
Metaheuristics for petrochemical blending problems

by

Lieschen Venter

Thesis presented in partial ful�llment of the requirements for the degree of

Masters of Commerce

at

Stellenbosch University

Department of Logistics

Faculty of Economic and Management Sciences

Supervisor: Prof SE Visagie
Date: February 18, 2010

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the authorship owner thereof (unless to the
extent explicitly otherwise stated) and that I have not previously in its entirety or in part
submitted it for obtaining any quali�cation.

Signature:

Date: February 18, 2010

Copyright c© 2009 Stellenbosch University

All rights reserved

Abstract

The main aim in blending problems is to determine the �best� blend of available ingredients to form a
certain quantity of product(s). This product should adhere to strict speci�cations. In this study the
best blend means the least-cost blend of ingredients (input) required to meet a minimum level of product
(output) speci�cations. The most prevalent tools to solve blending problems in the industry are by means
of spreadsheets, simulators and mathematical programming. While there may be considerable bene�t in
using these types of tools to identify potential opportunities and infeasibilities, there is a potentially even
greater bene�t in searching automitically for alternative solutions that are more economical and e�cient.
Heuristics and metaheuristics are presented as useful alternative solution approaches.

In this thesis di�erent metaheuristic techniques are developed and applied to three typical blending
problems of varied size taken from the petrochemical industry. a fourth instance of real life size is also
introduced. Heuristics are developed intuitively, while metaheuristics are adopted from the literature.
Random search techniques, such as blind random search and local random search, deliver fair results.
Within the class of genetic algorithms the best results for all three problems were obtained using ranked
�tness assignment with tournament selection of individuals. Good results are also obtained by means of
tabu search approaches - even considering the continuous nature of these problems. A simulated annealing
approach also yielded fair results. A comparison of the results of the di�erent approaches shows that
the tabu search technique delivers the best result with respect to solution quality and execution time for
all three the problems under consideration. Simulated annealing, however, delivers the best result with
respect to solution quality and execution time for the introduced real life size problem.

Opsomming

Die hoofdoelwit met die oplos van mengprobleme is om die �beste� mengsel van beskikbare bestandele te
bepaal om 'n sekere hoeveelheid produk(te) te vervaardig. Die produk moet aan streng vereistes voldoen.
Die beste kombinasie is die goedkoopste kombinasie van bestandele (toevoer) wat aan die minimum
produkvereistes (afvoer) voldoen. Die algemeenste benaderings waarmee mengprobleme in die industrie
opgelos word, is met behulp van sigblaaie, simulasies en wiskundige programmering. Hierdie metodes is
baie nuttig om belowende oplossings of ontoelaatbaarhede te identi�seer, maar dit kan potensieel meer
voordelig wees om metodes te gebruik wat sistematies meer ekonomiese en e�ektiewe oplossings vind.
Heuristieke en metaheuristieke word as goeie alternatiewe oplossingsbenaderings aangebied.

In hierdie tesis word verskillende metaheuristiekbenaderings toegepas op drie tipiese mengprobleme van
verskillende groottes wat vanuit die petrochemiese industrie spruit. 'n Vierde geval met realistiese (regte
wêreld) grootte word ook aangebied. Heuristieke word volgens intuïsie ontwikkel terwyl metaheuristieke
aangepas word vanuit die literatuur. Lukrake soektegnieke soos die blinde lukrake soektegniek en die
plaaslike lukrake soektegniek lewer redelike resultate. Binne die klas van genetiese algoritmes word
die beste resultate gelewer wanneer die algoritme met 'n kombinasie van rangorde �ksheidstoekenning
en toernooiseleksie van individue geïmplimenteer word. Goeie resultate word ook verkry met behulp
van tabusoektogbenaderings � ten spyte van die kontinue aard van hierdie probleme. Gesimuleerde
tempering lewer ook redelike resultate. 'n Vergelyking van die resultate van die verskillende tegnieke
toon dat die tabusoektogtegniek die beste resultate met betrekking tot die kwaliteit van die oplossing
sowel as uitvoertyd lewer. Gesimuleerde tempering lewer egter die beste resultate met betrekking tot die
kwaliteit van die oplossing sowel as uitvoertyd vir die voorgestelde realistiese grootte probleem.

Acknowledgements

I would like to thank:

• the Lord Jesus Christ, for freedom and revelation of what all of this is really about;

He is the image of the invisible God, the �rstborn over all creation. For by Him all
things were created that are in heaven and that are on earth, visible and invisible,
whether thrones or dominions or principalities or powers. All things were created
through Him and for Him. And He is before all things, and in Him all things consist.
Colossians 1:15-17;

• the Department of Logistics, for the use of their o�ce space and facilities;

• Prof SE Visagie, the supervisor of this thesis, for his unconditional trust, his patient
guidance and his loyal friendship;

• Dr Aninda Chakraborty, the Sasol contact of this thesis, for his guidance and pro-
vision of industry information;

• my fellow GoreLab natives, for their company and assistance, especially Frank
Ortmann, for his unrivaled LATEX prowess and Darian Raad, for the occasional
tango;

• and family, friends, �atmates and familiars for their love, support and interest.

The �nancial assistance of Sasol Technology towards this research is hereby acknowledged.
Any opinions, �ndings, conclusions or recommendations expressed in this thesis are those
of the author and are not necessarily to be attributed to Sasol.

Contents

List of Figures v

List of Tables viii

List of Acronyms xiii

List of Reserved Symbols xv

1 Introduction 1

1.1 Thesis scope and objectives . 3

1.2 Thesis layout and organisation . 4

2 Problem Description 7

2.1 The simpli�ed sample problem . 7

2.2 The Haverly pooling problem . 9

2.3 The Marco mini-re�nery problem . 11

3 A linear programming approach 15

3.1 An exact solution approach for the SSP . 15

3.2 LP approaches for the SSP . 16

3.2.1 The minimum inventory approach 17

3.2.2 The minimum closing inventory approach 18

3.2.3 The average octane approach . 19

3.2.4 The maximized blend approach . 20

i

3.2.5 The di�erential inventory approach 21

3.3 An exact solution approach for the HPP 22

3.4 Heuristic solution for the HPP . 23

3.5 An exact solution approach for the MMRP 24

3.6 LP approaches for the MMRP . 26

3.6.1 The minimum closing inventory approach 27

3.6.2 The maximum input approach . 28

3.6.3 The average octane approach . 29

3.7 Conclusion . 30

4 Data structure 31

4.1 Penalty Functions . 31

4.2 Data structure for the SSP . 32

4.3 Data structure for the HPP . 33

4.4 Data structure for the MMRP . 35

5 Random search techniques 37

5.1 Overview . 37

5.2 Blind random search . 38

5.3 Local random search . 38

5.4 Computational results . 39

5.4.1 The SSP . 41

5.4.2 The HPP . 41

5.4.3 The MMRP . 41

6 Genetic algorithm approaches 45

6.1 Overview . 45

6.2 Genome structure . 46

6.3 Fitness determination . 47

6.4 Genome selection . 48

6.5 Recombination operator . 49

6.6 Mutation operator . 49

ii

6.7 Proportions of genetic operators . 50

6.8 Island models . 51

6.9 Computational Results . 51

6.9.1 The SSP . 52

6.9.2 The HPP . 54

6.9.3 The MMRP . 56

7 Tabu search approaches 61

7.1 Overview . 61

7.1.1 Search space and neighbourhood structure 62

7.1.2 Tabus . 63

7.1.3 Aspiration criteria . 63

7.1.4 Intensi�cation and diversi�cation 64

7.2 TS for continuous global optimisation . 65

7.2.1 Continuous TS by the hypersquare method 65

7.2.2 Continuous TS by the immediate zone method 67

7.3 Computational results . 70

7.3.1 The CTSh . 70

7.3.2 The CTSz . 74

7.3.3 Comparison of methods . 74

8 Simulated annealing approaches 79

8.1 Overview . 79

8.2 Solution representation . 80

8.3 Candidate distribution . 81

8.4 The acceptance function . 82

8.5 Annealing schedule . 83

8.5.1 Initial temperature T0 . 83

8.5.2 Length of the Markov chains . 84

8.5.3 Temperature decrementation . 85

8.6 Stopping criterion . 86

8.7 Computational results . 86

iii

8.7.1 Results for the SSP . 87

8.7.2 Results for the HPP . 89

8.7.3 Results for the MMRP . 89

9 Solution summary 91

9.1 The linear programming approach . 91

9.1.1 The SSP . 91

9.1.2 The HPP . 91

9.1.3 The MMRP . 92

9.2 Metaheuristic solution summary . 92

9.2.1 The SSP . 92

9.2.2 The HPP . 94

9.2.3 The MMRP . 94

10 The extended MMRP 97

11 Conclusion 101

11.1 Thesis summary . 101

11.2 Possible future work . 103

11.2.1 Size and complexity extension of the problems 103

11.2.2 Metaheuristic con�gurations . 103

11.2.3 Sensitivity . 103

References 104

A Additional SA results 113

iv

List of Figures

2.1 A schematic representation of the SSP . 10

2.2 A schematic representation of the HHP . 10

2.3 A schematic representation of the MMRP 14

4.1 Data structure for the SSP . 32

4.2 Example of a data structure for the SSP 33

4.3 Data structure for the HHP . 34

4.4 Data structure for the MMRP . 35

4.5 Example of a data structure for the MMRP 36

5.1 Average performance of BRS and LRS for the SSP 42

5.2 Average performance of BRS and LRS for the HPP 42

5.3 Average performance of BRS and LRS for the MMRP 43

6.1 The genome analogy for the solution structure for the SSP 47

6.2 Average �tness results of GA1 to GA8 obtained for the SSP 53

6.3 Best �tness comparison of GA1 to GA8 for the SSP 53

6.4 Average execution time comparison of GA1 to GA8 for the SSP 54

6.5 GA1 to GA4 population size performance comparison for the SSP 54

6.6 Average performance of the GA3 and GA4 island model for the SSP 55

6.7 Average �tness results of GA9 to GA16 for the HPP 56

6.8 Best �tness comparison of GA9 to GA16 for the HPP 57

6.9 Average execution time comparison of GA9 to GA16 for the HPP 57

v

6.10 GA9 to GA12 population size performance comparison for the HPP 58

6.11 Average performance of the GA10 and G11 island model for the SSP . . . 58

6.12 Average �tness results of GA17 to GA24 for the MMRP 59

6.13 The best �tness comparison of GA17 to GA24 60

6.14 Average execution time for GA17 to GA24 for the MMRP 60

7.1 Solution space partitioning for the CTSh 66

7.2 Decrease of tabu region size for the CTSz 69

7.3 Tabu tenure comparison for the CTSh for the SPP 71

7.4 Tabu tenure comparison for the CTSh for the HPP 72

7.5 Tabu tenure comparison for the CTSh for the MMRP 72

7.6 Neighbourhood space size comparison for the CTSh for the SPP 73

7.7 Neighbourhood space size comparison for the CTSh for the HPP 73

7.8 Neighbourhood space size comparison for the CTSh for the MMRP 74

7.9 θ value comparison for the CTSz for the SSP 75

7.10 Comparisons of θ values comparison CTSz for the HPP 75

7.11 Comparisons of θ values for the CTSz for the MMRP 76

7.12 Average performance of the CTSh and CTSz for the SSP 77

7.13 Average performance of the CTSh and CTSz for the HPP 77

7.14 Average performance of the CTSh and CTSz for the MMRP 78

8.1 The Metropolis accepance function . 87

8.2 The Barker acceptance function . 87

8.3 Summary of the best SA approaches for the SSP 88

8.4 Summary of the best SA approaches for the HPP 89

8.5 Summary of the best SA approaches for the MMRP 90

9.1 Results of the LP approaches for the SSP 92

9.2 Results of the LP approaches for the MMRP 93

9.3 Best and average solutions of the metaheuristic approaches to the SSP . . 93

9.4 Average execution times of the metaheuristic approaches to the SSP 94

9.5 Best and average solutions of the metaheuristic approaches to the HPP . . 95

9.6 Average execution times of the metaheuristic approaches to the HPP . . . 95

vi

9.7 Best and average solutions of the metaheuristic approaches to the MMRP . 96

9.8 Average execution times for each metaheuristic for the MMRP 96

10.1 Best and average solutions of the metaheuristic approaches to the extended
MMRP . 98

10.2 Average execution times for each metaheuristic for the extended MMRP . . 99

A.1 Average objective function values for T0 = 0.8 for the SSP 114

A.2 Average objective function values for T0 = 0.7 for the SSP 114

A.3 Average objective function values for T0 = 0.6 for the SSP 115

A.4 Average objective function values for T0 = 0.5 for the SSP 115

A.5 Average objective function values for T0 = 0.4 for the SSP 116

A.6 Average objective function values for T0 = 0.3 for the SSP 116

A.7 Average objective function values for T0 = 0.2 for the SSP 117

A.8 Average objective function values for T0 = 0.8 for the HPP 117

A.9 Average objective function values for T0 = 0.7 for the HPP 118

A.10 Average objective function values for T0 = 0.6 for the HPP 118

A.11 Average objective function values for T0 = 0.5 for the HPP 119

A.12 Average objective function values for T0 = 0.4 for the HPP 119

A.13 Average objective function values for T0 = 0.3 for the HPP 120

A.14 Average objective function values for T0 = 0.2 for the HPP 120

A.15 Average objective function values for T0 = 0.8 for the MMRP 121

A.16 Average objective function values for T0 = 0.7 for the MMRP 122

A.17 Average objective function values for T0 = 0.6 for the MMRP 122

A.18 Average objective function values for T0 = 0.5 for the MMRP 123

A.19 Average objective function values for T0 = 0.4 for the MMRP 123

A.20 Average objective function values for T0 = 0.3 for the MMRP 124

A.21 Average objective function values for T0 = 0.2 for the MMRP 124

vii

viii

List of Tables

2.1 Blend speci�cations for the SSP. 8

2.2 Inventory proporties for the SSP . 9

2.3 Component characteristics for the SSP . 9

2.4 Component attributes for the HHP . 11

2.5 Component yields from Mid-continent crude oil for the MMRP 12

2.6 Component yields from Texas crude oil for the MMRP 12

2.7 Process constraints and costs for the MMRP 12

2.8 Product constraints for the MMRP . 13

2.9 Product requirements for the MMRP . 13

3.1 Product amounts for the SSP by the exact approach 16

3.2 Component percentages for the SSP by the exact approach 17

3.3 Economic values for the SSP by the exact approach 17

3.4 Production amounts for the SSP by the MIA 18

3.5 Component percentages for the SSP by the MIA 18

3.6 Economic values for the SSP by the MIA 18

3.7 Production amounts for the SSP by the MCIA 19

3.8 Component percentages for the SSP by the MCIA 19

3.9 Economic values for the SSP by the MCIA 19

3.10 Production amounts for the SSP by the AOA 20

3.11 Component percentages for the SSP by the AOA 20

3.12 Economic values for the SSP by the AOA 20

ix

3.13 Production amounts for the SSP by the MBA 21

3.14 Component percentages for the SSP by the MBA 21

3.15 Economic values for the SSP by the MBA 21

3.16 Production amounts for the SSP by the DIA 22

3.17 Component percentages for the SSP by the DIA 22

3.18 Economic values for the SSP by the DIA 22

3.19 Production amount for the HHP by the exact approach 23

3.20 Pool composition for the HPP by the exact approach 23

3.21 Component percentages for the HPP by the exact approach 23

3.22 Production amounts for the HPP when S̃1 = 2 24

3.23 Optimal pool composition when S̃1 = 2 . 24

3.24 Optimal product composition when S̃1 = 2 24

3.25 Production amounts for the HPP when S̃1 = 3 24

3.26 Optimal pool composition when S̃1 = 3 . 24

3.27 Optimal product composition when S̃1 = 3 25

3.28 Production amounts for the MMRP by the exact approach 26

3.29 Component percentages for the MMRP by the exact approach 27

3.30 Production amounts for the MMRP by the MCIA 27

3.31 Component percentages for the MMRP by the MCIA 28

3.32 Production amounts for the MMRP by the MIPA 28

3.33 Component percentages for the MMRP by the MIPA 29

3.34 Production amounts for the MMRP by the AOA 29

3.35 Component percentages for the MMRP by the AOA 30

5.1 Results summary for the RSTs for the SSP, HPP and MMRP 43

6.1 The parameters used in GA1 to GA8 for the SSP 52

6.2 Speci�cations of GA1 to GA8 for the SSP 52

6.3 Results of GA1 to GA8 for the SSP . 53

6.4 GA3 and GA4 island model parameters . 55

6.5 The parameters used in GA9 to GA16 for the HHP 56

6.6 Speci�cations of GA9 to GA16 for the HHP 56

x

6.7 Results of GA9 to GA16 for the HHP . 57

6.8 GA10 and GA11 island model parameters 58

6.9 The parameters used in GA17 to GA24 for the MMRP 59

6.10 Speci�cations of GA17 to GA24 for the MMRP 59

6.11 Results of GA17 to GA24 for MMRP . 60

7.1 Results summary of RSTs for the SSP, HPP and MMRP 76

8.1 Best Markov chain lengths for the SSP . 88

8.2 Best Markov chain lengths for the HPP . 89

8.3 Best Markov chain lengths for the MMRP 90

A.1 Number of SA algorithm runs for the SSP 113

A.2 Number of SA algorithm runs for the HPP 113

A.3 Number of SA algorithm runs for the MMRP 114

xi

xii

List of Acronyms

AOA Average octane approach
BRS Blind random search
CTS Continuous tabu search
CTSh Continuous tabu search by the hypersquare method
CTSz Continuous tabu search by the immediate zone method
DIA Di�erential inventory approach
GA Genetic algorithm
HPP Haverly pooling problem
LRS Local random search
LS Local search
MBA Maximized blend approach
MCIA Minimum closing inventory approach
MIA Minimum inventory approach
MIPA Maximum input approach
MMRP Marco mini-re�nery problem
RON Research octane number
RST Random search technique
RVI Reid vapor index
RVP Reid vapor pressure
SA Simulated annealing
SSP Simpli�ed sample problem
TAME Tertiary amyl methyl ether
TS Tabu search

xiii

xiv

List of Reserved Symbols

A number of symbols in this thesis will conform to the following de�nition:

A Symbol denoting a set (Calligraphy capitals)
a Symbol denoting a solution or portion of a solution (Boldface lower case letters)
A Symbol denoting a matrix (Boldface capital letters)
a Symbol denoting a vector (Underlined lower case letters)

Symbol Meaning

α Damping constant.
Aji Process test variable.
bit Amount in m3 of blend i that is produced on day t.
β Tabu region constant.
cij Amount in m3 of component j that is used to produce blend i.
c
′

jkm Amount in m3 of component j from crude k obtained after the crude.
has passed through process m.

c̆ij Individual constraint set on the percentage of which blend i may consist.
of component j.

c̄jk Amount of component j to go into the pooling mix k.
ĉij Fraction of blend i which consists of component j.
c̃ik Amount of pooling mix k required to produce product i.
Cc′

k Cost price per barrel of crude k.
Cb

i Selling price per m3 of blend i.
Cp

i Selling price per m3 of product i.
Cc

j Cost price per m3 of component j.
Co

m Operating cost per unit crude associated with process m.
d Zero mean deviates to be added to the current solution.
dj Amount per barrel of domestic product required to form the �nal product j.
D Maximum change allowed in each decision variable.
E Thermodynamic energy of the system.
εf Tabu list tolerance.

ε A vector of uniform random numbers in the range (−
√

3,
√

3).
h Number of submatrices in the data structure.
Γ Acceptance function.
η Temperature decrementation constant.
g Infeasible solution for the penalty function.

xv

IO
j Opening inventory level for component j.

IL
j Minimum inventory level for component j.

IU
j Maximum inventory level for component j.

κ Any large negative constant [O(106)].
Kk Number of barrels of crude k that is bought as raw material.
K

′

km Number of barrels of crude k which passes through process m.
l Lower bounds of the control variables.
λ CTSz constant.
L Markov chain length.
n Number of candidate solutions generated.
ν Number of transitions between candidate solutions at a temperature T .
N Tabu search neighbourhood search space.
ω Weight associated with the magnitudes of the successful changes made to

each control variable.
ν Information infolding rate
Omin

i Minimum allowable octane rating for blend i.
O∗

i Octane rating of product i.
Oj Octane rating of component j.
p Number of LP model constraints.
pc Cross-over probability.
pm Mutation probability.
pt Selection probability for tournament selection.
φ Reid vapour index constant.
ξ Covariance matrix.
Pi Number of barrels of product i that is produced.
P ∗

j Reid vapour pressure of component j.
P u∗

i Maximum allowable Reid vapour pressure for blend. i
P

′
j Reid vapour index of component j.

P u′
i Maximum allowable Reid vapour index for blend i.

Q Step size distribution controller.
ρmax

i Maximum allowable density of product i.
ρjk Density of component j obtained from crude k.
r Random number in the range (0, 1).
Rjt Run down value of component j on day t.
% Position of an individual in a solution population.
s Number of LP model constraints that have been satis�ed.
Smax

i Maximum allowable sulfur content of product i.
Sj Sulfur content of component j.
Sjk Sulfur content of component j obtained from crude k.

S̃k Sulfur content of the pooled component mix k.
S Solution search space.
t Tabu tenure.
θ Relative accuracy for the tabu search.
τ Random direction vector.
T Global temperature parameter.
T Tabu list. xvi

$ A vector of uniform random numbers in the range [-1,1].
u Upper bounds of the control variables.
Uk Upperbound on the number of barrels of crude k that may be purchased.
U

′
m Upperbound on the number of barrels of crude that is present in process m.

Υ Magnitudes of the successful changes made to each control variable.
V max

i Maximum allowable vapour pressure of product i.
Vj Vapour pressure of component j.
V Solution search space excluding the neighbourhood search space.
Φ Candidate distribution.
χ Desired acceptance probability for the initial temperature calculation.
Ψ Annealing schedule.

xvii

xviii

Chapter 1
Introduction

In blending problems the aim is to determine the best blend of available ingredients to
form a certain quantity of a product under strict speci�cations. The best blend means
the least-cost blend of inputs required to meet a designated level of output or given
speci�cations. Blending problems are especially important in process industries such as
petroleum, chemical, and food, as well as in �elds where a certain level of service is desired
at minimum cost. The decision maker must determine the ingredients to use and in which
quantities to use them.

Sasol, originally the Afrikaans acronym for Suid-Afrikaanse Steenkool en Olie (South
African Coal and Oil), is a South African company engaged in the commercial production
and marketing of chemicals and liquid fuels. Headquartered in Johannesburg, it supplies
approximately 40% of the national liquid fuel requirements and is the country's largest
supplier of industrial gas, explosives, fertilizers, polymers and chemical products.

Sasol continually encounters blending problems during its operations. In the production
process numerous product speci�cations must be met through a number of components
that are generally available for each product blend type. Product blends almost never
consist of only one type of component and di�erent combinations of the components
used to form products have signi�cantly di�erent economic values as result. The quality
and amount of each component available for production depends on upstream-process
feedstock qualities and on changes in operating conditions. As for the products themselves,
some �nished product demands are �exible and the optimal volume may change based on
economic conditions.

There are an in�nite number of blending recipes which will make a product, but there is
only one set of feedstock, operating conditions, component yields, qualities and blending
recipes that satis�es the inventory constraints and meets all product speci�cations at the
highest economic value. Blend planning methods are intended to identify the optimal op-
erating conditions and identify the feasible and optimal blend recipes. Maximum pro�t is
realized by the planning and implementation of optimal operating conditions and through

1

2 CHAPTER 1. INTRODUCTION

implementation of optimal blending strategies.

The most prevalent form of blending tools being used in the industry are spreadsheets
and simulators that allow the user to visualize the impact that a given change to a recipe
will have [57]. Currently, Sasol's Market and Process Integration (MPI) group utilizes
spreadsheets to develop blend recipes. These spreadsheets do not optimize blending but
are predominately used to manage production and inventory to achieve the blending
recipes for the following few weeks. This is no small task as in Sasol, a typical single
period re�nary LP has approximately 3 000 constraints and 3 000 variables. For multi-
period models the variable count can easily increase to 20 000.

However, the optimal solution may be found by means of linear programming and there
are several mathematical modeling languages that could be used for formulating and
solving LP models such as Lingo [66], GAMS [35] and AMPL [6]. In re�nery and petro-
chemical processing problems it is generally necessary to model not only product �ows
but the properties of the components as well. When components are combined, nonlinear
relationships are often introduced. In a number of blending problems, the qualities of
the components contribute to the qualities of the products in a nonlinear and nonconvex
manner. Succesive Linear Programming (SLP) techniques have been widely used in the
industry for over 25 years [31]. SLP algorithms solve nonlinear optimization problems via
a sequence of linear programs. Palacios-Gomez et al. [74] presents the �rst such algorithm,
the Method of Approximation Programming (MAP).

While there is great bene�t in using these types of tools to identify potential opportunities
and infeasibilities, there is an even greater bene�t in searching automatically for alternate
recipes that are more economical and e�cient. The ideal is to have some general solution
method for nonlinear programs (such as for linear programs and integer programs) that
always produces the global optimum for any nonlinear program. However, no such solution
method exists � a local optimum is produced and it cannot be ensured (in all cases) that
a solution is the global optimum [13]. Metaheuristics are useful alternatives in overcoming
this problem.

A metaheuristic is a heuristic method for solving a very general class of computational
problems by combining user-given procedures � usually heuristics themselves � in the
hope of obtaining a more e�cient or more robust procedure. The name combines the
Greek pre�x �meta� (meaning �beyond�, here in the sense of �higher level�) and �heuristic�
(meaning �to �nd�) [101]. Metaheuristics are generally applied to problems for which
there is no satisfactory problem-speci�c algorithm or heuristic or when it is not practical
to implement such a method. Most commonly used metaheuristics are targeted to solve
combinatorial optimization problems, but of course it can handle any problem that can
be recasted in the right form.

1.1. THESIS SCOPE AND OBJECTIVES 3

1.1 Thesis scope and objectives

As far as could be ascertained, there exist no application of metaheuristic approaches to
petrochemical blending problems in the literature. The scope of this thesis is limited to
the development of various approaches to three sample problems supplied by Sasol in order
to achieve a proof of concept. The main thrust of this thesis is to develop metaheuristic
approaches to the three sample problems supplied by Sasol. This is achieved by pursuing
�ve objectives.

