
NON-COMMUTATIVE QUANTUM MECHANICS: PROPERTIES OF
PIECEWISE CONSTANT POTENTIALS IN TWO DIMENSIONS

By

Jacobus Daniël Thom
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ABSTRACT

The aim of this thesis is threefold. Firstly, I give an overview of non-commutative quan-

tum mechanics and build up a description of non-commutative piecewise constant poten-

tial wells in this context. Secondly, I look at some of the stationary properties of a finite

non-commutative well using the mathematical tools laid out in the first part. Lastly, I in-

vestigate how non-commutativity affects the tunneling rate through a barrier. Throughout

this work I give the normal commutative descriptions and results for comparsion.

OPSOMMING

Die doel van hierdie tesis is drievoudig. Eerstens gee ek ’n oorsig van niekommutatiewe

kwantummeganika en bou daarmee ’n beskrywing van niekommutatiewe deelswyskon-

stante potensiaal putte op. Tweedens kyk ek na ’n paar van die stasionêre eienskappe

van ’n eindige niekommutatiewe potensiaal put deur die wiskunde te gebruik wat in die

eerste deel uiteengesit is. Laastens ondersoek ek hoe niekommutatiwiteit die spoed van

tonneling deur ’n potensiaal wal bëınvloed. Dwarsdeur die hierdie hele tesis gee ek die

normale kommutatiewe beskrywings en resultate vir maklike vergelyking.
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Introduction

Background and Purpose

When quantum field theory was first developed in the 1920s, it suffered from nonsen-

sical divergences when calculating even relatively simple quantities. The notion of non-

commuting space-time coordinates was introduced by Snyder [1] more than sixty years

ago. In his article, Snyder stated that these divergences stem from the point interactions

between fields and particles. If one were to introduce a minimum length scale on space-

time, some (or perhaps even all) of these divergences might be removed in this way. Snyder

then went on to show that one can still have a Lorentz invariant space-time, which has

such a natural unit of length, by defining the coordinates as operators. These operators,

however, can no longer commute. They are also different from the non-commutative op-

erators used in this thesis due to the fact that their commutation relations also depend

on momentum [1, 2],

[x̂i, x̂j] = ℓ2 i

~
(x̂ip̂j − x̂j p̂i) , (1)

where ℓ is the abovementioned minimal length. The new algebra in 3 + 1 dimensions, in

terms of these operators, can be found by means of a dimensional reduction as angular

momentum generators of the higher dimensional Lorentz group, SO(1,4). In this way the

generators of Snyder’s space-time are naturally invariant under Lorentz transformations

[2].

Around the same time as when Snyder wrote his article, the procedure by which quan-

tum field theory could be renormalised to remove the inherent divergences contained in

it was developed. This, combined with the fact that a theory which has an uncertainty

relation for position (as expressed by the non-commutativity) is per definition non-local,

led to non-commutative theories receiving little attention until quite recently.

However, as efforts started going into finding a theory that included gravity on a quan-

tum level, it became clear that this theory would have to be fundamentally different from

its predecessors which dealt with quantising the electromagnetic, weak and strong forces.

The main reason for this being that gravity modifies the very frame in which everything
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unfolds, namely space-time [3]. This is not the case with the other forces. When one tries

to make a position measurement with an accuracy greater than that of the Planck length

a tremendous amount of energy is required. This energy will itself modify the precise

geometry of space-time. One sees that a quantum theory of gravity implies an intrinsic

length beyond which cannot be probed [4]. This uncertainty of position might then be

described by coordinates which no longer commute.

Although the non-commutativity used nowadays is still between space coordinates, it

is not exactly the same as that introduced by Snyder. Whereas Snyder gave the non-

commuting coordinates in a way that preserves Lorentz invariance, the most basic formu-

lation of the commutation relations that define the non-commutativity in three dimensions

is not rotationally invariant. It is therefore necessary to twist these relations in some way

to restore Galilean [5] or Poincaré [6, 7] invariance.

In two dimensions, which is the focus of this thesis, however, no such twist is necessary.

Indeed it can easily be shown that a rotation of the coordinates x̂ and ŷ has no effect on

their commutation relation even in the presence of a non-commutativity parameter. I will

show this explicitly at the end of the section on non-commutative matching conditions per

sector of angular momentum, namely Section 2.3.1.

Work done in the last few decades has greatly added to the support for non-commutative

space-time [8, 9]. This support in turn (re-)kindled activity studying the effects of non-

commutativity in a wide variety of physics disciplines. These include the field that gave rise

to the notion of spatial non-commutativity, namely quantum field theory [4]. The way that

non-commutativity effects quantum mechanics and quantum many-body systems [5, 10–

17], quantum electrodynamics [18–20], the standard model [21] and cosmology [22, 23] has

also been studied since then.

Even though so much work was being done studying the effects of non-commutativity,

it has only been in the last few years that any significant attention was paid to the

formal aspects of a non-commutative quantum mechanical theory. Some of the ideas that

make up such an interpretational framework were first used to give a precise definition of

the non-commutative potential well and give the spectrum of an infinite well in such a

non-commutative setting [24]. In a subsequent article this was expanded upon to give a

consistent theoretical framework of non-commutative quantum mechanics [25].

The purpose of this thesis is threefold. First, to give an overview of this non-commutative
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quantum mechanics and use the mathematical technology it contains to describe how

non-commutative piecewise constant wells can be constructed. Second, to look at some

of the stationary properties of a finite non-commutative well. And third, to see how

non-commutativity affects the tunneling rate through a barrier.

The second part depends greatly on investigating the effect that non-commutativity

has on the matching conditions at the boundaries of such a well and the subsequent

change to the coefficients of the wavefunction. These changes hold possible physical

consequences which can hopefully guide one in the analysis and construction of three-

dimensional theories, which are complicated by the fact that non-commutativity breaks

rotational invariance. Although scattering, which forms a major part of the results given

here, has been studied in detail in non-commutative quantum field theories [4, 26], much

less work has been done in the context of non-commutative quantum mechanics in either

two or three dimensions [27–29]. Furthermore, these studies use a first order expansion

of the non-commutative parameter of the Schrödinger equation that has undergone ei-

ther a Bopp-shift or alternatively written as a Moyal product. This approach works for

analytic potentials, but is inadequate for something like the well. The commuting coordi-

nates which are introduced in this way are also hard to give physical meaning to, which

complicates the interpretation of the results. The formulation and mathematics of the

non-commutative quantum mechanics given in this thesis on the other hand allows one to

perform exact, if numerical, calculations of quantities such as bound state energies, phase

shifts, differential and total scattering cross-sections.

The third part I mentioned explores a very simple case of time evolution in the non-

commutative quantum mechanical framework used throughout this thesis. Tunneling in

general is a non-perturbative phenomenon and quite sensitive to the parameters of a

system. This lets one hope that such events might enhance any effect non-commutativity

may have, making detection more likely. The specific case I explore here is that of a

Gaussian wave packet tunneling through an annulus barrier. At the time of writing I

could find no similar calculations in the literature and therefore present a simple numerical

comparison of the probability that a particle (as given by the wave packet) has tunneled

after a certain amount of time.
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Organisation of Thesis

This thesis is divided into four chapters. The first chapter deals with the formalism

of non-commutative quantum mechanics as well as some interpretational and technical

aspects of it. A lot of the notation used throughout the rest of this thesis is also fixed

here. I start off with a brief outline of how normal commutative quantum mechanics

is formulated and then build up non-commutative quantum mechanics by analogy. In

this chapter I also go into the detail of position measurement and probability and the

differences (and similarities) it has with ordinary quantum mechanics. Finally I show that

probability is still conserved under time evolution.

The second chapter contains some more mathematical concepts. Here I explain concepts

such as the non-commutative piecewise constant potential and how such a potential is

constructed. I then go on to introduce the object one thinks of as the wavefunction

in a non-commutative setting. This section is followed by an important section which

starts the explanation of how the various coefficients of the wavefunction are found for the

various regions in a piecewise constant potential by means of non-commutative matching

conditions which differ completely from commutative ones. This explanation is concluded

in a section on how the basis in which the matching conditions are given (the Fock basis)

is related to the one of wavefunctions (the position basis). This chapter is rounded off by a

short illustration of how the non-commutative matching conditions affect the wavefunction.

The third chapter is the first one to contain results obtained from calculations using the

mathematics and formalism of the first two chapters. It deals with the time-independent

properties of a two-dimensional non-commutative potential well. As such it gives a detailed

implementation of all the necessary mathematics and then gives the results of the various

numerical calculations performed, such as bound state energies, phase shifts and cross-

sections.

The fourth and final chapter takes a first look at how a non-commutative system be-

haves under time evolution. To this end a two-dimensional non-commutative annulus is

placed inside an infinite non-commutative well. A Gaussian wave packet is constructed

in the inner most region of the annulus and allowed to evolve in time. A comparison of

commutative and non-commutative results is then made, which concludes the thesis.
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Work Based on Thesis

I would like to make one final comment before the start of the thesis proper. When I

started writing some of the preliminary material for this thesis I also started working on an

article based on the results contained in Chapter 3. In May of 2009, I made a presentation

of the work that would be contained in this article at the International Workshop on Path

Integrals, Coherent States and Non-commutative Geometry. Subsequently, the article,

Bound state energies and phase shifts of a non-commutative well, was published in Journal

of Physics A in October 2009 [30].
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CHAPTER 1

Non-commutative Quantum Mechanics

This work studies some of the properties of simple systems when the components of posi-

tion no longer commute, as it does in normal quantum mechanics. It is only natural, there-

fore, to start this work with a chapter that details the formalism of this ‘non-commutative’

quantum mechanics. As such, I give here the basic concepts and notation used throughout

the rest of the work, as well as the framework in which results should be interpreted. Most

of the discussion here will be restricted to two dimensions, as it will be in the rest of this

work.

1.1 Formalism

1.1.1 Review of Commutative Quantum Mechanics

To best understand where and how non-commutative quantum mechanics differs from

commutative quantum mechanics (and also where they are the same), it is a good idea

to review the basic tenets of the latter [25, 31, 32]. The basic postulates of quantum

mechanics are:

• Postulate 1. For each classical observable A one has a corresponding operator Â at

the quantum level. The only possible values that one can measure in an experiment

are the eigenvalues of the operator Â.

• Postulate 2. Each state of the system is uniquely represented by a so-called density

operator ρ̂. This operator must be Hermitian, non-negative and have a trace of

unity.

• Postulate 3. If the system is described by such an operator ρ̂, then the probability

of finding an eigenvalue a of observable Â when a measurement is done is given by

P (a) = 〈a| ρ̂ |a〉 = tr(π̂aρ̂), where π̂a = |a〉 〈a| is a Projection Valued Measure and

|a〉 is the normalised eigenstate of Â corresponding to the eigenvalue.

• Postulate 4. After a measurement the system is in the state defined by the specific

(eigen)value that was obtained, ρ̂ = |a〉 〈a|, and a subsequent measurement immedi-

1



1. Non-commutative Quantum Mechanics 2

ately following the first will yield a with probability one. This postulate is sometimes

known as von Neuman’s projection postulate.

If one wants to describe a particle moving in two dimensions, one typically has R2 as the

configuration space and the wavefunction ψ(~x) is an element of the Hilbert space which

is L2, the space of square integrable functions. The inner product on L2 is defined to be

(φ, ψ) =
∫

d2~x φ̄(~x)ψ(~x), where the bar over φ indicates complex conjugation. A very

useful commonly used shorthand is Dirac notation where one associates |ψ〉 with elements

of the Hilbert space, ψ(~x), and 〈ψ| with elements of the dual space, the linear functionals.

These linear functionals map the elements of the Hilbert space onto complex numbers,

〈φ|ψ〉 = (φ, ψ).

Now that something has been said about the states of the quantum system, it is time to

say something about the operators which act on these states, namely the observables. The

Hermitian operators x̂i and p̂i, acting on the elements of L2, together form the abstract

Heisenberg algebra,

[x̂i, x̂j] = 0

[p̂i, p̂j] = 0

[x̂i, p̂j] = i~δi,j, where i = 1, 2. (1.1)

An irreducible unitary representation of this algebra on L2 is

x̂iψ(~x) = xiψ(~x) (1.2)

p̂iψ(~x) = −i~
∂ψ(~x)

∂xi

, i = 1, 2, (1.3)

which is the wave mechanical representation. Since by the Stone-von Neumann theorem

all such irreducible unitary representations are unitarily equivalent [33], it does not matter

which one one chooses to make calculations with.
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1.1.2 Introducing Non-commutativity

Non-commutativity in the context of this work means mathematically that [x̂, ŷ] = 0

no longer holds [24, 25], but is replaced by,

[x̂, ŷ] = iθ, (1.4)

where θ can be taken as positive without loss of generality. This commutation relation

lets one introduce some boson creation and annihilation operators and define x̂ and ŷ in

terms of them,

x̂ =

√

θ

2
(b + b†) (1.5)

ŷ =

√
θ

i
√

2
(b − b†), (1.6)

where [b, b†] = 1 as usual. This means that the non-commutative configuration space,

which is defined by x̂ and ŷ, is isomorphic to boson Fock space. Therefore, if one denotes

the configuration space by Hc (since Fock space is of course a Hilbert space itself), then

one can define the non-commutative configuration space explicitly as,

Hc = spanc{|n〉 ≡
1√
n!

(b†)n |0〉}n=∞
n=0 , (1.7)

where spanc is the closure of the span taken over all complex numbers and |0〉 the Fock

vacuum state annihilated by b, i.e. b |0〉 = 0.

With the non-commutative configuration space in place, one can move on to defining

the space of quantum states. This so-called quantum Hilbert space, denoted by Hq, is

a generalisation of the L2 space one has commutatively. If one considers a bounded

operator acting on non-commutative configuration space, then Hq is just the set of all

these operators with finite trace. In other words, the quantum Hilbert space is the set of

Hilbert-Schmidt operators such that

Hq = {ψ̂(x̂, ŷ) : ψ̂(x̂, ŷ) ∈ B(Hc), trc

(

ψ̂(x̂, ŷ)†, ψ̂(x̂, ŷ)
)

< ∞}, (1.8)

where B(Hc) is the set of bounded operators on Hc and trc denotes that the trace is taken

over non-commutative configuration space. This definition also naturally leads one to
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define an inner product on the space, namely

(φ̂(x̂, ŷ), ψ̂(x̂, ŷ)) = trc

(

φ̂(x̂, ŷ)†ψ̂(x̂, ŷ)
)

, (1.9)

so that Hq is indeed a Hilbert space [34].

