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SUMMARY 

 

The search for a cost-effective, environmentally friendly replacement for fossil fuels resulted 

in bio-ethanol production receiving a lot of attention. Lignocellulose, is considered to be the 

most abundant renewable source on earth, and consists of cellulose, hemicellulose and lignin. 

Exploitation thereof as a substrate for ethanol production, can serve as solution in producing 

bio-ethanol as an adequate replacement for fossil fuels. Hemicelluloses, contributing up to a 

third of the lignocellulosic substrate, consists mainly of xylan and mannan and can be 

degraded by hemicellulolytic enzymes that are produced by plant cell wall degrading 

organisms. Galactoglucomannan is the most complex form of mannan and requires a 

consortium of enzymes for complete hydrolysis. These enzymes include β-mannanase, 

β-mannosidase, α-galactosidase, β-glucosidase and galactomannan acetylesterases.  

 

Saccharomyces cerevisiae is a well-known fermentative organism that has been used in 

various industrial processes and is able to produce ethanol from hexose sugars. Although this 

organism is unable to utilize complex lignocellulosic structures, DNA manipulation techniques 

and recombinant technology can be implemented to overcome this obstacle. Strains of 

S. cerevisiae pose other shortcomings like hyperglycosylation and therefore other non-

conventional yeasts (such as Kluyveromyces lactis) are now also being considered for 

heterologous protein production. 

 

The mannanase gene (manI) of Aspergillus aculeatus was expressed in K. lactis GG799 and 

S. cerevisiae Y294. K. lactis transformants were stable for two weeks in consecutive 

subcultures and secreted a Man1 of 55 kDa. The recombinant Man1 displayed an optimum 

temperature of 70˚C and a pH optimum of 5 when produced by K. lactis. Activity levels of 

about 160 – 180 nkat/ml was obtained after 86 hours of cultivation, which was similar to the 

activity observed with S. cerevisiae under the same conditions. Disruption of the ku80 gene 

did not contribute to the stability of the cultures and a heterogeneous culture developed for 

10 days of consecutive subculturing.  

 

The mannosidase gene (man1) from A. niger and mannanase gene (manI) from A. aculeatus 

were constitutively expressed in S. cerevisiae Y294 and S. cerevisiae NI-C-D4. The MndA 

and Man1 proteins appeared as a 140 kDa and 58 kDa species on the SDS-PAGE analysis 

 



when expressed in S. cerevisiae Y294, respectively. MndA had an optimum temperature of 

50˚C and optimum pH 5. Man1 produced by S. cerevisiae Y294 indicated a pH optimum of 6 

and temperature optimum of 70˚C. The MndA displayed low levels of endomannanase activity 

and no β-mannosidase activity could be detected. Co-expression of man1 and mndA in either 

S. cerevisiae Y294 and S. cerevisiae NI-C-D4, resulted in less hydrolysis of 

galactoglucomannan. An increase in the size of the plasmid generally results in a decrease in 

the copy number, leading to a decrease in the amount of ManI protein being produced. The 

co-expression of ManI and MndA could also have resulted in a higher metabolic burden on the 

cell, hence the amount of ManI are produced. 

 

This study confirms that more research should be done on the evaluation of alternative hosts 

for expression of foreign proteins. Furthermore, producing enzymes cocktails for industrial 

application should be considered rather than co-expression of various enzymes in one host. 

 



OPSOMMING 
 
‘n Behoefte na ‘n koste-effektiewe en omgewingsvriendelike vervoer brandstof is besig om 

toe te neem. Lignosellulose word beskou as die volopste  hernubare bron vir biobrandstof en 

lignosellulose bestaan uit sellulose, hemisellulose en lignien. Die gebruik daarvan vir die 

produksie van bio-etanol kan ’n voldoende alternatief vir fossielbrandstowwe bied. Verbruik 

van lignosellulose as bron vir die produksie van biobrandstof bied ’n oplossing vir die energie 

krises. Hemisellulose vorm ’n derde van lignosellulose substraat en bestaan uit xilaan en 

mannaan en word deur hemisellolitiese ensieme afgebreek wat algemeen by plantselwand-

verterende organismes voorkom. Galaktoglukomannaan is die mees komplekse vorm van 

mannaan en benodig verskeie ensieme vir volkome hidroliese. Hierdie ensieme sluit in 

β-mannanase, β-mannosidase, α-galaktosidase, β-glukosidase en galaktomanaan 

asetielesterases.  

 

Saccharomyces cerevisiae is ‘n bekende fermenterende organisme wat gereeld in verskeie 

industriële prosesse gebruik word en kan etanol van heksose suikers produseer. Die organisme 

beskik nie oor die vermoë om komplekse polisakkarides wat in lignosellulose voorkom te 

hidroliseer nie maar. DNS-manipuleringstegnieke en rekombinante tegnologie maak dit egter 

moontlik die probellm te oorbrug. S. cerevisiae het nogtans tekortkominge soos 

hiperglikosilering en daarom word ander nie-konvensionele giste (soos Kluyveromyces lactis) 

tans ook vir die produksie van rekombinante proteine ondersoek. 

 

Die mannanase geen (manI) vanaf Aspergillus aculeatus is in K. lactis GG799 en S. cerevisiae 

Y294 uitgedruk. K. lactis transformante was stabiel vir twee weke in opeenvolgende 

subkluture en het ‘n Man1 van 55 kDa geproduseer. Die rekombinante Man1 ensiem het ‘n 

temperatuur optimum van 70˚C en pH optimum van 5.0 getoon in K. Lactis. Aktiwiteitsvlakke 

van 160 – 180 nkat/ml was bereik na 86 uur klutivering,  In vergelyking met S. cerevisiae was 

aktiwiteitsvlakke eenders oor ‘n periode Die disrupsie van die ku80 geen het geen effek op die 

stabiliteit van die transformante in 10 dae opeenvolgende sub-kulture getoon nie. 

 

Die mannosidase geen (mndA) vanaf Aspergillus niger en die mannanase geen (man1) van 

Aspergillus aculeatus is konstitutief in S. cerevisiae Y294 en S. cerevisiae NI-C-D4 uitgedruk. 

Uitdrukking van die MndA en Man1 proteïen in S. cerevisiae Y294 het onderskeidelik ‘n 

140 kDa en 58 kDa spesie getoon met SDS-PAGE analisering. Die MndA ensiem het ‘n 

 



temperatuur optimum van 50˚C and pH optimum van 5.0 getoon. Man1 het ‘n pH optimum 

van 6.0 en ‘n temperatuur optimum van 70˚C getoon. MndA het lae hidrolitiese aktiwiteit op 

galaktoglukomannaan, maar geen β-mannosidase aktiwiteit getoon nie. Wanneer man1 and 

mndA saam in S. cerevisiae Y294 en S. cerevisiae NI-C-D4 uitgedruk is, het die hidroliese van 

galaktoglukomannan dramaties afgeneem. ‘n Toename in die grootte van ‘n plasmied 

veroorsaak dikwels ‘n afname in kopiegetal wat die produksie van ManI verlaag. Die ko-

uitdrukking van ManI en MndA kan ook tot ’n hoër metaboliese las lei en dus die laer 

produksie van ManI. 

 

Resultate in hierdie studie wys daarop dat meer navorsing benodig word in die soeke na 

alternatiewe gashere vir uitdrukking van mannanases. Ensiem mengsels vir industriële 

toepassings behoort eerder gebruik te word as die ko-ekspressie van verskeie ensieme in ’n 

enkel gasheer.  
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1.1. INTRODUCTION 

 

Plant cell walls consist of complex polymers which are mainly cellulose, 

hemicellulose and lignin (Zabel and Morrell 1992). Hemicellulose is second to 

cellulose, the most abundant renewable carbon source on earth and consists mainly of 

mannan and xylan (Lynd et al. 2002, Petkowicz et al. 2001). The different forms of 

mannan include glucomannan, galactomannan and galactoglucomannan (Moreira and 

Filho 2008). Recalcitrance of biomass is a current impediment in the quest to produce 

bioethanol from lignocellulose and can be overcome by utilisation of microbial 

hydrolytic enzymes (Demain et al. 2005, Monique et al. 2003, Mosier et al. 2005). 

Certain fungi and bacteria, mostly soil-living, produce hydrolytic enzymes that are 

able to degrade lignocellulosic substrates (Jose and Demain 2003, Polizeli et al. 

2005). The hydrolysis of mannan requires enzymes like β-mannanases 

(1,4-β-D-mannan mannohydrolases, EC 3.2.178), β-mannosidases 

(1,4-β-D-mannopyranoside hydrolases, EC 3.2.1.25), α-galactosidases 

(1,6-α-D-galactoside galactohydrolases, EC 3.2.1.22), β-glucosidases 

(1,4-β-D-glucoside glucohydrolases, EC 3.2.1.21) and galactomannan acetylesterases 

(Moreira and Filho 2008). Mannanases have several industrial applications such as in 

food technology where they are used in coffee, fruit juices and oil extraction 

processes for the hydrolysis of high-molecular-weight mannans (Dhawan and Kaur 

2007). Mannanases produce manno-oligosaccharides that are used as prebiotics in 

foodstuffs and pharmaceutical applications (Dhawan and Kaur 2007). The paper and 

pulp industry uses mannanases in combination with xylanases as biological 

prebleaching agents enhancing the extractability of lignin and reducing environmental 

pollution by avoiding traditional chlorine methods (Montiel et al. 1999, Tenkanen et 

al. 1997). In most cases, the industries require only one or two enzymes to obtain the 

desired effect in the final product. Enzymes can be produced by recombinant 

technology using host strains such as Saccharomyces cerevisiae, Pichia pastoris, 

Kluyveromyces lactis, etc. (Dujon et al. 2004, La Grange et al. 2001, van Rooyen et 

al. 2005). Recombinant DNA technology provides us with tools to study the 

individual enzymes and the expression systems of hosts in order to select for such 

systems that are well suited for industrial processes. 
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Effective production of mannanases for industrial application and insight into 

different host systems need to be further explored. Since S. cerevisiae does not 

produce hemicellulytic or cellulytic enzymes required to degrade plant cell walls, 

considerable research is dedicated to expression of enzymes in this organism. 

Construction of hemicellulolytic yeasts would allow better insight into the realisation 

of the one-step conversion of lignocellulose for ethanol production. This thesis 

focuses on the hemicellulolytic enzymes, endo-1,4-β-mannanase and β-mannosidase 

from Aspergillus sp. and their expression in S. cerevisiae and K. lactis. Production of 

the recombinant enzymes was evaluated using different gene combinations with their 

hydrolytic properties evaluated on Locust bean gum as substrate. 

 
 

1.2. AIMS OF THE STUDY 

 

The aims of this study were: 

• to clone and express the β-mannanase encoding gene (man1) of Aspergillus 

aculaetus on an episomal plasmid under the transcriptional control of the 

S. cerevisiae phosphoglycerate kinase I (PGK1) promoter and terminator; 

• to determine the β-mannanase activity produced by S. cerevisiae and compare 

with previously reported data on expression of the same gene; 

• to clone and express the β-mannanase gene (man1) from A. aculeatus in K. lactis; 

• to determine the optimum pH and temperature of the Man1 enzyme expressed in 

K. lactis and S. cerevisiae; 

• to compare the levels of activity of the Man1 produced by K. lactis and 

S. cerevisiae; 

• to compare the biomass production (in mg Cell Dry Weight/ml) between K. lactis 

and S. cerevisiae; 

• to investigate the impact of the disruption of the ku80 gene on the plasmid 

stability in the cultures under conditions of continuous subcultivation; 

• to synthetically design the codon optimized 2.8 kb β-mannosidase (mndA) from 

Aspergillus niger; 
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• to clone and express the β-mannosidase encoding gene (mndA) on an episomal 

plasmid under the transcriptional control of the enolase I gene (ENO1) promoter 

and terminator in S. cerevisiae; 

• to purify and characterize the recombinant β-mannosidase (MndA) and determine 

the levels of activity thereof on p-nitrophenyl β-D-mannopyranoside; 

• to co-express the β-mannanase encoding gene (man1) and β-mannosidase 

encoding gene (mndA) on one episomal plasmid in S. cerevisiae and 

• to determine if a synergistic effect between the Man1 and MndA enzymes could 

be established when they were co-produced in S. cerevisiae. 
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2.1. INTRODUCTION 
 
Alternative energy is of great interest for the future as energy conversion, usage and 

access have brought about a global challenge (Lynd et al. 2002). Energy sources that 

might create solutions include solar wind, hydrogen as well as biomass conversion. In 

combination, these sources might result in a powerful solution to cost-effective and 

sustainable energy. Bioethanol development has gained considerable interest due to 

the use of abundant and renewable resources such as lignocellulose (Lynd et al. 

1999). 

 

The constituents of lignocellulose, namely cellulose, hemicellulose and lignin are the 

most abundant polymers on earth (Colvin 1980). Lignocellulosic biomass is a well-

suited resource, because it has the advantages of being inexpensive, sustainable, 

greenhouse-gas neutral and it is not a food commodity (Monique et al. 2003, Sticklen 

2007). The four categories of lignocellulosic biomass includes wood residues, which 

is the largest source, followed by municipal solid wastes, agricultural residues and 

energy crops grown for this specific application (Lin and Tanaka 2006). 

Recalcitrance of biomass is, however, a current impediment that needs to be 

overcome before energy production from these sources can become a reality (Demain 

et al. 2005, Mosier et al. 2005). Certain fungi and bacteria, mostly soil-living, 

produce hydrolytic enzymes that are able to degrade lignocellulosic substrates. These 

enzymes can be used effectively to convert the recalcitrant lignocellulose to 

fermentable sugars resulting in significant cost reductions and yield improvements 

(Lynd et al. 2002). 

 
Ethanol can be produced from biomass by a hydrolysis and sugar fermentation 

process (Lin and Tanaka 2006). This conversion requires the release of cellulose and 

hemicellulose from lignin in a delignification step. Hereafter the carbohydrate 

polymers are depolymerised resulting in free sugars (hexose and pentose sugars) 

which can subsequently be fermented to ethanol (Yu and Zhang 2004). The current 

process of lignocellulose conversion to bioethanol is well established and involves 

size reduction pre-treatment and enzymatic hydrolysis of plant material (Lynd et al. 
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2002). Currently, the process is not economically feasible and needs an improvement 

(process design) to make the concept more cost-effective. 

 
Biomass conversion may be categorized according to the level to which processes are 

consolidated (Fig. 1). Separate hydrolysis and fermentation (SHF) consists of four 

separate steps and requires up to four biocatalysts. Simultaneous saccharification and 

fermentation (SSF) combines the enzymatic saccharification and fermentation of 

hydrolysis products and has already shown cost reductions in the process (Lynd et al. 

2002). Simultaneous saccharification and co-fermentation (SSCF) is a two-step 

process: cellulases are produced where after both cellulose and hemicellulose are 

fermented (Bollók et al. 2000, Stënberg et al. 2000). Based on results from 

simultaneous saccharification and fermentation (SSF), a new design was proposed 

termed consolidated bioprocessing (CBP). CBP envisions a one-step conversion 

process with a recombinant microorganism that has the ability to hydrolyze pretreated 

substrate and ferment released sugars to desired product, simultaneously, as seen in 

Fig. 1 (Lynd et al. 2002). 

 

Saccharomyces cerevisiae is currently the organism of choice considered for CBP 

development. This yeast is widely used in the industry for ethanol production and has 

advantages such as high ethanol production and tolerance and well-developed gene 

expression systems (Lynd et al. 2002). S. cerevisiae is however non-cellulolytic and 

therefore enzymes such as endoglucanases and exoglucanases need to be introduced 

to efficiently hydrolyse the cellulose and hemicellulose portion of the plant material 

to fermentable sugars (Henrissat 1994, Lynd et al. 2002). 
 

 
2.2. PLANT BIOMASS 

 
Lignocellulosic biomass is a renewable energy source and is therefore considered as 

an ideal resource for the production of bio-ethanol (Lynd et al. 2002). Forest material 

(hard and softwood) is considered as the largest sources of lignocellulose, but other 

sources include agricultural waste, grasses, water plants (algae) and various plant 

material (Lynd et al. 2002). Biomass comprises of three main components. The 

cellulose portion can contribute to 35 - 50%, hemicellulose to 20 - 30% and lignin to 
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10% of plant dry weight (Coughlan and Hazlewood 1993). These components have 

complex molecular structures that can be degraded by various fungi and bacteria.  
 

 

 
Fig. 1. A schematic representation of the evolution of biomass processing illustrating 

differences between separate hydrolysis and fermentation, simultaneous saccharification and 

fermentation, simultaneous saccharification and co-fermentation and lastly consolidated 

bioprocessing (the one-step process) (Lynd et al. 2002). 

 
 

2.2.1. CELLULOSE 

Cellulose is a homopolymer consisting of β-D-glucopyranose units that are linked 

with β-1,4 glycosidic bonds (Fig. 2) (Lynd et al. 1999, Vincent 1999). Cellobiose 

molecules are bound through intra- and intermolecular hydrogen bonds, which 

assemble to form elemental fibrils and consequently form microfibrils (Kudlicka and 

Brown 1996, Brown 1999, Lynd et al. 2002). Microfibril sheets are packed together 

and linked with weak van der Waals forces to form fibrils. Fibrils eventually form the 

cellulose fibres which appear in highly ordered (crystalline) or less ordered 
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(amorphous) formation (Brown 1999). Cellulose molecules are insoluble in water and 

the degree of polymerization (DP) ranges from 300 to 26 000. Even though cellulose 

is quite recalcitrant, various cellulolytic organisms (such as Aspergillus sp. and 

Cellulomonas sp.) produce glycoside hydrolases that are able to cleave the glycosidic 

linkages in cellulose (Warren 1996). 
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Fig. 2. A portion of a cellulose chain, β-D-glucopyranose units are linked with 

β-1,4-glycosidic bonds (Coughlan and Hazlewood 1993). 

 

 

2.2.2. HEMICELLULOSE 

 

Hemicelluloses are non-covalently, cross-linked to cellulose microfibrils. Together, 

these polymers perform a structural role (Liepman et al. 2007). The hemicelluloses 

are linear or branched polymers that are formed with hexoses (D-glucose, D-mannose 

and D-galactose) and pentoses (D-xylose, L-arabinose) and can have monosaccharides 

and acetyl side-groups (Erikkson et al.1990, Filho 1998). The main hemicelluloses 

include mannan, xylan, galactan and arabinan and are characterized by their 

insolubility in chelating agents and water, and solubility in aqueous alkali (O’Neill 

and York 2003). 

 

Different types and concentrations of hemicellulose occur in softwood 

(gymnosperms) and hardwood (angiosperm). The main forms of hemicellulose are 

mannan and xylan (Erikkson et al. 1990) with occurrence in softwood varying 
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between 5 - 15%, compared to 20 - 30% in hardwood (Coughlan and Hazlewood 

1993). Softwood hemicelluloses are mostly galactoglucomannan, glucomannan and 

arabinoglucoronoxylans (7 - 8%) whereas acetylglucuronoxylan (15 - 30%) and 

glucomannan (3 - 5%) predominantly occur in hardwood (Coughlan and Hazlewood 

1993).  

 

 

2.2.2.1. VARIOUS FORMS OF MANNAN 

 

Mannan can appear in several different forms but has a general β-1,4-linked 

D-mannopyranosyl unit backbone from which the different forms originate (Coughlan 

and Hazlewood 1993). Different forms include a linear homopolymer of mannan, 

glucomannan, galactomannan and galactoglucomannan.  

 

Mannan present in the endosperm of Palmae (Phytelephas macrocarpa), green coffee 

beans (Coffea arabica) and dates (Phoenix dactylifera) consist of a backbone of 

β-1,4-linked mannose residues containing less than 5% galactose (Aspinall 1959, 

Meier 1958, Petkowicz et al. 2001). Ivory nut mannan can be separated into 

Mannan I and Mannan II structures, the former being a polysaccharide with a DP 

of ~ 15 and the latter with a DP of ~ 80. Mannan I represents a crystalline and 

granular form that can be extracted with alkali methods, whereas Mannan II is a 

microfibrilar form that is less crystalline and cannot be extracted directly (Meier 

1958, Aspinall 1959, Petkowicz et al. 2001). 

 

Glucomannan comprises a heterogeneous polymer of β-1,4 linked D-mannose and 

D-glucose molecules in a molar ration of 3:1 with no acetic acid or galactose side 

groups present (Fig. 3) (Popa and Spiridon 1998). Glucomannan has a DP of less than 

200 and chains are loosely packed in a paracrystalline array between cellulose 

microfibrils. They occur in most hardwood in a glucose/mannose ratio of 1:1.5 - 2 at 

concentrations of up to 2 – 5% (Coughlan and Hazlewood 1993, Hongshu et al. 

2002). Glucomannan is found to a lesser extent in softwood and may contain 

α-1,6-linked galactose branches in a mannose: glucose: galactose ratio of 3:1:0.1 

(Coughlan and Hazlewood 1993). 
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Fig. 3. A portion of the structure of glucomannan - a heterogeneous polymer consisting of β-

1,4 linked D-mannose and D-glucose molecules (Coughlan and Hazlewood 1993). 

 

Galactomannan consists of water soluble 1,4-linked β-D-mannopyranosyl chains 

substituted at position O-6 by a single α-D-galactosopyranosyl side chain (Fig. 4) 

(Eriksson et al. 1990, Parvathy et al. 2005). The distribution and abundance of the 

D-galactosyl unit varies among different plant species, but is usually more than 20 

galactose units per mannose unit (Coughlan and Hazlewood 1993, Eriksson et al. 

1990). Species like Mimosa scabrella can have galactose to mannose ratios as high as 

1:1 whereas species like Ceratonia silique has a ratio of 1:4 (Moreira and Filho 

2008). Galactomannan is mainly found in the endospermic part of seeds of the 

Leguminoseae family but have also been found in Annonaceae, Convolvulaceae, 

Ebenaceae, Loganiaceae and Palmae (Moreira and Filho 2008).  

 

Acetylated galactoglucomannan is the main hemicellulose in cell walls of higher 

plants. It has the same basic structure as glucomannan, but contains α-1,6- linked 

galactose residues and acetyl groups substituted on both the D-mannosyl and 

D-glucosyl units in the backbone chain (Popa and Spiridon 1998, Sjöström 1993). 

Solubility in water is due to the D-galactose units preventing macromolecules from 

aligning. Mannosyl units can be partially substituted by O-acetyl groups between 

postitions C-2 and C-3 with an average of 1 group per 3 to 4 hexose units (Coughlan 

and Hazlewood 1993, Eriksson et al. 1990, Popa and Spiridon 1998). 
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Fig. 4. Galactomannan structure consisting of 1,4 linked β-D-mannopyranosyl chains 

substituted at position O-6 by a single α-D-galactosopyranosyl side chain (Coughlan and 

Hazlewood 1993). 

 

Acetylated galactoglucomannan are predominant found in softwood and the types of 

the galactomannan are classified based to the galactose content. The 

galactoglucomannan type with a high galactose content (5 – 8% wood dry weight) 

consists of glucose, mannose and galactose in a ratio of 1:4:0.1 while the 

galactoglucomannan type with a lower galactose content 10 - 15% has a 1:3:1 ratio 

(Sjöström 1993).  

 

Unusual forms of mannan are present in some species such as Siphonales (green 

algae), where the linear mannan seems to replace cellulose (Preston 1979). Retama 

raetum, a wild plant from the Fabaceae family has β-D-mannopyranosyl units linked 

in a 1,3- and a 1,4- manner with galactopyranosyl units attached to the O-6 position 

(Ishurd et al. 2004). Red seaweed (Nothogenia fastigiata) contains a complex sulfated 

xylo-mannan structure (Erra-Balsells et al. 2000). The sulfated α-1,3- linked 

D-mannan chain structure is characterized by the ends having a β-1,2 linked D-xylose 

unit (Erra-Balsells et al. 2000). Acemannan is a form of mannan produced by 

Aloe vera where β-1,4- linked D-mannosyl residues form the backbone chain 
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(Femenia et al. 1999). Position C-2 or C-3 is acetylated and position C-6 has a 

galactose side chain attached to it (Femenia et al. 1999). 

 

 

2.2.2.2. THE FUNCTION, APPLICATIONS AND STRUCTURE OF MANNAN  

 

Mannan is a major hemicellulose in softwood and is widely distributed in all plant 

tissues, serving different functions (Filho 1998, Petkowicz et al. 2001). Mannan 

functions as a major structural unit in wood and seeds of plants and is responsible for 

interacting with and keeping cellulose fibres connected (Liepman et al. 2007). It also 

serves a storage function in the plant and acts as a carbohydrate reserve in the walls 

of endosperms and vacuoles of seeds and vegetative tissues (Meier and Reid 1982). 

In seeds occurring in areas with high atmospheric pressure, mannan retains water by 

salvation. This prevents denaturation of seed protein that is crucial in development 

stages (Dea and Morrison 1975). More functions are being discovered and recent 

studies indicated mannan to be a signalling molecule involved in plant growth and 

development (Liepman et al. 2007). 

 

Mannan has various applications and is used in various industries. They are produced 

in large amounts and are used in the manufacturing of food, paper, textile, 

pharmaceutical, cosmetics and mining (Moreira and Filho 2008). Gums are extracted 

from seeds and include Locust bean gum, Tara gum, and Guar gum. The structures of 

Locust bean gum and Tara gum is shown in Fig. 5 (Moreira and Filho 2008). Gums 

are mostly extracted from plants of the Luguminoseae family like Caesalpinia 

spinosa (carob seeds), Ceratonia siliqua (Tara seeds) as well as other plants like 

Cyamopsis tetragonoloba (Guar seeds) and Cassia grandis (Duffaud et al. 1997, 

Joshi and Kapoor 2003, Shobha et al. 2005). These gums have film-forming abilities 

and excellent heat shock protection that can be applied in frozen foods. They act as 

stabilizers in low-fat and non-fat dairy products and have many fat-replacement 

applications acting as fat-imitator (Fernández et al. 2007, Hsu and Chung 1999). Gum 

extraction is inexpensive, non-toxic and has GRAS (Generally Regarded As Safe) 

status (Moreira and Filho 2008). Other mannans like linear mannan from Aloe vera 

have immunopharmacological and therapeutic properties (Aspinall 1959, Mehavr 
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2003). Glucomannans have a variety of applications including being used in weight 

control agents and preventing chronic disease (Ishurd et al. 2006).  
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Fig. 5. The repeat units of the two types of gums, consisting of a linear backbone of 

1,4-linked β-D-mannose units and a α-D-galactose residue on position C-6 (Sittikijyothin et 

al. 2005). Arrows indicate →(A) The structure of Locust bean gum with a 4:1 ratio of 

mannose per galactose substitution and → (B) Tara gum with a 3:1 ratio of mannose per 

galactose substitution. 