Objective I:

a. To determine the exact solution for each problem so that the quality of solutions
obtained by other approaches may be measured through comparison;

b. To understand the nature and characteristics of the problems at hand by means of
decomposition;

Objective II:

a. To examine the nature of the solution spaces for each problem, determine the level
of di�culty in �nding feasible solutions within them and �nd methods to deal with
infeasible solutions;

b. To develop data structures for the representation of decision variables and constraints
upon these variables for each of the three problems;

Objective III:

a. To formulate a solution approach by means of random search techniques andmeasure
which technique in particular delivers the best solution for each problem;

b. To formulate a solution approach by means of genetic algorithms and measure which
con�guration of algorithm parameters and subalgorithms deliver the best result for
each problem;

c. To examine the possibility of formulating a tabu search approach despite the con-
tinuous nature of the problems at hand and determine which method delivers the
best result for each problem;

d. To formulate a solution approach by means of simulated annealing and measure
which combination of algorithm parameters delivers the best result for each problem;

Objective IV:

a. To compare the performance of each solution approach with respect to average so-
lution quality, stability and execution time;

4 CHAPTER 1. INTRODUCTION

b. To investigate the behavior of the metaheuristic solution approaches for a problem
with increased, i.e. real life, dimensions.

Objective V: To pose open questions and to suggest new further development of the
approaches to problems of greater size and resemblance to industry type problems.

1.2 Thesis layout and organisation

In Chapter 2 three problems common in the petrochemical industry literature are intro-
duced and described. The �rst, a simpli�ed sample problem, serves as the base upon
which various approaches are developed and upon which initial tests are done before the
solutions are applied to a larger problem. The second problem is the Haverly pooling
problem and it is used to introduce the concept of the initial combination of certain com-
ponents into intermediate blends before the combination of them with other components
to form the �nal products. These initial blends have di�erent characteristics than the
components which are used to form them. The third problem is the Marco mini-re�nery
problem. It builds on the simpli�ed sample problem by introducing the crudes from which
the components are created as well as the processes used in order to do this.

Chapter 3 contains the formulation of the exact solution to the three problems by means of
linear programming. It also contains results obtained from applying a number of so-called
�expert� approaches so as to examine the performance of these approaches to solve the
di�erent problems. Upperbounds are determined on the quality of solutions obtained by
focusing optimisation on only one problem characteristic at a time. In so doing, greater
understanding of which problem characteristics are the most important and must receive
the most attention during the design of heuristics and metaheuristics, may be obtained.

In Chapter 4 this information is used to determine data structures for each of the three
problems. The data structures contain the chosen decision variables and groups them
in such a way that the solutions obtained may be handled and manipulated as a single
structure.

In Chapter 5 the study of applied heuristics commences and it contains solutions to the
problems obtained by applying two random search technique approaches. The application
of these techniques reveals information about the nature of the various solution spaces
of the problems; it gives an indication of the level of logic required to �nd good quality
solutions by investigating the probability of �nding such solutions at random.

Chapter 6 is the �rst in which the application of metaheuristics is investigated and it
contains results obtained from four variations of the genetic algorithm as well as the results
of island genetic models. Chapter 7 contains results obtained from the application of two
tabu search approaches designed speci�cally for the continuous nature of the blending
problems while Chapter 8 contains results obtained from the application of a simulated
annealing approach.

1.2. THESIS LAYOUT AND ORGANISATION 5

Chapter 9 contains the comparison of each solution approach for the three problems and
Chapter 10 contains the results of the metaheuristic approaches applied to an extension
of one of the sample problems. Chapter 11, �nally, contains the conclusions and closing
remarks for the thesis. The chapter closes with a number of ideas with respect to further
work.

6 CHAPTER 1. INTRODUCTION

Chapter 2
Problem Description

To the author's knowledge, there exists no application of metaheuristics to petrochemical
blending problems in the literature. The interest therefore lies �rstly in achieving a proof
of concept whether or not it is indeed possible to solve this class of problems by means
of metaheuristics. Three sample problems are supplied by Sasol for the development and
testing of metaheuristic approaches.

2.1 The simpli�ed sample problem

When mathematical programming tools are properly integrated with user-friendly inter-
faces, they turn into e�ective decision support tools requiring almost no computer pro-
gramming knowledge. Visual aids and options largely simplify the interpretation process
of solutions. Spreadsheets, for example, provide a user-friendly interface for mathematical
programs. In particular, Microsoft Excel [71] has become one of the most popular software
packages in the business world and have been used by millions of professionals. Ragsdale
[80] argues that due to their widespread availability and use in business and engineering
community, it is much easier for those with no mathematical programming knowledge to
learn and adopt such models when it is interfaced with Microsoft Excel.

The use of spreadsheets for operations research problems is discussed by Leon et al. [65]
and a spreadsheet application to a production blending problem is given by Al-Shammari
and Dawood [2]. Sakalli and Birgoren [86] discuss the development and implementation of
spreadsheet-based decision support tools for modeling and solving blending problems in a
large-scale brass factory in Turkey. They present a user interface developed in Microsoft
Excel, which is linked with the Lingo [66] modeling language and optimizer. Their paper
elaborates on di�culties faced in the development and implementation of their solutions
as well as the design of the interface.

The �rst problem considered in this thesis is the simpli�ed sample problem (SSP) provided

7

8 CHAPTER 2. PROBLEM DESCRIPTION

by KBC Consultants [56]. They developed a spreadsheet management system created in
Microsoft Excel for Sasol. The e�ect of various variables upon each other may be tested
by means of this system. The violation of any constraint causes the violating value to
be coloured in red. This simpli�es violation identi�cation and the testing for feasible
solutions.

The SSP considers two petrol blends: Sasol Turbo ULP1 93 (Summer Grade) also known
as M3S (a 93 octane unleaded grade) and Sasol Turbo ULP 95 (Summer Grade) also
known as M5S (a 95 octane unleaded grade). The given selling price for M3S and M5S
is R5 300 and R5 430 per cubic meter, respectively. The blends are comprised of �ve
components: butane (BUT), C5 ra�nate (GP1), unhydrogenated catalytic polypropolene
petrol (GP4), platformate (PTF) and tertiary amyl methyl ether (TAME).

These components should be blended in such a way as to satisfy the octane rating and
vapor pressure speci�cations given in Table 2.1. The most common type of octane rating
worldwide is the Research Octane Number (RON). RON is determined by running the
fuel in a test engine with a variable compression ratio under controlled conditions, and
comparing the results with those for mixtures of iso-octane and n-heptane [102]. Reid
vapor pressure (RVP) is a common measure of the volatility of petrol. It is de�ned as
the absolute vapor pressure exerted by a liquid at 37.8 °C [103]. TAME is a volatile, low
viscosity clear liquid used as an oxygenate to gasoline. It is added both to increase octane
enhancement to replace banned tetraethyl lead and to raise the oxygen content in gasoline
[104].

Price Minimum RON Maximum RVP Maximum
Blend kR/m3 KPa TAME %

M3S 5.30 93 70 15.5
M5S 5.45 95 75 15.5

Table 2.1: Blend speci�cations for the SSP.

Generally octane blending is a nonlinear problem [64], but it is assumed in this problem
that octane blends linearly on volume: The sum product of the RON and volume of all
the �ve components in a particular petrol grade is equal to the product of the �nal volume
and RON of the petrol grade. A property that does not blend linearly on volume may be
converted to an index which does blend linearly by using

property index = (property value)φ.

RVP does not blend linearly on volume. Therefore, it needs to be converted into a Reid
Vapor Index (RVI), where φ = 1.25. TAME is high in octane but has a low RVP, which are
very good qualities for an additive. However, the high price of TAME restricts addition
to a maximum of 15.5% in both petrol grades.

1Unleaded Petrol

2.2. THE HAVERLY POOLING PROBLEM 9

The properties of each of the �ve components are given in Tables 2.2 and 2.3. Each of
the components (except butane as butane is a domestic product) is subject to inventory
constraints which limit the physical amount of component that may be stored. These
amounts are in�uenced by the run down rates. Run down rates refer to the replenishment
amounts of each component for each day as the components are extracted from crude oils
and coal.

The goal is to make an optimal blend recipe that satis�es the inventory and blend speci-
�cation constraints. A schematic representation of this SSP is supplied in Figure 2.1.

Opening Minimum Maximum
Inventory Inventory Inventory Cost

m3 m3 m3 kR/m3

BUT Not inventoried 3.00
GP1 1.90 0.60 4.75 4.30
GP4 2.30 0.86 5.75 4.30
PTF 4.74 1.16 11.84 4.80
TAM 2.40 0.40 6.00 5.00

Table 2.2: Inventory properties of the components which make up each blend for the SSP.

Properties Run Down Rates

RON RVP Day 1 Day 2 Day 3
KPa m3 m3 m3

BUT 97.80 350.00 0.36 0.35 0.32
GP1 93.68 106.09 1.03 1.03 1.02
GP4 95.16 55.21 0.86 0.89 1.21
PTF 85.50 43.80 2.29 2.29 2.29
TAM 120.00 18.60 0.92 0.92 0.91

Table 2.3: Characteristics of the components which make up each blend for the SSP.

2.2 The Haverly pooling problem

The Haverly pooling problem (HPP) is similar to the SSP and is presented in Haverly
[44]. It considers two types of �nal products simply labelled prodX and prodY. These
products are formed when 3 components (compA, compB and compC) are combined, but
what di�erentiates the pooling problem from the SSP, is a so-called pooling link. It may
exist physically because there is only one tank to store compA and compB in or it may
exist because compA and compB must be mixed and transported as a mixture via, for
example, a pipeline.

CompA incurs a cost of R6.00 per m3 purchased while compB and compC incur costs
of R16.00 and R10.00 per m3 purchased, respectively. ProdX is sold at R9.00 per m3

10 CHAPTER 2. PROBLEM DESCRIPTION

Components

M3S

M5S

Figure 2.1: A schematic representation of the SSP.

while prodY is sold at R15.00 per m3. A maximum amount of 100 m3 of prodX may be
manufactured while a maximum of 200 m3 of prodY may be manufactured.

CompA has a sulfur content of 3% per m3, compB has a sulfur content of 1% per m3 and
compC has a sulfur content of 2% per m3 while the maximum allowable sulfur content for
prodX and prodY is 2.5% and 1.5% per m3, respectively. When components are pooled
together, the sulfur quality of the mix must be estimated according to the quantities of
each component in the pool.

From the given information the goal is to make an optimal blend schedule that satis�es
the blend speci�cation constraints so that pro�t is maximized. A schematic representation
of the HPP is given in Figure 2.2.

CompB

CompA

CompC

Pool1

ProdY

ProdX

Figure 2.2: A schematic representation of the HPP.

2.3. THE MARCO MINI-REFINERY PROBLEM 11

2.3 The Marco mini-re�nery problem

TheMarco mini-re�nery problem (MMRP) is a generalisation of the SSP discussed in �2.1.
It considers �ve types of �nal products: Premium grade petrol blends, regular grade petrol
blends, distillate, fuel gas and fuel oil. The blends are comprised of eleven components
which are obtained from two crude oils (Mid-continent crude and Texas crude). These
components are butane (but), fuel gas, straight run gasoline (sr-gas), straight run naphta
(sr-naphta), reformed gasoline (rf-gas), straight run distillate (sr-dist), cracked gasoline
(cc-gas), cracked gas oil (cc-gas-oil), straight run gas oil (sr-gas-oil), straight residuum
(sr-res) and hydrotreated residuum (hydro-res).

A maximum of 200 barrels of each type of crude may be purchased each day at a cost of
$60.00 per barrel for both Mid-continent crude and Texas crude. The standard oil barrel
of 42 US gallons or 159` is used in the United States as a measure of crude oil and other
petroleum products. One standard oil barrel is equal to approximately 1.2 m3. General
attributes for the applicable components to be blended are shown in Table 2.4.

Octane Vapour Density Sulfur
Component rating pressure (Pa) (kg/m3) content (%)

sr-gas 83.50 11.40 - -
sr-naphta 69.00 9.54 272.00 1.48
rf-gas 110.00 5.57 303.30 -
cc-gas 78.70 9.90 - -
butane 90.80 22.20 - -
sr-dist - - 292.00 2.86
sr-gas-oil - - 295.00 5.05
sr-res - - 343.00 11.00
cc-gas-oil - - 294.40 1.31
hydro-res - - 365.00 6.00

Table 2.4: General attributes per barrel for the applicable components to be blended for the MMRP. A
dash indicates that the component does not have the speci�c attribute.

The components are obtained through various chemical processes. Five processes play
a role in this problem: Atmospheric distillation (a-dist), naptha reforming (n-reform),
catalytic cracking of distillates (cc-dist), catalytic cracking of gas oil (cc-gas-oil) and the
hydrotreating of residuum (hydro). The amount of each component obtained by means
of the �ve processes is given in Tables 2.5 and 2.6. Butane is a domestic product and
is manufactured rather than obtained from crudes. Butane has an expense of $67.50
per barrel to manufacture. The processes have �xed costs as well as costs incurred by
each type of component that they produce. The processes are also subject to capacity
constraints and operating costs as shown in Table 2.7. All crudes initially pass through
a-dist. Therefore all components not obtained through this process must be obtained by
running the intermediate streams through the other processes. No new crude is entered
into the system to obtain these components. Therefore, the intermediate stream becomes
less by one unit for each unit that is run through any of the other processes.

12 CHAPTER 2. PROBLEM DESCRIPTION

Process

Component A-dist N-reform Cc-dist Cc-gas-oil Hydro

sr-gas 0.236 - - - -
sr-naphta 0.233 -1.000 - - -
sr-dist 0.087 - -1.000 - -
sr-gas-oil 0.111 - - -1.000 -
sr-res 0.315 - - - -
rf-gas - 0.807 - - -
fuel-gas 0.029 0.129 0.300 0.310 -
cc-gas - - 0.590 0.590 -
cc-gas-oil - - 0.210 0.220 -

Table 2.5: The amount of component per barrel that is obtained from Mid-continent crude oil. A dash
indicates that a component is not obtained through that process.

Process

Component A-dist N-reform Cc-dist Cc-gas-oil Hydro

sr-gas 0.180 - - - -
sr-naphta 0.196 -1.000 - - -
sr-dist 0.073 - -1.000 - -
sr-gas-oil 0.091 - - -1.000 -
sr-res 0.443 - - - -1.000
rf-gas - 0.836 - - -
fuel-gas 0.017 0.099 0.360 0.380 -
cc-gas - - 0.580 0.600 -
cc-gas-oil - - 0.150 0.150 -
hydro-res - - - - 0.970

Table 2.6: The amount of component per barrel that is obtained from Texas crude oil. A dash indicates
that a component is not obtained through that process.

Maximum capacity Operating cost
Process (1000 barrels per day) (k$ per barrel)

a-dist 100 0.030
n-reform 20 0.045
cc-dist 30 0.240
cc-gas-oil 30 0.024
hydro - 0.030

Table 2.7: Process constraints and �xed costs for each of the �ve processes through which components
are obtained from crudes for the MMRP.

The �ve types of �nal products that are produced from the components are subject to
certain constraints as shown in Table 2.8. The components which must be combined to
produce each type of �nal product and selling price thereof is contained in Table 2.9.

The objective is to maximise the pro�t subject to all the above constraints. A schematic

2.3. THE MARCO MINI-REFINERY PROBLEM 13

Minium Maximum Maximum Maximum
Final RON RVP density sulfur
product (Pa) (kg/m2) (%)

Fuel gas - - - -
Regular grade petrol 86 12.7 - -
Premium grade petrol 90 12.7 - -
Distillate - - 306 0.5
Fuel oil - - 352 3.5

Table 2.8: Product constraints for each of the �ve types of �nal product. A dash indicates that the
constraint is not applicable to the type of �nal product.

Selling price
Product Component $/barrel

Fuel gas Fuel gas 15.00
Regular grade petrol But, sr-gas, rf-gas, cc-gas, sr-naphta 91.00
Premium grade petrol But, sr-gas, rf-gas, cc-gas, sr-naphta 105.00
Distillate sr-dist, sr-naphta, sr-gas-oil, cc-gas-oil 77.00
Fuel oil sr-gass-oil, sr-res, cc-gas-oil, hydro-res 66.50

Table 2.9: List of components and selling price for each �nal product for the MMRP.

representation of the MMRP is given in Figure 2.3.

14 CHAPTER 2. PROBLEM DESCRIPTION

Components

Butane (domestic product)

Fuel Gas

Gasoline (straight run)

Naphta (straight run)

Fuel Gas

Gasoline (reformed)

Fuel Gas

Gasoline

Gas oil (cracked)

Residue (hydrotreated)

Naphta

Distillate (straight run)

Distillate

Gas oil

Gas oil (straight run)

Residue(straight run)

Residue

A
tm

o
sp
h
e
ri
c
D
is
ti
ll
a
ti
o
n
U
n
it

Hydro-

treater

Catalytic

Cracker

Reformer

Crude 1

Crude 2

Fuel Gas

Petrol

Premi-

um/Re-

gular

Distillate

Fuel Oil

Figure 2.3: A schematic representation of the MMRP.

Chapter 3
A linear programming approach

Various solution techniques are explored for the SSP (§2.1), the HPP (�2.2) and the
MMRP (�2.3). Exact solutions for the three problems may be obtained by means of
linear and non-linear programming. However, the risk of nonlinear programming methods
returning merely a local optimum is very high. Thus a need for alternative methods
arises. In this chapter, various linear programming (LP) approaches are presented and
tested on the problems. In so doing, the inherent characteristics of the problems may be
investigated. Greater understanding may be obtained for example, as to which constraints
have the greatest e�ect on moves toward better solutions and which decision variables
most in�uence the objective function values. LPs can also yield more insight into the best
possible performance of known greedy heuristics for blending problems.

3.1 An exact solution approach for the SSP

Let Cb
i be the selling price per m

3 of blend i and Cc
j be the cost price per m

3 of component
j. Let bit be the amount in m3 of blend i that is produced on day t and cij be the amount
(in m3) of component j that is used to produce blend i so that

ĉij =
cij∑
t

bit

represents the fraction of blend i that consists of component j. Let Omin
i be the minimum

allowable octane rating for blend i and Oj be the octane rating of component j. Similarly,
let P u∗

i be the maximum allowable Reid vapour pressure (RVP) for blend i and P ∗
j be the

RVP of component j. After linearization of the pressure as described in �2.1, suppose
P u′

i is the maximum allowable Reid vapour index (RVI) for blend i and P
′
j is the RVI of

component j. Furthermore, let IO
j , IL

j and IU
j be the opening, minimum allowable and

maximum allowable inventory level, respectively for component j and let Rjt be the run

15

16 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

down value of component j on day t. Finally, let c̆ij be the individual constraint set on
the percentage of blend i that may consists of component j.

With cost optimization as goal, a total of I blends, a total of J components and a pro-
duction horizon of total length T , the sample problem is stated as �nding a (T × I) blend
solution matrix and a (M ×J) component solution matrix such that IJ + IT nonnegativ-
ity constraints, 2I + 2JT + IJ inequality constraints and I equality constraints totalling
2I + 2JT + 2IJ + IT constraints, will be satis�ed.

The objective of the LP is to

maximize
∑

i

∑
t

Cb
i bit −

∑
i

∑
j

Cc
j cij, (3.1)

subject to
∑

j

Oj ĉij ≥ Omin
i for all i, (octane limit), (3.2)∑

j

P
′

j ĉij ≤ P u′

i for all i, (pressure limit), (3.3)∑
j

ĉij = 1 for all i, (feasibility test), (3.4)

IO
j +

∑
t

Rjt −
∑

i

∑
t

bitĉij ≥ IL
j for all j, (inventory limit), (3.5)

IO
j +

∑
t

Rjt −
∑

i

∑
t

bitĉij ≤ IU
j for all j, (inventory limit), (3.6)

c̆ij ≤ c̄ij for all i, j, (3.7)

cij ≥ 0 for all i, j, (3.8)

bit ≥ 0 for all i, t. (3.9)

The LP model for the SSP is solved by means of Lingo 11 [66] and the solution is
described in Tables 3.1 to 3.3. All LP models contained in this thesis is solved in this
manner.

Blend Day 1 Day 2 Day 3
m3 m3 m3

M3S 4.20 0.00 0.00
M5S 3.80 8.27 7.70

Table 3.1: Optimal amounts of each blend to be produced as determined by solving the LP in (3.1)�(3.9).
A total of 24 m3 product is produced.

3.2 LP approaches for the SSP

Several LP formulations to determine upper bounds on heuristic approaches based on
intuition are applied to the simpli�ed sample problem. The use of these LP formulations

3.2. LP APPROACHES FOR THE SSP 17

Component M3S M5S Day 1 Day 2 Day 3
% % m3 m3 m3

BUT 4.81 4.23 Not inventoried
GP1 14.21 19.13 1.60 1.04 0.60
GP4 4.13 21.41 2.17 1.29 0.86
PTF 61.35 39.72 2.91 1.91 1.16
TAM 15.50 15.50 2.07 1.71 1.43

Table 3.2: Optimal percentages of each component that make up each blend as well as the resulting
inventory amounts as determined by solving the LP in (3.1)�(3.9).

Day 1 Day 2 Day 3 Total
kR kR kR kR

Product revenue 43.23 45.05 41.70 129.98
Feedstock costs 37.06 37.63 34.83 109.52

Pro�t margin 6.16 7.42 6.87 20.46

Table 3.3: A summary of optimal economic values as determined by solving the LP in (3.1)�(3.9).

to investigate these intuitive approaches allow for a greater understanding of how the
blend amounts and component percentages e�ect the various constraints in the model.

3.2.1 The minimum inventory approach

For the minimum inventory approach (MIA) a solution is found by drawing the daily
inventory down to the minimum and by then creating as much of each blend as possible.
The objective function (3.1) is replaced so that the di�erence between the amount of
component j in inventory each day and the minimum allowable amount for component j
is minimized, i.e.

minimise IO
j +

∑
t

Rjt −
∑

i

∑
t

bitĉij − Imin
j for all j, (3.10)

subject to (3.2)− (3.9).

The results for this approach is shown in Tables 3.4 to 3.6.

A feasible solution obtaining a pro�t of R19 230 indicates that the MIA is an acceptable
approach. Although the total amount of product produced has increased when compared
to the exact solution, the increased production of the lower price blend and the decreased
production of the higher priced blend leads to a lower total pro�t.

18 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

Blend Day 1 Day 2 Day 3
m3 m3 m3

M3S 8.90 1.02 0.02
M5S 3.70 4.46 5.70

Table 3.4: The amounts of each blend to be produced as determined by solving the MIA for the SPP.
A total of 38 m3 product is produced.

Component M3S M5S Day 1 Day 2 Day 3
% % m3 m3 m3

BUT 2.03 4.99 Not inventoried
GP1 18.57 18.28 0.60 0.62 0.60
GP4 14.74 21.17 1.07 0.86 0.86
PTF 49.17 40.06 1.16 1.16 1.16
TAM 15.50 15.50 1.36 1.43 1.46

Table 3.5: The percentages of each component that make up each blend as well as the resulting inventory
amounts as determined by solving the MIA for the SSP.

Day 1 Day 2 Day 3 Total
kR kR kR kR

Product revenue 67.38 29.70 31.09 128.17
Feedstock costs 58.04 24.98 25.93 108.95

Pro�t margin 9.34 4.73 5.17 19.23

Table 3.6: A summary of optimal economic values as obtained by the MIA for the SSP.

3.2.2 The minimum closing inventory approach

For the minimum closing inventory approach (MCIA) a solution is found by drawing the
closing inventory down to the minimum and by then creating as much of each blend
as possible. Suppose T denotes the last day of the production horizon. The objective
function (3.1) is replaced so that the amount of component j in inventory on day T is
minimized, i.e. to

minimise
∑

j

(
IO
j +

T∑
t=1

Rjt −
∑

i

T∑
t=1

bitĉij

)
(3.11)

subject to (3.2)− (3.9).

The results for this approach is shown in Tables 3.7 to 3.9

A feasible �nal cost solution of R19 940 indicates that the MCIA is an acceptable approach.
Althought the total amount of product produced has remained constant when compared
to the exact solution, the increased production of the lower price blend and the decreased
production of the higher priced blend leads to a lower total pro�t.

3.2. LP APPROACHES FOR THE SSP 19

Blend Day 1 Day 2 Day 3
m3 m3 m3

M3S 0.00 2.26 5.42
M5S 9.70 0.00 6.60

Table 3.7: The amounts of each blend to be produced as determined by solving the MCIA for the SSP.
A total of 24 m3 product is produced.

Component M3S M5S Day 1 Day 2 Day 3
% % m3 m3 m3

BUT 5.56 3.76 Not inventoried
GP1 6.73 23.71 0.63 1.50 0.60
GP4 9.52 22.52 0.98 1.65 0.86
PTF 62.71 34.51 3.67 4.54 1.16
TAM 15.50 15.50 1.81 2.38 1.43

Table 3.8: The percentages of each component that make up each blend as well as the resulting inventory
amounts as determined by solving the MCIA for the SSP.

Day 1 Day 2 Day 3 Total
kR kR kR kR

Product revenue 52.93 11.99 64.54 129.46
Feedstock costs 44.02 10.52 54.99 109.52

Pro�t margin 8.91 1.47 9.55 19.94

Table 3.9: A summary of the economic values as obtained by the MCIA for the SSP.

3.2.3 The average octane approach

For the average octane approach (AOA) a solution is found by forcing the total amount of
octane in each blend to equal the average amount of octane present in all of the components
(excluding butane). This approach gives further insight into the amounts of each blend
that should be produced each day. Constraint (3.2) is altered for this approach, i.e.

maximise (3.1)

subject to
∑

j

Oj ĉij =
93b1t + 95b2t

2
for all i, t, (3.12)

(3.3)− (3.9).

The results for this approach are shown in Tables 3.10 to 3.12.

A feasible �nal cost solution of R15 150 indicates that the AOA is a poor solution approach.
Although production is focussed on the blend that returns the highest revenue, constraint
(3.12) limits the total production amount causing a relatively low �nal pro�t solution.

20 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

Blend Day 1 Day 2 Day 3
m3 m3 m3

M3S 0.00 0.00 0.00
M5S 5.18 5.18 5.18

Table 3.10: The amounts of each blend to be produced as determined by solving the AOA for the SSP.
A total of 15.5 m3 product is produced.

