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Abstract

Keywords – Combiners, Radial Combiners, Conical Combiners, Conical Transmission Lines,

N -way Combiners, Tapered Lines

This dissertation presents a technique for the design of N -way conical line power combiners,

which offers significant advantages over existing axially symmetric combining techniques.

A full analytical study of conical transmission lines is done, and evaluated results are presented.

These include a proof of the cutoff frequency equation, and plots of the field patterns, of higher

order modes which are unavailable in literature.

A coaxial fed conical line combiner for 10 inputs is proposed, designed and evaluated. The

design technique relies on the uniform transmission line characteristics of the conical lines to

eliminate the need for complex full wave optimisation, typically needed in the design of the more

commonly used radial line combiners. Circuit models are instead employed to achieve a wide

matched bandwidth by using optimised stepped impedance coaxial lines to feed the combining

structure. The prototype developed at X-band displays more than an octave bandwidth with

a return loss of better than -14.5 dB. Using tapered line matching sections increases the power

handling capability of the combiner by eliminating sharp edges, and allows for tolerance insen-

sitive manufacture of the structure by widening conductor spacings. Such a 10-way prototype

is developed at X-band which displays a -18.7 dB return loss bandwidth of 47% with very low

losses.

A study is done to determine the limitations on the design of general N -way combiners, and

the results are incorporated into the design technique. The full process is demonstrated by

the design and simulation of a 30-way combiner at Ku-band which displays a simulated -20 dB

return loss bandwidth of 34%.

The design technique is simple to execute and requires very little full wave analysis. Results

obtained with the manufactured combiners are better than those of any previously published

axially symmetric combiners.
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Opsomming

Sleutelwoorde – Kombineerders, Radiale Kombineerders, Koniese Kombineerders, Koniese Trans-

missielyne, N -rigting Kombineerders, Tapse Lyne

Hierdie proefskrif stel ’n tegniek voor vir die ontwerp van N -rigting koniese lyn kombineerders

wat verskeie voordele bied bo bestaande aksiaal simmetriese kombineringstegnieke.

’n Volledige analitiese studie van koniese transmissielyne word gedoen, en die berekende resultate

word voorgelê. Dit sluit in ’n bewys vir die vergelyking van die afknipfrekwensie, sowel as plots

van die veldpatrone, van die hoër orde modusse wat onbeskikbaar is in die literatuur.

’n Koaksiaal gevoerde koniese lyn kombineerder vir 10 intrees word voorgestel, ontwerp en

getoets. Die ontwerptegniek maak staat op die uniforme transmissielyn eienskappe van koniese

lyne om komplekse volgolf optimering uit te skakel, wat tipies benodig word in die ontwerp

van die meer algemeen gebruikte radiale kombineerders. ’n Wye bandwydte word verkry deur

stroombaanmodelle van die trapwyse impedansie koaksiale lyne, wat die struktuur voer, te

optimeer. Die ontwikkelde prototipe behaal meer as ’n oktaaf bandwydte by X-band, met ’n

weerkaatskoëffisiënt van beter as -14.5 dB. Deur tapse lyn aanpassingsnetwerkte in te span, word

die drywingsvermoë van die struktuur verhoog deur skerp randte uit te skakel, en word voor-

siening gemaak vir toleransie onafhanklike vervaardiging van die struktuur deur die spasieëring

tussen die geleiers te verhoog. ’n Tien-rigting prototipe is ontwikkel by X-band wat ’n -18.7 dB

weerkaatskoëffisiënt bandwydte van 47% behaal, met baie lae verliese.

Die ontwerptegniek word verder uitgebrei deur ’n studie te doen van die beperkings van die

tegniek op algemene N -rigting kombineerders. Die volledige proses word gedemonstreer deur

die ontwerp en simulasie van ’n 30-rigting kombineerder by Ku-band, wat ’n gesimuleerde -20 dB

weerkaatskoëffisiënt bandwydte van 34% behaal.

Die ontwerptegniek is eenvoudig om uit te voer en vereis baie min volgolf analiese. Resultate

bereik met die vervaardigde kombineerders is beter as die van enige vooraf gepubliseerde aksiaal

simmetriese kombineerders.

iii



Acknowledgements

This work would not have possible without the help and support of of others, and I would like

to express my deepest gratitude to:

• Professors Petrie Meyer and P.W. van der Walt, my promoters, for their unfailing support,

leadership, encouragement, advice, and insight throughout the course of this project.

• My mother for always lending an interested ear and an encouraging word whether or not

she understood the deeper intricacies of the problem - be it an engineering problem, girl

problem or washing stain problem!

• My father for teaching me the valuable lesson of first getting the ball near the hole before

you try to get it in the hole, without which I would probably still be struggling with some

small negligible little problem and missing the big picture...

• Stephanie Zietsman for her loyal friendship and handy obsession with English spelling and

grammar rules for the proofreading.

• Kristiaan Schreve for his help with the drawings of the first prototype.
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Chapter 1

Introduction

1.1 Background on Axially Symmetric Combiners

Due to the vast improvement of the power output capability of solid state amplifiers in the

microwave frequency range, there has been considerable interest in recent years in finding highly

efficient and scalable approaches to combining the signals from a large number of such amplifiers.

Such a system of several combined solid state amplifiers can be used as a substitute for travelling

wave tube (TWT) amplifiers which are bulky, difficult to bias, and expensive. Also, when several

solid state amplifiers are used in an amplification system, and one or more of these fail, the system

could still be operable, whereas if a TWT is used and it fails, complete system failure will occur.

Power combiners can typically be divided into three broad classes, ie. corporate combiners,

chain combiners, and axially symmetric or N -way combiners [1, 2]. Axially symmetric power

combiners offer a number of advantages over the corporate or chain-type combiners, especially

for a large number of combining ports (N ≥ 8); the most important being lower loss and smaller

size due to the minimisation of path lengths, and improved amplitude and phase balance due to

the symmetry [3]. Axially symmetric combiners include all combining structures in which the

feed ports are placed symmetrically around a central output port, and can be implemented as

radial lines, coaxial lines, planar lines, and as presented in this work, conical lines. Of these,

planar line types exhibit substantially higher loss and lower power handling capability than the

other three, and will not be considered further.

In radial combiners, the energy travels in the radial direction between the central port and the

axially symmetric peripheral ports within a cylindrical parallel plate transmission line (radial

line). Radial line combiners have been thoroughly investigated in the literature, and several

computer algorithms and strategies for their analysis and design have been developed. These

design strategies include design using simplified circuit models of the structure [4], electromag-

1
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netic (EM) field analysis of the structure [5], and combinations of these two methods [3, 6].

Several microwave radial combiners have been reported, including 30-way combiners built at

12.5 GHz demonstrating a 25% bandwidth with a return loss of around -13 dB [3, 7], a 20-way

combiner built at 14 GHz demonstrating a 57% bandwidth with a -17 dB return loss [5], and 8-

and 16-way combiners built at 10 GHz demonstrating -20 dB return loss bandwidths of respec-

tively 33% and 25% [6]. The combiners in [6] use a conical line in the transition between the

central coaxial line and the radial line.

The main problem with a radial line is that, although it supports a dominant transverse elec-

tromagnetic (TEM) mode, the impedance of this mode varies strongly with radius, forming a

non-uniform transmission line [8, 9]. Because of this radial dependence, the input impedance

is not equal to the characteristic impedance of the line and, for a finite length radial line, it is

generally complex. These factors limit the performance and make the design of radial combiners

difficult and normally full wave optimisation-based.

This is not a problem in coaxial combiners, where an oversized coaxial transmission line is

normally used as the combining structure. In a coaxial combiner the input ports are placed

symmetrically around a coaxial structure on a plane perpendicular to the axis of the coaxial

system, and the energy travels axially between the input ports and a coaxial output port.

Since a coaxial line supports a uniform TEM transmission line mode (constant characteristic

transmission line impedance), it has the advantage that normal transmission line theory can be

used for the matching of the low impedance line at input ports to a higher impedance (typically

50 Ω) output port. An 18-way coaxial combiner has been demonstrated at L-band, which

obtained a 15% bandwidth with a return loss of better than -20 dB [10].

The uniform transmission line characteristics, and therefore design simplicity, of coaxial com-

biners make them very attractive, but for combiners with many input ports (typically N > 20),

accurate construction of the low impedance coaxial line becomes very difficult. Also, when many

input ports are desired, especially at higher frequencies, the common path length becomes long

since some form of tapered coaxial line is normally needed to increase the size of the outer con-

ductor enough to allow adequate space for the input ports [10]. This is also seen in the design

of an 8-diode X -band combiner in [2, 11] where 8 diodes, which act as the power generating

devices, are mounted in a conically tapered coaxial line. A 15% bandwidth is reported, but very

little design information is given. Also, the structure is designed specifically as an IMPATT

diode combiner, and must be completely redesigned if input ports are required.

In this dissertation, it is shown that the problems associated with both radial and coaxial

combiners can be solved by using conical lines instead, whilst retaining the very desirable char-

acteristics of uniform TEM transmission line propagation offered by coaxial lines, and the form
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factor of the radial types. A conical line power combiner is very similar to a radial combiner,

except that a conical transmission line is used. Conical transmission lines have the significant

advantage that they support a uniform TEM transmission line mode, and therefore have a con-

stant characteristic transmission line impedance against radial distance. This greatly simplifies

the design and modelling of the structure for broadband applications compared to that of a

radial combiner. It also allows for a simple, broadband coaxial to conical line transition [12].

The precision construction of the conical transmission line has historically been more difficult

than the construction of a simple parallel plate radial line, however modern computer numerical

control (CNC)–lathes are able to machine conical structures effortlessly. While it would seem

as if conical lines should be the medium of choice for axially symmetric combiners, only a single

instance could be found in the literature where a conical line was used as the combining struc-

ture, and that in 1978 [13]. In this paper, a conical combiner was built at Ku-band to combine

the power from 8 GaAs IMPATT diodes mounted in rectangular waveguides placed at one end

of the conical line, to generate 17.9 W of output power at 14.6 GHz [2, 13]. No information

is however given on the design of the structure, and very little on performance. Twenty years

later, Van der Walt [12] suggests in a paper that conical lines can be used to combine coaxial

ports, but again no design information is given. Aside from these references, literature is devoid

of any approaches or algorithms for the design of conical line combiners. It is the aim of this

dissertation to present such a design approach.

1.2 About the Dissertation

In this dissertation a technique for the design of conical line power combiners with coaxial input

and output ports is proposed. The technique is developed through the design of a constant

impedance conical line 10-way combiner with optimised stepped impedance matching networks

in the input and output feed lines. A -14.5 dB return loss bandwidth of 74% is achieved at

X -band, which is much superior to the results obtained by similar radial line combiners in the

literature. Improvements are further presented to allow for easier manufacturing and assembly

of the structure, and for higher peak power handling capability, by employing a tapered conical

transmission line in the combining structure, and an optimised tapered line output matching

section. A 10-way combiner of this type is designed and constructed displaying a -18.7 dB return

loss bandwidth of 47%. The design technique proposed here is simple to execute, calls for very

little full wave analysis of the structure, and only uses circuit model optimisation to achieve the

required broadband operation. The simplicity of the design technique is further demonstrated

by the design and simulation of a 30-way tapered line conical combiner at Ku-band which shows

a simulated -20 dB return loss bandwidth of 34%.



CHAPTER 1. INTRODUCTION 4

The primary contributions of this dissertation are:

• A technique for the design of N -way constant impedance conical line power combiners

with optimised stepped impedance input and output port matching sections [14],

• A technique for the design of N -way tapered conical line power combiners with optimised

tapered line output matching sections [15].

• A study of the design limitations for conical transmission line power combiners [16].

A secondary contribution of the dissertation is a complete analysis of higher order modes in

conical transmission lines including:

• A proof of the cutoff wavelength equation,

• Information on the numerical computation of the cutoff wavelengths [17],

• Analytical field plots of some higher order modes which are unavailable in the literature.

1.3 Layout of the Dissertation

The dissertation commences with a detailed theoretical analysis of conical transmission lines in

Chapter 2. A physical description of a conical transmission line is given, and then Maxwell’s

equations are solved in the spherical coordinate system with the conical line boundary conditions

imposed, to give analytical field results for the natural modes in such a line. A technique for

solving the associated Legendre functions is given, and analytical field plots of some higher order

modes in a conical transmission line are shown after a discussion on the gradual cutoff wavelength

observed in conical transmission lines. Finally, some comparisons to numerical simulation results

of the fields are made.

Chapter 3 discusses the design of a 10-way constant impedance conical line combiner with

optimised stepped impedance matching sections in the input and output feed lines. The entire

design process is discussed in detail and the simulated and measured results of the constructed

combiner are presented.

In Chapter 4, a tapered conical line combiner with an optimised tapered output line matching

section is proposed. Again the entire design process is discussed step-by-step and the simulated

and measured results are presented.

Finally, an expansion of the developed design technique is given in Chapter 5 to include the

design of general N -way combiners. A study is done of the behaviour of combiners of different
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electrical sizes to include the effect of higher order modes into the general design technique,

and also to determine the limitations thereof. The chapter is concluded with the design and

simulation of a 30-way combiner to validate the general design technique. The dissertation ends

with a brief conclusion in Chapter 6.



Chapter 2

Theoretical Analysis of Conical
Transmission Lines

The theory for waves guided within conical structures was first developed more than sixty years

ago by Schelkunoff [18, 19]. This theory has been repeated and expanded by many workers

since, including Marcuvitz [8] (who termed it a ‘Conical Waveguide’), Harrington [20], and more

recently Balanis [21] (who termed it a ‘Bi-Conical Transmission Line’). None of these, however,

include any numerical data because of the complexity of the calculations required. In 2001

Weil et al. [22] published some numerical data on the cutoff frequency of the higher order modes

present in such a transmission line. These results are, however, only presented for some of the

higher order modes, and are therefore quite limited. No other presentation of numerical data

could be found in literature.

In this chapter a thorough description and theoretical analysis of coaxial transmission lines of

conical geometry (conical transmission lines) is presented. A complete mathematical description,

including computation and numerical data, of the cutoff frequency and field distributions of the

TEM and higher order modes present in such a line is given. The cutoff phenomena in conical

lines is not of the abrupt kind like normal guides, but occurs gradually. Standard texts all

use the same simple equation to calculate a single frequency which they designate as the cutoff

frequency, without providing real motivation as to why that particular point is chosen. Here,

a simple proof is presented for the validity of that choice. Since no literature could be found

describing the shape of these modes, analytical results are compared with simulated numerical

results. Plots of the analytical solutions are made using The Mathworks’ Matlab Version 6.5,

and full wave simulated results are obtained by Computer Simulation Technology’s Microwave

Studio (CST-MWS) Versions 3 and 2006B. As far as the author could ascertain, this is the

only detailed treatment of conical lines which contains evaluated analytical results for the field

patterns of the higher order modes.

6
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2.1 Physical Description of a Conical Transmission Line

A conical transmission line is best analysed using the spherical coordinate system. The geometry

of a conical transmission line as well as the definition of the spherical coordinate system are shown

in Fig. 2.1.

r

1θ

θ

2θ

φ

z

y

x

Fig. 2.1. Geometry of a conical transmission line.

The feed point of the line is between the apices of the two cones described by the half angles

θ1 and θ2. This structure is also representative of a bi-conical antenna [23, 24], especially if the

difference between θ2 and θ1 is large. As this difference becomes smaller, the structure acts more

like a transmission line (radiates less), and this is the case that will be presented here.

2.2 Wave Equation and Solution in Spherical Coordinates

The derivation of fields in spherical coordinates is well-known and appears in many textbooks.

For the sake of clarity, it is repeated here in some detail, following the exposition of [21].

2.2.1 Direct Approach

The first of Maxwell’s equations can be written in differential form in terms of time harmonic

fields in a lossless, isotropic, source-free medium as

∇×E = −jωµH (2.1)

∇×H = jωεE, (2.2)
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and constitute two equations in two unknowns, the electric field vector E, and the magnetic

field vector H. Taking the curl of (2.1) and using (2.2) gives

∇×∇×E = −jωµ∇×H = ω2µεE, (2.3)

which is an equation in E. This can be simplified through the use of a vector identity

∇×∇×A = ∇(∇ ·A)−∇2A (2.4)

to yield

∇2E + ω2µεE = 0, (2.5)

using the fact that ∇ · E = 0 in a source-free region. Equation (2.5) is known as the wave

equation, or Helmholtz equation for E. A similar equation can be derived for H in the same

manner. A constant β = ω
√
µε is defined and called the wavenumber, or phase constant of the

medium with units 1/m.

A general set of solutions to the wave equation (2.5) is now sought in the spherical coordinate

system. The method of separation of variables will be used to obtain such a set of solutions. A

general solution for the electric field in spherical coordinates can be written as

E(r, θ, φ) = Er(r, θ, φ)r̂ + Eθ(r, θ, φ)θ̂ + Eφ(r, θ, φ)φ̂. (2.6)

Substituting (2.6) into the vector wave equation (2.5) produces

∇2(Err̂ + Eθθ̂ + Eφφ̂) = −β2(Err̂ + Eθθ̂ + Eφφ̂). (2.7)

Since

∇2(r̂Er) 6= r̂∇2Er

∇2(θ̂Eθ) 6= θ̂∇2Eθ

∇2(φ̂Eφ) 6= φ̂∇2Eφ,

(2.8)

(2.7) does not reduce to three simple scalar wave equations. To reduce (2.7) to three scalar

partial differential equations, (2.5) must be rewritten using the vector identity (2.4) as

∇(∇ ·E)−∇×∇×E = −β2E. (2.9)

In (2.9) all the operators on the left can be performed in any coordinate system. By substituting

(2.6) into (2.9) and performing some lengthy mathematical manipulations, (2.9) reduces to three

scalar partial differential equations of the form

∇2Er −
2
r2

(
Er + Eθ cot θ + csc θ

∂Eφ

∂φ
+
∂Eθ

∂θ

)
= −β2Er

∇2Eθ −
1
r2

(
Eθ csc2 θ − 2

∂Er

∂θ
+ 2 cot θ csc θ

∂Eφ

∂φ

)
= −β2Eθ

∇2Eφ −
1
r2

(
Eφ csc2 θ − 2 csc θ

∂Er

∂φ
− 2 cot θ csc θ

∂Eθ

∂φ

)
= −β2Eφ.

(2.10)
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2.2.2 Solutions Using Vector Potentials

Since all the equations in (2.10) are coupled, it would be most difficult to solve in its present

form. Instead a solution will be constructed using vector potentials, A and F. Since in a source-

free region the magnetic flux density is solenoidal (∇ ·B = 0), it can be represented as the curl

of another vector because it obeys the vector identity

∇ · (∇×A) = 0, (2.11)

where A is an arbitrary vector called the magnetic vector potential. Thus the definition of A is

given by

BA = µHA = ∇×A, (2.12)

where the subscript A indicates a field quantity due to A. Substituting (2.12) into Maxwell’s

equation (2.1) and rearranging produces

∇× (EA + jωA) = 0. (2.13)

Introducing the vector identity

∇× (−∇ψe) = 0 (2.14)

into (2.13) gives

EA = −∇ψe − jωA, (2.15)

where ψe represents an arbitrary electric scalar potential function that is a function of position.

Taking the curl of both sides of (2.12) and using the vector identity (2.4) leads to

µ∇×HA = ∇(∇ ·A)−∇2A (2.16)

in a homogeneous medium. Substituting (2.15) into Maxwell’s equation (2.2) and equating to

(2.16) produces

∇2A + β2A = ∇(∇ ·A + jωµεψe), (2.17)

or using the vector identity (2.4)

∇×∇×A− β2A = −jωµε∇ψe (2.18)

in a source free region (J = 0). Since only the curl of A was defined, and a vector can only

be uniquely defined by both its curl and its divergence, the divergence of A must be defined.

The divergence of a vector is independent of its curl, thus the divergence of A can be arbitrarily

defined so as to simplify (2.17). This is accomplished by choosing

∇ ·A = −jωµεψe, (2.19)
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which is known as the Lorenz gauge. Substitution of the Lorenz gauge (2.19) into (2.17) yields

the vector wave equation

∇2A + β2A = 0. (2.20)

In addition (2.15) reduces to

EA = −jωA− j 1
ωµε

∇(∇ ·A). (2.21)

A similar argument can be followed with the electric vector potential F, since in a source-free

region the electric flux density is solenoidal (∇ ·D = 0). Using (2.11) the definition of F is

DF = εEF = −∇× F, (2.22)

where the subscript F indicates a field quantity due to F. Substituting (2.22) into Maxwell’s

equation (2.2) and using the vector identity (2.14) produces

HF = −∇ψm − jωF, (2.23)

where ψm represents an arbitrary magnetic scalar potential function that is a function of position.

Using a procedure analogous to the one used above for A, it can readily be shown that

∇×∇× F− β2F = −jωµε∇ψm, (2.24)

∇2F + β2F = 0 (2.25)

and also

HF = −jωF− j

ωµε
∇(∇ · F). (2.26)

The total fields are found as a superposition of the fields due to A and F as

E = EA + EF = −jωA− j 1
ωµε

∇(∇ ·A)− 1
ε
∇× F (2.27)

H = HA + HF =
1
µ
∇×A− jωF− j 1

ωµε
∇(∇ · F). (2.28)

2.2.3 Transverse Electric and Magnetic Solutions

Should the case be taken where A = 0 and F = ψẑ, it can be seen from (2.27) that the E-field

is reduced to

E = −ψ
ε
∇× ẑ, (2.29)

which clearly has no component in the z-direction. This constitutes a transverse electric mode

with respect to the z-direction (TEz). Also when F = 0 and A = ψẑ the H-field becomes

H =
ψ

µ
∇× ẑ, (2.30)



CHAPTER 2. THEORETICAL ANALYSIS OF CONICAL TRANSMISSION LINES 11

which has no component in the z-direction. This constitutes a transverse magnetic mode with

respect to the z-direction (TMz). It will be shown that ψ can be chosen sufficiently general to

express any TE or TM field in a homogeneous source-free region. Also, since the z-direction is

arbitrary, the above results can be applied to any orthogonal coordinate system.

