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UNDERSTANDING THE PWM NON-LINEARITY

I. INTRODUCTION

Fixed frequency pulse-width modulation (PWM) forms the basis for controlling a vast variety of power electronic

converters. The applications of pulse-width modulation range from simple buck converters to high-power multilevel

converters. The fact that the behaviour of a pulse-width modulated converter is easy to analyse makes the design of

the filter components and calculation of the losses in the converter relatively straightforward. From a control point

of view the low-frequency model of a pulse-width modulated converter is simply that of a linear amplifier and basic

control loops, usually based on PI or PID controllers, are easy to design.

One application of pulse-width modulation where very high requirements are set on the performance of the control

loop is that of pulse-width modulated class-d audio amplifiers. In order to obtain state-of-the art performance loop

gains of more than 50 dB are required across the audio band [1]. In this case the simple linear low-frequency model

of the pulse-width modulator is not sufficient to obtain the required performance and more advanced models [2], that

take the sampling effect of the pulse-width modulator into account, have been investigated. The issue of the influence

of ripple feedback on the small-signal gain of the PWM control loop and finding efficient ways to compensate for

this also has to be dealt with [3], [4].

Modulation theory has been a major research area in power electronics for over four decades. Sinusoidal pulse-width

modulation (SPWM) has been studied since the 1950s. The first analysis of the harmonics generated by naturally

sampled pulse-width modulation can be found in [5]. The geometric model that is presented in this textbook is an

innovative application of periodic waveforms of two variables and was based on unpublished works of Bennett. This

method of deriving a double Fourier series expansion for the PWM signal has since become the basis on which most

further research is based. The geometric method of [5] does rely on a certain amount of three-dimensional insight to

construct the ‘walls’ and requires a knowledge of double Fourier series expansions. The work of Holmes and Lipo

[6] is a valuable resource for almost all of the possible variations on the theme of pulse-width modulation based on

this geometric method first introduced by Black. It analyses advanced pulse-width modulation strategies including

space-vector modulation [7], [8], [9] as well as applications of pulse-width modulation to multilevel converters [10],

[11], [12] where some of the harmonic side-bands are eliminated through phase-shifting of the carriers.

An important question is how to analyse the PWM spectrum in the more general case where the modulating

waveform is not a simple sinusoid. In [13] Holmes included a third harmonic in the modulating waveform. This

presented an important advance since third-harmonic injection [14] is a simple way of achieving over-modulation

in three-phase converters without distorting the output voltage. In work by Deslauriers, Avdiu and Ooi [15] a

general analytic method, based on the geometric method of Black, of predicting the spectrum for any modulating

waveform with a Fourier series expansion and taking a finite number of harmonics into account was presented for

a naturally sampled double-side pulse-width modulator. Furthermore, conditions for signal recovery similar to the

Nyquist theorem or Carson’s rule for FM modulation were derived.

The geometric method of [5] provides an analytical way of calculating the harmonics of the PWM waveforms and

results in closed form solutions for a number of special cases of the modulating waveform. Unfortunately it provides

little insight into the PWM process and the mechanisms that generate the harmonic sidebands. Since it is based on

Fourier series methods it is only applicable to the case where the modulating waveform is periodic. In this booklet

a new approach to analyse the behaviour of a single-sided pulse-width modulator is presented. By using elementary
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methods it is shown how the pulse-width modulated waveforms can be decomposed into the original modulating

waveform, a copy of the sawtooth carrier and a sawtooth function. By applying the standard one-dimensional Fourier

series representation of the sawtooth function an equivalent model of the pulse-width modulator is derived. The

model clearly identifies the non-linearities that generate the harmonic sidebands and shows how these sidebands are

modulated onto sinusoidal carriers at integer multiples of the switching frequency to generate the PWM spectrum.

The special case of sinusoidal modulation is easily dealt with and the well-known equations for the harmonics are

derived in a few simple steps. No knowledge of the geometric method of [5] or of two-dimensional Fourier series

expansions is required. The new model predicts the Fourier transform of the PWM signal. It applies to any modulating

waveform and no assumption regarding its periodicity has to be made. The only restriction is that the modulating

waveforms must be limited to 1 or -1 in the case of over-modulation. It thus extends the existing methods based on

those of Bennett and Black, which only applies to periodic modulating waveforms, to include aperiodic modulating

waveforms.

