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SUMMARY 
 
The global movement in agriculture is towards more environmentally friendly, sustainable production 

practices, since the role of soil microbial functions in ensuring crop production and soil fertility has become 

more evident in agricultural systems. Furthermore, with the impeding phase-out of methyl bromide, apple 

replant disease (ARD) is becoming an increasingly important problem and biological management practises 

are needed. Since microbial activity is generally carbon-limited in agricultural soil, it is widely accepted 

that management practices providing a range of organic compounds on a regular basis will tend to maintain 

an active and diverse microbial population. It was hypothesised that the application of various biological 

amendments can affect soil microbial numbers and function, thereby having a positive effect on fruit tree 

growth and yield. The effect of continued applications of organic material, various microbial inoculants and 

biostimulants on tree performance were evaluated in conventional management systems. Field trials were 

established in a conventional pear orchard, potential apple replant disease sites, as well as an optimally 

managed, high density apple orchard under controlled fertigation. The use of compost, compost extracts, a 

Bacillus inoculant and humates were investigated intensively. Furthermore, to improve our understanding 

of soil biological systems a combination of simple, practical methods were used to evaluate the effect of 

biological amendments on soil microbial properties and effects were related to tree performance. 

 

Regular application of compost extract in combination with compost showed the most significant effect in 

improving tree performance in commercial pome fruit orchards under various conditions. In the pear 

orchard, cumulative yield over the first two seasons was improved by more than 50% compared to controls, 

while in the fertigated orchard yield was improved by 22%. Biological amendments also showed improved 

growth in orchards suffering from stunted growth symptoms typical of ARD. However, in severe ARD 

cases methyl bromide fumigation showed the most consistent effects. Other biological amendments which 

showed positive effects on yield were application of Bacillus inoculants (Biostart®) in combination with a 

labile C source and a low dosage humate product, as well as a combination of compost and humates. It was 

clear that a combination of labile organic matter and a diverse group of microorganisms showed most 

promise. Although for some specific treatments increased microbial numbers and activity may have 

resulted in improved tree performance, in general, changes in culture-based plate counts, soil enzyme 

activity and carbon utilisation profiles could not be used as an indicator of yield. It was suggested that 

improved synchronisation of nutrient release and plant uptake, as well as microbial phytohormone 

production, may play an important role in improving tree performance with application of biological 

amendments. More research is needed on the exact mechanisms through which compost extracts improve 

yield and studies on root growth proliferation, as well as effects in the rhizosphere are recommended. 
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UITWERKING VAN BIOLOGIESE TOEVOEGINGS OP GROND MIKROBIOLOGIESE 

ASPEKTE EN PRESTASIE VAN KERNVRUGBOME 

 

 

OPSOMMING 

 

Binne lanbouverband is daar tans wêreldwyd die neiging om die uitwerking van produksie-praktykte op die 

omgewing in ag te neem en sodoende meer verantwoordelik op te tree. Omdat die belangrike rol wat 

grondmikro-organisme funksionering in volhoubare verbouingspraktyke speel nou deeglik besef word, 

word meer volhoubare bestuurspraktyke bepleit. Hiermee saam, noodsaak aspekte soos die uitfasering van 

metielbromied vir die beheer van appelhervestigingsiekte, dat biologiese bestuurspraktyke meer aandag 

geniet. Daar word geredelik aanvaar dat gereelde toediening en aanvulling van organiese materiaal ‘n 

aktiewe, diverse mikrobe populasie in die grond tot gevolg sal hê. Die hipotese is gestel dat die toediening 

van ‘n verskeidenheid biologiese produkte grondmikrobe getalle en werking gunstig kan beïnvloed. Dit kan 

moontlik weer aanleiding gee tot positiewe reaskies wat die groei en drag van vrugtebome betref. In hierdie 

studie is die uitwerking van voortgesette toedienings van organiese materiaal, mikrobiese inokulante, asook 

biostimulante, op die prestasievermoë van vrugtebome ondersoek. Veldproewe is uitgelê in ‘n 

konvensionele peerboord, verskeie boorde met moontlike appelhervestigingsiekte probleme, asook ‘n hoë-

digtheidsaanplanting appelboord onder optimale bestuur. ‘n Deeglike ondersoek is gedoen met betrekking 

tot die gebruik van kompos, komposekstrak, Bacillus-inokulante en humate. Eenvoudige, praktiese metodes 

is aangewend om vas te stel hoe biologiese toevoegings grondmikrobe eienskappe beïnvloed en of dit 

verband hou met veranderinge in boomprestasie. 

 

Die studie het aangetoon dat die gereelde toediening van komposekstrak saammet kompos, betekenisvolle 

verbetering in boomprestasie van kernvrugboorde teweeg bring onder verskeie omstandighede. Die 

kumulatiewe opbrengs van ‘n peerboord is oor twee seisoene met meer as 50% verhoog teenoor die 

kontrole. In ‘n optimaal bestuurde appelboord onder sproeibemesting, is opbrengs met 22% verhoog in 

vergelyking met die kontrole. Biologiese toevoegings het ook groei verbeter in boorde waar 

appelhervestigingsiekte bome se groei vertraag het. In die geval van ernstige appelhervestigingsimptome 

het metielbromied egter steeds die mees konstante positiewe uitwerking gehad. Ander biologiese 

toevoegings wat ‘n gunstige uitwerking op opbrengs getoon het, was ‘n kombinasie van Bacillus 

inokulante, ‘n lae dosis humaat en ‘n aktiewe koolstofbron, asook kompos in kombinasie met humate. Dit is 

duidelik dat ‘n kombinasie van ‘n maklik afbreekbare koolstofbron (soos kompos) tesame met ‘n diverse 

groep mikroorganismes mees belowend is vir gebruik in biologiese verbouingssisteme. Resultate toon dat 

veranderings in aantal organismes gemeet deur plaattellings, die aktiwiteit van grondensieme, en 

verbruikspotensiaal van verskillende koolstofbronne, nie as ‘n aanduiding van boomprestasie gebruik kan 

word nie. Daar is voorgestel dat verbeterde sinkronisasie van voedingselementvrystelling en plantopname, 

sowel as produksie van plantgroeihormone deur mikrobe, moontlik ‘n rol speel by boomreaksies op 
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biologiese toevoegings. Meer navorsing wat verband hou met die meganisme waardeur komposekstrak 

opbrengs verbeter, is nodig. Verder word studies op fynwortelontwikkeling sowel as aspekte van die 

wortelrisosfeer aanbeveel. 
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CHAPTER 1

LITERATURE REVIEW

1.1 INTRODUCTION

The global movement in agriculture is towards more environmentally friendly, sustainable production

practices. Motivations for shifting from chemically intensive management strategies to more biologically

based practices, include concern for protecting animal and human health from potential hazards of

pesticides, protecting non-renewable resources, as well as the need to lower escalating production costs

(Fraser et al., 1988; Matson et al., 1997; Tillman, 1999).

In natural ecosystems, cycling of mineral nutrients and carbon as well as development of soil structure are

regulated by the interactions of a highly diverse and complex web of soil flora and fauna that is sustained

by the influx of organic matter into the soil (Alexander, 1977; Larson and Pierce, 1991; Tisdall, 1996;

Davet, 2004). Conventional agriculture attempts to maximize yield by controlling biological functions

normally executed by the soil microbial community. Initially these practices increased production levels,

but over time they have affected the functioning of agroecosystems. Impacts are now being realized in

increased compaction and erosion, reduced levels or shifts in species composition of soil flora and fauna,

increased crop susceptibility to biotic and abiotic stress, as well as a reduction in soil organic matter

(SOM) (Grayston et al., 1996; Loveland and Webb, 2003; Phelan, 2004).

The negative impact of conventional management practices on soil productivity has renewed interest in the

integration of biological soil amendments into standard management systems in order to improve soil

productivity by affecting soil microbial activity. The beneficial effect of organic matter on soil physical

and chemical properties is well established (Hudson, 1994; Stevenson, 1994; Carter and Stewart, 1996;

Swift, 2001). The connection between SOM application and increased biological functioning in

agroecosystems becomes clear when comparing chemically intensive and organic or biologically integrated

farming practices (Bolton et al., 1985; Doran et al., 1987; Reganold et al., 1993; Wander et al., 1994;

Drinkwater et al., 1995; Katayama et al., 1998; Mäder et al., 2002; Flieβbach et al., 2007). Application of

soil inoculants has shown benefits especially in improving plant health and improved uptake of nutrients

(Glick, 1995; Zahir et al., 2004). The addition of biostimulants, such as seaweed extracts and humic

substances (HS) is also widely advocated (Russo and Berlyn, 1990; Chen and Aviad, 1990). Furthermore,

the use of microbial inoculant mixtures containing a diversity of unspecified soil microorganisms such as

compost teas and effective microorganisms (EM) are being promoted (Higa, 1994; Ingham, 1999a) with

little scientific literature to back up the claims made.

The aim of this review was to study the main biological amendments used to improve soil microbial

activity in agriculture and to evaluate their effect on plant performance. However, it is essential to first
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understand the functioning of the soil-plant system in order to know how to manage agricultural systems

productively and in a sustainable manner. There has been a dramatic increase in the number of publications

studying the effect of various biological management practices on soil microbial activity in the past few

years. From these studies it is clear that our knowledge of soil ecosystem functioning is limited in part by

the complexity of measuring soil microorganisms. Furthermore, the direct relationship between plant

performance and microbial activity is not well studied. In order to apply biological amendments

successfully in orchard management systems, a better understanding is needed of mechanisms involved in

the relationship between soil biological activity and plant performance. Therefore, an overview of various

mechanisms involved in improving plant performance will be provided. Lastly, from current knowledge,

the potential application of biological amendments in deciduous fruit production will be evaluated in terms

of improving plant performance, reducing chemical inputs, and addressing specific industry problems.

1.2 THE SOIL-PLANT SYSTEM

The soil-plant system is the direct environment in which roots grow, absorb water and nutrients and release

some inorganic ions and organic material into the soil as exudates, which in turn serve as nutrients and

energy for the growth and development of microorganisms. Soil is an essential natural resource that

provides important ecological functions in promoting plant growth and production and therefore represents

the basis for food production (Larson and Pierce, 1991; Karlen et al., 1997; Loveland and Webb, 2003;

Magdoff and Weil, 2004, Komatsuzaki and Ohta, 2007). It is essential to understand the functioning of the

soil-plant system in order to manage agricultural systems productively. The basic principles of soil

functioning are well established. Soil is composed of both a mineral and an organic fraction, with the

remaining soil volume composed of pore space filled with air or water. The porosity of soils is affected by

the state of aggregation. A well aggregated soil structure ensures appropriate soil tilth, soil-plant water

relations, water infiltration rates, soil aeration, and root penetrability, all contributing to soil productivity

(Miller and Jastrow, 2000) which is linked to plant productivity (Abbott and Murphy, 2003). Through root

exudations plants actively participate in soil processes and continually adjust their interactions with the soil

environment, particularly within the rhizosphere (Tate, 2000). Research during the past 50 years has placed

much emphasis on the importance of mineral nutrients for crop productivity, with notably less research on

the importance of the soil organic fraction and biological processes performed by soil organisms.

1.2.1 The soil organic fraction

Soil organic matter consists of a variety of components in varying proportions and intermediate stages.

These include fresh organic residues, plant roots and living soil biota, as well as an active organic fraction

consisting of decomposing material with a relatively short turnover time. The input of carbon through plant

roots also affects the microbial community and plant performance (Rovira, 1959). Furthermore, there is

also a pool of carbon that is physically protected or in chemical forms with a more intermediate turnover

time, as well as more stabilised organic matter that is difficult to decompose (Tisdall and Oades, 1982;

Parton et al., 1987). This stabilised organic matter is generally termed humus (Stevenson, 1994).
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1.2.1.1 Soil microflora and fauna

Although the living portion of the soil body makes up the smallest part of the total soil volume, it is central

to crop production and soil fertility (Davet, 2004; Gobat et al., 2004). Alexander (1977) described the

major groups of soil microorganisms and some essential information in understanding their functioning in

soil are summarised in this section. The most important soil microflora consist of bacteria, actinomycetes

and fungi.

