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Abstract 

 

Landfarming is a widely used method for the disposal of contaminants in the petrochemical 

industry. It involves ploughing the contaminants into the top soil layer allowing biological 

breakdown. A historically landfarmed site was identified at a South African petrol refinery. The 

refinery used to dispose so-called American Petroleum Institute (API) -sludge onto a landfarming 

site. API-sludge consisted of a mixture of oil and water soluble contaminants originating from a 

process of separating refinery waste from reusable water and oil. Landfarming on this site was 

discontinued after excessive quantities of sludge were ploughed into the soil over time and it became 

obvious that effective biodegradation could not take place. An environmental assessment had to be 

carried out to assess to what extent the soil has recovered from the contamination and after 

remediation was done over time.  

Bioassays together with chemical analyses were executed to determine the level of pollutants in 

the soil and to assess the integrated effects of their bioavailable fractions. 

The landfarming site of the refinery was divided into two sections namely, a more contaminated 

north-site and less contaminated south-site. Soil samples were collected from both sites as well as 

from an off-site (control site). The soils were analysed physically, chemically and used in the 

bioassays. Two additional control soils were also used, OECD-soil and LUFA2.2 soil.  

Chemical analysis of the site soils showed the presence of heavy metals and high levels of 

diesel range organic hydrocarbons. The north-site had higher levels of contaminants compared to the 

south-site. 

Three species of soil organisms were used in standardised tests: Eisenia andrei, Enchytraeus 

doerjesi and Folsomia candida were exposed to the respective soils to study their survival, growth, 

reproduction success and avoidance behavior. Exposures to both site-soils were not acutely toxic to 

any organisms. F. candida had a decrease in juvenile production in both north- and south-site soils 

(289.42 ± 58.62 and 253.33 ± 122.94 respectively) compared to the control soil (479.89 ± 30.42). E. 

doerjesi showed an increase in produced juveniles exposed to north- and south-site soil (339.75 ± 

76.92 and 414.00 ± 17.78 ) compared to control soil (57 ± 34.39). E. andrei had similar cocoon 

production when exposed to south-site soil than in off-site soil (19.00 ± 5.3 and 18.5 ±  9.7 

respectively) but significantly less in north-site soil (1.25 ± 0.7). Only E. doerjesi showed avoidance 

of north-site soil.   
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To determine the sensitivity of the organisms to the API-sludge, they were exposed to 

concentration series of API-sludge-spiked control soils. The effect concentrations were calculated as 

the concentration of API-sludge that will decrease the studied endpoints by 50% of the control soil 

(EC50). The EC50s varied for each species exposed in the different control soils showing that the 

toxicity of the API-sludge is to a certain extent dependent on the physical soil properties of the 

substrate. The reproduction of F. candida were most sensitive to the API-sludge in off-site soil 

(EC50 = 90 mg/kg) and the E. doerjesi the least sensitive in LUFA2.2 soil (EC50 = 36000 mg/kg).  

Five plant species were exposed to API-sludge-spiked potting soil and the germination success, 

early growth rate and biomass were studied. The plants were not as sensitive to API-sludge as the 

soil animals. Lettuce and grass were affected the most by API-sludge and beans were the most 

resilient species. With the addition of low levels API-sludge to the substrate, the growth rate of 

beans was stimulated.  

This study showed that the south-site has been successfully remediated and most soil organisms 

exposed to these soils were not affected by the levels of toxicants present. However, exposures to 

north-site soil still had negative effects on soil organisms. It is recommended that hydrocarbon 

contamination should be further remediated in the north-site soil before landfarming should be 

allowed to continue. 
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Opsomming 

 

Ploegverwerking is ‘n algemene remediëringsmetode vir die verwerking van afvalmateriaal in 

petrochemiese industrieë. Dit behels die inploeg van toksiese afvalmateriaal in die boonstegrondlaag 

sodat dit biologies afgebreek kan word. ‘n Voorbeeld van ‘n histories ploegverwerkte grondstuk is 

geidentifiseer by ‘n Suid-Afrikaanse olieraffinadery. Die raffinadery het in die verlede van die 

grondstuk gebruik gemaak om sogenaamde Amerikaanse Petroleum Instituut-slik (API-slik) daarin 

te ploeg. Die API-slik bestaan uit ‘n mengsel van olie- en wateroplosbare kontaminante afkomstig 

van die proses waardeur die raffinadery se afvalprodukte van hernubare water en olie geskei word. 

Nadat oormatige konsentrasies slik in die grond ingewerk is en bioremediasie nie meer doeltreffend 

kon voortgaan nie, is die ploegverwerking gestaak. ‘n Omgewingimpakstudie moes uitgevoer word 

om te bepaal tot watter mate die grond herstel het nadat remediasie oor tyd uitgevoer is.  

Toksisiteitstoetse en chemiese analises is uitgevoer om die vlakke van besoedeling sowel as 

die biobeskikbare fraksie daarvan in die grond te bepaal. Die ploegverwerkte area van die 

raffinadery is in twee verdeel naamlik, ‘n meer gekontamineerde noordelike area en ‘n  minder 

gekontamineerde suidelike area. Grondmonsters is van die onderskeie areas asook van ‘n 

ongekontamineerde veld (as kontrole) naby die ploegverwerkte area versamel Die gronde is fisies- 

en chemies geanaliseer en  toksisiteitstoetse is uitgevoer. Twee addisionele kontolegronde is ook 

tydens die blootstellings gebruik naamlik, OECD- en LUFA2.2-grond. 

Die chemiese analises van die ploegverwerkte toetsgronde het getoon dat daar steeds 

swaarmetale en hoë vlakke van dieselgekoppelde organiese koolwaterstowwe in die gronde 

teenwoordig is. Kontaminante was in hoër konsentrasies teenwoordig in die grond van die 

noordelike gebied as in dié van die  suidelike gebied.  

Drie spesies van grondorganismes is gebruik tydens standaard toksisitetitstoetse. Eisenia 

andrei, Enchytraeus doerjesi en Folsomia candida is blootgestel aan die onderskeie toets- en 

kontrolegronde waarna hul oorlewing, groei, voortplantingsukses en vermydingsreaksies  bestudeer 

is. Blootstellings aan die ploegverwerkte toetsgronde het geen akute toksisiteit vir enige van die 

spesies getoon nie. F. candida se juveniele produksie was laer in beide noordelike- en suidelike 

toetsgronde  (289.42 ± 58.62 en 253.33 ± 122.94 onderskeidelik) as in die kontolegrond (479.89 ± 

30.42). E. doerjesi blootstellings het ‘n toename in juveniele getalle getoon in die noordelike- en 

suidelike toetsgronde  (339.75 ± 76.92 en 414.00 ± 17.78) in vergelyking met die 
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ongekontamineerde kontolegrond (57 ± 34.39). Kokonproduksie by E. andrei was soorgelyk in die 

suidelike toetsgrond en ongekontamineerde kontrolegronde (19.00 ± 5.3 en 18.5 ±  9.7 

onderskeidelik) maar beduidend minder as in noordelike toetsgrond (1.25 ± 0.7). Slegs E. doerjesi 

het ‘n beduidende vermydingsreaksie vir die noordelike toetsgronde getoon.  

Om die sensitiwiteit van die organismes aan vars API-slik te bestudeer, is hulle blootgestel aan 

konsentrasiereekse van API-slik in die onderskeie kontrolegronde. Die effektiewe konsentrasie 

(EK50) is bereken as die konsentrasie van API-slik wat die  bestudeerde eindpunte met 50% sal 

verminder in vergelyking met die kontrolegrond Die EK50-waardes vir al die spesies het verskil na 

blootstelling aan die onderskeie kontrolegronde. Dus, die toksisiteit van die API-slik is tot ‘n sekere 

mate ook afhanklik van die fisiese grondeienskappe van die blootsellingssubstraat. Die 

voortplanting van F. candida was die gevoeligste eindpunt vir die blootstelling aan API-slik in 

kontolegrond (EK50 = 90 mg/kg) en E. doerjesi was die minste gevoelig in LUFA2.2 grond (EK50 = 

36000 mg/kg).  

Vyf plantspesies is ook blootgestel aan API-slikgekontamineerde potgrond en die 

saadontkiemingssukses, vroeë  groeikoers en biomassa is bestudeer. Alhoewel plante nie so sensitief 

was vir die API-slik soos die gronddiere nie, was blaarslaai en gras die meeste geaffekteer tydens 

die blootstellings. Boontjies was die ongevoeligste en met die toevoeging van lae konsentrasies API-

slik (2.5% API-slik), is hul groeikoers selfs gestimuleer.  

Uit die studie was dit duidelik dat die suidelike deel van die grondstuk meer suksesvol as die 

noordelike geremidieer is en dat meeste grondorganismes wat daaraan bloot gestel is nie geaffekteer 

is deur die vlakke van kontaminasie wat steeds teenwoordig is in die grond nie. Die toetsgronde uit 

die noordelike deel het egter steeds negatiewe effekte op die grondorganismes gehad. Dit word  

voorgestel dat die koolwaterstof kontaminasie verder geremidieër behoort te word in die noordelike 

deel van die grondstuk voordat verdere ploegverwerking van die afval daar gedoen word.   
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1. Introduction 

 

1.1. Landfarming  
 

During the 1970s, uncontrolled disposal of industrial waste products resulted in pollution of 

groundwater, soil and air which gave rise to major environmental concerns. To date, petroleum and 

diesel waste products are being disposed of through various technologies. One such method is 

landfarming. It is a low-technology method that involves the controlled application of a relatively 

defined waste to a soil surface, and the incorporation of the waste into the upper soil zone (Genou et 

al. 1994). This method of bioremediation makes use of regular ploughing of the upper soil layer to 

mix the contaminants with the soil and allow aeration for optimising biological breakdown. The 

contaminants are degraded, transformed and immobilised by means of biotic and abiotic soil 

reactions (Rubinos et al. 2007).  Landfarming is an effective remediation method for the sanitation 

of soils contaminated with metals, volatile organic compounds (VOCs), polycyclic aromatic 

hydrocarbons (PAHs), wood preservatives (pentachlorophenol or creosote), solvents as well as total 

petroleum hydrocarbons (TPHs) (Vidali 2001). Soil conditions such as moisture content, aeration, 

pH (altered by lime addition) and nutrient additives are controlled to optimise the rate of 

contaminant degradation.  

The processes which are stimulated in the soil by landfarming may either be physical (such as 

volatilisation), chemical (oxidisation, reduction, hydrolysis, precipitation, polymerisation and 

degradation by means of UV radiation) or microbiological (biodegradation or mineralization) 

(Rubinos et al. 2007). Landfarming gained popularity when environmental concerns associated with 

uncontrolled disposal became apparent. Environmental regulations were established and applied in 

North American and Europe that aimed at minimizing the risk of air and groundwater contamination 

(Environment Canada 2009). Landfarming was widely used because of its simplicity and relative 

cost effectiveness when compared to other treatment methods (Pearce & Ollermann 1998).   

Despite the advantages and benefits, landfarming has physical, chemical and biological 

ramifications and limitations. One such physical constraint is the mobility of the contaminants in the 

soil which can not be controlled. Chemical limitations include toxicity to soil organisms, 

transformation and partitioning of the petroleum and diesel fuel waste products under different 
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environmental conditions. Landfarming requires a sizeable area for the treatment of contaminated 

soil which leads to a higher risk of exposing the environment to pollutants (Maila & Cloete 2004). 

Recently environmental management systems have attempted to provide waste disposal and 

treatment in accepted manners for preventing harm of waste products to the environment, inside and 

outside industrial facilities. This was not always the case and resulted in many areas contaminated 

with hazardous substances which today can be referred to as ‘historically contaminated sites’ (Maila 

& Cloete 2004). Long term studies by Loehr & Webster (1996) confirmed that with the passing of 

time some chemical concentrations continue to decline after remediation processes have stopped and 

toxicity is gradually reduced. Even though significant concentrations of residual chemicals may still 

be present in treated soils, the mobility, toxicity and related risks of these chemicals have been 

reduced to a large extent (Loehr & Webster 1996). Techniques and methodologies must be 

developed to assess the extent of contamination and toxic risks involved to establish whether 

remediation of the contaminated area have rendered levels acceptable for the intended land-use.  

A historically landfarmed site was identified at a South African petrol refinery and further 

investigated during the present study. The landfarming was executed at the site by ploughing 

petroleum and refinery waste into the soil to a depth of 200mm. The refinery waste is called 

American Petroleum Institute (API) -sludge because of the API separation technology used for 

separating the waste from reusable water and oil (Punnaruttanakun et al. 2003). It contained 

approximately 15% hydrocarbons, and unknown levels of heavy metals. When excessive quantities 

of sludge were ploughed into the soil, the contamination level became too high for effective 

biodegradation to take place. This led to increased toxic quantities of heavy metals, petroleum 

hydrocarbons and PAH levels to which vegetation and soil organisms were exposed. Analyses of 

soils from this site (sampled between October 1993 and June 2000) have showed high levels of total 

petroleum hydrocarbons (TPHs), heavy metals and PAHs (Personal Communication).  In 2000 the 

soil was treated with activated lime for additional bioremediation purposes. This was done to raise 

the pH of the soil in order to immobilise the heavy metals and prevent its uptake by soil organisms 

when the metals are converted to insoluble hydroxides (Personal Communication). In another effort 

to remediate the landfarming site, fertilizer was ploughed into the soil. This also resulted in aeration 

to increase biological activity and thus enhance the biodegradation of the toxic organic contaminants 

(Personal Communication). Khaitan et al. (2006) argued that because of petroleum waste’s low 

solubility in water and the presence of a separate hydrocarbon phase, the remediation of these 

contaminants in soil is still a continuing challenge.  
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1.2. Industrial waste classification and risk limits  
 

Increased industrial development results in an increase in waste that raises various 

environmental concerns of which contaminated sites are one. Contaminants that exceed regional 

background levels must be remediated or treated to prevent negative impact or damage to the 

environment. The idea of remediation is to reduce the contaminated substances and to gain 

environmental benefits like future land use and cleaner ground and surface water. Remediation 

processes can also have a negative impact on the environment when potential pollutants are mixed 

with clean soil or water (Rushton et al. 2007). The choice of the remediation techniques to be used 

have traditionally focused on the extent of cleaning required, the extent and duration of the clean-up 

period and the economical resources available (Andersson 2003). 

In developed countries regulations have been implemented to assess soil quality and establish 

the environmental and human risks of soil contamination before and after remediation. Various 

countries in the European Union, Canada and the United States of America (USA) developed soil 

and groundwater quality guidelines. The guidelines are used to determine if toxic levels of 

contaminants are present in soil or groundwater. It generally prescribes a maximum allowed 

concentration for single contaminants or sets of values for specific substances under different 

conditions in soils or other media (Paton et al. 2005). Further, it assists to indicate which methods of 

remediation should be applied under different conditions (Augulyte et al. 2008).  However, the 

assessment approaches for determining contaminated soils differ between guidelines. The United 

States Environmental Protection Agency (US EPA) determines the level of soil contamination by 

comparing site-specific contaminant levels to concentrations determined under standardised 

conditions. The Canadian guidelines suggest adjusting the standardised values according to a 

specific site’s conditions. In The Netherlands the guideline for assessment of soil quality does not 

only consider physico-chemical variables but also ecotoxicological data (Paton et al. 2005).  

In South Africa all waste disposals should comply with the standards of the minimum 

requirements for the handling, classification and disposal of hazardous waste set out by the 

Department of water affairs and forestry (DWAF) (Department of Water Affairs and Forestry 1998). 

Thus, waste should be classified before it can be disposed. The objectives of waste classification 

according to the DWAF requirements are to firstly distinguish between general and hazardous waste 

by determining the single most hazardous compound in the waste. Secondly, the degree of hazard it 
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poses to the environment and lastly rating of hazardous waste according to the degree of hazard and 

set requirements. 

 

1.2.1 Hazardous- and General waste 
 

According to the DWAF requirements (Department of Water Affairs and Forestry 1998) waste 

is divided into two categories considering the risk it poses to humans and the environment, namely 

general waste and hazardous waste.  

General waste can be defined as any waste that does not pose a threat to the public health or the 

environment when properly managed. Examples include domestic, commercial and certain 

industrial wastes. General waste can also consist of hazardous substances but at such small 

quantities that it can be disregarded for being harmful to the environment (Department of Water 

Affairs and Forestry 1998). 

Hazardous waste is identified as waste that has the ability to have significant adverse effects on 

public health and the environment because of its toxicological, chemical and physical 

characteristics. Hazardous waste may be organic or inorganic and in some cases, even at low 

concentrations, give rise to acute in chronic effects in living organisms. Such waste is normally 

generated during commercial, industrial or agricultural practices.  

 

1.2.2. Risk limits  
 

The concentration of contaminants that leaches into can be expressed as the Estimated 

Environmental Concentration (EEC) factor. The EEC indicates if the contaminant concentrations in 

the soil are higher than concentrations where it will start to pose risks to the environment and 

whether it should be further remediated (Department of Water Affairs and Forestry 1998). The 

DWAF guideline, on handling and disposal of contaminants, includes a list of potential water 

contaminants and the maximum allowed concentrations for individual compounds, called the 

acceptable risk limit (ARL). ARLs are determined by multiplying the contaminant concentration, 

where 50% of specific organisms (aquatic, terrestrial or mammalian organisms) exposed within a 

given time period are killed (expressed as LC50), by a safety factor. In aquatic systems the safety 

factor is equal to 10. Thus, ARL= 0.1 ×LC50.  By comparing the concentration of a specific 

University of Stellenbosch: http://scholar.sun.ac.za



Introduction 
 

 5 

contaminant (EEC) to the ARL it will indicate the aquatic or terrestrial system is at risk (depending 

on the LC50-value used). If the EEC is lower than the ARL it is considered not to pose a threat to the 

environment (Department of Water Affairs and Forestry 1998). Previous toxicity studies have 

shown that organisms exposed in water media are affected more than in soil media. This was due to 

the decrease in available contaminants in soil as a result of adsorption to the organic matter and 

mineral clay fractions of the soil (Sverdrup et al. 2001; Didden & Römbke 2001). The list of ARL 

values, of potential toxicants, in the DWAF guideline were calculated using LC50-values of 

mammalian exposures to contaminants in water. However, ARL values for soil organisms exposed 

to toxicants in a soil media are lacking in the guideline. 

 

1.3. Assessment of soil toxicity using bioassays and chemical analyses  
 

By applying only chemical analyses during the assessment of contaminated soils, the 

information gained are insufficient to determine the risk of pollutants on soil ecology and exposed 

organisms. Chemical analyses of polluted soils alone do not allow the integration of chemical 

mixtures, their combined effects or bioavailability on soil systems (Van Gestel et al. 2001; Sverdrup 

et al. 2001; Augulyte et al. 2008). A proposed method for incorporating bioavailability and direct 

toxic effects of contaminants on soil biota was to make use of bioassays together with chemical 

analyses (Henner et al. 1997; Lanno et al. 2004). The controlled exposure of soil organisms to 

specific levels of contaminants may elucidate the environmental impact of pollutants and the extent 

of bioremediation that might be needed to alleviate soil toxicity.  

The first step to assess polluted sites and whether remediation was successful is to measure the 

total concentration of specific contaminants in the soil using chemical extraction methods (Song et 

al. 2002). After chemical analysis biological risk assessments are included to incorporate the 

physico-chemical properties together with acute or chronic effects of toxicants in the soil to 

organisms. The toxicity of contaminants may differ between dissimilar soil types that affect their 

bioavailability. The methodology for assessing toxic risk should be versatile enough to be used 

generically but should still consider the influence of site specific conditions. Biological assessments 

are complementary to the chemical analyses and should be optimized so that they are easy to use 

and sensitive.  Standardised methods for various bioassays were developed by the OECD 

(Organization for Economic Cooperation and Development, Europe) and the ISO (International 
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Organisation for Standardization). These standardised bioassays are used to evaluate acute and 

chronic toxicity for various test soil organisms. One of the most important requirements for good 

risk assessment using bioassays is the selection of representative test species (Plaza et al. 2005). The 

test species must be well studied organisms with regards to their function, taxonomy, life cycle and 

route of toxicant exposure (Løkke & Van Gestel 1998). The sensitivity of species to soil 

contaminants often varies. Some soil species are more sensitive to certain chemicals than others. For 

this reason it is important to use more than one soil organism when doing biological assessments 

(Davies et al. 2003). Previous studies on the toxicity of oil-contaminated soils showed that the 

survival of the earthworm species, Eisenia fetida, was a sensitive endpoint when compared to the oil 

contaminants’ effects on organism in other bioassays, including micro-soil organisms 

(microtoxicity) and plants (phytotoxicity tests) (Dorn & Salanitro 2000).  

Eisenia- (earthworms), Enchytraeus- (potworms) and Folsomia- (springtails) species are some 

of the standardised soil organisms commonly used in bioassays.   

Litter dwelling earthworms and potworms generally inhabit organic matter rich areas (Spurgeon et 

al. 2003). Using these organisms in bioassays can have some limitations. Possible constraints may 

be that they lack ecological relevance when compared to deeper soil dwelling species that will most 

likely be more exposed to soil contaminants (Dawson et al. 2007). Because both worm species are 

compost–dwelling organisms (epigeic) rather than soil dwelling, a third test species has to be 

considered. Although the use a soil dwelling earthworm like Lumbricus terresteris would be ideal 

for soil studies, these organisms have much longer life cycles (Kula & Larink 1997), minimal 

success in laboratory bred cultures and little to no standard tests are available for them (Hanna & 

Weaver 2002). Another test organism known to be sensitive to hydrocarbon contamination, found at 

high concentrations in petroleum and oil waste products, was a springtail spp. Folsomia candida 

(Paumen 2009).  

Plant growth in oil polluted soil is generally delayed by the direct toxic effects of the different 

compounds on the plant tissue (Udo & Fayemi 1975). The hydrocarbons in oil degrade the soil by 

reducing soil fertility and changing the composition of soil micro-organisms. This has indirect 

effects on plant growth and other physiological processes (Ogbo 2009). Physiological changes in 

plant growth and germination success include effects such as the suffocating and dehydration of the 

plants. The blocking of the stomata which reduces transpiration, a reduction in the rate of 

photosynthesis and a negative effect on the success of germination and root systems growth (Baker 
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1970; Sharma et al. 1980; Ogbo 2009). Although soils have the ability to adsorb oil and 

hydrocarbons, it has been shown by previous studies that it still has the ability to have negative 

effects on plants.  

