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Synopsis

Site Index is used extensively in modern commercial forestry both as an indicator of current and
future site potential, but also as a means of site comparison. The concept is deeply embedded into
current forest planning processes, and without it empirical growth and yield modelling would not
function in its present form. Most commercial forestry companies in South Africa currently spend
hundreds of thousands of Rand annually collecting growth stock data via inventory, but spend little
or no money on the default compartment data (specifically Site Index) which is used to estimate
over 90% of the product volumes in their long term plans. A need exists to construct reliable
methods to determine Site Index for sites which have not been physically measured (the so-called
"default", or indirect Site Index). Most previous attempts to model Site Index have used multiple
linear regression as the model, alternative methods have been explored in this thesis: Regression
tree analysis, random forest analysis, hybrid or model trees, multiple linear regression, and multiple
linear regression using regression trees to identify the variables. Regression tree analysis proves to
be ideally suited to this type of data, and a generic model with only three site variables was able to
capture 49.44 % of the variation in Site Index. Further localisation of the model could prove to be

commercially useful.

One of the key assumptions associated with Site Index, that it is unaffected by initial planting
density, was tested using linear mixed effects modelling. The results show that there may well be
role played by initial stocking in some species (notably E. dunnii and E. nitens), and that further
work may be warranted. It was also shown that early measurement of dominant height results in
poor estimates of Site Index, which will have a direct impact on inventory policies and on data to be

included in Site Index modelling studies.
This thesis is divided into six chapters: Chapter 1 contains a description of the concept of Site Index

and it's origins, as well as, how the concept is used within the current forest planning processes.

Chapter 2 contains an analysis on the influence of initial planted density on the estimate of Site
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Index. Chapter 3 explores the question of whether the age at which dominant height is measured has
any effect on the quality of Site Index estimates. Chapter 4 looks at various modelling
methodologies and compares the resultant models. Chapter 5 contains conclusions and
recommendations for further study, and finally Chapter 6 discusses how any new Site Index model

will effect the current planning protocol.

Keywords: Indirect Site Index; Dominant Height; Initial planted density; Measurement age;

Regression Trees; Random Forest; Hybrid model trees; Multiple Linear Regression.
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Opsomming

Hedendaagse kommersi€le bosbou gebruik groeiplek indeks (Site Index) as 'm aanduiding van
huidige en toekomstige groeiplek moontlikhede, asook 'm metode om groeiplekke te vergelyk.
Hierdie beginsel is diep gewortel in bestaande beplanningsprosesse en daarsonder kan empiriese
groei- en opbrengsmodelle nie in hul huidige vorm funksioneer nie. Suid-Afrikaanse
bosboumaatskappye bestee jaarliks groot bedrae geld aan die versameling van groeivoorraad data
deur middel van opnames, maar weinig of geen geld word aangewend vir die insameling van
ongemete vak data (veral groeiplek indeks) nie. Ongemete vak data word gebuik om meer as 90%
van die produksie volume te beraam in langtermyn beplaning. 'n Behoefte bestaan om betroubare
metodes te ontwikkel om groeiplek indeks te bereken vir groeiplekke wat nog nie opgemeet is nie.
Die meeste vorige pogings om groeiplek indeks te beraam het meervoudige linére regressie as
model gebruik. Alternatiewe metodes is ondersoek; naamlik regressieboom analise, ewekansige
woud analise, hibriede- of modelbome, meervoudige linére regressie en meervoudige linére
regressie waarin die veranderlike faktore bepaal is deur regressiebome. Regressieboom analise blyk
geskik te wees vir hierdie tipe data en 'n veralgemeende model met slegs drie groeiplek
veranderlikes dek 49.44 % van die variasie in groeiplek indeks. Verdere lokalisering van die model

kan dus van kommersi€le waarde wees.

'n Sleutel aanname is gemaak dat aanvanklike plantdigtheid nie 'n invloed op groeiplek indeks het
nie. Hierdie aanname is getoets deur linére gemengde uitwerkings modelle. Die toetsuitslag dui op
'n moontlikheid dat plantdigtheid wel 'n invloed het op sommige spesies (vernaamlik E. dunnii en
E. nitens) en verdere navorsing kan daarom geregverdig word. Dit is ook bewys dat metings van
jonger bome vir dominante hoogtes gee aanleiding tot swak beramings van groeiplek indekse.
Gevolglik sal hierdie toestsuitslag groeivoorraad opname beleid, asook die data wat vir groeiplek

indeks modellering gebruik word, beinvloed.

Hierdie tesis word in ses hoofstukke onderverdeel. Hoofstuk een bevat 'n beskrywing van die
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beginsel van groeiplek indeks, die oorsprong daarvan, asook hoe die beginsel tans in huidige
bosbou beplannings prosesse toegepas word. Hoofstuk twee bestaan uit fi ontleding van die invloed
van aanvanklike plantdigtheid op die beraming van groeplek indeks. In hoofstuk drie word
ondersoek wat die moontlike invloed is van die ouderdom waarop metings vir dominante hoogte
geneem word, op die kwaliteit van groeplek indeks beramings het. Hoofstuk vier verken verskeie
modelle metodologie€ en vergelyk die uitslaggewende modelle. Hoofstuk vyf bevat gevolgtrekkings
en voorstelle vir verdere studies. Afsluitend, is hoofstuk ses i bespreking van hoe enige nuwe

groeiplek indeks modelle die huidige beplannings protokol kan beinvloed.

Sleutelwoorde: Indirekte groeiplek indeks, Dominante hoogte, Aanvanklike plantdigtheid, Opname

ouderdom, Regressieboom analise, Ewekansige woud analise, Hibriede- of modelbome,

Meervoudige linére regressie.
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Chapter 1. SITE INDEX IN THE SOUTH AFRICAN
PLANNING PROTOCOL

1.1. Introduction

The maximum productive capacity of any given site can be defined as the total biomass produced if
the stand has fully utilised the available resources such as water, nutrients and solar radiation to
produce tree growth. The concept is important because it allows for an estimate of the maximum
amount of product (in this case wood fibre) that the site is capable of producing (West 2004).
However since trees complete against one another for resources their individual sizes in the stand
will differ, those that are more competitive will become larger and suppress the less competitive
smaller trees. The degree of competition will be determined by the stand density, and the rate of
growth of the larger more dominant trees. The dominant trees are therefore a reflection of the

productive capacity of the site for that particular tree species. (West 2004)

Determining the productive capacity (or site quality) of a particular stand is important if one
requires estimates of current and/or future production. It can also be used as a means of comparing

actual production to potential, and to determine the correct species to be planted on the site.

Site quality can be determined by a number of methods (Loetsch et al. 1973):
- Using measured tree variables that are considered to be expressions of the effect of site on the
tree (such as height).
- Using the natural vegetation and species mix as an indicator of site quality, and by

- Using soil, topographical and climatic features to determine site quality.

1.2. Origins of the concepts of Site and Site Index

There is a lack of conformity over the use and definition of the term “site” — it can be used in
reference to the inherent features of the site (such as climate or soil), or to the growth of the trees on

1
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the site. Since interest is in the crop rather than the land it is the second definition which is of more
importance. Johnston et al. (1967) uses the terms “site classifications” and “growth classifications”
to distinguish between the two types of classifications, other authors call these two methods
“Geocentric” or earth based and “Phytocentric” or plant based (West 2004, Vanclay 1994).
Skovsgaard & Vanclay (2008) use the terms “Site quality” and “Site productivity” to discriminate

between the two concepts.

The actual number of true forest site classification methods is small since most do not reflect
differences in tree growth potential, or cannot be expressed in terms of volume, most soil survey
classifications for example cannot be used to define tree growth differences (Johnston et al. 1967).
Johnston et al. (1967) give the following site and growth classifications:

Site classifications can be classed into :

Floristic Site Classifications : where the ground vegetation is correlated to tree growth.
This is limited to areas that have been relatively undisturbed, and where there is little site and
species variation. The method is most often used in the large (indigenous) coniferous forests
of the northern hemisphere.

Environmental Site Classifications : particularly the use of soil variables and soil types as
a method of site classification.

Climatic Site Classifications : where climatic variables such as temperature, rainfall,
evapotranspiration, length of growing season etc. are correlated to growth. These indices
seem to be useful on large scales such as countries or continents.

Growth classifications can be divided into:

Volume Site Classifications : where either mean annual increment (MAI,) at a base age or
more commonly the maximum MALI,,, are used. However where the stand has been thinned,
or where there has been heavy natural mortality the MAI, or MAl,,« becomes difficult to
measure and interpret.

Basal Area Site Classifications: where basal area is used when the forest has reached a
state of equilibrium (only useful for natural, or very old forests).

Height Site Classifications : where height (either mean height, or dominant height) are

used at a some reference age to define the site classes.
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These site classifications can be further divided into direct (e.g. directly measured tree volume, or
height) and indirect (e.g. the use of ground vegetation, or soil type) methods (Skovsgaard & Vanclay
2008).

Since the interaction of edaphic and climatic effects on tree growth can be complex and these
interactions are only partially understood, and in most cases the original ground vegetation has been
removed or modified, the effect of the site on the crop can be used as a proxy for site quality.
Originally this was based on the total standing volume or yield produced (and by implication MAI),
however, since the introduction of silvicultural treatments such as thinning have a material effect on
the yield it became necessary to find a measure of site quality that was less susceptible to forest

operations, was easy to measure, and was highly correlated to the productive capacity of the site.

As early as 1765 Oettelt suggested stand height as the best indicator of site quality from the other
easily measured stand characteristics (Loetsch et al. 1973). At around the same time (1788") de
Perthuis de Laillevault also proposed the use of height to assess site quality (Batho & Garcia 2006).
In 1841 Heyer identified the correlation between height and volume growth (Skovsgaard & Vanclay
2008). Later the mean height at a particular reference age became an obvious substitute and was
successfully used in the construction of the original yield tables in Germany in the 1870's. Stands
were classed into the various qualities using the “band method”, or relative site classification,
whereby a large number of stands with varying ages and productivities were measured. The upper
and lower bounds of the variation in mean height over time were determined and the curves plotted.
The difference between the upper and lower curves was then divided equally at the reference age
into bands (generally five bands were used to define the site classes). The mean curves of these
bands then defined the height quality classes. Stands that fell into a particular class were expected
to have similar volumes at the same age (given similar stems per hectare), and the mean height of
the stand would develop along the curve defined by the class. Eichorn formulated the so-called
Eichorn rule in 1902 / 1904 which stated: a given mean height of a stand delivers the same volume

in all site classes® (Skovsgaard & Vanclay 2008).

Published posthumously in 1803 by his son.

If not heavily thinned , and for a given tree species.
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Later, dominant height was used together with mean height since it was possible during a heavy low
thinning for a stand to artificially move from one site class to the next because the mean basal area
had increased and therefore the mean height (Assmann 1971). Dominant height has the advantage
over mean height in that it is less effected by thinnings where small or malformed trees are removed

(Garcia 1983).

When it is assumed that due to thinning or natural mortality that the trees with smaller than average
basal area are the ones that are removed or die, additional variation is also introduced — a further
reason for the introduction of dominant height (Pienaar 1965). This “Site Index” (dominant height
at a reference age) replaced the previous Site Class (mean height at a reference age) Van Laar &

Akca (1997).

Fairly early on attempts were made to describe the quantifiable relationships that were seen in yield
tables as formulae. Attempts were also made to formulate universal growth “laws” - however, these
proved to be too ambitious, and a general understanding that it is not possible to construct a single
generally valid growth “law” was arrived at (Assmann 1971). With the advent of computer
technology it became more practical to transform yield tables into empirical models, and the
concept of Site Index was incorporated into these growth models. These empirical models form the

core of forest planning, inventory and management systems today.

Typical empirical stand growth models are combinations of various mathematical functions that
describe elements of
- Stand growth (e.g. dominant height, basal area, stems per hectare (SPHA), survival/mortality,
basal area responses to thinning operations, and volume),
- Stand Structure (e.g. diameter distributions, average height) and

+ Product (e.g. merchantable volume, log breakdowns).

The growth models themselves can either be calibrated with measured data obtained via inventory

data (i.e. temporary sample plots or TSP's); or where the compartment has not been measured,
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default data on the compartment; the regime; and the productivity of the site (in other words Site

Index) are used to predict the future stand variable's.

Site Index can be seen as the integral of the site variables such as soil, radiation and rainfall on tree
growth, one method to circumvent the use of Site Index is to incorporate the site variables directly
into the growth model (Kaufmann & Ryan 1986). This method is, however, difficult to implement

and highly data intensive.

1.3. Defining Site Index

The definition of dominant height, top height and Site Index can be problematic. The terms top
height and dominant height are generally accepted as synonyms, however, the definitions of each are
not standardised or universal (Philip 1994). Other terms such as total height and predominant height

add to the confusion.

The definition of Site Index also has a material effect on the quality of the estimate”, and can lead to
statistically different estimates (Sharma et al. 2002). Garcia (2010) states that the actual definitions
of Site Index cannot in themselves be correct or incorrect, but that the statistical treatments will

differ.

There are numerous definitions for top or dominant height, including :
- The average height of the dominants and co-dominants (the selection and definition of
dominants and co-dominants can also be subjective).
« The average height of the dominants.
- The mean height of the 5; 30 ; 100 tallest trees per acre/hectare.
« The mean height of the 40; 100 largest (diameter) trees per acre/hectare.
- The average of heights greater than two standard deviations above the arithmetic mean.
- The regression height of the tree with a diameter equal to the mean plus two standard

deviations of the diameter distribution.

Sharma et al. (2002) defined the quality (or effectiveness) of the definition to mean : if the estimate of Site Index at base age was close to or the same as an estimate

several years below of above the base age.
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« The regression height of the tree with a diameter equal to the mean plus one and a half
standard deviations of the diameter distribution.
- The average of the largest diameter trees within a certain distance from an inventory sample
point.
(Philip 1994; Bredenkamp 1993; van Laar & Akg¢a 1997; Husch et al. 2003; Van Laar 1978;
Johnston et al. 1967)

Bredenkamp (1993) defined dominant (top) Height as the expected height of the largest diameter
trees on a random 0.01 ha plot, however, for practical purposes he gave the following method of

calculation, which is now the South African standard:

Dominant height is calculated from the mean height of the top 20 % largest quadratic
mean diameter trees. The height is based on the regression of the natural log of height,
and the inverse of diameter at breast height based on a sample of at least 30

diameter/height pairs.

Site Index can be viewed as either a property of the stand, in other words the actual dominant height
achieved by the stand at the specific base age, or as a property of the site — in that the Site Index is
seen as an average over a hypothetical stand which could be grown on that site, with Site Index
being the most likely dominant height at the base age. Garcia (2005; 2010) calls these two
definitions the “stand site index” and the “site site index”, the “site site index’ in his view is more
appropriate since it is in keeping with the original concept, and it also renders the base age

irrelevant.

1.4. 'Direct' Site Index models

At this point some differentiation needs to be made between the Site Index models used to estimate
Site Index, and to predict future height using measured data (i.e. direct methods), versus the models

referred to in this thesis to estimate 'default’ Site Index (i.e. indirect).
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‘Direct’ Site Index models can take many forms but are generally based on regression equations
which express height as a function of age (van Laar et al. 1997)°. Site Index is then calculated as a
function of the measured dominant height, the age at which this height was measured and the base

age. In other words the dominant height is projected to the base age for Site Index.

'Direct' Site Index models should fulfil the following requirements (Grey 1989):
- Provide unbiased estimates with equal precision across a range of ages.
- Base-age invariant, i.e. the model should produce the same results irrespective of the base age
chosen, and height should equal zero when age equals zero.
- Individual Site Index curves should have individual and independent asymptotes.

« The models should be closed in form (i.e. not require iteration).

Garcia (2004) gives three of the most common methods used to construct direct Site Index models
based on either PSP (permanent sample plot) or stem analysis data*: Parameter prediction, mixed

effects, and differential equations.

Further discussion of 'direct' Site Index models is limited to their use in the South African forest
planning protocols, and unless stated, all references to Site Index models are to 'indirect’ or 'default’

models.

1.5. Problems and Limitations

There are a number of limitations associated with the use of Site Index within the growth model

structure, these include:

The concept does not work well where there are either multiple species or multiple ages in a stand,
or where the stand age is difficult to determine (Avery & Burkhart 2002; Husch et al. 2003). This is

not really an issue for most South African commercial forestry companies if record keeping is kept

*  Examples of difference form Site Index models can be found in section 4.3.3

4 This is specifically with reference to empirical growth models — there are a number of other forest models forms such as process and hybrid models (Subasinghe

2008),
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reliable, and if only single species have been used per stand. Historically there were two occasions
when this may have presented a problem : At the start of the clonal programme when large numbers
of single clones were not available and multiple clones were planted in single stands, and where a

different species was used to blank’ a compartment — both of these situations are now rare.

Site Index is not comparable between species (Kaufmann & Ryan 1986; Avery & Burkhart 2002;
Husch et al. 2003), and definitely not between genera. It is possible, however, that this is a reflection
of the growth model, or of the data used to construct the height model. Where data from multiple
species in the same genus have been conglomerated to produce generic Site Index models (e.g. a

generic Eucalyptus growth model for a specific geographic region), the issue may be less relevant.

Site Index is not a constant, it can change over time due to climatic; environmental; or management
changes (Avery & Burkhart 2002; Skovsgaard & Vanclay 2008). Examples include research
conducted by Spiecker (1999) which has shown a general increase in site productivity between
successive rotations in many forest sites across Europe. Martin-Benito (2008) used the analysis of
residuals from dominant height equations over time to detect trends in dominant height growth for
Pinus nigra in three study areas in Spain, the author found reductions in dominant height growth
over two decades (1960's & 1970's). Similar Site Index changes have been detected in spacing trials
in South Africa over much shorter time periods due to abnormal rainfall (in this case a severe
drought). Coetzee et al. (1996) found a change in the calculated Site Index by 2.68 m over as short a
period as three years in a Eucalyptus grandis spacing trial at Kwambonambi in Zululand, South
Africa. In the 3.0 x 3.5 m espacement or 952 SPHA plot, the Site Index was calculated as 26.76 m at
age 5, and 24.08 m at age 8. Coetzee & Naicker (1998a) also found that the calculated Site Index
had changed at the Kia-Ora Eucalyptus grandis spacing trial in Kwazulu Natal, South Africa. Over a
four year period the Site Index had changed by as much as 2.5 m. (Plot 16 planted at 1666 SPHA,
3m x 2m. At age five it was calculated to be 16.68 m, at age nine it was 14.17 m). Coetzee &
Naicker (1998b) gave a comparable example in the results of the Tanhurst Eucalyptus grandis
spacing trial, where the Site Index had changed by 1.8 m in the 3 m x 2 m plot over five years.

Coetzee (1994) pointed out that if such data is used in the development of Site Index guide curves,

3 Blanking is a term used to denote the replacement of dead or missing seedlings soon after planting (generally this operation is carried out within three months of

planting).



Stellenbosch University http://scholar.sun.ac.za

that the resultant functions would not reflect the development of height growth under normal
growing conditions. He made an attempt to incorporate rainfall as an additional predictor variable,
but it did not contribute significantly to the particular dominant height function he was building.
Smith, Kassier and Cunningham (2005) pointed out in their summary of the 1986 trial series laid
out to determine the effects of initial stand density on Eucalyptus grandis, that height growth varied
widely due to drought effects during the course of the trials, resulting in differing estimates of Site

Index.

Height can be one of the more difficult stand variables to measure accurately during inventory —
especially during periods of wind, or where the crown is difficult to see. As a result Site Index can
only be accurately determined when it is close to the base age (Sharma et al. 2002). The dominant
height is inferred using the relationship between diameter and height calculated via a sub-sample
during the inventory process. It is not measured directly. These regressions have been known to
produce low correlations in plantation forestry — with R* values below 0.3 common unless the
sample is taken systematically® (i.e. the sample is made up of selected large and small trees, with
fewer “average” trees than would be the case if the diameter distribution was followed — this method

breaks the random sample rule, but improves the regression between diameter and height ).

Studies carried out on pine and spruce in Canada (Nigh & Love 1999) have shown that apparently
undamaged trees selected for the measurement of Site Index had significantly more internal damage
from frost and insects than anticipated when they were split open to measure height growth from the
terminal bud scars. Over 50 % of the pine and 75 % of the spruce trees had damage which was not
externally visible. There was evidence that this damage had effected the height growth of the pine

trees.

Given these potential measurement issues it is possible to make substantial errors in the estimate of

dominant height, and therefore of Site Index.

Since dominant height is considered to be relatively independent of variables such as mean diameter

and mortality the prediction models are normally developed separately as a self contained sub-

¢ Based on personal experience.
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model (Garcia 1983). It is fairly common to have separate height and Site Index equations within the
growth model configurations — one used to predict Site Index from a known height and age, the
other to estimate height as a function of Site Index and age. This can result in incompatibility
whereby the prediction of Site Index from known heights and ages, do not compare well with height

predictions using the Site Index and age (Rose et al. 2003).

Coetzee (1994) pointed out that it is important to keep in mind the age of the trees used in the data
sets to develop a Site Index equation, extrapolation beyond the age that was used can produce
unreliable results. This is quite often seen in practice where abnormally old stands produce
unrealistic results if predictions are made using the standard growth model configurations. Coetzee
(1994) suggested the use of polymorphic growth curves which allow for different shaped curves for
different ages and sites, rather than the single guide curve or anamorphic approach, which is
proportionally shifted above and below depending on site quality. An alternative approach is the
development of multiple anamorphic Site Index curves to suit the various data ranges. What is of
more importance is that the data used to construct Site Index functions should be reflective of both

the age ranges and growth conditions that the function will eventually be used for.

One of the key assumptions necessary to uphold the concept of Site Index is that it is unaffected by
initial stand density, however, some research has pointed to the possibility that this does not always

hold true. Since this is so important, it forms the basis of the first objective in this study.

Finally, since Site Index is defined as a dominant height at a specific point (the base age), it singles
out this part of the growth curve, and does not fully describe the way height growth has developed,

or will develop over the life span of the stand (Grey 1989).

Given all of these limitations, why is Site Index still favoured? The simple answer is that the
alternatives (such as, stem volume, biomass, combined height and diameter etc.) are either too
difficult to incorporate, or too expensive to measure. As long as the limitations are recognised and

properly managed (by reducing known bias), Site Index is currently the only viable alternative.

10
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1.6. The application of Site Index in South African forest
planning protocols

As previously stated, the concept of Site Index has been fully incorporated into the stand growth
models used by commercial forestry companies in South Africa today. In a typical pulpwood
working circle model configuration, Site Index is used directly to calculate height and volume and
indirectly (via the calculated height) in the calculation of basal area (see Figure 1) — so it is a key
element in the determination of the future stand variables. The estimates of site productivity need to

be accurate, since any bias introduced can affect all of the model results (Vanclay 1994).

¥ i ]
Enumeration data 7

Use enumeration data for Predict &1, TRH1, HO1 and
A1, TPH1, HD1 and Bad 2 BA1 Fom Sland TPHD 3

Project to age of operaton:

TPHZ, HOZ and BAZ

Generate wolume per dbh class ‘

S

Generate product breakdown |

Figure 1: The process flow for the empirical growth model
configurations usual to South African commercial forest

companies (Adapted from Fletcher 2006).

Variable list for variables used in Figure 1

Al Age at point of calibration (years)
TPHO Planting stems per hectare

TPH1 Stems per hectare at point of calibration
TPH2 Stems per hectare at point of projection
HD1 Dominant height at point of calibration
HD2 Dominant height at point of projection

11
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BA1 Basal area at point of calibration
BA2 Basal area at point of projection
SI Site Index

During a typical simulation which takes place within the harvest scheduling system (HSS)", the
following sequence takes place:
« The compartment is checked for relevant inventory data.
- If the compartment has been enumerated, the SPHA, Basal area and dominant height at the age
of inventory are projected to the future age of operation (Felling or Thinning).
- If there is no inventory data the compartment default Site Index, and the initial planted SPHA
are used to predict the SPHA, Basal area and dominant height at the future age of operation.
+ Once the future SPHA, Basal area and dominant height have been calculated, the volume is
then calculated either by
« the use of volume and taper functions, which generate product breakdown and log volumes per
diameter class (mostly required in the mining timber and saw timber regimes), or
- via whole stand volume equations which calculate the merchantable volume in the stand.
« In wattle compartments, bark volumes are also calculated.
- Finally the output for the stand is produced. This output is in cubic meters and has to be

converted using a factor to the unit of production (usually tonnes in pulpwood working circles).

The critical use of the default Site Index in un-enumerated compartments (which form the majority
of any long term plan) is obvious. If this default is poorly calculated the resulting volume

predictions will also be poorly calculated.

1.6.1. The forest planning process

Forest planning can be separated into three distinct levels: Strategic, Tactical and Operational
planning. Each of these planning levels have different objectives, methodologies, and time scales.
Strategic planning is concerned mainly with long term (20 to 30 years) sustainability of production.

Tactical planning is primarily concerned with resource balancing (roads; machines; contractors;

HSS — Harvest Scheduling System by Syndicate database solutions (see :_http://syndicate.co.za/files/hss.html) is currently the main strategic forest planning tool used
in South Africa today — it is used to simulate the effects of management decisions on long term forest production. A growth and yield simulator is incorporated into the

system which utilises empirical growth models to predict stand variables.

12
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labour; capital expenditure etc. on a medium term scale of between 3 and 5 years), and operational
planning is principally concerned with production (felling directions, safety, plant numbers etc. on
an annual or monthly level). Operational planning itself has two levels — the annual plan of
operations (or APO), and the compartment plan. Each planning level feeds into one another (see

Figure 3) and the entire process follows a specific time line (see Figure 2 below).

Strategic planning Agreed APO
Tactical Elanning Revised APO
BI.IdgEt APO /" Actual APO
K R e >
| >

Y
4
I ] - - - -- » ||l ]
| |
| |

JFMAMJJASONDMAMJJASOND

Figure 2: The planning time line (Morkel 2005).

The planning time line can be read as follows: during the initial months of the year the strategic plan
is reconstructed — this is generally completed during April or May’. The tactical plan is then created
from the first 3 to 5 years of the strategic plan and the first year of this plan in turn is used to put
together the budget for the following year. Since the budget is usually put together in June or July
(for approval in August/September), there is a time delay of approximately 5 months before the
annual plan of operations (APO) takes effect. Changes and adjustments are made during this period,
and the plan is continually reviewed during the year — the actual APO is audited and monitored, and

these changes in turn are fed back into the input for the following Strategic Plan (see Figure 3).

7 Time-lines will obviously differ between companies depending on the financial year
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Budget
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Strategic & Tactical - 4 January
lan |
P April / May ® ! APO
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\\Cﬂﬂu/al/"_
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Figure 3: The planning loop.

The data generated by each planning process is used by each other planning process: so for example
the APO is used as input into the Strategic plan, and visa versa. Obviously the timing for each of
these processes will differ for each company depending on when their financial year starts and ends.
If the financial year does not correspond to a normal calendar year the timing will be different (and
in most cases will add to the complexity of management). Since new Site Index models will
specifically affect the processes involved with the production of plans it is worth focusing in on

these processes. Figure 4 below shows the current generalised process of plan production followed

—  Site Index ‘
Zompartment
%ata »  Construction of Plan Review \(\ppln\]rnge
Strateqic Plan
Enumerations
Approved
Construction of
— Tactical Plan
Lease and
Caontractual
agresmsnts l
./_
Sy
—_— Const;u;gon o Operations systems
Wil Demand

Figure 4: High level process flow of the process's required to
produce Strategic, Tactical and Operational plans. Showing where

the default Site Index fits into the process.
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by most large commercial forestry companies in South Africa .

Throughout the year the operations systems record all operations that occur within a compartment
(this includes any operation for which payment is required). These systems vary from company to
company but are generally integrated into the financial systems and may or may not be part of the
forestry database (the compartment register), however, they will invariably be linked in some form
to the compartment data, either directly or indirectly. Operations which cause a status change to a

compartment (e.g. if the compartment is felled or planted) are used to update the compartment

database.

Currently actual production from compartments, in the form of tonnes or m® produced is used

within the Site Index process to update the Site Indexes (see Figure 5). It is this process which will

be directly affected by the introduction of an alternative methodology.

Actual production

Site index calculated
Using default regime and
Model data

Average S| cakulated
By Genus/Spp and
Geographic area

Enumerated Site Index

Comparison and review

Site Index Updated
'0 compartment database|

Figure 5: The current process followed to generate the default Site

Index.

The Site Index data together with inventory data; lease and contractual information; and mill
demand (both in the form of quantity and quality) are used to construct the strategic plan. Once the

plan has been constructed it is reviewed in detail, and if approved the initial years of the plan are
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used as input into the tactical plan. The APO is then constructed using the first year of the tactical

plan, and as actual production takes place this is captured into the operations systems.

Various methods are currently used to generate the default (i.e. un-measured, or un-enumerated)
Site Index which is utilised in the production of Strategic and Tactical plans. There are two
common methods:

« The use of past inventory data, or using inventory data from adjacent compartments. This
method can be time consuming and regime or species changes confound the calculation.
However with the use of GIS technology it is possible to reduce the time it takes to do the
calculations.

« The more common method is to “reverse engineer” the Site Index from the expected volume,

it is this method which is described here.

Actual production in the form of tonnes or m® produced from compartments in the past is
conglomerated via the operations systems. This data is used to estimate the future productive
capacity of sites. The growth models are then used to calculate what Site Index is needed (given the
default regime) to produce the given production. A spreadsheet is then generally used to calculate
the average Site Index for the given genus, species, working circle® and geographic area. How this
data is separated will depend on the amount of data available, and the business hierarchy. This
“default” Site Index is then compared to the enumerated Site Index, and any further production
information. A process of review together with the relevant harvesting forester will then either
approve or not approve the default Site Index. If it is approved, this data is then updated to the

compartment database.

