The Instrumentation and Initial Analysis
of the Short-term Control and Stability
Derivatives of an ASK-13 Glider

Thesis presented in partial fulfilment of the requirements for the degree of .
Master of Science in Electronic Engineering
at the

University of Stellenbosch

KEITH R.J. BROWNE
Supervisor: Prof. G.W. Milne

April, 2004



Declaration

I the undersigned, hereby declare that the work contained in this thesis is my own original work,
unless otherwise stated, and has not previously, in its entirety or in part, been submitted at any
university for a degree.

Keith R.J. Browne April, 2004



Abstract

This thesis describes the process followed to determine the short-term control and stability
derivatives of an ASK-13 glider (ZS-GHB). The short-term control and stability derivatives are
obtained by parameter estimation done using data recorded in flight. The algorithm used is the
MMLE3 implementation of 2 maximum likelihood estimator.

To collect the flight data sensors were installed in the ZS-GHB. Sensors measuring the
control surface deflections, translation acceleration, angular rates and the dynamic and static
pressure are needed to provide enough data for the estimation. To estimate accurate derivatives
specific manoeuvres were flown by the pilot, to ensure that all the modes of the glider were
stimulated.

The results reveal that the control and stability derivatives estimated from the flight data are

not very accurate but are still suitable to be used in simulating the glider’s motion.
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Opsomming

Hierdie tesis beskryf die proses wat gebruik is om die kort periode beheer en stabiliteit afgelei-
des van 'n ASK-13 sweeftuig vas te stel. Die kort periode beheer en stabiliteit afgeleides is
verkry deur parameter afskatting op data wat gedurend vlugte van die sweeftuig opgeneem is.
Die algoritme wat gebruik is om die parameters af te skat is die MMLE3 voorstelling van 'n
maksimale moontlikheid afskatter.

Om vlug data te versamel sensore moes in die sweeftuig geinstalleer word. Die sensore meet
beheer oppervlak hoeke, versnellings, hoeksnellhede en die dinamies en statiese lugdruk om te
verseker dat daar genoeg data is vir die afskatting. Om die afgeskatte parameters akkuraad te
kry moet die loods speseficke manoeuvres vlieg om seker te maak dat al die moduse van die
sweeftuig is gestimuleer.

Die resultate wat gelewer is 'n stel kort periode beheer en stabiliteit afgeleides wat nie

akkuraad is nie, maar wat wel goed genoeg is or ie bewegings van die sweeftuig te simuleer.
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Chapter 1
Introduction

At the start of this project the ASK-13 glider of the Cape Gliding was undergoing a major
overhaul. This provided an opportunity to install sensors into the fuselage of the glider, with
the intent of quantifying the handling characteristics of ZS-GHB. Relying on previous work, a
mathematical model for the dynamics of aircraft is available. What is required in this project is
to develop the infrastructure that will make it possible to establish scientifically the parameter

values in the model that will describe the handling characteristics of ZS-GHB.

Figure 1.1: The glider ZS-GHB

The ASK-13 glider callsign ZS-GHB (Figure 1.1) was used as the flight test aircraft. It
is owned by the Cape Gliding Club based at Worcester airfield. Development of the ASK-13
started in 1965. The designer, Rudolf Kaiser, improved his design of the two-seat Ka-2 and Ka-
7 producing the ASK-13. The glider was built by Schleicher with mixed materials including
metal, wood and fiberglass. The ASK-13 first flew in prototype form in July 1966 and by
January 1978 a total of approximately 700 ASK-13’s had been built. Over the years it has
become a popular training glider.

The wings have a forward sweep of 6° at the quarter chord line and a dihedral of 5° and are
mid-mounted allowing the use of a large blown canopy which allows all round view for both
pilots. The construction of the wing uses a D-type leading edge torsion box of plywood with
a fabric outer covering. The Schempp-Hirth air brakes extend from both the top and bottom of
the wings. The ailerons are made of wood and are fabric-covered. The fuselage is a welded
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steel tube structure with spruce stringers and covered with fabric, except for the nose which is
covered with fiberglass. The turtle decking aft of the cockpit is a plywood shell. The wooden
tail is covered in plywood except for the rear portion of the elevators and rudder, which is
fabric-covered. The starboard elevator has a Flettner trim tab built in. Landing gear consists of
a non-retractable sprung mono wheel with a retrofitted disc brake, a smaller nose wheel and a
recently added tail wheel.

Span 16.0m
Area 17.50 sq. m
Aspect ratio 14.6

Airfoil Go 535/ 549
Empty weight | 325 kg.
Payload 175 kg.

Gross weight | 500 kg.

Wing loading | 27.43 kg. / sq. m.
L/D max. 27 at 90 kph

Min. sink 0.81 m/s at 72 kph

Table 1.1: Specifications of the ASK-13

To extract the control and stability derivatives of ZS-GHB the response to specific manoeu-
vres needs to be recorded. To record the response of the glider sensors need to be installed
into the glider. The sensors will have to measure the changes of the glider’s state in the inertial
reference frame and record the control inputs that caused the change in state. The MMLES3 es-
timation algorithm is then used to extract the control and stability derivatives from the recorded
flight data. The rest of this document describes the maximum likelihood estimator used to es-
timate the parameters, the sensors and supporting circuitry used to collect the flight data, the
information gathered to facilitate the estimation, and ends with a discussion of the estimation
results.



Chapter 2

System Identification

2.1 Perspective on System identification

Identification is the process that is used to extract the characteristics of a dynamic system from
recorded responses to known inputs. In the case of this project the control and stability deriva-
tives of ZS-GHB will be estimated. System identification can be broken up into the search
for two main types of models, parametric models and non-parametric models. Non-parametric
models are models that primarily reproduce the responses of the system and are typically the re-
sult of frequency domain identification techniques. The non-parametric model will not be able
to give information about the physical manifestation of the dynamic system. Parametric models
produce a model based on the physics involved in generating the particular dynamics of the sys-
tem. The parametric model is of more use, it has the ability to be adjusted with known changes
in physical porperties (pilot masses,air speed, altitude) making the model more universal and
thus usable in a simulation environment.

This chapter describes the basic theory of the maximum likelihood estimator (MLE). The
maximum likelihood estimator was used because of its availability and its proven record in es-
timating aircraft models [11], [9]. The formulation of the MLE used is the MMLE3. It can
handle multiple-input-multiple-output (MIMO) linear time-independent models with measure-
ment and process noise. The MMLE3 originates from the Ames Research Center where it was
developed for estimating aircraft parameters and has proven to be very successful [21], [18],
[20], {5], [6]. The estimation software routines were from [14]. The theory that follows is very
brief. For more detail consult the references [4], {11], [9] and [14].

2.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation is often used to extract information out of signals where it is
known that the observations are not reliable. The output it provides is the most likely parameters
considering the information given and the potential corruption of the data by noise. The most di-
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rect method of deriving the MLE is using the Bayesian approach from [14]. In this approach the
parameter vector # is regarded as a random variable. It is assumed to contain unknown random
constants with known probability densities ( a priori knowledge). The derivation is started with
a more general MAP (Maximum-a-Posteriori) estimator. The MAP estimator which, unlike the

MLE, uses prior information and experiment data.
Opap = argmaz P(6]2) 2.1)
¢

This means we will maximize the probability of é given the experiment data z. To manipulate
P(8)z) into a measurable form, Bayes rule is used.

P(z)0) x P(6)
P(z)

P|z) = 2.2)

P(z|) is the conditional probability of obtaining all the measured data given the specific param-
eters (0). If each z is independent of the previous z then P(z|(§) is the product of the individual
probabilities of each measurement, conditioned on all previous data and estimated parameters.
Manipulating the MAP estimator into a form that can be minimized we use a negative logarithm
and the estimator becomes

Orap = argmgn[Hlog(P(ijZ))] (2.3)
log(P(8|z)) = logP(z|0) + log P(8) — log P(z) (2.4)

P(z) is unaffected by § hence it is ignored. To obtain the ML estimator, the prior knowledge
of the parameter values is disregarded and P(6) is assumed identical for all values of 4, and can
therefore be ignored . This gives us the Log-likelihood function (LLF").

LLF = —logP(z|f) (2.5)
and the ML estimator:
0 = argmin (LLF(@)) (2.6)
4

If the parameters are assumed to have a Gaussian probability density there are further simplifi-

cations, which are described in the next section.

2.3 ML Estimation for Gaussian State-Space Models

This section describes the interconnection between the Kalman filter, the Gaussian state-space
model and the estimator used to estimate the parameters. The model is called Gaussian because

Gaussian noise inputs are included in the structure.
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Figure 2.1: System identification diagram

The Kalman filter along with the output of the plant is used to produce the innovations Z;,

which drives the estimator.
25 = ZzZ;— 21 (27)

The Kalman filter that produces 2; uses the most recent estimate of the parameters. It is defined
by

fi = & [(1-KC)ai+K(z - Duy)| + Ty (2.8)
The assurned model output is then
3 = Cz; + Dy (2.9)

where the " denotes matrices created using estimated parameters. Assuming that the model is
linear and time-invariant with independent white noise, the probability of the measurements can

be described as in [9] by

. 1 1
P(z]214-10 exp(—=z (RRT)™'% (2.10)
( t| I:i—-1 ) [(QTT)mdet(RRT)]1/2 ( 2 ) ( ) )
Where RR7 is the innovation covariance E[%77]. The total conditional probability would be
given by
~ N ~
P(ZIQ) = H P(Zi|2.’1;,;_19) (211)
i=1
5 al 1 1o Ty\-1z
P(z|f) = 7z exp(-—gzi (RR™)™*%) (2.12)

=1 [(27)™ det(RRT)]
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Now substituting the conditional probability into equation 2.5 will produce:

—

N
N N
LLF (@ > > (RRT) ™% + 7 logdet(RR™) + Tm log(2) (2.13)
i=1

(]
.

The ML estimation problem is now one of minimizing a scalar function by adjusting f. In
equation 2.13 the last term is constant and can be ignored. What is left then is a function of Z
which is a function of 4, and RRT. A result used by Maine and I11lif in [14] is that when LLF
is at a minimum, RRT has to be equal to RRT. If RRT is unknown and needs to be estimated
then we can use the sample innovations covariances (RﬁT), which is calculated by

e N
RRT = =%z (2.14)
The LLF is in the form of a weighted least squares cost function,
1 N
Tup = 32 5WE (2.15)
i=1

The cost function represents the sum of the energy in the weighted innovations. The choice of
the weighting matrix W can make a large difference in the results of the minimization. Using
the inverse of the innovations covariance { as required by the ML estimator) scales each of the
inputs emphasizing the channels with low noise and the more reliable data and de-emphasizing

noisy data.

2.4 Minimizing the LLF

The LLF is of the “sum of squares” form for which a number of efficient minimization algo-
rithms exist.

1 N
= §Z~T (RRT)™ (2.16)

If RRT is known, parameters only influence the cost function by the innovations (). If RRT is
unknown, it has to be updated after each iteration using equation 2.14. The MMLE3 algorithm
makes use of the Gauss-Newton method [9] for minimizing the LLF'. This method is a modified
Newton-Raphson which is computationally efficient. It uses an approximation for the second
gradient to increase the robustness of the algorithm. A side effect of this approximation is
that the second gradient of the sensitivities does not have to be computed, thus saving time.
The next two sections describe the approximation used for the second gradient in the Gauss-
Newton method and the Levenberg-Marquardt stabilization which is used to aid convergence.
The Levenberg-Marquardt stabilization aids the convergence of the Gauss-Newton method with
starting conditions far from the minimum and/or identifiability problems.
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2.4.1 Gauss-Newton Approximation of the Hessian

In the Newton-Raphson method [14] the parameters are updated by:

~

b = 6 — [V3I(0)] [Vel(8)] 2.17)

Using the chain rule to calculated the gradient and second gradient of the cost function:

N

Vol = Y (Vez)"(RRT) '3 (2.18)
i=1
N N

Vi = S (Ver)T(RRT)'Vez + Y V3ERRT) ' (2.19)

i=1 i=1

The second gradient of the cost function is called the Hessian (V2J). To aid the convergence
an approximation of the Hessian is used in place of equation 2.19. The second term in the
Hessian is the second gradient of the innovations. It is expensive to calculate, approaches
zero at the cost function minimum (it is zero all the time for quadratic problems) and cannot
be guaranteed positive-semi-definite. When the second term of the Hessian is not positive-
semi-definite, problems with the convergence of the algorithm can occur. To circumvent the
possibility of convergence problems the Gauss-Newton approximation of the Hessian is used in
equation 2.21 to calculate the next iteration of parameter values. The Gauss-Newton Hessian
approximation is:

N
hes = Y (Voz) (RRT)'V,3 (2.20)
i=1

The parameter update is then:

isi = 0; —hes™IV,yJ (2.21)
Using the hes approximation, the path to the minimum is altered to a more robust course down

the gradient. The location of the minimum is unaffected by this approximation as the gradient
calculation is unaffected '

2.4.2 Levenberg-Marquardt Stabilization

The local estimate of the second gradient is not guaranteed to rotate and scale gradient for the
optimal improvement of the parameters. When such problems with convergence occur it is fre-
quently better to make smaller steps in the negative gradient direction until the quadratic area
near the minimum is reached. These cases are typically non-quadratic and can be caused by ini-
tial parameter values being far from correct and/or local minima in the cost function. To select
the smaller steps, the diagonal elements of the hes are scaled with a number slightly greater
than unity e.g. 1.03. The Levenberg-Marquardt refinement of the Gauss-Newton method is
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used to find this number. The diagonal elements of hes are multiplied by a scalar (1 + marg).
Having calculated the gradient and Hessian, up to five values of the marg are tried and the
LLF is evaluated for each of the trial updates. If the LLF improves with the current value
of marqg the value of marg is divided by a convenient number V10 [14], thus increasing the
parameter step size and rotating the step more toward the Newton direction. The marg that
provides the best improvement in LLF is used in the calculation of the next jump. By the
time the quadratic area near the minimum is reached, marg is so small that its effect has disap-
peared. The expensive gradient and Hessian matrices are calculated and then used for a number
of trials making the extra computational load of the Levenberg-Marquardt stabilization small.
The Levenberg-Marquardt Stabilization provides good starting properties without degrading the
final convergence of the Newton algorithm [14].



Chapter 3

Parameter Accuracy Indicators and
Analysis Tools

Parameter estimates from real systems are by their nature imperfect. To make effective use of
parameter estimates the ability to gauge their accuracy is necessary. The methods that can be
used are statistical, intuitive or may come from another problem specific source. If the accuracy
of an estimated parameter cannot be quantified the parameter is worthless. This makes the
indication of the accuracy just as important as the parameter estimate itself. The single most
important factor in estimating accurate parameters from practical problems, is the insight that
comes from the analyst’s understanding of the system and the instrumentation used to measure
it.

There are a few uses for the accuracy indicators. The first would be in the planning phase,
where the instruments and the experiments can be simulated. This use is limited because of the
lack of real-data. What it can do though is detect experiments with no hope of success at an
early stage. The second use of the accuracy indicators is in the estimation process itself. The
accuracy indicators can be used to find identification problems, faults in the programs or other
sources of errors. The accuracy indicators can also be used for comparisons between parameter
estimates from different experiments and data-sets. In situations where there are conflicting
values, the accuracy measures can show which is likely to be more accurate. The third use is the
presentation of the final estimates. If the estimates are going to be used in control applications
the accuracy parameters are useful in the considerations of the sensitivity and robustness of the
controller.

In the context of parameter estimation, what does the term accuracy mean? A system is
never described exactly by the simplified model used for analysis. Regardless of the model,
unexplained sources of error will remain. It is difficult to define accuracy if no correct model
exists. To make this problem manageable, it is split into two parts: Modeling and Estimation.
Modeling is the problem of finding suitable models of the system for the task required. Estima-
tion is finding suitable parameter values for the model. To make the estimation work we assume

UNWERSHET 31E LaNB0SCH
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that the model describes the system exactly. Now precise and qualitative measures of estimation
accuracy for the specific model can be generated. The parameter estimates that result from a
certain model need to be judged as adequate and not as exact. This involves considerable engi-
neering judgment combined with the available qualitative measures to determine the usefulness
of parameters.

The accuracy indicators used for this project are presented in the rest of this section. It is by
no means an exhaustive discussion of all the possible tools or techniques to determine parameter

accuracy. More details and insights are available in the full reports: [10], [14] and [15]

3.1 Scatter Plot

The scatter plot, which is described in this section, is the most effective and convincing'way
of examining the accuracy of an estimated parameter. On the plot the estimated value of a
particular parameter from multiple experiments is plotted with the value of the parameter on
the Y-axis and the experiments along the X-axis. Using multiple experiments the scatter plot

0.9 T Y T T
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07—; ................ e e e O ...............

QB e __ ...............................................
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Parameter CNa
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01_ i 1] O Parametervaue |........J
: X : | = Cramer-Rao bound
. . . o+ = Mean
o ] ] 1 ! ]
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Experiment No.

Figure 3.1: Example of a Scatter Plot

will reveal trends and make the relative differences between the same parameters from different
experiments apparent. Typically a Gaussian cluster about the expected value of the parameter
is visible. By plotting the theoretical error bounds of each experiment on the scatter plot, an
even better understanding will be obtained. The error bounds will often resolve problems with

conflicting or faulty data and reveal indiscernible trends and if few experiments are available is
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the only means to measure the accuracy of a parameter. The error bound that is most commeonly
used is the Cramer-Rao lower bound.

3.1.1 Cramer-Rao Bound Theory

The Cramer-Rao bound provides a tool to evaluate the believability of an estimated parameter.
The complete derivation of the Cramer-Rac bound is in reference [10]. To be able to use the
Cramer-Rao bound the basic theory and computation is presented in the following text. The
covariance matrix of parameters estimated from an unbiased estimator will always equal or
exceed the inverse of the Fisher information matrix when their elements are compared. The
Fisher information matrix is equivalent to hes for ML estimations, provided equation 2,14 is
satisfied. This is dictated by the Cramer-Rao inequality [14]. The ML estimator is asymptot-
ically unbiased, consistent and efficient [17], [10]. These characteristics allow the assumption
that for sufficient data length the inverse of the Fisher information matrix will approach the
lower limit of the Cramer-Rac bound, which is the covariance matrix of the parameters [10].

The covariance matrix is approximated by:
E [(6 — Otruc)(f — 6urue)”] = hes™ (3.1)
The theoretical standard deviation of a parameter is approximated by its Cramer-Rao bound.
o; ~ Cramer—Raobound = [hes"l]fli (3.2)

An estimated parameter with a high Cramer-Rao bound is considered to be less believable
than a parameter estimate with a low Cramer-Rao bound. It was found through analysis of
experimental data that the Cramer-Rao bounds are 10 times less than the actual scatter [10].
The reason for this error, and the correction applied, are explain in the following section.

3.1.2 The Filtered Cramer-Rao Bound

The root of the error in the Cramer-Rao bounds comes from the spectral content of the noise
and how it affects the estimation process. The result from investigations of Maine and Illif
in [10] and theoretical explanation from Milne in [15] provide a reason for the error in the
Cramer-Rao bound. To summarize the findings of these publications: The noise that affects
the estimation process is the noise that occurs in the same spectral range as the response of the
system being identified. Generally the algorithms used for estimators are developed to have
good high frequency noise rejection properties but have difficulty in discerning between the
noise and actual response on the same frequency. The error in the Cramer-Rao bound occurs
because the theory assumes that all the innovation energy has a uniform spectral density, where
in practice it is often in a limited band and affects the estimation more severely.

The Cramer-Rao bound cannot be accurately calculated if the spectral nature of the noise
and and system bandwidth is not taken into account. The suggested method from Maine and
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Tif, [10] for correcting the Cramer-Rao bounds is to scale the innovations covariance used
in calculating the Cramer-Rao calculation. At the minimum of the LLF, if the estimation 1s
working correctly, the innovations are a good representation of the noise. The scaling is done to
get the power spectral density, which in theory is assumed constant up to the Nyquist frequency,
to be equal to the peak innovations spectral density.

In aircraft estimation it has been found that the innovations tend to have low-pass charac-
teristics. To obtain an estimate of the low-frequency spectral density of the innovations, the
innovations are passed through a low-pass filter with cut-off at f 5, and then dividing the
output power by the filter noise bandwidth. In the MMLE3 implementation the factor used to
correct the Cramer-Rao bound is calculated by first calculating the cost function with the filtered
innovations to get Jﬁl- The correction factor is then calculated by

J ) 0.5 |
( ﬁl XfNqust) (33)

—3dB Nm

Where Nm, the length of the observation vector, is a close approximation of the cost function
value for white residuals, [8]. Scaling the Cramer-Rao bound with this correction factor gives
us the filtered Cramer-Rao bounds, which are a close approximation of the actual standard

deviation of the parameters.

3.2 The Confidence Ellipsoid

The Confidence Ellipsoid is a construct which allows us to relate various parameter accuracy
statistics to each other, to create a better understanding of the results produced by the ML
estimator. In most estimation problems the number of parameters quickly escalates to more
than three, making visualization impossible. The statistics used for accuracy determination try
to reduce the problem to a one dimensional form, with various indicators for each parameter.
Understanding the geometric relationships between these statistics leads to greater insight into
the estimates and is helpful in finding problems with the estimation and gives clues to the
possible solutions. The Confidence ellipsoid is defined by:

66" hesdd = 1 (3.4)

It is chosen to be defined in this way so that if one of the parameters is perturbed from the
origin of the ellipsoid to a point on the ellipsoid the LLF changes by 0.5 units. This is done
in order to be consistent with the Cramer-Rao bounds. The ellipsoid represents one standard
deviation. Considering that if the LLF is very small, i.e. 0.01, we can assume that the actual
parameter vector is likely to be very close to the center of the confidence ellipsoid. This can
be used as a termination criterion for the minimization algorithm. Another point to note is that
the Confidence Ellipsoid is not centered on the true minimum of the cost-function but on the

estimated minimum
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The confidence ellipsoid can be highly skewed and eccentric. To describe the shape of the
confidence ellipsoid, the length and direction of its principle axes are used. These are given by
Viand A; Y2 where V; and ); are the eigenvectors and corresponding eigenvalues of hes. The
symmetric nature of the hes ensures that the principle axes are orthogonal. In [14] and [15] the
geometric relationships between the accuracy parameters with a two dimensional confidence

ellipsoid are clearly highlighted in the following way: the geometric features of a confidence

A
P2 P

Peogr(1)

>
P1

Figure 3.2: Geometric Relationships between Confidence Ellipsoid and Accuracy Indicators

ellipsoid are illustrated for the two dimensional case in Figure 3.2. These features will hold
equally to higher dimensional cases.

e CR(i) Cramer-Rao bound of the ith parameter. It is the standard deviation of §;, when
estimated with other parameters. It is the projection onto §; of the furtherest point of the

confidence ellipsoid
CR(i) = [hes™}4? (3.5)
e P..(4) is the point on the confidence ellipsoid that gives the Cramer-Rao bound

hes™'(:, 1)

6
CRE) (36

Pcr("‘:) = QCR(i) =

where hes™!(:, 1) is the ith column of hes™".
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o I(i) is called the insensitivity. It gives the change required by 6; to move from the min-
imum to the confidence ellipsoid. It is equal to the Cramer-Rao bound if one parameter
is estimated. In other words, changing the ith component of P from its optimum by I;
increases the LLF' by 0.5.

I = [hes;]™"/? 3.7)

¢ GDOP(i) Geometric Dilution Of Precision, the factor by which the standard deviation of
f; increases when estimated simultaneously with others parameters.
CR(i)

GDOP(i) = W 2! (3.8)

o FP,... Major principal axis of the confidence ellipsoid
Pras = Mt Vinin (3.9)

where V,,;, is the unit eigenvector of hes with minimum eigenvalue, Apy,.

3.3 Using the Accuracy Indicators

Tudging if parameters are accurate and correct can be difficult. The whole purpose of the estima-
tion is to find the unknown parameters or to validate parameters calculated from theory. If there
are no exact parameters to compare the estimates there can be no exact measure of accuracy of
the estimate. As result the accuracy indicators tend to be more qualitative than quantitative.

3.3.1 Matching Responses

Checking the accuracy of estimated parameters starts with comparing the responses of the actual
system and the simulated response from a system using estimated parameters. The responses
should be a close match before proceeding to look at the parameters, scatter and confidence el-
lipsoid indicators. Figure 3.3 shows three different responses. The responses give an indication
of what good and bad response matches look like.