Plants have a higher tolerance when exposed to oil and hydrocarbon contamination than soil 

invertebrates and microbes (Blankenship & Larson 1978; Dorn et al. 1998; Adam & Duncan 1999; 

Adam & Duncan 2002).  The degree at which plants are affected by the contaminants varies greatly 

depending on the soil type, plant species and the concentration of contaminants in the soil (Ogbo 

2009). The concentration at which a plant is significantly affected is called the effective 

concentration or phytotoxic level and differs among species (Ogbo 2009). Alterations in germination 

and plant growth are good indicators of the physiological effects of the soil contamination. 

The root systems of plants, being in direct contact with the contaminants, play an important 

role in their ability to tolerate contamination by toxic substances (Adam & Duncan 1999). The roots 

create a rhizosphere for micro-organisms which are essential in breaking down toxicants. Grass 

rhizospheres have shown to effectively break down some of these toxicants (Adam & Duncan 

1999).   

 

1.4. Mixtures of refinery waste products in soil 
 
 

 Petroleum refinery waste products (in the form of sludge) contain a mixture of contaminants 

such as metals, TPHs, VOCs and PAHs at levels that pose a potential threat to the environment and 

human health. These threats include carcinogens, endocrine- and metabolic disruptions (Carpenter 

2002). Overall, various components in mixtures, like in the case of petroleum refinery waste, have 

complex interactions and effects on the toxicity of its single components (Gong et al. 2001; 

Augulyte et al. 2008) Toxic effects of refinery waste on soil organisms may not necessarily be 

caused by a single substance in the sludge but rather by a combination of the various components of 

the mixture. Another fact to consider is that the constituents of a waste mixture are dependent on the 

materials and methods used in petroleum refining processes and may vary over time.  

 Although soil properties and bioavailable contaminants are site-specific and single 

contaminants are not necessarily responsible for the mixed contaminants’ toxicity (Paton et al. 

2005) it is still important to understand the potential toxicity of the different groups of contaminants.  
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1.4.1. Metal toxicity 

 

Metals are accumulated in soils and do not have the ability to degrade but can be immobilized 

through remediation processes. By immobilising the metals it inhibits their availability for uptake 

and interaction with soil organisms. Thus, metal polluted site-soils that have been remediated may 

still have high levels of metals present but at less bioavailable levels (Van Gestel 2008). It is known 

that metal toxicity is not only dependent its chemical concentration in soil and more factors such as 

soil pH, organic matter- and mineral clay content influence its bioavailable fraction. When the soil 

pH is increased the metals have the ability to displace ligands (like organic matter and mineralized 

clay) bound H+ ions making them less bioavailable.  Further, the metal speciation also plays a role in 

its bioavailability (Spurgeon et al. 2006).  At a lower pH the metals are present in ionic form and 

easier for uptake and accumulation in organisms’ body tissue. The partitioning of metals between 

soils and organisms are not only dependent on the pH but also the solubility and speciation of the 

metals (Janssen et al. 1997). Experiments done by Spurgeon et al. (2006) displayed that the survival 

of earthworms (Lumbricus rubellus) exposed to metal polluted soils, mainly cadmium, lead and 

zinc, decreased. However, by altering the soil, when increasing the pH with one unit (pH + 1), the 

survival success was improved. On the contrary, the metal uptake to the earthworms’ body tissue did 

not significantly differ at different pH’s suggesting that it is not the only factor for its bioavailability.  

Even though the relationship between bioavailability of metals and the physico-chemical conditions 

of soil is well studied, their direct relationship is far from being understood (Van Gestel 2008).    

 

1.4.2. Hydrocarbon toxicity (TPHs and PAHs) 

 

Toxicity tests with hydrocarbons are problematic. Similar to metals, there are no correlation 

between the hydrocarbon concentrations in soil and its toxic effects. This is due to the fact that they 

usually occur in complicated mixtures. Thus, the reduction of hydrocarbon concentrations in soil 

does not correlate with a decrease in ecotoxicity (Salanitro et al. 1997; Dorn & Salanitro 2000).   

PAHs are a group of organic compounds (Appendix B) that consist of two or more fused 

aromatic rings rendering them to be stable and resistant towards biodegradation (Haritash & 

Kaushik 2009). These properties of PAHs cause them to have a greater risk for bioaccumulation and 

carcinogenic effects to soil animals and plants (Eom et al. 2007). Natural sources of PAHs are 

University of Stellenbosch: http://scholar.sun.ac.za



Introduction 
 

 9 

volcanoes and forest fires but most industrial processes involving pyrolysis or incomplete 

combustion of organic materials also emit PAHs (Haritash & Kaushik 2009). PAHs are known to be 

precursors of mutagenic derivatives or endocrine disruptors (like naphthalene) and are widely 

occurring in natural media such as soil, sediment, water, air and plants. Since most PAHs are highly 

hydrophobic, their pathways of transfer through geological and biological media are complex and 

far from being understood (Henner et al. 1997).  

Cornelissen et al. (2005) suggested that, because of their hydrophobicity, TPHs and PAHs 

have the ability to bind to organic matter that lowers their bioavailability to soil organisms. By 

studying the bio-concentration (partitioning process between the chemicals in the soil pore water 

and the internal phases in organisms) and accumulation of the TPHs and PAHs in the soil organisms 

are perhaps the first steps towards understanding their environmental risk. Van Brummelen et al. 

(1998) explained that another reason that hydrocarbon toxicity vary is because it may be phototoxic, 

thus becoming more reactive in sunlight, with the result that soil organisms become more 

susceptible to the contaminants under natural field exposures compared to exposures under 

laboratory conditions.   
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1.5. Aims  
 

During this project an environmental assessment of a historically landfarmed site, situated at a 

South African refinery, was made. Effects of potentially contaminated soil were investigated using 

bioassays together with chemical analysis to establish whether further remediation techniques were 

needed and whether further landfarming should be allowed in future. The null hypothesis states that 

because landfarming was discontinued and remediation methods were applied to the site, the soil 

will not be toxic to exposed biota.  

The specific aims were to:  

1. Collect soil samples from the landfarming site as well as from a control site and analysing these 

soils physically and chemically. 

2. Determine the chemical composition of the contaminants still present in the landfarming site soils 

compared to the API-sludge. 

3. Establish effects of contaminants in the landfarming site soil on the survival, growth, 

reproduction success and avoidance behaviour of three standardized test soil animals (earthworm, 

potworm and springtail). 

4.  Establish effects of API-sludge-spiked control soils on the survival, growth, reproduction 

success and avoidance behaviour of these three soil organisms. 

5. Establish effects of API-sludge-spiked control soils on germination success, early growth rate 

and biomass of five different plant species (beans, maize, lettuce, radish and grass). 

6. Predict the contaminant or group of contaminants in the landfarming site soil potentially 

responsible for the toxicity to biota. 

7. Assess whether the concentrations of individual compounds in the landfarming site are within the 

acceptable risk limits (ARL), according to DWAF requirements, for safe landfarming to be 

continued in future.  
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1.6. Project design 
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2. Materials & Methods 

 

2.1. Field site and sampling design 

 

The sampling site chosen for this study was identified on a historic landfarming site based at 

an inland oil refinery. It is situated 150km south of Johannesburg in the Sasolburg area, South 

Africa (Figure 1). The refinery refines up to 90% of its crude oil to petrol, diesel and paraffin 

products. The waste from the oil refinement process is a mixture that consists of an oil layer and a 

water soluble fraction that are pumped from the refinery waste outlet during waste/water treatment 

and the cleaning of oil storage tanks. API-separation is based on the principle of oil floating on 

water which allows the separation of reusable oil and water that are pumped back to the refinery. A 

third layer forms between the oil and water, called API-sludge. This layer is inseparable because of 

compounds present that have both hydrophobic and hydrophilic properties (Shie et al. 2000; 

Punnaruttanakun et al. 2003). From the refinery the API-sludge are pumped into a sludge dam with 

a volume of 4233 m3. The landfarming site of interest is where the refinery disposed of the waste in 

the form of the API-sludge.  Taken from the sludge dams, the API-sludge was worked (ploughed) 

into the soil of the landfarming site (5.9 hectare) which is approximately three times the volume of 

the sludge dam. The volume of the landfarm was determined by taking into account that the sludge 

is worked into the soil to a depth of 200mm. The sampling of the site was designed by using various 

standardized soil sampling guidelines (Tan 2005; Environment Canada 2nd Draft 2009).  

The site was divided preliminary into two possible homogeneous strata based on the basis of   

colour and smell of the soil. Systematic sampling, where the sampling points were taken from 

evenly spread points on the field, was carried out. Thereafter compositing (mixing of soil samples) 

of heterogeneous soils were carried out. It enables one to obtain reliable means for a large number of 

soil samples. Compositing can only be done when soil types are the same for all samples of the 

strata. The larger the number of sampling points taken from the field and mixed, the better it will 

represent the whole of the area sampled.  

A grid was drawn over the landfarming site and 4kg soil was collected from a depth of 150mm 

at each of the 34 sampling blocks. Each individual sample was put into plastic Ziploc® bags and 

taken to the laboratory for further mixing and preparation. Although most sampling protocols 

suggest that sampling should be done in dry seasons or early autumn, seasonal effects at time of soil 
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sampling are minimal (Environment Canada 2nd Draft 2009). All sampling were carried out in May 

2009 (late autumn and dry season). 

 

 

 

 

 

 

 

 

 
 

Figure 1: Map of South Africa showing the relative position of Sasolburg where the sampling site is 
situated. Retrieved from Aneki (2005). 
 
 

 

 

 

 

 

 

 

 

 

Figure 2:  A. Aerial view of the refinery and landfarm. The landfarming site is indicated by the X.  

B. Close-up of the landfarming site. The area marked with the arrow and cross indicates the site 
where the off-site soil (control soil) was collected. Retrieved from Google Earth (2010).  

. Sasolburg  

 

A. B. 
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2.2. Substrates 
 

2.2.1. Field soils (site-soils and off-site soil) 

 

While the sampling on the landfarming site was undertaken, observations could be made of 

the colour, texture and smell of the soil on the smaller northern-site of the landfarm (separated from 

the southern part by a gravel road). The soil was distinctly darker with a more petrochemical smell 

than that of the bigger southern-site soil. Soil samples from the north- and south-sites were mixed 

separately. Bags with samples a, b and c (Figure 3) from each row (A, B, C etc...) were sieved using 

a 36mm mesh size sieve to get rid of loose rocks, bigger particles as well as excessive plant 

material. The samples were mixed into buckets labelled A1, A2, B1, B2, C1… etc. Thus 34 samples 

were taken on the site and mixed into 12 representative samples. The 12 samples were then mixed 

further by adding A1, A2, B1 and B2 that represent north-site soil and all samples of C, D, E, and F 

to represent south-site soil. These two samples will be referred to as the ‘site-soil samples’ in further 

discussions (Figure 3). Due to the fact that the north-site is only a third of the landfarming site and 

the south-site two thirds, the 34 samples taken over the whole site were proportionally divided  so 

that the north-site soil were mixed using soil from 12 sampling points and 23 representing the south-

site. An ‘off-site soil’ sampling site was identified close to the landfarm. Soils obtained from this 

site served as a control soil (reference soil) (Figure 2). Even though the off-site soil sampling site 

was close to the landfarm it had no signs of recent industrial or agricultural activity, and would 

potentially have the closest possible relation to the soil properties of the natural soil in the region. 

The site-soils and control soils should have similar soil properties because texture and organic 

content could influence the performance of the test species during ecotoxicological evaluation.  

Ten litres of API-sludge were also collected from random sampling points in the sludge dams, 

mixed and used in the laboratory toxicity tests to obtain a positive control in the bioassays.  

The API-sludge was used to spike negative control soils so that a positive control could be 

obtained. According to the OECD protocols (OECD 2004b) it is important to have a positive control 

where an evident effect could be observed so that the experimental results of the test soils can be 

compared to it. 
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2.2.2. Additional control soils 

 

Because it is known that varying soil components such as mineral clay and organic matter 

content influence the toxicity and bioavailability of toxicants to soil organisms, two additional 

control soils were also used for comparison purposes. The two control soils used were OECD-soil 

and LUFA2.2-soil.   

 

Figure 3: Sampling grid drawn over the site indicating the sampling areas. Samples were 
taken where the grid overlapped the landfarming site. Blocks in row A and B represent the 
north-site (10 sample sites) and rows C, D, E and F represents the 24 sample site blocks of 
the south-site. Retrieved from Google Earth (2006). 
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2.2.2.1. OECD-soil 

 

The OECD control soil was an artificial soil prepared according to the OECD protocol (OECD 

2004b). It consists of 35% fine sand, 35% coarse sand (Consol (Pty) Ltd., South Africa), 20% 

Kaolin clay (Serina Kaolin (Pty) Ltd, South Africa) 10% Sphagnum peat moss (<1mm) (Nirom Peat 

Moss Inc., Canada).  

 

2.2.2.2. LUFA2.2-soil 

 

The control soil known LUFA2.2 was imported from Speyer, Germany. It is a commercially 

available natural soil commonly used as control soil in ecotoxicity tests in Europe. For standardized 

toxicity tests, guidelines suggest using soils with known characteristics (Römbke et al. 2006). For 

this purpose LUFA soil is a recommended natural and standardized soil type alternative to the 

OECD-soil with consistent soil properties such as organic matter content, particle size distribution 

and pH-values (Lufa-Speyer 2010). LUFA2.2 soil is not a mixture of single components (like in the 

case of the OECD-soil), but natural soils from selected areas of agricultural fields in Germany. This 

soil should have had no applied pesticides, biocidal fertilizers or organic manure for at least 5 years. 

The soil was sampled from 0-20 cm depth, prepared and sieved with a 2 mm mesh sieve. LUFA2.2-

soil is realistically comparable with field conditions and composition of the site soils for the present 

study. It is characterised as ‘loamy sand’ according to the United States Department of Agriculture 

(USDA) (Appendix A, Figure 1). 

Table 1 compares the different properties and characteristics of the artificial OECD soil to 

the natural occurring LUFA2.2 test soil. All tests soil that will be used in this study is summarised in 

Table 2.  

 

University of Stellenbosch: http://scholar.sun.ac.za

http://www.lufa-speyer.de/


Materials & Methods 
 

 17 

Table 1:  Comparison of the soil properties for the two additional control soils. 

 Artificial soil (OECD-soil)  LUFA2.2 soil 

Maximum water holding capacity (%)  60±5.0 46.5±6.0 

 pH (1M KCl) 6.0±0.5 5.5±0.1 

Particles sizes and classification (see Appendix A, Figure 21)  

Clay (<0.002mm) (%) 20±0.0 6.4±0.9 

Fine sand (0.002-0.05mm) (%) 35±0.0 11.6±0.7 

Coarse sand (0.05-2.0mm) (%) 35±0.0 82.0±0.7 

Organic content (%) 10±0.0 2.09±0.4 

Soil Type Sandy Loam Loamy Sand 

 

Table 2: Summary of soil samples collected and prepared to be used as substrates in the laboratory 
experiments. 

 Soil substrates Description 

Site-soils 

Landfarming site samples collected 

from the sludge disposal landfarming 

site 

North-site soil 
Collected from the northern part of the landfarming site 
that was visibly more contaminated  (darker colour) and 

with a distinct petrochemical smell 

South-site soil Collected from the larger southern part of the 
landfarming site that was visibly less contaminated 

Negative control soils 

Off-site soil 
Collected from a site adjacent to the landfarming site 
with no history of previous industrial or agricultural 

activities 

OECD-soil 
An artificially compiled soil made under strict laboratory 

conditions according to the OECD guidelines (OECD 
2004b) 

LUFA2.2-soil 
LUFA2.2 soil is commonly used in European toxicity 
assays collected from a site in Germany. It is a well 

studied natural soil with optimal soil properties. 

Potting soil Commercially available soil obtained from a local 
nursery to be used as the substrates for plant exposures.  

Positive control soils 

Fresh API-sludge-spiked soils 
Negative control soil spiked with API-sludge at such a 

concentration where a definite effect is visible in the soil 
organisms. 

Concentration series Negative control soils spiked with different  
concentrations of fresh API-sludge 
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2.3. Chemical analyses of PAHs and heavy metal content in the soils  

 

Chemical analyses were carried out on all samples.  From the chemical analyses the 

concentrations 40 tested metals, 16 United States Environmental Protection Agency priority 

polycyclic aromatic hydrocarbons (16 US EPA priority PAHs) and a range of volatile organic 

hydrocarbons (VOCs) were quantitatively determined. The chemical soil analyses were analysed at 

Setpoint (PTY (LTD.) Midrand, Gauteng, South Africa. Different techniques for the analysis of the 

various compounds were carried out as prescribed by U.S. EPA (U.S.EPA 1996). The metals were 

detected and quantified using the 32 element scan and inductively coupled plasma mass 

spectrometry (ICP-MS) analysis. VOCs were determined using GC-MS purge-trap-technique. PAH 

were determined with the GC-MS solvent extraction technique (acetone/hexane extracts). Where 

possible, analyses were done in quadruplicate and the mean values were used unless stated 

otherwise.   

 

2.4. Substrate preparation   

 

Possible varying parameters such as pH and moisture content were measured and controlled 

throughout the whole project. Before any tests the soils were dried at 60 °C for 48 hours 

(Gallenkamp size one oven BS, model OV-330, Weiss-Gallenkamp Ltd., Loufhborough, U.K.) and 

sieved (2mm mesh sieves). The pH was measured using the pH-KCl method as stated in the OECD 

protocols (OECD 2004a). 5 grams of soil from each substrate was weighed and 25ml 1M KCl 

solution made up in distilled H2O was added. The samples were then mixed for 5min and left for 2 

hours. After a further 5 minutes of mixing the pH was measured (Crison, Micro pH 2001 pH-meter). 

All pH measurements were done in triplicate and determined before and after each experiment to 

confirm consistency. Water retention, moisture content and water holding capacity (WHC) were 

established by using a moisture determination meter (Sartorious electronic moisture analyzer, Model 

MA45). 5g of test soil were placed in a plastic tube that was covered at one end with wet filter 

paper. The tubes were submerged vertically into a water bath to a level covering the whole tube but 

leaving the top of the tube above the water level so that the water can not enter the tube from the 

top. The tube remained in the water bath for 3 hours thereafter it was placed vertically, with the 

filter paper covered side at the bottom, on a bed of wet sand to drain for 2 hours. The vessels were 

covered with a lid at all times to prevent moisture loss through evaporation. The wet samples were 
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weighed and dried at a constant temperature of 105°C until the sample was completely dry. The 

WHC was determined as follows: 

. 

The total organic matter content in the soil samples was determined by using the Walkley-

Black wet combustion method as suggested in (Tan 2005). The clay (µm), silt (µm) and sand (µm) 

content of all samples were determined using the hydrometer method (Day 1956; Van der Watt 

1966). All particle size distribution analyses and organic matter content determinations were carried 

out at BemLab in Somerset-West, South Africa. See Appendix A for a detailed description of these 

methods. 

 

2.5. Test organisms 

 

Three soil organisms from different taxonomic groups were used in the bioassays namely; 

Eisenia andrei (earthworm), Enchytraeus doerjesi (potworm) and Folsomia candida (springtail).     

 

2.5.1. Eisenia andrei – Earthworm 

 

2.5.1.1. Classification 

 
 Phylum: Annelida 

Subphylum: Clitellata 

Class:  Oligochaeta  

Order:   Haplotaxida 

Suborder:  Lumbricina 

Superfamily: Lumbricoidea 

Family: Lumbricidae 

Subfamily: Lumbricinae 

Genus:  Eisenia 

Species:  Eisenia andrei Bouché, 1972 
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2.5.1.2. Morphology, life cycle and ecology  

 

Earthworms are the most commonly used animals as a representative of soil fauna because of 

their high abundance and biodiversity in various soil types (Dawson et al. 2007). Earthworms’ 

primary ecological function is to decompose organic matter by incorporating plant litter deeper into 

the soil and thus mixing the organic and inorganic soil fractions.  

Eisenia andrei is not a typical soil dweller but rather an epigic species confined to upper soil 

layers with a high organic matter content (Sims & Gerard 1985). Under natural conditions, these 

worms live optimally in soils with a pH ranging from 4.5-7.5. They inhabit damp and rotting 

vegetation in woodlands, wet decaying leaf litter and manure heaps. The earthworms feed on the 

microorganisms and protozoans in the organic matter content of soil. When culturing these worms in 

a controlled environment, they can be fed anything from shredded paper, manure and food waste 

products. Species of the genus Eisenia are commonly used in ecotoxicology and the recommended 

test organisms when establishing soil toxicity according to ecological guidelines (OECD 2004b). 

Originally Eisenia species were used in toxicity tests because of their relatively short life cycles and 

high reproduction rate that made them ideal test organisms in laboratory studies. Further they proved 

to act in a similar manner to other test species if the mode of the toxic action was the same, making 

them good representatives for most earthworms (Kula & Larink 1997).  

Two common Eisenia species, Eisenia andrei and Eisenia fetida are generally used in 

ecotoxicity studies. Mature Eisenia species have an average length between 60-120mm, diameter 3-

6mm and 80-120 segments. The body is cylindrical, becoming trapezoidal posterior. Colour between 

individuals varies from light pink to wine red. Mostly the worms are all uniformly pigmented but in 

some cases the dorsal parts of the worms appear to be striped. A saddle-shaped clitellum covers six 

to eight segments starting around segment 24 or 25 up to 30 or 33. 

E. andrei can be biparental (able to reproduce by the exchanging of genetic material with 

another worm of the same species) and to a lesser extent also uniparental (no sexual fertilization 

from a second worm) (Edwards & Lofty 1977). In Eisenia species cocoons can be produced within 

four days of mating and be continued for more that 500 days at an average rate of between 3.5-18.5 

cocoons every 10 days (Venter & Reinecke 1988). Incubation at 25˚C results in a mean of 2.7 

hatchlings per cocoon (Venter & Reinecke 1988).  Sexual maturity is attained within 40 to 60 days 

after hatching under optimised conditions.  

University of Stellenbosch: http://scholar.sun.ac.za



Materials & Methods 
 

 21 

2.5.1.3. Culturing  

 

Eisenia andrei was obtained from a synchronized culture, bred from a stock culture at the 

Ecotoxicology Laboratory, Department of Botany and Zoology, University of Stellenbosch. The 

original cocoons used to obtain the culture were provided by Professor O. Graff of Braunschwieg 

(Germany). For the present study cocoons were harvested from the stock culture and placed into 24-

well plates filled with distilled water and incubated at 20˚C to obtain worms of the same age. 

Hatched worms were collected on a daily basis and placed in containers with a cattle manure 

substrate as described by the OECD (OECD 2004b). After reaching the age of 90 days, mature, 

(clitellate) worms were used in all the acute, chronic and behaviour experiments.  

