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Abstract 

Thermal ecology is a central theme in reptilian biology because of the thermodynamic rate 

dependence of virtually all biological processes in these ectothermic animals. 

Thermoregulation includes active processes (with associated energetic costs related to 

altered behaviour and physiology) functioning to maintain body temperatures within a 

preferred temperature range, so that the majority of physiological functions occurs optimally, 

despite natural variation in the animal’s thermal habitat. The recent development of 

quantitative thermal indices now allows researchers to describe the thermal habitat and 

thermoregulatory functioning of an ectotherm within its environment from a cost-benefit 

perspective. The use of such quantitative biophysical approaches to reptile thermal ecology 

studies is however limited in the African context. Cordylus cataphractus is one of the best 

studied cordylids, and exhibits various characteristics atypical for the family, such as 

permanent group-living, seasonally lowered surface activity, a low resting metabolic rate and 

large fat bodies. These characteristics are generally thought to be associated with group-

living in a semi-arid habitat, yet, the possible links to thermal ecology remains unexplored. 

The objectives of the current study was: firstly, to characterize the preferred 

temperature range (Tp) of C. cataphractus through the use of ecologically realistic laboratory 

thermal gradients; secondly, to explore seasonal and geographical variation in thermal 

preference, by comparing Tp among individuals captured from a coastal and inland 

population and during different seasons (autumn and spring); thirdly, to describe the thermal 

habitat of a C. cataphractus population during summer, autumn, winter and spring and to 

then relate these findings to the seasonal activity patterns reported in literature for the 

species; fourthly, to describe the seasonal patterns of thermoregulation (during summer, 

autumn, winter and spring) in a C. cataphractus population through quantitative 

thermoregulatory indices; fifthly, to assess geographic variation in the thermal habitat and 
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associated patterns of thermoregulation in C. cataphractus among a coastal population 

(western range limit) and an inland population (eastern range limit). The thermal habitat of C. 

cataphractus was described by measuring operative environmental temperatures (Te) with 

hollow copper lizard models placed around rocks according to the natural surface movement 

patterns of the species. Variation in thermal habitat quality was subsequently calculated (de 

= |Te – Tp|) and averaged. Field body temperatures (Tb) of lizards were measured with 

dorsally attached miniature temperature loggers. Thermoregulatory indices were calculated 

from Te, Tb and Tp, describing: thermoregulatory accuracy, the effectiveness of 

thermoregulation and thermal exploitation for each population (coastal and inland) for the 

respective sampling periods. 

The preferred body temperature range of C. cataphractus is the lowest recorded 

among cordylids to date (mean Tp = 29.8oC) and was conserved among different populations 

and within these populations among seasons, despite the fact that environmental 

temperatures are known to vary geographically and seasonally.  

Thermal habitat quality varied significantly at micro spatial scale around rocks in the 

coastal population. Since C. cataphractus males are territorial, competition for thermal 

habitat quality around rocks may therefore occur. Such effects will be a function of the time 

of year since the variability in thermal habitat quality among rock aspects (around rocks) 

varied seasonally.  

Thermal habitat quality of crevices varied among seasons and was typically higher in 

the open, outside rock crevices, during the cooler winter and spring periods, whereas in 

summer and autumn the crevice environments were more favourable. Thermal habitat 

quality was high in crevices during autumn, suggesting that the observed repressed surface 

activity of C. cataphractus described for the time is not necessarily, as previously thought, 

only due to food constraints. Moreover, in contrast to earlier reports, the current results (Tb 

versus Te) indicate that individuals emerged from crevices in summer. 

The geographical assessment indicated that lizards from the coastal population, with 

generally larger groups, thermoregulated more successfully than those from the inland 
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population. The higher thermoregulatory success in the coastal population occurred in spite 

of the fact that thermal habitat quality was significantly lower at the coastal locality. The 

higher thermoregulatory success in the coastal population was likely due to reduced 

predation risk associated with increased group-size. The seasonal trends in 

thermoregulation at the coastal and inland population corresponded to the patterns predicted 

by the cost-benefit model of thermoregulation, accuracy of thermoregulation and the 

effectiveness of thermal exploitation being higher during the thermally more favourable 

autumn. 
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Uittreksel 

Termiese ekologie is ‘n sentrale tema in reptiel-biologie as gevolg van die termodinamies 

tempo-afhanklikheid van feitlik alle biologiese prosesse in hierdie ektotermiese diere. 

Termoregulering sluit aktiewe prosesse (wat lei tot energie-koste in terme van gedrag en 

fisiologie) in om liggaamstemperature binne ‘n vasgestelde voorkeurtemperatuur-reeks te 

handhaaf sodat fisiologiese prosesse optimaal kan geskied te midde van natuurlike variasie 

in die dier se termiese omgewing. Die onlangse ontwikkeling van kwantitatiewe funksionele 

termiese indekse stel navorsers nou in staat om die werklike termiese omgewing en die 

funksionering van die ektoterm binne sy omgewing te beskryf en uit ‘n koste (energie)-

voordeel oogpunt te verstaan. Die gebruik van hierdie biofisiese koste-voordeel benadering 

in reptiel termoreguleringstudies is egter beperk in die Afrika-konteks. Cordylus cataphractus 

is een van die bes bestudeerde lede van familie Cordylidae, en vertoon verskeie eienskappe 

ongewoon vir hierdie groep akkedisse, soos groeplewendheid, beperkte seisoenale aktiwiteit 

buite hul skeure, ‘n relatiewe lae rustende metaboliese tempo en relatiewe groot vetliggame. 

Hierdie unieke eienskappe is al deur navorsers gekoppel aan die groeplewe lewens-

strategie. Die potensiële koppeling van die termiese ekologie en die spesifieke lewens-

strategie van C. cataphractus benodig verdere studie. Die doelwitte van hierdie studie was 

eerstens: om die voorkeurtemperatuur-reeks (Tp) van C. cataphractus te bepaal deur van 

ekologies-realistiese termiese gradiënte in die laboratorium gebruik te maak; tweedens: om 

geografiese en seisoenale variasie in Tp te ondersoek deur individue te gebruik wat uit 

binnelandse en kus-populasies, tydens verskillende seisoene, herfs en lente versamel is; 

derdens: om die termiese omgewing, meer spesifiek die variasie in termiese kwaliteit, binne 

die habitat van � C. cataphractus populasie in verskillende seisoene, somer, herfs, winter en 

lente, te moduleer en met die gedokumenteerde aktiwiteitspatrone in verband te bring; 

vierdens: om die seisoenale temoreguleringspatrone (tydens somer, herfs, winter en lente) 

van � C. cataphractus populasie te beskryf; vyfdens: om geografiese variasie in die termiese 

habitat en geassosieerde termoreguleringspatrone tussen � kus-populasie (westelike 
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verspreidingsgrens) en � binneland-populasie (oostelike verspreidingsgrens) te bestudeer. 

Die kwaliteit van die termiese habitat van C. cataphractus is bepaal deur hol koper-modelle 

van akkedisse (operatiewe temperatuur modelle (Te)) te plaas rondom rotse in 

ooreenstemming met die natuurlike bewegingspatrone van die akkedisse. Die termiese 

kwaliteit is gevolglik afgelei (de = |Te – Tp|) en gemiddeldes bereken. Die 

liggaamstemperature (Tb) van vrylopende akkedisse in die veld is met dorsaal-gemonteerde 

miniatuur temperatuur “data-loggers” gemeet. Termiese indekse (deur Te, Tb en Tp te 

gebruik) is bereken om die akkuraatheid en effektiwiteit van termoregulering, sowel as 

termiese benutting van die omgewing vir beide populasies (kus en binneland) tydens 

verskillende seisoene te beraam.  

Die voorkeurtemperatuur-reeks van C. cataphractus is die laagste gedokumenteerde 

temperature vir enige lid van die familie Cordylidae tot op hede bestudeer (gemiddeld van Tp 

= 29.8oC), en het ten spyte van die feit dat omgewingstemperature wissel op geografiese en 

seisoenale vlakke, min gevarieer tussen die twee populasies asook tydens verskillende 

seisoene binne die populasies.  

Die termiese kwaliteit het beduidend gevarieer tussen seisoene en binne die mikro-

ruimtelike omgewing rondom rotse in die kus-populasie. Aangesien C. cataphractus 

mannetjies territoriaal is, word die aanname gemaak dat kompetisie vir ‘n ruimtelike posisie 

ook ‘n termiese koste mag hê aangesien daar beduidende variasie in de om die rotse was.  

Variasie in termiese kwaliteit rondom rotse was verder ook � funksie van die tyd van die jaar 

(seisoene). 

Die termiese kwaliteit van skeure het gevarieer tussen seisoene, en termiese 

kondisies/toestande was oor die algemeen meer gunstig buite die rots-skeure tydens die 

koeler winter en lente tydperke, terwyl skeure termies meer gunstig was in die somer en 

herfs maande. Termiese habitat kwaliteit van skeure was besonders hoog gedurende die 

herfs, en die voorspelling is dus dat die verlaagde oppervlak-aktiwiteit wat gedurende hierdie 

tyd van die jaar vir C. cataphractus gedokumenteer is nie noodwendig � funksie van 

beperkte voedselbeskikbaarheid is nie. Teenstrydig met gepubliseerde aktiwiteitsrekords dui 
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die resultate (Tb teenoor Te) verder daarop dat individue wel uit skeure kom tydens die warm 

somer seisoen. 

Die geografiese ondersoek het gewys dat akkedisse van die kus-populasie (wat 

gewoonlik uit groter groepe bestaan), meer akkuraat getermoreguleer het as akkedisse van 

die binneland-populasie. Die hoër akkuraatheid van termoregulering in die kus-populasie is 

bewerkstellig ten spyte van die feit dat die termiese kwaliteit beduidend laer was as die van 

die binneland-populasie. Die hoër termoreguleringsakkuraatheid in die kus-populasie kan 

waarskynlik toegeskryf word aan � laer predasie-risiko geassosieer met groter groepe. Die 

seisoenale variasie-patroon van termoregulering kan verklaar word deur die koste-voordeel 

model van termoregulering, waarvolgens die akkuraatheid van termoregulering sowel as 

termiese benutting hoër is tydens periodes van hoë termiese kwaliteit (i.e. herfs).   
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Metrics and indices of thermal ecology  

Metric 
or 

Symbol 
Description 

Tp 

The preferred temperature range (Tp), describes the range of body temperatures at 
which physiological functioning is optimized, therefore representing the target of 
thermoregulation. These “ideal” body temperatures are measured in a laboratory 
thermal gradient (theoretically) in the absence of ecological costs. 

Te 

Environmental operative temperatures (Te) describe the available equilibrium body 
temperatures which an animal will experience in a specific habitat in the absence of 
thermoregulation (measured with physical copper models that represent lizards in size, 
shape and skin coloration) (Bakken 1992). 

Tb 
Field body temperatures are measured on a representative sample of individuals with 
cloacal temperature probes, temperature sensitive telemetry or miniature temperature 
loggers implanted or attached externally to animals.  

de 

Thermal habitat quality expresses the degree to which operative environmental 
temperatures (Te) match the target preferred temperature range (Tp), and is calculated 
from the absolute deviation of Te from Tp (de = [Te – upper limit of Tp], if Te > Tp: de = 
[lower limit of Tp – Te], if Te = Tp, de = 0). The degree to which Te deviates from Tp 
describes thermal suitability from the organism’s perspective and hence thermal quality 
(Hertz et al. 1993). 

db 

Accuracy of thermoregulation expresses the degree to which Tbs attained in the field 
matched the target preferred temperature range (Tp) and is calculated from the 
absolute deviation of Tb from Tp (db = [Tb – upper limit of Tp], if Tb > Tp: db = [lower limit 
of Tp – Tb], if Tb = Tp, db = 0). A high db-value therefore expresses low accuracy (Hertz 
et al. 1993). 

de – db 

The effectiveness of thermoregulation considers accuracy of thermoregulation as a 
function of the available thermal quality, describing the departure from 
thermoconformity. The de – db index is simply calculated from the difference between 
de and db. Values approaching one indicate active thermoregulation, whereas those 
approaching zero indicate thermoconformity (Blouin-Demers and Weatherhead 2001). 

Ex 

Thermal exploitation describes the extent to which animals exploit the favourable 
opportunities for thermoregulation available to them, calculated as: (time in which Tb = 
Tp) / (time in which any Te observed in the habitat = Tp) x 100 % (Christian and 
Weavers 1996). 
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Chapter 1 

General introduction 
 
1.1 Reptile thermal ecology and the quantitative assessment thereof 

1.1.1 Reptile thermoregulation  

Animal body temperature affects all levels of physiology, from enzyme reactions to 

processes such as digestion, locomotion and growth (Huey 1982; Stevenson et al. 1985; 

Seebacher and Franklin 2005). Mammals and birds (i.e. endotherms) may be viewed as 

extreme thermal specialists, maintaining body temperatures within a narrow set-point range, 

despite variation in environmental temperatures (Hafez 1964; Bligh 1998; Ivanov 2005). 

Endotherm Tb-control is administered through a suite of physiological, behavioural and 

morphological mechanisms (e.g. metabolic heat production, insulation, behaviour, 

evaporative cooling, panting and cardiovascular mechanisms) (reviewed by Hafez 1964 and 

Bligh 1998) which may be highly taxing to the time- and energy budgets of animals (Bennett 

and Ruben 1979; Pough 1980). In contrast to endotherms, reptiles have a more relaxed “set-

point” (target) temperature range (especially when external heat sources are limited) known 

as the preferred temperature range (Tp), at which the majority of physiological functions 

occur optimally (Licht et al. 1966; Hertz et al. 1993; Angilletta et al. 1999). The preferred 

temperature range can be estimated in an artificial laboratory thermal gradient where both 

physical and biotic constraints are theoretically minimized (Licht et al. 1966; Stevenson et al. 

1985; Angilletta et al. 1999; Clusella-Trullas et al. 2007).  

Although physiological control may contribute to thermoregulation (reviewed in 

Bartholomew 1982), reptiles rely primarily on behavioural mechanisms (i.e. shuttling, 

orientation, postural adjustments, microsite selection) to attain external heat and maintain Tb 

near to the preferred range (Huey 1982; Stevenson 1985; Bauwens et al. 1996). Thermal 

(energy) gain or loss therefore occurs predominantly through the exploitation of 

environmental heat loads (Figure 1.1) (Pough 1980; Angilletta 2009), an approach (to Tb-
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control) that may have significant effects on daily energy expenditure (Bennett and Nagy 

1977; Pough 1980). For example, consider the classic study of Bennet and Nagy (1977) 

which demonstrates that the lizard, Sceloporus occidentalis maintains a daily metabolic 

expenditure 96 % to 97 % lower than that expected for a mammal or bird of equal size 

(Bennett and Nagy 1977). The implication of lower metabolic rates however is lower heat 

production and therefore high dependence on external heat sources during cooler periods.  

 

 

Figure 1.1. Heat transfer pathways experienced by field-active lizards that may affect field 

body temperatures (Tb) (adopted from Bartholomew (1986)).  

 

Two main approaches to body temperature control have been identified in reptiles 

namely: thermal generalists (i.e. eurytherms/thermoconformers) and thermal specialists (i.e. 

stenotherms/strict thermoregulators) (Huey 1982; Gilchrist 1995; Herczeg et al. 2008). In 

theory, thermal generalists have wide performance breadths and are therefore able to be 

active at a wide range of body temperatures, whereas, thermal specialists typically have 
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narrow performance breadths, and maintain Tb within a narrow range during activity (Bowker 

and Johnson 1980; Huey 1982; Bowker 1984; Herczeg et al. 2008). 

The thermoconformer-thermoregulator systems are however a continuum (not set in 

stone) and in reality, the extent of thermoregulation varies greatly within and among reptile 

taxa, and even within species at seasonal scales (Huey 1974; Hertz et al. 1993; Schauble 

and Grigg 1998). For example, Anolis cristatellus may change from being strict 

thermoregulator in one season to thermoconformer in the next (Huey 1974; Huey and 

Webster 1976; Hertz et al. 1993). The consideration is that the relative position along the 

thermoregulate–thermoconform continuum (at a specific point in time) is a function of the 

unique cost-to-benefit ratios present within a particular species (Huey and Slatkin 1976).  

1.1.2 A null model is needed 

For decades researchers assessed the extent of thermoregulatory behaviour simply by 

comparing field body temperatures with air temperature (Tair) (Huey 1982; Hertz et al. 1993; 

Angilletta 2009). Heath (1964) brought a major advancement to the field of thermal ecology 

when he, with the use of beer cans filled with water, demonstrated that air temperatures may 

be a misrepresentation of thermal opportunities to animals, since some of the cans 

seemingly “thermoregulated” reaching temperatures exceeding Tair by up to 8oC. The logic 

introduced by Heath (1964) eventually led to the birth of operative temperature models, 

physical models that match live animals in size, shape and radiative properties, thus 

integrating all the factors that influence heat exchange between the animal and its 

environment (Figure 1.1) (Bakken and Gates 1975; Bakken 1992; Diaz and Cabezas-Diaz 

2004; Dzialowski 2005). Environmental operative temperatures (Te) therefore describe the 

Tbs (integrating all biophysical effects) an animal will experience by simply being present in a 

specific habitat (potential Tbs) and may therefore function as a null model for 

thermoregulation from which the amount of thermoregulation performed (costs) can be 

quantified (Hertz et al. 1993; Bauwens et al. 1996; Diaz 1997; Diaz and Cabezas-Diaz 

2004). 
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1.1.3 The Hertz et al. (1993) protocol 

Hertz et al. (1993) devised a protocol to quantitatively describe the (field) thermal ecology of 

small reptiles in virtually any context, among other outcomes, allowing researchers to 

estimate the position of a reptile species or population along the thermoregulate-

thermoconform continuum. The protocol is based on three metrics namely: (1) the theoretic 

“target” preferred temperature range (Tp); (2) the available body temperatures describing 

zero thermoregulation (Te); (3) actual field body temperatures (Tb) recorded through radio 

telemetry, cloacal probes or small temperature data loggers attached to the body surface. 

Hertz et al. (1993) applied these aforementioned metrics collectively to describe reptile 

thermal ecology as follows: 

Firstly, the absolute deviation of Te from Tp describes thermal habitat quality (de) 

(reflecting the degree of active thermoregulation needed to function within Tp). A high de 

therefore denotes low quality from the organism’s perspective. 

Secondly, the absolute deviation of Tb from Tp describes the accuracy of 

thermoregulation (db) (reflecting the success with which an organism is able to maintain Tb 

near to or within Tp). A high db therefore denotes low thermoregulatory accuracy. 

Thirdly, accuracy of thermoregulation (db) as a proportion of thermal habitat quality (de) 

describes the effectiveness of thermoregulation (E); therefore indicating to what extent the 

organism’s ability to maintain Tb near Tp exceeds the opportunity provided by the thermal 

habitat to maintain Tb near Tp (i.e. the extent of thermoregulation performed). Effectiveness 

(E) ranges between zero and one, values approaching one indicates active 

thermoregulation, whereas those approaching zero indicate thermo conformity.  

The Hertz et al. (1993) protocol transitioned the field of thermal ecology by providing a 

standard framework for inter-species, inter-population comparisons. The protocol has been 

applied to a variety of reptile groups including: lizards (Clusella-Trullas et al. 2009; Harlow et 

al. 2010); snakes (Row and Blouin-Demers 2006; Lelievre et al. 2010); turtles (Edwards and 



5 
 

Blouin-Demers 2007; Bulte and Blouin-Demers 2010) and amphisbaenians (Lopez et al. 

1998; Lopez et al. 2002).  

1.1.4 The Hertz et al. (1993) protocol and improvements 

Although widely accepted, critique has been raised against the Hertz et al. (1993) protocol 

(Christian and Weavers 1996; Currin and Alexander 1999; Blouin-Demers and Weatherhead 

2001). Specifically, the application of the effectiveness (E) index has been questioned for 

three reasons: E is undefined when thermal habitat quality is perfect (de = 0), E cannot be 

interpreted without taking the respective magnitudes of de and db into account (Blouin-

Demers and Weatherhead 2001; Blouin-Demers and Nadeau 2005), and E is a ratio, making 

it sensitive to extreme values (Christian and Weavers 1996) which might therefore result in 

superious representations of reptile thermoregulation (Blouin-Demers and Nadeau 2005). 

As a replacement for E, Blouin-Demers and Weatherhead (2001) proposed the de – db 

index for effectiveness of thermoregulation. The magnitude of the difference between de and 

db quantifies the degree of departure from thermoconformity (de – db = 0: perfect 

thermoconformity), and the output therefore corresponds to the Hertz et al. (1993) 

effectiveness index (Blouin-Demers and Weatherhead 2001; Blouin-Demers and 

Weatherhead 2002; Blouin-Demers and Nadeau 2005).   

Christian and Weavers (1996) described the thermal exploitation index (Ex) describing 

the degree to which a reptile exploits the available opportunities for precise 

thermoregulation. One of the advantages of the Ex index is the fact that it expresses the 

animal's thermoregulatory responses independent of the thermal habitat quality. Thermal 

exploitation Ex is calculated by dividing the time that Tbs are within Tp, by the time that any Te 

present in the habitat is within Tp (i.e. Te would allow Tp to be achieved) therefore describing 

the time-fraction (%) during which Tb equals Tp when permissive in a habitat.  

By using a combination of thermal quality (de), accuracy of thermoregulation (db) (Hertz 

et al. 1993), effectiveness of thermoregulation (de – db) (Blouin-Demers and Weatherhead 

2001) and thermal exploitation (Ex) (Christian and Weavers 1996), one can perform a 
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relatively complete evaluation of thermoregulation in field-active small reptiles for virtually 

any ecological situation. 

1.1.5 The cost-benefit model of thermoregulation (Huey and Slatkin 1976) 

The cost-benefit model of thermoregulation states that thermoregulatory investment will be 

abandoned if the costs exceed the benefits (Huey and Slatkin 1976). The costs of 

thermoregulation is however associated with thermal habitat quality since ultimately, 

thermoregulatory requirements are a function thereof (Blouin-Demers and Nadeau 2005) 

and not surprisingly comprise the predominant factor associated with macro-scale variation 

in thermoregulatory success (among populations or seasonally) (e.g. Hertz et al. 1993; 

Angilletta 2001). In fact, Herczeg et al. (2006) found that Lacerta vivipara individuals 

abandoned thermoregulation when exposed to temperatures below the specie’s Tp in 

support of the cost-benefit model. Costs of thermoregulation include predation risk (Herczeg 

et al. 2008), social behaviour such as mating and courtship (Herczeg et al. 2008) and 

feeding behaviour (Hertz et al. 1993). The actual model proposed by Huey and Slatkin 

(1976) mainly focuses on thermal quality as determinant of thermoregulatory cost, seeing 

that actual costs such as predation risk or social behaviour are difficult to quantify and would 

require a more complex model (Blouin-Demers and Weatherhead 2002).  

A recent application of the Hertz et al. (1993) protocol is in studies exploring the 

legitimacy of the cost-benefit model of thermoregulation in a field setting (Blouin-Demers and 

Weatherhead 2001; Blouin-Demers and Weatherhead 2002; Blouin-Demers and Nadeau 

2005). Since the cost-benefit model (Huey and Slatkin 1976) predicts that thermoregulatory 

behaviour will be abandoned when thermal habitat quality is low (cost of thermoregulation 

outweighs the benefit), one can compare the observed extent and success of 

thermoregulation to the prevalent thermal habitat quality in order to see whether animals 

thermoregulate in accordance with the cost benefit model (i.e. abandon thermoregulation 

when exposed to temperatures below the species preferred temperature range (Herczeg et 

al. 2006)). 
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Certain reptiles from extreme cold temperate regions such as northern Canada have 

been reported to thermoregulate in conflict with the predictions of cost-benefit model of 

thermoregulation (Blouin-Demers and Weatherhead 2001; Blouin-Demers and Weatherhead 

2002; Row and Blouin-Demers 2006; Edwards and Blouin-Demers 2007). For example, 

Blouin-Demers and Weatherhead (2001) found that the snake, Elaphe obsoleta 

thermoregulates behaviourally, even though the operative environmental temperatures in its 

habitat were below the specie’s Tp, and in fact, invest more in thermoregulation in low quality 

habitats (in contrast to the predictions of the Huey and Slatkin (1976) model). Blouin-Demers 

and Weatherhead (2001) suggested that the disadvantages (costs) of thermoconformation in 

this cold environment may exceed the cost of thermoregulation and E. obsoleta would still 

benefit from active thermoregulation. The question however remains, does the Blouin-

Demers and Weatherhead (2001) model apply to reptiles occurring in hot habitats where the 

risk of overheating poses a problem to animals, since the disadvantages of remaining in 

retreat-sites may also be substantial. In a meta-analysis (33 species from variable climatic 

regions) Blouin-Demers and Nadeau (2005) observed a general trend for reptiles to exhibit 

increased thermoregulatory investment (described by the effectiveness of thermoregulation 

index) in higher cost (low thermal quality) habitats. 

1.2 Thermal ecology of the Cordylidae family 

The field of reptile thermal ecology has proliferated since the ground-breaking contributions 

of Cowles and Bogert (1944) describing the presence of behavioural thermoregulation, 

Heath (1964) who identified operative environmental temperatures, Licht et al. (1966) on the 

existence of a target preferred temperature range, and Huey and Slatkin (1976) who 

conceptualized reptile energy balance in relation to thermoregulation. Nonetheless, 

surprisingly few published records of thermal biology in the African-endemic Cordylidae 

family exists, of which only one applied the Hertz et al. (1993)-protocol (i.e. Clusella-Trullas 

et al. 2009). 

 



8 
 

Here follows a short description of published records related to the respective subject 

fields of field thermal ecology and thermal physiology in cordylids. 

1.2.1 Field thermal ecology 

Stebbins (1961) measured the body temperatures of Gerrhosaurus flavigularis in outdoor 

enclosures during summer and reported typical basking behaviour and a mean Tb of 33.3oC. 

Stebbins (1961)’s initial aim was to describe the effect of the parietal eye on 

thermoregulation, and observed no effect associated with the removal of the eye.  

Bowker (1984) measured the body temperatures for Gerrhosaurus major and 

Gerrhosaurus nigrolineatus in outdoor enclosures, and observed the highest Tbs reported 

among cordylids to date (i.e. G. major 34.5oC; G. nigrolineatus 35.2oC). Bowker (1984) 

further reported that both G. major and G. nigrolineatus performed overt thermoregulatory 

behaviour, shuttling between sun and shade when needed.  

Bauwens et al. (1999) explored the thermal habitat and field body temperatures of 

Cordylus macropholis (a species which inhabits the Euphorbia caput-medusa plant on the 

West Coast of South Africa) and reported the absence of overt thermoregulatory activity 

such as shuttling and basking, implicating C. macropholis as a thermoconformer. Bauwens 

et al. (1999) described low field Tbs (mean 28.9oC) during summer, and suggested that E. 

caput-medusa plants provide superior opportunities for thermoregulation compared with 

shrub microhabitats. Bauwens et al. (1999)’s estimates of thermal suitability were however 

based simply on ambient temperatures among plant leaves and not environmental operative 

temperatures, therefore compromising the credibility thereof (Heath 1964).  

Lailvaux et al. (2003) measured the field body temperatures of Platysaurus 

intermedius wilhelmi during summer, specifically testing for inter-sexual variation, and 

reported significantly higher Tbs in males than females.  

Clusella-Trullas et al. (2009) applied the Hertz et al. (1993) protocol and 

comprehensively described the thermal habitats and subsequent thermoregulatory patterns 

of Cordylus oelofseni, Cordylus niger and Cordylus cordylus populations. The specific focus 
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of Clusella-Trullas et al. (2009)’s study was to investigate thermal benefits of melanism, and 

the authors concluded that melanism confers only a slight, but significant thermoregulatory 

advantage to lizards in cool locations (montane and coastal areas) during cool periods, 

allowing increased heating rates and higher Tb.  

Finally, in the most recent paper, McConnachie et al. (2009) provided a detailed 

description of behavioural thermoregulation in Pseudocordylus melanotus melanotus in 

relation to postural adjustments and movement during summer and winter. Although 

McConnachie et al. (2009) reported operative environmental temperatures (Te) and field 

body temperatures (Tb), the accuracy or effectiveness of thermoregulation (Hertz et al. 1993) 

was not given. 

In summary, field thermal ecology represents a large knowledge gap in cordylid 

literature, with a specific need for basic descriptive studies related to the thermal quality of 

habitats and thermoregulatory strategies adopted by lizards. In addition, virtually no 

published work describing seasonal patterns of thermoregulation, or making population-level 

comparisons on thermal ecology currently exists. Moreover, fine scale (micro-spatial) 

exploration of thermal habitats of cordylids (see Huey et al. 1989; Kearney 2002) are non-

existent and represents a major gap, since the family predominantly consists of sedentary 

sit-and-wait foragers (Branch 1998) which are expected to be influenced by microsite level 

variation in Te, in and around crevices (due to the individuals’ site specificity) (Huey et al. 

1989; Kearney 2002). The lack of descriptive thermal ecology studies also precludes the use 

of modelling effects on climate change (Kearney et al. 2009).  

1.2.2 Thermal physiology  

Wheeler (1986) measured standard metabolic rate (SMR) and preferred body temperatures 

(Tp) of Cordylus jonesi in individuals respectively acclimated at 20 oC and 30 oC for five 

weeks. The SMR of C. jonesi showed a compensation of 20.9 %, but Tp remained 

unchanged. Wheeler (1986) further noted that SMRs of lizards that were allowed to bask at 

day-time corresponded to that of individuals forced to remain in retreat, suggesting that the 
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acclimation state of lizards was determined by body temperatures experienced whilst in 

retreat (during scotophase). 

Skinner (1991) explored the effect of melatonin injections on the thermal preference of 

Cordylus vittifer and reported significantly lower Tbs in exposed individuals, implicating 

melatonin as an important seasonal trigger for altered thermoregulatory responses in these 

lizards. Skinner further reported that individuals (injected and uninjected with melatonin) 

selected higher Tbs in a thermal gradient during the scotophase than photophase. 

McKinon and Alexander (1999) measured apparent digestive efficiency (ADE) in 

Platysaurus intermedius when fed with low and high quality food at 26 oC and 31 oC 

respectively. The apparent digestive efficiency P. intermedius was lower in low quality diets, 

yet did not vary among temperature classes for low and high quality diets. 

Mouton et al. (2000b) assessed the resting metabolic rates (RMR) of Cordylus 

cataphractus and Cordylus polyzonus at 10 oC, 15 oC, 20 oC, 25 and 30 oC and reported a 

degree of thermally independent metabolism and highly repressed RMR in C. cataphractus, 

74 % lower than that observed in C. polyzonus at the 30 oC exposure.  

Alexander et al. (2001) described the thermal dependence of appetite and digestive 

rate on Platysaurus intermedius wilhelmi. Appetite was temperature dependent, maximized 

at 32 oC, whereas digestive rate was found to be influenced by Tbs lower than 22 oC, yet 

independent beyond 22 oC and 34 oC. The authors concluded that P. i. wilhelmi requires Tbs 

of at least 20 oC to gain energy through food consumption. 

Lailvaux et al. (2003) assessed sexual variation in locomotor performance, thermal 

preference (Tp) and escape behaviour in Platysaurus intermedius wilhelmi, and reported 

significantly higher sprint speeds in males. Lailvaux et al. (2003) provides the only record of 

thermal performance curves for a cordylid. Interestingly, the Topt for sprinting corresponded 

closely to mean Tp being 31.9 oC and 31.2 oC respectively. 

McConnachie and Alexander (2004) described the effects of temperature on apparent 

digestive efficiency, apparent assimilation efficiency, gut passage time and appetite in 

Pseudocordylus melanotus melanotus. Apparent digestive and apparent assimilation 
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efficiencies were high (i.e. 94.4 % and 87.2 % respectively) both being temperature 

independent, whereas increases in temperature resulted in increased appetite and 

decreased gut passage time. Lizards are therefore assimilating a similar proportion of 

ingested energy, yet more rapidly at higher temperatures. The authors concluded that the 

digestive physiology of P. m. melanotus allows maximum energy gain in food scarce 

regions. 

McConnachie et al. (2007) estimated the thermal tolerance (i.e. the lower lethal 

temperature and critical thermal minimum) of Pseudocordylus melanotus melanotus. A lower 

lethal temperature of –5.2 oC was observed, whereas the critical thermal minimum (CTmin) 

was 10.2 oC, an unexpectedly high value since these lizards are known to frequently reach 

lower Tbs during winter (McConnachie et al. 2007). 

Clusella-Trullas et al. (2007) explored the thermal preferences of Cordylus oelofseni, 

Cordylus polyzonus, Cordylus niger and Cordylus cordylus during summer, with the specific 

outcome of investigating among and within subject repeatability (defined as the intra-class 

correlation coefficient) in Tp. Repeatability of Tp was low in all species investigated in 

comparison to values reported for other species in the literature (Clusella-Trullas et al. 

2007). In conclusion, Clusella-Trullas et al. (2007) suggested that the low repeatability was a 

result of real random biological variation in the species under investigation. 

Clusella-Trullas et al. (2009) described the critical thermal maxima and minima of 

Cordylus oelofseni, Cordylus niger and Cordylus cordylus. The CTmin of C. oelofseni was 

significantly lower than that of both C. niger and C. cordylus, whereas CTmax did not vary 

significantly among species. Interestingly, the CTmin of Pseudocordylus melanotus melanotus 

exceeded the CTmins of all three species investigated by Clusella-Trullas et al. (2009), even 

though the latter species are known to experience less extreme Tbs in nature (Clusella-

Trullas et al. 2009; McConnachie et al. 2009).  