The TEr solution in the spherical coordinate system can now be found by setting

F = Fr(r, θ, φ)r̂ (2.31)

A = 0. (2.32)

Expanding (2.24) using (2.31) leads to

∇×∇× F =
{

1
r sin θ

[
∂

∂θ

(
−sin θ

r

∂Fr

∂θ

)
− ∂

∂φ

(
1

r sin θ
∂Fr

∂φ

)]}
r̂

+
[
1
r

(
∂2Fr

∂r∂θ

)]
θ̂ +

(
1

r sin θ
∂2Fr

∂r∂φ

)
φ̂ (2.33)

∇ψm =
∂ψm

∂r
r̂ +

1
r

∂ψm

∂θ
θ̂ +

1
r sin θ

∂ψm

∂φ
φ̂. (2.34)

By comparing the r̂, θ̂ and φ̂ components of (2.33) and (2.34), (2.24) can be reduced to three

partial differential equations

1
r sin θ

[
− ∂

∂θ

(
sin θ
r

∂Fr

∂θ

)
− ∂

∂φ

(
1

r sin θ
∂Fr

∂φ

)]
− β2Fr = −jωµε∂ψm

∂r
, (2.35)

∂2Fr

∂r∂θ
=

∂

∂θ

(
∂Fr

∂r

)
=

∂

∂θ
(−jωµεψm) (2.36)

and
∂2Fr

∂r∂φ
=

∂

∂φ

(
∂Fr

∂r

)
=

∂

∂φ
(−jωµεψm) . (2.37)

Equations (2.36) and (2.37) are satisfied simultaneously if

∂Fr

∂r
= −jωµεψm ⇒ ψm = − 1

jωµε

∂Fr

∂r
. (2.38)

Substituting (2.38) into (2.35) leads to the uncoupled partial differential equation for Fr

∂2Fr

∂r2
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Fr

∂θ

)
+

1
r2 sin2 θ

∂2Fr

∂φ2
+ β2Fr = 0 (2.39)

which can be written in succint form as(
∇2 + β2

) Fr

r
= 0. (2.40)

A similar procedure can be followed for the TMr solution by setting

A = Ar(r, θ, φ)r̂ (2.41)
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F = 0 (2.42)

to find (
∇2 + β2

) Ar

r
= 0. (2.43)

Thus for TE and TM solutions, the vector wave equations (2.20) and (2.25) reduce to the scalar

wave equation

∇2ψ + β2ψ = 0, (2.44)

which can be solved in any coordinate system, where

ψ =


Fr

r
for TEr modes

Ar

r
for TMr modes.

(2.45)

The solution to (2.44) in spherical coordinates can be found by assuming a separable solution

for ψ(r, θ, φ) of the form

ψ(r, θ, φ) = f(r)g(θ)h(φ). (2.46)

Expanding (2.44) and substituting (2.46) yields

gh
1
r2

∂

∂r

(
r2
∂f

∂r

)
+ fh

1
r2 sin θ

∂

∂θ

(
sin θ

∂g

∂θ

)
+ fg

1
r2 sin2 θ

∂2h

∂φ2
= −β2fgh. (2.47)

Dividing both sides by fgh, multiplying by r2 sin2 θ, and replacing the partials by ordinary

differentials reduces (2.47) to

sin2 θ

f

d

dr

(
r2
df

dr

)
+

sin θ
g

d

dθ

(
sin θ

dg

dθ

)
+

1
h

d2h

dφ2
= −(βr sin θ)2. (2.48)

Since the last term on the left side of (2.48) is only a function of φ, it can be set equal to

1
h

d2h

dφ2
= −m2 ⇒ d2h

dφ2
= −m2h (2.49)

where m is a constant. Substituting (2.49) into (2.48), dividing both sides by sin2 θ and simpli-

fying reduces (2.48) to

1
f

d

dr

(
r2
df

dr

)
+ (βr)2 +

1
g sin θ

d

dθ

(
sin θ

dg

dθ

)
−

( m

sin θ

)2
= 0. (2.50)

Now the last two terms on the left side of (2.50) are only functions of θ, and they can be set

equal to
1

g sin θ
d

dθ

(
sin θ

dg

dθ

)
−

( m

sin θ

)2
= −ν(ν + 1), (2.51)

where ν is a constant. Equation (2.51) is known as the associated Legendre equation [20, 25,

26, 27]. Substituting (2.51) into (2.50) reduces it to

1
f

d

dr

(
r2
df

dr

)
+ (βr)2 − ν(ν + 1) = 0, (2.52)



CHAPTER 2. THEORETICAL ANALYSIS OF CONICAL TRANSMISSION LINES 13

which is closely related to the Bessel differential equation [20, 25, 26, 27].

Solutions to the differential equations (2.52), (2.51) and (2.49) take the forms, respectively, of

f1(r) = A1jν(βr) +B1yν(βr) (2.53)

or

f2(r) = C1h
(1)
ν (βr) +D1h

(2)
ν (βr), (2.54)

and

g1(θ) = A2P
m
ν (cos θ) +B2P

m
ν (− cos θ) ν 6= integer (2.55)

or

g2(θ) = C2P
m
ν (cos θ) +D2Q

m
ν (cos θ), (2.56)

and

h1(φ) = A3e
−jmφ +B3e

+jmφ (2.57)

or

h2(φ) = C3 cosmφ+D3 sinmφ. (2.58)

In (2.53) jν(βr) and yν(βr) are referred to, respectively, as the spherical Bessel functions of the

first and second kind of order ν. They are used to represent radial standing waves, and they are

related, respectively, to the corresponding regular Bessel functions Jν+1/2(βr) and Yν+1/2(βr)

by

jν(βr) =
√

π

2βr
Jν+1/2(βr) (2.59)

yν(βr) =
√

π

2βr
Yν+1/2(βr) (2.60)

In (2.54) h(1)
ν (βr) and h

(2)
ν (βr) are referred to, respectively, as the spherical Hankel functions

of the first and second kind of order ν. They are used to represent radial travelling waves, and

they are related, respectively, to the corresponding regular Hankel functions H(1)
ν+1/2(βr) and

H
(2)
ν+1/2(βr) by

h(1)
ν (βr) =

√
π

2βr
H

(1)
ν+1/2(βr) (2.61)

h(2)
ν (βr) =

√
π

2βr
H

(2)
ν+1/2(βr) (2.62)

In (2.56) Pm
ν (cos θ) and Qm

ν (cos θ) are referred to, respectively, as the associated Legendre

functions of the first and second kind of degree ν and order m.
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The solutions needed, however, are not for ψ(r, θ, φ), but for

Fr(r, θ, φ)

Ar(r, θ, φ)

}
= rψ(r, θ, φ) = rf(r)g(θ)h(φ) = f̂(r)g(θ)h(φ). (2.63)

The most convenient solution is to represent the factor rf(r) = f̂(r) not by the spherical Bessel

[jν(βr), yν(βr)] or Hankel [h(1)
ν (βr), h(2)

ν (βr)] functions, but by another form of the spherical

Bessel and Hankel functions denoted by B̂ν(βr) [for either Ĵν(βr), Ŷν(βr), Ĥ
(1)
ν (βr) or Ĥ(2)

ν (βr)].

These are related to the regular spherical Bessel and Hankel functions denoted by bν(βr) [for

either jν(βr), yν(βr), h
(1)
ν (βr) or h(2)

ν (βr)] by

B̂ν(βr) = βrbν(βr) = βr

√
π

2βr
Bν+1/2(βr) =

√
πβr

2
Bν+1/2(βr), (2.64)

where Bν+1/2(βr) is used to represent the regular cylindrical Bessel or Hankel functions of

Jν+1/2(βr), Yν+1/2(βr), H
(1)
ν+1/2(βr) and H

(2)
ν+1/2(βr). These new spherical Bessel and Hankel

functions were introduced by Schelkunoff [19] and satisfy the differential equation[
d2

dr2
+ β2 − ν(ν + 1)

r2

]
B̂ν = 0, (2.65)

which is obtained by substituting bν(βr) = B̂ν(βr)/βr in

d

dr

(
r2
dbν
dr

)
+

[
(βr)2 − ν(ν + 1)

]
bν = 0. (2.66)

Therefore the solutions for f̂(r) of (2.63) are of the new form of the spherical Bessel or Hankel

functions denoted by

f̂1(r) = A1Ĵν(βr) +B1Ŷν(βr) (2.67)

or

f̂2(r) = C1Ĥ
(1)
ν (βr) +D1Ĥ

(2)
ν (βr), (2.68)

which are related to the regular Bessel and Hankel functions by (2.64). The total solution for

Fr or Ar of (2.63) will be the product of the appropriate spherical wave functions representing

f̂(r), g(θ) and h(φ).

2.3 Conical Transmission Line Boundary Conditions

The boundary conditions that a conical transmission line implies will now be enforced on the

results found in Section 2.2 to find the possible field distributions of the different modes in such

a line.
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2.3.1 Transverse Electric Modes

The field patterns of the TE modes are found by enforcing (2.31) and (2.32) on equations (2.27)

and (2.28) to yield

E = −1
ε
∇× F (2.69)

or

Er = 0 (2.70)

Eθ = −1
ε

1
r sin θ

∂Fr

∂φ
(2.71)

Eφ =
1
ε

1
r

∂Fr

∂θ
(2.72)

and

H =
1

jωµε
∇×∇× F (2.73)

or

Hr =
1

jωµε

(
∂2

∂r2
+ β2

)
Fr (2.74)

Hθ =
1

jωµε

1
r

∂2Fr

∂r∂θ
(2.75)

Hφ =
1

jωµε

1
r sin θ

∂2Fr

∂r∂φ
, (2.76)

where Fr/r is a solution to (2.40).

The solutions for Fr are now chosen from the solutions to the differential equations (2.52), (2.51)

and (2.49) for a conical transmission line with standing waves in φ and travelling waves in the r-

direction. The r-dependent solution is therefore chosen as (2.68), and the φ-dependent solution

as (2.58). Since θ = 0◦ and θ = 180◦ are not included in the solution domain, (2.55) or (2.56)

can be chosen as the θ-dependent solution, and the former is chosen in order for the results to

be consistent with those given in [20] and [21] (When θ = 0◦ and θ = 180◦ are included in the

solution domain, only Pm
ν (cos θ), with ν an integer, would suffice as the θ-dependent solution

[20]). Assuming the source is placed at the apex and generates outward travelling waves [C1 = 0

in (2.68) because Ĥ(1)
ν (βr) → j−(ν+1)ejβr as βr →∞], Fr can be written as

Fr(r, θ, φ) = D1Ĥ
(2)
ν (βr) [A2P

m
ν (cos θ) +B2P

m
ν (− cos θ)] [C3 cosmφ+D3 sinmφ] , (2.77)

where m = integer (m = 0, 1, 2, . . .) because of the condition that Fr(r, θ, 0) = Fr(r, θ, 2π).

The values of ν can be determined by applying the boundary conditions

Eφ(r, θ = θ1, φ) = Eφ(r, θ = θ2, φ) = 0. (2.78)
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Expanding (2.72) gives

Eφ =
D1

ε

1
r
Ĥ(2)

ν (βr)
[
A2
dPm

ν (cos θ)
dθ

+B2
dPm

ν (− cos θ)
dθ

]
[C3 cosmφ+D3 sinmφ] . (2.79)

Applying the first boundary condition of (2.78) leads to

Eφ(r, θ1, φ) =
D1

ε

1
r
Ĥ(2)

ν (βr)
[
A2
dPm

ν (cos θ1)
dθ1

+B2
dPm

ν (− cos θ1)
dθ1

]
[C3 cosmφ+D3 sinmφ] = 0,

(2.80)

and the second boundary condition of (2.78) leads to

Eφ(r, θ2, φ) =
D1

ε

1
r
Ĥ(2)

ν (βr)
[
A2
dPm

ν (cos θ2)
dθ2

+B2
dPm

ν (− cos θ2)
dθ2

]
[C3 cosmφ+D3 sinmφ] = 0.

(2.81)

Equations (2.80) and (2.81) are satisfied only when

A2
dPm

ν (cos θ1)
dθ1

+B2
dPm

ν (− cos θ1)
dθ1

= 0 (2.82)

A2
dPm

ν (cos θ2)
dθ2

+B2
dPm

ν (− cos θ2)
dθ2

= 0, (2.83)

which is satisfied provided the determinant of (2.82) and (2.83) vanishes, that is

dPm
ν (cos θ1)
dθ1

dPm
ν (− cos θ2)
dθ2

− dPm
ν (− cos θ1)
dθ1

dPm
ν (cos θ2)
dθ2

= 0. (2.84)

Therefore, the values of ν are found as solutions to (2.84), which will be pursued in Section 2.4.

The values of the constants A2 and B2 can now easily be found from the under-determined

system (2.82) and (2.83) as

A2 = −B2

d

dθ1
Pm

ν (cos θ1)

d

dθ1
Pm

ν (− cos θ1)
= −B2

d

dθ2
Pm

ν (cos θ2)

d

dθ2
Pm

ν (− cos θ2)
, (2.85)

with any one of A2 or B2 chosen arbitrarily.

The TE electric and magnetic fields can now be found using (2.69) to (2.76). Since the cosmφ

and sinmφ parts of the solution (2.58) represent orthogonal degenerate modes, only the cosmφ

part will be kept in the following results for clarity. Unnecessary constants will also be merged.



CHAPTER 2. THEORETICAL ANALYSIS OF CONICAL TRANSMISSION LINES 17

The TE electric and magnetic fields are

Er = 0 (2.86)

Eθ =
1
ε

Ĥ
(2)
ν (βr)
r sin θ

[A2P
m
ν (cos θ) +B2P

m
ν (− cos θ)] [m sinmφ] (2.87)

Eφ =
1
ε

Ĥ
(2)
ν (βr)
r

[
A2
dPm

ν (cos θ)
dθ

+B2
dPm

ν (− cos θ)
dθ

]
cosmφ (2.88)

Hr =
1

jωµε

[
d2

dr2
Ĥ(2)

ν (βr) + β2Ĥ(2)
ν (βr)

]
[A2P

m
ν (cos θ) +B2P

m
ν (− cos θ)] cosmφ (2.89)

Hθ =
1

jωµε

1
r

d

dr
Ĥ(2)

ν (βr)
[
A2
dPm

ν (cos θ)
dθ

+B2
dPm

ν (− cos θ)
dθ

]
cosmφ (2.90)

Hφ =
1

jωµε

1
r sin θ

d

dr
Ĥ(2)

ν (βr) [A2P
m
ν (cos θ) +B2P

m
ν (− cos θ)] [−m sinmφ], (2.91)

with the derivatives of the Hankel and associated Legendre functions given in Appendix A.

2.3.2 Transverse Magnetic Modes

The field patterns of the TM modes are found by enforcing (2.41) and (2.42) on equations (2.27)

and (2.28) to yield

E =
1

jωµε
∇×∇×A (2.92)

or

Er =
1

jωµε

(
∂2

∂r2
+ β2

)
Ar (2.93)

Eθ =
1

jωµε

1
r

∂2Ar

∂r∂θ
(2.94)

Eφ =
1

jωµε

1
r sin θ

∂2Ar

∂r∂φ
(2.95)

and

H =
1
µ
∇×A (2.96)

or

Hr = 0 (2.97)

Hθ =
1
µ

1
r sin θ

∂Ar

∂φ
(2.98)

Hφ = − 1
µ

1
r

∂Ar

∂θ
, (2.99)

where Ar/r is a solution to (2.43).

Following a similar procedure to that of the previous section, it can be shown that for TM modes

Ar reduces to

Ar(r, θ, φ) = D1Ĥ
(2)
ν (βr) [A2P

m
ν (cos θ) +B2P

m
ν (− cos θ)] [C3 cosmφ+D3 sinmφ] , (2.100)
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where m = integer (m = 0, 1, 2, . . .).

The values of ν can be determined by applying the boundary conditions (2.78) to (2.100) to find

Pm
ν (cos θ1)Pm

ν (− cos θ2)− Pm
ν (− cos θ1)Pm

ν (cos θ2) = 0. (2.101)

The values of ν are found as solutions to (2.101), which will be pursued in Section 2.4.

The TM electric and magnetic fields can now be found using (2.92) to (2.99). It will be shown

that these modes only exist at much higher frequencies than the TE modes for the structures

to be considered, and therefore the full expansions will not be repeated here.

2.3.3 Transverse Electromagnetic Modes

The lowest order (or the dominant) mode of the conical transmission line is the one for which

m = ν = 0. For this mode both (2.84) and (2.101) are satisfied with trivial solutions

(see Section 2.4.1) and the potential components (2.77) and (2.100) vanish. It is usually most

convenient to represent the TEM mode by the TM00 which is defined, using (2.56) to represent

g(θ), by [20]

(Ar)00 = B00Ĥ
(2)
0 (βr)Q0(cos θ) (2.102)

since P 0
0 (cos θ) = P0(cos θ) = 1. The Legendre polynomial Q0(cos θ) can also be represented by

[25, 26]

Q0(cos θ) = ln
[
cot

(
θ

2

)]
. (2.103)

Using (2.64), and knowing that [20]

h
(2)
0 (βr) = −e

−jβr

jβr
, (2.104)

the spherical Hankel function Ĥ(2)
0 (βr) can be replaced by its zero-order form

Ĥ
(2)
0 (βr) = je−jβr. (2.105)

Using (2.103) and (2.105) reduces (2.102) to

(Ar)00 = jB00 ln
[
cot

(
θ

2

)]
e−jβr. (2.106)
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The corresponding electric and magnetic field components are given, according to (2.92) through

(2.99), by [21]

Er =
1

jωµε

(
∂2

∂r2
+ β2

)
Ar = 0 (2.107)

Eθ =
1

jωµε

1
r

∂2Ar

∂r∂θ
= jB00

β

ωµε

1
r sin θ

e−jβr (2.108)

Eφ =
1

jωµε

1
r sin θ

∂2Ar

∂r∂φ
= 0 (2.109)

Hr = 0 (2.110)

Hθ =
1
µ

1
r sin θ

∂Ar

∂φ
= 0 (2.111)

Hφ = − 1
µ

1
r

∂Ar

∂θ
= jB00

1
µ

1
r sin θ

e−jβr. (2.112)

The wave impedance in the radial direction can be found from these equations as

Z+r
w =

Eθ

Hφ
=

β

ωε
=

√
µ

ε
= η, (2.113)

which is the same as the intrinsic impedance of the medium. A characteristic line impedance,

which is defined in terms of voltages and currents, can also be defined as Z0 = V (r)
I(r) . The

voltage between two corresponding points on the cones, a distance r from the origin, is found

by integrating the electric field along a path of constant r as

V (r) =
∫ θ2

θ1

E · d` =
∫ θ2

θ1

(Eθθ̂) · (rθ̂dθ)

=
∫ θ2

θ1

Eθrdθ = jB00
βe−jβr

ωµε

∫ θ2

θ1

dθ

sin θ

= jB00
βe−jβr

ωµε
ln

cot
(
θ1
2

)
cot

(
θ2
2

)
 . (2.114)

The current on the surface of the cones, a distance r from the origin, is found by

I(r) =
∮

C
H · d` =

∫ 2π

0
(Hφφ̂) · (r sin θφ̂dφ) =

∫ 2π

0
Hφr sin θdφ = jB00

2πe−jβr

µ
. (2.115)

The characteristic impedance can now be found from the ratio of (2.114) and (2.115) as

Z0 =
V (r)
I(r)

=
β

2πωε
ln

cot
(
θ1
2

)
cot

(
θ2
2

)
 =

η

2π
ln

cot
(
θ1
2

)
cot

(
θ2
2

)
 = Zin. (2.116)

From 2.116, one of the most useful properties of conical lines is evident, namely the constant

nature of Z0 with respect to r. This is in contrast with the often used radial lines, where Z0 is
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a strong function of radial distance from the origin. Since the characteristic impedance is not a

function of radial distance, it also represents the input impedance of an infinite line at its feed

terminals. It is apparent that the transmission line in Fig. 2.1 is inherently a very broad band

structure since its characteristic or input impedance is only a function of the geometry of the

structure (the angle of the cones) and not of frequency. A plot of the input impedance versus

the half-angle relationship θ2/θ1 is shown in Fig. 2.2 for a range of θ2 values.
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Fig. 2.2. Characteristic impedance of a conical line versus cone half-angles.

2.4 Associated Legendre Function and Transcendental Equation
Solutions

Since very limited numerical results are available in the literature [22], and in order to obtain

numerical results for the field distributions of the higher order modes in any conical transmission

line, the transcendental equations (2.84) and (2.101) have to be solved for ν. This requires ac-

curate solutions of the nonnegative integer order associated Legendre functions up to very high

positive real degrees (typically up to ν > 50). To accommodate all conical lines [θ1, θ2 ∈ (0, 180)◦

with θ2 > θ1], the argument of the functions should include all real z ∈ (−1, 1). This is a very

difficult task. A powerful mathematical software package such as Wolfram Research’s Mathe-

matica can be used to find these solutions, but for those without access to such software packages

this section presents a systematic development which brings together a number of algorithms

for solving the associated Legendre functions with different limitations on the parameters.

It is shown in [27] that when Re(ν) ≥ −0.5, Re(µ) ≥ 0, and z ranges in the right half plane,

P−µ
ν (z) and Qµ

ν (z) can be used to find any of the functions P±µ
ν (z), P±µ

−ν−1(z), Q
±µ
ν (z) or
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Q±µ
−ν−1(z) through the use of connection formulas and recursion in µ and ν. The algorithms

for calculating P−µ
ν (z) and Qµ

ν (z) are given in [28].

A less general method, though more suited to the problem at hand, is presented in [29]. When

ν is not an integer, Pm
ν (x) and Pm

ν (−x) are linearly independent and can be used to calculate

Qm
ν (x) [where m is now a nonnegative integer and x ∈ (−1, 1)]. The method uses two formulas

to calculate Pm
ν (x) for non-integer degrees in the ranges x ∈ (−1,−0.35) and x ∈ [−0.35, 1)

respectively for ν < 2. Forward recursion in ν is applied for the higher degrees. To calculate the

associated Legendre functions of integer order and degrees (also known as associated Legendre

polynomials), recursion methods are used with the starting values given by known polynomials

in x. This method for calculating the associated Legendre functions of the first and second kinds

(the reason for calculating the second kind functions is given in the following subsection) is given

in this section, as well as some comparisons of the results to those found with Mathematica.

2.4.1 Use of the Associated Legendre Function of the Second Kind in the
Transcendental Equations

Using the transcendental equations as given by (2.84) and (2.101) has the advantage that only

Pm
ν (±x) has to be computed. The problem with these equations is, however, that they have

trivial solutions at integer values of ν. This can be seen in the symmetry relation [29]

Pm
n (−z)
Pm

n (z)
= (−1)n−m, (2.117)

with n a nonnegative integer. Substituting (2.117) into (2.84) and (2.101) shows the trivial

solutions at integer orders and degrees for the transcendental equations. In order to find the

non-trivial roots of these equations a search must be done between all the integers in the range of

interest which will require a large number of function evaluations in the root finding algorithm.

