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Abstract

Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to
infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the
differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as
compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of
entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of
the anti-inflammatory GILZ and IkBa genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-
inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in
the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments
show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest
that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a
mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least
in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response
analysis shows that MPA has a potency of ,24 nM for transactivation of the anti-inflammatory GILZ gene and ,4–20 nM
for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable
contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated
glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the
effects on inflammation caused by different progestins and P4 and hence susceptibility to genital infections, given the
predominant expression of the GR in primary endocervical epithelial cells.
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Introduction

A central issue in women’s health in developing countries is

choice of contraceptive with minimal effects on susceptibility to

infectious diseases, in particular to human immunodeficiency virus

(HIV)-1 acquisition via the female reproductive tract (FRT).

Epithelial cells lining the FRT are the first line of defence against

pathogens and serve not only as a physical barrier but also express

a wide variety of immune mediators aiding in both innate and

adaptive immunity [1–3]. Interleukin (IL)-6, IL-8 and regulated-

upon-activation-normal-T-cell-expressed-and-secreted (RANTES)

are expressed in both primary and immortalised vaginal and

cervical epithelial cells [4–6]. In particular, the simple columnar

epithelial cells of the endocervix constitutively express IL-6, IL-8,

and RANTES genes [5], with the endocervical cells being more

active in cytokine secretion than the ectocervical cells [7,8].

Pathogens such as herpes simplex virus (HSV), human papillo-

mavirus (HPV), and HIV have been shown to infect epithelial cells

of the FRT and the process is affected by treatment with hormones

such as progesterone (P4) [9,10].

Several reports suggest that endogenous steroid hormone levels

and synthetic progestins used in contraception, influence suscep-

tibility and disease predisposition to many genital tract infections

(reviewed in [2,11]). Treatment of animals and humans with P4 or

synthetic progestins has been reported to increase susceptibility to

viral and bacterial infections [12–16]. Consistent with these

findings, the progestin medroxyprogesterone acetate (MPA) is used

as an immuno-compromising agent to induce viral infectivity in

mice [17]. Furthermore, a prospective cohort study reported that

injectable contraceptive users are more susceptible to both

chlamydia and gonococcal infections than oral contraceptive users
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[15]. MPA, administered for contraception as Depo-MPA

(DMPA) or Depo-Provera, is a 150 mg three-monthly intramus-

cular injection used by millions of women worldwide, particularly

in Sub-Saharan Africa with high HIV-1 incidence and prevalence

[18,19]. Norethisterone enanthate (NET-EN) is a 200 mg two-

monthly injectable with less widespread use than MPA, although

its usage is high in some regions of South Africa [20]. In most

studies the adjusted hazard ratio for HIV-1 acquisition by DMPA,

or injectable contraceptives users where the majority of women are

on MPA, is higher than that associated with no contraception or

oral contraception [18,21–30]. While only a few studies have

investigated the risks associated with the use of injectable NET-EN

on HIV-1 acquisition, none have shown a significant association

with HIV-1 acquisition [18,27,30]. In addition, increases in both

HIV-1 and HSV shedding have been reported with MPA [31,32],

as well as the presence of more viral variants and higher viral loads

in DMPA users infected with HIV than non-users [33]. The

mechanisms whereby endogenous P4 and synthetic progestins

affect pathogen entry and transmission in the FRT are not well

understood, but may involve modulation of the immune response

both at the systemic level and at the genital mucosa. Understand-

ing the relative effects of MPA vs NET on genital mucosal immune

function is extremely important for choice of contraception,

especially for developing countries where injectable contraception

usage is high. For example, at the Kwazulu-Natal site in South

Africa for the CAPRISA microbicide trial, about 80% of the

women investigated were on injectable progestin-only (DMPA or

NET-EN), as compared to 15% on oral contraceptives [34]. HIV

prevalence among young women in the general population in

southern Africa is highest (about 25%) in the 20–24 age group and

the ratio of the prevalence of HIV infection among women relative

to men shows that these women are approximately 3.3 times more

likely to be infected with HIV than young men in this region [35].

Clinical research on the effects of contraceptives on HIV-1

acquisition, transmission and disease progression has been

hampered by a lack of understanding of the molecular mecha-

nisms of action of the progestin components of contraceptives and

a lack of appreciation of the differences between progestins, which

cannot be considered to act as a single class of compounds

regarding their side-effect profiles [36–38]. Although MPA and

NET elicit similar progestational effects to P4 [39,40], differences

in biological effects mediated via steroid receptors other than the

progesterone receptor (PR) could be expected [36–38], and have

been demonstrated for the GR [41]. Synthetic progestins were

designed to mimic the actions of the natural ligand P4 but with

better bioavailability [38]. Both NET-EN and NET-A are

metabolised to the active molecule NET, as well as other

metabolites, unlike MPA, which is itself the active compound

[42]. Progestins were also designed to be potent, high affinity PR

agonists. However, many progestins bind to other members of the

steroid receptor family, including the GR, the androgen receptor

(AR) and mineralocorticoid receptor (MR) [43], thereby exhibiting

off-target effects via these receptors [37,38]. It has been shown that

MPA has a higher relative binding affinity compared to NET-A

and P4 for the human GR (relative binding affinity % of 79.1, 0.88

and 5.57 for MPA, NET-A and P4, respectively) [41] and unlike

NET-A and P4, acts as a potent partial to full GR agonist for both

transactivation and transrepression [41,44]. The GR, a ligand

activated steroid receptor, has potent anti-inflammatory and

immunosuppressive activity [45]. Consistent with this idea, we

have previously shown that MPA, at doses in the range found in

serum of contraceptive users, represses expression of mRNA and

protein levels of the pro-inflammatory cytokine IL-6 and the

chemokine IL-8, in mouse fibroblast cells, most likely via the GR

[46]. Similarly, Bamberger et al. showed that MPA represses IL-2,

IL-1, and IL-6 protein expression in normal human lymphocytes,

most likely via the GR [47]. Thus it is possible that MPA used as

contraceptive modulates immune function and inflammation, and

hence responses to pathogens, by changes in cytokine gene

expression, particularly in the genital mucosa. A key question that

remains to be investigated is what the effect is of different synthetic

progestins as compared to P4 on cytokine gene expression and

immune function in the FRT. These are likely to vary since we

have previously shown that MPA, compared to NET-A and P4,

elicit very different effects on IL-8 promoter expression in

HEK293 cells, mediated via the GR [41], as well as exhibit

differential effects in several steps of the GR pathway [44]. In

support of an immunosuppressive role of MPA in increasing HIV-

1 pathogenesis, MPA was recently shown to have immunosup-

pressive effects on key regulators of cellular and humoral immunity

and increased HIV-1 replication in activated peripheral blood

mononuclear cells (PBMCs) ex vivo [48,49]. The Hel laboratory

also showed that women using DMPA displayed lower levels of

IFNa in plasma and genital secretions compared to controls with

no hormonal contraception, consistent with an immunosuppres-

sive effect of DMPA in vivo [48,49]. A possible mechanism for

differential effects of progestins and P4 on HIV-1 acquisition may

include differential effects on inflammation in the FRT. However

the direct effects of MPA, as compared to NET and P4, on

expression of inflammatory markers in endocervical cells, the

prime site for HIV-1 acquisition, have not been previously

investigated. Using a human immortalised endocervical (End1/

E6E7) epithelial cell line [50] as a model for the mucosal surface of

the endocervix, as well as the HeLa cervical cell line, the present

study aimed to determine the relative effects, molecular mecha-

nisms and steroid receptor involvement of MPA, P4 and NET-A

in expression of key inflammatory response genes.