To help find possible cause of a misfit, the GDOP’s (eqn 3.8) and insensitivity (eqn 3.7) of
parameters can be consulted. Tell-tale signs of unwanted correlation between sensitivities will
be high GDOP’s and very low insensitivities and high Cramer-Rao bounds. For the important
parameters in that estimation you would want the GDOP’s to be as low as possible (close to
one). As extra checks a low Cramer-Rao bound and filtered Cramer-Rao bound are desired and
the closer the bounds are to the insensitivities the better. Before consulting the scatter plot the
analyst needs to be satisfied that the fit is good enough and that the GDOP’s and Cramer-Rao
bounds of the parameters are low enough. The next step will be the scatter plot.
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Figure 3.3: Good,Reasonable and Bad Response matches

3.3.2 Scatter Plots

On the scatter plot the same parameter from multiple experiments is plotted. The error bars
are plotted over the parameters, using three times the filtered Cramer-Rao bound for half the
bar length. Three time the filtered Cramer-Rao bound is the three sigma value for the standard
deviation. This implies that there is a 99.73% probability that the other experiments will fall in
this bound. We expect to see certain phenomenon in the scatter plot. The first is that the param-
eters are scattered around some expected value. The smaller the scatter between experiments
the more confidence can be placed in the expected value as being the value best suited to repre-
senting the real system. Secondly, most of the parameters from the other experiments fall inside
the 3 times Cramer-Rao bounds of each of the other experiments. There can be exceptions. In
Figure 3.4 two exceptions are illustrated. The first experiment the parameter falls outside of the
Cramer-Rao bounds of most of the other parameters and has a much larger Cramer-Rao bound
than the other experiments in which all the other parameters are included. This is symptomatic
of an experiment with poor input stimulus and/or insufficient length. The estimation is working
properly and the Cramer-Rao bound shows that the value obtained in experiment 1 is unreliable.
The second grouping is what is considered good. All the parameter values close to each other
are inside the Cramer-Rao bounds from all the other experiments. The third group is where the
parameter is outside the expected value and has a very small Cramer-Rao bound of its own. It
may just be a bad experiment with unrecorded inputs or process noise and can be discarded. If

there are many with low Cramer-Rao bounds and the scatter is high then identifiability problems
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Figure 3.4: Possible Scatter Plot Patterns

16

exist and the experiments should be redesigned to be more suitable for estimating that parame-

ter. The other possibility is that the filter frequency chosen by the user is too large. Examining

the spectral content of the responses can help in finding the correct filter frequency. Typically

it is 0.5H 2 for aircraft. To gain greater insight into the severity of the estimated parameters

scatter around the expected value, the parameters are normalized by the expected value. It is

then possible to examine the scatter as a percentage deviation from the expected value. Figure

3.5 is the percent deviation plot of Figure 3.4
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Figure 3.5: Percentage of Scatter from the Mean Estimated Value
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3.3.3 Final Check

The final check is combining the estimated parameters from different experiments in a weighted
mean. The weighted mean is calculated by weighing each parameter with its inverse covariance
and taking the sum of all the parameters, divided by the sum of the weightings, [16].

_ > 2b;
g = = (3.10)

= =35 (3.11)

The result is a system that represents the least squares combination of parameters from all the
experiments. This system is then used to produce responses, which are compared with the real
system's responses. Success would mean that the system using the combined parameters will

closely follow the real response.



Chapter 4
Equations of Motion

Before proceeding to describe the instrumentation of ZS-GHB, a certain amount of familiarity
with the equations of motion governing the dynamics of the glider’s flight is needed. This
familiarity is needed to ensure that the correct instruments are installed to take the relevant
measurements. This section describes the reference axes used, the interactions between the
forces, moments and states of the aircraft and reveals the control and stability derivatives as the
values which describe the handling qualities of the aircraft. The generalized equations are also
modified for use on gliders, by removing engine and thrust terms in the equations of motion.

4.1 Axes Systems

Before the equations for the forces and moments can be derived the references on which they
are based need to be defined.

4.1.1 Leading Edge Datum

On the glider, measurements need to be taken to relate the relative positions of certain parts
and properties of interest. For example, the position of the center of gravity in relation to the
accelerometers needs to be known. A standard documented origin for measurements is needed
to ensure that measurements are repeatable and comparable in later work. The reference used
for this work is the Leading Edge Datum. It is the leading edge of the wings at the wing root.
The axes are in the same direction as the body axes, while the origin is at the Leading Edge

Datum.

4.1.2 Body Axes

The axes system chosen for the measurement of the aerodynamic forces and moments is the
standard NASA aircraft body-axis system. The origin is chosen at the center of gravity. The
X-axis is positive forward out of the nose of the aircraft. The Y-Axis is positive out of the right

18



CHAPTER 4 — EQUATIONS OF MOTION 19

wing. The Z-axis is positive down out of the bottom of the aircraft to complete the right-hand
axis system., The axis-system moves with the aircraft. The body axes forces are Fx , Fy and
Fz. The normal force, Fv = —Fz and the axial force, Fy = —FYy, are often used instead
because Fiy and Fx are positive in normal flight. Fy and F)4 relate more intuitively to lift and
drag. The moments are the rolling [, pitching m and yawing n around the X,Y and Z axes
respectively.

Vertical Axis

Yaw

Figure 4.1: Body Axes

4.1.3 Wind Axes

Wind axes are used to define the forces that result from the airflow over the aircraft. The basis
for this axes system is the relative velocity between the air and the aircraft, denoted by the
wind velocity vector V, which is positive pointing in the direction from which the relative wind
comes. The forces defined in this system are: Lift L, which is normal to the wind velocity
vector and the body axis Y vector, and Drag D, which is in the opposite direction to V.. The
third direction is so seldom used it is left undefined but can be obtain from the cross product of
the Drag and Lift vectors, and is analogous to the Y-axis of the body axes. This axis system is
also fixed to the center of gravity of the aircraft. The wind axes rotate around the body axes as
the wind velocity vector changes direction.

Two values that are important to stability and control analysis are the angle of attack (o) and
the angle of side-slip (3), also called flow angles. These two angles relate the body axes to V.
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The Cartesian components of V' on the body axes are u,v and w, giving
V =vu?+v2+u?

Angle of attack and side-slip are then defined by

w
a = tan != .
an ” 4.1)
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Figure 4.2: Wind Axes

The Euler angles describe the attitude of the aircraft with respect to the earth. The attitude
is defined by three angles, heading (1), pitch (¢) and roll (¢). These three angles define the
rotations of the aircraft body axes relative to the earth fixed axes, at any instant. The transfor-
mation of vector V, from the earth axis to the body axes vector V} is done with three rotations.
The rotations are done in a specific order (1, 8 then ¢), which leads to a generalized formula
for rotations called the Direction Cosine Matrix (DCM).

coslcosy cosfsina —sinfd
Ve = singsind cosyy — cosgsing  singsindsinyg + cospcosy  singcosd | Ve

cospsinBeost) + singsiny  cosgsinfsinyg — singeosyy cos¢cost

The inverse rotation is also possible by using the transpose of the DCM. Although the DCM
is seldom used directly as defined above, it does illustrate the origin of many of the terms that
appear in the equations of motion.

4.1.4 Control Surfaces

As with the Leading Edge Datum, a convention needs to be set for the control surfaces. The
convention used in this project are taken from [11] and modified slightly. The convention is
as follows: The rudder, trim and elevator are angular deflections measured normal to the hinge
line. Positive deflection is trailing edge down or to the port side, depending on the orientation of
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the control surface. The ailerons are antisymmetric control surfaces, designed so that if the port
aileron is down the starboard aileron will have a lesser deflection up and vice versa. Therefore
the aileron deflection is defined as the starboard aileron deflection minus port aileron deflection.

The air brake is measured in millimeters extended out of the wing and can only be positive.

4.2 Equations of Motion

This section briefly describes the set of six-degree-of-freedom equations of motion for aircraft
without engines.

A complete derivation of the equations is out of the scope of this project. The equations
listed here are those formulated by Maine and Illif [11] and derived in [2]. The nine-nonlinear
equations describe the motion of the glider.

V = 7SCpuind (4.3)
+  g(cose cosf sina cosB + sing cost sinf — sind cosa cosf)
: qs .
= — —t
o ¥ cos Cr + q — tanf (p cosa + r sina)
+ 7 cis 7 (cosd cost cosa + sinf sina) 4.4
8 = ~q—C‘Ywmd + p sina — rcoso + -gcosﬁ sing cosf
mV V
+ % (g cosa sinf — g sina cosg cost) (4.5)

pIm:c - quy - TImz = quCI + qT(Iyy - Izz) + (q2 - T2)Iy2 + qumz - TpI:cy (46)
_fjfmy + q-[yy = 'r.'Iyz = qSCCm + Tp(Izz - Ixm) + (T2 - pz)-[mz + qTIa:y - quyz 4.7)
—plyy — Iy + 71 = GSHCn + pg(Lee — Iy) + (p° — ¢*) Loy + rpLy — qrls. (4.8)

¢ = p+qtandsing -+ r tanfcosd (4.9)
§ = qcosp—rsing (4.10)
¥ = 7cospsech + qsingsech (4.11)

As is standard with aerodynamics the forces and moments affecting the equations of mo-
tion are represented with non-dimensionalized coefficients. The forces and moments that act
on aircraft are a combination of functions of the aircraft states and the control deflections. The
functions are seldom linear, but for the small perturbations used in these flight tests lineariza-
tions of the functions can be used. To obtain the most simple functions, the longitudinal and
lateral dynamics are assumed to be uncoupled. The lateral coefficients are expansions of side-

slip, roll rate, yaw rate, rudder and aileron controls.
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The linearized expansion for the lateral coefficients are:

b b
Cy = CyB+ cy,,-z% + oy,,g% + Cy,6 + Cy, @.12)
b rb
C = C[ﬁﬂ+01p%+0;rw+6‘¢56+055 4.13)
b b
Cpn = CpgB+Ch, 51/ + Ch, ZTV + Cry6 + Co, (4.14)

The longitudinal coefficients are formed from functions of angle of attack, pitch rate and
elevator deflection and give the expansions:

Cy = Cn o+ ONq QV + CN55 + CN,, 4.15)
Cqa = Chy a+CAq2V+CA55+OAb (4.16)
Crn = Cmo+ Co e + Ciny6 + Crmy @.17)

M1y

The expansions are made with a linear combination of the states, multiplied by their respective
control or stability derivative. In all the expansions a bias coefficient is added with the subscript
b, This bias term is a linear extrapolation of the coefficient from the average « and ¢ of the
manoeuvre to zero « and §. The term adds a degree of flexibility to account for modeling errors
due to the non-linearity of aerodynamic effects.

Observation equations are needed to link the equations of motion to the quantities measured
by the sensors. Observation equations need to take into account the sensor dynamics, sensor
mounting position and need also to account for sensor bias. The measurable variables in the
equations of motion are g, &, 8, V, p, ¢, 7, 8, &, ¥, Gn, @q, 4y, D, ¢ and 7. Practically, many of
these are difficult to measure and require special sensors. The minimum variables to measure
for estimation are §, p, ¢, 7, an, @, and a,, with the following observation equations.

Ya

7S .
an = Cy+ gl Lupyg, (4.18)
mg g g g
7S Zog . Ta ..
tn = — Gyt g Tyt gy, (4.19)
myg [¢] g
gS Za a
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p: = D+ (4.21)
@ = qg+a (4.22)
r, = T-Tp (4.23)

g = §+& (4.24)
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The dynamic pressure § is used in two ways. The first to calculate the velocity and the
second is with a combination of other geometric measurements used to non-dimensionalize the
force and moment coefficients.

4.3 Identifying the Parameters to be Estimated

The equations of motion and the observation equations have many unknown parameters that
need to be identified to describe the dynamics of ZS-GHB. The stability and control derivatives
are the most important of these. They describe the dynamic behavior of the aircraft. Unfor-
tunately many extra nuisance parameters need to estimated. The nuisance parameters are the
biases and initial conditions which do not contain any important information, but are needed
to produce accurate simulations. Many of these parameters are simply unknown offsets on the
sensors or initial conditions for the states of the aircraft.

Altogether there are 48 parameters that need to be identified. There are 25 control and stabil-
ity derivatives (Cy, Cy, Cy, Cy; Ci, Cy, Ci, C; Gy Cp, Cn, Gy O, Cn, Cn; Ca, Ca, Ca; Cn,
Ciny Cms Cn C4 Cy) 13 bias terms (Cy, C1, Cy, O, Cay, Crny, G, Gy, Gy, Db G5 7) and 7 initial
conditions {(pqr « 3 ¢ @) That are identified from data gathered in flight tests. The 16 physical
properties (m Loy Ly Loz Tos Iy Toy Tog Yog Zeg Tay Zay Yan S ¢b) can be found before any flight
tests are done in data sheets and by measurement and estimation experiments on the ground.



Chapter 5

Glider Instruments

5.1 Introduction

One of the tasks of this project was to instrument the ASK-13 glider ZS-GHB so that data could
be collected in flight. The sum total of electronic instruments in this particular glider before
this project was a radio and an electronic variometer. There were no instruments measuring the
data that is needed for parameter estimation. This provided the opportunity to install suitable
sensors for parameter estimation and not have to rely on sensors that are already installed that
may produce unsuitable data. Firstly it is necessary to define what characteristics are desirable
to have in the data gathering system, then install suitable transducers and logging equipment
into the glider. Lastly the correct functioning of the sensors is verified and the sensors are

calibrated.

5.2 Desirable Characteristics of Sensors Producing Data for

Estimation

A measurement system that is designed with the desired characteristics in mind will not, or
at least be a very limited, source of error or complication when the data is analyzed. The
desired characteristics can be divided into two groups, the transducer characteristics such as
noise repeatability, linearity, etc and the data logger characteristics such as sampling frequency,
resolution and filtering,

5.2.1 Data Logger Characteristics

An important choice to be made is what the sampling frequency should be. The insights from
Maine and Illif in [11] are useful in making this decision. The aircraft dynamics tend to be in
the 0-13 Hz range with structural resonances between 20 and 30 Hz. Luckily the glider has no

engine or generator so there are fewer vibrations than on a power plane. To stop aliasing of
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the nuisance data, such as any vibrations not caused by the response of the glider, pre-filtering
of the response data is needed. The question is where to place the corner frequency of the
filter. To circumvent this problem of not knowing where to place the cut-off frequency, a much
higher sampling rate is used. Where 30Hz sampling frequency is high enough to contain all the
response data, reference [11] recommends 100-250Hz, [11] to capture all the other resonances,
without folding them over onto frequencies where the aircraft response lies. These unwanted
frequencies can later be removed by filtering the data before thinning the data to a lower sample
rate.

Data has to be gathered simultaneously from all channels. At one instant all the sensors
need to be sampled together. This is important to get as close to simultaneous as possible. If
the delay between the sampling of the input signals and the output signals becomes too great
the estimator cannot fit the model to the data.

Enough resolution in the amplitude of the signal is needed. Maine and Illif [11] have found
that it is possible to do estimations from data where the resolution is 1/10 of the manoeuvre size.
What is desirable is a resolution of at least 1/100 of the manoeuvre size. A signal conditioning
circuit is necessary to adjust the bias and increase the amplitude of the signals, in order to make
the most of the available range of the analogue to digital converter. The signal conditioning
block must contribute the minimum possible noise or phase lags to the signals coming from the
Sensors.

All the data for the same instant should be kept together as a unit with a time-stamp. This
will prevent the synchronization between the signals being lost.

5.2.2 Desirable Transducer Characteristics

The process of digitizing a signal will never be able to improve on the original analogue signal.
The quality of the measurement comes from the transducer. If the transducer is of poor quality
there is a good chance that the measurement will not be accurate. Measurement noise is unde-
sirable. To avoid data corruption by noise the transducer must have a high signal-to-noise ratio.
While the ML estimation can still produce good results with measurement noise, it remains
preferable to keep noise levels as low as possible.

The accuracy quoted by many vendors is nothing more than an amplitude scale factor. The
overall accuracy of a sensor is a combination of more than one characteristic of a sensor. The
scale factor is more related to the resolution of the sensor than accuracy. For estimation, the
resolution is more important than absolute accuracy [11]. What is important to know is what
the sources of error are in the measurement.

Linearity in the measurement is desirable. Most transducers that are quoted with certain
non-linearity limits are linear over most of the range but tend to become non-linear at the limits
of the transducer’s range. Care must be taken on installation to ensure that the normal opera-
tion will be in the linear range. Non-linear sensors can also be used but at the cost of added
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complexity in processing and calibration, which could add unwanted errors in the data. The
installation of the sensor can introduce non-linearities such as dead-bands, stiction and hystere-
sis. In manufacturing and installation of the sensors effort must be made limit the size of the
non-linearities and to avoid saturation.

The sensor needs to take repeatable measurements. A shift in the bias point of the sensor
can cause an error in the repeatability. If the data is for estimation purposes it can be corrected
by estimating the bias of the signal.

Crosstalk is the measure of how much off-axis excitation will affect the output of the signal.
Crosstalk is more applicable to inertial sensors. A good example is that you would not want yaw
rate coupling into the roll rate gyro because of the mounting of the gyros not being orthogonal
to each other.

The response time of the transducer needs to be suitable for the application. The gain and lag
over the expected frequency range needs to be suitable to measure the response data. Installation
can worsen the problem. A good example is the mounting of pressure sensors. Adding a long
pipe between the pressure port and the sensor element will increase the lag of the sensor.

Mounting of the sensor can influence the accuracy of the measurements that it takes. Control
surface deflection instruments need to be as close as possible to the surface avoiding linkages
between the transducer and the control surface which can add the sorts of errors mentioned
above. Accelerometers should be mounted as close as possible to the center of gravity, to
limit the affect angular rates have on the sensors. The influence of the angular rate on the
accelerometers can be corrected if the position of accelerometer relative to the center of gravity

is known.

5.2.3 Conditions for Sensors with regards to flight safety

Not mentioned in the estimation theory is safety. It is taken for granted that the sensors in
aircraft will not compromise the safety of the pilot. For this project particular care was taken
with this aspect of sensor installation. The sensors that were installed were not standard aircraft
sensors and the aircraft was not designed to have these sensors fitted. All the sensors are retro-
fitted in positions deemed suitable for them. The control surfaces are of particular concern. If
the sensor on a particular control surface fails in any way, it must not inhibit the function of
the control surface. The pilot must still have full control of the aircraft even if the sensor jams.
Weak links are mandatory to separate the control surfaces from the transducer. The weak links
must not add undesirable characteristics to the sensors that will affect the accuracy negatively.
During a crash the instrumentation must not add to the hazards. The instruments need to be
secured in such a way that they will not break loose during impact. This immediately places
conditions on the position, encasement and type of mounting that the equipment has to ensure

a reasonable crash worthiness.
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5.3 Data Logger

The data logging side of the measurement equipment can be broken up into three sections.

F ¥

Signal
Conditioning

RS-232

Logger Sampler

Figure 5.1: Flow of Data

5.3.1 Signal Conditioning

The purpose of the signal conditioning is to manipulate the incoming signals from the sensors
to utilise the full range of the analogue to digital converter (ADC). This maximum range is
obtained by using two consecutive amplifiers. The first is used to to get the midrange voltage
of the sensor up to the midrange voltage of the ADC and the second gain to increase the peak
to peak amplitude to 95% of full scale of the ADC. Another design consideration is flexibility.
The dynamic range of the properties that would be measured was unknown. Only after the first
flights could the gain of the amplifiers be set. The sensors in the aircraft may need adjustment
if the glider has a hard landing. Sensor zero references can shift from the shock.

' To Slmgler . » ‘ Froin sensory
|

Gain Adjustnent Level Adjustnent

Figure 5.2: Signal Conditioning Block Diagram

The schematic of the circuit is available in appendix C.

5.3.2 Sampling

The sampling is done by a data logger that was developed as a final year B.Sc(Eng) project
described in [7]. The data logger uses a micro-controller with onboard ADC. The specifications
of the data logger are evaluated with the requirements in section 5.2.1.

Resolution: The micro-controller has a 10 bit analogue to digital converter. If the signal
conditioning block is set to provide output that covers 95% of the ADC’s range, then the 10 bits
is sufficient. Of the available 1024 codes 972 will be used.
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The ADC is set to take 100 samples per second. This is well above the expected natural
frequencies of 13 Hz as well as expected structural resonances at 30 Hz for aircraft in general
[11]. The natural frequencies of the glider will be sighiﬁcantly lower than 13 H z. This sampling
frequency will provide sufficient space, in the frequency domain for the off-line digital filtering
and resampling that takes place.

Considering the simultaneous sampling of all signals. The micro-controller has only one
ADC and to sample all twenty channels that are needed, multiplexers are used. All the channels
cannot be sampled simultaneously. The sample time between consecutive channels is 122us
and between the first and last channels is 2.3ms. Considering that the time between the first
channel and the last channel is 23% of the time between samples, the different channels cannot
be considered as simultancously sampled. The data logger is not suitable for the simultaneous
sampleing required. But the data will be thinned down from 100 samples per second to 20
samples per second for the estimation. At this thinned rate the time between the first and the
last channel is 5% of the time between samples. This is acceptable for our purposes.

The logger samples all 20 channels and then transmits the data in one packet. 19 channels
are available for sensors and one channel is used to sample a saw-tooth signal generated by the
micro-controller for testing. The data is transmitted via an asynchronous RS-232 link at 115
kilobaud. The data is sent as a string of ASCII characters. The total packet length is 42 bytes.
Two of the bytes at the beginning are used to identify the beginning of a packet followed by the
20 channels of data 40 bytes long. The sampling is controlled with an enable line which when
connected to ground starts the sampling and the transmission of the data.

5.3.3 Logging

The data from the data logger is stored on a hard-disk. In-flight the hard-disk is in a laptop, on
the ground it can be in any PC with a RS-232 port and the correct software. The laptop is used
for its versatility. The laptop can be programed easily to change its function, no new electronics
need to be built and there is room for expansion. The data is stored the moment it is received as
a line of ASCII characters in a text file. No processing of the data is done in flight.

The laptop is configured to suit its task as logger. Once swilched on it automatically starts
the logging program. When the first data is received the laptop writes the data to a file that
uses the date and the current time as filename. The logging process’s priority is changed in the
Windows 95 scheduler to time critical ensuring that it will dominate the time allocation of the
CPU. Every 1000 samples the file is closed and opened again. This ensures that the FAT of the
hard-drive is kept up to date in case the laptop is switched off accidentally or loses power in
flight, so that the data already recorded is not lost. The parallel port is used as the man machine
interface. Plugged into the port is a led that glows when the logging program is running, as well
as a switch which closes the program and shuts down the laptop.
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5.4 Control Surface Transducers

At the start of this project the ZS-GHB used was undergoing a major overhaul, providing the
opportunity to install sensors while the airframe was not covered. There were no sensors of this
nature in the glider before the project. All the sensors had to be built and could not be com-
pletely tested before the glider was finished and ready for flight. Simplicity was an important
consideration to reduce the chances of failure. Replacing one of the sensors inside the glider
would be a major exercise. There is limited access to the sensors.

Two types of sensors are needed for parameter estimation, namely sensors that measure the
actuators and sensors that measure the response to the actuation. The actuators or inputs to the
glider are the control surfaces. The air data sensors measure the current state of the glider’s
environment. The responses or outputs are the angular rates and translation accelerations mea-
sured by the inertial sensors. The input sensors are mounted in the aircraft as close as possible to
the control surfaces, to increase accuracy of the measurement. The inertial sensors are mounted
in a removable sensor pack (IMU) which also contains the data logging equipment. The IMU
(figure 5.3) when installed into ZS-GHB fits inside the fuselage just above the wing roots. This
section describes the details of the sensors and their mounting in the glider.

Figure 5.3: IMU mounted inside ZS-GHB

The control surfaces that are critical for the parameter estimation are the ailerons, elevator
and rudder. Sensors on the air-brakes and trim were also installed to provide data for later ex-
periments. Simplicity being important, it was decided to use a device that responds linearly to
deflection angles. The device chosen to measure the deflection is a servo potentiometer. The
servo potentiometer is suited for these measurements because it is linear, accurate, stable, is
simple to implement and does not require a complex calibration procedure, which if done incor-
rectly would introduce errors into the estimation. A high quality precision servo potentiometer
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was used. The advantages of using this high quality precision potentiometer over lower quality
types is the lower linearity error of 0.5%, compared to 2% of other precision potentiometers and
5% of common all-purpose potentiometers. The variation of resistance between potentiometers
is not a concern, as each control surface is calibrated once the instrument is installed. The
rotational life of the precision servo-potentiometer is higher than normal potentiometers by a
factor of 40, giving it up to 10 million cycles. For moving parts that will be in use all the time
during flight this extends the functional life of the sensors considerably. The shaft of the par-
ticular potentiometer chosen is mounted on bearings. The bearing-mounted shaft adds a greater
robustness to the potentiometer and reduces the torque required to move the wiper. A lowest
possible starting torque is desired to put the least amount of stress on the weak links to reduce
possible dead-band effects on the measurement. The specifications of the Vishay-Sfernice ECS

servo-potentiometer used are:

Resistance 10 | £Q
Resistance tolerance +20 | %
Linearity 0.5 | %
Temperature Coeff +400 | ppm/°C
Power Rating at 40° 1|W
Rotational Life > 107 | cycles
Mechanical rotation 360 | °
Electrical rotation 340+4|°
Starting torque(max) | 28 x 10~* | Nm
Running torque (max) | 21 x 10~* | Nm

Table 5.1: Specifications for Precision Potentiometer

For each of the control surfaces there is a unique way of attaching the potentiometer to
measure the deflection.