Component M3S M5S Day 1 Day 2 Day 3
% % m3 m3 m3

BUT 6.42 2.37 Not inventoried
GP1 0.01 28.16 1.47 1.04 0.60
GP4 0.01 28.30 1.70 1.12 0.86
PTF 93.39 41.16 4.89 5.05 5.20
TAM 0.17 0.01 3.32 4.24 5.15

Table 3.11: The percentages of each component that make up each blend as well as the resulting
inventory amounts as determined by solving the AOA for the SSP.

Day 1 Day 2 Day 3 Total
kR kR kR kR

Product revenue 28.23 28.23 28.23 84.70
Feedstock costs 23.18 23.18 23.18 69.55

Pro�t margin 5.05 5.05 5.05 15.15

Table 3.12: A summary of the economic values as obtained by the AOA for the SSP.

3.2.4 The maximized blend approach

In the SSP, the M5S blend sells at almost the same price as the M3S blend but it makes less
volume due to its tighter octane constraint. For the maximized blend approach (MBA)
the solution is the outcome of maximizing the production of M3S as opposed to M5S.
Suppose b1t denotes the amount of M3S that is produced on day t. Objective function
(3.1) is replaced to maximise the production of this blend. The objective is then to

maximise
∑

t

Cb
1b1t (3.13)

subject to (3.2)− (3.9).

The results for this approach are shown in Tables 3.13 to 3.15.

A feasible �nal cost solution of R17 140 indicates that the MBA is a fair, but not ideal
approach. Although production is focussed on the blend that returns the highest revenue,
the constraints on the recipe for this blend do not allow for the maximum use of the
components in inventory. Greater economic gain may be achieved by the production of
the second blend also as allowed by the reserve components in inventory.

3.2. LP APPROACHES FOR THE SSP 21

Blend Day 1 Day 2 Day 3
m3 m3 m3

M3S 9.80 7.49 6.53
M5S 0.00 0.00 0.00

Table 3.13: The amounts of each blend to be produced as determined by solving the MBA for the SSP.
A total of 23.8 m3 product is produced.

Component M3S M5S Day 1 Day 2 Day 3
% % m3 m3 m3

BUT 3.74 3.36 Not inventoried
GP1 18.40 17.43 1.13 0.78 0.60
GP4 18.49 39.06 1.36 0.86 0.86
PTF 43.87 24.65 2.74 1.74 1.16
TAM 15.50 15.50 1.81 1.56 1.46

Table 3.14: The percentages of each component that make up each blend as well as the resulting
inventory amounts as determined by solving the MBA for the SSP.

Day 1 Day 2 Day 3 Total
kR kR kR kR

Product revenue 51.76 39.71 34.60 126.08
Feedstock costs 44.73 34.31 29.90 108.93

Pro�t margin 7.04 5.40 4.71 17.14

Table 3.15: A summary of the economic values as obtained by the MBA for the SSP.

3.2.5 The di�erential inventory approach

For the di�erential inventory approach (DIA) a solution is obtained by taking the di�er-
ence between opening and closing inventory as input amounts into each blend. Suppose
T denotes the last day of the production horizon.

The heuristic may be formulated by adding constraint 3.14. The formulation is then to

minimise (3.1)

subject to (3.2)− (3.9),

T∑
d=1

∑
ibitĉij =

T∑
t=1

Rjt −
T∑

t=1

∑
i

bitĉij for all j. (3.14)

The results for this approach are shown in Tables 3.16 to 3.18.

A feasible �nal cost solution of R14 660 indicates that the DIA yields rather poor result,
but it provides valuable information on the e�ect that inventory manipulations have on
the objective function. This information may be combined with the results for �3.2.2 to
determine a good inventory strategy.

22 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

Blend Day 1 Day 2 Day 3
m3 m3 m3

M3S 0.00 0.00 10.80
M5S 0.30 7.56 1.30

Table 3.16: The amounts of each blend to be produced as determined by solving the DIA for the SSP.
A total of 20.0 m3 product is produced.

Component M3S M5S Day 1 Day 2 Day 3
% % m3 m3 m3

BUT 4.81 0.00 Not inventoried
GP1 11.60 3.11 2.92 3.71 3.44
GP4 6.33 40.37 3.02 0.86 0.86
PTF 61.75 41.02 6.88 6.07 1.16
TAM 15.50 15.50 3.27 3.01 2.05

Table 3.17: The percentages of each component that make up each blend as well as the resulting
inventory amounts as determined by solving the DIA for the SSP.

Day 1 Day 2 Day 3 Total
kR kR kR kR

Product revenue 1.87 41.20 64.25 107.33
Feedstock costs 1.59 34.88 56.21 92.67

Pro�t margin 0.29 6.32 8.05 14.66

Table 3.18: A summary of the economic values as determined by the DIA for the SSP.

From the results for the various approaches applied to the SSP, it may be concluded
that heuristics that alter solutions by focussing on the inventory speci�cations deliver the
better solutions.

3.3 An exact solution approach for the HPP

Let Cp
i be the selling price per m

3 of product i and let Cc
j be as de�ned in �3.1. Also, let Pi

be the amount of product i that is produced, let cij be the amount (in m3) of component
j required to form product i and let c̄jk donate the amount of component j to go into the
pooling mix k so that c̃ik is the amount of pooling mix k required to produce product i.
Furthermore, let Sj be the sulfur content of component j, let S̃k be the sulfur content of
the pooled component mix k and let Smax

i be the maximum allowable sulfur content of
product i. Lastly, let Pmax

i be the maximum amount of product i that may be produced.
Similar to the SSP, let ĉij represent the fraction of product i that consists of component j.

With cost optimization as goal, a total of I products and a total of J components the
HPP is stated as �nding a product solution vector of size I and a (J × I) component

3.4. HEURISTIC SOLUTION FOR THE HPP 23

solution matrix such that IJ + I nonnegativity constraints, 3I inequality constraints and
I equality constraints, totalling IJ + 5I constraints, will be satis�ed.

The objective of the LP is to

maximise
∑

i

Cp
i Pi −

∑
j

Cc
j

(∑
i

cij +
∑

k

c̄jk

)
, (3.15)

subject to
∑

j

∑
k

c̄jk =
∑

i

∑
k

c̃ik (pooling balance), (3.16)∑
j

Sjcij +
∑

k

S̃kc̃ik ≤ Smax
i for all i, (sulfur limit), (3.17)∑

k

c̃ik +
∑

j

cij ≥ Pi for all i, (balance limit), (3.18)

Pi ≤ Pmax
i for all i, (product limit), (3.19)

cij ≥ 0 for all i, j, (3.20)

Pi ≥ 0 for all i. (3.21)

Before the model can be solved for the problem described in �2.2, correct estimation for
the values of S̃k must be done. Haverly [44] suggests a recursive method that achieves the
solution as described in Tables 3.19 to 3.21. The optimal solution to the Haverly pooling
problem delivers an objective function value of R400.00.

Product Amount(m3)

ProdX 0.00
ProdY 200.00

Table 3.19: Optimal production amounts as deter-
mined in Haverly [44].

Component Pool1 (%)

CompA 0
CompB 100

Table 3.20: Optimal pool composition percentages
as determined in Haverly [44].

Component ProdX(%) ProdY(%)

Pool1 0 50
CompC 0 50

Table 3.21: Optimal product composition percentages as determined in Haverly [44].

3.4 Heuristic solution for the HPP

Haverly [44] suggests a recursive heuristic for the determination of the sulfur content of
the pooled mix. The heuristic takes any estimation of S̃k as a parameter to the model

24 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

described in �3.3. After solving the model, it tests whether the assumed value is correct
based on the amount of each component chosen for the pool. If it is not correct, the value
is revised and the model is resolved and tested. This recursive heuristic continues until
the estimate is close to that calculated from the mixture of the components chosen.

For example, assume Pool1 consist of 50% compA and 50% compB. The assumed S̃1 will
be 1

2
(3 + 1) = 2. The solution is described by Tables 3.22 to 3.23 and it has an objective

function value of R300.00.

Product Amount(m3)

ProdX 100.00
ProdY 0.00

Table 3.22: Optimal production amounts deter-
mined when S̃1 = 2.

Component Pool1 (%)

CompA 100
CompB 0

Table 3.23: Optimal pool composition percentages
determined when S̃1 = 2.

Component ProdX(%) ProdY(%)

Pool1 100 0
CompC 0 0

Table 3.24: Optimal product composition percentages determined when S̃1 = 2.

This solution is now used to test the estimated value of S̃1. It is found that S̃1 = (3(100)+
1(0))/100 = 3 which is in fact not equal to the value of 2 as estimated. The estimation is
o� and it must be revised. Suppose the estimation is now set so that S̃1 = 3. Tables 3.25
to 3.26 describe the solution obtained, It has an objective function value of R100.00.

If this solution is now used to test the estimated value of S̃1, it is found that S̃1 =
(3(50) + 1(0))/50 = 3 which is equal to the estimated value. Therefore, the solution has
converged and an optimal solution has been found. The pooling problem is non-linear by
nature and there are be a number of local optima of which the optima obtained from the
heuristic is only one.

Product Amount(m3)

ProdX 100.00
ProdY 0.00

Table 3.25: Optimal production amounts deter-
mined when S̃1 = 3.

Component Pool1 (%)

CompA 100
CompB 0

Table 3.26: Optimal pool composition percentages
determined when S̃1 = 3.

3.5 An exact solution approach for the MMRP

Let Cp
i be the selling price per barrel of product i, let Cc′

k be the cost price per barrel of
crude k and let Co

m be the operating cost per unit crude associated with process m. Let

3.5. AN EXACT SOLUTION APPROACH FOR THE MMRP 25

Component ProdX(%) ProdY(%)

Pool1 50 0
CompC 50 0

Table 3.27: Optimal product composition percentages determined when S̃1 = 3.

Pi be the number of barrels of product i that is produced and let Kk be the number of
barrels of crude k that is bought as raw material. Also let K

′

km be the number of barrels
of crude k that passes through process m.

Let c
′

jkm be the amount per barrel of component j from crude k obtained after the crude
has passed through process m and let cji be the amount per barrel of component j required
to form the �nal product i. Similar to the SSP and HPP, let ĉij represent the fraction of
product i that consists of component j. Let Aji be a test variable so that

Aji =

{
1, if component j is obtained from process i,
0, otherwise.

Furthermore, let dj be the amount in barrels of domestic product required to form the
�nal product. Let the upperbounds on the number of barrels of crude that is present in
process m and the number of barrels of crude k that may be purchased be U

′
m and Uk,

respectively.

Let Oj and Vj be the octane rating and vapour pressure of component j, respectively
and let Omin

i and V max
i be the minimum allowable octane rating and maximum allowable

vapour pressure of product i, respectively. Let ρjk be the density and Sjk the sulfur
content of component j obtained from crude k, with ρmax

i the maximum allowable density
and Smax

i the maximum allowable sulfur content of product i.

The objective of the model is to

maximise
∑

i

Cp
i Pi −

∑
k

Cc′

k Kk −
∑
m

Cm
o

(∑
k

K
′

km

)
, (3.22)

subject to Kk ≤ Uk for all k, (purchase limit), (3.23)∑
m

K
′

km ≤ Kk for all k, (crude balance), (3.24)∑
k

K
′

km ≤ U
′

m for all m, (process limit), (3.25)∑
j

Ojcji ≥ Omin
i for all i, (octane limit), (3.26)∑

j

Vjcji ≤ V max
i for all i, (pressure limit), (3.27)

26 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

0
∑

j

ρj ĉji ≤ ρmax
i for all i, (density limit), (3.28)∑

j

Sjcji ≤ Smax
i for all i, (sulfur limit), (3.29)∑

k

K
′

km ≤ U
′

m for all m, (capacity), (3.30)[∑
k

∑
m

(
c
′

jkm ·K
′

km

)
+ dj

]
· Aji ≥ cji for all i, j, (3.31)∑

j

cji = Pi for all i, (3.32)

cij ≥ 0 for all i, j. (3.33)

Thus the MMRP has a total of I products, a total of J components, a total of K crudes
and a total of M processes. The goal is to determine the optimal economic revenue by
�nding a product solution vector of size M and a (J × I) component solution matrix
such that IJ nonnegativity constraints, 2K +2M +4I + IJ inequality constraints and M
equality constraints, totalling 2K + 3M + 4I + 2IJ constraints, will be satis�ed.

The LP solution is given in Tables 3.28 and 3.29. The optimal mini-re�nery problem has
an objective function value of $4 135.50.

Barrels
Product produced

Fuel gas 1.00
Regular petrol 8.00
Premium petrol 7.00
Distillate 2.00
Fuel oil 2.00

Table 3.28: An optimal number of barrels that should be produced according to the LP in (3.22) �
(3.33). A total of 20 barrels of product is produced.

3.6 LP approaches for the MMRP

As for the SSP, several LP formulations to investigate the heuristic approaches developed
by intuition are applied to the MMRP.

3.6. LP APPROACHES FOR THE MMRP 27

Fuel Regular Premium Fuel
Component Gas petrol petrol Distillate Oil

% % % % %

but 0.0 13.0 14.0 0.0 0.0
fuel-gas 100.0 0.0 0.0 0.0 0.0
sr-gas 0.0 46.0 46.0 0.0 0.0
sr-naphta 0.0 2.0 0.0 1.0 0.0
rf-gas 0.0 36.0 40.0 0.0 0.0
sr-dist 0.0 0.0 0.0 68.0 0.0
cc-gas 0.0 3.0 0.0 0.0 0.0
cc-gas-oil 0.0 0.0 0.0 7.0 7.0
sr-gas-oil 0.0 0.0 0.0 15.0 70.0
sr-res 0.0 0.0 0.0 0.0 0.0
hydro-res 0.0 0.0 0.0 0.0 23.0

Table 3.29: Optimal percentages of each component that make up each product according to the LP in
(3.22) � (3.33).

3.6.1 The minimum closing inventory approach

For the minimum closing inventory approach (MCIA) a solution is obtained by drawing
the closing inventory down to the minimum by creating as much of each blend as possible.
The objective function (3.22) is replaced so that the total amount of each product is
maximized. The objective is then to

maximise
∑

i

Pi (3.34)

subject to (3.23)− (3.33).

The results for this approach are shown in Tables 3.30 and 3.31.

Barrels
Product produced

Fuel gas 1.00
Regular petrol 7.00
Premium petrol 6.00
Distillate 2.00
Fuel oil 4.00

Table 3.30: The number of barrels of product to be produced when using the MCIA to solve the MMRP.
A total of 20 barrels of product is produced.

A feasible solution obtaining a pro�t of R3 926.78 indicates that the MCIA is an acceptable
approach. The decrease in the objective function value from the value obtained by the
exact solution is due to the lower production of the products with the highest selling price.

28 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

Fuel Regular Premium Fuel
Component Gas petrol petrol Distillate Oil

% % % % %

but 0.0 15.0 17.0 0.0 0.0
fuel-gas 100.0 0.0 0.0 0.0 0.0
sr-gas 0.0 43.0 44.0 0.0 0.0
sr-naphta 0.0 0.0 0.0 0.0 0.0
rf-gas 0.0 33.0 39.0 0.0 0.0
sr-dist 0.0 0.0 0.0 33.0 0.0
cc-gas 0.0 9.0 0.0 0.0 0.0
cc-gas-oil 0.0 0.0 0.0 36.0 18.0
sr-gas-oil 0.0 0.0 0.0 32.0 16.0
sr-res 0.0 0.0 0.0 0.0 0.0
hydro-res 0.0 0.0 0.0 0.0 66.0

Table 3.31: The percentages of each component that make up each product as determined by the MCIA
for the MMRP.

3.6.2 The maximum input approach

For the maximum input approach (MIPA) a solution is determined by maximizing the
amount of crude that is purchased and by sending the maximum allowable amount of
crude through the production system. To determine the best possible outcome for this
heuristic, the objective function (3.22) should be replaced so that the total amount of
crude through the system is maximized, i.e. to

maximise
∑

k

Kk (3.35)

subject to (3.23)− (3.33).

The results for this approach is shown in Tables 3.32 and 3.33.

Product Barrels
produced

Fuel gas 2.00
Regular petrol 6.00
Premium petrol 5.00
Distillate 2.00
Fuel oil 5.00

Table 3.32: The number of barrels of each product to be produced when using the MIPA to solve the
MMRP. A total of 20 barrels of product is produced.

A feasible solution obtaining a pro�t of R3 612.81 indicates that the MIPA is an acceptable
approach. Again the decrease in the objective function value from the value obtained by
the exact solution is due to the lower production of the products with the highest selling
price.

3.6. LP APPROACHES FOR THE MMRP 29

Fuel Regular Premium Fuel
Component Gas petrol petrol Distillate Oil

% % % % %

but 0.0 16.0 20.0 0.0 0.0
fuel-gas 100.0 0.0 0.0 0.0 0.0
sr-gas 0.0 39.0 27.0 0.0 0.0
sr-naphta 0.0 0.0 0.0 15.0 0.0
rf-gas 0.0 33.0 40.0 0.0 0.0
sr-dist 0.0 0.0 0.0 0.0 0.0
cc-gas 0.0 11.0 13.0 0.0 0.0
cc-gas-oil 0.0 0.0 0.0 40.0 16.0
sr-gas-oil 0.0 0.0 0.0 44.0 26.0
sr-res 0.0 0.0 0.0 0.0 0.0
hydro-res 0.0 0.0 0.0 0.0 58.0

Table 3.33: The percentages of each component that make up each product as determined by the MIPA
for the MMRP.

3.6.3 The average octane approach

For the average octane approach (AOA) a solution is obtained by forcing the total octane
rating in each product to equal the average octane rating of all of the components (ex-
cluding butane). This approach gives insight into the sensitivity of recipes with regards
to the quality constraints. To test the e�ect of alterations to the products' octane ratings,
constraint (3.26) is altered to constraint (3.36). The LP then has the objective to

maximise (3.22)

subject to (3.23)�(3.18)∑
j

Oj =

∑
i O

∗
i Pi

I
(3.36)

(3.27)�(3.33).

The results for this approach are shown in Tables 3.34 to 3.35.

Product Barrels
produced

Fuel gas 1.00
Regular petrol 4.00
Premium petrol 0.00
Distillate 7.00
Fuel oil 4.00

Table 3.34: The number of barrels of each product to be produced when using the AOA to solve the
MMRP. A total of 16 barrels of product is produced.

30 CHAPTER 3. A LINEAR PROGRAMMING APPROACH

Fuel Regular Premium Fuel
Component Gas petrol petrol Distillate Oil

% % % % %

but 0.0 22.0 0.0 0.0 0.0
fuel-gas 100.0 0.0 0.0 0.0 0.0
sr-gas 0.0 7.0 0.0 0.0 0.0
sr-naphta 0.0 71.0 0.0 47.0 0.0
rf-gas 0.0 0.0 0.0 0.0 0.0
sr-dist 0.0 0.0 0.0 19.0 0.0
cc-gas 0.0 0.0 0.0 0.0 0.0
cc-gas-oil 0.0 0.0 0.0 10.0 15.0
sr-gas-oil 0.0 0.0 0.0 24.0 33.0
sr-res 0.0 0.0 0.0 0.0 0.0
hydro-res 0.0 0.0 0.0 0.0 52.0

Table 3.35: The percentages of each component that make up each product as determined by the AOA
for the MMRP.

A feasible solution obtaining a pro�t of $2 662.70 indicates that the AOA yields rather
poor results. The reason for the poor �nal cost solution is attributed to the nature of
this heuristic that speci�cally limits the production of the products that have the highest
selling price.

3.7 Conclusion

Nilson [73] �nds that in order to carry out a search by means of a computer program, the
search strategy must be de�ned and the folowing elements of the problem is required:

• A de�ned problem, often requiring intelligent or complex behaviour to solve.

• A model of the problem and the representation of possible solutions.

• A goal state that de�nes the ideal solution, where heuristic methods often use an
evaluation function to rank the non-goal state solutions.

• Transformation operators that are capable of changing an existing solution into an
alternative solution.

• A strategy for searching the space of possible solutions using the representation and
transformation operators.

All three the problems at hand meet these requirements. Hence various metaheuristic
solution techniques may be explored in an attempt to solve them. The development of
e�ective and e�cient metaheuristics for the problems and the measuring of their perfor-
mance against the known optimal as determined by an LP can give an indication of the
quality of metaheuristic solution approaches.

Chapter 4
Data structure

A standard data structure for each problem is presented to facilitate fair comparisons of
the performance of various metaheuristics, The generation of solution sets, populations
and neighbourhoods is bound to this set structure.

Dealing with constraints is one of the most critical points in creating the data structure.
One approach is to design a procedure such that only feasible solutions, that is, only solu-
tions satisfying all the constraints will be accepted. This is obtained either by introducing
a routine which solves the set of equations and inequalities that de�ne the constraints
and inputting them to the metaheuristic system. Another approach is to create random
individuals and to then either reject the infeasible ones or to penalise them using penalty
functions. For the �rst approach, it may be di�cult or even impossible to �nd the solution
set for the constraints, especially when dealing with nonlinear equations and inequalities.
Hence for all three problems, the penalty function approach is implemented.

4.1 Penalty Functions

Coello [24] shows that the most popular approach to constrained optimisation is by means
of penalty functions. Three types of penalty functions exist: barrier methods in which no
infeasible solution is considered, partial penalty functions in which a penalty is applied near
the feasibility boundary, and global penalty functions which are applied throughout the
infeasible region [88]. In combinatorial optimisation, the Lagrangian relaxation method is
a variation on the same theme: Temporarily relax the problem's most di�cult constraints,
using a modi�ed objective function to avoid straying too far from the feasible region [82].

For both problems at hand, the objective function values makes use of a penalty system as
suggested by Kuri-Morales and Gutiérrez-García [62] so that infeasible solutions are pe-
nalised with an extremely poor �tness value. This ensures that infeasible solutions would
be considered to be prematurely dead and that their continuation into later generations

31

32 CHAPTER 4. DATA STRUCTURE

is eliminated. If g is an infeasible solution then the penalty function is de�ned as

p(g) =

[
κ−

s∑
i=1

κ

pi

]
, s 6= p,

0, otherwise

(4.1)

where κ is a large negative constant [O(106)], p is the number of constraints and s is
the number of these which have been satis�ed. The only restriction on κ is that it
should be large enough to insure that any non-feasible individual is graded much more
poorly than any feasible one. Here the penalty function supplies information as to how
many constraints have been satis�ed but is not otherwise a�ected by the strategy. The
penalty is not subtracted from the objective function f(g) but, rather, it replaces f(g),
i.e. f(g) = p(g) when any of the constraints is not met.

4.2 Data structure for the SSP

For the SSP, the desired output is both the blend recipe as well as the amount of each
blend to be produced for each day of the production horizon. Using the notation of �2.1,
the solution may be constructed as an [(I +J)×D] solution matrix as shown in Figure 4.1
so that the [I × D] submatrix contains the daily production amounts and the [J × D]
submatrix contains the blend recipes. Should the length of the production horizon be
greater than the number of blends to be made, place holders are placed into the recipe
matrix so that the set dimensions are maintained.

b11 b12 b13 b14 . . . b1d

b21 b22 b23 b24 . . . b2d
...

...
...

...
...

bi1 bi2 bi3 bi4 . . . bid

ĉ11 ĉ12 . . . ĉ1i 0 . . . 0
ĉ21 ĉ22 . . . ĉ2i 0 . . . 0
...

...
...

...
...

ĉj1 ĉj2 . . . ĉji 0 . . . 0

Figure 4.1: The data structure for the SSP.

Due to the various restrictions described in �2.1, the values of the production matrix will
depend on the values of the recipe matrix and the recipe matrix is the only one free to
be �lled with values generated at random. Therefore the fraction of component j used to
form each blend is a real number chosen by means of a random number generator. The
percentage of each blend which consists of component j has well de�ned upper and lower

4.3. DATA STRUCTURE FOR THE HPP 33

bounds of 0 and 100 respectively (it is impossible for a blend to consist of less than 0%
or more than 100% of any component).

The ideal is to maximise the amounts of each blend to be produced each day as this max-
imises revenue. These maximum amounts are determined by taking into consideration
the amount of each component in the opening inventory and the amount of component
available through run down values in conjunction with the product fractions. These deter-
mined maximum values are used to �ll the product amount matrix. Using the relationship
between the amount of blend produced and the amount of components in inventory to
maximise the choice of production amounts signi�cantly increases the probability that
feasible solutions will be generated.

Metaheuristics require an evaluation, objective or �tness function to determine the quality
of a solution. The objective function value is typically a single scalar that allows selec-
tion methods to distinguish between various levels of individual quality. Multiobjective
methods often use a vector to represent �tness.

Rosca and Ballard [84] show that ideally, the data structure and objective function should
have the property of strong causality where small changes in the solution cause small
changes in the objective function value. They have found, however, that weak causality,
the opposite of strong causality, is more common in certain metaheuristics such as genetic
programming.

Figure 4.2 contains an example of a feasible solution generated as described. It has an
objective function value of R7 929.

[
0.859 0.049 1.051
3.762 0.599 2.296

]

1.308 0.107 0
20.080 34.379 0
55.023 26.678 0
19.823 24.560 0
3.766 14.276 0

Figure 4.2: An example of a data structure representing a feasible solution for the SSP.

4.3 Data structure for the HPP

For the HPP, the desired output is the product and pooling recipes as well as the resultant
amount of each product that can be made using these recipes. Using the notation of �3.3,
the solution may be constructed as a [(1+J +J ′+K)×I] solution matrix (if K < I and J ′

is the amount of components that will not form part of a blend) as shown in Figure 4.3 so
that the [1×J] vector contains the production amounts, the [J ×K] submatrix constains

34 CHAPTER 4. DATA STRUCTURE

the pool recipes and the [(K+J ′)×I] submatrix contains the product recipes. If K < I, the
pool recipes sub-matrix is bu�ered with zero-valued place holders so that the dimensions of
the solution matrix is maintained. If K > I, the product amounts and recipes submatrices
are bu�ered in the same manner.

[
P1 P2 P3 Pi

]

c̄11 c̄12 . . . c̄1k 0 . . . 0
c̄21 c̄22 . . . c̄2k 0 . . . 0
...

...
...

...
...

c̄j1 c̄j2 . . . c̄jk 0 . . . 0

c̃11 c̃12 c̃1i

c̃21 c̃22 c̃2i
...

...
...

c̃k1 c̃k2 c̃ki

ĉ11 ĉ12 ĉ1i

ĉ21 ĉ22 ĉ2i
...

...
...

ĉj′1 ĉj′2 ĉj′i

Figure 4.3: The data structure for the HHP (k < i).

