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Abstract

Limit theorems for integer partitions and their
generalisations

D. Ralaivaosaona

Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD

March 2012

Various properties of integer partitions are studied in this work, in particular
the number of summands, the number of ascents and the multiplicities of
parts. We work on random partitions, where all partitions from a certain
family are equally likely, and determine moments and limiting distributions of
the different parameters.

The thesis focuses on three main problems: the first of these problems is
concerned with the length of prime partitions (i.e., partitions whose parts are
all prime numbers), in particular restricted partitions (i.e., partitions where
all parts are distinct). We prove a central limit theorem for this parameter
and obtain very precise asymptotic formulas for the mean and variance.

The second main focus is on the distribution of the number of parts of a
given multiplicity, where we obtain a very interesting phase transition from
a Gaussian distribution to a Poisson distribution and further to a degenerate
distribution, not only in the classical case, but in the more general context of
λ-partitions: partitions where all the summands have to be elements of a given
sequence λ of integers.

Finally, we look into another phase transition from restricted to unre-
stricted partitions (and from Gaussian to Gumbel-distribution) as we study
the number of summands in partitions with bounded multiplicities.
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Uittreksel

Limietstellings vir heelgetal-partisies en hulle
veralgemenings

(“Limit theorems for integer partitions and their generalisations”)

D. Ralaivaosaona

Departement Wiskundige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD

Maart 2012

Verskillende eienskappe van heelgetal-partisies word in hierdie tesis bestudeer,
in die besonder die aantal terme, die aantal stygings en die veelvoudighede
van terme. Ons werk met stogastiese partisies, waar al die partisies in ’n
sekere familie ewekansig is, en ons bepaal momente en limietverdelings van die
verskillende parameters.

Die teses fokusseer op drie hoofprobleme: die eerste van hierdie probleme
gaan oor die lengte van priemgetal-partisies (d.w.s., partisies waar al die terme
priemgetalle is), in die besonder beperkte partisies (d.w.s., partisies waar al
die terme verskillend is). Ons bewys ’n sentrale limietstelling vir hierdie para-
meter en verkry baie presiese asimptotiese formules vir die gemiddelde en die
variansie.

Die tweede hooffokus is op die verdeling van die aantal terme van ’n gegewe
veelvoudigheid, waar ons ’n baie interessante fase-oorgang van ’n normaalver-
deling na ’n Poisson-verdeling en verder na ’n ontaarde verdeling verkry, nie
net in die klassieke geval nie, maar ook in die meer algemene konteks van soge-
naamde λ-partities: partisies waar al die terme elemente van ’n gegewe ry λ
van heelgetalle moet wees.
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UITTREKSEL iv

Laastens beskou ons ’n ander fase-oorgang van beperkte na onbeperkte par-
tisies (en van normaalverdeling na Gumbel-verdeling) wanneer ons die aantal
terme in partisies met begrensde veelvoudighede bestudeer.
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Chapter 1

Introduction

1.1 Partitions

1.1.1 Definitions and examples

We are mainly focussing on the study of partitions of a positive integer n into
positive integer parts, so let us formally define what a partition is.

Definition 1.1.1. A partition of n is a non-decreasing sequence of positive
integers c1, c2, · · · , ct such that

n = c1 + c2 + · · ·+ ct.

We usually denote a partition of n as (c1, c2, · · · , ct).

Another way to represent a partition of n is to associate a graphical repre-
sentation called Ferrers diagram to it, as illustrated in the example in Figure
1.1. In the example we give the Ferrers diagram associated to the partition
(1, 2, 5, 5, 7) of 20. Each part of the partition is represented by a vertical
row of dots. If we count the number of dots in the horizontal rows, we obtain
(1, 1, 3, 3, 3, 4, 5). This is also a partition of 20, and we say that (1, 1, 3, 3, 3, 4, 5)
is the conjugate of (1, 2, 5, 5, 7).

1.1.2 Restricted partitions

Various types of partitions that occur in the literature are considered in this
thesis, making their study more interesting. For example we can only consider
partitions which have no parts of multiplicity more than one, we call these
restricted partitions.

1
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CHAPTER 1. INTRODUCTION 2
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Figure 1.1: Ferrers diagram

We can also consider partitions whose parts are members of a given se-
quence λ of positive integers. We call these partitions λ-partitions. Further-
more, in the case of λ-partitions, we distinguish between restricted λ-partitions
if parts are not allowed to repeat and unrestricted λ-partitions otherwise. We
use the term ordinary partitions for the case where λ is equal to the set of
positive integers N.

In this work λ is always an unbounded non-decreasing sequence of positive
integers. It is possible to study partitions were each part is a member of a
finite sequence of positive integers but we are not going to consider those.

Example 1. Consider the partitions of n = 5:

5 = 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 2

= 1 + 1 + 3

= 1 + 2 + 2

= 1 + 4

= 2 + 3

= 5.

So there are 7 unrestricted partitions of 5 in total, but only 3 of them are
restricted partitions. If we consider only λ-partitions where λ is the set of
all odd positive integers then there are only 3 partitions in total and only 1
restricted.
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There are many questions that one might want to understand, such as:
how many partitions are there in total, or how many partitions are there with
a given restriction? It is difficult to get an answer to this kind of questions in
general. So various asymptotic results have been given by means of analytic
methods to help us understand the structure of partitions.

1.1.3 Generating functions for partitions

One of the most efficient ways to study partitions is the use of so-called gener-
ating functions. Generating functions are elements of the ring of powers series
that encode sequences of numbers. For example consider the generating func-
tion for p(n) (the total number of partitions of n). By definition the generating
function is

F (z) =
∑
n≥1

p(n)zn. (1.1.1)

It is not hard to see that F (z) can be written in the form of an infinite product:

F (z) =
∏
n≥1

1

1− zn
. (1.1.2)

The infinite product on the right hand side is convergent whenever |z| < 1.
Therefore, F (z) can be regarded as an analytic function in the unit disc.

Now to extract the coefficient of zn in F (z) we may use the Cauchy integral
formula and obtain

p(n) =
1

2πi

∫
γ

F (z)
dz

zn+1
, (1.1.3)

where γ is any curve around zero oriented in anticlockwise direction that is
contained in the interior of the unit disc.

Note that when we consider restricted partitions then the corresponding
generating function is

F ∗(z) =
∏
n≥1

(1 + zn). (1.1.4)

Furthermore, if we consider λ-partitions then we only need to take the products
over the sequence λ instead of the whole set of positive integers.

1.2 Asymptotic results

Various asymptotic results have been given to understand the structure of
partitions of large integers. We shall state some important results.
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1.2.1 The Hardy-Ramanujan-Rademacher formula, and
the Meinardus scheme

Let us first state the well known result by Hardy and Ramanujan [12] on the
number of partitions of n when n is large.

Theorem 1.2.1. The total number of partitions of n admits the asymptotic
formula:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 (1.2.1)

as n→∞.

Then later Rademacher (see [1], page 69) provided an exact formula for
p(n) as we see in the next theorem.

Theorem 1.2.2. We have, for any n,

p(n) =
1

π
√

2

∑
k≥1

Ak(n)
√
k

 d

dx

sinh
(
π
k

√
2
3
(x− 1

24
)
)

√
(x− 1

24
)


x=n

(1.2.2)

where
Ak(n) =

∑
h mod k
(h,k)=1

ωh,ke
−2πinh/k (1.2.3)

and ωh,k is a 24kth root of unity.

There is a powerful generalisation of Theorem 1.2.1 to λ-partitions under
certain conditions on the sequence λ known as the Meinardus scheme, see [19].
Let λ be a non-decreasing and unbounded sequence of positive integers, and
consider the Dirichlet series:

D(s) =
∑
λ

1

λs
.

Definition 1.2.3. We say that a sequence λ satisfies the Meinardus scheme
if the following three conditions are satisfied:

(M1) The Dirichlet series D(s) converges in the half-plane Re(s) > α > 0, and
can be analytically continued into the half-plane Re(s) ≥ −α0 for some
α0 > 0. For Re(s) ≥ −α0, D(s) is analytic except for a simple pole at
s = α with residue A.

(M2) There is a constant c > 0 such that D(s) � |t|c uniformly for Re(s) ≥
−α0 as | Im(s)| = |t| → ∞.
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CHAPTER 1. INTRODUCTION 5

(M3) Let χ(τ) =
∑

λ e
−λτ , where τ = r + iy with r > 0. Then

χ(r)− Re(χ(τ))�
(

log
1

r

)2

uniformly for r1+α
2 ≤ |y| ≤ π as r → 0.

There are many sequences of positive integers satisfying the Meinardus scheme
including the sequence λ = Z+, sequence of odd positive integers, squares, and
many others.

We can now state the general theorem of Meinardus on the number of
λ-partitions of n.

Theorem 1.2.4. If λ satisfies the Meinardus scheme then

pλ(n) ∼ κ1n
κ2 exp

(
κ3n

α/(α+1)
)

(1.2.4)

as n→∞, where the κi’s are constants that can be determined in terms of α
and A.

1.2.2 Limit theorems

The first central limit results in the theory of partitions were given by Erdős
and Lehner in their paper in 1941 (see [6]), in which they studied the number
of summands in partitions. More precisely, if all partitions of n are equally
likely, then they gave a central limit theorem for the number of summands
in a random partition when n is large. Their results were later extended and
generalised, and the method also adapted to work for other parameters. The
following theorem was proved by Erdős and Lehner:

Theorem 1.2.5. If $n is the number of summands in a random unrestricted
partition (i.e., parts are allowed to repeat) of n then for any real number x

P
(
$n ≤ µn + xσn

)
∼ e−e

−
(
γ+

π√
6
x

)
(1.2.5)

as n → ∞, where µn and σn are the mean and the standard deviation of $n.
Furthermore we have the following asymptotic estimates:

µn =

√
6n

2π

(
log n+ 2γ − log(π2/6)

)
+O(log n),

and
σ2
n = n+O(

√
n log2 n).
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Similarly, if $∗n is the number of summands in a random restricted partition
of n then for any real number x we have

P
(
$∗n ≤ µ∗n + xσ∗n

)
∼ 1√

2π

∫ x

−∞
e−t

2/2dt, (1.2.6)

where µ∗n and σ∗n are the mean and the standard deviation of $∗n respectively.
Furthermore,

µ∗n =
2 log 2

π

√
3n+

3 log 2

π2
− 1

4
+O(n−1/2)

and

σ∗2n =

(√
3

π
− 12

√
3 log2 2

π3

)
√
n+O(1)

as n→∞.

Many generalisations of these results were given, let us just mention a few
that are directly related to this thesis. Haselgrove and Temperly in [13] gave a
limit theorem for the number of summands of unrestricted λ-partitions, under
certain technical conditions. Their results were further extended by Richmond
[22] and Lee [17]. For the restricted λ-partitions, the paper by Hwang [15]
deserved to be mentioned, in which convergence to the Gaussian distribution
is proved for λ satisfying the Meinardus scheme. Many of the techniques that
are used here are adapted from the methods of Hwang, which also proved to
be powerful to study other parameters.

Further examples of central limit theorems in the context of partitions
include those by [10] for the number of distinct parts and by [3] for ascents of
size d or more (equivalently, parts of multiplicity d or more).

1.3 Tools and techniques

We mainly use two asymptotic techniques, namely the Mellin transform and
the saddle point method. In this section, we are going to give a brief overview
of these two methods.

1.3.1 Mellin transform

A nice presentation of this technique can be found in [7]. The basic idea of this
method is the use of the fact that the asymptotic expansion of a given function
f(x) at x = 0 or +∞ is related to the singularities of the Mellin transform of
f .
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Let f(x) be a function defined on the interval [0,+∞). The Mellin trans-
form of f is defined as

M(f, s) =

∫ ∞
0

f(x)xs−1dx (1.3.1)

if it exists, where s is a complex variable. The range of s where the integral
(1.3.1) is convergent has to be a strip and its interior is called the fundamental
strip. The Mellin transform has many useful properties, of which we only
mention a few that are particularly important to us.

Proposition 1.3.1 (Inversion formula). We have

f(x) =
1

2πi

∫ c+i∞

c−i∞
M(f, s)x−sds (1.3.2)

for any real number c in the fundamental strip if f is continuous at x.

It is not surprising to have such a formula since the Mellin transform is
closely related to the Laplace transform. Let us next provide a formula for the
Mellin transform of a derivative. We have

M
(
d

dx
f(x), s

)
= −(s− 1)M(f, s− 1). (1.3.3)

Finally if λ is a sequence of positive integers and D(s) the Dirichlet series
associated to λ then

M

(∑
λ

f(λx), s

)
= D(s)M(f, s). (1.3.4)

We will use the following theorem very frequently and refer to it as “the Mellin
transform method”:

Theorem 1.3.2. Let φ(x) be a continuous function on (0,∞) with Mellin
transform φ∗(s) having a non empty fundamental strip 〈α, β〉. Assume that
φ∗(s) admits a meromorphic continuation to the strip 〈γ, β〉 for γ < α with a
finite number of poles there, which is analytic on Re(s) = γ. Assume also that
there exists a real number η ∈ (α, β) such that

φ∗(s) = O(|s|−c) (1.3.5)

with c > 1 as |s| → ∞ in the strip γ ≤ Re(s) ≤ η. If φ∗(s) admits the singular
expansion for s ∈ 〈γ, α〉

φ∗(s) �
∑

(ξ,k)∈A

dξ,k
(s− ξ)k

,

then an asymptotic expansion of φ(x) at 0, x > 0, is

φ(x) =
∑

(ξ,k)∈A

(−1)k−1dξ,k
(k − 1)!

x−ξ(log x)k−1 +O(x−γ).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 8

1.3.2 Saddle-point method

Let F (z) be a generating function that is analytic at the origin. The saddle-
point method is a technique to estimate the coefficient [zn]F (z) for large n.
So let us describe the general procedure of the saddle-point method. We have

[zn]F (z) =
1

2πi

∫
C
F (z)

dz

zn+1
, (1.3.6)

where C is a circle around the origin oriented in anticlockwise direction. We
make a change of variable z = e−(r+it) where r is positive and t within the
interval [−π, π). Then

[zn]F (z) =
enr

2π

∫ π

−π
F (e−(r+it))enitdt. (1.3.7)

Now we cut this integral as follows: the central part, i.e., the integral over
[−t0, t0] where t0 is to be chosen later, and the rest which are called the tails.
In order to use the saddle-point method it is important that we have a condition
on F (z) to guarantee that the tails are small compared to the central part. If
we set

f(r + it) := logF (e−(r+it)), (1.3.8)
then for |t| ≤ t0 we have

f(r + it) = f(r) + if ′(r)t− f ′′(r)t
2

2
+O(|t0|3 max

|η|≤t0
|f ′′′(r + iη)|). (1.3.9)

We chose r to be the solution of the equation

n = −f ′(r). (1.3.10)

In most of the cases we encounter in this thesis this gives us an r that tends
to zero as n goes to infinity. Now t0 should be chosen in such way that in
Equation (1.3.9) the error term tends to zero while the term with t2 tends to
infinity.

If all of these assumptions are satisfied then we deduce that

[zn]F (z) =
enr+f(r)

2π

∫ t0

−t0
e−f

′′(r)t2/2dt(1 +O(|t0|3 max
|η|≤t0

|f ′′′(r + iη)|)) (1.3.11)

and ∫ t0

−t0
e−f

′′(r)t2/2dt =

∫ +∞

−∞
e−f

′′(r)t2/2dt− 2

∫ +∞

t0

e−f
′′(r)t2/2dt

=
1√

2πf ′′(r)
+O

(
e−f

′′(r)t20/2

t0f ′′(r)

)
.

To illustrate the two methods we are going to present a proof of Theorem
1.2.4.
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1.3.3 Proof of the Meinardus result

Let λ be an unbounded non-decreasing sequence of positive integers satisfying
the Meinardus scheme. We have the generating function for the number of
λ-partitions

F (z) =
∏
λ

1

1− zλ
. (1.3.12)

We can see that F (z) is analytic in the interior of the unit disc. We use the
saddle-point method to estimate the number of λ-partitions pλ(n) = [zn]F (z)
for large n.

Proposition 1.3.3. The number of λ-partitions of n satisfies the asymptotic
formula

pλ(n) =
enr+f(r)√
2πf ′′(r)

(
1 +O(n−δ)

)
(1.3.13)

for some constant δ > 0, as n→ +∞, where r is the solution of the equation

n =
∑
λ

λ

eλr − 1
(1.3.14)

and
f(τ) = logF (e−τ ). (1.3.15)

Proof. Recall the integral for the coefficient

[zn]F (z) =
enr

2π

∫ π

−π
exp(nit+ f(r + it))dt, (1.3.16)

where r is defined in the statement of the Proposition. Since the series on the
right hand side of Equation (1.3.14) is a monotone decreasing function of r,
the solution exists and it tends to zero as n→∞. We choose t0 = r1+β where
β is any constant such that α/3 < β < α/2 and α is defined as in statement
(M1) of the Meinardus scheme.

Now suppose that |t| ≤ t0, then the function f(r+it) admits the expansion

f(r + it) = f(r) + if ′(r)t− f ′′(r)t
2

2
+O(|t0|3 sup

0≤η≤t0
|f ′′′(r + iη)|). (1.3.17)

We use Theorem 1.3.2 to find the dependency between n and r as well as
estimates for the derivatives of f(r). By the derivative formula we have

M
(
dk

drk
f(r), s

)
= (−1)kζ(s− k + 1)Γ(s)D(s− k).
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Before we use Theorem 1.3.2 we have to make sure that all the conditions are
satisfied. This is where the condition (M2) of Meinardus scheme comes in: in
guarantees that the condition in (1.3.5) is satisfied. Here we used the fact that
on a vertical line the gamma function decreases exponentially while the zeta
function increases at most polynomially. Therefore Theorem 1.3.2 applies and
we get

n ∼ Aζ(α + 1)Γ(α + 1)r−(α+1). (1.3.18)

We also have
f ′′(r) ∼ Aζ(α + 1)Γ(α + 2)r−(α+2) (1.3.19)

as r → 0+. To estimate the error term in (1.3.17), note that

|f ′′′(r + iη)| �
∑
λ

λ3e−λr

|1− e−λ(r+iη)|3
.