Finally, the most recent contribution was made by McConnachie et al. (2009) who 

described the preferred body temperature range (Tp) of Pseudocordylus melanotus 
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melanotus during summer and winter, and reported a significantly lower Tp during winter 

than summer. 

In summary, although thermal physiology is one of the best studied subject fields in 

Cordylidae, major gaps still exists. In particular, basic descriptive thermal physiology studies 

are needed in the numerous unexplored species (e.g. thermal dependence of metabolic 

functioning or digestion). Other topics such as the thermal dependence of growth rates, -

reproduction, -sex determination, and -water balance remains unexplored. Thermal 

performance curves, which have been described in only one study to date (Lailvaux et al. 

2003), are also lacking, and the exploration of physiological traits at seasonal scale is limited 

(McConnachie et al. 2009), whereas, population level studies are nonexistent. 

1.3 Cordylus cataphractus and the group-living life strategy 

Cordylus cataphractus inhabit the semi-arid far western parts of South Africa occurring in 

permanent social groups of between two and 50+ individuals (Mouton et al. 1999; Visagie et 

al. 2005; Effenberger and Mouton 2007). Stable social aggregations are uncommon in 

squamates (Hayward 2008) and has generally been associated with two mutually non-

exclusive factors namely (1) mutual attraction of conspecifics (phylopatry: i.e. an animal 

benefits from being in the close proximity of conspecifics) and (2) ecological constraints such 

as limitations in retreat sites, food availability or mates (Stamps 1988; Graves and Duvall 

1995; Kearney et al. 2001; Hayward 2008). Cordylus cataphractus exhibits one of the 

clearest manifestations of the group-living life strategy among squamates (Visagie et al. 

2005; Hayward 2008), and preferentially aggregate even when provided with an excess of 

food and retreat sites, suggesting phylopatric association (Visagie et al. 2005). Cordylus 

cataphractus is a rock dwelling insectivore and primarily employs a sit-and-wait foraging 

mode (Mouton et al. 2000a). Social groups may host numerous highly territorial males which 

typically occupy rock sections of ~0.79 m2 (Effenberger and Mouton 2007). Cordylus 

cataphractus relies on crevices as primary defence mechanism, and therefore rarely move 

further than 0.9 m away from native rocks (Losos et al. 2002; Effenberger and Mouton 
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2007). Osteo-dermal armature as well as thickened bones results in low manoeuvrability, 

further contributing to their general site specificity and placid behaviour (Visagie 2001; 

Hayward and Mouton 2007; Hayward 2008). 

The unique combination of site specificity, semi-arid habitat, group-living life strategy 

and a sit-and-wait foraging mode creates a unique and challenging scenario resulting in high 

expected levels of competition for food during dry periods. Mouton et al. (2000a) observed 

empty stomachs in 64 % of individuals collected during the dry autumn (N = 91 specimens), 

confirming amplified seasonal food stress in the species.  

Parturition typically occurs during the dry late summer and autumn months in C. 

cataphractus (February to April), after which vitellogenesis commences, continuing until 

summer (April to December) (Flemming and Mouton 2002). Spermatogenesis typically 

commences during midsummer and continues until spring (December to October) 

(Flemming and Mouton 2002). The mating season of C. cataphractus occurs predominantly 

during spring, yet may continue until midsummer (Flemming and Mouton 2000). 

Interestingly, both vitellogenesis and spermatogenesis occur during the annual period when 

the surface activity of C. cataphractus reportedly is repressed (February to July) (Visagie 

2001). Effective thermoregulation will therefore benefit individuals at the time, despite 

repressed activity (Licht 1972). 

Cordylus cataphractus exhibits several characteristics uncommon among cordylids, 

including: a degree of thermally independent metabolism and low resting metabolic rate 

(RMR), 68.8 % lower than that of any other known cordylid (Mouton et al. 2000b); enlarged 

fat bodies principally deposited during spring (three times larger than most other cordylids) 

(Flemming and Mouton 2002), low fecundity (a single offspring per annum) (Flemming and 

Mouton 2002), termitophagy during the dry summer and autumn months as well as the cool 

winter (Shuttleworth et al. 2008) and as mentioned, repressed annual activity cycles, from 

summer to autumn (Visagie 2001). These aforementioned features have generally been 

ascribed to food constraints associated with the combination of a sit-and-wait foraging mode 

and permanent group-living in a semi-arid to arid context (Mouton et al. 2000a; Visagie 
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2001; Hayward 2008; Flemming and Mouton 2002; Shuttleworth et al. 2008). Other 

processes such as thermoregulation are likely to also be influenced. 

Cordylus cataphractus is probably the best studied cordylid, and accounts exists 

describing the species in relation to: morphology (Mouton et al. 1999; Curtin et al. 2005), 

sexual dimorphism (Mouton et al. 1999), feeding strategy (Mouton et al. 2000a; Shuttleworth 

et al. 2008), physiology (Mouton et al. 2000b; Flemming and Mouton 2002), grouping 

behaviour (Mouton et al. 1999; Visagie et al. 2002; Visagie et al. 2005; Costandius et al. 

2006), activity patterns and territoriality (Effenberger and Mouton 2007). 

Thermal ecology however represents a current gap in the literature on C. 

cataphractus. It is imperative (because of ectothermy) to consider thermal ecology when 

exploring and interpreting behavioural and physiological processes operational in reptiles 

(Huey 1982; Angilletta 2009), and a better understanding thereof will therefore complement 

the current knowledge-base available for C. cataphractus. 

In a preliminary study, Truter (2007) reported a Tp of 30.1 oC which is the lowest 

reported among cordylids to date, and suggested the low Tp as a consequence of the group-

living life strategy in a semi-arid environment. Truter (2007) also provided an initial basic 

description of the thermal habitat of C. cataphractus during spring and suggested that 

individuals performed active (behavioural) thermoregulation to reach preferred body 

temperatures.  

Since previous studies indicate strong seasonal effects in regard to activity patterns 

(Visagie 2001), reproductive cycles (Flemming and Mouton 2002) resource availability 

(Mouton et al. 2000a) and feeding behaviour (Shuttleworth et al. 2008), the exploration of 

seasonality in thermoregulatory patterns as well as the thermal habitat is important for C. 

cataphractus. Moreover, the distribution range of C. cataphractus stretches from the South 

African West Coast, to inland regions such as the more mountainous Cederberg Wilderness 

Area (Branch 1998). Although C. cataphractus’ distribution range is limited to the winter 

rainfall regions (Shuttleworth 2006), vegetation types and stochastic factors may vary 

remarkably among regions (Mucina and Rutherford 2006), and thermal ecology of 
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populations inhabiting different locations may therefore differ and will be meaningful to 

explore. 

Moreover, permanent group-living is expected to impact the cost-benefit balances of 

reptiles and therefore thermoregulation. This effect may be pronounced in C. cataphractus 

due to prolonged periods of low food availability (Mouton et al. 2000a; Hayward 2008) and 

the potentially large groups they occur in (Mouton et al. 1999). Group-living has been shown 

to confer thermal benefits in certain reptile species (Boersma 1982; Lanham 2001; Shah et 

al. 2003). However, in C. cataphractus, the effects of living in groups on thermoregulation 

(positive and/or negative) remain unexplored.  

In addition, a better understanding of the thermal ecology of C. cataphractus will aid in 

formulating effective conservation/management plans, specifically in consideration of global 

climate change (Porter et al. 2002; Kearney et al. 2009). Such an outcome is of merit since 

Cordylus cataphractus is listed as Vulnerable in the South African Red Data Book for 

Reptiles and Amphibians (Branch 1988) as well as by the International Union for the 

Conservation of Nature's Red list of Threatened Animals (Groombridge and Baillie 1997) 

due to its attractive appearance, group-living life strategy and subsequent popularity as pet. 

1.4 Study Aims 

In this study the thermal ecology of Cordylus cataphractus was explored at both spatial and 

temporal scales. The spatial assessment was performed at macro- (population) and micro- 

(microhabitat) scales, whereas the temporal assessment was performed at diel and 

seasonal scales.  

 

The main objectives of the current study were: 

1. To describe the preferred temperature range (Tp) of C. cataphractus with specific 

reference to seasonal (autumn versus spring) and geographical variation (coastal 

versus inland), therefore testing for temporal and spatial plasticity in Tp. 
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2. To explore seasonality in the thermal habitat and patterns of thermoregulation of C. 

cataphractus, by investigating a single population during summer (January), autumn 

(April), winter (July) and spring (September). 

3. To investigate micro spatial variation of operative environmental temperatures (i.e. 

around and beneath rocks) in a population of C. cataphractus during summer, 

autumn, winter and spring. 

4. To investigate population level variation in the thermal habitat and patterns of 

thermoregulation in C. cataphractus (coastal versus inland). 

 

A compilation of thermoregulatory indices were used to quantitatively describe thermal 

ecology in relation to: 

1. Accuracy of thermoregulation (Hertz et al. 1993) 

2. Thermal habitat quality (Hertz et al. 1993) 

3. Effectiveness of thermoregulation (Blouin-Demers and Weatherhead 2001)  

4. Thermal exploitation (Christian and Weavers 1996) 

 

The specific questions addressed by the study included:  

1. Does the preferred temperature range of C. cataphractus vary geographically among 

an inland and coastal population during the dry autumn and more mesic spring?  

2. Do laboratory photo-thermal gradients provide estimates of preferred body 

temperatures that are repeatable across days? 

3. How does the thermal habitat quality of C. cataphractus vary at micro-spatial scale 

(i.e. around rocks) as a function of the time of day and time of year (i.e. season)? 

Does variation in thermal habitat quality around rocks provide an incentive for 

intra group competition? 

4. Does the success and effectiveness of thermoregulation vary seasonally among 

summer, autumn, winter and spring in C. cataphractus? 
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5. Are the seasonal surface activity patterns on rocks previously reported for C. 

cataphractus related to thermal factors? 

6. Does the thermal habitat quality of C. cataphractus and effectiveness and success of 

thermoregulation vary among an inland and coastal population during dry autumn 

and more mesic spring as predicted by climatic data? 

7. Does the success and effectiveness of thermoregulation of C. cataphractus vary 

seasonally in response to the relative thermal quality as predicted by the cost-benefit 

model of thermoregulation, or is thermoregulation dictated by the amplified energy 

constraints related to group-living? 
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Chapter 2 

Thermal preference across seasonal and 
geographical boundaries in the group-living 

lizard, Cordylus cataphractus 
 

2.1 Abstract 

Most reptiles possess a dual set-point range of body temperatures known as the preferred 

temperature range (Tp), at which biological functioning is optimized (i.e. the target of 

thermoregulation). Seasonal variation in preferred body temperatures is common among 

squamates, occurring in response to thermal regimes or food availability. In contrast, 

population-level variation in Tp is virtually non-existent. Although Tp has been estimated in a 

number of cordylids, seasonal variation in this parameter is known for only one, and 

population-level variation remains unexplored. The preferred temperature range of the 

group-living armadillo girdled lizard Cordylus cataphractus was estimated during the 

respective annual peak periods in food availability and scarcity. Measurements were taken in 

ecologically realistic laboratory photo-thermal gradients across 13 days using modified 

Thermochron iButtons. The aims were: (1) to characterize Tp for Cordylus cataphractus and 

compare the results to the Tps known for other (non-group-living) cordylids; (2) to assess 

geographical variation in Tp; (3) test for phenotypic plasticity in Tp at a seasonal scale. The 

grand mean Tp among populations and across seasons was 29.8 oC and represents the 

lowest Tp recorded for any cordylid to date. There was no significant variation in Tp at both 

seasonal and geographic scale, suggesting the absence of acclimatization (physiological 

plasticity) in response to seasonal temperature flux. The among-day repeatability of mean Tp 

varied among populations and across seasons despite the fact that exposure conditions 

were kept constant, suggesting that the methodology for Tp estimation does not implicitly 

describe the physiological target body temperature range. Cordylus cataphractus is known to 

rarely emerge from crevices during the dry autumn. The current results show that lizards 
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actively exploited thermal opportunities in laboratory thermal gradients during autumn 

(although to a lower extent than in spring); therefore indicating that lizards will if needed 

emerge from crevices for thermoregulatory purposes. 

Key words: Preferred temperature range, seasonal variation, geographic variation, food 

constraints. 
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2.2 Introduction 

Body temperature (Tb) is an important factor related to all biochemical processes and higher 

levels of organization (Haynie 2001; Angilletta et al. 2006). In most reptiles, biological 

processes function at an optimal level within a range of Tbs known as the preferred 

temperature range (Tp) (Stevenson et al. 1985; Angilletta et al. 2002; Martin and Huey 

2008). Thermoregulation functions to achieve and maintain body temperatures (Tb) as close 

as possible to this target preferred temperature range (Tp), thus ensuring optimal biological 

functioning. Knowledge regarding such a target range of Tbs is essential for evaluating lizard 

thermal ecology (Hertz et al. 1993; Bauwens et al. 1996; Clusella-Trullas et al. 2009).  

The multidimensional relationship between body temperatures, the environmental heat 

resource and fitness (through physiological temperature dependency) makes 

thermoregulation one of the central paradigms of reptile (ectotherm) ecology (Martin and 

Huey 2008; Angilletta 2009). Reptile thermoregulation is principally facilitated behaviourally 

through microsite selection, shuttling, selective inactivity, postural adjustments and 

orientation (Bauwens et al. 1996; Webb and Shine 1998; Kearney and Predavec 2000), but 

also physiologically through cardiovascular mechanisms such as altered blood flow (i.e. 

vasodilatation or vasoconstriction), or metabolic heat production (Bartholomew 1982). In 

reptiles, thermoregulatory behaviour incurs either a time or energy cost to the animal (Huey 

and Slatkin 1976), which varies along a continuum, with low cost (basically 

thermoconformation) and high cost (active thermoregulation) on the other end (Huey 1982). 

The extent of such thermoregulatory costs is directly related to the degree to which available 

body temperatures (i.e. operative environmental temperatures) deviate from Tp (the target Tb 

range) (i.e. thermal habitat quality (Hertz et al. 1993)) (Huey and Slatkin 1976). The Tp of 

any species, therefore potentially affects the costs associated with thermoregulation if one 

assumes that the time spent within preferred temperatures represent optimal functioning in 

the species. 

Although Tp is generally variable at genus level (Angilletta and Werner 1998), related 

species typically have corresponding Tps (Licht et al. 1966; Huey 1982; Angilletta and 
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Werner 1998; Kohlsdorf and Navas 2006). Similarly, Tp may be highly conservative at 

population level despite the fact that populations occur across diverse thermal habitats such 

as along altitudinal gradients (Gvozdik and Castilla 2001; Diaz et al. 2006). In fact, only one 

report of geographic variation has been published (Du 2006) and static Tp among 

populations seems to be the rule rather than the exception. The invariable Tp at population 

level is expected to result in variable thermoregulatory costs among populations (functional 

to thermal characteristics) (Huey and Slatkin 1976) and may therefore have substantial 

effects on time and energy budgets (Gvozdik and Castilla 2001; Gvozdik 2002). 

In contrast, several reports of seasonal variation in Tp exist (e.g. Patterson and Davies 

1978; Van Damme et al. 1986; Firth and Belan 1998). Such seasonal variation in Tp may 

counteract seasonal increases in thermoregulatory costs, since Tp may shift towards the 

prevalent environmental temperatures (e.g. increase Tp during summer) (Van Damme et al. 

1987; Diaz and Cabezas-Diaz 2004; McConnachie et al. 2009). Such shifts are facilitated 

through acclimatization (reversible phenotypic/physiological plasticity) which alters the 

biochemical reaction rates of temperature dependent processes, changing the optimum 

biological temperatures and hence Tp (Seebacher 2005).  

Seasonal variation in Tp has also been suggested to be associated with food and water 

availability (Huey and Slatkin 1976; Christian et al. 1996; Christian and Bedford 1996; 

Seebacher 2005). Animals can in such cases employ acclimatization to simply lower Tp 

(irrespective of environmental temperatures); therefore, because of the thermodynamic rate 

dependence of biological functions (Haynie 2001), lowering basal metabolic expenditure and 

water flux (Christian and Bedford 1995; Christian and Bedford 1996; Seebacher 2005).  

 If Tp does indeed vary seasonally and/or geographically, one would expect such 

variation in cases of either extreme variation in temperature or food availability, or in species 

with extremely strict energy budgets which in turn would benefit from minimized 

thermoregulatory costs. 

Cordylus cataphractus is a permanent group-living sit-and-wait forager (Mouton et al. 

1999; Mouton et al. 2000a) that inhabits the semi-arid far-western parts of South Africa 
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(Mouton et al. 1999). Individuals occur in permanent social groups of up to 58 (and possibly 

more) and rarely move further than 0.9 m from their native crevices (Mouton et al. 1999; 

Visagie et al. 2005; Hayward 2008). The unique combination of extreme site specificity, a 

semi-arid habitat, a group-living life strategy and a sit-and-wait foraging mode contribute to 

seasonal food stress during dry periods (Mouton et al. 2000a; Hayward 2008). This 

phenomenon peaks at the end of the warm dry season (i.e. late summer to autumn, 

February to April), and is least in spring when perennial flower blooms sustain an abundance 

of invertebrates (Struck 1994; Mouton et al. 2000a; Visagie 2001; Hayward 2008). It may be 

predicted that Cordylus cataphractus individuals will therefore benefit from reduced 

thermoregulatory costs appropriated through seasonal variation in Tp. 

A number of characteristics exhibited by C. cataphractus (absent in most other 

cordylids) have been suggested to be associated with their group-living life strategy; to aid 

survival during prolonged periods of food scarcity, namely: (1) a low resting metabolic rate 

(and therefore internal heat production) (Mouton et al. 2000b); (2) enlarged fat bodies, the 

largest in proportion to body size observed among cordylids (Flemming and Mouton 2002); 

(3) seasonal termitophagy (Shuttleworth et al. 2008); (4) reduced litter size, a single offspring 

per annum (Flemming and Mouton 2002) and (5) repressed seasonal outside crevice / rock 

surface activity (Visagie 2001).  

Few researchers have explored thermal preference in cordylids (Wheeler 1986; 

Skinner 1991; Lailvaux et al. 2003; Clusella-Trullas et al. 2007; Janse van Rensburg 2009; 

McConnachie et al. 2009), of which seasonal variation in Tp was exclusively explored in 

Pseudocordylus melanotus melanotus (McConnachie et al. 2009), and population level 

variation of Tp remains unexplored.  

In a preliminary study, Truter (2007) estimated the preferred temperature range of a 

population of C. cataphractus and reported a mean Tp of 30.1oC, the lowest reported among 

cordylids to date (Clusella-Trullas et al. 2007). Truter (2007) identified the need to 

investigate the effects of temporal (seasonal) and spatial (geographic) variation in 
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environmental thermal quality and associated costs of thermoregulation in a group-living 

species like C. cataphractus.  

Clusella-Trullas et al. (2007) investigated thermal preference in four cordylids 

(Cordylus cordylus, Cordylus niger, Cordylus oelofseni and Cordylus polyzonus), with the 

specific outcome of assessing repeatability (i.e. the intraclass correlation coefficient) thermal 

preference (Tp). These authors observed low repeatability in all four species investigated 

(from 0 to 0.48) in comparison to other estimates of repeatability of Tp in the literature 

(Galliard et al. 2003). The low repeatability indicates that the inter-individual variance of Tp 

was inconsistent over time and low in proportion to intra-individual variance of Tp (Sokal and 

Rohlf 1981). Clussella-Trullas et al. (2007) identified the need for future studies which 

assess repeatability in Tp in cordylids over different time scales (e.g. seasons) among 

species and between diverse geographic and climatic conditions (i.e. populations). 

The use of laboratory thermal gradients to estimate the preferred temperature range of 

reptiles has been criticized, specifically due to the assumption that laboratory thermal 

gradients represent a zero cost environment (Christian and Weavers 1996; Currin and 

Alexander 1999). If costs are indeed zero in laboratory thermal gradients, estimates of Tp 

over time are expected to be relatively consistent within and among individuals and therefore 

have high repeatability. The low repeatability observed by Clussella-Trullas et al. (2007) 

brings the legitimacy of Tp as representative of the “set point” target temperature range into 

question. Clusella-Trullas et al. (2007) recorded Tp in laboratory thermal gradients which 

lacked retreat sites even though the species investigated are known to rely on crevices as 

primary defence mechanism in nature (Losos et al. 2002). Ecologically realistic photo-

thermal gradients may result in higher repeatability (since natural behaviour will be 

encouraged) and therefore more realistic estimates of Tp, however, the matter currently 

remains unexplored. 

The primary objective of the current study was to describe the preferred temperature 

range of the group-living C. cataphractus at spatial and temporal scales, studying two 
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populations (a coastal and an inland population) during two important seasons (warm 

autumn and cooler spring).  

 
Specific questions addressed:  

1. Does the preferred temperature range of C. cataphractus vary geographically among 

an inland and coastal population during dry autumn and more mesic spring?  

2. Does the preferred temperature range of C. cataphractus vary seasonally as a 

function of annual food availability? 

3. Does C. cataphractus perform overt thermoregulatory behaviour during the dry 

autumn when activity is known to be largely confined to the crevices?  

4. Does the repeatability of Tp in C. cataphractus vary at seasonal and temporal scales 

and correspond to values obtained for other cordylids? 
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2.3 Materials and Methods 

2.3.1 Study area and animals 

Lizards were captured from a coastal and inland population of C. cataphractus during the 

autumn (April) and spring (September) of 2008. The coastal population inhabits a series of 

sandstone ridges near Elands Bay (Western Cape, South Africa (32o19’38.61”S; 

18o21’35.78”E)), which falls within the Langebaan Dune Strandveld vegetation region, with 

an annual precipitation of 200 mm (South African Weather Service) (Figure 2.1). The coastal 

locality is densely populated by C. cataphractus with group-sizes varying between two and 

25 individuals (Visagie 2001). 

 

 

Figure 2.1. Mean monthly rainfall (vertical bars), minimum and maximum ambient 

temperatures (lines) for the coastal (dark grey) and inland (light grey) localities (rainfall: 

1998-2008, SA Weather Services; temperatures and solar radiation (A van Niekerk, 

unpublished data)). Vertical bars indicate the respective sampling periods (A: autumn; B: 

spring). The horizontal bar indicates seasonal activity in C. cataphractus as described in the 

literature (Visagie 2001; Effenberger and Mouton 2007) (slanted-line: repressed activity; 

grey: normal activity; clear: activity unknown). 
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The inland population is located in the Matjiesrivier Nature Reserve (Western Cape, 

South Africa (32o29’01.53”S; 19o21’31.18”E)), ~120km south-east of the coastal population. 

The site has an annual precipitation of 210 mm (South African Weather Service) (Figure 

2.1). The area is scattered with quartzite sandstone boulders that provide the ideal habitat 

for C. cataphractus, yet; population density is low, with a maximum-recorded group-size of 

six (Retief 2000).  

2.3.2 Laboratory experiment 

2.3.2.1 Experimental design 

Seven C. cataphractus individuals were captured at each of the two localities and 

transported to the laboratory within two days. All individuals were released at the exact point 

of capture after the experiment had ended. The aim was to use the same lizards during both 

seasons. One individual from Elands Bay and two from the Matjiesriver study areas could 

however not be retrieved during the second trial and substitutes had to be used in the 

following season. The animals were housed in wooden terrariums placed in a controlled 

environmental chamber (20 oC ± 1.5 oC) under natural daylight regimes (12:12 L:D in 

autumn and spring) typical for autumn and spring. Because these lizards naturally occur in 

social groups (Mouton et al. 1999) and are known to preferentially aggregate even though an 

excess of favourable retreat sites are available (Visagie et al. 2005), a minimum of two and a 

maximum of four individuals captured from the same group were allocated per terrarium to 

reduce stress. The terrariums were constructed, as to mimic natural conditions, each 

containing a single crevice, and a base consisting of small rocks (diameter: ~1 mm – 3 mm) 

and sandstone slates. Terrarium sizes matched the natural movement patterns of C. 

cataphractus (0.9 m x 0.45 m x 0.3 m [length, width, height] for housing groups of two and 

0.9 m x 0.9 m x 0.3 m for housing groups of more than two individuals) (Effenberger and 

Mouton 2007).  

The smaller terrariums were fitted with one and the larger terrariums with two 250 W 

infrared bulbs positioned 0.5 m from the ground at the end opposite the crevice, generating a 
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photo-thermal gradient with operative environmental temperatures (Te) ranging from 55 oC to 

22 oC. The IR bulbs were activated for 12 hours each day (7h00 – 19h00). Lizards remained 

in the terrariums for the full duration of the 14 day experimental trial. Food (Tenebrio molitor 

larvae) and water were supplied approximately every 48 h, after 18h00, thus minimizing 

human contact to the animals.  

2.3.2.2 Modified iButton temperature loggers 

Robert and Thompson (2003) described a technique to modify iButton temperature loggers 

(iButton; Maxim, USA). By removing the electronic contents from its stainless steel casing 

and then coating it with Plasti Dip (Performix, USA), both the size and weight is reduced. 

These loggers can be attached to the skin surface of small vertebrates and (because of the 

animal’s low heat capacity) provide a realistic estimate of internal body temperature (Robert 

and Thompson 2003). 

By rearranging the electronics, the technique described by Robert and Thompson 

(2003) was further modified, resulting in an even thinner logger (Figure 2.2). The thickness 

was reduced by 37 % (from 6 mm to 3.8 mm), whereas mass was reduced by 46 % 

(modified iButton: 1.75 g), which were at most 5.8 % of the current study subjects’ body 

mass. The use of modified iButtons, instead of the conventional trailing (cloacal) 

thermocouples or “grab and jab” (quick reading thermometer) techniques, promote natural 

behaviour because it does not hamper movement and eliminates direct human contact 

during trials. The loggers were attached to the dorsal body surface of each lizard with super 

glue gel (Henkel, RSA), and remained attached for the full duration of the study.  
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Figure 2.2. An adult male C. cataphractus from the Matjiesriver inland population fitted with a 

modified iButton temperature logger. 

 

Three iButton-carrying lizards from each population were fitted with cloacal 

temperature probes (K-type thermocouple, inserted ~10 mm deep) in order to assess how 

closely modified-iButton (surface) temperatures reflect internal body temperatures. The 

animals were secured on isolative cardboard sheets, placed beneath two 500 W halogen 

spotlights which were collectively positioned at a series of corresponding heights. 

Equilibrium temperatures recorded at the exact same time for each light intensity could thus 

be compared. The degree of correlation was assessed through a standard linear regression 

(r = 0.97, R2 = 0.93; iButton = 1.04 Tb − 0.92; Figure 2.3). Theoretically, a slope of one and 

an intercept of zero indicate a perfect correlation.  

The regression function was subsequently employed to adjust all Tbs recorded 

throughout the study, thus correcting for the difference between iButton and internal body 

temperature. 



29 
 

 

 

Figure 2.3. A linear regression indicating the correlation between internal body temperatures 

(Tb-cloacal) and body surface temperatures measured with modified Thermochron iButton 

data loggers. Individual readings represent equilibrium temperatures recorded beneath a 

250 W IR bulb positioned at varying heights (N = three lizards). 

 

2.3.2.3 Preferred temperature range (Tp) estimation 

The body temperatures of each lizard were recorded at 10 minute intervals for 14 days, 

starting the day after capture (i.e. field-fresh). Lizards naturally thermoregulate between an 

upper and lower temperature threshold (Barber and Crawford 1977). The body temperatures 

from every instance of active thermoregulation where an upper and lower threshold is 

evident (therefore not achieved through conformity) were identified graphically, extracted 

and used for the analysis (Figure 2.4). The preferred temperature range (Tp) for each 

individual was determined as the central 80 % of selected Tbs (i.e. 10 and 90 percentiles) 

(Bauwens et al. 1995; Gvozdik 2002; Diaz et al. 2006) for each experimental day.  The 

central 50 % was also determined in order to provide results comparable to other studies 

(Hertz et al. 1993; Clusella-Trullas et al. 2007). The upper and lower limits of both the central 
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80 % and 50 % of selected temperatures were calculated for each individual for each day. 

The deviation between these upper and lower limits was regarded as the breadth of Tp, and 

“breadth”-values were therefore calculated for each individual during each day. 

 
Figure 2.4. Illustrating the technique currently applied to calculate the preferred temperature 

range (Tp) of C. cataphractus. Periods of active thermoregulation were graphically identified, 

extracted and pooled per individual per day. The central 80% of these selected body 

temperatures (Bauwens et al. 1995) were then calculated for each individual per 

experimental day. The means of the aforementioned central 80 % selected Tbs were 

considered as the preferred temperature range (Tp).  

 

2.3.2.4 Lizard Activity 

The activity frequencies of lizards were quantified on the basis of the Tbs experienced on 

each experimental day. In particular, since crevices were positioned in the cool end of each 

photo-thermal gradient, lizards had to emerge and move towards the opposite end in order 

to increase Tb. Body temperatures exceeding 25 oC therefore indicate emergence from 

crevices, movement towards and exploitation the heat-source (since crevice temperature 

typically equalled 22oC). The activity frequencies were determined for each lizard across the 

respective experimental days. 

2.3.3 Statistical analysis 

Normality of data was assessed through Shapiro-Wilk’s W-test. Because of the nature of the 

data (being both repeated measures across days and unbalanced due to missing values) 
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generalized linear mixed model analyses (PROC MIXED (when residuals were normally 

distributed) and PROC GLIMMIX (when residuals were not normally distributed), SAS 9.1, 

SAS Institute Inc., USA) were used with experimental day, season, site and gender as 

classification variables and experimental day as the repeated measure. Because individuals 

were randomly chosen from the natural population, subject represents a random factor 

which cannot form part of the (repeated measures ANOVA) model statement, but was 

however included as the subject effect in the repeated statement. The compound symmetry 

(CS) covariance structure was used, based on the Akaike Information Criterion (Littell et al. 

1996). Subjects were assumed independent among seasons since certain individuals used 

in autumn could not be retrieved in the field during spring.  

The means of preferred temperatures (i.e. the extracted Tbs when lizards were actively 

thermoregulating (see Figure 2.4)) were recorded for each lizard per experimental day. A 

generalized linear mixed model (PROC MIXED, SAS inc.) with experimental day, season, 

site and gender as classification variables and experimental day as the repeated measure 

was subsequently performed on these (daily) mean preferred  temperatures. When preferred 

temperatures (Tp) were considered across sites and across seasons, values for 

experimental day one was significantly higher than days three, four, five, seven, eight, nine 

and 12 (Tukey-Kramer adjusted P: 3, P = 0.02; 4, P = 0.01; 5, P = 0.01; 7, P < 0.01; 8, P < 

0.01; 9, P < 0.01; 12, P = 0.02). Day one was subsequently removed from all analyses and 

acted as an acclimation period. The high Tps on day one were most likely due to amplified 

activity caused by the stress of handling, transport and introduction to the new unfamiliar 

laboratory environment. 

The upper and lower limits of Tp (i.e. the 10, 90, 25 and 75 percentiles of the extracted 

Tbs (see Figure 2.4)) were calculated for each individual per experimental day. Moreover, 

the breadths of Tp (deviation between the upper and lower limit of the central 80 % and 50 % 

of preferred body temperatures (Figure 2.4)) were calculated for each lizard per 

experimental day. Both the upper and lower limts of Tp as well as the breadths of Tp were 

subsequently analysed using a non-parametric generalized linear mixed model (PROC 
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GLIMMIX, SAS inc.) with experimental day, season, site and gender as classification 

variables and experimental day as the repeated measure. Temporal autocorrelation of data 

was assessed with Time Series Analysis (STATISTICA 8, Statsoft Inc., USA). Typically, 

body temperatures taken 30 minutes apart were independent of each other. 

The among-day repeatability (r) of Tp was calculated as the intra-class correlation 

coefficient (Sokal and Rohlf 1981; Clusella-Trullas et al. 2007), applying variance 

components derived from one-way ANOVAs, as prescribed by Lessells and Boag (1987). 

Repeatability was calculated from daily mean preferred temperatures selected in photo-

thermal gradients by lizards from the coastal and inland population during autumn and spring 

respectively. The 95 % confidence limits of r were calculated according to Krebs (1999). 

Body mass had no significant effect on Tp and was subsequently ignored during all further 

analyses (P > 0.45). Lizard activity frequencies (section 2.4.3) were compared among 

populations and across seasons with two by two tables applying the Chi-square test. All data 

were analyzed using SAS Enterprize Guide 3 (SAS Institute Inc., USA) and STATISTICA 9 

(Statsoft Inc., USA). Means are reported ± standard deviation. Probability values (P) of less 

than 0.05 were accepted as significant. 
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2.4 Results 

2.4.1 Preferred temperature range (Tp)  

Mean preferred temperatures (Tp) did not vary significantly among the inland and coastal 

populations during autumn and spring (overall: F1,19 = 4.12; P = 0.06; autumn: P > 0.65; 

spring: P > 0.30, Tukey-Kramer), nor among seasons within each population (overall: F1,19 = 

0.1; P = 0.75; inland: P > 0.90; coastal: P > 0.90, Tukey-Kramer) (Tables 2.1 and 2.2; Figure 

2.4). 

