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Abstract 

ABSTRACT 
 

According to recent studies, biochar has the potential to improve soil fertility, mitigate climate 

change, reduce off-site pollution and assist in managing wastes. The application of biochar to soil is 

not a new concept; Amazonian dark earths are carbon-rich soils with high soil fertility that were 

created before 1541. Vacuum pyrolysis is a thermo-chemical conversion technique in which biomass 

is transformed into bio-oil, biochar and non-condensable gas. The objective of this work was to 

investigate the chemical and physical properties of biochar produced from vacuum pyrolysis of black 

wattle, vineyard annual prunings and sugar cane bagasse for their potential as soil amendment and 

adsorbent. 

 

The vacuum pyrolysis of black wattle, vineyard prunings and sugar cane bagasse (pyrolysis 

temperature: 460°C, pressure: 8kPaabs, heating rate: 17°C/min) resulted in biochar yields of 23.5%, 

31.0% and 19.7% on a weight basis, respectively. The nature of the biomass had a substantial effect 

on yields of the products. High ash content combined with high lignin composition led to higher 

biochar yields for vineyard prunings. 

 

The highest surface acidity was observed for sugar cane bagasse (2.3 mmol/g), whereas the lowest 

surface acidity was observed for vineyard biochar (1.67 mmol/g). Consequently, the pH of the 

biochars was in the order: vineyard (10.43)> black wattle (9.74)> sugar cane bagasse (6.56). The 

cation exchange capacities (CEC) of biochars were 122 cmol/kg, 101 cmol/kg and 65 cmol/kg for 

sugar cane bagasse, black wattle and vineyard, respectively. The electrical conductivities (EC) were 

highly correlated with feedstock nature. The Ca and K rich vineyard biochar resulted in the highest 

EC (0.83 dS/m), whilst EC values of black wattle and sugar cane bagasse were 0.67 dS/m and 0.17 

dS/m, respectively. Biochars contained substantial amounts of plant-available nutrients, while being 

low in toxic inorganic content (Pb, As, Cd). The BET surface areas of sugar cane bagasse, black wattle 

and vineyard were 259 m2/g, 241 m2/g and 91 m2/g, respectively.   

 

The adsorption capacity was found to increase with increased contact time and initial solution 

concentration. The experimental equilibrium time were found to be 3505 min, 1350 min and 150 

min for adsorption of 20 mg/L methylene blue solution for vineyard, black wattle and sugar cane 

bagasse, respectively. Equilibrium data were well fitted to Langmuir and Freundlich isotherms. The 

maximum adsorption capacities were found to be 15.15 mg/g, 14.49 mg/g and 19.23 mg/g for 
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vineyard, black wattle and sugar cane bagasse when modelled with Langmuir isotherms. The 

adsorption kinetics was found to follow the pseudo-second order kinetic model.  

 

In summary, biochar from sugar cane bagasse is a promising adsorbent for the removal of basic dyes 

due to its high surface area and microporous structure.  This biochar can be applied to slightly acidic 

soils for nutrient retention and the exchange of nutrients. On the other hand, possessing high 

amounts of nutrients, biochars from black wattle and vineyard are potential soil amendentment 

agents. Biochar from black wattle is more beneficial compared to biochar from vineyard due to its 

higher surface area, microporosity and cation exchange capacity.  
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OPSOMMING 
 

Volgens onlangse studies, het houtskool die potensiaal om grond vrugbaarheid te verbeter, klimaat 

verandering te versag, besoedeling te verlaag en  ondersteuning te verleen in die bestuur van afval. 

Die toevoeging van houtskool in grond is nie ‘n nuwe konsep nie; Amazone donker gronde is koolstof 

ryk gronde met hoë vrugbaarheid wat voor 1541 geskep is. Vakuum pirolise is ‘n termo-chemiese 

omskakelings tegniek waarin biomassa afgebreek word na bio-olie, houtskool en nie-

kondenseerbare gasse. Die doelwit van hierdie werk was om die chemiese en fisiese eienskappe van 

houtskool, wat geproduseer is deur die vakuum pirolise van swart wattel, jaarlikse wingerd 

snoeisels, en suikerriet bagasse, vir hulle potensiaal vir grond verbetering en adsorpsie toepassings 

te ondersoek. 

 

Die vakuum pirolise van swart wattel, jaarlikse wingerd snoeisels, en suikerriet bagasse (pirolise 

temperatuur: 460°C, druk: 8kPaabs, verhittingstempo: 17°C/min) het houtskool opbrengste van 

23.5%, 31.0% en 19.7% op massa basis, respektiewelik tot gevolg. Die tipe biomassa het ‘n 

beduidende effek op die opbrengs van die produkte.  Hoë as-inhoud, gekombineer met hoë lignien 

inhoud, lei tot hoër houtskool opbrengste vir wingerd snoeisels. 

 

Die hoogste oppervlak suurheid is gevind vir suikerriet bagasse (2.3 mmol/g), terwyl die laagste 

waarde gevind is vir die wingerd snoeisels (1.67 mmol/g). Gevolglik, is die pH van die houtskole in 

die volgorde van: wingerd (10.43) > swart wattle (9.74) > suikerriet bagasse (6.56).  Die katioon 

uitruiling vermoë (CEC) van die houtskole was 122 cmol/kg, 101 cmol/kg and 65 cmol/kg vir 

suikerriet bagasse, swart wattel en wingerd snoeisels respektiewelik. Die elektriese konduktiwiteite 

(EC) is gekorreleer met die eienskappe van die biomassas. Die Ca en K ryke wingerd snoeisel 

houtskool het  die hoogste EC waarde (0.83 dS/m) tot gevolg, terwyl die EC waardes vir swart wattel 

en suikerriet bagasse bepaal is as 0.67 dS/ 0.16 dS/m  respektiewelik. Die houtskole het groot 

hoeveelhede plant-beskikbare voedingstowwe bevat, terwyl dit laag was in toksiese  anorganiese 

stowwe (Pb, As, Cd).  Die BET oppervlak areas van suikerriet bagasse, swart wattel en wingerd 

snoeisels was 259 m2/g, 241 m2/g en 91 m2/g respektiewelik.   

 

Daar is gevind dat die adsorpsie kapasiteit toeneem met toenemende kontak tyd met die 

aanvanklike oplossing. Die eksperimentele ewewigs tye is gevind as 350 min, 1350 min en 150 min 

vir die adsorpsie van ‘n 20 mg/L metileen blou oplossing vir wingerd snoeisels, swart wattel en 

suikerriet bagasse, respektiewelik. Die ewewigs data het die Langmuir en Freundlich isoterme goed 
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gepas. Die maksimum adsorpsie kapasiteite is gevind as 15.15 mg/g, 14.9 mg/g en 19.23 mg/g vir 

wingerd snoeisels, swart wattel en suikerriet bagasse wanneer dit gemodeleer is met Langmuir 

isoterme. Daar is bevind dat die adsorpsie kinetika ‘n pseudo-tweede orde kintika model volg. 

 

In opsomming, houtskool van suikerriet bagasse is ‘n veelbelowende adsorpsie middel vir die 

verwydering van basiese kleurstowwe, as gevolg van die hoë oppervlak area en mikroporie-struktuur 

van hierdie houtskool. Dié houtskool kan gebruik word op effense suur gronde vir voedingstof 

behoud en uitruiling. Aan die ander kant, houtskole van swart wattel en wingerd snoeisels wat hoë 

hoeveelhede voedingsstowwe bevat, is potensiële grond verbeterings middels. Houtskool afkomstig 

van swart wattel is meer voordelig as die van wingerd snoeisels, as gevolg van die hoër oppervlak 

area, mikroporositeit en katioon uitruilings vermoë van die swart wattel houtskool. 
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m0 Initial biomass mass g 
mf Biochar mass g 

mRTC Mass of room temperature condenser g 
n Freundlich constant - 
P Pressure kPa, Pa or atm 
q The amount adsorbed per unit mass mg/g 
qe Adsorption capacity at equilibrium mg/g 
qm value of q corresponding monolayer coverage mg/g 
RL Correlation factor - 
SA Surface acidity mmol/g 
SB Surface basicity mmol/g 
T Temperature °C or K 
t Time min 
V Solution volume mL 

Vporosity volume of porosity m3/g 
WC0 Water content of biomass % 
WC1 Water content of water phase % 
WC2 Water content of tarry phase % 
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CHAPTER 1: INTRODUCTION 
 

Climate change caused by greenhouse gas (GHG) emissions is now widely recognised as a serious 

threat to human civilisation and natural ecosystems (Woolf, 2008). It is known that fossil fuel and 

land use can contribute significantly to GHG emissions (Pratt & Moran, 2010). Therefore, the 

increasing GHG emissions and rising fossil fuel prices have led researchers to consider the utilisation 

of renewable energy resources. One of the potential ways to contribute to GHG mitigation is the 

sequestration of carbon through pyrolysis processes (Woolf, 2008). 

 
Pyrolysis is one of the thermo-chemical conversions that can be used to convert unused agricultural 

residues into useful products, namely biochar, bio-oil and non-condensable gas by heating in the 

absence of oxygen (Demirbaş, 2008). Vacuum pyrolysis differs from slow and fast pyrolysis in terms 

of operating conditions and product yields. The installation of a vacuum pump provides reduced 

pressure, thereby removing primary volatile products from the hot reaction zone and restricting 

secondary decomposition reactions (Shafizadeh, 1982). Regarding main products, while fast 

pyrolysis yields high amounts of oil, biochar is the main product of slow pyrolysis (Mohan et al., 

2006). Studies have shown that biochar yield is between 19-35% and bio-oil yield ranges between 20 

and 43% via vacuum pyrolysis (Garcìa-Pèrez et al., 2007; Garcìa-Pèrez et al., 2002; Bouchar et al., 

2000; Darmstadt et al., 2000).  

 
Biochar can be used as a fuel, an adsorbent or as a soil conditioner. Adsorbents are especially 

preferred in wastewater treatments for the removal of heavy metals or colour, which is released 

from industrial activities. Biochars can be activated by steam, CO2 or their mixtures or by using 

chemical activating agents (Bansal, 1988). Production of activated carbon from biochars and their 

adsorption abilities has been widely studied (Sharma & Uma, 2010; Raposo et al., 2009; Ioannidou & 

Zabaniotou, 2007). However, the application of biochar to soil has recently been a reconsidered 

concept in the scientific community. The studies done on biochar as soil amendments have pointed 

out that biochar can improve soil fertility, structure, nutrient availability and carbon sequestration 

(Roberts et al., 2010). Pyrolysis can convert approximately half of the carbon in biomass into more 

recalcitrant forms (Lehmann, 2006); consequently the half-life of stable C in soil is estimated to be 

over 1000 years (Laird, 2008). Sequestration of carbon into soil can offset the CO2 emissions, which 

would otherwise have entered the atmosphere through fossil fuel production, combustion, fertiliser 

production or composting. From an energy point of view, the production of bio-oil and gas from 

pyrolysis can be used as fuels which can off-set the fossil fuel usage (Lehmann, 2006).  

Stellenbosch University  http://scholar.sun.ac.za



 

2 
Chapter 1: Introduction 

Facing the energy crisis, thermo-chemical processes in South Africa have become a topic of interest 

for conversion of cheap agricultural wastes into clean energy and valuable products. Sugar cane is 

one of the major harvested crops in the world and annually 6 million tonnes of sugar cane bagasse 

are generated in South Africa (IEA, 2010). Pyrolysis of sugar cane bagasse, especially for activated 

carbon production has been widely studied (Devnarain, 2003; Darmstadt et al., 2001; Bernardo et 

al., 1997), but sugar cane bagasse biochar as a soil amender has not received much attention. 

Likewise, there is a lack of information on the pyrolysis of wood based prunings such as black wattle 

and vineyard. Black wattle is an invasive tree covering a 2.5 Mha (IEA, 2010). On the other hand, 

South Africa has 101 259 ha under vines for wine production (SAWIS, 2009). This study will focus on 

the biochar production via vacuum pyrolysis of sugar cane bagasse, black wattle and vineyard 

prunings and their potential as adsorbents and soil amenders by determining their physical and 

chemical properties.  

 

1.1 Motivation and objectives of the study 
 

Biochar production and applications of biochar can provide numerous benefits to the environment 

and economy. However, to be able to obtain these benefits, the understanding of the physico-

chemical structure of this valuable product has to be improved. The motivation behind this research 

is the fact that this topic has received little attention in South Africa even though the country 

produces a wide range of biomasses such as vineyards, invasive plants and sugar cane bagasse etc. 

that can be used in pyrolysis processes. Additional to this, there is no physico-chemical 

characterisation data for biochars from vacuum pyrolysis in the open literature. 

 

The project has two principle objectives. Firstly, it aims to evaluate the chemical and physical 

properties of biochars produced from various sources of agricultural wastes, namely sugar cane 

bagasse, black wattle and vineyard prunings by using vacuum pyrolysis. The chemical and physical 

properties that are investigated in the biochar will focus on those properties that affect soil fertility. 

 

The second main objective of the project is to investigate the potential of biochars as adsorbents for 

wastewater treatment using methylene blue as a model compound. In general, the performance of 

adsorption systems for textile wastewater is evaluated based on the equilibrium, isotherms and 

kinetics from experimental data (Gerçel et al., 2007). For this purpose the Langmuir and Freundlich 

isotherm models and the first order, pseudo-second-order kinetic and intraparticle diffusion models 

have been used to fit the adsorption isotherms and kinetics, respectively. 
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1.2 Mind map 
 

Figure 1.1 illustrates the mind map of the thesis. 

 

 
 

Figure 1.1: Mind map of the thesis 
 

The thesis is structured in four main sections. The first section is Literature Review (Chapter 2), 

which is composed of three main sub-sections. The first sub-section provides an introduction to the 

biomasses used and their structural compositions are compared. The second sub-section discusses 

vacuum pyrolysis and the key properties that affect the process and product yields. The third sub-

section debates the biochar and its applications. These sub-sections all together provide an 

extensive summary of the relevant knowledge and research results that have been published to 

date. 

 

Chapter 3 describes the materials and experimental methods used in this research. These methods 

were mostly based on information from the literature survey. 
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Chapter 4 (Results and Discussion) tackles the objectives of the research. In this section, vacuum 

pyrolysis results are given and discussed by means of product yields. Afterwards, attention is given 

to the biochar characterisation, namely physico-chemical characterisation and adsorption results.  

The physico-chemical characterisation results deals with the first objective of the project, whilst 

adsorption copes with the second objective of the project. The results are compared to the results 

presented in Chapter 2. 

 

Conclusions of the study are summarised in the final section (Chapter 5). The outcomes of the study 

are firstly, evaluation of the chemical and physical properties of biochars from vacuum pyrolysis for 

soil amendment and wastewater treatment purposes. Secondly, baseline data for adsorption 

equilibrium and kinetics are obtained. Finally, the comparison of the physico-chemical properties of 

biochars and adsorption abilities lead one to decide which biochar is superior to another. The 

recommendations which direct further research are given in this chapter after conclusions.

Stellenbosch University  http://scholar.sun.ac.za



 

5 
Chapter 2: Literature review 

CHAPTER 2: LITERATURE REVIEW 
 

In this chapter, readers will be introduced to biomasses that were used in this study. These 

biomasses are vineyard prunings (agricultural residues), black wattle prunings (harvested invasive 

plant residues) and sugar cane bagasse (industrial herbaceous residues). The production rates, 

utilisation areas, lignocellulosic compositions, and the chemical compositions of the biomasses will 

be discussed in this chapter. 

 

2.1 Biomass 
 

Biomass can generally be defined as any hydrocarbon matter that is derived from natural ecosystems 

such as forests, grasslands and aquatic ecosystems or any kind of lignocellulosic residues or the 

products from energy crops (Goyal et al., 2008). The residues from agriculture are potential 

renewable energy resources as they can be used for the production of biogas, bio-oil and biochar 

(Demirbaş, 2008). Agricultural wastes and energy crops can also be used to produce other valuable 

products with various conversion methods as it is illustrated in Figure 2.1. Currently, 5.1 billion dry 

tonnes of agricultural wastes are produced globally (IEA, 2010). 

 

 
 

Figure 2.1: Biomass conversions for useful and valuable products (Redrawn from Diaz, 2006) 
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The chemical structure and major organic components in biomass are very important for the 

conversions that are used and for the development of the process for the specific application. 

Cellulose, hemicelluloses and lignin build the cell walls of woody plants and they are the major 

organic components of these biomasses. General composition of plant biomass is depicted in Figure 

2.2. 

 

 
 

Figure 2.2: General components of plant biomass (Redrawn from Mohan et al., 2006) 
 

Cellulose is the major wood component and the main structural component of the plant cell walls 

(Fengel & Wegner, 2003). Cellulose is a homopolysaccharide, containing β-D-glucopyranose units 

which are connected by (1 → 4) - glycosidic bonds. Cellulose molecules are completely linear and 

show a strong tendency to crystallize and form intra- and intermolecular hydrogen bonds. Generally, 

40-45 % of the dry substance is cellulose in most species (Browning, 1963; Sjöström, 1981). The 

chemical structures of (a) β-D-glucose and (b) cellulose are given in Figure 2.3. 
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Figure 2.3: Chemical structures of cellulose (Redrawn from Bierman, 1996) 
 

Hemicelluloses are heteropolysaccharides that can be extracted by water or aqueous alkali from 

plant tissue. Hemicelluloses are more readily hydrolysed by acids to their monomeric components 

than cellulose. Many of them have the general formula (C5H8O4)n. Main constituents of 

hemicelluloses are D-glucopyranose, D-xylopyranose, L-arabinofuranose, D-xylopyrahose, D-

glucuronic acid (Figure 2.4). Hemicelluloses form hydrogen bonds with cellulose and covalent bonds 

with lignin. The hemicelluloses content of wood is usually between 20 and 30% on a dry basis 

(Sjöström, 1981). 

 

 
 

Figure 2.4: Chemical structures of hemicelluloses (Redrawn from Bierman, 1996) 
 

Schulze derived the name lignin from the Latin word for wood (lignum) in 1865, while Peter Klason 

studied the composition of lignosulfonates in 1897 and postulated that lignin is a macromolecular 

substance in 1907 (Sjöström, 1981). Basically, lignins are polymers of phenyl propane units, namely 

p-coumaryl, coniferyl and sinapyl alcohols (Figure 2.5) (Bierman, 1996). Softwood usually contains 
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26-32% lignin, while the lignin content of hardwood exceeds 30% on a dry basis (Sjöström, 1981). The 

variety of the lignin in softwood and hardwood is due to the number of methoxy groups on the 

phenolic ring (Shen et al., 2010). One of the proposed lignin structures is given in Figure 2.6. 

 

 
 

Figure 2.5: Lignin building blocks (Redrawn from Bierman, 1996) 
 

 

 
 

Figure 2.6: Chemical structure of lignin (Fengel & Wegner, 2003) (Granted permission from Kessel 
Verlag) 
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2.1.1 Black wattle (Acacia mearnsii) 

 

Black wattle is a fast growing invasive tree which was introduced to South Africa 150 years ago from 

Australia to provide bark products. Approximately 18 Mha of total South African lands are invaded by 

alien vegetation and black wattle is considered to be a major invasive tree covering 2.5 Mha (IEA, 

2010; Moyo et al., 2009). Other than South Africa and Australia, black wattle is cultivated in other 

countries such as China, Brazil, Zimbabwe, India, Kenya and Tanzania (Brown & Ko, 1997). Black 

wattle threatens native habitats by competing with indigenous vegetation, replaces grass 

communities and is estimated to use 25% of the total water supply, ranking first in water use among 

invasive species (Moyo et al., 2009). Nevertheless, black wattle has a nitrogen fixation property that 

builds up soil fertility and is also considered as a soil stabiliser to decrease erosion. Black wattle has 

various utilisation areas, of which tannin compound extraction from the bark for use in the 

production of soft leather is the most important. Other uses of black wattle are resin, thinners and 

adhesive production from extracts, building materials from the timber, biochar production from 

wood for fuel and the wood chips are used in pulp and paper production (Chenje & Mohamed-

Katerere, 2006). Black wattle is especially widely spread in the Eastern Cape and KwaZulu-Natal 

provinces of South Africa (de Neergaard et al., 2005). The ash content of black wattle is 0.36%, lignin 

21.2%, cellulose 63.9% (Brown & Ko, 1997) and hemicelluloses 12.7% (Lachke et al., 1987) on dry 

basis. Izabel et al. (2008) studied the thermogravimetric analysis (TGA) of black wattle and observed 

that the profile of the mass loss shows two macro stages for all heating rates used (2 to 50°C/min), 

related to the decomposition of cellulose and hemicelluloses. A third step was observed at lower 

heating rates, which were attributed to the decomposition of the remaining lignin. However, no 

specific studies done on the pyrolysis of black wattle could be found in the open literature. 

 

2.1.2 Vineyard  

 

Annually 2 to 4 tonnes per hectare of vineyard prunings are generated from a vineyard. These 

agricultural residues are burned or used as fuel, organic fertiliser or feed and the rest are dumped 

(Corcho-Corral et al., 2006). Bustos et al. (2004) reported that prunings contain 34.1% cellulose, 19% 

hemicelluloses and 27.1% lignin on dry weight basis. The pH of prunings is 5.13 with an ash content 

of 2.82% (Ntalos & Grigoriu, 2002). Thermogravimetric analyses (Hernandez et al., 2010; Tartarelli et 

al., 1987), gasification, pyrolysis for furfural production (di Blasi et al., 2010) and Branuer-Emmett-

Teller (BET) surface area determinations for use in adsorption processes (Deiana et al., 2009) have 

been done on vineyard prunings. Tartarelli et al. (1987) observed the elimination of moisture at 
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temperatures between 60-100°C. Volatiles release was observed from 200-300°C up to 700°C. 

Hernandez et al. (2010) divided the temperature profile into three stages. First stage took place 

around 100°C, which was attributed to the elimination of highly volatile organics and unbound 

moisture. The second stage was observed at temperatures between 200-400°C, corresponding to the 

pyrolysis of lignocellulosic contents of the biomass. At temperatures above 400°C, the third area of 

weight loss was evidence of the progressive degradation of heavy lignin fractions and chars. 

Regarding BET surface area, Tartarelli et al. (1987) determined the surface area as 18 m2/g, whereas 

Deiana et al. (2009) improved the surface area by activating the carbonized material with steam (412 

m2/g) or phosphoric acid (1500 m2/g). A leaching step was also performed before the steam 

activation step to compare the influence of ash content on the surface area of activated carbon and 

it was found that the leaching step improved the surface area (700-900 m2/g) (Deiana et al., 2009). 

 

2.1.3 Sugar cane bagasse 

 

Sugar cane bagasse is the solid waste left after extraction of juice from sugar cane (Bilba & 

Ouensanga, 1996). Sugar mills generate approximately 135 kg of bagasse per metric ton of sugar 

cane on dry weight basis. These residues can be used for heat, power generation or ethanol 

production (Brienzo et al., 2009). Currently 423 000 ha are used for sugar cane production in South 

Africa. Annually 6 million tonnes of sugar cane bagasse (dry weight) are generated and 90% of the 

residues are burned to produce heat and electricity. KwaZulu Natal has the highest production of 

sugar cane bagasse with 83 % of annual production (IEA, 2010). Pyrolysis, TGA, activated carbon, and 

bio-ethanol production from sugar cane bagasse have been studied by various researchers (Carrier et 

al., 2011; Inyang et al., 2010; Souza et al., 2009; Okuno et al., 2005; Garcìa-Pèrez et al., 2002; 

Darmstadt et al., 2001). Garcìa-Pèrez et al. (2002) determined fixed carbon content as 16.3% on dry 

weight basis, while Souza et al. (2009) reported a value of 25.66%. Regarding ash content, Devnarain 

et al. (2002) and Garcìa-Pèrez et al. (2002) determined the ash content of sugar cane bagasse as 1.8% 

and 1.6%, respectively. A later sample of sugar cane bagasse with ash content 5.9% was used by 

Devnarain et al. (2002) and inorganic elements were reported as follow: 1.47% aluminium, 2.67% 

silicon, 0.7% phosphorus, 0.04% potassium, 0.58% calcium and 0.4% iron. A possible explanation for 

high Al and Si contents is that the sample was contaminated by soil. However, higher ash contents 

have been observed (Souza et al., 2009). Biochar derived from sugar cane bagasse has been 

extensively studied for the production of activated carbon (Liou, 2010; Jaguaribe et al., 2005; Tsai et 

al., 2001; Bernardo et al., 1997). In the study of Liou (2010), optimum BET surface area (2289 m2/g) 

was reached with ZnCl2 activation at 500°C. Tsai et al. (2001) studied the removal of acidic dyes with 
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ZnCl2 activated carbons. Even though surface area was quite high (905 m2/g), the removal was low. If 

the pore size is smaller than or close to the molecular dimensions of the dye molecules, low 

adsorption efficiencies can be observed as Tsai et al. (2001) also concluded. Jaguaribe et al. (2005) 

and Bernardo et al. (2001) reached BET surface areas with steam activation of 806 m2/g and 931- 

1394 m2/g, respectively.  

 

2.1.4 Biomass composition 

 

The elemental, proximate and lignocellulosic composition analyses indicate the chemical structure of 

a biomass. As was mentioned, the major organic components of a biomass are cellulose, 

hemicelluloses and lignin. The main elements which compose a biomass are carbon, oxygen, 

hydrogen and nitrogen. These elements are determined by elemental analysis. On the other hand, 

proximate analysis gives information on moisture content, volatile matter, fixed carbon and ash 

content.  All this data helps one to compare a certain biomass to another and to determine a suitable 

application for this biomass. Table 2.1 shows the compositional differences of the biomasses, which 

were compiled from open literature.  
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Table 2.1: Elemental, proximate analyses and lignocellulosic compositions of biomasses (dry,wt.%) 

Biomass %VM %Ash %FC %C %H %N %O* %Cellulose %Hemicelluloses %Lignin 

Black wattle 
 

a0.36 
     

a63.9 b12.7 b17.9 - a21.2 
Vineyard c76.6 - d91.9 e2.6 - c6.3 c17.02 – e20.0 c46.3 - d50.07 c5.3 - d5.91 d0.52 – e0.81 c41.6 – e43.5 f34.1 f19.0 f27.1 

Sugar cane 
bagasse 

g66.0-h82.1 h1.6-g8.0 h16.3 – g26.0 i47.6 - h48.8 h5.9 - i6.03 i0.29 – h0.49 h43.1 – i43.4 j41.7 - h42.4 h35.2 - j37.4 j19.3 - h20.8 

*obtained by difference 
a Brown & Ko (1997) 
b Lachke et al. (1987) 
c Hernandez et al. (2010) 
d Covalaglio & Cotana (2007) 
e Jenkins & Ebeling (1985) 

f Bustos et al. (2004) 

g Souza et al. (2009) 
h Garcìa-Pèrez et al. (2002) 

i Okuno et al. (2005) 
j Brienzo et al. (2009) 
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2.1.5 Conclusion 

 

Plant biomass contains cellulose, hemicelluloses, lignin, extractives and ash. Useful and valuable 

products can be derived from biomass via thermo-chemical, bio-chemical and physico-chemical 

conversions. In this project, three biomasses were used; namely, sugar cane bagasse, vineyard and 

black wattle prunings.  

 

Black wattle has the highest cellulose content, whilst vineyard has the lowest cellulose content. Sugar 

cane bagasse contains higher amounts of hemicelluloses compared to the other biomasses. The 

highest volatile matter (VM) content was observed in vineyard with value of 91.9%. Regarding ash 

content, black wattle has the lowest ash content. From the gathered studies, sugar cane bagasse ash 

content goes up to 8% on moisture free basis. In general, industrial and agricultural residues are 

more reactive than wood due to their higher ash content (Zanzi et al., 2001).  

 

Fixed carbon (FC) contents of the biomasses are pretty close to each other, but the highest FC 

content (26%) was observed for sugar cane bagasse. Carbon, hydrogen, nitrogen and oxygen 

contents of the biomasses are quite similar. Bagasse residues are generated in high amounts 

annually and most of them are burned.  

 

TGA studies of the agricultural wastes showed that there were three main stages; elimination of 

moisture, elimination of highly volatile matters (cellulose, hemicelluloses and lignin) and the third 

stage; further degradations of lignin residues. Finally, as temperature increases, the organic matter is 

completely eliminated leaving an incombustible residue known as ash. Biochar is one of the products 

from pyrolysis of the agricultural residues which can be used as adsorbent due its high surface area 

or as soil amendment.  
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2.2 Vacuum pyrolysis 
 

Pyrolysis is used for the thermo-chemical conversion of agricultural residues. In this section pyrolysis 

will be briefly explained along with the influence of process parameters. The aim of vacuum pyrolysis 

is the production of high quality biochar. Therefore, effects of the process parameters on char yields 

and properties will be discussed. 

 

 2.2.1 Principle 

 

Pyrolysis is the thermal decomposition of organic molecules in the absence of air to obtain solids 

(biochar or charcoal), liquids (tar, bio-oil and pyrolytic water) and gaseous products, which can be 

used as fuels, solvents and chemicals. It is known that Cro-Magnon man discovered the production of 

charcoal, indicating the early usage of the pyrolysis of biomass (Grønli & Antal, 2003; Bridgewater, 

2008). The mechanism of pyrolysis is very complex; however, pyrolysis of biomass can be divided into 

three stages. The first stage includes the elimination of water, bond scission, appearance of free 

radicals, formation of carbonyls, carboxyls and hydroperoxide, carbon monoxide, carbon dioxide and 

solid residue which occurs at temperatures between 200 °C and 400 °C (Shafizadeh, 1982). 

Temperatures above 400°C cause decomposition of the primary products and formation of aromatic 

pyrolysis products, which are accepted as secondary stage products of pyrolysis (Demirbaş & Arın, 

2002; Fisher et al., 2002). Secondary decomposition reactions occur at a high rate. Finally, during the 

third stage, char decomposes at a very slow rate and carbon enrichment is achieved due to further 

scission of C-H, C-O bonds and devolatilisation (Koufonas et al., 1989). The pyrolysis pathways, which 

were developed by Radlein are given in Figure 2.7 (Bridgwater, 1994). 
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Figure 2.7: Pyrolysis pathways at elevated temperature (Redrawn from Bridgwater, 1994) 

 
As Demirbaş & Arın (2002) showed, the pyrolysis reaction is basically described by the following 

reaction: 

 
Biomass Char + Volatile products 

 
Vacuum pyrolysis is operated at reduced pressure under vacuum. It is known that the first person to 

use vacuum was Klason in 1914 (de Jongh, 2001). Vacuum restricts secondary decomposition 

reactions removing the primary volatile products from the hot reaction zone (Shafizadeh, 1982). In 

this way further cracking and re-condensation reactions are prevented (Goyal et al., 2008), resulting 

in less gas production.  Miranda et al. (1999) stated that biomass decomposes between 450 and 

550°C under a pressure between 2 and 15 kPa abs. 

 
A number of studies using Populus tremuloides (Ahmed et al., 1989), tyres (Benallal et al., 1995), oil 

shales (Pakdel et al., 1999), PVC (Miranda et al., 1999), maple bark (Darmstadt et al., 2000), softwood 

bark residues (Cao et al., 2002; Boucher et al., 2000), sugar cane bagasse (Garcìa-Peréz et al., 2002; 

Carrier et al., 2011), pistachio-nut shells (Lua&Yang, 2004), teak sawdust (Ismadji et al., 2005), 

hardwood residues (Garcìa-Peréz et al., 2007), olive wastes (Petrov et al., 2008), durian peel 

(Nuithitikul et al., 2010), etc. have been done on vacuum pyrolysis. Pyrolytic chemistry differs as the 
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chemical composition of feedstock used differs, for instance pyrolytic reactions would be different 

for PVC than wood (Mohan et al., 2006). 

 

Vacuum pyrolysis differs from slow pyrolysis as it can be used with fast or slow heating rates (Mohan 

et al., 2008). In slow pyrolysis, vapor residence time is between 5 and 30 min with the vapour phase 

that continue to react with each other as solid and liquid products are formed, whilst residence time 

is between 2-30s in vacuum pyrolysis. Fast pyrolysis where biomass decomposes to generate vapours 

and aerosols, requires high temperature and high heating rates and short residence times (0.5-5s) 

(Mohan et al., 2006). Figure 2.7 shows the pyrolytic pathways for biomass pyrolysis at high 

temperatures. The first part is mainly char production at low temperatures. The main product is char 

for slow pyrolysis, while fast pyrolysis yields high amounts of bio-oil. Vacuum pyrolysis results in 

mostly bio-oil and considerable amounts of biochar. 

 

 2.2.2 Parameters affecting vacuum pyrolysis 

 

Process parameters such as temperature, pressure, particle size, heating rate, pyrolysis time and 

nature of feedstock (ash content, lignocellulosic composition, etc.) have a substantial effect on 

pyrolysis products (Grønli & Antal, 2003). 

 

  2.2.2.1 Temperature 

 

At high temperatures, secondary cracking reactions of the pyrolysis vapours lead to an increase in 

gaseous products. The greater primary decomposition of the solid biomass or the further 

decomposition of the char results in a decrease in char yield with a higher fixed carbon content. The 

further decomposition of char at higher temperatures contributes to an increase in gas yield due to 

the production of non-condensable gases (Parihar et al., 2007). 

 

The effect of temperature on pyrolysis product yields has been investigated by many researchers on 

different biomasses such as olive wood sawdust, sugar cane bagasse, corn cobs and corn stalks 

(Ioannidou et al., 2009; Demirbaş & Arin, 2001; Figueiredo, 1989). From these studies, it was 

concluded that, for high yield of biochar, lower temperatures should be chosen. Figure 2.8 shows the 

temperature effect on slow pyrolysis products from olive bagasse. A decrease in solid product yield 

and an increase in volatiles with increased temperature were observed for the vacuum pyrolysis of 

sugar cane bagasse by Carrier et al. (2011). 
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Figure 2.8: Effect of temperature on product yields from slow pyrolysis of olive bagasse  

(Redrawn from Şensöz et al., 2006) 

 

  2.2.2.2  Pressure 

 

According to Cetin et al. (2004), high pressure leads to the decrease in total surface area and swelling 

at low pressures. Pyrolysis pressure influences the size and shape of the char due to changes in the 

void fraction in the char (Cetin et al., 2004). Increased pressure during pyrolysis of cellulose favoured 

the formation of char and CO2 and reduced the CO content (Mok & Antal, 1983a). High pressure 

increases the rate of decomposition reactions and prolongs the residence time for vapour-particle 

interaction. Under vacuum (40-400 Pa), volatiles do not have an opportunity to interact with un-

pyrolysed material thereby limiting secondary reactions (Ward & Braslaw, 1985). Figure 2.9 shows 

the effect of pressure on char yield from slow pyrolysis of cellulose from the study of Mok & Antal 

(1983b). 
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Figure 2.9: Effect of pressure on char yield from slow pyrolysis of cellulose at 500°C with 20 cm3/min 

flow of argon gas (Redrawn from Mok & Antal, 1983b) 

 

  2.2.2.3  Heating rate 

 

Heating rate is one of the most important parameters that affect pyrolysis products, their structure 

and chemistry. Uzun et al. (2010) studied the effect of heating rate on product yields from the 

pyrolysis of tea waste. High heating rates caused a sharp increase in the yield of the liquid products 

due to heat and mass transfer limitations. Char yield decreased from 34.3 to 27.1% when heating 

rate increased from 5 to 700 °C/min. This decrease in char yield has been reported by many 

researchers (Uzun et al., 2010; Sensöz et al., 2006; Brunner & Roberts, 1980). 