Although bacteria are by far the most abundant microorganisms in soil, fungi make up a more significant

part of the biomass due to the large diameter and extensive network of their filaments. Fungi, as well as

actinomycetes, show relative uniformity in terms of metabolism, and are aerobic heterotrophs, requiring

preformed organic nutrients to serve as a source of energy and carbon (Davet, 2004). Although most

bacteria are heterotrophs, some are autotrophs and capable of using CO2 to satisfy their carbon need. These

organisms obtain their energy from either sunlight (photo-autotrophs) or by oxidation of inorganic

compounds (chemo-autotrophs). The nitrifying bacteria, as well as bacteria which fix nitrogen (N) from the

atmosphere are chemo-autotrophs and play an essential role in the N cycle.

Fungi are adapted to a wide pH range, therefore microbial communities in areas of low pH are dominated

by fungi due to low numbers of bacteria and actinomycetes. Liming can greatly increase the abundance of

bacteria and actinomycetes. Fungi and actinomycetes are more tolerant of drier conditions. In contrast,

bacterial respiration declines rapidly under these conditions (Griffin, 1981). However, when moisture

levels are excessive, fungi are among the first to suffer and are therefore mostly concentrated in the few

inches of soil below the surface. In anaerobic environments, bacteria account for almost all biological and

chemical changes (Sommers et al., 1981). Actinomycetes form the dominant fraction of the microflora in

relatively dry, humic soils with a high pH (Goodfellow and Williams, 1983). Most soil microflora are

mesophilic, with optimum growth temperatures between 25 ºC and 35 ºC. However, the microbial biomass

is only directly sensitive to large shifts in temperature (Wardle, 1992). There are also numerous bacteria

(such as the Bacillus spp.) that grow at temperatures of 45 ºC to 65 ºC (thermophiles). These thermophiles,

as well as actinomycetes, can regulate transformations at high temperatures, and are particularly abundant

in compost heaps, and manures (Lechevalier, 1988; Phae et al., 1990; Hatsu et al., 2002).

The soil fauna are a diverse group divided into various categories according to size and of which the

protozoa, nematodes and earthworms have been extensively studied for their role in soil fertility

(Alexander, 1977; Yeates, 1979; Forge et al., 2003; Gobat et al., 2004). Release of nutrients from the

microbial biomass, is partly regulated through grazing by the soil fauna, playing an important role in

nutrient cycling. The most important soil microfauna are the protozoa, the simplest form of animal life.

These organisms feed heterotrophically, obtaining nutrients from soluble organic and inorganic substances,

or by phagotrophic nutrition characterized by direct feeding upon microbial cells or other particulate matter

(Alexander, 1977). As predators, they prey upon algae, bacteria and microfungi and food source
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preferences are very specific (Alexander, 1977). The metabolites produced by protozoa stimulate bacterial

populations that provide their sustenance (Clarholm, 1985) and together with selective feeding play a vital

role in controlling bacteria populations and biomass (Seastedt, 1984). Protozoa themselves are also an

important food source for larger creatures and the basis of many food chains. Adequate soil moisture is

essential for their physiological activity and lateral and vertical movement.

The soil mesofauna include the nematodes, microarthropods, mites, and springtails. Nematodes are the

best-known because of the detrimental effect of parasites that feed on plant roots. However, most

nematodes are free living microbial feeders, omnivores or carnivores and generally beneficial to plants

(Gobat et al., 2004). Bacterial- and fungal-feeding nematodes contribute significantly to nitrogen

mineralization (Ekschmitt et al., 1999). Nematodes can also through their feeding preference (fungi or

bacteria), significantly alter the fungal-bacterial balance, and cause changes in species composition (Ferris

et al., 2001).

The macrofauna which include earthworms, insects, arthropods and enchytraeids play an important role in

building soil structure. They require well-aerated environments, adequate moisture and warm temperatures

(Gobat et al., 2004).

1.2.1.2 Decomposition and nutrient cycling

The active organic matter and the living soil biota are central to nutrient cycling. Soil organisms perform a

key role in plant nutrition as both a source and sink for mineral nutrients and can conduct a multitude of

biochemical transformations (Jenkinson and Ladd, 1981).

In the decomposition process, carbon is recycled as carbon dioxide, nitrogen is converted to ammonium,

and other associated elements are released in plant available form (Jenkinson and Ladd, 1981; McGill and

Cole, 1981). Bacteria and fungi, possessing a greater suite of enzymes for chemical breakdown of organic

material, are the major decomposers and are also considered as the labile pool of carbon (C), nitrogen (N),

phosphate (P), and sulphur (S), called the soil microbial biomass. The soil fauna is crucial for initial

decomposition steps, such as mixing of residues into the soil, and increasing surface area in preparation of

further microbial attack (Seastedt, 1984; Paul and Clark, 1996). During the initial period of decomposition,

stimulation of fungal action seems to be greatest. Bacteria respond promptly to organic amendment and

remain numerous as long as nutrients are available, while actinomycetes become more pronounced only at

a later stage of decay, when there are more readily available nutrients and less competition. Fungi have

evolved a remarkable metabolic versatility and have a critical role in breakdown of the more complex

carbon sources. They can utilise lignin that is particularly resistant to bacterial degradation. Actinomycetes,

on the other hand, play an important role in decomposition of organic materials such as cellulose and

chitin.
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The proportion of mineral elements released by microorganisms and immediately available for plants

depends on the nature of the substrate. Microbes generally out-compete plants for nutrients in the presence

of sufficient carbon sources (Jackson et al., 1989). If the contents of nitrogen, sulphur and phosphorus are

low in the residues compared to their carbon composition, these elements will be immobilised in the

microbial biomass. The addition of mineral salts would be necessary in this case to preclude competition

between plants and the microorganisms (Hogue and Neilsen, 1987; Lipecki and Berbec, 1997). However,

immobilisation is only temporary and a portion of these nutrients is continuously mineralised through

death of microbes. Grazing by soil fauna on microbial communities and predation on micro- and

mesofauna are responsible for a significant portion of the mineralisation of nitrogen in soil (Clarholm,

1985; Freckman, 1988; Ekschmitt et al., 1999). Furthermore, the microbial grazing mesofauna affect

growth and metabolic activities of the soil microbes and alter community composition, thus regulating

decomposition rates of organic matter (Seastedt, 1984). With a large microbial population turning over

rapidly, the cyclic flux between immobile and mineralised forms can provide a gradual, continuous supply

of nutrients (Mckenzie et al., 2001; Davet, 2004; Ball, 2006). Therefore the complexity in trophic groups

of the soil food web plays an important role in plant performance (Setälä, 1995; Laakso and Setälä, 1999).

1.2.1.3 Soil organic matter functions

During decomposition, new compounds are formed from decomposition products which do not occur in

plants and organisms (Foth and Turk, 1972). These include the humic substances (HS), which are large,

complex compounds and comprise 65-70% of humus (Hernando, 1975). Soil organic matter contributes to

various soil physical, chemical and biological properties.

Chelating and buffering are considered by many to be the most important property of soils, since without

this, agriculture would require much more intensive management (Loveland and Webb, 2003). SOM

contributes in a large part to this buffering ability, improving properties such as the cation exchange

capacity (CEC) (Thompson et al., 1989) and soil pH (Stevenson, 1986; Pieri, 1992). Furthermore, these

chelating substances react with trace elements such as iron (Fe), zinc (Zn), copper (Cu) and manganese

(Mn), protecting them from precipitating and becoming insoluble and unavailable to plants (Hodges, 1991;

Stevenson, 1994). Indirect effects of SOM on plant performance through improved soil physical conditions

include increased porosity, soil aggregate formation, reduced bulk density, as well as increased water

holding capacity and reduced erosion (Hudson 1994; Carter and Stewart, 1996; Swift 2001; Loveland and

Webb, 2003). The more active SOM provides an important reservoir of nutrients for plants, with the

mineralisation of SOM being the primary source of available N, P and S in natural systems (Brady and

Weil, 1999). Furthermore, the availability of all major nutrients is influenced by the presence of SOM as it

supplies an available nutrient pool via mineralization and desorption and binds nutrients via immobilisation

and adsorption reactions (Carter and Stewart, 1996; Reeves, 1997).
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The most important single element in the biological realm and the substance that serves as the cornerstone

of cell structure is carbon (Alexander, 1977). Since SOM contains the organic carbon and nitrogen needed

for microbial development, it is the dominant food reservoir for the microbial biomass and greatly

influences the biological processes critical for soil functioning.

1.2.2 Importance of biological processes in agriculture

Soil organisms perform a key role in soil fertility and plant nutrition (Jenkinson and Ladd, 1981; Jeffries et

al., 2003). In addition to decomposition, they influence the availability of nutrients via a range of activities

such as immobilisation of nutrients, mineralisation, improved nutrient availability and uptake, nutrient

retention and nutrient cycling. Various bacteria and fungi also have the ability to solubilise nutrients from

insoluble forms as well as enhance nutrient uptake (Glick, 1995; Rodriguez and Fraga, 1999; Zahir et al.,

2004). Specific groups of bacteria can also fix N from the atmosphere (Kennedy and Islam, 2001). In

addition, the cell material and excretions of soil microorganisms act as cementing agents, affecting soil

physical structure through the formation and stabilitation of soil aggregates (Gupta and Germida, 1988;

Tisdall 1994; Beare, 1997; Wright and Upadhyaya, 1998; Miller and Jastrow, 2000). Soil microorganisms

are also involved in the detoxification of organic and inorganic substances that would impede plant growth

(Lynch, 1983; Bollag et al., 1992; Lambais and Cardoso, 1993; Dalal, 1998; Barea et al., 2005).

Furthermore, microbial activity in the rhizosphere plays an important role in pest and disease suppression

through biological control (Baker and Cook, 1974; Bowen and Rovira, 1999; Whipps, 2001). Other

functions that soil organisms perform in the agroecosystem are the production of plant growth promoting

compounds which directly effect plant physiology, especially root growth (Glick, 1995; Zahir et al., 2004).

Growth stimulating substances present in SOM can also be released by microbes during decomposition

(Frankenberger and Arshad, 1995).

In order to perform these key soil functions, the presence of a large and diverse microbial community, with

the ability to break down a wide range of chemical bonds is essential (Murphy et al., 2003; Kennedy et al.,

2004). Diverse systems have higher agricultural productivity, resilience to stress and provide better

protection against pests and diseases (Giller et al., 1997). However, considerable functional redundancy

exist at species level (Andren et al., 1995), meaning that individual taxa may have multiple functions,

while several taxa appear to have similar functions. There is still a continuing debate whether or not

species diversity and ecosystem function are causally related (Huston, 1997; Brussaard et al., 2004).

However, this does not mean that there is no need to preserve the biological richness of the soil (Phelan,

2004), since taxa performing the same function are often isolated spatially, temporally or by microhabitat

preference (Beare et al., 1995). Therefore, although redundancy of single functions is common, distinct

physiological and environmental requirements drive species of the same functional group to play widely

different roles in soil ecosystem processes.
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1.2.3 Plant –microbial interaction

The rhizosphere is that portion of the soil under the direct influence of the roots of higher plants and a site

of maximized biological activity (Tate, 2000). A multitude of compounds are released into the rhizosphere

of soil-grown plants, most of which are organic compounds and normal plant constituents derived from

photosynthesis and other plant processes. Whipps (1990), estimated that as much as 40% of the plant’s

primary carbon production may be lost through rhizodeposition. The relative and absolute amounts of root

exudates produced vary with plant species, cultivar, age, stage of development, presence of other

microorganisms and environmental conditions including soil properties, particularly levels of physical,

chemical and biological stress (Rovira, 1959; Hale et al., 1978; Hale and Moore, 1979; Bowen and Rovira,

1999).