 
 
Figure 2.5. Preferred body temperatures (Tp) selected by two populations of C. cataphractus 

(Grey: coastal; Clear: inland) in laboratory thermal gradients during autumn and spring 

(mean, mean upper and lower limits of the central 50 % and 80 % preferred temperatures 

(vertical rectangles), ± 2SD (whiskers)). Body temperatures were recorded across 13 

consecutive days (N = 2506 measurements).  
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Table 2.1. The preferred body temperatures (Tp, oC) of a coastal and inland population of 

Cordylus cataphractus estimated during autumn and spring. Body temperatures of 24 

subject units (N) were recorded in a laboratory thermal gradient (Te: 22 oC – 55 oC) at 10 

minute intervals for 13 days.   

a The lower and upper bounds of the central 80 % of observed Tbs (Bauwens et al. 1995). 
b The lower and upper bounds of the central 50 % of observed Tbs (Hertz et al. 1993). 
 

 

Gender had no significant effect on mean TP (Table 2.2); in fact, of the potential 

sources of variation on mean TP explored, only experimental day and the season-day 

interaction was found to be significant (Table 2.2). The Tps of the two populations were 

subsequently re-analyzed per season through repeated measures ANOVA with 

(experimental) day and gender as classification factors and day as repeated measure. Day 

was a significant source of variation in mean Tp during spring in both the coastal (F12,38 = 

2.06; P = 0.05) and inland (F12,30 = 2.88; P < 0.01) populations, but not during autumn. Least 

squares post hoc analyses for spring further indicated that mean Tp varied significantly 

between day 12 and days five (P < 0.01), seven (P = 0.03) and 14 (P = 0.05) in the coastal 

population, whereas day six varied significantly from days 10 (P = 0.03) and 12 (P < 0.01) in 

the inland population (Tukey-Kramer adjusted P’s). 

 

 

 

Population Season N Mean Percentiles SD Var SE 
25 a 75 a 10 b 90 b 

Coastal 
Autumn 5 29.5 27.3 31.6 26.3 33.0 2.6 6.9 0.19 

Spring 7 30.2 28.9 31.7 27.5 32.6 2.1 4.4 0.07 

Overall 12 30.1 28.7 31.7 27.3 33.0 2.2 4.9 0.06 

Inland 
Autumn 6 29.0 27.3 30.6 25.8 32.5 2.5 6.2 0.13 

Spring 6 29.8 28.4 31.2 26.6 32.6 2.2 4.6 0.07 

Overall 12 29.6 28.0 31.2 26.3 32.6 2.3 5.2 0.06 
Grand Mean 24 29.8 28.4 31.2 26.8 32.6 2.3 5.1 0.05 
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Table 2.2. Generalized linear mixed model analysis (PROC MIXED repeated measures) of 

the preferred body temperatures recorded for a coastal and inland population of C. 

cataphractus during autumn and spring. The analysis was performed on daily means for 

each individual across the 13 day experimental period (N = 209 daily means, N = 24 subject 

units, male-female ratio 11:13). 

Source of variation df F P 

Day 12,137 2.3 0.01* 
Season 1,19 0.1 0.75 
Population 1,19 4.12 0.06 
Gender 1,19 0.72 0.41 
Season*Day 12,137 2.02 0.03* 
Population*Day 12,137 1.09 0.37 
Season*Population 1,19 0.09 0.77 
Season*Population*Day 12,137 1.53 0.12 

 
 

Table 2.3. Generalized linear mixed model analyses (PROC GLIMMIX repeated measures) 

of the upper and lower limits of the central 80 % and 50 % of preferred temperatures 

selected by a coastal and inland population of C. cataphractus in laboratory thermal 

gradients during autumn and spring (N = 24 subject units, male-female ratio 11:13). The 

upper and lower limits of both the central 80 % and 50 % selected temperatures were 

calculated for each individual per experimental day. 

Source of variation 
Lower limit 

80 
Upper limit 

80 
Lower limit 

50 
Upper limit 

50 

df F P   F P   F P   F P 

Day 13,151 0.82 0.64 4.20 <0.01* 2.12 0.02* 3.93 <0.01* 
Season 1,9 3.45 0.08 0.05 0.82 2.87 0.11 0.03 0.87 
Population 1,9 2.92 0.10 4.38 0.05* 2.60 0.12 4.76 0.04* 
Gender 1,9 1.87 0.19 0.39 0.54 1.07 0.31 0.24 0.63 
Season*Population 1,9 3.01 0.10 0.29 0.60 2.71 0.12 0.78 0.39 
Season*Day 13,151 0.44 0.95 2.85 <0.01* 0.55 0.89 2.85 <0.01* 
Population*Day 13,151 1.11 0.35 1.27 0.24 1.39 0.17 2.20 0.01* 
Season*Population*Day 13,151 0.70 0.76   0.64 0.82   1.24 0.26   1.30 0.22 
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Experimental day had a significant effect on the upper limit of the central 80 % 

preferred body temperatures (Tp) (Bauwens et al. 1995), as well as the upper and lower 

limits of the central 50 % Tps (Hertz et al. 1993) (Table 2.3). The season-day interaction had 

a significant effect on the upper limits of both the central 80 % and 50 % Tps (Table 2.3). 

Furthermore, the population-day interaction had a significant effect on the upper limit of the 

central 50 % Tps (Table 2.3). The upper and lower limits of Tp in the two populations were 

subsequently re-analyzed per season through repeated measures ANOVA with day and 

gender as classification factors, and day as repeated measure. Experimental day was a 

significant source of variation in the lower limit of the central 50 % preferred body 

temperatures (F12,42 = 2.28; P = 0.02) and upper limits of the central 80 % (F12,42 = 1.96; P = 

0.05) and 50 % Tps (F12,42 = 2.35, P = 0.02) in the inland population during spring, but not in 

autumn neither in the coastal population during both seasons. Least squares post hoc 

analyses however indicate no significant among-day variation in the lower limit of the central 

50 % Tps, whereas the upper limit of the central 80 % selected Tps varied significantly only 

among days six and 12 (P = 0.05), and the upper limit of the central 50 % selected Tps 

varied significantly only among days two and 12 (P = 0.05) (Tukey-Kramer adjusted P’s). 

The upper limits of both the central 80 % and 50 % preferred body temperatures varied 

significantly among populations (Table 2.3). A least squares post hoc analysis however 

indicated no significant pair-wise differences in the 80 % and 50 % upper limits of Tp among 

populations during the respective seasons (P < 0.1, Tukey-Kramer). The breadths of the 

central 80 % and 50 % of preferred body temperatures did not vary significantly among 

populations or across seasons (Table 2.4). 
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Table 2.4. Generalized linear mixed model analyses (PROC GLIMMIX repeated measures) 

of the breadths of the respective central 80 % and 50 % of preferred body temperatures 

selected by a coastal and inland population of C. cataphractus in laboratory thermal 

gradients during autumn and spring (N = 24 subject units, male-female ratio 11:13). The 

breaths of Tp (i.e. the difference between the upper and lower limits of Tp (i.e. 10, 90 and 25, 

75 percentiles)) were calculated for each individual per experimental day. 

Source of variation 
Breadth 80 Breadth 50 

df F P   F P 

Day 12,137 1.10 0.36 1.47 0.14 
Season 1,19 1.18 0.29 4.00 0.06 
Population 1,19 2.12 0.16 2.73 0.11 
Gender 1,19 0.07 0.79 0.34 0.57 
Season*Population 1,19 2.07 0.17 1.88 0.19 
Season*Day 12,137 1.64 0.09 1.76 0.06 
Population*Day 12,137 0.50 0.91 0.74 0.71 
Season*Population*Day 12,137 0.41 0.96   1.66 0.08 

 

Table 2.5. Among-day repeatability (described by the intraclass correlation coefficient (r) 

(Lessells and Boag 1987)) of the mean preferred body temperatures (Tp) of a coastal and 

inland population of Cordylus cataphractus, estimated during autumn and spring. The 

analysis was performed on daily mean Tps calculated from the body temperatures recorded 

in a laboratory thermal gradient (Te: 22 oC – 55 oC) at 10 minute intervals for 13 days. The 95 

% lower and upper confidence intervals (LCL, UCL) were calculated as prescribed by Krebs 

(1999). The degrees of freedom, F and P-values describe the among-subject (lizard) 

variation present in Tp (one-way ANOVA). 

Population Season N 
ANOVA Repeatability 

(r) LCL UCL 
df F P 

Coastal 
Autumn 5 4,26 2.79 0.05* 0.24 0.07 0.44 
Spring 7 6,62 5.90 <0.01* 0.33 0.17 0.51 

Inland 
Autumn 6 5,43 7.35 <0.01* 0.44 0.26 0.62 
Spring 6 5,54 14.98 <0.01* 0.63 0.45 0.77 
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2.4.2 Repeatability  

There was significant variation in mean Tp among individuals at the coastal and inland 

populations during both summer and autumn (Table 2.5). The among-day repeatability (r) of 

mean Tp ranged from 0.24 to 0.63, being consistently lower at the coastal than inland 

population in autumn and spring (Table 2.5). Moreover, among-day r was lower in autumn 

than spring at both the coastal and inland populations (Table 2.5). 

2.4.3 Lizard activity  

The frequency of daily instances when lizards moved to the heated sections of photo-

thermal gradients was significantly lower during autumn than spring in lizards from both the 

coastal (Chi-square value (�2) = 13.04, P < 0.01) and inland populations (�2 = 3.68, P = 0.05) 

(Figure 2.5). Conversely, activity did not vary significantly among populations during both 

autumn (�2 = 3.29, P = 0.07) and spring (�2 = 0.03, P = 0.87) (Figure 2.6).  

 

 
Figure 2.6. The patterns of active exploitation of heat sources in laboratory thermal gradients 

(and therefore emergence from crevices) of members of a coastal and an inland C. 

cataphractus population during autumn and spring (grey-scale: exploitation of heat source; 

clear: no exploitation of heat source). 
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2.5 Discussion 

The preferred temperature range (Tp), defined as the predicted range of body temperatures 

within which an ectotherm functions optimally and therefore strives to attain, is recognized as 

an important component of quantitative indices of thermoregulation (for example the Tb-Tp 

and Tb-Te differentials in the field (Hertz et al. 1993)). Although Tp has been estimated in 

numerous lizard species (Huey 1982; Angilletta et al. 2002), seasonal and geographical 

variation in this biological parameter is less well documented (e.g. Christian and Bedford 

1995; Angilletta 2001; Diaz et al. 2006; Du 2006). 

The aim of the current study was to describe the preferred temperature range of C. 

cataphractus and to investigate temporal and spatial plasticity therein. The estimated Tps 

represent both, respectively and collectively, (as an overall mean for the species) the lowest 

recorded among cordylids to date (grand mean Tp: 29.8 oC ± 2.3 oC; mean Tp range: 26.8 oC 

to 32.6 oC (central 80 % selected Tbs, Bauwens et al. 1995)). The observed mean Tp 

corresponds closely to an earlier estimate provided by Truter (2007) for an inland C. 

cataphractus population (Lamberts Bay district, South Africa) during spring (i.e. 30.1 oC). 

The current mean Tp of both the coastal and inland C. cataphractus populations did not vary 

significantly among seasons, neither did mean Tp vary significantly among populations within 

each season.  

Although Tp is generally variable among reptile genera (Angilletta and Werner 1998), 

Tp tends to be conserved among related species (Licht et al. 1966; Huey 1982; Angilletta 

and Werner 1998; Kohlsdorf and Navas 2006). Thermal preference was found to be 

relatively variable within the Cordylidae family with a maximum among-species difference of 

4.4 oC (Table 2.6). The low Tp observed for C. cataphractus in comparison to other cordylids 

may be related to the group-living life strategy, supported by the fact that C. cataphractus is 

the only group-living cordylid for which Tp has been estimated.  
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Table 2.6. The mean preferred body temperatures (Tp) (± 1SD) reported for members of the 

Cordylidae family.  

Species Season        Tp Reference 

Cordylus cataphractus Autumn 29.2 ± 2.5 Current study 

 Spring 30.0 ± 2.1 Current study 

Pseudocordylus capensis Spring 30.4 ± 1.3 Janse van Rensburg 2009 

Pseudocordylus melanotus m. Summer 31.0 ± 0.1* McConnachie et al. 2009 

 Winter 30.1 ± 0.1* McConnachie et al. 2009 

Platysaurus intermedius w. Summer 31.5 ± 1.7 Lailvaux et al. 2003 

Cordylus cordylus Summer 32.1 ± 0.7 Clusella-Trullas et al. 2007 

Cordylus vittifer Laboratory acclimated 32.1 ± 1.8 Skinner 1991 

Cordylus niger Summer 32.6 ± 0.3 Clusella-Trullas et al. 2007 

Cordylus jonesi Laboratory acclimated 33.5 ± 0.3 Wheeler 1986 

Cordylus polyzonus Summer 33.6 ± 0.3 Clusella-Trullas et al. 2007 

Cordylus oelofseni Summer 33.6 ± 0.3 Clusella-Trullas et al. 2007 

* ± standard error    
 

The solitary-living Cordylus polyzonus share habitats with C. cataphractus (Visagie 

2001), and in certain cases even crevices (personal observation). Unlike C. cataphractus, C. 

polyzonus remains fully active during the dry season (Visagie 2001), and further maintains a 

seven times higher resting metabolic rate (Mouton et al. 2000b), and fat bodies three times 

smaller than C. cataphractus have been recorded (Flemming and Mouton 2002). The 

contrast between C. cataphractus and C. polyzonus in relation to seasonal activity, RMR and 

fat bodies is likely a function of their alternate life strategies (i.e. group-living versus solitary-

living) and the subsequent effects on energy budgets, supported by the fact that RMR and 

the fat bodies of C. polyzonus correspond relatively to that observed in other solitary-living 

cordylids (Mouton et al. 2000a; Mouton et al. 2000b; Visagie 2001; Flemming and Mouton 

2002; Hayward 2008). The fact that Tp was 3.8oC lower in C. cataphractus than reported for 

C. polyzonus (Clusella-Trullas et al. 2009) suggests that Tp is also related to the life strategy 

employed (i.e. grouping versus solitary). However, since no detailed field thermoregulation 

study has been conducted on C. polyzonus, further study, employing quantitative indices 

such as the Hertz et al. (1993) approach is needed. Similarly, the Tps and thermal ecology of 

other permanently aggregating cordylids (i.e. Cordylus macropholis, Cordylus peersi, 
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Platysaurus broadleyi (Mouton 2011)) are unknown and such data may aid interpreting the 

relatively low Tp observed in C. cataphractus.  

Experimental day (describing among-day variance) was a significant source of 

variation in the mean Tp, lower limit of the central 50 % preferred body temperatures, as well 

as the upper limits of the central 80 % and 50 % Tps, indicating significant variation in the Tbs 

selected in photo-thermal gradients across the 13 day experimental period. When the 

populations were analysed separately per season, experimental day had a significant effect 

on mean Tp in both populations, but only during spring, as well as on the lower limit of the 

central 50 % Tps and upper limits of the central 80 % and 50 % Tps, yet only in the inland 

population and only during spring. 

The methodology applied (i.e. laboratory thermal gradient) and acclimation represent 

two possible sources of variable Tps across days (Clusella-Trullas et al. 2007). The fact that 

experimental day only had a significant effect on mean Tp during spring, furthermore being 

localized to day six in the coastal and day 12 at the inland population, suggests that the 

experimental setup or acclimation was not the source of among-day variation in Tp since 

exposure conditions were kept constant among trials. 

Other factors such as seasonal behaviour patterns may have affected the Tb selection 

across days (Huey 1982). At least two lizards captured from the same social group were 

housed together per thermal gradient. The spring trials occurred during peak mating season 

(Flemming and Mouton 2002), and mating and courtship or other social behaviour may 

therefore have altered thermoregulatory activity, resulting in the significant variation in Tp 

across days. Further investigation (e.g. behavioural observations) is however needed to 

assess social behaviour as source of variance in Tp. 

Reptiles are known to express irregular activity patterns, and remain inactive for a day 

or longer, even though food is available and climatic conditions are favourable (Nagy 1973; 

Bradshaw et al. 1980; Huey 1982; Brown and Shine 2002; Kerr et al. 2008). The observed 

among-day variation may therefore simply be the result of natural behavioural plasticity (Kerr 

et al. 2008).  
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The majority of researchers base Tp estimates on one- (Patterson and Davies 1978; 

Lailvaux et al. 2003) or two-day laboratory trials (Angilletta et al. 1999; Gvozdik and Castilla 

2001; Catenazzi et al. 2005; Yang et al. 2008; McConnachie et al. 2009). However, the 

significant effect of experimental day on Tp as currently observed suggests that Tp estimates 

based on longer laboratory trials will provide more realistic estimates of thermal preference. 

Repeatability describes the inter-individual variance in proportion to intra-individual 

variance in a particular characteristic such as thermal preference (Lessells and Boag 1987; 

Boake 1989). The among-day repeatability (r) of mean Tp observed for C. cataphractus was 

variable among populations and across seasons ranging from 0.24 to 0.63. The variable 

among-day r indicates that the extent of inter-individual variance across days was 

inconsistent among populations and across seasons (Lessells and Boag 1987). The among-

day r’s reported for the coastal population during autumn and spring, as well as the inland 

population in autumn was low and corresponds relatively to among-day r-values reported by 

Clusella-Trullas et al. (2007) for four other cordylids, whereas the among-day r reported for 

C. cataphractus in the present study for the inland population during spring is the highest 

reported among cordylids to date. The lower among-day repeatability in Tp observed in both 

populations during autumn indicates that the variance originating from inter-individual 

differences was low in proportion to the variance originating from intra-individual differences 

(Lessells and Boag 1987). Cordylus cataphractus is known to exhibit repressed activity 

during autumn (Visagie 2001), which may have contributed to the low among-day 

repeatability observed at the time. 

Repeatability is often used in the literature as a yardstick to describe genetic variation 

in a specific trait (e.g. Tp), under the assumption that differential expression (among 

individuals) represents real genetic variation (Boake 1989; Clusella-Trullas et al. 2007; 

English et al. 2010). Clusella-Trullas et al. (2007) calculated among-day repeatability (r) of Tp 

in four cordylids under three acclimation states (i.e. field-fresh, nine day acclimated and 12 

day acclimated) and reported variable r’s within species (varying by up to 0.48), but with no 

definite trend in relation to acclimation state (e.g. field fresh higher). The only other report of 



43 
 

repeatability in lizard Tp is given by Le Galliard et al. (2003) who reported a r of 0.66 for 

Lacerta vivipara on measurements taken across two days. The fact that the among-day 

repeatability was generally low and variable in both the current study and Clusella-Trullas et 

al. (2007) suggests that among-day repeatability does not implicitly reflect genetic variation 

in Tp.  

The legitimacy of the methodology for Tp determination (i.e. thermal gradients) has 

been questioned, primarily due to the assumption that ecological and physiological costs are 

absent in laboratory enclosures (Christian and Weavers 1996; Currin and Alexander 1999). 

The protocol for Tp determination followed in the current study was specifically designed to 

mimic natural conditions, minimize human contact and facilitate natural (behavioural) 

thermoregulation. If the methodology for determining Tp was effective in translating the 

physiological target of thermoregulation, one would have expected at least a degree of 

consistency (invariable) in among-day repeatability of Tp among populations and across 

seasons, which was not the case in the current study. The direct estimation of neurological 

set-points has been suggested as an alternative to Tp estimated in laboratory thermal 

gradients (Currin and Alexander 1999). A comparison between the r’s of laboratory 

estimated Tps and neurological upper and lower set-point temperatures, and the seasonal 

and geographical variation thereof may provide further information on the reliability and 

applicability (in ecological studies) of these respective parameters. 

Wills and Buepre (2000) employed a randomization approach to determine whether 

timber rattlesnakes thermoregulate actively in nature. The randomization technique does not 

rely on a preferred temperature range (Tp), but instead compares the potential (randomized) 

distributions of Te and Tb (10 000 iterations). Such an approach in light of the low 

repeatability observed in Tp may be a useful alternative to the use of Tp to assess 

thermoregulation in reptiles (Wills and Buepre 2000). The exact P-values (displaying 

significance) determined in the randomization approach is however directly dependent on 

sample sizes and the number of randomization trials and is therefore not of use in seasonal 

or population-wide assessments of thermoregulation, but simply provides an indication 
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whether animals are likely thermoregulating actively and/or whether they are impaired by 

thermal constraints (Wills and Buepre 2000). 

Even though reptile populations (of the same species) may inhabit diverse thermal 

habitats (e.g. altitudinal gradients), reports of population-level variation in reptile thermal 

preference are limited in the litterature (Du 2006). In contrast, conservatism in Tp  among 

populations have been observed by various researchers (e.g. Van Damme et al. 1989; 

Brown 1996; Gvozdik and Castilla 2001; Gvozdik 2002). The lack of significant variation in 

Tp (i.e. mean, upper and lower limits of the central 80 % and 50 % preferred body 

temperatures) among the coastal and inland C. cataphractus populations during autumn and 

spring therefore corresponds to the general trend of Tp conservatism in reptiles (Van Damme 

et al. 1989; Brown 1996; Gvozdik and Castilla 2001; Gvozdik 2002). 

Unlike geographical variation, seasonal variation in Tp is a common phenomenon in 

reptiles (Patterson and Davies 1978; Van Damme et al. 1986; Firth and Belan 1998; Diaz et 

al. 2006; McConnachie et al. 2009), being accomplished through thermal acclimatization (i.e. 

reversible phenotypic plasticity) (Seebacher 2005). Seasonal shifts in Tp generally occur in 

the direction of the prevalent operative environmental temperatures (Te) (Van Damme et al. 

1986; Diaz and Cabezas-Diaz 2004; McConnachie et al. 2009), hence reducing costs 

associated with thermoregulation (Huey and Slatkin 1976). In fact, reports of conservative 

(invariable) Tps across seasons in response to definite (seasonal) variation in the available 

environmental temperatures (i.e. Te) are rare in reptiles (Van Damme et al. 1987; Schauble 

and Grigg 1998; Sepúlveda et al. 2008). 

In the current study, thermal preference was estimated during the respective annual 

peaks in food abundance and scarcity, partly to test whether the annual energy crisis 

(associated with group-living behaviour) (Mouton et al. 2000a; Hayward 2008) influences Tp. 

Certain reptiles can employ acclimatization to lower Tp during periods of food scarcity, hence 

lowering metabolic energy expenditure and water flux (Christian and Bedford 1995; Christian 

and Bedford 1996; Haynie 2001). For instance, Christian and Bedford (1995) reported a 

significant seasonal decrease in Tp from the cooler-wet to warmer-dry season in 
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Chlamydosaurus kingii. Christian and Bedford (1995) suggested the altered Tp as an active 

mechanism to lower metabolic expenditure and water flux, which is supported by the fact 

that C. kingii maintains dramatically decreased field metabolic rates during the dry season 

(Christian and Green 1994). Since C. cataphractus is known to suffer severe (food) resource 

limitation during autumn (Mouton et al. 2000a; Flemming and Mouton 2002) the prevalence 

of altered Tp (such as described for C. kingii) through acclimatization is expected (Wilson 

and Franklin 2002; Seebacher 2005). Cordylus cataphractus however exhibits a degree of 

thermally independent metabolism and highly repressed resting metabolic rate (RMR) (0.05 

ml O2 ml.g-1.h-1 at 30oC), 68 % lower than that observed in any other cordylid to date 

(Mouton et al. 2000b). The exceptionally low RMR suggests that lowered Tp will not 

necessarily benefit the species in relation to metabolic expenditure. Surprisingly the RMR 

reported by Mouton et al. (2000b) was determined during October (within peak activity 

season) when C. cataphractus’s metabolic requirements are high, since fat bodies are 

predominantly deposited at that time the of year (Flemming and Mouton 2002). Nonetheless, 

although Tp did not vary significantly among seasons in C. cataphractus, the variation 

followed a consistent pattern, on average being 0.4 oC and 0.6 oC lower during the warmer 

dry autumn at the coastal and inland populations respectively (see Figure 2.5). Dismissing 

the possibility that a low Tp may function as countermeasure to food scarcity (because of the 

absence of significant seasonal variation) is therefore premature.  

The modified iButton temperature loggers proved to be a worthy substitute for the 

conventional grab-and-jab or trailing thermocouple approaches to Tb measurement in 

laboratory trials for the following reasons: Tb-iButton correspond relatively closely to internal 

body temperatures (Shine et al. 2003; Figure 2.3); modified iButtons are relatively cost 

effective and easy to construct (Robert and Thompson 2003; Lovegrove 2009); human 

contact to animals can be kept at a minimum; and Tbs can be recorded continuously for 

prolonged periods.  

Each body temperature measurement taken in the current study was validated 

through a correlation function (of iButton temperature versus internal body temperature) 
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obtained by expressing three iButton-carrying individuals to a range of equilibrium 

temperatures (Figure 2.3). A more accurate approach would however have been to calibrate 

iButtons independently (i.e. generate a correlation function) for each lizard used in the study, 

since relationship between internal and iButton Tb is expected to vary slightly among 

individuals. 

The projected activity frequency was based on Tbs recorded during the 13 day 

exposure period, and in reality describes active exploitation of a thermal heat source (i.e. 

behavioural thermoregulation), rather than implicit activity. The frequency of instances (i.e. 

days) when lizards did not exploit the provided heat-source was significantly higher during 

autumn than spring in both populations (Figure 2.6). 

As mentioned earlier, autumn is the proposed period of repressed activity in C. 

cataphractus, when lizards predominantly remain within crevices and occasionally move up 

to 0.10 m from crevices (Visagie 2001). The lowered activity of C. cataphractus has been 

ascribed to energetic constraints amplified by their group-living life strategy (Visagie 2001; 

Hayward 2008). The question whether individuals are dormant (i.e. aestivating) or fully active 

whilst in retreat has however not been empirically tested. The current results suggest that 

lizards are indeed active and will emerge from crevices for thermoregulatory purposes, 

although not necessarily at a daily frequency and that activity is lowered, yet not absent. 

Moreover, the current results suggest that lizard may actively regulate body temperatures 

inside crevices during autumn when C. cataphractus known to rarely emerge (Visagie 2001). 
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2.6 Conclusion 

The current results indicate that C. cataphractus exhibits a low preferred temperature range 

(26.8 oC to 32.6 oC; overall mean Tp of 29.8 oC) the lowest reported among cordylids to date. 

The low Tp may be associated with the group-living life strategy of C. cataphractus (and 

more specifically the associated amplified food constraints); a prediction supported by the 

fact that the mean Tp was 3.2 oC lower than that of the solitary-living C. polyzonus which in 

many cases share habitats with C. cataphractus. An exploration of thermal preference in 

other permanently aggregating cordylid species may aid in identifying the source of the low 

Tp observed in C. cataphractus. The laboratory trials were performed across 13 days, and 

experimental day was a significant source of variance in mean Tp, the upper limits of the 

central 50 % and 80 % Tps as well as the lower limit of the central 50 % Tps. Although the 

exact cause of the observed variation in Tp across days remains unclear, social interactions 

or natural behavioural plasticity represent likely sources of Tp variability across days. The 

among-day repeatability of Tp was variable among populations and across seasons 

suggesting that the methodology for determining Tp does not implicitly describe the 

physiological target Tb range. Thermal preference was conservative at both seasonal and 

geographical scale, yet being slightly lower during the warmer dry autumn period. Seasonal 

acclimatization may function to increase energy efficiency by either decreasing 

thermoregulatory costs (i.e. shifting Tp towards the prevalent Te), or by lowering Tp 

irrespective of environmental temperatures in order to lower metabolic expenditure and 

water flux (Christian and Bedford 1995). Although Tp did not vary significantly at seasonal 

scale, the lower Tp during the dry autumn suggest that acclimatization targeted at resource 

(food and water) preservation may be at play. Finally, the current results indicate that C. 

cataphractus performs active behavioural thermoregulation (in the laboratory) during autumn 

when the field activity of the species is known to be repressed. The proportion of days when 

lizards emerged from crevices and exploited the thermal opportunities provided was 

however significantly lower during autumn than spring in both populations. 
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Chapter 3 

Seasonal variation in the thermal habitat and 
consequent thermoregulatory patterns of the 

group-living lizard, Cordylus cataphractus 
 

3.1 Abstract 

Because of ectothermy, thermal ecology is essential to consider when interpreting the 

physiology, behaviour and life strategies of reptiles. Cordylus cataphractus is an 

uncharacteristic member of the family Cordylidae due to a permanent group-living life 

strategy, exceptionally low resting metabolic rate, enlarged fat bodies, lowered seasonal 

surface activity and heavy dermal armature. Although C. cataphractus is generally well 

studied, little is known regarding the field thermal ecology of the species. The repressed 

surface activity reported for C. cataphractus occurs during summer, autumn and winter. 

While food constraints associated with their group-living life strategy in a semi-arid context 

has been implicated as the determining factor for lowered activity, the affect of seasonal 

trends in the thermal habitat on activity has not been investigated. The quality of the thermal 

habitat and thermoregulatory strategy/patterns of C. cataphractus was explored in a coastal 

population during summer, autumn, winter and spring. The study was conducted in relation 

to four main indices namely: thermal habitat quality; accuracy of thermoregulation; 

effectiveness of thermoregulation and thermal exploitation. These indices were derived from 

environmental operative temperatures (Te) (measured with copper lizard models) and field 

body temperatures (Tb) (measured with modified Thermochron iButton temperature loggers), 

in combination with the preferred temperature range (Tp) known for C. cataphractus. 

Thermal habitat quality varied seasonally being most favourable during autumn followed by 

summer, spring and winter respectively. At micro-spatial scale, operative environmental 

temperatures (Te) and the subsequent thermal habitat quality varied significantly around 

rocks among aspects (NESW) during all four seasons. This variation provides an incentive 
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for intra-group male-male competition since C. cataphractus males are highly territorial. 

Similar to other cordylids studied to date, Cordylus cataphractus performed active 

(behavioural) thermoregulation and the extent thereof varied seasonally as a function of 

thermal habitat quality. The seasonal surface activity patterns reported for C. cataphractus 

correspond to the general micro-spatial distribution of thermally favourable microsites during 

autumn and spring. Although the lowered surface activity observed in C. cataphractus may 

therefore be linked to temperature, temperature in combination with food availability and 

other factors such as predation risk and feeding behaviour seems a more likely explanation. 

The current mean Tbs for summer, when compared to the micro spatial distribution of Te, 

suggest that individuals emerged from crevices at the time, unlike earlier reports present in 

the litterature for the species. Three exceptionally warm days were observed during the 

summer field trial with Tes of up to 63.6 oC and lizard body temperatures of up to 40.2 oC (7.6 

oC higher than the upper bound of the preferred temperature range of C. cataphractus) were 

recorded. The Te distribution during hot summer days indicated that lizards potentially 

reached high body temperatures involuntarily whilst being within crevices. Overheating is 

therefore a real risk even within crevices, especially for groups occurring beneath small 

rocks.  

Key words: Lizard, Cordylus cataphractus, thermal ecology, seasonal variation, activity, 

thermal habitat. 
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3.2 Introduction  

In most reptiles, the majority of physiological processes occur at an optimal level within a 

narrow range of body temperatures (Peterson et al. 1993; Angilletta et al. 2002) known as 

the preferred temperature range (Tp) (Licht et al. 1966; Stevenson et al. 1985; Bauwens et 

al. 1996; Angilletta et al. 1999; Clusella-Trullas et al. 2007). Variable and unfavourable 

thermal habitats may affect Tb, resulting in compromised physiological functioning (Huey 

1982; Stevenson et al. 1985). Thermoregulation is an active process which, by means of 

behavioural and physiological modifications (Cowles and Bogert 1944; Bartholomew 1982; 

Huey 1982; Stevenson 1985; Bauwens et al. 1996; Diaz and Cabezas-Diaz 2004; 

Seebacher and Franklin 2005), counteracts variable/unfavourable environmental 

temperatures, hence allowing the maintenance of relatively constant Tb, approaching Tp 

(Huey 1982; Hertz et al. 1993). The exploration of thermal habitats and the subsequent 

thermoregulatory patterns are essential components in the study of reptilian biology, 

particularly because of the direct relationship between body temperatures and fitness 

(through physiological temperature dependency) (Huey 1982; Van Damme et al. 1991; 

Angilletta et al. 2002; Angilletta et al. 2002; Angilletta 2009). 

Operative environmental temperatures (Te) describe the potential (available) field body 

temperatures (Tb) in a habitat and can be measured with physical/inanimate copper models 

(with minimum resistance to heat flow) that correspond to a particular organism in relation to 

size, shape and coloration, therefore integrating the major biophysical pathways of heat 

transfer (Bakken and Gates 1975; Bakken 1992). In order to quantify the success and extent 

of thermoregulation performed, a null-model is needed (Hertz et al. 1993; Diaz 1997). 

Operative environmental temperatures (Te) represent such a model, describing Tb in the 

absence of thermoregulation (i.e. thermoconformation) (Bakken 1992; Hertz et al. 1993; Diaz 

and Cabezas-Diaz 2004; Row and Blouin-Demers 2006). The degree to which Te deviates 

from Tp provides a quantitative estimate of thermoregulatory requirements to reach Tp (i.e. 

thermal habitat quality, de) in a particular habitat (Hertz et al. 1993). The thermal habitat of 

an organism can therefore be mapped in relation to quality (i.e. departure of Te from Tp) by 
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placing Te-models throughout microclimates that are known to be utilized (Huey et al. 1989; 

Kearney 2002). 

The thermal characteristics of rocks (and subsequent Tes) vary naturally at micro-

spatial scale as a function of diel and seasonal solar cycles (Huey et al. 1989; Webb and 

Shine 1998; Kearney 2002). Temporal and spatial variation in Te may have pronounced 

effects on thermoregulatory requirements (within a particular time-frame) and the 

subsequent time and energy budgets of thermoregulating reptiles (Huey and Slatkin 1976; 

Blouin-Demers and Weatherhead 2002; Gvozdik 2002). In fact, Magnuson et al. (1979) 

described thermal habitat quality as a resource comparable to food and mates and therefore 

an entity to compete for, as has indeed been documented in certain reptiles (Huey 1982; 

Seebacher and Grigg 2001). 