 

 

2.2.2.3. THE STRUCTURE OF XYLAN 

 

Xylan is the second most abundant polysaccharide in nature and the main 

hemicellulose found in plant cell walls, forming 30 – 35% of the total dry weight 

(Joseleau et al. 1992). Xylan exists in the interface between lignin and cellulose 

adding to the stability of plant structure. The xylan heteropolysaccharide consists of 

β-1,4- linked D-xylose and various substituents that can be linked to the main chain 

(Coughlan and Hazlewood 1993, Eriksson et al. 1990). The xylan chain forms a 

helical three-fold, left handed structure and is versatile in its conformation due to the 

lack of additional inter and intra molecular hydrogen bonds between the pentose 

sugars (Atkins 1992). Substituents of the homopolysaccharide backbone chain 
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determine the viscosity, solubility and physiochemical properties. Frequency and 

substituent composition differs between plant species. Softwood xylan includes 

4-O-methyl-D-glucuronosyl (Fig. 6) and L-arabinofuranosyl residues whereas 

hardwood xylan has O-acetyl-4-O-methyl-D-glucuronosyl and acetic acid estrified 

D-xylose residues. Arabinosylated xylans can be found in grasses and cereal (Collins 

et al. 2005, Coughlan and Hazlewood 1993, Eriksson et al. 1990). 

 

 

 
 

Fig. 6. Structure of softwood xylan, 4-O-methyl-D-glucuronosyl xylan (Coughlan and 

Hazlewood 1993, Eriksson et al. 1990). 

 

Arabinoglucuronoxylan is a major hemicellulose in softwood, forming 10 – 15% of 

wood dry weight (Coughlan and Hazlewood 1993). It consists of a 1,4-linked 

β-D-xylopyranose backbone where per every tenth xylose unit, two 

4-O-methyl-α-D-glucuronic acid residues are substituted at the C-2 position 

(Coughlan and Hazlewood 1993, Eriksson et al. 1990). An average of 

1.3-α-L-arabinopyranose units is also present per 10 xylose units on position C-3. 

Reducing-end groups with D-rhamnosyl, D-galacturonosyl and D-xylosyl residues are 

found in both hardwood and softwood (Coughlan and Hazlewood 1993). 

 

Acetyl-4-O-methylglucoronoxylan is the major hemicellulose in hardwood species, 

forming 10 – 35% of hardwood dry weight (Coughlan and Hazlewood 1993, Eriksson 

et al. 1990). Acetyl groups occur on every seven to ten xylose units on the 

β-D-1,4-linked xylopyranose backbone at the C-2 or C-3 position. A terminal chain 

consisting of a single 4-O-methyl-α-D-glucoronic acid residue is found at every tenth 
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xylose unit, linked directly to the C-2 position of the xylose unit. Furthermore, the 

xylan main chain may also have small amounts of rhamnose and galacturonic acid 

that are also essential to the structure (Coughlan and Hazlewood 1993). 

 

Arabinoxylan (Fig. 7) consists of the β-1,4-D-xylan backbone chain, but has less 

1,2-linked 4-O-methyl-α-D-glucuronic acid residues and is more highly branched. 

Large proportions of L-arabinofuranosyl units are linked mainly to the C-2 position of 

xylose. The ratio of xylose and arabinose differ between species and tissues within 

the same species (Coughlan and Hazlewood 1993). Barley and straw have 

L-arabinose residues that are esterified with ferulic acid at every 15th residue and one 

in every 31 residues is esterified with p-couamric acid (Puls and Schuseil 1993). 

Graminaceous plants contain xylan with O-acetyl groups.  The main chain has 

β-D-xylanopyranose residue with L-arabinofuranosyl side chains at the C-2 and C-3 

postions. Grass cell walls contain 1 - 2% phenolic acid substituents esterified to 

position 5 of the arabinose substituents (Coughlan and Hazlewood 1993). 

 

 

 

 

Fig. 7. Arabinoxylan consists of a highly branced β-1,4-D-xylose backbone chain with 

1,2-linked 4-O-methyl-α-D-glucuronic acid (Coughlan and Hazlewood 1993). 
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Another form of hemicellulose is arabinogalactans. They are found in larchwood and 

have a highly branched structure (Coughlan and Hazlewood 1993). The backbone 

chain consist of two β-1,6-linked D-galactopyranose residues per β-1,3-linked 

D-galactopyranose unit. Furthermore 3-O-β-L-arabinopyranosyl-L-arabinofuranose 

residues are linked to the galactose units of the main chain. Terminal residues of 

D-glucuronic acid and L-arabinofuranose are also present (Coughlan and Hazlewood 

1993). 

 

2.2.3. LIGNIN 

 

Lignin is a complex polyphenolic compound present in softwood at a concentration 

of 20 - 30% and in hardwood at 18 – 25% (Eriksson et al. 1990). It is responsible for 

cell wall rigidity and durability occurring mostly in the middle lamella of plants 

(Mosier et al. 2005). Synthesis of lignin takes place via the phenylpropanoid pathway 

through dehydrogenative polymerization of p-hydroxycinnamyl alcohols. The 

p-coumaryl alcohol, p-coniferyl alcohol and p-sinapyl alcohol are polyphenolic 

precursors that are linked in an irregular pattern through polymerization by 

peroxidase and laccase enzymes resulting in an aromatic polymer (Boudet et al. 1995, 

Perez et al. 2002). Three major groups of lignin can be distinguished. Coniferyl 

alcohol is the main precursor in gymnosperms in which case dehydrogenation forms 

guaiacyl lignin. In angiosperms dehydrogenation of sinapyl alcohol and p-coumaryl 

alcohol forms guaiacyl-syringyl lignin. Grasses contain 

guaiacyl-syringyl-p-hydroxyphenyl-lignin (Eriksson et al. 1990, Grabber 2005). 

Unlike cellulose or hemicelluloses, lignin is not readily biologically degraded due to 

the absence of hydrolysable bonds. It consists of random stable carbon-carbon and 

ether linkages between monomeric units (Perez et al. 2002, Mosier et al. 2005). A 

reduction in the concentration, hydrophobicity and cross-linking of lignin enhances 

enzymatic hydrolysis of the structural polysaccharides in cell walls (Grabber 2005). 

 
 
2.3. DEGRADATION OF MANNANS 
 
Fungi form a crucial part of the ecosystem (Jose and Demain 2003, Polizeli et al. 

2005). Fungi decompose polysaccharides and recycle inorganic and organic material. 
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For many decomposers the plant cell wall polysaccharides are their primary carbon 

energy source. Degradation of the plant cell wall is achieved by the production of 

enzymes, usually secreted, to degrade the polysaccharides into mono- and 

oligosaccharides (Jose and Demain 2003, Polizeli et al. 2005). Fungi have different 

enzymatic affinities for the three different cell wall components (cellulose, 

hemicellulose and lignin), and therefore different relative proportions of the 

components are seen during the decay process (Eriksson et al. 1990, Rayner and 

Boddy 1988). These fungi are traditionally termed white rot, brown rot or soft rot 

fungi (Irbe et al. 2001, Rayner and Boddy 1988). Fungi that primarily degrades the 

lignin component of wood and the cellulose and hemicellulose components to a lesser 

extent gives the wood a bleached appearance and the fungi involved are therefore 

termed white rot fungi. Fungal decay in which the wood is discoloured brown (from 

which hemicelluloses and cellulose have been selectively removed), leaving mostly 

modified lignin, are caused by brown rot fungi (Irbe et al. 2001, Rayner and Boddy 

1988). Fungi that degrade cellulose and hemicelluloses, but not lignin, are termed soft 

rot fungi (Irbe et al. 2001, Rayner and Boddy 1988). 

 

Fungi from the genera Aspergillus and Trichoderma are soft rot fungi. The ability of 

these soil-living fungi to produce polysaccharide-hydrolysing extracellular enzymes 

makes them attractive for several industrial applications. Enzymes produced by these 

strains for the degradation of hemicelluloses, especially mannan, include 

endo-β-mannanases, β-mannosidases, α-galactosidases and β-glucosidases (Jose and 

Demain 2003, Moreira and Filho 2008, Polizeli et al. 2005). 

 

 

2.3.1. GLYCOSYL HYDROLASES 

 

Glycoside hydrolases are the main group of enzymes involved in degradation of plant 

polysaccharides (Davies and Henrissat 1995). The hydrolysis of mannans requires a 

large variety of enzymes to act cooperatively. The enzymes involved are either 

endohydrolases or exohydrolases. Endohydrolytic enzymes cleave internal bonds 

randomly while exohydrolytic enzymes cleave the terminal glycosidic linkages 

(Crout and Vic 1998, Davies and Henrissat 1995).  
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The β-glycoside hydrolases are grouped into enzyme families according to amino 

acid sequence similarities and hydrophobic cluster analysis (Henrissatt and Bairoch 

1993, Lemesle-Varloot 1990). New families and addition to different existing 

families is made as new sequences become available (Henrissatt and Bairoch 1993, 

Henrissatt and Davies 1997, Henrissat et al. 1998, Henrissat and Bairoch 2008). A 

continuously updated list of the glycoside hydrolase families can be found on the 

Carbohydrate-Active Enzyme database (CAZY) (http://www.cazy.org). Data 

gathered over time showed families with the same basic enzyme folds, pointing to the 

direct relation between family classification and tertiary structure (Henrissat 1991). 

Glycosyl hydrolases can be further grouped into clans based on the tertiary structure 

at the active site (Henrissat et al. 1995, Juers et al. 1999). GH-A is a major clan 

consisting of at least 16 families (Jenkins et al. 1995, Juers et al. 1999). The protein 

fold of this clan is the (β/α)8-barrel and the positions of the catalytic residues are 

conserved, with the catalytic nucleophile and acid/base both situated on the C-termini 

of β-strands 7 and 4, respectively (Jenkins et al. 1995). 

 

In glycosyl hydrolases, that are endo- and exo-acting enzymes, the two major 

cleavage preferences seems to be correlated to active site architecture (Dominguez et 

al. 1995, Sabini et al. 2000a, b). Endo-acting enzymes, like endoglucanases and 

β-mannanases, frequently have cleft_shaped active sites. Exo-acting enzymes like 

β-galactosidases and β-mannosidases frequently have pocket-shaped active site 

architecture (Aleshin et al. 1994, Juers et al. 1999). However, enzymes with 

exo-activity sometimes display endo-activity and enzymes with endo-activity can 

similarly display exo-activity. Therefore, architecture of the active site does not 

necessarily give an indication of the cleavage preferences (Ståhlberg et al. 1993, 

Tomme et al. 1996). 

 

The tertiary structure gives an indication of the mechanism which can either be 

inverting or retaining (Davies and Henrissat 1995, Withers 2001). A single or 

double-displacement reaction involves participation of two amino acid residues acting 

by a general acid catalysis mechanism. It occurs at the anomeric carbon atom of the 

glycoside hydrolase as a result of inversion or retention of the configuration (Davies 
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and Henrissat 1995, Withers 2001). Inverting enzymes use direct displacements (Fig. 

8) with a general base-catalysed attack of water through an oxocarbenium ion-like 

transition state. General-acid-catalytic assistance occurs by means of two carboxylic 

acids. One carboxylic acid provides base catalytic support to the attack of water and 

the other provides acid catalytic support in order for the glycosidic bond to be cleaved 

(Withers 2001). 

 

  

 

 
 

Fig. 8. Inverting glycosyl hydrolases: inversion of the anomeric configuration through a 

single nucleophilic displacement (Davies and Henrissat 1995).  

 

 

Retaining enzymes operate via a double-displacement or two-step mechanism where 

a covalent glycosyl-enzyme intermediate occurs (Fig. 9). Two catalytic carboxylates 

(aspartate or glutamate) on opposite sides of the sugar plane performs two separate 

chemical steps (Davies and Henrissat 1995, Withers 2001). In the first glycosylation 

reaction, the anomeric centre is attacked by a nucleophile and the acid-base catalyst 

promotes the aglycone removal. This allows the formation of a covalent glycosyl-

enzyme intermediate which is stable enough for the aglycone to be removed and 

replaced with water. The second deglycosylation reaction involves the attack of water 

on the opposite side of the anomeric centre and is promoted by the base-acid catalyst. 

The nucleophile is displaced and the aglycone is released having the same anomeric 

configuration as the substrate (Withers 2001). 
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Fig. 9. Retaining glycosyl hydrolases: retaining of anomeric configuration through double 

displacement (Davies and Henrissat 1995).  

 

 

2.3.2. MANNAN DEGRADING ENZYMES  

 

Due to the complex structure of hemicelluloses, various enzymes are needed for its 

complete degradation (Fig. 10). Complete degradation of 

O-acetyl-galactoglucomannan begins with endo-β-1,4 mannanases, endohydrolases 

that cleave the mannan backbone resulting in oligosaccharides of various lengths 

(Stoll et al. 2000). At the same time, α-galactosidases remove the galactose units 

present as side chains on the mannan backbone (McCutchen et al. 1996). 

β-mannosidases, exohydrolases, hydrolyze the oligomannans released by 

β-mannanase activity resulting in single mannose molecules (Moreira and Filho 

2008). The β-glucosidases, and esterases are additional enzymes that catalyze the 
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removal of glucose and acetic acid, respectively, from the main mannan chain 

(Moreira and Filho 2008). 
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Fig. 10. Schematic representation of the degradation of O-acetyl-galactoglucomannan 

(Moreira and Filho 2008). 

 

 

2.3.3. ENDO β-1,4-MANNANASE 

 

2.3.3.1. OCCURRENCE 

 

β-mannanase (1,4-β-D-mannan mannohydrolase EC 3.2.178) randomly cleave the 

β-1,4-mannopyranosyl linkages in mannans, glucomannan and galactomannan, 

resulting in new chain ends (Stoll et al. 2000). β-mannanases have been isolated and 

characterized from various fungi (Ademark et al. 1998, Christgau et al. 1994) 

bacteria (Akino et al. 1989, Braithwaite et al. 1995), plants (Bewley et al. 1997, 

Marraccini et al. 2001) and animals (Xu et al. 2002, Yamaura et al. 1996) 

β-mannanases from bacteria include sources such as aerobes, anaerobes and 

extremophiles (thermophiles, halophiles and psychrophiles) (Parker et al. 2001, 
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Waino and Ingvorsen 1999, Zakaria et al. 1998). β-mannanases are mostly produced 

extracellularly, but cell wall bound mannanases have also been reported. 

β-mannanases from plant origin, are involved in seed germination and fruit ripening 

(Nonogaki and Morohashi 1999, Nonogaki et al. 2000). 

 

 

2.3.3.2. HYDROLYSIS AND SUBSTRATE BINDING 

 

A chain length of four sugar residues is required for the binding of β-mannanases to 

ensure hydrolysis (McCleary and Matheson 1983, Sabini et al. 2000a, b). The 

substrate binding surface can be split into different subsites. Subsites are numbered 

from –n to +n (n being an integer) and are bound from non-reducing to reducing ends 

of the mannan substrate respectively (Davies et al. 1997). Cleavage of the glycosidic 

bond occurs between subsite +1 and -1 (McCleary and Matheson 1983). 

 

-3 -2 -1 +1 +2

A B C D E 

-3 -2 -1 +1 +2

A B C D E 

-3 -2 -1 +1 +2-3 -2 -1 +1 +2

A B C D E 

-3 -2 -1 +1 +2

A B C D E 

-3 -2 -1 +1 +2-3 -2 -1 +1 +2

A B C D E 

-3 -2 -1 +1 +2-3 -2 -1 +1 +2

A B C D E 

-3 -2 -1 +1 +2-3 -2 -1 +1 +2

A B C D E 

 
 

Fig. 11. Representation of the enzyme-substrate interaction and subsite binding of 

β-mannanase enzyme and the substrate, a β-1,4-mannan chain. Binding subsites are labeled 

-3 to +2 and mannose residues A-E (McCleary and Matheson 1983). 

  

Most β-mannanases hydrolyse manno-oligosaccharides up to a DP of 4 (Biely and 

Kremnický 1998, McCleary 1988). Activity on mannotriose has been observed but at 

a much lower rate, signifying that at least 4 subsites are present in β-mannanases 

(Akino et al. 1989, Harjunpää et al. 1995). Hydrolysis by β-mannanases usually 
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results in mannobiose and mannotriose as end products (Ademark et al. 1998, Civas 

et al. 1984). Mannanases from A. tamarii (Civas et al. 1984), Trichoderma reesei 

(Stålbrand et al. 1993) and A. niger (Ademark et al. 1998) all produced mainly 

mannobiose, mannotriose and higher oligosaccharides. When side chains occur their 

distribution pattern can affect hydrolysis efficiency (Ademark et al. 2001, Stålbrand 

et al. 1995). Hydrolysis is blocked when the D-galactosyl and D-glucosyl side chains 

are bound to residue B and D or when C or E is replaced with a D-glucosyl in Fig. 11 

(McCleary 1988, McCleary and Matheson 1983, Sabini et al. 2000). β-mannanases 

are seldom able to cleave mannobiose as is the case with Man5D from 

Phanerochaete chrysosporium (Benech et al. 2007), however, A. aculeatus 

β-mannanases not only released mannotriose and mannobiose but also mannose when 

hydrolyzing ivory nut mannan (Setati et al. 2001). Torto et al. (1996) also found 

some mannotetraose in hydrolysis experiments using ivory nut mannan and an 

endomannanase produced by A. niger (Torto et al. 1996).  

 

Some organisms produce more than one enzyme (of similar function) often showing 

different specificities. T. reesei produces two β-mannanases that hydrolyze ivory nut 

mannan to mannotriose and mannobiose (Stålbrand et al. 1993). Sclerotium rolfsii 

produced a 42kDa, 58kDa and 61kDa β-mannanase (Gübitz et al. 1996 a, b, 

Sachslehner et al. 2000). The first hydrolyzed smaller fragments from mannan and 

was found to be active against mannotetraose and mannotriose. The 58kDa 

β-mannanase showed activity on mannotetraose, mannotriose and mannobiose, 

whereas the 61kDa β-mannanase from the same source showed a random-type 

breakdown of the mannan, with a slower decrease in the viscosity of mannan 

solutions (Gübitz et al. 1996 b, Sachslehner et al. 2000). 

 

Apart from hydrolysis, some β-mannanases were also found to perform 

transglycosylation reactions (Coulombel et al. 1981, Gübitz et al. 1996 b, Harjunpää 

et al. 1999). A β-mannanase from T. reesei was shown to produce transglycosylation 

products with mannose or mannobiose as glycosidic bond receptors (Harjunpää et al. 

1999). 
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2.3.3.3. FAMILY CLASSIFICATION AND STRUCTURE 

 

β-mannanases are classified as glycosyl hydrolase family 5 and 26 based on amino 

acid sequence similarity (Henrissat 1991, Henrissat and Bairoch 1993). Family 5 

represent mannan-degrading enzymes from bacterial organisms (Caldocellum 

saccharolyticum, Cladibacillus, Vibrio species), fungi (Aspergillus aculaetus, 

Trichoderma reesei, Agaricus bisporus) and eukaryotic (Lycopersicon esculentum 

and Mytilus edulis) origin (Dhawan and Kaur 2007, Larsson et al. 2006, Ximenes et 

al. 2005). Family 26 enzymes are mostly from bacterial origin (Bacillus sp., 

Cellvibrio japonicus, Pseudomonas fluorescens, Rhodothermus marinus), but also 

contain mannanases of the anaerobic fungus (Piromyces sp.) (CAZY, Dhawan and 

Kaur 2007). β-mannanases from the same genus such as Cladocellulosiruptor and 

Bacillus have been placed in both families 5 and 26 (Akino et al. 1989, Gibbs et al. 

1992, Gibbs et al. 1996, Mendoza et al. 1995 a, b). 

 

Families 5 and 26 (http://www.cazy.org) include endoglucanases and mannanases 

which are in the GH-A clan. They have a characteristic (βα)8-barrel fold of the 

enzyme catalytic domain and both families use the retaining mechanism (Ademark et 

al. 1998, Arai et al. 1995, Bolam et al 1996). Three dimensional structures and X-ray 

crystallography for β-mannanases from T. reesei and Thermobufida fusca have been 

determined and is shown in Fig. 12. The active site can be visualised as a cleft and 

has eight conserved amino acids for T. fusca (Arg50, His86, Asn127, Glu128, 

His196, Tyr198, Glu225, Trp254) (Hilge et al. 1998). With the exception of family 

26, the GH-A clan enzymes all have three conserved active site residues (one 

asparagine and two glutamates) (Bolam et al. 1996, Hilge et al. 1998, Hogg et al. 

2001). For T. fusca the Glu128 acts as catalytic proton donor, Glu225 as catalytic 

nucleophile and Asn127 is involved in stabilizing the active site environment. 

Asparagine (Asn127) is strictly conserved among glycanases and mutation in this 

region causes complete loss of activity (Hilge et al. 1998). 
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Fig. 12. The structure of the catalytic module of family 5 β-mannanase from (A) T. fusca 

(http://afmb.cnrs-mrs.fr/~CAZY/index.html). (B) T. reesei β-mannanase secondary structure. 

In the T. fusca mannanase, two short β-strands (sky blue) at the N-terminus form the bottom 

of the barrel. A three-stranded and a two-stranded β-sheet (both in blue) that lie close to the 

C-terminus is also shown (Sabini et al. 2000). 

 

 

2.3.3.4. BIOCHEMICAL PROPERTIES 

 

Several β-mannanases from families 5 and 26 are shown in Table 1. The optimal pH 

of β-mannanases are mostly neutral or acidic. The temperature optima of 

β-mannanases range between 40˚C – 70˚C. However, β-mannanases from 

thermophiles have a higher temperature optima (Gibbs et al. 1999, Politz et al. 2000, 

Parker et al. 2001, Sunna et al. 2000). Most β-mannanases have molecular weights of 

30 – 80kDa, but the modular enzymes can be up to 100kDa (Cann et al. 1999, Stoll et 

al. 1999, Sunna et al. 2000). Most β-mannanases have isoelectric points between 4 

and 8. In some organisms, multiple β-mannanases with different isoelectric points and 

molecular weights are produced (Akino et al. 1989, Marraccini et al. 2001, Millward-

Sadler et al. 1995, Stålbrand et al. 1993). These enzymes can be isoforms from the 

same gene as a result of differences in post-translational modifications (Akino et al. 

1989, Stålbrand et al. 1995) or can be produced from different genes (Millward-

Sadler et al. 1994, Millward-Sadler et al. 1996).  
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2.3.4. β-1,4-MANNOSIDASE 

 

2.3.4.1. OCCURRENCE 

 

β-Mannosidases (β–D-mannoside mannohydrolase, EC 3.2.1.25) are essential for the 

complete hydrolysis of β-mannans and hydrolyze manno-oligosaccharides to 

mannose (Moreira and Filho 2008). β-Mannosidases have been isolated and 

characterized from fungi (Ademark et al. 1998, Arai et al. 1995), bacteria (Bauer et 

al. 1996, Duffaud et al. 1997, Stoll et al. 2000), plants (McCleary et al. 1982, Mo and 

Bewley 2002) and animals (Charrier and Rouland 2001). β-Mannosidases from 

bacteria include sources such as eubacteria and archaebacteria (T. fusca) (Béki et al. 

2003). β-Mannosidases can have different functions depending on the organism of 

origin. Bacteria and fungi normally produce β-mannosidases that degrade mannan or 

heteromannan from plants. β-Mannosidases from plants release the storage 

polysaccharides in seed endosperm during germination (McCleary and Matheson 

1983, Mo and Bewley 2002). Higher eukaryotes such as mammals, produces 

β-mannosidases that hydrolyse terminal non-reducing mannopyranoside linkages of 

glycoproteins (Chen et al. 1995). Lack of a functional β-mannosidase in humans 

leads to deleterious storage of Man-β-1,4-GlcNAc and is known as β-mannosidosis, a 

congenital disorder (Alkhayat et al. 1998). 

 

 

2.3.4.2. HYDROLYSIS AND SUBSTRATE INTERACTION 

 

β-Mannosidases can be active on glucosides and mannosides (Bauer et al. 1996). 

β-Mannosidases that are capable of cleaving manno-oligosaccharides with a DP of 

over 4 have also been found (Akino et al. 1988, Arai et al. 1995). β-Mannosidase 

from Aspergillus niger was found to cleave up to a DP of 6 with the rate of hydrolysis 

shown to be dependent on the degree and pattern of the side-chain substitutions 

(Ademark et al. 1999). β-Mannosidases are essential for the complete hydrolyisis of 

plant heteromannans and convert manno-oligosaccharides to mannose (Moreira and 

Filho 2008). Fungal β-mannosidases (A. niger, A. awamori, T. reesei) were shown to 

hydrolyse shorter manno-oligosaccharides (Neustroev et al. 1991). β -Mannosidases 
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from eukaryotes (human, bovine, caprine) cleaved the N-linked oligosaccharides of 

glycoproteins (Alkhayat et al. 1998, Chen et al. 1995). Hydrolysis of Ivory nut 

mannan requires only β-mannanase and β-mannosidase whereas the hydrolysis of 

Locust bean gum (galactoglucomannan) requires α-galactosidases in addition to the 

β-mannanase and β-mannosidase activities (Stoll et al. 1999). 

 

A chromogenic substrate (p-nitophenyl β-D-mannopyranoside) is commonly used to 

determine β-mannosidase activity and only a few β-mannosidases have been shown 

to release mannose from the non-reducing end of mannan-based polymers (Araujo 

and Ward 1990, Hirata et al. 1998, Kulminskaya et al. 1999). These enzymes can be 

either secreted or intracellular. A. niger, T. reesei and A. awamori produce 

β-mannosidases that are secreted (Stoll et al. 2000). A. pullulans and C. fimi produces 

β-mannosidases when β-1,4-mannobiose is present in the medium, but production is 

repressed in the presence of mannose. The enzyme remains intracellular and a 

membrane-embedded mannobiose permease transports the dissacharide into the cells 

(Kremnický and Biely 1997, Stoll et al. 1999). It is speculated that the extracellular 

mannosidase producing organisms lack a mannobiose permease and therefore 

enzymes are secreted.  
 

