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SUMMARY 

Yeast species differ remarkably in their ability to degrade extracellular dicarboxylic acids and 

to utilise them as their only source of carbon.  The fission yeast Schizosaccharomyces pombe 

effectively degrades L-malate, but only in the presence of an assimilable carbon source.  In 

contrast, the yeast Saccharomyces cerevisiae is unable to effectively degrade L-malate, which 

is ascribed to the slow uptake of L-malate by diffusion.  In contrast, the yeast Candida utilis 

can utilise L-malate as the only source of carbon and energy, but this is subject to substrate 

induction and catabolite repression.  Very little research has been done on a molecular level in 

C. utilis and only a few of its genes have been studied.   

In this study, we have shown that the yeast C. utilis effectively degraded extracellular 

L-malate and fumarate, but in the presence of glucose or other assimilable carbon sources, the 

transport and degradation of these dicarboxylic acids was repressed.  The transport of both 

dicarboxylic acids was shown to be strongly inducible by either L-malate or fumarate and 

kinetic studies suggest that the same transporter protein transports the two dicarboxylic acids.  

In contrast, S. pombe effectively degraded extracellular L-malate, but not fumarate, only in the 

presence of glucose or other assimilable carbon sources.  The S. pombe malate transporter was 

unable to transport fumarate, although fumarate inhibited the uptake of L-malate. 

In order to clone the C. utilis dicarboxylic acid transporter, a cDNA library from C. utilis was 

constructed using a number of strategies to ensure representativeness and high transformation 

frequencies.  The cDNA library was transformed in a S. cerevisiae strain carrying a plasmid 

containing the S. pombe malic enzyme gene (mae2) to allow screening for a malate-degrading 

S. cerevisiae clone.  However, no positive clones that would indicate the successful cloning of 

the C. utilis malate transporter were obtained. 

The C. utilis malic enzyme gene, CuME, was subsequently isolated from the cDNA library 

based on conserved sequence homologies with the genes of S. cerevisiae and S. pombe, and 

characterised on a molecular and biochemical level.  Sequence analysis revealed an open 

reading frame of 1926 bp, encoding a 641 amino acid polypeptide with a predicted molecular 

weight of 70.2 kDa.  The optimum temperature for the C. utilis malic enzyme was 52°C and 

the enzyme was stable at 50°C for 2 hours.  The inferred amino acid sequence showed 

significant homology with the malic enzymes of S. pombe and S. cerevisiae.  Expression of 

the CuME gene is subject to glucose repression and substrate induction, as was observed for 
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the dicarboxylic acid transporter from C. utilis.  The CuME gene was successfully co-

expressed with the S. pombe malate permease gene (mae1), resulting in a recombinant strain 

of S. cerevisiae able to effectively degrade L-malate.   
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OPSOMMING 

Daar is ’n merkwaardige verskil in die vermoë van verskillende gisspesies om ektrasellulêre 

dikarboksielsure af te breek en dit as enigste bron van koolstof te benut.  Die splitsingsgis 

Schizosaccharomyces pombe kan L-malaat effektief afbreek, maar slegs in die 

teenwoordigheid van ’n ander benutbare koolstofbron.  In teenstelling hiermee is dit vir die 

gis Saccharomyces cerevisiae onmoontlik om L-malaat effektief af te breek en te benut, wat 

hoofsaaklik toegeskryf kan word aan die stadige opname van L-malaat deur middel van 

diffusie.  Die gis Candida utilis kan egter L-malaat as die enigste bron van koolstof en energie 

benut, maar dit is onderhewig aan substraat-induksie en kataboliet onderdrukking.  Baie min 

navorsing op molekulêre vlak is tot hede in C. utilis uitgevoer en slegs ’n paar gene in hierdie 

gis is al bestudeer.   

In hierdie studie het ons aangetoon dat die gis C. utilis L-malaat en fumaraat effektief afbreek, 

maar dat glukose of ander benutbare koolstofbronne die opname en afbraak van hierdie 

dikarboksielsure onderdruk.  Die opname van beide dikarboksielsure is sterk induseerbaar 

deur L-malaat óf fumaraat, terwyl kinetiese studies toon dat beide dikarboksielsure deur 

dieselfde transporter-proteïen vervoer word.  In teenstelling hiermee kan S. pombe 

ekstrasellulêre L-malaat, maar nie fumaraat nie, in die teenwoordigheid van glukose of ’n 

ander benutbare koolstofbron effektief afbreek.  Die S. pombe L-malaat transporter was nie in 

staat om fumaraat te vervoer nie, alhoewel fumaraat die opname van L-malaat onderdruk het. 

Ten einde die dikarboksielsuur transporter van C. utilis te kloneer, is verskeie strategieë 

gevolg ten einde ’n cDNA-biblioteek van C. utilis te konstrueer wat verteenwoordiging en 

hoë transformasie-frekwensies kan verseker.   Die cDNA-biblioteek is getransformeer in ’n 

S. cerevisiae ras wat die S. pombe malaatensiem geen (mae2) bevat om die sifting van ’n 

S. cerevisiae kloon wat malaat effektief kan afbreek, moontlik te maak.  Geen positiewe klone 

wat dui op die klonering van die C. utilis malaat transporter kon egter gevind word nie. 

Die C. utilis malaatensiem geen, CuME, is vervolgens van uit die cDNA biblioteek geïsoleer 

deur van gekonserveerde DNA-homologie met S. cerevisiae en S. pombe gebruik te maak, en 

op molekulêre en biochemiese vlak gekarakteriseer.  DNA-volgordebepaling het ’n 

oopleesraam van 1926 bp onthul, wat kodeer vir ’n 641 aminosuur polipeptied met ’n 

verwagte molekulêre gewig van 70.2 kDa.  Die optimale temperatuur van die C. utilis 

malaatensiem was 52˚C en die ensiem was vir 2 ure stabiel by 50˚C.  Die afgeleide 
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aminosuurvolgorde het beduidende homologie met die malaatensieme van S. pombe en 

S. cerevisiae getoon.  Die CuME geen is suksesvol saam met die S. pombe malaat permease 

geen (mae1) uitgedruk om ’n rekombinante S. cerevisiae ras te genereer wat in staat is om 

L-malaat effektief af te breek. 
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GENERAL INTRODUCTION AND PROJECT AIMS 

1.1    INTRODUCTION 

The metabolism and degradation of extracellular dicarboxylic acids differ remarkably 

between yeast species.  Based upon their ability to utilise tricarboxylic acid (TCA) cycle 

intermediates such as L-malate, yeast species are classified into two groups:  K(+) yeasts 

utilise one or more TCA cycle intermediates as sole carbon and energy source, while K(-) 

yeasts cannot utilise TCA cycle intermediates as sole carbon and energy source.  The K(-) 

group includes yeasts such as Saccharomyces cerevisiae and Schizosaccharomyces pombe 

(Kuczynski and Radler, 1982; Baranowski and Radler, 1984).  The yeast S. cerevisiae cannot 

effectively degrade L-malate, which is ascribed to the slow uptake of L-malate by diffusion 

(Baranowski and Radler, 1984; Ansanay et al., 1996; Volschenk et al., 1997a,b) and the low 

substrate affinity of its malic enzyme (Km of 50 mM) (Fuck et al., 1973).  Furthermore, Boles 

et al. (1998) reported that the S. cerevisiae malic enzyme gene (MAE1) is expressed at 

relatively low, but constitutive levels.   

The fission yeast S. pombe effectively degrades L-malate, but only in the presence of an 

assimilable carbon source (Taillandier and Strehaiano, 1991).  Cells of S. pombe actively 

transport L-malate via a H+-symport system (Sousa et al., 1992) provided by the malate 

permease encoded by the mae1 gene (Grobler et al., 1995).  L-Malate is decarboxylated to 

pyruvate and CO2 by means of a cytosolic malic enzyme encoded by the mae2 gene (Viljoen 

et al., 1994).  Under fermentative conditions, pyruvate is further metabolised to ethanol and 

CO2 (Osothilp and Subden, 1986a), resulting in the so-called malo-ethanolic fermentation.  

The genes encoding the S. pombe L-malate transporter (mae1) (Grobler et al., 1995) and the 

malic enzyme (mae2) (Viljoen et al., 1994) have been cloned and characterised on a 

molecular level.   

Previous reports indicated that the active transport of L-malate by S. pombe is competitively 

inhibited by D-malate, succinate, fumarate, oxaloacetate and α-ketoglutarate, suggesting that a 

general dicarboxylic acid transporter may exist in this yeast (Sousa et al., 1992).  However, 

Grobler et al. (1995) found that α-ketoglutarate did not inhibit the transport of L-malate by 

S. pombe and Saayman et al. (2000) showed that fumarate was not transported by S. pombe.   

General Introduction and Project Aims  
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In contrast to K(-) yeasts, the K(+) yeast Candida utilis can utilise L-malate as the only carbon 

source, but this is subject to substrate induction and catabolite repression.  Preliminary results 

indicated a marked difference between the S. pombe and C. utilis malate transporter proteins, 

not only with regard to their regulation, but also their substrate affinity (Saayman et al., 

2000).  Whereas S. pombe only transports L-malate, the C. utilis enzyme is able to transport 

both L-malate and fumarate.  The differences in L-malate metabolism observed between these 

yeast species suggest unique regulatory mechanisms involved in the regulation of L-malate 

metabolism in C. utilis that required further investigation.  However, relatively little is known 

about carbon metabolism in C. utilis, and even less on the metabolism of dicarboxylic acids.   

The general aim of this study was to better understand the regulatory mechanisms involved in 

the differential utilisation of L-malate and its physiological relevance in C. utilis, as compared 

to S. pombe and S. cerevisiae.  Cloning of the C. utilis transporter and/or malic enzyme genes 

will contribute to our understanding of malate metabolism in C. utilis.  It may also provide us 

with an alternative dicarboxylic acid transporter and/or malic enzyme for heterologous 

expression of the appropriate genes for commercial applications.  

1.2    AIMS OF THIS STUDY 

The specific objectives and approaches were the following: 

1. Comparing various yeast species for their ability to transport dicarboxylic acids, with a 

specific focus on dicarboxylic acid transport in S. pombe and C. utilis. 

2. Constructing a cDNA library from C. utilis to enable cloning and characterisation of the 

genes encoding the C. utilis dicarboxylic acid transporter and malic enzyme. 

3. Investigate possible industrial applications of the C. utilis dicarboxylic acid transporter 

and malic enzyme, such as:  

a. Co-expression of the C. utilis dicarboxylic acid transporter and high copy 

numbers of the S. cerevisiae fumarase gene (FUM1) in S. cerevisiae. 

b. Co-expression of the C. utilis malic enzyme (CuME) and the S. pombe malate 

transporter gene (mae1) in S. cerevisiae. 

General Introduction and Project Aims  
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This dissertation is organised as a number of chapters covering the current literature on the 

classification and industrial applications of the yeast C. utilis (Chapter 2), carbon metabolism 

in C. utilis (Chapter 3), mechanisms for transport of glucose and dicarboxylic acids in 

C. utilis, S. pombe and S. cerevisiae (Chapter 4) and the general metabolism of L-malate by 

yeast (Chapter 5).  Chapter 6 describes the comparative study on dicarboxylic acid transport 

in different yeasts.  The construction of a cDNA library is described in Chapter 7, together 

with the strategy envisaged for co-expression of the S. cerevisiae FUM1 gene.  The cloning 

and regulatory studies on the C. utilis malic enzyme gene are discussed in Chapter 8, as well 

as the co-expression of the C. utilis malic enzyme (CuME) and the S. pombe malate 

transporter gene (mae1) in S. cerevisiae.  Final conclusions are discussed in Chapter 9, 

followed by a combined reference list for all the chapters. 

Some of the results discussed in this dissertation have been presented in parts at various local 

and international conferences, i.e.  

1. Saayman, M., Viljoen, M., Coton, E.P.N. and H.J.J. van Vuuren. 1998. A comparative study on 
the transport of dicarboxylic acids in the yeasts Candida utilis and Schizosaccharomyces pombe. 
2nd International Congress of the Federation of African Societies of Biochemistry and Molecular 
Biology & 15th Congress of the South African Society of Biochemistry and Molecular Biology, 
Potchefstroom. 

2. Saayman, M., Viljoen, M., Coton, E.P.N. and H.J.J. van Vuuren. 1998. Transport of dicarboxylic 
acids in yeast. The South African Society of Microbiology 10th Biennial Congress, Durban. 

3. Viljoen, M., Saayman, M., van der Merwe, M., Young, R.A. and H.J.J. van Vuuren. 1998. 
Regulation of malate degradation in the yeast Schizosaccharomyces pombe. The South African 
Society of Microbiology 10th Biennial Congress, Durban.  

4. Saayman, M., van Vuuren, H.J.J. and M. Viljoen. 1999. Differential transport of malate and 
fumarate in Candida utilis and Schizosaccharomyces pombe. 19th International Conference on 
Yeast Genetics and Molecular Biology, Italy. 

5. Saayman, M., van Zyl, W.H. and M. Bloom. 2002. Cloning of the Candida utilis dicarboxylic 
acid transporter. The South African Society of Microbiology 12th Biennial Congress, 
Bloemfontein.  

6. Saayman, M., van Zyl, W.H. and M. Bloom. 2004. Regulation of dicarboxylic acid metabolism in 
the yeast Candida utilis. The South African Society of Microbiology 13th Biennial Congress, 
Stellenbosch.  

Chapter 6 has been published as a peer reviewed research article (Saayman et al., 2000), 

while Chapter 8 will be submitted for publication in due course: 

1. Saayman, M., Van Vuuren, H.J.J., Van Zyl, W.H. and M. Viljoen-Bloom. 2000. Differential 
uptake of fumarate by Candida utilis and Schizosaccharomyces pombe. Appl. Microbiol. 
Biotechnol. 54: 792-798. 
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2. Saayman, M., Van Zyl, W.H. and M. Viljoen-Bloom.  Cloning, characterisation and heterologous 
expression of the Candida utilis malic enzyme gene. (to be submitted). 
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AN INTRODUCTION TO THE YEAST CANDIDA UTILIS  

2.1    INTRODUCTION 

‘Yeast’ and Saccharomyces cerevisiae are frequently used as synonymous terms.  However, 

S. cerevisiae is rather exceptional since it is one of the few types of yeast that are able to grow 

anaerobically (Visser et al., 1990).  During aerobic growth, this yeast also shows an unusual 

behaviour.  When grown aerobically at a low growth rate, under sugar limitation, cultures 

tend to spontaneously synchronise their cell cycle (Parulekar et al., 1986), which complicates 

the analysis of growth kinetics. 

Molecular biology techniques have allowed the rapid advancement of our understanding of 

many non-Saccharomyces yeasts.  In the past decade, yeasts other than S. cerevisiae have 

therefore gained interest as hosts for the industrial expression of heterologous genes.  

Examples are methanol-utilising yeasts such as Hansenula polymorpha and Picha pastoris, 

and the lactose-utilising species Kluyveromyces lactis and Kluyveromyces marxianus 

(Romanos et al., 1992).  Several arguments have been put forward to use ‘non-

Saccharomyces’ yeasts as hosts for heterologous gene expression, including broader substrate 

specificity, availability of strong inducible promoters, absence of aerobic alcoholic 

fermentation (i.e. the absence of the Crabtree effect), etc.  These yeasts possess qualities of 

both academic and industrial interest, including the ability to use a broad range of carbon 

sources.   

One of these yeasts, Candida utilis, is universally recognised as an important experimental 

model system.  Owing to its high protein content (72%, w/w), it is considered to be a fodder 

yeast and a potential microbial source of protein for animal feed as well as for human 

consumption.  It has been used industrially for the past 70 years in the production of single 

cell protein (SCP) for food and fodder, waste treatment, and the production of fine chemicals 

used as flavor enhancers (Klein and Favreau, 1995).  It has been approved for use as a 

foodstuff by the US Food and Drug Administration (Boze et al., 1992). 

An Introduction to the Yeast Candida utilis   
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2.2    THE GENUS CANDIDA 

Meyer et al. (1984) described the genus Candida "…as an unnatural group of yeasts", 

containing the wayward species of ascomycetous and basidiomycetous yeast, with species 

heterogeneity in DNA base composition ranging from 30% to 66% G + C content and a wide 

diversity of physiological properties.  Meyer et al. further commented: 

“The taxonomy boundaries of Candida still remain broad and essentially any asexual 

yeasts that does not fit the criteria of some other genus will find its way into Candida. 

In particular, Candida acts as a depository for all the asexual yeasts with ascomycetous 

affinity except those with acetic acid production, bipolar budding on a broad base, 

triangular cells, blastoconidia formed on sympodulae or on pedicils or denticles, 

dichotomously branched terminal pseudohyphal cells, needle-shaped terminal conidia, 

arthroconidia, carotenoid pigments, and extracellular starch-like compounds.  In some 

instances, Candida is a temporary repository for a species until ascosporulation is 

observed and it can be placed in a teleomorphic genus.” 

The genus Candida is the largest yeast genus and comprises approximately 200 species.  It 

has been divided into three categories based on the mol% G  + C content, morphology and 

monosaccharide assimilation patterns (vonArx, 1980).  The Candidaceae includes yeasts of 

ascomycetous affinity with low mol% G + C ranging from 33% to 40% and low amounts of 

chitin.  These include Candida albicans, Candida boidinii, Candida diddensii, Candida sake, 

Candida tropicalis and C. utilis.  The remaining Candida is of basidiomycetous nature and 

two groups can be distinguished, the Sporobolomycetaceae and Filobasidiaceae.  

Membership of the genus Candida is continuously changing due to the “refinement’ of 

various criteria based on biochemical and molecular techniques that have recently become 

available. 

Daniel et al. (2001) studied the actin gene as a potential phylogenetic marker in order to 

determine the phylogenetic relationships between Candida and related species (Figure 2.1).  

The chosen outgroup species included Neurospora crassa, a member of the Euascomycetes, 

and Schizosaccharomyces pombe, a member of the Archaeascomycetes.  The Euascomycetes 

is the most closely related group to the Hemiascomycetes at this taxonomic level, while the 

Archaeascomycetes is basal to both of these groups (Hendriks et al., 1992; Liu et al., 1999).   

 

An Introduction to the Yeast Candida utilis   
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Figure 2.1. Phylogenetic tree produced by weighted parsimony analysis of partial 
sequences of the actin gene from 39 yeast taxa.  F. neoformans, S. pombe and N. crassa
was defined as the outgroups.  The numbers on branches indicate bootstrap values greater 
than 50 after 1000 replications (taken from Daniel et al., 2001). 
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A significantly more distant related group, the Basidiomycetes, was represented by 

Filobasidiella neoformans.  The phylogenetic tree revealed four major groups, A, B, C and D.  

Pathogenic Candida species were concentrated in, but not confined to, group A.  Group C 

included S. cerevisiae and a number of Candida and Kluyveromyces species.  Opportunistic 



pathogens, such as C. albicans and C. glabrata, did not cluster into a single group.  According 

to Daniel et al. (2001), C. utilis remains ungrouped, with little homology to the above-

mentioned groups. 

Eight species of Candida (Table 2.1) have been reported to be opportunistic pathogens; the 

major one being C. albicans, which is involved in an increasing number of infections.  These 

species are ubiquitous in nature, having been isolated from a variety of environments and, in 

general, are pathogenic only when an organism's immuno-surveillance system fails.  For 

example, C. utilis has been associated with fungemia in patients with an acquired 

immunodeficiency syndrome (Alsina et al., 1988) 

Table 2.1.  Pathogenic species of Candida  

Species Comments Reference 

C. albicans Most often isolated yeast pathogen Odds (1988) 

C. famata Rare isolate, clinical features similar to Propionibacterium 

acnes syndrome 

Rao et al. (1991a) 

C. glabrata Second most common isolate in vaginitis Asakura et al. (1991) 

Kobayashi et al. (1992) 

C. guillermondii Rare opportunistic pathogen McQuillen et al. (1992) 

Yagupsky et al. (1991) 

C. krusei Implicated in an increasing number of infections of 

immunocompromised patients (invasive fungemia, 

indophthalmitis, and in transplants) 

McQuillen et al. (1992) 

Tam et al. (1992) 

C. parapsilosis Wide distribution in nature, virulent in immunosuppressed 

mice.  Most common Candida infecting human nail beds. 

Weems (1992) 

C. stellatoidea Some isolates are identical to C. albicans, except for 

sucrose requirement 

Kwon-Chung et al. (1990) 

C. tropicalis Second most common pathogenic Candida McGuire et al. (1992)  

The genus Candida thus presents a diverse array of organisms that have an affect on human 

health and welfare (Klein and Favreau, 1995).  Representatives include some of the most 

intractable pathogens known to humans, while others present the hope of supplementing 

dwindling food supplies by converting industrial waste into SCP, or by providing the 

enzymatic materials essential for stereo-specific chemical conversions.   

An Introduction to the Yeast Candida utilis   
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2.3    TAXONOMIC CLASSIFICATION OF CANDIDA UTILIS 

A diagram showing the classification of C. utilis is presented in Figure 2.2.  The yeast C. utilis 

has a G + C content of 45% (Klein and Favreau, 1995) and was first described by Henneberg 

in 1926 (cited in Kreger-van Rij, 1984).  It was suggested that C. utilis and Hansenula jadinii 

are closely related, with H. jadinii producing only a few ascospores (one spore per 10 000 

vegetative cells) while C. utilis produces significantly more ascospores (Kurtzman et al., 

1979).  In addition, H. jadinii has been shown to be pathogenic in animals, whereas C. utilis is 

not known to be pathogenic, although characterised species have been isolated from the 

digestive tract of cows.  DNA reassociation studies by Kurtzman et al. (1979) showed that 

C. utilis represented the anamorphic form of the teleomorphic species H. jadinii.  Kurtzman 

(1984) also demonstrated similarity at DNA level between yeasts of the genus Hansenula and 

those of the genus Pichia. Therefore, C. utilis can also be designated as Pichia jadinii.  Other 

taxonomic synonyms are Cryptococcus utilis, Torula mineralis and Torula utilis 

(www.cbs.knaw.nl). 

2.4    MOLECULAR GENETICS OF CANDIDA UTILIS 

The yeast C. utilis has a highly variable electrophoretic karyotype, as already known for 

another imperfect yeast species, Candida albicans.  Karyotype analysis using Pulse-Field Gel 

Electrophoresis (PFGE) on 13 strains of C. utilis revealed the existence of two clearly distinct 

electrophoretic karyotypes.  According to these types, the strains were assigned to group A or 

group B (Stoltenburg et al., 1992).  Differing number of chromosomal bands between strains 

of group B and group A can probably be assigned to ploidy.  Apparently, C. utilis is at least 

diploid, since auxotrophs can be obtained by mutagenesis with very low frequencies.  If 

C. utilis is diploid or polyploid, strains that possess at least two homologous chromosomes of 

the same or very similar size can be assigned to group A.  The larger number of bands in the 

strains of group B would then be due to an internal length polymorphism of homologous 

chromosomes as has been described for polyploid industrial strains of S. cerevisiae.  This 

explanation is supported by the number of chromosomal bands, ranging from 5 to 8 in group 

A, and from 11 to 14 in group B (Stoltenburg et al., 1992). In spite of its industrial 

importance, the molecular genetics of C. utilis is not well understood and molecular tools are 

limited.  Studies on C. utilis and its use for the expression of heterologous proteins have been 

limited by the lack of transformation and expression systems.  Due to the fact that C. utilis is 

at least diploid and does not have a sexual life cycle, appropriate auxotrophic mutants that can 
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be used as hosts for transformation have not been available.  However, Kondo et al. (1995) 

reported a novel transformation system for C. utilis where an endogenous gene encoding the 

ribosomal protein L41 was used as a selectable marker conferring cycloheximide (CYH) 

resistance after modification of its sequence by in vitro mutagenesis.  The gene encoding the 

L41 protein has a proline residue at the 56th amino acid, which is characteristic of the protein 

in CYH-sensitive yeasts (Kawai et al., 1992).  In contrast, CYH-resistant L41 proteins have a 

glutamine in this position.  A marker gene was therefore constructed by converting the 56th 

codon to a glutamine codon.  The gene is particularly useful as a marker gene for the 

development of a transformation system since the gene is expressed in the host under the 

control of its own transcriptional and translational machinery.  However, the marker needs to 

be present in multiple copies for selection of CYH resistant transformants since the host 

possesses endogenous genes encoding a CYH-sensitive L41 protein.  A ribosomal DNA 

(rDNA) fragment was therefore employed as a multicopy target for plasmid integration. 

 

KINGDOM  Fungi 

DIVISION   Eumycota 

  Chytridiomycota 

  Zygomycota 

  Basidiomycota 

SUB-DIVISION  Ascomycota 

  Deuteromycota 

CLASS Hemiascomycota 

 Archaeascomycota – e.g. Schizosaccharomyces pombe 

 Euascomycota 

ORDER Endomycetales 

 Spermophtoraceae    

FAMILY Saccharomycetoideae 

SUB-FAMILY Saccharomycetoideae 

 Saccharomyces – e.g. Saccharomyces cerevisiae 

GENUS Candida 

SPECIES Candida utilis 

Figure 2.2.  Classification of the yeast C. utilis according to Barnett et al. (1990). 
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Kondo et al. (1997) also developed an expression system in C. utilis using glycolytic 

promoters.  Rodríguez et al. (1998) isolated the URA3 gene of C. utilis and developed the first 

transformation system based on an auxotrophic marker in C. utilis.  In 2004, Basabe et al. 

cloned the C. utilis HIS3 gene and its analysis revealed an uninterrupted open reading frame 

(ORF) of 675 bp, making available a new selectable marker gene to develop an alternative 

transformation system for further manipulation of this yeast. 

2.5    APPLICATION OF CANDIDA UTILIS 

The yeast C. utilis is an industrially important yeast and is widely used for the production of 

biologically useful materials, such as glutathione, certain amino acids and enzymes.  It is also 

a promising source of nutrients through the large-scale production of single-cell proteins from 

biomass-derived sugars, such as sugar molasses and spent sulfite liquor (Lawford et al., 1979; 

Boze et al., 1994).  It is able to utilise a wide range of substrates such as glucose, raffinose, 

xylitol and saccharose (Lawford et al., 1979).  It has been approved as a GRAS (General 

Regarded as Safe) microorganism by the F.D.A. (Food and Drug Administration) (Boze et al., 

1994).  The most important applications of C. utilis are summarized in Table 2.2 and a few 

are discussed in the following sections. 

2.5.1    Production of Single-cell Protein (SCP) 

The term SCP refers to dried cells of microorganisms such as algae, actinomycetes, bacteria, 

yeasts, molds and higher fungi grown in large-scale culture systems for use as protein sources 

in human foods or animal feeds.  Although these microorganisms are grown primarily for 

their protein content in SCP production processes, microbial cells also contain carbohydrates, 

lipids, vitamins, minerals and non-protein nitrogen materials such as nucleic acids (Litchfield, 

1983). 

SCP production originated in Germany during World War I when S. cerevisiae was grown for 

consumption as a protein supplement using molasses as the carbon and energy source.  In 

Germany during World War II, C. utilis was cultivated on sulfite waste liquor (SSL) from 

pulp and paper manufacturing processes and on wood sugar derived from the acid hydrolysis 

of wood and used as a food and fodder supplement (Litchfield, 1979).  SSL contains 

approximately 2.5% fermentable sugars, of which 80% are hexoses and 20% pentoses, in 

addition to a variety of organic acids.  Cells of C. utilis can assimilate hexoses and pentoses, 

as well as many of the organic acids in SSL.   Most  C. utilis  fermentations  are  conducted  at  
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Table 2.2.  Industrial applications of Candida utilis 

Product/Use Substrate Reference 

SCP Pectin 

Bagasse (sugarcane) 

Molasses distillery waste 

Corn cob/ corn stalk 

Apple processing wastes 

Apple pomace 

Ethanol 

Defatted mango 

Rice straw 

Potato extracts 

Sucrose 

Sugar beets 

Waste Chinese cabbage 

Fellows and Worgan (1986) 

Gamal et al. (1985) 

Azzam and Heikel (1989) 

Fields et al. (1991) 

Fellows and Worgan (1987a) 

Gupta et al. (1990) 

Imshenetskii et al. (1987) 

Malathi and Laddha (1989) 

Araujo and D'Souza (1986) 

Davids et al. (1986) 

Tub (1986) 

Wu and Ye (1989) 

Choi et al. (2002) 

Biodegradation Wastewater/sauerkraut 

Sulphite waste liquor (SSL) 

Elmaleh et al. (1999) 

Streit et al. (1987) 

Ethanol Inulin 

Apple pomace 

Poncet et al. (1985) 

Gupta et al. (1990) 

Ethyl Acetate Ethanol waste stream Kusano et al. (1999) 

Treatment of silage effluent Silage effluent Arnold et al. (2000) 

Acetylaldehyde Glucose/ethanol Armstrong and Yamazaki (1984) 

Biofiltration of VOCs Bakery & distillery waste Christen et al. (2002) 

Acetone Isopropanol Mueller and Babel (1989) 

Carbon & nitrogen removal Wastewater Ortiz et al. (1997) 

Aroma formation in fermented 

sausages 

Valine, Leucine & Isoleucine Olesen and Stahnke (2000) 

Carotenoid Production Acetyl-CoA Giovannucci et al. (1995) 
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low pH (4 - 4.5) and at temperatures of 32°C or higher (Klein and Favreau, 1995).  Dried 

C. utilis cells, as well as S. cerevisiae and Kluyveromyces fragilis, have been approved for use 

as a foodstuff by the U.S. Food and Drug Administration (Boze et al., 1992).   

Much attention has since been paid to the potential use of microorganisms as a source of SCP, 

but the production costs were too high for SCP to compete with other sources of protein, such 

as soybeans.  However, C. utilis is a promising source of nutrients through the large-scale 

production of SCP from biomass-derived sugars, such as sugar molasses (Lawford et al., 

1979; Boze et al., 1992).  Molasses, a cheap by-product widely available from the sugar 

industry, consist of water, 47% to 50%, (w/w) sucrose, (the disaccharide most easily utilised 

by yeast cells), 0.5% to 1% (w/w) nitrogen source, proteins, vitamins, amino acids, organic 

acids and heavy metals such as iron, zinc, copper, manganese, magnesium, calcium, etc. 

(Roukas, 1998).  It is therefore a very attractive carbon source for yeast production from an 

economic point of view.  Furthermore, C. utilis proteins have a relatively high concentration 

of essential amino acids (Lawford et al., 1979) and the ability to metabolise a wide range of 

saccharides (Shay and Wegner, 1985).  The predominantly aerobic metabolism of C. utilis 

and active participation of the pentose phosphate pathway in sugar metabolism predisposes 

this yeast to carbon balance in favour of biomass production as compared with other yeasts 

such as S. cerevisiae, which are glucose sensitive and largely fermentative (Divjak and Mor, 

1973).  The production of SCP by C. utilis can be done on a number of substrates of which a 

few will be discussed below.  

Starch wastes.  Strains of C. utilis do not possess enzymes that hydrolyse starch, cellulose or 

pectic substrates.  These substrates must be hydrolyzed by heat (cooking or steaming), acid or 

biological hydrolyses (addition of purified enzyme mixtures or pretreatment with various 

microorganisms).  In most cases, unless heat or acid treatment is part of an overall production 

process, additional treatment of starch waste is not considered economical.  However, two-

step dual fermentation processes have been shown to be economically acceptable, with 

processing costs recovered in the sale of yeast as a final product (Fellows and Worgan, 

1987a,b).  Starch wastes are used as a substrate for Saccharomyces fibuliger, which produces 

amylases that hydrolyse the starch and allow growth by C. utilis.  Modifications of the 

S. fibuliger culture conditions permit C. utilis to predominate in the final biomass product.  

This procedure has been economically employed for the production of SCP from starch 

wastes (Boze et al., 1992) and apple processing wastes (Fellows and Worgan, 1986).  

Conversion was shown to be 45 g cells/100 g of initial substrate, with C. utilis comprising 
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96% of the final biomass.  C. utilis alone, without pretreatment by S. fibuliger (i.e. 

prehydrolysis), yielded approximately 33 g cells/100 g of initial substrate in the same process.   

Cellulosic Waste. Applications of C. utilis in single- and multiple-step fermentation 

processes include the degradation of cellulosic wastes and the reduction of the biological 

oxygen demand (BOD) of distillery silage from sugarcane molasses production.  This 

distillery effluent has a BOD of 40-50 g/liter and is a major contributor to environmental 

pollution in some tropical countries.  Single-batch fermentations using C. utilis alone have 

been shown to reduce the BOD by as much as 83%, with SCP being a useful by-product 

(SivaRama et al., 1984).  Fermenting the waste effluent using C. utilis, followed by a 

fermentation step using Paecilomyces varioti, has resulted in a reduction of 92% in the BOD, 

with the dried biomass exceeding 22 g/liter (Azzam and Heikel, 1989).  The SCP produced by 

this process was low in methionine and cysteine, though the remaining amino acid content 

showed a favourable comparison to the standards set by the Food and Agricultural 

Organization (FAO) and the World Health Organization (WHO).   

Defatted mango kernels.  Defatted mango kernels (DMKs) are a solid waste product of the 

mango fat industry in India.  The DMKs consist of approximately 60% starch.  Following 

hydrolysis by the addition of amylases, glucosidases and glucoamylases, the DMKs have been 

used as a substrate for cultivation of C. utilis.  Biomass yields from this process range from 

44% to 48%.  The resulting cells have a 47% protein and 6% RNA content.  The latter is 

unacceptably high for human consumption, but is acceptable for an animal feed supplement 

(Malathi and Laddha, 1989).   

Aquaculture feed.  It is becoming increasingly evident that the development of low-cost, 

high quality protein foodstuffs is crucial for the future success of the aquaculture industry 

(Rumsey, 1978).  The main protein sources used in aquafeeds are fishmeals, which typically 

constitute 250-400 g/kg of formulated feeds for carnivorous fish and shrimp.  In view of the 

increasing cost of fish meals and the instability in their supply in the long term, it is essential 

that alternative protein sources be identified.  The use of microbial biomass protein to replace 

part of the protein required in fish feed could be considered a promising and innovative 

solution to this problem (Martin et al., 1993).  Cultivated micro-algae such as Chlorella, 

Scenedesmus and Spirulina species have been used as SCP in fish feed.  However, the 

industrial production of micro-algae is still relatively limited and some technological and 

toxicological problems remain to be solved before they attain a larger role in fish feeding 

(Beneman, 1992). 
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It is known that the commercial value of SCP is linked to its protein content.  From this point 

of view, C. utilis has been classified among the most interesting microorganisms for their 

protein content, which can account for up to 50% of the dry weight, the remaining being 

represented by lipids, polysaccharides, etc. (Ziino et al., 1999).  Moreover, they can also 

supply the feed with vitamins, mineral and other components, which could stimulate the 

disease resistance of fish (Raa, 1990).   

Industrial waste streams.  Organic acids from dilute industrial waste streams have been 

shown to be suitable substrates for biomass production in continuous culture.  Yields in batch 

cultures of C. utilis vary from 30% to 40%, and in continuous culture they average 44% when 

using acetic acid or a 55% mixture of propionic, butyric and acetic acid as substrate (Maugeri-

Filho and Goma, 1988).  Christ (1986) has reported processes for using C. utilis to treat the 

waste effluents from sauerkraut production (cited in Klein and Favreau, 1995).  Continuous 

processes have been developed using high cell density fermentation and have resulted in 

yields as large as 120 g dry weight cells/liter of sucrose (Shay et al., 1987). 

2.5.2    Biodegradation of Wastewater 

The food industry generates 45% of the total organic industrial pollution with highly loaded 

effluents whose treatment usually requires many successive steps.  When the biodegradable 

contaminants are very highly concentrated, a yeast reactor followed by an anaerobic bacteria 

reactor in series, could address the pollution levels to acceptable levels that meet the effluent 

standards (Elmaleh et al., 1999).  However, such a yeast reactor is sensitive to bacterial 

contamination and the anaerobic reactor usually requires a long retention time.  An alternative 

process was proposed by Elmaleh et al. (1996) based on an acidogenic reactor followed by a 

yeast reactor in series.  The main organic products of the acidogenic reactor are volatile fatty 

acids (VFA) such as acetic acid, propionic acid or butyric acid (Dinoupoulou et al., 1988).   

The first step in the design of such a process for biodegradation includes the identification of 

a convenient yeast and the determination of kinetic data relating to microbial growth, organic 

carbon removal and solids production.  The yeast C. utilis was selected as potential candidate 

and used for VFA oxidation as early as 1980 by Maugeri-Filho and Goma.   A C. utilis mixed 

reactor operated at pH 3.5 to limit bacterial contamination and fed with acetic acid, propionic 

acid or butyric acid or a mixture of these acids, can oxidise fatty acids with loading rates as 

high as 30 kg Total Organic Carbon (TOC)/m3/day with 97% removal efficiency. 
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2.5.3    Production of Ethyl Acetate 

Some yeasts are able to grow and produce volatile compounds of interest from ethanol, a by-

product of agro-industries.  The C. utilis cells are able to assimilate ethanol as sole carbon 

source (Watteeuw et al., 1979) and efficiently convert ethanol to ethyl acetate (Armstrong et 

al., 1984).  Factors such as pH (Páca and Votruba, 1990) and dissolved oxygen (Corzo et al., 

1995) were found to influence the respiration activity of C. utilis on ethanol.   

2.5.4    Carotenoid Production 

Lycopene is a red carotenoid pigment present in tomatoes, watermelon and red grapefruit that 

have recently received attention due to its health promoting characteristics.  For example, 

lycopene has been shown to have preventative effects against certain cancers, e.g. prostate 

cancer (Giovannucci et al., 1995), and is claimed to be the most effective antioxidant (Miki, 

1991).   

Cells of C. utilis do not synthesise the carotenoid pigment, but do accumulate large quantities 

of ergosterol (Shimada et al., 1998).  Like carotenoids, ergosterol is an isoprenoid and 

biosynthetically related to carotenoids by a common prenyl lipid precursor, farnesyl 

diphosphate (FPP).  In order to increase the carbon flux into lycopene biosynthesis, squalene 

activity was decreased by disruption of the C. utilis ERG9 gene encoding squalene synthase.  