By rather choosing (2.56) as the solution for the θ-varying field instead of (2.55), this problem

can be avoided. This will result in two new transcendental equations, which have identical roots

to the non-integer roots of (2.84) and (2.101), namely

dPm
ν (cos θ1)
dθ1

dQm
ν (cos θ2)
dθ2

− dQm
ν (cos θ1)
dθ1

dPm
ν (cos θ2)
dθ2

= 0 (2.118)

and

Pm
ν (cos θ1)Qm

ν (cos θ2)−Qm
ν (cos θ1)Pm

ν (cos θ2) = 0. (2.119)

The θ-derivatives of the associated Legendre functions in (2.118) are given in Appendix A.

Notice that when ν = n and m > n trivial solutions are again found for (2.118) and (2.119)

since Pm
n (z) = Qm

n (z) = 0. Only the roots where ν > m− 1 will therefore be considered.
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An alternative way of deriving (2.119) is simply to substitute the relation [29]

Qm
ν (x) =

π

2
Pm

ν (x) cos (ν +m)π − Pm
ν (−x)

sin (ν +m)π
(2.120)

into (2.101) to reduce it to

2
π

sin [(m+ ν)π] [Pm
ν (cos θ1)Qm

ν (cos θ2)−Qm
ν (cos θ1)Pm

ν (cos θ2)] = 0. (2.121)

Since (2.121) also has trivial roots at the integer degrees (ν ∈ Z), the sin part is divided out of

the solution to leave

2
π

[Pm
ν (cos θ1)Qm

ν (cos θ2)−Qm
ν (cos θ1)Pm

ν (cos θ2)] = 0. (2.122)

This is the same result as (2.119) except for the constant factor. The same result also applies

to the TE case in (2.118). All plots of the transcendental functions (2.118) and(2.119) will be

done with the 2/π factor included.

2.4.2 Solving the Associated Legendre Functions

The associated Legendre function of the first kind is defined as [27]

Pµ
ν (z) =

(
1 + z

1− z

)µ/2 [
2F̃1

(
−ν, ν + 1; 1− µ;

1− z
2

)]
(2.123)

in terms of the regularised hypergeometric function given by

2F̃1(a, b; c; z) =
∞∑

k=0

(a)k(b)kz
k

Γ(c+ k)k!
|z| < 1, (2.124)

the Pochhammer symbol defined by

(a)k =
Γ(a+ k)

Γ(a)
, (2.125)

and the gamma function defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt (Re z > 0). (2.126)

Since Qm
ν (x) can easily be obtained from Pm

ν (x) and Pm
ν (−x) using (2.120) when ν is not an

integer, it is sufficient to only calculate Pm
ν (x) and Pm

ν (−x) from the definition. Formulas for

the integral order case, Pm
ν (x), are [29]

Pm
ν (x) = (−1)m (1− x2)m/2

2mm!
Γ(ν +m+ 1)
Γ(ν −m+ 1)

∞∑
k=0

(−ν +m)k(ν + 1 +m)k

k!(m+ 1)k

(
1− x

2

)k

(2.127)
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which converges quickly for x ∈ (0, 1), and

Pm
ν (x) =− sin νπ

π
(m− 1)!

(
1− x
1 + x

)m/2 m−1∑
k=0

(−ν)k(ν + 1)k

k!(1−m)k

(
1 + x

2

)k

+
sin νπ
π

(1− x2)m/2

2mm!
Γ(ν +m+ 1)
Γ(ν −m+ 1)

∞∑
k=0

(−ν +m)k(ν + 1 +m)k

k!(k +m)!

(
1 + x

2

)k

×
[
ψ(−ν +m+ k) + ψ(ν + 1 +m+ k)− ψ(1 +m+ k)− ψ(1 + k) + ln

1 + x

2

]
(2.128)

which converges quickly for x ∈ (−1, 0). The first term of (2.128) drops out when m = 0. The

digamma function denoted by ψ(z) is given by

ψ(z) =
d[ln Γ(z)]

dz
=

Γ′(z)
Γ(z)

. (2.129)

For the integral degree case, (2.128) reduces to a polynomial with a finite summation

Pm
n (x) = (−1)n Γ(n+m+ 1)

Γ(n−m+ 1)
(1− x2)m/2

2mm!

n−m∑
k=0

(−n+m)k(n+ 1 +m)k

k!(k +m)!

(
1 + x

2

)k

. (2.130)

Direct summation of (2.127) is very difficult to do accurately because of the very large numbers

generated by the gamma functions. Instead a function of the form
∞∑

k=0

αkx
k (2.131)

can be written as
K∑

k=0

(α)kx
k = (α)0 + x [(α)1 + x [...+ x [(α)K−1 + x(α)K ]]]

= (α)0

[
1 +

(α)1
(α)0

x

[
1 +

(α)2
(α)1

x [...]
]]
. (2.132)

It can easily be shown that the ratios in (2.132) reduce to

(α)k

(α)k−1
= α+ k − 1. (2.133)

Since all the factors in (2.127) can be related to the Pochhammer symbol through (2.125), it is

not necessary to solve the Pochhammer symbol in the summation. Instead, only multiplication

of vectors of the form [α+n−1], with n = 1, 2, 3, 4, ...,K, is needed. K can be chosen arbitrarily

large, depending on the accuracy required. To calculate the infinite sums in (2.128), (2.132) can

be expanded to include the extra functions with k dependence as

K∑
k=0

(α)kβ(k)xk = (α)0β(0) + x [(α)1β(0) + x [...+ x [(α)K−1β(K − 1) + x(α)Kβ(K)]]]

= (α)0β(0)
[
1 +

(α)1
(α)0

β(1)
β(0)

x

[
1 +

(α)2
(α)1

β(2)
β(1)

x [...]
]]
. (2.134)
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Since the digamma function does not become very large for large arguments, it is no problem to

calculate it directly. The vectors used to represent the Pochhammer symbol (2.133) are simply

point multiplied by the vectors representing the ratios β(k)/β(k − 1) and used in (2.134).

This method for solving the associated Legendre function of the first kind is however only stable

for ν up to about 25. To find the results for larger ν values a recursive scheme is used. A well

known recursive relationship for the Legendre functions with varying degree is [29]

Xµ
ν (x) =

1
ν − µ

[(2ν − 1)xXµ
ν−1(x)− (ν + µ− 1)Xµ

ν−2(x)], (2.135)

where Xµ
ν (z) can be used to represent either of the first or second kind functions i.e. Pµ

ν (z) or

Qµ
ν (z). For non integer degrees ν < 2 (2.127) is used to find the function value for x ∈ (−0.35, 1)

and (2.128) is used for x ∈ (−1,−0.35). For the integer degrees n = 0 and n = 1 (2.130) is used

to find the function value. The relationship in (2.135) is then used to find the values for higher

degrees. A comparison of the results with and without recursion is shown in Fig. 2.3.

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

ν

P ν1 (0
)

Recursion
No Recursion

Fig. 2.3. Comparison of the computed results of the Legendre function of the first kind using a recursive
scheme to those found without using recursion.

Calculating the associated Legendre function of the second kind for non-integer degrees is simply

done by calculating the first kind functions as described above for positive and negative argu-

ments and then using (2.120). For the integer degree case (associated Legendre polynomials of

the second kind), the starting values Q0
0(x), Q

0
1(x), Q

1
0(x) and Q1

1(x) are calculated from the
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known polynomials [29]

Q0
0(x) =

1
2

ln
1 + x

1− x

Q0
1(x) =

x

2
ln

1 + x

1− x
− 1

Q1
0(x) = − (1− x2)−1/2

Q1
1(x) = − (1− x2)1/2

(
1
2

ln
1 + x

1− x
+

x

1− x2

)
.

(2.136)

Q0
n(x) and Q1

n(x) is then calculated for n = 2, 3, 4, . . . using (2.135), and Qm
n (x) can then be

calculated for m = 2, 3, 4, . . . using the recurrence relation [29]

Xµ
ν (x) = −2(µ− 1)√

1− x2
xXµ−1

ν (x)− (ν + µ− 1)(ν − µ+ 2)Xµ−2
ν (x). (2.137)

2.4.3 Solving the Transcendental Equations

Plots showing the comparison between the transcendental functions using only the associated

Legendre functions of the first kind [(2.84) and (2.101)] (P-type) and those using the both the

first and the second kind [(2.118) and (2.119)] (mixed-type) are shown in Fig. 2.4
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Fig. 2.4. Comparison of the P- and mixed-type transcendental functions for m = 1, θ1 = 85.23◦ and
θ2 = 90◦.

From Fig. 2.4 it can clearly be seen that finding the roots of the mixed-type function is much

simpler than finding the non-integer roots of the P-type function. A standard Matlab function

is used in the root finding algorithm to find the local minima of the absolute value of the

transcendental functions in the areas where a sign change is observed in the function value when

the function is evaluated in steps along the ν axis.
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The roots found by a Matlab implementation of the above theory were compared to the roots

found by using standard Mathematica functions for a wide range of the parameters. The first

three TE and TM roots were calculated for m = 0, 1 and 2 for the cases where first θ2 was

varied between 10◦ and 90◦ and θ1 was chosen to give a 50 Ω line impedance, and also where

θ2 = 22.5◦ and θ1 is varied to give line impedances of Z0 = 10, 25, 50, 75, 100 and 125 Ω. The line

impedance is calculated using (2.116). Roots were also computed for θ2 = 90◦ and θ1 = 85.231◦

(5 Ω line impedance) for m = 1 : 15. All the results agree to at least 5 significant digits.

2.5 Modal Cutoff Frequencies

2.5.1 Definition of Cutoff Wavelength

In a conical transmission line the concept of guide wavelength loses its customary significance be-

cause of the non-periodic nature of the field variation in the transmission direction (r-direction).

Consequently, the usual relation between guide wavelength and cutoff wavelength is no longer

valid. Normally the cutoff wavelength is defined at the point where the propagation constant

goes from purely real to purely imaginary. This is also the point where the wave impedance

changes from purely real to purely imaginary. In a conical transmission line, however, the wave

impedance of the TEr modes is given by

Z+r
w =

Eθ

Hφ
= −

Eφ

Hθ
= − Ĥ

(2)
ν (βr)

1
jωµ

d

dr
Ĥ(2)

ν (βr)
= −jβη Ĥ

(2)
ν (βr)

d

dr
Ĥ(2)

ν (βr)
. (2.138)

This impedance is complex for all values of the argument βr, with the imaginary part tending

to zero and the real part to η as βr →∞ (see Fig. 2.5 and [30, 31]). A similar result is obtained

for the TM modes.

The conical transmission line therefore belongs to the class of waveguides that display gradual

cutoff. Other waveguides in this class include radial waveguides [20], sectoral horns [9], and

free space as a waveguide [20]. The point of gradual cutoff of a mode is not only dependent on

frequency, but also on the spatial coordinates.

The radial wave impedance in a parallel-plate radial transmission waveguide is very similar to

(2.138), except that the values of ν are now restricted to integers n. The modified spherical

Hankel functions are also replaced by normal Hankel functions. Harrington [20] shows that a

mode is propagating when the wave impedance is predominantly real, and is non-propagating

when the impedance is predominantly imaginary. He denotes the point where βρ = n (with ρ

being the distance from the origin in cylindrical coordinates) the point of gradual cutoff, since

at this point the real part of the impedance starts to dominate the imaginary part. This means
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a mode is propagating when βρ > n and non-propagating when βρ < n. Note that these

gradual cutoffs occur when the circumference of the radial waveguide is an integral number of

wavelengths.

The sectoral horn described by Ramo, Whinnery and Van Duzer [9] has the same radial wave

impedance as a parallel-plate radial waveguide, with the order of the Hankel functions no longer

restricted to integer values. The gradual cutoff is also described in terms of the real and imagi-

nary components of the wave impedance and is again defined at the point βρ = ν.

When the spherical wave functions described in Section 2.2 are solved in a complete spherical

shell region (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π), only the associated Legendre function of the first kind

of integral degree, Pµ
ν=n(cos θ), must be chosen as the θ-dependent solution in order for the

fields to be finite everywhere. The rest of the solutions are the same as those described for

the conical transmission line. The fields specified by these wave functions can be thought of

as the modes of free space. When viewed in this manner, free space is often called a spherical

waveguide, even though there is no material guiding the waves. Harrington [20] again denotes

the point where βr = n as the point of gradual cutoff in exactly the same manner as for the

parallel-plate radial transmission line. The gradual cutoff again occurs where the circumference

is an integral number of wavelengths. Chu [32] described this gradual cutoff phenomenon in

terms of a high pass filter ladder network by expanding the wave impedance of the modes using

the recurrence formulas for spherical Bessel functions. Using this circuit model, it can be seen

that when a mode is non-propagating, the energy in the circuit is mainly reactive, and when a

mode is propagating, the energy is dissipated as real power. It is also clear that, for a fixed r,

the higher the frequency, the more power is transmitted by a spherical waveguide mode.

For a conical transmission line a very similar expression is defined in the literature [8, 22] for

the point of gradual cutoff (or cutoff wavelength, λc) as

λc =
2πr√
ν(ν + 1)

, (2.139)

where ν represents the the roots of the transcendental functions (2.84) and (2.101) for the TE

and TM modes respectively. Equation (2.139) could be rewritten as

βr =
√
ν(ν + 1), (2.140)

where it is now understood that the regions where βr <
√
ν(ν + 1) the mode is below cutoff

(non-propagating), and where βr >
√
ν(ν + 1) the mode is above cutoff (propagating). A plot

of the normalised real and imaginary wave impedance is shown for the case where
√
ν(ν + 1) = 1

in Fig. 2.5. From Fig. 2.5 it can be seen that the maximum value of the real impedance is

reached when βr =
√
ν(ν + 1) = 1. This is consistent with the remarks in [20, 9] that above

cutoff the real wave impedance dominates the imaginary impedance of the mode.
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Fig. 2.5. Normalised TE wave impedance of a conical transmission line.

Another definition for gradual cutoff in conical lines is given by Marcuvitz [8, 33] in terms of the

spatial decay of the mode fields. In conical transmission lines (and similar structures such as

radial waveguides) there is an overall decrease in the amplitude of the waves in the r-direction

due to spherical (or cylindrical) spreading of the waves. Marcuvitz states that in regions where

λ < λc the mode fields decay spatially like 1/r and hence may be termed propagating, and

conversely, for λ > λc the mode fields decay faster than 1/r and may therefore be termed non-

propagating. No proof of this statement could be found in literature, and a simplified proof in

terms of the Cauchy-Euler Equation [34, 35] will be presented here for a conical transmission

line.

From (2.86) to (2.91) the r-direction spatial dependence of the TE-mode fields is proportional to

Ĥ
(2)
ν (βr)/r. When (2.64) is considered, this spatial r-dependence is found to be proportional to

βh
(2)
ν (βr). Equation (2.66) is the differential equation describing the r-dependence of the mode

fields, yielding solutions of the form h
(2)
ν (βr) [βh(2)

ν (βr) is also a solution since the β factor can

just be eliminated from the equation]. This differential equation (2.66) can be rewritten as

r2
d2f

dr2
+ 2r

df

dr
+ af = 0, (2.141)

which is known as a second order Cauchy-Euler equation if a is independent of r. If a is chosen

such that a = (βr)2 − ν(ν + 1), (2.141) is not a pure Cauchy-Euler equation, but it can still

be used to prove Marcuvitz’s statement. In terms of propagating and non-propagating regions
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from (2.140), three possible cases for a exist, namely

a > 0 propagating, (2.142)

a = 0 cutoff, (2.143)

a < 0 non-propagating. (2.144)

These three cases will be considered in the Cauchy-Euler equation (2.141) with a taken as

constant for the three cases. Solutions to (2.141) are found as f = rm, where m is a solution of

the auxiliary equation [34, 35]

m2 +m+ a = 0. (2.145)

For distinct real roots to (2.145) the general solution to (2.141) is found as

f = c1r
m1 + c2r

m2 , (2.146)

for repeated real roots as

f = c1r
m1 + c2r

m1 ln r, (2.147)

and for complex conjugate roots m = R± jX as

f = rR[c1 cos(X ln r) + c2 sin(X ln r)]. (2.148)

The solutions to the auxiliary equation (2.145) are given by

m1,2 =
−1±

√
1− 4a

2
. (2.149)

For the three different cases described in (2.142) to (2.144), the nature of the roots (m1,2) is as

follows:

1. When a = 0 the solutions to (2.149) are m1 = 0 and m2 = −1. The solution to (2.141)

would thus be from (2.146) proportional to f = 1/r.

2. When a < 0 the dominant solution (largest absolute value) to (2.149) is always m2 < −1,

and the solutions will always be distinct and real. The dominant solution to (2.141) will

thus be from (2.146) proportional to f = rm2 , and this is seen to decay faster than 1/r.

3. When a > 0 the situation becomes a bit more complex. Any of the solutions of the

forms (2.146) to (2.148) could be found to (2.149). For the case of distinct real roots,

the dominant solution to (2.149) will always fall in the range −1 < m2 < 0.5, yielding

a solution to (2.141) of the form f = rm2 that decays slower than 1/r. Repeated roots

are found for a = 0.25 as m1 = m2 = −0.5, which from (2.147) again yields a solution to

(2.141) which decays slower than 1/r. The real part of the complex roots will always be

R = −0.5, which will according to (2.148) also yield a solution to (2.141) which decays

slower than 1/r on average.
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The above results, together with the statements in (2.142) to (2.144), serves to prove Mar-

cuvitz’s statement that the propagating mode fields decay at (or slower than) 1/r, and the

non-propagating mode fields decay faster than 1/r. It also serves as a useful explanation as to

why (2.139) was chosen as the cutoff wavelength.

It is important to note that within waveguides with gradual cutoff properties at a specific

frequency, the same mode can be propagating within a certain region of the waveguide, and

be non-propagating in another region. This gives rise to the idea of a cutoff radius which is

sometimes used in the literature to describe such waveguides. The cutoff radius of a mode is

the minimum radius where the mode is propagating at a certain frequency, where it is again

emphasised that there is a gradual transition from the non-propagating to the propagating

region.

2.5.2 Numerical Results

As stated earlier, very little numerical data is available in the literature regarding the cutoff

wavelengths of the higher order modes in a conical transmission line. This is mainly due to

the difficulty involved in solving the transcendental equations (2.84) and (2.101). In 2001 Weil

et al. [22] published a range of numerical results for the cutoff wavelengths, and qualitatively

compared their results to similar results for a cylindrical coaxial transmission line. The new

data for the conical transmission line was seen to be in good qualitative agreement with the well

known data for the normal coaxial transmission line.

In order to check the accuracy of the roots found by the method described in Section 2.4, the

results for the cutoff wavelength, which are directly dependent on the solutions for ν as can be

seen from (2.139), will be reproduced and compared to those by Weil et al. [22]. The different

modes will be represented as TEmn and TMmn where m is an integer as previously defined in

(2.77), and n represents the nth non-integer root of the transcendental equations (2.118) and

(2.119) of order m, namely νmn. The m modal subscript indicates variations in the φ-direction

and the n modal subscript indicates variations in the θ-direction.

The data is computed for a relation between θ1 and θ2 to yield transmission line characteristic

impedances of Z0 = 10, 25, 50, 75, 100 and 125 Ω from (2.116). The outer cone angle is chosen

to be θ2 = 10◦ and θ2 = 22.5◦. Plots will be shown for the normalised cutoff wavelength λc/r of

the first three higher order TEm1 modes, as well as the TM01, TM11, TE12 and TM02 modes.

Figs. 2.6 and 2.7 correspond exactly to the plots published in [22]. These results prove the

accuracy of the root finding procedure to be used for later calculations. It is interesting to

note that the TEm1 modes dominate for low impedance lines (θ1 ≈ θ2), and that the cutoff
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Fig. 2.6. Normalised cutoff wavelength of higher order modes in a conical transmission line with θ2 = 10◦.
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wavelength of all the modes is longer for a larger θ2. These effects will be considered in more

detail later.

2.6 Modal Plots

Very little data is available in the literature on the shape of higher order modes in conical

transmission lines. Qualitative data exists for TE and TM modes in bi-conical antennas [18, 19,

23], but these structures typically have wide spacings between the cones (θ2− θ1 = large). This

means the modes are usually plotted on the y-z or x-z planes, and no information about the

spatial variation of the fields in the φ-direction is seen. When a conical transmission line is used

as a power combiner, the impedance of the line is typically very low and and it can be seen from

Fig. 2.2 that the spacings between the cones become very narrow (θ2 − θ1 = small). Since the

combining ports typically lie at a constant radius (or, along the φ-axis), it is very important to

know the spatial variation of the modal fields with respect to φ. In this section these plots will

be generated from the analytical model obtained earlier. All plots will be made with θ2 = 90◦

in order to be able to plot the fields easily on the x-y plane.

2.6.1 Travelling Wave Solutions

For the modal field plots, a geometry consistent with the proposed power combiner structure

will be chosen. A line impedance of Z0 = 5 Ω with θ2 = 90◦ and thus from (2.116) θ1 = 85.23◦

is used. The outer radius of the line is chosen as r = 50 mm.

Using these parameters the cutoff frequencies of the higher order modes are calculated at r =

50 mm, since this is the region in the structure with the lowest cutoff frequency. This is found

by substituting

f =
c

λ
, (2.150)

where c is the speed of light in free space, into (2.139) to find

fc =
c
√
ν(ν + 1)
2πr

. (2.151)

The lowest TM mode cutoff frequencies are found for the TM01, TM11 and the TM21 modes,

and these are all around 36 GHz. These frequencies make intuitive sense, since the electric field

of the TM modes must be zero at θ = θ1,2, and in order to achieve that, the distance along an

arc of constant r = 50 mm from θ = θ1 to θ = θ2 (arc length) must be approximately half a

wavelength. For a 5 Ω line the arc length at r = 50 mm is 4.14 mm, which is half a wavelength

at 36.2 GHz. This is much higher than the band of interest, and these modes can therefore be

ignored. So too can the TEm2 and other TEmn modes with n > 2, since the TE12 mode has the
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lowest cutoff frequency of these modes of around 36 GHz (for the same reason as the TM modes

– θ variation of the electric field). The cutoff frequencies of the TEm1 modes are, however, much

lower and these are plotted along the length of the transmission line for the first 15 modes in

Fig. 2.8. Fig. 2.8 clearly illustrates the spatial dependence of the cutoff frequency of higher order
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Fig. 2.8. Spatial variation of cutoff frequencies for the first 15 TEm1 modes in a 5 Ω conical line with
θ2 = 90◦.

modes in a conical transmission line. The regions where the modes are respectively propagating

and non-propagating at a certain frequency are clearly visible. Again the cutoff wavelength

of the TEm1 modes can be checked intuitively by noting that the roots of the transcendental

equation (2.118), νmn, when used in the equation for the cutoff wavelength (2.140), indicate

that the cutoffs occur when the circumference of the conical transmission line is approximately

an integral number of wavelengths (See Table 2.1).