 

2.3.4.3. FAMILY CLASSIFICATION AND STRUCTURE 

 

Most β-mannosidases are classified as glycosyl hydrolase family 2, with the 

exception of the enzyme produced by Pyrococcus furiosus which was placed in 

family 1 of the glycosyl hydrolases (Bauer et al. 1996, Henrissat 1991, Henrissat and 

Davies 1997). Families 1 and 2 (http://www.cazy.org) form part of the GH-A clan 

(Henrissat 1991, Henrissat and Davies 1997). Family 2 also includes β-glucuronidase 

and β-galactosidase enzymes. In some cases some enzymes have functional 

differences and they do not correspond to the family consensus pattern but they are 

none the less still confirmed as family 2 members. Glu-519 was shown as the 

conserved catalytic nucleophile in a β-mannosidase 2A from Cellumonas fimi (Stoll 

et al. 2000). This is the same residue that was identified within a β-galactosidase (E. 

coli β-galactosidase) and β-glucuronidase (Human β-glucuronidase) (Gebler et al. 

33 
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1992, Wong et al. 1998) as catalytic nucleophiles. Even though mannosidases form a 

sub-family, they still adopt the three-dimensional structures of family 2. 
 

 

2.3.4.4. BIOCHEMICAL PROPERTIES 
 

β-mannosidases possess molecular weights of between 50 – 130kDa and they can 

consist of several subunits (Bauer et al. 1996, Parker et al. 2001). The optimum 

temperature can range between 40˚C - 70˚C and pH optima from 4 - 5.5 (Table 2). 

Bacterial β-mannosidases have neutral pI but most isoelectric points are acidic. 

 

 
2.3.5. α-GALACTOSIDASE 
 
α-Galactosidases (α-D-galactoside galactohydrolase, EC 3.2.1.22) hydrolyse the 

α-1,6-linked non-reducing galactose residues from the main mannan chain (Ademark 

et al. 2001, McCutchen et al. 1996). Two types of distinct substrate specificities exist. 

Some enzymes cleave α-1,6-linked galactose units linked to the inner mannose 

residues of the galacto(gluco)mannan substrates whereas the other group shows 

preference for substrates where the galactose is linked to the non-reducing end of a 

substrate such as melibiose and raffinose (Halstead et al. 2000, Kaneko et al. 1991, 

Luonteri et al. 1998). α-Galactosidases have been placed in families 4, 27, 36 and 57 

of the glycoside hydrolases (Henrissat 1991). Bacterial α-galactosidases are mostly 

present in families 4 and 36, while eukaryotic enzymes are grouped into family 27. 

Most of the enzymes in families 4 and 27 can release galactose from polymeric 

substrates, whereas family 36 enzymes lack this ability (Ademark et al. 2001, 

Luonteri et al. 1998). Some fungal α-galactosidases are produced as a mixture of 

isoenzymes and can have different enzyme-substrate specificities. 
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Table 1. A summary of biochemical properties of β-1,4-mannanases from bacterial, fungal, animal and plant sources. 

Organism name Protein 

name 

Family MW 

(kDa) 

pH opt. Temp 

opt.(˚C) 

pI Reference 

Bacterial        
Bacertiodes ovatus Man 26 61/190 6.2-6.5 37 4.8-6.9 Gherardini and Salyers 1987 

Bacillus circulans K-1 Man1 5 62 6.9 64-65 5.4-6.2 Yosida et al. 1997; 1998 

Bacillus sp. 5H Man 26 37 - - - Khanongnuch et al. 1999 

Bacillus sp. strain AM-001 ManA 26 58 9 60 5.9 Akino et al. 1989 

Bacillus stearothermophilus ManF 5 73/162 5.5-7.5 70 - Talbot et al. 1990 

Bacillus subtilis NM-39  Man1 26 38 5 55 4.8 Mendoza et al.1994; 1995a 

Caldicellulosiruptor. saccharolyticus Rt8B.4 ManA 26  6-6.5 60-65  Gibbs et al. 1996 

Clostridiumcellulovorans ManA3 5 30.7 6 85 - Tamaru et al. 2000 

Cellulomonas fimi Man26A 26 50 5.5 42  Stoll et al. 1999 

Dictyoglomus thermophilum  manA 26 40 5.0 80  Gibbs et al. 1999 

Flavobacterium ManA 26 46 7 35  Zakaria et al. 1998 

Pseudomonas fluorescens ManA 26 46 7   Braithwaite et al. 1995 

Rhodothermus marinus ManA 26 60 5.4 85 - Politz et al. 2000 

Thermoanaerobacterium polysaccharolyticum ManA 5 116 5.8 65/75 - Cann et al. 1999 

Thermotoga maritima  ManB 5 76.9 7 90 - Parker et al. 2001 

Thermotoga neopolitana Man5 5 55 7.1 92 - McCutchen et al. 1996 

Streptomyces lividans Man5A 5 36 6.8 58 3.5 Arcand et al. 1993 

Thermobifida fusca KW3 ManA 5 38 Broad 80 - Hilge et al. 1998 
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Table 1. A summary of biochemical properties of β-1,4-mannanases from bacterial, fungal, animal and plant sources (continue). 

Organism name Protein 

name 

Family MW 

(kDa) 

pH opt. Temp 

opt.(˚C) 

pI Reference 

Fungal 

       

Agaricus bisporus D469 Cel2; cel4; 5 44.9 - - - Yagüe et al. 1997 

Aspergillus aculeatus AaMan1 5 45 5 60 4.5 Christgau et al. 1994 

Aspergillus niger  Man1 5 40 3.5 - 3.7 Ademark et al. 1998 
Orpinomyces sp. Strain PC-2 ManA 26 - - 50 - Ximenes et al. 2005 

Trichoderma reesei ManA 5 51-53 Several 70 3.6-6.5 Stålbrand et al. 1993/1995 

Sclerotium rolfsii Man 5 61 2.9 74 3.5 Gübitz et al. 1996b 

Animals  

       

Littorina brevicula Man - 42 6.5 50  Yamaura et al. 1996 

Mytilus edulis Man5A 5 39 5.2 50-55 7.8 Larsson et al. 2000 

Pomacea insularus Man - 44 5.5 50  Yamaura and Matsumoto 1993 

Plants 

       

Trifolium repens - 5 38-43 5.1-5.6 37 9.3 Villarroya et al. 1978 

Lycopersicon esculentum LeMan1,2 5 43 4.8 - - Bewley et al. 1997 
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       Table 2. A summary of biochemical properties of β-mannosidases from bacterial, fungal, animal and plant sources. 

Organism name Protein 

name 

Family MW 

(kDa) 

pH opt. Temp 

opt.(˚C) 

pI Reference 

Bacterial 

       

Bacillus sp. AM-100 Man 2 94 6 50 5.5 Akino et al. 1988 

Cellulomonas fimi ATCC 484 

Man2A 2 103 7 55 - Stoll et al. 1999 

Pyrococcus furiosus Mnd 1 59 7.4 105 6.9 Bauer et al. 1996 

Thermobufida fusca ManB 2 94 7.7 105 4.8 Béki et al. 2003 

Fungal 

       

Aspergillus aculeatus ManB 2 130 2 70 4 Arai et al. 1995 

Aspergillus niger MndA 2 135 2.5-5 70 5 Ademark et al. 2001 

Sclerotium rolfsii Mnd  57.5 2.5 55 4.5 Gübitz et al. 1996a 

Thermobifida fusca TM51 Man2 2 94 7.17 53°C 4.87 Béki et al. 2003 

Thermotoga neapolitana 506 Man2 2 95 7.7 87 5.6 Parker et al. 2001 

Trichoderma reesei Mnd - 105 3.5 - 4.8 Kulminskaya et al. 1999 

Animal 

       

Helix aspera Müller - - 77.8 3.3 37-42 - Charrier and Rouland 2001 

Homo sapiens ManBA 2 110 4 55 4.7 Alkhayat et al. 1998 

Pomacea canaliculata - - 90 5 45 4.3 Hirata et al. 1998 

Plant 

       

Cyamopsis tetragonolobus  - 2 59 5-6 52 9.4 McCleary 1988 

 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1708


2.3.5. β-GLUCOSIDASE 
 

β-Glucosidases (EC 3.2.1.21) are exo-acting glycosyl hydrolases that catalyse the hydrolysis 

of non-reducing terminal glucose residues (Lin et al. 1999). Most β-glucosidases are inhibited 

by glucose or cellobiose and are not able to hydrolyse long β-1,4-chains (Bauer et al. 1996, 

Lin et al. 1999). β-glucosidases are grouped into families 1 and 3 of glycosyl hydrolases 

(Henrissat and Bairoch 1993). In the degradation of hemicelluloses, β-glucosidases will 

release glucose from the non-reducing end of oligosaccharides that have already been cleaved 

by β-mannanases (Bauer et al. 1996, Lin et al. 1999). 

 
 
2.3.6. ACETYL-MANNAN ESTERASES 
 

Acetyl esterases are able to hydrolyse acetyl groups from various substrates (Tenkanen et al. 

1993). Esterases from fungal sources like A. niger and T. reesei hydrolyse acetic acid from 

polymeric acetyl galactoglucomannan (Tenkanen et al. 1993, Tenkanen et al. 1995). A. oryzae 

has been shown to produce an esterase that can liberate phenolic side groups from xylan 

(Tenakanen et al. 1993, Tenkanen et al. 1995). Acetyl esterases, in combination with 

β-mannanases, can dramatically increase the hydrolysis of mannan polysaccharides (Tenkanen 

et al. 1995). 

 

 

2.4. INDUSTRIAL APPLICATIONS OF MANNANASES 

 

The negative effect that chemical industrial processes have on the environment, has 

encouraged the use of biological processes such as enzymes applications (Dhawan and Kaur 

2007, Wong and Saddler 1993). Mannanases have various applications and can be used in the 

food and feed industry, in the pulp and paper industry, in the detergent industry as well as in 

textile and cellulosic fibre processing (Dhawan and Kuar 2007). 

 

Several mannanase cocktails are used for hydrolysing the mannan present in coffee. Mannan is 

the main polysaccharide of Arabica and Robusta coffee beans and galactomannan constitutes 

20 – 30% of its dry weight (Sachslehner et al. 2000). Mannan is mostly responsible for the 

viscosity in instant coffee and causes gel formation during spray- and freeze-drying. 

Consequently, immobilised β-mannanases are used to hydrolyse galactomannan in coffee 
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extract, and when viscosity is lowered, coffee extract concentration is more cost effective and 

can easily be carried out with evaporation processes. Mannanases that have been successfully 

used are those from S. rolfsii which were shown to hydrolyse coffee mannan and reduce 

viscosity.  

 

Poultry and livestock feed contain a large amount of galactomannan (Dhawan and Kuar 2007). 

Meal from soybean, palm kernel, copra, guar gum and sesame seeds are used as animal feed. 

They all have a high fibre content, low palatability, have few amino acids and anti-nutritional 

properties, and have a limited intestinal utilization (Chandrasekariah et al. 2001, Moss and 

Givens 1994). Mannans negatively affect animal performance having strong anti-nutritive 

effect on monogastric animals, swine and humans causing reduced nitrogen retention and fat 

absorption, having a negative effect on the growth of chickens (Jackson et al. 1999, Swapna et 

al. 1982). Incorporation of β-mannanases into chicken corn-soybean feed diets showed 

decreased intestinal viscosity and resulted in weight gain. 

 

Alkaline treatment of wood pulp poses an environmental pollution problem (Hongpattarakere 

2002). Lignin extraction from wood fibres is crucial for bleaching dissolving pulp. Removal of 

lignin involves pulp treatment under alkaline conditions that allow hemicelluloses to be 

separated from lignin (Hongpattarakere 2002). A biological solution involves enzymatic 

bleaching of softwood pulp using mannanases. Lignin is removed from pulp resulting in 

comparable yields to alkaline pre-treatment whilst reducing environmental pollution by 

avoiding the ultra-hot alkaline extraction step (Clarke et al. 2000, Cuevas et al. 1996). 

Chlorine-free bleaching and avoiding the use of hydrogen peroxide in paper bleaching can also 

be achieved by using mannanases for increased brightness (Tenkanen et al. 1997). 

 

Carbohydrases like amylases and cellulases are well known enzymes in the detergent industry 

(Dhawan and Kuar 2007). Alkaline mannanases are currently also used for stain removal 

(Wong and Saddler 1993). Thickeners and stabilisers in household products like shampoo, 

toothpaste, ice-cream and sauces contain gums (galactomannan, glucomannan and guar gum). 

The mannan in the gum absorb to cellulose fibres (in clothes) binding cotton textiles, making 

them difficult to remove in the wash. They also have a gluing effect, which causes a binding to 

particulate soils, which are then transferred in the washing cycle to clean fabric having a 

greying effect on fabrics (Dhawan and Kuar 2007). Mannanases cleave the β-1,4- linkages and 

prevent redeposition of soil. In a likewise manner, compositions can be formulated with 
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mannanases for sanitization products, dishwashing, surface cleaners and health care products 

(Bettiol et al. 2000). Other applications of mannanases include oil extraction of coconut meats 

(Chen and Diosady 2003), hydrolysis of guar gum in hydraulic fracturing of gas wells 

(McCutchen et al. 1996), textile dyeing operations (Dhawan and Kuar 2007) and clarification 

of juices (Dhawan and Kuar 2007). 

 

 

2.5. PRODUCTION OF HETEROLOGOUS ENZYMES IN YEASTS 

 

S. cerevisiae is one of the main hosts considered for bioethanol production and application in 

CBP, mainly due its long and successful history with ethanol production for the beer and wine 

industries (Lynd et al. 2002). The yeast, however, is unable to natively produce enzymes such 

as cellulases and hemicellulases. Yet, the successful production of these enzymes has been 

obtained through DNA manipulation techniques (La Grange et al. 2002, Van Rooyen et al. 

2000). Many factors need to be considered in the attempt to produce an organism that can 

efficiently degrade cellulose and hemicellulose through heterologous enzyme production 

(Lynd et al. 2002). 

 

 

2.6. SACCHAROMYCES CEREVISIAE AS HOST FOR HETEROLOGOUS GENE EXPRESSION 

 

Several yeast species are used in the industry to produce heterologous proteins. The yeast 

S. cerevisiae is an attractive host system and is regarded as being the most well characterized 

eukaryotic expression system (Buckholtz and Gleeson 1991, Mattanovich et al. 2004, 

Romanos et al. 1992). This is in part due to the availability of the complete genome sequence - 

genetic maps, physical maps, functional analysis and biological information - found on the 

Saccharomyces Genome Database (SGD) (www.yeastgenome.org). The complete genomic 

sequence was made public in 1996 (Dujon 1996, Grivell 1993) and the MIPS Yeast Genome 

Project (http://mips.gsf.de/proj/yeast/) release information regarding yeast genomic sequences 

as well as protein information regularly. Physiologically the eukaryotic subcellular 

organization allows post-translational folding and modification of large proteins from various 

origins and proteins produced can be secreted into the extracellular environment (Mattanovich 

et al. 2004). Further advantages like robustness, the fact that the yeast is non-pyrogenic and 

has GRAS (Generally Regarded As Safe) status, makes it a preferred choice in various 
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industrial applications as well as in research (Cregg et al. 2000). Several factors can however 

influence the productivity and affectivity of the expression system. Codon usage of the 

expressed gene can cause potential bottlenecks. Furthermore translation signals, translocation 

determined by secretion of signal peptide and processing and folding in the ER and golgi are 

some of the factors that can influence successful protein production (Agaphonov et al. 2003, 

Kowalski et al. 1998, Mattonovich et al. 2004). 

 

 

2.6.1. CODON OPTIMISATION  

 

The genetic code is degenerate implying that various codons code for the same amino acid 

(synonymous codons) (Grantham et al. 1980, Sharp et al. 1993). This implies that various 

nucleic acid sequences can be translated by ribosomes with differently charged tRNAs to 

encode the same protein. Some codons occur more frequently in gene sequences of certain 

species than in others, indicating that organisms have a preferred set of codons shaping its 

genome (Grantham et al. 1980, Sharp et al. 1993). Genes show a statistically significant bias 

towards choice of codons used, to code for a particular amino acid (Carbone et al. 2003). This 

may differ from one gene to another, but within the same genome a related nucleotide-triplet 

preference exists. An algorithm was designed to predict codon adaptation index (CAI) 

detecting the most dominant codon bias in a genome. This is based on the “housekeeping 

genes”, i.e. the genes that are highly expressed. The CAI of a given gene correlates with gene 

expression in a recombinant host and the codon usage frequencies in mRNA translation 

(Friberg et al. 2004). The abundance of optimal codons increase over the length of the gene 

preventing the occurrence of nonsense errors (Salim and Cavalcanti 2008). As the cost of 

translating a gene becomes greater as the length of the gene increases, a greater pressure exists 

for the selection of most accurate codons to avoid unnecessary errors (Salim and Cavalcanti 

2008). 

 

Several factors could have an affect on the codon bias (Salim and Cavalcanti 2008). Codon 

bias seems to be related to selection for optimized translation, expression, location within 

genes, rate of evolution, secondary structure, nucleotide composition protein length, the 

environment and evolution of translation. Translation is an energetically expensive process 

and the efficiency therefore is under selective pressure in exponentially growing cells 

(Anderson and Kurland 1991). The rate at which polypeptide chain elongation takes place is 
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limited by the diffusion of the cognate ternary complex to the A-site of the ribosome. Thus the 

most abundant amino acid-tRNA for given amino acid is predominantly used by the codons of 

highly expressed genes (Dong et al. 1996). The diversity of isoacceptor tRNAs have an 

influence on an organisms metabolic load and therefore a reduction in diversity could be 

beneficial for fast growing organisms (Anderson and Kurland 1990). tRNA pools that are 

more numerous but less diverse have evolved due to the codon preferences of highly 

expressed genes (Rocha 2004). Codons mostly favoured are the ones that require less energy 

to bind, or binds more tightly to mRNA. Codons can also have different translational rates and 

some are less prone to misreading or drop-off events (Rocha 2004, Rodnina and Wintermeyer 

2001). Due to adjacent codon-pair bias it was proposed that translational machinery is 

sensitive to the nature of the codon-pair present in the ribosome A and P decoding sites 

(Moura et al. 2005). Like codon usage, codon context may also be species specific. This bias 

seems more linked to decoding accuracy than to translational speed (Moura et al. 2005). 

  

When proteins are produced heterologously, the difference in codon bias of the host and the 

donor species might be the cause of low levels of expression (Wu et al. 2006). Low protein 

expression levels are often due to the presence of rare codons in the target gene that appear in 

clusters or at the N-terminal part of the gene (Gustafsson et al. 2004). Altering the gene 

sequence in such a way that it more closely reflects the codon usage of the host, without 

affecting the amino acid sequence of the protein, yielded improvement in expression levels. 

Codons can be altered with site-directed mutagenesis or by synthetically constructing an entire 

gene (Gustafson 2004, Wu et al. 2006).  

 

Synthetic codon optimisation is a relatively new field with a lot of uncertainties as to which 

algorithm and reference template of codon usage to use (Wu et al. 2006). Dramatic increases 

in protein expression levels were observed upon optimisation and yet some studies reported 

less protein production than with the native DNA sequence (Wu et al. 2004, Wu et al. 2006). 

Many reasons may exist for this failure and codon optimisation is far from being fully 

understood. When a sequence is altered though codon optimisation, it can result in 

translational errors because the tRNA pool is imbalanced. Repetitive elements and mRNA 

secondary structures might occur that inhibit the ribosomal efficiency. Wu et al. (2006) 

concluded that the exclusive use of optimal codons seem to be unnecessary, since too many 

optimal codons might have an adverse effect on protein expression. Furthermore, non-optimal 

codons seem to be important in the correct folding of the emerging translated polypeptide and 
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efficient translation does not necessarily guarantee functional protein (Zalucki and Jennings 

2007). 

 

 

2.6.2. HETEROLOGOUS PROTEIN SECRETION 

 

Heterologous proteins undergo various processes in various membrane-enclosed 

compartments before being secreted into the periplasmic space or the surrounding medium 

(Fig. 13) (Walker 1999). In the endoplasmic reticulum (ER)-polysomes, proteins are 

synthesised and folded in their correct three dimensional conformations. Proteins are 

discharged into the ER lumen and a protein destined to be secreted  undergoes signal peptide 

cleavage and primary glycosylation (Herscovics and Orlean 1993, Lyman and Schekman 

1996). The correctly folded polypeptide is then transported to the Golgi apparatus where 

post-translational modification such as proteolytic processing and further maturation of the 

glycan chain, takes place (Lewis and Pelham 1996). In the trans-Golgi network, the protein is 

packed in secretory vesicles that fuse with the plasma membrane. The processed protein is 

released through the bud region through an actin filaments-directed process (Govindan et al. 

1995, Griffiths and Simons 1986, Lupashin et al. 1992). Heterologous expression via the yeast 

secretory pathway has advantages in that downstream purification and isolation is simplified, 

and secretion avoids toxicity of intracellular accumulation of proteins (Walker 1999). 

 

Proteins exported via the general secretory pathway all have a signal peptide at the N-terminus 

(Walker 1999). The relative hydrophobicity of the signal peptide determines whether the 

export of the protein happens post- or co-translationally (Huber et al. 2005). Co-translational 

export involves a signal-recognition particle (SRP). The SRP binds the nascent peptide to 

facilitate translocation to the inner membrane of the ER and the export apparatus. During post-

translational export, molecular chaperones SecB and DnaK bind the pre-protein to maintain an 

export competent state, which is loosened or unfolded (Kumamoto et al. 1985, Phillips and 

Silhavy 1990). 
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Fig. 13. The protein secretion pathway in S. cerevisiae. The newly synthesised protein occurring in the 

endoplasmic reticulum (ER) becomes packaged into a vesicle and is transported to the golgi. The 

protein undergo several modifications and becomes enclosed in the endosomes. The vesicles 

containing the protein are destined for the plasma membrane and will be transported to the cell surface 

(http://www.fredonia.edu/bio241/images/6.19_ER_and_Golgi.jpg). 

 

 

Heterologous protein secretion by S. cerevisiae can be directed by leader (signal) peptide 

sequences (Walker 1999). Such signal peptides occur in naturally secreted proteins like mating 

factors, killer toxins or invertase enzymes and direct post-translational transport of proteins 

(Romanos et al. 1992, Walker 1999). Signal peptides are hydrophobic amino-terminal 

peptides of 19-30 amino acids long and consist of a hydrophobic core and consensus sequence. 

The hydrophobic central region (6-15 aa) is involved in the attachment of the ribosome to the 

ER membrane and movement of the nascent protein into the ER cisterna (Romanos et al. 

1992). The consensus sequence (commonly Lys-Arg) becomes cleaved by ER cisternal 

proteases (signal peptidase) from the mature protein during which export across the ER is 

accomplished. Hydrophobicity and length can determine the amount of protein secreted as 
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well as the translocation mode (Romanos et al. 1992). Heterologous signal peptides or 

homologous signal peptides can be used to secrete heterologous proteins in S. cerevisiae since 

there is not a high specificity for signal sequences (Hadfield et al. 1993). Therefore, most 

fungal proteins can be secreted successfully using their native signal peptides (Han et al. 1999, 

Lang and Looman 1995). 

Native S. cerevisiae signal peptides include that of the α-mating pheromone (MFα1), invertase 

(SUC2), acid phosphatase (PHO5) and killer toxin (Walker 1999). For the removal of the 

invertase signal, only signal peptidase seems necessary. However, MFα1 requires KEX2 and 

STE13 exopeptidases (Walker 1999). Signal peptidase removes the pre-peptide that directed 

secretion into the ER. In the golgi, KEX2 endopeptidase cleaves the pro-peptide on the COOH 

at Lys-Arg. This leaves two Glu-Ala dipeptides attached to the N-terminus of the mature 

protein (Kjeldsen 2000, Romanos et al. 1992, Walker 1999). STE13 exopeptide digestion 

removes the initial Glu-Ala-Glu-Ala or Val-Ala segment from the N-terminus generating 

mature peptides (Kjeldsen 2000, Romanos et al. 1992). Exopeptidases are specific for the 

sequences on N-termini and using α-factor secretion can create secreted protein with authentic 

N-termini. 

  

 

2.6.3. POST-TRANSLATIONAL MODIFICATIONS AND GLYCOSYLATION 

 

Protein secretion in eukaryotic cells entails the movement of newly produced proteins through 

the endoplasmic reticulum (ER) as well as the golgi apparatus (Walker 1999). The first step 

involves the removal of the initiator methionine by a methionyl aminopeptidase (Romanos et 

al. 1992). Thereafter, the proteins will undergo processes like glycosylation, formation of 

disulphide bonds and eventually fold into an active state (Romanos et al. 1992, Walker 1999). 

These procedures are of vital importance to cellular functions and the proteins stability, 

localisation and secretion. Proteins can be O-glycosylated and, or N-glycosylated (Goto 2007, 

Walker 1999). 

 

N-glycosylation starts in the endoplasmic reticulum but can be continued in the golgi 

apparatus (Goto 2007, Walker 1999). N-glycosylation occurs by means of a membrane lipid 

carrier, which is a hydrophobic polyisoprenoid lipid on the rough ER. The first step is the 

synthesis of the lipid-linked oligosaccharide precursor which is GlnNAc2Man9Glc3. 
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N-acetylglucosamine (GlcNAc) is transferred from UDP-GlcNAc onto dolichol phosphate, on 

the cytoplasmic face of the endoplasmic reticulum (ER). This is followed by the addition of 

GlcNAc and mannose (Man), resulting in Man5GlcNAc2-p-dolichol. A flipase enzyme 

translocates the structure to the luminal face of the ER membrane. Inside the ER it becomes 

Glc3Man9GlcNAc2-p-dolichol and from here it is transferred to an asparagine residue in the 

sequence Asn-Xaa-Ser/Thr (Xaa can be any amino acid except proline) as the polypeptide is 

translocated into the ER lumen (Herscovics and Orlean 1993). The process is catalyzed by 

oligosaccharide protein transferase. The three glucose and one mannose residues are then 

removed to produce Man8GlcNAc2. This is a three-step process catalyzed by three different 

enzymes, initiating transport into the golgi for further processing. In yeast, the structure then 

sometimes becomes extended with more mannose sugars to produce a hyper-mannosylated 

glycan (Goto 2007). 