Materials and Methods

Antibodies and Compounds
The following primary antibodies were obtained from Santa

Cruz Biotechnology Inc., USA; GR(H-300): sc-8992, PR(C-20)

(which detects PRA and B isoforms): sc-539, AR(441): sc-7305,

GAPDH(0411): sc-47724, MR(MCR, H300): sc-11412, ERa(MC-

20): sc-542. The flotillin-1 (610820) antibody was purchased from

BD Transduction Laboratories (USA). The following secondary

antibodies were obtained from Santa Cruz Biotechnology Inc.,

USA; anti-mouse: sc-2005, anti-goat: sc-2350 (used as IgG for the

ChIP assay) and anti-rabbit: sc-2313. The ligands dexamethasone

(DEX), MPA, P4, NET-A, NET, aldosterone (ALD) and

mibolerone (MIB) were obtained from Sigma-Aldrich (South

Africa). Human tumour necrosis factor a (TNFa) was obtained

from Celtic Diagnostics (South Africa). Protease inhibitor cocktail

tablets (EDTA-free) (cat #04693159001) were obtained from

Roche (South Africa). Cycloheximide (CHX) was purchased from

Sigma-Aldrich (South Africa).

Cell Culture
Human epithelial cervical cancer cells (HeLa) purchased from

America Type Culture Collection (ATCC, USA) were cultured in

75 cm2 flasks (Greiner Bio-one International, Austria) in Dulbec-

co’s modified Eagle’s medium (DMEM) (Sigma-Aldrich, South

Africa) supplemented with 10% (v/v) foetal bovine serum (High-

veld Biological, South Africa) 100 IU/mL penicillin and 100 mg/
mL streptomycin (Gibco, Invitrogen, UK). End1/E6E7 (human

endocervical cells immortalized with human papillomavirus E6/

E7 [54] were obtained from Dr Fichorova, OB/GYN Depart-
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ment, Brigham & Women’s Hospital, Boston, USA. The End1/

E6E7 cells were cultured in 75 cm2 flasks (Greiner Bio-one

International, Austria) in keratinocyte serum-free medium (ker-

sfm; Sigma-Aldrich, South Africa) supplemented with keratinocyte

growth supplement, 100 U/ml penicillin and 100 mg/ml strepto-

mycin (Gibco, Invitrogen, UK). All cells were maintained at 37uC
in a 5% CO2 incubator. Cells were passaged with 0.25% trypsin/

0.1% EDTA in PBS (Highveld Biological, South Africa).

Trypsinization was terminated with neutralization medium

[DMEM (Sigma-Aldrich, South Africa), 10% (v/v) calf serum

(Highveld Biological, South Africa), 100 U/ml penicillin and

100 mg/ml streptomycin (Gibco, Invitrogen, UK)]. The cell lines

were regularly tested for mycoplasma infection by means of

Hoechst staining [55], and only mycoplasma-negative cells were

used in experiments.

Plasmids
pcDNA3 (empty vector) plasmid was obtained from Invitrogen,

while the pcDNA3-hGR (GR) plasmid was a gift from Prof. D.W.

Ray (Centre for Molecular Medicine, School of Clinical and

Laboratory Sciences, University of Manchester, UK [56]. pMT-

PR-B (PR) was obtained from Prof. S. Okret (Karolinska Institute,

Sweden) [51]. pRS-hMR (MR) expression plasmid was obtained

from Prof. R.M. Evans (University of California, USA) [52]. pSV-

hAR (AR) was a kind gift from Prof.F. Classens (Catholic

University of Leuven, Belgium) [53]. pSG5-hER (ER) was

obtained from Prof.F. Gannon (EMBL, Germany) [54].

RNA Isolation and Quantitative Real Time PCR (qRT-PCR)
Total RNA was isolated from cells using Tri-reagent (Sigma-

Aldrich, South Africa) according to the manufacturer’s instruc-

tions, and RNA (500 ng) was reverse transcribed using the

Transcriptor First Strand cDNA synthesis kit (Roche Applied

Science, South Africa) according to the manufacturer’s instruc-

tions. RT-PCR was performed using the Rotor-gene, RG-3000A

(Corbett Research, South Africa) according to the manufacturer’s

instructions using the Sensi-Mix SYBR Green I system (Celtic

Diagnostics, South Africa). The specific primer sets used were as

follows; for GILZ (cat #QT00091035, Qiagen, South Africa), for

IkBa, 59-ACTCGTTCCTGCACTTGGCC-39 (forward primer)

and 59-TGCTCACAGGCAAGGTGTAG-39 (reverse primer), for

IL-6, 59-TCTCCACAAGCGCCTTCG-39 (forward primer) and

59-CTCAGGGCTGAGATGCCG-39 (reverse primer), for IL-8,

59-TGCCAAGGAGTGCTAAAG-39 (forward primer) and 59-

CTCCACAACCCTCTGCAC-39 (reverse primer), for RANTES

59-TACCATGAAGGTCTCCGC-39 (forward primer) and 59-

GACAAAGACGACTGCTGG-39 (reverse primer), for GAPDH

59-TGAACGGGAAGCTCACTGG-39 (forward primer) and 59-

CCACCACCCTGTTGCTGTA-39 (reverse primer). Relative

transcript levels were calculated with the method described by

Pfafflet al 2001 and were normalized to relative GAPDH transcript

levels [55].

Western Blotting
For the steroid receptor controls, COS-1 cells were seeded into

12-well plates (Greiner bio-one, Cellstar, Austria) at a density of

256104 cells/well. The next day the cells were transfected with

1 mg/well of empty vector, GR, AR or PR and 2 mg/well of MR

or ER using FuGENE 6 (Roche Diagnostics, South Africa). After

24 hrs, the cells were washed once with PBS and lysed with 50 ml
2X SDS sample buffer (5 X SDS sample buffer: 100 mM TRIS-

HCL pH 6.8, 5% (w/v) SDS, 20% (v/v) glycerol, 2% b-
mercaptoethanol and 0.1% (w/v) bromophenol-blue) and boiled

for 10 min at 100uC. In addition, lysates were prepared from

End1/E6E7 and HeLa cells seeded into 12-well plates at a density

of 356104 cells/well and 156104 cells/well, respectively. Equiv-

alent amounts of protein were loaded on either a 6% or 8% SDS-

PAGE before being transferred onto a Hybond-ECL nitrocellulose

membrane (Amersham, South Africa) using the Mini Protean III

blotting system (Bio-Rad, South Africa). Blots were probed for

anti-GR (1:4000), anti-PR (1:1000), anti-AR (1:1000), anti-ER

(1:500), anti-MR (1:1000), anti-GAPDH (1:20 000) at 4uC
overnight. Blots were washed 3 times with TBS containing 0.1%

Tween for 5 mins each and subsequently incubated with

horseradish peroxidise (HRP)-conjugated goat anti-rabbit

(1:10000) or goat anti-mouse (1:5000) secondary at room

temperature for 1 hr. Protein detection was performed using

ECL substrate (Thermo Scientific, South Africa) with visualization

on X-ray hyperfilm (Amersham, South Africa). Bands on the X-

ray film were quantified using AlphaEaseFC software version 3.1.2

(Alpha Innotech Corporation).