 

Çetin et al. (2004) reported that very high heating rates result in melting of the char particles and the 

creation of smoother surfaces and spherical cavities. Brunner & Roberts (1980) investigated the 

effect of heating rate on pyrolysis of powdered cellulose and concluded that micropore volume and 

openings are highly affected by the heating rates deducing that high heating rate chars mainly consist 

of macropores.  The similar conclusion was also drawn by Çetin et al. (2004) for Eucalyptus biochars 

(Figure 2.11). According to Lua & Yang (2004), the BET surface area and micropore volume increase 

for increasing heating rate up to 10°C/min, but these values decrease for further increases in heating 

rate for vacuum pyrolysis of pistachio-nut shells (Figure 2.11). 
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(a) 

 
(b) 

 
 

Figure 2.10: SEM images of Eucalyptus chars produced at (a) low HR, (b) high HR (Cetin et al., 2004) 

(Granted permission from Elsevier Ltd.) 
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Figure 2.11: Effect of vacuum pyrolysis heating rate on the BET surface area of activated carbons 

from pistachio-nut shells (T: 500°C, P: 8kPaabs, HT: 2h) (Redrawn from Lua & Yang, 2004) 

 

  2.2.2.4 Hold time 

 

Hold time refers to the period of reaction. Lua & Yang (2004) reported that at longer hold times, 

more volatiles from char are released corresponding to an increase in fixed carbon content of the 

char. Lu et al. (1995) investigated the pyrolysis of sewage sludge and the influence of temperatures 

(450-850°C) and the effect of hold time (0.5-3h) on the BET surface areas of the chars.  At lower 

temperatures (550 and 450°C), a maximum hold time gave the highest surface area. The overall 

highest surface area was approached at 850°C and a 2h hold time. When hold time increased to 3h, 

surface areas decreased due to the blockage of pores by sintering at high temperatures and long hold 

time.  

 

  2.2.2.5 Particle size 

 

It is generally assumed that an increase in particle size causes greater temperature gradients inside 

the particle. Due to the temperature gradient, at a given time the temperature of the core is lower 

than the surface temperature (Şensöz, 2006; Beaumont, 1984). The cores of larger particles become 

carbonised but cannot be decomposed completely, which results in an increase in char yield but a 

decrease in liquids and gases. Smaller particles provide a greater reaction surface and a high heating 

rate, which allows a quicker decomposition of the biomass (Islam et al., 2010).  
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Pütün et al. (1996) reported that the highest char yield was obtained at the highest particle size (Dp 

>1.8 mm) from slow pyrolysis of sunflower bagasse at 500°C, but there was no significant effect on 

the liquids yield. In other research, olive husk, corn cob and tea waste were used to determine the 

effect of particle size on char yield at a temperature of 677°C. The biochar yields increased as the 

particle sizes of the biomasses increased from 0.5 mm to 2.2 mm. A substantial percentage yield 

increase, namely 66%, was observed for corn cob biochar (Demirbas, 2004). In the pyrolysis study of 

Mani et al. (2010), the biochar yield from wheat straw increased as the particle size increased from 

250 to 475 µm and remained the same for further increases in the particle size. However, some 

researchers observed that particle size exerts a negligible influence on yields (Ertas & Alma, 2010; 

Şensöz et al., 2006; Encinar et al., 1996; Pütün et al., 1996). 

 

Researchers agree that moisture, ash and volatile contents vary depending on the particle size of 

feedstock. Studies have shown that moisture content, volatile matter and fixed carbon decrease with 

reduced particle size, however ash content increases for smaller particle sizes for slow and vacuum 

pyrolysis (Mani et al., 2010; Garcìa-Peréz et al., 2002). Buah et al. (2007) mentioned that an increase 

in particle size increases the BET surface area for biochars from slow pyrolysis of municipal solid 

waste at various temperatures (400°C-700°C) with a heating rate of 10°C/min and a minimum hold 

time of an hour. 

 

It is suggested to remove fine particles to reduce the entrainment of fines in the process gas. 

Through entrainment, fine particles get retained in condensates and cause an increase in methanol 

insoluble material in the oil (Garcìa-Peréz et al., 2002). 

 

  2.2.2.6 Ash content 

 

Mineral matter of biomass in combination with lignocellulosic composition plays an important role in 

determining pyrolysis product yields. It has been reported that ash content suppresses the formation 

of tar (Gray et al., 1985). Raveendran et al. (1995) worked on different biomasses to understand the 

effect of ash content on pyrolysis product distribution. They concluded that char yield increases due 

to the demineralisation of coir pith, groundnut shell and rice husk, whilst biochar yields of wood and 

corn cob decrease. A substantial increase in yields of liquids was observed for above-mentioned 

biomasses once they were demineralised. For biomass with high lignin content, potassium acted as a 

catalyst for char gasification reacting with CO2 and H2O to form CO and H2 and thus decreases char 

yield (Raveendran et al., 1995). 
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Regarding temperature effect on ash content, Shinogi & Kanri (2003) showed that ash content 

increases with increasing temperature for all the feedstocks that were used (Figure 2.12). Elements 

such as N, C, H, O, S are volatilised during heating to varying temperatures, while inorganic salts are 

not volatilised, which is the main reason for increased ash content in the biochar. 

 

 
 

Figure 2.12: Effect of temperature on ash content (Redrawn from Shinogi & Kanri, 2003) 

 

Demirbas (2004) studied pyrolysis of corn cob and olive husk and concluded that biochar from olive 

husk was more reactive in gasification than the biochar from corn cob due to higher ash content of 

the former. It is reported that for wood based feedstocks; carbon begins to volatilise around 100°C, 

nitrogen above 200°C, sulphur above 375°C, potassium and phosphorus between 700°C and 800°C 

and magnesium, calcium and manganese volatilise above 1000°C during pyrolysis (Lehmann & 

Joseph, 2009).  

 

Knowledge of ash content of biochar is also important for reactor designs. The understanding of ash-

related issues such as fly-ash and ash-deposit formation or ash disposal, storage and utilisation are 

important when biochar is used for heat and energy production. Ash deposition could cause 

reduction in heat transfer, corrosion and blockage in boilers (Abdullah et al., 2010; Valmari et al., 

1999). 
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  2.2.2.7 Lignocellulosic composition 

 

The pyrolysis of lignocellulosic materials has been studied by many researchers (e.g. Çağlar, 2007; 

Demirbas, 2004; Fisher et al., 2002; Raveedran et al., 1996; Antal & Varhegyi, 1995). The 

lignocellulosic composition affects the nature and quality of the pyrolysis products. During the 

pyrolysis process, hemicelluloses, cellulose and lignin decompose to their monomer and monomer-

related molecules. Holocellulose (hemicelluses and cellulose) favours the production of furans and 

carbohydrates, whereas lignin leads to the formation of phenolics (Demirbaş, 2007). 

 

Raveendran et al. (1996) studied the pyrolysis characteristics of biomass components, namely 

Whatman cellulose, wood cellulose, alkaline lignin, acid lignin, hemicelluloses, and extractives. They 

observed that below 100°C moisture volatilisation takes place, extractives start decomposing at 

temperatures between 100 and 250°C, hemicelluloses decomposition predominantly occurs between 

250 and 350°C, while cellulose and lignin decompose mostly from 350-500°C and finally, at 

temperatures above 500°C it is predominantly lignin that decomposes. This shows that lignin is more 

resistant to thermal degradation than cellulose and hemicelluloses. It was concluded that cellulose 

decomposition rate was the highest with the lowest char yield (14 wt.%). Char yield from lignin was 

the highest, namely 45-50 wt.%. Hemicelluloses are thermally the most unstable, with with a char 

yield of 30 wt.%. 

 

Antal & Varhegyi (1995) mentioned that vapour-solid reactions are the only effective source for char 

production during pure cellulose pyrolysis. There are two pathways recognised for the pyrolysis of 

cellulose. The first pathway is the levoglucosan formation, especially from vacuum pyrolysis while the 

second pathway is glycolaldehyde formation. Levoglucosan is known to be polymerised to 

polysaccharides, which are then converted into char and then degraded to some lower molecular 

weight products (Kawamoto et al., 2003). Piskorz (1986) reported glycolaldehyde as a major product 

of fast pyrolysis. The increase in temperature favours the second pathway of cellulose pyrolysis, 

namely glucolaldehyde formation, due to the further decomposition of monomer units of cellulose to 

a two carbon and a four carbon fragments (Piskorz, 1986). 

 

Lv et al. (2010) studied the effect of cellulose and lignin contents on biomass pyrolysis and observed 

that the main product from cellulose was tar, whereas lignin contributed to the char yield. When 

cellulose content increases, the yields of char and tar decrease with an increase in gas yield. Cellulose 

forms more CO, whereas lignin has higher H2 and CH4 yields. Sugar cane bagasse (with cellulose as 
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the largest component) yielded 15.5 wt.% of char and rice-husk (with the highest lignin content) 

resulted in 47.9 wt.% of char yield from fast pyrolysis at 500°C. 

 

Worasuwannarak et al. (2007) reported that the large amount of water production during slow 

pyrolysis was due to the high content of hemicelluloses. On the other hand, the interactions between 

cellulose and lignin contributed to an increase in char yield but a decrease in tar yield. 

 

Table 2.2 shows the vacuum pyrolysis conditions and product yields of various studies. Comparing 

the results from the study of Garcìa-Peréz et al. (2007), softwood bark residue yielded higher 

amounts of biochar and gas, but a lower liquid phase yield than hardwood, because softwood bark 

contains larger amounts of lignin and extractives. Hardwood is rich in cellulose which can also be the 

reason for the higher liquid yield. In the study of Darmstadt et al. (2000), maple bark yielded higher 

char and liquid yields but lower gas yield than softwood bark residues. It is evident that the different 

lignocellulosic composition of the materials led to different yields of pyrolysis products.  

 

Garcìa-Peréz et al. (2002) also observed that pyrolysis runs in a large scale reactor yielded higher char 

and gas but less liquid phase than a lab scale reactor. The reactors used also affect the yields due to 

the heat and mass transfer phenomena which occur during the pyrolysis reactions.Using the same 

biomass, Boucher et al. (2000) and Garcìa-Peréz et al. (2007) obtained different char yields which 

could be explained by the use of batch mode against a continuous system.  

 
Table 2.2: Vacuum pyrolysis conditions and product yields of various biomasses (dry, wt.%) 

Material Conditions Char yield(%) Liquid Yield(%) Gas Yield(%) Reference 
Softwood 
bark 
residue 

Ṁ= 15 kg/h 
P= 15 kPaabs    

T=500°C 
27.6 45 27.4 

Garcìa-
Pérez et al., 

2007 Hardwood 
rich in 
fibres 

M= 4.2kg 
P= 8 kPaabs        

T=500°C         
HR=12°C/min 

26.2 53.9 19.9 

Softwood 
bark 
residue 

M=92 kg 
P= 14 kPaabs    

T=500°C 
35 44 20 Boucher et 

al., 2000 

Maple bark 
M=1 kg 

P=  4- 6 kPaabs 
T=501.85°C 

HR= 10°C/min 

31 63.4 5.6 

Darmstadt 
et al., 2000 Softwood 

bark 28.4 57.1 14.5 
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Material Conditions Char yield(%) Liquid Yield(%) Gas Yield(%) Reference 

Sugar cane 
bagasse 

M= 80g 
P= 8 kPaabs        

T=500°C         
HR=12°C/min 

19.4 62 17.6 
Garcìa-

Pérez et al., 
2002 M=20 kg 

P= 12 kPaabs                  
T= 530°C 

25.6 51.3 22.0 

 
2.2.3 Conclusion 

 
• Pyrolysis is the thermal decomposition of biomass into solid, liquid and gaseous products in the 

absence of oxygen. Vacuum pyrolysis is performed under reduced pressure instead of using an 

inert gas, leading to a decrease of gas production and an increase of bio-oil yield due to the 

limitation of secondary thermal decomposition. Pyrolysis process conditions and the feedstock 

characteristics affect the yields of pyrolysis products.  

 

• High temperatures lead to an increase in the gas yield, but a decrease in the biochar yield. The 

ash and fixed carbon contents in the biochar also increase with an increase in pyrolysis 

temperature, combined with a decrease in volatile matter content due to the further 

decomposition of the biochar. 

 

• The size and shape of biochar are affected by pressure. High pressures decrease the total 

surface area of biochar, while low pressures lead to swelling. Increasing pressure favours the 

formation of char. 

 

• High heating rates favour the polymerisation reactions and formation of volatiles but limit the 

char formation. Therefore, high heating rates increase the yield of liquid products but decrease 

char yield with lower surface areas. The porosity of biochar is also affected by heating rates. 

High heating rates enlarge the micropores, resulting in biochar production with a macroporous 

structure. 

 

• At longer hold times more volatiles are released from biochar, which leads to higher fixed 

carbon content of the biochar. Long hold times with low temperatures, lead to an increase in 

surface area of the biochar, while high temperatures and long hold times cause sintering 

thereby decreasing the surface area of the biochar. 
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• Large particle sizes favour the formation of biochar due to the incomplete decomposition of 

biomass particles. Smaller particle sizes provide more surface reactions, allowing a high heating 

rate which leads to faster decomposition of the biomass. Ash content increases with a decrease 

in particle size. 

 
• Ash content and lignocellulosic composition of a biomass increase the yield of the biochar. Also 

the increase in ash content favours the reactivity of the biochar in processes such as gasification. 

 
• Lignin is more heat resistant than cellulose and hemicelluloses. Higher lignin contents of the 

biomass favour the biochar yield, while higher cellulose contents lead to the formation of tar. A 

large amount of water production is attributed to high amounts of hemicelluloses. 

 

2.3 Biochar and its applications 
 

In this section, readers will be introduced to the term biochar and its potential for on carbon dioxide 

sequestration and soil amendment. It is important to classify biochar according to its soil amendment 

capacity, physical and chemical properties to evaluate its influence on soil chemistry. Here these 

properties are discussed with the aid of various studies done for soil amendment and adsorption 

purposes.  

 

 2.3.1 Biochar term 

 
The application of the chars determines the terminology of either charcoal or biochar. Charcoal is 

used as fuel in boilers, as a filter, reductant in metallurgy, colouring material, fuel for cooking and for 

the production of chemicals. Biochar differs from charcoal due to its environmental management, 

especially by means of its soil application and production of activated carbon (AC) (Lehmann & 

Joseph, 2009; Grønli & Antal, 2003). Biochar has high carbon (C) content; six C atoms bonded 

together in the absence of oxygen (O) or hydrogen (H). Biochars are purer forms of carbon than most 

graphite (Grønli & Antal, 2003). Graphite is an allotrope of pure C, a highly ordered, electrically 

conducting structure of graphene sheets of indefinite size, whereas biochars are imperfectly stacked, 

extremely reactive and a packed bed of carbonised char (Preston & Schmidt, 2006). Figure 2.13 

shows the structural changes with temperature. Low temperature applications (400°C) show the 

increased aromatic carbon with its highly amorphous structure (a). When temperature is increased 
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further (b), conjugated aromatic carbon sheets grow, and at very high temperatures such as 2500°C 

biochars present graphitic structures (c) (Lehmann & Joseph, 2009). 

 

 

 
 
 

Figure 2.13: Change in biochar structure due to temperature increase (Lehmann & Joseph, 2009) 

(Granted permission from Earthscan)  

 

Biochars from different biomasses and process conditions show differences in elemental composition 

(Table 2.3). Ultimate analyses of corn stalk char produced at 400°C and 500°C in the same reactor 

were compared. It can be seen that an increase in pyrolysis temperature leads to an increase in C 

content, as well as a decrease in H, N and O contents. If different pyrolysis conditions are compared, 

it is observed that corn stover char has higher C content when it is produced via slow pyrolysis and 

lower O and ash content than when produced by fast pyrolysis (Brewer et al., 2009). Despite the 

increase of temperature for slow pyrolysis, vacuum pyrolysis leads to the highest C content. 
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Table 2.3: Process conditions and elemental analysis of various biochars (dry, wt.%) 

 
Biochar Feedstock Process Conditions %C %H %N %O* Reference 

 

 
Sugar cane bagasse Slow pyrolysis                                  

T= 600°C, HR = 10°C/min 76.45 2.93 0.79 19.83 Inyang et al., 2010 
 

 
Sugar cane bagasse Vacuum pyrolysis                   

T= 500°C, HR= 12°C/min 85.60 2.90 1.30 10.2 Garcìa-Peréz et al., 
2002  

 
Corn stalk Slow pyrolysis                                  

T= 400°C, HR =10°C/min 61.51 3.55 3.23 31.41 Fu et al., 2010 
 

 
Corn stalk Slow pyrolysis 

T = 500°C, HR = 10°C/min 63.10 2.82 3.10 30.70 Fu et al., 2010 
 

 
Corn stover Slow pyrolysis                         

T=500°C, HR= 15°C/min 62.80 2.90 1.30 32.95 Brewer et al., 2009 
 

 
Corn stover Fast pyrolysis                           

T= 750°C 37.80 2.50 0.80 58.84 Brewer et al., 2009 
 

 
*by difference 
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The difference between char and the widely used term activated carbon is the preparation (Figure 

2.14). Activated carbons are prepared from carbon containing sources such as coal, lignite, wood, nut 

shell, petroleum and some polymers by thermal decomposition, followed by an activation step. The 

activation step can be achieved with steam above 800°C, carbon dioxide or their mixtures at higher 

temperatures (physical activation) or by using chemical activation agents such as ZnCl2, KOH, H3PO4 

(chemical activation) (Bansal, 1988; Lua & Yang, 2004). Activated carbons have been used for refining 

beet sugar, purification, remediation, filtration of drinking water, fuel storage, colour removal, etc. 

(Suzuki, 1990).  

 

 
 

Figure 2.14: Production of activated carbon 

 

The history of the carbon-rich solid products of pyrolysis (charcoal), goes back 38 000 years ago to 

Cro-Magnon men. Charcoal drawings indicate that charcoal was the first man-made material (Antal & 

Gronli, 2003). The application of char goes back to the Bronze Age when man used charcoal to smelt 

tin for the production of bronze tools (Antal & Gronli, 2003). As early as 1600 BC, wood chars were 

used for medicinal purposes in Egypt (Suzuki, 1990). Biochar has received the attention of the 

researchers due to the many advantages it provides. These advantages are namely; biomass waste 

management, carbon sequestration, energy generation and soil amendment (Roberts et al., 2010). 

 

Biochar can improve soil fertility, soil structure, nutrient availability, soil - water retention capacity 

and storage of carbon in soils for long term (Roberts et al., 2010). Soil amendment by biochar is not a 

new concept. Charcoal was reported to be the reason for high soil organic matter contents and soil 

fertility of anthropogenic soils in the centre of Amazonia which is known as Terra Preta de Indio or 

Amazonian Dark Earths (Glaser et al., 2002). Apparently, Terra Preta got this name due its black soil 

colour. The importance of this soil is that it has high soil nutrition and high carbon content. It is 

accepted that Terra Preta soils were created by human activities such as habitational activities or 

deliberate soil applications by Amerindians before arrival of Europeans in 1541. It is assumed that 
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Terra Preta soils were created between 500 and 8000 years ago. The discovery of carbon in Terra 

Preta has led researchers to further investigations of carbon added soils, especially the effects of 

carbon on fertilisation and possible contributions to the environment and agriculture (Lehmann & 

Joseph, 2009; Lehmann et al., 2006). 

 

 2.3.2 Biochar as CO2 sequester 

 

The increasing CO2 emissions have been a real challenge for the world. The reason for the increase is 

mainly the result of human activities. The total world CO2 emission is 31 129.9 million tonnes 

according to the BP 2010 statistical report. The CO2 emissions increased by about 19 200.4 million 

tonnes which is approximately 62% from 1965 to 2009. Considering South Africa, 1.5% of world CO2 is 

emitted by South Africa (12th rank). The increase of CO2 emissions in South Africa from 1965 to 2009 

was 75% which explains the need for renewable energy with little emission or without any emission. 

CO2 emissions in South Africa have decreased by 3% between 2008 and 2009 (British Petroleum, 

2010); this could be attributed to biomass utilisation and economical recession during the past years. 

According to statistics of UNFCCC for 1994, the energy sector (Eskom) releases most of the CO2 

emissions to atmosphere in South Africa, followed by the agricultural, industrial (Sasol) and waste 

sectors (IEA, 2009). 

 

Fossil fuel combustion releases approximately 5.5 gigatons of carbon (GtC) per year into the 

atmosphere and land-use changes contribute roughly 1.6 GtC per year. It has been estimated that 7.1 

GtC is released per year from human activities. Approximately, 3.2 GtC remain in the atmosphere, 

which is the reason for increasing atmospheric CO2 content. The oceans of the world can absorb 

approximately 2 GtC per year. Scientists are unsure about the remaining 1.9 GtC, but carbon sinks on 

land surface, which take up more carbon dioxide than is released each year is one of the possible 

explanations (Nasa Earth Science, 2010). 

 

According to Lehmann (2007), emission reduction can be 12-84% greater if char is used as soil 

amendment rather than off-setting fossil-fuel use by burning the char. Steiner (2007) also reported 

that if the demand for renewable fuels, via pyrolysis, was met in 2100, sequestration by biochar 

could exceed the current emissions from fossil fuels (5.4 GtC/year). Figure 2.15 displays the 

schematic of carbon sequestration via photosynthesis (slow) and biochar amended soil by fixing 

carbon aboveground and belowground with 20% net carbon withdrawal difference. Biomass from 

unused agricultural wastes releases CO2 and methane due to decomposition where as plants and 
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trees sequester CO2 via photosynthesis, leading to a neutral carbon balance. The stability of carbon 

depends on the feedstock and biochar production conditions, but if the stable carbon is 80% as 

estimated by Roberts et al. (2010), the rest of the carbon will be stored in the soil and during 

thousand year’s time, it will be released to the atmosphere. This process illustrates the carbon 

negative property of biochar from pyrolysis. 

 

 
 

Figure 2.15: Schematic of carbon sequestration (Lehmann, 2007) (Granted permission from Nature 

Publishing Group) 

 

Global biochar production varies around 0.05 to 0.3 GtC per year (Atkinson et al., 2010), which 

equates to sequestration by biochar to 0.7 - 4% of the carbon released from human activities on 

annual basis. The estimation of biochar’s ability to sequester carbon is 0.5-3 GtC per year, and at this 

level the global emissions would be sequestrated by roughly 5-30% on an annual basis (Biocharfarm, 

2010). 
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 2.3.3 Biochar as soil amendment 

 

The soil amendment consists of improving the quality of soils through the reinforcement of the soil 

structure, pH control, nutrient mobility and water retention. Physical and chemical characterisation 

of biochar gives an understanding of biochar properties. With this information, it can be concluded 

what kind of biochar can be added to soil and whether the former is efficient as soil amendment 

regarding its nutrient content. These properties include surface acidity, basicity, pH, cation exchange 

capacity, nutrient content, electrical conductivity and BET surface area of the biochar. 

 

  2.3.3.1 Surface chemistry of biochar 

 

The surface of biochars consists of spheroidal particles with graphene layers, which are piled up on 

top of each other by Van der Waals interactions and at the edges of the carbon layers heteroatoms, 

mostly H. Other than H, the most important element found is O in the form of various functional 

groups. Apart from H and O, combined S, N, Cl and other elements can be found (Biniak et al., 1997). 

The concept of acidic and basic surface oxides was first introduced by Steenberg in 1944. The 

importance of surface functional groups is due to their effect on adsorption of ions, point of zero 

charge, wettability and electrical contact resistance (Pandolfo & Hollenkamp, 2006). 

 

The existence of carboxyl groups, anhydrides, lactones, lactol groups and hydroxyl groups of phenolic 

character (Figure 2.16) gives carbon material its acidic surface chemistry (Boehm, 1994). Basic 

surface oxides, which give carbon material its basic surface chemistry, are considered to be more 

stable than acidic oxides. Figure 2.17 presents acid and basic groups which are grafted on the 

biochar’s surface (Montes-Moran, 2004). 
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Figure 2.16: (a) carboxyl groups, (b) carboxylic anhydrides, (c) lactone groups, (d) lactols, (e) single 

hydroxyl groups, (f) carbonyl groups, (g) quinine-like groups, and (h) xanthenes-like groups (Boehm, 

1994) (Granted permission from Elsevier Ltd.)  

 

 

 
 
 

Figure 2.17: Surface groups of biochars (Montes-Moran, 2004) (Granted permission from Elsevier 
Ltd.) 

 

Basic groups can be formed by heat treatment and exposure to oxygen at low temperatures. Papirer 

et al. (1987) reported that acidic functional groups are very sensitive to heat treatment such as 

pyrolysis. A carbon sample was exposed to O2 and then treated with heat via pyrolysis. Above 400°C 

pyrone-type structures were formed, which react as basic centres in acid-base reactions, and when 

temperature reached 800°C, the pyrone structures were destroyed. Surface oxides decompose to 

CO2 and CO on heating to high temperatures (Boehm, 2002). It is also well known that pH and oxygen 

content of carbon material are related. The higher the O content of the biochar, the more acidic an 

aqueous solution of the carbon material (Boehm, 1994). From this aspect, one would expect that 
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char from fast pyrolysis would be more alkaline than chars produced from low temperature pyrolysis 

such as slow and vacuum pyrolysis. 

 

Basal sites should also be considered due to different chemistry compared to edge sites. Basal sites 

are the imperfections due to disordered stacking of graphene layers such as non-aromatic rings or 

structural carbon vacancies. Basal and edge sites in the graphene layers are called active sites, which 

show a great tendency to chemisorb heteroatoms (Bandosz & Ania, 2006). Edge sites are more 

reactive than basal sites with unpaired electrons (Pandolfo & Hollenkamp, 2006). Boehm (1994) also 

reported that basic properties of carbon materials were due to π-electron system of basal planes. 

Montes-Morán et al. (2004) also mentioned that overall basicity is caused by oxygen-containing 

functionalities (chromene, pyrone, and quinone) and non-heteroatomic Lewis base sites, 

characterised by regions of π-electron density on the carbon planes. A Lewis base is a compound 

with an available pair of electrons, either unshared or in a π-orbital. A Lewis acid is a compound with 

a vacant orbital. The strength of a bond of an acid and a base makes the reaction possible and that 

strength is called their hardness or softness. Classification of acids and bases is shown in Table 2.4. 

 

Table 2.4: Classification of acids and bases (Reproduced from Alfarra, 2004)  

Hard bases Soft bases Borderline bases 

H2O, OH-, F-, CH3COO-, SO4
2-, Cl-, 

CO3
2-, NO3

-, RO-, RNH2, ROH, 

R2O 

R2S, RSH, RS-, I-, (RO)2P, CO, 

C2H4, C6H6, H-, R- 

ArNH2, pyridine, NO2
- 

Hard acids Soft acids Borderline acids 

H+, Li+, Na+, K+, Mg2+, Ca2+, Al3+, 

Cr3+, Fe3+, BF3, AlCl3, CO2, HX 

Cu+, Ag+, Pd2+, Pt2+, Hg2+, I2 Fe2+, Co2+, Cu2+, Zn2+, Cd2+, Sn2+, 

Sb2+, Sb3+, Bi3+ 

 

Hard bases are donor atoms, which have high electronegativity and low polarisability. They hold their 

valence electrons tightly, whereas soft bases have low electronegativity and high polarisability. Soft 

bases are easy to oxidise and they hold their valence electrons loosely. Hard acids are small acceptor 

atoms, which have a high positive charge density, low polarisability and low electronegativity. Soft 

acids are large acceptor atoms, which have low positive charge density, high polarisability and a low 

electronegativity. Hard acid atoms do not contain unshared pairs of electrons in their valence shells, 

whilst soft acid atoms contain unshared pairs of electrons (Alfarra, 2004). Hard acids and hard bases, 

or soft bases and soft acids, tend to bond and form strong acids and bases or weak acids and bases. 
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Other functionalities such as nitrogen can be introduced on carbon surfaces (Lahaye, 1997). Surface 

treatments on carbon surfaces, with the purpose of increasing their N content, resulted in 

enhancement of the surface basicity (Montes-Moran et al., 2004). Nitrogen can be introduced in two 

ways: 

 

• Reaction of a carbon with a N-containing reagent, e.g. ammonia, urea, melamine 

• Preparation of a carbon from a N containing precursor 

 

Figure 2.18 shows some of N-containing functional groups existing in biochars (Bandozs & Ania, 

2006). The nature of N-containing functionalities differs depending on the heat treatment, for 

instance amides and aromatic amines dominate at low temperatures (400-700°C), while pyridine and 

pyrol dominate at higher temperature (>700°C) (Seredych, 2008; Bandozs & Ania, 2006). It is known 

that the introduction of N increases the polarity of the carbon surface and its specific interactions 

with polar species via electrostatic forces or hydrogen bonding (Stöhr et al., 1991). Surface oxides 

can be determined by titration, infrared spectroscopy, X-ray photoelectron spectroscopy, thermal 

desorption spectroscopy and electrokinetic measurements (Boehm, 2001).  

 

 
 
 

Figure 2.18: N-containing functionalities (Bandozs & Ania, 2006) (Granted permission from Elsevier 
Ltd.) 

 

Carbon materials with acidic functional groups have cation exchange properties whereas basic 

functional groups have anion exchange properties due to faradaic reactions. Ion exchange properties 

have gained the attention because it is one of the most important driving forces in sorption (Biniak et 

al., 1997). From Table 2.5, which presents some surface acidity and surface basicity values, it can be 
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seen that char from pine sawdust produced at high temperature (800°C) had a lower surface acidity 

(0.32 mmol/g) but a higher surface basicity (0.36 mmol/g) than the chars produced at lower 

temperatures (400°C). The surface acidity of sewage sludge (5.18 mmol/g) is much higher than the 

surface acidity of wheat residue char (1.13 mmol/g), even though the temperatures at which they 

were produced were close to each other (400-500°C). This could be due to the difference of the 

feedstock used and the activation process. Comparing the surface acidity of the activated carbons, 

chemically activated carbon has a higher surface acidity (0.731 mmol/g) than steam activated carbon 

(0.21 mmol/g). 

 

Table 2.5: Surface acidity/basicity of various biochars 

Product Temperature (°C) Surface acidity 
(mmol/g) 

Surface basicity 
(mmol/g) Reference 

Pine sawdust char 800 0.32 0.36 Nowicki & 
Petrzak, 2010 

Carbon black n/a 0.21 0.605 
Hulicova-

Jurcakova et al., 
2010 

Commercial 
phosphoric acid 
activated carbon 

from wood 

n/a 0.731 0.123 Villacañas et al., 
2006 

Steam activated 
activated carbon 

from wood 
n/a 0.21 0.446 Villacañas et al., 

2006 

Wheat residue 
char 400 1.13 0.11 Chun et al., 2004 

Chemically 
activated sewage 

sludge carbon 
500 5.181 n/a Chen et al., 2002 

 

Hulicova-Jurcakova et al. (2010) modified commercial carbon blacks with N-containing compounds. 

International Carbon Black Association defines carbon black as a virtually pure elemental carbon that 

is produced by thermal decomposition of gaseous and liquid hydrocarbons (ICBA, 2011). Before 

modification, initial carbon black samples were oxidised with 50% HNO3 for 4h and washed with 

water to remove excess acid. After this oxidation treatment, samples were impregnated with urea or 

melamine, heated in nitrogen to 950°C and maintained at this temperature for 30 min. Afterwards, 

the samples were washed with boiling water to remove excess urea or melamine decomposition 

products and the acidity or basicity of the carbon surfaces determined. Results showed that 

oxidation of initial carbon caused 4 units decrease in pH due to higher surface area and increased 
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edges of graphene layers, which leads to more incorporated oxygen groups. It was found that N 

treatment made the surface character more basic. Urea treated carbon black contained fewer basic 

groups than melamine treated carbon black, expectedly the pH was lower. Modified carbon blacks 

showed four times higher sorption ability of anions than cations. Seredych et al. (2008) also reached 

the same conclusion with their research on activated carbons originating from wood. 

 

Regarding the pyrolysis temperature effect on surface chemistry, Chun et al. (2004) showed that 

total acidity of the chars from wheat residues decreased and basicity increased with increased 

pyrolysis temperature. The temperature range tested was between 300°C and 700°C. Chars produced 

at low temperature (300°C and 400°C) showed a more polar and organic nature than the chars 

produced at 500°C, 600°C and 700°C due to partial carbonisation. Even though basicity increased 

with temperature, the total number of functional groups decreased with temperature. Regarding the 

sorption ability of chars, benzene and nitrobenzene were chosen as models for neutral organic 

contaminants (NOC). Chun et al. (2004) showed that surface polar groups reduced the uptake of non-

polar NOCs (benzene) from water, which also affected sorption ability in combination with BET 

surface area of the chars. Carbons with a high amount of carbonyl groups among total acidic groups 

might improve the sorption of aromatic compounds via formation of electron acceptor-donor 

complexes (Chen et al., 2002). 

 

  2.3.3.2 pH of biochar 

 

Plants need nutrients to live, grow and reproduce. Plant roots require certain conditions to take up 

the nutrients from the soil. One of the conditions that are required is that the pH must be within a 

certain range for nutrients to be releasable from the soil (Hosier & Bradley, 1999). Soil pH is a 

measure of soil acidity (pH<7) or alkalinity (pH>7) by measuring the pH of a soil solution in water, or 

other solutions such as KCl, which is known as the active pH and that affects plant growth. 

 

The reasons for pH change in soils were discussed by Sir John Russell (1954) and summarised as; 

 

• Any substance in soil that is capable of changing their state by oxidation or reduction, 

• The concentration of CO2 in soil air, 

• Hydrogen-ion concentration which is caused by base-exchange of the electric double layer 

surrounding the particles. 
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One of the problems that farmers face is low harvest yields in acidic soils, which affect the agriculture 

and economy. The most important reasons for soil acidity are H and Al concentrations. At low pH Al, 

Fe and Mn become more soluble which causes toxicity (Sparks, 1995). At pH values lower than 5.5, 

Al(OH)3 begins to dissolve and release toxic aluminium hydroxy cations. As pH increases plants can 

suffer from nutrient deficiencies such as phosphate due to the decrease in solubility of phosphate. 

Soils can only have a pH above 8.5 if they contain enough exchangeable sodium for sodium 

carbonate formation (Russell, 1954; EPA, 2010). Different species of plants have different optimum 

conditions. Most plants perform best in a soil that is slightly acidic to neutral (pH 6 to 7).  

 

Table 2.6 displays the values of pH obtained from different solutions, namely water (pH(H2O)), 

potassium chloride (pH(KCl)) and calcium chloride (pH(CaCl2)). The pH(KCl) is lower than pH(H2O) up 

to 1.35 units. pH(H2O) gives an indication of active acidity, while pH(KCl) or pH(CaCl2) refers to 

reserve acidity (Ahmed et al., 2006). Since pH is due to the surface ionisation of the carbon and 

hydrolysis of the exchangeable base, one would suppose that the presence of salt would reduce 

hydrolysis, therefore the pH value is lower (Puri & Asghar, 1938). 