 

2.5.2. Enchytraeus doerjesi – Potworm 

 

2.5.2.1. Classification  

 
Phylum: Annelida 

Subphylum: Clitellata 

Class:   Oligochaeta  

Order:   Haplotaxida 

Suborder:  Tubificina 

Family: Enchytraeidae  

Genus:  Enchytraeus 

Species:  Enchytraeus doerjesi Westheide & Graefe, 1992 

 

2.5.2.2. Morphology, life cycle and ecology 

 

Enchytraeids live in the upper soil layers and play an important role in decomposition and soil 

forming processes. They are found in places with high levels of organic material, but can also be 

present in forest and crop plantation soils where the pH is slightly acidic. (Beylich & Achazi 1999; 

Memis et al. 2004). Enchytraeid populations are often higher in natural acidic soils than in soils with 

a neutral pH. The content of organic matter and moisture in the soil also influence their occurrence 

as well as their reaction to stress factors (Didden 1992). Most enchytraeid species are 

hermaphrodites. Eggs are laid in transparent cocoons. Although they reproduce sexually, asexual 
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fragmentation is also common. Cocoons take on average 7 days to hatch. The cocoons from 

potworms produce 10 eggs on average but each individual can produce as many as 1000 eggs over 

its life span. Potworms take an average of 8 days to mature to adulthood and have an average life 

span of approximately 90 days.  Enchytraeids have the ability to reproduce normally at any 

temperatures above 8 to 10°C where optimal growth and reproduction occur between 15 to 21°C 

(Römbke & Moser 2002; Memis et al. 2004). 

Enchytraeus doerjesi, the test species in this study, was first described in 1992 (Westheide & 

Graefe 1992). They are easy to culture under controlled conditions and fast growing which makes 

them ideal for ecotoxicological studies using reproduction and the number of juveniles produced as 

endpoints (Kramarz et al. 2005). E. doerjesi has a small body size in comparison to some of the 

other potworms in the genus but share many similarities with another species commonly used in 

ecotoxicological tests known as E. buchholzi Vejdovsky, 1897. The difference between the two 

species can be easily recognized and thus can be distinguished from each other on the basis of their 

spermathecal morphology. E. doerjesi has long non-glandular ectal ducts together with voluminous 

ampillae that makes it distinguishable from other species (Westheide & Graefe 1992). Specimens of 

E. doerjesi are small (4-7mm long) whitish worms consisting of between 18 and 37 segments with a 

pair of chaetae (brushes) on each segment and a clitellum on segment 12 to 13.  

 

2.5.2.3. Culturing 

 

The potworms used in this study were obtained from a stock culture at the Ecotoxicology 

Laboratory of the Department of Botany and Zoology at the University of Stellenbosch. The culture 

was started from adult worms obtained from Professor P. Kramarz of the Jagiellonian University 

(Poland).  The stock culture was kept in commercially available nursery potting soil and fed weekly 

with rolled oats (Jungle oats™, Tiger brands, South Africa). Adult (clitellate) worms were selected 

under a microscope to be used in the bioassays.  

 

University of Stellenbosch: http://scholar.sun.ac.za



Materials & Methods 
 

 23 

2.5.3. Folsomia candida – Springtail 

 

2.5.3.1. Classification  

 
Phylum: Arthropoda 

Subphylum: Entognatha  

Class:   Collembola 

Order:   Isotomoidea 

Family: Isotomidae 

Genus:  Folsomia 

Species:  Folsomia candida Willem, 1902 

 

2.5.3.2. Morphology, life cycle and ecology  

 

Collembolans are one of the most abundant classes of arthropods on earth (Løkke & Van 

Gestel 1998) but because of their small size their contribution to biomass and respiration in a 

terrestrial ecosystem is very small. Collembolans play an important role in some soil ecosystems and 

are sensitive to the effects of soil contamination. Their presence and diversity are commonly used to 

assess the impact of soil pollutants. Collembolans are common test species used in ecotoxicological 

tests because of their well studied life-cycles; they are easy to culture and have a short life cycle 

(Fountain & Hopkin 2005). Most collembolans have omnivorous feeding habits that include feeding 

on fungal hyphae (in soil and leaf litter), bacteria and protozoa.  

F. candida, and the test species used in this study, is known to be parthenogenetic (reproduce 

asexually) and most specimens in a population consist of females that can lay up to 1100 eggs in 

their lifetime (Fountain & Hopkin 2005). Sexual maturity is reached between 21 to 24 days. A mean 

of 50 eggs are laid at a time and take 7-10 days to hatch. Its lifespan ranges from 111 to 240 days 

depending of the temperature of its environment. F. candida is 1.5 to 3.0mm in length at adulthood 

and appears white or off-white in colour. They have post-antennal organs behind the base of each 

antenna that possibly detects airborne chemicals. In general all collembolans have a ventral tube or 

collophore on the first abdominal segment that allows fluid exchange with the environment. This is 

also the main exposure path for chemicals that dissolves in soil pore water to the organisms. F. 

candida gets distinguished from other Collembola species by having 16 stout setae on the ventral 

University of Stellenbosch: http://scholar.sun.ac.za



Materials & Methods 
 

 24 

side of the manubrium of the furca (Potapov 2001). The optimal pH for F. candida cultures is 5.5 

and a temperature of 21°C. 

 

2.5.3.3. Culturing  

 

The springtails species, Folsomia candida, was obtained from a laboratory culture in the 

Ecotoxicology Laboratory, Department of Botany and Zoology, University of Stellenbosch. The 

culture was obtained from Professor P. Kramarz of the Jagiellonian University (Poland). They were 

cultured on culture rings with plaster of Paris mixed with activated carbon bottoms. The cultures 

were fed with baker’s yeast (Gold star yeast™, South Africa) and moistened regularly ad libidum. 

All springtails were age synchronized before any exposures. Synchronization was done by adding 

20 adult springtails to culturing rings to lay eggs. After two days the adults were removed from the 

containers. The eggs started to hatch after 7 days and reached adulthood in 12 to 14 days. All 

organisms used in this study were at an age of between 20 to 22 days.  

 

2.6. Eisenia andrei exposures and endpoints 
 

2.6.1. Experimental conditions 

 

Earthworm exposures were done according to the protocol set out by the OECD guideline 222. 

(OECD 2004b) and adjusted as follows. 400g test substrates were placed into 750ml round bottom 

glass containers and incubated for 48h before the earthworms were added.  

As food for the worms, all substrates were supplemented with dried and ground urine-free 

cattle manure at 0.5g per worm at the start of each experiment. The urine-free cattle manure was 

prepared by sun-drying for approximately one week thereafter it was ground and sieved (using a 

2mm mesh sieve) before adding it to the soil. Eight individual earthworms, weighing between 300 

and 500mg, were used in the exposures. Earthworms were placed in control soil (OECD or off-site 

soil depending on the experiment) two days prior to each experiment for acclimation before being 

used in the experiments. All exposures were carried out under controlled temperature and moisture 

conditions in a dark climate room at 20˚C. The soils were moistened to 60% of the maximum water 

holding capacity (WHC) and the pH was monitored at the start and end of each exposure. For 
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aeration, small holes were drilled into the lids of the glass containers. Earthworms were fed, and lost 

moisture was added two weekly until the experiments were terminated. 

All soils that were used as substrates in the bioassays are presented in Table 2. The spiked 

concentration series were obtained by adding fresh sludge to a control soil  (either off-site soil or 

OECD-soil) at the highest concentration in the series and ‘diluting’ the soil by mixing it thoroughly 

with clean control soil in the desired ratios.  

 

2.6.2. Endpoints  
 

2.6.2.1. Preliminary exposures for optimisation of control soils and API-sludge concentration 

series 

 

Earthworms were exposed to control soils (off-site soil and OECD-soils) as well as to 

contaminated soils at the following concentrations: 0.5%, 1%, 2.5% and 5% API-sludge-spiked 

soils. Exposures were done for one week to establish at which concentration of API-sludge mortality 

was observed and a range of API-sludge concentrations series could be determined for further use in 

the biomass and chronic tests.  This was also used as a preliminary study to observe whether any 

adjustments needed to be made to the variable conditions (pH, water- or organic content) that may 

influence the tests. It was decided not to spike soils with concentrations higher than 5% API-sludge 

because it influenced the water content and changed the consistency of the soils.  

To determine whether the earthworms will survive and reproduce in the negative control 

soils, they were exposed to off-site soil and OECD-soil. Further, to establish if the addition of API-

sludge will cause effects, and to determine if off-site soil + 1% API-sludge and OECD-soil + 1% 

API-sludge could serve as positive controls, earthworms were also exposed to these soils. The 

biomass changes, cocoon production and number of hatchlings of the earthworms exposed to control 

soils at specific test conditions were compared. All exposures were carried out for 4 weeks in 

triplicate. To determine the biomass changes the individual earthworms were weighed weekly. The 

cocoons were collected every 2 weeks until the experiments were terminated.  All collected cocoons 

were incubated in 24-well plates in distilled water at 25˚C. The number of hatchlings from all these 

controls was compared to confirm whether this was not influenced by the soil types or toxicants 

(Reinecke et al. 2001). 
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2.6.2.2. Survival and chronic tests in the site-soils  

 

After the optimization of the controls and the test conditions the earthworms were exposed to 

the different test soils; Off-site soil, north-site soil, south-site soil and a 1% API-sludge-spiked off-

site soil (positive control). Every week the earthworms were weighed and cocoons collected as 

prescribed by the OECD guideline 222. (OECD 2004b). The tests were terminated after 6 weeks. At 

the end of the test all collected cocoons were counted to determine the cocoon production success. 

The survival of the adult worms was also noted. Eight replicates for each test soil with 8 worms per 

replicate were carried out. 

 

2.6.2.3. Survival and chronic tests in API-sludge-spiked control soils  

 

Earthworms were exposed to a concentration series of spiked API-sludge in off-site soil as 

well as in artificial soil (OECD 2004b). OECD-soils were spiked with fresh API-sludge at 

concentrations shown in Table 3. Earthworms were weighed weekly to determine biomass chances 

and exposures were terminated after 4 weeks. All mortalities were noted for the duration of the 

experiment.  

To determine the cocoon production success the earthworms were exposed to a concentration 

series of API-sludge in off-site soil and in OECD-soil with API-sludge concentrations as shown in 

Table 3. These exposures were done over 6 weeks. Cocoons were collected every two weeks until 

the experiment were terminated. All collected cocoons were counted and mortalities of the adult 

worms were noted. These results were used to determine the effects of fresh API-sludge on the 

survival and the effects it will have on the earthworm cocoon production. The mortalities of 

earthworms in a concentration series were used to determine a LC50 which is the concentration of 

API-sludge where 50% of the test group of earthworms will die. The cocoons collected were used to 

determine the effect concentration (EC50) that indicates what concentration of fresh API-sludge will 

decrease the cocoon production of the test group by 50%.   
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Table 3: All concentration series used in Eisenia andrei exposures.  

Soil used Concentration series of API-sludge (%) Endpoints monitored 

OECD-soil 0; 0.5; 1; 1.5; 2 and 2.5 
Biomass change, mortalities and 

cocoon production 

OECD-soil 
0; 0.2; 0.4; 0.5; 0.8; 1; 1.5; 1.6; 2; 2.5 and 

3.2 
Mortalities and cocoon production 

Off-site soil 0; 0.2; 0.4; 0.8; 1.6 and 3.2 Mortalities and cocoon production 

 

2.6.2.4. Avoidance behaviour 

 
The test method for these experiments was based on a method described in the International 

Orgainsation for Standardisation soil quality guideline (ISO 2003). A double chamber test was used 

to determine movement between test soils and control soils where the endpoint of the test was 

avoidance of the test soil. The tests were performed in plastic containers (8cm × 11cm × 18cm) 

divided into two equally sized sections with a plastic divider. Each section was filled with 200g of 

the specific soil in various combinations namely; a. off-site soil on both sides (negative control), b. 

off-site soil vs. north-site soil, c. off-site vs. south-site soil, d. off-site vs. off-site soil + 1% API-

sludge (positive control see Table 2). All soils were prepared as explained in Section 2.5. The two 

soil substrates were placed in the different sides of the same container and separated with a divider. 

The divider was removed and 8 adult earthworms were placed on the middle line on the surface of 

the soil. The containers were then covered with a perforated lid. Exposures were carried out for 48 

hours in a temperature controlled room at 20oC in the dark. After the 48 hours the divider was put 

back into the middle line, the substrates removed, and the number of organisms on each side was 

determined. If an earthworm were found on the middle line it was counted as 0.5 for both sides of 

the container and missing worms or worms not found in the soil substrates were assumed to be dead. 

The number of organism exposed was adjusted by subtracting those that were not found or died 

before further calculation were carried out. Five replicates were done for every exposure. 
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2.7. Enchytraeus doerjesi exposures and endpoints  

 

2.7.1. Experimental conditions 

 

The exposures were carried out as described in the OECD guideline 220.  (OECD 2004a). 

100ml round bottom, glass jars were filled with 30g dry weight test soil each. The jars were covered 

with perforated lids and left for two days to stabilize. Ten adult (clitellate) specimens were added 

per container.  Food was provided by working in approximately 50 mg of finely ground rolled oats 

into the top soil layer. Thereafter additional food and water were monitored weekly and amended 

when needed. The experiments were terminated after 3 weeks. Five replicates were carried out for 

every exposure unless stated otherwise. On Day 21 the experiments were terminated by adding 10ml 

absolute ethanol (95%) to each container. After 1 minute 100ml of H2O (30ml at a time) was added 

and mixed with the soil by shaking while soil was gradually transferred to 250ml plastic containers. 

200µl of a 1% Bengal red solution (Mr= 1017.65 g/mol) was added to each container. The 

containers were closed with lids and shaken until mixed well. The soils were kept at 4°C overnight. 

After 24h the specimens were washed from the smaller soil particles using a sieve (0.088mm mesh). 

Specimens left on the sieve were transferred into a white (80cm × 60cm × 30cm) tray with water. 

The pink stained adult worms were counted and removed from the tray. The smaller juveniles were 

counted using a light source, counter and magnifying glass.  

All exposures were carried out under controlled temperature and moisture conditions in a dark 

climate room at 20˚C. The soils were moistened to 50% of the maximum water holding capacity. 

The pH was monitored at the start and end of each experiment. Moisture and food were amended 

weekly, if needed. Soils that were used in the bioassays are summarised in Table 2. The spiked 

concentration series were obtained by adding fresh sludge to soil substrates (either off-site soil, 

OECD-soil or LUFA2.2-soil) and were prepared as explained in Section 2.6.1. 
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2.7.2. Endpoints  

 

2.7.2.1. Preliminary exposures for optimisation of control soils and API-sludge concentration 

series 

 

Preliminary testing was done by exposing potworms to the control soils (off-site, OECD- and 

LUFA2.2-soils) as well as to chosen concentrations (0.5%, 1% 2.5% and 5%) of API-sludge-spiked 

off-site soil, OECD-soil and LUFA2.2-soil. The exposures were carried out for 2 weeks to establish 

at which API-sludge concentration mortalities were observed and a range of API-sludge 

concentration series could be determined for further use in chronic bioassays.  This was also used as 

a preliminary study to observe if any adjustments needed to be made to any of the variable 

conditions (pH, water- or organic matter content) prescribed by the OECD guidelines. All 

preliminary exposures were done in duplicate.  

 

2.7.2.2. Survival and chronic tests in the site-soils  

 

Potworms were exposed to the different test soils: off-site-soil, north-site soil, south-site soil, a 

1%-, and 3% API-sludge-spiked artificial soils as positive controls (Table 2). When the exposures 

were terminated the surviving adults and the number of juveniles produced during the period were 

used as endpoints.  

 

2.7.2.3. Survival and chronic tests in API-sludge-spiked control soils  

 

To establish which concentrations of fresh sludge application will have effects on the survival 

and reproduction of the specimens, they were exposed to three concentration series of API-sludge-

spiked in off-site soil, OECD-soil and LUFA2.2-soil. After range finding tests the concentration 

series were made up as explained in Section 2.6.1. The concentrations of soils spiked with API-

sludge in off-site soil, OECD-soil and LUFA2.2 soil are shown in Table 4. This was used to 

determine the LC50- and EC50s (for reproduction) (Section 2.6.2.3). 
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Table 4: All concentration series used in Enchytraeus doerjesi exposures.  

Soil used Concentration series of API-sludge (%) Endpoints monitored 

Off-site soil 0; 0.5; 1; 1.5; 2; 2.5; 4 and 5 
Mortalities and number of  

juveniles (reproduction) 

OECD-soil 1; 2; 3; 4 and 5 
Mortalities and number of  

juveniles (reproduction 

LUFA 2.2-soil 0; 0.5; 1; 1.5; 2; 2.5; 3; 4 and 5 
Mortalities and number of  

juveniles (reproduction 

 

2.7.2.4. Avoidance behaviour 

 

Tests similar to those of the earthworms described in Section 2.6.2.4 were performed. Round 

bottomed plastic containers (9 cm radius and 7cm height- 1781cm2) were divided into two equally 

sized sections with a plastic divider. Each section was filled with 30g of a specific test soil. All soils 

were prepared as explained in Section 2.5. Various combinations with different soils on each side of 

the container were performed namely; a. Off-site soil on both sides (negative control), b. off-site soil 

vs. north-site soil, c. off-site vs. south-site soil, d. off-site vs. off-site soil + 3% API-sludge (positive 

control) and e. off-site soil vs. OECD-soil.  The divider was then removed and 20 test organisms 

were placed on the middle line between the two soil conditions. Containers were closed with 

perforated lids and kept at 20°C in the dark for 48hours.  After 48h the dividers were replaced at the 

middle line and the numbers of worms counted (using a light and magnifying glass) on each side of 

the divider. If a specimen were found on the middle line it was counted as 0.5 for both sides of the 

container and missing worms or worms not found in the soil substrates were assumed to be dead. 

The number of organisms exposed was adjusted by subtracting those that were not found or died 

before further calculation were carried out. Five replicates were done for every exposure. 
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2.8. Folsomia candida exposures and endpoints 
 

2.8.1. Experimental conditions 

 

The reproduction tests were carried out as described in the OECD guideline 232. (OECD 

2009).  20g dry weight of the test soils were placed in 100ml round bottom, glass jars for 2 days 

before ten synchronized adult springtails were added and the jars closed with lids. All specimens 

were 20-22 days old at the start of the exposures. Food was provided by adding a pinch of bakers’ 

yeast into the top layer of the soil. During each experiment the food and lost moisture were amended 

and the containers aerated weekly. All exposures were executed for 4 weeks after which they were 

terminated. Five replicates per test condition were carried out unless stated otherwise. After four 

weeks the experiments were terminated by washing the contents of each jar into a 300ml glass 

beaker using 100ml of water. The contents were gently stirred until all surviving adults and 

juveniles floated to the surface because of their chitinous exoskeletons. Each container was 

photographed three times using a Canon EOS 350D Digital single lens reflex camera. Using Adobe® 

Photoshop® software (Adobe® Photoshop® 2007) the photographs were adjusted and electronically 

inverted (using the software) to optimise the contrast to be able to count more accurately. The same 

software program was used to count all collembolans present on each photograph of the soil 

substrates. An average of the number of organisms counted in each of the three photographs were 

calculated and taken as the mean number of specimens present in each test container (Figure 4). 
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2.8.2. Endpoints 

 

2.8.2.1. Preliminary exposures for optimisation of control soils and API-sludge concentration 

series 

 

Preliminary exposures with F. candida were executed in the same manner as in Section 

2.7.2.1. 

Figure 4: A. Example of a photograph used to count Folsomia candida juveniles at the end 
of the reproduction test (pictures shown is from a sample of north-site soil exposure). B. 
Enlarged (zoom) view of the same photograph shown in A. C. Inverted photograph to 
increase contrast between the soil and the organisms. Red markings on the photograph 
indicate the counted organisms.  

A. 
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2.8.2.2. Chronic tests in site-soils  

 

The test conditions and exposure period were determined and optimized to meet all 

requirements set out by the OECD guideline for testing of chemicals. 232. (OECD 2009) for the 

controls. Thereafter the springtails were added to the test soils: off-site-soil, north-site soil, south-

site soil, and a 1%, API-sludge-spiked OECD-soil (positive control). At the end of the experiments 

all organisms were counted. Reproduction of juveniles was used as endpoint in these tests.  

 

2.8.2.3. Chronic tests in API-sludge-spiked control soils 

 

Exposures were carried out in the same manner as in Section 2.7.2.3 except for using different 

concentration ranges. The concentration series of API-sludge used are shown in Table 5.  

 

Table 5: All concentration series used in Folsomia candida exposures.  

Soil used Concentration series of API-sludge (%) Endpoints monitored 

Off-site soil 0;  0.09;  0.20;  0.21;  0.27;  0.30;  0.33;  0.40 and 0.66 Number of  juveniles (reproduction) 

OECD-soil 0;  0.2;  0.4;  0.8 and 1.6 Number of  juveniles (reproduction) 

LUFA 2.2-soil 0;  0.08;  0.15;  0.20;  0.21;  0.27;  0.30 and 0.40 Number of  juveniles (reproduction) 

 

2.8.2.4. Avoidance behaviour  

 

Tests were carried out in the same manner as for E. doerjesi in Section 2.7.2.4. The positive 

control used were off-site soil vs. 1% spiked API-sludge soil. On completion of the experiment, 

each side of the container was visualized as explained in Section 2.8.1.  
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2.9. Plant exposures  
 

Additionally to the soil invertebrate bioassays five plant species were exposed to a 

concentration series of freshly spiked API-sludge in potting soil. Seed germination, early seedling 

growth rate, biomass change and water uptake were studied. The results were used to establish the 

phytotoxicity and most sensitive plant species to API-sludge when comparing the test species. 

 

2.9.1. Plant species 

 

The seeds of five plant species (obtained from a local nursery in Stellenbosch) were tested for 

their germination, and the resultant plants for growth rate and gained biomass and water uptake in 

API-sludge contaminated potting soil. Beans (Phaseolus vulgaris) a dicotyledonous legume with 

root-nodules and was chosen as suggested in a previous study (Eriyamremu et al. 2007). Maize (Zea 

mays) is a representative of a fast growing monocotyledonous crop with a adventitious root system 

not penetrating deep into ground. Lettuce (Lactuca sativa) was chosen because it has high water 

content within its leaves and alternative mechanism for water uptake than the other test species. 

Radish (Raphanus sativus) has a large underground storage organ and relatively little above ground 

growth (Perez & Gallardolara 1986). Radish was therefore chosen to determine how the API-sludge 

will affect the growth of its underground storage organ. Grass (Pennisetum clandestinum) has a 

dense root system and is believed act as a good absorbent for toxicants in the soil (Adam & Duncan 

1999). 

