
   

THE CYCLOTRON PRODUCTION OF SELECTED RADIONUCLIDES 

USING MEDIUM ENERGY PROTONS 

 

 

 

N. P. van der Meulen 

 

 

 

Thesis presented in fulfillment of the requirements for the degree of Doctor of 

Philosophy at the University of Stellenbosch. 

 

 

 

 

 

Supervisor: Prof. T. N. van der Walt 
Faculty of Applied Sciences 

Cape Peninsula University of Technology 

 

Co-supervisors: Prof. H. G. Raubenheimer 
 Dept. of Chemistry 

 University of Stellenbosch 

 

  Dr. G. F. Steyn 
 Radionuclide Production 

iThemba LABS 

 

 

 

 

 

March 2008 



  

Stellenbosch University  http://scholar.sun.ac.za



   

 

 

 

 

 

 

 

DECLARATION 

 

I, the undersigned, hereby declare that the work contained in this thesis is my own 

original work and that I have not previously in its entirety or in part submitted it at 

any university for a degree. 

 

 

Signature: ……………………………………………………… 

 

Date: …………………………………………………………… 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Stellenbosch University 2008 

All rights reserved 

 

 

Stellenbosch University  http://scholar.sun.ac.za



Stellenbosch University  http://scholar.sun.ac.za



   

 i 

ABSTRACT 

 

Radiochemical research involving ion exchange chromatography is of paramount 

importance to the future of radionuclide production at the Radionuclide Production 

Group (RPG) of iThemba LABS.  It is required for the production of high-activity 

yields of radionuclides to effectively remove impurities and for the safety of the 

operators performing such productions.  The radiochemical separations of some new 

products from their target material, as well as experiments to determine whether 

production is viable, are described. 
 

67Ga is currently being produced at the RPG and makes use of zinc targets.  With the 

production of ultra-pure 67Ga, it was necessary to remove any Fe(III) impurities from 

the final product, such that it may be possible to label peptides with this product.  The 

use of Amberchrom CG161M for this purpose was found to be satisfactory. 

 

Interest was shown in 88Y by an overseas company for the manufacture of sources.  

While a method involving extraction of the radionuclide and the ion exchange thereof 

using Chelex 100 chelating resin had been published, problems with the production 

persisted.  Three methods, using ion exchange chromatography, were devised to 

produce the radionuclide, with two of them being adopted for production purposes.  

Thick-target nuclear data have also recently been accumulated in collaboration with 

colleagues from ATOMKI, Debrecen, Hungary. 

 

There is a large demand for 82Sr for the manufacture of 82Sr/82Rb generators for 

medical use.  A method was developed to manufacture this radionuclide with thicker 

(32 g) target material, bombarded in the Vertical Beam Target Station (VBTS), and to 

separate 82Sr from its target material with the use of Purolite S950 chelating resin. 

 
68Ge/68Ga generators are becoming increasingly important in the world of 

radiopharmaceuticals.  A project to develop a local generator was funded by the 

Innovation Fund and research was performed to produce 68Ge, such that the generator 

could be manufactured.  This involved bombarding thicker Ga targets in the VBTS 

and performing the chemical separation using AG MP-1 anion exchange resin.  The 
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final product was loaded onto generators, although tests performed on different 

materials to the ones being marketed are also reported in this work. 

 

A project was initiated to study the cluster radioactive decay of 223Ac via 14C and 15N 

emission.  To produce 223Ac for these observations, a Th target was bombarded.  The 
227Pa was separated from the target material using AG MP-1 macroporous anion 

exchange resin and used as a source, which decayed to 223Ac.  The chemical 

separation and the drying of the final product onto a source plate were completed 

within approximately 70 minutes from the end of bombardment.  The work was 

performed in collaboration with JINR, Russia, and University of Milan and INFN, 

Italy. 

 
133Ba has a half-life of over 10 years and is an expensive radionuclide to produce.  It 

has been used in medical and biological studies and there still appears to be a demand 

for it.  A method was devised, utilizing AG50W-X4 cation exchange resin, to separate 
133Ba from its CsCl target material. 

 

Agricultural specialists in the past have shown an interest in 28Mg, to determine the 

uptake of the element in fruit.  It has long been regarded by some of the local 

researchers as an interesting project to investigate.  It has been determined that the 

product can be produced in reasonable quantities using LiCl target material, with ten 

targets being bombarded in series using a 200 MeV proton beam delivered by the 

Separated Sector Cyclotron. A method, involving the use of Purolite S950 chelating 

resin, was devised to separate 28Mg from its target material. 
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OPSOMMING 
 

Radiochemiese navorsing, wat ioonuitruiling chromatografie behels, is van uiterste 

belang vir die toekoms van die produksie van radionukliede by die 

Radionukliedproduksiegroep (RPG) van iThemba LABS.  Dit is nodig vir die hoë 

aktiwiteit opbrengs van radionuklied produkte om onsuiwerhede te verwyder en vir 

die veiligheid van die operateurs wat die produksies moet uitvoer.  Die skeiding van 

nuwe produkte van hulle skyfmateriaal, sowel as eksperimente om vas te stel of ‘n 

produksie uitvoerbaar is, word in die werk beskryf. 

 
67Ga word tans by RPG vervaardig en maak gebruik van sink as skyfmateriaal.  Vir 

die produksie van “ultra-suiwer” 67Ga was dit belangrik om enige Fe(III) 

onsuiwerhede uit die finale produk te verwyder om sodoende peptiede merking te kan 

uitvoer.  Die gebruik van Amberchrom CG161M hars was voldoende vir dié 

eksperiment. 

 

‘n Oorsese maatskappy het belangstelling getoon in 88Y vir die vervaardiging van 

bronne.  Alhoewel ‘n metode wat die ekstraksie van die radionuklied en die ioon-

uitruiling daarvan met die gebruik van Chelex 100 chelerende hars reeds gepubliseer 

was, het probleme met die produksie voortgeduur.  Drie metodes is opgestel om 88Y te 

produseer, waarvan twee van die metodes tans gebruik word vir produksie doeleindes.  

Dik-skyf kerndata is ook versamel in samewerking met kollegas van ATOMKI, 

Debrecen, Hongarye. 

 

Daar is ‘n groot aanvraag vir 82Sr vir die vervaardiging van 82Sr/82Rb generators vir 

mediese doeleindes.  ‘n Metode is ontwikkel om die radionuklied te vervaardig van 

dikker skyfmateriaal (32 g), in die Vertikale Bundelstasie gebombardeer, en om 82Sr 

van sy skyfmateriaal te skei met die gebruik van Purolite S950 chelerende hars. 

 
68Ge/68Ga generators is besig om toenemend belangrik te word in die wêreld van 

radiofarmasie.  iThemba LABS kry baie navrae om die produk te vervaardig.  Die 

projek was ook deel van die voorlegging aan die “Innovation Fund” en ‘n manier is 

ondersoek om 68Ge te vervaardig, wat benodig word om so ‘n generator te laai.  Dik 
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Ga skyfmateriaal word in die Vertikale Bundelstasie gebombardeer en ‘n chemiese 

skeiding is uitgevoer deur gebruik te maak van AG MP-1 anioonuitruiling hars.  Die 

finale produk is op die generators gelaai vir toetsdoeleindes. Toetse is ook op ‘n ander 

tipe generator uitgevoer en word in die werk beskryf. 

 

‘n Projek is begin om “cluster” radioaktiewe verval van 223Ac, via 14C en 15N emissie, 

te bestudeer.  ‘n Th-skyf is met protone gebombardeer om die 223Ac te produseer vir 

die eksperiment.  227Pa is vervaardig en geskei van die skyfmateriaal.  Dit is gedoen 

met die gebruik van AG MP-1 makroporeuse anioonuitruiling hars en drooggemaak 

op ‘n bronplaat, waar dit verval het na 223Ac.  Die chemiese skeiding en die 

droogmaak van die finale produk op ‘n bronplaat is uitgevoer binne 70 minute na 

Einde van Bombardering (EVB).  Die werk is deel van ‘n samewerking met kollegas 

van JINR, Rusland, en die Universiteit van Milaan, sowel as INFN, Italië. 

 
133Ba het ‘n halveertyd van oor die tien jaar en is ‘n duur produk om te vervaardig.  

Dit is al gebruik in mediese en biologiese studies en daar is deesdae ‘n redelike 

aanvraag daarvoor.  ‘n Metode is uitgewerk om 133Ba te skei van die CsCl 

skyfmateriaal met die gebruik van AG50W-X4 katioonuitruiling hars. 

 

Spesialiste in landboustudies het in die verlede belangstelling getoon in 28Mg.  Dit 

word gebruik om die absorpsie van dié element in vrugte te ondersoek.  Die produk 

kan vervaardig word met die gebruik van LiCl skyfmateriaal: tot soveel as tien skywe 

(agter mekaar) word gebombardeer met ‘n 200 MeV protonbundel te iThemba LABS. 

‘n Metode, wat Purolite S950 behels, is daargestel om 28Mg van die skyfmateriaal te 

skei. 
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CHAPTER 1 INTRODUCTION 
 

iThemba LABS utilises a 66 MeV proton beam for the routine production of a number 

of radionuclides, for radiopharmaceutical purposes as well as for other applications.  

The choice of 66 MeV is dictated by the neutron therapy programme, with which the 

radionuclide production programme shares the beam in a semi-parasitic way.  

Bombarding the appropriate target material, which can be sintered, cut or pressed into 

a disc, produces the desired radionuclide (and usually also some co-produced ones) 

which can be thought of as the reaction remains (or residues) of particular nuclear 

reactions that take place within the target.  The radionuclide of choice has to be 

chemically separated from the target material, purified from any contaminants and 

sterilised before it can be labelled and considered for use as a diagnostic medicine. 

 

1.1 The Case for Ion-Exchange Chromatography 

 

The chemical separation of the radionuclide from the target material is complicated by 

the fact that a very small quantity of radionuclide is formed (10-9 - 10-12 g) in 

comparison with the very large quantity of target material it has to be separated from 

(1 – 32 g).  What complicates the matter even further is the fact that there may be 

other radionuclides present which have been co-produced by competing nuclear 

reactions during the bombardment, or daughter radionuclides that have been formed 

by the decay of their respective parent radionuclides, as well as the chemical 

impurities initially present in the target material.  Many chemical techniques have 

been employed to separate the radionuclide of choice from the non-required elements, 

namely, solvent extraction, distillation, electro-deposition, precipitation, co-

precipitation and ion exchange chromatography. 

 

Ion exchange chromatography has been used in many disciplines in the past and is 

sometimes regarded as an obsolete application of chemistry for these disciplines, with 

chemists and engineers using other “more effective” forms of chemistry.  Although 

column ion exchange chromatography is almost obsolete in analytical chemistry 

laboratories today, it is still regarded as being the cutting edge of technology in 
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radiochemistry.  It is easy to use in a hot cell environment and the removal of 

impurities in the separation process, before eluting the radionuclide of interest, 

provides a much purer product than with most other methods.  The other big 

advantage of using ion exchange chromatography in a hot cell environment is that this 

technique also minimises the radiation exposure to the technician, while reducing the 

volume of radioactive waste. 

 

Some points have to be considered when planning an ion exchange separation.  Due to 

the fact that the target material in a specific production is generally of a large quantity 

(gram quantities), while the radionuclide to be produced is found in much smaller 

quantities (< μg quantities), a large separation factor (αA
B) is required to separate the 

radionuclide (A) from the target material (B).  It is generally considered that the 

radionuclide (element) should have a high distribution coefficient (Kd > 500), while 

the target material should have a much lower distribution coefficient (Kd < 10).  

Initially, the separation factor should ideally be greater than 50.  It is recommended 

that equilibrium be reached as quickly as possible, therefore, it is necessary to have a 

column with good kinetics such that a sharp separation is obtained, with very little 

“tailing”.  A relatively small resin column will always be preferred over a larger 

column, as smaller elution volumes are preferred to elute the sorbed elements.  This 

would also lead to a short chemical separation process and can be an important factor 

in the final product whose yield is dependent on the half-life of a specific 

radionuclide.  It would also minimise the quantities of waste solutions being generated 

(which are normally radioactive, should the separation involve radioactivity), which 

are monitored and, normally, have to be stored for a period of time before being 

released to waste storage dams on site. 

 

Ion exchange resins are normally categorised into three types, namely, cation 

exchange resins (for example, Dowex 50 or Bio Rad AG50- and AG MP-50 resins), 

anion exchange resins (such as Dowex 1 or Bio Rad AG1- and AG MP-1 resins) and 

chelating ion exchange resins (like Chelex 100 or Purolite S930 and S950).  There are 

other types of resins available, including those containing no ion exchange groups or 

functional groups (for example, Amberlite XAD-7), but these are not often used for 

radionuclide production purposes at iThemba LABS1-3.  The only exception to this 
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statement is the use of Amberchrom CG71cd, which is used in the separation of 67Ga 

from its zinc target material and other co-produced radionuclides. 

 

The type of resin to be used in a chemical separation depends on the charge of the 

radionuclide and that of the target material (that is, neutral, positive or negative) and 

the oxidation number of the radionuclide.  Should the radionuclide be cationic, or a 

cationic species is formed by complex formation, then a cation exchange resin is 

chosen as the resin column of use for the production.  Should the target material, 

however, be anionic, or an anionic species is formed by complex formation, then an 

anion exchange resin would be chosen to retain the radionuclide.  Media that will 

promote the sorption of the required radionuclide cation, while eluting the target 

material anion at the same time, has also to be determined. 

 

The radionuclide and the target material are not usually of opposite charge: they are 

generally found to be of the same charge and a separation with a cation or anion 

exchange resin can be devised with the aid of distribution coefficients in a specific 

resin/solution system.  In this case the size, charge and valencies of the element ions 

play a vital role.  The element is more strongly sorbed to the resin with an increase in 

ionic charge, while the other factor playing an important role is that of the nature and 

type of eluting solution, be it the concentration of the solution, the availability of 

coordinating ligands therein, the acidity of the solution and whether the solution is a 

mixture or not.  

 

1.2 Radionuclides: A Brief Overview 

 
Accelerated charged particles from a cyclotron can be used to induce many different 

nuclear reactions, the heavy residues of which often include useful radionuclides for 

biomedical imaging, internal radiotherapy and various kinds of tracer studies.  This 

process realises the ancient alchemist’s dream – the ability to transform one element 

into another.  Cyclotron-produced radionuclides are usually proton-rich. 
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Another way of creating radionuclides is by means of neutron-induced reactions in a 

nuclear reactor.  Although the reactor-produced radionuclides are often comparatively 

cheaper than cyclotron-produced ones, they usually have a much lower specific 

activity than those produced using a cyclotron.  Nevertheless, accelerator and reactor 

produced radionuclides are complementary, most neutron-induced reactions leading to 

radionuclides which are neutron-rich.  Even though the two production methods 

create wholly different classes of radionuclides, both are important in biomedical 

applications.  Cyclotron-produced radionuclides have become increasingly popular in 

the medical field (especially the PET radionuclides) and in the industrial field, as well 

as for research purposes. 

 

Radionuclides produced at iThemba LABS are generally used to prepare 

radiopharmaceuticals for medical diagnostic purposes, such as the possible diagnosis 

of tumours in the human body.  The radiopharmaceutical is either injected into the 

body or ingested by the patient.  The radiopharmaceutical makes it possible for the 

doctor to identify any tumours, as they scan the body, providing high-quality images 

of the activity distribution in the patient’s system.   

 

The following requirements play a vital role in the routine production of radionuclides 

and radiopharmaceuticals: 

 

• The production method, involving the bombardment as well as the chemical 

separation of the radionuclide, must be economically viable. 
 

• The final product must have a high specific activity, with little or, preferably, 

no radionuclidic, radiochemical or chemical impurities. 
 

• The chemical separation must be as simple as possible, making it easy to 

perform the production within a hot cell with the minimum radiation exposure 

to the technician. 
 

• The radiopharmaceutical must comply with certain specifications and be 

registered with the South African Medicines Control Council. 
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A carrier-free radionuclide is one that is recognised as having a high specific activity, 

high radionuclidic purity (that is, free from other radionuclides), high radiochemical 

purity (that is, free from any chemical form other than the required chemical form of 

the radionuclide) and high chemical purity (that is, a low presence of non-radioactive 

material). 

 

Whereas the chemical and radiochemical purity levels in a final product are 

determined solely by the efficiency of the chemical procedures, the radionuclidic 

purity of the product is determined by both chemical and physical means.  Two types 

of radionuclidic impurities can be distinguished, namely, radionuclides present in the 

product other than that of the desired product, which can be reduced to acceptable 

levels by chemical means, and radionuclides of the same element as that of the 

product, i.e. chemically indistinguishable from the desired radionuclide. 

 

Quality control is performed on the final product to determine whether it is carrier-

free (also referred to as no-carrier added) and that it complies with the standards as 

prescribed by the South African Medicines Control Council.  A high-resolution 

gamma ray spectrometer is used to determine the radionuclidic purity, while the 

radiochemical purity is determined using paper, gel or thin layer chromatography.  

The chemical purity is determined using induced coupled plasma emission 

spectrometry, electrothermal atomisation spectrometry, flame atomic absorption 

spectrometry or colorimetric spectrophotometry.  It is the chemistry of a production, 

therefore, that is the most important discipline in the isolation and purification of the 

relevant radionuclide, as one has to ensure that a high quality product is despatched to 

the client. 

 

1.3 A Short History of Cyclotron Facilities in South Africa 

 

The first cyclotron to be built in South Africa was situated at Pretoria and put into 

service in 1956, under the ownership of the Council for Scientific and Industrial 

Research (CSIR).  This cyclotron was designed to produce both internal and external 

beams of protons (5.8 – 15.3 MeV), deuterons (11.5 – 17.3 MeV), 3He (18 – 38 MeV) 

and alpha particles (23 – 34.6 MeV), making it a versatile machine for radionuclide 
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production.  A routine radionuclide production programme existed from 1965 until its 

closure in 1988. 

 

The radionuclide production programme in Pretoria began by producing 67Ga, 109Cd 

and 123I, albeit in relatively low quantities.  The radiochemical separations of these 

radionuclides were performed in normal (“cold”) laboratories, using fume cupboards 

and a few lead bricks for shielding purposes.  The methods used to separate the 

radionuclides from their respective target materials were based on solvent extraction 

and co-precipitation, with the result that the staff members involved were directly 

exposed to high levels of radiation. 

 

Operators tended to pick up a severe hand dose, as well as an unacceptable radiation 

dose to the head area (in terms of today’s standards), when performing solvent 

extraction procedures.  Contamination issues were also rife in those early days as a 

result of the grease on the glass tap at the bottom of the extraction flask dissolving in 

the organic solvent used in the solution, allowing radioactive solution to seep through 

the bottom of the flask.  The situation was aggravated by the fact that the operator 

would have to shake the flask, thereby spraying the radioactivity over himself and 

contaminating the laboratory at the same time.  It was as a result of these issues that T. 

N. van der Walt and others laboured to convert those production procedures to ones 

employing ion exchange methods4.  They managed to do so successfully, paving the 

way for South African radiochemists to perform productions more efficiently, safely 

and produce a final product that was more radiochemically pure. 

 

While there was a discussion to build a bigger cyclotron in the Transvaal area (now 

known as Gauteng), the government decreed that a new facility be built in the 

Western Cape and the National Accelerator Centre was established in the Faure area, 

near Somerset West, in 1977 under the control of the CSIR. 

 

The new 200 MeV separate sector cyclotron at Faure produced its first extracted 

proton beam in 1987.  The new facility was tasked to support three main areas:  1) 

experimental physics research using accelerated ion beams, 2) radiotherapy using both 

neutrons and protons, and 3) radionuclide production.  The Radionuclide Production 

Group (then known as Isotope Production) produced its first routine radionuclides in 
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1988, namely 67Ga, 81Rb and 123I.  These three radionuclides have been in production 

at Faure ever since. 

 

Various other radionuclides and radiopharmaceutical products have been added to the 

list in the years to follow, some of which have been discontinued later when market 

interest in them declined, while others have shown increasing demand.  Some of the 

radionuclides which have once been produced regularly and later discontinued are 
111In6,7 and 201Tl.  This was because the requirements of the local nuclear medicine 

community changed.  At one stage, the Department of Energy (DOE) of the United 

States requested iThemba LABS to produce non-processed 68Ge and 82Sr, in the form 

of bombarded targets, on a regular basis.  Both these radionuclides are still important 

export products for iThemba LABS.  In recent times, the “bread and butter” 

radionuclides for the local community include 67Ga, 81Rb, 123I, and 18F (as 18F[FDG]).  

Certain labelled compounds of 123I are also routinely produced.  Various other 

radionuclides have been investigated at one time or another and can be added to the 

routine list if the market (or important clients) demands.  These include 52Fe, 55Fe, 
64Cu, 88Y, 133Ba, and 139Ce. 

 

Other longer-lived radionuclides brought into the facility’s arsenal include 22Na, 

obtained from a Mg target8 and 103Pd, obtained from the bombardment of a silver 

target9,10.  22Na is exported, either as solutions or as dry positron sources, on a regular 

basis.  Local demand for 103Pd never really materialised but small quantities for 

experimental purposes have been delivered on a few occasions. 

 

The National Accelerator Centre, a multidisciplinary scientific research laboratory, 

was renamed iThemba LABS in 2001.  It is currently one of several National 

Facilities administered by the National Research Foundation (NRF) and it provides 

facilities for: 

 

• The training of students and post-graduates in basic and applied research, 

using accelerated particle beams. 

• Particle radiotherapy for the treatment of cancer. 
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• The supply of accelerator-produced radionuclides for research and diagnostic 

nuclear medicine. 

 

The success of iThemba LABS lies in bringing people from all over the world from 

medical, biological and physical science backgrounds together by providing 

opportunities for research and postgraduate training in these separate disciplines, as 

well as stimulating mutual interest in the interdisciplinary areas. 

 

Five accelerators are currently operated by iThemba LABS, four of them at the Faure 

facility, namely a 6 MV Van der Graaff accelerator for material science, an 8 MeV 

injector cyclotron providing light ions for the separated sector cyclotron (SSC), a 

second 8 MeV injector cyclotron providing heavy ions and polarized protons for the 

SSC and the SSC itself.  The SSC is a variable-energy machine capable of 

accelerating protons to a maximum energy of 200 MeV.  A tandem Van der Graaff 

accelerator is also operated in Johannesburg at the iThemba LABS (Gauteng) facility.  

A layout of the SSC facility and its experimental areas is shown in Fig. 1.1. 

 

 
Fig. 1.1: The SSC facility layout at iThemba LABS 
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1.4 Radionuclide Production at iThemba LABS 

 

The Radionuclide Production Group at iThemba LABS is heavily relied upon by 

nuclear medicine centres at local hospitals and clinics to produce various 

radiopharmaceuticals, using radionuclides to label specific organic or inorganic 

compounds.  Some income is also generated for the laboratory by the sale of these 

products, as well as from exports of longer-lived radionuclides to other countries.  As 

a result, the amount of radioactive material to be despatched has increased 

substantially, which requires certain facilities for personnel to be able to perform their 

duties safely.  A brief explanation of the group’s facilities follows below. 

 

The schematic design of the layout of the Radionuclide Production complex was 

strongly influenced by safety considerations and, particularly, by the control over 

radioactive materials and the containment of radioactivity released accidentally.  The 

complex is divided into three areas, namely, the so-called “red”, “blue” and “white” 

areas.  The “red” area is a high-risk environment from a radiation exposure point of 

view, where high levels of activity are handled, while only lower-risk or low-activity 

materials are handled in the “blue” area.  The “white” area is, in principle, a clean area 

and this is where the staff offices and the like are situated. 

 

Personnel moving from the “red” area to the “blue” area, or from the “blue” area to 

the “white” area, have to pass through a monitoring and decontamination station.  In 

this way, the accidental spreading of radioactive contamination can be prevented.  As 

the inhalation of radioactivity is a possible health hazard, negative pressures of 50 Pa 

(in the “blue” area) and 100 Pa (in the “red” area) with respect to ambient pressure are 

maintained by the air-conditioning system to ensure that any accidentally released 

radioactive dust, vapour or gases are contained (i.e. won’t spread to an area of lower 

risk). 

 

Support facilities, such as the target transport system, helium-cooling system for beam 

windows, cooling-water system (see Chapter 2), the hot cells and a radioactive waste 

management system are housed in the “red” area, which also includes two irradiation 

vaults.  Other facilities required, such as those for target preparation, quality control, 
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dispensing and radiopharmaceutical labelling are situated in the “blue” area.  It is only 

the area for the packing and despatch of the final product that is situated in the 

“white” area. 

 

Radionuclide production targets become highly radioactive when irradiated and pose 

a potential health risk to personnel if not handled correctly.  This problem is overcome 

to a large extent by transporting targets between the bombardment stations, hot-cell 

complex, target loading station and target storage using a remote controlled rail 

transport system.   

 

Briefly, once the bombardment of a batch target has been completed, it is transported 

from the irradiation vault to one (of two) reception hot cells, where the target material 

is removed from the target holder.  The radiochemical separation of the particular 

radionuclide is performed in one (of twelve) processing hot cells.  Note that a 

designated hot cell is used for each of the routinely produced radionuclides in order to 

prevent any cross contamination of the final product.  Once the chemical separation 

has been completed and the radiopharmaceutical prepared, it is transported to the 

dispensing laboratory, where the pharmacist performs the dispensing in aseptic 

conditions according to the orders received from clients.  A sample of the final 

product will also be taken for quality control purposes (e.g. chemical purity, 

radionuclidic purity, etc.) to ensure that it meets the prescribed specifications as 

registered with the South African Medicines Control Council.   

 

Once the dispensing is taken care of, the vials containing the radiopharmaceutical are 

sealed and packed into lead pots.  The lead pots, in turn, are packed into tins and 

sealed, before placing them into their respective boxes.  The boxes are despatched to 

the various hospitals or clinics which ordered the product.  A schematic diagram of 

the layout of the Radionuclide Production facility is shown below11. 
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Fig. 1.2: Radionuclide Production facility layout 

 

1.5 Project Motivation 

 

There have been times in the recent past where it was thought that the Radionuclide 

Production Group should concentrate on product development and sales, on a 

commercial basis, forgoing research and development.  Criticism has also been aimed 

at research in ion exchange chromatography, with the claim that this field has run dry.  

Similar criticism has also been aimed at the measurement of nuclear data using 

activation methods.  The aim of this work is to prove that research and development is 

paramount to the future of Radionuclide Production at iThemba LABS, with the use 
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of ion exchange chromatography an essential component thereof, for the release of 

new products as well as in experiments of purely academic interest.  Similarly, 

activation methods are crucial to this field of research. 

 

To underline this aim, it was the author’s objective to use activation methods, ion 

exchange chromatography and nuclear data to produce new products for iThemba 

LABS, namely: 

 

• 88Y from Sr metal-based target material; 

• 82Sr from Rb metal-based target material; 

• 68Ge from Ga metal-based target material; 

• 133Ba from Cs metal-based target material; 

• The production of ultra-pure 67Ga. 

 

It was also the author’s objective to perform chemical experiments, using ion 

exchange chromatography, to provide answers in research projects, namely: 

 

• The separation of 28Mg from LiCl target material; 

• The separation of 227Pa from Th target material in order to answer a long-

standing question in cluster radioactive decay. 

 

To be sure, other studies on these topics have been performed in the past, as 

evidenced by significant numbers of research papers in the literature.  The question is 

whether these topics have been exhausted?  The answer is clearly not.  There are 

always new challenges, problems to solve and methods to improve.  Of particular 

interest to iThemba LABS at the present time is that it has invested heavily to increase 

the beam intensity of the 66 MeV proton beam delivered by the SSC in order to 

increase the capacity of the radionuclide production programme.  The SSC can now 

deliver external beams of 500 µA, which cannot be fully utilized by current targetry.  

Some targets had to be enlarged in order to create more surface from which they can 

be cooled.  This increased the volume of target material to be processed, thus the 

chemical separation procedures had to be revisited.  Another exciting development is 

that sometime in the near future, the proton beam will be split and provided to two 

Stellenbosch University  http://scholar.sun.ac.za



   

 13

target stations simultaneously.  A new beam splitter is in an advanced stage of 

construction and will be commissioned towards the end of 2008.  These developments 

affect all aspects of the radionuclide production programme, since it will enable the 

RPG to use the two main bombardment stations simultaneously.   

 

The above-mentioned topics will be addressed as independent case studies in the 

chapters to follow.  Most of the work presented should be seen in the light of the 

expansion programme for radionuclide production at iThemba LABS.  Towards this 

end, it is necessary to give some more detail on the production facilities, the topic of 

the next chapter. 
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CHAPTER 2 BOMBARDMENT FACILITIES FOR 
RADIONUCLIDE PRODUCTION AT 
iThemba LABS 

 
There are four dedicated bombardment facilities for radionuclide production at 

iThemba LABS, three of which have been extensively used during the course of this 

work.  There is also a fifth “open” high-energy beamline available for any temporary 

experimental set-ups required for research or testing purposes.  Each of the 

bombardment facilities will be briefly discussed below. 

 

2.1 The Horizontal Beam Target Stations 

 

Two bombardment stations with horizontal beamlines are located in the same vault.  

This vault also accommodates the open experimental beamline. 

 

2.1.1 Bombardment Station for Batch Targets 

 

The first bombardment station to be designed and built at iThemba LABS was 

planned to be a multi-purpose facility in which many types of batch targets could be 

irradiated.  It has been in routine use since 1988.  A sceptical group of cyclotron 

operators named the station the “White Elephant” at that time but once it 

demonstrated its functionality, the “White” was dropped and the facility came to be 

known as “the Elephant” ever since. 

 

An overall view of the Elephant is shown in Fig. 2.1.  During bombardment, the target 

is located inside a local, cylindrical radiation shield1 to protect sensitive components 

inside the vault against excessive radiation damage and to reduce neutron activation 

of the vault and its contents.  The station accommodates a remotely-controlled, 

rotatable target magazine2 which, in its present incarnation, can hold up to nine 

standardized target holders.  A selected target holder can be rotated to the irradiation 

position or to a load/unload position under stepper motor control.  A remotely-

controlled pneumatic robot arm facilitates the transfer of a target holder between the 
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station and a target transporter, which moves on an electrified rail network.  In this 

way, highly radioactive targets can be transferred and transported between the 

bombardment station and the hot-cell complex without any direct radiation exposure 

to staff.  The station is remotely controlled and monitored by means of a computer-

based system, located in the radionuclide production control room. 