 

Table 2.6: pH values of different biochars produced at different temperatures 

Feedstock 
Final process 

T(°C) 
pH(H2O) pH(KCl) pH(CaCl2) Reference 

Acacia mangium 360 7.4 7.1 - Yamato et al,. 2006 
Oak wood - 8.5 8.4 - Cheng & Lehmann, 2009 

Black locust 350 5.35 4 - Cheng et al,. 2006 
Greenwaste 450 - - 9.4 Chan et al., 2007 

Eucalyptus deglupta 350 7 - - Rondon et al., 2007 
Poultry litter 450/550 9.9/13 - - Chan et al., 2008 
Pecanshell 700 7.5 - - Novak et al., 2009 

Wastewater sludge 550 -  8.2 Hossain et al., 2010 
Papermill waste 1/2 550 - - 9.4/8.2 Van Zwieten et al., 2010 

 

When the pH(H2O) of a carbon solution is very high or low, ions might be present and the 

electrostatic interactions between them and charged surface functional groups could be significant 

(Villacañas et al., 2006). Recent studies show that most biochars have an alkaline nature. The pH of 

biochar is related to feedstock nature and applied temperature in the production process. The effect 

of temperature (400, 600, 800, 900°C) and hold time (30 and 60 minutes) on pH(H2O) of biochar from 

sewage sludge is shown in Table 2.7. 
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Table 2.7: Effect of temperature and hold time on pH of biochar from sewage sludge (Bagreev et al., 

2001) 

Temperature (°C) Hold time (min) pH(H2O) 
400 30 7.7 
600 60 11.5 
800 60 11.3 
900 60 11.0 
 

The pH of sewage sludge biochar decreased with an increase in temperature. Lower temperature and 

hold time resulted in low pH but still alkaline in nature. The significant pH change between biochars, 

which were produced at low and high temperatures, can be explained with the change of chemical 

structures during pyrolysis process. As can be seen from Table 2.6, the lowest pH of 7 was found for 

biochar produced at 350°C but the nature of the feedstock varied. The same trend was observed by 

Chan et al. (2008) who worked on two biochars produced from poultry litter at 450°C and 550°C. The 

pH of the biochar produced at 450°C was 3 units lower than the pH of biochar produced at 550°C. 

 

Some researchers have studied the pH change in soil after addition of biochar. Novak et al. (2009) 

observed that when biochar from slow pyrolysis of pecan shells with a pH of 7.5 was added to acidic 

soil (40 t/h), the pH of soil increased from 4.8 to 6.3. Similarly, application of biochar (10 t/ha) from 

slow pyrolysis of sewage sludge with a pH of 8.2 increased soil pH from 4.3 to 4.6 units in the work of 

Hossain et al. (2010). Van Zwieten et al. (2010) produced two different biochars via slow pyrolysis at 

550°C from paper mill sludge. The first biochar feedstock contained 32.6% enhanced solid reduction 

sludge (ESRS), 18.8 wt.% clarifier sludge and 48.6% waste wood chips. Second biochar was produced 

from 19.5 wt.% ESRS, 11.2 wt.% clarifier sludge and 69.3 wt.% waste wood chips. The pH of the 

biochars was determined as 9.4 and 8.2, respectively. Addition of 2% of the first biochar to acidic soil 

(ferrosol, with a pH of 4.2) resulted in approximately a 2 unit increase while the second biochar 

increased the pH by 1.2 units. Addition of 1.5% of the first biochar to slightly basic soil (calcarosol, 

with a pH of 7.67) did not cause any changes in pH. However, the second biochar increased the pH by 

0.1 units. From this study, it could be concluded that alkaline natured biochars should be applied to 

acidic soils instead of alkaline soils due to interactions between biochar surface and soil. 

 

As pH increases, the degree of negative charge increases due to deprotonation or dissociation of H 

from functional groups (Kumada, 1987). This is known as the positive liming effect of biochar. 

Through the liming effect, aluminium toxicity is prevented in acidic soils such as high rainfall region 
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soils and soils in the humid tropics (Glaser et al., 2002). However, Chan et al. (2007b) could not find 

any correlation between the liming effect and pH of the biochar (Lehmann & Joseph, 2009).  

 

  2.3.3.3 Cation exchange capacity (CEC) 

 
Cation exchange capacity (CEC) is a calculated value to estimate the soils ability to attract, retain and 

exchange cation elements. It is reported in millequivalents per 100 grams of soil (meq/100g). CEC 

also refers to the reversible process of stoichiometric binding of cations to negatively charged 

macromolecular compounds in the plant body (Buscher et al., 1990). The sources of cation exchange 

are clay minerals, organic matter and amorphous minerals (Sparks, 1995). The chemical and physical 

processes more or less connected with ion exchange are; nutrient absorption by plants, swelling, 

shrinkage and leaching of electrolytes. In other words, the reasons for soil to have negative charge 

are permanent negative charges on clay, presence of minerals, which take place in isomorphous 

replacements, or hydrogen ions dissociation from hydroxyls attached to silicon atoms. 

 
Carboxyl, phenol or hydroxyl groups are attached to various groups in soil solution that dissociate 

hydrogen ions (Russell, 1954). Cation exchange capacity is related to the pH of soil, which is discussed 

in Section 2.3.3.2. As the pH increases, negative charge grows and positive charge decreases due to 

an increase in ionisation of the acid groups and decreasing proton addition to basic groups. The 

opposite change would be expected when the pH decreases. 

 
The electric charge on the soil particles is neutralized by an equivalent amount of oppositely charged 

ions and held to the surface by Coulomb forces. These ions are so-called exchangeable ions. The 

most common exchangeable cations in soils are Ca2+, Mg2+, H+, K+, Na+ and NH4
+. Ca2+ is generally the 

most abundant ion. In alkaline soils, Na+ is the dominant ion but as in acid saline or sulfate soils, the 

concentration of SO4
2- is very high (Bear, 1965). Coulomb’s law is also used to explain the selectivity 

of the ion exchanger for one ion over another. For instance, the selectivity of the hydrated Group I 

elements in the periodic table would be Cs+ > Rb+ > K+ > Na+ > Li+ > H+, because the smallest radius 

would be preferred, since the polarisation power would be greater. If the elements are with different 

valence, higher charged ion would be preferred; Al3+ > Ca+2 > Mg2+ > K+ (Sparks, 1995). 

 

Cation exchange reactions take place when the fertilisers such as ammonium sulphate, sodium 

nitrate, superphosphate of lime, potassium sulphate, sodium sulphate, magnesium sulphate, calcium 

oxide and calcium carbonate are used by farmers (Russell, 1954). It can be said that ion exchange can 

be considered as the most important process in the soils. 
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CEC of the soils in tropic regions is often low due to clay mineralogy (Glaser et al., 2002). Hossain et 

al. (2010) reported that application of biochar to the soil increased CEC by up to 40% in the study of 

Mikan & Abrams in 1995 (Lehmann& Joseph, 2009). Tyron (1948) found that CEC increased after 

addition of 45% hardwood and conifer biochars to sandy and loamy soils. Lower amounts of added 

biochar would significantly increase the base cation availability in the soil, which could lead to an 

increase of nutrients in soil (Glaser et al., 2002). Liang et al. (2006) mentioned that greater CEC could 

be reached with increasing degree of oxidation in soil organic matter or increasing the surface area 

for cation exchange sites. Glaser et al. (2003) suggested that major reasons for high CEC could be 

oxidation of aromatic carbon and formation of carboxyl groups. This same conclusion was made by 

Liang et al. (2006), reporting that surface oxidation led to a higher CEC per unit carbon. One would 

therefore expect that the ageing process of biochar would result in high CEC due to high surface 

acidity of biochar. 

 

 
 

Figure 2.19: Effect of production temperature on CEC of pine bark (PB), peanut hull pellets (PN), pine 

sawdust (SD), pine chip pellets (PC) and hardwood (HW) (Redrawn from Gaskin et al., 2007) 

 
Gaskin et al. (2007) investigated CEC values of chars from different biomasses, namely pine bark (PB), 

peanut hull pellets (PN), pine sawdust (SD), pine chip pellets (PC) and hardwood (HW) at different 

temperatures (Figure 2.19). The highest CEC was reached around 400°C by all the biomasses except 

pine bark. For all biomasses the lowest CEC was observed at temperature above 420°C. The reason 

for this behaviour might be explained by the changes in plant available nutrients with temperature 

(Lehmann & Joseph, 2009). Unfortunately, there is very little information in the open literature 

regarding the correlation between temperature and CEC. The CEC of soil organic matter (SOM, same 
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as humus) is generally between 150 to 300 cmol/kg (Sparks, 1995). In comparison to SOM, CEC 

values of biochars from pyrolysis are very low. 

 
  2.3.3.4 Nutrients 

 
The ash content of biochar is an indicator of nutrient concentration. Usually, the main minerals are 

silicon (Si), Calcium (Ca), Potassium (K), Sodium (Na), Magnesium (Mg) and smaller amounts of  

Sulphur (S), Phosphorus (P), Iron (Fe), Manganese (Mn) and Aluminium (Al). These elements are 

found in their oxides, silicates, carbonates, sulphate, chlorides and phosphate forms in the biochar 

(Ravedraan et al., 1995). Metals that exist in biomass are mainly organically bound and highly 

volatile. 

 

Previously (Section 2.2.2.6) the influence of the presence of inorganics on the product yields has 

been discussed, but it can also affect the biochar quality by plugging its pores and can cause a 

decrease in surface area, which is unwanted for activated carbon applications such as wastewater 

treatment. For soil amendment purposes, ash itself has already been used as a liming agent in soil 

and a fertiliser for nutrient deficient soils. Depending on the purpose of application, inorganics can 

be removed or not. 

 

Nitrogen is a constituent of all proteins, therefore it is an essential macronutrient for plant growth. 

This element is taken up as ammonium (NH4
+) or nitrate (NO3

-) ions. The absorbed NO3
- is rapidly 

broken down to NH4
+ by molybdenum-containing enzymes. The NH4

+ ions and synthesised 

carbohydrates are converted into amino acids in the leaves of the plant. Plant roots absorb more 

nutrients than they actually require. When excessive amounts of N are taken up, it renders large thin 

walled cells of the plant leaves, which are easily attacked by insect and fungus pests and ravaged by 

droughts and frosts. On the other hand, low N uptake gives leaves with small cells and thick walls and 

consequently, leaves are fibrous and light green in colour or even yellowishly, which affects 

photosynthesis (Russell, 1954; Hosier & Bradley, 1999). 

 

Phosphorus, as ortho-phosphate, takes part in a number of enzymic reactions that depend on 

phosphorylation. Plants absorb P as inorganic phosphate ions, especially as H2PO4
- ions and hence 

plants suffer from P deficiency in alkaline soils. The amounts of soluble phosphate ions decrease 

when the pH of the soil rises above 8. Excessive amount of phosphate uptake depresses crop yields. 

In plants with P deficiency, leaf tips look burnt and older leaves turn a dark green or reddish-purple 

colour (Russell, 1954; Hosier & Bradley, 1999). 
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Sulphur is an essential constituent of many proteins. It can also be found in the oils produced by 

certain plants. Plants absorb S in the form of sulphate (SO4
-2). Excessive amounts of S may acidify the 

soil. Lack of S causes younger leaves turn to yellow, which is also known as “tea yellows” (Russell, 

1954; Hosier & Bradley, 1999). 

 

Potassium is very important in the nutrition of the plant, playing a role in plant metabolism. It has an 

effect on the synthesis of amino-acids and proteins from NH4
+ ions, for instance, when plants grow in 

soil with high NH4
+ concentrations but low K concentration, it results in tissue death. In the 

photosynthetic process, K shortage in the leaf leads to low rates of carbon dioxide assimilation. 

Plants absorb K in ion form. Potassium deficiencies cause older leaves to wilt and to look scorched. 

Excess K in soil reduces the uptake of other cations by the crop which results in deficiencies of other 

cations (Russell, 1954; Hosier & Bradley, 1999). 

 

Calcium is essential for the growth of meristems, root tips and functioning of root tips. Ca deficiency 

causes stunting of the root system and also other substances to accumulate in the tissues, which 

harm the plant, making new leaves distorted. Ca deficiency generally occurs on very acid soils. Excess 

Ca limits the availability of Mg and K. Good Ca supply helps to neutralise the undesirable effects of an 

unbalanced distribution of soil nutrients that can be taken up by plants (Russell, 1954; Hosier & 

Bradley, 1999). 

 

Magnesium is required by all green plants due to its role in chlorophyll synthesis. It also plays a part 

in the transport of phosphate in the plant, for instance phosphate content of a crop can be increased 

by addition of Mg. Plants absorb Mg in ion form. Mg deficiency usually occurs on acid sandy soils. 

Older leaves turn yellow at the edge leaving a green shape in the centre of the leaf (Russell, 1954; 

Hosier & Bradley, 1999). 

 
Sodium is not really considered an essential nutrient. Some plants need Na for optimum growth, 

some benefit if there is Na available, some can tolerate part of their K supply being replaced by Na 

and some do not use Na. However, Na can help crops to grow in a potassium-deficient soil by 

preventing an accumulation of other cations which is toxic to the plant (Russell, 1954; Hosier & 

Bradley, 1999). 

 
Plants need very small quantities of certain elements which are called trace elements; aluminium 

(Al), boron (B), bromine (Br), chlorine (Cl), cobalt (Co), copper (Cu), fluorine (F), iron (Fe), manganese 

(Mn), molybdenum (Mo), nickel (Ni), rubidium (Rb), silicon (Si), titanium (Ti), vanadium (V) and zinc 
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(Zn). These elements are important because they are involved in key metabolic events such as 

respiration, photosynthesis, fixation and assimilation of some major nutrients. Trace metals of the 

transition metal group activate enzymes or are incorporated into metalloenzymes as electron 

transfer system (Cu, Fe, Mn and Zn) and also catalyse valence changes in the substrate (Cu, Co, Fe 

and Mo). Some of the trace elements contribute to protection mechanisms of frost-hardy and 

drought-resistant plant species (Al, Cu, Co, Mo, Mn and Zn) (Kabata-Pendias, 2000). 

 

Over long periods of time, nutrients are released to the solution phase through desorption, 

exchange, and dissolution from the solid mineral phase and biochemical mineralisation such as 

enzymatic hydrolysis, oxidation and reduction of the organic phase (Hedley, 2008). 

 

Table 2.8 shows the differences of available amount of elements and C/N mass ratio between 

different biomass derived biochars and raw organic amendments. It is important to mention that 

total element amounts of soil amendments do not always show their available amount in the soil and 

the literature is quite limited regarding the available amount of nutrients in biochars from various 

feedstocks. It is apparent that animal feedstock based biochars have higher P content (e.g. sewage 

sludge and poultry litter) than plant origins. Similarly N content of biochar from sewage sludge is 

much higher than biochar derived from plant and wood origins, especially higher than oak wood and 

green wastes. Regarding K, poultry litter has the highest content.  

 

C/N ratio is an indication of the ability of organic substrates to mineralise and release inorganic N 

when it is applied to soils (Lehman & Josephn, 2009). As can be seen from Table 2.8 the C/N ratios of 

the listed biochars have a wide range, from 7 to 759. Sewage sludge has the lowest C/N ratio and oak 

wood has the highest. Dias et al. (2010) and Topoliantz et al. (2005) reported C/N ratios of raw 

amendments such as poultry manure, coffee husk, manioc peels and sawdust. From this, it can be 

concluded that biochar has higher C/N ratio than other raw amendments such as poultry manure and 

manioc peels. Poultry manure and manioc peels have the higher N content and lower C/N ratios than 

wood origins. The difference in C/N ratios of two sawdusts is due to being different samples. For 

organic amendments with high C/N ratio, N immobilisation occurs; therefore plants cannot take up 

available N from the soil causing nitrogen shortages. However, the recalcitrant nature of biochar 

restricts N immobilisation (Kimetu et al., 2008). 
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Table 2.8: Concentration of major elements present in soil amendments 

 

 

 

 

Soil amendments 
C 

(g/kg) 
N 

(g/kg) 
C/N 

(wt ratio) 
P 

(g/kg) 
K 

(g/kg) 
Ca 

(g/kg) 
Production 

(°C) 
Reference 

Pine chip biochar 728 19.0 38.3 2.2 19.3 5.4 400 Gaskin et al., 2010 
Oak wood biochar 759 1.0 759.0 - 2.2 0.7 350 Nguyen & Lehmann, 2009 

Corn stover biochar 675 9.3 72.6 - 10.4 2.7 350 Nguyen & Lehmann, 2009 
Poultry litter biochar 380 20.0 19.0 25.0 22.0 

 
450 Chan et al., 2008 

Pine bark biochar 691 3.3 209.4 0.1 0.8 1.0 426 Gaskin et al., 2007 
Peanut hull pellets biochar 655 20.0 32.8 0.7 7.7 1.4 402 Gaskin et al., 2007 
Eucalyptus deglupta wood 

biochar 
824 5.7 144.6 0.6 - - 350 Rondon et al., 2007 

Green waste biochar 680 1.4 485.7 0.2 1.0 - 450 Chan et al., 2007 
Sugar cane bagasse biochar 710 17.7 40.1 - - - 500 Tsai et al., 2006 

Sewage sludge biochar 288 32.0 9.0 26.4 8.0 33 550 Yao et al., 2010 
Poultry manure 288 27.5 9.7 - - - - Dias et al., 2010 

Coffee husk 513 12.0 43.5 - - - - Dias et al., 2010 
Sawdust 454 9.5 49.6 - - - - Dias et al., 2010 

Manioc peels 356 24.2 14.7 - - - - Topoliantz et al., 2005 
Sawdust 521 5.13 102.0 - - - - Topoliantz et al., 2005 

Stellenbosch University  http://scholar.sun.ac.za



Masters of Science in Engineering (MScEng) 
 
 

46 
Chapter 2: Literature review 

Studies have demonstrated that application of biochar has many advantages including 

improvements in plant growth, organic carbon content in soil, exchangeable cations in soil, to 

reduce leaching of nutriens, water retention and microbial activity (Hossain et al., 2010; Chan et al., 

2007; Van Zwieten et al., 2010). Studies have also shown that the characteristics of biochar, which 

are essential to plant growth, can improve over time after its addition into soil (Cheng et al., 2006). 

However, researchers have highlighted the improvements in plant growth after incorporation of 

biochar with fertiliser into soil (Hossain et al., 2010; Chan et al., 2007). Nevertheless, high rates of 

biochar application (22 t/ha) with N fertiliser has caused a depression in grain yield (Gaskin et al., 

2010) which points out the importance of both biochar and fertiliser application rates into soil. 

Optimum biochar application rate has been suggested to be 10 t/ha by Van Zwieten et al. (2010) for 

wastewater sludge biochar from slow pyrolysis.   

 

Soil biota is essential for functioning soils (Verheijen et al., 2010), therefore interactions between 

soil and biochar leads to the question of the effects of biochar on soil biology.  Steiner et al. (2008) 

demonstrated that char application to soil increases microbial biomass as well as basal microbial 

activity. The increase in basal mictobial activity was associated with increased water holding capacity 

of soil along with increased microbial biomass. Steiner et al. (2008) also mentioned fertiliser addition 

along with biochar leads to further increase in microbial biomass. Rondon et al. (2007) reported an 

improvement in nitrogen fixation; hence increase in bean yields at biochar additions upto 50 g/kg. 

Most of the increase in biomass production by the N-fixing beans was caused by greater leaf 

biomass. Improved crop performance was a result of high values of P, K, Mg, Ca, Mo, and B 

availability and higher pH of biochar. However, biochar application at 90 g/kg caused a decrease in 

crop yields. Van Zwieten et al. (2010) reported biochar amendment along with fertiliser significantly 

increased microbial activity in soybean and radish in ferrosol. However, fertiliser and biochar 

amendment resulted in significant decreases in microbial activity in the calcarosol with wheat.  

 

Regarding toxic elements in biochar, there is not enough information in the literature. Table 2.9 

shows the comparison of the concentrations of toxic elements in biochar from sewage sludge and 

the concentration limits in biosolids given by the Environment Protection Agency (EPA). It can be 

seen that nickel is higher than the given limit, while the rest of the elements are lower. Toxic 

elemental content is highly dependent on the feedstock type. For instance Singh et al. (2010) 

showed that biochars from slow pyrolysis of Eucalyptus saligna at 400°C contained 1661, 21 and 4 

mg/kg zinc, copper and nickel, respectively. Poultry litter biochar, which was produced under the 

same conditions, contained less zinc but more copper and nickel elements. 
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Table 2.9: Toxic elemental concentration in sewage sludge biochar (Hossain et al., 2010)  

Elements Biochar 
(mg/kg) 

EPA limits 
(mg/kg) 

Arsenic 8.8 75 
Cadmium 4.7 85 
Chromium 230 3000 

Copper 2100 4300 
Lead 160 840 

Nickel 740 420 
Selenium 7 100 

Zinc 3300 7500 
 

Although biochar application to soil has many advantages, there are some negative effects of 

biochar as follows (Verheijen et al., 2010):  

 

• soil loss by erosion,  

• soil compaction during application,  

• risk of contamination due to polycyclic aromatic hydrocarbons,  

• heavy metals and dioxins that are present in biochar,  

• incorporation of the crop residue into the soil due to residue removal,  

• occupational health and fire hazards, and  

• reduction in earthworm survival rates at high biochar application rates such as 67 t/ha.  

 

However, these negative effects can be overcome with careful planning, engineering and 

management. 

 

  2.3.3.5 Electrical conductivity 

 
Electrical conductivity (EC) gives an indication of the salinity. Electric current conducted by salt 

solution under standard conditions increases as the salt concentration of the solution increases. EC 

is expressed in dS/m (Sparks, 1995). The EC of biochar gives an indication of total soluble mineral, N 

and S contents (Lehmann & Joseph, 2009). Soil salinity and sodicity may have an effect on the 

structure of the soil and crop yields (Sparks, 1995). 

 
Salinisation is one of the main causes of land degradation in arid and semi arid regions. Soluble salts 

accumulate in the soil when precipitation exceeds evaporation (Abdelfattah et al., 2009). Salinity 
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causes loss of stand, reduces plant growth and crop yields. It limits water uptake by plants by 

reducing the osmatic potential and total soil water potentials. It causes ion toxicity related to Cl and 

Na and changes the nutritional balances. Additional to these, salinity reduces soil organic matter 

decomposition, mineralisation of C, N, S, P and activity of soil microorganisms (Corwin & Lesch, 

2003; Rietz & Haynes, 2003). Salinity has compromised approximately 1 billion hectares, which is 7% 

of the earth’s land, 20% of the world’s irrigated lands and around 77 million hectares have been 

salinized due to human activities (Abdelfattah et al., 2009). Each crop tolerates different levels soil 

salinity; for instance corn can tolerate soils EC up to 17 dS/m,  while peanut only tolerates soil EC up 

to about 3.2 dS/m (Sparks, 1995). 

 

Regarding EC values of biochar and the effect of biochar addition to soils, literature is limited. As it is 

shown in Table 2.10, EC values of biochars used for soil amendment are between 0.4 to 3.2 dS/m. 

Comparison to other amendments, EC of biochars are lower than poultry manure and coffee husk, 

suggesting that salt concentrations of these materials are higher than charred biomasses. Wood 

biochar has the lowest EC value with lowest pH among biochars. The high EC value of greenwaste 

biochar could be due to its high K content. 

 
Table 2.10: EC and pH values of different soil amendments 

Soil amendments EC (dS/m) pH Reference 
Greenwaste biochar 3.2 9.4a Chan et al., 2007 

Biochar from Eucalyptus grandis 0.4 7.64 Dias et al., 2010 

Wastewater sludge biochar 1.9 8.2a Hossain et al., 2010 
Poultry manure 5.02 9.64 Dias et al., 2010 
Coffee husk 5.99 4.81 Dias et al., 2010 
Sawdust 0.43 3.48 Dias et al., 2010 
a pH measured in CaCl2, the rest is in water 

 

Hossain et al. (2010) compared EC values of soil after addition of biochar from wastewater sludge, 

fertiliser and a combination of biochar and fertiliser. Biochar and fertiliser increased the soil EC 

approximately 0.24 and 0.28 units, respectively. The biochar with fertiliser application gave the 

highest increase of 0.48 units. Fertiliser resulted in higher EC increase in soil, but it should not be 

forgotten that in high rainfall regions, chemical fertilisers could easily be washed away.  
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  2.3.3.6 BET and porosity 

 

The BET surface area of char is very important because, like other physico-chemical characteristics, it 

may strongly affect the reactivity and combustion behaviour of the char (Ioannidou & Zabaniotou 

2007). One of the important reasons for recent attention on activated carbons as double-layer 

capacitors is their high surface area properties (Seredych et al., 2008). 

 

Lua et al. (2004) studied the temperature effect on the BET surface area of pistachio nut shells. 

Increasing temperature from 250°C to 500°C improved the surface area due to the enhanced 

evolution of volatiles, which resulted in enhanced pore development in biochars. But it is widely 

known that very high temperatures, high pressure, high heating rate, high ash content and long 

residence times lead to loss of surface area due to plastic deformation, melting, fusion or sintering 

(Brown et al., 2006). Similarly, Petrov et al. (2008) studied the temperature effect on surface areas 

of activated carbons and showed that surface areas increase with temperature, but it starts to 

decrease above 950°C. They compared the surface areas of carbons produced from oil-palm shells at 

atmospheric pressure and under vacuum. The results are 278 m2/g and 368 m2/g respectively. Other 

research by Jia & Lua (2008) showed that the BET surface area of steam activated carbons pyrolysed 

under vacuum were higher than the ones produced in nitrogen (Figure 2.20). 

 

 
 

Figure 2.20: Effect of temperature on surface area (Redrawn from Jia & Lua, 2008)  
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For the nitrogen atmosphere, there was an increase in BET and non-micropore surface areas when 

temperature rose from 400°C to 500°C. From 500°C to 650°C, both surface areas decreased with an 

increase from 650°C to 750°C. Above 750°C, surface areas started to decrease with temperature. 

This change in surface areas with temperature supported the previous studies (Lua et al., 2004; Guo 

& Lua, 2001). They also studied the effect of hold time (30-180 min) on surface area, a 120 min hold 

time yielded higher surface areas. The optimum conditions for vacuum pyrolysis of oil-palm shells 

were found as 675°C and 120 min hold time, resulting in a BET of 988 m2/g. 

 

Another important feature of adsorbents is the size and distribution of micropores, mesopores and 

macropores; these determine the adsorptive properties of adsorbents. For instance, small pores will 

not trap large adsorbate molecules and large pores will not be able to retain small adsorbates, 

whether they are charged or uncharged molecules, polar or non-polar compounds such as gases 

(Ioannidou & Zabaniotou, 2007; Suzuki, 1990). Mesopores have high adsorptive capacities in liquid- 

solid adsorption processes where macropores are important for aeration, hydrology of the soil, 

movement of roots through soil and being habitats for soil microbes (Lehmann & Joseph, 2009). 

Table 2.11 displays the pore sizes in typical activated carbons. 

 
Table 2.11: Pore sizes in typical activated carbons (Particle density 0.6-0.9 g/cm3; porosity 0.4-0.6) 

 Micropore Mesopores or Transitional pores Macropores 
Diameter (nm) <2 2-50 >50 
Pore volume (cm3/g) 0.15-0.5 0.02-0.1 0.2-2 
Surface area (m2/g) 100-1000 10-100 0.5-2 
*Reproduced from Ruthven (1994) 

 
Materials with greater content of lignin e.g. grape seeds (49% lignin) and cherry stones (40% lignin) 

develop ACs with macroporous structure (Shopova et al., 1997), whereas materials with greater 

content of cellulose e.g. apricot stones (39.75% cellulose, 25.75% lignin) (Mohamed et al., 2010) 

almond shells (37.4% cellulose, 27.5% lignin) (González et al., 2005), develop more microporous 

structure (Ioannidou & Zabaniotou 2007). 

 
Lua et al. (2004) reported that pore size distribution to the micropore range make the biggest 

contribution to total surface area. Another study done by Li et al. (2008) investigated the effect of 

temperature on surface area and microporosity of coconut shell biochars via slow pyrolysis (Figure 

2.21). Increased temperature resulted in increased surface area and microporosity. Zhang et al. 

(2004) mentioned that high temperature application destroys the walls between adjacent pores, 

which result in enlargement of micropores to macropores.  
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Figure 2.21: Relation between surface area and microporosity (Redrawn from Li et al., 2008) 

 

   2.3.3.7. Conclusion 

 

The physico-chemical properties of biochar are very important due to its interactions with soil and 

plant once it is added to soil. With these interactions, biochar can change the properties of soil by 

means of enhancing the soil fertility and CO2 sequestration. Rather than enhancing soil structure, 

nutrient mobility and water retention, biochar provides accommodation for micro-organisms due its 

porosity. These physico-chemical properties are influenced by pyrolysis temperature as shown in 

Table 2.12.  

 

The acidic functional groups of the biochar surface are very sensitive to heat treatment. With an 

increased temperature, the pH of biochar from sewage sludge decreased. However, an opposite 

trend was observed with poultry litter. The pH of biochar is highly related to the feedstock used. 

Above 400°C, CEC decreased but that is an expected result due to the decrease in acid functional 

groups. EC would be affected due to the change in chemistry and ash content. In Section 2.2.2.6 it 

was concluded that ash content increases with temperature. Higher ash content would give a higher 

EC value due to electrical current carried by a biochar solution. 

 

 Regarding surface area, high temperatures result in a decrease in BET surface area. Longer hold 

times could result in a decrease in surface acidity due to the removal of more volatiles from the 
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biochar surface. Low temperatures and low hold times result in biochar with a more acidic nature. 

Depending on the temperature used, hold time would affect the surface area of the biochar. At 

lower temperatures, longer hold times give higher surface areas. But a combination of high 

temperature and long hold time would cause a blockage of the pores, resulting in a decreasing 

surface area of the biochar. Activation hold time also has an effect on the surface oxides of the 

biochar. Increased activation hold time increases the acidic functional groups on the char surface 

and the pH values. The increase in pH is due to basic functionalities which are stronger than acidic 

functionalities on the surface. 

 

Table 2.12: Effects of temperature (T) on surface acidity (SA), surface basicity (SB), pH, CEC, EC and 

BET surface area 

 
SA SB pH CEC EC BET 

T (+) (-) (+) (-)/(+) (-) 
above 400°C (+) (-) 

Above 750°C 
  

 

 2.3.4 Biochar as pollutant adsorbent 

 

In this section, the adsorption term, adsorption isotherm and kinetic models will be given. 

Methylene blue adsorption and the effect of contact time and initial solution concentration on 

adsorption capacity will be discussed. 

 
  2.3.4.1 Adsorption  

 
Atoms, ions and molecules present in a gasses or a liquid bulk adhere on the surface of a solid and 

this process is called adsorption. The term adsorption was introduced by Kayser in 1881 to describe 

the condensation of gases on free surfaces (Gregg & Sing, 1982). The solid used is called an 

adsorbent. The material in the adsorbed state is called adsorbate. The substance to be adsorbed 

(before it is on the surface) is called the adsorpt or adsorptive (Butt et al., 2003). 

 
There are two kinds of adsorption, namely physical adsorption and chemical adsorption. Physical 

adsorption (physisorption) is caused by van der Waals forces and electrostatic forces between 

adsorbate molecules and the atoms that compose the adsorbent surface. Chemical adsorption 

(chemisorption), on the other hand, involves formation of a chemical bond between sorbate 

molecules and the surface of the adsorbent (Table 2.13). 
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Table 2.13: Comparison of physical and chemical adsorption (Ruthven, 1994) 

Physisorption Chemisorption 
Low heat of adsorption High heat of adsorption 

Non specific Highly specific 
Monolayer or multilayer Monolayer only 

No dissociation of adsorbed species May involve dissociation 
Reversible Irreversible 

Rapid, non-activated Activated, may be slow 
No electron transfer although polarisation of 

sorbate may occur. 
Electron transfer leading to bond formation 

between sorbate and surface. 
 

Van der Waals forces can be classified into three groups: 

• Dipole-dipole forces, 

• Dipole-induced dipole forces: In this case one molecule having a permanent dipole will induce a 

dipole in a non-polar atom, such as neon, and 

• Dispersion forces. 

  2.3.4.2 Liquid adsorption isotherms 

 
When an adsorbent is in contact with the surrounding fluid of a certain concentration, adsorption 

occurs and after a while the adsorbent and fluid reach equilibrium. The relation between amount 

adsorbed (mostly in micropores), q and concentration in the fluid phase, C and temperature T is 

called the adsorption isotherm. Adsorption isotherms are described in many mathematical forms. 

Well-known isotherms are Freundlich, Langmuir and BET (Branuer-Emmett-Teller) adsorption 

isotherms (Suzuki, 1990). Even though these isotherms were established long time ago, they are still 

the most used adsorption isotherm equations due to simplicity to use and ability to fit a wide range 

of experimental data. These isotherms can be used in linear and non-linear forms in order to find 

adsorption parameters (e.g. adsorption rate) (Kinniburgh, 1986). 

 
Freundlich adsorption isotherm 

 
The isotherm was named after Freundlich in 1932. The equation takes the following form: 

 
𝑞𝑞 = 𝐾𝐾𝐶𝐶1/𝑛𝑛            (2.1) 

 
q: The amount adsorbed per unit mass adsorbent (mg/g) 

K: Equilibrium constant (function of temperature) (mg1-1/nL1/ng-1) 

n: Constant (function of temperature) 
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C: Concentration of the adsorbate in the liquid solution (mg/L) 

n is usually greater than unity. The larger the value, the more non-linear the adsorption isotherm 

becomes as its behaviour deviates further away from the linear isotherm; 

 

𝑞𝑞 = 𝐾𝐾𝐾𝐾           (2.2) 

 

The Freundlich equation is very commonly used for adsorption of organics from aqueous streams 

onto activated carbon. It is also applicable to gas phase systems onto heterogeneous surfaces in a 

narrow range of the adsorption data (Do, 1998; Kavitha & Namasivayam, 2007). Parameters of the 

Freundlich equation can be found by plotting log10 (q) versus log10 (C)  

 

  log10(𝑞𝑞) = log10(𝐾𝐾) + 1/𝑛𝑛 log10(𝐶𝐶)          (2.3)  

  

 Langmuir adsorption isotherm 

 

The Langmuir adsorption isotherm theory was introduced by Irving Langmuir in 1918 based on the 

theory of the adsorption of gases on plane surfaces such as glass. The assumptions of the Langmuir 

model are (Ruthven, 1994): 

 

• Surface is homogeneous; that is adsorption energy is constant over all sites and there is no 

interaction between molecules adsorbed on neighbouring sites. 

• Adsorption on the surface is localised, that is adsorbed atoms or molecules are adsorbed at 

definite, localised sites. 

• Each site can accommodate only one adsorbate molecule or atom. Therefore, maximum 

adsorption corresponds to monolayer coverage. 