As can be seen, this process is unscientific and has a number of problems associated with it:
«  The method relies on considerable manual involvement on the part of the forest planner (in
the form of maintaining and updating the Site Index spreadsheet).
« The method is not standardised across business units where there are different forest
planners, or where the data levels are different.

« The method does not use the enumerated Site Index directly.

8 Working circle is a reference to the product the compartment was established to produce — e.g. saw timber, mining timber, poles, pulp etc.
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« It is not based on the compartments future productive capacity — it is simply a conglomerate
of either expected capacity, or past production. And is therefore not a true reflection of
potential future production.

« The method is particularly problematic where it is used on relatively newly afforested areas ,
quite often the better sites are planted first and more marginal sites later — this leads to a
larger proportion of better sites in the older age classes. Using this data can lead to over
expectations for the younger more marginal sites.

« The method is even more challenging if production has been measured in tonnes, since the
further confounding effect of the conversion factor is introduced.

« It can be subject to manipulation and abuse. Since it is based on a view of the future, the
plans produced using this method are biased by this pre-defined view — and reflect the

subjective view held rather than a true and unbiased estimate.

The main forest site classification systems in use in South Africa today, are particularly useful for
silvicultural practices such as site species matching (Kunz and Pallett 2000; Smith et al. 2005; Louw
et al. 2011), however, they are of less direct use for forest planners who need empirical measures
such as Site Index to incorporate into the planning systems. Although numerous attempts have been
made in the past to relate abiotic elements directly to Site Index (e.g. Grey 1979a, Schafer 1988a,
Schafer 1988b, Louw 1997, Louw et al. 2006) these have generally been on specific species and/or
on regional or local levels, and/or have required expensive data collection. These studies have
tended to have deceasing correlations as the geographic area has increased (Louw and Scholes
2002), and the majority of these studies internationally have used multiple linear regression as the

predictive model.

1.7. Discussion

In may ways the use of Site Index as a productivity indicator is a trade-off between the simplicity of
a single (understandable) measure, and the associated limitations of the use of a single variable to
describe what is in essence the complex effect of an entire ecosystem on tree growth. Due to it's
simplicity, Site Index has become a vital component not only of the empirical growth models, but

also as a means of separating compartments and research treatments. However the concept comes
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with potential problems which forest planners and researchers need to be cognisant of. It is
important that forest planners understand the associated limitations of Site Index, that they are aware
of the limitations of the datasets used to build the growth models which use Site Index and, in so

doing, do not extrapolate beyond the capability of the models.

The methods used to calculate Site Index can either add or subtract from the level of accuracy. The
current method of calculating the default Site Index by reverse engineering, is clearly inadequate.
There is clearly a need to enable the calculation of the default Site Index using the actual drivers of
forest growth, and although there have been previous attempts to do so in South Africa these have
been on local levels and on specific species. These studies have also almost exclusively used

multiple linear regression as the analytical model.

To quote Vanclay (1994): “The status of indirect phytocentric methods is so inflated that some speak
of direct and indirect methods, not of site productivity estimation, but of site index estimation. This
appears to be an unhealthy situation; what began as an interim solution (site index) to a difficult

problem (geocentric approach) should not now be called the solution to the original problem.”

1.8. Thesis objectives

The current forestry site classification systems in use in South Africa generally do not produce
estimates of Site Index, or are on a localised species specific level and are expensive with regards to
data collection. Forest planners require Site Index as a key input to enable estimates of future
production. Site Index comes in two states — measured or direct Site Index, and unmeasured or
'default’ Site Index. Direct Site Index can be relatively easily calculated from measurements of
dominant height. However direct measurement is not always possible or appropriate. Firstly, and
most obviously, when the crop in question is not physically present (i.e. it is yet to be planted, or
where the potential for a species which currently does not grow on the site is required), and
secondly when the crop is too young to measure. An important question therefore is what is the
appropriate age of measurement? This forms the basis of the second objective of this thesis. Prior to

this, however, the main assumption associated with Site Index, vis that it is unaffected by initial
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planted density, needs to be tested. This forms the basis of the first objective. Finally, since previous
studies have generally been done locally and using multiple linear regression, various alternative

and novel modelling methodologies have been explored in the third objective.

Two sets of data have been used to explore these issues :

« Data set 1: Espacement trial data. Dominant height measurements from 11 trials

consisting of five Eucalyptus species and seven treatments ranging from 952 stems

per hectare to 2222 SPHA.

« Data set 2: Temporary, and permanent sample plot (TSP & PSP) data. Measurements

of dominant height from 5457 Eucalyptus, 4226 Pinus and 520 Acacia plots, each

with 232 site associated predictor variables.

In conclusion this thesis explores the following main objectives (see Figure 6):

hen is direct measurement
of Site Index inappropriate?

Is it possible to model default
Site Index using novel
techniques ?

Does the key assumption that
Site Index is unaffected by
planting density hold ?

Figure 6: The three separate but related thesis objectives.

Objective 1 : To investigate whether initial planted stems (stand density) has any influence on

the estimate of Site Index, using data set one.

Objective 2 : To investigate whether the age at which dominant height is measured has any
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influence on the estimate of Site Index, using both data sets one and two, and lastly :
Objective 3 : To model Site Index using readily available climatic and edaphic variables and to

investigate various modelling approaches, using data set two. The intention of this objective is

not to find a valid model, rather to compare alternative modelling methodologies.
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Chapter 2. OBJECTIVE ONE: THE INFLUENCE OF
INITIAL PLANTED STEMS ON SITE INDEX

2.1. Introduction

The assumption that dominant height is largely uninfluenced by the initial planting density has been
shown to be incorrect in a number of studies — McFarlane, Green and Burkard (2000) found a
negative correlation between the initial density and Site Index® for 184 Pinus taeda stands planted in
four geographic locations in the southern United States (Virginia and North Carolina). The stands
tested were between 14 and 16 years old, with a Site Index base age of 25, and the initial densities
ranged from 747 to 6719 stems per hectare (SPHA). The authors speculate that the (relative) early
age of measurement may have some influence on the results, and that the higher density sites may
catch up with the lower density sites by the time of the base age. This seems unlikely since the
correlation found was strong (significant with a two-tailed t test to p < 0.0001), it is also irrelevant if

the rotation age is lower than 25 years.

Coetzee (1990) found that the early results of a Eucalyptus grandis spacing trial in Zululand showed
that espacement had a noticeable effect on height growth (although not statistically significant), the
author cautioned that Site Index calculations based on early observations in this case at 3 years
should be treated with some care. This is somewhat disconcerting as the commonly used base age
for Eucalyptus Site Indexes on the Zululand Coast is 5 years, and the rotation age is generally
between 5 and 7 years, this means that the majority of enumerations (which are used to calculate
Site Index) occur at between 4 and 6 years of age. The author observed that the higher density
espacements (i.e. 2222 SPHA) had higher mean heights initially than the lower density espacements
(833 SPHA), but that this difference reduced after 18 months. At 18 months the difference between
the two treatments was as much as 1.2m, at 36 months this had reduced to 0.65m. Possible
explanations for this behaviour were suggested by the author: Wider espacements allow for bigger

branches which are retained for longer — this in effect reduces the amount of energy expended on

K Calculated from the seven tallest trees at each location.
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height growth. In higher density stands the competition for light causes an increase in height growth
earlier than in wider espacement stands, however, the larger canopies of the lower density stands
eventually become more efficient than the smaller canopies of the higher density stands, resulting in

improved height growth.

Van Laar and Bredenkamp (1979) also found that both mean and dominant height were related to
the initial SPHA in their analysis of the Langepan Eucalyptus grandis correlated curve trend (CCT)
spacing trial in Zululand. Bredenkamp (1987) found excellent correlations between the relatively
dry Nyalazi CCT and the Langepan CCT for mean diameter (R* = 0.98), mean height (R* = 0.97)
and mean tree volume (R*= 0.98), although dominant height was not included in the analysis, the
correlations found would imply that the relationship between initial stems and dominant height

found at Langepan is true across various sites.

In the analysis of the P. patula CCT trial at Mac-Mac Van Laar (1978) found a curvilinear
relationship between dominant height and stand density, with the highest dominant height found in

the plot with the medium density (755 spha at age 33).

Other research has pointed to little or no effect of initial espacement on height growth (West 2004;
Avery & Burkhart 2002; Bernardo et al. 1998; Zumrawi 1986 ); many of these observations,
however, were for sites in the northern hemisphere where the base age for Site Index is as old as 50
or even 100 years — by this time any effect that initial stand density would have had can potentially
no longer be measured. Meredieu, Perret and Dreyfus (2003) postulated that stand density effects
can change over the stands lifespan, that these effects are more pronounced in younger stands, and
that in mature stands the effect is not significant (again this is in long rotation European conifer

stands). The authors suggest the use of a correction for stand density effects.

Schonau and Coetzee (1989) concluded in their review of research into the effects of stand density,
initial spacing and thinning in Eucalyptus plantations, that although the results of various spacing
experiments seem contradictory, within the commercial stockings of 1000 to 2000 stems per hectare
dominant height does not change but mean height increases with decreasing stand density. They also

concluded that this relationship is further affected by species, site quality, and age.
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2.2. Objective

The objective of the analysis is to determine whether the initial planted density plays any role in the

development of height (specifically dominant height)™.

2.3. Materials

The data used for this objective comes from 11 ICFR espacement trials laid out between 1994 and
1997, with on average 2 replications per treatment per trial. The trials are geographically spread
from as far north as Tzaneen and as far south as Seven Oaks, however, the majority are concentrated
in the Zululand area (see Figure 9 and Table 2). The trials consist of one genus ( Eucalyptus) and
five species" (E. dunnii; E. nitens; E. grandis x E. tereticornis (E. g x t); E. grandis x E. urophylla
(E. g x u); E. grandis x E. camaldulensis (E. g x c)). Seven treatments (in this case initial planted
stems per hectare (SPHA)) ranging from a low of 952 SPHA to a high of 2222 SPHA are
represented. Dominant height has been repeatedly measured in each of the trials, giving an age

range from 0.5 years to 13.3 years (see Figure 8). A summary of the data is given in Table 1.

Table 1: Data summary of the espacement trial data set

Age TPHO HDom SI TPH
Minimum 0.5 952 0.88 0.43 488
1st Quantile 2.92 1111 12.35 16.32 1111
Median 5.01 1667 19.95 19.12 1466
Mean 5.44 1507 18.93 18.57 1469
3rd Quantile 8.08 1667 25.54 21.41 1667
Maximum 13.33 2222 36.1 30.32 4266

Since the trial lifespans essentially all cover the same time period'?, any covariance due to macro

Where:

Age - Measurement age.

TPHO - initial planted Stems per Hectare (SPHA).

HDom - Dominant height.

SI - Site Index.

TPH - current Stems per Hectare.

10

And hybrid crosses.

And therefore by definition Site Index.

2 April 1994 to February 2008
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climatic influences such as long drought or high rainfall periods is probably minimal. Figure 7

below shows the lifespans of the trial data.
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Figure 7: Time period covered by the espacement trial lifespans — lines represent the start

and end dates.
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Figure 8: 3D representation of the espacement trial data.
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Figure 9: Map showing the geographic distribution of the espacement trial data within South Africa.

Table 2: Co-ordinates of the espacement trials.

TRIAL NAME PLANTATION SPECIES LONGDITUDE LATITUDE
M15 PALMRIDGE E.gxu 32.26000 -28.30667
M16 NYALAZI E. gxt 32.33400 -28.19700
M17 BUSHLAN E. gxt 32.39000 -28.03000
M19 RIVERBEND E. nitens 30.65900 -26.95100
M20 K.T. E.gxu 32.14250 -28.62667
M21 NYALAZI E.gxc 32.23333 -28.41667
M27 MANAAN E. gxc 30.14300 -23.76600
M29 AMANGWE E.gxu 32.10000 -28.60000
M22 BUSHLANDS E. gxc 32.33100 -27.96000
M23 SEVEN OAKS E. dunnii 30.56300 -29.21000
M25 FUTULULU E.gxu 32.26700 -28.31100

2.3.1. Initial data analysis

The purpose of this initial analysis is to view the data with the intention of understanding the scope,
content, and distribution of the data as well as specifically identifying the following :
¢ Outliers

« Data errors
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« Underlying relationships
«  Skewed or unusual distributions and relationships

« Potential transformations of the response and predictor variables

A combination of graphical and numerical summaries of the data have been pursued.

2.3.2. Identification of outliers

An initial view of the data in Figure 10 below shows little or no change overall of dominant height

Hdom

00

T T T T T T T
952 1111 1333 1389 1667 1852 2222

TPHO

Figure 10: Box plot of Initial stems (TPHO) and

dominant height (Hdom).

over initial planted stems, this may, however, not be a true reflection since the influence of site and
age are not included. The figure does show two outliers in the 2222 TPHO treatment. These have

been left since the treatment has a low sample size in comparison to the other treatments.

Figure 11 below similarly shows little or no interaction between TPHO and dominant height over
age, however, when the age predictor is log" transformed, some interaction is potentially visible

(Figure 12).

3 Natural logarithm.
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Figure 11: Interaction plot between age and dominant

height.
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Figure 12: Interaction plot between the natural log of age

and dominant height.

From the pairwise plot matrix below (Figure 13) it can be seen that something “odd” has occurred
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Figure 13: Pairwise plots of the espacement trial data.

between Site Index and age, as well as between dominant height and Site Index — this is likely to be
due to errors and or differences in the modelling of Site Index. In order to ensure that Site Index
models do not confuse or distort the analysis, dominant height was used as the response variable

rather than Site Index.

2.3.3. Transformation

Initial examination of the dominant height and age data suggests that transformation would be
advantageous. The following transformations were tested to see what effect they had on the data
distribution as well as to linearise the relationship between dominant height and age:

« Transformation of the response (dominant height)

+ Transformation of the predictor (age)

+ Transformation of both

Only the natural log transformation of the age predictor proved to be useful:

As can be seen from the following figures (14 & 15), the natural log transformation of age has a
notable effect on the linearisation of the relationship between dominant height and age across all

the initial stems (TPHO). What is also noticeable is the increasing variation over age (this may,

28



Stellenbosch University http://scholar.sun.ac.za

however, be the increasing influence of site on dominant height over age).
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Figure 14: Co-plot of dominant height on TPHO and age.
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Figure 15: Co-plot of dominant height on TPHO and

natural log-transformed age (1LogAGE).

2.34. Species Differences

From Figure 16 below it is clear that there is some level of species differentiation — this is
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particularly noticeable in the case of E. dunnii. The analysis therefore needs to take this into

account.

Scatierplot of Log Age by Dominant height by Species
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Hdom

15
1

10
I

Figure 16: Scatter plot of natural log of age by dominant height,

separated by species.

2.3.5. Data treatment

One final issue to determine before analysis, is whether to treat specific variables as categorical or
continuous. The response variable (dominant height) will obviously be treated as a continuous
variable, and species is obviously a categorical variable, however, age and TPHO are not as obvious
to class. Age can be treated as a continuous variable since there are numerous age points for each
trial, it does however introduce the assumption that dominant height increases smoothly over time —
which, from the initial analysis does not appear to be an unreasonable assumption to take. Since
there are only 7 initial plot treatments TPHO could be treated as a categorical variable, however,

since the treatments are not evenly spaced it was decided to treat TPHO as a continuous variable.
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2.4. Method

As the espacement trial data is longitudinal in nature (i.e. repeated measures over time) it needs to
be analysed with this in mind (Bates 2010; Nakai & Ke 2009). Since we have several measurements
on the same plot, and two observations from the same plot are likely to be correlated to one another
due to factors that are specific to that plot. Maindonald and Braun (2007) give a summary of the
approaches that have been traditionally used to analyse repeated measures data — these include:

- Using summary statistics for each subject and then to use these for summary analysis — this
is, however, inappropriate here since there is a clear trend of increasing dominant height over
time, and summary statistics would therefore not make sense.

« Analysis of variance (ANOVA) can in principle be used when variance is the same
(homoscedastic) over all time periods, and the correlation between results is the same for
each pair of times. This also implies that the variance of the difference is the same for all
pairs of time points. This method allows for the analysis of variance between subjects as
well as between times. However the assumptions of equal variance over time are unrealistic.

« Adaptations of the ANOVA method which allow for the potential of heteroscedasticity
(unequal variance) between time differences. Maindonald and Braun (2007) state that these
should be avoided since good alternatives to ANOVA exist.

«  Multivariate models which compare all possible correlations between time points.

« Repeated measures models which aim to reflect the changes over time in the fixed, and
random effects as well as in the correlation structure — also called 'mixed effects models'.

It is this final method which has been applied here.

The theory of repeated measures modelling revolves around the fact that there are at least two levels
of variation — between subjects and within subjects™ (Maindonald & Braun 2007; Fox 2002).

The name 'mixed effects model' comes from the fact that the models incorporate two types of
effects": fixed and random effects. These names are somewhat misleading since they refer to the
properties of the levels of the covariate rather than the effects associated with them:

« If the levels observed represent a random sample of the population of levels (for example the

" Plus measurement error

15 Parameters associated with the levels of the model covariates are sometimes called “effects” .
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site) these are referred to as random effects .
« If the set of levels is fixed (for example Genus or Species), and or reproducible (such as
initial planted stems), the parameters are referred to as fixed effects.

Mixed effect models are models which incorporate both of these effects (Bates 2010, Bates 2005).

The linear mixed effects models were fitted using the Imer function (within the Ime4 package of R
(Bates et al. 2011).

The Imer function is similar to the normal linear modelling function Im with the addition of a
random term which identifies the source of the repeated measurements, in this case the plot (Bates
2010; Everitt & Hothorn 2010; Sakar 2008; Bates 2005). According to Fox (2002) this can be

specified in the following general mathematical form:

= + + +
Y, B1X1i7+"' Bpxpii bilzlij+"'biqzqij €;
Equation 1: Linear mixed effects form (Fox 2002)

with the distributional assumptions of
by ~N (O’ lﬂit),COV (bk’bk'J =, and

g ~N (0,02/\,.].].),Cov(£ij,£i]_.) =0’A;
where:

v;1s the value of the response variable for the jth of n; observations in the ith of M groups or
clusters. In R this is coded as follows :

Imer(response ~ fixed effects + (grouping factor | Random effects), data)

2.4.1. Parameter estimation method

In all cases maximum likelihood (ML) has been used to estimate the parameters of the models since
although restricted maximum likelihood (REML) is generally preferred over maximum likelihood
and has less bias (Sheather 2009), maximum likelihood is the method for the calculation of p-values
for specific terms suggested by Bates (2009)". The outcome was verified using REML and

produced the same result.

16 The author of the R package used.
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2.4.2. Random effects

To test whether the random effects term (i.e. the site — represented in this case by the Plotid ) is
necessary we first test the following model :
Imer(Hdom ~ 1 + (1/Plotid), data)

The only fixed effect term in the models is a constant of 1. This model allows us to estimate whether
the amount of between group variation (i.e. between sites) is sufficient to warrant incorporating it
into the model. The model essentially shows the intercept only (which represents the mean level of
the response). A standard deviation of zero for the intercept would indicate that the random effects
term is not necessary (it does not imply that there is no variation between sites) — and therefore a
more traditional linear modelling approach could be used, models such as these can be described as

'degenerate' (Bates 2010). Here each species was modelled separately'”.

Table 3: Results of the intercept only mixed effects model by species.

E gxc
Formula : Hdom ~ 1 + (1 | Plotid) For: E. gxc
AIC BIC 10GIIK Deviance REMLdev
1115 1125 -554.5 1109 1109
Random Effects:
Groups Variance Std.Dev.
Plotid (Intercept) 0.000 0.000
Residual 43.209 6.5733

Number of Obs : 168, groups: PlotID , 26

Fixed Effects:

Estimate STD error t value

(Intercept) 17.6215 0.5071 34.75
E. nitens

Formula : Hdom ~ 1 + (1 | Plotid) For : E. nitens
AIC BIC 10GIIK Deviance REMLdev
701.5 709.2 -347.8 695.5 693.8
Random Effects:
Groups Variance Std.Dev.
Plotid (Intercept) 0.00 0.0000
Residual 82.016 9.0563
Number of Obs : 96, groups: PlotID , 8
Fixed Effects:

Estimate STD error t value
(Intercept) 20.3644 0.9243 22.03

7 This was attempted using dummy variables, but gave an error since the matrix X'X is not positive definite.
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Formula : Hdom ~ 1 + (1 | Plotid) For: E. gxt
AIC BIC 10GIIK Deviance REMLdev
1080 1089 -536.8 1074 1073
Random Effects:
Groups Variance Std.Dev.
Plotid (Intercept) 1.8233e-11 0.00000427
Residual 5.7040e+01 7.55248084
Number of Obs : 156, groups: PlotID , 16
Fixed Effects:
Estimate STD error t value
(Intercept) 18.2243 0.6047 30.14
E gxu
Formula : Hdom ~ 1 + (1 | Plotid) For: E. gxu
AIC BIC 10GIIK Deviance REMLdev
2394 2405 -1194 2388 2387
Random Effects:
Groups Variance Std.Dev.
Plotid (Intercept) 1.5215¢-08 0.00012335
Residual 8.3125e+01 9.11730801
Number of Obs :329, groups: PlotID , 34
Fixed Effects:
Estimate STD error t value
(Intercept) 20.8441 0.5027 41.47
E. dunnii
Formula : Hdom ~ 1 + (1 | Plotid) For : E. dunnii
AIC BIC 10GIIK Deviance REMLdev
919.9 928.6 -456.9 913.9 913.2
Random Effects:
Groups Variance Std.Dev.
Plotid (Intercept) 0.000 0.0000
Residual 44.002 6.6334
Number of Obs : 138, groups: PlotID , 10
Fixed Effects:
Estimate STD error t value
(Intercept) 15.7726 0.5647 27.93

This model has P1ot id as the only random effect and shows a non zero standard deviation in only
the E. g x t and E. g x u models, which would indicate that the random effects term (Plotid) is in
fact necessary for these models. Interestingly the models for E. nitens, E. dunnii and E. g x c all
proved to be 'degenerate’. The same results were obtained using restricted maximum likelihood. The
reason for this is unclear. Since the outcome is unaffected whether traditional linear modelling or

mixed effect modelling is used, all species were analysed using mixed effects.
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Additional models where the random effects were grouped using TPHO ( Imer(Hdom ~ 1 + (TPHOI
Plotid), data) were also tested, but proved not to add value, and were not significantly different to
the first models. The way the random effects term is specified can also add value to the model,
however, to keep the analysis as simple as possible this was not pursued. A list of alternative

specifications of the random effects term can be found in Appendix 1.

24.2.1. Model 1 - The relationship between age and dominant height

The first step in the modelling process is to determine a model for dominant height and age. This
first model has one fixed effect parameter, the natural logarithm of age, and one random effects term

(the site) generating a simple scalar random effect for each site:

Table 4: Results of the mixed effects Model 1 - dominant height as a function of age, by species.

E gxc
Formula : Hdom ~ 100 AGE + (1 | Plotid) For : E. o x ¢
AlC RIC 10GITK Deviance REMI dev
(A4 T Q7772 3084 6567 A5R 9

Random Effects:

Grouns Variance Std.Dev.
Plotid (Intercent) 1.4267 1.1945
Residnal 2.280R 1510

Number of Ohs *168 oronns: PlatiD 26

Fixed Effects:

Estimate STD error t value
(Intercent) 3.2808 0.3892 R.43
T.ooAGE 101212 01996 5072
Carrelation of Fixed Effects:
(Intercept)
ILogAGE -0.737
E. nitens
Formula - Hdom ~ loo AGE + (1 | Plotid) For = F. nitens
AlC RIC 10GITK Deviance REMI dev
2961 3063 -144.0 2881 292.1
Random Effects:
Gronng Variance Std Dev
Plotid (Tntercent) 0.061879 024875
Residual 1128227 106218
Number of Ohs 96 oronns: PlotTD ]
Fixed Effects:
Fstimate STD error t valne
(Tntercent) -0.5284 02880 -183
TooAGE 12,3115 0.1485 R2.93
Correlation of Fixed Effects:
(Intercept)
ILogAGE -0.875
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Formula - Hdom ~ loo AGE + (1 | Plotid) For - F. o x

ATC RIC 10GITK Deviance REMI dev
4917 503.9 -241.8 483.7 4879
Random Effects:
Gronns Variance Std Dev
Plotid (Tntercent) 026672 051645
Residual 115317 1.07386
Number of Ohs * 156 eronns: PlotTD 16
Fixed Effects:
FEstimate STD error t valne
(Tntercent) 4.0024 0.2270 1R.03
TooAGE 103174 01233 R3.66
Correlation of Fixed Effects:
(Intercept)
ILogAGE -0.727
E gxu
Formula - Hdom ~ oo AGE + (1 | Plotid) For - . o x u
ATC RIC 10GITK Deviance REMI dev
1216 1231 -603.R 1208 1”211
Random Effects:
Gronns Variance Std Dev
Plotid (Tntercent) 49781 22312
Residual 1.6200 12728
Number of Ohs * 329 oronns: PlotTD - 34
Fixed Effects:
FEstimate STD error t valne
(Tntercent) 539922, 0.40888 1321
TooAGE 10.91938 0.00095 120.06
Correlation of Fixed Effects:
(Intercept)
ILogAGE -0.304
E. dunnii
Formula - Hdom ~ oo AGE + (1 | Plotid) For * F. dunnii
ATC RIC 10GITK Deviance REMI dev
3618 373.5 -176.9 3538 360.4
Random Effects:
Gronns Variance Std Dev
Plotid (Tntercent) 2.6301e-11 5.1373e-06
Residual 7.6021e-01 R.7190e-01
Number of Ohs * 138 eronuns: PlotTD 10
Fixed Effects:
Fstimate STD error t valne
(Tntercent) 5.00515 0.14240 3515
TooAGE 698034 0.07879 RR.60
Correlation of Fixed Effects:
(Intercept)
ILogAGE -0.853
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2.4.3. Fixed effects

It is now possible to add the additional fixed effect parameter of initial stems per hectare (TPHO).

24.3.1. Model 2 - Including fixed effects for initial planting density and natural log of age

The model to be fitted is a linear model with fixed effects terms for TPHO, and 10gAGE, the
random effect associated with the site is a simple additive shift :

Imer (Hdom ~ logAGE + TPHO + (1/Plotid), data)

Table 5: Results of the mixed effects Model 2 - dominant height as a function of age, including fixed

effects for initial planted density, by species.

E gxc
[Formula : Hdom ~ logAGE + TPHO + (1|Plotid) For: E.gx ¢
IAIC BIC OGIIK Deviance IREMLdev
666.7 682.3 +328.4 656.7 671..3
[Random Effects:
Groups [Variance Std.Dev.
[Plotid (Intercept) 1.4267 1.1945
Residual 2.2808 1.5102
INumber of Obs : 168, groups: PlotID , 26
IFixed Effects:
[Estimate ISTD error t value
(Intercept) 3.287e+00 1.287e+00 2.55
ILogAGE 1.012e+01 1.996¢-01 50.71
TPHO +3.799e-06 [7.929e-04 .00
Correlation of Fixed Effects:
(Intercent) LogAGE
LogAGE -0.211
TPHO -0.953 -0.013
E.nitens
[Formula : Hdom ~ 1ogAGE + TPHO + (1 | Plotid) For : E.nitens
IAIC BIC IOGIIK [Deviance IREMLdev
292.9 305.7 +141.4 2829 301.3
IRandom Effects:
(Groups [Variance Std.Dev.
IPlotid (Intercept) .0000 .0000
Residual 1.1147 1.0558
Number of Obs : 96, groups: PlotID , 8
[Fixed Effects:
[Estimate ISTD error it value
(Intercept) .9429974 .6386121 1.48
ILogAGE 12.3115496 1475658 83.43
TPHO +0.0009778 .0003838 12.55
Correlation of Fixed Effects:
(Intercent) LogAGE
Lo2AGE -0.392
TPHO -0.904 0.000
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Table 5 continued. E.g x t

[Formula : Hdom ~ logAGE + TPHO + (1|Plotid) For: E.gx¢

IAIC BIC OGIIK [Deviance IREMLdev
“492.4 507.7 241.2 #82.4 500
IRandom Effects:

(Groups Variance Std.Dev.

IPlotid (Intercept) .23531 148509

Residual 1.15403 1.07426

INumber of Obs : 156, groups: PlotID , 16

[Fixed Effects:

[Estimate STD error it value

(Intercept) #.9962906 .8280171 6.03
ILogAGE 10.3249423 0.1232671 83.76
TPHO +0.0006061 0.0005324 F1.14

Correlation of Fixed Effects:

(Intercent) LogAGE
Lo2AGE -0.184
TPHO -0.963 -0.015
E gxu

[Formula : Hdom ~ logAGE + TPHO + (1| Plotid) For: E.gxu

IAIC BIC IOGIIK [Deviance REMLdev
1217 1236 +603.6 1207 1222
IRandom Effects:
Groups Variance Std.Dev.
Plotid (Intercept) “.9183 2.2177
Residual 1.6201 1.2728
INumber of Obs : 329, groups: PlotID , 34
[Fixed Effects:

[Estimate ISTD error it value
(Intercept) 6.5678953 1.9228302 3.42
ILogAGE 10.9198929 .0909490 120.07
TPHO +0.0007956 0.0012794 10.62
Correlation of Fixed Effects:
(Intercent) LoeAGE
LoeAGE -0.058
TPHO -0.977 -0.007

E. dunnii

[Formula : Hdom ~ logAGE + TPHO + (1| Plotid) For : E.dunnii

IAIC BIC OGIIK Deviance IREMLdev

357.8 372.5 F173.9 347.8 369.0
[Random Effects:

Groups [Variance Std.Dev.