GR Knockdown by Small Interference RNA (siRNA)
GR knockdown was performed as previously described [56], but

briefly End1/E6E7 cells were seeded in 12-well plates at a density

of 356104 cells/well and incubated for 24 hrs. Thereafter, the

cells were transfected with 10 nM validated GR HS_NR3C1_5

(cat #SI02654757) (Qiagen, South Africa) siRNA directed against

the human GR or validated non-silencing scrambled sequence

control (NSC) siRNA (cat#1027310) (Qiagen, South Africa) using

HiPerfect transfection reagent (Qiagen, South Africa) as per the

manufacturer’s instructions. Cells were incubated for 48 hrs before

being treated for 24 hrs with 100 nM test compounds. RNA was

then harvested and mRNA levels were analysed by qRT-PCR, as

described above. To verify the protein knockdown, cells were

transfected in parallel and analysed by Western blotting as

described above.

Luminex
Supernatants were collected from the siRNA experiments prior

to cell harvest. Thereafter, cytokine protein levels were measured

using a luminex assay kit according to the manufacturer’s protocol

(Bio-rad, South Africa).

Chromatin Immunoprecipitation (ChIP) Assay
ChIP was performed as described in Verhoog et al 2011 with

modifications [56]. HeLa cells were plated at 36106 cells per dish

in 15 cm dishes and grown for 24 hrs in full DMEM, before

changing to phenol red-free DMEM (Sigma-Aldrich, South

Africa) for an additional 24 hrs. Thereafter, the cells were

incubated with serum-free, phenol-free DMEM for 2 hrs, before

treatment with 100 nM DEX, MPA, P4 and NET-A for 1 hr.

Cells were crosslinked for 10 min at 37uC with1% formaldehyde

and the reaction was stopped with 0.1 mM glycine for 5 min,

shaking at room temperature. Cells were scraped in PBS, pelleted

by centrifugation and resuspended in 500 ml nuclear lysis buffer

(1% SDS, 50 mMTRIS-HCL, pH 8.0, 10 mM EDTA, 1x

protease inhibitor cocktail), before sonication. For immunopre-

cipitation, 100 mg DNA was pre-cleared with protein A/G agarose

beads (sc-2003, Santa Cruz Biotechnology, USA) for 1 hr, rotating

at 4uC, before incubating with 2 mg anti-GR (H300) (Santa Cruz

Biotechnology, USA) or 2 mg anti-goat (Santa Cruz Biotechnol-

ogy, USA), as IgG control, overnight on a rotator at 4uC. The
following day, the complex was precipitated with protein A/G

agarose beads for 6 hrs at 4uC, before being washed sequentially

with 1 ml each of wash buffer I, II and III [57], followed by three

washes with 1 ml TE buffer [10 mMTris pH 8, 0.1 mM EDTA].

Proteins were eluted from the beads by addition of 300 ml elution
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buffer (1% SDS, 100 nM NaHCO3), before the addition of

300 nM NaCl and incubation at 65uC overnight to reverse

crosslinks. The following day 15 nM EDTA, 125 nM TRIS-HCL

pH 6.5 and 20 mg proteinase K (Roche, South Africa) were added

and samples were then incubated at 45uC for 1 hr. DNA was

purified using PCR cleanup columns (Qiagen, South Africa). Real

time qRT-PCR was performed on a Corbett Rotorgene, using the

Sensimix (Quantace, South Africa), which measures SYBR Green

fluorescence. ChIP primers used: for IL-6 59-TCTACAA-

CAGCCGCTCACAG-39 (forward primer) and 59- AGCGTTC-

CAGTTAATTTGTATTTGT-39 (reverse primer), for IL-8 59-

GGGCCATCAGTTGCAAAT-39 (forward primer) and 59-

TTCCTTCCGGTG GTTTCTTC-39 (reverse primer).

Primary Cervical Epithelial Cells
Primary cervical epithelial cells (VEN-100) were bought from

Mat Tek Corporation (USA). Delivery time was 5 days. Upon

arrival, the cells were incubated overnight in VEN-100-MM

medium (Mat Tek Corporation, USA) at 37uC in a 5% CO2

incubator. The following day cell viability was determined using

the Thiazolyl Blue Tetrazolium Bromide (MTT) cell determina-

tion kit (cat #CGD1, Sigma-Aldrich, South Africa) according to

the manufacturer’s instructions [58]. At this time, some cells were

washed with PBS and either lysed with a N-[Tris(hydroxymethyl)-

methyl]-3-aminopropanesulfonic acid (TAPS) buffer (0.1 M

TAPS, pH 9.5) on ice (to perform Western blotting as above) or

with TRIzolH (for RNA isolation, cDNA synthesis and qRT-PCR

as described above). Having established the viability of the cells,

the majority of the VEN-100s were incubated in VEN-100-ASY-

HCF hydrocortisone free assay medium (Mat Tek Corporation,

USA) and 100 nM test compound for 48 hours, before performing

an additional MTT assay.

Results

MPA, but not NET-A, Acts like a Full to Partial GR Agonist
for Upregulation of anti-Inflammatory and
Downregulation of Pro-inflammatory mRNAs
We investigated the effects of the synthetic progestins on the

expression of GR regulated inflammatory genes in the End1/

E6E7 endocervical epithelial cell line as well as the HeLa cervical

epithelial cell line. These cell lines were chosen as the model

systems for this study due to the ability to perform mechanistic

studies using current methodology. Furthermore, the End1/E6E7

cell line displays similar morphological and immunocytochemical

properties to those of primary endocervical epithelial cells [50].

The genes investigated were chosen based on their established

mechanism of regulation via the GR, and their constitutive

expression in endocervical epithelial cells [7]. GILZ and IkBa are

anti-inflammatory genes that are upregulated by glucocorticoids

(GCs) such as DEX, while IL-6, IL-8 and RANTES are pro-

inflammatory genes that are downregulated by DEX [59,60]. The

GILZ and IkBa genes contain multiple glucocorticoid response

elements (GREs) and are commonly referred to as GR

transactivation genes [61,62]. The IL-6 and IL-8 gene promoters

have binding sites for transcription factors that include activator

protein-1 (AP-1) and nuclear factor kB (NFkB) [63], and these

genes are transrepressed by the liganded GR via tethering

mechanisms [64]. Cells were treated with P4, MPA and NET-A,

as well as the GR agonist DEX for 24 hrs. Thereafter, cytokine

gene mRNA was measured by real time qRT-PCR. As expected

the GR synthetic agonist DEX upregulated both GILZ and IkBa
mRNA in both the cell lines (Figure 1). In addition, MPA

upregulated GILZ and IkBa mRNA in both End1/E6E7 and

HeLa cell lines (Figure 1). P4 and NET-A have no effect on the

expression of GILZ or IkBa mRNA in either of the cell lines

(Figure 1). Figure 2 A and B show that DEX and MPA, unlike

NET-A and P4, repress both IL-6 and IL-8 mRNA levels,

respectively, in the End1/E6E7 cell line. Interestingly, RANTES

mRNA levels are repressed by DEX, MPA and P4 (Figure 2 C).

The regulation of IL-6 mRNA levels by the ligands in the HeLa

cells (Figure 2 D) is similar to the End1/E6E7 cells (Figure 2 A),

where both DEX and MPA repress IL-6 mRNA levels.