 

 
Fig. 2.1: An overall view of the Elephant2, a bombardment station for batch targets utilizing a 

horizontal proton beam.  The station is showed with the radiation attenuation shield 
closed and a target transport trolley, with target holder, is shown in the target transfer 
position (towards the top of the figure).  Note the beam diagnostics chambers 
immediately upstream (to the right) of the target station.  The pneumatic pusher arm to 
connect the cooling water lines to a target holder is visible on the left side of the station. 

 

The targets are irradiated outside the beamline vacuum, from which they are isolated 

by a helium-cooled double-foil beam window.  This is done to protect the high 

vacuum of the cyclotron against possible gaseous releases from targets during 

bombardment and to make rapid target exchanges possible, which is especially 

important for the production of short-lived radionuclides.  Cooling water is supplied 

to the targets through a pneumatic pusher arm. 

 

The design philosophy2 of the station strives to reduce maintenance and repairs to 

radioactive components inside the shielding, as far as humanly possible.  All 

pneumatic components, electric motors, service connections, valves, etc., are mounted 
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on the outside of the local radiation shield.  Mainly metals are used on the inside, 

which are extremely radiation resistant.  For many years, the Elephant was the only 

dedicated bombardment station for radionuclide production at iThemba LABS.  In 

recent times, the Elephant is the work horse for the production of most of the shorter-

lived radionuclides for the local radiomedical community (67Ga, 81Rb, 123I).  It is also 

extensively used for the production of 22Na.  Beams of 66 MeV protons and intensities 

up to 100 µA are routinely used in this facility. 

 

2.1.2 Bombardment Station for Semi-Permanent 

Targets 

 

A smaller bombardment station with similar characteristics to the Elephant was 

designed and built for semi-permanent targets3 (see Fig. 2.2).  The main difference is 

the absence of the robot arm for target exchanges (as the targets would be semi-

permanently installed) and, consequently, there was also no need for the station to be 

serviced by the electric-rail target transport system.  This station (which has been 

named Babe) was completed in 1999 and was initially used to produce small 

quantities of 18F using an experimental natNe gas target.  Currently, this bombardment 

station only houses one target, a commercial 18O-water target for the large-scale 

production of 18F, for which purpose it is used extensively.   

 

2.2 The Vertical Beam Target Station 

 

The Vertical Beam Target Station4 (VBTS) is the latest edition to the dedicated 

bombardment facilities for routine production of radionuclides at iThemba LABS (see 

Fig. 2.3).  Its construction was completed in 2005 and it has been in routine use ever 

since.   

 

The design philosophy of the VBTS was exactly the same as for the Elephant.  The 

main difference, other than the direction of the beam being vertical, is the omission of 

a target magazine.  The main aim of the VBTS is to produce long-lived radionuclides 

with increased beam intensities, thus a target holder would normally stay in the station 
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for several weeks at a time.  Consequently, there was no need for a target magazine.  

VBTS targets are physically larger than Elephant targets in order to have more surface 

area for cooling.  This will be described in more detail later.  Beam currents up to 250 

µA are routinely used, mainly for the production of 82Sr and 68Ge. 

 

 
Fig. 2.2: An overall view of Babe3, a bombardment station for semi-permanent targets utilizing a 

horizontal proton beam.  The station is showed with the radiation attenuation shield, one 
section of which moves on rails, partially opened.  The beam is incident from the left side 
of the station. 

 

Common to both the Elephant and the VBTS is beam sweeping, in order to enlarge 

the area of the target directly exposed to the beam.  This improves the thermal 

behaviour of targets, making it possible to increase the beam intensity.  The beam is 

swept in a circular motion, at a frequency of 450 Hz in the case of the Elephant and 

3000 Hz in the case of the VBTS. 
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Fig. 2.3: An overall view of the VBTS4, a bombardment station for the irradiation of batch 

targets utilizing a vertical proton beam.  The station is showed with the radiation 
attenuation shield closed. The remotely-controlled pneumatic robot arm which 
facilitates target transfers is shown in the foreground, while the electrified rail for 
target transport can be seen in the background.  Note the beam diagnostics chamber on 
top of the target station. 

 

2.3 Batch Targets at iThemba LABS 

 

Most of the batch targets used at iThemba LABS consist of the target material of 

choice encapsulated in either aluminium, stainless steel or niobium.  The 

infrastructure to encapsulate target material in aluminium is resident in the laboratory, 

whereas stainless steel and niobium encapsulation have to be outsourced.  The 

encapsulation serves two purposes: 1) to protect the target material from the cooling 

water, and 2) to contain the target material, which often goes into a molten state 

during bombardment with high-intensity beams.  The choice of encapsulation material 

depends on the target material to be contained.  Molten target material may, for 

example, attack the aluminium capsule, in which case a more inert material, such as 

niobium, will be a better choice.  Examples of this will be described in subsequent 

chapters. 
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The target holders presently in use at iThemba LABS can be used with either one 

target mounted, or with two targets mounted in tandem in the same holder.  Fig. 2.4 is 

an exploded view of a VBTS target holder, showing the various components as well 

as two encapsulated targets in tandem.  Note, in particular, the beam entrance window 

and beam stop.  Fig. 2.5 compares the target holders of the Elephant and the VBTS.  

The outer dimensions of Elephant and VBTS target holders are exactly the same, 

however, the inner dimensions differ as VBTS targets are larger.  Also, VBTS targets 

require a larger flow of cooling-water to dissipate the larger amount of heat generated 

by the beam, thus more water ports had to be provided (four inlet and four outlet ports 

in the case of VBTS targetry, compared to two inlet and two outlet ports in the case of 

Elephant targetry).  Both type of target holder is compatible with all ancillary 

facilities, e.g. the target transporters, reception hot cells, target loading station and 

target store.   

 

Note that in both types of target holder, the cooling water surrounds the target 

capsules in a 4π geometry.  The water layers are thin (1 mm thick) and have a high 

velocity (about 32 m/s or higher) in order to remove the heat dissipated by the beam 

effectively.  The high velocity is to suppress surface boiling, i.e. to remove steam 

micro-bubbles rapidly before a layer of steam can form on a surface.  This is 

important, as a steam layer can effectively isolate the cooling water from the surface 

to be cooled, leading to rapid target burnout.  A water flow rate through an inlet port 

is of the order of 30 liter/min.  Elephant target holders, therefore, require a cooling 

water flow of about 60 liter/min and VBTS targets holders 120 liter/min.  Only de-

ionized water is used for cooling at a nominal pressure of 10 bar.   
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Fig. 2.4: Exploded view of a VBTS target holder, showing (1) the beam stop, (2) tandem stainless 

steel or Nb-encapsulated solid targets, (3) cooling water inlet ports, (4) cooling water 
outlet ports, (5) disposable rubber water seals, (6) target holder body, (7) Cu sealing 
ring, and (8) beam entrance window. 

 

2.4 The RERAME Activation Chamber 

 

Activation of foil stacks and experimental targets are often done at iThemba LABS in 

an irradiation chamber which is based on the design of the RERAME (REcoil RAnge 

MEasurements) facility of the Laboratory Nazionale del Sud (LNS) in Catania, Italy5.  

Although this facility was originally intended for recoil range measurements, it 

proved to be very versatile for many other kinds of activation studies also.  A 

photograph of the RERAME chamber is shown in Fig. 2.6. 
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Fig. 2.5: Elephant (LEFT) and VBTS (RIGHT) target holders, with beam entrance windows and 

beam stops removed.  The 20 mL serum vial on the left is for scaling purposes. 

 

 
Fig. 2.6: The modified RERAME activation chamber at iThemba LABS, shown with the door in 

an open position.  Targets or foil stacks are mounted on the door, in a vice moving on 
rails, in order to ensure good positional accuracy.  The beam is incident from the left. 
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A collimator assembly with electron suppression for the chamber was designed and 

built at iThemba LABS6.  This collimator is electrically insulated from the chamber in 

order to measure the beam current intercepted by it separately.  A vice mechanism for 

holding the targets in the irradiation position, as well as the collimator assembly, are 

mounted on the door of the chamber.  A novel feature is that the door can be opened 

and turned through 180º, thus, bringing parts which are normally inside the chamber 

outside.  This allows for rapid and easy insertion and removal of targets.  The door is 

also fitted with a rotatable handle which controls the opening and closing of the jaws 

of the vice, allowing for samples, targets or foil stacks of different thicknesses to be 

accommodated.  

 

The chamber is equipped with insulated feed-through for electrical connections, 

vacuum connections and a transparent port for viewing a fluorescent beam monitor 

with a TV camera.  A beryllium oxide (BeO) viewer can be placed in the target 

position, which is useful for the initial focusing when the beam is first brought into 

the chamber.  The entire chamber is electrically insulated and is provided with 

electron suppression at the beam entrance.  It is, therefore, a Faraday chamber and 

allows for accurate measurement of the integrated beam current.  During irradiations, 

the beam current to the chamber and also the fraction of the beam which gets 

intercepted by the collimator are monitored continuously and logged.  

 

The vacuum system of the chamber is completely independent because it has to be 

periodically isolated from the beam-line to insert or remove targets.  A rotary pump 

provides fore vacuum (~ 10-3 mbar) and a turbo-molecular pump the high vacuum (~ 

10-6 mbar).   
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CHAPTER 3 ORGANIC ION EXCHANGE RESINS 
USED IN THIS WORK 

 

Column ion exchange resins are regarded in many fields of chemistry as being 

obsolete.  The same can not be said for radiochemistry, where the use thereof is 

effective, tidy and safe (from a radiation safety perspective).  Most of the organic ion 

exchange resins in question are resistant to radiation and the research performed using 

these resins is to ensure an effective separation of the radionuclide in question from its 

target material, such that a chemically and radiochemically pure product is obtained.  

The use of ion exchange resins has proved to be the most effective in this regard 

compared to any other method used in radiochemistry over the years. 

 

Ion exchange resins have different makeup (although many of them are based on a 

styrene divinylbenzene copolymer lattice) and, therefore, different properties.  It is for 

this reason that it was thought prudent to briefly discuss each ion exchange resin used 

in this work. 

 

3.1 Amberchrom adsorption resins 

 

Amberchrom™ chromatographic resins are macroporous, polymeric resins for 

adsorption and reversed liquid phase chromatography.  They have been designed for 

laboratory and process scale purification of proteins, peptides, nucleic acids, 

antibiotics and small molecular weight pharmaceuticals.  They have unique surface 

chemistries which offer distinctive selectivity for biomolecules, resulting in excellent 

separation of difficult compounds while maximizing capacity and yield of the desired 

product1.  Amberchrom™ CG161 is based on a polystyrene-divinylbenzene polymer, 

while its CG71 counterpart is based on an acrylic polymer.  Each resin is packed in 

slurry form (in 20 % ethanol solution) in quantities ranging from 25 mL to 50 L2. 
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Amberchrom resins provide advantages over silica-based packings due to their 

physically and chemically stable polymeric structure3.  As a result, the resin provides 

the following benefits for production-scale chromatography: 

 

• The ability to use aggressive mobile phases for selectivity optimization. 

• The resin can be cleaned in place (CIP) easily with a strong acid or base. 

• Allows for thermal or chemical sanitization. 

• Allows for gradient elution, or cleaning, using a broad range of solvents with a 

minimal change in bed volume. 

• Enables repeated cycles with assured column stability and reproducible 

performance. 

• Has the ability to operate at high flow rates with moderate back pressure. 

 

Amberchrom™ CG161 is an insoluble polystyrene divinylbenzene polymer (with no 

functional groups) manufactured for high value chromatographic applications4.  Its 

high surface area, unique ideal pore size and pore volume distribution makes the resin 

ideal for the separation of peptides.  The resin has a high capacity for many 

pharmaceutical compounds and can be used in high resolution, low pressure 

chromatography.  It is suitable for use in pharmaceutical applications in the front end 

capture, purification and desalting modes of operation, depending on its particle size.  

Amberchrom CG161 is ideally suited for operation within the entire pH range and can 

be easily cleaned in place (CIP) using organic solvents and dilute acids or bases.  In 

addition to its excellent chemical resistance, it also exhibits low swelling in the more 

common solvents used. 

 

Amberchrom CG71 is an insoluble aliphatic (acrylic ester) polymer.  It is claimed that 

the CG71 has similar properties to CG161 resin, with both being hydrophilic resins 

with similar uses5. 
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3.2 Chelex 100 chelating resins 

 

Chelex chelating ion exchange resins has an unusually high preference for most 

transition elements and other heavy metals over monovalent cations such as sodium or 

potassium6.  Its selection for divalent over monovalent ions is ~5000:1 and it has a 

strong attraction to transition metals, even in highly concentrated salt solutions. 

 

Chelex 100 has been exhaustively sized, purified and converted to make it suitable for 

accurate, reproducible analytical techniques.  It is a styrene divinylbenzene copolymer 

containing paired iminodiacetate ions which act as chelating groups in binding 

polyvalent metal ions.  Chelex chelating resin is classified with the weakly acidic 

cation exchange resins, due to its carboxylic acid groups, but it differs from ordinary 

cation exchangers in that it has a high selectivity for metal ions and much higher bond 

strength.   

 

The resin is effectively regenerated in dilute acid and can operate in acidic, neutral 

and basic solutions of pH 4 or higher.  The resin behaves as an anion exchanger at 

very low pH values.  Selectivity of ions using this resin is dependent on pH, ionic 

strength and the presence of other complex-forming species. 

 

If a cation is tightly held (complexed) by Chelex 100 resin and is to be isolated from a 

solution of weakly held cations, a flow rate in excess of 20 mL/min can be used.  

Separations between similar species require lower flow rates of less than 4 mL/min. 

 

3.3 AG 50W-X4 and AG MP-50 cation exchange resins 

 

AG 50W and AG MP-50 strong acid cation exchange resins are useful for single step 

purification methods, for concentrating cationic solutes and for analytical 

determinations of mixed cationic solutes. 

 

AG 50W-X4 cation exchange resin is composed of sulphonic acid functional groups 

attached to a styrene divinylbenzene copolymer lattice7.  The amount of resin 
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crosslinking determines the bead pore size.  A resin with a lower crosslinkage (e.g. 

AG 50W-X4) has a more open structure permeable to higher molecular substances 

than a more highly crosslinked resin (e.g. AG 50W-X8). 

 

AG MP-50 cation exchange resin is the macroporous equivalent to the AG 50W 

resins, with a porosity of 30-35 %.  Both of the cation exchange resins described are 

thermally stable and resistant to solvents, such as alcohols, reducing agents and 

oxidizing agents. 

 

Resins are obtained in different mesh sizes.  Resins with coarse mesh sizes (20 – 50 

mesh and 50 – 100 mesh) are primarily used for large preparative applications and 

batch operations between the resin and sample when slurried together.  Medium mesh 

resin (100 – 200 mesh) is used in column chromatography for analytical and 

laboratory scale preparative applications, while finer mesh resins are used for high 

resolution analytical separations.  100 – 200 mesh cation exchange resins were used 

for experimental and production purposes throughout this work. 

 

3.4 Purolite S950 

 

Purolite S950 is a macroporous aminophosphonic acid chelating resin8, designed for 

the removal of toxic metals from industrial effluents at low pH.  It is more highly 

selective, under the necessary conditions, for a range of heavy metals and common 

divalent ions. 

 

The chelating resin is insoluble in acids, alkalis and all common solvents at normal 

temperatures.  Oxidizing agents, such as concentrated nitric acid and perchloric acid, 

will destroy the resin at elevated temperatures and it is recommended against using 

concentrated nitric acid with this resin, as it could have explosive consequences. 
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3.5 AG MP-1 anion exchange resin 
 

AG MP-1 resin is a macroporous, strongly basic anion exchanger, capable of 

exchanging anions of acidic, basic and neutral salts.  Strong anion exchange resins are 

generally used for sample preparation, enzyme assays, metal separations and peptide, 

protein and nucleic acid separations. 

 

This resin is strongly basic as a result of quaternary ammonium functional groups 

attached to a styrene divinylbenzene copolymer lattice9.  The amount of resin 

crosslinkage determines the bead pore size.  A resin with a lower percentage of 

crosslinkage has a lower physical resistance to shrinking and swelling, so that it 

absorbs more water and swells to a larger wet diameter than a highly crosslinked resin 

of the same dry diameter.  AG MP-1, although it is macroporous, has 20 % porosity. 

 

The resin is thermally stable to 150 ºC and is resistant to acids and solvents.  It is 

stated that the resin slowly dissolves in hot 15 % HNO3 or concentrated hydrogen 

peroxide. 

 

3.6 General resin preparation 

 

When working with any resin, it is good chromatographic practice to remove the 

“fines” (the finer particles in the resin) from the resin, such that filters and frits do not 

get blocked when using them, thereby, increasing the pressure drop across the 

column.  The following decantation process was followed before packing any column 

for experimental or production use: 

 

• The resin was re-suspended in its original container by means of shaking. 

• The resin was poured into a suitable vessel for defining.  The length of time 

required for resin settling depended on the geometry of the container used, 

the dilution factor and the particle size of the resin in question. 

• The supernatant was decanted off the resin, the “fines” not having settled and 

suspended in the supernatant solution. 
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• Fresh de-ionized water was added to the resin and shaken.  It is wise not to 

use a magnetic stirrer, as this will generate more “fines”.  The resin was, once 

again, allowed to settle, following which the supernatant was, again, 

decanted. 

• The above process was repeated three times before the required column was 

packed. 

 

Ion exchange chromatographic resins should be equilibrated after packing to ensure 

optimum column performance.  Equilibration need only be performed on fresh resin: 

normal clean-in-place (CIP) procedures can be used on the resin afterwards. 

 

3.7 References 

 

1. Amberchrom™ Chromatographic Resins: High Selectivity for Biomolecules.  

Rohm and Haas. 

2. Amberchrom™ chromatographic resins: Instruction Manual for Packing and 

Use.  Rohm and Haas. 

3. Coppi S., Betti A., Caldari A., 1987.  J. Chromatogr., 395, 159. 

4. Amberchrom® CG161 Chromatographic Grade Resin, Product Data Sheet. 

Rohm and Haas. 

5. Amberchrom® CG71 Chromatographic Grade Resin, Product Data Sheet. 

Rohm and Haas. 

6. Chelex 100 and Chelex 20 Chelating Ion Exchange Resin: Instruction 

Manual. Bio-Rad Laboratories. 

7. AG® 50W and AG MP-50 Cation Exchange Resins: Instruction Manual.  

Bio-Rad Laboratories. 

8. Purolite Ion Exchange Resins: S950 Technical Data Sheet.  Purolite. 

9. AG® 1, AG MP-1 and AG 2 Strong Anion Exchange Resin: Instruction 

Manual.  Bio-Rad Laboratories. 

Stellenbosch University  http://scholar.sun.ac.za



 

 30

CHAPTER 4 THE PRODUCTION OF 82Sr USING 
LARGER FORMAT RbCl TARGETS 

 

4.1 Introduction 

 
82Sr (T1/2 = 25.55 d), which can be produced by means of a cyclotron, is currently a 

sought after commodity for use in medical generators, with a growing world demand 

driven, particularly, by cardiologists in North America.  It decays purely by electron 

capture1 into its daughter, 82Rb (T1/2 = 75 s), which behaves physiologically like 

potassium and is effective for myocardial infusion imaging studies of patients with the 

use of Positron Emission Tomography (PET)2,3.  PET can be used as a technique to 

monitor coronary disease patients, particularly as it has better image resolution and 

image contrast than its Single Photon Emission Computed Tomography (SPECT) 

counterpart4.  82Rb is also used in the measurement of blood-brain barrier 

permeability5.  

 

Due to the fact that 82Rb has such a short half-life, it can be injected into the patient at 

ten-minute intervals, with a minimum amount of radiation dose to the patient, as well 

as hospital staff treating the patient6,7.  It, thus, justifies the use of a generator, where 
82Sr is loaded onto an ion exchanger and the daughter 82Rb is eluted from it when 

required.  A number of different ion exchange resins have been used for this type of 

generator over the years.  Grant et al. reported using Chelex 100 when developing a 
82Sr/82Rb generator8, while Yano et al. performed comparisons between Chelex 100 

and Bio-Rex 70 ion exchange resins9,10.  The use of tin oxide as an ion exchanger for 

this type of system appears to be the most popular type available these days11-13.  

Sylvester et al., however, reported the use of sodium nonatitanate as a replacement for 

tin oxide as substrate for the 82Sr/82Rb generator14. 

 
82Sr has been obtained via various production routes, namely, spallation reactions on 

molybdenum metal targets15, Rb metal targets1,16 and natural Rb salts in the form of 

RbCl via the 85Rb(p,4n)82Sr (Q = -31.9 MeV) and 87Rb(p,6n)82Sr (Q = -50.4 MeV) 

reactions7,17,18 (see Fig. 4.1).  As both 85Rb (72.2 % natural abundance) and 87Rb (27.8 
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% natural abundance) contribute to the yield when a proton beam of 66 MeV is 

employed, the use of enriched 85Rb for routine production purposes is not really 

justified - the enriched target material is expensive, the recovery of the target material 

is cumbersome and the benefit in terms of increased yield is relatively small.   

 

 
Fig. 4.1: Relevant part of the “Karlsruher Nuklidkarte” of 2006 for the production of 82Sr. 

 

Recent excitation function studies for the production of 82Sr via 85Rb + p by 

Kastleiner19 et al., natRb + p by Qaim1 et al. and Buthelezi20 et al. have been reported.  

As the impurity 85Sr (T1/2 = 64.9 d) is a bone of contention with the production of 82Sr, 

it should be noted that this impurity can be kept below 20 % (EOB) when using natRb 

and a beam energy greater than 60 MeV.  The 85Sr/82Sr ratio increases with time.  It is 

important to have the ratio of 85Sr/82Sr less than 5 (an FDA regulation) as a generator 

cannot be used for medical purposes if the ratio exceeds that specification16.  The 

evaluated excitation function of Qaim1 et al. is shown in Fig. 4.2 and the 

corresponding thick-target production rate curves for natRbCl + p and natRb + p, 

independently generated in this work from these cross-section values, are shown in 

Fig. 4.3.  The calculation for natRbCl confirms the results of Ref. 1.   

 

As can be seen from these figures, the effective threshold is about 32 MeV and the 

excitation function reaches a maximum of about 112 mb at 50 MeV.  With a RbCl 

target, a production rate of about 8.7 MBq/µAh is obtained with a proton energy 

window of 62 MeV down to threshold (because of energy losses inside target 

windows and encapsulation materials, the maximum beam energy of 66 MeV is not 

incident on the target material).  With a Rb metal target, the corresponding thick-

target production rate is 13.2 MBq/µAh.  This is almost 52 % higher than in the case 
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of RbCl targets, which is very significant, especially for such a long-lived 

radionuclide.  The initial experimental work at iThemba LABS was performed using 

RbCl salt targets, however, it is clear that future development work should also 

include Rb metal targets, because a much higher yield can be obtained. 

 

 
Fig. 4.2: Excitation function of 82Sr formed in the reaction of protons with natRb.  The curve is an 

evaluated excitation function by Qaim et al.1 

 
Ironically, the requirement for the separation of 82Sr is similar to that of the generator 

requirements, that is, for the Sr to be retained by the resin and the Rb to be easily 

eluted.  As a result, many productions have been reported using Chelex 100 chelating 

resin1,15-17.  Sylvester et al.14 recently reported a separation method of 82Sr from its 

target material using sodium nonatitanate ion exchanger, following their report of 

using the same material as sorbent for a 82Sr/82Rb generator.  Vereshchagin et al. 

performed their production using Dowex-1 anion exchange resin7, while Van der Walt 

and Vermeulen21 and Aardaneh et al.18 produced papers indicating the use of Purolite 

S950 as their resin of choice. 
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Fig. 4.3: Thick-target production rate curve of 82Sr produced in the proton bombardment of 

natRbCl and natRb metal, respectively.  These curves were derived from the excitation 
function of Fig. 4.2. 

 

iThemba LABS makes use of a 66 MeV primary proton beam for all its routine 

radionuclide productions.  With the new Vertical Beam Target Station (VBTS) having 

recently been put into service for the production of longer-lived radionuclides, 

considerably higher beam intensities can be utilized, nominally 250 µA over extended 

periods of bombardment in contrast to a maximum of 100 µA previously.  The main 

advantage of a higher beam intensity is, of course, a higher production rate.  

Unfortunately, a higher beam intensity also results in more energy dissipated in the 

target volume in the form of heat.  The removal of the heat requires a larger surface in 

contact with a cooling medium (in this case fast flowing water).  In practice, the RbCl 

salt is contained in a suitable metal capsule to prevent direct contact with the cooling 

water.  Since the target thickness is determined by the required production energy 

window, it is not a parameter which can be adjusted to increase the contact surface.  

Instead, the target diameter has to be increased.  This will result in larger targets and, 

consequently, more target material to be processed.  The different sizes of the old 

target and a new VBTS target are shown in Fig. 4.4. 
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Fig. 4.4: Encapsulated RbCl targets for 82Sr production.  Both targets have nominally the same 

thickness but different diameters (outer diameters of 23 and 40 mm respectively).  
RIGHT: These capsules, made of aluminium, were used for many years at iThemba 
LABS to irradiate RbCl with a 66 MeV proton beam, up to a maximum beam current of 
100 µA.  LEFT: The new VBTS targets utilize stainless steel capsules, which are 
irradiated with a 66 MeV beam of nominally 250 µA.  The increased surface area is 
necessary to effectively dissipate the increased heat load generated by the beam (see 
text). 

 

4.2 Experimental  

 

Analytical grade reagents were used throughout this work and were obtained from 

Merck (SA) Pty. Ltd or Sigma Aldrich GmbH, which included Sigma, Aldrich, Fluka 

and Riedel de Haen products.  The Purolite S950 chelating resin used in this work was 

obtained from Purolite International, United Kingdom.  Wherever water is referred to 

in the experimental descriptions, de-ionised water was used.  This was obtained by de-

ionising tap water using a Millipore MilliQ Reagent Grade Water System to a 

conductivity of greater than 10 megaohm cm-1. 

 

All radioactive determinations were performed using a standard calibrated HPGe 

detector, with a relative efficiency of 8 % (relative to three inch NaI), connected to a 

multichannel analyser.   
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10 g (Experiment 1), 20 g (Experiment 2) and 32 g (Experiment 3) of RbCl salt was 

weighed out, respectively.  Each mass was treated in the following manner: the salt 

was dissolved in 200 mL 0.5 M ammonium chloride, containing 5 % methanol and 

0.1 g o-phenanthroline monohydrate (to increase the distribution coefficient of Sr for 

a more effective retention on the resin).  Tracer activities were added to the solution in 

the form of 85Sr and 84Rb and the solution activity measured. 

 

The resultant solution was loaded on to a column (1.0 cm internal diameter) filled to a 

volume of 9 mL with Purolite S950, lightly crushed to decrease the particle size, and 

equilibrated with 50 mL 0.5 M ammonium chloride at a pH of 8.  The elements were 

washed onto the resin using a further 50 mL 0.5 M ammonium chloride. 

 

The Rb was eluted from the resin column using 150 mL 0.5 M ammonium chloride, 

before the column was rinsed with 100 mL water to remove any traces of ammonium 

chloride.  The 85Sr was eluted with 50 mL 2 M HCl.  Two production runs were 

performed using bombarded RbCl targets once the experimental runs were completed, 

the first being an 8 g target and the second a 30 g target with 12000 μAh charge 

placed on it. 

 

4.3 Results and Discussion 

 

Each of the three experiments performed were done so successfully.  The results of 

the experiments, as well as the two productions, are listed below in Table 4.1. 

 

The difference in results between the two production runs is due to the types of 

encapsulation used for the target material.  The first production run was performed 

using an 8 g RbCl target encapsulated in aluminium, bombarded in one of the 

horizontal-beam target stations (Elephant), while the second production run was 

performed using a 30 g RbCl target encapsulated in stainless steel, bombarded in the 

Vertical Beam Target Station (VBTS). 
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Table 4.1: Percentage impurity removal and percentage product yield using Purolite S950 resin. 

 
Experiment 

1 

Experiment 

2 

Experiment 

3 

Production 

1 

Production 

2 

% Sr removal in 

load step 
0 0 0 0 5.7 

% Rb removal in 

load step 
97.0 94.5 95.2 96.5 95.5 

% Sr removal in 

intial rinse step 
0 0 0 0 0 

% Rb removal in 

initial rinse step 
3.0 5.5 4.8 3.5 4.5 

% Sr removal 

in wash steps 
0 0 0 0 0 

% Rb removal 

in wash steps 
0 0 0 0 0 

% 82Sr yield 100 100 100 100 94.338 

 

The aluminium target capsule was cut open and removed from the target material, 

while the present infrastructure could not be used to open and remove the larger 

stainless steel capsule in a similar manner.  Instead, the stainless steel capsule was 

simply punctured so that the target material could be dissolved.  As a result, the 

dissolution of the target material in Production 2 turned a shade of orange, due to the 

o-phenanthroline monohydrate binding with iron and other impurities.  When loading 

the solution on to the Purolite S950 resin, the impurities may have interfered with the 
82Sr being retained by the resin, resulting in the loss of ca. 5.7 % in the load step.  The 

remainder of the product was successfully retained by the resin and eluted with the 2.0 

M HCl.  Although much of the colour was removed in the rinse steps of the 

production, there was still some colour in the final product, even when it was 

evaporated to dryness and picked up in 5 mL 0.1 M HCl. 