IPlotid (Intercept) .00000 .00000

Residual 0.72816 0.85332

Number of Obs : 138, groups: PlotID , 10
[Fixed Effects:

[Estimate ISTD error it value

(Intercept) 6.0612896 0.4506241 13.45
ILogAGE 6.9789608 .0771101 90.51
TPHO +0.0006865 .0002786 -2.46

Correlation of Fixed Effects:

(Intercent) LogAGE
LogAGE -0.271
TPHO -0.951 0.007
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2.44. Adding interaction terms

Interaction™ between the fixed effect terms is possible: By way of illustration models specifying
interaction can been tested using interaction terms between Species, logAge and TPHO: (In R
interaction terms in the lmer function can be specified in the same way interaction terms are
specified in linear models: a x bisthe sameasa + b + a:b,a x bisequivalentto b x
a). For example:
Imer(Hdom ~ logAGE + Spp*TPHO + (1IPlotid), data)

However, since we are not interested at this stage in the true nature of the effect the terms have on
dominant height, in other words a predictive model, but simply whether THPO has an effect, the

addition of interaction terms would simply serve to complicate the analysis.

2.5. Results

There is currently no reliable method to calculate p-values in mixed effects models for specific
terms — the suggested method is as follows: Fit the mixed effects model including the term using
maximum likelihood, fit it again without the term and compare the results using the function
anova(). The likelihood ratio statistic will then be compared to a chi-squared distribution to get a p-
value (Bates 2009). The ¢ statistic can also be used to show the significance of each effect : a #-value
between 2 and -2 implies no significance at a 95 % level (Faraway 2006). Both the E. nitens and E.

dunnii models have t-values below -2 implying that TPHO may be significant.

We have the following models :
Model 1 : Hdom ~ logAGE + (1 | Plotid)
Model 2 : Hdom ~ logAGE + TPHO + (1 | Plotid)

In order to find out what effect the TPHO term has had we simply compare the models as follows

(Table 6):

¥ e.g. does TPHO have the same effect across all species
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Table 6: Comparison between Models 1 and 2 by Species.

Egxc
Df AIC BIC LogLik Chisq Chi Df Pr(>Chisq)
Model 1 4 664.71 677.20 -328.35
Model 2 5 666.71 682.33 -328.35 0 1 0.9962
E. nitens
Df AIC BIC LogLik Chisq Chi Df Pr(>Chisq)
Model 1 4 296.06 306.32 -144.03
Model 2 5 292.86 305.68 -141.43 5.2012 1 0.02257 *
E gxt
Df AIC BIC LogLik Chisq Chi Df Pr(>Chisq)
Model 1 4 491.67 503.87 -241.84
Model 2 5 492.43 507.68 -241.22 1.2409 1 0.2653
E gxu
Df AIC BIC LogLik Chisq Chi Df Pr(>Chisq)
Model 1 4 1215.5 1230.7 -603.77
Model 2 5 1217.2 1236.1 -603.58 0.3843 1 0.5353
E. dunnii
Df AIC BIC LogLik Chisq Chi Df Pr(>Chisq)
Model 1 4 361.79 373.50 -176.90
Model 2 5 357.85 372.49 -173.92 5.9442 1 0.01477 *

Significance. codes: 0 "***' 0.001 "**' 0.01 *'0.05"0.1""1

When we compare the models excluding TPHO we find that the E. g x ¢, E. g x u and E. g x t models
are not statistically different, indicating that TPHO does not have a significant influence on the
development of dominant height in these cases. However, for both the E. nitens and E. dunnii
models we find that they are statistically different (to 95 %), implying that there is a significant
effect due to initial planted stems. The process followed to estimate a p-value is, however, not
reliable when the degrees of freedom are small (Bates 2009), in this case the degrees of freedom can

be assumed to be sufficient.

Since both the E. nitens and E. dunnii models are 'degenerate’ this suggests they can therefore be

analysed using traditional multiple regression analysis", this was also pursued (Table 7):

1" See section 4.5.1 for a description of the methodology
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E. dunnii
Im(formula = Hdom ~ logAGE + TPHO, data = Dunn)
Residuals:

Min 1Q Median 3Q Max
-2.27858 -0.49648 -0.06738 0.54041 1.95757
Coefficients:

Estimate Std. Error t value Pr(>It)

(Intercept) 6.0612896 0.4556036 13.304 <2e-16 **
logAGE 6.9789608 0.0779621 89.517 <2e-16 *#*
TPHO -0.0006865 0.0002816 -2.438 0.0161 *
Signif. codes: 0 ***' 0.001 ** 0.01 "' 0.05".'0.1"'"1

Residual standard error: 0.8628 on 135 degrees of freedom

Multiple R-squared: 0.9835, Adjusted R-squared: 0.9832

F-statistic: 4011 on 2 and 135 DF, p-value: < 2.2e-16

E. nitens
Im(formula = Hdom ~ logAGE + TPHO, data = Dunn)
Residuals:

Min 1Q Median 3Q Max
-1.7819 -1.0654 0.1104 1.0257 1.8495
Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 0.9429974 0.6488305 1.453 0.1495
10gAGE 2.3115496 0.1499270 82.117 <2e-16
TPHO -0.0009778 0.0003899 -2.508 0.0139 *
Signif. codes: 0 *#**' 0.001 **' 0.01 ' 0.05".'0.1"'"1

Residual standard error: 1.073 on 93 degrees of freedom
Multiple R-squared: 0.9864, Adjusted R-squared: 0.9861
F-statistic: 3375 on 2 and 93 DF, p-value: < 2.2e-16

In both cases the Akaike information criterion decreases when TPHO is removed (the E. dunnii
model goes from 359.79 to 355.84, and E. nitens from 295.14 to 290.86) suggesting TPHO is not
necessary in the model. However the E. nitens model fails the assumption test of normally
distributed residuals (p = 0.0001190), and the E. dunnii model only barely passes ( p = 0.005489)

suggesting that these results should be viewed with caution.

2.6. Discussion

The majority of the species tested showed no initial planting density effect (653 observations out of
887 or 73.61%) it may, however, play a significant role in the development of dominant height for

some species (notably in this study the cold tolerant Eucalyptus nitens and Eucalyptus dunnii).
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However, the data set used was relatively small, and the two species constituted the smallest subsets
within this data. It is also possible that the variability noticed between species, may in fact simply be
due to the effect of site (since E. nitens and E. dunnii are represented by single trials), when the
analysis was repeated without the species separation, the conclusion reached was that initial planted
density did not play a significant role. Considering the other body of evidence, however, there is
some indication that initial planted stems may be significant in some species, and that this may be a

subject worthy of further research with a larger data set.

42



Stellenbosch University http://scholar.sun.ac.za

Chapter 3. OBJECTIVE TWO: THE INFLUENCE
OF MEASUREMENT AGE ON ESTIMATIONS
OF SITE INDEX

3.1. Introduction

Van Laar and Akca (1997) state that the prediction of dominant height in young stands is
“uncertain”, since the effect of both silviculture (e.g. fertiliser and weed control) and prevailing
weather conditions on the young stand are more influential than the productivity of the site. Husch
(1956) advocated the use of breast height age as a means of avoiding this early variability. As
mentioned earlier, Coetzee (1990) in his analysis of the early results of a Eucalyptus grandis spacing
trial in Zululand cautioned that Site Index calculations based on early observations (in this case at 3
years) should be treated with some care. Raley et al.(2003)* found that early (5 year) height
measurements predicted future Site Index (at age 25) relatively poorly (R*=0.58), whereas heights
closer to the base age (10 years) predicted comparatively well (R*= 0.83). Johnson et al.(1997) found
a similar trend for Douglas-fir (Pseudotsuga menziesii) in western Oregon, with lower correlations

for early measurements (0.685 at age 7) with height at age 20, versus higher correlations at ages

closer to the base age (0.833 at age 10, and 0.948 at age 15).

If early estimates of Site Index are unreliable this would have a direct impact on the inventory and
tree breeding assessment policies of most commercial companies, and in particular those with short
rotation crops. It would also mean that early measurements should be excluded in the data set used

to model Site Index using site variables.

2 Eleven Pinus taeda progeny trials, Western Gulf Forest Tree Improvement cooperative, Texas, USA
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3.2. Objective

The objective of this analysis is to determine whether Site Index calculated from early
measurements of dominant height are statistically different from those derived from later

measurements.

3.3. Materials

The espacement trial data set as described in Section 2.3 has been used. The relationship between
measurement age and Site Index reflects the Site Index model used to project dominant height to the
relevant base age. Site Index was therefore recalculated using a Chapman-Richards 3-parameter
difference form model, with the same coefficient set for all plots® and across all species. Thus

reducing any effect the various models would have had on the analysis.

l—exp([}1 AGE
gl —exp(BIAGEI)

) B,
SI=HD

Equation 2: Chapman-Richards 3-parameter difference form Site

Index model (Fletcher 2010)

Where :

SI = Calculated Site Index

HD, = Dominant height measured at AGE,

AGE, = Measurement age

AGEg; = Site Index base age (In this case 8 years)
And coefficients : B, B,

A grouping factor of age in 2 year intervals was added then to the plot data : i.e. A:0-2; B:2-4;
C:4-6etc.”

The question which arises when viewing the Eucalyptus espacement trial data, is whether or not the

age at which dominant height is measured has any influence on the accuracy of the estimate of Site

2 Coefficients supplied by Mondi — these are covered by a confidentiality agreement and can therefore not be published here.

2 More specifically A: 0 —1.99 yrs ; B: 2 —3.99 yrs ; C: 4 —5.99 yrs etc.
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Index. From the graphs below (Figures 17 & 18) it would appear that measurements taken prior to

the age of two, underestimate the Site Index.

Calculated Sl verus measured Age
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25

Site Index
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Figure 17: Calculated Site Index versus the age at which dominant height

was measured (Eucalyptus espacement trial data).
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Figure 18: Box plot of calculated Site Index versus the age at which

dominant height was measured, for complete sets.

Figure 17 shows that estimates of Site Index before the age of 2 years appear to be lower than those

taken at older ages. Figure 18 shows the issue more clearly when the measurements where not all
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trials are represented”, are removed (i.e. above ten years). As can be seen the mean Site Index for
the group of espacement trials is estimated at approximately 20 m when measured between O and 2

years, whereas the mean estimate for measurements taken at ages over 2 is over 25 m.

3.4. Method

The grouped data can be analysed using one-way analysis of variance for multiple samples with the

following hypotheses (adapted from Dalgaard 2008):

Null hypothesis : (H,): X, =x,=X,=etc.
and an alternative hypothesis (H,): that at least two groups differ.
Where :

X,= mean Site Index of age grouping n.

The traditional analysis of variation requires an assumption of normality and equal variances for all
groups. The QQ (Quantile versus Quantile) plots of each group (Figure 19) show that the groups are
not normally distributed (parametric). QQ plots compare the sample quantities with theoretical
quantities from a normal distribution. If the lines are straight, this indicates that the samples are

likely to have come from a normal distribution (Dalgaard 2008).

3 j.e. Incomplete sets.
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Figure 19: Quantile to Quantile (QQ) plots for the estimated Site Index by age

grouping.

This is further confirmed in Table 8 by Shapiro-Wilk tests which show that all groups are non-

parametric (to a 95 % level of significance):

Table 8: Shapiro-Wilk normality tests of estimated Site Index by measured age grouping,

espacement trial data.

Shapiro-Wilk normality tests

Age Grouping W p-value
A:0-2 0.9542 2.67e-005
B:2-4 0.9529 7.63e-006
C:4-6 0.9458 5.21e-006
D:6-8 0.9467 4.87e-005
E:8-10 0.9368 5.33e-006

A more normal transformation of the response can theoretically be obtained using a Box-Cox

transformation. These transformations, as originally described by Box and Cox in 1964, take the
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following form (Li 2005; Sakia 1992):

y(W)=(y"=1)/n

Equation 3: Box-Cox transformation (Li

2005; Sakia 1992)

where A 20
and

logyif A=0

Figure 20 shows the estimate of lambda (A) at approximately 1.1. Since the 95 % confidence interval
does not include O this would indicate that a natural log transformation would not improve the

normality.

4296

log-Likelihood
4302 -4300 -4298

-4304

4306
|

Figure 20: Box-Cox log likelihood lambda of dominant
height on age.

As can be seen in Figure 21 the Box-Cox transformation of the response did have a noticeable effect
on the between plot variation, however, as expected, it has little or no effect on the linearisation of
the data. Since the data is only moderately non-normal, and a further transformation would only
serve to complicate the analysis, the Box-Cox transformation was not used. A simple natural log
transformation of the age predictor produced a relatively linear relationship, and is the least complex

transformation, this was therefore applied.
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Figure 21: Co-plot of Box-Cox transformed dominant

height on TPHO and age.

To test the second assumption of homoscedasticity a Bartlett test was performed (Table 9):

Table 9: Bartlett test of homogeneity of variances for the measured age groups, espacement trial

data.

Bartlett test of homogeneity of variances

Bartlett's K-squared df p-value

65.49 4 2.03e-013

Since the p-value is < 0.05 we can confirm that the data is heteroscedastic.

Since the data is both heteroscedastic, and non-parametric, a traditional ANOVA approach would be
inappropriate. The Dunnett modified Tukey-Kramer test, also known as Dunnett's T3 test, as
described by Dunnett (1980) would be an appropriate test for this data, if the assumption of
normality is eased®. This test conducts multiple pairwise comparisons, while adjusting for unequal
variance and sample size. Although the test is robust there is a risk of incurring type I (and or type

IT) errors due to the failed assumption of normality. Using a non-parametric test such as the

2 Other methods include : Dunn-Sidak; Dunnetts's C; Games-Howell;Scheffe; REGWF; SNK; Tukey's b; Bonferonii; Dunkan; Waller-Dunkan; Tamhane's T2;
Welsch; Hochberg; Dayton; etc.
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Kruskal-Wallis test runs a similar risk of type I errors if the assumption of homoscedasticity does
not hold (as in this case). Cribbie and Keselman (2003) recommend the REGWQ? procedure where
the data is both non-normal and when variances are unequal. Since the data is only moderately non-

parametric both the Dunnett T3 and REGWQ procedures have been used.

3.5. Results

3.5.1. Espacement trial data

The results of Dunnett's T3 test (Table 10) shows that the (A) 0 — 2 age grouping is significantly
different to all other age groups to a 99 % level of significance, there is also a significant difference

between the (E) 8 to 10 year group and the (C; D) 4 — 8 year groups.

Table 10: Results of Dunnett's T3, on the espacement trial data.

Dunnett's Modified Tukey-Kramer Pairwise Multiple Comparison Test. Tukey HSD
Pair wise comparisons | Mean Difference | Lower Confidence | Upper Conference | H, rejected H, rejected | Illustrative
Interval Level 95 %) 99 %) Adjusted p-value
A:0-2:B:2-4 -6.996 -5.077 -8.915 * * 0.00000
A:0-2:C:4-6 -8.395 -6.454 -10.337 * * 0.00000
A:0-2 :D:6-8 -7.995 -6.073 -9.918 * * 0.00000
A:0-2 :E:8-10 -6.321 -4.296 -8.347 * * 0.00000
B:2-4 :C:4-6 -1.400 0.071 -2.870 * 0.04023
B:2-4 : D:6-8 -1.000 0.446 -2.445 0.32366
B:2-4 : E:8-10 0.674 2.256 -0.907 0.69368
C:4-6 : D:6-8 0.400 1.873 -1.073 0.94730
C:4-6 : E:8-10 2.074 3.680 0.468 * * 0.00102
D:6-8 : E:8-10 1.674 3.257 0.090 * * 0.02491

The adjusted p-values are from a Tunkey Honestly Significant Difference test (HSD) - and are for illustration only*®

Since the Site Index base age used is 8 years, one can assume that measurements taken around this
age will be more accurate than measurements taken in the outer years. The (E) 8 to 10 year grouping
is the least parametric group — this may have had an influence on the outcome of the pairwise
comparisons. On the 95 % level of significance, there is also a difference between the (B) 2 to 4,

and the (C) 4 to 6 year grouping.

»  Ryan-Einot-Gabriel-Welsch Q multiple comparison test, based on a stepwise approach.

% The DTK.test function in R does not give p-values.
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The results of the REGWQ test (Table 11) confirm the findings of the first test.

Table 11: Results the REGWQ test, on the espacement trial data.

Ryan - Einot — Gabriel — Welsch Q Pairwise Multiple Comparison Test.

Pair wise comparisons t statistic Adjusted p-value | H, rejected (95 %)
A:0-2 :E:8-10 16.80020 0.00000 *
A:0-2:B:2-4 19.91230 0.00000 *
A:0-2:C:4-6 23.27600 0.00000 *
A:0-2 :D:6-8 20.91300 0.00000 *
B:2-4 :C:4-6 3.97760 0.01390 *
B:2-4 :D:6-8 2.67250 0.05920

B:2-4 : E:8-10 1.83310 0.19530

C:4-6 : D:6-8 1.04510 0.46010

C:4-6 : E:8-10 5.50410 6.00E-04 *
D:6-8 : E:8-10 4.21040 0.00840 *

3.5.2. PSP and inventory data

Since the permanent sample plot (PSP)* data supplied included in many cases multiple
measurements of the same plot over time, and the spread of plots is over a wide geographical area it
is safe to assume that any influence of site on the analysis can be discounted®. This data can be
viewed as a random sampling (with replacement) of the population of Site Index estimates. For a

complete description of the data see Chapter 4.

The same analytical procedure as outlined with the espacement trial data was then followed :

3.5.2.1. Eucalyptus Data

As can be seen from Figure 22, the Eucalyptus PSP/TSP data follows a similar, but less well defined
pattern to that of the espacement trial data set - where it would appear that the initial estimates taken
at young ages are different to those taken closer to the base age. In addition it would appear that the

estimates taken in the later years are also different from those around the base age.

# And in some cases the TSP data (repeat measurements of the same compartment).

2 In other words a site - age interaction of some sort.
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Estimated Site Index by Age : Eucalyptus
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Figure 22: Site Index by grouped age classes for the

Eucalyptus data.

Shapiro-Wilk tests on the Eucalyptus data (Table 12 below) show that groups B,C,D,E,F and G are

non-parametric (to a 95 % level of significance).

Table 12: Results of the Shapiro-Wilk's test for normality, Eucalyptus data.

Shapiroe-Wilk normality tests

Age Grouping W p - value
B:2-4 0.98780 0.02927
C:4-6 0.99020 2.289E-006
D:6-8 0.99700 0.01992
E:8-10 0.99340 0.00712
F:10-12 0.98910 9.395E-010
G:12-14 0.99440 0.04284
H:14-16 0.98550 0.18650
1:16-18 0.97220 0.22030
J:18-20 0.94900 0.56480

The Bartlett test (Table 13) confirmed that the data is also heteroscedastic (p < 0.05).
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Table 13: Bartlett test of homogeneity of variances for the measured age groups, Eucalyptus data.

Bartlett test of homogeneity of variances

Bartlett's K-squared df p-value

215.94 10 2.20E-016

Interestingly, the results of the Dunnett T3 (Table 14) test shows that almost all groups are

significantly different from every other group.

Table 14: Dunnett's T3 test to 95 % level of significance, Eucalyptus data.

Dunnett's Modified Tukey-Kramer Pairwise Multiple Comparison Test. Tukey HSD
Pair wise comparisons Mean Difference Lower Confidence Upper Conference H, rejected Illustrative
Interval Level 95 %) Adjusted p-value

B:2-4:C: 4-6 -1.29806 -2.44206 -0.15407 * 0.0006708
B:2-4:D: 6-8 -2.13155 -3.24308 -1.02001 * 0.0000000
B:2-4 :E:8-10 -2.53794 -3.70510 -1.37077 * 0.0000000
B:2-4:F 10-12 -4.79531 -5.87554 372 * 0.0000000
B:2-4:G: 12-14 -5.88203 -7.01528 -4.74878 * 0.0000000
B:2-4 : H:14-16 -6.87063 -8.30944 -5.43183 * 0.0000000
B:2-4 :1:16- 18 -7.29672 -9.18981 54 * 0.0000000
C:4-6 : D:6-8 -0.83349 -1.45719 -0.21 * 0.0001801
C:4-6 : E:8-10 -1.23988 -1.95743 -0.52 * 0.0000006
C:4-6 : F:10-12 -3.49725 -4.06275 -2.93 * 0.0000000
C:4-6 : G:12-14 -4.58397 -5.23945 -3.92849 * 0.0000000
C:4-6 : H:14-16 -5.57257 -6.66114 -4.48401 * 0.0000000
C:4-6 : 1:16-18 -5.99866 -7.65594 -4.34137 * 0.0000000
D:6-8 : E:8-10 -0.40639 -1.07132 0.25853 0.5553723
D:6-8 : F:10-12 -2.66376 -3.16081 -2.16672 * 0.0000000
D:6-8 : G:12-14 -3.75048 -4.34737 -3.15 * 0.0000000
D:6-8 : H:14-16 -4.73909 -5.79216 -3.69 * 0.0000000
D:6-8 : L1618 5.16517 -6.80063 -3.52972 * 0.0000000
E:8-10 : F:10-12 -2.25737 -2.86769 -1.64705 * 0.0000000
E:8-10 : G:12-14 -3.34409 -4.03894 -2.65 * 0.0000000
E:8-10 : H: 14-16 -4.33269 -5.44626 -3.22 * 0.0000000
E:8-10 : I:16-18 -4.75878 -6.43170 -3.08586 * 0.0000000
F:10-12 : G:12-14 -1.08672 -1.62166 -0.55178 * 0.0000134
F:10-12 : H: 14-16 -2.07533 -3.09334 -1.05731 * 0.0000059
F:10-12 : 1:16-18 -2.50141 -4.11573 -0.88709 * 0.0006713
G:12-14 : H:14-16 -0.98860 -2.05968 0.08247 0.2868638
G:12-14 : :16-18 -1.41469 -3.06117 0.23 0.2890382
H:14-16 : L: 1618 -0.42609 -2.27289 1.42072 1.000000

The adjusted p-values are from a Tunkey Honestly Significant Difference test (HSD) - and are for illustration only
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The exceptions being the pairwise comparison between the (D) 6 to 8 and (E) 8 to 10 groups (i.e.
around the base age), and the comparisons between the oldest groupings (G, H and I). This result
may point to the fact that the species variation within the age groupings of the Eucalyptus PSP/TSP
data set is potentially too large. Since the espacement trial data represents re-measurements of the
same site and species (and at the same time, fewer sites and species), it is probably a more
appropriate data set. This is less likely to be the case with the Pinus and Acacia sets as they

represent far fewer species. Again the results of the REGWQ test (Table 15) confirm the results of

Table 15: Results the REGWQ test, on the Eucalyptus data.

Ryan — Einot — Gabriel — Welsch Q Pairwise Multiple Comparison Test.

Pair wise comparisons t statistic Adjusted p-value | H, rejected (95 %)
B:2-4:E:8-10 10.9850 0.00000 *
B:2-4 : H:14-16 20.5191 0.00000 *
B:2-4 : 1:16- 18 15.9789 0.00000 *
B:2-4:F 10-12 22.8643 0.00000 *
B:2-4:G:12-14 24.9447 0.00000 *
B:2-4:C:4-6 5.9595 0.00000 *
B:2-4:D: 6-8 9.9411 0.00000 *
C:4-6 : D:6-8 6.3749 0.00000 *
C:4-6 : E:8-10 7.9218 0.00000 *
C:4-6 : F:10-12 28.4555 0.00000 *
C:4-6 : G:12-14 28.0419 0.00000 *
C:4-6 : H:14-16 19.3151 0.00000 *
C:4-6 : 1:16-18 14.1529 0.00000 *
D:6-8 : E:8-10 2.6779 0.05830

D:6-8 : F:10-12 22.8097 0.00000 *
D:6-8 : G:12-14 23.6001 0.00000 *
D:6-8 : H:14-16 16.5728 0.00000 *
D:6-8 : 1:16-18 12.2365 0.00000 *
E:8-10 : F:10-12 15.5623 0.00000 *
E:8-10 : G:12-14 18.5049 0.00000 *
E:8-10 : H: 14-16 14.5091 0.00000 *
E:8-10 : I:16-18 11.0466 0.00000 *
F10-12 : G:12-14 7.1246 0.00000 *
F:10-12 : H: 14-16 7.3474 0.00000 *
F:10-12 : 1:16-18 5.9593 1.00E-004 *
G:12-14 : H:14-16 3.2700 0.02080 *
G:12-14 : :16-18 3.2644 0.05470

H:14-16 : L:16-18 0.8620 0.54220
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the Dunnett T3 test (with the exception of the (G) 12 — 14 ; (H) 14 — 16 comparison which is

marginally significant.

3.5.2.2. Pinus Data

Figure 23 shows that the Pinus data is somewhat different from the Eucalyptus data in that there are
overestimations of Site Index at younger ages, but that these are still generally within the same range
as those estimated at ages closer to the base age. Since the first group (B: 2 - 4) in the Pinus data set

only contains only one observation, this has been removed for the analysis.

Estimated Site Index by Age : Pine
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Figure 23: Site Index by grouped age classes for the Pinus

data.

Again it appears that some of the groupings are non-parametric (p < 0.05). The test results (Table
16) show that groups F, G, I, J, M and N are non-parametric (to a 95 % level of significance). And

as with the Eucalyptus data the Pinus data proves to be heteroscedastic (Table 17).
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Table 16: Results of the Shapiro-Wilk's test for normality, Pinus data.

Shapiro-Wilk normality tests

Age Grouping W p - value
B:2-4

C:4-6 0.87540 0.14040
D:6-8 0.96840 0.07376
E:8-10 0.97420 0.07603
F:10-12 0.99550 0.02791
G:12-14 0.99010 0.00633
H:14-16 0.99710 0.68800
1:16-18 0.99650 0.01603
J:18-20 0.99380 0.01193
K:20-22 0.99500 0.28810
L:22-24 0.99070 0.19960
M:24-26 0.95670 0.00001
N:26-28 0.95940 0.01159
0:>28 0.96750 0.62850

Table 17: Bartlett test of homogeneity of variances for the measured age groups, Pinus data.

Bartlett test of homogeneity of variances

Bartlett's K-squared

df

p-value

59.19

12

3.172E-008

From the results of the Dunnett T3 pairwise comparisons (Table 18) it would appear that the 6 to 8

(D) group is significantly different from all other groups except the 8 to 10 year (E) group.

Surprisingly the younger 4 to 6 year grouping (C) is not identified as being significantly different,

however, the illustrative p-values obtained from a Tunkey HSD test suggest that they may well be

different. This result may be due to the size of the group - being the smallest. As well as group D,

individual comparisons with the 24 to 26 (M) group are also significantly different - this may in part

be due to the variation within this group (i.e. a matter of sample error).
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Table 18: Dunnett's T3 test to 95 % level of significance, Pinus data.

The adjusted p-values are from a Tunkey Honestly significant Difference test (HSD)- and are for illustration only

57

Dunnett's Modified Tukey-Kramer Pairwise Multiple Comparison Test. Tukey HSD
Pair wise comparisons Mean Difference Lower Confidence Upper Conference H, rejected Illustrative
Interval Level 95 %) Adjusted p-value
C:4-6D:6-8 -1.11176 -6.70503 4.48151 0.992606
C:4-6E:8-10 -2.15572 -7.76468 3.45324 0.462743
C:4-6F:10-12 -2.46165 -7.99217 3.06887 0.189057
C:4-6G:12-14 -2.66750 -8.20581 2.87082 0.107554
C:4-6H:14-16 -2.95263 -8.49727 2.59200 * 0.041055
C:4-61:16-18 -2.84962 -8.37784 2.67861 0.055451
C:4-67J:18-20 -3.05269 -8.58549 2.48012 * 0.027077
C:4-6K:20-22 -3.27068 -8.79860 2.25724 * 0.011989
C:4-6L:22-24 -3.40362 -8.97502 2.16778 * 0.007700
C:4-6M:24-26 -4.27292 -9.80178 1.25595 * 0.000107
C:4-6N:26-28 -3.41111 -8.83951 2.01729 * 0.011722
C:4-60:>28 -3.64203 -8.43482 1.15076 * 0.021625
D:6-8E:8-10 -1.04396 -2.52661 0.43870 0.366388
D:6-8F:10-12 -1.34989 -2.51898 -0.18080 * 0.002242
D:6-8G:12-14 -1.55573 -2.76271 -0.34876 * 0.000262
D:6-8H:14-16 -1.84087 -3.05238 -0.62936 * 0.000003
D:6-81:16-18 -1.73785 -2.89514 -0.58057 * 0.000005
D:6-87J:18-20 -1.94092 -3.14436 -0.73748 * 0.000000
D:6-8K:20-22 -2.15892 -3.40986 -0.90797 * 0.000000
D:6-8L:22-24 -2.29186 -3.68791 -0.89581 * 0.000000
D:6-8M:24-26 -3.16115 -4.47252 -1.84979 * 0.000000
D:6-8N:26-28 -2.29935 -3.78091 -0.81779 * 0.000005
D:6-80:>28 -2.53027 -4.89686 -0.16367 * 0.003445
E:8-10F:10-12 -0.30593 -1.38384 0.77197 0.998092
E:8-10G:12-14 -0.51178 -1.63067 0.60712 0.902234
E:8-10H:14-16 -0.79691 -1.92051 0.32669 0.300753
E:8-10I:16-18 -0.69390 -1.75898 0.37119 0.435456
E:8-10J:18-20 -0.89697 -2.01221 0.21828 0.112739
E:8-10K:20-22 -1.11496 -2.28182 0.05190 * 0.018454
E:8-10L:22-24 -1.24790 -2.56887 0.07307 * 0.009890
E:8-10M:24-26 -2.11720 -3.34902 -0.88538 * 0.000000
E:8-10N:26-28 -1.25539 -2.67094 0.16016 0.083569
E:8-100:>28 -1.48631 -3.82703 0.85441 0.411468
F:10-12G:12- 14 -0.20584 -0.85677 0.44508 0.986373
F:10-12H:14-16 -0.49098 -1.14869 0.16673 0.098483
F:10-121:16-18 -0.38796 -0.94115 0.16523 0.085084
F:10-127J:18-20 -0.59103 -1.23682 0.05475 * 0.002028
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Pair wise comparisons Mean Difference Lower Confidence Upper Conference H, rejected Illustrative
Interval Level 95 %) Adjusted p-value
F:10-12L:22-24 -0.94197 -1.90128 0.01735 * 0.000258
F:10-12M:24-26 -1.81126 -2.64767 -0.97486 * 0.000000
F:10-12N:26-28 -0.94946 -2.05880 0.15989 0.087141
F:10-120:>28 -1.18038 -3.41344 1.05268 0.628966
G:12-14H:14-16 -0.28514 -1.00829 0.43802 0.935118
G:12-141:16-18 -0.18212 -0.81159 0.44735 0.992167
G:12-147:18-20 -0.38519 -1.09728 0.32690 0.484473
G:12-14K:20-22 -0.60319 -1.39639 0.19002 0.063186
G:12-14L:22-24 -0.73612 -1.74115 0.26891 * 0.044181
G:12-14M:24-26 -1.60542 -2.49347 -0.71737 * 0.000000
G:12-14N:26-28 -0.74362 -1.89028 0.40305 0.472405
G:12-140:>28 -0.97453 -3.21957 1.27050 0.872147
H:14-161:16-18 0.10302 -0.53278 0.73881 0.999976
H:14-167:18-20 -0.10005 -0.81773 0.61762 0.999994
H:14-16K:20-22 -0.31805 -1.11624 0.48014 0.894054
H:14-16L:22-24 -0.45099 -1.45998 0.55800 0.698778
H:14-16M:24-26 -1.32029 -2.21277 -0.42780 * 0.000001
H:14-16N:26-28 -0.45848 -1.60840 0.69144 0.965620
H:14-160:>28 -0.68940 -2.93549 1.55670 0.990804
I1:16-187:18-20 -0.20307 -0.82720 0.42106 0.944291
I1:16-18K:20-22 -0.42107 -1.13684 0.29470 0.268842
1:16-18L:22-24 -0.55400 -1.49891 0.39090 0.188563
1:16-18M:24-26 -1.42330 -2.24328 -0.60332 * 0.000000
I1:16-18N:26-28 -0.56150 -1.65919 0.53620 0.808352
1:16-180:>28 -0.79241 -3.02180 1.43698 0.966500
J:18-20K:20-22 -0.21800 -1.00749 0.57150 0.988733
J:18-20L:22-24 -0.35093 -1.35303 0.65116 0.897736
J:18-20M:24-26 -1.22023 -2.10499 -0.33548 * 0.000001
J:18-20N:26-28 -0.35843 -1.50268 0.78583 0.994581
J:18-200:>28 -0.58934 -2.83359 1.65491 0.997636
K:20-22L:22-24 -0.13294 -1.19581 0.92993 0.999995
K:20-22M:24-26 -1.00224 -1.95473 -0.04974 * 0.001105
K:20-22N:26-28 -0.14043 -1.33499 1.05413 1.000000
K:20-220:>28 -0.37135 -2.63223 1.88954 0.999983
L:22-24M:24-26 -0.86930 -2.00193 0.26333 * 0.044022
L:22-24N:26-28 -0.00749 -1.34243 1.32745 1.000000
L:22-240:>28 -0.23841 -2.54877 2.07195 1.000000
M:24-26N:26-28 0.86181 -0.39544 2.11906 0.369940
M:24-260:>28 0.63089 -1.65154 291332 0.996864
N:26-280:>28 -0.23092 -2.59144 2.12961 1.000000
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The results of the REGWQ comparisons (see Appendix 7) are slightly different from the above
results, but are also somewhat clearer : the majority of the (C) 4 — 6 year grouping, as well as the

(D) 6 - 8 and (M) 24 — 26 groups prove to be significantly different from the other age groups.