To calibrate the control surfaces, the complete logging instrumentation was used as it 18
flown during flight tests. The voltages used for the calibration data are those measured by the
ADC after the signal conditioning.

5.4.1 Ailerons

The aileron measurement is sensed from inside the fuselage. This is not the most ideal posi-
tion. The ideal position is at the hinge of the aileron in the wing. It was decided to keep the
sensor inside the fuselage to avoid complications and potential sensor damage when the wings
are removed and replaced for inspections and out landings. Just behind the rear pilot seat the
controls for elevator and aileron split off to the wings and tail. This is where the aileron defiec-
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tion measurement is taken. To take the measurement, the universal joint on the control splitter

Figure 5.4: Aileron deflection sensor

was replaced with a modified universal joint with an added tongue. The tongue is added in a

position so that it will only move if the aileron is actuated. The potentiometer is mounted on the
airframe and a beryllium copper L-bracket connects the potentiometer to the tongue (figure 5.4.
The bracket is held in place with friction from washers on the shaft of the potentiometer. If the

potentiometer were to jam, the L-bracket will slip and bend allowing the ailerons to function

normally.
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Figure 5.5; Left aileron calibration measurements

To calibrate the aileron sensor the glider was held level on the ground and an inclinometer
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was attached to the left aileron. Then the aileron was moved through its entire range of move-
ment with measurements being taken at intervals. To check for hysteresis and repeatability
the aileron was moved through its range 4 times in both directions. The data reveals that the
movement of the aileron deflection is parabolic with the control, becoming more sensitive as
the deflection increases in the negative direction. The aileron sensor saturates as the left aileron
reaches maximum negative deflection. The saturation is undesirable but the saturated portion of
the measurement is seldom used under normal flight conditions and was never entered during
any of the flight tests. The saturated region was ignored when fitting a curve to the measured
points. The aileron is an anti-symmetric control surface, meaning the two ailerons work oppo-
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Figure 5.6: Combined aileron deflection

site to each other with different magnitudes of deflection. To get the total effect of the ailerons
they need to be combined. The standard method for doing this is to subtract the starboard aileron
from the port aileron [11]. Applying this standard to the aileron measurement produces a linear
calibration curve for the total aileron deflection. Where 4, = 0.6262 — 0.2366V".

Potentiometer excitation oV
Scale factor —0.2566 radians/V
Offset 0.6262 radians
RMS noise 92.5 mV

Table 5.2: Calibration Data for Aileron
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5.4.2 Elevator

The elevator measurement is sensed in the back of the fuselage close to the tail but not right
at the elevator. There is one link between the elevator and measurement. The deflection of
the elevator is taken off a pin which holds the elevator control rod in a support bracket. The
rotation is transmitted to the potentiometer by a lever arm. The level arm is made up of a short
brass rod which is joined to a plastic covered spring that acts as the weak link, bending if the

potentiometer jams.

Figure 5.7: Elevator deflection sensor

To calibrate the elevator the same process as the one used with ailerons was used. The
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Figure 5.8: Elevator calibration measurements
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elevator sensor saturates with the control stick far forward and out of the normal flight range.
The saturated region was ignored when calculating the scale factors and offset. The least squares
curve fitted to the data is a straight line. Where 4, = 0.2908 — 0.2103V/,

Potentiometer excitation | 5 V

Scale factor —0.2103 radians/V
Offset 0.2908 radians
RMS noise 12 mV

Table 5.3: Calibration data for the elevator

5.4.3 Rudder

The rudder proved to be the most difficult sensor to install. It is very difficult to measure the
deflection of the rudder at the hinge. The vertical stabilizer on which the rudder is mounted
is a closed plywood construction with no access to its inside. The next option is to take the
measurement lower down the actuation chain. The rudder is controlled by two cables that run
down the left and right sides of the fuselage, from the pedals back to the rudder. It soon became

T

Figure 5.9: Rudder deflection sensor

apparent that the measurement would have to be taken from the cable. The pedals would not
be a good place, as they are too far removed from the rudder and the sensor can easily be
damaged by the pilot’s feet moving around the pedals. The cable is not an ideal place to take a
measurement since it can potentially stretch and flap. The cable is Smm thick with more than
1 ton breaking strain. It is over-specified for its function, so stretch should be minimum if not



CHAPTER 5 — GLIDER INSTRUMENTS 35

zero. The flapping is limited by eyes through which the cable passes along its track. The design
for the sensor shown in figure 5.9 was inspired by the mechanics used for zero backlash in PC
floppy disk drives.

The sensor uses a potentiometer that is rotated by a pulley. The pulley is driven by a thin
cable that is stretched by an aluminium tube that is attached to the rudder cable. To limit
flapping, an eye is placed on the sensor to guide the rudder cable and the aluminium tube. The
sensor is mounted onto the fuselage just behind the cockpit. The mounting position was chosen
because it is the rearmost position where limited access to the sensor is possible if the wings are
removed.

M

a

Figure 5.10: Diagram of Rudder deflection measurement

The vertical placement of the rudder prevented the use of the inclinometer to take deflection
measurements for calibration. The rudder deflection was measured using measuring tape. In
figure 5.10 the span of the rudder makes up side-c. A second side is chosen by extending
a line from the hinge point of the rudder to an arbitrary point (side-b). This length is fixed.
Side-a extends from the end of side-b to the tip of the rudder (side-c). It is side-a that varies
with the deflection of the rudder and is recorded. To convert the linear measurement from
the measuring tape to the deflection in terms of an angle the cosine rule was used: o? =

b + ¢ — 2bc Cos(A). The rudder was moved across its full range in both directions 4 times.

Potentiometer excitation | 3 V

Scale factor 0.2924 radians/V
Offset —0.7436 radians
RMS noise 15.6 mV

Table 5.4: Calibration data for the rudder
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Figure 5.11: Rudder calibration measurements

The rudder has no saturation and a least-squares fit (figure 5.11) of a straight line fits the data
well and §, = 0.2924V — 0.7436.

54.4 Trim

The trim control goes from a lever in the cockpit via two steel wires to the Flettner trim tab
in the elevator. Its not an electric control. The two wires are used in the same way as the
rudder control uses the cable. Compared to the rudder cable the trim wires are a lot stiffer. The
same technique as the rudder is used to take the measurement (Figure 5.12). The trim sensor
is also mounted aft of the cockpit and is accessible with the wings taken off. The trim is not a
critical control surface. It is used to reduce pilot workload during flight. With this in mind this
measurement does not have an obvious weak link built in. The trim was calibrated by using the
inclinometer. The problem with calibrating the trim tab is that the deflection is a function of the
elevator deflection. The trim tab position is not used as an input in the estimation at all, making
a full characterization of the trim tab deflection unnecessary. The trim tab was calibrated for the
elevator at zero deflection.

Potentiometer excitation | 5 V

Scale factor 0.1175 radians/V
Offset —0.1794 radians
RMS noise 10.7 mV

Table 5.5: Trim tab calibration
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Figure 5.12: Trim-tab Deflection sensor

The data shows (figure 5.13 the trim sensor saturates at —0.2 rad this is due to the sensor not
covering the complete range of the trim tabs movement. At 0.25rad the graph shows another
saturation occurs, this is where the sensor has moved but the trim tab has not, The trim tab does
move in this area when the elevator is deflected in the negative direction. The saturated areas
were ignored when the calibration curves were fitted. Over the unsaturated region the trim tab

sensor output is a linear function of the trim tab deflection §; = 0.1175V — 0.1794.
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Figure 5.13: Trim-tab calibration data
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5.4.5 Air-brakes

The Air-brake extension is sensed from the air-brake control arm where the air-brake actuation is
split to go into the wings. The control arm is connected directly to the shaft of the potentiometer.
As a safety feature a 30mm length of plastic covered spring is used, followed by a 100mm
length of 2mm cable. If the potentiometer jams the torque from the control arm will unwind the
spring and then the cable, while not hindering the extension of the air-brakes.

Figure 5.14: Air-brake extension sensor

The air-brakes extend vertically out of the top and the bottom of the wings. To calibrate the
sensor the air-brakes were extended and retracted with measurements being taken at intervals.
The measurements were taken using a tape measure to measure the distance above the wing
surface that the air-brake extends. A least-squares fit of a straight line to the calibration data
(figure 5.15) produces the following function: dgir—prake = 156.3 — 40.29V,

Potentiometer excitation | 5 V

Scale factor —-40.29 mm/V
Offset 156.3 mm
RMS noise 7.35 mV

Table 5.6: Calibration for the air-brakes
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Figure 5.15: Air-brake calibration data

5.5 Airdata

The air data measurements were not used as inputs or outputs. The dynamic pressure and the
pressure altitude are used to define the environment in which the glider is flying. The air data
forms part of the initialization for the parameter estimation algorithm.

Instead of adding a complete air data boom, which is normally done in flight tests, it was
decided to couple into the existing pressure ports. The pitot pressure port is in the front of the
nose and the static pressure ports are on either side of the nose. The pressure transducers were
placed underneath the rear pilot’s instrument panel. The location of the sensors was chosen
for its accessibility to the all the pipes from the pressure ports. There was some concern that
the distance between the ports and the sensor elements might introduce a lag in the pressure
measurements. Considering that none of the manoeuvres would be aggressive and cause large
quick pressure changes and that the pressure measurements are initialization conditions, the lag
introduced by the position of the sensors would not affect the parameter estimation.

5.5.1 Dynamic Pressure

The dynamic pressure is measured using a two port peizo-resistive device. The high pressure
port is attached to the pitot pressure and the low pressure port to the static pressure. The sensor
element used is a 170PC Manufactured by Honeywell. Expected maximum dynamic pressure
with the ASK-13 Vne (Velocity not to be exceeded) being 130 km/h is 801 Pa. The circuit
schematic is in appendix C. The calibration data for the dynamic pressure sensor is listed in
table 5.8 where § = 1097 — 219.5V.
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Range 1.7 kPa
Scale factor 16 mV/kPa
Null output shift 0.03 | %FS
Sensitivity shift +4 %FS
Repeatability and hysteresis | £0.25 | %FS

Table 5.7: Specifications for the 170PC Differential pressure sensor

Scale factor | —219.5 Pa/V
Offset 1.097 kPa
RMS Noise | 0.7 mV

Table 5.8: Calibration data of the dynamic pressure sensor

A water manometer was used to provide the pressure excitation for the calibration of dy-
namic pressure sensor. The output of the sensor use for calibration is the voltage measured by
the ADC.

5.5.2 Static pressure

The pressure altitude sensor is connected to the static port. The sensor used here is a Motorola

MPX4115A temperature compensated absolute pressure sensor.

Range 15-115 | kpa
Scale factor 45.9 mV/kpa
Accuracy +1.5 %FS
Offset stability | £0.5 | %FS

Table 5.9: Specifications for the MPX4115A absolute pressure sensor

The data sheet quotes the accuracy as a combination of the linearity, temperature hysteresis
and pressure hysteresis. The glider will seldom fly over 8000ft (75.2 kPa) and for the flight-tests
was towed to 4000ft (87.5 kPa) from 650ft MSL (98.96 kPa). The pressure range of the sensor
that needs to be monitored is 98.96-84.3 kPa (650-5000ft). After signal conditioning the static
pressure is given by P, = 104.7 — 4.04V has a new scale factor, offset and noise.

The offset will drift as the atmospheric pressure changes. The pressure measured on the
ground needs to be noted if the static pressure is going to be used for altitude measurement.
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Scale factor | —4.04 kPa/V
Offset 104.7 kPa at STP
RMS Noise | 1.1 mV

Table 5.10: Characteristics of the static pressure sensor

The formula for obtain altitude above sea-level in feet from the pressure is:

P 0.190263
Altitude = (1 - (FS) ) 145.44 x 10° (5.1)
0

where P; is the measured pressure and P, is the standard pressure of 101.325 kPa

5.6 Inertial Sensors

To measure the movement of the glider, six sensors are used. Three angular rate sensors measure

the angular rates and three accelerometers measure the translation acceleration.

5.6.1 Angular Rate Sensors

To choose suitable angular rate sensors for the glider, three factors were considered, maximum
rate measurable, bias drift and cost. The maximum angular roll rate, which can be the highest
angular rate, of the glider is by approximation from the pilots 30°.571. There was no measured
data available to base this decision on. The low-cost angular rate sensors available are well
above 30°.s7%, most are in the range from 50°.s7! and upwards. The choice of angular rate
sensors was determined by cost and bias drift. Drift and cost are directly linked: the more
expensive the gyro the lower the drift. The exponential relationship between drift and cost
makes the low drift navigation grade sensors too costly for this project.

Technology Price(US$) Drift

Ring laser gyro | > 100000 < 0.0015°/h
Fiber optic Gyro | 1700 - 50 000 | 0.01 ° /A
Mems 100 - 3000 1-200°/h
Peizo gyro 30- 100 150-300°/h

Table 5.11: Comparison of angular rate sensor technology with price and drift

Having zero bias drift is not that critical, as the bias of the angular rate sensors can be esti-
mated as one of the unknown parameters in the parameter estimation. The manoeuvres are short
enough to assume the bias drift is zero during the manoeuvre. The cheapest option would be to
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use peizo-gyro technology. The disadvantage of the peizo-gyro technology is the hysteresis that
is present in the measurements of the cheapest angular rate sensors [12]. The angular rate sen-
sor selected was the Systron Donner AQRS MEMS sensor, its main characteristics are listed in
table 5.12. For its price it provides a drift that is low enough to be ignored during manoeuvres.
The longest expected manoeuvre of 40 s should have a bias drift of < 0.02°.57L,

Range +75 .57t

Scale factor 33 ° s LV
Bias drift due to temperature <45 |°s7!

Short term bias stability (100sec) | < 0.005 | °.s7}
Threshold resolution < 0.004 {°.s7!
Output noise 0.025 °.s71/ VHz
Alignment error _ <3 ©

Table 5.12: Specifications for an AQRS angular rate sensor

The scale factor of each of the angular rate sensors needs to be calibrated to be certain of the
value. Without a specifically designed sensor calibration rate table, a different method had to
be used to find the scale factor, In the method used the sensor is moved through a known angle
(e.g. 90°) while logging the rate output. Integrating the output of the sensor will then produce
the angle through which the sensor has traveled. Knowing the sampling time and logging the
rate output in volts will give enough information to calculate the scale factor. To be sure the
scale factor is the same for both positive and negative directions, the experiment was compieted
in both directions and repeated ten times. The final scale factor that is used for the rate sensors
is the average from the ten experiments.

90°
At x 3 (Measurements — Of fset)

scalefactor = (5.2)

The scale factors for the axes are: X-axis 32.87°.571/V, Y-axis 32.92°.5!/V and Z-axis
32.85°.571/V. These scale factors are quite close to the manufacturer’s specifications. The
manufacturer also specifies a maximum variation 5% in scale factor that includes the effects
of temperature drift. So it can be expected to find the scale factor between 31.35°.57!/V and
34.65°.s7'/V. Misalignment of the gyro inside its packaging and misalignment of the pack-
aging to the mounting will also have a slight effect on the scale factor with this particular
experiment. In section 5.6.4 the misalignment of the gyro’s is shown to be small, allowing us to
accept the scale factors obtained from the scale factor experiment. The mounting of the angular

rate sensors and accelerometers will later be described in section 5.6.3.
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5.6.2 Accelerometers

Accelerometers are used to measure the specific forces on the glider. To select suitable ac-
celerometers, similar factors to the angular rates sensors (maximum acceleration, cost and drift}
were considered, as well as the signal to noise ratio. The glider will not exceed 2 g acceleration
positive or negative in the flight tests, due to design limitations. A device with the range of
—2 to +2 g will be sufficient. Hard landings may exceed these limits but are of no use to the
parameter estimation for the short-term control and stability derivatives. The recent develop-
ment of MEMS accelerometers has provided cost effective means of measuring acceleration
with reasonable accuracy. At the time of purchase accelerometers from Analogue Devices and
Motorola were the most readily available.

Part Range | Sensitivity | Noise No of axis
ADXLI0S |+5 |200mV/g |500ug/VHz |1
ADXL202 |42 |312mV/g | 500ug/vVHz | 2
MMA1270D | £2.5 | 750 mV/g | 700ug/vHz | 1

Table 5.13: Comparison of accelerometers

The ADXL202 of Analogue Devices was selected over of the Motorola MMA1270. The
ADXL202’s full range, as well as drift and low noise are suitable for our application. It greatest
advantage over other devices is that it comes with two accelerometers mounted perpendicular
to each other in a single package. This device costs less than the MMA1270D, which is a single
axis device. The 2-axes package helps with alignment of the accelerometers as now only one
other accelerometer needs to be aligned with the other two. The device also has a built in low-
pass filter with the corner frequency set by a discrete capacitor added by the user, This filter
reduces the bandwidth of the accelerometers and reduces the noise level on the output.

Range £2 g
Nonlinearity 0.2 % of FS
Alignment error +1 °
Alignment error between X and Y | £0.001 | ©

Scale factor 312 mV/g
Scale factor drift due to temperature | 0.13 %/°C
Bias drift due to temperature 2 mg/°C

Table 5.14: Specifications for an ADXL202 accelerometer

If the accelerations are too small and the signal to noise ratio is not large enough, the data
will deliver poor estimations. The bandwidth of the the accelerometers is set to 50Hz. Tabulated
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in the data sheet of the ADXL.202, the smallest acceleration measurable with a bandwidth of 50
Hz is 5Smg. The glider should at least be capable of doing manoeuvres in the 100mg range for
the flight tests.

5.6.3 Mounting the Inertial Sensors

To gather useful data from the inertial sensors they need to be mounted with a specific orienta-
tion to each other. The mounting relative to each other is of particular importance in order to
avoid cross talk in the measurements. The three accelerometers are mounted with their sensitive
axes orthogonal to each other. The angular rate sensors are mounted orthogonally to each other
and aligned with the specific force measurements. Mounting the sensors this way produce six
unique signals, without cross-coupling between sensors, that can measure motion with six de-

grees of freedom. In figure 5.16 the IMU mounting is fixed alongside the data logging circuits.

Figure 5.16: Mounting for the inertial sensors and logging circuitry
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5.6.4 Calibrating the Mounted sensors

Once the sensors were mounted it was necessary to check the alignment of the sensors. Al-
though care was taken during the manufacture of the mounting, there is no guarantee that there
is no misalignment of the three orthogonal surfaces used for the sensor mounting. To measure
the cross talk the mounting was placed on a level table that can be spun. One of the angular rate
sensors was lined up to the tables’ axis of rotation. All three angular rate sensors are connected
to a data logger. The table was then spun at a known rate approximately 55°.s~* and the data
from all three angular rate sensors is logged. This process is repeated with each axis of the
mounting being aligned with the tables’ rotating axis. To calculate the miss-alignment with the
other angular rate sensors, the measurement from the excited angular rate sensors is taken and
the arccosine with one of the off axis angular rate sensors is calculated to extract the angle.

For example, if the x axis rate sensor is stimulated with 55.8°.5~1 and we obtain a reading of

—0.115°.57! for the y-axis gyro the angle between the two rate sensor’s is

—0.115)
55.8

8 = arccos (
g = 90.118°
(5.3)

The perfect angle between sensors would be 90°. This is not realistically obtainable. There will
be some error in alignment that will cause the non-zero reading from the remaining angular rate
sensors. The calculations are repeated for both off-axis angular rate sensors for each axis being
stimulated. The results are listed in table 5.15. For estimating control and stability derivatives
the misalignment of the gyros relative to each other is too small to warrant adding correction

terms in the measurement equations.

Misalignment with | X Y Z
With X-axis excited | 0° 0.12° | 1°
With Y-axis excited | -0.1° | 0° -0.85°
With Z-axis excited | 0.85° | 0.73° | 0°

Table 5.15: Misalignment of angular rate sensors

The alignment of the accelerometers was also checked. The standard force applied for
testing is 1g. A method of tilt sensing is used. Readings at +1g and —1g are taken for each
axis. With these readings the scale factor as well as the offset can be determined for each
accelerometer. To ascertain how much the alignment is out the accelerometer mounting is
rotated by 90° in the direction of one of the two remaining force measurements. If the X-axis
alignment is being analyzed the accelerometer mounting is rotated in the direction of either the
Z-axis or Y-axis. A reading is then taken, which should correspond to the vatue for zero force,
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which is the offset. The misalignment is found by taking the difference in the measured zero
and offset and finding the arcsine of this value with gravity (equation 5.4).

(3.4)

- , (Measurement — Offset)
misalignment = arcsin

lg
This would for example if the X-axis is being analyzed and the accelerometer mounting block
is rotated in the Z-axis direction given the misalignment angle between the X and Z-axes.

The above method was followed and repeated five times to determine the misalignment
between the accelerometers. From these experiments it was found that the accelerometers were
mounted with a reasonable accuracy. This is to be expected as one of the devices contains two
axis with a guaranteed orthogonal specification of 0.01° and misalignment with the package of

less than 1°

Misalignment with | X-axis | Y-axis Z-axis
X-axis 0 < 0.246° | < 0.246°
Y-axis —0.355° | 0 1.42°
Z-axis 1.8° 2.34° 0

Table 5.16: Misalignment of the accelerometers

The table shows how much the sensitive axis of the particular accelerometer is tilted in the
direction of another axis on the mounting block. The X-axis accelerometer is quoted with a
< because the measurement is below the noise floor of the device. The 2.34° misalignment
of the Z-axis in the direction of the Y-axis will introduce a percentage error of 0.083% in the
measurement of Z-axis acceleration. Considering that Maine and Illif [11] strongly recommend
that no small corrections be used on sensor data, the accelerometers alignment is accepted as is

without any correction factors.

5.6.5 Scale Factor Adjustment

The first few times ZS-GHB flew with the instruments installed it was discovered that the gain
of the accelerometers and angular rate sensors in the signal conditioning circuit required ad-
justment. The accelerometer readings were smaller than expected requiring that the gain be
increased. The angular rate sensors saturated, their gain had to be reduced. Table 5.17 lists the
scale factors and RMS noise of each of the sensors of the IMU after the adjustment.
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Measurement Scale factor RMS noise | RMS noise in measurement
X gyro 10.7°.s7LV-L [ 17.9mV | 0.19°.571

Y gyro 10.7°.s7L.V -1 [ 18.3mV | 0.19°.s7!

Z gyro 10.5°s LV | 14.2mV 0.15°.s7!

X accelerometer | 2.39m.s72.V ! | 29.6mV 0.07m.s™2

Y accelerometer | 2.41m.s~2.V ! | 34.6mV 0.06m.s~2

Z accelerometer | 5.45m.s72.V 71 | 9.29mV 0.05m.s2

Table 5.17: Inertial sensors scale factors and noise level

47



Chapter 6

Preflight Data

There are many parameters in the equations of motion that affect the dynamics of the glider.
Some of them cannot be estimated from flight data. These parameters are the physical at-
tributes of the glider that are used to non-dimensionalize the aerodynamic force and moment
coefficients. These parameters need to be known before any control and stability derivative
estimations can be made. Not all of the physical attributes that were needed are recorded in
data books. The moment of inertia values, which are critical, are not published. To collect the
unknown data various measurements were taken and ground based experiments executed.

The following data was collected: mass, moments of inertia, position of the center of gravity,
the wing geometry and the position of the accelerometers. How this data was collected is the
subject for the rest of this chapter.

6.1 Readily Available Data

The important data for the wing is recorded in [13] and is displayed in table 6.1 After the major

Wing span | b 16 m
Mean chord | ¢ 1.09 m
Surface area | S | 17.50 m?

Table 6.1: Wing data

overhaul ZS-GHB was inspected and a weight and balance report was completed. The weight
and balance report is required by the Soaring Society of South Africa to ensure that the glider is
safe to fly and that the center of gravity is inside the required limits for stability. The quantities
reported are listed in table 6.2. The information recorded in the weight and balance report is
limited. What is still required are the Y and Z positions of the center of gravity and the moments
of inertia. Once all this information is available adjustments need to be made to take the pilot’s
influence on the mass properties into account.