The three carotenogenic genes (crtE, crtB and crtI) required for lycopene synthesis from FPP 

were introduced under the control of C. utilis promoters to produce in a C. utilis strain that 

produces 1.1 mg lycopene per g (dry weight) of cells (Figure 2.3).  

Miura et al. (1998) also constructed β-carotene-producing and astaxanthin-producing C. utilis 

strains by introducing the metabolic pathway mediated by either four crt genes (crtE, crtB, 

crtI and crtY) or six crt genes (crtE, crtB, crtI, crtY, crtZ and crtW).  The resulting C. utilis 

strains produced 0.4 mg of β-carotene or astaxanthin per g (dry weight) of cells. 

2.5.5 Treatment of Silage Effluent 

Silage is produced by the controlled fermentation of a crop of high moisture content, such as 

grass or forage maize, and is used as animal feedstock (Arnold et al., 2000).  Silage effluent, a 

by-product of silage production, arises from a combination of surface water and plant juices 

expelled from the ensiled herbage.  This effluent is an extremely powerful pollutant, having a 

BOD in the region of 30 – 80 g O2/l (Beck, 1989).  The highly acidic silage effluent is 
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difficult to contain since it is corrosive to steel and concrete (Arnold et al., 2000), the 

materials most commonly used in the construction of silos.  Any effluent finding its way into 

a watercourse would lead to rapid deoxygenation of the water and a decrease in pH, killing 

fish and other aquatic fauna.   
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Figure 2.3.  Metabolic pathway of endogenous ergosterol biosynthesis and exogenous 
lycopene biosynthesis in C. utilis.  The solid arrows show the one-step conversions of the 
biosynthesis, and the dashed arrows represent a number of sequential steps.  The 
endogenous lycopene synthesis genes are indicated by crtE, crtB and crtI.  GGPP, 
geranylgeranyl diphosphate; FPP, farnesyl diphosphate (Shimada et al., 1998). 

 

 

Silage effluent is usually disposed of by spreading on land or feeding to animals.  Spreading 

on land can lead to scorching of grass or other crops (Burford, 1976) and depletion of oxygen 

from the surrounding soil (Gross, 1972).  The effluent can also find its way into watercourses 

via land drainage.  Only well-preserved silage effluent should be fed to animals, since it 

deteriorates rapidly.  It is important that it is either fed within 3-4 days of production or stored 

anaerobically (Patterson and Kilpatrick, 1991).  Since effluent production cannot be 

completely eliminated and the disposal methods mentioned above clearly have their 

disadvantages, other means of effluent disposal or treatment are necessary.  Treatment prior to 

land disposal may reduce the potential environmental problems and it has been shown that a 

high degree of purification of silage effluent can be achieved by treatment with selected yeast 

strains.  For example, C. utilis was effective in reducing the polluting properties of the silage 



effluent, with a COD reduction of 74% to 95% (Arnold et al., 2000).  The pH was increased 

from 5.7 to 9 pH units, presumably due to removal of lactic acid and volatile fatty acids 

(VFAs), which are responsible for the distinctive smell of silage effluent.  The substantial pH 

increases would make it easier to contain the effluent since it would no longer cause corrosion 

of the concrete or steel containers or holding tanks.   
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 CARBON METABOLISM IN CANDIDA UTILIS  

3.1    INTRODUCTION 

Sugars are excellent carbon sources for all yeasts.  The different components of the pathways 

for sugar utilisation in Saccharomyces cerevisiae have been studied extensively and it has 

been assumed that other yeasts utilise sugars in the same way.  However, although the 

pathways of sugar utilisation follow the same theme in all yeasts, important biochemical and 

genetic variations exist.  This chapter provides comparative information on the different steps 

involved in carbon metabolism as currently known for Candida utilis.   

Survival of all organisms requires the ability to adapt to changing circumstances.  Two 

physiological regulatory mechanisms influencing carbon metabolism, and thereby helping the 

organism to adapt to the changing environment, are the Crabtree effect and the Kluyver effect.  

The yeast C. utilis differs from S. cerevisiae in that it is a Crabtree negative and Kluyver 

positive yeast.  Therefore, we will also touch on these regulatory mechanisms in order to 

better understand carbon metabolism in C. utilis.  Due to the strong catabolite repression 

exerted on L-malate metabolism in C. utilis, general characteristics of catabolite repression 

will also be discussed, using S. cerevisiae as a model with reference to C. utilis where 

applicable.  This review will show that basic knowledge on many components of these 

pathways in C. utilis is lacking and that studies on the regulation of critical steps are scarce.   

3.2    CARBON METABOLISM IN CANDIDA UTILIS 

Strains of C. utilis can utilise a variety of carbon sources, including mono- and disaccharides 

such as sucrose, xylose and maltose.  However, no growth was observed for C. utilis with 

galactose or lactose as sole carbon source (Meyer et al., 1984).  The cleavage of sucrose to 

glucose and fructose is catalysed by invertase (β-D-fructofuranosidase, E.C. 3.2.1.26) (Chávez 

et al., 1997).  Although the preferred substrate for invertase is sucrose, invertase is also able 

to catalyse the hydrolysis of raffinose and stachyose in C. utilis (Belcarz et al., 2002).  

Furthermore, C. utilis appears to be the only yeast strain capable of producing and secreting 

two different forms of β-D-fructofuranosidase (Belcarz et al., 2002).  While the F-form (Fast-

migrating) is a non-glycosylated monomer with a molecular mass of 62 kDa, the S-form 

(Slow-migrating) is a 280 kDa homodimer that is N-glycosylated.  The glycoprotein is mainly 
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formed by a high-mannose oligosaccharide structure and the enzyme is regulated by carbon 

catabolite repression.   

In 1948, Wickerham and Burton reported that many yeasts could grow on intermediates of the 

TCA cycle by utilising citric, succinic, fumaric and/or malic acid as sole source of carbon.  

Yeasts may thus be divided into two groups: a ’K(+)’ group capable of using one or more 

intermediates of the TCA cycle for growth or respiration, and a ‘K(-)‘ group of yeasts unable 

to do so.  The difference between K(+) and K(-) yeasts seem not to be one of a major 

metabolic pathway, but rather the permeability of intact cells for exogenous TCA cycle 

intermediates.  For example, S. cerevisiae is considered to be a K(-) yeast, being unable to 

grow on exogenous intermediates of the TCA cycle (Barnett and Kornberg, 1960), while 

C. utilis is able to utilise various TCA cycle intermediates as sole carbon and energy source.  

This phenomenon will be discussed in more detail in Chapter 4. 

3.2.1    Glycolytic Pathway 

The common theme in sugar metabolism in all known yeasts is the conversion of glucose-6-

phosphate or fructose-6-phosphate to pyruvate through the glycolytic pathway (Figure 3.1) 

with the concomitant formation of ATP and NADH.  No net oxidation occurs in the process, 

since the oxidation of some pathway intermediates is balanced by the reduction of NAD+, 

which is restored by other metabolic reactions such as the reduction of acetaldehyde to 

ethanol (Kruckeberg and Dickinson, 2004).  The metabolic destiny of pyruvate is, however, 

different depending on the yeast species and the culture conditions.  In S. cerevisiae, glucose 

and related sugars cause a strong impairment in respiratory capacity (Crabtree effect) and 

therefore, S. cerevisiae ferments sugar to ethanol and carbon dioxide in batch cultures even in 

the presence of oxygen (Fiechter, 1981).  Some other yeast species, so-called ‘Crabtree 

positive’ yeasts, also behave in this way.  However, in most cases, pyruvate is oxidised to 

CO2 and water under aerobic conditions through the tricarboxylic acid (TCA) cycle and the 

electron transport chain, with the formation of more ATP.  Glycolysis and the TCA cycle are 

therefore central metabolic pathways that perform a dual role: (1) to generate energy and 

reducing equivalents in the form of ATP, NADH or NADPH, and (2) to provide building 

blocks to synthesise other biomolecules.  Glycolysis also plays an important anabolic role, 

with a number of glycolytic intermediates are utilised by biosynthetic pathways for 

production of amino acids, nucleotides and lipids (Kruckeberg and Dickinson, 2004).   
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Figure 3.1. Scheme of different pathways implicated in carbon and energy metabolism in yeasts. 
The figure represents a hypothetical yeast cell with features from C. utilis and other yeasts. G6P, 
glucose-6-phosphate; F6P, fructose-6-phosphate; F1,6P2, fructose-1,6-bisphosphate; GA3P, 
glyceraldehydes-3-phosphate; 1,3diPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 
2-phosphoglycerate; PEP, phosphor-enol-pyruvate; 6PG, 6-phosphogluconate; Rul5P, ribulose-5-
phosphate; R5P, ribose-5-phosphate; Xul5P, xylulose-5-phosphate; S7P, sedoheptulose-7-
phosphate; E4P, erythrose-4-phosphate; OAA, oxaloacetate  (adapted from Flores et al., 2000).  
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The two major quantitative fates of pyruvate produced during glycolysis are either its 

oxidation to CO2 or its transformation to ethanol.  In most yeast species, oxidation will be 

predominant under aerobic conditions, while transformation to ethanol takes place under 

anaerobic conditions or at high glucose concentrations under aerobic conditions in yeasts that 

present a Crabtree effect (Pronk et al., 1996).   Complete oxidation of the pyruvate formed 

during glycolysis via the TCA cycle requires oxidative decarboxylation of pyruvate to acetyl-

CoA.  This can occur either via the mitochondrial pyruvate-dehydrogenase complex or via the 

so-called pyruvate dehydrogenase bypass that employs pyruvate decarboxylase, acetaldehyde 

dehydrogenase and acetyl-CoA synthetase.   

The yeast C. utilis has an unusual metabolism of glucose.  When grown on glucose and 

ammonium sulfate as only carbon and nitrogen source, respectively, the pH of the cell culture 

was found to decrease from 5.9 to 2.4 pH units (Cheng and Ma, 1997).  The decrease in pH 

was found to be due to the release of acid compounds such as citrate, succinate, malate and 

acetate during cell growth.  These results indicated that the major metabolic pathway of 

glucose in C. utilis should be via the Embden-Meyerhof pathway to produce two molecules of 

pyruvate.  One of the pyruvate molecules undergoes fermentation to produce ethanol.  Under 

aerobic conditions, the other pyruvate molecule is converted into acetyl-CoA, which is 

metabolised via the TCA cycle.  Very small amounts of glycerol, acetic acid, acetoin and 

2,3-butandiol are also formed as byproducts from other minor metabolic pathways, while the 

accumulation of glyceric acid in the cell culture indicated the existence of a reversible two-

step oxidation of glycerol via alcohol dehydrogenase.   

3.2.2    The TCA Cycle 

In C. utilis, the major pathway for carbon metabolism is via the TCA cycle for the synthesis 

of cell material (amino acids and lipids).  Acetyl-CoA, generated by pyruvate dehydrogenase, 

is the link between glycolysis and the TCA cycle (Figure 3.1).  The TCA cycle is ubiquitous 

in organisms with an oxidative metabolism.  Associated with mitochondrial compartmentation 

of the TCA cycle in eukaryotic cells, is replication of some enzymatic activities in other 

compartments.  Since communication between pathways separated by membrane barriers 

depends on selective transport of a limited number of common metabolites, the TCA cycle 

isozyme families are considered to be critical points for control of metabolic flux (McAlister-

Henn and Small, 1997).  For example, the mitochondrial and cytosolic malate dehydrogenases 

direct the flux of carbon and reducing equivalents between the TCA cycle and cytosolic 

pathways.   
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Isocitrate Dehydrogenase.  The oxidative decarboxylation of isocitrate to form 

α-ketoglutarate is catalysed by mitochondrial NAD+-specific and differentially 

compartmentalised NADP+-specific enzymes.  This reaction is considered a committed step 

because it is essentially irreversible under physiological conditions. Furthermore, as expected 

for a regulatory enzyme, the multisubunit NAD+-specific enzyme exhibits complex allosteric 

modulation of activity (McAlister-Henn and Small, 1997). 

NAD+-specific isocitrate dehydrogenase purified from S. cerevisiae is an octamer containing 

four each of two subunits, designated IDH1 and IDH2 (Keys and McAlister-Henn, 1990).  

The IDH1 and IDH2 polypeptides are very similar, having an overall 42% identity of aligned 

amino acid sequences.  The NAD+-specific isozymes is key to the TCA cycle, while the 

NADP+-specific mitochondrial isozymes do not contribute significantly to TCA cycle 

function.   

Fumarase.  Fumarase belongs to a family of homologous enzymes that share amino acid 

sequence conservation and fumarate as a common substrate/product (Weaver et al., 1998).  

Fumarase functions as a component of the Krebs cycle responsible for the interconversion of 

fumarate and L-malate.  In yeast cells, fumarase activity is found in both cytosolic and 

mitochondrial cellular fractions, with cytosolic activity representing approximately 70% of 

the total.  In S. cerevisiae, a single gene harboring two unique start sites is responsible for 

coding both the mitochondrial and cytosolic forms of fumarase.  The S. cerevisiae FUM1 

gene encodes a polypeptide of 53 kDa, the catalytically active form being a homotetramer 

(Wu and Tzagoloff, 1987) with information for mitochondrial localisation contained within 

the 17 amino-terminus of the FUM1 polypeptide.  The differential localisation of FUM1 

polypeptides was linked to transcription of two mRNA species:  the longer specie containing 

codons for the mitochondrial targeting sequence and the shorter containing an alternative 

downstream site for translation initiation. 

Malate Dehydrogenase.  There are at least two forms of malate dehydrogenase in most 

eukaryotic cells; a mitochondrial enzyme that functions in the TCA cycle and a cytosolic 

enzyme that catalyses the first step in gluconeogenesis from pyruvate.  These isozymes also 

participate in the malate/aspartate shuttle cycle for the indirect exchange of reducing 

equivalents between cellular compartments.  The supply of oxaloacetate, which is 

compartmentally restricted by transport barriers, is rate limiting for metabolic processes in 

both compartments (McAlister-Henn and Small, 1997). 
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Three forms of malate dehydrogenase have been reported for S. cerevisiae, namely MDH1, 

MDH2 and MDH3 (McAlister-Henn and Small, 1997).  Whereas MDH1 represents the 

mitochondrial malate dehydrogenase, a TCA cycle enzyme, MDH2 may be the critical 

enzyme for glyoxylate metabolism.  However, peroxisomal localisation does not appear to be 

essential for the latter function, since other glyoxylate pathway enzymes, including aconitase 

and isocitrate lyase, appear to be soluble cytosolic activities.  MDH3 plays an important role 

in reoxidising NADH generated during β-oxidation of fatty acids in peroxisomes.  Cellular 

levels of all three malate dehydrogenases are reduced in yeast cells cultivated with glucose as 

a carbon source.  For MDH1 and MDH3, this appears to be the result of catabolite repression 

of gene expression, a common effect of glucose on many oxidative functions in yeast.  During 

growth on glucose, over 90% of the much lower total cellular activity for malate 

dehydrogenase is attributed to MDH1 (Steffan and McAlister-Henn, 1992).   

Citrate Synthase.  The condensation reaction catalysed by citrate synthase is the rate-limiting 

step for oxidation via the TCA cycle.  The reaction also channels two-carbon units into the 

biosynthesis of many cellular components, including amino acids, fatty acids and sugars 

(McAlister-Henn and Small, 1997).  The activity is highly regulated; allosterically by ATP, 

and by alterations in cellular levels in response to environmental conditions. 

Intermediates from the TCA cycle are continuously removed during growth for biosynthetic 

purposes.  To prevent a shut down of TCA cycle activity due to depletion of the 

intermediates, these intermediates are replenished by anapleurotic reactions.  In yeast, the key 

anapleurotic enzyme is pyruvate carboxylase (de Jong-Gubbels et al., 1998), responsible for 

the carboxylation of phospho-enol-pyruvate (PEP) or pyruvate to oxaloacetate.  The PYC1 

and PYC2 genes encode isoenzymes of mitochondrial pyruvate carboxylase (PYC) in 

S. cerevisiae (Stucka et al., 1991; Walker et al., 1991).  PYC catalyses the ATP-dependent 

carboxylation of pyruvate: pyruvate + HCO3
- + ATP → oxaloacetate + ADP + Pi (de Jong-

Gubbels et al., 1998).  In C. utilis, these proteins are located in the cytosol, in contrast with 

the mitochondrial location in other fungi and mammals (Van Urk et al., 1989c). 

Another important anaplerotic route is via the glyoxylate cycle, which is required for growth 

in minimal medium on carbon sources of less than three carbon atoms, such as ethanol or 

acetate.  The key enzymes of the glyoxylate cycle are isocitrate lyase and malate synthase 

(Flores et al., 2000).  Isocitrate lyase catalyses the cleavage of isocitrate to succinate and 
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glyoxylate, while malate synthase catalyses the condensation of glyoxylate with a molecule of 

acetyl-CoA to form malate. 

3.2.3    The Pentose Phosphate Pathway 

The pentose phosphate pathway (also known as the hexose monophosphate pathway) is an 

important part of the primary carbon metabolism in all living cells (Sundström et al., 1993).   

However, the function of the pentose phosphate pathway (PPP) is not limited to its role in 

carbon metabolism.  Two of its intermediates are also essential starting points for biosynthetic 

pathways:  ribose-5-phosphate is required for biosynthesis of nucleic acid and nucleotide 

cofactors, while erythrose-4-phosphate is required for biosynthesis of aromatic amino acids 

(Flores et al., 2000).  The oxidative part of the PPP converts glucose-6-phosphate to ribulose-

5-phosphate and CO2, while generating NADPH for reductive biosynthesis.  The non-

oxidative part of the PPP isomerises ribulose-5-phosphate to xylulose-5-phosphate and ribose-

5-phosphate, which are then converted into fructose-6-phosphate and glyceraldehyde-3-

phosphate by a sugar rearrangement system (Sundström et al., 1993).   

The first reactions of the PPP in C. utilis are two oxidative reactions that are physiologically 

irreversible, while the others are non-oxidative and reversible.  As shown in Figure 3.1, the 

partition of hexose metabolism between the glycolytic and the PPP occurs at the level of 

glucose-6-phosphate (Chakravorty et al., 1962). Glucose-6-phosphate dehydrogenase directs 

glucose into the PPP by catalysing the oxidation of glucose-6-phosphate to 6-phospho-δ-

gluconolactone, a reaction believed to generate a major part of the cellular NADPH pool 

(Nogae and Johnston, 1990).   

The hydrolysis of 6-phosphate-δ-gluconolactone to 6-phospho-gluconate occurs 

spontaneously at neutral pH, but at a very slow rate.  The oxidative decarboxylation of 

6-phospho-gluconate to ribulose-5-phospate is catalysed by 6-phospho-gluconate 

dehydrogenase. Glucose-6-phosphate dehydrogenase and 6-phospho-gluconate 

dehydrogenase have been purified from C. utilis (Domagk and Chilla, 1975); the latter 

appears to be a dimer with a high substrate affinity, i.e. Km of 55 µM for 6-phospho-gluconate 

and 20 µM for NADP+ (Rippa and Signorini, 1975). 

In the non-oxidative, reversible part of the pathway, ribulose-5-phosphate is converted to 

fructose-6-phosphate and glyceraldehyde-3-phosphate.  Ribulose-5-phosphate can be either 

isomerised to ribose-5-phosphate or epimerised to xylulose-5-phosphate by ribose-5-
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phosphate isomerase.  The latter enzyme has been purified from C. utilis by Domagk and 

Doering (1975) and Horitsu et al. (1976), but its molecular weight and subunit composition 

vary between 105 kDa with four identical subunits of 26 kDa each (Domagk et al., 1973) and 

183 kDa with one subunit of 75 kDa and two subunits of 54 kDa each (Horitsu et al., 1976). 

Since glucose-6-phosphate, fructose-6-phosphate and glyceraldehyde-3-phosphate are also 

glycolytic intermediates, these two pathways are in close contact.  Intermediates of the non-

oxidative part of the pentose phosphate pathway are required for the biosynthesis of several 

molecules.  Ribose-5-phosphate is the precursor of phosphoribosyl pyrophosphate, which is 

required for the biosynthesis of purine and pyrimidine nucleotides, nucleic acids, several 

coenzymes and the amino acids histidine and tryptophan (Schaaff-Gerstenschläger and 

Miosga, 1997).  Erythrose-4-phosphate, another intermediate of the pathway, is a precursor 

for the synthesis of the aromatic amino acids tryptophan, phenylalanine and tyrosine, and for 

the biosynthesis of p-aminobenzoate and p-hydroxybenzoate.  The non-oxidative part is also 

of enormous industrial interest for utilising the pentose sugar D-xylose as a carbon source 

(Miosga and Zimmermann, 1996). 

Two reactions of the PPP in which a glycolaldehyde moiety (two carbons) is transferred from 

a ketose donor (xylulose-5-phosphate) to an aldose accepter (either ribose-5–phosphate or 

erythrose-4-phosphate), are catalysed by a transketolase (Fletcher et al., 1992).  Transketolase 

activity is indispensable for the generation of erythrose-4-phosphate, which is needed for the 

biosynthesis of aromatic amino acids (Schaaff-Gerstenschläger et al., 1993).  Together with 

aldolase, transketolase forms a reversible link between the glycolytic and pentose phosphate 

pathways, thereby enabling the cell to shuttle ribose-5-phosphate and glycolytic intermediates 

between the two pathways.  The transketolase from C. utilis has a high affinity for both 

xylulose-5-phosphate (Km 80 µM) and ribose-5-phosphate (Km 430 µM) (Wood, 1981).   

An interesting observation by Flores et al. (2000) was that the nitrogen source of the medium 

influences the amount of sugar directed to the pentose phosphate pathway.  In S. cerevisiae, 

growth in a medium supplemented with amino acids decreased the flux through the pentose 

phosphate pathway (Gancedo and Lagunas, 1973).  However, in C. utilis and other yeasts that 

use nitrate as nitrogen source, an increase of the carbon flux through the pentose phosphate 

pathway can be ascribed to the increased NADPH requirement due to the operation of nitrate 

and nitrite reductase (Bruinenberg et al., 1983a). 
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In C. utilis, at least 35% to 48% of the available glucose is catabolised via the pentose 

phosphate pathway, and at most 52% to 65% via glycolysis at various growth rates in 

continuous cultures (Mian et al., 1974).  This is in sharp contrast to the minimum quantity of 

glucose catabolised via the pentose phosphate pathway in S. cerevisiae that ranges from 9% to 

34%, which suggested that the PPP does not contribute substantially to glucose metabolism in 

S. cerevisiae (Gonzáles Siso et al., 1996).  However, it should be noted that this represents the 

maximum estimate of the pentose phosphate pathway participation, since a part of it is 

presumably converted to biosynthetic intermediates and the overflow converted to fructose-6-

phosphate, which in turn is further catabolised by the PPP and glycolysis in the same ratio.  It 

is likely that the difference between the relative importance of the pentose phosphate pathway 

in C. utilis and S. cerevisiae is a consequence of different mechanisms for reoxidation of 

NADPH in these two yeasts.   

3.2.4    Oxidation of NAD(P)H and Energy Production 

Reducing equivalents in the form of NADPH are required by many enzymes in central 

biosynthetic pathways, whereas the enzymatic sources of biosynthetic reducing equivalents 

are believed to be limited in number.  Direct (without shuttle mechanisms) oxidation of 

cytoplasmic NADPH by yeast mitochondria has been reported (Gonzáles Siso et al., 1996), 

although its relative importance in metabolism seems to be species-dependent.  In C. utilis, 

oxidation of NADPH via the respiratory chain has been established, and linked to only site II 

and III phosphorylation.  Enzyme studies showed that glucose-6-phosphate dehydrogenase, 

the enzyme catalysing the rate-limiting step in the PPP, and NADP+-specific isocitrate 

dehydrogenase are the major sources of NADPH in C. utilis.  NADP+-specific isocitrate 

dehydrogenase is structurally and functionally distinct from the mitochondrial NAD+-specific 

isocitrate dehydrogenase that functions in the TCA cycle (Minard et al., 1998).  This is also 

true for the yeast S. cerevisiae (Minard and McAlister-Henn, 2001).  High levels of cytosolic 

NADPH are believed to be important for growth on acetate because of relatively high rates of 

flux through metabolic pathways, respiration and/or β-oxidation, that generate reactive 

oxygen species.  The pentose phosphate pathway or NADP+-specific isocitrate dehydrogenase 

is essential for supplying reducing equivalents to support the functions of multiple thiol-

dependent peroxidases that utilise reduced gluthathione or thioredoxin as cofactors and that 

function to protect the cell from oxidative damage.   

All available evidence indicates that C. utilis is unable to interconvert NADH and NADPH 

via transhydrogenase or analogous enzyme systems (Bruinenberg et al., 1983a,b).  In 
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theoretical calculations of the NADPH requirements for biomass formation, it was 

demonstrated that for growth on glucose as carbon source and ammonium as nitrogen source, 

depending on the contribution of the NADP+-specific isocitrate dehydrogenase, 2% to 7% of 

the glucose metabolised has to be oxidised in the PPP to meet the NADPH requirement for 

biomass formation (Bruinenberg et al., 1983a).  However, radiorespirometric studies revealed 

that in C. utilis, approximately 30% to 50% of the glucose is metabolised via the PPP (Mian 

et al., 1974).  This suggests that activities of the PPP exceeding the theoretical minimum 

NADPH requirement, may point to a mechanism for dissimilatory oxidation of NADPH.   

Mitochondria from C. utilis grown in carbon-limited continuous cultures exhibit cyanide- and 

antimycin A-sensitive oxidation of exogenous NADPH (Bruinenberg et al., 1985).  The 

occurrence of respiratory control reveals that oxidation of NADPH in the mitochondria may 

generate energy in the form of ATP, which is delivered to the cytosol via specific ADP/ATP 

translocators (Figure 3.2).  This junction of mitochondrial and cytoplasmic metabolism is also 

amenable for regulation of the energy flow between the two compartments.  The rate of ATP 

production outside mitochondria depends on the activity of the ADP/ATP translocator 

(Pallotta et al., 1999). 

The ADP/ATP translocator in the mitochondrial inner membrane is a major member of the 

mitochondrial solute-carrier family and mediates the exchange transport of ADP from the 

cytosol and ATP from the matrix under physiological conditions (Kaplan, 2001).  The 

ADP/ATP translocator is essential for oxidative phosphorylation and has been characterized 

in S. cerevisiae (Hatanaka et al., 2001).  It appears that the corresponding gene is highly 

conserved through evolution, as over 50% identity in the amino acid sequences is observed 

between yeast and human gene products (Cozens et al., 1989).  Three genes encoding the 

ADP/ATP translocator has been reported in S. cerevisiae (Kolarov et al., 1990).  AAC1 is not 

essential for growth on a respiratory carbon source, although it is preferentially expressed 

under aerobic conditions.  The second gene, AAC2, has been shown to encode the bulk of the 

mitochondrial translocator.  The third gene, AAC3, which is about 60% homologous to AAC2, 

is expressed almost exclusively under anaerobic conditions. 

Oxidation of exogenous NADH and NADPH seems to be a general property of mitochondria 

from plants and fungi (Palmer and Møller, 1982).  In mitochondria from C. utilis, the 

variation in the ratio of NADH and NADPH oxidase activities, as well as the variation in the 

respiratory control values, indicates that this yeast employs two systems for the oxidation of 

exogenous NADH and NADPH in mitochondria.  The internal dehydrogenase is reported to 
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be active with both NADH and NADPH (Mackler et al., 1980), but the oxidation of 

cytoplasmic NADH can not be attributed exclusively to the external NADH oxidase 

(Bruinenberg et al., 1985).  Various shuttle mechanisms, such as the ethanol-acetaldehyde 

shuttle (Von Jagow and Klingenberg, 1970), may also contribute to mitochondrial NADH 

oxidation in vivo.  Since the NADPH-producing enzymes of the pentose phosphate pathway 

are located in the cytoplasm (Bruinenberg et al., 1985), the external NADPH oxidase activity 

may be quantitatively more important than the internal NADPH oxidase.     
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Figure 3.2.  Schematic representation of electron flow in C. utilis mitochondria from 
NAD(P)H to oxygen.  Sites of proton translocation and ATP synthesis are indicated.  dh, 
Dehydrogenase; cyt., cytochrome (adapted from Bruinenberg et al., 1985). 
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3.3    THE CRABTREE EFFECT 

Since the early studies by Crabtree (1929) on the effect of glycolysis on respiration in tumour 

cells, much information has become available on the interrelation between respiration and 

fermentation in eukaryotic cells.  The Crabtree effect is a regulatory phenomenon which states 

that when glucose concentrations are high, fermentation predominates over respiration, even 

in the presence of oxygen (Liti et al., 2001).  Indeed, many investigators have observed 

repression of the synthesis of enzymes of the TCA cycle and the respiratory chain (Petrik et 

al., 1983), as well as repression of the synthesis of mitochondria (Neal et al., 1971) under 

conditions of glucose excess.   

The Crabtree effect in yeasts has been extensively studied (Fiechter et al., 1981) and is used 

to subdivide facultatively fermentative yeasts on the basis of their physiological response after 

transition from limiting glucose to excess glucose, as either Grabtree-positive or Crabtree-

negative yeasts.  The majority of yeasts, for example representatives of the genera Candida, 

Hansenula, Kluyveromyces and Rhodotorula, are Crabtree-negative; they do not perform 

aerobic alcoholic fermentation in the presence of high sugar concentrations.  In contrast, the 

yeasts S. cerevisiae and S. pombe are Crabtree-positive; they ferment glucose when present at 

high concentrations, even under aerobic conditions.  Crabtree-positive and Crabtree-negative 

yeasts exhibit striking differences with respect to sugar transport and the regulation of fluxes 

at T-junctions in the metabolism of sugars at the level of sugar phosphates and pyruvate. 

3.3.1    Glucose Transport 

The Crabtree-negative yeast C. utilis has a glucose uptake system with a very high substrate 

affinity (Postma et al., 1988), but sugar transport in this yeast is an energy-requiring process 

(Van Urk et al., 1989b).  These yeast van therefore restrict the entry of glucose by their 

regulated H+-symport systems and prevent the occurrence of overflow metabolism at high 

sugar concentrations, thus aerobic fermentation characteristic of Crabtree-positive yeast.    

However, in Crabtree-positive yeasts such as S. cerevisiae and S. pombe, transport of glucose 

occurs via facilitated diffusion and the glucose carriers have a low substrate affinity.  They 

can, therefore, not restrict glucose transport at high concentrations, resulting in metabolism 

overflow, hence aerobic fermentation.  Consequently, when a sugar-limited culture of a 

Crabtree-positive yeasts becomes contaminated with a Crabtree-negative yeast, the former is 

rapidly out-competed (Postma et al., 1989c).  The higher affinity of Crabtree-negative yeasts 

for glucose explains problems encountered with so-called ‘wild yeasts’ in industrial sugar-
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limited fed-batch cultures of baker’s yeast.  These contaminants (frequently Candida species) 

tend to outgrow the commercial S. cerevisiae strains and negatively affect product quality.   

The energy requirement for aerobic glucose-limited growth by C. utilis is considerably higher 

than for S. cerevisiae.  This is due to the fact that the protein content of C. utilis is 25% higher 

than that of S. cerevisiae (Verduyn et al., 1991).  As a consequence, more energy is required 

in the synthesis, and especially in the polymerization, of amino acids.  In addition, the higher 

protein content also necessitates an increased ammonium uptake, which is an energy-

requiring process.  The most significant difference between the two species is that 

S. cerevisiae takes up glucose by facilitated diffusion (Lang and Cirillo, 1987) whereas 

C. utilis exhibits active transport of glucose (Peinado et al., 1989).  Thus, despite the same 

biomass yield on glucose, the energy requirements for the production of a given amount of 

biomass are quite different. 

3.3.2    Effects of Oxygen on Growth Kinetics 

Facultatively fermentative yeasts refer to those yeasts able to exhibit alcoholic fermentation 

under appropriate cultivation conditions.  In principle, all facultatively fermentative yeasts are 

able to generate ATP by substrate-level phosphorylation, and therefore do not depend on 

respiration to drive energy-requiring reactions.  In Crabtree-negative yeasts, and in Crabtree-

positive yeasts grown under sugar limitation, oxygen is a key parameter determining the rate 

of alcoholic fermentation (Van Dijken et al., 1993).  Apparently, alcoholic fermentation by 

non-Saccharomyces yeasts, like C. utilis, is confined to a narrow range of oxygen feeds.  At 

very low oxygen feeds, growth (and eventually, fermentation) becomes inhibited due to the 

intrinsic inability of these yeasts to grow anaerobically.  At higher oxygen feeds, the 

glycolytic flux is preferentially directed towards respiration, thereby lowering the ethanol 

yield. 

When S. cerevisiae and C. utilis cells grown under glucose limitation, were pulsed with 

excess glucose, both organisms initially exhibited similar rates of glucose and oxygen 

consumption. However, striking differences were apparent between the two yeasts with 

respect to the production of cell mass in the culture and metabolite excretion (Van Urk et al., 

1988). Upon transition from glucose limitation to glucose excess, S. cerevisiae produced 

much more ethanol but the growth rate remained close to that under glucose limitation. 

However, C. utilis produced little ethanol and immediately started to accumulate cell mass at 

a high rate. This high production rate of cell mass was probably due to synthesis of reserve 
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material and not caused by a high rate of protein synthesis. Upon a glucose pulse, both yeasts 

excreted pyruvate but S. cerevisiae also excreted various TCA cycle intermediates, both under 

steady-state conditions and after exposure to glucose excess. These results and those of 

theoretical calculations on ATP flows, support the hypothesis that ethanol production as a 

consequence of pyruvate accumulation in S. cerevisiae upon transition from glucose 

limitation to glucose excess, is caused by a limited capacity of assimilatory pathways. 

NADH was oxidised at approximately the same rate by the mitochondria of S. cerevisiae and 

of C. utilis (Van Urk et al., 1989a).  In both yeasts, two NADH dehydrogenases are present 

(Von Jagow and Klingenberg, 1970), one located on the outer side of the inner mitochondrial 

membrane where it functions in the oxidation of NADH generated in the cytoplasm, and the 

other located at the inner surface of the inner membrane and functioning in the oxidation of 

NADH generated in the mitochondrial matrix by the enzymes of the TCA cycle.  The 

oxidation rates of TCA cycle intermediates are also similar in both yeasts.  It could therefore 

be concluded that the rapid alcoholic fermentation in S. cerevisiae does not result from a 

limited capacity of the mitochondrial respiratory system, as respiratory capacities of 

S. cerevisiae are similar to those of C. utilis, a yeast which does not perform alcoholic 

fermentation upon transition to glucose excess. 

The yeasts S. cerevisiae and C. utilis also differ in their anabolic potential.  After relief from 

glucose limitation, S. cerevisiae does not increase its growth rate immediately, whereas 

C. utilis instantaneously attains a higher biomass production rate (Van Urk et al., 1988).  

Since C. utilis accumulates reserve material in the form of glycogen, the glycolytic flux will 

be lower in this yeast than in S. cerevisiae.  After prolonged exposure of C. utilis to glucose 

excess, the glycolytic flux becomes higher than the conversion of pyruvate in assimilatory and 

dissimilatory pathways.  It is probable that the activity of pyruvate decarboxylase, the key 

enzyme of alcoholic fermentation, is lower in C. utilis (Holzer, 1961), therefore resulting in 

lower ethanol production rates in C. utilis.  

3.4    THE KLUYVER EFFECT 

Yeast species can grow on various sugars, but growth on certain sugars (especially 

oligosaccharides) occurs in many cases only under aerobic conditions when fermentation is 

completely blocked.  This apparent dependence of sugar utilisation on respiration has been 

called the Kluyver effect, and such ‘respiration-dependent’ species are referred to as Kluyver-

positive (Fukuhara, 2003).  A yeast may be Kluyver-positive for some sugars and not for 
Carbon Metabolism in Candida utilis  

32 



others.  Of the 215 glucose-fermenting yeast species, 96 exhibit the Kluyver effect for at least 

one disaccharide (Barnett et al., 1990).  The yeast S. cerevisiae, which has a predominantly 

fermentative mode of life, is Kluyver effect negative on most sugars (Fukuhara, 2003).  

However, Van Rooijen et al. (1994) observed that S. cerevisiae is Kluyver effect positive for 

trehalose.  This observation was confirmed by Malluta et al. (2000) who showed that 

S. cerevisiae could not grow on trehalose since the trehalose influx was probably too low to 

sustain fermentative growth.   

During growth of facultatively fermentative yeasts (such as C. utilis) on glucose, oxygen-

limited growth conditions invariably result in the occurrence of alcoholic fermentation.  

Because the ATP yield from alcoholic fermentation is much lower than that from respiration, 

this leads to a reduction in the biomass yield on glucose.  Alcoholic fermentation further 

negatively affects biomass yields due to the accumulation of toxic fermentation products 

(Castrillo et al., 1996).  However, many facultatively fermentative yeast species show a 

peculiar behaviour with respect to the utilisation of certain disaccharides.  When disaccharides 

are used as a carbon source for the cultivation of facultatively fermentative yeasts, oxygen 

limitation does not always result in alcoholic fermentation.  Depending on the yeast species, 

some disaccharides cannot be fermented, although respiration of the disaccharides and 

fermentation of the component hexose(s) are both possible (Weusthuis et al., 1994a).   

The Kluyver effect must somehow be related to differences in the metabolism of 

monosaccharides and disaccharides.  Target reactions at which control of disaccharide 

metabolism may be exerted, are sugar uptake and/or disaccharide hydrolysis.  The failure to 

utilise some disaccharides anaerobically appears to be due to a slowing down of the active 

sugar transporter, probably because in anaerobiosis there is a lower ATP concentration within 

the cell, which is insufficient to supply the proton pump optimally and to sustain the proton 

symport (Rolim et al., 2003).  Also, the possibility that specific kinases are involved in 

transport-associated phosphorylation of hexose molecules generated from disaccharide 

hydrolysis (Clifton et al., 1993), cannot be ruled out as a possible cause of the Kluyver effect.  