Since
|1− e−λ(r+iη)| ≥ 1− e−λr,

we have

|f ′′′(r + iη)| �
∑
λ

λ3e−λr

(1− e−λr)3
� r−α+3

as r → 0+ uniformly for |η| ≤ t0. These are enough to show that the contri-
bution from the central integral is

enr+f(r)√
2πf ′′(r)

(
1 +O(r3β−α)

)
. (1.3.20)

It remains to estimate the tails: we have

|F (e−(r+it))|
F (e−r)

= exp
(
−
∑
k≥1

1

k

∑
λ

e−λkr(1− cos(λkt))
)

(1.3.21)

≤ exp
(
−
∑
λ

e−λr(1− cos(λt))
)
. (1.3.22)

By condition (M3) of the Meinardus scheme (1.3.22) is bounded above by
exp(−K(log r)2), for some constant K > 0, which is smaller that any power
of n. This proves that the contribution from the tails is small and completes
the proof.

We now derive Theorem 1.2.4 from Proposition 1.3.3. We only need to
expand nr and f ′(r) further is such a way that we have a o(1) error term. For
that we use Theorem 1.3.2. We have

n = Aζ(α + 1)Γ(α + 1)r−(α+1) +D(0)r−1 +O(r−1+α0)
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Let X = r−1 then we have the equation

n = C1X
α+1 + C2X +O(X1−α0), (1.3.23)

where
C1 = Aζ(α + 1)Γ(α + 1)

and
C2 = D(0).

We need X in terms of n so assume that

X =
( n
C1

) 1
α+1

(1 + Y )

and thus

C1X
α+1 = n(1 + Y )α+1

= n+ (α + 1)nY +O(nY 2).

By Equation (1.3.23) we have

C2

( n
C1

) 1
α+1

(1 + Y ) +O(n
1−α0
1+α ) = −(α + 1)nY +O(nY 2)

which implies

Y = −C2

(
n
C1

) 1
α+1

(α + 1)n
+O(n

−2α
α+1 + n

−(α+α0)
α+1 ).

Now we have

n

X
= C

1
α+1

1 n
α
α+1 (1− Y +O(n

−2α
α+1 + n

−(α+α0)
α+1 )) (1.3.24)

= C
1

α+1

1 n
α
α+1 +

C2

α + 1
+O(n

−α
α+1 + n

−α0
α+1 ). (1.3.25)

Similarly we have

f(r) = Aζ(α + 1)Γ(α)r−α +D(0) log 1
r

+D′(0) +O(rα0)

=
C1

α
Xα + C2 logX +D′(0) +O(X−α0).

We assume that α0 < 1. From Equation (1.3.23) we have

C1X
α =

n

X
− C2 +O(X−α0)

= C
1

α+1

1 n
α
α+1 − C2α

α + 1
+O(n

−α
α+1 + n

−α0
α+1 ).
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CHAPTER 1. INTRODUCTION 12

Therefore

f(r) =
C

1
α+1

1

α
n

α
α+1 +

C2

1 + α
log n+

C2(1− logC1)

α + 1
+D′(0) +O(n

−α
α+1 + n

−α0
α+1 ).

Finally, from (1.3.19) we obtain

f ′′(r) ∼ (α + 1)C
−1
α+1

1 n
α+2
α+1 .

Substituting these asymptotic estimates into (1.3.13) we obtain the Meinardus
theorem with

κ1 = eD
′(0) C

1−2D(0)
2(α+1)

1√
2π(α + 1)

,

κ2 =
−1

2
+

2D(0)− 1

2(α + 1)

and
κ3 = (α−1 + 1)C

1
α+1

1 .

1.4 Structure of the thesis

The thesis is structured as follows: in Chapter 2 we study the length (number
of summands) in partitions of an integer into primes, both in the restricted
(unequal summands) and unrestricted case. It is shown how one can ob-
tain asymptotic expansions for the mean and variance (and potentially higher
moments) and we also establish the normality of the limiting distribution, a
problem left open by Hwang in [15]. In Chapter 3, the number of parts of
given multiplicity in λ-partitions is considered. We improve on earlier results
by Corteel et al. [4] by proving a central limit theorem for this number, and we
observe a phase transition (Gaussian-Poisson-degenerate) as the multiplicity
increases. A detailed presentation of the proof is given for the case of ordinary
partitions followed by the generalization to λ-partitions, and in the last section
of Chapter 3 we give a generalization of the main result obtained by Brennan
et al. [3] on ascents in ordinary partitions to λ-partitions. In Chapter 4, we
look at the behaviour of the distribution of the number of summands in an
ordinary partition between the restricted case and the unrestricted.
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Chapter 2

The number of summands in
prime partitions

2.1 Introduction

The presentation of this chapter is based on the published version (see [21]) of
our results on prime partitions.

Prime partitions are the special case of λ-partitions where λ is the sequence
of primes. Prime partitions are harder to count that ordinary partitions, and
the analogue of Theorem 1.2.1 for primes is quite complicated as the asymp-
totic formula cannot be expressed in terms of elementary functions, see [25]
for more details. However, in this case Hardy and Ramanujan [11, 12] proved
the following asymptotic formula

log pp(n) ∼ 2π
√
n/(3 log n),

where pp(n) is the number of partitions of n into primes.

Recall from Chapter 1 that the distribution of the length of a random
unrestricted partition is asymptotically the double-exponential (Gumbel) dis-
tribution, as shown by Erdős and Lehner. The generalisation of this result to
λ-partitions by Haselgrove and Temperley (see [13]) applies to the sequence of
primes as well, see also Section 2.4.

On the other hand, Hwang’s general theorem for restricted λ-partitions,
which builds on the Meinardus scheme, is not applicable to prime partitions,
as it was also mentioned explicitly in Hwang’s paper [15]. Efforts have been
made to reduce these conditions, see for instance [18], but yet the sequence of
primes fails to satisfy these conditions.

With some modifications of the method used in [15] we will prove the
following result on prime partitions in this chapter:

13
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CHAPTER 2. THE NUMBER OF SUMMANDS IN PRIME PARTITIONS 14

Theorem 2.1.1. The number of summands in a random restricted partition
of n into distinct primes is asymptotically normally distributed with mean and
variance satisfying the following asymptotic formulas:

µn =
2 log 2

π

√
6n

log n

(
1− log log n

2 log n
+O

( 1

log n

))
and

σ2
n =

√
6

π

(
1− 12 log2 2

π2

)√ n

log n

(
1− log log n

2 log n
+O

( 1

log n

))
respectively as n→∞.

In principle, the presented method can be used to determine even more
terms of an asymptotic expansion. Let us mention that the main asymptotic
term of µn (and also of mean and variance in the unrestricted case) already
occurs in [23], but with the factor log n missing.

We shall prove this theorem in detail in Section 2.3, and then later on, in
Section 2.4, we give an asymptotic formula for mean and variance for the dis-
tribution of the number of summands in a random unrestricted prime partition
of n. Finally, in Section 2.5, we discuss how our results can be generalized to
a wider variety of sequences involving primes.

2.2 Definitions and preliminary results

In this section we gather important information about primes that are funda-
mental for the proof of our main results. But first, let us agree on notations
and conventions that will be used throughout this chapter.

Notation. Assume that all partitions of n into distinct primes are equally
likely. Let $n denote the number of summands in a random partition, the
mean and standard deviation are denoted by µn and σn respectively. The
random variable $∗n , its mean µ∗n and variance σ∗n are defined analogously for
unrestricted prime partitions. We shall use

∏
p and

∑
p as abbreviations for the

product and sum over all primes respectively. The Dirichlet series associated
to the sequence of primes is defined by

D(s) :=
∑
p

p−s

for complex numbers s with Re(s) > 1.

The first result that we need is the following about the exponential sum

g(τ) :=
∑
p

e−pτ .
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CHAPTER 2. THE NUMBER OF SUMMANDS IN PRIME PARTITIONS 15

The result states that:

Lemma 2.2.1. For any constant 1/3 < c < 1/2 there is a constant c1 > 0
such that

g(r)− Re g(τ) ≥ c1 log2 1
r

for τ = r + iy with r1+c ≤ |y| ≤ π as r → 0+.

A major part of this result has already been proved by Roth and Szekeres
in [24, last section]. Since it is a fundamental result and its proof is not too
long, we shall give a complete proof here.

Proof. First, let us assume that πr ≤ |y| ≤ π. We have

g(r)− Re g(τ) =
∑
p

e−pr(1− cos py) (2.2.1)

≥
∑
p≤r−1

e−pr(1− cos p|y|) (2.2.2)

≥ 8e−1
∑
p≤r−1

∥∥∥∥p|y|2π

∥∥∥∥2

, (2.2.3)

where ‖.‖ denotes the distance from the nearest integer. To simplify our no-
tation let us define α = α(y) to be |y|/2π, then we have r/2 ≤ |α| ≤ 1/2.
First, if α is rational, say α = a/q, where a and q (with q > 1) are coprime,
then ∑

p≤r−1

∥∥∥∥paq
∥∥∥∥2

�
∑
p≤r−1

1

q2
� 1

q2r log 1/r

for sufficiently small r. This is sufficient for small values of q, say q ≤ r−1/3.
Now suppose that 2r−1 ≥ q ≥ r−1/3. Then there are � 1/(r log 1/r) elements
in {pa : p ≤ r−1}, and each residue class modulo q contains at most d 1

qr
e

elements from this set . It follows that at least c2q/(log(1/r)) distinct residue
classes occur in {pa : p ≤ r−1}, where c2 is a positive constant. Therefore, the
sum in (2.2.3) is at least

1

q2

bc3q/ log 1/r)c∑
j=1

j2 > c4
r−1/3

log3 1/r

for some positive constants c3 and c4. That settles the case where α is a
rational of the form a/q with q ≤ 2r−1. Otherwise we approximate α by a
rational in the following way: we choose relatively prime integers a and q such
that q ≤ 2br−1c and ∣∣∣α− a

q

∣∣∣ ≤ 1

2qbr−1c
.
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CHAPTER 2. THE NUMBER OF SUMMANDS IN PRIME PARTITIONS 16

Then we claim that for any p ≤ r−1

‖pα‖ ≥ 1

2
‖pa/q‖ .

The claim follows from the fact that if

|x− y| ≤ ‖y‖
2

then ‖x‖ ≥ ‖y‖
2
, using the triangle inequality for ‖.‖. Now the desired estimate

follows from the case of rational α.

For the remaining part, that is for r1+c ≤ |y| ≤ πr

g(r)− Re g(τ) =
∑
p

e−pr(1− cos py) ≥
∑
p≤r−1

e−pr(1− cos p|y|).

The latter sum can be estimated as follows: since p ≤ r−1 we have p|y| ≤ π,
and so

1− cos p|y| ≥ 2

π2
p2y2.

Therefore,∑
p≤r−1

e−pr(1− cos p|y|) ≥
∑
p≤r−1

e−1 2

π2
p2y2 ≥ c1r

−1+2c/ log 1
r
,

which completes the proof.

In this chapter, we have to determine asymptotic expansions for a number
of harmonic sums over primes, for which the Dirichlet series D(s) plays a
fundamental role. First of all, note that the seriesD(s) is absolutely convergent
in the half-plane Re(s) > 1 and therefore analytic in that region. But we can
also express D(s) as

D(s) = log ζ(s) +
∑
p

(log(1− p−s) + p−s) (2.2.4)

where ζ(s) is the Riemann zeta function, so D(s) can be continued analytically
to some bigger cut-plane not containing any zeros of ζ(s). The sum on the
right-hand side of (2.2.4) is absolutely convergent for Re(s) > 1/2.

Recall from Proposition 1.3.1 that ifM(f, s) is the Mellin transform of a
function f(x) then the Mellin inversion formula says that

f(x) =
1

2πi

c+i∞∫
c−i∞

M(f, s)x−sds (2.2.5)

for any real c in the fundamental strip ofM(f, s). The next lemma gives us
asymptotic formulas for some integrals of type (2.2.5).
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CHAPTER 2. THE NUMBER OF SUMMANDS IN PRIME PARTITIONS 17

Lemma 2.2.2. Let F (s) be an analytic function in Re(s) > 1/2 admitting the
following Taylor expansion around s = 1:

F (s) = a0 +
N∑
k≥1

ak
k!

(s− 1)k +O((s− 1)N+1),

and assume furthermore that F (σ + it) decays exponentially when |t| → ∞,
uniformly for δ−1 ≤ σ ≤ δ for some fixed δ > 1. Then we have

1

2iπ

∫ c+i∞

c−i∞
F (s)D(s)r−sds =

N∑
k=0

(−1)kak
r(log 1

r
)k+1

+O(log log 1
r
/(r(log 1

r
)N+2))

for any c > 1.
If F (s) is meromorphic admitting only a single pole at s = 1 with residue 1
and if the rest of the above conditions are satisfied then we have

1

2iπ

∫ c+i∞

c−i∞
F (s)D(s)r−sds =

log log 1
r

r
+
B1

r
+O(1/(r log 1

r
))

where B1 is Mertens’s constant, defined as

B1 := γ +
∑
p

(log(1− 1/p) + 1/p) ,

where γ is the Euler–Mascheroni constant.

Similar results are quite common in this context, so we do not give a
detailed proof here and only provide the main steps.

Proof. The Dirichlet series D(s) admits the following bound

|D(σ + it)| = O(log log(t))

for large t, uniformly for σ ≥ 1. This comes from the fact that ζ(σ + it)
is bounded above and below by powers of log t for σ ≥ 1. Therefore, the
function |F (s)D(s)| decays exponentially along a vertical line and uniformly
for Re(s) ≥ 1, so we may safely shift the path of integration to the left without
changing the value of the integral. Hence, for sufficiently small r we may
consider the path P defined as the union of the following parts (see Figure
2.1):

• P0 = {s = 1 + 1

log
1
r

eiθ : −π/2 ≤ θ ≤ π/2} ∪ {s = 1 + x± i 1

log
1
r

: −1√
log

1
r

≤

x ≤ 0},
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CHAPTER 2. THE NUMBER OF SUMMANDS IN PRIME PARTITIONS 18

1

i log 1
r

−i log 1
r

P

Figure 2.1: Path of integration P .

• P1 = {s = 1− 1√
log

1
r

+ it : 1

log
1
r

≤ |t| ≤ log 1
r
},

• P2 = {s = 1 + it : |t| ≥ log 1
r
} ∪ {s = 1 + x± i log 1

r
: −1√

log
1
r

≤ x ≤ 0}.

For r sufficiently small, this path is included in the interior of the zero-free
region of the Riemann zeta function (for more details on the zero-free region
of the Riemann zeta function see [9]).

On P1, one can say that |D(s)| also grows slowly, since the logarithmic
derivative ζ ′(σ + it)/ζ(σ + it) is bounded above by a power of log t close to
the line Re(s) = 1 (see for instance [2]). Therefore, the contribution from the
integrals over P1 and P2 are both exponentially small in log 1/r.

On P0, one uses Taylor expansion for the first case, or Laurent expansion
for the second case of the function F (s) around s = 1. Thus the integrals that
we need to compute are integrals of the form

1

2πi

∫
P0

log(s− 1)(s− 1)kr−sds

for k = −1, 0, 1, 2, 3, · · · . Then use the change of variable

s = 1 +
z

log 1
r

.

to change the path of integration into the so-called Hankel contour (see for
example [8]). The rest of the proof consists of straightforward calculations.
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CHAPTER 2. THE NUMBER OF SUMMANDS IN PRIME PARTITIONS 19

2.3 Proof of the main theorem

To obtain the central limit theorem, we basically follow the ideas in Hwang’s
paper [15] but first we would like to compute asymptotic formulas for the mean
and variance of the random variable $n. Recall that restricted partitions are
partitions without repetitions, so the following bivariate generating function
is the generating function for the number of restricted partitions with given
length:

Q(u, z) =
∏
p

(1 + uzp),

i.e., the coefficient of ukzn in Q(u, z) is the number of ways of writing n as a
sum of exactly k distinct primes. In other words

[zn]Q(u, z) = pq(n)E(u$n),

where pq(n) = [zn]Q(1, z) is the total number of ways of writing n as sum of
distinct primes. Note that for any u in a fixed bounded interval containing 1,
the infinite product Q(u, z) is convergent for |z| < 1 and so it is analytic in
the unit disc. Let us then define the following function

f(u, τ) := logQ(u, e−τ ) =
∑
p

log(1 + ue−pτ ), (2.3.1)

where we always use the principal branch of the logarithm function. We write
fk(r) for the kth derivative of f(u, τ) with respect to τ at τ = r. The next
lemma provides an asymptotic formula for pq(n) for large n.

Proposition 2.3.1. The number of unequal partitions of n into primes has
the asymptotic formula

pq(n) =
enr√

2πf2(r)
Q(1, e−r)(1 +O(n−1/7)) (2.3.2)

as n→∞, where r > 0 is the solution of the equation

n =
∑
p

pe−pr

1 + e−pr
. (2.3.3)

Proof. We know that pq(n) is the coefficient of zn in Q(1, z), so

pq(n) =
enr

2π

∫ π

−π
exp(nit+ f(1, r + it))dt, (2.3.4)

for any r > 0. Then we choose r as defined in Equation (2.3.3). The series
in (2.3.3) is a monotone decreasing function of r, so the solution r = r(n) of

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. THE NUMBER OF SUMMANDS IN PRIME PARTITIONS 20

(2.3.3) exists and is unique, and it tends to zero as n tends to infinity. Now,
we split the integral in (2.3.4) as follows: first the integral in the center for
|t| ≤ r1+β and then the tails for r1+β < |t| ≤ π, where β is any constant
such that 1/3 < β < 1/2. For |t| ≤ r1+β the function f(1, r + it) admits an
expansion

f(1, r + it) = f(1, r) + if1(r)t− f2(r)
t2

2
+O(t3 sup

0≤t0≤t
|f3(r + it0)|).

We use Lemma 2.2.2 to find an asymptotic formula for fk(r). The Mellin
transform of fk(r) is given by

M(fk(r), s) = (−1)k+1 Lis−k+1(−1)Γ(s)D(s− k),

where the function Lis(−1) is the polylogarithm function regarded as a function
of s. For Re(s) > 0 one can represent Lis(−1) as

Lis(−1) =
∑
k≥1

(−1)k

ks

and it can be continued analytically to the whole s-plane as

Lis(−1) = (21−s − 1)ζ(s).