Furthermore, it appears that NET-A upregulates IL-6 mRNA

levels in the HeLa cells (Figure 2 D). Similar to the End1/E6E7

cell line, DEX appears to repress IL-8 mRNA levels in the HeLa

cells (Figure 2 E). However, unlike the End1/E6E7 cell line, at the

24 hr time point MPA does not appear to effect IL-8 mRNA

expression in the HeLa cells (Figure 2 E). Interestingly though, at a

4 hr time point both DEX and MPA repress IL-8 gene expression

in the HeLa cell line (Figure 2 H). It appears that NET-A and P4

upregulate IL8 mRNA levels in the HeLa cells (Figure 2 E). In

contrast to the End1/E6E7 cells, the DEX, MPA and P4

repression of RANTES mRNA levels does not occur in the HeLa

cells (Figure 2 F), although this could be due to low basal levels of

RANTES in HeLa cells (as indicated by real time qRT-PCR Ct

values, data not shown). Interestingly, it appears that NET-A

upregulates RANTES mRNA levels (Figure 2 F). Taken together,

these results show that MPA acts like the GR agonist DEX in

upregulating GILZ and IkBa anti-inflammatory gene and

generally downregulating IL-6, IL-8 and RANTES pro-inflam-

matory gene mRNA levels, unlike P4 and NET-A, with some

exceptions. The results also suggest cell-specific, gene-specific and

temporal differences in the regulation of some of the genes in

response to the ligands, such as undetectable repression of IL-8

and RANTES mRNA by MPA in HeLa cells at 24 hrs, but similar

repression of IL-8 in HeLa cells at 4 hrs compared to IL-8 in

End1/E6E7 cells at 24 hrs. In addition, some experiments show

repression by P4 of RANTES in the End1/E6E7 cells at 24 hrs,

unlike in HeLa cells. Furthermore, it appears that regulation of

mRNA levels by the ligands may be time dependent (Figure2).

The experiments in Figure 1 and 2 were performed in the absence

of induction of the cytokine/chemokine genes with a pro-

inflammatory ligand, since these genes are constitutively expressed

in cervical epithelial cells. Experiments performed in the presence

of TNFa, to mimic infection, showed a similar % repression of the

pro-inflammatory genes with DEX and MPA, unlike P4 and NET

(Figure S1). All further experiments were performed in the absence

of TNFa.

MPA Regulation of Inflammatory Gene mRNA Levels is
dose- and Time-dependent
Having shown that MPA acts like a GR agonist in regulating

mRNA levels of inflammatory genes, it was next determined if this

regulation is dose- and/or time-dependent. End1/E6E7 cells were

treated with increasing concentrations of the ligands for 4 hr and

24 hrs, respectively, followed by qRT-PCR analysis. Figure 3 A

and B show that both DEX and MPA increase GILZ mRNA

levels in a dose-dependent manner, whileP4 and NET-A appear to

have no effect on GILZ gene expression at any of the

concentrations or time points. It also appears that the maximal

response for MPA and DEX regulation of GILZ mRNA levels

does not change between 4 and 24 hours. DEX and MPA, unlike

P4 and NET-A, repress IL-6 mRNA levels in a dose-dependent

mannerat both 4 hrs and 24 hrs (Figure 3 C and D). However,

MPA appears to show a greater maximal repression of IL-6

mRNA levels at 24 hrs than at 4 hrs, acting like a partial agonist at

4 hrs, but a full agonist at 24 hrs. Interestingly, it appears that
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1 mM NET-A may upregulate IL-6 mRNA at 24 hrs. Figure 3 E

and F show that IL-8 mRNA levels are also dose-dependently

repressed by DEX and MPA at both 4 hrs and 24 hrs, with the

MPA dose-dependent repression of IL-8 being more robust at

24 hrs. In addition, P4 and NET-A appear to be upregulating IL-8

at 4 hrs only. No repression of RANTES mRNA is apparent at

4 hrs (Figure 3 G). However, at 24 hrs RANTES mRNA levels are

repressed by DEX and MPA in a dose-dependent manner, while

NET-A and P4 appear to show some partial agonist activity (10–

20%) for repression at high concentrations (Figure 3 H). MPA

appears to have a potency (EC50) of,24 nM for transactivation of

GILZ and a potency of ,21, 4 and 5 nM for repression of IL-6,

IL-8 and RANTES mRNA, respectively at 24 hrs.

The GR is the Predominant Steroid Receptor Protein
Detected in Cervical Cell Lines and Primary Cervical
Epithelial Cells
Given the differential steroid receptor selectivity of MPA, NET

and P4, we next investigated whether the GR, AR, PR, MR or

ERa are expressed in these cell lines, with a view to determination

of steroid receptor involvement in the differential gene expression

responses. Cell lysates were prepared and the steroid receptor

mRNA and protein levels were detected by qRT- PCR and

Western blotting, respectively. The Western blot and PCR screen

show that the End1/E6E7 cells express only endogenous GR

mRNA and protein, respectively (Figure 4 A and B). According to

the PCR screen (Figure 4 A), HeLa cells express endogenous GR,

AR and MR mRNA. However the Western blot (Figure 4 B)

Figure 1. MPA, but not NET-A or P4, acts like a partial GR agonist for upregulation of anti-inflammatory mRNAs. (A and B) End1/E6E7
cells were treated for 24 hrs with 100 nM DEX, MPA, P4, NET-A or vehicle (ethanol) (CTRL). (C and D) HeLa cells were treated for 24 hrs with 100 nM
DEX, 1 mM MPA, 10 mM P4, 10 mM NET-A or vehicle (ethanol) (CTRL). Thereafter the cells were harvested; total RNA was isolated and reverse-
transcribed. Relative GILZ and IkBa gene expression was measured by real-time qRT-PCR and normalised to GAPDH mRNA expression. In addition,
relative gene expression was normalized to basal activity (CTRL) in order to obtain relative fold expression. Graphs represent pooled results of at least
three independent experiments and are plotted as mean6SEM. Statistical analysis was carried out using GraphPad Prism software (version 5) using a
one-way ANOVA with Dunnett post-test. Statistical significance is denoted by *, ** or *** to indicate P,0.05, P,0.001 or P,0.0001, respectively.
doi:10.1371/journal.pone.0096497.g001
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reveals that in HeLa cells only endogenous GR protein is

detectable. Although it appears that the HeLa and End1/E6E7

cells express MR protein (Figure 4 B), this is a non-specific band

that also appears in the negative control. Since the End1/E6E7

cells do not express detectable MR mRNA it is highly unlikely that

the cells express MR protein. However, it is possible that the HeLa

cells do express low levels of the AR and MR that are beyond the

detection level of the Western blots. It was therefore determined if

the repression of cytokine genes in this cell line could be mediated

via the AR and MR. HeLa cells were treated with the GR, AR

and MR specific agonists (DEX, mibolerone and aldosterone,

respectively) and cytokine gene expression was measured by qRT-

PCR. IL-6 and IL-8 gene expression was measured since it was

established above that RANTES is not regulated by the ligands of

interest in the HeLa cells. Figure 4 C shows that only DEX

represses IL-6 gene expression, while it appears that aldosterone,

and possibly and mibolerone, upregulate IL-6 mRNA expression.

In addition, it appears that DEX represses IL-8, while aldosterone,

and possibly mibolerone, upregulate IL-8 gene expression (Figure 4

D). These results indicate that DEX- and MPA-mediated

repression of the cytokine genes in HeLa cells is likely to occur

via the GR. Additionally, since only GR mRNA and protein were

Figure 2. MPA, but not NET-A, acts like a full/partial GR agonist for repression of pro-inflammatory mRNAs. (A–C) End1/E6E7 cells
were treated for 24 hrs with 100 nM DEX, MPA, P4, NET-A or vehicle (ethanol) (CTRL). (D–H) HeLa cells were treated for 24 hrs (D–F) or 4 hrs (G–H)
with 100 nM DEX, 1 mM MPA, 10 mM P4, 10 mM NET-A or vehicle (ethanol) (CTRL). Thereafter the cells were harvested, total RNA was isolated and
reverse-transcribed. Relative IL-6, IL-8 and RANTES gene expression was measured by real-time qRT-PCR and normalised to GAPDH mRNA expression.
In addition, relative gene expression was normalized to basal activity (CTRL) in order to obtain relative fold expression. Graphs represent pooled
results of at least three independent experiments and are plotted as mean 6 SEM. Statistical analysis was carried out using GraphPad Prism software
(version 5) using a one-way ANOVA with Dunnett post-test. Statistical significance is denoted by *, ** or *** to indicate P,0.05, P,0.001 or P,0.0001,
respectively.
doi:10.1371/journal.pone.0096497.g002
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detected in the End1/E6E7 cells, these results indicate that in both

the cell lines, the DEX and MPA regulation of expression of the

inflammatory genes is most likely mediated via the GR.