The values of the product amounts vector will depend on the speci�cations of the recipe
matrices, and in turn the values of the components in the pooling recipes matrix will
depend on the values of the product recipes matrix. These matrices may be �lled by
using a random generation of the fraction amounts of the pool and product composition.
The fraction of component j used to form each product or each pool is a real number
chosen with the use of a random number generator. The fraction of each product which
consists of component j or pool k has well de�ned upper and lower bounds of 0 and 100
respectively (once again it is impossible for a product or pool to consist of less than 0%
or more than 100% of any component). The ideal is to maximise the amounts of each
blend to be produced each day as this maximises revenue. These maximum amounts
are determined by taking into consideration the upper limit on the amount of product
that may be produced each day and the amount of each component needed to form the
product. These determined values �ll the product amount matrix. Using the relationship
between the amount of product made and the chosen product recipes to maximise the
choice of production amounts signi�cantly increases the probability that feasible solutions
will be generated.

4.4. DATA STRUCTURE FOR THE MMRP 35

4.4 Data structure for the MMRP

For the MMRP, the desired output is the product recipes, the amount of raw material to
be purchased as well as the resulting amount of each product that can be produced given
the amount of raw material purchased. Using the notation of �3.5, the solution may be
constructed as a [(J + 1 + 1) × i] solution matrix as shown in Figure 4.4. The [J × I]
submatrix contains the product recipes, the �rst [1 × I] vector contains the production
amounts and the second [1×I] vector contains the purchase amount for each raw product.
Should the desired amount of products be greater than the amount of raw materials, zero-
valued place holders are stored in the purchase amount vector so that the dimensions are
maintained.

ĉ11 ĉ12 ĉ13 ĉ14 . . . ĉ1i

ĉ21 ĉ22 ĉ23 ĉ24 . . . ĉ2i
...

...
...

...
...

ĉj1 ĉj2 ĉj3 ĉj4 . . . ĉji

[

P1 P2 P3 P4 . . . Pi

]
[

K1 . . . Kk 0 . . . 0
]

Figure 4.4: The data structure for the MMRP.

Similar to the data structure for the SSP, the values of the production matrix will depend
on the values of the recipe and purchase matrices so that the recipe matrix is the only
one free to populate by means of random numbers. Therefore the fraction of component
j used to form each product is a real number chosen with the use of a random number
generator. Once again the fraction of each blend which consists of component j has well
de�ned upper and lower bounds of 0 and 100 respectively.

Again the ideal is to maximise the amounts of each blend to be produced each day as this
maximises revenue. These maximum amounts are determined by taking into consideration
the amount of raw material purchased and the amount of component that can be obtained
through the various processes subject to the constraints described in �2.3. The values
determined in this way are used in the product matrix.

If we use the relationship between the amount of product made and the amount of raw
material purchased to maximise the choice of production amounts signi�cantly increases
the chances that feasible solutions will be generated. An example of a feasible solution
generated as described above is shown in Figure 4.5. It has an objective function value of
R151 800.

36 CHAPTER 4. DATA STRUCTURE

0.00 31.09 7.73 0.00 0.00
1.00 0.00 0.00 0.00 0.00
0.00 16.96 8.56 0.00 0.00
0.00 4.66 10.74 0.56 0.00
0.00 46.99 57.72 0.00 0.00
0.00 0.00 0.00 16.20 0.00
0.00 0.29 15.24 0.00 0.00
0.00 0.00 0.00 46.33 50.69
0.00 0.00 0.00 36.91 29.89
0.00 0.00 0.00 0.00 4.65
0.00 0.00 0.00 0.00 14.77

[

0.00 7.00 13.00 1.00 1.00
]

[
28.00 0.00 0 0 0

]

Figure 4.5: An example of a data structure representing a feasible solution for the MMRP.

Chapter 5
Random search techniques

Random search is a simple, but very popular search technique which centers a symmet-
ric probability density function such as the normal distribution about the current best
location. The standard N(0, 1) distribution is a popular choice, although the uniform
distribution U[-1, 1] is also common [55].

5.1 Overview

Random search techniques (RSTs) were �rst proposed by Anderson [4] and later by Ras-
trigin [81] and Karnopp [55]. The development of RSTs for linear programming models
begins in 1992 when Kalai [53] explores the use of random pivot rules. Motwani and
Raghavan [70] solve LP-models on random subsets of constraints, recursively. The search
technique of Dunagan and Vempala [30] makes use of randomly generated solutions which
are tested for feasibility. If the solution is not feasible, the search moves in a deterministic
(with relation to a random vector already selected) direction to achieve feasibility and
ultimately, optimality. For unconstrained NLP-models, Storn and Price [94] develop a
heuristic which selects random subsets of solution population vectors upon which addi-
tion, subtraction and component swapping is performed to obtain improvements in the
objective function value. Solis and Wetts [91] present two general convergence proofs for
random search algorithms.

A large class of optimisation problems can be handled e�ectively by means of RSTs. These
methods become attractive in some speci�c circumstances, for instance when the function
characteristics (such as gradients) are di�cult to compute, when there is only limited
computer memory available or when it is highly desirable to �nd the global optimum of
a function having many local optima. However, its use may also lead to certain problems
such as continuous loop executions when no local optimum for the function exists or
exhaustive, but inconclusive, examination when the optimum occurs at a point at which
the function is singularly discontinuous.

37

38 CHAPTER 5. RANDOM SEARCH TECHNIQUES

Unfortunately, RSTs do not have well de�ned stopping conditions. Solis and Wets [91]
examine several attempts to de�ne stopping criteria for RSTs but conclude that �. . . the
search for a good stopping criterion seems doomed to fail.� In practice, the method is
halted after a �xed number of iterations or when the step size becomes smaller than the
given threshold.

5.2 Blind random search

Blind random search (BRS) is the simplest random search method in that the choice of
candidate solution does not take into account any characteristics of previously considered
solutions. That is, this blind search approach does not adapt the current sampling strategy
to information that has been gathered in the search process. The approach may be
implemented in non-recursive form simply by laying down a number of points in the
search space and taking the value of the solution yielding the best objective function
value as an estimate of the optimum. The approach can also be implemented in recursive
form. Algorithm 1 gives a pseudocode listing of the BRS as presented by Spall [93]. Spall
[93] shows that this algorithm converges almost surely to a near optimum solution under
very general conditions and when the solution con�guration is low dimensional, but that
the method is generally a very slow algorithm for even moderately dimensioned solution
con�gurations.

5.3 Local random search

Methods of local search received attention in both theoretical computer science and nu-
merical optimisation. Johnson, Papadimitriou and Yannakakis [50] observe that one of the
few general approaches to di�cult combinatorial optimisation problems that has met with
empirical success is local (or neighbourhood) search. For example, local search methods
have proven very successful for the celebrated travelling salesperson problem [49].

The �eld of operations research is primarily interested in local random search (LRS) meth-
ods used for minimizing continuous functions on compact spaces. These methods make
use of derivative information like gradients and Hessians and can be distinguished by
the highest order derivatives that they use. Algorithms using derivate information of or-
der greater than zero are somewhat more powerful than those which only use function
evaluations (order zero derivatives). However, derivative information requires additional
calculations, and these algorithms do not always generate good solutions fast enough to
compensate for the additional expense [55].

Solis and Wets [91] propose several random local search methods for performing local
search on smooth functions without derivative information. Their so-called �Algorithm
1� uses normally distributed steps to generate new solutions in the search space. A
new solution is generated by adding zero mean normal variates to every dimension of

5.4. COMPUTATIONAL RESULTS 39

the current solution. A variate is a variable for which values occur corresponding to a
frequency distribution. A di�erent value for each dimension is chosen at random from
a normal distribution so that the new solution resembles the current one, but it does
not match it exactly. The algorithm then examines the solution generated by taking a
step in the opposite direction from the new direction. If neither solution is better than
the current solution, another new solution is generated. This algorithm depends upon
parameters that automatically reduce and increase the variance of the normal deviates
in response to the rate at which better solutions are found. If new solutions are better
more often, the variance is increased to allow the algorithm to take larger steps. If poorer
solutions are frequently generated, the variance is decreased to focus the search near the
current solution.

Parks [75] suggests that a vector of zero mean normal variates, d, be added to the current
solution and that it should be generated according to

di = di + D$ (5.1)

where $ is a vector of uniform random numbers in the range (−1, 1) and D is a diagonal
matrix which de�nes the maximum change allowed in each variable. After a successful
trial (i.e. after an accepted change in the solution) D is updated, such that

Di+1 = (1− α)Di + αωΥ, (5.2)

where Υ is a diagonal matrix. The elements of Υ consist of the magnitudes of the
successful changes made to each control variable, i.e.

Υii = ‖Dii$i‖ (5.3)

and the damping constant α controls the rate at which information from Υ is folded into
Di+1 with weighting ω. This tunes the maximum step size associated with each control
variable towards a value giving acceptable changes. Parks concludes that suitable values
of α and ω are 0.1 and 2.1, respectively.

Algorithm 2 gives a pseudocode listing of a local random search algorithm as presented
by Matyas [68].

5.4 Computational results

Throughout the thesis, computational results are obtained from code written in Python 2.5
[99] executed on an Intel Core2 Duo processor running at 3.00Ghz with 2GB of RAM.
Unless stated otherwise, all random numbers are generated according to Python's standard
random number generator using a uniform distribution.

Standard deviation results are given throughout to indicate the size of the variance be-
tween individual results which make up the average results. A low standard deviation

40 CHAPTER 5. RANDOM SEARCH TECHNIQUES

Algorithm 1: Blind random search

Input: An initial solution x0 chosen randomly or deterministically from the search
space S. Random initial solutions are obtained according to a probability distribution
function.

Output: An approximation of a global optimum solution.

1: Set k = 0 and calculate the objective function value f(xk).
2: Generate a new candidate solution x̂k+1 from the search space according to the

chosen probability distribution.
3: if f(x̂k+1) > f(xk) then
4: xk+1 = x̂k+1

5: else
6: xk+1 = xk

7: end if
8: k = k + 1
9: Go to step 2 and repeat the algorithm until the stopping criterion is reached.

Algorithm 2: Local random search

Input: An initial solution x0 chosen randomly or deterministically from the search
space S. Random initial solutions are obtained by using the normal distribution. Also
take as input a probability distribution for generating a vector d that has mean zero
and a variance for each component of the solution consistent with the magnitudes of
the each of the corresponding elements.

Output: An approximation of a global optimum solution.

1: Set k = 0 and calculate the objective function value f(xk).
2: Generate an independent random vector dk and add it to the current solution xk to

obtain a candidate solution x̂k+1.
3: If x̂k+1 is not in the search space, generate a new dk and repeat step 2 or,

alternatively, choose the nearest valid solution to x̂k+1.
4: if f(x̂k+1) > f(xk) then
5: xk+1 = x̂k+1

6: else
7: xk+1 = xk

8: end if
9: k = k + 1
10: Go to step 2 and repeat the algorithm until the stopping criterion is reached.

indicates that the data points tend to be very close to the same value (the mean), while
a high standard deviation indicates that the data are spread out over a large range of
values. Hence the smaller the standard deviation, the more predictably the algorithm will
perform.

Throughout, the number of execution runs when average results are obtained, is deter-

5.4. COMPUTATIONAL RESULTS 41

mined by means of the half-width con�dence interval outlined in Pegden et al. [77] with a
pilot number of 10 runs and desired con�dence level of 90%. The number of 10 is a rule of
thumb, but the t-distribution on which the half-width con�dence interval method is based
is useful for observations less than 30. The use of 10 runs compromises between execution
time and the requirements of statistical procedures. If the observations are not normally
distributed, the results for the con�dence interval hold for 10 replications or more [77].
For the RST approaches, a con�dence level of 90% is obtained by calculating the average
objective function values for the BRS after 9, 8 335 and 4 046 algorithm runs for the SSP,
HPP and MMRP, respectively. The same con�dence level is obtained by calculating the
average objective function values for the LRS after 102, 1 025 and 10 065 algorithm runs
for the SSP, HPP and MMRP, respectively.

For each of the three problems, the initial solution is generated as described in �4.2, �4.3
and �4.4, respectively.

5.4.1 The SSP

The results for the BRS algorithm and the LRS algorithm as applied to the SSP are shown
in Figure 5.1. Because the LRS algorithm is computationally less expensive (having only
to manipulate a currently feasible solution) than the BRS algorithm (continuously having
to �nd new feasible solutions from the search space), it is possible to have approximately
500 iterations of the LRS execute in the same time as only 100 iterations of the BRS. The
comparison of the respective performances of the two approaches are shown in Figure 5.1.
Despite the much quicker execution time of the LRS, the BRS is preferred because of the
better average result it achieves. Table 5.1 contains a summary of the results obtained
after application of the RS approaches for the SSP.

5.4.2 The HPP

The results for the BRS algorithm and the LRS algorithm as applied to the HPP of
Chapter 2 are shown in Figure 5.2. Figure 5.2 contains the average objective function
values obtained for each application of each RST. The results do not imply that one
technique is better than the other by a large margin, yet the BRS technique is preferred
due to the better average result it achieves as well as its shorter execution time. Table
5.1 contains a summary of the results obtained after application of the RS approaches for
the HPP.

5.4.3 The MMRP

The results for the BRS algorithm and the LRS algorithm as applied to the MMRP of
Chapter 2 are shown in Figure 5.3. The average objective function values obtained for
each algorithm for 10 execution runs are presented. Even though the LRS technique is

42 CHAPTER 5. RANDOM SEARCH TECHNIQUES

preferred for the MMRP when one looks at the execution time, on average it produces
a weaker solution than the BRS technique. This is because the speci�c combination of
constraints for the problem makes it easier to �nd a feasible solution by generating random
recipe matrices than to �nd a feasible solution by adjusting existing recipes. Table 5.1
contains a summary of the results obtained after application of the RS approaches for the
MMRP.

0 10 20 30 40 50 60 70 80 90 100

6

8

10

12

14

16

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

BRS
LRS

Figure 5.1: The average objective function values for BRS and LRS, respectively for the SSP.

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

BRS
LRS

Figure 5.2: The average objective function values obtained by means of BRS and LRS for the HPP.

5.4. COMPUTATIONAL RESULTS 43

0 10 20 30 40 50 60 70 80 90 100

250

300

350

400

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

BRS
LRS

Figure 5.3: The objective function values obtained by means of BRS and LRS for the MMRP.

SSP (kR) HPP (kR) MMRP (D$)

Result BRS LRS BRS LRS BRS LRS

Best �tness 15.01 17.26 364.33 310.78 413.50 383.65
Average �tness 13.95 13.11 294.98 283.57 379.48 338.85
Standard deviation 0.89 2.91 23.29 25.78 15.43 24.27

Average execution time (sec) 75.27 0.59 0.02 0.11 159.23 2.94

Table 5.1: Results summary for the random search techniques for the SSP, HPP and MMRP.

44 CHAPTER 5. RANDOM SEARCH TECHNIQUES

Chapter 6
Genetic algorithm approaches

A genetic algorithm (GA) is a search technique used in computing to �nd solutions to
a wide range of optimization problems. GAs are categorized as global search heuristics.
They are a particular class of evolutionary algorithms (also known as evolutionary compu-
tation) that use techniques inspired by evolutionary biology such as inheritance, mutation,
selection and recombination (also called crossover).

Toklu [95] formulates an aggregate-blending problem as a multi-objective optimization
problem and solves it by means of GAs. Toklu shows that all existing formulations of
an aggregate-blending problem can be covered and solved by using this technique. It is
shown to be quite versatile in tackling multiple objectives including cost minimisation and
approaching at best a given target curve.

6.1 Overview

Genetic programming became a popular search technique in the early 1990's due to the
work by Koza [59]. Angeline [5] traced the historical foundations of genetic programming
back to Friedberg [32] and Friedberg et al. [33], where iterative random changes made to
computer programs induced better programs. Learning machines were proposed earlier
by Turing [96], where an automated process similar to evolution in combination with
human interaction was thought to be a possible way for programs to acquire intelligent
behaviour. The form of genetic programming used today is most closely related to work
done by Cramer [26], where a tree representation of programs was used in conjunction with
subtree crossover to evolve a multiplication function. Other background and foundational
research of genetic programming and evolutionary algorithms may be found in Banzhaf
et al. [12], Fogel [34], Bäck et al. [8] and Koza [60]. More modern approaches to genetic
programming and evolutionary algorithms are described in Langdon and Poli [63], Bäck
et al. [9] and Koza et al. [61].

45

46 CHAPTER 6. GENETIC ALGORITHM APPROACHES

Genetic algorithms are inspired by Darwin's theory of evolution [28]. The algorithm is
started with a set of solutions (represented in analogy by chromosomes) called a popula-
tion. A chromosome is actually an object representing the characteristics of a candidate
solution to the problem at hand. At early times, these chromosomes were formed by bi-
nary numbers only, but later they are generalized so as to be formed by any other entities
such as arrays, lists, trees, mathematical operators, or any kind of number depending on
the type of problem.

Solutions from one population are taken and used to form a new population. This is
motivated by a hope that the new population will be better than the old one. Solutions
which are selected to form new solutions (o�spring) are selected according to their �tness �
the more suitable they are the more chances they have to reproduce. This is repeated until
some condition (for example number of generations or improvement of the best solution)
is satis�ed.

A pseudocode listing for the standard GA formulation is provided in Algorithm 3.

Algorithm 3: Standard Genetic Algorithm

Input: A combinatorial optimization problem speci�cation including a domain set for
each decision variable. An initial con�guration x1, a population size N , a probability
crossover pc, and a probability mutation pm. A genetic code formulation with a
function mapping code substrings to a decision variable values. An objective function
f(·) to determine individual �tness.

Output: A converged population of solutions containing an approximation of a globally
optimal solution to the combinatorial optimization problem.

1: Randomly generate an initial population of N solutions.
2: Calculate the �tness of each individual solution by means of the objective function.
3: Generate a new population using the crossover and mutation operators, applied with

probability pc and pm respectively. Individuals with higher �tness must have a
higher probability of reproducing.

4: Calculate the �tness of the new solutions.
5: Repeat steps 3 to 5 until a termination condition is reached.

In this thesis, a GA is applied to the blending problem with appropriate alterations made
to the classical application.

6.2 Genome structure

The solutions are treated as genomes consisting of various chromosomes because the solu-
tion structure for the three problems consist of multiple submatrices. In classical genetics,
the genome of an organism refers to a full set of chromosomes or genes in an organism.
Each chromosome is formed by genes. For example, gene (i, d) in the �rst chromosome

6.3. FITNESS DETERMINATION 47

of the SSP solution structure represents the amount of blend i that is manufactured on
day d and gene (j, i) on the second chromosome represents the proportion or fraction of
component j used to form the blend i. This analogy is illustrated in Figure 6.1 for a
solution structure for the SSP. The solution structure for the HPP and MMRP is handled
similarly.

genome

gene11 gene12 gene13 . . . gene1d

gene21 gene22 gene23 . . . gene2d
...

...
...

...
genei1 genei2 genei3 . . . geneid

 chromosome

gene11 gene12 . . . gene1i 0 . . . 0
gene21 gene22 . . . gene2i 0 . . . 0

...
...

...
...

...
genej1 genej2 . . . geneji 0 . . . 0

 chromosome

Figure 6.1: The genome analogy for the solution structure for the SSP.

6.3 Fitness determination

To compare and evaluate the �tness values of chromosomes, a proper measure has to be
de�ned. For the blending problem, the objective is to maximise the economic pro�t by
maximising the product revenue while minimising the costs.

Two common �tness assignment methods in genetic algorithms is proportional �tness
assignment and rank-base �tness assignment. During proportional �tness assignment the
�tness assigned to each individual depends on the actual objective value. In rank-based
�tness assignment, however, the population is sorted according to the objective values.
The �tness assigned to each individual depends only on its position in the individual's
rank and not on the actual objective value.

Rank-based �tness assignment overcomes the scaling problems of the proportional �tness
assignment. It overcomes stagnation in the case where the selective pressure is too small
or in the case of premature convergence � it is where selection has caused the search
to narrow down too quickly. Selective pressure is the probability of the best individual
being selected compared to the average probability of selection of all individuals [10].
The reproductive range is limited, so that no individuals generate an excessive number
of o�spring. Ranking introduces a uniform scaling across the population and provides a
simple and e�ective way of controlling selective pressure. Rank-based �tness assignment
behaves in a more robust manner than proportional �tness assignment and, thus, is the
method of choice [7].

For linear rank-based �tness assignment, let N be the number of individuals in the pop-
ulation, let % be the position of an individual in this population (the least �t individual

48 CHAPTER 6. GENETIC ALGORITHM APPROACHES

has % = 1 and the �ttest individual has % = N) and let s be the selective pressure. Linear
ranking allows values of selective pressure in [1.0, 2.0]. The �tness value for an individual
is calculated by means of

f(%) = 2− s + 2(s− 1)
%− 1

N − 1
. (6.1)

For the use of higher selective pressures than allowable in the linear ranking method, a
new method for ranking using a non-linear distribution is introduced in Polheim [78].

6.4 Genome selection

Before the genetic operators of the algorithm can be applied for the calculation of the
new generation, so called �parent� genomes must be selected. This is done by means
of �tness proportionate selection (also known as roulette-wheel selection). The roulette-
wheel selection algorithm provides a zero bias but does not guarantee minimum spread.
Bias is the absolute di�erence between an individual's normalized �tness and its expected
probability of reproduction, while spread is the range of possible values for the number
of o�spring of an individual [10]. The pseudocode listing for this procedure is given in
Algorithm 4.

Algorithm 4: Fitness Proportionate Selection

Input: A population of N solutions and their �tness values calculated by means of a
objective function.

Output: The single solution x′ which has the highest probability to reproduce.

1: Normalize the �tness value of each individual in the population so that the sum of
all the �tness values equals 1.

2: Sort the population by descending �tness values.
3: Compute the accumulated normalized �tness values. The accumulated �tness value

of an individual is the sum of its own �tness value plus the �tness values of all the
previous individuals. The accumulated �tness of the last individual should of course
be 1.

4: Generate a random number, r, between 0 and 1. The selected individual x′, is the
�rst one whose accumulated normalized value is greater than r.

The use of an alternative selection method, namely tournament selection, is recommended
by Goldberg and Deb [41]. The pseudocode listing for this method is given in Algorithm 5.

6.5. RECOMBINATION OPERATOR 49

Algorithm 5: Tournament Selection

Input: A population of N solutions and their �tness values calculated by means of a
objective function.

Output: The single solution x′ which has the highest probability to reproduce.

1: Generate a random number, r, between 2 and the number of individuals in the
population.

2: With probability pt, choose the best individual from the tournament of r individuals
chosen from the population at random.

3: Set i = i + 1. Choose the i-th best individual with probability pt(1− pt)
2.

6.5 Recombination operator

The modi�ed recombination operator for the sample problem is a combination of discrete
recombination and single-point crossover. Discrete recombination performs an exchange of
variable values between the individuals. For each position the parent who contributes its
variable to the o�spring is chosen randomly with an equal probability [72]. In single-point
crossover one crossover position is selected uniformly at random from all the possible
points in the genome's make up, and the variables are exchanged between the individuals
about this point, so that two new o�spring are produced.

As described in Chapter 4, the choice of daily blend production amounts are dependent
on the choice of component percentages which are to make up each blend. For this reason
the recombination operator is applied only to the second chromosome of the genome after
which the new blend amounts for the �rst chromosome is determined.

A crossover point is chosen at random with the number of blends to be produced set as the
upper limit. The resultant child genomes then contain half of the component recipes from
the �rst parent genome and half from the second parent genome and the blend amounts
for each child genome is determined. The �tness values of both parent genomes and both
child genomes are considered and the genome with the highest �tness is returned. Thus
this strategy returns only the strongest individual, regardless of the generation to which
it belongs.

6.6 Mutation operator

The mutation operator modi�es the second chromosome, i.e. the daily blend production
amounts only. It recreates the chromosome so that the total of the day's blend production
is produced by the blend earning the highest revenue only. This method is inspired by
the results obtained in �3.2.4 and does not lose the feasibility of the solution, as it does
not require a blend with daily production amounts higher than those set by die inventory
constraints.

50 CHAPTER 6. GENETIC ALGORITHM APPROACHES

6.7 Proportions of genetic operators

Four operators are traditionally used for genetic algorithms: recombination, mutation,
reproduction and elitism. The �rst two operators are modi�ed as described in Sections 6.5
and 6.6. The reproduction is applied in such a way that a certain percentage of individuals
are chosen to be passed to the next generation without being subject to the applications of
the recombination operator. For example, for an instance where the number of individuals
is 40 and the proportions are given such that reproduction proportion is 0.30 and mutation
probability is 0.01, the next generation will be calculated as follows: 12 best individuals
will be chosen as they are, 28 individuals will be obtained through an application of the
recombination operator. Then, the mutation operator will be applied to all these o�spring
so that each individual has a 0.01 probability to form the next generation.

As with all current machine learning problems it is worth �ne tuning probability parame-
ters to �nd reasonable settings for the problem class under consideration. A recombination
rate that is too high may lead to premature convergence of the genetic algorithm. A muta-
tion rate that is too high may lead to loss of good solutions unless there is elitist selection.
There are theoretical but not yet practical upper and lower bounds for these parame-
ters that can help guide selection. Whitely [105] suggests a recombination rate typically
between 0.6 and 1.0.

As for mutation rate, the probability of mutating a variable is inversely proportional to the
number of variables it contains (dimensions). The more dimensions one individual has,
the smaller the mutation probability should be. Mühlbein [72] reports that a mutation
rate of 1

n
(where n is the number of variables of an individual) produced good results

for a wide variety of test instances. That implies that only one variable per individual is
mutated when a mutation is performed.

A quicker convergence and a better quality solution is achieved through the use of elitism.
Once the population has been sorted according to their individual �tnesses, a certain
percentage of the top achieving genomes are passed on to the next generation without
alteration. Though these champion genomes are available to be chosen as parents for the
recombination operator, the genome itself is only replaced when there are enough new
o�spring with better �tnesses.

The production and selection of new individuals is carried out in a generational or steady-
state algorithm. In a generational algorithm, a new population is created from parents in
the current population. In a steady-state algorithm, one o�spring is created and placed
into the existing population, either randomly or based on �tness. The GA implementation
for the SSP is a generational algorithm.