A new simulation strategy can easily be derived once the non-linearity that generates the PWM sidebands has

been identified. The proposed simulation strategy does not require the exact calculation of the intersection between

the modulating waveform and the carrier, nor does it require very fine time quantisation of the PWM signal.

In the second part of the booklet the model is applied to the case where the modulating waveform consists of a

finite sum of different modulating waveforms. It is shown that addition of modulating waveforms in the time domain

translates into convolution of the PWM sidebands in the frequency domain. The resulting model is intuitively easy

to understand and provides an accurate way of predicting the PWM spectrum in the case where the modulating

waveform is a band-limited periodic waveform.

In the final part of the booklet regular sampled single-sided PWM is considered. The interaction of the sampling

process and the PWM non-linearity is studied and a general expression for the Fourier transform of a regular sampled

PWM waveform is derived. When adapting the original method of Bennett and Black to include sampled PWM [6]

a special trick is used (y is replaced by y′+
(

ω0

ωc

)

x) in the construction of the unit cell. This trick only works if the

modulating waveform is periodic. Using the techniques developed here it is again shown how the assumption that

the modulating waveform is periodic can be dropped.

II. A SIMPLE APPROACH TO THE PWM SPECTRUM

Consider the PWM pulse train p(t) in Figure 1(b) generated by comparing the PWM modulating waveform f(t)

with the sawtooth carrier st(ωst) of Figure 1(a), where ωs is the switching frequency. This pulse train can be

decomposed as the sum of three functions

p(t) = f(t)− st(ωst) + st(ωst− πf(t) + π), (1)

as shown in Figure 1(c). In order to prove this statement it is only necessary to consider p(t) over the interval

−Ts

2 ≤ t ≤ Ts

2 . The remainder of the proof follows from the fact that the sawtooth carrier is periodic.

Note that tx is the time instant when f(t) intersects st(ωst). Now consider the decomposition of equation (1):

• During the interval −Ts
2 ≤ t ≤ tx it is easy to see that −π < ωst− πf(t) + π < π which implies

f(t)− st(ωst) + st(ωst− πf(t) + π) = f(t)−
1

π
ωst+

1

π
(ωst− πf(t) + π) = 1.

Similarly for tx ≤ t ≤ Ts

2 it is easy to see that π < ωst− πf(t) + π < 3π which implies that

f(t)− st(ωst) + st(ωst− πf(t) + π) = f(t)−
1

π
ωst+

1

π
(ωst− πf(t) + π − 2π) = −1.

This argument can easily be adapted to the case where the modulating waveform p(t) intersects the carrier not once,

but a finite number of times per switching period.
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Fig. 1. Expanding the PWM pulse train into sawtooth functions.

The next step is to to expand the sawtooth function st(θ) into its exponential Fourier series representation:

st(θ) =
j

π

∞
∑

m=−∞

m6=0

ejm(θ+π)

m
(2)

Replacing the second sawtooth functions in equation (1) with its Fourier series expansions results in:

p(t) = f(t)− st(ωst) +
j

π

∞
∑

m=−∞

m6=0

1

m
ejm(ωst−πf(t)). (3)

It should be noted that it is possible to derive equation (3) through a modification of the geometric method of

[5]. The original method of [5] only applies to periodic modulating waveforms since it is based on a Fourier series

representation of the background function along both axes. However, by taking the Fourier transform along the y-

axis and the Fourier series representation along the x-axis it can be adopted to accommodate aperiodic modulating

waveforms.

Another alternative approach to calculate the spectrum of sinusoidal naturally sampled PWM is the method of

duty cycle variation [16], [17] and [18]. In this method it is assumed that the reference signal remains constant over

a switching period. The method of duty cycle variation produces the correct result, at least in the case of sinusoidal

modulation. However, this is rather coincidental since the premise on which it is based is an approximation which

is only possible to fully justify if the modulating waveform changes infinitely slowly compared to the frequency of

the carrier. The method proposed in this booklet does not rely on any approximations.