48
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Weight at front wheel 226.6 kg
Weight at rear wheel 99.3 kg
Empty weight 320.9 kg

Distance to front wheel from LE 1520 mm

Distance to Rear wheel from LE | —4974 mm

Center of Gravity —-459 mm

Table 6.2: Weight and Balance data

6.2 Center of gravity and accelerometer position

The position of the center of gravity is measured from the Leading Edge Datum. The weight
and balance report supplies the X position. The Y position is taken from the symmeiry of the
aircraft and is zero. The Z position of the center of gravity and the position of the accelerometers
had to be measured.

6.2.1 Vertical Center of Gravity

The vertical center of gravity is calculated from experimental measurements taken on the ground.
On the ground in the ZY plane the glider rolls around the main and tail wheels. This is very
much like an inverted pendulum. By tilting the glider, the center of gravity moves laterally off
the center-line and out of a balanced position. The displaced center of mass creates a torque
around the wheels, which will cause the glider to fall over to one side. The glider is tilted over
till a wingtip touches the ground. The wing then holds the glider up and the resultant torque
is zero (Figure 6.1). Measuring the weight at the wingtip and measuring the distance from the
wing tip to wheel the torque caused by the center of gravity is calculated. What is of more
interest is the moment arm of the center of gravity.

T = 0

0 = L OMaging tip — lzgmgtider
I . llmwing tip
5 — 1 Twing vp
Mylider
B 1Y)
27 3259
Iy = 0.1326 m

(6.1)
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Figure 6.1: Torque and moment arm diagram with glider leaning on its wing

by using trigonometry the moment arm can be related to the vertical position of the center
of gravity measured from the main wheel.

Iz
T = —— o (6.2)

The angle ¢,,,, is the angle from the vertical which the glider is rotated to get the wing tip to

touch the ground. Knowing the length of all three sides of the triangle (the distance from the
main wheel to the wing-root, the length of the wing and the measured distance between the
main wheel and the wingtip) is lenough data to calculate the angle from the horizontal to the
axis of symmetry of the glider. The angle is calculated by using the cosine rule.

Figure 6.2: Triangle for calculating tilt angle

A2 = B*3+C*—2BCcosh
B2 4 (C? — A2
Pmw =  GTCCOS (W)
8.129% + 0.768% — 82
mu = GrCCOS ( 9 (8.212) (0.768) )
P = 12.38°

(6.3)

Using a measured value for the distance between the wingtip and main wheel, as opposed to a
calculated value, automatically takes into account the dihedral of 6° and the possible fiexing of
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the wing. Having ¢,,,, and the moment arm [ the vertical position of the center of gravity can
be calculated using equation 6.2

Iy

Zmuw =

€08 Qo
., . 0.1326
T c0s(12.38)
Zmw = 0.6183m

(6.4)

This position is from the main wheel up. Referencing the position to the Leading Edge Datum
gives the vertical center of gravity a position of z,, = —0.1497m. What is important to note
is that this is the position for the center of gravity for the empty glider and it will change once
the pilot is sitting in the glider.

6.2.2 Accelerometer positions

The accelerometer measurements are sensitive to the position of the accelerometers, relative to
the center of gravity. The further away from the center of gravity that the accelerometers are
mounted the greater the effect angular rates and angular accelerations have on the acceleration
measurements. If the positions of the accelerometers are known it is possible to account for
the effect of the angular accelerations and rates on the accelerometers. The position of the
accelerometers are measured relative to the Leading Edge datum. With this data it will be
possible to calculate the position relative to the center of gravity. As mentioned before, the
center of gravity will change once a pilot is sitting in the glider and will vary with different pilot
masses. The measured position of the IMU is listed in table 6.3.

Direction | Measurment
X —-1.04 m
Y 0m
Z -0.202 m

Table 6.3: IMU position referenced to Leading Edge Datum
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6.3 Mass Properties

The weight and balance report from the Cape Gliding Club provides the total mass of the glider
(325.9 kg) but none of the moments of inertia. The equations of motion require the inertia tensor
to calculate the angular rates. The symmetry of the glider reduces some of the terms to zero

leaving equation 6.5 the moments of inertia around each body axis and the product of inertia
Iz,

Ia:x 0 _I:r:z
I=| 0 I, 0 (6.5)
'—Imz 0 Izz

The rest of this section describes the experiments done to obtain the moments of inertia around
each axis and the calculation of the I, product of inertia for the empty glider.

6.3.1 Pitch Moment of Inertia

The pitch inertia is estimated from data collected during ground experiments. To create the
relevant data the glider is pitched around its main wheel. To do this a strain gauge is attached
to the handles on the rear of the fuselage. Lifting and lowering the tail with the strain gauge
applies a torque around the main wheel and causes a pitching rotation. Measuring the force
with the strain gauge, the torque being applied around the main wheel can be calculated if the
distance from the strain gauge to the main wheel is known. Logging the pitch rate and force in
the strain gauge while lifting and lowering the tail provides enough data to estimate the pitch
inertia. There are complications. The center of gravity is very close to the main wheel and

Figure 6.3: Pitch moment of inertia experiment setup

lifting the tail too far will flip the glider onto its front wheel. This is a problem because the
strain gauge used can only measure tension. Thus the mass of the glider is needed to provide a
restoring force. The restoring force varies with pitch angle. If the movement is kept small the
variation in the restoring force is linear and is easy to take into account as feedback. The last
complication is that the inertia is measured around the main wheel and not the center of gravity.
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This is to be corrected later by using the parallel axis theorem. The equations that describe the

T

Fry

Xy

Figure 6.4: Force diagram for pitch inertia experiments

glider pitching on the ground are:

I8 = mgzysing — iz, F
§o- memd_ oF (6.6)
Ly Ly

Where I, is the pitch inertia, § is the pitch angular acceleration, m is the mass of the glider,
x5 is the distance from the main wheel to the center of gravity, 4 is the pitch angle around the
main wheel, ; is the moment arm for the strain gauge and F' is the force measured by the strain
gauge.

The state-space model used in the estimation has a couple of additional parameters to it.
Biases are added to the force and pitch rate measurements to take into account the unknown
sensor biases. The state-space model of the pitching motion on the ground is:

The state equations:

6 0 1|8 0 0 F

. = |+ 6.7

M [J—o]H {4 5] o0
The output equations:

. 9 F

i = [0 1]{9 +[oab][1} 69

The parameters estimated are the initial conditions, the biases, the center of gravity feedback
term (mgx; in equation 6.7) and the pitch inertia. Although it is not necessary to estimate the
center of gravity feedback term it was thought prudent to do so. There is a possibility that errors
in the position measurements of the center of gravity exist. By estimating this term, small errors
can be adjusted, thus producing a more accurate pitch moment of inertia.
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The weighted mean of all the estimated pitch moments of inertia is 956.5 kg.m? with o =
56.59. The value for ¢ is calculated from equation 3.11 the expected o of the weighted least
squares. Figure 6.5 is the scatter plot showing the estimated pitch inertia and one sigma values
for the error bounds. Although the error bounds vary from very small to very large there is a
tight cluster around the expected value. Using the parallel axis theorem the moment of inertia
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Figure 6.5: Pitch moment of inertia scatter plot

around the center of gravity is calculated. The moment of inertia around the center of gravity is
the smallest compared to moments of inertia taken at any other location.

Imginwheet = Jog +md®
Lo = Luginwhea — md°
I, = 956.5—325.9(0.643)°
I, = 8218kg.m®

Where d is the distance from the main wheel to the center of gravity, taking vertical and longi-
tudinal position into account.

6.3.2 Roll Moment of Inertia

The roll moment of inertia is found in a similar way to the pitch inertia. A force is applied
using the strain gauge to measure the induced torque around the main wheel. The resulting roll
rate is then logged. The same form of state-space model for the pitch moment of inertia is used
for the roll moment of inertia. In the experiment the strain gauge was attached to the air-brake
pivot point. There are two reasons for this choice of attachment. The air-brake pivot point
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provides a strain resistant hard point around which the strain gauge rope was easily looped.
This attachment avoided including the flexible outer parts of the wing in the moment arm. This
attachment is better than the wingtip for the data collection because the wing bending modes
are stimulated less, reducing a possible source of process noise in the data. To provide more of a
restoring force to keep the strain gauge rope in tension, a weight is added to the end of the wing.
The weight on the end of the wing also moves the center of gravity off the center-line, providing
a large range of rotation around the main wheel to do the experiments with. The weight on the
end of the wing changes the torque equations slightly when compared to equation 6.6.

m F Madded weight

T3

Figure 6.6: Force diagram for roll inertia experiments

I:rmq.f; = mgm28@.n ¢‘ - -TIF + T3Madded weightgcos (Qs + 60)
- nkF  zam e
3 = TMgra¢ I + E3Madded weight 6.9)
ICE.T I\’Bﬂ’.‘ Iﬂ?ﬂ':

The term for the added weight in equation 6.9 is also a function of ¢ but has the dihedral angle
of the wings added to it. This term varies 0.5% of its maximum over the entire range of the rol}
moment of inertia experiment. To simplify the equation this term is kept constant.

If the glider is pulled too quickly it can gain too much momentum. The problem occurs
when there is no longer an exciting force and to little restoring torque and the strain gauge loses
tension. At that point the measurement of the input is lost, making the identification difficult
or even impossible. The data where this has occurred is ignored. The weighted mean of all
the estimated roll moments of inertia of the glider is 2800 kg.m? with ¢ = 9.3715e — 011.
The scatter plot (figure 6.7) shows very little scatter and extremely small Cramer-Rao bounds.
This estimation is suspiciously good, but no reason could be found not to have confidence in
the estimated moment of inertia. The matching of the simulated and gathered data is good,
the Cramer-Rao bounds are small and the initial conditions estimated with the inertia are all
within reasonable bounds where they can be expected. The weighted mean value is accepted
as a reasonable estimate of the roll moment of inertia of the glider. This inertia is around the
main wheel and includes the inertia of the added weight. The inertia is referenced to the center
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Figure 6.7: Roll moment of inertia scatter plot
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of gravity, using the paralle] axis theorem (equation 6.9) and the inertia of the added weight is
removed. The roll moment of inertia around the center of gravity is 2544 kg.m?.

Imain wheet + Toddedweight = Loy +md’
Ly = Inginwhee — MA° — Dgedueight
I, = 2800—325.9(0.618) — 2.0542(16/2)*
I, = 2544 kg.m?

(6.10)

6.3.3 Yaw Moment of Inertia

The yaw moment of inertia is found in a similar manner to the roll and pitch moments of inertia.
The difference is that the force in opposition to the strain gauge is supplied by an elastic cord
and to get close to friction free yawing, the glider is pushed up onto a turnstile. The tail wheel is

Figure 6.9: Turnstile for Yaw moment of inertia experiments

\

put onto rollers to allow the main wheel to swivel freely on the turnstile. The ideal attachment
point for the strain gauge and the elastic cord is at the handles on the rear of the fuselage. This
provides two forces with the same moment arm applying a torque around the main wheel. To
describe the interaction between the forces, and angular rates, equation 6.11 was used

Izqu = mlFeIa.atic —nF (6] 1)

A complication is that the spring constant of the elastic cord is unknown. The spring constant
was experimentally determined by moving the glider over the range of deflection used for the
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Figure 6.10: The rollers used to free the tail wheel

inertia experiments, and at 5cm intervals measuring the force in the strain gauge. The range that
the glider can yaw was limited to 33¢m. This is due to the limited range of the roller set-up for
the tail wheel. It needs to be noted that the displacement was measured at the tail wheel, while
the force was applied at the handle which is approximately a meter closer to the main wheel.
From the data collected the elastic cord has a linear spring constant of K = 0.14076 N.mnm ™!
over the range used. It would seem that if a long piece of elastic cord is used (approximately 2m)
with a very short displacement the spring constant is linear. The spring constant was calculated
in N.mm™! but would be more useful as the spring constant in terms of the yaw angle of the
glider. The conversion is done by equation 6.12

K P = K Iy SN '(,b
K. P = K x4 ’{b
(6.12)
where z4 is the distance from the main wheel to the tail wheel. The angle through which

moves is small, allowing the linearization of sin ) to . Using equation 6.12 in equation 6.11
the yaw motion can be described by:

Izle’ - 1 Feastic — 21 F
Izz"l). = o Krgp -z F
. 0Kz = F

= — 6.13

i . L. (613

The weighted mean of the yaw moments of inertia estimated is 3265 kg.m? with o = 0.0478.
The scatter plot of the estimation figure 6.11 shows very small Cramer-Rao bounds which is
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good, although the scatter of the parameters appears large. If figure 6.12 is consulted you will
notice that 8 out of the 12 experiments are within 3% of the weighted mean, which is a tight
cluster.
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Figure 6.11: Scatter plot of Yaw moment of inertia estimations
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Figure 6.12: Percent deviation from weighted mean of estimated yaw moments of inertia.

As with the other two moments of inertia, this moment of inertia has also been found around
the main wheel and not the center of gravity. Using the parallel axis theorem {equation 6.9} the
yaw moment of inertia around the center of gravity is 3254 kg.m?
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6.3.4 Products of Inertia

The product of inertia is defined with respect to two orthogonal planes, as the product of the
mass of the element and the perpendicular distance from the planes to the element [3]. The
product of inertia for the planes y-z and x-z for a body made up of differential elements is
I,y = [, zydm. The product of inertia can be positive, negative or zero, depending on the
signs of the coordinates of the mass elements. If one or both of the orthogonal planes are planes
of symmetry, then the product of inertia is zero.

The products of inertia for the glider are needed to complete the inertia tensor. Experimental
techniques for determining the products of inertia do exist, but they require expensive machinery
which is not available. Thus experimental determination of the products of inertia is not a viable
option for this project. The products of inertia were calculated using the mass properties of the
fuselage and the wings and their relative positions from the center of gravity. The glider’s
symmetry in the x-z plane reduces the number of calculations that are needed. The symmetry
ensures that the I, and I,, products of inertia are zero, leaving only /., to be calculated.

To calculate the product of inertia, the masses of the various components and the positions
of the center of gravity of each component relative to the center of gravity of the entire glider
are needed. The masses and positions are listed in table 6.4. Having no information for the
center of gravity of the wings, the position was assumed by considering the internal structure of

the wings. The product of inertia [zz is then given by equation 6.14.

Measurment Wings Fuselage
Mass 161 kg 164.9 kg

X 0.1790m | —0.1757m

Z —0.1497m | 0.1462m

Table 6.4: Mass and position of wings and fuselage relative to center of gravity

Ies = ZfuselageZfuseloge’ fuselage + Twing ZwingMwing

I, = —863Tkgm?

The completed inertia tensor is:

821.8 0 8.637
I = 0 2544 0 (6.14)
8637 0 3254

Note that I, is approximately 1% of the roll inertia. It is very small and could be ignored. The
usefulness of the inertia tensor calculated here is questionable. It does not include the effect
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of the pilot. Considering that the glider never flies without a pilot it will never be used in the
above form. The inertia tensor needs to be adjusted as described below to take the influence of

the pilot’s mass into account.

6.3.5 Taking the Pilot into account

The ASK-13 is a training glider with space for two pilots. For the flight tests there was only one
pilot. The pilot’s mass and position of that mass have a large effect on the position of the center
of gravity, the moments of inertia and the products of inertia. To illustrate the importance of
taking the pilot’s mass into account, a pilot weighing 75 kg is 19% of the take-off weight of the
glider.

The pilot’s mass distribution needs to be modeled. The simplest model would be a sphere of
uniform density. The radius used is 0.6 m a third of an average person’s height. The moments
of inertia for the pilot would then be given by equation 6.15.

2
Ioe = Iyy = I, = gmpiloth (6.15)

The center of gravity is located approximately 0.2 m above the middle of the seat where the
pilot is sitting.
The new center of gravity for the glider is calculated first, to provide the new reference

point for the moments and product of inertia. The Y position remains at zero. To calculate the

X position
T _ ToldegMempty T TpilotMpilot (6 16)
* Mempty + Mpilot '
—0.459(325.9) + 0.920(75)
= 6.17
Tes 3259+ 75 (©.17)
Teg = —0.201m

To caiculate the Z position

Zold cgMempty T ZpilotMpilot

Ze =
i Mempty T Mpilot
0.146(325.9) + 0.294(75)
_ 6.18
“eg 3259+ 75 6.18)
2¢g = 0.174m

The new center of gravity positions are referenced to the Leading Edge datum, with a pos-
itive X-axis forward and Z-axis down. The new center of gravity is now used to calculate the

moments of inertia.
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The new moments of inertia are calculated by using the known moments of inertia and the
center of gravity around which they were calculated. The parallel axis theorem (equation 6.9)
is used to calculate the moment of inertia around the new center of gravity.

Licnew = Ipgoid + m(y2 + z2) (6.19)

The two moments of inertia, empty glider and pilot, are then added together to form the new
moment of inertia. The new values are listed in table 6.5.

ZS-GHB | Pilot | Total [kg.m?]
L, 822 [ 51.623 |  962.36
I, | 2565.9|461.16 | 3027.1
L.| 3275.7|456.47| 3732.2

Table 6.5: Moments of inertia of ZS-GHB 7bkg pilot in the front seat around combined center
of gravity

The products of inertia also need to be adjusted. The simplest method of doing this would
be to add a term for the pilot into the original calculations. This produces equation 6.20.

Ioi = ZiuselageZfuselage™ fuseloge T TwingZwingMuwing + Tpilot ZpilotMypilat (6.20})
I, = —0.7955kg.m’ (6.21)

Now that the all the mass properties are known, the data that is collectible before flight tests
begin is complete.



Chapter 7
Lateral Derivative Estimation

It is well known [1] that the motion of conventional aircraft can be decoupled into the lateral
and longitudinal modes of motion.

This section describes the lateral derivatives estimation. It starts with the design of the ma-
noeuvres to provide suitable data. The state-space model used to describe the lateral dynamics
of the glider is then defined, and the pre-processing that is done to the data before the estimation
algorithm is run is described. Finaily the parameters estimated from the data are presented and

discussed.

7.1 Flight Test Procedure

To perform identification, manoeuvres have to be flown to suitably stimulate the dynamic re-
sponse of the aircraft. The tests are preferably done in non-turbulent air, which generally means
there is little available lift to regain the altitude lost during the manoeuvre. The typical flight

sequence is as follows:
1. Data logging is started with the glider on the ground
2. The glider is towed up to 4000 ft and released

3. The pilot then starts doing manoeuvres, returning to stable trimmed flight at a predeter-
mined speed between manoeuvres.

4, If the pilot finds lift he attempts to gain altitude to prolong the flight so that more ma-

noeuvres can be done.
5. More manoeuvres are done.

6. When the glider reaches 1500 ft the pilot must commit to landing and manoeuvres are
stopped.

7. The glider lands and logging is stopped.

63
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During a flight both lateral and longitudinal manoeuvres can be done. The same wave-forms
can be used on all the control surfaces to produce data.

There are a few factors ‘of glider flight that affect the data from experiments negatively.
Although helpful in prolonging the flight-tests, the updrafts can have a negative side-effect. The
turbulence that the updrafts cause in manoeuvres will enter the state-space model as unmodeled
process noise. This increases the error in the estimate parameters. The ideal would be to do a
flight test with all the manoeuvres at a particular altitude with no turbulence. With a glider this
is very difficult, as it has no thrust to maintain altitude and when there are updrafts the air is
turbulent.

Particular attention is paid to the choice of manoeuvres that the pilot flies. To get a good
estimate of the parameters the manoeuvre must excite all the modes of the glider. In research
done by Shafer [19] it was found that square-wave inputs provided better data for estimation
than sine wave inputs. The impulse and doublet (positive then negative pulse) are good exam-
ples of typical manoeuvres. The four-frequency manoeuvre, a combination of a square wave
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Figure 7.1: Typical manoeuvre shapes.

with four different frequencies, has a good broad range of frequencies and extended stimulation
time. It provides good data for estimation purposes and it is easier for the pilot to fiy than the
traditional 3211 manoeuvre used in flight tests. The Four-frequency manoeuvre is made by first
moving the control backwards and forwards four times as quickly as possible then twice at half
the fastest speed, then once at a quarter of the fastest speed and once at an eighth of the speed.
The pilot can maintain the timing by counting to four with each step in frequency. In reality,
the pilot may stop the manoeuvre early if the glider orientation becomes dangerous. For this
project the four-frequency is the manoeuvre most often performed during the flight-tests. The
decision to use this manoeuvre is based on previous success in [16] and that a large portion of
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the manoeuvre can be done before large, potentially dangerous, angular rates have developed in
the response. Intermittently impulses, doublets and 3211’s were also used to provide a variety
of manoeuvres. The amplitude of the manoeuvres is important. The estimation algorithm works
well if there is a large difference between the signal amplitude and the noise amplitude. The
pilot is therefore instructed to make the input signals as large as possible, but not too large as
this would accentuate the non-linearities that exist in the equations of motion.

The lateral motion involves two control surfaces, the rudder and the ailerons. In normal
flight the ailerons and rudder are always used together to make co-ordinated turns. The rudder
is used to counteract the adverse yaw that the ailerons cause. For the parameter estimation
the effect of each control surface is needed separately. To do this in each manoceuvre first the
aileron, then the rudder completes the test waveform. The result is data that has the glider’s
response from independent control actions from both rudder and aileron.

7.2 Lateral Equations of Motion in a State-Space Model

This section gathers together all the equations of motion involved with the lateral motion. A
state-space model is then formed from the equations with the accompanying linearizations to

be used in the estimation algorithm.

7.2.1 Lateral Equations of Motion

The state and observation equations as described here originate from Maine and Illif,{11] and are
suitable for most estimation applications. These state equations are based apon the equations of
motion in section 4.2. Various simplifications have been made and are best seen by comparing
the equations below with section 4.2. The gravity term about the measured Euler angle ¢ is
linearized. Other terms are linearized with measured data and bias unknowns are added. The

state equations are:

: 7S . .

A = ;%—fcy + p(aw + sina,) — rcos o, + %smqﬁcos ) (7.1)
p-[:m: - TImz = Q-Sij + qT(Iyy - Izz) +qu.'I:z (72)
Tl‘Izz - pIxz - quCn + qp(Izz - Iy ) - qr-[m.z (73)

giS = pitritandsing+gtanfcosg (7.4)

The observation equations are:
P = Pt (7.5)
r, = TT7T (7.6)
a = o Cr=tptti- %—(pg ~7?) .7)
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The forces and moment coefficients are functions of the state equations and expand to form

Cy = C}fﬂﬁ"}“CYp +CK-2V+CY55+CY5

¢ = Czﬁﬁ + C;p + Cgr ZV + 0556 + Cgb

Co = CpB+C pb+cm 7+ Cugd + C,

oy

7.2.2 State-space form and additional inputs

(7.8)
(1.9)

(7.10)

A linear state-space form of the equations is needed by the MMLES3 identification toolbox for

Matlab. To get the State-space formulation many extra inputs apart from the control surface

signals were added. These extra signals are from the addition of a unity bias signal, making it

possible to estimate the bias of signals and inputs for signals that exist due to the linearization

of the equations.

o
o
T~ T - W <

0 %Cyﬁr iivcn
+ 0 0 0
gsbCy,, @SbCy,, GSbCy,
i gShC,, §SbC,, dSbCy,
Where:
wt = Lain pcosb
Vv
u5 = (rsingd+qcosd)tand
ub = qT(Iyy - Izz) + qu:cz
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(7.11)

(7.12)
(7.13)
(7.14)
(7.15)
(7.16)

Two extra parameters are added so that the effects of the angle of attack can be include in

the estimation. They are: C, =

—cosa and C,g, = o + Stna.
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The above equations are of the form P& = Qz + Ru The state-space form:

t = Ar+ Bu (7.17)
y = Cz+Du (7.18)

(7.19)

required by the MMLES3 toolbox are obtain from:

A = PIQ (7.20)
B = PR (7.21)

(7.22)

7.2.3 Output Equations

In the output equations (C and D matrices of the state-space model) only the responses that were
measured are incorporated: the roll rate(p), yaw rate (r) and acceleration in the ¥ direction (a,).
It will be these signals that the estimator will use to make the measured and predicted responses.