Pyruvate decarboxylase and alcohol dehydrogenase, the two key enzymes of fermentative 

sugar metabolism, are present at high activities in extracts of cells from maltose-grown, 

oxygen-limited chemostat cultures (Weusthuis et al., 1994b).  Apparently, the absence of 

alcoholic fermentation in maltose-grown cells is not caused by regulation of the synthesis of 

these fermentative enzymes (Kaliterna et al., 1995).  Independent of the nature of the 

responsible molecular signal, various mechanisms can be involved in the regulation of 
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maltose metabolism under oxygen-limited conditions.  An important discrimination that can 

be made in this respect is between regulation at the level of enzyme synthesis and regulation 

of the activity of an existing enzyme, i.e. allosteric modification of enzyme activity or post-

translational modification. 

This poorly understood phenomenon can be clearly illustrated by studying the utilisation of 

maltose by C. utilis, a facultatively fermentative, Crabtree-negative yeast.  In aerobic cultures, 

C. utilis exhibits rapid growth on glucose and maltose.  In oxygen-limited chemostat cultures, 

however, glucose is readily fermented to ethanol.  When an aerobic, glucose-limited culture 

was shifted to oxygen limitation, ethanol formation did not set in immediately, but was 

preceded by a lag phase, required to induce the fermentative key enzyme pyruvate 

decarboxylase (Kaliterna et al., 1995).  In contrast, alcoholic fermentation does not occur in 

maltose-grown, oxygen-limited chemostat cultures of C. utilis.  The amount of maltose that 

can be metabolised is limited by the amount of oxygen available for respiration, leading to 

incomplete utilisation of the disaccharide.  It therefore seems that oxygen availability is not a 

key factor in the Kluyver effect for maltose utilisation by C. utilis, but rather the yeast’s 

intrinsic inability to ferment the particular disaccharide.  

Weusthuis et al. (1994a) reported that C. utilis cells express all the enzymes required for 

alcoholic fermentation during oxygen-limited growth on maltose.  Indeed, when oxygen-

limited cultures of C. utilis grown on maltose were pulsed with glucose, alcoholic 

fermentation set in almost immediately.  It was suggested that alcoholic fermentation which 

occurs after the addition of glucose, inhibits or suppresses maltose metabolism via a feed-

back mechanism involving ethanol or a related metabolite (Figure 3.3).  Build-up of 

disaccharide fermentation products to a critical level results in inhibition of disaccharide 

uptake, which can be relieved by the respiratory degradation of the inhibitory metabolites.  

This mechanism tunes the rate of disaccharide uptake to a value that is sufficiently low not to 

result in alcoholic fermentation.   

3.5    CATABOLITE REPRESSION 

S. cerevisiae and many other types of yeast may thrive on a variety of carbon sources, but 

glucose and fructose are the preferred ones.  The presence of glucose in the environment 

represses the transcription of genes involved in certain metabolic pathways.  When one of 

these sugars is present, the enzymes required for the utilization of alternative carbon sources 

are synthesised at low rates or not at all.  This phenomenon is known as carbon catabolite 
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repression, or simply catabolite repression.   The term “glucose repression” has also been 

proposed, since no “catabolite” derived from glucose and involved in the repression has been 

identified yet.  This metabolic regulatory response affects the genes involved in the 

assimilation of alternative sugars, such as the GAL and SUC genes, as well as genes involved 

in gluconeogenesis, the tricarboxylic acid cycle and respiration (Gancedo, 1998).  Since very 

little is known about catabolite repression in C. utilis, information available on S. cerevisiae 

will be discussed in the following sections, with reference to C. utilis where applicable. 
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Figure 3.3.  Feedback inhibition of disaccharide utilisation as a possible cause of the 
Kluyver effect in yeasts (adapted from Weusthuis et al., 1994a). 

The yeast C. utilis shows different characteristics to S. cerevisiae with regards to the 

regulation of carbon source consumption.  It is a Crabtree-negative and Kluyver-positive yeast 

and catabolite repression effects seems to be more limited than in S. cerevisiae, since 

oxidative metabolism is not affected in C. utilis (Weusthuis et al., 1994).  Both yeasts have 

similar enzymes (two hexokinases, one of them containing more than 90% of total fructose 

kinase activity, and the other a glucokinase) (Espinel and Peinado, 1994), with similar 

substrate affinities for glucose, fructose and ATP, but a high affinity for mannose in the case 

of C. utilis hexokinases.  However, some differences between the hexokinases of C. utilis and 
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S. cerevisiae have been observed: (1) C. utilis hexokinases were insensitive to xylose effects, 

either inhibition or inactivation; and (2) physiological Mg-free ATP concentrations did not 

affect enzyme activity in C. utilis.  Unlike some other yeast species, C. utilis hexokinases do 

not show a higher activity under repressing conditions, but exhibit a constant fructose/glucose 

phosphorylation ratio in any conditions used.  It was concluded that in C. utilis, high 

hexokinase activity is not related to glucose repression.  In fact, hexokinase activity seemed 

inversely proportional to glucose repression, since cells growing in a chemostat at low 

concentration of glucose had a higher level of hexokinase than in repressed cells (Espinel et 

al., 1996). 

The next question is how extensively glucose should be metabolised to be able to repress 

transcription.  It has been concluded that for catabolite repression, glucose signaling does not 

require any metabolic step in the glycolytic pathway beyond phosphorylation (Rose et al., 

1991).  Glucose is known to trigger an immediate, transient increase in the intracellular 

concentration of cAMP in derepressed cells of S. cerevisiae (Wigler et al., 1988), but cAMP 

only affects the repression of some genes in S. cerevisiae and even for those genes, redundant 

regulatory mechanisms exist.  In contrast, catabolite repression of the S. pombe fbp+ gene, 

encoding fructose-1,6-bisphosphatase, is dependent on a cAMP signaling pathway.  Several 

genes (named git for glucose insensitive transcription) participate in the repression process 

(Byrne and Hoffman, 1993).  It is less widely appreciated that glucose also has a long-term 

effect on cAMP levels.  The fact that the intracellular levels of cAMP are higher in the 

presence of glucose and other sugars than under derepressed conditions in some yeasts (Eraso 

and Gancedo, 1984), could suggest a role for cAMP in catabolite repression.  

Similar to S. cerevisiae, the yeast C. utilis can use sucrose as an alternative carbon source.  

The INV1 gene, encoding the C. utilis invertase enzyme (EC 3.2.1.26) responsible for the 

cleavage of sucrose to glucose and fructose, has been purified and characterised (Chávez et 

al., 1998).  The synthesis of this enzyme decreased drastically when glucose concentrations in 

the medium were higher than 1% in the medium (Chavez et al., 1997).  Putative binding sites 

for the Mig1p repressor have been found in the INV1 gene from C. utilis, suggesting that 

Mig1p could repress the gene in the presence of high glucose concentrations.  The C. utilis 

MIG1 gene has been characterised; there is only one gene copy that encodes a polypeptide of 

345 amino acids with a molecular weight of 37.2 kDa (Delfin et al., 2001).     
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The Mig1 Complex.  A generalised scheme for the role of Mig1p in catabolite repression is 

shown in Figure 3.4 (Gancedo, 1998). The MIG1 gene, an important element in glucose 

repression, was identified in a search for genes that would turn off the GAL1 promoter of 

S. cerevisiae (Nehlin and Ronne, 1990).  Mig1p is a C2H2 zinc finger protein that is able to 

bind to the promoters of a variety of genes repressed by glucose.  DNA binding requires a GC 

box with the consensus sequence (G/C)(C/T)GGGG, but it also requires an AT-rich region 5’ 

to the GC box (Lundin et al., 1994).   
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Figure 3.4.   Schematic view of the mode of action of Mig1p and its regulation.  In the 
presence of glucose, Mig1p is found in the nucleus where it represses the transcription of 
genes encoding activators such as GAL4 and MAL63, as well as genes whose products are 
implicated in the metabolism of alternative carbon sources.  Glucose removal causes 
double phosphorylation of Mig1p and its translocation to the cytoplasm (adapted from 
Gancedo, 1998). 
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The operation of Mig1p appears to be controlled by the protein kinase Snf1p (Östling et al., 

1996).  Mig1p is phosphorylated to different extends in repressed and derepressed cells.  

Relief of Mig1p repression requires the protein kinase Snf1p, which suggests a role for 



phosphorylation of Mig1p in the control of repression (Treitel and Carlson, 1995).  Mig1p is 

localised in the nucleus in repressed cells, but after glucose removal from the medium, Mig1p 

is both phosphorylated and translocated to the cytosol (DeVit et al., 1997).   

Our knowledge of glucose signaling is still limited.  It is likely that different rates of 

phosphorylation are correlated with different concentrations of intracellular metabolites and 

that the activation or inhibition of specific regulatory proteins is carried out by these 

metabolites.  While glucose-6-phosphate, fructose-6-phosphate and cAMP could be some of 

the candidates for signaling metabolites and Snf1p is likely to be one of the final targets, other 

key intermediary elements remain to be identified.   
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TRANSPORT IN THE YEAST CANDIDA UTILIS: A COMPARISON WITH 

OTHER YEASTS 

4.1    INTRODUCTION 

One of the most challenging problems facing a cell is the regulation and integration of its 

metabolism in response to varying internal needs and a changing external environment.  For cells 

to survive the demands of a changing environment, they constantly have to regulate their 

metabolism.  One way of regulating the metabolism is to control the transport of metabolites 

across the semi-permeable membrane that separates the cell from its surroundings.  The cells 

must therefore possess highly specialised transport systems in their plasma membranes to import 

the necessary metabolites from the extracellular environment and to export waste products from 

the cell.  In addition, energy must be supplied to keep the intracellular concentrations at a level 

that may differ significantly from the external concentrations.  Transport processes also play an 

important role in cellular organelles such as the nucleus, vacuole and mitochondrion whose 

membranes employ a variety of transport mechanisms.  The following discussion will, however, 

focus on transport systems applicable to plasma and mitochondrial membranes, in particular 

those systems involved in the transport of dicarboxylic acids.  In view of the effect that glucose 

has on the regulation of dicarboxylic acid transport in C. utilis, relevant information on the 

general mechanisms involved in glucose transport in yeast will also be discussed in a subsequent 

section.  

4.2    MECHANISMS OF TRANSPORT 

Metabolic compounds may be transported across the plasma membrane by three different 

mechanisms, namely diffusion, facilitated transport and active transport (Figure 4.1).  The way in 

which cellular energy, which is primarily stored in chemical bonds (e.g. ATP), is supplied 

directly or indirectly to the transport systems is tightly related to the mechanism in which solutes 

are translocated across the cell membrane.     
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Figure 4.1.  A model illustrating the three types of cellular transport, namely simple diffusion, 
facilitated transport and active transport. 
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4.2.1    Diffusion 

Diffusion is the process of random movement of molecules across the membrane with a 

characteristic dependence upon the size of the diffusing molecule (Stein, 1986).  Simple chemical 

diffusion is rarely observed in yeasts as a means of metabolite uptake for a number of reasons:  

(1) diffusion is governed by the law of mass action and metabolites in the cell never exceed those 

in the surrounding medium, (2) the process is not saturable with respect to substrate 

concentration, and (3) neither temperature nor metabolic inhibitors play a role in the diffusion 

process (Cooper, 1982). 

Substances with a hydrophilic character enter the cell rapidly via passive diffusion with the 

largest permitted diameter of penetrating molecules being approximately 0.4 nm.  This limitation 

excludes the cyclic forms of the saccharides, but allows the penetration of the linear or acyclic 

forms (Kockova-Kratochvilova, 1990).  Amino acids with a diameter of less than 0.4 nm may 

also enter the cells by free diffusion.  Ethanol, H2O, O2, CO2 and hydrophobic molecules such as 



undissociated carboxylic acids, can cross the membrane by passive diffusion without the 

participation of either permeases or channel proteins (Stein, 1986). 

4.2.2    Facilitated Diffusion 

For many substances, the slow transport provided by passive diffusion is insufficient for the 

functional and metabolic requirements of the cell and other means are required to increase the 

transport rate.  In facilitated diffusion systems where translocation of the substrate across the 

membrane is mediated by a carrier protein, the driving force for solute translocation is provided 

exclusively by the concentration gradient of the substrate over the membrane (Solomon et al., 

2005).  Therefore, the uptake of substrates by facilitated diffusion does not require any metabolic 

energy.  Since the driving force becomes zero when internal and external substrate concentrations 

are equal, this process does not allow the uptake of substrates against a concentration gradient.  It 

is important to remember that although facilitated diffusion is sometimes very fast and very 

selective, it only represents a specialised form of diffusion. 

4.2.3    Active Transport 

Transport against a concentration gradient is called active transport and requires a free energy 

source that usually comes from the hydrolysis of ATP (Figure 4.2).  In particular, during growth 

at very low extracellular sugar concentrations, the intracellular accumulation of sugars may be 

required to allow the cytoplasmic sugar kinases and disaccharide hydrolases to function optimally 

(Lagunas, 1993).  This can be accomplished by coupling the uptake of a sugar molecule to the 

uptake of one or more protons via proton symport systems.  Thus, the proton motive force over 

the plasma membrane can be used to drive the intracellular accumulation of sugar.  This proton 

motive force is generated mainly by the plasma membrane H+-ATPase complex, which couples 

the hydrolysis of ATP to ADP + Pi to the outward translocation of protons (Weusthuis et al., 

1994a).  

Depending on the way in which solute translocation across the plasma membrane is energised, 

one generally discerns primary active transport and secondary active transport.  Primary transport 

forms the basis of transport by generating voltage and ion gradients across the membrane, 

whereas secondary active transporters are designed to utilise such gradients to drive solute 

transport (Gennis, 1989).   
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Figure 4.2.  Schematic representation of two mechanisms of sugar transport in yeast.  (A) 
Facilitated transport driven by the concentration gradient of the sugar.  (B) Proton-sugar 
symport driven by the proton motive force and the sugar concentration gradient.  ATP 
hydrolysis is required to expel the protons that enter the cytosolic compartment together with 
the sugar (adapted from Weusthuis et al., 1994a). 

Primary active transport.  In primary active transport processes, chemical energy is supplied 

directly to the transport system via hydrolysis of energy-rich chemical bonds catalysed by an 

enzyme located in the plasma membrane.  During this process, the enzyme may undergo a 

conformational change by which ions are translocated from one side of the membrane to the other 

side.  In yeast, the extrusion of protons from the cell is probably a primary active transport 

process that is mediated by a membrane bound ATPase.  The ion pumps not only create a 

concentration gradient across the membrane, but also an electrical potential difference between 

the cytoplasma and the medium due to the diffusion potentials of the actively translocated ions 

(Van Winkle, 1999).  In addition, if the active transport process translocated a net charge across 

the membrane, an extra electrogenic component is added to the membrane potential.  In yeast 

cells, the membrane potential (negative inside the cell) is generally believed to originate mainly 

from the electrogenic extrusion of protons from the cells.  By primary active translocation of 

protons, the energy stored originally in the chemical bonds is thus transformed into an 

electrochemical potential difference of protons across the membrane, known as the proton motive 

force (PMF). 

Secondary active transport.  Secondary transport proteins can be divided into two classes: 

symporters simultaneously translocate two different solutes across the membrane, for example 

protons and malate by the malate permease system in S. pombe (Sousa et al., 1992).  In contrast, 

 Transport in the yeast Candida utilis: A comparison with other yeasts 
42 



antiporters involve the coupled transport of two different molecules that move in opposite 

directions across a membrane, for example the mitochondrial dicarboxylate and 

succinate/fumarate antiports in S. cerevisiae.  In secondary active transport, solute translocation is 

energised not directly by hydrolysis of the chemical bonds, but by coupling of the solute transport 

to the electrochemical potential difference created via the primary active transport processes.  In 

the case of cation uptake, the coupling may be quite simple via the electrical part of the driving 

force.  Due to the membrane potential, which is generally negative inside the cell with respect to 

the medium, cations can be accumulated inside the cell to concentrations that are higher than 

those in the surrounding environment.  Intracellular concentrations of neutral solutes that are 

higher than the medium concentrations can be obtained by coupling neutral solute transport to the 

total PMF.  This may be achieved via mechanisms that transport one or more protons along with 

the neutral solute.  In a similar way, anion uptake can be energised via co-transport of the anion 

with two or more protons.  The membrane potential therefore plays an important role in the 

translocation of various solutes. 

4.3    CARBOXYLIC ACID TRANSPORT IN YEAST 

The concerted function of the cytosolic and mitochondrial compartments requires the presence of 

specific carrier proteins that catalyse the transport of various metabolites.  Therefore, transport of 

carboxylic acids occurs on two different levels in yeast cells, i.e. transport across plasma 

membranes and transport across mitochondrial membranes.  This section will focus on the 

transport of carboxylic acids across the plasma membrane, while transport across mitochondrial 

membranes will be discussed in a following section. 

Two classes of dicarboxylic acid transporters have been described for yeast, i.e. those that are 

repressed by glucose and those that are not.  In the K(+) yeasts Candida sphaerica (Côrte-Real et 

al., 1989), C. utilis (Cássio and Leão, 1993) and Hansenula anomala (Côrte-Real and Leão, 

1990), transport of L-malate and other dicarboxylic acids across the plasma membrane was found 

to be substrate-inducible and subject to glucose repression.  These yeast species are able to use 

L-malate as sole carbon and energy source.  In contrast, L-malate transport in the K(-) yeasts 

S. pombe and Zygosaccharomyces bailii, was found to occur only in the presence of glucose or 

another assimilable carbon source, with no substrate induction observed (Baranowski and Radler, 
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1984; Osothsilp and Subden, 1986b).   

Strains of the K(-) yeast S. cerevisiae lack the machinery for the active transport of L-malate and 

rely on rate-limiting simple diffusion for the uptake of extracellular L-malate (Delcourt et al., 

1995).  However, S. cerevisiae is able to utilise short-chain mono-carboxylic acids, such as 

lactate and pyruvate, as sole carbon and energy sources under aerobic conditions.  This is done by 

means of a proton symport process via a monocarboxylate permease (lactate/pyruvate permease, 

Jen1p), encoded by the JEN1 gene.  The gene is repressed  by glucose and induced by non-

fermentable substrates such as ethanol and lactate (Bojunga and Entian, 1999; Casal et al., 1999).  

JEN1 is negatively regulated by the repressors Mig1p and Mig2p, and requires Cat8p for full 

derepression during a shift from fermentative to respiratory growth (Bojunga and Entian, 1999).  

The Hap2/3/4/5 complex interacts specifically with a CAAT-box DNA element in the JEN1 

promoter to exert transcriptional derepression of the gene (Lodi et al., 2002).  Cat8p and the 

Hap2/3/4/5 complex are both essential for growth on non-fermentable carbon sources, but have 

different targets: Cat8p controls the glyoxylate cycle and gluconeogenesis, whereas the 

Hap2/3/4/5 complex activates genes involved in  respiratory pathways.   

The Jen1 lactate/pyruvate permease is the only permease reported to be involved in the transport 

of carboxylic acids in S. cerevisiae (Casal et al., 1999). However, monocarboxylate proton 

symporters with different specificities have been described in S. cerevisiae: acetate or ethanol-

grown cells contain a permease that is shared by acetate, propionate and formate (Casal et al., 

1996), while cells grown in lactate express an additional permease that transports lactate, 

pyruvate, acetate and propionate (Cássio et al., 1987; Casal et al., 1995).   The first system is 

constitutively expressed in cells growing on non-fermentable carbon sources, whereas the lactate 

system was specifically induced by lactate.  Both systems are completely repressed in the 

presence of glucose (Makuc et al., 2001) when monocarboxylates can cross the plasma 

membrane only by simple diffusion of the undissociated form of the acids.   

The presence of multiple carriers may be the basis of the versatility of “non-conventional” yeasts 

in the utilisation of organic acids as carbon sources.  The KlJEN1 and KlJEN2 genes from 

Kluyveromyces lactis (Lodi et al., 2004) were reported to encode a monocarboxylate permease 

and dicarboxylic acid transporter, respectively.  Transcription of KlJEN1 is glucose repressed and 

induced by lactate, while KlJEN2 is expressed in ethanol, acetate and succinate (but not lactate) 
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and repressed in the presence of glucose.  Both transporters are linked to oxidative metabolic 

processes: succinate, fumarate and malate (substrates of KlJen2p) are intermediates of the Kreb’s 

cycle, while lactate (substrate of KlJen1p) is oxidised by means of an enzymatic pathway strictly 

connected to the respiratory chain.  Mono- and dicarboxylic acids also have an additional 

metabolic role as gluconeogenetic precursors, which may explain the glucose repression observed 

for the expression of KlJEN1 and KlJEN2.   

4.3.1    Dicarboxylic Acid Transport in S. pombe 

Although S. pombe cannot use externally added L-malate as the only carbon and energy source, it 

is able to metabolise L-malate if glucose is present in the culture medium.  The dicarboxylic acid 

carrier of S. pombe was shown to be a proton dicarboxylate symport system that allows mediated 

transport and accumulation as a function of ∆pH (Sousa et al., 1992).  However, in the presence 

of high malate concentrations and low pH values, simple diffusion of the undissociated acid 

occurs through the lipid bilayer. 

The S. pombe proton-malate symport is constitutive and remains active in the presence of high 

glucose concentrations (Sousa et al., 1992), but the transport of L-malate was inhibited by ethanol 

or acetate.  In support of S. pombe’s requirement for fermentable carbon sources for L-malate 

utilisation, it was postulated that sugar metabolism provides the required energy by inducing the 

proton motive force for active transport of L-malate (Taillandier and Strehaiano, 1991; Camarase 

et al., 2001).   

Competitive inhibition of the initial uptake rates of both labeled L-malate and labeled succinic 

acid by D-malate, fumarate, oxaloacetate, α-ketoglutarate, maleate and malonate strongly 

suggested that these acids share the same carrier in S. pombe (Osothsilp and Subden, 1986b; 

Sousa et al., 1992).  All of these acids induce proton uptake that follows Michaelis-Menten 

kinetics as a function of the concentration of the acids.  It was therefore concluded that the 

negatively charged form of L-malate (probably the mono-anionic form) is transported by a 

proton-symport mechanism and that the carrier is a common ‘dicarboxylate transport system’ 

(Sousa et al., 1992).  However, Grobler et al. (1995) and Saayman et al. (2000) observed that 

although α-ketoglutarate and fumarate acted as competitive inhibitors of L-malate transport, 

neither α-ketoglutarate nor fumarate were transported by S. pombe cells. 

 Transport in the yeast Candida utilis: A comparison with other yeasts 
45 



The structural gene for the S. pombe malate permease (mae1) was cloned and characterised by 

Grobler et al. (1995).  It encodes an open reading frame of 1 314 bp that is translated into a 

putative protein of 438 amino acids with a calculated molecular mass of approximately 49 kDa.  

A hydropathy profile of the predicted amino acid sequence revealed a protein with ten 

membrane-spanning or associated domains and a similar structure to models proposed for 

integral membrane proteins from both prokaryotes and eukaryotes.  Although the putative mae1p 

protein did not contain a N-terminal membrane-targeting signal, the presence of an internal 

membrane signal motif was suggested. 

4.3.2 Carboxylic Acid Transport in C. utilis 

The yeast C. utilis can utilise short-chain carboxylic acids as sole source of carbon and energy 

(Barnett et al., 1990; Côrte-Real and Leão, 1990).  When cells of C. utilis are grown in media 

with lactate, L-malate, citrate or other metabolisable carboxylic acids, they are able to transport 

mono-, di- and tricarboxylic acids across the plasma membrane by two mediated transport 

systems: a proton symport specific for mono-, di- and tricarboxylates and a facilitated transport 

system able to accept the undissociated forms of the acids (as well as some amino acids).  Both 

transport systems are inducible and subject to glucose repression (Leão and Van Uden, 1986; 

Cássio and Leão, 1991, 1993).  Lactate in C. utilis is transported by a monocarboxylate proton 

symport that is also inducible and subject to glucose repression (Leão and Van Uden, 1986).  

This system is also able to accept pyruvate, acetate, propionate and other monocarboxylic acids, 

but not di- and tricarboxylic acids or amino acids.   

Citrate-grown cells of C. utilis induced two transport systems for citrate, presumable a proton 

symport and a facilitated diffusion system for the charged and the undissociated form of the acid, 

respectively (Cássio and Leão, 1991).  Both systems could be observed simultaneously at pH 3.5 

with a Vmax = 1.14 nmol/s/mg cells and Km = 0.9 mM for the undissociated acid in the low-

affinity system, and a Vmax = 0.38 nmol/s/mg cells and Km = 0.056 mM for citrate in the high-

affinity system.  At pH values above 5.0 units, the low-affinity system was absent or not 

measurable.  The two transport systems exhibited different substrate specificities:  isocitrate and 

citrate showed competitive inhibition for the high-affinity system, while the low-affinity system 

seems to be involved in the transport of isocitrate, lactate and L-malate.  The two transport 

systems were repressed by glucose and inducible by citrate, lactate and L-malate, but the 
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induction was not dependent on the relative concentration of the anionic form(s) and of 

undissociated citrate in the culture medium.  The passive diffusion of undissociated citrate in 

C. utilis is subject to opposite pH influences: an increase in diffusion due to the relative increase 

of undissociated acid with decreasing pH, and a decrease in diffusion due to decreasing 

permeability with decreasing pH.  Similar behaviour was observed with respect to passive 

diffusion across the plasma membrane for protons in S. cerevisiae (Leão and Van Uden, 1984), 

undissociated lactate in C. utilis (Leão and Van Uden, 1986) and S. cerevisiae (Cássio et al., 

1987), and undissociated L-malate and succinate in C. sphaerica (Côrte-Real et al., 1989) and 

H. anomala (Côrte-Real and Leão, 1990), respectively. 

Two distinct transport modes were reported for L-malate and succinate in C. utilis:  a low affinity 

system (Km of 1.5 mM for L-malate and Km of 1.8 mM for succinate) and a high affinity system 

(Km of 4 mM for L-malate and Km of 0.3 mM for succinate).  All the other dicarboxylic acids, as 

well as lactate, pyruvate and citrate, also use the low affinity transport system.  Amino acids such 

as glycine and glutamate competitively inhibited the uptake of succinate at high concentration 

levels, suggesting that they also use the low affinity system (Cássio and Leão, 1993).  A common 

carrier protein was suggested for L-malate, fumarate, oxaloacetate and α-ketoglutarate, since they 

are all competitive inhibitors of the high affinity succinate transport system.  The high-affinity 

L-malate transport system can be described as a proton-dicarboxylate symport, while the low-

affinity component is not dependent on transmembrane proton-motive forces, which are 

consistent with the hypothesis that the undissociated acid is transported by facilitated diffusion. 

A significant difference in the transport of fumarate and L-malate has been observed for C. utilis 

and S. pombe.  Cells of S. pombe were unable to transport fumarate, although fumarate acted as a 

competitive inhibitor, whereas cells of C. utilis were able to actively transport both L-malate and 

fumarate (Saayman et al., 2000).  The uptake of both dicarboxylic acids by C. utilis was induced 

by either of the substrates.  Furthermore, kinetic data suggested that fumarate and L-malate was 

transported by the same carrier protein in C. utilis, which explains the similar regulatory 

mechanisms observed for the transport of the two substrates.  Degradation of either fumarate or 

L-malate by C. utilis was sensitive to the presence of glucose, supporting previous reports that the 

utilisation of L-malate in C. utilis was subject to glucose repression (Cássio and Leão, 1993).  

Transport of either fumarate or L-malate by C. utilis was also insignificant in the presence of 
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other carbon sources such as raffinose and glycerol/ethanol (Saayman et al., 2000), confirming 

that the dicarboxylic acids are only being transported in the presence of either of the inducers and 

when no alternative carbon source is available.  In contrast, the S. pombe proton-malate symport 

system is constitutive and can only metabolise L-malate in the presence of glucose or another 

assimilable carbon source (Sousa et al., 1992). 

4.4    MITOCHONDRIAL TRANSPORT OF TCA CYCLE INTERMEDIATES 

In addition to providing most of the cellular energy in the form of ATP by oxidative 

phosphorylation, mitochondria are also involved in several metabolic processes that require the 

participation of both intra- and extra-mitochondrial enzyme reactions.  Therefore, metabolite 

movement across the mitochondrial membrane is essential to both mitochondrial and cytosolic 

metabolism.  Hence, in facultative aerobic eukaryotes such as S. cerevisiae, mitochondria are 

indispensable for growth even under anaerobic conditions.  The combined function of the 

cytosolic and mitochondrial compartments requires the presence of specific carrier proteins that 

catalyse the transport of various metabolites across the inner mitochondrial membrane.  The 

transport of metabolites through the inner mitochondrial membrane is accomplished by related 

proteins belonging to the mitochondrial carrier superfamily (Palmieri, 2004).  Their sequences 

are characterised by three tandem related sequences of about 100 amino acids, each of them 

probably being folded into two anti-parallel transmembrane α-helices linked by an extensive 

hydrophilic sequence (Palmieri et al., 1996).  The three repeats are joined together by shorter 

hydrophilic sequences.  This arrangement was first identified in the sequence of the ADP/ATP 

translocase, and subsequently in the uncoupling protein from brown fat mitochondria, as well as 

in the mitochondrial phosphate, oxoglutarate-malate, citrate and carnitine transporters (Aquila et 

al., 1982, 1985; Runswick et al., 1987, 1990; Kaplan et al., 1993; Indiveri et al., 1997).   

Although metabolite transport across the mitochondrial inner membrane has been widely 

investigated over the last 30 years, our knowledge of the function of individual mitochondrial 

transporters in cell metabolism is still limited.  The genome of S. cerevisiae encodes 35 putative 

mitochondrial carriers (Palmieri, 1994), including three isoforms of the ADP/ATP translocase 

(Lawson and Douglas, 1988, Kolarov et al., 1990), the phosphate and ornithine carriers and four 

transporters involved in C2/C3 transport (Wohlrab and Briggs, 1994; Kaplan et al., 1995).  From a 
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metabolic point of view, the presence of 23 yet-unidentified mitochondrial transporters in 

S. cerevisiae indirectly points to the existence of metabolic pathways involving transport 

processes across the mitochondrial membrane that have so far escaped discovery.  It is likely that 

the identification of these genes will provoke interesting bioenergetic and metabolic research.   

In the following sections, the four known transporters involved in the mitochondrial transport of 

C2/C3 compounds in S. cerevisiae will be discussed in more detail.  None of the mitochondrial or 

plasma membrane transporters have yet been identified in C. utilis, with little known about 

mitochondrial transport in S. pombe.   

4.4.1    Succinate-Fumarate Transporter 

The SFC1 gene encoding the succinate-fumarate transporter in S. cerevisiae is responsible for the 

transport of succinate, produced in the cytosol by the glyoxylate pathway, into the mitochondrial 

matrix in exchange for fumarate (Palmieri et al., 1997).  As succinate dehydrogenase is only 

accessible to succinate in the mitochondrial matrix, succinate produced in the cytosol has to be 

imported into the mitochondrial matrix (Figure 4.3).  The succinate-fumarate transporter 

therefore connects the production of succinate by the glyoxylate cycle in the cytosol with the 

tricarboxylic acid cycle.  Fumarate exported to the cytosol in exchange with succinate is first 

converted to malate and then to oxaloacetate, which is funneled into the gluconeogenic pathway 

that is indispensable for S. cerevisiae growth on ethanol or acetate (Gancedo and Serrano, 1989).  

Cells of S. cerevisiae lacking the SFC1 gene, encoding the succinate-fumarate transporter, are 

therefore unable to grow on ethanol or acetate as the sole carbon source (Fernandez et al., 1994).  

Bojunga et al. (1998) and Redruello et al. (1999) demonstrated that the induction of SFC1 is 

strictly co-regulated with the genes encoding key enzymes involved in the glyoxylate cycle 

(isocitrate lyase and malate synthetase) and gluconeogenesis (phosphoenolpyruvate 

carboxykinase and fructose-1,6-bi-phosphatase).   

4.4.2    Dicarboxylate Transporter 

The S. cerevisiae dicarboxylate transporter (DIC) is an integral membrane protein that catalyses a 

dicarboxylate-phosphate exchange across the inner mitochondrial membrane (Palmieri et al., 

1999b).  Accumulation of the dicarboxylates succinate and malate in the mitochondrial matrix 

was found to be dependent on the pH gradient across the mitochondrial membrane.  Since the 
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dicarboxylate-phosphate exchange is electroneutral, the pH dependence of the dicarboxylate 

uptake into the mitochondria is due to the re-uptake of phosphate (as Pi
-/H+ symport or Pi

-/OH- 

antiport via the phosphate carrier), whose distribution across the membrane is in direct 

equilibrium with the pH gradient.  Subsequent studies on intact S. cerevisiae cells confirmed the 

accumulation of phosphate and dicarboxylates in the mitochondria with respect to the cytosol 

(Palmieri et al., 2000b).  Thus, the function of the dicarboxylate transporter was clearly to 

catalyse the entry of Krebs cycle intermediates into the mitochondria. 
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Figure 4.3.  Pathways involved in succinate metabolism in S. cerevisiae. DIC, dicarboxylate 
carrier; PiC, phosphate carrier; SFC, succinate-fumarate carrier (adapted from Palmieri et al., 
2000b). 
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In S. cerevisiae, two mitochondrial transport systems for succinate were identified:  the DIC 

(Palmieri et al., 1996) and the succinate-fumarate carrier (SFC) (Palmieri et al., 1997).  As 

discussed above, the SFC protein requires fumarate as counter-substrate, whereas the DIC 

catalyses the import of succinate into the mitochondria in exchange for internal phosphate.  As 

the latter is recycled in the mitochondria by the phosphate carrier, the combined activity of the 

DIC and phosphate carrier leads to a net uptake of succinate. 

In S. cerevisiae growing on ethanol or acetate, the dicarboxylate transporter catalyses the import 

of succinate in exchange for internal phosphate (Palmieri et al., 2000a).  The conversion of 

succinate to fumarate and oxaloacetate within the mitochondria allows the oxidation of acetyl-

CoA produced from ethanol or acetate and triggers the activity of the succinate-fumarate carrier.  

Findings by Palmieri et al. (1996, 1997, 1999a) indicated that the primary function of the 

dicarboxylate transporter is to catalyse the entry of cytoplasmic dicarboxylates into the 

mitochondrial matrix and calls into question the generally-accepted view that this transport is 

involved in gluconeogenesis by exporting malate from the mitochondria (Meijer and Van Dam, 

1974).  Clearly a lower activity of the dicarboxylate transporter would favour the utilisation of 

cytosolic succinate by the succinate-fumarate transporter and thereby the gluconeogenic pathway.   

4.4.3    Oxaloacetate Transporter   

The S. cerevisiae gene OAC1 encodes a member of the mitochondrial transporter family 

responsible for the transport of oxaloacetate and sulfate, while the main substrates of the 

oxoglutarate and the dicarboxylate transporters, i.e. oxoglutarate, malate, succinate and 

phosphate, are poorly transported (Palmieri et al., 1999a).  The Oac1p catalyses both uni-

directional transport and counter-exchange of substrates.  As the S. cerevisiae pyruvate 

carboxylase is cytoplasmic, a physiological role of Oac1p is probably to catalyse the uptake of 

oxaloacetate into mitochondria, a role supported by the higher transcript level observed in 

synthetic medium than in rich medium (Richard et al., 1997).  Since the OAC1 gene is not 

essential for growth of S. cerevisiae cells, it is likely that in the absence of Oac1p, cytosolic 

oxaloacetate is converted into malate, which enters the mitochondrion via the dicarboxylate 

carrier in exchange for phosphate.  A role in anaplerosis for both the oxaloacetate and 

dicarboxylate transporters is consistent with the failure of a yeast strain lacking both transporter 

genes to grow on non-fermentable carbon sources (Palmieri et al., 1999a).  Another possible role 

 Transport in the yeast Candida utilis: A comparison with other yeasts 
51 



for Oac1p may be to transfer reducing equivalents from the mitochondrial matrix to the cytosol 

by catalysing a malate/oxaloacetate exchange when the intramitochondrial concentrations of 

NADH and L-malate are high. 

4.4.4    Citrate Transporter 

The S. cerevisiae citrate transport protein, CTP, catalyses the efflux of the tricarboxylate citrate 

plus a proton across the mitochondrial inner membrane in exchange for another citrate, malate, 

isocitrate, succinate or phosphoenolpyruvate molecule (Sandor et al., 1994).  Following diffusion 

through the outer membrane voltage-dependent anion channels, the resulting cytoplasmic citrate 

fuels both fatty acid and sterol biosyntheses and generates NAD+ for glycolysis (Endemann et al., 

1982; Conover, 1987).  The CTP transporter has been kinetically characterised in mitochondria 

isolated from S. cerevisiae where it displays a Km of 0.36 mM (Kaplan et al., 1995), and substrate 

preference for citrate, isocitrate, and to a considerably lesser extent, malate.   

4.5    SUGAR TRANSPORT IN YEAST  

All known yeasts are able to utilise one or more sugars as their principal source of carbon and 

energy.  The Crabtree-positive yeasts, including S. cerevisiae, have a strong tendency toward 

alcoholic fermentation where high rates of sugar uptake result in alcoholic fermentation, even 

when oxygen is present in excess (Van Dijken and Scheffers, 1986).  In contrast, low sugar 

concentrations result in a low rate of sugar uptake where sugar metabolism is fully respiratory.  

However, the high Km values for sugar transport that are characteristically found in S. cerevisiae 

strains, are not typical of yeasts, since many species appear to be well equipped for growth at low 

sugar concentrations. 

The most intensively studied case of sugar transport in yeasts is that of glucose transport in 

S. cerevisiae (Lagunas, 1993).  Glucose is the preferred carbon and energy source for most cells 

and in addition to being a major nutrient, glucose can act as a “growth hormone” to regulate 

several aspects of cell growth, metabolism and development.  How a eukaryotic cell senses 

glucose and signals its presence, how this signal affects cellular processes, and how optimal 

utilisation of the sugar is achieved, are fundamental questions of which many are still 

unanswered.   