Rewriting equation (3) in trigonometric form yields:

p(t) = f(t)− st(ωst) +
2

π

∞
∑

m=1

1

m
sinm(ωst− πf(t)) (4)

= f(t)− st(ωst) +
2

π

∞
∑

m=1

1

m
(cos(πmf(t)) sinm(ωst)− sin(πmf(t)) cosm(ωst)) (5)
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Fig. 2. Equivalent block diagram of the single-sided pulse-width modulator in trigonometric form.

Figure 2 shows the equivalent block diagram of the single-sided pulse-width modulator based on this series

expansion of p(t). It shows that the pulse-width modulator is equivalent to a sequence of phase modulators, with

each phase modulator producing a sideband of harmonics around an integer multiple m of the switching frequency.
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By studying this block diagram it is evident that p(t) consists of the following:

• A copy of the original modulating waveform f(t).

• An inverted copy −st(ωst) of the sawtooth carrier.

• The output of the first phase modulator which operates in the following way: The modulating waveform f(t) is

multiplied by π and passed through the cosine non-linearity. The result is modulated onto the carrier sin(ωst).

In a similar way modulating waveform f(t) is multiplied by π and passed through the sine non-linearity. The

result is modulated onto the carrier cos(ωst). The second signal is subtracted from the first and the result is

multiplied by the constant 2
π .

• The other phase modulators operate in the same way, except that the modulating waveform is multiplied by mπ

before passing it through the sine and cosine non-linearities and are modulated onto carriers with frequency

mωst. The results are subtracted and multiplied by 2
mπ .

In order to derive an expression for the Fourier transform of p(t), let Fem(ω) represent the Fourier transform of

e−jmπf(t), i.e.

Fem(ω) = F
{

e−jmπf(t)
}

. (6)

By taking the Fourier transform of (3) and using the fact that multiplication by ejmωst corresponds to a frequency

shift by mωs in the frequency domain, the Fourier transform P (ω) of the PWM pulse train p(t) can be written as:

P (ω) = F (ω)− ST (ω) +
j

π

∞
∑

m=−∞

m6=0

1

m
Fem(ω −mωs) (7)

Figure 3 shows the equivalent block diagram in exponential form corresponding to equation (3). In this represen-

tation it can be seen that the sidebands are produced by the e−jmπf(t) non-linearity. Modulating the output of this

non-linearity onto the carrier ejmωst is equivalent to shifting the spectrum Fem(ω) by mωs along the frequency axis.

Unlike the double Fourier series methods, equation (7) correctly describes P (ω), even if the modulating waveform

f(t) is not periodic. To illustrate this consider the aperiodic modulating waveform

f(t) =

(

sin(ω0t)

ω0t

)2

with Fourier transform

F (ω) =
π

ω0
tri
(

ω

2ω0

)

,

where tri(x) is the triangular pulse defined by

tri(x) =

{

1− |x| if |x| < 1

0 otherwise.

Figure 4 shows the PWM spectrum for ω0=2 000 rad/s and a switching frequency of 10 kHz up the third sideband.

In order to focus on the relatively small sidebands the y-axis is scaled in such a way that the large harmonics at

multiples of the switching frequency fall outside the figure.

The four smaller graphs show the magnitudes of the Fourier transforms |Fem| of the output signals of the e−jπmf(t)

non-linearities. In order to calculate these the Fourier transforms of e−jmπf(t) were calculated for m = 1, 2, 3 by

making use of the Fast Fourier Transform algorithm. These are shifted in frequency and multiplied by j
mπ to produce

the sidebands of P (ω), as described by equation (7). This provides a very quick and efficient method for calculating

the PWM spectrum.

The sideband around 0 Hz in Figure 4 is simply the Fourier transform of f(t). The sidebands around multiples

of the switching frequency are essentially distorted copies of this triangular Fourier transform. As m increases the

sidebands get wider as a result of the factor m in the e−jmπf(t) non-linearity, but decrease in magnitude due to the
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Fig. 3. Equivalent block diagram of the single-sided pulse-width modulator in complex exponential form.

multiplication by j
mπ . The harmonics at integer multiples of the switching frequency consist of the harmonics of the

sawtooth carrier as well as the DC components of e−jmπf(t).