TABLE 2.1
TEm1 transcendental equation roots showing cutoff wavelengths occur when

circumference is approximately an integral number of wavelengths.

m νm1 2πr/λc

1 0.62 1.00
2 1.56 2.00
3 2.54 3.00
4 3.54 4.00
5 4.53 5.01

The θ dependent factor of the TEm1 mode fields [the Legendre function factors of (2.87) to

(2.91)], vary very little in the region 80◦ < θ < 90◦. A plot of a typical case (TE21) is shown in

Fig. 2.9. It can be seen in Fig. 2.9 that the Eφ and Hθ components of the fields will be almost
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Fig. 2.9. Variation of the θ dependent factors of the TE21 modal fields close to θ = 90◦.

zero due to the very small θ dependent factors. Therefore, the E-field will be mainly θ-directed,

and the H-field will have almost no component in the θ-direction.

A plot on the x-y plane of the first couple of TEm1 modes will therefore give a good representation

of the higher order modal fields present in the described conical transmission line. Plots were

generated in Matlab, and the absolute value of the E-fields (all the E-fields are θ-directed) and

the absolute value and direction of the H-fields are shown for the TEM, TE11, TE21 and the

TE51 modes at 10 GHz. Plots for the TEm1 modes are made at zero time (0◦) and a quarter

period later (90◦) in order to clearly illustrate the behaviour of both the E- and the H-fields in

their non-propagating regions. The cutoff radius is indicated by a black circle on the plots. The

amplitude of the fields is shown on a dB scale.

In Figs. 2.10 to 2.16 the travelling wave properties of especially the lower order modes are clearly

visible, with the wavefronts of these modes visible along the r-axis. It is also clear that large

fields exist in the non-propagating regions, but they decay very quickly within these regions.

Visually, these figures compare well to those produced by Schelkunoff [18, 19, 23] for modal field

patterns in bi-conical antennas, and those produced by Harrington [20] for spherical waves in

free space.

2.6.2 Standing Wave Solutions

In order to obtain quantitative data to compare the developed analytical results to, the eigen-

mode solver of CST-MWS can be used to obtain numerical standing wave solutions of a closed

structure. If a normal conical transmission line is short circuited such a structure is obtained.
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(a) E-field (b) H-field

Fig. 2.10. Normalised absolute value (in dB) of the TEM modal fields at 10 GHz.

(a) Zero time (0◦) (b) Quarter period (90◦)

Fig. 2.11. Normalised absolute value (in dB) of the TE11 E-field at 10 GHz.

This can easily be simulated in CST-MWS to obtain the resonant frequencies and field patterns

of the higher order modes. An analytical model can be found by choosing the standing wave

solution in the r-direction, f̂1(r) (2.67), to use in (2.77). The boundary condition on the θ-axis

stays the same as described in (2.78), and therefore all the solutions, (2.86) to (2.91), stay the

same, except with the modified spherical Hankel functions [Ĥν(βr)] replaced by modified spher-

ical Bessel functions of the first kind [Ĵν(βr)]. Only the Ĵν(βr) part of the solution for f̂1(r)

(2.67) is kept, since Ŷν(βr) →∞ as r → 0.

With the inclusion of the short circuit at r = r0 another boundary condition is introduced

Eθ(r0, θ, φ) = Eφ(r0, θ, φ) = 0. (2.152)
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(a) Zero time (0◦) (b) Quarter period (90◦)

Fig. 2.12. Normalised absolute value (in dB) and direction of the TE11 H-field at 10 GHz.

(a) Zero time (0◦) (b) Quarter period (90◦)

Fig. 2.13. Normalised absolute value (in dB) of the TE21 E-field at 10 GHz.

This can only be satisfied if

Ĵν(βr0) = Ĵν(ζnp) = 0, (2.153)

with ζnp representing the pth root of (2.153) with ν chosen as the nth root of (2.118) for a

certain integer m (only TE modes are considered for the same reasons as in the travelling wave

case). The roots of (2.153) can easily be found with a simple root finding procedure in Matlab.

The resonant frequency of the TEmnp mode is given by

fres =
cβ

2π
, (2.154)

with β = ζnp/r0.

As for the case of TEM travelling wave solutions (Section 2.3.3), the TM00p modes are also

present in the standing wave cavity structure. All the equations of Section 2.3.3 still hold,
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(a) Zero time (0◦) (b) Quarter period (90◦)

Fig. 2.14. Normalised absolute value (in dB) and direction of the TE21 H-field at 10 GHz.

(a) Zero time (0◦) (b) Quarter period (90◦)

Fig. 2.15. Normalised absolute value (in dB) of the TE51 E-field at 10 GHz.

except that the travelling wave solution Ĥ
(2)
0 (βr) in (2.102) is replaced by the standing wave

solution, A00Ĵ0(βr) +B00Ŷ0(βr), similar to the TEmnp modes case. Using (2.64), and knowing

that [20]

j0(βr) =
sinβr
βr

(2.155)

y0(βr) = −cosβr
βr

, (2.156)

the spherical Bessel function of the first and second kind [Ĵ0(βr) and Ŷ0(βr)] can be replaced

by their zero-order forms

Ĵ0(βr) = sinβr (2.157)

Ŷ0(βr) = − cosβr. (2.158)
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(a) Zero time (0◦) (b) Quarter period (90◦)

Fig. 2.16. Normalised absolute value (in dB) and direction of the TE51 H-field at 10 GHz.

The equation for the E-field (2.108) now becomes (for a finite field when r = 0)

Eθ = jB00
β

ωµε

sinβr
r

1
sin θ

(2.159)

for the standing wave case. The boundary condition (2.152) can only be satisfied if

sinβr
r

=
sin ζnp

r
= 0. (2.160)

The pth root of (2.160) is thus pπ and the resonant frequency of the TM00p mode is found as

fres =
cp

2r0
. (2.161)

For the structure described in Section 2.6.1 (Z0 = 5 Ω, θ2 = 90◦ and r0 = 50 mm), the

analytical and CST-MWS simulation resonant frequencies of the first fourteen resonant modes

are compared in Table 2.2. Note that all of the TEmnp modes have two orthogonal degenerate

modes, and only the resonant frequency of one of these is shown in Table 2.2. The results

obtained in Table 2.2 are in very good agreement and only differ by about 0.2 % or less. These

numerical results serve to prove the validity of the theory and root finding procedures. A

comparison of the analytical and CST-MWS simulated E-fields is also included in Figs. 2.17 to

2.20 for the TM001, TE211, TE312 and TE113 modes at their respective resonant frequencies.

The TEmnp modes have two orthogonal degenerate modes, and only the sinmφ mode is shown

in all the cases.

All of the analytical plots in Figs. 2.17 to 2.20 agree very well with the simulated results. The

only discrepancy is in Fig. 2.17, where a zero in the simulated field is seen at the origin. This

is due to the fact that in the simulation model no source was included at the apex of the

cones, as was the original assumption in the derivation of the analytical model. Instead a short
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TABLE 2.2
Comparison of analytical and simulated results for the resonant frequencies of the

first fourteen modes in a conical cavity.

fres [GHz]
Mode

Analytical CST-MWS
% Error

TM001 2.998 2.998 0.000
TE111 3.809 3.803 0.158
TE211 4.978 4.971 0.141
TM002 5.996 5.995 0.017
TE311 6.141 6.131 0.163
TE112 6.858 6.846 0.175
TE411 7.282 7.270 0.165
TE212 8.116 8.101 0.185
TE511 8.405 8.390 0.178
TM003 8.994 8.992 0.022
TE312 9.371 9.354 0.181
TE611 9.512 9.495 0.179
TE113 9.876 9.856 0.203
TE412 10.603 10.581 0.207

circuit exists at the apex in the simulation model due to the nature of the eigenmode solver in

CST-MWS, and this causes the zero in the E-field at that point.

2.7 Conclusion

In this chapter a thorough description and theoretical analysis of conical transmission lines

has been presented. The analytical solutions of the cutoff frequencies and the field patterns of

the higher order modes in such a line are discussed, and calculation methods are given to find

these solutions. Several plots of the results are shown, many of which could not be found in

the literature. The analytical results found in this chapter compared very well to those found

numerically with a full wave simulator. These analytical models of the possible field distributions

in conical transmission lines can now be used to aid in the design of conical transmission line

power combiners, as will be pursued in the following chapters of this dissertation.



CHAPTER 2. THEORETICAL ANALYSIS OF CONICAL TRANSMISSION LINES 40

(a) Analytical - Matlab (b) Simulation - CST-MWS

Fig. 2.17. Normalised absolute value of the E-field of the TM001 mode at 3.00 GHz.

(a) Analytical - Matlab (b) Simulation - CST-MWS

Fig. 2.18. Normalised absolute value of the E-field of the TE211 mode at 4.98 GHz.
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(a) Analytical - Matlab (b) Simulation - CST-MWS

Fig. 2.19. Normalised absolute value of the E-field of the TE312 mode at 9.37 GHz.

(a) Analytical - Matlab (b) Simulation - CST-MWS

Fig. 2.20. Normalised absolute value of the E-field of the TE113 mode 9.88 GHz.



Chapter 3

A Basic 10-Way Conical Line
Combiner

From Chapter 2 it emerged that conical lines, in contrast to radial lines, support a uniform TEM

transmission line mode and therefore has a constant characteristic transmission line impedance

with radial distance, and as discussed in the introduction, it is this property that makes conical

lines potentially useful in the design of axially symmetric power combiners. In this chapter, such

a power combiner for 10 input ports is proposed, designed and evaluated.

The initial design goals for this combiner are to achieve a good broadband match of the output

port (S11 < −20 dB across the X-band), as well as good balance across the input ports, and

a low insertions loss. Only the TEM mode is considered in the initial design, and the effect of

higher order modes (for instance on isolation) is investigated by full wave simulation of the final

design. These effects are also investigated in some detail in Chapter 5.

To establish the context of the proposed combiner, ideal characteristics ofN -way TEM combiners

are briefly discussed, and the basic configuration of the conical combiner structure is explained.

Attention is given to the transitions from the coaxial input ports into the conical line, and also

from the conical line to the coaxial output port. The matching of the output port is discussed

and the measured results of the constructed combiner are presented. Finally, the isolation as

well as power handling capability of the combiner is discussed through some field simulation

results.

3.1 Ideal N-way TEM Combiners

To find a circuit model that describes the behaviour of a conical line combiner is very difficult due

to the differences in physical separation between the peripheral ports, and to the higher order

42
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modes present in the line when the structure is driven unsymmetrically. However, a simplified

model can be used to get a qualitative idea of the behaviour of the combiner with increasing

numbers of ports. Fig. 3.1 shows this simplified transmission line model for an N -way combiner,

with all lines joined at a single point in space.

Z0

NZ0

NZ0

NZ0

1

2

3

N + 1

.

.

.

Fig. 3.1. Simplified transmission line model of a reactive N -way combiner.

Simple network analysis can be used to show that in Fig. 3.1

S11 = 0 (3.1)

and

Snn = (1−N)/N (3.2)

with n = 2, 3, . . . , N . From the lossless property of the combiner, the transmission coefficients

can be found from

|S11|2 +N |Sn1|2 = 1 (3.3)

as

|Sn1| =
√

1
N
. (3.4)

Now, using the reciprocal and lossless properties of the network, the isolation between any of

the peripheral ports can be found from

|S1n|2 + |Snn|2 + (N − 1)|Sn′n|2 = 1 (3.5)

with n′ = 2, 3, . . . , N and n′ 6= n as

|Sn′n| =
√

1− |S1n|2 − |Snn|2
N − 1

=
1
N
. (3.6)

From (3.6) it is clear that the coupling between different peripheral ports will decrease propor-

tionally to the number of ports, and therefore the isolation will improve. Isolation is achieved in

reactive combiners by mismatching of the input ports for the case of unsymmetrical excitation.

This can be seen by calculating Snn in (3.2), which describes the reflected power at port n when

only that port is excited.
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3.2 Basic Configuration of the Structure

Because the impedance of a conical line is determined by a combination of θ1 and θ2 (2.116), one

of these angles (θ2) can be chosen in a specific design. Ideally, θ2 can be chosen to minimise the

cutoff wavelength of higher order modes. The impedance of the line is determined by the number

of input ports as the line impedance should be matched to the combination of the parallel 50 Ω

input ports. This characteristic impedance is simply given by

Z0 =
50
N
, (3.7)

where N is the number of input ports. For 10 input ports the line impedance is set to 5 Ω.

The cutoff frequency of the first three propagating higher order modes in a 5 Ω line is shown

in Fig. 3.2(a) for a fixed distance from the origin. It can be seen in Fig. 3.2(a) that the cutoff
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(b) Constant circumference: ρ = 200 mm

Fig. 3.2. Cutoff frequency of first three higher order modes in a 5 Ω conical transmission line.

frequency becomes higher for smaller θ2. A smaller θ2, however, presents a smaller circumference

at a certain radius. For a power combiner a large circumference is needed to fit multiple ports,

therefore a larger radius is needed to obtain the desired circumference for a smaller θ2. In

Fig. 3.2(b) the cutoff frequency is again plotted against θ2 for a 5 Ω line, but this time the

circumference at the maximum radius is kept constant. It can clearly be seen that the cutoff

frequency remains almost constant over all θ2, and therefore any θ2 can be chosen to yield the

same cutoff frequency for a given circumference.

To investigate the effects of manufacturing tolerances, Fig. 3.3 shows the percentage error in the

impedance of the line if 0.5◦ error is made in θ1. Fig. 3.3 shows that the error in Z0 is smallest

for θ2 = 90◦ when a small error is made in θ1 during manufacturing. Taking the above findings

into account, and the fact that a small geometry is sought for the power combiner structure, θ2
is chosen as θ2 = 90◦, and θ1 is computed from (2.116) and (3.7) as θ1 = 85.23◦.



CHAPTER 3. A BASIC 10-WAY CONICAL LINE COMBINER 45

20 30 40 50 60 70 80 90
10

15

20

25

30

35

θ
2
°

Z
er

ro
r %

Fig. 3.3. Error in Z0 as a function of θ2 with a 0.5◦ error in θ1.

Many ways exist for feeding axially symmetric power combiners [1, 2]. When a conical transmis-

sion line is used as the combining structure, the obvious choice for the central output port is a

coaxial line, because a transition can easily be made from conical line to coaxial line [12]. On the

input side, combiners using radial transmission lines can be segmented into several individual

microstrip lines [3, 7, 36, 37, 38]. These lines form the input (peripheral) ports of the combiner.

This technique is well suited to radial lines because the air gap of the radial line can easily be

filled with a dielectric for the microstrip ports. The input ports can also be waveguides coupling

into the combining structure at N equally spaced areas on the periphery of the radial or conical

line [13, 39]. Another method for feeding axially symmetric combiners on the input side, which

is also suited to a conical line combiner, is to couple magnetically into the conical line with

probes extending from coaxial lines. An advantage of this technique is that standard coaxial

input connectors can be used on the peripheral ports. This technique has been used in circular

cavity combiners [40] and radial wave combiners [4, 6]. A side view of a section of the basic

configuration showing the input and output feeds is shown in Fig. 3.4.

A top view showing the relative position and numbers of the different ports is shown in Fig. 3.5.

3.3 Central Conical to Coaxial Transition

In order to obtain a good match at the output port, the characteristic impedance of the coaxial

feed line has to be the same as that of the conical line in the combining structure. Because of

the low impedance level needed (5Ω), the gaps between the conductors must be small compared



CHAPTER 3. A BASIC 10-WAY CONICAL LINE COMBINER 46

Output port

rp rb

R2
R1

Input ports

d

Fig. 3.4. Basic configuration of the power combiner.
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Fig. 3.5. 10-Way combiner port position and numbers.
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to their radius at the conical/coaxial junction. The characteristic impedance of an air dielectric

coaxial line is given by

Z0 = 60 ln
(
R2

R1

)
, (3.8)

where R1 is the radius of the inner conductor and R2 is the radius of the outer conductor.

Because of the small size of the air gap, reflections from a simple junction such as the one

shown in Fig. 3.4 will be relatively small. The sharp corner of the simple junction in Fig. 3.4

does, however, present a serious problem in high power combiners. The high field strength near

the corner severely limits the power handling capability of the combiner. This field strength

can be reduced by rounding these sharp corners, but reflections also increase when the corners

are rounded. Van der Walt [12] proposes a smoothly curved, well matched transition between

conical and coaxial lines of the same characteristic impedance. This transition is defined by two

circles, and the steps for the construction of these circles, as proposed by Van der Walt in [12],

are repeated here with reference to Fig. 3.6.

z

x

2θ 1θ

D

C
O

B
A

Q P -r1

R1

R2

r2

z1

4θ

3θ

Fig. 3.6. Construction of conical to coaxial transition profile.

1. Choose the outer radius R2 of the coaxial transmission line and draw the vertical line at

x = −R2. Choose the apex of the conical line as the origin of the x − z plane and draw

lines OD and OC using the previously determined values for θ1 and θ2.

2. Decide upon the fillet radius r1 between the outer and lower conductors of the coaxial
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and conical lines. (To limit the curvature of the transition, this radius should be chosen

at least three times the gap width, R2 − R1, of the coaxial line - see discussion below.)

Construct the fillet by drawing the circle centered at P , at (x, z) = (−R2 − r1,−r1), with

radius r1. This circle is tangent to the lower surface of the conical line at point A.

3. Draw the line z = −r1 perpendicular to the z-axis, through point P .

4. Through the tangent point A, draw an arc centered at the origin O to intersect the upper

surface of the conical line at B.

5. From B, draw a line perpendicular to OD to intersect the line at z = −r1 at Q.

6. With Q as centre, draw a circle tangential to OD.

7. It turns out that this circle is also precisely tangential to the inner conductor of the coaxial

line at x = −R1 with characteristic impedance Z0coax = Z0conical. (A proof of this property

can be found in [12].)

This transition has the property that it defines a conical transmission line of constant charac-

teristic impedance from point to point. This can be shown [12] by first choosing any point z1
on the z-axis. From this point, construct a line tangential to the circle centered at P . With the

point (x, z) = (0, z1) as centre, construct an arc through the tangent point to intersect the circle

centered at Q. This line also intersects the z-axis at z1 and defines a conical transmission line at

the tangent points with angles θ3 and θ4. It can also be shown that the characteristic impedance

of the conical transmission line defined by θ3 and θ4 has a constant characteristic impedance

Z0 = Z0conical, regardless of where z1 is chosen on the z-axis. (A proof of this property can be

found in [12].) To find the field strength in the transition, Wheeler’s data for E-plane bends, as

reproduced in [41], can be used. For a rectangular waveguide with an average bending radius of

3.5 times the height of the waveguide, an approximate increase of 16% will be observed in the

field strength. A similar result can be expected in a curved conical transmission line compared

to a straight conical transmission line.

A CST-MWS simulation was done to determine the reflections from and the field strengths

within a simple junction and the above curved junction. As the software does not allow for a

port on the outer circumference of the conical line, this end of the line was short circuited, and

time gating applied to the total reflection from the common port to eliminate the component

caused by the short circuit. A plot showing the reflection of only the transition over a wide band

for both transitions is shown in Fig. 3.7. The small reflections caused by a simple transition can

clearly be seen over a wide band in Fig. 3.7, as well as the improvement obtained by a smoothly

curved, well matched transition. The electric field strength was calculated from the CST-MWS

results along a curve running through the middle of the air gap of each of the transitions
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Fig. 3.7. Reflection from conical/coaxial transitions.

described above, with the same input power applied to both models (1 W). The results plotted

in Fig. 3.8 can be used to show that the rounded corner does indeed reduce the field strength

in the transition. The results in Fig. 3.8 should, however, not be used in a quantitative sense,

but rather in a comparative sense due to uncertainty in the numerical results in the vicinity of

sharp corners common to numerical EM techniques.

3.4 Peripheral Input Port Feeds

Different methods exist for analysing and designing coaxial probe feeds on the periphery of a

radial line. Bialkowski and Waris [5] derived a full electromagnetic model for the structure with

probes using a field matching technique. Optimisation of the feed probes using this method

produced good results (return loss better than -17 dB in the 10-18 GHz band) in a radial line,

but would be very tedious to repeat for a conical line. Another disadvantage of this method

is that the complicated electromagnetic field computation makes physical interpretation of the

results very difficult, and therefore gives very little design guidelines. Nogi et al. [6] presented

an equivalent circuit for the peripheral part of a radial power combiner. The circuit parameters

are obtained by using a Method of Moments (MoM) solution [42] for a probe in a semi-infinite

parallel plate waveguide of width equal to the spacing between the neighbouring coaxial probes.

Clearly this would be a very crude approximation to use in a conical line because of the parallel

plate approximation, which would not hold in a conical line. Another way to analyse the

structure would be full wave simulations in CST-MWS or a similar full wave solver. This also
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Fig. 3.8. Electric field size in the conical/coaxial transitions at 10 GHz with an input power of 1 W and
R1 = 3.22 mm and R2 = 3.5 mm.

has the disadvantage of being time-intensive, with little physical insight into the problem being

gained. Also, when optimising the feed probes using the above field computation techniques,

the results often produce probe dimensions which are difficult to manufacture.

The difficulty in all these designs is the achievement of a good match in a difficult electromagnetic

environment. Here, a solution is proposed with a very simple probe feed into the conical line,

matched on the outside in a simple coaxial environment. Such matching networks can easily

be optimised using analytical models in a circuit simulator such as Applied Wave Research’s

Microwave Office (MWO). The method would be to obtain the S -parameter description of

the power combiner with the feeding probes, importing this model into MWO, and placing

transmission lines at the ports and optimising the length and impedance of these lines to obtain

the best wideband match.

Using this simple feed topology, the only design parameters are the radial position of the probe,

rp, the radial distance to the short circuit from the probe, rb, and the diameter of the probe,

d, as shown in Fig. 3.4. In the case of electrically coupled probes, the length of the probes can

also be treated as a design parameter, but for the case of a high-power structure, magnetically

coupled probes extending the full height of the guide at the feed point are used [6]. This is due

to the very strong E-fields that would be present between the base of the conical line and the

base of the probes if the E-field probes were to be used.