3.5.2.3. Acacia Data

Figure 24 again shows that early estimates of Site Index appear to be substantially different from
those estimates produced closer to the base age, however, in the Acacia example there does not

appear to be much difference post base age.

Estimated Site Index by Age : Acacia
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Figure 24: Site Index by grouped age classes for the Acacia

data.

The results of the Shapiro-Wilk test (Table 19) show that groups B, C and G are non-parametric.

Table 19: Results of the Shapiro-Wilk's test for normality, Acacia data.

Shapiro-Wilk normality tests

Age Grouping W p - value
B:2-4 0.82970 0.03315
C:4-6 0.82800 1.260E-005
D:6-8 0.99230 0.70060
E:8-10 0.98500 0.30600
F:10-12 0.98750 0.08733
G:12-14 0.94680 0.02321
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Again the data also proves to be heteroscedastic (Table 20).

Table 20: Bartlett test of homogeneity of variances for the measured age groups, Acacia data.

Bartlett test of homogeneity of variances

Bartlett's K-squared df p-value

59.19 12 3.172E-008

The results of the Dunnett T3 test (Table 21) show that the (C) 4 - 6 age group is significantly
different from the 6 to 8, and 12 to 14 age groups (the illustrative p-values suggest also that the B,
or 2 to 4 group is significantly different from the rest). This again confirms that the younger age

estimates are different from those closer to the base age.

Table 21: Dunnett's T3 test to 95 % level of significance, Acacia data.

Dunnett's Modified Tukey-Kramer Pairwise Multiple Comparison Test. Tukey HSD
Pair wise comparisons Mean Difference Lower Confidence Upper Conference H, rejected Illustrative
Interval Level 95 %) Adjusted p value
B:2-4:C: 4-6 -5.731636 -18.740061 7.276788 * 0.000002
B:2-4:D: 6-8 -8.104308 -20.988906 4.780290 * 0.000000
B:2-4 : E:8-10 -1.770745 -20.662953 5.121463 * 0.000000
B:2-4:F: 10-12 -7.706575 -20.570737 5.157587 * 0.000000
B:2-4:G: 12-14 -7.973196 -18.762662 2.816270 * 0.000000
C:4-6 :D:6-8 -2.372671 -4.560746 -0.184597 * 0.000173
C:4-6 : E:8-10 -2.039109 -4.237778 0.159561 * 0.003562
C:4-6 : F:10-12 -1.974939 -4.069264 0.119386 * 0.001893
C:4-6 : G:12-14 -2.241560 -4.166896 -0.316224 * 0.005774
D:6-8 : E:8-10 0.333563 -0.945080 1.612205 0.963882
D:6-8 : F:10-12 0.397733 -0.694246 1.489711 0.864749
D:6-8 : G:12-14 0.131112 -1.082377 1.344600 0.999845
E:8-10 : F:10-12 0.064170 -1.046855 1.175195 0.999980
E:8-10 : G:12-14 -0.202451 -1.427975 1.023073 0.998920
F:10-12 : G:12-14 -0.266621 -1.359450 0.826208 0.993979

The adjusted p-values are from a Tunkey Honestly significant Difference test (HSD) - and are for illustration only

The results of the REGWQ comparisons (Table 22) confirm the results of Dunnetts T3 and show

that the (B) 2 - 4, and ( C) 4 — 6 year age groupings differ from the other age groups.
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Table 22: Results the REGWQ test, on the Acacia data.

Ryan - Einot — Gabriel — Welsch Q Pairwise Multiple Comparison Test.

Pair wise comparisons t statistic Adjusted p-value | H, rejected (95 %)
B:2-4 :E:8-10 10.7790 0.00000 *
B:2-4: F: 10-12 10.9224 0.00000 *
B:2-4:G: 12-14 10.5969 0.00000 *
B:2-4:C: 4-6 7.5203 0.00000 *
B:2-4:D: 6-8 11.3514 0.00000 *
C:4-6 : D:6-8 6.2530 1.00E-004 *
C:4-6 : E:8-10 5.1966 8.00E-004 *
C:4-6 : F:10-12 5.4339 1.00E-004 *
C:4-6 : G:12-14 5.0076 0.00240 *
D:6-8 : E:8-10 1.1591 0.69100

D:6-8 : F:10-12 1.6113 0.66530

D:6-8 : G:12-14 0.3647 0.79660

E:8-10 : F:10-12 0.2409 0.86480

E:8-10 : G:12-14 0.5426 0.70140

F:10-12 : G:12-14 0.7784 0.84630

3.6. Discussion

From the above analysis it is clear that measurements of dominant height taken at early ages should
be used with caution when estimating Site Index. This may be a reflection of the projection model
used to estimate Site Index — Seifert (2011) has suggested that it is possible that the measurements
taken prior to the inflection point in the model do not extrapolate well. This result will have a direct
impact on potential inventory policies and should be taken into account. It may be more appropriate

to use modelled Site Index values for early ages than to project the measured dominant height.

For the purposes of the next objective (Site Index modelling), the following measurements have
been be removed:

Eucalyptus : prior to age 2 (Group A).

Pinus: prior to age 8 (Groups A, B, C and D).

Acacia : prior to age 4 (Groups A and B).
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Chapter 4. OBJECTIVE THREE: MODELLING

SITE INDEX USING EDAPHIC AND CLIMATIC
VARIABLES

Introduction

There have been numerous studies undertaken to link abiotic site factors to Site Index — almost all of

which have used multiple linear regression (MLR) as the statistical model (Kimsey et al. 2008;

Wang et al. 2005, McKenney et al. 2003).

Examples of the use of multiple linear regression as a model include:

Ercanli et al. (2008) developed multiple regression models using edaphic, topographic,
nutrient and climatic data, as well as integrated factors to estimate Site Index for oriental
spruce (Picea orientalis) in Turkey. They found their best model explained 77 % of the
variation, but that this model (which had 12 variables) required costly soil nutrient analysis
and was not practical on a large scale.

Louw and Scholes (2006) created two Site Index models using multiple regression for Pinus
patula in the Mpumalanga escarpment area of South Africa, using site data from 31 plots. A
third hybrid model was also produced which combined the second Site Index model with a
conventional Chapman-Richards type height projection model. These were then compared to
the output from the process based 3-PG model (using MAI,, as the comparator). The first
model® had a R’ of 0.69 and a mean square error of 1.5588, using effective soil depth,
precipitation in the driest quarter of the year, and N mineralisation during the growth season
as predictor variables. The second model with an R* of 0.74 and mean square error of 1.9767,
used topographical position, profile parent material, effective rooting depth and driest
quarter precipitation as predictors. The Site Index determined in the second model was then

used to calibrated the Chapman-Richards height projection model. The first two models

29

The first model predicted Site index at a base age of 10, the second model had a base age of 20.
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predicted Site Index well, although the second model slightly over-predicted on poorer sites,
and under-predicted on good sites. The authors point out that these models are “highly area-
specific” and are applicable only to the area of the study.

Sénchez-Rodriguez et al. (2002) found a regression model that showed Site Index for 47
stands of Pinus radiata in North-western Spain, to be positively correlated to foliar
concentrations of P, soil pH and depth, and negatively correlated to total nitrogen in the soil.
The resultant model explained 60 % of the observed variation.

Wang and Klinka (1996) used synoptic variables (where various variables are used as
explanatory measures of the main variables) of climate, soil moisture, aeration and soil
nutrients in regression and limiting factor analysis to explain Site Index in white spruce
(Picea glauca) in British Columbia Canada. The model explained 90 % of the variance,
however, the variables used are not easily obtained or available.

Louw (1997) also used multiple regression to model the Site Index of Eucalyptus grandis in
Mpumalanga on attributes of topography, climate, physical and chemical soil properties™.
He developed a model with soil depth, mean month precipitation for August, soil group He,
and organic carbon % as the predictor variables. The model had an adjusted R’ of 0.802 and
root mean square error of 2.22, however, it tended to over predict on poor sites, and
underestimate on good sites — this he ascribed to the fact that the Site Index model used to
standardise to the reference age was developed for the Zululand coast (based on the
Langepan CCT). Again some of the the variables used are not easily or cheaply obtainable.
Corona et al. (1998) examined the relationship between environmental factors such as
temperature, rainfall, soil pH, texture, clay content, altitude, aspect etc. on Site Index in
Douglas fir (Pseudotsuga menziesii) in central Italy. Their multiple regression model
explained 58 % of the variation in Site Index.

Grey (1979a) used multiple regression on 120 plots of Pinus patula in the Glengarry area of
the then Transkei. The author found that topographic variables such as altitude, accounted
for between 42 and 48% of the variation, and that edaphic factors were poor predictors (Grey

1979b).

30

Via 96 circular plots with a minimum of 30 trees each, each plot also had a soil pit dug. Chemical and physical soil data as well as climate, topography , parent

material and foliar nutrient data was collected for each plot.
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Although multiple linear regression is the most commonly used method for this type of modelling, it

comes with a number of associated problems:

The various studies have produced different relationships between the environmental factors
and Site Index, and generally the correlations found have been on the low side when the
geographic area is large. Both Kimsey et al. (2008) and Wang et al. (2005) suggest that the
use of multiple linear regression (MLR) for this sort of study is problematic. MLR relies on
the assumption that each independent variable (in this case the abiotic variables) effects the
dependent variable (in this case the Site Index) uniformly across the geographic spread of
the study area. This may not be the case. Kimsey et al. (2008) give an example of where two
separate effects on Site Index may occur. In the theoretical example, MLR assumes that
altitude will have the same effect at one point on Site Index as at any other point, however
one point may be in a mountainous area which produces very different climatic conditions
than another position. MLR is incapable of capturing the effects separately.

Wang et al. (2005) also state that collinearity often exists between environmental variables,
and consequently MLR has a tendency to inflate or deflate at least one of the regression
coefficients and therefore the confidence interval of the predictions. Collinearity may even
produce coefficients with the incorrect sign (Sheather 1999). Collinearity can also
artificially increase the R’ value, but without adding explanatory value (Seifert 2011).

MLR also relies on having pre-defined assumptions about the relationship between the
independent and dependent variable's (the mathematical form of the model needs to be
specified before estimating the parameters). Since this is not known before hand there is a
chance of introducing an unknown source of error (Wang et al. 2005).

If MLR is used, a large amount of field work and analysis is needed to determine which set
of site variables are important in explaining the growth/site relationship (van Laar & Akca
1997).

Lastly, since the understanding of the interaction between the environment and tree growth is
not well researched, the often quoted adage “Correlation does not imply Causation” may

apply in MLR (Saigol 2009).

In order to avoid these issues newer alternative methodologies have been suggested:

Kimsey et al. (2008) suggested the use of geographically weighted regression which relies
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on developing local as opposed to global relationships within the MLR framework. They
found that the use of this method improved on the MLR method by capturing an additional
29 % of the variation, they suggest, however, that non-parametric-non-linear models may
produce more accurate predictions, but may be more difficult to interpret.

Curt et al. (2001) compared the use of MLR with variance analysis and concluded that
methods such as MLR were less explicative and robust than other methods. They found
considerable unexplained variance in Site Index in areas that were classed as uniform by
forest managers.

Wang et al. (2005) suggested the use of non-parametric methods (i.e. no need to specify the
mathematical form before estimating the parameters) such as generalised additive models
(GAM)*, neural networks (NNT) and regression trees (TREE). They found that GAM
produced the best fit. Although the TREE model also produced an impressive fit they found
the TREE model did not produce a smooth map of the Site Indexes since not enough Site

Index classes were produced.

Regression trees have a number of advantages over multiple linear regression :

Regression trees are visual by nature, which allows for simple interpretation of the output,
this advantage increases as the number of independent variables and complexity increase
(Gehrke et al. 2000).

Trees require fewer assumptions on the sample data: Trees do not rely on assumptions about
the relationship between independent and dependent variables and since few assumptions are
made about the model or the data distribution, trees are able to model a much wider range of
data distributions (Prasad et al. 2006, De'ath et al. 2000).

Trees are exploratory as opposed to inferential (Gehrke et al. 2000) which means that a
better fundamental understanding of the drivers of the dependent variable can be obtained,
and are better at determining interactions between variables (Muller et al. 2008). They are
good at revealing structure in data that has hierarchical or non-additive variables (Prasad et
al. 2006). Thus avoiding the “correlation is not causation” problem.

Trees are able to provide more detail on the effect of a specific variable. An example is give

31

GAMs usually rely on spline smoothers, which in the case of Site Index modelling are used for spacial interpolation, data beyond the model region is required in order

to avoid problematic over-swing of the spline at the edges in the model region (Seifert 2011).
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by McKenney and Pedlar (2003) when they modelled Site Index for black spruce (Picea
mariana) and jack pine (Pinus banksiana) in Ontario Canada using regression trees. The
authors found that the thickness of the organic horizon appeared in the first split of one of
their models, and again reappeared lower in the tree — this is difficult to produce using
normal regression analysis.

« Trees are able to handle missing values in both the dependent and independent variables
(Gehrke et al. 2000).

 Irrelevant independent variables are rarely selected (Elith et al. 2008).

« Trees are better at capturing non-additive effects, and interactions (McKenney et al. 2003).

« Trees can be constructed relatively quickly (Gehrke et al. 2000).

« Trees do not require data beyond the area of interest, such as GAM's (Seifert 2011).

There are a number of examples of the use of Classification and Regression Tree (CART) analysis
in the forestry and general ecology fields. Many of these examples pertain to the analysis of remote
sensing and imagery, particularly within the GIS environment. Recently in South Africa, van Aardt
and Norris-Rogers (2008) compared CART analysis to stepwise discriminant analysis in the use of
hyperspectral data to discriminate between Eucalyptus and Acacia species in typical South African
plantation forest settings, and to define the age class to which these genera belonged. They found the
method promising, but not as accurate as discriminant analysis (72 — 91 % accuracy versus 85 —
97 %). Comparisons by Moisen and Frescino (2002) of five modelling techniques for the automated
mapping of forest inventory data in the western United States using satellite based information, also
found CART to be less accurate than the other methods tested (Generalised additive models,
Multivariate adaptive regression splines, Artificial neural networks and a simple linear model).
Other examples of the use of CART in spatial analysis include the use of this technique to integrate
forest soils data from multiple sources and differing scales (digital elevation models, remote
sensing, digital climatic surfaces etc.). Ryan et al. (2000) used linear models and CART models to
generate landscape level forest soil models based on point samples. They found that linear models
often produced a simpler and more robust model when single soil properties were modelled, but that

they lose their advantage when there are an increasing number of conditional relationships.

Another fairly common use of the tree technique in ecology is in the modelling of species
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distributions under climate change scenarios. Guisan and Zimmermann (2000) included
classification and regression trees as a modelling technique in their review of predictive habitat
distribution modelling, they made no judgement as to which technique was more suitable or
accurate, suggesting that the choice of technique depends more on the goal of the study than on the
statistical method employed. Iverson and Prasad (2002) used DISTRIB (Deterministic regression
tree analysis) to examine the relationship between current forest species distributions in the eastern
United States and environmental drivers (climate, soil, land use and elevation variables), and to use
this to model future distributions under various climate change scenarios. They found the method
valuable in increasing the understanding of species-environment relationships, but limited in
explaining many biological attributes under future species distributions accompanying climate
change. Bourg et al. (2005) successfully combined classification tree analysis with digital data
layers in GIS to predict the potential new habitats of a forest herb (turkeybeard: Xerophyllum
asphodeloides), the model proved to be relatively accurate (predicting 74 % of the presence areas,

and 90 % of the absence areas).

Other examples of the use of CART include work done on modelling tree mortality: Baker et al.
(1993) used the technique to develop a model based on soil variables to predict mortality of Pinus
elliottii and Pinus taeda caused by the root rot fungus Heterobasidion annosum. They found that the
method was apparently accurate (80 %) and useful in improving the disease hazard rating.
Dobbertin and Biging (1998) used the method to predict tree mortality for two species (Pinus
ponderosa and Abies concolor). The accuracy of the models was not particularly impressive (11 —
36 %), however, they compared favourably with logistic models, and were able to identify important
independent variables which logistic regression did not. Fan et al. (2006) used CART in
combination with survival analysis (Kaplan-Meier product limit) which they called CARTBSA, to
estimate tree survival rates in oak-dominated forests in Missouri USA, they recommend the method
not as a replacement to traditional approaches such as logistic regression but as a complimentary

methodology.

Trees have also been used in conjunction with other methods within the field of growth modelling:
Raty and Kangas (2008) tested various methods including regression trees to try to localise a

generic (national level) volume model by forming homogeneous sub-regions. Localisation was
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necessary because the volume model was found to be regionally biased due to stem form. They
found that regression trees did not perform as well as the other methods tested (only 50 — 58 %).
Klemmt (2007) used a two stage approach applying classification trees to partition inventory data
into classes based on observed age-height development. These classes were then used to determine
the coefficients of Chapman — Richards growth equations within each leaf via regression, and
subsequently used to adjust the SILVA** forest growth model. The main advantage of this approach

is that actual observed data forms the basis of differentiation for site based parameters.

Regression trees have also been used previously to model Site Index. Mckenney and Pedlar (2003)
modelled Site Index spatially against a range of environmental factors from 1140 plots of jack pine
(Pinus banksiana) and black spruce (Picea mariana) in Ontario, Canada. The authors tested several
modelling methodologies, but found that a regression tree produced the best results. The pruned tree
for jack pine had four splits with five classes and a root mean squared prediction error (root-MSPR)
of 2.55 m. The second tree for black spruce had six splits and seven classes with a root-MSPR of

2.84 m.

4.2. Objective

The objective of this section of the study is to explore various methodologies, including regression

tree analysis, to model Site Index using readily available climatic and edaphic variables.

4.3. Materials

4.3.1. Summary of the data sources

The data used for this objective has been consolidated from a number of sources (see Figure 25).
Firstly PSP and TSP data supplied by Sappi* and Mondi* (2, 3 & 4 in Figure 25; see also section

2.3.2) which contained the following data :

32

See www.wwk.forst.wzw.tum.de/research/methods/modelling/silva/

33

Kindly supplied by Nico Hattingh of Sappi.

3 Kindly supplied by Yvonne Fletcher of Mondi.
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+ Plot number

« Genus and species

« Position (co-ordinates)

« Measured dominant height (m)

« Age at which dominant height was measured

The genus/species, dominant height and age data was then used to calculate a Site Index (see

section 4.3.3).

< Water
Sappi Availablity / 7
PSP calculationg

i
I ——|
ICFR Sappl Agrohydro Final
toolbox TSP Atlas Data set

Mondi
PSP

4

Figure 25: Showing the various steps followed to compile the data set.

The coordinates were then used to populate the following site data via the ICFR Forestry

Productivity Toolbox™® (1 in Figure 25; Table 23) :

35

Kindly supplied by Trevor Morley of the ICFR. The Forestry Productivity Toolbox was developed by the ICFR to provide data on South African forestry sites and to

help with various management options such as site species matching, potential productivity etc. (Kunz 2004).
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Table 23: Site variables obtained from the ICFR Forest Productivity Toolbox (Kunz 2004).

Site Variable Unit
Mean Annual Precipitation or MAP mm
Probability of obtaining < 650 mm of annual rainfall in any given year %
Probability of obtaining > 850 mm of annual rainfall in any given year %

Mean Monthly Precipitation

mm (by month)*

Mean Annual Temperature or MAT

ocC

Site classification based on climate

CT=Cool temperate; WT=Warm

temperate; ST=Sub-tropical

Monthly means of Minimum daily Temperature

OC (by month)

Monthly means of Maximum daily Temperature

OC (by month)

Total Annual Potential: A-pan equivalent Evaporation

mm

Mean Monthly A-pan Evaporation

mm (by month)

Total Annual Solar radiation MJ/m*/day

Mean Monthly Solar radiation MJ/m?*/day( by month)
Topsoil texture-from the 1:250 000 scale land types ~

Total soil depth-from the 1:250 000 scale land types mm

Permanent Wilting Point of topsoil horizon mm/m

Field Capacity (Drained Upper Limit) of topsoil horizon mm/m

Total Porosity of topsoil horizon mm/m

Geology-from the 1:1 000 000 scale geology map

Lithology-from the 1:1 000 000 scale geology map

Physiographic region

refer to Kunz & Pallet (2000)

Soil texture derived from parent material

Soil depth derived from parent material mm
Wilting point derived from parent material mm/m
Field capacity derived from parent material mm/m
Total porosity derived from parent material mm/m
Altitude from the 1'x1" of a degree grid m
Slope derived from the 1°x1" altitude grid Deg
Aspect derived from the 1°x 1" altitude grid Deg
Altitude derived from the 1:200/400m altitude grid m
Slope derived from the 1:200/400m altitude grid Deg
Aspect derived from the 1:200/400m altitude grid Deg

A single variable was chosen where variables could be considered synonymous (such as Median
monthly precipitation, or Mean monthly rainfall). Given that water availability (or lack there of) is
one of the most important drivers of tree growth in South Africa, it is important to ensure that the
data included in the model is meaningful. The climatic attributes supplied (Temperature, rainfall
etc.) in and of their own may not be good indicators of water availability, or of the supply — demand

balance. A monthly water balance (using a generic dry-land crop model) per plot site was therefore

%6 j.e. for each month of the year.
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calculated (7 in Figure 25). The water balance was calculated in the following manner (Kunneke
2011):

WB=(PAW +EffRAIN )— PET

Equation 4: Water balance calculation (Kunneke 2011)

where :
WB = Water balance (monthly)
PAW = Plant available water
EffRain = Effective rainfall (monthly rainfall converted using crop factor)

PET = Potential evapotranspiration

The same plot co-ordinates were also used to populate further site data from the South African Atlas

of Agrohydrology and Climatology ¥’ (6 in Figure 25; Table 24):

Table 24: Site variables obtained from the South African Atlas of Agrohydrology and Climatology
(Schulze 1997).

Site variable Units

Altitude 200m m

Solar Radiation MJ.m?.day”" (by month)
Mean Annual Precipitation (2003) mm

Rainfall Concentration %o

Rainfall Seasonality Seasons

Means Of Daily Maximum Temperature OC (by month)
Means Of Daily Minimum Temperature OC (by month)
Daily Mean Temperature OC (by month)
Temperature Range (T -T ) ) oC (by month)
Mean Annual Temperature oC

Heat Units Odays (by month)
Average First Date of Heavy Frost Day of year
Average Last Date of Heavy Frost Day of year
Average Duration of Frost Period Days

Average Number of Days with Frost Days

Standard Deviation of Number of Days with Frost Days

Daily Mean Relative Humidity % (by month)
Daily Minimum Relative Humidity % (by month)
Potential Evaporation mm (by month)
Potential Evaporation Mean Annual mm

57 Kindly supplied by Anton Kunneke of the University of Stellenbosch.
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Table 24 continued.

Site variable Units

Potential Evapotranspiration mm (by month)
Wilting Point top soil - 84 soil zones mm

Grid Wilting Point top soil - 84 soil zones mm

Wilting Point sub soil - 84 soil zones mm

Grid Top soil to sub soil daily drainage fraction fraction

Grid sub soil daily drainage fraction fraction

Grid Initial Crop Numbers (Acocks) ACRU Crop Number
Moisture Growing Season Mean Start of Season month
Moisture Growing Season Mean End of Season month
Moisture Growing Season Duration of Season day

Gross Irrigation Requirements Median Annual mm

4.3.2. PSP and TSP data

The following is a summary of the PSP and TSP plot data supplied (pre removal of outliers, errors

and missing sets):

Table 25: Breakdown of PSP's and TSP's by genus.

Table 26: Breakdown of PSP's and TSP's by company and genus.

Genus PSP TSP Total
Acacia 154 379 533
Eucalyptus 1033 4507 5540
Pinus 445 3862 4307
Total 1632 8748 10380

Mondi Sappi
Genus PSP TSP PSP TSP Total
Acacia 118 0 36 379 533
Eucalyptus 568 0 465 4507 5540
Pinus 112 0 333 3862 4307
Total 798 0 834 8748 10380

4.3.3. Conversion of dominant height data to Site Index

Dominant height data was provided for the full data set (Mondi and Sappi, PSP and TSP data) and
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Site Index was only provided for a small portion of the data set®® as well as with varying base ages.
The dominant height data was therefore converted to Site Index using the following equations

(Fletcher 2006 & Fletcher 2010)*. This was applied to the complete data set in order to ensure

consistency.

¢ SICR4 - Chapman Richards 4-parameter — difference form
/ \ B]
1—exp| By AGE, +B,)|

l—exp(,Bl(AGESI+B2))

Equation 5: Chapman - Richards 4 parameter difference form Site Index

SI=HD,

model (Fletcher 2010)

e SICR2 - Chapman-Richards 2-parameter - difference form

1—exp(B, AGES,)
gl —exp(BlAGE])

SI=HD

Equation 6: Chapman - Richards 2 parameter difference

form Site Index model (Fletcher 2010)

e SICR3 - Chapman-Richards 3-parameter - difference form

1—exp (B1 AGES[) -

gl —exp(BIAGE])

SI=HD

Equation 7: Chapman - Richards 3 parameter difference form

Site Index model (Fletcher 2010)

e« SICLJ - Clutter and Jones - difference form

] Bz L
In(HD,| = ———+ B; 8
SI=exp ] + - B;
explp | AGEg
PP AGE, AGE,,

Equation 8: Clutter and Jones Difference form Site Index model (Fletcher 2010)

Each plot was assigned a region based on it's geographical position (this was done using Quantum

GIS 1.4.0.), see Figure 26 below .

¥ 7,65 % of the data set. A further motivation for conversion was the discovery of some errors in the Site Indexes supplied.

¥ Since the coefficients are covered by a confidentiality agreement these are not published here.
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Figure 26: Map showing the assigned regions used to convert dominant height to Site

Index.

Each plot was then assigned a “Site Index Species” based on it's current species (choosing the
closest similar species based on the species growth characteristics*’), and the coefficients by species

and geographic location were then applied to the relevant model (Table 27).

Table 27: Showing the “Site Index Species” and equations used for conversion. (See Appendix 2 for

full species names).

Site Index Grouped Species Equation used
Species.

AMEA 5
EDUN ENIT 6
EFAS EFRA ECLO ECAM EURO 7
EGRA ESAL EGXN 7
EGXC 7
EGXU 7
EMAC EG+M EMIX EREG ERUB 7
ESMI EELA EEMA 6
PELL PCAR PE+R PE+T PECH PMIX 7
PPAT PGRE 8
PTAE PROX PPSE 6

% Based on personal experience.
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4.3.4. Site Index base age

This conversion ensured that all Site Indexes are on the same base age, and are comparable. Sappi
currently uses the following base ages : 5 for both Eucalyptus and Acacia, and 15 for Pinus
(Hattingh 2010), Mondi uses 10 for Acacia, 8 for Eucalyptus and 15 for Pinus (Fletcher 2010). The

Mondi base ages were used since they are closer to the normal felling ages for each of the genera.