 

O-glycosylation is a golgi-associated process in which sugar residues are linked onto the 

polypeptide in a step-wise manner (Fig. 14) (Goto 2007). O-glycans are the sugars attached to 

the β-hydroxyl group of serine or threonine. An enzyme N-acetylgalactosaminyltransferase 

catalyzes the transfer of N-acetylgalactosamine from UDP-GalNac to the hydroxylgroup of the 

Ser or Thr residue. UDP-glucose is utilized to form UDP-GalNAc in the cytosol and in the 

trans-golgi vesicles the carbohydrate chain of the protein is extended. Glycosyltransferases 

catalyze the addition of galactose to GalNac. Finally two N-acetylneuramic acid-(sialic acid) 

residues are added in the trans-golgi reticulum as to complete the O-glycosylation process. In 

S. cerevisiae, the sugars attached are small manno-oligosaccharides. O-glycans are linear 

chains of up to five mannose residues with the structure Manαl-3Manαl-3Manαl-2Manα1-

2Man1-O (Herscovics 1999, Orlean et al. 1997). In the ER, the first reaction is catalyzed by a 

family of seven integral membrane proteins with multiple transmembrane domains. The 

protein O-mannosyltransferases (ScPmtl-7p) catalyze the covalent attachment of mannosyl 

residues to hydroxy amino acids with dolichyl phosphate mannose (Dol-P-Man) acting as 

mannosyl donor. From here the protein moves to the golgi apparatus and the glycosyl chain is 

extended by α-1,2- mannosyltransferases (MNT). GDP-Man acts as mannosyl donor and 

mannosyltransferase catalyzes the addition of sugar to seryl-/threonyl-residues. Six 

mannosyltransferase genes have been identified namely PMT1-6. PMT1 mutants showed a 

reduction of O-mannosylation in vivo by 50% (Goto 2007, Herscovics and Orlean 1993). 
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Protein glycosylation can be problematic for heterologous protein production as non-identical 

glycoproteins result when heterologous secretory proteins are glycosylated (Wang et al. 2001). 

It affects the holding, stability, activity and immunogenicity of proteins (Jenkins and Curling 

1994). Even though S. cerevisiae has been a successful heterologous protein producer, 

hyperglycosylation can be a major draw back, especially in the pharmaceutical industry (Jose 

and Demain 2003). The presence of a α-1,3-linked mannose residue can cause an antigenic 

response in patients and hyperglycosylation may also have an effect on biochemical 

properties. In some instances hyperglycosylation does not seem to have an effect. A 

recombinant Man5A in Setati et al. (2001) showed a molecular mass of 10 kDa higher than the 

calculated molecular mass and 5 kDa higher than the native enzyme. In spite of this, the 

biochemical properties seemed similar (Setati et al. 2001). A recent study reported an 

oversecreting mutant of S. cerevisiae that doesn’t glycosylate proteins (Wang et al. 2001). The 

oversecretion might be due to an unusual UPR response in the ER. Genetic examination 

proposed the mutation accountable was in some way dominant and the oversecretion and low-

glycosylation phenotypes were the result of a single mutation on one chromosome (Wang et 

al. 2001). 

 

 

2.7. ALTERNATIVE HOSTS FOR HETEROLOGOUS EXPRESSION 

 

Although S. cerevisiae has many advantages regarding the expression of recombinant proteins, 

limitations associated with poor expression capacity and low product yield is still unresolved 

and consequently other hosts are being considered. Alternative foreign protein expression 

hosts include yeasts like Hansenula polymorpha, Pichia pastoris, Kluyveromyces lactis, 

Pichia stipitis and Schizosaccharomyces pombe (Mayer et al. 1999, Romanos et al. 1992). 

 

Pichia pastoris and H. polymorpha are facultative methylotrophs capable of obtaining very 

high cell densities. Expression is based on the AOX1 gene in P. pastoris and the MOX1 and 

FMD genes in H. polymorpha, respectively coding for the alcohol oxidase, methanol oxidase 

and formate dehydrogenase enzymes (Gellissen and Hollenberg 2001, Mayer et al. 1999, 

Sreekrishna et al 1997). Stringent regulation of these promoters allows separation of growth 

and production phases resulting in biomass of up to 133 g/l (Mayer et al. 1999). 
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Fig. 14. The pathway of N-linked protein glycosylation in humans (left) and the model organism 

S. cerevisiae (right). N-linked protein glycosylation starts on the cytoplasmic side of the endoplasmic 

reticulum (ER) membrane with the assembly of an oligosaccharide on a lipid-carrier that is catalyzed 

by a series of specific glycosyltransferases. The intermediate is flipped into the ER lumen. Hexose 

residues are added by a distinct set of glycosyltransferases. The oligosaccharide is finally transferred 

from the lipid to selected asparagine residues of secretory proteins by oligosaccharyltransferase (OST) 

(Wildt and Gerngross 2005). 

 

The low quantity of native proteins produced by these secretory systems has become well 

known (Gellissen and Hollenberg 2001, Mayer et al. 1999, Sreekrishna et al 1997). However, 

drawbacks include operational complications when methanol is used due to its flammable 

nature. Glycerol is required for promoter activation, but is an expensive source of carbon and 

adds substantially to the production cost of the enzymes (Mayer et al. 1999). 

 

Kluyveromyces. lactis and P. stipitis are also being exploited for their unique substrate 

utilization pathways. P. stipitis can grow on xylose and K. lactis is able to grow on lactose as 

sole carbon source (Dujon et al. 2004). Like S. cerevisiae, K. lactis is easily genetically 

manipulated, has commercially available vectors, has a fully sequenced genome and has 

excellent protein synthesizing capabilities (Dujon et al. 2004). The  promoters, selection 
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marker genes and secretion signals can be interchanged between S. cerevisiae and K. lactis 

(van Ooyen et al. 2006). As with S. cerevisiae commonly used auxotrophic markers (ura3, 

leu2, trp1) have been used in K. lactis and autoselection systems were developed to enhance 

plasmid stability (Hsieh and Da Silva 1998). Other markers that have been used include the 

dominant bacterial marker which allow for resistance to hygromycin B, as well as dominant 

nitrogen source selection (Selten et al. 1997). Acetamide selection allows the recycling of the 

amdS marker gene using counterselection with fluoroacetimide, a process similar to the 

generation on ura3– mutants using FOA plates (van Oooyen et al. 2006). Unlike 

methylotrophic yeasts K. lactis does not require explosion-proof fermentation equipment and 

the organism has GRAS status (van Ooyen et al. 2006). Additional advantages of K. lactis 

include little or no catabolite repression, reduced hyperglycosylation and an efficient secretion 

system (Romanos et al. 1992, van Ooyen et al. 2006). K. lactis has been used in the 

therapeutic protein production industry with much success with the only drawback being non-

human glycosylation patterns (van Ooyen et al. 2006). K. lactis even though it is able to 

ferment, is unable to grow in fully anaerobic conditions (Kiers et al. 1998). This limits its 

efficiency to produce ethanol from components such as whey, containing lactose as the main 

sugar component (Snoek and Steensma 2006). 

 

Even though S. cerevisiae has low secretion capacity, the abundance of vector systems and 

wide range of transcriptional promoters can be exploited to improve gene expression and is 

still a preferred choice for heterologous protein production and the main organism considered 

in the CBP process (Lynd et al. 2002). 

 

 

2.8. THIS STUDY 

 

The yeast S. cerevisiae has a long and successful history in the baking industry as well as the 

wine and beer industries due to its fermentation ability. The ease of cultivation, genetic 

manipulation and product purification have contributed to the development of S. cerevisiae as 

the model organism for the heterologous production of recombinant proteins. Yet, limitations 

such as low product yield and hyperglycosylation, associated with expression in S. cerevisiae, 

is yet to be addressed. These limitations have emphasised the need for the evaluation of 

alternative hosts for foreign gene expression.  
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Mannanases have various industrial applications and therefore need to be heterologously 

produced to meet the demand. Therefore, this study focused on the expression of the man1 

gene (native to A. aculeatus) and the characterisation of the recombinant Man1 enzymes 

produced by S. cerevisiae and K. lactis. The production of the Man1 acted as the basis for 

comparing the two yeast expression systems. The effect of continuous sub-culturing on the 

K. lactis transformants has also been evaluated. The benefit of using codon optimised genes 

was investigated through the cloning and expression of the synthetically designed 

β-mannosidase (mndA) of A. niger. The effect of co-expression of genes was evaluated in 

S. cerevisiae using the man1 and mndA genes.  

 

The increasing pressure placed on the economy due to the escalating energy demand has 

encouraged the interest in the production of alternative forms of energy. The ideal would be to 

provide bioethanol cost effectively, while using primarily agricultural residues and municipal 

lignocellulosic waste. In order to reach this objective, the ideal host would need to be able to 

degrade and utilise cellulose, xylan and mannan as carbon sources. This study paves the way 

towards the construction of a mannan-degrading yeast strain. 
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3.1. ABSTRACT 

The mannanase gene, man1, of Aspergillus aculeatus was successfully cloned and expressed 

in Saccharomyces cerevisiae and Kluyveromyces lactis. Man1 displayed a temperature 

optimum of 70˚C in both species and a pH optimum of 5 and 6 in K. lactis and S. cerevisiae, 

respectively. Activity levels of 160 - 180 nkat.ml-1 were obtained in both strains after 86 

hours of cultivation. The recombinant K. lactis obtained a cell density of 5-fold more than the 

S. cerevisiae strain. The K. lactis secreted the Man1 as a 55kDa protein compared to the 

58kDa protein produced by S. cerevisiae transformantss. K. lactis transformants were stable 

during consecutive sub-cultures for a period of 2 weeks. Disruption of the ku80 gene did not 

have a positive impact on the stability of the K. lactis transformants. 
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3.2. INTRODUCTION 

 

Plant biomass contains a variety of compounds of which cellulose and hemicellulose are the 

most prominent (Whitney et al. 1998, Schwarz 2001). Hemicelluloses are low molecular 

weight heterogenous chemical compounds with a wide variation in both structure and 

composition. Commonly occurring hemicellulases include the 1,3- and 1,4-β-galactans, 

mannans and xylans (Aristidou and Penttilä 2000). Xylan and mannan are the main forms of 

hemicelluloses present in plant cell walls and can constitute up to 35% and 25% of the dry 

weight of plants, respectively (Puls and Schuseil 1993). Mannan can occur as either a homo- 

or a heteropolysaccharide in the form of glucomannan, galactomannan and 

galactoglucomannan (Jeffries 1994). Glucomannan consists of β-1,4-linked D-mannose and 

D-glucose molecules, whereas galactomannan consists of a mannose backbone with galactose 

substituents on C-6. Galactoglucomannan has the same backbone chain as glucomannan, but 

also contain α-1,6-linked galactose residues and may be acetylated at C-2 or C-3. In nature, 

galactoglucomannans predominantly occur in softwoods, whereas galactomannans are mostly 

found in seeds of leguminous plants and carob beans (Setati et al. 2001). The hydrolysis of 

these substrates is accomplished through the action of endo-β-1,4-mannanase (EC 3.2.1.80), 

which randomly cleaves the β-mannosidic linkages within the main chain together with the 

exo-enzymes β-mannosidase (EC 3.2.1.25) and α-galactosidase (EC 3.2.1.22) (Ademark et 

al. 1998, Aristidou and Penttilä 2000).  

 Mannanases are widely distributed in nature and have been isolated, characterized and 

sequenced from various sources (Bewley et al. 1997, Braithwaite et al. 1995, Christgau et al. 

1994, Yamaura et al. 1996). Endo-β-1,4-mannanase (mannanase EC 3.2.1.78) from fungal 

sources (Aspergillus and Trichoderma) are classified into glycosyl hydrolase family GH-5 

(Christgau et al. 1994, Eriksen et al. 1998, Stålbrand et al. 1995) and genes sequenced from 

the anaerobic fungus (Piromyces) were classified as GH-6 (Millward-Sadler et al. 1996). 

Some genes encode multidomain proteins implying that in addition to the mannanase 

catalytic domain, it contain either one or two discrete noncatalytic cellulose-binding domains 

(CBDs) or both a CBD and an endoglucanase (Millward-Sadler et al. 1996, Stålbrand et al. 

1995). The three dimensional structure of β-mannanases from Trichoderma reesei have been 

resolved (Sabini et al. 2000a, b). Enzymes display a prominent cleft in which the active site is 

situated. This architecture allows cleavage of substrate in the middle of the 

galacto(gluco)mannan chain, releasing oligosaccharides of various lengths that together with 
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other hemicellulytic enzymes (β-mannosidases and α-galactosidases) can be converted to 

monosaccharides (Harjunpää. et al. 1999, Setati et al. 2001). 

β-mannanases have several potential applications in industrial processes. In the 

manufacturing of instant coffee, the reduction of viscosity in coffee extracts are obtained by 

application of β-mannanases (Sachslehner et al. 2000). These enzymes can also be used for 

biobleaching of softwood kraft pulps to enhance the extractability of lignin (Montiel et al. 

1999, Suurinaki et al. 1997). Legume seeds in poultry feeds contain high concentrations of 

galactomannan that results in reduced nitrogen retention, fat absorption and amino acid 

uptake in chickens. Application of β-mannanases to animal feed has shown an improvement 

of chicken growth and development (Jackson et al. 1999, Swapna et al. 1982). Recombinant 

endo-β-mannanases are important for these and other biotechnological applications. Efficient 

application often requires that various enzymes can be utilized in different ratios in enzyme 

cocktails (Dhawan and Kaur 2007).  

Saccharomyces cerevisiae and Kluyveromyces lactis are well known hosts for 

heterologous protein production and have been used extensively for the production of various 

proteins (La Grange et al. 2001, van Ooyen et al. 2006, van Rooyen et al. 2002). Both yeasts 

have various advantages including efficient vector expression systems (Buckholtz and 

Gleeson 1991, Romanos et al. 1992, Mattanovich et al. 2004), easy genetic manipulation, the 

ability to use both integrative and episomal expression vectors and the availability of a fully 

sequenced genome (Dujon 1996). Strains of S. cerevisiae and K. lactis can be cultivated in 

standard yeast media and does not require the explosion-proof fermentation equipment 

necessary for large-scale growth of methylotrophic yeasts such as Pichia pastoris (Mayer et 

al. 1999). Strains of S. cerevisiae and K. lactis have GRAS (Generally Regarded As Safe) 

status and FDA approval, permitting their use in various food and feed applications (Cregg et 

al. 2000, Dujon 1996). In contrast to S. cerevisiae, K. lactis displays Crabtree-negative 

growth, reduced hyperglycosylation, reduced carbon catabolite repression and a wider 

substrate range (Hsieh and Da Silva 1998, Romanos et al. 1992, van Ooyen et al. 2006). 

Even though methylotrophic yeast strains have become important host organisms for foreign 

gene expression, S. cerevisiae and K. lactis are still preferred hosts for heterologous protein 

production (Romanos et al. 1992, van Ooyen et al. 2006).  

Targeted gene integration is supported by the cellular machinery that accomplishes 

recombination and DNA repair (Daley et al. 2005). Homologous recombination (HR) 

involves retrieving genetic information from homologous sequences and results in targeted 
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integration of exogenous DNA at homologous sites. S. cerevisiae mainly uses the HR system 

while K. lactis can perform homologous recombination as well as non-homologous end 

joining (Daley et al. 2005, Morlino et al. 1999). Non-homologous end joining enables the 

host to integrate foreign DNA at random requiring functional KU70 and KU80 proteins 

(Kooistra et al. 2004). In this study, created a K. lactis ku80 mutant to investigate its effect on 

stability of a plasmid lacking Kluyveromyces sequences (except for the origin of replication ). 

The expression of endo-β-mannanase from A. aculeatus was characterized in S. cerevisiae 

and in K. lactis strains. The secretion efficiency of both strains was evaluated and the 

production levels of recombinant Man1 protein were compared.  

  

3.3. MATERIALS AND METHODS 

 

3.3.1. STRAINS AND PLASMIDS 

The relevant genotypes of fungal, bacterial and yeast strains, as well as plasmids used and 

constructed in this study, are listed in Table 1.  
 

3.3.2. MEDIA AND CULTIVATION 

All chemicals used were of analytical grade. Escherichia coli DH 5α (supE44 ΔlacU169 

(∅80lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1) was used as the host strain for the 

recombinant DNA manipulations and plasmid propagation. Bacterial cultivation (37°C) took 

place in Terrific Broth (12 g.l-1 tryptone, 24 g.l-1 yeast extract, 4 ml.l-1 glycerol, 100 ml.l-1 of 

phosphate buffer) containing 100 μg.ml-1 ampicillin (Sambrook et al. 1989). Strains of 

K. lactis and S. cerevisiae strains were aerobically cultivated on a rotary shaker (160 rpm) at 

26°C in 125 ml Erlenmeyer flasks containing 20 ml of double strength synthetic complete 

(SC) medium (3.4 g.l-1 yeast nitrogen base without amino acids and ammonium sulphate 

(Difco laboratories), 10 g.l-1 (NH4)2SO4, 40 g.l-1 glucose/lactose and supplemented with 

appropriate amino acids) buffered at pH 6 with 20 mM citrate phosphate buffer. Yeast strains 

were maintained on agar (20 g.l-1) plates of the same composition. For enzymatic assays, 

stationary phase pre-cultures were used to inoculate the fresh medium to approximately 

1 x 105 cells.ml-1. Samples were taken periodically to determine the optical density at OD600. 

FOA plates were prepared according to Ausubel et al. (1998). 
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Table 1. The genotypes of relevant strains and plasmids used in this study. 

Strains Genotype Reference 

S. cerevisiae Y294 α leu2-3,112 ura3-52 his3 trp1-289 ATCC 201160 

S. cerevisiae Y294 

[YEpENO-BBH] 

URA3 ENO1P-ENO1T This study 

S. cerevisiae Y294 

[YEpENO-BBH-Man1] 

URA3 ENO1P-Man1-ENO1T This study 

K. lactis GG799 Wild type New England Biolab 

K. lactis GG799-ura ura3 This study 

K. lactis GG799 

[YEpENO-BBH] 

URA3 ENO1P-ENO1T This study 

K. lactis GG799 [YEpENO-BBH-man1] URA3 ENO1P-Man1-ENO1T This study 

K. lactis SHR7 ku80-gfp-URA3-gfp-ku80 This study 

K. lactis SHR8 ku80-gfp-ku80 This study 

K. lactis SHR8 [YEpENO-BBH.Kl] URA3 ku80-gfp-ku80 

ENO1P-ENO1T 

This study 

K. lactis SHR8 

[YEpENO-BBH.Kl-man1] 

URA3 ku80-gfp-ku80 

ENO1P-Man1-ENO1T 

This study 

Plasmids   

   

pTZ57R Bla Inqaba Biotech, South Africa 

Yep352 bla URA3 ATCC 

pGFP bla gfp Clontech Laboratories, USA 

yENO1 bla URA3 ENO1P-ENO1T Den Haan et al. 2007 

YEpENO-BBH bla URA3 ENO1P-ENO1T This study 

YEpENO-BBH.Kl bla URA3 ENO1P-ENO1T This study 

YEpENO-BBH-man bla URA3 ENO1P-man1-ENO1T This study 

YEpENO-BBH.Kl-man bla URA3 ENO1P-man1-ENO1T This study 

pTZ-URA3-blaster bla gfp-URA3-gfp This study 

pTZ-KU80 bla KU80 This study 

pTZ-ku80-URA3-blaster bla ku80-gfp-URA3-gfp-ku80 This study 

pMes2 bla URA3 PGK1P-man1-PGK1T Setati et al. 2001 

 

3.3.3. CONSTRUCTION OF PLASMIDS 

Standard protocols were followed for DNA manipulations (Sambrook et al. 1989). The 

enzymes used for restriction digests and ligations were purchased from Inqaba Biotec, South 
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Africa and used as recommended by the supplier. Digested DNA was eluted from agarose 

gels using the Zymoclean TM Gel Recovery Kit (Zymo Research Corporation, USA). PCR 

reactions were carried out with a Perkin Elmer GeneAmp® PCR System 2400 using Taq 

DNA polymerase (Inqaba Biotec, South Africa) according to the suppliers specifications. 

Table 2 contains a list of all the primers (Whitehead Scientific, South Africa) used in the 

study is provided in Table 2. 

 

Table 2. DNA sequence of the primers used in this study. Restriction sites are underlined. 

Primer name Sequence 

ENOnew left   5'-GATCGGATCCCAATTAATGTGAGTTACCTCA-3' 

ENOnew right 5'-GTACAAGCTTAGATCTCCTATGCGGTGTGAAATA-3' 

KlKU-left 5'-TATTAGCTCTAAGACCCGAT-3'  

KlKU-right 5'-ACGATGAACTTCTGATGAAC-3'  

GFP-left 5'-GATCGGATCCGAAGAACTTTTCACTGGAGT-3' 

GFP-right 5'-GTACATCGATAGATCTGGGTATCACCTTCAAACTT-3' 

Ura Bam-left 5'-GATCGGATCCGACGTCTAAGAAACCATTAT-3' 

Ura Bgl-right 5'-GTACAGATCTGATAAGCTGTCAAACATGAG-3' 

 

3.3.4. YEAST TRANSFORMATIONS 

Yeast strain S. cerevisiae was transformed with recombinant plasmids according to the 

lithium acetate/DMSO method described by Hill et al. (1991). Transformation of K. lactis 

was performed through electrotransformation method described by Cho et al. (1999). 

Transformants were selected for growth on SC-URA plates. 

  

3.3.5. PLATE ENZYME ASSAYS 

The recombinant yeast strains were screened for β-mannanase activity. K. lactis 

SHR8[YEpENO-BBH.Kl], K. lactis SHR8[YEpENO-BBH.Kl-man1] S. cerevisiae 

Y294[YEpENO-BBH] and S. cerevisiae Y294[YEpENO-BBH-man1] were grown at 30˚C on 

selective synthetic complete (SC) agar plates supplemented with amino acid pool lacking 

uracil (SC-URA) and containing 0.1% Locust bean gum (Sigma, Sweden). After 2 days the 

cultures were washed from the plates and plates stained with a 0.1% Congo Red solution for 

30 min. A 1.2 M NaCl solution was used to destain the plates and visualise hydrolysis zones 
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(Stålbrand et al. 1993). Plates were treated with 1 M HCl after Congo Red staining, resulting 

in a colour change. 

 

3.3.6. CHARACTERIZATION OF MAN1 

The activity of the Man1 enzyme was determined using 0.25% galactoglucomannan (Locust 

bean gum) (Sigma, Sweden). The amount of reducing sugars released during the hydrolysis 

of mannan, was determined by the dinitrosalicylic acid method using mannose as the standard 

(Miller et al. 1960). One unit of enzyme was defined as the activity producing 1 μmol 

reducing sugar per minute in mannose equivalents under the optimal assay conditions. The 

temperature and pH optima of the Man1 enzyme was determined (using 0.05 M citrate 

phosphate buffer) as described by Bailey et al. (1992).  

 

3.3.7. GROWTH OPTICAL DENSITY AND DRY CELL WEIGTH (DCW) 

The different transformants were cultivated in double strength SC medium, buffered at pH 6 

with citrate phosphate buffer. K. lactis and S. cerevisiae strains were grown for up to 

100 hours and the optical density was measured at OD600 using a Pharmacia LKB Ultrospec 

III spectrometer. Dry cell weight was measured according to den Haan et al. (2007). All dry 

weight estimations and growth curves were done in triplicate.  

 

3.3.8. PLASMID STABILITY DETERMINATION 

Transformants of K. lactis GG799-ura[YEpENO-BBH.Kl] and K. lactis SHR8[YEpENO-

BBH.Kl] transformants were cultivated in liquid SC-URA and transferred to fresh medium 

every second day. Periodically the transformants were also transferred to 10 ml YPD 

medium. After cultivation in YPD for 48 hours, the cultures were transferred to YPD and SC-

URA plates respectively.  

 

3.3.9. PROTEIN ISOLATION AND GEL ELECTROPHORESIS 

The supernatant of the different strains were collected after 3 days of cultivation in double 

strength medium and freeze dried before determining the specific activity. Two milligrams of 
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freeze dried material (approximately 50 μg of total extracellular protein) were dialysed and 

denatured for 3 minutes at 100˚C in SDS-denaturing buffer containing 0.5 M DDT (NOVEX, 

Novel Experimental Technology, San Diego, CA) before separation on a 8% SDS-PAGE gel. 

A Page RulerTM from Fermentas Inc. (Maryland, USA) premixed protein molecular weight 

marker were used to estimate the size of the proteins. Silver staining was used to visualize the 

protein species (Ausubel et al. 1998). 

 

3.4. RESULTS 

3.4.1.PLASMID CONSTRUCTION 

Plasmid yENO1 contains the YEp352 backbone (ATCC) with the S. cerevisiae ENO1 gene 

promoter and terminator sequences cloned into the BamHI and HindIII sites. The plasmid 

was digested with BamHI and the overhang filled in with Klenow polymerase and dNTPs. 

The plasmid was re-ligated to generate YEpENO-B. Using the same method, the BglII site 

was subsequently destroyed, generating YEpENO-BB after which the HindIII site was 

destroyed, generating YEpENO-BBH template. YEpENO-BBH template was used as 

template for the PCR reaction in which the ENO1 expression cassette was amplified flanked 

by 150-bp region (spacer) upstream of the promoter and 220-bp downstream of the 

terminator. The PCR product was cloned into pTZ57R for further amplification. The ENO1 

expression cassette was retrieved by digestion with BamHI and HindIII and the over hangs 

filled in by treatment with Klenow. The product was cloned between the two PvuII sites on 

Yep352 generating YEpENO-BBH (Fig. 1). The K. lactis replication of origin (Kl. ori) was 

synthetically made (Genescript) based on the sequence of pKD1 (Accession number 

X03961). It was cloned as a BglII-BamHI fragment into the BglII site on YEpENO-BBH, 

generating YEpENO-BBH.Kl. The Man1 of A. aculeatus was retrieved from pJC1 (Setati et 

al. 2001) and cloned onto this plasmid as an EcoRI–XhoI fragment generating 

YEpenoBBH.Kl-Man1 (Fig. 1). A URA3-blaster cassette was constructed using the URA3 of 

S. cerevisiae flanked on both sides with direct repeats of a portion of the gfp gene (Acc nr 

XXU17997). This truncated gfp’ does not result in a functional GFP, but merely acts as a 

spacer region in the disruption strategy. The partial gfp sequence and the complete URA3 

gene were amplified by PCR and have been cloned into the cloning vector pTZ57R (Inqaba 

Biotech, South Africa) generating plasmids pTZ-B-gfp-B and pTZ-B-URA3-B.  
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Fig. 1. The relevant plasmid maps of the vectors used in this study. The plasmids used to construct the 

reference strains, did not contain the man1 gene. The Kl. ori. contains the DNA sequence of the 

replication of origin that is present on the native pKD1 plasmid (Accession number X03961).  