I will make a note on notation here. Following [24], the states in the non-commutative

configuration space are given by |·〉 in Dirac notation. The states of Hq on the other hand

are denoted by round brackets, ψ̂(x̂, ŷ) =
∣
∣
∣ψ̂

)

, and, as commutatively, the elements of the

dual space of Hq are
(

φ̂
∣
∣
∣. Combining one element of each space once again maps these

onto complex numbers,
(

φ̂|ψ̂
)

=
(

φ̂, ψ̂
)

= trc

(

φ̂†ψ̂
)

.

The next step is to find a unitary representation on Hq of the non-commutative Heisen-

berg algebra, which is given here by

[x̂, ŷ] = iθ

[p̂x, p̂y] = 0

[x̂, p̂x] = i~

[ŷ, p̂y] = i~, (1.10)

where x̂, ŷ, p̂x and p̂y are all Hermitian.

Using capital letters to distinguish operators acting on the quantum Hilbert space from

those acting on non-commutative configuration space (following the notation in [24] once

again), one defines such a representation in terms of X̂, Ŷ , P̂x and P̂y as follows,

X̂ψ̂(x̂, ŷ) = x̂ψ̂(x̂, ŷ) (1.11)

Ŷ ψ̂(x̂, ŷ) = ŷψ̂(x̂, ŷ) (1.12)

P̂xψ̂(x̂, ŷ) =
~

θ
[ŷ, ψ̂(x̂, ŷ)] (1.13)

P̂yψ̂(x̂, ŷ) = −~

θ
[x̂, ψ̂(x̂, ŷ)]. (1.14)

Position is therefore defined to act by left multiplication of the corresponding coordinate

and momentum acts adjointly. One thing to remember about the θ → 0 limit of these

kinds of non-commutative operators is that it involves a careful process of going from the

non-commutative description and mathematics to the commutative equivalents. As such,
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it is not simply the straightforward situation of setting theta to zero, where one would

end up with x̂ = 0, and so forth.

I will make a note here on the use of the †-sign used to denote Hermitian conjugation in

what follows and elsewhere in this work. Since capitalised operators and small operators

are hardly ever used together, the †-sign on operators such as P̂ † or B† for example indicate

Hermitian conjugation on the quantum Hilbert space, whereas if it is used on operators

such as x̂† or b† it indicates Hermitian conjugation with respect to the non-commutative

configuration space.

Some further useful definitions are,

X̂ =

√

θ

2
(B + B†) (1.15)

Ŷ =

√
θ

i
√

2
(B − B†) (1.16)

P̂ = P̂x + iP̂y (1.17)

P̂ † = P̂x − iP̂y, (1.18)

where P̂ 2 = P̂ 2
x + P̂ 2

y = P̂ †P̂ = P̂ P̂ †.

If one defines the actions of B and B† as

Bψ̂(x̂, ŷ) = bψ̂(x̂, ŷ) (1.19)

B†ψ̂(x̂, ŷ) = b†ψ̂(x̂, ŷ), (1.20)

then

P̂ ψ̂(x̂, ŷ) = −i~

√

2

θ
[b, ψ̂(x̂, ŷ)] (1.21)

P̂ †ψ̂(x̂, ŷ) = i~

√

2

θ
[b†, ψ̂(x̂, ŷ)]. (1.22)

With the above in place and taking the commutative postulates to hold with the replace-

ment of L2 by Hq one has a solid interpretational framework.
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1.1.3 Position Measurement

A note must be made on the measurement of position. Since the commutator of these

variables no longer vanishes it is impossible to make simultaneous measurements of a

particle’s x- and y-coordinates. The best that one can do in this case is to construct a

state of which the uncertainty in either direction is minimal. This will ensure that the

notion of position is maintained in as much as that a particle is localised around a certain

point. While there may be different ways of solving this problem [35], the procedure

outlined here uses the notion of Operator Valued Measures.

In terms of the non-commutative configuration space, namely boson Fock space, the

states of least uncertainty are well known. These are the normalised coherent states,

|z〉 = e−zz̄/2ezb† |0〉 , (1.23)

where |z〉 is shorthand for |z, z̄〉 and z = 1√
2θ

(x + iy). The coherent states also provide an

overcomplete basis for non-commutative configuration space. One can form an operator

out of two of these states by way of an outer product,

|z) = |z〉 〈z| . (1.24)

Since trc(|z〉 〈z|z〉 〈z|) < ∞,

trc(|z〉 〈z|z〉 〈z|) =
∞∑

n=0

〈n|z〉 〈z|n〉

=
∞∑

n=0

e−|z|2 zn

√
n!

z̄n

√
n!

= e−|z|2
∞∑

n=0

(|z|2)n

n!

= 1 (1.25)

these operators are of Hilbert-Schmidt type and are elements of Hq. These states also

have the property that

B |z) = b |z〉 〈z| = e−zz̄/2[b, ezb† ] |0〉 〈z| = ze−zz̄/2ezb† |0〉 〈z| = z |z) , (1.26)
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which leads one to naturally consider x and y, which make up z, to be coordinates.

However, this also means that |z) is an eigenstate of the operator B which is not Hermitian.

Subsequently, they are not mutually orthogonal. As a matter of fact, since the overlap of

two such states is (z|w) = | 〈z|w〉 |2 and

〈z|w〉 =
∞∑

n=0

〈z|n〉 〈n|w〉

=
∞∑

n=0

e−|z|2/2 z̄n

√
n

e−|w|2/2 wn

√
n

= e−(|z|2+|w|2)/2+z̄w

⇒ | 〈z|w〉 |2 = e−|z−w|2 , (1.27)

it is clear that (z|w) will always be non-zero except when the two points in question

are infinitely separated. This is what makes position measurement so difficult in non-

commutative quantum mechanics. A way of dealing with this difficulty has been developed

in the context of open quantum systems [36], namely Positive Operator Valued Measures.

In order to find such a measure that will allow one to give a consistent probabilistic

interpretation one starts by finding a resolution of the identity in terms of these |z).

Whereas |z〉 provided an overcomplete basis for Hc, the |z) provide an overcomplete basis

for Hq. An identity operator on the quantum Hilbert space in terms of these states is

given by,

1q =

∫
dz dz̄

π
|z) e

←
∂
∂z̄

→
∂
∂z (z| , (1.28)

where the arrows indicate the direction of differentiation. This identity can be proven by

using an expansion for an operator in terms of the coherent states. This expansion works

as follows. One starts with an expansion of some operator â in term of coherent states

[37],

â =

∫

dz dz̄ a(z, z̄) |z〉 〈z| . (1.29)
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To find a(z, z̄) one starts by looking at the diagonal elements of â,

〈w| â |w〉 =

∫

dz dz̄ a(z, z̄) 〈w|z〉 〈z|w〉 , (1.30)

where

〈z|w〉 = e−|z|2/2−|w|2/2 〈0| ez̄bewb† |0〉

= e−|z|2/2−|w|2/2
∑

n,m

1√
n!m!

z̄nwm 〈n|m〉

= e−|z|2/2−|w|2/2
∑

n

1

n!
(z̄w)n = e−|z|2/2−|w|2/2+z̄w. (1.31)

Therefore,

〈w| â |w〉 =

∫

dz dz̄ a(z, z̄)e−|z|2/2−|w|2/2+zw̄−|z|2/2−|w|2/2+z̄w

=

∫

dz dz̄ a(z, z̄)e−|z−w|2 | Let v = z − w

=

∫

dv dv̄ a(v + w, v̄ + w̄)e−|v|2 | Use f(x + a) = ea d
dx f(x)

=

[∫

dv dv̄ e−|v|2ev ∂
∂w

+v̄ ∂
∂w̄

]

a(w, w̄). (1.32)

Consider a typical term in the operator acting on a(w, w̄),

1

j!

∫

dv dv̄ e−|v|2(v
∂

∂w
+ v̄

∂

∂w̄
)j =

1

j!

∫

dv dv̄ e−|v|2
∑

ℓ

(
j

ℓ

)

vj−ℓv̄ℓ(
∂

∂w
)j−ℓ(

∂

∂w̄
)ℓ,(1.33)

where we used the binomial theorem to expand (v ∂
∂w

+ v̄ ∂
∂w̄

)j. Setting v = qeiϕ lets one

do the integral over v and v̄ easily,

∫

dv dv̄ e−|v|2vj−ℓv̄ℓ =

∫ 2π

0

dϕ eiϕ(j−2ℓ)

︸ ︷︷ ︸

2πδj,2ℓ

∫ ∞

0

dq qj+1e−q2

= 2π δj,2ℓ

∫ ∞

0

dq q2ℓ+1e−q2

= δj,2ℓ πℓ!. (1.34)
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Therefore one finds that,

∑

j

1

j!

∫

dv dv̄ e−|v|2(v
∂

∂w
+ v̄

∂

∂w̄
)j =

∑

ℓ

(2ℓ!)

(2ℓ!)(ℓ!)2
πℓ!(

∂

∂w

∂

∂w̄
)ℓ

= πe
∂2

∂w∂w̄ . (1.35)

Finally by inverting equation (1.32) one is left with the following result,

a(w, w̄) =
1

π
e−

∂2

∂w∂w̄ 〈w| â |w〉 . (1.36)

Therefore, the expansion for a genereal operator â in terms of coherent states is,

â =
1

π

∫

dz dz̄
(

e−
∂2

∂z∂z̄ 〈z| â |z〉
)

|z〉 〈z| . (1.37)

One small step before applying this expansion is to note that
(

z|ψ̂
)

= 〈z| ψ̂ |z〉,

(

z|ψ̂
)

= trc(|z〉 〈z| ψ̂)

=
∞∑

n=0

〈n|z〉 〈z| ψ̂ |n〉

=
∑

n

e
−|z|2

2

zn

√
n!

〈z| ψ̂ |n〉

= 〈z| ψ̂
∑

n

e
−|z|2

2

zn

√
n!

(b†)n

√
n!

|0〉

= 〈z| ψ̂e
−|z|2

2 ezb† |0〉

= 〈z| ψ̂ |z〉 . (1.38)

Then one uses the coherent state expansion to write,

ψ̂ =
∣
∣
∣ψ̂

)

=

∫

dz dz̄ |z〉 〈z|
(

1

π
e−

∂
∂z̄

∂
∂z 〈z| ψ̂ |z〉

)

=

∫
dz dz̄

π
|z) e−

∂
∂z̄

∂
∂z

(

z|ψ̂
)

. (1.39)
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Let me write u(z, z̄) = |z) and vn(z, z̄) = ∂n

∂zn

(

z|ψ̂
)

. Then the integral reads,

∫
dz dz̄

π
u(z, z̄)e−

∂
∂z̄

∂
∂z v0(z, z̄) =

∞∑

n=0

(−1)n

n!

∫
dz dz̄

π
u(z, z̄)

∂n

∂z̄n
vn(z, z̄). (1.40)

Consider a general term in the sum and use integration by parts to write,

∫
dz dz̄

π
u(z, z̄)

∂n

∂z̄n
vn(z, z̄) = −

∫
dz dz̄

π

∂u

∂z̄

∂n−1vn

∂z̄n−1

= (−1)2

∫
dz dz̄

π

∂2u

∂z̄2

∂n−2vn

∂z̄n−2

= (−1)3

∫
dz dz̄

π

∂3u

∂z̄3

∂n−3vn

∂z̄n−3

...

= (−1)n

∫
dz dz̄

π

∂nu

∂z̄n
vn(z, z̄), (1.41)

where the boundary terms are zero each time due to the Gaussian e
−|z|2

2 term in both u

and vn. This means that

∣
∣
∣ψ̂

)

=
∞∑

n=0

(−1)n

n!
(−1)n

∫
dz dz̄

π

∂nu

∂z̄n
vn(z, z̄)

=
∞∑

n=0

1

n!

∫
dz dz̄

π

∂nu

∂z̄n
vn(z, z̄)

=
∞∑

n=0

1

n!

∫
dz dz̄

π

(
∂n

∂z̄n
|z)

)(
∂n

∂zn

(

z|ψ̂
))

=

∫
dz dz̄

π
|z) e

←
∂
∂z̄

→
∂
∂z

(

z|ψ̂
)

, (1.42)

which proves the identity.

A more elegant way of proving this is by starting from a more general version of this

resolution of identity. Using the fact that on non-commutative configuration space one

can write the identity operator in terms of the coherent states as 1c =
∫

d2z
π

|z〉 〈z| one sees

that

1q =

∫
d2zd2w

π2
|z, w) (z, w| , (1.43)
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where |z, w) = |z〉 〈w|, since,

∫
d2zd2w

π2
|z, w)

(

z, w|ψ̂
)

=

∫
d2zd2w

π2
|z〉 〈w| 〈z| ψ̂ |w〉

=

∫
d2zd2w

π2
|z〉 〈z| ψ̂ |w〉 〈w|

= ψ̂. (1.44)

The states |z, w) still obey B |z, w) = b |z〉 〈w| = z |z, w) and as such they are still states

that can be used to describe position. However, they have another degree of freedom in

w. Whether this extra degree of freedom has any physical meaning, or whether it is just

useful mathematically remains to be seen.

The identity operator given just in terms of z can now essentially be obtained by

performing the integration over w,

∫
d2zd2w

π2
|z, w) (z, w|

=

∫
d2zd2v

π2
|z, z + v) (z, z + v|

=

∫
d2zd2v

π2
|z〉 〈0| e− |z+v|2

2 ez̄b+v̄be−
|z+v|2

2 ezb†+vb† |0〉 〈z|

=

∫
d2zd2v

π2
|z〉 〈z| ev̄be−(zv̄+z̄v+|v|2)evb† |z〉 〈z|

=

∫
d2zd2v

π2
e−|v|2ezb† |0〉 〈0| e−zz̄+z̄bev̄

←
∂
∂z̄ ev ∂

∂z e−zz̄+zb† |0〉 〈0| ez̄b

=

∫
d2zd2v

π2
e−|v|2 |z)

∞∑

n,m=0

1

n!m!
v̄nvm

←
∂n

∂z̄n

∂m

∂zm
(z|

=

∫
d2z

π2
|z)

∞∑

n,m=0

1

n!m!