 

This view is generally accepted for chemisorption and for physisorption at low pressures and 

moderately high temperatures (Shaw, 1970). However, liquid-phase adsorption is a more complex 

phenomenon than gas-phase adsorption. The reason is that the adsorbed molecules are not 

necessarily tightly packed with identical orientation in liquid phase adsorption. Furthermore, there 

can be other complications due to molecules of the solvent used and the formation of micelles from 

adsorbed molecules (Tien, 1994). The Langmuir isotherm is expressed as; 

 
 

Stellenbosch University  http://scholar.sun.ac.za



Masters of Science in Engineering (MScEng) 
 
 

55 
Chapter 2: Literature review 

𝑞𝑞
𝑞𝑞𝑚𝑚

= 𝑏𝑏𝑏𝑏
1+𝑏𝑏𝑏𝑏

          (2.4) 

 

qm: the maximum amount of adsorbate on the adsorbent (mg/g) 

b: Langmuir constant (L/mg) 

 
The larger the Langmuir constant is, the more adsorbate molecules cover the surface due to the 

stronger affinity of adsorbate molecules towards the surface (Do, 1998). 

 
The Langmuir equation is widely used to estimate maximum adsorption capacity on the adsorbent 

surface (El-Halwany, 2010). In gas adsorption, at intermediate pressures, and low temperatures 

multilayers start to form. For that case, BET isotherms are applicable. 

 
 Brunauer-Emmett-Teller (BET) adsorption isotherms 

 
Physical adsorption is not restricted to a monomolecular layer and it can continue to multimolecular 

layers due to forces acting in this process. The theory of Brunauer, Emmett and Teller is an extension 

of the Langmuir treatment to allow for multilayer adsorption on non-porous solid surfaces. The basic 

idea in the BET theory was to assume a Langmuir adsorption for each of the layers. Brunauer 

considered that there are five principal forms which are shown in Figure 2.22. 

 

 

Figure 2.22: BET types (Masel, 1996) (Granted permission from John Wiley & Sons, Inc.) 

 

Type I is the Langmuir type, roughly characterised by a monotonic approach to a limiting adsorption 

level that presumably corresponds to a complete monolayer. It is typical of adsorption in 

microporous solids, such as adsorption of oxygen on charcoal at -183°C. 
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Type II is very common in the case of physical adsorption and corresponds to multilayer formation. 

Usually the first concave part is attributed to the adsorption of a monolayer. For higher pressures 

more layers adsorb on top of the first one. Eventually, if the pressure reaches the saturation vapour 

pressure, condensation leads to macroscopically thick layers. The adsorption of nitrogen on iron 

catalysts at -195°C can be given as an example of this type. 

 

Type III is the type typical of water adsorption on charcoal where the adsorption is not favourable at 

low pressures because of the non-polar nature of the charcoal surface. This type is expected if the 

binding of the first monolayer to an adsorbent is weaker than the binding of the molecules to 

already adsorbed molecules. This is the case if heat of adsorption is lower than the heat of 

condensation. Adsorption of bromine on silica gel at 79°C can be given as an example of this type. 

 

Type IV and type V are the same as types II and III with the exception that they have a finite limit as 

the pressure tends to approach saturation vapour pressure due to the finite pore volume of porous 

solids. These types are considered to reflect capillary condensation phenomena in that they level off 

before the saturation pressure is reached and may show hysteresis effects. While adsorption of 

benzene on ferric oxide at 50°C is an example of type IV, adsorption of water on charcoal at 100°C 

can be given as an example of type V. 

 

The BET equation was originally developed by Brunauer, Emmett and Teller in 1938 and is able to 

describe type I to type III. The type III isotherm can be produced from the BET equation when forces 

between adsorbate and adsorbent are smaller than that between adsorbate molecules in the liquid 

state. The BET equation does not cover type IV and type V because one of the assumptions of the 

BET theory is the allowance for infinite layers of molecules to build up on top of the surface. The BET 

equation for liquid adsorption can be written as; 

        
 

𝑞𝑞
𝑞𝑞𝑚𝑚

= 𝐶𝐶/𝐶𝐶𝑠𝑠
(1−𝐶𝐶/𝐶𝐶𝑠𝑠)[1+(𝛼𝛼−1)(𝐶𝐶/𝐶𝐶𝑠𝑠)]         (2.5) 

 

qm: the amount of adsorption corresponding to a complete monolayer coverage (mg/g) 

Cs: saturated adsorbate concentration (mg/L). 

α: BET equation constant which is related to the difference in the heat of adsorption of the first layer 

adsorbate and that of the other layers. 
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Wastewater treatment by adsorption is a preferred technique due to its cost, simplicity of design, 

ease of operation and insensitivity to toxic substances (Ugurlu et al., 2007). It is important to 

emphasise that adsorption capacity is highly affected by physical nature of adsorbent pore, 

structure, ash content, functional groups, nature of adsorbate, its functional groups, polarity, 

molecular weight, size and solution conditions such as pH, ionic strength and adsorbate 

concentration (Wang & Zhu, 2007). 

 

  2.3.4.3 Adsorption kinetics 

 

The kinetics of an adsorption system provides information on solute uptake rate which is necessary 

for the design and evaluation of an adsorption system. It also deals with the chemical changes on 

the adsorbent surface in time. Various adsorption kinetic models have been suggested to explain 

adsorption data. The kinetic models which describe the whole adsorption process are based on the 

overall adsorption process, whereas adsorption models focus on specific adsorption diffusions, 

namely; external (film) diffusion, intraparticle (internal) diffusion and the adsorption between the 

adsorbate and the active sites of adsorbent (Qui et al., 2009). The latter is a rapid process, therefore 

the attention is drawn to film diffusion and intraparticle diffusion in order to estimate the rate 

limiting step of an adsorption process. The external diffusion determines the initial solute uptake 

rate and influenced by adsorption conditions such as agitation, initial solution concentration, and 

mass of the adsorbent, etc. (McKay et al., 1988). The internal diffusion of solute is governed by pore 

diffusion where the adsorbate diffuses through the fluid-filled pores or solid phase diffusion where 

adsorbate is transferred in its adsorbed form along the pore walls (McKay et al., 1988). Basically, it 

deals with the transport of molecules from the bulk of the solution to the solid phase. The 

intraparticle diffusion model was proposed by Weber & Morris in 1963 due to their studies 

suggesting solute uptake varies proportionally with t1/2 rather than contact time t (Mahmoodi et al., 

2011). 

 

𝑞𝑞𝑡𝑡 = 𝑘𝑘𝑝𝑝  𝑡𝑡1/2 + 𝐶𝐶         (2.6) 

 

where kp  is intraparticle rate constant (g/mg min1/2) and C is a constant (mg/g) which is proportional 

to boundary thickness. 
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The pseudo-first-order adsorption kinetic model was introduced by Lagegren to describe the kinetics 

of oxalic acid and malonic acid adsorption onto charcoal in 1898. This model is based on the 

adsorption capacity. It is presented as follows: 

 
𝑑𝑑𝑞𝑞𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑘𝑘1(𝑞𝑞𝑒𝑒 − 𝑞𝑞𝑡𝑡)         (2.7) 

 

where k1 is the rate constant of first order sorption (1/min), qe is the amount of solute adsorbed at 

equilibrium (mg/g) and qt is the amount of solute adsorbed on the surface of the adsorbent at any 

time t (mg/g). 

 

Integrating Equation 2.7 with the boundary conditions of t=0 to t=t and qt=0 to qt=qt and rearranging 

for linearized data plotting, the following is obtained (Ho & McKay, 1999); 

 

log(𝑞𝑞𝑒𝑒 − 𝑞𝑞𝑡𝑡) = log(𝑞𝑞𝑒𝑒) − 𝑘𝑘1
2.303

𝑡𝑡       (2.8) 

 

The adsorption kinetic rate law for a pseudo-second-order reaction model was proposed by Ho for 

adsorption of divalent metal ions onto peat in 1995 considering the cation exchange capacity of the 

peat between the functional groups on peat surface and divalent metal ions. Therefore, the 

assumption was that the adsorption may be second-order. The assumption was based on the fact 

that the rate limiting step of the adsorption process can be chemisorptions due to exchange of 

electrons between surface and cation. The rate equation can be written as follows (Ho & McKay, 

1999): 

 
𝑑𝑑𝑞𝑞𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑘𝑘2(𝑞𝑞𝑒𝑒 − 𝑞𝑞𝑡𝑡 )2         (2.9) 

 

where 𝑘𝑘2 is the rate constant of adsorption (g/mg min), under the assumption that adsorption 

capacity is proportional to the number of active sites occupied on the adsorbent (Ho & McKay, 

1999). Integrating the above equation and applying boundary conditions gives; 

 
𝑡𝑡
𝑞𝑞𝑡𝑡

= 1
ℎ

+ 1
𝑞𝑞𝑒𝑒
𝑡𝑡            (2.10) 

       

Where h is the initial adsorption rate (mg/g min). Both of the kinetic models have been widely used 

to describe the adsorption of methylene blue from aqueous solution by activated carbons (Tan et al., 
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2008; Gerçel et al., 2007; Hameed et al., 2007). However, Azizian et al. (2004) pointed out that the 

pseuodo-second-order model is more suitable for analysis with low initial concentrations of solute, 

while the pseudo-first-order model shows a better fit for the adsorptions of solutions with high 

solute concentrations. 

 

  2.3.4.4 Adsorption of methylene blue (MB) 

 

Dyes are aromatic organic compounds, including aryl rings which have delocalised electron systems. 

Dyes take their colours from the chromophore groups. Other existing structures are chromogens 

(aromatic structures) and auxochromes (ionising groups). Existence of auxochromes provides a 

bonding affinity that affects the adsorption capacity. It is estimated that over 7 × 105 tonnes of 

dyestuff is produced annually (Allen & Koumanova, 2005). Industries such as textile, leather, paper, 

plastics use dyes to colour their products and released wastewaters cause serious environmental 

problems (Rafatullah et al., 2010; Wang & Zhu, 2007). The coloured wastewater reduces light 

penetration (Ugurlu et al., 2007); is toxic to aquatic life, cancerogenic (Gercel et al., 2007) and 

damages the aesthetic nature of the water. 

 

MB has been studied by many researchers due to its toxicity and very high tinctorial value (less than 

1 ppm of dye is visible in solution). When it is ionised in solution it forms cations, which have a high 

affinity for negatively charged adsorbent surfaces and facilitate adsorption process (El Qada et al., 

2008). The chemical formula of MB is C16H18ClS.xH2O (Figure 2.23). The minimum pore diameter of 

an adsorbent that MB molecules can enter is 1.3 nm (Gaspard et al., 2007). 

 

 
 

Figure 2.23: Chemical structure of methylene blue 

 

Stellenbosch University  http://scholar.sun.ac.za



Masters of Science in Engineering (MScEng) 
 
 

60 
Chapter 2: Literature review 

Adsorption of MB has been studied on carbons from various biomasses such as bamboo, straw, 

coconut husk, corn cob, etc. (Rafatullah et al., 2010). Table 2.14 shows the adsorption capacity and 

BET areas of various adsorbents. 

 

Table 2.14: MB adsorption capacities and surface areas of biochars and activated carbons (AA: 

Activating Agent, T: Temperature, HT: Activation hold time)  

Adsorbent Activation Process 
BET surface 

area 
(m2/g) 

Adsorption 
capacity 

(mg MB/g) 
Reference 

Bamboo  - 327 319 Mui et al. 2010 

Rice husk  AA = ZnCl2, T = 650°C, 
HT = 2h 181 10 Sharma & Uma, 

2010 

Rejected tea  - 4.2 147 Nasuha et al., 
2010 

Rice hull  AA = H2SO4 n/d 60 El-Halwany, 
2010 

Pine cone  AA = H3PO4, T= 500°C, 
HT=1h  1402 ≈350 Duman et al., 

2009 

Commercial activated carbon  n/a 900 160 Karaca et al., 
2008 

Olive stones - 368 38 Petrov et al., 
2008 

Olive pulp - 396 46 Petrov et al., 
2008 

Peach stones AA =  H3PO4                     
T = 500°C, HT = 2h  1300 412 Attia et al., 2008 

 

The amount adsorbed depends on the experimental conditions such as solution temperature, 

solution pH, initial solution concentration and contact time, etc. For instance, the adsorption 

capacity was (147 mg MB/g) with an initial solution concentration of 500 mg MB/L in the study of 

Nasuha et al. (2010), whereas Duman et al. (2009) reached an adsorption capacity of 350 mg MB/g 

for 350 mg MB/L initial solution concentration.  In this project, the focus is on the effect of initial 

solution concentration and the contact time.  
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 Effect of initial concentration and contact time 

 
The adsorption capacity increases with an increase in the initial dye concentration. Authors attribute 

this to the increase in the mass transfer driving force of the concentration gradient to overcome all 

mass transfer resistances between the aqueous and solid phases. Tan et al., 2008 observed a slight 

decrease when the initial concentration was increased further. With increased contact time the 

amount of MB adsorbed onto carbon increases but at some point in time, it reaches a constant value 

where no more adsorption occurs. At this point, there is equilibrium between the amount of dye 

adsorbed from the solution and the amount of the dye desorbed from the carbon. The rate of 

adsorption decreases with time due to the gradual decrease in the driving force with time. Karaca et 

al. (2008) attributed the need of longer times to reach equilibrium for high initial concentrations to 

the lower intraparticle diffusion rate of dimeric forms and dimer de-aggregation. Table 2.15 

represents some of the studies done on the effect of initial concentration and contact time on 

adsorption capacity. 

 
Table 2.15: Effect of initial concentration and contact time on adsorption capacity 

Adsorbent 

Initial 
Concentration 

Range 
(mg/L) 

Contact 
time 
(min) 

Amount adsorbed 
(mg/g) Reference 

Coir pith 
carbon 10-40 40-120 1.6-5.4 Kavitha & Namasiyavam, 

2007 
Bamboo 

based 
activated 

carbon 

100-500 360-1440 100-420 Hameed et al., 2007 

Oil palm 
fibre 

activated 
carbon 

50-500 60-250 49-276 Tan et al., 2007 

 

2.4. General conclusion 
 

The advantages of converting unused agricultural residues into solid, liquid and gaseous products via 

pyrolysis in terms of energy source have already been recognised worldwide. The solid product has 

mostly been used for its energy or production of activated carbon. However, the area of biochar 

application is not limited to energy production. From an environmental point of view, biochar is a 
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potential product that could help to overcome the issues such as pollution, land degradation and 

unproductive harvest due to its significant physico-chemical properties.  

 

Biochar characteristics (e.g. surface area, porosity, cation exchange capacity, surface chemistry, and 

nutrients) determine the effects of biochar on soils. Recent studies have shown that biochar 

improves soil quality, structure and many other soil characteristics. On the other hand, negative 

effects are found to be avoidable with right planning and management. The physical and chemical 

characterisations of biochars have been focused on biochars from slow and fast pyrolysis. Therefore, 

there is a gap in literature regarding physico-chemical properties of biochars from vacuum pyrolysis 

for soil amendment purposes.  

 

There are a few studies which focus on biochar as soil amendment and adsorbent. Therefore, the 

adsorption abilities of biochars will be tested by methylene blue adsorption. Considering methylene 

blue adsorption (wastewater treatment), activated carbons are mostly used but if biochars from 

vacuum pyrolysis are also efficient as adsorbents, it would reduce the cost by eliminating the 

activation step. In order to investigate the efficiency of biochars as adsorbents, Langmuir and 

Freundlich isotherms will be preferred by controlling the parameters such as initial concentration 

and contact time. For kinetic studies pseudo-first-order, pseudo-second-order and intraparticle 

diffusion kinetic models will be used. The best known and recently established analytical methods in 

soil science community will be used for the characterisation of biochars as soil amendment. These 

methods include pH, EC, surface acidity/basicity, CEC and plant available nutrients determinations.  
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CHAPTER 3: MATERIALS AND METHODS 
 

3.1 Materials 
 

The sugar cane bagasse was supplied by the Sugar Milling Research Institute in Durban, while the 

black wattle and vineyard prunings were provided by the Department of Soil Science, Stellenbosch 

University. The black wattle prunings were obtained from a 20 year old tree in the Pappagaaiberg 

public park, Stellenbosch. The tree itself was not fertilised and the woody parts were around 5 years 

old. The vineyard prunings were supplied from Nietvoorbij, Institute for Viticulture and Oenology 

Research, Stellenbosch from their Merlot cultivar. The vines were fertilised but not sprayed with 

pesticide for at least 6 months before pruning, which indicates that the pesticides should be gone 

due to the rainy season. The age of the prunings was around one year.  

 

3.2 Preparation of materials 
 

All the materials were air dried at ambient atmosphere and stored indoors. Before vacuum pyrolysis, 

sugar cane bagasse and vineyard prunings were milled in a Retsch ZM200 mill and sieved through a 

JEL (J. Engelsmann) sieve machine for 10 minutes. The black wattle was milled with a Retsch SM100 

and put through a 10 mm sieve. The particle sizes used are shown in Table 3.1. For lignocellulosic 

composition determinations, +250 to -425 µm particle sizes according to British Standards DD 

CEN/TS-14780 were used. 

 

 The biochar samples were ball-milled to a particle size diameter of less than 1 mm with a Swissmade 

A10 Analysmühle Kinematica before their physical and chemical characterisation.  

 

The size distribution of black wattle prunings is shown in Figure 3.1 due to its different particle size 

to sugar cane bagasse and vineyard prunings. For size distribution, the coning-and-quartering 

method was used to get a truly representative sample. The sample was shaked in a Retch AS200 

shaker for 30 minutes. 
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Figure 3.1: Size distribution of black wattle prunings 

 

3.3 Vacuum pyrolysis procedure 
 

The reactor consisted of a quartz tube and six, insulated and computer controlled, heating elements. 

The length of quartz tube was 1 m with diameter of 60 mm and the raw biomass was placed in the 

middle of the quartz tube. The reactor was connected to five condensation traps and a vacuum 

pump. The exit pipe from the reactor was maintained at 100-120°C to limit condensation before the 

first condenser. The vacuum pump removed the vapours and gas products from the reactor through 

the traps (condensers) and the condensable gases were condensed in the traps and recovered as 

liquid. The first condenser was kept at room temperature, the second and third at -10°C and the last 

two at dry ice temperature, -78°C as shown in Figure 3.2. The final pyrolysis temperature, heating 

rate and pyrolysis duration were controlled by a control system. Pressure was checked during the 

experiments and kept below 10 kPaabs. The set-up was cooled down for 2h under vacuum after a 1 

hour pyrolysis run, until the set-up was cold enough to disassemble. The set up was disassembled 

and condensers and solid residue were weighed. The solid residue (biochar) was stored in 

hermetically sealed containers to prevent moisture entering.  The pyrolysis experimental conditions, 

particle size and mass of the biomasses used are shown in Table 3.1. 
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Figure 3.2: Vacuum pyrolysis experimental set-up 

 

Table 3.1: Pyrolysis experimental conditions (Tf: Final temperature, HR: Heating rate, P: Pressure) 

Biomass Size (µm) Mass (g) Tf(°C) HR (°C/min) P (kPa)abs 

Vineyard 425-850 40 460 17 8 

Sugar cane bagasse 425-850 40 460 17 8 

Black wattle +850 40 475 15-13 8.5 

 

The experimental conditions were chosen with the help of previous results on the pyrolysis of sugar 

cane bagasse (Carrier et al., 2011). Particle diameters between 425-850 µm were used. 

Nevertheless, it has been shown that a particle size of < 500 µm do not exert any influence on the 

rate of the process (Demirbaş, 2007). Larger particle sizes were used for black wattle in order to 

observe the effect of particle size on product yields. The temperature between 460 and 500 °C was 

the optimal temperature for production of biochars with high BET surface areas for a heating range 

of 8 - 24 °C/min. During experiments, the heating rate in the pyrolysis of black wattle could not be 
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controlled accurately due to problems with the control unit. However, it was decided to analyse 

biochar from pyrolysis of black wattle. The pyrolysis product yields (Y) were calculated on mass, dry 

and dry-ash free basis, using the following equations: 

On a weight basis, 

 

𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑓𝑓

𝑚𝑚0
× 100         (3.1) 

 

𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅 +𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑚𝑚0
       (3.2) 

 

𝑌𝑌𝑔𝑔𝑔𝑔𝑔𝑔+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 100 − 𝑌𝑌𝑐𝑐ℎ𝑎𝑎𝑎𝑎 − 𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙        (3.3) 

 

𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅 ×𝑊𝑊𝑊𝑊 2

100 +(𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )×𝑊𝑊𝑊𝑊 1
100

𝑚𝑚0
× 100     (3.4) 

 

𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏−𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅 +𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑚𝑚0
      (3.5) 

 

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −𝑚𝑚0×𝑊𝑊𝑊𝑊 𝑜𝑜

100
𝑚𝑚0

× 100      (3.6) 

 

where mf (g) is the mass of the biochar, m0 is the initial biomass mass, AC0 is the ash content of initial 

material (% wt.), WC0(% wt.) is the water content of initial material. WC1 and WC2 are the water 

contents of water phase and tarry phase, respectively.  

 

The liquid is considered as a mixture of water and tarry phases. The water phase is made up by the 

initial water present in the raw materials and the water produced during pyrolysis. The tarry phase is 

collected from the first condenser at room temperature. The losses are the ones that cannot be 

recovered from the pyrolytic run. The standard deviations of experiments were calculated with the 

formula which was presented by Hugo (2010). The standard deviation calculations were based on 

measurement errors (Appendix A). 

 

On a dry and ash-free basis, 

 

𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑚𝑚
𝑚𝑚0−𝑚𝑚0×𝐴𝐴𝐴𝐴0/100−𝑚𝑚0×𝑊𝑊𝑊𝑊0/100

× 100          (3.7)                  
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𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏−𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 −𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑚𝑚0−𝑚𝑚0×𝐴𝐴𝐴𝐴 0
100 −𝑚𝑚0×𝑊𝑊𝑊𝑊0/100

× 100      (3.8) 

 

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −𝑚𝑚0×𝑊𝑊𝑊𝑊0/100

𝑚𝑚0−𝑚𝑚0×𝐴𝐴𝐴𝐴 0
100 −𝑚𝑚0×𝑊𝑊𝑊𝑊0/100

× 100      (3.9) 

 

𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏−𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤       (3.10) 

 

The ash devolatilisation percentages were calculated with the following equation: 

 

𝑌𝑌𝑎𝑎𝑎𝑎ℎ  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑚𝑚0×𝐴𝐴𝐶𝐶0

100 −𝑚𝑚𝑓𝑓×
𝐴𝐴𝐶𝐶𝑓𝑓
100

𝑚𝑚0×𝐴𝐴𝐶𝐶0
100

       (3.11) 

 

where ACf is the ash content of the biochar.  

 

The same equations were used for yields on a dry basis, only excluding the moisture contents. 

 

3.4 Analytical methods for chemical and physical characterisation 

 of biochar 
 

 3.4.1 Moisture and ash content 

 

The moisture content was determined according to the standard method of NREL/TP-510-42621. 

The ash content was determined according to the standard method of NREL/TP-510-42622. The 

biomass and biochar samples were scaled between 0.5-2.0 g for both analyses. The samples were 

heated in air to 105°C for 24 hours to dry. This temperature is high enough to eliminate free forms of 

water, with no loss of organic matter or salts. For the determination of ash content samples were 

heated to 575 ± 25 °C for 4 hours. The residues were weighed after they reached a constant weight. 

The ash and moisture content determinations were all done in triplicate. The following equations 

were used: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(%) = �𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑 �
𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑
�  × 100    (3.12) 
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𝐴𝐴𝐴𝐴ℎ(%) =  𝑚𝑚𝑎𝑎𝑎𝑎ℎ 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� × 100      (3.13) 

 

where mwet is the weight of the sample before it was placed in the oven and mdry is the weight after 

it was taken out of the oven. In Equation 3.13, mash is the weight of the ash and moriginal sample is the 

weight of the original sample which was put in the crucible. 

 

The water contents of the tarry and pyrolytic water phases were determined by using a Metrohm 

Karl-Fisher Titrino, according to the standard method ASTM D1744. Between 0.02 to 0.2 g of sample 

was analyzed for water content by using Hydranal composite 5. 

 

 3.4.2 Total, major and trace elemental analyses 

 

Major (Na2O, MgO, SiO2, K2O, CaO, TiO2, MnO, P2O5, Al2O3, Cr2O3 and Fe2O3) and trace elements (Cr, 

Ni, Zn, As, Ga, Co, V, Rb, Sr, Y, Zr, Nb, Ce, Nd, La, Th, U, Ba, S and Cl) of the raw materials were 

determined by X-ray fluorescence (XRF, PANalyticalAxios). The total contents of C, N and H were 

determined by Eurovector Elemental Analyser. The O content was determined by subtracting the 

ash and C, N, H and S contents from the total mass of the sample. Elemental analyses were done for 

both raw biomasses and the biochars. 

 

 3.4.3 Proximate analyses 

 

The proximate analyses of the biomasses were done using a thermogravimetric method to 

determine water, volatile matter, fixed carbon and ash contents. TGA analyses were performed with 

a Perkin Elmer Pyris TGA 7. The sample was heated from 25°C to 600°C at 10°C/min and then from 

600°C to 900°C at 20°C/min under nitrogen. After 7 minutes, oxygen at a 15 mL/min flow rate was 

introduced for the combustion stage. 

 

 3.4.4 Ethanol and water extractives 

 

The ethanol-cyclohexane and water extractives were determined according to TAPPI Standard T-264 

om-88. Firstly, approximately 5 g of biomass sample was put in a thimble, and then placed in a soxlet 

apparatus. A 200 mL mixture of ethanol (CH3CH2OH, 99.9% purity) (United Scientific Ltd.) and 

cyclohexane (C6H12, 98% purity) (Merck Chemicals Ltd.) was prepared in a ratio of 1:2. The 200 mL 
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solvent mixture was poured into a round bottom flask and placed in an Electrothermal ME 468 

heating mantel. The heating mantel were switched on and left to distil overnight. After distillation, 

the solvent was evaporated until the flask was dry and the flask was placed in an oven at 105°C until 

it was dry. Afterwards, the flask was weighed. The following equation was used to calculate ethanol-

cyclohexane extractives: 

 

𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 (%) =

 �𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

× 100� × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝐴𝐴𝐴𝐴ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓    (3.14) 

 

where mextractives is the weight of the extractives in the flask and mwetsample is the weight of the sample 

which was placed in the thimble. The MC factor is moisture content correction factor and calculated 

according to the following equation: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1
�𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤
��      (3.15) 

 

where mdry and mwet are the same as Equation 3.12. The ash correction factor was calculated by 

using Equation 3.16. 

 

𝐴𝐴𝐴𝐴ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  1
(1 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�   (3.16) 

 

After ethanol-cyclohexane extractives determination, the thimble was used for water extractives 

determination. The same procedure and equations (Equation 3.13, 3.14 and 3.15) were used as for 

the ethanol-cyclohexane extractives procedure but using 220 mL distilled water instead of 200 mL of 

the above-mentioned solvent. At the end of the procedure, the sample in the thimble was extractive 

free and air dried overnight in a switched-on fume cabinet for determination of lignin. 

 

 3.4.5 Klason lignin determination  

 

The Klason lignin was determined according to the standard method of NREL/TP-510-42618. 

Approximately 0.3 g of dry and extractive free sample was measured and 3 mL of 72% sulphuric acid 

(H2SO4) was added while stirring. The primary hydrolysis was performed at room temperature for 2 

hours with stirring every 10 minutes. Two hours later, the sample was diluted to 3% sulphuric acid by 
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the addition of 84 mL of distilled water. Afterwards, the sample was transferred to an autoclave flask 

and autoclaved in an Eastern EA-630 vertical autoclave for 1 hour at a temperature of 120°C and 

0.12 MPa (secondary hydrolysis). After secondary hydrolysis, the sample was transferred through a 

filtering crucible with 200 mL boiling water to wash off any residual reagents and sugars. The solid 

residue left in the filtering crucible was placed in the oven at 105°C overnight to dry and later on it 

was weighed. The filtering crucible was placed in a muffle furnace for a minimum of 4 hours at 575 ± 

25 °C to determine the ash content left in the lignin. The acid insoluble lignin (AIL) was calculated on 

a dry and ash free basis with Equation 3.17: 

 

𝐴𝐴𝐴𝐴𝐴𝐴 (%) = � 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑚𝑚𝑎𝑎𝑎𝑎ℎ 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� × 100� × 𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   (3.17) 

 

where mAIL is the mass of the residue left in the filtering crucible and mash is the weight of the ash 

after the filtering crucible has been placed in the muffle furnace and the MC factor was calculated by 

using Equation 3.15. 

 

 3.4.6 BET specific surface area 

 

The BET surface area is an indication of the sorption capacity of a solid. The surface areas of the 

biochars were determined by using multipoint Brunauer, Emmett and Teller (BET) analysis on a 

Micrometrics ASAP2010 (Accelerated Surface Area and Porosimetry) system. For an accurate 

measurement, adsorbent surfaces should be prepared. Adsorbent surfaces are covered with an 

adsorbed film, which should be removed before analysis. This film can be readily removed if the 

solid is maintained at high temperature under a vacuum due to weak Van der Waals forces between 

the film and the adsorbent surface (Allen, 1997). Therefore, the first step in the procedure is the 

degassing of the adsorbent surface. A mass of between 0.2 and 0.5 g of sample was degassed on a 

VacPrep 061 system firstly at 90 °C for an hour, then for a minimum of 24 hours at 250 °C under a 

pressure between 6.7-9.3 Paabs.  

 

Afterwards, the sample was introduced in the gas adsorption surface area analyser to study the 

adsorption of nitrogen at 77 K. The equilibrium points inside the 0.00-0.22 P/P0 range were 

evaluated by the BET equation in order to determine the surface area of the biochar (Brunauer et al., 

1938). From BET analysis, not only surface areas are determined but, one can get information on the 

porosity of the biochar such as pore diameter, micropore, mesopore and macropore volumes and 

areas, which have great importance in sorption processes. The pore volume was taken at the 
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P/P0=0.982 single point. The pore size distribution was calculated by the BJH (Barret-Joyner-Halenda) 

method (Barrett et al., 1951) using the Harkins and Jura equation for multilayer thickness (Harkins & 

Jura, 1944). 

 

 3.4.7 pH determination 

 

The determination of pH indicates the active (pH in water) and reserve (pH in KCl) acidity in the 

biochar. pH of a biochar can have a substantial effect on soil by changing the soil pH, therefore it 

could be a solution for soil acidity and aluminium toxicity. Potassium chloride solution was used 

because KCl could release the exchangeable protons from biochar into the solution due to its ionic 

nature.  Two grams of biochar was shaken with 40 mL distilled water or 1 M KCl (99% purity) (Merck 

Chemicals Ltd.) solution for 30 min on an IKA®KS 260 basic shaker. The suspension was allowed to 

stand for 10 min before measuring the pH with a pH electrode, 827pH Lab, Metrohm (Cheng & 

Lehmann, 2009). The pH values of raw materials were measured with the same procedure in a 

distilled water suspension. 

 

 3.4.8 Cation exchange capacity (CEC) 

 

The determination of CEC gives an indication of the abundance of negatively charged sites on the 

biochar that can attract, retain and exchange cation elements. The CEC of biochars were determined 

according to the method of CEC determination in alkaline soils (Rhoades, 1982). Firstly, biochar was 

saturated with a buffered solution of 0.1 N NaCl (99.9% purity) (Hopkin and Williams Ltd.). For 

saturation, 1 g of biochar was shaken for an hour with 20 mL of saturating solution (0.4 N NaOAc-0.1 

N NaCl, 60% ethanol solution adjusted to pH 7.0 using 3 M HCl) in a 30 mL centrifuge tube. Then the 

tubes were centrifuged at 12 000 rpm in an Eppendorf AG 22331 Centrifuge 5810R to separate the 

biochar from the liquid and the supernatant was discarded. This procedure was repeated another 

three times to ensure complete saturation of cation exchange sites with Na. The Na/Cl molar ratio of 

saturating solution was determined by AAS (Na) (Varian AA 240FS Fast Sequential Atomic Absorption 

Spectrometer) and ion chromatography (Cl-) (Dionex DX-120 Ion Chromatograph). Secondly, the Na 

was extracted with Mg. Twenty millilitres of extraction solution [0.25 M Mg (NO3)] was added to Na 

saturated biochar and shaken for an hour. The suspension was centrifuged and the supernatant 

decanted into a 100 mL volumetric flask. This procedure was repeated twice with fresh extracting 

solution to ensure that all Na was exchanged and extracted. The collected supernatants were made 

up to 100 mL with distilled water. The Na and Cl concentrations in the solutions were determined 
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using AAS and ion chromatography, respectively. The CEC (cmolc/kg) was calculated by determining 

the total amount of exchangeable Na as follows: 

 

𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑡𝑡 − �(𝐶𝐶𝐶𝐶𝑡𝑡) − (𝑁𝑁𝑁𝑁
𝐶𝐶𝐶𝐶

)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �    (3.18) 

 

𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) =

�𝑁𝑁𝑁𝑁𝑡𝑡  𝑚𝑚𝑚𝑚/𝐿𝐿 × 0.1 𝐿𝐿
23 𝑚𝑚𝑚𝑚 /𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� −

�𝐶𝐶𝐶𝐶𝑡𝑡  𝑚𝑚𝑚𝑚/𝐿𝐿 × 0.1 𝐿𝐿
35.45 𝑚𝑚𝑚𝑚 /𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� ��
𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝐿𝐿 ×1𝐿𝐿

23 𝑚𝑚𝑚𝑚 /𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� ÷ � 𝐶𝐶𝐶𝐶  𝑚𝑚𝑚𝑚 /𝐿𝐿×1𝐿𝐿

35.45 𝑚𝑚𝑚𝑚 /𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
��
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐
𝑘𝑘𝑘𝑘  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎

= 𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)/1𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎    (3.20) 

 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐
𝑘𝑘𝑘𝑘  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐/𝑘𝑘𝑘𝑘 ÷ 10       (3.21) 

 

where Nat and Clt is the Na and Cl concentrations in the final solution after the extraction step. 

Sodium acetate and hydrous magnesium nitrate were supplied from Merck Chemicals Ltd. with a 

purity of 99% and 99.5%, respectively. 

 

 3.4.9 Surface acidity and alkalinity 

 

This determination provides an indication of the total surface acidity and alkalinity of the biochar. 

This method is based on the Boehm Titration method, which is well-known for determination of 

surface oxides on carbon material surfaces (Boehm, 1994). Surface acidity was determined by 

shaking 0.15 g of biochar with 15 mL of 0.1 N NaOH for 30 h. The slurry was filtered through 

Whatman No 2 filter paper. An aliquot of 5 mL of the NaOH filtrate was transferred to a 10 mL of 0.1 

N HCl solution which neutralizes the unreacted base. The solution was back-titrated with 0.1 N 

NaOH in the presence of a phenolphthalein (PAL Chemicals) indicator. NaOH and HCl were supplied 

from Merck Chemicals Ltd. 