Therefore by Lemma 2.2.2 one gets

fk(r) = (−1)kk!
π2/12

rk+1 log 1
r

(
1 +O

( 1

log 1
r

))
(2.3.5)

as r → 0. To estimate the third derivative f3(r + it) we have

|f3(r + it)| �
∑
p

p3e−pr

|1 + e−p(r+it)|3
.

For any prime p and |t| ≤ r1+β we have

|1 + e−p(r+it)| ≥ 1− e−1

since if p ≥ r−1 , then

|1 + e−p(r+it)| ≥ 1− e−pr ≥ 1− e−1

and if p < r−1 then

|1 + e−p(r+it)| ≥ 1 + Re(e−p(r+it)) = 1 + e−pr cos(pt) > 1.

Therefore
|f3(r + it)| �

∑
p

p3e−pr � 1

r4 log 1/r
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Hence one has

nit+ f(1, r + it) = f(1, r)− f2(r)
t2

2
+O(r3β−1/ log 1

r
).

Thus ∫ r1+β

−r1+β
enit+f(1,r+it)dt =

∫ r1+β

−r1+β
e−f2(r)t2/2dt(1 +O(r3β−1/ log 1

r
)),

and ∫ r1+β

−r1+β
e−f2(r)t2/2dt =

∫ +∞

−∞
e−f2(r)t2/2dt+ 2

∫ +∞

r1+β
e−f2(r)t2/2dt.

The first integral on the right hand side gives the asymptotic formula, the
second integral is smaller than any power of r, as r → 0. It remains to show
that the tails are small, and for that we make use of Lemma 2.2.1. In fact,

|Q(1, e−(r+it))|2

Q(1, e−r)2
=
∏
p

(
1− 2e−pr(1− cos(pt))

(1 + e−pr)2

)
≤ exp

(
− 1

2

∑
p

e−pr(1− cos(pt))
)
.

Thus, for r1+β < |t| ≤ π Lemma 2.2.1 applies and we deduce that the tails of
the integral in (2.3.4) are exponentially smaller than the main term. Then the
asymptotic formula in Equation (2.3.2) follows by choosing any β > 3/7.

Mean and variance

The mean µn of the random variable $n can be obtained as

µn =
∂

∂u
E(u$n)|u=1.

So we may express µn in terms of Q(u, z) as follows:

pq(n)µn = [zn]Q(1, z)
∑
p

zp

1 + zp
. (2.3.6)

By the Cauchy formula we have

pq(n)µn =
enr

2π

∫ π

−π
exp(nit+ f(1, r + it))g(r + it)dt (2.3.7)

for any r > 0, where

g(τ) :=
∑
p

e−pτ

1 + e−pτ
.
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We choose r = r(n) as defined in Proposition 2.3.1. We shall now estimate
the following integral rather than working directly on the integral in (2.3.7):

pq(n)(µn − g(r)) =
enr

2π

∫ π

−π
exp(nit+ f(1, r+ it))(g(r+ it)− g(r))dt. (2.3.8)

In fact, we want to show that the integral in Equation (2.3.8) is of small order
compared to the order of g(r). We apply the saddle point technique again to
the integral (2.3.8), it is not hard to show that the tails here are also small.
So the main term comes from the integral in the center for which |t| ≤ r1+β

with the same β defined above. Then g(r+ it) admits the following expansion

g(r + it)− g(r) = ig1(r)t− g2(r)
t2

2
+O(t3 sup

0≤t1≤t
|g3(r + it1)|). (2.3.9)

By means of the Mellin transform method we can show that the kth derivative
gk(r) of g(τ) satisfies the following asymptotic formula

gk(r) = (−1)kk!
log 2

rk+1 log 1
r

(
1 +O

( 1

log 1
r

))
for small r. One can also prove in a similar way as we did for f3(r + it), that
the error term in Equation (2.3.9) is a O(r3β−1/ log 1

r
). On the other hand we

have
enit+f(1,r+it) = e−f2(r)t2/2

(
1− if3(r)

t3

6
+O(r6β−2/ log 1

r

2
)

)
.

Therefore, as in the proof of Proposition 2.3.1, we can extend the integration
to the whole range of real numbers, and we deduce that

pq(n)(µn − g(r)) = pq(n)

(
f3(r)g1(r)− f2(r)g2(r)

2f2(r)2
+O(r7β−3/ log 1

r
))

)
.

To make the error term small, we choose 3/7 < β < 1/2, which implies that

µn =
∑
p

e−pr

1 + e−pr
+

3 log 2

π2
+O

( 1

log 1
r

)
. (2.3.10)

Note that we have the following estimate for r:

r = r(n) =
π√

6n log n

(
1− log log n

2 log n
+O

( 1

log n

))
as n→∞. It is possible to expand the formula even further and get more terms
in the expansion. Then the estimate of µn in (2.3.10) implies the formula in
Theorem 2.1.1. We do the same for the variance, which is given by the formula

σ2
n =

∂2

∂2u
E(u$n)|u=1 − µ2

n + µn.
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The second derivative of the function Q(u, z) with respect to u is

∂2

∂2u
Q(u, z)|u=1 = Q(1, z)

(∑
p

zp

1 + zp

)2

−Q(1, z)
∑
p

z2p

(1 + zp)2
.

One can derive the following integral, using equation (2.3.6) followed by the
Cauchy theorem:

pq(n)(σ2
n + µ2

n) =
enr

2π

∫ π

−π
exp(int+ f(1, r + it))(g(r + it)2 + h(r + it))dt,

where
h(τ) =

∑
p

e−pτ

(1 + e−pτ )2
.

Then by same method that we used for µn, one may show that the variance
satisfies the asymptotic formula

σ2
n = h(r)− g1(r)2

f2(r)
+O(r3β−2/ log2 1

r
),

which in turn implies the formula for σ2
n in Theorem 2.1.1.

Distribution function

Just like the mean and variance, one can also represent the moment generating
function of the normalized random variable ($n − µn)/σn in terms of Q(u, z).
The moment generating function is by definition

Mn(t) = E(e($n−µn)t/σn) (2.3.11)

= exp

(
−µnt
σn

)
Qn(et/σn)

Qn(1)
(2.3.12)

where Qn(u) = [zn]Q(u, z), and so Qn(1) = pq(n). We shall study the behavior
of Qn(u) for u in a fixed bounded interval containing 1, say 1− δ ≤ u ≤ 1 + δ
for a fixed small δ > 0. Throughout this section we will always assume that u
is as such, and say that an approximation is uniform in u if it is uniform for u
in that interval. We start by an analogue of Proposition 2.3.1.

Proposition 2.3.2. The following asymptotic formula holds for the coefficient
of zn in Q(u, z):

Qn(u) =
1√

2πf2(u, r)
enr+f(u,r)

(
1 +O

(
n−1/7

))
.
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uniformly in u, as n → ∞. Here, r = r(u, n) is now the unique positive
solution of the equation

n =
∑
p

pue−pr

1 + ue−pr
.

Before we prove this result, let us first introduce the function Y (u, s) defined
to be the Mellin transform of the function log(1 + ue−x). Then the following
lemma can be found in [15, Lemma 1]:

Lemma 2.3.3. For any fixed u lying in the cut-plane C r (−∞,−1], the
function Y (u, s) can be meromorphically continued to the whole s-plane with
simple poles at s = 0,−1,−2,−3, · · · . Moreover, Y (u, s) satisfies the estimate

|Y (u, σ + it)| � e−(π/2−ε)|t|

for any ε > 0 and |t| → +∞, uniformly as σ and u are restricted to compact
sets.

This property follows from the fact that the function Y (u, s) can be written
as a product of a polylogarithm and the Gamma function.

Proof. (of Proposition 2.3.2) We follow the lines in the proof of Proposition
2.3.1, so by the Cauchy theorem we have

Qn(u) =
enr

2π

∫ π

−π
exp(int+ f(u, r + it))dt

for any r > 0. The saddle-point method suggests to choose r a solution of the
equation

n = −f1(u, r) =
∑
p

p

u−1erp + 1
. (2.3.13)

The sum on the right hand side is a strictly decreasing function of r tending
to 0 when r → +∞ and ∞ when r → 0. Therefore, the solution r = r(u, n)
of the equation (2.3.13) exists and it is unique for u and n fixed. Also, r(u, n)
tends to 0 uniformly in u as n→∞. The next step is to split the integral into
a central part which is the integral over the interval [−r1+β, r1+β], where β is
a constant such that 1/3 < β < 1/2, and the tails. Let us first evaluate the
integral in the center, for which |t| ≤ r1+β and the function int + f(u, r + it)
admits the Taylor expansion

int+ f(u, r + it) = f(u, r)− f2(u, r)
t2

2
+O(|t3| sup

0≤t0≤t
|f3(u, r + it0)|).

Note that

Y (u, 1) =

∫ +∞

0

log(1 + ue−t)dt
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is strictly positive for any value of u > 0. By the Mellin transform method
and Lemma 2.3.3 along with this observation, the function f2(u, r) is of order
r−3/ log 1

r
and |f3(u, r + it)| is a O(r−4/ log 1

r
); these estimates are uniform in

u. One can use the same technique as in the proof of Proposition 2.3.1 to
justify the bound on |f3(u, r+ it)| provided that u is close enough to 1 (that is
to choose a relatively small δ). Therefore, as in Proposition 2.3.1 the integral
in the center gives the term we want. The tails are small as a result of the
following observation combined with Lemma 2.2.1:

|Q(u, e−(r+it))|2

Q(u, e−r)2
=
∏
p

(
1− 2ue−pr(1− cos(pt))

(1 + ue−pr)2

)
≤ exp

(
− 2u

(1 + u)2

∑
p

e−pr(1− cos(pt)
)
.

Finally, from Equation (2.3.13) and from the Mellin transform method we
derive the asymptotic formula for r

r = r(u, n) ∼

√
2Y (u, 1)

n log n

uniformly in u as n→∞. Thus, the result follows by choosing β > 3/7.

Until the end of this section let us use the following abbreviations: r =
r(u, n), r0 := r(1, n), u = et/σn and

fij(u, r) =
∂i

∂iτ

∂j

∂ju
f(u, τ)|τ=r.

Then it follows easily from Proposition 2.3.2 that

Qn(u)

Qn(1)
= exp

(
n(r − r0) + f(u, r)− f(1, r0)

)(
1 +O

( |t|
σn

+ n−1/7
))
.

By implicit differentiation we have

r − r0 = − g1(r0)

f2(1, r0)
(u− 1) +O(r0(u− 1)2) = O(r0(u− 1)).

Therefore,

f(u, r)− f(u, r0) = f1(u, r0)(r − r0) + f2(u, r0)
(r − r0)2

2
+O(t3

√
r0 log 1

r0
).

Also,

f1(u, r0)(r − r0) = f1(1, r0)(r − r0) + f11(1, r0)(u− 1)(r − r0)

+O(t3
√
r0 log 1

r0
)

= −n(r − r0) + g1(r0)(u− 1)(r − r0) +O(t3
√
r0 log 1

r0
),
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and for the second term we have

f2(u, r0)
(r − r0)2

2
= f2(1, r0)

(r − r0)2

2
+O(t3

√
r0 log 1

r0
).

Finally,

f(u, r0)− f(1, r0) = g(r0)(u− 1) + f02(1, r0)
(u− 1)2

2
+O(t3

√
r0 log 1

r0
).

Thus the function in the exponent can be written as

g(r0)(u− 1) +

(
f02(1, r0)− g1(r0)2

f2(1, r0)

)
(u− 1)2

2
+O(t3

√
r0 log 1

r0
).

On the other hand
u− 1 =

t

σn
+

t2

2σ2
n

+O(t3/σ3
n)

so the exponent becomes

g(r0)
t

σn
+

(
g(r0) + f02(1, r0)− g1(r0)2

f2(1, r0)

)
t2

2σ2
n

+O(t3
√
r0 log 1

r0
)

= g(r0)
t

σn
+

(
h(r0)− g1(r0)2

f2(1, r0)

)
t2

2σ2
n

+O(t3
√
r0 log 1

r0
).

The error terms in the above expansions can be verified using the same method
we used to bound the |f3(r+it)| in the proof of Proposition 2.3.1. Replacing µn
and σn by their respective values in Equation (2.3.12), we get the asymptotic
formula we expected:

Mn(t) = et
2/2(1 +O((|t|+ |t|3)n−1/4+ε + n−1/7)) (2.3.14)

as n → ∞, for any ε > 0. By Curtiss’ theorem [5] the limit distribution is
indeed Gaussian.

Remark. The asymptotic formula we get in (2.3.14) is very similar to those
we find in [15] or [18] and therefore, the following bounds hold for the tails

P
($n − µn

σn
≥ x

)
≤

e
−x2/2

(
1 +O(1/ log3 n)

)
if 0 ≤ x ≤ n1/12−ε,

e−n
1/12−εx/2

(
1 +O(1/ log3 n)

)
if x ≥ n1/12−ε,

for any small constant ε > 0. Similar bounds hold for

P
($n − µn

σn
≤ −x

)
.
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2.4 Unrestricted partitions

Recall that unrestricted partitions are those whose parts are allowed to repeat.
The appropriate bivariate generating function for the unrestricted case is given
by

Q(u, z) =
∏
p

(1− uzp)−1.

The infinite product converges only if |uz| < 1, unlike the restricted case where
we had convergence for |z| < 1, for any u restricted into a bounded interval
containing 1. As before, we consider the logarithm of the above infinite product

f(u, τ) = logQ(u, e−τ ) =
∑
p

log(1− ue−pτ ).

Mean and Variance

For the mean and variance, we have formulas rather similar to those for the
restricted case. The analogue of the integral representation for the mean is

pp(n)µ∗n =
enr

2π

∫ π

−π
exp(int+ f(1, r + it))g(r + it)dt (2.4.1)

for any r > 0, where pp(n) is the total number of ways of writing n as a sum
of primes, and

g(τ) :=
∑
p

e−pτ

1− e−pτ
.

For the variance,

pp(n)(σ∗2n + µ∗2n ) =
enr

2π

∫ π

−π
exp

(
int+ f(1, r + it)

)
(g(r + it)2 + h(r + it))dt

(2.4.2)
where

h(τ) =
∑
p

e−pτ

(1− e−pτ )2
.

The Mellin transform of the kth derivatives of f(1, τ) and g(τ) at τ = r are
given by

M(fk(1, r), s) = (−1)kζ(s− k + 1)Γ(s)D(s− k)

and
M(gk(r), s) = (−1)kζ(s− k)Γ(s)D(s− k).

So, by Lemma 2.2.2 the orders of fk(1, r) and gk(r) differ from r−(k+1) only by
factors of log 1/r or log log 1

r
, where we take r = r(n) > 0 to be the solution
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of the equation

n =
∑
p

pe−rp

1− e−rp
.

Thus, we only have to repeat the procedures in the previous section to compute
the mean. For the variance, the Mellin transform of the function h(r) is given
by

M(h(r), s) = ζ(s− 1)Γ(s)D(s)

which has a simple pole at s = 2 from the zeta function. Therefore, the order
of h(r) is r−2 which is greater than the contribution from the g(τ)2 in the
integral for the variance. The asymptotic formulas for the mean and variance
follow:

Theorem 2.4.1. The mean and variance of the distribution of the number of
summands in an unrestricted partition of an integer n into primes satisfy the
following asymptotic formulas:

µ∗n =
∑
p

e−rp

1− e−rp
+O(log2 1

r
).

As a function of n,

µ∗n =

√
3

π
(log log n+B1 − log 2)

√
n log n

(
1 +

log log n

2 log n
+O

( 1

log n

))
.

Likewise,

σ∗2n =
∑
p

e−rp

(1− e−rp)2
+O

( log2 1
r

r

)
.

As a function of n,

σ∗2n =
3D(2)n log n

π2

(
1 +

log log n

log n
+O

( 1

log n

))
as n→∞.

For comparison, the mean number of summands of a partition into arbitrary
parts is √

6n

2π

(
log n+ 2γ − log(π2/6)

)
+O(log n),

see [14].

Remark. We also have a central limit theorem in the unrestricted case: it is
known from [13] that the limit as n → ∞ of the normalized random variable
$∗n−µ∗n
σ∗n

has the following moment generating function:

M(t) =
∏
p

(
1− t̃

p

)−1

e
− t̃
p

where t̃ = t/
√
D(2). See Appendix A for a further study of this distribution.
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2.5 Generalization

A natural question one can ask is whether the result remains true for powers
of primes or more generally for polynomials f(p) of primes. But one needs to
be careful here since, for example, p2 + p is always even for any prime p so we
need to impose some additional conditions on the polynomial. From the result
of [24] and a slight modification of our proof of Lemma 2.2.1 we can get

Lemma 2.5.1. Let f(x) be a strictly increasing polynomial which takes only
integral values for integer x and has the property that for every prime p there
is a positive integer x such that p - xf(x). For any constant 1/3 < c < 1/2
and r1+c ≤ |y| ≤ π we have the inequality∑

p

e−f(p)r(1− cos f(p)y) ≥ c′ log2 1
r

for an absolute constant c′ > 0 as r → 0+.

The associated Dirichlet series is closely related to the Dirichlet series of
primes. Suppose that the dominant term in our polynomial f(x) is of the form
axd where a is a positive integer and d is the degree of f(x). Then

Df (s)− a−sD(ds) = a−s
∑
p

(
aspds − (f(p))s

pds(f(p))s

)
.

The series on the right hand side is absolutely convergent for Re(s) > 1/(2d).
Therefore our method applies, and the limit distribution of the number of
summands in partitions of n into distinct primes is Gaussian with mean and
variance

µn ∼ C1(a, d)

(
n

logd n

) 1
1+d

and σ2
n ∼ C2(a, d)

(
n

logd n

) 1
1+d

,

where Ci(a, d) can be determined explicitly. As for unrestricted partitions, the
mean and variance follow the asymptotic formulas:

µ∗n ∼ C ′1(a, d) (n log n)
d

1+d and σ∗2n ∼ C ′2(a, d) (n log n)
2d
1+d

when d ≥ 2, again the C ′i(a, d) can be determined explicitly.
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Chapter 3

The number of parts of given
multiplicity

3.1 Introduction

Let d be a positive integer. An ascent of size d in a partition (c1, c2, · · · , ct)
of an integer n is a succession of two parts ci, ci+1 such that ci+1 − ci = d.
If c1 = d then we assume that the partition has already one ascent of size d.
Then the number of ascents of size d in a given partition is exactly the number
of parts having multiplicity d in its conjugate partition.