The value for rp should be chosen as low as possible to restrict higher order modes (see Fig. 2.8).
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The minimum value is determined by the dimensions of the connectors to be used in order to

fit the required number of connectors on the circumference – in this case a value of rp = 25 mm

is found.

Collin [43] computed the input impedance of a probe feeding a rectangular waveguide showing

that a wider probe (larger d) gives a wider matched bandwidth. Although the results cannot

be used quantitatively for the case of a conical transmission line, a good qualitative idea can be

formed of the behaviour of a probe fed conical line by comparing it to a probe fed rectangular

waveguide. Extendable tuning posts are used as probes, as these can easily be fastened to

the bottom plate of the conical line, and extended into the the cavity from the bottom plate

until good electrical contact is made with the coaxial line entering from the top of the conical

line. The widest commercially available post which is narrower than the outer conductor of the

Sub-Miniature A (SMA) feed (4.06 mm), has a diameter of 3.2 mm.

The short circuit at the end of the conical line should be transformed to an open circuit by the

length of transmission line rb at the centre frequency. The centre frequency of the match can

be shifted by changing this length. Starting with the value rb = 7.5 mm (quarter wavelength at

10 GHz), only a few quick CST-MWS simulations are needed to find that rb = 7.6 mm produces

the desired centre frequency for the match at 10 GHz.

A CST-MWS screen shot of the model used for these simulations is shown in Fig. 3.9. Since

only the TEM mode is considered in the design, magnetic walls can be inserted on the x-z and

y-z planes because the tangential magnetic field is zero for the TEM mode on these planes.

Only a quarter of the structure needs therefore be analysed. The input ports are standard SMA

connectors with feeding probes designed as described above. The output port is a 5 Ω coaxial

line feeding into the transition of Section 3.3. The effects of the lines between the ports and the

actual conical combining structure are removed by de-embedding the length of the lines from

the results. The CST-MWS result for the reflection coefficient looking into the output port is

shown in Fig. 3.10.

Fig 3.10 clearly shows the centre frequency of the common port reflection coefficient is at the

desired 10 GHz.

3.5 Input and Output Matching Networks

By exporting the full S -parameter matrix of the CST-MWS simulation and normalising it to a

5 Ω environment, the matching networks in the input and output feed lines can be designed by

optimisation of the circuit model in Fig. 3.11.
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Fig. 3.9. CST-MWS screen shot of 10-way power combiner showing central conical to coaxial transition
and peripheral feeding probes. The background material as well as the grey parts are perfect
electrical conductors (PEC), the blue part is vacuum, and the yellow parts are teflon. Ports are
represented by red rectangles.
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Fig. 3.10. CST-MWS simulation of 10-way power combiner common central port reflection coefficient.
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Fig. 3.11. Schemetic representation of circuit to be optimised in MWO.
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3.5.1 Input Matching Section

The input matching section consists of two coaxial transmission lines on all ten input ports.

The two transmission lines are constructed by an extended dielectric SMA connector inserted

into a hole in the metal at the top of the conical line. The impedance of the first section is the

normal 50 Ω of the SMA connector, and the impedance and effective permittivity of the second

line is obtained by cutting away a thin layer of dielectric from the connector. A sketch of such

a connector forming two transmission lines is shown in Fig. 3.12.

rad  a
rad  b
rad  c

lt2

lt1

Air

Metal Post
Conical Cavity

Aluminium

Dielectric

SMA

Fig. 3.12. Sketch of an extended dielectric SMA connector inserted into the top of the metal structure
to form two short transmission lines.

The effective permittivity of a partially filled coaxial transmission line such as the one described

above, can be obtained by solving the static capacitance of the line and comparing it to the

static capacitance of a normal coaxial line filled with dielectric. The potential distribution in a

partially filled coaxial line is found by solving Laplace’s equation in cylindrical coordinates and

applying the proper boundary conditions. This is straightforward, and the potential is given by

[9] as

Φ1 =
V0 ln(r/a)

ln(b/a) + εr ln(c/b)
a < r < b (3.9)

Φ2 = V0

[
1− εr ln(c/r)

ln(b/a) + εr ln(c/b)

]
b < r < c. (3.10)

The capacitance follows from integrating the surface charge density per unit length over the

inner electrode to find

σ1 =
∮

S1
ε0E1 · da =

∫ 2π

0

∫ 1

0
−∇Φ1dzdφ =

−2πε0V0

ln(b/a) + εr ln(c/b)
, (3.11)

with the capacitance given by

C = −σ1

V0
=

2πε0
ln(b/a) + εr ln(c/b)

. (3.12)
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This can be rewritten in a form resembling the capacitance of a normal coaxial line given by

[44]

Ccoax =
2πε0εr
ln(c/a)

, (3.13)

as

C =
2πε0

ln(c/a)
εr ln(c/a)

ln(b/a) + εr ln(c/b)
. (3.14)

The effective permittivity can be found from (3.13) and (3.14) as

εreff =
εr ln(c/a)

ln(b/a) + εr ln(c/b)
, (3.15)

with the characteristic impedance following as

Z2 =
60

√
εreff

ln(c/a). (3.16)

The parameters used for the optimisation of the input transmission line matching section are

the radius of the dielectric in the second line, b, thus changing the impedance of the line Z2,

and the lengths of the two lines, `t1 and `t2. The total length of the connector should, however,

be restricted to 15 mm because of the available connector sizes.

3.5.2 Output Matching Section

The output matching section consists of a stepped impedance air dielectric coaxial transmission

line to match the 5Ω conical line to a 50Ω N-Type coaxial connector. The impedance is changed

by stepping the radius of the inner conductor, and keeping the radius of the outer conductor

constant. A sketch of the stepped coaxial line is shown in Fig. 3.13.

The radius of the outer conductor is determined by the connector to be used at the feed point

(7 mm for a precision N-Type connector ). The length (`1,2) and inner conductor radius (a1,2)

of each section of line are used as parameters in the circuit model optimisation. The effect of

the steps in the coaxial line is modelled by small static capacitances at the junctions Cj1,2,3 [45].

This capacitance is given by

Cj =
ε0

100π

[
α2 + 1
α

ln
1 + α

1− α
− 2 ln

4α
1− α2

]
+ 1.11× 10−15(1− α)(τ − 1) F/cm (3.17)

where

α =
r3 − r2
r3 − r1

(3.18)

and

τ =
r3
r1
, (3.19)
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Fig. 3.13. Stepped impedance coaxial line feeding the conical line.

with r3 the radius of the outer conductor, r2 the radius of the larger inner conductor in the step,

and r1 the radius of the smaller inner conductor in the step. The capacitance is obtained by

multiplying (3.17) by the circumference of the outer conductor in cm.

The optimisation routine in MWO was set up with the goal that S11 should be as low as

possible in the band 8-12 GHz. The final values obtained for the parameters are `1 = 7.22 mm,

`2 = 7.34 mm, a1 = 2.93 mm, a2 = 2.10 mm, `t1 = 5.37 mm, `t2 = 2.67 mm and b = 1.55 mm.

The MWO and CST-MWS reflection results for this structure are plotted in Fig. 3.14.

The shift in frequency of the response in the pass band in the CST-MWS simulation was found

to be due to a very high sensitivity to the dimension a1. Very small changes in a1 (as small

as 10 µm) cause significant changes in the pass band response. This effect must be carefully

considered during construction of the structure. By designing the matching networks to give

S11 < −25 dB in MWO, a 5 dB margin is left to account for manufacturing tolerances in order

to still obtain a 20 dB match.

Note that only optimisation of the circuit model is neccessary in this design approach, and no

optimisation of the full wave simulation model.
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Fig. 3.14. Simulated reflection coefficient of matched 10-way conical power combiner.

3.6 Summary of the Step-by-Step Design Procedure

The full design process can be summarised as follows.

1. The combining structure is designed and the exact response of the structure is determined

with a full-wave solver.

(a) Determine the impedance of the conical line from the number of ports as Z0 = 50/N .

(b) Construct the central transition between conical and coaxial line as described in [12],

using θ2 = 90◦ and calculating θ1 from (2.116).

(c) Determine the radius rp where the input ports are placed, based on the width of the

connectors, the spacing between the connectors, and the number of connectors used.

Keep rp as small as possible to reduce higher order modes (See Chapter 5).

(d) Determine the diameter of the feeding probes. Wider probes give better bandwidth,

but the diameter is limited by the outer diameter of the input feeding coaxial lines.

(e) Determine the length of the backshort rb using a full-wave solver parameter sweep.

Note that this becomes more difficult for larger structures – see Chapter 5.

(f) Analyse the entire structure with a field solver to get the S -parameters at all the

ports.

2. Optimise stepped impedance transmission lines on the input and output side of the com-

bining structure in a circuit simulator to achieve a wide matched bandwidth.
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3.7 Construction and Measurement

Due to the high degree of accuracy required in the manufacturing of the structure, a CNC-lathe

is used for the construction. The sharp corner of the conical line short circuit had to be replaced

by a rounded corner for manufacturing purposes as shown in Fig. 3.15.

Fig. 3.15. Rounded corner detail of the conical line.

A CST-MWS simulation was done with a 1.25 mm corner fillet radius, and the results achieved

for the reflection coefficient can be seen from Fig. 3.16 to be better than those achieved with a

sharp corner.
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Fig. 3.16. CST-MWS simulation reflection coefficient of matched 10-way combiner with rounded corner.

The structure is divided into two parts (top and bottom), which are cut from aluminium blocks

and screw fastened to each other. The top part forms the coaxial centre conductor of the central

coaxial output port and the top part of the conical line. The bottom part forms the outer

conductor of the central coaxial output port and the bottom part of the conical line. Extended

dielectric SMA connectors prepared as in Fig. 3.12, which are inserted into holes in the top part

of the structure, form the radial input ports. Tuning posts inserted into and extended from

the bottom part of the structure are used as the feeding probes. The central output port is
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formed into a female N-Type connector, with the centre pin of a commercially available N-Type

connector epoxy fastened in a hole in the inner conductor of the central output coaxial line.

A 2-D section view of the entire structure with all the connectors, tuning posts and fastening

screws included is shown in Fig. 3.17. Some photographs of the structure are also shown in

Fig. 3.18.

Fig. 3.17. 2-D section view of the conical combiner showing all connectors, feeding probes and fastening
screws.

Two-port measurements were done on the Agilent 8510C Vector Network Analyser (VNA) using

precision SMA loads to terminate the ports that are not being measured.

The simulated and measured reflection results of the common port of the constructed combiner

are shown in Fig. 3.19. A matched bandwidth of 74% is achieved with a maximum return loss of

-14.7 dB, from 6.5 to 14.1 GHz. The difference between the simulated and measured results at

low values of |S11| is caused in part by the difficulty in simulating and manufacturing accurately

a large structure with very narrow gaps. The gap in the central coaxial to conical transition is

only 0.28 mm compared to the diameter of the strucure, which is 65.2 mm.

The measured transmission characteristics of the combiner are shown in Fig. 3.20. The simulated

transmission coefficients are not shown since the simulated structure is perfectly symmetrical.

As expected from (3.4) the amplitudes of the transmission coefficients are around -10 dB. A

maximum amplitude imbalance of ±1 dB and a phase imbalance of ±5◦ are observed in the

8–12 GHz band, and an amplitude imbalance of ±1.5 dB and a phase imbalance of ±10◦ are

observed in the 6–14 GHz band. At the peripheral ports a small gap (0.43 mm) is formed
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(a) Separated top and bottom parts

(b) Fully assembled

Fig. 3.18. Photographs of the constructed 10-way combiner.

between the input probes of diameter 3.2 mm, and the feeding lines with outer diameter of

4.06 mm. Any misalignment between the top and the bottom parts of the structure will reduce

this gap, and may cause imbalances in the transmission coefficients to the different ports. These

problems will be addressed in following designs.

The simulated and measured isolation characteristics of the combiner are shown in Fig. 3.21,

where good agreement between the results is demonstrated. It is noted that the worst isolation

occurs between port 2 and port 7 (the ports located at the opposite sides of the combiner), which

is consistent with the remarks made in [5]. As reported in [5], these values are consistent with

reactive radial combiners. No attempt was made to improve the isolation of the combiner, but

it is known from (3.6) that the isolation will improve when the number of ports are increased

(see also the comments in [6]). The isolation characteristics are further discussed in Section 3.8.
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Fig. 3.19. Comparison between the simulated and measured reflection coefficient of a 10-way combiner.
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Fig. 3.20. Measured transmission coefficients in the operating band of a 10-way combiner (Sn1 with
n = 2, 3, ..., 11).
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Fig. 3.21. Simulated and measured isolation in the operating band of a 10-way combiner.
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Fig. 3.22 shows the total I2R loss characteristic of the combiner. The maximum loss in the

operating band is 1.1 dB, and the average loss only 0.45 dB. The loss includes the effects of the

SMA transitions as well as a SMA to N-Type transition used in the measurement setup. This

low loss is one of the advantages of radial type combiners over corporate or chain-type combiners

for a large number of ports (N > 8). The simulated loss is not included since the simulated

structure is completely lossless.
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Fig. 3.22. Measured loss of a 10-way combiner.

Some radial combiners reported in the literature include 30-way combiners built at 12.5 GHz

demonstrating a 25% bandwidth with a return loss of around -13 dB [7, 3]; a 20-way combiner

built at 14 GHz demonstrating a 57% bandwidth with a -17 dB return loss [5]; and 8- and 16-way

combiners built at 10 GHz demonstrating -20 dB return loss bandwidths of respectively 33% and

25% [6]. Also, coaxial combiners have been built at X -band demonstrating a 15% bandwidth

[2, 11], and at Ku-band an eight-diode conical combiner was constructed using GaAs IMPATT

diodes to generate 17.9 W of output power at 14.6 GHz [13]. Clearly, the 74 % bandwidth match

with a -14.7 dB return loss obtained in the design presented in this chapter is much superior to

the results previously published for similar types of combiners.

3.8 Isolation

From equation (3.6) the ideal isolation in a symmetrical 10-way combiner is 20 dB, which, as

can be seen in Fig. 3.21, is clearly not obtained in a reactive conical combiner. Due to physical

separation between the ports, the isolation obtained in this combiner, as in other practical

combiners of this type, varies significantly with frequency, and is also much lower than the
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predicted 20 dB for the ideal case. This behaviour is due to the existence of higher order modes

in the conical line structure when it is driven unsymmetrically. For the ideal case, TEM operation

was assumed in all the transmission lines, and as can be seen in the zero-time simulated H-field

pattern at 10 GHz plotted in Fig. 3.23, this is clearly not the case here.

Fig. 3.23. Normalised absolute value (in dB) and direction of the simulated H-field at zero-time in a
10-way conical combiner at 10 GHz when port 2 (see Fig. 3.5) is driven and the other ports are
terminated.

The H-field pattern in Fig. 3.23 can be compared to the H-field pattern of the TE21 mode

shown in Fig. 2.14, which, from (2.140), propagates in the region where r > 9.7 mm at 10 GHz.

Although the mode pattern in Fig. 3.23 is somewhat distorted due to the presence of the input

probes and the unsymmetrical excitation, it still resembles the mode pattern of the ideal TE21

mode due to the 4 groups of closed H-field loops visible in the field pattern.

From the field pattern in Fig. 3.23, and the time averaged H-field strength shown in Fig. 3.24,

it can be deduced that the strongest coupling from port 2 would be to port 7 (opposite ports).

The H-field in the vicinity of port 7, when compared to the H-field in the vicinity of the other

ports, most closely resembles the H-field of the normal TEM mode in a coaxial line, and also has

the highest average value. This observation is in agreement with the predicted and measured

isolation in Fig. 3.21. More is said of the isolation in conical line combiners in Sections 4.6 and

5.5.
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Fig. 3.24. Normalised absolute value (in dB) of the time averaged simulated H-field in a 10-way conical
combiner at 10 GHz when port 2 (see Fig. 3.5) is driven and the other ports are terminated.

3.9 Electric Field Strength and Peak Power Considerations

The peak power handling capacity of transmission lines is usually limited by breakdown due to

ionization of the gas that fills the guide. Breakdown in air at sea level occurs at an electric field

strength of around 2.9 MV/m. It is well known that electric field strength increases considerably

in the vicinity of sharp corners in the structure, therefore the steps in the central coaxial feed

line will be the main limiting factor of the power handling capability of the combiner (Lower

power levels exist at the radial input ports).

It is very difficult to predict exactly what the field strength will be near the sharp edges in the

coaxial line. Weber’s data [46] for a rounded 90◦ corner near an electric wall can be used if

the corner is slightly rounded. The exact shape of the corner is a function of the machining

tools used to cut the material, and is therefore hard to predict accurately. Also, standing wave

effects must be included in the analysis, and these are tedious to predict accurately analytically.

Instead, a full wave CST-MWS simulation of the structure is done to obtain an idea of the

field strengths in the structure. It must be stressed, however, that due to the inherent difficulty

common to numerical EM techniques in solving fields in the vicinity of sharp corners, the results

presented here should be used more in a comparative than a quantitative sense (see Section 4.7

for comparative results). Fig. 3.25 shows the normalised magnitude of the TEM E-field in a
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10-way combiner when a 2-D section view is taken of the structure.

Fig. 3.25. 2-D section view of the normalised magnitude (in dB relative to 12.3 kV/m) of the TEM
E-field in a 10-way combiner at 10 GHz with 1 W of input power.

As expected, the strongest fields in Fig. 3.25 exist near the sharp corners in the stepped

impedance central coaxial line. This can be seen more clearly when the field is evaluated on

the surface of the inner conductor of the central line from the central output port to one of the

peripheral input ports. The field strength along such a curve is given in Fig. 3.26.

The plot in Fig. 3.26 clearly shows the very high field strengths near the sharp convex corners

in the structure, and also the very low strengths in the vicinity of the nearby concave corners.

The field strength is also seen to decrease closer to the peripheral ports, except for the large

field caused by the sharp corner of the peripheral probe. This field strength is, however, much

lower than that observed in the central high power part of the combiner.

The sharp corners in the stepped impedance central coaxial line are thus seen to cause large

increases in electric field strength in the structure, and therefore severely limit the peak power

handling capability of the combiner. This problem is addressed in the following chapter, and

some comparative results are shown in Section 4.7.
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Fig. 3.26. Magnitude of the TEM E-field along a curve on the surface of the inner conductor of the
central line from the central output port to one of the peripheral input ports of a 10-way stepped
impedance combiner at 10 GHz with 1 W of input power.

3.10 Conclusion

In this chapter a conical line power combiner is proposed, and a simple design technique is

presented. The technique is general and may be applied to the design of similar N -way conical

line combiners.

Because of the uniform TEM transmission line properties of conical transmission lines, the design

technique calls for very little full-wave model optimisation, but instead relies on optimisation

of simple analytic transmission line models to achieve a wide operating bandwidth. This is in

contrast to the design of radial line combiners, which do not support a uniform TEM transmission

mode, where full-wave optimisation of the entire structure is normally necessary to obtain wide

band operation.

A 10-way conical combiner was constructed and demonstrated excellent wide band performance

as well as low losses. The structure is very compact and lightweight, and is therefore ideally

suited for space and airborne applications.



Chapter 4

Design of a 10-Way Tapered Line
Combiner

One of the main advantages of conical lines over radial lines is, as stated before, the existence

of a uniform TEM transmission line mode and therefore a constant transmission line impedance

with radial distance. This property allows the designer to make use of a huge array of uniform

transmission line design techniques – in this case transmission line tapers.

The design in Chapter 3, although showing excellent performance, requires very tight manufac-

turing tolerances due to the narrow gaps in the structure – specifically the gap in the central

coaxial to conical transition (0.28 mm), and the gaps between the peripheral feeding probes and

the outer conductors of the feeding coaxial lines (0.43 mm). Errors of 0.1 mm in the construc-

tion of the central transition could cause impedance variations of as much as 36 %. This can

significantly influence the reflection performance of the combiner, as can be seen in the measured

results in Fig. 3.19. Minor construction errors at the peripheral probes will cause imbalance at

the peripheral ports, as can be seen in the measured results in Fig. 3.20.

To increase the gap between the conductors of a coaxial transmission line without changing the

diameter of the outer conductor, it can be seen from (3.8) that the impedance of the line must be

increased. In this chapter it is shown how a tapered transmission line matching network can be

employed in the uniform conical transmission line to increase the impedance level at the central

conical to coaxial transition, and thus enlarge the conductor spacing. The central output coaxial

line matching network will also be of the tapered line type to eliminate all the sharp edges in

the high power central part of the combiner, and thus increase the power handling capability of

the structure.

66
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4.1 Peripheral Input Port Feeds and Matching

To increase the size of the gaps between the probes in the conical line and the outer conductors

of the coaxial lines feeding the probes, the impedance of the peripheral input port feeds must be

increased. A matching network must also be designed to match the higher impedance feeding

lines to the 50 Ω SMA connectors. When the impedance of the feeds is increased, the impedance

of the conical line in the combining structure must also be increased accordingly. This is advan-

tageous since, as stated earlier, a higher impedance is sought for the conical line to enlarge the

conductor spacing.

A simple way to construct a high impedance coaxial feed line, matched to a 50 Ω connector,

would be to use a quarter wavelength partially filled coaxial line to match the high impedance

air coaxial line to the connector. A sketch of the configuration is shown in Fig. 4.1.

b

c

a

lt

la

SMA

Aluminium

Conical Cavity
Metal Post

Dielectric

Fig. 4.1. Sketch of an extended dielectric SMA connector inserted into the top of the metal structure
forming the peripheral feeding line matching network.

The feeding line is divided into two parts, the airline part of length la and impedance Za, and

the partially filled line of length lt and impedance Zt. The dimensions a and b are fixed by the

SMA connector and are a = 1.24 mm, and b = 4.06 mm. The impedance of the airline, Za, is

therefore designed by changing the dimension c.

It is well known that the impedance of the partially filled line should be

Zt =
√

50Za, (4.1)

and the length, lt, should be a quarter wavelength to match Za to 50 Ω. The impedances of the

airline and the partially filled line are related by

Zt = Za/
√
εreff , (4.2)
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with εreff calculated as in (3.15). Substituting (4.2) into (4.1) and using (3.8), (3.15), and

(3.16), c can be found as

c = b exp
[

1
εr

(
5εr
6
− ln

b

a

)]
. (4.3)

Using the dimensions given above for a and b, c is found as c = 5.16 mm. This gives Za = 85.6 Ω

and Zt = 65.4 Ω. However, due to the width of the flange on the available connectors (5.62 mm),

to have a safety margin of about 0.4 mm on each side of the feed, the maximum diameter of c

is limited to 4.82 mm. Choosing the diameter as c = 4.82 mm, the impedance of the airline is

Za = 80 Ω, and that of the partially filled line Zt = 60.1 Ω.