 

The surface basicity was determined similarly to surface acidity. 0.15 g biochar was shaken with 15 

mL of a 0.1 N HCl solution for 30 h. The slurry was filtered and an aliquot of 5 mL of HCl filtrate was 

transferred to 10 mL of a 0.1 N NaOH solution to neutralise the unreacted acid. The solution was 

back-titrated with a 0.1 N HCl solution. The base or acid uptake of biochar was converted into the 

(3-19) 
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content of surface acidity or basicity (mmole/g), respectively (Cheng & Lehmann, 2009). For titration 

of the NaOH solutions, a Tim856 Titration Manager Autotitrator was used. The potentiometric 

endpoints were chosen as 4 for the back-titration with 0.1 N HCl. Surface acidity titrations were 

performed manually. 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎

 = 
1.5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−[(1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑥𝑥)]×15 𝑚𝑚𝑚𝑚

5 𝑚𝑚𝑚𝑚
0.15 𝑔𝑔

  (3.22)  

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝐻𝐻𝐻𝐻𝐻𝐻  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑔𝑔  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎

= 
1.5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝐻𝐻𝐶𝐶𝐶𝐶−[(1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑥𝑥)]×15 𝑚𝑚𝑚𝑚

5 𝑚𝑚𝑚𝑚
0.15 𝑔𝑔

   (3.23) 

 

where 𝑥𝑥 is the volume of NaOH or HCl consumed during titration. 

 

 3.4.10  Water soluble nutrients and electrical conductivity 

 

This determination gives an indication of the water soluble nutrients (Ca2+, Mg2+, Na2+, K+, NO3
-, PO4

3-, 

Cl-, F-, SO4
2-) and the total salinity in the biochar, which may affect clay dispersion and plant growth. 

One gram of biochar was shaken with 20 mL distilled water for an hour to extract water soluble 

anions and cations. The suspension was filtered through Whatman No 2 filter paper. The electrical 

conductivity was measured (Jenway, 4510 Conductivitymeter) and the concentrations of anions and 

cations were determined using ion chromatography (Dionex DX-120 Ion Chromatograph). 

 

 3.4.11  Citric acid-extractable nutrients 

 

Citric acid-extractable nutrients determination provides information on nutrients potentially 

available for the plants and toxins present in the biochar. This method is based on the method 

described in “Handbook of Standard Soil Testing Methods for Advisory Purposes” (1990). Citric acid 

was chosen as solution because plant roots have citric acid in their roots; therefore the roots make 

some of the nutrients available to the plant. A 1 wt.% citric acid solution was prepared and heated 

up to 80°C in a water bath. One gram of biochar was shaken with 20 mL of warm 1 wt.% citric acid 

solution and put in an oven at 80°C for an hour, shaking every 10 min. Afterwards, the solution was 

filtered through Whatman No 2 filter paper.. The extractable macro-elements concentrations in the 

biochar such as Ca, N, Mg, P, K, S were determined by Inductively Coupled Plasma-Mass 

Spectrometer (ICP-MS Agilent 7700) and microelements such as B, Cu, Fe, Mn, Mo and Zn were 
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determined by Varian Liberty ІІ Radical ICP instrument.  The biggest difference in these instruments 

is their measuring range. ICP is capable of measuring the elements down to parts per billion, 

whereas ICP-MS measures down to parts per million.  

 

 3.4.12  Fourier transform infrared spectroscopy (FTIR) 

  

Functional groups on the biochar surface are an indication of the biodegradability and play an 

important role in sorption processes. FTIR spectroscopy was chosen for the determination of 

functional groups because of its efficiency in the analysis of functional groups and its low cost also 

makes it attractive to use. Biochar is an opaque material; therefore it was diluted with a transparent 

medium to get sufficient signals to obtain spectra. KBr is one of the most widely used transparent 

media for FTIR analysis of carbonaceous materials. Biochar samples were dried in an oven overnight. 

Samples were mixed with spectrograde KBr (Merck Chemicals Ltd.) at the ratio of 1:200 (wt/wt), 

which allows preparing pellets which are transparent enough to absorb beam light. Pellet thickness 

was kept constant by fixing the sample-KBr mixture weight using a hydraulic press and pelletising 

under the same pressures. The pellets were analysed by using Thermoelectron Nexus 6700 FTIR 

spectroscopy. The OMNIC® software package that was used for analysis of the FTIR detector data 

automatically corrects for the background material that is used as medium to measure the FTIR 

spectra. 

 

 3.4.13  Solid-state 13C nuclear magnetic resonance (NMR) 

 

The NMR analyses of the biochars were performed for determination of the percentages of 

functional groups, by means of the aromacity and acidic functional groups present on the biochar 

surface (Table 3.2). The solid state NMR spectra were acquired on a Varian VNMRS 500 MHz two-

channel spectrometer using 4 mm zirconia rotors and a 4 mm ChemagneticsTM T3 HX MAS probe. 

The cross-polarisation spectrum was recorded at ambient temperature without proton decoupling 

using a recycle delay of 2s. The power parameters were optimised for the Hartman-Hahn match; the 

radio frequency fields were γCB1C= γHB1H≈ 56 kHz.  

 

The contact time for cross-polarisation was 1.5 ms. Magic-angle-spinning (MAS) was performed at 15 

kHz and Adamantane was used as an external chemical shift standard where the downfield peak was 

referenced to 38.3 ppm. The setting of the integral ranges and the assignment of the integrals 
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according to functional groups was based on the papers by Wang et al. (2007) and Cheng et al. 

(2010). 

 

Table 3.2: The assignments of integrals to functional groups 

Integral range Functional group 
220 to 190 ppm Carbonyl C 
190 to 163 ppm Carboxyl C 
163 to 145 ppm Phenolic C 
145 to 90 ppm Aromatic C 

90 to 50 ppm 
Substituted C (including alcohol, amines, carbohydrates, ethers, 

methyl and acetal groups) 
50 to 0 ppm Paraffinic C 

 

3.5 Methylene blue adsorption 
 

The determination of adsorption efficiency of biochars was quantified by a methylene blue 

adsorption process to quantify the quality of the biochars as adsorbents. Concentrations of 1.0 to 20 

mg/L of methylene blue (MB) (supplied from Sugar Milling Research Institute, Durban) were made 

up and their absorbance values were measured at 630 nm with a Cary IE Varian UV-Visible 

spectrophotometer. The maximum absorbance of MB was obtained at 630 nm. Firstly calibration 

curves of absorbance against concentration of MB were drawn. The calibration curve is an indication 

of the Beer-Lambert law which shows a linear relationship between the concentration of a solution 

and the absorbance value at a constant wavelength. Calibration curves were drawn for each newly 

prepared stock solution. The calibration curves are presented in Appendix C.  

 

To determine the adsorption of MB on biochar and the effect of contact time on adsorption, around 

0.27 g (Wirsam Analytical Plus microbalance) of biochar samples were added to 300 mL of 20, 15, 10 

and 5 mg/L MB solutions and stirred on magnetic stirrers (Lasec MH–4 hotplate stirrer). Around 3 mL 

of aliquots were taken using a syringe and immediately filtered through a 0.45 µm PTFE syringe 

filter. The filtrate was introduced in a disposable cuvette and the absorbance was determined by 

using a Secomam Anthelie Light UV spectrophotometer. During experiments, temperature and pH 

were measured with a Cyberscan 200 pH meter. The pH values of the initial MB solutions were 

between pH 5 – 6, indicating its acidic cationic chemistry. Experiments were done in duplicate for 

the repeatability of the results and average values were used for equilibrium and kinetic calculations 

(Appendix D). Temperature could not be controlled during the experiments. 
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The absorbance values were converted into concentrations by the calibration equations. From the 

determined concentrations, the percentage of removal (%) and the amount of MB solution removed 

per gram biochar (q) were calculated. 

 

𝑞𝑞 (𝑚𝑚𝑚𝑚 𝑔𝑔⁄ ) = (𝐶𝐶0−𝐶𝐶).𝑉𝑉
𝑚𝑚

         (3.24) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 % = (𝐶𝐶0−𝐶𝐶)
𝐶𝐶0

× 100        (3.25) 

 

Where C0 is initial concentration (mg/L), C is the concentration at t (min), V is the volume of the 

solution (L) and m is the mass of the biochar used in gram. The effect of contact time and adsorption 

time were determined by a plot of q (mg/g) versus t (min) for all concentrations. For adsorption 

equilibrium model fittings, Freundlich (Equation 3.27) and Langmuir adsorption isotherm equation 

(Equation 3.26) were used to interpret the experimental data which were obtained at 1, 15, 150 

minutes, assuming the adsorption occurs at a heterogeneous surface and at the homogenous sites 

of the biochar without any interaction between sorbed molecules, respectively. These two isotherm 

models are the most widely used equilibrium models to determine the efficiency of the carbon in 

solid-liquid adsorption in the scientific world. 

 
𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

= 1
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚  𝑏𝑏

+ 𝐶𝐶𝑒𝑒
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

         (3.26) 

 
Where Ce is the equilibrium dye concentration (mg/L), qmax is the monolayer adsorption capacity of 

the biochar (mg/g), and b is the Langmuir adsorption constant (L/mg) which is related to energy of 

sorption. Plotting Ce/qe versus Ce gives a straight line where qmax and b values can be calculated. The 

maximum adsorption capacity was used to compare the adsorption efficiencies of the biochars. 

 

log 𝑞𝑞𝑒𝑒 = 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾𝐹𝐹 + �1
𝑛𝑛
� 𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑒𝑒         (3.27) 

 
 where KF  (mg/g(L/mg)1/n) and n are Freundlich constants. 

 

 For the understanding of mass transfer in the processes, kinetic models were tested to determine 

adsorption rates. These models are the pseudo-first-order kinetic model by Lagergren, pseudo-

second-order and intraparticle diffusion kinetic model by Weber and Morris (Hameed et al., 2007). 

For the kinetic calculations, 1350 minutes of adsorption process were fitted to models. Firstly, the 

pseudo-first-order model was tested with the following equation: 

Stellenbosch University  http://scholar.sun.ac.za



Masters of Science in Engineering (MScEng) 
 
 

77 
Chapter 3: Materials and methods 

ln(𝑞𝑞𝑒𝑒  − 𝑞𝑞𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑞𝑞𝑒𝑒 − 𝑘𝑘1𝑡𝑡        (3.28) 

 

where qe is the amount of MB solution removed per gram biochar at equilibrium time, qt is the 

amount of MB solution removed per gram biochar at time t and k1 is the rate constant of adsorption 

(1/min). A plot was of ln (qe-qt) versus t was made and qe and k1 values were calculated. Secondly, 

the pseudo-second-order kinetic model was tested with the following equation: 

 

𝑡𝑡 𝑞𝑞𝑡𝑡⁄ = (1 𝑘𝑘2𝑞𝑞𝑒𝑒2⁄ ) + (1 𝑞𝑞𝑒𝑒⁄ ) × 𝑡𝑡       (3.29) 

 

Plotting 1/qt against t gives a straight line from which qe and k2 (g/mg min) were calculated. Finally, 

the intraparticle diffusion model was tested to check if it was involved as a rate limiting step in the 

adsorption process with the following equation; 

 

𝑞𝑞𝑡𝑡 = 𝑘𝑘𝑝𝑝  𝑡𝑡1/2 + 𝐶𝐶         (3.30) 

 

where kp is the intraparticle rate constant (g/mg min1/2) and C is a constant. Plotting qt against tt/2 

should give a straigt line where qe and kp can be calculated. The calculated qe values were compared 

to experimental qe values for the validity of the kinetic models by sum of squared errors (SSE, %) 

given by: 

 

𝑆𝑆𝑆𝑆𝑆𝑆, % = �(𝑞𝑞𝑒𝑒 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −𝑞𝑞𝑒𝑒 ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 )2

𝑁𝑁
       (3.31) 

 

where N is the number of the data points (Hameed et al., 2007).   
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CHAPTER 4: RESULTS AND DISCUSSION 
 

4.1 Chemical characterisation of raw materials 
 

During a pyrolysis process thermo-chemical conversion occurs; therefore it is important to analyse 

the major elements in biochar to understand the chemical changes. Organic matter mainly consists 

of carbon, hydrogen, nitrogen and oxygen, as well as small amounts of inorganics which is termed 

ash. Table 4.1 presents the elemental and proximate analyses of the raw materials.  

 

Table 4.1: Chemical analysis of raw biomasses 

 
Black wattle Vineyard Sugar cane bagasse 

Elemental Analysis (dry, wt.%) 
   

Moisture (wt. %) 5.1 5.7 8.8 
aAsh 1.3 3.1 3.5 

C 52.3 50.2 52.7 
N 0.43 0.5 1.1 
H 6.1 6.7 5.8 

c O+S 39.9 39.5 36.9 
Proximate Analysis 

   
Moisture (wt.%) 5.7 5.4 8.8 

bAsh 1.2 2.57 5.6 
Volatiles 72.7 77.3 82.5 

cFixed carbon 26.1 20.1 11.9 
 a determined by analytical method 
 b determined by proximate analysis 
 c by difference 
 

Moisture in biomass is the mineralised water content in living cells, containing anions, cations and 

non-charged species. The moisture contents of the woody biomasses were similar to each other, 

whereas sugar cane bagasse had relatively higher moisture content. The moisture content in the raw 

biomass would affect the energy consumption and decrease the efficiency of the conversion process 

and also increase the cost of transport. The harvesting conditions of the biomasses as well as the 

cropping season would affect the moisture contents, for instance the extraction step would increase 

the moisture content of bagasse as well as the elements of the biomass (Hugo, 2010). Pretreatments 

such as drying of biomass are generally used to decrease the moisture in the biomass. 
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The major elemental component of biomass and biochar is carbon. Some is “fixed carbon” in terms 

of proximate analysis, and some present in a remaining volatile portion (Brownsort, 2009). The fixed 

carbon values are actually more important for biochar regarding its usage as fuels.  However, volatile 

matter and fixed carbon together can be an indication of stability (fixed) or its labile carbon content, 

which is also considered to be important for soil amendment purposes (Lehmann & Joseph, 2009). 

On a dry basis the volatile matter yield of biomass includes light hydrocarbons, CO, CO2, H2 and tars 

(Stanislav et al., 2010). The highest volatile matter was observed in sugar cane bagasse with low 

fixed carbon content. The volatile matter content (db) in biomass ranged from 48-86%, where fixed 

carbon content varied between 1-38% (Stanislav et al., 2010). The results from ultimate and 

proximate analyses were more or less in agreement with literature (Chapter 2, Table 2.1). Stanislav 

et al. (2010) pointed out that the ratio of the volatile matter and the fixed carbon content of 

biomasses are commonly higher than 3.5, however, for black wattle this ratio was 2.7. Therefore, 

this value could be accepted as an indication of its stability against decomposition. 

 

Regarding ash contents, vineyard prunings and sugar cane bagasse had higher ash contents than 

black wattle prunings. This could be due to environmental conditions (e.g. soil type, rain, fertilisers 

used, etc.). The ash contents, which were determined by proximate analysis, were lower for woody 

biomasses but higher for sugar cane bagasse. The reason for this could be the inhomogeneous 

structure of the bagasse. The chemical compositions of the ash in the biomasses were given in Table 

4.2. During sample preparation, black wattle biomass did not fuse into the glass bead; therefore ash 

composition could not be determined. 

 

Table 4.2: Normalised inorganic composition of biomasses, dry wt.%  of the ash  

Biomass SiO2 CaO K2O P2O5 Al2O3 MgO Fe2O3 MnO Na2O TiO2 
Vineyard bd 42.79 26.44 12.02 bd 16.83 0.96 0.48 bd 0.48 
Bagasse 68.70 2.67 4.20 1.53 8.02 3.82 9.54 0.38 bd 1.15 
 

The major inorganic components of bagasse were silica and iron, while calcium and potassium were 

the main constituents for vineyard prunings. The results suggested that composition varied 

depending on the biomass type, namely woody biomass and herbaceous industrial residue and their 

growing and environmental conditions. Moreover, biochar from bagasse would be expected to have 

higher silicon and iron content than the biochar from vineyard prunings (Table 4.16). In the sugar 

industry, leftover bagasse after extraction is used as fuel in boilers for heat generation leaving 8-10% 

ash. Goyal et al. (2007) analysed sugar cane bagasse ash and also observed high silicon dioxide 

(62.43%) and around 7% ferric oxide contents, which was in agreement with Table 4.2. Although 
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silica is preferable for the production of glass, cement and ferrosilicon for the steel industry, it could 

also be useful to increase the amount of available phosphate in the soil when it is in the form of 

silicate (Russell, 1954). High Si and Al contents of sugar cane bagasse could be associated with 

contamination by soil (Stanislav et al., 2010), whereas high Fe could be as a result of the mechanical 

processing of the biomass (Devnarain et al., 2002). Demeyer et al. (2001) pointed out that wood ash 

consisted of mostly calcium and potassium oxides, similar to the ash components of vineyard 

prunings. 

 

4.2 Vacuum pyrolysis yields and physico-chemical  

characterisation of biochars 
 

In this section the results from vacuum pyrolysis of black wattle, vineyard prunings and sugar cane 

bagasse will be given and the biochar characteristics will be discussed.  

 

 4.2.1 Vacuum pyrolysis yields and elemental compositions of biochars 

 

The vacuum pyrolysis of the prunings and bagasse led to the production of biochar, liquid (mixture 

of tarry and water phases) and gases in different yields. Table 4.3 revealed average product yields 

obtained by pyrolysis of the biomasses. 

 

Table 4.3: Average product yields from vacuum pyrolysis on wt.% (T: 460/475°C, HR: 17/15°C/min, P: 

8/8.5 kPaabs, HT: 1 h)  

Biomass Ybiochar Yliquid *Ygas+losses 
Black wattle 23.5±0.3 58.1±8.1 18.4 

Vineyard 31.0±0.3 35.2±11.6 33.8 
Sugar cane bagasse 19.7±0.3 50.0±7.7 30.3 

  *by difference 

 

Vacuum removes the primary volatiles from the reaction zone, restricting further reactions such as 

conversion of tar products into gas or small amounts of biochar (Garcìa-Pérez et al., 2002; 

Shafizadeh, 1982). As a result, less gas and biochar are produced, but higher liquid yields are 

obtained than those from slow pyrolysis are obtained. Vacuum pyrolysis of black wattle biochar 

resulted in higher amounts of liquid and lesser amounts of gas and losses. The reason for that is the 

biomass particle size used for the experiments was much larger (+850 µm) than the particle sizes of 
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bagasse and vineyard prunings (425-850 µm). Larger particle size and slow heating rate enhanced 

the residence time of the vapours inside the particles; therefore secondary reactions were increased 

favouring the formation of biochar (Antal & Varhegyi, 1995). Islam et al. (2010) reported that larger 

particle sizes lead to a decrease in gas due to a lower reaction surface, which results in slower 

decomposition of the biomass. The reason for high liquid yield could be the higher moisture content 

of black wattle prunings due to its higher particle size. The combination of higher temperature and 

lower heating rate might have enhanced the pyrolytic water production due to increased reactions 

on the biomass.  

 
The yields were in the same range with vacuum pyrolysis of various biomasses in literature (Chapter 

2, Table 2.2). In case of sugar cane bagasse, Garcìa-Pérez et al. (2002) observed higher gas content 

but lower liquid content. Indeed, different pyrolysis reactors, conditions and biomasses resulted in 

different product yields. The product yields on a dry basis can be found in Appendix C. 

 
Comparing the product yields from vineyard prunings and bagasse, which were produced under the 

same conditions, the effect of biomass type was significant. Dry and ash-free biochar yields and 

lignocellulosic compositions of biomasses were presented in Table 4.4 showing the influence of the 

lignocellulosic composition on product yields.  

 

Table 4.4: The biochar yields and lignocellulosic compositions of biomasses on daf,wt.% 

Biomass Yash Ybiochar Ylignin Y extractives (water) 
Yextractives 

(ethanol:cyclohexane) 
*Yholocellulose 

Black wattle 1.3 25.1 23.9±0.02 4.8±0.004 14.9±0.02 56.4 
Vineyard 3.1 35.5 27.7±0.02 2.9±0.02 9.8±0.02 59.6 

Sugar cane bagasse 3.5 26.2 21.4±0.002 0.9±0.002 2.6±n.d 75.1 
*by difference 

 

The lignin compositions of the biomasses were slightly higher than the literature data, which was 

presented in Chapter 2 (Table 2.1). The cellulose and hemicelluloses yields could not be determined 

due to an inadequate HPLC column that was used that could not separate the sugar monomers and 

gave incorrect hemicelluloses content that resulted in a summative analysis of less than 100%. The 

presences of inorganic salts such as potassium, sodium and magnesium suppress the formation of 

tar and favour the char-forming secondary reactions (Raveedran et al., 1995). Inorganic species 

especially act on hemicelluloses and reduce their decomposition temperature, which favours 

carbonisation (DeGroot & Shafizadeh, 1984). The combination of the higher ash and lignin content of 

vineyard prunings resulted in higher biochar yield, whereas the higher holocellulose composition of 
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bagasse resulted in lower biochar yield. As was mentioned in the literature review (Section 2.2.2.7), 

holocellulose starts to decompose at lower temperatures than lignin. During pyrolysis high 

concentration of cellulose decomposes to form biochar but with increased temperature, 

degradation of biochar occurs resulting in an increase in liquid yield (Antal & Varhegyi, 1995). One 

would expect that biochar yield from black wattle prunings would be higher than bagasse. However, 

higher maximum temperature during pyrolysis (515°C) of black wattle prunings might have 

enhanced the degradation of biochar. Black wattle was rich in extractives (19 daf,%) compared to 

bagasse, vineyard prunings and even softwood bark (17.7 wt.%) (Garcìa-Pérez et al., 2007). Roy et al. 

(1990) studied the effect of extractives on vacuum pyrolysis yields and found that the presence of 

extractives slows down the levoglucosan production and reduces the yield of oil. However, it is 

difficult to make a conclusion whether there was an influence of extractives on the water phase of 

the liquid yield from the vacuum pyrolysis of black wattle. If the aim is biochar production, it would 

be better to use vineyard prunings, but for substantial production of biochar and bio-oil, black wattle 

is a potential biomass to be preferred under optimised conditions. 

 
In general, the elemental analysis of biochar shows an increase in carbon and ash content, but a 

decrease in O, H, and N compare to elemental contents of biomass, due to the mass loss of organics 

during volatilisation. However, N and H percentages showed an increase in the results reported in 

Table 4.5. The increased H contents could be due to the presence of moisture in biochars. As H and 

O contents decreased, it would be expected that N percentages in biochars are higher than the ones 

in biomass as nitrogen could be acting like an inorganic element. In Table 4.1, the ash percentages of 

the biomasses were shown. More ash means more minerals in the biomass indicating a more 

effective catalytic role during pyrolysis (by means of the temperature reduction effect (Jun et al., 

2006)). The ash devolatilisation percentages (wt.%) were found to be 12.5%, 19.3% and 32.0% for 

black wattle, vineyard and sugar cane bagasse, respectively. During pyrolysis, major elements of 

biomass such as O, H, N are removed as volatile gaseous products leaving a residue with a high 

carbon content, where these carbon atoms are grouped into stacks of flat aromatic sheets with a 

disordered structure. The disordered structural arrangement of aromatic sheets gives biochar its 

unique physico-chemical characteristics (Bandosz & Ania, 2006). 

 
Table 4.5: Elemental composition and ash content of biochars on wt.% 

Biochar C N H S *O Ash C/N O/C H/C 
Black Wattle 70.14±2.24 2.17±0.67 8.31±3.43 0.01 19.37 4.84 32.3 0.28 0.12 

Vineyard 74.19±5.62 2.51±1.04 7.39±0.89 0.02 15.89 8.08 29.6 0.21 0.10 
Sugar cane bagasse 59.49±2.13 1.39±0.58 9.79±3.37 0.01 29.33 12.06 42.8 0.49 0.16 

*by difference 
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The C/N, O/C and H/C atomic ratios are important for biochar characterisation. O/C and H/C ratios 

indicate the degree of functionalisation. Functional groups consist mainly of O or H, therefore O/C 

and H/C ratios indicate the presence of functional groups which increase biological degradability 

(Lehmann & Joseph, 2009; Bandosz & Ania, 2006). Sugar cane bagasse biochar showed the highest 

O/C, H/C ratios, while lowest O/C and H/C ratios were observed for vineyard biochar. Therefore, 

more surface functionalities would be expected on sugar cane bagasse biochar surface than black 

wattle and vineyard biochars.  

 
The Van Krevelen plot of elemental ratios (all values are given on a moisture and ash free basis) for 

cottonseed hull (CH), sewage sludge (SS) and black wattle (BW), vineyard (V) and sugar cane bagasse 

(SCB) were shown in Figure 4.1. The data for cottonseed hull and sewage sludge biochars were 

obtained from Uchiyama et al. (2011) and Hossain et al. (2011), respectively. 

 

 
Figure 4.1: The van Krevelen plot of elemental ratios for biochars produced from various biomass 

sources at different pyrolysis temperatures. 

 

The Van Krevelen diagram (molar ratios of H/C and O/C) is generally used to understand structural 

changes (Uchiyama et al., 2011). As can be seen, the H/C and O/C molar ratios of biochars tend to 

decrease for increased pyrolysis temperatures due to reactions that take place during pyrolysis. 

Vacuum pyrolysis of black wattle, vineyard and sugar cane bagasse resulted in higher H content 
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compared to the biochars from slow pyrolysis, indicating that more carbon atoms were attached to a 

hydrogen atom.  From the Van Krevelen diagram it can be deduced that the aromacity of the 

biochars would be in order of sugar cane bagasse < black wattle < vineyard biochar (Section 4.3.2).  

Under the same pyrolysis conditions, wood based biomass tends to show a higher degree of 

carbonisation compared to herbaceous industrial biomass. The lower degree of carbonisation of 

black wattle compared to vineyard could be a result of the particle size used. 

 

The C/N ratio of a biochar is more related to the recalcitrant properties of the biochar or it could be 

used to understand how much nitrogen could be mineralised. The C/N ratios of biochars varied 

between 30 and 43 (Table 4.5). Fast pyrolysis of sugar cane bagasse resulted in a C/N ratio of 40.1 

(Tsai et al., 2006), which was similar to the C/N ratio of sugar cane bagasse biochar from vacuum 

pyrolysis. The C/N ratios of the wood based biochars were lower than the biochars produced from 

slow pyrolysis of wood based biomasses such as pine chip, pine bark, oak wood and Eucalyptus 

deglupta (Chapter 2, Table 2.8). In Chapter 2 (Table 2.3), it was observed that vacuum pyrolysis leads 

to higher C content than the C contents from slow and fast pyrolysis. Therefore lower C/N ratios of 

the biochars can be attributed to the nature of the biomasses. Generally C/N ratios higher than 20 is 

assumed to result in inorganic N immobilisation by microbial biomass, which induces N deficiencies 

for plants (Lehmann & Joseph, 2009). However, the aromatic nature of biochar provides high 

recalcitrance against microbial decay; therefore it is unlikely that biochars would cause N 

immobilisation (Kimetu et al., 2008).  

 

 4.2.2 Surface acidity and basicity of the biochars 

 

The pyrolysis conditions as well as the nature of the biomass influence the heterogeneous structure 

of the biochar; therefore the chemistry of biochar surfaces differs from one another. The surface 

chemistry of the biochars was determined in two ways: the Boehm titration method and infrared 

spectroscopy (Chapter 3). These two methods enable one to determine the surface nature, in terms 

of acidic or basic and hydrophilic or hydrophobic character.  

 

The acidic or basic nature of the surface is caused by oxygen containing functional groups, which are 

mostly located on the edge of the graphene layers with an uneven distribution. The presence of 

heteroatoms as well as the mentioned functional groups is the main reasons for the heterogeneous 

nature of the biochar surface. Table 4.6 shows the surface acidity and alkalinity of the biochars. 
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Table 4.6: Surface acidity and basicity of biochars 

Biochar Surface acidity (mmol/g) Surface basicity (mmol/g) 

Blackwattle  1.28±0.1 1.04±0.06 
Vineyard  0.70±0.3 1.67±0.20 

Sugar cane bagasse  2.30±0.2    0.31±0.004 
 

The acidic surface functionalities are caused by the presence of carboxyl groups, lactones and 

phenols. Boehm titration can be conducted with different solutions to determine different 

functional groups. It is generally assumed that NaHCO3 neutralizes only carboxylic groups, Na2CO3 

neutralizes carboxylic and lactonic groups and NaOH neutralizes carboxylic, phenolic and lactonic 

groups. Therefore, the surface acidity determined by titration with NaOH will be termed as “total 

acidity”. On the other hand, surface alkalinity is more a controversial topic since the cause of surface 

alkalinity is still controversial (Pastor-Villegas et al., 2010). However, it is assumed that the chromene 

and pyrone type groups cause the surface alkalinity. Therefore, it is accepted that titration with HCl 

neutralizes the basic functionalities including ketones, as well as the carbonates and other alkalinity 

causing species due to the presence of ash on the biochar surface (Singh et al., 2010; Boehm, 1994).  

 

There were less alkaline functional groups than acidic functional groups on the surfaces of black 

wattle and sugar cane bagasse biochars. However, biochar from vineyard prunings had a different 

chemistry with its higher amount of alkaline functional groups than acidic functional groups on the 

surface. The highest surface acidity was found in sugar cane bagasse biochar, whereas vineyard 

biochar had the lowest. Regarding surface alkalinity, the highest number of basic functional groups 

was found on vineyard biochar surface, whilst sugar cane bagasse biochar had the lowest (Table 4.6). 

The presence of acidic surface functionalities makes biochar more acidic and hydrophilic, whereas 

basic surface functional groups make biochar more basic and hydrophobic. Therefore, it could be 

said that sugar cane bagasse was more hydrophilic than the other biochars and expected to be more 

acidic than the rest of the biochars (Section 4.2.3). 

 

The surface acidity values of biochars in this study were relatively higher than the values reported 

for biochars in the literature (Chapter 2, Table 2.5). Nevertheless, chemically activated carbons in 

Table 2.5 had higher surface acidities than the discussed biochars. Surface alkalinity of the biochars 

was higher, but the basicity of biochar from sugar cane bagasse was in the same range as the 

literature values.  
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The FTIR spectra of the biochars were shown in Figure 4.2, wavelength ranging from 400 cm-1 to 

4000 cm-1 for vineyard and 400 cm-1 to 2500 cm-1 for sugar cane bagasse and black wattle. However, 

the wavelength range important to this research was between 400 and 2500 cm-1. 

 

 
 

Figure 4.2: FTIR analyses of biochars 

 

As can be noticed immediately, the FTIR analysis of sugar cane bagasse biochar was different from 

those of black wattle and vineyard biochars regarding the intensity. The peaks between 1688 and 

1702 cm-1 correspond to C=O stretching, which is an indication of carboxylic and lactonic groups 

(Fuente et al., 2003). It can be seen that the above-mentioned peaks were very weak for vineyard 

biochar which was in agreement with its lower surface acidity. 

 

Aromatic C=C ring stretching were observed between 1414 and 1598 cm-1 and the peaks between 

1219 and 1260 cm-1, corresponding to aromatic CO- stretching, were observed for all biochars. 

Aromatic C=C peaks are an indication of benzene-like rings. Aromatic molecules have extra stability 

caused by the nature of their structure (Section 4.2.3). However, Ahmad et al. (2007) observed the 

same peak (1578 cm-1) on biochar derived from oil palm wood and attributed it to C=O stretching of 
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carbonyl group in quinone and pyrone type structures which were the main causes for surface 

alkalinity in the case of vineyard and black wattle biochars.  

 

The peaks between 1376 and 1358 cm-1 correspond to aliphatic CH3 deformation. Biochar from sugar 

cane bagasse showed a peak at 1091 cm-1, which could be due to aliphatic ether C-O or alcohol C-O 

stretching. That peak could also be an indication of asymmetric Si-O-Si stretching, which could also 

be attributed to the high Si content of sugar cane bagasse biomass, shown in Table 4.2 (Coates, 

2000). The peaks between 873 and 798 cm-1 correspond to changes in aromatic structures such as 

aromatic hydrogen.  

 

Biochar from black wattle showed a peak at 667 cm-1, which could be S-O stretching (Gerçel et al., 

2007). The peak observed at 3737 cm-1 is probably alcohol or phenol free OH stretching vibrations on 

biochar from vineyard. The reason for this peak could be water content due to insufficient cleaning 

of the equipments used. A weak peak around 2915 cm-1 corresponds to aliphatic CH stretching 

(Özçimen & Ersoy-Meriçboyu, 2010).  

 

Bouchelta et al. (2008) studied the surface chemistry of raw date pits and biochars produced from 

slow pyrolysis at different final process temperatures ranging from 500 °C to 700 °C via FTIR analysis. 

Comparing the surface chemistry of raw date pits and biochar produced at 500 °C, it was clear that 

biochar and raw biomass had similar surface functional groups, however some of the peaks such as 

those at 3400, 2926, 2870 and 1640 cm-1 disappeared. These peaks correspond to stretching in 

hydroxyl groups, stretching in alkyl groups and stretching in olefins. The disappearance of these 

peaks was an indication of decreases in water and aliphatic compounds. Not only was the 

disappearance of the peaks observed, but a new peak around 1540 cm-1, corresponding to aromatic 

C=C stretching, appeared on the biochar surface. This indicates an increase in aromacity during 

pyrolysis as temperature increased. Similar observations were made by Özçimen & Ersoy-Meriçboyu 

(2010) for the FTIR analyses of raw chestnut shell and its biochar produced at 477 °C. The peaks at 

3324 and 1018 cm-1 corresponding to –OH stretching and aliphatic ether C-O and alcohol C-O 

stretching disappeared, but new peaks from 700 to 900 cm-1 corresponding to an aromatic C-H 

stretching appeared on the biochar surface. It is evident that the temperature applied has an 

important effect on the aromatic nature of the biochar as it increases with temperature due to the 

decomposition of unsaturated chemical structures during pyrolysis (Guo & Bustin, 1998). 
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As was mentioned in Section 4.2.1, in general, pyrolysis results in a decrease in oxygen content 

compared to the raw biomass. The decrease in oxygen causes disappearance of phenolic and 

alcoholic groups, therefore –OH stretching vibrations disappear on the biochar surface (Sharma et 

al., 2004). Nevertheless, Özçimen & Ersoy-Meriçboyu (2010) observed that a new peak appeared 

around 3387 cm-1 on the biochar surface of hazelnut shell, produced at 477°C. To get a better 

understanding of chemical changes on biochar surfaces, the FTIR spectra of raw materials from 

literature have been compared to FTIR spectra of biochars from vineyard, black wattle and sugar 

cane bagasse (Figure 4.2). Indeed, environmental conditions would cause differences between the 

biomasses used and the biomasses from the literature. Table 4.7 shows functional groups on the 

surface of vineyard prunings and the wavenumbers observed in vineyard biochar. From the FTIR 

spectra obtained by Yasar et al. (2010), raw vineyard had similar surface functionalities as vineyard 

biochar. However, there is a shift that might have occurred for carboxyl C=O and C-O stretching due 

to the pyrolysis process.  