The bottom graph of Figure 4 also shows the result of a time-domain simulation of the PWM spectrum, indicated

by dotted lines. The exact intersections between f(t) and the sawtooth carrier were calculated by using the Newton-

Raphson method. The two sets of results are virtually indistinguishable with the time-domain simulation showing

near-perfect agreement with the theoretically predicted spectrum.

Over the past number of years a number of methods for the efficient simulation of the spectra of PWM signals

6



−2000 −1000 0 1000 2000
0

1

x 10−3

Frequency (Hz)

M
ag

ni
tu

de
|F(ω)|

−2000 −1000 0 1000 2000
0

1

x 10−3

Frequency (Hz)

M
ag

ni
tu

de

|F
e1

(ω)|

−2000 −1000 0 1000 2000
0

0.5

1
x 10−3

Frequency (Hz)

M
ag

ni
tu

de

|F
e2

(ω)|

−5000 0 5000
0

0.5

1

1.5
x 10−3

Frequency (Hz)

M
ag

ni
tu

de

|F
e3

(ω)|

−3 −2 −1 0 1 2 3
x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10−3

Frequency (Hz)

M
ag

ni
tu

de

|P(ω)|

Fig. 4. PWM spectrum with an aperiodic modulating waveform.

have been studied [19], [17] and [6] (Appendix 5). Equation (7) provides an easy and efficient way to calculate the

PWM spectrum of an arbitrary signal over a number of sidebands. Standard numerical methods, like the Fast Fourier

Transform, can be used to calculate the spectrum of Fem(ω) for as many values of m as required. The results simply

have to be shifted in frequency and added to obtain the PWM spectrum. The proposed method does not require the

exact calculation of the intersection between the modulating waveform and the carrier, nor does it require very fine

time quantisation of the PWM signal.

III. SINUSOIDAL MODULATION

Next the special case where f(t) is sinusoidal of the form f(t) = ma cos(w0t), where 0 ≤ ma ≤ 1 is the

modulation index, is considered.

Applying the Jacobi-Anger identity [20]

e−jmπma cos(ω0t) =

∞
∑

n=−∞

(j)nJn(−mπma)e
jnω0t, (8)

to equation (3) results in the well-known double Fourier series expansion

p(t) = f(t)− st(ωst)−

∞
∑

m=1

∞
∑

n=−∞

2

mπ
Jn(mπma) sin

(

(nω0 +mωs)t−
nπ

2

)

, (9)

where Jn(x) is the n’th order Bessel function of the first kind. This is identical to the double Fourier series expansion

derived through the method of [5].
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IV. SUM OF MODULATING WAVEFORMS

As mentioned in the introduction, the important question of studying the spectrum of the PWM signal in the case

where the modulating waveform consists of a finite sum of signals has only been partially solved for triangular PWM

[15], [21], resulting in complicated solutions. In this section it is shown that addition in the time-domain results in

convolution of the sidebands in the frequency domain.

Consider the case where the modulating waveform is a finite sum of signals

f(t) =

K
∑

k=1

fk(t).

According to equation (6)

Fem(ω) = F

{

exp

(

−jmπ

K
∑

k=1

fk(t)

)}

= F

{

K
∏

k=1

e−jmπfk(t)

}

.

Since multiplication in the time domain corresponds to convolution in the frequency domain

Fem(ω) = F
{

e−jmπf1(t)
}

∗F
{

e−jmπf2(t)
}

∗ · · · ∗F
{

e−jmπfK(t)
}

= F1em(ω)∗F2em(ω)∗ · · · ∗FKem(ω),

where

Fkem(ω) = F
{

e−jmπfk(t)
}

for k = 1, . . . ,K.

According to equation (7) the Fourier transform of the resulting PWM pulse train is given by

P (ω) = F (ω)− ST (ω) +
j

π

∞
∑

m=−∞

m6=0

1

m
{F1em(ω −mωs)∗F2em(ω −mωs)∗ · · · ∗FKem(ω −mωs)} . (10)

This means that a summation of modulating waveforms in the time domain translates into a frequency-domain

convolution of the respective sidebands.