 

 

The URA3 was retrieved as a BamHI-BglII fragment and cloned into the BglII site of 

pTZ-B-gfp-B, generating pTZ-gfp-URA3. Similarly, the gfp was retrieved as a BamHI-BglII 

fragment and cloned into the BglII site of pTZ-gfp-URA3, generating pTZ-URA3-blaster. 

A URA3-blaster cassette (Fig.2) has been constructed using the URA3 of S. cerevisiae flanked 

on both sides with direct repeats of a portion of the gfp gene (Acc nr XXU17997). This 

truncated gfp’ does not result in a functional GFP, but merely acts as a spacer region in the 

disruption strategy. The partial gfp sequence and the complete URA3 gene have been 

amplified through PCR and have been cloned into the cloning vector pTZ57R (Inqaba 

Biotech, South Africa) generating plasmids pTZ-B-gfp-B and pTZ-B-URA3-B. The URA3 

was retrieved as a BamHI-BglII fragment and cloned into the BglII site of pTZ-B-gfp-B, 

generating pTZ-gfp-URA3. Similarly, the gfp was retrieved as a BamHI-BglII fragment and 

cloned into the BglII site of pTZ-gfp-URA3, generating pTZ-URA3-blaster. 
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Fig. 2. Schematic representation of the URA3-blaster cassette and the disruption strategy of the 

ku80 gene of K. lactis. The gfp׳ are non-functional, direct repeats of a portion of the gfp gene. The 

ku80-3 ׳ and ku80-5 ׳ refers to the 3 ׳ and 5’ ends of the ku80 gene. 

 

 

3.4.2. PLATE ASSAY  

The various cultures were cultivated overnight in SC-URA broth and transferred to the SC-URA 

plates containing 0.1% Locust bean gum. Hydrolysis zones were observed for the 

recombinant strains of K. lactis SHR8[YEpENO-BBH.Kl-man1] and the S. cerevisiae 

Y294[YEpENO-BBH-man1] displaying Man1 activity (Fig.3. B, C and E, F, respectively). 

Both reference strains, K. lactis SHR8[YEpENO-BBH.Kl] and S. cerevisiae 

Y294[YEpENO-BBH, showed no clearing zone formation signifying no hydrolysis on the 

Locust bean gum plates (Fig. 3. B and E, respectively). Cultivation of K. lactis 

SHR8[YEpENO-BBH.Kl-man1] caused an indent in the agar surrounding the colony 

whereas no indent was observed with S. cerevisiae Y294[YEpENO-BBH-man1] (Fig. 3. A 

and D, respectively). 
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Fig. 3. Man1 activity displayed by K. lactis SHR8[YEpENO-BBH.Kl] (top of plates A, B, C), K. 

lactis SHR8[YEpENO-BBH.Kl-man1] (below on A ,B, C), S. cerevisiae Y294[YEpENO-BBH] 

(above on D, E, F) and S. cerevisiae Y294[YEpENO-BBH-man1] (below on D, E, F) produced after 

48 hours of growth on SC-URA plates containing 0.1% Locust bean gum at 30°C. In (A, D) the plates 

are unstained, (B, E) the same plates were stained with Congo Red and in (C, F) the plates had been 

treated with 1 M HCl after Congo Red staining. 

 

 

3.4.3. DETERMINATION OF ENZYME ACTIVITY, OPTIMUM PH AND TEMPERATURE  

The effect of pH and temperature on the activity of the secreted Man1 was investigated 

(Fig. 4). The Man1 produced by K. lactis SHR8[YEpENO-BBH.Kl-man1] displayed a pH 

optimum of 5 while S. cerevisiae Y294[YEpENO-BBH-man1] had a pH optimum of 6. Both 

strains displayed a temperature optimum of 70˚C. K. lactis and S. cerevisiae strains produced 

enzyme activity of 160 – 180 nkat/ml. 
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   Fig. 4. Effect of (A) pH and (B) temperature on the activity of the Man1 produced by ♦ K. lactis 

SHR8[YEpENO-BBH.Kl-man1] and ■ S. cerevisiae Y294[YEpENO-BBH-man1]. Activity is 

expressed as a percentage of the highest value. Assays were performed in triplicate with the error bars 

representing the standard deviation. 

 

3.4.4 GROWTH ON LACTOSE AND GLUCOSE 

The different transformants were cultivated in double strength SC medium, buffered at pH 6 

with citrate phosphate buffer. The K. lactis strains were able to grow to a DCW of about 

23 mg/ml using lactose as carbon source compared to a DCW of 25 mg/ml on the same 

glucose molar equivalent (Fig. 5). The DCW is almost 5-fold more than that obtained with 

the S. cerevisiae cultivated on glucose.  

 

3.4.5. PLASMID STABILITY DETERMINATION 

The plasmid stability was determined for K. lactis GG799-ura[YEpENO-BBH.Kl] and 

K. lactis SHR8[YEpENO-BBH.Kl] over a period of two weeks (Table 3). The cultivation in 

liquid YPD would result in loss of plasmid, hence no colonies on the SC-URA plates. 

Transformants able to grow on SC-URA plates, after incubation in YPD medium, still 

contained episomal plasmids. For the first 7 days of continuous cultivation, an almost 100% 

loss of plasmid was observed. After 14 days of cultivation in liquid SC-URA, the strain either 

started to integrate the plasmid (or at least the marker gene) or rectified the point mutation 

originally induced by the FOA mutagenesis on K. lactis GG799 (used for the construction of 

K. lactis GG799-ura).  
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Fig. 5. (A) Biomass production in DCW (Dry Cell Weight) and (B) the levels of extracellular 

mannanase activity by strains ♦ S. cerevisiae Y294[YEpENO-BBH],  S. cerevisiae 

Y294[YEpENO-BBH-man1].  K. lactis SHR8[YEpENO-BBH.Kl-man1] and ▲ K. lactis 

SHR8[YEpENO-BBH.Kl],, when cultivated on glucose as carbon source whereas  ■ K. lactis 

SHR8[YEpENO-BBH.Kl-man1] and  K. lactis SHR8[YEpENO-BBH.Kl] where cultivated on 

lactose. Assays were performed in triplicate with the error bars representing the standard deviation.  

 

 

Table 3. The stability of the K. lactis GG799-ura[YEpENO-BBH.Kl-man1] and K. lactis 

SHR8[YEpENO-BBH.Kl-man1] strains increase after several sub-cultures over a period of 14 days. 

K. lactis GG799-ura[YEpENO-BBH.Kl-man] K. lactis SHR8[YEpENO-BBH.Kl-man] 

Days % CFU* on SC-URA Std dev Days % CFU* on SC-URA Std dev 

5 0 0 5 0 0 

7 0.348 ±0.032 7 0.555 ±0.120 

10 0.541 ±0.072 10 1.617 ±0.691 

14 

11.559 ±1.872 

14 

25.972 ±1.959 

*- the % CFU refers to the number of colonies on the SC-URA plates depicted as a percentage of the number of 

colonies present on the YPD-plates at the same time interval. 

The experiment was performed in triplicate with the error bars representing the standard deviation. 
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3.4.6. SDS-PAGE ANALSIS 

Analysis with SDS-PAGE indicated a protein species of 55kDa in the K. lactis 

SHR8[YEpENO-BBH.Kl-man1] and S. cerevisiae Y294[YEpENO-BBH-man1] had a 58kDa 

protein species (Fig. 6 lane 2 and 3 respectively). This protein species are not present in the 

lanes containing proteins samples of the K. lactis SHR8[YEpENO-BBH.Kl] and S. cerevisiae 

Y294[YEpENO-BBH] (Fig. 6 lane 4 and 5 respectively).  
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Fig. 6. Supernatant of recombinant yeast containingSeparation of the (1) Protein ladder Page Ruler TM 

Fermentas Inc. (Maryland, USA), and the total extracellular protein fraction of (2) K. lactis 

SHR8[YEpENO-BBH.Kl-man1], (3) S. cerevisiae Y294[YEpENO-BBH-man1], (4) K. lactis 

SHR8[YEpENO-BBH.Kl] and (5) S. cerevisiae Y294[YEpENO-BBH] by means of SDS-PAGE. The 

sizes of the protein ladder is depicted on the left hand side of the SDS-PAGE 

 

3.5. DISCUSSION 

Mannanases have a wide range of industrial applications including the pulp and paper 

industry, food and feed industries as well as for the bioconversion of lignocellulosic residues 

for bioethanol production (Moreira and Filho 2008). Through recombinant technology and 
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heterologous expression, more efficient industrial exploitation of these enzymes is made 

possible. Host strains that efficiently secrete these enzymes avoid the need for expensive 

purification processes, thereby reducing the production costs (Dhawan and Kaur 2007). 

The man1 gene from A. aculeatus has previously been cloned and expressed in 

S. cerevisiae using the PGK1 promoter and terminator expression cassette (Setati et al. 2001). 

In this study, the man1 gene of A. aculeatus were cloned and expressed in both S. cerevisiae 

and K. lactis. The different host strains was evaluated on the bases of their secretion capacity 

as well as the size of the Man1 protein secreted (glycosylation). A K. lactis strain containing 

the deletion of the native ku80 gene had been constructed (using the URA3-blaster 

technology) to investigate its impact on the stability of the transformants under continuous 

cultivation conditions.  

The use of a blaster cassette such as the URA3-blaster (Fig. 2), have been 

demonstrated before (Alani et al. 1987, Wang et al. 2003). Making use of the URA3-blaster 

technology enables the recycling of the URA3 marker gene, making it possible to (1) create 

several knock-out mutations or (2) introduce several constructs into the genome (multiple 

integrations) of the same strain. In this study recycling of the marker was required due to the 

presence of the URA3 marker gene on the vectors used. K. lactis can perform both 

homologous recombination as well as non-homologous end joining (Morlino et al. 1999). 

Non homologous end joining enables the host to integrate foreign DNA at random requiring 

functional KU70 and KU80 proteins (Kooistra et al. 2004). The ku80-URA3-blaster cassette 

PCR product was transformed to K. lactis GG799-ura to disrupt the ku80 gene and generate 

the knocking-out strain, K. lactis SHR7. Strains K. lactis SHR7 and SHR8 is therefore only 

able to perform homologous recombination (targeted integration) (Daley et al. 2005). In this 

study we constructed a plasmid YEpENO-BBH.Kl which contains the K. lactis replication of 

origin, while the rest of the plasmid contains either E. coli or S. cerevisiae DNA, thereby 

limiting the possibility of homologous recombination taking place.  

The YEpENO1-BBH and YEpENO-BBH.Kl vectors constructed in this study are 

similar to the yENO1 vector previously constructed by Den Haan et al. (2007). However, 

these vectors had been modified in such a way as to allow for consecutive integration of a 

number of gene cassettes by making use of the compatibility of the BamHI and BglII 

restriction sites. This strategy makes it possible to retrieve a gene cassette by digestion of the 

vector with BamHI and BglII, provided all internal BamHI and BglII sites had been 
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eliminated (elimination by means of PCR or by using synthetically designed genes). This 

strategy had been successfully employed for the ligation of the Kl. ori. onto YEpENO1-BBH. 

Although the addition of another gene cassette was not required for this study, the 

construction of these vectors will be helpful for future work where the mannosidase gene 

mndA, will be co-expressed in the same yeast.  

Several attempts had been made in the past to obtain stable episomal vectors for 

K. lactis, but with limited success (Hsieh and Da Silva 1998, Kooistra et al. 2004). Plasmid 

integration seems to be inevitable. The best vector stability had been obtained with vectors 

using the complete pKD1 sequence, making the vectors quite large (Hsieh and Da Silva 1998, 

Romanos et al. 1992). By using strains that can only perform homologous recombination, we 

aimed to improve the stability of episomal vectors, yet keeping the size of the vector as small 

as possible. Smaller vectors generally results in a higher copy number of the plasmid, hence a 

higher level of expression (Morlino et al. 1999).  

The man1 gene was subcloned onto plasmid YEpENO-BBH with the ENO1 promoter 

and terminator directing its expression (Fig. 1). YEpENO-BBH and YEpENO-BBH.Kl 

therefore has the same DNA sequence, with the exception of the Kl. ori fragment being 

present on the latter plasmid. K. lactis SHR8[YEpENO-BBH.Kl-man1] transformants were 

able to secrete the Man1 effectively and degrade the mannan present in the agar plates 

(Fig. 3), leaving an indent around the transformants. Clearing halos were produced upon 

staining of the plates with Congo Red solution.  

The pH and temperature optimum of the heterologous Man1, expressed by K. lactis 

SHR8[YEpENO-BBH-man1] and S. cerevisiae Y294[YEpENO-BBH-man1] were 

determined (Fig. 4). The Man1 displayed a temperature optimum of 70˚C for both species 

and a pH optimum of approximately 5 and 6 for K. lactis SHR8[YEpENO-BBH-man1] and 

S. cerevisiae Y294[YEpENO-BBH-man1], respectively. The results obtained in this study 

differ slightly from that of Setati et al. (2001) who reported a pH optimum of 3 and 

temperature optimum of 50˚C. A similar change in characteristics was observed by two 

independent groups with the expression of the Cel7A of T. reesei. Both groups found that the 

glycosylation pattern varied when cultivation took place under different conditions (Du 

Plessis et al. 2009, Stals et al. 2004). The Cel7A was N-glycosylated at all three 

glycosylation sites when isolated from minimal medium, whereas cultivation in rich medium, 

resulted in only one or two sites contained high-mannose chains (Stals et al. 2004). A 
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difference in the O-glycosylation pattern in the linker region was also observed. In general 

S. cerevisiae elongates the mannose chain in heterologous proteins by adding even more 

mannose residues (Romanos et al. 1992). Based on this, we speculate that, when S. cerevisiae 

Y294[Man1] was cultivated in YPD medium (Setati et al. 2001), the medium could have had 

an impact on the glycosylation patterns of the Man1 resulting in a change on the 

activity/characterization of the enzyme.  

The extracellular mannanase activity produced by the various transformants was 

monitored over a period of 96 hours. The K. lactis transformants were cultivated in medium 

containing either glucose or lactose as carbon source (Fig. 5), whereas the S. cerevisiae 

transformants were only cultivated on glucose due to the inability of the yeast to grow on 

lactose. The glucose and lactose containing medium yielded similar results for the biomass of 

the K. lactis transformants and their levels of mannanase activity (160-180 nkat.ml-1). 

Although S. cerevisiae Y294[YEpENO-BBH-man1] produced similar levels of activity, the 

cultures reached 5-fold less biomass compared to that obtained by the K. lactis transformants. 

The lower DCW could be explained by the high levels of glucose in the medium (40 g.l-1) 

which would have resulted in the S. cerevisiae strains fermenting the glucose despite the 

aeration of the culture. This phenomenon is due to the S. cerevisiae strains being Crabtree 

positive and the cultures losing carbon due to the release of CO2. K. lactis, on the other hand, 

is Crabtree negative, does not ferment when exposed to high levels of glucose and therefore 

can channel more carbon towards biomass production. The difference in DCW implies that 

the Man1 production per cell of S. cerevisiae Y294[YEpENO-BBH-man1] is approximately 

5-fold more than that of K. lactis SHR8[YEpENO-BBH.Kl-man1]. 

A noticeable difference in the size of the Man1 could be detected by SDS-PAGE 

when expressed by the different hosts. The K. lactis SHR8[YEpENO-BBH-man1] strain 

produced the Man1 as a 55kDa protein compared to the 58kDa protein secreted by 

S. cerevisiae Y294[YEpENO-BBH-man1] (Fig. 5). Indicating that K. lactis clearly does not 

glycosylate the Man1 as much as the S. cerevisiae strain.  

The stability of the YEpENO-BBH.Kl vector in K. lactis GG799-ura and K. lactis 

SHR8 strains seems to have had anegative effect on the disruption of the ku80 gene (Table3). 

Eighty percent of the CFU on the SC-URA plates indicated mannanase activity confirming 

integration of the plasmid (data not shown). Although the stability of the transformants was 
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not improved a heterogeneous culture started to develop after ten days which would have a 

negative effect on the production levels of the heterologous enzyme.  

The extracellular mannanase production levels per cell of S. cerevisiae 

Y294[YEpENO-BBH.Kl-man1] has been established at being almost five times more than 

that obtained with K. lactis SHR8[YEpENO-BBH.Kl-man1], yet similar extracellular levels 

of mannanase activity was obtained. The increase in biomass demonstrates a more effective 

utilisation of the carbon source by K. lactis. K. lactis has the additional advantage of being 

able to use a broader substrate range than S. cerevisiae. Although episomal vectors have been 

successfully constructed for use in K. lactis, the stability of the transformants could not be 

guaranteed for prolonged periods of time due to the tendency of the plasmids to integrate 

after a number of generations (Kooistra et al. 2004, van Ooyen et al. 2006). This study 

concluded that the disruption of the non homologous end joining complex does not contribute 

to the stability of the transformants. However, high levels of activity can still be 

accomplished through multi-copy integration of the gene cassette which has been proven to 

yield stable transformants (Morlino et al. 1999).  

 

3.6. ACKNOWLEDGEMENTS 

The authors would like to express their sincere gratitude to the National Research Foundation 

(NRF) for financial support.  

 

 

 

 

 

 

 

 

 

 

 

 

3.7. REFERENCES 

  89



 

1. Ademark, P., Varga, A., Medve, J., Harjunpää, V., Drakenberg, T., Tjerneld, F. and Stålbrand, H. 
(1998) Softwood hemicellulose-degrading enzymes from Aspergillus niger: Purification and properties 
of a beta-mannanase. Journal of Biotechnology 63: 199-210. 

2. Alani, E., Cao, L. and Kleckner, N. (1987) A method for gene disruption that allows repeated use of 
URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545. 

3. Aristidou, A. and Penttilä, M. (2000) Metabolic engineering applications to renewable resource 
utilization. Current Opinion in Biotechnology 11: 187-198. 

4. Ausubel, F.M, Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. 
(1998) Current Protocols in Molecular Biology. John Wiley and Sons Inc, USA. 

5. Bailey, M.J., Biely, P. and Poutanen, K. (1992) Inter-laboratory testing of methods for assay of 
xylanase activity. Journal of Biotechnology 23: 257-270. 

6. Bewley, J.D., Burton, R.A., Morohashi, Y. and Fincher, G.B. (1997) Molecular cloning of a cDNA 
encoding a β-1-4-mannan endohydrolase from the seeds of germinated tomato (Lycopersicon 
esculentum). Planta 203: 454-459. 

7. Braithwaite, K.L., Black, G.W., Hazlewood, G.P., Ali, B.R.S. and Gilbert, H.J. (1995) A non-modular 
endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochemical Journal 
305: 1005-1010. 

8. Buckholz, R.G. and Gleeson, M.A.G. (1991) Yeast systems for the commercial production of 
heterologous proteins. Bio-Technology 9: 1067-1072. 

9. Cho. K.M., Yoo, Y.J. and Kang, H.S. (1999) Delta-integration of endo/exo-glucanase and beta-
glucosidase genes into the yeast chromosomes of direct conversion of cellulose to ethanol. Enzyme and 
Microbial Technology 25: 23-30. 

10. Christgau, S., Kauppinen, S., Vind, J., Kofod, L.V. and Dalboge, H. (1994) Expression cloning, 
purification and characterization of a beta-1,4-mannanase from Aspergillus aculeatus. Biochemistry 
and Molecular Biology International 33: 917-925. 

11. Cregg, J.M., Cereghino, J.L., Shi, J.Y. and Higgins, D.R. (2000) Recombinant protein expression in 
Pichia pastoris. Molecular Biotechnology 16: 23-52. 

12. Daley, J.M., Palmbosm, P.L., Wu, D. and Wilson, T.E.(2005) Non-homologous end joining in yeast. 
Annual Review of Genetics 39: 431-451. 

13. Den Haan, R., Rose, S.H., Lynd, L.R. and Van Zyl, W.H. (2007) Hydrolysis and fermentation of 
amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering 9: 87-94. 

14. Dhawan, S. and Kaur, J. (2007) Microbial mannanases: An overview of production and applications. 
Critical Reviews in Biotechnology 27: 197-216. 

15. Du Plessis, L., Rose, S.H. and Van Zyl, W.H. (2009) Construction of Saccharomyces cerevisiae strains 
co-expressing cellulase genes for efficient hydrolysis of amorphous cellulose. Applied Microbiology 
and Biotechnology Submitted for publication  

16. Dujon, B. (1996) The yeast genome project: What did we learn? Trends in Genetics 12: 263-270. 

17. Eriksen, S.H., Jensen, B. and Olsen, J. (1998) Effect of N-linked glycosylation on secretion, activity 
and stability of α-amylase from Aspergillus oryzae. Current Microbiology 37: 117-122. 

  90



18. Harjunpää, V., Helin, J., Koivula, A., Siika-aho, M. and Drakenberg, T. (1999) A comparative study of 
two retaining enzymes of Trichoderma reesei: transglycosylation of oligosaccharides catalysed by the 
cellobiohydrolase I, Cel7A, and the beta-mannanase, Man5A. FEBS Letters 443: 149-153. 

19. Hill, J., Ian, K.A., Donald, G. and Griffiths, D.E. (1991) DMSO-enhanced whole cell yeast 
transformation. Nucleic Acids Research 19: 5791. 

20. Hsieh, H.P. and Da Silva, N.A. (1998) An autoselection system in recombinant Kluyveromyces lactis 
enhances cloned gene stability and provides freedom in medium selection. Applied Microbiology and 
Biotechnology 49: 147-152. 

21. Jackson, M.E., Fodge, D.W. and Hsiao, H.Y. (1999) Effects of β-mannanase in corn-soybean meal 
diets on laying hen performance. Poultry Science 78: 1737-1741. 

22. Jeffries, T.W. (1994) Biodegradation of lignin and hemicelluloses. In: C. Ratledge (ed.) Biochemistry 
of microbial degradation. Kluwer Academic Press Publishers, London, UK. 

23. Kooistra, R.K. Hooykaas, P.J.J. and Steensma, H.Y. (2004) Efficient gene targeting in Kluyveromyces 
lactis. Yeast 21: 781–792. 

24. La Grange, D.C., Pretorius, I.S., Claeyssens, M. and van Zyl, W.H. (2001) Degradation of xylan to D-
xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase 
(xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Applied and Environmental Microbiology 
67: 5512-5519. 

25. Mattanovich, D., Gasser, B., Hohenblum,H. and Sauer, M. (2004) Stress in recombinant protein 
producing yeasts. Journal of Biotechnology 113: 121-135. 

26. Mayer, A.F., Hellmuth, K., Schlieker, H., Lopez-Ulibarri, R., Oertel, S., Dahlems, U., Strasser, 
A.W.M. and van Loon, A.P.G.M. (1999) An expression system matures: A highly efficient and cost-
effective process for phytase production by recombinant strains of Hansenula polymorpha. 
Biotechnology and Bioengineering 63: 373-381. 

27. Miller, G.L., Blum, R., Glennon, W.E. and Burton, A.L. (1960) Measurement of carboxy-
methylcellulase activity. Analytical Biochemistry 2: 127-132. 

28. Millward-Sadler, S.J., Hall, J., Black, G.W., Hazlewood, G.P. and Gilbert, H.J. (1996) Evidence that 
the Piromyces gene family encoding endo-1,4-mannanases arose through gene duplication. FEMS 
Microbiology Letters 141: 183-188. 

29. Montiel, M.D., Rodriguez, J., Perez-Leblic, M.I., Hernandez, M., Arias, M.E. and Copa-Patino, J.L. 
(1999) Screening of mannanases in actinomycetes and their potential application in the biobleaching of 
pine kraft pulps. Applied Microbiology and Biotechnology 52: 240-245. 

30. Moreira, L.R.S. and Filho, E.X.F. (2008) An overview of mannan structure and mannan-degrading 
enzyme systems. Applied Microbiology and Biotechnology 79: 165-178. 

31. Morlino, G.B., Tizzani, L., Fleer, R., Frontali, L. and Bianchi, M.M. (1999) Inducible amplification of 
gene copy number and heterologous protein production in the yeast Kluyveromyces lactis. Applied 
Environmental Microbiology 65: 4808-4813. 

32. Puls, J. and Schuseil, J. (1993) Chemistry of hemicelluloses: Relationship between hemicellulose 
structure and enzymes required for hydrolysis. In: Coughlan, M.P. and Hazlewood, G.P. (eds.) 
Hemicellulose and Hemicellulases. Portland Press, London, UK.  

33. Romanos, M.A., Scorer, C.A. and Clare, J.J. (1992) Foreign gene-expression in yeast – A review. Yeast 
8: 423-488. 

  91



  92

34. Sabini, E., Schubert, H., Murshudov, G., Wilson, K.S., Siika-aho, M. and Penttila, M. (2000a) The 
three-dimensional structure of a Trichoderma reesei beta-mannanase from glycoside hydrolase family 
5. Acta Crystallographica Section D-Biological Crystallography 56: 3-13. 

35. Sabini, E., Wilson, K.S., Siika-aho, M., Boisset, C.. and Chanzy, H. (2000b) Digestion of single 
crystals of mannan I by an endo-mannanase from Trichoderma reesei. European Journal of 
Biochemistry 267: 2340-2344. 

36. Sachslehner, A., Foidl, G., Foidl, N., Gübitz, G. and Haltrich, D. (2000) Hydrolysis of isolated coffee 
mannan and coffee extract by mannanases of Sclerotium rolfsii. Journal of Biotechnology 80: 127-134. 

37. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular cloning: A laboratory manual (Vol. 2). 
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 

38. Schwarz, W.H. (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Applied 
Microbioly and Biotechnology 567: 634-649. 