∫ 2π

0

dφeiφ(m−n)

∫ ∞

0

dre−r2

rn+m+1

←
∂n

∂z̄n

∂m

∂zm
(z|

=
2

π

∫

d2z |z)
∞∑

n=0

1

(n!)2

Γ(n + 1)

2

←
∂n

∂z̄n

∂n

∂zn
(z|

=
1

π

∫

d2z |z) e
←
∂
∂z̄

∂
∂z (z| . (1.45)

Going from the fourth last to the third last line involved writing v as v = reiφ and

reaching the second last line made use of the facts that
∫ 2π

0
dφeiφ(m−n) = 2πδn,m and

∫ ∞
0

dre−r2

r2n+1 = 1
2
Γ(n + 1).
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With the identity operator on the quantum Hilbert space in place, one can now continue

with finding an operator valued measure to use in constructing a probabilistic framework

for position measurement. If one were to introduce the operator,

π̂z =
1

2πθ
|z) e

←
∂
∂z̄

∂
∂z (z| , (1.46)

then it is immediately clear that

∫

dx dy π̂z =
1

π

∫

d2z |z) e
←
∂
∂z̄

∂
∂z (z| = 1q. (1.47)

This operator π̂z is self-adjoint on the quantum Hilbert space, positive and integrates to

the identity. It therefore meets the criteria of being a Positive Operator Valued Measure

as defined in [36]. A consistent probabilistic interpretation can now be given for finding

a particle at a point (x, y) (remember z = 1√
2θ

(x + iy)). One proceeds as one would

commutatively, except that the objects in question now come from the quantum Hilbert

space. In other words, if the probability of finding a particle at (x, y) is given by P (x, y)

and the system is in the state ρ̂ =
∣
∣
∣ψ̂

) (

ψ̂
∣
∣
∣, then

P (x, y) = trq(π̂zρ̂) =
(

ψ̂
∣
∣
∣ π̂z

∣
∣
∣ψ̂

)

≥ 0. (1.48)

This definition also lets one quickly verify that the probabilities sum to one,

∫

dx dy P (x, y) =

∫

dx dy
(

ψ̂
∣
∣
∣ π̂z

∣
∣
∣ψ̂

)

=
(

ψ̂|ψ̂
)

= 1, (1.49)

assuming that the states
∣
∣
∣ψ̂

)

are normalised.

Although the π̂z are Hermitian on Hq they are not orthogonal as would usually be the

case commutatively. Due to this fact, statements about the final state of a system no

longer apply, since an immediate repetition of a measurement may give one a different

result than the first measurement. The von Neumann projection postulate (Postulate

4) no longer applies as written down in the beginning of this chapter. Instead, as was

done in [36], one can write the operators π̂z as the product of another operator (so-called

detection operators) and its Hermitian conjugate (on quantum Hilbert space), since they



1. Non-commutative Quantum Mechanics 13

are positive,

π̂z = Â†
zÂz, (1.50)

where any Âz of the following form will do,

Âz = Ûzπ̂
1

2
z , (1.51)

and Ûz is unitary.

The fourth postulate gets replaced under these circumstances by [36]

• Postulate 4. If the system starts in the pure state
∣
∣
∣ψ̂

)

, then after a measurement the

system will be in the state
∣
∣
∣φ̂

)

= Âz√

(ψ̂|Â†Â|ψ̂)

∣
∣
∣ψ̂

)

. Similarly, if it was in the mixed

state ρ̂, then it will be in the state ρ̂z = Âρ̂Â†

tr(Â†Âρ̂)
afterwards.

As one can see, in both these cases the final state of the system depend on an unitary

transformation over which one has no control. This is yet another way in which the

inherent uncertainty associated with introducing non-commutative co-ordinates manifests

itself.

1.1.4 Conservation of Probability

One thing that is important to verify in general, but also specifically for the chapter on

time dependent tunneling, is that probability is still a conserved quantity. To check this

one needs to show that the norm of a state does not change under time evolution of the

system. Consider a Hamiltonian with some general potential,

Ĥ =
P̂ 2

2µ
+ V̂ (X̂, Ŷ ), (1.52)

where P̂ 2 = P̂ 2
x + P̂ 2

y = P̂ †P̂ = P̂ P̂ † for easy reference.

Just as one requires the potential to be real in commutative quantum mechanics, one

requires here that the potential is Hermitian when written in terms of operators acting on

non-commutative configuration space,

V̂ †(x̂, ŷ) = V̂ (x̂, ŷ). (1.53)
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The time dependent Schrödinger equation is given by,

i~
∂ψ̂

∂t
= Ĥψ̂, (1.54)

where ψ̂ = ψ̂(x̂, ŷ, t) here.

Analogously to what one does in the commutative case, one multiplies (1.54) from the left

by ψ̂† and the Hermitian conjugate of (1.54) by ψ̂ from the right. Therefore, one obtains,

i~ψ̂†∂ψ̂

∂t
= ψ̂†

[
~

2

2µθ2

(

[ŷ, [ŷ, ψ̂]] + [x̂, [x̂, ψ̂]]
)

+ V̂ (x̂, ŷ)ψ̂

]

(1.55)

−i~
∂ψ̂†

∂t
ψ̂ =

[
~

2

2µθ2

(

[ŷ, [ŷ, ψ̂†]] + [x̂, [x̂, ψ̂†]]
)

+ ψ̂†V̂ (x̂, ŷ)

]

ψ̂. (1.56)

Subtracting the second equation from the first gives one,

∂

∂t
(ψ̂†ψ̂) =

~

2iµθ2

[

ψ̂†
(

[ŷ, [ŷ, ψ̂]] + [x̂, [x̂, ψ̂]]
)

−
(

[ŷ, [ŷ, ψ̂†]] + [x̂, [x̂, ψ̂†]]
)

ψ̂
]

.(1.57)

Consider the following constructions,

[x̂, ψ̂†[x̂, ψ̂]] = ψ̂†[x̂, [x̂, ψ̂]] + [x̂, ψ̂†][x̂, ψ̂] (1.58)

[x̂, [x̂, ψ̂†]ψ̂] = [x̂, [x̂, ψ̂†]]ψ̂ + [x̂, ψ̂†][x̂, ψ̂] (1.59)

⇒ ψ̂†[x̂, [x̂, ψ̂]] = [x̂, ψ̂†[x̂, ψ̂]] − [x̂, ψ̂†][x̂, ψ̂] (1.60)

⇒ [x̂, [x̂, ψ̂†]]ψ̂ = [x̂, [x̂, ψ̂†]ψ̂] − [x̂, ψ̂†][x̂, ψ̂] (1.61)

Using the above one sees that one can write equation (1.57) purely as the sum of commu-

tators,

∂

∂t
(ψ̂†ψ̂) =

~

2iµθ2

[(

[ŷ, ψ̂†[ŷ, ψ̂]] − [ŷ, ψ̂†][ŷ, ψ̂] + [x̂, ψ̂†[x̂, ψ̂]] − [x̂, ψ̂†][x̂, ψ̂]
)

−
(

[ŷ, [ŷ, ψ̂†]ψ̂] − [ŷ, ψ̂†][ŷ, ψ̂] + [x̂, [x̂, ψ̂†]ψ̂] − [x̂, ψ̂†][x̂, ψ̂]
)]

=
~

2iµθ2

[

[ŷ, ψ̂†[ŷ, ψ̂]] − [ŷ, [ŷ, ψ̂†]ψ̂] + [x̂, ψ̂†[x̂, ψ̂]] − [x̂, [x̂, ψ̂†]ψ̂]
]

=
~

2iµθ2

[

[ŷ, ψ̂†[ŷ, ψ̂] − [ŷ, ψ̂†]ψ̂] + [x̂, ψ̂†[x̂, ψ̂] − [x̂, ψ̂†]ψ̂]
]

=
~

2iµθ2
([ŷ, ĵ1] + [x̂, ĵ2]), (1.62)
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where

ĵ1 = ψ̂†[ŷ, ψ̂] − [ŷ, ψ̂†]ψ̂ (1.63)

ĵ2 = ψ̂†[x̂, ψ̂] − [x̂, ψ̂†]ψ̂. (1.64)

The operators on the RHS of equation (1.62) are per construction of Hilbert-Schmidt

type. Doing a trace of them over non-commutative configuration space therefore yields

finite results per definition. Since the RHS of (1.62) consists of commutators and one can

take cyclic permutations within a trace without changing its value, the trace of that side

of the equation is zero. Therefore one finds that

trc

(
∂

∂t
(ψ̂†ψ̂)

)

=
∂

∂t
trc

(

ψ̂†ψ̂
)

=
∂

∂t

(

ψ̂|ψ̂
)

= 0, (1.65)

which indicates that the total probability of the system is conserved, as one would expect.



CHAPTER 2

Non-commutative Piecewise Constant Potentials

In this chapter I will discuss the constant potentials used in this work in their non-

commutative form. There are two potentials used, namely the ’square’ (or in this case

circular) well and the annulus. I will also discuss related topics here, such as the form of

the wavefunction and the way matching conditions are constructed.

2.1 Constructing Non-commutative Piecewise Constant Poten-

tials

As soon as one chooses spatial coordinates to no longer commute with each other, one

runs into the problem of defining a sharp boundary. The x− and y−coordinates no longer

commuting implies that for a potential depending on these coordinates, if one fixes, say,

the x-coordinate, then one can never fix the y-coordinate, but rather it will have a certain

spread determined by θ. However, it is exactly this additional feature that one wishes

to investigate and therefore one requires a way of mathematically capturing this inherent

fuzziness, while still allowing one to make relatively simple analyses.

A solution was proposed by Scholtz et al. [24, 25] by using projection operators to define

the various regions of constant potential. While they only treated the non-commutative

well in that paper, the ideas discussed there easily extend to any number of piecewise

constant potentials. The basic idea is that one constructs a sum of states from the non-

commutative configuration space (here Fock states). The range of states summed over in

each projection operator corresponds to an area having the geometry of a circular annulus,

all of these annuli being concentric with each other, which in turn specifies the different

regions of the potential, beginning with an inner disk centered at the origin.

To make these statements somewhat more concrete, one now defines a general potential

16
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consisting of NV piecewise constant sections,

V̂ =

NV∑

i=1

Vi Pi (2.1)

Pi =

Ni∑

n=Ni−1+1

|n〉 〈n| , with N0 = −1 and Ni=NV
= ∞, (2.2)

where Vi are constants and Pi is the projection operator that demarcates a region in the

potential. From the definition of the Pi’s it is easy to see that they are Hermitian on

the non-commutative configuration space and that they obey the standard properties of

projection operators, such as P 2
i = 1 and Pi Pj = 0 when i 6= j. In general the Pi’s cover

all of the non-commutative configuration space, so that

NV∑

i=1

Pi = 1c, (2.3)

where 1c denotes the identity operator on Hc.

To give an example of a V̂ , for the non-commutative well one has two regions, NV = 2,

and

V̂ = V1 P1 + V2 P2

= V1

N1∑

n=0

|n〉 〈n| + V2

∞∑

n=N1+1

|n〉 〈n| . (2.4)

In order to connect the non-commutative potential to its commutative counterpart, the

radial operator is introduced. Since I am working in two dimensions, this operator is

r̂2 = x̂2 + ŷ2, (2.5)

which can be written in terms of the creation and annihilation operators b and b† as

r̂2 = θ(2b†b + 1). (2.6)

In the case of the non-commutative well, the boundary between the inner and outer regions

is defined by what N1 is. From the definition of the radial operator it is clear that the
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corresponding commutative radius should be

R2 = θ(2N1 + 1). (2.7)

The expression for the radius shows that in the departure from normal commutative

quantum mechanics one picks up a quantisation of area in units of θ. The effects of this

quantisation slowly vanish as θ → 0 and go over into commutative results. This was shown

explicitly for the infinite well in [25] and one finds the same trend in the results presented

in this work. The important thing to remember here is that as θ → 0 one needs the

commutative potential to stay the same. That means that R should remain fixed. The

correct way then of taking the θ → 0 limit is to increase N1 as θ decreases.

2.2 Non-commutative Wavefunction

To find the non-commutative wavefunction one must solve the Schrödinger equation.

Since one is working with piecewise constant potentials, one needs to solve the following,

P̂ 2ψ̂ = k2
~

2ψ̂, (2.8)

where k2 = 2µ(E − V )/~
2, V constant.

Although, ψ̂ satisfies the Schrödinger equation, the object in non-commutative quantum

mechanics that is closer to what one thinks of as the wavefunction in normal commutative

quantum mechanics is
(

z|ψ̂
)

= 〈z| ψ̂ |z〉, as discussed in Chapter 1. Using equation (2.8),

one can find the partial differential equation obeyed by the wavefunction. One starts by

taking equation (2.8) and forming the inner product with 〈z| and |z〉,

〈z| P̂ 2ψ̂ |z〉 = k2
~

2 〈z| ψ̂ |z〉

= k2
~

2
(

z|ψ̂
)

. (2.9)

One now takes the LHS of equation (2.9) and replaces P̂ with its action in terms of b and

b†. In other words, one writes

〈z| P̂ 2ψ̂ |z〉 =
2~

2

θ
〈z| [b†, [b, ψ̂]] |z〉 (2.10)

= 〈z| b†[b, ψ̂] − [b, ψ̂]b† |z〉 (2.11)
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If one keeps in mind that the coherent state |z〉 is shorthand for e−zz̄/2ezb† |0〉 then with

the help of the identity

[Â, f(B̂)] = c
∂f(B̂)

∂B̂
, (2.12)

where c must be a constant and c = [Â, B̂], it is easily shown that

b |z〉 = be−zz̄/2ezb† |0〉 = e−zz̄/2[b, ezb† ] |0〉 = z e−zz̄/2ezb† |0〉 = z |z〉 . (2.13)

Similarly,

〈z| b† = 〈z| z̄. (2.14)

Therefore one finds that

〈z| P̂ 2ψ̂ |z〉 =
2~

2

θ
〈z| z̄[b, ψ̂] − [b, ψ̂]b† |z〉 . (2.15)

In order to write this equation completely as a PDE, one writes the actions of b† on |z〉
and b on 〈z| as partial derivatives. Consider

∂

∂z
|z〉 =

∂

∂z
e−zz̄/2ezb† |0〉

=

(

−1

2
z̄ + b†

)

|z〉

⇒ b† |z〉 =

(
∂

∂z
+

1

2
z̄

)

|z〉 . (2.16)

In a similar fashion, it can be shown that

〈z| b = 〈z|
( ←

∂

∂z̄
+

1

2
z

)

, (2.17)

where the arrow over the partial derivative indicates that it acts to the left.