In order to illustrate this Figure 5 shows the PWM spectra with an modulating waveform f(t) consisting of

sinusoidal signals at 50 Hz and 150 Hz, i.e.

f(t) = f1(t) + f2(t),

with

f1(t) = 0.5 sin(2π · 50t) and f2(t) = 0.3 sin(2π · 150t).

The switching frequency is 2 500 Hz.

The first row of graphs shows the Fourier transforms F1(ω), F2(ω) and F1(ω) + F2(ω). The first two graphs

of every row were generated by calculating the FFT of the respective time-domain functions. The third graph was

generated by using Matlab’s convolution function. The second row shows the Fourier transforms of output of the

first exponential non-linearity F1e1
(ω) and F2e1

(ω) as well as the frequency domain convolution of the two. This

convolution is multiplied by j
π , shifted in frequency by ±ωs to form the first sideband of the PWM spectrum of f(t).

Similarly, the third and fourth rows of graphs show the outputs of the second and third exponential non-linearities

which are multiplied by j
mπ , shifted in frequency by ±mωs to form the second and third sidebands.
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Fig. 5. PWM spectrum with a two-tone modulating waveform.

A time-domain simulation of the actual PWM signal was again performed to verify the validity of the theory. The

results are plotted on the bottom graph of Figure 5. It shows almost exact agreement with the theoretical results and

are impossible to distinguish on the graph.

In [15] a condition similar to Carson’s rule for frequency modulation [22] was derived for double-sided PWM.

This condition applies to the case where the modulating signal f(t) consists of one main sinusoid g1(t) at frequency

ωm and a number of smaller sinusoids at frequencies ω1, . . . , ωupper superimposed on it. The condition states that

the modulating signal can be recovered from the PWM pulse train through low-pass filtering provided that

2ωupper + ωm < ωs.

A similar rule can be derived from equation (10) for single-sided modulation in the case where a small arbitrary

band-limited signal f2(t) with bandwidth ω2 is superimposed on a sinusoid f1(t) with frequency ω1, where ω2 > ω1.

9



First consider the first sideband of harmonics (m=1) of F1e1 as characterised by equation (9).

By studying the properties of the Bessel functions of the first kind it can be observed that |Jn(x)| < 0.1 for x

in the interval [−π, π] and for n ≥ 5. Hence only the first four sideband harmonics of F1e1 are considered to be

significant. (Note that the sidebands decay faster for two-sided PWM and that all the odd order harmonics are zero

for the first sideband.)

Next consider the first sideband F2e1 of f2(t). Truncating the Taylor series of e−jπf2(t) results in the following

small-signal approximation:

e−jπf2(t) ≈ 1− jπf2(t)

Hence the only effect of the exponential non-linearity associated with the first sideband on the magnitude of the

Fourier transform is to add an impulse at zero rad/s in the frequency domain.

By combing these two observations the lowest significant harmonic of the first sideband will occur at a minimum

frequency of ωs−(4ω1+ω2). An approximate condition for signal recovery through low-pass filtering for single-sided

PWM is thus given by:

ω2 <
1

2
ωs − 2ω1

V. SAWTOOTH CARRIER REGULAR SAMPLED PWM

Sampled pulse-width modulation is used in most digital implementations of PWM. The conventional method

samples the modulating waveform once per switching period, at the falling edge of the sawtooth carrier. However,

much higher sampling ratios are possible and minimises the delay associated with digital PWM. When using higher

sampling ratios careful attention has to be paid to the effect of ripple-feedback [1]. While the analysis presented here

can easily be adapted to higher sampling ratios only the conventional method will be discussed here.

For a sawtooth carrier the sampling occurs at the falling edge of the sawtooth carrier and the value of the modulating

waveform is held constant for the rest of the switching period. This is equivalent to inserting a sample-and-hold

register between the modulating waveform f(t) and the pulse-width modulator, or equivalently placing a sample-

and-hold register at the input of each of the branches in Figure 3. Figure 6(a) shows the m’th branch of Figure

3 with the sample-and-hold (S/H) register included at the input of the branch. Due to the nature of the e−jmπf(t)

non-linearity, in particular the fact that it has no memory, the sample-and-hold register and the non-linearity can be

interchanged as shown in Figure 6(b).