Root exudates may have a direct effect of immediate benefit to the plant, e.g., an increase in nutrient

solubility (Uren and Reisenauer, 1988; Grayston et al., 1996) or have an indirect effect on the plant

through controlling the activity of soil organisms (Barber and Lynch, 1977; Xu and Juma, 1993; Werner,

1998; Walker et al., 2003). Microbial activity in the rhizosphere furthermore affects rooting patterns, as

well as mineralization and immobilization processes, thereby modifying in turn the quality and quantity of

root exudates (Bowen and Rovira, 1999). Secondary metabolites in root exudates have the potential to

perform numerous important functions as chemical signals in the rhizosphere, mediating an array of root-

root and root-microbe interactions (Bais et al., 2004; Perry et al., 2007).

It is therefore clear that root exudates determine to a great extent which organisms will reside in the

rhizoplane (Cook and Baker, 1983). The interaction between microorganisms and plant roots, as well as

soil conditions surrounding the rhizosphere, therefore plays an important role in plant productivity and soil

functioning (Sturz and Christie, 2003). Farrar et al. (2003) stated that root exudation is a combination of

complex multidirectional fluxes operating simultaneously and that a better understanding is needed of its

overall importance in plant nutrition, root growth and pathogen response. This will aid in establishing the

rhizosphere that is needed for optimum plant performance and development of management practices that

can induce this state.

1.2.4 Soil quality and soil health

With the current focus on sustainability, terms such as soil quality and soil health are used to describe the

state of the soil as a means of improving recognition of the importance of soil as a resource. Doran and

Parkin, (1994) defined soil quality as “the continued capacity of soil to function as a vital living system,

within ecosystem and land use boundaries, sustain biological productivity, promote the quality of air and

water environments, and maintain plant, animal and human health”. Van Bruggen and Semenov (2000)

defined a healthy soil as a stable system with resilience to stress, high biological diversity, and high levels

of internal nutrient cycling. The soil quality concept, furthermore, addresses the associations among soil
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management practices, observable soil characteristics, soil processes, and the performance of soil

ecosystem functions (Lewandowski et al., 1999).

Although soil quality is influenced by many properties inherent to a particular soil and environment, soil

quality also reflect the condition of soil resulting from alteration in soil properties by human use and

management (Larson and Pierce, 1991; Carter et al., 1997). Soil health is more often used to describe

aspects of soil quality that reflect the condition of the soil as expressed by management-sensitive properties

(Larson and Pierce, 1991; Doran and Parkin, 1994; Islam and Weil, 2000) and is mainly associated with

biological diversity and stability. A positive relationship has generally been found between the microbial

biomass and soil organic carbon levels (Fraser et al., 1988; Houot and Chaussod, 1995; Burgos et al., 2002;

Magdoff and Weil, 2004). Soil organic carbon has therefore become an important indicator of soil quality

and agricultural sustainability because of its impact on physical, chemical and biological soil properties

(Reeves, 1997).

1.3. INFLUENCE OF SOIL MANAGEMENT PRACTICES ON SOIL BIOLOGICAL

PROPERTIES

Management practices that cause a decline in soil functioning reduce soil quality, while proper

management systems can be expected to restore ecosystem function (Reeves, 1997). It is clear from the

above section that soil microorganisms play an essential role in soil quality and plant productivity through

various key processes. Therefore, it is important to know the effect of agricultural management practices

on the soil microbial community for a broader understanding of soil health and to establish sustainable

management practices (Hill et al., 2000). However, our knowledge of soil ecosystem function is limited in

part by the complexity of measuring soil microorganisms.

1.3.1 Measuring soil microbial communities

The main approaches that are used to measure soil microbial communities include microscopy,

biochemical methods, physiological assays, and molecular analyses such as DNA-fingerprinting (Torsvik

et al., 1996). Traditional techniques commonly rely on phenotypic characteristics and are restricted to

organisms that can be isolated or cultured. Since <1%, of soil microorganisms can be cultured, these

techniques can underestimate population size and diversity (Amann et al., 1995). These techniques may

however be useful in discerning relative differences between soil microbial communities, without

determining the abundance or identity of specific microorganisms in the population (Mazzola, 2004).

Process-level studies can also be used, where microbes themselves are not isolated or identified but their

activities measured (Dick, 1994; Pinkart et al., 2001; Kirk et al., 2004). However, the most promising

advances are made in the use of molecular methods (Thies, 2006), with soil-extracted nucleic acids, which

do not rely on the capacity to culture organisms.
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Soil microflora are most frequently assessed in terms of their abundance, activity or function, and diversity

or community composition. The total microbial community or specific members of the community can be

assessed. Alternatively, indicators that reflect the capacity of the soil to function can also be measured

(Doran and Parkin, 1994; Idowu et al., 2008).

1.3.1.1 Abundance

Traditional methods of measuring abundance include culturing organisms on artificial media, direct

microscopy and extraction of specific cell components or molecules through measuring their concentration

(Pankhurst et al., 1997; Thies, 2006). The most common biochemical methods used to assess abundance

are fumigation-extraction (Vance et al., 1987) to measure microbial biomass carbon and/or nitrogen.

Analysis based on phospholipid fatty acids (PLFA) or fatty acid methyl esters (FAME) are useful due to

their presence in all living cells. Specific groups of organisms can be distinguished through their unique

fatty acids but cannot be characterized to species level (Zelles, 1999). Other methods include detection of

specific molecules (e.g ATP, glomalin, ergosterol.) associated with the soil (Jenkinson and Ladd, 1981;

Newell et al., 1988).

1.3.1.2 Microbial activity and function

Generally, the rate of a specific biochemical process can be measured, for example the ability to transform

one compound to another (carbon or nitrogen mineralisation) (Pankhurst et al., 1997), or the ability to

metabolise specific compounds. Studies of microbial activity have been commonly conducted at a broad-

scale level, through measuring microbial respiration (Hill et al., 2000). Enzymatic activities have been used

as an indicator of the overall microbial activity in soils while also producing useful functional information

on the capacity of a soil to carry out specific activities important in maintaining soil fertility (Dick, 1994;

Dick, 1997; Garcia et al., 1997; Pascual et al., 2001; Ros et al., 2003; Caldwell, 2005; Bastida et al., 2008).

Furthermore, molecular techniques, such as real-time or quantitative polymerase chain reaction (PCR) can

be used to quantify target genes that reflect the capacity of microorganisms to perform specific functions,

e.g. nitrite reductase, to quantify denitrifying soil bacteria in a given sample (Henry et al., 2004).

1.3.1.3 Diversity and community composition

Community level physiological profiling (CLPP) is a method that has been extensively used to obtain

insight into functional diversity or composition of microbial communities (Garland and Mills, 1991). The

Biolog® system is commonly used where utilization of various carbon sources are employed. The pattern

of substrates oxidized can then be compared among soil samples as an indication of differences in

physiological or metabolic function. Community profiling based on PLFA and FAME analysis can also be

used to measure diversity or structural composition of the microbial community based on the groupings of

fatty acids or presence and abundance of specific fatty acids extracted from soil (Ibekwe and Kennedy,

1998). Another method used is diversity indices, for example the Shannon-Weaver index which includes

parameters such as species richness and evenness (Pankhurst et al., 1997).
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The heterogeneity of DNA recovered from soil can also be used as a reflection of community diversity

(Torsvik et al., 1990). Extracted DNA can be used either with DNA-DNA hybridization to detect specific

genes in the soil (Holben et al., 1988; Torsvik et al., 1990), or with primers to amplify portions of the

DNA, generating electrophoretic patterns of DNA fragments separated in different ways, resulting in

profiles used as genetic fingerprints (Thies, 2006). These methods include terminal restriction fragment

length polymorphisms (T-RFLP) (Liu et al., 1997), denaturing or temperature gradient gel electrophoresis

(DGGE/TGGE) (Muyzer and Smalla, 1998) and automated ribosomal intergenic spacer analysis (ARISA)

(Ranjard et al., 2001). Some DNA approaches compare individual rDNA sequences to a database of

previously encountered sequences in order to assess diversity (Olsen and Woese, 1993). These DNA-based

methods in a large part make use of PCR for amplification of the small subunit rRNA gene found

universally in all life forms and composed of highly conserved regions as well as regions with considerable

sequence variation (Woese et al., 1990; Ward et al., 1992).

1.3.1.4 Soil quality indicators

Soil ecosystem functioning are difficult to measure directly, therefore more easily measurable soil

properties are used as indicators. Various indicators have been selected based on soil physical, chemical

and biological properties (Doran and Jones, 1996), to aid in the routine analyses of soil quality. These

indicators need to be inexpensive, sensitive to changes in management practices, highly reproducible and

represent soil processes relevant to soil functions (Doran and Parkin, 1994) or more specifically, crop

production (Idowu et al., 2008).

Soil physical indicators can include bulk density, porosity, available water capacity, penetration resistance

and aggregate stability (Arshad et al., 1996). Soil chemical parameters are generally assessed on a routine

basis and soil properties such as CEC, soil pH, extractable phosphorous and potassium as well as minor

element contents, can all give indications of soil functioning (Doran and Jones, 1996; Idowu et al., 2008).

Given the important role of SOM in ecosystem functions, SOM-related properties can be important soil

quality indicators, especially active SOM fractions which can change in relatively short time periods (Weil

et al., 2003; Flieβbach et al., 2007). Biological indicators include counts of soil fauna such as earthworms,

free living nematodes, arthropods, and protozoa (Pankhurst et al., 1997). Mycorrhizal infection rates,

presence of pathogens or a general root health rating, can also be used. Some groups have identified a

minimum data set for monitoring soil quality, including a combination of various physical, chemical and

biological indicators (Doran and Parkin, 1994; Idowu et al., 2008).

1.3.1.5 Interpretation of results

Due to the great complexity and variability of soil systems, no single method has been widely accepted for

assessing soil quality, since each method has its own limitations. Although the most promising advances

have been made with molecular studies, results are still dependent on DNA extraction protocols and have

known biases associated with them due to the PCR process (Von Wintzingerode et al., 1997). However,
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when the limit of any one technique is recognized and appropriate methods are applied, various methods

can provide suitable characterization of the soil microbial community (Mazzola, 2004), especially if a

combination of methods is used. Results also need to be interpreted with caution and natural environmental

factors taken into account (Pankhurst et al., 1997). Since optimum or standard values are difficult to

establish, it is not clear what changes are related to a significant difference in functioning of the ecosystem

(Kennedy and Papendick, 1995; Bünemann et al., 2006). However, comparisons between various

management systems can be made within a soil type. Also, spatial variation in soil can be reduced by

appropriate sampling method (Van Elsas et al., 2002). In many cases, due to a large number of variables

and interactions, multivariate statistical analyses can be employed to assist in result interpretation. These

include redundancy analysis (Rumberger et al., 2004), principal component analysis (Garland and Mills,

1991), discriminant analyses, hierarchical cluster analysis (Yao et al., 2005), and correlation analysis

(Bulluck et al., 2002)

Despite the potential use of the methods above, it must be borne in mind that conclusions drawn on plant

productivity from microbial measurements made under controlled conditions, is problematic (Phelan,

2004). It is known that the use of microcosms, hydroponic systems, sterile planting substrates, as well as

systems with no plant interaction, make it extremely difficult to predict effects in a field soil environment.

1.3.2 Effect of conventional management practices on microbial communities

Conventional farming practices have largely neglected the importance of the soil biological component in

agricultural ecosystem functioning. In intensively managed agroecosystems, the role of soil organisms in

nutrition and disease management has partly been replaced by the use of external inputs such as inorganic

fertiliser and pesticides. Although agricultural management practices ultimately seek to increase or

optimise plant productivity, globally, sustainability is becoming an important factor. In order to identify

more sustainable management practices the effect of current conventional practices on soil microbial

properties have been investigated over the past two decades.