Multiplicities in partitions were studied, amongst others, by Corteel et
al [4], who showed that a randomly selected part of a random partition has
multiplicity d with probability tending to 1

d(d+1)
. As a main step in their

proof, they provide an asymptotic formula for the average number of parts of
multiplicity d. A similar result was found by Knopfmacher and Munagi [16]
for the number of ascents (successions) of size d. Here we improve on these
results by proving a central limit theorem which can be stated as follows:

Theorem 3.1.1. The limit distribution of the number of parts having multi-
plicity d (or ascents of size d) in a random partition of n is Gaussian with
mean and variance given by the asymptotic formulas:

µn =

√
6n

πd(d+ 1)
+

3

π2d(d+ 1)
+ o(1) (3.1.1)

and

σ2
n ∼

(
1

πd(d+ 1)
− 1

2πd(d+ 1)(2d+ 1)
− 3

π3d2(d+ 1)2

)√
6n (3.1.2)

respectively as n→∞.

30
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A similar limit theorem was shown by Brennan, Knopfmacher and Wagner
[3] for ascents of size d or more (equivalently, parts of multiplicity d or more).
Later in this paper we give a generalisation of Theorem 3.1.1 and the results in
[3] to λ-partitions satisfying the Meinardus scheme as defined in Section 1.2.1.

In the above results, d was considered fixed. But when we let d increase
with n and d → ∞ as n → ∞ then the following phase transition can be
observed:

Theorem 3.1.2. The limit distribution of the number of parts of multiplicity
d is:

• Gaussian with mean and variance asymptotically equal to
√

6n
πd(d+1)

for d =

o(n1/4),

• Poisson with parameter
√

6
πα2 for d ∼ αn1/4,

• degenerate at zero for dn−1/4 →∞.

We present our results in the following way: We shall give a detailed proof
of Theorem 3.1.1 in Section 3.2, and in Section 3.3 we discuss how the proof of
Theorem 3.1.1 can be adapted to prove Theorem 3.1.2. In these proofs we use
methods that can be generalised to the case of λ-partitions. Then Section 3.4
gives a generalisation of Theorem 3.1.2 to the case of λ-partitions and finally
in Section 3.5 we discuss the generalisation of the results in [3].

3.2 Proof of Theorem 3.1.1

Throughout this section, d is a fixed positive integer. For a large positive
integer n, we assign a uniform probability measure to the set of all partitions
of n. Then the random variable $n is the number of parts of multiplicity
d (which is the same as the number of ascents of size d in this case) in a
random partition, its mean and standard deviation will be denoted by µn and
σn respectively. We shall use

∏
λ and

∑
λ as abbreviations for the product

and sum over all positive integers respectively. The reader should take note
of the change in the other sections as we shall use the same notation but with
different meaning.

The following is the generating function for the distribution of the number
of parts of multiplicity d:

Q(u, z) =
∏
λ

(
1

1− zλ
+ (u− 1)zλd

)
, (3.2.1)
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that is
Qn(u)

Qn(1)
= E(u$n), (3.2.2)

where Qn(u) is the coefficient of zn in Q(u, z). Note that Qn(1) is the total
number of partitions of n. We also introduce the following functions:

f(τ) := −
∑
λ

log(1− e−λτ ) (3.2.3)

and
φ(v, τ) :=

∑
λ

log(1 + ve−dλτ (1− e−λτ )). (3.2.4)

Then we have
log(Q(u, e−τ )) = f(τ) + φ(u− 1, τ). (3.2.5)

For simplicity we shall use the following abbreviation: again if F (τ) is a
function of a complex variable τ , and if it is analytic in some domain containing
an element τ0 in its interior, then we write Fk(τ0) for

∂k

∂kτ
F (τ)

∣∣∣
τ=τ0

.

Let us first recall the asymptotic formula for Qn(1).

Lemma 3.2.1. The number of partitions of n is given by the following asymp-
totic formula

Qn(1) =
enr√

2πf2(r)
Q(1, e−r)(1 +O(n−1/7)) (3.2.6)

as n→∞, where r is the positive solution of the equation

n =
∑
λ

λ

eλr − 1
. (3.2.7)

Note that the above asymptotic formula implies the well known Hardy-
Ramanujan formula (Theorem 1.2.1), but one does not require it explicitly to
prove our results. The proof of Lemma 3.2.1 is based on the use of the saddle
point method as outlined in Section 1.3. We also use a similar approach to
obtain the asymptotic formulas for the mean and variance given in Theorem
3.1.1. As mentioned earlier, results on the mean and variance can already be
found in the literature (see [4, 16]), but the method we apply here is easier to
generalise to λ-partitions.
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3.2.1 Mean and Variance

By definition, the mean of the random variable $n is

µn =
∂

∂u
E(u$n)

∣∣∣
u=1

=
1

Qn(1)

∂

∂u
Qn(u)

∣∣∣
u=1

.

In order to find an asymptotic formula for µn we shall consider the following
instead

Qn(1)(µn − g(r)) =
enr

2π

∫ π

−π
exp(int+ f(r + it))(g(r + it)− g(r))dt (3.2.8)

for any r > 0, where
g(τ) =

∑
λ

e−dλτ (1− e−λτ ).

We approximate this integral by means of the saddle point method, where r
is chosen to be the same as defined in Lemma 3.2.1, that is the solution of the
equation

n =
∑
λ

λ

eλr − 1
.

The series on the right hand side is a monotone decreasing function of r there-
fore the solution exists and it tends to zero as n→∞. Now we claim that the
integral (3.2.8) can be approximated by

enr

2π

∫ r1+β

−r1+β
exp(int+ f(r + it))(g(r + it)− g(r))dt (3.2.9)

when 1/3 < β < 1/2. This is not surprising since we know that without the
term g(r + it)− g(r) the estimate holds from the fact that for |t| > r1+β

|Q(1, e−(r+it))|
Q(1, e−r)

= exp
(
−
∑
k≥1

1

k

∑
λ

e−λkr(1− cos(λkt))
)

≤ exp
(
−
∑
λ

e−λr(1− cos(λt))
)

� exp
(
− c| log r|2

)
is smaller than any power of r−1 as r → 0 (this is in fact the case for any
sequence satisfying the condition (M3) in the Meinardus scheme). Note also
for any t

|g(r + it)− g(r)| �
∑
λ

e−λr � r−1

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. THE NUMBER OF PARTS OF GIVEN MULTIPLICITY 34

as r → 0. The claim follows from these two observations. Now for |t| ≤ r1+β

we have

f(r + it) =f(r) + if1(r)t− f2(r)
t2

2!
− if3(r)

t3

3!
+ (3.2.10)

f4(r)
t4

4!
+ if5(r)

t5

5!
+O

(
|t|6 sup

|η|≤|t|
|f6(r + iη)|

)
. (3.2.11)

In order to obtain asymptotic estimates for fk(r) (and later also other quanti-
ties) we apply the method of Mellin transforms, in particular Theorem 1.3.2.
Specifically, the Mellin transform of fk(r) is

(−1)kζ(s− k + 1)Γ(s)ζ(s− k).

Therefore, Theorem 1.3.2 gives

fk(r) ∼ (−1)kk!
π2

6rk+1
(3.2.12)

as r → 0, in particular n ∼ π2

6
r−2. Furthermore, to estimate the error term in

Equation (3.2.10) we have

|f6(r + iη)| �
∑
λ

λ6e−λr

|1− e−λ(r+iη)|6
�
∑
λ

λ6e−λr

|1− e−λr|6
� r−7.

Hence for |η| ≤ r1+β

|f6(r + iη)| � r−7,

and we have

enit+f(r+it) = ef0(r)−f2(r)t2/2
(

1− if3(r)
t3

3!
+

f4(r)
t4

4!
+ if5(r)

t5

5!
+O(r6β−2)

)
.

Similarly we have

g(r + it)− g0(r) = ig1(r)t− g2(r)
t2

2
+O(r3β−1), (3.2.13)

and we also have the following asymptotic formula:

gk(r) =
(−1)kk!

d(d+ 1)

1

rk+1

(
1 +O(r)

)
, (3.2.14)

this can also be obtained elementarily since g(τ) is a difference of geometric
series in this case. Therefore, one can approximate Qn(1)(µn − g0(r)) by

enr+f0(r)

2π

∫ r1+β

−r1+β
e−f2(r)t2/2

(
−g2(r)

t2

2
+ f3(r)g1(r)

t4

3!
+O(r7β−3)

)
dt
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with an exponentially small error term, since integrals involving an odd power
of t are identically 0. We may now change the range of integration to (−∞,+∞)
with another exponentially small error term and then apply the formula for
the Gaussian integral. Then we get the following expression for the mean in
terms of r:

µn = g0(r)− g2(r)

2f2(r)
+
f3(r)g1(r)

2f 2
2 (r)

+O(r7β−3), (3.2.15)

which gives

µn =
1

d(d+ 1)
r−1 +

3

2π2d(d+ 1)
+O(r7β−3). (3.2.16)

Now for the variance we have

σ2
n =

∂2

∂2u
E(u$n)|u=1 − µ2

n + µn. (3.2.17)

So we need to find an approximation of the second factorial moment

∂2

∂2u
E(u$n)|u=1 =

enr

2πQn(1)

∫ π

−π
exp(int+ f(r + it))ψ(r + it)dt, (3.2.18)

where ψ(τ) = g2(τ)− h(τ) and

h(τ) =
∑
λ

e−2dλτ (1− e−λτ )2.

Now we use the same method as for the mean: we obtain

g2(r + it) = g2
0(r) + 2ig0(r)g1(r)t− (g2

1(r) + g0(r)g2(r))t2 +O(r3β−2)

and also
h(r + it) = h0(r) + ih1(r)t− h2(r)

t2

2
+O(r3β−1).

Since hk(r) has the same order as gk(r), the contribution from −h(r + it) in
the integral is −h0(r) with an error of at most constant order. For g2(r + it)
we proceed as we did for the mean, and the main term of the integral comes
from

(g2(r + it)− g2
0)

(
1− if3(r)

t3

3!
+ f4(r)

t4

4!
+ if5(r)

t5

5!
+O(r6β−2)

)
=

2ig0(r)g1(r)t− (g2
1(r) + g0(r)g2(r))t2 + 2g0(r)g1(r)f3(r)

t4

3!
+O(r7β−4)

+ terms involving odd powers of t.

When we apply the integral we get

σ2
n + µ2

n − µn−g2
0(r) + h0(r) =

−g2
1(r)− g0(r)g2(r)

f2(r)
+
g0(r)g1(r)f3(r)

f 2
2 (r)

+O(r7β−4),
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which implies that

σ2
n = µn − h0(r)− g2

1(r)

f2(r)
+O(r7β−4), (3.2.19)

which gives

σ2
n =

(
1

d(d+ 1)
− 1

2d(d+ 1)(2d+ 1)
− 3

π2d2(d+ 1)2

)
r−1 +O(r7β−4).

(3.2.20)
Having these formulas for the mean and variance we may use Theorem 1.3.2
to deduce asymptotic formulas as a function of n. First we need an asymptotic
formula for r = r(n). We have already mentioned an asymptotic dependence
between n and r as a consequence of (3.2.12), and expanding further, using
Theorem 1.3.2, we get

n =
π2

6
r−2 − 1

2
r−1 +O(1),

which implies that

r−1 =

√
6

π

√
n+

3

2π2
+O(n−1/2). (3.2.21)

So the equations (3.2.16) and (3.2.20) give the asymptotic formulas for the
mean and variance

µn =

√
6

πd(d+ 1)

√
n+

3

π2d(d+ 1)
+O(n−ε) (3.2.22)

and

σ2
n ∼

(
1

πd(d+ 1)
− 1

2πd(d+ 1)(2d+ 1)
− 3

π3d2(d+ 1)2

)√
6n (3.2.23)

as n→∞, where ε is a positive constant. These prove the asymptotic formulas
in Theorem 3.1.1.

3.2.2 Moment Generating Function

We saw that the mean and variance are both tending to infinity, so in order to
determine the limiting distribution we need to consider the normalised random
variable

Xn :=
$n − µn
σn

. (3.2.24)

The moment generating function of Xn is defined as

Mn(x) := E(exXn) (3.2.25)
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for a fixed real number x. To complete the proof of Theorem 3.1.1 we need to
show thatMn(x) converges pointwise to ex2/2 within a fixed interval containing
0. Note that Mn(x) can also be written as follows:

Mn(x) = e−xµn/σn
Qn(ex/σn)

Qn(1)
. (3.2.26)

Recall the formula for the coefficient

Qn(u) =
enr

2π

∫ π

−π
exp(int+ f(r + it) + φ(u− 1, r + it))dt. (3.2.27)

We use the saddle point method again to find an asymptotic formula of the
latter integral for u suitably close to 1, for now let us just say that |u− 1| ≤ δ
for some fixed small δ > 0. We shall be able to provide an asymptotic formula
for Qn(u) by using a series of lemmas. We begin with the following which
allows us to ignore the tails of the integral in (3.2.27).

Lemma 3.2.2. There is a positive constant c1, such that if π > |t| > r1+c

where 1/3 < c < 1/2 then

|Q(u, e−(r+it)|
Q(u, e−r)

� e−c1| log r|2

as r → 0+.

Proof. In fact this proof works for any sequence of positive integers λ satisfying
the condition (M3) of the Meinardus scheme (α

3
< c < α

2
for the general case),

but also for arbitrary d. First we claim that for any complex number z such
that |z| ≤ 2 we have

|1 + z|
1 + |z|

≤ e−
1
9

(|z|−Re(z)).

Indeed, for |z| ≤ 2 we have

|1 + z|2

(1 + |z|)2
= 1− 2

|z| − Re(z)

(1 + |z|)2

≤ 1− 2

9
(|z| − Re(z))

≤ e−
2
9

(|z|−Re(z)).

Now for any l that is a member of the sequence λ, and any z such that |z| ≤ 1

|1 + zl + z2l+ · · ·+ z(d−1)l + uzdl + z(d+1)l + · · · | (3.2.28)
≤ |1 + zl|+ |z2l + z3l|+ · · · . (3.2.29)
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Note that only one of the terms in (3.2.29) involves u, it is either |uzdl+z(d+1)l|
or |z(d−1)l + uzdl| depending on the parity of d. We may assume that 1/2 ≤
u ≤ 2. Using the inequality above, we find that for all positive real a and b
such that 1/2 ≤ b/a ≤ 2,

|azkl + bz(k+1)l| ≤ e−
1
18

(|z|l−Re(zl))
(
a|z|kl + b|z|(k+1)l

)
,

which implies that (3.2.28) is at most

e−
1
18

(|zl|−Re(zl))(1 + |z|l + |z|2l + · · ·+ |z|(d−1)l + u|z|dl + |z|(d+1)l + · · · ).

Hence,
|Q(u, e−(r+it)|
Q(u, e−r)

≤ exp
(
− 1

18

∑
λ

e−λr(1− cos(λrt))
)
,

which proves the lemma if the sequence λ satisfies the condition (M3) of the
Meinardus scheme.

Note that the saddle point is chosen to be the solution of the equation

n = −f1(r)− φ1(v, r). (3.2.30)

So far nothing is known about the solution of Equation (3.2.30), we do not
even know if a solution exists. For that we need the following lemma:

Lemma 3.2.3. For any integer j ≥ 1,

φj(v, r) ∼ (−1)jj!C(v, d)r−(j+1), (3.2.31)

where

C(v, d) =

∫ 1

0

log(1 + vxd(1− x))

x
dx, (3.2.32)

these estimates are all uniform for |v| ≤ δ.

Proof. We write φ(v, τ) as

φ(v, τ) =
∑
λ

∑
k≥1

(−1)k+1e−kdλτ (1− e−λτ )k v
k

k

=
∑
k≥1

(−1)k+1v
k

k

∑
λ

e−kdλτ (1− e−λτ )k.

Then

φj(v, r) =
∑
k≥1

(−1)k+1v
k

k

∂j

∂jτ

∑
λ

e−kdλτ (1− e−λτ )k|τ=r
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and we have the following Mellin transform:

M
(
φj(v, r), s

)
= (−1)jα(k, d, s− j)Γ(s)ζ(s− j),

where

α(k, d, s) =
∑
k≥1

(−1)k+1v
k

k

k∑
l=0

(−1)l
(
k

l

)
1

(kd+ l)s
,

which is a Dirichlet series uniformly convergent in the right half-plane if |v| <
1/2 . Applying Theorem 1.3.2 to the function φj(v, r) for fixed v and j, this
gives us the asymptotic formula in (3.2.31) with

C(v, d) = α(k, d, 1) =

∫ 1

0

log(1 + vxd(1− x))

x
dx.

Lemma 3.2.3 along with the approximation of fk(r) in (3.2.12) imply the
following:

fk(r) + φk(v, r) ∼ (−1)kk!
(π2

6
− C(v, d)

)
r−(k+1) (3.2.33)

for any k ≥ 1. Furthermore, the constant C(v, d) can be made arbitrarily small
by making v = u− 1 small. From these observations, it follows that for fixed
small v the function on the right hand side of (3.2.30) is a monotone decreasing
function of r for 0 < r < ε for some ε > 0, and so there is a unique positive
r = r(u, n, d) satisfying Equation (3.2.30) provided that n is sufficiently large.
One can already deduce an asymptotic relation

r−1 ∼

√
6n

π2 − 6C(v, d)
(3.2.34)

as n→∞. We are now able to apply the saddle-point method.

Theorem 3.2.4. The following asymptotic formula holds:

Qn(v + 1) =
1√

2π(f2(r) + φ2(v, r))
enr+f(r)+φ(v,r)(1 +O(n1/7)) (3.2.35)

as n→∞, uniformly for |v| ≤ δ.