It is well known [23] that the sample-and-hold register is equivalent to multiplication by an impulse train it(t)

(with the impulses located at the sampling instances) followed by a zero-order filter as shown in Figure 6(c). The

Fourier series expansion of the impulse train is given by:

it(t) =
1

Ts

∞
∑

k=−∞

e−jkπejkωst

and the transfer function ZOH(ω) of the zero-order-hold filter is given by:

ZOH(ω) =
1

jω

(

1− e−jωTs
)

= Tse
−jωTs/2

sin ωTs

2
ωTs

2

Since multiplication by ejkωst in the time domain corresponds to a frequency shift by kωs in the frequency domain,

the Fourier transform Vm(ω) of vm(t) is given by

Vm(ω) =
1

Ts

∞
∑

k=−∞

e−jkπFem(ω − kωs).

10



f(t)
S/H mπ e−jmπf(t) ×

ejmωst

j
mπ

+(a)

f(t)
mπ e−jmπf(t) S/H ×

ejmωst

j
mπ

+(b)

f(t)
mπ e−jmπf(t) ×

1

Ts

∞
∑

k=−∞

e−jkπejkωst

vm(t)
ZOH

xm(t)
×

ejmωst

j
mπ

ym(t)
+(c)

Fig. 6. Three equivalent versions of sampled PWM. (a) Sample-and-hold at the input of every branch; (b) Sample-and-hold interchanged with
PWM non-linearity; (c) Sampling represented by multiplication by an impulse train and zero-order-hold filter.

By applying the transfer function of the zero-order-hold filter, the Fourier transform of xm(t) is given by

Xm(ω) =
1

Ts

[

1− e−jωTs

jω

] ∞
∑

k=−∞

e−jkπFem(ω − kωs).

Finally, by again making use of the fact that multiplication by ejmωst in the time domain corresponds to a frequency

shift by mωs in the frequency domain, the Fourier transformer of ym(t) is given by

Ym(ω) =
j

mπTs

[

1− e−j(ω−mωs)Ts

j(ω −mωs)

] ∞
∑

k=−∞

e−jkπFem(ω − (k +m)ωs). (11)

In order to illustrate the principles involved, Figure 7 shows the frequency-domain sidebands for the case m=2.

In this case f(t) = 0.8 cos(ω0t) with ω0 = 50 Hz and a switching frequency of 2.5 kHz. The top graph shows the

Fourier transform of the output of the PWM non-linearity. The sampler multiplies this signal by 1
Ts

and generates

images at integer multiples of the switching frequency. The zero-order-hold filter is a low-pass sinc filter with zeros

located at integer multiples of the switching frequency. Finally the multiplication by ejmωst shifts the spectrum to

11
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Fig. 7. Spectra of the signals in the second branch of the regularly sampled pulse-width modulator.

the right by mωs. The PWM output signal consists of the sum of the output signals of all the different branches

(m = ±1,±2, . . .) as well as a sampled-and-held copy of the original modulating waveform f(t) which corresponds

to the case m = 0. This model of the regular sampled pulse-width modulator clearly shows how baseband harmonics

are generated.

By adding and regrouping the terms of equation (11) an expression for the Fourier transform of the modulator

output signal p(t) that separates the Fourier transform into distinct sidebands can be derived:

P (ω) = ST (ω)+















F (0) if ω = 0
j

mπFem(0) if ω = mωs, where m is a non-zero integer

j e
−jπ ω

ωs

π ω
ωs

∑∞
q=−∞ e−jqπ

∫∞

−∞
e−jπ ω

ωs
f(t)e−j(ω−qωs)t dt if ω 6= 0 and is not an integer multiple of ωs

(12)

The details of the derivation of this equation are contained in Appendix A. Equation (12) is a general equation

whereby the Fourier transform of the regular sampled PWM output signal can be calculated (at least numerically)

for any modulating waveform f(t). It is interesting to note that only the DC-component of the original modulating

waveform is left undistorted.