The effect of the outer commutator in 〈z| P̂ 2ψ̂ |z〉 is then fully taken into account by
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writing

〈z| P̂ 2ψ̂ |z〉 =
2~

2

θ

[

z̄ 〈z| [b, ψ̂] |z〉 − 〈z| [b, ψ̂]

(
∂

∂z
+

1

2
z̄

)

|z〉
]

=
2~

2

θ

[

z̄ 〈z| [b, ψ̂] |z〉 −
(

∂

∂z
+ z̄

)

〈z| [b, ψ̂] |z〉
]

= −2~
2

θ

∂

∂z
〈z| [b, ψ̂] |z〉 , (2.18)

where one picks up an additional −1
2
z̄ when pulling the partial derivative past the 〈z|.

The second commutator acts as follows,

〈z| [b, ψ̂] |z〉 = 〈z| bψ̂ − zψ̂ |z〉

= 〈z|
( ←

∂

∂z̄
+

1

2
z

)

ψ̂ |z〉 − z 〈z| ψ̂ |z〉

=

(
∂

∂z̄
+ z

)

〈z| ψ̂ |z〉 − z 〈z| ψ̂ |z〉

=
∂

∂z̄
〈z| ψ̂ |z〉 , (2.19)

where once again one picks up an additional 1
2
z when switching the derivative from acting

to the left to acting to the right.

Combining (2.18) and (2.19) gives us the PDE obeyed by the non-commutative wave-

function,

−2~
2

θ

∂

∂z

∂

∂z̄

(

z|ψ̂
)

= k2
~

2
(

z|ψ̂
)

⇒ − ∂

∂z

∂

∂z̄

(

z|ψ̂
)

=
θk2

2

(

z|ψ̂
)

. (2.20)

If one were to write
(

z|ψ̂
)

as a function of z and z̄ and then transform to coordinates

x and y, where z = (x + iy)/
√

2θ, one finds that equation (2.20) becomes

−(
∂2

∂x2
+

∂2

∂y2
)ψ(x, y) = k2ψ(x, y), (2.21)

which is immediately recognisable as the standard Schrödinger equation for a particle in

a constant potential.

This derivation would seem to suggest that the commutative and non-commutative
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wavefunctions are the same and that introducing non-commutativity has changed noth-

ing. However, while it is true that for a completely free particle non-commutativity does

not have any physical effect [38], that is not the case when there is a potential, even if it is

a piecewise constant one. This is due to the fact that, while the form of the wavefunction

is indeed the same in all regions, non-commutativity enforces different boundary condi-

tions than one uses commutatively. The different boundary conditions lead to different

coefficients in the wavefunction, which in turn lead to the myriad of differences between

commutative and non-commutative quantum mechanics.

In the next section I derive the matching conditions used in a general system of piecewise

constant potentials.

2.3 Matching Conditions

This section deals with non-commutative matching conditions and how they differ from

the commutative ones [25, 30]. This section is very important, since, as has been alluded

in the previous section, the mathematics described here drive all the departures from

standard commutative physics.

Though one ends up with different matching conditions, to derive them one starts

analogously to the commutative case with the Schrödinger equation,

P̂ 2

2µ
ψ̂ +

NV∑

i=1

Vi Piψ̂ = Eψ̂. (2.22)

Next, one constructs the solutions to the Schrödinger equation in each region separately

with the same energy,

P̂ 2

2µ
ψ̂i + ViPiψ̂i = Eψ̂i, where i = 1..NV . (2.23)

Then one makes the ansatz that the solution to the full Schrödinger equation, ψ̂, is the

sum over all regions of the projection operator times the solution for a specific region,

ψ̂ =

NV∑

i=1

Piψ̂i. (2.24)
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Substituting (2.24) into (2.22) gives one,

P̂ 2

2µ

NV∑

i=1

Piψ̂i +

NV∑

i=1

Vi Pi

(
NV∑

j=1

Pjψ̂j

)

= E

NV∑

i=1

Piψ̂i. (2.25)

The term containing the potential simplifies dramatically due to how the Pi’s interact,

NV∑

i=1

Vi Pi

(
NV∑

j=1

Pjψ̂j

)

=
∑

i,j

Vi Pi Pjψ̂j (2.26)

=

NV∑

i=1

ViPiψ̂i. (2.27)

One can also multiply equation (2.23) by Pi from the left to obtain,

Pi
P̂ 2

2µ
ψ̂i + ViPiψ̂i = E Piψ̂i. (2.28)

Comparing (2.28) and (2.25) for a specific value of i one sees that for the ansatz to hold

without further comment, therefore, would require that

Pi
P̂ 2

2µ
ψ̂i

?
=

P̂ 2

2µ
Piψ̂i, (2.29)

which is obviously not the case, since P̂ and the Pi’s do not commute. However, one can

force the ansatz to be consistent by doing the following. Consider,

P̂ 2

2µ
Piψ̂i = Pi

P̂ 2

2µ
ψ̂i +

1

2µ
[P̂ 2, Pi]ψ̂i. (2.30)

By defining new operators

Ωi = [P̂ 2, Pi], i = 1, 2, ..NV , (2.31)

and requiring that

NV∑

i=1

Ωiψ̂i = 0, (2.32)
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one generates a consistency equation necessary for the ansatz to hold. This consistency

equation takes the place of the standard matching of the wavefunction and its derivative

that one has commutatively, since it forces certain conditions on the ψ̂i.

While equation (2.32) may be difficult to solve in general, the definition of the projection

operators (2.2), as well as the momentum ((1.21), (1.22)), simplify matters greatly [24].

By using these definitions in (2.31) we obtain the following,

Ωi = [P̂ 2, Pi] = (P̂ Pi)P̂
† + (P̂ † Pi)P̂ + (P̂ P̂ † Pi)

= −i~

√

2

θ
[b, Pi]P̂

† + i~

√

2

θ
[b†, Pi]P̂ +

2~
2

θ
[b, [b†, Pi]]. (2.33)

Consider each term,

[b, Pi] =

Ni∑

n=Ni−1+1

b |n〉 〈n| −
Ni∑

n=Ni−1+1

|n〉 〈n| b

=

Ni∑

n=Ni−1+1

√
n |n − 1〉 〈n| −

Ni∑

n=Ni−1+1

√
n + 1 |n〉 〈n + 1|

=

Ni−1∑

n=Ni−1

√
n + 1 |n〉 〈n + 1| −

Ni∑

n=Ni−1+1

√
n + 1 |n〉 〈n + 1|

=
√

Ni−1 + 1 |Ni−1〉 〈Ni−1 + 1| −
√

Ni + 1 |Ni〉 〈Ni + 1| (2.34)

[
b†, Pi

]
=

Ni∑

n=Ni−1+1

√
n + 1 |n + 1〉 〈n| −

Ni∑

n=Ni−1+1

√
n |n〉 〈n − 1|

=
√

Ni + 1 |Ni + 1〉 〈Ni| −
√

Ni−1 + 1 |Ni−1 + 1〉 〈Ni−1| (2.35)

[
b, [b†, Pi]

]
= [b,

√

Ni + 1 |Ni + 1〉 〈Ni| −
√

Ni−1 + 1 |Ni−1 + 1〉 〈Ni−1|]

= (Ni + 1)(|Ni〉 〈Ni| − |Ni + 1〉 〈Ni + 1|)

−(Ni−1 + 1)(|Ni−1〉 〈Ni−1| − |Ni−1 + 1〉 〈Ni−1 + 1|). (2.36)

Using equations (2.34)-(2.36) and looking at the matrix elements of
∑NV

i=1 Ωiψ̂i, it is then
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immediately clear that the only non-zero terms in the sum are of the form

〈Nj|
NV∑

i=1

Ωiψ̂i |ℓ〉 (2.37)

and 〈Nj + 1|
NV∑

i=1

Ωiψ̂i |ℓ〉 , (2.38)

where j = 1, 2, ...NV − 1.

However, since it is furthermore the case that 〈Nj|
∑NV

i=1 Ωiψ̂i |ℓ〉 and 〈Nj + 1|∑NV

i=1 Ωiψ̂i |ℓ〉
are only non-zero when i = j or i = j +1 the large sum in the definition of the consistency

equation (2.32) breaks up into (NV − 1) pairs of equations that must be simultaneously

satisfied,

0 = 〈Ni|Ωiψ̂i |ℓ〉 + 〈Ni|Ωi+iψ̂i+i |ℓ〉 (2.39)

0 = 〈Ni + 1|Ωiψ̂i |ℓ〉 + 〈Ni + 1|Ωi+iψ̂i+i |ℓ〉 , (2.40)

where i = 1, 2, ...NV − 1, ∀ℓ ≥ 0.

Since the Ωi’s were introduced to ease the writing of the consistency equation, one would

like to eliminate them and write the above equations in terms of ψ̂i only. This is easily

done using once again the action of P̂ and P̂ † (equations (1.21) and (1.22)) and the various
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terms that make up a specific Ωi, (2.34)-(2.36). For some specific i therefore,

〈Ni|Ωiψ̂i |ℓ〉 = −i~

√

2

θ

(√

Ni−1 + 1 〈Ni|Ni−1〉 〈Ni−1 + 1| P̂ †ψ̂i |ℓ〉

−
√

Ni + 1 〈Ni|Ni〉 〈Ni + 1| P̂ †ψ̂i |ℓ〉
)

+i~

√

2

θ

(√

Ni + 1 〈Ni|Ni + 1〉 〈Ni| P̂ ψ̂i |ℓ〉

−
√

Ni−1 + 1 〈Ni|Ni−1 + 1〉 〈Ni−1| P̂ ψ̂i |ℓ〉
)

+
2~

2

θ

[

(Ni + 1) 〈Ni| (|Ni〉 〈Ni| − |Ni + 1〉 〈Ni + 1|)ψ̂i |ℓ〉

− (Ni−1 + 1) 〈Ni| (|Ni−1〉 〈Ni−1| − |Ni−1 + 1〉 〈Ni−1 + 1|)ψ̂i |ℓ〉
]

= i~

√

2

θ

√

Ni + 1 〈Ni + 1| P̂ †ψ̂i |ℓ〉 +
2~

2

θ
(Ni + 1) 〈Ni| ψ̂i |ℓ〉

=
2~

2

θ
(Ni + 1) 〈Ni| ψ̂i |ℓ〉 −

2~
2

θ

√

Ni + 1 〈Ni + 1| b†ψ̂i − ψ̂ib
† |ℓ〉

=
2~

2

θ

√

Ni + 1
√

ℓ + 1 〈Ni + 1| ψ̂i |ℓ + 1〉 . (2.41)

Similarly,

〈Ni|Ωi+1ψ̂i+1 |ℓ〉 = −2~
2

θ

√

Ni + 1
√

ℓ + 1 〈Ni + 1| ψ̂i+i |ℓ + 1〉 (2.42)

〈Ni + 1|Ωiψ̂i |ℓ〉 = −2~
2

θ

√

Ni + 1
√

ℓ 〈Ni| ψ̂i |ℓ − 1〉 (2.43)

〈Ni + 1|Ωi+iψ̂i+i |ℓ〉 =
2~

2

θ

√

Ni + 1
√

ℓ 〈Ni| ψ̂i+i |ℓ − 1〉 . (2.44)

This means that for each i and for all ℓ > 0 the matching conditions become,

〈Ni + 1| ψ̂i |ℓ + 1〉 = 〈Ni + 1| ψ̂i+1 |ℓ + 1〉 (2.45)

〈Ni| ψ̂i |ℓ − 1〉 = 〈Ni| ψ̂i+1 |ℓ − 1〉 . (2.46)

2.3.1 Matching Conditions per Sector of Angular Momentum

Due to how the projection operators are defined, the potential is radially symmetric.

One can therefore find solutions of the Hamiltonian that correspond to a specific value

of angular momentum, which I call ψ̂m or ψ̂m,i when referring to a specific region in

the potential, and use them for an expansion of the full ψ̂. Using the results of [25], it
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is a simple matter to show that the form of ψ̂m given in [24] is indeed the correct one

corresponding to an angular momentum state. Since elements of the quantum Hilbert

space, such as ψ̂, are operators which act on non-commutative configuration space, one

can write ψ̂ in its most general form as,

ψ̂ =
∞∑

j=0

∞∑

k=0

aj,k(b
†)jbk. (2.47)

In much the same way, one defines ψ̂m to be the subset of such operators where the

difference between j and k is always m. In other words,

ψ̂m =
∞∑

j=0

aj,j+m(b†)jbj+m when m ≥ 0,

ψ̂m =
∞∑

j=0

aj+|m|,j(b
†)j+|m|bj when m < 0. (2.48)

It is clear from writing ψ̂ and ψ̂m this way that

ψ̂ =
∞∑

m=−∞
ψ̂m. (2.49)

In [25] the form of the angular momentum operator L̂z was shown to be,

L̂z = X̂P̂y − Ŷ P̂x +
θ

2~2
P̂ 2

=

√

θ

2
(b + b†)P̂y + i

√

θ

2
(b − b†)P̂x +

θ

2~2
P̂ 2, (2.50)

so that,

L̂zψ̂m = −~

2
(b + b†)[b + b†, ψ̂m] +

~

2
(b − b†)[b − b†, ψ̂m] + ~[b, [b†, ψ̂m]]. (2.51)

The first two terms in the above equation combine to give,

−~

2
(b + b†)([b, ψ̂m] + [b†, ψ̂m]) +

~

2
(b − b†)([b, ψ̂m] − [b†, ψ̂m])

= −~(b†[b, ψ̂m] + b[b†, ψ̂m]). (2.52)
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The second term just obtained cancels with the first term coming from the double com-

mutator,

L̂zψ̂m = −~(b†[b, ψ̂m] + b[b†, ψ̂m]) + ~(b[b†, ψ̂m] − [b†, ψ̂m]b)

= −~(b†[b, ψ̂m] + [b†, ψ̂m]b) = −~[b†b, ψ̂m]. (2.53)

If one considers a general term in ψ̂m and using the identity in (2.12) we then find that

b†[b, (b†)jbj+m] + [b†, (b†)jbj+m]b = b†[b, (b†)j]bj+m + (b†)j[b†, bj+m]b

= −m(b†)jbj+m when m ≥ 0, (2.54)

b†[b, (b†)j+|m|bj] + [b†, (b†)j+|m|bj]b = b†[b, (b†)j+|m|]bj + (b†)j+|m|[b†, bj]b

= −m(b†)j+|m|bj when m < 0. (2.55)

Putting everything together one obtains the result that

L̂zψ̂m = ~mψm, (2.56)

so that ψ̂m is an eigenstate of angular momentum and the definition of ψ̂m was indeed

correct.