 

2.9.2. Soil preparation  

 

Potting soil was used for the contaminated soil and controls. Water holding capacity (WHC) 

and pH (1M KCl method) were determined and monitored at the start and end of the experiments to 

confirm consistency. The concentration series of 0.5%, 2.5%, 5%, 10% and 25% API-sludge and a 

negative control of uncontaminated soil (0% API-sludge) were used. Spiking was done by adding 

the highest API-sludge (25%) to unpolluted potting soil and diluted further by adding clean potting 

soil until the desired concentration ratio was reached. Soil and API-sludge were mixed thoroughly to 

obtain a homogeneous mixture and left for two days before the seeds were planted. 
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2.9.3. Germination success 

 

For each species a concentration series of 0%, 0.5%, 2.5%, 5% and 10% and 25% API-sludge 

was prepared, one Petri dish per treatment was used. Ten seeds were planted in each Petri dish, 

watered manually with distilled water after seeded and further as needed. The 30 Petri dishes were 

placed in an incubator at 22°C to insure optimal conditions for germination and monitored twice 

daily for a total of 7 days. Germination was recorded as the emergence of a radicle and every day 

the number of germinated seeds were recorded. 

 

2.9.4. Seedling growth 

 

After germination five seedlings from each plant species were replanted in black trays and 

transferred to a greenhouse where the environmental conditions were controlled. The plants were 

watered regularly.  Three times a week each individual plant height was measured as the distance 

from the soil to the tip of the stem, in the case of beans, or to the tip of the top leaf, in the case of 

maize, radish, lettuce and grass. These measurements were used to determine the growth rate of the 

plants over the period it has been exposed. The beans and maize exposures were terminated after 

four weeks. Radish, lettuce and grass exposures were terminated after three weeks.  The total growth 

period of all plant species was divided into a first and second growth period (a period of two weeks 

for the beans and maize and one and a half weeks for the lettuce, radish and grass). The division 

allowed one to calculate the initial growth rate and a secondary growth rate when the plants were 

two weeks (beans and maize) and one and a half weeks (lettuce, radish and grass) old. Any possible 

effects of the exposures were annotated, such as deformed leaves or death.  

 

2.9.5. Biomass determination 

  

At the end of the experiments each individual plant was removed from the tray and the soil 

was carefully rinsed from the roots. Excess water was dabbed off using paper towels. The plants 

were cut at the stem base into two sections: the first section included the upper soil parts, stem and 

leaves, and the second the soil parts including the root system. The aerial parts (stem and leaves) and 

the roots were weighed individually to determine the wet mass. The plants were placed in labelled 
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brown bags and oven dried for 48 hours at a temperature of 40˚C. The individual parts were then 

once again weighed to determine the dry mass. Using the wet and dry mass measurements the water 

contents was determined and the dry mass used as gained biomass value.  

 

2.10. Statistical analysis 
 

2.10.1. Soil invertebrate exposures 

 

All data were tested for normality using Statistica® 9 software (StatSoft 2010) by applying the 

Shapiro-Wilk normality test (if the probability factor was p≤0.05, the data is non-parametric and 

p≥0.05 data is parametric).  

 All comparison analyses were done as follow: When comparing multiple conditions of 

parametric data One-way Analysis of Variance (ANOVA) were carried out with the Tukey post test 

that compared different conditions. Where multiple conditions were compared for non-parametric 

data Kruskal-Wallis ANOVAs with Dunn’s multiple comparison post tests were used. Statistical 

significance was chosen at a probability of p ≤0.05.  

All EC50 –values calculated for the chronic tests were done by using sigmoidal dose-response 

curves (Haanstra et al. 1985) with statistical software programs SPSS® 18.0 (PASW 2010) and 

GraphPad Prism® 5.00 software (GraphPad 2007). A non-linear regression model was used in both 

software and the best fit model was used.  The lethal API-sludge concentration, where 50% of all 

exposed organisms died after the experimental period, was determined using the trimmed 

Spearmann-Kärber model (Hamilton et al. 1977). 

In the avoidance behaviour experiments the number of organisms presents in the test-soils 

compared to the controls was determined by two-tailed paired t-tests. Test-soil avoidance was 

considered if organisms avoided the test soils significantly greater than 0.50 (50%). Avoidance 

behaviour greater than 80% for certain soil type was regarded to be toxic (Yeardley et al. 1996; 

Hund-Rinke et al. 2003; Natal-Da-Luz et al. 2008). One-way ANOVA’s were performed comparing 

the species avoiding the same test-soil. 
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2.10.2. Plant exposures 

 

All statistical analyses in plant exposures were carried out using Statistica® 9 (StatSoft 2010) 

and GraphPad Prism® 5.00 (GraphPad 2007) software. Variables were tested for normality with the 

Shapiro-Wilk normality test. Normality was accepted if the probability factor was greater than 0.05 

(p≥0.05) and non-parametric when p≤0.05. 

The germination success (expressed in percentage germination) was plotted over time to show 

relationships between the concentrations of API-sludge exposures relative to the negative controls. 

The growth rate for the two growth periods were determined by determining the difference between 

the end and the start measured plant lengths and divided by the number of days it was exposed (the 

days per growth period for the beans and maize were 14 days and 10 days for exposed lettuce, radish 

and grass).  Within each treatment the first and second growth period was compared using the t-tests 

for dependent soil substrates (for parametric data) or the Mann-Whitney U-test (for non-parametric 

data). The first and the second period growth rates were compared for each treatment in all exposed 

plant species. Similarly, the total-, above ground mass and below ground parts mass was compared 

between treatments. All data comparisons were done using One-way ANOVAs with the Tukey post 

hoc test (for parametric data) or with the Kruskal-Wallis ANOVAs with Dunn’s post hoc test (for 

non-parametric data). The LOEC (lowest observed effect concentration) and NOEC (no observed 

effect concentration) were calculated using ToxRat Professional (ToxRat®, 2003) based on the 

protocol described by OECD guideline 208. (OECD 2006). The determined water content of the 

seedlings was also compared to determine statistical significant differences between the treatments.  
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3. Results 

 
3.1. Physical and chemical soil properties  

 
The physical properties of all soils used are summarized in Table 6. The OECD-soil had the 

highest organic matter content of 10% and the off-site soil contained the least (0.4%). LUFA2.2-soil 

contained 2.1 % organic matter. North-site and south-site soils had an organic matter of 4.4% and 

2.6% respectively. The LUFA2.2-soil and the off-site soil were both characterised as ‘loamy sand’ 

where as the site-soils were classified as ‘sand’ according to the United States Department of 

Agriculture (USDA) classification system (Appendix A).  

 

Table 6: Physical characteristics of all soils used in this study. All data were created according to 
different standardised protocols as stated in the materials and methods. Values shown as mean ± 
standard deviation 

 % Clay 

(<0.002mm) 

% Silt 

(0.002-

0.05mm) 

% Sand 

(0.05-

2.0mm) 

% Organic 

matter 
Soil Type 

pH 

(1M KCl) 

Maximum 

 WHC* 

 (%) 

OECD-soil 20.0 0.0 70.0 10.0 Sandy Loam 6.0±0.5 60±5.0 

LUFA2.2 soil 6.4 11.6 82.0 2.10 ± 0,40 Loamy Sand 5.5±0.1 46.5±6.0 

Off-site soil 9.0 2.0 89.0 0.39 ± 0.05 Loamy Sand 6.8±0.5 32.7±1.1 

North-site soil 3.4 2.4 94.2 4.4 ± 0.21 Sand 6.0 ±0.1 59.7±1.5 

South-site soil 3.0 2.0 95.0 2.57 ± 0.04 Sand 5.8±0.4 48.7±4.3 

*WHC = Water Holding Capacity      
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The chemical composition of all the heavy metals, volatile organic compounds (VOCs) and 

polycyclic aromatic hydrocarbons (PAHs) present in the soils of the landfarming site are 

summarised in Tables 7, 8, 9 and 10.   

 

Table 7: Total concentration of elements detected in site-soils and fresh API-sludge. Values in bold 
indicate element concentrations above the acceptable risk limit concentration according to DWAF. 
1n=1,  2 mean ± standard deviation where n=4.  

 
 

Element concentrations (mg/kg) 

Element 

detected 
ARL 

(DWAF) ° 

API- 

sludge
1
 

Off-site soil 
1
 North-site soil

2
 South-site soil

2
 

*Al 0.39 0.44 0.06 11.63±0.78 1.57±0.15 

*Mn 0.3 0.65 0.05 1.67±0.19 0.82±0.06 

*Pb 0.1 0.05 0.05 0.29±0.35 0.16±0.02 

*S 10 6.37 12.6 59.13±1.24 29.71±2.98 

*Zn 0.7 0.28 0.11 3.93±0.07 1.81±0.08 

*Fe 9 12.6 <0.04 0.09±0.01 0.077±0.02 

Ba 7.8 0.51 0.46 0.52±0.03 0.65±0.11 

Mg - 3.26 4.62 17.23±0.54 11.15±0.41 

K - 0.75 2.18 7.32±0.1 5.04±0.28 

Si - 0.72 3.79 141.75±3.77 72.58±2.45 

Ca - 19.9 41.1 9.91±0.65 4.57±0.08 

°Acceptable risk limit determined by the Department of Water and Forestry of South Africa (in ppm)  
*All elements with concentrations higher than that of the acceptable risk limit were detected. 

 
 
Table 8: Total petroleum hydrocarbons (TPHs) present in each of the site-soils. 1n=1. 2mean ± 
standard deviation, n=4.  

 API-sludge
1
 Off-site

1 
North-site soil

2
 South -site soil

2
 

Gasoline Range Organics (GRO)(µg/Kg) 120 968 <25 <25 <25 
Diesel Range Organics(DRO) (mg/kg) 104 206 <150 1469.25 ± 125.12 675.25 ± 49.22 
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Table 9: Total concentrations of volatile organic compounds (VOCs) in fresh API-sludge. Values in 
bold indicate VOC concentrations above the accepted risk level concentrations set out by DWAF. 
(All chemical structures are shown in Appendix B). 

Volatile 

Organic 

Compound 
ARL (DWAF)¹ 

API-sludge in 

(µg/kg) 

Chloroform 100 153 
Benzene 2200 4729 
Toluene 1300 29 533 

Ethylbenzene 1200 10 661 
m+p-Xylenes 1100 10 086 

o-Xylene 1100 29 963 

1,1,2,2-Tetrachloroethane - 7114 

Isopropylbenzene 5000 3720 
n-Propylbenzene - 5441 

1,3,5-Trimethylbenzene 36000 13 827 

1,2,4-Trimethylbenzene - 50 793 

sec-Butylbenzene - 3602 
4-Isopropyltoluene - 3864 

n-Butylbenzene - 3448 
¹Acceptable risk limit from the Department of Water and Forestry of South 
Africa in ppb (µg/L) 
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Table 10: Polycyclic aromatic hydrocarbons (PAHs) concentrations (µg/kg) in site-soils and fresh 
API-sludge. 1n=1. 2 mean ± standard deviation, n=4. (The chemical structures of all PAHs are shown 
in Appendix B). 

 PAH Concentration ppb (µg/kg) 

PAH 

detected 

CCME
O

 

(CCME 

2001) 

API-

sludge
1 

Off-site 

soil
1
 

North-site soil
2
 South-site soil

2
 

Naphthalene 22,000 82.44 <0.45 6.75 ±  0.1 6.85 ± 0.15 

Acenaphthylene - <0.27 <0.27 <0.27 <0.27 

Acenaphthene - 22.25 <0.50 <0.50 <0.50 

Fluorene - 60.09 <0.53 <0.53 <0.53 

Phenanthrene 50,000 97.52 <0.54 2.85 ± 0.1 2.74 ± 0.05 

Anthracene - 23.85 <0.59 2.95 ± 0.08 2.92 ± 0.07 

Fluoranthene - 34.59 <0.74 6.04 ±0.13 6.11 0.12 

Pyrene 100,000 55.99 <0.83 6.84 ±0.36 6.55 ±0.16 

*Benzo(a)anthracene 10,000 46.36 <1.17 8.5 ± 0.70 8.34 ± 0.34 

*Chrysene - 36.81 <0.81 5.4 ± 0.37 5.38 ± 0.23 

*Benzo(b)fluoranthene 10,000 17.10 <0.87 3.58 ± 0.20 3.25 ±0.08 

*Benzo(k)fluoranthene 10,000 24.33 <0.84 4.84 ±0.08 4.86 ±0.10 

*Benzo(a)pyrene 700 42.79 <0.87 8.66 ± 0.40 8.23 ± 0.19 

*Indeno 
(1,2,3-cd)pyrene 10,000 50.59 <1.10 10.14 ± 0.21 10.15 ± 0.21 

*Dibenzo(a,h) anthracene 10,000 58.97 <1.34 11.81 ± 0.21 11.82 ± 0.30 

Benzo(ghi)perylene - 47.57 <1.07 10.79 ± 0.24 10.29 ± 0.30 

∑ 16 PAHs - 701.25 - 89.18 ± 3.19 87.49± 2.30 

∑ 7 carcinogenic PAHs - 276.95 - 52.96 ± 2.17 52.03 ±1.45 
O Standardised maximum allowed PAH concentrations in industrial soils set out by the Canadian Council of 
Ministers of the Environment (CCME) 
* The 7 carcinogenic PAHs 
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3.2. Exposure and endpoints measured- Eisenia andrei 

 

3.2.1. Survival and chronic tests in the control soils 

 

The mass changes of Eisenia andrei specimens exposed to OECD-soil and off-site soil are 

summarised in Table 11. E. andrei specimens exposed to OECD-soils showed the highest increase 

in biomass over the 4 weeks exposure period whereas worms in the off-site soil showed no 

significant biomass changes after the same time. In both OECD-soil and off-site soil, spiked with 

1% API-sludge, the mean biomass of the organisms decreased. E. andrei specimens exposed to 5% 

API-sludge-spiked OECD- and off-site soils died after 1 week of exposure. 
 

Table 11: Mean ± standard deviation growth of Eisenia andrei specimens during the 4 weeks of 
exposure to control soils; OECD-soil, OECD-soil + 1% API-sludge, off-site soil and off-site soil + 
1% API-sludge. n=16 (8 per container) in OECD-soil and n = 24 (8 per container) in off-site soil. a 
indicates significant differences (p≤0.05) when start mass is compared to end mass for each 
exposure, b statistical significant difference (p≤0.05) of mass changes compared to the mass changes 
in OECD-soil and c show statistically significant differences for mass changes compared to off-site 
soil (p≤0.05).   

 
Mean biomass (mg) 

Mass change after 4 weeks (%) 

Start End 

OECD-soil  387.57 ± 84.88 450.52 ± 101.30 a 33.89 ± 3.44 

OECD-soil + 1% API-sludge  372.05 ± 111.75 248.7 ± 74.725 a  -13.25 ± 12.52 bc 

Off-site soil  366.54 ± 86.41 379.68 ± 58.18 0.5692 ± 3.46 

Off-site soil + 1% API-sludge  345.00 ± 83.13 226.79 ± 56.44 a -25.49 ±  3.06 bc 

 

The weekly biomass changes for E. andrei specimens exposed to control soils are presented in 

Figure 5. After one week earthworms at all conditions showed a loss in biomass. The loss in 

biomass in exposures to the 1% API-sludge-spiked OECD- and off-site soils was significantly 

different when comparing the mass after 1 week to the start mass. Specimens exposed to both 

unspiked control soils (off-site and OECD-soil) recovered biomass after week two. The specimens 

in these exposures showed significant weight differences when their start mass was compared to the 

end mass after 4 weeks. Specimens exposed to off-site soil gained the lost biomass after the initial 
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week of exposure. E. andrei specimens exposed to the OECD-soil increased in biomass over the last 

two weeks and a significant difference between the mass at week 2 and the final biomass was 

observed (p≤0.05).  Earthworms exposed to the spiked soils gained biomass after week 1 but was 

not able to fully regain all lost biomass in the time period of the experiments. In the case of 1% API-

sludge-spiked OECD-soil the initial biomass is significantly different when compared to mass after 

week 2 and 4. The similarly spiked off-site soil showed only significant differences between the 

initial biomass and the mass after one week.  However the general pattern of biomass change over 

the experiment is similar for both control soils as well as the two positive control soils (off-site and 

OECD-soils spiked with 1% API-sludge). 

Table 12 summarises the data of cocoon production in the control soils. Earthworms in 

OECD-soil produced the most cocoons but the earthworms in the off-site soils produced the highest 

number of hatchlings. No cocoons were produced by worms in the different spiked control soils. 
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Figure 5: Mean ± standard deviation biomass change (in g) of Eisenia andrei specimens exposed to 
control- and API-sludge-spiked control soils for 4 weeks. The dotted line shows the mean of the 
starting biomass for all organisms and represents a reference line only for comparison.  
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Table 12: Mean ± standard deviation cocoon production and number of hatchlings of Eisenia andrei 

specimens exposed to control soils for 4 weeks of exposure. n=16 (8 per container) in OECD-soil 
and n = 24 (8 per container) in off-site soil. a indicates statistical significance (p≤0.05) to OECD-
soil. 

 All cocoons  collected 

over 4 weeks 

Cocoons 

 produced/worm 
 Total hatchlings 

OECD-soil  16.0 ± 5.1 1.60 20.0 ± 5.6 
OECD-soil + 1% API-sludge  0.0a 0.00 0.0 

Off-site soil  11.0 ± 3.1 0.73 27.0 ± 5.7 
Off-site soil + 1% API-sludge 0.0a 0.00 0.0 

 

3.2.2. Survival and chronic tests in the site-soils  

 

Table 13 compare the data of the initial weight of the earthworms to the end biomass in the 

experiments of E. andrei specimens exposed to site-soils (off-site, north-site and south-site soils) for 

6 weeks. No biomass changes for specimens exposed to the site-soils were significantly different 

although a trend was observed in the mass changes when the weekly data were compared with the 

off-site soil (control soil). The weekly biomass changes are presented in Figure 6. At the end of the 

6 weeks experiment the mean biomass changes in north-site and south-site soils were less than that 

in the 1% API-sludge-spiked soil. No significant differences for the specimens’ mass change in all 

site-soils were found between the start and end masses. 

The reproduction in the test soils over the 6 week experiment is showed in Table 14. The data 

show E. andrei to reproduce similarly in both off-site soil and south-site soils but low to no 

reproduction were observed in north-site and 1% API-sludge-spiked off-site soils. No significant 

differences were observed when comparing the cocoon production of specimens exposed to the 

various test soils. 
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Table 13: Mean ± standard deviation biomass change of Eisenia andrei specimens exposed to the 
test soils; off-site soil, north-site soil, south-site soil and off-site soil + 1% API-sludge after 6 weeks. 
n=40 (10 per container). No statistical significant differences were observed.  

 
Mean biomass (mg) 

Mass change after 6 weeks (%) 
Start End 

Off-site soil 366.94 ± 49.24 328.97 ± 18.45 -5.46 ±  12.63 
North-site soil 379.19 ±  10.85 278.05 ± 41.80 -21.35 ± 15.44 
South-site soil 394.51 ± 96.56 304.30 ± 42.81 -19.99 ± 12.30 

Off-site soil + 1% API-sludge 350.10 ± 60.64 285.45 ± 34.20 -17.01 ± 4.65 
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Figure 6: Mean ± standard deviation biomass change (in g) of Eisenia andrei specimens exposed to 
test soils for 6 weeks. The dotted line shows the mean of the starting biomass for all organisms and 
represents a reference line only for comparison.  

 
Table 14:  Mean± standard deviation cocoon production, cocoons produced per worm and survivors 
of Eisenia andrei specimens exposed to site-soils for 6 weeks. n=64 (8 per container). No statistical 
significant differences were observed. 

Site-soil 
All cocoons collected 

over 6 weeks 

Mean cocoons 

produced/worm 

Mean survivors per test 

container (n=8) 

Off-site soil 18.5 ±  9.7 0.46 8.0  ± 0.0 
North-site soil 1.25 ± 0.7 0.03 ± 0.04 7 ± 0.5 
South-site soil 19.00 ± 5.3 0.48 ± 0.07 8 ±0.0 
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3.2.3. Survival and chronic tests in API-sludge-spiked control soils 

 

The biomass changes are shown in Table 15 and the mass changes per week are displayed in 

Figure 7. Worms exposed to 0%, 0.5% and 1% API-sludge-spiked OECD-soil had an increase in 

biomass when start mass was compared to end mass. At concentrations 2% and 2.5% spiked API-

sludge a loss of biomass was significant when compared to their initial biomass at day 0.  From 

Figure 7 it is apparent that the initial weight loss was the biggest from concentrations of 1%- sludge 

and higher. The 1% API-sludge soil exposures show significant differences when the biomass at 

week 1 is compared to biomass at week 3 and 4.  After 4 weeks the mass change was smaller for 

1%- and 1.5%-sludge concentration exposures but the 2%- and 2.5%-sludge-spiked soils did not 

regain biomass at the end of the exposure time.  The biomass at 2% API-sludge concentration soils 

was significantly different from the initial biomass when compared to the biomass at weeks 1, 2, 3 

and 4. The 2.5% API-sludge concentration exposures were significant different when comparing the 

initial biomass to the final biomass. 

 

Table 15: Mean ± standard deviation biomass of Eisenia andrei specimens exposed to a 
concentration series of API-sludge-spiked OECD-soil for 4 week. n=24 (8 per container). a  indicates 
significant differences of p≤0.05 when start mass is compared to end mass for each concentration, b 

shows  p≤0.05 where mass change is different compared to 2% spiked API-sludge and 
c shows  

p≤0.05 in mass change differences compared to 2.5% spiked API-sludge d indicates significant 
differences of p≤0.05 when concentrations are compared to the control 0% added API-sludge.  

Concentration API-sludge (%) in  

OECD-soil 

Mean biomass (mg) 
Mass change after 4 weeks (%) 

Start End 

0.0 387.53 ± 23.36 421.76 ± 30.30 9.67 ± 3.34 b c 

0.5 379.18 ± 45.04 396.45 ± 37.58 3.23 ± 10.20 b c 
1.0 404.91 ± 30.99 412.825 ± 19.61 10.01 ± 0.01 b c 
1.5 354.51 ± 60.71 321.95 ± 63.32 -12.23 ± 4.26 c d 
2.0 382.78 ± 2.79 269.30 ± 38.69 a  -30.86 ± 10.24 d 
2.5 392.65 ± 20.07 201.60 ± 12.52 a  -47.19 ± 1.33 d 
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Figure 7: Mean ± standard deviation in biomass change (in g) of Eisenia andrei specimens exposed 
to a concentration series of API-sludge in OECD-soil for 4 weeks.  The dotted line shows the mean 
of the starting biomass for all organisms and represents a reference line only for comparison.  