When using the geometric method of [5] a simple and elegant modification to the geometric method for natural

sampled PWM is used to analyse sampled PWM in the case where the modulating waveform is periodic ( [6] section

3.6.1). It is, however, unclear how to adapt this modification in the case where the modulating waveforms is not

periodic. In contrast the equation above applies to aperiodic signals as well as periodic signals.
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Fig. 8. Spectra of a finite-duration two-tone regularly sampled PWM signal. Top: Result of time-domain simulation. Bottom: Direct integration
of equation (12).

In order to verify the validity of equation (12) a time domain simulation of the PWM spectrum of the following

finite-duration modulating waveform was performed:

f(t) =















0 if t < -3.0002 s

0.5 sin(100πt) + 0.3 sin(200πt) if -3.0002 s ≤ t ≤ 3.0002 s

0 if t > 3.0002 s

The switching frequency fs for this simulation is 2 500 Hz. The top graph of Figure 8 shows the results of a

time-domain simulation where the PWM spectrum was obtained by numerically adding the results of the Fourier

transforms of each of the individual PWM pulses. The bottom graph was obtained by direct numerical integration of

equation (12). The two spectra show near-perfect agreement, and small differences between the two can be attributed

to numerical inaccuracies.

Next consider the case of sinusoidal modulation with f(t) = ma cos(ωot) and ma ≤ 1. By using the Jacobi-Anger

identity (8) and regrouping terms it is possible to show that

p(t) =
2

π

∞
∑

m=1

1

m
(cos(mπ)− J0(mπma)) sin(mωst)

+
2

π

∞
∑

q=1

∞
∑

n=−∞

Jn(πma(n
ω0

ωs
+ q))

nω0

ωs
+ q

cos

(

(nω0 + qωs)t+
π

2
− nπ

(

1

2
+

ωo

ωs

))
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+
2

π

∞
∑

n=1

Jn(πman
ω0

ωs
)

nω0

ωs

cos

(

nω0t+
π

2
− nπ

(

1

2
+

ωo

ωs

))

which corresponds to equation 3.70 of [6].

APPENDIX

A : PROOF OF EQUATION (12)

First consider the case where the frequency of interest ω is a non-zero integer multiple mωs of the switching

frequency ωs. Since the zero-order-hold filter has zeros at every non-zero integer multiple of the switching frequency,

the only contribution to the modulator output P (mω) at this frequency is that of the m’th branch of Figure 6, with

Ym(mωs) =
j

mπ
Fem(0) =

j

mπ

∫ ∞

−∞

e−jmπf(t) dt. (13)

Next consider the case where ω is not an integer multiple of ωs. Taking the sum over all non-zero values of m

results in:

I(ω) =

∞
∑

m=−∞

m6=0

j

mπTs

[

1− e−j(ω−mωs)Ts

j(ω −mωs)

] ∞
∑

k=−∞

e−jkπFem(ω − (k +m)ωs)

=
1− e−jωTs

πTs

∞
∑

m=−∞

m6=0

∞
∑

k=−∞

e−jkπFem(ω − (k +m)ωs)

m(ω −mωs)

Now let q = k +m, then

I(ω) =
1− e−jωTs

πTs

∞
∑

m=−∞

m6=0

∞
∑

q=−∞

e−j(q−m)πFem(ω − qωs)

m(ω −mωs)

=
1− e−jωTs

πTs

∞
∑

q=−∞

e−jqπ
∞
∑

m=−∞

m6=0

ejmπFem(ω − qωs)

m(ω −mωs)

=
1− e−jωTs

πTs

∞
∑

q=−∞

e−jqπ
∞
∑

m=−∞

m6=0

ejmπ

m(ω −mωs)

∫ ∞

−∞

e−jmπf(t)e−j(ω−qωs)t dt

=
1− e−jωTs

πTs

∞
∑

q=−∞

e−jqπ

∫ ∞

−∞

e−j(ω−qωs)t
∞
∑

m=−∞

m6=0

ejmπ

m(ω −mωs)
e−jmπf(t) dt (14)

