form ω

is called compactly supported if its support is compact in M. The vector space of compactly

supported differential k−forms on M is denoted Ωk
c(M).
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We are mostly working with charts; hence, the following proposition from [26]

is what we will consider when integrating over a manifold.

Proposition B.2.3. [26] Let M be an n-dimensional oriented smooth manifold and (U, h)

be a positively oriented C∞ chart on M. Then there exists a unique linear map∫
M

: Ωn
c (M) −→ R

such that if ω ∈ Ωn
c (M) has support contained in U, then∫

M
ω =

∫
h(U)

(h−1)∗ω.

Since a change of variables is often encountered while dealing with integrals,

and as we will mostly work on charts, the following lemma explains how the in-

tegration of differential forms on a manifold in R4 transforms under a change of

variables.

Lemma B.2.4. Let V, W be open subsets of Rn and φ : V −→ W be a diffeomorphism.

Let s ∈ V and suppose that the determinant of Dxφ is of constant sign δ = ±1. Let

ω ∈ Ωn
c (W). Then, ∫

V
φ∗(ω) = δ

∫
W

ω.

Remark B.2.5. As stated at the beginning of this subsection, there is a close relationship

between the Riemann integral and the integration of a differential forms. In fact, the in-

tegration of a differential form is exactly the same as the Riemann integral when ignoring

orientations. For instance, if ω ∈ Ωn
c (R

n), then ω is of the form

ω = f (x1, · · · , xn)dx1 ∧ · · · ∧ dxn,

where f : Rn −→ R, infinitely differentiable and with compact support, and dx1 ∧ · · · ∧

dxn is the standartd orientation form on Rn. Let us set dµn to be the usual Lebesgue

measure on Rn, then

•
∫

Rn f (x1, · · · , xn) dx1 ∧ · · · ∧ dxn =
∫

Rn f (x1, · · · , xn) dµn.

• If σ is a permutation of n elements, then∫
Rn

f (x1, · · · , xn) dxσ(1)∧ · · · ∧ dxσ(n) = Sign(σ)
∫

Rn
f (x1, · · · , xn) dx1∧ · · · ∧ dxn.
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Appendix C

Numerical calculations

This Appendix contains the numerical computation generating the two graphs in

Section 4.3.1, the code comparing Taylor and Woodward’s formula for the asymp-

totic of the quantum 6j symbols with that of Roberts’ mentioned in Remark 4.3.6

and the program computing the signature of the Hessian matrix of the phase func-

tion as pointed in Remark 4.5.9.

A link to the actual code is present in [33].

C.1 Quantum 6j symbols

To start with, as follows is the code generating the graphs in Subsection 4.3.1. Let

us be reminded that the example taken into account throughout this section is 40 48 50

52 54 n


q

,

where n ∈ {0, 2, 4, ..., 108} and k = 198.

C.1.1 Code to compute the exact values

Let k be a positive integer. Here, q = e
iπ

k+2 and the quantum integer [n] is [14]

[n] =
qn − q−n

q− q−1 .

Then the quantum factorial associated to the quantum integer [n] is the real number

defined by [n]! = [n][n− 1]...[1], where [0]! = 1.

116
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Let us recall that the triple (a, b, c) is q-admissible if

1. a + b− c ≥ 0, c + b− a ≥ 0, a + c− b ≥ 0,

2. a + b + c ∈ 2Z,

3. a + b + c ≤ 2(k + 2)− 4.

The quantum 6j symbols  a b i

c d j


q

,

where a, b, c, d, i, j ∈ Ik = {0, 1, ..., (k+ 2)− 2} exists if the triples (a, b, i), (d, c, i), (c, b, j)

and (a, d, j) are q-admissible. And its formula is given by a b i

c d j


q

= ∆(a, b, i)∆(b, c, j)∆(c, d, i)∆(a, d, j) ∑
m≤t≤M

(−1)t[t + 1]!
Πl [t− al ]!Πp

[
bp − t

]
!
,

where

a1 =
a + b + i

2
,

a2 =
d + c + i

2
,

a3 =
c + b + j

2
,

a4 =
a + d + j

2
,

b1 =
a + b + c + d

2
,

b2 =
b + i + d + j

2
,

b3 =
a + i + c + j

2
,

m = Max{a1, a2, a3, a4},

M = Min{b1, b2, b3},

∆(a, b, i) =

[
a+b−i

2

]
!
[

a−b+i
2

]
!
[
−a+b+i

2

]
![

a+b+i+1
2

]
!

.

Then, the exact values of the quantum 6j symbols may be computed by using the

following code.
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TWQuantum6jsymbol[a_, b_, i_, c_, d_, j_, k_Integer] :=

Module[{QuantumSymbol, qF, qf},

(*quantum integer*)

qint[n_Integer] :=

If[n == 0,

1, (Exp[Pi*I/(k + 2)]^n -

Exp[Pi*I/(k + 2)]^(-n))/(Exp[Pi*I/(k + 2)] -

Exp[Pi*I/(k + 2)]^(-1))

];

(*quantum factorial*)

qfact[n_Integer] := (lqint = Table[qint[p], {p, 1, n}];

If[n == 0, 1, qfactorial = Times @@ lqint]);

(*quantum triangle*)

qTriangle[x_, y_, z_] :=

Sqrt[(qfact[(x + y - z)/2]*qfact[(x - y + z)/2]*

qfact[(-x + y + z)/2])/qfact[(x + y + z)/2 + 1]];

(*the denominator*)

qf = qfact[t - (a + b + i)/2]*qfact[t - (d + c + i)/2]*

qfact[t - (a + d + j)/2]*qfact[t - (c + b + j)/2]*

qfact[(b + d + i + j)/2 - t]*qfact[(a + c + i + j)/2 - t]*

qfact[(a + b + c + d)/2 - t];

(*the sum*)

qF =
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Sum[(-1)^t*qfact[t + 1]/qf, {t,

Max[(a + b + i)/2, (d + c + i)/2, (c + b + j)/2, (a + d + j)/2],

Min[(b + d + i + j)/2, (a + c + i + j)/2, (a + b + c + d)/2]}];

(*quantum 6j symbol by Taylor and Woodward*)

QuantumSymbol =

qTriangle[a, b, i]*qTriangle[c, b, j]*qTriangle[c, d, i]*

qTriangle[a, d, j]*qF

]

For the example  40 48 50

52 54 n


q

,

the code to plot the values of the symbols, in Figures 4.2 and 4.3, is given by:

(*the step must be equal to 2 since we are working with integers not

half-integers*)

plotQuantum6jsymbol =

ListPlot[Table[{n, N[TWQuantum6jsymbol[40, 48, 50, 52, 54, n, 198]]},

{n, 0, 108, 2}], PlotStyle -> Black]

C.1.2 Data needed for the asymptotic

The asymptotic formula for the quantum 6j symbols involves the edge lengths, the

exterior dihedral angles, the edge Gram matrix and the volume of its associated

spherical tetrahedron. Hence, the code computing these quantities are provided in

this subsection.