The length of the matching line is calculated as

lt =
λ

4√εreff
= 5.64 mm, (4.4)

with λ the wavelength at the centre frequency (10 GHz), and εreff calculated from (3.15). The

length of the airline is also chosen as a quarter wavelength la = 7.5 mm.

Results from a MWO simulation of the reflection coefficient looking into a 80 Ω line connected

to a 50 Ω load through a quarter wavelength 60.1 Ω partially filled coaxial line are given in

Fig. 4.2. It can be seen from Fig. 4.2 that the match is better than -20 dB from 8 to 12 GHz.
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Fig. 4.2. MWO simulated reflection coefficient looking into an 80 Ω line matched to a 50 Ω load through
a quarter wavelength 60.1 Ω partially filled coaxial line.

The same extendable posts from the design in Chapter 3 are again used as probes in this design,

and the gaps between the probes and the outer conductors of the coaxial lines feeding them has

been increased from 0.43 mm to 0.81 mm.

If, due to construction errors, the connector in Fig. 4.1 is not inserted exactly in the middle of
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the hole with diameter c, the impedance of the lines will change slightly. CST-MWS simulations

show that for a 0.1 mm offset the change is only 0.15%, and for a 0.2 mm offset the change is

about 0.7%. These changes are negligible and do not have a significant effect on the matching

of the lines.

4.2 Conical Line Design

To ensure a large gap between the inner and the outer conductors at the central feed point, a

higher impedance is sought at the central conical to coaxial line transition than at the peripheral

input ports. A matching section is therefore needed in the conical line to match these impedances

over a wide band. Since a conical line is a uniform TEM transmission line, standard matching

theory can be used. Quarter wavelength stepped impedance matching sections can be used in

the conical line, but a disadvantage is the sharp edges formed by the impedance steps. Like

a coaxial stepped impedance line [45], a stepped impedance conical line has step capacitances

introduced by the sharp edges, and these are very difficult to compute accurately. The sharp

edges also degrade the high power performance of the line. Steps in the line can be avoided by

using a tapered line to do the impedance match. The Klopfenstein taper [47] has been shown

to be the optimum matching section, in that for a specified tolerance of the reflection coefficient

magnitude, the taper has minimum length [48].

The design of the conical transmission line in the common combining structure will be reported

in this section. The effect of higher order modes when the diameter of the structure is increased

will be discussed, as well as the design of the transmission line taper and back short distance.

4.2.1 Determination of Maximum Conical Line Length

For optimum matching performance using tapered lines, the tapered sections should have the

maximum possible length. However, when the radial length (and therefore the diameter) of the

combining structure is increased, a transmission zero is observed at a frequency which decreases

as the diameter of the structure increases. The transmission coefficient results of two parameter

sweeps in CST-MWS of an 8 Ω 10-way combiner, much like the one shown in Fig. 3.9 but with

80 Ω peripheral airline feeds, with variable rp and rb (Fig. 3.4), are shown in Fig. 4.3.

To predict the frequency of the transmission zero, the field pattern at the frequency of the

transmission zero must be studied. Fig. 4.4(a) shows the amplitude of the electric field pattern

at the transmission zero frequency of 17.5 GHz, for a combiner like the one described above

with rp = 30 mm and rb = 7.5 mm. This field pattern is remarkably similar to one of the

higher order modes found with the eigenmode solver of CST-MWS for a 8 Ω conical cavity, with
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Fig. 4.3. Transmission coefficient of an 8 Ω 10-way combiner showing the transmission zero effect with
changing dimensions.

the same peripheral feeding probes inserted in the cavity as those used in the combiner. The

eigenmode field pattern is shown in Fig. 4.4(b), and it has a resonant frequency of 16.3 GHz.

(a) Combiner field at the transmission zero fre-
quency

(b) Eigenmode field

Fig. 4.4. Normalised amplitude of the electric field patterns in an 8 Ω combiner at the transmission
zero frequency, and an eigenmode of a similar 8 Ω conical transmission line with peripheral feeding
probes inserted.

From Fig. 4.4 it can be seen that when the combiner is driven symmetrically at the correct

frequency, the structure becomes resonant and no energy will be coupled to the output ports.

The difference in resonant frequency of the simple conical line and the combiner structure is

due to the effect of the central transition in the combiner. This transition in effect shortens the

conical cavity, and thus increases the resonant frequency.

The resonant frequency of the eigenmode shown in Fig. 4.4(b) can be predicted by using the

similarity of the field to that of the TM003 mode in a simple conical cavity. The cavity wall
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is formed by the peripheral probes at r0 = rp − d/2. Using (2.161), with p = 3 and

r0 = 30 − 1.6 = 28.4 mm, the resonant frequency is found as 15.83 GHz. When this is

multiplied by the factor introduced by the shortening effect of the transition,

∆f =
r0 +R2

r0
, (4.5)

with R2 = 3.5 mm, the predicted transmission zero frequency is 17.8 GHz, which is within 2%

of the simulated value of 17.5 GHz, and it shows that (2.161) can be used as a good estimate

of the resonant frequency. The difference between the predicted and simulated values is due to

the rb dependance, as shown in Fig. 4.3(b), which was not taken into account in the prediction.

If rb is kept smaller than λ/2 at the resonant frequency, the predicted and simulated results are

within 5% agreement.

The maximum radius that the peripheral probes can be placed from the axis in a conical combiner

is therefore fixed by the frequency of the transmission zero. For a combiner designed to work

in the 8–12 GHz band, and to allow tuning of rb, it can be seen in Fig. 4.3(a) that a minimum

frequency of around 17 GHz should be chosen. The approximate maximum radius can be found

by incorporating (2.161) into (4.5) using r0 = rp − d/2, and substituting p = 3 to find

rp =
3c+

√
3c(3c+ 8fminR2)

4fmin
+
d

2
. (4.6)

Substituting fmin = 17 GHz into (4.6) gives a maximum radius of rp ≈ 31.5 mm. The

backshort distance rb can still be tuned significantly to find the optimum reflection performance

without compromising the transmission performance, as can be seen in Fig. 4.3(b).

When a taper is introduced into the transmission line, these results will change slightly, but

(4.6) can still be used as a good initial estimate of a maximum conical line length.

4.2.2 Design of the Klopfenstein Taper

The maximum length of taper that can be used in the conical line is determined by the size

of the central transition and of the peripheral port feeds. Taking point A in Fig. 3.6 as the

maximum distance from the axis of the central transition, and allowing a length δs of space on

either side of the taper, the maximum length of the taper is found as

Lmax = r0 −
c

2
− (R2 + r1)− 2δs. (4.7)

When δs is chosen as 0.7 mm, the maximum length of the taper is found as L = 20 mm.

The maximum reflection of a Klopfenstein taper can be calculated from [47] as

Γmax =
Γ0

coshA
, (4.8)
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with the initial value of the reflection coefficient taken as

Γ0 =
1
2

ln
(
Z2

Z1

)
, (4.9)

and A defined by

A =
2πLfmin

c
. (4.10)

If the minimum frequency of the match is chosen as 8 GHz, the length of the taper as L = 20 mm,

the impedance at the end of the taper as Z1 = 8 Ω, and the maximum reflection as Γmax =

−28 dB (so as not to degrade the reflection performance of the combiner – see Section 5.2),

the impedance at the central transition will be Z2 = 25 Ω. From (3.8) the gap between the

conductors of the central coaxial airline will be 1.2 mm for a 25 Ω line, which is a significant

improvement from the 0.28 mm gap in a 5 Ω line. The central conical to coaxial transition is

designed as described in Section 3.3, but this time in a 25 Ω environment.

The impedance variation along the taper is given by [47] as

ln (Z0) =
1
2

ln (Z1Z2) +
Γ0

coshA

[
A2φ

(
2x
L
,A

)
+ U

(
x− L

2

)
+ U

(
x+

L

2

)]
, |x| ≤ L/2

= ln (Z2), |x| > L/2

= ln (Z1), |x| < −L/2. (4.11)

U is the unit step function defined by

U(z) = 0, z < 0,

U(z) = 1, z ≥ 0, (4.12)

and φ is defined by

φ(z,A) = −φ(−z,A) =
∫ z

0

I1(A
√

1− y2)

A
√

1− y2
dy, |z| ≤ 1. (4.13)

Equation (4.13) may be rapidly evaluated by expanding the incomplete modified Bessel function

I1(A
√

1− y2) as a power series [49]. The function φ(z,A) now becomes

φ(z,A) =
∫ z

0

1
2

∞∑
k=0

(
A2

4

)k
(1− y2)k

k!(k + 1)!
dy, (4.14)

which may be rewritten as

φ(z,A) =
∞∑

k=0

akbk (4.15)

where

ak =
(A2)k

4kk!(k + 1)!
(4.16)
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and

bk =
1
2

∫ z

0
(1− y2)kdy. (4.17)

Next, recursion relations for ak and bk may be obtained, the bk recursion being obtained through

integration by parts:

a0 = 1; ak =
A2

4k(k + 1)
ak−1

b0 =
z

2
; bk =

z

2
(1− z2)k + 2kbk−1

2k + 1
. (4.18)

The impedance taper designed using (4.18) is shown in Fig. 4.5. The steps in impedance at
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Fig. 4.5. Characteristic impedance of a 20 mm Klopfenstein taper matching an 8 Ω load to a 25 Ω line.

the ends of the taper are typical of a Klopfenstein taper, and these are smoothed away in the

practical implementation in the conical line to maintain the high power performance of the

structure. The taper is approximated in the conical line by 20 straight lines of length 1 mm

(when a 2-D sectioned side view is taken). These lines connect the points specified by θ1, as

calculated from the required impedance of the taper using (2.116), and the distance from the

axis. The error introduced by this approximation is negligible, as can be seen by the 2-D profile

of the taper in Fig. 4.6. The edges are smoothed by connecting the edge to a point on the taper

1 mm from the edge with a straight line, as shown in Fig. 4.7.

For comparison, a Hecken taper of the same length was also designed. Hecken proposed a

near optimum taper [50, 51] which approximates the performance of a Klopfenstein taper but

without the impedance discontinuities. A CST-MWS simulation was done of the Klopfenstein

taper in a conical transmission line with the edge discontinuities smoothed away, and the results
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Fig. 4.6. 2-D profile of the ideal and linear approximated smoothed Klopfenstein taper in a conical line
without a central conical to coaxial transition. The red part is the ideal taper, and the black part
the linear approximated smooth taper.

Fig. 4.7. 2-D profile showing the smoothed edge of the conical line Klopfenstein taper. The red part is
the ideal taper, and the black part the linear approximated smooth taper.

are compared to the ideal Klopfenstein taper and also to the ideal Hecken taper in Fig. 4.8.

Although the smoothed Klopfenstein taper has slightly worse performance than the ideal case
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Fig. 4.8. Comparison of the reflection coefficients of an ideal and a smoothed Klopfenstein taper, as well
as an ideal Hecken taper.

(Γmax = −25.5 dB compared to −28 dB), the performance is still superior to that of the ideal

Hecken taper (Γmax = −24 dB).
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4.2.3 Higher Order Mode Cutoff Frequencies

Since the impedance of the conical line in this design varies with radial distance, the calcula-

tion of higher order mode cutoff frequencies becomes more involved than for a simple constant

impedance conical line. It is known from Fig. 2.8 that the 10-way combiner of Chapter 3 operates

above the cutoff frequency of several of the TEm1 modes. From Figs. 2.6 and 2.7 it can be seen

that, for a higher constant impedance combiner, the cutoff frequencies of the TEm1 modes will

be higher, but the cutoff frequencies of the TEm2 and the TMmn modes will be lower than those

of a lower constant impedance combiner. If the tapered impedance combiner operates above the

cutoff frequencies of the TEm1 modes and below the cutoff frequencies of the TEm2 and TMmn

modes, like the combiner designed in Chapter 3, it can be assumed that similar performance

would be obtained.

The cutoff frequencies of several higher order modes in the tapered conical line are calculated

using the technique described in Section 2.5. The impedance of the taper is sampled at a few

positions on the taper, and the cutoff frequencies are calculated at these positions. Plots of

these cutoff frequencies versus radial distance of the taper are shown in Figs. 4.9 and 4.10.
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Fig. 4.9. Spatial variation of the cutoff frequency of the first 4 TEm1 modes in a Klopfenstein tapered
conical line.

The results in Figs. 4.9 and 4.10 make intuitive sense. The modes with little variation of the

electric fields in the θ-direction (TEm1), look much the same as those of a normal 5 Ω line

plotted in Fig. 2.8. This is because a wider angle between the conductors will not significantly

influence the mode pattern. For modes where the electric field is zero at the conductors (TEm2

and TMmn), however, the cutoff frequencies vary significantly with changing impedance. The
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Fig. 4.10. Spatial variation of the cutoff frequency of the first few modes with electric field variations in
the θ-direction in a Klopfenstein tapered conical line.

effect of the tapered impedance line can clearly be seen in Fig. 4.10, in that the 1/r dependence

of the cutoff frequency is lost. Note that for 27 ≤ r ≤ 40 mm the impedance of the line is

constant at 8 Ω, and the 1/r dependence of all the cutoff frequencies is again clearly visible.

From the above results it is seen that the tapered line combiner is similar to the constant

impedance combiner of Chapter 3, in that it operates above the cutoff frequency of the first few

TEm1 modes, and below the cutoff frequency of all the other modes. Similar performance could

therefore be expected in terms of isolation and balance.

4.2.4 Simulation of the Combining Structure

As with the design in Chapter 3, the combining structure will be simulated and analytical

transmission line models will be optimised outside the structure to obtain a wide matched

bandwidth. Since the peripheral input ports have already been designed using analytical models

in Section 4.1, only the impedance of the line at the central output port will be optimised, and

therefore, only the reflection data from the common port is needed from the simulation. The

CST-MWS model will include the full peripheral input ports with the matching sections in the

input coaxial lines.

Like the previous design, the backshort length will be determined by a parameter sweep in

CST-MWS. A screen shot of the model used in CST-MWS is shown in Fig. 4.11. Again only the

TEM mode is considered in the design, and magnetic walls can again be inserted on the x-z and

y-z planes. Only a quarter of the structure needs therefore be analysed. The input ports are

standard SMA connectors with feeding lines designed as described in Section 4.1. The output

port is a 25 Ω coaxial line. The CST-MWS result for the reflection coefficient looking into the
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output port is shown in Fig. 4.12(a). A parameter sweep of rb shows that a back short distance

of rb = 8.5 mm gives minimum reflection at a centre frequency of 10 GHz. The transmission

Fig. 4.11. CST-MWS screen shot of tapered 10-way combiner showing central conical to coaxial transition
and peripheral feeding lines and ports. The background material as well as the grey parts are PEC,
the blue part is vacuum, and the yellow parts are teflon. Ports are represented by red rectangles.
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(a) Common central port reflection coefficient.
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(b) Transmission coefficient.

Fig. 4.12. CST-MWS simulated results of the combining structure.

coefficient in Fig. 4.12(b) is very similar to the transmission coefficient of a similar size 8 Ω

combiner plotted in Fig. 4.3(b).
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4.3 Central Output Port Matching

To match the 25 Ω conical combining structure to a 50 Ω N-Type connector across the entire

X -band, with no sharp edges in the matching network, an optimised taper is used in the feeding

coaxial line. Since the diameter of the outer conductor of the coaxial line is fixed by the N-

Type connector (7 mm), the diameter of the inner conductor is tapered. The optimisation is

done in Matlab using analytical transmission line models connected to the S -parameter box

generated by a CST-MWS simulation in Section 4.2.4. A schematic representation of the two-

port optimisation model is shown in Fig. 4.13. The model uses the transmission matrices of

Y
[CST]

Taper
[MATLAB]

[Tt] [TY]

S11

I1 I2

+

V1

-

+

V2

-

Fig. 4.13. Schematic representation of optimisation model for tapered central output line matching
section.

the various parts to obtain the reflection coefficient of the whole system. The tapered matching

section is represented by the transmission matrix Tt, which is terminated in the CST-MWS

generated load Y , which is represented by the transmission matrix TY .

4.3.1 Transmission Matrix Modelling

A tapered impedance transmission line can be modelled by breaking the line up into N short

constant impedance lines with impedance Zi and length `i, and connecting these in cascade.

The transmission matrix of one of these constant impedance lines is found as

Ti =

[
Ai Bi

Ci Di

]
=

[
cosβ`i jZi sinβ`i

jYi sinβ`i cosβ`i

]
, (4.19)

with Yi = 1/Zi. The transmission matrix of the tapered line is then found by multiplying all

the transmission matrices of the cascaded sections as

Tt =

[
At Bt

Ct Dt

]
=

N∏
i=1

Ti, (4.20)

taking care to ensure that the order of matrix multiplication is correct.
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The admittance of the frequency dependent load generated in CST-MWS is calculated from the

reflection coefficient S -parameter as

Y =
1
Z0

1− S11

1 + S11
. (4.21)

The characteristic impedance Z0 is taken as 25 Ω, which is the impedance of the conical combiner

at the central port. The transmission matrix of the admittance Y is calculated as

TY =

[
1 0

Y 1

]
. (4.22)

The input reflection coefficient S11 of Fig. 4.13 can be found by first multiplying the transmission

matrices together to find

T = TtTY

=

[
At Bt

Ct Dt

] [
1 0

Y 1

]

=

[
At +BtY Bt

Ct +DtY Dt

]
. (4.23)

Using simple two-port network theory and (4.23), the voltage and current at port 1 is found as

V1 =(At +BtY )V2 −BtI2

I1 =(Ct +DtY )V2 −DtI2.
(4.24)

Setting I2 = 0 to represent the open circuit at port 2, the input impedance at port 1 is found as

Zin =
V1

I1
=
At +BtY

Ct +DtY
. (4.25)

The characteristic impedance of the input connector to the matching section is Z0 = 50 Ω, and

the input reflection coefficient is thus found as

S11 =
Zin − Z0

Zin + Z0
=
At +BtY − CtZ0 −DtY Z0

At +BtY + CtZ0 +DtY Z0
. (4.26)

The network represented by Tt can now be optimised with the target that S11 should be a

minimum between 8 and 12 GHz.

4.3.2 Coaxial Taper Optimisation

Since accurate construction of complex smooth profiles is difficult, even when a CNC-lathe is

used, a taper consisting of several linear sections in the centre conductor of the coaxial line

is designed. Fig. 4.14 shows a 2-D profile of the taper with the definition of the optimisation
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Fig. 4.14. 2-D profile of the coaxial taper showing optimisation variables.

variables. The total length of the taper is `t, and it consists of N sections defined by the

diameters dn and the length `0 = `t/N .

The optimisation routine written in Matlab optimises only the diameters dn using a standard

Matlab function minimising procedure to yield a minimum S11 in the band 8–12 GHz. S11 is

found by evaluating (4.26). The length of the taper is chosen as `t = 20 mm, since manufacturing

becomes difficult if the coaxial line is too long. For easy manufacturing the diameters must be

constrained so that dn+1 ≥ dn, with d1 ≥ 3.04 mm, and dN−1 ≤ 4.62 mm. The number of

sections N must also be kept to a minimum. A linear taper is used as the seed for the optimiser.

The reflection results of a five section taper (increasing the number of sections does not sig-

nificantly improve the reflection performance) is shown in Fig. 4.15, and a Matlab generated

2-D profile of the physical tapered coaxial line is shown in Fig. 4.16. The final values of the

optimisation variables are d1 = 3.18 mm, d2 = 3.74 mm, d3 = 4.09 mm, and d4 = 4.62 mm.

The length of the sections is `0 = 4 mm. The predicted reflection result from a CST-MWS

simulation of the entire structure is also plotted in Fig. 4.15, and is in very good agreement with

the Matlab prediction. The return loss is better than -28 dB across the 8–12 GHz band.

4.4 Summary of the Step-by-Step Design Procedure

The full design process can be summarised as follows.
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Fig. 4.15. Comparison of the simulated reflection coefficients of a matched 10-way tapered line conical
power combiner.

Fig. 4.16. Matlab generated 2-D profile of the final coaxial taper showing optimisation variable posi-
tions.
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1. Design the peripheral input port feeds using quarter wavelength partially filled coaxial

lines to match the 50 Ω connectors to 80 Ω airlines feeding the conical line combining

structure.

(a) The 80 Ω airline is formed by a standard SMA inner conductor inserted in a 4.82 mm

diameter air cylinder forming the outer conductor of the coaxial line.

(b) A standard extended dielectric SMA connector inserted into the 80 Ω airline forms a

partially filled coaxial line with an impedance of 60.1 Ω. This provides a good match

between the connector and the airline.

(c) The length of the partially filled line is a quarter wavelength and is calculated using

the effective relative permittivity of the line.

(d) The length of the airline is also chosen as a quarter wavelength.

(e) Determine the diameter of the feeding probes. Wider probes give better bandwidth,

but the diameter is limited by the 4.82 mm outer diameter of the input feeding coaxial

lines.

2. The combining structure is designed and the exact response of the structure, including

peripheral input port feeds, is calculated with a full-wave solver.

(a) Determine the impedance of the outer part of the conical line from the number of

ports as Z0 = 80/N .

(b) Determine the radius rp where the input ports are placed. The minimum distance

is based on the width of the connectors, the spacing between the connectors and the

number of connectors used. An estimate of the maximum distance is determined from

(4.6). A smaller rp will reduce higher order modes (see Chapter 5), but a larger rp
will provide for a longer, and therefore better, tapered line matching section.

(c) Determine the impedance at the central transition from the length of the taper used

and the maximum return loss of the match from the equations given in [47].

(d) Construct the central transition between the conical and coaxial line as described in

[12], using θ2 = 90◦, and calculating θ1 from (2.116).

(e) Calculate the Klopfenstein impedance taper using the equations for the impedance

variation given in [47]. The physical taper in the conical line is approximated by 20

straight lines, which connect points specified by θ1, which are calculated from the

required impedance using (2.116) and the distance from the axis.

(f) Determine the length of the backshort rb using a full-wave solver parameter sweep.

Note that this becomes more difficult for larger structures – see Chapter 5.