Cordylus cataphractus is a member of the family Cordylidae, exhibiting various 

characteristics atypical for the family such as permanent group-living (Mouton et al. 1999), a 

highly repressed resting metabolic rate (RMR) (Mouton et al. 2000b), enlarged fat bodies, 

low reproductive output (i.e. one sibling per annum) (Flemming and Mouton 2002) and 

repressed annual activity (Visagie 2001). Although C. cataphractus is relatively well studied 

(e.g. Bauwens et al. 1999; Mouton et al. 1999; Mouton et al. 2000a; Mouton et al. 2000b; 

Flemming and Mouton 2002; Curtin et al. 2005; Visagie et al. 2005; Costandius et al. 2006; 

Effenberger and Mouton 2007; Shuttleworth et al. 2008), the field thermal ecology of this 

species has not been described, and field thermal ecology studies are limited for the 

Cordylidae family in general (Stebbins 1961; Bowker 1984; Bauwens et al. 1999; Lailvaux et 

al. 2003; Clusella-Trullas et al. 2009; McConnachie et al. 2009).   

The detailed surface activity patterns of C. cataphractus is known only for spring, and 

although individuals may at times visit termite ports meters away from rocks, the vast 

majority of time is spent in the close proximity of crevices (Effenberger and Mouton 2007). 

The general site specificity of C. cataphractus is likely the result of the combination of a sit-

and-wait foraging mode (Mouton et al. 2000a), heavy dermal armature and the reliance on 

crevices as primary defence mechanism (Losos et al. 2002). Males are highly territorial, and 
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typically occupy neighbouring territories of approximately ~0.79 m2 (Effenberger and Mouton 

2007). Micro-spatial variation in the thermal habitat may therefore have a substantial effect 

on activity patterns and selection/competition for basking sites reflecting on time and energy 

budgets of individuals (especially males) depending on where they are positioned around 

rocks and consequently constitute a potential incentive for intra-group competition for 

thermal habitat quality around rocks. 

Although resource availability (i.e. food and water) may be a driving force to be active 

(Pyke et al. 1977; Vitt and Caldwell 2009), in ectotherms, the quality of the thermal habitat 

may set the temporal (at diel and seasonal scale) and spatial limits for surface activity (Grant 

and Dunham 1988; Adolph and Porter 1993; Davis and DeNardo 2009). The direct influence 

of temperature on ectotherm activity is evident in the typical bimodal activity patterns 

exhibited by many reptiles during hot periods (avoiding risk of overheating or costs 

associated with thermoregulation) (Foa and Bertolucci 2001; Garcia-De la Pena et al. 2007). 

Variation in seasonal activity patterns in lizards are therefore with no surprise, generally 

associated with resource availability in combination with thermal regimes (Huey 1982; Davis 

and DeNardo 2009; Davis and DeNardo 2010), whereas other factors such as predation 

(McFarland 1976) and circadian rhythms (Winne and Keck 2004) may also have an effect on 

activity. Cordylus cataphractus is reported to remain within crevices (i.e. show reduced 

surface activity) for prolonged periods during the dry late summer and autumn as well as 

winter months, sometimes sitting with only their heads protruding or outside within 0.1 m 

from crevice edges (Visagie 2001). Cordylus cataphractus undergoes severe food limitation 

(stress) during the prolonged dry season (late summer to autumn), likely due to the 

combination of site specificity, a group-living life strategy and sit-and-wait foraging mode in a 

semi-arid habitat (Mouton et al. 2000a; Visagie 2001; Flemming and Mouton 2002; 

Effenberger and Mouton 2007; Hayward 2008). The lowered surface activity reported for C. 

cataphractus during the dry season (late summer to autumn) has been linked to the low food 

availability in combination with their group-living life strategy (Visagie 2001; Hayward 2008). 
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The contribution of seasonal trends in the thermal environment on seasonal surface 

movement patterns of C. cataphractus however remains unexplored. 

Reptiles may thermoregulate behaviourally within retreat sites by modifying body 

postures to either increase or decrease surface contact (Cowles and Bogert 1944; Huey 

1982), by selecting thermally favourable microsites, and/or through social huddling (during 

cold periods) when individuals press closely together to increase the total mass, therefore 

decreasing the surface to volume ratio and subsequent cooling rates (Lanham 2001; Shah et 

al. 2003). The fact that C. cataphractus individuals are often positioned on crevice edges or 

with only their heads protruding during the warm dry season (Visagie 2001; Hayward 2008) 

suggests that they are active and not in deep aestivation during unfavourable times. It 

however remains unknown whether C. cataphractus individuals actively regulate their body 

temperatures as opposed to conforming to temperatures in the crevice during the prolonged 

periods spent within the shade of crevices.  

The primary objective of the current study was to provide a detailed description of the 

thermal habitat of a C. cataphractus population during summer, autumn, winter and spring 

and relate these findings to patterns of thermoregulation as well as the seasonal activity 

patterns reported in the literature for the species.    

 

The specific questions addressed by the study were:  

1. How does the thermal habitat quality of C. cataphractus vary at micro-spatial scale 

(i.e. around rocks) as a function of the time of day and time of year (i.e. season)? 

2. Does variation in thermal habitat quality around rocks provide an incentive for intra 

group competition? 

3. Does C. cataphractus exhibit lowered diel and annual activity periods due to thermal 

constraints? 

4. Are the seasonal activity and movement patterns on rock surfaces as reported in the 

literature for C. cataphractus related to thermal factors? 
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3.3 Materials and Methods 

3.3.1 Study area and animals 

The study site is situated on a range of sandstone ridges adjacent to the Verlorenvlei 

Estuary near Elands Bay (32o19’38.61”S; 18o21’35.78”E) on the South African West Coast. 

The population of C. cataphractus sampled, consists of numerous social groups of between 

two and 25 individuals (Visagie 2001). The area is semi-arid (~200 mm per annum) being 

characterized by a prolonged dry season during the warm summer and autumn months, 

whereas winter and spring are cooler and less arid (rainy season) (Figure 3.1) (South African 

Weather Service; Mucina and Rutherford 2006). Aridity is reduced by dew and morning fog 

originating from the cold Benguela Atlantic Current (Mucina and Rutherford 2006; van 

Rensburg et al. 2009). Although fog occurs frequently during the warm dry months of March, 

April and May, it mostly dissipates by 9h00 (Olivier 2002). The vegetation type is Langebaan 

Dune Strandveld and hosts an array of perennial herbaceous flora that emerges during 

spring (Mucina and Rutherford 2006). These flower blooms sustain a high diversity of nectar 

and pollen feeding invertebrates (Struck 1994). 
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�

Figure 3.1. Monthly mean estimates of solar radiation, minimum ambient temperature and 

maximum ambient temperature (A van Niekerk, unpublished data) and mean precipitation for 

Elands Bay (rainfall: 1998-2008, SA Weather Services). Vertical arrows indicate the 

respective sampling periods (A: summer; B: autumn; C: winter; D: spring). The horizontal bar 

indicates the seasonal activity of C. cataphractus as described in the literature (Visagie 

2001; Effenberger and Mouton 2007) (slanted-line: repressed activity; grey: normal surface 

activity; clear: activity unknown). 

3.3.2 Operative environmental temperature (Te) and thermal habitat quality (de) 

3.3.2.1 Te-models 

Operative environmental temperatures (Te) were measured in the field with hollow copper 

models that matched lizards in size, shape and reflective properties (Bakken 1992). The 

models used in this experiment were the same ones used in the field trials of Chapter 4 of 

this thesis (coastal population). For the construction and calibration of models see Chapter 

4, sections 4.3.2.1 and 4.3.2.2. The autumn and winter models were painted according to 

skin reflectance measured at 300 nm – 750 nm (due to equipment limitation), whereas the 

spring and summer models were painted according to 250 nm – 2500 nm (see section 
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4.3.2.1). All models were calibrated using the appropriate regression equations described in 

section 4.3.2.2. 

3.3.2.2 Te-model placement  

The Te-models were positioned among the aspects of rocks (typically inhabited by C. 

cataphractus) which directly faced one of the four main wind directions (i.e. North, East, 

South and West). The rationale was to use aspects from different rocks which when 

combined, would express the thermal habitat of C. cataphractus around a single hypothetical 

rock. Each direction was represented by aspects from a minimum of three and a maximum 

of five different rocks. Models were positioned at varying distances from crevices, i.e. 0 m, 

0.1 m, 0.3 m, 0.5 m, 0.7 m and 0.9 m respectively in accordance with natural movement 

patterns described for C. cataphractus (Effenberger and Mouton 2007). At least three 

additional models were placed deep within rock crevices to measure Te-min. Crevices were 

thermally mapped in more detail during the summer field trial by placing 27 additional Te-

models beneath rocks. These models were positioned at variable distances from the crevice 

edge (50 mm to 0.6 m) beneath four rocks inhabited by C. cataphractus. The approximate 

rock thickness, crevice height, distance from rock edge and distance from crevice edge were 

noted for the position of each Te-model.  

Operative temperatures (Te) were recorded at 15 minute intervals for 14 days during 

the autumn (April), winter (July) and spring (September) of 2008 and the summer (January) 

of 2009. All abnormally windy or non-representative days were excluded leaving 11 days in 

summer, nine in autumn, 10 in winter and four in spring. Four abnormally hot days were 

observed in summer and two in winter, which were analysed separately. The data for several 

models were lost due to either iButton failure or Te-models that were damaged, moved, or 

carried off by wild and/or domestic animals. In this study data were eventually collected from 

44 Te-models in summer, 21 in autumn, 27 in winter and 28 in spring. 
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3.3.3 Field body temperatures (Tb) 

Seven adult lizards were fitted with Thermochron iButtons (Dallas Semiconductor, USA), 

modified according to the Robert and Thompson (2003)-protocol. The protocol was further 

customized, specifically, by rearranging the electronic components and placing the battery 

alongside the electronic unit; logger thickness was further reduced to 3.8 mm (see Chapter 

2, section 2.1.3). The loggers were waterproofed and attached to the dorsal body surface of 

the lizard using super glue gel (Henkel Pattex, DE). 

Lizard body temperatures were recorded during the corresponding period of logging as 

operative temperatures (Te) at 15 minute intervals for 14 days during the autumn (April), 

winter (July) and spring (September) of 2008 and the summer (January) of 2009. iButtons 

were left attached to lizards throughout the experimental trial where possible. The data from 

various lizards were however lost due to faulty iButtons, or lizards that could not be 

retrieved. Faulty iButtons were carefully removed and replaced, whereas unrecovered 

individuals were substituted during the following season. Ultimately data were obtained for 

six lizards in summer (M3:F3, male:female), seven in autumn (M2:F5) and three in both 

winter (M1:F2) and spring (M1:F2). All the recorded body temperatures were adjusted using 

the calibration function estimated in Chapter 2, section 2.3.2.2, thus adjusting Tb-

measurements taken on the skin surface to the predicted cloacal Tb.  

3.3.4 Lizard activity  

A one-day scan sampling (Altmann 1974) was performed during autumn to provide an 

anecdotal estimate of the surface activity of C. cataphractus at the time. Effenberger and 

Mouton (2007) performed a focal scan on C. cataphractus during spring which included 

reports of thermoregulatory activity. Although Visagie (2001) studied the behaviour of C. 

cataphractus during autumn, winter and spring and reported that lizards predominantly 

remained on the edge of or within crevices during autumn, she did not report on 

thermoregulatory (basking) activity. The current results should however be interpreted with 

caution because of the small sample size. 
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A single group containing 20 lizards was monitored with a telescope (Magnum 345, 

Bushell, SA) from a distance of approximately 30 metres. The observations took place from 

8h00 to 19h00 on a clear sunny day. Three 15 minute observations were performed during 

each hour of the day, during which the sun exposure, orientation relative to the sun, posture, 

distance from crevice and general behaviour was noted for every lizard visible. Most of the 

lizards remained deep within crevices and could therefore not be monitored. Some of the 

individuals that were visible performed thermoregulatory activity at certain stages (adjusting 

posture and orientating themselves relative to the sun), yet mostly on the edges of crevices 

or just within or outside them.  

3.3.5 Data analysis and statistics 

3.3.5.1 Calculation of thermoregulation indices  

(1) Thermal habitat quality (de) (Hertz et al. 1993) 

The degree to which Te deviates from Tp describes thermal suitability from the organism’s 

perspective and hence thermal quality. The thermal quality index (de) also reflects on the 

costs of thermoregulation, high absolute value of de representing a potential high cost in a 

low thermal quality environment (hot or cold). Thermal habitat quality (de) is calculated from 

the absolute deviation of Te from Tp (de = [Te – upper limit of Tp], if Te > Tp: de = [lower limit of 

Tp – Te], if Te = Tp, de = 0).  

(2) Accuracy of thermoregulation (db) (Hertz et al. 1993) 

Accuracy of thermoregulation expresses the degree to which Tbs attained in the field match 

the target preferred temperature (Tp) range. Thermoregulatory accuracy is calculated from 

the absolute deviation of Tb from Tp (db = [Tb – upper limit of Tp], if Tb > Tp: db = [lower limit of 

Tp – Tb], if Tb = Tp, db = 0). A high db-value therefore expresses low accuracy whereas db = 0 

represents a perfect match (Hertz et al. 1993). 
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(3) Effectiveness of thermoregulation (de – db) (Blouin-Demers and Weatherhead 

2001) 

When thermal quality is high (i.e. low de), lizards may accurately maintain Tb within Tp with 

little or no associated thermoregulatory costs (i.e. passive thermoconformation). It is 

therefore essential to consider accuracy (db) as a function of thermal quality (de) in order to 

establish the amount of- or effectiveness of active thermoregulation performed.  

 Hertz et al. (1993) described the index for effectiveness of thermoregulation (E), 

calculated as: E = 1 – (db/de). The E-index has however been criticized due to its ratio nature 

as well as the fact that it is undefined when de = 0 (Christian and Weavers 1996; Blouin-

Demers and Weatherhead 2001; Blouin-Demers and Weatherhead 2002). As an alternative, 

Blouin-Demers & Weatherhead (2001) described an index for the effectiveness of 

thermoregulation (de – db), simply calculated as the difference between de and db. In 

principle, both the de – db and E describe the same dimension of thermal ecology, i.e. the 

degree of departure from thermoconformity (Blouin-Demers and Weatherhead 2001; Blouin-

Demers and Weatherhead 2002). A de – db of zero indicates thermoconformation, and the 

extent of increase reflects the amount of active thermoregulation performed. 

(4) Thermal exploitation (Ex) 

The Ex metric describes the extent to which favourable thermal opportunities available to an 

animal are exploited by it (Ex = (time in which Tb = Tp / time in which Te = Tp) x 100%) 

(Christian and Weavers 1996).  

The preferred temperature range (Tp) of the population examined in the current study 

was estimated in a laboratory thermal gradient during the autumn and spring of 2008 

(Chapter 2). Although Tp was slightly lower in autumn, the difference was not significant. The 

current study employed the respective Tp ranges estimated for autumn and spring in the 

indices of the appropriate season, whereas the mean preferred temperature range (Tp) for C. 

cataphractus (Chapter 2) was employed for the summer and winter computations.   
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3.3.5.2 Statistical analysis 

Temporal autocorrelation of data was assessed with Time Series Analysis (STATISTICA 8, 

Statsoft Inc., USA). Typically, temperatures taken 30 minutes apart were independent of 

each other for both Te and Tb. Normality of data was assessed with the Shapiro-Wilk’s W-

test or Kolmogorov-Smirnov when datasets exceeded 2000 values. Transformations did not 

improve normality and was subsequently not used.  

Generalized linear mixed model analyses (PROC GLIMMIX, SAS 9.1, SAS Institute 

Inc., USA) with experimental day as repeated measure was used (since both Te and Tb data 

were repeated measures across days, unbalanced due to missing values and residuals were 

in many cases not normally distributed). The compound symmetry (CS) covariance structure 

was used (Littell et al. 1996). Analyses were performed on hourly means calculated from 

measurements taken at 15 minute intervals (7h00 – 19h00) leaving 12 hourly mean values 

per day per season for each experimental unit (i.e. model or lizard). Although some of the 

lizards were used during more than one season, these were in the minority and lizards were 

therefore assumed as independent among seasons. 

A non-parametric bootstrap ANOVA (x1000 iterations) (Efron 1993) (performed on 

hourly means calculated per season for each lizard unit) was applied for the thermal 

exploitation index (Ex) since the index was calculated across days and therefore lacks 

“experimental day” as repeated measure. 

Data were analyzed using SAS Enterprize Guide 3, SAS 9.1 (SAS Institute Inc., USA) 

and STATISTICA 8 (Statsoft Inc., USA). Means are reported ± one standard deviation (SD). 

Probability values (P) of less than 0.05 were accepted as significant, whereas P < 0.01 

indicates highly significant effects. 
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3.4 Results 

3.4.1 Operative environmental temperature (Te) and thermal habitat quality (de) 

3.4.1.1 Among-seasons comparison 

Both the hourly mean operative environmental temperatures (Te) and the resultant thermal 

habitat quality (de) were significantly affected by the time of day (i.e. hour) (Te: F11,1298 = 

1151.2, P < 0.01; de: F11,1298 = 379.56, P < 0.01), field-trial day (Te: F10,943 = 74.7, P < 0.01; 

de: F10,943 = 22.49, P < 0.01) and season (Te: F3,115 = 66.87, P < 0.01; de: F3,115 = 119.43, P < 

0.01). Moreover, the least square means post hoc analyses indicated that both Te and de 

(deviation of Te from Tp) (7h00 – 19h00) varied significantly (pair-wise) between the 

respective seasons (P < 0.01, Tukey-Kramer), with the exception of summer and autumn in 

which Te and de corresponded relatively to each other (Te: P = 0.06; de: P = 0.63, Tukey-

Kramer) (Figure 3.2; Appendix Table A1). Operative environmental temperatures were 

highest and most favourable (lowest de) during autumn, followed by summer, spring and 

winter (Figure 3.2). The hourly pattern of mean de correspond relatively among summer and 

autumn throughout the day, being lower than that of spring and markedly lower than the de 

of winter (Figure 3.2; Appendix Table A1). The mean de reached a minimum (indicating high 

thermal habitat quality) during summer and autumn from 17h00 to 19h00 (de < 2oC) (Figure 

3.2).  
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Figure 3.2. Seasonal comparison of hourly variation in the mean thermal habitat quality (de) 

of a coastal population of C. cataphractus. Thermal habitat quality is expressed as the 

degree of deviation of operative environmental temperatures (Te) from the preferred 

temperature range (Tp). A de of zero indicates perfect thermal habitat quality (i.e. Te = Tp) 

suggesting the potential of passive thermoconformation (Hertz et al. 1993). The hourly 

means ± 1SD of de is given in Appendix Table A2. 

�

3.4.1.2 Summer  

Typical summer days  

Mean operative environmental temperatures (Te) were favourable in summer, equalling the 

preferred temperature range (Tp) from 11h00 to 18h00 (overall mean Te = 28.3 oC ± 7.0 oC) 

(Figure 3.3). Mean crevice Tes were significantly lower and less favourable than mean Tes in 

the open (P < 0.01, Tukey-Kramer), and typically equalled Tp from 14h00 to 18h00 (Figure 
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3.3). The frequency distribution of Tes outside of crevices indicated a moderate overlap with 

Tp, in particular, 19.8 % of Tes equalled Tp, 52.1 % were higher and 28.1 % lower (7h00 – 

19h00) (Figure 3.4). Of the Tes measured within crevices, 30.2 % were within Tp, 66.8 % 

below, and only 3.0 % higher than Tp (7h00 – 19h00) (Figure 3.5). Thermal habitat quality 

was relatively favourable during typical summer days (overall mean de = 3.5 oC ± 3.7 oC) 

(Figure 3.2).  

 

Figure 3.3. Hourly means of operative environmental temperatures (Te), field body 

temperatures (Tb ± 1SD) and crevice Tes, and the absolute maximum observed Tes (Te-max) 

recorded for a coastal C. cataphractus population during 11 typical summer days. The 

horizontal rectangle depicts the preferred temperature range (Tp). Vertical dotted lines 

indicate sunrise and sunset (South African Astronomical Observatory). Standard deviations 

are indicated only for Tb for clarity purposes (of the figure). The hourly means ± 1SD of Te, 

Te-crevice and Tb are given in Appendix Tables A3, A4 and A5. 
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Figure 3.4. The frequency distributions of operative environmental temperatures (Te) 

recorded outside of crevices during summer, four abnormally warm summer days, autumn, 

spring, winter and two abnormally warm winter days (7h00 – 19h00) for a coastal population 

of C. cataphractus. Arrow heads indicate overall mean Te, whereas the vertical rectangles 

depict the preferred temperature range (Tp) of C. cataphractus (N = 18 models in summer, 

14 autumn; 21 winter and 21 spring).  
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Figure 3.5. The frequency distributions of operative environmental temperatures (Te) 

recorded on the edges of and within crevices during summer, four abnormally warm summer 

days, autumn, spring, winter and two abnormally warm winter days (7h00 – 19h00) for a 

coastal population of C. cataphractus. Arrow heads indicate overall mean Te, whereas the 

vertical rectangles depict the preferred temperature range (Tp) of C. cataphractus (N = 26 

models in summer, seven in autumn, six in winter and seven in spring).  
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Figure 3.6. Mean operative environmental temperatures (Te) as a function of distance from 

crevice edge, recorded seasonally in a coastal population of C. cataphractus during the 

respective morning (7h00 – 11h00), midday (11h00 – 15h00) and afternoon (15h00 – 19h00) 

time intervals. Data points represent mean Te values calculated from hourly means 

representing the respective diel segments. Vertical bars denote 95 % bootstrap confidence 

intervals (1000 iterations). Horizontal rectangles indicate the preferred temperature range 

(Tp) of C. cataphractus.  
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Mean operative environmental temperatures (Te) varied significantly as a function of 

distance from crevice in summer (F6,36 = 15.79, P < 0.01), as well as the time of day (i.e. 

hour) (F11,396 = 1059.17, P < 0.01; Figure 3.6). Mean Tes were lowest within crevices during 

the morning period (on average being lower than Tp), but were relatively invariable among 

distance classes outside of crevices, and only the models placed 0.9 m from crevices (in the 

open) typically exceeded Tp temperatures (Figure 3.6). During midday, mean Te increased 

as a function of distance from crevice, exceeding Tp at all but the “crevice” distance classes 

(i.e. 0 m, 0.1 m, 0.3 m, 0.5 m, 0.7 m, 0.9 m), whereas, during the afternoon, Tp was only 

available within crevices and up to 0.1 m in the open (see Figure 3.6). 

Mean operative environmental temperatures varied significantly among rock aspects 

facing the four wind directions (i.e. around rocks) (F3,17 = 3.97, P = 0.03; Figure 3.7), in 

particular being highest and least thermally favourable at the eastern aspects followed by 

west, south and north (see Figure 3.7). The only significant pair-wise difference in mean Te 

was between the eastern and northern rock aspects (P = 0.05, Tukey-Kramer). Although the 

mean thermal habitat quality (de) varied accordingly, being lowest (higher de) on the eastern 

aspects (Table 3.1), mean de of eastern aspects differed significantly only from the southern 

aspects (P < 0.01, Tukey-Kramer).  

The thermal habitat within crevices was explored in more detail during summer (27 Te -

models beneath rocks in crevices) than autumn, winter and spring, and mean operative 

environmental temperatures varied significantly as a function of distance from crevice edge 

(F13,9.51 = 22.96, P < 0.01), relative rock thickness (F9,14.3 = 228.44, P < 0.01) and crevice 

height (F8,15.65 = 35.96, P < 0.01) (PROC GLIMMIX using Satterthwaite denominator degrees 

of freedom). 
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Figure 3.7. Mean operative environmental temperatures (Te) observed among rock aspects 

representing the four major wind directions, during summer, autumn, winter and spring (7h00 

– 19h00) (N = 8 rocks, 14 aspects) in a coastal population of C. cataphractus. The internal 

rings depict the preferred temperature range (Tp) of C. cataphractus. Vertical bars denote 95 

% bootstrap confidence intervals (1000 iterations) calculated from Tes measured at 15 

minute intervals.  
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Table 3.1. Variation in the overall mean thermal habitat quality (de) of a coastal population of 

C. cataphractus among different rock aspects (facing the four major wind directions) (i.e. 

NESW) across seasons (7h00 – 19h00). A de value of zero indicates a perfect match of 

mean Te and the preferred temperature range (Tp) (and therefore good thermal habitat 

quality) (i.e. Te = Tp) (Hertz et al. 1993).  

Season 
de (oC) 

North East South West 

Summer 4.1 ± 3.6 5.9 ± 5.6 2.1 ± 2.9 4.2 ± 3.2 
Warm summer days 9.5 ± 7.4 11.8 ± 7.9 8.5 ± 5.5 9.2 ± 7.3 
Autumn 3.7 ± 3.9 5.2 ± 5.1 2.3 ± 3.1 3.6 ± 3.7 
Winter 9.8 ± 5.6 8.6 ± 5.7 12.0 ± 4.0 11.3 ± 4.4 
Warm winter days 6.5 ± 6.7 5.8 ± 6.0 8.9 ± 5.6 8.5 ± 6.3 
Spring 6.2 ± 5.4 4.8 ± 4.2 5.4 ± 5.4 8.6 ± 6.5 

 

Exceptionally warm summer days 

Four exceptionally hot days were observed during the summer field trial during which (unlike 

the typical summer days) the mean Te exceeded Tp for most of the day (10h00 – 20h00) 

(overall mean Te = 37.5 oC ± 7.8 oC) and the highest recorded Te was 63.6 oC. In fact, the Te-

data suggest that it was virtually impossible for lizards to maintain Tbs within Tp during both 

the midday and afternoon periods (Figures 3.6 and 3.8). Mean Te outside of crevices 

exceeded Tp from 9h00 to 19h00 and even mean crevice Tes exceeded Tp for the majority of 

the day (11h00 – 21h00) (Figure 3.8). The frequency distribution of Tes indicated a definite 

mismatch between Te and Tp, in particular, 8.8 % of the outside-crevice Tes were within the 

preferred range (Tp), 85.7 % higher and only 5.6 % lower than Tp (7h00 – 19h00) (Figure 

3.4). Of the Tes measured within crevices, 24.7 % were within Tp, 68.5 % higher and 6.9 % 

lower than Tp (7h00 – 19h00) (Figure 3.5). Following high Tes, thermal habitat quality (de) 

was poor during these warm days (overall mean de = 6.1 oC ± 6.5 oC), being significantly 

higher within crevices than in the open (de: crevice = 3.1 oC ± 3.0 oC, open = 10.5 oC ± 7.5 

oC) (F1, 7419 = 575.40, P < 0.001). 
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Figure 3.8. Hourly means of operative environmental temperatures (Te), field body 

temperatures (Tb ± 1SD) and crevice Tes, and the absolute maximum observed Tes (Te-max) 

recorded for a coastal C. cataphractus population during three abnormally hot summer days. 

The horizontal rectangle depicts the preferred temperature range (Tp) (an overlap with Te 

indicating good thermal quality, de = 0). Vertical dotted lines indicate sunrise and sunset 

(South African Astronomical Observatory). Standard deviations are indicated only for Tb for 

clarity purposes (of the figure). The hourly means ± 1SD of Te, Te-crevice and Tb are given in 

Appendix Tables A3, A4 and A5. 
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Figure 3.9. Hourly means of operative environmental temperatures (Te), field body 

temperatures (Tb ± 1SD) and crevice Tes, and the absolute maximum observed Tes (Te-max) 

recorded during autumn in a coastal population of C. cataphractus. The horizontal rectangle 

depicts the preferred temperature range (Tp) (an overlap with Te indicating good thermal 

quality, de = 0). Vertical dotted lines indicate sunrise and sunset (South African Astronomical 

Observatory). Standard deviations are indicated only for Tb for clarity purposes (of the 

figure). The hourly means ± 1SD of Te, Te-crevice and Tb are given in Appendix Tables A3, 

A4 and A5. 
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3.4.1.3 Autumn 

Mean operative environmental temperatures (Te) were favourable in autumn typically 

equalling Tp for five hours per day (10h00 – 12h00; 17h00 – 18h00) (overall mean Te = 29.5 

oC ± 7.5 oC) (Figure 3.9). Mean crevice Tes were significantly lower and more favourable 

than those in the open (P < 0.01, Tukey-Kramer), on average equalling Tp from 10h00 – 

19h00 (Figure 3.9). The frequency distribution of Tes outside of crevices indicated a good 

match with Tp with numerous Tes within (28.3 %), above (42.2 %) and below Tp (29.6 %) 

(7h00 – 19h00) (Figure 3.4). Of the Tes measured within and on the edges of crevices, 37.2 

% were within Tp, 53.6 % below, and 9.2 % higher than Tp (7h00 – 19h00) (Figure 3.5). Even 

though Tes were favourable in autumn, the index for thermal habitat quality (de) indicates 

only moderate suitability when collectively considering Te in crevices and in the open (overall 

mean de = 3.3 oC ± 3.8 oC) (Figure 3.2). When viewed as a function of the time of day, de 

remained ~4 oC for the majority of activity time and reached a peak low at 18h00 (de < 1 oC) 

(Figure 3.2).  

Mean Te varied significantly as a function of distance from crevice edge in autumn 

(F6,12 = 3.32, P = 0.04), and this “distance effect” was also significantly influenced by the time 

of day (F11,132 = 337.85, P < 0.01; Figure 3.6; Appendix Table A9). In particular, during the 

morning interval, mean Te was below Tp at all distance classes except 0.7 m, whereas, 

during midday, Tes within crevices and on crevice edges were typically within Tp while those 

outside of crevices generally exceeded Tp (see Figure 3.6). Conversely, during the 

afternoon, mean Te equalled Tp in all distance classes (Figure 3.6).  

Mean Te varied significantly among rock aspects representing the four major wind 

directions (F3,11 = 5.18, P = 0.02; Figure 3.7), in particular being significantly higher at the 

east-facing rock aspects than west (P = 0.02) and south (P = 0.03, Tukey-Kramer) 

respectively (Figure 3.7). As a result, the eastern aspects had the poorest thermal quality 

(de), yet only significantly so in relation to south (P = 0.01, Tukey-Kramer) (Table 3.1). The 

geographical variation in both Te and de was also a function of the hour of the day (F11,121 = 

63.51, P < 0.01; Figure 3.7; Appendix Table A10). 
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3.4.1.4 Winter 

Typical winter days 

Mean operative environmental temperatures (Te) were low in winter (overall mean Te = 16.3 

oC ± 5.4 oC) (Figure 3.10). The frequency distribution indicated an almost total mismatch 

between Te and Tp both outside of and within crevices (Figures 3.4 and 3.5). In particular, 

7.3 % of the Tes in the open equalled the preferred range (Tp), whereas 92.2 % were lower 

than- and only 0.4 % higher than Tp (7h00 – 19h00) (Figure 3.4). Of the Tes measured within 

crevices, 1.1 % was within Tp, 98.9 % below, and none higher (7h00 – 19h00) (Figure 3.5). 

Mean thermal habitat quality (de) was poor in winter (overall mean de = 10.6 oC ± 5.1 oC), 

being poorest at 7h00 and then increasing and peaking at 15h00 (Figure 3.2).          

Distance from crevice edge had no significant effect on mean Te during winter (F6,18 = 

1.87, P = 0.14; Appendix Table A9). Even when viewed as a function of the time of day, 

mean Te was relatively invariable among distance classes during the morning and afternoon 

periods (Figure 3.6). The Tes of models that were 0.3 m away from crevices were most 

favourable during midday, yet still on average markedly below the target temperature range 

(Tp) (Figure 3.6).  

Mean operative environmental temperatures varied significantly among rock aspects 

(F3,18 = 10.22, P < 0.01) being most favourable at the east facing aspects, which were 

significantly higher and thermally more favourable than those at the southern (Te and de: P < 

0.01) and western aspects (Te: P < 0.01; de: P = 0.01, Tukey-Kramer) (Figure 3.7; Table 3.1 

and Appendix Table A10). In addition, mean Te was significantly higher and more favourable 

at the northern than southern aspects (Te: P = 0.02; de: P = 0.01, Tukey-Kramer; Figure 3.7).  
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Figure 3.10. Hourly means of operative environmental temperatures (Te), field body 

temperatures (Tb ± 1SD) and crevice Tes, and the absolute maximum observed Tes (Te-max) 

recorded in a coastal population of C. cataphractus during nine typical winter days. The 

horizontal rectangle depicts the preferred temperature range (Tp) (an overlap with Te 

indicating good thermal quality, de = 0). Vertical dotted lines indicate sunrise and sunset 

(South African Astronomical Observatory). Standard deviations are indicated only for Tb for 

clarity purposes (of the figure). The hourly means ± 1SD of Te, Te-crevice and Tb are given in 

Appendix Tables A3, A4 and A5. 
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Figure 3.11. Hourly means of operative environmental temperatures (Te), field body 

temperatures (Tb ± 1SD) and crevice Tes, and the absolute maximum observed Tes (Te-max) 

recorded in a coastal population of C. cataphractus during two abnormally warm winter days. 