6.8. ISLAND MODELS 51

6.8 Island models

Population diversity a�ects many aspects of the evolutionary process. The number of
unique �tness values in the current population e�ects selection pressure. Low amounts
of genetic di�erences prematurely imitates a solution that has reached convergence and
can lead to lower selection pressure. Without adequate diversity the population may be
unable to produce variations to improve solution quality. However, on the other extreme,
too much diversity can prevent convergence. Many methods have been proposed and used
in evolutionary computation to control diversity, prevent convergence and to distribute
individuals over di�erent areas of the search space. The island model is an example of a
distributed population model where subpopulations are isolated during selection, breeding
and evaluation [25]. Islands focus the evolutionary process within subpopulations before
migrating individuals to other islands.

The most common form of island model uses �tness-based probabilistic selection for mi-
gration selection and replacement. Breeding and evaluation are typically carried out in
isolation on each island. Pettey et al. [76] designs a distributed model where for every
generation migration sends the best individuals in each population to each neighbour re-
placing the worst individuals. Whitley et al. [106] concludes that for problems where
an increase in the population size does not yield better results, island models may yield
better results by searching over a larger part of the solution space.

Borovska and Lazarova [18] present a comparative study of �ve migration policies for
parallel genetic algorithms solving the traveling salesman problem. The investigated mi-
gration policies utilize one way and two way periodic chromosomes migration and global
periodic chromosomes migration. For each migration policy best or random chromosome
migration is applied. They recommend a subpopulation size equal to the population size
divided by the number of subpopulations and that these subpopulations be �lled by ran-
dom assignment of individuals from the population. They set a migration frequency (the
number of migrations per algorithm run) of 10% of the number of generations and deter-
mine the number of migrants to be 4% of the population size. Their results show that
the two-way circular migration of the best �tness chromosomes gives the best results with
respect to solution quality.

6.9 Computational Results

Di�erent genetic algorithm implementations with regard to selection method, �tness as-
signment and operator parameters are applied to the three problems. The computational
setup is the same as described in �5.4.

52 CHAPTER 6. GENETIC ALGORITHM APPROACHES

6.9.1 The SSP

The results summary for the GA applied to the SSP is shown in Tables 6.1 to 6.3. GA1 to
GA4 is implemented without the use of elitism, while GA5 to GA8 is implemented with
an elitism of 10%. For a population size of 100 individuals, this means that the 10 top
performing individuals of the previous generation will be passed on to the next generation
without any alteration. For this problem, the results in Figure 6.2 shows that regardless
of whether or not elitism is present, the problem is best solved when using tournament
selection and ranked assignment. This is in accordance with what was expected from
literature.

The same best result is obtained by GA4 to GA8 during the 10 algorithms runs and
this may be assumed as the genetic algorithm approach's upper bound for the SSP. This
comparison is shown in Figure 6.3. The average execution times of GA1 to GA8 do
not di�er signi�cantly, but GA8 is found to have a notably quicker execution time than
GA7 without delivering an average result that is much poorer than that of GA8. This
comparison is shown in 6.4.

The results in Figure 6.5 show that an increase in the population size leads to an improve-
ment in performance for GA1 and GA2 only. The results remain fairly unchanged for GA3
and GA4 and these algorithms are implemented as island models (�6.8) with parameters
set at the values given in Table 6.4 to determine whether this approach will yield better
solutions. The results of the island model implementation of GA3 and GA4 are shown
in Table 6.6. Although a better average �tness solution is obtained by die island GA3
model, the improvement (or the decline as is the case with GA4) is not large enough to
justify the much slower convergence.

Parameters GA1 � GA4 GA5 � GA8

Population size 100 100
Number of generations 100 100
Elitism proportion 0 0.1
Recombination probability 0.6 0.6
Mutation probability 0.1 0.1

Table 6.1: The parameters used in GA1 to GA8 for the SSP.

Fitness assignment Selection method Number of

Proportional Ranked Roulette wheel Tournament algorithm runs

GA1 & GA5 x x 7
GA2 & GA6 x x 9
GA3 & GA7 x x 8
GA4 & GA8 x x 7

Table 6.2: Combination of �tness assignement and selection methods use in GA1 to GA8 for the SSP
as well as the number of algorithm runs required to obtain a con�dence interval of 90%.

6.9. COMPUTATIONAL RESULTS 53

0 5 10 15 20 25 30 35
14

15

16

17

18

Generations

A
ve
ra
g
e
�
tn
es
s
(k
R
)

GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8

Figure 6.2: Average �tness results of GA1 to GA8 obtained for the SSP.

Results GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8

Best �tness (kR) 17.07 17.72 18.29 18.52 18.52 18.52 18.52 18.52
Avg �tness (kR) 15.85 15.97 17.33 17.21 16.91 17.34 17.51 17.38
Std deviation (kR) 0.89 0.94 0.59 0.72 60.38 0.71 0.52 0.56
Avg execution time (sec) 60.14 64.56 64.74 62.44 60.14 68.05 69.75 61.59

Table 6.3: Results obtained after execution of GA1 to GA8, respectively for the SSP.

GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8
16

17

18

19

GA model

B
es
t
�
tn
es
s
(k
R
)

Figure 6.3: The best �tness comparison of GA1 to GA8.

54 CHAPTER 6. GENETIC ALGORITHM APPROACHES

GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8
0

20

40

60

80

GA model

A
ve
ra
g
e
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

Figure 6.4: The average execution time comparison per algorithm run for GA1 to GA8.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
14

15

16

17

18

Generations

A
ve
ra
g
e
�
tn
es
s
(k
R
)

GA1100 GA2100 GA3100 GA4100

GA1200 GA2200 GA3200 GA4200

Figure 6.5: GA1 to GA4 with a population size of 100 versus GA1 to GA4 with a population size of
200 for the SSP.

6.9.2 The HPP

The results summary for the GA applied to the HPP are shown in Tables 6.5 to 6.7. GA9
to GA12 is implemented without the use of elitism, while GA13 to GA16 is implemented
with elitism set at 10%.The results in Figure 6.7 show that regardless of whether or
not elitism is present, the problem is best solved when using tournament selection and
proportional �tness assignment.

GA12 and GA16 achieve approximately the same best result which may also be assumed

6.9. COMPUTATIONAL RESULTS 55

Island Model Parameters

Population size 100
Number of generations 100
Number of subpopulations 2
Subpopulation size 50
Migration frequency 10
Number of migrants 10

Table 6.4: The parameters as set for the island model implementation of GA3 and GA4. The best
chromosome migration policy is implemented.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
15

15.5

16

16.5

17

17.5

18

Generations

A
ve
ra
g
e
�
tn
es
s
(k
R
)

GA3 GA4
GA3∗ GA4∗

Figure 6.6: GA3 and GA4 versus GA3∗ and GA3∗ which are implemented as an island models.

to be the genetic algorithm approach's upper bound for the HPP. The best solution
comparison is shown in Figure 6.8. The implementation of Roulette Wheel selection
causes GA9, GA10, GA13 and GA14 to have the longest average execution time while
GA12 and GA16 adds short execution time results to their already favourable best and
average solution quality results. The average execution time result is shown in 6.9.

The results in Figure 6.10 shows that an increase in the population size leads an improve-
ment in performance for GA9 and GA11 only. The results remain largely unchanged for
GA10 and GA11 and these algorithms are implemented as island models with parameters
set as described in Table 6.8 to investigate further improvement. The results of the island
model implementation of GA10 and GA11 are shown in Figure 6.11. For both algorithms,
the implementation of them as island models produce average solutions of a much lower
quality than the results obtained through regular genetic model implementation.

56 CHAPTER 6. GENETIC ALGORITHM APPROACHES

Parameters GA9 � GA12 GA13 � GA16

Population size 100 100
Number of generations 100 100
Elitism proportion 0 0.1
Recombination probability 0.6 0.6
Mutation probability 0.1 0.1

Table 6.5: The parameters used in GA9 to GA16 for the HHP.

Fitness assignment Selection method Number of

Proportional Ranked Roulette wheel Tournament algorithm runs

GA9 & GA13 x x 4325
GA10 & GA14 x x 1195
GA11 & GA15 x x 325
GA12 & GA16 x x 905

Table 6.6: Combination of �tness assignment and selection methods use in GA9 to GA16 for the HPP
as well as the number of algorithm runs required to obtain a con�dence interval of 90%.

0 5 10 15 20 25 30 35
300

320

340

360

380

400

Generations

A
ve
ra
g
e
�
tn
es
s
(k
R
)

GA9 GA10 GA11 GA12
GA13 GA14 GA15 GA16

Figure 6.7: Average �tness results of GA9 to GA16 for the HPP.

6.9.3 The MMRP

The results summary for the GA applied to the MMRP are shown in Tables 6.9 to 6.11.
GA17 to GA20 is implemented without the use of elitism, while GA21 to GA24 is imple-
mented with elitism set at 10%. For the MMRP, the results in Figure 6.12 shows that
regardless of whether or not elitism is present, the problem is best solved when using
tournament selection and proportional �tness assignment.

6.9. COMPUTATIONAL RESULTS 57

Results GA9 GA10 GA11 GA12 GA13 GA14 GA15 GA16

Best �tness (kR) 386.69 390.63 396.60 398.62 390.64 391.62 390.63 398.54
Avg �tness (kR) 365.84 381.69 381.01 386.98 343.48 356.28 373.85 386.77
Std deviation (kR) 16.77 8.80 14.38 7.66 30.71 16.26 7.48 6.80
Avg execution time (sec)0.89 0.94 0.33 0.21 0.81 0.91 0.32 0.30

Table 6.7: Results obtained after execution of GA9 to GA16, respectively for the HPP.

GA9 GA10 GA11 GA12 GA13 GA14 GA15 GA16
380

385

390

395

400

GA model

B
es
t
�
tn
es
s
(k
R
)

Figure 6.8: The best �tness comparison of GA9 to GA16.

GA9 GA10 GA11 GA12 GA13 GA14 GA15 GA16
0

0.2

0.4

0.6

0.8

1

GA model

A
ve
ra
g
e
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

Figure 6.9: The average execution time comparison per algorithm run for GA9 to GA16.

GA24 achieves a best solution that is closest to the known optimal for the MMRP. When
elitism is used, the use of tournament selection has the greatest positive e�ect on the
performance of the GA approaches. The comparison of the best results obtained by the

58 CHAPTER 6. GENETIC ALGORITHM APPROACHES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
300

320

340

360

380

400

Generations

A
ve
ra
g
e
�
tn
es
s
(k
R
)

GA9100 GA10100 GA11100 GA12100

GA9200 GA10200 GA11200 GA12200

Figure 6.10: GA9 to GA12 with a population size of 100 versus GA1 to GA4 with a population size of
200 for the SSP.

Island Model Parameters

Population size 100
Number of generations 100
Number of subpopulations 2
Subpopulation size 50
Migration frequency 10
Number of migrants 10

Table 6.8: The parameters as set for the island model implementation of GA10 and GA11 for the HHP.
The best chromosome migration policy is implemented.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
320

340

360

380

400

Generations

A
ve
ra
g
e
�
tn
es
s
(k
R
)

GA10 GA11
GA10∗ GA11∗

Figure 6.11: GA10 and GA11 versus GA10∗ and GA11∗ which are implemented as an island models.

6.9. COMPUTATIONAL RESULTS 59

various approaches are shown in Figure 6.12. The best performing approach, (i.e. GA24)
has a fair average execution time associated with it, while GA22 has a good average
execution time associated with it without delivering an average result that is much poorer
than that of GA24. The average execution time comparison is shown in Figure 6.13.

Parameters GA17 � GA20 GA21 � GA24

Population size 100 100
Number of generations 100 100
Elitism proportion 0 0.1
Recombination probability 0.6 0.6
Mutation probability 0.1 0.1

Table 6.9: The parameters used in GA17 to GA24 for the MMRP.

Fitness assignment Selection method Number of

Proportional Ranked Roulette wheel Tournament algorithm runs

GA17 & GA21 x x 4845
GA18 & GA22 x x 2660
GA19 & GA23 x x 766
GA20 & GA24 x x 1015

Table 6.10: Combination of �tness assignement and selection methods use in GA17 to GA24 for the
MMRP as well as the number of algorithm runs required to obtain a con�dence interval of 90%.

0 5 10 15 20 25 30 35
360

370

380

390

400

410

Generations

A
ve
ra
g
e
�
tn
es
s
(D

$
)

GA17 GA18 GA19 GA20
GA21 GA22 GA23 GA24

Figure 6.12: Average �tness results of GA17 to GA24 for the MMRP.

60 CHAPTER 6. GENETIC ALGORITHM APPROACHES

GA17 GA18 GA19 GA20 GA21 GA22 GA23 GA24
400

405

410

415

GA model

B
es
t
�
tn
es
s
(D

$
)

Figure 6.13: The best �tness comparison of GA17 to GA24.

Results GA17 GA18 GA19 GA20 GA21 GA22 GA23 GA24

Best �tness (D$) 405.55 407.65 409.30 407.89 409.30 411.45 411.85 413.45
Avg �tness(D$) 382.08 382.59 394.26 396.043 392.75 389.17 400.77 403.91
Std deviation (D$) 20.46 17.84 13.79 12.34 10.01 17.39 11.93 9.17
Avg execution time (sec) 176.03 157.30 190.09 186.53 176.36 167.70 185.27 171.73

Table 6.11: Results obtained after execution of GA17 to GA24, respectively for the MMRP.

GA17 GA18 GA19 GA20 GA21 GA22 GA23 GA24
150

160

170

180

190

GA model

A
ve
ra
g
e
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

Figure 6.14: The average execution time per algorithm run comparison of GA17 to GA24 for the
MMRP.

Chapter 7
Tabu search approaches

Tabu search is a metaheuristic optimisation method belonging to the class of local search
techniques. Tabu search enhances the performance of a local search method by using
memory structures: Once a potential solution has been determined, it is marked as �taboo�
so that the algorithm does not visit that possibility repeatedly or converge to a local
optimum.

7.1 Overview

Initially the most popular approach to solving hard combinatorial optimisation problems
was based on Local Search (LS) improvement techniques [46]. LS may be summarized as
an iterative search procedure that, starting from an initial feasible solution, progressively
improves it by applying a series of local modi�cations. At each iteration, the search moves
to an improving feasible solution that di�ers only slightly from the current one. The search
terminates when it encounters a local optimum with respect to the transformations that it
considers. However, unless extremely lucky, this local optimum is often a fairly mediocre
solution. In LS the quality of the solution obtained and computing times are usually highly
dependent upon the quality of the set of transformations considered at each iteration of
the heuristic.

Building upon some of his previous work, Fred Glover [37] proposed a new approach in
1986 which he called Tabu Search (TS) to allow LS methods to overcome local optima.
Glover did not see TS as a proper heuristic, but rather as a metaheuristic, a term also orig-
inally coined by him in 1986. In the same year, Hansen [43] proposed a similar approach
which he named the steepest ascent/mildest descent heuristic. Since its introduction TS
has enjoyed a number of successes. In a variety of problem settings, it has found solutions
superior to the best previously obtained by alternative methods and Glover [40] presents a
partial list of these successes. A pseudocode listing for a general TS appears in Algorithm
6 [27].

61

62 CHAPTER 7. TABU SEARCH APPROACHES

Algorithm 6: General tabu search

Input: A combinatorial optimisation problem speci�cation including a domain set for
each decision variable. An initial con�guration x1, a memory size m̂. An objective
function f(·) to determine solution �tness. An adjustment function to reach
neighbours.

Output: An approximation of a global optimum solution.

1: Set the current solution x to the initial solution x1. Set the tabu list T to be the
empty set, T → ∅.

2: Generate a set of neighbours of x. If the complete set of neighbours N (x) is too
large, apply a reduction or �ltering technique to reduce its size. Let the remaining
set be V(x) ⊂ N (x).

3: Remove all candidates x′ ∈ V(x) for which the move x→ x′ appears in the tabu list.
4: Evaluate the objective function f(y) for each remaining y ∈ V(x). Let y∗ be the

solution which has the best objective function value amongst these elements.
5: Replace the current x with y∗, even if it has a worse objective function value. Insert

the reverse move (y∗ → x), into the tabu list T . Remove the oldest element of the
tabu list if its size exceeds m̂.

6: Go to steps 2 and repeat until a termination condition is reached.

The search space of an LS or TS metaheuristic S, is simply the space of all possible
solutions that can be considered during the search. Closely linked to the de�nition of
the search space is that of the neighbourhood structure. The neighbourhood structure of
S, N (S), is the subset of solutions obtained by applying a single local transformation
to S. Tabu conditions characterize the forbidden solutions and aspiration conditions are
algorithmic devices that will allow one to revoke or cancel tabus.

In this study, a TS is applied to the blending problem with appropriate de�nitions as
described in the following sections.

7.1.1 Search space and neighbourhood structure

Gendreau [36] observes that choosing a search space and a neighbourhood structure is by
far the most critical step in the design of any TS. In general, for any speci�c problem
at hand, there are many more possible neighbourhood structures than search space def-
initions. This follows from the fact that there may be several plausible neighbourhood
structures for a given de�nition of the search space.

An important issue in TS is the need for evaluating the neighbourhood structure. At each
iteration of a basic TS algorithm, it is normally necessary to identify the best solution in
the neighbourhood of the current solution taking into account that the new solution has
no tabu attributes or, if it happens to have, the aspiration criterion is satis�ed. Usually,
the sizes of the neighbourhoods are much larger than can be evaluated by the algorithm,

7.1. OVERVIEW 63

and thus only the most attractive part of a neighbourhood is actually explored. Having
the means of �nding e�ciently such attractive parts is critical to TS methodology. There
are general purpose strategies for reducing neighbourhood size but often these do not work
and problem speci�c strategies have to be developed.

7.1.2 Tabus

Arguably the most important algorithmic device used to determine the solutions admitted
to N (S) is the tabu list. A tabu list is a short-term memory structure which contains
the solutions that have been visited in the recent past to help the search move away
from previously visited portions of the search space and thus perform more extensive
exploration. This past is less than n iterations ago, where n is the number of previous
solutions to be stored, also called the tabu tenure.

Usually only a �xed and fairly limited quantity of information is recorded in the tabu list.
One could record complete solutions, but this requires large storage space and makes it
expensive to check whether a potential move is tabu or not. It is therefore seldom used.
The most commonly used tabus involve recording the last few transformations performed
on the current solution and prohibiting reverse transformations. Another approach is to
record only key characteristics of the solutions themselves [38].

Standard tabu lists are usually implemented as circular lists of �xed length. A circular
list is a variant of a linked list in which the nominal �tail� is linked to the �head�. The
entire list may be accessed starting at any item and following links until one comes to
the starting item again. The basic role of the tabu list is to prevent cycling (repeatedly
returning to previously visited solutions). If the length of the list is too short, this role
might not be achieved; conversely a too long list creates too many restrictions and it has
been observed in [38] and [39] that the mean value of the visited solutions grows with the
increase of the tabu list size. Therefore, lists of variable length are usually preferred.

More complex, sophisticated applications require the use of long-term memory. This
allows for the re-initialization of the search from a high quality solution set, the rede�nition
of the neighbourhood structure based on high quality solutions, the rede�nition of the
objective function to penalize certain attributes of high quality solutions and the adaption
of the search strategy based on knowledge acquired during previous searches. An e�ective
way for circumventing this di�culty is to use a tabu list with variable size. Each element
of the list belongs to it for a number of iterations that is bounded by given maximal and
minimal values. Also, multiple tabu lists can be used simultaneously and are sometimes
advisable [39].

7.1.3 Aspiration criteria

While central to TS, tabus are sometimes too limiting. They may prohibit attractive
moves, even when there is no danger of cycling, or they may lead to an overall stagnation

64 CHAPTER 7. TABU SEARCH APPROACHES

of the searching process. It is necessary to use aspiration criteria to cancel a set of tabus.
The simplest and most commonly used aspiration criterion consists in allowing a move,
even if it falls within the tabu zone, if it results in a solution with an objective value better
than that of the current best-known solution (since the new solution has obviously not
been previously visited) [36]. This is viable as the number of moves classi�ed tabu will
generally be small relative to the number available, and it is assumed that the expense of
evaluating a move is not great.

Much more complicated aspiration criteria have been proposed and successfully imple-
mented by, see for instance, Hertz and De Werra [45], but they are rarely used. The key
rule in this respect is that if cycling cannot occur, tabus may be disregarded.

7.1.4 Intensi�cation and diversi�cation

In general, intensi�cation is based on some intermediate-term memory in which one
records the number of consecutive iterations that various solution characteristics have
been present in the current solution without interruption. A typical approach to intensi�-
cation is to restart the search from the best currently known solution and to �freeze� (�x)
in it the components that seem more attractive. Another technique that is often used
consists in changing the neighbourhood structure to one allowing more powerful or more
diverse moves [36]. In probabilistic TS, one could increase the sample size or switch to
searching without sampling.

One of the main problems of all methods based on Local Search approaches, including
TS, is that they tend to be too local, i.e. they tend to spend most of their time in
a restricted portion of the search space. The negative consequence of this fact is that,
although good solutions may be obtained, one may fail to explore the most favourable
parts of the search space and thus end up with solutions that are still fairly far from the
optimal ones. Diversi�cation is an algorithmic mechanism that attempts to alleviate this
problem by forcing the search into previously unexplored parts of the search space. It
is usually based on some form of long-term memory of the search in which one records
the total number of iterations (since the beginning of the search) that various solution
characteristics have been present in the current solution or have been involved in the
selected moves.

There are two major diversi�cation techniques. Restart diversi�cation involves forcing
a few rarely used components in the current solution (or the best known solution) and
restarting the search from this point. Continuous diversi�cation integrates diversi�cation
considerations directly into the regular searching process. This is achieved by biasing the
evaluation of possible moves by adding to the objective a small term related to component
frequencies. Soriano and Gendreau [92] discusses these two techniques extensively.

7.2. TS FOR CONTINUOUS GLOBAL OPTIMISATION 65

7.2 TS for continuous global optimisation

TS is a heuristic optimisation technique developed speci�cally for combinatorial problems
such as graph coloring [29], quadratic assignment [90], electronic circuit design [15] and
scheduling [3]. Little attention, however, has been paid to applications to continuous
optimisation problems such as the problem at hand. Hu [47] may be the �rst to present
an adaptation of TS to continuous optimisation, but its main principle seems far away
from the original TS by Glover.

Siarry and Berihiau present an adaptation of the original simple TS to the optimisation
of continuous function [89], but it only deals with low dimension problems e�ciently
and many concepts such as intensi�cation, diversi�cation, and aspiration level are not
included. On the base of this work, Chelouah and Siarry [23] develop an improved TS
algorithm where the diversi�cation and intensi�cation strategies are introduced. The
neighbourhood space of the current solution is partitioned into a set of concentric balls
or hyperrectangles and one point is selected randomly inside each ball or hyperrectangle.
To enforce a signi�cant moving away of the current solution, no points inside the central
ball or hyperrectangle is permitted in the neighbour selection.

7.2.1 Continuous TS by the hypersquare method

The work of Wang et al. [100] provides further improvement to the TS algorithm for
continuous problems. Their approach will be referred to as the hypersquare method for the
continuous tabu search (CTSh). An aspiration level is added to a strategy similar to the
neighbourhood space partitioning using concentric hyperrectangles used in Chelouah and
Siarry [23]. The neighbourhood of the current solution is generated by not only randomly
selecting a point inside each concentric hyperrectangle, but also selecting certain points
randomly inside the central hyperrectangle, which is inhibited in all previous studies. They
�nd that the extra selection inside the central hyperrectangle can improve the performance
of the TS algorithm.

To de�ne the neighbourhood of the current solution x, the notion of a hyperrectan-
gle is used. The description of the submatrix dependencies in Chapter 4 allows for the
application of the CTSh algorithm to the submatrix which contains the blend recipes
only. This is the case for all three the problems at hand. If c = [c1, c2, . . . , ci] is this
submatrix with ci = [c1i, c2i, . . . , cji], lowerbounds li = [l1i, l2i, . . . , lji] and upperbounds
ui = [u1i, u2i, . . . , uji], a hyperrectangle H(ci, hi) is de�ned as a solution space of c with
radius hi = [h1i, h2i, . . . , hji] such that

H(c, hi) = {c′
∣∣ |c′ji − cji| < hji, lji < cji < uji, for all i, j}. (7.1)

The neighbourhood space of the current solution is partitioned into a set of concentric
hyperrectangles H(c, h

(z−1)
i , hz

i) with radii hi = [hi0, hi1, . . . , h
Z
i] such that

Hz(c, h
(z−1)
i , hz

i) = {c′
∣∣h(z−1)

ji ≤ |c′ji − cji| < hz
ji, lji < c

′

ji < uji}, (7.2)

66 CHAPTER 7. TABU SEARCH APPROACHES

for all j, i, and z = 1, 2, . . . , Z and

H0(x̂, h0
i) = {c′

∣∣|c′ji − cji| < h0
ji, lji < c

′

ji < uji}, (7.3)

where radius h0
i is an independent parameter for all j and i. Figure 7.1 contains a parti-

tioning of a solution space for z = 4.

H4(c, h3
i , h

4
i)

H2(c, h1
i , h

2
i)

H0(c, h0
i)

H1(c, h0
i , h

1
i)

H3(c, h2
i , h

3
i)

c

c
′

1

c
′

2

c
′

3

c
′

4

Figure 7.1: An example of the partitioning of a solution space in two dimensions with z = 4.

Neighbours of c are obtained by randomly (using a uniform distribution) selecting a
point inside each hyperrectangle Hz, for z = 1, . . . , Z and the intensi�cation strategy is
conducted by selecting some extra points as neighbours of c inside the hyperrectangle H0.

The tabu condition is organized by a tabu list which contains all the visited solutions
together with the objective function values during the last t iterations (where t is the
tabu tenure). In the discrete case, the tabu mechanism relies on an equality test on the
con�gurations. This cannot transpose to interval domains, where two intervals have a
near to zero chance to be equal. A tabu con�guration must forbid the search not only at
a point, but in an area around it. To check if a solution c is tabu, twofold tabu conditions
are used with the �rst condition predetermining the need for the second one. First if
f(c) is not within a certain tolerance of any function value in the tabu list, solution c is
not tabu, otherwise the second tabu condition will be applied. When f(c) is within the
tolerance for some solution c′ in the tabu list, another check is done for the speci�c ci of
c and c

′
i of c

′
. If all values in ci are within a tolerance of c

′
i, solution c is considered to be

tabu.

Making use of the submatrix dependencies described in Chapter 4, a complete solution x
may be constructed using c. The aspiration level is to compare the objective function value
f(x) with f(x∗) directly, where f(x∗) is the best solution found so far. If f(x) > f(x∗),
the aspiration level is satis�ed. A pseudocode listing for the CTSh appears in Algorithm
7.