So, let us firstly start with the definition of the list of the numbers constituting

the quantum 6j symbol.

Na[n_] := {40, 48, 50, 52, 54, n}
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(*this is the list of the six numbers {m12,m02,m01,m03,m13,m23}

when n varies*)

Secondly, the functions generating the lengths lij = π
mij+1
k+2 of the tetrahedron

are:

l01[n_, k_] := (Pi*(Na[n][[3]] + 1))/(k + 2)

l02[n_, k_] := (Pi*(Na[n][[2]] + 1))/(k + 2)

l03[n_, k_] := (Pi*(Na[n][[4]] + 1))/(k + 2)

l23[n_, k_] := (Pi*(Na[n][[6]] + 1))/(k + 2)

l13[n_, k_] := (Pi*(Na[n][[5]] + 1))/(k + 2)

l12[n_, k_] := (Pi*(Na[n][[1]] + 1))/(k + 2)

Thirdly, the functions defining the edge Gram matrix

G =


1 cosl01 cos l02 cosl03

cosl01 1 cosl12 cosl13

cosl02 cosl12 1 cosl23

cosl03 cosl13 cosl23 1


of the tetrahedron and its determinant are

G[n_, k_] := {{1, Cos[l01[n, k]], Cos[l02[n, k]],

Cos[l03[n, k]]}, {Cos[l01[n, k]], 1, Cos[l12[n, k]],

Cos[l13[n, k]]}, {Cos[l02[n, k]], Cos[l12[n, k]], 1,

Cos[l23[n, k]]}, {Cos[l03[n, k]], Cos[l13[n, k]], Cos[l23[n, k]], 1}}

det[n_, k_] := Det[G[n, k]]

Fourthly, due to some complications that may occur we are going to generate

the functions computing the interior dihedral angles of T one by one.

To start with, let us define two general functions which will be used throughout.

Namely, f (x) =
√

1− x2 and that computing the cosine law:
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f[x_] := Sqrt[1 - x^2]

lcosinelaw[x_, y_, z_] := (Cos[x] - Cos[y]*Cos[z])/(f[Cos[y]]*f[Cos[z]])

By direct computation from the cosine law in a tetrahedron, the cosine of the

interior dihedral angle

• around the edge (01):

cos β23 =

cos l23−cos l02 cos l03
sin l02 sin l03

−
(

cos l12−cos l01 cos l02
sin l01 sin l02

) (
cos l13−cos l03 cos l01

sin l03 sin l01

)
√

1−
(

cos l12−cos l01 cos l02
sin l01 sin l02

)
2

√
1−

(
cos l13−cos l03 cos l01

sin l03 sin l01

)
2

.

lcosinebeta23[n_, k_] := (lcosinelaw[l23[n, k], l02[n, k], l03[n, k]] -

lcosinelaw[l12[n, k], l01[n, k], l02[n, k]]*

lcosinelaw[l13[n, k], l03[n, k], l01[n, k]])/(f[

lcosinelaw[l12[n, k], l01[n, k], l02[n, k]]]*

f[lcosinelaw[l13[n, k], l03[n, k], l01[n, k]]])

Hence, the interior dihedral angle β23 is computed by

beta23[n_, k_] := ArcCos[lcosinebeta23[n, k]]

• Around the edge (03):

cos β12 =

cos l12−cos l02 cos l01
sin l02 sin l01

−
(

cos l23−cos l03 cos l02
sin l03 sin l02

) (
cos l13−cos l03 cos l01

sin l03 sin l01

)
√

1−
(

cos l23−cos l03 cos l02
sin l03 sin l02

)
2

√
1−

(
cos l13−cos l03 cos l01

sin l03 sin l01

)
2

.

lcosinebeta12[n_, k_] := (lcosinelaw[l12[n, k], l02[n, k], l01[n, k]] -

lcosinelaw[l23[n, k], l03[n, k], l02[n, k]]*

lcosinelaw[l13[n, k], l01[n, k], l03[n, k]])/(f[

lcosinelaw[l23[n, k], l03[n, k], l02[n, k]]]*

f[lcosinelaw[l13[n, k], l01[n, k], l03[n, k]]])
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Hence, the interior dihedral angle β12

beta12[n_, k_] := ArcCos[lcosinebeta12[n, k]]

• Around the edge (02):

cos β13 =

cos l13−cos l03 cos l01
sin l03 sin l01

−
(

cos l23−cos l03 cos l02
sin l03 sin l02

) (
cos l12−cos l02 cos l01

sin l02 sin l01

)
√

1−
(

cos l23−cos l03 cos l02
sin l03 sin l02

)
2

√
1−

(
cos l12−cos l02 cos l01

sin l02 sin l01

)
2

.

lcosinebeta13[n_, k_] := (lcosinelaw[l13[n, k], l01[n, k], l03[n, k]] -

lcosinelaw[l12[n, k], l02[n, k], l01[n, k]]*

lcosinelaw[l23[n, k], l03[n, k], l02[n, k]])/(f[

lcosinelaw[l12[n, k], l02[n, k], l01[n, k]]]*

f[lcosinelaw[l23[n, k], l03[n, k], l02[n, k]]])

Hence, the interior dihedral angle β13

beta13[n_, k_] := ArcCos[lcosinebeta13[n, k]]

• Around the edge (12):

cos β03 =

cos l03−cos l13 cos l01
sin l13 sin l01

−
(

cos l23−cos l13 cos l12
sin l13 sin l12

) (
cos l02−cos l12 cos l01

sin l12 sin l01

)
√

1−
(

cos l23−cos l13 cos l12
sin l13 sin l12

)
2

√
1−

(
cos l02−cos l12 cos l01

sin l12 sin l01

)
2

.

lcosinebeta03[n_, k_] := (lcosinelaw[l03[n, k], l13[n, k], l01[n, k]] -

lcosinelaw[l02[n, k], l01[n, k], l12[n, k]]*

lcosinelaw[l23[n, k], l12[n, k], l13[n, k]])/(f[

lcosinelaw[l02[n, k], l01[n, k], l12[n, k]]]*

f[lcosinelaw[l23[n, k], l12[n, k], l13[n, k]]])

Hence, the interior dihedral angle β03
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beta03[n_, k_] := ArcCos[lcosinebeta03[n, k]]

• Around the edge (13):

cos β02 =

cos l02−cos l12 cos l01
sin l12 sin l01

−
(

cos l03−cos l13 cos l01
sin l13 sin l01

) (
cos l23−cos l12 cos l13

sin l12 sin l13

)
√

1−
(

cos l03−cos l13 cos l01
sin l13 sin l01

)
2

√
1−

(
cos l23−cos l12 cos l13

sin l12 sin l13

)
2

.