P o 0 1 0 P
T = o 0 0 1 ¢
a, Cs Co Cu Cu | | "
8 |
Oy
0 0 0 0 0 0 0 0 1
+ o 0 0 0o 0 0 0 0 ud (7.23)
Dy D3y Dsy Dy Dyz Disg Dir Dsg ub
u7
L US .
Where using Matlab notation (To improve readability):
(cn ] e
Ca = 0 2 A3, + 22 A4, ) (7.24)
Cs3 0 g g
| O ] [ 0]
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- -7 - 17
Dy 0
D3y %%Oyﬁr
Ds3 L Cy,
D3y 0 Zg Ty
Das = 0 - —EB(3, ) + —g-B(4, ) (7.25)
D3y 0
D37 0
| Dss | L

7.3 Estimation of Parameters

7.3.1 Pre-Processing of the data

The data collected in the flight-tests is not immediately ready for the estimation algorithm. The
data is stored in a text file as ASCII characters. The recorded data is then converted to 20
channels of numeric data saved as separate columns in a text file, a format Matlab can read. The
first step in Matlab is to downsample the signals to a 20 H 2 sampling rate using the resample
command. Before the resample function resamples, it filters the data. The filter used to
filter the glider data is a 500-order Hamming window with a —6dB gain at 10Hz. The filter
window is chosen for its unity gain in the passband and sharp roll-off at the corner frequency.
The high number of orders was used to to get a sharper roll-off. The phase shift of the filter
is not a concern. The resample function uses the £ilt £ilt function to filter the data.
The £ilt £ilt function achieves zero phase shift by passing the data thought the filter then
flipping the data back to front and passing it through the filter again, correcting the phase shift
of the first pass.

After the filtering, the data is placed in a Matlab structure. In the structure each signal
is named. Other elements are added to the structure to record miscellaneous information, the
weather conditions during the flight, pilot information and history of how the data has been ma-
nipulated. Another vector is added to the structure, containing the beginning and end indexes of
each manoeuvre. The next manipulation of the data occurs just before the estimation algorithm
is run. Here the data is scaled and shifted using the calibration data to convert the signals into
engineering measuring units. The signals that originate from the linearization (u4, ug, U7, Ug)
are also calculated at this point.

7.3.2 Initial Parameters Values

It is important to chose initial parameter values close to the actual values of the parameters to
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be estimated. This can prevent the algorithm from settling in a false minima and speed up the
estimation process considerably. Normally when doing parameter estimation on aircraft there
would be a set of control and stability derivatives available. The first parameters that were used
as initial parameters were the parameters from a Cessna Citation II. After the first successful
estimation with the data, the newly estimated parameters were used as the initial parameters for
the rest of the manoeuvres.

7.3.3 Parameter Estimation Structure

Complex relationships often exist between initial conditions, biases and the derivatives, in cer-
tain cases not all parameters can be estimated together, but all still need to be to estimated. The
different phases of the MMLE3 algorithm can be used to help circumvent this problem. The
first phase of the estimation is a quadratic phase (pidg). It is suitable for estimating parameters
that form a quadratic cost function. These are typically the parameters that affect the output lin-
early, such as the initial conditions and bias terms and the derivatives in the B and D matrices.
The next phase is the Marquardt (pidm) phase where the Levenberg-Marquardt stabilization is
used, This phase is suitable to estimate parameters with non-quadratic cost functions and diffi-
cult starting conditions. In the Marquardt phase all the parameters can be estimated together or
those that were found in the quadratic phase can be left out. Nuisance parameters estimated in
the quadratic phase that are correlated to other parameters are left out of the Marquardt phase.
Once the Marquardt phase has brought the estimation close to the minimum, the Constrained
Newton (pidf) phase starts. This phase uses a constraint to ensure a positive-definite measure-
ment noise covariance matrix. In the (pidf) phase the sample innovation covariance matrix is
used to weight the cost function, to ensure a maximum likelihood estimate. The biases or initial
conditions should be estimated in the final phase again to provide biases and initial conditions
for the newly estimated parameter.
The following parameters are estimated for the lateral motion:

e pidg: The 5 initial values for the states,Cyﬁb,Cyb,C‘;b,C’nb,C‘a.
L J pidm:Cya ,CYM ’CIB ,Clp f CIr. ,Ctaa ,Cl&_ 10nﬁ ,Cnp ,Onr ’Cﬂaa ,Cﬂ,;,. sca,_ga ;GYB;, »C}Q., 9Clb ;Cnb .

L] pﬂdf . 01/3 ’Cyﬁr ’Clﬁ ’Ol!p y C{,, sCt(;a !Clé". 1O‘nﬁ anp ,Cnf- »Cngu 3Cn5,- .

To find this structure for the estimation is time consuming. Working from basic principles
and knowledge of the system, a starting configuration can be found that does converge. With
careful analysis of the error between the simulated responses and the actual data and accuracy
indicators, particularly the insensitivities and the GDOP’s, the parameters causing the indentifi-
ability problems can be recognized and shifted to a different phase of the estimation, to produce
better results. It is important to note that there are no initial conditions and biases estimated in
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the final phase. The reason for this being that the algorithm does not converge if these param-
eters are estimated in the final phase. This is a symptom of over parameterization for the data
that is available. Also, the MMLE3 process noise option was never used. The process noise
option converts the open-loop estimation to a closed-loop estimation, where the Kalman filter
tracks the response by using the Kalman gain to make corrections. This option provides a better

fit possibly at the expense of the accuracy of the estimated parameters.

7.4 Results

The data used in the estimation is from three different flight-tests using the same types of ma-
noeuvres. The estimation structure in the previous section resulted in all the manoeuvres pro-
ducing estimated parameters, which provide a reasonably good response fits with the measured
data. Figures 7.2, 7.3 and 7.4 show the typical fit that was achieved with most of the manoeu-
vres. In appendix A are the plots of each manoeuvre and plots of the error between the measured
and simulated responses. In the following subsections the results will be discussed.

0.5 ! ! T ! v T
el é 5
.g 0 : N Bn -
g VL -
-0.5 L
o 1 2 3 4 5 6 7
05 _
*.:_ f
E 0 = '
@ : : : ; : :
_0.5 1 1 1 1 1 1
0 1 2 3 4 5 6 7
05 T T [ T T
B

Time (s]

Figure 7.2: MLE fit of Flight data with pulse input.
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Figure 7.4: MLE fit of Flight data with four frequency input.

7.4.1 Initial Parameters and Convergence Issues

Tt was found that the estimated derivatives are sensitive to the starting parameters used in the
estimation algorithm. Before the estimation algorithm is run it is given an initial parameter
vector to start from. A set of initial parameter vectors would be a grouping of parameter vectors
that occupy a particular region of the parameter space. The problem that occurs is that with a
certain set of initial parameter vectors the algorithm will converge to a particular minimum that



CHAPTER 7 — LATERAL DERIVATIVE ESTIMATION 72

is not the same as the minimum reached by a different set of initial parameter vectors. Thus it is
impossible to say that the final parameters listed in these results represent the global minimum
of the cost-function. The fact that the global minimum cannot be guaranteed calls into question
the credibility of the estimated parameters,

The parameters listed later in this section are obtained using an initial parameter vector that
results in final parameters that fit the measured data well and have the correct polarity for the
control and stability derivatives.

A possible cause of the local minimums encountered could be a combination of the model
complexity and over parameterization. Further study is required to aid the selection of an initial
parameter vector set that will converge on the global minimum. The next step is to consult the
scatter plots of the parameters.

7.4.2 Scatter Plots

The scatter plots show good cluster around a particular value (Figures 7.5 to 7.10). The scatter
between the parameters is large for most of the parameters. The Cramer-Rao bounds tend to
be high for all of the parameters. For good confidence in the parameter, the Cramer-Rao bound
should be at least an order of magnitude smaller than the parameter and the scatter should be
smaller. This is not the case for these estimations. The scatter plots for all the stability and
control derivatives follow:
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Figure 7.5: Scatter plot of Cy; (Roll due to sideslip).
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Figure 7.10: Scatter plot of C,, (Yaw due to sideslip angle).
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Figure 7.16: Scatter plot of Cy,, (Side force due to rudder deflection.

Attention must be drawn to the scatter plots of the 3 derivatives, figures 7.5,7.10, 7.16. The
{3 derivatives have a large scatter, the Cramer-Rao bounds increase from zero outward resulting
in a weighted mean close to zero, this is in contrast to the other parameters that exhibit large
Cramer-Rao bounds and a weighted mean in the center of the scatter. The scatter and Cramer-
Rao bounds of the 3 derivatives requires further investigation to understand the mechanisms
causing the scatter and odd Cramer-Rao bounds of these estimated derivatives.

7.4.3 Combining the Parameters from Different Manoeuvres

To provide a single value for each of the parameters from all of the manouevres, all the different
estimations of the same parameter are combined in a weighted mean. The inverse of the Cramer-
Rao bound is used to weight the parameters with equation 7.26.

_ T b
g = > 1 (7.26)
{o)?
Also expected standard deviation for 8 is calculated from equation 7.27.
1 N1
_ — = (7.27)

The effect is that the larger the Cramer-Rao bound, and thus the potential error, the less its
corresponding estimated parameter will affect the mean. Table 7.1 lists the § of the parameters
and the G-
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Parameter 6 Fuwls
Cv, | ~0.0195| 0.0025
Cly;, 0.1899 | 0.0125
Ci, | —0.0001 | 0.0002
G, —0.2120 | 0.0107
Ci, 0.0728 | 0.0075
C.. | —0.0608 | 0.0026
C.. | —00018]| 0.0014
Chg 0.00016 | 0.00013
Cﬂp -0.0247 | 0.0055
C.. | —0.0416| 0.0036
Cr. | 0.0103| 0.0015
Cos. | —0.034| 0.0008

Table 7.1: Weighted mean parameters and expected standard deviation

As a final check the weighted mean parameters are used in a simulation and compared with
measured data,

7.44 Matching the Measured Data

The # parameters are taken and packed into the dynamic model used to estimate the parameters
and stimulated with control signals from the recorded flight data. The response that @ produces
is then compared with the response measured on the glider. Before simulating with the f pa-
rameters, another estimation run is done. The control and stability derivatives are fixed to the §
parameters and new bias and initial condition values are estimated for the test manoeuvre.

A Four-frequency manoeuvre is used to provide the control and response data. This ma-
noeuvre was the most complicated flown and is most likely to reveal the short-comings of the
0 parameters. Figure 7.17 shows that the 8 parameters are a reasonable representation of ZS-
GHB’s lateral dynamics. The § parameters produce small errors with the measured response.
Examining figure 7.17 closer: The manoeuvre can be divided into two sections, the aileron

stimulation and the rudder stimulation. During the aileron stimulation:

e Roll rate (p): The § parameters provide a good fit to the measured roll rate. There are still
misfits that could be improved; the errors are slightly larger in the low frequency portion
of the manoeuvres. These errors could be from non-linearities caused by the high bank

angle.

e Yaw rate (r): The timing of the § parameter’s response matches the measured data. The
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Figure 7.17: Weighted mean model responses compared to measured data.

amplitude does not always fit well. When the aileron is actuated the fit is initially good
but the simulated responses’ amplitude does not increase in the low frequency portion of
the manoeuvre as the measured response does, revealing that parameters in the A matrix

are not quite correct.

e Lateral acceleration (a,): There is a reasonably good match through out the aileron ma-
noeuvre, but there are still a few misfits. The force derivatives are known to be difficult
to estimate.

During the rudder stimulation:

e Roll rate (p): The rudder induces very little roll. The algorithm has managed to fit this
data reasonably well, but a few large errors do exist.

e Yaw rate (r): The fit from the estimated system fits the data well except for a slight timing

error in the lowest frequency of the manoeuvre.

e Lateral acceleration (a,):The fit during the rudder stimulation is reasonably good, but a
large timing error develops toward the end of the manoeuvre, preventing a good fit.

Considering that all of the parameters have very large Cramer-Rao bounds and scatter, the
fit of the simulation is surprisingly good.



Chapter 8
Longitudinal Derivative Estimation

The longitudinal motion invelves the pitch rate (¢) and the normal acceleration (a,,) and axial
acceleration {a;). To isolate this motion from the general flight the pilot only uses the elevator
and holds the aileron and rudder still. The process used to obtain the longitudinal derivatives is
the same as for the lateral derivatives. The manoeuvres used are described in section 7.1

8.1 Longitudinal Equations of Motion in State-Space Model

8.1.1 Longitudinal equations of motion

The glider will always fly at low angles of attack. This fact allows certain simplifications to the
general equations of longitudinal motion to be made. The simplifications made by Maine and
Mlif in [11]

o The approximation C;, = Cy can be used.
e The § state equation can be omitted.

The state equations:

: as : g o
2 + A
& = V(CN +dy) + g+ V(cosqbcosﬁcosa sin 0 sina) (8.1)
il, = §ScCp (8.2)

The observation equations for the sensors that are installed in the glider:

gz = q¢+o (8.3)
T Za . Za a .
aw = Eoyv+Ig+Z@+p)-Lp (8.4)
my 9 g g
GS o,
6 = a4+ -T g ) - By @85)
mg 9 g g
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The expansion of the aerodynamic coefficients is:

Cn
Ca
Cm

Cn, o+ CNJCS + ch
Ca, 0+ C‘Aéd + CA{,

Crag @ + Cpyd + Ciy,

gqc

gy + O

8.1.2 State-space form and additional inputs

The state-space form is completed as with the lateral derivative estimation.

are added to take care of the biases and a gravity linearization inputs.

Where:

u2
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ud
ud
ub
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u8
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(8.6)
(8.7)
(8.8)

Extra input terms

5
u2
ud
ud
5 (8.9)
u6
u7
i u8 |
(8.10)
(8.11)
(8.12)
(8.13)
(8.14)
(8.15)
(8.16)

The gravity input 12 is calculated using ¢, ¢ and o calculated before the estimation algo-

rithm is run, from the angular rate measurements. Drift on the angular rate sensors and incorrect

initial conditions introduce errors into the term. To attempt to improve the quality of this input

the algorithm was run and the initial values estimated were used to calculate the gravity term
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and the algorithm was run again with the new %2 ad initial value, this did not improve the re-
sults. The initial value of ¢ increased with each successive estimation and would not converge
to a specific value. To complete the estimation process the value of « for calculating the gravity
term was fixed at 0.1rad.

8.1.3 Output Equations

The output equations have extra terms added to correct for the accelerometers not being mounted
at the center of gravity.

5 _
u2
u3
e fo ud
a, | =C + D (8.17)
q U
Qg
146
U7
u8
[ 0 1
75 Ty JS Tg G5c2
C = | 80w - 380 550 @19
gs gse 20 35c?
~ingCha = 37, COma — 5 1,57 Cm,
0 0 0 0 60 0 0 0
— S G5 gs g 48 Za Zq o
D = —-EEC'NJ %&?Cmé 0 —%SQCwa—xg‘*_’IE—:C’mb "g . 0 % 0
| 50 38Cm 0 B0 -3ROn -3 0 % 0 -
(8.19)

8.2 Estimation of Parameters

The estimation of the longitudinal derivative follows the same process as the lateral derivative
estimation. During the pre-processing the longitudinal and lateral data is kept in the same data
file. The first stage of the pre-processing is done to all the data and stored. Before the algorithm
is started in the Matlab script, the filtered data is scaled to engineering units. To get the initial
values for the parameters the exact same method as with the lateral derivative estimation was
applied. The Cessna Citaion II longitudinal data was taken as the first initial parameters, the
algorithm produced a good convergence with the first attempt.
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8.2.1 Parameter estimation structure

The following parameters are estimated for the longitudinal motion in the different phases of
the algorithm:

e pidg: The 2 initial conditions, C;,, C'as,s Cms.s Cmgs Ciyr Cays Oy Co,.
o pde CNa !OAC, ;Cma ,GN(je! CAJg! Cm&» Cmqs CN;,: C'Ab7 Cmb Cqb !dlb‘
g pzdf CNQ ,CA.-_, sCma :ONge! CAJS: Omag» C’mq-

The longitudinal estimation would not converge if all of the parameters were estimated in
the final stage, as they should be. After removing the biases and initial conditions from the final
phase, convergence was possible, but the GDOP’s were unacceptably high (in excess of 10). By
estimating C,,, in the quadratic phase as well as the other phases the GDOP’s and Cramer-Rao
bounds dropped significantly. For the estimation structure mentioned above, the GDOPs for

most of the parameters in most of the manoeuvres are below 2.

8.3 Results

The estimated parameters produce good curve fits when compared to the flight data. Figure
8.1 to 8.3 below show the curve fitting for each of the types of manoeuvres used. In appendix
B are the plots of each manoeuvre and plots of the error between the measured and simulated

Irésponscs.

Time i8]

Figure 8.1: MLE fit of Flight data with pulse input.
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Figure 8.2: MLE fit of Flight data with doublet input.

Time [s]

Figure 8.3: MLE fit of Flight data with four frequency input.

8.3.1 Scatter Plots

The scatter plots do not look as promising as the response fits. The scatter on most of the plots
is high with Cramer-Rao bounds having inconsistentcies with the scatter. Some parameters
with large scatter have small Cramer-Rao bounds and parameters with a low scatter have large
Cramer-Rao bounds. What should occur is parameters with large scatter should have a large
Cramer-Rao bound and parameters with a low scatter should have low Cramer-Rao bounds. The
inconsistency between the scatter and the Cramer-Rao bounds warrants further investigation.
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The parameters estimated from the data of the second flight (manoeuvre 6 to 10) show
marked differences to the other parameters estimated. During this particular flight the wind was
quite strong with a large amount of turbulence adding unmodeled process noise to the glider’s
responses. The effect is that the estimator does not produce the same parameters as with flight in
stiller conditions of the other manoeuvres. When calculating the weighted mean the parameters
estimated from the second flight are not included. The following figures are the scatter plots
from the estimation.
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Figure 8.4: Scatter plot of Cn_ (Normal force due to angle of attack).
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8.3.2 Matching the Measured Data

To be able to use the estimated parameters the § parameters must be a reasonable representation
of the longitudinal dynamics and fit the response to any manoeuvre. New biases and initial
conditions are first estimated for the § parameters before the simulation is run. Comparing the
responses from the simulation with the flight data, it is found that the high frequency portion of
the manoeuvre fits well. As the frequency of the control input drops, the fit becomes worse. The

timing of the signals remains correct but the magnitude of the simulation increases to prevent a
good fit.
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Figure 8.11: Simulation with weighted mean parameters compared to flight data

The steadily increasing error between the simulation and measured data raises the suspi-
cion that parameters in the A matrix are not the correct values. To check, the simulation is
run again but only using the weighted mean parameters for the B,C and D matrices and the
manoeuvre specific estimated A matrix parameters. The result was an improved fit of the pitch
rate and normal acceleration but not the Axial acceleration. Further investigation revealed that
the parameters Cy, , Cpn. and Ca, could be the cause of the misfit of the data.

To obtain parameters that would fit most of the manoeuvres well, the « parameters (C,,
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Cona» Ca,) were fixed at their 4 values. The estimation algorithm was run again for all the
manoeuvres. The new # parameters along with re-estimated biases and initial conditions for the
particular manoeuvre are used in a simulation and the response of the simulation is compared
with the measured data. The new @ parameters are capable of producing a reasonable fit with
the measured response.
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Figure 8.12: Simulation with new weighted mean parameters compared to flight data

The problem of choosing the parameters and fixing the values is that the other parameters
become biased. Even though the simulation fits the measured aircraft responses with the new
parameters it cannot be said that the parameters are an actual representation of the physical
aircraft. However, it is now a model of the dynamics of the aircraft. To improve on this result
would mean being able to accurately estimate the « parameters. To do this « needs to be
measured.

The parameters that result from the longitudinal estimation are listed in table 8.1. The
original weighted means along with their expected &, values are listed alongside the fixed «

parameters and the new @ and resulting expected G-
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Parameter Original Fixed

g Fuwls 9 Owls
Cn, 6.0482 | 0.0857 | 6.0482 N/A
Ca, 0.0288 | 0.0057 | 0.0288 N/A
Crne —0.4655 | 0.0335 | —0.4655 N/A
Chwy, 0.3317 | 0.0621 0.2815 | 0.0690
Clas. 0.0268 | 0.0127 | 0.0425 | 0.0156
Cins, —3.4222 | 0.0632 | —3.5712 | 0.0673
Cn, —50.9960 | 1.8663 | —59.353 | 0.9683

Table 8.1: Estimated Longitudinal Control and Stability Derivatives
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Chapter 9

Conclusions and Recommendations

9.1 Overview

During the course of this project the following was achieved:

e Sensors were installed and calibrated in the airframe of ZS-GHB, to measure the control

surface defiections.
» Pressure transducers were installed in ZS-GHB to measure dynamic and static pressure.

¢ An inertial measurement unit was developed and installed in ZS-GHB to measure the

translation accelerations and angular rates.

With equipment installed into ZS-GHB, it was possible to do experiments to investigate the
handling characteristics of ZS-GHB. The moments of inertia and vertical center of gravity were
determined from ground experiments. Data, from a set of flight tests was used to extract a first
set of control and stability derivatives. The parameters identified can produce responses that
match the measured responses reasonably well.

9.2 Credibility of Estimated Parameters

Reviewing the results certain unexpected phenomenon are noticed:

o The structure to estimate parameters is not ideal. All the parameters should be estimated

in the final phase of the algorithm.

» The choice of initial parameters can affect the minimum in which the estimation algorithm

converges.

e The estimated parameter values exhibit a high scatter between manoeuvres.
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e Cramer-Rao bounds are inconsistent. Certain parameters (eg. C),,) with large scatter
have very small bounds. Other parameters with less scatter have large bounds (eg. C;_ ).
A third group of parameters has very small bounds on some manoeuvres and large bounds
for other maneouvres (eg. Cy,).

Considering the above points, the estimated parameters cannot be considered credible, and casts
doubt as to how useful the parameters can be in representing the dynamics of the glider. The 8
of the parameters from Sections 7.4 and 8.3 are able to produce a reasonably good proof of fit.
The proof of fit allows the use of the estimated parameters for the simulation of responses, but
@ does not represent the physical aerodynamic properties of the glider.

9.3 Recommendations

The control and stability derivatives estimated in this project are not accurate. To improve on the
results more effort must be put into the estimation process. It is important to focus this effort in
the correct areas. The MMLE3 algorithm is considered state-of-the-art and has produced many
accurate parameter estimations with the state-space model implemented here.

The currently installed sensors are accurate enough to produce suitable data. To improve
the data more sensors will have to be installed on ZS-GHB. In a similar project [16], where
good estimates were obtained, the Euler angles during the manoeuvre were available. Also
Maine and Illif [11] recommend that € and ¢ are measured. The Euler angles have an important
contribution in the calculation of the gravity term used for linearization and the « and £ states.
If 8 is measured a & state can be added to the longitudinal motion state-space model, which will
benefit the estimation of the longitudinal derivatives. The extra data can be produced by the roll,
pitch and yaw rates but requires a Kalman filter to ensure accurate measurements of attitude.
The flow angles should also be measured. The observation of the flow angles will improve
the o and j derivative estimates, which will indirectly help with the estimation of the other
parameters [11]. It is common accepted practice to install an air-data boom onto the aircraft
during flight-tests. The air-data boom, once calibrated accurately measures the flow angles, the
dynamic and static pressure and air temperature. The addition of the sensors mentioned here
would significantly increase the accuracy of the estimates.

On a theoretical level there are certain phenomenon that need to be investigated:

o The inability of the algorithm to converge when estimating all the parameters in the final
phase.

e The high scatter of the same parameter between different manoeuvres.

e The anomalies that occur in the Cramer-Rao bounds between different manoeuvres.
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9.4 Conclusion

At the conclusion of the work of this masters degree thesis it is appropriate to stand back and
consider what has been achieved. At the start of this project ZS-GHB was a bare airframe and
was undergoing a major overhaul. Sensors were added to measure the response of the glider
and the control surface deflections. Software to manage the data produced by the sensors was
developed. Physical properties of the glider, the vertical center of gravity, the inertia properties
and the short-term control and stability derivatives were estimated.

The derivatives combined from many manoeuvres have yielded a model that can reproduce
responses that match the data measured during flights of ZS-GHB. The derivatives can conse-
quently be used in a flight simulator and produce realistic responses to the resolution discernible
by normal pilots.

The precision of the estimates is doubtful because of the failure of the Cramer-Rao bounds
as an accuracy indicator and large scatter in the estimates. These issues will have to be addressed
in further work, which has been made possible by the achievements in this project.
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Appendix A

Lateral Manoeuvres

The manoeuvres are grouped in flights. There were three different flights that collected data

while manoeuvres were flown.
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Longitudinal Manoeuvres

The manoeuvres are grouped in flights. There were three different flights that collected data

while manoeuvres were flown.
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Appendix C

Circuit Schematics

The schematics of the circuits installed into the glider are printed on the follow pages. The
circuit is split into four different schematics.

e Signal Conditioning: The signal conditioning circuit acts has two functions. To supply
the sensors with electricity and to condition the incoming signals from the sensors.

o Pressure Sensors: The schematic details the circuit in the pressure sensor box and the
instrumentation amplifier for the dynamic pressure sensor.