 

Table 4.7: Comparison of surface functionalities on vineyard prunings (Yasar et al., 2010) to biochar  

Wavenumber (cm-1) Assignments Biochar wavenumber (cm-1) 
3450 -OH stretching 3738 
2950 Aliphatic CH stretching vibration 2916 
1710 Aromatic carbonyl/carboxyl C=O stretching 1689 
1150 Aromatic CO- stretching 1261 

 

 
Table 4.8: Surface functionalities on sugar cane bagasse (Garg et al., 2007) 

Wavenumber (cm-1) Assignments Biochar Wavenumber (cm-1) 
3778 - 3407.9 -OH stretching n/d 

2921 Aliphatic CH stretching vibration n/d 
1727 Aromatic carbonyl/carboxyl C=O stretching 1702 
1428 Aromatic C=C ring stretching 1598 
1374 Aliphatic CH3 deformation 1360 
1326 Aliphatic CH2 deformation - 
1249 Aromatic C-O stretching 1219 
1161 Aromatic C-O stretching - 
1051 Aliphatic ether C-O and alcohol C-O stretching 1091 

 

The OH stretching vibrations (Garg et al., 2007) as well as the peak at 2921 cm-1 was not determined 

on the surface of sugar cane bagasse biochar. But, the same functional groups at different 

wavenumbers were observed for the biochar.  
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There is no available data on FTIR spectra of black wattle prunings, therefore spectra for black wattle 

fibre was compared to spectra for black wattle biochar in Table 4.9. As can be seen from Table 4.9, 

the same functional groups were observed on the biochar surface with similar wavenumbers. 

 

Table 4.9: Surface functional groups on black wattle fibre (Klash et al., 2009) 

Wavenumber (cm-1) Assignments Biochar Wavenumber (cm-1) 
1690 Aromatic carbonyl/carboxyl C=O stretching 1699 
1590 Aromatic C=C ring stretching 1577 
1450 Aromatic C=C ring stretching 1415 
1360 Aliphatic CH3 deformation 1359 
1220 Aromatic C-O stretching 1219 

 
As stated previously, the surface chemistry of the biochars are related to the precursor. The 

chemical composition of the precursor influences the surface functionalities. In the pyrolysis 

process, hemicelluloses start to degrade first (197-257°C), then cellulose (237-347°C) and lastly lignin 

(277-497°C) (Demirbas, 2007). Bilba & Ouensanga (1996) studied the thermal degradation of sugar 

cane bagasse and the FTIR analyses of the biochars produced. They mentioned that signals around 

1700 cm-1 in raw material were due to lignin and holocellulose. The structural alterations appeared 

at 200°C, which is the temperature where hemicelluloses degradation starts and this alteration 

increased with increased temperature (300-400 °C). They also observed a decrease in intensities of 

the O-H, C-O and C=C vibration signals. It is well known that phenolic groups on biochar surfaces are 

due to the degradation of lignin (Souza et al., 1996). Sharma et al. (2004) mentioned that firstly 

carbohydrates (Bilba & Ouensanga, 1996) and lignin dehydrate at 350°C, and then carbonyl groups 

form with temperature. With increased temperature, these groups are eliminated. Finally aliphatic 

groups decompose resulting in carbon structures with a high aromatic content.   

 
The FTIR analyses of the biochars (Figure 4.2) had similar results as the results of the pistachio-nut 

shell biochar, produced at 500°C by vacuum pyrolysis (Lua & Yang, 2004). However, they observed 

bands at 3389 cm-1, 2922 cm-1, 2338 cm-1, which could not be shown for black wattle and sugar cane 

bagasse biochars due to computer error with an exception of the peak around 2951 cm-1 for 

vineyard biochar. One of the important findings from the study of Lua & Yang (2004) was that the 

biochars, which were produced from 350 to 600°C via vacuum pyrolysis, had similar FTIR spectra, 

indicating the surface functional groups were the same. When they increased the pyrolysis 

temperature, the spectra of biochars produced between 700°C and 1000°C changed, displaying a 

flatter profile and weaker peaks. Therefore, it could be deduced that pyrolysis temperature is the 

key element in surface functionalities in biochars.  
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 4.2.3 NMR results 

 

Solid state NMR analysis gives a better determination of structural groups in the biochar that cannot 

be exactly determined by FTIR analysis. Figure 4.3 presents the 13C NMR spectra of black wattle, 

vineyard and sugar cane bagasse biochars.  

 

 
 

Figure 4.3: Solid state 13C NMR spectra of black wattle, vineyard and sugar cane bagasse biochars 
 

The different chemical structure of sugar cane bagasse which was also observed in Figure 4.2 is 

clearer in Figure 4.3. The chemical structure of black wattle and vineyard biochars were quite similar 

to each other. The chemical shift regions were utilised for quantification of the dominant functional 

groups in the biochars in Table 4.10.  

 

Table 4.10: The distribution of percentage C for structural groups as determined by 13C NMR of black 

wattle, vineyard and sugar cane bagasse biochars  

Chemical shift and 
structural group 

0-50 ppm 
Paraffinic C 

50-90 ppm 
Substituted C 

90-145 ppm 
Aromatic C 

145-163 ppm 
Phenolic C 

163-190 ppm 
Carboxyl C 

190-220 ppm 
Carbonyl C 

Black wattle 4 1 84 10 3 0 
Vineyard 5 1 86 8 1 0 

Sugar cane bagasse 3 18 64 13 1 0 
Error margins: ±3% 
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Aliphatic C content (0-90 ppm) of sugar cane bagasse biochar was relatively higher than vineyard 

and black wattle biochars. Polar C content (50-90 ppm and 145-220 ppm) of biochars were in an 

order:  vineyard < black wattle < sugar cane bagasse. This order was in agreement with their polarity 

[molar (O+N)/C] values; 0.19, 0.23 and 0.39 for vineyard, black wattle and sugar cane bagasse 

biochars, respectively (Wang et al., 2007) and FTIR peak intensities at C=O stretching bands, around 

1700 cm-1 (Figure 4.2). The sharp peaks between 50-90 ppm can be attributed to aliphatic polar C in 

sugar cane bagasse biochar (18%). Aromatic C contents of biochars were in order of sugar cane 

bagasse < black wattle < vineyard, which indicates that wood based biochars had higher aromacity 

hence higher stability for microbial degradation than herbaceous industrial residue based biochar, 

produced under the same pyrolysis conditions. The stability of the biochar from vineyard could also 

be attributed to the relatively higher lignin content of the feedstock. The stability determines not 

only how long C is applied to soil as biochar would remain sequestered in soil, but also determines 

how long biochar could provide benefits to soil and water quality (Lehmann & Joseph, 2009). 

Therefore, the contribution of vineyard and black wattle biochars to the mitigation of GHG emissions 

and soil productivity would be expected to be higher than sugar cane bagasse biochar.  

 

Phenolic C contents of the biochars were higher than their carboxyl carbon contents. Phenolic and 

carboxylic C contents vary in order of the vineyard < black wattle < sugar cane bagasse was in 

agreement with surface acidity values (Table 4.6), FTIR analyses (Figure 4.2), O/C and H/C ratios 

(Table 4.5). This finding suggests that sugar cane bagasse biochar would result in better cation 

exchange ability. 

Brewer et al. (2009) studied quantitative NMR spectral analysis of switchgrass biochars from slow 

and fast pyrolysis at 500°C. Aromatic content of switchgrass biochar from slow pyrolysis was 87%, 

whereas fast pyrolysis of switchgrass resulted in lower aromatic C content (73%). The reason was 

attributed to the longer hold time (2h) on slow pyrolysis to that of fast pyrolysis (<2 s). Therefore, it 

could be deduced that longer hold times in vacuum pyrolysis would result in higher aromaticities, 

especially for wood based biomasses. They also reported that the types of carbon present seem to 

depend on process temperature as well. 

 
In conclusion, elemental and NMR analyses showed consistently that biochar produced from sugar 

cane bagasse contained more oxygen in various functional groups. The higher acidic functionalities 

which were observed by FTIR and NMR analyses and Boehm titration on sugar cane bagasse indicate 

its higher cation exchange capacity. However, aromatic C of sugar cane bagasse was found to be 

lower than that of black wattle and vineyard biochars. Therefore, high aromaticity of black wattle 

and vineyard biochars would make them more preferable in soil applications if the purpose is carbon 
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sequestration. However, sugar cane bagasse would be more preferable if the aim is to help improve 

nutrient retention in soil. 

 

 4.2.4 pH of the biochars 

 

Thermo-chemical conversion of the raw materials resulted in an increase in the pH of the biochar 

product (Table 4.11). pH determination of the raw materials were done with the same method used 

for the pH determination of biochars. Determination of the pH of sugar cane bagasse was difficult 

due to its hydrophilic nature. Depending on the pyrolysis conditions and the nature of the feedstock, 

different pH values, ranging from pH 4 to 13 can be reached (Chan et al., 2008; Cheng et al., 2006). 

Biochars from pyrolysis processes are usually alkaline in nature ranging from pH 7.5-9.4 (Van 

Zwieten et al., 2010; Novak et al., 2009; Cheng & Lehmann, 2009). In this sense, biochars from 

vacuum pyrolysis at 460-475°C with 60 min hold time resulted in the same pH range for wood based 

feedstocks. The highest pH was observed for biochar from vineyard prunings. 

 

Table 4.11: pH of the raw materials and biochars 

Biomass pH(H2O) raw pH (H2O) biochar pH(KCl) biochar 
Black wattle 5.12±0.02 9.74±0.01 8.79 

Vineyard 5.79±0.04 10.43±0.02 9.82 
Sugar cane bagasse 6.19±0.09 6.56±0.04 5.15 

 

Biochar from sugar cane bagasse was slightly acidic in nature, which is in contrast to other biochars, 

but in agreement with Figure 4.2 (C=O stretching). From Table 4.11, it can be concluded that under 

the same pyrolysis conditions, pH values of biochars are dependent on the nature of the feedstock. 

It is known that high temperatures lead to alkaline biochars due to the destruction of acidic 

functional oxides on the biochar surface due to further decomposition of biochar, whereas low 

pyrolysis temperatures result in biochars with lower pH values. Shinogi & Kanri (2003) observed a 

substantial increase in pH during the pyrolysis of sugar cane bagasse, rice husk, activated sludge and 

cow biosolids between 300 and 500°C, where alkaline character biochars were obtained with 

carbonisation temperature above 600°C. The O content of the biochars was in order of vineyard 

biochar < black wattle biochar < sugar cane bagasse, which is relevant to pH values of the biochars as 

the higher the oxygen content is, the more acidic the aqueous solution. 

 

The alkaline nature biochars (vineyard, black wattle) would be useful to increase the pH of acidic 

soils at risk of aluminium toxicity. Yuan et al. (2010) reported that the presence of carbonates and 
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anions in biochar leads to a decrease in soil acidity by reacting with soil H+. Carbonates generally 

show a peak between 880-860 cm-1 (Coates, 2000), which can be observed significantly for vineyard 

biochar in Figure 4.2. On the other hand, sugar cane bagasse could be used to balance the pH of 

slightly basic soils since the optimum nutrient availability of the soils are between pH 6.5 – 7 

(Ashman & Puri, 2002).  

 

 Biochars showed lower pH in 1 M KCl solution, which was an indication of reserve acidity. In soil 

science 1 M KCl solution is used to test for the presence of exchangeable aluminium. Aluminium and 

H+ are displaced by K+ on the exchange complex, which consumes OH- ions and the concentration of 

H+ increases, therefore solution pH decreases if pH KCl is below 5.2. Sugar cane bagasse was the only 

biochar that has pH (KCl) lower than pH 5.2, which was an indication of higher aluminium content 

than other biochars (Table 4.2). In biochars with pH values higher than pH 5.2, aluminium is not 

exchanged but other exchangeable groups are. The difference between pH (H2O) and pH (KCl) was 

more than 1 pH unit for sugar cane bagasse, while the difference was 0.51 for vineyard biochar. In 

literature this difference was up to 1.35 pH units for black locust biochar (Chapter 2, Table 2.6). It 

could be deduced that the higher the difference between pH (H2O) and pH (KCl), the more ion 

groups tend to be exchanged. On the other hand, the ash content of biochar, which increases with 

temperature (up to 600-700°C), could affect the pH of the biochars, as it could block the pores and 

cause a decrease in surface area resulting in higher pH than their actual pH (Shinogi & Kanri, 2003).  

 

pH of biochar is also useful for the determination of the surface charge, which is very important in 

sorption processes. The pH of the point of zero charge (PZC), where the net surface charge is zero, 

should be determined. Biochars are considered as amphoteric solids due to the nature of their 

surface, therefore depending on the solution pH, both negative and positively charged surfaces exist 

within the solution. The surface of the biochar is negatively charged when pH > pHPZC. When the 

surface is negatively charged, it attracts cations from the solution. When the surface is positively 

charged, it attracts anions from the solution. Uchiyama et al. (2011) has determined the pH and 

pHPZC values of biochars which were produced at different pyrolysis temperatures. The pHPZC of 

cottonseed hull biochars were higher than their pH when the pyrolysis temperature was 500 °C and 

above, indicating positively charged surface of the biochars. The pHPZC of the biochars were lower 

than their pH when the production temperature was below 350°C, indicating the surfaces were 

negatively charged. From the mentioned study, they concluded that the greater electrostatic 

interactions would be expected between cationic heavy metal species and negatively charged 

surfaces once biochar from slow pyrolysis temperature is added into soil.  Therefore, it can be 
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concluded that biochar from sugar cane bagasse would be more effective to retain cationic heavy 

metals when it is applied to soil. 

 

Comparing Tables 4.6 and 4.11, lower pH was observed for bagasse biochar with its high surface 

acidity and very low surface basicity, whereas higher pH was observed for vineyard biochar with its 

high surface basicity and low acidity. Although black wattle biochar had more surface acidity than its 

basicity (0.24 mmol/g net), the pH of the biochar slurry was alkaline. The reason for this could be 

that surface basic functionalities are considered to be stronger than surface acidic functionalities 

(Nowicki & Pietrzak, 2010) or the presence of high amounts of water soluble ions such as K and Na 

resulted in higher pH values.  

 

 4.2.5 Cation Exchange Capacity (CEC) of biochars 

 

Cation Exchange Capacity is an important indicator for potential application of biochar into soil and 

carbon sequestration. The presence of charged, hard Lewis ligand functional groups on the biochar 

surface gives biochar its ability to attract, retain and exchange basic cations (readily available for 

plants to absorb), which can be used to enhance nutrient holding capacity of the soil, minimising 

nutrient losses by leaching. Briefly, as Lee et al. (2010) reported CEC is the amount of exchangeable 

cations such as K, Ca, Mg, etc. Table 4.12 shows the potential CEC results of the biochars produced. 

 

Table 4.12: Potential CEC and O/C ratios of the biochars 

Biochar CEC (cmolc /kg) O/C  
Black wattle 101 0.28 

Vineyard 65 0.21 
Sugar cane bagasse 122 0.49 

 

Bagasse biochar showed the highest CEC value, whereas vineyard biochar had the lowest cation 

exchange capacity. The CEC value of sugar cane bagasse biochar is similar to CEC of common soil 

mineral montmorillonite (80 - 150 cmolc/kg). The CEC values of all biochars are comparable to the 

CEC of another common soil mineral, dioctahedral vermiculite (10 – 150 cmolc/kg). Kaolinite is the 

typical clay mineral found in subtropical regions such as the Western Cape. When comparing the CEC 

values of the biochars to kaolinite (2-15 cmolc/kg), it was seen that the value of the vineyard biochar 

is four times as high as kaolinite. The CEC of soil organic matter or humic substances range between 

150 and 200 cmolc/kg which is much higher than the CEC values of the biochars produced (Sparks, 

1995). In Table 4.12, O/C values are presented as an indication of the presence of more hydroxyl, 
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carboxylate and carbonyl groups which could contribute to a higher CEC value (Lee et al., 2010). As 

can be seen, CEC values correlated well with the O/C ratios. This finding suggests that higher CEC 

values could be reached if the pyrolysis conditions are optimised for a particular biomass. 

 
Table 4.13: CEC values from literature 

Precursor Process Conditions CEC (cmolc/kg) Reference 
Eucalyptus saligna Slow pyrolysis, T= 400°C 7.3 Singh et al., 2010 

Poultry litter Slow pyrolysis, T= 400°C 14.5 Singh et al., 2010 
Cow manure Slow pyrolysis, T= 400°C 22.2 Singh et al., 2010 

Paper mill waste Slow pyrolysis, T= 550°C 9 - 18 Van Zwieten et al., 2010 
Wastewater sludge Slow pyrolysis, T= 550°C 35 Hossain et al., 2010 

 

Comparing CEC values (Table 4.12) to recent studies (Table 4.13), all the biochars produced from 

vacuum pyrolysis had much higher CEC values than the values in literature. It can be concluded that 

biochars from vacuum pyrolysis would contribute more to soil as amendment and carbon 

sequesteration compared to the ones produced via slow pyrolysis by producing higher acidic surface 

functionalities. However, it might be useful to study the CEC values of biochars produced at different 

temperatures for optimisation of the process for soil amendment purposes. From the study of 

Gaskin et al. (2007), it was observed that CEC values decreased with an increase in temperature, 

however in the study of Singh et al. (2010), there was only a small increase (0.8 cmolc/kg) in CEC 

values of the biochars from Eucalyptus saligna when temperature was increased from 400°C to 

550°C.  

 

 As CEC is correlated with the presence of acidic functional groups, the CEC values of the biochars 

were compared to surface acidity values. As expected, the bagasse biochar, which had the highest 

surface acidity, showed the highest CEC, while the vineyard biochar had the lowest CEC with is low 

surface acidity. Therefore, it would be expected that CEC values would decrease with an increase in 

temperature because higher pyrolysis temperatures cause loss of acidic surface functional groups. 

Biochars from fast pyrolysis has recently received attention for soil amendment purposes. Lee et al. 

(2010) and Silber et al. (2010) reported the CEC values of biochars from the fast pyrolysis of corn 

stovers as 26.4 and 17.9 cmolc/kg, respectively. These values are relatively lower than the values 

from biochars produced in this study. All in all, it could be deduced that vacuum pyrolysis has 

contributed to higher acidic functionalities due to lesser secondary reactions. 

 

In conclusion, biochars produced during vacuum pyrolysis would increase the CEC of soils due to 

their inherently high CEC values and furthermore, as they age in the soils, the cation exchange 
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abilities would increase due to the oxidation of biochar. Therefore, one would expect that the soil 

application of the biochar from sugar cane bagasse would lead to the greatest improvement in soil 

fertility. 

 
 4.2.6 Electrical conductivity and nutrients of biochars 

 
The EC value is an indication of the salinity of the biochar. Salinity refers to the presence of the 

major dissolved ions, which is very important because each plant tolerates different salinity levels in 

soil. However, in most of the cases, high salinity of the soil adversely affects the rate of plant growth 

and harvest yield by causing ion toxicity and reducing water uptake by plants. Soils with EC values 

above 4 dS/m are considered to be saline soil (Sparks, 1995).  

 
Table 4.14: EC values and water soluble ions of biochars  

Biochar EC Ca+2 Mg+2 Na+ K+ Cl- PO4
-3 SO4

2- NO-3 NO-2 

 
dS/m mg/kg   

Black wattle 0.67±0.02 60 113± 
12 

1140± 
40 

2300± 
69 

460± 
35 

1033± 
64 

520± 
87 0 0 

Vineyard 0.83±0.05 428± 
24 

421± 
26 

233± 
21 

4380± 
191 

247± 
23 n/d 813± 

70 n/d n/d 

Sugar cane 
bagasse 0.17±0.01 32±7 25±8 173± 

5 
560± 

65 
84± 

4 
317± 

20 
335± 

34 0 0 

 

The EC values of biochars were between 0.2 and 0.8 dS/m. Biochar from vineyard prunings showed 

the highest EC value, whereas sugar cane bagasse showed the lowest EC value indicating its low 

salinity. These values were compared to EC values of various biochars from literature in Table 4.15. 

 
Table 4.15: EC values of various biochars 

Biochar Process 
conditions Pyrolysis Temperature (°C) EC (dS/m) Reference 

Eucalyptus saligna 
HR=5-

10°C/min; 
HT=40 min 

550 0.16 Singh et al., 2010 

Poultry litter 
HR=5-

10°C/min; 
HT=40 min 

400 6.32 Singh et al., 2010 

Cow manure 
HR=5-

10°C/min; 
HT=40 min 

400 9.18 Singh et al., 2010 

Eucalyptus grandis n/a 450 0.4 Dias et al., 2010 
Wastewater sludge HR=10°C/min 550 1.9 Hossain et al., 2010 

Greenwaste n/a 450 3.2 Chan et al., 2007 
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The EC values of biochars produced in this study are lower than the EC values of most of the 

biochars in literature (Table 4.15). It can be seen that biochars from animal based precursors had 

much higher EC values than plant based biochars. Wood based biochars showed higher EC values 

than sugar cane bagasse. Chan et al. (2008) added biochar produced from poultry litter with EC 

value of 5.6 dS/m into soil with an EC value of 0.11 dS/m at different rates. The EC of the soil 

significantly increased with biochar application at 10 t/ha (36%). Similar substantial increase in soil 

EC by the addition of biochar was also observed by Novak et al. (2009). The recommended biochar 

application rate is 10 t/ha (Chan et al., 2007). When they increased the biochar application rate to 50 

t/ha, the EC of the soil increased from 0.11 to 0.29 dS/m, which means the percentage increase was 

164%. Based on the mentioned study, one would expect that biochars produced in this study would 

increase the soil EC less due to their lower EC values. The amount of biochar should be calculated 

carefully before addition into soil to prevent any soil salination problems and nutrient imbalances.  

 

Singh et al. (2010) studied the pyrolysis temperature effect on the EC values of the biochars. While 

biochar from slow pyrolysis of Eucalyptus grandis at 400°C had an EC value of 0.09 dS/m, the biochar 

which was produced at 550°C had an EC value of 0.16 dS/m. However, a recent study by Hossain et 

al. (2011) showed that with increased pyrolysis temperature, the EC values of wastewater sludge 

biochar decreased. Comparing EC values of raw biomass to EC values of biochars, an increase in EC 

values was observed during the pyrolysis process of sugar cane bagasse and black wattle while the 

EC value of vineyard biochar decreased. This might be due to the presence of fine particles in the 

raw vineyard pruning sample, which increased the amount of dissolved ions in water. Therefore, it 

can be concluded that an increase in the pyrolysis temperature results in an increase in EC values of 

biochars from lignocellulosic materials, unlike wastewater sludge.  

 

The pH and EC values of the biochars were compared (Table 4.11 and 4.14). The EC values of sugar 

cane bagasse, black wattle and vineyard biochars were in the same order as the pH values namely; 

sugar cane bagasse < black wattle < vineyard. 

 

Nutrient contents of biochars make them potential soil amendment agents. Water soluble ions in 

the biochar give an indication of readily available nutrients in the biochar. Plants use the inorganic 

forms of N (ammonium and nitrate), P (phosphate) and S (sulphate) as nutrients from the soil.  

The biochars contained little or no NO3
-, which is an essential nutrient for plant growth (Table 4.14). 

N starts to volatilise at low temperatures (above 200°C). Wang et al. (2010) observed that the 

primary nitrogen species produced from straw were NH3 and HNCO (isocyanic acid). N containing 
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groups were not observed from the FTIR analyses of biochars. The reason for low or non-detected 

NO3
- content of biochars could be due to the formation of N-heterocylic aromatic structures from 

the condensation of N containing structures (Koutcheiko et al., 2007). 

 
Phosphorus starts to volatilise around 700°C, however during pyrolysis phosphocarbonaceous 

structures are created at low temperatures, and these structures decompose due to bond scission at 

high temperatures to form phosphate (Bandosz & Ania, 2006). During pyrolysis very little 

phosphorus is lost, however with increased temperature its plant availability decreases (Silber et al., 

2010). The phosphate content of biochars from vineyard could not be determined; however PO4
-3 

content of black wattle biochar was three times higher than that of sugar cane bagasse biochar 

(Table 4.14). The availability of phosphate is strongly pH dependent. Under acidic conditions, the 

phosphate availability decreases due to the fixation of phosphate as precipitation of highly insoluble 

iron and aluminium phosphates in soils that are high in Al and Fe oxides or aluminosilicate clays. If 

the pH of the soil solution is too high, precipitation of insoluble calcium phosphates occurs; 

therefore availability of phosphate decreases. The greatest phosphate availability is found to be 

around pH 6 to 7 for most agricultural soils (Bohn et al., 1979). 

 
Sulphur is an essential nutrient, which is absorbed in the form of sulphate. C-O-S was found to be 

the major sulphur species during the pyrolysis of straw and the release of C-O-S and H2S from the 

decomposition of organic sulphur occured below 400°C (Wang et al., 2010). Biochar from vineyard 

showed the highest sulphate content. 

 

Potassium, calcium and magnesium are the major macronutrients. The highest water soluble K was 

found in vineyard biochar, whereas sugar cane bagasse had the lowest K content, approximately 1/8 

that of vineyard biochar. During pyrolysis of straw, the major species are found to be HCl. The 

formation of Cl2 was mainly at temperatures between 300-350°C for straw pyrolysis (Wang et al., 

2010). Black wattle biochar had the highest Cl content, whereas sugar cane bagasse had the lowest. 

Cl- is considered a hard base which means it would bond with a hard acid such as potassium. Wang 

et al. (2010) concluded that potassium was vaporized as KCl or other kind of potassium containing 

species during pyrolysis of straw and coal. Calcium and magnesium contents of biochars are 

relatively lower than the K contents.   

 
In conclusion, the water soluble nutrient contents of biochars were as follow; vineyard > black wattle 

> sugar cane bagasse which is in the same order as the EC values. Apparently, EC values were mostly 

affected by K contents of the biochars due to the higher relative solubility of K containing salts and 
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carbonates in water. Regarding ash content, of which EC is an indication, it can be concluded that 

ash percentages of biochars increased due to the pyrolysis process which was also shown in Table 

4.5. 

 
There is no available data in the open literature on water soluble nutrients and thus makes it difficult 

to compare the results in this study to the literature (Table 4.14). Plant roots secrete weak acids such 

as citric acid to take up nutrients (Hinsinger, 2001). Wet acid digestion is commonly used for the 

determination of plant available nutrients. Recently, microwave assisted wet acid digestion method 

has been preferred for this determination (Novak et al., 2009; Hossain et al., 2011). However, 

available phosphorus cannot be determined with this method; therefore citric acid available 

nutrients were determined and presented in Table 4.16. 

 
Biochars contained substantial amounts of plant available nutrients such as K, Ca, and Mg. Pyrolysis 

influences the availability of the base cations such as K, Ca, and Mg by increasing the solubility 

(Silber et al., 2010). The sugar cane bagasse contained less major nutrients than the other biochars. 

This property of sugar cane bagasse makes it less attractive as a soil amendment agent. The soluble 

form of Al could be toxic for soil biota in very acidic soils. The Al content of bagasse biochar was very 

high compared to the rest of the biochars. The typical range of Al in soils vary from 10 000 to 300 

000 mg/kg (EPA, 2003). The Al content of biochar from Eucalyptus saligna wood produced via slow 

pyrolysis at 400°C was found to be 103 mg/kg (Singh et al., 2010). Black wattle biochar had a 

relatively high Ca content compared to other nutrients. That would be a problem if it is added to soil 

as excess Ca could limit the availability of Mg and K which could make black wattle biochar 

undesirable to use, unless it is used on very acid soils suffering from Ca deficiency. A similar study 

was done by Singh et al. (2010) and very high Ca contents of biochars from various feedstocks were 

also observed. The Ca and K contents of biochars from vineyard were similar to ones produced from 

the activation of Eucalyptus saligna and poultry litter, respectively. However, P content of poultry 

litter was much higher (Singh et al., 2010). As was also pointed out by Singh et al. (2010), biochars 

from biosolids have much higher P and N contents compare to biochars from agricultural wastes. 

However, high P and N contents could cause eutrophication of surface water, which is one of the 

potential environmental problems. If the optimum application rate, 10 t/ha, is taken as basis, the 

plant available P would be 19.88 kg/ha for vineyard biochar, where P from black wattle biochar 

would only be 3.97 kg/ha. Phosphorus uptake of crops such as sugar beet and potato are between 4 

and 39 kg/ha (Silber et al., 2010). However, these are low input crops, the needs for high input crops 

will be more than the values given. Therefore, P and N addition would be necessary in biochar 
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applications into soil. All in all, biochar from vineyard should be a better fertiliser compared to the 

rest of the biochars.  

 
Table 4.16: Macro, micro nutrient and heavy metals concentration in biochars (citric acid digestion) 
in mg/kg 

Element Black wattle Vineyard Sugar cane bagasse *Concentration limits for all 
biosolids (EPA,2010) 

Macronutrients 
P 397±4 1989±102 451±32 

 
Ca 13783±120 17177±1367 2181±128 

 
Mg 1349±73 3908±255 1158±71 

 
K 5670±42 15746±982 3463±271 

 
Na 2205±15 672±18 289±9 

 
Micronutrients 

Fe 24±2 102±7 3953±192 
 

Al 82±3.5 83±11 2955±102 
 

Mn 10±0.3 78±8 162±8 
 

Zn 7±0.3 179±20 42±4 7500 
Cu b/d 1.37±0.3 9±0.2 4300 
Co 0.02±0.004 0.06±0.01 1.9±0.1 

 
Mo 0.1±0.003 0.02±0.01 0.01 75 

Heavy metals 
As 0.06±0.001 0.2±0.01 0.4±0.03 75 
Cd b/d 0.09±02 0.03 85 
Cr 0.13±0.02 0.5±0.1 13±1.4 3000 
Pb b/d 0.8±0.2 3.6±0.7 840 
Ni 0.46±0.05 0.8±0.2 4.5±0.7 420 
Se 0.07±0.06 0.06±0.01 b/d 100 

*on dry basis 
 
Plants need very small amounts of micronutrients such as Mn, Fe, Co, Cu, Zn and Mo. Generally, the 

availability of the micronutrients and toxic cations increase with increased soil acidity. However, the 

availability of molybdenum decreases with increased acidity of soil pH. For instance, Mo is needed 

for N fixation by legumes (Bohn et al., 1979). Biochars have very low contents of toxic elements 

compared to authorised limits given by the Environment Protection Agency (EPA) (Table 4.16). Some 

of the toxic elements of biochars compared to potential soil amendment biochars from slow 

pyrolysis of sewage sludge (Hossain et al., 2011; Hossain et al., 2010), Eucalyptus saligna wood, 

leaves, paper sludge, poultry litter and cow manure (Singh et al., 2010) are much lower.  
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Silber et al. (2010) reported that CEC is strongly dependent on pH as in their study CEC of acidified 

biochar increased by 11.5 cmolc/kg for every increased pH unit. They mentioned that exchangeable P 

was increased by 6.7 cmolc/kg as the pH decreased from 8.9 to 4.5 pH units. At pH 4.5, 

approximately 90% of total Ca and Mg contents of biochar were released and under alkaline 

conditions the opposite trend was observed. This study reveals that exchangeable cations (Ca+2, 

Mg+2, Na+, K+) are released at different soil solution pH.  

 

In conclusion, biochars contained high amounts of nutrients and trace amounts of toxic elements 

which make them potential soil amendments. Biochar addition with nitrogen fertiliser would be 

recommended due to their low nitrate content. However, using soil analytical methods on biochar is 

a bit of a concern since the applicability of these methods is unknown (Singh et al., 2010). Further 

study is needed to compare different analytical methods. Further investigation on the influence of 

temperature, hold time and heating rate on different biomasses should be done with focus on the 

nutrient properties of the biochars produced. 

 

 4.2.7 BET surface areas of biochars 

 

The BET surface areas of the biochars indicate the physical evolution of biochar during pyrolysis and 

are generally connected with their sorption abilities. The surface areas and porosity characteristics 

of the biochars are presented in Table 4.17. 

 

Table 4.17: BET surface areas and microporosity of the biochars 

Biochar Surface area 
(m2/g) 

Micropore 
volume 
(cm3/g) 

Internal 
Surface Area 

(m2/g) 

Single Point 
Total volume 

of pores 
(cm3/g) 

Average pore 
diameter (nm) 

Sugar cane 
bagasse 259 0.088 194 0.14 2.09 

Black wattle 241 0.082 184 0.12 2.05 
Vineyard 92 0.029 64 0.05 2.47 

 

Biochars from sugar cane bagasse and black wattle showed high surface areas, whereas biochar 

from vineyard showed very low surface area. The surface area of biochar from vacuum pyrolysis of 

sugar cane bagasse at 530°C was found to be 529 m2/g (Garcìa-Peréz et al., 2002). Similarly, study of 

Carrier et al. (2011) showed that between temperatures of 460-540°C, the surface areas of biochars 

varied between 396-418 m2/g for the vacuum pyrolysis of sugar cane bagasse. Biochars from vacuum 
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pyrolysis had higher surface areas than biochars from slow pyrolysis due to the higher reaction rate, 

therefore greater devolatilisation by using vacuum. Similar observations were made by other 

researchers (Nuithitikul et al., 2010; Petrov et al., 2007).  

 

The activation process is commonly preferred to increase the surface area by creating new pores 

and enhancing pore volumes and pore diameters of existing pores that were created during 

pyrolysis. The surface area of sugar cane biochar can be increased up to 931- 1394 m2/g by steam 

activation (Bernardo, 1997). However, using different activation agents and pre-treatment and post-

treatments enhance the surface areas up to 2289 m2/g for biochar from sugar cane bagasse (Liou, 

2010). The surface area of biochar from vineyard stalks reached 1500 m2/g by chemical activation in 

the study of Deiana et al. (2009). 

 

The ash content of biochar could plug the pores; therefore surface areas of biochars could decrease 

(Shinogi & Kanri, 2003). Liou (2010) pointed out that the ash content can be reduced significantly by 

base leaching.  Hence removal of ash allows a better interaction between the activation agent and 

pores, resulting in an efficient increase in mesoporous structure of biochar with a high surface area.  

 

Comparing the surface areas of the biochars (Table 4.17) to surface areas of other adsorbents 

presented in Section 2.3.4.4, Table 2.14, it can be concluded that biochars from sugar cane bagasse, 

vineyard and black wattle do not have very high surface areas, but is likely to obtain high surface 

areas by an activation process. Especially for the case of vineyard biochar, the pyrolysis temperature 

should be increased to above 460°C to obtain a higher BET surface area.  

 

Biochar consists of different pore sizes which give biochar its adsorption characteristics. Nitrogen 

adsorption on biochar was used for the porosity determination as it is commonly used for the 

determination of surface areas and porosity (Önal, 2006). Figure 4.4 presents the hysteresis loops in 

the nitrogen adsorption-desorption isotherms. 
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Figure 4.4: Hysteresis loops shown in the nitrogen adsorption (77K) isotherm of sugar cane bagasse, 

vineyard and black wattle biochars: the lower branch represents the adsorption isotherm and the 

upper branch represents the desorption isotherm 

 

The adsorption-desorption isotherms of biochars were typical type Ι isotherms (Section 2.3.4.2, 

Figure 2.22) in nature, which are characteristic of microporous materials, according to the IUPAC 

classification (Gregg & Sing, 1982).  

 

The adsorption curves rose sharply at relative pressures up to 0.1. Beyond this value of P/P0 the 

isotherms presented a plateau with increasing relative pressure. Also the adsorption and desorption 

branches were parallel over relative pressure range and formed a “tail” as saturation pressure was 

approached. It can also be seen that the amount of nitrogen adsorbed by sugar cane bagasse 

biochar was slightly higher than black wattle biochar, but much higher than vineyard biochar, 

indicating the order of pore volumes of the biochars. The characteristic of the hysteresis loops in 

Figure 4.4 indicated the presence of mesopores, which is typical of Type ΙV hysteresis and associated 

with capillary condensation (Gregg & Sing, 1982). 