lcosinebeta02[n_, k_] := (lcosinelaw[l02[n, k], l01[n, k], l12[n, k]] -

lcosinelaw[l03[n, k], l13[n, k], l01[n, k]]*

lcosinelaw[l23[n, k], l12[n, k], l13[n, k]])/(f[

lcosinelaw[l03[n, k], l13[n, k], l01[n, k]]]*

f[lcosinelaw[l23[n, k], l12[n, k], l13[n, k]]])

Hence, the interior dihedral angle β02 is

beta02[n_, k_] := ArcCos[lcosinebeta02[n, k]]

• Around the edge (23):

cos β01 =

cos l01−cos l13 cos l03
sin l13 sin l03

−
(

cos l02−cos l23 cos l03
sin l23 sin l03

) (
cos l12−cos l13 cos l23

sin l23 sin l13

)
√

1−
(

cos l02−cos l23 cos l03
sin l23 sin l03

)
2

√
1−

(
cos l12−cos l13 cos l23

sin l23 sin l13

)
2

.

lcosinebeta01[n_, k_] := (lcosinelaw[l01[n, k], l03[n, k], l13[n, k]] -

lcosinelaw[l02[n, k], l03[n, k], l23[n, k]]*

lcosinelaw[l12[n, k], l23[n, k], l13[n, k]])/(f[

lcosinelaw[l02[n, k], l03[n, k], l23[n, k]]]*

f[lcosinelaw[l12[n, k], l23[n, k], l13[n, k]]])

Hence, the interior dihedral angle β01

beta01[n_, k_] := ArcCos[lcosinebeta01[n, k]]
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Fifthly, as the angles used in the asymptotic are the exterior dihedral angles, as

follows are the functions computing them.

extbeta01[n_, k_] := Pi - beta01[n, k]

extbeta02[n_, k_] := Pi - beta02[n, k]

extbeta03[n_, k_] := Pi - beta03[n, k]

extbeta12[n_, k_] := Pi - beta12[n, k]

extbeta13[n_, k_] := Pi - beta13[n, k]

extbeta23[n_, k_] := Pi - beta23[n, k]

Sixthly, we used formula in [24] to compute the volume of the spherical tetrahedra.

That is given by

V(σ3) = µ−1
3

√
|det(G)|

∫
(R4)≥0

e−ytGy dy, (C.1)

where µ3 =
∫

0
∞x3e−x2

dx = 1
2 and G is the edge Gram matrix. Here is the function

for that

t = {t1, t2, t3, t4};

V[n_, k_] := 2*Sqrt[Det[G[n, k]]]*

NIntegrate[Exp[-t.G[n, k].t], {t1, 0, Infinity}, {t2, 0, Infinity}, {t3, 0,

Infinity}, {t4, 0, Infinity}]

However, since this computation is a bit costly, we listed all the needed values of

the volume at once. The code generating them is given below.

(*this was used to generate the values of the volume given below,

however running it several times was costly in time. So, the strategy

was to run it once and keep the values*)

TWvolume=Table[V[n,198],{n,15,86,0.1}]

(*List of volumes with step 0.1*)
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Then, the values of the volume were copied in a list called volumeTW.

Seventhly, the sum

∑
i<j

θij

2
(
mij + 1

)
is generated by

sum[n_, k_] := 1/2*((Na[n][[1]] + 1)*extbeta03[n, k] + (Na[n][[2]] + 1)*

extbeta13[n, k] + (Na[n][[3]] + 1)*extbeta23[n, k] + (Na[n][[4]] + 1)*

extbeta12[n, k] + (Na[n][[5]] + 1)*extbeta02[n, k] + (Na[n][[6]] + 1)*

extbeta01[n, k])

(*list of the values taken by the sum when i varies from 15 to 83 in

steps of 0.1*)

ListSum = Table[sum[i, 198], {i, 15, 83, 0.1}];

Eighthly, the list of all the values of the determinant of the edge Gram matrix is

provided by:

Listdet = Table[det[i, 198], {i, 15, 83, 0.1}];

C.1.3 Code to compute the asymptotic of the quantum 6j symbols by

directly using Taylor and Woodard’s formula

This code generates the asymptotic for the quantum 6j symbol while using the for-

mula
2π

(k + 2)
3
2
(
det

(
cos lij

)) 1
4

cos

(
∑
i<j

θij

2
(
mij + 1

)
− k + 2

π
V +

π

4

)
. (C.2)

(*i here is the range for ListSum, volumeTW and Listdet*)

TWAsymptoticQuantum6jSymbol[i_, k_] := 2*Pi/((k + 2)^(3/2)*

(Listdet[[i]])^(1/4))* Cos[ListSum[[i]] - (k + 2)/Pi*volumeTW[[i]] + Pi/4]

(*the code generating the list of the data points constituting the

asymptotics of the quantum 6j symbols*)

Table[{15 + (i - 1)*0.1, TWAsymptoticQuantum6jSymbol[i, 198]}, {i, 1, 681}];
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Its plot against the exact values of the quantum 6j symbols is generated by

(*The code generating the plot of the asymptotic of the quantum 6j symbols*)

plotTW = ListLinePlot[

Table[{15 + (i - 1)*0.1, TWAsymptoticQuantum6jSymbol[i, 198]}, {i, 1, 681}],

PlotStyle -> Black];

(*The code generating the plot of the quantum 6j symbols and its

asymptotic in the same plane*)

Show[plotQuantum6jsymbol, plotTW, PlotRange -> All]

C.1.4 Code to compute the asymptotic of the quantum 6j symbols by

using the corrected version of Taylor and Woodard’s formula

This code generates the asymptotic of the quantum 6j symbols while using the

formula

2π

(k + 2)
3
2
(
det

(
cos lij

)) 1
4

cos

(
∑
i<j

θij

2
(
mij + 1

)
+

k + 2
π

V +
π

4

)
.

(*i here is the label of ListSum, volumeTW and Listdet*)

meTWAsymptoticQuantum6jSymbol[i_, k_] :=

2*Pi/((k + 2)^(3/2)*(Listdet[[i]])^(1/4))*

Cos[ListSum[[i]] + (k + 2)/Pi*volumeTW[[i]] + Pi/4]

(*the code generating the list of the data points constituting the

asymptotics of the quantum 6j symbols*)

Table[{n, meTWAsymptoticQuantum6jSymbol[n, 198]}, {n,1, 681}];

Its plot against the exact values of the quantum 6j symbols is generated by

(*The plot of the corrected asymptotic formula for the quantum 6j symbols*)

meplotTW = ListLinePlot[

Table[{15 + (i - 1)*0.1, meTWAsymptoticQuantum6jSymbol[i, 198]}, {i, 1, 681}],

PlotStyle -> Black];

(*The code to plot the exact values of the quantum 6j symbols

vs the asymptotic formula*)
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Show[plotQuantum6jsymbol, meplotTW, PlotRange -> All]

C.1.5 General remarks

C.1.5.1 Volume

As a double check on our volume calculations, we also implemented Murakami’s

volume formula [29]. Note that this is faster in compiling. To the best of the au-

thor’s knowledge, this is the first time Murakami’s formula was implemented in

actual code.