7.2. TS FOR CONTINUOUS GLOBAL OPTIMISATION 67

Algorithm 7: Continuous TS by the hypersquare method (CTSh)

Input: An initial solution x0 ∈ S (the search space) as well as its objective function
value f(x0).

Output: An approximation of a global optimum solution.

1: Initialise the current solution x← x0 and initialise the best solution x∗ ← x0 with
f(x∗)← f(x).

2: Generate a neighbourhood N (x). Initialize test variable found ← false and initialize
index i← 1.

3: while found = false do
4: Set x′ to the i-th best solution in N (x).
5: if f(x) > f(x∗) then
6: Accept x′ as the new current solution. Enter x′ as well as f(x′) into the tabu

list. Update x∗ and f(x∗).
7: else
8: if x′ is not tabu then
9: Accept x′ the new current solution, even if f(x′) < f(x) and enter it into the

tabu list together with f(x′).
10: found = true.
11: else
12: i = i + 1
13: end if
14: end if
15: end while
16: Repeat steps 2 to 15 until there is no improvement in f(x∗) after m iterations.

Return x′

7.2.2 Continuous TS by the immediate zone method

Hajji et al. [42] propose a TS method based on the work of Hu [47]. Their approach will
be refered to as the immediate zone method for the continuous tabu search (CTSz). It uses
a tabu list that contains all points and a prohibited zone around each point that depends
on the value of its objective function. This prohibited zone decreases as the number of
iterations increases. Alternation of intensi�cation and diversi�cation phases allows to �nd
the global optimum with a good accuracy.

It is assumed that no information on the location of the optimum is available at the �rst
iteration. Thus the initial solutions in the neighbourhood space are generated in the whole
search space using a uniform distribution. For the next iterations, solutions are gener-
ated using the normal distribution [47]. The description of the submatrix dependencies
in Chapter 4 allows for the application of the CTSz algorithm to the submatrix which
contains the blend recipes only. Let this submatrix be c of the solution x. The probability

68 CHAPTER 7. TABU SEARCH APPROACHES

density is de�ned as

p(cji) =
1

σi

√
2π

(
−

(cji − c∗ji)
2

2σ2
i

)
for all i, j, (7.4)

where σi is the standard deviation, and c∗ is the submatrix containing the blend recipes of
the best solution in the search space at the previous iteration. All candidate solutions c

′

are generated using a random number, r, given by uniform distribution and the function
of P (x) such that

c
′

i = c∗i + σiP
−1(r), for alli with (7.5)

P (x) =

∫ x

−∞
p(u) du, for 0 ≤ r ≤ 1. (7.6)

The tabu list contains all tabu regions that are hyperrectangles (de�ned by their center
and size) for each solution. A tabu region is associated to every solution already generated.
Its center is at the solution. A di�culty arises about the determination of lengths of the
sides of these hyper-rectangles and some heuristic rules are proposed. As the probability
to �nd the global optimum near good points is assumed to be higher than near bad points,
the side lengths must depend on the value of the objective function. It is assumed that
the sum of tabu regions is roughly the same whatever the iteration. This means that the
sides lengths of a hyperrectangle Li(c

′
i, g) for all i are computed with

Li(c
′

i, g) =
cu
ji − cl

ji

λ

f(x)

f(x∗
g−1)

2
n
√

g
(7.7)

where c
′
is the center of the hyperrectangle, n is the number of candidate solutions, g is

the rank of iterations, cu and cl are the respective upper and lower bounds for c
′
, λ is a

constant and f(x∗
g−1) is the objective function value of the best solution from the previous

iteration. The tabu list and side lengths are updated at each iteration. No tabu region
is removed from the tabu list but the tabu region size decreases with the iteration rank.
The process is illustrated in Figure 7.2.

Again, intensi�cation and diversi�cation techniques are applied to improve the e�ective-
ness of the TS. The algorithm proposed here begins with intensi�cation: At the beginning
of each iteration, σi is set to

(
cu
ji − cl

ji

)
/10 because it is assumed that better solutions

have a higher probability to be generated close to the current best solution. While using
the normal distribution, 68% of generated points are on average between c∗ji − σi and
c∗ji + σi for all i, j.

As many solutions are generated close to the best one and as the neighbourhood of the
best solution becomes tabu, many solutions are rejected because they are inside tabu
regions. If the number of rejected solutions is more than 95% of the number of generated
solutions, the standard deviation is increased. This way, solutions are generated further
from the best one and signi�cantly new con�gurations can be found. The exploration of
never visited regions of the search space is the diversi�cation process.

7.2. TS FOR CONTINUOUS GLOBAL OPTIMISATION 69

c
′

1

c
′

2

g = 1

c
′

1

c
′

2

c
′

3

c
′

4

g = 2

c
′

1

c
′

2

c
′

3

c
′

4

g = 3

Figure 7.2: The decrease of each tabu region size with increase in iteration rank for the CTSz. Here
n = 2 and G = 3 where G is the total number of algorithm iterations.

Four parameters, characterizing the TS algorithm proposed by Hanjii et al. have a great
in�uence on its convergence. They are the number of candidate solutions generated at
each iteration n, the maximum number of iterations G, the constant c, and the relative
accuracy of the optimum location θ. Heuristic rules allows to build relations between
them. A relative accuracy

θ =
1

2

Li(c
∗
i , g)

cu
ji − cl

ji

=
1

λ n
√

g
(7.8)

is achieved when the algorithm stops. From equation (7.8) the constant

λ =
1

θ n
√

g
(7.9)

is computed. The ratio of the total volume of all tabu regions (T) on the volume of the
search space (S) is the same for any iteration, namely

|T |
|S|
≈ β =

n·g∑
j=1

[
n∏

i=1

Li(cj, g)

]
n∏

i=1

(cu
i − cl

i)

, (7.10)

where β is a constant between 0 and 1. Using equation (7.7) together with equation (7.10)
it follows that

β ≈ 2n · n
λn

. (7.11)

If β < 1 then the number of candidate solutions generated at each iteration must ful�ll

n <
λn

2n
. (7.12)

70 CHAPTER 7. TABU SEARCH APPROACHES

Thus the size of the neighbourhood structure depends on the rank of the current iteration
and the relative accuracy of the optimum location.

A pseudocode listing for the CTSz appears in Algorithm 8.

Algorithm 8: Continuous TS by the immediate zone method (CTSz)

Input: An initial solution x0 from the search space S as well as its objective function
value f(x0).

Output: An approximation of a global optimum solution.

1: while Generation rank g < total number of iterations G do
2: Generate a neighbourhood N (x) with n solutions chosen according to the uniform

density probability.
3: Store all solutions in the tabu list and evaluate the size of the hyperrectangles

using (7.7).

4: Initialize k ← 1, σi ← k · (cu
i −cl

i)

10
and x∗

g−1 to the best solution at the previous
iteration.

5: while Number of rejected solutions ≥ 95% of all generated solutions do
6: Generate a neighbourhood N (x) using (7.4) � (7.6). Reject solutions that fall in

existing tabu regions and count the number of rejected solutions.
7: if Number of rejected solutions ≥ 95% of all generated solutions then
8: k = k + 1
9: end if
10: end while
11: end while
12: Return x∗

G

7.3 Computational results

The two continuous tabu search methods CTSh and CTSz are applied to the three prob-
lems. The computational setup is the same as described in �5.4. For the RST approaches,
a con�dence level of 90% is obtained by calculating the average objective function values
for the CTSh after 65, 4 625 and 3 090 algorithm runs for the SSP, HPP and MMRP,
respectively. The same con�dence level is obtained by calculating the average objective
function values for the CTSz after 160, 1 605 and 2 505 algorithm runs for the SSP, HPP
and MMRP, respectively.

7.3.1 The CTSh

For the three problems of Chapter 2, l = [0, 0.1, 0.2, . . . 1] and u = [0, 0.1, 0.2, . . . , 1] for
every component in each blend. The simpli�ed sample problem has a TAME-component

7.3. COMPUTATIONAL RESULTS 71

for which l = [0, 0.15] and u = [0, 0.15]. During each iteration, one component is chosen at
random to investigate the e�ect that an alteration thereof will have on the objective func-
tion value. Using the notation of Chapter 3, let this component be cji for the three prob-
lems. It is initialised to be a value in H0 so that 0 < cji ≤ 0.1. Values for the remaining
components to make up the blend are normalised so that the sum of their values is unity.
The neighbourhood for the solution containing cji is constructed by choosing values for cji

from the remaining 9 hyperrectangles (H1(c, 0.1, 0.2), H2(c, 0.2, 0.3), . . . , H9(c, 0.9, 1.0))
with the normalization of the other components after each choice to maintain feasibility.

The e�ect of di�erent values for the tabu tenure is shown in Figures 7.3 to 7.5. To ensure
that a di�erence in result is caused by a change in tenure only, the algorithm is �xed so
that the same component is altered for all of the 100 iterations for 10 algorithm runs and
the same set of initial solutions is used for every tenure under consideration. This causes a
poor average objective function value, but facilitates fair judgment of the change caused.
The neighbourhood space contains 100 solutions and the tolerance εf = 0.01. For all three
problems, it is concluded that the size of the tenure does not a�ect the performance of the
algorithm with regards to average objective function values obtained and a tenure t = 5
is chosen. The choice of this value allows for at least some operation of an element of
the TS algorithm that traditionally plays a much greater role in the performance of the
algorithm.

0 10 20 30 40 50 60 70 80 90 100
9

9.2

9.4

9.6

9.8

10

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

t = 1
t = 5
t = 10

Figure 7.3: The e�ect of di�erent tabu tenures on the average objective function value for the CTSh
for the SSP.

The e�ect of di�erent neighbourhood space sizes (N) on the average objective function
value is shown in Figures 7.6 to 7.8. Again the algorithm is �xed so that the same
component is altered. For each algorithm run the same initial solution is used for each
neighbourhood space size under consideration. The tenure t = 5 and the tolerance εf =

72 CHAPTER 7. TABU SEARCH APPROACHES

0 10 20 30 40 50 60 70 80 90 100
240

260

280

300

320

340

360

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

t = 1
t = 5
t = 10

Figure 7.4: The e�ect of di�erent tabu tenures on the average objective function value for the CTSh
for the HPP.

0 10 20 30 40 50 60 70 80 90 100
250

260

270

280

290

300

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$)

t = 1
t = 5
t = 10

Figure 7.5: The e�ect of di�erent tabu tenures on the average objective function value for the CTSh
for the MMRP.

0.01 were used. From the results it is concluded that a change in the neighbourhood space
size does not a�ect the performance of the algorithm in terms of the average objective
function value obtained for the SSP and MMRP. Therefore, the smaller neighbourhood
space size of 100 solutions is recommended merely because of its quicker execution time.
For the HPP, however, a greater neighbourhood space size delivers a better result than a

7.3. COMPUTATIONAL RESULTS 73

smaller one.

0 5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

20

Runs

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

N = 100
N = 200

Figure 7.6: The e�ect of di�erent neighbourhood space sizes on the average objective function value for
the CTSh for the SPP

0 5 10 15 20 25 30 35 40 45 50
300

320

340

360

380

400

Runs

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

N = 100
N = 200

Figure 7.7: The e�ect of di�erent neighbourhood space sizes on the average objective function value for
the CTSw for the HPP.

74 CHAPTER 7. TABU SEARCH APPROACHES

0 5 10 15 20 25 30 35 40 45 50

250

300

350

400

Runs

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$)

N = 100
N = 200

Figure 7.8: The e�ect of di�erent neighbourhood space sizes on the average objective function value for
the CTSw for the MMRP.

7.3.2 The CTSz

For the three problems of Chapter 2, cl
ji = 0 and cu

ji = 1 for every component j in each
product i. The simpli�ed sample problem has a TAME-component for which cu

ji = 0.15.
Also, n = 10. During each iteration, one component is chosen at random to investigate the
e�ect their alteration of it will have on the objective function value. Using the notation of
Chapter 3, let this component be cji for all three problems. The neighbourhood structure
is constructed by altering the value of cji as described in �7.2.2 and the components are
normalised so that feasibility is maintained.

The e�ect of di�erent values for the relative accuracy of the optimum location (θ) is
shown in Figures 7.9 to 7.11. The value of θ a�ects the value of the constant c which
in turn a�ects the lenghts of the sides of the hyperrectangles which make up the tabu
regions. As in �7.3.1 the algorithm is �xed so that the same component is altered for all
of the iterations and the same set of initial solutions is used for every value of θ under
consideration to ensure fair judgement of the change caused. The results indicate in
Figures 7.9 to 7.11 show that larger values for θ lead to larger objective function values
and θ = 0.5 is chosen.

7.3.3 Comparison of methods

The CTSh and CTSz are applied to the SSP, HPP and MMRP with their individual
parameters set as determined in �7.3.1 and �7.3.2. A con�dence level of 90% is obtained
by calculating the average objective function values for the CTSh after 66, 4 625 and

7.3. COMPUTATIONAL RESULTS 75

0 10 20 30 40 50 60 70 80 90 100
10

10.5

11

11.5

12

12.5

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

θ = 0.01 θ = 0.10 θ = 0.50 θ = 0.90 θ = 1.50

Figure 7.9: The e�ect of di�erent θ values on the average objective function value for the CTSz as
applied to the SSP.

0 10 20 30 40 50 60 70 80 90 100
200

220

240

260

280

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

θ = 0.01 θ = 0.10 θ = 0.50 θ = 0.90 θ = 1.50

Figure 7.10: The e�ect of di�erent θ values on the average objective function value for the CTSz as
applied to the HPP.

2 505 algorithm runs for the SSP, HPP and MMRP, respectively. The same con�dence
level is obtained by calculating the average objective function values for the CTSz after
165, 1 605 and 3 095 algorithm runs for the SSP, HPP and MMRP, respectively. Figures
7.12 to 7.14 contain the comparative results for the two algorithms when the choice of
component to be altered remains constant for all iterations. This �xed value yields a poor

76 CHAPTER 7. TABU SEARCH APPROACHES

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$)

θ = 0.01 θ = 0.10 θ = 0.50 θ = 0.90 θ = 1.50

Figure 7.11: The e�ect of di�erent θ values on the average objective function value for the CTSz as
applied to the MMRP.

average objective function value, but it facilitates fair judgment of algorithm performance
as possible bias from random variables is eliminated. For the three problems, the CTSh
delivers a higher average objective function value. Figures 7.12 to 7.14 also contain the
comparative results for the two algorithms when the choice of component to be altered
is random for all iterations. Again the CTSh delivers a higher average objective function
value for the three problems. Table 7.1 contains a summary of the results obtained after
application of the CTS approaches for the three problems.

SSP (kR) HPP (kR) MMRP (D$)

Result CTSh CTSz CTSh CTSz CTSh CTSz

Best �tness 18.84 19.42 397.44 377.02 412.00 413.95
Average �tness 17.28 16.34 387.25 260.82 411.36 314.23
Standard deviation 1.43 1.70 10.22 54.85 3.66 2.10

Average execution time (sec) 1.14 1.88 0.67 0.32 0.47 3.64

Table 7.1: Results summary for the TS techniques for the SSP, HPP and MMRP.

7.3. COMPUTATIONAL RESULTS 77

0 10 20 30 40 50 60 70 80 90 100
8

10

12

14

16

18

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

CTSh∗ CTSz∗ CTSh CTSz

Figure 7.12: The average objective function values as obtained by the CTSh versus the average objective
function values as obtained by the CTSz when the same constant component is chosen for alteration during
every iteration (CTSh∗ and CTSz∗) and when any component for alteration is chosen at random during
every iteration (CTSh and CTSz) for the SSP.

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

CTSh∗ CTSz∗ CTSh CTSz

Figure 7.13: The average objective function values as obtained by the CTSh versus the average objective
function values as obtained by the CTSz when the same constant component is chosen for alteration during
every iteration (CTSh∗ and CTSz∗) and when any component for alteration is chosen at random during
every iteration (CTSh and CTSz) for the HPP.

78 CHAPTER 7. TABU SEARCH APPROACHES

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

Iterations

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$)

CTSh∗ CTSz∗ CTSh CTSz

Figure 7.14: The average objective function values as obtained by the CTSh versus the average objective
function values as obtained by the CTSz when the same constant component is chosen for alteration during
every iteration (CTSh∗ and CTSz∗) and when any component for alteration is chosen at random during
every iteration (CTSh and CTSz) for the MMRP.

Chapter 8
Simulated annealing approaches

Simulated annealing (SA) is a technique which �nds a good solution to an optimization
problem by introducing random variations of the current solution. A worse variation
is accepted as the new solution with a probability that decreases as the computation
proceeds. The slower the rate of this probability decrease, the more likely the algorithm
is to �nd an optimal or near-optimal solution. The search tries to avoid local optima by
jumping out of these early in the computation. Toward the end of the computation, when
the probability of accepting a worse solution is nearly zero, it seeks the bottom or top of the
local optimum. The chance of getting a good solution can be traded o� with computation
time by slowing down the decrease in probability of accepting worse solutions. The slower
the decrease, the higher the chance of �nding the optimum solution, but the longer the
run time. Thus e�ective use of this technique depends on determining a decrease rate
that determines good enough solutions without taking too much computational time.

8.1 Overview

The technique's name and inspiration come from annealing in metallurgy, a technique
involving heating and controlled cooling of a material to increase the size of its crystals
and reduce their defects. The heat causes the atoms to become unstuck from their initial
positions (a local optimum of the internal energy) and wander randomly through states
of higher energy. The slow cooling gives those more chances of �nding con�gurations with
lower internal energy than the initial one.

By analogy with this physical process, each step of the SA algorithm replaces the current
solution by a random �nearby� solution, chosen with a probability that depends on the
di�erence between the corresponding function values and on a global parameter T (called
the temperature), that is gradually decreased during the process. The dependency is
such that the current solution changes almost randomly when T is large, but becomes
increasingly better as T goes to zero. The allowance for moves to worse solutions saves

79

80 CHAPTER 8. SIMULATED ANNEALING APPROACHES

the method from becoming stuck at local optima.

The method is independently described by Kirkpatrick et al. [58] and by Cerný [22]. It
was �rst tested on the travelling salesman problem, �nding locally optimal solutions for
up to 6000 sites. At the time the exact solution had been obtained for up to 318 sites.

SA is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to
generate sample states of a thermodynamic system invented by Metropolis et al. [69].
The original Metropolis scheme was that an initial state of a thermodynamic system was
chosen at energy E and temperature T . Holding T constant, the initial con�guration is
disturbed and the change in energy, dE, is computed. If the change in energy is negative
(or positive for the maximization problem) the new con�guration is accepted. If the
change in energy is positive (or negative for the maximization problem) it is accepted

with a probability given by the Boltzmann factor e−(dE
T

). This processes is then repeated
a su�cient number of times to give good sampling statistics for the current temperature,
and then the temperature is decremented and the entire process repeated until a frozen
state is achieved at T ≈ 0.

For SA, the current state of the thermodynamic system is analogous to the current so-
lution to a combinatorial problem, the energy equation for the thermodynamic system is
analogous to an objective function and ground state is analogous to a global minimum.
The major di�culty during implementation of the algorithm is that there is no obvious
analogy for the temperature T with respect to a free parameter in the combinatorial
problem. Furthermore, avoidance of being trapped in local optima is dependent on the
annealing schedule, the choice of initial temperature, the number of iterations that are
performed at each temperature and the amount by which the temperature is decremented
at each step as cooling proceeds.

Locatelli [67] formulates the SA problem as shown in the pseudocode listing of Algorithm
9. Appropriate choices for the input functions, distribution and parameters are essential
in order to guarantee the e�ciency of the algorithm and are discussed in the subsequent
sections.

8.2 Solution representation

When attempting to solve an optimisation problem using the SA algorithm, the most
obvious representation of the control variables is usually appropriate. However, the way
in which new solutions are generated may need some thought. The solution generator
should introduce small random changes, and allow all possible solutions to be reached.

The SA algorithm merely needs to be supplied with an objective function for each trial
solution it generates. Thus, the evaluation of the problem functions is essentially a �black
box� operation as far as the optimization algorithm is concerned. Obviously, in the inter-
ests of overall computational e�ciency, it is important that the objective function value
evaluations should be performed e�ciently, especially as in many applications these eval-

8.3. CANDIDATE DISTRIBUTION 81

Algorithm 9: Simulated annealing algorithm

Input: A combinatorial optimization problem with a continuous domain X which
combined with the continuity of the objective function f , guarantees the existance of
the optimum value f ∗. An initial con�guration x0 ∈ X, the next candidate
distribution Φ, an acceptance function Γ, an initial temperature T0, an annealing
schedule Ψ and a stopping criterion.

Output: An approximation of a global optimum solution.

1: Set i = 0 and Ti = T0.
2: Sample a candidate solution x

′
i+1 from the candidate distribution Φ.

3: Sample a uniform random number r in [0, 1] and set

xi+1 =

{
x
′
i+1, if r ≤ Γ(xi, x

′
i+1, Ti)

xi, otherwise.

4: Set Ti+1 < Ti according to the annealing schedule Ψ.
5: Check the stopping criterion and if it fails, set i← i + 1 and go back to step 2.

uations are overwhelming the most computationally expensive activity. Some thought
needs to be given to the handling of constraints when using the SA algorithm. In many
cases the routine can simply be programmed to reject any proposed changes which re-
sult in constraint violation, so that a search is executed in feasible space only. However,
Busetti [21] notes that there are two important circumstances in which this approach
cannot be followed: If there are any equality constraints de�ned on the system, or if the
feasible space de�ned by the constraints is (or is suspected to be) disjoint, so that it is not
possible to move between all feasible solutions without passing through infeasible space.
He suggests that in either case the problem be transformed into an unconstrained one by
constructing an augmented objective function incorporating any violated constraints as
penalty functions.

8.3 Candidate distribution

Bohachevsky et al. [17] suggests that the next candidate solution x
′
i+1 be obtained by

�rst generating a random direction vector τ i with ||τ i|| = 1, multiplying it by a �xed step
size ∆r and, �nally, summing the resulting vector to xi, i.e.

x
′

i+1 = xi + ∆rτ i. (8.1)

Locatelli [67] presents an example which shows that it cannot always be assumed that the
objective function value behaves the same in every direction. Therefore, the step sizes
to de�ne the next candidate solution should not all be equal for all the directions, but
di�erent directions should have di�erent step sizes. Vanderbilt and Louie [97] suggest that

82 CHAPTER 8. SIMULATED ANNEALING APPROACHES

new trial solutions can be generated according to the formula

x
′

i+1 = xi + Qε (8.2)

where ε is a vector of uniform random numbers in the range (−
√

3,
√

3) so that each has
zero mean and unit variance, and Q is a matrix that controls the step size distribution.
In order to generate random steps with a covariance matrix ξ, Q is found by solving

ξ = QQT (8.3)

by Cholesky decomposition, for example. The matrix ξ should be updated as the search
progresses to include information about the local topography, so that

ξi+1 = (1− ν)ξi + νωX (8.4)

where matrix X measures the covariance of the path actually followed and the damping
constant ν controls the rate at which information from X is folded into ξ with weighting
ω. One drawback of this scheme is that the solution of equation (8.3), which must be
done every time ξ is updated, can contribute a substantial computational overhead for
problems with high dimensionality.

An alternative strategy suggested by Parks [75] is to generate solutions according to

x
′

i+1 = xi + D$ (8.5)

where $ is a vector of uniform random numbers in the range (−1, 1) and D is a diagonal
matrix which de�nes the maximum change allowed in each variable. After a successful
trial (i.e. after an accepted change in the solution) D is updated so that

Di+1 = (1− ν)Di + αωΥ (8.6)

where Υ is a diagonal matrix. The elements of Υ consist of the magnitudes of the
successful changes made to each control variable, i.e.

Υii = ‖Dii$i‖ (8.7)

and the damping constant α controls the rate at which information from Υ is folded into
D with weighting ω. This tunes the maximum step size associated with each control
variable towards a value giving acceptable changes. Parks [75] �nds that suitable values
of ν and ω are 0.1 and 2.1, respectively.

8.4 The acceptance function

In the existing literature about SA algorithms for continuous global optimization very few
acceptance functions have been employed. Most applications make use of the so-called
Metropolis acceptance function that is given by

Γ(x, x′, T) = min

{
1, e

�
− f(x′)−f(x)

T

�}
. (8.8)

8.5. ANNEALING SCHEDULE 83

This function accepts both steps in which the new candidate solution x
′

k+1 improves or
worsens the objective function value with respect to the current solution xi in order
to escape local optimums. The acceptance probability is controlled by the temperature
parameter T .

The so-called Barker criterion [11]

Γ
′
(x, x′, T) =

1

1 + e

�
f(x′)−f(x)

T

� (8.9)

is another possible acceptance function. Initially, this function may reject even steps that
improve the function value, in particular those which do not cause noticable improvement.
But, as the temperature decreases, steps that improve the function value are more likely to
be accepted (unless they are very small ones), while steps that worsen it are more likely to
be rejected. Schuur [87] shows that under appropriate assumptions, most other acceptance
functions are equivalent to equations (8.8) and (8.9) which explains the restricted choice
found in the literature.

8.5 Annealing schedule

The annealing schedule determines the permitted amount of movement towards a worse
solution during the search and is critical to the algorithm's performance. The principle
underlying the choice of a suitable annealing schedule is stated by Bounds [19] as �The
initial temperature should be high enough to melt the system completely and should be
reduced towards its freezing point as the search progresses, but choosing an annealing
schedule for practical purposes is something of a black art.�

The standard implementation of the SA algorithm is one in which homogeneous chains of
�nite length are generated at decreasing temperatures. It requires that the parameters as
de�ned in the subsequent subsections be de�ned.

8.5.1 Initial temperature T0

The choice of a very high initial temperature results in a lot of time being wasted at
the beginning stage of the search. However, a very low initial temperature could result
in the system being trapped in a local optimum, because the con�guration space was
not su�ciently explored. Many methods have been proposed in literature to compute the
initial temperature T0. It is suggested in Kirkpatrick et al. [58] to take T0 = ∆Emax, where
∆Emax is the maximal objective function value di�erence between any two neighboring
solutions.

Another method described by Kirkpatrick et al. [58] consists of computing a temperature
such that the acceptance ratio is approximately equal to a given value χ0. First, a large

84 CHAPTER 8. SIMULATED ANNEALING APPROACHES

initial temperature is chosen. Then, a number of candidate solution samplings using this
temperature must be performed. The ratio of accepted solutions is compared with χ0.
If it is less than χ0, then the temperature is multiplied by 2. The procedure continues
until the observed acceptance ratio exceeds χ0. Other variants are proposed to obtain an
acceptance ratio which is close to χ0. It is, for example, possible to divide the temperature
by 3 if the acceptance ratio is much higher than χ0. Using this kind of rules, cycles are
avoided and a good estimation of the temperature can be found.