Thus the data obtained was recalculated to fit these base ages.

4.3.5. Comparison between supplied Site Index and calculated Site Index

From the following graphs (Figures 27 and 28) it can be seen that, barring a few outliers* the

calculated Site Indexes match well with those supplied.
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Figure 27: Showing the calculated Site Index versus the supplied Site Index.

4 These can be ascribed in some cases to errors in the supplied Site Indexes .

75



Stellenbosch University http://scholar.sun.ac.za

Histogram of the difference between calculated and supplied S|

400
|

200 300
| |

Frequency

100
|

[ ] —

T T T 1
-15 -10 -5 0 5 10

Difference (m)

Figure 28: Histogram of the differences between calculated and supplied Site

Indexes.

Two sided paired t-tests were used to confirm that there was no statistical difference between the

supplied and calculated data sets (Table 28).

Table 28: Results of the paired two sided t tests between supplied and calculated Site Index.

99 % confidence interval:
Genus Mean Lower Upper t df p-value
Eucalyptus -0.07035 -0.18166 0.04096 -1.6335 567 0.1029
Pinus 0.01714 -0.01283 0.04711 1.4991 111 0.1367
Acacia -0.35534 -0.90175 0.19106 -1.7034 115 0.0912

In all cases the p-value was greater than 0.05, we can therefore not reject the null hypothesis that the
difference in population means is equal to zero. The assumption of normality of the differences was

confirmed (via a Shapiro-Wilk's test for normality).

4.3.6. Removal of observations from the data set

Obvious errors (for example dominant height of 237 meters), as well as plots with missing height,
site, or age data were removed from the data set. Any other missing data values were assigned a

value of NA. As a result of the analysis in Chapter 3 all plots measured below the ages specified
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were removed.

Unfortunately, both stepwise model selection for multiple regression, and the random forest scripts
in R are unable to handle categorical predictor variables with more than 32 categories. One such
variable exists in the data set: Geological Type. The two categories with the lowest number of
observations were therefore removed so that the methodologies could be compared on the same data

set: Geological type Vg, with 3 observations, and Zt with one observation.

4.3.7. Data summaries

A summary of the full data set used can be found in Appendix 8. In total 232 predictor variables
were considered for modelling®. There were a total of 5457 Eucalyptus observations, 4226 Pinus

and 520 Acacia observations.

4.4. Method

For reasons of clarity only the results of the Eucalyptus modelling are given in the main text — the

results of the Pinus and Acacia regression tree models can be found in Appendix 9.

4.4.1. Classification and Regression trees

Trees are graphical representations of the data — with the root node representing the complete, un-
partitioned data set, and the branches and leaf (or terminal) nodes below (De'ath et al. 2000). They
do not necessarily have to be binary (nodes do not have to split into two sub-nodes, single nodes are
also possible), but most are (Wilkinson 1992). They are constructed by repeatedly splitting subsets
of the data using all the independent variables to create child nodes, starting with the full data set or

root node (Ture et al. 2009).

Figure 29 shows a stylised diagram of a regression tree — at each node of the tree a split criterion is

located (this is where the data can be separated into two significantly different sub-sets): if this split

2 See Appendix 4.
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Figure 29: Showing the root and leaf nodes — the numbers 1, 2, 3 represent
significant data subsets. (Adapted from various sources — van Diepen et al. 2006;

Gehrke et al. 2000; Wilkinson 1992)

criterion is met then the observations are sent to the left branch, if not, then the right. This can then

be easily translated into the IF THEN ELSE® statement form.

Trees explain variation of a dependent (response) variable by one or more independent
(explanatory) variables. Where the dependent variable is numeric or continuous a regression tree is
used, and where the dependent variable is categorical (named, nominal or ordinal) a classification
tree is used (De'ath et al. 2000). In other words a regression tree is used if the dependent variable is
quantitative, and a classification tree if it is qualitative (Moisen et al. 2002). The independent
variables in both cases can be either type. The difference between the two trees is essentially in the
method of splitting and classification of the nodes (De'ath et al. 2000). In this thesis only regression

tree analysis has been used.

There are three basic steps in the tree methodology (Muller and Mockel 2008):

- The data set is split into two subsets using the most effective predictor ( splitting rules).

#IF the criterion is met THEN follow the left tree branch ELSE follow the right. A simplistic example: where Site Index is split into two sets : 10m or 20m with the

split on soil depth > or < 1.5 meters. so : IF soil depth >1.5m THEN SI=20 ELSE SI=10.
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« This splitting is repeated within the subgroups until the sub-groups become too small, or
there are no further splits (stopping rules).

« Results are displayed in a binary tree structure, and pruning takes place if necessary.

Everitt and Hothorn (2010) give the following mathematical description of the method:

In the initial step a covariate x; is selected from the available covariates x;, ....., x, and a split point is
estimated which splits the response values y; into two groups. For a nominal covariate x; the two
groups are defined by a set of levels A where either X,€A or x;¢A . And for an ordered
covariate x; the split point is a number & which divides the two groups so that the first group
contains the observations X;=& and the second X;<& . Once the splits have been estimated this
is then repeated recursively on each sub-group until a stopping criterion is reached. The various
Tree building available algorithms differ in terms of covariate selection, the estimation of the split

point and on the stopping criteria.

The algorithm used in this thesis is that implemented in the rpart package of R (Therneau et al.
2010) using the “anova” method, which looks at all possible splits for all of the covariates, and
chooses the split based on the following splitting criteria (Therneau et al. 2011):

SS;—(SS,+SSg)

Equation 9: Splitting criteria for
anova based regression tree

(Therneau et al. 2011)

where
SST=(y1 ,-—}7)2 is the sum of squares for the node, and
SS., SSk the sum of squares of the left and right child node, in essence maximising the

between-group sum of squares.

4.4.1.1. Stopping rules

Stopping rules control when (or whether) the tree growing process should be stopped or not. Tree quality
depends more on the quality of the stopping rules than on the splitting rules (Murthy 1998). Some of the
rules used include (Breiman et al. 1984):

- If all cases in a node have the same value for the dependent variable.

« If all cases in a node have the same independent variable value.
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 If the user has specified a maximum tree depth (i.e. number of splits from the root) and the
tree has reached this value.
« If the user has specified a minimum node size and the next node is less than this value.

« If the best split for the node contributes less than a user specified improvement to deviation.

4.4.1.2. Pruning and cross-validation

Due to the nature of the method, trees will continue to split the data until there are no further valid
splits, or until one of the stopping rules becomes valid. However, the final number of splits may be
unnecessary (i.e. over-fitted). Where the variation can be explained with fewer leaf (terminal) nodes,
and the additional nodes do not add to the improvement of prediction, it is important to have some
method of reducing the number of nodes to an optimal size (Murthy 1998). It is also important to
allow the tree to grow fully before this is done (i.e. not to overly restrict the splits in the initial tree)
since it is possible that significant variables could be missed if this is done. Once the tree building
has stopped pruning methods can be employed to ideally trim back the tree to the optimal size
(Wilkinson 1992; Breiman et al. 1984). The size of the tree is controlled by the best trade-off

between explained deviance or variation and the tree size (Thuiller et al. 2003).

'V-fold' cross-validation is used to calculate the error rates used in the pruning (see Section 4.4.3). A
large tree is grown from the full data set, this is the tree that will be pruned back. The full data set is
then divided into roughly-equal parts, each containing a similar distribution for the dependent
variable. The next step is to construct the largest possible tree from the set, less one of the parts, and
use the remaining data set to obtain initial estimates of the error rate of selected sub-trees. The same
process is then repeated each time using a different data subset as a test sample. The process
continues until each part of the data has been used as a test sample. The results of the test samples
are then combined to form error rates for trees of each possible size, these are applied to the tree
based on the entire sample (Breiman et al. 1984). The rpart package does this automatically based

on 10 randomly selected subsets of the data each of size 10/n (Therneau et al. 2011).

Trees can be described by their size (i.e. the number of leaf nodes) and their fit, or how well the tree
will predict. Fit is defined by either relative error (RE) which in classification trees is a measure of

the level of homogeneity of the leaf nodes over the level in the root node, and in regression trees the
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amount of variance not explained by the tree, or by the cross-validation relative error (CVRE)
(De'ath 2002). Classification tree nodes are typically characterised by the distribution of the
dependent variable (as well as group size and the value of the independent variables that define the
node). Regression tree nodes are characterised by the mean value, group size and the values of the

independent variables that define the node (De'ath et al. 2000).

4.4.2. Regression Tree Model

The initial tree built is a (relatively) large one (see Figure 30), with a minimum number of splits set

at 20 specified as follows , the number of cross-validations set at 20 and the complexity parameter*

at 0.06:
Regression.tree.model <- rpart(SI ~. ,method = "anova", control = rpart.control(minsplit = 20, xval=20, cp = 0.06), data)

CT2,CT3,CT4,CT5,CT6,CT7,CT8, CT9, ST1,ST2, ST4, ST7, WT1, WT2, WT3, WT4, WST3, ST6, ST8, ST9, WT6, WT9
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Figure 30: Initial large 12 split Eucalyptus regression tree

Even though a minimum number of 20 splits was specified, only 12 splits could be obtained with

the complexity parameter specified, and only 10 of the 232 available variables were actually used to

4 The complexity parameter (CP) is essentially a cost on each additional split, the increasing “cost” of a larger tree is traded off against a reduction in lack of fit

(Maindonald et al.2007). Any split which does not improve the fit by the value specified will be ignored. The CP is set low initially to grow a bigger tree.
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construct the tree*:

SteClsCli - Site classification based on climate*’;

Apan_evap_08, 01 — Mean monthly Apan evapotranspiration for August and January;
MeaMthPreFeb - Mean Monthly Precipitation for Febuary;

AveMthSrdNov - Average monthly solar radiation for November;

Spp - Species;

rskGT850 - Probability of obtaining > 850 mm of annual rainfall in any given year;
WBJUN , MAY - Water balance for June and May;

Geologicaltype — Geological type.

The parent node is first split by Site classification (based on climate), then by mean monthly Apan
evapotranspiration in August (node 2) and water balance for June (node 17). Interestingly, these are
both restrictive (i.e. they represent low rainfall months) and may in fact represent the same driver.
The left branch is then further divided by species and again by site classification. The right branch
by the water balance in May, and the average Solar radiation in August. It is only further in the
splitting that factors such as geological type and the % potential of obtaining greater than 850 mm
in any given year start to appear. This gives us a strong impression that climate — and in particular

rainfall are the strongest drivers of height growth in this model.

Looking in more detail at the predictive ability of this large model, it is clear from Figure 31 that the
model can be simplified further — the apparent R’ value increases above 50 % by the 6" to 8" split
then does not increase much as the splits increase, and the relative error flattens out at about the
same point. The point at which complexity no longer adds value to the model is where the tree
needs to be pruned back to. Figure 32 shows the observed Site Indexes versus those predicted by the

initial model.

4 The full model output can be found in Appendix 9.

% See Appendix 5.
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Figure 31: The apparent and cross-validated relative R’ by number of splits, and the
cross-validated relative error by number of splits for the first large Eucalyptus regression

tree.
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Figure 32: Observed versus predicted Site Index for the first large Eucalyptus

regression tree.
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4.4.2.1. Pruning

In order to select the most parsimonious model, the initial large model is now pruned back.
Looking at the table below the 'xerror' column gives estimates of cross-validation prediction error
for the different number of splits, the lowest prediction error obviously donates the best number of
splits, however, in this case it does not reach a minimum (each successive split reduces the error).
However, the complexity parameter (CP), which is a measure of the value added (improved fit)
versus the complexity, steadily decreases to the CP number specified in the model call (see Table

29).

Table 29: Error and complexity (by cross-validation) for the number of splits.

CpP nsplit rel error Xerror xstd
0.353471293 0 1.0000000 1.0004317 0.018324305
0.082309356 1 0.6465287 0.6621257 0.012381169
0.035738010 2 0.5642194 0.5754456 0.011289866
0.023304024 3 0.5284813 0.5338072 0.010691860
0.011452004 4 0.5051773 0.5078477 0.010084055
0.010650137 5 0.4937253 0.4974974 0.009890438
0.009611191 6 0.4830752 0.4898202 0.009672843
0.008866080 7 0.4734640 0.4837786 0.009684178
0.007939401 8 0.4645979 0.4769056 0.009579612
0.007843509 9 0.4566585 0.4730089 0.009484857
0.006994593 10 0.4488150 0.4695541 0.009477397
0.006800850 11 0.4418204 0.4646040 0.009450548
0.006000000 12 0.4350196 0.4570242 0.009308809

Where: CP — complexity Parameter, nsplit — number of splits, rel error — relative error, xerror — cross-validated error,

xstd — cross-validated standard error

Viewed graphically (Figure 33), one can see that although the cross-validated relative error
continues to improve with increasing tree size, the amount of improvement flattens off after a tree
size of approximately 5 - 8 splits. Thus the ideal model would have a complexity parameter

somewhere between 0.011 and 0.0069.
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Figure 33: Relative cross-validated error and complexity

parameter by tree size for the first large regression tree.

De'ath et al. (2000) give two methods of choosing the “best tree”: (1). Where a plateau has been
reached in the error estimate, the tree with the minimum error is chosen, and (2). A method
suggested by Breiman et al. (1984), where the smallest tree is chosen which falls within one
standard error of the minimum, the 1 SE rule. Therefore if the 12 split tree is assumed to have the
smallest cross-validated error : 0.4570 plus the standard error of 0.0093, giving us a cross-validated

error of 0.4663 — equating to a tree with 11 splits, still a large tree.

Simpler is often better, however, so a complexity parameter of 0.015 was chosen heuristically, which
produced a much more parsimonious model with only three explanatory variables (see Table 30 and
Figure 34): Site classification based on climate, potential A-pan equivalent evapotranspiration for
August and the water balance for June. The model is easily interpreted as follows: Sites falling into
each of the split criteria receive the predicted Site Index: so for example a Cool Temperate 5 site,
with a potential A-pan evapotranspiration value below 146.5 mm in August will receive a predicted

Site Index value of 21.93.
The final model has a relative coefficient of determination (R?) of 0.4944, meaning that these three
explanatory variables explain approximately 49.44 % of the variation in Site Index! This is

remarkable given the complex nature of the problem, and the fact that it covers the full geographic
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spread of the data supplied”. The model may, however, not be immediately useful, given that in
essence there are only 5 site classes — it would need to be broken down to a lower level. This could

be done by site classification or some other geographic breakdown.

Table 30: Summary of the Eucalyptus Regression tree model.

Node Split Variable Split criteria Number of observations | Mean SI
1 Root 5457 23.72845
2 SteClsCli CT2,CT3, 3895 21.94915
CT2,CT3,CT4,CT5,CT6,CT7,CT8,CT9,ST1,ST2,ST
4 STIWTILWT2,WT3,WT4,WT5WT7,WT8
4 Apan_evap_08 >=146.5 1245 19.60063 *
5 Apan_evap_08 <146.5 2651 23.05085
10 SteClsCli CT3,CT4,CT5,CT7,CT8,CT9,STA,WTI,WT2,WT4 | 1226 21.92878*
11 SteClsCli CT6,ST1,ST2,ST7,WT3,WT5,WT7,WT8 1428 24.01419 *
3 SteClsCli ST3,ST6,ST8,ST9,WT6,WT9 1558 28.18128
6 WBJUN <-42.275 728 26.39460 *
7 WBJUN >=-42.275 830 29.74839*

indicates a terminal node.

47

Almost the entire commercial forestry area of South Africa (excluding the cape provinces).
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Figure 34: 5 split pruned Eucalyptus regression tree model.

Figure 35 clearly shows the “blocky” nature of regression trees — since there are only 5 terminal
nodes. As suggested this can be reduced by building separate tree models on a lower level within the

data — ideally by site class.

Actual versus predicted Site Index

Actual

Predicted

Figure 35: Observed versus predicted Site Index from the 5 split

pruned Eucalyptus regression tree model
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4.42.2. Post — Hoc tests

Stability

One of the problems with regression trees is that they can be unstable, since the point at which the
data is split as well as the choice of the splitting variable depends on the distribution of the
observations in the data set used. A change in this distribution can cause a very different tree to be
built if the first splitting variable or cut point is chosen differently (Strobl et al. 2009). In order to
test the stability of this model the same analysis was repeated 100 times by means of bootstrapping
and the optimal number of splits recorded. The result showed that in all 100 models the same
number of splits were indicated meaning the model is a stable one. Where this is not the case,
alternative aggregate methods can be used such as random forest or bagging (Everitt et al. 2010;

Strobl et al. 2009).

Residuals

As can be seen in Figure 36, the residuals of the pruned model are normally distributed.

Distribution of residuals Normal Q-Q Plot
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Figure 36: Distribution of the residuals of the 5 split pruned

Eucalyptus regression tree model.
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4.4.3. Multiple linear regression

As stated previously the majority of previous attempts to link abiotic data to Site Index have used

the multiple linear regression method.

Dalgaard (2008) gives the basic model for multiple regression analysis as follows :

Y. =B,+B,x,+...+B,x, +¢€

Equation 10: Multiple Linear regression form (Dalgaard 2008)

In which € is assumed to be independent, is normally distributed and has a variance of zero
where

X,...X, are the explanatory or predictor variable's (from 1 to k)
and

B,...B, the parameter coefficients estimated using least squares, where the values of f are
found that minimize the sum of squared residuals. For each unit increase of the explanatory
variable (x) the independent variable (y) will on average increase (or decrease) by the [

coefficient.

In R this is specified using the Im() function as follows:
MLR.model < - Im( SI ~ Var, + Var, + ... Var,, data)

where Var _, represent the individual physiological factors.
The number of independent variables was then reduced to find the most parsimonious model using
the stepwise model search function step() based on the Akaike information criterion (AIC) with

backwards and forwards elimination.

The model is only supplied as a traditional modelling approach as a comparison to more modern
methods. There are a number of serious statistical problems with this model (see also section 4.1),
and a substantial amount of work would be needed to check and or correct for these — the problems

include :
« No second order (or higher) powers of the variables have been included, and in order to
properly model Site Index using multiple linear regression more work would need to be

done to determine whether there are any polynomial relationships.
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« No interaction terms were specified.

« The likelihood of multicollinearity, where two or more predictor variables are highly
correlated and carry similar information about the response (this is highly likely in this
model as the majority of variables had a variable inflation factor above 5 *).
Multicollinearity boosts the R’ value without adding explanatory value. The least squares
method struggles to distinguish the separate effects, and may even produce coefficients
with an incorrect sign (Sheather 2009).

« The potential of “spurious correlations” where two (or more) variables may produce an
association because they are related to another variable which has not been included in
the model (Sheather 2009).

« The plethora of variables does not allow for a clear interpretation of their influence.

Bearing the above problems in mind the final model produced should be viewed as a simplistic

representation and has only been included as an illustration of the methodology for comparison, and

since the model is of no predictive value the coefficients have not been published here. Model

validation on an independent data set was also not performed.

176 variables (this includes the dummy variables created to handle categorical variables, 98
excluding dummies) were ultimately included in the model with a residual standard error of 2.884
(5284 df) and an adjusted R* of 0.6296. The model itself was highly significant with an F-statistic of
55.23 and a p-value of 2.2e-16. The model also had normal residuals. Figure 37 below shows the

observed versus predicted values given by the model.

% Correlation between the predictor variables increases the variance of the estimated coefficients, the variance inflation factor is calculated as a measure of

multicollinearity as follows : 1/(1-R? ) for variable estimated coefficient 5. A factor of 5 is often used as a cut-off (Sheather 2009).

90



Stellenbosch University http://scholar.sun.ac.za

Actual versus Predicted using Multiple regression

Actual

Predicted

Figure 37: Observed versus predicted Site Index using the

Eucalyptus linear multiple regression model.

4.4.4. Multiple linear regression using variables identified by the regression tree

One potential method to avoid the problems associated with the previous model, is to use the
variables identified by the regression tree as the explanatory variables. A model was constructed

using only the ten variables identified in the 12 split regression tree model, vis:

SteClsCli - Site classification based on climate®’;

Apan_evap_08, 01 — Mean monthly Apan evapotranspiration for August and January;
MeaMthPreFeb - Mean Monthly Precipitation for Febuary;

AveMthSrdNov — Average monthly solar radiation for November

Spp - Species;

rskGT850 - Probability of obtaining > 850 mm of annual rainfall in any given year;
WBJUN , MAY - Water balance for June and May;

Geologicaltype — Geological type.

The variable inflation factors were then calculated for each of the above explanatory variables
(Table 31):

4 See Appendix 5.
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Table 31: Variance inflation factors for the 10 explanatory variables used in the alternative

Eucalyptus multiple regression model.

Variable GVIF Df GVIF*(1/(2*Df))
Spp 4.166684e+01 20 1.097728
rskGT850 5.727031e+00 1 2.393122
MeaMthPreFeb 1.009096e+01 1 3.176628
SteClsCli 1.906706e+05 24 1.288267
AveMthSrdNov 1.424741e+01 1 3.774574
Geologicaltype 1.101451e+05 31 1.205930
Apan_evap_01 2.947988e+01 1 5.429538
Apan_evap_08 2.487156e+01 1 4.987140
WBJUN 1.838488e+01 1 4.287759
WBMAY 2.037958e+01 1 4.514375

Where : GVIF = Generalised variance inflation factor
Df = Degrees of freedom

GVIFA(1/(2*Df)) = adjusted (for degrees of freedom) generalised variance inflation factor

The variance inflation factor gives an indication of the amount by which the variance of the
regression coefficient is increased due to collinearity, if these exceed 5 the resultant regression
coefficients will be poorly estimated (Sheather 2009). We can see that there is still some level of
collinearity, however, it is greatly reduced from the previous multiple regression model and only the

potential evapotranspiration is above 5 on an adjusted basis.

As there are fewer explanatory variables it is possible to look closer at the data. From the pairwise
scatterplot shown below in Figure 38, the only relationship which appears to be clearly discernible
is between the mean monthly precipitation for February (MeMt hPreFeb), and the risk of obtaining
greater than 850 mm of rainfall in any given year (rskGT850). RskGT850 also has a variance

inflation factor (unadjusted) of 5.7270 this variable was therefore dropped from the model.
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Figure 38: Pairwise plots of the data used in the alternative Eucalyptus multiple regression model

using the variables identified in the regression tree.

The model was specified in R as before using the Im() function and then reduced using the stepwise
model search function step() based on the Akaike information criterion (AIC) with backwards and
forwards elimination.

The resultant model used 7 variables (79 if dummy variables used to cater for categorical variables
are included), is highly significant (p-value of <2.2e-16) and has an adjusted R* value of 0.5833,

and a root mean square error of 3.0359.

The model residuals proved to be normally distributed (see Figure 39).
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Figure 39: QQ plot of the residuals of the alternative Eucalyptus multiple regression

model using the variables identified in the regression tree.

4.4.5. Hybrid or model trees

A number of authors (De Ville 2006, Muiioz et al. 2004, Neville 1998) suggest using decision trees
to stratify the data to be used within some other model (normally multiple linear regression). A
model is generally built in each leaf of the tree using the data stratified by that branch. These models
are called “hybrid” or “model trees”. A well known method for building a model tree with linear
regression models in the leaves is the M5 algorithm (Quinlan 1992). This produces a regression
tree that has a linear model in the terminal node rather than a mean value. Model trees are an ideal
method of combining the strengths of linear modelling, with the data structuring strengths of trees.
A simple model tree was built using the RWeka package in R (Hornik et al. 2006) specified as
follows (restricted to 1000 observations per node in order to produce a small tree similar to the

pruned regression tree):

Model.tree <- M5P(SI~.,control=Weka_control(R=F,M=1000),data)

As with the regression tree, 10 way cross-validation is employed. The tree had 6 terminal nodes each

The M5 algorithm builds the regression tree in a similar way to the regression tree (i.e. by continually trying to reducing the variance in the target variable, in this case the splitting criterion is to

reduce the standard deviation (Wang and Witten 1996)), other methods exist which try to maximise the quality of the terminal node model.
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with a linear model associated with the node (see Figure 40, and Appendix 11 for the full model),

with an R? of 0.5209 and a mean absolute error of 2.5906.

Apan_evap_08

ST8, WT6, ST6{ WT9, ST9,ST3

LM 6 LM5 LM 4 LM 3 LM 2 LM 1

Figure 40: Eucalyptus Hybrid / model tree, each terminal node contains a linear

model.

As well as the 4 variables used in the tree, a further 2 were included in the linear models - Species,
and Water balance for June. The terminal node linear models are restricted to the variables used by
tests or linear models in the sub-tree, and theses are then simplified by removal of variables which
do not contribute much to the model — in extreme cases this can leave a constant only (Quinlan

1992). Each terminal node linear model had the following form :

SI = f(Species[list]) + S(Site Classification[list]) + f(Mean growth season duration) + (Potential Apan evapotranspiration for August) +

S(Water Balance September) + (Water Balance June) + ¢

The resultant hybrid regression tree model is likely to have higher predictive accuracy and does not
have the “blocky” nature of a regression tree. However, it comes with a disadvantage with regards to
interpretation, since, it has more than one model contributing to the prediction (Torgo 1997). One
other advantage which model trees have over regression trees is that they are able to return values
lying outside the observed range of the data (i.e. they can extrapolate), something regression trees

are unable to do (Quinlan 1992).
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4.4.6. Random Forest

Another method that appears to be useful to overcome the “blocky” nature of tree models is the
random forest™, however, the method does not have the advantages of the simple tree model in that
it does not allow for a better or simpler understanding of the drivers, because the model cannot be
viewed like a tree model. The random tree method would be a better choice for modelling
interactions which are already fairly well understood, whereas the regression tree method is a better
choice of method where the subject is not well known. The main disadvantage of the random forest
model is that it is a “black box™ - it is not possible to see inside the model, or to view the individual

trees used to create the model (Prasad et al. 2006).

The random tree method was developed by Breiman (2001) to reduce over-fitting of the data — it is
similar to other tree methods in that a sample is drawn to grow multiple trees — the difference being
that each tree is grown with a randomised set of independent variables. A large number of unpruned
trees are grown (a forest between 500 and 2000 trees) and aggregated by averaging (Strobl et al.
2009, Prasad et al. 2006, Breiman 2001).

Liaw and Wiener (2002) give the random forest algorithm as follows :

* N samples are bootstrapped from the full data set.

« For each of the samples above, an un-prunned regression tree is grown. Instead of choosing
the best split from all of the variables, a random sample m,,, of the predictors is chosen (the
default for regression is p/3 where p is the number of predictors), and the best split is chosen
from this sub-set of predictors.

« The n,. trees are then aggregated (by averaging in the case of regression, and by majority in
the case of classification.

« At each iteration an estimate of the error rate is calculated using the tree created, by
predicting the data using the “out-of-bag” sample (i.e. the data not used to create the tree).

These are then aggregated for all the trees grown.

The random forest model was specified using the randomForest package in R (Breiman et al.

A similar method known as 'Bagging Trees' involves replicating sample data to make up for the test sample drawn. (Prasad et al. 2006).
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2010). 1000 trees were specified to create the “forest”. Due to the nature of the method, pruning is
unnecessary, but the size of tree grown can be restricted by specifying the node size, and the
maximum number of terminal nodes. In order to keep the tree sizes reasonably small the following
was specified: minimum node size of 40 (default is 5), and maximum number of terminal nodes at

15. At each node 78 variables were tested. The model was specified in R as follows:
Random.forest <- randomForest(SI ~., importance = TRUE, ntree=1000, proximity = TRUE, nodesize = 40,maxnodes = 15, na.action=na.omit, data)

The model produced had a mean of squared residuals of 9.4152 and an R* of 58.05 (an unrestricted
random forest model produced an R* of 67.19 but obviously with very large tree sizes). Every one of
the 1000 trees produced had 15 end nodes — showing that the tree sizes could all have been far
larger. Potentially as many as 30 variables could have been used to build a tree with 15 terminal

nodes. Figure 41 below shows the observed versus predicted values given by the model.

Actual versus predicted Site Index - Random Forest model

Actual

18 20 22 24 26 28 30

Predicted

Figure 41: Actual versus predicted values of Site Index for the Eucalyptus random forest model.

As stated previously, random forest models are “black boxes™ - so it is not possible to visualise or
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export the model, however, there are some metrics available to help in interpretation (Prasad et al.
2006). Figure 42 above shows the importance of the predictor variables used to construct the
random forest trees, both in terms of the percentage increase in mean square error (%IncMSE) if the
variable is excluded, and in the purity of the node. Site Classification by climate, and the water
balance for June, and the potential A-pan evapotranspiration are again highlighted as important

predictor variables under both measures.

Variable Importance plot , Random Forest
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Figure 42: Variable importance for the Eucalyptus random forest model.
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4.5. Results

It must be remembered that the intention of this section of the study was not to produce a valid,
viable Site Index model, rather to compare alternative modelling methodologies. As such, focus is

on the performance of each model methodology, rather than the variables included.

From Table 32 below it can be seen that the alternative multiple regression model (using the
variables identified by regression tree analysis) was able to explain more variation and had a lower
root mean square error than the alternative models. However, this was at the expense of a large
number of variables. The alternative multiple regression model used only seven explanatory
variables, yet this is extended to 76 due to the dummy variables required to handle categorical

predictors and this thereby increases the complexity.

Table 32: Model comparison — fit versus number of variables used for the Eucalyptus default Site

Index models.

Model Fit (R?) RMSE® Number of variables used
Regression Tree (5 splits) 49.44 3.3685 3

Regression Tree (12 splits) 55.79 3.1256 10

Multiple regression 62.96™ 2.8376 98 (176")

Alternative MLR — using tree variables 58.33 3.0359 7 (76"

Hybrid model 52.10 3.3694 6

Random Forest 58.05 3.0687 30

*Including dummy variables. ** Model has serious multicollinearity problems and should not be seen as the best fit.