 Transport in the yeast Candida utilis: A comparison with other yeasts 
52 



Since transport constitutes the first step in the metabolism of a large number of sugars, transport 

is likely to have a substantial impact on the regulation of the glycolytic flux (Weusthuis et al., 

1994a).  Glucose can be transported into yeasts via different uptake mechanisms such as 

facilitated diffusion (Romano, 1982) or active transport through a proton-glucose symporter as 

shown for species of Candida (Spencer-Martins and Van Uden, 1985).  Since sugars are highly 

polar molecules, free diffusion across the membrane lipid bilayer probably does not contribute 

significantly to their rate of entrance into the cell at low sugar concentrations (Lengeler, 1993), 

but free diffusion might contribute to some extent to the overall sugar influx at high sugar 

concentrations (Fuhrmann and Völker, 1993; Walsh et al., 1994).  This was demonstrated in a 

variety of cases where the dependence of the rate of transport on the assay sugar concentration 

yielded a biphasic kinetic plot, indicating the presence of two uptake systems (Spencer-Martins 

and Van Uden, 1985; Van den Broek et al., 1986). 

The large majority of yeast strains can either respire sugars or ferment it to ethanol and carbon 

dioxide.  In organisms such as S. cerevisiae, alcoholic fermentation is triggered when aerobic 

sugar-limited cultures are exposed to sugar excess (Boles and Hollenberg, 1997).  This 

instantaneous response is known as the short term Crabtree effect (Petrik et al., 1983; Van Urk et 

al., 1988) and is followed by long-term adaptation involving repression of respiratory enzymes 

(Pronk et al., 1996).  Crabtree-negative yeasts, such as C. utilis, do not exhibit this response 

(Petrik et al., 1983; Rieger et al., 1983) and seem to be exemplary of organisms that survive in 

environments with a low nutrient supply.   

A relationship has been observed between the short-term Crabtree-effect and the mode of hexose 

transport (Boles and Hollenberg, 1997).  In general, Crabtree-positive yeasts possess facilitated 

diffusion systems for the uptake of hexoses, while Crabtree-negative yeasts depend on energy-

dependent H+ symport systems (Van Urk et al., 1989b; Weusthuis et al., 1994a).  This is in 

agreement with the observation that various Crabtree-negative yeasts are better adapted to grow 

at low sugar concentrations, which offers an explanation for the competitive advantage of so-

called wild yeasts when these contaminate industrial baker’s yeast production processes (Postma 

et al., 1989a).  Yeasts like C. utilis possess high-affinity proton/glucose symporters that enable 

them to effectively scavenge the sugar at low growth rates (Van Urk et al., 1989b).  In contrast, 

S. cerevisiae transports the glucose by low-affinity facilitated transport, leaving relatively high 
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residual glucose levels in the culture.   

The yeasts species presented in Table 4.1 can be divided into two groups with respect to their 

mechanism for glucose uptake.  Those possessing high-affinity uptake systems accumulate 

glucose via an energy-requiring process, namely H+-symport, such as the C. utilis glucose uptake 

system.  In contrast, S. cerevisiae and S. pombe exhibit low-affinity uptake systems where 

glucose uptake probably proceeds by facilitated diffusion only.  Some yeasts can transport 

glucose by an inducible high-affinity (Km 0.02 – 0.2 mM) H+-symport mechanism, for example 

Kluyveromyces marxianus (Van den Broek et al., 1986; Gasnier, 1987) and some Candida 

species (Spencer-Martins and Van Uden, 1985; Van den Broek et al., 1986).  Loureiro-Dias 

(1988) reported that induction of this H+-symport mechanism at low glucose concentrations is 

particularly common in the genera Rhodotorula, Candida and Hansenula.  At high glucose 

concentrations, this high-affinity transport is repressed and only a low-affinity carrier (Km 2-3 

mM) is detected (Spencer-Martins and Van Uden, 1985; Gasnier, 1987).   

Table 4.1.  Glucose transport parameters for different yeast speciesa

Species Affinity (Km) 
(mM)a

Capacity (Vmax) 
(nmol/g/h)a

 High Low High Low 
Crabtree-positive yeasts     

Saccharomyces cerevisiae  
 

1.0 
20 

 12 
9 

Schizosaccharomyces pombe  1.5  9 
Torulopsis glabrata  1.2 

18 
 31 

93 
Brettanomyces intermedius 0.03 

0.6 
 2.1 

2.4 
 

Crabtree-negative yeasts     
Candida utilis 0.025 

0.2 
 8.4 

5.4 
 

Pichia stipitis 0.015  6  
Kluyveromyces marxianus 0.025 1.8 1.2 3 
Hansenula nonfermentans 0.02 3.1 3.6 3.3 
 0.2  1.5  

                      a Data from Van Urk et al. (1989b) 
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4.5.1    Sugar Transport in C. utilis 

Glucose transport.  During the growth of yeasts on sugars, the energy requirement for sugar 

transport can be substantial.  Verduyn (1991) calculated that the theoretical energy cost of sugar 

transport in the yeast C. utilis growing on glucose is 8.2 mmol of ATP.g of biomass-1, or 20% of 

the total ATP requirement.  Cells of C. utilis display a set of transport systems for glucose in 

what seems to be a general pattern among several yeasts, including C. wickerhamii (Spencer-

Martins and Van Uden, 1985), C. sheatae (Lucas and Van Uden, 1986), C. intermedia (Loureiro-

Días, 1987), Pichia ohmeri (Verma et al., 1987) and K. marxianus (Gasnier, 1987).  In all these 

yeasts, two systems were found, namely a H+-symport when there is no or a very low 

concentration of glucose in the growth medium, and a facilitated transport system in the presence 

of higher concentrations of glucose. 

Peinado et al. (1988) found an H+ symport in C. utilis displaying simple hyperbolic kinetics and a 

facilitated transport with a complex behaviour.  Both systems could be observed simultaneously 

in chemostat-grown cells at steady-state glucose concentrations below 10 mM, although the 

affinity of the glucose transport system is related to the residual substrate concentration in the 

culture.  The yeast appears to synthesise carriers with affinity constants that are tuned to the 

environmental sugar concentration (Postma et al., 1989c).  Moreover, they produce just enough of 

these carriers to account for the glucose flux required to sustain the growth rate (Postma et al., 

1988, 1989b).  The H+-symport has such a high affinity (Km about 15 µM) that it is saturated 

under any conditions where glucose can be detected, so it makes sense that its regulation has to 

be based on the amount of carrier present in the cells, which is controlled by induction and 

repression.  It is also conceivable that the H+ symport may be inactivated by glucose or even 

interconverted into a facilitated transport system, as previously described in other yeasts 

(Spencer-Martins and Van Uden, 1985; Verma et al., 1987).  Regulation of transport at high 

glucose concentrations may also be achieved by changes in the affinity of a single carrier 

(Peinado et al., 1988).   

Postma et al. (1988) suggested that the kinetics of glucose transport in C. utilis are adapted to the 

residual concentration via a well-balanced synthesis of three different transport systems, which 

are characterized by their affinity constants. The three transport systems differed by an order of 

magnitude in their affinity constants, namely a high affinity (Km of 0.025 mM, Vmax of 130 
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µmol/g cells/min), a medium-affinity (Km of 0.190 mM, Vmax of 160 µmol/g cells/min) and a 

low-affinity uptake system (Km of 2 mM, Vmax of 300 µmol/g cells/min).  It is evident that the 

residual glucose concentration in the culture is a decisive parameter in the regulation of the 

synthesis of the three transport systems, with the presence of a transport system with a Km of 

0.025 mM allowing growth of C. utilis at very low glucose concentrations.  

In order to investigate the relationship between sugar transport and the physiology of the yeasts, 

the kinetics of glucose oxidation were determined in S. cerevisiae and C. utilis (Postma et al., 

1989c).  The affinity constant for glucose oxidation of C. utilis increased when conditions were 

shifted from glucose excess to glucose limitation from a Km of 0.68 mM to a Km of 0.025 mM.  

In contrast, the affinity constant for glucose oxidation of S. cerevisiae did not vary significantly 

with the conditions applied, with a Km of 0.34 mM under glucose excess.  These finding are in 

line with the observation that induction of carriers with lower affinity constants occurs during 

glucose-limited conditions in C. utilis.  In contrast, the two glucose transport systems of 

S. cerevisiae appear to be present at all growth conditions (Bisson, 1988).   

Disaccharide transport. Glucose is by far the most commonly used substrate for fundamental 

physiological studies on sugar metabolism in yeasts.  However, only few industrial applications 

are based on glucose as a feedstock.  Industrial substrates such as molasses, whey, starch 

hydrolysates and wort all contain disaccharides (sucrose, lactose and maltose) as the major sugar 

component (Weusthuis et al., 1994a). 

In yeast, the first step in the utilisation of a disaccharide is usually its transport across the plasma 

membrane from the external medium into the cytosol by means of a stereospecific carrier.  The 

second step is the intracellular hydrolysis of the sugar into its monomers before their subsequent 

catabolism through the glycolytic pathway.  However, in contrast to glucose metabolism, 

disaccharide metabolism in yeast is not necessarily initiated by the uptake of the sugar molecule.  

Some yeast species have glycosidases acting outside the plasma membrane, therefore the 

monosaccharides produced through hydrolysis, rather than the disaccharide itself, is carried into 

the cell (Rolim et al., 2003).  For example, in the yeast K. marxianus, sucrose is initially 

hydrolysed to glucose and fructose by the extracellular enzyme inulinase (Rouwenhorst et al., 

1988; 1991), followed by the transport of the respective hexoses into the cell (Figure 4.4).  

Conversely, disaccharides can also be transported across the plasma membrane prior to 
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hydrolysis by an intracellular hydrolase, such as for maltose utilisation by S. cerevisiae.  In most 

cases, the uptake of disaccharides by yeasts has been reported to occur via proton symport 

systems that characteristically have a relatively high affinity constant of 2 to 6 mM (Schulz and 

Höfer, 1986; Carvelho-Silva and Spencer-Martins, 1990).   
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The maltose utilisation system of C. utilis is affected by glucose through two different 

mechanisms: catabolite repression and inactivation.  The C. utilis maltose permease is under the 

control of both, whereas the α-glucosidase is only repressed by glucose (Peinado et al., 1987).  In 

glucose-maltose continuous cultures, both sugars were consumed simultaneously at glucose 

steady-state concentrations below 100 mg/l.  At higher glucose concentrations, repression of the 

maltose permease increased steeply, being complete when the glucose concentration reached 

170 mg/l.   



In C. wickerhamii, glucose induced inactivation of its glucose transport system has been shown to 

be triggered by the interaction of the glucose molecule with a target on the cell surface (Spencer-

Martins and Van Uden, 1985).  This was not the case for the maltose transport system of C. utilis, 

where glucose induced the inactivation of maltose permease (in maltose growing and resting 

cells) by decreasing Vmax, without changing the maltose affinity for its transport system.  The 

inactivation process apparently required the entrance of the inactivator into the cell and its 

subsequent phosphorylation.  This was supported by the specific inactivation rate that showed a 

dependence on glucose similar to that of glucose transport and the observation that only glucose 

analogues that were rapidly phosphorylated by hexokinases (i.e. 2-deoxyglucose), induced 

inactivation (Peinado et al., 1987).  

Maltose uptake by C. utilis has been reported to involve an H+-sugar symport system with a Km 

of about 0.4 mM (Peinado et al., 1987).  Since maltose is taken up as a disaccharide, maltose 

uptake is an uphill process and is, similar to glucose, PMF-dependent in C. utilis.  Furthermore, 

the maltose permease of C. utilis is a reversible carrier that acts in an asymmetrical way, leading 

to slow maltose efflux compared with maltose influx (Van den Broek et al., 1997). 

The first step in the catabolism of trehalose by C. utilis involves its entry into the cell by means 

of a trehalose membrane transporter.  Inside the cell, trehalose is hydrolysed by neutral and/or 

acidic trehalases, both of which showed increased activities in the presence of external trahalose.  

The activities of the trehalose transporter, both trehalases as well as α-glucosidase and the 

maltose transporter were increased when maltose or trehalose, but not glucose, was used as the 

carbon source (Rolim et al., 2003).  Thus it appears that maltose and trehalose, or a common 

metabolite of their catabolism, are able to regulate the activities of the specific enzymes and 

transporters which are needed for the initial steps of each others catabolism.   

Cells of C. utilis can transport trehalose by an inducible trehalose transporter with a Km of 8 mM 

for trehalose and a Vmax of 1.8 µmol trehalose min-1 mg cell (dry weight)-1.  The only well-

characterised yeast trehalose transporter is the AGT1-encoded trehalose transporter of 

S. cerevisiae, which is postulated to have evolved from a duplication of a maltose permease gene.  

The AGT1 gene was shown to be transcriptionally repressed by Mig1, a transcriptional factor 

responsible for glucose repression of several genes (Nehlin and Ronne, 1990), and activated by 

MalR, the activator of the expression of the MAL genes (Hong and Marmur, 1987).  This double 
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regulation causes AGT1 to be positively regulated by maltose and repressed by glucose (Han et 

al., 1995; Stambuk et al., 1998).  A similar pattern of activity for the trehalose transporter of 

C. utilis was found by Rolim et al. (2003).  However, their results did not discriminate between a 

trehalose/maltose induction or a double regulation involving also glucose repression. 

4.5.2    Sugar Transport in S. pombe 

Unlike the multiple (low- and high-affinity) sugar transport systems described in many yeast 

species, fission yeast seems to have a much simpler mode of transport.  Glucose uptake in 

S. pombe was described to be energy-dependent driven by the plasma membrane ATPase-

generated electrochemical gradient (Höfer and Nassar, 1987).  Kinetic analysis revealed a 

specific D-gluconate-H+-symport activity (Hoever et al., 1992; Caspari, 1997) that is responsible 

for both aerobic and anaerobic glucose transport.  It was established that S. pombe harbors a 

multimember family of functional hexose transporters.  Of these, Ght5p is the prominently 

expressed one and represents the high-affinity D-glucose transporter of the S. pombe wild-type 

strain.  Ght2p was characterised as a D-glucose transporter, with moderate affinity and transport 

capacities, while Ght3p encodes a specific D-gluconate transporter.    Ght6p exhibits a slightly 

higher affinity for D-fructose than for D-glucose and is suggested to be the predominant 

transporter for D-fructose uptake.   

A dendrogram of sequence similarities among hexose transporters from humans and different 

yeast species documents the high similarity between the S. pombe transporter proteins and the 

presence of three clusters of hexose transporters (Heiland et al., 2000) (Figure 4.5).  Within the 

yeast monosaccharide transporters, the S. pombe proteins are clustered in a group that is distinct 

from the other groups comprising the S. cerevisiae and Kluyveromyces lactis transporters 

(GroupII) and the human glucose transporters (Group III), which are set separately from all the 

yeast genes.  Within the S. pombe Ght transporter family, the Ght3p and Ght4p transporters, 

which are 88% identical to each other, build a subcluster versus Ght1p, Ght2p, Ght5p, and Ght6p.  

Ght3p and Ght4p are also unusual in that they encode two transporters with significant amino 

acid exchanges in transmembrane 10, which were suggested to contribute to substrate specificity.  

In both Ght3p and Ght4p, the most highly conserved phenylalanine residue in the characterized 

D-glucose transporters is replaced by a tyrosine residue in a way similar to the corresponding 

residue of GAL2p of S. cerevisiae.  Furthermore, a tyrosine to tryptophan switch responsible for 
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discrimination between D-galactose and D-glucose in GAL2p (Kasahara et al., 1997), was also 

found in Ght3p and Ght4p of S. pombe.  However, since S. pombe does not take up or utilise 

D-galactose, the alteration of these functional amino acids may indicate an alteration of Ght3p 

and Ght4p substrate specificity to D-gluconate. 

Figure 4.5.  Dendrogram of sequence similarities among the human and the yeast hexose 
transport proteins. The dendrogram was derived from an alighment of some representative 
amino acid sequences of the hexose transporters of S. pombe (S.p.), S. cerevisiae (S.c.), 
Kluyveromyces lactis (K.l.), Candida albicans (C.a.) and Homo sapiens (H.s.) glucose 
transporters.  The dentrogram classifies the relationships of the transport proteins based on 
their sequence similarities.  The lengths of the horizontal branches are inversely proportional 
to the similarity of the sequences at each branch tip.  The S. pombe hexose transporters are 
clustered as a distinct group (Group I) and are less related to the S. cerevisiae and K. lactis
transporters, which comprise Group II.  The human glucose transporters GLUT1 and GLUT4 
are set separately from the yeast transporters in Group III (taken from Heiland et al., 2000). 

Group III 
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Group II 
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In S. pombe and C. utilis, as well as in most prokaryotes, there is a separate transporter for 

maltose, which subsequently gets hydrolysed intracellularly (Cheng and Michels, 1989; 

Williamson et al., 1993; Liong and Ferrenci, 1994).  However, other reports indicated that 

S. pombe might have an extracellular maltase, leading to the extracellular hydrolysis of maltose 

to glucose (Höfer and Nassar, 1987), resembling results with low glucose concentrations.  It is 

possible that fission yeast has a common transporter for the monosaccharides and no separate 

transporter for disaccharides.  
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MALATE METABOLISM IN YEAST 

5.1    INTRODUCTION 

The study of L-malate metabolism in yeasts is of great biotechnological interest.  It is an 

essential intermediate of cell metabolism, commonly used in a variety of foods and beverages 

(the D,L-racemate mixture) or in the treatment of liver disfunction and hyperammonemia (the 

L-isomer).  In the wine industry, it may be present during grape must fermentation and/or in 

the wine, contributing to the “fixed acidity” that defines in an important way the quality of the 

final product.   L-Malate is also used as an acidulant in the food industry and holds about 10% 

of this market.  It is produced commercially by two processes, either by chemical synthesis 

via hydratation of maleate or fumarate to yield the racemic mixture, or by an enzymatic 

process using fumarase-containing microbial cells that yield the L-isomer (Chibata et al., 

1983). 

Several yeast species are recognised for their ability to metabolise extracellular L-malate and 

fall into either the K(-) or K(+) yeast groups, depending on their ability to utilise L-malate and 

other tricarboxylic acid (TCA) cycle intermediates as sole carbon or energy source (Barnett 

and Kornberg, 1960; Barnett et al., 1990; Rodriquez and Thornton, 1990).  The K(+) group 

includes Candida sphaerica (Côrte-Real et al., 1989), C. utilis (Cássio and Leão, 1993), 

Hansenula anomala (Côrte-Real and Leão, 1990), Pichia anomala (Amador et al., 1996) and 

Kluyveromyces marxianus (Queiros et al., 1998), which have the ability to utilise TCA cycle 

intermediates as sole carbon sources.  The K(-) group of yeasts comprises those yeasts 

capable of utilising TCA cycle intermediates only in the presence of glucose or other 

assimilable carbon sources (Barnett and Kornberg, 1960).  According to this definition, 

Saccharomyces cerevisiae, Schizosaccharomyces pombe and Zygosaccharomyces bailii are all 

classified as K(-) yeasts.  Although grouped together, the yeasts in this group have significant 

differences in their abilities to degrade malate.  The yeast S. cerevisiae is regarded as an 

inefficient metaboliser of extracellular malate, which has been attributed to the lack of a 

mediated transport system for the acid (Salmon, 1987).  Strains of S. pombe and Z. bailii can 

degrade high concentrations of L-malate, but only if glucose or another assimilable carbon 

source is present (Baranowski and Radler, 1984; Rodriquez and Thornton, 1989).  In 

S. pombe, the transport of L-malate across the plasma membrane is carrier-mediated 

(Osothsilp and Subden, 1986a; Sousa et al., 1992) and the gene encoding the malate permease 
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(mae1) has been cloned by Grobler et al. (1995).  The cloning of the C. utilis dicarboxylic 

acid transporter will be discussed in Chapter 7. 

Genetic and biochemical characterisation of the L-malate utilising pathways in several K(-) 

and K(+) yeast species indicated that the physiological role and regulation of L-malate 

metabolism differs significantly between the K(-) and K(+) yeasts.  In general, L-malate 

metabolism in K(-) yeasts is characterised by the absence of glucose repression or substrate 

induction (Osothsilp and Subden, 1986a,b; Rodriquez and Thornton, 1989).  In contrast, the 

regulation of L-malate metabolism in K(+) yeasts typically exhibits strong glucose repression 

together with substrate induction (Côrte-Real and Leão, 1990;  Cássio and Leão, 1993; 

Amador et al., 1996; Queiros et al., 1998).  

Since very little is known about L-malate metabolism in C. utilis, the following discussions 

are focused on the intracellular degradation of L-malate via the malic enzyme and to a lesser 

extend, malate dehydrogenase, in the yeasts S. cerevisiae and S. pombe.  This should provide 

more insight into the mechanisms and regulations involved in L-malate metabolism in general, 

with some direct correlations with C. utilis.  In Chapter 8, the cloning of the C. utilis malic 

enzyme gene, CuME, as well as some preliminary data on its regulation will be described in 

more detail. 

5.2    METABOLISM OF L-MALATE IN YEAST 

L-Malate plays a pivotal role in the metabolism of C3 and C4 compounds in different 

subcellular compartments.  Depending on the cellular requirements, malate can be oxidised, 

dehydrated or decarboxylated (Figure 5.1).  The oxidation of malate provides oxaloacetate for 

the turnover of the TCA cycle or for gluconeogenesis via phosphoenolpyruvate (PEP), while 

the decarboxylation of malate provides pyruvate for amino acid and other biosynthetic 

pathways.  Synthesis of L-malate via malate synthase in the glyoxalate cycle provides a 

mechanism for the combination of two C2 molecules (glyoxalate and acetyl-CoA) to form a 

C4 molecule (Fraenkel, 1982). 

The ability of a yeast strain to degrade extracellular malate is dependent on the efficient 

transport of the dicarboxylic acid, as well as the efficacy of the intracellular malic enzyme 

(Ansanay et al., 1996; Volschenk et al., 1997a,b).  The K(-) yeast S. cerevisiae only utilises 

L-malate in the presence of one or more fermentable carbon sources.  However, L-malate 

degradation in S. cerevisiae is weak compared to S. pombe, which seems to be evolutionarily 
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optimised for L-malate degradation.  The weak degradation of L-malate in S. cerevisiae can be 

linked to the fact that S. cerevisiae can import malate and other dicarboxylic acids only via 

simple diffusion (Salmon, 1987).  

 

Cytosol 

Figure 5.1.  L-Malate plays a pivotal role in yeast metabolism.  Dashed arrows represent 
reactions that do not operate during growth on glucose  (adapted from Dos Santos et al., 
2003). 
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The yeast S. pombe can effectively degrade extracellular L-malate due to an active transport 

system for malate uptake and a cytosolic NAD-dependent malic enzyme (EC 1.1.1.38) with a 

high substrate affinity (Maconi et al., 1984).  Cells of S. pombe display  an  extreme  tolerance 

for high L-malate concentrations, as levels of up to 29 g L-malate/l can be degraded without 

any negative effect on cell growth, sugar metabolism or ethanol-producing abilities (Temperli 

et al., 1965).  Taillandier and Strehaiano (1991) showed that malate is not integrated into 

biomass after its catabolism by S. pombe.  It is completely metabolised to ethanol and CO2 

during anaerobiosis, and to CO2 under aerobiosis (Mayer and Temperli, 1963).  As a K(-) 

yeast, S. pombe degrades malate only in the presence of glucose or another assimilable carbon 

source under both aerobic and anaerobic conditions (Magyar and Panyik, 1989; De Queiros 

and Pareilleux, 1990), suggesting that the metabolism of malate requires energy, supposedly 

for transport of malate into the cell (Taillandier and Strehaiano, 1991).   

Three enzymes are involved in malate degradation in S. pombe, namely the malate 

transporter, malic enzyme, and a mitochondrial malate dehydrogenase (EC 1.1.1.37) 

(Osothsilp and Subden, 1986a).  The transporter encoded by the mae1 gene (Grobler et al., 

1995), uses an H+-symport system for the active transport of L-malate, and the NAD-

dependent malic enzyme catalyses the oxidative decarboxylation of L-malate to pyruvate and 

CO2.  The mitochondrial malate dehydrogenase oxidises L-malate to oxaloacetate in the TCA 

cycle and is responsible for 10% of the degradation of malate under aerobic conditions, with 

the remaining L-malate being directly converted to pyruvate and CO2 via the malic enzyme 

(Osothsilp and Subden, 1986a; Osothsilp, 1987; Subden et al., 1998).  Therefore, both the 

malic enzyme and malate dehydrogenase are required for malate utilisation during aerobiosis. 

Under fermentative (non-aerated) conditions when functional mitochondria are restricted, the 

cytosolic malic enzyme of S. pombe is exclusively involved in the degradation of intracellular 

L-malate (Osothsilp, 1987).   

5.2.1    Cytosolic vs Mitochondrial Degradation 

Malic enzyme.  The oxidative decarboxylation of L-malate to pyruvate and CO2 is catalysed 

by a mitochondrial or cytosolic malic enzyme that requires divalent cations (Mg2+ or Mn2+) 

and NAD(P)+ as cofactors (Frenkel, 1975).  The pyruvate produced in this reaction can be 

used for amino acid synthesis or further metabolised to the various intermediates shown in 

Figure 5.1.  In S. pombe, the pyruvate is immediately decarboxylated to ethanol and CO2 

under anaerobic conditions (Mayer and Temperli, 1963), but the pyruvate can serve to 
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replenish the TCA cycle under aerobic conditions.  The malic enzyme reaction is reversible 

and carboxylation of pyruvate to malate can provide the necessary precursors for protein 

biosynthesis for yeast grown on acetate (Fraenkel, 1982).  Three types of malic enzymes are 

found in nature and are classified by their coenzyme specificity and ability to decarboxylate 

both malate and oxaloacetate.  The structure, catalytic mechanism and physiological role of 

the three isozymes differ remarkably and will be discussed in a later section. 

Malate dehydrogenase.  In S. cerevisiae, the malate dehydrogenase enzymes are encoded by 

three genes, of which one gene product is localised to the cytosol (Minard and McAlister-

Henn, 1991) and the other two are located in the mitochondrion and peroxisome, respectively 

(Steffan and McAlister-Henn, 1992).  The cytosolic enzyme, MDH2, has an estimated 

molecular mass of 42 kDa and is the target of glucose-induced proteolytic degradation.  The 

apparent Km of MDH2 for L-malate is 11.8 mM, which suits its function in the conversion of 

L-malate to oxaloacetate and is in sharp contrast to the Km of 0.28 mM for MDH1, the 

mitochondrial isoenzyme. 

5.2.2    L-Malate as Intermediate of the TCA Cycle in Mitochondria 

The TCA cycle functions primarily in mitochondria where it allows for the complete 

degradation of pyruvate produced during glycolysis (Figure 5.1).  The TCA cycle is only 

functional under aerobic conditions and is required for oxidative growth on pyruvate, lactate, 

acetate and ethanol (Boulton et al., 1996).  The cycle allows for the metabolic flow of carbon 

between various metabolic pathways and is a major source of NADH for the production of 

ATP via oxidative phosphorylation.  Some of the enzymes of the TCA cycle are also present 

in the cytosol and peroxisome where they catalyse similar reactions.  Under anaerobic 

conditions and in the presence of high concentrations of glucose, cells of S. cerevisiae do not 

have functional mitochondria (Fraenkel, 1982), but cytosolic enzymes similar to those in the 

TCA cycle produce the necessary biosynthetic intermediates. 

The enzymatic reactions of the TCA cycle include the hydration of fumarate to L-malate via 

fumarase and the oxidation of L-malate to oxaloacetate via malate dehydrogenase (Figure 

5.1).  Both fumarase and malate dehydrogenase catalyse reversible reactions that are regulated 

by the substrate concentrations and the requirement for either the reductive or oxidative arm 

of the TCA cycle (Boulton et al., 1996).  NADH is produced by various enzymes of the TCA 

cycle during the oxidative arm of the TCA cycle.  If the regeneration of NAD+ from NADH 

via the conversion of acetaldehyde to ethanol under fermentable conditions is restricted, the 
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reductive arm of the TCA cycle can be used to regenerate NAD+ with the production of 

L-malate and succinate. 

5.2.3    Malo-ethanolic Fermentation 

During fermentative sugar metabolism in yeast, pyruvate, an important branching point in 

carbohydrate metabolism, is further decarboxylated to acetaldehyde by pyruvate 

decarboxylase and subsequently reduced to ethanol by alcohol dehydrogenase.  Since 

L-malate is thus in effect converted to ethanol, this pathway is referred to as the malo-

ethanolic fermentation pathway.  Malo-ethanolic fermentation (MEF) is carried out mostly by 

yeast species such as S. pombe and strains of S. cerevisiae that convert malate into pyruvate 

by means of an intracellular malic enzyme.   

Fundamental knowledge about the malo-ethanolic pathways from both K(-) and K(+) yeasts is 

imperative in our understanding of the regulation and physiological role of malate metabolism 

in yeast and can contribute to the innovative applications of recombinant strains of 

S. cerevisiae.  For example, a strong malo-ethanolic phenotype was introduced into a 

S. cerevisiae laboratory strain when the S. pombe mae1 and mae2 genes, encoding the malate 

transporter and malic enzyme respectively, were functionally co-expressed (Volschenk et al., 

2001).  Thereafter, the S. pombe mae1 and mae2 genes were integrated into URA3 locus of an 

industrial Saccharomyces bayanus EC1118 strain.  Integration and expression of the malo-

ethanolic genes in S. bayanus EC1118 had no inverse effect on the fermentation ability of the 

yeast, while sensory evaluation and chemical analysis of the Chardonnay wines indicated an 

improvement in wine flavour perception compared to the control wines, without the 

production of any off-flavours. 

5.2.4    Malate Synthesis 

Mitochondrial synthesis.  L-Malate occurs in mitochondria as an intermediate of the 

tricarboxylic acid (TCA) cycle.  The reversible hydration of fumarate to L-malate (Figure 5.2) 

is catalysed by the enzyme fumarase (or fumarate hydratase), encoded by FUM1 in 

S. cerevisiae (Zubay et al., 1993).  Like most TCA cycle enzymes, fumarase is located in the 

matrix compartment of mitochondria.  The L-malate is directly oxidised to oxaloacetate by 

malate dehydrogenase (MDH1), with NAD+ serving as the electron acceptor.  This reaction is 

drawn in the direction of malate oxidation by the continued consumption of oxaloacetate in 

the TCA cycle resulting in no accumulation of L-malate in the mitochondria.   
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Figure 5.2.   Fumarase catalyses the hydration of fumarate to L-malate, followed by 
oxidation to oxaloacetate. 

Cytosolic synthesis.  The yeast S. cerevisiae contains a cytosolic pathway that involves the 

enzymes pyruvate carboxylase, malate dehydrogenase (MDH2) and fumarase, and enables the 

conversion of pyruvate through oxaloacetate to L-malate by the incorporation of CO2 (Pines et 

al., 1996).  This accumulation of L-malate is suggested not to involve the mitochondrial 

metabolism via the tricarboxylic acid (TCA) cycle (Schwartz and Radler, 1988), but is rather 

dependent on the cytosolic localisation of pyruvate carboxylase.  In this regard, the cytosolic 

location of pyruvate carboxylase and the mechanism for malate accumulation in S. cerevisiae 

may be similar to that in organic acid producers, such as the fungi Aspergillus flavus and 

Rhizopus oryzae, and in contrast to its mitochondrial location in higher eukaryotes (Haarasilta 

and Taskinen, 1977; Osmani and Scrutton, 1983, 1985; Van Urk et al., 1989c; Bercovitz et al., 

1990).  However, overexpression of fumarase results in an increase in the levels of malate 

dehydrogenase (Pines et al., 1996), which catalyses conversion of oxaloacetate to L-malate, 

resulting in L-malate accumulation. 

Malate synthesis in peroxisomes.  The glyoxalate cycle in yeast peroxisomes is primarily 

associated with the complete degradation of fatty acids via β-oxidation (Figure 5.3).  

However, it also plays an important role in the synthesis of C4 compounds from C2 carbon 

substrates by employing some of the TCA cycle enzymes (Fraenkel, 1982).  In S. cerevisiae, 

peroxisomal malate synthesis from glyoxalate is catalysed by malate synthase (MLS) as part 

of the glyoxalate pathway (Van Roermund et al., 1995).  This reaction combines the two C2 

molecules glyoxalate and acetyl-CoA in the C4 molecule L-malate.  This allows for the 

synthesis of TCA cycle intermediates in the peroxisome when the mitochondria are non-

functional under anaerobic or high glucose conditions (Boulton et al., 1996). 
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Figure 5.3.  Malate synthesis can take place in the peroxisome via malate dehydrogenase 
(MDH3) and malate synthase (MLS) as part of the glyoxylate cycle (adapted from Solà et 
al., 2004). 
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The peroxisomal malate dehydrogenase (MDH3) catalyses the reduction of oxaloacetate to 

malate with the concomitant oxidation of NADH to NAD+ (Van Roermund et al., 1995).  It 

was suggested that the peroxisomal membrane is impermeable to NADH in vivo, therefore the 

NADH produced during β-oxidation of fatty acids has to be deoxidised inside the peroxisome.  

The malate dehydrogenase therefore serves as part of a recycling mechanism where it 

catalyses the oxidation of NADH to provide NAD+ for β-oxidation.  Like the mitochondria, 

the peroxisomes were reported to be impermeable to oxaloacetate.  The conversion of 

oxaloacetate to L-malate also therefore allows for the export of reducing equivalents from the 

peroxisome.  The malate dehydrogenases in the cytosol (MDH2) or mitochondrion (MDH1) 

can oxidise the malate back to oxaloacetate for further metabolism. 

5.2.5    Comparison of L-Malate Degradation in S. cerevisiae and S. pombe 

Although S. cerevisiae and S. pombe are both classified as K(-) yeasts, L-malate degradation 

is significantly weaker in S. cerevisiae for the following reasons: (1) S. cerevisiae lacks an 

active transport system for L-malate and extracellular L-malate enters the cells by means of 

simple diffusion (Figure 5.4);  (2) The malic enzyme of S. cerevisiae has a significantly lower 

substrate affinity for L-malate (Km = 50 mM) than that of S. pombe (Km = 3.2) (Temperli et 
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al., 1965; Fuck et al., 1973); and (3) The S. cerevisiae malic enzyme is localised in the 

mitochondria, whereas the S. pombe malic enzyme is localised in the cytosol.  The 

mitochondrial location of the S. cerevisiae malic enzyme suggests that this enzyme is 

essentially subjected to the regulatory effect of fermentative glucose metabolism, such as 

mitochondrial deterioration (Volschenk et al., 2003), which is a well-documented 

phenomenon in Crabtree-positive yeast. 
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Figure 5.4.  The main differences in L-malic acid degradation between S. cerevisiae and 
S. pombe involves the transport of malic acid, the substrate affinity of the malic enzyme and 
the compartmentalisation of the malic enzymes in these two yeast species. MA = malate; 
Py = pyruvate (taken from Volschenk et al., 2003). 

Although the contrasting L-malate degradation abilities of S. cerevisiae and S. pombe suggests 

that L-malate metabolism should play distinct physiological roles in these two yeast species, 

biochemical and genetic evaluation of the enzymes and genes involved in this pathway 

concluded that the malic enzymes from these two yeasts play an almost similar role in the 

provision of pyruvate for cellular biosynthesis (Volschenk et al., 2003).  The possibility for 

the existence of a NADH – NADPH recycling function for the S. cerevisiae mitochondrial 

malic enzyme cannot be ruled out, but additional evidence is required.  Furthermore, since the 

NADP-malic enzyme is implicated in lipogenesis in higher eukaryotes, it is arguable that the 

S. cerevisiae NADP-malic enzyme gene might also be directly involved in the increased 

synthesis of certain phospholipids, especially in  the yeast  cell’s  protective  response  against 
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hyper-osmotic stress.  Since it has been postulated that the conversion of L-malate to pyruvate 

to ethanol is a redox-neutral process, the importance of the strong cytosolic malic enzyme of 

S. pombe on maintaining the redox balance and energy production in this yeast remains the 

topic of further research.   

From the above discussions, it is clear that malic enzyme play an important role in L-malate 

degradation.  The nature, regulation and possible functions of malic enzyme will be discussed 

in more detail in the following sections. 

5.3    MALIC ENZYMES 

Kornberg (2001) vividly described the way leading to the discovery and characterisation of 

the pigeon liver malic enzyme by Ochoa et al. in 1947.  The malic enzyme was later found to 

be widely distributed in nature, including prokaryotes, fungi, plants and animals.  In 

eukaryotes, the malic enzyme may reside in the cytosol, mitochondria or in plant chloroplasts 

(Viljoen et al., 1994; Schomburg and Stephan, 1995).  The presence of a malic enzyme has 

been demonstrated in the yeasts S. pombe (Temperli et al., 1965; Viljoen et al., 1994), 

Rhodotorula glutinis (Fernández et al., 1967), Z. bailii (Kuczynski and Radler, 1982) and 

S. cerevisiae (Boles et al., 1998).   

Malic enzyme catalyses a reversible oxidative decarboxylation of L-malate to yield pyruvate 

and CO2, with the concomitant reduction of NAD(P)+ to NAD(P)H (Figure 5.5).  In addition 

to the NAD(P)+ dinucleotide, malic enzymes require divalent cations (Mn2+ or Mg2+) as 

cofactors.  The three isozymes, EC 1.1.1.38-40 in general exhibit a high degree of amino acid 

homology (Viljoen et al., 1994; Xu et al., 1999; Yang et al., 2000), but differ in their 

intracellular localisation (cytosolic, mitochondrial or hydrogenosomal), substrate affinity and 

specificity (L-malate and/or oxaloacetate), co-factor specificity [either NAD+ (EC 1.1.1.38, 

EC 1.1.1.39) or NADP+ (EC 1.1.1.39, EC 1.1.1.40)] and the degree to which the 

decarboxylation reaction is reversible (Voegele et al., 1999).  L-Malate: NAD+ oxidoreductase 

(oxaloacetate decarboxylating; EC 1.1.1.38) uses NAD+ as co-enzyme and has been found in 

S. pombe (Temperli et al., 1965).  L-Malate:  NAD+ oxidoreductase (decarboxylating; EC 

1.1.1.39) is the malic enzyme most commonly found in the mitochondria of plants and 

animals (Artus and Edward, 1985).  This enzyme can use NADP+ as coenzyme in some cases, 

but prefers NAD+.  L-Malate NADP+-oxidoreductase (oxaloacetate-decarboxylating; EC 

1.1.1.40) is NADP+-dependent and although most NADP+-dependent malic enzymes can also 
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use NAD+, NADP+ is preferred and acts as a non-competitive inhibitor of NAD+ activity 

(Hatch and Mau, 1977).   
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Figure 5.5.  The NAD(P)-dependent malic enzyme catalyses the oxidation of L-malic acid 
to oxaloacetic acid, followed by decarboxylation to pyruvate. 