1.3.2.1 Inorganic fertiliser

The importance of rhizosphere processes in nutrient availability has been largely neglected due to the

supply of luxurious quantities of synthetic fertilizers. However, there is little evidence for significant direct

negative effects of inorganic fertiliser on soil organisms (Bünemann et al., 2006) and criticism is mainly

against its sole use, leading to soils low in organic matter (Flieβbach et al., 2007). Indirect effects are

related mainly to increased biological activity with inorganic fertiliser application due to increased plant

productivity, crop residues and soil organic matter (SOM) levels (Allison, 1973; Martyniuk and Wagner,

1978; Bünemann et al., 2006). Decreased biological activity is related to a decrease in soil pH (Wardle,

1992). The injudicious use of N fertiliser, especially ammonium fertilisers, is a major contributor to soil

acidification (Pierre et al., 1971; Rasmussen and Rohde, 1989) and effects bacterial populations negatively.
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Different views exist on the effect of inorganic N on SOM levels. Since microbial activity is often limited

by N and the readily available N leads to rapid microbial decomposition of organic matter in soils,

excessive N fertiliser applications can result in a decline in organic matter (Jenkinson et al., 1985; Green et

al., 1995; Ball, 2006). However, a study by Allison, (1973) suggested that there is only a short term

stimulation of organic matter decomposition and that long-term SOM levels are not affected.

A specific group of soil fungi, the arbuscular mycorrhizal fungi (AM fungi) form mutualistic associations

with tree roots and benefit the plant through improved nutrition. It has been reported that mycorrhizal

inoculation is sensitive to phosphorus enrichment (Abbott et al., 1984) and also that high nitrogen

concentrations (Johnson et al., 2003; Blanke et al., 2005) can decrease AM fungal colonization. This

increased availability of nutrients to microbes induces plants to allocate less carbon to the roots, affecting

root exudates, as well as reducing the amount of carbon available to AM fungi (Douds and Johnson, 2003).

Fertilisation can also change species composition and select for less mutualistic AM fungi (Johnson, 1993)

increasing the chance of parasitic interaction.

1.3.2.2 Pesticides

Soil organisms and thus soil functions can directly be affected by pesticides, but it is unclear if these

changes are long-term (Bünemann et al., 2006). Direct effects of pesticides on soil organisms depend on

type, specificity, and rate of application. Furthermore, repeated applications to the same soil can lead to

more effective microbial degradation so that the efficacy of the pesticide is reduced dramatically, with a

negative effect on the plant (Roeth, 1986). Organophosphate and carbamate insecticides have generally

been shown to have a significant negative effect on soil microbial numbers and activity, as well as

earthworm populations (Pandey and Singh, 2004; Menon et al., 2005). Insecticides also critically disturb

soil protozoa (Foissner, 1997) and are often toxic to non-target insects such as predacious and parasitic

arthropods (Koehler, 1992). Insecticides also impact the diversity and abundance of nematode trophic

groups (Yeates and Bongers, 1999).

The negative affect of fungicides on the soil fauna and flora seem to be even greater than insecticides

(Bünemann, et al., 2006). Pascual et al. (2002) suggested that some fungicides have a non-specific effect

acting not only on the pathogen, but also on non target organisms. Especially with copper-based fungicides

these negative effects are likely to persist for many years, as copper accumulates in surface soils and is not

prone to biodegradation (Filser et al., 1995). Merrington et al. (2002) showed that residues from copper

fungicides were responsible for significant reductions in microbial biomass. Negative effects have also

been found with benomyl on mycorrhizal associations (Smith et al., 2000).

Some herbicides affect earthworm populations negatively (Pizl, 1993; Amorim et al., 2005). Herbicides

used in conventional systems may furthermore be related to reduced disease resistance. Increased soilborne

root diseases can be caused by glyphosate, via glyphosate inhibition of systemic resistance to the crop it is
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meant to benefit (Liu et al., 1997; Descalzo et al., 1998). In addition, routine use of herbicides, especially

pre-emergence herbicides, leads to a reduction in orchard floor organic matter coverage and can reduce

total microbial populations as a result of reduced input of organic residues (Wainwright, 1978).

Suppressive effects of non-fumigant nematicides on non-target organisms have been reported, depending

on the nematicide used. Long-term negative effects of fenamifos on free-living nematodes and microbial

functional diversity was documented by Pen-Mouratov and Steinberger (2005) and Kaffe-Abramovich and

Steinberger (2006). However, the organophosphates imicyafos and fosthiazate were less toxic to growth of

fungi and bacteria (Wada and Toyota, 2008). Nematicides were also found to temporarily increase

microbial activity under certain conditions (Sumner and Bell, 1982), possibly due to rapid degradation of

the nematicide used as a carbon source.

However, with increasing specificity and reduced dosages of active ingredients with new formulations,

negative effects on soil microorganisms are less frequently recorded (Fraser et al. 1988; Murphy et al.,

2003).

1.3.2.3 Fumigation

Apart from its effect on plant pathogens and soilborne pests, fumigation affects microbial activity as well

as the structure and functionality of the soil microbial community. Pronounced negative effects have been

shown in the first few weeks after fumigation, as well as persistent effects on some microbial parameters

up till two years. However, laboratory microcosm experiments have been used in many studies to

investigate the effect of fumigants on soil microbial properties and it is not clear to which extent results are

applicable to field conditions.

Effects on broad-scale properties such as total culturable bacteria and microbial biomass, were generally

found to be less persistent (Ridge, 1976; Sinha et al., 1979; Toyota et al., 1999; Stromberger et al., 2005).

However, in the studies of Tanaka et al., (2003) as well as Yamamoto et al. (2008) chloropicrin (CP) had a

large and long-term impact on microbial biomass and activity. Sinha et al. (1979) reported that fungi and

Rhizobia populations were drastically reduced in fumigated soils, while populations of bacteria,

actinomycetes and Azotobacter populations gradually increased again over a 45 day incubation period after

fumigation. Soil fumigation is often followed by a shift of the bacterial community composition towards

Gram positive bacteria dominating the community structure (Ibekwe et al, 2001). Gram positive bacteria

are seemingly less affected by fumigation (Zelles et al., 1997; Klose et al., 2006), however, gram negative

bacteria can recover rapidly (Toyota et al., 1996; Xiao and Duniway 1998). Increases in Gram negative

bacteria were observed within three weeks after fumigation and persisted for up to one year (Porter et al.,

1999).
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Persistent effects of fumigation on microbial diversity have been found, depending on the fumigant used.

Various studies indicated an inhibition of nitrification for long periods (Rovira, 1976; Malkomes, 1995;

Tanaka et al., 2003; Stromberger et al., 2005). In a greenhouse study by Toyota et al. (1999) it was shown

that the size of the ammonium and nitrite oxidizer populations was reduced by four orders of magnitude

and started showing slight recovery only after 100 days. Klose and Ajwa (2004) concluded that organic

matter turnover and nutrient cycling and therefore long term soil productivity, was unaffected in soils

fumigated with the fumigants methyl iodide (Midas), propargyl bromide (PrBr) and chloropicrin (CP), but

that the combination of methyl bromide (MeBr) and CP showed a severe effect. Wada et al. (2008)

concluded that disturbances of organic matter decomposition and denitrification, associated with

dichloropropene (1,3-D) and CP disinfestation may be temporary so that soil microbial function recovered

significantly during the cropping season. Ibekwe et al. (2001) in their study found distinct shifts in both

species composition and relative abundance of different bacterial groups with fumigation. High diversity

was maintained for control soils as well as soils fumigated with methyl isothiocyanate (MITC) and 1,3-D

with CP. However, diversity significantly decreased with MeBr fumigation, although it did show some

recovery after 12 weeks. In contrast to results by Ibekwe et al. (2001), Toyota et al. (1999) found

substantial changes in carbon utilisation profiles even 105 days after fumigation with MITC, showing a

drastic reduction in community function. Yao et al. (2006) showed that in an apple orchard, soil fumigation

with a mixture of 1,3-D and CP, resulted in an altered rhizosphere bacterial community even one year after

planting, however differences were less significant after 22 months.

Klose et al. (2006) found that soil enzyme activities were generally reduced by various fumigants over a 90

day period in microcosm studies. Furthermore, it was evident that some fumigants were more toxic to

specific enzyme reactions than to the overall microbial community as measured through the FAME

profiles. Stromberger et al. (2005) showed in strawberry field plots with various fumigants that the effect

on arylsulfatase and acid phosphatase activity were most severe and persisted through the full 37 week trial

period.

The negative effect of fumigation on indigenous AM fungi is well established (Menge, 1982; Trappe et al.,

1984; Klose et al., 2006). McGraw and Hendrix (1984) linked stunted growth and P, Cu, and Zn deficiency

occurring after fumigation to the destruction of AM fungi. Furthermore, soil fumigation can nullify natural

soil suppressiveness to plant diseases and thereby have a negative impact on plant growth (Van Os et al.,

1999).

1.3.2.4 Tillage

The greater the intensity of energy inputs to the soil through tillage, the greater the rates of organic matter

decomposition (Neher, 1999; Watts et al., 2000). Tillage therefore plays an important role in the

management of soil nutrients through its influence on SOM dynamics. The action of tillage enhances

aeration, resulting in favourable conditions for rapid mineralization of C and other organically bound
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nutrients (Parr and Papendick, 1978). In addition, the breaking apart of macro-aggregates by tillage

increases the availability of occluded SOM to soil organisms (Six et al., 1999) and thereby increases the

potential for soil erosion (Magdoff and van Es, 2000; Johnson et al., 2005). Many of the soil fauna, as well

as fungi, are extremely sensitive to tillage practices (Osler, 2003; SP-IPM, 2004), therefore reduced tillage

systems have different food webs than intensively tilled systems (Verhoef and Brussaard, 1990).

The effect of tillage has a less significant role in perennial fruit crops, however, weed control through

intensive cultivation can also degrade soil structure, disrupt soil faunal communities and accelerate organic

matter loss (Hoagland et al., 2008).

1.3.3 Promoting biological activity in soil

Management strategies must provide a favourable environment for soil fauna and microflora because of

their dominating role in mineralisation and immobilisation processes. There is increasing evidence of the

impact of organic amendments and soil inoculants on soil health and the presence of beneficial

microorganisms (Abawi and Widmer, 2000; Albiach et al., 2000; Bulluck et al., 2002; Van Bruggen and

Semenov, 2000; Van Bruggen and Termorshuizen, 2003). Biological activity in soil can be promoted by

stimulation of the resident soil microbes through addition of available carbon sources, by improving root

growth proliferation and plant health or by addition of microbes to the soil. Management practices that can

promote biological activity in soil therefore mainly include strategies that increase or retain SOM, the

addition of supplemental microbial food sources or biostimulants, as well as direct soil inoculation with

specific microorganisms, or mixtures of various microbial groups.

1.3.3.1 Organic matter amendment

Microbial activity is generally carbon-limited in agricultural soil and the addition of an available carbon

source tends to increase microbial proliferation (Campbell, 1989; Magarey, 1999; Termorshuizen et al.,

2004; Bünemann et al., 2006). Therefore, although amendments vary widely in terms of characteristics of

material used and rates applied, application of organic material is one of the most effective ways to

increase microbial activity and numbers of beneficial organisms (Albiach et al., 2000; Bailey and

Lazarovits, 2003; Pérez-Piqueres et al., 2006). Differences in soil biological properties between

conventional and organic systems are not necessarily the direct result of application of inorganic fertilizer

and pesticides, per se, but rather results from increased substrate availability and a better soil environment

with the use of organic amendments (Fraser et al., 1988). Organic matter can also have an indirect positive

effect on soil microbial activity through its beneficial effect on soil physical properties, soil chemical

properties and plant and root growth.