 

Phillps et al.15 reported a similar tendency in their separations. In this work, it may 

also have been due to the o-phenanthroline monohydrate increasing the iron 

distribution coefficient for the chemical separation22, and the following method was 

employed to overcome this: 
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The 82Sr product was evaporated to dryness and the salts dissolved in 100 mL 2.0 M 

HCl-70 % methanol.  The solution was pumped through a column containing 10 mL 

AG MP-50 macroporous cation exchange resin (equilibrated with 50 ml 2.0 M HCl-

70 % methanol).  The elements were washed onto the resin using a further 50 mL 2.0 

M HCl-70 % methanol.  The impurities (Fe, Mn, Ni, Al and Cr) were eluted from the 

resin column using 50 mL 3.0 M HCl-45 % methanol, before the 82Sr final product 

was eluted from the column with 50 mL 4.0 M HNO3.  This was evaporated to 

dryness, before being picked up in 0.1 M HCl. 

 

The activity of 82Sr was determined using the 776.5 keV γ-ray peak of the 82Rb 

daughter, which reaches secular equilibrium with the parent nuclide only a few 

minutes after EOB.  It was determined that the final product, other than the initial loss 

in the load step, was intact and devoid of impurities. 

 

From the experiments and productions performed, elution curves of Rb and 82Sr were 

plotted and are shown in Fig. 4.5. 

 

Elution Curve for Rb/Sr separation in 0.5 M NH4Cl/2.0 M HCl 
on Purolite S950 resin
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Fig. 4.5: Elution curves of 82Sr and 84Rb from Purolite S950 using 0.5 M NH4Cl and 2.0 M HCl as 

eluents, respectively. 
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Aardaneh et al.18 briefly described a method to produce 82Sr comparing Chelex 100 

and Purolite S950 chelating resins.  While the authors determined Purolite S950 to be 

the resin of choice for their work, it differs from this work in that a 7 g target was 

used, while this work involved the use of a 30 g RbCl target.  The main difference, 

however, was the fact that they used an “open” system with their ion exchange 

method, that is, applying gravity flow use of the column by dripping the solution into 

the column from the top at a flow rate of 2 mL per minute maximum.  The flow rate 

had to be monitored carefully to prevent the column from running dry because of the 

bigger particle size of the resin beads.  This work uses a “closed” system use of ion 

exchange, in that the column was sealed using a sinter on either end of the column and 

a Teflon plunger on one side.  This allowed the resin to remain wet at all times, while 

being able to increase the pump speed up to 5 mL per minute without any side effects.  

The use of a “closed” system is also regarded as a safer method of performing a 

production, as any losses due to a broken tap or burst line can be kept to a minimum, 

while there is a danger of losing all of one’s activity should it happen when using an 

open gravitational system.  Furthermore, working with a closed system prevents 

external contamination and the smaller particle size of the resin results in better 

resolution. 

 

Cackette et al.16 described a method using Rb metal as target.  Their hot cell 

production method of processing the target involved dissolving the target in n-butanol 

after piercing it in the processing hot cell, all taking place in a glass vessel purged 

with argon, before being processed further by means of ion exchange.   

 

At the time of writing, several Rb metal targets (also encapsulated in stainless steel) 

have been bombarded successfully with beam intensities up to 250 µAh for extended 

periods.  These targets were exported in an unprocessed form to the customer.  The 

processing of Rb metal targets will also be implemented at iThemba LABS in due 

course, however, that development work falls outside the scope of this thesis. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



  

 39

4.4 Conclusion 

 

A method was developed to effectively separate 82Sr from the RbCl target material, 

producing a 82Sr yield of over 94 %.  The final product was determined to be of a very 

high purity, suitable for use in 82Sr/82Rb generators and, thus, this production method 

has been implemented for the routine productions at iThemba LABS. 

 

Work on Rb metal targets has also been initiated in order to increase the production 

rate.  Several targets have been bombarded successfully with beam intensities up to 

250 µAh, however, the implementation of a suitable chemical separation 

infrastructure in the hot-cell complex is still to be performed in future.   

 

Lastly, it should be mentioned that the yields obtained from both RbCl and Rb metal 

targets bombarded in the VBTS, were very close to the expected values based on the 

nuclear data of Figs. 4.2.and 4,3.  This is very encouraging, and perhaps the first 

indication that a vertical beam has an advantage over a horizontal beam, in that 

molten target material remains better located in the beam strike.   
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CHAPTER 5 THE PRODUCTION OF 28Mg IN THE 
PROTON BOMBARDMENT OF natCl  

 

5.1 Introduction and Background 
 

28Mg was discovered in 19531 and has a half-life of 20.9 h.  Its mode of decay2,3 is 

100 % by β- emission to 28Al.  Before then, all the known radionuclides of Mg were 

regarded as impractical for use as tracers because of their short half-lives, the longest 

being 27Mg (9.3 minutes).  As a result, the radiochemistry of Mg was largely 

neglected4 until 28Mg became an important tracer in biological research.  Magnesium 

is an essential element which plays a pivotal role in animal and human physiology5-9 

and its metabolism is, even today, not fully understood.  

 

The earliest studies using the radionuclide involved the investigation of serum Mg and 

urinary excretion of Mg in alcoholic subjects10,11.  Attempts were made to study Mg 

absorption and excretion in humans with the use of 28Mg12, as well as retention of Mg 

in the body13,14.   There have also been studies with regard to Mg losses15 and Mg 

kinetics15-18 in the human body, Mg distribution in the body17-20 and intestinal peak 

absorption21,22.  28Mg was also used as tracer in the study of primary 

hypomagnesemia, particularly in children23-25. 

 

The rather short half-life of ~ 20.9 h limits the usefulness of 28Mg as a tracer to only 

about three days.  It is, therefore, too short-lived for the determination of true 

adsorption26 in certain types of processes in the body.  Stable tracers are, therefore, 

more commonly used nowadays25-30, especially in studies of processes having 

relatively long biological half-lives.  Nevertheless, the simultaneous administration of 
28Mg with a stable Mg tracer remains useful for monitoring the initial Mg uptake and 

to evaluate the stable tracer25. 

 
28Mg played an important role in studies of Mg bioavailability and nutrition.  For 

example, its uptake has been measured in plants in studies pertaining to plant 

physiology and exchange processes in photosynthesis5,30,31, while Mg uptake in the 
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leaves of sunflowers, as well as root uptake and the distribution of Mg to different 

parts of this plant were investigated32-34.  28Mg has also been used to determine 

physiological disorders in plant species, particularly in apples and grapes, where it 

became evident that the specific Mg transport behaviour increases bitter pit necrosis 

primarily caused by calcium deficiency.   

 

Interest was shown in this radionuclide for mineral uptake studies by the local Fruit 

and Fruit Technology Research Institute (FFTRI) of South Africa in the early 1990’s.  

A project was started at iThemba LABS at that time to investigate its production with 

the 66 MeV proton beam, however, that project was never completed because 

priorities had changed.  Recently, however, interest has been rekindled and the project 

to produce 28Mg reopened. 

 

The production of 28Mg has been achieved with the use of neutrons from nuclear 

reactors, using Al as target material35,36, following the reaction route 27Al(n, p)27Mg(n, 

γ)28Mg or 27Al(n, γ)28Al(n, p)28Mg (see Fig. 5.1).  It has also been produced via the 

consecutive nuclear reactions 6Li(n, t)4He and 26Mg(t, p)28Mg with the use of Li/Mg 

alloy as target material1,37,38.  The radionuclide has also been produced in accelerators 

via reactions of tritons on Mg, Al and Si39,40, which has reportedly produced a product 

of high specific activity.  Another method reported is via the reaction 27Al(α,3p)28Mg, 

providing a convenient means to produce carrier-free 28Mg24,25,35,41-43 in small to 

moderate quantities with relatively small cyclotrons (Q = -21.6 MeV).  Cross-section 

experiments on the production of 28Mg with the use of Si as target material have also 

been performed,44,45 but the yields obtained were very low and this method has not 

been put into production.  Spallation reactions, using Cl, to produce 28Mg have been 

reported46-48, using NaCl46 and KCl47 target material, precipitation with Fe(OH)3 and 

separation by means of ion exchange chromatography.  Unfortunately, not only is the 

yield low, but the product contains other impurities which makes the production 

cumbersome, as the purification of the product is labour intensive.   

 

Nowadays, α-particle beams for radionuclide production purposes are becoming very 

rare as most modern medical cyclotrons are negative ion accelerators, unable to 

accelerate 4He ions.  The use of proton beams to produce 28Mg, on the other hand, 

requires energies well over 50 MeV and, therefore, many commercial medical 
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cyclotrons are unable to produce this radionuclide.  A number of larger accelerators in 

the world, however, do have the ability to produce useful quantities using proton 

beams.  The options available for 28Mg production in the proton energy region 50 - 

200 MeV were revisited at iThemba LABS.  Extensive new production rate and 

excitation function data were also measured for the natCl(p,6pxn)28Mg nuclear process. 

 

 
Fig. 5.1: Relevant part of the “Karlsruher Nuklidkarte” of 2006 for the production of 28Mg.  Note 

that not many neutron-rich radionuclides can be accelerator produced, 28Mg being one 
of only a few exceptions. 

 

It is interesting to note that (reportedly) no facility has produced 28Mg routinely since 

199049, although Brookhaven National Laboratory still had it listed as one of their 

products in 199550.  In 2002, the price of this radionuclide was reported to be 

approximately US$ 30 000 per mCi49, explaining, perhaps, the shortage of the product 

worldwide.  Currently, its status is “low demand, high price and hard to obtain”. 
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5.2 Nuclear Data 

 

5.2.1 Experimental Methods and Data Analysis 

 

Usually, excitation functions are measured utilizing the well-known stacked-foil 

technique; the foils being sufficiently thin to ensure that the measured cross sections 

constitute microscopic data.  From these microscopic data, production rates or yields 

can be deduced by means of a numerical integration procedure51. 

 

Occasionally, however, it is difficult to use the stacked-foil technique due to 

difficulties in preparing thin specimens of high integrity of a given material.  This was 

experienced with the stable compounds of Cl, the chlorides being brittle salts.  Thick-

target yields were, therefore, measured in a range of different energy windows, using 

relatively thick NaCl discs as targets, in order to establish the thick-target production 

rate curve first.  The corresponding excitation function was then deduced by means of 

a differentiation procedure, in order to obtain microscopic data for comparison with 

other literature cross sections.  An important criterion of this approach is that the 

spacing of the measured points on the energy axis should be similar to what would 

have been appropriate in a conventional stacked-foil experiment. 

 

Stacks of analytical grade NaCl (> 99 %, Merck) tablets were irradiated with proton 

beams of nominally 200, 100 and 66 MeV, delivered by the separated sector cyclotron 

of iThemba LABS.  The NaCl target discs had thicknesses of nominally 870, 540 and 

425 mg/cm2, respectively, in the 200, 100 and 66 MeV stacks.  The individual NaCl 

discs were separated by relatively thin monitor foils (99.9 %, Goodfellow, U.K.): 65 

mg/cm2 Al in the 200 and 100 MeV stacks and 44 mg/cm2 Cu in the 66 MeV stack.  

The excitation functions of the 22Na and 65Zn formed in the Al and Cu foils, 

respectively, were used to monitor the accumulated proton charge. These well-

established monitor reactions, recommended by the IAEA52 gave consistent results 

with the readings of a calibrated Brookhaven Instruments Corporation Model 1000C 

current integrator. 
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The 28Mg activities were determined by off-line γ-ray spectrometry using the 941.7 

keV (38.3 %) and 1342.3 keV (52.6 %)3 γ-lines.  The 28Mg sources were prepared by 

dissolving each NaCl tablet in 10 mL of water after irradiation.  These solutions were 

sealed in standard serum vials.  Activities were measured using an accurately 

calibrated HPGe detector with a relative efficiency of 13 % and a resolution of 1.8 

keV at 1.33 MeV, connected to a Silena multi-channel analyzer.  The thick-target 

production rate curve was obtained by summing the individual 28Mg activities 

progressively.  Corrections were made for the missing 28Mg activities corresponding 

to the “dead layer” energy intervals occupied by the monitor foils.  This was done by 

interpolating the activity values on both sides of each dead layer and scaling to the full 

energy region. 

 

The total uncertainties of the measured activity values were obtained by summing all 

the contributing uncertainties in quadrature and are expressed with a 1σ (68 %) 

confidence level.  The statistical uncertainties were insignificant compared to the 

systematic uncertainty, except near the reaction threshold, the latter of which was 

estimated to be about 7 %: beam current integration (3 %), detector efficiency (5 %), 

counting geometry (1 %), decay corrections (2 %) and target thickness (3 %). 

 

5.2.2 Results and Discussion 

 
 

The measured 28Mg thick-target production rate curve for NaCl + p is shown in Fig. 

5.2.  Note that all target materials considered in this study are natural, non-enriched 

materials.  The relatively high proton energies will make the correspondingly thick 

targets required prohibitively expensive should enriched target material be used.  The 

reaction threshold is near 50 MeV and the production rate for the full energy region, 

i.e. from threshold up to the maximum energy of 200 MeV, is about 6 MBq/µAh.  A 

standard polynomial function was fitted through the measured data using the code 

TableCurve53. 

 

The polynomial of Fig. 5.2 could be differentiated analytically, allowing the 

derivation of the excitation function for natCl + p, shown in Fig. 5.3.  (Note that this 
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excitation function pertains to pure Cl and not NaCl.)  The only other relevant data 

found in the literature are by Lundqvist and Malmborg47, which currently is the only 

EXFOR data set for 28Mg produced in natCl + p.  Six of their nine values are in good 

agreement with the results obtained in this work, while three values are clearly 

somewhat higher.  Generally, the agreement is satisfactory.  The deduced cross-

section values of this work as well as production rates for several possible target 

materials are presented in Appendix A1. 

 

 
Fig. 5.2: Thick-target production rate curve of 28Mg produced in the proton bombardment 

of NaCl.  The solid symbols are the measured values of this work while the solid 
curve is a polynomial fit.  Error bars are shown when they exceed the symbol size. 

 

Lundqvist and Malmborg presented production cross sections for 28Mg in the proton 

bombardment of silicon, phosphorus, sulphur, chlorine, argon and potassium.  These 

were essentially all the possible target elements with potential in the energy region 50 

– 180 MeV.  The target materials and reactions are as follows: Si [30Si(p,3p)28Mg]; 

Na2P2O7 [31P(p,4p)28Mg]; Na2SO4 [natS(p,5pxn)28Mg]; LiCl [natCl(p,6pxn)28Mg]; Ar 

[natAr(p,7pxn)28Mg]; and K2CO3 [natK(p,8pxn)28Mg].  From a practical targetry point-

of-view, one can omit Ar.  As a gas, Ar will be impossible to contain in a large 

enough energy window to make 28Mg production viable, while it is impractical to 

keep it frozen under high-intensity bombardment conditions.  One can also omit Si, S 
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and K, as with these elements, significantly lower cross sections were obtained than 

with Cl and P.   

 

 
Fig. 5.3: Excitation function of 28Mg formed in the reactions of protons with natCl.  The 

solid curve was derived from the measured thick-target production rate data of 
this study (see Fig. 5.2).  The open symbols are measured cross sections by 
Lundqvist and Malmborg47. 

 

Interestingly, the natP + p process has higher cross sections for 28Mg formation than 
natCl + p (about 30 % at 150 MeV).  Unfortunately, no suitable compounds of P could 

be identified for use as target material, as they all seem to have poor thermal stability 

at higher temperatures and/or a relatively low P content.  Many phosphorus 

compounds decompose at relatively low temperatures, rendering them unsafe to be 

used as target materials (as a high pressure build-up inside a target capsule can cause 

it to burst).  One of the most stable compounds of P, namely, Na4P2O7 (sodium 

pyrophosphate) has, for example, a reasonably high melting point of 880 °C but only 

contains 23 % of P by mass.  In contrast, many of the chlorides have excellent thermal 

properties and a high Cl content.  Several chlorides have boiling points at 

temperatures much higher than their melting points, thus, making excellent high-

current targets if properly encapsulated and cooled.  Also, both stable isotopes of Cl 

contribute significantly to the yield: 35Cl[75.77 %](p,6p2n)28Mg and 37Cl[24.23 

%](p,6p4n)28Mg. 
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Figure 5.4 shows the expected thick-target production rates (or instantaneous yields) 

for several metal chlorides as well as pure chlorine for an energy window from 

threshold up to 200 MeV.  Obviously, solid frozen chlorine will be the best choice in 

terms of yield, but it is quite impractical as a target.  The next best choice in terms of 

yield is BeCl2, however, this particular salt has less favourable thermal properties than 

the simpler chlorides, viz. LiCl, NaCl and KCl.  LiCl was determined to be the target 

material of choice, as it has excellent thermal stability as well as a yield of about 80 % 

of the natCl + p theoretical maximum.  LiCl has a melting point of 605 °C and a 

boiling point of 1325 °C, while the corresponding values for BeCl2 are 405 °C and 

488 °C, respectively.  It also gives a 37 % higher 28Mg yield than NaCl.  The 

advantage of NaCl as target material is that significantly less 7Be is co-produced (to 

be discussed later). 

 

Once again, however, this is not the complete story as a production energy window of 

50 – 200 MeV will result in a very thick LiCl target (about 32 g/cm2).  Such a thick 

target would be virtually impossible to cool sufficiently during high-intensity 

irradiation.  A practical solution was to place several thinner targets (properly 

encapsulated) in series and to provide fast flowing cooling water around them in a 4π 

geometry54.  This would reduce the cumulative production rate somewhat by 

introducing “dead layers” in the production energy window.  Nevertheless, a higher 

operational beam intensity can more than adequately compensate for this loss. 

 

It is interesting to compare the yields expected from thinner targets as a function of 

incident energy.  This is shown in Fig. 5.5 for LiCl targets ranging in thickness from 2 

to 32 g/cm2.  It is clear that, regardless of the target thickness, the highest yield is 

always obtained with the highest incident proton energy.  This result may seem trivial, 

but it is not.  There are no local minima or maxima, which is unusual.  The production 

rate curve for an incident energy of 200 MeV is shown in Fig. 5.6, plotted as a 

function of target thickness. 
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Fig. 5.4:  Comparison of the expected thick-target production rates of 28Mg in the proton 

irradiation of several Cl containing compounds, for an energy window 50 – 200 
MeV, derived from the measured data of this work. 

 

Salt targets, of nominally 4 g/cm2 thickness and 20 mm in diameter and encapsulated 

in 0.5~mm thick Al, were successfully tested at iThemba LABS up to thermal loads 

of 2.5 kW.  Cooling water layers of 1 mm thickness were provided to targets having a 

tandem geometry.  This concept can easily be extended to more targets in series.  As 

already mentioned, this kind of geometry will allow for effective cooling of the 

targets, however, one concern in such a long stack of targets should be the 

outscattering losses of protons due to radial beam spread, caused by Coulomb 

interactions inside the target material.  It was decided to perform an experiment to 

investigate such losses and to test the target concept. 

 

Stellenbosch University  http://scholar.sun.ac.za



  

 51

 
Fig. 5.5: Expected production rates of 28Mg for various target thicknesses in the proton 

irradiation of LiCl, plotted as a function of incident energy.  The target 
thicknesses range from 2 to 32 g/cm2 in 2 g/cm2 steps, as indicated. 

 
Fig. 5.6:  Expected thick-target production rates of 28Mg in the proton irradiation of LiCl 

with an incident energy of 200 MeV, plotted as a function of target thickness. 
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5.2.3 The Experimental Target 

 
 

A target holder was designed to hold ten thick encapsulated LiCl targets (2.74 g/cm2 

each) in series.  This is shown in Fig. 5.7 (expoded view) and Fig.5.8 (cutaway view).  

The targets were bombarded inside the RERAME55 irradiation chamber (see Fig. 5.9) 

with a 200 MeV proton beam of 100 nA intensity for 80 minutes.  The targets were 

then removed, decapsulated and the target material dissolved.  Liquid sources in 

standard serum vials were prepared from a fraction of each solution, the rest used for 

the radiochemical investigations.  

 

 
Fig. 5.7: An exploded view of the LiCl target holder, showing the 10 encapsulated LiCl targets, an 

entrance window at one end and a beam stop at the other end.  A rack was designed to 
keep the targets in position inside an aluminium sleeve while simultaneously providing 
cooling channels for cooling water.  The cooling-water layers between targets had a 
thickness of 1 mm. 

 
The ten LiCl targets covered the entire energy region from 200 MeV down to 

threshold.  The yield in each target was accurately measured and compared with the 

values expected from the nuclear data measurements.  The ratio of these measured 

and predicted values are presented in Fig. 5.10, plotted versus the target number.  

Note that the target number increases with decreasing proton energy.  A value of unity 

would indicate a situation where no beam losses have been incurred.  As can be seen 

from the figure, this is indeed the case for targets number 1 through 8, within the 

Stellenbosch University  http://scholar.sun.ac.za



  

 53

measured uncertainties.  In the case of target no. 9, the ratio falls to about 0.72 and in 

the case of target no. 10, to 0.21.  This sudden drop is thought to be mainly due to the 

radial beam spread, although an effect resulting from a slight energy mismatch 

towards the end of the target stack cannot be ruled out. 

 

 
Fig. 5.8:  A cutaway view of the the LiCl target holder showing the 10 LiCl targets, with the 

proton beam incident from the left. 

 

During the bombardment, a Ni monitor foil placed directly behind the last target (i.e. 

target no. 10) was also activated.  An idea of the beam profile at that point could be 

obtained by examining the 57Ni (T1/2 = 36 h) activity induced in that foil.  For this 

purpose, the foil was cut up into smaller pieces, which were then individually counted 

for their 57Ni activities.  The activity distribution of a vertical cut through the foil is 

shown in Fig. 5.11.  Note that the beam profile is expected to resemble a skew 

Gaussian distribution.  From the figure, it is clear that the beam width has become 

significantly broader than the target diameter of 20 mm.  It is evident, therefore, that 

the radial beam spread becomes a significant factor towards the low-energy side of the 

target stack. 
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Fig. 5.9:  The LiCl target holder mounted on the door of the RERAME55 irradiation chamber.  

The beamline is connected onto the chamber from the left side. 

 

 
Fig. 5.10: The ratio of the measured 28Mg activity and the corresponding predicted value based 

on the nuclear data measurements, plotted as a function of the target number.  Note 
that the target number increases as the penetration depth into the target stack 
increases.   
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Finally, it is interesting to look at the cumulative 28Mg yields obtained.  The measured 

cumulative yield of all ten targets is 6.29 MBq/µAh at EOB.  The expected yield is 

6.40 MBq/µAh, thus very good overall agreement is obtained.  Should one discard the 

last two targets in the stack, the total measured yield is 6.12 MBq/µAh.  Thus, if only 

eight targets are used, a cumulative yield of about 97 % of that for ten targets is 

obtained.  Clearly, it is not worthwhile having the last two targets in the stack.  One 

may also consider reducing the number of targets in the stack further.  The 

corresponding percentages (relative to 10 targets) are as follows:  7 targets (92 %); 6 

targets (84 %); 5 targets (75 %); 4 targets (63%).  A target system comprising six or 

seven encapsulated targets, therefore, seems to be the most sensible choice. 

 

 
Fig. 5.11: The 57Ni distribution of a vertical cut through the Ni monitor foil (see text), plotted as a 

function of the radial dimension.  (Note that the target diameter was 20 mm). 
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5.3 Radiochemical Investigation 

 

5.3.1 Chemical Separation Method 

 

Experiment 1 

An 8.6 g LiCl target was dissolved in 100 mL 0.01 M ammonium citrate and loaded 

onto a 10 mL column containing AG MP-1 macroporous anion exchange resin 

(equilibrated with 50 mL 0.1 M ammonium citrate).  The Li was eluted from the 

column using 50 mL 0.1 M ammonium citrate, while the 28Mg final product was 

eluted from the resin column using 50 mL 1.0 M HCl. 

 

Experiment 2 

A LiCl target (8.6 g) was dissolved in 100 mL 1.0 M ammonium chloride solution, at 

a pH of 8, to which 100 mg o-phenanthroline monohydrate was added. The resultant 

solution was pumped through a column containing 5.0 mL Purolite S950 chelating 

resin (the resin lightly ground to create finer particles for greater surface area), 

equilibrated with 50 mL 1.0 M ammonium chloride.  The elements were washed onto 

the column with 20 mL 1.0 M ammonium chloride (pH 8), before the Li was eluted 

from the resin column with a further 50 mL 1.0 M ammonium chloride (pH 8).  The 

ammonium chloride was washed out of the resin with water, before the 28Mg was 

finally eluted with 50 mL 2.0 M HCl. 

 

5.3.2 Results and Discussion 

 

When dissolving each of the ten targets, it was noted that the beam was well focused 

on the first five targets, after which the area of “burning” on the target material began 

to spread.  As a result, problems began to occur when dissolving the LiCl salt target.  

The targets situated at the front of the stack appeared to have reacted with the 

aluminium capsule, as a colloidal suspension occurred, instead of the salt going into 

solution.  It was attempted to use dilute nitric acid to dissolve a target, but this had 

disastrous results as, oddly, the nitric acid reacted with the aluminium shavings from 
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the encapsulation, probably as a result of the Li reacting with the capsule.  When each 

solution was filtered, however, all returned to normal.  Luckily, the colloidal 

suspension did not contain any 28Mg activity.   

 

The targets used for the experiments were filtered and evaporated to incipient dryness, 

after which water was again added.  This, too, was evaporated to dryness before the 

activity was picked up in the solution of choice for the necessary experiment. 

 

Experiment 1 was pursued after perusing an article by Nelson et al.56, where it was 

stated that the alkali metals would not be retained by anion exchange resins in dilute 

citrate media, while the alkali earth metals and Mg in particular, would be strongly 

retained by anion exchange resins in this mixture.  After studying the distribution 

coefficients, it was decided to dissolve the target in 0.01 M ammonium citrate, as Mg 

had a particularly high distribution coefficient in this mixture.  The experiment failed 

miserably, with 91.9 % of the 28Mg activity passing through the resin column and the 

remaining 8.1 % being discovered in the rinse step.  It was thought that the 

experiment would be successful, even though the literature stated that a 0.27 cm2 x 44 

cm column was used with 0.5 M ammonium citrate, where the Mg distribution 

coefficient was considerably less than in 0.01 M ammonium citrate.  It was thought 

that a smaller column and more dilute solution would be as effective, but this was not 

the case. 

 

The method devised for Experiment 2 was based on that for the 82Sr separation from 

Rb salt targets (see Chapter 4), where an alkaline earth metal was effectively 

separated from an alkali metal.  As with the 82Sr production, o-phenanthroline 

monohydrate was added to the load solution such that the distribution coefficient of 

Mg would increase57, thereby allowing the radionuclide to be more effectively 

retained by the resin.  The experiment was considerably more successful than 

Experiment 1, but 18.72 % of the 28Mg activity was still lost in the initial load step, 

while a further 1.55 % was lost in the rinse steps, yielding 79.73 % in the eluate.   

 

It was deduced that the activity was migrating through the resin column and, as a 

result, a longer column would be necessary.  Another option would be to dilute the 

LiCl and ammonium chloride mixture 10 times, but this idea was discarded due to the 
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volumes required for the separation process.  A column of 12.5 cm in length and a 

diameter of 1 cm was used, packed with the same resin as before (Purolite S950, 

slightly ground).  The same procedure was followed and the results were excellent, 

with a 100 % yield of 28Mg being obtained, the product being radionuclidically pure, 

with the exception of some 7Be being found in the product as a result of the (p,n) 

reaction on Li. 

 

Another radionuclide that required separating in the procedure was that of 24Na (1368 

keV γ-ray), also produced in the bombardment process.  While the initial procedure 

for Experiment 2 saw 90.2 % of 24Na initially pass through the resin column, 6.60 % 

of the radionuclide was removed from the resin in the rinse step, while 3.20 % 

appeared in the final product.  When the column was lengthened as described above, 

82.1 % of the total 24Na passed through the resin column in the initial load step, while 

17.7 % was removed from the resin when performing the two rinse steps. 0.17 % was 

found in the final product, which would imply that should one use a further 20 mL of 

ammonium chloride, the remainder of the impurity would be removed. 

 

5.4 Conclusion 

 
New data were measured for the proton production of 28Mg on natCl.  Several chloride 

salts are suitable target materials, with LiCl perhaps being the best choice.  An 

effective way was devised to bombard LiCl targets in series with a 200 MeV proton 

beam.  Once removed from their encapsulation and filtered, the 28Mg can be separated 

from its target material efficiently, using a 12.5 cm x 1cm2 column containing Purolite 

S950 chelating resin, producing a 100 % yield of final product.  There was some 7Be 

found in the final product, as a result of the Li(p,n)7Be reaction.  In most applications 

this would not be a problem.  Should this be a problem for potential users, however, 

NaCl targets can be used instead, although the yield of 28Mg will not be as high as 

when LiCl target material is used. 

 

The nuclear data part of this work was presented at the International Conference on 

Nuclear Data for Science and Technology 2007 in Nice, France58 and will be 

published in the conference proceedings in due course. 
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CHAPTER 6 THE PRODUCTION OF ULTRAPURE 
67Ga 

 

6.1 Introduction 

 
67Ga (T1/2 = 78.3 h), which is usually produced in a cyclotron by means of the 

reactions 68Zn(p, 2n)67Ga or natZn(p,x)67Ga (see Fig. 6.1), is extensively used in 

nuclear medicine1.  Its main γ-emissions are 93.3 keV (37 %), 184.6 keV (20.4 %) 

and 300.2 keV (16.6 %).  It is usually separated from Zn by means of ion exchange 

chromatography2,3 or by liquid extraction2,4.  The product is predominantly supplied 

in the citrate form and is mainly used for imaging soft tissue tumours and abscesses. 

 

 
Fig. 6.1: Relevant part of the “Karlsruher Nuklidkarte” of 2006 for the production of 67Ga. 

 

When in citrate form, 67Ga is known to concentrate in many types of tumours, as well 

as in non-malignant lesions. Although it is not a tumour-specific agent5, it is used 

extensively for the localisation of a variety of human malignant tumours6,7 and, due to 

its widespread application as a diagnostic tool in nuclear medicine, 67Ga is one of the 

most widely employed cyclotron-produced radiopharmaceuticals. 

 

A number of routes for the production of 67Ga in large quantities, and their 

development into medical applications, have been reported8-13.  At iThemba LABS, 
natGe targets (in tandem with natZn targets) have also been used for some time for 

routine production purposes but this practice has been terminated, temporarily, until a 
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problem concerning the release into the atmosphere of volatile radioarsenics has been 

solved satisfactorily.  For the purposes of the present work, only natZn target will be 

considered.  Several methods have been performed to separate 67Ga from this target 

material by different ion exchange methods14-18 and using the product in citrate form 

for medical applications. 