Whether the steroid receptor expression profile in the cervical

epithelial cell lines mimics that of primary cervical epithelial cells is

unknown. We investigated the steroid receptor content in

commercially available primary endocervical cells (VEN-100;

bio-engineered multilayer of primary cells) by PCR and Western

blot. While we could detect GR, MR, AR and ERa mRNA

(Figure5 A), the only steroid receptor protein we detected in the

primary cells was the GR (Figure 5 B). No PR mRNA or protein

was detected in the cell lines or primary cells, despite positive

controls showing that PR expression can be detected by these

methods. Thus despite the finding that some MR, AR or ERa
mRNA was detected in some of the cells lines or primary cells, the

only steroid receptor protein detected in any of the models was the

GR, suggesting that the GR is the predominant steroid receptor

mediating responses to MPA in both the cervical epithelial cell

lines and primary endocervical cells.

Regulation of Inflammatory Gene mRNA Levels by DEX
and MPA is Mediated by the GR and is Mimicked at the
Protein Level for IL-6 and IL-8
In order to provide direct proof that the GR is involved in the

regulation of the inflammatory genes in response to the synthetic

progestin MPA, GR knockdown experiments were performed in

the End1/E6E7 cell line. Reduction of GR protein in these cells

was verified by Western blotting (Figure 6 A and 6B). As expected

DEX and MPA upregulated GILZ mRNA, while P4, NET-A and

NET did not (Figure 6 C). Notably, NET was included in this

experiment as a control to exclude the possibility that the acetate

form (NET-A) would regulate the genes differently. However, it is

shown that NET-A acts similarly to NET. Both the DEX- and

MPA-induced upregulation of GILZ mRNA is diminished when

GR is knocked down. Figure 6 D shows that DEX upregulates

IkBa mRNA levels and this induction is repressed when GR is

knocked down. Here the MPA induction of IkBa is not significant,

possibly due to the blunting of the response in the NSC

knockdown conditions, and therefore a loss of induction is not

apparent with the knockdown. Western blotting revealed that,

unlike for the mRNA levels, DEX, MPA and NET-A all

significantly increased total IkBa protein levels (Figure S2).

Protein levels could not be determined for GILZ due to the

unavailability of a suitable antibody. As expected DEX and MPA

repress IL-6 mRNA levels (Figure 7 A), which is lifted when the

GR is knocked down. In addition, DEX-mediated repression is

also evident on IL-6 protein levels (Figure 7 B). Consistent with the

mRNA data, MPA appears to repressIL-6 protein levels and the

repression is lifted in the knockdown. Interestingly P4 also appears

to repress IL-6 protein levels, although significance could not be

established. Similarly, a significant difference is observed for both

DEX and MPA responses upon GR knockdown for IL-8 mRNA

levels (Figure 7 C). Figure 7 D shows that DEX and MPA also

appear to repress IL-8 protein levels, while GR knockdown

appears to lift this repression. RANTES mRNA levels are shown

in Figure 7 E to be repressed by both DEX and MPA, but not by

P4 or NET-A, in a GR-dependent manner. We were unable to

detect secreted RANTES protein, possibly due to its instability in

the medium (data not shown). Gene expression studies could not

be performed with the primary cells since they did not maintain

cell viability for the long periods of time required for the

assessment (Figure S3). Taken together, these results show that

DEX- and MPA-mediated regulation of the inflammatory gene

mRNA levels is mediated via the GR in the endocervical cell line.

This GR dependence is mimicked at the protein level for DEX

and appears to also be mimicked at the protein level for MPA, for

IL-6 and IL-8.

We have previously shown in COS-1 cells that the most potent

GR ligands result in the most rapid GR degradation, with a good

correlation shown between ligand-selective GR half-life and

transactivation and transrepression efficacy [65]. Consistent with

these results, we show that in the End1/E6E7 cells, MPA results in

GR turnover typical for a relatively potent GR partial agonist,

unlike NET-A and P4 (Figure S4).

Inhibition of Protein Synthesis Supports a Mechanism of
Direct Regulation by the GR of the Inflammatory Genes
In order to investigate whether the GR is directly or indirectly

involved in the regulation of these genes, cycloheximide (CHX;

de novo protein synthesis inhibitor) experiments were performed in

the End1/E6E7 cells to determine whether the GR-mediated

regulation of the mRNA levels requires new protein synthesis [66].

Figure 8 A shows that the addition of CHX only partially dampens

the DEX while ablating the MPA induction of GILZ mRNA.