 

Survival and cocoon production for the series of API-sludge-spiked off-site soil are shown in 

Table 16.  In exposures to concentrations with API-sludge higher than 0.8% a significant decrease in 

cocoon production as well as survival were evident.  

The LC50 of the earthworm survival in off-site soil spiked with API-sludge was established at 

1.15% API-sludge (95% confidence levels: lower = 0.96% upper = 1.37%) (11 500 mg/kg). The 

EC50 was calculated as 1.47% (14,731 mg/kg) API-sludge for cocoon production after the 6 week 

exposure (Figure 8B). Reproduction decreased with the increase of sludge addition until no 

reproduction was observed in concentrations higher than 1.6%-sludge.  
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Table 16: Cocoon production and survival of Eisenia andrei specimens exposed to a concentration 
series of API-sludge-spiked off-site soil for 6 weeks (Mean ± standard deviation). n= 48 (8 per 
container) for 0% API-sludge-spiked soils and all other soils in the series. n=24 (8 per container). a 
indicates statistical differences in survival (p≤0.05) when compared to reference 0% API-sludge-
spiked soil. b shows statistical significant differences (p≤0.05) for cocoon production when 
compared to 3.2% API-sludge soil exposures. c shows statistical significant differences (p≤0.05) in 
cocoon production when compared to 1.6% API-sludge-spiked soil exposures.  

Concentration API-

sludge (%) in 

Off-site soil 

All cocoons  collected 

over 6 weeks 
cocoons produced /worm 

Mean survival per 

test container (n=8) 

0.0 51.00  ± 9.00 b c 6.38 ± 1.13 8 ± 0.0 
0.2 35.67 ± 17.56 b c 4.92 ± 1.79 7 ±0.33 
0.4 36.33 ± 1.53 b c 4.54  ± 0.19 8 ±0.0 
0.8 28.00 ± 6.56 b 4.52 ± 2.11 6.67 ± 0.5 
1.6 4.33 ± 0.58 3.44 ± 1.90 1.67 ± 0.4a 
3.2 0.00 ± 0.00 0.00 ± 0.00 0 ±0.0a 

 

 

Figure 8: Cocoon production of Eisenia andrei specimens exposed to an API-sludge-spiked 
concentration series of off-site soil for 6 weeks. A. Mean (± standard deviation) number of cocoons 
collected at each of the concentrations of applied API-sludge. Statistical significant differences 
(p≤0.05) are indicated where the concentrations are compared to a 32 000 mg/kg API-sludge, b 16 
000 mg/kg API-sludge and c 8 000 mg/kg added API-sludge. B. Graph showing the API-sludge 
concentration series on a logarithmic scale that was used for the calculation of the EC50 (effect 
concentration at 50%) for cocoon production. 
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Survival and cocoon production for the series of API-sludge-spiked off-site soil are shown in 

Table 17. Cocoons production decreased and significant differences were observed when compared 

to the control (0%-API-sludge) at spiked soils with API-sludge concentrations higher than 0.8%. 

After the addition of 1% API-sludge the cocoon production decreased until eventually no cocoons 

were produced higher than 1% API-sludge.   

The EC50 for the API- sludge-spiked OECD-soils was determined as 0.59% (5905 mg/kg) for 

the reproduction of the earthworms after a 6 week exposure time (Figure 9B). The LC50 of the 

earthworm survival in spiked API-sludge was established to be at 3.2% API-sludge.  

 
Table 17: Cocoon production and survival of Eisenia andrei specimens exposed to a concentration 
series of API-sludge in OECD-soil for 6 weeks (Mean ± standard deviation). n=48 (8 per container) 
for 0% API-sludge soils. For all other soils in the series n=24 (8 per container). a indicates 
significant differences (p≤0.05) when compared to the control 0% API- sludge-spiked soil. For 
earthworm survival b indicates a significant difference (p≤0.05) of survival in all other API-sludge-
spiked soils. 

Concentration API-sludge 

(%) in OECD-soil 

All cocoons  collected 

over 6 weeks 
cocoons produced /worm 

Earthworm survival  

(max. 8 exposed per 

replicate concentration) 

0.0 12.50 ± 3.39 1.56 ± 0.42 8.00 ± 0.00  
0.2 6.67 ± 2.52   0.83 ± 0.32 8.00 ± 0.00  
0.4 4.67 ± 3.22 0.67 ± 0.46 7.00 ± 0.00  
0.5 6.67 ± 4.16 a   0.83 ± 0.52 8.00 ± 0.00  
0.8 5.33 ± 2.31 0.71 ± 0.37 7.67 ± 0.58  
1.0 0.33 ± 0.58 a 0.04 ± 0.07 8.00 ± 0.00  
1.5 0.00 ± 0.00 a 0.00 ± 0.00 8.00 ± 0.00  
1.6 0.00 ± 3.61 a 0.00 ± 0.00 7.33 ± 1.15  
2.0 0.00 ± 0.00 a 0.00 ± 0.00 7.67 ± 0.58  
2.5 0.00 ± 0.00 a 0.00 ± 0.00 8.00 ± 0.00  
3.2 0.00 ± 0.00 a 0.00 ± 0.00 4.00 ± 1.00 b 
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Figure 9: Cocoon production of Eisenia andrei specimens exposed to an API- sludge-spiked 
concentration series in OECD-soil for 6 weeks. A. Mean ± standard deviation number of cocoons 
collected at each of the concentrations of applied API-sludge. Statistical significant differences 
(p≤0.05) are indicated by a where the concentrations are compared to 0 mg/kg API-sludge (control 
soil). B. Graph showing the API-sludge concentration series on a logarithmic scale used for the 
calculation of the EC50 (effect concentration at 50%) for cocoon production. 

 

3.3. Exposure and endpoints measured- Enchytraeus doerjesi 
 

3.3.1. Survival and chronic tests in the site-soils  

 

From the preliminary range finding tests it was established that after 3 weeks there were 

sufficient reproduction in the control soils and all other tests were also terminated accordingly. 

The mean survival and juveniles produced by E. doerjesi exposed to the test soils for 3 weeks 

are summarized in Table 18. Although there were large variation between replicate data for 

juveniles it still showed that the E. doerjesi in north- and south-site soil produced large numbers of 

juveniles and significantly more than specimens in the OECD- and off-site soils. Organisms in the 

off-site soil and API-sludge-spiked off-site soils showed similar reproduction ability and 

significantly less in the case of 1% API-spiked off-site soil when compared to the worms exposed to 

OECD-soil.  No significant differences were observed for survival. 
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Table 18: Survival (mean ± standard deviation) and number of juveniles produced (mean ± standard 
deviation) of Enchytraeus doerjesi specimens exposed to test soils after 3 weeks. n=50 (10 per 
container). a shows the statistically significant differences (p≤0.05) when compared to the off-site 
soil, b compared to OECD-soil (p≤0.05) and c compared to 1% spiked off-site soil (p≤0.05) 
exposures. 

Test soils Survival after 3 weeks Juveniles after 3 weeks 

Off- site  8.4 ± 1.5 57 ± 34.39 
OECD-soil 10 ± 0  175.75 ± 56.03 a 
North-site 9.2 ± 1.3  339.75 ± 76.92 a b c 
South-site 8.6 ± 3.1  414.00 ± 17.78 b c 

1% Spiked Off-site soil 7.8 ± 2.5  40.33 ± 25.54 b 

 

3.3.2. Survival and chronic tests in API-sludge-spiked control soils 

 

Data for E. doerjesi exposed to a concentration series of API- sludge-spiked off-site soils are 

summarized in Table 19 and illustrated in Figure 10. The reproduction decreased at high 

concentrations of API-sludge (4% and 5%). No significant mortalities were observed over the 

duration of the experiments. No LC50 could be calculated thus it was assumed to be LC50 ≥ 5% API-

sludge-spiked off-site soils. The EC50 for reproduction was calculated as 26 550 mg/kg (2.66%) 

(Figure 10B). Worms exposed to soils with more than 2.5% API-sludge produced significantly less 

juveniles than specimens in the control soil after 3 weeks of exposure. 

 

Table 19: Survival (mean ± standard deviation) of Enchytraeus doerjesi specimens exposed a 
concentration series of API-sludge-spiked off-site soil after 3 weeks. n=50 (10 per container). No 
statistical significant differences were observed. 

Test soils Survival after 3 weeks 

0% off-site soil 10.0 ± 0.0 
0.5% off-site soil 10.0 ± 0.0 
1% off-site soil 10.0 ± 0.0 

1.5% off-site soil 10.0 ± 0.0 
2% off-site soil 9.5 ± 0.0 

2.5% off-site soil 8.4 ± 0.6 
4% off-site soil 8.0 ± 1.8 
5% off-site soil 10 ± 4.0 
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Figure 10: Mean ± standard deviation number of juveniles produced by Enchytraeus doerjesi 
specimens in an API- sludge-spiked concentration series of off-site soil for 3 weeks.  A. Number of 
juveniles counted at each of the different concentrations of applied API-sludge. Statistical 
significant differences (p≤0.05) showed when all concentrations were compared to a

 50 000 mg/kg 
and b 40 000 mg/kg API-sludge. B. Graph showing the API-sludge concentration series on a 
logarithmic scale used for the calculation of the EC50 (effect concentration at 50%) for juvenile 
production. 
 

In the case of E. doerjesi specimens exposed to a concentration series of API- sludge-spiked in 

OECD-soils the LC50 was greater than 5% API-sludge. At concentrations of 3% API-sludge and 

higher a significant decrease in the number of juveniles produced were present at the end of the 

experiments. The EC50 for reproduction was calculated as 24 874 mg/kg (2.5%) API-sludge (Table 

20 and Figure 11B).  

 

Table 20: Survival (mean ± standard deviation) of Enchytraeus doerjesi exposed to a concentration 
series of API-sludge-spiked OECD-soil after 3 weeks. n=50. No statistical significant differences 
were observed. 

Test soils Survival after 3 weeks 

0% OECD-soil 10.0 ± 0.0 
1% OECD-soil 9.2 ± 1.8 
2% OECD-soil 10.0 ± 0.0 
3% OECD-soil 9.4 ± 0.9 
4% OECD-soil 8.8 ± 2.2 
5% OECD-soil 9.2 ± 0.8 
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Figure 11: Mean ± standard deviation number of juveniles produced Enchytraeus doerjesi 
specimens in an API- sludge-spiked concentration series of OECD-soil for 3 weeks. A. Number of 
juveniles counted at each of the different concentrations of applied API-sludge. Statistical 
significant differences where p≤0.05 are indicated where the concentrations are compared to a 50 
000 mg/kg b 40 000 mg/kg c 30 000 mg/kg d 20 000 mg/kg API-sludge. B. Graph showing the API-
sludge concentration series on a logarithmic scale used for the calculation of the EC50 (effect 
concentration at 50%) for reproduction. 
 

Data for E. doerjesi specimens exposed to a concentration series of API-sludge-spiked in 

LUFA2.2-soils are shown in Table 21 and illustrated in Figure 12. Only organisms exposed to 5% 

API-sludge-spiked soils showed a significant decrease in survival (Table 21). An LC50 was 

calculated at an API-sludge concentration of 53 500 mg/kg or 5.35% (95% confidence levels: lower 

4.71% upper 6.07%). The EC50 for reproduction was calculated as 35 705 mg/kg (3.6%) API-sludge 

(Figure 12B). 
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Table 21: Survival (mean ± standard deviation) of Enchytraeus doerjesi specimens exposed to a 
concentration series of API-sludge addition in LUFA2.2-soil for 3 weeks. n=50 (10 per replicate).  a 
shows statistical significant differences (p≤0.05) when compared to exposures to 5% LUFA2.2-soil. 

Test soils Survival after 3 weeks 

0% LUFA Soil 9.0 ± 1.3a 
0.5% LUFA Soil 10.0 ± 0.0a 
1% LUFA soil 9.3 ± 1.3a 

1.5% LUFA soil 10.0 ± 0.0a 
2% LUFA soil 9.2 ± 1.6a 

2.5% LUFA soil 9.5 ± 2.1a 
3% LUFA soil 9.0 ± 1.0a 
4% LUFA soil 8.0 ± 1.4 
5% LUFA soil 5.6 ± 0.9 
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Figure 12: Mean ± standard deviation number of juveniles produced by Enchytraeus doerjesi 
specimens in an API-sludge-spiked concentration series of LUFA2.2-soil for 3 weeks. A. Number of 
juveniles counted at each of the different concentrations of applied API-sludge. Statistical 
significant differences (p≤0.05) are indicated when the concentrations are compared to a 0 mg/kg 
(control soil) and b 50 000 mg/kg API-sludge. B. Graph showing the API-sludge concentration 
series on a logarithmic scale used for the calculation of the EC50 (effect concentration at 50%) for 
juvenile production. 
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3.4. Exposure and endpoints measured- Folsomia candida 
 

3.4.1. Chronic tests in the site-soils  

 

Table 22 displays the results of F. candida exposed to the various test soils. No significant 

differences between the off-site soil and OECD-soil exposures were observed although the total 

number of juveniles in off-site soils was the highest. North-site and south-site soil exposures showed 

a statistical significant decrease in juveniles when compared to off-site soil exposures. No organisms 

have survived exposure greater than 1% spiked API-sludge in off-site soil. 

 

Table 22: Juveniles (mean ± standard deviation) produced by Folsomia candida specimens exposed 
to test soils after 4 weeks. n=50 per condition and 10 organisms per replicate. a shows the 
statistically significant differences (p≤0.05) when compared to the off-site soil, b compared to 
OECD-soil (p≤0.05) and c compared to 1% spiked off-site soil (p≤0.05). 

Test soils Mean juveniles after 4 weeks 

Off- site 479.89 ± 30.42 
OECD-soil 388.33 ± 17.86 
North-site

 
 289.42 ± 58.62 a c 

South-site
 
 253.33 ± 122.94 a b c 

1% Spiked off-site soil
 
 1.0 ± 1.0 a b 

 
 

3.4.2. Chronic tests in API-sludge-spiked control soils 

 

In a concentration series of API-sludge-spiked off-site soils the EC50 for reproduction of the 

Folsomia candida was shown to be 210.44 mg/kg (0.021%) API-sludge (Figure 13B). Only single 

organisms were counted after 4 weeks in replicates with the addition of 0.01% and 0.02% API-

sludge to the off-site soil.   
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Figure 13: Mean ± standard deviation number of juveniles produced by Folsomia candida 
specimens in an API- sludge-spiked concentration series of off-site soil for 4 weeks. A. Number of 
juveniles counted at each of the different concentrations of applied API-sludge. Statistical 
significant differences (p≤0.05) are indicated when the concentrations are compared to a 0 mg/kg 
(control soil). B. Graph showing the API-sludge concentration series on a logarithmic scale for the 
calculation of the EC50 (effect concentration at 50%) for juvenile production. 
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Data for F. candida exposed to concentration series of API-sludge-spiked OECD-soils are shown in 

Figure 14. The EC50 for reproduction is shown to be 3260.39 mg/kg (0.33%) API-sludge (Figure 

14B).  
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Figure 14: Mean ± standard deviation number of juveniles produced by Folsomia candida 
specimens in an API- sludge-spiked concentration series of OECD-soil for 4 weeks. A. Number of 
juveniles counted at each of the different concentrations of applied API-sludge. Statistical 
significant differences (p≤0.05) are indicated when the concentrations are compared to a 0 mg/kg, b 

2000 mg/kg, c 4000 mg/kg and d 8000 mg/kg API-sludge. B. Graph showing the API-sludge 
concentration series on a logarithmic scale for the calculation of the EC50 (effect concentration at 
50%) for juvenile production. 

 

An EC50 of 880.254 mg/kg API-sludge (0.09%) for reproduction (Figure 15B) was calculated 

for F. candida exposed to a concentration series of API-sludge-spiked in LUFA2.2-soil. All 

conditions where API-sludge was added to the soils showed significant differences when compared 

to the control soils (0% API-sludge).  
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Figure 15: Mean ± standard deviation number of juveniles produced by Folsomia candida 
specimens in an API-sludge-spiked concentration series of LUFA2.2-soil for 4 weeks. A. Number of 
juveniles counted at each of the different concentrations of applied API-sludge. Statistical 
significant differences (p≤0.05) are indicated when the concentrations are compared to a 0 mg/kg, b 

800 mg/kg and c 1500 mg/kg API-sludge.  B. Graph showing the API-sludge concentration series on 
a logarithmic scale for the calculation of the EC50 (effect concentration at 50%) for juvenile 
production. 

 

3.5. Avoidance behaviour of Eisenia andrei, Folsomia candida and Enchytraeus 

doerjesi exposed to test soils 
 

Results for the avoidance response experiments for all three different species of organisms 

tested are summarised in Table 23 and presented in Figure 16.  

 

Table 23: Summary of avoidance behaviour for the three different soil organisms exposed to off-
site soil and test soils (mean ± standard deviation). 

 Percentage (Mean ± Standard deviation) of organisms present 

in the test soils (treatment 2) 

Treatment 1 Treatment 2 
Eisenia andrei 

 n= 32 

 Enchytraeus doerjesi 

n= 100 

Folsomia candida 

n= 50 

Off-site soil   vs. Off-site soil 51.56 ± 17.95 62.67 ± 24.88 49.06 ± 18.61 
Off-site soil   vs. North-site soil 42.19 ± 31.20 35.00 ± 20.54 60.91 ± 11.58 
Off-site soil   vs. South-site soil 45.31 ± 20.01 68.19 ± 14.42 60.29 ± 15.57 
Off-site soil   vs. Off-site soil + 1% API-sludge 12.50 ± 17.68 11.50 ± 7.20 15.93 ± 12.71 
Off-site soil   vs. OECD-soil - 62.00 ± 17.89 78.62 ± 9.08 
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No significant avoidance was observed in any of the three species when exposed to the control 

with off-site soils on both sides of the containers (control soils). The north-site soil was more clearly 

avoided by the E. andrei and E. doerjesi species than by the F. candida and statistically different in 

the case of E. doerjesi when compared to the control soil.  No significant avoidance was observed 

when earthworms were exposed to south-site soil versus off-site soil although E. doerjesi and F. 

candida showed preference for the south-site soil above that of the off-site soils. All organisms 

showed more than 80% avoidance behaviour to the 1% API-sludge-spiked off-site soils. Both E. 

doerjesi and F. candida test species preferred OECD-soil rather than off-site soils. Avoidance 

behaviour of E. doerjesi and F. candida in the OECD-soils resulted in F. candida avoiding the off-

site soil (treatment 1, Table 23) significantly more than in the case of E. doerjesi specimens. 
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Figure 16: Avoidance behavior of Eisenia andrei, Enchytraeus doerjesi and Folsomia candida in 
test soils. Values show the percentage (mean ± standard deviation) for one side of the test containers 
where the other side of the container was in every case filled with off-site soil. For Eisenia andrei 
n= 32, Enchytraeus doerjesi n= 50 and Folsomia candida n= 100. * indicates statistical significant 
differences (p≤0.05) when comparing the species in each conditions. Statistical significant 
differences for a single organisms exposed to the various test soils (p≤0.05) compared to the off-site 
soil on both sides of the container are shown as e for Eisenia andrei, p for Enchytraeus doerjesi and c 

for Folsomia candida.  
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3.6. Plant exposures 
 

3.6.1. Germination success 

 

Beans (Figure 17A) displayed germination success higher than 80% within all concentrations 

of added API-sludge, after 7 days, except at the 10% API-sludge addition. At 10% API-sludge 

addition the first germination was only seen after 4 days and not 3 like in the case of the other 

exposures and a lower germination success was observed in comparison to soils with 0% API-

sludge. Figure 17B indicates maize seeds have a higher than 80% germination success at all soil 

with concentrations of API-sludge higher than 0%. Lettuce (Figure 17C) displayed an overall low 

germination success as only 50% of the seeds in soils with 0% API-sludge germinated. In soils with 

added API-sludge, the presence of 0.5%- and 5% API-sludge had the lowest germination success.  

Radish (Figure 17D) displayed a higher germination success within contaminated soil spiked with 

0.5%, 2.5% and 10% API-sludge as germination within these concentrations were higher (>70% 

germination success) than soil with 0% API-sludge (40% germination success). The germination 

success in soils spiked with 5% API-sludge was only 20%. Grass (Figure 17E) displayed seeds to 

geminate after only 2 days of exposure in 10% API-sludge-spiked soil but the final germination 

success was only 20%. In all other treatment exposures the germination success was not higher than 

40% including in soil with 0% API-sludge. The highest germination success (40%) was observed in 

the 2.5% API-sludge-spiked soil. 

No seeds (of any species) germinated in the 25% API-sludge contaminated soil. 
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Figure 17: Germination success (%) in five plant species exposed to a concentration series of API-
sludge in potting soil for 7 days. The various graphs represent the germination of A. Beans B. Maize 
C. Lettuce D. Radish and E. Grass.  
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3.6.2. Growth rate 

 
The growth rate of beans-, maize- lettuce-, radish- and grass seedlings exposed to a 

concentration series of API-sludge are shown in Figure 18. The first growth period of beans exposed 

to 2.5% API-sludge-spiked soil had a significantly higher growth rate than the 0% and 0.5% API-

sludge soil exposures (Figure 18A). In the second growth period the growth rates in 0% and 0.5% 

API-sludge concentrations were statistically different from 10% API-sludge soil (Figure 18A). 

When the first and second growth periods at each concentration of API-sludge were compared, the 

0% and 2.5% API- sludge-spiked soil exposures showed significant differences from each other. No 

maize seedling growth rates were significantly different comparing the first and second growth rates 

(Figure 18B). 10% API-sludge-spiked soil exposures were statistically significant from soils with 

0% API-sludge in the first growth period. In the second growth period only the 5% API-sludge soil 

exposures were statistically less than in the 0% API-sludge soil exposures.   In lettuce exposures no 

significant differences were observed between API-sludge concentrations (Figure 18C). Comparing 

the growth rates in the concentration series between the first growth period and the second growth 

period it showed statistical significance in 0%, 0.5% and 10% API-sludge soil treatments (Figure 

18C).  

In the 0% API-sludge soil exposures the growth rate was significantly higher than the 

seedlings exposed to 0.5%, 2.5% and the 10% API-sludge soils for the first growth period of radish 

(Figure 18D). For the second growth period, the growth rate in 0% API-sludge soil was significantly 

higher than all other concentrations of API-sludge exposures. Comparing the growth rates in the 

concentration series between the first growth period and the second growth period it was statistically 

different in 0% and 5% API-sludge-spiked soil exposures (Figure 18D). The first growth period of 

grass the growth rate in 0% API-sludge soil was significantly higher than all other concentrations of 

API-sludge exposures. In the second growth period, the growth rate in 0% API-sludge soil was only 

significantly higher than the 5% API-sludge-spiked soil exposures (Figure 18D).   