The statement of the formula will follow after the presentation of all the needed

ingredients.

Let T be a spherical tetrahedron and βij be its dihedral angles at edges lij where

(ij) is the direct opposite edge to (ij).

Consider the quantities a1 = eiβ03 , a2 = eiβ23 , a3 = eiβ02 , a4 = eiβ12 , a5 = eiβ01 ,

a6 = eiβ13 . These allows to define the following variables:

q0 =a1a2 + a2a5 + a3a6 + a1a2a6 + a1a3a5 + a2a3a4 + a4a5a6 + a1a2a3a4a5a6,

q1 =− (a1 − a−1
1 )(a4 − a−1

4 )− (a2 − a−1
2 )(a5 − a−1

5 )− (a3 − a−1
3 )(a6 − a−1

6 ),

q2 =a−1
1 a−1

4 + a−1
2 a−1

5 + a−1
3 a−1

6 + a−1
1 a−1

2 a−1
6 + a−1

1 a−1
3 a−1

5 + a−1
2 a−1

3 a−1
4

+ a−1
4 a−1

5 a−1
6 + a−1

1 a−1
2 a−1

3 a−1
4 a−1

5 a−1
6 .

Which enable the expression

z0 =
−q1 +

√
q2

1 − 4q0q2

2q2
.

Furthermore, let us consider the integral

Li2(x) = −
∫ x

0

log(1− t)
t

dt

for a real number x < 1. Then, let us recall the dilogarithm function defined by

analytic continuation of Li2(x) and the function
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L(a1, a2, a3, a4, a5, a6, z) =
1
2
(Li2(z) + Li2(a−1

1 a−1
2 a−1

4 a−1
5 z) + Li2(a−1

1 a−1
3 a−1

4 a−1
6 z)

+ Li2(a−1
2 a−1

3 a−1
5 a−1

6 z)− Li(−a−1
1 a−1

2 a−1
3 z)− Li2(−a−1

1 a−1
5 a−1

6 z)

− Li2(−a−1
2 a−1

4 a−1
6 z)− Li2(−a−1

3 a−1
4 a−1

5 z) +
3

∑
j=1

log aj log aj+3).

Now, the volume of a spherical tetrahedron is given as follows:

Theorem C.1.1 ([29]). Let T be a spherical tetrahedron and βij be its dihedral angles at

edges lij where (ij) is the direct opposite edge to (ij). Consider the quantities a1 = eiβ03 ,

a2 = eiβ23 , a3 = eiβ02 , a4 = eiβ12 , a5 = eiβ01 , a6 = eiβ13 and Vol(T) be the volume of T.

Then,

Vol(T) = −<(L(a1, a2, a3, a4, a5, a6, z))+π

(
arg(−q2) +

1
2

3

∑
0=i<j

βij

)
− 3

2
π2 mod 2π2,

where <(z) is the real part of z and q2 defined earlier.

The program to compute the volume of a spherical tetrahedron via Murakami’s

formula is provided below.

Vol[l01_, l02_, l03_, l12_, l13_, l23_] :=

Block[{cosinebeta01, cosinebeta02, cosinebeta03, cosinebeta12,

cosinebeta13, cosinebeta23, V, a1, a2, a3, a4, a5, a6, q0, q1, q2, z0, L},

f[x_] := Sqrt[1 - x^2];

lcosinelaw[x_, y_, z_] := (Cos[x] - Cos[y]*Cos[z])/(f[Cos[y]]*f[Cos[z]]);

(*cosine of the dihedral angles in terms of the edge lengths*)

cosinebeta01 = (lcosinelaw[l01, l03, l13] -

lcosinelaw[l02, l03, l23]*lcosinelaw[l12, l23, l13])/

(f[lcosinelaw[l02, l03, l23]]*f[lcosinelaw[l12, l23, l13]]);

cosinebeta02 = (lcosinelaw[l02, l01, l12] -

lcosinelaw[l03, l13, l01]*lcosinelaw[l23, l12, l13])/
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(f[lcosinelaw[l03, l13, l01]]*f[lcosinelaw[l23, l12, l13]]);

cosinebeta03 = (lcosinelaw[l03, l13, l01] -

lcosinelaw[l02, l01, l12]*lcosinelaw[l23, l12, l13])/

(f[lcosinelaw[l02, l01, l12]]*f[lcosinelaw[l23, l12, l13]]);

cosinebeta13 = (lcosinelaw[l13, l01, l03] -

lcosinelaw[l12, l02, l01]*lcosinelaw[l23, l03, l02])/

(f[lcosinelaw[l12, l02, l01]]*f[lcosinelaw[l23, l03, l02]]);

cosinebeta12 = (lcosinelaw[l12, l02, l01] -

lcosinelaw[l23, l03, l02]*lcosinelaw[l13, l01, l03])/

(f[lcosinelaw[l23, l03, l02]]*f[lcosinelaw[l13, l01, l03]]);

cosinebeta23 = (lcosinelaw[l23, l02, l03] -

lcosinelaw[l12, l01, l02]*lcosinelaw[l13, l03, l01])/

(f[lcosinelaw[l12, l01, l02]]*f[lcosinelaw[l13, l03, l01]]);

a1 = cosinebeta03 + I*f[cosinebeta03];

a2 = cosinebeta23 + I*f[cosinebeta23];

a3 = cosinebeta02 + I*f[cosinebeta02];

a4 = cosinebeta12 + I*f[cosinebeta12];

a5 = cosinebeta01 + I*f[cosinebeta01];

a6 = cosinebeta13 + I*f[cosinebeta13];

q0 = a1*a4 + a2*a5 + a3*a6 + a1*a2*a6 + a1*a3*a5 + a2*a3*a4 +

a4*a5*a6 + a1*a2*a3*a4*a5*a6;

q1 = -(a1 - a1^(-1))*(a4 - a4^(-1)) - (a2 - a2^(-1))*(a5 -

a5^(-1)) - (a3 - a3^(-1))*(a6 - a6^(-1));

q2 = a1^(-1)*a4^(-1) + a2^(-1)*a5^(-1) + a3^(-1)*a6^(-1) +

a1^(-1)*a2^(-1)*a6^(-1) + a1^(-1)*a3^(-1)*a5^(-1) +

a2^(-1)*a3^(-1)*a4^(-1) + a4^(-1)*a5^(-1)*a6^(-1) +
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a1^(-1)*a2^(-1)*a3^(-1)*a4^(-1)*a5^(-1)*a6^(-1);

z0 = (-q1 + Sqrt[q1^2 - 4*q0*q2])/(2*q2);