Proof. Use Lemma 3.2.2 and Lemma 3.2.3 and apply the saddle point method
in the same way as before.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. THE NUMBER OF PARTS OF GIVEN MULTIPLICITY 40

Now we go back to the formula for the moment generating function given
in Equation (3.2.26). We shall adopt some new notations for the remaining
part of this section so x will denote a fixed real number, v = ex/σn−1, r = r(v)
and r0 = r(0). From Theorem 3.2.4 it is not hard to show that

Qn(v + 1)

Qn(1)
∼ exp

(
nr + f(r) + φ(v, r)− nr0 − f(r0)

)
. (3.2.36)

It remains to estimate the exponent of (3.2.36). We recall the relation between
n, v and r:

n = −f1(r)− φ1(v, r).

Then by means of implicit differentiation we get

∂

∂v
r(v)

∣∣∣
v=η

=

∂
∂v
φ1(v, r(η))

∣∣∣
v=η

f2(r(η)) + φ2(η, r(η))
. (3.2.37)

If |η| ≤ ex/σn − 1, then r0 and r(η) are asymptotically equal. Therefore

f2(r(η)) + φ2(η, r(η))� r−3
0 .

Also by a similar technique as in the proof of Lemma 3.2.3 one may get
∂

∂v
φ1(v, r(η))

∣∣∣
v=η

= O(r−2
0 ).

Thus the difference r − r0 is a O(r0|v|), that is of order n−3/4 in terms of n.
And so

f(r)− f(r0) = f1(r0)(r − r0) + f2(r0)
(r − r0)2

2
+O(r

1/2
0 ). (3.2.38)

For φ(v, r) we use Taylor expansion with two variables

φ(v, r) = g(r0)v + φ1(0, r0)(r − r0)

+ h(r0)
v2

2
+ g1(r0)(r − r0)v + φ2(0, r0)

(r − r0)2

2
+O(r

1/2
0 ).

Adding up everything, we remain with

Qn(v + 1)

Qn(1)
∼ exp

(
g(r0)v +

(
− h(r0)− g2

1(r0)

f2(r0)

)v2

2

)
. (3.2.39)

Moreover,

v =
x

σn
+

x2

2σ2
n

+O
(x3

σ3
n

)
. (3.2.40)

Therefore,

Mn(x) ∼ exp
(

(g(r0)− µn)
x

σn
+

1

2

(
g(r0)− h(r0)− g2

1(r0)

f2

)x2

σ2
n

)
(3.2.41)

as n→∞. Then Theorem 3.1.1 follows by using the asymptotic formulas for
the mean and variance we proved in the first part of this section, together with
Curtiss’s Theorem [5].
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3.3 Proof of Theorem 3.1.2

Here in this section d = d(n) is an increasing function of n, and we assume
that d(n) → ∞ as n → ∞. We shall keep the notations in Section 3.2 and
note that the function φ(v, τ), and thus also g(τ) and h(τ) are now functions
of n as d is a function of n.

Let us first assume that dn−1/4 → ∞, then it is sufficient to show that
that the mean µn tends to 0, since we are dealing with a nonnegative random
variable $n, and Markov’s inequality will give us the desired result. Indeed,
we still have

µn ∼
enr

2πQn(1)

∫ r1+β

−r1+β
exp

(
nit+ f(r + it)

)
g(r + it)dt,

where r is determined by the equation

n =
∑
λ

λ

eλr − 1
.

So it suffices to show that g(r + it) goes to 0 uniformly in t (|t| < r1+β). We
have

|g(r + it)| ≤
∑
λ

e−dλr|1− e−λ(r+it)|,

for λ ≥ r−1 we have∑
λ≥r−1

e−dλr|1− e−λ(r+it)| �
∑
λ≥r−1

e−dλr � r−1e−d,

and the latter is smaller than any power of n−1. For λ < r−1,∑
λ<r−1

e−dλr|1− e−λ(r+it)| �
∑
λ

e−dλr(1− e−λr)� 1

d2r
.

Therefore, µn → 0 as n→∞, and by Markov’s inequality we have

lim
n→∞

P
(
$n ≥ ε

)
= 0 (3.3.1)

for any ε > 0, which proves the convergence in probability to the degenerate
random variable with support at 0.

Now for the remaining case d = O(n1/4), we follow the lines in Section
3.2, but one needs asymptotic estimates for the functions gk(r) and hk(r). We
cannot directly use Theorem 1.3.2 since d and r are somehow related and this
might affect our estimates. But we use the same approach as in the proof of
Theorem 1.3.2. We have the Mellin transform

M(gk(r), s) = (−1)k(d−s+k − (d+ 1)−s+k)Γ(s)ζ(s− k).
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We want to show that the main term in the asymptotic formula of gk(r) is still

(−1)kk!

d(d+ 1)
r−(k+1).

That is the case if∣∣∣ ∫ c+i∞

c−i∞
(d−s+k − (d+ 1)−s+k)Γ(s)ζ(s− k)r−sds

∣∣∣ = o
( 1

d2rk+1

)
for c < 1. Let us just prove this for the case k = 0, and the other cases are
obtained in a similar way. So let 0 < c < 1; then we have∣∣∣ ∫ c+i∞

c−i∞
(d−s − (d+ 1)−s)Γ(s)ζ(s)r−sds

∣∣∣
≤ (dr)−c

∫ c+i∞

c−i∞

∣∣∣(1− ds

(d+ 1)s

)
Γ(s)ζ(s)

∣∣∣ds
� 1

dc+1rc
.

To check the last line, for every real number t we have

|Γ(c+ it)ζ(c+ it)| ≤ c1e
−c2t

for some positive constants c1 and c2, and∣∣∣1− dc+it

(d+ 1)c+it

∣∣∣ =
∣∣∣1− (1− 1

d+ 1

)c
eit log(d/(d+1))

∣∣∣
which is O(max{t/d, 1/d}) if |t| ≤

√
d and O(1) for |t| >

√
d as n→∞ where

the implied constants are independent of t. Therefore we have

g(r) =
1

d2r
+O

( 1

dc+1rc

)
as (n, r)→ (∞, 0). Similarly for h(r), we have the Mellin transform

M(hk(r), s) = (−1)k((2d)−s+k − 2(2d+ 1)−s+k + (2d+ 2)−s+k)Γ(s)ζ(s− k).

Again for the case k = 0∣∣∣ 1

(2d)c+it
−2

1

(2d+ 1)c+it
+

1

(2d+ 2)c+it

∣∣∣
≤ 1

(2d)c

∣∣∣1− 2
(

1− 1

2d+ 1

)c+it
+
(

1− 1

d+ 1

)c+it∣∣∣,
then for |t| ≤

√
d, the latter is a O((t2 + 1)/dc+2) and O(1/dc) for |t| >

√
d.

Therefore

h(r) =
( 1

2d
− 2

2d+ 1
+

1

2d+ 2

)
r−1 +O

( 1

dc+2rc

)
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as (n, r)→ (∞, 0).

Therefore the mean and variance are asymptotically equal as n goes to
infinity, more precisely:

µn ∼
√

6n

πd(d+ 1)
and σ2

n ∼
√

6n

πd(d+ 1)
. (3.3.2)

We shall now establish an asymptotic formula for Qn(u). Note first that the
statement of Lemma 3.2.2 is valid in this case, and for Lemma 3.2.3 one may
easily show (by using the same idea in the proof) that for a fixed positive
integer j and sufficiently large n we have

φj(u, r) = O(vr−1)

as r → 0, and the implied constant is independent of n. Therefore, for some
positive constant δ the following asymptotic formula still holds:

Qn(v + 1) =
1√

2π(f2(r) + φ2(v, r))
enr+f(r)+φ(v,r)(1 +O(n1/7)) (3.3.3)

as n → ∞ uniformly for |v| ≤ δ, where r = r(v, n) is the unique positive
solution of the equation

n = −f1(r)− φ1(v, r).

If d = o(n1/4), then both the mean and variance tend to infinity so we shall
consider the normalised random variable whose moment generating function
can be expressed as

Mn(x) = e−xµn/σn
Qn(ex$n/σn)

Qn(1)
.

By the same arguments that we used to deduce Equation (3.2.39) we obtain
the asymptotic formula

Mn(x) ∼ exp
(
− xµn

σn
+ g(r)(ex/σn − 1)

)
(3.3.4)

as n → ∞. Thus Equation (3.3.4) along with the formulas for the mean and
variance implies

Mn(x) ∼ ex
2/2

which proves convergence to the normalised Gaussian distribution by using
Curtiss’s Theorem again.

If d ∼ αn1/4, then both the mean and variance tend to a constant
√

6
πα2 . We

want to estimate the probability generating function, so let us fix a sufficiently
small δ > 0 and assume that |u− 1| ≤ δ. Then we have

E(u$n) =
Qn(u)

Qn(1)
∼ exp

(
n(r − r0) + f(r)− f(r0) + φ(u− 1, r)

)
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as n → ∞, here we use the same notations as in the previous section. First
we need to estimate the difference r − r0, so let |η| ≤ |u− 1| ≤ δ. Then

∂

∂v
φ1(v, r(η))

∣∣∣
v=η

= −
∑
λ

λe−dλr(η)
(
d− (d+ 1)e−λr(η)

)
(1 + ηe−dλr(η) − ηe−(d+1)λr(η))2

� g1(r(η))

� 1

r0

.

Hence |r − r0| � n−1. Since f1(r0) = −n,

n(r − r0) + f(r)− f(r0)� f2(r0)n−2 � n−1/2

and

φ(u− 1, r) = (u− 1)g(r) +O(n−1/4)

=

√
6

πα2
(u− 1) + o(1).

Finally we deduce that
E(u$n) ∼ e

√
6

πα2
(u−1)

as n → ∞, which proves the convergence to the Poisson distribution with
parameter

√
6

πα2 . This completes the proof of Theorem 3.1.2.

3.4 Generalisation

As we mentioned in the introduction we shall see how these results change
when we deal with partitions into elements of an arbitrary sequence λ. So
from now on λ is a sequence of nondecreasing positive integers (λ1, λ2, λ3 · · · )
such that λk tends to infinity when k tends to infinity. The notations

∑
λ and∏

λ now stand for the sum and product taken over the sequence λ. Then we
have the following theorem:

Theorem 3.4.1. If the sequence λ satisfies the conditions (M1) to (M3) of
the Meinardus scheme then the number of parts of multiplicity d in a random
λ-partition of n is asymptotically normally distributed where the mean and
variance are given by the asymptotic formulas:

µn ∼
(

1

dα
− 1

(d+ 1)α

)
Γ(α)A

(Aζ(α + 1)Γ(α + 1))α/(α+1)
nα/(α+1)
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and

σ2
n ∼
( 1

dα
− 1

(d+ 1)α
− 1

(2d)α
+

2

(2d+ 1)α
− 1

(2d+ 2)α

−
( 1

dα
− 1

(d+ 1)α

)2 α

(α + 1)ζ(α + 1)

) AΓ(α)nα/(α+1)

(Aζ(α + 1)Γ(α + 1))α/(α+1)

respectively, if d = o(nα/(α+1)2).

If d ∼ anα/(α+1)2, then the limiting distribution is Poisson with parameter

AΓ(α + 1)

aα+1
(
Aζ(α + 1)Γ(α + 1)

)α/(α+1)
.

And if dn−α/(α+1)2 →∞, then the limiting distribution is degenerate at zero.

We shall not present the proof of this theorem since it is essentially the
same as for ordinary partitions, and conditions (M1) to (M3) provide us with
the necessary tools we need. More precisely conditions (M1) and (M2) allow
us to apply the Mellin transform method to obtain asymptotic estimates for
the functions f , φ, g, h and their derivatives. The condition (M3) is needed
for the tail estimates in the saddle point method (just like in Lemma 3.2.2).
See for instance [15] for a similar use of these conditions.

The result in Theorem 3.4.1 works for fairly large varieties of sequences of
positive integer. For example all integer valued polynomials, where λn = P (n)
with an additional technical condition: gcd(P (n) : n ∈ Z) = 1, satisfies
the Meinardus scheme and so Theorem 3.4.1 applies. However, as we saw in
the previous chapter, there are some interesting sequences that fail to satisfy
the Meinardus conditions such as the sequence of primes. Condition (M3) is
satisfied by the sequence of primes, as shown in Lemma 2.2.1. (M1) is clearly
not satisfied, but we can apply the techniques of the previous chapter to obtain
the required estimates.

Theorem 3.4.2. The number of parts with multiplicity d in a random prime
partition is:

• asymptotically normally distributed with mean and variance

µn ∼
1

πd(d+ 1)

√
12n

log n

and

σ2
n ∼

(
1

πd(d+ 1)
− 1

2πd(d+ 1)(2d+ 1)
− 3

π3d2(d+ 1)2

)√
12n

log n

respectively, if d = o((n/ log n)1/4),
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• Poisson with parameter
√

12
a2π

if d ∼ a(n/ log n)1/4,

• degenerate at zero for d(n/ log n)−1/4 →∞.

3.5 Parts with multiplicity d or more in
λ-partitions

The number of ascents of size d or more in a random partition of an integer n
has already been treated in [3] for fixed d, a result that can be expressed in the
language of multiplicities since there is a one-to-one correspondence between
partitions having parts of multiplicity d and partitions with ascents of size d.
So for completeness we shall give a generalisation of this result for λ-partitions.
For this case we have the bivariate generating function

Q∗(u, z) =
∏
λ

(
1+(u−1)zλd

1−zλ

)
, (3.5.1)

where the product is taken over the sequence λ. The logarithm

φ∗(v, τ) =
∑
λ

log(1 + ve−λdτ ), (3.5.2)

is for our purposes actually easier to handle than the function φ(v, τ) but
the technique remains the same. There is a slight change though: a phase
transition occurs when d ∼ an1/(1+α), and the limiting distribution in this case
is not Poisson. This can be shown by the following simple argument: the
probability generating function can be expressed as

Q∗n(u)

Q∗n(1)
∼ enr

2πQ∗n(1)

∫ r1+β

−r1+β
eφ
∗(u−1,r+it) exp

(
nit+ f(r + it)

)
dt (3.5.3)

as n→∞, where r is the unique positive solution of the equation

n =
∑
λ

λ

erλ − 1
,

and β is an arbitrary constant such that α
3
< β < α

2
. It follows that

r ∼
(
Aζ(α + 1)Γ(α)

)1/(α+1)

n−1/(α+1)

Moreover, we have

φ∗(u− 1, r + it) = φ∗(u− 1, r) +O(rβ)
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uniformly for |t| ≤ r1+β. Therefore for a fixed real number u we have

Q∗n(u)

Q∗n(1)
→
∏
λ

(1 + (u− 1)e−λκ)

as n→∞, where
κ = a(Aζ(α + 1)Γ(α + 1))1/(α+1).

Hence the final result reads as follows:

Theorem 3.5.1. If the sequence λ satisfies the conditions (M1) to (M3) of
the Meinardus scheme, then the number of parts of multiplicity d or more in
a random λ-partition of n is asymptotically normally distributed, where the
mean and variance are given by the asymptotic formulas:

µn ∼
1

dα
Γ(α)A

(Aζ(α + 1)Γ(α + 1))α/(α+1)
nα/(α+1)

and

σ2
n ∼

( 1

dα
− 1

(2d)α
− α

d2α(α + 1)ζ(α + 1)

) AΓ(α)nα/(α+1)

(Aζ(α + 1)Γ(α + 1))α/(α+1)

respectively, if d = o(n1/(α+1)).

If d ∼ an1/(α+1), then the limiting distribution is a sum of Bernoulli vari-
ables ∑

λ

Be(e−λκ),

this series converges almost surely.

If dn−1/(α+1) →∞ then the limiting distribution is degenerate at zero.

For the case of ordinary partitions, α = 1 and this gives the result proved
in [3, last section]. But also, for d = 1, the number of parts having multiplicity
d or more is equal to the total number of distinct parts in random λ-partitions,
a case that has already been treated in [10] and [15].
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Chapter 4

A phase transition from
unrestricted to restricted
partitions

4.1 Introduction and preliminary results

The number of summands in a random partition of an integer n was first
studied by Erdős and Lehner [6] as mentioned in the introduction. Their
results in Theorem 1.2.5 were generalised and extended in many directions:
for instance, analogous limit theorems were proved for general λ-partitions.
See Haselgrove-Temperley [13], Richmond [22], and Lee [17] on unrestricted
partitions, Hwang [15] on restricted partitions. We will closely follow the
ideas of Hwang who proved that the distribution of the length of a random
restricted λ-partition is asymptotically Gaussian. Let us also mention a result
by Mutafchiev in [20] which states that if d ∼ α

√
n then among all partitions

of n the set of partitions with no parts with multiplicity greater than d has a
positive density asymptotically equal to∏

λ

(1− e−αλ)−1. (4.1.1)

In this chapter, we also consider those partitions with no parts of multi-
plicity greater than d, and we show that when d is asymptotically equal to√
n, then we observe a phase transition in the distribution of the number of

summands in such a partition. More precisely we prove the following theorem:

Theorem 4.1.1. Let Sd,n be the set of partitions of an integer n with no parts
of multiplicity greater than d (d may be a function of n) and assume that all
partitions in Sd,n are equally likely. Then we have the following behaviour for
the limit distribution of the number of summands in a random partition:

48
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• if d = o(
√
n) then it is asymptotically Gaussian,

• if d�
√
n then it is asymptotically Gumbel,

• if d ∼ b
√
n where b is a positive constant, then when normalized, the

distribution of the number of summands convergences to a distribution
with moment generating function given by

M(x) =
∏
λ

e−
a
λ

1− a
λ

∏
λ

(1− e−(λ−a)ϑ

1− e−λϑ
)
eaϑ/(e

λϑ−1)

where the product is taken over the set of positive integers, and

a =
x√

π2

6
− κ

, ϑ =
π√
6
b,

and

κ =
∑
λ

ϑ2e−λϑ

(1− e−λϑ)2
.