The initial multiple regression model has serious problems associated with it and would be entirely
inappropriate for this type of data without a large amount of additional work. The random forest
model performed better than the regression trees and the hybrid, again at the expense of complexity.
The simple regression tree produces the best fit relative to the number of variables used. The main

advantages and disadvantages of each of the modelling methodologies is discussed in Table 33.

52 Root Square Mean Error is in meters and was calculated as the square root of the mean squared difference between predicted and actual Site Index.
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Table 33: The main advantages and disadvantages of the various modelling approaches.

Approach Main Advantages Main Disadvantages
[Regression Tree Simple, and able to capture large variation with few “Blocky” in nature — but can be overcome by breaking the
variables. Few assumptions needed on the sample data. imodel down further. Unable to extrapolate beyond the limits
of the data used to construct the model.
Multiple Linear |Able to capture relatively large amounts of variation. Need to have some understanding of the relationship
Regression IProduces a continual “smooth” response. between variables. Problems with multicollinearity.
Complex with many variables used.
|Alternative MLR Reduces the multicollinearity issues associated with the Still complex due to the number of variables used.
first MLR model.
Hybrid or Model trees Simple, and able to capture large variation with few Mix of models can complicate interpretation and
variables. verification.
[Random Forest Can easily show the importance of individual variables. “Black box” - unable to export.
Does not over fit. Not as “blocky” as regression Trees . Uses many variables

4.6. Discussion

As can be seen the Regression tree model has the huge advantage of simplicity, it was able to
capture almost 50 % of the variation in Site Index using only three input variables, and although the
alternative model strategies produce better coefficients of determination, this is at the expense of
complexity. Considering that this model is a generic model for the entire forest growth area covered
by the data (essentially the entire commercial forest area of South Africa)®, the performance is
remarkable. Further work would be needed to localise the model to allow it to be more readily
usable in a commercial environment, however, it is clear that the regression tree method is ideally

suited to this type of data.

Multiple Linear regression comes with a level of complexity due to the nature of the data and
statistical problems which would be difficult to overcome for this type of data set. And the black box
nature of the random forest model, coupled with the fact that it is not possible to implement in an
external environment such as GIS makes it and multiple regression less suitable as an alternative

than a hybrid or model tree.

The main advantage to using regression trees is simplicity, and above all the ability to easily explain
or uncover the main independent variables and their interaction. This advantage is also seemingly its

biggest disadvantage — the resultant model is not smooth and continuous. Whether this is actually a

3 And covers all species.
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problem is debatable, since all models derived from a sample set are only explanations of the data
set used, and conversely any information extracted from a model is really only information about the
model itself — it is not, and cannot be a true reflection of the whole. Continuous “smooth” model
outputs may simply be giving a false sense of certainty and accuracy — the fact that output can be

displayed to three decimal points does not mean that it is accurate to this degree!

The move in forestry from traditional yield tables to continuous empirical models has given some
managers the impression that prediction and projection have become more accurate — this may not
always be the case. Having the model in the classed format of a table at least allowed the user to
intuitively realise that the output was not definitive. If, however, a continuous model is a necessity

the hybrid or model tree seems to be a potential alternative.
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Chapter 5. CONCLUSIONS AND
RECOMMENDATIONS

As with many studies the questions asked and answered often lead to opportunities for further
research, this study is no exception. Since this study is divided into three main sections the

conclusions and recommendations have been divided on the same basis.

Initial planted density.

Although the majority of the observations used in this portion of the study proved the assumption
that dominant height is unaffected by the initial planted density, two exceptions were found in
E. dunnii and E. nitens. Since these constituted the smallest subset of the data, and represented only
single trials it is possible that the effect found was due to some variable not included in the analysis.
However there is evidence from other studies that there may well be a role played by stocking for
some species, and that this may be a subject worth pursuing with a more dedicated and larger data
series. If an effect is found, this will have knock on consequences within the growth model
configurations where an adjustment factor will need to be introduced to the Site Index models. Any
potential effect will also have consequences on other research since Site Index is often used to
differentiate between treatments, it is important that researchers are aware of potential interactions
between Site Index and stand density — it is possible that if they do not recognise the additional co-

variable that the conclusions reached may not be valid.

Measurement age of dominant height.

It is clear from this study that early estimates of Site Index via dominant height measurement should
be used with caution, or not at all. The early measurements were shown to be either over or under
estimates of the true value. Measurements taken below 2 years in the case of Eucalyptus, 8 years in
the case of Pinus, and 4 years for Acacia were shown to be significantly different from

measurements taken at other ages. The Eucalyptus result is, however, based on the espacement trial
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data set, which used a single Site Index model and may need to be repeated on separate Site Index
models since the results from the PSP/TSP data set using numerous models produced less definitive
results. One potential source of the over/under estimates may be due to the inability of the projection
model to extrapolate if the measurement is taken before the point of inflection (Seifert 2011), this
may also explain the results obtained using the PSP/TSP data. This may be a fruitful avenue of

further study.

The results of this portion of the study will have direct consequences for inventory policies since

Site Index estimation is a critical output.

Site Index modelling

The purpose of this section was to compare various alternative modelling methods, rather, than to
present a final model ready for application. As such, focus was not on finding the right variables but
on comparison of various methodologies. The non-parametric methods tested proved to be
comparable to, if not better than, traditional regression, without the statistical flaws of the latter.
Regression trees in particular are of enormous benefit, as they are able to provide a better
visualisation of the underlying drivers, without the complexity and potential problems associated
with multiple linear regression. Further localisation of the models either using regression trees, or if
a more continuous output is required, a hybrid tree model would be of commercial value. Hybrid
tree models have the further advantage of being able to extrapolate beyond the limits of the data
used to build the model — something regression trees are unable to do. Additional site data, such as
the growth day classes and temperature classes recently introduced by Louw et al. (2011) should
also be tested as predictor variables. Since the majority of the important variables identified are
related to water, or the lack thereof, it may be worth including variables related to water stress
periods. Most commercial forestry companies in South Africa have detailed soil databases, this as
well as any other site related data, such as crop specific evapotranspiration or nutrient data could

also be included.

By way of illustration a localised regression tree for the ST site class (Sub tropical class 9, from

Smith et al. (2005)** with a mean annual temperature between 21 and 22 °C, and mean annual

54

See Appendix 5.
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precipitation greater than 1075 mm/yr) was constructed for the Eucalyptus data (See Figure 43
below), this tree has a root mean square error of 2.4187 m> — a substantial 28 % improvement over
the generic 5 split regression tree which had a 3.3685 m RMSE. Even further localisation could

prove beneficial.
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Figure 43: Localised regression tree for Eucalyptus in the ST9 climate class.

3 A hybrid model tree on the same site class produced a root mean square error of 2.9606 m.
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Chapter 6. INTEGRATING THE SITE INDEX
MODEL INTO THE PLANNING PROCESS

It is important to consider how the introduction of a default Site Index model will affect the current
planning process. Equally important is to consider if the costs associated in both developing and
integrating the new model are justified. A brief investigation into the changes necessary to

implement the model, as well as methods of calculating the value of information are given here.

6.1. The new process

Figure 44 below shows the possible future Site Index process, the most obvious difference between
this new process and the one currently employed™ is the reversal of the roles played by the

enumerated Site Index and the actual production — in the current process the enumerated Site Index

Enumerated
Site Index

calculated

Site and Climatic Not
Data Approved
Site Index coverage
Approved Site Index Updated
To compartment databasg

Site Index coverage ‘

Reviewed

Actual production

Figure 44: The envisaged future default Site Index process.

is used simply as part of the review/checking process, and the actual or expected production is used

to directly calculate the Site Index. In the new process, however, the measured Site Index is used

¢ Based on the process followed by Mondi Limited.
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directly to calculate a Site Index Coverage, and the actual production is used to check and review the

coverage.

In the new process, the enumerated Site Index together with Site and Climatic data are used to

calculate a predictive coverage of Site Index for those sites which do not have measured Site

Indexes. This predictive coverage is then reviewed using the actual production, if approved the

coverage can be used to update the compartment database. Since the coverage is generated within a

Geographic Information System (GIS) this data can be easily mapped, tested and updated and will

eliminate the need for the current large manual systems.

This new process has a number of key advantages over the current process.

The key advantage is that the process is based on scientific methodology, and is therefore a
more defensible and audit-able input into the planning system.

Since the process is automated, there is less scope for error.

The process is easily repeatable — which would permit additional use-age of the process such
as allowing for climate change scenario planning. All that this would require would be an
alternative climate coverage in the GIS.

Since the Site Index is based on measured data it would allow for a more thorough review of
how well the growth models are performing. The current method uses the growth models to
generate the default Site Index, which means that it is not possible to test the performance of
the growth models directly.

The new coverage will be on compartment level (see Appendix 6 for a description of the
geographic hierarchy) — the current process is generally complied on an Area, Working plan
or Farm level depending on the data available. The new process will therefore bring a higher
level of focus or intensity. The level of accuracy will be dependant on the lowest level of
accuracy of the data used.

The default Site Index coverage can be used to check specific enumerations — the measured
Site Index can be compared to the predicted default. It can also be used to identify under
performing stands (expected versus actual productivity) for further investigation, and as a
means of improving corporate governance by identifying sites for further investigation and

or audit.
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+ The default Site Index coverage could be used to evaluate future potential forest sites, and for
the ranking of sites into areas of high or low productivity and therefore input and or
investment costs.

« The coverage can also be used to identify sites for research (e.g. for climate change effects,
stem form and volume function, biomass, wood and fibre quality, silviculture etc.). Currently
this can only be done on compartments that have been enumerated, or on the level which the
default Site Index has been calculated (e.g. on a Farm level.) — a distinct disadvantage if the
research site is needed on an un-planted site, or if sites with varying Site Indexes are needed

on the same farm.

6.2. Additional processes

As already mentioned , the proposed default Site Index process will allow for other processes such
as climate change scenario planning, and the selection of research sites. It will also mean that
current growth and yield processes could be changed to take advantage of the new data. Examples
of this are :

+ the placement of PSP (permanent sample plots), and espacement trials

 the grouping of growth and yield data for modelling purposes

 the linking of growth models to compartments.

6.3. Discussion

A long term (strategic) plan is a prediction about the future. It can be influenced by the probability
of random (i.e. cannot be modelled) events or elements such as fire or land reform*, as well as non-
random events or elements such as felling age or planted area. Models of the non-random events are
used to make the predictions. A model of Site Index is the last of these “non-random” elements
which is not generally used by South African forest planners. The potential for these new models

has only recently become obtainable due to the availability of the base data (specifically the climatic

7 Risk adjustments can be made for these random events, but by there nature they cannot be predicted or modelled. The term land reform refers to the land reform

process as carried out by the South African government.
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and edaphic data).

The addition, these new models will add significantly to the planning “tool box”, however, they will
also affect the current planning process, and introduce new processes which will naturally have an
effect on the roles and responsibilities of the staff involved. A certain amount of change

management will therefore be necessary.

One aspect of this change is the altering of the focus from an entirely empirically centred growth
and yield environment, to one that incorporates physiological processes. This will require a different
approach and way of thinking. If the new model is used for other purposes (such as climate change
scenario planning) some effort will be required in order to incorporate these models into the new
process. A model designed for one purpose cannot be easily converted for use in another way

without careful consideration.

An issue which has not been discussed is when to update the Default Site Index model. It is possible
that with an increase in input data, any new model produced will be significantly different from the
previous model. This is quite likely over a longer period due to climatic changes (e.g. over a drought
cycle or cyclonic event), or due to changes in the genetic material planted. These changes should
not, however, be material over shorter periods (up to 3 years). It would therefore be recommended
that updating the model should not be done at too short an interval, unless there are specific reasons

to do so, because constant changes could be detrimental to the integrity of the plan.

In a typical long term plan it is not uncommon for the construction of the plan to be based on less
than 3 — 6 % measured (enumerated via inventory) compartments™. Figure 45 below shows a real
world example (Ntonjaneni 2005). As you move closer to the present, the percentage of
compartments in the plan that are enumerated increases, the relevance of inventory therefore also
increases as you move from strategic (1 - 30 yrs), to tactical (1- 5 yrs) to operational (1-2 yrs) level

plans.

8 Generally only the older age classes are enumerated.
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Figure 45: An example of a particularly well enumerated plan (6.18 % of the total

plan is enumerated). 93.82 % of this plan is therefore based on default data.

A great deal of effort and attention is normally placed on collecting, analysing and using inventory
data, while comparatively little effort is placed on the default data. As one can see this is misplaced
from a strategic planning perspective - inventory data is simply one piece of the holistic data

“puzzle”.

6.4. Weighing the cost of data acquisition

The quantity of data or information can be defined by the characteristics the data has in terms of
accuracy, dependability, reliability, relevance, timeliness, completeness and presentation. Its value
can be said to be the difference between the value of the plan with, and without the data. (Kangas
2009; Duvemo 2009). Although there have not been many studies on the subject of valuing forest
planning data, there are a few methods available to allow forest planners to weigh the cost of
improved data. Traditionally this has been done simply based on the cost of acquiring the data and
the level of accuracy of the new data, or by minimising the cost of data collection based on some
level of accuracy (for example setting a minimum level of accuracy for enumerations — and choosing

the least costly method to acquire this data). The problem with these approaches is that they do not
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allow one to judge the value of the data on the level of decision making. (Kangas 2009).

6.5. Cost-plus-loss analysis

One method to include the value of the data for decision making is via Cost-plus-loss analysis,
whereby the expected losses caused by poor decision making (due to inaccurate data) are added to
the cost of acquiring the data (see Figure 46). The point where the sum of the two costs is at its

minimum is then the most optimal.

Cost — Cost

— Loss
Sum

Low Optimal High

Level of accuracy

Figure 46: The loss due to poor decision making based on poor
data , plus the cost of improving the accuracy is the total cost.

(After Holstrém 2001; Magnusson 2006).

The most difficult aspect of cost-plus-loss analysis is to calculate the value of the potential loss — in
most studies it is assumed that the plan is aimed at maximising the net present value (NPV) of the
forest, so the losses are defined by the effect on net present value (Kangas 2009; Holstrom 2001; Eid
2000). The difference between two plans (with / without the data, or data accuracy) in respect to
NPV can be calculated either directly as a function of accuracy, or more commonly by means of
simulation. In simulation there are also two possible methods : by either using real data and real

errors, or by simulating the errors (Kangas 2009).
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Figure 47 shows how NPV losses can occur due to incorrect or sub-optimal data (in most studies
this data is inventory data — but the principle can be extended to any type of data which would have
an effect on the value or timing of the plan). The top line (light grey) shows the NPV from the
harvesting plan using correct or optimal data. When the plan is based on incorrect or sub-optimal

data the harvest is carried out at time T, rather than at T,

The NPV loss can be calculated as follows (Eid 2000):
If:
NPVerr,, is the NPV of stand number x (x = 1,2,....m) in data sety (y = 1,2,...n) and

NPVopt,is the NPV of stand number x in the corresponding data set

Then the Net present value due to an error in a certain data variable of stand number x and data

set y is calculated as follows :

NPViloss, = NPVopt,— NPVerr

Equation 11 Net present value due to an error (Eid 2000)

Using the above calculation allows for a comparison between each individual variable in a data set —
and that particular variable's effect on net present value. Where potential NPV losses can be

expected to be large, more effort/cost can be spent on the collection of that particular piece of data.
The expected losses for a stand are then calculated as the sum of the NPV errors due to each data

element error for that compartment, and the NPV losses for all stands is the sum of all the stand

losses.
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Figure 47: How Net Present Value losses can occur over time

due to erroneous data (After Eid 2000; Kangas 2009)

6.6. Value of Information

It is possible to go even further than cost-plus-loss analysis by calculating the value of any
individual piece of information or information concerning a particular variable in decision making.
The Value of information (VOI) is the difference between the value of a particular project with
particular information or data, and the value without that data (less the cost of acquiring the
information). The value of an particular piece of information will depend on a number of factors
including (Duvemo 2009):

« How uncertain the decision maker/s are and what their attitude is towards risk.

« What is at stake.

«  What the cost is of using and assessing the information, and

« What the costs are of the alternatives or next-best substitute is.

Kangas (2009) also includes what the quality of prior information is, on the list affecting VOI.

In the value of information concept acquiring new information is only rational if the expected value

of information is positive, in other words the expected cost is less than the expected gain. It can be
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summarised as follows (Duvemo 2009):

EVOI=(EV 40— EV pefore) — EC

Equation 12 Expected value of information (Duvemo 2009)

where

EVOI - Expected value of information

EV.u.. - Expected value after the new information or data is added
EVore - Expected value without the information and

EC - Expected cost of acquiring the information

If forest data or information is not appropriately valued, it is possible that forestry companies
experience large losses (in net present value) which they are unaware of due to the fact that they
have developed plans based on data that is too imprecise or of poor quality (Borders et al. 2008;

Kitsch 2006).

6.7. Discussion

Duvemo and Lidmas (2006) summarised into four major components the possible sources of error in
forest growth prediction and planning :

« The inherent randomness of nature itself.

« Incomplete models due to a lack of data.

« Errors in the description of the present (or initial) state.

« FErrors in the parametrisation of the growth models due to the data used in model

development.

Obviously not much can be done about the randomness of nature — other than to study causal
relationships (i.e. how and why trees are influenced by nature) and try to gain a better understanding
of these influences and events. Risk adjustments can then be introduced into the plan to help correct
for these sources of errors™. It is nevertheless possible to fully correct for the other three major

causes of error - given an unlimited budget. However, forest companies do not have unlimited funds

% Such as adjusting for the risk of fire or drought.
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for planning, it is therefore up to the forest planner to ensure that the best possible value is obtained
from the funding available. It is possible to re-use data, for example, in Norway where old
compartment boundary data was used in conjunction with photogrammetry to estimate stand
volume, they found that it was possible to use this old data to reduce the time taken to do the
analysis (Aasland 2002). The longer data is used (for example soil data, which should not change
rapidly over time) the more one can spend on acquiring this data, and at a higher level of accuracy.
Using existing data for other uses (e.g. Site Index modelling using existing inventory, edaphic and

climatic data) is another method of obtaining the most value out of the funding available.

Developments in computer science will enable forest planners to use and present plans and data in
new and exciting ways in future examples include virtual reality, or 3D visualisation which will not
only improve our understanding of the alternatives but potentially help us spot overlooked

possibilities, or unforeseen consequences (Wang et al. 2006).

Finally it must be remembered that there are many other issues other than the quality of the input

data which will affect the integrity of the plan, and that complexity does not equal accuracy!
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APPENDIX 1 Random effects specification

Random effects specification.

A model with correlated random effects:

Imer(Hdom ~ 1 + logAGE + (1+ logAGEI|Plotid), data = mydatal)

A model with uncorrelated random effects: here we have a simple scalar random effect for P1otid,
and a random effect for the slope with respect to 10gAGE, indexed by Plotid:
Imer(Hdom ~ 1 + logAGE + (1/Plotid) + (0°+logAGEIPlotid), data = mydatal)

Models with both a random intercept and random slope with respect to TPHO for each site :

Imer (Hdom ~ logAGE + (TPHO | Plotid), data = mydatal)

Next we can examine a model with an intercept and slope for each site, but assuming independence
of these random effects with :

Imer (Hdom ~ logAGE + TPHO + (1IPlotid) + (TPHO-1 | Plotid), data = mydatal)
This model has a random intercept and a random slope for each site (as does the previous model),

however, in this model these random effects are assumed to be independent within site.

The intercept is implicit in linear models — to suppress it we can use 0 + term or term — 1, it needs to be explicit if it is the only term in the expression.
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APPENDIX 2 Abbreviated Species names

Abbreviated species names

ECAM Eucalyptus camaldulensis

ECLO cloeziana

EDUN dunnii

EELA elata

EEMA maculata

EFAS fastigata

EFRA fraxinoides

EG+M grandis and macarthurii
EGRA grandis

EGXC grandis cross camaldulensis
EGXU grandis cross urophilla
EGXN grandis cross nitens
EGXT grandis cross tereticornis
EMAC macarhturii

EMIX mixed species

ENIT nitens

EREG regnans

ERUB rubida

ESAL saligna

ESMI smithii

EURO urophilla

PCAR Pinus caribaea

PE+R elliotti and radiata
PE+T elliottii and taeda
PECH elliottii cross caribaea var hondurensis
PELL elliotti

PGRE greqgii

PKES kesiya

PMIX mixed species

PP+E patula and elliottii
PP+T patula and taeda

PPAT patula

PPSE pseudostrobus

PROX roxburghii

PTAE taeda

PTEC tecunumannii

+ donates the two separate species in the same compartment

x donates a hybrid cross (generally cloned)
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APPENDIX 3 List of Acronyms

Acronym Meaning

Apan_evap_08 Potential Apan evapotranspiration for August (09 = September etc.) mm
APO Annual plan of operations

BA Basal Area

CART Classification and Regression Trees

Cp /CP Complexity parameter

df Degrees of freedom

E.gxc E. grandis x E. camaldulensis

E gxt E. grandis x E. tereticornis

E.gxu E. grandis x E. urophylla

GIS Geographic information system

ha Hectare

Hdom / HD Dominant height

HSS Harvest Scheduling System

ICFR Institute for Commercial Forestry Research
logAge Natural logarithm of age

MAI.x Maximum Mean Annual Increment (m*/ha/yr)
MALI, Mean Annual Increment (m*/ha/yr), to base age n
Mgs_duration Mean growth season duration (days)

MLR Multiple linear regression

Mondi Mondi South Africa — a pulp, wood chip and liner board company with approximately 327 000 ha of

commercial plantations under management. http://www.mondigroup.com/desktopdefault.aspx/tabid-349/

NPV Net Present Value

PSP Permanent Sample Plot

REGWQ Ryan, Einot, Gabriel, Welsch Q test

RSME Root square mean error

SAPPI Sappi Forests South Africa — a pulp and saw timber forestry company with approximately 489 000 ha of

commercial plantations under management (excluding Swaziland).

SI Site Index

SPHA Stems Per Hectare

Spp Species

SteClsCli Site Classification by Climate

TPH Current stems per Hectare

TPHO Initial planted stems per Hectare

TSP Temporary Sample Plot

VOI Value of Information

WBIJUN Water Balance for June (SEP = September etc.) mm
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APPENDIX 4 variables considered in modelling

Site variable

Unit of measure.

Altitude 200m

m

Solar Radiation

MIJ.m2.day" (by month)

Mean Annual Precipitation (2003) mm
Rainfall Concentration %
Rainfall Seasonality Seasons

Means Of Daily Maximum Temperature

OC (by month)

Means Of Daily Minimum Temperature

OC (by month)

Daily Mean Temperature

OC (by month)

Temperature Range (T -T )

OC (by month)

Mean Annual Temperature oC

Heat Units Odays (by month)
Average First Date of Heavy Frost Day of year
Average Last Date of Heavy Frost Day of year
Average Duration of Frost Period Days

Average Number of Days with Frost Days

Standard Deviation of Number of Days with Frost Days

Daily Mean Relative Humidity

% (by month)

Daily Minimum Relative Humidity

% (by month)

Potential Evaporation

mm (by month)

Potential Evaporation Mean Annual

mm

Potential Evapotranspiration

mm (by month)

Wilting Point top soil - 84 soil zones mm
Grid Wilting Point top soil - 84 soil zones mm
Wilting Point sub soil - 84 soil zones mm
Grid Top soil to sub soil daily drainage fraction fraction
Grid sub soil daily drainage fraction fraction
Grid Initial Crop Numbers (Acocks) ACRU Crop Number
Moisture Growing Season Mean Start of Season month
Moisture Growing Season Mean End of Season month
Moisture Growing Season Duration of Season day
Gross Irrigation Requirements Median Annual mm
Mean Annual Precipitation or MAP mm
Probability of obtaining < 650 mm of annual rainfall in any given year %
Probability of obtaining > 850 mm of annual rainfall in any given year %

Mean Monthly Precipitation

mm (by month)

Mean Annual Temperature or MAT

oC

Site classification based on climate

CT=Cool temperate; WT=Warm

temperate; ST=Sub-tropical

Monthly means of Minimum daily Temperature

OC (by month)

Monthly means of Maximum daily Temperature

OC (by month)

Total Annual Potential: A-pan equivalent Evaporation

mm

Mean Monthly A-pan Evaporation

mm (by month)

Total Annual Solar radiation

MJ/m*/day
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Appendix 4 continued.

Site variable Unit of measure.

Mean Monthly Solar radiation MJ/m*day( by month)

Topsoil texture-from the 1:250 000 scale land types ~

Total soil depth-from the 1:250 000 scale land types mm

Permanent Wilting Point of topsoil horizon mm/m
Field Capacity (Drained Upper Limit) of topsoil horizon mm/m
Total Porosity of topsoil horizon mm/m

Geology-from the 1:1 000 000 scale geology map ~

Lithology-from the 1:1 000 000 scale geology map ~

Physiographic region refer to Kunz & Pallet (2000)

Soil texture derived from parent material ~

Soil depth derived from parent material mm
Wilting point derived from parent material mm/m
Field capacity derived from parent material mm/m
Total porosity derived from parent material mm/m
Altitude from the 1'x1" of a degree grid m
Slope derived from the 1°x1" altitude grid Deg
Aspect derived from the 1°x 1" altitude grid Deg
Altitude derived from the 1:200/400m altitude grid m
Slope derived from the 1:200/400m altitude grid Deg
Aspect derived from the 1:200/400m altitude grid Deg
Water balance mm (by month)
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APPENDIX 5 Site Classification based on Climate

Cold
MAT °C Below 10
Class Cold Cold Cold
Dry Muoist Wet
MAP mm <700 700-800 =800

Cool Temperate

MAT °C 10-14 14-15 15-16

Class CT1 cT2 CT3 CT4 CT5 CT6 cT7 CT8 cT9
Dry Moist Wet Dry Moist Wet Dry Moist Wet

MAP mm =700 T00-800 =800 =800 800-900 =800 =825 825-925 >925
Warm Temperate

MAT °C 16-17 17-18 18-19

Class WT1 WT2 WT3 WT4 WTS WT6E WT7 WT8 wWT9
Dry Muoist Wet Dry Moist Wet Dry Moist Wet

MAP mm <850 850-950 =950 <B75 875-975 =975 <900 900-1000 =1000
Sub Tropical

MAT °C 19-20 20-21 21-22

Class ST1 5T2 ST3 ST4 ST5 ST6 sT7 ST8 sT9
Dry Moist Wet Dry Moist Wet Dry Moist Wet

MAP mm =925 925-1025 >1025 =950 950-1050 >1050 <475 975-1075 >1075
Tropical

MAT °C Above 22

Class Tropical Tropical Tropical
Dry Moist Wet

MAP mm <075 975-1075 >1075

Smith C.W,, Pallett R.N., Kunz R.P., Gardner R.A.W., du Plessis M. (2005). A strategic forestry
site classification for the summer rainfall region of Southern Africa based on climate, geology and

soils. ICFR Bulletin Series 03/05, Pietermaritzburg.
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APPENDIX 6 Geographic hierarchy

Highest
Level

Lowest
Level

Hierarchy

Company
|

v

Business Unit (BU)

y

District

Area

v

Working Plan Unit (WPU)

y

Farm / Block

y

Compartment

Example

Mondi Business Paper

South

Zululand

Umfolozi

Nseleni

Aboyne

A002b

All databases have some form of hierarchy to enable collation analysis and reporting of data on

various levels , all forestry companies have a geographic hierarchy for the same reasons. This

geographic hierarchy is normally a refection in some way of the management hierarchy.
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APPENDIX 7 Results of the REGWQ test on the Pinus data

Ryan - Einot — Gabriel - Welsch Q Pairwise Multiple Comparison Test.

Pair wise comparisons

t statistic

Adjusted p-value

H, rejected (95 %)

C:4-6-D:6-8 1.7100 0.22630

C:4-6-E:8-10 3.3600 0.04640

C:4-6-F:10-12 4.0000 0.02420

C:4-6-G:12-14 4.3200 0.01940 *
C:4-6-H: 14-16 4.7800 0.01310 *
C:4-6-1:16-18 4.6400 0.01330 *
C:4-6-J:18-20 4.9600 0.01090 *
C:4-6-K:20-22 5.2800 0.00590 *
C:4-6-L:22-24 5.4500 0.00460 *
C:4-6-M:24-26 6.8300 0.00010 *
C:4-6-N:26-28 5.2900 0.00850 *
C:4-6-0:>28 5.0500 0.01870 *
D:6-8-E:8-10 3.5500 0.01200

D:6-8-F:10-12 5.8900 0.01180

D:6-8-G:12-14 6.5700 0.00000 *
D:6-8-H:14-16 7.7600 0.00000 *
D:6-8-1:16-18 7.6800 0.00000 *
D:6-8-J:18-20 8.3900 0.00000 *
D:6-8-K:20-22 9.0100 0.00000 *
D:6-8-L:22-24 9.0500 0.00000 *
D:6-8-M:24-26 12.3400 0.00000 *
D:6-8-N:26-28 7.6800 0.00000 *
D:6-8-0:>28 5.7400 0.00250 *
E:8-10-F:10-12 1.4800 0.29560

E:8-10-G:12-14 2.3800 0.21230

E:8-10-H:14-16 3.7000 0.06770

E:8-10-1:16-18 3.4100 0.07500

E:8-10-J:18-20 4.2900 0.02930

E:8-10-K:20-22 5.1100 0.02720

E:8-10-L:22-24 5.3600 0.03110

E:8-10-M:24-26 8.9600 0.00000 *
E:8-10-N:26-28 4.4400 0.04450

E:8-10-0:>28 3.4600 0.29870

F:10-12-G:12- 14 1.8400 0.19440

F:10-12-H: 14 - 16 4.3600 0.01570

F:10-12-1:16-18 4.4300 0.01180

F:10-12-J:18-20 5.9200 0.01950

F:10-12-K:20-22 6.8800 0.02340

F:10-12-L:22-24 6.5700 0.02720
F:10-12-M:24-26 12.2000 0.00000 *
F:10-12-N:26-28 4.4200 0.03760

F:10-12-0:>28 3.0400 0.44000

G:12-14-H:14-16 2.2400 0.25270

G:12-14-1:16-18 1.7200 0.22330

G:12-14-J:18-20 3.3200 0.08840
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Appendix 7 continued.