 

The current production method in use at the RPG employs the bombardment of two 
natZn targets, in tandem.  The bombarded targets are dissolved in hydrochloric acid and 

the resultant solution passed through a column containing Amberchrom CG-71cd 

resin.  Any impurities contained on the resin are eluted, before the 67Ga is eluted as 

the final product.   

 

While the final product is deemed suitable for use in diagnostic nuclear medicine, the 

product has failed to label certain peptides efficiently due to the level of Fe impurity 

in the final product.  The theory is that certain 67Ga-labelled peptides may be effective 

for therapeutic purposes, thus, it was decided to investigate the possibility of 

producing an ultrapure product, such that this theory can be tested. 

 

While descriptions of Ga and Fe separation from other elements have been reported in 

the literature19-21, they do not adequately describe how Fe and Ga can be separated 

easily, as Fe(III) and Ga(III) have very similar chemical properties. It was thought 

prudent to adapt the method currently in use for production purposes at iThemba 

LABS. 

 

6.2 Nuclear Data 

 

It is interesting to peruse the excitation function for the production of 67Ga in proton-

induced nuclear reactions on natZn.  For this purpose, two sets of data were combined 

and fitted with a polynomial function, in order to perform subsequent thick-target 

production rate calculations.  The data are by Nortier et al.22 and Szelecsényi et al.23, 

shown in Fig. 6.2.  The excitation function has a single peak, reaching a maximum of 

about 135 mb at 20 MeV.  It falls away rapidly towards higher energies, therefore, 
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only the low-energy slot (of a tandem target geometry) will be suitable for its 

production. 

 

Recently, two thin Zn targets (nominally 1.5 g/cm2 each), located behind a Cu 

degrader, were bombarded without encapsulation (i.e. directly in contact with the 

cooling water).  It is important to note that both Zn targets were located in the low 

energy slot.  The reason why two thinner targets were used instead of a single thicker 

one is simply to increase the area in contact with the cooling water.  It was found that 

thicker targets melt in the beam strike, in spite of being in direct contact with the 

cooling water, thereby, leading to production losses.  The use of two thinner targets 

prevented the problem from reoccurring.  The energy window of the two Zn targets 

was 5 – 45 MeV. 

 

 
Fig. 6.2: Excitation function of 67Ga formed in the reaction of protons with natZn.  The open 

circles are the data of Nortier et al.22 and the crosses the data of Szelecsényi et al.23.  The 
curve is a polynomial fit through the data. 

 

The thick-target production rate curve deduced from the polynomial of Fig. 6.2 is 

shown in Fig. 6.3.  As can be seen from the figure, a production rate of about 75 

MBq/µAh is predicted for the relevant production energy window.  However, the 
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“dead layer” of the 1 mm thick cooling water layer between the two Zn targets should 

still be corrected for, reducing the expected production rate to approximately 68 

MBq/µAh. 

 

It is clear from these figures that only the so-called low-energy slot is useful using 
natZn as target material.  Above 40 MeV, the natGe + p route is very promising and 

development work has again started at iThemba LABS to exploit it, however, that 

work falls outside the scope of this thesis project. 

 

 
Fig. 6.3: Thick-target production rate curve of 67Ga produced in the proton bombardment of 

natZn metal, as derived from the excitation function polynomial fit of Fig. 6.2. 

 

6.3 Experimental 

 

Analytical grade reagents were used throughout this work and were obtained from 

Merck (SA) Pty. Ltd or Sigma Aldrich GmbH, which included Sigma, Aldrich, Fluka 

and Riedel de Haen products. The Chelex 100 chelating resin used in this work was 
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obtained from BioRad Laboratories, Richmond, U.S.A., while the Amberchrom CG-

161M resin was obtained from Rohm and Haas Company, Philadelphia, U.S.A.  

 

Wherever water is referred to in the experimental descriptions, de-ionised water was 

used. This was obtained by de-ionising tap water using a Millipore MilliQ Reagent 

Grade Water System to a conductivity of greater than 10 megaohm cm-1. 

 

All radioactive determinations were performed using a standard calibrated HPGe 

detector, with a relative efficiency of 8 % (relative to three inch NaI), connected to a 

multichannel analyser. All Fe and Zn determinations were performed using a Varian 

graphite furnace atomic absorption spectrophotometer. 

 

A good reducing agent is necessary to perform the experiments successfully. 

Comparisons were made using TiCl3, SnCl2 and ascorbic acid at different conditions. 

While TiCl3 is a strong reducing agent, it contains traces of Fe when provided in 1 M 

HCl solution. As a result, the compound had to be purified, by means of cation 

exchange chromatography, prior to use.  

 

 Suprapur hydrochloric acid, which was used to perform the purification experiments 

with 67Ga, was provided by Merck (SA) Pty. Ltd. 

 

Reduction of Fe(III) with ascorbic acid 
67Ga tracer was added to a 10 mL solution of 0.01 M ascorbic acid containing 100 μg 

Fe. This solution was passed through a 2.5 mL column containing Chelex 100 resin. 

Fe was eluted using 50 mL 0.01 M ascorbic acid and the ascorbic acid rinsed from the 

resin using 20 mL water, before 67Ga was eluted with 25 mL 2 M HCl. 

 

Reduction of Fe(III) with SnCl2 
67Ga tracer was added to 30 mL of a 0.1 M HCl solution containing 100 μg Fe and 2 

mL SnCl2 (0.01 g in 10 mL 1.0 M HCl) and heated to 60 ºC, before an additional 35 

mL concentrated HCl was added to the solution. The resultant mixture was passed 

though a 2.5 ml column containing Amberchrom CG-161M resin (although this was 

also tested with Amberchrom CG-71cd resin). The resin was rinsed with 100 mL 6 M 
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HCl (to remove traces of Fe), before the 67Ga was eluted with 30 mL 0.1 M HCl, 

collecting 5 mL fractions. 

 

Reduction of Fe(III) with TiCl3 

As TiCl3 solution is made up in dilute HCl, it was decided to purify it by means of ion 

exchange to remove any traces of Fe from it.  Due to the fact that this project was part 

of an Innovation Fund Project Grant (from the local National Research Foundation), it 

was requested that this purification step not be divulged, as it could be claimed as 

intellectual property. 

 

3 mL purified TiCl3 was added to 30 mL 0.1 M HCl solution containing 100 μg Fe 

and 67Ga tracer. The solution was well mixed. A further 45 mL of concentrated HCl 

was added to the solution, before the resultant solution was passed through a 2.5 mL 

column containing Amberchrom CG-161M resin. The resin was rinsed with 50 mL 6 

M HCl (to remove traces of Fe and Ti), before the 67Ga was eluted with 30 mL 0.1 M 

HCl, by collecting 5 mL fractions of the final eluant. 

 

6.4 Results and Discussion 

 

The experiments, using ascorbic acid as a reducing agent, proved to be successful to a 

degree. Initial runs saw 93 % of the 67Ga removed in the first 10 mL of eluant, with an 

88.3 % removal of Fe.  The subsequent runs, however, proved to be less successful, 

with much of the Fe appearing in the first aliquot of eluant fractions.  It was believed 

that this could possibly be due to the pump speed used for the experiments being too 

high.  Even when the speed was decreased, however, the results did not improve much 

and this method was rejected. 

 

The initial experiments involving SnCl2 proved to be unsuccessful, as no heating was 

applied in the experimental process.  While the yield was impressive, 10 μg/mL of Fe 

was found in the final product, a quantity deemed inappropriate to regard the 

experiment as successful.  According to distribution coefficients obtained by 

Naidoo24, Ga(III) is better retained by Amberchrom CG-161cd (with a 

polystyrene/divinylbenzene matrix) than when using Amberchrom CG-71cd (with an 
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acrylic ester matrix) as resin when the concentration of HCl increases.  It was for this 

reason that most of the experiments performed on Amberchrom products were done 

using the CG-161 product, instead of the CG-71. 

 

Subsequent experiments were performed by heating the solution to 60 ºC before the 

addition of the concentrated HCl.  When using Amberchrom CG-161M, the results 

were found to be far more satisfactory, with 99 % removal of Fe and virtually all the 
67Ga found in the first 10 mL of eluant (see Fig. 6.4).  The same could not be said 

when using Amberchrom CG-71cd: the Fe removal from the final product decreased 

to 70 % (it was deduced that Fe2+ was partially retained), while 20 mL of eluant was 

required to quantitively remove the 67Ga from the resin (see Fig. 6.5). 

 

Ga-67 on Amberchrom CG-161M
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Fig. 6.4: Elution of 67Ga from Amberchrom CG-161M using 0.1 M HCl. 

  

It was decided to perform a comparison between the SnCl2 and purified TiCl3 as 

reducing agents.  The results of the experiments using purified TiCl3 as a reducing 

agent with Amberchrom CG-161M resin also provided very promising results.  No 

heat was required upon adding the reducing agent and the final product (67Ga) was 

yielded in the first 10 mL of eluant, while removing more than 99 % of the Fe added.  

With the results obtained from the comparison experiments, it was decided to take it a 

step further and perform a direct comparison under production simulation mode, that 
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is, using a similar method as currently used in routine production and add the 

experimental method to it.  This implied that a double column separation had to be 

performed. 

 

Ga-67 on Amberchrom CG-71cd
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Fig. 6.5: Elution of 67Ga from Amberchrom CG-71cd using 0.1 M HCl. 

 

The experiment was, thus, conducted as follows:  two pressed Zn targets, weighing 

ca. 9.46 g, were dissolved in 60 mL 32 % HCl (as used for routine production).  Once 

complete dissolution was obtained a further 60 mL of 32 % HCl, containing 3 mL 

purified TiCl3 solution, was added to the solution.  The resultant mixture was passed 

through a column containing 2.5 mL Amberchrom CG-161M resin (100-200 mesh 

particle size and equilibrated with 7 M HCl).  150 mL 7 M HCl was passed through 

the resin column to elute the impurities such as target material and traces of Fe, before 

the 67Ga was eluted with 30 mL 0.1 M Suprapur HCl.  Each experiment was then 

conducted further according to the method described above. 
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Table 6.1: Fe and Zn contents of samples using different reducing agents on Amberchrom CG-
161M resin. 

Reducing 

agent 

Product 1: 

Fe content 

(in μg/mL) 

Product 2: 

Fe content 

(in μg/mL) 

Percentage 

removed 

Product 1: 

Zn content 

(in μg/mL) 

Product 2: 

Zn content 

(in μg/mL) 

Percentage 

removed 

SnCl2 1.86 0.071 99.23 20.30 0.088 99.91 

TiCl3 4.44 0.010 99.92 32.50 0.412 99.58 

 

Samples were taken from the eluate of the first column (30 mL 0.1 M HCl – shown as 

“Product 1”) and that of the second column (shown as “Product 2”), which was also 

the final product, and compared (see Table 6.1).  As can be seen, the Fe and Zn 

contents in the first sample differed vastly between the experiments.  This is due to 

the fact that no two Zn targets can have exactly the same make up, thus, it was 

regarded as more prudent to take the percentage removal of the impurity in question 

into account.  As the percentage of Fe removals using the two different reducing 

agents were so similar, it was thought that a more definite decision could be made 

with regard to the most effective reducing agent should one take the Zn content in 

each product into account.  This too, however, produced similar results. 

 

It was finally decided that the most effective removal of impurities would be with the 

use of purified TiCl3 as reducing agent, as the Fe removal is marginally better than 

when SnCl2 was used as reducing agent, even though its removal of Zn is marginally 

less effective.  Its ease of use in a hot cell environment, without requiring heat, was 

also a deciding factor in choosing TiCl3 over SnCl2 as reducing agent.  Nevertheless, 

the use of both reducing agents with Amberchrom CG-161M resin produces a product 

that has vastly fewer impurities than the current production method in use, making 

this a product that can be regarded as ultrapure. 

 

This method was devised as an addition to the current 67Ga production, as to perform 

an ultrapure production on its own would require beam time that would overload the 

already heavily burdened schedule at iThemba LABS’s Radionuclide Production 

Group.  Should the targetry system be upgraded and beam time be available, the 

production could be performed as follows: 
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The two bombarded Zn targets would be dissolved in 60 mL concentrated Suprapur 

HCl, after which a further 60 mL (containing 3 mL purified TiCl3) would be added.  

The resultant solution would be loaded onto a 2.5 mL column containing 

Amberchrom CG161M resin (equilibrated with 50 mL 7.0 M Suprapur HCl).  Any 

remaining Zn and Fe impurities would be eluted with 150 mL 7.0 M Suprapur HCl, 

before the 67Ga would be eluted from the resin column using 30 mL 0.1 M HCl.  It 

can be assumed that this product would be required in this form for the labelling of 

peptides, as citrate would interfere with the labelling process.  The main reason that 

this method would not be adopted for routine production purposes is the substantial 

increase in cost to produce the radionuclide, which would imply an increase in price 

for the consumers.  This would not be well received by the local clinics and hospitals, 

particularly those subsidised by the government, as their budgets would not be able to 

cover this increase in cost. 

 

6.5 Conclusion 

 

Two alternate methods were tested and determined to be effective in the removal of 

Fe, as well as Zn, from 67Ga.  When using either SnCl2 or purified TiCl3 as a reducing 

agent in the process and applying a Amberchrom CG-161M resin column instead of a 

Amberchrom CG-71cd resin column, the results produced are excellent, with a 

removal of > 99 % of Fe and > 99.9 % of Zn from the final product.   

 

While these methods were successful under production conditions for a quantity of 

1.1 GBq (30 mCi) 67Ga, further tests using much higher activities will be performed in 

the near future. 
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CHAPTER 7 THE PRODUCTION OF 68Ge USING 
LARGER VBTS FORMAT Ga TARGETS 

 

7.1 Introduction 

 

Positron Emission Tomography (PET), which provides information regarding blood 

flow and metabolism in patients non-invasively, is becoming a more common 

procedure in nuclear medicine.  The detection of the two positron-annihilation 

photons (511 keV) in coincidence produces a significant reduction in background 

radiation, thereby, providing sharp tomographic images1. 

 

The availability of short-lived radionuclides from radionuclide generators provides an 

inexpensive and convenient alternative to in-house radionuclide production facilities, 

such as cyclotrons.  68Ga, which has the physical characteristics desirable for PET, is 

obtained via the decay of 68Ge, making the production of 68Ge an important factor.  
68Ge, having a half-life of 288 days, decays entirely by electron capture2 to produce 
68Ga (T1/2 = 68 m), which disintegrates mainly by positron emission (90.5 %)3.  The 

daughter (68Ga) is obtained from 68Ge when in secular equilibrium with the mother. 

 
68Ge has been used as a positron source in positron annihilation studies in nuclear 

physics and in metal radiography in industry4.  The most recent application of this 

radionuclide, however, is as a 68Ge/68Ga generator for PET in nuclear medicine5,6, 

with the use of 68Ga as a PET tracer.  The greater demand for 68Ge is as a result of the 

increased use of 68Ge/68Ga generators for radiopharmaceutical purposes7-13.  

 

Two nuclear reactions have been utilized to produce 68Ge routinely, namely, by 
66Zn(α,2n)68Ge (66Zn natural abundance being 27.8 %) giving a yield of up to 2 

μCi.μAh-1, or by 69Ga(p, 2n)68Ge (69Ga natural abundance being 60 %) giving a yield 

of up to 20 μCi.μAh-1.  The latter reaction is regarded as the reaction of choice for 

medical cyclotrons due to the higher yields obtained and the fact that only two 

elements have to separated from each other, where with the former reaction a third 

element (Zn) has to be taken into consideration14 (see Fig. 7.1). 
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Fig. 7.1: Relevant part of the “Karlsruher Nuklidkarte” of 2006 for the production of 68Ge. 

 

Target materials used for the production of 68Ge have included Ga2O3
14,15, Ga4Ni11, 

GaAg16,17, RbBr18, Ga2O13,19,20 and Ga metal21-23.  The use of Ga2O3 has the 

disadvantage in that the material prohibits the use of a high-current proton beam.  This 

is because the material changes from a hexagonal α-form to a monoclinic β-form at 

about 600 °C, leading to a volume increase which causes the target capsule to rupture.  

Because the target material has to be placed in a low energy slot in the VBTS 

(generally behind a Rb target), this material is not recommended as it is essential to 

utilise high-current beams for commercial production purposes.  The use of alloys as 

target material (Ga4Ni and GaAg) has the disadvantage of having to separate extra 

unnecessary impurities from the required final product, while the RbBr target also 

adds Rb as an extra impurity to remove, thereby, further complicating the proposed 

production method.  The use of Ga2O, while appearing to be useful, has been seen to 

be a long process which can turn to be cumbersome when performing the production 

in a hot cell environment, as well as the fact that it is a long, excruciating process to 

prepare the target material as a disc.  Finally, Ga metal has been discovered to be 

corrosive to Al capsules.  Elemental Ga has to be encapsulated due to its low melting 

point (29.8 °C), however, it has a tendency to dissolve most metals11.  Should one 

encapsulate it in Nb, however, the Ga would not react with its encapsulation and one 

can bombard the target without incident23,24.   

 

Taking the advantages and disadvantages of all of the above target materials into 

account, it was decided to use Ga metal encapsulated in Nb, in the hope that the 

chemical separation will be easier, while at the same time using the target material 

Stellenbosch University  http://scholar.sun.ac.za



 

 76

that produces the highest yield.  The manufacture of these targets had to be partially 

outsourced as iThemba LABS does not yet have the infrastructure necessary to 

perform Nb encapsulation. 

 

The radiochemical separation of 68Ge from Ga targets by means of solvent 

extraction11,15,16,19,25,26 and ion exchange chromatography, using organic13,27 and 

inorganic14,17,28 material, have been reported.  It was decided to pursue ion exchange 

chromatography for this work, using a macroporous anion exchange resin, particularly 

after perusing Nelson et al.’s work30 with regard to anion exchange separations 

involving hydrochloric acid, hydrofluoric acid and hydrochloric-hydrofluoric acid 

mixtures. 

 

7.2 Nuclear Data 

 

An evaluated excitation function data set for natGa + p was published by Takács et al. 

quite recently.  This data (shown in Fig. 7.2) was adopted for making predictions of 

production rates at iThemba LABS.   
 

 
Fig. 7.2: Excitation function of 68Ge formed in the reaction of protons with natGa.  The curve is an 

evaluated excitation function29 by Takács et al. 
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As can be seen from Fig. 7.2, the most prominent feature is a broad peak with a 

maximum of about 325 mb at 20 MeV, which is contributed to the excitation function 

by the reaction 69Ga(p, 2n)68Ge.  A secondary peak towards higher energies 

corresponds to the contribution from the 71Ga(p,4n)68Ge reaction (see Fig. 7.1).  

Because of the large cross sections at energies below the effective threshold for the 

production of 82Sr from natRb + p, i.e. about 33 MeV (see Chapter 4), it is extremely 

attractive to produce 68Ge and 82Sr simultaneously in a tandem target geometry.  In 

other words, 68Ge (from natGa + p) is an extremely attractive low-energy-slot 

companion for 82Sr (from natRb + p), the latter target of which then occupies the high-

energy slot.  It is for this reason that a natRb/natGa tandem target was introduced for the 

VBTS from the outset.   

 

The thick-target production rate curve derived from the excitation function of Fig. 7.2, 

for a natGa metal target, is shown in Fig. 7.3.  The energy window selected for the 

VBTS targetry is nominally 34 MeV down to threshold.  The predicted production 

rate for this energy region is about 1.6 MBq/µAh.  Actual production yields (EOB) of 

between 1.4 and 1.5 MBq/µAh  (uncorrected for decay) have been obtained 

repeatedly, thus in excellent agreement with expectations.  Once again, it was shown 

that a metal target with a low melting point, encapsulated with a metal having a high 

melting point, behaves extremely well in high-intensity irradiations of extended 

duration. 
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Fig. 7.3: Thick-target production rate curve of 68Ge produced in the proton bombardment of 

natGa metal, derived from the excitation function of Fig. 7.2. 

 

7.3 Experimental  

 

Analytical grade reagents were used throughout this work and were obtained from 

Merck (SA) Pty. Ltd or Sigma Aldrich GmbH, which included Sigma, Aldrich, Fluka 

and Riedel de Haen products.  The AG MP-1 anion exchange resin used in this work 

was obtained from BioRad Laboratories, Richmond, U.S.A.  

 

De-ionised water from a Millipore MilliQ Reagent Grade Water System, to a 

conductivity of greater than 10 megaohm.cm-1, was used for all experimental and 

production work. 

 

All radioactive determinations were performed using a standard calibrated HPGe 

detector, with a relative efficiency of 13 % (relative to three inch NaI), connected to a 

multichannel analyser.  As 68Ge produces no gamma peaks, activity determinations 

were performed by measuring its daughter, 68Ga, after 8 to 10 hours when equilibrium 

had been reached. 
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Experiment 1 

A distillation system was set up in the hope that the target could be dissolved by 

means of sub-boiling, such that the Ge activity doesn’t volatilize.  The target was 

dissolved in 50 ml aqua regia and gently evaporated to dryness under vacuum.  The 

activity was picked up in 100 ml 0.01 M HF and loaded on to a column containing 2.5 

mL AG MP-1 resin.  The column was rinsed with 50 mL 0.01 M HF, before the 

product was eluted with 20 ml 0.1 M acetic acid, followed by 20 mL 0.1 M HCl. 

 

Experiment 2 

A 20 mL aliquot was taken from a 1.0 M NaOH and 2 % ascorbic acid solution, 

containing 68Ge/68Ga activity.  To this was added 50 μL 69Ge activity and the 

activities of the sample measured.  The resultant solution was loaded on to a 2.5 mL 

column containing AG MP-1 macroporous anion exchange resin, which had been 

equilibrated by the passage of 50 mL 1.0 M NaOH.  Any impurities were removed 

from the column by rinsing the resin column with 50 mL 0.01 M HF, while the final 

product, 68Ge, was eluted from the column with 20 mL 0.1 M acetic acid. 

 

Experiment 3 

A 20 mL aliquot was taken from a 1.0 M NaOH and 2 % ascorbic acid solution, 

containing 68Ge/68Ga activity.  To this was added 1 mL concentrated HF (to equalize 

the ratio of F- ions and OH- at approximately 1:1), 50 μL 69Ge activity and 50 μL 67Ga 

activity, before the sample was measured.  The resultant solution was loaded on to a 

2.5 mL column containing AG MP-1 macroporous anion exchange resin, which had 

been equilibrated by the passage of 50 mL 0.2 M HF.  Any impurities were removed 

from the column by rinsing with 50 mL 0.01 M HF, while the 68Ge final product was 

eluted from the column with 20 mL 0.1 M acetic acid. 

 

Experiment 4 

A 20 mL aliquot was taken from a 1.0 M NaOH and 2 % ascorbic acid solution, 

containing 68Ge/68Ga activity.  To this was added 1.5 mL concentrated HF (to bring 

the concentration of F- ions into excess), 50 μL 69Ge activity, 50 μL 67Ga activity and 

20 μL 22Na activity before the sample was measured.  The resultant solution was 

loaded on to a 2.5 mL column containing AG MP-1 macroporous anion exchange 

resin, which had been equilibrated with 50 mL 0.2 M HF.  Any impurities were 

Stellenbosch University  http://scholar.sun.ac.za



 

 80

removed from the column by rinsing with 50 mL 0.005 M HF, while the final product, 
68Ge, was eluted from the column with 20 mL 0.1 M HCl. 

 

Experiment 5 

A 20 mL aliquot was taken as described for Experiments 2 to 4 above.  To this was 

added 1.5 mL concentrated HF (to bring the concentration of F- ions into excess), 20 

μL of 22Na activity, 50 μL 67Ga activity and 50 μL 69Ge activity, before the sample 

was measured.  This solution was then diluted to 200 mL, to decrease the 

concentration of Na+ ions (which decreases the distribution coefficient of Ge by 

interference). The resultant solution was loaded on to a 2.5 mL column containing AG 

MP-1 macroporous anion exchange resin, which had been equilibrated with 50 mL 

0.2 M HF.  Any impurities were removed from the column by rinsing the resin 

column with 50 mL 0.01 M HF, while the final product, 68Ge, was eluted from the 

column with 20 mL 0.1 M acetic acid, followed by 20 mL 0.1 M HCl. 

 

Experiment 6 

A 20 mL aliquot was taken as described for Experiments 2 to 5 above.  To this was 

added 2.0 mL concentrated HF (to bring the concentration of F- ions into excess), 20 

μL of 22Na activity, 50 μL 67Ga activity and 50 μL 69Ge activity, before various 

activities in the sample were measured.  This solution was then diluted to 200 mL, to 

decrease the concentration of Na+ ions. The resultant solution was loaded on to a 2.5 

mL column containing AG MP-1 macroporous anion exchange resin, which had been 

equilibrated by the passage of 50 mL 0.2 M HF.  Any impurities were removed from 

the column by rinsing with 50 mL 0.05 M HF, while the final product, 68Ge, was 

eluted from the column with 20 mL 0.1 M acetic acid, followed by 20 mL 0.1 M HCl. 

 

7.4 Results and discussion 

 

When experiments were performed previously using 68Ge solution supplied by Los 

Alamos National Laboratory, New Mexico, U.S.A., it was determined that AG MP-1 

anion exchange resin could be used to retain the product and elute the 68Ga daughter 

radionuclide using dilute HF in the form of a generator.  While this will be discussed 

at a later stage, it was decided that this model should be used in production as well, 
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particularly as resins used in productions to separate the material of interest from the 

target material have often been carried over to the manufacture of the generator (the 

production of 82Sr and the 82Sr/82Rb generator using Chelex 100 comes to mind). 

 

While dissolving Ga target material is not generally problematic (one can use 

sulphuric acid or aqua regia), to obtain the radionuclides in the anion of interest did 

cause a few headaches.  The use of sulphuric acid was discarded due to its high 

boiling point of over 300 ºC, therefore, it was thought to be more effective to use aqua 

regia.  This brought forward another problem, in that Ge, as well as Ga, is volatile 

when in chloride form.  As Faβbender et al.23 used aqua regia to dissolve the target 

material and evaporated it to dryness before performing their solvent extraction 

method, it was decided to perform a similar method, but sub-boil the target solution 

under vacuum, such that volatility temperatures would not be reached. 

 

The set-up, as a result, consisted of a reaction vessel connected to a condenser set at 

an angle, with a catcher at its base.  Just above the catcher was a tube connected to a 

vacuum system, with a scrubber system containing 1.0 M NaOH and 2 % ascorbic 

acid in the event that the Ge and Ga radionuclides did volatilize and was not contained 

in the catcher vessel.  A photographic view of this set up can be seen in Fig. 7.4. 

 

Experiment 1 

No Ge (or 68Ga) activity was found in the load sample, load waste, wash waste or 

eluate samples.  Upon checking the rest of the system, it was found to have collected 

in the scrubber system (90 %), with 10 % being picked up in the condensate.  This 

implied that, even though the target solution was sub-boiled, the 68Ge was still 

volatile, while the Ga radionuclides were not (68Ga activity was the result of the decay 

of its parent, 68Ge).  It appeared that the nitrous oxide group from the aqua regia 

played a crucial role in the carrying over of the Ge activity.  The experiments that 

followed were performed in the hope that the activity in the scrubber could be 

utilized, thereby still being able to use the experimental set-up effectively. 
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Experiment 2 

The addition of 69Ge tracer was such that one could determine the movement of the 

element.  While 68Ge produces no γ-rays, 69Ge has a strong γ-line at 1116.6 keV, 

which is easily traceable for experimental purposes. 

 

Using the solution as it was and equilibrating the resin column such that the system 

was slightly basic was not effective.  The 69Ge activity passed through the resin 

column, indicating that acidic conditions would be required to render an effective 

separation. 
 

Experiment 3 

The use of HF to acidify the scrubber solution proved to be effective to a degree, 

producing a 63.0 % yield of 68Ge product.  35.7 % of the 69Ge tracer was eluted in the 

load step, while 1.3 % was eluted in the rinse step with dilute HF.  While only 2.2 % 

eluted with the 20 mL acetic acid, the remainder was eluted easily with another 20 mL 

0.1 M HCl. 

 
67Ga was added in the eventuality that it would be in the load solution and Ga 

radionuclides would have to be separated from the Ge final product.  11.8 % of the 
67Ga tracer was eluted in the initial load step, while a further 65.5 % of the tracer was 

eluted when the column was rinsed with 0.01 M HF.  The remainder of the 

radionuclide was eluted with 20 mL 0.1 M acetic acid. 

 

Experiment 4 

When the initial solution was mixed, it produced a precipitate.  The experiment 

proceeded as with Experiment 3 and the precipitate measured.  It was found to contain 

some 70 % of the 67Ga tracer and approximately 6 % 22Na.  No 69Ge tracer was found 

in the precipitate, presumed to be NaF as a result of more HF being added to the 

mixture.  

 

The result of this experiment was an improvement over the previous ones, in that 

there was only 21.1 % breakthrough of the 69Ge tracer from the resin column, over the 

35.7 % from the previous experiment.  7.9 % of the tracer was eluted from the resin 

column when rinsing with dilute HF, however.  No 69Ge was found in the 20 mL 0.1 
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M HCl and when attempting to elute the product with a further 20 mL 0.1 M acetic 

acid, less than 1 % was gleaned from the column.  When reverting to another 20 mL 

0.l M HCl in a desperate attempt to remove the activity from the resin, success was 

achieved and the remainder of the activity was eluted.  It would appear that one would 

have to “rinse” the column with acetic acid to assist the Ge to move through the 

column, before converting the Ge to the chloride form such that it can be eluted from 

the resin column effectively. 

 

While much of the 67Ga tracer was in the precipitate as stated above, the remainder of 

the tracer was removed in the load and rinse steps, with 8.6 % of the radionuclide 

being removed in the load step and 22.3 % in the rinse step, respectively. 

 

The same can be said for the 22Na tracer, placed in the initial load solution to ensure 

that the Na+ ions did not play a role as an impurity in the final product if one used the 

scrubber solution in a production procedure.  75.3 % of the tracer was eluted from the 

resin column in the load step, while 18.4 % was eluted in the dilute HF rinse step.  