The three malic enzyme isozymes differ with regard to their molecular structure, catalytic 

properties, and physiological role.  In general, the efficacy of a malic enzyme is determined 

by its substrate affinity and/or the level of expression of the corresponding gene.  The 

S. pombe malic enzyme has a very high substrate affinity (Km = 3.2 mM), whereas the 

S. cerevisiae malic enzyme has a very low substrate affinity (Km = 50 mM) that contributes to 

the inefficient degradation of malate by S. cerevisiae (Temperli et al., 1965; Osothsilp, 1987).  

As previously mentioned, the mitochondrial location of the S. cerevisiae malic enzyme may 

contribute to the weak degradation of malate by strains of S. cerevisiae under fermentative 

conditions.   

Whereas the S. pombe malic enzyme can use only NAD+ as cofactor (Temperli et al., 1965), 

the malic enzyme from S. cerevisiae has been reported to use both NAD+ and NADP+ as 

electron acceptor with NAD+ being favoured (Kuczynski and Radler, 1982).  Both the 

S. cerevisiae and S. pombe enzymes are bifunctional (can react with both malate and 

oxaloacetate), whereas the Z. bailii enzyme can only decarboxylate malate, suggesting that a 

different enzyme does the decarboxylation of oxaloacetate.  

The S. pombe malic enzyme requires the divalent cations Mn2+ or Mg2+ for activity, in 

contrast to the S. cerevisiae malic enzyme that prefers Mn2+ as a divalent cation (Osothsilp 

and Subden, 1986a; Osothsilp, 1987).  The metal ion serves as a bridge between L-malate to 

properly position the substrate at the active site center and to help polarize the C-2 hydroxyl 
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group during the initial stage (Chou et al., 1995).  The metal ion acts as a Lewis acid in the 

subsequent decarboxylation of oxaloacetate (Figure 5.5) and plays a vital role in chelating the 

negatively charged enolate-pyruvate intermediate (Chang et al., 2002).  The S. pombe malic 

enzyme has a pH optimum of 3.5 – 4.0 (Osothsilp and Subden, 1986a), which ensures that the 

substrate is protonated. 

The genes encoding the S. pombe and S. cerevisiae malic enzymes have been cloned and 

analysed on a molecular level.  The S. pombe malic enzyme gene, mae2, was cloned and 

characterised as an open reading frame of 1 695 bp (Viljoen et al., 1994).  It was mapped 29 

map units from the ade6 gene on the right arm of chromosome III near the centromere 

(Osothsilp, 1987).  DNA sequence analysis of the S. pombe malic enzyme gene did not 

indicate the presence of a mitochondrial targeting signal, suggesting that the malic enzyme 

functions in the cytosol (Viljoen et al., 1994).  The MAE1 gene, identified as the structural 

gene for the S. cerevisiae malic enzyme, encodes a putative protein of 669 amino acids with 

47% homology to the S. pombe malic enzyme (Boles et al., 1998).  

5.3.1 Physiological Role of Malic Enzymes  

Based on the divergent regulation of malic enzymes in different organisms, tissues and 

cellular compartments and the evolutionary preservation of malic enzymes throughout a wide 

spectrum of organisms in nature, it is believed that malic enzymes are responsible for various 

essential physiological functions in living organisms (Driscol and Finan, 1996; Song et al., 

2001).  The end products of the malic enzyme reaction, i.e. pyruvate, CO2 and NAD(P)H, 

feed into numerous biological pathways that can be broadly defined as (1) pathways where 

NAD+-dependent malic enzymes are involved in oxidative metabolic processes that yield 

ATP via the electron transport system, or (2) pathways where the NADP+-dependent enzymes 

play a role in reductive biosynthesis processes.  In line with this broad metabolic view, the 

NAD+-dependent malic enzyme isoforms usually play an important role in cellular ATP 

biosynthesis via the production of NADH and pyruvate.  For example, the human NAD+- 

dependent malic enzyme is pivotal in energy production via glutamine in rapidly growing 

tissues, such as the spleen, thymus, mucosal cells of small intestine and tumour cells (Sauer et 

al., 1980; McKeehan, 1982; Bagetto, 1992).  In contrast, the reverse reaction of the NADP+- 

dependent malic enzyme (which involves the carboxylation of pyruvate to malate) plays an 

important housekeeping role in the anapleurotic reactions of the TCA cycle in both 

prokaryotes and eukaryotes (Wedding, 1989; Sauer et al., 1999). Under fermentative 
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conditions, the pyruvate generated by the cytosolic NAD-dependent malic enzyme is further 

metabolised to ethanol, probably to ensure that the redox balance is being maintained.   

Lipid biosynthesis.  NADP-dependent malic enzyme isoforms found in bacteria, yeast, fungi, 

birds and mammals play a role in primarily biosynthetic reactions, especially lipid 

biosynthesis and desaturation through the provision of NADPH (Goodridge and Ball, 1966, 

1967; Tanaka et al., 1983; Xu et al., 1999; Gourdon et al., 2000).  When ATP supplies are 

abundant, acetyl-coenzyme A can be converted into fatty acids as an energy reserve.  

However, mitochondrial acetyl-coenzyme A must be converted to citrate via the 

tricarboxylate transport system (Figure 5.6) to participate in fatty acid synthesis in the cytosol.  

Citrate synthase fuses acetyl-coenzyme A with oxaloacetate to produce citrate that is 

transported from the mitochondria to the cytosol.  Once in the cytosol, citrate is converted 

back to oxaloacetate via the energy-dependent citrate lyase.  The oxaloacetate is then reduced 

to L-malate via malate dehydrogenase; L-malate can be oxidised to pyruvate via the malic 

enzyme, with the production of NADPH that can feed into the fatty acid biosynthesis 

pathway.  Pyruvate can also be re-imported back into the mitochondria to participate in the 

TCA cycle yet again.  Similarly, L-malate can be transported back into the mitochondria and 

used to produce NADH via the mitochondrial malate dehydrogenase.   

The role of NADP-malic enzyme in lipid biosynthesis in filamentous fungi was studied in 

depth and strong evidence was obtained that malic enzyme activity is a key factor in ensuring 

maximal lipid accumulation (Wyn and Ratledge, 1997, 2000).  The direct relation between 

malic enzyme activity and lipid accumulation was until recently still speculative, since 

maximum lipid accumulation in fungi was not necessarily linked to maximum NADP-malic 

enzyme activity (Wyn et al., 1999; Song et al., 2001).  However, the identification of multiple 

isoforms of NADP-malic enzyme in some fungi and the evolution of specific isoforms under 

specific growth conditions of high lipogenesis, clarified the critical role of NADP-malic 

enzymes in lipid biosynthesis (Zink, 1972; Savitha et al., 1997; Song et al., 2001).  The 

current accepted hypothesis suggests that several isoforms of NADP-malic enzyme exist in 

fungi through the action of post-translational modifications (either partial proteolytic 

cleavage, phosphorylation or dephosphorylation) and that specific isoforms of the NADP-

malic enzyme are directly associated with lipid accumulation, whilst others have other cellular 

functions (Song et al., 2001) 
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Figure 5.6.  The role of the malic enzyme in lipid biosynthesis and desaturation through 
the provision of cytosolic NADPH in mice and humans.  The tricarboxylic transport 
system is responsible for the export of acetyl-coenzyme A from the mitochondrial matrix 
into the cytosol where the fatty acid biosynthetic pathway is situated (taken from 
Volschenk et al., 2003) 
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Generation of NAD(P)H.  In S. cerevisiae, NADPH is generated only in a few reactions: 

(1)via the two dehydrogenases of the pentose-phosphate (PP) pathway (glucose-6-phosphate 

dehydrogenase and 6-phosphogluconate dehydrogenase), (2) via the NADP+-dependent 

isocitrate dehydrogenase, (3) via the NADP+-dependent acetaldehyde dehydrogenase and (4) 

via the malic enzyme. The S. cerevisiae mitochondrial NAD(P)-dependent malic enzyme, 

ScMae1p, is located in the center of the metabolic network of S. cerevisiae, converting malate 

(an intermediate of the TCA cycle), into pyruvate (a key metabolite for yeast in the split 

between respiration and fermentation), with the production of one NADPH molecule (Boles et 

al., 1998).  In contrast, the NAD+-dependent malic enzyme from S. pombe seems to play a 

role in the provision of cytosolic NADH under fermentative conditions (Groenewald and 

Viljoen-Bloom, 2001).  The high substrate affinity and cytosolic location of the S. pombe 

malic enzyme enables the yeast to effectively degrade malate to ethanol during alcoholic 

fermentation (Sousa et al., 1995; Taillandier et al., 1995). 
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Due to the respiro-fermentative metabolism of S. cerevisiae, carbon flow is steered away from 

biosynthesis towards ethanol production in both anaerobic and aerobic conditions (Fiechter et 

al., 1981; Pronk et al., 1996).  However, even under fermentative conditions, some degree of 

biosynthetic activity is essential for the yeast cell’s survival.  Biosynthesis results in a net 

consumption of NADPH and a net production of NADH and since alcoholic fermentation is a 

redox-neutral process, ethanol formation does not account for the reoxidation of assimilatory 

NADH.  S. cerevisiae and other yeasts solved this redox dilemma by reducing glucose to 

glycerol with the associated reoxidation of NADH (Van Dijken and Scheffers, 1986; Larson 

et al., 1998).     

According to this model (Figure 5.7), malic enzyme, pyruvate carboxylase, NAD+-dependent 

malate dehydrogenase (MDH2) and the mitochondrial decarboxylic carrier (DIC1) act as a 

cyclic transhydrogenase shuttle to convert the NADH resulting from biosynthetic metabolism 

(Van Dijken and Scheffers, 1986), to NADPH in order to sustain the yeast cell’s biosynthetic 

requirements (Bakker et al., 2001).   
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Figure 5.7.  A hypothetical malate-pyruvate shuttle as it might work in S. cerevisiae, 
transferring electrons from cytosolic NADH to mitochondrial NAD(P)H.  All enzyme 
activities, except the mitochondrial pyruvate transporter (indicated by the question mark) 
were identified in S. cerevisiae (adapted from Bakker et al., 2001). 
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One of the major shortcomings of this model is that the actual existence of a mitochondrial 

pyruvate transporter has not yet been established in S. cerevisiae.  Furthermore, the natural 

direction of pyruvate flux during respiration is from the cytosol, where glycolysis takes place, 

into the mitochondria.  If a malate-pyruvate shuttle is indeed active in S. cerevisiae, it can 

therefore not work as a full shuttle.  It may rather provide an alternative means of pyruvate 

transport into the mitochondria, with concomitant transport of NAD(P)H into the 

mitochondria for biosynthetic purposes.  In this shunt, NADPH is produced at the expense of 

one ATP consumed by pyruvate carboxylase and one NADH consumed by malate 

dehydrogenase: in other words, the operation of the shunt does not have a net effect on the 

carbon metabolism.     

Provision of pyruvate.  The induced expression of the cytosolic malic enzyme gene under 

fermentative conditions when the mitochondria are not fully operational, may also provide 

pyruvate and NADH for essential anapleurotic reactions (Viljoen et al., 1999).  Pyruvate 

plays an important role in the provision of α-ketoglutarate and oxaloacetate for the synthesis 

of amino acids and nucleotides.  Both these precursors are synthesized in the mitochondria 

and transported to the cytosol for biosynthetic reactions. Alternative pathways must therefore 

be utilized for the synthesis of these precursors when the mitochondria are not functional.  

These anapleurotic reactions comprise the carboxylation of pyruvate to oxaloacetate via 

pyruvate carboxylase, the oxidation of L-malate to pyruvate via the malic enzyme, and the 

production of succinate via the glyoxylate cycle.  Although earlier biochemical studies 

indicated that the metabolism of L-malate in S. pombe does not contribute to cell biomass, the 

induced expression of the S. pombe malic enzyme under fermentative conditions may provide 

an important secondary pathway for the provision of pyruvate for other metabolic 

requirements (Groenewald and Viljoen-Bloom, 2001). 

5.4    MALIC ENZYME STRUCTURE AND CATALYTIC MECHANISM 

As mentioned previously, malic enzymes have been isolated from a variety of organisms, 

including plants, animals, fungi, bacteria and yeast.  The malic enzymes isolated and purified 

thus far show a subunit composition of two to ten identical subunits.  The human 

mitochondrial NAD-malic enzyme (Loeber et al., 1991), and the malic enzyme from pigeon 

liver (Hsu, 1982) are homotetramers, whereas the malic enzyme from S. pombe is a 

homodimer (Osothsilp, 1987).  All of these malic enzymes have similar overall tertiary 

structure albeit with small local differences, that has important structural implications on the 
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catalytic and regulatory mechanisms.  The polypeptide backbone of malic enzymes has a 

different topology from that of the other oxidative decarboxylases (Xu et al., 1999; Yang and 

Tong, 2000; Coleman et al., 2002; Yang et al., 2002), establishing malic enzymes as a unique 

class of oxidative decarboxylases.  This section summarises the structural features and the 

functional implications of this class of oxidative decarboxylases, using the human and pigeon 

liver malic enzyme as model. 

5.4.1    Comparison of Malic Enzyme from Various Sources 

Molecular analysis of the S. pombe mae2 gene and its deduced amino acid sequence revealed 

the presence of eight highly conserved regions, regions A-H, in malic enzymes from various 

prokaryotic and eukaryotic organisms (Viljoen et al., 1994).  The malic enzymes of 

Escherichia coli, S. pombe and S. cerevisiae showed a closer phylogenetic link with the 

malolactic enzymes of lactic acid bacteria than with malic enzymes from other organisms 

(Groisillier and Lonvaud-Funel, 1999).  These regions represent clusters of highly conserved 

residues separated by spacer regions with less homology, but conserved in length.  The highly 

conserved amino acid sequence of malic enzymes indicated a conserved structure and/or 

catalytic mechanism in spite of differences in their substrate and co-enzyme specificities.  

Four of the conserved regions identified in malic enzymes, regions A, B, D and E  (Loeber et 

al., 1991), were reported to be binding sites for NAD(P)+, L-malate or divalent cations 

(Rothermel and Nelson, 1989; Börsch and Westhoff, 1990; Hsu et al., 1992; Kulkarni et al., 

1993).  Although the physiological role of the other conserved regions is yet unknown, their 

importance should not be disregarded.  For example, a single point mutation in the S. pombe 

malic enzyme gene at nucleotide 1331 (G-to-A) changed amino acid 444 from a glycine to an 

aspartate residue in the conserved region H and completely abolished the malic enzyme 

activity (Viljoen et al., 1998). 

A number of essential amino acid residues in malic enzymes have been identified.  The 

conserved Asp-258 residue shown to be involved in the binding of Mn2+ (Wei et al., 1995) is 

contained within the conserved Box C.  Arginine residue(s) located at or near the active site of 

the enzyme may provide a positively charged group that facilitates the binding of the malate 

anion (Rao et al., 1991b).  This was confirmed by Vernon and Hsu (1983) who showed the 

involvement of an arginyl residue in the binding of the C1-carboxyl group of malate.  Glycine 

residues were reported to serve an important function in the folding of the malic enzyme: the 

conserved glycine residues in regions B and E (G-G- -G) allow the specific folding of the βαβ 

dinucleotide binding fold for the binding of the coenzyme NAD(P)+ (Wierenga et al., 1986).  
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The active site of malic enzyme constitutes a major conserved region, while some of the 

subunit contacting regions are also conserved (Chang and Tong, 2003).  The enzyme needs an 

essential divalent metal ion (Mn2+ or Mg2+), which plays functional roles in catalysis as well 

as in structural stability.  The amino acid sequences around the metal-binding site are highly 

conserved, with the direct metal ligands, Glu255, Asp256 and Asp279 (amino acid residues 

numbered according to human mitochondrial NAD-malic enzyme), being identical among all 

malic enzymes investigated (Figure 5.8A).   

The three metal ligands, Glu255, Asp256 and Asp279, are 2.43, 2.19 and 2.23 Å, 

respectively, to the manganese ion, forming a reaction core.  Many of the other amino acid 

residues within 7 Å from the metal ion, are hydrophobic residues that form a second sphere 

for the catalytic metal ion, the other polar groups in the active centre, and ensure an optimal 

environment for substrate binding and catalytic reactions (Hsu et al., 1976).  Alteration of 

these residues, even indirectly, might affect the catalytic efficiency. 

5.4.2 Structure of Malic Enzyme  

Malic enzymes belong to an amino acid dehydrogenase-like family and a superfamily that 

contains the NAD(P)-binding Rossmann-fold domain.  It has a α/β structure and the core 

structure includes three layers of α/β/α type, and a parallel β-sheet of six strands.   The 

human malic enzyme monomer was divided into four domains named A, B, C, and D (Figure 

5.9A) (Xu et al., 1999), which behave mostly as rigid-bodies in the conformational transition 

between open and closed forms of the enzyme.  Domain A is mostly helical (αA1 through 

αA6) while domain B consists of two segments of the polypeptide chain, with domain C as an 

inserted cassette.  Domain D contains one helix followed by a long extended structure that 

protrudes away from the rest of the monomer.  

Domain B contains a central, parallel five-stranded β-sheet (βB1 through βB5), which is 

surrounded by helices on both sides (αB1 through αB8) (Chang and Tong, 2003).  This 

β-sheet represents a new backbone-fold for a five-stranded parallel β-sheet.  There is a short 

β-hairpin structure (βB2’-βB3’) between strand βB2 and helix αB2 in this domain.  Residues 

in this hairpin structure are highly conserved among malic enzymes. 
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Figure 5.8.  (A) Sequence logos of ME around the metal-binding site.  The metal-binding 
ligands, Glu255, Asp256, and Asp279 (red stars), are strictly identical among all ME. 
Conservation of some putative second sphere hydrophobic amino acid residues is also 
evident in this figure.  (B) Sequence logos of ME around the nucleotide-binding site of 
NADP-ME.  The amino acid residues responsible for the nucleotide specificities are 
marked with red stars.  The Asp345:Arg354 ion pair is highlighted.  (C)  Sequence logos 
of ME around the nucleotide-binding site of NAD-ME.  Colour codes for the amino acids 
are as follows:  blue for basic residues (Lys, Arg, and His), red for acidic residues (Asp 
and Glu), violet for amide residues (Asn and Gln), green for other neutral/polar residues, 
and black for hydrophobic residues (taken from Chang and Tong, 2003). 

Domain C has the dinucleotide-binding Rossmann fold, with the exception that strand three is 

replaced by a short antiparallel strand (βC2) (Chang and Tong, 2003).  In addition, there is an 

extra β-strand (βC7) at the C-terminal end of the domain, together with a β-hairpin insertion 

between βC6 and βC7. The NAD+ cofactor in the active site is associated with this domain.  

The second dinucleotide-binding signature motif, GAGEAA, is located between βC1 and 

αC1 in this domain and mediates the binding of  the  phosphates  of  the  cofactor  as  in  other  
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Rossmann folds.  However, the amino acid conservation between this and the Rossmann-fold 

domains is very low (approx.  15%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9.  Structures of monomers of human m-NAD-ME. (A) The structure of m-
NAD-ME in a binary complex with NAD+, in open form I.  The β-strands are shown in 
cyan, α-helices in yellow, and the connecting loops in purple.  The four domains of the 
structure are labeled.  The active site is indicated by the red star.  Only the ADP portion of 
the NAD+ molecule in the exo site is shown.  (B) Molecular surface of the binary 
complex, in open form I, near the active site, coloured according to electrostatic potential. 
(C) Molecular surface of the pentary complex, in closed form II, near the active site, 
coloured by the three domains (taken from Chang and Tong, 2003). 

When the human malic enzyme is in the open form, the active site region is fully exposed to 

the solvent (Figure 5.9B) (Xu et al., 1999).  Upon binding the divalent cation and the 

substrate (malate or pyruvate) or substrate analogue inhibitors (oxaloacetate, tartronate or 

keto-malonate), the enzyme undergoes a large conformational change (Yang et al., 2000; 

Yang et al., 2002; Tao et al., 2003).  In this closed form of the enzyme, the divalent cation 

and the substrate or inhibitor is shielded from the solvent (Figure 5.9C).  The closed form of 

the enzyme is likely the catalytic competent conformation, while the open form may be 
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required for substrate binding and product release.  Therefore, it is possible that most malic 

enzymes can undergo the open-closed transition during catalysis. 

The tetramer of malic enzymes obeys a 222 point-group symmetry, with each monomer 

having essentially the same environment (Figure 5.10) (Chang and Tong, 2003).  The four 

monomers are positioned at the four corners of a square, an arrangement first observed in the 

electron microscope images of pigeon liver malic enzyme (Nevaldine et al., 1974).  Most 

malic enzymes have simple, hyperbolic kinetics with respect to their substrates, suggesting 

that the four active sites are functioning independently.  

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Schematic drawing of the tetramer of human m-NAD-ME in open form I 
(taken from Tao et al., 2003). 

 

The tetramer is a dimer of dimers, with intimate contacts at the dimer interface, whereas the 

association of the two dimers is weaker (Figure 5.10) (Tao et al., 2003).  This is in agreement 

with biochemical studies showing that pigeon NADP-malic enzyme exists in a monomer-

dimer-tetramer equilibrium in solution (Chang et al., 1988).  The dimer interface involves 

residues from domains A and B of the monomer.  Helices  αA3 and αA4, and their 2-fold 

symmetry couples, form a four-helical bundle at this interface.  Interactions at the tetramer 

interface are primarily mediated by the long, extended segment at the C-terminus of the malic 
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enzyme monomer (domain D) (Figure 5.9A) that latches onto the other dimer and interacts 

with both of its monomers (Figure 5.10).   

5.4.3    Acitve Site of the Malic Enzyme and Substrate/Inhibitor Binding Modes 

The active site of the malic enzyme is located in a deep cleft at the interface between domains 

B and C of each molecule (Figure 5.8C) together with several residues from domain A 

(mostly from helix αA6, Figure 5.11A) (Chang and Tong, 2003).  The amino acid residues in 

the active site region are generally highly conserved among the malic enzymes, supporting 

their importance in substrate binding and/or catalysis  (Figure 5.8A).   The active site residues 

can be roughly divided into four categories: (1) divalent cation-binding residues; (2) 

substrate-binding residues; (3) NAD(P)+ cofactor binding residues; and (4) catalytic residues.  

The divalent cation is bound deep in the active site cleft (Figure 5.11A) and is octahedrally 

coordinated by six oxygens, one each from the side chain carboxylate groups of Glu255, 

Asp256, and Asp279, two from the substrate or inhibitor, and one from a water molecule 

(Figure 5.11C). 

By studying the dead-end NADH/malate and NAD+/pyrvate complexes, the bound 

conformations of the malate and pyruvate substrate molecules have also been determined 

(Tao et al., 2003).  Malate is bound in the active site such that the C2 hydroxyl is essentially 

in the same plane as the C1 carboxylate group (Figure 5.11A) (Chang and Tong, 2003).  The 

C2 hydroxyl and one of the C1 carboxylate oxygen atoms are ligands to the divalent cation 

(Figure 5.11C).  Malate is also involved in a large network of hydrogen-bonding and ionic 

interactions with the enzyme (Figure 5.11B).  The C4 carboxylate group of malate is out of 

the plane defined by the C1, C2, O2, and C3 atoms (Figure 5.11C).   

The bound conformation of the oxaloacetate molecule is consistent with its role as an 

analogue of the enol-pyruvate transition-state intermediate as well as the pyruvate product 

(Yang et al., 2000; Tao et al., 2003).  Structural comparison between pyruvate and malate 

shows that the C2 atoms of the two molecules are separated by about 0.6 Å (Figure 5.11D); 

partly due to the difference in the hybridization state of this atom (sp2 vs sp3) in the two 

compounds (Tao et al., 2003).   
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Figure 5.11.  Active site of malic enzymes.  (A) Residues of human m-NAD-ME near the 
active site of the enzyme, shown in gray for carbons.  The malate molecule is shown with the 
carbon atoms in cyan and the NAD+ molecule in green.  The Mn2+ ion is shown as a purple 
sphere and the water molecules in red.  (B) Schematic drawing of the polar interactions in the 
active site of human m-NAD-ME.  (C) Close-up of the active site of human m-NAD-ME, 
showing the hydrogen-bonding interactions for the Lys183 side chain.  The hydride transfers 
between the C2 atom of malate and the C4 atom of nicotinamide, and the proton transfer 
between Tyr112 and C3 atom of the substrate, are indicated in green.  (D) Comparison of the 
binding modes of NAD+, oxaloacetate, and Mn2+ in the quaternary complex with those of 
NADH, malate, and Mn2+ in the pentary complex.  (E) A possible catalytic mechanism for 
malic enzymes.  The other proton on the Lys183 side chain is hydrogen bonded to Asp278 
throughout the reaction cycle (taken from Chang and Tong, 2003). 
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The active site also contains several hydrophobic residues and the majority of them do not 

have direct interactions with the substrate (Figure 5.11A), but instead help shield the active 

site region from the solvent in the closed form (Chang and Tong, 2003).  Interestingly, the 

two prolines in the active site are both in the cis conformation and form a lid over the active 

site. 

5.4.4    NAD(P)+ Binding and Cofactor Specificity 

The NAD(P)+ cofactor in the active site is associated with domain C at a position similar to 

that of the dinucleotide in other Rossmann-fold domains (Chang and Tong, 2003).  The 

adenine ring is on the surface of the protein and the nicotinamide ring is in the anti 

conformation.  Residue Gly444, strictly conserved among malic enzymes, is located close to 

the amide group in this ring.  Mutation of this residue to Asp in the S. pombe malic enzyme 

inactivated the enzyme (Viljoen et al., 1994). 

Malic enzymes have highly conserved amino acid sequences, but have distinct specificities 

toward the dinucleotide cofactor.  Some malic enzymes can only use NAD+ as the cofactor, 

while others can only use NADP+.  The molecular basis for cofactor selectivity is still poorly 

understood.  Earlier studies with other enzymes have revealed two major determinants for 

cofactor specificity (Wierenga et al., 1986; Scrutton et al., 1990).  First of all, an Asp residue 

near the end of the second strand of the Rossmann fold generally indicates NAD+ preference, 

as it recognises the 2’-hydroxyl group in NADP+.  Second, enzymes that contain a GXGXXG 

dinucleotide-binding motif generally prefer NAD+, whereas those with a GXGXXA motif 

generally prefer NADP+.  However, malic enzymes appear to disobey both of these rules.  An 

Asp residue is conserved among all malic enzymes at the end of the second strand (βC2) in 

domain C.  Moreover, most malic enzymes from animals contain the GXGXXA motif, 

whereas those from lower organisms contain the GXGXXG motif, irrespective of their 

cofactor specificity (Chang and Tong, 2003).  The structures of the human mitochondrial 

NAD-malic enzyme show that the Asp345 residue is pointed away from the ribose, forming 

ion-pair interactions with Arg354 (Figures 5.9B).  This may explain why some malic enzymes 

can use NADP+ as the cofactor even with a conserved Asp at this position.  The 2’phosphate 

group of NADP+ is placed on the surface of the enzyme and interacts with residues Ser346 

and the side chain ammonium group of Lys362.  These two residues are conserved among the 

NADP+-dependent malic enzymes (Figure 5.8B).  Several other residues near the 

2’-phosphate group also have variations between NADP+- and NAD+-dependent malic 

enzymes (Figure 5.8B,C). 
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5.4.5    Possible Catalytic Mechanism 

Catalysis by malic enzymes generally proceeds in three steps – dehydrogenation of malate to 

produce oxaloacetate (k1), decarboxylation of oxaloacetate to produce enolpyruvate (k2), and 

tautomerization of enolpyruvate to produce pyruvate (k3) (Figure 5.11E) (Cleland, 1999).  The 

divalent cation at the optimal position helps catalyse all the steps of the reaction, which 

explains its requirement for catalysis by malic enzymes.  For the oxidative decarboxylation of 

malate, a general base is needed to extract the proton from the C2 hydroxyl group to initiate 

the dehydrogenation reaction (k1).  For the tautomerisation reaction (k3), a general acid is 

needed to protonate the enolpyruvate intermediate at the C3 position, and a general base is 

needed to extract the proton from the C2 hydroxyl of this intermediate. 

Based on the structure of human mitochondrial NAD-malic enzyme in complex with malate 

and pyruvate, Lys183 has been identified as the general base and Tyr112 as the general acid 

(Tao et al., 2003).  The Lys183 side chain is hydrogen bonded to the C2 hydroxyl (or 

carbonyl) of the substrate and the side chains of Tyr112 and Asp278 (Figure 5.11C).  The 

Lys183 side chain, in the neutral form, is perfectly positioned to extract the proton from the 

C2 hydroxyl of malate (Figure 5.11E).  In the decarboxylation reaction (k2), Lys183 functions 

as a general acid and donates a proton to the C3 position, while Lys183 extracts the proton 

from the C2 hydroxyl.  During this process, the proton shared between the two residues 

changes its position to maintain both of them in the neutral state.  Therefore, Tyr112-Lys183 

functions as a general acid-base pair in this reaction. 

In the complex with malate, the proton on the C2 atom is pointed toward the C4 atom of the 

nicotinamide ring of NAD+, with a hydride transfer distance of about 2 Å (Chang and Tong, 

2003).  This explains the stereospecificity of malic enzyme for L-malate, as D-malate cannot 

adopt the same binding mode (Xu et al., 1999).   

5.5    REGULATION OF MALIC ENZYMES IN YEAST 

Various mechanisms have been described for regulating the levels of activity of malic 

enzymes.  Regulation of the levels of mRNA via transcriptional and post-transcriptional 

regulation is normally found in higher eukaryotic cells, whereas malic enzymes in fungi and 

bacteria are usually regulated through competition and activation by other dicarboxylic acids.  

In higher eukaryotes, the regulation of malic enzymes often involves nutritional or hormonal 

regulation (Barroso and Santisteban, 1999; Gletsu et al., 1999).  A good example is the 
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glucose-induced transcription of the mouse malic enzyme gene via phosphorylation of 

transcription factors that bind to an insulin response element in the gene promoter (Gletsu et 

al., 1999).  However, very little is known about the molecular mechanisms involved in the 

regulation of malic enzyme genes from yeasts. 

5.5.1    The S. pombe Malic Enzyme 

Analysis of the transcriptional regulation of the S. pombe malic enzyme gene indicated that 

two cis-acting elements in the mae2 promoter, UAS1 and UAS2, are required for basal 

expression while three negative-acting elements (URSs) are involved in general derepression 

of mae2 (Viljoen et al., 1999).  Both the UAS1 and UAS2 elements have DNA sequences 

similar to eukaryotic cAMP-responsive regulatory elements: UAS1 has sequence similarity to 

the binding site for the S. cerevisiae cAMP-dependent ADR1 protein (Cherry et al., 1989) and 

mammalian cAMP-inducible AP-2 factor (Xie and Jaiswal, 1996); and UAS2 has similarity to 

the mammalian activating transcription factor (ATF)/cAMP response element (Hai et al., 

1989).  The three negative cis-acting elements, URS1, URS2 and URS3, seem to function co-

operatively to repress mae2 gene expression (Viljoen et al., 1999).  Only URS3 has sequence 

similarity to known DNA-binding sites, i.e. that of the mammalian Sp1 and Sp3 transcription 

factors (Mitchell et al., 1987; Li et al., 1998).  Sequences homologous to that of URS1 and 

URS2 were also identified in the promoter region of the S. pombe malate permease gene 

(Grobler et al., 1995), suggesting the possible co-regulation of pathway-specific enzymes in 

S. pombe.   

The sequence similarity of UAS1 and UAS2 with other eukaryotic cAMP-responsive 

elements raised the possibility of cAMP-regulated expression of the mae2 gene.  In S. pombe, 

the cAMP-dependent (Pka1) and general stress activated (Sty1) pathways operate in parallel 

to regulate the expression of several genes (Wilkinson et al., 1996; Kronstad et al., 1998; 

Wilkinson and Millar, 1998).  Transcription of mae2 in S. pombe was induced after growth on 

8% or 30% glucose or under non-aerated conditions (Viljoen et al., 1999).  Furthermore, a 

two-fold increase in mae2 transcription was evident within 15 min upon transfer of a culture 

from 0.5% glucose to fresh medium containing either 30% glucose or 0.5% glucose plus 

0.8 M KCl (Groenewald and Viljoen-Bloom, 2001).  Both the high glucose concentration and 

0.8 M KCl represent osmotic stress conditions that may result in redox imbalances inside the 

cell.  Pap1, as well as Atf1, are partially required for the induced response to 30% glucose, 

whereas Wis1 may be involved in the response to non-aerated conditions via other 

transcription factors.  Therefore, Groenewald and Viljoen-Bloom (2001) suggested that both 
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the Pka1 and Sty1 signal transduction pathways are involved in the induced expression of 

mae2 under fermentative conditions.   

It is possible that there are two levels of regulation for the mae2 gene in response to glucose.  

The first level of regulation involves a mild carbon regulated induction in response to high 

glucose concentrations (e.g. 8% glucose), and the second, a stronger induction in response to 

osmotic stress conditions (e.g. 30% glucose) (Viljoen et al., 1999; Groenewald and Viljoen-

Bloom, 2001).  Both these conditions can result in redox imbalances, which are rectified by 

increasing the production of glycerol, with the corresponding oxidation of NADH to NAD+ 

(Bakker et al., 2001).  The additional NAD+ must be reduced to NADH to maintain the 

NAD+/NADH redox balance within the cell.   

5.5.2    Saccharomyces Malic Enzyme 

Preliminary transcriptional regulation studies of the MAE1 gene in S. cerevisiae shed some 

light on the physiological role of the malic enzyme in this yeast.  Expression of the MAE1 

gene was found to be relatively low, but constitutive during continuous cultivation on 

different carbon sources, i.e. glucose, ethanol and acetate (Boles et al., 1998).  A clear 

induction of MAE1 expression was observed during anaerobic growth of S. cerevisiae on 

glucose in continuous culture, with a 3-fold increase at the transcriptional level and a 4-fold 

increase in the enzyme activity of cell extracts (Boles et al., 1998).  However, a database 

search with the promoter sequence of the MAE1 gene did not reveal any significant or 

relevant transcription factor-binding sites (Volschenk et al., 2003).   

The underlying mechanisms in three different strains of Saccharomyces showing varying 

aptitudes to degrade extracellular L-malate during alcoholic fermentation were further 

investigated by Redzepovic et al. (2003).  S. paradoxus was able to degrade 28% to 38% 

L-malate, whereas S. cerevisiae and S. bayanus degraded only 17% and 8% of the L-malate 

during alcoholic fermentation, respectively.  It was shown that expression of the malic 

enzyme genes from S. paradoxus and S. cerevisiae increased towards the end of fermentation 

once glucose was depleted, whereas the level of transcription in the non-degrading stain, 

S. bayanus, decreased towards the end of fermentation.  Only S. paradoxus showed an 

increased degradation of L-malate in response to the increase in malic enzyme expression, 

suggesting that it was able to utilise the L-malate as a secondary carbon source. 
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These results implicated the native malic enzyme gene as one of the pivotal role players 

involved in the differential ability of Saccharomyces strains to degrade L-malate (Volschenk 

et al., 2003).  The results clearly showed different expression patterns for the three 

Saccharomyces malic enzyme genes that could be ascribed to different regulatory 

mechanisms employed by the strains.  Given the different promoter sequences observed for 

the three Saccharomyces strains, it is plausible that different transcription regulatory 

mechanisms exist in S. paradoxus that could explain this yeast’s higher aptitude to degrade 

L-malate. 
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ABSTRACT 

The dicarboxylic acid fumarate is an important intermediate in cellular processes and also 

serves as a precursor for the commercial production of fine chemicals such as L-malate.  

Yeast species differ remarkably in their ability to degrade extracellular dicarboxylic acids and 

to utilise them as their only source of carbon.  In this study we have shown that the yeast 

Candida utilis effectively degraded extracellular fumarate and L-malate, but glucose or other 

assimilable carbon sources repressed the transport and degradation of these dicarboxylic 

acids.  The transport of both dicarboxylic acids was shown to be strongly inducible by either 

fumarate or L-malate while kinetic studies suggest that the two dicarboxylic acids are 

transported by the same transporter protein.  In contrast, Schizosaccharomyces pombe 

effectively degraded extracellular L-malate, but not fumarate, in the presence of glucose or 

other assimilable carbon sources.  The S. pombe malate transporter was unable to transport 

fumarate, although fumarate inhibited the uptake of L-malate. 

6.1    INTRODUCTION 

The C4-dicarboxylic acid fumarate serves as an intermediate of the tricarboxylic acid (TCA) 

cycle that allows for the metabolic flow of carbon between various metabolic pathways.  