Ryan - Einot — Gabriel - Welsch Q Pairwise Multiple Comparison Test.

G:12-14-K:20-22 4.5800 0.01950
G:12-14-L:22-24 4.7400 0.02340
G:12-14-M:24-26 10.0400 0.00000
G:12-14-N:26-28 3.3400 0.21580
G:12-14-0:>28 2.4800 0.65170
H:14-16-1:18-20 0.8600 0.54410
H:14-16-K:20-22 2.4100 0.20430
H:14-16-L:22-24 2.9000 0.16970
H:14-16-M:24-26 8.2400 0.00000
H:14-16-N:26-28 2.0600 0.59250
H:14-16-0:>28 1.7500 0.81710
1:16-18-H: 14-16 0.9700 0.49280
1:16-18-J:18-20 2.1900 0.26750
I:16-18-K:20-22 3.7800 0.03810
1:16-18-L:22-24 4.0000 0.03760
1:16-18-M:24-26 9.9000 0.00000
I:16-18-N:26-28 2.6600 0.41580
1:16-18-0:>28 2.0500 0.77480
J:18-20-K:20-22 1.8000 0.20440
J:18-20-L:22-24 2.3900 0.20790
J:18-20-M:24-26 8.0500 0.00000
J:18-20-N:26-28 1.6500 0.64650
J:18-20-0:>28 1.5100 0.82220
K:20-22-L:22-24 0.8400 0.55480
K:20-22-M:24-26 6.1200 0.00020
K:20-22-N:26-28 0.6200 0.89870
K:20-22-0:>28 0.9400 0.91010
L:22-24-M:24-26 4.7500 0.00440
L:22-24-N:26-28 0.0300 0.98240
L:22-24-0:>28 0.5900 0.90810
N:26-28-M:24-26 3.5500 0.03270
N:26-28-0:>28 0.5300 0.70640
0:>28-M:24-26 1.5600 0.27050
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APPENDIX 8 Summary of the Site data

Lon_DdD
Min. :129.39
1st Qu.:30.33
Median :30.58
Mean :30.70
3rd Qu.:30.87
Max. :32.30
MeaMthPreFeb
Min. 78.0
Ist Qu.:113.0
Median :130.0
Mean :132.5
3rd Qu.:147.0
Max. :287.0
MeaMthPreOct
Min. 53.0
1st Qu.: 80.0
Median 88.0
Mean 89.9
3rd Qu.: 98.0
Max. :164.0
MinMthTmpApr
Min. 7.40
1st Qu.: 9.80
Median :11.00
Mean :11.66
3rd Qu.:12.50
Max. :17.80
MinMthTmpNov
Min. 9.10
Ist Qu.:11.80
Median :12.60
Mean :13.21
3rd Qu.:14.10
Max. :18.20
MaxMthTmpJul
Min. :14.70
1st Qu.:17.90
Median :19.30
Mean :19.48
3rd Qu.:20.80
Max. :124.20
AveMthSrdJan
Min. :123.90
1st Qu.:25.80
Median :26.50
Mean 126.67
3rd Qu.:27.50
Max. :31.20

Lat_DdD
Min. :24.85
1st Qu.:25.88
Median :28.54
Mean :27.84
3rd Qu.:29.38
Max. :30.71
MeaMthPreMar
Min. 67.0
lst Qu.: 94.0
Median :109.0
Mean :112.5
3rd Qu.:129.0
Max. :211.0
MeaMthPreNov
Min. 77.0
1st Qu.:110.0
Median :124.0
Mean :123.3
3rd Qu.:133.0
Max. :197.0
MinMthTmpMay
Min. 4.100
1st Qu.: 6.400
Median 8.000
Mean 8.436
3rd Qu.: 9.200
Max. :15.500
MinMthTmpDec
Min. :10.60
Ist Qu.:13.10
Median :14.10
Mean :14.68
3rd Qu.:15.60
Max. :19.80
MaxMthTmpAug
Min. :16.70
1st Qu.:19.80
Median :20.90
Mean :21.15
3rd Qu.:22.50
Max. :25.10
AveMthSrdFeb
Min. :122.50
1st Qu.:24.40
Median :25.10
Mean :125.22
3rd Qu.:26.10
Max. :28.80

ST
Min :10.02
1st Qu.:18.42
Median :20.85
Mean :21.61
3rd Qu.:24.03
Max :41.60
MeaMthPreApr
Min. 34.00
Ist Qu.: 47.00
Median 54.00
Mean 57.05
3rd Qu.: 61.00
Max. :110.00
MeaMthPreDec
Min. 78.0
1st Qu.:119.0
Median :135.0
Mean :135.4
3rd Qu.:149.0
Max. :260.0
MinMthTmpJun
Min. 0.800
1st Qu.: 3.300
Median 5.100
Mean 5.522
3rd Qu.: 6.500
Max. :13.000
MaxMthTmpJan
Min. :21.00
Ist Qu.:24.30
Median :25.60
Mean :25.87
3rd Qu.:27.10
Max. :30.50
MaxMthTmpSep
Min. :19.00
1st Qu.:21.60
Median :22.40
Mean :122.85
3rd Qu.:24.30
Max. :126.40
AveMthSrdMar
Min. :20.40
1st Qu.:22.00
Median :22.60
Mean :122.73
3rd Qu.:23.40
Max. :25.70

Spp MAP rskLE650 rskGT850 MeaMthPreJan
EGRA 12434 Min. 618 Min. 0.000 Min. 3.60 Min. 78.0
PPAT 11944 1st Qu.: 840 1st Qu.: 4.300 1st Qu.: 51.30 1st Qu.:132.0
PELL 11699 Median 909 Median 8.300 Median 61.20 Median :144.0
EGXU 591 Mean 943 Mean 9.943 Mean 62.49 Mean :146.5
ENIT 570 3rd Qu.:1018 3rd Qu.:13.100 3rd Qu.: 75.50 3rd Qu.:159.0
EDUN 531 Max. :1635 Max. :167.900 Max. :100.00 Max. :1285.0
(Other) :2434
MeaMthPreMay MeaMthPreJun MeaMthPreJul MeaMthPreAug MeaMthPreSep
Min. 8.00 Min. 4.00 Min. 4.00 Min. 5.00 Min. 19.00
1st Qu.: 19.00 lst Qu.: 9.00 1st Qu.:10.00 lst Qu.:13.00 1st Qu.: 34.00
Median 24.00 Median :12.00 Median :13.00 Median :24.00 Median 47.00
Mean 29.07 Mean :16.54 Mean :17.06 Mean :24.16 Mean 48.99
3rd Qu.: 29.00 3rd Qu.:16.00 3rd Qu.:17.00 3rd Qu.:31.00 3rd Qu.: 59.00
Max. :121.00 Max. :67.00 Max. :68.00 Max. :75.00 Max. :118.00
MeaAnnTmp SteClsCli MinMthTmpJan MinMthTmpFeb MinMthTmpMar
Min. :13.10 WT1 :1054 Min. :11.40 Min. :11.30 Min. :10.10
1st Qu.:15.70 WT2 935 1st Qu.:13.90 1st Qu.:13.70 1st Qu.:12.60
Median :16.70 CT8 867 Median :14.90 Median :14.80 Median :13.70
Mean :17.10 WT3 792 Mean :15.47 Mean :15.39 Mean :14.34
3rd Qu.:18.10 ST9 787 3rd Qu.:16.40 3rd Qu.:16.30 3rd Qu.:15.30
Max. :122.00 CT5 748 Max. :20.70 Max. :20.80 Max. :20.00
(Other) :5020
MinMthTmpJul MinMthTmpAug MinMthTmpSep MinMthTmpOct
Min. 1.100 Min. 3.300 Min. 5.80 Min. 7.50
1st Qu.: 3.300 1st Qu.: 5.500 1st Qu.: 8.30 1st Qu.:10.20
Median 5.100 Median 6.900 Median 9.30 Median :11.10
Mean 5.475 Mean 7.368 Mean 9.94 Mean :11.67
3rd Qu.: 6.400 3rd Qu.: 8.100 3rd Qu.:10.60 3rd Qu.:12.50
Max. :12.700 Max. :13.900 Max. :15.70 Max. :16.80
MaxMthTmpFeb MaxMthTmpMar MaxMthTmpApr MaxMthTmpMay MaxMthTmpJun
Min. :20.60 Min. :20.20 Min. :18.70 Min. :16.60 Min. :14.40
Ist Qu.:24.20 Ist Qu.:23.50 Ist Qu.:21.80 1st Qu.:19.90 Ist Qu.:17.80
Median :25.60 Median :24.90 Median :23.10 Median :21.20 Median :19.10
Mean :25.78 Mean :25.05 Mean :23.31 Mean :21.46 Mean :19.30
3rd Qu.:27.00 3rd Qu.:26.30 3rd Qu.:24.60 3rd Qu.:22.80 3rd Qu.:20.50
Max. :30.10 Max. :29.60 Max. :27.80 Max. :26.10 Max. :24.30
MaxMthTmpOct MaxMthTmpNov MaxMthTmpDec TotAnnPev TotAnnSrd
Min. :19.10 Min. :19.60 Min. :20.50 Min. 11465 Min. :235.1
1st Qu.:22.20 1st Qu.:22.70 1st Qu.:24.00 1st Qu.:1674 1st Qu.:253.4
Median :23.10 Median :23.70 Median :25.30 Median :1756 Median :263.3
Mean :23.49 Mean :24.03 Mean :125.53 Mean :1745 Mean :1263.6
3rd Qu.:25.00 3rd Qu.:25.50 3rd Qu.:26.80 3rd Qu.:1821 3rd Qu.:272.7
Max. :27.30 Max. :27.80 Max. :129.80 Max. 11972 Max. :1298.5
AveMthSrdApr AveMthSrdMay AveMthSrdJun AveMthSrdJul AveMthSrdAug
Min. :17.80 Min. :14.50 Min. :12.80 Min. :13.40 Min. :16.70
1st Qu.:18.90 1st Qu.:15.90 1st Qu.:14.30 1st Qu.:15.00 1st Qu.:18.10
Median :19.70 Median :16.50 Median :14.80 Median :15.70 Median :19.10
Mean :19.69 Mean :16.77 Mean :15.12 Mean :15.96 Mean :19.15
3rd Qu.:20.40 3rd Qu.:17.70 3rd Qu.:16.10 3rd Qu.:17.00 3rd Qu.:20.30
Max. :22.00 Max. :18.90 Max. :17.20 Max. :18.10 Max. :21.50
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Appendix 8 continued.

AveMthSrdSep AveMthSrdOct AveMthSrdNov AveMthSrdDec Soil.textureA.horizon Soil.depth Soil.PWP
Min. :19.30 Min. :21.70 Min. :23.00 Min. :124.30 SaClLm :4882 Min. :225.2 Min. : 50.0
1st Qu.:21.70 1st Qu.:24.60 1st Qu.:25.40 1st Qu.:26.50 SaCl 11783 1st Qu.: 536.5 1st Qu.:159.0
Median :23.10 Median :25.60 Median :26.40 Median :27.40 ClLm :1362 Median : 708.6 Median :159.0
Mean :22.80 Mean :25.47 Mean 126.47 Mean :27.55 Sa : 750 Mean : 720.3 Mean :168.8
3rd Qu.:23.90 3rd Qu.:26.50 3rd Qu.:27.50 3rd Qu.:28.50 Cl : 514 3rd Qu.: 849.7 3rd Qu.:195.0
Max. :25.80 Max. :29.10 Max. :31.30 Max. :32.50 LmSa 1 378 Max. :1200.0 Max. :298.0
(Other): 534
Soil.FCP Soil.TPO Geologicaltype Lithology Physiographicregion Geol.textureOption.l Geol.depth
Min. :112.0 Min. :402.0 Q :1201 SHALE :2715 Min. : 1.00 ClLm : 739 1000 :1210
Ist Qu.:254.0 Ist Qu.:402.0 Pp @ 939 GRANITE 11332 Ist Qu.: 4.00 Lm @ 913 1200 :7012
Median :254.0 Median :423.0 vt : 827 SEDIMENTARY :1201 Median : 8.00 NoData: 3 1500 : 739
Mean :1265.3 Mean 1424.4 ZB : 807 ECCA SANDSTONE: 715 Mean :10.98 Sa :1239 2500 :1239
3rd Qu.:312.0 3rd Qu.:432.0 Pvo 2 717 TM SANDSTONE : 627 3rd Qu.:16.00 SaCl :3301 NoData: 3
Max. :416.0 Max. :482.0 Pv : 715 MUDSTONE : 610 Max. :41.00 SaLm : 297
(Other) :4997 (Other) :3003 Sicl :3711

Geol.PWP Geol.FCP Geol.TPO Altitude.1700 Slope.1700 Aspect.1700 Altitude.200 Slope.200
150 14214 120 :1239 450 :1239 Min. : 8 Min. : 0.050 Min. : 0.00 Min. : 7 Min. : 0.050
250 : 739 190 297 480 1 297 Ist Qu.: 920 1st Qu.: 0.830 1st Qu.: 81.03 1st Qu.: 913 Ist Qu.: 2.140
270 :3711 240 :3301 520 :3301 Median :1207 Median 1.800 Median :136.63 Median :1199 Median : 4.240
50 :1239 300 : 913 570 : 913 Mean :1102 Mean : 2.308 Mean :148.04 Mean :1095 Mean : 5.677
80 297 360 : 739 580 : 739 3rd Qu.:1433 3rd Qu.: 3.270 3rd Qu.:193.69 3rd Qu.:1416 3rd Qu.: 7.957
NoData: 3 400 :3711 630 :3711 Max. :2033 Max. :10.750 Max. :359.74 Max. :2030 Max. :32.200

Aspect.200 G_ex_abresp G_ex_bfresp G_ex_cropno G_ex_depaho G_ex_depbho G_ex_fcl G_ex_fc2
Min. : 0.00 Min. :31.00 Min. :31.00 Min. :10000 Min. :20.00 Min. :23.00 Min. :18.00 Min. :20.0

1st Qu.: 80.38 1st Qu.:40.00 1st Qu.:40.00 1st Qu.:10018 1st Qu.:20.00 1st Qu.:34.00 1st Qu.:20.00 1st Qu.:20.0
Median :157.43 Median :40.00 Median :40.00 Median :10205 Median :20.00 Median :40.00 Median :23.00 Median :30.0

Mean :165.38 Mean :44.33 Mean :44.33 Mean :19171 Mean :23.84 Mean :46.33 Mean 122.64 Mean :27.1
3rd Qu.:257.00 3rd Qu.:46.00 3rd Qu.:46.00 3rd Qu.:10219 3rd Qu.:25.00 3rd Qu.:50.00 3rd Qu.:26.00 3rd Qu.:33.0
Max. :358.96 Max. :164.00 Max. :164.00 Max. 170000 Max. :34.00 Max. :169.00 Max. :28.00 Max. :33.0
NA's : 1.00

G_ex_pol G_ex_po2 G_ex_wpl G_ex_wp2 Mgs_duration Altitude_200 Apan_evap_01 Apan_evap_02
Min. :39.00 Min. :40.00 Min. : 8.00 Min. : 9.00 Min. :167. Min. : 15 Min. :147. Min. :128.

0 0 0
1st Qu.:40.00 1st Qu.:40.00 1st Qu.:10.00 1st Qu.: 9.00 1st Qu.:210.0 lst Qu.: 915 1st Qu.:170.0 1st Qu.:146.0
Median :42.00 Median :42.00 Median :13.00 Median :18.00 Median :224.0 Median :1208 Median :177.0 Median :153.0
Mean :43.49 Mean :41.94 Mean :12.32 Mean :15.13 Mean $235.7 Mean :1099 Mean :180.1 7
3rd Qu.:47.00 3rd Qu.:43.00 3rd Qu.:15.00 3rd Qu.:20.00 3rd Qu.:241.0 3rd Qu.:1417 3rd Qu.:194.0 0
Max. :49.00 Max. :44.00 Max. :17.00 Max. :20.00 Max. :365.0 Max. :2029 Max. :213.0 0

Mean :155.
3rd Qu.:167.
Max. :184.

Apan_evap_03 Apan_evap_04 Apan_evap_05 Apan_evap_06 Apan_evap_07 Apan_evap_08 Apan_evap_09 Apan_evap_10
Min. :127.0 Min. :106.0 Min. : 90.0 Min. : 78.00 Min. : 91.0 Min. :115.0 Min. :129.0 Min. :133.0
1st Qu.:145.0 1st Qu.:123.0 1st Qu.:104.0 1st Qu.: 89.00 1st Qu.:101.0 1st Qu.:127.0 1st Qu.:143.0 1st Qu.:158.0
Median :152.0 Median :129.0 Median :111.0 Median : 93.00 Median :107.0 Median :135.0 Median :151.0 Median :168.0

Mean :152.9 Mean :128.1 Mean :111.6 Mean 1 93.74 Mean :105.5 Mean :136.4 Mean :153.9 Mean :169.0
3rd Qu.:164.0 3rd Qu.:135.0 3rd Qu.:121.0 3rd Qu.: 98.00 3rd Qu.:110.0 3rd Qu.:147.0 3rd Qu.:166.0 3rd Qu.:181.0
Max. :174.0 Max. :149.0 Max. :139.0 Max. :114.00 Max. :122.0 Max. :153.0 Max. :178.0 Max. :202.0
Apan_evap_11 Apan_evap_12 Apan_mean_an Cv_an_precip Dly_mean_t_01 Dly_mean_t_02 Dly_mean_t_03 Dly_mean_t_04
Min. :135.0 Min. :158.0 Min. :1465 Min. :15.00 Min. :16.00 Min. :15.00 Min. :15.00 Min. :13.00
1st Qu.:156.0 1st Qu.:176.0 1st Qu.:1674 1st Qu.:18.00 1st Qu.:19.00 1st Qu.:19.00 1st Qu.:18.00 1st Qu.:15.00
Median :167.0 Median :185.0 Median :1756 Median :21.00 Median :20.00 Median :20.00 Median :19.00 Median :17.00
Mean :166.0 Mean :187.1 Mean :1745 Mean :20.05 Mean :20.23 Mean :20.11 Mean :19.24 Mean :17.04
3rd Qu.:175.0 3rd Qu.:199.0 3rd Qu.:1821 3rd Qu.:22.00 3rd Qu.:21.00 3rd Qu.:21.00 3rd Qu.:20.00 3rd Qu.:18.00
Max. :194.0 Max. :219.0 Max. 11972 Max. :28.00 Max. :25.00 Max. :25.00 Max. :124.00 Max. :122.00

Dly_mean_t_05 Dly_mean_t_06 Dly_mean_t_07 Dly_mean_t_08 Dly_mean_t_09 Dly_mean_t_10 Dly _mean_t_11 Dly_mean_t_12
Min. :10.00 Min. : 7.00 Min. : 8.00 Min. :10.00 Min. :12.00 Min. :13.00 Min. :14.00 Min. :15.00
1st Qu.:13.00 1st Qu.:10.00 1st Qu.:10.00 1st Qu.:12.00 1st Qu.:15.00 1st Qu.:16.00 1st Qu.:17.00 1st Qu.:18.00
Median :14.00 Median :11.00 Median :12.00 Median :13.00 Median :15.00 Median :17.00 Median :18.00 Median :19.00

Mean :14.51 Mean :11.95 Mean :11.96 Mean :13.76 Mean :15.93 Mean :17.11 Mean :18.15 Mean :19.62
3rd Qu.:15.00 3rd Qu.:13.00 3rd Qu.:13.00 3rd Qu.:15.00 3rd Qu.:17.00 3rd Qu.:18.00 3rd Qu.:19.00 3rd Qu.:21.00
Max. :20.00 Max. :18.00 Max. :18.00 Max. :19.00 Max. :20.00 Max. :21.00 Max. :22.00 Max. :24.00

136



Appendix 8 continued.

Frost_days

Min.

1st Qu.:

Median

Mean

3rd Qu.:
:43.000

Max.

0.000
2.000
4.000
8.767
15.000

Heat_units_04

Min.

1st Qu.:
:211.
1224,

Median

Mean

3rd Qu.:
:379.

Max.

:100.

178.

0
0
0
3
258.0
0

Heat_units_12

Min.

1st Qu.:
:300.
:312.

Median

Mean

3rd Qu.:
:455.

Max.

:178.0

269.0

0
8
345.0
0

Mean_humid_07

Min.

1st Qu.:
:61.00
$61.91
3rd Qu.:
:71.00

Median

Mean

Max.

:52.00

59.00

65.00

Min_humid_03

Min.

1st Qu.:
:51.0
:51.1

Median

Mean

3rd Qu.:
:60.0

Max.

:43.0

49.0

53.0

Min_humid_11

Min.

1st Qu.:
:50.00
:50.44
3rd Qu.:
:61.00

Median

Mean

Max.

:41.00

48.00

52.00

Ms_dy_maxt_07

Min.

1st Qu.:
:19.00
:19.02
3rd Qu.:
:24.00

Median

Mean

Max.

:14.00

17.00

20.00

Ms_dy_mint_03

Min.

1st Qu.:
:13.00
:13.87

Median

Mean

3rd Qu.:
:20.00

Max.

:10.00

12.00

15.00

Frost_durtn

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:1
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Frost_end

0.00 Min.
4.00 1st Qu.:
40.00 Median
42.55 Mean
73.00 3rd Qu.:
22.00 Max.

0.
186.
:210.
:185.
227.
:257.

Heat_units_05 Heat_units_06

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

1
10
113
:15
18
132

2
5
7
3
4
5

Mean_an_prec

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:15

13.00 Min.
15.00 1st Qu
16.00 Median

Min. 0.
lst Qu.: 22.
Median 57.
Mean 75.
3rd Qu.: 99.
Max. :247.

o o v o o o

©o o o o o o

Frost_start

Min.

1st Qu.:

Media

Mean

n

0
147

:161

1143

3rd Qu.:
:183

Max.

176

Heat_units_07

Min.

1

st Qu.:

Median

Mean

3

rd Qu.:1

Max. 12

Mean_humid_01
:65.00

61.03 Mean

18.00

53.00 Max.

Mean_humid_08

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:54

60.
162,
162,
65.
172,

.00
00
00
83
00
00

Min_humid_04

Min.
lst Qu.:
Median
Mean

3rd Qu.:

Max.

:38.

45.

:47.
:47.

50.

:58.

00
00
00
61
00
00

Min_humid_12

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

141
49
:51
:50
53
160

.00
.00
.00
.74
.00
.00

Ms_dy_maxt_08

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:16
19
:20
:20
22
125

.00
.00
.00
.71
.00
.00

Ms_dy_mint_04

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

7
9
:11
:11
12
117

.00
.00
.00
.20
.00
.00

71,

3rd Qu.:

73.

:78.

Mean_humid_09

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:58.
63.
:64.
165,
67.
:75.

00
00
00
19
00
00

Min_humid_05

Min.

1st Qu.:
142,
142,

Median

Mean

3rd Qu.:
:55.

Max.

:32.

39.

46.

00
00
00
93
00
00

Ms_dy_maxt_01

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

121
24
125
125
27
:30

.00
.00
.00
.42
.00
.00

Ms_dy_maxt_09

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:19
21
122
122
24
126

.0
.0
.0
.4
.0
.0

Ms_dy_mint_05
4.000

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

.:70.00
172,

00
69
00
00

6.000

8.000
7.982

9.000

:15.000

0.
26.
62.
79.
05.
51.

00
00
00
22
00
00

.0

.0
.0
.3
.0
.0

Mean_humid_02
:66.00

Min.

1st Qu

Media

Mean

n

HY N

3rd Qu.:
:78.

Max.

73.

Mean_humid_10

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:61.
66.
:67.
:67.
69.
:76.

00
00
00
88
00
00

Min_humid_06

Min.
lst Qu.:
Median
Mean

3rd Qu.:

Max.

:30.

36.

:39.
:40.
.00

44

:52.

00
00
00
19

00

Ms_dy_maxt_02

Min.

1st Qu.:
:25.
:25.
27.
:30.

Median

Mean

3rd Qu.:

Max.

:20
24

.00
.00
00
34
00
00

Ms_dy_maxt_10

Min.
1st Qu.:
Median
Mean

3rd Qu.:

Max.

:19.

22.

:23.
:23.

25.

:27.

00
00
00
03
00
00

.:70.00
72,

00
69
00
00

Ms_dy_mint_06

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

0.0
3.0
5.0
5.1
6.0
3.0

00
00
00
06
00
00

Frost_stdev

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

Heat_units_01

0.000 Min.
3.000 lst
4.000 Medi
4.688 Mean
7.000 3rd
:10.000 Max.

Heat_units_08

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

Mean_humid_03

Min.

0.
86.
$117.
:131.
161.
:285.

1st Qu.:

Median

Mean

Max.

o o v o o o

64.0
69.0

:71.0

:70.8
3rd Qu.:
:77.0

72.0

Mean_humid_11

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

163,
69.
:70.
:70.
2.
277,

00
00
00
34
00
00

Min_humid_07

Min.

1st Qu.:
:39.
:39.

Median

Mean

3rd Qu.:
:51.

Max.

:29.

36.

43.

00
00
00
60
00
00

Ms_dy_maxt_03

Min.

1st Qu.:
124,
:24.
26.
:29.

Median

Mean

3rd Qu.:

Max.

:20
23

.00
.00
00
62
00
00

Ms_dy_maxt_11

Min.

1st Qu.:
:23.
:23.

Median

Mean

3rd Qu.:
:27.

Max.

Ms_dy_mint_07

Min.

:19.

22.

25.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

137

00
00
00
58
00
00

an

:192
Qu.:

:316.
:330.
361.

Qu.:

:480.

285.

Heat_units_09
84.
151.

Min.

lst Qu.:
Median
Mean
3rd Qu.:

Max.

:178.
:191.

219.

:321.

0
0
0
6
0
0

Mean_humid_04
:61.00

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:6
:6
7
27

66.00
8.
8.
0.
5.

00
25
00
00

Mean_humid_12
164,

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

69.

:71.
:70.

72.

277,

00
00
00
54
00
00

Min_humid_08

Min.
lst Qu.:
Median
Mean

3rd Qu.:

Max.

:40.
140

:53.

:31.

37.

44.

0
0
7
0
0

0

Ms_dy_maxt_04

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

118
21

:23.
122,

24.

:27.

00
00
00
85
00
00

Ms_dy_maxt_12

Min.
1st Qu.:
Median
Mean

3rd Qu.:

Max.

Ms_dy_mint_08

1.000 Min.
.000 lst
.000 Medi

.000 3rd

3
5
5.048 Mean
6
2

.000 Max.

:20.00

24.00

:25.00
:25.07

26.00

Qu.:

an

Qu.:

:29.00

Heat_units_02

:166

:295.
327.

.0 Min.

0 1st Qu.:
0 Median

3 Mean

0 3rd Qu.:
0 Max.

:431.

254.
:285.

Heat_units_10

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:1
1
12
:2
2
:3

11.
92.
21.
34.
68.
59.

0
0
0
4
0
0

Mean_humid_05

Min.
1st @
Media
Mean
3rd Q

Max.

u. :

n

u. :

156

62.
164,
:64.
67.
:73.

.00
00
00
62
00
00

Min_humid_01
$43.

Min.

1st Qu.:
:52.
:52.

Median

Mean

3rd Qu.:
:61.

Max.

51.

54.

Min_humid_09

Min.
lst Qu.:
Median
Mean

3rd Qu.:

Max.

:35.
41.
142,
$43.
46.
:57.

00
00
00
68
00
00

00
00
00
29
00
00

Ms_dy_maxt_05
:16.

Min.

1st Qu.:
:21.
:21.

Median

Mean

3rd Qu.:
126,

Max.

19.

22.

00
00
00
02
00
00

Ms_dy_mint_01
:11.00

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

.000 Mi
.000 1st Qu.:
.000 Median

13.00

:14.00
:15.04

16.00

:20.00

n.

.922 Mean
.000 3rd Qu.:
.000 Max.

:173.

252.

:288.

:300.

.0 Min.

0 1st Qu.:
0 Median

9 Mean

0 3rd Qu.:
0 Max.

333.

:455.

Heat_units_11

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:1
2
12
:2
2
:3

33.
l6.
46.
58.
91.
87.

0
0
0
4
0
0

Mean_humid_06

Min.
1st Q
Media
Mean
3rd Q

Max.

u.
162,
162,
65.
:71.

n

u. :

153
59

.00
.00
00
39
00
00

Min_humid_02

Min.

144,

1st Qu.:
:52.
:52.

Median

Mean

3rd Qu.:
BN

Max.

50.

54.

Min_humid_10

Min.
lst Qu.:
Median
Mean

3rd Qu.:

Max.

:39.
45.
:46.
:47.
49.
:58.

00
00
00
12
00
00

00
00
00
33
00
00

Ms_dy_maxt_06
:14.

Min.

1st Qu.:
:19.
:18.

Median

Mean

3rd Qu.:
:24.

Max.

17

20.

00

.00

00
83
00
00

Ms_dy_mint_02
:11.00
:13.00
:14.00
:14.95
:16.00
:20.00

Min.
1st Qu.
Median
Mean
3rd Qu.

Max.

Ms_dy_mint_09
5.
8.
9.
9.

10.

:15.

000
000
000
486
000
000

Heat_units_03

0
0
0
2
0
0



Appendix 8 continued.