Grass displayed a higher growth rate in the first growth period than in the second for all 

concentrations of API-sludge but only significantly so at 0% and 10% API-sludge-spiked soil 

exposures (Figure 18E). A few individual lettuce seedlings died in the 0.5%, 2.5% and 5% groups 

and all the individuals in the 10% had died after 15 days. 
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Figure 18: Mean growth rate (millimeters per day) of seedlings for five plant species exposed to a 
concentration series of API-sludge in potting soil for 4 weeks (beans and maize) and 3 weeks 
(lettuce, radish and grass). Each growth period represents 2 weeks (beans and maize) and 1½ weeks 
(lettuce, radish and grass). The various graphs represent the germination of A. Beans B. Maize C. 
Lettuce D. Radish and E. Grass. n= 5; different letters represent the mean values significantly 
different among treatments (p≤0.05) * indicates exposures to the concentrations of added API-
sludge where the first growth period were statistically different (p≤0.05) from the growth rate in the 
second growth period.  
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3.6.3. Biomass 

 
Figure 19 displays the total biomass, above ground mass (stems and leaves) and below ground 

mass (roots) gained in beans-, maize- lettuce-, radish- and grass seedlings exposed to a 

concentration series of API-sludge-spiked soil. The total dry mass of bean seedlings in 0% and 0.5% 

API-sludge-spiked soils had a significantly lower mass than in the 2.5% API-sludge soil (Figure 

19A). The LOEC for beans was determined to be greater than 10% API-sludge. Figure 19B displays 

seedlings at all concentrations of API-sludge soil to have significantly lower total dry mass 

compared to the seedlings exposed to 0% API-sludge. The LOEC was calculated to be lower than 

0.5% API-sludge. A decrease in total biomass was displayed in lettuce exposed to 0.5% API-sludge 

soil when compared to exposures to 0% API-sludge soil. Only lettuce exposed to 10% API-sludge-

spiked soil had significantly lower total dry mass than in the 0% API-sludge soil exposures (Figure 

19C). As a result of the decrease in biomass already observed at 0.5% API-sludge soils the LOEC 

was calculated to be less than 0.5%. The total dry mass and upper ground dry mass of radish 

seedlings exposed to soil with 0% API-sludge were significantly higher compared to seedlings 

exposed to any other concentrations of API-sludge  (Figure 19D).  Low below ground dry mass was 

recorded in exposures to soil at all concentrations of API-sludge when compared to the total dry 

mass and upper dry mass of the seedlings. The LOEC for radish (based on the total dry mass) was 

calculated to be lower than 0.5% API-sludge. Only Grass (Figure 19E) seedlings exposed to soil 

with 0% API-sludge displayed to have significantly higher upper ground dry mass when compared 

to seedlings exposed to all other API-sludge added soils. The LOEC was calculated to be at 10% 

added API-sludge.  
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Figure 19: Mean ± standard deviation dry weight (mg) of the 5 plant species seedlings exposed to a 
concentration series of API-sludge in potting soil for 4 weeks (beans and maize) and 3 weeks 
(lettuce, radish and grass). The various graphs represent the germination of A. Beans B. Maize C. 
Lettuce D. Radish and E. Grass. n= 5; different letters represent the mean values significantly 
different among treatments (p≤0.05).  
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3.6.4. Water uptake 

 
Table 24 displays the mean water contents (in mg) in seedlings of the different plant species 

after being exposed to the concentration series of soils spiked with API-sludge.  

No linear increasing or decreasing patterns were observed when plants were exposed to an 

increasing concentration series of API-sludge thus no EC50s could be calculated.  

 

Table 24: Mean ± standard deviation of water content in seedlings from all five plant species 
exposed to a concentration series of spiked API-sludge in potting soil. 
 

 Concentration API-sludge (%) 

 0 0.5 2.5 5.0 10 

 Water content (mg) 

Beans
1 2236.54 ± 625.74ab 2214.98 ± 720.52cd 4018.12 ± 728.09 ac 3677.36 ± 878.13bd

 3291.10 ± 429.49 

Maize
1 3809.58 ± 302.09abc 2523.99 ± 352.76a 3147.22 ± 455.18d 2649.76 ± 432.02b 2216.82 ± 514.54cd 

Lettuce
2 50.19 ± 15.62ab 28.31 ± 1.95ac 41.09 ± 8.17d 44.45 ± 11.91e 5.38 ± 2.38bcde 

Radish
2 410.22 ± 85.74abcd 198.40 ± 21.99 a 235.06 ± 15.26 b 190.86 ± 25.06 c 186.61 ± 30.93d 

Grass
2 25.61 ± 3.0abc 17.03 ± 7.42ade 24.74 ± 4.88fg 5.62 ± 3.17bdf 6.21 ± 1.47ceg 

Similar letters indicate significant difference (p≤0.05) between treatments within a species 
1Specimens exposure period of 4 weeks 
2Specimens exposure period of 3 weeks 
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4. Discussion 

 

This study investigated a historically landfarmed site to establish whether remediation 

practices on the site were successful. Physical soil properties were studied and contaminants, still 

present in the soil, were quantitatively determined. Bioassays and physico-chemical analyses 

were carried out to incorporate the level of contaminants, their bioavailability, as well as their 

effects on the soil biota. Results from this study indicated that the remediated landfarming site 

soil were less toxic to soil organisms that were experimentally exposed to it, compared to API-

sludge-spiked control soils. However, some of the studied endpoints were still negatively 

affected by the remediated soils. 

 

4.1. Physical and chemical composition of soils  

 
The physical composition of the landfarming-site soils (north- and south-site soils) was 

similar but differed from the off-site soil. The site-soils contained high organic matter and less 

clay than the natural off-site soil even though the off-site soil was obtained in close proximity to 

the landfarming site (Table 6). This may be due to the fact that the landfarming site had 

undergone extensive mechanical breakdown during the sludge application and bioremediation 

processes that caused changes in soil characteristics. From the physical characteristics in Table 6 

it is clear that the artificial OECD-soil composition was substantially different from other soils 

used during this study. The clay and organic content were much higher than that of the off-site 

and natural LUFA2.2 soils which made it less ideal for comparison to the site-soils. The soil 

properties of the LUFA2.2-soil and off-site soil had a similar composition and both are classified 

as ‘loamy sand’ according to the United Stated Department of Agriculture classification system 

(Soil Survey Staff 2010). The pH values of the different soils did not vary extensively and were 

all found to be between the range prescribed by the OECD (OECD 2004a) for ecotoxicological 

tests (between 5.5 and 6.8). 

The concentration of chemicals in the north-site soil was higher than in the south-site soil. 

The reason for the higher contaminants in the north-site soil could be explained by the fact that it 

was closer to the API-sludge dams. According to personal correspondence with staff members 

on the site it is assumed that during the earlier landfarming process the API-sludge application 

was higher on the smaller north-site than on the south-site because it was easier to access and the 

API-sludge application could be performed faster.   
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From the chemical analyses of the soils (Tables 7-10) it was clear that the concentration of 

heavy metals, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) 

and total petroleum hydrocarbons (TPHs) contamination were not present in the off-site soil 

(control soil) at high enough levels to have been from API-sludge contamination. The only 

element that was present at high levels in the off-site soil was sulphur (12.6 mg/kg). The site-

soils also contained high sulphur levels, however, the concentration of sulphur in the fresh API-

sludge was much lower (6.37mg/kg) and probably not the origin of the sulphur contamination in 

the soils. The industrial development and petrol refinery in the area is known to emit gaseous 

sulphur dioxide (SO2) into the environment. The SO2 is then likely transported into the 

atmosphere and potentially spread over a larger area. The main source of S deposition on soil is 

through acid rain (Äyriis et al. 1997). It is known that the combustion of fuels emit SO2 and NO2 

which in turn deposits sulphuric acid and nitric acid during the process of acid rain giving a 

possible explanation for the high levels of S in the soils (Äyriis et al. 1997; Department of Water 

Affairs and Forestry 1998).  

High levels of aluminium (Al), manganese (Mn), lead (Pb) and zinc (Zn) were present in 

both site-soils and API-sludge and the concentrations of Al and Mn were  above the acceptable 

risk limit (ARL) concentrations stated in the DWAF waste disposal guideline (Department of 

Water Affairs and Forestry 1998) (Table 7). Naturally abundant elements like potassium (K), 

magnesium (Mg), silicon (Si), barium (Ba) and calcium (Ca) were also present in site soils and 

off-site soil at levels higher than what were present the API-sludge (Table 7). Similarly to the 

naturally abundant elements there were higher concentrations of Pb and S present in the off-site 

and site soils but only low levels in the API-sludge suggesting the Pb and S to have originated 

from another source. The concentration of iron (Fe) in the API-sludge was high but its 

concentration in the site soils was as low as levels close to the minimum detectable limit.  

Previous reports on the bioremediation of the site mentioned application of lime (CaCO3) 

to the landfarming site in 2000 to increase the soil pH (Personal Communication). It is known 

that pH is one of the most important factors influencing the mobility of heavy metals in soils 

(Spurgeon et al. 2006; Van Gestel 2008). Lime addition effectively reduced the mobility of 

copper, lead and other metals in contaminated soils by raising the soil pH. When the elements 

are immobilised by the addition of lime their leaching ability and bioavailability were expected 

to decrease (Kumpiene et al. 2008). Previous reports on the site (in the year 2006 and 2007, not 

published) showed that the concerning metals with concentrations higher than the ARL 

(determined for contamination in water and not soil) were vanadium (V), Pb and Mn with 

concentrations of 1.32 mg/kg, 0.107 mg/kg and 0.04 mg/kg respectively (the concentrations are 
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means calculated from measured concentrations in samples taken from the whole site). During 

the present study no traces of V higher than the detectable limits was observed but the Pb, Mn 

and Zn concentrations were higher ( ± 0.23 mg/kg, ± 1.25 mg/kg and ± 2.87 mg/kg respectively) 

that those of the ARL (Table 7). The reason for differences in concentrations of contaminants in 

this study compared to previous analyses might be due to a difference in sampling techniques 

used. Also, the first samplings were done 3 years before the sampling of the present study and 

the level of effective bioremediation and soil pH may have varied. The toxicity of metals is 

dependent on the tolerance of soil organisms to the bioavailable concentration of these metals. 

Zn is known to be an essential micronutrient required to ensure normal growth, reproduction and 

development in soil organisms as opposed to Pb that does not have a known physiological 

function (Kumpiene et al. 2008). It can be argued that by decreasing the mobility of metals in 

soil, both the essential and non-essential metals will be compromised for soil organism uptake. 

Thus, when soil organisms are unable to obtain essential metals from the soil their survival may 

again be compromised.    

High concentrations of diesel range organics (DROs) were present in the site-soils and are 

possibly the most concerning contaminants with regard to the toxicity of the soil to organisms. 

The levels of DROs in the north-site soil were more than double that of the concentration found 

in the south-site soil (1469.25 ± 125 mg/kg and 675.25 ± 50 mg/kg respectively) (Table 8). 

Although there were still high levels of DROs present in the site soils after remediation, it was 

less compared to the DRO concentration in the API-sludge (104 206 mg/kg). High levels of total 

petroleum hydrocarbons (TPHs), comprising of longer aliphatic chain DROs and shorter 

aliphatic chain gasoline range organics (GROs), were present in the API-sludge (Table 8). 

Comparison of the levels of TPHs in the API-sludge to the concentrations found in the site-soils 

suggests that remediation successfully reduced the shorter aliphatic chained GROs however it 

was not as effective for the DROs’ remediation.  

No traces of the volatile organic compounds (VOCs) were found in the site soils although 

high levels of VOCs were present in the API-sludge (Table 9). The degradation of VOCs in soil 

has been well studied. According to Insam & Seewald (2010) soil acts as an ideal natural 

biofilter for the purpose of degradation. It provides a variety of microbes (for biological 

degradation), specific environmental conditions (optimal pH, temperature and oxygen levels) 

and adsorbants like water, organic matter and clay minerals all contributing to conditions for 

optimal degradation. VOC adsorption increases with higher organic carbon content but decreases 

in acidic soils (Insam & Seewald 2010). Thus, when the organic contents in the site-soils 

increased during landfarming and later when the pH was raised with lime addition, it may have 
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optimised the breakdown of VOCs present in the soil.  Insam & Seewald (2010) further 

suggested that VOCs breakdown by soil microorganisms is only possible when the VOCs are 

changed from gas phase to liquid phase or when adsorbed to organic matter or clay mineral 

surfaces with polar and apolar interactions. However, since VOCs are highly volatile, most of the 

lighter VOCs would rather evaporate and disperse in the air than be adsorbed to the soil matrix. 

Thus, it can be assumed that the VOCs in the site-soils have either evaporated during the 

landfarming of the API-sludge or have been successfully bioremediated. 

Analyses of PAHs, during the present study, showed that PAHs were present in the 

bioremediated landfarming site-soil as well as in the API-sludge (Table 10). The United States of 

America Environmental Protection Agency (US EPA) designated 16 PAHs as priority pollutants 

that can be harmful to humans.  Further, the International Agency for Research of Cancer 

(IARC) established 7 of these to be possible human carcinogens. These carcinogenic PAHs are: 

Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, 

Indeno (1,2,3-cd)pyrene and Dibenzo(a,h) anthracene (Nadal et al. 2004). All of the 16 priority 

PAHs were found to be present, at different concentrations, in the API-sludge except the 

substance acenaphtylene. Although acenaphthene and fluorene were also present in the API-

sludge these PAHs were not present in the site-soils at detectible concentrations. The total 

concentrations of the 16 priority PAHs and 7 carcinogenic PAHs in both site-soils were present 

in similar levels and significantly less than in the fresh API-sludge (701.25 µg/kg). The total 

concentration of the 16 priority PAHs in north-site soil was 89.18 ± 3.19 µg/kg and 87.49 ± 2.30 

µg/kg in the south-site soil. When comparing the levels of PAHs in the site-soils to other studies 

where the PAH concentrations were established in sites close to oil refineries, the concentrations 

in the present study sites were much lower. Bakker et al. (2000) have found levels as high as 

3000-14 000 mg/kg measured for the 7 carcinogenic PAHs 1.3-4.2km from a refinery in Zelzate 

(Belgium). Another study by Škrbic et al.(2005) that focussed on a refinery in Novi Sad, 

Montenegro showed levels of the priority PAHs up to 47 870 mg/kg. In the present study the 

total priority PAH concentrations in the site soils were only ± 89 µg/kg and ± 52 µg/kg for the 7 

carcinogenic PAHs.  These low values of PAHs found in the site-soils may be because these 

compounds had undergone degradation during the remediation process in comparison to other 

refinery site studies where remediation technologies were not applied. A proposed explanation 

for the breakdown of PAHs by Mohan et al. (2006) suggested that PAHs undergo degradation in 

the atmosphere through photolysis as well as through biotic and abiotic degradation when 

exposed in the soil substrate over long periods.  Thus, the PAHs originally present in the API-

sludge could have degraded during the application process when landfarming was executed and 

further degraded when exposed in the soil media after the landfarming was discontinued.    
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4.2. Bioassays  

 
The bioassay results elucidated the potentially harmful fraction of contaminants in the 

landfarming site soils and whether the remediation was successful in decreasing its toxicity to 

soil organisms. From the results, obtained from API-sludge-spiked exposures, the most sensitive 

endpoints to the API-sludge were established as well as the lowest concentration of API-sludge 

at which the endpoints are affected.  

 

4.2.1. Exposures of soil organisms to control soils  

 
It is known that the earthworm test species used, grow optimally in substrates with high 

organic content (Sims & Gerard 1985). However, comparing the results of earthworm exposures 

in off-site to OECD-soil it can be concluded that the experimental conditions in these control 

soils were optimal for earthworm exposures (Table 11, 12 and Figure 5). Even though the off-

site soil had a low organic matter content (± 0.4%) in comparison to its high fraction in OECD-

soil (10%) the earthworms still survived, did not lose weight after 4 weeks of exposure and 

produced cocoons and hatchlings. This indicated that both the off-site soil and OECD-soil were 

suitable control soils and that the hatching success was not significantly influenced by exposure 

to the different soil types.  

To examine potential positive controls where one could expect the earthworms to be 

affected, OECD- and off-site soils were spiked with 1% API-sludge. The exposed specimens 

showed significant weight loss (Table 11 and Figure 5) and no reproduction after 4 weeks (Table 

12) in both the spiked OECD- and off-site soils confirming that the 1% API-sludge-spiked soils 

could serve as suitable positive controls.  

Survival of the potworm species, E. doerjesi, exposed to the control soils (Table 14) was 

lower in off-site soil than in the OECD-soil and a significantly lower number of juveniles were 

found in the off-site soil compared to the OECD-soil. Thus, it was clear that soil type influenced 

the survival and reproduction of exposed specimens and that the off-site soil was not an ideal 

control soil for E. doerjesi exposures. It is perhaps possible that the lower organic matter content 

in the off-site soil influenced the results. Potworms are known to be living in soils with organic 

rich matter (Beylich & Achazi 1999; Memis et al. 2004). Thus, the lower reproduction in the off-

site soil compared to OECD-soils in general may be explained by the fact that the off-site soil 

type is so extremely different from the potworms’ natural environment. In the positive control 

soil (1% API-sludge-spiked off-site soil) exposures the survival and juvenile production were 
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lower compared to OECD-soil exposures. However, exposures to the positive control did not 

show significantly different results from off-site soil without spiked 1% API-sludge. This 

indicated that the potworms were not sensitive to an API-sludge addition of 1%. Higher 

concentrations of API-sludge-spiked soils would potentially be a more accurate positive control 

where potworms would be affected by the sludge addition. From these results it, can be deduced 

that the OECD-soil acted as a good control soil because the survival and reproduction were not 

negatively affected by it. The off-site soil and 1% API-sludge-spiked soil were not a good 

control soil for this species, since low juvenile production was found in the off-site soil and no 

significant effects of the specimens were observed in the positive control soil exposures.  

During the concentration series exposures of E. doerjesi, the number of juveniles present in 

all the control soils, which have not been spiked in the concentration series of API-sludge, 

differed between the soils after the 3 week exposures (first bar of each graph in Figures 10A and 

11A). When comparing these values to those for juveniles obtained from to the same soil type 

exposures during the site-soil experiments (Table 18) they were found to be higher. Although 

one would expect not to see great variance when comparing these soil exposures (because the 

experiments were carried out in the same manner with specimens obtained from the same 

culture) it was still the case. Thus, by only carrying out these experiments at different times, it 

already showed great variability in the results.  

A comparison of F. candida exposed to the three different control soils where no API-

sludge was added showed the different soil types influenced the springtail reproduction. The 

highest number of juveniles was obtained in the off-site control soil (479.89 ± 30.52) and not in 

the OECD-soil (388.33 ±17.86) which was the opposite from what was found for the potworms 

but these differences were not significant (Table 18 and 22). It is not apparent which soil 

characteristics, in the different control soils, could have been responsible for the changes in 

juvenile numbers. However, F. candida exposures to the control soils were appropriate since 

high numbers of juveniles were found in the off-site soil and OECD-soil and no juveniles were 

found in the positive control soil.  

During the concentration series exposures of F. candida, the number of juveniles present in 

all the control soils, which have not been spiked in the concentration series of API-sludge, was 

similar after the 4 week exposures (first bar of each graph in Figures 13A and 14A). However, 

these numbers were lower when compared to exposures in the same control soil types during the 

site-soil experiments (Table 22). These experiments were not executed simultaneously and 

springtail cultures used were not synchronised at the same time. Thus, even though all the soil 
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conditions for the different experiments were consistent, the same species were used and 

obtained from the same stock culture there was still great variability.  

 

4.2.2. Exposures of soil organisms to site-soils  

 
Eisenia andrei exposed to the landfarming site-soils (north- or south-site soils) all survived 

after 6 weeks. Even though no significant biomass changes were observed for the earthworms 

exposed to the control soil (off-site soil) and site-soils a difference was noticed (Figure 6). In 

both off-site and south-site soils the exposed earthworms showed decreased biomass after one 

week thereafter the biomass recovered during the remaining experimental time. The biomass 

changes in the control soil and south-site soil suggest that the specimens in the south-site soil 

were not affected by the contaminants still present in this soil.  In the case of the 1% API-sludge-

spiked soil and north-site soil exposures, earthworms lost biomass after the first week and were 

not able to regain the biomass as successfully as in the off-site soil and south-site soil, implying 

that E. andrei biomass was affected negatively by the contaminants present in these soils. E. 

andrei specimens exposed to the north-site soil showed the greatest biomass loss; even greater 

than what was found for the positive control soil. Earthworms exposed to the south-site soil 

produced a similar number of cocoons than those exposed to the off-site soil (19.0 ± 5.3 and 18.5 

± 9.7 respectively). In north-site soil the cocoon production was less (1.25 ± 0.7). Thus, the 

higher concentrations of contaminants still present in the north-site soil may be more 

bioavailable to soil organisms and could explain why the exposed specimens’ biomass and 

reproduction were negatively affected. 

The specimens exposed to all four test soils (off-site soil, site-soils and off-site soil + 1% 

API-sludge) lost biomass during the first week of exposure to the particular soils (Figure 6). This 

observation may be explained by the fact that the earthworms still needed time to adjust to the 

test soil substrate. Even though all earthworms were acclimised to the changing substrate, by 

exposing them to control soils prior to the experiments, it is clear that this exposure time was not 

sufficient for the worms to fully adjust to their new environment before the exposures to the test 

soils were carried out.     

More than double the number of juveniles were found for E. doerjesi in the north- and 

south-site soils (339.75 ± 76.92 and 414.00 ± 17.78 respectively) compared to the number of 

juveniles in the off-site and OECD-soils (only 57 ± 34.39 juveniles in off-site soil and 175.75 ± 

56.03 juveniles in OECD-soil) after 3 weeks of exposure (Table 14). The reason for the higher 

number of juveniles in the site soils compared to the off-site soil may be because of the higher 
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organic matter content of the site-soils (4.4% and 2.6% respectively) compared to the organic 

matter (0.4%) in the off-site soil. The juvenile production of E. doerjesi in the site-soils was even 

higher than in the OECD-soil even though the OECD-soil had a higher organic matter content 

than the site soils. This suggests that the organic matter content in the soil is not the only factor 

that influenced the toxicity of the contaminants. The species was less sensitive to the 

contamination and thus not sensitive to the API-sludge contamination. During the 

bioremediation processes, applied to the landfarming site, the site-soils were aerated and soil 

characteristics were altered to such an extent that it may have increased its microbial activity 

which was probably lacking in the artificial soils. Furthermore, E. doerjesi feeds on decomposed 

plant matter and microorganisms whose numbers are most likely higher in naturally obtained 

soils allowing it to be an additional food source that might not be available in artificial OECD-

soil (Didden 1992).   