Yeast species differ remarkably in their ability to transport and utilise one or more 

intermediates of the TCA cycle (Barnett and Kornberg, 1960).  Previous studies have shown 

that L-malate can be utilised by Candida utilis (Cássio and Leão, 1993), Candida sphaerica 

(Côrte-Real et al., 1989), Hansenula anomala (Côrte-Real and Leáo, 1990) and 

Kluyveromyces marxianus (Queiros et al., 1998) as their only source of carbon and energy.  In 

these species, the dissociated form of L-malate is transported across the plasma membrane by 
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a H+-symport system that is substrate-inducible and subject to glucose repression.  In contrast, 

Schizosaccharomyces pombe and Zygosaccharomyces bailii can degrade L-malate only in the 

presence of an assimilable carbon source (Rodriguez and Thornton, 1990; Osothsilp and 

Subden, 1986a).  Other yeasts such as Saccharomyces cerevisiae can import L-malate and 

other dicarboxylic acids only via simple diffusion (Salmon, 1987) and is therefore unable to 

effectively degrade or utilise extracellular L-malate. 

In S. pombe, the dissociated form of L-malate is actively transported via a H+-symport system 

that operates constitutively, whereas the undissociated acid enters the cell via simple diffusion 

(Baranowski and Radler, 1984; Osothsilp and Subden, 1986b; Sousa et al., 1992).  The 

dicarboxylic acids fumarate, D-malate, succinate, oxaloacetate, maleate, malonate and 

α-ketoglutarate acted as competitive inhibitors for the uptake of L-malate (Sousa et al., 1992), 

suggesting a common transporter for the uptake of dicarboxylic acids in fission yeast.  

However, Grobler et al. (1995) showed that L-malate, succinate and malonate, but not 

α-ketoglutarate, were actively transported by S. pombe cells. 

In addition to its role in metabolic processes, fumarate is also an important precursor for the 

commercial production of fine chemicals such as L-malate.  The D,L-malate racemic mixture 

is routinely used in a variety of foods and beverages whereas the L-isomer is used for the 

treatment of conditions such as hyperammonaemia (Rosenberg et al., 1999).  The racemic 

mixture is commercially produced via chemical hydratation of maleate or fumarate, and the 

L-isomer through the enzymatic conversion of fumarate using fumarase-containing microbial 

cells.  The bioconversion of fumarate to L-malate has been obtained by strains of 

Brevibacterium (Takata et al., 1980), Candida rugosa (Yang et al., 1992), Pichia 

(Keruchen’ko et al., 1995) and Dipodascus (Rosenberg et al., 1999) that exhibit high 

fumarase activities.  Over-expression of the S. cerevisiae fumarase gene, FUM1, also resulted 

in an increased conversion rate of fumarate to L-malate (Peleg et al., 1990).  Since 

S. cerevisiae can only import fumarate through diffusion, the introduction of a fumarate 

transporter gene into S. cerevisiae could enable this yeast to actively transport fumarate and 

consequently improve the bioconversion of fumarate. 

Heterologous expression of the S. pombe malate transporter gene, mae1, in a strain of 

S. cerevisiae resulted in the active transport and efficient degradation of L-malate (Volschenk 

et al., 1997a,b).  Our first approach was therefore to determine whether expression of the mae1 

gene in S. cerevisiae would also enable the recombinant strain to transport fumarate.  We 
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found that neither the recombinant S. cerevisiae strain nor the wild type S. pombe strain could 

transport fumarate.  In search of an alternative fumarate transporter, several yeast species 

were evaluated for their ability to degrade extracellular fumarate.  Since C. utilis proved to be 

able to degrade both fumarate and L-malate, the transport of these dicarboxylic acids was 

further investigated in this yeast. 

6.2    MATERIALS AND METHODS 

6.2.1    Microorganisms and culture media 

The yeast strains used in the transport studies included C. utilis ATCC 9950 T, S. pombe 

972 h- (Osothsilp and Subden 1986b) and S. cerevisiae YPH259 (MATα ura3-52, lys2-801a, 

ade2-101o, his3∆200, leu2-∆1) (Sikorski and Hieter, 1989).  The strains used for the screen on 

fumarate/malate indicator plates are listed in Table 6.1.  Unless otherwise stated, the growth 

media contained 0.17% YNB (yeast nitrogen base without amino acids and ammonium 

sulphate [Difco Laboratories, Detroit, Mich.]), 0.5% (NH4)2SO4, supplemented with amino 

acids and buffered at pH 3.3.  Different concentrations of fumarate, L-malate and/or a carbon 

source were added as indicated for the different experiments. 

6.2.2    Degradation of extracellular fumarate and L-malate 

Indicator agar plates were used to screen different yeast species for the degradation of 

fumarate and L-malate in the presence of different carbon sources.  The yeast strains were 

streaked onto YNB agar plates containing 0.05% bromocresol-green, 0.3% fumarate or 

L-malate, together with 2% glucose, fructose, galactose, glycerol, maltose, raffinose or 

sucrose as carbon source.  The plates were incubated at 30°C for 2 days and evaluated for a 

colour change from yellow at pH 3.3 to blue at pH 5.2. 

The utilisation of extracellular fumarate and L-malate by C. utilis and S. pombe was 

determined after growth in liquid YNB media containing 2% glucose, raffinose or 

glycerol/ethanol as carbon source, supplemented with either 0.5% fumarate or L-malate.  Cells 

were harvested at different time intervals and high performance liquid chramatography 

(HPLC) was used to determine the residual levels of fumarate and L-malate.  Glucose 

concentrations were measured with the glucose oxidase method (Glucose [Trinder], Sigma, St 

Louis, Mo.) and cell growth was determined spectrophotometrically at OD600.  All assays 

were done in triplicate. 
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Tabel 6.1.  Utilisation of L-malate and fumarate in various yeast species grown on indicator 
agar with different carbon sources 
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Saccharomyces cerevisiae 228 - - - nga - - - - - - ng - - - 

Schizosaccharomyces pombe 

972- 

+ ng + + + + + - ng - - - - - 

Candida utilis ATCC 9950 T + + - + + + + + + - + + + + 

Hansenula anomala UOFS 

YW207 HT 

+ - + - - - - + - + - + + - 

Rhodosporidium toruloides 

CBS 0014 

- - - - + + - - + - + + + - 

Rhodotorula graminis CBS 

2826T 

- - - - + + - - - - + + + - 

Tremella fuciformis CBS 

6970T 

- - - + + + - - + + + + + - 

Yarrowia lypolitica CBS 2073 - + - - - + + - + + - + + + 

aNo growth 

6.2.3  Transport assays 

Cells of S. cerevisiae YPH259 transformed with plasmid pHV3 containing the S. pombe mae1 

gene (Volschenk et al. 1997b), and wild type S. pombe 972 cells were grown in YNB media 

containing 2% glucose.  For C. utilis, cells were cultured in 0.5% fumarate, 0.5% L-malate, 

2% glucose, 2% raffinose or 2% glycerol/2% ethanol as the only source of carbon.  To further 

investigate the effect of different carbon sources on the transport of fumarate and L-malate, 

C. utilis cells were cultured to OD600 of 0.6 in media containing 0.5% fumarate, 0.5% 

L-malate, 2% glucose or 2% glycerol/ethanol and divided into two batches.  One batch of 

cultures was assayed immediately while the other was transferred to fresh medium containing 

either 0.5% L-malate or 2% glucose as carbon source and incubated for another 6 h. 
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Cells were harvested in the exponential growth phase (OD600 of 0.6), washed twice with ice-

cold distilled water and resuspended in 0.1M KH2PO4 (pH 3.5) to a final concentration of 

approximately 20 mg dry weight ml-1 (adapted from Grobler et al. 1995).  Cell suspensions 

were pre-incubated for 5 min at 30 °C in a shaker waterbath at 100 rpm.  Assays were 

initiated by adding 10 µl of an aqueous solution of [1-14C]-fumarate (6.62 µCi/µmol; ICN 

Pharmaceuticals, CA) or L-[1,4(2,3)-14C]-malate (55 µCi/µmol; Amersham, Bucks, UK).  Pre-

boiled cells (5 min at 100 °C) were used to determine non-specific binding of 14C-fumarate or 
14C-malate to the yeast cells.  Samples of 0.5 ml were withdrawn at different time intervals 

and the reactions were stopped by dilution with 5 ml ice-cold distilled water.  The cells were 

rapidly filtered through 0.45 µm membranes (Millipore Corporation, Bedford, Mass.) and 

immediately washed with 5 ml ice-cold distilled water.  The filters were air dried for 10 min 

and placed in scintillation vials with 5 ml scintillation reaction mixture (Ecolite, ICN 

Pharmaceuticals, Calif.).  Levels of radioactivity were measured with a Beckman LS 3801 

scintillation counter (Beckman Instruments, Calif.). 

6.2.4    Cellular fractionation for localisation of dicarboxylic acids 

Cultures of S. pombe in 10 ml YNB medium containing 2% glucose were harvested at OD6oo 

of 0.6 and resuspended in 1 ml of 0.1 M KH2PO4 (pH 3.5).  Cultures were incubated for 

another hour with 1 µl of either 14C-fumarate (6.62 µCi/µmol) or 14C-malate (55 µCi/µmol).  

A final concentration of 0.5% non-labeled fumarate or L-malate was added to the 14C-malate 

or 14C-fumarate cultures, respectively.  Cells were harvested and the supernatant was 

transferred to scintillation vials containing 5 ml scintillation reaction mixture.  The cells were 

resuspended in 300 µl of 0.1 M KH2PO4 (pH 3.5) together with 0.3 g glass beads (106 µm 

diameter).  Cells were broken with 10 pulses of 15 s with 1 min on ice between pulses.  The 

supernatant and cell debris were separated through centrifugation and transferred to 

scintillation vials containing 5 ml scintillation reaction mixture.  The levels of radioactivity 

were determined as described above.   

6.2.5    Kinetic parameters for protein-mediated transport  

Cells of C. utilis were cultured in YNB medium containing 0.5% fumarate as the only carbon 

source.  Cells were harvested in the exponential growth phase (OD600 of 0.6), washed twice 

with ice-cold distilled water and resuspended in 0.1 M KH2PO4 (pH 3.5) to a final 

concentration of 7 mg dry weight ml-1.  Transport assays were initiated by adding increasing 

concentrations of 14C-fumarate (0.015-2 mM) in the presence or absence of 2 mM non-labeled 
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L-malate.  Estimates of kinetic parameters were obtained from Lineweaver-Burk plot of the 

initial uptake rates of 14C-fumarate.  The Km for total dicarboxylic acids was based on the 

concentrations of both anionic and undissociated dicarboxylic acids. 

6.3    RESULTS  

6.3.1    Lack of fumarate transport by recombinant S. cerevisiae and wild type S. pombe 

Strains of S. cerevisiae cannot transport extracellular dicarboxylic acids such as L-malate or 

fumarate (Salmon, 1987).  However, transport studies with a recombinant S. cerevisiae strain 

expressing the mae1 gene of S. pombe, showed that active transport of 14C-malate was 

obtained, whereas fumarate was not transported (Figure 6.1A).  The active transport of 
14C-malate by the wild type S. pombe 972 h- strain was confirmed (Figure 6.1B), but not in 

the S. pombe mae1- mutant strain that has a defective malate transporter.  No transport of 
14C-fumarate was observed in either strain (Figure 6.1B).  However, increasing concentrations 

of fumarate progressively inhibited L-malate uptake by the recombinant S. pombe malate 

transporter (Figure 6.1C).  The HPLC analyses confirmed that S. pombe cells removed a 

significant portion (approximately 65%) of the L-malate from the glucose-containing growth 

media within 28 h (Figure 6.2A), whereas less than 15% of the fumarate was removed (Figure 

6.2B).  Similar results were obtained for cells grown in media containing raffinose or 

glycerol/ethanol as carbon source (data not shown). 

Since fumarate inhibited the transport of L-malate in the recombinant S. cerevisiae strain 

without being transported itself, the uptake and subsequent cellular localisation of 14C-malate 

and fumarate was further investigated in wild type S. pombe cells (Table 6.2).  An hour after 

the addition of 14C-malate to glucose-grown cells, approximately 30% of the 14C-malate was 

removed from the extracellular fraction.  The majority of this was already further metabolised 

to pyruvate and CO2 with only 0.36% and 0.32% retained in the cell debris and intracellular 

fractions, respectively.  The addition of unlabelled fumarate decreased the uptake of 
14C-malate by 20% and reduced the localisation of 14C-malate in the cell debris and 

intracellular fractions by 50% and 28%, respectively. 
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Figure 6.1.  Transport studies to determine the uptake of L-malate and fumarate by strains of S. 
pombe and S. cerevisiae. (A) Uptake of 14C-malate and 14C-fumarate in S. cerevisiae cells 
transformed with the S. pombe mae1 gene. (B) Uptake of 14C-malate and 14C-fumarate by S. 
pombe 972 h- (wt) and S. pombe mae1- grown in 2% glucose. (C) Competition by fumarate for 
the transport of 4 mM 14C-malate at pH 3.5 by the S. cerevisiae YPH259 host strain (control) or 
transformed with the S. pombe mae1 gene.  The yeast strains were grown in 2% glucose without 
fumarate, or with 10 mM, 20 mM or 30 mM non-labelled fumarate added simultaneously with 
the 14C-malate. 
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Figure 6.2.  HPLC analysis of extracellular concentrations of (A) L-malate and (B) 
fumarate during growth of S. pombe 972 h- on medium containing 2% glucose 

 

When 14C-fumarate was added to the S.  pombe cells, only 1.9% was removed from the 

extracellular fraction after 1 h, but almost 10% of this was retained in the cell debris (Table 

6.2).  Although the addition of unlabelled L-malate did not significantly influence the uptake 

of 14C-fumarate, it decreased its localisation in the cell debris by more than 50%.  These 

results suggested that fumarate competes for the uptake of L-malate by inhibiting its binding 

to the malate transporter, although only L-malate is actively transported by the protein. 
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Table 6.2 Distribution of 14C-labelled fumarate and L-malate in different cellular fractions in 
S. pombe cells after incubation for 60 min with or without unlabelled L-malate or fumarate 

Cellular distribution (% of total 14C added)
Culture conditions 

Cell 

debris 

Intracellular Extracellular 

Grown in 2% glucose, add 14C-malate 0.36 0.32 69.36 

Grown in 2% glucose, add fumarate and 14C-malate 0.18 0.09 83.19 

Grown in 2% glucose, add 14C-fumarate 0.18 0.14 98.10 

Grown in 2% glucose, add L-malate and 14C-fumarate 0.06 0.07 98.41 

 

6.3.2    Screening of yeast species for degradation of extracellular fumarate and L-malate 

In a screen for yeasts capable of transporting fumarate and L-malate, several species were 

screened for their ability to degrade extracellular fumarate or L-malate incorporated into 

fumarate/malate indicator agar plates (Table 6.1).  The yeasts S. pombe and S. cerevisiae are 

not able to utilise intermediates of the TCA cycle as their only source of carbon (Barnett and 

Kornberg, 1960), whereas the other species that were investigated are known for their ability 

to utilise TCA cycle intermediates.  No degradation of either fumarate or L-malate was found 

for S. cerevisiae, since the yeast is unable to transport either of the dicarboxylic acids.  In 

S. pombe, L-malate was effectively degraded in the presence of all the carbon sources that 

sustained growth, but no degradation of fumarate was observed.  For C. utilis, degradation of 

both fumarate and L-malate were found in all the carbon sources investigated, except for 

glucose (Table 6.1).  The other yeast species showed varying abilities to utilise fumarate or 

L-malate that seemed to be dependent on the available carbon source.  Since the indicator 

plates only provided limited information, further investigation was required to better 

understand the regulatory mechanisms involved in the degradation and transport of fumarate 

and L-malate by C. utilis. 

6.3.3    Degradation and transport of fumarate and L-malate by C. utilis 

Cells of C. utilis effectively degraded extracellular fumarate when grown in YNB medium 

containing fumarate as the only carbon source (Figure 6.3A).  However, the degradation of 

fumarate was less efficient when grown in the presence of either raffinose or glycerol/ethanol 

as carbon source, suggesting that other assimilable carbon sources may result in catabolite 

Differential Uptake of Fumarate by Candida utilis and Schizosaccharomyces pombe  
98 



  

repression of fumarate transport.  In support of this, the degradation of fumarate by cells 

grown in glucose/fumarate media only commenced once the glucose had been depleted 

(Figure 6.3B).  Similar results were obtained for L-malate (data not shown), indicating that the 

degradation of both fumarate and L-malate is subject to catabolite repression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.  HPLC analyses showing the residual levels of fumarate after growth of 
C. utilis on (A) 0.5% fumarate, 2% raffinose or 2% glycerol/ethanol or (B) 2% glucose as 
carbon source (residual concentration of glucose is also indicated). 
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When C. utilis cells were pre-cultured in either fumarate or L-malate as the only carbon 

source, most of the 14C-fumarate was taken up within 10 s of addition (Figure 6.4A).  

However, the uptake of 14C-fumarate by cells grown on either glucose or raffinose as the only 

carbon source was almost non-detectable, with only a small amount transported by cells 

grown on glycerol/ethanol.  Similar results were obtained for the transport of L-malate in 

C. utilis (date not shown), indicating that active transport of both fumarate and L-malate was 

subject to substrate induction by either dicarboxylic acid. 
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Figure 6.4.  Transport studies to determine the uptake of 14C-labelled L-malate and 
fumarate by C. utilis. (A) Uptake of 14C-fumarate after growth on 2% glucose, 2% 
raffinose, 2% glycerol/ethanol, 0.5% fumarate or 0.5% L-malate as only carbon source. (B) 
Uptake of 14C- malate after growth on 0.5% fumarate or 0.5% L-malate as only carbon 
source, and shifted to fresh medium containing 2% glucose. (C) Uptake of 14C-malate after 
growth on 2% glucose or 2% glycerol/ethanol with or without 0.5% L-malate. Glucose-
grown cells were also shifted to fresh medium containing 0.5% L-malate. 
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The transport of 14C-malate by C. utilis was further investigated by shifting cultures grown on 

different carbon sources to fresh medium containing either 0.5% L-malate or 2% glucose 

(Figure 6.4B,C).  14C-malate was quickly transported by cells grown on either fumarate or 

L-malate, but transport ceased when cells were transferred to glucose-containing medium 

(Figure 6.4B).  Cells were unable to transport 14C-malate when grown on glucose or 

glycerol/ethanol medium, not even when 0.5% L-malate was included in the glucose medium 

(Figure 6.4C).  However, cells grown on glucose medium regained their ability to transport 
14C-malate when transferred to medium containing L-malate as the only carbon source (Figure 

6.4C). 

Preliminary kinetic studies were done to determine whether C. utilis uses the same transporter 

protein for the uptake of fumarate and L-malate.  Lineweaver-Burk plots of the initial rates of 

uptake of 14C-labelled fumarate at pH 3.5 were linear over the concentration range of 0.08 – 2 

mM (Figure 6.5).  The following kinetic parameters were calculated:  Vmax(fumarate)(pH 3.5) = 

1.058 nmol s-1 mg (dry weight) cells-1;  Km (pH 3.5) = 0.11 mM.  These results indicated that 

fumarate and L-malate were mutually competitive inhibitors, suggesting that they might share 

the same carrier protein in C. utilis. 
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Figure 6.5.  Lineweaver-Burk plots of the initial uptake rates of 4 mM 14C-fumarate by 
fumarate grown cells as a function of the fumarate concentration in the media.  Assays 
were done in the presence or absence of 2 mM L-malate. 
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6.4    DISCUSSION 

 

The dicarboxylic acid L-malate is widely employed in both the pharmaceutical and food 

industries.  Due to its industrial importance, several groups have investigated the 

bioconversion of fumarate to L-malate using microbial cells (Takata et al., 1980; Yang et al., 

1992; Keruchen’ko et al., 1995; Rosenberg et al., 1999).  Increased bioconversion of fumarate 

to L-malate (80.4 mmol fumarate/h per g of cel wet weight) was obtained by over-expression 

of the S. cerevisiae fumarase gene, FUM1 (Peleg et al., 1990).  This efficiency may be further 

improved if the S. cerevisiae cells were able to actively transport fumarate and not have to 

rely only on diffusion of the substrate.  This could be realised through heterologous 

expression of a suitable fumarate transporter from another yeast in S. cerevisiae. 

A screen for yeast strains that could degrade extracellular fumarate showed significant 

differences in the regulation and specificity for the uptake of fumarate and L-malate between 

yeast species.  A common dicarboxylic acid transporter was suggested for S. pombe strain 

ICV.M (Sousa et al., 1992), but results presented here showed that neither the wild type 

S. pombe 972 h- strain nor a recombinant strain of S. cerevisiae containing the S. pombe 

malate transporter gene was able to transport fumarate (Figure 6.1).  However, increasing 

concentrations of fumarate were able to progressively inhibit the uptake of L-malate by the 

recombinant strain.  Cellular fractionation of glucose-grown cells (Table 6.2) showed that the 

addition of unlabelled fumarate decreased both the uptake and membrane localisation of 
14C-malate.  The data suggested that fumarate could also bind to the malate transporter and 

therefore inhibit the uptake of L-malate.  The binding of both fumarate and L-malate to the 

S. pombe malate transporter can be ascribed to the structural relatedness of the two 

dicarboxylic acids.  Similarly, Grobler et al. (1995) reported that α-ketoglutarate was not 

transported by S. pombe, although it competed for the uptake of L-malate (Sousa et al., 1992). 

The results presented here indicate a significant difference in the transport of fumarate and 

L-malate by C. utilis and S. pombe.  Cells of S. pombe 972 effectively transported L-malate, 

but not fumarate, and no evidence for substrate induction or glucose repression for the uptake 

of L-malate was found.  In contrast, the C. utilis ATCC 9950 T strain effectively transported 

both fumarate and L-malate and the uptake of both dicarboxylic acids was induced by either 

of the substrates.  The kinetic data suggest the fumarate and L-malate are transported by the 

same carrier protein in C. utilis, which explains the similar regulatory mechanisms observed 

for the transport of fumarate and L-malate. 
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The degradation of either fumarate or L-malate by C. utilis was sensitive to the presence of 

glucose (Figure 6.3).  This supports previous reports that the utilisation of L-malate in C. utilis 

strain IGC 3092 was subject to glucose repression (Cássio and Leão, 1993).  In addition, we 

observed that the transport of either fumarate or L-malate was also insignificant in the 

presence of other carbon sources such as raffinose and glycerol/ethanol (Figure 6.4).  This 

confirmed that C. utilis employs a double regulatory mechanism for the transport of L-malate 

and fumarate with the dicarboxylic acids only being transported in the presence of either of 

the inducers and when no alternative carbon source is available. 

The carbon sensitivity and substrate induction observed for the uptake of fumarate and 

L-malate by C. utilis could be interpreted in the context of its ability to utilise intermediates of 

the TCA cycle as the only source of carbon and energy.  The yeast C. utilis is Crabtree-

negative and can therefore ferment sugars only under oxygen-limited conditions (Van Dijken 

et al., 1993).  Under aerobic growth conditions, the yeast tended to channel most of its 

pyruvate into the TCA cycle, resulting in an adequate supply of intracellular TCA cycle 

intermediates such as fumarate and L-malate.  Since the degradation of glucose, raffinose or 

glycerol/ethanol can provide pyruvate for the TCA cycle, the dicarboxylic acids will most 

likely only be utilised if a more efficient carbon source is not available.  The results presented 

here support the notion that C. utilis cells allow the transport of fumarate and L-malate only in 

the presence of the inducers and when an alternative carbon source is not available.  

Furthermore, the results presented in Figure 6.3 indicate that the catabolite repression is 

stronger when cells are grown on glucose than on the less favourable carbon source 

glycerol/ethanol. 

Although the transport of dicarboxylic acids has been described for a number of yeast species, 

the S. pombe mae1 gene is the only malate transporter gene cloned and sequenced thus far 

(Grobler et al., 1995).  In this study, we demonstrated significant differences between 

S. pombe and C. utilis concerning the uptake of fumarate and L-malate and the regulation 

thereof.  However, a proper investigation into the molecular basis for the transport of 

fumarate and L-malate by C. utilis can only be done once the fumarate/malate transporter gene 

from C. utilis is cloned. 
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CLONING OF THE DICARBOXYLIC ACID TRANSPORTER FROM 

CANDIDA UTILIS 

7.1    INTRODUCTION 

Significant differences between Schizosaccharomyces pombe and Candida utilis regarding the 

uptake of fumarate and L-malate and the regulation thereof have been discussed in Chapter 6.  

The C. utilis transporter has a much higher substrate affinity than the S. pombe transporter 

with a Km of 0.11 mM (Saayman et al., 2000) as apposed to 3.7 mM for S. pombe (Osothsilp 

and Suben, 1986b).  Further characterisation of the dicarboxylic acid transporter from C. utilis 

and comparison with the S. pombe malate transporter, showed that these two transporters have 

different substrate specificities, i.e. S. pombe cells only transport L-malate whereas C. utilis 

cells transport both L-malate and fumarate.  Furthermore, the kinetic data indicated that 

L-malate and fumarate are transported by the same carrier protein in C. utilis.  It therefore 

seems likely that the C. utilis transporter may be able to also recognise and transport other 

dicarboxylic acids.   

These findings raised the possibility of industrial applications of the C. utilis dicarboxylic acid 

transporter.  The C. utilis dicarboxylic acid transporter may be considered as an alternative to 

the S. pombe L-malate transporter gene, mae1, to introduce L-malate degradation in 

Saccharomyces cerevisiae via heterologous expression.  Another possible application would 

be the bioconversion of fumarate, a highly insoluble compound present in high concentrations 

in the effluents of certain chemical industries.  In general, fumarate is removed from these 

effluents by incinerating of the fumarate precipitate, a procedure that does not only pose an 

environmental hazard, but is also costly.  A biological alternative to remove the excess 

fumarate and convert it into L-malate, an important commercial chemical used in the food and 

wine industry, would be more cost-effective and environmentally friendly.  

Fumarate is a C4-dicarboxylic acid that serves as an intermediate of the tricarboxylic acid 

(TCA) cycle, which is completed with the conversion of succinate to oxaloacetate.  Three 

reactions are involved in this conversion:   

1. Conversion of succinate to fumarate catalysed by succinate dehydrogenase.  This enzyme 

is stereospecific with only the trans-isomer fumarate produced, and not the cis-isomer 

maleate. 
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2. Hydration of fumarate to malate catalysed by fumarate hydratase, also known as 

fumarase.  

3. Reduction of L-malate to oxaloacetate via malate dehydrogenase. 

In order to achieve the biological conversion of fumarate to L-malate in yeast, two important 

proteins are required: a fumarate transporter for the uptake of fumarate, and the fumarase 

enzyme for the enzymatic conversion.  The yeast S.  cerevisiae, well known as a host for the 

expression of heterologous proteins, contains a fumarase gene, but lacks a transport system 

for the uptake of fumarate.  Effective degradation of high concentrations of extracellular 

fumarate will therefore require heterologous expression of a fumarate transporter protein in 

S. cerevisiae.  Together with the overexpression of the native S. cerevisiae fumarase gene 

(FUM1), this could provide the yeast cell with a strong influx of fumarate, as well as a high 

intracellular concentration of the enzyme required to convert the fumarate into L-malate.  

When introduced into industrial effluents containing high concentrations of fumarate, the 

yeast should therefore be able to effectively convert fumarate to L-malate. 

The following sections will describe a number of strategies employed for the cloning of the 

C. utilis dicarboxylic acid transporter, as well as those used for overexpression of the 

S. cerevisiae FUM1 gene.  Please note that this is presented as a compilation of successive 

strategies and not written according to a style suitable for publication. 

7.2    CLONING OF THE C. UTILIS DICARBOXYLIC ACID TRANSPORTER 

Only a few transporter proteins have been cloned from yeast and the DNA sequences of these 

show very little homology.  Although the dicarboxylic acid transporters of C. utilis and 

S. pombe are responsible for the transport of L-malate, DNA sequence analyses of the 

respective genes may explain the differences in substrate specificities.  To avoid problems 

that S. cerevisiae may encounter with expression and post-transcriptional regulation of 

C. utilis genes, it was decided to construct a cDNA library of C. utilis under regulation of 

S. cerevisiae PGK1 promoter and terminator sequences that will allow the constitutive 

expression of the C. utilis dicarboxylic acid transporter in S. cerevisiae. 

7.2.1    Construction of C. utilis cDNA Library 

Construction of Expression Vector, pMH107.  Standard molecular techniques were 

performed essentially as described by Ausubel et al. (1995).  The expression vector pHVX2 
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(Volschenk et al., 1997a) was modified by removing the SalI and XbaI sites and subcloning of 

a synthetic oligonucleotide, containing various restriction sites, as a EcoRI - XhoI fragment, 

resulting in pMH107 (Figure 7.1).  A C. utilis cDNA library was directionally cloned into the 

SalI - NotI sites of pMH107 under control of the constitutive PGK1 promoter and terminator 

sequences of S. cerevisiae. 
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Figure 7.1.  Construction of expression vector pMH107. 

Isolation of mRNA.  Since the C. utilis dicarboxylic acid transporter is subject to glucose 

repression and substrate induction (Cássio and Leão, 1993;  Saayman et al., 2000), cells of 

C. utilis ATCC 9950 T were cultured at 30ºC to an optical density of 0.6 at 600nm in 100 ml 

selective YNB media containing 0.5% L-malate as sole carbon source, to ensure that the genes 
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necessary for L-malate metabolism will be transcribed.  Total RNA was isolated with the 

FastRNA Pro Red Kit (Bio 101, Carlsbad, CA) and mRNA was prepared from 2 mg total 

RNA with the Gibco BRL MessageMaker mRNA Isolation System (Life Technologies, 

Inchinnan, UK).  The mRNA was eluted with 2 ml DEPC-treated water at 65ºC and purified 

with oligo(dT)-cellulose. 

Synthesis of cDNA.  First strand cDNA synthesis was done for 1 hr at 42 ˚C with a reaction 

mixture containing 5 µg mRNA, 50 µg/ml NotI primer-adapter, 50 mM Tris-HCl, pH 8.3, 75 

mM KCl, 3 mM MgCl2, 10 mM DTT, 500 µM each dATP, dCTP, dGTP and dTTP, 10 µCi 

[α-32P]-dATP and 50 000 U/ml SUPERSCRIPT RT (Life Technologies, Inchinnan, UK).  The 

mRNA and NotI primer-adapter (blunt-end) was first heated to 65 ˚C for 10 min and 

immediately chilled on ice. Before addition of the enzyme, the rest of the mixture was heated 

to 42 ˚C for 2 minutes to equilibrate.  Second strand synthesis proceeded for 2 hours at 16 ˚C 

(reaction mixture containing 25 mM Tris-HCl, pH 7.5, 100 mM KCl, 5 mM MgCl2, 10 mM 

(NH4)2SO4, 0.15 mM β-NAD+, 250 µM each dATP, dCTP, dGTP and dTTP, 1.2 mM DTT, 

65 U/ml DNA ligase, 250 U/ml DNA polymerase I and 13 U/ml RNase H).  The cDNA 

overhangs were filled to blunt ends (2 min, 16˚C with 10 U T4 DNA polymerase) and the 

reaction stopped with the addition of 30 mM EDTA.  The cDNA was now ready for SalI 

adaptor (sticky end) ligation, which was done for 16 hours at 16 ˚C (reaction mixture 

containing 50 mM Tris-HCl, pH 7.6, 10 mM MgCl2, 1 mM ATP, 5 % (w/v) PEG 8000, 1 mM 

DTT, 200 µg/ml SalI adapters and 100 U/ml T4 DNA ligase).     

To enable the cloning of the corresponding cDNA fragments, the cDNA was digested with 

NotI (2 hours, 37 ˚C) and size fractionated by SEPHACRYL S-500 HR gel-exclusion 

chromatography (Life Technologies, Inchinnan, UK).  Fractions containing cDNA fragments 

between 1.0 and 4.0 kb were ligated into the NotI – SalI sites of vector pMH107 and 

transformed into LIBRARY EFFICIENCY DH5α Competent Cells (F- Φ80dlacZ∆M15 

∆(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rK
-, mK

+) phoA supE44n λ- thi-1 gyrA96 

relA1) using standard heat shock transformation procedures (Ausubel et al., 1995).   

This procedure was repeated nine times, producing 1.3 x 105 to 1.5 x 106 clones per µg DNA, 

but only had 60% inserts ≥ 200 bp (Table 7.1). 
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Table 7.1.  Summary of best results for construction of C. utilis cDNA library  

 Specification Actual Results 

Number of clones / ml ≥ 3 x 106 1.5 x 106

Average insert size ≥ 1kb 1.5 kb 

% Inserts ≥ 200 bp 87 % 60 % 

7.2.2    Commercial Production of a cDNA Library 

Life Technologies (www.invitrogen.com) was approached for the commercial production of a 

C. utilis cDNA library.  To ensure that the genes necessary for L-malate metabolism will be 

transcribed, cells of C. utilis were cultured to an optical density of 0.6 at 600nm in 200 ml 

selective YNB media containing 0.5% L-malate at 30˚C.  Cells were harvested by 

centrifugation, washed three times with 30 ml 0.85% NaCl and flash-frozen in liquid nitrogen.  

It was shipped on dry ice to Life Technologies for cDNA preparation and directional cloning 

into the NotI-SalI sites of plasmid pEXP-AD502  (Figure 7.2).  The library contained 100% 

inserts of more than 200 bp with an average insert size of 1.844 bp (Table 7.2).  

Transformation of the cDNA into E. coli yielded 1.07 x 107 cfu/ml. 
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Table 7.2.  Results of commercial cDNA library 

 Specification Commercial Library 

Number of clones / ml ≥ 3 x 106 1.07 x 107

Average insert size ≥ 1kb 1.844 kb 

% Inserts ≥ 200 bp 87 % 100 % 

To amplify the library, 4 x 105 primary cDNA transformants were inoculated into 450 ml 

2x LB medium (37˚C) containing 1.35 g SeaPrep (FMC BioProducts, Rockland, Maine, 

USA) agarose and 200 µg Ampicillin.  It was incubated in an ice water bath for 1 hr, followed 

by 30˚C for 45 hours.  The cells were collected by centrifugation at 8000 rpm for 20 min at 

room temperature and resuspended in 25 ml 2x LB medium containing 12.5% glycerol.  The 

amplified library yielded 1.15 x 109 cfu/ml.   

Plasmid DNA was isolated from the cDNA library (Ausubel et al., 1995) and transformed 

into LiOAc-competent cells of S. cerevisiae YPH259 (MATα, ura3-52, lys2-801amber, ade2-

101ochre, his3∆200, leu2-∆1) carrying plasmid pHV4, which contains the S. pombe malic 

enzyme gene (mae2) (Volschenk et al., 1997a).  Transformants were screened on pH-sensitive 

modified Glucose-Malate- Indicator Agar (GMIA) plates (Volschenk et al., 2004) containing 

2% (w/v) of various carbon sources (Table 7.3) together with 0.5% malate as inducer.  

Approximately 4.95 x 105 colonies were screened, but no positive colonies were obtained (i.e. 

discolouring of pH-sensitive GMIA medium that would indicate a shift in pH).  The cloning 

plasmid (pEXP-AD502) contains a nuclear localisation signal that could target the expressed 

protein to the nucleus instead of the cell membrane.  To overcome this problem, the cDNA 

library was subcloned into the SalI – NotI sites of plasmid pMH107 (Figure 7.1).  This 

yielded very low transformation frequencies (Table 7.3) and although approximately 9.9 x 104 

colonies were screened, no positive clones were observed. 
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Table 7.3.  Transformation frequencies of the C. utilis cDNA library into S. cervisiae. 

 Colony Forming Units (cfu) / µg DNA 

Plasmid Glucose  Raffinose Glycerol/Ethanol Galactose  Sucrose  

pEXP-AD502 5 210 1628 6773 3047 4062 

pMH107 208 120 94 130 105 

7.2.3    Gateway Cloning Technoloy 

The low transformation frequencies obtained with S. cerevisiae and the absence of any 

positive clones in this study led us to investigate alternative strategies.  Conventional cDNA 

cloning protocols typically include the use of a restriction enzyme cleavage step for 

directional cloning, which may result in overlooking cDNA clones that happen to have an 

internal restriction site that is also cleaved by the same restriction enzyme.  Recently, the 

GATEWAY Cloning Technologywas developed (Hartley et al., 2000; Walhout et al., 2000) for 

cloning and subcloning of DNA sequences, facilitating gene functional analysis and protein 

expression.  DNA segments are transferred between vectors using phage lambda-based site-

specific recombination instead of restriction endonucleases and ligase.  This recombination 

system is used by phage λ during the switch between the lytic and lysogenic pathways.  This 

powerful system can easily transfer one or more DNA sequences into multiple vectors in 

parallel reactions, while maintaining orientation and reading frame.   

The key DNA recombination sequences (att sites) and proteins that mediate the 

recombination reactions are the foundation of GATEWAY Cloning Technology.  Two reactions 

constitute the GATEWAY System: (1) The BP reaction uses reaction sites attB and attP to 

generate a product flanked by attL1 and attL2, and (2) the LR reaction uses reaction sites attL 

and attR to generate a product flanked by attB1 and attB2 (Table 7.4).  The reactions are 

conservative, i.e., there is no net synthesis or loss of nucleotides - the DNA segments that 

flank the recombination sites are merely switched.  The recombination sites of each vector 

comprise a hybrid sequence, donated by the sites on the parental vectors.  The recombination 

can occur between DNA's of any topology (supercoiled, linear or relaxed), although 

efficiency varies. 
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Table 7.4.  Summary of GATEWAY reactions and nomenclature. 

Reaction Reaction Sites Catalysed by Product Structure of 
Product 

BP Reaction attB x attP BP Clonase 
Enzyme Mix 

Entry Clone att L1-gene-attL2 

LR Reaction attL x attR LR Clonase 
Enzyme Mix 

Expression 
Clone 

attB1-gene-attB2 

The BP reaction is a recombination reaction between an Expression Clone, in this case 

pEXP-AD502, and a Donor Vector (pDONR201; Life Technologies, Inchinnan, UK) (Figure 

7.3A).  Homologous recombination then occurs between the B1, B2 and P1, P2 sites, by 

means of the BP Clonase Enzyme.  This system has a dual selection system.  The expression 

clone contains an ampicillin resistance gene whereas the donor vector has a kanamycin 

resistance gene.  Furthermore, the Donor Vector carries the ccdB gene that interferes with E. 

coli DNA gyrase and thereby inhibits growth of most E. coli strains.  The end result is a 

byproduct containing the ccdB gene on the ampicillin resistant vector, and an Entry Clone 

carrying the cDNA products on the kanamycin resistant vector.  Positive colonies are selected 

on kanamycin-containing LB-plates.   