L = 1/2*(PolyLog[2, z0] + PolyLog[2, a1^(-1)*a2^(-1)*a4^(-1)*a5^(-1)*z0] +

PolyLog[2, a1^(-1)*a3^(-1)*a4^(-1)*a6^(-1)*z0] +

PolyLog[2, a2^(-1)*a3^(-1)*a5^(-1)*a6^(-1)*z0] -

PolyLog[2, -a1^(-1)*a2^(-1)*a3^(-1)*z0] -

PolyLog[2, -a1^(-1)*a5^(-1)*a6^(-1)*z0] -

PolyLog[2, -a2^(-1)*a4^(-1)*a6^(-1)*z0] -

PolyLog[2, -a3^(-1)*a4^(-1)*a5^(-1)*z0] + Log[a1]*Log[a4] +

Log[a2]*Log[a5] + Log[a3]*Log[a6]);

V = -Re[L] + Pi*(Arg[-q2] + 1/2*(ArcCos[cosinebeta01] + ArcCos[cosinebeta02] +

ArcCos[cosinebeta03] + ArcCos[cosinebeta12] +

ArcCos[cosinebeta13] + ArcCos[cosinebeta23])) - 3/2*Pi^2]

The volume computed by using Luo’s formula (C.1) and that of Murakami in The-

orem C.1.1 agree. The intention is to plot them in the same plane. So, to start with,

let us procure the list of the volumes obtained from using Murakami’s method by

considering the same edge lengths as those present in Luo’s method.

Table[Vol[l01[n, k], l02[n, k], l03[n, k], l12[n, k], l13[n, k],

l23[n, k]], {n, 15, 86, 0.1}]

Hence, the figure comparing the two volumes is given by:

ListLinePlot[{volumeTW, Murakamivolume}, PlotLabels -> Automatic,

PlotLegends -> {Luo, Murakami}]
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Figure C.1: Graphs of the volume via Luo vs Murakami’s method. The two graphs
are identical.

So, as presented here the two methods coincide.

C.1.5.2 Methods

Our process of implementing the asymptotic for the quantum 6j symbols differs

from that of Taylor and Woodward at https://sites.math.rutgers.edu/ ctw/6j.html

In fact, they used the Schläfli formula to approximate the volume while we are

computing its exact value each time.

C.2 Asymptotic of the quantum 6j symbols via Roberts

From Roberts’ paper [36, Section 6], a second way of stating the asymptotic formula

for the quantum 6j symbols is presented and it reads as follows:

Let rij be elements of Q∩ [0, 1] where i, j ∈ {0, 1, 2, 3}. Let T be a spherical tetra-

hedron with edge lengths lij = πrij and with associated exterior dihedral angles θij

at the edge (ij), direct opposite to the edge (ij). Let V be the volume of T and G its
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edge Gram matrix. Then, Roberts’ corrected (recall from Section 4.3 the sign error

for the volume term) formula is given bykr12 kr02 kr01

kr03 kr13 kr23


q=e

πi
k+2

∼

√
4π2

k3
√

det G
cos

(
∑
i<j

(krij + 1)
θij

2
+

(k + 2)
π

V +
π

4

)
.

When using large numbers, the asymptotic formula for the quantum 6j symbols

by Roberts translates into the approximationm12 m02 m01

m03 m13 m23


q=e

πi
k+2

∼=

√
4π2

k3
√

det G
cos

(
∑
i<j

(mij + 1)
θij

2
+

(k + 2)
π

V +
π

4

)
.

(C.3)

For example, consider 40 48 50

52 54 n


q=e

πi
k+2

,

where k = 198. Let us plot its asymptotic.

Let us recall

Na[n_] := {40, 48, 50, 52, 54, n}

To start with, the functions generating the edge lengths lij = π
mij
k of the tetrahe-

dron are:

rl01[n_, k_] := (Pi*Na[n][[3]])/k

rl02[n_, k_] := (Pi*Na[n][[2]])/k

rl03[n_, k_] := (Pi*Na[n][[4]])/k

rl23[n_, k_] := (Pi*Na[n][[6]])/k

rl13[n_, k_] := (Pi*Na[n][[5]])/k

rl12[n_, k_] := (Pi*Na[n][[1]])/k

Secondly, the edge Gram matrix and its determinant are provided by

rG[n_, k_] := {{1, Cos[rl01[n, k]], Cos[rl02[n, k]], Cos[rl03[n, k]]},

{Cos[rl01[n, k]], 1, Cos[rl12[n, k]], Cos[rl13[n, k]]},

{Cos[rl02[n, k]], Cos[rl12[n, k]], 1, Cos[rl23[n, k]]},

{Cos[rl03[n, k]], Cos[rl13[n, k]], Cos[rl23[n, k]], 1}}

rdet[n_, k_] := Det[rG[n, k]]
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Thirdly, similarly to the case of the computation via Taylor and Woodward’s

method, we will compute the interior dihedral angles one by one. The functions f

and cosinelaw are the same as in Subsection C.1.2.

• Around the edge (01):

rcosinebeta23[n_, k_] := (lcosinelaw[rl23[n, k], rl02[n, k], rl03[n, k]] -

lcosinelaw[rl12[n, k], rl01[n, k], rl02[n, k]]*

lcosinelaw[rl13[n, k], rl03[n, k], rl01[n, k]])/(f[

lcosinelaw[rl12[n, k], rl01[n, k], rl02[n, k]]]*

f[lcosinelaw[rl13[n, k], rl03[n, k], rl01[n, k]]])

Hence, the interior dihedral angle β23 is computed by

rbeta23[n_, k_] := ArcCos[rcosinebeta23[n, k]]

• Around the edge (03):

rcosinebeta12[n_, k_] := (lcosinelaw[rl12[n, k], rl02[n, k], rl01[n, k]] -

lcosinelaw[rl23[n, k], rl03[n, k], rl02[n, k]]*

lcosinelaw[rl13[n, k], rl01[n, k], rl03[n, k]])/(f[

lcosinelaw[rl23[n, k], rl03[n, k], rl02[n, k]]]*

f[lcosinelaw[rl13[n, k], rl01[n, k], rl03[n, k]]])

Hence, the interior dihedral angle β12 is given by

rbeta12[n_, k_] := ArcCos[rcosinebeta12[n, k]]

• Around the edge (02)

rcosinebeta13[n_, k_] := (lcosinelaw[rl13[n, k], rl01[n, k], rl03[n, k]] -

lcosinelaw[rl12[n, k], rl02[n, k], rl01[n, k]]*

lcosinelaw[rl23[n, k], rl03[n, k], rl02[n, k]])/(f[

lcosinelaw[rl12[n, k], rl02[n, k], rl01[n, k]]]*

f[lcosinelaw[rl23[n, k], rl03[n, k], rl02[n, k]]])
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Hence, the interior dihedral angle β13 is computed by

rbeta13[n_, k_] := ArcCos[rcosinebeta13[n, k]]