None of the tracer was found to be in the final eluate. 

 

Experiment 5 

While diluting the solution such that the NaF formed would stay in solution, 

interestingly, the result of this experiment was remarkably similar to Experiment 4 

with regard to the Ge tracer, in that 23.1 % of the 69Ge went through the column in the 

load step, while a further 5.1 % of the tracer was eluted when using 0.01 M HF: an 

improvement over Experiment 4 when 0.005 M HF was used, indicating that more 

concentrated HF should be considered to ensure the Ge is not eluted. No Ge tracer 

was found in the acetic acid eluent, however, and the remainder (71.8 %) was eluted 

with the 20 mL 0.1 M HCl. 

 

Almost half of the 67Ga tracer, 44.9 % to be exact, was eluted with the load waste, 

while 53.5 % of the total amount of tracer was eluted when using dilute HF.  The 

remaining trace of the element was removed when eluting the resin column with 20 

mL 0.1 M acetic acid. 
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The removal of Na also proved to effective, with 97.0 % of the 22Na tracer added 

being removed in the load step.  1.6 % of the tracer was removed when rinsing the 

column with the dilute HF, while the remaining trace of the element was removed in 

the 20 mL acetic acid elution step. 

 

Experiment 6 

The increase in F- ions in the load solution, as a result of the extra HF added, proved 

to be the turning point in the experimental process.  As a result, no 69Ge tracer was 

eluted from the resin column and found in the load waste.  The increase of HF 

concentration to 0.05 M also proved to be beneficial, as no tracer was detected in the 

waste resulting from the dilute HF rinsing of the column.  No tracer was found in the 

acetic acid rinse step, while 91.5 % of 69Ge was found in the 20 mL 0.1 M HCl eluate.  

A further 1.6 % was removed from the resin column with the introduction of another 

10 mL aliquot of 0.1 mL HCl to the resin column. 

 

Should 67Ga be found in the load solution, one can rest assured that it will not play a 

role in the final product.  10.6 % of the tracer was eluted with the load waste, while a 

further 85.6 % of the element was eluted with the dilute HF rinse step.  The remaining 

3.8 % was eluted with the 20 mL 0.1 M acetic acid rinse step. 

 

It would appear that Na will also not play a vital role in the production of 68Ge with 

regard to the final product, as 98.4 % of Na, as indicated by the 22Na tracer, was not 

retained by the AG MP-1 macroporous anion exchange resin and was found in the 

load waste solution.  The remaining 1.6 % of the tracer was eluted with the 0.05 M 

HF rinse step. 

 

To ensure that the experiment was reproducible, the method was repeated and the 

results obtained were very similar to that obtained in Experiment 6.  As a result, it was 

assured that the system used to dissolve the target would be effective, in that the Ge 

activity would volatilize to the scrubber system containing NaOH and that an 

effective separation could still be obtained.  Production runs were performed to ensure 

that the volatilization of the 68Ge is reproducible and is described below. 
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Fig. 7.4: The 68Ge production panel, consisting of a reaction vessel (see left) connected to a 

condenser set at an angle, with a catcher at its base.  Just above the catcher is a tube 
connected to a vacuum system via a scrubber system.  After the reaction, the scrubber 
content is pumped to the plastic bottle (see right), mixed and pumped through the resin 
column. 

 

Production 1 

An 8.0 g Ga target, cut open and separated from its niobium encapsulation, was 

placed in the reaction vessel and dissolved in 50 mL aqua regia.  The target material 

was left to react and dissolved for 1.5 hours, before the solution was gently heated for 

another hour to bring the reaction to completion and to ensure the 68Ge had indeed 

volatilized.  The solution was left to cool for 5 minutes. 

 

10 mL of concentrated HF was pumped into the scrubber solution, containing 100 mL 

1.0 M NaOH and 2 g Na2SO3 (used as a reducing agent, such that the Ge activity 

carried over stays in solution).  This proved to be an error in judgement, as a 

precipitate formed after the HF was pumped into the scrubber solution, presumably 

NaF.  As the solution was pumped out into a 1 L bottle containing 900 mL water, 

some of the solution was pumped back into the scrubber to ensure that the precipitate 

re-dissolved and that no 68Ge activity would be lost in the process. 
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The resultant solution was pumped through a 10 mL column containing AG MP-1 

macroporous anion exchange resin, equilibrated by the passage of 50 mL 0.2 M HF.  

A bigger column was chosen because the concentration of the HF in solution was 

lower, resulting in a lower distribution for Ge and, therefore, production losses.  The 

column was rinsed with 50 mL 0.05 M HF, followed by 20 mL 0.1 M acetic acid, 

before the 68Ge final product was eluted from the resin column using 20 mL 0.1 M 

HCl. 

 

It was determined that all of the 68Ge activity had been carried over to the scrubber 

solution but, interestingly, none of the Ga radionuclides had volatilized and was still 

found in the reaction vessel.  It was also determined that the reaction vessel did not 

need to be evaporated to dryness.  Once all the brown nitrous oxide fumes had been 

carried over to the scrubber system it could be seen, with the use of detectors, that 90 

% of the activity had been carried over and it was deemed that the remainder in the 

reaction vessel was due to the Ga radionuclides left in the target solution. 

 

Due to the increase in “dead” volume within the resin column, as a result of the 

increase in column size from 2.5 mL to 10 mL, the use of 20 mL 0.1 M HCl to 

remove the final product did not suffice and the volume was increased to 50 mL to 

ensure that all of the 68Ge activity was removed from the column. 

 

Approximately 10.9 % of the total 68Ge activity from the target solution was collected 

in the catcher at the base of the condenser system.  It was radionuclidically pure and it 

was assumed that it was in approximately 6 M HCl solution, as a result of the decay 

of aqua regia in the gentle heating process.  No 68Ge activity was found in the load 

and rinse wastes and the column was found to be devoid of activity once the final 

product was eluted with 0.1 M HCl, indicating that all of the activity in the scrubber 

solution was collected in the final product, which was radionuclidically pure. 

 

Production 2 

The method as described in Production 1 was repeated but, instead of pumping 10 mL 

HF into the scrubber solution, the scrubber solution was pumped into a container 

holding 900 mL of water and 10 mL concentrated HF.  50 mL 0.1 M HCl was used to 

elute the final product.  No precipitate was found in the container, thereby keeping the 
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NaF in solution and there was no breakthough of 68Ge while loading the 10 mL AG 

MP-1 anion exchange resin column.  Once again, there was no breakthough of 68Ge 

when performing the dilute HF column rinse, while all of the 68Ge activity found in 

the scrubber solution was eluted with the 0.1 M HCl.  The first 20 mL of the eluate 

yielded no 68Ge and that was probably due to the larger column in use, as well as the 

“dead” volume of the larger column.  The entire yield came out between 25 mL and 

45 mL (an elution curve can be seen in Fig. 7.5 below).  As with Production 1, 

approximately 10.8 % of the total 68Ge activity was found in the catcher vessel at the 

base of the condenser.  While there were losses to the catcher vessel, the separation 

produced a 100 % product yield, with the possibility of neutralizing the product 

“caught” in the catcher vessel with ammonia, to create germanic acid, such that it is 

stabilized and can be evaporated to dryness.  As with Production 1, the final product 

was determined to be radionuclidically pure. 

 

Elution Curve for Ge-68 on AG MP-1 resin

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Eluate (mL)

%
 re

m
ov

al

 
Fig. 7.5: The elution curve for 68Ge from AG MP-1 resin using 0.1 M HCl as eluent. 

 

The results obtained from the experiments and the two production runs are listed 

below in Table 7.1. 
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Table 7.1: Percentage impurity removal and percentage product yield using AG MP-1 resin. 

 Experiment 3 Experiment 5 Experiment 6 Production 1 Production 2 

% 68Ge removal in 

load step 
35.8 23.1 0 0 0 

% 22Na removal in 

load step 
N/A 97.0 98.4 N/A N/A 

% 67Ga removal in 

load step 
11.8 44.9 10.6 N/A N/A 

% 68Ge removal in 

initial rinse step 
1.3 5.0 0 0 0 

% 22Na removal 

in initial rinse step 
N/A 1.6 1.6 N/A N/A 

% 67Ga removal 

in initial rinse step 
65.5 53.5 85.6 N/A N/A 

% 68Ge removal in 

2nd rinse step 
2.2 0 0 0 0 

% 22Na removal 

in 2nd rinse step 
N/A 1.4 0 N/A N/A 

% 67Ga removal 

in 2nd rinse step 
22.7 1.6 3.9 N/A N/A 

% 68Ge yield 60.8 71.8 93.0 89.1 (100) 89.2 (100) 

 

While it was thought that the column size and the ion exchange separation method 

would not have to change when using the upsized 32 g target bombarded in the VBTS 

at iThemba LABS, as the activity is carried over to the scrubber system, the volume of 

aqua regia had to be increased such that the target material could react effectively to 

dissolve the Ga and, thereby, release the 68Ge.  As 50 mL was used to react with the 8 

g target material, it was decided to use 200 mL aqua regia to react with the larger 

target.  This would prove to have disastrous consequences. 

 

Once the target material was removed from its niobium capsule and added to the 

reaction vessel, aqua regia was added and the target left to dissolve for three hours.  

After the three hours had passed, the reaction vessel was gently heated at 50 ºC, as 

before.  After a further 30 minutes, chaos ensued within the reaction vessel as a 

violent reaction took place, spilling hot aqua regia out of the reaction vessel on to the 

floor of the hot cell, as well as into the catcher vessel and into the scrubber system.  

As a result, much activity was lost and damage control had to take place to extract 

what activity one could from the production. 
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The chloride in the scrubber system proved to be an enemy, as the 68Ge readily began 

to break through the resin column.  The load solution had to be modified by 

neutralizing the solution and adding more HF to the solution such that the final 

fluoride concentration was 1 mol L-1.  Once this was done, the solution was loaded 

through a 20 mL resin column, to ensure that no further breakthrough would take 

place.  As a result, 85 % of the activity in the load solution was yielded. 

 

To ensure that the violent exothermic reaction would not reoccur, further experiments 

were conducted with regard to the dissolution of the target material.  It was thought 

that the nitric acid determined the reaction rate and, therefore, the exothermic reaction 

with the target material.  32 g of Ga, therefore, was added to 150 mL HCl and 10 mL 

HNO3 added to the reaction (instead of 50 mL) and the solution gently heated to 50 

ºC.  It was noted that the Ga globule slowly, but surely, broke up into hundreds of 

little balls, thereby, increasing the surface area for reaction exponentially.  The 

solution then turned a murky, darker yellow colour, before the exothermic reaction 

occurred, dramatically, with smoke and solution pouring from the vessel.  The 

murkiness was later determined as effervescence due to the smaller Ga balls reacting 

with the aqua regia. 

 

Following this failure, it was concluded that the HCl did have a vital role to play in 

the reaction, after all, and, therefore, the HCl volume was decreased, beginning the 

reaction with 50 mL, in order to reduce the “fuel” for the vigorous reaction.  50 mL 

concentrated HCl was added to 32 g Ga and heated to 70 ºC, before 2 mL 

concentrated nitric acid was added.  The solution was left for 30 minutes and the 

exothermic reaction took place, albeit with greatly reduced vigour, leaving a fair 

amount of target material still to dissolve.  Another 2 mL of HNO3 was added to the 

reaction solution, where another vigorous reaction took place.  The solution turned 

colourless, indicating that the HCl was depleted.  A further 50 mL HCl was added to 

the reaction solution and the process repeated, although more nitric acid had to be 

added than previously due to the fact that the solution was more dilute than before.  

Once the HCl was depleted, the last 50 mL was added to the reaction vessel, along 

with the remainder of the HNO3.  The reaction did not affect the scrubber system, 

while the 68Ge activity did, indeed, carry over to the scrubber system.  The ion 

exchange separation was carried out successfully, without further incident. 
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Target encapsulation 

From experience gained when performing productions using this product, it became 

apparent that bench experiments and productions differed greatly.  Initially, target 

capsules were cut open and the target provided for processing.  In this case, however, 

the gallium was fused to the niobium capsule after the bombardment, thereby, making 

it very difficult to remove for processing.  Placing the “fused” capsule in hot water 

proved to be an effective way of removing the Ga from the capsule. 

 

As mentioned previously, Ga has a tendency of reacting with its encapsulation when 

using stainless steel or aluminium.  Ideally, it would be better to encapsulate the target 

material in a more inert capsule, such as niobium, but this proved to be costly as it 

required the transportation to Pelindaba, outside Pretoria, to ensure that the capsules 

could be sealed, under vacuum, using an electron-beam welder. 

 

While the Merck Index31 stated that niobium was inert to strong acids, including aqua 

regia, the capsule did indeed react, creating black oxide particles at the bottom of the 

reaction vessel, thereby, making it very messy with regard to the load step.  It was 

discovered that 37.2 % of the capsule had either gone into solution or reacted with the 

capsule to form an oxide.  As a result, it was decided to change the HCl:HNO3 ratio in 

the aqua regia from 3:1 to 9:1, i.e. decrease the nitric acid concentration in the target 

reaction.  While it took longer for the target material to dissolve, it had a markedly 

better effect on the niobium capsule; with a mere 1.5 % of Nb going into solution (no 

oxide particles were discovered).  It was, therefore, decided to use the method of 

removing the gallium with hot water (where Ga becomes liquefied) and remove the 

niobium before the dissolution of the Ga was performed. 

 

Adopted production method 

32 g of Ga was removed from its niobium encapsulation by placing it in hot water and 

letting it flow out, sans water and capsule, into the reaction vessel containing 50 mL 

concentrated HCl.  3 mL of concentrated HNO3 was added to the vessel and the 

reaction solution heated to 70 ºC for 30 minutes, such that the target material can react 

vigorously.  This was followed by the addition of a further 3 mL HNO3.  A further 50 

mL concentrated HCl was added to the vessel and left for 15 minutes to warm, before 

3 mL HNO3 was added and left to react further for 20 minutes.  Another 4 mL HNO3 
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was added to the reaction vessel and the solution left for a further 20 minutes.  Once 

the HCl was depleted, the final 50 mL of HCl was added and the solution left for 15 

minutes, before 10 mL HNO3 was added to the reaction, followed by the final 17 mL 

after 30 minutes. 

 

Once the reaction was completed, the scrubber solution, consisting of 100 mL 1.0 M 

NaOH containing 2.0 g Na2SO3 and containing the 68Ge activity, was pumped to a 

bottle containing 900 mL water and 10 mL concentrated HF.  The resultant solution 

was stirred for 10 minutes, before being pumped through a column containing 10 mL 

AG MP-1 macroporous anion exchange resin (equilibrated with 50 mL 0.2 M HF).  

Any impurities, such as Na+ ions, were removed by rinsing the column with 50 mL 

0.05 M HF, before 20 mL acetic acid was pumped through the resin column to assist 

in the elution of the final product.  The final product, 68Ge was eluted from the resin 

using 50 mL 0.1 M HCl, in 10 mL fractions, where the first 20 mL was discarded. 

 

While this production method has been put in place such that 68Ge/68Ga generators 

can be made using SnO2 as matrix20, the panel can be streamlined further should one 

adopt a method of constructing generators using AG MP-1 macroporous anion 

exchange resin (to be discussed later), by attaching the constructed generator to the 

panel such that the 68Ge is loaded directly on to the resin column, thereby, not 

requiring the elution process. 

 

7.5 Conclusion 

 

The yields from several production runs were found to be in very good agreement 

with predictions based on an evaluated excitation function recently published in the 

literature.  An energy window of 34 MeV down to threshold was adopted for 68Ge 

production, in order to utilize the low-energy slot in a tandem target configuration 

where the high-energy slot was reserved for 82Sr production.  Several of these tandem 

targets have been irradiated in the VBTS with beam currents of nominally 250 µA for 

extended periods (up to one month with fractionated beam, the accumulated charge 

typically of the order of 30 000 µAh.) 
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An elegant method to separate 68Ge from Ga target material, and its Ga radionuclides, 

has been developed.  The 68Ge is carried over, by means of volatilization, to a 

scrubber system containing 1.0 M NaOH and 2 % Na2SO3.  The scrubber solution is 

acidified with HF before loading the resultant solution onto a 10 mL column 

containing AG MP-1 anion exchange resin.  The column is rinsed with dilute HF to 

remove any remaining impurities, such that a radiochemically pure product is 

obtained.  The 10 % (maximum) 68Ge contained in the catcher, also radiochemically 

pure, can also be used, even though the solution is in concentrated HCl, by adding 

NH3 and evaporating to dryness.  This method of production has been adopted by 

Radionuclide Production at iThemba LABS. 
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CHAPTER 8 THE PRODUCTION OF A 68Ga 
GENERATOR  

 

8.1 Introduction 

 

Positron emitters occupy a special place in the world of radionuclides and nuclear 

medicine, in particular, as a result of the emission of two coincident annihilation 

photons in opposite directions when the positron decays, thereby, providing good 

quality images in Positron Emission Tomography (PET). 

 

Specific targeting agents offer the potential for earlier diagnosis of disease if an 

increased amount of the targeting-detectable conjugate is localised to a greater extent 

in tissue to be imaged compared to background tissues.  In practice, the detectable 

agent in background tissue needs to be minimised, while the detectable agent in the 

target tissue needs to be maximised.  Radioactive medicines are preferred detectable 

agents.  Superior imaging modality is offered with the use of PET, with a dramatic 

increase in sensitivity and, therefore, the ability to detect disease at an earlier stage. 

 

PET radionuclides are generally labelled to an organic substance, such that the 

resultant radiopharmaceutical, when injected into the patient, is “organ specific” i.e. 

the radiopharmaceutical will accumulate (at a maximum) in the specified organ with 

minimum background from surrounding tissue. 

 

These radionuclides are generally short-lived, an advantage from a patient dose point-

of-view, but disadvantageous for clinical use in hospitals not equipped with the means 

necessary for their production.  An exception to this is the PET radionuclide 68Ga, a 

positron emitter with a half life of 68.3 minutes1 produced by electron capture from 
68Ge (T1/2 = 270.99 d)2.  If the daughter, 68Ga, can be separated rapidly from 68Ge, one 

obtains a self-contained, short-lived positron source which can be used several times 

per day, as the 68Ge/68Ga secular equilibrium is reached within a few hours. 
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A generator is a self-contained system housing a parent/daughter radionuclide mixture 

in equilibrium, which is designed to yield the daughter separate from the parent.  The 

principal utility of a generator is to produce certain radionuclides on site which, 

because of their short half-lives, cannot be shipped by commercial sources.  For the 

generator to be useful, the parent radionuclide’s half-life should be long in 

comparison to the travel time required to transport it to the recipient3. 

 

Ideally, the generator should have the following properties3,4: 

• The chemical properties of the daughter must be different from those of the 

parent such that the daughter can be separated from the parent radionuclide. 

• The daughter radionuclide should be short-lived and γ- or positron-emitting. 

• The design should be simple and, reproducibly, give a high yield of the desired 

radionuclide with a very large separation factor from the parent radionuclide. 

• The collection of the daughter nuclide should be possible with a small volume 

of reagent. 

• The physical half-life of the parent radionuclide should be short enough so that 

daughter re-growth within the generator system after elution is rapid, but long 

enough for practicality. 

• The parent radionuclide must be retained quantitively on the ion exchanger 

column during the whole period of usage of the generator, i.e. no breakthough 

should occur. 

• The chemical form of the daughter radionuclide should be suitable for the 

preparation of a wide variety of labelled compounds, particularly for those in 

kit form. 

• The system should contain a very long-lived or stable granddaughter, such that 

no radiation dose is conferred to the patient by the decay of subsequent 

generations. 

• The generator should contain effective and, if possible, inexpensive shielding, 

such that the radiation dosage to users is minimised. 

 

The high potential of a 68Ge/68Ga generator for PET applications has been enhanced 

as of late, with a great demand for the product from iThemba LABS.  The use of 
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68Ge/68Ga generators in nuclear medicine is attractive for a number of reasons, 

namely: 

• The 271-day half-life of the parent, 68Ge, allows the generator to be used over 

a long period, for up to one year. 

• The PET radionuclide 68Ga is continuously available, at a reasonable cost, 

from a 68Ge/68Ga generator, also at centres without a cyclotron. 

• The 68-minute half-life of 68Ga matches the pharmacokinetics of many 

peptides and other small molecules due to rapid diffusion, localisation at the 

target and fast blood clearance. 

 

The first 68Ge/68Ga generator was produced in 1960 and the process involved solvent 

extraction5.  Further methods of extracting Ge using solvent were developed6-9, while 

distillation of Ge, in various ways, also manifested10-13.  Commercial generators 

today, however, are of the column chromatographic type and a number of different 

sorbents to bind 68Ge and release its daughter upon elution have been released to date. 

 

Generators containing an alumina column, with a claimed yield of 70 %, have been 

developed14-16, but the 68Ga daughter is eluted in complex form, which must be 

destroyed before being incorporated into the required radiopharmaceutical.  Attempts 

were made to elute the alumina column with HCl17, as well as NaOH18, without 

success.  There were attempts to further development of 68Ge/68Ga generators by 

using the hydroxides of zirconium, tin and titanium as adsorbents19, while using HCl, 

HNO3 and acetic acid as eluents.  A yield of 35 % 68Ga was obtained, with a 

breakthrough of Ge of 0.03 % and this was deemed inappropriate for clinical use.  A 

system was developed with the use of polyantimonic acid20, eluting the product with 

oxalate solution, but this, too, was regarded as inappropriate as the loss of 68Ge was 

too high and the eluent was regarded as toxic and, therefore, had to be chemically 

manipulated before it could be used for clinical purposes. 

 

Further tests were performed using the oxides of titanium, zirconium and silicon21.  

Interestingly, the use of titanium dioxide was deemed inappropriate for use in a 

generator, but a great deal of further development has seen this compound being 

patented for use in a 68Ge/68Ga generator by GE Healthcare22, using dilute HCl as 
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eluent.  Following comparison tests performed with the radionuclide, using various 

adsorbents as generator material23,24, it was determined that the generator using tin 

oxide as adsorbent would be the most appropriate25.  While further developments have 

been performed in the attempt to obtain a more effective generator, such as the use of 

alpha ferrous oxide26 and the polymer pyrogallol-formaldehyde27,28 as matrix, the tin 

dioxide commercial generator is still the most prominent29. 

 

A 68Ge/68Ga generator has been produced using anion exchange resin30,31 while, more 

recently, a generator has been produced using cation exchange chromatography32.  Ion 

exchange columns have also been used to concentrate the 68Ga eluent obtained from a 

generator33-38. 

 

While dilute HCl has been in use as the most popular eluent of 68Ge/68Ga generators, a 

proposal was put forward to elute 68Ga using 0.1 M HF from AG1-X8 anion exchange 

resin30.  The breakthrough of 68Ge was determined at <0.001 %, with a 68Ga yield of 

>95 %.  While it was later determined that radiation damage to the resin could result 

in breakthrough, as well as discolouration, as the generator got older, it was still 

decided to attempt to produce a generator using AG MP-1 macroporous anion 

exchange resin, as this is more resistant to radiation damage than the microporous gel-

type anion exchange resins, using dilute concentrations of HF such that the 68Ga 

eluted from the generator can be effectively, and directly, used for the labelling of 

peptides. 

 

8.2 Experimental  

 

Analytical grade reagents were used throughout this work and were obtained from 

Merck (SA) Pty. Ltd or Sigma Aldrich GmbH, which included Fluka and Riedel de 

Haen products.  The AG MP-1 anion exchange resin used in this work was obtained 

from BioRad Laboratories, Richmond, U.S.A., while the 68Ge was obtained, in 0.1 M 

HCl, from Los Alamos Laboratories, New Mexico, U.S.A.  De-ionised water from a 

Millipore MilliQ Reagent Grade Water System, to a conductivity of greater than 10 

megaohm cm-1, was used for all experimental and production work. 
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All radioactive determinations were performed using a standard calibrated HPGe 

detector, with a relative efficiency of 13 % (relative to three inch NaI), connected to a 

multichannel analyser.  As 68Ge produces no gamma peaks, activity determinations 

were performed by measuring its daughter, 68Ga, after 8 to 10 hours when equilibrium 

had been reached. 

 

For each experiment, a column containing 1.0 mL AG MP-1 macroporous anion 

exchange resin was prepared and equilibrated by the passage of 50 mL 5.0 M HF, 

followed by 50 mL 0.1 M HF. 

 

Experiment 1 

200 μL of 68Ge activity (in 0.1 M HCl) was mixed with 4.3 mL of water and 0.5 mL 

concentrated HF.  The activity was measured before it was loaded on to the resin 

column.  The load waste was collected in 1 mL fractions and each fraction measured. 

 

The “load” vial was rinsed with 5x 1 mL 0.1 M HF and each fraction was pumped 

through the column, collected and measured.  Each measurement was repeated hourly 

for three hours. 

 

Experiment 2 

The same method was applied in this experiment as with Experiment 1, but 5 mL 0.05 

M HF was used to rinse the resin column. 

 

Experiment 3 

The same method was put to use as the previous experiments, the only difference 

being that 5x 1 mL 0.01 M HF was used to rinse the resin column. 

 

Experiment 4 

While the same method was applied to load the 68Ge activity on to the resin column as 

that of the previous experiments, 5x 1 mL 0.005 M HF was used to rinse the AG MP-

1 column. 
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Experiment 5 

The same method was used to load the resin column as previously, but 5 mL 0.1 M 

acetic acid, in 1 mL fractions, was used to rinse the resin column. 

 

8.3 Results and discussion 

 

The 68Ge activity was successfully loaded on to the AG MP-1 macroporous anion 

exchange resin, with the load waste indicating that all of the activity was quantitively 

retained by the resin. 

 
68Ga was successfully eluted using the various concentrations of dilute HF, with 

yields ranging between 95 and 98 % being obtained.  The yields were generally 

obtained within 5 mL of eluate (see Fig. 8.1), thereby, improving on the quantity of 

eluent required for tin oxide matrices22,34.  No breakthrough of 68Ge was initially 

detected, although it was hoped that breakthrough would be kept to a minimum with 

the more dilute concentrations of HF, such that the pH of the solution would not 

adversely affect any 68Ga-labelling processes. 

 

Elution of Ga-68 from AG MP-1 using 0.05 M HF
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Fig. 8.1: Elution curve of 68Ga from 1 mL AG MP-1 column 

 

The use of acetic acid as eluent of 68Ga was immediately rejected, as there was 

massive breakthrough of 68Ge, thereby, disqualifying the use of this method.  
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Breakthrough of 68Ge was determined at least 24 hours after elution, using the closest 

distance possible at which the Ge detector was calibrated.  This was determined to be 

negligible for HF concentrations 0.1, 0.05 and 0.01 M, with percentages in the order 

of 1x 10-4 %, although 0.005 M HF indicated that there may be slightly more 68Ge 

breakthrough than with the more concentrated solutions, with a 7x 10-4 % 

breakthrough. 

 

From the results obtained, it was decided to load a generator with about 1110 MBq 

(30 mCi) 68Ge, eluting the 68Ga continuously with 0.01 M HF.  The activity was 

prepared by mixing with water and HF, as previously, and loaded on to a 1.0 mL 

column containing AG MP-1 anion exchange resin (in the fluoride form, equilibrated 

with 0.01 M HF).  The column was eluted twice a day, 6 hours apart, with 5 mL 0.01 

M HF in 1 mL fractions.  The fractions were measured continuously to observe any 
68Ge breakthrough.  After a period of two and a half months, the generator was still 

behaving well, with no visible sign of breakthrough of 68Ge or resin discolouration. 

 

A generator was built in the hope that it could be used commercially.  The kit was 

supplied by NTP Radioisotopes (Pty) Ltd and features a converted commercial 
99Mo/99mTc generator (Fig. 8.2, 8.3 and 8.4) by replacing the alumina column with an 

AG MP-1 resin column.  This generator has been loaded in-house with 68Ge and is 

still under evaluation at the time of writing. 

 

The generator has been designed such that the user can elute the generator with ease, 

with a tray placed above the generator such that sterile vials (under vacuum) can be 

placed upon it (Fig. 8.2).  A plastic “sump” is situated just under the tray which 

contains the dilute HF for elution.  Filters have been placed in position such that any 

air allowed into the system when eluting is filtered and cleaned. 
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Fig. 8.2: The 68Ge/68Ga generator 

 

 

 
Fig. 8.3: The aerial view of the generator showing a tray carrying sterile vials. 
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The needle protruding through the centre of the tray originates from the generator 

itself (Fig. 8.3) and the rubber bung of the vial can be impaled on the needle for 

elution purposes.  Needless to say, the generator (i.e. the AG MP-1 resin column) is 

shielded with lead and there are tubes protruding from the shielding such that the 

elution solution from the “sump” can access the resin column. 

 

 
Fig. 8.4:  The tray cover removed to show the shielded generator with protruding needle. 

 

Interestingly, no company in Europe has a marketing authorization for a 68Ge/68Ga 

generator, which is a strict requirement as stated by the European Parliament and 

European Council39.  The granting of a marketing authorization is dependent on the 

fact that it is manufactured under the conditions of good manufacturing practice 

(GMP), as the eluate of the generator is considered to be an active substance used as a 

starting material for a radiopharmaceutical product for human use. 

 

Apart from the need of a 68Ge/68Ga generator that is of “medicinal” quality, the use of 
68Ga-labelled radiopharmaceuticals is dependant on many conditions, rules and laws, 

but a manufacturer may obtain a marketing authorization for one or more labelling 
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kits for the preparation of 68Ga-labelled radiopharmaceuticals and to make these kits 

commercially available.  It has been determined that it would take a minimum of 5 

years from the present date for an approved 68Ga-radiopharmaceutical or labelling kit 

to become commercially available. 