The horizontal rectangle depicts the preferred temperature range (Tp) (an overlap with Te 

indicating good thermal quality, de = 0). Vertical dotted lines indicate sunrise and sunset 

(South African Astronomical Observatory). Standard deviations are indicated only for Tb for 

clarity purposes (of the figure). The hourly means ± 1SD of Te, Te-crevice and Tb are given in 

Appendix Tables A3, A4 and A5. 
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Warm winter days 

Two warmer and thermally more favourable days were observed during the winter trial 

(overall mean Te = 20.0 oC ± 7.3 oC) (Figures 3.4 and 3.11). Mean operative environmental 

temperatures typically equalled Tp from 13h00 to 16h00 (Figure 3.11). Although mean 

crevice Te reached values exceeding 20 oC, it remained lower than Tp and lizards evidently 

would have had to emerge in order to attain Tb within Tp (Figures 3.6 and 3.11). The 

frequency distribution of the Tes observed in the open indicated only 2.0 % that exceeded Tp, 

whereas 20.7 % were within and 77.3 % below Tp (7h00 – 19h00) (Figure 3.4).  

3.4.1.5 Spring 

In spring, mean Tes typically equalled Tp from 12h00 to 16h00 (overall mean Te = 24.3 oC ± 

9.0 oC) (Figure 3.12). In contrast, mean crevice Tes remained lower than Tp throughout the 

day (Figure 3.12). The frequency distribution of Te indicated a moderate overlap of Tes 

recorded outside of crevices with Tp, with 30.3 % of Tes above, 53.9 % below and 15.8 % 

within Tp (7h00 – 19h00) (Figure 3.4). In contrast, the frequency distribution of crevice Tes 

indicated an almost complete mismatch with Tp (Figure 3.5). In particular, 91.1 % were 

below, only 2.5 % above and 6.4 % within Tp (7h00 – 19h00) (Figure 3.5). The Tes recoded 

outside of crevices were significantly higher and more favourable than crevice Tes (P < 0.01, 

Tukey-Kramer). Thermal habitat quality was generally low in spring (overall mean de = 6.6 oC 

± 5.6 oC). When viewed as a function of the time of day, mean de increased rapidly from 

7h00 to 11h00 after which it stabilized slightly from 11h00 to 17h00 followed by a rapid 

decrease (Figure 3.2).  
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Figure 3.12. Hourly means of operative environmental temperatures (Te), field body 

temperatures (Tb ± 1SD) and crevice Tes, and the absolute maximum observed Tes (Te-max) 

recorded in a coastal population of C. cataphractus during spring. The horizontal rectangle 

depicts the preferred temperature range (Tp) (an overlap with Te indicating good thermal 

quality, de = 0). Vertical dotted lines indicate sunrise and sunset (South African Astronomical 

Observatory). Standard deviations are indicated only for Tb for clarity purposes (of the 

figure). The hourly means ± 1SD of Te, Te-crevice and Tb are given in Appendix Tables A3, 

A4 and A5. 
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gradually as a function of distance from crevice, typically equalling Tp at the 0.1 m, 0.3 m 

and 0.9 m distance classes (Figure 3.9). In the afternoon, mean Te was on average lower 

than Tp, yet nearly reaching Tp at the 0.3 m and 0.7 m distance classes (Figure 3.6). Only 

the mean Tes at the 0.5 m and 0.7 m distance classes differed significantly from crevice Te 

(P = 0.02 and P < 0.01 respectively, Tukey-Kramer). 

Mean Tes varied significantly among rock aspects representing the four wind directions 

(F3,19 = 4.42, P = 0.02; Figure 3.7), being highest and most favourable at the east facing 

aspects (Figure 3.7). Mean Te at eastern aspects however differed significantly only from 

those recorded at western aspects (P < 0.01, Tukey-Kramer). Similarly, mean thermal 

habitat quality varied significantly among wind directions, being poor at the western aspects, 

with de being significantly higher than that of north- (P < 0.01, Tukey-Kramer), east- and 

south-facing aspects (P < 0.01, Tukey-Kramer) (Table 3.1). This geographical variation in 

both mean Te and de was also a function of the time of day (F11,209 = 224.74, P < 0.01; Figure 

3.7; Appendix Table A10). 

3.4.2 Field body temperature (Tb), thermoregulatory accuracy (db), 

effectiveness of thermoregulation (de – db) and thermal exploitation (Ex) 

3.4.2.1 Among-seasons comparison 

Variation in mean field body temperatures (Tb), the average deviation of Tb from Tp (i.e. 

accuracy of thermoregulation, db) and the effectiveness of thermoregulation (de – db) were 

significantly affected by the time of day (i.e. hour), experimental day and season (Figures 

3.13, 3.14 and 3.15; Appendix Table A11). When considered separately among seasons, 

mean field Tbs were significant lower in the winter period than summer, autumn and spring 

(P < 0.01, Tukey-Kramer). Moreover, mean Tb was significantly lower during the warm 

autumn than cooler spring (P = 0.05, Tukey-Kramer). 
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Figure 3.13. The accuracy of thermoregulation (db), observed in a coastal population of C. 

cataphractus as a function of the time of day. The accuracy of thermoregulation (db) is 

expressed as the degree of deviation between field body temperature (Tb) and Tp. A db value 

of zero indicates perfect accuracy (i.e. Tb = Tp) (Hertz et al. 1993). The hourly means ± 1SD 

of db is given in Appendix Table A6. 
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Figure 3.14. Effectiveness of thermoregulation (de – db) of a coastal population of C. 

cataphractus described as a function of time of day. The effectiveness of thermoregulation 

(de – db) expresses the degree of departure from thermoconformity (de – db = 0: perfect 

thermo conformity). Negative de – db generally indicate the avoidance of thermally suitable 

microsites (Blouin-Demers and Weatherhead 2001). The hourly means ± 1SD of de – db is 

given in Appendix Table A7. 
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Figure 3.15. The thermal exploitation (Ex) of a coastal population of C. cataphractus 

described as a function of the time of day. Thermal exploitation describes the degree to 

which a reptile exploits the thermally favourable opportunities for precise thermoregulation, 

particularly describing the time-fraction (%) during which Tb equals Tp when permissive in a 

particular habitat (Christian and Weavers 1996). The hourly means ± 1SD of Ex is given in 

Appendix Table A8. 
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Lizards thermoregulated with the highest accuracy in autumn (i.e. low db); followed by 

summer, spring and least accurately during winter (Figure 3.13). Unlike Tb, these estimates 

of db differed significantly (pair-wise) among seasons (P < 0.01) except between summer 

and autumn (P = 0.63, Tukey-Kramer). The effectiveness of thermoregulation (de – db) was 

relatively invariable among summer, autumn and spring during most of activity time (11h00 – 

16h00) (Figure 3.14). In contrast, during winter de – db decreased below 0 oC during this 

period (11h00 – 16h00) (Figure 3.14). Lizards exploited their thermal habitat most 

proficiently during autumn, followed by summer, spring and winter respectively (Figure 3.15). 

When considered as a function of the time of day, thermal exploitation (Ex) was relatively 

invariable between summer and autumn from 14h00 to 17h00 (Figure 3.15).  

3.4.2.2 Summer  

Typical summer days 

Mean field body temperatures (Tb) typically equalled Tp from 13h00 to 19h00 (overall mean: 

25.8 oC ± 3.7 oC), being higher than crevice Te throughout this period (Figure 3.3). The 

frequency distribution of Tb indicated a positive overlap between Tbs and Tp, in particular; 

44.32 % of Tbs equalled Tp, 53.6 % were lower and only 2.1 % exceeded Tp (7h00 – 19h00) 

(Figure 3.16). Mean Tb did not vary significantly from both the crevice (F1,29 = 0.22, P = 0.64) 

and overall (in crevices and in the open) Tes (F1,47 = 1.84, P = 0.18) (7h00 – 19h00).   

Although the average deviation of Tb from Tp (db, describing accuracy of 

thermoregulation) was moderate, being 3.7oC ± 2.7oC (7h00 – 19h00), lizards 

thermoregulated accurately from 13h00 to 19h00 (mean db < 1) (Figure 3.13).  

The index for the effectiveness of thermoregulation (de – db) suggests active 

thermoregulation increased markedly from 11h00 and peaked at 13h00 (Figure 3.14). 

Lizards exploited their thermal habitat with moderate proficiency during summer (overall 

mean Ex = 53.2 % ± 35.5 %) (Figure 3.14), maintaining Tb within Tp 53.2 % of the time when 

permissive in their habitat (Figure 3.14). Mean thermal exploitation (Ex) increased rapidly 

after 12h00, peaked at 14h00, and then decreased rapidly from 19h00 (Figure 3.15). 
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Figure 3.16. The frequency distributions of field body temperatures (Tb) recorded in a coastal 

population of C. cataphractus during summer, three abnormally warm summer days, 

autumn, spring, winter and two abnormally warm winter days (7h00 – 19h00). Arrow heads 

indicate overall mean Tb, whereas the vertical rectangle depicts the preferred temperature 

range (Tp) of C. cataphractus (N = six subjects in summer, seven in autumn, three in winter 

and three in spring). Vertical dotted lines indicate the mean CTmax known among cordylids to 

date (C. niger, C. oelofseni, C. cordylus: 41.5 oC (Clusella-Trullas et al. 2009)).  
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Exceptionally warm summer days 

Lizards maintained high Tbs during the four hot summer days on average exceeding the 

upper bound of Tp (overall mean Tb = 33.4 oC ± 4.6 oC) (Figure 3.3). The lizards typically 

maintained Tbs within Tp only from 10h00 to 11h00, after which mean Tb increased, 

remaining above Tp from 12h00 to 21h00 and peaking at 16h00 (Figure 3.3). Mean Tb 

corresponded to mean crevice Te from 13h00 to 7h00 (Figure 3.3). The maximum Tb 

measurement recorded in summer was 40.2 oC and not a single Tb measurement recorded 

between 14h00 and 19h00 was below the upper bound of Tp (i.e. 32.6 oC). The frequency 

distribution of Tb indicated a high degree of mismatch between Tb and Tp, in particular, 24.2 

% of Tbs were within Tp, 10.9 % below, and 64.8 % above (7h00 – 19h00) (Figure 3.16). 

Mean Tb varied significantly from both the crevice Tes (F1,48 = 4.49, P = 0.04) and overall Tes 

(F1,22 = 97.37, P < 0.01) (7h00 – 19h00). 

3.4.2.3 Autumn  

Mean field body temperatures (Tb) remained near the preferred temperature range (Tp) 

during autumn (overall mean Tb = 27.0 oC ± 4.2 oC) and typically equalled Tp from 13h00 to 

22h00, after which it gradually decreased until 9h00 (Figure 3.9). Mean Tbs closely matched 

crevice Tes from 9h00 to 17h00 (Figure 3.9). The frequency distribution of Tbs indicate a 

relatively good match with Tp, in particular, 50.2 % of Tbs equalled Tp, 42.4 % were lower and 

7.37 % higher than Tp (7h00 – 19h00) (Figure 3.11). Mean Tb varied significantly from both 

the crevice (F1,12 = 1.18, P = 0.23) and overall Tes (F1,26 = 3.78, P = 0.06) (7h00 – 19h00). 

Lizards in general thermoregulated accurately in autumn (overall mean db = 1.6 oC ± 

2.2 oC), and foremost so from 13h00 to 23h00 (db < 1) (Figure 3.13). The effectiveness of 

thermoregulation (de – db) was moderate in autumn (Figure 3.14). In particular, mean de – db 

values decreased slightly below zero from 9h00 to 10h00 after which it increased, peaking at 

14h00, and then declined again gradually until 18h00 (Figure 3.14). Lizards exploited their 

thermal habitat with relatively high proficiency in autumn (overall mean Ex = 58.5 % ± 33.8 

%) (Figure 3.14), maintaining Tb within Tp 58.5 % of the time when it was permissive in their 

habitat (Figure 3.14).  
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3.4.2.4 Winter 

Normal winter days 

Field body temperatures were low during winter (overall mean Tb = 16.0 oC ± 3.4 oC), 

following the trend observed in Te (Figure 3.10). Mean Tbs closely corresponded to mean 

crevice Tes from 9h00 to 13h00, and then exceeded it for the remainder of the day (Figure 

3.10). The frequency distribution of Tbs indicate an almost total mismatch with Tp, in 

particular, only 1.2 % of Tbs were within Tp, 98.8 % below, and 0.1 % above (7h00 – 19h00) 

(Figure 3.16). Body temperatures did not vary significantly from crevice Te (P = 0.14, F1,7 = 

2.84) (7h00 – 19h00). 

Lizards thermoregulated with low accuracy during winter (overall mean db = 10.9 oC ± 

3.3 oC), and although accuracy increased gradually from 9h00, on average, it remained low 

throughout the day (Figure 3.13). The effectiveness of thermoregulation (de – db) was also 

low and decreased below zero for the majority of activity time (10h00 – 15h00) (Figure 3.14). 

Lizards exploited their thermal habitat with poor proficiency and mean Ex values were below 

10 % throughout the day (overall mean Ex = 2.6 % ± 3.3 %) (Figure 3.15).  

Warm winter days 

Unlike the colder days, mean Tbs indeed equalled Tp for a portion of the day (15h00 – 

17h00) during the two abnormally warm winter days, and exceeded mean crevice Tes for 

most of activity time (13h00 – 19h00) (Figures 3.11 and 3.17). Of the Tbs observed from 

7h00 to 19h00, 9.7 % equalled Tp, 5.6 % were higher and 84.7 % lower than Tp (7h00 – 

19h00) (Figure 3.16).  

The lizards thermoregulated with low accuracy during the warm winter days (overall 

mean db: 7.2 oC ± 6.0 oC), yet maintained a high effectiveness of thermoregulation 

suggesting active thermoregulation (overall mean de – db: 7.2 oC ± 6.0 oC). Lizards exploited 

their thermal habitat with low proficiency (overall mean 18.4 % ± 22.2 %). 
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Figure 3.17. Operative environmental temperature (Te) and field body temperature (Tb) 

recorded at 15 minute intervals across 12 winter days in a coastal population of C. 

cataphractus. The horizontal rectangle depicts the preferred temperature range (Tp) of C. 

cataphractus. 

 

3.4.2.5 Spring 

Field body temperatures (Tb) corresponded moderately to Tp during spring, on average being 

slightly below Tp (overall mean Tb = 24.9 oC ± 8.2 oC) (Figure 3.12). Mean Tbs increased 

gradually from 8h00, peaking at 13h00 and then declined again until 7h00, on average 

equalling Tp from 12h00 to 16h00 (Figure 3.12). The frequency distribution of Tbs indicates a 

moderate match with Tp, and a high frequency of Tbs below Tp, in particular, 29.4 % of Tbs 

were within Tp, 52.6 % below, and 17.9 % above (7h00 – 19h00) (Figure 3.16). Mean Tbs 

varied significantly from mean crevice Tes (F1,8 = 14.62, P = 0.01), but not from overall (in 

crevices and in the open) mean Tes (F1,29 = 0.06, P = 0.81) (7h00 – 19h00). 

Lizards thermoregulated with relatively low accuracy during spring (overall mean db = 

5.1 oC ± 5.9 oC). The hourly pattern of thermoregulatory accuracy however indicates a 

relatively low deviation of Tb from Tp (i.e. high accuracy) between 13h00 and 16h00 (db < 2 

oC) (Figure 3.13). The effectiveness of thermoregulation (de – db) was moderate, yet 

decreased to below zero from 9h00 to 10h00, after which it increased rapidly, peaking at 
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13h00 (Figure 3.14). Lizards exploited the thermal habitat with moderate efficiency in spring 

(overall mean Ex = 39.7 % ± 18.6 %), mean Ex being highest from 13h00 to 19h00 (Figure 

3.15).   
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3.5 Discussion 

Cordylus cataphractus exhibits the lowest Tp observed among cordylids to date (Chapter 2). 

Thermal preference was estimated in two populations of C. cataphractus and was found to 

be conserved among the dry warm autumn and cooler more mesic spring, suggesting the 

absence of seasonal plasticity in Tp (Chapter 2). Seasonal variation in the thermal habitat 

and high temperatures will therefore create challenges to C. cataphractus, possibly 

constraining surface activity as well as time and energy budgets of individuals at certain 

times of the year due to altered Tb and thermoregulatory requirements (Blouin-Demers and 

Weatherhead 2001). 

 The current results indicate that the quality of the thermal habitat of C. cataphractus 

varies significantly at micro and macro temporal scales (i.e. across days and among 

seasons) as well as at micro spatial scale (around rocks). Thermoregulatory indices (i.e. db, 

de – db and Ex) (Hertz et al. 1993; Christian and Weavers 1996; Blouin-Demers and Nadeau 

2005) suggest that C. cataphractus responds to seasonal Te flux by actively regulating Tbs 

(i.e. thermoregulation) during summer, autumn and spring. The current results further 

suggest a correlation between surface activity (microhabitat selection) patterns known for C. 

cataphractus and the general distribution of thermally favourable microhabitats (high thermal 

quality) during autumn and spring. 

The quality of the thermal habitat (de) of C. cataphractus (i.e. absolute deviation of Te 

from Tp) varied seasonally being most favourable during autumn, followed by summer, 

spring and winter respectively. Micro-scale variation in thermal quality varied significantly as 

a function of distance from crevice edge during all seasons but winter. This variation was 

linked to the time of day, as expected due to solar movement, in combination with the 

subsequent gradual heating and cooling of rocks as a source of reradiated IR (Bakken and 

Gates 1975; Huey et al. 1989). The spatial variation in Te showed that individuals could 

attain Tb within Tp through microsite selection for the majority of the day during summer and 

autumn, whereas in spring this was only possible after 11h00 and in winter a very limited 

proportion of Tes within Tp were documented. However, during two warmer winter days, 



89 
 

favourable thermal conditions (Tes within Tp) and basking spots were available at certain 

times, therefore allowing accurate thermoregulation.  

To assess microsite-level variation in the thermal habitat of C. cataphractus, different 

subsets of Te-models were spread among rock aspects representing the four major wind 

directions. Operative environmental temperatures and the resulting thermal habitat quality 

(de) varied significantly among the four wind directions during summer, autumn and spring. 

East was warmest and most favourable during the colder winter and spring periods, whereas 

south was most favourable during the warmer summer and autumn periods. The variation in 

Te among directions was also a function of time of day during each season as expected due 

to solar cycles in combination with the subsequent gradual heating and cooling of rocks as a 

source of radiated IR (Huey et al. 1989). 

Seasonal patterns of retreat-site selection have been coupled with thermal 

characteristics of rocks in various reptiles, particularly enabling individuals to maintain Tbs 

within their preferred temperature ranges (Webb and Shine 1998; Kearney and Predavec 

2000; Kearney 2002; Shah et al. 2004). Webb and Shine (1998) described the thermal 

habitat of Hoplocephalus bungaroides, and by assuming that snakes would select Te within 

their Tp, Webb and Shine (1998) predicted seasonal patterns of habitat use. Webb and 

Shine (1998) then confirmed their predictions with mark recapture data and field body 

temperature measurements. During spring, these authors found that individuals actively 

selected small or thin unshaded rocks and used these “hot” rocks to maintain Tb within Tp, 

and further that individuals selected crevices exposed to the afternoon sun, avoiding easterly 

and southerly crevices that were generally cooler. Similarly, seasonal patterns of retreat-site 

selection may vary in C. cataphractus since these lizards have been reported to remain 

within crevices for prolonged periods (Visagie 2001). In particular, the significant variation of 

thermal habitat quality around rocks currently observed indicates that seasonal shifts in 

retreat-sites around large rocks will be beneficial. Moreover, the current data predict that C. 

cataphractus individuals will preferentially be present at eastern aspects of rocks during the 
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cooler spring and winter months and at southern aspects during the warmer summer and 

autumn periods.  

Hayward (2008) surveyed 131 C. cataphractus groups during the warm dry summer 

months across three localities in the Lamberts Bay - Graafwater district (approximately 80km 

north-east of the current study site) and found that the majority of groups inhabited north-

westerly to westerly facing crevices. Although the current results indicate south as thermally 

most favourable during summer, northern and western aspects also had markedly higher 

thermal quality than east suggesting that thermal factors may have played a role in the 

microhabitat selection of the population described by Hayward (2008).  

The selective utilization of favourable retreat sites around rocks is however 

complicated by the group-living life strategy. In particular, free standing rocks, including 

crevices on all four aspects of the rock, may house C. cataphractus groups of up to 58 

individuals (Effenberger and Mouton 2007). The males are highly territorial, and maintain 

neighbouring territories of approximately ~0.79 m2, which they aggressively defend 

(Effenberger and Mouton 2007). The observed variation in thermal habitat quality around 

rocks may therefore provide an incentive for intra-group male-male competition to secure 

favourable microsites, due to the direct relationship between thermal habitat quality and 

reptile time and energy budgets (Huey and Slatkin 1976; Gvozdik 2002). The cost 

associated with obtaining an optimal basking site may therefore be higher than when using 

the optimal basking site when solitary. Unlike males, females move freely around rocks 

during the mating season (Effenberger and Mouton 2007) and are thus expected to position 

themselves within microsites of superior thermal quality. Males inhabiting territories of high 

(thermal) quality may therefore attain the additional benefit of increased female access.  

Competition for suitable basking sites has been reported in several reptiles (Huey 

1982; Phillips et al. 1993; Seebacher and Grigg 1997; Seebacher and Grigg 2001; Angilletta 

2009). For example, Seebacher and Grigg (2001) found that dominant crocodiles chase 

subordinates from thermally favourable basking sites. An exploration of the relationship 

between thermal habitat quality around rocks and male dominance structure may provide 
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support for the prevalence of competition for thermal habitats in C. cataphractus. On the 

other hand, variation in de around rocks may stagger individuals temporally and spatially, 

resulting in differential activity patterns around the rock limiting the possible competition for 

best basking sites or vantage points for potential prey inherent to large social groups. 

Effenberger and Mouton (2007) did not mention the possibility of temporal variation in 

activity patterns around the rock and further investigation is needed. 

The reduced surface activity reported for Cordylus cataphractus extends throughout 

the dry late summer, autumn and cooler winter months (Visagie 2001). During these periods, 

individuals predominantly remain within crevices, often basking with only their heads 

protruding and occasionally emerging to within 0.1 m from crevices (Visagie 2001; Hayward 

2008). Conversely, these lizards are fully active outside on rock surfaces during spring and 

frequently move up to 0.9 m from crevices (Visagie 2001; Effenberger and Mouton 2007), 

actively basking and foraging (Effenberger 2004). Although thermal habitat quality was 

highest at eastern aspects of rock habitats during spring, it was least favourable in summer 

and autumn due to high Tes and males may therefore benefit from altering territory 

boundaries (around rocks) according to varied thermal quality among seasons. Territoriality 

has however only been studied during spring which marks the peak mating season 

(Effenberger and Mouton 2007). It may be that territoriality diminishes during the rest of the 

year when the surface activity of C. cataphractus is repressed, causing males to remain in 

the close proximity of each other beneath and on the edges of rocks. 

Mean field body temperatures (Tb) varied significantly at seasonal scale being highest 

in autumn, followed by summer, spring and winter respectively. Literature records of Tb are 

generally limited for the Cordylidae family, available only for summer and winter (Table 3.2) 

(Bowker 1984; Bauwens et al. 1999; Lailvaux et al. 2003; Clusella-Trullas et al. 2009; 

McConnachie et al. 2009). The summer mean Tb observed for C. cataphractus is the lowest 

observed among cordylids (Table 2). The low summer mean Tb is expected since C. 

cataphractus exhibits the lowest preferred temperature range (Tp) recorded among cordylids 

to date (Chapter 2). The low Tp and subsequently low Tbs (currently observed) may be a 
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mechanism of energy conservation through the associated decrease in metabolic 

expenditure (Shine and Lambeck 1990; Christian and Bedford 1995). Cordylus cataphractus 

however exhibits a resting metabolic rate (RMR) 68 % lower than that reported for any other 

cordylid to date (at corresponding Tas), being relatively constant between Tas of 10oC, 15oC, 

20 oC, 25 oC and 30 oC (Mouton et al. 2000b), suggesting that basal energy expenditure will 

be less influenced by lowered Tb and that the lowered Tp and Tb likely is the result of other 

factors (discussed later) (Chapter 2). Although Tp was shown to be low and did not vary 

significantly among seasons, the potential of lowered Tp targeted at energy conservation 

cannot be discounted, particularly, since Tp was found to be consistently lower during the 

warmer dry autumn than cooler more mesic spring (although not significantly so) (Chapter 

2).  

 

Table 3.2. Daily mean field body temperatures (Tb) recorded among cordylids to date. 

Species 
Season 

Reference 
Summer Autumn Winter Spring 

Platysaurus intermedius w. 28.8 - - - Lailvaux et al. 2003 

Cordylus macropholis 28.9 - - - Bauwens et al. 1999 

Pseudocordylus m. melanotus 28.9 - 26.3 - McConnachie et al. 2009 

Gerrhosaurus major  34.5 - - - Bowker 1984 

Gerrhosaurus nigrolineatus  35.2 - - - Bowker 1984 

Gerrhosaurus flavigularis  33.8 - - - Bowker 1984 

Cordylus cataphractus 25.8* 27.0 16.0 24.9 Current study 

Cordylus oelofseni 28.7 - 12.5 - Clusella-Trullas et al. 2009 

Cordylus niger 27.1 - 20.1 - Clusella-Trullas et al. 2009 

Cordylus cordylus 27.8 - 20.5 - Clusella-Trullas et al. 2009 

*Typical summer days (N = 11days).  

 

Clusella-Trullas et al. (2009) assessed thermoregulation in three cordylid species (C. 

cordylus; C. niger; C. oelofseni) and found that although their habitats provided a wide array 

of Tes in summer, the Tbs recorded in the field were often below the lower boundary of Tp. In 

contrast, the current results indicated that C. cataphractus tolerated Tbs exceeding Tp during 
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activity time in spring, whereas Tbs were typically maintained within Tp during summer and 

autumn. Clusella-Trullas et al. (2009) suggested the Tb-Tp mismatch to be either due to 

active avoidance of warmer Tes, therefore functioning to reduce overheating risk, or due to 

the compromise between general behaviour such as mating, feeding, maintaining territories 

and thermoregulatory investment (i.e. the thermoregulatory cost-benefit ratio operational in 

these species) (Huey and Slatkin 1976). Alternatively, seeing that the trend of Tb-Tp 

mismatch was consistent in all three species observed by Clusella-Trullas et al. (2009), it 

may have been the result of an overestimate of Tp. The Tps of all three species were 

estimated in photothermal gradients which lacked retreat sites (Clusella-Trullas et al. 2007), 

even though these species are known to rely primarily on crevices as anti-predatory 

mechanism (Losos et al. 2002). Conversely, the Tp of C. cataphractus was estimated in 

photothermal gradients containing crevices, possibly providing a more realistic estimate of Tp 

(see Chapter 2), but also with the possibility of resulting in a lower Tp.  

The absolute deviation of Tb from Tp (db) (i.e. thermoregulatory accuracy, where a low 

db indicates high accuracy) varied proportional to thermal habitat quality (i.e. autumn < 

summer < spring < winter). Seasonal variation in the absolute deviation of Tb from the target 

Tp (db) is common among squamate species (Huey et al. 1977; Avery 1982; Hertz 1992; 

Kearney and Predavec 2000; Clusella-Trullas et al. 2009; McConnachie et al. 2009). Such 

variation in db may be a result of seasonal variation in Te and the associated cost-benefit 

balance related to the interplay of food resource availability and suitable thermal 

opportunities (Huey and Slatkin 1976; Pyke et al. 1977; Huey and Pianka 1981), in 

combination with other factors such as predation risk (Downes 2001; Herczeg et al. 2008) 

and social behaviour (Dewitt 1967; Labra 1995). The current daily pattern of the 

effectiveness of thermoregulation (i.e. departure from conformity, de – db) was relatively 

conserved among summer, autumn and spring suggesting uniform investment among these 

seasons. This suggests that although C. cataphractus may perform active thermoregulation, 

the cost of thermoregulation is moderate and that the seasonal db shifts are passive (i.e. 

thermoregulatory investment corresponds among seasons), occurring proportionate to 
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changes in thermal habitat quality (de) (Kearney and Predavec 2000). In a study on the 

permanent aggregating Cordylus macropholis, Bauwens et al. (1999) reported a mean Tb of 

28.4 oC for individuals caught within Euphorbia caput-medusae plants and 29.4 oC for 

individuals on the outside surface branches of the same plant during summer. The authors 

reported the absence of basking behaviour and suggested that C. macropholis does not 

perform overt thermoregulatory behaviour, but rather, simply thermoconforms to thermal 

conditions within E. caput-medusae plants. In contrast, the current results show that C. 

cataphractus, as other members of Cordylidae (of which records exist), perform active 

behavioural thermoregulation (Clusella-Trullas et al. 2009; McConnachie et al. 2009).  

Regions hosting C. cataphractus are characterised by sparse vegetation cover and low 

insect abundance during the dry season (i.e. summer and autumn) (Hayward 2008). The low 

food availability is expected to affect individuals living in groups (such as C. cataphractus) 

more than other solitary-living species. In fact, confirming this, Mouton et al. (2000a) found 

that 63.7 % of C. cataphractus individuals captured during autumn had empty stomachs (N = 

91). Lizards are expected to remain inactive when the energy gained through activity does 

not outweigh the costs of being active (as stated by the optimal foraging theory) (Huey and 

Slatkin 1976; Pyke et al. 1977; Pough 1980), and it is therefore not surprising that other 

researchers have attributed the lowered surface activity of C. cataphractus and tendency to 

remain in crevices during the dry season to food constraints related to group-living (Visagie 

2001; Hayward 2008). The solitary-living Cordylus polyzonus that in many cases share rock 

outcrops and even crevices with C. cataphractus (personal observation) remains active 

throughout the year and frequently moves away from crevices during the dry warm periods 

(Visagie 2001; Hayward 2008), supporting the notion that seasonal repressed activity in C. 

cataphractus is related to permanent group-living in an arid context (Visagie 2001; Hayward 

2008). The mean Tp reported for C. polyzonus however is 3.8 oC higher than that of C. 

cataphractus (Clusella-Trullas et al. 2007; Chapter 2), and the lower surface activity of C. 

cataphractus during the warm summer and autumn months (compared to C. polyzonus) may 

therefore be associated with thermal preference, since mean Tes in the open are typically 
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high at the time. Cordylus polyzonus have much thinner dermal armature than C. 

cataphractus (Loveridge 1944), therefore being more manoeuvrable, which, together with 

the different life strategy employed (i.e. solitary-living versus group-living), is expected to 

result in considerably different cost-benefit balances in regard to activity (and therefore 

thermoregulation) than C. cataphractus. The field thermal ecology of C. polyzonus currently 

remains unexplored and such investigation will be profitable and may aid interpreting the 

effect of group-living in C. cataphractus on thermoregulation since these lizards occur in 

sympatry. 

The micro-spatial variation of Te during autumn (i.e. dry season) indicates that 

individuals could maintain Tb within Tp for the majority of the day when present on the edges 

of or within crevices. Theoretically, microsite selection (e.g. remaining within crevices) 

represents a mode of behavioural thermoregulation, incurring a (foraging) time-cost to the 

animal (Huey 1982; Kearney and Predavec 2000), and the repressed surface activity 

observed in C. cataphractus during autumn (Visagie 2001) may therefore occur actively for 

thermoregulatory purposes. Operative environmental temperatures (Te) exceeded Tp in the 

open for a large part of activity time during autumn thus indicating the need for shuttling 

and/or precise microsite selection to maintain Tb near Tp (Bauwens et al. 1996; Diaz and 

Cabezas-Diaz 2004). Foraging is however unlikely to compensate for the cost associated 

with such active behavioural thermoregulation because of the resource (food) limitation at 

the time (Mouton et al. 2000a), and lowered surface activity is expected (Pyke et al. 1977; 

Pough 1980), yet, likely being the result of resource limitation (Visagie 2001; Hayward 2008) 

in combination with thermal constraints (Grant and Dunham 1988).  

Certain lizard species are known to regulate body temperatures whilst in crevices 

(outside of direct solar radiation) and may even do so more effectively than in the open 

(Cowles and Bogert 1944; Huey 1982). Thermoregulation within retreats is generally 

achieved behaviourally through microsite selection (Lemos-Espinal et al. 1998; Kearney 

2002), postural adjustments which alter surface contact (Cowles and Bogert 1944; Huey 

1982) and social huddling (Lanham 2001; Shah et al. 2003). Although Te-models were 
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placed beneath rocks during all four seasons, a detailed exploration of crevice thermal 

habitats was only performed in summer (27 Te-models). These crevice Tes varied 

significantly beneath rocks as a function of rock thickness, crevice height and distance from 

crevice edge, indicating the potential for behavioural thermoregulation in crevices. 

Individuals inhabiting large rocks may therefore gain benefit during warm periods since a 

wide array of thermal opportunities is provided. Cordylus cataphractus individuals housed in 

laboratory photothermal gradients fitted with crevices in the cool sections were found to 

emerge from crevices and exploit heat sources more than 0.5 m away in order to increase Tb 

(i.e. thermoregulate) during autumn (Chapter 2). This suggests that C. cataphractus 

performs active thermoregulation in the field during autumn and will if needed move from 

crevices to basking sites when temperatures are unfavourable inside. Behavioural 

thermoregulation (through microsite selection and postural adjustments) is therefore likely to 

occur beneath rocks. In fact, a time-based focal scan (Altmann 1974) on C. cataphractus 

performed during autumn (a single day) indicated that certain individuals alter their body 

postures (relative to rock surfaces) whilst in crevices (section 3.3.4). The active behavioural 

thermoregulation observed in autumn further supports the notion that the lowered surface 

activity reported for C. cataphractus at the time (Visagie 2001) is related to the thermal 

environment. Cordylus cataphractus has heavy dermal armature which provides protection 

against terrestrial predators, however, being less effective against birds of prey (Hayward 

2008). Armour may permit lizards to use habitats and behaviours that are too dangerous for 

unarmoured species (Losos et al. 2002). In C. cataphractus, the heavy armature may allow 

individuals to exploit the wider sections of crevices (that are accessible to terrestrial 

predators) and therefore varied thermal opportunities beneath rocks for thermoregulatory 

purposes, which other cordylids likely will not be able to do.   