Management practices that can be applied to increase SOM mainly include crop residue management,

organic mulching, application of raw or composted organic material (urban sludge, biosolids, manure,

compost) and the use of cover crops or green manure (Magdoff and Weil, 2004).
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1.3.3.1.1 Compost and Manure application

Composting is the controlled biological decomposition of biodegradable material under predominantly

aerobic conditions that allow the development of thermophillic temperatures as a result of biologically

produced heat, in order to achieve compost that is sanitary, uniform and stable (Epstein, 1997). Interest has

also increased progressively in vermicomposting, a process involving the use of earthworms to promote

microbial activity in organic waste, breaking it down into materials that can be used in crop production

(Edwards and Flectcher, 1988). The most common raw materials used in composting are municipal solid

waste (or biosolids), sewage sludge, wastes of the timber and food processing industries and manure

(Raviv, 1998). Many factors must be controlled to obtain consistent effects with the use of organic

amendments. Compost quality is affected by its input materials, moisture content as well as the maturity of

the end product (Hoitink et al., 1997; Lazarovits, 2001; Hoitink and Changa, 2004).

Manure has not undergone aerobic composting and can be defined as animal excrement which may contain

large amounts of bedding (Litterick et al., 2004). The type of animal, as well as bedding content (C:N

ratio) plays an important role. Magdoff and van Es (2000) noted that dairy and beef manures containing

high amounts of lignified substances (bedding and undigested forage) contributed more to SOM

maintenance than poultry manure. Manure is furthermore a less stable source of organic matter because it

consists primarily of easily decomposable organic mater and its effect on SOM content will therefore be of

a more temporary nature (Termorshuizen et al., 2004). Volatilisation is a problem with handling and

storage of manure, as well as when surface applied (Kotzé and Joubert, 1992).

Animal manures are mainly used to supply N in systems where use of chemicals is reduced or eliminated

(Jenkinson, 1991) and generally has a high content of macro and micronutrients, depending on the type of

manure. Fraser et al. (1988) found that soluble P levels were eight fold greater in manure amended surface

soils. However, Kotzé and Joubert (1992) concluded that poultry manure holds no particular advantage in

deciduous fruit over inorganic fertiliser and that the rate of application as well as N content should be taken

into consideration. Nutrients in compost are usually less available than in fresh manure because of

stabilisation by microbial assimilation during the composting process (Hadas et al., 1996). In general,

compost shows low lability of N and large amounts may be initially needed to supply enough nutrients to

achieve optimum yield (Eriksen et al., 1999; Chung et al., 2000). Also, compared to synthetic fertilisers,

benefits are not always apparent over the short term (Carpenter-Boggs et al., 2000). However, an increase

of SOM in soil continually applied with compost for multiple years can result in improvement of soil

quality, facilitating nutrient availability and uptake (Pascual et al., 1997; Roe, 1998; Pinamonti, 1998;

Termorshuizen et al., 2004).

Application of either compost or manure can rapidly improve biological aspects of soil quality and positive

effects on soil microbial communities were documented for a diversity of agricultural systems, including

fruit trees (Renagnold et al., 2001; Mäder et al., 2002), grain crops and vegetables (Fraser et al., 1988; Parr
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and Hornick, 1992; Temple et al., 1994; Angers et al., 1995; Drinkwater et al., 1995; Gunapala and Scow,

1998; Carpenter-Boggs et al., 2000; Flieβbach et al., 2007). Greater microbial activity or biomass has been

found, as well as higher diversity of bacteria (Bolton et al., 1985; Doran et al., 1987; Reganold et al., 1993;

Wander et al., 1994; Drinkwater et al., 1995; Katayama et al., 1998; Mäder et al., 2002). Furthermore, a

significant effect on soil microbial community structure was found within a group of organisms, as well as

ratios of various organism groups (Marschner et al., 2003; Yao et al., 2006; Lejon et al., 2007). Toyota and

Kuninaga (2006) showed from utilisation of different carbon sources that soil microbial communities from

manure amended soil had the ability to utilise a greater variety of substrates. Furthermore, actinomycetes

seem to dominate in manure amended soil (Lechevalier, 1988). In general, minor impacts have been found

with organic amendments on fungal communities compared to prokaryotic communities (Marschner et al.,

2003; Rumberger et al., 2004; Lejon et al., 2007; Yao et al., 2006), with the exception of the AM fungi

(Oehl et al., 2003). However, increased capacity and complexity of macro-, micro-, and mesofauna have

been documented widely (Freckman and Caswell, 1985; Drinkwater et al., 1995; Van Bruggen, 1995;

Hartley et al., 1996; Ferris et al., 1998; Bulluck et al., 2002; Mäder et al., 2002; Mulder et al., 2003).

The duration of observed effects on microbial parameters, however, depends on the amount of readily

decomposable carbon substrates added and availability of nutrients, especially N (Hartz et al., 2000;

Adediran et al., 2003). Therefore, microbial characteristics can often return to baseline within a few years

(García-Gil et al., 2004) if there is not continued application such as is the case in organic or biological

systems. Furthermore, although direct C addition through organic amendments plays a major role in

stimulating soil organisms, the role of C quality is not yet well understood (Bünemann et al., 2006).

Compost can suppress disease through modification of the microbial community structure (Hoitink and

Fahey, 1986; De Ceuster and Hoitink, 1999; Hoitink and Boehm, 1999; Litterick et al., 2004; Noble and

Coventry, 2005). These studies have demonstrated suppressive effects of composts on soilborne diseases

such as damping off, root rots (Pythium, Phytophthora, Rhizoctonia) and wilts (Fusarium), mainly in

container media, and ornamental crops. However, compost has also shown to suppress several diseases in

the field (Malajczuk, 1983; Hoitink et al., 1991) although effects are generally smaller and less consistent.

The impact of manure on pests and diseases is much less predictable than that of composts (Litterick et al.,

2004). However, compost variability is an important factor when using compost for disease control

(Hoitink et al., 1997). Few composts are universally effective and specific compost properties have

significant effects on disease suppressiveness (Hoitink and Fahey, 1986; Litterick et al., 2004). To

maximise natural disease control, composts should be mature (Kuter et al., 1988) and can also be

inoculated after peak heating with specific biological control agents or mixes.

The application of organic material also has the potential to show harmful effects on plant and soil.

Excessive rates of application can cause overloading of nutrients in soil. Manure based compost treatments

showed high P and K surplus after three years, showing that loading levels of these nutrients need
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consideration, especially when using compost to satisfy crop N needs (Reider et al., 2000). Nutrient or

metal loading in raw or partially composted amendments can negatively impact the soil microbial

community, especially naturally occurring antagonists such as nematode trapping fungi and predacious

nematodes (Giller et al., 1999; Jaffee, 2004; Forge et al., 2008). Results from Varga et al. (2004) showed

lower mycorrhizal colonisation rate with addition of livestock manure, suggesting that high nutrient release

from manure can adversely affect apple root colonization by AM fungi.

In practise, these organic amendments are mainly applied as a top dressing, or mixed into the top layer of

orchard soil. However, there is no clear indication from literature which method is most beneficial.

Application of manure to the soil surface may result in volatilisation (Kotze and Joubert, 1992) and

increased organic matter breakdown, although Kayuki and Wortmann (2001) found that mineralization

were faster when high-quality organic residues (low in lignin and phenols) were incorporated. Application

to the soil surface also reduced labour costs and improved soil cover. Lejon et al. (2007), as well as

Marschner et al. (2003), found that the size of carbon biomass was increased whatever the type of organic

matter input or agricultural practise (surface application vs. incorporation) and that specific changes in the

soil microbial community were more dependent on the type of organic amendment, as well as the type of

soil (Pérez-Piqueres et al., 2006; Lejon et al., 2007).

1.3.3.1.2 Organic mulches and crop residue management

Mulching is a protective layer of material that is maintained on the surface of cultivated soil. Various

forms of organic material, including crop residue, can be used as mulches. Conservation of soil moisture is

considered one of the most significant advantages of mulching, especially in the case of fruit trees

(Woodbury et al., 1917; Baxter, 1970; Tisdall et al., 1984; Hogue and Neilsen, 1987; Merwin et al., 1994;

Walsh et al., 1996; Neilsen et al., 2003b, 2007). It is most likely a consequence of both improved

infiltration capacity and reduced evaporation from the soil surface so that maximum field capacity is

maintained longer at all depths (Schroch and Shribbs, 1986; Kotzé and Joubert, 1992; Faber et al., 2001).

In addition, mulching provides isolation from extreme temperature fluctuations (Gregoriou and Raj Kumar,

1984; Wooldridge and Harris, 1991; Hartley et al., 1996; Pinamonti, 1998). Furthermore, mulches suppress

weeds and therefore competition for nutrients (Lanini et al., 1988; Niggli et al., 1990; Autio et al., 1991;

Pinamonti et al., 1995; Faber et al., 2001).

Mulching provides a favourable environment for microbial activity and fine feeder root development,

especially in surface soil. Mulch treatments have generally been found to increase soil respiration and total

microbial biomass as well as increase or at least conserve SOM content (Hogue and Neilsen, 1987; Niggli

et al., 1990; Merwin et al., 1994; Marsh et al., 1996; Werner, 1997; Tiquia et al., 2002; Yao et al, 2005).

Varga et al. (2004) found in apple orchards that numbers of total bacteria, cellulose decomposing bacteria

and fungi were higher under straw and pine bark mulch than in soil where no mulch was applied. Results

by Yang et al. (2003) indicated that the effect of organic mulches on soil bacterial communities one year
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after application was dependent upon the type of mulch used and effects were mostly exerted in the top

few centimetres of the soil (<5 cm). In a study by Tiquia et al. (2002) mulching with compost influenced

structure of the microbial rhizosphere community more than plots mulched with woody material.

Studies on orchard floor management practices in apple, have demonstrated that the use of organic

materials as mulches can have profound effects on the structure of the soil food web, specifically beneficial

nematodes (Forge et al., 2003; Yao et al., 2005). Surface application of organic matter can also greatly

stimulate earthworm populations (Syers and Springett, 1984).

However, mulching can in some cases affect soil biological properties negatively. Saw and wool dust used

as mulches in apple orchards decreased the total number of earthworms (Hartley et al., 1996), as well as

bacterial and fungal biomass. The higher ratio of basal to substrate induced respiration (SIR) also

suggested that these mulches caused soil microflora to respond with lower efficiency. Larsson et al. (1997)

found significantly higher respiratory activity per unit biomass (qCO2) associated with wood chip mulch

which is similar to effects on qCO2 found in sites with reduced fertilizer compared to adequate fertliser

(Insam et al., 1991). Furthermore, moisture conserving properties associated with mulching may in certain

conditions and soil types be undesirable (Hogue and Neilsen, 1987). Wooldridge (1992) found that, with

hay mulch, the period over which free water was retained after rain was increased. Merwin et al. (1992)

ascribed Phytophtora crown and root rot development in 35% of straw mulch plots to prolonged soil

saturation beneath mulched apple trees at poorly drained sites. Faber et al. (2001) also stated that irrigation

had to be adjusted with mulching to accommodate higher soil moisture contents that could be conducive to

root rots.

1.3.3.2 Cover crops

In most organic systems, soil management involves the use of mowed or tilled cover crops (Sánchez et al.,

2007). Cover crops supply organic matter, provide soil cover to preserve soil structure, and can immobilise

and retain available soil N to prevent leaching (Lewan, 1994; Magdoff and Weil, 2004; Komatsuzaki and

Ohta, 2007). Often a legume is chosen to add the benefit of nitrogen fixation (Marsh et al., 1996).

Additional benefits include breaking of the pest cycle and weed suppression. Furthermore, soil ecological

diversity is enhanced through root exudates and decaying residues from the cover crop, contributing to the

labile carbon compounds that stimulate microbial activity (Rovira et al., 1990; Gu and Mazzola, 2003).

In addition to providing material for mulching, cover crop root systems continuously provide organic

matter as roots die off and are decomposed (Bolton et al., 1985). Wander et al. (1994) stated that

belowground C inputs may play a more significant role in SOM accumulation than mulching. In vineyards

Fourie et al. (2007) showed that cover crops had the ability to significantly increase the organic matter

content of a sandy soil over a 5 year period. Soil organic matter of the top 0-30 cm soil was improved to a

greater extent if the cover crop was controlled chemically, rather than mechanically. Similarly, SOM in the
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top soil layer was improved more when cover crop material was left on the soil surface compared to when

it was incorporated into the soil. Sanchez et al. (2007) found that disking of cover crops may decrease

SOM content and therefore was not recommended since it leads to poor vigour.