 

8.4 Conclusion 

 

A 68Ge/68Ga generator has been constructed using AG MP-1 macroporous anion 

exchange resin as adsorbent.  The breakthough, or preferable lack thereof, is regarded 

as acceptable and an average of 95 % yield 68Ga was obtained.  While these results 

indicate an improvement over many generators commercially available, further bench 

testing is required to determine whether this type of generator will be able to 

withstand higher activities of 68Ge/68Ga over a period of one year. 
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CHAPTER 9 THE SEPARATION OF 227Pa FROM A Th 
TARGET BY MEANS OF ION EXCHANGE 
CHROMATOGRAPHY 

 

9.1 Introduction 

 
Cluster radioactivity is the phenomenon where a radioactive nucleus decays 

spontaneously by the emission of composite particles heavier than α particles.  This 

mode of radioactive decay, also called exotic radioactive decay, was first discovered 

in 1984 by Rose and Jones1 when they observed the spontaneous emission of 14C 

clusters from 223Ra decay.  It is an astonishing fact of history that this remarkable 

discovery was made almost a century after radioactivity was first discovered and 

studied by Henri Becquerel and the Curies.  Cluster radioactivity is now a well-

established phenomenon from both experimental and theoretical perspectives2 with 

close to two dozen cases having been reported, the observed clusters ranging from 14C 

to 32Si.  One of the most important achievements in this field has been the discovery 

of the sensitivity of the partial half-life to the microscopic properties of the parent-

daughter nuclei.  In particular, physicists can investigate this sensitivity by studying 

the emissions from odd-A nuclei.  This will be discussed in more detail later. 

 
223Ac is regarded as a special case in this type of investigation, as it allows the study 

of the effect of the odd particle wave function in both the residual nucleus and in the 

cluster itself.  Sources of the radioisotope 223Ac, therefore, were required for the 

purpose of studying its possible exotic radioactive decay via 14C and 15N emission.  

This radioisotope has a rather short half-life of only 2.2 minutes, however, its 

precursor, 227Pa, has a substantially longer half-life of 38.3 minutes.  It was, therefore, 

experimentally more appropriate to produce sources of 227Pa, which would 

continuously feed 223Ac (in secular equilibrium with its precursor) by means of α-

decay.  A collaboration to investigate this possibility was formed by researchers from 

The University of Milan, Italy, the Joint Institute of Nuclear Research (JINR), Dubna, 

Russia, the Kurchatov Institute, Moscow, Russia and iThemba LABS. 
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To produce 223Ac for these experiments, a number of Th targets were bombarded with 

66 MeV protons delivered by the separated sector cyclotron of iThemba LABS, 

utilizing the reaction 232Th(p, 6n)227Pa → α + 223Ac (see Fig. 9.1).  Due to the 

relatively short half-life of 227Pa, the chemical separation required to isolate 227Pa 

from the Th target material had to be completed within approximately 70 minutes 

from the end of bombardment (EOB), i.e. within two half-lives of the precursor 

radioisotope. 

 

 
 

Fig 9.1:  Relevant part of the “Karlsruher Nuklidkarte” of 2006.  Note the stable target nucleus 
232Th (100% natural abundance), the product nucleus 227Pa which is formed via a 

(p,6n) reaction, and 223Ac which is obtained by a subsequent α-decay.  Some of the 

nuclear data used in this work may differ slightly from the information given in this 

chart of the nuclides. 
 

The experimental investigation was designed to have two distinct stages.  The first 

stage, or radiochemistry stage, involved the bombardment of Th targets, separation of 

the Pa from the target material and producing small-area 227Pa sources.  During the 

second stage, or nuclear physics stage, two arrays of solid-state nuclear track 

detectors2 were exposed to the emissions from these sources, followed by the 

commencement of the search for 14C and 15N tracks.  While the radiochemistry is 

more the topic of this chapter and will be discussed in detail, some aspects of the 

nuclear physics will also be discussed briefly. 

 

While Pa has been separated from various compounds and other elements using 

solvent extraction3,4, acid and alkali leaches5, fractional distillation6, co-precipitation 
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with a variety of compounds5,7-11 and precipitation7, these methods are not regarded as 

practical when working with high activities in a hot-cell environment, where ion 

exchange methods are preferred for speed, ease of use and safety reasons.  

Experiments have been performed using anion exchange resins to determine how well 

Pa and Th are sorbed to the resin in question.  These include Dowex-112,13, AG1-

X1014, AG MP-15,15 and Dowex 1 X1016. 

 

Previous research has indicated that no adsorption of Pa(V) on cation exchange resin 

is observed16.  Pa(V) can be strongly absorbed by anion exchange resins using 

concentrated hydrochloric acid solutions14 (with a sharp reduction in adsorption as the 

concentration is decreased17), but was found to be poorly absorbed from HCl-HF 

mixtures at high HCl concentrations12 in comparison.  When using a constant HF 

concentration (0.5 M), adsorption increased with an increase in HCl concentration, 

with moderately good adsorption at 10 M HCl, after which adsorption reached a 

plateau18.  When Solache-Rios5 performed experiments to separate Pa from other 

elements using AG MP-1 resin, it was discovered that 35 % of the total Pa was lost 

when traces of fluoride were on the resin.  Systematic studies of the behaviour of Pa 

in anion exchangers using mixed solutions with hydrofluoric, hydrochloric and nitric 

acids, as well as thiocyanate, have shown that the use of more than one complexing 

agent may often promote effective separation from other selected elements19-23. 

 

Pa(V) tends to hydrolyse or precipitate in fairly concentrated acid solution, but HCl-

HF solutions were found to be suitable media for reversing this effect.  Various 

radiochemical and ion exchange techniques have been performed using various Pa 

radioisotopes24-26. 

 

Adsorption of Th(IV) from HCl solutions is negligible14,22,26-28.  While thorium 

fluoride is rather insoluble, no difficulties were found in measurements at trace Th 

concentrations in media containing 1 M HF and 0.1 M to 11 M HCl.  Under these 

conditions adsorption of Th was negligible5. 

 

Methods exist in the literature for the separation of Pa from irradiated thorium 

nitrate28, but many of the procedures mentioned are time consuming and, unless care 
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is taken, they frequently result in losses due to the hydrolytic condensation of Pa(V) 

from aqueous acidic media other than those containing fluoride or sulphate7. 

 

9.2 Nuclear Data 

 

An 223Ac nucleus possibly has two exotic decay modes, namely, 223Ac→14C + 209Bi 

(Q = 33.08 MeV) and 223Ac→15N + 208Pb (Q = 39.49 MeV).  Neither of these has 

been experimentally observed prior to this study.  It is important to note that the 

residual nucleus 208Pb is doubly magic while 209Bi is singly magic, thus, they may 

constitute very stable cores within the original mother nuclei.  Several theoretical 

predictions exist for the branching ratios of the respective cluster emissions; B(14C) = 

λ(14C)/λ(α) and B(15N) = λ(15N)/λ(α), where it is customary to express this quantity 

relative to the dominant α-decay (λ(x) refers to the partial decay constant for the 

emission of a cluster of type x). 

 

Firstly, Poenaru et al. produced their Superasymmetric Fission theoretical model29, 

predicting B(14C) = 2.5 x 10-11 and B(15N) = 1.0 x 10-12 for 223Ac radioactive decay.  

According to this prediction, 15N emission is expected to be 25 times less abundant 

than 14C emission.  The prediction includes the tremendously small probabilities for 

the decay by heavy-cluster emission compared to that for α-decay (11 to 12 orders of 

magnitude lower).  Blendowske et al., on the other hand, treated all cluster emissions 

similar to the original Gamow theory of α-decay, namely, as a two-body decay 

process where large amplitude motions of a fragment inside the nucleus causes it to 

tunnel through the Coulomb barrier, whose height is always much higher than the 

available kinetic energy.  They produced two theoretical predictions: a favoured 

version and an unfavoured version30.  The favoured model predicted B(14C) = 3.8 x 

10-11 and B(15N) = 2.2 x 10-12, while the corresponding values according to the 

unfavoured model are B(14C) = 2.5 x 10-12 and B(15N) = 9.4 x 10-14, respectively. 

 

The data compilation of Firestone and Eckström31 describes the radioactive decay of 
223Ac as α-decay (99 %) and electron capture (1 %), while for 227Pa decay the 

corresponding values are α-decay (85 %) and electron capture (15 %), respectively, 

thus, 85 % of 227Pa decays will produce 223Ac nuclei. 
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The only excitation function data found in the literature for proton-induced reactions 

on 232Th, in the energy region of interest, were measured by Suk et al.32  A 

polynomial curve was fitted through the listed EXFOR 227Pa point data (subentry 

B0037002) using the TABLECURVE software (see Fig. 9.2).  The excitation function 

rises rapidly from a threshold near 37 MeV to a maximum of ~ 42 mb at about 48 

MeV, whereafter it again falls significantly.  It is clear that the 66 MeV proton beam 

for the routine radionuclide production is ideally suited to exploit this reaction.  From 

the curve of Fig. 9.2, the thick-target production rate curve of 227Pa induced in a 

metallic Th target was derived (see Fig. 9.3).  An energy window of 62 → 40 MeV 

could easily be accommodated within the standard target holder for radionuclide 

production in the horizontal bombardment station, using Al as encapsulation to isolate 

the Th target material from the cooling water.  Such a target would contain 

approximately 8 g of Th metal, pressed as a disc with a diameter of 15 mm.  The 

technology to produce such targets already existed at iThemba LABS, making it an 

ideal laboratory for this study. 

 

 
Fig. 9.2: Excitation function for the production of 227Pa in the bombardment of 232Th with 

protons.  The curve was produced by fitting a polynomial function through the 
measured point data of Suk et al.32 
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Fig. 9.3: Production rate curve of 227Pa formed in the bombardment of 232Th with protons.   

 

From Suk’s 232Th(p, 6n) experimental cross section data, a production rate of 1.65 

GBq/µAh was predicted for the energy window selected.  With a two hour irradiation 

time at a beam intensity of 80 µA, the predicted 227Pa yield is 107.5 GBq (2.9 Ci) at 

EOB, taking decay during bombardment into account.  This 227Pa activity corresponds 

to 3.56 x 1014 atoms at EOB.  If one assumes that the entire chemical separation and 

source making can be performed in 70 minutes (i.e. under two half lives of 227Pa), 

about 1 x 1014 227Pa atoms will be available for the nuclear physics experiment 

(assuming, of course, negligible radiochemical losses).   

 

As already mentioned, only 85 % of these atoms will decay to 223Ac.  If one further 

assumes that only one hemisphere of space (i.e. a solid angle of 2π sr) will be used in 

the experiment and that the detection efficiency will be ~ 80 %, one can finally 

estimate the number of expected cluster events, using the branching ratios discussed 

above.  In the case of the Blendowske model, N(14C) = 79 → 1215 and N(15N) = 2 → 

69, depending on whether the transition is favoured or unfavoured.  These numbers 

are rather small, demanding a high radiochemical yield and a fast radiochemical 

separation for the success of the experiment. 
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9.3 Chemical Separation Experiments 

 

A summary of the basic method implemented is as follows:  An 8.0 g quantity of Th 

metal was placed into a reaction vessel and 100 mL concentrated HCl added to it and 

stirred.  To this was added 230Pa tracer.  The solution was heated to 60 ºC and 2.0 M 

HF added drop-wise, at 5 minute intervals, until all of the grey thorium had gone into 

solution.   

 

The solution was cooled, before it was loaded onto a 2 mL column containing AG 

MP-1 macroporous anion exchange resin, equilibrated by the passage of 50 mL 7.0 M 

HCl.  Any remaining impurities were removed by rinsing the column with 50 mL 7.0 

M HCl, before the 230Pa tracer was eluted from the resin column with 10 mL 0.1 M 

HCl, taking 1 mL fractions.  Each fraction, including the load and rinse wastes, was 

measured quantitatively using standard off-line γ-ray spectrometry. 

 

The experiment was repeated several times, with various eluting agents tried out 

during each repetition.  10 mL 0.1 M HNO3, 0.1 M HF and 0.1 M acetic acid were 

used as eluting agents, respectively. 

 

9.4 Results and Discussion 

 

With the information gleaned from the literature and the required time constraint in 

the production of 227Pa from Th targets taken into account, one also had to consider 

possible losses of the final product.  Thorium oxide was found to take too long to 

dissolve in acid media, while thorium metal was not much better when using 

concentrated (32 %) HCl, unless 2.0 M HF was added drop-wise to the heated 

reaction solution33.  The disadvantage was that there was still a small amount of 

residue once dissolution was complete (approximately 10 %), probably due to thorium 

fluoride being formed. 

 

Initial experimental runs were performed using 230Pa as tracer, because of its 

convenient half-life (17.4 days) and γ-emissions, and Th dissolved in concentrated 
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HCl media containing a few drops of 2.0 M HF.  Experiments performed using 

Amberchrom CG71c ion exchange resin were soon discarded once it was discovered 

that, while the Th was not retained by the resin, the Pa tracer was also found in the 

load solution.  Trials performed using the macroporous anion exchange resin AG MP-

1, proved to be more successful and the remaining runs were concentrated using this 

as the resin of choice. 

 

It was determined that the Th target to be pressed would be 8.0 g in mass and 

experiments performed took this fact into account.  Once the method was refined, it 

took 100 mL concentrated HCl and 27 drops of 2.0 M HF to dissolve the target 

material (which would later be found to be detrimental) and 50 mL 7.0 M HCl to elute 

Th and other impurities from the resin column. 

 

To allow for the creation of a small-area dry source from the final product, it was vital 

to elute the 227Pa using as small a volume of eluate as possible.  The eluate ultimately 

chosen was 0.1 M acetic acid, as only 3 mL would be required to remove Pa in its 

entirety from the resin column.  Once the elution curve was plotted (see Fig. 9.4), it 

was noted that the first 1 mL of the eluate contained virtually no activity and that the 

majority of the activity was contained in the remaining 2 mL.   

 

The initial production run was successful, but when a second production run was 

performed, approximately 50 % of the Pa activity was lost, even though the 

bombardment conditions were the same.  Initial problem-solving attempts pointed to 

the concentration of the hydrochloric acid not being high enough, but the fact that too 

much HF was added to the dissolution process probably also played a significant role, 

thereby, confirming Solache-Rios’s results4. 
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Fig. 9.4: Elution of 227Pa from AG MP-1 resin using 0.1 M acetic acid. 

 

The effect of fluoride was investigated further, using 37 % HCl instead and 

decreasing the number of drops of 2 M HF added to the solution to 15.  This proved to 

be more effective and the final production run was performed without significant 

losses (less than 8 %) of Pa activity. 

 

The 8.0 g Th target was bombarded, using the 66 MeV proton beam provided by the 

SSC of iThemba LABS, for two hours at a beam current of 80 μA.  Once it was 

removed from the beam, it was placed in a reaction vessel containing a heated mixture 

of 100 mL 37 % HCl and 15 drops 2.0 M HF.  The reaction took place vigorously 

while the solution was being stirred, although a slight residue remained after complete 

dissolution of the target material.  The reaction solution was left to cool slightly for 

two minutes before passing the solution through a column containing 2 mL AG MP-1 

macroporous anion exchange resin, on which the 227Pa was quantitively retained by 

the resin. 

 

Th impurities from the target material were eluted using 50 mL 9.0 M HCl, before 
227Pa was eluted using 3 mL 0.1 M acetic acid, of which the first 1 mL was discarded.  

The final product was removed and was placed, 1 mL at a time, on to a small, round 

source plate (25 mm in diameter) manufactured from Cu and plated with Au.  The 

plate was put under a lamp in a fume booth, where the solution was allowed to 

evaporate (see Figure 9.5). 
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The time elapsed from the EOB to the drying of the source was 71 minutes, which 

was deemed adequate for these particular experimental purposes.  By acquiring both 

α-particle and γ-ray spectra, it was determined that only Pa and its daughters were 

present in the final product, thereby achieving radiochemically pure sources.  The 

nominal source strength obtained was 81 GBq (~ 2.2 Ci) of 227Pa at the start of the 

exposure of the detectors.  This is about 75 % of the expected source strength based 

on the predictions performed using the excitation data of Suk et al. 

 

 
Fig. 9.5: Cu small-area source plate, coated with Au, under evaporator. 

 

While the product was radiochemically pure and one was confident that there was no 

Th in the final product, a thin yellow layer formed on the gold-plated source plate 

during drying, which caused some energy degradation of the emitted clusters.  

Fortunately, this layer was too thin to stop any clusters, therefore their detection and 

identification were not compromised.  It was later determined to be Fe (probably in 

the form of FeCl3.3H2O), with which our physicist colleagues could cope, even 

though it did make the data analysis more complicated.  Although it would have been 

ideal to remove the Fe from the final product, it could only have been done using 

sulphuric acid and within a time frame of a few hours25, which would not have been 

suitable for this particular experiment. 
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9.5 The Physics Experiment 

 

The technique most widely used in cluster radioactivity experiments is one which uses 

passive, solid state nuclear track detectors (SSNTD) to comply with the unusual 

efficiency and selectivity requirements necessary to detect clusters with an abundance 

many orders of magnitude lower than that of the dominant α-particle emissions.  Use 

is made of certain plastic or glass plates which are able to register the passage of an 

ionizing particle in the form of a damage track only when the particle ionizing rate is 

higher than a given threshold, characteristic of the detector material.  An appropriate 

choice of the threshold and, therefore, of the detector material can largely eliminate 

the effect of low-ionizing α-particles and favour the heavier clusters under 

investigation. 

 

Immediately after preparation of a 227Pa source, it was placed in the centre of a 23.5 

cm diameter hemisphere (hollow dome), whose inner surface was covered with 

phosphate BP-1 glass track detectors, for a period of two hours such that the glass 

track detectors could be exposed to the radioactive decay emissions from the source.  

For this purpose, the detectors and source were placed inside a vacuum chamber (see 

Fig. 9.6), specially designed and built for the experiment, and pumped down to a fore 

vacuum of about 10-3 mbar.  A standard Si surface barrier detector could also be 

mounted in the chamber to measure accurate energy spectra of the emitted α particles, 

using a standard 4K-channel analyzer (MCA) system.  The details of that analysis, 

however, fall outside the scope of this thesis. 

 

After the exposure of the BP-1 glass track detectors, they were carefully packed and 

shipped to the University of Milan for further analysis.  They were subsequently 

etched in a 50 % HBF4 solution at a temperature of 65 °C for about 2 days in order to 

enlarge the tracks made by the heavy ionizing clusters and make them visible under 

an optical microscope.  The etching process enlarges the damaged track regions on the 

detector (glass) from the Å to μm scale as a result of the competition established 

between the etching velocity in the non-irradiated part of the material and the etching 

velocity in the irradiated part, giving rise to conical tracks which appear as black spots 

in the bright light of the microscope. 
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Fig. 9.6: The vacuum chamber assembly used to expose the solid state nuclear track detectors 

(SSNTD) to the radioactive emissions from a 227Pa source (LEFT).  Also shown is the 

multi-channel analyzer system used to acquire the α-particle spectra (RIGHT). 

 

The entire surface of the irradiated track detectors (about 730 cm2) was scanned at 

200 x magnification with an automated image analyzer system, which allowed for a 

faster search for “good” ion tracks.  The entire search still took almost a year to 

complete.  The good tracks were investigated further and their geometric parameters 

determined.  A comparison with calibration curves obtained by irradiating similar 

samples of BP-1 glasses with ions of known mass, charge and energy, delivered by a 

Tandem accelerator, finally allowed the unique identification of most of the track 

events found.   

 

At the time of writing, a still preliminary but well advanced analysis yielded 350 14C 

events and zero 15N events.  In the case of 14C emission, a branching ratio of B(14C) = 

3.2 x 10-11 can be inferred with an uncertainty of about 30 %.  Since no 15N tracks 

were found, only an upper limit on the branching ratio can be inferred at this stage:  

B(15N) ≤ 2.2 x 10-13, with a confidence level of 90 %. 
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9.6 Conclusion 

 

The objective, namely to obtain radiochemically pure 227Pa from a Th target in as 

short a period possible, was achieved.  Under severe radiological conditions, the target 

was removed from the bombardment station, moved to the selected hot cell for 

processing, the separation process completed, the final product removed and dried on 

a small-area source plate using an infra red lamp, before being placed in a vacuum 

chamber containing the solid-state nuclear track detectors, in less than two half-lives 

of 227Pa.  The quality of the tracks obtained from these very strong small-area sources 

was deemed to be adequate for determining 14C and 15N events uniquely.  The 

analysis of the tracks to date resulted in 350 14C events and no 15N events, making it 

possible to determine the 14C branching ratio quite well and to determine an upper 

limit for 15N emission, with a 90 % confidence limit.   

 

It is clear that the 14C emission from the odd-A 223Ac isotope cannot be much 

unfavoured as it rather resembles emissions from even-even nuclei, therefore the 

decay can be interpreted as a ground-state to ground-state favoured one.  In the case 

of 15N emission, the non-observance of any events is compatible with an unfavoured 

transition: here the unpaired odd nucleon goes from the heavy nucleus 223Ac to the 

much lighter cluster 15N, the ground state configurations of which are very different, 

thus this transition is largely hindered. 

 

The results of the radiochemical investigation were presented at the 15th 

Radiochemical Conference at Mariánské Láznĕ, Czech Republic, and subsequently 

published in the Czech Journal of Physics in 200634.  Preliminary results of the 

nuclear physics investigation were presented at the “Cluster 07” International 

Conference35: a paper of which was submitted for publication in the Conference 

Proceedings.   
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CHAPTER 10 THE PRODUCTION OF 88Y IN THE 
PROTON BOMBARDMENT OF natSr  

 

10.1 Introduction 

 
88Y (T1/2 = 106.6 d), which can be produced by means of a cyclotron, is not currently 

being mass produced and is, at times, sought after for calibration sources and other 

experimental purposes.  There appears to be a renewed interest in the product, as 

potential customers increasingly request iThemba LABS’s Radionuclide Production 

Group to supply it on a regular basis.  With protons, it can be produced via the 

reaction 88Sr(p, n)88Y (see Fig. 10.1).  Its mode of decay is predominantly by means of 

electron capture and the decay emissions include the strong γ-rays of 898.0 keV (93.7 

%) and 1836.1 keV (99.2 %), respectively1.  Initially, 88Y was only produced in no-

carrier-added form via the spallation process at the Los Alamos National Laboratory, 

but has since been produced with the use of small-sized cyclotrons2.  It is formed in 

proton-induced reactions, using natSr as target material, only via the 88Sr(p, n)88Y 

reaction2, although 87Rb(3He, 2n)88Y and 85Rb(4He, n)88Y routes have also been 

reported3,4. 

 

 
Fig. 10.1: Relevant part of the “Karlsruher Nuklidkarte” of 2006 for the production of 88Y. 

 

The separation of Y from Sr has been described in the literature by using two 

preferred methods, namely, by means of ion exchange chromatography2,5-9 or by 

liquid extraction10.  Electrochemical separation of their radioisotopes has also been 

described to obtain a product of high radiochemical and radionuclidic purity11,12.  88Y 
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has also been obtained as a product from 88Zr/88Y generators13, separating 88Zr from 

bombarded niobium capsules. 

 
88Y is used as small point sources in the calibration of instruments, as well as in the 

determination of mixtures containing Sr radionuclides14, the accurate determination of 

yttrium in superconductive oxide ceramics10,15 and as a substitute for 90Y (a β-emitter 

radionuclide used for therapy) to quantify the biodistribution of Y-pharmaceuticals in 

animals16-19.  It is used effectively as tracer for the chemical yield determination of 
90Y 20. 

 

A production method recently used at iThemba LABS to separate 88Y from SrCl2 

target material has been reported8.  Briefly, the target was dissolved in 0.01 M HNO3, 

after which it was loaded onto a column containing Chelex 100 chelating resin (in H+ 

form) at a pump speed of 1 mL/min.  The remaining Sr was first eluted from the 

column using 0.01 M HNO3 and the 88Y then eluted using 1 M HNO3.  The product 

was evaporated to dryness and dissolved in 0.1 M HCl. 

 

While the method described above initially showed promise, it was found that using 

Chelex 100 as a resin to separate the elements was a temperamental process, as some 

of the strontium target material would not always be washed from the resin effectively 

and, as a result, be eluted with the 88Y and found as an impurity in the final product.  

Adjusting the pump speed of the production also did not solve the problem and the 

results were erratic at best.  A more effective separation method for production 

purposes was necessary. 

 

Another problematic issue in the development of this production was the choice of 

target material.  The obvious (and initial) choice was SrCl2, as it pressed a smooth, 

compact pellet for bombardment.  Initially, the target material, encapsulated in 

aluminium such that it would not dissolve in the cooling water of the bombardment 

station, had a tendency to burst when placed in a 66 MeV proton beam, provided by 

the Separated Sector Cyclotron at iThemba LABS, after a period of time.  This work 

briefly describes how this problem was dealt with. 
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10.2 Nuclear Data 

 

10.2.1 Experimental Methods and Data Analysis 

 

The excitation function for the production of 88Y via the (p,n) reaction on 88Sr has 

been reported by several authors.  Recently, Kettern et al.2 published new data up to 

25 MeV and compared their results with the relevant older (and rather incomplete for 

this energy region) data21,22 measured in the fifties and sixties, as well as with a later 

data set by Levkovskii23.   

 

At iThemba LABS, trial productions were started using encapsulated SrCl2 and SrF2 

targets.  These targets were bombarded behind a Mg target (for 22Na production), 

thus, they served as the low-energy companion in a tandem target configuration.  The 

yields obtained turned out to be inconsistent and often significantly lower than 

expectations.  Turning to the available nuclear data, it was found that the 

discrepancies between the relevant data sets were also rather large, almost a factor of 

2 between the data of Kettern and Levkovskii.  It was, therefore, decided to re-

measure the 88Sr(p,n)88Y excitation function up to an energy of nominally 20 MeV. 

 

Similar to the situation described in Chapter 5 for the excitation function 

measurement of 28Mg, it was, once again, found difficult to prepare thin samples of a 

compound containing Sr.  Sr reacts rapidly with oxygen in the atmosphere in metallic 

form, while the compounds of Sr available are brittle.  As a result, it proved to be 

difficult to exploit the conventional stacked-foil technique.  Although methods exist 

for preparing thin samples of brittle substances on metallic backing foils, such 

methods also have their disadvantages.  In the case of the well-known sedimentation 

method24, for example, the measured data are often plagued by very large scatter, 

probably due to deterioration of the targets during the course of those experiments.  It 

was, therefore, decided to measure the thick-target production rate curve first, using 

thick targets, and to deduce the excitation function by means of a differentiation 

method described in section 5.2.1. 
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A schematic diagram of the experimental setup, used to measure the thick-target 

production rate curve for SrCl2 + p, is shown in Fig. 5.2.  A brass target holder 

contained an aluminium degrader, a Cu monitor foil and a SrCl2 target for each of a 

series of bombardments.  All the targets had similar thicknesses of nominally 800 

mg/cm2 and were thick enough to stop the beam.  They were prepared by powder 

compaction of fully anhydrous SrCl2 salt (99.9 %, Alfa Aesar) in a punch-and-die set 

with a hydraulic press.  Activations were performed using degraders of various 

thicknesses to cover the energy region from threshold up to ~17.5 MeV, the maximum 

energy which could be obtained from the ATOMKI cyclotron in Debrecen, Hungary.  

The monitor foils were high purity Cu (99.99 %, Goodfellow, U.K.) with a thickness 

of 25 µm, for the accurate determination of the incident proton flux.  The 
natCu(p,x)65Zn monitor reaction25 with IAEA recommended cross sections were used 

for this purpose.  The targets were irradiated inside the cyclotron vacuum at an 

average beam current of 50 nA, each bombardment lasting about 30 minutes. 

 

 
Fig. 10.2: Experimental setup used to activate SrCl2 targets and Cu monitor foils for purposes of 

measuring the 88Y thick-target production rate curve.  Degraders of various thicknesses 
could be accommodated to adjust the energy, while the targets of constant thickness 
could stop the beam.  CI indicates current integrator. 

 

After bombardment, each SrCl2 target was dissolved in 3 mL of water in a standard 

serum vial.  Once filled and sealed, these vials constituted appropriate counting 
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sources.  The reason why liquid sources were prepared in this way instead of counting 

the activated SrCl2 discs directly, was because they were considered to be too thick to 

constitute bona fide point sources.  Also, the depth of penetration of the beam into 

these discs differed, depending on the degraded energy.  The liquid sources ensured a 

consistent counting geometry, as well as allowing calibration sources of the same 

geometry to be easily prepared.   

 

The 88Y activities were determined by off-line γ-ray spectrometry using the 898.0 keV 

(93.7 %) and 1836.1 keV (99.2 %) γ-lines.  The statistical uncertainties were 

insignificant compared to the systematic uncertainty, except near the reaction 

threshold, the latter of which was estimated to be about 7 %: beam current integration 

(4 %), detector efficiency (5 %), counting geometry (1 %) and decay corrections (2 

%).  The 65Zn cross sections extracted from the Cu monitor foils were also found to be 

in excellent agreement with the IAEA recommended values, thus, the directly 

measured current integrator values were independently confirmed. 

 

10.2.2 Results and Discussion 

 

The measured 88Y thick-target production rate curve for SrCl2 + p is shown in Fig. 

10.2.  The reaction threshold is near 4 MeV and the production rate for the full energy 

region, i.e. from threshold up to the maximum measured energy of 17 MeV, is about 

1.6 MBq/µAh.  A standard polynomial function was fitted through the measured data 

using the code TableCurve26 (the extrapolation beyond 17 MeV will be discussed 

later). 

 

The polynomial of Fig. 10.3 could be differentiated analytically, allowing the 

derivation of the excitation function for 88Sr + p, shown in Fig. 10.4.  The data of 

Kettern et al.2 and Levkovskii23 are also shown.  Interestingly, the data of this work 

are lower than those of Levkovskii but higher than those of Kettern, falling just about 

half-way between those two data sets.  The maximum of the excitation function is at 

about 12.5 MeV, thus the energy region 4 – 20 MeV is ideal for the routine 

production of 88Y.  The deduced cross-section values of this work as well as 

production rates for several candidate target materials are presented in Appendix A1. 
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Fig. 10.3: Thick-target production rate curve of 88Y produced in the proton bombardment of 

SrCl2.  The solid symbols are the measured values of this work while the solid curve is 
a polynomial fit.  Error bars are shown when they exceed the symbol size. 