¢ Inertial Measurement Unit: The connections of the angular rate sensors are detailed as
well as the circuitry for the accelerometers.

¢ Contro] Deflection Sensors: The connection of the control deflection potentiometers to
the wiring harness. The wiring harness also connects the pressure sensors and power
leads to the signal conditioning circuit.
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Figure C.1: Schematic for Signal Conditioning
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At

Figure C.3: Schematic for Inertial Measurement
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Appendix D

Program Code

D.1 Delphi Code

Two programs were written in Delphi. The program used to capture the data from the serial

port and store it on the hard drive and the program that converted the data from hexadecimal
values to ADC codes. The Delphi complier generates extra code to implement the graphical
interfaces that does not contain any of the core functionality of the software, for the sake of

brevity the extra code is omitted.

D.1.1 Code listing of: Seriallog.pas

unit Seriallog;
[ Serial data storage for glider data gathering
Author K Browne
Notes: Uses VaCommé component to access serial port
}

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
bialogs, StdCtrls, ExtCtrls, vaClasses, VaComm, MPlayer;

type
TForml = clasg{TForm)
VaComml: TvaComm;
MediaPlayerl: THedilaPlayer;
Timerl: TTimer;
Labell: TLabel;
procedure RxMessage{Sender: T(bject; Count: Integer)
procedure CreateForml (Sender: ICkject);
procedure CloseForml (Sender: TObject; var Action: TClosehActien);
procedure TimerlTimer (Sender: ICbject};
procedure FormKeyPress(Sender: TObject; var Key: Char):

private
{ Private declarations }
Myfile:Text;
§2,51:etring;
public
{ Public declarations }
end;

var
Formi: TFormi;
FStream:Text;
overwrite:Boolean;
lineawritten:Integer;
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implementation

(%R *.dfm}

procedure TForml.RxMessage (Sender: TObject; Count: Integer);

It covents the data
Adds a timestamp to
Saves the packet on
Intermitently saves

This procedure receives the data from the serial port compenent.

from an ascii string to hexadecimal numbers.
each packet received.

the hard disk.

the data to disk to preserve the FAT,

var
x: byte;
begin
51 := 51 + VaComml.ReadText; // Read data from serial port
/f/ and store it in string S1
if (Ord(si(1)) = 255) then // test for the start word
begin
if (Ord(S1(2]) = 255) then
begin
if (Length({Sl) »= 42) then // check that data is available
bagin // for all channels
for x :=1 to 42 do 82 := §2 + IntToHex(CGrd(51[x}),2);
// Convert to hex numbers and separate channels
S2:=timetestritime) + “:* + 52;
writeln (Fatream, 52);
Celete (S1,1,42);
if lineswritten = 30000 then // open and close file
begin
Append (EStream);
lineswritten:= 07
and;
lineswritten;=linegswritten+l;
and;
52 = "*;
end
else if {length{sl) > 1) then 81 :='';
end
else 51 1= *7;
end;

procedure TForml.CreateForml (Sender: TObject);

Called when the program is run.

Activates media player for audio warning that the program
ig active.

Also handles all other initilization.

}

VAR

error i integer:

bagin
MediaPlayerl.Open;
MediaPlayerl.Play;
overwrite:=true;
Timerl.Enabled:=true;
lineswritten:=0;

end;

procedure TForml.CloseForml{Sender: TObject; var Action: TClogeAction);
{ Called apon closing of the Form.

Ciloses serial port and files
}
begin

Vacommli._Close;

+1f overwrite then

CloseFile (FStream);

end;

procedure TForml.TimerlTimer (Sender: TObject);
{ Timer component called every 10 milli-seconds at the begining of progam.
Its funstion i3 to ensure that all initialization occurs atthe correct time.
Functions includa: opening the file, starting the mediaplayer
}
begin
if Timerl.Tag = 0 then
begin
Timerl.Tag :=1;
MediaPlayerl.Play
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Timerl.Interval :=1000;
if overwrite then
begin
assignfile (Fstream,’flight.dat"});
{$i-}
rewrite (FStream);
{5i+}
Labell.Caption:=*Started” ;
Labell.Visible:=true;
end
else
Labell.Visible:=true;

end

else
begin
MediaPlayeri.Cloge;
Timerl.Enabled:=false;
end

end;

end;

procedure TForml.FormKeyPress(Sender: TObject; var Key: Char)
{ Stops flles from previous sessions from being overwritten

}

begin
overwrite:=false;
Labgll.Visible:=true;
aend;
end.

D.1.2 Code listing of: Postflight.pas

unit Postflight;

{ Post-process after the data has been stored
Turns hex into ADCcodes and outputs them in a file.
Alsc allows viewing of collected data with Graph.
Author K Browne
Date July 2002

¥

interface

uges
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,
Dialogs, StdCtrls;

type
TPorml = ¢lass{TForm)
Memol: TMemo;
Editl: TEdit;
Buttoni: TButton;
Labell: TLabel;
ButtonZ: TButton;
Button3: TButton;
Label2: Thabel;
procedure ButtonlClick (Sender; TCObject);
procedure FormClose (Sender; TObject; var Action: TClosehAction)j
procedure Button3Click (Sender: TObject);
procedure Display(Sender: TObject);
procedure FormCreate {Sender: TObject);
private
{ Private declaratlions |
flight,
postflight:Text;
public
{ Public declarations }
end;

var
Forml; TForml;

jmplementation
uses formGraph;

{3R *.dfm}

Forms,
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procedure TForml.ButtonlClick (Sender: TObject};
{Takes file flight.dat and converts it to ADCcodes.
}

Chann: array{i..20} of integer;

i:byre;

step, samplenum, DataStart, X, V, Code, check:integer;

s, line, newline, channel, channelx,DataMissing:string;

LineCount :Boolean;

hegin

assignfile{flight, ' flight.dat’);//Secting up files

assignfile {(postflight, Editl.Text);

{$I-)

rewrite {postflight);

reset (flight);

{$I+]

memol.text:='Starting’ ¢

samplenum := 0;

LineCount:=false;

check:=0;

DataMissing:='Lines with missing data:"+#13¥10;

while not EQF (flight) do
begin
check:=check+i; // checking for missing data
Readln{flight,line);

if not {line='') then
begin
if LineCount=false then // finds how many points must be ignored
begin

DataStart:=Pas('F',Line)+4;
LineCount :=true;
end; //if

samplenum := samplenum + 1;
g:=§13§10+IntTeStr (samplenum}; //
%i=DataStart;

for i:=1 to 1% do
begin
X=Xt

channel:= copy{line,x,4);
channelx:= §" +channel;
if channelx ="$5’ then
begin
channelx :=7$0000";
DataMissing :=bataMissingt’ f+inttostr{check)+' column '+inttostr(i)+#13410;
end; //if
step:=Round (5000* (ScrToInt [ channelx ))/1023);// Convertion
Channfi):=step;
g:=8+' '+ IntToStr (step);//newline;
end; //end for
Write (pestflight, s);
GraphForm.Seriesl.AddY (Chann[L1]);
Graph¥form,Seriesl, AddY (Channi[1]) ;
GraphForm.Series2.AddY (Chann(2]) ;
GragphForm.Seciesd,.AddY (Chann[3));
GraphForm, Seriesd.AddY (Chann[4]) ;
GraphForm, Seriess,AddY (Chann(5])) ;
GraphForm,Seriesé,AddY (Chann(6]);
GraphForm,Series?,AddY (Chann{?]);
GraphForm,SerieaB.AddY (Chann(8]);
GraphForm.Series®.AdadY {Chann(8});
Graph¥form, Seziesl0.AddY {Chann[10]};
GraphForm.3eriesll.AddY {Chann[11]);
GraphForm.Seriesl2.AddY (Chann[12]));
GraphForm.Seriesi3.AddY (Chann(13));
GraphForm.Seriesid.AddY (Chann[14]);
GraphForm.SerieslS.AddY (Chann{15]};
GraphForm.Seriesl6.AddY (Chann(16])}
GraphForm.Seriesl7.AddY {Chann{}7]};
GraphForm.Seriesl8.AddY (Chann[i81);
GraphForm.Seriesl9.AddY (Chann([18]);
GraphForm. Series20.AddY (Chann(201);
and; //end if
end; //end while
memol .Text:=*Finito’;// acknowledge completion
memol . Text :=memol . Text+#13410+PataMissing:
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closefile{flight);
closefile (postflight);
end;

procedure TForml.Button3Click({Sender: TObject):
hegin

Close;
end;

procedure TForml.Display(Sender: TObject);
{Displays the graph. }
begin
GraphForm, Show;
end;

procedure TForml.FormCreate{Sender: TObject);
[Initializatipn on program start}
hegin
memol . Text:=**;
end;

and.

D.2 Matlab Scripts

164

The Matlab scripts listed here from three different groups. The code is split into preprocessing,

lateral motion estimation and longitudinal motion estimation.

D.2.1 Preprocessing

Script:newdata.m

% First step data manipulation

% m-file to facilitate the data capture needed for indentification
% saves data in mat-file and adds extra informaticon

% Can call filtering with user input.p

cle
§--- setup structure
% -

FTdata,TestName = input {’Test name ? ‘,’s’);

FTdata.date = date;

FTdata.Time = input (' Time of Test 7 *);

FTdata.Temp = input {*Air Temperature at time of test 2 '};
Frdata.Windv = input {*Wind velecity ? ‘};

FTdata.FrontPMass = input {‘Front Pilot Mass ¥ ‘)
FTdata.RearPmass = input{‘Rear Pilot Mass ? ‘):

FTdata.Notes = input (Any additional notes ? ‘','s’)
PTdata.History e “Put counts in mat and add infof;
FTdata.Data = load(input (*Flight Test datafile name 7 F,'8'));

#saving data in structure

%
%

save (FTdata.TestName, "FTdata’};

% Calling the next step.

[ R —— ———

if input{'De other procesaing y/n? *,’s')=="y’
datafilt (FTdata.TestMName, ‘hamfilri0.mat’,1,5); %filtering
mansplit {[FTdata.TgscName 'Elt’]); % manoceuvre indexing
end

Functien:datafilt.m

% This script filters all the data

& -—
%

function datafilt (testdata, filtermat,p,q);
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if exist {("FTdata’)==0 % test if data is in memory
load(testdatal;

end

load{filtermat}

4--- load hamfiltl( 10Hz 500 order hamming filter -6dB at 10Hz
¥--- p=1;

%~~~ g=5; %Down sample from 100Hz to 2CHz

Ffdata.Data=resample (FTdata.Cata,p,q,Bfilt);% Downsampled and filtered

%--- Sorting data into channels

.

FTdata.Psraltitude = FTdata.Data{:,2); % General data

FTdata.DiffFsr = FTdata.Data({:,15);
FTdata.Straln = FTdata.Data(:!,12);
FTdagta.Trim = FTdata.Data(:,16);
FTdata.Alrbrakes = FTdata.Data{:,1B):
FPTdata.Pulse = FTdata.Data{:,20):

FTdata.Lateral.hileron = FTdata.Data{:,3); % lateral gata
FTdata.Lateral.RollRate = FTdata.Data({:,14);

FTdata.Lateral.Rudder = FIdata.Pata{:,19);
FTdata.Lateral.YawRate = FTdata.Data{:,1l};
FTdata.Lateral.Yaccel = FTgata.Data{:,6};

FTdata.Longitudinal.Elavator = FTdata.Data(:,17); ¥lengitudinal data
FTdata,Longitudinal.PitchRate = FTdata.Data{:,10};
FTdata.Longitudinal.Xaccel = Frdata.Data{:,4};
FTdata.longitudinal ., Zaccel = FTdata.Data{;,8};

FTdata=rmfield (FIdata, ‘Data’}; %tidy up

FTdata.History={FTdata.History ‘Filtered with’ filtermat ‘,channels sorted '];

%--- Save data

§mmmmmmmm e —mmem ———

save ([FTdata.TestName 'FLT’'},’'FTdata’};
disp(’ Data filtered’};
return

Functionimansplit.m

&% Load data and plot with zoom and grid user must then gearch
% all manoguvres and enter the starting and end indexes
% —
function mansplit {filename);
if exist {‘FTdata’}==0
load([filename]};
end

¥--- Longitudinal Manoeuvres
% -
disp(* Longitudinal manouvers:’');

figure;
plotb (FTfdaca.Longicudinal .Elavator };
zoom; grid; title(’Elavator plot”);

man=[];

mstarc=1;

mend=0;

while mstart ~= mend
matart=input { Manoeuvre Start Index ‘};
shar
mend =input (’Manoeuvre End Index ar
shg
man=(man; [mstarct mend]];

end

FTdata.Longitudinal.Manoeuvre = pan;

elf

%--- Lateral Manceuvres

e mmmmm—————m—— S mRmmm—m—mmmmmm
plot (FTdata.Lateral.aileron};

held on;

plot {Frdata.Lateral.Rudder,*c*};
splot (FTdata.Pulse,’g’);
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legend {’ Aileron’, ‘Rudder’, ' Pulse’,0)
grid;zoom on;

¥man={mstart mend];

if length(man}==

man=[];

else

man=man{l:length (man)-1, :}:

end

disp{® Lateral manceuvres:’);

mstart = 1;

mend = 0;

man=[};

while mstart "= mend
mstart=input {'Manoeuvre Start Index *):
shg;
mend  =input (*Manceuvre End Index ')
shg

man=[man; [mstart mend]];

end

if length{man)==

man=[};

else

man=man{l:length{man)-1,:);

end

FTdata.Lateral.Manoeuvre = man;

save (|{FTdata.TestName *SPLT’'],’'FTdata’);
disp(”Manoeuvres saved’)

{f input ("Plot Manoeuvrea ? y/n *,’ s’ )=="y’

plotmans { [FTdata.TestName "Spltf});

end

return

D.2.2 Lateral Estimation
Function: K13_P2SS_lat4.m

funetion [A,phi,qgam,C,D,q,x0,dt, rowing, B]=K13_P2SS_Latd4 (par)

F255 function for Z5-GHB Lateral Motien
Linearized Equations ¢f Motion used from
Application of parameter estimation to aircraft
stability and control, Maine and Iliff

global S bb c...

m. ..

K1 K2 K3 R4
% Unpack coefficients from p-vector
‘ ______________________________________
C_Y_bata = par(l};
C_Y_dr = par (2};
C_l_heta = par (3};
C_l_p = par(4};
c_l_r = par (5};
c_l_da = par(6);
C_l_dr = par(7y;
C_n_beta = par(8};
c_n_p = par(9);
C_n_r = par{l0};
C_n_da = par{ll};
C_n_dr = par{l2);
C_a_5sa = par{ld);
€ a = par{ld);
C_¥_Bb = par{ls);
C_l bias = par{l6);
C_n_bias = par(17};
z_ay = par (i8);
x_ay = par(19};

y_ay = par(20);
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C_¥ bilas = par{21);
Vel = rar{22);
dynPress = par{23);
X0_1 = parc{24);
Xo_2 = par(25);
xX0_3 = pac(26);
Xo_4 = par{27);
X0_5 = par(28);
IXx = par (29);
Tyy = par(30};
Iizz = par(31);
Ixz = parc(32};
Proc_nl = parc(33};
Proc_n2 = pac (34} ;
Froc_n3 = par(35};
Proc_nd = par (36} ;
1 = par (37} ;
<2 = par(38};
$Constants

dt = 0.05; %sample time

= %.81; %Gravitational acceleration

=}
I

% Define State-Space matrices

§ mmmmm e ———————————————

%--- state equation P xdet = Q x + R u
P=11, 0, 0O, 0

0, 1, 0, 0

0, 0, Ixx, -Ixz

0, 0, -Ixz TIzz ];

Q = [ K1*C_Y_beta, 0, C_a_8a, -C_a
0, 1, 0, 0
K3*C_1_beta, 0, K3I*C,1.p*bb/(2*Vel), KI*C_l_r*bb/(2*Vel)
K3*C_n_beta, 0, KI*C_n_p*bb/(2*Vel), KI*C_n_r*bb/(2*Vel) ]:
R=10, R1*C_Y_dr, KI*C_Y_Bb, 1, 0, 0, 0, O
0. 0. 0 , 0,1, 0,0, 0
K3*C_1_da, K3*C_1 dr, K3*C_1 bias,0, 0, 1, 0, 0
K3*C_n_da, K3*C_n _dr, XK3*C_n_bias,0, 0, 0, 1, 0];
%--- convert into state equation xdot = A x + B u

Pinvy = invi{F);
A = Pinv * Q;
B = Pinv * R;

%¥--- putput equation y =C % + D u

C4 = (K4*C_¥Y_beta, 0, G, 0] - z_ay/g*A(3,:) + x_ay/g*A{d,:};
D4 = {0, K4*C_Y_dr, K4*C_¥_bias, 9, 0, 0, 0 -y_ay/g] ...
- z_ay/g*B(3,:} + x_ay/g*B(4,:};

=10, 0 81, €
¢, 0, 0, C2
c4 1i

p=1000 0,0 0, 0,0

o, 0, 0, 0, O, O, O, 0
D4 1i

% process noige parameters

[ M
q = | Proc_nl, 0, o, 0

0, Proc_nZ, 0, 0

o, a0, Proc_ni, 0

0, 0, 0, Proc_nd];
%--- rows in Q in which the parameter occur

rowing=zeros (1, length(par}};
rowing(27:30)=[1 2 3 4];
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% initial state [beta, phi, p, r]

B mmmmm e

x0 = [X0_1 X0_2 X0_3 X0_4];

% discretize
% -

fphi,gam] = c2d mu(A,B,dv); % C2D MM == C2D

Script: celatnewaltli23Z_l1.m

% Script to setup and run the MMLE algo

% Estimating the Lateral Motion derivatives.

% For the flight stored in “11_23_flight_ 1SPLT.mat’
% 3ingle manoeuvre estimation

format compact, cle
clear

% Constants

e ————

global 8 C bb g m K1 K2 K3 K4

8 = 17.5¢ % Wing surface area - m2

c = 1.08; % Mean Aerodynamic chord - m

bb = 16; % Wing span - m

g = 9.81; % Gravitatvional acceleration - ms-2

m = 400; % Masgs kg

airdensity = 1.2; %(kg/m™3]

dt = 0.05; % downsampled datafilt.m ,data sampled at 20 hz

% name of P28S
et m e ——
pZsnam=‘K13_P255_Lat4’; % name of F25§

% load data and calibrate

e e e 8 BR t m m  m m m m  e m m m m m mm mm m m m m
%

if exist('FTdata’)== 0
load{'11_23_flight_1SPLT.mat’);
p_bias =452.25; % biases are for the first flight only
q bias =455.0531;
r_bias =526.0582;
man = Fldata.lateral.Manoeuvre;
Kp = 32.87/3.07+0.00488*pi/180; % Gyro scale factors
Kg = 32.85/3,06%0.00488%p1/1EQ;
Kr = 32.92/3.15%0.00488%pi/180;

p_all {(Kp * (FTdata.Lateral.RollRate - p bias}};
g_all = (Kg * (FTdata.Longitudinal.PitchRate - g bias)});

r_all = (Kr * (FTdata.Lateral.YawRate - r_bias}};

FTdata.DiffPsr=((1023-FTdata.PiffPsr) *555.5+*0,00468/2.531);

FTdata.lateral.Yaccel=0.00488/2.3225* (FTdata.Lateral . Yaccel-574)*59.81/9.

Aileron_all = -0.0012523+%FTdata.Lateral.Aileron+ 0.62615;
Rudder_all = 0.C014275*FTdata.Lateral. Rudder-0.74364;
end

ng=0;

% starting values for the parametars

C_Y_beta = 0.44742; ipar(l);
C_Y_dr = 0.13371; f¥par(2};
€.l beta = 0.021385; kpar(3);
Cc.lp = —{},20803; kpar(4);
c_l_r = 0.080346; %pari(s)
C_1l_da = -D.D59528; %par{6);
C_1_gr = -0.0056791; ‘S%par{7);
C_n_beta = -0.0G44277; pac(8);
C_n_p = =-0.034271; S%par(9};
C_n_r = =-0.0B%9348; t#par(10};
¢_n_da = 0.0075093; parc(ll);
C_n_dr = ~0.0315%94; §par{12);
C_a_Sa = 0.2328 ; spar{l3);
C_a = -1; ¥par{ld)

C_Y _Bb = -0.0015; kpar{ls);
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C_l_bias = -0.0016; $par(l6);
C_n_bias = 0.0008; spar(17);
z_ay = -0.376; ¥par (18};
¥x_ay = ~0,83%; ¥par (19} ;
y_ay =0 H ¥par (20);
C_Y¥_bias = -0.0044; fpar{2l);
vel = 22.2 ; $par{22);
DynPress = 12.7%778; Ypar{23);
x0_1 = -0.0065; par{24);
x0_2 =0 j] %par{25);
x0_3 = 0.01396 ; kpar(26);
X0_4 = -0.0000; Spar(27);
X0_5 = 0.15 ; $par(28);
Tan = 262,36 ; kpar(29});
Iyy = 3027.1 ; $pac(in;;
Izz = 3732.2 ; $¥par (31};
Ixz = -0.7%55; par(32};
Proc_nl = ns ; fpar(33);
Proc_n2 = ng H %par (34};
Proc n3 = ng ; $par(35);
Proc_nd = nag ; Spar (36};
€1 =1 H ¥par(37;
c2 =1 H Ypar(38};

% extracting Manoeuvre from data

e
index=9; 3 zelect manoeuvre

mstart = man{index,1);

mend = man{index, 2);

% make uydata
e e
global uydata twofcramer wapriori

ndp=mend-mstart + 1; % number of data points

dynpress = (FTdata.DiffFsr(mstart:mend));

v = abs (sqrt {2.*dynpress/airdensity)); % using the starting velocity
pil = p_all (mstart:mend);

qi = g_all (mstart:mend);

ri = r_all {mastart:mend);

Alleraon = Aileron_all (mstart:mend);

Rudder = Rudder_all (mstart:mend);

Yaccel = FTdata.lLateral.Yaccel (mstart:mend)

Yaccel = Yaccel -mean{Yaccel}:

¥ Manouevre specific constants
Kl = dynpress(l)*S/(m*mean(V}};
K2 = g/mean{Vv);

K3 = mean (dynpress) *S*bb;

K4 = mean{dynpress)*s/{m*q);
Vel=mean(V);

% Generating phi and theta
philezeros (ndp+i, 1) ;
thetai=phil;

phil_0=X0_2;

thetal 0=X0_3;
phil{l)=phil_0;

thetal {l)=thetal _0;

for index=1l:indp
theta_dot = gi.*cos(phil{index)}}-ri.*sin(phil {index));

phi_dot = pil + (gi.*sin(phil (index))+ri.*cos{phil (index)}).*tan(thetal (index}};
phil = phil(index) + phi_dot*dt;
thetal = thetail(index) + theta_dot*dt;

end

phil=(phil (1}; phil{l:ndp-1))-mean(phil};
thetal={thetal{l);;thetal{l:ndp-1)1;

%-- creating extra inputs

bhias = gnasindp, 1}

w4 = K2.*sin{phil}.*cos(thetal);

ub = (ri.*sin{phil}+qi.*cos(phil}}.*tan{thetal)
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b {qi.*riv(Iyy-Tzz)+pii.*Ixz);
u? = {pii.*qi*(Ixx~Iyy)-gl.*ri*ixz};
ug (pii."2-ri."2);

u={Aileron Rudder bias u4 u5 vé uv7 uBl; % ail he inputs into system

%-- Z0H delay correction
v(l:ndp-1}=0.5* (u(l:ndp-1)+u(2:ndp)}; % Use mean of input over sample period

uydata=(u pii ri Yaccel]; %inputs and outputs

% Organising start parameters
%
pstart=[C_Y_beta, C_¥_dr, C_l beta, C_l p, C_l_r, C_l da, C_1 dr, C_n_beta, C_n_p, C_n_r, C_n_da,

C_n_dr, C_.a_Sa, C.a, C_Y_Bb, C_i_bias, C_n_bias, z_ay, x_ay, y_ay, C_¥_bkias, ...

Vel, DynPress, X0_1, X0_2, X0_3, X0_4, X0_5, Izx, Iyy, Izz, Ixz,...