39. Setati, M.E., Ademark, P., van Zyl, W.H., Hahn-Hagerdal, B. and Stålbrand, H. (2001) Expression of 
the Aspergillus aculeatus endo-beta-1,4-mannanase encoding gene (man1) in Saccharomyces 
cerevisiae and characterization of the recombinant enzyme. Protein Expression and Purification 21: 
105-114. 

40. Stålbrand, H., Saloheimo, A., Vehmaanpera, J., Henrissat, B. and Penttila, M. (1995) Cloning and 
expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a 
cellulose-binding domain. Applied and Environmental Microbiology 61: 1090-1097. 

41. Stålbrand, H., Siika-aho, M., Tenkanen, M. and Viikari, L., (1993) Purification and characterization of 
two β-mannanases from Trichoderma reesei. Journal of Biotechnology 29: 229–242. 

42. Stals, I., Sandra, K., Geysens, S., Contreras, R., Van Beeumen, J. and Claeyssens, M. (2004) Factors 
influencing glycosylation of Trichoderma reesei cellulases. I: Post secretorial changes of the O- and 
N-glycosylation pattern of Cel7A. Glycobiology 14: 713-724.  

43. Suurinaki, A., Tenkanen, M., Buchert J. and Viikari, L. ( 1997) Hemicellulases in the bleaching of 
chemical pulps. In: T. Scheper (ed.) Advances in Biochemical Engineering/Biotechnology. Springer-
Verlag, Heidelberg, Berlin. 

44. Swapna, R., Pubols, M.H. and McGinnis, J. (1982) The effect of purified guar degrading enzyme on 
chicken growth. Poultry Science 61: 488-494. 

45. van Ooyen, A.J.J., Dekker, P., Huang, M., Olsthoorn, M.M.A., Jacobs, D.I., Colussi, P.A. and Taron, 
C.H. (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Research 
6: 381-392. 

46. van Rooyen, R., Hahn-Hagerdal, B., La Grange, D.C. and van Zyl, W.H. (2005) Construction of 
cellobiose-growing and fermenting Saccharomyces cerevisiae strains. Journal of Biotechnology 120: 
284-295. 

47. Wang, Y.C.M., Chuang, L.L., Lee, F.W.F. and Da Silva, N.A. (2003) Sequential cloned gene 
integration in the yeast Kluyveroymces lactis. Applied Microbiology and. Biotechnology 62: 523–527. 

48. Whitney, S.E.C., Brigham. J.E., Darke, A.H., Reid, G.J.S. and Gidley, M.J. (1998) Structural aspects of 
the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydrate Research 
(307)3-4: 299-309. 

49. Yamaura, I., Nozaki, Y., Matsumoto, T. and Kato, T. (1996) Purification and some properties of an 
endo-1,4-beta-D-mannanase from a marine mollusc, Littorina brevicula. Bioscience Biotechnology and 
Biochemistry 60: 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3C-3XK6TM4-N&_user=613892&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=b9546bb66417fd8ad1620df8e9f616bf#bbib30#bbib30
http://www.sciencedirect.com/science/journal/00086215
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235225%231998%23996929996%23142189%23FLA%23&_cdi=5225&_pubType=J&view=c&_auth=y&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=6e54829f4f1572f47135623ee73c42f3
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4.1. ABSTRACT 

The endo-β-1,4-mannanase (man1) of Aspergillus aculeatus  was cloned under the transcriptional 

control of the truncated phosphoglycerate kinase (PGK1PT) promoter and terminator. The 

Aspergillus niger β-mannosidase gene, mndA, was codon optimized for expression in 

Saccharomyces cerevisiae and synthetically produced. The β-mannosidase gene was cloned under 

the control of the enolase1 promoter and terminator (ENO1PT) and was co-expressed with the 

A. aculeatus endo-β-1,4-mannanase man1 gene on the same episomal plasmid. The β-mannosidase 

protein, MndA, occured as a 140 kDa protein species on the SDS-PAGE analysis. However, no 

activity was detected on p-nitrophenyl β-D-mannopyranoside as substrate. S. cerevisiae Y294[man1, 

mndA] showed a 4-fold lower endomannanse activity than the S. cerevisiae Y294[man1]. Hydrolysis 

of 0.5% Locust bean gum showed the same profile in S. cerevisiae Y294[man1] and Y294 [man1, 

mndA] indicating that the β-mannosidase had no effect on hydrolysis. Expression was also evaluated 

in S. cerevisiae strain NI-C-D4, known to produce unglycosylated heterologous proteins at higher 

expression levels. The S. cerevisiae NI-C-D4[man1]  strain showed the highest mannanase activity 

on day 5 at 251.39 nkat/ml while S. cerevisiae NI-C-D4[man1, mndA] produced 69.69 nkat/ml, 

almost double that of S. cerevisiae Y294[man1, mndA].  
 

 

Keywords: 

Endomannanase 

β-mannosidase 

Saccharomyces cerevisiae 

Heterologous protein 

Aspergillus 
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4.2. INTRODUCTION 

 

Rising oil prices and the negative environmental impact of fossil fuel emissions have led to the 

search for an alternative form of transportation fuel. Alternative energy sources, such as bioethanol, 

is already used as gasoline replacement worldwide (Sun and Cheng 2002). Bioethanol can in 

principle be produced from lignocellulose through consolidated bioprocessing, a one step 

fermentation involving a single organism capable of hydrolysing the substrate and produce ethanol 

as fermented product (Lynd et al. 2002). Development of these recombinant microorganisms will 

affect the future overall performance and success of biomass conversion in future and will allow 

more process steps in one reactor (Hamelinck et al. 2005, Lynd et al. 2002). 

Saccharomyces cerevisiae has proven to be the most efficient microorganism for the production of 

ethanol from monomers such as glucose and mannose. This yeast has also been used extensively in 

industrial fermentation processes, making it the ideal organism for the production of bioethanol 

(Gray et al. 2006, Yu and Zhang 2004). 

 

Lignocellulose is an abundant renewable resource and sources include agricultural and forestry 

waste material (Lynd et al. 2002). Hemicelluloses are structural polysaccharides found in close 

association with cellulose and lignin in plant cell walls (Moreira and Filho 2008). Mannan, together 

with xylan, constitutes the major hemicellulose components contributing to as much as a third of the 

lignocellulose portion depending on the plant source. Mannan can be classified as linear mannan, 

glucomannan, galactomannan or as galactoglucomannan. Mannan is composed of a linear chain of 

β-D-1,4-linked mannose and glucose units which can be substituted with α-1,6-linked galactose side 

chains (Moreira and Filho 2008). Hydrolysis of galacto(gluco)mannan is achieved through various 

enzymes cooperatively acting together. These enzymes include β-mannanases (1,4-β-D-mannan 

mannohydrolases, EC 3.2.178), β-mannosidases (1,4-β-D-mannopyranoside hydrolases, EC 

3.2.1.25), α-galactosidases (1,6-α-D-galactoside galactohydrolases, EC 3.2.1.22), β-glucosidases 

(1,4-β-D-glucoside glucohydrolases, EC 3.2.1.21) and galactomannan acetylesterases (Moreira and 

Filho 2008). Endo-β-1,4-mannanases are endohydrolases that catalyze the cleavage of β-1,4 linkages 

releasing mainly mannobiose and mannotriose as end products. β-mannosidases hydrolyse the 

1,4-β-D-mannopyranose and β-glucosidases the 1,4-β-D-glucopyranose linkages at the non-reducing 

end of the main galacto(gluco)mannan chain, releasing D-mannose and D-glucose. Both enzymes 

readily convert the manno-oligosaccharides produced by β-mannanase to mannose and glucose units 

(Ademark et al. 1999). α-Galactosidases and acetyl mannan esterases are debranching enzymes 
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catalyzing the hydrolysis of α-1,6-linked D-galactopyranosyl side chains and acetyl groups 

respectively from galactoglucomannan (Ademark et al. 2001).  

 

Mannan degrading enzymes are produced by various fungi such as Aspergillus sp. (Ademark et al. 

1998, Christgau et al. 1994) and Trichoderma sp. (Harjunpjää et al. 1995), bacteria such as 

Cellumonas sp. (Stoll et al. 1999) and Bacillus sp. (Mendoza et al. 1995, Yosida et al. 1997) and 

have even been isolated from animals (Chen et al. 1995). In plants, these enzymes are involved in 

growth and maturation (Mo and Bewley 2002). Mannanases have a wide range of industrial 

applications including the pulp and paper industry, food and feed industries as well as for 

bioconversion of lignocellulosic residues for bioethanol production (Moreira and Filho 2008).  

 

The inability of S. cerevisiae to grow on the complex sugars present in lignocellulose has to be 

overcome in order for it to be used in the CBP process. Various cellulolytic and hemicellulolytic 

enzymes from fungal and bacterial origin have been successfully expressed in S. cerevisiae enabling 

partial hydrolysis of lignocellulosic substrates (Lynd et al. 2002). Developing S. cerevisiae for 

mannan degradation would contribute to the development of a CBP organism resulting in a more 

economical production of bioethanol (Lynd et al. 2002). In this study, a β-mannosidase has been 

codon optimized for S. cerevisiae and produced synthetically using the amino acid sequence from 

A. niger mndA (Ademark et al. 1999). This enzyme was co-expressed with the β-mannanase of 

A. aculeatus in S. cerevisiae Y294 and S. cerevisiae NI-C-D4, a super-secretor strain (Wang et al. 

2001). 

 

4.3. MATERIALS AND METHODS 

 

4.3.1. MICROBIAL STRAINS AND PLASMIDS 

Genotypes and sources of yeast and bacterial strains, as well as plasmids used in this study are listed 

in Table 1. 

 

4.3.2. MEDIA AND CULTIVATION CONDITIONS 

All chemicals, media components and supplements were of analytical grade standard. 

Escherichia coli XL1-Blue (Stratagene, USA) was used for the amplification and construction of 

recombinant plasmids. Bacterial strains were grown at 37˚C in Luria Bertani (LB) medium or 

Terrific Broth (TB) supplemented with ampicillin to a final concentration of 100 μg.ml-1 (Sambrook 

et al. 1989). Strains of S. cerevisiae Y294 were cultivated at 30˚C on a rotary shaker set at 100 rpm. 

Strains were grown in either YPD (1% yeast extract, 2% peptone and 2% glucose) or synthetic 
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complete (SC) medium (2% glucose, 0.17% yeast nitrogen base without amino acids and 0.5% 

(NH4)2SO4)) supplemented with appropriate amino acids, but lacking uracil (SC-URA) or leucine  

(SC-LEU).  
 

Table 1. A list of strains and plasmids used in this study 

Strains or Plasmids Relevant genotype Source or reference 

Strains:   

E. coli XL1-Blue MRF endA1 supE44 thi-1 RecA1 gyrA96 

relA1 lac [F’ proAB lacq Z(∆ M15 Tn10 (tet)] 

Stratagene (La Jolla,  

CA, USA) 

S. cerevisiae Y294 MATα leu2-3,122 ura3-52 his3 trp1-289 ATCC 201160 

S. cerevisiae NI-C-D4 trp1 ura3 pep4 Wang et al. 2001 

S. cerevisiae Y294[mndA] bla ura3/URA3 ENO1P –mndA-ENO1T This study 

S. cerevisiae Y294[man1] bla ura3/URA3 PGK1P-man1-PGK1T This study 

S. cerevisiae Y294[man1, mndA] bla ura3/URA3 PGK1P-man1-PGK1T  

ENO1P –mndA-ENO1T  

This study 

S. cerevisiae Y294[pJC1] bla ura3/URA3 PGK1P-PGK1T This study 

S. cerevisiae NI-C-D4[mndA] bla ura3/URA3 ENO1P –mndA-ENO1T  This study 

S. cerevisiae NI-C-D4[man1] bla ura3/URA3 PGK1P-man1-PGK1T This study 

S. cerevisiae NI-C-D4[man1, mndA] bla ura3/URA3 PGK1P-man1-PGK1T  

ENO1P–mndA-ENO1T  

This study 

S. cerevisiae NI-C-D4[YEpENO-BBH] bla ura3/URA3 ENO1P ENO1T  This study 

S. cerevisiae Y294[Bgl1] bla ura3/URA3 PGK1P-bgl1-PGK1T Van Rooyen et al. 2005 

Plasmids:   

pBluescript SK+ 

pJC1 

bla 

bla URA3 PGK1P-PGK1T 

Stratagene 

Crous et al. 1995 

YEpENO-BBH bla URA3 ENO1P ENO1T Fouché et al. 2009 

pNFmndA bla URA3 ENO1P –mndA-ENO1T This study  

pNFman1 bla URA3 PGK1P-man1-PGK1T This study 

pNFman1mndA bla URA3 PGK1P-man1-PGK1T 

ENO1P–mndA-ENO1T 

This study 

pMes2 bla URA3 PGK1P-man1-PGK1T Setati et al. 2001 

ySFI  
 

bla URA3 PGK1P-BGL1-PGK1T van Rooyen et al. 2005 

 
 
4.3.3. DNA MANIPULATIONS 
 

DNA manipulations were carried out according to standard protocols (Sambrook et al. 1989). 

Restriction endonucleases and T4 DNA ligase were supplied by Fermentas Inc. (USA). DNA 

fragments were eluted from agarose gels using ZymocleanTM Gel DNA Recovery Kit (Zymo 

Research Corporation, USA). 
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4.3.4. DESIGN OF CODON OPTIMISED SYNTHETIC GENE SEQUENCE 
 
The amino acid sequence of the A. niger mndA was used as template to design a DNA sequence 

containing only codons favoured by S. cerevisiae using software available at 

http://www.evolvingcode.net (Sharp and Cowe 1991). The codon adaptation index (CAI) for the 

wild type mndA gene when expressed in S. cerevisiae, was calculated as 0.1 (Sharp and Li 1987), 

whereas the codon optimised mndA gene had a CAI value of 0.774. The codon optimised version of 

the mndA gene contained the native secretion signal and endonuclease restriction sites at the 5’-end 

(EcoRI) and 3’-ends (XhoI) were added for cloning purposes. The optimised gene was synthesized 

by GenScript Corporation, USA.  

 
 
4.3.5. CONSTRUCTION OF PLASMIDS  
 

Plasmids used in this study are depicted in Fig. 1. The 2.8 kb synthetic β-mannosidase gene (mndA) 

was retrieved from pUC57 (GenScript Corporation, USA) as an EcoRI-XhoI fragment and ligated 

into the corresponding sites on YEpENO-BBH, generating pNFman1. A 1.3 kb EcoRI-XhoI 

fragment containing the endo-β-mannanase (man1) gene was recovered from pMES2 (Setati et al. 

2001) and cloned into ySFI (van Rooyen et al. 2005), replacing the β-glucosidase fragment. The 

yeast expression plasmid ySFI contains a truncated PGK1 promoter. Plasmid pNFmndA was 

digested with BamHI and BglII, retrieving the ENO1P-mndA-ENO1T cassette which was cloned into 

the unique BamHI site on pNFman1, generating pNFman1mndA.  

 
 
4.3.6. YEAST TRANSFORMATION AND PCR CONFIRMATION 
 

Yeast cells were harvested from YPD cultures in logarithmic phase. Transformations were 

performed using the dimethyl sulfoxide-lithium acetate method (Hill et al. 1991). The S. cerevisiae 

strains Y294 and NI-C-D4 were transformed with the individual recombinant yeast expression 

vectors. Colony PCR reactions were carried out with Taq DNA polymerase (Inqaba Biotec, South 

Africa) as prescribed by suppliers, using a Perkin Elmer GeneAmp® PCR System 2400. The PCR 

reaction mixture was as follows: 200 ng template, 100 pmol of each primer, 0.2 mM each of 

deoxynucleotide triphosphate and reaction buffer supplied by the manufacturer. Products were 

visualized on a 1% agarose gel and stained with ethidium bromide. The presence of the genes were 

confirmed by PCR using the primers listed in Table 2.  
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Fig. 1. A schematic representation of the plasmids used in this study. The S. cerevisiae 2 micron autonomous 

replicating sequence (2μ) allows for episomal replication of the plasmid. The bacterial β-lactamase (bla), and 

S. cerevisiae orotidine-5'-phosphate decarboxylase (URA3) were used as selectable markers. 

 

Table 2. Primers used in this study. 

Primer name Sequence 

Manoslft 5’-GGTTTCTTCAGAGGTGGCGTTACCG-3’ 

Manosrght 5’-CGTTACCAGCAGCCCACAAAGCC-3’ 

Mannanlft 5’-AGATGAAGCTTTCTCACATG-3’ 

Mannanrght 5’-CACATGATCCGTCACCAG-3’ 

PrimerA 5’-CTGCTCCATCTTCTTACTCT-3’ 

Eno prom 5’-GTAACATCTCTCTTGTAATCCCTTATT-3’ 

Eno term 5’-GCAACCCTATATAGAATCATAAAACA-3’ 

PGKbeginprom 5’-ACTGAAGCTTGGATCCTTAAAGATGCCG-3’ 

PGKendterm 5’-ACTGAAGCTTGGCCAAGCTTTAACGAAC-3’ 
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4.3.7. DNA SEQUENCING 
 

The nucleotide sequence of the β-mannosidase gene was determined with the dideoxy chain 

termination method using fluorescently labelled nucleotides on an ABI PRISM TM 3100 Genetic 

Analyser. Various primers sets were used to sequence the 2.8 kb fragment (Fig. 2). The internet 

based BLAST program (www.ncbi.nih.gov/BLAST) was used to analyze sequence data. The 

software package DNAMAN (version 4.1) (Lynnon Biosoft) was used to predict protein sequences 

and identify restriction sites. 

 
 Fig. 2. Schematic representation of the primer annealing positions with the arrows indicating the direction of 

sequencing. Primers ENOprom and ENOterm was used to determine the sequence at the 3’ and 5’ of the gene, 

whereas Manoslft and Manosrght was used to obtain the internal DNA sequence. 

 

 
4.3.8. SDS-PAGE ANALYSIS 
 
Cultures were grown in (SC-URA) containing 20 mM succinate (pH 6) for five days. Supernatant was 

obtained by centrifugation for 15 min at 4 000 g. The supernatant was filtered through Whatman 

filter paper (0.22 μm filters) and concentrated 60-fold (for S. cerevsiae Y294 strains) or 5-fold (for  

S. cerevisiae NI-C-D4 strains) through ultrafiltration at 100 kPa using the Minitan system (Millipore 

Corporation, Bedford, MA, USA) housing a 10 kDa cut-off membrane. Whole cells were 

resuspended in buffer and protein preparations were performed on ice. The intracellular fractions 

were prepared by placing 500 μl cells in 500 μl buffer, with 0.3 g acid washed glass beads. The 

mixture was incubated on ice and vortexed every alternating 20 s for 6 minutes. The mixtures were 

centrifuged for 3 minutes at 4 000 g and the supernatant used as the intracellular fraction.  

 

Supernatant fractions were further concentrated with TCA as described at http://www.protocol-

online.org/prot/Molecular_Biology. Pellets were dried and resuspended in 0.1 M NaOH/1% SDS. 

Sodium azide (NaN3) was added to a final concentration of 0.02% to inhibit microbial growth. 
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Protein preparations (10 μg) were denatured for 3 minutes at 100˚C in SDS-denaturing buffer 

containing 0.5 M DDT (Novel Experimental Technology, San Diego, CA). Non-denatured samples 

were not boiled and did not contain SDS-denaturing buffer. Protein samples were separated on SDS-

PAGE using an 8% (wt/vol) separation gel and were visualized with silver staining (Ausubel et al. 

1998). A protein ladder, Page RulerTM from Fermentas Inc. (Maryland, USA), was used as a size 

marker. 

 

4.3.9. PROTEIN ASSAY 

Protein concentrations were determined using the Bradford Assay (Bio-Rad). Absorbancies were 

measured at 595 nm and bovine serum albumin (BSA) was used as a standard. 

 

4.3.10. PLATE ENZYME ASSAYS 
 
For mannan enzyme activity, S. cerevisiae was grown at 30˚C on selective synthetic complete (SC) 

agar plates supplemented with an amino acids excluding uracil (SC-URA) as well as 0.5% Locust bean 

gum (Sigma, Sweden). After 3 days, the cultures were washed from the plates and plates stained for 

30 minutes with a 0.1% Congo Red solution. A 1.2 M NaCl solution was used to destain the plates 

and visualise hydrolysis zones. Treatment with 1 M HCl followed the Congo Red staining.  

 

 
4.3.11. ENZYME ASSAY (P-NITROPHENYL β-D-MANNOPYRANOSIDE, P-NITROPHENYL β-D-GLUCO-
PYRANOSIDE) 
 
The supernatant was harvested from 100 ml S. cerevisiae Y294[mndA] and S. cerevisiae NI-C-

D4[mndA] cultures over a period of 6 days. β-mannosidase activity for both S. cerevisiae strains 

were determined as described by Ademark et al. (1999). Supernatant, intracellular fractions and 

whole cells were incubated with p-nitrophenyl β-D-mannopyranoside and p-nitrophenyl β-D-

glucopyranoside separately, in concentrations ranging from 0.1 to 4 mM at 37˚C–50˚C in 50 mM 

sodium citrate buffer with pH ranging from pH 4 to pH 6. All assays were performed in triplicate 

and pure β-mannosidase [EC 3.2.1.78] from Cellumonas fimi (Megazyme) was used as a reference. 

 

4.3.12. PROTEIN DEGLYCOSYLATION 

 

The carbohydrate content of recombinant β-mannosidase was determined by treating it with 

N-glycosidase F (PNGase F, New England Biolabs, USA) as described by the manufacturer. The 

supernatant of S. cerevisiae Y294[mndA] was harvested by centrifugation for 5 minutes at 4 000 g 

and filtered through a 0.22 μm membrane. Protein was denatured at 100˚C in loading buffer 

 100



containing 60 mM Tris-HCl (pH 6.8), 25% glycerol, 2% SDS, 14 mM β-mercaptoethanol, and 0.1% 

bromophenol blue. The deglycosylation reaction was performed by adding 0.25 units of PNGase F to 

40 μl of denatured protein. After an incubation period of 1 hour at 37˚C the samples were denatured 

at 70˚C in DTT containing buffer. Endoglycosidase F (0.2 U) was added and the reaction was again 

incubated for 1 hour. Proteins were analyzed using SDS-PAGE. Untreated MndA was prepared in 

the same manner but without PNGase F being added. 

 

4.3.13. GROWTH ON CELLOBIOSE 

 

S. cerevisiae Y294 and NI-C-D4 strains with the β-mannosidase mndA gene were plated onto (SC-

URA) medium containing cellobiose as the sole carbon source. Reference strain 

S. cerevisiae Y294[pJC1] and S. cerevisiae Y294[Bgl1] was also plated on the medium as controls, 

negative and positive, respectively. 

 
4.3.14. ENZYME ASSAYS (DNS) 
 
The enzyme activity on galactoglucomannan (Sigma, Sweden) was determined in liquid assays using 

the reducing sugar assay method (Miller, 1959) with 0.5% Locust bean gum in 50 mM sodium 

citrate buffer (pH 5) as substrate. The reaction was carried out at 50˚C for 5 minutes and the 

hydrolysis reaction was terminated by adding the DNS reagent (1% 3.5-dinitro-salicyclic acid, 20% 

potassium sodium tartrate, 1% NaOH, 0.2% phenol, 0.05% Na2SO3) and boiling at 100˚C for 15 

minutes. One nanokatal (nkat) of enzyme activity was defined as the amount of enzyme producing 1 

nmol of reducing sugars (mannose) per second under the given conditions. 

 

4.3.15. DETERMINATION OF THE OPTIMUM PH AND TEMPERATURE OF MNDA 
 
 

The S. cerevisiae Y294[mndA] was grown for 3 days in double strength SC medium and lyophilised 

to powder form. The lyophilised material was dissolved in 50 mM citrate phosphate buffer to a 

concentration of 5 μg/ml and assays were conducted over a period of 2 hours in 0.5% Locust bean 

gum. The temperature optimum was determined at 20˚C to 80˚C at pH 5 in 50 mM citrate phosphate 

buffer. The optimal pH was determined using 0.5% Locust bean gum prepared in 50 mM citrate-

phosphate buffer with a pH range of pH 3 – pH 7 at 50˚C. Residual activities were calculated as a 

percentage of the maximum activity displayed at the different temperature or pH conditions. 
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4.3.16. MEASUREMENT OF GROWTH 
 

The dry cell weight was measured by filtering 20 ml culture through 0.47 μm glass microfibre filter  

(Whatman ®), which was washed with distilled water and dried in a microwave to constant weight 

(approximately 15 minutes at 30% power) (Plüddemann and van Zyl 2003). All dry weight 

estimations and growth curves were done in triplicate. Dry cell weights were calculated at specific 

time points when assays were performed in order to determine the enzyme activity produced per g of 

cells. 

 
 
4.3.17. SYNERGISM AND HYDROLYSIS PRODUCTS OF ENZYMES ON LOCUST BEAN GUM SUBSTRATE 
 

Hydrolysis of 0.5% Locust bean gum in 50 mM sodium acetate pH 5 was carried out for 10 minutes 

with supernatants of S. cerevisiae Y294[man1] and S. cerevisiae Y294[man1, mndA]. Samples were 

diluted 10 times in deionised water and filtered through 0.22 μm membrane. Hydrolysis products 

were separated on a Dionex CarboPac PA 100 column (Dionex, Sunnyvale, USA) using 100 mM 

NaOH as eluent. Analyses were carried out using a Dionex 500 chromatographic system equipped 

with an ED 40 electrochemical detector and PeakNet® software (Dionex). Stock solutions (50 

ug/ml) of D-mannose and mannobiose were used as standards (Megazyme). 

 

 
4.3.18. HIGH PERFORMACE LIQUID CHROMATOGRAPHY 
 

A 0.5% Locust bean gum solution was centrifuged at 12 000 g to remove the larger mannose chains. 