 

Micropores have diameters less than 2 nm and most of the adsorption takes place due to the 

proximity of graphite-like walls. Mesopores and macropores on the other hand have larger 

diameters, 2-50 nm and >50 nm, respectively. Comparing micropore volumes of the biochars from 

Table 4.17, vineyard biochar had a relatively smaller micropore volume; indeed the surface area was 

lower. Interestingly, the meso-macropore volume of vineyard biochar was almost the same as its 
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micropore volume, whereas micropore volumes of other biochars were significantly higher than 

their meso-macropore volumes. This is in agreement with the finding of Ioannidou & Zabaniotou 

(2007) who emphasised that lignocellulosic composition of the biomass is related to the porosity of 

the biochar. Sugar cane bagasse, which is rich in cellulose, led to the production of more 

microporous biochar. The higher lignin content of vineyard prunings led to the production of more 

macroporous biochar. Macropores allow the rapid movement of water and gas through the soil. 

Therefore, macroporosity of the biochars would be a key function for soil aeration and hydrology. 

Moreover, they could provide a habitat for microbes. Mesopores hold water, thus water is stored for 

plants to use, whereas micropores are more involved with molecule adsorption and transport 

(Atkinson et al., 2010; Ashman & Puri, 2002). Therefore, biochar from vineyard would not be 

efficient enough to provide the needs of plants by means of mineral transport.  

 

Internal surface area refers to the micropore area, which represents the walls of slits, mainly caused 

by surface particle imperfections such as cracks that penetrate deeply into the interior. Internal and 

external surface area form total surface area, where external surface area (ESA) is non-microporous 

area including walls of mesopore and macropore, as well as the edges and aromatic sheets facing 

the outside. For typical activated carbon, ESA varies between 10 and 200 m2/g of solid, and the 

discussed biochars are in the same range, indicating that with an activation process meso-

macroporosity would be developed. The average pore diameters are in the range of mesopore 

diameters, indicating their potential in liquid-solid adsorptions such as wastewater treatments.  

 

Liang et al. (2006) reported that cation exchange capacity is a function of charge density and the 

surface area of a biochar. Charge density of biochar is calculated by dividing its CEC value with the 

surface area.  The charge densities of the biochars were in the following order; vineyard (0.007 

mmol/m2) > sugar cane bagasse (0.005 mmol/m2) > black wattle (0.004 mmol/m2). Surface charge is 

caused by negatively charged functional groups, therefore due to high charge density and CEC, 

nutrient retention enhances.  

 

4.3 Methylene blue adsorption by using biochars 
 

Adsorption from dilute aqueous solutions onto solid surfaces is an attractive separation method for 

many purification processes such as wastewater treatments, drinking water, and industrial effluent 

purification (Ioannidou & Zabaniotou, 2007). Methylene blue is used for many colourisation 

purposes including leather, plastics, cotton, etc. Methylene blue is commonly the preferred model 
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compound for adsorption purposes in the scientific world to determine quality of the adsorbent. In 

this section, the quality of biochars by means of methylene blue removal efficiency will be 

investigated. 

 

 4.3.1 Effect of initial solution concentration and contact time on  

  adsorption 

 

The effects of initial solution concentration and contact time on adsorption were investigated. The 

temperature could not be controlled within a range of ±1°C due to technical problems. But all the 

adsorption experiments have been done at the same time in order to work under the same 

temperature conditions.   

 

Methylene blue is a basic solution. However; in this study low concentrations of the MB solutions 

showed acidic characteristics, meaning more H+ ions were available in the solution. According to 

Weber, adsorption of a solute to the interior surfaces of an adsorbent may involve four steps; bulk 

transport, film transport, intraparticle transport and adsorption on the active sites of the adsorbent 

(Abdelrasoul, 2006). 

 

It was observed that the amount of dye adsorbed (mg/g) increased for all biochars as the contact 

time was increased and reached equilibrium (Figure 4.5). The graphs for 15, 10 and 5 ppm MB 

solutions were magnified in Figure 4.5 in order to clarify the adsorption for these concentrations. 

The overall adsorption of MB by vineyard, black wattle and sugar cane bagasse at different 

concentrations (20 to 5 ppm) can be found in Appendix C. The standard deviations were very low to 

be shown on the graphs; hence the deviations were given in Appendix D. 
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(a) 

 
(b) 

 
(c) 

 

 
Figure 4.5: Adsorption capacities of biochars at different initial solution concentrations with 

increased contact time; (a) sugar cane bagasse, (b) black wattle and (c) vineyard 
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The equilibrium time was determined from the experimental data based on the study of Gerçel et al. 

(2007). They defined the equilibrium point as the last data just before stabilisation of the q (mg/g) 

versus t (min) graph. The equilibrium times found to be 3505 min for 20 ppm dye solution for 

vineyard biochar. The equilibrium time decreased as the initial solution concentration decreased. 

The equilibrium time was 1315, 1200 and 45 min for 15, 10 and 5 ppm dye solutions, respectively. 

For black wattle biochar, equilibrium time was relatively lower. The equilibrium time was 1350, 480, 

150 and 15 min for 20, 15, 10, 5 ppm dye solutions, respectively. For sugar cane bagasse biochar, the 

equilibrium time was much lower; 150, 60, 20 and 5 min for 20, 15, 10 and 5 ppm dye solutions, 

respectively. The amount of dye removed at equilibrium increased from 5.7 to 19.9 mg/g, 5.4 to 18.8 

mg/g and 10.8 to 18.8 mg/g with the increase in the dye concentration from 5 to 20 ppm for 

vineyard, black wattle and sugar cane bagasse biochar, respectively. It is important to note that 

these equilibrium values were decided with available data points and with more data points, more 

accurate equilibrium times can be obtained. 

 

 It was also observed that the initial stage of adsorption was rapid, and as soon as biochar was in 

contact with dye solution, approximately 40% of dye removal occurred in a minute for maximum dye 

concentration. As contact time was increased, adsorption rate was decreased and reached a plateau. 

This may be attributed to the gradual decrease in the concentration driving force with an increase in 

contact time (Karaca et al., 2008). The same trend was also observed by other researchers (Tan et 

al., 2007; Kavitha & Navasivayam, 2007). This might be attributed to the amount of available vacant 

sites on the biochar surface, which with the aid of rapid mixing increases the external mass transport 

(Kavitha & Navasivayam, 2007). From Figure 4.5, it is clear that adsorption rate was in order of sugar 

cane bagasse > black wattle > vineyard. The adsorption characteristic of a biochar is determined by 

its porous structure and surface chemistry. The reason for long contact time for vineyard biochar 

could be attributed to its surface area (smaller internal surface area), which would take a relatively 

longer time for all dye particles to diffuse into active sites of the biochar. It can be deduced that the 

adsorption rate is related to surface areas of the adsorbents, which enhance the adsorption process 

excluding the effect of temperature and initial solution pH.   

 

While the amount of adsorbed methylene blue increased with contact time, the percentage of MB 

removal also increased with contact time (Figure 4.6). The percentage of MB removal increased from 

0 to 89% in 3505 min and as contact time was increased, the removal increased to 96% for vineyard 

biochar with 20 ppm initial solution concentration. The same trend occurred for black wattle and 

sugar cane bagasse biochars. 
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Figure 4.6: Percentage removal versus time and adsorption capacity for vineyard biochar with 20 

ppm initial dye concentration 

 

The percentage removal at equilibrium decreased from 98% to 89%, 98% to 85% and almost 100% to 

85% when the initial solution concentration increased from 5 to 20 ppm for vineyard, black wattle 

and sugar cane bagasse biochars, respectively. As the solution concentration increases, the mass 

transfer driving force becomes larger to overcome mass transfer resistance, resulting in higher 

adsorption (Nasuha et al., 2010). 

 

During the experiments the pH values of the solutions were measured, but the methylene blue 

solution-biochar mixture has a complex matrix. It has been observed that the initial pH of the 

solutions were increased from pH 5-6 to pH 8-9, once black wattle and vineyard biochars were 

added to the solutions.  The pH of the methylene blue solution-biochar mixture stayed between pH 

5-6 when sugar cane bagasse biochar was added, which means sugar cane bagasse biochar did not 

have an influence on pH due to its low pH, 6.56. For black wattle and vineyard biochars, as contact 

time increased, the pH of the mixture started to decrease. The pH of the mixtures at equilibrium is 
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shown in Figure 4.7. Higher equilibrium pH values were observed for lower initial solution 

concentrations. 

 

 
 

Figure 4.7: Percentage removal versus initial solution concentration and pH of the mixture for 

vineyard biochar at equilibrium 

  

The initial pH of methylene blue solution was 5-6 which was also observed by Wang et al. (2005), 

who observed relatively longer equilibrium times (longer than 21000 min for the adsorption of 

methylene blue by commercial activated carbons). Here the pH of the initial solution gained 

importance. As biochar is considered to be an amphoteric solid, both negative and positive surface 

charges exist in aqueous solution. However, the availability of surface charges to interact with dye 

ions depend on the initial solution pH. If the pH of the solution is higher than the aforementioned pH 

point of zero charge value of biochar, the surface of biochar tends to be negatively charged; 

therefore more cations would be attracted to the biochar surface due to the electrostatic 

attractions. When solution pH < pHPZC, the inverse charge appears on the biochar surface; therefore 

biochar attracts more anions. Many researchers studied the effect of initial solution pH on the 

adsorption of methylene blue and concluded that high pH increases the attraction between cations 

and a negatively charged surface, hence adsorption capacity increased (Nasuha et al., 2010; Gerçel 
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et al., 2007). The optimum pH values vary in literature; Nasuha et al. (2010) suggested a pH value 

between 4 and 8, whereas Ravikumar et al. (2005) observed the optimum pH value as 13.4. 

However, it can be assumed that low pH would increase the H+ ions in the solution, resulting in a 

competition between H+ ions and the cation groups on the dye for adsorption sites (Nasuha et al., 

2010). 

 
 4.3.2 Adsorption isotherms 

 

The experimental data are analysed according to the Freundlich and Langmuir isotherms as an 

indication of how the adsorption molecule distribute between the liquid phase and the biochar 

when the adsorption process reaches equilibrium. The plot of log amount of dye adsorbed (qe) 

versus log concentration (Ce) has been shown in Figure 4.8 for the Freundlich isotherm. For the 

Langmuir isotherm Ce/qe has been plotted against Ce in Figure 4.9. The fourth data point (5 ppm) 

could not be used because the adsorption was already completed for 5 mg/L MB solution in 150 

minutes. Therefore, three data points represent 20, 15, 10 mg/L initial MB concentrations right to 

left, respectively. The applicability of the isotherm models to the adsorption study done was 

compared by judging the correlation coefficients (R2 values) which are shown in Table 4.18. 

 

Table 4.18: Freundlich and Langmuir isotherm model constants and correlation coefficients  

Isotherms Biochar 
Constants 

R2 p 
KF (mg/g(L/mg)1/n) 1/n 

Freundlich Vineyard 10.54 0.15 0.997 0.013 

 
Black wattle 11.58 0.10 0.995 0.014 

  Sugar cane bagasse 16.59 0.12 0.999 0.011 
Langmuir Biochar qmax (mg/g) b (L/mg) R2 p 

 
Vineyard 15.15 1.83 0.998 0.013 

 
Black wattle 14.49 4.06 0.996 0.014 

  Sugar cane bagasse 19.23 8.67 0.995 0.011 
t-test at a confidence level of 95%, p < 0.05 

 

The Freundlich isotherm is based on the assumption of heterogeneous surface energies (Tan et al., 

2007). KF can be defined as the adsorption coefficient, which represents the amount of dye adsorbed 

onto biochar for a unit of equilibrium concentration. The KF results show that the highest amount of 

dye adsorbed on the sugar cane bagasse biochar, whilst the lowest amount of dye adsorbed onto 

vineyard biochar. The value 1/n is a measure of adsorption intensity or surface heterogeneity. The 

values of 1/n shows more heterogeneous biochar as the value gets closer to zero (Hameed et al., 
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2007), hence black wattle biochar can be considered to be a little bit more heterogeneous than the 

rest of the biochars. The n values are higher than 1 which suggests that adsorption of MB by 

biochars is favourable. Tan et al. (2007) observed that KF increased when temperature was increased 

from 30 to 40°C, but as temperature was increased to 50°C, the KF value for adsorption by oil palm 

fibre activated carbon decreased. On the other hand, Gerçel et al. (2007) observed an increase in KF 

value when the adsorption temperature was increased from 20 to 40°C for adsorption by Euphorbia 

rigida activated carbon. Kavitha & Namasivayam (2007) reported that higher initial solution pH leads 

to an increase, but higher solution concentration causes a decrease in KF value for adsorption by coir 

pith carbon. In their study the KF and 1/n values were determined as 0.845 mg/g(l/mg)1/n and 1.38 

for 20 ppm initial solution, respectively. 

 

  

 
 

Figure 4.8: Freundlich isotherms for the adsorption of MB by (a) vineyard, (b) black wattle and (c) 
sugar cane bagasse biochars 

 

The Langmuir isotherm suggests that the maximum adsorption capacity corresponds to a complete 

monolayer of dye molecules on the biochar surface with constant energy and no transmission of 

adsorbate in the plane of the biochar surface (Hameed et al., 2007).  
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Figure 4.9: Langmuir isotherms for the adsorption of MB by (a) vineyard, (b) black wattle and (c) 

sugar cane bagasse biochars 

 

Biochar from sugar cane bagasse showed the highest maximum adsorption capacity (19.23 mg/g) 

due to its negatively charged surface and high BET area. However, one would expect black wattle 

biochar to have higher adsorption capacity than vineyard biochar, which cannot be seen in Table 

4.18. The reason for this is that a lower adsorption capacity of black wattle biochar was observed for 

a 20 ppm initial solution concentration. The maximum adsorption capacities were compared to 

literature data in Table 4.19. It can be deduced that the biochars produced in this study are better 

adsorbents than the ones which were shown in Table 4.19. However, the differences in experimental 

conditions would have an influence on adsorption capacities. The maximum adsorption capacities of 

adsorbents vary from 2.4 mg/g (Kadirvelu et al., 2003) to 412 mg/g (Attia et al., 2008) and even 

higher depending on the experimental conditions and the physico-chemical characteristics of the 

adsorbent. 
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Table 4.19: Comparison of adsorption capacities of different activated carbons for the removal of 

methylene blue 

Activated carbon source qmax (mg/g) Reference 
Rice husk 9.83 Sharma & Uma, 2010 

Coconut coir 15.59 Sharma et al., 2009 
Coconut tree sawdust 4.7 Kadirvelu et al., 2003 

Silk cotton hull 2.4 Kadirvelu et al., 2003 
Corn cob 5 Kadirvelu et al., 2003 

Banana pith 4.67 Kadirvelu et al., 2003 
Vineyard biochar 15.15 This study 

Black wattle biochar 14.49 This study 
Sugar cane bagasse biochar 19.23 This study 

 
The Langmuir constant b is an indication of adsorption energy and rate of adsorption. The highest b 

value was observed for adsorption by biochar from sugar cane bagasse, while the lowest b value was 

observed for adsorption by biochar from vineyard. During the experiments, faster removal of MB by 

sugar cane bagasse biochar was also observed, followed by black wattle and vineyard. This 

observation is supported by the Langmuir constants. The values for the dimensionless equilibrium 

parameter, RL for the biochars are 0.02, 0.01 and 0.004 for vineyard, black wattle and sugar cane 

bagasse biochars, respectively. These values confirmed that biochars are favourable (0<RL<1) for 

adsorption of MB under the conditions used in this study. It can be seen in Table 4.18 that both 

models fit the MB adsorption by biochars as illustrated by R2 values. However the Freundlich model 

showed a better fit for biochar from sugar cane bagasse, whereas the Langmuir model could be a 

better model to be used for vineyard and black wattle biochars. Therefore it could be deduced that 

the Langmuir isotherm model tends to show a better fit for the adsorption sytems with a high 

energy uptake rate due to the low solution concentration.  

 

 4.3.3 Adsorption kinetics 

 

The adsorption kinetics describes the rate of solute uptake, which is important for designing 

effective adsorption plants (Ho & McKay, 1999). Several models can be used to express the 

adsorption mechanism. The simplified models; pseudo-first-order (Lagergren, 1898), pseudo-second-

order (Ho & McKay, 1999) and intraparticle diffusion (Weber & Morris, 1963) have been widely 

applied. Table 4.20 reveals the kinetic constants for MB adsorption at 20 ppm dye concentration, 

assuming 1350 min is the equilibrium time needed. It should be noted that the limited time used 
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does not correspond to a true equilibrium state since vineyard biochar requires a longer period, 

whereas sugar cane bagasse requires a shorter period which was mentioned in Section 4.3.1. 

 

Table 4.20: Comparison of the pseudo-first-order, pseudo-second-order and intraparticle diffusion 

models for 20 ppm solution concentration 

 
Pseudo-first-order kinetic model  

qe,exp (mg/g) k1 (1/min) qe,cal (mg/g) R2 SSE (%) p 
Vineyard 17.93 0.003 7.78 0.934 5.07 0.01 

Black wattle 18.77 0.003 9.18 0.950 4.80 0.02 
Sugar cane bagasse 21.57 0.005 8.64 0.936 6.47 0.05 

 
Pseudo-second-order kinetic model  

qe,exp (mg/g) k2 (g/mg min) qe,cal (mg/g) R2 SSE (%) p 
Vineyard 17.93 0.002 18.18 0.998 0.11 0.01 

Black wattle 18.77 0.002 18.87 0.998 0.04 0.02 
Sugar cane bagasse 21.57 0.004 21.74 1.000 0.08 0.05 

 
Intraparticle diffusion model  

qe,exp (mg/g) kp (mg/g min1/2) qe,cal (mg/g) R2 SSE (%) p 
Vineyard 17.93 0.253 18.87 0.910 0.42 0.01 

Black wattle 18.77 0.296 19.90 0.916 0.51 0.02 
Sugar cane bagasse 21.57 0.305 23.48 0.759 0.86 0.05 
t-test at a confidence level of 95%, p < 0.05 

Reversible reactions of MB ions and biochar may be represented as (Ho & McKay, 2000): 

 

𝐴𝐴− +  (𝑀𝑀𝑀𝑀)+ 𝑘𝑘𝑎𝑎↔ 𝐴𝐴𝐴𝐴𝐴𝐴 

or 

𝐻𝐻𝐻𝐻 +  (𝑀𝑀𝑀𝑀)+ 𝑘𝑘𝑎𝑎↔ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐻𝐻+ 

 

The pseudo-first order kinetic model is based on solid capacity (Ho & McKay, 1999). The ka refers to 

adsorption rate which is represented as k1 in Table 4.20. The adsorption rates for vineyard and black 

wattle were approximately the same according to the pseudo-first order model. The adsorption rate 

for sugar cane bagasse was a little bit higher. The calculated qe values did not agree with 

experimental qe values.  The validity of each model was determined by the sum of error squares 

(SSE, %). The lower the value of SSE and higher the correlation coefficient (R2) is, the better the 

model fits. However, the correlation coefficient values can be considered as low. This indicates that 

the adsorption is not likely to be a first-order reaction. The linearised plots for adsorption by 

biochars are shown in Figure 4.10. Comber et al. (1996) reported a complex multi-step process for 

long equilibrium times. This multi-step process is essentially based on three independent first order 
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reactions for short (5 min), long (600 min), very long (12 000 min) periods of times. However, Ho & 

McKay (1999) suggested that the pseudo-second order model could be used for short or long 

equilibrium times.  

 

 
 

Figure 4.10: Pseudo-first-order adsorption kinetics of MB onto vineyard, black wattle and sugar cane 
bagasse biochars 

 

The pseudo-second-order kinetic model is based on solid phase sorption, which describes a 

chemisorption rather than physical adsorption.  Here ka refers to k2 in Table 4.20. It can be observed 

that the adsorption rate of sugar cane bagasse was relatively higher than vineyard and black wattle. 

The rate of pseudo-second-order reaction is assumed to be dependent on chemisorptions involving 

valence forces through exchange of electrons between adsorbent and sorbate (Ho & McKay, 1999). 

Although the acidic surface functionalities of black wattle was higher than vineyard (NMR studies, 

Section 4.2.3), according to calculations adsorption rate of vineyard was the same as the adsorption 

rate of black wattle. The reason for this could be higher film diffusion of solute from the solution 

onto the external surface across the boundary layer of vineyard biochar (Kavitha & Namasivayam, 

2007). Ho & McKay (1999) reported that qe is a function of temperature, initial ion concentration, 

adsorbent dose and nature of solute-adsorbent interaction. In this study temperature, initial ion 

concentration and adsorbent doses were the same. Therefore, solute-sorbent interaction gains 

importance regarding qe values. The calculated qe values were in order of sugar cane bagasse> black 

wattle> vineyard, which was the same order as the surface acidity of the biochars. The correlation 

coefficient values were above 0.99 (Figure 4.11); indicating pseudo-second order kinetic model is the 

correct model to explain the dynamics of adsorption processes of MB with these biochars. The SSE 
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(%) values are close to zero indicating the experimental and calculated qe values were close to each 

other. The pseudo-second-order adsorption kinetic model is one of the best models to determine 

the overall adsorption kinetics. Therefore; the graphs for pseudo-second-order adsorption kinetics 

were shown in Appendix F. These graphs clearly indicated the differences of adsorption rates. 

 

 
 

Figure 4.11: Pseudo-second-order adsorption kinetics for MB onto vineyard, black wattle and sugar 

cane bagasse biochars. 

 

The adsorption kinetic data was further processed to determine if intraparticle diffusion was rate 

limiting, therefore intraparticle rate constants were calculated (Table 4.21) via Figure 4.12. The 

boundary layer diffusion gives the initial part of the plot and the gradual adsorption stage represents 

the rate limiting intraparticle diffusion and finally the equilibrium stage takes place where 

intraparticle diffusion slows down due to the low concentration of the solute (Sun & Yang, 2003). If 

the plot passes through the origin, it is accepted that intraparticle diffusion is the rate controlling 

step (Gerçel et al., 2007). When the plot does not pass through the origin, it indicates some degree 

of boundary layer control. That means intraparticle diffusion is involved in the adsorption process, 

but it is not the only rate limiting step (Mahmoodi et al., 2011). The intercept (C) which is termed as 

the intraparticle diffusion constant (mg/g), indicated the thickness of the boundary layer; 12.28, 9.57 

and 9.02 for adsorption by sugar cane bagasse, vineyard and black wattle respectively. The boundary 

layer thickness can be defined as the distance from the adsorbent where the concentration of the 

diffusing species reaches 99% of the bulk concentration (Fogler, 2006). It indicates the tendency of 

ions to adsorb on the adsorbent surface. High thicknesses show higher adsorption capacities (Igwe 

et al., 2008), which can also be observed from Figure 4.12. The highest intraparticle adsorption rate 
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was observed for adsorption of MB by sugar cane bagasse. As is known, the rate of transport is 

affected by the structure of the adsorbent and its interaction with the solute (Itodo et al., 2010). In 

general, adsorption is controlled by the intraparticle diffusion due to the microporosity of the 

adsorbent. Considering micropore volumes of the biochars, it would also be expected that diffusion 

rate for sugar cane bagasse would be higher than black wattle and vineyard. Therefore, the 

micropore volumes of the biochars were in agreement with the intraparticle diffusion rates. 

However, intraparticle diffusion model did not really agree with the experimental data. 

 

 

 
 

Figure 4.12: Intraparticle diffusion models for adsorption of MB by vineyard, black wattle and sugar 

cane bagasse biochars. 

 

As was mentioned earlier, initial ion concentration affects the adsorption kinetics. Figure 4.13 shows 

the effect of initial solution concentration on adsorption rate and adsorption amount for pseudo-

second-order kinetics and intraparticle diffusion rate and C values (intervals) of MB adsorption by 

vineyard biochar. 
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Figure 4.13: (a) Pseudo-second-order kinetics, (b) intraparticle diffusion kinetic models for 20 and 15 

ppm MB adsorption by vineyard biochar 

 

As the solution concentration increased, adsorption capacity (qe) increased. This was also discussed 

in Section 4.3.1. However, the adsorption rate decreased for the pseudo-second-order model due to 

the increase in solution concentration. The intraparticle diffusion rate and interval thickness of the 

boundary layer showed an increase with increased solution concentration (Table 4.21,) indicating 

that as initial concentration increases, the possibility of the adsorbate to diffuse into the interior 

pores of the biochar increases due to the increased driving force of diffusion. These trends were also 

reported by other researchers (Mahmoodi et al., 2011; Hameed et al., 2007; Kavitha 

&Namasivayam, 2007). 

 

Table 4.21: Kinetic constants for dye adsorption at 20 and 15 ppm 

Dye concentration(ppm) qe (mg/g) k2 R2 kp C R2 p 
                                                Pseudo-second-order Intraparticle diffusion  

15 14.71 0.0067 0.998 0.298 8.151 0.967 0.02 
20 16.13 0.0066 0.998 0.341 8.928 0.938 0.01 

 t-test at a confidence level of 95%, p < 0.05 

 

In conclusion, contact time and initial solution concentration had a great effect on adsorption. 

Percentage removal and adsorption capacity increased with contact time. However, percentage 

removal decreased with initial solution concentrations due to the larger mass driving forces to 

overcome mass transfer resistances. The Langmuir and the Freundlich adsorption models have fitted 

the adsorption by biochars. However, Freundlich isotherm was a better model for adsorption by 

sugar cane bagasse biochar, while the Langmuir showed a slightly better fit than the Freundlich for 

the adsorption by black wattle and vineyard biochars. The order of maximum adsorption capacity 
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was: vineyard < black wattle < sugar cane bagasse, suggesting sugar cane bagasse biochar was a 

better adsorbent than the rest of the biochars.  

 

The pseudo-second-order reaction model was found to be the best model to explain the adsorption 

kinetics. The rates of adsorption were in order of vineyard < black wattle < sugar cane bagasse. The 

rate of adsorption by sugar cane bagasse was found to be much higher than the ones of vineyard 

and black wattle biochars. This information was supported by pseudo-second-order overall 

adsorption kinetics and presented in Appendix F. It was also deduced that intraparticle diffusion was 

not the only rate controlling step during adsorption and initial solution concentration had an effect 

on adsorption kinetics. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 
 

This study focused on the potential of biochars from vacuum pyrolysis of black wattle, vineyard 

prunings and sugar cane bagasse (460-475°C, 8-8.5 kPa, 13-17°C/min) as soil amendment and 

adsorbent. 

 

5.1 Conclusions 
 

• The major ash components of sugar cane bagasse were found to be silicon (68.7% SiO2) and iron 

(9.54% Fe2O3), while calcium (42.79% CaO) and potassium (26.44% K2O) was the main elements 

in the ash of vineyard prunings. The inorganics depend on the type of the biomass, growing, 

harvesting and environmental conditions. 

 

• The vacuum pyrolysis of the biomass resulted in the production of biochar, liquid and gas. The 

biochar yields were 23.5 %, 31.0% and 19.7% on weight basis for black wattle, vineyard and 

sugar cane bagasse, respectively. The pyrolysis conditions as well as biomass nature influenced 

the pyrolytic product yields.   

 
• Comparing the products from wood based biomasses, namely black wattle and vineyard 

prunings, it was concluded that larger particle size leads to a decrease in gas, but an increase in 

biochar production, due to the enhanced secondary reactions.  

 
• The higher biochar yield from vineyard prunings was due to the influence of higher lignin and 

ash composition of the biomass.  

 
• The percentages of carbon, nitrogen, hydrogen and ash increased, whereas oxygen percentage 

decreased in biochars in comparison to raw materials as a result of the pyrolysis process. 

Biochars from black wattle and vineyard prunings contained higher amounts of carbon than 

biochar from sugar cane bagasse, whereas biochar from sugar cane bagasse contained higher 

amounts of oxygen. 

 
• The O/C and H/C values can be used as an indication of presence of functional groups and 

aromatic carbon structures. The Van Krevelen diagram was used to show the influence of 

pyrolysis temperature on O/C and H/C values and it was deduced that sugar cane bagasse 
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biochar exhibits a low degree of carbonisation, whereas biochar from vineyard prunings exhibits 

a higher degree of carbonisation. 

 

• The highest surface acidity was observed for sugar cane bagasse (2.3 mmol/g), whereas the 

highest basicity was observed for vineyard (1.67 mmol/g). These results were in agreement with 

pH, FTIR and NMR analysis.   

 
• The nature of the biomass as well as pyrolytic conditions influenced surface functional groups 

present on the biochar surface. Vacuum pyrolysis of biomasses at 460 °C resulted in higher 

acidic functional groups on biochar surfaces compared to slow and fast pyrolysis studies from 

literature. 

 
• The aromaticity of biochars was in the order of vineyard > black wattle > sugar cane bagasse, 

implying vineyard and black wattle biochars would take longer to decay in soil which would be 

advantageous by means of nutrient availability and water retention as well as contribution to 

greenhouse gas mitigation via storage of carbon for long terms.  

 
• Under the same pyrolysis conditions, wood based biochar had higher aromacity than 

herbaceous industrial residue based biochar. 

 
• Sugar cane bagasse biochar was rich in aliphatic carbon, whereas aliphatic carbon percentages 

of black wattle and vineyard were very low. Higher aliphatic content of sugar cane bagasse 

biochar was also correlated with FTIR analysis. Polar carbon content of biochars were in the 

order of sugar cane bagasse > black wattle > vineyard which was in agreement with molar 

(O+N)/C ratios. 

 
• The pH values of biochars were 6.56, 9.74 and 10.43 for sugar cane bagasse, black wattle and 

vineyard, respectively.  Slightly acidic character of sugar cane bagasse biochar was in contrast 

with literature. 

 

• The C/N ratios of biochars were found to be 32.3, 29.6, and 42.8 for black wattle, vineyard and 

sugar cane bagasse, respectively. These values were an indication of nitrogen immobilisation; 

however the recalcitrant nature of biochars is able to overcome this problem.  
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• The cation exchange capacities of biochars were in order of sugar cane bagasse (122 cmol/kg) > 

black wattle (101 cmol/kg) > vineyard (65 cmol/kg), which can be considered as high compared 

to biochars from slow and fast pyrolysis. The CEC values correlate well with O/C ratios of the 

biochars. Vacuum pyrolysis contributed to the presence of functional groups, which was the 

reason for their high cation exchange abilities compared to literature.   

 
• Electrical conductivities were found to be more correlated with feedstock nature. The results 

were in order: vineyard (0.83 dS/m) > black wattle (0.67 dS/m) > sugar cane bagasse (0.17 

dS/m).  The EC values correlated well with pH values of the biochars.  

 
• Biochars contained substantial amounts of plant-available nutrients. However, plant available 

NO3
- was low. Biochars are low in toxic elements. Lesser amount of nutrients in sugar cane 

bagasse makes it unattractive as soil amendment.   

 
• BET surface areas were found to be 259 m2/g, 241 m2/g and 91 m2/g for sugar cane bagasse, 

black wattle and vineyard respectively, which would improve the soil properties such as 

nutrient retention.  

 
• The nitrogen adsorption isotherms were typical of type I, which was indicative of microporosity 

and hysteresis loops were typical of type IV indicating the presence of mesopores. Since the 

micropores in biochars are more involved with molecular transport, vineyard biochar would not 

be as efficient as black wattle and sugar cane bagasse in molecular transport in soil due to its 

lower amounts of micropores. 

 
• Vacuum pyrolysis is a preferable pyrolysis technique for biochar production for soil amendment 

purposes by producing biochars with high CEC, plant available nutrients and more surface 

functionalities.  

 
• Batch methylene blue (model compound) adsorption studies showed that the amount of dye 

adsorbed increased when initial solution concentrations were increased. The adsorption 

capacities increased with initial increased contact time and reached equilibrium. Considering 

experimental data points that were obtained, the experimental equilibrium time were found to 

be approximately 3505 min, 1350 min, 150 min for adsorption of 20 mg/L methylene blue 

solution for vineyard, black wattle and sugar cane bagasse, respectively. These results were 
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attributed to the chemical structure of the biochars as well as physical structures such as BET 

surface areas, particularly internal surface areas. 

 

• The experimental equilibrium fitted the Langmuir and Freundlich models. The Freundlich model 

showed a better fit for sugar cane bagasse, whereas the Langmuir model had a better fit for 

vineyard and black wattle biochars. However, these models should be investigated with more 

data points at different solution temperatures and higher solution concentrations. The 

maximum adsorption capacities of biochars were found to be 15.15 mg/g, 14.49 mg/g and 

19.23 mg/g for vineyard, black wattle and sugar cane bagasse. These values suggest that the 

mentioned biochars are better adsorbents than some of the activated carbons such as rice husk 

(9.83 mg/g) and corn cob (5 mg/g). However, these values are highly dependent on 

experimental conditions and physico-chemical characteristics of the adsorbents. 

 

• Methylene blue adsorption onto biochars followed the pseudo-second-order kinetic model. The 

second-order adsorption rates were found to be the same for adsorption by vineyard and black 

wattle biochars (0.002 g/mg min), whereas adsorption rate was 0.004 g/mg min for adsorption 

by sugar cane bagasse biochar. The calculated qe values were similar to the experimental ones 

and in order of sugar cane bagasse> black wattle > vineyard, which was in the order of the 

presence of surface acidity on the biochars. The intraparticle diffusion model was found to be 

involved in the adsorption process, but it was not the only rate limiting step. As solution 

concentration was increased, the second-order adsorption rate decreased, but the intraparticle 

diffusion rate and the interval which indicated the thickness of the boundary layer increased. 

These findings could be used as baseline data to conduct further investigations on adsorption 

kinetics and thermodynamics. 

 

• All in all, sugar cane bagasse was found to the best adsorbent for the removal of cationic dyes 

due to its high BET surface area and the presence of hard Lewis acidic functionalities. Sugar 

cane bagasse could be also more preferable for nutrient retention purposes. Nevertheless, 

black wattle and vineyard biochars were found to be a better soil amendment due to higher 

amounts of nutrients. However, higher CEC and BET surface area of black wattle make it more 

preferable to vineyard biochar.  Therefore, it can be said that black wattle was the best biochar 

for soil amendment purposes. 
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Table 5.1: Summary of physico-chemical properties of biochars and their intended usage 

Physico-chemical property Intended application Suitable biochar Result Expected effect Additional 
requirements  

pH in water Addition to acidic soils Vineyard & Black wattle pHVineyard =10.43; pHBlack 

wattle= 9.74 Liming effect none 

pH in water Addition to slightly 
basic soils Sugar cane bagasse pH=6.56 Neuralisation of soil pH none 

Cation Exchange Capacity 
(CEC) 

Addition into nutrient 
deficient soils 

Sugar cane bagasse & 
Black wattle 

CECSugar cane bagasse= 122 
cmol/kg; CECBlack wattle= 

101 cmol/kg 
Nutrient retention none 

Oxygen containing 
functional groups  - Sugar cane bagasse O/C = 0.49 Increase in CEC none 

Aromatic C content Addition to soils Vineyard & Black wattle Vineyard= 86%; Black 
wattle= 84% 

Resistance to microbial 
decay; therefore 

restriction for C/N 
immobilisation. Longer 

sequestration of 
carbon in soil 

none 

Electrical Conductivity 
(EC) Addition into soils 

Vineyard & Black 
wattle& Sugar cane 

bagasse 

ECVineyard= 0.83 dS/m; 
ECBlack wattle= 0.67 dS/m; 
ECSugar cane bagasse= 0.17 

dS/m 

Not a substantial 
change is expected None 
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Physico-chemical property Intended application Suitable biochar Result Expected effect Additional 
requirements  

Water Soluble Nutrients Addition into soils Vineyard & Black wattle Vineyard= 6522 mg/kg; 
Black wattle= 5626 mg/kg 

Increase in water 
soluble nutrients 

Nitrogen fertilizer 
addition is essential. 