The next step is the LR reaction, a recombination reaction between the Entry Clone generated 

in the previous step and a Destination Vector, to create an Expression Clone (Figure 7.3B).  

The Destination Vector also contains the ccdB gene.  After homologous recombination by 

means of the LR Clonase enzyme gene, the end result is the cDNA genes on the ampicillin 

resistance vector and the ccdB gene on the kanamycin resistance vector.  Positive clones can 

then be selected for on ampicillin-containing LB-plates.   

Constructing a new Destination Vector for cDNA-library.  For any vector to serve as a 

Destination Vector, it must have attR sites flanking the ccdB gene.  For the C. utilis cDNA 

library, vector pHVX2 (Volschenk et al., 1997a) was converted to a GATEWAY Destination 

Vector by ligating a blunt-ended cassette, containing attR sites, the ccdB gene and a 

chloramphenicol resistance marker, into the EcoRI - XhoI sites of pHVX2 (Figure 7.4).  After 

linearisation of pHVX2 with EcoRI and XhoI, the ends were blunted by a Klenow fill-in 

reaction (Ausubel et al., 1995), after which the blunt-end cassette (attR1-Cmr-ccdB-attR2) 

was ligated into the vector, resulting in Destination Vector pMH108. 
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Plasmid pMH108 was propagated in LIBRARY EFFICIENCY DB3.1 competent cells (F- 

gyrA462 endA1 D(sr1 - recA) mcrB mrr hsdS20 (rB
-, mB

-) supE44 ara-14 galK2 lacY1 

proA2 rpsL20(Smr) xyl-5 λ- leu mtl-1) (Life Technologies, Inchinnan, UK), containing a 

gyrase mutation (gyrA462). The ccdB protein  interferes with E. coli DNA gyrase and thereby 

inhibits growth of most E. coli strains.  Strains of E. coli that contain an F' episome also carry 

the ccdA gene that encodes an antidote to ccdB protein toxicity.  Therefore, strains with F 

episomes must not be used for selection following BP or LR reactions.   

The cDNA library of C. Utilis was subcloned into the new Destination Vector, pMH108, by 

means of GATEWAY Cloning Technology and transformed into  S. cerevisiae Y294 carrying 

plasmid pHV4 (containing the S. pombe malic enzyme gene, mae2).  Good transformations 

frequencies were obtained (Table 7.5) and 6.0 x 105 S. cerevisiae colonies were screened on 
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pH-sensitive GMIA plates containing 0.5% malate together with 2% (w/v) glucose, rafffinose, 

glycerol/ethanol, galactose or sucrose, but no positive colonies were obtained. 

Table 7.5.  Summary of transformation frequencies for plasmid pMH108  

 Colony Forming Units (cfu) / µg DNA 

Plasmid Glucose  Raffinose Glycerol/Ethanol Galactose  Sucrose  

pMH108 12 250 8 750 6 550 9 800 11 760 

7.2.4 Expression of cDNA Library under Inducible GAL1-Expression 

pYES-DEST52 - Destination Vector.  The C. utilis cDNA library was also subcloned into 

the commercial plasmid pYES-DEST52 (Figure 7.5) by means of GATEWAY Cloning 

Technology.  The Destination Vector pYES-DEST52 is a GATEWAY-adapted vector for 

cloning and inducible GAL1-expression in S. cerevisiae.    The pYES-DEST cDNA library 

was again transformed into S. cerevisiae Y294 containing the S. pombe malic enzyme gene, 

mae2.  Approximately 5.0 x 105 colonies were screened on plates containing 2% raffinose and 

0.5% galactose, or 0.5% raffinose and 2% galactose, with transformation frequencies of 

12 355 and 12 950 cfu/µg DNA, respectively, with no positive colonies obtained.   

pYES-DEST52 
7762 bp 

F1 ori 

2um ori 

ri

pitopeURA3 

Ampr pUC o

GAL1p

Cmr

ccdB

attR1 

attR2

V5 e

CYC1 polyA

6x His tag 

Figure 7.5.  Plasmid map of vector pYES-DEST52 (www.invitrogen.com).   
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7.3    BIO-CONVERSION OF FUMARATE TO L-MALATE 

7.3.1    Over-expression of FUM1 

As mentioned previously, fumarase catalyses the interconversion of fumarate and L-malate as 

part of the TCA cycle.  Like most TCA cycle enzymes, fumarase is located in the matrix 

compartment of mitochondria in S. cerevisiae.  However, two compartmentally distinct forms 

of fumarase have been suggested, namely mitochondrial and cytosolic fumarase isoenzymes, 

encoded by a single nuclear gene, FUM1 (Wu and Tzagoloff, 1987).  The mitochondrial 

isoenzyme is probably processed by removal of  a signal peptide during translocation of the 

protein from the cytosol through the mitochondrial membranes.  Very little research has been 

done to elucidate the mechanism and function of fumarase distribution between subcellular 

compartments in S. cerevisiae.  We therefore cloned the FUM1 gene with and without the 

signal peptide to over-express both fumarase isoenzymes. 

Experimental strategy.  DNA manipulations were performed in the expression vector 

pHVX2 (Volschenk et al., 1997a), a derivative of YEplac181, containing the PGK1 promoter 

and terminator sequences.  The FUM1 open reading frame (ORF), with or without the signal 

peptide, was isolated from S. cerevisiae genomic DNA as a XhoI fragment by means of PCR, 

and sub-cloned into the XhoI site of pHVX2 (Figure 7.6).  pMH102 contains the complete 

FUM1 ORF of 1.5 kb (mitochondrial isoenzyme), and pMH103 contains the FUM1 gene 

without the proposed mitochondrial import signal of 69 bp (cytosolic isoenzyme).  E. coli 

strain DH5α was transformed by electroporation and transformants were selected on LB 

medium supplemented with ampicillin. 

7.3.2  Secretion of Fumarase Enzymes 

When it became apparent that the cloning of a C. utilis dicarboxylic acid transporter was more 

difficult than anticipated, alternative strategies were investigated for the expression of FUM1.  

One of these was the possible secretion of the fumarase enzyme by means of the MFα1 

secretion signal, which would allow the extracellular degradation of fumarate to L-malate.  

Since little is known about the extracellular activity of fumarase, both the mitochondrial and 

cytosolic open reading frames were subcloned and constitutively expressed under regulation 

of the PGK1 promoter and terminator sequences in pHVX2. 
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Figure 7.6.  Strategy for cloning of the mitochondrial and cytosolic FUM1 isozymes 
under control of the PGK1 promoter and terminator sequences in pHVX2. 
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Experimental strategy.  The MFα1 secretion signal from plasmid pPRL1 (Van Rensburg et 

al., 1995) was sub-cloned into the EcoRI - XhoI site of vector pHVX2, resulting in plasmid 

pAM100 (Figure 7.7).  The FUM1 gene was subcloned into the XhoI site of pAM100, 

resulting in plasmids pMH105 and pMH106 containing the mitochondrial and cytosolic 

fumarase genes, respectively, linked to the MFα1 secretion signal under control of the PGK1 

promoter and terminator sequences.  Plasmids pMH105 and pMH106 were transformed into 

S. cerevisiae Y294 (α leu2-3, 112 ura3-52, his3, trp1-289) and transformants were selected 

on selectice YNB agar plates (0.17% Yeast Nitrogen Base without amino acids and 

ammonium sulphate [Difco Laboratories, Detroit, MI]) supplemented with amino acids as 

required.  Cells cultured in media containing 1% glucose, 2% bactopeptone, 1% yeast extract 

and 0.3% fumarate were harvested at different time intervals during growth and the 

supernatant analysed by means of HPLC to determine the extracellular conversion of 

fumarate to L-malate. 
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Figure 7.7.  Cloning of the S. cerevisiae FUM1 gene linked to MFα1 under control of the PGK1
promoter and terminator sequences in pHVX2. 
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Results.  As shown in Figure 7.8, small amounts of L-malate were produced by all the 

recombinant strains (less than 0.1 g/l) after 72 hrs.  The S. cerevisiae host strain transformed 

with the pAM100 vector only and pMH105 (mitochondrial fumarase enzyme) degraded 

similar amounts of fumarate (26% and 25% after 72 hrs, respectively).  It is possible that the 

fumarase enzyme was still targeted to the mitochondria, despite the presence of the MFα1 

secretion signal.  Although the cytoplasmic enzyme ( pMH106 in Figure 7.8C) was able to 

provide a more effective degradation of fumarate (1.7 g/l after 72 hrs), the amount of L-malate 

produced was similar to the other two strains (less than 0.5 g/l).   
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Figure 7.8.  Degradation of extracellular fumarate, and the formation of malate by 
S. cerevisiae containing (A) pAM100 (no FUM1 insert), (B) the MFα1 secretion signal 
linked to the mitochondrial fumarase enzyme (pMH105), and (C) the MFα1 secretion 
signal linked to the cytosolic fumarase enzyme (pMH106). 
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7.4    CONCLUDING REMARKS 

Only a few dicarboxylic acid transporters have been cloned from yeast thus far.  This includes 

the S. pombe malate transporter (Grobler et al., 1995) and the Kluyveromyces lactis 

dicarboxylic acid transporter, encoded by KlJEN2 (Lodi et al., 2004).  The C. utilis 

malate/fumarate transporter is highly effective (Km of 0.11 mM for fumarate), but the protein 

is subject to glucose repression and substrate induction (Saayman et al. 2000).  If the C. utilis 

malate/fumarate transporter gene could be cloned, it would provide the possibility of 

heterologous expression of the gene under constitutive or induced regulation for various 

commercial applications.   

In this study, several strategies were employed to clone the C. utilis malate/fumarate 

transporter gene.  The low level of homology observed for those transporters already known 

did not favour the selection of conserved regions for the design of homologous or even 

degenerate primers.  This strategy was, however, successful for the cloning of the C. utilis 

malic enzyme gene (see Chapter 8) due to the high level of homology between malic enzymes 

in general (Viljoen et al., 1994).  It was therefore decided to attempt cloning of the C. utilis 

malate/fumarte transporter gene from a cDNA library constructed from cells grown in 

medium containing L-malate as sole carbon source, to increase the copy number of the 

relevant gene.  Two host strains were considered, namely the S. pombe mae1- strain (deficient 

in malate transport) or the recombinant S. cerevisiae strain carrying the S. pombe malic 

enzyme gene, mae2.  The best candidate was the recombinant S. cerevisiae-mae2 strain, since 

the low transformation frequencies normally associated with S. pombe, made it an unlikely 

candidate for screening of a library.  

A cDNA library from C. utilis was constructed employing a number of strategies to ensure 

representativeness and high transformation frequencies.  Several expression vectors 

containing S. cerevisiae promoter and terminator sequences were constructed to allow the 

expression of the C. utilis malate/fumarate transporter in either a constitutive or regulated 

fashion.  The cDNA library was transformed into an S. cerevisiae strain carrying a plasmid 

containing the S. pombe malic enzyme gene (mae2) to allow screening for a malate-degrading 

S. cerevisiae clone.  Although a good representative library was constructed using the 

GATEWAY Cloning Technology, combined with good transformation frequencies for the 

S. cerevisiae-mae2 strain, no positive clones (i.e. malate-degrading) were detected during 

screening on various modified GMIA-plates.   
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The failure to clone the C. utilis malate/fumarate transporter gene from the cDNA libary could 

be due to intrinsic problems with the GMIA plates used for the library screen.  The GMIA 

plates were originally developed for screening for S. pombe mutants (Subden et al., 1986b) 

and subsequently modified by Volschenk et al. (2004) to allow for screening of malate-

degrading S. cerevisiae strains expressing the S. pombe malate transporter (mae1p) and malic 

enzyme (mae2p).  It is, however, possible that the recombinant S. cerevisiae strain expressing 

the C. utilis malate/fumarate transporter may not be able to degrade the malate in the GMIA 

plates with the same efficacy as the S. cerevisiae mae1-mae2 strain, which will therefore 

result in a deminished pH change in the GMIA plates and hence no detectable colour change. 

Effective expression of the S. pombe malate transporter in S. cerevisiae suggested that the 

C. utilis transporter may also be effective when expressed in S. cerevisiae.  As was clearly 

showed in this study, these assumptions don’t always take significant differences between the 

two relevant genes/proteins into consideration.  Only a few dicarboxylic acid transporters 

have been studied in yeast, but it is evident that they don’t share the high level of homology 

that was observed for malic enzymes.  It is therefore possible that sequence differences 

between the S. pombe and C. utilis transporters may impact on the translation efficiency of the 

two genes in S. cerevisiae, the folding and chanelling of the proteins towards the outer 

membrane as well as the actual embedding of the protein inside the membrane.  Transporter 

proteins are membrane bound and contains various hydrophilic regions on both sides of the 

membrane lipid bilayer, connected by hydrophobic membrane-spanning α-helices (Solomon 

et al., 2005).  In order for the protein to be functional, it needs to be folded correctly to 

associated with the membrane and to transport the required substrate.  It is also possible that 

this specific folding pattern may require specific chaperone proteins not present in the 

S. cerevisiae host strain. 

One of the possible industrial application for a recombinant C. utilis transporter would have 

been to provide a biological means to remove excess fumarate from effluents of certain 

chemical industries, and convert it (via fumarase) to L-malate, an important commercial 

chemical used in the food and wine industry.  This could be achieved by expressing the 

C. utilis dicarboxylic acid transporter gene in S. cerevisiae together with over-expression of 

the S. cerevisiae fumarase gene (FUM1).  In anticipation of the successful cloning the C. utilis 

malate/fumarate transporter gene, vectors for overexpression of the S. cerevisiae FUM1 genes 

(mitochondrial and cytosolic) isozymes were constructed.  However, when it became apparant 

that the C. utilis transporter could not be cloned in the course of this study, an alternative 
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strategy was investigated, namely to target the FUM1 gene for secretion under control of the 

S. cerevisiae MFα1 secretion signal.   

The degradation of extracellular fumarate was improved with the overexpression and 

secretion of the cytosolic fumarase, but this was not quantitatively converted to L-malate.  The 

low efficiency of the over-expressed FUM1 gene could be ascribed to a number of reasons, 

including a lower than expected expression level or the ineffective secretion thereof due to 

structural problems associated with the fumarase protein that may prohibit it from being 

transported across the membrane.  Since the fumarase is not a protein usually targeted for 

secretion, it may require specific membrane-associated proteins for translocation across the 

plasmamembrane. 
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ABSTRACT 

The Candida utilis malic enzyme gene, CuME, was isolated from a cDNA library and 

characterised on a molecular and biochemical level.  Sequence analysis revealed an open 

reading frame of 1926 bp, encoding a 641 amino acid polypeptide with a predicted molecular 

weight of approximately 70.2 kDa.  The optimum temperature for the C. utilis malic enzyme 

activity was 52°C and the enzyme was stable at 50°C for 2 hours.  The inferred amino acid 

sequence suggested a cytosolic localisation for the malic enzyme, as well as 37% and 68% 

homology with the malic enzymes of Schizosaccharomyces pombe and Saccharomyces 

cerevisiae, respectively.  Expression of the CuME gene is subject to glucose repression and 

substrate induction, suggesting similar regulatory pathways than for the C. utilis 

malate/fumarate transporter.  The CuME gene was successfully expressed in S. cerevisiae 

under control of the S. cerevisiae PGK1 promoter and terminator.  When co-expressed with 

the S. pombe malate permease gene (mae1), it resulted in a recombinant strain of S. cerevisiae 

able to degrade 90% of the extracellular L-malate within 24 hours.   

Nucleotide sequence data reported are available in the DDBJ/EMBL/Genbank databases 

under the accession number DQ173437.   

8.1    INTRODUCTION 

L-Malate is a α-hydroxyl C4-dicarboxylic acid that serves as an intermediate in the 

tricarboxylic acid (TCA) cycle in mitochondria of living cells.  It is commercially used as a 

food additive, having greater tartness and taste retention than most other food acids (Neufeld 

et al., 1991).  L-Malate is metabolised in various subcellular compartments of the eukaryotic 

cell and serves a pivotal role in the metabolism of C3- and C4-metabolites.  The oxidative 

decarboxylation of L-malate to pyruvate and carbon dioxide (CO2) is catalysed by a 
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mitochondrial or cytosolic malic enzyme that requires divalent cations (Mg2+ or Mn2+) and 

NAD(P)+ as cofactors.  Three types of malic enzymes are found in nature and are classified by 

their coenzyme specificity and ability to decarboxylate both L-malate and oxaloacetate 

(Viljoen et al., 1994).  The NAD+-specific L-Malate: NAD+ oxidoreductase (oxaloacetate-

decarboxylating) [EC 1.1.1.38] is usually associated with bacterial cells; L-malate: NAD(P)+ 

oxidoreductase (decarboxylating) [EC1.1.1.39] prefers NAD+ to NADP+ as coenzyme and is 

found in mitochondria, hydrogenosomes and bacteria, while the NADP+-dependent L-malate: 

NADP+ oxidoreductase (oxaloacetate-decarboxylating) [EC 1.1.1.40] is found in bacteria and 

the cytosol and plastids of eukaryotic cells (Doležal et al., 2004). 

Yeast species differ remarkably in their ability to utilise and degrade extracellular L-malate.  

Cells of Schizosaccharomyces pombe and Candida utilis are able to effectively transport and 

degrade extracellular L-malate, whereas Saccharomyces cerevisiae cells have to rely on 

simple diffusion due to the lack of a transport system for L-malate (Volschenk et al., 2003).  

There are also significant differences between the malic enzymes of S. pombe and 

S. cerevisiae: the S. cerevisiae malic enzyme is localised in the mitochondrion (Boles et al., 

1998) and has a low substrate affinity for L-malate (Km = 50 mM) (Fuck et al., 1973).  In 

contrast, a cytoplasmic localisation was proposed for the S. pombe malic enzyme (Viljoen et 

al., 1999) which also has a much stronger substrate affinity for L-malate (Km = 3.2 mM) 

(Temperli et al., 1965).  Despite the different L-malate degradation abilities of S. cerevisiae 

and S. pombe, biochemical and genetic analyses of the relevant enzymes and genes suggested 

that the S. cerevisiae and S. pombe malic enzymes both play a role in the provision of 

pyruvate for cellular biosynthesis (Volschenk et al., 2003).   

Although cells of S. pombe and C. utilis can effectively degrade L-malate, the proteins 

involved are subject to different regulatory mechanisms.  In S. pombe, L-malate can not serve 

as sole carbon or energy source and is only metabolised in the presence of glucose or another 

assimilable carbon source (Baranowski and Radler, 1984; Taillandier and Strehaiano, 1991).  

In contrast, C. utilis can utilise intermediates of the TCA cycle as the only source of carbon 

and energy, but the degradation and transport of L-malate in C. utilis is subject to carbon 

catabolite repression repression and substrate induction (Cássio and Leão, 1993; Saayman et 

al., 2000).  In C. utilis, the major pathway for carbon metabolism is via the mitochondrial 

TCA cycle to generate energy as well as for the biosynthesis of cell material (especially 

amino acids and lipids).  The TCA cycle isozyme families are therefore often critical points 

for control of metabolic flux (McAlister-Henn and Small, 1997).   
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The yeast C. utilis is an industrially important microorganism that is widely used for the 

production of biologically useful materials, such as glutathione, certain amino acids and 

enzymes.  It has been utilised in the large-scale production of single-cell protein from 

biomass-derived sugars, such as sugar molasses and spent sulfite liquor (Boze et al., 1994).  

Furthermore, C. utilis has been approved for use as a foodstuff by the US Food and Drug 

Administration and may therefore be considered for other biotechnological applications in the 

food and beverage industry.   

Effective degradation of extracellular L-malate in C. utilis has been ascribed to the active 

transport of L-malate by the malate/fumarate transporter (Saayman et al., 2000), as well as the 

presence of an active intracellular malic enzyme.  The malate/fumarate transporter was 

reported to be sensitive to catabolite repression and substrate induction by both L-malate and 

fumarate (Saayman et al., 2000), but information on the nature and regulation of the C. utilis 

malic enzyme has been limited.  The aim of this study was therefore to clone and characterise 

the C. utilis malic enzyme gene, CuME, and determine its relatedness to other malic enzyme 

genes, especially those of S. pombe and S. cerevisiae.  The regulation of the C. utilis malic 

enzyme was studied on a transcriptional level and the commercial potential of the CuME gene 

was evaluated in a heterologous S. cerevisiae strain together with the S. pombe malate 

transporter gene. 

8.2    MATERIALS AND METHODS 

8.2.1    Strains and Culture Conditions 

The bacterial and yeast strains and plasmids used in this study are listed in Table 8.1.  Cells of 

Escherichia coli DH5α were transformed by heat shock (Ausubel et al., 1995) with selection 

on LB plates (0.5% yeast extract, 1% NaCl, 1% tryptone) supplemented with 200 mg/l 

ampicillin.  Cells of S. cerevisiae were cultured in liquid YPD media (1% yeast extract, 2% 

bactopeptone, 2% glucose) at 30°C and competent cells (Moreno et al., 1991) were 

transformed or co-transformed with plasmids pHVX2, pHV4, pMH109 and pMH110 (Table 

8.1).  Transformants were isolated on selective YNB agar plates (0.17% Yeast Nitrogen Base 

without amino acids and ammonium sulphate [Difco Laboratories, Detroit, MI], 0.5% 

(NH4)2SO4, 2% glucose, 1.7% bacto-agar [Difco Laboratories, Detroit, MI]) supplemented 

with amino acids as required.  Cells of S. pombe and C. utilis were grown in YNB media, 

supplemented with amino acids as required, or in YPD media. 
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Table 8.1.  Strains and plasmids used for the isolation and characterisation of the malic 
enzyme gene of C. utilis  

Strains Description Reference

E. coli DH5α F- Φ80dlacZ∆M15 ∆(lacZYA-
argF)U169 deoR recA1 endA1 
hsdR17(rK

-, mK
+) phoA supE44 λ- thi-1 

gyrA96 relA1 

www.invitrogen.com 

C. utilis ATCC 9950 T Wild type strain Saayman et al., 2000 

S. cerevisiae Y294 α leu2-3, 112 ura3-52 his3 trp1-289 Crous et al., 1995 

S. pombe 972- leu1-32 h- Osothsilp, 1987 

S. pombe mae2-  972 h- leu1-32 mae2- LH67 Osothsilp and Subden, 1986a

Plasmids Description Reference

pEXP-AD502 Shuttle vector (TRP1 marker gene), 
containing the ADH1p-ADH1t 
expression cassette 

www.invitrogen.com 

pYES-DEST52 Shuttle vector (URA3 marker gene) 
containing the GAL1 promoter and 
CYC1 terminator 

www.invitrogen.com 

pJC1 Shuttle vector Yep352 (URA3 marker 
gene), containing the PGK1p-PGK1t 
expression cassette 

Crous et al., 1995 

pHVX2 Shuttle vector Yeplac181 (LEU2 
marker gene), containing the PGK1p-
PGK1t expression cassette 

Volschenk et al., 1997a

pHV3 pHVX2 with S. pombe mae1 ORF 
(PGK1p-mae1-PGK1t) 

Volschenk et al., 1997a,b

pHV4 pHVX2 with S. pombe mae2 ORF 
(PGK1p-mae2-PGK1t) 

Volschenk et al., 1997a

pMH109 pHVX2 with CuME ORF (PGK1p-
CuME-PGK1t) 

This study 

pMH110 pJC1 with mae1 ORF (PGK1p-mae1-
PGK1t) 

This study 

Modified GMIA plates containing 0.17% Yeast Nitrogen Base (Difco Laboratories, Detroit, 

MI), 0.5% (NH4)2SO4, 10% glucose, 10% L-malic acid, 0.01% bromocresol green, 2% Noble 

agar (Difco Laboratories, Detroit, MI) with the pH adjusted to 3.3 with KOH (Volschenk et 

al., 2004), was used to screen for S. cerevisiae transformants with a malo-ethanolic 

Cloning, Characterisation and Heterologous Expression of the Candida utilis Malic Enzyme Gene 

126



phenotype.  These plates (supplemented with amino acids as required) produce blue colonies 

with a surrounding blue zone due to a shift in pH from 3.3 to 5.2 units when L-malate is 

converted to pyruvate. 

8.2.2    DNA Manipulations 

Standard recombinant DNA techniques were performed essentially as described by Ausubel et 

al. (1995).  Restriction enzymes, modification enzymes and DNA purification kits were used 

as prescribed by the manufacturer (Roche Diagnostics, Germany).  All PCR reactions were 

executed with Takara Ex Taq (Takara Bio Inc. Japan).   

8.2.3    Cloning of CuME via PCR 

PCR amplification of an internal CuME fragment from the C. utilis cDNA library constructed 

in Chapter 7 (Figure 8.1) was done with primers 5’-MH3 and 3’-MH4 (Table 8.2), which 

were designed based on perceived homology with the S. pombe malic enzyme (mae2) 

sequence.  The DNA sequence of the PCR fragment was used to design primers 5’-pEXP-

AD502F and 3’-CuMERint (5’ region of CuME) as well as 5’-CuMEFint and 3’-pEXP-

AD502R (3’ region of CuME) to amplify and sequence the remaining CuME fragments.  The 

entire CuME ORF was then amplified by PCR using primers 5’-CuMalicF and 3’-CuMalicR 

and subcloned into the pGEM®-T Easy Vector System (Promega Corporation, Madison, 

USA).  Plasmids were transformed into E. coli DH5α cells by electroporation and selected on 

LB medium supplemented with 200 mg/l ampicillin (Ausubel et al., 1995). 

CuMalicR 

CuMEFint 
CuMERint

pEXP-AD502R

pEXP-AD502F 

CuMalicF 

MH3 
MH4

CuME ORF  

Figure 8.1.  Strategy for cloning of the C. utilis malic enzyme gene, CuME. 
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Table 8.2.  Primers used to isolate and sequence CuME ORF and other gene fragments     

Primer Sequence

5’-MH3 5’AAGGAACTAGTTCCTATCATCTATACACCTACC3’ 

3’-MH4 5’GGCCATCGATACGGCACCGGTTCCCTG GAT3’ 

5’-pEXP-AD502F 5’TATAACGCGTTTGGAATCACT3’ 

3’-CuMERint 5’ACACTGGGCTGACTCTACCTGGGT3’ 

5’-CuMEFint 5’ACCCAGGTAGAGTCATCCCAGTGT3’ 

3’-pEXP-AD502R 5’GTAAATTTCTGGCAAGGTAGAC3’ 

5’-CuMalicF 5’GTTTCAACGATGATATCCAGGGAACCGGTGCCGT3’ 

3’-CuMalicR 5’TCACCTTCGGTAGGTGTATAGATGATAGGA3’ 

5’-mae1ORF-F 5’GATCGAATTCATGGGTGAACTCAAGGAAATC3’ 

3’-mae1ORF-R 5’GATCAGATCTTTAAACGCTTTCATGTTCACT3’ 

5’-MalicF1 5’CCTACTCCCACAGATTTAGA3’ 

3’-MalicR1 5’GTCTTGTTGGGTTGGACAAT3’ 

5’-MalicF2 5’TCTCAAGTCCATGAAGGAGA3’ 

3’-MalicR2 5’GACGATTTGATCAGCAATAC3’ 

5’-5SF 5’GGTTGCGGCCATATCTAGCAGAAA3’ 

3’-5SR 5’AGATTGCAGCACCTGAGTTTCGCG3’ 

Primers 5’-CuMalicF and 3’-CuMalicR were also used for PCR amplification of the genomic 

copy of the CuME ORF from 1 µg genomic DNA isolated from C. utilis ATCC 9950 T using 

the glass bead-phenol extraction (Hoffmann and Winston, 1987).  The PCR program 

consisted of an initial denaturation step at 94ºC for 5 minutes, followed by 30 cycles of 94ºC 

for 45 seconds, 45ºC for 1 minute and 72ºC for 1.5 minutes.  The PCR product was purified 

and transformed into E. coli DH5α cells as described for the cDNA fragment. 

8.2.4    DNA Sequencing and Analysis 

Plasmid DNA was isolated from three subclones with the High Pure Plasmid Purification Kit 

(Roche Biochemicals, Germany) and submitted for automated sequencing using various 

primers as indicated in Figure 8.2.   Cycle sequencing reactions were performed using the 

BigDye 3 V1 Terminator kit (Applied Biosystems) on a GeneAmp PCR system 9700 
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(Applied Biosystems).  Unincorporated terminators were removed and electrophoresis was 

performed on an ABI PRISM (R) 3100 Genetic Analyser (Applied Biosystems).   

 

 

 

 

 

 

 

 

The nucleotide sequence for the CuME gene was submitted to the DDBJ/EMBL/Genbank 

databases under the accession number DQ173437.  The DNA sequence of the C. utilis malic 

enzyme gene (cDNA and genomic copies) was compared with that of S. pombe and 

S. cerevisiae using the PC-based DNAMAN software (version 4.13) from Lynnon Biosoft.  

Comparison searches were performed with the NCBI nucleotide BLAST program 

(http://www.ncbi.nih.gov/) and consensus multiple alignment and phylogenetic tree 

calculations with the ClustalW program (Thompson et al., 1994).  Prediction of cellular 

localisation of the C. utilis malic enzyme was done using Predotar version 1.03 

(http://genoplante-info.infobiogen.fr/predotar/predotar-html).    

8.2.5    Malic Enzyme Activity Assays 

Strains were cultured overnight in 10 ml YNB medium containing various carbon sources as 

indicated for the respective experiments.  Total cellular proteins were isolated and used for 

malic enzyme assays as described by Osothsilp and Subden (1986a).  The assay mixture of 

3 ml included of 0.05 ml 0.2 M L-malate, 0.05 ml 4 mM NAD+ or NADP+, 0.05 ml MgCl2 or 

MnCl2, 1.3 ml 0.1 M phosphate buffer (pH 7.5), and 0.05 ml total cellular protein extract.  

Unless stated otherwise, the assays were performed at 25°C.  The reaction was started with 

the addition of the protein extract and the increase in absorbance at 340 nm was measured at 

T7 

MalicF1 
CuMEFint 

CuMalicF 

MalicF2
SP6 

MalicR1
MalicR2 

CuMERint 

CuMalicR

CuME ORF – 1926 bp PGEM-T 
Easy Vectorsy Vector 

PGEM-T 
Ea

Figure 8.2.  DNA sequencing strategy for the coding region of CuME (cDNA copy). 
Arrows indicate the regions that were sequenced from each primer. Both strands were 
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various time intervals.  Enzyme activities are given as µmoles of NADH produced per mg of 

protein as determined by Bradford assays (Bio-Rad Laboratories, Hercules, CA).   

To determine the optimum temperature for the C. utilis malic enzyme, enzyme activity 

reactions were done at temperatures between 10°C and 100°C at pH 7.5 for 15 min.  The 

thermal stability of the enzyme was determined by exposing the crude protein extracts to 

30°C, 40°C, 50°C, 60°C or 70°C for up to 120 min prior to quantification of the residual 

enzyme activity. 

8.2.6    RNA Isolation and Slot Blot Analyses 

Cultures of C. utilis ATCC 9950 T were prepared in duplicate in 100 ml Minimal Medium 

containing 0.17% YNB without amino acids and ammonium sulphate (Difco Laboratories, 

Detroit, MI), 0.5% (NH4)2SO4, and either 2% D-glucose (with or without 0.5% L-malate), 

2% raffinose (with or without 0.5% L-malate), 2% glycerol/ethanol, 0.5% L-malate or 0.5% 

fumarate.  The cultures were grown to an optical density of 0.8 (A600) at 30ºC under aerated 

conditions unless stated otherwise.  The cells were harvested, total RNA was isolated with the 

FastRNA Kit (Bio 101, Carlsbad, CA) and equal amounts were transferred to a nylon 

membrane (MSI, Westboro, MA) with slot blotting (Ausubel et al., 1995).  Hyridisation was 

done with PCR-generated DIG-labelled fragments of CuME and the C. utilis 5S genes using 

primers MH3 + MH4 and 5SF + 5SR, respectively (Table 2).  Transcripts were visualised 

with the Chemiluminescent Detection Kit (Roche Biochemicals, Germany) and relative 

concentrations of the transcripts were quantified by means of densitometry and expressed as 

percentage relative to the C. utilis 5S transcripts. 

For expression studies with shift assays, YNB media with 2% D-glucose or 0.5% L-malate 

was inoculated in duplicate with C. utilis ATCC 9950 T and grown under aerated conditions 

to an optical density of 0.8 at 600 nm at 30ºC.  The cells were harvested and the pellets 

resuspended in fresh Minimal Medium containing 0.5% L-malate (for glucose-grown cells) or 

2% D-glucose (for malate-grown cells).  Cells were cultured under aerated conditions for an 

additional 90 min with 10 ml samples taken at 0, 15, 30, 60 and 90 min for RNA isolation and 

slot blot analysis as described above. 

8.2.7    Heterologous Expression of CuME 

The CuME ORF was subcloned as an EcoRI – XhoI fragment into pHVX2 under regulation of 

the S. cerevisiae PGK1 promoter and terminator regions (Volschenk et al., 1997a,b), resulting 
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in plasmid pMH109 (Figure 8.3).  The S. pombe malate transporter gene, mae1, was isolated 

from pHV3 using primer set 5’-mae1ORF-F and 3’-mae1ORF-R (Table 8.2), and subcloned 

as an EcoRI – BglII fragment into pJC1 to yield plasmid pMH110.  Competent cells of 

S. cerevisiae Y294 were prepared (Moreno et al., 1991) and transformed with pMH110 

together with pHVX2, pHV4 or pMH109. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3.  Construction of plasmids for heterologous expression. (A) pMH109 was 
obtained by subcloning the CuME into the EcoRI – XhoI sites of plasmid pHVX2.  (B) 
pMH110 was obtained by subcloning the S. pombe mae1 gene into the  EcoRI – BglII 
sites of plasmid pJC1. 
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Strains of C. utilis ATCC 9950 T, S. pombe 972h-, S. cerevisiae Y294 and S. cerevisiae Y294  

transformants were inoculated in 10 ml YNB containing 0.5% L-malate at an optical density 

of 0.01 at 600 nm and incubated on a gyrotory shaker at 30˚C for 4 days.  The cells were 

harvested by centrifugation and the supernatant filter-sterilised with Millex-GS 0.22 µm filter 
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units (Millipore, Bedford, MA).  The L-malate content of the supernatant was determined with 

the L-malate test kit (Roche Diagnostics, Germany) according to the manufacturer's 

instructions.  Transformants were also plated on modified GMIA plates (described above) to 

evaluate their ability to degrade L-malate. 

8.3    RESULTS  

8.3.1    Cloning and Sequence Analyses of CuME 

The C. utilis cDNA library contained 100% inserts of more than 200 bp with an average insert 

size of 1.844 bp (Chapter 7).  Transformation of the cDNA clones into E. coli yielded 

1.07 x 107 cfu/ml and the amplified library yielded 1.15 x 109 cfu/ml. 

The cDNA clone of the C. utilis malic enzyme gene comprised 2112 bp, including an ORF of 

1926 bp (Figure 8.4).  The deduced amino acid sequence suggests it encodes a 641 amino-

acid protein with a predicted molecular weight of approximately 70 kDa.  The size and 

sequence of the genomic DNA copy correlated with the ORF of the cDNA fragment (data not 

shown), suggesting the absence of introns. 

Alignment of the amino acid sequences of the C. utilis, S. cerevisiae and S. pombe malic 

enzymes (Figure 8.5) showed that the putative CuMEp shared 37% and 68% homology with 

the S. pombe mae2p and S. cerevisiae mae1p respectively, and mae1p shares 47% homology 

with mae2p.  Furthermore, eight highly conserved regions previously identified in malic 

enzymes (Viljoen et al., 1994, 1998) are also conserved in the C. utilis malic enzyme 

(Figure 8.5).  The protein is predicted to be localised in the cytosol, similar to that of S. pombe 

(Viljoen et al., 1994). 