However, the effects of all the ligands on IkBa mRNA levels were

unchanged by CHX (Figure 8 B). These results suggest that

upregulation of GILZ mRNA levels is only partially dependent on

transactivation by the GR and it is also in part dependent on

synthesis of another protein. IkBa mRNA upregulation, however,

appears independent of new protein synthesis, suggesting that the

mechanism predominantly involves direct transactivation by the

GR of the IkBa gene. Figure 8 C shows that DEX, but not MPA-

mediated repression of RANTES is partially lifted by treatment

with CHX, suggesting a mechanism at least partially involving

transrepression of these promoters by the GR. In contrast, both

DEX- and MPA-mediated repression of IL-6 are independent of

new protein synthesis, as they are not affected by CHX treatment

(Figure 8 D). A similar trend is observed for DEX on the IL8

promoter (Figure 8 E), although for this gene the results for MPA

were inconclusive. To confirm that the CHX inhibited de novo

protein synthesis, End1/E6E7 cells were pre-treated with CHX

and then treated with DEX (in the presence of CHX) for 24 hrs,

thereafter cell lysates were prepared and Western blotting was

performed. lkBa protein levels were used as a positive control to

show that the concentration of CHX used was sufficient to prevent

new protein synthesis (Figure 8 F and G). In summary, we

demonstrate that under conditions where CHX is shown to inhibit

new protein synthesis, all the anti-inflammatory and pro-inflam-

Figure 3. MPA-mediated regulation of inflammatory gene mRNA levels is dose- and time-dependent. End1/E6E7 cells were treated with
increasing amounts (1 nM, 10 nM, 100 nM and 1 mM) of DEX, MPA, P4 or NET-A, or vehicle (ethanol) (CTRL) for 4 and 24 hrs, respectively. Thereafter,
the cells were harvested, total RNA was isolated and reverse-transcribed. Relative (A, B) GILZ, (C, D) IL-6, (E, F) IL-8 and (G, H) RANTES gene
expression was measured by real-time qRT-PCR and normalised to GAPDH mRNA expression. In addition, relative GILZ gene expression was
normalized to 1 mM DEX set to 100% in order to obtain % partial agonist activity. Relative IL-6, IL-8 and RANTES expression was normalized to basal
activity (CTRL) set to 100 in order to obtain % repression. For IL-6 and RANTES mRNA, statistically significant repression with MPA relative to control
was found at 10 nM, 100 nM and 1 mM. The 1 mM data point for P4 on IL-8 4 hrs (E) is 231% and is not displayed due to the y-axis scale. Graphs
represent pooled results of at least three independent experiments and are plotted as mean 6 SEM.
doi:10.1371/journal.pone.0096497.g003
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Figure 4. End1/E6E7 and HeLa cells only express detectable GR protein. (A and B) (A) HeLa and End1/E6E7 cells were harvested, total RNA
was isolated and reverse-transcribed. Steroid receptor (SR) gene expression was measured by real time qRT-PCR. SR expression vectors (pcDNA3-hGR,
pMT-PR-B, pSV-hAR, pRS-hMR and pSG5-hER) served as positive controls (+CTRL) for the GR, PR-B, MR and ER, respectively. COS-1 cells transiently
transfected with pcDNA3 (empty vector) served as negative control (2CTRL). (B) Whole cell lysates were prepared from the HeLa and End1/E6E7 cell
lines. Equal volumes of lysate were analysed by Western blotting with antibodies against specific SRs and GAPDH as loading control. (C and D) SR
agonist screen indicates that in the cervical cells the GR, but not the MR or AR repress IL-6 and IL-8 in the presence of receptor-
specific agonist. HeLa cells were treated with 100 nM DEX, 100 nM mibolerone (MIB), 10 nM aldosterone (ALD) or vehicle (ethanol) (CTRL) for 4 hrs.
Total RNA was isolated and reverse-transcribed. Relative (C) IL-6 and (D) IL-8 gene expression was measured by real-time qRT-PCR and normalised to
GAPDH mRNA expression. In addition, relative gene expressions were normalized to basal activity (CTRL) in order to obtain fold expression. The
primers and antibody used to investigate PR levels are capable of detecting both PR-A and PR-B isoforms, however the positive protein control
shown is specific for PR-B isoform only. Graphs represent pooled results of at least three independent experiments and are plotted as mean 6 SEM.
Statistical analysis was carried out using GraphPad Prism software (version 5) using a one-way ANOVA with Dunnett post-test. Statistical significance
is denoted by * to indicate P,0.001.
doi:10.1371/journal.pone.0096497.g004
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matory genes investigated are at least in part regulated by direct

effects of DEX without a requirement for new protein synthesis,

and where this could be established, similar trends are observed for

MPA.

DEX and MPA Result in Recruitment of the GR to the
Promoters of the IL-6 and IL-8 Genes
In order to further investigate the mechanism of transcriptional

regulation of these cytokine genes via the GR, ChIP assays were

performed in HeLa cells. Attempts to perform ChIP assays in the

End1/E6E7 cells were unsuccessful. This may be due to high

background and low sensitivity for ChIP signals in these cells.

Figure 9 A shows that stimulation with DEX, but not MPA results

in the recruitment of the GR to the GILZ promoter. Furthermore,

both DEX and MPA stimulation resulted in significant recruit-

ment of the GR to the IL-6 and IL-8 promoters (Figure 9 B and

C). The inability to observe GR recruitment to the GILZ

promoter with MPA may be because some of the effects of

MPA on GILZ are not direct, as suggested by the CHX

experiments. However, since we have previously shown in A549

cells that the GR is recruited to the GRE region of the GILZ

promoter by both DEX and MPA [67], it is more likely that a

small amount of GR is recruited by MPA, but this is below the

limits of detection of the ChIP assay in these cells. In summary

these results strongly support a model whereby both DEX and

MPA suppress inflammation in the cervical epithelial cells by

activating and thereby recruiting the GR to promoters of these

genes and consequently inducing transcription of the anti-

inflammatory gene GILZ, while repressing transcription of the

pro-inflammatory genes IL-6 and IL-8.

Discussion

We show for the first time that the synthetic progestins MPA

and NET-A, used in contraception and hormone replacement

therapy, exert differential effects on expression of mRNA levels of

key pro-inflammatory and anti-inflammatory genes constitutively

expressed in an endocervical epithelial cell line, as compared to

P4. MPA, unlike NET-A and P4, increases mRNA expression of

the anti-inflammatory genes GILZ and IkBa, in both the cervical

epithelial cells lines. Interestingly, this differential regulation of

IkBa mRNA is not mimicked by IkBa protein levels, suggesting

that GR-mediated increase in IkBa protein levels does not play a

major role in regulation of IL-6, IL-8 and RANTES genes in these

cells, consistent with reports for some cells but not others [68–72].

Figure 5. Only GR protein is detected in primary cervical epithelial cells (VEN-100). (A) Upon arrival the VEN-100 cells were rested
overnight before being washed once with PBS and harvested with TRIzolH. Total RNA was isolated and 500 ng RNA was reverse-transcribed. Steroid
receptor gene expression was measured by qRT-PCR with receptor-specific primers, followed by gel electrophoresis to confirm the PCR products. (B)
VEN-100 cells were rested overnight before harvesting in 2X SDS sample buffer. COS-1 cells were transiently transfected with 1 mg/well pcDNA3
(empty vector) which served as negative control (2CTRL) or with 1 mg/well steroid receptor expression vectors (GR, PR-B, AR, MR and ERa) which
served as positive controls (+CTRL). Twenty fourhrs later, the COS-1 cells were washed once and lysed with 2X SDS sample buffer. Equal volumes of
cell lysate (VEN-100 and COS-1 ctrls) were analysed by Western blotting with antibodies specific for the GR and Flotillin-1 (loading control),
respectively.
doi:10.1371/journal.pone.0096497.g005
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MPA unlike NET-A, decreases expression of the pro-inflamma-

tory IL-6, IL-8 and RANTES genes in the endocervical epithelial

cell line, as well as IL-6 and IL-8 in the HeLa cell line. These

effects are mimicked at the protein levels for IL-6 and IL-8 in the

epithelial cell line. Thus MPA, unlike NET-A and P4, shows an

anti-inflammatory profile in both cell lines, for most genes

investigated. Furthermore, we show for the first time that the

predominant steroid receptor protein detected in the endocervical

epithelial cell line and in primary endocervical epithelial cells is the

GR, with no detectable PR mRNA or protein. Consistent with this

finding, we also demonstrate by a combination of GR knockdown

and ChIPs, that MPA, unlike NET-A, represses pro-inflammatory

cytokine gene expression in cervical epithelial cells via a

mechanism involving recruitment of the GR to cytokine gene

promoters. These results are consistent with a direct effect of the

GR without a requirement for new protein synthesis, as shown by

cycloheximide experiments. Our findings that DEX recruits GR to

the IL-6 and IL-8 promoter regions are consistent with previous

reports [56,73], while we show here for the first time, that

stimulation with MPA recruits GR to the IL-6 and IL-8 promoter

regions, thereby repressing expression of these genes. These results

are consistent with our hypothesis and our previously published

data that MPA, unlike NET-A or P4, acts like a partial to full GR

agonist with a relatively high affinity for the GR on endogenous

genes in other cells and via synthetic reporter genes [36,41,44,74].

The findings of the present study suggest that in the context of the

genital mucosa, these GR-mediated effects of MPA in cervical

epithelial cells are likely to play a critical role in discriminating

Figure 6. MPA- and DEX-mediated upregulation of anti-inflammatory mRNAs is mediated via the GR. End1/E6E7 cells were transfected
with 10 nM GR or NSC siRNA (A–D) and then treated for 24 hrs with 100 nM DEX, MPA, P4, NET-A, NET or vehicle (ethanol) (CTRL). For verification of
GR knockdown a representative blot is shown in (A). (B) Western blots of at least three independent experiments were quantified to determine the
relative GR protein expression and is plotted as mean 6 SEM. Total RNA was isolated and reverse-transcribed. Relative (C) GILZ and (D) IkBa gene
expression was measured by real-time qRT-PCR and normalised to GAPDH mRNA expression. In addition, relative gene expressions were normalized
to basal activity (CTRL) in order to obtain relative fold expression. Graphs in (C) and (D) represent pooled results of at least three independent
experiments and are plotted as mean 6 SEM. Statistical analysis was carried out using GraphPad Prism software (version 5) using a one-way ANOVA
with either a Dunnett post-test, followed by a student’s t-test to compare specific conditions to each other. Statistical significance is denoted by * or
*** to indicate P,0.05 or P,0.0001, respectively.
doi:10.1371/journal.pone.0096497.g006
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between the effects on inflammation caused by different progestins

and progesterone and hence susceptibility to genital infections,

given the predominant expression of the GR and lack or PR

protein expression in these cells. The GR knockdown results

furthermore suggest that changes in GR expression levels are likely

to significantly modulate the inflammatory response in the

endocervix, with reduced GR levels even possibly resulting in

some pro-inflammatory effects by both MPA, NET-A and P4.