The Locust bean gum supernatant was incubated overnight with the supernatant of S. cerevisiae 

Y294[mndA] and S. cerevisiae Y294[YepENOBBH]. The samples were centrifuged for 5 minutes at 

12 000 g and incubated with up to 2% perchloric acid on ice for 10 minutes. Ninety nine microliters 

of KOH (7 N) was added to the sample, followed by incubated on ice for 10 minutes and centrifuged 

for 10 minutes at 12 000 g. Samples were analysed using Finnigan Surveyor high performance liquid 

chromatography (HPLC) from Thermo Scientific (San Jose, USA) to identify the sugars released by 

the MndA enzyme. The supernatant was directly filtered into vials using a 0.22 μm membrane. The 

compounds were separated on an Phenomenex column (Rezex RHM – monosaccharide H+ (8%)), at 

a column temperature of 45˚C with MilliQ water as mobile phase at a flow rate of 0.6 ml min.-1 and 

subsequently detected with a Finnigan Surveyor refractive index plus detector. D-Mannose, 

mannobiose and raffinose (a representation of a triose sugar) were used as standards. 
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4.4. RESULTS 
 
 
4.4.1. SEQUENCE OF THE CLONED β-MANNOSIDASE GENE 
 

The nucleotide and deduced amino acid sequence of the synthetic A. niger mndA are presented in 

Appendix A. The 2.8 kb fragment encoding a 931 amino acid peptide was cloned and expressed in 

S. cerevisiae. The mature protein has a theoretical pI of 5.32 and molecular mass of 104.8 kDa. The 

cloned fragment showed 72.80% homology with the DNA sequence published for A. niger mndA, 

but the protein sequences were identical (Ademark et al. 2001). The amino acid sequence was 

analysed using neural networks (NN) and hidden Markov models (HMM) on the SignalP 3.0 

program (Expasy Proteomics Server, (http://www.cbs.dtu.dk/services/SignalP) which showed the 

presence of a signal peptide on the amino acid chain position 1 to 21, with a cleavage site between 

amino acids 21 and 22 (Appendix A). 

 

 
4.4.2. GLYCOSYLATION PREDICTIONS 

N-glycosylation is possible on asparagine residues which occur in the Asn-Xaa-Ser/Thr consensus 

sequence (Xaa being any amino acid except proline). Sequence analysis of the A. niger mndA 

revealed that the mature peptide contained 11 putative N-glycosylation sites. The posttranslation 

modification tool NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc) attempts to distinguish truly 

glycosylated sequences from non-glycosylated ones. When the possible glycosylation sites of 

synthetic A. niger mndA were analysed, ten possible glycosylation sites were found. Fig. 3 shows 

predicted N-glycosylation sites on the protein chain, where the x-axis represents protein length from 

N- to C-terminal. All the potential sites crossing the threshold at 0.5 are predicted to be glycosylated.  

 
4.4.3. CONFIRMATION OF PRESENCE OF GENE MNDA AND MAN1 
 

DNA samples used in the PCR were obtained from the different recombinant S. cerevisiae Y294 and 

NI-C-D4 strains (Fig 4). All the constructs that were made were confirmed with PCR sequence 

specific primers. DNA from S. cerevisiae Y294[mndA] and S. cerevisiae NI-C-D4[mndA] shows the 

presence of the mndA whereas DNA from S. cerevisiae Y294[man1, mndA] and S. cerevisiae 

NI-C-D4[man1, mndA] respectively contained the man1 and mndA genes. S. cerevisiae Y294[man1] 

and S. cerevisiae NI-C-D4[man1] indicating the presence of man1 gene but no mndA. The reference 

strain S. cerevisiae NI-C-D4[pJC] displayed no PCR product. 
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Fig. 3. Predicted N-glycosylation sites in the mndA sequence. Potential glycosylation sites crossing the 0.5 

threshold are predicted to be true glycosylation sites.  

 
s 
 

 
 
Fig. 4. Identification of the man1 and mndA genes in S. cerevisiae. PCR results obtained with (A) primers 

Manoslft and Manosrght and (B) primers Mannanlft and Mannanrght. Lane 1 shows the lambda DNA 

(EcoRI/HindIII) marker. PCR results were separated on agarose gels in the following sequence: lane 2 

S. cerevisiae Y294[mndA]; lane 3 S. cerevisiae NI-C-D4[mndA]; lane 4 S. cerevisiae Y294[man1, mndA]; 

lane 5 S. cerevisiae NI-C-D4[man1, mndA]; lanes 6 have the S. cerevisiae Y294[man1] and 7 S. cerevisiae 

NI-C-D4[man1], and 8, S. cerevisiae NI-C-D4[pJC]. 
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4.4.4. PLATE ASSAY RESULTS 
 

The various cultures were grown overnight in (SC-URA) broth and transferred to the (SC-URA) plates 

with 0.5% Locust bean gum. Hydrolysis zones with dark rings were observed for the S. cerevisiae 

Y294[mndA] strain (Fig. 5A). Whereas the S. cerevisiae Y294[man1] strain showed a clear 

hydrolysis zone (Fig. 5B). The S. cerevisiae Y294[man1, mndA] strain produced a light and dark 

hydrolysis zone (Fig. 5C). The reference strain, S. cerevisiae Y294[pJC1], strain showed no 

hydrolysis on the Locust bean gum plates. S. cerevisiae NI-C-D4 strains containing the various 

plasmids are shown in Fig. 6 A, B and C. The hydrolysis zone of the strain with the S. cerevisiae 

NI-C-D4[mndA] showed no dark ring, whereas the S. cerevisiae NI-C-D4[man1] and the 

S. cerevisiae NI-C-D4 [man1, mndA] showed hydrolysis zones of similar sizes as the S. cerevisiae 

Y294 strains. No growth was observed on cellobiose plates except for the reference strain (results 

not shown). 

 

 

4.4.5. P-NITROPHENYL β-D-MANNOPYRANOSIDE AND P-NITROPHENYL β-D-GLUCOPYRANOSIDE 
ASSAYS 
 

The β-mannosidase producing yeast strains (S. cerevisiae Y294[mndA] and S. cerevisiae 

NI-C-D4[mndA]) were analyzed for their ability to cleave the β-1,4-mannopyranoside linkage and 

β-1,4-glucopyranoside linkage in an exo manner. In contrast to previous results obtained (Ademark 

et al. 1998) for the native enzyme, no activity could be detected for mndA produced in this study. 

Extracellular, whole cell and intracellular phases all tested negative over periods of 24 hours at 

temperatures ranging from 37˚C to 70˚C and buffers ranging from pH 3 to pH 7. The commercially 

available β-mannosidase from Cellumonas fimi, used as reference enzyme, showed activity within 

5 minutes of incubation at 37˚C and pH 5. 

 

 

 

 

 

 

 
 

 105



A  B  C D 

 
Fig. 5. Hydrolysis zones on (SC-URA) with 0.5% Locust bean gum of (A) S. cerevisiae Y294[mndA], 

(B) S. cerevisiae Y294[man1] and (C) S. cerevisiae Y294[man1, mndA] (D) S. cerevisiae Y294[pJC1]. 

 
 

A  B C D

 
Fig. 6. Hydrolysis zones on (SC-URA) with 0.5% Locust bean gum of (A) S. cerevisiae NI-C-D4[mndA], 

(B) S. cerevis iae NI-C-D4[man1], (C) S. cerevisiae NI-C-D4[man1, mndA] and (D) S. cerevisiae 

NI-C-D4[YEpENO-BBH]. 

 

 
4.4.6. ENZYME ASSAYS 
  
The recombinant Y294 β-mannosidase and β-mannanase producing strains were analysed for their 

ability to hydrolyse Locust bean gum as substrate. All strains were grown for 48 hours on (SC-URA) 

medium before assays started. The yeast strains secreted active Man1 into the medium reaching 

levels of 251.3 nkat/ml and 163.162 nkat/ml in S. cerevisiae NI-C-D4[man1] and Y294[man1] 

respectively (Fig. 7). Recombinant protein produced by the S. cerevisiae NI-C-D4[man1] were 

57 mg/L and S. cerevisiae Y294[man1] produced 37 mg/L. Recombinant S. cerevisiae 

NI-C-D4[man1, mndA] and S. cerevisiae Y294[man1, mndA] produced 3.6-fold (69.69 nkat/ml) and 

3.8-fold (42.66 nkat/ml) less enzyme than S. cerevisiae NI-C-D4[man1] and S. cerevisiae 

Y294[man1], respectively. The β-mannosidase showed no activity in the time (5 minutes) that the 

assays were conducted, but did show some activity when incubated over a period of 24 hours at 50˚C 

(Fig. 8). The pH and temperature optimum were determined with the freeze dried (5 μg/ml) protein 

indicated optimum conditions at pH 5 and 50˚C. An increase in degradation was observed at 80˚C. 
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Fig. 7. Enzyme activity produced by  strains ▲ S. cerevisiae NI-C-D4[man1]; ♦ S. cerevisiae Y294[man1] ■ 

S. cerevisiae NI-C-D4[man1, mndA]; ▲ S. cerevisiae Y294[man1, mndA]; ■ S. cerevisiae 

NI-C-D4[YEpENO-BBH]; X S. cerevisiae Y294[pJC1] displayed over time on 0.5% Locust bean gum as 

substrate at optimum conditions. 

 

Time in minutesTime in minutes  
 

Fig. 8. Reducing sugars released by the degradation of 0.5% Locust bean gum by the supernatant of  
♦ S. cerevisiae Y294[mndA] and ■ S. cerevisiae Y294[pJC1] over a period of 1440 minutes. 
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Fig. 9. (A) pH and (B) temperature optimum of S. cerevisiae Y294[mndA] incubated on 

0.5% Locust bean gum for 2 hours. 

 
 
4.4.7. SDS-PAGE ANALYSIS 
 
Analysis with SDS-PAGE gave a protein species of 140 kDa in the S. cerevisiae Y294[mndA] strain 

as well as the S. cerevisiae Y294[man1, mndA] strain (Fig. 10 Lane 2 and 4 respectively). This 

protein species is not present in the lanes containing supernatant proteins of the S. cerevisiae 

Y294[man1] or the S. cerevisiae Y294[pJC1] protein species (Fig. 10 Lane 2 and 5 respectively). S. 

cerevisiae Y294[man1] and S. cerevisiae Y294[man1, mndA] (Fig. 10 Lane3 and 4) have a 58 kDa 

protein species, which is the same size as the endo-β-1,4-mannanase protein previously reported in 

Setati et al. (2001). 

 

4.4.8. PROTEIN DEGLYCOSYLATION ANALYSIS 

 

Analysis with SDS-PAGE showed that when the recombinant MndA protein produced by 

S. cerevisiae Y294[mndA] was treated with PNGase F enzyme the 140 kDa protein species 

disappeared and only a 130 kDa pecies could be seen (lane 1). This protein species was however 

present for S. cerevisiae Y294[mndA] (lane 2), S. cerevisiae Y294[mndA] (lane 3) and in 

S. cerevisiae NI-C-D4[mndA] a 130 kDa protein species is seen. Observed previously in Fig. 9 this 

140 kDa protein species is absent in the reference strain S. cerevisiae Y924 [pJC1] as well (Fig. 11, 

lane 4). 
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Fig. 10. SDS-PAGE analysis of the secreted recombinant protein produced by various yeast strains (1) Protein 

ladder Page Ruler TM Fermentas Inc. (Maryland, USA), (2) S. cerevisiae Y294[mndA], (3) S. cerevisiae 

Y294[man1], (4) S. cerevisiae Y294[man1, mndA], (5) S. cerevisiae Y294[pJC1]  
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Fig. 11. Molecular weight differences of recombinant MndA protein due to hyperglycosylation. 

(1) S. cerevisiae Y294[mndA] deglycosylated, (2) S. cerevisiae Y294[mndA], 

(3) S. cerevisiae NI-C-D4[mndA], (4) S. cerevisiae Y294[pJC1]. 

 

 109



kDa 1 2 3

250

130

100

70

kDa 1 2 3

250

130

100

70

kDa 1 2 3

250

130

100

70

kDa 1 2 3

250

130

100

70

 
 

Fig. 12. SDS-PAGE analysis with non-denatured protein. (1) Ladder Page Ruler TM Fermentas Inc. 

(Maryland, USA), (2) S. cerevisiae Y294[mndA] unboiled (undenatured) sample, (3) S. cerevisiae 

Y294[mndA] boiled (denatured) sample. 

 

The S. cerevisiae Y294[mndA] denatured and undenatured protein (Fig. 12) gave a protein species 

of 130 kDa each. No protein species could be seen at 240 kDa and thus no dimer formed in the yeast. 

 
 
4.4.9. SUBSTRATE HYDROLYSIS AND SYNERGISM OF ENZYMES ON LOCUST BEAN GUM SUBSTRATE. 
  
In order to see if the MndA protein had any effect on the hydrolysis when expressed together with 

Man1 in the same host, hydrolytic properties were determined for S. cerevisiae Y294[man1] and 

S. cerevisiae Y294[man1, mndA]. Locust bean gum was hydrolysed with recombinant Man1 for 

10 minutes at 50˚C and in comparison with the standards (mannose and mannobiose) it is evident 

that peaks of similar sizes were released (Fig. 13). Unhydrolysed Locust bean gum substrate did not 

reveal hydrolysis peaks (Fig. 13). Galactoglucomannan has acetyl side groups as well as galactosyl 

side groups. Hydrolysis seldom results in only mannose or mannobiose and thus analysis reveals 

profiles with different peaks. The profiles of the peaks after hydrolysis are the same for both strains, 

but with S. cerevisiae Y924[man1] the peaks are greater, indicating greater mannanase activity 

(Fig.13 D, E). Hydrolysis of 0.5% Locust bean gum by Man1 and MndA revealed the same peaks as 

with only the Man1 enzymes. Incubation with both strains caused double the amount of substrate to 

be released and is probably the sum of the two enzyme products (results not shown).  
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4.4.10. SUBSTRATE HYDROLYSIS ANALYSIS 
 

The MndA protein was incubated with 0.5% Locust bean gum at 50˚C in 50 mM Sodium Citrate 

buffer pH 5. HPLC analysis was performed on the supernatant after 18 hours of incubation (Fig. 14). 

Raffinose (representing a triose sugar peak), mannobiose and mannose sugars were used as 

standards. The reference reaction (Fig. 14 C) had the 0.5% Locust bean gum supernatant containing 

shorter galacto(gluco)mannan chains. MndA degradation displayed a lower peak for sugars greater 

than raffinose in MW when compared to the reference strain. This could indicate very low activity 

on longer chains but there is no additional mannobiose or mannose released, confirming that this 

enzyme has no activity at the non-reducing end of the galacto(gluco) chain.  
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Fig. 13. A chromatographic representation of products detected after hydrolysis of 0.5% Locust bean 

gum. (A) Mannose standard, (B) Mannobiose standard, (C) Chromatogram obtained from non-

hydrolysed Locust bean gum, (D) Hydrolyses of Locust bean gum with S. cerevisiae 

Y294[man1, mndA] and (E) S. cerevisiae[man1]. 
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Fig. 14. Sugars released by the hydrolysis of 0.5% Locust bean gum as indicated by HPLC (A) Standards: 

Raffinose was used as representation of a triose, followed by mannobiose and mannose; (B) Peaks 

representing sugars released by recombinant MndA and (C) peaks representing the unhydrolysed peaks where 

S. cerevisiae Y294[pJC1] was used as reference strain. 

 
 

 

4.5. DISCUSSION 
 
A consortium of enzymes is required for the complete degradation of the galacto(gluco)mannan 

portion of hemicellulose (Moreira and Filho 2008). Hemicelluloses constitute a third of 
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lignocellulosic material, the degradation of which is important to achieve efficient and cost-effective 

conversion to ethanol (Lynd et al. 2002). In order to achieve this conversion, an organism producing 

enzymes that are capable of hydrolysis and producing ethanol in a one-step process is needed. In this 

study, yeast strains were engineered to secrete a mannanase from A. aculeatus and a synthetic, codon 

optimised β-mannosidase from A. niger. These enzymes were also co-expressed to investigate the 

synergistic effect when produced in the same host. 

 β-mannosidases (β-D-mannoside mannohydrolases, EC 3.2.1.25) catalyze the successive 

removal of D-mannose residues from the non-reducing end of various β-1,4-linked 

manno-oligosaccharides, the end products produced by the action of β-mannanase (EC 3.2.1.78). 

Currently, a chromogenic substrate (p-nitophenyl β-D-mannopyranoside) is used to quantify 

β-mannosidase activity and only a few β-mannosidases have been shown to release mannose from 

the non-reducing end of mannan-based polymers (Araujo and Ward 1990, Hirata et al. 1998, 

Kulminskaya et al. 1999).  

 In this study, the activity of the MndA protein (Ademark et al. 1999), was tested on 

p-nitrophenyl β-D-mannopyranoside substrate. β-mannosidases have been reported to be active on 

glucosides and mannosides (Bauer et al. 1996), therefore transformants were evaluated on the basis 

of p-nitophenyl β-D-glucopyransoside hydrolysis and cellobiose utilization on plates. Even though 

no activity was detected in the supernatant, the signal peptide should allow secretion of the protein as 

S. cerevisiae does not have high preference for specific signal sequences (Han et al. 1999). No 

activity could be detected with the whole cells or intracellular fraction indicating that no active 

protein was trapped inside the cell. No growth was observed on the cellobiose plates except for the 

reference strain S. cerevisiae Y294[BglI]. 

 The MndA protein produced by A. niger displayed a molecular mass of 264 kDa on a 

non-reducing SDS-PAGE and 135 kDa under reducing conditions, suggesting that the MndA is a 

dimer composed of two 135 kDa subunits (Ademark et al. 1999). It was also found that the 

deglycosylated enzyme had a molecular mass of 112 kDa indicating an N-linked carbohydrate 

content of 17% by weight (Ademark et al. 1999). In this study, a protein species of around 140 kDa 

was observed on the SDS-PAGE analysis (Fig. 9). Analysis of the protein sequence indicated 11 

possible glycosylation sites (Fig. 3). The hyperglycosylation was confirmed when the protein sample 

was treated with the pNgaseF deglycosylation enzyme, the 140 kDa protein species disappeared and 

only a 130 kDa protein species could be observed (Fig. 10). As S. cerevisiae is known for its 

hyperglycosylation this could also be a reason for low levels of activity. Hyperglycosylation can 

cover the active site (depending on the proximity), resulting in unusual activity or preventing entry 

of the substrate into the active site. Therefore, the mndA was also expressed in the S. cerevisiae 

NI-C-D4 strain that was created by Wang et al. (2001). This strain was reported to have super 
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secretion properties (up to 3-fold higher than the parental strains) and was shown not to 

hyperglycosylate the heterologous proteins produced. SDS-PAGE analysis confirmed the lack of 

glycosylation since the hyperglycosylated 140 kDa protein species was absent, however no activity 

was observed for the MndA protein produced by this host. The enzyme is produced as a dimer in the 

native host (Ademark et al. 1999) whereas no dimer could be detected with expression in 

S. cerevisiae likely causing the lack of activity. Foreign gene expression can result in incorrect 

folding of the protein which can prevent proper assembling of the dimer. The monomers are 

separately hyperglycosylated which could also affect assembly due to the oligosaccharides acting as 

hindrance, preventing the formation of  di-sulphide bridges.  

Some evidence suggest that, the smaller the protein, the more efficient S. cerevisiae is at 

producing it (La Grange et al. 2000). When taken into account that the average size of the 

S. cerevisiae open reading frame is 1.4 kb (Hauser et al. 1999), compared to the 2.8 kb of mndA, 

difficulty in expression should be expected. It might be that the protein is just too big for the yeast to 

produce and secrete efficiently.  

The presence of rare codons in the target gene can result in low levels of expression 

(Gustafsson et al. 2004). Therefore the β-mannosidase gene was codon optimized for expression in 

S. cerevisiae and the gene sequence was confirmed by automated DNA sequencing. Even though 

this DNA sequence differed from the native A. niger sequence, the protein sequence was unaltered 

and should yield a functional protein. Codon optimization has been reported to have a positive effect 

on gene expression, but negative impacts have also been documented (Gustafson 2004, Wu et al. 

2004, Wu et al. 2006). In some studies, optimal codons seemed to be unnecessary when genes are 

overexpressed and might even have an adverse effect on protein expression (Wu et al. 2006). Non-

optimal codons were reported to be necessary for translational pausing which is crucial in the correct 

folding of the proteins. Yet the correct folding of emerging translated polypeptide and efficient 

translation does not necessarily guarantee a functional protein (Zalucki and Jennings 2007). It was 

also suggested that translation is sensitive to the nature of the codon-pairs present in ribosomal A 

and P decoding sites. Software (Anaconda) http://www.bio.ua.pt/genomica/lab) was developed using 

statistical methodologies based on contingency tables and residual analysis to determine specific 

codon-pair context patterns. These codon pairs could result in translational errors which could lead 

to the production of a full length protein but production of very low levels of the mndA (Moura et al. 

2005). Preferred and rejected pairs of codons are detected by the Anaconda algorithm for specific 

species and it was found that codon context is highly biased in S. cerevisiae. The mndA gene 

sequence was analysed using this information (Appendix B). Which revealed the presence of 21 

unfavoured pairs.  
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 The MndA protein did however give unexpected results when transformants were grown for 

three days on 0.5% Locust bean gum containing plates. Staining with Congo red resulted in a small 

hydrolysis zone (Fig. 5.A). Even though no activity was detected after 5 minutes by means of the 

non-reducing assay (p-nitrophenyl β-D-mannopyranoside), some sugars seemed to be released when 

the enzyme was incubated for longer periods (up to 24 hours). HPLC analysis of the sample revealed 

that the mannotriose peak stayed constant but a small peak containing the larger sugars (probably 

mannopentose and larger) was observed. The enzyme seemed to require longer chains as substrate 

but does not release any mannose or mannobiose. β-mannosidases have been shown to cleave 

manno-oligosaccharides with a DP greater than 4 (Akino et al. 1988, Arai et al. 1995). 

β-mannosidase from Aspergillus niger was found to cleave up to a DP of 6, but side-chain galactose 

patterns mostly determined the rate of hydrolyses (Ademark et al. 1998). 

 The affect of the MndA on incubation with 0.5% Locust bean gum was also investigated in a 

hydrolysis experiment. The HPLC profiles for S. cerevisiae Y294[man1] and S. cerevisiae 

Y294[man1, mndA] were similar, but lower levels were detected for the latter, confirming the 

reducing sugar assay results. The pH and temperature optimum conducted with concentrated 

(5 μg/ml) protein indicated optima at pH 5 and 50˚C respectively. The increase in activity at 

temperature 80˚C (Fig. 9 B) could be ascribed to the 2 hour incubation period at the high 

temperature causing galactoglucomannan hydrolysis independent of enzyme activity. 

 β-mannanase (1,4-β-D-mannan mannohydrolase EC 3.2.178) randomly cleaves the 

β-1,4-mannopyranosyl linkages in the galacto(gluco)mannan backbone, resulting in new chain ends 

(Stoll et al. 2000). Setati et al. (2001) reported endomannanase levels of 379 nkat/ml (SC-URA) and 

86 mg/L recombinant protein produced upon expression of the man1 of A. aculeatus in S. cerevisiae. 

The recombinant strain S. cerevisiae NI-C-D4[man1] yielded a maximum activity of 251,39 nkat/ml 

while S. cerevisiae Y294[man1] produced 163.16 nkat/ml. Protein produced by he recombinant 

strain S. cerevisiae NI-C-D4[man1] were 57 mg/L while S. cerevisiae Y294[man1] produced 

37.06 mg/L. Different culture conditions and plasmids were used compared to the study in Setati et 

al. (2001) which could explain the difference in activity observed. Cultivation conditions have a 

noticeable impact as the cell density of yeast in the previous study reached an optical density of up to 

9 compared to the 2.8 reached in this study. The cell density directly affects the amount of enzyme 

that’s produced. 

 The S. cerevisiae Y294[man1mndA] strain showed a 4-fold decrease in endomannanase 

activity compared to S. cerevisiae Y294[man1]. This phenomenon was also previously reported by 

La Grange et al. (2000). As the mndA gene is 2.8 kb, and the bigger the plasmid, may lead to a lower 

copy number and consequently less protein is produced. The S. cerevisiae NI-C-D4[man1, mndA] 
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showed a higher endomannanse activity but the activity was still lower than that obtained with 

S. cerevisiae NI-C-D4[man1] and S. cerevisiae Y294[man1].  

 When the two enzymes were incubated together the activity was not more than the sum of the 

individual activities and no significant synergism could therefore be detected. It is clear that the 

MndA enzyme produced could not yield in greater hydrolysis of the mannan chain.  