I shall now make a few remarks regarding ψ̂ and ψ̂m. Firstly, it is a straightforward

matter to see that (P̂ 2ψ̂)† = P̂ 2ψ̂†,

(P̂ 2ψ̂)† =
2~

2

θ
[b, [b†, ψ̂]]† = −2~

2

θ
[b†, [b†, ψ̂]†] =

2~
2

θ
[b†, [b, ψ̂†]] = P̂ 2ψ̂†. (2.57)

Therefore, if ψ̂ is a solution of the constant potential Schrödinger equation, then so is

ψ̂†. This implies that one can always choose the solution ψ̂ to be Hermitian. Making this

choice brings about the property that ψ̂†
m = ψ̂−m as can be seen from the definitions of ψ̂

and ψ̂m.

With ψ̂m in hand, one can write (2.45) and (2.46) as

〈Ni + 1| ψ̂m,i |Ni + m + 1〉 = 〈Ni + 1| ψ̂m,i+1 |Ni + m + 1〉 (2.58)

〈Ni| ψ̂m,i |Ni + m〉 = 〈Ni| ψ̂m,i+1 |Ni + m〉 , (2.59)
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where ℓ is fixed by the fact that ψ̂m lowers the number in the |·〉 by m. An important

point to note here is that for negative m these matching conditions imply that m ≤
Ni. This cutoff in negative angular momentum is, of course, completely absent in the

commutative case (where negative and positive angular momentum cases are symmetrical).

From this one has in turn that time reversal symmetry is broken (as discussed in [24]).

This assymetry comes from the implied parity violation in the commutator of x̂ and ŷ,

due to the choice of the sign of θ and the fact that the commutator is not symmetrical

under parity transformations.

These are the matching conditions that will be used later on when making calculations.

In the next section I will describe how these matching conditions affect the coefficients of

the wavefunction.

Before moving on to the next section, I would like to make a remark regarding the

rotational invariance of a non-commutative quantum mechanical system in two dimensions,

as I noted in the introduction. Consider the coordinates x̂ and ŷ rotated by an angle φ,

x̂ → x̂′ = x̂ cos(φ) + ŷ sin(φ) (2.60)

ŷ → ŷ′ = ŷ cos(φ) − x̂ sin(φ). (2.61)

Therefore, the rotated commutation relation is,

[x̂′, ŷ′] = [x̂ cos(φ) + ŷ sin(φ), ŷ cos(φ) − x̂ sin(φ)]

= [x̂ cos(φ), ŷ cos(φ)] − [ŷ sin(φ), x̂ sin(φ)]

= [x̂, ŷ] cos2(φ) + [x̂, ŷ] sin2(φ)

= [x̂, ŷ], (2.62)

so that one has rotational invariance.

2.4 Relating the Fock Basis to the Position Basis

In Section 2.2 it was shown that for a constant potential the form of the wavefunc-

tion does not change when introducing non-commutativity. This, of course, has many

advantages. One can think about the wavefunction in much the same manner and many

useful and well known mathematical tools still apply. The wavefunction is essentially a
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plane wave (or a superposition of plane waves) and one can therefore make partial wave

expansions as has already been alluded to. It also allows calculations of phase shifts and

cross-sections to go through with virtually no change in the way they are obtained. It

guides one’s thinking and permits the same intuitive understanding of the system.

However, this similarity also makes it so that the changes brought about by non-

commutativity are very subtle and easy to miss. A clear knowledge of how and when

to use everything that has been explained thus far is therefore needed. One crucial part

is how the wavefunction’s coefficient are modified by the non-commutative matching con-

ditions.

In the previous section I worked with objects of the form 〈n| ψ̂m |n + m〉 and the wave-

function is given as 〈z| ψ̂m |z〉. To find the impact non-commutativity makes, therefore,

a basis transformation is essentially needed. In order to derive this transformation, one

again uses the coherent state expansion shown in Chapter 1, Section 1.1.3, namely,

â =
1

π

∫

dz dz̄
(

e−
∂2

∂z∂z̄ 〈z| â |z〉
)

|z〉 〈z| , (2.63)

for some general operator â.

Looking at the operator in the exponential, one immediately recognises it as the one found

in the Schrödinger equation (2.20). If one, therefore, substitutes ψ̂m for â, the exponential

simply becomes a number, since 〈z| ψ̂m |z〉 is an eigenfunction of the operator e−
∂2

∂z∂z̄ . The

expansion for ψ̂m then reads,

ψ̂m =
eθk2/2

π

∫

dz dz̄ 〈z| ψ̂m |z〉 |z〉 〈z| . (2.64)

2.4.1 The Case When E > V

All that is left to do to relate the two bases to each other is to form the matrix elements

of both sides using the Fock basis states,

〈n| ψ̂m |ℓ〉 = γ

∫

dz dz̄ 〈z| ψ̂m |z〉 〈n|z〉 〈z|ℓ〉 (2.65)

In order to do the integral I write the wavefunction 〈z| ψ̂m |z〉 in radial coordinates by

putting z = reiφ and make use of 〈n|z〉 = e−|z|2/2 zn√
n!

. Assuming for the moment that

k2 = 2µ(E − V )/~
2 is positive, then the wavefunction is a linear combination of Jm and
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Ym,

〈n| ψ̂m |ℓ〉 =
eθk2/2

π

∫

dφ dr reimφ[AJm(
√

2θkr) + B Ym(
√

2θkr)]

×e−r2 rneinφ

√
n!

rℓe−iℓφ

√
ℓ!

=
e

θk2

2

π
√

n!
√

ℓ!

∫ 2π

0

dφ ei(m+n−ℓ)φ

︸ ︷︷ ︸

2πδℓ,n+m

∫ ∞

0

dr rn+ℓ+1e−r2

×[AJm(
√

2θkr) + B Ym(
√

2θkr)]

⇒ 〈n| ψ̂m |n + m〉 =
2e

θk2

2

√
n!

√

(n + m)!

∫ ∞

0

dr r2n+m+1e−r2

×[AJm(
√

2θkr) + B Ym(
√

2θkr)], (2.66)

where Jm and Ym are the Bessel functions of the first and second kind (also called the

Neumann function) respectively. This is a nice result on its own, since it also shows that

the matrix elements of ψ̂m are non-zero only when the values in the 〈·| and |·〉 are separated

by m when coming from the side of the wavefunction.

The integral is done by splitting it into two parts, namely the part containing Jm and

the part containing Ym,

I1 =

∫ ∞

0

dr r2n+m+1e−r2

AJm(
√

2θkr) (2.67)

I2 =

∫ ∞

0

dr r2n+m+1e−r2

B Ym(
√

2θkr). (2.68)

The first integral, I1, can be found directly in a handbook of integrals such as [39]:

I1 =
n!

2
e−wwm/2Lm

n (w), (2.69)

where I have set w = θk2

2
and Lm

n (w) is an associated Laguerre polynomial.

Doing the second integral is slightly more complicated and proceeds via a small detour.

In order to calculate it, I shall make use of the following identity for Neumann functions

of real order,

Yν =
cos(νπ)Jν − J−ν

sin(νπ)
. (2.70)
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The calculation now continues by doing the integrals over Jν and J−ν . One can find these

integrals once again in [39],

∫ ∞

0

dr r2n+ν+1e−r2

Jν(
√

2θkr) =
wν/2

2

Γ(n + ν + 1)

Γ(ν + 1)
M(n + ν + 1, ν + 1,−w)(2.71)

∫ ∞

0

dr r2n+ν+1e−r2

J−ν(
√

2θkr) =
w−ν/2

2

Γ(n + 1)

Γ(1 − ν)
M(n + 1, 1 − ν,−w), (2.72)

where M(a, b, x) is the first solution of the confluent hypergeometric differential equation

[40]. Using the following identities for cos(x) and M(a, b, x),

cos(x) =
eix + e−ix

2
(2.73)

M(a, b, x) = exM(b − a, b,−x), (2.74)

one finds that,

∫ ∞

0

dr r2n+m+1e−r2

Yν(
√

2θkr)

= −w−ν/2

2π
Γ(n + ν + 1)Γ(n + 1)

π

sin(νπ)
e−w

[
M(−n − ν, 1 − ν, w)

Γ(n + ν + 1)Γ(1 − ν)

−eiνπ + e−iνπ

2
wν M(−n, ν + 1, w)

Γ(n + 1)Γ(ν + 1)

]

= −w−ν/2

4π
Γ(n + ν + 1)Γ(n + 1)

π

sin(νπ)
e−w

×
[

M(−n − ν, 1 − ν, w)

Γ(n + ν + 1)Γ(1 − ν)
− eiνπwν M(−n, ν + 1, w)

Γ(n + 1)Γ(ν + 1)

+
M(−n − ν, 1 − ν, w)

Γ(n + ν + 1)Γ(1 − ν)
− e−iνπwν M(−n, ν + 1, w)

Γ(n + 1)Γ(ν + 1)

]

= −w−ν/2

2π
Γ(n + ν + 1)Γ(n + 1)

×
[
1

2
U(n + 1, 1 − ν, weiπ) +

1

2
U(n + 1, 1 − ν, we−iπ)

]

, (2.75)

where U(a, b, x) is the second solution of the confluent hypergeometric differential equation.

Here I applied (2.74) to both (2.71) and (2.72) to get the first line and used the analytic

continuation given in [40] to obtain the last line. The notation I have used here is the

same as that found in [40] where we±iπ indicates evaluation just above (+) or just below

(−) the negative real axis, which is the branch cut for the function U .
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This result simplifies when w is real. In that case the sum of the two U ’s is simply

the real part of U(n + 1, 1 − ν,−w). Furthermore, it is a property of U that it is defined

even when ν happens to be integer [40], so that this result holds true also for I2. In other

words, the original integral (2.66) reduces to,

〈n| ψ̂m |n + m〉 = A

√
n!

√

(n + m)!
wm/2Lm

n (w)

−B

π

√

n!(n + m)! eww−m/2Re[U(n + 1, 1 − m,−w)]. (2.76)

2.4.2 The Case When E < V

One can do much the same derivation when k2 is negative and k2 = −κ2 = −2µ(V −
E)/~

2. In that case the wavefunction is a linear combination of Im and Km, where Im

and Km and the modified Bessel functions of the first and second kind respectively. The

integral one needs to solve is therefore,

〈n| ψ̂m |ℓ〉 =
eθκ2/2

π

∫

dφ drr eimφ[AIm(
√

2θκr) + B Km(
√

2θκr)]

×e−r2 rneinφ

√
n!

rℓe−iℓφ

√
ℓ!

⇒ 〈n| ψ̂m |n + m〉 =
2e

θκ2

2

√
n!

√

(n + m)!

∫ ∞

0

dr r2n+m+1e−r2

×[AIm(
√

2θκr) + B Km(
√

2θκr)]. (2.77)

Splitting the integral into two parts gives

I3 =

∫ ∞

0

dr r2n+m+1e−r2

AIm(
√

2θκr) (2.78)

I4 =

∫ ∞

0

dr r2n+m+1e−r2

B Km(
√

2θκr), (2.79)

where it is once again the first integral, I3, which can be found most easily [39],

I3 =
Γ(n + m + 1)

2ω1/2Γ(m + 1)
ω(m+1)/2M(n + m + 1,m + 1, ω)

=
1

2

Γ(n + m + 1)

Γ(m + 1)
ωm/2eωM(−n,m + 1,−ω)

=
n!

2
ωm/2eωLm

n (−ω), (2.80)
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where ω = θκ2

2
, I have once again used equation (2.74) to go to the second line and the

identity Lm
n (x) =

(
n+m

n

)
M(−n,m + 1, x) to arrive at the last line. To do I4 one follows

the same procedure as for Ym, namely doing the integral for a real order of Kν first. In

this case,

Kν =
π

2

I−ν − Iν

sin(νπ)
. (2.81)

The integral for Iν is exactly like the one just shown. The integral over I−ν is given by

∫ ∞

0

e−r2

r2n+ν+1I−ν(
√

2θκr) =
Γ(n + 1)

2Γ(1 − ν)
ω−ν/2M(n + 1, 1 − ν, ω). (2.82)

Using the solutions for the integrals over Iν and I−ν results in the following solution for

the Kν integral,

∫ ∞

0

e−r2

r2n+ν+1Kν(
√

2θκr)

=
π

4

1

sin(νπ)

×
[
Γ(n + 1)

Γ(1 − ν)
ω−ν/2M(n + 1, 1 − ν, ω) − Γ(n + ν + 1)

Γ(ν + 1)
ωm/2M(n + ν + 1, ν + 1, ω)

]

=
ω−ν/2

4
Γ(n + 1)Γ(n + ν + 1)

π

sin((1 − ν)π)

×
[

M(n + 1, 1 − ν, ω)

Γ(n + ν + 1)Γ(1 − ν)
− ων M(n + ν + 1, ν + 1, ω)

Γ(n + 1)Γ(ν + 1)

]

=
ω−ν/2

4
Γ(n + 1)Γ(n + ν + 1)U(n + 1, 1 − ν, ω). (2.83)

By the same caveat as for the case when k2 > 0 this is also valid for Km. In this case there

is also no need to take the real part of U , since U is already real for positive arguments.