Our findings that MPA has anti-inflammatory gene expression

effects in the endocervical cells are consistent with previous reports

that show MPA suppresses pro-inflammatory immune markers in

primary mouse uterine and cervical tissue and in primary human

vaginal mucosal mononuclear cells [49,75]. Given the different

steroid receptor selectivities of MPA, NET and P4 [36–38], it is

likely, however, that the steroid receptor profile of different

compartments of the female genital tract will determine the

outcome of inflammatory gene expression effects of these ligands.

In the current paper we show that both primary endocervical cells

and the endocervical cell line express predominantly the GR. In

contrast, we have previously shown that the Ect1/E6E7

Figure 7. MPA- and DEX-mediated repression of pro-inflammatory cytokine gene mRNA is mediated via the GR. End1/E6E7 cells were
transfected with 10 nM GR or NSC siRNA (A–F) and then treated for 24 hrs with 100 nM DEX, MPA, P4, NET-A or vehicle (ethanol) (CTRL). Total RNA
was isolated and reverse-transcribed. Relative (A) IL-6 (C) IL-8 and (E) RANTES gene expression was measured by real-time qRT-PCR and normalised to
GAPDH mRNA expression. In addition, relative gene expressions were normalized to basal activity (CTRL) in order to obtain fold expression. The
corresponding cytokine protein levels for (B) IL-6 and (D) IL-8 were determined by Luminex of supernatants collected prior to cell harvest. Graphs
represent pooled results of at least three independent experiments and are plotted as mean 6 SEM. Statistical analysis was carried out using
GraphPad Prism software (version 5) using a one-way ANOVA with a Dunnett post-test followed by a student’s t-test to compare specific conditions
to each other. Statistical significance is denoted by * or ** to indicate P,0.05 or P,0.001, respectively.
doi:10.1371/journal.pone.0096497.g007
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ectocervical epithelial and Vk2/E6E7 vaginal epithelial cell lines

appear to express a greater variety of steroid receptors, including

the PR, GR, AR and ERa [76]. This is consistent with the report

that the ectocervix is covered by a mucosal layer that is

histologically similar to the vagina but different to the endocervix

[77]. Our previous results show that IL-6, IL-8 and RANTES

mRNA levels are regulated differently in the ectocervical and

vaginal cell lines compared to the endocervical cell line, consistent

with their different steroid receptor profiles. MPA and NET have

no effect on IL-6 mRNA levels in both the ectocervical and vaginal

cell lines, while MPA is pro-inflammatory for IL-8 in the

ectocervical cell line, in contrast to the anti-inflammatory results

we observed for MPA in the endocervical cell line. P4 appears to

be pro-inflammatory at 1 mM concentrations for most of the pro-

inflammatory genes in the ectocervical and vaginal cell lines, an

effect which we also observe for some genes at 1 mM P4 for IL-6,

but not IL-8 or RANTES. Interestingly MPA represses RANTES

in both the ectocervical and endocervical cell lines, with no

significant effect in vaginal cells. However, in the ectocervical cells,

this effect is mediated predominantly via the AR, while in the

endocervical cells, we show that it is mediated via the GR.

Interestingly, we have recently found that MPA, unlike P4 and

NET, shows a very similar pattern and potency of repression of

pro-inflammatory genes in human PBMCs to that observed in the

current study in the endocervical cell line, with a similar

predominantly GR steroid receptor profile [78]. Collectively, our

results support the hypothesis that MPA, when acting predomi-

nantly via the GR, is likely to exert anti-inflammatory effects on

gene expression via classical transrepression mechanisms, unlike

NET and P4, but when the steroid receptor profile is changed, the

responses are likely to vary. Furthermore the results collectively

suggest that different compartments of the genital tract are likely to

exhibit different inflammatory responses to MPA vs NET vs P4,

with their associated different effects on susceptibility to genital

infections. Our lack of detection of PR expression in the

endocervical primary cells or cell lines raises the question as to

what is the role of the PR in mediating responses to progestins and

progesterone in the endocervix. It is possible that other cells

besides epithelial cells in the cervix express functional PR, as is

suggested from one report [79], while others report the expression

of both the GR and ERa [80].

Whether the observed effects of MPA, NET and P4 are relevant

to the physiological doses of these ligands in vivo is a critical

question, which we investigated here by dose response analysis

[81] to determine potencies (EC50s) and efficacies (maximal

response). The MPA serum concentrations of DMPA-users are

reported to be in the range 2.5 to 65 nM a few days after injection

and to plateau at about 2.6 nM for about three months thereafter

[38,48,82], while serum concentrations for injectable NET-EN, in

the range of 1.5–59 nM have been reported [83]. The concen-

tration of endogenous P4 in serum of premenopausal women is

low during the follicular phase (0.65 nM) but rises to about 80 nM

during the luteal phase, and to about 600 nM during pregnancy

[37]. We show that MPA at 10 nM significantly represses both IL-

6 and RANTES at 24 hrs (Figure 3 C and H). Furthermore our

dose response analysis show that MPA has a potency of ,24 nM

for transactivation of the anti-inflammatory GILZ gene and a

potency of ,4–20 nM for repression of the pro-inflammatory IL-

6, IL-8 and RANTES genes. This suggests that these immuno-

suppressive effects are likely to be relevant at physiological doses of

MPA used in injectable contraception, particularly shortly after

injection, while any possible effects of NET-EN injectable

Figure 8. The GR at least in part directly regulates mRNA levels of the inflammatory genes. End1/E6E7 cells were pretreated with 1 mg/ml
cycloheximide (CHX) then treated for 24 hrs with 100 nM DEX, MPA, P4, NET-A or vehicle (ethanol) (CTRL), in the absence or presence of CHX. Total
RNA was isolated and reverse-transcribed. Relative (A) GILZ (B) IkBa, (C) RANTES, (D) IL-6 and (E) IL-8 gene expressions was measured by real-time
qRT-PCR and normalised to GAPDH mRNA expression. In addition, relative gene expressions were normalized to basal activity (CTRL) in order to
obtain relative fold expression. Graphs represent pooled results of at least three independent experiments and are plotted as mean 6 SEM. To verify
that the CHX inhibited de novo protein synthesis, End1/E6E7 cells were pretreated with CHX then treated with 100 nM DEX or vehicle (ethanol) (CTRL)
for 24 hrs. (F) Cells were harvested and equal volumes of lysate were analysed by Western blotting with an antibody specific for IkBa and a GAPDH
specific antibody as loading control. (G) Western blots of four independent experiments were quantified to determine the relative GR protein
expression. Statistical analysis was carried out using GraphPad Prism software (version 5) using a one-way ANOVA with a Dunnett post-test followed
by a student’s t-test to compare specific conditions to each other. Statistical significance is denoted by *, ** or *** to indicate P,0.05, P,0.001 or P,
0.0001, respectively.
doi:10.1371/journal.pone.0096497.g008