Root exudates determine to a great extent which organisms will reside in the rhizoplane (Cook and Baker,

1983). Cover crops can therefore enhance populations of specific resident microbial antagonists to create

disease suppressive conditions (Vargas-Ayala et al., 2000; Mazzola and Gu, 2002; Weller et al., 2002).

Furthermore, the use of cover crops can significantly effect AM fungal composition (Douds and Johnson,

2003) and has the potential to increase AM fungal spore numbers, thereby enhancing the inoculation of the

following crop. Furthermore, biofumigant cover crops can also be used or applied as soil amendment for

disease control (Brown and Morra, 1997). These crops are from the Brassicaceae family and produce

glucosinolates which upon hydrolysis yield compounds with antimicrobial activity. Some evidence also

suggest that these plant species may operate in suppression of fungal pathogens irrespective of their

glucosinolate content, by transforming the bacterial community structure (Cohen et al., 2005).

A significant amount of research has been carried out on residues of some species of cover crops that can

suppress populations of plant parasitic nematodes or reduce infection levels of roots when applied to soil

(D’Adabbo, 1995; Abawi and Widmer, 2000; Akhtar and Malik, 2000). Marigold (Tagetes spp.) and

sudangrass (Sorghum sudanense × sudanense) are widely used in agriculture to reduce populations of root-

knot nematodes (Siddiqui and Alum, 1987; Ploeg and Maris, 1999). Some Brassica species have also been

shown to suppress plant parasitic nematodes (Brown and Morra, 1997; Cohen et al., 2005). Vargas-Ayala

et al. (2000) observed that cropping soils to velvet bean altered the composition of microbial communities

in the soil rhizosphere, possibly through enhanced parasitism of Meloidogyne incognita eggs by a diverse

group of bacteria and fungi.

1.3.3.3 Microbial soil inoculants

In agricultural systems, the integration of beneficial microorganisms into production systems can to some

extent shift the balance of the microbial communities towards a population structure more conducive to

increased plant health and productivity (Avis et al., 2008). Plant-beneficial microbial interactions can be

divided into microorganisms playing a role in nutrition, those preventing the effects of phytopathogenic

organisms in the rhizosphere and those that can directly affect growth, for example through production of

phytohormones. (Frankenberger and Arshad, 1995; Glick, 1995; Rodriguez and Fraga, 1999; Kennedy and

Islam, 2001; Zahir et al., 2004). Inoculation of soil with beneficial rhizosphere organisms can include

specific species or strains, but also mixture of various microorganisms. Inoculants containing broad

diversity without exact definition of the active microbes, includes effective microorganisms (EM

Technology™) (Higa, 1994) and compost extracts or teas (Ingham, 1999a; Litterick et al., 2004).
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1.3.3.3.1 Inoculation with specific rhizosphere microorganisms

Two of the most important and beneficial root interactive microbes are the plant growth promoting

rhizobacteria (PGPR) and AM fungi (Kloepper et al., 1980; Azcon-Aguilar and Barea, 1997; Van Loon et

al., 1998). These microorganisms cause changes in root architecture and enhanced root function that can

influence plant health, growth, yield and product quality (George, 2000; Zahir et al., 2004). To produce the

desired effect, inoculated soil organisms must survive in the soil and have the ability to compete with

resident microflora to successfully establish in the rhizosphere (Hirsch, 1996). Growth responses to

microbial inoculation have also been reported to be subject to strain, crop, as well as site specificity

(Martin, 2003; Zahir et al., 2004).

Deciduous fruit trees are widely considered to benefit from the formation of mutualistic associations

between their roots and AM fungi, mainly through improved plant nutrition, as well as increased protection

against various stress factors, but also possibly by generating a distinct soil microbial community due to

changes in root chemistry and exudates (Linderman, 2000). AM fungal communities are studied

specifically in agricultural systems, where conventional practices such as the use of pesticides, herbicides

and soluble fertilisers impact natural AM fungal infection negatively (Purin et al., 2006). Since AM

symbiosis can benefit plant growth and plant health there is increasing interest in ascertaining their

effectiveness in agricultural systems and, consequently, in manipulating them so that they can be

incorporated into production practices. Specific microbial populations in the rhizosphere can benefit the

establishment of mycorrhizal symbioses (Gryndler, 2000). A typical example is that exerted by

‘mycorrhiza-helper-bacteria’ (MHB), known to stimulate mycelial growth of AM fungi as well as

ectomycorrhiza (Garbaye, 1994). The bacteria produce compounds that increase the rates of root

exudation, which in turn stimulate mycorrhizal mycelia, or facilitate root penetration.

Plant growth promoting rhizobacteria have become a new class of biofertilisers and physiological

stimulators in recent years (Zahir et al., 2004) and their use to increase plant productivity has been

extensively reviewed (Lazarovits and Nowak, 1997). These inoculants hold great promise as potential

agricultural inoculants and if effective, could reduce the use of agrochemicals including fertilisers and

pesticides. Plants are treated in several ways such as seed coating, root dips for transplants and watering

into the soil.

1.3.3.3.2 Effective microorganisms (EM)

Effective microorganisms (EM), was developed in Japan in the 1970’s and has mainly been used in nature

farming systems in Asian countries. It is a mixed microbial culture of naturally occurring beneficial

microorganisms, consisting primarily of photosynthetic and lactic acid bacteria, yeasts and actinomycetes

that co-exist in liquid culture (Higa, 1994). Microorganisms are blended in a molasses or sugar medium

and maintained at low pH. It has been used to improve soil quality and growth and yield of crops, as well

as control disease and is usually used on plant seeds, in soils, sprayed on organic matter or on plant leaves.



22

The adoption and use of EM in nature farming systems has preceded the essential fundamental research on

the exact mechanisms of how it affects soil-plant ecosystems. Although exact mechanisms of how it elicits

beneficial effects are largely unknown, the principle activity of EM is thought to be through increasing the

biodiversity of the microflora. The EM concept may be considered controversial in some quarters due to

lack of scientific evidence to support all of its claims. Condor-Golec et al. (2007) reviewed EM literature

and principles and concluded that there is a great amount of non-reliable information about EM and that

the effects in soil health were minimal. However, many farmers still use EM. Also, some positive results

have been reported, although mostly from Asian countries (Higa, 1994; Higa,1998; Parr et al., 1998; Xu,

2000). Higa and Wididana (1991) stated that EM is not a substitution for other management practices but is

an additive for optimising al other amendments and practices used for crop production.

1.3.3.3.3 Compost extracts

Application of compost extracts, also commonly referred to as compost teas, has mainly been shown to

improve plant health through reduced incidence and severity of foliar disease (Weltzein, 1991; Scheurell

and Mahaffee, 2002). However, its use as a soil inoculant to improve beneficial microbial activity has also

recently been advocated (Litterick et al., 2004). Unfortunately, very little scientific research has been done

to confirm or quantify these benefits. Indications are that the extracts act more as a microbial inoculant that

stimulates soil microbial population effectiveness, than as a nutrient source (Carpenter-Boggs, 2005) and it

was suggested that these amendments should mainly be used for disease control. Considering the diverse

microbial community present in compost extracts, it can be expected that multiple modes of activity can be

associated with observed effects.

Compost tea is produced by mixing compost with water and incubating it for a defined period, either

actively aerated (aerated compost teas, ACT) or not (non-aerated compost teas, NCT) and with or without

additives intended to increase microbial population densities during production (Scheuerell and Mahaffee,

2002). A commonly recommended additive is molasses (Ingham, 1999b), presumably because this is a

readily available nutritional source for microbial growth and is relatively inexpensive. The efficacy of

compost teas depends greatly on the production process (Bess, 2000; Bess et al., 2002) and the compost

used. Factors that influence the efficacy of compost teas include compost material, compost maturity,

water ratio, fermentation time, added nutrients or other amendments, temperature and pH (Litterick et al.,

2004). Most studies have been conducted with the use NCT. However, the necessity to aerate during

compost tea production has been debated in order to prevent re-growth of human pathogens in the starting

material. Concern was also raised that additive nutrients such as molasses, are accessible to virulent

Escherichia coli types present in the compost due to inadequate composting or improper handling (Duffy

et al., 2004). However, it seems that if the compost is devoid of E. coli, compost teas also did not contain

E. coli (Kannangara et al., 2006).
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Limited work has been published on the efficacy of ACT and there is currently little scientific evidence to

demonstrate that they are any more effective than NCT. In a study on soilborne diseases Scheurell and

Mahaffee (2004) found that both ACT and NCT could significantly reduce disease on cucumber caused by

Pythium ultimum in peat based growing media. However, the most consistent formulation to induce

suppressiveness was ACT produced with kelp and humic acid additives. Furthermore, ACT produced with

a molasses-based additive negated the suppression of damping-off. Heating and dilution with water (1:9)

also negated suppression. There was also an indication that for disease suppression the selection of

additives was more critical than the source of compost used. This could be important for widespread

application, since these additives can be standardised, whereas the properties of compost vary to a great

extent.

1.3.3.4 Biostimulants

Biostimulants are being used increasingly in horticulture, however peer reviewed research results are not

abundant. Although definitions vary, these are generally non-nutritional products which have a beneficial

effect on plant growth, especially root growth, and may reduce fertilizer use, or provide resistance to water

and temperature stress (Russo and Berlyn, 1990). Commercial biostimulants mainly include HS, seaweed

extracts, and combinations thereof with other plant metabolites /organic substances such as vitamins

(Kelting et al., 1998).

1.3.3.4.1 Humic substances

Humic substances (HS) comprise a major part of SOM and are classified into humic acids (HA), fulvic

acids (FA) and humin on the basis of their solubility in water as a function of pH (Swift, 1999). Humic

acids are not soluble in water under acidic conditions, but soluble at higher pH values, while FA is soluble

in water at all pH conditions and humin insoluble in water. These substances are part of a supra-molecular

complex containing several heterogeneous compounds with relatively low molecular mass but dynamically

associated with hydrophobic interactions and hydrogen bonds (Sutton and Sposito, 2005). Therefore,

despite their high molecular mass, these substances can express bioactivity and are involved in many

reactions contributing to various soil physical, chemical and biological properties.

Their most important role is the chelation of ions, increasing their availability to organisms, including

plants. However, results from Mylonas and Mccants, (1980), showed that HA and FA affected root

development and improved growth of tobacco seedlings by means other than a source of nutrients. Humic

substances can also directly stimulate plant biomass production, especially root growth (Vaughn and

Malcolm, 1985; Visser, 1985a; Chen and Aviad, 1990; Nardi et al., 2002). The typical response curve

shows increasing growth with increasing concentrations of HS, followed by a decrease in growth at very

high concentrations.
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In recent years there have been increasing interest in amending soil with HS to increase fertility of soils

with low organic matter content (Mann, 1986) and a wide variety of organic amendments containing HS of

different origin are available commercially. These products are mostly derived from brown coal (leonordite

or lignite), or peat and applied as humates, which are the salts of humic acids that hold ions, such as K or

Na, instead of hydrogen on the ion-exchange sites (Wallace and Terry, 1998). However, it is important to

keep in mind that these commercial humates do not have the same biological and chemical properties as

soil HS and therefore cannot be expected to have the same effect (Stevenson, 1979). Valdrighi et al. (1995)

compared HA potassium salts from leonardite and compost, and found more positive effects on growth

with the compost humate, which also showed less negative effects at high rates of application. Soil

application has generally been reported to be more effective than foliar application (Lee and Bartlett, 1976;

Cooper et al., 1998) but effects are highly dependent on concentration. Chen and Aviad (1990) concluded

that the net direct effect of humic materials on growth probably involves interactions of a series of

biochemical stimulations and inhibitions, thereby partially explaining the dependence of effects on HS

concentration as well as the type and degree of effects observed. It is also well known that the effect of HS

varies between plant species (Vaughn and Malcolm, 1985).