(g) Analyse the entire structure, including the peripheral input ports, with a full-wave

solver to get the reflection coefficient S -parameter at the central output port.
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3. Optimise a tapered transmission line on the output of the combining structure, using

analytical models in Matlab, to achieve a wide matched bandwidth.

4.5 Construction and Measurement

The structure is again constructed from aluminium in two parts using a CNC-lathe, as described

in Section 3.7. An extra flange was included in the bottom part of the structure to improve the

mechanical stability. A 2-D section view of the entire structure with all the connectors, tuning

posts and fastening screws included, is shown in Fig. 4.17. Some photographs of the structure

are also shown in Fig. 4.18.

Fig. 4.17. 2-D section view of the tapered line conical combiner showing all connectors, feeding probes
and fastening screws.

Two port measurements were again done on the 8510C VNA using precision SMA loads to

terminate the ports that were not being measured.

The simulated and measured reflection results of the common port of the constructed combiner

are shown in Fig. 4.19. A matched bandwidth of 47% is achieved with a maximum return loss

of -18.5 dB, from 7.7 to 12.4 GHz. This match is narrower and deeper than the previous design

in Chapter 3, and is in much closer agreement to the simulated results. Again, the biggest

discrepancy is at low values of |S11|. This is partly due to the SMA to N-Type adaptor used

in the measurement, since no N-Type calibration kit was available to calibrate this effect out of

the measurements. A voltage standing wave ratio (VSWR) of 1.1 is expected from the adaptor

[52], which can be translated to a 55 Ω transmission line in a 50 Ω environment. If a 55 Ω line
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(a) Separated top and bottom parts

(b) Fully assembled

Fig. 4.18. Photographs of the constructed 10-way tapered line combiner.

is inserted between two 50 Ω ports in MWO, depending on the length of the line, the reflection

can be as high as -20.5 dB.

The measured transmission characteristics of the combiner are shown in Fig. 4.20. The simulated

transmission coefficients are not shown since the simulated structure is perfectly symmetrical.

A maximum amplitude imbalance of ±0.7 dB and a phase imbalance of ±5◦ are observed in the

8–12 GHz band. This is a ±0.3 dB improvement on the amplitude balance results measured in

Fig. 3.20(a).

The simulated and measured isolation characteristics of the combiner are shown in Fig. 4.21,

where good agreement between the results is demonstrated. It is noted that the worst isolation

is between port 2 and port 6, which is inconsistent with the measurements in Fig. 3.21 and with

the remarks made in [5]. This effect will be investigated and explained in a Section 4.6.
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Fig. 4.19. Comparison between the simulated and measured reflection coefficient of a tapered line 10-way
combiner.
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Fig. 4.20. Measured transmission coefficients in the operating band of a tapered line 10-way combiner
(Sn1 with n = 2, 3, ..., 11).
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(b) Measured

Fig. 4.21. Simulated and measured isolation in the operating band of a tapered line 10-way combiner.

Fig. 4.22 shows the total I2R loss characteristic of the combiner. The maximum loss in the

operating band is 0.28 dB, and the average loss only 0.18 dB. The loss includes the effects of

the SMA transitions, as well as a SMA to N-Type transition used in the measurement setup.

Again the simulated loss is not included, since the simulated structure is completely lossless.
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Fig. 4.22. Measured loss in the operating band of a tapered line 10-way combiner.

4.6 Isolation

The simulated zero-time H-field pattern in the combiner at 10 GHz when port 2 is driven and

the other ports are terminated is shown in Fig. 4.23.
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Fig. 4.23. Normalised absolute value (in dB) and direction of the simulated H-field pattern at zero-time
in a 10-way tapered line conical combiner at 10 GHz when port 2 (see Fig. 3.5) is driven and the
other ports are terminated.

As with the field pattern in Fig. 3.23, the H-field in Fig. 4.23 is similar to the H-field of one of the

natural higher order modes in a conical transmission line. Although the mode pattern in Fig. 4.23

is again somewhat distorted due to the presence of the input probes and the unsymmetrical

excitation, the H-field loops resemble those of the mode pattern of the ideal TE31 mode which,

from (2.140), propagates in the region r > 14.6 mm at 10 GHz. Since the structure is larger

than the one designed in Chapter 3, it makes intuitive sense that a higher order mode than the

one in the smaller structure will dominate when the structure is driven unsymmetrically.

The effect of this higher order dominant mode is seen in the isolation results of Fig. 4.21, where

the worst isolation is no longer between opposite ports, but indeed between port 2 and port

6 (The exact same results are also valid for a number of other port combinations due to the

symmetry of the structure). When the field pattern in Fig. 4.23 and the time averaged field

strength in Fig. 4.24 are studied, the H-field in the vicinity of port 6, when compared to the

fields in the vicinity of the other ports, most closely resembles that of the normal TEM H-

field in a coaxial line and also has the highest average value. It can therefore be deduced that

the strongest coupling is between port 2 and port 6, which is in agreement with the results in

Fig. 4.21.

It is also interesting to note that the isolation results for the smaller combiner in Fig. 3.21
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Fig. 4.24. Normalised absolute value (in dB) of the time averaged simulated H-field pattern in a 10-way
tapered line conical combiner at 10 GHz when port 2 (see Fig. 3.5) is driven and the other ports
are terminated.

around 12.9 GHz, are similar to the results for the larger combiner in Fig. 4.21 around 10 GHz.

The frequency increase factor (∆f = 1.29) is almost exactly the same as the decrease in size

(∆r = 31.5/25 = 1.26). This further confirms that the excitation of different higher order modes

in structures of different electrical sizes causes the frequency dependence of the isolation.

4.7 Electric Field Strength and Peak Power Considerations

A 2-D section view of the simulated normalised magnitude of the TEM E-field at 10 GHz in the

10-way tapered line combiner is shown in Fig. 4.25.

In contrast to the field pattern in Fig. 3.25, the maximum field strength in a tapered line

combiner is spread evenly through the high power central coaxial line due to the lack of any

sharp corners in this design. This is confirmed by the plot of the E-field magnitude evaluated

along the surface of the inner conductor, when compared to the results of a stepped impedance

combiner in Fig. 3.26, shown in Fig. 4.26 (Note that the curve length of the tapered line combiner

is longer than that of the stepped impedance case due to the larger size of the structure).

Fig. 4.26 clearly shows much lower peak E-field values for the tapered line combiner than those

of the stepped impedance combiner. There are no sharp peaks in the E-field, except in the
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Fig. 4.25. 2-D section view of the normalised magnitude (in dB relative to 5.7 kV/m) of the TEM E-field
in a 10-way tapered line combiner at 10 GHz with 1 W of input power.
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Fig. 4.26. Comparison of the magnitudes of the TEM E-fields, evaluated along a curve on the surface of
the inner conductor of the central line from the central output port to one of the peripheral input
ports, of a 10-way tapered line combiner with a 10-way stepped impedance combiner at 10 GHz
with 1 W of input power.
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vicinity of the corners at the peripheral ports. The E-field value here is, however, much lower

than the field in the central part of the combiner due to the power combining action. The peak

E-field strength in the tapered line combiner (5.7 kV/m) is about 2 times lower than that of

the stepped impedance combiner (12.3 kV/m) for the same input power, and it can therefore be

expected that the tapered line combiner has a 4 times greater peak power handling capability.

4.8 Conclusion

This chapter illustrates how the uniform TEM transmission line nature of the conical line can be

exploited through the use of tapered lines. This leads to improved power handling and tolerance

insensitive manufacture of a conical line power combiner.

By using simple quarter wavelength matching sections in the peripheral feeds, and a tapered

line matching section in the conical line, the impedance at the central port is raised, which

allows for easier matching to the output connector, and also more accurate construction. An

optimised tapered line matching section is employed at the central output port to obtain wide

band performance. Peak power handling capability of the combiner is increased since there are

no sharp edges in the central high power parts of the structure.

A 10-way combiner, which demonstrates wide band performance, good amplitude and phase

balance, and very low losses, was constructed. Measured results are in excellent agreement with

predicted results obtained with a full-wave solver.



Chapter 5

General Design Strategy for N-Way
Conical Combiners

In the previous two chapters two methods were presented for designing 10-way conical line

combiners, which both displayed excellent performance. In this chapter a general design strategy

will be presented for the design of N -way conical combiners. This strategy is developed by a

detailed study of the main design parameters, namely size of the structure, match of the conical

line impedance taper and the peripheral port matching. The field patterns inside the structures

are investigated, and it is shown that higher order modes are indeed excited in symmetrically fed

electrically large structures. These modes cause the reflection and transmission performance to

differ from the highly predictable performance of electrically small TEM structures. The effect

of different impedance tapers on performance is also studied, as well as the effect of the simple

input matching section described in Section 4.1. The previous designs are critically compared

to the general design strategy developed in this chapter, and a 30-way combiner is designed and

simulated using the general strategy.

5.1 Effect of Size Variations in a Constant Impedance Combin-
ing Structure

In order to gain a better understanding of the operation of general N -way conical combiners,

several simulated experiments were performed using CST-MWS for various constant impedance

combiners with different numbers of ports. Ten-, 16-, and 20-way constant impedance combiners

were analysed with varying radial size, rp, and backshort distance, rb, (see Fig. 3.4) in an effort

to find predictable trends in the behaviour of combiners containing different numbers of ports.

Such a trend was indeed recognised when it was found that the TEN/2,1 mode causes degraded

performance in larger structures. Since the TEN/2,1 mode is meaningless in a structure with an

91
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uneven number of input ports, simulations were also done of an 11-way combiner.

The peripheral input port feeds for all the combiners are 80 Ω airlines, as described in Section 4.1,

without the matching section. Note that the impedance of the conical line in the combiners is

now 80/N in (3.7). The transition of [12] is used throughout as the central conical to coaxial

transition, and no matching network is included at the central port.

5.1.1 Effects of Varying Size on the Reflection Coefficient

The reflection coefficient of a 10-way combiner is shown in Fig. 5.1 for a wide range of radial

sizes and backshort lengths. It can be seen from Fig. 5.1 that for small structures (the meaning
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Fig. 5.1. Simulated reflection coefficients of several 8 Ω 10-way combiners of different radial sizes and
backshort lengths.

of ’small structures’ will become clear later in this section) the reflection coefficient displays a

reflection zero at the λ/4 backshort frequency, as expected from a TEM combiner. Table 5.1

compares the expected reflection zero frequency due to the quarter wavelength backshort, and
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the actual simulated value. From Table 5.1 and Fig. 5.1 it can be seen that, for small values of

TABLE 5.1
Comparison of the theoretical quarter wavelength backshort reflection zero

frequency with the simulated value in an 8 Ω 10-way combiner for small values of rp.

f0 [GHz]
rp [mm] rb [mm]

Theory CST-MWS
% Difference

6.5 11.5 10.2 −11.5
7.0 10.7 9.6 −10.3

15 7.5 10.0 9.0 −9.9
8.0 9.4 8.6 −8.2
8.5 8.8 8.1 −8.1
9.0 8.3 7.8 −6.3
6.5 11.5 10.9 −5.5
7.0 10.7 10.0 −6.6

20 7.5 10.0 9.0 −9.9
8.0 9.4 8.4 −10.3
8.5 8.8 7.9 −10.4
9.0 8.3 7.4 −11.1

rp, the simulated reflection zero frequency is between about 5 and 10 % lower than the predicted

theoretical value. Similar results are obtained when an 11-, 16- or 20-way combiner is analysed,

as can be seen in Fig. 5.2 and Table 5.2, which display the results for 16-way combiners of

different radial sizes and backshort lengths, and also Fig. 5.3 for 20-way combiners.

TABLE 5.2
Comparison of the theoretical quarter wavelength backshort reflection zero

frequency with the simulated value in a 5 Ω 16-way combiner for small values of rp.

f0 [GHz]
rp [mm] rb [mm]

Theory CST-MWS
% Difference

6.5 11.5 11.3 −2.0
7.0 10.7 10.4 −2.9

20 7.5 10.0 9.8 −1.9
8.0 9.4 8.7 −7.1
8.5 8.8 7.9 −10.4
6.5 11.5 10.0 −13.3
7.0 10.7 9.5 −11.3

30 7.5 10.0 8.9 −10.9
8.0 9.4 8.4 −10.3
8.5 8.8 7.9 −10.4

When rp is increased, however, the behaviour of the reflection coefficient changes. As the radial

size is increased and the backshort distance decreased, a knee starts to appear in the reflection

response above the reflection zero frequency (from here on termed the S11 transition point),
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Fig. 5.2. Simulated reflection coefficients of several 5 Ω 16-way combiners of different sizes and backshort
lengths.

which later forms a spurious reflection zero and causes the expected reflection zero to disappear.

In all the cases, the reflection performance becomes severely degraded in larger structures.

This degraded reflection performance can be attributed to the excitation of symmetrical higher

order modes in electrically large structures, which have field patterns similar to the pattern

depicted in Fig. 4.4(a). Even though the structure is driven symmetrically, higher order modes

can still be excited, due to the position of the peripheral ports, when the structure is large

enough. For combiners with an even number of peripheral ports, the TEN/2,1 mode can exist

relatively undisturbed if the ports are in a region of the combiner which is above the cutoff

frequency of the specific mode, as can be seen from the field plots in Section 2.6. In Fig. 5.1,

the transition point for S11 is at rp = 20 mm and rb = 6.5 mm. Much the same result is also

seen for rp = 25 mm and rb = 8.5 mm. The cutoff radius of the TE51 mode is calculated from

(2.140) at a frequency of 11.53 GHz (which corresponds to a quarter wavelength of 6.5 mm)

to be rc = 20.74 mm. At 8.8 GHz, which corresponds to rb = 8.5 mm, the cutoff radius is
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rc = 27.1 mm. In both these cases the total size of the structure (rmax = rp + rb) is about 1.25

times the cutoff radius at the centre frequency. Fig. 5.3 shows some reflection results for 20-way

combiners, and Table 5.3 shows the total size of some of the structures at the S11 transition

point compared to the cutoff radii of the TEN/2,1 modes at the centre frequency. Note that an

approximate formula for the cutoff radius can be found by using the radius at the point at which

the circumference is N half wavelengths at the desired frequency,

2πrc = N(2rb), (5.1)

as shown in Table 2.1.
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Fig. 5.3. Simulated reflection coefficients of several 4 Ω 20-way combiners of different sizes and backshort
lengths.

TABLE 5.3
Comparison of the cutoff radius of the TEN/2,1 mode at the theoretical centre

frequency of the structure to the total size of the structure at the S11 transition

point.

rc [mm]N rp [mm] rb [mm]
Exact Approx

rmax

rc
10 20 6.5 20.7 20.7 1.3

25 8.5 27.1 27.1 1.2
16 30 6.5 33.1 33.1 1.1

40 8.5 43.3 43.3 1.1
20 35 7.0 44.6 44.6 0.9

45 9.0 57.3 57.3 0.9

Table 5.3 confirms that a very good approximation of the cutoff radius can be found by using

(5.1). More importantly, it shows that the reflection performance starts to degrade when the

size of the structure is approximately the same as the cutoff radius of the TEN/2,1 mode. Also, in

combiners with a larger number of ports, reflection performance starts degrading faster than in
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combiners with fewer ports. It must be noted, however, that the above results are a conservative

estimate of the maximum size where the reflection performance will still be acceptable since,

as can be seen from Figs. 5.1, 5.2 and 5.3, the reflection performance is still good for some

structures electrically larger than those given in Table 5.3. ’Electrically small’ structures can

now be defined in this context as structures smaller than those described above.

Very similar results were found with an 11-way combiner, but, because of the uneven number of

ports, there is no natural conical mode that can exist between the ports. The ports do, however,

cause a similar mode to the ones described above, to degrade the reflection performance in

exactly the same way as for combiners with even numbers of ports. Since the cutoff radius

of the mode cannot be calculated directly, a simple linear interpolation can be used between

the cutoff radii of the natural modes above and below the uneven mode (the TE(N+1)/2,1 and

TE(N−1)/2,1 modes) to find results similar to the ones in Table 5.3.

It is therefore possible to derive a conservative estimate for the maximum size of a N -way com-

biner to give predictable reflection performance. The study shows that the expected reflection

zero occurs at a slightly lower frequency than that predicted by the length of the backshort, if

the total radial size of the structure is kept smaller or equal to the cutoff radius of the TEN/2,1

mode at the frequency of the quarter wavelength backshort. If electrically larger structures are

desired, the reflection performance is still good, but not as predictable as electrically smaller

structures. More care must be taken when designing such large structures to ensure adequate

bandwidth and the correct centre frequency. More will be said of this in the rest of the chapter.

5.1.2 Effects of Varying Size on the Transmission Coefficient

As with the reflection coefficient responses in Section 5.1.1, a transmission coefficient response

from the central common port to one of the peripheral ports of a 10-way combiner is shown in

Fig 5.4, for a wide range of radial sizes and backshort lengths. Again a difference is noted in

Fig. 5.4 between the electrically small and the electrically large structures. In the small structures

a transmission zero is observed at the frequency where the backshort is approximately half a

wavelength - as expected from a TEM combiner. In the larger structures, the transmission

zero is much less dependent on the backshort length, and the behaviour can be approximated

by the technique described in Section 4.2.1. Table 5.4 compares the theoretically expected

transmission zero frequencies to the simulated values, and also shows the relative total radial

size of the structure, compared to the cutoff radius of the TEN/2,1 mode at the centre frequency.

It can be seen in Table 5.4, that for electrically small structures, the transmission zero frequency

can be very accurately predicted by using the frequency at which the backshort length is λ/2,

and is therefore independent of the radial size of the combiner. Similar results are found for 11-,
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Fig. 5.4. Simulated transmission coefficients of several 8 Ω 10-way combiners of different radial sizes and
backshort lengths.

16- and 20-way combiners.

When the radial size of the structure is increased, the transmission zero frequency becomes

more dependent on the radial size of the structure than on the length of the backshort, as was

also shown in Section 4.2.1. The specific higher order mode causing the transmission zero is,

however, not easy to predict for a N -way combiner. It was shown in Section 4.2.1 that for a

10-way combiner the transmission zero is mainly caused by the resonant TM003 mode within

the probes. Similarly, for a large 20-way combiner, the transmission zero is mainly caused by

the TM006 mode within the probes, and in a 16-way combiner by the TM005 mode. Fig. 5.5

shows the normalised absolute value of the resonant transmission zero electric field in a 16-way

combiner with rp = 50 mm, and rb = 7.5 mm at 17.1 GHz. The cutoff radius of the TE81 mode

at 10 GHz is 38.2 mm, which makes this structure 1.5 times the size of the cutoff radius and

thus electrically large.
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TABLE 5.4
Comparison of the theoretical half wavelength backshort transmission zero

frequency with the simulated value in an 8 Ω 10-way combiner.

f0 [GHz]
rp [mm] rb [mm]

Theory CST-MWS
% Difference

rmax

rc
8.0 18.7 19.2 2.5 0.9

15 8.5 17.6 18.3 3.8 0.9
9.0 16.7 17.1 2.7 0.8
8.0 18.7 19.0 1.4 1.1

20 8.5 17.6 17.9 1.5 1.1
9.0 16.7 17.0 2.1 1.0
8.0 18.7 18.3 −2.3 1.3

25 8.5 17.6 17.6 −0.5 1.2
9.0 16.7 16.7 0.3 1.2
8.0 18.7 17.1 −8.7 1.5

30 8.5 17.6 16.7 −5.6 1.4
9.0 16.7 16.1 −3.3 1.4

The same technique can be used as in Section 4.2.1 to predict the transmission zero frequency

with p = 5. These predictions are, however, very rough due to the rb dependence shown in

Figs. 4.3(b) and 5.4, and should be verified by simulation. For large combiners having different

numbers of ports, the resonant mode causing the transmission zero is almost never known and

must be found by simulation.

As before, it is therefore clear that, for electrically small combiners, the frequency of the first

transmission zero can easily be predicted by taking the half wavelength frequency of the back-

short distance. For larger structures it becomes increasingly more difficult to predict the trans-

mission zero frequencies, and simulations have to be performed to determine which resonant

mode is causing the transmission zero. These resonant higher order modes cause the severe

degradation of reflection performance in electrically large combiners, and therefore limit the

maximum size of such a combiner.

5.2 Effect of Different Impedance Matching Tapers in the Con-
ical Line of the Combining Structure

As described in Chapter 4, the impedance of the conical line in a low impedance combiner has

to be increased at the centre of the structure to obtain wider spacings between the conductors

of the central transition and coaxial feed line. This is achieved by employing a Klopfenstein

impedance taper in the conical line to match the low impedance peripheral part of the combiner

to a higher impedance at the central part. The effect of several tapers, providing different levels
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Fig. 5.5. Normalised absolute value of the electric field at the resonant transmission zero frequency
(17.1 GHz) of an electrically large 16-way combiner with rp = 50 mm and rb = 7.5 mm.

of return loss, is simulated for both electrically small and electrically large structures. The effect

that the taper has on the reflection performance of the combiner is investigated and a design

guideline suggested.

Smoothed Klopfenstein tapers, like the one described in Section 4.2.2, are used in all the simu-

lations. The reflection coefficients shown in the legends of Figs. 5.6 to 5.9, refer in all cases to

the design value of the unsmoothed Klopfenstein taper used in the design. If a different taper,

like the Hecken or exponential type, is used the results may differ slightly and should be checked

carefully. The smoothed Klopfenstein taper is preferred here due to its superior performance,

as shown in Fig. 4.8.

5.2.1 Effect of Tapers in Electrically Small Structures

To investigate the effect on the return loss of an electrically small combiner when an impedance

taper is introduced in the conical line, a 16-way combiner is analysed with rp = 30.7 mm and

rb = 7.5 mm, which makes the radial size of the combiner exactly the same as the cutoff radius

of the TE81 mode at 10 GHz. Tapers with a return loss of −20, −23, −25, and −30 dB are used

(Note that in order to fit the -30 dB taper in the conical line, a maximum impedance step of

only 5 to 15 Ω is possible). Fig. 5.6 shows the resulting reflection coefficients of the combiner

containing the different tapers. For tapers with a return loss of −23 dB and higher, a slight

shift in the centre frequency of the reflection coefficient of the combiner is observed. However,

the reflection coefficients of the combiners containing the −25 and −30 dB tapers show excellent
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Fig. 5.6. Reflection coefficients of electrically small (rp = 30.7 mm and rb = 7.5 mm) 15 Ω common port
16-way combiners with varying return loss conical line impedance tapers.

agreement with that of the 5 Ω constant impedance combiner.