Proc_nl, Proc_n2, Proc_n3, Proc_nd €1 C2 Al );

% Parameters to be estimated
e
ap=[1 32 4 58 5 10];

abp=[2% 31 32 );

pp=[2 § 7 12 ];

cp=[1B 13 20};

dp=[21];

x0p=[26 27);

N=[33 34 35 28];

}~-- for eatimating the parameters

$ pidg =[15 16 17 21 x0p 14 1;

% pidm =[ap bp 15 16 17 x0p 21 13 11);
% pigf =[ap bp 11] ;

$--- for simulation of weighted mean system
pidg =[15 16 17 21 x0p 14 ];

pidm =(15 16 17 x0p 21 13 14);

pidf =[15% 16 17 x0p 13 14] ;

% setup and run MMLE

% N

pl = pstart;

pert = 0.001;

pref=pl0;

linegearch = 1;

opt={1 60 10 10 0.0000G1 0.0001 0.001 0.5};
mmle

% Plot results

% ____________________
t=[0:ndp-1)+.05";

y=uydata(:, 9:11);

X0=[X0_1 X0_2 X0_3 X0_4);
[A,phi,gam,C,D,q, x0,dt, rowing, B]=K13_P255_tLat4 (pfin);
yast=dlsim mm{phi, gam,C,D,u, x0});

figure

subplot (414);

h=plot(t, {y(:,3) yest{:,21]); set(h(2},'Col’,'r’,"'linestyle’, -.");
grid; ylabel(*a_y [g] ");

xlabel (Time [s8]7};

subplot (413);
h=plot (%, [¥(:,2) yest(:,2) 1}; set{h(2},"Cel", r’,’linestyle’, =.");
grid;ylabkel ('r [rad.s"-"1]1");

subplot {411);

h=plot (v, [Ailercon Rudder ]); set{h{2),"Col’, r’","linestyle','-."};
grid;ylabel (" Input (rad]'});

legend (* \delta_a’,"\delta_r’, 4}

subplot (412);
h=plot{t,[y{:,1) vest(:,1}]}; set{h{2),’'Col’, ', linestyle’, "-."};
grig; ylabel('p [rad.s"-"1)*};
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legend{*Flight data’,'MLE fit’,4)

set (gof, 'Papertype’, 'A4');

set (gof, "PaperOrientation’, 'portrait’);
set (gcf, "PaperUnits’, *inches’)

set (gef, ' InvertHardcopy', on')

inov=y-yest(:,1:3};
figure
subplot (311};

h=plet (t, [inevi(:,3) )}t
%axis ([0 max{t) -0.5 0.35]};
grid;

ylabel ("Yaccel inovations');

subplet (312} ;

h=plot (t, [inovi:, 2} 1);

$axis ([0 max{t) -0.5 0.5]);
grid;ylabel (* YawRate inovations');
subplot (313};

n=plot (t, [inovi:, 1} 1};

%axis ([0 max(t) -0.5 0.5]);

grid; ylabel {'RollRate inovatlions’};
set (gcf, 'Papertype’, 'Ad');

set (gef, ‘PaperOrientation’, f landscape');
set (gcf, ' PaperUnits’, "inches’}

myfiguresize = [0.2500 D.2500 11.1528 7.7677);
set (gef, 'PaperPosition’, myfiguresize):
errcr=mean (abs (inov}}

Script-oelatalllg.m

% Script to setup and run the MMLE alge

% Estimating the Lateral Motion derivatives,

% For all The flights

% Stores raults in user inpute flle

format compact,clc

clear

% Constants

% __________________________________

glecbal 5 C bb g m K1 K2 K3 K4

s = 17.5; % Wing surface area - m2

c = 1.09; % Mean Aercdynamic chord - m

bb = 16; % Wing span - m

g = 9.Bl; % Gravitaticnal acceleration - ms-2

m = 400; % Mass kg

% name gf P2SS

p2enam="K13_P255_Lat4’; % name of P255
§-~-name of results file
resgave=input {* filename for results : f,’'s7);

% Start with the first flight
%

% load data and calibrate

e

load(*11_23_flight_1SPLT.mat’};

p_bias =452.25; % biases ar for the first flight only

q _bias =455.0531;
r_bhias =526.0582;
man = FTdata.Lateral.Manceuvre;

Kp = 32.87/3.07*0.00488*pi/180; % Gyro scale factors

Kg = 32.85/3.06%0.00488*p1/180;
Kr = 32.92/3.15+0.00488*pi/180;
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p_all = {Kp * {FTdata.Lateral.RollRate ~ p_bias});:
q all = (Kg * (FTdata.Longitudinal.PitchRate - q_bias)});
r_all = (Kr * (FTdata.Lateral.YawRate - r_bias}};

FTdata.DiffPar=((1023-FTdata.DiffPsr) *555.3*0.00488/2.,531);
FTdata.Lateral.Yaccel=0.00488/2.3225* (FTdata.lLateral.Yaccel-574} *9.81/9,81;

Aileron_all = -0.0012523*FTdata.Lateral.Aileron+ 0.62615;
Rudder_all = 0.0014279*FTdata.Lateral.Rudder-0.74364;

ns=90;

% starting values for the parameters

B o e e e e et A b 2 A k2
k1

C.Y¥_beta = 0.44742; f¥par(1);
c_Y_dr = 0.13371; Bpar(2);
C_l_beta = 0.021365; ¥par(3);
C_lp = ~0.20803; $par(4);
c_l_r = 0.080346; ¥par(5);
C_l_da = =0.059528; #par(§);
c_l_dr = =0.0096791; 3ipar{7);
C_n_bsta = -0.044277; spari{8);
C_n_p = -0,034271; 3%par(9);
Cn_r = =-0.089348; %par(1i0);
C_n_da = 0.0075093; fpar (i1);

C_n_dr = -0.031594; $par{12);
C_a_Sa = 0.2328 ; kpar{l3);

C.a = -1 §par (14)

C_Y_Bb = -0.0015; Spar{15);
C_l_bias = -0.0016; Spar (16);
C_n_bias = 0.0008B; $par (17} ;
z.ay = -0.376; spar (18} ;
R_ay = -0,838; $par (19} ;
y_ay =0 H ¥par (20} ;
C_Y_bias = -0.0044; $par(21};
Vel = 22,2 ; $parc(22};
DynPress = 12.7778; fpar(23);
x0_1 = -0.0065; $par(24);
X0_2 = 0 H spar{2s);
X0_3 = 0.0196 ; $par{26);
X0_4 = -0.0000; dpari{27);
x0_% = (.15 : $par{28);
Ixx = 962.36 ; ¥par(29});
Iyy = 3027.1 ; fpar (30} ;
Izz = 3732.2 ; ¥par (31);
Ixz = -0.7955; ¥par(32);
Proc_nl = ng H §par(33);
Proc_n? = ns H spar(34);
Proc_n3 = ns H ¥par{3d);
Froc_nd = ns ; &par (36);
c1 =1 ; spar (37);
c2 =1 i %par (38);

¥ extracting Manoeuvre from data
e
for manindex=1:length (man)

mstart = man{manindex,1);

mend = man{manindex, 2);

ndp=mend-mstart + 1; % number of data pointcs

¥ make uydata

Y
¥

global uydata twofcramer waprioeri
ndp=mend-mstart + 1; % number of data points

dynpress = {FTdata.DiffPsr(mstart:mend});

v = abs{sqrt (2, *dynpress/airdensity)): % using the starting velocity
pii = p_all (mstartimend};

ai = g_all{mstart:mend};

ri = r_all{mstart:mend);

Rileron = Aileron_all{mstart:mend);

Rudder = Rugdder_all {mstart:mend);

Yaccel = FTdata,Lateral.Yaccel {mstart:mend);

Yaccel = Yaccel -mean{Yaccel);
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% Manouevre specific constants
Kl = dynpress(l)}*5/(m*mean(V));
KZ = g/mean(V);

K3 = mean (dynpress) *S*bhy

K4 = mean (dynpress)*3/(m*g);
Vel=mean (V) ;

% Generating phi and theta
phil=zeros {ndp+l, 1]
thetal=phil;

phil 0=X0_2;

thetal 0=X0_5;
philily=phil_0;

thetal (1)=thetal _0;

for index=1:ndp
theta_dot = gi.*cos(phil{index))-ri.*sin{phil (index));
phi_dot = pii + (gi.*gin{phil (index))+ri.*cos{phil{index}}}.*tan{thetral (index)};
phil = phil{index) + phi_dot*d:;
thetal = thetal{index) + theta_dot*dt;
end

phil=[phil (1}; phil{l:ndp-1})-mean(phii);
thetal=(thetal (1) ;thetal (1:ndp-1}1;

%-- Ccreating extra inputs

bias = ones (ndp, 1) ;

ud = K2.*sin{phil).*cos{thetal);

us = {ri.*sin{phil)+qi.*cos{phil)).*tan (thetal);
ub = {qgi.*ri*{Iyy-Izz)+pii."Ixz);

u? = {pii.*gi* (Ixx-Iyy)-gi.*ri*Ixz};

ug = (pii."2-ri."2);

u=[Aileron Rudder biss w4 u5 u6 u? uBl; % all he inputs intoe system
%¥—— ZOH delay correction

u(l:indp-1}=0.5*(uil:ndp-1)+u(2:ndp}); % Use mean of input over sample periocd

uydata=[u pii ri Yaccell; ¥irputs and cutputs

% Organising start parameters

%
¥

petart={C_¥Y_bheta, C_¥_ dr, C_)l_beta, C_1_», C_1l_r, C_1_da, C_1_dr, C_n_beta, C_n_p, C_n_r,
¢c.n_de, C_a_Sa, C_a, C_Y_Bb, C_l_bias, C_n_bias, z_ay, x_ay, y_ay, C_Y_bias,...
Vel, DynPress, X0_}, X0_2, X0_3, X0_4, X0_5, Ixx. Iyy, Ize, IX2,...
Proc_nl, Proc_nZ2, Proc_n3, Proc_nd Cl CZ Al );

% Parameters te be estimated

‘ _____________________________________ -
ap=[1 3458 9 10];

abp=[28% 31 32 ]:

bp=[2 6 7 12 1;

cp=[18 19 20];

dp={21];

x0p=[26 27];:

N={33 34 35 36];

%$--- for estimating the parameters

% pidg =[15 16 17 21 x0p 14 j;

% pidm ={ap bp 15 16 17 x0p 21 13 11];
3 pidf ={ap bp 11] ;

%$--- for simulation ¢f weighted mean system
pidg =[15% 16 17 21 x0p 14 )

pidm =[15 16 17 x0p 21 13 14);

pidf =(15 16 17 x0p 13 14] ;

% setup and run MMLE
& —_—

p0 = pstart;
pert = 0.001;
pref=p0;
linesearch = 1;

C_n_da,

173



CHAPTER D — PROGRAM CODE

opt=[1 60 10 10 0.000001 0.0001 £.001 0.5];
mmnle

resultsl=resulcs; % shuffle results arcund

% save results of this estimation run
L e T T T
if manindex==
[r,cl=size(resultsl};
results_all=zeros{r,c,length{man));
pfinal = zercs(length{pfin’), length(man));

end

results_all{:,:, manindex)=resultsl;
pfinal{:,manindex)= pfin’;

end % end of for loop
% Save Rasultg of the flight

g o e T — e m m e m m e
save ([ressave, " results_all’, ‘pfinal’);

% Start of the Second flight

% loacd data and calibrate

load{f11_23_£1light_ 25PLT.mat")}

p.bias =452,6810; % bilases ar for the second flight only
q biag =455,5346;

r_biag =826.2214;

man = FTdats.Lateral.Manoceuvre;

Ke = 32.87/3.07%0.00488*p1/180; % Gyrc scale factors
kg = 32.85/3.06*0.00488*p1/180;
Kr = 32.92/4.06*0.00488*pi/180;

p_all = (Kp * (FTIdata.Lateral.RollRate - p_bias}};
g_all = (Kg * (FTdata.longitudinal.FitchRate - g bias));
r.all = (Kr * (FTdata.Lateral.YawRate - r_bilas));

FTdata.DiffPsr=((1023-FTdata.DiffPsr) *555.5+0.00488/2.531);

Ya_bias=460;

FTdata.Lateral.Yaccel=0,00488/2,3225* (FTdata.Lateral .Yaccel- Ya_biag)*9.81/9.61;%
Aileron_all = -0.0012523*FTdata.Lateral.Aileron+ 0.62615;

Rudder_all = (.0014279*FTdata.Lateral.Rudder-0.74364;

% extracting Manoeuvre from data

e
for manindex=l:length (man}

Wmstart = man (manindex,1};

mend = man {manindex, 2)

ndp=mend-mstart + 1; % number of data polnts

% make uydata
Byt ot e
global uydata twofcramer waprieori

ndp=mend-mstart + 1; % number ¢f data points

dynpress = (FTdata.DiffPsr (mstart :mend)):

v = abs(sqrt (2.*dynpreas/airdensity)); ¥ using the starting velocity
pii = p_all(mgtart:mend);

qi = g_all (mstart:mend);

ri = r _all{mstart:mend);

Aileron = Alleron_all (mstart:mend);

Rudder = Rudder_all{mstart:mend);

Yaccel = FTdata.Llateral.Yaccel (mstart:mend};

Yaccel = Yaccel -mean(Yaccel)

% Manouevre specific constants
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X1 = dynpress(l} *S/ (m*mean (V}};
2 = g/mean(V};

K3 = mean{dynpress) *5-bb;

K4 = mean{dynpress) *S/{m~qg);
Vel=pean (V) ;

% Generating phi and theta
phil=zeros (ndp+i,1);
thetal=phil;

phil_0=X0_2;
thetal_0=X0_5;
phil(1)=phil_0;

thetal {1)=thetal_0;

for index=1:ndp
theta_dot = gi.*cos(phil (index)}-ri,*sin{phil {index}};

phi_dot = pii + {gi.*sin{phil{index))+ri.*cos(phil{index))).*tan{thetal{index));
phil = phil (index) + phi_dot*dt;
thetal = thetaliindex} + theta dot*dt;

end

phil=(phil(1); phil{lindp-1}]-mean{phil);

thetal=(thetal{l);thetal{l:ndp-1}];

%-- creating extra inputs

biasg = ones (ndp,1};

ud = K2.*sin(phil) .*cos (thetal);

ud = (ri.*sin(phil}+gi.*cos(phil)).*tan{thetal};
ué = (gi.*ri* (Iyy-Izz)+pii.*Ixz);

u7 = (pil.*gi* (Ixx-Iyy)-qi.*ri*Ixz);

ug = (pii."2-ri,."2);

u=[Aileron Rudder bias ud u% w6 u? uf]; % all he ipputs inte Ssystem
¥-- ZOH delay correction

u{l:ndp-1)=0.5%{u{l:ndp-1)+u(2:ndp)}: % Use mean of input over sample period

uydata={u pil ri Yaccell; %inputs and outputs

% Organising start parameters

%

petart=[C_Y_beta, C_Y_dr, C_1_keta, C_l », C. 1 r, C 1l da, C_1 _dr, C.n_beta, C.n p, C_n_r,
C_ndr, C_a Sa, C_a, C_¥ Bb, C_1 bias, C_n_bias, z_ay, x_ay, y_ay, C_Y_bias,...
Vel, DynPress, X0_1, X0_2, ¥0_3, X0_4, X0_.5, Ixx, Iyy, Tzz, Ixz,...
Proc_nl, Proc_n2, Proc_n3, Proc_nd Cl C2 Al );

% Parameters to he estimated

%

ap=[1 3’4 58 3 10];
abp=[2% 31 32 );
bp=(2 6 7 12 );
cp=(18 19 20);
dp=[211;

®0p=[26 27);

N=[33 34 35 36);

%--- for estimating the parameters

% pidg =[15 16 17 2% x0p 14 |;

% pidm =(ap bp 15 16 17 x0p 21 13 11);
% pidf =[ap bp 11} ;

§--- for simulation of weighted mean system
pidg =[15 16 17 21 x0p 14 ;

pidm =[15 16 17 x0p 21 13 14];

pldf =(15 16 17 x0p 13 14] ;

% setup and run MMLE
G et e e e e e e e e e e e e e

Pl = pstart:

pert = 0.001;

pref=p0;

linesearch = 1;

opt={} 60 10 10 0.000001 0.0001 0.001 0.5);

C_n_da,
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mmle
resultsl=rasults;

% Save Results

%
o — m —— —————————————————————————————————————

if manindex==

depth=size (resuits all, 3);
end
regults_all(:,:,manindex+depth)=resultsl;
pfinal(:, manindex+depth)= pfin’;

end % end of for loop
% Save Results of the secend flight

5 —_—
save (ressave, ‘resgults_all’, 'pfinal’);

o o

Start of the Second flight

load data and calibrate

o ap P

load(’16_08_2003SPLT.mat');
p_bias =453.5682; % biases ar for the third flight only
q bias =455.2555;
r_bias =527.3622;
man = FTdatza.Lateral.Manoeuvre;
Kp = 32.87/3.07*0.00488*pi/180; % Gyro scale factors
Kg = 32.85/3.06-0.00488*pi/180;
Kr = 32.92/4.06*0.00488*pi/180;

p_all {kp * (FTdata.Llateral.RollRate - p_Bbias}};
q_all = (Kg * (FTdata.Longitudinal.PitchRate - g _bias));

r_all = {Kr * (FTdata.lLateral.YawRate - r_bias)});

FTdata.DiffPsr=(({1023-FTdata.DiffPsr)*555.5%0.00468/2.531);
Ya_ biag=479.9747;

FTdata.Lateral.Yaccel=0.00488/2.3225* (FTdata.Lateral.Yaccel-479,974)*2.81/9.81

% extracting Manceuvre from data
3
for manindex=1:length (man)
mstart = wan{manindex,1};

mend = man{manindex,2);
ndp=mend-mstart + 1; % number of data points

¥ make uydata
S
global uydata twofcramer wapriori

ndp=pend-mstart + 1; % number of data points

dynpress = (FTdata.DiffPsr(mstart:mend));

v = abg(sqrt (2.*dynpress/ailrdensity)); % vsing the starting velocity
pil = p_all(mstart:mend);

gl = g_all(mstart:mend);

ri = r_alli{mstarc:mend};

Aileron = Aileron_all {mstart:mend);

Rudder = Rudder_all (mstart:mend);

Yaccel = FTdata.lateral.Yaccel (mgtart:mend);

Yaccel = Yaccel -mean(Yaccel);

% Manouevre specific constants
K1 = dynpress(l)*§/{m*mean{V));
K2 = g/mean{V);

K3 = mean{dynpress) *S*bb;

K4 = mean{dynpress)*S/(m*g);
Vel=mean (V}:;

% Generating phi and theta
phii=zeros (ndp+1, ) ;
chetal=phil;
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phil_0=x0_2;
thetal_0=x0_5;
phil{1) =phil_0;
thetal{l)=thetal_0;

for index=1:ndp
theta dot = gl.*cos(phil{index))-ri.*sin(phil (index));

phi_dot = pli + (gi.*sin(phil(index))+ri.*cos{phil (index))).*tan{thatal (index));
phil = phil(index} + phi_dot*dt;
thetal = thetal(index) + theta_dot¥dt;

end

phil=[phil{1); phil{l;ndp-1)])-mean{phill;

thetal=[thetal(l);thetal(lindp-1)1];

%-- creating extra inputs

bias = onesindp,1};

ud = K2.*sin(phil}.*cos(thetal);

us = (ri.*sin{phil}+qi.*cos(phil}).*tan(thetal};
ué = {(gi.*ci*(Iyy-Izz}+pii."Ixz);

u? = (pii.*gqi* (Ixx-Iyy}-gi.rrivIxz);

uf = (pii,"3-ri. " 2};

u=[Aileron Rudder bias ué4 u5 u6 u7 u8); % all he inputs into system

§-- ZOH delay correction

u{l:ndp-1)=0.5*{u{l:ndp-1)+u{2:ndp)); % Use mean of input over sample period

uydata=[u pii ri Yaccel]; %inputs and outputs

% Organising start parameters
%

pstart=[C_Y_beta, C_Y_dr, C_l_keta, C_l p, C_l_¥, C_1l.da, C_l_dr, T_n_beta, C_n_p,
C_n_dr, C_a_Sa, C_a, C_Y_Bk, C_l_biasg, C._n_bhias, z_ay,

vel, DynPress, X0_1, X0_.2, X0_3, X0_4, X0_5, Ixx,
Proc_nl, Proc_n2, Proc_n3, Proc_nd €1 C2 Al ];

% Parameters to be estimated

P

ap=11 34 58 910);
abp=(29 31 32 |;
bp=12 & 7 12 |;
cp=[18 19 20);
dp=[21};

x0p=[26 27]:

N=133 34 35 36];

%-—— for estimating the parameters

% pidq ={15 16 17 21 x0p 14 );

% pidm =fap bp 15 16 17 x0p 21 13 11)];
% pidf =[ap bp 11} ;

%--- for simulation of welghted mean gystem
pidg =[15 16 17 21 x0p 14 |;

pidm =[15 16 17 x0p 21 12 14];

pidf =[15 16 17 x0p 13 14] :

% getup and run MMLE

tyy, Izz,

pl = pstart;
pert = 0,001;
pref=pl;
linesearch = 1;
opt=(1 60 10 10 0.000001 0.000%1 0.00% 0.5];
mmle
resultsl=results;

% Save Results

e m e mm e mmm = A4 m e e ——— e mmmmmmmm

if manindex==}
depth=size (results_all, 3);
end
results_all(:, i, manindex+depth)=resultsl;
pfinal {:, manindex+depth)= pfin’;

x_ay,

y_ay,
Txe, ...
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end % end of for loop

% Save Results of the third flight

save (ressave, ‘results_all’, pfinal’};

D.2.3 Longitudinal Estimation
Function:K13LongP2S53.m

function [A,phi,gam,C,D,q,x0,dt, rowing, B]=K13LangP2333 (p)
% P28S5 function for ZS5-GHB Longitudinal Motion

% Linearized Equations of Motion used from

% Application of parameter estimation to aircraft

% stability and control, Maine and I1iff

§ mmmm—mm e m— e Unpack coefficlents from p-vector
C_M_alpha = p{l);
C_N_delta = p{2);
C_R_alpha = p(3);
C_A_delta = p{d);
C_m_alpha = p(5);
C_m_delta = p(6};

com.g = pl(7):
C_N_bhias = p(8};
C_A _bias = p(9};
C_m_bias = p(l0};
C_L_bias = p(ll};
alphadot_bias = p(l12};
m = p(l3);
v = pild);
dynPress = p(l15);
Xan = p(l6);
Progc_nl = p{l7);
Proc_nZ = p{lE);
alpha_1C = p{l9);
g_iC = p(20);
d_e_delay = p(2l);
iy = pl22);
K_alpha = p(23);
Zax = p{24};
Yan = pl(23);
outselect = p(26};
C_g_bkiaz = p(27);

% Constants
global KI ¥2 K3

5 = 17.5; % Wing surface area - m2
chord = 1.08; % Mean Aerodynamic chord - m
g = 9.81; % Gravitational acceleratien
m = 444; % Mass kg

dt = 0.05;

% Define State-3pace matrices
P mmm e m R
% state equation xdot = Ax + Bu

A = [ K1*C_N_alpha 1
K2+C_m_alpha X2<C_m_g*chord/2/V |:

B = [K1*C_N_delta, 1, XI*{C_N_kias+alphadot_bkias),0,0,0,0,0
K2*C_m_delta, 0, K2*C_m_bias, 0,0,0,0,0];

% output equation ¥y = C x + D u
£3 = (K3*C_N_alpha, 01 + Xan/g * A{2,:);
Cd = [-K3*C_A_alpha, 0] + Zax/q * A(Z,:);

C = i0,1;C3;C4);

b3 = [K3*C_N_delta, 0, K3*C_N_bias, Zax/g,2a%/g., 0, -Yan/g, 0l;
D4 = [-K3*C_A_delta, 0, -K3*C_A_bias, Xan/g, 0, Xan/g, 0, =Yan/g
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D= {0,0,C_g bias,0,0,0,0,0; D3; D4];
Di2,:)=D(2,:) + Xan/g * B(2,:}; % +Zax/g
D(3,:)=D(3,:} + Zax/g * B(2,:});

%--- selects different outputs cutputs
switch outselect
case 0
C=C; %--- all
D=D;
case 1
C=C{l,:); $--- pitchrate only
D=D{l,:);
case 2
C=[C{1l,:);C(3,:)]; %=~ pitchrate and axial accel
D=[D{1,:)};D{3,:)]:

case 3
C=C(3,:); %--- axial accel
D=D{3,:);

case 4
C=C(2,:); %--- Normal Acceleration
=D{2,:);

case 5

C=[C(1,:);C{2,:)]}; % pitchrate and Rormal Acceleration
D=[D{1,:);D{2,:)};
otherwise
C=C; %--- all
D=D;