F. candida exposures to site-soil showed significantly less juveniles than what was found 

in the control soils. The juveniles found in the north-site soil were significantly lower than both 

off-site and OECD-soil exposures whereas the juveniles in the south-site soil exposures were 

only significantly less than the juveniles found in the off-site soil. These results suggested that 

the contaminants present in the site soils (at these concentrations) had an inhibitory effect on the 

reproduction of F. candida and that this species was sensitive to the API-sludge contamination 

(north-site soil more than the south-site soil). 

 

4.2.3. Avoidance behaviour tests  

 
The three test species were all exposed to two soil types in one container: site-soils on one 

side and off-site soil (control soil) on the other. This was done to establish whether exposed soil 

organisms had the ability to avoid contamination. This provided an additional endpoint when the 

sensitivity of the soil organisms to the contaminants was investigated.  

Specimens of all three test species exposed to off-site soil on both sides of a container, 

were equally distributed between the two sides. However, when the three test species’ avoidance 

behaviour was monitored in the site-soils, different observations were made. Only E. andrei 

avoided both site-soils (north- and south-site soil) in contrast to the F. candida specimens that 

strongly preferred these soils above the off-site soil. In the case of E. doejesi, the north-site soil 

was avoided and the south-site soil was preferred compared to off-site soil.  When correlating 

this data to the sensitivity of other studied endpoints (survival, reproduction etc.) for the test 

organisms it is interesting to note that even though F. candida were most affected by the site-soil 

during chronic tests, they did not avoid these soils. The reason perhaps being that they were not 
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able to ‘sense’ the contaminants present in the soil.  It is clear that F. candida preferred to move 

to soils with the higher organic matter content in all exposures as has been confirmed by similar 

studies by Paton et al.(2005), Lors et al. (2006) and Natal-Da-Luz et al. (2008). Thus, another 

reason for the observed avoidance pattern may be that F. candida specimens would rather prefer 

to move towards site-soil with higher organic matter content than avoiding the contaminants 

present in these soils.   

E. andrei was able to avoid (however not very strongly) both site-soils despite the fact that 

during the longer exposures (in the chronic tests) to the site-soils detrimental effects were only 

seen in north-site soil exposures.  

E. doerjesi avoidance of the north-site soil and preference for the south-site soil were both 

statistically significant even though this species was the least sensitive to the site-soils during in 

the long term exposures. Previous studies by Amorim et al. (2005) and Achazi et al. (1999) that 

did similar avoidance behaviour tests with E. albidus and E. crypticus (similar species to E. 

doerjesi and used in standardised tests)  towards organic pest- and herbicides found that the 

avoidance test was a more sensitive endpoint compared to their reproduction. However, it is 

difficult to establish whether the specimens were not avoiding the south-site soil because it was 

not toxic and successfully bioremediated, or because of its preference to a specific physical soil 

type. 

Hund-Rinke et al. (2003) suggested that one can assume contaminants to be toxic if the 

exposed organisms show avoidance to the soils greater than 80%. Thus, the 1% API-sludge-

spiked soil sample can be assumed to be toxic to all three test organisms when these criteria are 

used as guideline since all three species showed avoidance of more than 80%. 

These avoidance behaviour experiments may be used as an additional assessment for quick 

and simple verification of the longer term chronic exposures and can potentially be utilized as an 

early screening tool when doing future assessments on the landfarming site soil (Yeardley et al. 

1996; Hund-Rinke & Wiechering 2001; Natal-Da-Luz et al. 2004).   
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4.2.4. Exposures of soil organisms to API-sludge-spiked soils 

 
Eisenia andrei exposures  

 

Biomass changes seen for Eisenia andrei specimens exposed to OECD-soil confirm their 

ability to regain lost biomass over 4 weeks even with the addition of API-sludge concentrations 

up to 1% (Table 15 and Figure 7). However, at API-sludge-spiked concentrations higher than 1% 

the earthworms were unable to regain lost biomass.  

The survival and cocoon production in two concentration series, one in off-site soil and 

another in OECD-soil did not result in similar lethal concentrations (LC50) and effect 

concentrations (EC50- for cocoon production). Survival success after 6 weeks of exposure 

showed the LC50 in API-sludge-spiked OECD-soil to be almost double that found in the off-site 

soil (3.2%- and 1.15% API-sludge respectively). Hanna & Weaver (2002) and Kula & Larink 

(1997) did studies on the effects of contaminants in OECD-soil compared to the same 

contaminants toxicity in natural soils (when using LUFA2.2-soil as natural soil). They found that 

biomass change was not a sensitive endpoint compared to earthworm survival. They further 

argued that the LC50 in LUFA2.2-soil with less organic matter contents were lower than in 

artificial OECD-soil when exposed to mixtures of metals and hydrocarbons. These were similar 

to the effects observed in this study when comparing survival in OECD-soil with high levels of 

organic carbon content to the off-site soil that had a lower organic hydrocarbon content (Table 

25). The higher sensitivity of earthworm survival to the API-sludge in the off-site soil can be 

explained when considering that the bioavailability of contaminants to soil organisms is higher in 

soils with lower organic matter contents (Lanno et al. 2004). Another study of oil contaminated 

soils by Dorn & Salanitro (2000) explained that oil waste products with a high aromatic carbon 

contents (and similar contaminants to what was present in the API-sludge)  are initially acutely 

toxic to E. fetida (their survival) but loses toxicity after bioremediation has been applied. Also, 

that crude oil exposures in bioremediated silty soils with low organic matter content was more 

acutely toxic than in high organic matter soils (Dorn et al. 1998). 

When considering cocoon production as endpoint the cocoon production in OECD-soil, 

without additional API-sludge, was significantly lower than in the case of the off-site soil (12.50 

± 3.39 cocoons in 0% API-sludge OECD-soil and 51.00 ± 9.00 cocoons in 0% API-sludge off-

site soil). Further, the EC50 for cocoon production in the OECD-soil was 0.59% API-sludge. This 

was more sensitive than the EC50 of 1.47% API-sludge in the off-site soil. Thus, the API-sludge 

negatively affected earthworm cocoon production; more if exposed in OECD-soil as opposed to 

in off-site soil. A reason for these observations may be explained by considering the degradation 

of the high levels of organic hydrocarbons still present in the API-sludge over time. Hydrocarbon 
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degradation in natural soil is more optimal because of its higher microbial activity as opposed to 

artificial soil (Althoff et al. 2009). Its breakdown is more efficient, making it less detrimental to 

exposed specimens. However, the microbial communities may also be affected by the API-

sludge addition. Previous studies on oil and hydrocarbon contaminated soils indicated that 

microbial communities in soil are stressed by the contamination which may also be the case for 

the API-sludge contamination (Brohon et al. 2001). Anigboro & Tonukari (2008) suggested a 

possible way in which oil substances affect soil organisms. They explained that the oil (or API-

sludge in this study) coats the soil particles and surface resulting in anaerobic soil conditions that 

stress the soil environment due to oxygen constraints.  

 

Enchytraeus doerjesi exposures  

 

The survival success of this species in the concentration series of API-sludge-spiked 

control soils (off-site, OECD- and LUFA2.2-soil) was  between 90-100% and the calculated no 

observed effect concentrations (NOEC) were in all instances higher than the spiked 

concentrations used in the series range. The EC50s for reproduction were similar in off-site soil 

and OECD-soil and were at an API-sludge concentration of 2.50% and 2.66% respectively 

(Table 25). However it was less sensitive (with a higher EC50 of 3.6% API-sludge) when 

exposed in LUFA2.2-soil. Studies by Giere (1979) and Giere & Hauschildt (1979) have shown 

some enchytraeid species to be strongly resistant to oil pollution and they may be capable of 

excreting or accumulating oil derivatives in their body tissue. The toxicity of individual PAHs to 

potworms was studied by Achazi et al. (1999). They reported no direct toxic effects of low levels 

of Benzo(a)pyrene (BaP) and Fluoranthene (Fla) to E. crypticus. Even though the LOEC values 

for BaP (1 mg/kg) and Fla (10 mg/kg) were low for reproduction in agar medium, it increased to 

higher than 100 mg/kg when the medium was changed to soil (Didden & Römbke 2001) making 

the organisms less sensitive to the toxicants when exposed in soil media as was the case in the 

present study. For many chemical contaminants like oil, hydrocarbons and other industrial 

chemicals the known toxicity to potworms are limited (Didden & Römbke 2001). Also, great 

interspecies differences towards contaminant sensitivity limit the ability to accurately compare 

the effects of contaminants when using only enchytraeid test species. 
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Folsomia candida exposures 

 

The Folsomia candida specimens exposed to the concentration series in control soils 

confirmed the sensitivity of this species to the API-sludge even at low concentrations (Table 25). 

The EC50 for reproduction was the lowest in off-site then LUFA2.2- and highest in OECD-soil 

(0.021%-, 0.09% and 0.33% API-sludge respectively). It is known that metal and hydrocarbon 

toxicity decreases with the increase of organic matter content and mineral clay in soil (Styrishave 

et al. 2008). Thus, the bioavailable fraction of contaminants in the API-sludge, responsible for its 

toxicity to F. candida, differs between soils because it was probably adsorbed to the different 

organic matter and mineral clay contents of the soils.  
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Table 25: Summary of bioassay results. Comparison of the three test species and endpoints 
monitored in various test soils. 

 

 

Eisenia andrei 

 

 

Enchytraeus doerjesi 

 

 

Folsomia candida 

 

Off-site soil     

 

Survival (%) 100 100 - 

Survival (LC50 - % API-sludge) 1.15 ≥ 5 - 

Cocoon production (EC50- % API-sludge) 1.47 2.66 0.021 

 Showed significant soil avoidance?    

OECD-soil     

 

Survival (%) 100 100 - 

Survival (LC50- % API-sludge) 3.2 ≥ 5 - 

Cocoon production (EC50 -% API-sludge) 0.59 2.5 0.33 

 Showed significant soil avoidance? -   

LUFA2.2-soil     

 

Survival (%) - 90 - 

Survival (LC50- % API-sludge) - 5.35 - 

Cocoon production (EC50 - % API-sludge) - 3.6 0.09 

 Showed significant soil avoidance? - - - 

North-site soil     

 

Survival (%) 88 86 - 

Reproduction different from control soils? 
 b
  a 

b
 

 Showed significant soil avoidance?    

South-site soil     

 

Survival (%) 100 78 - 

Reproduction different from control soils?  
a
  c 

Showed significant soil avoidance?    

a  had significantly more juveniles than the off-site and the OECD-soil (p≤0.05) 
b  significantly less cocoons/juveniles present when compared to both off-site soil and OECD-soil (p≤0.05) 
c  significantly less juveniles present when compared to only off-site soil (p≤0.05) 
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4.2.5. Species sensitivity 

 

In an attempt to compare the soil organism sensitivity to remediated soils with exposure to 

the spiked API-sludge soils, it was important to consider the spiked control soil which had the 

most similar composition to the site-soils. Although none of the control soils had a comparable 

relation (because of their different soil properties) to the site-soils the focus was on the off-site 

soil because it represents the natural soil in the region and is assumed to be the original soil 

composition of the site-soils before it was landfarmed. The sensitivity of the terrestrial animals 

and the determined endpoints in response to fresh API-sludge, according to LC50s- and EC50s in 

off-site soil, can be ranked from most to least sensitive:  F. candida reproduction > E.andrei 

cocoon production > E. andrei survival > E. doejesi reproduction > E. doejesi survival (Figure 

20).  Numerous studies have shown similar sensitivity patterns than those found in this study 

when earthworms (E. fetida), springtails (F. candida and F. fimetaria) and a range of crop plants 

and microorganisms were exposed to metal and hydrocarbon mixtures or oils (Dorn et al. 1998; 

Sverdrup et al. 2001; Eom et al. 2007; Sverdrup et al. 2007; Wilke et al. 2008) which confirmed 

the sensitivity of F. candida reproduction to hydrocarbon contaminated soils. Thus, when 

choosing species for a test battery F. candida would be a good indicator species to use because 

of its sensitivity to hydrocarbon and oil contaminants.  

Punnaruttanakun et al. (2003) attempted to establish the concentrations of crude oil that 

will lead to the mortality of earthworms in laboratory studies and suggested an allowable level 

not higher than 1% oil contamination in soils for earthworm survival which was similar to the 

results obtained in this study. When comparing the EC50s for reproduction in different soil types, 

the three species of soil organisms were not equally sensitive to the applied API-sludge in the 

different soils (Figure 20). This stresses the importance to use more than one test species when 

applying bioassays as a soil quality assessment tool.  

It is known that the bioavailability and toxicity of most contaminants are highly dependent 

on the composition of the soils as well as the organic matter content (Dorn et al. 1998). If this 

was the case one could predict that with the increase of organic matter and mineral clay content 

the bioavailability and indirectly also toxicity would decrease to soil organisms. However, this 

was not the case: The reproduction of F. candida was distinctly more sensitive in off-site soil, E. 

andrei in OECD-soil and E. doerjesi showed almost equal sensitivity towards the API-sludge 

exposures in OECD- and off-site soil. From these results it is clear that although the 

bioavailability of a contaminant may commonly be related to its hazardous fraction it seems to 

not be the only determining factor when considering the toxicity of contaminants in different 
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soils. Organic contaminants (like hydrocarbons) are generally hydrophobic and will rather be 

adsorbed to soil mineral clay particles and organic matter.  This means that only a fraction of 

these contaminants are available to organisms via their water uptake and main exposure pathway 

for soil organisms according to Paton et al. (2005). However, the bioavailability of metals to the 

soil organisms is more dependent on the pH of the soil (Van Gestel 2008). Geissen et al. (2008) 

proposed that species sensitivity comparisons are possible if the routes of uptake are similar but 

because the contaminants in this study consisted of a mixture of toxicants, at different 

concentrations, multiple routes of uptake would be apparent. 
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Figure 20: Effect concentrations where 50% of the test organisms’ reproduction is affected 
when exposed to a concentration series of API-sludge in various soil types.  

 

4.3. API-sludge toxicity 

 

To predict the contaminant or group of contaminants in the landfarming site soil 

potentially responsible for the toxicity to biota, the concentrations of the contaminants were 

investigated. The DROs (a fraction of the TPHs) present in the soils were at such high levels in 

comparison to the other constituents in the soil and should be considered as the most concerning 

soil contaminant. In the fresh API-sludge, high levels of additional VOCs and the GROs were 

present in relatively large quantities that are absent in the site-soil. These observations confirm 

that remediation did decrease the toxicity of the API-sludge in the site-soils and was similar to 

what was found by DiToro et al. (2007). DiToro et al. (2007) explained that the smaller organic 
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hydrocarbon components in oil weather faster than the bigger molecules and by doing that 

decreases the toxicity in the soil. The varying levels of these contaminants may have different 

effects on the sensitivity of the bioassays which will therefore differ when comparing the 

remediated soils to soils with fresh added API-sludge.  

The single most toxic contaminants still present in the site-soils are difficult to determine. 

By integrating the biological assay data with the chemical results an attempt was made to 

identify which contaminants may be responsible for the toxicity in the landfarming site soils.  To 

determine the potentially toxic fraction of the single contaminants in the soil, the following 

calculation was done: An EC50-fraction was determined by dividing the concentration of the 

single contaminants in the API-sludge and soils by their EC50 obtained from literature (Table 

27). Two of the most sensitive endpoints obtained from this study were used for these 

comparisons (F. candida reproduction in off-site soil and E. andrei cocoon production in off-site 

soil).  Where the literature values for the EC50 for reproduction were not available, the LC50s/LD-

50s for the species were used. The EC50-fraction for metals and PAHs in the soils were always 

lower when compared to the EC50s of the single contaminants obtained from literature, except 

for the DROs (Table 27). Thus, it could be assumed that the DROs have the greatest impact on 

the reproduction of the organisms. When all the EC50-fractions were added, the concentrations of 

contaminants in the fresh API-sludge predicted to have an EC50 5 times higher than what was 

determined in the off-site soil for the F. candida. In the case of E. andrei specimens, the total 

fractions did not add up to the toxicity observed in the fresh API-sludge-spiked concentration 

series. This indicated that when comparing the toxicity of the contaminants from literature to 

those of the contaminants in the API-sludge and soil, the springtail reproduction was predicted to 

be higher than that found in this study. As for the earthworms, EC50-fractions of the single 

contaminants did not add up to the toxicity found for API-sludge.   The reason was that only 

contaminants that were present in the site-soils or contaminants with known EC50s in the 

literature were considered in the calculations (Tables 26 and 27). However, the API-sludge had 

an additional range of VOCs and GROs also present that was not considered when adding the 

toxic fractions. Thus, the reason why the toxicity of the fresh API-sludge to F. candida was 

much higher than the experimentally determined EC50 may be due to this species sensitivity for 

the additional VOCs and DROs in the fresh API-sludge which were not incorporated in the 

calculation.  

In the case of the site-soils, the toxicity of the added single contaminant fractions divided 

by the EC50s determined in this study were much lower than the EC50s determined with fresh 

sludge. That indicates that the remediation did decrease the toxicity on the landfarming site for 
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F. candida. This was also the case for E. andrei. It is important to note that when considering the 

single contaminants in a mixture, the assumptions are not entirely accurate because of the 

varying in the contaminants’ potential to interact with each other and their different 

bioavailability in soil types that may influence the toxicity of mixtures (Jonker et al. 2005; Eom 

et al. 2007; De Laender et al. 2009). 

Table 26: Summary of the concentrations of metals, PAHs and DROs present in the API-sludge, 
and site-soils.  

 Concentration in soil (mg/kg) 

Contaminants 
API-

sludge 
North-site South-site 

Zn 0.280 3.930± 0.07 1.810 ±0.08 

Pb 0.050 0.290±0.35 0.160±0.02 

Mn 0.650 1.670±0.19 0.820±0.06 

Al 0.440 11.63± 0.78 1.570±0.15 

S 6.370 59.130±1.24 29.710±2.98 

∑16 PAHs 0.701 0.089±0.003 0.087±0.002 

Diesel Range 

Organics 
104 206 1469.250±125.12 675.250±49.22 

Bold values indicate concentrations above ARL (Department of Water 

Affairs and Forestry 1998) 
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Table 27: Comparison of the API-sludge EC50s obtained for Folsomia candida and Eisenia 

andrei to single contaminant concentrations and EC50s.  
 

 Folsomia candida Eisenia andrei 

   
EC50 fraction = 

 (Chemical cons. in soil  (Table 26)/  
EC50 from literature) 

  
EC50 fraction = 

 (Chemical cons. in soil  (Table 26)/  
EC50 from literature) 

Contaminant 

EC50 

(mg/kg) 

(survival/ 

juveniles) 

Reference API-sludge 
North-

site 

South-

site 

EC50 

(mg/kg) 

(survival/ 

juveniles) 

Reference API-sludge 
North-

site 

South-

site 

API-sludge 

(off-site soil) 
210.00*  14700.00*  

Zn 10.4001
 CCME (2007) 0.027 0.378 0.174 15.0001 CCME (2007) 0.019 0.262 0.121 

Pb 3.6001 CCME (2007) 0.014 0.081 0.044 5.4001 CCME (2007) 0.009 0.054 0.030 

Mn 1663.0001 
Didden & 
Römbke 
(2001) 

0.000 0.001 0.000 927.0001 
Didden & 
Römbke 
(2001) 

0.001 0.002 0.001 

Al -     -     

S -     -     

∑16 PAHs 79.0001 Sverdrup et 

al. (2002) 0.009 0.001 0.001 118.0001 Sverdrup et 

al. (2002) 0.006 0.001 0.001 

Total 

petroleum 

hydrocarbons 
232 Verbruggen 

(2004) 4530.695 63.880 29.359 722 Verbruggen 
(2004) 1447.306 20.406 9.785 

  Fraction 

total 
4530.745 64.341 29.578  

Fraction 

total 
1042.095 15.011 6.904 

  
Fraction 

total / EC50-  

API-sludge* 

21.575 0.306 0.141  
Fraction 

total / EC50- 

API-sludge* 

0.098 0.001 0.001 

1Literature values (EC50 for reproduction) 
2Literature values (LC50/LD50) 
*EC50s calculated in off-site soil in the present study 

 

The contaminants in a mixture has the ability to influence each other’s toxicity (through 

addition, or antagonistically) which makes it harder to predict the effects of single contaminants 

(Lapa et al. 2002). The bioavailability and toxicity of contaminants are also site-specific because 

of the proposed interactions of toxicants with different soil types. Owing to these factors the 

mixture of toxicants in the API-sludge were rather considered as a single contaminant to 

determine the critical concentration of API-sludge in the soils. However, the toxicity of mixtures, 

such as the API-sludge in the landfarming site soils, is difficult to predict. By comparing the 

levels of specific contaminants to EC50 for oil mixtures would be a suggestion. However, as 

previously explained and seen in Figure 20 the EC50s vary between soil types and species. 

Further, the contaminants mentioned in previous studies with a similar composition of toxicants 

as was found in the API-sludge, all differed in concentrations and specific toxicants.  These 

varying factors make it difficult to compare EC50s from literature to the results of this study. A 

suggestion was to compare the number of cocoons or juveniles produced in the off-site soil (with 

no added API-sludge) to those produced in the site-soils and at EC50s for the determined 

endpoints. To be able to compare these values, and prevent incorporating more variables, only 
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effects from a single control soil at a time was compared. Even though in some cases the 

organism exposures to the off-site soils were not the most sensitive for the endpoints, they were 

still used for comparison to see what the reproduction rate would have been if landfarming was 

not executed in the area.  For E. andrei the number of cocoons produced in the off-site soil with 

no added API-sludge (control soil) was determined to be a mean of 51 ± 9.0 cocoons (Table 16). 

The estimated number of cocoons (extrapolated from Figure 5A) at the EC50 was determined to 

be 25 cocoons. A lower number of cocoons was obtained in both north-site and south-site soil 

exposures (a mean of 1.25 and 19.0 cocoons respectively) than counted in the control soil and at 

the EC50. From this it is clear that there are still toxicants present in both north- and south-site 

soils at levels that have the ability to reduce more than 50% of cocoon production in earthworms. 