Ben-Ameur [14] proposes a simple algorithm to compute a temperature which is compat-
ible with a given acceptance ratio. The pseudocode listing for it is shown in Algorithm
10.

Algorithm 10: Computation of the initial temperature

Input: A solution domain S as well as an estimated number of solutions, ||S||, to be
drawn from S needed to compute the estimated initial temperature χ̂(T). A desired
acceptance probability, χ0 ∈ [0, 1] and a small (O(10−3)) real number ε.

Output: The estimated initial temperature χ̂(T).

1: Generate and store ||calS|| random solutions from X.
2: Set T1 to any strictly positive number and set n← 1.

3: Compute χ̂(Tn) =
P

t∈S exp(−f1
t /Tn)P

t∈S exp(−f2
t /Tn)

where f 1 and f 2 are the objective values before

and after the transition from one solution to the following one in S, respectively.
4: if If |χ̂(Tn)− χ0| ≤ ε then
5: Return Tn

6: else

7: Tn+1 = Tn

(
ln(χ̂(Tn))

ln χ0

) 1
p
.

8: n = n + 1.
9: Go to step 3.
10: end if

8.5.2 Length of the Markov chains

SA is best described, mathematically, by a Markov chain. Named after the Russian
mathematician, A.A. Markov who formalized the theory concerning events whose current
condition depends solely on their condition one period before, Markov chains are special
processes that also assume �nite states exist, constant transition probabilities exist and
equal time periods occur [85].

An obvious choice for Lk, the length of the k-th Markov chain, is a value that depends on
the size of the problem, so Lk is independent of k. Alternatively it can be argued that a
minimum number of transitions νmin should be accepted at each temperature. However,
as Tk approaches 0, transitions are accepted with decreasing probability so the number

8.5. ANNEALING SCHEDULE 85

of trials required to achieve νmin acceptances approaches ∞. Thus, in practice, an algo-
rithm in which each Markov chain is terminated after Lk transitions or νmin acceptances,
whichever comes �rst, is a suitable compromise. Aarts and Van Laarhoven [1] demonstrate
that the number of iterations the algorithm should make between temperature changes is
an exponential function of problem size.

8.5.3 Temperature decrementation

As for the temperature decrement rule, the simplest and most common method is

U(zi) = ηTi (8.10)

where η is a constant close to, but smaller than, 1. The exponential cooling scheme
(ECS) is �rst proposed by Kirkpatrick et al. [58] with η = 0.95. Randelman and Grest
[79] compares this strategy with a linear cooling scheme (LCS) in which T is reduced
every L trials, so that

U(zi) = Ti −∆T. (8.11)

They �nd the reductions achieved using the two schemes to be comparable, and also note
that the �nal value of f is, in general, improved with slower cooling rates at the expense,
of course, of greater computational e�ort. Finally, they observe that the algorithm per-
formance depends more on the cooling rate ∆T

L
than on the individual values of ∆T and

L. Care must be taken to avoid negative temperatures when using the LCS.

Bohachevsky et al. [17] de�nes the annealing schedule as

U(zi) = ζ[f(xi)− f ∗]g1 , (8.12)

where ζ, g1 > 0 are constants. If the global optimum value f ∗ is not known, it is suggested
to employ an estimate f̂ of it, which is decreased when it is too high (e.g. each time
a function value lower than the estimate is observed), and increased if it is too low.
According to equation (8.12), the value of the temperature increases as the function
value in the current solution xk increases. The idea of this annealing schedule is that
worsening steps are accepted with a low probability when the current solution xk has a
value close to the global optimum value, thus trapping the algorithm in the promising
region around xk. Instead, if the function value of xk is much greater than the global
optimum, the temperature is high and many worsening steps are accepted, which prevents
the algorithm from getting trapped in the nonpromising region around xk. Romeijn and
Smith [83] motivate the use of (8.12) with g1 = 1 while Brooks and Verdini [20] discuss
the critical choice of the value ζ. They �nd that the value of ζ should be chosen so that
the percentage of accepted worsening steps with respect to the total number generated
worsening steps is about 60%.

Many researchers have proposed more elaborate annealing schedules, most of which are in
some respect adaptive, using statistical measures of the algorithm's current performance
to modify its control parameters. These are well reviewed by Van Laarhoven and Aarts
[98].

86 CHAPTER 8. SIMULATED ANNEALING APPROACHES

8.6 Stopping criterion

Due to the di�cult nature of the problems solved by SA algorithms, it is hard, if not
impossible, to de�ne a stopping rule which guarantees to stop when the global optimum
has been detected (at least within a given accuracy), or when there is signi�cantly high
probability of having detected it. Therefore the stopping rules proposed in the literature
are all heuristic in nature.

In Bohachevsky et al. [17] and Brooks and Verdini [20] the algorithm is stopped when
there has been no acceptance for a �xed number of iterations. Ingber [48] suggests the
algorithm stops when the acceptance ratio falls below a prescribed value, while Jones
and Forbes [51] terminate their algorithm when the statistics σ2 falls below a prescribed
value. This statistic is a measure of the variance of the function values of the sequence of
solutions visited by the algorithm.

Ultimately, these stopping rules are all based on a common and quite natural idea: Stop
the algorithm when it does not make signi�cant progress over a number of iterations.

8.7 Computational results

For the three problems described in Chapter 2 the algorithm is initialized with a single
randomly generated feasible solution. A candidate solution is generated by means of the
method proposed by Parks [75] as described in �8.3.

Figure 8.1 contains the average resultant acceptance values obtained by means of the
Metropolis acceptance function as described in �8.4 when the temperature is set from
Ti = 0.1 to Ti = 1 in increments of 0.1 unit. A total of ten algorithm runs per temperature
setting with all other variables �xed is performed in order to calculate a reasonable average
result. A standard deviation is computed for each set of twenty runs and an average of
these deviations is obtained as a measure of the acceptance function's performance. For
the Metropolis acceptance function the average standard deviation is computed to be
approximately 0.005.

Figure 8.2 contains the average resultant acceptance values obtained by means of the
Barker acceptance function as described in �8.4 when the temperature is set from Ti = 1
to Ti = 10 in increments of 1 unit. For the Barker acceptance function, the average
standard deviation is computed to be approximately 0.03. The results show the two
methods to be comparable, but the Metropolis function is prefered for the problems at
hand because of its smaller average standard deviation.

From the manner with which the acceptance probability decreases as observed in Figure
8.1, it is reasonable to accept the linear cooling scheme Ti+1 = T1 − 0.1. However,
determining the number of iterations between temperature changes is not so obvious.

8.7. COMPUTATIONAL RESULTS 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

Temperature

A
cc
ep
ta
n
ce

p
ro
b
a
b
il
it
y

Figure 8.1: The acceptance probability for each temperature increment for the Metropolis acceptance
function.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Temperature

A
cc
ep
ta
n
ce

p
ro
b
a
b
il
it
y

Figure 8.2: The acceptance probability for each temperature increment for the Barker acceptance
function.

8.7.1 Results for the SSP

Table 8.1 contains a summary of the results of Figures A.1 to A.7 in Appendix A, showing
the best performing Markov chain length L for each starting temperature T0, respectively.
When the initial temperature is relatively high, the resulting probability of accepting a
worsening solution is high and les iterations at each temperature should be allowed in

88 CHAPTER 8. SIMULATED ANNEALING APPROACHES

order to maintain a good solution. When the initial temperature is relatively low, the
resulting probability of accepting a worsening solution is low and more iterations at each
temperature may be allowed for a more extensive exploration of the search space.

Initial temperature T0 Best chain length L

0.8 100
0.7 100
0.6 200
0.5 400
0.4 300
0.3 500
0.2 500

Table 8.1: Summary of the best Markov chain lengths for each starting temperature, respectively, for
the SSP.

Figure 8.3 contains the objective function values obtained by the algorithm for each initial
temperature set at its best Markov chain length. For the SSP, a lower starting temperature
(0.2 to 0.4) combined with a larger Markov chain length (300 to 500 iterations) delivers
the best solutions.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
8

10

12

14

16

18

20

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
) T0 = 0.8 T0 = 0.7 T0 = 0.6 T0 = 0.5 T0 = 0.4

T0 = 0.3 T0 = 0.2

Figure 8.3: Average objective function values for each initial temperature at its best Markov chain
length for the SSP.

8.7. COMPUTATIONAL RESULTS 89

8.7.2 Results for the HPP

Table 8.2 contains a summary of the results of Figures A.8 to A.14 in Appendix A,
performing Markov chain length L for each starting temperature T0, respectively.

Initial temperature T0 Best chain length L

0.8 500
0.7 400
0.6 500
0.5 400
0.4 300
0.3 500
0.2 500

Table 8.2: Summary of the best Markov chain lengths for each starting temperature, respectively for
the HPP.

Figure 8.4 contains the objective function values obtained by the algorithm for each initial
temperature set at its best Markov chain length. For the HPP, a higher starting tem-
perature (0.7 to 0.8) combined with a larger Markov chain length (400 to 500 iterations)
delivers the best solutions as it allows for the most extensive solution space exploration.

0 500 1,000 1,500 2,000 2,500
200

250

300

350

400

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

T0 = 0.8 T0 = 0.7 T0 = 0.6 T0 = 0.5 T0 = 0.4
T0 = 0.3 T0 = 0.2

Figure 8.4: Objective function values for each initial temperature at its best Markov chain length for
the HPP.

8.7.3 Results for the MMRP

Table 8.3 contains a summary of the results of Figures A.15 to A.21 in Appendix A
showing the best performing markov chain length L for each starting temperature T0,

90 CHAPTER 8. SIMULATED ANNEALING APPROACHES

respectively.

Initial temperature T0 Best chain length L

0.8 200
0.7 300
0.6 300
0.5 400
0.4 300
0.3 500
0.2 500

Table 8.3: Summary of the best Markov chain lengths for each starting temperature, respectively for
the MMRP.

Figure 8.5 contains the objective function values obtained by the algorithm for each initial
temperature set at its best Markov chain length. For the MMRP, a mid-range starting
temperature (0.4 to 0.7) combined with a mid-range Markov chain length (300 to 400
iterations) delivers the best solutions.

0 500 1,000 1,500 2,000 2,500

240

260

280

300

320

340

360

380

Iterations

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

T0 = 0.8 T0 = 0.7 T0 = 0.6 T0 = 0.5 T0 = 0.4
T0 = 0.3 T0 = 0.2

Figure 8.5: Objective function values for each initial temperature at its best Markov chain length for
the MMRP.

Chapter 9
Solution summary

Chapters 3 to 8 contain the best arrangement for each solution approach with regards
to, for example, algorithm design and parameter settings. The results obtained from the
approaches set at these determined arrangements are compared in order to determine
which approach performs best for the three blending problems at hand.

9.1 The linear programming approach

In this section the results of the various linear programming approaches as described in
Chapter 3 are compared.

9.1.1 The SSP

Figure 9.1 contains a comparison of the objective function values obtained after application
of the LP approaches for the SSP described in �2.1. By comparing the upperbounds of
the LP approaches to the solution obtained by means of the exact approach, it is possible
to determine which decisions variables and constraint sets have the greatest in�uence on
the quality of the solution. From Figure 9.1 it can be seen that by concentrating on
the optimisation of decision variables that are in�uenced by inventory constraints, better
solutions are obtained than by concentrating, for example, on decision variables that are
in�uenced by component characteristic or blend production limit constraints.

9.1.2 The HPP

The LP approach for the HPP obtaines a �nal solution of R40 000 while the heuristic
approach (described in �2.2) obtains a �nal solution of R10 000. Though the heuristic
presents a good method of ensuring integrity of the component characteristics when they

91

92 CHAPTER 9. SOLUTION SUMMARY

12

14

16

18

20

22

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

LP

solution

Minimum

inventory

Minimum

closing

inventory

Average

octane

Maximized

blend

Di�erential

inventory

Figure 9.1: Summary of the results obtained after application of the LP approaches for the SSP.

are blended in pools, it performs rather poorly when compared to the solution obtained
by the exact solution approach.

9.1.3 The MMRP

Figure 9.2 contains a comparison of the objective function values obtained after application
of the LP approaches to the MMRP described in �2.3. Similar to the results obtained for
the SSP, better solutions are obtained when optimisation is concentrated on the decision
variables that are in�uenced by inventory constraints than when it is concentrated on
decision variables that are in�uenced by component characteristic and input constraints.

9.2 Metaheuristic solution summary

In this section the results of the various metaheuristic approaches described in Chapters
5 to 8 are compared with each other.

9.2.1 The SSP

Figure 9.3 contains the best and average results, respectively, obtained during 100 inde-
pendent algorithm runs. The genetic algorithm achieves a best result, i.e. closest to the
LP solution, with the best result of the tabu search as a close second. On average, the
tabu search obtaines a result closest to the exact solution with the genetic algorithm as
a close second. However, the error bars on the graph show that the average objective

9.2. METAHEURISTIC SOLUTION SUMMARY 93

250

300

350

400

450

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

LP

solution

Minimum

closing

inventory

Average

octane

Maximum

input

Figure 9.2: Summary of the results obtained after application of the LP approaches for the MMRP.

function value of the tabu search is subject to a greater standard deviation than the av-
erage objective function value obtained by the genetic algorithm approach. Regardless,
it is understood that a larger deviation around a better solution is prefered to a smaller
deviation around a weaker solution.

10

12

14

16

18

20

22

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

Average solution Best solution

Exact

solution

LRS GA7 CTSh SA0.4t300L

Figure 9.3: The best and average solution for each metaheuristic obtained after 100 independent runs
for the SSP. The error bars indicate the standard deviation associated with each result.

Figure 9.4 contains the average execution time of a single run for each metaheuristic,
respectively. The time it takes for a single run of the genetic algorithm is so much greater
than the time it takes for a single run of any of the other metaheuristics because the

94 CHAPTER 9. SOLUTION SUMMARY

genetic algorithm requires an entire population of feasible solutions to be found in the
search space as opposed to only one as in the case of the other metaheuristics.

0

20

40

60

A
ve
ra
g
e
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

LRS GA7 CTSh SA0.4t300L

Figure 9.4: The average execution time per run for each metaheuristic for the SSP.

9.2.2 The HPP

Figure 9.5 contains the best and average results obtained for each metaheuristic approach
obtained during 100 independent algorithm runs. Best results are obtained after applica-
tion of the blind random search, genetic algorithm and tabu search, with the simulated
annealing approach does not performing as well. Similar to the results obtained for the
sample problem, again on average, the tabu search obtains a result closest to the exact
solution with the genetic algorithm as a close second. The standard deviations indicated
by the error bars show that the di�erence between results is least in the average best
performing approach, i.e., the tabu search.

Figure 9.6 contains the average execution time of a single run for each metaheuristic,
respectively. Again the time it takes for a single run of the genetic algorithm or blind
random search is so much greater than the time it takes for a single run of any of the
other metaheuristics because both techniques require that an entire population of feasible
solutions be found in the search space as oppose to only one as in the case of the other
metaheuristics.

9.2.3 The MMRP

Figure 9.7 contains the best and average results obtained for each metaheuristic approach
during 100 independent algorithm runs. The best results are obtained after application of
the blind random search, genetic algorithm and tabu search, with the simulated annealing
approach not performing as well. Similar to the results obtained for the SSP, on average,

9.2. METAHEURISTIC SOLUTION SUMMARY 95

300

350

400

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

Average solution Best solution

Exact

solution

BRS GA7 CTSh SA0.6t500L

Figure 9.5: The best and average solution for each metaheuristic obtained after 100 independent runs
for the HPP.

0

0.2

0.4

0.6

0.8

1

A
ve
ra
g
e
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

BRS GA16 CTSh SA0.6t500L

Figure 9.6: The average execution time per run for each metaheuristic for the HPP.

the tabu search obtains a result closest to the exact solution with the genetic algorithm as
a close second. All four approaches are are quite stable and the small standard deviations
associated with each approach is illustrated by the error bars in the �gure.

Figure 9.8 contains the average execution time of a single run for each metaheuristic
approach, respectively. Again the time it takes for a single run of the genetic algorithm
or blind random search is so much longer than the time it takes for a single run of any
of the other metaheuristics because both techniques require that an entire population of
feasible solutions be found in the search space as opposed to only one as in the case of
the other approaches.

96 CHAPTER 9. SOLUTION SUMMARY

300

350

400

450

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

Average solution Best solution

Exact

solution

BRS GA7 CTSh SA0.7t400L

Figure 9.7: The best and average solution for each metaheuristic obtained after 100 independent runs
for the MMRP.

0

50

100

150

200

A
ve
ra
g
e
ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

BRS GA24 CTSh SA0.6t300L

Figure 9.8: The average execution time per run for each metaheuristic for the MMRP.

Chapter 10
The extended MMRP

Certain characteristics of the four metaheuristic approaches have been identi�ed and il-
lustrated in the literature. RSTs may be assumed to perform better on relatively small
problems while more intelligent con�guration search techniques such as the GA, TS and
SA approaches may be assumed to perform better on relatively large problems. This be-
havior is illustrated by Judson et al. [52] where RST, GA and SA approaches are applied
to a scalable model problem to measure relative performance over a range of molecule
sizes. They �nd that both GA and SA approaches perform progressively better relative
to the RST approach as the molecule size increases.

The MMRP is the most complex of the three problems and is the closest to a problem
likely to be found in reality. Therefore performance of the metaheuristic approaches to this
problem when the size of the problem is greatly increased, is investigated. The parameters
are set so that the problem now considers the production of 100 types of �nal products as
opposed to the original 5. These products are formed by blending from a selection of 1000
components as opposed to the original 11 and these components are obtained from 100
types of crude oil (as opposed to the original number of 2). The components are obtained
by re�ning the crude with 100 types processes as opposed to the original number of 5. All
other problem parameters are maintained as described in �2.3.

Candidate solutions for the initial solutions and populations are created by choosing
random values within estimated bounds. For the product characteristic constraints, the
minimum allowable RON limit is a value in [0, 130] while the maximum allowable RVP,
density and sulfur limits are values in [0, 20], [300, 350] and [0, 5], respectively. The price
for each product is a value in [0, 20]. For the process constraints, the maximum number of
barrels of crude that may pass through each process is an integer in [0, 100] while the cost
per barrel that passes through each process is a value in [0, 1]. For the crude constraints,
the maximum allowable number of barrels that may be purchased for each crude is an
integer in [0, 500] while the cost per barrel for each crude is a value in [0, 10]. Lastly, for
the component constraints, the RON, RVP, density and sulfur present in each is a value
in [0, 130], [0, 20], [0, 350] and [0, 5], respectively.

97

98 CHAPTER 10. THE EXTENDED MMRP

With these bounds, 100 initial solutions were generated. These solutions were feasible
in terms of the four main characteristic constraints, i.e. octane rating, vapour pressure,
density and sulfur content as well as in terms of production constraints for example, the
limit on the amount of crude that might pass through each process. The four metaheuristic
approaches were all applied to this same set of initial solutions to facilitate fair comparison
of their performance.

Figure 10.1 contains the best and average results obtained for each metaheuristic approach
100 independent algorithm runs. The best results are obtained after application of the
simulated annealing and tabu search approaches. The SA approach obtains the best
average result, although it has the greatest standard deviation associated with its �nal
average solution. The GA approach delivers the most stable average result as is illustrated
by the error bars on the �gure.

200

250

300

350

400

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

Average solution Best solution

BRS GA7 CTSw SA0.6t300L

Figure 10.1: The best and average solution for each metaheuristic obtained after 100 independent runs
for the extended MMRP.

Figure 9.8 contains the average execution time of a single run of each metaheuristic ap-
proach for the extended MMRP, respectively.

99

0

20

40

60

A
ve
ra
ge

ex
ec
u
ti
on

ti
m
e
(m

in
)

BRS GA7 CTSw SA0.6t300L

Figure 10.2: The average execution time per run for each metaheuristic for the extended MMRP.

100 CHAPTER 10. THE EXTENDED MMRP

Chapter 11
Conclusion

A brief summary of the work contained in this thesis is presented followed by a description
of various ideas to be explored in future research.

11.1 Thesis summary

This thesis opens by de�ning petrochemical blending problems and by giving a description
of Sasol and its operations. An introduction into the current blending solutions used by
Sasol and the need for metaheuristic approaches is given. Objectives set out for this thesis
also forms part of the introductory chapter.

The purpose of Chapter 2 is to provide a description of the three problems that form
the basis of this thesis and upon which the design and application of the metaheuristic
approaches is based. The input data and constraints for the SSP, HPP and MMRP are
presented in �2.1, �2.2 and �2.3, respectively.

The three problems at hand are then modeled mathematically and the exact solution
for each is obtained in �3.1, �3.3 and �3.5, respectively by means of linear programming.
To understand the nature and characteristics of the problems at hand, various linear
programming solution approaches are applied to the problems in �3.2, �3.4 and �3.6,
respectively. This is done in ful�llment of Thesis Objective I, as stated in �1.1. Constraints
placed on decision variables which describe component inventories prove to have a greater
in�uence on the solution quality than constraints placed on decisions variables which
describe the inherent characteristics of the product components. OK In Chapter 4 data
structures are introduced to represent the decision variables as well as the constraints sets
for each problem in �4.2, �4.3 and �4.4, respectively. Dependencies between the values of
the variables are discovered and methods for generating feasible solutions are developed.
A method for dealing with infeasible solutions is decided upon in �4.1. This is done in
ful�llment of Thesis Objective II, as stated in �1.1.

101

102 CHAPTER 11. CONCLUSION

A solution approach for the three problems at hand by means of random search techniques
is investigated in Chapter 5 in ful�llment of Thesis Objective III(a), as stated in �1.1.
From �5.4.1 it is concluded that local random search outperforms blind random search
on average for the SSP, albeit by a small margin. From �5.4.2 it is concluded that blind
random search outperforms local random search on average for the HPP and in �5.4.3,
this result also holds for the MMRP.

The application of metaheuristic approaches to the petrochemical blending problems com-
mences in Chapter 6 in ful�llment of Thesis Objective III(b), as stated in �1.1. An al-
gorithm con�guration that combines the use of elitism, ranked �tness assignment and
tournament selection of solution candidates gives the best average performance for all
three problems. The method of �tness assignment, however, has the greatest in�uence
on the average performance of the algorithm. In �6.9.1 the implementation of the genetic
algorithm by using island models is investigated, but it has little impact on the quality of
the solutions obtained.

A tabu search approach for the three problems at hand is given in Chapter 7 in ful�llment
of Thesis Objective III(c), as stated in �1.1. Despite the continuous nature of the problems,
two methods are successfully applied. In conclusion (�7.3.1) neither the size of the tabu
tenure nor the size of the neighbourhood signi�cantly in�uence the performance of the tabu
search algorithm for the three problems. In �7.3.2 it is concluded that a relative accuracy
value of 0.5 delivers a better average result and the hypersquare method outperforms the
immediate zone method with respect to the average objective function values obtained
for the three problems.

The last metaheuristic approach investigated is the simulated annealing approach in Chap-
ter 8 in ful�llment of Thesis Objective III(d), as stated in �1.1. Two candidate solution
acceptance function values are presented, but the Metropolis acceptance function is pre-
ferred above the Barker acceptance function because of its smaller standard deviation.
From �8.7.1, �8.7.2 and �8.7.3 it is concluded that a higher starting temperature in com-
bination with a shorter markov chain length delivers the best solution for the three prob-
lems.

Chapter 9 contains the conclusion of this thesis as a summary of the performance of the
various solution approaches in ful�llment of Thesis Objective IV(a), as stated in �1.1. For
the SSP, the minimum inventory approach and the minimum closing inventory approach
obtain solutions closest to the LP solution. For the MMRP the minimum closing inventory
approach again obtains a solution closes to the LP solution. In �9.2.1 it is concluded that
on average, the tabu search approach delivers the best average result with regards to
objective function value and execution time. In �9.2.2 it is concluded that both the tabu
search and the genetic algorithm approaches deliver the best average objective function
value result, but that the tabu search performs better in terms of its execution time. In
�9.2.3 this result again is evident. Furthermore, in ful�llment of Thesis Objective IV(b),
Chapter 10 contains results of the metaheuristic approaches after application of them to
an extended version of the MMRP. The simulated annealing approach is found to deliver

11.2. POSSIBLE FUTURE WORK 103

the best average performance for this problem.

11.2 Possible future work

Three suggestions are made with respect to possible future research emanating from the
work presented in this thesis (in ful�llment of Thesis Objective V).

11.2.1 Size and complexity extension of the problems

In this thesis, four sample problems were presented in order to achieve a proof of concept
for the successful application of metaheuristic solution approaches. As can be seen from
the results for the extended MMRP in Chapter 10, the behaviour of the approaches are
subject to a change in the size of the problems. The developed approaches should be
applied to real life problems. Realistic datasets describing actual re�nery conditions and
constraints should be used instead of randomly generated values. All e�ort was made to
obtain a real life data set from the industry, but all attempts were unsuccessful.

11.2.2 Metaheuristic con�gurations

Even more con�gurations for each of the four metaheuristic approaches should be investi-
gated. These further con�gurations may include di�erent numbers of algorithm runs for
the RST approaches, di�erent recombination and mutation rates for the GA approaches,
di�erent bounds on the tabu regions for the TS approaches and combinations and di�erent
markov chain lengths for the SA approaches. The application of self adjusting or adaptive
metaheuristics may also be investigated in an e�ort to optimise the parameter settings
[27].

11.2.3 Sensitivity

Once real life data sets have been obtained, sensitivity analysis of the various metaheuristic
approaches may be conducted. The true nature of some metaheuristic approaches may
only be revealed when they are applied to larger problems so that a more accurate verdict
may be made as to the sensitivity of the parameters.

104 CHAPTER 11. CONCLUSION

References

[1] Aarts EHL & Van Laarhoven PJM, 1985, Statistical cooling: A general approach
to combinatorial optimization problems, Philips Journal of Research, 40, pp. 193�226.

[2] Al-Shammari M & Dawood I, 1997, Linear programming applied to a produc-
tion blending problem: A spreadsheet modeling approach, Production and Inventory
Management Journal, 38(1), pp. 1�7.