 

 In this study a β-mannanase and a β mannosidase were expressed in S. cerevisiae to enable 

this yeast to hydrolse mannan. The recombinant β mannosidase, produced by the expression of a 

codon optimized gene, yielded a surprising result of not showing activity on low DP substrates but 

showing a low level of activity on larger chain substrates. The difference in substrate preference can 

be attributed to the improper folding of the protein allowing entry of larger substrates into the active 

site. Improper folding can be a direct result of increased translation speed made possible by the 

elimination of translational pausing sites through codon optimization of the gene. The presence of 

non-optimal codon pairs results in mistakes in translation which can have a direct effect on protein 

structure, substrate preference and levels of activity.  
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APPENDIX A 
 

The synthetic mndA gene and deduced protein sequence. Arrow indicate the computed signal protein 

sequence and point of cleavage ( SignalP 3.0)  

 
 
 
1  ATGAGACACTCTATCGGTTTGGCTGCTGCCTTGTTGGCTCCAACTTTGCCAGTTGCTTTG 
1  M  R  H  S  I  G  L  A  A  A  L  L  A  P  T  L  P  V  A  L   
 
 
61  GGTCAACACATTAGAGACTTATCCTCTGAAAAGTGGACCTTGTCTTCTAGAGCTTTGAAC 
21  G  Q  H  I  R  D  L  S  S  E  K  W  T  L  S  S  R  A  L  N   
 
s 
121 AGAACTGTTCCAGCTCAATTCCCATCCCAAGTTCACTTGGACTTATTGAGAGCTGGTGTT 
41  R  T  V  P  A  Q  F  P  S  Q  V  H  L  D  L  L  R  A  G  V   
 
181 ATCGGGGAATACCACGGTTTGAATGATTTCAACTTGAGATGGATCGCCGCTGCCAACTGG 
61  I  G  E  Y  H  G  L  N  D  F  N  L  R  W  I  A  A  A  N  W   
 
241 ACCTACACCTCTCAACCAATTAAGGGTTTGTTGGATAACTATGGTTCTACTTGGTTGGTT 
81  T  Y  T  S  Q  P  I  K  G  L  L  D  N  Y  G  S  T  W  L  V   
 
301 TTCGACGGTTTGGATACTTTCGCTACCATCTCTATCTTGTGGACCGCTAACAGAGTTCAC 
101 F  D  G  L  D  T  F  A  T  I  S  I  L  W  T  A  N  R  V  H   
 
361 GGTCAATCCGTCTCTCCAGTCTCCGGTTCTATGTATTTGCCAGCTTTAGAAGCCTGTCAA 
121 G  Q  S  V  S  P  V  S  G  S  M  Y  L  P  A  L  E  A  C  Q   
 
421 AGAAGGATCTTGATTAGAAAGGTTTCTTTCAGAGGTGGCGTTACCGCCGAAGTTAACACC 
141 R  R  I  L  I  R  K  V  S  F  R  G  G  V  T  A  E  V  N  T   
 
481 TGTTATTTACACATTGAATGGCCTGACGACGTCCAATTGACTTACGAATACCCAAACAGA 
161 C  Y  L  H  I  E  W  P  D  D  V  Q  L  T  Y  E  Y  P  N  R   
 
541 TGGTTCATGAGAAAGGAACAATCTGATTTCGGTTGGGACTGGGGTCCAGCTTTCGCTCCA 
181 W  F  M  R  K  E  Q  S  D  F  G  W  D  W  G  P  A  F  A  P   
 
601 GCTGGTCCATGGAAGCCAGCTTACATCGTTCAATTGGATAAGAAGGAATCTGTCTACGTT 
201 A  G  P  W  K  P  A  Y  I  V  Q  L  D  K  K  E  S  V  Y  V   
 
661 TTGAACACCGACTTGGACATTTACAGAAAGAACCAAATTAATTACTTGCCACCAGACCAA 
221 L  N  T  D  L  D  I  Y  R  K  N  Q  I  N  Y  L  P  P  D  Q   
 
721 TCTCAACCATGGGTTGTTAATGCTTCTATCGACATTTTGGGTCCATTGCCAGCTAAGCCA 
241 S  Q  P  W  V  V  N  A  S  I  D  I  L  G  P  L  P  A  K  P   
 
781 ACCATGTCCATTGAAGTTAGAGACACTCATTCCGGTACTATCTTGACTTCCAGAACCTTA 
261 T  M  S  I  E  V  R  D  T  H  S  G  T  I  L  T  S  R  T  L   
 
841 AACAATGTTTCCGTCGCCGGTAACGCTATCACCGGTGTTACCGTTTTGGATGGCTTGAAC 
281 N  N  V  S  V  A  G  N  A  I  T  G  V  T  V  L  D  G  L  N   
 
901 CCAAAATTGTGGTGGCCACAATCTTCTGTCATTAGAACCTCTACCATGTTCTTGTCTTTA 
301 P  K  L  W  W  P  Q  S  S  V  I  R  T  S  T  M  F  L  S  L   
 
961 TCTAAGGTTGAAGGTACTAGACCATGGCCAGTGTGGACTAACGGTAGAGCCTCTGCTCCA 
321 S  K  V  E  G  T  R  P  W  P  V  W  T  N  G  R  A  S  A  P   
 
1021 TTCTTCTTGAACCAAAGAAATATCACCGAAGTTCAAAGAGCTCAAGGTATCGCCCCTGGT 
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341  F  F  L  N  Q  R  N  I  T  E  V  Q  R  A  Q  G  I  A  P  G   
 
1081 GCCAATTGGCACTTCGAGGTCAATGGTCATGAGTTCTACGCCAAGGGTTCGAACTTGATC 
361  A  N  W  H  F  E  V  N  G  H  E  F  Y  A  K  G  S  N  L  I   
 
1141 CCACCAGATTCTTTTTGGACTCGTGTCACTGAAGAACGTATCTCTCGTTTGTTCGACGCC 
381  P  P  D  S  F  W  T  R  V  T  E  E  R  I  S  R  L  F  D  A   
 
1201 GTCGTCGTCGGTAACCAAAACATGTTGAGAGTTTGGTCCTCCGGTGCTTACTTGCACGAC 
401  V  V  V  G  N  Q  N  M  L  R  V  W  S  S  G  A  Y  L  H  D   
 
1261 TACATTTACGATTTGGCCGACGAAAAGGGTATTTTGTTGTGGTCTGAATTTGAGTTCTCT 
421  Y  I  Y  D  L  A  D  E  K  G  I  L  L  W  S  E  F  E  F  S   
 
1321 GATGCTTTATACCCATCCGATGATGCTTTTTTGGAAAACGTCGCTGCTGAAATTGTCTAC 
441  D  A  L  Y  P  S  D  D  A  F  L  E  N  V  A  A  E  I  V  Y   
 
1381 AACGTTAGAAGAGTTAACCACCACCCATCTTTGGCTTTGTGGGCTGGTGGTAACGAAATT 
461  N  V  R  R  V  N  H  H  P  S  L  A  L  W  A  G  G  N  E  I   
 
1441 GAAAGCTTAATGTTGCCAAGAGTCAAGGACGCTGCTCCATCTTCTTACTCTTATTACGTT 
481  E  S  L  M  L  P  R  V  K  D  A  A  P  S  S  Y  S  Y  Y  V   
 
1501 GGTGAATACGAAAAGATGTACATCTCCTTGTTCTTGCCATTGGTTTACGAAAACACTCGT 
501  G  E  Y  E  K  M  Y  I  S  L  F  L  P  L  V  Y  E  N  T  R   
 
1561 TCCATTTCTTACTCCCCATCCTCTACCACTGAAGGTTACTTGTATATTGACTTATCCGCC 
521  S  I  S  Y  S  P  S  S  T  T  E  G  Y  L  Y  I  D  L  S  A   
 
1621 CCTGTCCCTATGGCTGAACGTTACGACAACACCACCTCTGGTTCCTACTACGGTGACACC 
541  P  V  P  M  A  E  R  Y  D  N  T  T  S  G  S  Y  Y  G  D  T   
 
1681 GACCATTACGACTACGATACCTCTGTCGCTTTCGATTACGGTTCTTACCCAGTCGGTCGT 
561  D  H  Y  D  Y  D  T  S  V  A  F  D  Y  G  S  Y  P  V  G  R   
 
1741 TTCGCTAACGAGTTCGGTTTCCACTCCATGCCATCCTTGCAAACCTGGCAACAAGCTGTT 
581  F  A  N  E  F  G  F  H  S  M  P  S  L  Q  T  W  Q  Q  A  V   
 
1801 GACACTGAAGATTTGTACTTCAACTCTTCTGTTGTTATGTTGAGAAACCACCACGACCCA 
601  D  T  E  D  L  Y  F  N  S  S  V  V  M  L  R  N  H  H  D  P   
 
1861 GCTGGTGGCTTGATGACCGATAATTACGCTAACTCTGCTACTGGTATGGGTGAAATGACC 
621  A  G  G  L  M  T  D  N  Y  A  N  S  A  T  G  M  G  E  M  T   
 
1921 ATGGGTGTCATTTCCTACTATCCAATCCCAAGCAAGTCTGATCACATTTCCAACTTCTCC 
641  M  G  V  I  S  Y  Y  P  I  P  S  K  S  D  H  I  S  N  F  S   
 
1981 GCCTGGTGTCACGCTACTCAATTGTTCCAAGCCGACATGTACAAGTCTCAAATTCAATTC 
661  A  W  C  H  A  T  Q  L  F  Q  A  D  M  Y  K  S  Q  I  Q  F   
 
2041 TACAGAAGAGGTTCCGGTATGCCAGAAAGACAATTGGGTTCTTTGTACTGGCAATTGGAA 
681  Y  R  R  G  S  G  M  P  E  R  Q  L  G  S  L  Y  W  Q  L  E   
 
2101 GACATTTGGCAAGCTCCATCCTGGGCTGGTATCGAATACGGTGGTAGATGGAAGGTTTTG 
701  D  I  W  Q  A  P  S  W  A  G  I  E  Y  G  G  R  W  K  V  L   
 
2161 CACCACGTTATGCGTGACATTTACCAACCAGTCATCGTTTCTCCATTCTGGAACTACACC 
721  H  H  V  M  R  D  I  Y  Q  P  V  I  V  S  P  F  W  N  Y  T   
 
2221 ACCGGTTCCTTGGACGTTTACGTTACCTCCGACTTGTGGTCTCCAGCTGCCGGTACTGTC 
741  T  G  S  L  D  V  Y  V  T  S  D  L  W  S  P  A  A  G  T  V   
 
2281 GACTTGACCTGGTTAGACTTGTCTGGTAGACCAATCGCTGGGAACGCTGGTACTCCAAAG 
761  D  L  T  W  L  D  L  S  G  R  P  I  A  G  N  A  G  T  P  K   
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2341 TCCGTCCCATTCACTGTCGGTGGTTTGAACTCCACCAGAATCTACGGTACTAACGTTTCT 
781  S  V  P  F  T  V  G  G  L  N  S  T  R  I  Y  G  T  N  V  S   
 
2401 TCTTTGGGTTTGCCAGACACTAAAGACGCTGTCTTGATCTTGTCCTTGTCCGCCCACGGT 
801  S  L  G  L  P  D  T  K  D  A  V  L  I  L  S  L  S  A  H  G   
 
2461 AGATTGCCAAACTCCGACAGAACTACTAACTTAACTCACGAAAACTACGCCACTTTGTCT 
821  R  L  P  N  S  D  R  T  T  N  L  T  H  E  N  Y  A  T  L  S   
 
2521 TGGCCAAAGGATTTAAAGATTGTTGATCCAGGTTTGAAGTTGGGTTACTCCTCTAAGAAG 
841  W  P  K  D  L  K  I  V  D  P  G  L  K  L  G  Y  S  S  K  K   
 
2581 ACTACTGTTACTGTCGAAGCTACCTCTGGTGTCTCTTTGTACACCTGGTTGGACTACCCA 
861  T  T  V  T  V  E  A  T  S  G  V  S  L  Y  T  W  L  D  Y  P   
 
2641 GAAGGTGTCGTTGGTTACTTCGAAGAAAACGCTTTCGTTTTGGCTCCAGGTGAAAAGAAG 
881  E  G  V  V  G  Y  F  E  E  N  A  F  V  L  A  P  G  E  K  K   
 
2701 GAAATTGGTTTCACCGTCTTGGACGACACCACTAACGGTGCCTGGGTTAGAAACATTACC 
901  E  I  G  F  T  V  L  D  D  T  T  N  G  A  W  V  R  N  I  T   
 
2761 GTCCAATCCTTGTGGGACCAAAAAGTTAGAGGTAA 
921  V  Q  S  L  W  D  Q  K  V  R  G  STOP 
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 APPENDIX B 
 
β-mannosidase was analysed for rejected codon pairs (shown in red) according information from the 

Anaconda algorithm (Zalucki and Jennings 2007).  

 
 
GAATTC- 
ATG AGA CAC TCT ATC GGT TTG GCT GCT GCC TTG TTG GCT CCA ACT TTG CCA GTT GCT TTG 
GGT CAA CAC ATT AGA GAC TTA TCC TCT GAA AAG TGG ACC TTG TCT TCT AGA GCT TTG AAC 
AGA ACT GTT CCA GCT CAA TTC CCA TCC CAA GTT CAC TTG GAC TTA TTG AGA GCT GGT GTT 
ATC GGG GAA TAC CAC GGT TTG AAT GAT TTC AAC TTG AGA TGG ATC GCC GCT GCC AAC TGG 
ACC TAC ACC TCT CAA CCA ATT AAG GGT TTG TTG GAT AAC TAT GGT TCT ACT TGG TTG GTT 
TTC GAC GGT TTG GAT ACT TTC GCT ACC ATC TCT ATC TTG TGG ACC GCT AAC AGA GTT CAC 
GGT CAA TCC GTC TCT CCA GTC TCC GGT TCT ATG TAT TTG CCA GCT TTA GAA GCC TGT CAA 
AGA AGG ATC TTG ATT AGA AAG GTT TCT TTC AGA GGT GGC GTT ACC GCC GAA GTT AAC ACC 
TGT TAT TTA CAC ATT GAA TGG CCT GAC GAC GTC CAA TTG ACT TAC GAA TAC CCA AAC AGA 
TGG TTC ATG AGA AAG GAA CAA TCT GAT TTC GGT TGG GAC TGG GGT CCA GCT TTC GCT CCA 
GCT GGT CCA TGG AAG CCA GCT TAC ATC GTT CAA TTG GAT AAG AAG GAA TCT GTC TAC GTT 
TTG AAC ACC GAC TTG GAC ATT TAC AGA AAG AAC CAA ATT AAT TAC TTG CCA CCA GAC CAA 
TCT CAA CCA TGG GTT GTT AAT GCT TCT ATC GAC ATT TTG GGT CCA TTG CCA GCT AAG CCA 
ACC ATG TCC ATT GAA GTT AGA GAC ACT CAT TCC GGT ACT ATC TTG ACT TCC AGA ACC TTA 
AAC AAT GTT TCC GTC GCC GGT AAC GCT ATC ACC GGT GTT ACC GTT TTG GAT GGC TTG AAC 
CCA AAA TTG TGG TGG CCA CAA TCT TCT GTC ATT AGA ACC TCT ACC ATG TTC TTG TCT TTA 
TCT AAG GTT GAA GGT ACT AGA CCA TGG CCA GTG TGG ACT AAC GGT AGA GCC TCT GCT CCA 
TTC TTC TTG AAC CAA AGA AAT ATC ACC GAA GTT CAA AGA GCT CAA GGT ATC GCC CCT GGT 
GCC AAT TGG CAC TTC GAG GTC AAT GGT CAT GAG TTC TAC GCC AAG GGT TCG AAC TTG ATC 
CCA CCA GAT TCT TTT TGG ACT CGT GTC ACT GAA GAA CGT ATC TCT CGT TTG TTC GAC GCC 
GTC GTC GTC GGT AAC CAA AAC ATG TTG AGA GTT TGG TCC TCC GGT GCT TAC TTG CAC GAC 
TAC ATT TAC GAT TTG GCC GAC GAA AAG GGT ATT TTG TTG TGG TCT GAA TTT GAG TTC TCT 
GAT GCT TTA TAC CCA TCC GAT GAT GCT TTT TTG GAA AAC GTC GCT GCT GAA ATT GTC TAC 
AAC GTT AGA AGA GTT AAC CAC CAC CCA TCT TTG GCT TTG TGG GCT GGT GGT AAC GAA ATT 
GAA AGC TTA ATG TTG CCA AGA GTC AAG GAC GCT GCT CCA TCT TCT TAC TCT TAT TAC GTT 
GGT GAA TAC GAA AAG ATG TAC ATC TCC TTG TTC TTG CCA TTG GTT TAC GAA AAC ACT CGT 
TCC ATT TCT TAC TCC CCA TCC TCT ACC ACT GAA GGT TAC TTG TAT ATT GAC TTA TCC GCC 
CCT GTC CCT ATG GCT GAA CGT TAC GAC AAC ACC ACC TCT GGT TCC TAC TAC GGT GAC ACC 
GAC CAT TAC GAC TAC GAT ACC TCT GTC GCT TTC GAT TAC GGT TCT TAC CCA GTC GGT CGT 
TTC GCT AAC GAG TTC GGT TTC CAC TCC ATG CCA TCC TTG CAA ACC TGG CAA CAA GCT GTT 
GAC ACT GAA GAT TTG TAC TTC AAC TCT TCT GTT GTT ATG TTG AGA AAC CAC CAC GAC CCA 
GCT GGT GGC TTG ATG ACC GAT AAT TAC GCT AAC TCT GCT ACT GGT ATG GGT GAA ATG ACC 
ATG GGT GTC ATT TCC TAC TAT CCA ATC CCA AGC AAG TCT GAT CAC ATT TCC AAC TTC TCC 
GCC TGG TGT CAC GCT ACT CAA TTG TTC CAA GCC GAC ATG TAC AAG TCT CAA ATT CAA TTC 
TAC AGA AGA GGT TCC GGT ATG CCA GAA AGA CAA TTG GGT TCT TTG TAC TGG CAA TTG GAA 
GAC ATT TGG CAA GCT CCA TCC TGG GCT GGT ATC GAA TAC GGT GGT AGA TGG AAG GTT TTG 
CAC CAC GTT ATG CGT GAC ATT TAC CAA CCA GTC ATC GTT TCT CCA TTC TGG AAC TAC ACC 
ACC GGT TCC TTG GAC GTT TAC GTT ACC TCC GAC TTG TGG TCT CCA GCT GCC GGT ACT GTC 
GAC TTG ACC TGG TTA GAC TTG TCT GGT AGA CCA ATC GCT GGG AAC GCT GGT ACT CCA AAG 
TCC GTC CCA TTC ACT GTC GGT GGT TTG AAC TCC ACC AGA ATC TAC GGT ACT AAC GTT TCT 
TCT TTG GGT TTG CCA GAC ACT AAA GAC GCT GTC TTG ATC TTG TCC TTG TCC GCC CAC GGT 
AGA TTG CCA AAC TCC GAC AGA ACT ACT AAC TTA ACT CAC GAA AAC TAC GCC ACT TTG TCT 
TGG CCA AAG GAT TTA AAG ATT GTT GAT CCA GGT TTG AAG TTG GGT TAC TCC TCT AAG AAG 
ACT ACT GTT ACT GTC GAA GCT ACC TCT GGT GTC TCT TTG TAC ACC TGG TTG GAC TAC CCA 
GAA GGT GTC GTT GGT TAC TTC GAA GAA AAC GCT TTC GTT TTG GCT CCA GGT GAA AAG AAG 
GAA ATT GGT TTC ACC GTC TTG GAC GAC ACC ACT AAC GGT GCC TGG GTT AGA AAC ATT ACC 
GTC CAA TCC TTG TGG GAC CAA AAA GTT AGA GGT TAA –CTCGAG  
 
 
 
 



5.1. DISCUSSION 
The need to develop alternative energy sources is increasing due to the adverse effects 

of greenhouse gas emissions on the environment and the depletion of fossil fuel 

reserves. Biofuels produced from lignocellulose could (in combination with other 

sustainable energy resources like solar, wind and hydrogen) result in a powerful 

solution to provide cost-effective and sustainable energy (Lynd et al. 2002). 

Lignocellulosic biomass is a renewable, widely distributed and inexpensive source of 

fermentable sugars that can be converted to bioethanol. Constituents of lignocellulose, 

namely cellulose, hemicellulose and lignin are the most abundant polymers on earth. 

Of these, hemicellulose is the second most abundant and consists of xylan and 

mannan. Mannan occurs as glucomannan, galactomannan or galactoglucomannan. 

Due to the complex structure of mannan, various enzymes are needed for its complete 

degradation. The enzymes include endo-β-1,4-mannanases (endohydrolases, that 

randomly cleave the mannan backbone), β-mannosidases (exohydrolases, hydrolyse 

the oligomannans released by endo-β-1,4-mannanases) and α-galactosidases that 

remove the galactose side chains on the mannan backbone (Ademark et al. 1998, 

McCutchen et al. 1996, Stoll et al. 2000). The β-glucosidases and esterases are 

additional enzymes that catalyze the removal of glucose and acetic acid respectively, 

from the mannan chain (Moreira & Filho 2008).  

 

The use of biological processes such as enzyme applications, is becoming more 

frequent in various industries (Coughlan & Hazlewood 1993, Dhawan & Kaur 2007). 

Industries such as the food and feed industry, pulp and paper industry, the detergent 

industry, etc. use mannanases to replace or limit the use of chemical treatments 

(Dhawan & Kuar 2007). Mannanases are currently considered for use in consolidated 

bioprocessing (CBP) where lignocellulosic substrate hydrolysis is a prerequisite for 

the production of bioethanol. CBP is proposed to be the most cost-effective means of 

bioethanol production (from cellulosic biomass), but ultimately requires a 

recombinant microorganism capable of hydrolysing lignocellulose and utilising the 

resulting sugars through fermenation (Lynd et al. 2002). 

 

Saccharomyces cerevisiae is currently the preferred host considered for CBP due to 

its robust nature and high levels of ethanol production (Lynd et al. 2002). Problems 
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regarding low level of foreign gene expression in S. cerevisiae, has led to the search 

and evaluation of alternative yeasts for heterologous protein production (Buckholtz 

and Gleeson 1991, Mattanovich et al. 2004, Romanos et al. 1992). K. lactis is well 

known and has been used extensively for the production of various proteins (van 

Ooyen et al. 2006). Strains of S. cerevisiae and K. lactis have GRAS (Generally 

Regarded As Safe) status and FDA approval, permitting their use in various food and 

feed applications (Dujon 1996, Cregg et al. 2000). In contrast to S. cerevisiae, 

K. lactis displays crabtree negative growth, reduced hyperglycosylation, reduced 

carbon catabolite repression and has a wider substrate range, making K. lactis an 

interesting alternative host (Romanos et al. 1992). Neither S. cerevisiae nor K. lactis 

natively produce mannanase enzymes. The expression of a mannanase enzyme in 

S. cerevisiae and K. lactis creates the opportunity to evaluate and compare the two 

hosts on aspects such as enzyme expression levels, glycosylation of the foreign 

mannanase, biomass production, etc.  

 

5.2. CONCLUSIONS 

• The following could be concluded from this study: 

• The S. cerevisiae Y294[YEpENO-BBH-man1] and K. lactis 

SHR8[YEpENO-BBH.Kl-man1] strains successfully produced and secreted 

Man1 into the culture medium. 

• Extracellular mannanase production levels per cell of S. cerevisiae 

Y294[YEpENO-BBH-man1] was significantly more than that obtained with 

K. lactis SHR8[YEpENO-BBH.Kl-man1]. 

• In K. lactis, the stability of the transformants could not be guaranteed for 

prolonged periods of time due to the tendency of the plasmids to integrate 

after a number of generations and the subsequent development of a 

heterogeneous culture. 

• The disruption of the non-homologous end-joining complex did not contribute 

to the stability of the transformants. 

• Glucose and lactose containing media yielded similar results regarding the 

biomass production of the K. lactis transformants and their levels of 

extracellular mannanase activity (160-180 nkat.ml-1).  
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• Differences in the size of the recombinant Man1 when produced in K. lactis 

and S. cerevisiae indicated that the former glycosylated the protein to a lesser 

extent. 

• Recombinant MndA showed no activity on p-nitrophenyl 

β-D-mannopyranoside, p-nitrophenyl β-D-glucopyranoside or cellobiose. 

Slight hydrolysis zones were observed on plates containing 0.5% Locust Bean 

Gum, indicating endo-mannanase activity. 

• Investigation of the MndA protein sequence indicated 11 possible 

glycosylation sites. The molecular mass of 140 kDa indicated that the protein 

was hyperglycosylated when expressed in S. cerevisiae.  

• Hyperglycosylation was confirmed when treatment with PNGase F resulted in 

a smaller protein species present on SDS-PAGE. Less hyperglycosylation was 

observed with expression of the MndA in the N-glycosylation deficient strain, 

S. cerevisiae NI-C-D4. 

• The native MndA (A. niger) is produced as a dimer with a molecular mass of 

264 kDa on a non-reducing SDS-PAGE (135 kDa monomer under reducing 

conditions). However, no dimer conformation could be detected (for the 

MndA produced by S. cerevisiae) on a non-denaturing gel.  

• Due to the size (2.8 kb) of the mndA gene and when taking into consideration 

that the average S. cerevisiae open reading frame is 1.4 kbp (Hauser et al. 

1999), difficulty in expression and additional metabolic stress is to be 

expected.  

• The information regarding the effect of codon optimisation on translation is 

incomplete. Fast and efficient translation can be detrimental to the folding of 

the emerging peptide, resulting in a non-functional protein (Zalucki and 

Jennings 2007). The analysis of the mndA gene sequence revealed the 

presence of 21 unfavoured codon pairs. These codon pairs can result in 

translational errors (Moura et al. 2005).  

• The MndA protein has unexpected activity on longer chains of Locust Bean 

Gum, which could imply that the enzyme lost the mannosidase activity due to 

the inability to form dimers. 

• The recombinant strain S. cerevisiae NI-C-D4[man1] yielded more 

extracellular activity (251,39 nkat.ml-1) than S. cerevisiae Y294[man1] 
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• The S. cerevisiae Y294[man1mndA] strain showed a 4 fold decrease in 

extracellular endomannanase activity compared to S. cerevisiae Y294[man1]. 

This phenomenon was also previously reported by La Grange et al. (2000) and 

is indicative of the additional metabolic burden placed on the cell due to the 

presence of the mndA gene.  

5.3. FUTURE RESEARCH 

The mannanase which are successfully expressed in S. cerevisiae and K. lactis, but the 

yeasts were unable to grow on mannan as sole carbon source. A β-mannosidase is 

needed for the hydrolysis of the mannan chain to mannose units that can be utilised by 

the hosts to produce ethanol. In this study, the β-mannosidase of A. niger was 

successfully secreted by S. cerevisiae, but yielded a non-functional β-mannosidase. 

Therefore, other sources of β-mannosidases should be investigated. It is advisable to 

consider a monomeric β-mannosidase for expression in S. cerevisiae. 

 

Co-expression of genes in S. cerevisiae have been reported to result in a decrease in 

levels of activity of the individual enzymes, presumably due to the additional 

metabolic burden imposed on the cells. Alternatively, two strains of S. cerevisiae can 

be used in co-culture with the one strain secreting the Man1 and the other strain 

secreting a functional β-mannosidase. Using different vector systems and different 

promoters, a complementary ratio of enzymes can be obtained that would benefit the 

production of ethanol by both strains. Co-culturing is not the desired approach, but 

does provide an alternative short term solution. Furthermore, it would also be 

interesting to see if similar results (decrease in levels of activity of the individual 

enzymes) would be observed with co-expression of genes in K. lactis as host.  

 

It is further suggested that the mndA gene be expressed in K. lactis to determine if 

dimer formation could be observed. Similarly, alternative yeasts like 

Yarrowia lipolytica, H. polymorpha and P. pastoris, should also be evaluated for use 

as host organisms for expression of foreign genes using the man1 as reporter gene 

(Domínguez et al. 1998).  
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Current processes for lignocellulosic conversion to ethanol, is inefficient and 

expensive (Rubin 2008). In spite of several successes, further research in this field is 

required in order to construct ideal organisms for CBP. Extension of substrate and 

product range, improvement of process performance, improvements in product yield 

and elimination of toxic by-products is some of the areas that need attention 

(Ostergaard et al. 2000). 
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