The F. canidida exposed to 0% API-sludge-spiked off-site soil produced 108 ± 15.0 juveniles 

(extrapolated from Figure 14A) and 54.0 at the EC50 of 0.021% API-sludge. F. canidida exposed 

to the north- and south-site soils produced 289.42 ± 58.62 and 253.33 ± 122.94 juveniles 

respectively (Table 22). Even though it seemed that the springtails had a successful higher 

juvenile production, the comparison was not valid because the site-soil exposures and the API-

sludge concentration series experiments were carried out by using two different synchronised 

cultures, and different numbers of juveniles were obtained in similar control soils. However, 

when comparing the reproduction of specimens from the same synchronised culture exposures to 

off-site soil 479.89 ± 30.42 juveniles (Table 22) were counted. This indicates that for the 

organisms exposed to site-soils the reproduction was inhibited to approximately half of those 

exposed in the control soil although it was still significantly higher than the juveniles produced at 

the EC50. Thus, a suggestion for successfully comparing the concentration series data to the site-

soil data would be to first normalise it.   

The juveniles counted in E. doerjesi exposures to north- and south-site soils were 339.75 ± 

76.92 and 414.00 ± 17.78 (Table 18) respectively. A mean of 250 ± 42.5 juveniles were counted 

in the control samples (with no API-sludge) and 183.5 at the EC50 (extrapolated from Figure 

10A). Thus, the number of produced juveniles in the site-soils was more than 2 fold the 

estimated value at the EC50, showing that the site-soils did not negatively affect the potworm 

reproduction. Although the off-site soil was obtained close to the landfarming site, the physical 

composition was much different compared to the site-soils. A more accurate comparison would 

be to compare the number of cocoons or juveniles in the site-soils to the exposures to control 

soils with a more similar composition. Thus, the same comparison could be done by using the 

LUFA2.2-soil as a control (rather than the off-site soil) or the control soil where the reproduction 

of the organisms was the most sensitive to the API-sludge-spiking (in the case of E. andrei and 
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E. doerjesi exposures to OECD-soil).  Even though useful results can obtained from this 

approach, it can also be criticized on the grounds that the assumptions are not entirely accurate 

because of the great variation between the physical soil properties and the variation in results 

when using animal cultures. When different organisms were exposed to the concentration series 

in freshly spiked API-sludge it still contained high levels of VOCs and DROs in comparison to 

the concentrations in the site-soils. For example no VOCs were present in the site-soils but were 

still present in the API-sludge. It is important to argue that the EC50s obtained in this study were 

obtained for the mixture of toxicants in the fresh API-sludge and do not reflect the toxicity of the 

contaminants still present in the site-soils.  

To considering the API-sludge as a single contaminant and not a mixture was suggested. 

The ARL of the API-sludge could then be determined. The calculation of the API-sludge ARL, 

using earthworm survival as endpoint and a sensitivity factor of 10 can be expressed as follows: 

 ARL    = LC50 × 0.1  

           = 11500 mg/kg × 0.1  

          = 1150 mg/kg or 0.115% API-sludge 

By considering the most sensitive endpoint of F. candida reproduction, the ARL is calculated to 

be only 21mg/kg or 0.0021% API-sludge.  At the addition of 0.0021% API-sludge 

concentrations no effects to the endpoints tested in this study could be predicted. However, this 

concentration is unrealistically low and not relevant because during landfarming tons of API-

sludge was applied to the soil surfaces at a time.  

 

4.4. Plant exposures 
 

The concentrations at which the different plant species could tolerate the added API-sludge 

in the soil differed between species. When increasing the API-sludge application to 

concentrations higher than 10% all plants started to die.  The probable reason may be that the 

sludge fills all of the soil pores that inhibit the water and oxygen absorption of the plants at high 

concentrations of API-sludge. The soil can not adsorb the hydrocarbons when the concentrations 

get too high and it become more bioavailable for plant uptake (Baker 1970). Beans had a higher 

germination success, growth rate, total dry mass and water content in the 2.5% treatment  than in 

the controls (Figures 17A,18A,19A and Table 24) suggesting that moderate contamination has 

the ability to improve these properties in beans. It is not clear whether it is a greater water uptake 

ability that supported the growth or whether the water uptake is a result of the rapid growth. In 

previous studies soybean growth was shown to be stimulated at even lower concentrations of oil 
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contamination (Baker 1970). There are three possible reasons for this; the presence of single 

contaminants in the API-sludge may act as a beneficial and/or hormone mimicking compound 

(Baker 1970), the API-sludge addition may change the micro-organism composition in the soil 

favourably (Nicolotti & Egli 1998) or the bean’s nitrogen-fixing ability (due to its symbiosis 

with Rhizobium species in their root-nodules) allows it to survive the more strenuous conditions 

(Van Berkum & Bohlool 1980).  

The LOEC of beans, in soil was higher than 10% API-sludge present also indicating that 

they have a high tolerance towards the API-sludge. In agreement with previous studies (Adam & 

Duncan 1999; Ogbo 2009; Wyszkowski & Ziólkowska 2009), beans may be proposed to be a 

good phytoremediator for hydrocarbon contamination. 

Figures 18B, 19B and Table 24 respectively shows the decline in growth rate, total dry 

mass and water content of maize with increasing concentrations of the contaminants. However, 

the germination success results indicate that seeds may be less sensitive to the contamination 

(Figure 17B), unlike the reduced seed germination found by other studies with oil contamination 

(Ogbo 2009). Studies that assessed the sensitivity of maize towards oil contaminants found it to 

reduce germination success as well as growth rate (Ekundayo et al. 2001; Basic et al. 2009). On 

the contrary, (Dorn et al. 1998) found maize to be less sensitive when compared to other crop 

species exposed to crude oil. The low LOEC-value for maize (0.5% API-sludge) suggests that 

maize is at least sensitive to the API-sludge when considering their ability to gain biomass and 

thus, can not tolerate the API-sludge contamination. 

The lettuce had low germination success in the control soil and when API-sludge was 

added it decreased even further (Figure 17C). Lettuce seeds are sensitive to high temperatures 

and during germination the 22˚C of the incubator might not have been optimal for germination. 

Reynolds & Thompson (1971) suggests the optimal temperature for lettuce seed germination to 

be between 15˚C and 18˚C.  The growth rate for lettuce in the control soil was slow and a lack of 

growth rate differences between the various API-sludge-spiked soils (Figure 18C) could also be 

a result of the naturally slow growth rate in the control soil which was further reduced by the 

presence of API-sludge.  Plaza et al. (2005) classified lettuce to be very sensitive to oil 

contamination, observing the worst effects during stem elongation (plant growth) rather than the 

germination. Figure 19C and Table 24 show the total dry mass and water content at low and high 

levels of API-sludge to affect lettuce the most, while intermediate levels (2.5% and 5% API-

sludge addition) are not as detrimental as it did not differ statistically from the control soil 

exposures. 
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The API-sludge application increased the germination success of radish except in the 5% 

API-sludge contaminated soil (Figure 17D). These results were contradictory compared to the 

germination success of studies done by Banks & Schultz (2005) that did germination studies in 

petroleum-contaminated soils with radish. Banks & Schultz (2005) further argued that radish 

germination is not sensitive for hydrocarbon contamination as significant differences between 

contaminated and uncontaminated soil exposures were observed.  In this present study, even 

though the germination success where decreased at 5% API-sludge addition the seedling growth 

rate at the same concentration was not negatively affected (Figure 18D). The exposures to 0% 

API-sludge soil had a greater growth rate during the whole growth period and thus a much larger 

final dry mass (Figure 18D and 19D). The exposures to 10% API-sludge-spiked soil had an 

overall slow growth rate, lowest mass and low water content concluding that radish was started 

to be affected at the increase in API-sludge concentrations higher than 10%.  

Although one could expect that the increase in API-sludge contamination would have 

caused delayed seed germination and germination success for grasses, it was not the case. With 

the addition of 10% API-sludge the seeds started to germinate on day 2 in comparison to the first 

seedlings in the control soil only visible after 3 days of exposure (Figure 17E). Thus, the addition 

of API-sludge stimulated initial germination.  Like all the other species, the grass seeds were 

relatively resistant to the API-sludge addition in the germination phase even though the 

germination success for grass was low in the control soil exposures. No significant decreases in 

growth rates and biomass. The increase in API-sludge addition did not show a decrease in 

growth rates for the grass (Figure 18E and 19E). However, a study by Adam & Duncan (1999) 

indicates that the addition of low levels of diesel oil to soil had the ability to improve growth in 

some grass species (Annual canary grass, Phalaris canariensis). The decrease in grass’ growth 

rate observed for the second growth period might be due to the grass growing singly in seedling 

trays as opposed to their natural dense growth (Figure 18E). Grass was not sensitive to API-

sludge contamination showing no significant differences for the measured endpoints and 

explaining why the LOEC value is so high.  

Seeds of all species have shown germination during their exposure to API-sludge-spiked 

soils. Previous studies showed that the germination of poplar and spruce trees was not sensitive 

to exposed oil contamination but rather their growth (Nicolotti & Egli 1998). The reason that 

seeds are more resistant to direct exposure to toxicants may be because seeds contain their own 

reserves and are less dependent on the soil structure, that are affected by contamination 

(Wyszkowski & Ziólkowska 2009). However, the fact that not all germinated seeds survived 

(e.g. lettuce) might mean they are susceptible to the contaminant if they come in direct contact 
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with the toxicants (Nicolotti & Egli 1998). Lettuce and grass seeds are small and have low levels 

of nutrients per seed. Thus, these seedlings need to obtain nutrients from the environment early 

after germination (Taiz & Zeiger 2006). This may explain their low germination success and 

sensitivity to their exposed soil substrate. 

An important function of the roots is to take up water from the soil. With exposures to the 

increased API-sludge concentrations a decrease in water uptake was observed for all plant types 

except for beans. Water uptake was negatively affected by contamination in maize, lettuce, 

radish and grass (Taiz & Zeiger 2006). The water uptake is possibly hindered by the smaller 

hydrocarbons present in the API-sludge allowing the plants to absorb it into their vascular tissue 

and further blocking the water transport system (Baker 1970). This would explain the mortalities 

among the lettuce that has a naturally higher water uptake that is transported to their leaves 

Reynolds & Thompson (1971). 

Investigations into the above and below ground mass produced varying results (Figure 19). 

In beans, radish and grass, neither the root system nor the above ground growth was significantly 

affected by the contaminant. The maize grew extensive roots in soil with 0% API-sludge but the 

rhizosphere was smaller for the seedlings in the contaminated soils. From this one may deduce 

that the addition of API-sludge inhibited the root system growth and the maize root system is 

sensitive to the contamination. Although the radishes were not grown long enough to produce 

visible underground storage organs it still seemed to prioritise its below ground mass in all 

treatments. On the contrary to the below ground mass, the above ground parts suffered a 

decrease in biomass when the API-sludge concentrations increased. This is understandable 

considering that radish produce the underground bulb as survival strategy.  

As this study only focused on endpoints; germination, growth rate and biomass, it neglects 

information of the API-sludge’s environmental stress on cellular level in the plants. (Achuba 

2006) found increased levels of metabolic elements including free sugar and amino acids and 

decreased levels of chlorophyll in plants grown in oily soil indicating stress in plants. It is thus 

possible that the current study’s crop plants would have shown more evidence of stress on 

cellular level than the endpoints examined in this study.   

Another important aspect to consider is the role of soil micro-organisms on altering the soil 

and its interaction with plant roots. The responses observed in the plants could be a result of 

changes in the composition and abundance of bacteria, fungi and other protozoans species in the 

soil itself (Nicolotti & Egli 1998). Some micro-organisms survive and possibly proliferate due to 

the high carbon content in the API-sludge (Nicolotti & Egli 1998). In that case, the micro-

organisms can compete with the plants for nitrogen and oxygen (Gudin & Syratt 1975). 
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Nitrogen-fixing plants, such as legumes, compete better in the presence of additional carbon 

sources (like hydrocarbons in oil) (Nicolotti & Egli 1998). This may explain the tolerance 

observed for beans towards the API-sludge contamination an less so for plants like maize and 

radish (Wyszkowski & Ziólkowska 2009). Li et al. (1990) suggested that plant growth increased 

at low oil concentrations and decreased at high oil concentrations. The study further found a 

similar pattern in the associated microorganisms (Spartina alteriflora) in a salt-marsh. They 

proposed that the increased plant growth was caused by increased N2-fixation and nitrogen 

mineralization, most likely connected to the increased microorganism activities that resulted 

from the increase in carbon available in the environment (from the crude oil). (Achuba 2006) 

found that at the addition of 0.5% crude oil to soil, cellular and metabolic activities were 

‘stimulated’ in cowpeas (Vigna unguiculuta). It is interesting to note that hydrocarbons were 

used as fertilizers on farms in the past (Basic et al. 2009). It is thus possible that at a low API-

sludge concentration, the mentioned benefits of hydrocarbons in soil may exceed the 

disadvantages, including poor aeration (Anigboro & Tonukari 2008) and phytotoxicity (Rowell 

1997), but when the concentration increases, the disadvantages can start to exceed the benefits. 

There is thus a possible threshold below which a plant benefits from hydrocarbon contamination 

and over the threshold a plant is detrimentally affected although it is not know if crops grown in 

hydrocarbon contaminated soil are safe for human or animal consumption.   

It would be useful to further investigate the effects of API-sludge contamination over the 

whole life span of the crop plants until reproduction of a second generation plants. The ability of 

plants to bioaccumulate various contaminants may also show the effects of the contamination on 

the plants.  
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5. Conclusion 

From this study there can be concluded that when incorporating bioassays, with chemical 

analyses, it provided a more detailed assessment of the remediated landfarming site and its 

toxicity. The remediated site soils still affected exposed soil organisms and the null hypotheses 

could not be rejected.  

The concentrations of the various metals, and PAHs and DROs were all higher in the 

north- than in the south-site soil. Thus, the contamination still present in the north-site soil was 

much higher than in the south-site soil.  

In the bioassays, the site-soils were not acutely toxic to the exposed test organisms. Even 

though this was the case, the north-site exposures still showed to have caused a loss in 

earthworm biomass over 6 weeks, inhibition of cocoon production, decreased juvenile 

production of exposed F. candida as well as a significant avoidance of E. doerjesi. Thus, the 

north-site soils still negatively affected these soil organisms. The distinct difference in toxicity 

between the north- and south-site soils was clear although it was not apparent which individual 

contaminant was responsible for the increased toxicity in the north-site soil. 

From the exposures of the test animals to the concentration series of API-sludge-spiked 

control soils, their sensitivity to the API-sludge could be ranked from most sensitive to least:  F. 

candida, E. andrei and E. doerjesi. It was clear that the physical soil properties influenced the 

toxicity of the API-sludge to the animals exposed. 

The various plants species exposed to API-sludge were affected differently at the endpoints 

examined in this study. A conclusion can be made that the tolerance of plants towards the API-

sludge varies over the time of exposure and species. Although plant growth was stimulated by 

the addition of low concentrations of API-sludge in some cases, the addition of API-sludge had 

detrimental effects on plant growth and development when higher levels of API-sludge were 

added. 

The toxicity of mixtures in soils are site and soil specific which made the remediated soil 

and spiked soil exposures incomparable to standard accepted toxic levels and more difficult to 

detect which of the individual contaminants posed to be present at hazardous concentrations to 

the environment. This study suggests that mainly the presence of DROs contributed to its 

toxicity.  

When similar studies will be executed in future a few suggestions can be deduced from this 

study. Chemical analyses can be included for the soils before and after organism exposures as 

well as chemical analysis of bio-organisms. This may elucidate the potential bioavailable 

fraction of the toxins in the soil. Further, a suggestion can be made to include tests with micro-
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organisms bioassays that will contribute to the effects of the soil pollution on soil micro-

organisms. 

A predicted ARL for the API-sludge where no effects on the organisms would be observed 

was determined as 21 mg/kg for F. candida reproduction and 1150 mg/kg for E. andrei survival.   

The results of this study indicates that the high level of DROs still present in the site-soils 

need to be remediated before landfarming may be carried out on the site in the future.  
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Appendix A: Determination of particle size distribution and 

total organic carbon content.  

 

Hydrometer Method (Particle size determination) 

 

50 g air dried soil (<2mm) of each soil type were put in a 250ml beaker with 100ml water. 

10ml of a 40g/L hexameta-phosphate sodium carbonate solution (dispersing reagent solution) were 

added, stirred and left for 15 minutes. Thereafter the beaker contents were transferred to a dispersion 

beaker and dispersed with a mechanical disperser. Soil suspensions were then transferred to a 1l 

measuring cylinder and filled with water. The suspension was left overnight at room temperature. 

The next day the suspension was stirred and timed. Table 1 refers to the times the readings were 

taken for the determination of the clay reading. The hydrometer (ASTM 0-60 g/l, Type 152H) was 

placed into the suspension and the reading and temperature was noted. The suspension was mixed 

again and clay plus slit reading was determined (Table 1). The suspension was then sieved with a 

0.25mm mesh sieve and washed under running tap water until the water ran clear. The material on 

the sieve were transferred back into a 250ml glass beaker and dried at 100°C overnight. The dried 

soil was sieved through a 0.5mm and 0.25mm mesh sieve respectively and the material in each sieve 

were weighed.           

 

Calculations 

 

The hydrometer is calibrated at 68°F and temperature measurements in degrees Celsius had to 
be converted for the calculations (Table 2). 

 

Particle size distribution was calculated using the following formulae: 

 

Clay (% ) =  

 

Clay plus Slit (% ) =  
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Coarse sand (% ) =  

 

Medium sand (% ) =  

 

Fine sand (% ) = 100- (Slit +Clay) – Coarse Sand – Medium Sand 

 

Slit (% ) = (Clay + Slit) – Clay 

 

m= Soil mass 

 

Table 1: Times of hydrometer readings for the various particle size fractions. 

 Temperature (°C) 

 22 24 26 

Fraction Hydrometer reading Min Sec Min Sec Min Sec 

Silt and Clay 

 

0-10 6 33 6 13 5 56 

10-20 5 46 5 20 5 16 

20-30 5 03 4 49 4 36 

30-40 4 08 3 56 3 46 

  Hr Min Hr Min Hr Min 

Clay 

1-10 10 53  24 9 55 

10-20 9 37 9 11 8 46 

20-30 8 23 8 1 7 39 

30-40 7 10 6 49 6 31 
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Table 2: Temperature correction of hydrometer readings. 

Temperature (°C) Correction Temperature (°C) Correction 

18.5-18.7 -1.5 22.7-22.9 0.0 

18.8-19.0 -1.4 23.0-23.1 0.1 

19.1-19.3 -1.3 23.2-23.4 0.2 

19.4-19.5 -1.2 23.5-23.7 0.3 

19.6-19.8 -1.1 23.8-24.0 0.4 

19.9-20.1 -1 24.1-24.3 0.5 

20.2-20.9 -0.9 24.4-24.5 0.6 

20.5-20.6 -0.8 24.6-24.8 0.7 

20.7-20.9 -0.7 24.9-25.1 0.8 

21.0-21.2 -0.6 25.2 -25.4 0.9 

21.3-21.5 -0.5 25.5-25.7 1 

21.6-21.8 -0.4 25.8-26.0 1.1 

21.9-22.0 -0.3 26.1-26.4 1.2 

22.1-22.3 -0.2 26.5-26.8 1.3 

22.4-22.6 -0.1 26.9-27.1 1.4 
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According to the calculated percentage of the different soil fractions in the soil, the soil could be 
characterised using Table 3 and Figure 1. 

 

Table 3: Diameter of the soil particles for classifying soils according to the USDA (Soil Survey 
Staff 2010).   

 

 

 

 
Figure 1: United States Department of Agriculture (USDA) soil texture pyramid (Soil Survey Staff 
2010).   

Soil type Diameter (mm) 

Clay <0.002 
Silt 0.002-0.05 
Sand 0.05-2.00 
Fine pebbles 2.00-5.00 
Medium pebbles 5.00-20.00 
Coarse pebbles 20.00-75.00 
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 Walkley-Black wet combustion method (Total organic carbon content 
determination) 

 

50g of each soil sample with particle size smaller than 100mm was put in a 500ml Erlenmeyer 

flask. 10ml of 0.2M K2Cr2O7 (49g K2Cr2O7 /L) was added and mixed well. 20ml concentrated 

H2SO4 was added carefully and mixed thoroughly. The container was left for 20-30 minutes to cool 

to room temperature, after the acid was, added and a further 20ml of distilled water was added and 

stirred. 5 drops of ferroin indicator (1, 10- Phenanthroline Ferrous Sulfate Complex) was added. 

Back titration was done by adding 0.5M FeSO4.7H2O (140g FeSO4.7H2O /L). The red-brown colour 

of the sample changed to a clear blue-green endpoint and the amount of added FeSO4.7H2O in ml 

was noted (T ml). The Protocol was repeated with a blank sample and the amount of added 

FeSO4.7H2O was noted (B ml).  

 

Calculations 

 

% Organic carbon = (B-T × N × 3 × 1.14 × ) 

3 = equivalent weight of carbon in mg,  

1.14 = oxidation factor (Walkley 1935) 

 

 The organic matter content was assumed as the total organic carbon contents in the soil 
samples.  
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Appendix B: Chemical structures for all VOCs and PAHs 

analysed 

 
Cl

Cl Cl  
 

Chloroform 

 
 

 
 

Benzene 

 
 

Toluene 

 
 

Ethylbenzene 

 
 

m-Xylenes 
 

 
 

o-Xylene 

 
 

p-Xylene 

 

Cl

Cl

Cl

Cl
 

 
 

1,1,2,2-Tetrachloroethane 

 

 
 
 

Isopropylbenzene 
(Cumene) 

 

 
1,2,4-Trimethylbenzene 

 

 

 
 
 

Propylbenzene 

 

 
 

1,3,5-Trimethylbenzene (Mesitylene) 

 
CH3CH2CHCH3

 
sec-Butylbenzene 

 

H3C

CH3

CH3  
 

4-Isopropyltoluene (Cymene) 

 

CH2CH2CH2CH3

 
 
 

n-Butylbenzene 
 

Figure 2: All volatile organic compounds (VOCs) detected in the soils (ChemWindow® 6.0). 
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Benzo(a)antrhracene 
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Benzo(b)fluoranthene 
 

 

 
 

Benzo(k)fluoranthene 
 

 
Benzo(a)pyrene 

 
 
 

Dibenzo(a,h)anthrancene 

 
 

Benzo(g,h,i)perilene 
 

 
 

 
 
    Indeno(1,2,3-c,d)pyrene 
 
 

Figure 3: Chemical structures of the 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs). 
Figure adopted from Bruzzoniti et al. (2010). 
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