These results were obtained by analysing the corresponding generating
function. We are interested in the number of summands, and so the generating
function for our problem is the following: for a positive integer d,

Q(d, u, z) =
∏
λ

d−1∑
j=0

ujzjλ, (4.1.2)

where the product is taken over the set of positive integers, the second vari-
able u counts the number of summands. Let Qd,n(u) be the coefficient of zn
in Q(d, u, z) and let $d,n be the random variable counting the number of sum-
mands in a random partition, then the probability distribution of the random
variable $d,n can be expressed in terms of Qd,n(u) as follows:

E(u$d,n) =
Qd,n(u)

Qd,n(1)
. (4.1.3)

We shall use this observation to study the limiting distribution of $d,n. One
can already express the mean and variance in terms of Qd,n(u). Let µd,n and
σd,n be the mean and the standard deviation of the random variable $d,n

respectively. Then we have

µd,n =
∂

∂u

Qd,n(u)

Qd,n(1)

∣∣∣
u=1

(4.1.4)

and
σ2
d,n =

∂2

∂2u

Qd,n(u)

Qd,n(1)

∣∣∣
u=1

+ µd,n − µ2
d,n. (4.1.5)
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Notation. For what follows we introduce certain notations and abbreviations.
The variable τ is a complex variable usually written in the form r + it where
r is a positive number. So let

F (d, u, τ) := logQ(d, u, e−τ ).

This function as well as other functions that we will use depend on the pa-
rameter d but we will frequently omit the variable d, for example we will write
F (u, τ) for F (d, u, τ). The following functions will also be used several times:

f(u, τ) := −
∑
λ

log(1− ue−λτ ),

g(τ) :=
∂

∂u
f(u, τ)

∣∣∣
u=1

=
∑
λ

e−λτ

1− e−λτ
,

and

h(τ) :=
∑
λ

e−λτ

(1− e−λτ )2
.

The function F (u, τ) can be written as follows:

F (u, τ) = f(u, τ)− f(ud, d τ),

and we also write
G(τ) = g(τ)− dg(d τ)

and
H(τ) = h(τ)− d2h(d τ).

The hardest part of the proof of our main result in this chapter will be to
understand the behaviour of these functions when Re(τ) = r is closed to zero.

Finally if X(u, τ) is an analytic function of τ in a certain domain containing
τ0 then we will write

Xτ (u, τ0) =
∂

∂τ
X(u, τ)

∣∣∣
τ=τ0

and Xττ , Xuττ , Xτττ , · · · are defined similarly.

One can express the mean and variance in terms of integrals involving the
above functions:

µd,n =
enr

2πQd,n(1)

∫ π

−π
exp (nit+ F (1, r + it))G(r + it)dt (4.1.6)

and

σ2
d,n + µ2

d,n =
enr

2πQd,n(1)

∫ π

−π
exp (nit+ F (1, r + it)) (G(r + it)2 +H(r + it))dt

(4.1.7)
for any r > 0.
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Most of our functions are expressed in the form of harmonic sums, and we
use the Mellin transform method to estimate them. More precisely, we are
using Theorem 1.3.2, and we will also allow φ(s) to be complex-valued where
necessary. The advantage that we have is that most of our functions have a
nicely behaved Mellin transform, for example:

M(f(1, r), s) = ζ(s+ 1)Γ(s)ζ(s),

M(g(r), s) = ζ2(s)Γ(s),

M(h(r), s) = ζ(s− 1)Γ(s)ζ(s).

The above functions are all expressed in terms of the Riemann zeta function
ζ(s) and the gamma function Γ(s). We know that ζ(s) admits a simple pole
at s = 1 with residue 1 and is analytic everywhere else in the complex plane,
also Γ(s) is analytic everywhere except for simple poles at s = 0,−1,−2, · · · .
Furthermore, all the above Mellin transforms satisfy the hypothesis of Theorem
1.3.2 therefore one has

f(1, r) =
π2

6
r−1 − 1

2
log 1

r
+O(1), (4.1.8)

g(r) = (log 1
r

+ 2γ)r−1 +O(1) (4.1.9)

h(r) =
π2

6
r−2 − 1

2
r−1 +O(1) (4.1.10)

where γ is the Euler-Mascheroni constant. In order to estimate f(ear, r) for
fixed a within the interval (−1, 1), we will also need the Hurwitz zeta function

ζ(s, 1− a) =
∑
λ

1

(λ− a)s
.

Note that the Mellin transform of the difference f(ear, r)− f(1, r) is

M(f(ear, r)− f(1, r), s) = ζ(s+ 1)Γ(s)(ζ(s, 1− a)− ζ(s)).

The Hurwitz zeta function admits a simple pole at s = 1 with residue 1,
therefore the pole s = 1 of the Mellin transform cancels out, and the pole at
s = 0 becomes important. All we need to know for our purposes is that

lim
s→0

(ζ(s, 1− a)− ζ(s)− asζ(s+ 1))

s
=
∑
λ

(
− log

(
1− a

λ

)
− a

λ

)
,

and so we have the equation

f(ear, r)− f(1, r) = a rg(r) +
∑
λ

(
− log

(
1− a

λ

)
− a

λ

)
+ o(1) (4.1.11)

as r → 0+, the term a rg(r) is the inverse Mellin transform of aζ(s+ 1)Γ(s+
1)ζ(s+ 1).
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Our main technique is the use of the saddle point method where we are
estimating integrals of the form

I(n) =
enr

2π

∫ π

−π
exp (nit+ Ψ(r + it)) Φ(r + it)dt. (4.1.12)

Here Ψ(τ) and Φ(τ) are analytic in the open disk of radius 1. The following
lemma plays an important role as we shall see in the next sections.

Lemma 4.1.2. Let 2 ≤ d ≤ n, and suppose that there are positive constants c1

and c2 such that c1√
n
≤ r ≤ c2√

n
. If furthermore τ = r + iy with π ≥ |y| ≥ r1+c,

where c is any number within (1
3
, 1

2
), and 1

2
≤ u ≤ 2, then there are positive

constants c3 and δ depending only on c such that

|Q(d, u, eτ )|
Q(d, u, er)

≤ e−c3n
δ

for sufficiently large n.

Proof. First we are going to estimate the quantity

Re
(∑

λ

(e−λr − e−λτ )
)
,

which can be written in the following form:

1

1− e−r
− Re

( 1

1− e−τ
)

=
e−r(1 + e−r)(1− cos y)

(1− e−r)(1− 2e−r cos y + e−2r)

� |y|2

r(max{r, |y|})2
� r2c−1.

as r → 0+. Now if |z| ≤ 2 then we claim that there are positive constants c4

and c5 such that
|1 + z|
1 + |z|

≤ e−c4(|z|−Re(z))

and
|1 + z + z2|

1 + |z|+ |z|2
≤ e−c5(|z|−Re(z)).

Indeed for |z| ≤ 2 we have

|1 + z|2

(1 + |z|)2
= 1− 2

|z| − Re(z)

(1 + |z|)2

≤ 1− 2

9
(|z| − Re(z))

≤ e−
2
9

(|z|−Re(z)).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. A PHASE TRANSITION FROM UNRESTRICTED TO
RESTRICTED PARTITIONS 53

Similarly,

|1 + z + z2|2

(1 + |z|+ |z|2)2
= 1− 2(|z| − Re(z))

1 + |z|2 + (2− Re(z))(Re(z) + |z|)
(1 + |z|+ |z|2)2

≤ 1− 2

49
(|z| − Re(z))

≤ e−
2
49

(|z|−Re(z)).

Hence for any 2 ≤ d ≤ n

|1 + z + z2 + z3 + · · ·+ zd−1| ≤ |1 + z|+ |z|2|1 + z|+ · · · ,

where the last term is either |z|d−2|1 + z| or |z|d−3|1 + z + z2| depending on
the parity of d. Therefore by the claim we have

|1 + z + z2 + · · ·+ zd−1| ≤ e−c6(|z|−Re(z))(1 + |z|+ |z|2 + · · ·+ |z|d−1),

where c6 = min{c4, c5}. Now we set z = ue−λτ and take the product over all
λ ≥ 1 to obtain

|Q(u, eτ )|
Q(u, er)

≤ exp
(
− c6

∑
λ

(e−λr − Re(e−λτ ))
)
.

This completes the proof.

4.2 The Case d�
√
n

We split the proof of Theorem 4.1.1 into two parts: throughout this section,
we assume that d�

√
n.

Mean and variance

We shall estimate the mean and variance expressed in the equations (4.1.6) and
(4.1.7) respectively by means of the saddle point technique. We will present
this approach in a series of lemmas.

Lemma 4.2.1. The equation

n = −Fτ (1, r) (4.2.1)

admits a unique positive solution r := r(d, n); furthermore, the solution r
satisfies the asymptotic expansion

r =
π√
6n

(1 +O(n−1/2 log n)) (4.2.2)

as n→∞.
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Proof. We know that

Fττ (1, r) =
∑
λ

λ2

∑d−1
j=0 j

2e−λjr
∑d−1

j=0 e
−λjr −

(∑d−1
j=0 je

−λjr
)2

(∑d−1
j=0 e

−λjr
)2

which is always positive by the Cauchy-Schwarz inequality. Therefore, the right
hand side of Equation (4.2.1) is a monotone decreasing function for r > 0. This
implies that the solution exists, it is unique and it tends to zero as n tends to
infinity. Note that

Fτ (1, r) = fτ (1, r)− dfτ (1, dr).

By Theorem 1.3.2 we have

fτ (1, r) =
π2

6
r−2 +O(r−1 log 1

r
)

as r → 0+. The a priori estimate r−1 = O(
√
n) follows immediately. Note

further that
dfτ (1, dr) =

∑
λ

dλ

eλdr − 1
= O(r−1)

as r → 0+ uniformly for d�
√
n. Hence the solution r must be of order n−1/2

and therefore by (4.2.1) we have

n =
π2

6
r−2 +O(r−1 log 1

r
),

which implies (4.2.2).

We are going to estimate the mean µd,n first by using the integral in (4.1.6).
Let r be as defined in Lemma 4.2.1, then we have

Qd,n(µd,n −G(r)) =
enr

2π

∫ π

−π
exp

(
nit+ F (1, r + it)

)
(G(r + it)−G(r))dt.

We split this integral as follows: we take an arbitrary constant c in (1
3
, 1

2
) and

we consider the integral over [−r1+c, r1+c], which we call the central integral,
and the integral over [−π,−r1+c) ∪ (r1+c, π], which we call the tails.

Lemma 4.2.2 (Central integral estimate). We have∫ r1+c

−r1+c
enit+F (1,r+it)(G(r + it)−G(r))dt =

∫ r1+c

−r1+c
eF (1,r)−Fττ (1,r)t2/2dt ×(Fτττ (1, r)Gτ (r)− Fττ (1, r)Gττ (r)

2F 2
ττ (1, r)

+O
(
r7c−3 log

1

r

))
.
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Proof. If |t| ≤ r1+c then we can Taylor-expand the integrand, so

nit+ F (1, r + it) =F (1, r)− Fττ (1, r)
t2

2
− iFτττ (1, r)

t3

6
O(r4+4c max

|η|≤r1+c
|Fττττ (1, r + iη)|).

Note that Equation (4.2.1) has been used here. In order to get an estimate
for the integral one needs to estimate all of the functions involved in the ex-
pansions, so we need to estimate F (1, r) and its derivatives. These functions
can be expressed as a difference of two functions as we mentioned in the intro-
duction, and we will see that the contribution from the second term is always
small in this case. For instance we have seen that

|Fτ (1, r)− fτ (1, r)| � r−1.

Hence, we also have that Fττ (1, r) and Fτττ (1, r) are asymptotically equal to
fττ (1, r) and fττ (1, r) respectively. Applying Theorem 1.3.2 we have

Fττ (1, r) ∼
π2

6
r−3,

and Fτττ (1, r) is of order r−4. To estimate the error term, we first deal with
the contribution from fττττ (r + it), so if |η| ≤ r1+c then we have

|fττττ (r + iη)| �
∑
λ

λ4e−λr

|1− e−λ(r+iη)|4
�
∑
λ

λ4e−λr

(1− e−λr)4
� r−5,

and the remaining term can be estimated as follows:

d4|fττττ (dr + idη)| � 1

r4
.

We finally deduce that

nit+ F (1, r + it) = F (1, r)− Fττ (1, r)
t2

2
− iFτττ (1, r)

t3

6
+O(r4c−1).

Therefore,

enit+F (1,r+it) = eF (1,r)−Fττ (1,r) t
2

2 (1− iFτττ (1, r)
t3

6
+O(r6c−2)). (4.2.3)

One can also expand the function G(r + it)−G(r) and obtains

G(r + it)−G(r) = itGτ (r)−Gττ (r)
t2

2
+O(r3c−1 log

1

r
). (4.2.4)
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Multiplying (4.2.4) and (4.2.3) the integrand can be written as

eF (1,r)−Fττ (1,r) t
2

2

(
itGτ (r)−Gττ (r)

t2

2

+Gτ (r)Fτττ (1, r)
t4

6
+O(r7c−3 log 1

r
)
)
.

To make the error term small we need to adjust our arbitrary constant c to be
within the interval (3/7, 1/2). Since each term in the above expansion grows
at most polynomially in r−1 as r goes to 0 uniformly for |t| ≤ r1+c and we also
have Fττ (1, r) � r−3, we can change the range of integration to (−∞,+∞)
with an exponentially small error term. To see this, let us for example take∫ r1+c

−r1+c
e−Fττ (1,r) t

2

2 Gττ (r)
t2

2
dt =

∫ +∞

−∞
e−Fττ (1,r) t

2

2 Gττ (r)
t2

2
dt

+ 2

∫ +∞

r1+c
e−Fττ (1,r) t

2

2 Gττ (r)
t2

2
dt,

and after a change of variable u = tr−1−c the second term on the right can be
written in the form

B(r)

∫ +∞

1

e−A(r)u
2

2 u2du�
∣∣∣∣B(r)

∫ +∞

1

e−A(r)u
2 u2du

∣∣∣∣ .
Here |B(r)| is at most a polynomial in r−1, and we have A(r) � r2c−1 (the
power 2c−1 is negative by our choice of c), so that the above integral is smaller
than any power of r. The rest of the proof is a computation of integrals of the
form ∫ +∞

−∞
tke−at

2/2dt =

{
0 if k is odd,(

2
a

)(k+1)/2
Γ(k+1

2
) if k is even,

which we shall not include here.

The next step is to estimate the tails, which is done in the following lemma:

Lemma 4.2.3 (Tails estimate). The expression

1

Q(1, e−r)

∣∣∣ ∫
|t|>r1+c

enit+F (1,r+it)dt
∣∣∣

goes faster to 0 than any power of r.

Proof. This is a direct corollary of Lemma 4.1.2. Indeed, since |G(r+it)−G(r)|
is bounded by some polynomial in r−1, by Lemma 4.1.2 we have

|Q(d, u, er+it)||G(r + it)−G(r)|
Q(d, u, er)

� e−c7n
δ
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when |t| > r1+c. This implies that∣∣∣ ∫ π

r1+c
exp(nit+ F (1, r + it))(G(r + it)−G(r))dt

∣∣∣� e−c7n
δ

eF (1,r),

where c7 is a positive constant depending only in c.

Note that one can also apply the same technique to estimate Qd,n(1) (for
this case we replace G(r + it)−G(r) in the above by 1) and we obtain

Qd,n(1) = enr+F (1,r)

∫ r1+c

−r1+c
e−Fττ (1,r)t2/2dt

(
1 +O(r3c−1)

)
.

We can now write the mean as

µd,n = G(r) +
Fτττ (1, r)Gτ (r)− Fττ (1, r)Gττ (r)

2F 2
ττ (1, r)

+O
(
r7c−3 log 1

r

)
(4.2.5)

as n→∞. Thus we have

µd,n = G(r) +O(log 1
r
). (4.2.6)

Similarly for the variance one has to estimate the integral in Equation (4.1.7).
We can use the same method we used for the mean µd,n. We are only interested
in the main term of the variance (it is possible to get more terms with a bit
more work). Using the same method as before we get the following:

σ2
d,n + µ2

d,n = σ2
d,n +G2(r) +O

(
G(r) log 1

r

)
= H(r) +G2(r) +O(r−1 log2 1

r
).

Then we finally find
σ2
d,n = H(r) +O(r−1 log2 1

r
). (4.2.7)

If we want to estimate the mean and variance in terms of n then we need to
estimate the formula that we found the by Mellin transform method to get
asymptotic formulas in terms of r, and then substitute by its expansion in
terms of n. The main term in the expansion is

µd,n =

√
6n

2π
log n+O(

√
n)

and
σ2
d,n =

(
π2

6
− (dr)2h(dr)

) 6n

π2
+O(

√
n log2 n)

as n→∞. Note that the term (dr)2h(dr) is a O(1) in this case. Knowing the
mean and variance we are now going to find the limiting distribution.
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Moment generating function

To get the limit distribution we consider the normalized random variable

Xn =
$d,n − µd,n

σd,n
,

and we want to estimate the moment generating function

Mn(x) = E(exXn) = e−xµd,n/σd,n
Qd,n(ex/σd,n)

Qd,n(1)
. (4.2.8)

It remains to determine an asymptotic formula for the coefficient Qd,n(u) for
certain values of u. So we use the following integral representation:

Qd,n(u) =
enr

2π

∫ π

−π
exp

(
nit+ F (u, r + it))

)
dt. (4.2.9)

From now on we set u = ear where a is within some fixed interval around
zero; a is always as such until the end of this section. We use the saddle point
method again and choose r = r(a, n) as the positive solution of the equation

n = −Fτ (ear, r). (4.2.10)

It is not hard to check that the function on the right hand side is also a
monotone decreasing function of r for r > 0. So the solution exists and is
unique. To obtain the asymptotic behaviour of the solution in terms of n we
need the next result.

Lemma 4.2.4. We have the estimates

Fτ (e
ar, r) = −π

2

6
r−2 +O(r−1 log 1

r
)

and
Fττ (e

ar, r) =
π2

3
r−3 +O(r−2 log 1

r
)

as r → 0+.

Proof. We start with Fτ (e
ar, r), which can be written as a difference of two

sums: ∑
λ

dλ

e(λ−a)dr − 1
−
∑
λ

λ

e(λ−a)r − 1
.

We estimate these sums separately. First we have∑
λ

λ

e(λ−a)r − 1
=
∑
λ

λ− a
e(λ−a)r − 1

+ a
∑
λ

1

e(λ−a)r − 1
,
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and hence the Mellin transform can be computed as

ζ(s)Γ(s) (ζ(s− 1, 1− a) + aζ(s, 1− a)) .