In summer, thermal habitat quality was higher in the open than inside crevices, and the 

hourly variation in mean Te indicates that emergence behaviour will be beneficial at the time. 

In fact, mean Tb exceeded crevice Te from 13h00 to 19h00 suggesting that lizards indeed 

emerged from crevices. Visagie (2001) reported repressed surface activity in C. 
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cataphractus from February to April. The sampling in the current study for summer occurred 

during January and suggests C. cataphractus indeed emerges consistently from crevices 

during this period. Focal observations are however needed to confirm emergence behaviour. 

During spring, when C. cataphractus is known to spend the majority of the day outside 

of crevices (Effenberger and Mouton 2007), thermally suitable opportunities were recorded 

exclusively at microsites outside of crevices during midday and lizards evidently had to 

emerge from crevices throughout the day in order to attain Tb near Tp. Spring is also the 

period when ample food (invertebrates) is available outside of crevices (Struck 1994) as well 

as the peak mating season of C. cataphractus (Flemming and Mouton 2002), therefore 

further motivating emergence behaviour. The frequency distribution of Tes available in spring 

indicates a relatively normal spread above and below Tp, and Tes of up to 45 oC were 

present. Lizards therefore would have had to thermoregulate behaviourally (cost incurred) to 

not overheat, at least at certain times. 

In winter when C. cataphractus reportedly exhibit lowered surface activity (Visagie 

2001), mean Tes were generally unfavourable (i.e. lower than Tp) both within and outside of 

crevices. Lizards are known to remain inactive when Tes within Tp are unavailable (in 

accordance with the cost-benefit model of thermoregulation) (Huey and Slatkin 1976; 

Herczeg et al. 2006; Herczeg et al. 2008) and the repressed activity of C. cataphractus 

observed during winter (Visagie 2001) is therefore as expected from a thermal perspective. 

Certain reptiles are however known to be active in spite of unfavourable thermal conditions 

in order to gain some foraging benefit (Blouin-Demers and Weatherhead 2001), and 

repressed activity can therefore not implicitly be linked to cool temperatures in C. 

cataphractus.  

Although winter was characterized by low unfavourable Tes, mean Te indeed reached 

Tp for a portion of the day during two abnormally warm winter days and lizards responded by 

actively thermoregulating, maintaining mean Tb within Tp for at least three hours per day. 

The mean deviation of Tb from Tp (accuracy of thermoregulation) was 7.2 ± 6.0oC, in 

comparison to the 10.9 oC ± 3.3 oC observed on the typical winter days, suggesting that the 
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repressed activity observed during winter is indeed related to suboptimal environmental 

temperatures and that C. cataphractus utilizes windows of thermally suitable conditions as 

has been described in other cordylids (Clusella-Trullas et al. 2009). Shuttleworth et al. 

(2008) collected C. cataphractus scats during each month of the year and found that the 

proportion of termite heads in scats were highest during mid-winter (June to July) (~33%). 

The warm days may therefore be essential for the prevalence of termitophagy during winter, 

firstly, permitting both lizard and termite activity (Arab et al. 2005), and secondly providing 

suitable temperatures for lizards to digest ingested termites (Stevenson et al. 1985; Van 

Damme et al. 1991; Zhang and Ji 2004). Warmer winter days may also benefit vitellogenesis 

(Licht 1972) which occurs throughout winter in C. cataphractus (Flemming and Mouton 

2002). 

Seasonal activity patterns of lizards are generally associated with resource availability 

and the associated cost-benefit balance (Huey and Slatkin 1976; Pyke et al. 1977; Davis and 

DeNardo 2010) and/or thermal regimes (Huey 1982; Grant and Dunham 1988), whereas 

other factors such as circadian cycles (Winne and Keck 2004), dehydration (Porter et al. 

1973), satiation (Hardy 1962), predation (McFarland 1976) or foraging behaviour related to 

varied prey preference (Huey and Pianka 1981) may also have an effect. Although the 

current results show that environmental temperatures may influence the seasonal activity 

patterns of C. cataphractus, it is unlikely to be the principle determinant thereof. 

Heavy dermal armature and subsequent low manoeuvrability/mobility suggests that 

predation is a major risk to C. cataphractus on outside surfaces (Losos et al. 2002; Hayward 

2008). Predation risk by birds of prey is therefore a further probable contributor to the 

seasonal surface movement patterns of C. cataphractus, since the time spent near and 

within crevices is expected to be maximized.  

The fact that C. cataphractus acts as a strict sit-and-wait forager (Mouton et al. 1999), 

yet also exhibits termitophagy (Shuttleworth et al. 2008), may also contribute to seasonal 

movement patterns (Huey and Pianka 1981). Shuttleworth (2006) surveyed 11 populations 

and never found a termite foraging port within four meters from a C. cataphractus crevice, 
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suggesting that these lizards do not rely on visual cues to locate ports, and that emergence 

from crevices will not necessarily aid termitophagy. The fact that C. cataphractus is known to 

emerge from crevices during spring and early summer (Effenberger and Mouton 2007) when 

insect abundance peaks (Struck 1994), yet remain close to, or within crevices during the dry 

mid to late summer and cold winter months (Visagie 2001) may be due to the increased 

reliance on termites during the last mentioned periods (Shuttleworth et al. 2008).  

Operative environmental temperatures were cooler and less favourable outside of 

crevices at night during all seasons. Interestingly, mean Tbs were higher and nearer to Tp 

than mean crevice Tes throughout the night during autumn, winter and spring, suggesting 

active thermoregulation within crevices, possibly through microsite selection. During typical 

and warmer winter days, mean Tbs exceeded the maximum recorded Te between 20h00 and 

22h00. Optimal Tbs at night may benefit physiological processes such as vitellogenesis and 

spermatogenesis (Licht 1972) or aid digestion (Van Damme et al. 1991), which may benefit 

C. cataphractus during spring when food abundance is high and fat reserves need to be 

deposited (Flemming and Mouton 2002).  

Social aggregation in reptiles is often associated with thermoregulation (during cold 

conditions) (Boersma 1982; Lanham 2001; Shah et al. 2003). Shah et al. (2003) found that 

social aggregating gecko, Nephrurus milii, huddled closer together when Tes were lowered, 

and that huddled individuals heated and cooled slower than solitary ones. The authors 

suggested that thermoregulation is the primary drive force for sociality in N. milii. Similarly, 

the skink Egernia stokesii is known to form aggregations during cooler conditions, enabling 

individuals to retain body heat for longer (than those occurring solitarily) (Lanham 2001). The 

fact that Tbs exceeded the maximum Tes observed between 20h00 and 22h00 and mean 

crevice Te throughout the night during both typical and the warmer winter days suggests that 

huddling behaviour (rather than microsite selection or postural adjustments) may be a real 

possibility during those periods, worth investigating further. However, the observed night-

time regulation in autumn, winter and spring may be an artefact of Te-model placement 

beneath rocks (Wills and Beaupre 2000). In particular, because of the limited number of 
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models placed beneath and on the edges of rocks (N = seven in autumn, six in winter, seven 

in spring), the actual Tes may not be a reliable estimate of available Tbs resulting in 

underestimates of thermal habitat quality, subsequently portraying an unrealistically high 

extent of thermoregulation.  

Four exceptionally hot days were observed during the summer field-trial when the 

majority of Tes exceeded Tp both in the open (85.7%) and within crevices (68.4%) and 

reached values of up to 63.6oC. The temporal variation in Te indicated that although lizards 

could maintain Tbs within Tp during the morning (7h00 – 11h00) by remaining within crevices, 

this feat was virtually impossible after midday (13h00 – 19h00). The thermal critical maxima 

(CTmax) of only three cordylids are currently known (C. cordylus 41.6 oC ± 1.0 oC; C. niger 41 

oC ± 0.6 oC; C. oelofseni 40.8 oC ± 0.5 oC) of which the mean is 41.1 oC (Clusella-Trullas et 

al. 2009). The mean preferred temperatures of all three these cordylids exceed that of C. 

cataphractus by at least 2 oC (Clusella-Trullas et al. 2007; Chapter 2) and CTmax may 

therefore also vary. The frequency distribution of Tbs indicates that nearly two percent of Tbs 

exceeded 39 oC and the highest measurement was 40.2 oC. The temporal and spatial 

distribution of Tes suggests that lizards reached such high temperatures involuntarily whilst 

being beneath rocks and in fact, not a single Tb recorded from 14h00 to 18h00 was below 

the upper bound of Tp. Body temperatures exceeding Tp are more harmful than those of 

equal magnitude below Tp (Huey 1982; Huey and Kingsolver 1993; Angilletta et al. 2006; 

Angilletta 2009), and Tbs exceeding CTmax eventually results in death (Cowles and Bogert 

1944). The high Tbs observed in C. cataphractus not only poses a risk to adults, but seeing 

that females are still gravid during summer (Flemming and Mouton 2002); foetuses may also 

be at risk. 

Reptiles are known to exhibit behavioural and/or physiological plasticity to counteract 

the effects of extreme temperatures (Huey 1982). Firstly, extreme temperature can be 

buffered through behavioural thermoregulation (Huey et al. 2003; Huey and Tewksbury 

2009). The high mean Tbs observed in C. cataphractus on hot summer days, and the fact 

that these mean Tbs were not lower than mean crevice Te during the warmest time of day 
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however suggests that behavioural or physiological thermoregulation was insufficient to 

lower Tbs (to within Tp), resulting in temporary hyperthermia.  

Secondly, certain reptiles may buffer the seasonal incidence of extreme temperatures 

by altering biological set points such as Tp and CTmax through physiological changes 

(reversible phenotypic plasticity) (Seebacher 2005). Neither CTmax nor the upper and lower 

lethal temperatures of C. cataphractus are currently known, but the determined Tp did not 

vary significantly among the warm autumn and cooler spring periods (Chapter 2). The CTmax 

of reptiles may however vary seasonally (Mueller 1969) and future studies should explore 

this possibility in C. cataphractus. It may well be that C. cataphractus either exhibits 

significant seasonal variation in CTmax or simply a high CTmax, therefore enabling them to 

remain unharmed within crevices during exceptionally warm periods.  

Thirdly, certain reptiles may evade extreme temperatures through seasonal shifts in 

retreat site selection (Webb and Shine 1998; Kearney and Predavec 2000; Kearney 2002; 

Shah et al. 2004). For example, Kearney and Predavec (2000) found that the seasonal shifts 

in crevice preference in Christinus marmoratus are essential for survival during summer. 

Moreover, Webb and Shine (1998) found that the majority of Hoplocephalus bungaroides 

snakes moved from rock outcrops to cooler woodland habitats during the warmer summer. 

Visagie et al. (2002) investigated the intergroup movement patterns of C. cataphractus from 

March to November in six groups inhabiting relatively small rocks which (due to the high 

surface to volume ratio) are expected to become warm during the day and cool at night. 

Although numerous individuals exchanged groups, none of the rocks were evacuated at any 

given time suggesting the absence of whole-group migrations. Further exploration of thermal 

habitat quality among large and small rocks as well as seasonal movement patterns of 

lizards as a function of the thermal quality and size of rocks will be profitable in C. 

cataphractus.  

Fourthly, reptiles may benefit from short term movements (shuttling) to thermally more 

favourable microsites during extreme temperatures (Grant and Dunham 1988). Although 

movement to cooler sites is expected in C. cataphractus during warm summer days, the 
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close correspondence between Tb and crevice-Te indicates that they indeed did not move to 

larger boulders. The mean Te in the open exceeded 50 oC from 12h00 to 16h00 during the 

warmest experimental day, clearly trapping lizards within crevices, and any attempt to seek 

alternative refuges may be fatal under such conditions, especially for a sluggish slow-moving 

lizard such as C. cataphractus.  

Extinction due to climate change is a real threat to lizards. Sinervo et al. (2010) 

surveyed 48 Sceloporus lizard species from 2006 to 2008 at 200 Mexican localities, 

previously sampled between 1975 and 1995, and found local extinction at 12 % of the sites. 

In a mathematical model (validated with current extinction records) Sinervo et al. (2010) 

predicted that 56 % of the viviparous and 46 % of the oviparous populations in Mexico will be 

extinct by 2060 if climate change continues unabated. Sinervo et al. (2010) suggested that 

extinction risk is significantly related to low Tb (typical in viviparous lizards) in Mexican 

Sceloporus lizards and that the extinction risk of viviparous lizards were double that of 

oviparous ones. The high Tbs observed during summer in combination with the fact that C. 

cataphractus is viviparous, carrying foetuses during the warmest part of the year (Flemming 

and Mouton 2002), and exhibits the lowest Tp recorded among cordylids to date (Chapter 2), 

suggest extinction risk (related to global climate change) to be high in the species (Sinervo 

et al. 2010).  
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3.6 Conclusion 

The thermal habitat of C. cataphractus varied significantly as a function of the time of year as 

well as at micro-spatial scale around rocks, both as a function of distance from crevice edge 

and relative direction around rocks. Cordylus cataphractus males are known to be highly 

territorial when occurring in groups and the variation in Te around rocks therefore provide an 

incentive for intra group competition for thermal habitat quality. The thermal habitat provided 

suitable Tes which C. cataphractus could access through behavioural thermoregulation 

during summer, autumn and spring. Typical winter days however provided virtually no 

favourable Tes and as expected the Tbs recorded at that time were equally low suggesting 

thermoconformity. The overall mean of field body temperatures observed during summer is 

the lowest recorded in the family to date corresponding to the lower preferred temperature 

range of C. cataphractus. Cordylus cataphractus performed active thermoregulation 

(expending time and/or energy (costs) to either lower or increase Tb to be within Tp) during 

summer, autumn and spring, and the accuracy of thermoregulation (i.e. absolute deviation of 

Tb from Tp) varied proportional to thermal quality suggesting uniform thermoregulatory 

investment among seasons. Preliminary data further suggest active thermoregulation (by 

seeking favourable Tes) at night which could either have taken place through microsite 

selection or huddling, or both. Annual surface activity patterns reported for C. cataphractus 

(Visagie 2001; Effenberger and Mouton 2007) correspond to micro-spatial distribution of 

favourable Tes during autumn and spring and may therefore be a direct function of the 

thermal habitat. It is however more likely that C. cataphractus’ activity cycles are a function 

of temperature in combination with food availability and other factors such as predation risk, 

as has been suggested in other lizards (Diaz et al. 2005; Sears 2005). Although C. 

cataphractus has been reported to exhibit repressed surface activity during late summer, the 

current results suggest that lizards indeed emerged from crevices at the time. Four 

exceptionally warm days were observed during the summer field trial during which 

individuals were clearly forced to remain within crevices for the majority of the day. 

Overheating was a real risk even within crevices, especially for groups occurring beneath 
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small rocks. Although shifts to cooler larger rocks during such conditions would have 

benefited the animals, the current data indicate that they did not, and reached Tbs of up to 

40.2oC. These temperatures were recorded shortly prior to parturition and foetuses may 

therefore also be at risk.                                                                                                                                                                                                                                        
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3.7 Appendix 

Table A1. Mean operative environmental temperatures (Te), thermal habitat quality (de), field body temperatures (Tb), accuracy of 

thermoregulation (db), effectiveness of thermoregulation (de – db) and thermal exploitation (Ex) of a coastal population of C. cataphractus 

recorded and/or calculated during summer, autumn, winter and spring. Values represent means ± SD calculated from measurements taken at 

15 minute intervals (7h00 to 19h00) across sample days during the respective seasons. 

Season Te-model 
Placement Te (oC) de (oC) Tb (oC) db (oC) de – db 

Ex (%)      
(10h00-19h00) 

Summer 
Crevice 25.4 ± 4.0 2.7 ± 2.8 

25.8 ± 3.7 3.7 ± 2.7 2.0 ± 2.4 53.2 ± 35.5 Crevice & Open 28.3 ± 7.0 3.5 ± 3.7 
Open 32.5 ± 8.1 4.6 ± 4.4 

Summer* 
Crevice 34.3 ± 4.7 3.1 ± 3.0 

33.4 ± 4.6 2.8 ± 2.2 3.37 ± 2.9 21.7 ± 8.4 Crevice & Open 37.5 ± 7.8 6.1 ± 6.5 
Open 42.3 ± 8.8 10.5 ± 7.5 

Autumn 
Crevice 26.2 ± 4.9 2.2 ± 2.8 

27.0 ± 4.2 1.6 ± 2.2 1.8 ± 2.3 58.5 ± 33.8 Crevice & Open 29.5 ± 7.5 3.3 ± 3.8 
Open 31.2 ± 8.0 3.8 ± 4.1 

Winter 
Crevice 14.4 ± 3.5 12.5 ± 3.5 

16.0 ± 3.4 10.9 ± 3.3 0.5 ± 4.2 2.6 ± 4.2 Crevice & Open 16.3 ± 5.4 10.6 ± 5.1 
Open 16.8 ± 5.8 10.1 ± 5.4 

Winter* 
Crevice 17.6 ± 5.4 9.3 ± 5.2 

20.4 ± 7.1 7.2 ± 6.0 3.5 ± 4.7 
 

Crevice & Open 20.0 ± 7.3 7.6 ± 6.3 18.4 ± 22.2 
Open 20.7 ± 7.6 7.0 ± 6.5 (11h00 - 18h00) 

Spring 
Crevice 19.5 ± 6.0 8.4 ± 5.3 

24.9 ± 8.2 5.1 ± 5.9 1.5 ± 3.9 39.7 ± 18.6 Crevice & Open 24.3 ± 9.0 6.6 ± 5.6 
Open 25.9 ± 9.3 6.0 ± 5.5 

  *Recorded during exceptionally warm days (N (days) = four summer, two winter) 
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Table A2. Hourly means (± 1SD) of operative environmental temperatures (Te) and thermal 

habitat quality (de) in a coastal population of C. cataphractus during summer, autumn, winter 

and spring. Thermal habitat quality expresses the degree of deviation of operative 

environmental temperatures (Te) from the preferred temperature range (Tp). A de of zero 

indicates perfect thermal habitat quality (i.e. Te = Tp) suggesting the potential of passive 

thermoconformation (Hertz et al. 1993). Values represent hourly means of values calculated 

from Te measurements taken at 15 minute intervals across sample days. 

Time 
de (oC) 

Summer Autumn Winter Spring 

8h00 6.6 ± 2.7 7.0 ± 3.7 16.7 ± 2.3 14.8 ± 5.2 

9h00 5.1 ± 2.8 4.3 ± 3.3 15.8 ± 1.9 10.0 ± 6.3 

10h00 4.1 ± 2.8 3.2 ± 2.8 14.0 ± 2.3 6.3 ± 6.7 

11h00 4.4 ± 3.4 3.4 ± 3.3 11.2 ± 3.9 5.0 ± 5.7 

12h00 4.5 ± 4.3 4.0 ± 4.1 8.9 ± 4.8 5.2 ± 4.5 

13h00 4.3 ± 4.7 3.8 ± 4.5 7.5 ± 4.7 5.4 ± 4.0 

14h00 3.8 ± 4.5 4.2 ± 4.9 6.2 ± 4.7 4.4 ± 3.7 

15h00 2.9 ± 3.7 3.8 ± 4.5 5.6 ± 4.5 3.8 ± 3.6 

16h00 2.1 ± 2.9 2.4 ± 3.1 6.5 ± 4.0 3.8 ± 3.3 

17h00 1.2 ± 2.0 1.2 ± 2.1 9.0 ± 2.9 4.7 ± 3.4 

18h00 0.8 ± 1.3 0.6 ± 1.1 12.1 ± 2.0 6.4 ± 3.9 

19h00 1.6 ± 1.6 1.7 ± 1.6 14.0 ± 1.5 9.1 ± 3.4 
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Table A3. Hourly means (± 1SD) of operative environmental temperatures (Te) and thermal 

habitat quality (de) in a coastal population of C. cataphractus during summer, autumn, winter 

and spring. Values represent hourly means of Te measurements recorded with copper lizard 

models at 15 minute intervals across sample days. 

Time 
Te (oC) 

Summer Summer* Autumn Winter Winter* Spring 

8h00 20.4 ± 3.1 27.9 ± 4.1 19.4 ± 4.1 10.1 ± 2.3 9.5 ± 3.0 12.7 ± 5.2 

9h00 22.8 ± 4.7 31.2 ± 5.6 23.3 ± 5.1 11.0 ± 1.9 12.0 ± 4.6 17.7 ± 6.7 

10h00 26.4 ± 6.6 34.7 ± 6.6 26.8 ± 6.3 12.8 ± 2.3 15.1 ± 4.9 22.2 ± 7.7 

11h00 28.9 ± 7.8 37.5 ± 7.4 30.2 ± 7.4 15.6 ± 4.0 19.4 ± 5.3 26.4 ± 8.7 

12h00 30.8 ± 8.3 40.0 ± 8.4 32.4 ± 7.8 18.1 ± 5.3 23.1 ± 5.9 29.0 ± 8.9 

13h00 31.7 ± 8.2 41.5 ± 8.4 33.7 ± 7.4 19.8 ± 5.6 26.0 ± 6.0 30.7 ± 8.9 

14h00 32.0 ± 7.5 42.3 ± 8.2 34.5 ± 7.4 21.2 ± 5.5 27.1 ± 5.7 30.4 ± 7.8 

15h00 31.8 ± 6.4 42.4 ± 7.5 34.6 ± 6.7 21.5 ± 4.9 26.5 ± 4.7 29.2 ± 7.2 

16h00 31.1 ± 5.3 40.6 ± 6.1 33.4 ± 5.1 20.3 ± 4.1 25.1 ± 4.2 28.0 ± 6.8 

17h00 29.7 ± 4.2 39.4 ± 5.2 31.5 ± 4.2 17.8 ± 2.9 22.3 ± 3.8 25.4 ± 6.5 

18h00 28.1 ± 3.0 37.2 ± 3.9 28.8 ± 3.4 14.6 ± 2.0 18.7 ± 3.0 21.0 ± 5.4 

19h00 25.8 ± 2.2 35.6 ± 2.6 25.4 ± 2.8 12.8 ± 1.5 15.4 ± 2.2 18.6 ± 4.0 
*Recorded during exceptionally warm days (N (days) = four summer, two winter) 
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Table A4. Hourly means (± 1SD) of operative environmental temperatures (Te) recorded on 

the edges of and within crevices in a coastal population of C. cataphractus during summer, 

autumn, winter and spring. Values represent hourly means of Te measurements recorded 

with copper lizard models at 15 minute intervals across sample days. 

Time 
Crevice Te (oC) 

Summer Summer* Autumn Winter Winter* Spring 

8h00 20.2 ± 2.5 27.8 ± 3.6 20.1 ± 3.6 10.5 ± 2.0 10.3 ± 3.1 12.7 ± 4.5 

9h00 21.3 ± 3.3 29.3 ± 4.4 21.4 ± 3.3 10.9 ± 1.7 11.5 ± 3.6 14.6 ± 5.2 

10h00 23.0 ± 4.1 31.4 ± 4.6 22.9 ± 3.4 11.7 ± 1.5 13.5 ± 3.9 16.4 ± 5.9 

11h00 24.5 ± 4.3 33.2 ± 4.5 24.7 ± 3.7 12.8 ± 1.8 15.3 ± 4.1 18.1 ± 5.9 

12h00 25.8 ± 4.1 34.8 ± 4.3 26.3 ± 4.3 14.0 ± 2.1 17.3 ± 4.2 19.7 ± 5.0 

13h00 26.6 ± 3.7 36.0 ± 3.9 27.4 ± 4.3 15.0 ± 2.5 19.7 ± 4.0 21.4 ± 5.0 

14h00 27.1 ± 3.3 36.6 ± 3.4 28.1 ± 4.2 16.0 ± 2.7 21.5 ± 3.4 21.9 ± 4.0 

15h00 27.6 ± 2.9 37.2 ± 3.0 28.8 ± 4.1 17.0 ± 3.2 22.5 ± 2.8 22.1 ± 3.8 

16h00 27.8 ± 2.5 36.8 ± 3.0 29.2 ± 3.8 18.0 ± 4.0 23.2 ± 3.6 23.1 ± 5.2 

17h00 27.4 ± 2.2 36.5 ± 3.0 29.5 ± 4.3 17.3 ± 3.7 22.8 ± 4.6 23.0 ± 6.1 

18h00 26.9 ± 2.0 35.8 ± 2.7 28.7 ± 3.9 15.3 ± 2.6 19.8 ± 3.5 21.6 ± 5.7 

19h00 26.1 ± 2.0 35.8 ± 2.3 26.7 ± 2.8 13.7 ± 1.6 16.5 ± 2.2 19.3 ± 4.2 
*Recorded during exceptionally warm days (N (days) = four summer, two winter) 
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Table A5. Hourly means (± 1SD) of field body temperatures (Tb) recorded in a coastal 

population of C. cataphractus during summer, autumn, winter and spring. Values represent 

hourly means of Tb measurements taken at 15 minute intervals across sample days. 

Time 
Tb (oC) 

Summer Summer* Autumn Winter Winter* Spring 

8h00 19.6 ± 0.9 25.9 ± 2.8 21.6 ± 2.0 12.6 ± 1.4 11.6 ± 1.5 13.1 ± 4.2 

9h00 20.5 ± 0.9 26.8 ± 2.6 22.0 ± 2.2 12.4 ± 1.4 11.9 ± 1.9 14.7 ± 6.7 

10h00 21.9 ± 1.2 28.7 ± 3.0 22.5 ± 2.5 12.6 ± 1.2 13.0 ± 2.6 17.2 ± 7.4 

11h00 23.7 ± 1.4 30.9 ± 3.0 24.0 ± 2.9 13.2 ± 1.1 14.9 ± 3.6 26.4 ± 8.3 

12h00 25.5 ± 1.4 33.1 ± 2.5 26.1 ± 3.2 14.1 ± 1.0 18.2 ± 6.1 29.5 ± 6.9 

13h00 27.1 ± 1.4 35.0 ± 2.1 27.9 ± 3.0 15.3 ± 1.5 21.9 ± 7.6 32.0 ± 2.5 

14h00 28.4 ± 1.6 36.1 ± 1.8 28.9 ± 2.8 17.3 ± 3.5 25.4 ± 5.1 32.1 ± 3.1 

15h00 29.2 ± 1.8 37.1 ± 1.6 29.5 ± 2.6 18.9 ± 3.4 27.2 ± 3.4 29.8 ± 3.3 

16h00 29.4 ± 1.9 37.3 ± 1.3 30.2 ± 2.4 19.7 ± 2.9 27.1 ± 3.6 28.2 ± 3.9 

17h00 29.1 ± 1.8 37.1 ± 1.2 30.5 ± 2.2 19.3 ± 1.8 27.3 ± 3.9 27.2 ± 4.0 

18h00 28.4 ± 1.8 36.6 ± 1.2 30.4 ± 2.1 18.6 ± 1.3 24.6 ± 2.2 25.9 ± 4.3 

19h00 27.4 ± 1.8 36.5 ± 1.0 29.8 ± 2.1 17.6 ± 0.9 21.7 ± 0.8 23.3 ± 3.1 
*Recorded during exceptionally warm days (N (days) = four summer, two winter) 
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Table A6. Hourly means (± 1SD) of thermoregulatory accuracy (db) in a coastal population of 

C. cataphractus during summer, autumn, winter and spring. The accuracy of 

thermoregulation (db) expresses the degree of deviation between field body temperature (Tb) 

and the preferred temperature range (Tp). A db value of zero indicates perfect accuracy (i.e. 

Tb = Tp) (Hertz et al. 1993). Values represent hourly means of values calculated from Tb 

measurements taken at 15 minute intervals across sample days. 

Time 
db (oC) 

Summer Autumn Winter Spring 

8h00 7.2 ± 0.9 4.7 ± 2.0 14.2 ± 1.4 14.4 ± 4.2 

9h00 6.3 ± 0.9 4.4 ± 1.9 14.4 ± 1.4 13.3 ± 5.5 

10h00 4.9 ± 1.2 4.0 ± 2.0 14.2 ± 1.2 11.2 ± 5.8 

11h00 3.1 ± 1.4 2.8 ± 1.9 13.6 ± 1.1 4.8 ± 5.4 

12h00 1.4 ± 1.2 1.4 ± 1.5 12.7 ± 1.0 3.3 ± 3.9 

13h00 0.4 ± 0.7 0.6 ± 1.0 11.5 ± 1.5 1.3 ± 1.7 

14h00 0.1 ± 0.5 0.3 ± 0.8 9.6 ± 2.9 1.2 ± 1.4 

15h00 0.1 ± 0.4 0.3 ± 0.8 8.0 ± 3.0 0.9 ± 1.5 

16h00 0.1 ± 0.4 0.2 ± 0.8 7.2 ± 2.7 1.5 ± 1.9 

17h00 0.1 ± 0.3 0.2 ± 0.7 7.5 ± 1.8 2.1 ± 2.1 

18h00 0.2 ± 0.4 0.2 ± 0.6 8.2 ± 1.3 3.0 ± 2.8 

19h00 0.5 ± 0.8 0.1 ± 0.5 9.2 ± 0.9 4.3 ± 2.8 
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Table A7. Hourly means (± 1SD) of thermoregulatory effectiveness (de – db) in a coastal 

population of C. cataphractus during summer, autumn, winter and spring. The effectiveness 

of thermoregulation (de – db) expresses the degree of departure from thermoconformity (de – 

db = 0: perfect thermo conformity). Negative de – dbs generally indicate the avoidance of 

thermally suitable microsites (Blouin-Demers and Weatherhead 2001). Values represent 

hourly means of values calculated from Te and Tb measurements taken at 15 minute 

intervals across sample days. 

Time 
de – db (oC) 

Summer Autumn Winter Spring 

8h00 -0.6 ± 1.2 2.4 ± 1.7 3.5 ± 2.4 0.4 ± 1.9 

9h00 -1.2 ± 1.2 -0.1 ± 1.8 2.2 ± 2.1 -3.3 ± 3.0 

10h00 -0.7 ± 1.2 -0.6 ± 1.8 0.6 ± 2.0 -4.9 ± 4.2 

11h00 1.3 ± 1.4 1.0 ± 2.3 -1.8 ± 2.5 0.3 ± 5.1 

12h00 3.1 ± 1.3 2.9 ± 2.2 -3.3 ± 3.3 1.2 ± 3.5 

13h00 3.9 ± 1.1 3.4 ± 2.2 -3.4 ± 3.6 4.1 ± 2.1 

14h00 3.7 ± 0.6 3.9 ± 2.1 -2.7 ± 4.1 3.2 ± 1.9 

15h00 2.8 ± 0.7 3.6 ± 1.9 -1.5 ± 4.1 3.0 ± 1.7 

16h00 1.9 ± 0.7 2.1 ± 1.3 0.2 ± 3.4 2.3 ± 1.9 

17h00 1.1 ± 0.7 1.0 ± 0.9 2.3 ± 2.6 2.6 ± 1.8 

18h00 0.6 ± 0.6 0.4 ± 0.6 4.5 ± 2.0 3.5 ± 1.8 

19h00 1.1 ± 0.9 1.6 ± 1.4 5.6 ± 1.4 4.8 ± 1.0 
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Table A8. Hourly means (± 1SD) of thermal exploitation (Ex) in a coastal population of C. 

cataphractus during summer, autumn, winter and spring. Thermal exploitation describes the 

degree to which a reptile exploits the thermally favourable opportunities for precise 

thermoregulation, particularly describing the time-fraction (%) during which Tb equals Tp 

when permissive in a particular habitat (Christian and Weavers 1996). Values represent 

hourly means of values calculated from Te and Tb measurements taken at 15 minute 

intervals across sample days. 