[3] Amellal S & Kaminska B, 1993, Scheduling algorithm in data path synthesis using
the tabu search technique, Proceedings of the EDAC-EUROASIC 1993 Conference,
Paris, pp. 398�402.

[4] Anderson, RL, 1953, Recent advances in �nding best operating conditions, Journal
of the American Statistical Association, 48, pp. 789�798.

[5] Angeline PJ, 1998, A historical perspective on the evolution of executable structures,
Informaticae, 36(1�4) pp. 179�195.

[6] AMPL, 2008, Bell Laboratory's index page, [Online], [Cited November 10th, 2008],
Available from http://www.ampl.com/

[7] Bäck T & Hoffmeister F, 1991, Extended selection mechanisms in genetic algo-
rithms, Proceedings of the Fourth International Conference on Genetic Algorithms,
San Mateo (CA), pp. 92�99.

[8] Bäck T, Fogel D & Michalewicz Z, 2000, Evolutionary computation 1: Basic
algorithms and operators. Institute of Physics Publishing, Bristol.

[9] Bäck T, Fogel DB & Michalewicz Z, 2000, Evolutionary computation 2: Ad-
vanced algorithms and operators, Institute of Physics Publishing, Bristol.

[10] Baker JE, 1987, Reducing bias and ine�ciency in the selection algorithm, Pro-
ceedings of the Second International Conference on Genetic Algorithms and their
Application, Hillsdale (NJ), pp. 14�21.

105

 http://www.ampl.com/

106 REFERENCES

[11] Barker A, 1989, Neural networks for data fusion, Masters Thesis, University of
Virginia, Charlottesville (VA).

[12] Banzhaf W, Nordin P, Keller RE & Francone FD, 1998, Genetic program-
ming: An introduction, Morgan Kaufmann, San Francisco (CA).

[13] Beasly JE, 1996, Advances in linear and integer programming, Oxford University
Press, New York (NY).

[14] Ben-Ameur W, 2004, Computing the intial temperature of simulated annealing,
Computational Optimization and Applications, 29, pp. 369�385.

[15] Bland A & Dawson GP, 1991, Tabu search and design optimization, IEEE Trans-
actions on Computer Aided Design, 23, pp. 195�201.

[16] Blickle T & Thiele L, 1995, A comparison of selection schemes used in genetic
algorithms (2nd edition), TIK Report No. 11, Computer Engineering and Communi-
cation Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zürich.

[17] Bohachevsky IO, Johnson ME & Stein ML, 1986, Generalized simulated an-
nealing for function optimization, Technometrics, 28, pp. 209�217.

[18] Borovska P & Lazarova M, 2007, Migration policies for island genetic models on
a multicomputer platform, IEEE International Workshop on Intelligent Data Acqui-
sition and Advanced Computing Systems, Technology and Applications, pp.143�148.

[19] Bounds DG, 1987, New optimization methods from physics and biology, Nature
329, pp. 215�218.

[20] Brooks DG & Verdini WA, 1988, Computational experience with generalized sim-
ulated annealing over continuous variables, American Journal of Mathematical and
Management Sciences, 8, pp. 425�449.

[21] Busetti F, 2003, Simulated annealing overview, [Online], [Cited April 2nd, 2009],
Available from http://www.geocities.com/francorbusetti/saweb.pdf.

[22] Cerný V, 1985, A thermodynamical approach to the travelling salesman problem:
An e�cient simulation algorithm, Journal of Optimization Theory and Applications,
45, pp. 41�51.

[23] Chelouah R & Siarry P 2000, Tabu search applied to global optimization, Euro-
pean Journal of Operational Research, 123, pp 256�170.

[24] Coello C, 2001, Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art, Computer Methods in
Applied Mechanics and Engineering, 191(11�12), pp. 1245�1287.

http://www.geocities.com/francorbusetti/saweb.pdf

REFERENCES 107

[25] Cohoon J, Hegde S, Martin W & Richards D, 1987, Punctuated equilibria:
A parallel genetic algorithm, Proceedings of the Second International Conference on
Genetic Algorithms, Hillsdale (NJ), pp. 148�154.

[26] Cramer N, 1985, A representation for the adaptive generation of simple sequential
programs, Proceedings of an International Conference on Genetic Algorithms and the
Applications, Carnegie-Mellon University, Pittsburgh (PA), pp. 183�187.

[27] Dreo J, Petrowski A, Siarry P & Talliard E, 2006, Metaheuristics for hard
optimization: Methods and case studies, Springer-Verlag, Berlin.

[28] Darwin C, 1859, The Origin of species by means of natural selection, Mentor
Reprint, New York (NY).

[29] Dubois N & De Werra D, 1993, Epcot: An e�cient procedure for coloring op-
timally with tabu search, Computers and Mathematics with Applications, 25, pp.
35�45.

[30] Dunagan J & Vempala S, 2008, A polynomial-time rescaling algorithm for solving
linear programs, Mathematical Programming, 114(1), pp 101�114.

[31] Floudas CA & Pardalos PM, 1990, A collection of test problems for constrained
global optimization algorithms, Springer Lecture Notes In Computer Science, 455,
pp. 58 � 80.

[32] Friedberg R, 1958, A learning machine: Part I, IBM Journal of Research and
Development, 2, pp. 2�13.

[33] Friedberg R, Dunham B & North J, 1959, A learning machine: Part II, IBM
Journal of Research and Development, 3, pp. 282�287.

[34] Fogel D, 1998, Evolutionary computation: The fossil record, IEEE Press, Piscat-
away, New Jersey (NY).

[35] General algebraic modeling system (GAMS), 2008, GAMS' index page, [On-
line], [Cited on November 10th, 2008], Available from http://www.gams.com/.

[36] Gendreau M, 2003, An introduction to tabu search, Handbook of Metaheuristics.
Kluwer Academic Publishers, Boston (MA).

[37] Glover F, 1986, Future paths for integer programming and links to arti�cial intel-
ligence, Computers and Operations Research, 13, pp. 533�549.

[38] Glover F, 1989, Tabu Search - Part I, ORSA Journal on Computing, 1, pp. 190�
206.

[39] Glover F, 1990, Tabu Search - Part II, ORSA Journal on Computing, 2, pp. 4�32.

http://www.gams.com/

108 REFERENCES

[40] Glover F, 1990, Tabu Search - A Tutorial, Interfaces, 20, pp. 74�94.

[41] Goldberg DE & Deb K, 1991, A comparative analysis of selection schemes used
in genetic algorithms, Foundations of Genetic Algorithms, 1, pp. 69�93.

[42] Hajji O, Brisset S & Brochet P, 2004, A new tabu search method for opti-
mization with continuous parameters, IEEE Transactions on Magnetics, 40(2), pp.
1184�1187.

[43] Hansen P, 1986, The steepest ascent mildest descent heuristic for combinatorial pro-
gramming, Congress on Numerical Methods in Combinatorial Optimization, Capri.

[44] Haverly CA, 1978, Studies of the behavior of recursion for the pooling problem,
ACM SIGMAP Bulletin 25, pp. 19�28.

[45] Hertz A & De Werra D, 1991, The tabu search metaheuristic: How we used it,
Annals of Mathematics and Arti�cial Intelligence, 1, pp. 111�121.

[46] Hoos HH & Stutzle T, 2005, Stochastic local search: Foundations & applications,
Morgan Kaufmann Publishers, San Francisco (CA).

[47] Hu N, 1992, Tabu search method with random moves for globally optimal design,
International Journal for Numerical Methods in Engineering, 35, pp 1055�1070.

[48] Ingber, L, 1993, Simulated Annealing: Practice versus theory, Mathematical and
Computer Modelling, 18(11), pp. 29�56.

[49] Johnson DS, 1990, Local optimization and the travelling salesman problem, Proceed-
ings of the Automata, Languages and Programming - 17th International Colloquium,
Springer Verlag, New York (NY), 443, pp. 446-461.

[50] Johnson DS, Papadimitriou CH & Yannakakis M, 1988, How easy is local
search?, Journal of Computer and System Sciences, 37(1), pp. 79 � 100.

[51] Jones AEW & Forbes GW, 1995, An adaptive simulated annealing algorithm for
global optimization over continuous variables, Journal of Global Optimization, 6, pp.
1�37.

[52] Judson RS, Colvin ME, Meza JC, Huffer A & Gutierrez D, 1992, Do intel-
ligent con�guration search techniques outperform random search for large molecules?,
Sandia Report SAND91-8740, Sandia National Laboratories, Center for Computa-
tional Engineering, Livermore (CA).

[53] Kalai G, 1992, A subexponential randomized simplex algorithm, Proceedings of the
24th ACM Symposium on Theory of Computing (STOC 1992), pp. 475�482.

[54] Kallrath J, 2004, Modeling languages and mathematical optimization, Kluver Aca-
demic Publishers, Boston (MA).

REFERENCES 109

[55] Karnopp DC, 1963, Random search techniques for optimization problems, Auto-
matica, 1, pp. 111-121.

[56] KBC Consultants, 2008, KBC Advanced Technologies, KBC House, Surrey, UK,
[Personal correspondence], Contactable at tel. +44 (0) 1932 242424.

[57] Kelly JD, 2003, Next-generation re�nery scheduling technology, Proceedings of the
September, 2003 NPRA Plant Automation and Decision Support Conference, San
Antonio (TX).

[58] Kirkpatrick S, Gelatt CD & Vecchi MP, 1983, Optimization by simulated
annealing, Science 220 (4598), pp. 671�680.

[59] Koza J, 1992, Genetic programming: On the programming of computers by means
of natural selection, MIT Press, Cambridge (MA).

[60] Koza J, 1994, Genetic programming II: Automatic discovery of reusable programs,
MIT Press, Cambridge (MA).

[61] Koza J, Keane M, Streeter M, Mydlowec W, Yu J & Lanza G, 2003,
Genetic programming IV: Routine human-competitive machine intelligence, Kluwer
Academic Publishers, Boston (MA).

[62] Kuri-Morales AF & Gutíerrez-Garcia J, 2001, Penalty functions methods for
constrained optimization with genetic algorithms: A statistical analysis, Proceedings
of the 2nd Mexican International Conference on Arti�cial Intelligence, Heidelberg.

[63] Langdon W, 1999, Scaling of program �tness spaces, Evolutionary Computation,
7(4), pp. 399�428.

[64] Langly D & Coetzer R, 2008, Computer experiments: Synergies between linear
programming, experimental design and statistical metamodels, Proceedings of the In-
ternational Federation of Operations Research Societies (IFORS) Conference, Sand-
ton, South Africa.

[65] Leon L, Przasnyski Z & Seal KC, 1996, Spreadsheet and OR/MS models: An
end-user perspective, Interfaces, 26(2), pp. 92�104

[66] Lingo, 2008, Lindo systems' index page, [Online], [Cited November 10, 2008], Avail-
able from http://www.lingo.com/.

[67] Locatelli M, 2000, Convergence of a simulated annealing algorithm for continuous
global optimization, Journal of Global Optimization, 18(3), pp.219�233.

[68] Matyas J, 1965, Random Optimization, Automation and Remote Control, 26, pp.
244�251.

http://www.lingo.com/

110 REFERENCES

[69] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH & Teller
E, 1953, Equations of state calculations by fast computing machines, Journal of Chem-
ical Physics, 21(6), pp. 1087�1092.

[70] Motwani R & Raghavan P, 1996, Randomized algorithms, ACM Computing Sur-
veys, 28, pp. 33�38.

[71] Microsoft, 2003, Microsoft O�ce 2003 Excel, [Online], [Cited November 10, 2008],
Available from http://office.microsoft.com/en--us/excel/FX100487621033.

aspx.

[72] Mühlenbein H & Schlierkamp-Voosen D, 1993, Predictive models for the
breeder genetic algorithm: Continuous parameter optimization, Evolutionary Com-
putation, 1(1), pp. 25�49.

[73] Nilsson N, 1971, Problem-solving methods in arti�cial intelligence, McGraw-Hill,
New York (NY).

[74] Palacios-Gomez F, Lasdon L, Engquist M, 1982, Nonlinear optimization by
successive linear programming, Management Science, 28(10), pp. 1106�1120.

[75] Parks GT, 1990, An intelligent stochastic optimization routine for nuclear fuel cycle
design, Nuclear Technology, 89, pp. 233�246.

[76] Pettey C, Leuze M & Grefenstette J, 1987, A parallel genetic algorithm,
Proceedings of the Second International Conference on Genetic Algorithms and Their
Applications, Hillsdale (NJ).

[77] Pegden D, Shannon RE & Sadowski RP, 1995, Introduction to simulation using
SIMAN, 2nd Edition, McGraw-Hill, New York (NY).

[78] Pohlheim H, 1997, Advanced techniques for the visualization of evolutionary algo-
rithms, Proceedings of the 42nd International Scienti�c Colloquium, Ilmenau, 3, pp.
60�68.

[79] Randelman RE & Grest GS, 1986, N-City traveling salesman problem � Opti-
mization by simulated annealings, Journal of Statistics and Physics, 45, pp. 885�890.

[80] Ragsdale CT, 2007, Spreadsheet modeling and decision analysis 5th edition, South-
Western College Publishing, Columbus (OH).

[81] Rastrigin LA, 1963, The convergence of the random search method in the extremal
control of a many-parameter system, Automation and Remote Control, 24, pp. 1337�
1342.

[82] Reeves CR, 1993, Modern heuristic techniques for combinatorial problems, John
Wiley & Sons, New York (NY).

 http://office.microsoft.com/en--us/excel/FX100487621033.aspx
 http://office.microsoft.com/en--us/excel/FX100487621033.aspx

REFERENCES 111

[83] Romeijn HE & Smith RL, 1994, Simulated annealing for constrained global opti-
mization, Journal of Global Optimization, 5, pp. 101�126.

[84] Rosca J & Ballard D, 1999, Rooted-tree schemata in genetic programming, Ad-
vances in Genetic Programming, 3(11), pp 243�271.

[85] Roscoe Davis K & McKeown PG, 1984, Quantitative models for management,
Kent Publishing Company, Boston (MA).

[86] Sakalli US & Birgoren B, 2008, A spreadsheet-based decision support tool for
blending problems in brass casting industry, Computers & Industrial Engineering, 10,
pp. 1016�1028.

[87] Schuur PC, 1997, Classi�cation of acceptance criteria for the simulated annealing
algorithm, Mathematics of Operations Research, 22(2), pp. 266�275.

[88] Schwefel HP, 1995, Evolution and optimum seeking, John Wiley & Sons, New
York (NY).

[89] Siarry P & Berthiau G, 1997, Fitting of tabu search to optimize functions of
continuous variables, International Journal for Numerical Methods in Engineering,
40, pp. 2449�2457.

[90] Skorin-Kapov J, 1990, Tabu search applied to the quadratic assignment problem,
ORSA Journal on Computing, 2, pp. 33�41.

[91] Solis FJ & Wets RBJ, 1981, Minimization by random search techniques, Mathe-
matics of Operations Research, 6(1), pp. 19�30.

[92] Soriano P & Gendreau M, 1996, Diversi�cation strategies in tabu search algo-
rithms for the maximum clique problems, Annals of Operations Research, 63, pp.
189�207.

[93] Spall JC, 2003, Introduction to stochastic search and optimization: Estimation,
simulation and control, Wiley, Hoboken (NJ).

[94] Storn R & Price K, 1997, Di�erential evolution � A simple and e�cient heuristic
for global optimizaiton over continuous spaces Journal of Global Optimization, 11,
pp. 341�359.

[95] Toklu YC, 2005, Aggregate blending using genetic algorithms, Computer-Aided
Civil and Infrastructure Engineering, 20, pp. 450�460.

[96] Turing A, 1950, Computing machinery and intelligence, Mind, 59, pp. 433�460.

[97] Vanderbilt D & Louie SG, 1984, A Monte Carlo simulated annealing approach to
optimization over continuous variables, Journal of Computational Physics, 56, pp.
259�271.

112 REFERENCES

[98] Van Laarhoven PJM & Aarts EHL, 1987, Simulated annealing: Theory and
applications, Reidel, Dordrecht.

[99] Van Rossum G, 2008, Python Language Website, [Online], [Cited on November 10,
2008], Available from http://www.python.org/.

[100] Wang M, Chen X & Qian J, 2004, An improvement of continuous tabu search
for global optimization, Intelligent Control and Automation, 1, pp. 375�377.

[101] Wikipedia, 2001, Metaheuristic - Wikipedia, the free encyclopedia, [Online], [Cited
March 5th, 2009], Available from http://en.wikipedia.org/wiki/Metaheuristic.

[102] Wikipedia, 2001, Octane rating - Wikipedia, the free encyclopedia, [Online], [Cited
March 5th, 2009], Available from http://en.wikipedia.org/wiki/Research_

Octane_Number.

[103] Wikipedia, 2001, Reid Vapour Pressure - Wikipedia, the free encyclopedia, [On-
line], [Cited March 5th, 2009], Available from http://en.wikipedia.org/wiki/

Reid_Vapor_Pressure.

[104] Wikipedia, 2001, Tertiary amyl methyl ether - Wikipedia, the free encyclopedia,
[Online], [Cited March 5th, 2009], Available from http://en.wikipedia.org/wiki/

Tertiary_amyl_methyl_ether.

[105] Whitely D, 1993, A genetic algorithm tutorial, Technical Report CS-93-103, Col-
orado State University, Fort Collins (CO).

[106] Whitley D, Rana S & Heckendorn R 1997, Island model genetic algorithms
and linearly separable problems, Proceedings of AISB Workshop on Evolutionary
Computation, Manchester, pp. 109�125.

http://www.python.org/
 http://en.wikipedia.org/wiki/Research_Octane_Number
 http://en.wikipedia.org/wiki/Research_Octane_Number
 http://en.wikipedia.org/wiki/Reid_Vapor_Pressure
 http://en.wikipedia.org/wiki/Reid_Vapor_Pressure
 http://en.wikipedia.org/wiki/Tertiary_amyl_methyl_ether
 http://en.wikipedia.org/wiki/Tertiary_amyl_methyl_ether

Appendix A
Additional SA results

Figures A.1 to A.7, A.8 to A.14 and A.15 to A.21 contain the average results for the SSP,
HPP and MMRP, respectively when the lengths of each Markov chain is set equally over
the range L = 100 to L = 500 in increments of 100 iterations for initial temperatures over
the range T0 = 0.8 to T0 = 0.2. For every initial temperature and for every Markov chain
length the algorithm was run the number of times as shown in Tables A.1, A.2 and A.3
for the SSP, HPP and MMRP, respectively in order to determine its average performance.
The average for each Markov chain length is compared in order to determine which length
compliments which initial temperature best.

Chain Number of algorithm runs

length (L) T0 = 0.8 T0 = 0.7 T0 = 0.6 T0 = 0.5 T0 = 0.4 T0 = 0.3 T0 = 0.2

100 95 95 160 95 120 100 100
200 130 210 95 70 105 180 145
300 215 235 205 235 85 80 115
400 236 240 100 180 115 145 100
500 229 285 230 185 60 160 131

Table A.1: The number of algorithm runs required to obtain a 90% con�dence level for the SSP.

Chain Number of algorithm runs

length (L) T0 = 0.8 T0 = 0.7 T0 = 0.6 T0 = 0.5 T0 = 0.4 T0 = 0.3 T0 = 0.2

100 2 240 7 419 7 989 6 845 7 190 9 315 9 661
200 2 460 6 165 1 490 6 160 6 300 9 715 9 510
300 4 740 3 965 4 300 3 305 2 930 6 040 4 765
400 2 705 1 585 1 089 4 220 6 015 2 602 2 820
500 2 009 2 168 1 250 4 428 3 650 9 480 8 040

Table A.2: The number of algorithm runs required to obtain a 90% con�dence level for the HPP.

113

114 APPENDIX A. ADDITIONAL SA RESULTS

Chain Number of algorithm runs

length (L) T0 = 0.8 T0 = 0.7 T0 = 0.6 T0 = 0.5 T0 = 0.4 T0 = 0.3 T0 = 0.2

100 1 639 400 5 126 5 005 4 686 6 676 3 296
200 2 335 2 566 2 013 3 781 6 942 4 264 9 31
300 2 260 1 784 1 637 2 427 2 416 1 668 3 076
400 518 4 015 2 229 3 162 1 065 4 671 1 426
500 2 830 1 911 3 007 1 259 2 282 3 298 4 371

Table A.3: The number of algorithm runs required to obtain a 90% con�dence level for the MMRP.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
8

10

12

14

16

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.1: The average objective function values for T0 = 0.8 in combination with a Markov chain
length of L for the SSP.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
8

10

12

14

16

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.2: The average objective function values for T0 = 0.7 in combination with a Markov chain
length of L for the SSP.

115

0 500 1,000 1,500 2,000 2,500 3,000
8

10

12

14

16

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.3: The average objective function values for T0 = 0.6 in combination with a Markov chain
length of L for the SSP.

0 500 1,000 1,500 2,000 2,500
8

10

12

14

16

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.4: The average objective function values for T0 = 0.5 in combination with a Markov chain
length of L for the SSP.

116 APPENDIX A. ADDITIONAL SA RESULTS

0 500 1,000 1,500 2,000
8

10

12

14

16

18

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.5: The average objective function values for T0 = 0.4 in combination with a Markov chain
length of L for the SSP.

0 200 400 600 800 1,000 1,200 1,400
8

10

12

14

16

18

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(R

)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.6: The average objective function values for T0 = 0.3 in combination with a Markov chain
length of L for the SSP.

117

0 100 200 300 400 500 600 700 800 900 1,000
8

10

12

14

16

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.7: The average objective function values for T0 = 0.2 in combination with a Markov chain
length of L for the SSP.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
150

200

250

300

350

400

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.8: The average objective function values for T0 = 0.8 in combination with a Markov chain
length of L for the HPP.

118 APPENDIX A. ADDITIONAL SA RESULTS

0 500 1,000 1,500 2,000 2,500 3,000
150

200

250

300

350

400

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.9: The average objective function values for T0 = 0.7 in combination with a Markov chain
length of L for the HPP.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400
100

200

300

400

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.10: The average objective function values for T0 = 0.6 in combination with a Markov chain
length L for the HPP.

119

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
150

200

250

300

350

400

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.11: The average objective function values for T0 = 0.5 in combination with a Markov chain
length L for the HPP.

0 200 400 600 800 1,000 1,200 1,400
150

200

250

300

350

400

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.12: The average objective function values for T0 = 0.4 in combination with a Markov chain
length L for the HPP.

120 APPENDIX A. ADDITIONAL SA RESULTS

0 100 200 300 400 500 600 700 800 900 1,000
150

200

250

300

350

400

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.13: The average objective function values for T0 = 0.3 in combination with a Markov chain
length L for the HPP.

0 50 100 150 200 250 300 350 400 450 500
150

200

250

300

350

400

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(k
R
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.14: The average objective function values for T0 = 0.2 in combination with a Markov chain
length L for the HPP.

121

0 500 1,000 1,500 2,000 2,500 3,000 3,500
240

260

280

300

320

340

360

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.15: The average objective function values for T0 = 0.8 in combination with a Markov chain
length L for the MMRP.

122 APPENDIX A. ADDITIONAL SA RESULTS

0 500 1,000 1,500 2,000 2,500 3,000
240

260

280

300

320

340

360

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.16: The average objective function values for T0 = 0.7 in combination with a Markov chain
length L for the MMRP.

0 500 1,000 1,500 2,000 2,500
240

260

280

300

320

340

360

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.17: The average objective function values for T0 = 0.6 in combination with a Markov chain
length L for the MMRP.

123

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
240

260

280

300

320

340

360

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.18: The average objective function values for T0 = 0.5 in combination with a Markov chain
length L for the MMRP.

0 200 400 600 800 1,000 1,200 1,400
240

260

280

300

320

340

360

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.19: The average objective function values for T0 = 0.4 in combination with a Markov chain
length L for the MMRP.

124 APPENDIX A. ADDITIONAL SA RESULTS

0 100 200 300 400 500 600 700 800 900 1,000
240

260

280

300

320

340

360

Iterations

A
ve
ra
g
e
ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.20: The average objective function values for T0 = 0.3 in combination with a Markov chain
length L for the MMRP.

0 50 100 150 200 250 300 350 400 450 500
240

260

280

300

320

340

360

Iterations

A
ve
ra
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(D

$
)

L = 100 L = 200 L = 300 L = 400 L = 500

Figure A.21: The average objective function values for T0 = 0.2 in combination with a Markov chain
length for the MMRP.

	List of Figures
	List of Tables
	List of Acronyms
	List of Reserved Symbols
	Introduction
	Thesis scope and objectives
	Thesis layout and organisation

	Problem Description
	The simplified sample problem
	The Haverly pooling problem
	The Marco mini-refinery problem

	A linear programming approach
	An exact solution approach for the SSP
	LP approaches for the SSP
	The minimum inventory approach
	The minimum closing inventory approach
	The average octane approach
	The maximized blend approach
	The differential inventory approach

	An exact solution approach for the HPP
	Heuristic solution for the HPP
	An exact solution approach for the MMRP
	LP approaches for the MMRP
	The minimum closing inventory approach
	The maximum input approach
	The average octane approach

	Conclusion

	Data structure
	Penalty Functions
	Data structure for the SSP
	Data structure for the HPP
	Data structure for the MMRP

	Random search techniques
	Overview
	Blind random search
	Local random search
	Computational results
	The SSP
	The HPP
	The MMRP

	Genetic algorithm approaches
	Overview
	Genome structure
	Fitness determination
	Genome selection
	Recombination operator
	Mutation operator
	Proportions of genetic operators
	Island models
	Computational Results
	The SSP
	The HPP
	The MMRP

	Tabu search approaches
	Overview
	Search space and neighbourhood structure
	Tabus
	Aspiration criteria
	Intensification and diversification

	TS for continuous global optimisation
	Continuous TS by the hypersquare method
	Continuous TS by the immediate zone method

	Computational results
	The CTSh
	The CTSz
	Comparison of methods

	Simulated annealing approaches
	Overview
	Solution representation
	Candidate distribution
	The acceptance function
	Annealing schedule
	Initial temperature T0
	Length of the Markov chains
	Temperature decrementation

	Stopping criterion
	Computational results
	Results for the SSP
	Results for the HPP
	Results for the MMRP

	Solution summary
	The linear programming approach
	The SSP
	The HPP
	The MMRP

	Metaheuristic solution summary
	The SSP
	The HPP
	The MMRP

	The extended MMRP
	Conclusion
	Thesis summary
	Possible future work
	Size and complexity extension of the problems
	Metaheuristic configurations
	Sensitivity

	References
	Additional SA results