• Around the edge (12):

rcosinebeta03[n_, k_] := (lcosinelaw[rl03[n, k], rl13[n, k], rl01[n, k]] -

lcosinelaw[rl02[n, k], rl01[n, k], rl12[n, k]]*

lcosinelaw[rl23[n, k], rl12[n, k], rl13[n, k]])/(f[

lcosinelaw[rl02[n, k], rl01[n, k], rl12[n, k]]]*

f[lcosinelaw[rl23[n, k], rl12[n, k], rl13[n, k]]])

Hence, the interior dihedral angle β03 is provided by

rbeta03[n_, k_] := ArcCos[rcosinebeta03[n, k]]

• Around the edge (13):

rcosinebeta02[n_, k_] := (lcosinelaw[rl02[n, k], rl01[n, k], rl12[n, k]] -

lcosinelaw[rl03[n, k], rl13[n, k], rl01[n, k]]*

lcosinelaw[rl23[n, k], rl12[n, k], rl13[n, k]])/(f[

lcosinelaw[rl03[n, k], rl13[n, k], rl01[n, k]]]*

f[lcosinelaw[rl23[n, k], rl12[n, k], rl13[n, k]]])

Hence, the interior dihedral angle β02 is given by

rbeta02[n_, k_] := ArcCos[rcosinebeta02[n, k]]

• Around the edge (23):

rcosinebeta01[n_, k_] := (lcosinelaw[rl01[n, k], rl03[n, k], rl13[n, k]] -

lcosinelaw[rl02[n, k], rl03[n, k], rl23[n, k]]*

lcosinelaw[rl12[n, k], rl23[n, k], rl13[n, k]])/(f[

lcosinelaw[rl02[n, k], rl03[n, k], rl23[n, k]]]*

f[lcosinelaw[rl12[n, k], rl23[n, k], rl13[n, k]]])
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Hence, the interior dihedral angle β01 is given by

rbeta01[n_, k_] := ArcCos[rcosinebeta01[n, k]]

Fourthly, the exterior dihedral angles are computed by

rextbeta01[n_, k_] := Pi - rbeta01[n, k]

rextbeta02[n_, k_] := Pi - rbeta02[n, k]

rextbeta03[n_, k_] := Pi - rbeta03[n, k]

rextbeta12[n_, k_] := Pi - rbeta12[n, k]

rextbeta13[n_, k_] := Pi - rbeta13[n, k]

rextbeta23[n_, k_] := Pi - rbeta23[n, k]

Fifthly, the volume of the spherical tetrahedron via Luo’s method is calculated

from

t = {t1, t2, t3, t4};

rV[n_, k_] := 2*Sqrt[Det[rG[n, k]]]*

NIntegrate[Exp[-t.rG[n, k].t], {t1, 0, Infinity}, {t2, 0, Infinity}, {t3, 0,

Infinity}, {t4, 0, Infinity}]

Since the calculation of the volume is costly in time, we computed all the vol-

umes at once and put it as a list called volumeR. The code generating the volumes

is given by

Rvolume=Table[rV[n,198],{n,15,86,0.1}]

Sixthly, the sum

∑
i<j

(mij + 1)
θij

2

is implemented from

rsum[n_, k_] :=

1/2*((Na[n][[1]] + 1)*rextbeta03[n, k] + (Na[n][[2]] + 1)*rextbeta13[n, k]

+ (Na[n][[3]] + 1)*rextbeta23[n, k]+ (Na[n][[4]] + 1)*rextbeta12[n, k]

+ (Na[n][[5]] + 1)*rextbeta02[n, k] + (Na[n][[6]] + 1)*rextbeta01[n, k])

Stellenbosch University https://scholar.sun.ac.za



APPENDIX C. NUMERICAL CALCULATIONS 136

Listrsum = Table[rsum[n, 198], {n, 15, 86, 0.1}];

Seventhly, the list of all the values of the determinant of the edge Gram matrix

when n varies from 15 to 86 in steps of 0.1 is procured from

Listrdet = Table[rdet[n, 198], {n, 15, 86, 0.1}];

Lastly, the asymptotic of the quantum 6j symbol is given by:

RAsymptoticQuantum6jSymbol[i_, k_] := 2*Pi/((k)^(3/2)*(Listrdet[[i]])^(1/4))*

Cos[Listrsum[[i]] + (k+2)/Pi*volumeR[[i]] + Pi/4]

(*here i is the label of the tables Listrdet, Listrsum and volumeR*)

The code generating the plot of the asymptotic quantum 6j symbols via Roberts’

formula is

(*List of the data points for the asymptotic of the quantum 6j symbols*)

meRAsymptoticTable =

Table[{15 + (i - 1)*0.1, meRAsymptoticQuantum6jSymbol[i, 198]}, {i, 1, 681}]

(*The graph of the asymptotic of the quantum 6j symbols*)

meplotRoberts =

ListLinePlot[meRAsymptoticTable, PlotLabels -> "Roberts", PlotStyle -> Red]

Furthermore, the code implementing the graphs of the exact values of the quantum

6j symbols compared to the asymptotic via Roberts’ statement of the formula is

Show[plotQuantum6jsymbol, meplotRoberts, PlotRange -> All]
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C.3 Comparison between Taylor and Woodward’s

asymptotic formula with that of Roberts’

In this section will be shown the comparison between the graphs of the asymptotic

formula for the quantum 6j symbols by using Taylor and Woodward’s versus by

using Roberts’. That plot is obtained by the following code.

Show[meplotTW, meplotRoberts, PlotRange -> All, PlotLabels -> Automatic]

Which generates the graph:

From this, we see that the non-degenerate asymptotic formula for the classical 6j

symbols by Roberts (C.3) is asymptotically equivalent to that of Taylor and Wood-

ward (C.2).

C.4 The signature of the Hessian matrix

C.4.1 The Hessian matrix

A general program generating the Hessian matrix which appears in the stationary

phase approximation of the integral Ic(k) in Section 4.5 is provided below.
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(*This Hessian matrix is in function of theta01, theta02, theta03,

theta12, theta13, theta23 where thetaij = Pi-betaij, betaij are the

interior dihedral angles at the edge opposite to ij*)

(*I am not making it as a

function since it contains several derivatives which I would like to

evaluate later and which can be done by assigning a value in the end*)