Humic substances, especially lower molecular weight fractions, affect soil microbial properties. Visser

(1985a) showed that HA could increase the growth of a wide range of soil bacteria, as well as introduce a

change in metabolism, allowing organisms to proliferate on substrates which previously they could not

utilise. Valdrighi et al. (1996) also showed that ammonium and nitrite oxidisers increased with HS

application. However, only slight effects have been reported on actinomycetes and fungi (Vallini et al.,

1993; Bünemann et al., 2006). Various studies have also shown increased soil enzyme activities associated

with HS application (Visser 1985 a, b; Vallini et al., 1993; Lizarazo et al., 2005). Results from Lizarazo et

al. (2005) showed that HS from various origins, including plant residue, lignite and peat, differed in their

HA and FA content and behaved differently in stimulating microbial activity. Phosphatase activity of these

three humic products was highly correlated to the FA added, which was most prominent in the plant

residue. Also, soils treated with humus plant residue showed higher enzyme activities and inorganic N

concentrations. Ayuso et al. (1996) found that when looking at germination, HA derived from different

forms of organic matter had a less favourable effect on germination than HS. This may be related to a

higher content of the lower molecular fraction FA, which are contained in HS but not HA. Lower

molecular weight fractions from compost also showed greater microbial stimulation than higher fractions

from brown coal (Garcia et al., 1991; Valdrigi et al., 1995). These compounds of smaller molecular weight

seem to show the greatest degree of bioactivity (Dell’Amico et al., 1994).

Some positive results in reducing the effect of phytopathogenic fungi have also been found with humic as

well as fulvic fractions of compost and soil (Moliszewska and Pisarek, 1996; Pascual et al., 2002). Pascual

et al. (2002) underlined the importance of the humic fraction of compost in reducing Pythium counts.
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1.3.3.4.2 Seaweed extracts

Seaweed extracts derived from marine algae such as Ascophyllum nodosum (North Atlantic Ocean) and

Ecklonia maxima (southern hemisphere), has been widely used in horticulture. (Verkleij, 1992). It is a

commonly used organic supplement to increase plant growth and stress resistance (Russo and Berlyn,

1990). Application of seaweed preparations have increased plant growth, and specifically root growth, in

various studies (Finnie and van Staden 1985; Metting et al., 1990; Crouch and van Staden, 1991).

Results from some researchers have indicated that the effect of seaweed is most beneficial when the plant

is coping with adverse environmental conditions (Mooney and van Staden, 1985; Nus, 1993) such as

nutrient stress or pest and diseases (Beckett and van Staden, 1989). Furthermore, the ability of crops to

respond depends on soil type, type of crop, growth stage of crop, and quality of the extract (Verkleij,

1992). Liquid seaweed extract is generally applied as a foliage spray, but also as a drench into the soil and

should be applied several times during the growing season, because of its cumulative effect (Verkleij,

1992). Van Staden et al. (1995) showed that application of a seaweed concentrate was optimal early in the

seedling life of Eucalyptus species, but had little benefit in application after transplantation. The most

documented active ingredients of seaweed extracts are trace nutrients and plant hormones, while

osmoprotectants, such as betaines, have also been identified. Seaweed extracts can also be a source of

microelements (Pattison, 1994), although big differences are found in trace elements between products of

various manufacturers (Verkleij, 1992). Some products have also been found to contain macronutrients (P,

Ca). Nelson and van Staden (1986) suggested that maximum yields achieved at sub-maximal application

rates as well as low content of trace elements at applied rates, indicated that seaweed extracts showed a

growth stimulant effect rather than a direct nutrient effect. However, seaweed extracts may also affect

nutrition through acting as nutrient chelators (Metting et al., 1990).

It is widely believed that the application of seaweed extracts results in enhanced root zone microbial

growth, development and activity, resulting in increased organic matter breakdown and nutrient

availability (Dixon and Walsh, 1998; Hunter, 2004). Seaweed extracts can also alter the mode of activity of

microorganisms, thus directly or indirectly affecting characteristics such as root colonisation and

penetration, and biological control mechanisms (Kuwada et al., 1999; Dixon and Walsh, 2004). Results

from Kuwada et al. (1999) also suggested that extracts contain growth stimulatory substances to AM fungi.

1.4 MECHANISMS THROUGH WHICH BIOLOGICAL AMENDMENTS AFFECT PLANTS

Mechanisms through which plant performance is affected by biological amendments can not be easily

separated and result from a number of direct and indirect effects. These mainly include stimulation of soil

microbial activity and improved soil physical conditions, leading to increased root proliferation, improved

nutrient availability and uptake, protection against pests and diseases and decontamination of pollutants.
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1.4.1 Soil physical properties

One of the most important effects of organic amendment application and the resulting stimulation in

microbial activity is the improvement in soil physical properties. Main effects are increased total porosity

and reduced bulk density (BD) and penetration resistance, as well as improved soil water conditions

through the formation and stabilisation of soil aggregates (Tester, 1990; Roe, 1998; Neilsen et al., 2003a;

Magdoff and Weil, 2004). These parameters have been indicated as accurate predictors of root system

performance by Thompson et al. (1987). Fraser et al. (1988) found that soil microbial numbers are greatly

stimulated by the addition of manure through modification of soil physical characteristics. The favourable

effects of mulching on root proliferation is widely documented (Boynton and Oberly, 1966; Baxter,1970;

Hogue and Neilsen 1987; Moore-Gordon et al., 1996; Pinamonti, 1998; Yao et al., 2005; Forge et al.,

2008). This has been attributed to improved soil moisture conditions under the mulch that are more

beneficial for surface root activity. Pinamonti et al. (1995) showed that improved porosity, and water

retention, as well as reduced temperature fluctuations in vineyards supplied with compost were more

important in improving nutrient uptake than increased availability of nutrients.

1.4.2 Plant nutrition

Biological amendments can affect plant nutrition either directly by supplying bulk nutrients, or indirectly

through increasing the availability and uptake of nutrients, increasing cation exchange capacity (CEC),

affecting pH, or preventing leaching of nutrients. Furthermore, changes in soil biological activity and

diversity can improve nutrient cycling. Microbial activity in the rhizosphere is a major factor that

determines the availability of nutrients to plants and has a significant influence on plant health and

productivity (Jeffries et al., 2003).

1.4.2.1 Nutrient supply

Organic amendments serve as a direct source of nutrients released through mineralisation. Nearly all N and

large amounts of the phosphorous (P) and sulphur (S) found in soils occur as constituents of SOM

(Ashworth and Harrison 1983). Soil organic matter serves as both the principal long-term storage medium

and as the primary short-term source of these nutrients and others. However, Roe (1998) found that

although organic amendments generally improve the chemical and physical soil environment of the crop it

does not always result in increased plant nutritional concentration. Effects of organic matter on soil

chemical properties depend to a great extent on the mineral content of constituent organic material, and are

therefore variable (Gallardo-Lara and Nogales, 1987; Neilsen et al., 2003a; Neilsen et al., 2007). Nitrogen

availability is furthermore largely dependent on the maturity and C:N ratio of the organic material used

(Haynes, 1980; Gallardo-Lara and Nogales, 1987). In material with a high C:N ratio (30:1), N will

temporarily be immobilised in microbial tissue which can create N-deficient conditions. It is therefore

advised to use nitrogen fertilizer after introducing natural mulches to compensate for immobilisation

(Hogue and Neilsen, 1987; Geiger et al., 1992; Lipecki and Berbec, 1997).
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A substantial amount of nutrients, especially N, can be sequestered in the rhizosphere microbial biomass

(Jenkinson and Ladd, 1981). Greater soil microbial populations turning over rapidly through organic matter

addition can therefore increase the reserves of biological N (Fraser et al., 1988), gradually supplying

nutrients and minimising leaching losses (Mckenzie et al., 2001; Davet, 2004; Ball, 2006). A large portion

of the N taken up by crops comes from organic pools that cycle through the microbial biomass (Reddy and

Reddy, 1993). Conventional management practices in crop rotation systems had more N in mineral pools

as indicated by higher nitrate-N, whereas organic systems, making use of manure, had higher N in the

microbial biomass, indicating a shift in the N pools between the two systems (Briar et al., 2007).

Predatory organisms in higher trophic levels (such as protozoa and free-living nematodes) can substantially

increase microbial turnover rates and mineralisation (Clarholm, 1985; Kuikman and van Veen, 1989; Ferris

et al., 1998; Akhtar and Malik, 2000; Bonkowski, 2004) and are important in decreasing immobilisation of

nutrients associated with high C:N ratio substrates (Clarholm, 1985; Ferris et al., 1998; Forge et al., 2003).

Blue gamma grass withdrew more nitrogen from fertilised soil in the presence of protozoa than in their

absence (Zwart et al., 1994). It was also found by Hunt et al., (1987) that 14% of the N extracted by plants

is accounted for by predation of bacteria by protozoa.

1.4.2.2 Increased availability and uptake

The spatial availability of nutrients is mainly governed by root growth parameters and therefore increased

by conditions that improve root growth and development. The positive effect of organic amendments,

biostimulants and various soil rhizosphere organisms are well documented (Boynton and Oberly, 1966;

Vaughan and Malcolm, 1985; Chen and Aviad, 1990; Crouch and van Staden, 1991; Kotzé and Joubert,

1992; Moore-Gordon et al. 1996; Pinamonti, 1998; George 2000; Zahir et al., 2004). However, the

presence of nutrients in a form available for plant uptake also plays a decisive role in nutrient acquisition

and is affected by SOM, plant root exudates and associated microorganisms.

Nutrient availability is influenced by organic molecules (chelators) binding to metal ions such as Fe, Cu,

Zn and Mn, and maintaining them in a soluble state (Gobat et al., 2004). These chelating agents are present

in SOM and organic amendments such as compost, as well as HS (Chen and Aviad, 1990; Alvarez et al.,

1999). Solubilisation of nutrients from their inorganic forms can be a major factor in the promotion of

plant growth in soils by HS and has been the focus of many publications (Chen and Stevenson, 1986;

Varanini et al., 1993; Stevenson, 1994). De Kock (1955) found that HS not only increased the solubility of

Fe in solution but also affected translocation from roots to shoots. The response of the plasma membrane

(PM) in root cells plays a primary role in the interactions between roots and soil components, such as HS,

present in the rhizosphere (Varanini and Pinton, 2007). The stimulatory effect of HS on plant nutrition and

growth might, at least in part, be explained on the basis of both a direct action of low molecular weight

(LMW) humic molecules on PM H+-ATPase activity (Varanini et al., 1993; Canellas et al., 2002) and

specific modification of cell membrane permeability (Vaughn et al., 1985).
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Chelating agents produced by soil microorganisms, such as PGRB, as well as plant roots, can increase the

mobility and availability of micronutrients by the formation of high affinity Fe-chelating siderophores

(Zahir et al., 2004; Gupta and Murali, 2008). Numerous plants are capable of using bacterial Fe

siderophore complexes as a means of obtaining Fe from soil. Seaweed extracts may also affect nutrition

through acting as nutrient chelators (Metting et al., 1990).

Total phosphorous in the soil may be high, but mainly present in unavailable forms. Rhizosphere

microorganisms improving P uptake mainly include nutrient solubilising bacteria and mycorrhiza that can

also change root morphology and extend root exploration (Glick, 1995; George, 2000). Jones et al. (1998)

reported that the efficiency with which mycorrhizal plants take up P, compared with non-mycorrhizal

plants is 3.1 to 4.7 times higher. The principal mechanism for solubilisation of inorganic P is the

production of organic acids by soil microorganisms (Sundara and Sinha, 1963), while P-hydrolysing

enzymes play a major role in the mineralization of organic P in soil (Rodriques and Fraga, 1999). Plant

roots, as well as microorganisms produce phosphatases, while only microorganisms produce phytases

which is needed to decompose phytin, the major form of stored organic P (Abbott and Murphy, 2003). The

extra-radical hyphae of AM fungi also have phosphatase activity associated with their cell walls (Joner et

al., 2000; Ezawa et al., 2005). Humic substances can also increase the activity of secreted acid

phosphatases (Zancani et al., 2009).