Putting (2.80) and (2.83) together in (2.77) gives us the desired result when working with

energies less than that of the potential,

〈n| ψ̂m |n + m〉 = A

√
n!

√

(n + m)!
e2ωωm/2Lm

n (−ω)

+
B

2

√

n!(n + m)! eωω−m/2U(n + 1, 1 − m,ω). (2.84)
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The matrix elements calculated here should strictly only be used when m ≥ 0. However,

when m < 0 very little actually changes due to the fact that ψ̂†
m = ψ̂−m. Because of this

the wavefunction 〈z| ψ̂m |z〉 that is used in the integral to calculate the matrix elements

〈n| ψ̂m |ℓ〉 simply becomes,

〈z| ψ̂m |z〉 = 〈z| ψ̂†
m |z〉∗ = 〈z| ψ̂−m |z〉∗ = 〈z| ψ̂|m| |z〉∗ (2.85)

= e−i|m|φ[Ā J|m|(
√

2θkr) + B̄ Y|m|(
√

2θkr)] when E > V, (2.86)

= e−i|m|φ[Ā I|m|(
√

2θκr) + B̄ K|m|(
√

2θκr)] when E < V. (2.87)

This makes the non-vanishing matrix elements have the form 〈n − m| ψ̂m |n〉 instead of

〈n| ψ̂m |n + m〉 as was the case for positive m. Aside from that all the analyses go through

without alteration.

2.5 Comparison of Calculated Wavefunctions

In this chapter I have tried to give an overview of how non-commutative piecewise

constant potentials should be implemented. To this end, I showed how these potentials

were built up using projection operators on the non-commutative configuration space. I

showed how the non-commutative wavefunction has the same form as the commutative

one, but went on to explain that matching conditions for the non-commutative case are

calculated in a different basis. Finally I showed how to connect the two bases in question so

that the coefficients of the non-commutative wavefunction could be explicitly calculated.

Now that all this mathematics is in place, I would like to give a numerical example of how

the non-commutative matching conditions influences the wavefunction.
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Figure 2.1: Comparison of commutative and non-commutative wavefunctions.
In the non-commutative case we chose N1 = 10, N2 = 12 and N3 = 50 with
corresponding commutative values of R1 =

√
21, R2 =

√
25 and R3 =

√
101 for

θ = 1. Figure (a) shows the radial part of the ground state wavefunction in the
case of an annulus inside an infinite well for the angular momentum, m = 0,
sector. Figure (b) is a close up view of the region around the potential barrier
of the annulus. The potential on the inside of the barrier annulus and outside
the annulus up to the infinite wall is zero. The height of the annulus was
chosen as V = 20 in units of ~ = 1. The solid line indicates the commutative
values, whereas the dashed line indicates the non-commutative ones.

It is clear from Figures 2.1(a) and 2.1(b) that, while the commutative and non-commutative

wavefunctions have the same form in all the three regions of the potential, the non-

commutative wavefunction is not continuous across potential boundaries. This is of course,

because in the commutative case the wavefunction has matching conditions which ensure

this continuity, whereas the non-commutative wavefunction obtains its matching condi-

tions from a consistency equation which ensures that the full wavefunction is the sum of

the wavefunctions in the various potential regions.



CHAPTER 3

Stationary Properties of the Non-commutative Well

The previous chapters laid the mathematical groundwork for making calculations in the

context of non-commutative piecewise constant potentials with a concentric annular ge-

ometry. Here I turn my attention to the implementation of said mathematics and make

a few numerical calculations designed to highlight some of the differences that non-

commutativity introduces. This chapter, therefore, contains a discussion of some of the

stationary properties of the non-commutative well, such as bound state energies, phase

shifts and cross-sections.

3.1 Implementation of a Non-commutative Well

The previous chapter tried to keep things as general as possible with regards to the

number of domains in the potential and subsequently the matching conditions. Here I

would like to give a concrete example of how the various parts necessary for a calculation

are implemented.

For the well there are of course only two regions, so that NV = 2. The potential

describing the well is therefore simply,

V̂ = V1P1 + V2P2, (3.1)

P1 =

N1∑

n=0

|n〉 〈n| and P2 =
∞∑

n=N1+1

|n〉 〈n| . (3.2)

Since NV = 2 one will also only have one set of equations in the matching conditions,

〈N1 + 1| ψ̂m,1 |N1 + m + 1〉 = 〈N1 + 1| ψ̂m,2 |N1 + m + 1〉 (3.3)

〈N1| ψ̂m,1 |N1 + m〉 = 〈N1| ψ̂m,2 |N1 + m〉 . (3.4)

Next one uses the relation between the position and Fock space representations of ψ̂ given

in Section 2.4 (equations (2.76) and (2.84)) to write these matrix elements in terms of a

36



3. Stationary Properties of the Non-commutative Well 37

Laguerre polynomial and a Kummer’s function. Therefore, when m ≥ 0,

Awm/2Lm
N1+1(w)

−B

π
(N1 + m + 1)! eww−m/2Re[U(N1 + 2, 1 − m,−w)]

= Ceηω∗ωm/2
∗ Lm

N1+1(ω∗)

+
D

ξ
(N1 + m + 1)! eω∗ω−m/2

∗ Re[U(N1 + 2, 1 − m,−ω∗)] (3.5)

Awm/2Lm
N1

(w)

−B

π
(N1 + m)! eww−m/2Re[U(N1 + 1, 1 − m,−w)]

= Ceηω∗ωm/2
∗ Lm

N1
(ω∗)

+
D

ξ
(N1 + m)! eω∗ω−m/2

∗ Re[U(N1 + 1, 1 − m,−ω∗)], (3.6)

where w = θ(E − V1).

Similarly for m < 0,

Āw|m|/2L
|m|
N1−|m|+1(w)

−B̄

π
(N1 + 1)! eww−|m|/2Re[U(N1 − |m| + 2, 1 − |m|,−w)]

= C̄eηω∗ω|m|/2
∗ L

|m|
N1−|m|+1(ω∗)

+
D̄

ξ
(N1 + 1)! eω∗ω−|m|/2

∗ Re[U(N1 − |m| + 2, 1 − |m|,−ω∗)] (3.7)

Āw|m|/2L
|m|
N1−|m|(w)

−B̄

π
N1! e

ww−|m|/2Re[U(N1 − |m| + 1, 1 − |m|,−w)]

= C̄eηω∗ω|m|/2
∗ L

|m|
N1−|m|(ω∗)

+
D̄

ξ
N1! e

ω∗ω−|m|/2
∗ Re[U(N1 − |m| + 1, 1 − |m|,−ω∗)]. (3.8)
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In both cases, if one sets µ = ~ = 1,

η =







0, E > V2

2, E < V2

(3.9)

ξ =







−π, E > V2

2, E < V2

(3.10)

ω∗ =







θ(E − V2), E > V2

−θ(V2 − E), E < V2

(3.11)

These matching conditions can then be used, for example, to calculate energies in the case

of bound states or to obtain the coefficients for when one wants to know the phase shifts.

3.2 Bound State Energies

The forms given in the previous section were general and certain restrictions due

to boundary conditions still apply. This is one scenario where knowing that the non-

commutative and commutative wavefunction have the same form helps a great deal. One

knows that the wavefunction inside the well is generally a linear combination of a Bessel

and a Neumann function. Since the Neumann function, Ym, is singular at the origin,

however, one sets its coefficient to be zero. Similarly in the case when the energy of the

particle is less than that of the potential outside the well, and the wavefunction is a lin-

ear combination of Im and Km, one knows that Im grows exponentially and therefore its

coefficient is also set to zero. Looking back at equations (2.66) and (2.77) one sees that

this implies that the coefficient of U is always zero inside the well as is the coefficient

of Lm
n when looking at bound states. The same result can be found by looking at the

commutative limit of the Lm
n ’s and the U ’s (see [24]). However, taking those limits are

somewhat complicated whereas this explanation is much simpler and uses commutative

results one is already familiar with. For bound states with m ≥ 0 for example,

A wm/2Lm
N1+1(w) =

D

2
(N1 + m + 1)! eω1ω

−m/2
1 U(N1 + 2, 1 − m,ω1) (3.12)

A wm/2Lm
N1

(w) =
D

2
(N1 + m)! eω1ω

−m/2
1 U(N1 + 1, 1 − m,ω1), (3.13)
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where w = θ(E − V1), ω1 = θ(V2 − E) and I have set µ = ~ = 1.

By dividing (3.12) by (3.13) one can simplify this into one equation that one needs to

solve to find the allowed energies for the bound states in a particular sector of angular

momentum,

Lm
N1+1(θ(E − V1))

Lm
N1

(θ(E − V1))
= (N1 + m + 1)

U(N1 + 2, 1 − m, θ(V2 − E))

U(N1 + 1, 1 − m, θ(V2 − E))
. (3.14)

In the case of negative m a very similar equation applies,

L
|m|
N1−|m|+1(θ(E − V1))

L
|m|
N1−|m|(θ(E − V1))

= (N1 + 1)
U(N1 − |m| + 2, 1 − |m|, θ(V2 − E))

U(N1 − |m| + 1, 1 − |m|, θ(V2 − E))
. (3.15)

Figure 3.1(a) gives one a good indication of the effect of non-commutativity on the

bound state energies of a well. This graph shows the results of a numerical calculation for

both negative and positive angular momentum for a chosen θ which is quite large, θ = 20
21

.

A few things are immediately visible. In the case of positive angular momentum, the

bound state energy for a certain state is always lower than one finds commutatively. For

negative angular momentum one is faced with the opposite being true. When θ is large, as

it is here, this effect lets one easily find extra (fewer) bound states for positive (negative)

angular momentum than one does commutatively. While this is a striking result, in reality

the value of θ is most likely extremely small and consequently so is the splitting in energy

between positive and negative angular momentum. Finding such a gain or loss in bound

states would therefore require a fantastically precise tuning of the well height. This can

already be seen in Figure 3.1(c) where it is virtually impossible to distinguish between

commutative and non-commutative energies at that scale. Figure 3.1(c) has the smallest

θ-value of the three figures, namely θ = 20
2001

, and typically the non-commutative energies

differ from the commutative ones here by less than one percent. Furthermore, one also

notices that even in the case when θ is almost 1 the non-commutative energies obtained

for very small values of angular momentum match commutative energies quite closely. In

contrast, as m approaches N1 commutative and non-commutative results diverge more

and more, leading, as has already been mentioned, to cases where there are even extra

bound states (e.g. m = 9, 10, 11) or none at all (e.g. m = −9,−10,−11). Figure 3.1(b)

lies between the two extremes depicted in Figures 3.1(a) and 3.1(c). Its value of θ is 20
201
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Figure 3.1: The figures show the commutative and non-commutative bound
state energies for a well of depth V2 − V1 = 6 (V1 = 0) with a radius of

√
20. In

each figure, however, the value of N1 corresponding to the radius is different.
For (a), N1 = 10 and therefore θ = 20

21
≈ 1. For (b) N1 = 100, θ = 20

201
≈ 0.1.

For (c) N1 = 1000, θ = 20
2001

≈ 0.01. Symbols which are the same indicate the
same energy level, i.e. diamonds indicate the ground state, stars the first
excited state, and so forth. Symbols connected with some kind of line are the
commutative energies and unconnected ones indicate the non-commutative
energies.

and as such forms an illustrative link in the chain going from highly non-commutative to

much less so. Indeed it is only for the larger values of angular momentum and energy

where a significant difference can be seen.

These figures highlight the two significant differences one finds non-commutatively when

comparing with the commutative case, namely the breaking of time reversal symmetry, as

seen in the energy splitting between positive and negative angular momentum, and the

related cutoff in negative angular momentum.
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3.3 Scattering

This section deals with non-commutative time-independent scattering. Finding the

modified coefficients of the non-commutative wavefunction and using them to compute

the phase shift due to scattering from the well is the goal. With that said, one is working

in a region where the energy of the particle is greater than that of the potential outside

the well. In this case, unlike for the bound states, no further restriction apply to the

wavefunction on the outside and the equations (3.5) to (3.8) reduce to

Awm/2Lm
N1+1(w) = Cω

m/2
2 Lm

N1+1(ω2)

−D

π
(N1 + m + 1)! eω2ω

−m/2
2 Re[U(N1 + 2, 1 − m,−ω2)] (3.16)

Awm/2Lm
N1

(w) = Cω
m/2
2 Lm

N1
(ω2)

−D

π
(N1 + m)! eω2ω

−m/2
2 Re[U(N1 + 1, 1 − m,−ω2)], (3.17)

for m ≥ 0, where ω2 = θ(E − V2).

For m < 0 one has,

Āw|m|/2L
|m|
N1−|m|+1(w) = C̄ω

|m|/2
2 L

|m|
N1−|m|+1(ω2)

−D̄

π
(N1 + 1)! eω2ω

−|m|/2
2 Re[U(N1 − |m| + 2, 1 − |m|,−ω2)](3.18)

Āw|m|/2L
|m|
N1−|m|(w) = C̄ω

|m|/2
2 L

|m|
N1−|m|(ω2)

−D̄

π
N1! e

ω2ω
−|m|/2
2 Re[U(N1 − |m| + 1, 1 − |m|,−ω2)]. (3.19)

3.3.1 Phase Shifts

Calculating the phase shifts in a non-commutative setting proceeds analogously to the

commutative case. Let me therefore give a brief outline of the commutative argument [31].

If one considers elastic scattering from a potential then the total amount of probability

before and after scattering must clearly be the same. The only effect the potential can

have then is to introduce a phase shift to the scattered wavefunction. Furthermore, since

one assumes a finite extent for the potential (which is obviously the case for a well), far

away from it the particle being scattered may be considered essentially free. Therefore,

if one looks at the full solution of the Schrödinger equation far from the potential and

compares it with a free particle that has undergone a phase shift, then one has a way of
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writing the phase shift in terms of the coefficients of the full solution.