Citric acid soluble macro 
and micro nutrients 

Addition into nutrient 
deficient soils Vineyard & Black wattle 

Vineyard= 39263 mg/kg; 
Black wattle= 23527 

mg/kg 

Increase in plant 
available nutrients 

Nitrogen fertilizer 
addition is essential. 

BET surface area Addition into soils Sugar cane bagasse & 
Black wattle 

BETSugar cane bagasse= 259 
m2/g; BETBlack wattle= 241 

m2/g 

Increase in mineral 
transport from soil to 
plant and sorption of 

heavy metals from 
soils to biochar 

none 

BET surface area 

Adsorption of 
wastewater (Model 
compound= Cationic 

methylene blue 
solution) 

Sugar cane bagasse BETSugar cane bagasse= 259 
m2/g 

Efficient adsorption of 
cationi wastewaters 

Steam activation can 
improve surface 

area. For vineyard 
and black wattle 

biochars chemical 
activation can lead a 
better improvement 

on surfaces of 
abovementioned 

biochars 
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Table 5.2: Production conditions for application based biochars 

 
5.2 Recommendations 
 

• If the aim is biochar production, it would be better to use vineyard prunings, but for 

substantial production of biochar and bio-oil, black wattle is a potential biomass to be 

preferred under optimised conditions. Both vineyard and black wattle biochars should be 

tested in pot trials to observe soil-biochar-plant interactions. 

 

• Sugar cane bagasse can be used to balance the pH of slightly basic soils due to its slightly 

acidic pH. It could be beneficial to balance soil pH around pH 6-7 as most nutrients are plant 

available in this range of pH. 

 
• Nitrogen fertiliser should be supplemented when applying the biochars into soil and the 

amount of biochar should be calculated carefully before addition into soil to prevent any soil 

salinisation problems and nutrient imbalances. Another suggestion is pyrolysis of a biomass 

with a nitrogen resource to increase the plant available nitrate in biochar. It could be 

advantageous for waste management of both agricultural residues and animal waste. 

 
• Citric acid and nitric acid digestion methods should be compared in order to evaluate the 

analytic methods for biochar characterisation as soil amendments.  

 
• Further study on the effect of pyrolysis conditions (e.g. temperature, hold time) on the 

chemical properties of biochars which are essential for soil properties (e.g. cation exchange 

capacity, surface acidity, pH, plant available nutrient content) is needed to produce high 

quality biochars for soil amendment. 

Application The best biochar Production conditions 

Soil amendment Black wattle Biomass particle size= +850 nm; Tf= 
4750C; HR= 15-130C/min; P= 8.5 kPaabs 

Wastewater treatment Sugar cane bagasse Biomass particle size= 425-850 nm; 
Tf= 4600C; HR= 170C/min; P= 8 kPaabs 
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• Further studies on economy and energy are required to ensure that biochar as soil 

amendment is beneficial.  

 
• Further investigations on adsorption equilibrium, kinetics and thermodynamics are needed 

to optimise the adsorption by biochars. Higher initial concentrations of solution should be 

used in order to use equilibrium and kinetic models more efficiently. Different wastewaters 

should be tested to obtain maximum adsorption abilities of the biochars.  
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APPENDIX A: VACUUM PYROLYSIS EXPERIMENTAL RUNS 
 

Table A.1: Vacuum pyrolysis product yields on mass basis 

 
Ybiochar Yliquid Ytotalwater Ybio-oil Ypyrolyticwater 

 
Black wattle 

Run 1 23.51 60.36 39.48 20.88 34.38 

Run 2 23.11 58.44 35.42 23.02 30.31 

Run 3 23.89 55.63 32.20 23.43 27.09 

 
Vineyard 

Run 1 31.44 36.87 25.73 11.15 15.91 

Run 2 29.58 33.85 21.01 12.83 11.19 

Run 3 31.25 34.14 23.38 10.76 13.56 

Run 4 31.55 36.04 26.44 9.60 10.81 

 
Sugar cane bagasse 

Run 1 18.49 53.27 22.23 31.03 1.56 

Run 2 18.51 44.82 26.97 17.85 6.30 

Run 3 22.07 51.89 25.13 26.76 4.46 

* The symbol Y denotes yield percentage. 

 

Error analysis 

The products were scaled at the end of each run. Therefore, the error analysis is based on the errors 

which arise from multi scaling. It has been shown by Hugo (2010) as follows: 

 

𝐴𝐴 = 𝑎𝑎 ± ∆𝑎𝑎 

𝐵𝐵 = 𝑏𝑏 ± ∆𝑏𝑏 

𝐴𝐴 + 𝐵𝐵 = (𝑎𝑎 ± ∆𝑎𝑎) + (𝑏𝑏 ± ∆𝑏𝑏) 

𝐴𝐴 + 𝐵𝐵 = (𝑎𝑎 + 𝑏𝑏) + (±∆𝑎𝑎 ± ∆𝑏𝑏) 

𝐴𝐴 + 𝐵𝐵 = (𝑎𝑎 + 𝑏𝑏) ± (∆𝑎𝑎 + ∆𝑏𝑏) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  =  
𝐸𝐸

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
=
∆𝑎𝑎 + ∆𝑏𝑏
𝑎𝑎 + 𝑏𝑏

≈
∆𝑎𝑎
𝑎𝑎
≈
∆𝑏𝑏
𝑏𝑏

 

 

(𝑖𝑖𝑖𝑖 − ∆𝑎𝑎 ≈ ∆𝑏𝑏) 
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The multiplication of errors is calculated as follows: 

 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣 =
𝐸𝐸

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
=
𝑏𝑏∆𝑎𝑎 + 𝑎𝑎∆𝑏𝑏

𝑎𝑎𝑎𝑎
=
∆𝑎𝑎
𝑎𝑎

+
∆𝑏𝑏
𝑏𝑏

 

 

The laboratory scale was assumed to have an error of ±0.1 g. For instance, ±0.1 g error would be 

caused by the weighing both the biomass and the biochar. If Run 1 from black wattle is taken as an 

example with a value of 40.54 g of biomass and 9.53 g biochar, the error calculation for biochar yield 

would be as follows: 

 

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎  𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = (
±0.1

𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
+

±0.1
𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎

) × 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎  

 

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎  𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = (
±0.1

40.54 𝑔𝑔
+

±0.1
9.53 𝑔𝑔

) × 23.51 = ±0.3 
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APPENDIX B: VACUUM PYROLYSIS PRODUCT YIELDS 
 

 

Table B.1: Vacuum pyrolysis product yields 

 
Ybiochar Yliquid Ytotalwater Ybio-oil Ypyrolyticwater 

 
on weight basis 

Black wattle 23.5±0.3 58.1±8.1 35.7±10.1 22.4±6.4 30.6±9.2 

Vineyard 31.0±0.3 35.2±11.6 24.1±10.8 11.1±4.7 14.3±6.6 

Sugar cane bagasse 19.7±0.3 50.0±7.7 24.8±6.6 25.2±6.7 4.1±1.1 

 
on dry weight basis 

Black wattle 24.8±0.8 61.3±9.7 37.6±11.3 23.7±7.2 32.2±9.7 

Vineyard 34.3±0.7 39.1±13.2 26.8±12.2 11.4±5.0 15.9±7.4 

Sugar cane bagasse 24.8±0.5 63.0±10.0 31.2±8.4 31.8±8.6 5.2±1.4 

 
on dry and ash free weight basis 

Black wattle 25.1±2.8 62.1±14.9 38.1±14.6 24.0±9.3 32.7±12.5 

Vineyard 35.5±2.0 40.3±15.0 27.7±13.6 12.7±6.0 16.4±8.2 

Sugar cane bagasse 26.2±1.2 66.5±12.2 32.9±9.7 33.5±9.9 5.5±1.6 

* The symbol Y denotes yield percentage. 
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APPENDIX C: CALIBRATION CURVES USED FOR 

CALCULATION OF MB CONCENTRATION 
 

 

 
 

Figure C.1: Calibration curve using 20 ppm methylene blue solution 

 

 
 

Figure C.2: Calibration curve using 15 ppm methylene blue solution 
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Figure C.3: Calibration curve using 10 ppm methylene blue solution 

 

 

 
 

Figure C.4: Calibration curve using 5 ppm methylene blue solution 
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APPENDIX D: ADSORPTION RAW DATA 
 

Table D.1: Adsorption data for vineyard (20 mg/L MB) 

 

 
No .1  No. 2 

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 2.163 20.14 0.00 0.00 2.163 20.14 0.00 0.00 0.00 0.00 0.00 20.14 0.00 0.00 
1 1.265 11.90 9.14 40.92 1.416 13.28 7.60 34.0 0.98 1.09 4.86 12.59 8.37 37.48 

15 1.064 10.06 11.18 50.07 1.139 10.74 10.42 46.7 0.49 0.54 2.42 10.40 10.80 48.37 
150 0.758 7.25 14.29 64.01 0.819 7.81 13.67 61.2 0.40 0.44 1.96 7.53 13.98 62.62 
510 0.558 5.41 16.33 73.12 0.605 5.84 15.85 71.0 0.30 0.34 1.51 5.63 16.09 72.05 

1350 0.39 3.87 18.04 80.78 0.411 4.06 17.82 79.8 0.14 0.15 0.68 3.97 17.93 80.30 
3505 0.203 2.16 19.94 89.30 0.21 2.22 19.87 89.0 0.05 0.05 0.23 2.19 19.90 89.14 
4945 0.127 1.46 20.71 92.76 0.173 1.88 20.24 90.7 0.30 0.33 1.48 1.67 20.48 91.71 
6385 0.114 1.34 20.84 93.35 0.132 1.50 20.66 92.5 0.12 0.13 0.58 1.42 20.75 92.94 
7825 0.094 1.16 21.05 94.26 0.096 1.17 21.03 94.2 0.01 0.01 0.06 1.17 21.04 94.21 
9985 0.076 0.99 21.23 95.08 0.082 1.05 21.17 94.8 0.04 0.04 0.19 1.02 21.20 94.94 

11425 0.061 0.85 21.38 95.76 0.073 0.96 21.26 95.2 0.08 0.09 0.39 0.91 21.32 95.49 
12865 0.056 0.81 21.43 95.99 0.053 0.78 21.46 96.1 0.02 0.02 0.10 0.79 21.45 96.06 
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Table D.2: Adsorption data for vineyard (15 mg/L) 

 
No .1  No. 2  

      
t (min) A/A0 [MB] mg/L q (mg/g) % Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 1.717 14.95 0.00 0.00 1.717 14.95 0.00 0.00 0.00 0.00 0.00 14.95 0.00 0.00 
1 0.87 7.58 8.17 49.28 0.855 7.45 8.32 50.15 0.09 0.11 0.62 7.52 8.25 49.72 
5 0.782 6.82 9.02 54.40 0.765 6.67 9.19 55.39 0.10 0.12 0.70 6.74 9.10 54.89 

15 0.694 6.05 9.87 59.52 0.679 5.92 10.02 60.39 0.09 0.11 0.62 5.99 9.94 59.95 
30 0.627 5.47 10.51 63.41 0.623 5.43 10.56 63.65 0.02 0.03 0.16 5.45 10.54 63.53 
60 0.561 4.90 11.15 67.25 0.548 4.78 11.28 68.01 0.08 0.09 0.53 4.84 11.22 67.63 

150 0.409 3.57 12.62 76.09 0.415 3.63 12.57 75.75 0.04 0.03 0.25 3.60 12.59 75.92 
510 0.201 1.77 14.62 88.19 0.227 1.99 14.38 86.68 0.16 0.17 1.07 1.88 14.50 87.44 

1315 0.091 0.81 15.68 94.59 0.101 0.90 15.60 94.01 0.06 0.06 0.41 0.85 15.64 94.30 
1420 0.08 0.71 15.79 95.23 0.092 0.82 15.69 94.53 0.07 0.07 0.49 0.77 15.74 94.88 
1615 0.072 0.64 15.87 95.70 0.088 0.78 15.72 94.77 0.10 0.10 0.66 0.71 15.80 95.23 
1735 0.06 0.54 15.98 96.39 0.072 0.64 15.88 95.70 0.07 0.07 0.49 0.59 15.93 96.04 
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Table D.3: Adsorption data for vineyard (10 mg/L) 

 
No .1  No. 2  

      
t (min) A/A0 [MB] mg/L q (mg/g) % Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 0.957 9.98 0.00 0.00 0.957 9.98 0.00 0.00 0.00 0.00 0.00 9.98 0.00 0.00 
1 0.337 3.59 7.09 64.05 0.294 3.14 7.58 68.49 0.31 0.35 3.14 3.37 7.33 66.27 
6 0.241 2.60 8.18 73.97 0.237 2.56 8.23 74.38 0.03 0.03 0.29 2.58 8.21 74.18 

15 0.182 1.99 8.86 80.06 0.187 2.04 8.80 79.55 0.04 0.04 0.37 2.02 8.83 79.80 
60 0.111 1.26 9.67 87.40 0.114 1.29 9.64 87.09 0.02 0.02 0.22 1.27 9.65 87.24 

150 0.066 0.79 10.18 92.05 0.058 0.71 10.28 92.87 0.06 0.07 0.58 0.75 10.23 92.46 
390 0.03 0.42 10.60 95.76 0.032 0.44 10.58 95.56 0.01 0.01 0.15 0.43 10.59 95.66 

1200 0.02 0.32 10.71 96.80 0.018 0.30 10.74 97.00 0.01 0.02 0.15 0.31 10.72 96.90 
 

Table D.4: Adsorption data for vineyard (5 mg/L) 

 
No .1  No. 2  

      
t (min) A/A0 [MB] q (mg/g) % Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 0.594 5.22 0.00 0.00 0.594 5.22 0.00 0.00 0.00 0.00 0.00 5.22 0.00 0.00 
1 0.076 0.64 5.08 87.79 0.081 0.68 5.03 86.95 0.03 0.03 0.60 0.66 5.05 87.37 
3 0.039 0.31 5.44 94.07 0.051 0.42 5.32 92.03 0.08 0.08 1.44 0.36 5.38 93.05 
6 0.034 0.27 5.49 94.91 0.043 0.35 5.40 93.39 0.06 0.06 1.08 0.31 5.45 94.15 

10 0.032 0.25 5.51 95.25 0.038 0.30 5.45 94.24 0.04 0.04 0.72 0.27 5.48 94.74 
20 0.021 0.15 5.62 97.12 0.025 0.19 5.58 96.44 0.03 0.03 0.48 0.17 5.60 96.78 
30 0.017 0.12 5.66 97.80 0.018 0.12 5.65 97.63 0.01 0.01 0.12 0.12 5.65 97.71 
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Table D.5: Adsorption data for black wattle (20 mg/L) 

 
No .1  No. 2   

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 2.272 20.10 0.00 0.00 2.272 20.10 0.00 0.00 0.00 0.00 0.00 20.10 0.00 0.00 
1 1.487 13.21 7.64 34.28 1.443 12.82 8.06 36.20 0.27 0.30 1.36 13.02 7.85 35.24 

15 1.234 10.99 10.10 45.32 1.220 10.87 10.23 45.93 0.09 0.09 0.43 10.93 10.17 45.62 
150 0.813 7.30 14.20 63.69 0.816 7.32 14.16 63.56 0.02 0.03 0.09 7.31 14.18 63.62 
510 0.562 5.10 16.64 74.64 0.535 4.86 16.89 75.82 0.17 0.18 0.83 4.98 16.76 75.23 

1350 0.336 3.11 18.84 84.51 0.349 3.23 18.70 83.94 0.08 0.10 0.40 3.17 18.77 84.22 
2060 0.16 1.57 20.55 92.19 0.191 1.84 20.23 90.84 0.19 0.22 0.96 1.71 20.39 91.51 
3500 0.154 1.52 20.61 92.45 0.177 1.72 20.37 91.45 0.14 0.17 0.71 1.62 20.49 91.95 
6385 0.06 0.69 21.52 96.55 0.081 0.88 21.30 95.64 0.13 0.16 0.65 0.79 21.41 96.09 
7370 0.06 0.69 21.52 96.55 0.070 0.78 21.41 96.12 0.06 0.08 0.31 0.74 21.47 96.33 

10250 0.06 0.69 21.52 96.55 0.060 0.69 21.51 96.55 0.00 0.01 0.00 0.69 21.52 96.55 
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Table D.6: Adsorption data for black wattle (15 mg/L) 

 
No .1  No. 2   

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 1.717 14.95 0.00 0.00 1.717 14.95 0.00 0.00 0.00 0.00 0.00 14.95 0.00 0.00 
1 1.069 9.31 6.25 37.71 1.042 9.08 6.51 39.28 0.17 0.19 1.11 9.20 6.38 38.49 
5 0.913 7.96 7.75 46.78 0.92 8.02 7.69 46.37 0.04 0.04 0.29 7.99 7.72 46.58 

15 0.778 6.78 9.05 54.63 0.777 6.77 9.07 54.69 0.01 0.01 0.04 6.78 9.06 54.66 
30 0.664 5.79 10.15 61.26 0.667 5.82 10.13 61.09 0.02 0.02 0.12 5.80 10.14 61.17 
60 0.549 4.79 11.26 67.95 0.534 4.66 11.41 68.82 0.09 0.11 0.62 4.73 11.33 68.39 

150 0.379 3.31 12.90 77.84 0.372 3.25 12.97 78.25 0.04 0.05 0.29 3.28 12.94 78.04 
480 0.169 1.49 14.92 90.05 0.166 1.46 14.96 90.23 0.02 0.03 0.12 1.47 14.94 90.14 

1764 0.048 0.43 16.09 97.09 0.058 0.52 16.00 96.51 0.06 0.06 0.41 0.48 16.04 96.80 
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Table D.7: Adsorption data for black wattle (10 mg/L) 

 
No .1  No. 2   

      
t A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 0.982 10.24 0.00 0.00 0.982 10.24 0.00 0.00 0.00 0.00 0.00 10.24 0.00 0.00 
1 0.366 3.89 7.04 62.04 0.374 3.97 6.95 61.24 0.06 0.06 0.57 3.93 7.00 61.64 
3 0.33 3.52 7.45 65.67 0.31 3.31 7.69 67.68 0.15 0.17 1.42 3.41 7.57 66.68 
7 0.271 2.91 8.13 71.61 0.251 2.70 8.36 73.62 0.15 0.17 1.42 2.80 8.24 72.62 

15 0.203 2.21 8.90 78.46 0.186 2.03 9.10 80.17 0.12 0.14 1.21 2.12 9.00 79.31 
60 0.071 0.85 10.41 91.74 0.07 0.84 10.43 91.85 0.01 0.01 0.07 0.84 10.42 91.79 

150 0.036 0.48 10.81 95.27 0.034 0.46 10.84 95.47 0.01 0.02 0.14 0.47 10.83 95.37 
475 0.022 0.34 10.97 96.68 0.018 0.30 11.03 97.08 0.03 0.04 0.28 0.32 11.00 96.88 

1475 0.017 0.29 11.03 97.18 0.023 0.35 10.97 96.58 0.04 0.04 0.43 0.32 11.00 96.88 
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Table D.8: Adsorption data for black wattle (5 mg/L) 

 
No .1  No. 2   

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 0.565 4.96 0.00 0.00 0.565 4.96 0.00 0.00 0.00 0.00 0.00 4.96 0.00 0.00 
1 0.203 1.76 3.55 64.49 n/d n/d n/d n/d n/d n/d n/d 1.76 3.55 64.49 
3 0.072 0.60 4.84 87.87 0.059 0.49 4.96 90.19 0.08 0.09 1.64 0.54 4.90 89.03 
5 0.076 0.64 4.80 87.15 0.065 0.54 4.90 89.12 0.07 0.08 1.39 0.59 4.85 88.14 
7 0.047 0.38 5.08 92.33 0.038 0.30 5.17 93.93 0.06 0.06 1.14 0.34 5.12 93.13 

10 0.028 0.21 5.27 95.72 0.021 0.15 5.34 96.97 0.04 0.05 0.88 0.18 5.30 96.34 
15 0.017 0.12 5.38 97.68 0.014 0.09 5.40 98.22 0.02 0.02 0.38 0.10 5.39 97.95 
20 0.009 0.04 5.45 99.11 0.009 0.04 5.45 99.11 0.00 0.00 0.00 0.04 5.45 99.11 
30 0.006 0.02 5.48 99.64 0.006 0.02 5.48 99.64 0.00 0.00 0.00 0.02 5.48 99.64 

 

 

 

 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 
 

161 
Appendices 

Table D.9: Adsorption data for sugar cane bagasse (20 mg/L) 

 
No .1  No. 2   

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 2.163 20.00 0.00 0.00 2.163 20.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 
1 1.201 11.09 9.87 44.54 1.31 12.10 8.76 39.49 0.71 0.78 3.57 11.60 9.32 42.01 

15 0.777 7.17 14.22 64.17 0.778 7.18 14.23 64.12 0.01 0.00 0.03 7.17 14.23 64.14 
150 0.329 3.02 18.82 84.91 0.335 3.07 18.78 84.63 0.04 0.03 0.20 3.05 18.80 84.77 
510 0.133 1.20 20.83 93.98 0.136 1.23 20.82 93.84 0.02 0.01 0.10 1.22 20.83 93.91 
810 0.093 0.83 21.24 95.83 0.091 0.81 21.29 95.93 0.01 0.03 0.07 0.82 21.26 95.88 

1350 0.064 0.56 21.54 97.18 0.061 0.54 21.59 97.31 0.02 0.04 0.10 0.55 21.57 97.25 
2070 0.062 0.55 21.56 97.27 0.072 0.64 21.48 96.81 0.07 0.06 0.33 0.59 21.52 97.04 
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Table D.10: Adsorption data for sugar cane bagasse (15 mg/L) 

 
No .1  No. 2   

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 1.681 14.63 0.00 0.00 1.681 14.63 0.00 0.00 0.00 0.00 0.00 14.63 0.00 0.00 
1 0.803 7.00 8.46 52.15 1.007 8.77 6.49 40.03 1.25 1.39 8.57 7.89 7.48 46.09 
5 0.552 4.82 10.88 67.07 0.588 5.13 10.54 64.93 0.22 0.24 1.51 4.97 10.71 66.00 

15 0.353 3.09 12.80 78.90 0.371 3.24 12.63 77.83 0.11 0.12 0.76 3.17 12.71 78.36 
30 0.239 2.10 13.90 85.68 0.256 2.24 13.74 84.67 0.10 0.11 0.71 2.17 13.82 85.17 
60 0.141 1.24 14.84 91.50 0.153 1.35 14.73 90.79 0.07 0.08 0.50 1.30 14.79 91.14 

150 0.061 0.55 15.61 96.26 0.057 0.51 15.66 96.49 0.02 0.03 0.17 0.53 15.63 96.37 
270 0.03 0.28 15.91 98.10 0.023 0.22 15.98 98.51 0.04 0.05 0.29 0.25 15.95 98.31 
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Table D.11: Adsorption data for sugar cane bagasse (10 mg/L) 

 
No .1  No. 2   

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 1.12 9.88 0.00 0.00 1.12 9.88 0.00 0.00 0.00 0.00 0.00 9.88 0.00 0.00 
1 0.312 2.73 7.94 72.41 0.222 1.93 8.81 80.47 0.56 0.62 5.70 2.33 8.38 76.44 
3 0.145 1.25 9.58 87.37 0.117 1.00 9.84 89.88 0.18 0.19 1.77 1.12 9.71 88.62 
6 0.083 0.70 10.19 92.92 0.065 0.54 10.35 94.54 0.11 0.12 1.14 0.62 10.27 93.73 

10 0.051 0.42 10.50 95.79 0.042 0.34 10.58 96.60 0.06 0.06 0.57 0.38 10.54 96.19 
20 0.025 0.19 10.76 98.12 0.02 0.14 10.80 98.57 0.03 0.03 0.32 0.16 10.78 98.34 
30 0.02 0.14 10.80 98.57 0.019 0.13 10.81 98.66 0.01 0.00 0.06 0.14 10.81 98.61 
60 0.014 0.09 10.86 99.10 0.011 0.06 10.88 99.37 0.02 0.02 0.19 0.08 10.87 99.24 

150 0.007 0.03 10.93 99.73 0.01 0.05 10.89 99.46 0.02 0.03 0.19 0.04 10.91 99.60 
 

Table D.12: Adsorption data for sugar cane bagasse (5 mg/L) 

 
No .1  No. 2   

      
t (min) A/A0 [MB] mg/L q (mg/g) %Removal A/A0 [MB] q (mg/g) % Removal 

std 
dev 

[MB] 

std 
dev 

for q 

std  for 
% 

Removal 
Avg. [MB] Avg. q 

(mg/g) 
Avg. 

%Removal 

0 0.565 4.96 0.00 0.00 0.565 4.96 0.00 0.00 0.00 0.00 0.00 4.96 0.00 0.00 
0.5 0.131 1.12 4.25 77.34 0.176 1.52 3.82 69.31 0.28 0.31 5.68 1.32 4.04 73.33 
2.5 0.08 0.67 4.76 86.44 0.07 0.58 4.86 88.22 0.06 0.07 1.26 0.63 4.81 87.33 
5 0.004 0.00 5.50 100 0.005 0.01 5.50 99.82 0.01 0.00 0.13 0.00 5.50 99.91 

Stellenbosch University  http://scholar.sun.ac.za



Masters of Science in Engineering (MScEng) 
 
 

164 
Appendices 

APPENDIX E: TIME (MIN) VERSUS Q (MG/G) EQUILIBRIUM 

GRAPHS FOR MB ADSORPTION 
 

E.1 Vineyard 

 

 
Figure E.1:  Methylene blue adsorption by vineyard for a concentration of 20 ppm 

 

 
Figure E.2: Methylene blue adsorption by vineyard for a concentration of 15 ppm 
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Figure E.3: Methylene blue adsorption by vineyard for a concentration of 10 ppm 

 

 
Figure E.4: Methylene blue adsorption by vineyard for a concentration of 5 ppm 
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E.2 Black Wattle 
 

 
Figure E.5: Methylene blue adsorption by black wattle for a concentration of 20 ppm 

 

 
Figure E.6: Methylene blue adsorption by black wattle for a concentration of 15 ppm 
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Figure E.7: Methylene blue adsorption by black wattle for a concentration of 10 ppm 

 

 
Figure E.8: Methylene blue adsorption by black wattle for a concentration of 5 ppm 
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E.3 Sugar cane bagasse 
 

 
Figure E.9: Methylene blue adsorption by sugar cane bagasse for a  

concentration of 20 ppm 

 

 
Figure E.10: Methylene blue adsorption by sugar cane bagasse for a  

concentration of 15 ppm 
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Figure E.11: Methylene blue adsorption sugar cane bagasse for a  

concentration of 10 ppm 

 

 
Figure E.12: Methylene blue adsorption sugar cane bagasse for a  

concentration of 5 ppm 
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APPENDIX F: PSEUDO-SECOND-ORDER ADSORPTION 

KINETICS FOR OVERALL ADSORPTION OF 20 PPM MB 
 

F.1 Vineyard 

 

 
Figure F.1: Pseudo-second-order kinetics for overall adsorption of 20 ppm MB by vineyard biochar 

 

The overall adsorption of 20 ppm MB by vineyard biochar resulted with a qe of 21.74 mg/g and k2 of 

0.0003 g/mg.min.  
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F.2 Black wattle 

 

 
Figure F.2: Pseudo-second-order kinetics for overall adsorption of 20 ppm MB by black wattle 

biochar 

 

The overall adsorption of 20 ppm MB by black wattle biochar resulted with a qe of 21.74 mg/g and k2 

of 0.0005 g/mg.min. 
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F.3 Sugar cane bagasse 

 

 
Figure F.3: Pseudo-second-order kinetics for overall adsorption of 20 ppm MB by sugar cane bagasse 

biochar 

 
The overall adsorption of 20 ppm MB by sugar cane bagasse biochar resulted with a qe of 21.74 mg/g 

and k2 of 0.004 g/mg.min.  

 

y = 0.046x + 0.562
R² = 0.999

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

t/
q t

 (g
.m

in
/m

g)

t (min)

Stellenbosch University  http://scholar.sun.ac.za


	Ümit Uras
	Supervisor

	Figure 2.1: Biomass conversions for useful and valuable products    5
	Figure 2.2: General components of plant biomass      6
	Figure 2.3: Chemical structures of cellulose       7
	Figure 2.4: Chemical structures of hemicelluloses       7
	Figure 2.5: Lignin building blocks        8
	Figure 2.7: Pyrolysis pathways at elevated temperature      15
	Figure 2.12: Effect of temperature on ash content      22
	Figure 2.13: Change in biochar structure due to temperature increase     27
	Figure 2.14: Production of activated carbon       29
	Figure 2.15: Schematic of carbon sequestration       31
	Figure 2.17: Surface groups of biochars        33
	Figure 2.18: N-containing functionalities        35
	Figure 2.20: Effect of temperature on surface area      49
	Figure 2.21: Relation between surface area and microporosity     51
	Figure 2.22: BET types          55
	Figure 2.23: Chemical structure of methylene blue      59
	Table 2.3: Process conditions and elemental analysis of various biochars (dry, wt.%)   28
	Table 2.5: Surface acidity/basicity of various biochars      36
	Table 2.6: pH values of different biochars produced at different temperatures   38
	Table 2.10: EC and pH values of different soil amendments     48
	Table 2.11: Pore sizes in typical activated carbons      50
	Table 2.15: Effect of initial concentration and equilibrium time on adsorption capacity  61
	2.1 Biomass
	Figure 2.1: Biomass conversions for useful and valuable products (Redrawn from Diaz, 2006)
	Figure 2.2: General components of plant biomass (Redrawn from Mohan et al., 2006)
	Figure 2.3: Chemical structures of cellulose (Redrawn from Bierman, 1996)
	Figure 2.4: Chemical structures of hemicelluloses (Redrawn from Bierman, 1996)
	Figure 2.5: Lignin building blocks (Redrawn from Bierman, 1996)
	Figure 2.6: Chemical structure of lignin (Fengel & Wegner, 2003) (Granted permission from Kessel Verlag)
	2.1.1 Black wattle (Acacia mearnsii)
	2.1.2 Vineyard
	2.1.3 Sugar cane bagasse
	2.1.4 Biomass composition
	2.1.5 Conclusion
	2.2 Vacuum pyrolysis
	2.2.1 Principle
	Figure 2.7: Pyrolysis pathways at elevated temperature (Redrawn from Bridgwater, 1994)
	2.2.2 Parameters affecting vacuum pyrolysis
	2.2.2.1 Temperature
	2.2.2.2  Pressure
	2.2.2.3  Heating rate
	2.2.2.4 Hold time
	2.2.2.5 Particle size
	2.2.2.6 Ash content
	Figure 2.12: Effect of temperature on ash content (Redrawn from Shinogi & Kanri, 2003)
	2.2.2.7 Lignocellulosic composition
	Conclusion
	2.3 Biochar and its applications
	2.3.1 Biochar term
	Figure 2.13: Change in biochar structure due to temperature increase (Lehmann & Joseph, 2009) (Granted permission from Earthscan)
	Table 2.3: Process conditions and elemental analysis of various biochars (dry, wt.%)
	Figure 2.14: Production of activated carbon
	2.3.2 Biochar as CO2 sequester
	Figure 2.15: Schematic of carbon sequestration (Lehmann, 2007) (Granted permission from Nature Publishing Group)
	2.3.3 Biochar as soil amendment
	2.3.3.1 Surface chemistry of biochar
	Figure 2.17: Surface groups of biochars (Montes-Moran, 2004) (Granted permission from Elsevier Ltd.)
	Figure 2.18: N-containing functionalities (Bandozs & Ania, 2006) (Granted permission from Elsevier Ltd.)
	Table 2.5: Surface acidity/basicity of various biochars
	2.3.3.2 pH of biochar
	Table 2.6: pH values of different biochars produced at different temperatures
	2.3.3.3 Cation exchange capacity (CEC)
	2.3.3.5 Electrical conductivity
	Table 2.10: EC and pH values of different soil amendments
	2.3.3.6 BET and porosity
	Figure 2.20: Effect of temperature on surface area (Redrawn from Jia & Lua, 2008)
	Table 2.11: Pore sizes in typical activated carbons (Particle density 0.6-0.9 g/cm3; porosity 0.4-0.6)
	Figure 2.21: Relation between surface area and microporosity (Redrawn from Li et al., 2008)
	2.3.3.7. Conclusion
	2.3.4 Biochar as pollutant adsorbent
	2.3.4.1 Adsorption
	2.3.4.2 Liquid adsorption isotherms
	Freundlich adsorption isotherm
	Langmuir adsorption isotherm
	Brunauer-Emmett-Teller (BET) adsorption isotherms
	Figure 2.22: BET types (Masel, 1996) (Granted permission from John Wiley & Sons, Inc.)
	2.3.4.3 Adsorption kinetics
	The kinetics of an adsorption system provides information on solute uptake rate which is necessary for the design and evaluation of an adsorption system. It also deals with the chemical changes on the adsorbent surface in time. Various adsorption kine...
	,𝑞-𝑡.=,𝑘-𝑝 .,𝑡-1/2.+𝐶         (2.6)
	where kp  is intraparticle rate constant (g/mg min1/2) and C is a constant (mg/g) which is proportional to boundary thickness.
	The pseudo-first-order adsorption kinetic model was introduced by Lagegren to describe the kinetics of oxalic acid and malonic acid adsorption onto charcoal in 1898. This model is based on the adsorption capacity. It is presented as follows:
	The adsorption kinetic rate law for a pseudo-second-order reaction model was proposed by Ho for adsorption of divalent metal ions onto peat in 1995 considering the cation exchange capacity of the peat between the functional groups on peat surface and ...
	,𝑑,𝑞-𝑡.-𝑑𝑡.=,𝑘-2.(,𝑞-𝑒.−,𝑞-𝑡.)2         (2.9)
	where ,𝑘-2. is the rate constant of adsorption (g/mg min), under the assumption that adsorption capacity is proportional to the number of active sites occupied on the adsorbent (Ho & McKay, 1999). Integrating the above equation and applying boundary ...
	,𝑡-,𝑞-𝑡..=,1-ℎ.+,1-,𝑞-𝑒..𝑡            (2.10)
	,𝑡-,𝑞-𝑡..=,1-ℎ.+,1-,𝑞-𝑒..𝑡            (2.10)
	Where h is the initial adsorption rate (mg/g min). Both of the kinetic models have been widely used to describe the adsorption of methylene blue from aqueous solution by activated carbons (Tan et al., 2008; Gerçel et al., 2007; Hameed et al., 2007). H...
	2.3.4.4 Adsorption of methylene blue (MB)
	Figure 2.23: Chemical structure of methylene blue
	Effect of initial concentration and contact time
	Table 2.15: Effect of initial concentration and contact time on adsorption capacity
	2.4. General conclusion
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