A phylogenetic tree constructed with the deduced amino acid sequences of 44 other malic 

enzymes indicated six groups of malic enzymes (Figure 8.6).  The malic enzyme from 

C. utilis clusters together with S. pombe and S. cerevisiae in Group V, with a closer 

relationship with S. cerevisiae.  Group VI comprises isoenzymes from eubacteria, which seem 

to be more closely related to the yeast malic enzymes (Group V) than to those of higher 

eukaryotes, such as plants (Group II and IV), animals and humans (Group I) and human 

parasites (Group III).  Within Groups I and II, both cytosolic and mitochondrial isoenzymes 

are found that can be either NAD+ or NADP+ dependent.   
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1      ATGACAATCTCAAACACCCAAGCTGCTGATGGCAGACGTTACTCCACAACTGTGGGTGCCAGTGGAGCTTCGACG 
1       M  T  I  S  N  T  Q  A  A  D  G  R  R  Y  S  T  T  V  G  A  S  G  A  S  T   
76     ACAAGAGACACGACGATAGGTTCCGTTAACGAGTACCCAGATGAGTGCATTTCGAAGGAGCCTATTGGTGAGGCT 
26      T  R  D  T  T  I  G  S  V  N  E  Y  P  D  E  C  I  S  K  E  P  I  G  E  A   
151    GCTCGTGCAGCCATCAATGTTGCAAAGGCCACAAGACTCTCTGCTGTTGGCCCAATTGAGTGTTCTCTCAACGGT 
51      A  R  A  A  I  N  V  A  K  A  T  R  L  S  A  V  G  P  I  E  C  S  L  N  G   
226    TTCCAGCTGCTGAACTCTCCATTGTTCAACAAAGGTTCCGCTTTCACACTCGAGGAGCGTGCTGCGTTTGGCCTC 
76      F  Q  L  L  N  S  P  L  F  N  K  G  S  A  F  T  L  E  E  R  A  A  F  G  L 
301    GAAGGTTTGTTACCTGCCCAGGTCAACGACCTTAATGCCCAAGTTGAGAGGGCTTACAAGCAATTGTGCTACTTG 
101     E  G  L  L  P  A  Q  V  N  D  L  N  A  Q  V  E  R  A  Y  K  Q  L  C  Y  L 
376    AAGACACCATTGGCCAAGAACGACTTCTGTTCGTCAATGAGAGTGCAGAACAAGGTTCTGTTTTACGAATTGGTG 
126     K  T  P  L  A  K  N  D  F  C  S  S  M  R  V  Q  N  K  V  L  F  Y  E  L  V 
451    AGAAGACACATTAGAGAGCTGGTTCCAATCATCTACACACCAACTGAAGGTGACGCCATTGCTGCCTACTCCCAC 
151     R  R  H  I  R  E  L  V  P  I  I  Y  T  P  T  E  G  D  A  I  A  A  Y  S  H 
526    AGATTTAGAAAACCAGAAGGTTGTTTCCTCGATATCACAGATCCAGACTCCATCGACCGCAGACTGGCCAACTTT 
176     R  F  R  K  P  E  G  C  F  L  D  I  T  D  P  D  S  I  D  R  R  L  A  N  F   
601    GGTGAAGATAAGGATGTTGACTACATTGTTGTCTCTGACGGTGAAGGTATCTTGGGTATTGGTGACCAAGGTGTT 
201     G  E  D  K  D  V  D  Y  I  V  V  S  D  G  E  G  I  L  G  I  G  D  Q  G  V   
676    GGTGGTGTCCGTATTGCCATCTCTAAGCTTGCCCTTATGACCCTTTGTGGTGGTATCCACCCAGGTAGAGTCATC 
226     G  G  V  R  I  A  I  S  K  L  A  L  M  T  L  C  G  G  I  H  P  G  R  V  I 
751    CCAGTGTGTCTTGATGTTGGTACCAACAACAAGAAGCTGATCACCGATGATTTGTACATGGGTAACAGATTCCCA 
251     P  V  C  L  D  V  G  T  N  N  K  K  L  I  T  D  D  L  Y  M  G  N  R  F  P   
826    AGAGTCCGTGGTAAGGAGTACGACGACTTTGTCGACAAGTTTATCCAGGTTTTGAAGAGAAGATTCCCATCTGCA 
276     R  V  R  G  K  E  Y  D  D  F  V  D  K  F  I  Q  V  L  K  R  R  F  P  S  A   
901    ACTCTTCATTTTGAGGATTTCGGTGTCACCACTGGTCGTCCACTCTTGCAAAGATACAGAAACGAGTTGGCTTGT 
301     T  L  H  F  E  D  F  G  V  T  T  G  R  P  L  L  Q  R  Y  R  N  E  L  A  C   
976    TTCAACGATGATATCCAAGGTACCGGTGCTGTCGTGATGGCTTCCCTCTCTGCAGCCTTGAAGCACACCAACCGT 
326     F  N  D  D  I  Q  G  T  G  A  V  V  M  A  S  L  S  A  A  L  K  H  T  N  R   
1051   AACCTTTTGGATTCCCAAATTGTCATCTACGGTGCTGGTTCCGCCGGTTTGGGTATTGCTGATCAAATTGTCAAC 
351     N  L  L  D  S  Q  I  V  I  Y  G  A  G  S  A  G  L  G  I  A  D  Q  I  V  N   
1126   CACATGGTTACACACGGTGCCACTGTCGAGGAGGCCAAGTCTAAGATCCACGCTCTAGATATCAGAGGGTTGATT 
376     H  M  V  T  H  G  A  T  V  E  E  A  K  S  K  I  H  A  L  D  I  R  G  L  I   
1201   CTCAAGTCCATGAAGGAGACCTCCACTCCAGATCAACACTCTTATGCCGACGAAGATGCTGATTGGGAGGGAATC 
401     L  K  S  M  K  E  T  S  T  P  D  Q  H  S  Y  A  D  E  D  A  D  W  E  G  I   
1276   GACACGAAGTCATTGTACGAAGTTGTCAAGAAGATCAAACCAACTTGTTTGATTGGATGTTCCACACAAGCTGGT 
426     D  T  K  S  L  Y  E  V  V  K  K  I  K  P  T  C  L  I  G  C  S  T  Q  A  G   
1351   GCATTCACACAGCAGATTGTGCAAGAGATGCACAAGCACAACCCACGTCCAATCATCTTCCCATTGTCCAACCCA 
451     A  F  T  Q  Q  I  V  Q  E  M  H  K  H  N  P  R  P  I  I  F  P  L  S  N  P   
1426   ACAAGACTCCACGAGGCTGTTCCAGAGGACTTGATGGCCTGGACAAACAACGACGCCATGGTTGCCACCGGTTCT 
476     T  R  L  H  E  A  V  P  E  D  L  M  A  W  T  N  N  D  A  M  V  A  T  G  S   
1501   CCATTCAAACCTGTCGATGGATGGGTCATCTCGGAGAACAACAACTGTTTTGCATTCCCAGGTATCGGCCTGGGC 
501     P  F  K  P  V  D  G  W  V  I  S  E  N  N  N  C  F  A  F  P  G  I  G  L  G 
1576   TCTGTTCTCTCAAGAGCCAAGATCATCTCGGACAAGATGATCTCTGCTGCCGTGGACCAGCTGGCCTCTCTGTCC 
526     S  V  L  S  R  A  K  I  I  S  D  K  M  I  S  A  A  V  D  Q  L  A  S  L  S   
1651   CCATTGTCCAAGGACCCTAAGGCTGGTTTGCTTCCACCATTGGAGGTCATCAACGACACATCTGCCAAGGTTGCG 
551     P  L  S  K  D  P  K  A  G  L  L  P  P  L  E  V  I  N  D  T  S  A  K  V  A   
1726   GCTGCTGTCATCCTACAAGCACTGGACGAGGGCCTTGCCCGTATCGAGGACGAGGTGCAGCCAGGCAAGGATGAG 
576     A  A  V  I  L  Q  A  L  D  E  G  L  A  R  I  E  D  E  V  Q  P  G  K  D  E   
1801   TACGTTACTGTCCCAGGGGACTTTGATGCCTGTGTGGAGTGGGTGAAACAGCAGATGTGGAAGCCAGAGTACAGA 
601     Y  V  T  V  P  G  D  F  D  A  C  V  E  W  V  K  Q  Q  M  W  K  P  E  Y  R   
1876   CCAATGGTTAAGGTGGAACACAGACACGATATCCATACGCATCAGTTCTGA 
626     P  M  V  K  V  E  H  R  H  D  I  H  T  H  Q  F  *   
 
Figure 8.4.  DNA and deduced amino acid sequence of the coding region of CuME.  The deduced amino 
acid sequence of the protein is written below the nucleotide sequence. 



C. utilis       -------------------------MTISNTQAADGRRYSTTVGASGASTTRDTTIGSVN 
S. cerevisiae   MLRTRLSVSVAARSQLTRSLTASRTAPLRRWPIQQSRLYSSNTRSHKATTTRENTFQKP- 
S. pombe        ------------------------------------------------------------ 
 
C. utilis       EYPDECISKEPIGEAAR--AAINVAKATRLSAVGPIECSLNGFQLLNSPLFNKGSAFTLE 
S. cerevisiae   -YSDEEVTKTPVGSRARKIFEAPHPHATRLTVEGAIECPLESFQLLNSPLFNKGSAFTQE 
S. pombe        ---------------------------MPAGTKEQIECPLKGVTLLNSPRYNKDTAFTPE 
                                                   *** *    ***** .** .*** * 
C. utilis       ERAAFGLEGLLPAQVNDLNAQVERAYKQLCYLKT-PLAKNDFCSSMRVQNKVLFYELVRR 
S. cerevisiae   EREAFNLEALLPPQVNTLDEQLERSYKQLCYLKT-PLAKNDFMTSLRVQNKVLYFALIRR 
S. pombe        ERQKFEISSRLPPIVETLQQQVDRCYDQYKAIGDEPLQKNLYLSQLSVTNQTLFYALISQ 
                **  * .   **  *  *  *..*.* *   .   ** ** . . . * *. *.. *. . 
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C. utilis       HIRELVPIIYTPTEGDAIAAYSHRFRKPEGCFLDITDPDS--IDRRLANFGEDKDVDYIV 

Box A 

S. cerevisiae   HIKELVPIIYTPTEGDAIAAYSHRFRKPEGVFLDITEPDS--IECRLATYGGDKDVDYIV 
S. pombe        HLIEMIPIIYTPTEGDAIKQFSDIYRYPEGCYLDIDHNDLSYIKQQLSEFGKSDSVEYII 
                *. *..************  .*  .* *** .***   *   *  .*. .*    *.**. 
 
C. utilis       VSDGEGILGIGDQGVGGVRIAISKLALMTLCGGIHPGRVIPVCLDVGTNNKKLITDDLYM 

Box B Box C 

S. cerevisiae   VSDSEGILGIGDQGIGGVRIAISKLALMTLCGGIHPGRVLPVCLDVGTNNKKLARDELYM 
S. pombe        ITDSEGILGIGDQGVGGVLISVAKGHLMTLCAGLDPNRFLPIVLDVGTNNETHRKNHQYM 
                ..* **********.*** *...*  ***** *. *.* .*. *******        ** 
 
C. utilis       GNRFPRVRGKEYDDFVDKFIQVLKRRFPSATLHFEDFGVTTGRPLLQRYRNELACFNDDI 

Box D 

S. cerevisiae   GNKFSRIRGKQYDDFLEKFIKAVKKVYPSAVLHFEDFGVKNARRLLEKYRYELPSFNDDI 
S. pombe        GLRKDRVRGEQYDSFLDNVIKAIREVFPEAFIHFEDFGLANAKRILDHYRPDIACFNDDI 
                * .  *.** .** *..  *. ..  .* * .******. . . .* .** .. .***** 
 
C. utilis       QGTGAVVMASLSAALKHTNRNLLDSQIVIYGAGSAGLGIADQIVNHMVTHGATVEEAKSK 

Box E 

S. cerevisiae   QGTGAVVMASLIAALKHTNRDLKDTRVLIYGAGSAGLGIADQIVNHMVTHGVDKEEARKK 
S. pombe        QGTGAVALAAIIGALHVTKSPLTEQRIMIFGAGTAGVGIANQIVAGMVTDGLSLDKARGN 
                ****** .*..  **. *   * . ...*.***.**.*** ***  *** *   . *.   
 
C. utilis       IHALDIRGLILKSMKETSTPDQHSYADEDADWEGID--TKSLYEVVKKIKPTCLIGCSTQ 

Box F 

S. cerevisiae   IFLMDRRGLILQSYEANSTPAQHVYAKSDAEWAGIN--TRSLHDVVENVKPTCLVGCSTQ 
S. pombe        LFMIDRCGLLLERHAKIATDGQKPFLKKDSDFKEVPSGDINLESAIALVKPTILLGCSGQ 
                .  .*  **.*      .*  *. .   *..   .      *   .  .*** *.*** * 
 
C. utilis       AGAFTQQIVQEMHKHNPRPIIFPLSNPTRLHEAVPEDLMAWTNNDAMVATGSPFKPVDG- 

Box G Box H 

S. cerevisiae   AGAFTQDVVEEMHKHNPRPIIFPLSNPTRLHEAVPADLMKWTNNNALVATGSPFPPVDG- 
S. pombe        PGKFTEKAIREMSKHVERPIIFPISNPTTLMEAKPDQIDKWSDGKALIATGSPLPPLNRN 
                 * **.  . ** **  ******.**** * ** *  .  *. . *..*****  *.    
 
C. utilis       ---WVISENNNCFAFPGIGLGSVLSRAKIISDKMISAAVDQLASLSPLSK-DPKAGLLPP 
S. cerevisiae   ---YRISENNNCYSFPGIGLGAVLSRATTITDKMISAAVDQLAELSPLREGDSRPGLLPG 
S. pombe        GKKYVISQCNNALLYPALGVACVLSRCKLLSDGMLKAASDALATV-PRSLFAADEALLPD              
*                    **. **.  .* .*. .****.  ..* *. ** *  *   *         ***  
 
C. utilis       LEVINDTSAKVAAAVILQALDEGLARIEDEVQPGKD--EYVTVPGDFDACVEWVKQQMWK       
S. cerevisiae   LDTITNTSARLATAVILQALEEGTARIEQEQVPGGAPGETVKVPRDFDECLQWVKAQMWE 
S. pombe        LNNAREISRHIVFAVLKQAVSEGMSTVDLPKDDAKLK-EWIIEREWNPEYKPFV------ 
                *   .  *     **  **  **.    .     .   *      .       *           
 
C. utilis       PEYRPMVKVEHRHDIHTHQ----------------------------------------- 
S. cerevisiae   PVYRPMIKVQHDPSVHTNQ----------------------------------------- 
S. pombe        ------------------------------------------------------------              
 
Figure 8.5.  Amino acid sequence alignment of the malic enzymes from C. utilis, S. cerevisiae 
and S. pombe.  Homologous regions A-H are indicated by the yellow boxes, while amino acid 
changes are indicated in blue for S. pombe and in green for S. cerevisiae. 
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Figure 8.6.  Phylogenetic relationship of malic enzymes from different organisms.  Blocks 
of homology are numbered I to VI.  If known, the corresponding intracellular localization is 
indicated: c, cytoplasm; m, mitochondria. 
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8.3.2    Characterisation of the C. utilis Malic Enzyme 

Malic enzyme activity assays on total protein extracts of C. utilis cells showed that the malic 

enzyme is able to decarboxylate both L-malate and oxaloacetate, while utilising either Mg2+ or 

Mn2+ as divalent cations (Table 8.3).  It can utilise either NAD+ or NADP+ for the 

decarboxylation of oxaloacetate, but prefers NAD+ as coenzyme for the decarboxylation of 

L-malate.   

Table 8.3.  Substrate and co-factor specificity for the C. utilis malic enzyme  

 L-Malate Oxaloacetate

 NAD+ NADP+ NAD+ NADP+

MnCl2 1943.79a 330.88 1084.57 1037.97 

MgCl2 1793.80 14.62 800.90 865.41 
aMalic enzyme activity (µmoles NADH/mg prot.) 

The optimum temperature for the malic enzyme activity was 52°C (Figure 8.7A), which is 

comparable to that reported for the malic enzymes from Bacillus stearothermophilus (55ºC: 

Kobayashi et al., 1989) and Pseudomonas diminuta (50ºC: Suye et al., 1992). Enzyme 

activity was stable at 30°C for up to 120 min (Figure 8.7B), with circa 75% and 53% of the 

activity retained after 120 min at 50°C and 70°C, respectively.   

Carbon catabolite repression and substrate induction of the C. utilis malic enzyme was 

confirmed by the degradation of extracellular L-malate as well as malic enzyme activity 

assays.  When cultured in 0.5% L-malate as sole carbon source, C. utilis cells degraded 

approximately 90% of the L-malate 30 hours (Figure 8.8).  However, degradation of L-malate 

in medium containing 2% glucose/0.5% L-malate only started when all the glucose was 

depleted.  The malic enzyme activity was induced more than 35-fold (relative to growth in 2% 

glucose) in cells grown in 0.5% L-malate as sole carbon source (Figure 8.9A), but repressed 

by glucose as well as 2% raffinose and 2% glycerol/2% ethanol.  Closer inspection of the data 

in Figure 8.9B revealed at least 3-fold higher levels of activity when grown in the presence of 

2% raffinose/0.5% L-malate and 2% glycerol/2% ethanol relative to cells grown in 2% 

glucose. 
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Figure 8.7.  (A) The effect of temperature on the activity of the C. utilis malic enzyme as 
determined by malic enzyme activity assays (B)  Thermo-stability of the C. utilis malic 
enzyme with exposure to different temperatures and time periods  [● = 30°C;  ■ = 40°C; ○ 
= 50°C; □ = 60°C; ▲ = 70°C] (error bars indicate standard deviation of three repeats). 
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Figure 8.8.  L-Malate (▲) and glucose (■) degradation by C. utilis in media containing 
(A) 2% glucose and 0.5% L-malate compared to (B) C. utilis cells cultured in 0.5% 
L-malate as sole carbon source.  (●) Growth curve of C. utilis in the respective growth 
media as measured by cell density at 600 nm (note different scales for (A) and (B)). 
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Figure 8.9.  (A) Malic enzyme activity assays on C. utilis cell extracts after growth in 
various carbon sources.  (B) Smaller scale to show minor differences in enzyme activities 
(excluding data for malate). 

 

When cultured in different concentrations of glucose and L-malate, the highest level of 

C. utilis malic enzyme activity was obtained after growth in 0.5% L-malate, with very little 

enzyme activity in any of the glucose-containing cultures under aerobic conditions 

(Figure 8.10).  However, the enzyme activity was at least 2-fold higher when cells were 

grown in 2% glucose under non-aerated conditions than under aerobic conditions. 
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Figure 8.10.  Malic enzyme activity of C. utilis grown in different consentrations of 
glucose and L-malate; (●)  0.2%  glucose,  (○) 0.5% glucose, (■) 2% glucose, (□) 8% 
glucose, (▲) 2% glucose (anaerobic), (∆) 0.1% L-malate, (♦) 0.5% L-malate, (◊) 1% 
L-malate.   

The induction/repression patterns observed with the malic enzyme activity assays correlated 

with transcription levels of the CuME gene.  When compared to cells grown in 2% glucose as 

sole carbon source (Figure 8.11A), induced levels of CuME were observed for cells grown in 

0.5% L-malate (10 fold induction), 2% raffinose/0.5% L-malate (3.7-fold), 0.5% fumarate 

(3-fold), 2% glycerol/2% ethanol (2-fold) or 2% raffinose (1.6-fold).  When cells grown 

overnight in 2% glucose were shifted to fresh medium containing 0.5% L-malate as sole 

carbon source, the transcription levels of CuME experienced a lag during the first 30 minutes 

(Figure 8.11B), followed by a 2.2-fold induction at 60 min. 

8.3.3    Recombinant Expression of CuME in S. cerevisiae Y294 

The ability of S. pombe 972h- (wild type), S. pombe mae2-, C. utilis ATCC9950 T and 

recombinant strains of S. cerevisiae Y294 to degrade L-malate was evaluated on modified 

GMIA-plates as well as in liquid cultures.  The S. pombe wt strain successfully degraded 

L-malate incorporated into the GMIA plates (indicated by the blue colonies in Figure 8.12A), 

but not the S. pombe mae2- mutant (deficient in malic enzyme activity).  The C. utilis strain 
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grew in the presence of both 0.5% L-malate and 2% glucose/0.5% L-malate, but degradation 

of L-malate only occurred in the absence of glucose.   The parental S. cerevisiae Y294 and 

recombinant S. cerevisiae strain carrying the S. pombe L-malate transporter gene (mae1, 

pHVX2), was unable to degrade L-malate.  However, the recombinant S. cerevisiae strains 

carrying the S. pombe L-malate transporter gene (mae1, pMH110), together with the malic 

enzyme gene of either S. pombe (mae2, pHV4) or C. utilis (CuME, pMH109) effectively 

degrade the L-malate in the GMIA plates.  
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Figure 8.11.  (A) Quantification of transcription levels of the malic enzyme gene, CuME, 
in different carbon sources by means of northern slot blot analyses.  Values are indicated 
relative to expression after growth in 2% glucose (taken as 100).  (B)  Quantification of 
transcription levels of the malic enzyme gene, CuME, after a shift from 2% glucose to 
0.5% L-malate. 
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Figure 8.12.  (A) Cells of S. pombe 972 h- showed a clear malo-ethanolic phenotype as 
apposed to the S. pombe mae2- mutant (yellow/brown colonies).  Cells of C. utilis
displayed degradation of L-malate in the presence of L-malate as sole carbon source, but 
not when glucose was present. (B) Transformants of S. cerevisiae Y294 containing the 
PGKp-mae1-PGKt together with either the PGKp-CuME-PGKt or the PGKp-mae2-PGKt
expression cassettes showed a clear degradation of L-malate on GMIA plates (blue 
colonies), as apposed to transformants containing only the PGKp-mae1-PGKt expression 
cassette and the control plasmid, pHVX2. 
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When cultured in liquid YNB media containing 2% glucose and 0.5% L-malate, S. cerevisiae 

Y294 showed no significant degradation of L-malate, while the S. pombe and C. utilis strains 

showed rapid degradation within 2 days (Figure 8.13).  The efficacy of S. cerevisiae improved 

with the introduction of the S. pombe malate transporter gene (mae1), with a more profound 

effect when the S. pombe malate transporter was combined with either the S. pombe or the 

C. utilis malic enzymes:  the recombinant S. cerevisiae mae1-mae2 and mae1-CuME strains 



degraded ca. 5 g/l L-malate within 2 days.  The rate of degradation by the recombinant 

S. cerevisiae mae1-CuME strain was significantly better than the wild type C. utilis strain 

since the recombinant proteins were not subject to the glucose repression experienced by the 

wt C. utilis strain.  Furthermore, the S. cerevisiae mae1-CuME strain was more effective than 

the malo-ethanolic S. cerevisiae mae1-mae2 strain previously reported by Volschenk et al. 

(1997a). 
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Figure 8.13.  L-Malate degradation by different yeast strains. ○ = S. cerevisiae Y294 
(mae1, CuME); ∆ = S. cerevisiae Y294 (mae1, mae2); □ = S. cerevisiae Y294 (mae1, 
pHVX2); ■ = S. cerevisiae Y294; ▲ = S. pombe 972h-, wt; ● = C. utilis ATCC 9950 T  

8.4    DISCUSSION  

The ability of a yeast strain to degrade extracellular L-malate is dependent on the efficient 

transport of the dicarboxylic acid, as well as the efficacy of the intracellular malic enzyme for 

the decarboxylation of L-malate to yield pyruvate and CO2.  Based on its substrate specificity 

and cofactor requirements, the C. utilis malic enzyme can be classified as L-malate: NAD+ 

oxidoreductase (oxaloacetate decarboxylating: EC 1.1.1.38).  It demonstrated good 

temperature stability with an optimum temperature of 52ºC, which is comparable to that 

reported for the malic enzymes from Bacillus stearothermophilus (55ºC; Kobayashi et al., 

1989) and Pseudomonas diminuta (50ºC; Suye et al., 1992). 
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DNA and amino acid sequence analyses showed that the highly conserved regions in malic 

enzymes previously identified by Viljoen et al. (1994, 1998), are also conserved in the 

C. utilis malic enzyme.  The conserved P—YTPTVG-AC motif in Region A is the proposed 

binding site for L-malate (Kulkarni et al., 1993) and NAD+ (Rothermel and Nelson, 1989).  

The ILGLGD-G—G and GAG-A—GIA motifs in regions B and E, respectively, represent 

NAD(P)+ binding sites (Rothermel and Nelson, 1989; Börsch and Westhoff, 1990; Hsu et al., 

1992).  The direct metal ligands Glu305, Asp306 and Asp329 in region C (numbers 

corresponding to position in C. utilis malic enzyme) are identical among all malic enzymes 

investigated, suggesting that the catalytic mechanism should essentially be the same for all 

malic enzymes. 

The DNA sequence of the CuME gene showed strong homology with the malic enzyme genes 

from S. cerevisiae and S. pombe, although these three malic enzymes differ in their substrate 

specificity (L-malate and/or oxaloacetate), cofactors (NAD+ and/or NADP+) and intracellular 

localisation (cytosolic or mitochondrial) (Voegele et al., 1999).  The cytosolic malic enzymes 

from C. utilis and S. pombe are bifunctional, reacting with either L-malate or oxaloacetate, 

and requires NAD+ and the divalent cations Mn2+ or Mg2+ for activity.  In contrast, the 

mitochondrial S. cerevisiae malic enzyme prefers Mn2+ and can utilise both NAD+ and 

NADP+ as electron acceptor with NAD+ being favoured (Kuczynski and Radler, 1982). 

Phylogenetic analyses of the evolutionary relationship between C. utilis CuMEp and 44 

known malic enzymes revealed that the C. utilis malic enzyme clusters together with 

S. pombe and S. cerevisiae in Group V, with a closer relationship with S. cerevisiae.  Group 

VI comprises isoenzymes from eubacteria, which seem to be more closely related to the yeast 

malic enzymes (Group V) than to those of higher eukaryotes, such as plants (Group II and 

IV), animals and humans (Group I) and human parasites (Group III).  Within Groups I and II, 

both cytosolic and mitochondrial isoenzymes are found that can be either NAD+ or NADP+ 

dependent.  These findings suggest that sequence homologies among malic enzymes from 

various organisms are primarily determined by phylogenetic relationships between the 

organisms, rather than being the result of functional constraints related to catalytic properties 

and intracellular localisation. 

Results presented in this study confirmed that the glucose repression/substrate induction 

observed for malate degradation and malate transport in C. utilis also applies to the C. utilis 

malic enzyme.  Malic enzyme activity was induced more than 35-fold (relative to growth in 

2% glucose) in cells grown in 0.5% L-malate as sole carbon source, while carbon sources that 
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can provide pyruvate for the TCA cycle, repressed the malic enzyme activity.  The transport 

and degradation of L-malate will therefore be delayed until these carbon sources (e.g. glucose) 

are depleted (Van Dijken et al., 1993). 

An interesting observation was that growth in 2% glucose under non-aerated conditions 

(exclusion of oxygen) increased the enzyme activity by 2-fold.  Under aerobic growth 

conditions, the yeast tends to channel most of its pyruvate into the TCA cycle, resulting in an 

adequate supply of intracellular TCA cycle intermediates.  Under non-aerated conditions, the 

mitochondrial TCA enzymes may be repressed (McCammon et al., 2003) which leaves the 

cytosolic malic enzyme with the task of replenishing TCA intermediates for other cellular 

requirements.  Since the C. utilis malic enzyme is predicted to be cytosolic, induction of the 

malic enzyme activity will therefore contribute to replenishing of the TCA cycle 

intermediates. 

The induction/repression patterns observed with the malic enzyme activity can be ascribed to 

regulation of the CuME gene on a transcriptional level.  A 10-fold induction was observed for 

cells grown in the presence of 0.5% L-malate (relative to growth in 2% glucose).  The 3-fold 

induction by 0.5% fumarate was not surprising given the fact that fumarate is a precursor for 

L-malate in the TCA cycle.  High levels of extracellular fumarate (transported by the 

inducible malate/fumarate transporter) will lead to an increase in the levels of intracellular L-

malate, therefore providing an induction signal for transcription of the CuME gene. 

The results presented here confirm that transcription of the C. utilis malic enzyme was 

induced in the presence of L-malate, but only when a better carbon source was not available.  

When cells grown overnight in 2% glucose were shifted to fresh medium containing 0.5% 

L-malate, the transcription levels of the CuME gene showed a lag phase due to adaptation to 

the new growth medium, followed by a 2-fold induction in CuME transcription at 60 min.  

Instrumental in the metabolism of extracellular L-malate is the uptake thereof by means of an 

active malate/fumarate transporter that is also regulated by substrate induction and catabolite 

repression (Cássio and Leão, 1993; Saayman et al., 2000).  This strong carbon sensitivity 

displayed for both the malate transporter and malic enzyme can be linked to the ability of 

C. utilis to utilise intermediates of the TCA cycle as the only source of carbon and energy.  

When no better assimilable carbon source is available, the cell will rapidly adjust its 

metabolism to utilise L-malate for the provision of pyruvate for biogenesis as well as energy 

production via the TCA cycle.  Since the activity of the C. utilis malate/fumarate transporter 
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and malic enzyme exhibit similar regulatory patterns, it suggests concerted regulatory 

mechanisms that govern the degradation of extracellular malate in this organism. 

L-Malate is commercially used as a food additive, having greater tartness and taste retention 

than most other food acids (Neufeld et al., 1991).  It is, however, also one of the most 

important determinants of wine quality as it contributes to total acidity and tartness in wines if 

present at high levels.  Winemakers routinely use bacterial malolactic fermentation (MLF) 

alter alcoholic fermentation to deacidify and stabilise their wines, but this is often regarded as 

problematic and undesirable.  Alternative methods for reducing the amounts of L-malate in 

wine have been investigated, which led to the heterologous expression of the S. pombe malate 

permease and malic enzyme genes via genomic integration in a commercial wine yeast strain 

(Volschenk et al., 2004).  This newly introduced malo-ethanolic strain was able to effectively 

degrade L-malate during synthetic and grape must fermentation without any negative effect on 

fermentation kinetics and wine quality. 

In this study, the CuME gene was successfully sub-cloned and co-expressed with the 

S. pombe mae1 gene under control of the PGK1 promoter and terminator sequences in 

S. cerevisiae.  The efficacy of the recombinant strain to degrade extracellular L-malate was 

better than that of a wild type S. pombe, as well as the recombinant S. cerevisiae mae1-mae2 

strain (Volschenk et al., 2004).  This suggests that the C. utilis malic enzyme may have 

significant potential for industrial applications that should be further investigated. 
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GENERAL DISCUSSION AND CONCLUSIONS 

The aim of this study was to gain insight into the regulatory mechanisms that govern the 

degradation of extracellular L-malate in Candida utilis and the physiological relevance 

thereof.  The genes encoding the C. utilis malate transporter and malic enzyme have not yet 

been cloned and there is little information on other genes from C. utilis.  However, the genes 

encoding the Schizosaccharomyces pombe L-malate transporter (mae1) and malic enzyme 

(mae2) have been cloned and characterised, as well as the malic enzyme gene (MAE1) from 

Saccharomyces cerevisiae.  These three genes could therefore be used as a reference for the 

isolation and characterisation of the corresponding C. utilis genes.  Cloning of the C. utilis 

transporter and/or malic enzyme genes could also provide us with an alternative dicarboxylic 

acid transporter and/or malic enzyme for heterologous expression of the genes for commercial 

applications.  

We have demonstrated significant differences between S. pombe and C. utilis concerning the 

uptake of L-malate and fumarate and the regulation thereof (Chapter 6, Saayman et al., 2000).  

Cells of C. utilis effectively degraded extracellular L-malate and fumarate, but glucose or 

other assimilable carbon sources repressed the transport and degradation of these dicarboxylic 

acids.  The transport of both dicarboxylic acids was shown to be strongly inducible by either 

fumarate or L-malate, while kinetic studies suggest that the two dicarboxylic acids are 

transported by the same protein.  In contrast, S. pombe effectively degraded extracellular 

L-malate only in the presence of glucose or other assimilable carbon sources.  The S. pombe 

malate transporter was unable to transport fumarate, although fumarate inhibited the uptake of 

L-malate.   

Understanding the mechanism and regulation of dicarboxylic acid transport in C. utilis 

required the cloning and molecular analysis of the corresponding genes.  Due to the generally 

low level of homology between known dicarboxylic acid transporters, it was impossible to 

design homologous or degenerate primers for direct cloning of the C. utilis dicarboxylic acid 

transporter via PCR or homologous recombination.  The only alternative was to construct a 

cDNA library from C. utilis that could be used to complement an S. cerevisiae strain (malate 

transporter absent) or the S. pombe mae1 mutant strain (mutated malate transporter).  Due to 

the low transformation frequencies usually obtained with S. pombe, it was decided to 

transform the cDNA library into an S. cerevisiae strain carrying a plasmid containing the 
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S. pombe malic enzyme gene (mae2) to allow screening for a malate-degrading S. cerevisiae 

clone. 

Constitutive and regulated expression vectors containing S. cerevisiae promoter and 

terminator sequences were constructed to overcome potential problems with heterologous 

expression of a C. utilis gene under regulation of its own promoter sequences in S. cerevisiae 

(Chapter 7).  A number of strategies were employed to ensure representativeness and high 

transformation frequencies for the cDNA library, but despite numerous screens with different 

vector systems, we were unable to clone the C. utilis dicarboxylic acid transporter gene.  This 

could be due to a number of reasons, including weak translation of the gene due to codon bias, 

ineffective channelling of the protein via the endoplasmatic reticulum and Golgi complex, 

misfolding of the protein due to the absence of specific chaperone proteins, poor association 

with the plasma membrane, etc.  It should be kept in mind that the S. cerevisiae host strain 

does not have a malate transporter and may therefore not be able to process the foreign 

C. utilis gene correctly.  Effective expression of the S. pombe malate transporter in 

S. cerevisiae raised the possibility that this could also be the done with the C. utilis 

transporter, but there may be significant sequence differences between the two genes or 

proteins that could account for the poor or lack of expression of the C. utilis gene.   

Future research would involve alternative strategies to isolate the C. utilis dicarboxylic acid 

transporter.  One option is to transform the cDNA library into the S. pombe mae1 mutant 

strain and screen for complementation of its ability to degrade extracellular malate.  However, 

even if high transformation frequencies could be obtained with S. pombe, there is still the 

possibility that the C. utilis gene may also not be functionally expressed in S. pombe.  An 

alternative would be to follow the strategy described by Gerós et al. (2000) for the isolation of 

the lactate transporter from C. utilis: plasma membranes from cells grown either on malate 

(induce dicarboxylate transporter) or glucose (repress dicarboxylate transporter) are incubated 

with 14C-malate, followed by SDS-PAGE to visualise the 14C-labelled band only in the 

malate-grown cells, which would indicate the presence of the dicarboxylate transporter.  

Cloning of the C. utilis transporter gene will allow DNA sequence analyses and comparison 

with the S. pombe malate transporter to identify conserved areas that may be involved in the 

membrane localisation, substrate specificity and/or mode of action. 

The ability of a yeast strain to degrade extracellular L-malate is dependent on the efficient 

transport of the dicarboxylic acid, as well as the efficacy of the intracellular malic enzyme for 

the decarboxylation of L-malate to yield pyruvate and CO2.  Cloning and molecular analysis 
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of the C. utilis malic enzyme gene, CuME revealed a high degree of homology with the malic 

enzyme genes of S. pombe and S. cerevisiae (Chapter 8).  The C. utilis malic enzyme had a 

temperature optimum of 52˚C with a loss of only 40% of its activity after exposure to 60˚C 

for 120 min.  Furthermore, the C. utilis malic enzyme uses either NAD+ or NADP+ for 

decarboxylation of oxaloacetate, but is unable to utilise NADP+ as coenzyme for the 

decarboxylation of L-malate.  Based on its substrate specificity and cofactor requirements, the 

C. utilis malic enzyme can therefore be classified as L-Malate: NAD+ oxidoreductase 

(oxaloacetate decarboxylating; EC 1.1.1.38). 

The regulation of the C. utilis malic enzyme was determined on the transcriptional and 

translation level by means of northern analysis and enzyme activity assays, respectively.  

Results presented in Chapter 8 demonstrated a 10-fold increase in transcription of CuME 

when grown in media containing 0.5% malate as sole carbon source, compared to 

transcription when grown in media containing 2% glucose.  When cells were shifted from 

media containing 2% glucose to media containing 0.5% malate, a 2-fold increase in 

transcription levels was observed after 60 min.  The malic enzyme activity assays 

corresponded well with the transcriptional data, indicating that expression of the C. utilis 

malic enzyme is indeed subject to glucose repression and substrate induction.  

The strong carbon sensitivity displayed for the malate transporter and malic enzyme can be 

linked to the ability of C. utilis to utilise intermediates of the TCA cycle as the only source of 

carbon and energy.  When no better assimilable carbon source is available, the cell will adjust 

its metabolism to utilise L-malate for the provision of pyruvate for biogenesis as well as 

energy production via the TCA cycle.  Since the activity of the C. utilis malate/fumarate 

transporter and malic enzyme exhibit similar regulatory patterns, it suggests concerted 

regulatory mechanisms that govern the degradation of extracellular malate in this organism. 

The yeast C. utilis is an industrially important microorganism that is widely used for the 

production of biologically useful materials, single-cell protein, etc. (Boze et al., 1994) and has 

been approved for use as a foodstuff by the US Food and Drug Administration.  A possible 

industrial application for a recombinant C. utilis transporter would be to provide a biological 

means to remove excess fumarate from effluents of certain chemical industries and convert it 

(via fumarase) to L-malate, an important commercial chemical used in the food and wine 

industry.  As discussed in the second half of Chapter 7, this could be achieved by expressing 

the C. utilis dicarboxylic acid transporter gene in S. cerevisiae together with the over-

expression of the S. cerevisiae fumarase gene (FUM1).  When cloning of the C. utilis 
General Discussion and Conclusions 

149



transporter gene proved to be more difficult than anticipated, an alternative strategy was 

investigated, namely to target the FUM1 gene for secretion under control of the S. cerevisiae 

MFα1 secretion signal.  Degradation of extracellular fumarate was improved by over-

expression of the cytosolic fumarase, but at a slower rate than expected.  This could be due to 

the lack of auxillary proteins required for translocation across the membrane.  However, it 

was also noted that the fumarate was not quantitatively converted to L-malate, which is 

difficult to explain without further investigation as to the effect of product inhibition, etc.  

The CuME gene was also subcloned and introduced into a S. cerevisiae laboratory strain, 

together with the S. pombe malate transporter gene (mae1), both under the constitutive 

regulation of the S. cerevisiae 3-phosphoglycerate kinase (PGK1) promoter and terminator 

elements.  The results (Chapter 8) clearly showed that the malic enzyme was active in 

S. cerevisiae and the degradation ability of the recombinant strain compares well with results 

obtained for the co-expression of the S. pombe mae1 and mae2 genes in S. cerevisiae.  This 

suggests that the C. utilis malic enzyme may have significant potential for industrial 

applications that should be further investigated. 

During this study, we only started to elucidate the mechanisms involved in L-malate 

metabolism in C. utilis.  It is clear that the regulation of both the transporter and intracellular 

malic enzyme is quite complex and the expression of the respective genes are sensitive to the 

specific substrates as well as other available carbon sources.  Further analysis of the CuMEp 

and other proteins involved in the degradation of malic acid in C. utilis will provide more 

information on the physiological importance of this substrate, as well as the various routes for 

its metabolism inside the cell.   
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