 

 
Fig. 10.4: Excitation function of 88Y formed in the reaction of protons with 88Sr.  The solid curve 

was derived from the measured thick-target production rate data of this study (see Fig. 
10.3).  The open triangles are the data of Levkovskii23 and the open circles the data of 
Kettern2 et al. 
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Theoretical calculations were performed with the code ALICE-IPPE27 in order to 

compare with the existing data and, if found to give a reasonable reproduction, to 

extrapolate the measured curves up to 20 MeV.  ALICE-IPPE is a computer 

implementation of the Geometry Dependent Hybrid (GDH) model, widely used for 

predicting excitation functions in nucleon-induced nuclear reactions (and also 

sometimes for reactions induced by heavier projectiles).  A standard input prescription 

was used, the details of which have been summarized elsewhere28.  The results are 

shown in Fig. 10.5. 

 

Also shown in Fig. 10.5 is a rescaling of the measured cross-section values of 

Levkovskii according to a recommended prescription by Takács et al.29.  These 

authors have accurately re-measured the monitor excitation function used by 

Levkovskii, namely, that of the natMo(p,x)96mgTc reaction, by irradiating stacks 

containing natMo foils inside an electron-suppressed Faraday cage.  The entire 96mgTc 

excitation function of Levkovskii was found to be about 20 % too high.  The 

renormalized values of Levkovskii are in good agreement with the values of this 

work.  The overall agreement with the ALICE-IPPE prediction is also acceptable, 

although the shape is somewhat skewed towards a maximum at an energy about 1.5 

MeV higher. 

 
Fig. 10.5: Excitation function of 88Y formed in the reaction of protons with 88Sr.  The solid curve 

was derived from the measured thick-target production rate data of this study (see 
Figs. 10.3 and 10.4).  The open triangles are the re-scaled values of Levkovskii23 (see 
text) while the broken curve is a theoretical prediction by means of the computer code 
ALICE-IPPE26. 
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10.3 Radiochemical Investigation 

 

10.3.1 Chemical Separation Methods 

 

Analytical grade reagents were used throughout this work and were obtained from 

Merck (SA) Pty. Ltd or Sigma Aldrich GmbH, which included Sigma, Aldrich, Fluka 

and Riedel de Haen products.  The AG 50W-X4 cation exchange resin used in this 

work was obtained from BioRad Laboratories, Richmond, U.S.A.  De-ionised water 

from a Millipore MilliQ Reagent Grade Water System, to a conductivity of greater 

than 10 megaohm cm-1, was used for all experimental and production work. 

 

Experiment 1 

8.0 g SrCl2 was weighed out and dissolved in 20 mL 1.0 M HNO3, to which 85Sr and 
88Y tracer was added.  This solution was loaded onto a column, containing 10 mL of 

AG 50W-X4 cation exchange resin.   The Sr was then eluted from the column, using  

30 mL 1.0 M HNO3, with the aim of removing any excess Sr, before the 88Y was 

finally eluted with 50 mL 4.0 M HNO3. 

 

Experiment 2 

In a parallel investigation, approximately 0.1 g irradiated SrB6 was dissolved in 10 

mL 5.0 M HNO3 and evaporated to dryness.  The activity was then dissolved together 

with 5.0 g SrCl2 and taken up in 20 mL 1.0 M HNO3, before being passed through a 

column containing 10 mL AG 50W-X4 cation exchange resin.  The beaker containing 

the activity was rinsed twice with 10 mL 1.0 M HNO3 and passed through the column.  

The 85Sr and 7Be were then eluted from the column with 50 mL 1.0 M HNO3, and 

finally eluted with 25 mL 1.7 M HNO3, before the 88Y was finally removed using 2x 

25 mL 3.0 M HNO3. 

 

Experiment 3 

A 10 mL column containing AG MP-1 macroporous anion exchange resin was 

prepared and treated with 50 mL 25 % NH3 and the column then rinsed with 100 mL 

water. 
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8.0 g of SrCl2 was weighed out and dissolved in 200 mL water.  85Sr and 88Y tracers 

were added in 10 mL of a solution containing 50 mg ammonium carbonate.  The 

[88Y]yttrium carbonate and a small quantity of strontium carbonate, precipitated by 

the excess ammonium carbonate, were allowed to settle for an hour.  The solution, 

containing SrCl2 (ca. 90 % of the original amount), was gently decanted such that the 

precipitate was left behind.  The precipitate was stirred in 200 mL water and set aside 

so that the precipitate could settle again.  The solution was decanted, the precipitate 

dissolved in 2 mL 2.0 M HCl and the solution evaporated to dryness.  The salts were 

dissolved in 200 mL water and the resultant solution pumped through the resin 

column.  The beaker was rinsed several times with water, the rinsings passed through 

the column and the remaining SrCl2 eluted with more water, amounting to ca. 100 mL 

in total.  The final product (88Y) was eluted from the resin column with 2x 25 mL 6.0 

M HCl. 

 

Experiment 4 

The resin to be used in this case, Amberchrom CG161m, was saturated with tributyl 

phosphate and stirred overnight, before packing a 2.0 mL column with it.  Once the 

column was packed, it was equilibrated by the passage of 30 mL 69 % HNO3. 

 

5.0 g of SrCl2 was weighed out (to which 85Sr and 88Y tracer was added) and 

dissolved in 10 mL 69 % HNO3.  This solution was pumped through the column 

containing the treated Amberchrom CG161m resin and the elements were washed on 

to the column with a further 20 mL 69 % HNO3.  The Sr was eluted using 50 mL 69 

% HNO3, while the 88Y final product was eluted with 25 mL 0.1 M HCl. 

 

Experiment 5 

5.0 g of SrCl2 was dissolved in 50 mL 0.005 M acetic acid (to which 85Sr and 88Y 

tracer was added).  This was loaded on to a column containing 10 mL Purolite S930 

chelating resin, equilibrated with 0.005 M acetic acid.  The Sr was eluted from the 

resin using 50 mL 0.005 M acetic acid, followed by 50 mL 0.001 M acetic acid, 

before the 88Y final product was eluted from the resin using 50 mL 2.0 M HCl. 
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Experiment 6 

A 5 mL column, containing Amberchrom CG71cd, was prepared and treated with 20 

mL 25 % NH3, after which the NH3 was rinsed from the column using 20 mL water. 

 

An 8 g SrCl2 target, removed from its encapsulated anodized aluminium capsule, was 

dissolved in 100 mL water and loaded onto the column.  The column was rinsed twice 

using 50 mL of water, to remove any traces of Sr impurities, before the final product 

(88Y) was eluted from the column using 3x 25 mL 6.0 M HCl. 

 

10.3.2 Results and Discussion 

 

AG50W-X4 resin 

The initial experiment (Experiment 1), using 85Sr and 88Y as tracer, produced 

promising results. Although no 85Sr tracer was eluted with the initial load step, 

approximately 40 % of the tracer was eluted with the first 30 mL rinse of 1.0 M 

HNO3, while all but 1 % of the tracer was removed with the second rinse of the 

column with 30 mL 1.0 M HNO3.  There was no break-through of 88Y and all of this 

was eluted from the column when using the 4.0 M HNO3.  The remaining 1 % of the 
85Sr tracer, however, was found in the final product. 

 

Attempts at separating Sr from Y using cation exchange resins with higher 

crosslinkages, such as AG50W-X8 or the macroporous AG MP-50, were not 

successful.  Experiments using AG50W-X8 resin produced “tailing” when eluting the 

final product, while in the case of AG MP-50 the Sr could not be eluted effectively, 

resulting in a final product with a great deal of impurity, as well as a mere 65 % yield. 

 

The experiment with the small quantity of SrB6 (Experiment 2) produced better 

results, as there was a complete separation of Y from Sr.  None of the Sr was eluted 

with the initial load solution, although 40 % was eluted in the 20 mL rinse step.  The 

remainder of the 85Sr was eluted with the 50 mL 1.0 M HNO3, but about 29 % of the 
88Y tracer was removed from the resin column with the 25 mL 1.7 M HNO3.  The 

remainder of the tracer was obtained in the final rinse step (50 mL 3.0 M HNO3). 
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Owing to the results obtained above, the method was slightly adjusted.  Without 

changing the initial load and rinse steps, 2x 40 mL 1.2 M HNO3 was used to remove 

the excess 85Sr.  The 88Y was eluted using 50 mL 4.0 M HNO3. 

 

There was a difference when using the irradiated SrB6 instead of other target 

materials, in that the irradiation also produced 7Be, from the boron in the target 

material.  This impurity did not play a significant role in the separation, however, as it 

was eluted along with the Sr in the 20 mL 1.0 M HNO3 and the 50 mL 1.0 M HNO3 

elution steps, respectively. 

 

The adjusted procedure used for the subsequent experiment produced excellent 

results.  The results are listed as “Experiment 2a” in Table 10.1 below.  All of the 

impurities were removed with the respective elution steps, while the 88Y yield was 

99.1 %.  When the experiment was repeated (listed as “Experiment 2b”), the results 

with regard to the product yield were similar, although the percentage impurities (7Be 

and 85Sr) removed differed from the previous experiment.  They were all effectively 

removed from the resin column, however. 

 

A full production simulation with 3.9 g SrB6 was carried out, using a hot cell 

containing a hot cell panel specifically designed for this purpose.  The results obtained 

(listed in Table 10.1 as “Production 1”) were similar to that of Experiment 2, although 

there was a slight breakthrough of the final product in the final elution step of 85Sr, 

producing an 88Y yield of 92.97 %. 

 

A second experiment was performed under hot cell conditions, with the same method 

as previously described applied.  The results obtained are listed in Table 10.1 as 

“Production 2”.  Once again, there was a slight breakthrough of 88Y in the final 85Sr 

elution step, although the yield of the final product improved to 96.86 %. 

 

When a production was performed (using SrCl2 as target material), it was decided to 

decrease the rinse step from 80 mL 1.2 M HNO3 to 70 mL 1.2 M HNO3, keeping the 

rest of the method the same.  The results are listed as “Production 3” in Table 10.1.  

This time, there was no breakthrough of 88Y in the Sr rinse steps and the product yield 

increased to 97.68 %.  The eluate was evaporated to dryness and the product collected 
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in 5 mL 0.1 M HCl.  The product was sent away for evaluation by a client and 

deemed to be fit for purchasing. 

 
Table 10.1: Percentage impurity removal and percentage product yield using AG 50W-X4 resin. 

 Experiment  

2a 

Experiment 

2b 
Production 1 Production 2 Production 3 

% 85Sr removal 

in load step 
0 0 0 0 0 

% 7Be removal 

in load step 
9.42 24.75 11.25 12.22 N/A 

% 85Sr removal 

in intial rinse 

step 

39.46 0 0 0 57.08 

% 7Be removal 

in initial rinse 

step 

85.47 55.76 52.84 53.17 N/A 

% 85Sr removal 

in elution steps 
54.54 100 100 100 42.92 

% 7Be removal 

in elution steps 
5.11 19.49 35.91 34.61 N/A 

   % 88Y yield 99.10 100 92.97 96.86 97.68 

 

From the experiments and productions performed, elution curves of 7Be, 85Sr and 88Y 

were generated and are shown as figures 10.6 and 10.7, respectively. 

 

Figure 10.6 describes the elution of 7Be from the production system, where the first 

40 mL of 1.0 M HNO3 indicates the load and rinse solutions, respectively.  The 

remaining 7Be was eluted from the AG 50W-X4 cation exchange resin with 60 mL 

1.2 M HNO3, which was also used to remove 85Sr from the resin (Fig. 10.7).  A 

further 20 mL 1.2 M HNO3 was added to ensure that any remaining traces of 85Sr was 

eluted from the resin column.  While there have been experimental results indicating 

100 % elution of 88Y in 40 mL 4.0 M HNO3, the results were not consistent, as many 

results obtained also indicated that the final traces of the 88Y were removed using a 

further 10 mL and, thus, Fig. 10.7 describes it as such. 
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Elution of Be-7 from AG 50W-X4 using 1.0 M and 
1.2 M HNO3
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Fig. 10.6:  Elution of 7Be from AG 50W-X4 using 1.0 M and 1.2 M HNO3. 

 

Elution Curve for the separation of Sr (in 1.2 M HNO3) from 
Y-88 (in 4.0 M HNO3) on AG50W-X4 resin
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Fig. 10.7: Elution of 85Sr and 88Y from AG 50W-X4 using 1.2 M HNO3 and 4.0 M HNO3, 

respectively. 

 

Stellenbosch University  http://scholar.sun.ac.za



 

 134

AG MP-1 resin 

The results shown for Experiment 3 (shown as “Experiments 1 and 2” and 

“Productions 1 and 2”) in Table 10.2 indicate the remaining Sr for experimental 

purposes, as ca. 90 % of the total Sr was removed by decanting.  The precipitation of 
88Y in the carbonate form made it easier to separate the Sr from the final product, 

while increasing the pH to such a degree that ion exchange in this manner could be 

achieved with ease.  As can be seen from the results, the separation of Sr from Y was 

obtained successfully and this experiment proved to be reproducible.  When eluting 

the final product it was determined that only 25 mL of 6.0 M HCl would be required, 

as the entire product was contained in this aliquot.  The use of a more concentrated 

acid for the elution of 88Y was to ensure that any iron in the production process would 

remain on the resin column.  This method was adopted when performing a full 

production for customer purposes. 

 

An aluminium encapsulated 8.0 g SrCl2 target was bombarded with a 66 MeV proton 

beam provided by iThemba LABS’s separated sector cyclotron.  The capsule was cut 

open and the target material removed.  The target was dissolved in 50 mL water and 

the production carried out in a hot cell according to the method described in 

Experiment 5.  The separation was deemed successful, with a 96.21 % yield of 88Y, 

the remainder of the product being decanted along with the vast majority of Sr target 

material when performing the precipitation step with ammonium carbonate.  Results 

from experimental and production runs are listed in Table 10.2. 

 
Table 10.2: Percentage impurity removal and percentage product yield using AG MP-1 resin. 

 Experiment 1 Experiment 2 Production 1 Production 2 

% Sr decanted 96.97 96.43 98.32 97.03 

% Y decanted 3.00 2.96 3.12 3.79 

% Sr removal in load step 3.03 3.57 1.68 2.97 

% Y removal in load step 0 0 0 0 

% Sr removal in rinse step 0 0 0 0 

% Y removal in rinse step 0 0 0 0 

% Y yield 97.00 97.04 96.88 96.21 
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There appeared to be a disadvantage to this method, however.  48 % of the 88Y 

activity migrated to the inside surfaces of the aluminium capsule and could not be 

removed when dissolving in water.  The activity could, however be removed from the 

capsule when dissolving in 20 mL 1.0 M HNO3.  This solution was then evaporated to 

dryness, before being taken up in 20 mL of water and, once again, evaporated to 

dryness.  The separation procedure had to be repeated to obtain all of the activity from 

the bombardment of the target material.  For a fully successful production, therefore, 

the separation procedure had to be performed twice. 

 

An elution curve for this separation can be seen below (Fig. 10.8). 

 

Elution Curve for the separation of Sr (using water) from Y-88 
(using 6.0 M HCl) on AG MP-1 resin
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Fig. 10.8: Elution of 85Sr and 88Y from AG MP-1 using water and 6.0 M HCl, respectively. 

 

Amberchrom CG161m 

This experiment provided very good results, with 65.074 % Sr being removed in the 

initial load and rinse steps.  The remainder of the Sr was eluted with 50 ml 69 % 

HNO3, while 96.991 % of the 88Y final product was eluted with 25 ml 0.1 M HCl.  

The remainder of the activity was found in the initial load waste.   
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This method, while showing a great deal of promise, was rejected, however, due to 

the fact that the final product appeared oily in nature, due to the tributyl phosphate 

from the column.  Numerous attempts were made to rid the final product of its oily 

nature (by evaporation and by ion exchange), without success.  As it is known that 

customers use the product for the making of point sources and the like, providing a 

product produced by this method would clearly not be appropriate.  The constant use 

of concentrated nitric acid when using a production panel would also not be desirable, 

as the pump tubing and catheters will get damaged, creating a possibility of 

production failure. 

 

Purolite S930 

While the retention of the 88Y using this resin appeared to be promising, the same 

could not be said for the Sr target material: 44.78 % of the material was removed in 

the load and rinse steps, while the remaining 65.22 % was found with the final 

product, containing 97.38 % of the measured 88Y.  Changing the concentration of the 

acetic acid did not improve matters and this method was rejected. 

 

Amberchrom CG71cd 

The method followed for this experiment (Experiment 6) was virtually identical to 

that followed for that used when using AG MP-1 as resin (Experiment 3).  The results 

obtained were virtually identical, in that the 88Y was well retained by the resin, while 

the Sr contaminants passed through the resin column.  The iron from the aluminium 

capsule was also retained, however, but this was not eluted with the final product 

when using 6.0 M HCl.  Greater tailing was obtained when eluting the 88Y final 

product, resulting in 75 mL of HCl being required, instead of the 25 mL required 

when using AG MP-1. 

 

The result of this experiment is significant, as this indicates that the Fe and Y is co-

precipitated on the resins (Amberchrom and AG MP-1) and not retained as an anion 

on the AG MP-1 macroporous anion exchange resin.  This could be exploited in 

future experiments for other radionuclides. 
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Choice of target material 

When dissolving the irradiated SrB6 target, using 50 mL 5.0 M HNO3, the dissolution 

offered a vicious exothermic reaction and, thus, the solution was added drop-wise to 

ensure that all of the activity would be contained within the reaction vessel. 

 

The dissolution of the target material proved to be problematic.  When the aluminium 

capsule was cut open, the target did not appear as a whole, compressed disc.  Instead, 

it crumbled into the reaction vessel, along with some aluminium shavings.  While no 

problems previously occurred when dissolving a small piece of target material, the 

dissolution of the full target was messy, creating a scum on the surface and pieces of 

what was thought to be aluminium at the bottom of the vessel.  As a result, the 

resultant solution had to be filtered using a glass column containing a porous G2 glass 

frit at the bottom.  Furthermore, a 5 micron filter had to be placed on the production 

panel, so that the finer material from the dissolution step was retained.  While this 

target material showed resilience when placed in the proton beam for bombardment, it 

was decided that this would not be the target material of choice from a chemical and 

production point-of-view. 
 

As mentioned previously, problems were encountered when using SrCl2 as target 

material in high-intensity proton bombardments (i.e. target capsules bursting and 

aberrant yields).  To overcome this, several other types of target material were 

investigated in an attempt to prevent activity losses.  Unsuccessful attempts were 

made using SrF2 instead of SrCl2.  More successful irradiations were obtained with 

repeated attempts using SrS and SrB6, but both targets proved problematic to dissolve 

as it was almost impossible to remove all traces of aluminium (as a result of the 

targets reacting with the Al capsule) from the target material.   

 

It is well known that SrCl2 can be successfully used as target material, but it was not 

known why the target had a tendency of bursting when placed in the proton beam for 

an extended period.  Upon perusing the literature30, it was noticed that the 

hexahydrate only lost its last water molecule at temperatures greater than 170 ºC.   

 

Previous experience with the preparation of other chloride targets showed that freeze-

drying chloride salts would suffice to ensure they are anhydrous.  Prepared targets 
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were also heated once pressed.  It transpired that the sixth water molecule remaining 

might have been the source of the bursting targets, because once the method of target 

preparation was changed, by drying the SrCl2 salt in a vacuum oven at a temperature 

higher than 170 ºC, subsequent bombardments of the target material were performed 

successfully. 

 

The theory developed was that the sixth water molecule was the cause of the burst 

target capsules (as the salts melt under bombardment conditions and the water vapour 

released creates pressure within the aluminium target capsule).  As a result, extreme 

care will have to be taken to prevent any exposure of the target material to the 

atmosphere after the baking process. 

 

Target encapsulation 

From experience gained when performing 88Y productions, it became apparent that 

bench experiments and routine productions differed greatly.  Initially, target capsules 

were cut open and the target provided for processing.  When SrB6 was used, 

unsuccessfully, as target material, the capsule had to be included and it was 

discovered that approximately 48 % of the 88Y product had migrated to the inside 

surfaces of the aluminium capsule. 

 

When performing production processes using SrCl2 as target material, it was 

discovered that, once again, about 48 – 50 % of the 88Y activity had migrated to the 

aluminium capsule walls.  Ideally, it would be better to encapsulate the target material 

in a more inert capsule, such as niobium, but this would be costly to iThemba LABS 

as it would require the acquisition of an electron-beam welding apparatus (for capsule 

sealing under vacuum).   

 

It is clear that the use of aluminium capsules is a limiting factor in the production of 
88Y.  Making matters worse during the experimental phase was the fact that the 

aluminium capsule material was not pure and contained impurities, such as iron and 

silica.  The activated target material could be dissolved in 1.0 M HNO3, but with the 

risk of the Y forming silicates as a result of the impurities, resulting in it not being 

quantitatively retained by the resin.   
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An attempt to overcome the issue of the reaction between the SrCl2 and the 

aluminium was to anodize the aluminium capsule.  Once the target material was 

placed inside the capsule, it was bombarded and processed as usual.  It was 

discovered that ca. 10 % of the 88Y migrated to the Al and ca. 90 % of the 88Y activity 

could be recovered successfully without having to treat the capsule further, implying 

that one can use the production method involving AG MP-1 macroporous anion 

exchange resin successfully with minimal losses of final product. 

 

Should one wish to obtain all of the activity for production purposes, it would be 

necessary to perform the production successfully using two columns. 

 

Adopted production method 

The target material was dissolved in 100 mL water.  To it was added a 10 mL solution 

containing 50 mg of ammonium carbonate and stirred.  The solution was then left to 

stand for 30 minutes.  The 88Y was precipitated and the Sr solution was gently 

decanted, leaving the precipitate behind.   The precipitate was dissolved in 2 mL 2.0 

M HCl, evaporated to dryness and the salts dissolved in 200 mL water.  The solution 

was loaded on to a 10 mL column containing AG MP-1 resin (treated with 50 ml 25 

% NH3 and the column rinsed with 100 mL water prior to use).  While the bulk of the 

Sr was expected to be removed with the decanting and load steps, the remaining 

contaminant was removed from the column by eluting it with 100 mL water.  The 

final product (88Y) was eluted from the resin column with 25 mL 6.0 M HCl and 

evaporated to dryness, before finally being picked up in 5 mL 0.1M HCl. 

 

The anodized target capsule was treated separately and the activity attached to it 

dissolved in 1.0 M HNO3.  The capsule was removed and the solution evaporated to 

dryness.  50 mL of water was added to the beaker and this was, once again, 

evaporated to dryness, before the activity was taken up in 200 mL water.  The solution 

was treated with 10 mL water containing 50 mg ammonium carbonate.  The Y was 

co-precipitated as carbonate with ca. 80 mg SrCO3 and was allowed to settle.  The 

container was decanted to get rid of the water (and the Sr activity) and the process 

repeated.  Once the solution had been decanted a second time, the precipitate was 

dissolved in 50 mL 0.5 M HCl and loaded on to a 10 mL column containing AG50W-

X4 cation exchange resin (equilibrated with 50 mL 0.5 M HCl).  Any excess 85Sr was 
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removed from the resin column using 70 mL 1.2 M HNO3.  The 88Y was eluted using 

50 mL 4.0 M HNO3 and evaporated to dryness, before finally being picked up in 5 

mL 0.1 M HCl. 

 

10.4 Conclusion 

 

A thick-target production rate curve was measured for 88Y produced in the proton 

bombard-ment of SrCl2, from which the 88Sr(p,n)88Y excitation function was derived 

using a differentiation method.  Good agreement was found with one set of literature 

data once those values were renormalized according to more recent monitor reaction 

data. 

 

An effective separation between 88Y from the Sr target material could be successfully 

obtained when using AG MP-1 macroporous anion exchange resin at a pH > 7 or 

when performing a production using AG50W-X4 cation exchange resin.  As it was 

discovered that the Al was attacked by the SrCl2 during bombardment and that much 

of the 88Y activity was found to have migrated to the aluminium target capsule, it was 

deemed preferable to anodize the capsule.  The production is performed using both 

resin columns, namely, the AG MP-1 resin for the target dissolution and separation 

(obtaining 90 % of the total 88Y activity) and the AG50W-X4 resin for the removal of 

the remaining activity from the aluminium capsule in acidic media.  The use of a co-

precipitation step, using ammonium carbonate, proved to be very effective in the 

removal of the bulk of strontium from yttrium using both chromatographic methods. 

 

The use of aluminium encapsulation is not recommended, however, as better materials 

for this purpose have been demonstrated and successfully implemented at other 

laboratories.  Unfortunately, the technology to encapsulate target materials in Nb (or 

anything other than aluminium) does not yet exist at iThemba LABS.  During the 

course of this study, it became abundantly clear that electron-beam welding 

technology is absolutely essential for the manufacturing of high-current radionuclide 

production targets at an intermediate energy accelerator facility such as iThemba 

LABS.  It is unlikely that any significant further progress on 88Y production will be 

made until such a system has been acquired. 
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CHAPTER 11 THE PRODUCTION OF 133Ba IN THE 
PROTON BOMBARDMENT OF Cs 

 

11.1 Introduction 

 
133Ba is a long-lived radionuclide, with a half-life of 10.54 years1.  It is mainly used as 

a calibration source for γ-rays in the energy region 81 to 356 keV as it has several 

strong γ-emitting transitions in this region2, although the 81 keV photo-peak is often 

difficult to resolve from the 79 keV transition3.  It is generally obtained from the 

bombardment of Cs-based materials via the 133Cs(p,n)133Ba reaction (see Fig. 11.1).  It 

is also sometimes used for biomedical applications, predominantly bone studies4,5, 

although investigations have also been performed to determine whether there is a 

long-term retention of the element elsewhere in the body6,7, by means of testing on 

rats.  It has also been used in studies of perturbed angular correlation8,9, as well as in 

the study of the attachment of cryptates containing radioactive metal ions to 

proteins10. 

 

 
Fig. 11.1:  Relevant part of the “Karsruher Nuklidkarte” of 2006 for the production of 133Ba. 

 
133Ba can also be used as tracer for predicting 226Ra in soil-plant transfer studies11, as 

it is a good analogue of the environmental behaviour of 226Ra12.  As a result, it has 

also been used for the study of estuarine sediments12,13.  The radionuclide has also 

been used as a surrogate for HEU14, to determine the probability of K-electron capture 
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to the two excited states of 133Cs15 and for the determination of non-ionic surfactants 

of ethylene dioxide type16. 

 
133Ba is an expensive radionuclide to make and, as a result, very few accelerator 

facilities consider it financially viable to produce routinely.  There have been reports 

on producing the radionuclide using reactor facilities17, however, that product is not 

carrier free.  133Ba is usually produced at accelerator facilities by bombarding caesium 

metal-based target material using high-energy proton beams.  Due to its long half-life, 

it can take an excruciatingly long time to manufacture a reasonable quantity of the 

product. 

 

Ion exchange methods have been reported to separate Ba from Cs18,19, although lately 

these methods have largely been based on inorganic ion exchangers20,21.  In this work, 

however, organic ion exchange resins were investigated to separate 133Ba from a 

number of proton-bombarded Cs compounds.  The production of 133Ba may be 

attractive to iThemba LABS as it can, in principle, be done as the lower-energy 

companion of 22Na or 82Sr productions in a tandem target geometry.  Even though its 

production rate may be quite low, the price per unit activity that the market offers is 

relatively high, making it worthwhile to produce it as a “by-product” of the regular 
22Na and 82Sr productions. 

 

11.2 Nuclear Data 

 

11.2.1 Experimental Methods and Data Analysis 

 

No excitation function data for the reaction 133Cs(p,n)133Ba could be found in the 

literature.  It was, therefore, decided to measure some data for this reaction, however, 

the long half-life made it impossible to measure an extensive new data set.  In fact, 

these measurements were performed at the same time that data for 88Y were measured 

at ATOMKI, Debrecen, Hungary (see Chapter 10).  The experimental method of 

section 10.2.1 is, therefore, applicable, thus, only the salient features of these 

particular measurements will be described here.   
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Referring to Fig. 10.2, the targets were prepared by powder compaction of fully 

anhydrous CsF salt (99.9 %, Alfa Aesar) in a punch-and-die set with a hydraulic 

press.  All the targets irradiated had a nominal thickness of 1000 mg/cm2, thus, thick 

enough to stop the beam.  Activations were performed using degraders of various 

thicknesses to cover the energy region from threshold up to ~17.5 MeV, the maximum 

energy which could be obtained from the ATOMKI cyclotron.  The monitor foils 

were high purity Cu (99.99 %, Goodfellow, U.K.) with a thickness of 25 µm, for the 

accurate determination of the incident proton flux.  As before, the natCu(p,x)65Zn 

monitor reaction with IAEA recommended cross sections were used for this purpose.  

The targets were irradiated inside the cyclotron vacuum at an average beam current of 

50 nA, each bombardment lasting two hours.  The longer bombardment time was 

necessary in order to induce sufficient 133Ba activity to complete the off-line γ-ray 

analysis in a reasonable time.  During the allocated time on the ATOMKI cyclotron, 

only four such activations could be performed, after which the beam had to be handed 

over to other users. 

 

After bombardment, each CsF target was dissolved in 3 mL of water in a standard 

serum vial.  Once filled and sealed, these vials constituted appropriate counting 

sources.  The reason why liquid sources were prepared in this way instead of counting 

the activated CsF discs directly, was because they were considered to be too thick to 

constitute bona fide point sources.  (See section 10.2.1 for further details on the 

sources for counting). 

 

The 133Ba activities were determined by off-line γ-ray spectrometry using the 302.85 

keV (18.33 %) and 356.02 keV (62.05 %) γ-lines1.  The statistical uncertainties were 

insignificant compared to the systematic uncertainty, the latter of which was estimated 

to be about 7 %: beam current integration (4 %), detector efficiency (5 %), counting 

geometry (1 %) and decay corrections (2 %).  The 65Zn cross sections extracted from 

the Cu monitor foils were also found to be in excellent agreement with the IAEA 

recommended values, thus, the directly measured current integrator values were 

independently confirmed. 
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11.2.2 Results and Discussion 

 

The measured 133Ba thick-target production rate curve for CsF + p is shown in Fig. 