Ms_dy_mint_10

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

7.00
10.00
:11.00
:11.23
12.00
:16.00

Pemo_evap_06

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:50.00
55.00
:56.00
:57.67
59.00
:74.00

Rain_seasons

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:3.000
3.000
:4.000
3.663
:4.000
6.000

Solar_radn_08

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:16.70
18.10
:19.10
:19.15
20.30
:21.50

Temp_range_04

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

8.00
10.00
:11.00
:11.15
12.00
:15.00

Temp_range_12

Min. 8.00
1st Qu.:10.00
Median :10.00
Mean :10.41
3rd Qu.:11.00
Max. :14.00
WBJUN
Min. :-103.
1st Qu.: -84.
Median -78.
Mean -71.
3rd Qu.: -69.
Max. 20.

55
60
85
74
40
95

Ms_dy_mint_11
Min. 9.00
1st Qu.:11.00
Median :12.00
Mean :12.72
3rd Qu.:14.00
Max. :18.00
Pemo_evap_07
Min. :56.00
1st Qu.:61.00
Median :64.00
Mean :165.32
3rd Qu.:68.00
Max. :80.00
Solar_radn_01
Min. $23.90
1st Qu.:25.80
Median :26.50
Mean :126.67
3rd Qu.:27.50
Max. :31.20
Solar_radn_09
Min. :19.30
1st Qu.:21.70
Median :23.10
Mean 122.80
3rd Qu.:23.90
Max. :25.80
Temp_range_05
Min. 9.00
1st Qu.:11.00
Median :13.00
Mean :12.53
3rd Qu.:14.00
Max. :17.00
WBDEC
Min. :—141.40
Ist Qu.: -88.10
Median -73.05
Mean -76.33
3rd Qu.: -63.30
Max. -4.60
WBMAY
Min. :-100.
1st Qu.: =-77.
Median -65.
Mean -55.
3rd Qu.: -51.
Max. 104.
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Ms_dy_mint_12

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:10.
13.
:14.
:14.
15.
:19.

00
00
00
23
00
00

Pemo_evap_08

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

74.
82.
91.
88.
92.
:105.

00
00
00
44
50
00

Solar_radn_02

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

122,
24.
:25.
:25.
26.
:28.

50
40
10
22
10
80

Solar_radn_10

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:21.
24.
:25.
125,
26.
:29.

70
60
60
47
50
10

Temp_range_06

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:10.
12.
:13.
:13.
15.
:18.

WBNOV

90
85
30
43
30
10

Min. H
1st Qu.:-
Median
Mean

3rd Qu.:

Max.

00
00
00
30
00
00

144.
103.
-87.
-89.
-76.
-22.

WBAPR

Min.
1st Qu.
Median

Mean

Max.

:-82.
:-46.
:-34.
:-19.
3rd Qu.:

Pemo_evap_01

Min.
1st Qu.:
Median
Mean

3rd Qu.:

Max.

:108.

128.

:137.
:137.

147.

:161.

0
0

0
2
0
0

Pemo_evap_09

Min.
1st Qu.
Median
Mean
3rd Qu.

Max.

87

:102.

:108

:107.
:113.
:125.

.0
0
.0
6
0
0

Solar_radn_03

Min.
1st Qu.:
Median
Mean

3rd Qu.:

Max.

:20.4

22.0

:122.6
:22.7

23.4

:25.7

0
0
0
3
0
0

Solar_radn_11

Min.
1st Qu.:
Median
Mean

3rd Qu.:

Max.

:23.0

25.4

126.4
126.4

27.5

:31.3

0
0
0
7
0
0

Temp_range_07

-15.
:184.

Min. :10.00
1st Qu.:12.00
Median :14.00
Mean :13.52
3rd Qu.:15.00
Max. :18.00
WBOCT
60 Min. :-187.
65 1st Qu.:-156.
40 Median :-128.
26 Mean :—-133.
90 3rd Qu.:-112.
35 Max. : -81.
WBMAR
25 Min. :-99.
70 1st Qu.:-58.
15 Median :-45.
97 Mean :1-28.
40 3rd Qu.:-20.
15 Max. :199.

Pemo_evap_02

Min.

1st Qu.:
Median
Mean
3rd Qu.:

Max.

Pemo_evap_10

Min.
1st Qu.
Median
Mean
3rd Qu.

Max.

:118.
:118.

:146.

95.
110.

0
0
0
2
126.0
0

98
$117.

:125.
:134.
:150.

Solar_radn_04

Min. :17.80 Min.

Ist Qu.:18.90 1st Qu.:
Median :19.70 Median
Mean :19.69 Mean
3rd Qu.:20.40 3rd Qu.:
Max. :22.00 Max.
Solar_radn_12 Temp_ra
Min. :24.30 Min.

1st Qu.:26.50 1st Qu.:
Median :27.40 Median
Mean :27.55 Mean
3rd Qu.:28.50 3rd Qu.:
Max. :32.50 Max.
Temp_range_08 Temp_ra
Min. :10.00 Min.

1st Qu.:12.00 1st Qu.:
Median :14.00 Median
Mean :13.32 Mean
3rd Qu.:15.00 3rd Qu.:
Max. :17.00 Max.

WBSEP

8 Min. :-179.05

5 1st Qu.:-160.20

4 Median :-133.75

8 Mean :-139.49

5 3rd Qu.:-123.40

3 Max. -78.15

WBFEB

50 Min. :-103.50

35 1st Qu.: -53.85

25 Median -31.50

05 Mean -18.28

11 3rd Qu.: 7.07

95 Max. 190.50

138

.0
0
:125.0 Median
5
0
0

Pemo_evap_03

Min.
1st Qu.
Median
Mean
3rd Qu.

Max.

Min.

1st Qu

Mean
3rd Qu

Max.

96.
:106.
$111.
112,
:120.
:134.

0
0

0
7
0
0

:103.
L1119,
:127.
:126.
.:135.
:147.

Solar_radn_05

Pemo_evap_11

0
0
0
8
0
0

:14.50 Min.
15.90 1st Qu.:
:16.50 Median
:16.77 Mean
17.70 3rd Qu.:
:18.90 Max.
nge_01
8.000 Min.
9.000 1st Qu.:
:10.000 Median
9.943 Mean
10.000 3rd Qu.:
:13.000 Max.
nge_09
9.00 Min.
12.00 1st Qu.:
:13.00 Median
:12.43 Mean
13.00 3rd Qu.:
:16.00 Max.
WBAUG
Min. :=155.00
1st Qu.:-145.10
Median :-129.45
Mean :-128.85
3rd Qu.:-116.55
Max. -76.55
WBJAN
Min. :-91.63
1st Qu.: -4.64
Median 16.12
Mean 20.11
3rd Qu.: 41.52
Max. :168.99

Pemo_evap_04

Min.

1st Qu.:
Median
Mean
3rd Qu.:

Max. :

75.
85.
88.
89.
94.
108.

00
00
00
52
00
00

Pemo_evap_12

Min.
1st Qu.
Median
Mean
3rd Qu.

Max.

$117.
:134.
:141.
:142.
:150.
:167.

0
0
0
9
0
0

Solar_radn_06

:12.8

14.3

:14.8
:15.1

l16.1

:17.2

0
0
0
2
0
0

Temp_range_02

8.
9.
:10.

9.
11.
:13.

000
000
000
957
000
000

Temp_range_10

Pemo_evap_05

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

:59
67
:70
172
77
194

Rain_concentn

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max.

122,
49.
:52.
$49.
57.
:60.

00
00
00
99
00
00

Solar_radn_07

Min.
1st Qu.:
Median
Mean

3rd Qu.:

Max.

:13.4

15.0

:15.7
:15.9

17.0

:18.1

0
0
0
6
0
0

Temp_range_03

Min.
1st Qu
Median
Mean
3rd Qu

Max.

8

.:10.
:10.
:10.

.11,
:13.

.00
00
00
23
00
00

Temp_range_11

8.00 Min.
11.00 1st Qu.:
:12.00 Median
:11.34 Mean
12.00 3rd Qu.:
:14.00 Max.
WBJUL
Min. :-120.10
1st Qu.:-108.10
Median :-100.10
Mean -97.89
3rd Qu.: -91.25
Max. -46.10

8.0
10.0

:10.0
:10.3

11.0

:14.0

0
0
0
7
0
0



Stellenbosch University http://scholar.sun.ac.za

APPENDIX 9 Regression tree models

1.1. Eucalyptus regression tree

FULL MODEL : * donates a terminal node.
1) root 5461 122681.2000 23.73320
2)SteClsCli=CT2,CT3,CT4,CT5,CT6,CT7,CT8,CT9,ST1,ST2,ST4,STZ,WT1,WT2,WT3,WT4,WT5WT7,WT8 3900 53823.7500 21.95042
4) Apan_evap_08>=146.5 1245 11761.1000 19.60063
8) Spp=ECLO,EFAS,EG+M,ERUB 80 421.1911 16.03375 *
9) Spp=EDUN,EELA,EEMA ,EFRA .EGRA,EGXC,EGXN,EGXU,EMAC,EMIX,ENIT,ESMI 1165 10252.2100 19.84556
18) Geologicaltype=C-Pd,Jd,Pp,Pv,Q,RB,Rmp,Vm,Vsi,Vt,ZB,ZC,Z-R 995 7750.9900 19.49081 *
19) Geologicaltype=Ru,Vbr,Vh,Vhd,Zka,Zne,Zns,Zo 170 1643.1110 21.92188 *
5) Apan_evap_08< 146.5 2655 31964.8400 23.05229
10) SteClsCli=CT3,CT4,CT5,CT7,CT8,CT9,ST4,WT1,WT2,WT4 1227 11954.7200 21.93282
20) Apan_evap_01>=176.5 202 1929.0970 19.72460 *
21) Apan_evap_01< 176.5 1025 8846.5110 22.36800 *
11) SteClsCli=CT6,ST1,ST2,ST7Z,WT3,WT5WT7,WT8 1428 17151.1600 24.01419
22) rskGT850< 51.9 115 850.4866 21.22357 *
23) rskGT850>=51.9 1313 15326.6600 24.25861
46) Geologicaltype=C-Pd,Jd,O-S,Pa,Pvo,Qm,TRt,Vm,Zn,Zne,Zns,Zo 512 5066.4670 23.18785 *
47) Geologicaltype=Kz,Nmp,Pe,Pp,Pv,Q,Vbr,ZB,Zka 801 9297.9390 24.94305 *
3) SteClsCli=ST3,ST6,ST8,ST9,WT6,WT9 1561 25493.1500 28.18731
6) WBJUN< -42.275 728 10925.0900 26.39460
12) WBMAY< -61.65 183  1404.9500 24.08268 *
13) WBMAY>=-61.65 545 8213.5670 27.17090
26) MeaMthPreFeb< 139.5 113 1526.0950 24.75168 *
27) MeaMthPreFeb>=139.5 432 5853.1360 27.80370 *
7) WBJUN>=-42.275 833 10183.6800 29.75405
14) AveMthSrdNov< 23.85 67  616.1522 25.36284 *

15)  AveMthSrdNov>=23.85 766 8162.5840 30.13813 *
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Appendix 9 continued.

1.2. Acacia regression tree

1 3 56 7 9

11
1 N N A |

size of tree

14 17 20 23 27 31 34 38 41

0.9 1.0
|

X-val Relative Error
0.8

LI I
Inf 0.045 0.025 0.014

0.0086 0.0055 0.0038 0.003 0.002

cp

Figure 48: Cross-validated relative error and CP by tree

size for the Acacia regression tree

Minimum relative error is for a tree of 24 splits. Pruned tree to 7 splits:

(2]

>=48 <48
MaxMthTmpSep

<2255 >=2255

_ n=20

30 — n=29 30 — n =65 30

25 | 25 | 25 4 __
204 __ 20 | é 20 %l
15 | = 15 15

30

25
20

>=9.45

MeaMihPreMar

<1135

9]
Lat DdD

<29.21397 >=29.21397

10}
MeaMihPreSep
30

>=1135

/

<555 >=555
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<945

/

Z54 =56 =152 =18 =128

n 30 4" n 30 = 30 "

=] —
25 - 25 & 25 4 = 25 ;

(=] 1 1

= 20 4 B3 20 { E3 20 — 20 E

- 154 o 154 = 15 | 15 o

Figure 49: Pruned Acacia regression Tree (CP = 0.026)
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Appendix 9 continued.

Where :
MeaMthPreMay = Mean monthly precipitation for May

G_ex_abresp = Grid top soil to sub soil daily drainage fraction

Max/Min MthTmpSep = Maximum / Minimum monthly temperature for September

MeaMthPre Sep/Mar = Mean monthly precipitation September / March
Lat_DdD = Latitude

Actual versus predicted Site Index

%
|

o
g
S
B

Predicled

a
b 8
o a S
s -
[=] o
— 2 8
] o
=
=< 27 o
— £
g s 2
8
w ° °
= 2
o
o
T T T T T T T T
16 17 18 19 20 21 22 23

Figure 50: Actual versus predicted Site Index for the Acacia

regression tree.

Root squared mean error (RMSE) = 2.008928, R? = 40.705
Full model :
node), split, n, deviance, yval * denotes terminal node
1) root 520 3539.27700 20.14227
2) MeaMthPreMay< 23.5 114 666.56360 18.14167
4) G_ex_abresp>=48 29 37.83612 16.13552 *
5) G_ex_abresp< 48 85 472.19280 18.82612
10) MaxMthTmpSep< 22.55 65 305.22090 18.24292 *
11) MaxMthTmpSep>=22.55 20 73.01486 20.72150 *
3) MeaMthPreMay>=23.5 406 2288.32200 20.70401
6) MinMthTmpSep>=9.45 278 1448.61800 20.21076
12) MeaMthPreMar< 113.5 262 1211.38000 20.02176
24) Lat_DdD< 29.21397 110 555.52710 19.18309
48) MeaMthPreSep< 55.5 54 250.58810 18.23537 *
49) MeaMthPreSep>=55.5 56 209.66840 20.09696 *
25) Lat_DdD>=29.21397 152 522.49230 20.62868 *
13) MeaMthPreMar>=113.5 16 74.62759 23.30562 *
7)  MinMthTmpSep< 9.45 128 625.16240 21.77531 *
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Appendix 9 continued.

1.3. Pinus regression tree

size of tree

13 5 7 10 12 14 16 18 20 22 24 26 28 31 33 36 38 40 42 44
I I O T T T A

X-val Relative Error

LI I I O |
Inf 0.031 0.0075 0.005 0.0041 0.0032 0.0028 0.0025 0.0022 0.002 0.0018

cp

Figure 51: Cross-validated relative error and CP

by tree size for the Pinus regression tree.

Minimum relative error is for a tree of 39 splits. Pruned tree to 7 splits:

PCAR, PELL, PE+R, PE+T, PGRE, PKES, PMIX, PP+E, PPSPECH, PPAT, PTECAE

< 47.58 >=47.58 C-Pd, Jd, Nmp, O-S, Pa, Pp, Pv, Pvo, Ra, RB, Rmp, Ru, TR, Vbr, Vdi, Vg, Vsi, ZB, ZC, Zf, Zka, Zm, Zne

<2035 >=2035

/

>=405 <405

< 607.65 >=607.65 CT2,CT3,CT4, CT5, (WT1, WT3, WT6, WT7, WT8, WTS

/
n =420 n =692 n=474 n =296 n=375 n =647 n =306 n=835 n=181
30 30 I 30 - 30 30 30 304 o 30
Q I’ —
25 25 54 § 25 25 8 254 & 25+ & 25 25 -
i H 8 ‘ ' ‘ == =
204 20 7 204 &5 20 4 = 20 { 5 20 { £33 20 { B2 204 E 204 T
_ = 4 4 3 4 ® 4 1 4 4 ] -
15 \‘%l 51 154 L 15 + 15 154 & 15 § 154 ¥ 15
10 10 10 10 - 10 10 o 10 10 10

Figure 52: Pruned Pinus regression tree (CP = 0.0075)

Where
Spp = Species
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Appendix 9 continued.

WBIJAN = Water balance for January
Geologicaltype = Geological type
Mgs_duration = Mean growth season duration
Min_humid_06 = minimum humidity for June
SteClsCli = Site Classification by Climate
Soil.depth = Soil depth

Actual versus predicted Site Index

o

25
|

IO @O © @

20
D @D © O O

Actual

15
|

10

16 17 18 19 20 21 22

Predicted

Figure 53: Actual versus predicted Site Index for the Pinus

regression tree.
RMSE = 1.89585, R*=42.00211
Full model :
1) root 4226 29211.3700 19.04483
2) Spp=PCAR,PELL,PE+R,PE+T,PGRE,PKES,PMIX,PP+E,PPSE,PP+T,PROX,PTAE 2257 11949.2900 17.77667
4) WBJAN< 47.58 1586 6829.5130 17.05988
8) Mgs_duration< 203.5 420 1609.9940 15.87031 *
9) Mgs_duration>=203.5 1166 4411.1040 17.48837
18) Soil.depth< 607.65 692 2216.3460 16.96757 *
19) Soil.depth>=607.65 474 1733.0520 18.24869 *
5) WBJAN>=47.58 671 2378.8750 19.47089
10) Geologicaltype=Jd,Pa,Pvo,TRt,Vm,Vt,Zf,Zm,Z0,Z-R 296 691.5144 18.27483 *
11) Geologicaltype=Pp,Pv,Vh,ZB,Zka,Zne 375 929.6712 20.41499 *
3) Spp=PECH,PPAT,PTEC 1969 9471.5670 20.49849
6) Geologicaltype=Vh,Vhd,Vm,Vt,Vw,Water,Zns,Z0,Z-R 647 3166.1950 19.47980 *
7) Geologicaltype=C-Pd,Jd,Nmp,O-S,Pa,Pp,Pv,Pvo,Ra,RB,Rmp,Ru,TRt,Vbr,Vdi,Vg,Vsi,ZB,ZC,Zf,Zka,Zm,Zne 1322 5305.3710 20.99704
14) Min_humid_06>=40.5 306 1315.1590 20.23712 *
15) Min_humid_06< 40.5 1016 3760.2840 21.22592
30) SteClsCli=CT2,CT3,CT4,CT5,CT6,CT7,CT8,CTI,WT2,WT4,WT5 835 2973.2400 21.00299 *
31) SteClsCli=WT1L,WT3,WT6,WT7,WT8WT9 181 554.1246 22.25431 *
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APPENDIX 10 Alternative Eucalyptus multiple regression model

using the explanatory variables identified in the regression tree

Call:
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Im(formula = SI ~ Spp + MeaMthPreFeb + SteClsCli + AveMthSrdNov +

Geologicaltype + Apan_evap_01 + WBJUN, data = Euc10)

Residuals:
Min 1Q Median 3Q Max
-13.4127 -2.0761 -0.1691 19112 11.6781
Coefficients:
Variable Estimate Std. Error t value Pr(>Itl)
(Intercept) 26.849274 3.717069 7.223 5.78e-13 ek
Spp[T.ECLO] -5.697923 3.440112 -1.656 0.097716
Spp[T.EDUN] 1.661898 3.077623 0.540 0.589224
Spp[T.EELA] -0.061184 3.192958 -0.019 0.984712
Spp[T.EEMA] 3.904362 4.345558 0.898 0.368974
Spp[T.EFAS] -1.723114 3.101602 -0.556 0.578537
Spp[T.EFRA] 2.336738 3.257089 0.717 0.473139
Spp[T.EG+M] -1.538632 3.558831 -0.432 0.665510
Spp[T.EGRA] 2.054852 3.074246 0.668 0.503902
Spp[T.EGXC] 0.093015 3.082704 0.030 0.975930
Spp[T.EGXN] 5.780823 3.116577 1.855 0.063671
Spp[T.EGXT] 2.517743 3.768331 0.668 0.504078
Spp[T.EGXU] 1.839125 3.080237 0.597 0.550484
Spp[T.EMAC] 0.295496 3.079784 0.096 0.923566
Spp[T.EMIX] 0.051268 3.098127 0.017 0.986798
Spp[T.ENIT] 1.156339 3.082461 0.375 0.707575
Spp[T.EREG] 4.039438 4.345397 0.930 0.352625
Spp[T.ERUB] -3.674069 4.440965 -0.827 0.408096
Spp[T.ESAL] 1.263792 3.174542 0.398 0.690571
Spp[T.ESMI] 1.731747 3.082148 0.562 0.574232
Spp[T.EURO] 2.834405 3.213509 0.882 0.377801
MeaMthPreFeb 0.035560 0.003897 9.125 <2e-16 ok
SteClsCIi[T.CT3] 0.870543 1.411242 0.617 0.537351
SteCIsClLi[T.CT4] -0.848082 1.297265 -0.654 0.513303
SteCIsCli[T.CT5] -1.244947 1.281114 -0.972 0.331209
SteClsCIli[T.CT6] 0.706540 1.318223 0.536 0.591995
SteCIsCL[T.CT7] -0.600276 1.321213 -0.454 0.649605
SteCIsCli[T.CT8] -0.431379 1.290498 -0.334 0.738186
SteClsCIi[T.CT9] -0.065894 1.305243 -0.050 0.959738
SteCIsCli[T.ST1] 2.437050 1.411212 1.727 0.084240
SteCIsCli[T.ST2] 2.524536 1.473964 1.713 0.086816
SteClsCIi[ T.ST3] 4.662008 1.389656 3.355 0.000800 ok
SteCIsCli[T.ST4] 1.675204 2.526231 0.663 0.507280
SteCIsCli[T.ST6] 4.919229 1494238 3.292 0.001001 ok
SteClsCIli[T.ST7] 1.640384 1.408778 1.164 0.244313
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Signif. codes: 0 #**'0.001 **'0.01 *' 0.05".'0.1"'"1

Residual standard error: 3.059 on 5377 degrees of freedom
Multiple R-squared: 0.5893, Adjusted R-squared: 0.5833

F-statistic: 97.67 on 79 and 5377 DF, p-value: < 2.2e-16

145

Variable Estimate Std. Error t value Pr(>ltl)
SteClsCli[ T.ST8] 1.654936 1.399511 1.183 0.237056
SteCIsCL[T.ST9] 3.567424 1.402997 2.543 0.011027 *
SteCIsCL[T.WT1] -0.082907 1.292872 -0.064 0.948872
SteCIsCli[T.WT2] -0.009913 1.297707 -0.008 0.993905
SteClIsCL[T.WT3] 0.364927 1.298987 0.281 0.778774
SteClIsCL[T.WT4] 0.857862 1.308873 0.655 0.512225
SteCIsCIi[T.WT5] 1.732455 1.312176 1.320 0.186794
SteCIsCL[T.WT6] 2.286185 1.327255 1.722 0.085038
SteCIsCL[T.WT7] 1.763377 1.322533 1.333 0.182479
SteCIsCli[ T.WT8] 3.339266 1.323067 2.524 0.011635 *
SteClIsCL[T.WT9] 3.533651 1.331462 2.654 0.007979 o
AveMthSrdNov 0.227708 0.092899 2451 0.014272 *
Geologicaltype[T.Jd] 0.508688 0.415987 1.223 0.221441
Geologicaltype[T.Kz] 4.514187 0.921179 4.900 9.84e-07 ok
Geologicaltype[ T.Nmp] 0.179810 0.395347 0.455 0.649260
Geologicaltype[T.O-S] 0.284042 0.303425 0.936 0.349253
Geologicaltype[T.Pa] -0.345460 0.468208 -0.738 0.460648
Geologicaltype[T.Pe] -0.452648 0.516122 -0.877 0.380516
Geologicaltype[T.Pp] 1.013916 0.297569 3.407 0.000661 ok
Geologicaltype[T.Pv] 0.818928 0.316673 2.586 0.009735 o
Geologicaltype[T.Pvo] -0.131548 0.351164 -0.375 0.707968
Geologicaltype[T.Q] 5.125765 0.540695 9.480 <2e-16 ok
Geologicaltype[T.Qb] 0.854647 0.821097 1.041 0.297988
Geologicaltype[T.Qm] 3.661870 0.954465 3.837 0.000126 ok
Geologicaltype[T.RB] 1.879957 0.771216 2438 0.014815 *
Geologicaltype[ T.Rmp] 1.290813 0.366418 3.523 0.000431 ok
Geologicaltype[T.Ru] 3.902222 0.822648 4.743 2.16e-06 ok
Geologicaltype[T.TRt] -1.384723 0.502306 -2.757 0.005858 Hk
Geologicaltype[T.Vbr] 1.768307 0.826452 2.140 0.032429 *
Geologicaltype[T.Vdi] 0.952964 0.578339 1.648 0.099460
Geologicaltype[T.Vh] 2.245967 0.650548 3.452 0.000560 ok
Geologicaltype[T.Vhd] 3.416696 0.996721 3.428 0.000613 ok
Geologicaltype[T.Vm] -1.020562 0.476198 -2.143 0.032146 *
Geologicaltype[T.Vsi] 1.444058 0.650514 2.220 0.026469 *
Geologicaltype[T.Vt] -0.474286 0.363816 -1.304 0.192411
Geologicaltype[T.ZB] 1.320333 0.325824 4.052 5.14e-05 ok
Geologicaltype[T.ZC] 0.015330 0.542714 0.028 0.977466
Geologicaltype[T.Zka] 1.122810 0.351446 3.195 0.001407 o
Geologicaltype[T.Zn] 0.803299 0.673609 1.193 0.233106
Geologicaltype[T.Zne] -0.440602 0.696138 -0.633 0.526811
Geologicaltype[T.Zns] -1.717184 0.876446 -1.959 0.050134
Geologicaltype[T.Zo] -0.573434 0.542421 -1.057 0.290480
Geologicaltype[T.Z-R] 0.277815 0.650577 0.427 0.669375
Apan_evap_01 -0.091338 0.009033 -10.111 <2e-16 ok
WBIJUN 0.025247 0.004077 6.192 6.37e-10 ok
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APPENDIX 11 M5 pruned Eucalyptus Model tree

(using smoothed linear models)
Tree:
SteClsCli=ST8,WT6,ST6,WT9,ST9,ST3 <=0.5 :

| Apan_evap_08 <= 146.5 :

| SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8, WT6,ST6,WT9,ST9,ST3 <=0.5:

| | WBSEP <=-131.825 : LM1 (244/66.458%)

I | WBSEP > -131.825 : LM2 (973/61.743%)

| SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8 WT6,ST6,WT9,ST9,ST3 > 0.5 :

| | Mgs_duration <= 238.5 : LM3 (721/69.947%)

| | Mgs_duration > 238.5 : LM4 (715/72.207%)

Apan_evap_08 > 146.5 : LM5 (1245/62.257%)
SteClsCli=ST8,WT6,ST6,WT9,ST9,ST3 > 0.5 : LM6 (1558/77.198%)
LM num: 1
SI= 0.0202 * Spp=ENIT,ECAM,EFRA EDUN,ESMILESAL ,EEMA EMIX,EGXN,EGRA ,EGXC,EREG,EGXT,EGXU,EURO
+0.0398 * SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8,WT6,ST6,WT9,ST9,ST3
+0.0087 * SteClsCli=ST8, WT6,ST6,WT9,ST9,ST3
+0.0005 * Mgs_duration
-0.0004 * Apan_evap_08
+0.0038 * WBSEP
+0.0002 * WBJUN
+20.5488
LM num: 2
SI= 0.0202 * Spp=ENIT,ECAM,EFRA EDUN,ESMILESAL,EEMA EMIX,EGXN,EGRA ,EGXC,EREG,.EGXT,EGXU,EURO
+0.0398 * SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8,WT6,ST6,WT9,ST9,ST3
+0.0087 * SteClsCli=ST8, WT6,ST6,WT9,ST9,ST3
+0.0005 * Mgs_duration
-0.0004 * Apan_evap_08
+0.0009 * WBSEP
+0.0002 * WBJUN

+22.449
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Appendix 11 continued.

LM num: 3
SI= 0.0202 * Spp=ENIT,ECAM,EFRA ,EDUN,ESMLESAL,EEMA EMIX , EGXN,EGRA EGXC,EREG,EGXT,EGXU,EURO
+0.0366 * SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8,WT6,ST6,WT9,ST9,ST3
+0.0087 * SteClsCli=ST8,WT6,ST6,WT9,ST9,ST3
+0.0009 * Mgs_duration
- 0.0004 * Apan_evap_08
-0.0001 * WBSEP
+0.0002 * WBJUN
+23.04
LM num: 4
SI= 0.0202 * Spp=ENIT,ECAM,EFRA ,EDUN,ESMLESAL,EEMA EMIX EGXN,EGRA EGXC,EREG,EGXT,EGXU,EURO
+0.0366 * SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8,WT6,ST6,WT9,ST9,ST3
+0.0087 * SteClsCli=ST8,WT6,ST6,WT9,ST9,ST3
+0.0009 * Mgs_duration
- 0.0004 * Apan_evap_08
-0.0001 * WBSEP
+0.0002 * WBJUN
+24.5622
LM num: 5
SI= 1.8389 * Spp=ENIT,ECAM,EFRA EDUN,ESMILESAL,EEMA ,EMIX,EGXN,EGRA ,EGXC,EREG.EGXT,EGXU,EURO
+0.0313 * SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8, WT6,ST6,WT9,ST9,ST3
+0.0087 * SteClsCli=ST8,WT6,ST6,WT9,ST9,ST3
+ 0.0004 * Mgs_duration
-0.0007 * Apan_evap_08
-0.0001 * WBSEP
+0.0002 * WBJUN
+ 18.4046
LM num: 6
SI= 0.0217 * Spp=ENIT,ECAM,EFRA, EDUN,ESMIESAL ,EEMA,EMIX, EGXN,EGRA EGXC,EREG,EGXT,EGXU,EURO
+0.0193 * SteClsCli=WT7,CT3,WT5,CT6,WT3,ST1,WT8,ST2,ST7,ST8,WT6,ST6,WT9,ST9,ST3
+0.0217 * SteClsCli=ST8,WT6,ST6,WT9,ST9,ST3
+0.0001 * Mgs_duration
-0.0005 * Apan_evap_08
- 0.0002 * WBSEP
+0.0717 * WBJUN
+ 31.0906

Number of Rules : 6
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Appendix 11 continued.

=== Summary ===

Correlation coefficient

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error

Total Number of Instances

0.7218

2.5906

3.2791

67.4107 %

69.2135 %

5456
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