NewHessian =

Block[{cosinel01, cosinel02, cosinel03, cosinel12, cosinel13,

cosinel23, listderivative, dcosinel12beta01, dcosinel12beta02,

dcosinel12beta03, dcosinel12beta12, dcosinel12beta13,

dcosinel12beta23, dcosinel13beta01, dcosinel13beta02,

dcosinel13beta03, dcosinel13beta12, dcosinel13beta13,

dcosinel13beta23, dcosinel23beta01, dcosinel23beta02,

dcosinel23beta03, dcosinel23beta12, dcosinel23beta13,

dcosinel23beta23, dcosinel03beta01, dcosinel03beta02,

dcosinel03beta03, dcosinel03beta12, dcosinel03beta13,

dcosinel03beta23, dcosinel02beta01, dcosinel02beta02,

dcosinel02beta03, dcosinel02beta12, dcosinel02beta13,

dcosinel02beta23, dcosinel01beta01, dcosinel01beta02,

dcosinel01beta03, dcosinel01beta12, dcosinel01beta13,

dcosinel01beta23, H, dl12beta01, dl12beta02, dl12beta03,

dl12beta12, dl12beta13, dl12beta23, dl13beta01, dl13beta02,

dl13beta03, dl13beta12, dl13beta13, dl13beta23, dl23beta01,

dl23beta02, dl23beta03, dl23beta12, dl23beta13, dl23beta23,

dl03beta01, dl03beta02, dl03beta03, dl03beta12, dl03beta13,

dl03beta23, dl02beta01, dl02beta02, dl02beta03, dl02beta12,

dl02beta13, dl02beta23, dl01beta01, dl01beta02, dl01beta03,

dl01beta12, dl01beta13, dl01beta23},

f[x_] := Sqrt[1 - x^2];
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cosinelaw[a_, b_, c_] := (Cos[a] + Cos[b] *Cos[c])/(f[Cos[b]]*f[Cos[c]]);

(*the cosines of the edge lengths of the tetrahedron as functions

of the interior dihedral angles,

their respective derivatives with respect to the interior dihedral

angles and the derivatives of edge lengths with respect to the

interior dihedral angles*)

cosinel12 = (cosinelaw[betajk, betajl, betakl] +

cosinelaw[betaik, betail, betakl]*cosinelaw[betaij, betajl, betail])/(f[

cosinelaw[betaik, betail, betakl]]*f[cosinelaw[betaij, betajl, betail]]);

dcosinel12beta01 = D[cosinel12, betaij];

dcosinel12beta02 = D[cosinel12, betaik];

dcosinel12beta03 = D[cosinel12, betail];

dcosinel12beta12 = D[cosinel12, betajk];

dcosinel12beta13 = D[cosinel12, betajl];

dcosinel12beta23 = D[cosinel12, betakl];

dl12beta01 = -1/f[cosinel12]*dcosinel12beta01;

dl12beta02 = -1/f[cosinel12]*dcosinel12beta02;

dl12beta03 = -1/f[cosinel12]*dcosinel12beta03;

dl12beta12 = -1/f[cosinel12]*dcosinel12beta12;

dl12beta13 = -1/f[cosinel12]*dcosinel12beta13;

dl12beta23 = -1/f[cosinel12]*dcosinel12beta23;

cosinel02 = (cosinelaw[betaik, betakl, betail] +

cosinelaw[betajk, betajl, betakl]*cosinelaw[betaij, betail, betajl])/(f[

cosinelaw[betajk, betajl, betakl]]*f[cosinelaw[betaij, betail, betajl]]);

dcosinel02beta01 = D[cosinel02, betaij];

dcosinel02beta02 = D[cosinel02, betaik];

dcosinel02beta03 = D[cosinel02, betail];

dcosinel02beta12 = D[cosinel02, betajk];
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dcosinel02beta13 = D[cosinel02, betajl];

dcosinel02beta23 = D[cosinel02, betakl];

dl02beta01 = -1/f[cosinel02]*dcosinel02beta01;

dl02beta02 = -1/f[cosinel02]*dcosinel02beta02;

dl02beta03 = -1/f[cosinel02]*dcosinel02beta03;

dl02beta12 = -1/f[cosinel02]*dcosinel02beta12;

dl02beta13 = -1/f[cosinel02]*dcosinel02beta13;

dl02beta23 = -1/f[cosinel02]*dcosinel02beta23;

cosinel01 = (cosinelaw[betaij, betail, betajl] +

cosinelaw[betajk, betajl, betakl]*cosinelaw[betaik, betail, betakl])/(f[

cosinelaw[betajk, betajl, betakl]]*f[cosinelaw[betaik, betail, betakl]]);

dcosinel01beta01 = D[cosinel01, betaij];

dcosinel01beta02 = D[cosinel01, betaik];

dcosinel01beta03 = D[cosinel01, betail];

dcosinel01beta12 = D[cosinel01, betajk];

dcosinel01beta13 = D[cosinel01, betajl];

dcosinel01beta23 = D[cosinel01, betakl];

dl01beta01 = -1/f[cosinel01]*dcosinel01beta01;

dl01beta02 = -1/f[cosinel01]*dcosinel01beta02;

dl01beta03 = -1/f[cosinel01]*dcosinel01beta03;

dl01beta12 = -1/f[cosinel01]*dcosinel01beta12;

dl01beta13 = -1/f[cosinel01]*dcosinel01beta13;

dl01beta23 = -1/f[cosinel01]*dcosinel01beta23;

cosinel13 = (cosinelaw[betajl, betajk, betakl] +

cosinelaw[betail, betaik, betakl]*cosinelaw[betaij, betaik, betajk])/(f[

cosinelaw[betail, betaik, betakl]]*f[cosinelaw[betaij, betaik, betajk]]);

dcosinel13beta01 = D[cosinel13, betaij];
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dcosinel13beta02 = D[cosinel13, betaik];

dcosinel13beta03 = D[cosinel13, betail];

dcosinel13beta12 = D[cosinel13, betajk];

dcosinel13beta13 = D[cosinel13, betajl];

dcosinel13beta23 = D[cosinel13, betakl];

dl13beta01 = -1/f[cosinel13]*dcosinel13beta01;

dl13beta02 = -1/f[cosinel13]*dcosinel13beta02;

dl13beta03 = -1/f[cosinel13]*dcosinel13beta03;

dl13beta12 = -1/f[cosinel13]*dcosinel13beta12;

dl13beta13 = -1/f[cosinel13]*dcosinel13beta13;

dl13beta23 = -1/f[cosinel13]*dcosinel13beta23;

cosinel03 = (cosinelaw[betail, betaik, betakl] +

cosinelaw[betajl, betajk, betakl]*cosinelaw[betaij, betaik, betajk])/(f[

cosinelaw[betajl, betajk, betakl]]*f[cosinelaw[betaij, betaik, betajk]]);

dcosinel03beta01 = D[cosinel03, betaij];

dcosinel03beta02 = D[cosinel03, betaik];

dcosinel03beta03 = D[cosinel03, betail];

dcosinel03beta12 = D[cosinel03, betajk];

dcosinel03beta13 = D[cosinel03, betajl];

dcosinel03beta23 = D[cosinel03, betakl];

dl03beta01 = -1/f[cosinel03]*dcosinel03beta01;

dl03beta02 = -1/f[cosinel03]*dcosinel03beta02;

dl03beta03 = -1/f[cosinel03]*dcosinel03beta03;

dl03beta12 = -1/f[cosinel03]*dcosinel03beta12;

dl03beta13 = -1/f[cosinel03]*dcosinel03beta13;

dl03beta23 = -1/f[cosinel03]*dcosinel03beta23;