Time 
Ex (%) 

Summer Autumn Winter Spring 

8h00 0 0 - 0 

9h00 0 2.0 ± 3.5 - 33.3 ± 28.9 

10h00 0 4.8 ± 4.5 - 5.3 ± 5.3 

11h00 1.1 ± 2.8 16.3 ± 7.8 0 21.7 ± 20.2 

12h00 13.3 ± 10.0 31.7 ± 14.5 0 37.5 ± 10.8 

13h00 51.1 ± 21.9 55.6 ± 16.7 0 52.1 ± 7.2 

14h00 80.8 ± 13.5 70.2 ± 24.3 4.6 ± 8.0 44.4 ± 5.6 

15h00 87.9 ± 10.5 82.4 ± 14.6 7.3 ± 7.9 56.7 ± 12.6 

16h00 85.2 ± 17.7 93.5 ± 5.1 6.4 ± 8.0 48.3 ± 12.6 

17h00 81.1 ± 17.6 87.3 ± 7.7 0 35.2 ± 3.2 

18h00 73.1 ± 22.4 84.5 ± 6.8 - 56.4 ± 4.4 

19h00 58.3 ± 30.2 86.1 ± 5.1 - 55.6 ± 38.5 
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Table A9: Generalized linear mixed model analyses (PROC GLIMMIX) describing the effect of Te-model placement relative to crevices on the 

(a) operative environmental temperatures (Te) and (b) thermal habitat quality (de), of a coastal population of C. cataphractus during summer, 

autumn, winter and spring.  

a) Te  

Source of 
Variance 

Summer  Autumn  Winter  Spring 

df F P  df F P  df F P  df F P 

Day 10,420 127.58 < 0.01  8,144 112.28 < 0.01  9,216 44.96 < 0.01  4,104 73.48 < 0.01 
Hour 11,396 1059.17 < 0.01  11,132 337.85 < 0.01  11,198 464.14 < 0.01  11,220 184.04 < 0.01 
Distance 6,36 15.79 < 0.01  6,12 3.32 0.04  6,18 1.87 0.14  6,20 4.35 0.01 
Hour*Distance 66,396 78.46 < 0.01  66,132 14.19 < 0.01  66,198 12.44 < 0.01  66,220 6.99 < 0.01 
 

   b)  de 
Source of 
Variance 

Summer  Autumn  Winter  Spring 

df F P  df F P  df F P  df F P 

Day 10,420 20.99 < 0.01  8,144 15.34 < 0.01  9,216 45.63 < 0.01  4,104 41.07 < 0.01 
Hour 11,396 212.17 < 0.01  11,132 59.41 < 0.01  11,198 539.7 < 0.01  11,220 98.2 < 0.01 
Distance 6,36 4.82 < 0.01  6,12 2.14 0.12  6,18 2.1 0.10  6,20 2.65  0.05 
Hour*Distance 66,396 51.71 < 0.01  66,132 5.33 < 0.01  66,198 13.69 < 0.01  66,220 3.71 < 0.01 
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Table A10: Generalized linear mixed model analyses (PROC GLIMMIX) describing the effect of Te-model placement (around rocks) relative to 

the four major wind directions on the (a) operative environmental temperatures (Te) and (b) thermal habitat quality (de) of a coastal population of 

C. cataphractus during summer, autumn, winter and spring. Analyses were performed on hourly means of Te and de. 

 

  a)  Te              

Source of 
Variance 

Summer  Autumn  Winter  Spring 

df F P  df F P  df F P  df F P 

Day 10,200 47.5 < 0.01  8,112 111.97 < 0.01  9,189 46.37 < 0.01  4,88 66.35 < 0.01 
Hour 11,187 594.81 < 0.01  11,121 384.15 < 0.01  11,198 512.33 < 0.01  11,209 224.74 < 0.01 
Direction 3,17 3.97 0.03  3,11 5.18 0.02  3,18 10.22 < 0.01  3,19 4.42 0.02 
Hour*Direction 33,187 35.55 < 0.01  33,121 22.04 < 0.01  33,198 19.79 < 0.01  33,209 17.77 < 0.01 
  

b) de  

Source of 
Variance 

Summer  Autumn  Winter  Spring 

df F P  df F P  df F P  df F P 

Day 10,200 13.17 < 0.01  8,112 17.56 < 0.01  9,189 44.64 < 0.00  4,88 26.05 < 0.01 
Hour 11,187 125.25 < 0.01  11,121 63.51 < 0.01  11,198 569.13 < 0.00  11,209 117.9 < 0.01 
Direction 3,17 6.63 < 0.01  3,11 5.08 0.02  3,18 9.33 < 0.00  3,19 16.52 < 0.01 
Hour*Direction 33,187 36.09 < 0.01  33,121 16.95 < 0.01  33,198 18.21 < 0.00  33,209 15.4 < 0.01 
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Table A11: Generalized linear mixed model analyses (PROC GLIMMIX) describing the effect 

of time and gender on the field body temperatures (Tb), accuracy of thermoregulation (db) 

and effectiveness of thermoregulation (de – db) of a coastal population of C. cataphractus 

across summer, autumn, winter and spring.  

Effect df 
Tb  db  de – db 

F P  F P  F P 

Hour 11,198 366.16 < 0.01  362.49 < 0.01  36.99 < 0.01 
Day 10,145 23.41 < 0.01  10.05 < 0.01  3.82 < 0.01 
Season 3,11 64.99 < 0.01  234.96 < 0.01  3.82 0.04 
Gender 1,11 0.58 0.46  0.87 0.38  0.5 0.49 
Season*Gender 3,11 0.42 0.74  0.52 0.68  0.48 0.70 
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Chapter 4 

Geographical patterns, with reference to 
seasonality in thermoregulation in the group-

living lizard, Cordylus cataphractus 
 

4.1 Abstract 

The cost-benefit model of thermoregulation predicts thermoregulatory investment in 

proportion to thermoregulatory costs. The model has been experimentally validated and is 

widely accepted. Recent investigations on cold-temperate reptiles have however brought into 

question the model’s validity to all reptiles. Permanent group-living is uncommon among 

squamates. In an arid environment, the permanent group-living phenomenon is expected to 

amplify energetic constraints on site specific insectivorous species, affecting behavioural 

processes such as thermoregulation. The aim of the current study was twofold. The first 

objective was to compare the thermal habitat and subsequent thermoregulatory patterns of 

the permanent group-living Cordylus cataphractus in a coastal (western range limit) and 

inland population (eastern range limit) during the respective annual peaks in food scarcity 

(dry autumn) and food abundance (wet spring). Previous studies have reported low surface 

activity in hot, dry periods when food is scarce. The second objective was to establish 

whether the thermoregulatory activity C. cataphractus varies among seasons in response to 

relative thermal habitat quality (as predicted by the cost-benefit model of thermoregulation), 

or whether the negative effect of living in groups related to increased food constraints, 

dictates thermoregulatory activity. Thermoregulatory assessments were based on several 

indices namely: thermal habitat quality (de), accuracy of thermoregulation (db), the 

effectiveness of thermoregulation (de – db) and thermal exploitation (Ex). These indices were 

collectively calculated from: the preferred temperature range (Tp) of C. cataphractus 

(determined in a laboratory thermal gradients), operative environmental temperatures (Te) 

(measured using copper lizard models in the field), and field body temperatures (Tb) 

(recorded with modified iButton temperature loggers). The current results indicate that 
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copper Te-models used for C. cataphractus provide realistic equilibrium (body) temperatures 

when validated properly, and that the use of energy absorbance measurements through a 

wider electromagnetic spectrum (well into the IR spectrum) results in more accurate Te-

models. The effectiveness and success of thermoregulation did not vary significantly among 

populations during autumn. Conversely, in spring (annual activity peak of C. cataphractus); 

lizards in the coastal population (generally larger groups) thermoregulated more successfully 

than lizards in the inland population (generally smaller groups). The higher thermoregulatory 

success in the coastal population was likely due to reduced predation risk associated with 

increased group-size, in particular, due to relaxed time budgets and by allowing individuals 

to move further from crevices. Group-size and hence the group-living life strategy may 

therefore confer advantages in terms of thermoregulatory capacity in C. cataphractus. 

Lizards from both populations thermoregulated more accurately in autumn than spring, and 

as a function of relative thermal habitat quality, rather than food availability, therefore 

supporting the cost-benefit model of thermoregulation in C. cataphractus, and indicating that 

the group-living life strategy (in relation to amplified food scarcity) does not reduce 

thermoregulatory capacity.  

Key words: Group-living, lizard, thermoregulation, cost-benefit model, food constraints, 

geographic variation. 
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4.2 Introduction 

Thermoregulation is an active (energy consuming) process employed by most reptiles to 

maintain body temperatures near to or within their target preferred temperature range (Tp) 

(Licht et al. 1966). Since reptiles generally rely less on metabolic heat production, body 

temperature (Tb) is largely a function of ambient temperatures (Tas) and availability of 

radiation energy (Pough 1980; Huey 1982; Angilletta 2009). Bakken and Gates (1975) 

suggested the use of an operative environmental temperature (Te), integrating environmental 

temperatures (Ta) (including conductivity properties), convection effects and available 

radiation in a steady-state temperature (i.e. Te) of an organism in a particular microclimate in 

the absence of metabolic heat production and evaporative cooling. When experiencing 

extreme temperatures (i.e. Te far from Tp, high or low) thermoregulation is needed to 

maintain Tbs within the Tp range, or reduce variation in body temperatures (Angilletta 2009), 

otherwise performance may be compromised (Stevenson et al. 1985; Blouin-Demers and 

Weatherhead 2001). An array of behavioural and physiological mechanisms that facilitate 

thermoregulation have been identified which include: selective inactivity, postural 

adjustments, shuttling, microsite selection, orientation, vasoconstriction, vasodilatation and 

panting (Bartholomew 1982; Stevenson 1985; Bauwens et al. 1996; Angilletta 2009). 

Because behavioural thermoregulation infers time and/or energy costs (but also mortality 

and missed opportunity costs), the use of behavioural means to avoid or select 

environmental temperatures may vary among species (Ruibal 1961). Two strategies for Tb 

management (when using a cost-benefit approach) have been identified in ectotherms: on 

the one extreme of the continuum, thermoconformation, and on the other, thermoregulation 

(Ruibal 1961; Hertz et al. 1993; Blouin-Demers and Nadeau 2005). The effectiveness of 

thermoregulation (along the conformity-regulation continuum) may vary at short and long 

term temporal and/or spatial scales within a species, where individuals may shift from being 

strict to moderate thermoregulators, or even undergo a total strategy change, becoming 

thermoconformers (Huey 1974; Hertz et al. 1993; Schauble and Grigg 1998; Herczeg et al. 

2008).  
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Active thermoregulation equates to increased costs related to energy and time, since 

time spent thermoregulating include basking, orientating and moving/shuttling that can be 

mutually exclusive with activities such as foraging or mating (Huey 1974; Grant and Dunham 

1988; Blouin-Demers and Nadeau 2005) or other social activities in group-living species. In 

fact, seasonal variation in the effectiveness and success of thermoregulation in reptiles are, 

in most cases, associated with changes in thermal habitat quality (the deviation of available 

environmental temperatures from the range of preferred temperatures) (Hertz et al. 1993; 

Angilletta 2001), or other known thermoregulatory costs such as social behaviour (i.e. 

aggression or mating and courtship) (Schauble and Grigg 1998) and predation risk (Herczeg 

et al. 2008).  

The cost-benefit model for ectotherm thermoregulation is a conceptual framework to 

explain/understand the selection of thermoregulation strategies along the conformity-

regulation continuum with the associated cost–to–benefit ratios (Huey and Slatkin 1976). 

Based on warm temperate climates, Huey and Slatkin (1976) described the cost-benefit 

model of thermoregulation which suggests that ectotherms become thermoconformers 

(therefore not controlling Tb, being either hypo- or hyperthermic, but mostly hypothermic, 

limiting activity) when costs outweigh the benefits of maintaining a Tb within the preferred 

temperature range (Tp). The cost-benefit model has been validated experimentally (Withers 

and Campbell 1985; Herczeg et al. 2006; Herczeg et al. 2008) and is generally accepted by 

researchers (e.g. Hertz et al. 1993; Gvozdik 2002; Herczeg et al. 2006; Herczeg et al. 2008). 

The application of the Huey and Slatkin (1976) model in environments with extreme 

temperatures was however recently questioned in cold environments (Blouin-Demers and 

Weatherhead 2001; Blouin-Demers and Weatherhead 2002; Blouin-Demers and Nadeau 

2005). In extreme environments, cold or hot, the Huey and Slatkin (1976) model predict 

thermoconformity, but in these environments, the lack of thermoregulation would result in Tbs 

unfavourable for performance (Blouin-Demers and Weatherhead 2001). As an alternative, 

recent studies have shown that reptiles from extreme cold-temperate environments follow a 

different model, investing in thermoregulation even though the costs outweigh the benefits, 
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because the benefits of behavioural thermoregulation still outweigh the disadvantages of 

thermoconformity (Blouin-Demers and Weatherhead 2001; Blouin-Demers and Weatherhead 

2002; Row and Blouin-Demers 2006; Edwards and Blouin-Demers 2007). 

The thermoregulation strategy selected for could be affected by general energetic 

constraints such as prolonged food scarcity (resulting in strict energy budgets). In these 

cases the drive to thermoregulate, even though performance (physiological functioning) may 

be compromised, may be abandoned because of energy budget constraints. For example, 

Lee (1980) found that poorly nourished Anolis sagrei thermoregulated less precisely than 

well-fed conspecifics providing support for the notion that food constraints and its effect on 

the animal may affect thermoregulation. 

Cordylus cataphractus is a saxicolous sit-and-wait forager occurring in social groups of 

up to 58 individuals along the semi-arid to arid far-western parts of South Africa (Mouton et 

al. 1999; Mouton et al. 2000b; Effenberger and Mouton 2007). Group-living amplifies food 

constraints in harsh environments (Mouton et al. 2000a; Hayward 2008) and may therefore 

indirectly affect thermoregulation (Lee 1980). Group-living in isolated rock habitats in 

extreme environments may place further constraints on thermoregulation since density and 

social conflicts may affect microhabitat availability/selection to group members (Huey 1982; 

Chapter 3). It has been shown that C. cataphractus populations undergo seasonal food-

stress (reduced food availability) that may affect outside crevice activity (Mouton et al. 

2000a; Visagie 2001). The rationale being that without the possibility of obtaining food, no 

real benefit exists to be active on the surface of the rocks (Pyke et al. 1977), since activity 

will result in costs of thermoregulation or increased Tbs and associated metabolic energy 

expenditure as well as predation risk. Although the cost-benefit approach described by Huey 

and Slatkin (1976) is based on costs associated with thermoregulation, food stress and 

reduced surface activity could have indirect consequences for costs of thermoregulation. 

Whether the change in activity in a hot dry environment serve as a major constrain on 

thermoregulation, particularly to utilize the benefit of functioning within the preferred 

temperature range (Tp), is not known. Moreover, the limited energy budget may preclude 
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lizards being in the Tp range with increased metabolic energy costs associated. However, 

increased metabolic expenditure due to high Tbs is tentative since; Mouton et al. (2000b) 

have shown that C. cataphractus exhibits an exceptionally low resting metabolic rate at 

different Tas, 68.8 % lower than that known for any other cordylid.  

The major expected cost incurred by group-living on C. cataphractus is suggested to 

be seasonally reduced food availability (Mouton et al. 2000a; Flemming and Mouton 2002; 

Hayward 2008). Although a cost to the animal, it is not a direct cost of thermoregulation and, 

in principle, not part of the Huey and Slatkin (1976) cost-benefit equation. In relation to C. 

cataphractus, the food cost of group-living is therefore not a cost of thermoregulation, yet it 

may affect/override the drive to thermoregulate, in particular by investing less in 

thermoregulation during the annual dry season, simply because of strict energy budgets. 

Although the field of reptile thermal ecology is well established in the literature, only a 

limited number of studies exist in the African-context, of which none to date has explored 

population level variation in thermoregulation, or explored the cost-benefit model of 

thermoregulation. Although C. cataphractus is a relatively well-studied organism (e.g. 

Mouton et al. 1999; Mouton et al. 2000a; Mouton et al. 2000b; Visagie et al. 2002; Curtin et 

al. 2005; Costandius et al. 2006; Effenberger and Mouton 2007; Shuttleworth et al. 2008), 

little is known regarding its thermal ecology, especially with reference to the group-living 

phenomenon and the seasonal decrease in surface activity because of food stress and 

predator risk.   

The primary objective of the current study was to characterize the thermal 

environments and subsequent patterns of thermoregulation in a coastal population of C. 

cataphractus (western range limit, generally with larger groups) and an inland population 

(eastern range limit, generally with smaller groups) during the respective annual peaks in 

expected food scarcity and availability (i.e. autumn and spring (Mouton et al. 2000a)). The 

assessment was performed by applying a suite of quantitative indices namely thermal habitat 

quality (de), thermoregulatory accuracy (db), effectiveness of thermoregulation (de – db), and 

thermal exploitation (Ex). 
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Specific questions addressed:  

1. Does the thermal habitat quality of C. cataphractus and effectiveness and success of 

thermoregulation vary among an inland and coastal population during the dry autumn 

and more mesic spring as predicted by climatic data? 

2. Does the success and effectiveness of thermoregulation by C. cataphractus vary 

seasonally in response to the relative thermal quality as predicted by the cost-benefit 

model of thermoregulation, or is thermoregulation dictated by the amplified energy 

constraints related to group-living? 
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4.3 Materials and Methods 

4.3.1 Study area and animals 

Data collection occurred during the autumn (April) and spring (September) of 2008. The 

coastal population inhabits a series of sandstone ridges near Elands Bay (Western Cape, 

South African (32o19’38.61”S; 18o21’35.78”E)), which falls within the Langebaan Dune 

Strandveld vegetation region, with an annual precipitation of 200 mm (South African Weather 

Service; Mucina and Rutherford 2006) (Figure 4.1). Fog (originating from the cold Benguela 

Atlantic Current) and dew contribute to overall moisture (Mucina and Rutherford 2006; Janse 

van Rensburg 2009). Fog incidence peaks during the warm dry months of March, April and 

May and is least in September (Olivier 2002). The inland population is located in the 

Matjiesrivier Nature Reserve (Western Cape, South Africa, (32o29’01.53”S; 19o21’31.18”E)), 

~120km south-east of the coastal population. The locality has an annual precipitation of 210 

mm (South African Weather Services; Mucina and Rutherford 2006) (Figure 4.1). The area is 

scattered with quartzite sandstone boulders that provide the ideal habitat for C. 

cataphractus, yet, population density is low, with a maximum-recorded group-size of six 

(Retief 2000). In contrast, the coastal study area is densely populated by C. cataphractus 

with group-sizes varying between two and 25 individuals (Visagie 2001). Mean monthly 

maximum ambient temperatures (Ta) are lower at the inland than coastal population for the 

majority of the year, but, corresponds closely among populations during the warm summer 

period, whereas mean min Ta is consistently lower at the inland population throughout the 

year (Figure 4.1). Solar radiation corresponds among populations during the cooler months 

yet is higher at the inland population during the warmer months (Figure 4.1). The fact that 

solar radiation follows an opposite trend (among populations) than Ta-max as well as the 

consistent difference in Ta-min among populations suggests that the corresponding Ta-max 

during the warm period is due to higher solar radiation at the inland population. Monthly 

estimates of rainfall correspond relatively among localities during autumn, yet, being higher 

at the coastal population during spring. 
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Figure 4.1. Mean monthly rainfall (vertical bars), minimum and maximum ambient 

temperatures (lines) and solar radiation (circles) for the coastal (dark grey) and inland (light 

grey) localities (rainfall: 1998-2008, SA Weather Services; temperatures and solar radiation: 

A van Niekerk, unpublished data). Vertical bars indicate the respective sampling periods (A: 

autumn; B: spring). The horizontal bar indicates seasonal activity in C. cataphractus as 

described in the literature (Visagie 2001; Effenberger and Mouton 2007) (slanted-line: 

repressed activity; grey: normal activity; clear: activity unknown). 
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4.3.2 Environmental operative temperature (Te) 

4.3.2.1 Te-model construction  

Operative environmental temperatures (Te) represent a null model for thermoregulation (i.e. 

Tb in the absence of thermoregulation), used to map specific thermal habitats (Hertz et al. 

1993). Operative environmental temperatures (Te) were measured with hollow copper 

models, constructed through electroplating according to the protocol described by Bakken 

and Gates (1975) (Figure 4.2). In brief, lizard casts were manufactured from Wood’s Alloy 

(melting point 70oC) in a latex mould constructed from a single deceased fixated lizard. The 

alloy provided an electric conductible surface to which a copper layer (~0.5mm) was then 

electroplated. The plated casts were heated in an oven at approximately 80oC, allowing the 

alloy to seep out through two manually made holes. To accurately represent heat absorption 

of live lizards, models were painted in correspondence to lizard skin colouration and Te 

therefore represents the maximum attainable body temperature in a particular microhabitat 

at a particular time.   

 

 

Figure 4.2. Hollow copper models of C. cataphractus painted in accordance to the skin 

absorbance of an Elands Bay (A) and Matjiesriver (B) population measured at 250 to 

2500nm. 

 

� �
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 In order to select appropriate paint, the initial skin reflectance of one individual per 

population was measured with a USB 5000 spectroreflectometer (Ocean Optics, USA) at 

300 nm to 750 nm. To calculate a mean reflectance through the spectrum, measurements 

were taken at 40 random points across each animal’s body surface. The same device was 

then used to identify paints that match the mean reflectance. The skin reflectance of one 

lizard per population was subsequently measured at 250 nm to 2500 nm (to include a larger 

portion of the IR spectrum) with a Lambda 90 UV/VIS spectroreflectometer (Perkin Elmer, 

USA). This device has a refraction sphere that integrates reflectivity over a surface area of 

~2500.0 mm2. Three measurements were taken on the dorsal body surface of each lizard. 

The integrated reflection values taken at each location was averaged, providing an average 

reflection value for the individual to represent the particular population (Figure 4.3). 

After noting a considerable difference between the average reflective values measured 

at 300 nm – 750 nm (coastal population: 21.7 % ± 14.6 %; inland population: 46.4 % ± 24.7 

%), and 250 nm – 2500 nm (coastal: 14.3 % ± 9.0 %; inland: 17.9 % ± 10.2 %), models were 

re-painted prior to the spring field trial, since the autumn trial had already been completed. 

Colour and hue space values from the 250 nm – 2500 nm range of reflective values were 

determined and translated to blue, red and yellow colour and hue parameters, which were 

used as reference values to compose paint-colours that accurately match the average 

(integrated) reflectances of the lizards (i.e. coastal: DCB 432 Dark brown; inland: DSE 546 

Sahara green, Plascon, RSA).  
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Figure 4.3. The mean skin reflectances recorded for a coastal and inland population of C. 

cataphractus. Measurements were taken with a Lambda 90 UV/VIS spectrometer (Perkin 

Elmer, USA). Values represent the major means of measurements taken (at three positions 

on the dorsal body surface of each lizard) at five nanometre intervals across a 250 nm to 

2500 nm range (N = one lizard per population). 

 

Each Te-model was fitted (internally) with an iButton temperature logger (Maxim, USA). 

Models were initially filled with water (to mimic animal tissue) (first field trial, autumn, 2008), 

but had a low success rate due to extensive iButton failure and leakage of water. All models 

were therefore used empty (dry) during the subsequent (spring) trial. The Te-models from the 

autumn trial were categorized based on their water content when collected (i.e. 0 %, 50 % or 

100 % water content). Four combinations of Te models were therefore used in this study (i.e. 

three in autumn according to reflection measurements in the 300 nm – 750 nm range, and 

one for spring according to the 250 nm – 2500 nm reflection range). Measurements taken 

with each model-type were adjusted according to the appropriate linear regression function 

(see section 4.3.2.2).   
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4.3.2.2 Model validation and calibration  

The heat responses of models and live lizards were compared to obtain the correlation 

between operative temperatures (Tes) and real equilibrium body temperatures (Tb) of a live 

lizard. This linear regression function was used to adjust Te values.  

A single lizard from each population was fitted with a K-type thermocouple secured ~10 

mm into its cloaca with strips of adhesive tape (Elastoplast, UK). Each lizard was fixed firmly 

to a low thermally conductive cardboard sheet with plastic coated copper wire and placed 

beneath a halogen lamp (500 watts) alongside three Te-models. All validations were done in 

a controlled environmental chamber (18 oC ± 1.5 oC). The halogen lamp was raised, allowing 

models and lizards to reach equilibrium temperatures, before being lowered at various 

intervals, thus generating a series of equilibrium temperatures which could be recorded with 

a Pico TC-08 data logger (Pico Technology, UK).  

The measure of correlation between lizard and Te-model temperatures was assessed 

with a linear regression (Figure 4.4). Theoretically, a slope of one and an intercept of zero 

indicate a perfect correlation between model and lizard equilibrium temperatures, therefore 

implying that the model paint colour represent the correct reflectance. All model 

temperatures (Te) were calibrated according to the appropriate linear function (Te = slope*Tb 

+ y-intercept) for analyses purposes (Figure 4.4). 
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Figure 4.4. Two linear regression-fits indicating the correlation between lizard body 

temperatures (Tb-cloacal) and Te-model temperatures (Te) for both the coastal and inland 

populations of C. cataphractus. Models were painted as to match skin reflectance of live 

lizards, determined at 250 nm – 2500 nm. Individual readings represent equilibrium 

temperatures recorded beneath a 500W halogen bulb positioned at varying heights (N = one 

lizard and three models per population).   

 

4.3.2.3 Model placement in the field (mapping the thermal environment) 

Operative models were spread among rock-aspects (representing the four main wind 

directions, NESW) of a subset of rocks corresponding to those typically inhabited by C. 

cataphractus (coastal: N = eight rocks, 34 models; inland: N = nine rocks, 22 models). This 

approach was specifically followed to, in theory, map the thermal habitat around a single 

hypothetical rock, and in the process prevent pseudo replication through the oversampling of 

a limited number of rocks (Hurlbert 1984). A minimum of five models were collectively placed 

within or on the edges of crevices, whereas the rest were placed at variable distances away 

from crevices. Operative environmental temperatures (Te) were recorded at the two localities 
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in concert at 15 minute intervals during April (autumn) and September (spring) for 14 

consecutive days.   

4.3.3 Field body temperatures (Tb) 

Effectiveness and cost of thermoregulation can only be assessed if data on body 

temperatures of free ranging lizards are available (Hertz et al. 1993). Field body 

temperatures (Tb) for C. cataphractus individuals were recorded with Thermochron iButton 

temperature loggers (Maxim, USA), physically modified as illustrated by Robert and 

Thompson (2003) (Figure 4.5). The electronic components panel and battery were arranged 

alongside each-other which further reduce the thickness of the logger to 3.8mm. The loggers 

were waterproofed with Plastidip (Performix, USA) and attached to the dorsal body surface 

of the lizard using super glue gel (Henkel Pattex, DE).  

Although reports of inter-group movements exist (Costandius et al. 2006), Cordylus 

cataphractus, in most cases, inhabit a single rock for prolonged periods (Visagie 2001; 

Effenberger and Mouton 2007), making it practical to attach micro-temperature-loggers to 

these animals without the use tracking equipment. However, during extended periods of field 

recording, loss of lizards (due to emigration or death) is a reality. 

All iButtons were calibrated using the equations derived from linear regression of body 

surface temperatures versus cloacal-Tbs for individuals from the respective populations (see 

section 2.3.2.2); therefore, partly correcting for the difference between the actual internal Tb 

and body surface temperature. Field body temperatures (Tb) were recorded in concert with 

Te at 15 minute intervals for 14 days during April (autumn) and September (spring) 2008. 
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Figure 4.5. A Cordylus cataphractus individual from the inland Matjiesriver population fitted 

with a modified Thermochron iButton temperature logger. The lizard is positioned in front of a 

rock crevice characteristically inhabited by the species. 

4.3.4 Preferred temperature range (Tp) 

The preferred temperature ranges (Tp) of both the inland and coastal populations were 

estimated in a laboratory thermal gradient during the autumn and spring of 2008 (Chapter 2).  

4.3.5 Data analysis 

4.3.5.1 Calculation of thermoregulatory indices  

The indices describing thermal habitat quality (de), accuracy of thermoregulation (db) (Hertz 

et al. 1993), the effectiveness of thermoregulation (de – db) (Blouin-Demers and 

Weatherhead 2001) and thermal exploitation (Ex) (Christian and Weavers 1996) were 

calculated by selectively employing Te, Tb and Tp (see section 3.3.5.1). 



132 
 

 
 

4.3.5.2 Statistical analysis 

Rainy, overcast or abnormally windy days were excluded as well as days when a subset of 

lizards clearly remained inactive (having markedly lower Tbs than the others on a specific 

day), leaving nine clear skies days in autumn and four in spring. The data from several 

models were lost due to either iButton failure or Te-models that were damaged, moved, or 

carried off by wild and/or domestic animals (autumn: N = 21 coastal and nine inland; spring 

N = 28 coastal and 21 inland). Similarly, the data of numerous lizards were lost due to either 

faulty iButtons, or irretrievable individuals (autumn: N = seven coastal and four inland; spring 

N = three coastal and three inland). 

Temporal autocorrelation of data was assessed with Time Series Analysis 

(STATISTICA 8, Statsoft Inc., USA). Typically, temperatures taken 30 minutes apart were 

independent of each other for both Te and Tb. Normality of data was assessed with the 

Shapiro-Wilk’s W-test or Kolmorokov-Smirnhof when datasets exceeded 2000 values. 

Transformations did not improve normality and was subsequently not used.  

Because of the nature of the data (being both repeated measures across days, 

unbalanced due to missing values and since residuals were in many cases not normally 

distributed) generalized linear mixed model analyses (PROC GLIMMIX, SAS Institute Inc., 

USA) with experimental day as repeated measure were used. The compound symmetry 

covariance structure was employed (Littell et al. 1996). The analysis was performed on 

hourly means calculated from measurements taken at 15 minute intervals (7h00 – 19h00) 

leaving 12 hourly mean values per day per season for each experimental unit (i.e. model or 

lizard). Although some of the lizards were used during more than one season, these were in 

the minority and lizards were therefore assumed as independent among seasons.  

A non-parametric bootstrap ANOVA (x1000 iterations) (Efron 1993) (performed on 

hourly means calculated per season for each lizard unit) was applied for the thermal 

exploitation index (Ex) since the index was calculated across days and therefore lacks 

“experimental day” as repeated measure. Gender had no significant effect on Tb or db during 

all four seasons (P > 0.95) and was subsequently excluded from all analyses. Data were 
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analyzed using SAS Enterprize Guide 3, SAS 9.1 (SAS Institute Inc., USA) and STATISTICA 

8 (Statsoft Inc., USA). Means are reported ± one standard deviation (SD). Probability values 

(P) of less than 0.05 were accepted as significant.   
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4.4 Results 

4.4.1 Operative Te-model calibration  

The models from the coastal population (0 %, 50 % and 100 % water volume) were highly 

correlated to lizard Tb, with slopes close to one and y-intercepts relatively close to zero in all 

three cases (0 % (water content): Te-adjusted = 0.96 Tb – 0.04, R² = 0.93; 50 %: Te-adjusted 

= 1.02 Tb – 1.12, R² = 0.95; 100 %: Te-adjusted = 1.02 Tb – 0.50, R² = 0.97). In contrast, the 

inland population’s models were less accurate representations of live lizards (0%: Te-

adjusted = 0.85 Tb + 0.75, R² = 0.82; 50 %: Te-adjusted = 0.68 Tb + 6.28, R² = 0.94; 100 %: 

Te-adjusted = 0.91 Tb + 0.16, R² = 0.96). The models of both populations that were repainted 

according to 250 nm – 2500 nm reflectance values were more accurate than those based on 

the initial 300 nm – 750 nm reflectivities, with slopes and intercepts of close to one and zero 

(coastal: Te-adjusted = 1.02 Tb + 0.24, R² = 0.95; inland: Te-adjusted = 1.03 Tb – 0.10, R² = 

0.96) (Figure 4.4). The slopes differed significantly from zero for all model types (P < 0.01). 

Model temperatures did not vary significantly from lizard body temperatures (Tb) (when 

exposed to equal radiation) in all cases at both the coastal (300 nm – 750 nm: 0 % (water 

content), P = 0.33; 50 %, P = 0.53; 100 %, P = 0.89; 250 nm – 2500 nm, P = 0.29) and 

inland populations (250 nm – 750 nm: 0%, P = 0.06; 100%, P = 0.14; 250 nm – 2500 nm, P 

= 0.35), except for the inland 50 % water content model (P = 0.02) (non-parametric bootstrap 

ANOVA). 
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Figure 4.6. Mean operative environmental temperatures (Te) as a function of the time of the 

day, at a coastal and inland population of C. cataphractus during autumn and spring 

(calculated across sample days; N = nine autumn days, five spring days). The horizontal 

rectangle depicts the preferred temperature range of C. cataphractus.  

 

4.4.2 Spatial and temporal variation in operative environmental temperatures 

(Te) and thermal habitat quality (de) (Figures 4.6, 4.7, 4.8 and 4.9) 

Mean operative environmental temperatures (Te) varied significantly as a function of the time 

of day (F 11,858 = 605.54, P < 0.01), time of year (season) (F1,75 = 23.14, P < 0.01) and 

geographic location (population) (F1,75 = 13.86, P < 0.01). Moreover, mean Tes were 

significantly higher in autumn than spring at both localities (coastal: F1,47 = 14.18, P < 0.01; 

inland: F1,28 = 12.22, P < 0.01) (Figure 4.6; Table 4.2), resulting in varied thermal habitat 

quality (de), being significantly lower (high de) in the cooler spring than autumn at both 

populations (inland: F1,28 = 30.57, P < 0.01; coastal: F1,47 = 37.71, P < 0.01) (Figures 4.6 and 

4.7; Table 4.2). The proportion of Tes within Tp was 49.2 % at the inland and 31.2 % at the 
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coastal locality during autumn, compared to the respective 22.8 % and 13.4 % in spring 

(7h00 – 19h00) (Figures 4.8 and 4.9). 

In autumn, the inland locality had favourable Tes (overall mean Te = 26.0 oC), on 

average matching Tp from 12h00 to 18h00 (Figure 4.6), and resultingly high thermal habitat 

quality (de approaching zero) (overall mean de = 2.0 oC) (Figure 4.7). Conversely, mean Tes 

at the coastal locality only matched Tp from 10h00 to 12h00 and again from 17h00 to 18h00 

in autumn (Figure 4.6), generally being higher (overall mean Te = 29.5 oC; F1,28 = 9.29, P < 

0.01) and significantly less favourable (i.e. low thermal habitat quality) than that of the inland 

locality (overall mean de = 3.3 oC ± 3.8 oC; F1,28 = 9.3, P < 0.01) (Figure 4.7). 