The dominant singularity is at s = 2 which is a simple pole, and the next
singularity is at s = 1 which is a double pole, therefore by Theorem 1.3.2 we
have ∑

λ

λ

e(λ−a)r − 1
=
π2

6
r−2 +O(r−1 log 1

r
)

as r → 0+. It also follows that

d
∑
λ

λ

e(λ−a)dr − 1
= O(d(dr)−2)

= O(d−1r−2).

Now we get from (4.2.10) that r is of order n−1/2, and by the assumption that
d�

√
n, dr is bounded below. Hence

d
∑
λ

λ

e(λ−a)dr − 1
= O(r−1)

and the first part of the lemma follows. The second part is proved analogously.

As direct corollary of this lemma, we find that the solution r admits the
asymptotic expansion

r =
π√
6n

(1 +O(n−1/2 log n))

as n → ∞, uniformly in a and d �
√
n. Then we proceed as before by

splitting the integral into three parts. The tails are small by Lemma 4.1.2 just
by repeating the argument we had before. So we shall only concentrate on the
central integral. For |t| ≤ r1+c, where again c is chosen to be within the range
(1/3, 1/2), we have

nit+ F (u, r + it) =F (u, r)− t2

2
Fττ (u, r)+

O
(
|t|3 max

|η|≤r1+c

∣∣∣Fτττ (u, r + iη)
∣∣∣).

Our arguments in the computation of the mean are still valid since r is of order
n−1/2, more precisely we still have the following bound on the error term

max
|η|≤r1+c

∣∣∣Fτττ (ear, r + iη)
∣∣∣� r−4.
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These observations are all we need to prove the asymptotic formula

Qd,n(ear) =
enrQ(ear, e−r)√

2πFττ (ear, r)
(1 +O(n−

(3c−1)
2 )) (4.2.11)

as n→∞, uniformly in a.

Now we use the latter asymptotic formula to derive an estimate of the
moment generating functionMn(x) for some fixed value of x. So let u = ex/σd,n ,
which can be written in the form ear, where a is a bounded function of d and
n. Before we begin our calculations, we call r0 the value of r when a = 0
(u = 1). Then we deduce from (4.2.11) that

Qd,n(ear)

Qd,n(1)
= exp(n(r − r0) + F (ear, r)− F (1, r0))(1 + o(1)) (4.2.12)

as n→∞ uniformly in a.

The rest of the section is to estimate the exponent of (4.2.12) and to apply
the result to estimate (4.2.8). We first need to estimate the difference |r− r0|.

Lemma 4.2.5. We have
|r − r0| �

log n

n

as n→∞, uniformly in a.

Proof. Since r = r(a) := r(a, d, n) is uniquely determined by a, d, and n, we
can apply implicit differentiation on (4.2.10) and we get

∂

∂a
r(a)

∣∣∣
a=a1

= −
∂
∂a
Fτ (e

ar(a1), r(a1))
∣∣∣
a=a1

∂
∂r
Fτ (ea1r, r)

∣∣∣
r=r(a1)

. (4.2.13)

We can compute the numerator:

∂

∂a
Fτ (e

ar, r)
∣∣∣
a=a1

= r

(∑
λ

λe−(λ−a)r

(1− e−(λ−a)r)2
− d2

∑
λ

λe−(λ−a)dr

(1− e−(λ−a)dr)2

)
.

By using the Mellin transform we can show that∑
λ

λe−(λ−a)r

(1− e−(λ−a)r)2
� r−2 log

1

r
.

For the second term, we know that dr � 1, therefore we have

d2
∑
λ

λe−(λ−a)dr

(1− e−(λ−a)dr)2
� r−2

∑
λ

(λdr)2e−λdr � r−2.
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The denominator can also be estimated in the same way and we have∣∣∣ ∂
∂r
Fτ (e

a1r, r)
∣∣∣
r=r(a1)

∣∣∣� r−3.

Therefore,

|r − r0| � sup
a1

∂

∂a
r(a)

∣∣∣
a=a1
� O(r2 log 1

r
)

which completes the proof.

We can approximate F (1, r) by means of the Taylor expansion around r0.
From Lemma 4.2.5, we get

F (1, r0) = F (1, r) + n(r − r0) +O(n−1/2 log2 n). (4.2.14)

Note here that Ftau(1, r0) = −n by our choice r0. Hence the exponent of
(4.2.12) is reduced to

F (ear, r)− F (1, r) +O(n−1/2 log2 n)

and this estimate is uniform in a. By the estimate in (4.1.11) we have

F (ear, r)− F (1, r) =a rG(r) +
∑
λ

(
− log

(
1− a

λ

)
− a

λ

)
+ f(1, dr)− f(eadr, dr) + adr · g(dr)︸ ︷︷ ︸

(at most of constant order)

+o(1).

Now we are going to use the latter equation to estimate (4.2.8). For a fixed
value of x, we define a and r such that r is the solution of

n = −Fτ (ear, r) and ar =
x

σd,n
.

This equation has a solution when x is within some appropriate fixed interval
containing zero since σd,n is of order

√
n. From the estimate (4.2.6) we have

xµd,n
σd,n

= a rG(r0) +O(r log 1
r
)

= a rG(r) +O(r log2 1
r
),

since,
|G(r)−G(r0)| � |Gτ (r)||r − r0| � log2 r.

Furthermore if we set ϑ := dr, which is a function of x, d and n, then we
finally have

Mn(x) ∼
∏
λ

e−
a
λ

1− a
λ

·
∏
λ

(1− e−(λ−a)ϑ

1− e−λϑ
)
eaϑ/(e

λϑ−1) (4.2.15)
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as n → ∞ and d �
√
n. Let us remark here that if dn−1/2 goes to infinity

then ϑ, which is a function of n, also goes to infinity, therefore

Mn(x)→
∏
λ

e−
a
λ

(1− a
λ
)

and a ∼
√

6

π
x

as n → ∞, which is the moment generating function of the Gumbel distribu-
tion. By Curtiss’s theorem [5], the normalised random variable Xn converges
in distribution to the Gumbel distribution as n → ∞ just like in the case of
unrestricted partitions (d = n + 1). This is not surprising since almost all
partitions are covered in this case.

If now dn−1/2 converges to some positive number b, then ϑ is asymptotically
constant, more precisely ϑ ∼ π√

6
b. These observations prove the second and

the third part of our main theorem.

4.3 The case d = o(n1/2)

We will follow the lines in the previous section though there are several differ-
ences where we have to use other techniques. Again we start by finding the
mean and variance.

Mean and variance

The technique used to compute the mean and variance in the previous section
can be copied here and so we choose r such that the equation

n = −Fτ (1, r) (4.3.1)

is satisfied.

Lemma 4.3.1. The unique positive solution r of the Equation (4.3.1) satisfies
the asymptotic formula

r = π

√
d− 1

6dn
(1 +O(n−1/2 log n)) (4.3.2)

as n→∞.

Proof. The solution r goes to 0 as n goes to infinity since the function on the
right hand side of (4.3.1) is continuous and decreasing on (0,∞) and it tends
to zero as r tends to infinity. So we need to estimate Fτ (1, r) for r going to
zero. We first claim that

|dfτ (1, dy)| ≤ 1

dy2
+O(y−1)
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as y → 0+ uniformly in d. Indeed,

|fτ (1, dy)| =
∑
λ

λ

eλdy − 1

=
∑
λ≤ 1

dy

λ

eλdy − 1
+

∑
1
dy
<λ≤ 2

dy

λ

eλdy − 1
+

∑
2
dy
<λ≤ 3

dy

λ

eλdy − 1
+ · · ·

≤ 1

d2y2
+

1

dy

∑
k≥1

k + 1

ek − 1
.

To get the last line from the second line, we used the inequality eλdy−1 ≥ λdy
for any λ. Putting this into (4.3.1) we get

n� r−2

since fτ (1, r) is of order r−2 uniformly in d, and so dr is a o(1). Now we can
use the Mellin transform to estimate the correct magnitude of fτ (1, dr) and
we get

fτ (1, dr) =
−π2

6d2
r−2 +O(d−1r−1 log 1

dr
),

and so
n =

π2(d− 1)

6d
r−2 +O(r−1 log 1

r
),

which implies (4.3.2).

The fact that dr goes to zero as n goes to infinity is going to be used
several times in everything that follows. We can also use the Mellin trans-
form technique to estimate the other involved functions G(r), H(r) and their
derivatives. Let us compute G(r) and H(r) as examples, we have

G(r) = g(r)− dg(dr),

and
g(y) =

log y−1

y
+
γ

y
+

1

4
+O(y)

as y → 0+, and so

G(r) =
log d

r
− d− 1

4
+O(d2r).

To estimate H(r), we have

H(r) = h(r)− d2h(dr)

where
h(y) =

π2

6
y−2 − 1

2
y−1 +O(1)
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as y → 0+. Therefore,

H(r) =
d− 1

2r
+O(d2).

The derivatives of G(r) and H(r) can also be estimated in this way and we
can deduce that

∂k

∂kτ
G(τ)

∣∣∣
τ=r

= Θ(r−(k+1) log d)

and
∂k

∂kτ
H(τ)

∣∣∣
τ=r

= Θ(dr−(k+1)).

Therefore, in a similar way as we used to prove the estimate (4.2.5), we have
the estimate of the mean

µd,n = G(r) +
Fτττ (1, r)Gτ (r)− Fττ (1, r)Gττ (r)

2F 2
ττ (1, r)

+O
(
r7c−3 log 1

r

)
(4.3.3)

where c is any constant in the range (1
3
, 1

2
). For the variance one needs to do

a bit more work than in the previous section but the idea is still the same.
So we start with Equation (4.1.7), but this time we need more terms in the
expansion of G2(r + it) and H(r + it). For |t| ≤ r1+c we have

G2(r+ it)−G2(r) = 2iGτ (r)G(r)t− (Gττ (r)G(r) +G2
τ (r))t

2 +O(r3c−2 log2 1
r
).

We also need estimate H(r+ it). The Mellin transform of the function h(y(1+
βi)) where y is a real positive variable is

1

(1 + βi)s
ζ(s− 1)Γ(s)ζ(s).

Therefore, by applying Theorem 1.3.2 we have

h(τ) =
π2

6
τ−2 − 1

2
τ−1 +O(1)

if τ = y+ yβi as y → 0+, uniformly for β in a fixed interval around 0. We can
also use a similar calculation to estimate h(d(r+it)). Putting all the estimates
together we get

|H(r + it)−H(r)| = O(drc−1).

Then we apply the integral to get

σ2
d,n + µ2

d,n =H(r) +G2(r)

+
2Fτττ (1, r)(Gτ (r)G(r))− 2Fττ (1, r)(Gττ (r)G(r) +G2

τ (r))

2F 2
ττ (1, r)

+O(drc−1 + r7c−4 log2 1
r
)
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Therefore, using Equation (4.3.3), we have

σ2
d,n = H(r)− G2

τ (r)

Fττ (1, r)
+O(drc−1 + r7c−4 log2 1

r
). (4.3.4)

Thus by choosing c such that c > 3/7, we can deduce from Equation (4.3.3)
and Equation (4.3.4) that

µd,n =
log d

r
+O(d) (4.3.5)

and

σ2
d,n =

(
d− 1

2
− 3d log2 d

π2(d− 1)

)
r−1 +O

(
drc + r7c−3 log2 1

r

r

)
. (4.3.6)

as n→∞.

Moment generating function

Again we take the normalized random variable

Xn =
$d,n − µd,n

σd,n
,

and we need to have an estimate of Qd,n(u) for u within an interval containing
1 to understand the limit behaviour of Xn. Let r = r(u, d, n) be the unique
positive solution of the equation

n = −Fτ (u, r). (4.3.7)

The right hand side of (4.3.7) is a decreasing function of r if r > 0, this follows
from the fact that

Fττ (u, r) =
∑
λ

λ2

∑d−1
j=0 j

2uje−λjr
∑d−1

j=0 u
je−λjr −

(∑d−1
j=0 ju

je−λjr
)2

(∑d−1
j=0 u

je−λjr
)2

is always positive by the Cauchy-Schwarz inequality. Furthermore, the solution
r goes to zero as n goes to infinity. We shall now find the asymptotic relation
between r and n.

Lemma 4.3.2. If u = ex/σd,n where x is a fixed real number then

Fτ (u, y) = Fτ (1, y)(1 +O(
√
d n−1/4)) (4.3.8)

as n→∞, uniformly for y > 0.
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Proof. We have

Fτ (u, y) =
∑
λ

∂

∂τ
log
( d−1∑
j=0

uje−λjτ
)∣∣∣

τ=y

=
∑
λ

−
∑d−1

j=0 jλu
je−λjy∑d−1

j=0 u
je−λjy

.

Since σd,n is of order
√
dn1/4, we have

uj = 1 +O(
√
dn−1/4),

uniformly for 0 ≤ j < d. Therefore we have

Fτ (u, y) = Fτ (1, y)(1 +O(
√
d n−1/4)),

where the error term is independent of y.

This lemma implies that the solution of (4.3.7) is also of order n−1/2. There-
fore, dr is tending to zero as n tends to infinity. Furthermore, we have

n = π2(d−1)
6d

r−2 +O(
√
dn3/4). (4.3.9)

We also need to estimate Fττ (u, r) and |Fτττ (u, r + it)| for |t| ≤ r1+c.

Lemma 4.3.3. If u = ex/σd,n where x is a fixed real number then we have the
estimates

Fττ (u, r) ∼
π2(d− 1)

3d
r−3 (4.3.10)

and
|Fτττ (u, r + it)| � r−4 (4.3.11)

uniformly for |t| ≤ r1+c.

Proof. Let
A := [ x

rσd,n
] and a := x

rσd,n
− A,

where [.] denotes the nearest integer. For λ ≤ A and for a fixed non-negative
integer k, there are positive constants K1 and K2 depending only on k such
that

K1d
k+1 ≤

d−1∑
j=0

jkuje−λjr ≤ K2d
k+1, (4.3.12)

since uj = 1+O(
√
dn−1/4) as before and λjr �

√
dn−1/4 as well. Now we split

the series Fττ (u, r) into two parts and we denote by S1 the sum over λ ≤ A
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and by S2 the sum over λ > A. We are going to estimate them separately: we
have

S1 =
∑
λ≤A

λ2

∑d−1
j=0 j

2uje−λjr
∑d−1

j=0 u
je−λjr −

(∑d−1
j=0 ju

je−λjr
)2

(∑d−1
j=0 u

je−λjr
)2

and so

S1 ≤
∑
λ≤A

λ2

∑d−1
j=0 j

2uje−λjr∑d−1
j=0 u

je−λjr
� A3d2 � n

by (4.3.12). For S2 we shift the summation so that we can write the sum as

S2 =
∑
λ≥1

(λ+ A)2

(
e−(λ−a)r

(1− e−(λ−a)r)2
− d2e−(λ−a)dr

(1− e−(λ−a)dr)2

)
.

Now we expand (λ + A)2. Then the term with λ2 is equal to Fττ (ear, r), and
the term with A2 is almost the same as H(r): the difference is that the sum is
taken over a slightly shifted sequence, where the shift a is at most 1

2
in absolute

value. Since the Dirichlet series of the shifted sequence is ζ(s, 1− a), the term
with A2 contributes only O(A2H(r)). The term with 2Aλ can be written as

2A
∑
λ

(λ− a)

(
e−(λ−a)r

(1− e−(λ−a)r)2
− d2e−(λ−a)dr

(1− e−(λ−a)dr)2

)
+O(AH(r)).

The sum can be estimated by using the Mellin transform method, and we have∑
λ

(λ− a)
e−(λ−a)r

(1− e−(λ−a)r)2
=

log 1
r

r2
+O(r−2)

and

d2
∑
λ

(λ− a)
e−(λ−a)dr

(1− e−(λ−a)dr)2
=

log 1
dr

r2
+O(r−2).

Putting everything together we get

Fττ (u, r) = Fττ (e
ar, r) +O

(
n5/4 log d√

d

)
,

and we can estimate Fττ (ear, r) again by Theorem 1.3.2 to get the estimate in
(4.3.10).

The estimate in (4.3.11) is done in a similar manner.

Lemma 4.3.3 and Lemma 4.1.2 allow us to derive the following asymptotic
formula by means of the saddle point method: if u = ex/σd,n for a fixed real
number x, then

Qd,n(u) ∼ 1√
2πFττ (u, r)

exp
(
nr + F (u, r)

)
(4.3.13)
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as n→∞. This immediately implies that

Qd,n(u)

Qd,n(1)
∼ exp

(
n(r − r0) + F (u, r)− F (1, r0)

)
(4.3.14)

as n→∞, since Fττ (u, r) and Fττ (1, r) are asymptotically equal uniformly in
u. It now remains to estimate the exponent of the right hand side of (4.3.14).
As always at this stage we let r0 be r(1, d, n).

Lemma 4.3.4. We have

F (u, r) = F (1, r) +
x

rσd,n
log d+

(d− 1)x2

4rσ2
d,n

+ o(1). (4.3.15)

Proof. Let v be x
σd,n

, so that u = ev. Moreover, we let

S ′1 =
∑
λ≤A

log
( d−1∑
j=0

ej(v−λr)
)

and S ′2 =
∑
λ>A

log
( d−1∑
j=0

ej(v−λr)
)
,

so that F (u, r) = S ′1 + S ′2. We estimate S ′1 and S ′2 separately. We know that
v is of order d−1/2r1/2 and that A = [v

r
]. Hence

S ′1 =
∑
λ≤A

log
(
d+

d(d− 1)

2
(v − λr) +O(d2r)

)
= A log d+

(d− 1)vA

2
− r(d− 1)A(A+ 1)

4
+O(

√
dr)

= A log d+
(d− 1)x2

2rσ2
d,n

− (d− 1)x2

4rσ2
d,n

+O(
√
dr)

= A log d+
(d− 1)x2

4rσ2
d,n

+O(
√
dr).