cosinel23 = (cosinelaw[betakl, betajk, betajl] +
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cosinelaw[betail, betaij, betajl]*cosinelaw[betaik, betaij, betajk])/(f[

cosinelaw[betail, betaij, betajl]]*f[cosinelaw[betaik, betaij, betajk]]);

dcosinel23beta01 = D[cosinel23, betaij];

dcosinel23beta02 = D[cosinel23, betaik];

dcosinel23beta03 = D[cosinel23, betail];

dcosinel23beta12 = D[cosinel23, betajk];

dcosinel23beta13 = D[cosinel23, betajl];

dcosinel23beta23 = D[cosinel23, betakl];

dl23beta01 = -1/f[cosinel23]*dcosinel23beta01;

dl23beta02 = -1/f[cosinel23]*dcosinel23beta02;

dl23beta03 = -1/f[cosinel23]*dcosinel23beta03;

dl23beta12 = -1/f[cosinel23]*dcosinel23beta12;

dl23beta13 = -1/f[cosinel23]*dcosinel23beta13;

dl23beta23 = -1/f[cosinel23]*dcosinel23beta23;

(*the Hessian matrix*)

(*what we are looking for is the

derivative of edge lengths with respect to thetaij which is Pi-

betaij. So, the Hessian matrix is given by:*)

H = {{-dl23beta01, -dl23beta02, -dl23beta03, -dl23beta12,

-dl23beta13, -dl23beta23}, {-dl13beta01, -dl13beta02, -dl13beta03,

-dl13beta12, -dl13beta13, -dl13beta23}, {-dl12beta01, -dl12beta02,

-dl12beta03, -dl12beta12, -dl12beta13, -dl12beta23}, {-dl03beta01,

-dl03beta02, -dl03beta03, -dl03beta12, -dl03beta13, -dl03beta23},

{-dl02beta01, -dl02beta02, -dl02beta03, -dl02beta12, -dl02beta13,

-dl02beta23}, {-dl01beta01, -dl01beta02, -dl01beta03, -dl01beta12,

-dl01beta13, -dl01beta23}}

]

Stellenbosch University https://scholar.sun.ac.za



APPENDIX C. NUMERICAL CALCULATIONS 143

Remark C.4.1. • Here, all the necessary derivatives are computed one by one to be

careful. However, since the matrix is symmetric the number of implementation may

be reduced to 21 derivatives instead of 36.

• One may as well compute the Hessian matrix by using the results from [25] as well

as those presented in [31].

C.4.2 The signature

The signature of a matrix is known to be the number of positive eigenvalues sub-

tracted with the number of negative eigenvalues of the matrix. In this subsection,

let us look at one example: the signature of the Hessian matrix associated to40 48 50

52 54 20


q=e

iπ
k+2

where k = 198.

Let m12 = 40, m02 = 48, m01 = 50, m03 = 52, m13 = 54, m23 = 20. The edge

lengths of the tetrahedron associated to the quantum 6j symbols are computed by

(*the edge lengths of the tetrahedron T*)

l01 = Pi*m01/k;

l02 = Pi*m02/k;

l03 = Pi*m03/k;

l12 = Pi*m12/k;

l13 = Pi*m13/k;

l23 = Pi*m23/k;

Since the Hessian matrix is a function of the interior dihedral angles, the following

code computes the interior dihedral angles as functions of the edge lengths.

(*computation of the interior dihedral angles as functions of the edge

lengths,

it returns the dihedral angles {beta01, beta02, beta03, beta12,

beta13, beta23}
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where eg beta03 is the interior dihedral angle at the edge 12*)

TDihedralAngle[l01_, l02_, l03_, l12_, l13_, l23_] :=

Block[{cosinebeta01, cosinebeta02, cosinebeta03, cosinebeta12,

cosinebeta13, cosinebeta23, listdihedralangle},

f[x_] := Sqrt[1 - x^2];

lcosinelaw[x_, y_, z_] := (Cos[x] - Cos[y]*Cos[z])/(f[Cos[y]]*f[Cos[z]]);

(*cosine of the dihedral angles in terms of the edge lengths*)

cosinebeta01 = (lcosinelaw[l01, l03, l13] -

lcosinelaw[l02, l03, l23]*lcosinelaw[l12, l23, l13])/(f[

lcosinelaw[l02, l03, l23]]*f[lcosinelaw[l12, l23, l13]]);

cosinebeta02 = (lcosinelaw[l02, l01, l12] -

lcosinelaw[l03, l13, l01]*lcosinelaw[l23, l12, l13])/(f[

lcosinelaw[l03, l13, l01]]*f[lcosinelaw[l23, l12, l13]]);

cosinebeta03 = (lcosinelaw[l03, l13, l01] -

lcosinelaw[l02, l01, l12]*lcosinelaw[l23, l12, l13])/(f[

lcosinelaw[l02, l01, l12]]*f[lcosinelaw[l23, l12, l13]]);

cosinebeta13 = (lcosinelaw[l13, l01, l03] -

lcosinelaw[l12, l02, l01]*lcosinelaw[l23, l03, l02])/(f[

lcosinelaw[l12, l02, l01]]*f[lcosinelaw[l23, l03, l02]]);

cosinebeta12 = (lcosinelaw[l12, l02, l01] -

lcosinelaw[l23, l03, l02]*lcosinelaw[l13, l01, l03])/(f[

lcosinelaw[l23, l03, l02]]*f[lcosinelaw[l13, l01, l03]]);

cosinebeta23 = (lcosinelaw[l23, l02, l03] -
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lcosinelaw[l12, l01, l02]*lcosinelaw[l13, l03, l01])/(f[

lcosinelaw[l12, l01, l02]]*f[lcosinelaw[l13, l03, l01]]);

listdihedralangle = {N[ArcCos[cosinebeta01]],N[ArcCos[cosinebeta02]],

N[ArcCos[cosinebeta03]], N[ArcCos[cosinebeta12]],

N[ArcCos[cosinebeta13]], N[ArcCos[cosinebeta23]]}

]

For our example, the interior dihedral angles are given by

In[15]:= TDihedralAngle[l01, l02, l03, l12, l13, l23]

Out[15]= {1.03678, 1.83613, 1.18779, 0.67861, 2.29937, 0.340975}

In other words,

beta01 = 1.0367806072139365;

beta02 = 1.836132438028897;

beta03 = 1.187786192293169;

beta12 = 0.6786100199178243;

beta13 = 2.299365644070834;

beta23 = 0.34097497062735044;

Therefore, the Hessian matrix is computed by

H1 = NewHessian /. {betaij -> beta01, betaik -> beta02,

betail -> beta03, betajk -> beta12, betajl -> beta13,

betakl -> beta23};

MatrixForm[H1]

which results to
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And its eigenvalues are procured from

In[9]:= Eigenvalues[H1]

Out[9]= {-22.2373, 2.81259, 1.24052, -0.808616, 0.166714, -0.053502}

This shows that the signature of the Hessian matrix is null.
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