Now consider the series

R(ω) :=

∞
∑

m=−∞

m6=0

ejmπ

m(ω −mωs)
e−jmπf(t)

=

∞
∑

m=−∞

m6=0

1

ω

(

ejmπ

m(1− αm)

)

e−jmπf(t),

where α = ωs

ω . Expanding the term 1
m(1−αm) into partial factions, i.e. 1

m(1−αm) =
1
m + α

1−αm results in

R(ω) =
1

ω

∞
∑

m=−∞

m6=0

ejmπ

m
e−jmπf(t) +

α

ω

∞
∑

m=−∞

m6=0

ejmπ

1− αm
e−jmπf(t).

By setting x = −πf(t) and taking note of the fact that −π ≤ x ≤ π it is clear that R is the sum of two Fourier

series:

R(ω) =
1

ω

∞
∑

m=−∞

m6=0

ejmπ

m
ejmx +

α

ω

∞
∑

m=−∞

m6=0

ejmπ

1− αm
ejmx. (15)
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The first series corresponds to the Fourier series expansion of st(x) given in equation (2). Hence the first term is

equal to

R1(ω) :=
π

jω
st(x) = −

πf(t)

jω
.

The second series
∞
∑

m=−∞

m6=0

ejmπ

1− αm
ejmx

is the Fourier series expansion of the periodic function

h(x) =
π
α

sin π
α

ej
x
α − 1

with fundamental period [−π, π]. This can be confirmed by calculating the Fourier coefficients of h(x). Hence the

second term of equation (15) is given by:

R2(ω) :=
π

ω

1

sin
(

πω
ωs

)e−j
πf(t)ω

ωs −
ωs

ω2

Finally, substituting these expressions for R1 and R2 back into equation (14) gives the following expression for I(w)

I(ω) =
1− e−jωTs

πTs

∞
∑

q=−∞

e−jqπ

∫ ∞

−∞

e−j(ω−qωs)tR(ω) dt

=
1− e−jωTs

πTs

∞
∑

q=−∞

e−jqπ

∫ ∞

−∞

e−j(ω−qωs)t



−
πf(t)

jω
+

π

ω

1

sin
(

πω
ωs

)e−j
πf(t)ω

ωs −
ωs

ω2



 dt

= −
1− e−jωTs

jωTs

∞
∑

q=−∞

e−jqπ

∫ ∞

−∞

f(t)e−j(ω−qωs)t dt+ j
e−jπ ω

ωs

π ω
ωs

∞
∑

q=−∞

e−jqπ

∫ ∞

−∞

e−jπ ω
ωs

f(t)e−j(ω−qωs)t dt

−
1− e−jωTs

jωTs

∞
∑

q=−∞

e−jqπ

∫ ∞

−∞

ωs

ω2
e−j(ω−qωs)t dt

The first term in this expression is minus the sampled-and-held copies of the modulating waveform f(t). This cancels

out when taking the case m = 0 into account when calculating the total PWM output signal. The last term produces

impulses in the frequency domain at integer multiples of the ωs and since only the case where ω is not an integer

multiple of ωs is considered here, it reduces to 0. Hence only the second term remains.

Three additional terms have to be added to produce the total modulator output P (ω). These are the Fourier series

expansion of the sawtooth carrier and the modulator output at integer multiples of the switching frequency given

by equation (13). Finally the sampled-and-held copy of the original modulating waveform f(t) at integer multiples

of the switching frequency has to be considered. Since the zero-order-hold filter has zeros at every non-zero integer

multiple of the switching frequency, the only contribution that remains is the Fourier transform of the original signal

at ω = 0. Taking all these terms into account results in the following expression for the Fourier transform of the

modulator output signal:

P (ω) = ST (ω)+















j e
−jπ ω

ωs

π ω
ωs

∑∞
q=−∞ e−jqπ

∫∞

−∞
e−jπ ω

ωs
f(t)e−j(ω−qωs)t dt if ω 6= 0,±ωs,±2ωs, . . .

j
mπFem(0) if ω = mωs, where m is a non-zero integer

F (0) if ω = 0
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