To put these statements in mathematical terms one needs to know the large argument

asymptotic forms of Jm and Ym, of which a linear combination comprise the full solution

of the Schrödinger equation on the outside of the well,

Jm(kr) ∼
√

2

πkr
cos(kr − mπ

2
− π

4
) (3.20)

Ym(kr) ∼
√

2

πkr
sin(kr − mπ

2
− π

4
). (3.21)

If the full solution outside the well is given by C Jm(kr) + D Ym(kr) then for large r the

asymptotic form of the wavefunction is given, when written in terms of exponentials, by

C Jm(kr) + D Ym(kr) ∼ (C̃ + iD̃)
e−ikr

√
r

+ (C̃ − iD̃)ζ
eikr

√
r
, (3.22)

where ζ = e−i(mπ+π/2) and I have absorbed 1√
2πk

ei(mπ/2+π/4) into C and D to form C̃ and D̃

which cancel in the final result. Similar to the three dimensional case, e−ikr√
r

are incoming

spherical waves and eikr√
r

are outgoing spherical waves.

In the case of our free particle which acquired a phase on its outgoing part, δm,

A Jm(kr) ∼ A
1√
2πk

ei(mπ/2+π/4)

(
e−ikr

√
r

+ ζe2iδm
eikr

√
r

)

. (3.23)

Comparing (3.22) and (3.23) one sees that,

C + iD = A

C − iD = Ae2iδm

⇒ C − iD

C + iD
= e2iδm . (3.24)

Since the coefficients that one calculates are real for real values of energy, we can simplify
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this result,

cos(2δm) + i sin(2δm) =
1 − iD

C

1 + iD
C

1 − iD
C

1 − iD
C

=
1 −

(
D
C

)2

1 +
(

D
C

)2 + i
−2D

C

1 +
(

D
C

)2

⇒ cos(2δm) =
1 −

(
D
C

)2

1 +
(

D
C

)2 and sin(2δm) =
−2D

C

1 +
(

D
C

)2 . (3.25)

Therefore, using the sin(2δm) and cos(2δm) terms to form tan(2δm) and using the half-angle

formula for tan(·) one arrives at,

tan(2δm) =
2 tan(δm)

1 − tan2(δm)
=

2
(
−D

C

)

1 −
(
−D

C

)2

⇒ tan(δm) = −D

C
, (3.26)

which is the same as the standard three dimensional result [41].

As I have mentioned a few times before, since it bears emphasising, the form of the

commutative and non-commutative wavefunctions are the same. As a consequence, all

the arguments leading up to equation (3.26) go through unchanged and the same formula

holds non-commutatively. All that remains to be done is calculate the coefficients C and

D using the non-commutative matching conditions (given in Section 3.3 for scattering

states) and one has the non-commutative phase shift.

3.3.1.1 Numerical Phase Shifts

The simple formula for calculating the phase shifts in both the commutative and non-

commutative situations allows for easy comparison of this quantity.

Figure 3.2 shows the results of a numerical calculation doing exactly that. In the first

of the four figures, namely Figure 3.2(a), one sees a comparison of the phase shifts over the

first 20 units of energy (~ = µ = 1) above the well height where the angular momentum

has been chosen m = 4 for a large value of θ (θ ≈ 1). Not too surprisingly for such a

large value of the non-commutative parameter, there is almost no correspondence beyond

the general form of the graph. The next figure, Figure 3.2(b), uses the same commutative

phase shifts as Figure 3.2(a), but the non-commutative results were obtained using a
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Figure 3.2: Comparison of commutative and non-commutative phase shifts.
The first three figures depict the tangent of the phase shifts in the m = 4
angular momentum sector and the fourth figure is in the m = −4 case. The
commutative system used is given by a well height of V2 − V1 = 10 (V1 = 0) and
a radius of R =

√
20. Solid lines indicate commutative results, while dashed

lines indicate non-commutative ones. Figure (a) uses the smallest value of N ,
namely N = 10 and therefore θ = 20

21
. Figures (b) and (c) use the same N = 1000

and θ = 20
2001

. Figures (a) and (b) therefore show how the non-commutative
phase shifts tend towards the commutative ones as θ becomes smaller. Figure
(c) is simply a close up of (b) over the first six units of energy. Figure (d) is
the same as (b) except now for negative angular momentum, m = −4.

much smaller θ-value, namely θ ≈ 0.01. Already for this value of θ the two cases are

nearly indistinguishable, except near certain values of energy, such as near E = 13 (visible

in Figure 3.2(c)) and E = 21 (although these are by far not the only places where this

phenomenon can be seen). Since the commutative and non-commutative results match up

so well elsewhere already, it would seem to suggest that, as one performs a θ → 0 limit,

there are points where convergence is slower. However, the exact physical origin of this is

not yet understood. The final figure, Figure 3.2(d), uses all the same parameters as Figure
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3.2(b), except that the angular momentum is now negative. As one can see, whereas in

the positive angular momentum case the non-commutative values were slightly above the

commutative case, the opposite is true in the case of negative angular momentum.

3.3.2 Cross-Sections

With phase shifts in hand, it is a simple matter to calculate the total and differen-

tial cross-sections. The derivation of the formulas for the various cross-sections in two

dimensions proceed much as they do for three dimensions [42]. The following are the

commutative ones,

fk(φ) =

√

2

π

∞∑

m=−∞
cos(mφ)eiδm sin(δm) (3.27)

dσ

dφ
=

1

k
|fk(φ)|2 (3.28)

σ =

∫ 2π

0

σ(φ)dφ =
4

k

∞∑

m=−∞
sin2(δm), (3.29)

where of course k2 = 2µ(E − V2)/~
2, since this is for scattering energies. Furthermore,

φ is the scattering angle, fk(φ) is the scattering amplitude, dσ
dφ

is the differential cross-

section and σ is the total cross-section. Once again, due to the commutative and non-

commutative wavefunctions having the same form, these formulas hold unaltered in the

non-commutative case with the caveat that the phase shifts used be the non-commutative

ones.

Figures 3.3(a) and 3.3(b) show the total scattering cross-section for the same system

used in the previous section for the phase shifts. In the case of Figure 3.3(a) one is working

with a large non-commutative parameter and as such the two graphs agree only in form.

Figure 3.3(b) in contrast uses a relatively small value of θ. Agreement in this case is

already very good, as it was for the phase shifts. In the previous section I also pointed

out two places where the non-commutative phase shift differed from the commutative

one more than over the rest of the considered range of energy. Figures 3.3(c) and 3.3(d)

therefore show the effect that this difference has by plotting the contribution to the total

cross-section from the m = 4 angular momentum sector only. Figure 3.3(c) shows the

effect of the difference near E = 13 and Figure 3.3(d) is a close up of Figure 3.3(c) near

E = 21 illustrating the effect there. In both these cases the contribution to the cross-
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section is slightly lower in the non-commutative case. Figures 3.3(e) and 3.3(f) are the

same as Figures 3.3(c) and 3.3(d) except that the angular momentum is now negative,

namely m = −4. Here the contribution to the total cross-section is slightly higher non-

commutatively, in contrast to the positive angular momentum case.
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Figure 3.3: Comparison of commutative and non-commutative scattering
cross-sections. In all six figures the commutative data comes from the same
system, namely well height is V2 − V1 = 10 (V1 = 0) and the radius is R =

√
20.

These are the same values used in Figure 3.2. Figure (a) uses N = 10, θ = 20
21

for its non-commutative parameters. Figure (b) uses N = 1000, θ = 20
2001

. Fig-
ures (c) and (d) plot the contribution to the total cross-section from angular
momentum m = 4 only when N = 1000. Figure (d) is a close up of Figure (c)
around energy E = 21. Figures (e) and (f) are the contribution when the an-
gular momentum is m = −4 and N = 1000 once again. As for Figure (d), Figure
(f) is a close up of Figure (e) near E = 21. In all these figures the solid line in-
dicates commutative results, while dots or triangles indicate non-commutative
ones.



CHAPTER 4

Time Dependent Tunneling

In this final chapter I will take a brief look at quantum tunneling in a non-commutative

setting. To do this I set up a Gaussian wave packet inside an annulus which is contained

in an infinite well. The system is then allowed to evolve in time. After a certain amount

of time I look how much of the wave packet has leaked out through the annulus potential

barrier and compare the results from commutative and non-commutative calculations.

4.1 The Non-commutative Annulus Inside an Infinite Well

As opposed to the previous chapter where one had two regions defining the potential,

here one has four. These are the inside of the annulus, the barrier region, outside the

annulus and outside the infinite well entirely. Just as the wavefunction commutatively is

zero in a region of infinite potential, so it is also non-commutatively. One is left therefore,

strictly speaking, with three regions which in turn implies two sets of matching condition

equations to fix the coefficients of the wavefunction. The matching condition at the infinite

well boundary only serves to fix the energy.

In mathematical terms, therefore,

V̂ = V1P1 + V2P2 + V3P3 + V4P4 (4.1)

P1 =

N1∑

n=0

|n〉 〈n| (4.2)

P2 =

N2∑

n=N1+1

|n〉 〈n| (4.3)

P3 =

N3∑

n=N2+1

|n〉 〈n| (4.4)

P4 =
∞∑

n=N3+1

|n〉 〈n| , (4.5)

where V1 to V3 are constants and V4 = ∞. Typically I chose V1 = V3 = 0.

As I have mentioned, to calculate the coefficients of the wavefunction one uses the

48
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matching conditions around N1 and N2. Since one works here with a problem where the

energies involved can span the range from lower to higher than V2, however, this leads

to double the amount of equations that need to be solved, namely one set when E < V2

and one set when E > V2. This is also the case commutatively where one has a linear

combination of Im and Km as the wavefunction in the barrier region below V2 and Jm

and Ym above. I will therefore not write down all sixteen equations (taking into account

positive and negative m), but rather just give the equations for positive angular momentum

and only the 〈N + 1| ψ̂m |N + m + 1〉 form. These are,

Awm/2Lm
N1+1(w)

= Ce2ωωm/2Lm
N1+1(ω)

+
D

2
(N1 + m + 1)! eωω−m/2Re[U(N1 + 2, 1 − m,−ω)] (4.6)

Awm/2Lm
N1+1(w)

= Cωm/2Lm
N1+1(ω)

−D

π
(N1 + m + 1)! eωω−m/2Re[U(N1 + 2, 1 − m,−ω)] (4.7)

Ce2ωωm/2Lm
N2+1(ω)

+
D

2
(N2 + m + 1)! eωω−m/2Re[U(N2 + 2, 1 − m,−ω)]

= Ewm/2Lm
N2+1(w)

−F

π
(N2 + m + 1)! eww−m/2Re[U(N2 + 2, 1 − m,−w)] (4.8)

Cωm/2Lm
N2+1(ω)

−D

π
(N2 + m + 1)! eωω−m/2Re[U(N2 + 2, 1 − m,−ω)]

= Ewm/2Lm
N2+1(w)

−F

π
(N2 + m + 1)! eww−m/2Re[U(N2 + 2, 1 − m,−w)], (4.9)

where w is still w = θE and ω = θ(E − V2). Equations (4.6) and (4.8) are for when

the energy is below that of the potential and equations (4.7) and (4.9) are for when the

opposite holds true.
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There is still one further equation that is required to find the energy which one gets

from the matching condition at the boundary of the infinite well. As explained in the

previous chapter, for the finite well one would typically have only the hypergeometric U

function on the outside of the well for energies lower than that of the potential. Similar

to that case one would then have an equation of the form,

(·)Lm
N3+1 + (·)UN3+1

(·)Lm
N3

+ (·)UN3

=
(·)UN3+1

(·)UN3

, (4.10)

to calculate the energies from. Here, however, the potential is infinite on the RHS and for

large arguments the function U tends to zero. The whole RHS is therefore zero (UN3+1

goes to zero faster than UN3
) and the equation reduces to finding the zeros of,

0 = Ewm/2Lm
N3+1(w) − F

π
(N3 + m + 1)! eww−m/2Re[U(N3 + 2, 1 − m,−w)]. (4.11)

4.2 Solving the Time Dependent Problem

As I said at the start of this chapter, I will be using a Gaussian as my initial state of

the system and let it evolve in time from there. Here I solve the time dependent problem

in two different ways. In the commutative case I solve the time dependent Schrödinger

equation directly with an initial condition which is the Gaussian. Consider the Schrödinger

equation in two dimensions and in polar coordinates,

i
∂ψ

∂t
= −1

2

[
1

r

∂

∂r

(

r
∂ψ

∂r

)

+
1

r2

∂2ψ

∂φ2

]

+ V (r)ψ(r, φ, t), (4.12)

where ~ = µ = 1 once again. Since the potential is radially symmetric one can factor out

the angular part of ψ(r, φ, t) = eimφR(r, t). The second derivative with respect to φ is

then simply −m2

r2 ψ(r, φ, t). If one now looks at just the radial term and set R(r, t) = u(r,t)√
r

then

− 1

2r

∂

∂r

(

r
∂

∂r

u√
r

)

= − 1

2r

∂

∂r

(

r

√
r ∂u

∂r
− u(r, t)1

2
1√
r

r

)

= − 1

2r

(
1

2

1√
r

∂u

∂r
+
√

r
∂2u

∂r2
− 1

2

1√
r

∂u

∂r
+

1

4

1

r3/2
u(r, t)

)

= − 1

2
√

r

∂2u

∂r2
− 1√

r

1

8r2
u(r, t). (4.13)
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Substituting all this into the Schrödinger equation gives,

i
1√
r

∂u

∂t
= − 1

2
√

r

∂2u

∂r2
− 1√

r

1

8r2
u(r, t) +

m2

2r2

u(r, t)√
r

+ V (r)
u(r, t)√

r

⇒ i
∂u

∂t
= −1

2

∂2u

∂r2
+

(

V (r) +
m2 − 1

4

2r2

)

u(r, t), (4.14)

which is the form of the standard 1+1 dimensional Schrödinger equation with an effective

potential of V (r) +
m2− 1

4

2r2 . Now that the Schrödinger equation is in this form I use a

numerical method to solve the PDE that preserves unitarity [43]. One final point here is,

as seen from the expansion of the Gaussian I perform below, that only the zero angular

momentum sector plays a role, which means one does not have to solve the Schrödinger

equation for any other value.