Figure 9. DEX and MPA recruit GR to the IL-6 and IL-8 cytokine gene promoters. HeLa cells were serum starved for 2 hrs and then treated
for 1 hr with 100 nM DEX, MPA, P4, NET-A or vehicle (ethanol) (CTRL). ChIP was carried out using an anti-GR antibody to immunoprecipitate
endogenous GR and an anti-IgG antibody as a negative control. Real-time qRT-PCR was performed on input and immunoprecipitated DNA with
primers specific for endogenous (A) GILZ, (B) IL-6 and (C) IL-8 promoters. GR recruitment was measured relative to input. Graphs represent pooled
results of at least three independent experiments and are plotted as mean 6 SEM. Statistical analysis was carried out using GraphPad Prism software
(version 5) using a one-way ANOVA with Dunnett post-test. Statistical significance is denoted by * or *** to indicate P,0.05 or P,0.0001, respectively.
doi:10.1371/journal.pone.0096497.g009
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contraceptive on inflammation via the GR are likely to be

negligible, even shortly after injection. Since P4 at concentrations

up to 100 nM shows very little effect on expression of the genes

investigated, P4 at doses other than during pregnancy, are unlikely

to exert major effects on inflammation or immune function in

endocervical epithelial cells. However, about 20% repression of

IL-6 is observed by P4 at 4 hrs at 10–100 nM, suggesting that in

the presence of a predominant GR, P4 could exert some anti-

inflammatory effects. At pregnancy concentrations, P4 may exert

some pro-inflammatory effects on some genes, as suggested by our

dose response analysis showing this trend for some genes at 1 mM.

It should, however, be noted that the concentrations of MPA,

NET and P4 in cervical tissue may not be the same as that found

in the serum of contraceptive users.

The physiological significance of changes in expression of pro-

inflammatory mediators like IL-6, IL-8 and RANTES in genital

epithelial cells is difficult to predict. Increased pro-inflammatory

mediators could increase recruitment of dendritic cells (DCs) or

Langerhans cells (LCs) as well as CD4+ T cells and monocytes/

macrophages, thus potentially increasing HIV-1 acquisition by

increasing the number of target cells. Thus progestins like MPA,

unlike NET-A, that exert anti-inflammatory gene expression

effects in the female genital tract may decrease HIV-1 acquisition

by decreasing the number of target cells. However, decreased pro-

inflammatory mediators could also inhibit immune function, such

as B-cell maturation, T-cell activation and differentiation, IgA

production, neutrophil/monocyte/macrophage/dendritic cell ac-

tivity, reducing the host’s ability to mount a defence against a

pathogen [84]. Additionally, RANTES is a ligand for the CCR5

receptor, which has the ability to block HIV-1 entry [85]. Thus a

decrease in RANTES expression by endocervical epithelial cells,

as we show for MPA but not NET, with a potency of 5 nM, could

increase HIV-1 infection of CD4+ T cellsin vivo. Interestingly,

MPA shows the greatest efficacy for RANTES mRNA repression,

acting like a full GR agonist. Whether or not DMPA usage

increases or decreases the expression of inflammatory mediators in

the female genital tract in vivo is unclear and requires further

investigation. Several studies suggest that a pro-inflammatory

environment is associated with an increase in HIV-1 acquisition

[86–88]. Furthermore, DMPA-usage was recently reported to be

associated with increased HIV-1 acquisition and increased levels of

RANTES [88]. However, in this study it was not possible to

discriminate between elevated RANTES levels being a cause of

infection or a consequence of exposure to HIV-1 prior to

seroconversion. Additionally, since 76% of the DMPA users in

this study were positive for an STI, it may be that elevated

RANTES was a consequence of STI infection, despite attempts to

correct for that confounding variable. In contrast to the latter

study, the study by Huijbregts et al. found that DMPA-usage is

associated with immunosuppressive effects in the cervical mucosa

[49]. Furthermore, we have recently shown that MPA, unlike

NET or P4, increases apoptosis of T-cells, which is potentiated

after HIV-1 infection [74], potentially decreasing the ability of T-

cells to mount an anti-viral defence. Currently available clinical

data from women on DMPA, taken together with animal data plus

our and other biochemical ex vivo data, certainly suggest that

immunosuppressive properties of long term MPA contraceptive

usage may be a significant factor contributing towards increasing

HIV-1 acquisition, transmission and possibly disease progression.

Importantly, our results show that MPA effects on genital mucosal

immune function and susceptibility to infections are likely to be

very different to those of NET and P4, when mediated via the GR,

and that choice and concentration of progestin in contraception

are likely to be critical factors.

Supporting Information

Figure S1 Only DEX andMPA represses basal as well as
TNF-induced cytokine mRNA expression. End1/E6E7 cells
were treated for 24 hrs with 100 nM DEX, MPA, P4, NET-A or

vehicle (ethanol) (CTRL), in the absence or presence of 20 ng/ml

TNFa. Thereafter the cells were harvested, total RNA was isolated

and reverse-transcribed. Relative (A) IL-6, (B) IL-8 and (C)

RANTES mRNA expression was measured by real-time qRT-

PCR and normalised to GAPDH mRNA expression. In addition,

relative gene expression was normalized to basal activity (CTRL)

in order to obtain relative fold expression. Graph represents

pooled results of at least three independent experiments and are

plotted as mean 6 SEM. Statistical analysis was carried out using

GraphPad Prism software (version 5) using a one-way ANOVA

with Dunnett post-test, followed by a student’s t-test to compare

specific conditions to each other. Statistical significance is denoted

by * or ** to indicate P,0.05 or P,0.001, respectively.

(TIF)

Figure S2 DEX, MPA and NET-A induce total IkBa
protein. End1/E6E7 cells were treated for 24 hrs with 100 nM

DEX, MPA, P4, NET-A or vehicle (ethanol) (CTRL). Thereafter,

cells were harvested and equal volumes of lysate were analysed by

(A)Western blotting with an antibody specific for total IkBa and a

GAPDH specific antibody as loading control. (B) Western blots of

five independent experiments were quantified to determine the

relative GR protein expression. Statistical analysis was carried out

using GraphPad Prism software (version 5) using a one-way

ANOVA with a Dunnett post-test followed by a student’s t-test to

compare specific conditions to each other. Statistical significance is

denoted by *, ** or *** to indicate P,0.05, P,0.001 or P,0.0001,

respectively.

(TIF)

Figure S3 Cell Viability of VEN-100. VEN-100 cells were

either incubated for 24 hrs (day 1, treatment day) or 72 hrs (day 3,

end of treatment day), followed by, analysis for cell viability (MTT

assay). Absorbance readings were measured at 570 nm. Cell

culture media served as the control (CTRL). CTRL for each day

was set to 1 to obtain relative fold cell viability. The graph

represents results of at least three independent experiments,

plotted mean +/2 SEM. Statistical analysis was carried out using

GraphPad Prism software (version 5) using a one-way ANOVA

with a Dunnett post-test followed by a student’s t-test to compare

specific conditions to each other. Statistical significance is denoted

by ** or *** to indicate P,0.001 or P,0.0001, respectively.

(TIF)

Figure S4 Ligand-selective GR protein turnover. End1/
E6E7 cells were treated with increasing amounts (1 nM, 10 nM,

100 nM and 1 mM) of DEX, MPA, P4 or NET-A, or vehicle

(ethanol) (CTRL) for 24 hrs. Thereafter, the cells were harvested

and equal volumes of lysate were analysed by Western blotting

with antibodies specific for GR and GAPDH as loading control.

(TIF)
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