To estimate S ′2 we use the same trick as in the proof of Lemma 4.3.3 by shifting
the sum and we get

S ′2 − F (1, r) = F (ear, r)− F (1, r)

= f(ear, r)− f(1, r)− (f(eadr, dr)− f(1, dr))

= a log d+ o(1),

where a = v
r
− A. Here we used Equation (4.1.11) to derive the last line from

the second line. Combining the two, we get

F (u, r) = S ′1 + S ′2 = F (1, r) + (A+ a) log d+
(d− 1)x2

4rσ2
d,n

+ o(1)

= F (1, r) +
v

r
log d+

(d− 1)x2

4rσ2
d,n

+ o(1)

which completes the proof.
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On the other hand, we have

n(r − r0)− F (1, r0) = −F (1, r) + Fττ (1, r0)
(r − r0)2

2
+O(r−4

0 |r − r0|3)

since Ftau(1, r) = −n by definition, so we need an estimate of the difference
|r − r0|.

Lemma 4.3.5. We have

r − r0 ∼ (u− 1)
3d log d

π2(d− 1)
r0 (4.3.16)

if d is fixed, and

|r − r0| = O
( log d√

d
n−3/4

)
. (4.3.17)

if d goes to infinity with n.

Proof. Let us assume first that d goes to infinity with n. As in the proof of
Lemma 4.2.5 we use implicit differentiation and we get

∂

∂u
r = −

∂
∂u
Fτ (u, r)

∂
∂r
Fτ (u, r)

. (4.3.18)

Then we apply our routine calculation to estimate the numerator and the
denominator. For the numerator we split the sum at A = [ log u

r
], and the first

sum is∑
λ≤A

λ

u

∑d−1
j=0 j

2uje−λjr
∑d−1

j=0 u
je−λjr −

∑d−1
j=0 ju

je−λjr
∑d−1

j=0 ju
je−λjr(∑d−1

j=0 u
je−λjr

)2

which is of order O(A2d2) by the same argument that we used in Lemma 4.3.3.
After shifting the summation, the sum over λ > A can be written as∑

λ

λ+ A

u

(
e−(λ−a)r

(1− e−(λ−a)r)2
− d2e−(λ−a)dr

(1− e−(λ−a)dr)2

)
.

Here we can see that this sum can be Mellin-transformed, and we can use
Theorem 1.3.2 to prove that this sum is a O(r−2 log d). We have already seen
that the denominator admits the asymptotic estimate

Fττ (u, r)� r−3.

These completes the case where d tends to infinity since

|r − r0| � |u− 1|(r log d)� r log d

σd,n
.
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If d is fixed then we have from Equation (4.3.7) that

−n = Fτ (u, r) = Fτ (1, r0)

which implies that

Fτ (u, r)− Fτ (1, r) = −(Fτ (1, r)− Fτ (1, r0)). (4.3.19)

We estimate both sides of Equation (4.3.19). The right hand side is easier,
and we get

−(Fτ (1, r)− Fτ (1, r0)) = −Fττ (1, r0)(r − r0) +O(r−4
0 |r − r0|2).

To estimate the left hand side, note that for any 0 ≤ j < d

uj = 1 + j(u− 1) +O(dr),

and so for any positive integer λ we have∑d−1
j=0 ju

je−λjr∑d−1
j=0 u

je−λjr
−
∑d−1

j=0 je
−λjr∑d−1

j=0 e
−λjr

=

∑d−1
j=0 ju

je−λjr
∑d−1

j=0 e
−λjr −

∑d−1
j=0 je

−λjr∑d−1
j=0 u

je−λjr(∑d−1
j=0 e

−λjr
)2 (

1 +O(
√
dr)
)

= (u− 1)

∑d−1
j=0 j

2e−λjr
∑d−1

j=0 e
−λjr −

(∑d−1
j=0 je

−λjr
)2

(∑d−1
j=0 e

−λjr
)2

(
1 +O(

√
dr)
)

+O
(
dr

∑d−1
j=0 je

−λjr∑d−1
j=0 e

−λjr

)
.

Summing over all positive integers we have

Fτ (u, r)− Fτ (1, r) = (u− 1)Fuτ (1, r)

+O
(√

dr|u− 1||Fuτ (1, r)|+ dr|Fτ (1, r)|
)
.

Since r and r0 are asymptotically equal, we have the asymptotic formulas

u− 1 ∼ x

σd,n
,

Fτ (1, r) ∼
−π2(d− 1)

6d
r−2,

Fuτ (1, r) = Gτ (r) ∼ −(log d)r−2,

Fττ (1, r0) ∼ π2(d− 1)

3d
r−3.
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Finally we obtain

r − r0 =
−(u− 1)Fuτ (1, r)

Fττ (1, r0)
+O(r2 + r−1|r − r0|2)

This gives the asymptotic formula in the statement of the lemma since r is
asymptotically equal to r0.

We deduce that

n(r − r0) + F (1, r)− F (1, r0) = Fττ (1, r0)
(r − r0)2

2
+O(d−3/2(log d)3

√
r)

=
3d(log d)2

π2(d− 1)
× x2

2r0σ2
d,n

+ o(1)

and so the exponent the right hand side of (4.3.14) can be estimated as follows:

n(r − r0) + F (u, r)− F (1, r0) =
log d

r

x

σd,n

+
(d− 1

2
+

3d(log d)2

π2(d− 1)

) x2

2r0σ2
d,n

+ o(1).

Hence, by using the estimates for µd,n and σ2
d,n in equations (4.3.5) and (4.3.6)

respectively (note that the r in the formula is now r0), we have, for a fixed
real number x,

Md,n(x) = E
(
e
x($d,n−µd,n)

σd,n

)
= e−xµd,n/σd,n

Qd,n(ex/σd,n)

Qd,n(1)

= exp
(−x
σd,n

( 1

r0

− 1

r

)
log d

+
(d− 1

2
+

3d(log d)2

π2(d− 1)

) x2

2r0σ2
d,n

+ o(1)
)

= exp
( x2

2r0σ2
d,n

(
d− 1

2
− 3d(log d)2

π2(d− 1)

)
+ o(1)

)
= e

x2

2 (1 + o(1))

as n → ∞. This and Curtiss’s theorem in [5] prove that if d = o(n1/2) then
we have convergence in law to the Gaussian distribution. That completes the
proof of our main theorem.
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Appendix A

Asymptotic behaviour of a
distribution function in the prime
partition problem

In Chapter 2 we mentioned a result by Haselgrove and Temperley [13] that the
distribution of the number of summands in a random prime partition converges
to some distribution whose moment generating function is closely related to
the function:

ϕ(s) =
∏
p

(1− s/p)−1e−s/p.

In the same paper Haselgrove and Temperley mentioned, without proof, a
tail estimate of the limiting distribution. So the purpose the analysis in this
appendix is to prove their claim. For that we need to consider the logarithm

Ψ(s) = logϕ(s) =
∑
p

(− log(1− s/p)− s/p) ,

and the inverse Laplace transform

f(x) =
1

2iπ

∫ c+i∞

c−i∞
ϕ(s)e−sxds

where c is a real number between 0 and 1. Note that the function f is the
density function of a random variable whose moment generating function is ϕ.

The following lemma shows the exponential decay of the function ϕ(s)
along a vertical line:

Lemma A.0.6. For any fixed real number a, there is a constant c1 > 0 such
that

|ϕ(a+ it)| � e−c1|t|
1−ε

as |t| → ∞, for any ε > 0. Furthermore, this estimate is uniform if a is
contained in a bounded closed interval.
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Proof. First, let us consider a = 0, then

Re(Ψ(it)) = −1

2

∑
p

log(1 + t2/p2)

≤ −1

2

∑
p≤|t|

log(1 + t2/p2)

≤ − C|t|
log |t|

For some constant C > 0. Now if a 6= 0, then

Re(Ψ(a+ it)) = −1

2

∑
p6=a

log(1 + t2/(p− a)2) + g(t, a) (A.0.1)

where

g(t, a) =
∑
p6=a

− log |1− a/p| − a/p+ (− log |t/a| − 1)µ(a),

and µ(a) = 1 if a is a prime and zero otherwise. Then we can see that the first
term on the right hand side of (A.0.1) is the dominant term and it is of order
at least |t|/(log |t|) as t→∞ .

The next lemma provides an asymptotic formula for Ψ(−r) as r → +∞
along the real axis.

Lemma A.0.7. There are two absolute positive constants c1 and c2 such that

c1
r

log r
≤ r

∑
p

(
1

p
− 1

p+ r

)
−Ψ(−r) ≤ c2

r

log r

for sufficiently large r > 0. Furthermore∑
p

(
1

p
− 1

p+ r

)
= log log r +B1 + o(1)

as r →∞, where B1 is Mertens’s constant.

Proof. Let us prove the second estimate first. We have∑
p

(
1

p
− 1

p+ r

)
=

∑
p≤r
√

log r

1

p
−

∑
p≤r
√

log r

1

p+ r

−
∑

p>r
√

log r

1

p

(
1

1 + r/p
− 1

)
.
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The second sum on the right hand side is a o(1). For the third sum, the
absolute value of the term in brackets is less than r/p so the sum is a o(1).
The asymptotic formula for the first sum is a well known sum of the reciprocals
of the primes, and proves the second estimate. For the first inequality, let pn
denote the nth prime number and consider the sequence of functions

un(r) = log

(
1 +

r

pn

)
− r

pn + r
.

Then the function that we want to estimate is∑
n≥1

un(r) =
∑
n≥1

n(un(r)− un+1(r)) (A.0.2)

= r2
∑
n≥1

∫ pn+1

pn

n

t(t+ r)2
dt (A.0.3)

= r2

∫ ∞
0

π(t)

t(t+ r)2
dt (A.0.4)

where π(t) is the prime-counting function. To investigate the last integral, we
proceed as follows: by the prime number theorem, for ε > 0 there exits some
tε > 2 such that for t > tε we have

(1− ε)t/ log t ≤ π(t) ≤ (1 + ε)t/ log t (A.0.5)

Then we split the integral∫ ∞
0

π(t)

t(t+ r)2
dt =

∫ tε

0

π(t)

t(t+ r)2
dt+

∫ ∞
tε

π(t)

t(t+ r)2
dt.

The first integral is a O(r−2). For the second integral, we can bound π(t) from
above and below as is (A.0.5), and make the change of variable t = ru. Now
we need to estimate the integral∫ ∞

tε

1

(t+ r)2 log t
dt =

1

r

∫ ∞
tε
r

1

(1 + u)2 log(ru)
du.

We can also split the integral on the right hand side:∫ ∞
tε
r

1

(1 + u)2 log(ru)
du =

∫ 1

tε
r

1

(1 + u)2 log(ru)
du+

∫ ∞
1

1

(1 + u)2 log(ru)
du.

(A.0.6)

Now we claim that for fixed ε,∫ 1

tε
r

1

(1 + u)2 log(ru)
du ∼ 1

2 log r
(A.0.7)
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as r →∞. Indeed∫ 1

tε
r

1

(1 + u)2 log(ru)
du ≥ 1

log r

∫ 1

tε
r

1

(1 + u)2
du =

1

2 log r
+O((r log r)−1).

For the lower bound, we take an arbitrary ε1 between 0 and 1 then∫ 1

tε
r

1

(1 + u)2 log(ru)
du ≤

∫ 1

tε
rε1

1

(1 + u)2 log(ru)
du+

∫ tε
rε1

tε
r

1

(1 + u)2 log(ru)
du

≤ 1

2(1− ε1) log r + log tε
+O(r−ε1)

which proves the claim in (A.0.7).

For the second integral on the right hand side of (A.0.6), we take an arbi-
trary δ between 0 and 1, then we have∫ rδ

1

1

(1 + u)2 log(ru)
du ≤

∫ ∞
1

1

(1 + u)2 log(ru)
du ≤ 1

log r

∫ ∞
1

1

(1 + u)2
du,

the upper bound is asymptotically equal to (2 log r)−1, and also we have for
the lower bound∫ rδ

1

1

(1 + u)2 log(ru)
du ≥ 1

(1 + δ) log r

∫ rδ

1

1

(1 + u)2
du,

which completes the proof.

Note that Lemma A.0.7 implies the following asymptotic formula:

Ψ(−r) = r log log r +B1r + o(r) (A.0.8)

as r → +∞. This means that ϕ(−r) grows very rapidly in the same way as
r → +∞. We can also estimate the behaviour of ϕ(r) when r is not too close
to a prime, that is if there is a constant a > 0 such that |r − p| > a for all
primes p. Note that

ϕ(r)ϕ(−r) =
∏
p

(1− r2/p2)−1 (A.0.9)

and that∑
p

log |1− r2/p2| =
∑
p≤2r

log |1− r2/p2|+
∑
p>2r

log |1− r2/p2|.

The first sum on the right hand side is a O(r), since the maximum value of
the summands corresponds to either p small or p close to r, but with our
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assumption on r, we know that | log |1 − r2/p2|| is at most O(log r), for all p
in that range. For the second sum i.e., r > 2p, since the function | log(1− t)|
is a convex function for 0 < t < 1, and since r2/p2 < 1/4, we have

| log(1− r2/p2)| � r2/p2

uniformly for p > 2r. Thus∣∣∣∑
p>2r

log |1− r2/p2|
∣∣∣� r2

∑
p>2r

1

p2
= O(r).

Therefore, from equations (A.0.9) and (A.0.8) we have

Ψ(r) = −r log log r +O(r)

as r → +∞, which implies that ϕ(r) goes rapidly to 0, asymptotically like
(log r)−r.

Now we are going to look at the asymptotic behaviour of f(x) for large x.

Lemma A.0.8. The following equality is true for any x > 0:

f(x) = −
∑
p

αpe
−px (A.0.10)

where αp is the residue of ϕ(s) at s = p.

Proof. We basically shift the path of integration in the definition of f to the
right to prove the this result. More precisely, by the Cauchy residue theorem
we have

f(x)− 1

2πi

∫ 2k+i∞

2k−i∞
ϕ(s)e−sxds = −

∑
p<2k

αpe
−px (A.0.11)

for any positive integer k > 1. Since the series on the right hand side of
(A.0.10) is convergent for any x, we need to prove that the second term on the
left hand side of (A.0.11) tends to zero as k tends to infinity. As in the proof
of Lemma A.0.6 we can show

|ϕ(2k + it)| ≤ e−c(π(2k+|t|)−π(2k−|t|))|ϕ(2k)|

for some constant c > 0. Again by the prime number theorem (to bound
π(2k + |t|)− π(2k − |t|) from below) we obtain∣∣∣ ∫ 2k+i∞

2k−i∞
ϕ(s)e−sxds

∣∣∣� e−2kx|ϕ(2k)|
∫ ∞
−∞

e−c(π(2k+|t|)−π(2k−|t|))dt

� kMe−2kx|ϕ(2k)|

whereM is a constant, since the integral on the right hand side of the first line
contributes at most a polynomial in k. Hence, we obtain the required equality
by letting k →∞.
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In particular, f(x) behaves like e−2x as x → +∞. Now we look at the
behaviour of f(x) for negative x, by the change of variable s = −r(1− it) we
have

f(x) =
r

2π

∫ +∞

−∞
eΨ(−r(1−it))+r(1−it)xdt

for any r > 0. From this formula we will be able to prove the following:

Proposition A.0.9. For x < 0 we have the asymptotic formula

f(x) =
exr+Ψ(−r)√
2πΨ′′(−r)

(
1 +O(r−2/7)

)
,

where r = r(x) > 0 is the unique solution of the equation

x = Ψ′(−r) =
∑
p

(
1

p+ r
− 1

p

)
.

Proof. Let r > 0 be as it is defined in the above statement. Note that r = r(x)
tends to infinity as x → −∞. Also let t0 = r−β where 1/3 < β < 1/2. Now
we can split the integral: first, let −t0 < t < t0. In this range we have the
expansion

Ψ(−r(1− it)) = Ψ(−r) + riΨ′(−r)t− r2Ψ′′(−r)t
2

2
+O(r3|Ψ′′′(−r)|t30),

so

Ψ(−r(1− it)) + r(1− it)x = Ψ(−r) + rx− r2Ψ′′(−r)t
2

2
+O(r3|Ψ′′′(−r)|t30).

We now investigate the behaviour of the harmonic sums that occur in the
derivatives of Ψ. For the second derivative , we only need a lower bound

Ψ′′(−r) =
∑
p

1

(p+ r)2

= 2

∫ ∞
0

π(t)

(t+ r)3
dt.

Then, just as we did in proof of Lemma A.0.7 we get the following lower bound

Ψ′′(−r)� 1

r log r
.

We can do the same thing for the third derivative but this time we need an
upper bound. We have

Ψ′′′(−r) =
∑
p

2

(p+ r)3

= 6

∫ ∞
0

π(t)

(t+ r)4
dt,
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and one can show that it is a O(1/(r2 log r)). We deduce that∫ r−β

−r−β
eΨ(−r(1−it))+r(1−it)xdt =

√
2πeΨ(−r)+rx√
r2Ψ′′(−r)

(
1 +O(r1−3β)

)
.

For the tails, note that if |t| ≥ r−β then

|ϕ(−r(1− it))|
|ϕ(−r)|

= exp

(
−1

2

∑
p

log(1 + (rt)2/(p+ r)2)

)
,

by the same calculation as in the proof of Lemma A.0.6. Therefore,

|ϕ(−r(1− it))|
|ϕ(−r)|

≤ exp

(
−1

2

∑
p

log(1 + r2−2β/(p+ r)2)

)
� exp(−c1r

1−2β−ε)

for some constant c1 > 0 and for any ε > 0. This proves that the tails go to
zero more quickly than any power of r−1.

As a corollary we deduce the following estimate for f(x) for negative x.

Corollary A.0.10. We have

f(x) = e−e
e−(x+B1+o(1))

as x→ −∞.

Proof. Let us assume the notation we used in the proof of Proposition A.0.9.
So we have

Ψ(−r) + xr =
∑
p

(
− log

(
1 +

r

p

)
+

r

p+ r

)
.

By the calculation we have already done in the proof of Lemma A.0.7, we get

Ψ(−r) + xr = −r2

∫ ∞
0

π(t)

t(t+ r)2
dt = −Θ

(
r

log r

)
.

Furthermore, by Lemma A.0.7 we have

x = − log log(r)−B1 + o(1).

Hence,
r = ee

−(x+B1+o(1)) ,

which completes the proof.
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