¥ process noise parameters
§ ——— e
g=[ p(i7) 0; 0, p{l8)};

¥——- rows in {Q in which the parameter occur
rowing=zeros (1, lengthip));
rowing(l7:18)={1 2};

% initial state [alpha,g]
B o At e = e
x0=p (19:20);

% discretize
% ______

[phi,gam] = cZd_mm{A,B,dt}; ¥ CZD_MM == C2D

Scripl: celongl608.m

Script to setup and run the MMLE alge
Estimating the Longitudinal Motion derivatives.
For the flight stored in r16_08_2063SPLT.mat’

Single manoeuvre estimation

o o e o

format compact,clc
clear

% Constants

%
.1

5 = 17.5; % Wing surface area - mZ

chord = 1.09; % Mean Aerodynamic chord - m

m =400; % maneuver welght ({constant)

Iy = 3027.1; % ¥ moment of inertia

q = 0,81; % Gravitational acceleration - ms-2

dt = 0.05; % downgampled datafilt.m ,data sampled at 20 hz

% name of P25S

p2snam = 'K13LongP285237;

b load data and calibrate
L]
if exist (‘Frdata’)== 0

load("16_08_2003SPLT._mat’};

p_bias =453,56682; % biases are for this particular flight only

q_bias =455,2555;
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end

r_bias =%27.3622;
man = FTdata.Longitudinal.Manceuvre;

Kp = 32.87/3.07*0,00488%pi/18D; % Gyro scale factors

Kg = 32.85/3.06*0.00488%pi/180;
Kr

p_all = (Kp *
q all = (Kgq *
r_all = {Kr *

= 32.92/

3.15*0,00408*pi/180;

{FTdata.Lateral.RollRate - p_bias}};
{FTdata.Longitudinal.PitchRate - g bias)});
{FTdata.Lateral.YawRate - r_kias));

FTdata,.DiffPsr = ((1023-Fldata.DiffPsr)*555.5~0.00488/2.531);

a_x_all = 0.00488/4.11* {FTdata.Llongitudinal.Xaccel-436,7471)*5.81/9.81;
a_z_all = 0.00488/1.8* (FTdata.Longitudinal.Zaccel-320.6194)*9.81/9.81;

Elavator_all=-0.001027*FTdata.Lengitudinal .Elavator+0.2%077;

% starting values for the parameters

p=zeros(l, 24);
p(1) = 6.1464
pi2) = 0.3494
p(3) = -0.0170
P4y = 0.0134
pi{5) = -0.669
pi{6} = -3.3918
p(7) = -30.5183
pi8) = 1.182
pi{9) = -0.0162
p{10)= 0.1252
pi{ll)= 0
»{12)= -0,4854
pi{l3)=m
pi{ld)= 24
pi{l5)=3

pilé)= -0,833
pi(l17}= 0
plls)= 0
p(19Y= 0.1
pl20i= 0

p(Zly= 0

pl22)= Iy
pi23)= 3

p(24)= -0.37
pi25)= 0

p{26) =0

p{27)= -0.1116

ptrue= p;

;Name{l)='C_N_alpha';
jName{2)='C_N _delta';
iName{3)1='C_A_alpha';
iName{d)='C_A_delita’;
jName{3]1='C_m_alpha‘;
;Name{gj='C_m_delta’;
jHame {7]=' c_m q';
;Name{B8}=' C_N_bias';
;Name{9}=' C_A_bias’';
;Name{10}=" C_m bias’;
sName (11}=’ C_L_bias';
;Name {12}=’alphdet_b’;

Name {14}=" mass’ ;
;Name [14}=" v
iName{15}=" dynPress’;
iName (16})=" Xan' ;

;Nama{1l7}=" Proc_nl';
iNama{1l8}=" Proc_n2";
iName{189}=" alpha_IC’;

Name{20}=" q_TIC' ¢
iName{Zl]="d e dalay’;
jName{22}=" Iy';

;Name{Z23}=* K_alpha’;
jName(24}="Zax’;
iName (25} = Yax';

i Name {26}= output. seleat’;

;Name {27} = *C_g bias’

% extracting Manoeuvre from data

indax=4;

matart = man(index, 1};

mend

= man {

% make uydata

index,2);

global uydata twefcramer wapriori Ki K2 K3

airdensity = 1.2;% intelligent thumb suck values
dynpress = FTdata.Dlf£Psri{mstart:mend};
dyn=dynpress;

¥

pii = p_all (mstart:mend);

qi = -g_all (mstart:mend}; ¥sign correction
ri = r_all (mstart:mend};

Elavator = Elavator_all imstart:mend);

a_x = a_x_all (mstart:mend);

a.x = a_x - mean{a_x);

a_z = -a_z_all{mstart:mend); %a_z is opposite to normal
a_z = a_z - meania_zj;

%--- Manouwevre specific constants

= abs{sqrt {2, *dynpress/airdensity)};t*ones(ndp,1); % vusing the starting velocicy

dynprass=maan {(dynpress);
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V=mean (V) ;

Kl = -dynprass*S/m/V;

K2 = dynprags*S*chord/Iy;
K3 = dynpress*S/m/g;

%-+~- Generating phi,theta,alpha,r_dot,p_dot
phil=zerss (ndp+1,1};

thetal=phil;

phil_0=0;

thetal_0=0;

alphal{1l)=pd(19};

phil{1l)=phil_90;

thetal{l)=thetal_0;

p..dot=phil;

r_dot=phil;

for index=l:ndp
theta_dot = qi.*cos(phil (index}}-ri.*sin{phil {index}};

phi_dot = pii + (gqi.*sin(phil (index))+ri.*cos({phil (index))).*tan(thetal (index)};
phiil = phil{index) + phi_dot*dt;
thetal = thetal (index) + theta_dot*dt;

alpha_dot = K1* (p(1)+p(12))+gi+g/V* (cos{phil{index}}*cos(thetal{index)}*cos{alphal(index))+sin(thetal{index))*sin{alphal (index)));
alphal = alphal{index) + alpha_dot*dt;

if index "= 1

p_dot (index} = (pil(index)-pil(index-1}}/4at;

r_dot (index} = (ri(index)-ri(index-1}}/dt;
else
p_dot (index} = (pii{index+l)-pii(index)}/dt;
r_dot (index) = (ri(index+l)-ri{index))/dt;
end
end

phil=(phil (1}; phil{(l:ndp~1l)]-mean(phil};
thetal=[thetal(l);thetal (1:ndp-1}1];
p_dot=p_dot (1:ndp);

r_dot=r_dot (1:ndp)}

%--- Generating inputa

ul Blavator;

u2=g,/V.* (¢os(phil}.*cos(thetal).*cos (alphal) +sin{thetal) .*sin{alphal));
w3 = eonesindp, 1);

wd = agi,."2;
ub = pii."2;
we = ri."2;
u? = p_dot;

u = r_dot;
u = [ul,-u2,ul,ud,-us, -uE,u?,uldl;

¥--- ZOH delay correcticn
u{l:ndp-11=0.5%(u[l:ndp-1)+u{2:ndp)): % Use mean of input over sample period
% to compensate for EZOH half sample delay

y=lgi,a_z,a_x};
uydata = [u y]; % Pack inte uydata
pl26)=0;

% setup and run MMLE

Bt et m e e m =
p0=p;

¥--- for estimation of all derivatives
$pidg = [ 7 8 2 10 12 1% 20]1;
t(pidm = (1 234567831012 27 )
fpidf = { 1 234567 );

$--- for estimation of rest with alpha derivatives fixed
dpldg = [ 7 8 & 10 12 15 20});
fpidm = [ 2 4 6 78 910 12 27 ];

kpidf = [ 2 4 6 T |;
== fOor gimulation of weighted mean biases and initial conditions

pidg = | 8 9 10 12 19 20);
pidm = { 8 9 10 12 27 |;
pidf = [ 8 2 10 ir

opt=[1 50 40 10 ©0.0001 0.0001 0.0001 ¢.5];
mmle

% Plotting the results
e e e e e e eSS
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figure
t={0:ndp-1]*,05";
subplot (411);
h=plot(t,[ul 1);
grid;ylabel {*\delta_e [rad)');
subplot (412);

h=plet(t, [y(:, 1} vesat({:,}) J); set(h(2),’Col’,’r’, " linestyle’, ' =,"};

grid; ylabel{"qg [rad.s"-"1] ‘);
legend (‘Flight data’, 'Weighted Mean fit*,4);

subplot (413);

h=pletit, (yi(:,2) vest(:,2) 1); set(h(2),°Col’ . "» ., linestyle’,"-.");

grid; ylabel{'a_n [g]');

subplot (414} ;

h=plot (t, [y (:,3} yest(:,3) ]}; set(h(2),’Col’, ", linestyle’,’'-.");

grid; vlabel{'a_x [a]');
xlabel ("Time (s]');

set (gaf, 'Papertype’, "A4');

set (gef, "PaperOrientation’, "portrait’};
set (gcf, 'PaperUnits’, *inches’)

set (gef, " InvertHardecopy’, fon’)

figure

inov=y-yest;

subplet (311);
h=plot (t, lingv(:,1}" 1);

%axis ([0 max{t) -0.5 0.5}};
grid; ylabel(’'qi inovations’});
subplot (312}
h=plot (¢, (inov(:, 2} T);

%axis ([0 max(t} ~0.5 0.5))¢
grid; ylabel("a_z inovations');

subplot (313);
h=plot (t, [inov(:, 3} 1);

faxis ([0 max(t} -0.5 0.5));
grid; ylabel(’a_x inovations’);

shg
error=mean{aba{inov)

Script:oeiongalld.m

% Script to setup and run the MMLE algo
% Estimating the Longitudinal Motion derivatives.
% For the flight stored in "16_08_2003SFLT.mat’

% Single mangeuvre estimation

¥

format compact,cle
clear

% Constants
%

% P255 filename and results savefile
%
pZsnam = *Kl3LongP25537;

resgdaves=input (* filename for results : ',"'5")j

% Constants

% _——

s = 17.5; ¥ Wing surface area - m2

chord = 1.09; ¥ Mean Aerodynamic chord - m

m =400; ¥ maneuver weight (constant)

Iy = 3027.%; % ¥ moment of inertia

g = 9.81; % Gravitational acceleration - ms-2

dt = 0.05; % downgarmpled datafilt.m ,data sampled at 20 hz

% Parameters to be estimated

$-—-- for estimation of all derivatives
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%~--- for estimation of rest with alpha derivatives fixed

pida = [ 7 8 § 10 12 19 20);
dpidm = [ 1 2345678 91012227 1
fpidf = {1 2345867 );

$pidg = (7 8 9 10 12 19 20]1;
§pidm = [ 2 4 6 78 9 10 12 27 |§;
%pidt = | 2 46 7 ];

% starting values for the parameters

ffmm e e e e -
p=zercsil, 24);

pily = 6.1464 jName{1)="C_N_alpha’
pi2y = 0.3494 sName{2)=fC_N_delta'
pi3) = ~0.0170 ;Name{3}='C_A_alpha';
pl4}y = 0.0134 ;Name{4}='C A delta’;
p(5} = -0.66% iName{5}="C m_ alpha’;
p(6} = -3.3%18 FName{6}="C_m delta’;
p(7} = -30.5183 iName{7}=' cmq;
pl@) = 1,182 iName{8}=' C_N_bias’;
p(9) = -0.0162 ;Name{9}=' C_A_bias’;
pi{l10}= 0.1252 iName{1l0}=' C_m_bias’;
plil}= 0 ;jName{1ll}=' C_L_bias‘;
p(12)= -0.4854 iName{1Z}='alphdot_b'";
p(13)=m iName{i4}=' mass’;
p(l4)= 24 iName{14)=' v
p(l5)= 3 iName{l5}=' dynPress’;
@ilé)= -0.839 iName{l6l=' Xan';
pliMy= 0 rName{l17)j=' Proc_nl’;
pil8)= 0 iName{18)=' Froc_n2‘;
pi(l9= 0.1 ;Hame{19j=" aipha _IC";
p(20)= 0 ;Name{z20)=" q IC';
p(21)= 0 jName{21}='d_e_delay’;
p(22)= Iy iName{22}=' Iy';
p(23)= 13 jName{23)}=' K_alpha‘;
p(24)= -0.37 rName{24}="Zax';

pi{25)= 0 ;Name{25)}='¥Yax';

pi26)=0 iName{26)='autput select’;
p{27)= -0.1116 ;Name{27) = 'C_q blas’ ;
P mm—esec—sssscssssszs—ssmsssoa=
% Starting with First flight

e ===
% load data and calibrate

& —_———

load(“11_23_flight_1SPLT.mat’);

p_bias =452,25; % biases ar for the first flight only

g_bias =455.0531;
r_blas =526.0582;
man = FTdata.Longitudinal .Manoeuvre;

Kp = 32.87/3.07+0.00488*pi/180; & Gyro scale factors

Kg = 32.,85/3.06*C.00488*pi/180;
Kr = 32.92/3.15*0.00488*pi/160;

p_all = (Kp * (FTdata.Lateral.RollRate - p_bias));
q all = (Kg * {FTdata.Longitudinal.PitchRate ~ r_bias}};

r_all = {(Kr * (FTdata.Lateral.YawRate - g _bias));

FTdata.DiffPsr = {(1023-FTdata.DiffPsr)*555.5+0.00488/2.531),

FTdata.Lateral.Yaccel = 0.00488/4.065* (FTdata.Lateral.Yaccel-574)*9.81;
FTdata.longitudinal.Xaceel =0.00488/4.11* (FTdata.Longitudinal.Xaccel-416.5)%9,81/9.81;
FTdata.Longitudinal.Zaccel =0.00488/1,8* (FTdata.Longitudinal.Zaccel-294.4)*9.81/9.81;

a_%_all = 0.00488/4.11* (FTdata.Longitudinal.Xaccel-436.7471)%9.81/9.681;
a_z_all = 0.00488/1.8* (FTdata.Longitudinal.Zacesl-320.6194}*9.81/9.81;

£lavator_all=-0,001027*FTdata.Longitudinal .Elavator+0.2907%;

% extracting Manoguvre from data

for manindex = 1:lengthiman)

mstart = mani{manindex,1);
mend = man{manindex,2);

ptrue= p;
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% make uydata

%
5

global uydata twofcramer wapriori K1 K2 K3

airdensity = 1.2;% intelligent thumb suck values
dynpress = FTdata.DiffPsr(mstart:mend);
dyn=dynpress;

v = absisqrt(2.*dynpress/alrdensity)};%*ones{ndp,1); ¥ using the starting velocity
pii = p_all (mstart:mend);

gi = —-g_allimstart:mend); $sign correction

ri = r_all{mstart:mend);

Elavator = Elavator_all (mstart:mend) ;

a_x = a_x_all(mstart:mend};
a_¥ = a_x - mean(a_x);

a_z = —a_z_all(mstart:mend); %a_z is opposite to normal

a_z = a_z - mean{a_z);

$--- Manouevre specific constants
dynpreas=mean (dynpress) ;
V=mean (V} ;

K1 = ~dynpress*S/m/v;

K2 = dynpress*S+*chord/ly;

X3 = dynpress*5/m/g;

%--- Generating phi,theta, alpha, r_dot,p_dot
phil=zeros (ndp+l, 1};

thetal=phil;

#hil_0=0;

thetal _0=0;

alphal {1)=p0{19);

phili{l)=phil_0;

thetal (1) =thetal_0;

p_dot=phil;

r_dot=phii;

for index=1:ndp
theta_dot = gi.*cos(phil(index}}-ri.*sin{philiindex));
phi_dot = pii + (gi.*sin(phil(index}}+ri.*cos{phil(index))).*tan{thetal (index));
phil = phil{indexr) + phi_det+*dt;
thetal = thetal {index) + theta_dot*dt;
alpha_dot = K1*{p{l)+p{l12))+gi+g/V*icos(phil (index)) *cos(thetal {index)) *cosialphal ({index))+sin({thetal{index))*sin{alphal (index))};
alphal = alphal{index) + alpha_dot*dt;
if index "= 1
p_dot {index) = {pii{index)-pii{index-1)}/dt;

r_dot (index) = {ri(index}-ri{index-1))/dt;
else
p_dot (index) = (pii(index+1)-pii (index))/at;
r_dot {index) = (ri(index+1l)-ri(index))/dt;
end

end

phil=(phil{l}; phil(i:ndp-1)]-mean(phil);
thetal={thetal (1} ;:thetal(1:ndp-1}];
p_dot=p_dot (1:ndp);

r_dot=r_dot(l:ndp);

%--- Generating inputs

ul = Elevator;

u2=g./V.*{cog{phil) .*cos{thetal).*cos{alphal}+sin(thetal).*sinl{alphal}};
ud = onesindp,1);

ud = gi."2;

us = pii."2;

ué = ri.”2;

u? = p_dot;

ud = r_dot;

u = {ul,-u2,u3,udq,-us5,-ué,u7,vdi;

$--- ZOH delay correction
u{l:ndp-1)=0.5"{u{l:ndp-1)+u(2:ndp)); % Use mean of input over sample period
% to compensate for ZOH half sample delay

y=lqi,a_z,a_x];
uydata = (u y¥)i % Pack into uydata
p{26)=0;

% setup and run MMLE
% ———-
pO=p;
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opt={1 50 40 10 0.0001 0.0001 0.0001 0.5);
mnie

% Save results for this mangeuvre

1f manindex==
{r,cl=size{results);
resulta_all=zercs(rc,c, length (man}};
pfinal = zeros{length(pfin'),length{man));

regules_all{:,:,manindex)=resulus;
pfinal (: manindex)= pfin’;

end § end of for loop
% Save results for this flight

save (ressave, ‘results_all’,'pfinal’};

clgar FTdata man

*——— =
% Starting with second flight

%

$ load data and calibrate
-
clear FTdata man
load("11_23_flight_2S8PLT.mat’});
load(ressave};
p_bias =452.7162; % biases ar for the first flight only
q bias =455.5136;
r_bhias =526.1285;
man = FTdata.Lengitudinal . Manoesuvre;

Kp = 32.B7/3.07*0.004B86*pi/180; % Gyro scale factors
Kg = 32.B5/3.06*0.004B8*pi/180;
Kr = 32.%2/3.15%0.004B8*pi/1B0;

p_all = [Kp * (FTdata.Lateral.RocllRate - p_bias));
g all = (Kgq * {(FTdata.Longitudinal.PitchRate - g bias}};
r_all = (Kr ~ {FTdata.Lateral.YawRate - r_bias)):

FTdata.DiffP3r = [{1023-FTdata.DiffPsr)*555.5%0.00488/2.531);

Frdata.Lateral.Yaceel = 0.00488/4.065* (FTdata.lateral,.Yaccel-470) *5.81;
FTdata.Longitudinal.Xaccel =0.06488/4.11# (fTdata.Longitudinal . Xaccel-432,5083)*3.81/9.81;
Ffdata.Longitudinal.Zaccel =0,00488/1,8% (FTdata.longitudinal.Zaccel-320.9335}+9.81/9.81;

a_x_all = 0.00488/4.11* (FTdata.Longitudinal.Xaccel-436.7471)%9.81/9.81;
a_z_all = 0_00488/1.8*(FTdata.Llongitudinal,.2accel-320.6194) *9.81/9.81;

Elavator_all=-0.001027*FTdata.Llongitudinal.Elavator+0.29077;

% extracting Manoeuvre from data

for manindex = l:ilengthiman)

mstart = man{manindex,1);
mend = man(manindex, 2};

ptrues p;
% make uydata
§—-

global uydata twofcramer wapriori Kl K2 K3

airdensity = 1.2;% intelligent thumb suck values
dynpress = FTdata.DiffFsrimstart:mend};

dyn=dynpress;

v = abs{sqrt {2.*dynpress/airdensity});%*ones{ndp,1); % using the starting velocicy
pii = p_all (mstart:mend);

qi = —g_all (mstart:mend); %¥sign correction

r_all(mstart:mend);
Elavator = Elavator_all (mstart:mend);
a_x = a_x_all{mstart:mend);

ri

a_x = a_x - mean{a_x);
a_z = -a_z_all{mstart:mend); %*a_z ia opposite to pormal
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a_z = a_z - mean(a_z};

%--- Mancuevre speclfic constants
dynpress=mean (dynpress};

V=mean (V};

K1l = —-dynpress*S/m/V;

X2 = dynpress*S*chord/Iy;

K3 = dynpress*S/m/g;

%--- Generating phi,theta, alpha, r_dot,p_dot
phil=zerss (ndp+l1,1};

thetal=phil;

phil_0=0;

thetal_0=0;

alphal (1)1 =pQ (19} ;

phil (1)=phil_0;

thetal (1} =thetal_0;

p_dot=phil;

r_dot=phil;

for index=1:ndp
theta_dot = gi.*cos(phil(index)}-ri.*sin(phil {index)};
phi_dot = pii + (gi.*sin{phil(index})+ri.*cos{phil{index}}}.*tan{thetal (index));
phil = phil{index) + phi_dot*dt;
thetal = thetal {index) + theta_dot*dt;
alpha_dot = K1* (p(l)+p(l2))+qi+g/V* (cos (phil {index) ) *ces(thetal (index)) *cos (alphal {index}} +sin({thetal (index)) *sin(alphal (index)));
alphal = alphal{index) + alpha_dot*dt;
if index "= 1
p..dot {index) = (pii{index)-pii(index-1})/dt;

r_dot {index) = (ri(index)-ri (index-1}}/dt;
else

p_dot (index) = (pii(index+l)-pii(index}}/dy;

r_dot {index} = (ri(index+l)-ri(index}}/dt;
end

end

phil=[phil (1}; phil({l:ndp~1)]-mean{phil);
thetal=[thetal(l};thetal (1:ndp-1}1;
p.dot=p_dot (1:adp) ;

r_dot=r_dot {1:ndp};

%--- Geperating inputs

ul = Elevator;

u2=g./V.* (cos(phil} . *cos(thetal} .*cos(alphal) +sin(thetal).*sin{alphal));
u3 = cnesindp,1};

ud qi.”2;

ub = pii."2;

ué = ri."2;
u? = p_dot;
ugd = r_dot;
u = [ul,-u2,u3,ud,-us,-ub,u?,ubl;

%-—- Z0H delay correction
u(l:ndp-1}=0.5*({u(l:ndp-1}+u(2:ndp}}; % Use mean of input over sample period
% to compensate for ZOH half sample delay

y=lqi,a_z.,a_x];
uydata = (u ¥)s % Pack into uydata
p(26)=0;

% setup and run MMLE

e
pO=p;
opt=[1 50 40 10 0.0001 0,0001 0.,000L 0.5];
mmle

% Save results for this manceuvres

o e ottt e e

if manindex==
depth=size (results_alli,3);
end
rasults_all{:, :, manindex+depth) =results;
pfinal {:, manindex+depth)= pfin’;

end % end of for loop

% Save results for this flight
- et
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alphal = alphaliindex) + alpha_dot*dt;

if index "= 1}
p_dot (index}
r_dot (index}

elae
p_qot[index}
r_dot (index)

end
end

{pii{index)-pii(index-1))/dt;
{ri{index)-ri(index-1})/dt;

(pii(index+l)-pli{index})/dt;
(ri{index+l)-ri(index)) /dt;

phil=(phil(l); phil{l:ndp-1)]-mean{phil);
thetal=[chetal (1);thetal{l:ndp-1)};

p_dot=p_dot {1l:ndp);
r_dot=r_dot (l:ndp);

¥--- Generating inputs

ui = Elevator;

u3
ud

ones (ndp, 1)}
qi."2;
us = pii."2;
ud = ri."Z;
u? = p_dot;

ul = r_dot;

u2=g./V.* (cos(phil).*cos(thetal) .*cos(alphal) +sin{thetal) . *sin(alphall);

u = [ul,-u2,u3,ud,-ud,-us,u7,udj;

%¥--- 20H delay correction

ull:indp-11=0.5*(u(1l:ndp-1)+u(2:ndp)}; ¥ Use mean of input over sample period
% to compensate for Z0H half sample delay

y=[qi,a_z,a_x];
uydata = [u vyl
pi(26)=0;

&

H

% Pack inte uydata

setup and run MMLE

pO=p;

opt=(1 50 40 10 6.000G1 0.0001 0.0001 0.5);

mmle

op

Save results for this manceuvre

if manindex==l

depth=size (results_all, 3);

end

results_alll:, :,manindex+depthl) =results;
pfinal(:,manindex+depth)= pfin’;

end % end of for loop

¥ Save results for this flight

¥

gave (ressave, 'resules_all','pfinal’y};
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