In spring, Tes were unfavourable at the inland locality (overall mean Te = 21.7 oC), on 

average matching Tp only from 13h00 to 15h00 (Figure 4.6) which related to generally poor 

thermal quality (high deviation of Te from Tp) (overall mean de = 6.3 oC). The coastal locality 

had significantly higher mean Tes than the inland during spring (overall mean Te = 24.3 oC; 

F1,47 = 9.64, P < 0.01). Conversely, although mean Te equalled Tp for at least two hours 

longer at the coastal locality (12h00 – 16h00) (Figure 4.6), the overall thermal habitat quality 

(de) (7h00 – 19h00) was still low (high de) (overall mean de = 6.6 oC), and did not vary 

significantly from that of the inland locality (F1,47 = 0.03, P = 0.87) (Figure 4.7).
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Table 4.2. Summary of the overall mean operative temperatures (Te), field body temperatures (Tb), preferred temperature range (Tp), thermal 

habitat quality (de), accuracy of thermoregulation (db), effectiveness of thermoregulation (de – db) and % thermal exploitation (Ex) measured and 

calculated respectively for a coastal and inland population of C. cataphractus during autumn and spring.  

Population Season Time Te (oC) Tb (oC) Tp (oC) de (oC) db (oC) de – db* Ex (%) 
(10h00-18h00) 

Coastal 

Autumn 7h00 – 19h00 29.5 ± 7.5 27.0 ± 4.2 26.3-33.0 3.3 ± 3.8 1.6 ± 2.2 2.0 ± 1.9 58.5 ± 33.8 
24h 24.7 ± 7.7 26.0 ± 3.7  4.9 ± 4.1 1.8 ± 2.1 3.2 ± 2.2  

Spring 7h00 – 19h00 24.3 ± 9.0 24.9 ± 8.2 27.5-32.6 6.6 ± 5.6 5.1 ± 5.9 2.6 ± 2.1 39.7 ± 18.6 
24h 18.2 ± 9.3 20.4 ± 7.8  11.0 ± 6.5 8.4 ± 6.0 3.2 ± 1.9  

Inland 

Autumn 7h00 – 19h00 26.0 ± 4.8 27.1 ± 4.7 25.8-32.5 2.0 ± 2.9 1.6 ± 2.5 0.8 ± 1.3 56.8 ± 30.5 
24h 23.1 ± 4.7 25.8 ± 4.5  3.8 ± 3.2 1.9 ± 2.8 2.1 ± 2.0  

Spring 7h00 – 19h00 21.70 ± 7.9 21.2 ± 8.0 26.6-32.6 6.3 ± 6.3 6.7 ± 6.4 1.6 ± 2.0 19.3 ± 19.3 
24h 15.9 ± 8.6 18.2 ± 6.9  11.4 ± 7.4 9.0 ± 5.7 3.2 ± 2.7  

*Calculated only from positive de – db (see section 4.4.4) 
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Figure 4.7. Thermal habitat quality (de) calculated for a coastal and inland population of C. 

cataphractus during autumn and spring. A low de indicates high thermal quality (i.e. small 

difference between Te and Tp).  
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Figure 4.8. The frequency distributions of operative environmental temperatures (Te) and 

field body temperatures (Tb) recorded in a coastal and inland population of C. cataphractus 

during autumn. Arrow heads indicate overall means, whereas the vertical rectangle depicts 

the preferred temperature range of C. cataphractus as determined for the respective 

populations during autumn (Te: N = 21 operative models coastal and nine inland; Tb: N = 

seven lizards coastal and four inland). 
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Figure 4.9. The frequency distributions of operative environmental temperatures (Te) and 

field body temperatures (Tb) recorded during spring (7h00 – 19h00) in a coastal and inland 

population of C. cataphractus. Arrow heads indicate overall means, whereas the vertical 

rectangles depict the preferred temperature range of C. cataphractus as determined for the 

respective populations during spring (Te: N = 28 models coastal, 21 inland; Tb: N = three 

lizards coastal, three inland). 

4.4.3 Field body temperatures (Tb) and accuracy of thermoregulation (db) 

(Figures 4.8, 4.9, 4.10 and 4.11) 

Mean field body temperatures (Tb) varied significantly as a function of the time of day (F8,98 = 

20.07, P < 0.01), time of year (season) (F1,13 = 41.39, P < 0.01) and geographic location 

(among populations) (F 1,13 = 11.54, P < 0.01). The inland population maintained significantly 

higher mean Tbs during autumn than spring (overall means: autumn 27.1 oC ± 4.7 oC, spring 

21.2 oC ± 8.0 oC; F1,5 = 308.19, P < 0.01) (Figure 4.10), which corresponds to the trend 
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observed in Te (Figure 4.6). The Tbs of the coastal population, although on average being 

higher in autumn than spring, did not vary significantly among seasons (overall means: 

autumn 27.0 oC ± 4.2 oC; spring 24.9 oC ± 4.7 oC; F1,8 = 2.08, P = 0.19) (Figure 4.10; Table 

4.2), in contrast to the trend observed in Te (Figure 4.6). The higher autumn-Tbs related to 

significantly higher mean thermoregulatory accuracy (low db) (Tbs approaching Tp) than 

spring at both the coastal (F1,8 = 59.32, P < 0.01) and inland (F1,5 = 467.33, P < 0.01) 

populations (Figure 4.11; Table 4.2). Moreover, the proportion of Tbs within Tp was higher at 

both populations in autumn (inland: 50.2%; coastal: 50.7%) than in spring (inland: 29.4%; 

coastal: 15.5%) (7h00 – 19h00) (Figures 4.8 and 4.9).   

Autumn was characterized by the accurate maintenance of Tb within Tp (low db) at both 

populations (overall mean db: coastal 1.6 oC ± 2.2 oC; inland 1.6 oC ± 2.5 oC) for prolonged 

periods (coastal: 13h00 – 22h00; inland 12h00 – 23h00) (Figures 4.10 and 4.11). 

Conversely, during spring, thermoregulatory accuracy was low (overall mean db: coastal 5.1 

oC ± 5.9 oC; inland 6.7 oC ± 6.4 oC) and mean Tbs equalled Tp for shorter periods (coastal: 

12h00 – 17h00; inland: 14h00 – 17h00) (Figures 4.10 and 4.11).   

At geographic scale, mean field body temperatures (Tb) varied significantly among 

populations during spring (F1,4 = 11.93, P = 0.03), being higher and closer to Tp in the 

coastal population (i.e. significantly lower db: F1,4 = 9.09, P = 0.04) (Figures 4.10 and 4.11; 

Table 4.2). Conversely, during autumn, both mean Tb and mean db did not vary significantly 

among populations (Tb: F1,9 = 0.17, P = 0.69; db: F1,9 = 0.15, P = 0.71) (Figures 4.10 and 

4.11). 
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Figure 4.10. Mean field body temperature (Tb) as a function of time of day in a coastal and 

inland population of C. cataphractus during autumn and spring. The horizontal lines depict 

the preferred temperature range of C. cataphractus.  
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Figure 4.11. Accuracy of thermoregulation (db), expressed as the degree of deviation of Tb 

from Tp, as a function of time of day in a coastal and inland population of C. cataphractus 

during autumn and spring. A db value of zero indicates perfect accuracy (i.e. Tb = Tp) (Hertz 

et al. 1993).  

4.4.4 Effectiveness of thermoregulation (de – db) and thermoregulatory strategy 

(thermoregulation versus thermoconformation) (Figures 4.12 and 4.13) 

A high frequency of de – db values were below zero at both populations during spring (Figure 

4.12), suggesting avoidance of thermally suitable microhabitats (Hertz et al. 1993; Blouin-

Demers and Weatherhead 2002). For analysis purposes, all de – db values below zero were 

subsequently transformed to zero, seeing that zero denotes perfect thermoconformation and 

sub-zero values would have an unrealistic influence on results from a thermoregulatory 

perspective.  

Spring mean de – db values were below zero for the majority of the day at the inland 

population (9h00 – 13h00), as well as (although for a shorter duration) at the coastal (9h00 – 

10h00) (see Figure 4.12). Conversely, in autumn, mean de – dbs were predominantly positive 
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at both populations, decreasing only slightly below zero at 10h00 in the coastal population, 

after which it gradually increased indicating active thermoregulation (Figure 4.12). Mean de – 

dbs remained near zero for most of activity time in the inland population indicating 

thermoconformation (Figure 4.12).  

The mean effectiveness of thermoregulation (de – db) differed significantly among 

seasons at the coastal (F1,8 = 7.03, P = 0.03) and inland (F1,5 = 107, P < 0.01) populations 

(Figure 4.12; Table 4.2). At geographic scale, the mean effectiveness of thermoregulation 

(de – db) was significantly higher at the coastal than inland population during autumn (F1,9 = 

210.27, P < 0.01), yet not during spring (F1,4 = 7.18, P = 0.06) (Figure 4.12; Table 4.2). 

 

 

Figure 4.12. The effectiveness of thermoregulation (de – db) which expresses the degree of 

departure from thermoconformity (de – db = 0: perfect thermoconformity), as a function of 

time of day in a coastal and inland population of C. cataphractus during autumn and spring. 
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The correlation between thermal habitat quality (de) and the accuracy of 

thermoregulation (db) (Figure 4.13) provides a further estimate of thermoregulatory 

investment (Blouin-Demers and Nadeau 2005; Edwards and Blouin-Demers 2007), 

additionally categorizing investment in three groups based on the slope (m) of the correlation 

function: (1) a slope (m) = 1 indicates thermoconformity (the accuracy of thermoregulation 

therefore increasing or decreasing directly proportional to thermal habitat quality (see Figure 

4.13)); (2) m < 1 suggests a decrease in thermoregulatory investment functional to increased 

thermal habitat quality (towards zero) (indicated by the vertical distance between 

thermoconformity slope (=1) and the data point) as predicted by the cost-benefit model of 

thermoregulation, since thermal habitat quality is the major determinant of thermoregulatory 

costs (Huey and Slatkin 1976); and (3) m > 1 increased thermoregulatory investment 

functional to decreased thermal habitat quality (i.e. increased costs). 

In autumn, both populations moved further from conformity as thermal habitat quality 

became poorer which suggests active thermoregulation (i.e. thermoregulatory accuracy 

increased as thermal habitat quality decreased) (Figure 4.13). In spring, the coastal 

population moved towards conformity as thermal quality decreased, whereas the inland 

population seemed to tend towards thermoconformation across the de range (Figure 4.13). 
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Figure 4.13. The accuracy of thermoregulation (db) (absolute deviation of Tb from Tp) versus 

thermal habitat quality (de) (the absolute deviation of Te from Tp) in an inland and coastal 

population of C. cataphractus during autumn and spring. The solid black line represents 

thermoconformity (i.e. slope (m) = one). The vertical distance between the conformity line 

and a line representing a particular species/population indicates effectiveness of 

thermoregulation (de – db) (Blouin-Demers and Nadeau 2005). The cost-benefit model of 

thermoregulation (Huey and Slatkin 1976) predicts that the accuracy of thermoregulation will 

increase (i.e. decreased db) proportional to increased thermal habitat quality (i.e. decreased 

de) resulting in a slope which exceeds one (m > 1). In autumn, lizards from both populations 

thermoregulated more effectively (described by de – db) when thermal habitat quality was low 

(coastal autumn, m = 0.69; inland autumn, m = 0.73; coastal spring, m = 1.25; inland spring, 

m = 0.90). 
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4.4.5 Thermal exploitation (Ex) (Figure 4.14) 

The proficiency with which lizards exploited their thermal habitat (the time in which Tbs were 

within Tp divided by the time potential Tbs in Tp (i.e. Te) were available) increased gradually 

as a function of time of day (as operative environmental temperatures (Te) increased) at both 

localities during autumn and spring (Figure 4.14). In autumn, thermal exploitation was 

relatively high, exceeding 80 % for most of the afternoon at both the coastal (15h00 – 22h00) 

and inland populations (16h00 – 17h00 and 19h00 – 21h00) (Figure 4.14). Conversely, Ex 

was lower at both populations in spring than autumn. This difference was however significant 

only in the inland population (coastal: P = 0.20; inland: P < 0.01, non-parametric bootstrap 

ANOVA) (Figure 4.14; Table 4.2). At geographic scale, thermal exploitation was significantly 

higher at the coastal population in spring (P < 0.01, non-parametric bootstrap ANOVA) but 

not so in autumn (P > 0.95, non-parametric bootstrap ANOVA) (Figure 4.14; Table 4.2). 

 

 

 

 

 



148 
 

 

 

Figure 4.14. Thermal exploitation (Ex) of a coastal and inland population of C. cataphractus 

as a function of time of day during autumn and spring. Thermal exploitation describes the 

degree to which a reptile exploits the thermally favourable opportunities for accurate 

thermoregulation, particularly describing the time-fraction (%) during which Tb equals Tp 

when permissive in a habitat (Christian and Weavers 1996).  
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4.5 Discussion 

Ectotherms, characteristically exhibit low metabolic heat production with relatively low 

resistance to heat loss (Huey 1982). Behavioural and physiological thermoregulation is 

central to maintaining Tb within the preferred range of temperatures, the cost of which may 

be off-set by the benefit of increased/continued physiological performance (Angilletta 2009). 

The extent of thermoregulation in many reptilian species is known to vary temporally and 

geographically and may result in a total strategy change (from thermoregulator to 

thermoconformer) (Hertz et al. 1993; Schauble and Grigg 1998), or simply reduced 

thermoregulatory activity/investment (Angilletta 2001; Diaz and Cabezas-Diaz 2004; 

Clusella-Trullas et al. 2009).   

The cost benefit model of thermoregulation (Huey and Slatkin 1976) attempts to 

explain thermoregulatory investment and implicitly states that the extent/effectiveness of 

behavioural thermoregulation performed varies as a function of the relative cost–to–benefit 

ratios of such behaviour, and that if the costs outweigh the benefits, thermoregulatory activity 

will be abandoned. In a recent meta analysis, Blouin-Demers and Nadeau (2005) explored 

the effectiveness of thermoregulation (de – db) and thermal exploitation (Ex) of numerous 

lizards from variable habitats and surprisingly observed a trend for lizards to invest more (i.e. 

higher de – db) in high cost habitats opposed to low cost habitats, in contrast to the prediction 

of the cost-benefit model of thermoregulation. The results of Blouin-Demers and Nadeau 

(2005) suggest that the disadvantages of thermoconformity outweigh the costs of 

thermoregulation in thermally unfavourable habitats. 

Cordylus cataphractus exhibits various life history traits such as a sit-and-wait foraging 

mode (Mouton et al. 2000a), permanent group-living (Mouton et al. 1999), extended periods 

of lowered surface activity (Visagie 2001), a degree of thermally independent and highly 

repressed resting metabolic rate (RMR) (Mouton et al. 2000b), which makes this species an 

ideal model to answer questions regarding the cost-benefit model for thermoregulation. 

Moreover, this study is one of few studies addressing the functional thermal ecology of an 
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African reptile species, and the first to explore population-level variation in field thermal 

ecology. 

In spring, the success and effectiveness of thermoregulation as well as the proficiency 

with which available favourable Tes in the habitat was exploited varied significantly among 

the inland and coastal populations, even though thermal habitat quality did not. 

Thermoregulatory success was higher in both the inland and coastal populations of C. 

cataphractus during the dry autumn (when the expected food constraints amplified by a 

group-living life strategy expectedly peaks (Mouton et al. 2000a)) than the more mesic spring 

when food abundance is high.  

Hollow copper models of lizards have not been widely used in local thermoregulation 

studies (Clusella-Trullas et al. 2009), and the current results underline the value of using 

operative temperature (Te)-models painted according to lizard dermal reflectance (EM 

spectrum range from UV to near IR, 2500nm) to obtain a view of the distribution of operative 

temperatures in a lizard’s habitat. Dzialowski (2005) reviewed the use of operative 

temperature models and stressed the importance of painting models to closely match the 

animal’s dermal absorbance as well as to calibrate such models. When model equilibrium 

temperatures are correlated to the equilibrium body temperatures of a live lizard exposed to 

matching thermal conditions, a slope and R2 of one in the correlation function indicates that 

the model provides perfect representations of equilibrium Tbs. The current copper models 

provided more realistic equilibrium Tbs when painted in relation to a broader range of skin 

absorbance which includes a portion of the near infrared spectrum (i.e. 250 nm – 2500 nm), 

in comparison to a narrower range (300 nm – 750 nm), and in general were good 

representations of lizard equilibrium body temperatures.  

Skin reflectance varied among populations, being 3.5 % higher at the inland (17.9 %) 

than the coastal (14.3 %) population (250 nm – 2500 nm). Published records of skin 

reflectance exist for only three other cordylids namely: Cordylus cordylus (15.2 %) and the 

melanistic Cordylus niger (5.3 %) and Cordylus oelofseni (6.9 %) (290 nm – 2600 nm) 
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(Clusella-Trullas et al. 2009). Measurements obtained for C. cataphractus corresponded 

closely to the non-melanisitic C. cordylus (Clusella-Trullas et al. 2009).   

The modified Thermochron iButtons, although relatively unreliable because of low 

recapture success or electronic failure, still proved functional and valuable to measure field 

body temperatures (Robert and Thompson 2003; Lovegrove 2009). Modified iButtons 

therefore comprise a useful alternative to the conventional “grab and jab” or invasive radio 

telemetry techniques, allowing the continuous measurement of Tbs (Robert and Thompson 

2003).  

In spring, mean field body temperatures as well as thermoregulatory accuracy (db), 

effectiveness of thermoregulation (de – db) and thermal exploitation (Ex) varied significantly 

among populations despite the fact that thermal habitat quality (de) did not. In particular, 

mean body temperatures of individuals from the inland population on average reached the 

preferred temperature (Tp) range for only three hours per day (15h00 – 17h00), whereas the 

coastal population thermoregulated with higher accuracy, on average maintaining Tb within 

Tp for six hours per day (12h00 – 17h00). The thermal exploitation index (Ex) indicates that 

the inland population was less successful at maintaining Tb within Tp when permissive in 

their habitat in spring (Ex inland: 19.3%; coastal: 39.7%). Moreover, the effectiveness of 

thermoregulation (de – db) was higher at the coastal population. Note however that the mean 

de – db values decreased below zero for a considerable period of time at the inland 

population (9h00 – 13h00) and for a shorter period at the coastal (9h00 – 10h00). A de – db 

of zero describes thermoconformity and the magnitude of increase in de – db, the amount of 

thermoregulation performed (Blouin-Demers and Weatherhead 2001). Negative de – db 

values may indicate active avoidance of thermally suitable microsites (Hertz et al. 1993; 

Blouin-Demers and Weatherhead 2001; Labra et al. 2001), and if variable among 

populations, is expected to result in differences in the effectiveness and success of 

thermoregulation.  

Various potential sources of seasonal or geographic variation in thermoregulation 

correspond to that of avoidance behaviour (i.e. negative de – dbs). These include: (1) social 
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behaviour such as mating and courtship (Shine 1980; Schauble and Grigg 1998; Herczeg et 

al. 2008); (2) predation risk (Hertz et al. 1993; Herczeg et al. 2008); (3) foraging behaviour 

(Hertz et al. 1993) and (4) territorial (home range) boundaries and aggression. In addition, 

the major known source of seasonal and geographical variation in thermoregulation is 

thermal habitat quality (Angilletta 2001; Blouin-Demers and Nadeau 2005), and an additional 

source of negative de – dbs is operative models that are placed in micro habitats that are 

either inaccessible to the animals or inappropriate in relation to natural movement patterns 

(Wills and Beaupre 2000). 

In an attempt to explain the variation in thermoregulation among the coastal and inland 

populations in spring, the abovementioned potential sources of variability in thermoregulation 

will be considered for geographic variation and negative de – db values collectively seeing 

that these elements are most likely related. 

 (1) Social behaviour such as mating and courtship  

Spring marks the beginning of the peak activity time and mating season of C. cataphractus 

(Visagie 2001). The avoidance of thermally suitable microsites or altered thermoregulation 

may be associated with mating and courtship (Shine 1980; Stevenson et al. 1985). 

Effenberger (2004) however reported that males and females respectively spent only 3.5 % 

and 2.2 % of the day exhibiting mating behaviour outside rock crevices during peak mating 

season and it therefore seems unlikely that social behaviour resulted in the observed 

geographic variation in thermoregulation. 

 (2) Territorial boundaries and aggression.  

Large C. cataphractus groups may contain numerous males that typically occupy 

neighbouring sub-sections (around rocks) which they aggressively defend. Such territorial 

boundaries may deny males access to thermally suitable microsites. None of the groups 

sampled at the (low density) inland population however contained multiple males and the 

fact that the (negative de – db) effect was most pronounced at the inland population suggests 

male-male aggression as an unlikely explanation.  

(3) Predation risk  
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2008). Hayward (2008) found that vigilance behaviour, scanning rate, predator detection rate 

and the tempo of re-emergence from crevices (after a potential predator encounter) 

proportionally decreases as a function of increased group size, thus providing conclusive 

evidence for predator evasion as a major advantage of the group-living life strategy in C. 

cataphractus. Group-living may therefore indirectly contribute to efficient thermoregulation 

due to reduced predation risk, which (in the context of C. cataphractus) is expected to occur 

in two ways. Firstly, the reduced vigilance and scanning rate associated with larger groups 

will relax time budgets, potentially allowing more time spent thermoregulating. Secondly, the 

lower vigilance and predator detection rate will promote movement (further) away from 

crevices which may improve thermoregulatory capacity. The aforementioned prediction is 

supported by the fact that individuals from larger groups are known to move further away 

from crevices in spring (Visagie 2001). 

In the spring study, lizards from the coastal population (larger groups and larger 

population) were captured from a group consisting of 14 individuals, and those from the 

inland from groups of four or less. The fact that the inland population (smaller groups) 

thermoregulated less proficiently suggest that the observed population-level variation in 

thermoregulation may be related to varied levels of predation risk associated with variable 

group sizes, and that group-living confers thermoregulatory benefits to C. cataphractus. 

Because the effective predation risk (experienced by animals) will vary proportionally 

to group-size (Krebs and Davies 1993), the response is expected to be present throughout 

the day, for example, members from smaller groups are expected to predominantly remain 

closer to their crevices. It may therefore be that lizards from the inland population remained 

close to crevices (due to increased equilibrium predation risk), experiencing lower Tbs than 

were potentially available to them during the early hours of the day, in principle avoiding 

thermally suitable microsites. Operative environmental temperatures are in general cooler 

near crevices in the habitat of C. cataphractus (Chapter 3). As the rocks heated up, the 

available Tes near crevices increased. This may explain why the mean Tb was higher than 

mean Te from 15h00 into the night at the inland population. The fact that the effectiveness of 



154 
 

 

the thermoregulation index (de – db) was below zero from 9h00 to 10h00 at the coastal 

population suggest that lizards were not yet fully active and still experienced the cool Tes 

within crevices seeing that some C. cataphractus individuals may only become fully active at 

10h00 (Visagie 2001).   

(4) Thermal habitat quality  

The fact that mean thermal habitat quality did not vary significantly among the inland and 

coastal populations in spring, suggests equal thermoregulatory opportunities/costs. 

Environmental operative temperatures (Te) however did vary, being significantly lower at the 

inland population. The frequency distribution of Tes further indicates that the coastal 

population was provided with a wider range of thermal opportunities than the inland 

population suggesting that the varied accuracy and effectiveness of thermoregulation during 

spring was related to differences in local thermal environments.   

The thermal exploitation index (Ex) assesses thermoregulation solely during periods 

when thermally suitable Tes (within Tp) are available within the habitat, therefore in theory 

enabling comparisons among species or populations inhabiting different thermal 

environments (Christian and Weavers 1996; Blouin-Demers and Nadeau 2005). Both the 

thermal exploitation and de – db (effectiveness of thermoregulation) index indicated that 

lizards from the inland population were not fully exploiting the potential favourable Tes, 

suggesting that the deficient thermoregulation was not principally the result of the lower Tes. 

Additionally, although the thermal habitat quality of the inland population was higher than 

that of the coastal during the morning hours (7h00 – 12h00), accuracy of thermoregulation 

was lower during that time, further supporting the notion that the varied effectiveness and 

accuracy of thermoregulation was not the result of thermal factors.  

(5) Unrealistic model placement 

The Te-models were similarly positioned around rocks among the localities and it therefore 

seems unlikely that inappropriate model placement was the cause of varied 

thermoregulation or negative de – dbs. It is, however, known that thermal quality naturally 

varies dielly around rocks due to solar cycles (Huey et al. 1989; Kearney 2002) and it may 
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be that the sampled lizards inhabit unfavourable sections around rocks due to physical 

constraints (i.e. position of crevice relative to the four major wind directions (Chapter 3)).  

(6) Eurythermy 

Alternatively, a degree of eurythermy may explain the observed variation in thermoregulation 

and negative de – dbs at the inland population (i.e. act as thermal generalists). The fact that 

C. cataphractus has been shown to have a highly repressed resting metabolic rate and a 

degree of thermally independent metabolism (Mouton et al. 2000b), may suggest wide 

performance breadths and a degree of eurythermy. Individuals from both populations 

however moved from crevices and behaviourally thermoregulated in a laboratory 

photothermal gradient during both autumn and spring (Chapter 2). The presence of a definite 

Tp range and the fact that this range did not significantly vary among populations or across 

seasons (Chapter 2) suggests the absence of varied degrees of eurythermy among 

populations. 

The present interpretation is that that secondary influences are more likely 

constraining effective body temperature control. In particular, predation risk seems to be the 

most probable explanation for the observed geographic variation in the thermoregulatory 

activity and apparent avoidance of thermally suitable microsites by C. cataphractus during 

spring. This suggests that group-living may increase thermoregulatory capacity in C. 

cataphractus, by benefiting time budgets and promoting movement from crevices. The high 

number of unretrieved lizards during spring is unfortunate and weakens the strength of the 

argument. Field observations in both populations will complement the current results and 

lead to a more accurate interpretation. An alternative and more realistic approach to assess 

the effect of group-living on thermoregulation will be to compare thermoregulation among 

groups of varying sizes within a single population. 

In the meta-analysis of thermoregulatory investment in reptiles by Blouin-Demers and 

Nadeau (2005), the authors reiterated the need for studies performed on individuals when 

faced with different costs to better explore within-species cost-benefit balances. The current 

comparison of aspects of the thermal ecology of C. cataphractus among autumn and spring 
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represents such a scenario where populations are faced with varied thermoregulatory costs 

resulting from varied environmental temperatures among seasons. 

The current results indicate that during spring, mean Tb deviated markedly from Tp at 

both populations, relating to low thermoregulatory accuracy (high db) in spite of the presence 

of favourable Tes (within Tp). In contrast, both populations accurately maintained Tb within Tp 

(i.e. high thermoregulatory accuracy, low db) during the dry autumn, when (food) energy 

constraints related to group-living is expected to climax (Mouton et al. 2000a), and therefore 

suggest that group-living and the associated low food availability and its effect on C. 

cataphractus (in terms of potentially lowered activity and altered energy budgets) does not 

reduce the thermoregulatory capacity of the species. 

The index of effectiveness of thermoregulation (de – db) suggests that the accurate 

maintenance of Tb within Tp during autumn was achieved through behavioural 

thermoregulation in the coastal population. In the inland population, de – db equalled zero for 

the majority of activity time suggesting that the accurate maintenance of Tb in Tp observed at 

the time occurred passively through thermoconformation in a highly favourable thermal 

habitat (since Tes within the preferred temperature range were abundantly available). In fact, 

the mean de – db observed in the inland population of C. cataphractus corresponded closely 

to the value reported for Anolis gundlachi (0.5oC) (Hertz et al. 1993; Blouin-Demers and 

Nadeau 2005), a lizard that Hertz et al. (1993) described as an archetypal (typical) 

nonregulator that rarely basks during activity.  

Mean effectiveness of thermoregulation during day-time (de – db) (7h00 – 19h00) was 

significantly higher during spring (when thermal habitat quality was low) than autumn (when 

thermal habitat quality was high). This result corresponds to the general trend for 

thermoregulatory investment of reptiles observed in the meta-study by Blouin-Demers and 

Nadeau (2005), suggesting increased investment when thermal habitat quality is low (Blouin-

Demers and Nadeau 2005; Row and Blouin-Demers 2006; Edwards and Blouin-Demers 

2007), and may suggest thermoregulatory behaviour in conflict with the cost-benefit model of 

thermoregulation (Huey and Slatkin 1976). The high thermoregulatory accuracy (i.e. low 
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deviation of Tb from Tp) observed in both populations during autumn however indicates 

successful thermoregulation, and suggests that the observed seasonal variation in de – db 

was not related to cost-benefit considerations, but simply in response to varied 

thermoregulatory requirements posed at the respective seasons. 

Moreover, the hourly pattern of de – db in spring shows that the actual difference 

portrayed by the higher mean de – db occurred predominantly after 15h00 in the inland and 

16h00 in the coastal population. Cordylus cataphractus has the largest fat bodies in 

proportion to body mass reported among cordylids, principally deposited during spring 

(Flemming and Mouton 2002) when perennial flower blooms support high invertebrate 

abundance (Struck 1994). The importance of increased effectiveness of thermoregulation (de 

– db) (i.e. active thermoregulation) during the late afternoon period in spring may therefore 

aid digestive processes (Stevenson et al. 1985; Van Damme et al. 1991).  

The de – dbs reported for reptiles range between –0.3 oC and 8.4 oC (Blouin-Demers 

and Nadeau 2005; Row and Blouin-Demers 2006; Edwards and Blouin-Demers 2007). The 

overall mean de – db of C. cataphractus (based on the current results across seasons and 

among populations) was 1.74 oC, and the species can therefore (relative to values known for 

other reptiles) be classified as a relatively poor thermoregulator.  

The thermal exploitation index (Ex) (Christian et al. 1996) indicated that lizards 

exploited the favourable thermal opportunities more effectively during autumn than spring. 

The seasonal trend in Ex therefore suggests thermoregulation in accordance with the cost-

benefit model of thermoregulation (Huey and Slatkin 1976), particularly indicating increased 

thermoregulatory investment during the more thermally favourable autumn in both 

populations (Huey and Slatkin 1976). The current Ex data were based on Tb and Te 

measurements taken from between 10h00 and 18h00 which represents most of the typical 

daily activity time of the species (Visagie 2001), and the hourly pattern of Ex clearly indicates 

that lizards were exploiting the available thermally favourable opportunities more proficiently 

during autumn than spring. The discrepancy between the de – db and Ex results may be 

related to the nature of each index, since these indices describe different aspects of 
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thermoregulatory investment (Blouin-Demers and Nadeau 2005). If C. cataphractus indeed 

remains within crevices for the vast majority of time during autumn as has been reported by 

Visagie (2001), the high Ex indicates that individuals were effectively exploiting the thermally 

favourable microclimates available to them during autumn, even though they were confined 

to crevices. 

The correlation function of thermal habitat quality (de) versus thermoregulatory 

accuracy (db) had a slope (m) < 1 in both populations during autumn, suggesting an increase 

in thermoregulatory investment functional to decreased thermal habitat quality (Edwards and 

Blouin-Demers 2007), therefore contradicting the prediction of the cost-benefit model of 

thermoregulation (Huey and Slatkin 1976). During spring, the correlation between de and db 

of the inland population showed a slope of nearly one (m = 1) suggesting that lizards tended 

towards thermoconformation, whereas the coastal population had a slope exceeding one (m 

> 1) suggesting increased thermoregulatory investment as a function of increased thermal 

habitat quality, as predicted by the cost-benefit model (Huey and Slatkin 1976). 

Chapter 3 of this thesis provides a more detailed description of micro-scale variation in 

thermal habitat quality at the coastal population during autumn, and indicates that crevices 

and crevice-edges were thermally more favourable than microsites outside of crevices 

during midday (11h00 – 15h00). Since C. cataphractus is known to remain within crevices 

for extended periods at the time, and thermal habitat quality deteriorates outside of crevices 

during midday, the more favourable Tes experienced by lizards (within crevices) portray an 

increase in thermoregulatory investment, but in reality, is simply the result of increased 

thermal habitat quality within crevices relative to that in the open.  

Staged laboratory trials where the effectiveness of thermoregulation is monitored in 

relation to varied operative environmental temperatures and other costs such as predation 

pressure, social interactions and resource limitations will be useful in further describing the 

validity of the cost-benefit model of thermoregulation for C. cataphractus (Herczeg et al. 

2006; Herczeg et al. 2008). The current results highlight the importance of using multiple 

thermoregulatory indices in concert and, further, to consider these indices as a function of 
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the time of day since simple daily means would have lead to totally different interpretations 

regarding the thermal ecology of C. cataphractus.  
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4.6 Conclusion 

In spring, lizards in the more dense coastal population thermoregulated with higher accuracy 

than those in the less dense inland population. In addition, the index describing the 

effectiveness of thermoregulation performed (de – db) showed a large proportion of negative 

values (indicating avoidance of thermally suitable microsites) at the inland population in 

spring, coinciding with the generally inaccurate maintenance of Tb within Tp observed at the 

time. Predation risk is known to decrease proportionally to increased group-size and is also 

a notable source of avoidance behaviour in reptiles (Hayward 2008). The difference in 

thermoregulation among localities and avoidance of thermally suitable microsites at the 

inland population was most likely due to differential predation risk related to the different 

group-sizes. The current study therefore provides anecdotal evidence suggesting group-

living increases thermoregulatory capacity due to the reduction in predation risk associated 

with such a life strategy. Collectively the accuracy of thermoregulation and thermal 

exploitation indices suggest that thermoregulatory success and investment occurred in 

accordance with the cost-benefit model of thermoregulation at seasonal scale, in particular, 

being higher during autumn when the thermal habitat was more favourable. Moreover, the 

fact that both the inland and coastal populations of C. cataphractus thermoregulated 

accurately during the annual peak in food scarcity (autumn), suggests that the amplified food 

constraints during the dry season associated with permanent group-living (Mouton et al. 

2000b) do not compromise themoregulation in the species.   
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