In the non-commutative case I directly expand the Gaussian,

ψ̂G = e−αr̂2

, (4.15)

in terms of the energy eigenstates of the Hamiltonian. α is simply a parameter that

controls the width of the Gaussian and was chosen as 1 most of the time. Unlike the

commutative case, one only has a finite number of energy eigenstates for a certain value

of angular momentum as is clear from equation (4.11) (see also [24]). From said equation

we have N3 + 1 solutions, due to the nature of the Laguerre polynomial. This makes this

expansion doable for numerical calculation in the first place. The expansion is given by,

ψ̂G =

N3∑

n=0

(

ψ̂En
|ψ̂G

)

ψ̂En
, (4.16)

where ψ̂En
is an energy eigenstate of the system and N3 is the same N3 found in the

definitions of P3 and P4 in this chapter. The inner product in the above equation is the

trace of the operators over non-commutative configurations space, as said in Chapter 1.

Closer study of this inner product reveals that it is only non-zero for angular momentum
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m = 0,

(

ψ̂En
|ψ̂G

)

= trc(ψ̂
†
En

ψ̂G)

=
∞∑

ℓ=0

〈ℓ| ψ̂Gψ̂En
|ℓ〉

=
∞∑

ℓ=0

∞∑

j=0

〈ℓ| e−αθ(2b†b+1) |j〉 〈j| ψ̂En
|ℓ〉

=
∞∑

ℓ=0

∞∑

j=0

e−αθ(2j+1)δj,ℓ 〈j| ψ̂En
|ℓ〉

=
∞∑

j=0

e−αθ(2j+1) 〈j| ψ̂En
|j〉 . (4.17)

(4.18)

Here I have used the Hermiticity of ψ̂En
(see Section 2.3 just before Section 2.4) and the

cyclic permutability of the trace in the second line. Thinking of ψ̂En
as an expansion of

angular momentum states and remembering that the only non-zero matrix elements of the

angular momentum states are of the form 〈n| ψ̂m |n + m〉 immediately shows that only the

states in the inner product with angular momentum zero contribute. Furthermore, since

one is working here inside an infinite well, 〈j| ψ̂m |j〉 = 0 when j > N3. One can, therefore,

write the expansion of ψ̂G as

ψ̂G =

N3∑

n=0

N3∑

j=0

e−αθ(2j+1) 〈j| ψ̂En,m=0 |j〉 ψ̂En,m=0. (4.19)

Finally, acting on both sides with the time evolution operator, e−iĤt gives,

e−iĤtψ̂G =

N3∑

n=0

N3∑

j=0

e−αθ(2j+1) 〈j| ψ̂En,m=0 |j〉 e−iEntψ̂En,m=0, (4.20)

since the ψ̂En,m=0’s are per definition eigenstates of the Hamiltonian.

While working with the expansion of ψ̂G and the subsequent time evolution, I have

stayed in the Fock basis throughout. Since I am not so much interested in calculating the

probability of finding the particle at a specific position, but rather want to know simply

the probability of finding the particle outside the annulus there is no need to switch to the
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position basis here. Similar to how positional probabilities were derived in Section 1.1.3,

one can introduce a new operator π̂k,ℓ,

π̂k,ℓ = |k, ℓ) (k, ℓ| , (4.21)

where k and ℓ are integers here.

As was done in Section 1.1.3 one can show that the following is a resolution of unity,

1q =
∞∑

k=0

∞∑

ℓ=0

|k, ℓ) (k, ℓ| . (4.22)

Since
(

k, ℓ|ψ̂
)

= 〈k| ψ̂ |ℓ〉,

∞∑

k=0

∞∑

ℓ=0

|k, ℓ)
(

k, ℓ|ψ̂
)

=
∞∑

k=0

∞∑

ℓ=0

|k〉 〈ℓ| 〈k| ψ̂ |ℓ〉

=
∞∑

k=0

∞∑

ℓ=0

|k〉 〈k| ψ̂ |ℓ〉 〈ℓ|

= ψ̂, (4.23)

which shows that
∑∞

k

∑∞
ℓ=0 |k, ℓ) (k, ℓ| is indeed an identity operator on Hq. Since π̂k,ℓ is

clearly Hermitian on quantum Hilbert space, positive and sums to unity (
∑

k,ℓ π̂k,ℓ = 1q)

it can indeed be considered a Positive Operator Valued Measure. The total probability of

the system at any given time is then given by

ηG =
∞∑

k=0

∞∑

ℓ=0

(

e−iĤtψ̂G

∣
∣
∣ π̂k,ℓ

∣
∣
∣e−iĤtψ̂G

)

=
∞∑

k=0

∞∑

ℓ=0

(

ψ̂G

∣
∣
∣ π̂k,ℓ

∣
∣
∣ψ̂G

)

=
(

ψ̂G|ψ̂G

)

, (4.24)

which is not 1, since I have not normalised ψ̂G. The first step follows, of course, since total

probability is conserved (see Section 1.1.4).

While the above is formally correct, it does not take any specifics of the system into
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account. Taking a closer look at the sum reveals that it is limited by two things,

ηG =
∞∑

k=0

∞∑

ℓ=0

(

ψ̂G(t)|k, ℓ
)(

k, ℓ|ψ̂G(t)
)

=
∞∑

k=0

∞∑

ℓ=0

| 〈k| ψ̂G(t) |ℓ〉 |2. (4.25)

From (4.20) one knows that ψ̂G(t) = e−iĤtψ̂G is a sum over angular momentum states of

which m = 0. ψ̂G(t) is therefore zero if k 6= ℓ,

ηG =
∞∑

ℓ=0

| 〈ℓ| ψ̂G(t) |ℓ〉 |2. (4.26)

Furthermore, since the system is bounded by the infinite well potential, 〈ℓ| ψ̂G(t) |ℓ〉 is zero

when ℓ > N3,

ηG =

N3∑

ℓ=0

| 〈ℓ| ψ̂G(t) |ℓ〉 |2. (4.27)

The probability of finding the particle outside the annulus is therefore simply,

P (outside) =
1

ηG

N3∑

ℓ=N2+1

| 〈ℓ| ψ̂G(t) |ℓ〉 |2. (4.28)

4.3 Numerical Results

With a way of calculating the time evolution of the Gaussian wave packet and sub-

sequently calculating the amount of probability that has escaped through the annulus

barrier, one has everything one needs to obtain some results numerically.

The first figure in this section displays the main result of this chapter. The Gaussian

in question is allowed to evolve in time for ten time steps (in units of ~ = 1). At each

step the total probability outside the annulus is measured. Commutatively this is found,

of course, by integrating the modulus squared of the (normalised) wavefunction on the

outside of the annulus, as found from the PDE. In the non-commutative case I rely on

equation (4.28). These values are what one sees in Figure 4.1.

For Figure 4.1 commutative values are plotted using a solid line and diamonds, whereas
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Figure 4.1: Comparison of commutative and non-commutative tunneling prob-
abilities. This figure uses the following values, namely N1 = 10, N2 = 12 and
N3 = 50. Furthermore, the value of θ was chosen to be 1. This results in
commutative values for the radii which are R1 =

√
21, R2 =

√
25 and R3 =

√
101.

non-commutative values are denoted by a dashed line with stars. The barrier in this system

is quite thin. Non-commutatively the difference between the inner N1 and outer N2 is only

two on a total system size of N3 = 50 units. Commutatively the barrier is only about

R2 − R1 ≈ 0.42 units thick. These values allow for a fairly steady flow of probability

out of the annulus in the commutative case and the non-commutative parameter θ is

very large (θ = 1) to make the differences in the two cases clear. Not surprisingly, given

the large value of θ, the difference between commutative and non-commutative results

is large. One sees that the particle has a much higher chance to tunnel through the

barrier in the commutative case than the non-commutative one. As alluded to in previous

chapters it is not possible to define a sharp boundary in a non-commutative setting. This

difference between the commutative and non-commutative tunneling probabilities can then

be understood intuitively from the inherent fuzziness of the non-commutative potential,

where the particle experiences forces over a wider region than it would commutatively.

Figures 4.2(a) and 4.2(a) attempt to show that the tunneling probabilities also tend

towards the commutative values when θ → 0. Unfortunately due to the fact that as one

makes θ smaller, N3 needs to become larger to compensate if one wishes to keep R3 fixed as

one does here. This, however, leads to more bound states in the non-commutative system

(remember that the maximum number of bound states in an infinite non-commutative well

is N3+1) and subsequently the number of terms in the expansion of ψ̂G(t) blow up due the

dependence on N3 in both sums. Furthermore, more bound states mean higher energies
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Figure 4.2: Comparison of commutative and non-commutative tunneling prob-
abilities when the commutative system remains the same, but θ is different in
each figure. For the commutative system (same in both (a) and (b)), R1 =

√
5,

R2 =
√

7 and R3 =
√

21. In (a): N1 = 2, N1 = 3, N1 = 10 and θ = 1. In (b):
N1 = 17, N1 = 24, N1 = 73 and θ = 1

7
.

and calculating the Laguerre polynomials and Kummer’s functions numerically for higher

arguments become problematic and require drastic increases in the amount of precision

used. The values used in the non-commutative system in Figure 4.2(a) are therefore such

that when they are changed to those of Figure 4.2(b) one sees a large decrease in θ (θ

goes from 1 to 1
7
) while still staying within the realm of relative computational ease. This

results in a commutative system which is tiny and a barrier which is extremely thin. The

wave packet, therefore, easily tunnels out of the annulus and bounces back from the infinite

well wall, causing probability outside the annulus to oscillate. Even so, one sees that the

non-commutative tunneling probabilities in the case when θ = 1
7

are closer to those of the

commutative system on average. These figures show once again that as θ becomes smaller

one starts to retrieve the commutative system.



Conclusion

The primary goal of this thesis was to explore some of the consequences of non-commutative

quantum mechanics in a simple setting, such as the well, in order to gain an understanding

of where and how it deviates from the normal commutative theory we are all familiar with.

To this end I first gave an overview of the formalism of non-commutative quantum

mechanics. By using the formalism of commutative quantum mechanics as a starting point

and building up non-commutative quantum mechanics side by side with this, it becomes

very clear what the similarities and what the differences are between the mathematical

structures underpinning these theories. One of the first differences one noticed is that the

Hilbert space of physical states, which is L2 in the commutative case, has been replaced

with the space of Hilbert-Schmidt operators acting on non-commutative configuration

space, which means that the states themselves are now operators. The greatest difference,

however, is how position measurements are made. Position states are no longer orthogonal

due to non-commutativity. This requires one to use positive operator valued measures to

calculate positional probabilities, which is a significant change from the commutative case.

Fortunately, even though the way these probabilities are calculated are different, showing

that probability is conserved under time evolution is still rather simple.

The mathematical background of non-commutative quantum mechanics given in the

first chapter allowed me to continue smoothly into a discussion of how non-commutative

piecewise constant potentials are constructed. This is no longer as easy a task as it

is commutatively and requires the use of projection operators to demarcate the various

regions of the potential. Furthermore, these projection operators are written in terms

of harmonic oscillator states, which span the non-commutative configuration space, and

subsequently the matching conditions that are to be satisfied by the wavefunction are

also given in this basis. To find the coefficients of the wavefunction, which is given in

position basis per definition, an additional step is necessary, in the non-commutative

case, to connect the two bases in question. The fact that the non-commutative matching

conditions are so different from the ones one has commutatively has a significant impact

on these coefficients. The main reason for this difference is that the matching conditions

in the commutative case are constructed to ensure smoothness of the wavefunction accross

57
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regions of different potential. In the non-commutative case on the other hand one uses the

matching conditions to ensure that the full wavefunction is the sum of the wavefunction

in each zone of potential and therefore the wavefunction is not smooth from one area to

the next.

All this mathematical background was necessary in order to obtain the results of the

second half of this thesis. The third chapter dealt with time-independent properties of the

non-commutative potential well. Even in such a simple setting one already finds some in-

teresting deviations from the commutative case. Firstly, one sees that non-commutativity

introduces a splitting in the bound states energies for positive and negative angular mo-

mentum, with positive (negative) angular momentum states having a lower (higher) energy

than one finds commutatively. This can lead to more (in the positive case) or less (in the

negative case) bound states than one finds commutatively for large values of the non-

commutative parameter, θ. In particular one finds that one never has negative angular

momentum states with angular momentum (as an absolute value) greater than N , where

N is an indication of how finely space is quantised for a given area. Whether these state-

ments hold for positive or negative angular momentum depends, of course, on what the

sign of θ is. The sign of θ was chosen positive in this work, but one could easily have

chosen it negative resulting in swapping the results and conclusions for positive and neg-

ative angular momentum. Convergence of non-commutative results to commutative ones

as θ → 0 appear to be quite rapid. Finding evidence of non-commutativity in this way

would either require a great deal of luck or some extreme scenario utilising the cut-off in

negative angular momentum. Non-commutative scattering data also seems to flow over

into commutative form fairly quickly. However, in this case there appear to be certain

points where convergence is slower. The physical origin of this is not completely under-

stood, but further investigation might turn up some more solid clues for where to find

non-commutativity in experiment.

The final chapter saw a first look into non-commutative tunneling. This delivered the

interesting result that the rate of tunneling seems to be slowed in the non-commutative

case. If one were to consider that non-commutativity introduces an uncertainty in the

exact position of the potential, this would make intuitive sense, since it would make the

potential appear slightly fuzzy. This is clearly felt by the tunneling particle, which sees

a thicker barrier than it does commutatively. In this way non-commutativity may affect
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the life times of resonances or quasi-bound state.

Non-commutative quantum mechanics as used in this thesis offers a systematic way of

performing calculations and interpreting the results. It also naturally incorporates the

idea of a minimum length required for a quantum theory of gravity. This makes one think

that a non-commutative theory might be how we end up describing gravity at the smallest

of scales. To this end, one needs an understanding of how non-commutativity affects the

physics that a commutative theory already explains well as well as finding some place

where one can see whether non-commutativity is really how nature works. It is, therefore,

in these last two parts where my thesis aims to play a small role.
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