When the length of the backshort is reduced to rb = 6.3 mm, the centre frequency of the 5 Ω

constant impedance combiner is moved to exactly 10 GHz. The same tapers as above were

inserted in the structure, and the resulting reflection coefficients are shown in Fig. 5.7. These
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Fig. 5.7. Reflection coefficients of electrically small (rp = 30.7 mm and rb = 6.3 mm) 15 Ω common port
16-way combiners, tuned to 10 GHz, with varying return loss conical line impedance tapers.

combiners are slightly larger than the cutoff radius of the TE81 mode at the theoretical centre

frequency of 11.9 GHz (1.2 times), but Fig. 5.7 shows that tapers with a return loss of better

than −25 dB produce reflection results very similar to those of the simple constant impedance
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combiner.

5.2.2 Effect of Tapers in Electrically Large Structures

The effect of the impedance taper in the conical line on the return loss of electrically large

structures is investigated by analysing 10-way combiners with rb = 31.5 mm and rb = 7.5 mm,

which makes the radial size of the combiner 1.6 times the cutoff radius of the TE51 mode at

10 GHz. To be comparable to the combiner designed in Chapter 4, the impedance levels are

chosen as 8 - 25 Ω, and the taper return losses as −20, −23, −25, and −28 dB. Fig. 5.8 shows

the reflection coefficients. Due to the fact that all the tapers have a better return loss than that
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Fig. 5.8. Reflection coefficients of electrically large (rp = 31.5 mm and rb = 7.5 mm) 25 Ω common port
10-way combiners with varying return loss conical line impedance tapers.

of the simple constant impedance combiner, the effect of the different tapers is not apparent

in Fig. 5.8. More degradation of the reflection performance is, however, noticed in the −20 dB

taper combiner.

When the length of the backshort is increased to 8.5 mm, like the combiner in Chapter 4, the

cutoff radius of the TE51 mode is increased, and therefore the radial size of the structure is

reduced to 1.4 times the cutoff radius of the TE51 mode at the theoretical centre frequency of

8.8 GHz. Here, as Fig. 5.9 shows, a reflection zero does exist, but it is shown in Section 5.1.1

that it is not easy to predict the frequency thereof. Tapers with a return loss of better than

−28 dB give the most predictable performance, even though a slight shift in frequency of the

transmission zero is still noticed. This is due to the fact that the tapered conical line is not

entirely TEM anymore at the large radii, and therefore starts giving some unpredictable results.

For a large structure such as this, where a reflection zero is still achieved, the tapers and indeed
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Fig. 5.9. Reflection coefficients of electrically large (rp = 31.5 mm and rb = 8.5 mm) 25 Ω common port
10-way combiners, tuned to about 10 GHz, with varying return loss conical line impedance tapers.

the combiner can still be used, but more care must be taken in the tuning of the backshort

length to achieve the desired centre frequency.

5.3 Effect of the First Order Peripheral Input Port Matching
Sections

To match the 80 Ω peripheral input feeds to a 50 Ω connector, a simple first order quarter

wavelength matching section was used in Section 4.1, where the ideal impedance levels could

not be used due to construction limitations. This could be overcome by using connectors with

wider flanges, or by taking care to place the connectors very accurately during construction,

and therefore having a smaller safety margin than the 0.4 mm used in Section 4.1. The effect

that the non-ideal first order match has on the reflection performance of electrically small and

large combiners is investigated in this section. For wider bandwidth applications, an optimised

matching section, such as the one described in Section 3.5.1, can be employed. It should be kept

in mind that these matching sections are normally much harder to construct than the simple

first order ones.

5.3.1 Effect of First Order Input Match on Electrically Small Combiners

A 20-way combiner with rp = 35 mm and rb = 6.5 mm has the same total radial size as the cutoff

radius of the TE10,1 mode at 11.5 GHz, and is used here as the electrically small combiner. A

taper with a −27 dB return loss was incorporated in the structure to raise the impedance to 25 Ω
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at the central port. Note that for the ideal matching section the impedance of the feeding lines

must be raised from 80 to 85.6 Ω, and the impedance of the outer part of the conical line changed

accordingly. Fig. 5.10 shows the effect that the non-ideal and the ideal input matching sections

have on the reflection of the combiner. It can be seen in Fig. 5.10 that while the combiner with
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Fig. 5.10. Comparison of the reflection coefficients caused by adding non-ideal and ideal first order
input matching sections to an electrically small (rp = 35 mm and rb = 6.5 mm) 20-way combiner
containing a -27 dB conical line taper.

the ideally matched inputs displays good reflection performance, the non-ideal match degrades

the reflection performance of the combiner. Thus, for electrically small combiners, it is advisable

to have a very good and well tuned match from the input feeds of the combiner to the peripheral

port connectors.

5.3.2 Effect of First Order Input Match on Electrically Large Combiners

For the electrically large case a 10-way combiner with rp = 31.5 mm and a -28 dB taper is

used. The impedance at the central port is 25 Ω. Fig. 5.11 shows the reflection coefficient of

the combiner with the non-ideal input matching section included for different values of rb. From

Fig. 5.11 it can be seen that a good match can be achieved if the backshort length is tuned to

rb = 8.5 mm, even if the input matching sections are not ideal. This is the exact case that was

used for the design in Chapter 4. Slightly worse results, with reduced bandwidth, are achieved

when an ideal first order matching section is used in the input lines, as can be seen in Fig. 5.12.

When these results are compared to Fig. 5.9 it is seen that the input matching section has a

large effect on the reflection coefficient of the combiner. It is therefore apparent that when

an electrically large combiner is designed, the length of the backshort must be determined by

simulations in order to obtain the desired operating frequency. Also, this must be done after
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Fig. 5.11. Comparison of reflection coefficients caused by adding non-ideal first order matching sections
to an electrically large (rp = 31.5 mm) 10-way combiner, containing a -28 dB conical line taper, for
different backshort lengths.
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Fig. 5.12. Comparison of reflection coefficients caused by adding ideal first order matching sections to
an electrically large (rp = 31.5 mm) 10-way combiner, containing a -28 dB conical line taper, for
different backshort lengths.
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the input matching section is included in the design, since the matching section has an effect on

the reflection coefficient of the combiner.

5.4 Summary of General Design Guidelines and Critical Evalu-
ation of Previous Designs

In this chapter some general design guidelines have been developed for the design of N -way

conical transmission line power combiners. A short summary of these findings will be given in

this section, as well as a critical evaluation of the designs in Chapters 3 and 4 against these

general design guidelines.

5.4.1 Summary of General Design Guidelines

The most important parameter to determine in the design is the radial size of the combiner.

The minimum radial size is determined by the circumference needed to support the N input

connectors. The maximum size of the combiner is determined by the cutoff radius of the TEN/2,1

mode at the centre frequency, or for uneven numbers of input ports a linear interpolation is used

between the cutoff radii of the TE(N+1)/2,1 and the TE(N−1)/2,1 modes. If the structure is kept

smaller or about the same size as this cutoff radius, very predictable reflection and transmission

performance can be expected from the combiner when using a taper with a return loss better

than −25 dB, and well matched first order peripheral port matching sections. Note that slightly

mismatched peripheral ports may give undesired degradation of the reflection performance,

and care should be taken to ensure a good match of the peripheral ports. For wider bandwidth

applications optimisation of these matching sections may be performed as shown in Section 3.5.1.

When a structure larger than about 1.3 times the cutoff radius of the TEN/2,1 mode is required,

more care must be taken in the design to ensure that the reflection performance of the structure

is still adequate. If the resonant mode causing the transmission zero is known, normally by

simulation, the maximum size of the combiner can be approximated by the technique in Sec-

tion 4.2.1. A taper with a return loss of at least −25 dB should be used, and careful simulation

of the structure should be performed after the peripheral port matching sections are included

to find a backshort length that will give good reflection performance at the desired frequency.

This may be necessary when a longer section of conical line is required for the impedance taper

in order to allow adequate spacing between the conductors of the central coaxial line. Normally

this will only happen in structures with fewer than about 16 input ports (depending on the

impedance level required at the central port), since the return loss of the Klopfenstein taper

is more dependent on the length of the line than the impedance step required, due to the log-
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arithmic impedance dependence seen in (4.9). When more than 16 ports are used, the cutoff

radius is generally large enough to accommodate an adequate length of tapered line to raise the

impedance at the central port sufficiently with a good return loss.

5.4.2 Critical Evaluation of Previous Designs

The first design in Chapter 3 is very simple, since no impedance taper was included in the conical

line, and optimisation was used for the central as well as the peripheral port matching sections.

A 5 Ω conical line was used to match the ten 50 Ω input feeds. The radial size of the combiner

was simply determined by the minimum size required to fit the ten peripheral SMA connectors.

The total radial size of the combiner, after tuning of the backshort length, is rmax = 32.6 mm,

with rb = 7.6 mm for 10 GHz operation. This is 1.3 times the cutoff radius of the TE51 mode,

and it can be seen in Fig. 3.10 that the reflection coefficient displays the characteristic knee at

the high frequency side of the reflection zero. This is consistent with the results in Table 5.3,

where the reflection performance of 10-way combiners is shown to start degrading at around

1.2 to 1.3 times the size of the cutoff radius. Optimisation was used to design both the central

and the peripheral matching networks to obtain wide band performance. The performance of

the constructed combiner was not as good as expected due to the imperfect manufacturing of

the narrow spacings between the central conductors, and therefore the impedance of the central

part of the conical line should be raised.

The design in Chapter 4 was done for a combiner with a much larger radius than the cutoff radius

of the TE51 mode. This large radial size requirement is due to the 25 Ω impedance needed at

the central port, and the length of the Klopfenstein taper needed to achieve this. An estimate

of the maximum radial size was calculated with the technique in Section 4.2.1, and used as the

radial size of the structure. The best taper that could be fit into the structure was employed

(−28 dB return loss), and simple non-ideal first order peripheral port matching sections were

used due to limitations on the available SMA connectors. A parameter sweep was performed in

CST-MWS to find the value of rb that gives the best reflection performance, and an optimised

central port matching section was included in the final design. Note that although this method

of design still gives satisfactory results, more full wave simulation is required to get the final

parameters, and the design is therefore more time consuming than the design of an electrically

small combiner.
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5.5 Design and Simulation of a 30-Way Combiner

Using all the design guidelines developed in this chapter, a 30-way combiner is designed in this

section to operate at 12.5 GHz in order to be comparable to the results for a 30-way radial

combiner published in [3]. The design in [3] relies on circuit models to find the basic dimensions

of the structure, and full wave simulation optimisation to achieve a wide band performance for

the combiner. The design here will attempt to achieve similar or better performance than the

published results, with far less design effort and full wave optimisation.

For this design the first order peripheral port matching sections described in Section 4.1 are

used in order to keep the design as simple as possible. If the structure is found to be electrically

small the ideal matching section should be employed, as explained in the previous section.

As a first step, the cutoff radius of the TE15,1 mode is found at 12.5 GHz from (2.140) as

57.3 mm. The same result is also found when (5.1) is used. The minimum radius needed to

accommodate 30 SMA connectors is about 47 mm which, when using (4.7) with δs = 6 mm,

easily allows for a taper of 33 mm. The impedance of the conical line in the combiner at the

peripheral ports is Z0 = 85.6/30 = 2.85 Ω in order to accommodate ideal first order peripheral

matching sections. A Klopfenstein taper matching 2.85 Ω to 25 Ω over a length of 33 mm has

a return loss of better than -35 dB when the minimum frequency is chosen as 7 GHz. Since the

match is so good, the minimum frequency of the match can be chosen almost freely as long as

it is lower than the expected minimum operating frequency of the combiner, which is around

10.5 GHz in this case. With this excellent return loss achieved by the taper, the size determined

by the minimum circumference needed to accommodate the input ports can be used as the size

of the structure, which is much smaller than the cutoff radius of the TE15,1 mode at 12.5 GHz.

The Klopfenstein taper is again approximated in the conical line by 1 mm straight line sections,

and the edges smoothed in the same manner as described in Section 4.2.2. Ideal first order

matching sections are included at the peripheral ports, as described in Section 4.1, with the

diameter of the airline c = 5.16 mm, and the length of the partially filled line lt = 4.51 mm for

operation at 12.5 GHz. The length of the quarter wavelength 85.6 Ω airline is la = 6.0 mm.

The backshort length is initially chosen as rb = 5.4 mm, which is about 10 % shorter than the

theoretical value of 6 mm, as suggested by Tables 5.1 and 5.2. This produces a centre frequency

of about 12.0 GHz, which is moved to 12.5 GHz by decreasing rb by the factor 12.0/12.5 to

rb = 5.2 mm. A CST-MWS sreen shot of the simulation model is shown in Fig. 5.13 and the

simulated reflection coefficient is shown in Fig. 5.14.

An optimised tapered coaxial line matching section, like the one described in Section 4.3.2, is

used in the central coaxial line of the combiner to match the structure to 50 Ω over a wide
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Fig. 5.13. CST-MWS screen shot of tapered 30-way combiner showing central conical to coaxial transition
and peripheral feeding lines and ports. The background material as well as the grey parts are PEC,
the blue part is vacuum, and the yellow parts are teflon. Ports are represented by red rectangles.
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Fig. 5.14. Common central port reflection coefficient of a tapered 30-way combiner with the peripheral
input matching sections included.
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band. Fig. 5.15 shows a comparison of the Matlab prediction of the reflection coefficient to the

CST-MWS simulation of the entire combiner, including the central coaxial matching section.

Excellent agreement between the simulated results is demonstrated in Fig. 5.15, and a −20 dB
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Fig. 5.15. Comparison of the simulated reflection coefficients of a matched 30-way tapered line conical
power combiner.

matched bandwidth of 34% is achieved around 12.5 GHz. It was shown in Fig. 4.19 that good

agreement between measured and simulated reflection can be expected for this type of combiner

down to about −20 dB. The simulated reflection performance of this 30-way combiner is superior

to the performance of the 30-way radial combiner in [3], which demonstrates a 25% bandwidth

with a return loss of −14 dB at 12.5 GHz. The -14 dB return loss bandwidth of the combiner

designed here is 40% at 12.5 Ghz.

It should be noted here that, depending on the required bandwidth of the combiner, other

matching techniques could have been used. For wider bandwidth operation optimised stepped

impedance networks could have been used as the central and peripheral matching sections.

For narrower bandwidth applications the Klopfenstein taper could also have been used in the

conical line to raise the impedance to the required 50 Ω at the central port. This can be done

because of the long length of conical line available in the combiner. Bandwidths similar to

the one demonstrated in Fig. 5.14 can be achieved in this manner, with the advantage that no

optimisation is required in the design. When this technique is used, however, care should be

taken to check that the higher order modes described in Section 4.2.3, and particularly those in

Fig. 4.10, are not excited in the high impedance part of the conical line.

A simulated transmission coefficient of the combiner is shown in Fig. 5.16 which, from (3.4),

displays the expected −14.8 dB transmission coefficient of a 30-way combiner in the 10.5–
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14.5 GHz band.
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Fig. 5.16. Simulated transmission coefficient of a 30-way conical line combiner.

The minimum simulated isolation between port 2 and port n in the band 10.5–14.5 GHz is shown

in Fig. 5.17. The worst isolation is between neighbouring and opposite ports, and also between
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Fig. 5.17. Simulated minimum isolation between port 2 and port n in the band 10.5–14.5 GHz of a
30-way conical combiner. The same port numbering convention is used as in Fig. 3.5.

ports 2 and 12 (the exact same results are also valid for a number of other port combinations

due to the symmetry of the structure). The same numbering convention is used as in Fig. 3.5.

Again this is confirmed, by using the same argument as in Sections 3.8 and 4.6, by studying the

zero-time H-field pattern at 12.5 GHz shown in Fig. 5.18 and the time averaged H-field strength
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shown in Fig. 5.19. The fields in the vicinity of ports 3, 12 and 17 are seen to closely resemble

Fig. 5.18. Normalised absolute value (in dB) and direction of the simulated H-field at zero-time in a
30-way tapered line conical combiner at 12.5 GHz when port 2 (see Fig. 3.5) is driven and the other
ports are terminated.

the normal TEM H-field in a coaxial line and they also have a high average value when compared

to the fields in the vicinity of the other ports.

It is worth noting that, as expected from (3.6) and stated in [6], the isolation is much better than

that of a 10-way combiner (see Figs. 3.21 and 4.21). The isolation results are somewhat worse

than the isolation results in [3] for a similar 30-way radial combiner. It is not clear, however, if

the isolation results given in [3] are for the minimum, average, maximum, or centre frequency

isolation. As seen in the isolation plots in Figs. 3.21 and 4.21, and explained in Sections 3.8

and 4.6, the isolation can vary significantly with frequency over the operating band, and it is

therefore impossible to properly compare the results if it is not known which isolation results

are given in the literature.

5.6 Conclusion

In this chapter a general technique for the design of N -way conical transmission line combiners

has been presented. The technique is developed by a detailed study of the main design parame-

ters to find the limitations on the design of conical combiners. Designs of previous chapters are
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Fig. 5.19. Normalised absolute value (in dB) of the time averaged simulated H-field in a 30-way tapered
line conical combiner at 12.5 GHz when port 2 (see Fig. 3.5) is driven and the other ports are
terminated.

critically compared to these new guidelines.

A 30-way combiner was designed and simulated to show that the design techniques developed

in this dissertation can be used with confidence to design combiners with many ports and

excellent performance. The simulated results obtained for a 30-way conical combiner designed

in this manner were compared to published results for a similar 30-way radial combiner, and

the performance of the conical combiner is in the same order (in the case of the isolation), or

better than (in the case of the reflection), that of the radial combiner. Much less design effort,

and also fewer full wave simulations, are needed in the design of the conical combiner. Only

analytical models have to be optimised to find the desired wide band performance, and excellent

agreement between the analytical model and the full wave simulation is achieved.



Chapter 6

Conclusion

This dissertation presented a complete design technique for the design of reactive N -way conical

transmission line power combiners. These combiners offer significant advantages over the more

widely used radial line types in terms of design simplicity and performance.

A complete theoretical description of conical transmission lines is presented, starting with the

analytical solutions of the Maxwell equations in spherical coordinates with conical boundary

conditions. A method for the computation of the roots required for the evaluation of these

equations is given. The phenomenon of a gradual cutoff wavelength of the higher order modes

in conical lines is explained, and a simple proof is presented for the choice of the equation for the

cutoff wavelength given by standard texts. Some plots of the analytical solutions of the modal

fields are shown, as well as comparisons with simulated results.

TwoX-band 10-way conical combiners were designed and manufactured. The first has a constant

impedance conical line in the combining structure, matched by optimised stepped impedance

coaxial lines on the input and output sides. A 74% bandwidth is achieved with a return loss

of -14.5 dB. The second combiner has a tapered conical line in the combining structure and

employs an optimised coaxial taper as the matching section in the output feed line. These

changes were made to alleviate some construction difficulty encountered in the first design, and

also to allow for higher peak power handling capability. The constructed combiner demonstrates

a 47% bandwidth with a -18.5 dB return loss.

The final part of the dissertation concentrates on finding the limitations of the previously pre-

sented design techniques, and expands them to include the design of general N -way combiners.

To demonstrate the technique, a 30-way combiner is designed at Ku-band, and simulated results

show a -20 dB return loss bandwidth of 34%.

The design technique presented is simple to execute and requires minimal full wave analyses

113
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of the structure. Only circuit models need to be optimised to achieve broadband operation.

Simulated results are in good agreement with measurements, and the design technique can

be used with confidence to design combiners with a large number of input ports (N ≥ 8) at

microwave frequencies up to the Ku-band.

Expansions on this work anticipated by the author could include:

• A study on techniques for improving the isolation of mainly small combiners (N < 16).

These will typically include introducing lossy materials into the structure to absorb higher

order modes, or employing isolation resistors between the input ports. This will, however,

probably reduce the operating bandwidth and power handling capability of the combiner.

• Introducing waveguide instead of coaxial ports.

For very high power applications the power handling capability of the combiner might

be limited by the power handling capability of the coaxial connectors used at the input

and output ports. Also, in many high power systems waveguide is used extensively as

transmission medium, and transitions to coaxial lines can cause unwanted reflections and

thus degrade system performance. The matching can still be done in coaxial lines, as

described in the dissertation, but instead of using coaxial connectors as the input and

output ports, the coaxial feed lines could transition directly into the required waveguide.

• Using back-to-back combiners in a high power amplifier system.

By placing two combiners back-to-back, and replacing the peripheral ports by amplifier

modules, a fully integrated high power amplifier, such as the one described in [3], can be

constructed.



Appendix A

Derivatives of Some Special
Functions

A.1 Derivatives of the Associated Legendre Functions

The first derivative of the associated Legendre functions, denoted by Xm
ν (z) [for either Pm

ν (z)

or Qm
ν (z)], is given by [25]

d

dz
Xm

ν (z) =
1

z2 − 1
[
νzXm

ν (z)− (ν +m)Xm
ν−1(z)

]
. (A.1)

When the argument is replaced by cos θ, the θ-derivative can be found by using the chain rule

of differentiation as

d

dθ
Xm

ν (cos θ) =
1

sin θ
[
ν cos θXm

ν (cos θ)− (ν +m)Xm
ν−1(cos θ)

]
. (A.2)

A.2 Derivatives the Modified Spherical Bessel Functions

The first derivative of the Bessel or Hankel functions, denoted by Bν(βr) [for either Jν(βr),

Yν(βr), H
(1)
ν (βr) or H(2)

ν (βr)], is given by [21]

d

dr
[Bν(βr)] = βBν−1(βr)−

ν

r
Bν(βr). (A.3)

Using the product rule for differentiation and (A.3), the first and second derivatives of the

modified spherical Bessel functions are found, from the definition given by (2.64), as

d

dr
B̂ν(βr) =

√
πβ

8r
Bν+1/2 +

√
πβr

2

[
βBν−1/2(βr)−

ν + 1/2
r

Bν+1/2(βr)
]

(A.4)
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and

d2

dr2
B̂ν(βr) =−

√
πβ

32r3
Bν+1/2(βr) +

√
πβ

8r
d

dr
Bν+1/2(βr) +

√
πβr

2
β
d

dr
Bν−1/2(βr)

−
√
πβr

2
(ν + 1/2)

[
−1
r2
Bν+1/2(βr) +

1
r

d

dr
Bν+1/2(βr)

]
+

√
πβ

8r
βBν−1/2(βr)−

√
πβ

8r
(ν + 1/2)

r
Bν+1/2(βr).

(A.5)
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