11.2.  Since only four data points were measured, not enough information was 

available to uniquely fit a polynomial function.  It was, therefore, necessary to fit a 

model-generated function to the measured values.  For this purpose, the Geometry 

Dependent Hybrid (GDH) model as implemented in the ALICE-IPPE code was used 

(see also section 10.2.2).  The solid curve shown in Fig. 11.2 was calculated from the 

ALICE-IPPE predicted excitation function for the 133Cs(p,n)133Ba reaction.  The 

dashed curve is the same information but renormalized to the data.  Note that whereas 

the corresponding curve in the case of 88Y was found in a model-independent way 

(i.e. by a least-squares fitting of a polynomial function), in the case of 133Ba the shape 

of the curve is model-dependent, thus, the four measured data points served to 

constrain the theoretical prediction.  It can, therefore, be thought of as an integral test 

of the predicted model-generated data.  The expected production rate for the proton 

energy window 4 – 20 MeV is about 25.6 kBq/µAh. 

 

The corresponding excitation functions are shown in Fig. 11.3.  It has the typical 

shape for a (p,n) reaction and reaches a maximum of about 550 mb at a proton energy 

of 10.2 MeV.  An energy window of 4 – 20 MeV should, therefore, be ideal for 133Ba 

production.  
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Fig. 11.2: Thick-target production rate curve of 133Ba produced in the proton bombardment of 

CsF.  The solid symbols are the measured values of this work while the solid curve is a 
prediction based on the Geometry Dependent Hybrid (GDH) model.  The dashed 
curve presents the same information as the solid curve but renormalized to the 
measured data.  Error bars are shown when they exceed the symbol size. 

 

 
Fig. 11.3: Excitation function of 133Ba formed in the reaction of protons with 133Cs.  The solid 

curve was derived from the ALICE-IPPE prediction (see text) while the dashed curve 
represents the renormalized excitation function according to the integral yield 
measurements of this study. 
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11.3 Radiochemical Investigation 

 

11.3.1 Chemical Separation Methods  

 

Analytical grade reagents were used throughout this work and were obtained from 

Merck (SA) Pty. Ltd or Sigma Aldrich GmbH, which included Fluka and Riedel de 

Haen products.  The AG MP-50 and AG 50W-X4 cation exchange resins used in this 

work was obtained from BioRad Laboratories, Richmond, U.S.A.  De-ionised water 

from a Millipore MilliQ Reagent Grade Water System, to a conductivity of greater 

than 10 megaohm cm-1, was used for all experimental and production work. 

 

All radioactive determinations were performed using a standard calibrated HPGe 

detector, with a relative efficiency of 13 % (relative to three inch NaI), connected to a 

multichannel analyser.   

 

Experiment 1 

3.0 g CsCl and 0.015 g BaCl2 were dissolved in 50 ml 0.1 M HCl.  The solution was 

passed through a 5 mL column containing AG 50W-X4 cation exchange resin, which 

had been equilibrated by the passage of 50 mL 0.1 M HCl through the resin column.  

The column was rinsed with 20 mL 0.1 M HCl, to remove impurities, before the 

remainder of the Cs was eluted from the column using 150 mL 0.5 M HCl.  It was 

planned to elute the Ba from the resin column using 80 mL 2.0 M HNO3. 

 

Experiment 2 

3.0 g CsCl and 0.015 g BaCl2 were dissolved in 50 ml 0.1 M HCl.  The solution was 

passed through a 5 mL column containing AG 50W-X4 cation exchange resin, which 

had been equilibrated with 0.1 M HCl.  The column was rinsed with a further 30 mL 

0.1 M HCl (both of these two steps performed at a pump speed of 8 mL per minute), 

followed by 200 mL 0.4 M HCl.  The Ba product was eluted using 50 mL 2.0 M 

HNO3.  The final two steps of the experiment were performed at a pump speed of 4 

mL per minute. 
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Experiment 3 

3.0 g CsCl and 0.015 g BaCl2 were dissolved in 50 ml 0.1 M HCl.  The solution was 

passed through a 5 mL column containing AG 50W-X4 cation exchange resin, which 

had been equilibrated with 0.1 M HCl.  The column was rinsed with a further 30 mL 

0.1 M HCl (both of these two steps performed at a pump speed of 8 mL per minute), 

and the Cs eluted with 200 mL 0.3 M HCl.  The Ba product was eluted using 100 mL 

1.5 M HNO3.  The final two steps of the experiment were performed at a pump speed 

of 4 mL per minute. 

 

Experiment 4 

3.0 g CsCl and 0.015 g BaCl2 were dissolved in 50 ml 0.1 M HCl.  To this was added 
132Cs and 131Ba tracer.  The solution was passed through a 5 mL column containing 

AG 50W-X4 cation exchange resin, which had been equilibrated with 0.1 M HCl.  

The load solution vessel was washed with 50 mL 0.1 M HCl and passed through the 

resin column.  The Cs was eluted from the column using 3x 50 mL 0.3 M HCl, after 

which the Ba was eluted from the resin using 25 mL 2.0 M HNO3. 

 

Experiment 5 

A bombarded CsCl target (~ 4.0 g) was dissolved in 50 mL 0.1 M HCl and the 

method followed as with Experiment 4.  After eluting the 133Ba with HNO3, 160 mL 

methanol was added to the eluate.  This solution was pumped through a second 

column (5 mL AG 50W-X4, equilibrated with 0.1 M HCl) at a pump speed of 10 mL 

per minute.  The column was then rinsed with 75 mL 0.1 M HCl, before it was rinsed 

further using 100 mL 0.3 M HCl and the 133Ba eluted with 50 mL 2.0 M HNO3.  The 

eluate was evaporated to dryness and picked up in 10 mL 0.1 M HCl. 

 

Experiment 6 

3.0 g CsCl and 0.015 g BaCl2 were dissolved in 40 ml 0.5 M HCl.  To this was added 
132Cs and 131Ba tracer.  The solution was passed through a 10 mL column containing 

AG MP-50 macroporous cation exchange resin, which had been equilibrated with 0.5 

M HCl.  The elements were washed on to the resin column using another 3x 10 mL 

0.5 M HCl, before the Cs was eluted from the resin using 3x 30 mL 3.0 M HCl.  The 

Ba final product was eluted from the resin column using 2x 30 mL 6.0 M HNO3, 

followed by a further 40 mL 6.0 M HNO3. 
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Experiment 7 

A bombarded CsCl target (~ 4.0 g) was dissolved in 50 mL water and left to stir for 

10 minutes while the solution was heated at 70 ºC.  The solution was decanted to 

separate the solution from any aluminium pieces and the beaker washed four times 

with 10 mL water and added to the original decanted solution.  5 mL concentrated 

HCl, followed by 5 mL water was added to the solution and mixed well.  The 

resultant solution was loaded on to a column containing 10 mL AG MP-50 

macroporous cation exchange resin, equilibrated with 0.5 M HCl.  The resin was 

rinsed with 30 mL 0.5 M HCl, before the Cs was eluted using 90 mL 3.0 M HCl.  The 
133Ba final product was eluted from the resin using 3x 50 mL 6.0 M HNO3. 

 

11.3.2 Results and discussion 

 

Experiment 1 

The Ba was well retained by the resin, with a neglible quantity eluted in the initial 

load step and the first rinse step.  1.1 % of the product was eluted with the 150 mL 0.5 

M HCl, the last 50 mL showing signs of breakthrough, while the remaining 98.9 % 

was eluted with the HNO3.  Cs started breaking through the column from the initial 

load step and continued to do so with 20 mL 0.1 M HCl, with 95.5 % of the Cs being 

eluted via the two steps.  The remainder of the Cs was eluted from the column with 90 

mL of the 150 mL 0.5 M HCl.  A good separation can be obtained should 100 mL 0.5 

M HCl be used in the second rinse step, thereby, preventing Ba breakthrough. 

 

Experiment 2 

Once again, no Ba was found in the initial load and rinse waste.  While initially, there 

was no Ba in the 0.4 M HCl waste, Ba started breaking through after 130 mL had 

passed through the resin, eventually releasing 34.5 %.  The remaining 65.5 % of the 

product was eluted from the resin column with the 2.0 M HNO3, although it only 

required 20 mL to do so.  As found with Experiment 1, Cs was eluted from the 

column in the initial load waste, as well as the 30 mL 0.1 M HCl rinse step, producing 

96.3 % in the waste.  The remaining Cs was eluted in the first 70 mL 0.4 M HCl.  As 

with the previous experiment, a decent separation separation can be obtained should 
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one decrease the 0.4 M HCl rinse step (to, maybe, 90 mL), thereby, preventing Ba 

breakthrough from the resin column. 

 

Experiment 3 

As with the previous two experiments, the Ba was well retained by the resin when 

loading the solution on to the column and rinsing the resin with 30 mL 0.1 M HCl.  

When rinsing with 0.3 M HCl, the remainder of the Cs was eluted with the first 90 

mL.  There was, however, once again breakthrough of Ba in the last 10 mL of the 200 

mL 0.3 M HCl passed through the resin column (2.1 %).  The remaining 97.9 % of the 
133Ba product was eluted using 40 mL of the 100 mL 1.5 M HNO3. 

 

Experiment 4 

This experiment proved to be far more successful than the previous three, in that there 

was no breakthrough of Ba at all and it was eluted from the column when using the 

2.0 M HNO3.  The Cs behaved as expected, with 46.5 % being eluted from the 

column in the initial 50 mL 0.1 M HCl load solution.  A further 34.9 % was eluted 

with the 50 mL 0.1 M HCl rinse step, while the remainder of the Cs was eluted with 

the first two 50 mL fractions of 0.3 M HCl (18.2 % of the total Cs in the first 50 mL 

fraction and the remaining 0.3 % in the second fraction).  All of the 133Ba was eluted 

with the HNO3. 

 

Experiment 5 

While Experiment 4 worked perfectly well, with no Cs in the final product, it was 

feared that there may be “cold” Cs in the final product, which is the reason for the 

extra steps added to the previous method.  The 133Ba behaved impeccably in the steps 

as for Experiment 4 and was loaded on to the second column successfully.  It was 

hoped that any remaining Cs would be removed with the extra 75 mL 0.1 M HCl, 

before the 133Ba was eluted from the resin column.  Analysis of the final product using 

atomic absorption indicated a negligible quantity of Cs carrier. 

 

Experiment 6 

Interestingly, no Cs or Ba was found in the initial load waste, or the 30 mL 0.5 M HCl 

used to wash the elements onto the column.  The Cs was eluted with the 3.0 M HCl 

rinse step, 93.2 % of the element in the first 30 mL fraction and the remaining 6.8 % 
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in the second fraction.  The 131Ba took some time to elute, requiring the full 100 mL 

of 6.0 M HNO3 to remove the element.  40.4 % of the product was removed from the 

column in the first 30 mL fraction, 49.5 % was removed with the second 30 mL 

fraction and the remaining 10.1 % was removed with the last 40 mL fraction, 

indicating a bit of a “tailing” effect. 

 

Experiment 7 

The results obtained were very similar to that of Experiment 6, in that all of the Cs 

was eluted in the 3.0 M HCl rinse, while the 133Ba final product was eluted from the 

column using a large quantity of 6.0 M HNO3.  It transpired that 100 mL was enough 

to remove the final product. 

  

Choice of target material 

CsCl and CsF were tested for use as target material.  Both materials made decent 

target pellets, with the CsF behaving slightly better than the CsCl under bombardment 

conditions.  Both targets required encapsulation in aluminium.  The CsCl required 

more pre-treatment, in that it had to be placed in a vacuum oven for a period to ensure 

that it was truly anhydrous, thereby, preventing the encapsulation from bursting under 

bombardment conditions. 

 

The CsCl target behaved better than the CsF target, as it was considerably easier to 

dissolve the CsCl pellet.  Furthermore, when using ion exchange, the product could be 

easily eluted when using the CsCl target material, while the same could not be said 

when using the CsF target.  No sufficient explanation could be found for this. 

 

Ideal separation method 

A separation of 133Ba from its target material can be effectively performed when using 

a 5 mL AG 50W-X4 resin column, equilibrated with 0.1 M HCl.  Once the target is 

dissolved in 50 mL 0.1 M HCl, the column can be rinsed with a further 30 mL 0.1 M 

HCl, to continue to rid the system of Cs impurities, before removing the last of the Cs 

with 100 mL 0.3 M HCl.  The 133Ba can be eluted from the resin column with 30 mL 

2.0 M HNO3.  As the product is generally requested in the chloride form, the product 

can be evaporated to dryness before being picked up in 10 mL 0.1 M HCl.  An elution 

curve for this separation can be seen in Fig. 11.4 below. 
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Elution Curve for Cs/Ba separation on AG50W-X4 
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Fig. 11.4: The separation of 133Ba from Cs target material using HCl and HNO3 as eluents. 

 

Should a residue be discovered at the base of the evaporator once dry, the residue can 

be dissolved in 2.0 M HNO3 (20 mL) and 160 mL methanol then added.  The resultant 

solution can be loaded on to a 5 mL AG 50W-X4 resin column, the column rinsed 

with 75 mL 0.1 M HCl, followed by 75 mL 0.3 M HCl, before the 133Ba can be eluted 

with 30 mL 2.0 M HNO3.  This solution can be evaporated to dryness, before being 

picked up with 10 mL 0.1 M HCl for dispatch. 

 

11.4 Conclusion 

 

A number of integral yield measurements performed in the proton bombardment of 

CsF targets with protons provided enough information to constrain a model 

calculation of the excitation function for the 133Cs(p,n)133Ba reaction.  Within the 

experimental uncertainties, the measured points confirm the shape of the theoretical 

thick-target production rate curve. 
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An effective method was developed to separate 133Ba from Cs target material, 

provided the Cs target material is in the chloride form, using AG 50W-X4 cation 

exchange resin, and applying various concentrations of HCl before eluting the final 

product with HNO3.  Almost a 100 % yield was obtained and the product was 

radionuclidically pure. 

 

The use of aluminium as encapsulation material is again considered to be far from 

ideal (see also section 10.4).  It was found that after extended bombardment (i.e. 

several thousand µAh) these capsules in a few cases developed leaks, indicating that 

the CsCl (which is largely in a molten state during bombardment) may be slowly 

reacting with the aluminium.  It is, therefore, recommended that a more inert capsule 

material be used, such as Nb.  
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CHAPTER 12 EPILOGUE 
 

Radiochemical research has been performed at iThemba LABS for the last 18 years, 

in the form of radiolabelling, extraction or ion exchange towards the radionuclide 

production of radiopharmaceuticals.  Ion exchange chromatography has proven to be 

most effective in this type of research, resulting in products for radiolabelling 

purposes or radionuclides for dispatch of radiopharmaceuticals to local clinics and 

hospitals. 

 

Radiochemical research using ion exchange chromatography at iThemba LABS has 

also borne fruit with regard to the production of longer-lived radionuclides for export.  

Indeed, research from this work has resulted in productions (and sales) of 88Y, 82Sr 

and 68Ge in 2007 alone.  Furthermore, radiochemical experiments have been carried 

out in conjunction with physicists for experiments of a more physical nature.  Four 

papers based on this work have been published, namely, for the production of 

ultrapure 67Ga, the cross-sectional measurements towards the production of 28Mg, the 

separation of Th from 227Pa and the exotic decay of 223Ac.  Further submissions for 

publication are planned. 

 

It is hoped that this work will again underline the importance of ion exchange 

chromatography in radiochemistry research and radionuclide production. 
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APPENDIX A1 EXPERIMENTAL CROSS SECTIONS 
AND THICK-TARGET PRODUCTION 
RATES 

 
In the tables below, the cross sections were derived from fitted curves through 

experimental thick-target production rate data, by differentiating these curves.  Once 

the excitation functions were determined in this way, thick-target production rates for 

alternative target materials were derived by folding with appropriate stopping powers 

and integrating, which is the more usual procedure.  See also Appendix A2. 

 
Table A1.1:  Selected 28Mg cross sections from the fitted excitation function and the derived 

thick-target production rates for various target materials, as indicated. 
 

Proton Energy 
(MeV) 

Cross section 
(µb) 

Production Rate (MBq/µAh) 

NaCl LiCl Solid Cl2 

50 0.41 ± 0.07 3 x 10-6 4 x 10-6 5 x 10-6 
55 5.9 ± 0.5 3.48 x 10-3 4.79 x 10-3 5.82 x 10-3 
60 13.2 ± 0.9 0.0153 0.0210 0.0255 
65 21.1 ± 1.5 0.0381 0.0524 0.0636 
70 28.4 ± 2.0 0.0731 0.101 0.122 
75 34.6 ± 2.4 0.120 0.165 0.200 
80 39.6 ± 2.8 0.178 0.245 0.298 
85 43.8 ± 3.1 0.247 0.339 0.412 
90 47.4 ± 3.3 0.325 0.447 0.542 
95 51.1 ± 3.6 0.413 0.568 0.689 
100 55.3 ± 3.9 0.511 0.704 0.853 
105 60.0 ± 4.2 0.622 0.857 1.038 
110 65.4 ± 4.6 0.747 1.029 1.246 
115 71.3 ± 5.0 0.888 1.223 1.481 
120 77.5 ± 5.4 1.046 1.440 1.744 
125 83.7 ± 5.9 1.222 1.683 2.039 
130 89.7 ± 6.3 1.417 1.952 2.363 
135 95.3 ± 6.7 1.631 2.247 2.720 
140 100.4 ± 7.0 1.863 2.567 3.107 
145 105.2 ± 7.4 2.113 2.911 3.524 
150 109.9 ± 7.7 2.381 3.280 3.971 
155 114.5 ± 8.0 2.667 3.674 4.447 
160 119.4 ± 8.4 2.971 4.094 4.955 
165 124.4 ± 8.7 3.295 4.540 5.495 
170 129.7 ± 9.1 3.639 5.015 6.069 
175 134.7 ± 9.4 4.005 5.519 6.678 
180 139.2 ± 9.7 4.391 6.051 7.322 
185 142.8 ± 10.0 4.795 6.610 7.996 
190 145.3 ± 10.2 5.216 7.189 8.697 
195 147.6 ± 10.3 5.651 7.789 9.421 
200 152.3 ± 10.7 6.102 8.412 10.173 
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Table A1.2:  Selected 88Y cross sections from the fitted excitation function and the derived thick-

target production rates for various target materials, as indicated. 
 

Proton Energy 
(MeV) 

Cross section 
(mb) 

Production Rate (MBq/µAh) 

SrCl2 SrF2 SrS Sr metal 

4.5 15.3 0.001 0.000 0.001 0.001 
5.0 45.09 0.005 0.004 0.005 0.008 
5.5 112.72 0.012 0.009 0.013 0.019 
6.0 161.52 0.022 0.018 0.024 0.037 
6.5 220.05 0.039 0.030 0.042 0.064 
7.0 287.09 0.061 0.048 0.066 0.101 
7.5 360.76 0.092 0.072 0.099 0.151 
8.0 438.63 0.131 0.103 0.142 0.215 
8.5 517.92 0.181 0.142 0.195 0.296 
9.0 595.70 0.241 0.189 0.260 0.394 
9.5 669.09 0.312 0.245 0.337 0.510 

10.0 735.38 0.394 0.310 0.426 0.644 
10.5 792.22 0.487 0.383 0.526 0.794 
11.0 837.71 0.590 0.463 0.637 0.961 
11.5 870.46 0.701 0.551 0.756 1.141 
12.0 889.59 0.820 0.644 0.884 1.332 
12.5 894.78 0.944 0.741 1.017 1.532 
13.0 886.18 1.071 0.841 1.154 1.738 
13.5 864.40 1.200 0.943 1.293 1.946 
14.0 830.42 1.328 1.043 1.431 2.152 
14.5 785.51 1.454 1.142 1.566 2.355 
15.0 731.17 1.575 1.237 1.696 2.549 
15.5 669.05 1.690 1.327 1.819 2.733 
16.0 600.85 1.796 1.411 1.933 2.904 
16.5 528.30 1.893 1.487 2.037 3.060 
17.0 453.06 1.979 1.554 2.129 3.198 
17.5 376.71 2.054 1.613 2.209 3.317 
18.0 300.68 2.116 1.662 2.276 3.417 
18.5 226.27 2.165 1.700 2.329 3.496 
19.0 154.59 2.201 1.729 2.368 3.554 
19.5 86.57 2.225 1.747 2.393 3.592 
20.0 67.96 2.236 1.756 2.405 3.609 

 

Stellenbosch University  http://scholar.sun.ac.za



  

 159

 
Table A1.3:  Selected 133Ba cross sections from the fitted excitation function and the derived 

thick-target production rates for various target materials, as indicated. 
 

Proton Energy 
(MeV) 

Cross section 
(mb) 

Production Rate (kBq/µAh) 

CsF Cs metal 

4.5 1.55 ― 0.001 
5.0 9.03 0.011 0.016 
5.5 21.82 0.045 0.064 
6.0 41.99 0.120 0.171 
6.5 71.85 0.263 0.375 
7.0 113.61 0.509 0.724 
7.5 168.88 0.906 1.285 
8.0 237.84 1.506 2.131 
8.5 318.00 2.365 3.339 
9.0 402.53 3.531 4.974 
9.5 479.10 5.019 7.057 

10.0 531.69 6.796 9.537 
10.5 547.39 8.764 12.280 
11.0 524.55 10.786 15.093 
11.5 473.72 12.729 17.790 
12.0 410.29 14.501 20.246 
12.5 346.69 16.062 22.407 
13.0 289.75 17.412 24.273 
13.5 241.81 18.572 25.873 
14.0 202.70 19.568 27.247 
14.5 171.27 20.429 28.431 
15.0 146.13 21.178 29.462 
15.5 125.99 21.837 30.367 
16.0 109.78 22.422 31.169 
16.5 96.65 22.947 31.888 
17.0 85.94 23.421 32.538 
17.5 77.12 23.854 33.130 
18.0 69.81 24.254 33.675 
18.5 63.71 24.624 34.181 
19.0 58.56 24.970 34.653 
19.5 54.20 25.296 35.097 
20.0 50.48 25.604 35.516 
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APPENDIX A2   CROSS SECTIONS AND PRODUCTION 
RATES 
 

A2.1 The Thin-Target Approximation 
 

It is appropriate to consider a thick solid target as consisting of a series of thin targets 

or, alternatively, to think of a thick target in the same way one would view a typical 

stacked-foil experiment, by which most of the excitation functions for the production 

of radionuclides are determined.  Next, it is convenient to consider an arbitrary “slice” 

of the target (or foil in the foil stack) in isolation and to formulate three important 

equations in the so-called thin-target approximation.  It will be shown below that by 

solving these three equations simultaneously, the well-known activation equation can 

be derived.  Two more approximations, however, have to be introduced:  Firstly, the 

beam current (or intensity) will be considered to be constant during the entire 

bombardment.  Secondly, that the beam loses energy according to the continuous 

slowing-down approximation as it traverses the target.  According to this latter 

approximation, the average beam energy is a unique function of penetration depth, 

which can be represented by a continuous equation, thus neglecting the fact that beam 

particles lose their energy in discrete collisions.  The continuous slowing-down 

approximation is extremely successful because, by and large, beam particles lose very 

small increments of energy in an extremely large number of collisions, mainly by 

Coulomb interactions. 

 

The beam penetration through an arbitrary slice (or foil) is shown schematically in 

Fig. A2.1.   
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Fig. A2.1:  Beam penetration through a thin target. 

 
The average energy of beam particles incident on the thin target is E and the average 

energy after traversing it is E – ΔE.  The thin target approximation is fulfilled if ΔE 

<< E, i.e. if the energy loss is small compared to the energy.  This can be achieved by 

making the slice thickness, Δx, sufficiently small compared to the total thickness of 

the target or stack.  The incremental thickness, Δx, and the incremental energy loss, 

ΔE, is related by the stopping power S:  ΔE = SΔx.  This will be further discussed 

later. 

 

Let Ns be the number of target nuclei per unit area and Is the number of beam particles 

per second hitting the target.  Let YPR be the number of residual nuclei of the desired 

type produced per second (the production rate).  It is clear that YPR will be directly 

proportional to both Ns and Is.  To first order, no other quantities will affect the 

production rate in the thin target approximation, therefore 

 ,PR s sY N Iσ=  (A2.1) 

 
where σ is a proportionality constant.  As often found in the derivation of physical 

expressions, a proportionality constant may have a definite physical meaning.  In this 

case, σ can be associated with the probability of formation of the radionuclide in 

question and it is called the cross section, with dimensions of area.  Note that the 

production rate (YPR) and the cross section (σ) are both, in general, functions of 

energy.  It is appropriate to identify the cross section and production rate of the thin 
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target depicted in Fig. A2.1 with a unique energy midway between the incident and 

exit energies, thus σ(E – ΔE/2) and YPR(E – ΔE/2).   

 

The production rate of equation (A2.1) is often called the thin-target production rate.  

A plot of either YPR versus E or σ versus E is called an excitation function.   

 

A2.2 Activity at EOB 
 

If the thin target of Fig. A2.1 is a foil, its activity can be measured, most probably by 

means of standard off-line γ-ray spectrometry.  The activity of a radionuclide, related 

back to the end of bombardment (EOB), is given by 

 

 ,
e m

p
EOB T

b e

A
Y λτε ε −=  (A2.2) 

 
where Ap is the peak area of an appropriate γ-line of the radionuclide in question, τ is 

the live counting time set on the multi-channel analyzer system, εb is the branching 

ratio of the γ-line, εe is the detector efficiency for that photon energy, λ is the decay 

constant of the radionuclide (related to the half-life by λ = ln(2)/T1/2), and Tm is the 

time period from EOB to the mean time within the counting interval of the 

measurement performed.   

 

A2.3 Relation Between Yield and Production Rate 
 

The yield at EOB and the production rate are related by the following equation: 

 

 [ ]1 e 1 ,
bT

EOB PR
b

Y Y P
T

λ

λ

− −
= − 

 
 (A2.3) 

 

where Tb is the duration of the bombardment and P is the probability for non-elastic 

nuclear interactions1 to occur during the passage of the beam through the preceding 

target material, before it reaches the thin target in question.  Note that the expression 

in curly brackets takes care of the decay of the radionuclide during bombardment, 

while the expression in square brackets is the survival probability of a beam particle 
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at that particular depth in the target or foil stack (also called the beam attenuation 

factor).   

 

It is worthwhile to note that P may be small and the [1 – P] expression neglected in an 

experiment with a low beam energy, e.g. with a primary proton beam of 20 MeV.  

With a 66 MeV proton beam, however, P can have values up to 5 % deep inside the 

stack or target, thus no longer negligible.  At 200 MeV, P can reach values of up to 30 

%, depending on the target material and depth of penetration.  Thus, at higher 

energies, it becomes crucial to take beam attenuation effects into account. 

 

A2.4 The Activation Equation 
  

From equations (A2.1) to (A2.3), an expression for the cross section in terms of 

experimentally determined and other available properties can be derived by 

substitution:  

 

 ,
1 ee [1 ]

b
m

p
T

T
b e s s

b

A

N I P
T

λ
λ

σ
τε ε

λ

−
−

=
 −

− 
 

 (A2.4) 

 
where the quantity P can be calculated according to a prescription by Janni1. 
 
This is one form of the so-called activation equation and the one used in this work.  

All cross sections in this work have been expressed in units of millibarn (mb);  1 mb ≡ 

10-27 cm2. 

 

A2.5 The Thick-Target Production Rate Curve 
 

In this work, thick-target production rate curves have been presented, as they are very 

useful for determining optimum target thicknesses and yield predictions.  As already 

mentioned, the quantities σ, YPR, S and P are functions of the bombarding particle 

energy.  The average energy at a particular penetration depth can be calculated using 

standard stopping power expressions.  The energy versus penetration depth have been 

calculated using the code ELOSS, which is an implementation of the stopping power 

formulae of Anderson and Ziegler2.  The thick-target production rate is given by 
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 0( ) ( ) ,       for all      ,
Threshold

E
T

PR PR Threshold
E

Y E Y E dE E E E
′

′ ′= ≤ ≤∫  (A2.5)  

 

where E´ is any energy value between the threshold energy for the production of the 

particular radionuclide (EThreshold) and the primary incident beam energy (E0):  The 

curve defined by equation (A2.5) is a monotonically increasing function with energy 

and is characteristic of a particular production route, independent of the actual 

bombardment conditions and radioactive decay.  For any given energy window (Ein, 

Eout) the thick-target production rate is given by 

 

 ( , ) ( ) ( ).T T T
PR in out PR in PR outY E E Y E Y E= −  (A2.6) 

 
If no Eout is specified, EThreshold is automatically assumed.   

 

A2.6 Actual Thick-Target Yield at EOB 
 

Expressions (A2.5) and (A2.6) do not give the actual yield of a thick target because 

radioactive decay and beam attenuation losses have not yet been taken into account.  

A similar form to equation (A2.3) is usually appropriate, albeit an approximation: 

 

 [ ]1 e 1 ,
bT

T T
EOB PR

b

Y Y P
T

λ

λ

− −
= − 

 
 (A2.7) 

 

where [1 ]P−  is the mean beam attenuation factor.  For a very large energy window, 

one can divide it first into a number of smaller intervals and apply equation (A2.7) 

successively, finally summing all the individual contributions, in order to increase the 

accuracy.   

 

All the above expressions for production rates and yields give values in terms of 

number of nuclei per second.  Throughout this work, yields and production rates were 

converted to units of kBq/µAh, MBq/µAh or GBq/µAh, simply because these are 

more convenient.  The accumulated charge (i.e. the integrated beam current) is given 

by the instrumentation used in units of µAh.  The units Ci (Curie) or mCi (milli-
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Curie) are still popular today.  In order to convert to those units, note that 37 MBq ≡ 1 

mCi. 

 

A2.7 Other considerations 
 

When the half-life of the radionuclide to be investigated is long compared to the 

bombardment time, the assumption of the constancy of the beam intensity is 

appropriate even if the beam was not constant at all.  This is not the case if the half-

life is short or comparable to the bombardment time.  In those cases, an alternative 

formalism, summarized by Buthelezi3, should be used instead.  The above expressions 

are also not appropriate in cases where contributions from relatively long-lived 

precursor decay are significant, in which case the growth-and-decay curves should be 

calculated, as summarized by Vermeulen4. 
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