Biological nitrogen fixation (BNF) by soil organisms is considered one of the major mechanisms by which

plants benefit from beneficial microorganisms. Significant levels of BNF from sources other than

nodulated legumes (symbiotic N2 fixation) have shown potential to improve plant growth (Kennedy and

Islam, 2001). Asymbiotic N2 fixation (ANF) was defined by Kennedy and Islam (2001) as any N2 fixation

by microbial cells growing independently (free living) in soil as saprophytes, where BNF occur in loose or

close association with the plant rhizosphere, endophytically, but not requiring morphologically defined

nodules. The highly organised nature of the symbotic systems are in strong contrast to the disorganised

nature of the asymbiotic system. Bacillus strains showed ability to fix N2 asymbiotically in apricot (Esitken

et al., 2003), raspberry (Orhan et al., 2006) and apple (Aslantas et al., 2007). Karlidag et al. (2007) found

that some Bacillus strains could be associated with increased plant N content.

1.4.3 Decontamination of polluted soils

Organic material affects the mobility of heavy metals (Magdoff and Weil, 2004) and can precipitate

metals, or through microbial activity catalyse the breakdown of organic pollutants, thereby increasing plant

growth (Romantschuk et al., 2000). Insoluble organic matter usually forms insoluble organo-metal

complexes or absorbs metal ions, making them less available (Sauve et al., 1998). The addition of organic

residues to acidic soils can reduce Al toxicity (Haynes and Mokolobate, 2001). During residue

decomposition soluble humic molecules as well as low molecular weight aliphatic organic acids are

released or synthesised by decomposer microflora (Stevenson, 1994). These substances can form
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complexes with phytotoxic monomeric Al in soil solution, detoxifying it. Humic substances can also

influence the effect and mobility of non-ionic organic compounds, such as pesticides and pollutants, by

removing these from aqueous solution (Chiou, 1990). Pesticides or their degradation intermediates can be

polymerised or incorporated into humus by the action of soil microbial enzymes (Bollag et al., 1992).

The use of living organisms for decontamination of soils is termed bioremediation (Kumar et al., 1995).

The process can involve immobilisation of heavy metals in soil (Barea et al., 2005; Turnau et al., 2005), or

extraction into the plant. Lambais and Cardoso (1993) suggested that AM fungi can induce the synthesis of

metal binding proteins in the root as a means of protecting the plant against potential phytotoxic elements,

such as Cd, Lb, Al, Mn. Rhizobacteria and AM fungi can also act synergistically. However, a key aspect is

the use of heavy metal-adapted microbes.

1.4.4 Crop protection against phytopathogens

Disease suppression through biological amendments typically results from multiple mechanisms (Hoitink

and Fahey, 1986; De Ceuster and Hoitink 1999; Hoitink and Boehm, 1999; Litterick et al., 2004; Noble

and Coventry, 2005). Conditions for improved root growth and plant nutrition can increase plant vigour,

leading to disease escape or masking of symptoms (Campbell, 1989). Huisman (1982) found that rapidly

moving root tips are less likely to become infected, as the portion of root of greatest exudation as well as

susceptibility moves past the fungal propagule by the time it has germinated. However, suppressiveness is

in most cases either directly or indirectly related to changes in microbial activity and diversity (Hoitink and

Fahey, 1986). Pathogens can be affected directly through parasitism, competition, the release of

antimicrobial compounds and decomposition products detrimental to the pathogen, or indirectly through

the production of volatile and soluble compounds that induce plant resistance and result in changes in

rhizospere community composition (Lockwood 1988; Windels, 1997; Van Loon et al., 1998; 1988; Bowen

and Rovira, 1999; Tenuta and Lazarovits, 2002; Zahir et al., 2004). However, Windels (1997) stated that

high populations of pathogens or parasites, or unusually favourable conditions for disease development can

negate beneficial aspects of biological amendments.

1.4.4.1 Predation or parasitism against pathogens

The spectrum of parasitism could range from the simple attachment of cells to hyphae, to complete lysis

and degradation of pathogen hyphae through production of extracellular cell wall degrading enzymes

(Whipps, 1997). The ability of bacteria, especially actinomycetes, to parasitise and degrade spores of

fungal plant pathogens is well established (EL-Tarabily et al., 1997). Mycoparasitism is the most

documented action of the well known biological control fungus, Trichoderma (Harman et al., 2004).

Trichoderma species often colonise compost spontaneously or are stimulated in soil after compost

amendment (Bullock and Ristaino, 2002) and act against various soil-borne pathogens. In studies by EL-

Masry et al. (2002) unautoclaved compost in in vitro studies reduced hyphal growth of pathogenic fungi,
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compared to autoclaved compost, due to the presence of various lysogenic enzymes playing a role in

fungal degradation.

1.4.4.2 Antibiosis

Antibiosis is antagonism mediated by specific or non-specific metabolites of microbial origin including

antibiotics, or other volatile compounds and toxic substances (Baker and Cook, 1974; Fravel, 1988).

Antibiotic production by both fungi and bacteria is a well documented phenomenon (Howell and

Stipanovic, 1993). Among prokaryotes a wide range of bacteria such as Agrobacterium, Bacillus,

Streptomyces, Burkholderia and Pseudomas spp. have been shown to be effective antagonists (Yasuda and

Katoh, 1987; Fenton et al., 1992). Among the eukaryotes, although a wide variety of fungal species display

antagonistic properties, Trichoderma species clearly dominate (Harman et al., 2004; Barea et al., 2005).

Non-pathogenic species of Pythium and Fusarium are also receiving increased attention as antibiotic

producers. Lugtenberg and Leveau (2007) concluded that it is likely that root colonization is required as

the delivery system of the antibiotic.

With the use of compost teas, Cronin et al. (1996) found that sterilised NCT retained suppressive qualities,

but if the compost were sterilised before fermentation, suppressiveness was lost. They suggested that

antibiosis was partly responsible for the disease suppressive effects. Yohalem et al. (1996) also found that

the disease control with compost extract application was probably related to microbial produced

metabolites which were extracted from the compost.

Certain high N content organic amendments were shown to provide disease suppression through biological

activity acting upon the amendment, resulting in the release of antimicrobial metabolites (Tenuta and

Lazarovits, 2002; Lazarovits, 2001). The biocidal nature of biofumigant plants resides in their capacity to

produce glucosinolates, of which hydrolysis yields various biologically active compounds with broad

spectrum antimicrobial activity, including isothiocyanates (Brown and Morra, 1997).

1.4.4.3 Competition for substrate, space and nutrients

Competition for substrate colonization and space is another well documented mechanism of biological

control (Baker and Cook, 1974). Pathogens that grow saprophytically on plant residues can be managed by

pre-colonisation with non-pathogens (Cook and Baker, 1983). Colonisation of roots by non pathogenic

strains (including mycorrhiza) can also result in competition for root infection sites (Weller, 1988; Azcón-

Aguilar and Barea, 1997). When sterilisation of compost extracts results in loss of disease suppressiveness

(Scheurell and Mahaffee, 2002), microbial competition is generally indicated as the mechanism of action.

Competition for nutrients can lead to energy stress resulting in repression of microbial spore germination.

Siderophore mediated competition for Fe is an important mechanism of biocontrol of Fusarium and

Pythium spp. (Kloepper et al., 1980; Duijff et al., 1994). Siderophores are low molecular weight Fe binding
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compounds, and have also been associated with the fungal pathogen suppressive properties of several

Pseudomonas spp. (Kloepper et al., 1980; Leong, 1986; O’Sullivan and O’Gara, 1992). The Fe

sequestering abilities deprive the pathogen of available Fe. Results from Dixon and Walsh (1998) showed

that seaweed extracts encouraged the growth of the beneficial bacteria Pseudomonas putida, as well as

their capacity to form siderophores. Diánez et al. (2006) found microorganisms present in grape marc

compost that excreted siderophores, which when extracted into the ACT, prevented the development of

various phytopathogens.

1.4.4.4 Induced systemic resistance (ISR)

Induced systemic resistance (ISR) is a physiological state of enhanced defence capacity of the host plant

that is activated by specific inducing stimuli (biotic or abiotic), whereby the plant’s innate defences are

potentiated against subsequent biotic challenges and is effective against a broad range of pathogens and

parasites (Kloepper et al., 1992; Van Loon et al., 1998). Generally, induced resistance is systemic, because

the defensive capacity is increased not only in the primary infected plant parts, but also in non-infected,

spatially separated tissues. A network of signalling pathways regulates ISR against plant pathogens, of

which the primary components are plant signal molecules such as salicylic acid (SA). jasmonic acid (JA),

ethylene (ET) and nitric oxide (NO) (Choudary et al., 2008). Changes that have been observed in plant

roots exhibiting ISR include, strengthening of cell walls, increased levels of enzymes such as chitinase and

peroxidase, enhanced phytoalexin production and enhanced expression of stress related genes (Whipps,

2001).

The greatest growth area in biocontrol in the past few years has perhaps been concerned with ISR

(Kloepper et al., 1992). The use of specific soil inoculants such as Bacillus and Pseudomonas rhizobacteria

has received increased attention as inducers of systemic resistance in plants (Van Loon et al., 1998;

Choudary and Johri, 2008), as well as AM fungal associations (Pozo et al., 2002). The protective effect of

compost and compost extracts (Zhang et al., 1996, 1998) as well as some seaweed extracts (Dixon and

Walsh, 2004) is partly due to the induction of systemic resistance. Some Bacillus spp. can produce

antibiotics, but are poor colonizers of the root. In this respect, some antibiotics also appear to be able to

induce systemic resistance (Lugtenberg and Leveau, 2007).

1.4.4.5 Altering microbial rhizosphere composition

Shifts in microbial community structure and the resulting microbial equilibria is one of the mechanisms

through which mycorrhizal fungi exert a biological control effect on soil pathogens (Linderman, 2000;

Whipps, 2004). Another possible strategy in biological control is also utilisation of soil amendments with

the capability to selectively enhance activity or populations of microbial components that function in

disease suppression. Mazzola et al. (2001) observed that changes in the resident soil microbial community

contribute to the control of Rhizoctonia root rot of apple in response to the application of brassicaceuos

seed meal amendments in orchard systems. The observed disease control appeared to function through the



32

proliferation of resident Streptomyces possessing the capacity to produce NO, known to induce plant host

defence responses (Cohen et al., 2005).

Plant cultivation is also a viable means to manipulate the composition and function of resident soil

microflora. The effect on soil microbial communities generally results from changes in root exudation

chemistry (Marschner et al., 2001). Cultivation of various cover crops have been shown to enhance the

growth of effective antagonists (Vargas-Ayala et al., 2000; Mazzola and Gu, 2002; Weller et al., 2002).

Some studies demonstrated a plant-genotype dependant capacity to select for specific functional microbial

elements that contribute to soil suppressiveness and their activity in the rhizosphere (Latour et al., 1996;

Marschner et al., 2001; Notz et al., 2001; Gu and Mazzola, 2003).

Results from Mazzola and Gu (2002) indicated that wheat cover cropping during orchard renovation may

reduce the incidence of root infection caused by both Pythium and Rhizoctonia spp. and thereby improve

growth of apple in apple replant disease (ARD) soils where these pathogens are involved. Changes in the

composition of the fluorescent pseudomonad community contributed to the reduction in disease severity

(Mazzola, 1999). Furthermore, bacterial and fungal communities in the rhizosphere of rootstocks

susceptible to ARD differed from tolerant rootstocks (Rumberger et al., 2007) and it was therefore

suggested that certain rootstock genotypes may promote pre-emptive root colonizing symbionts that

suppress root pathogens and provide indirect forms of ARD suppression.

1.4.4.6 Compost and disease suppression

Compost typically suppresses disease through multiple mechanisms (Litterick et al., 2004). Although

disease suppression associated with compost is generally through biological mechanisms (De Ceuster and

Hoitink 1999; Hoitink and Boehm, 1999; Noble and Coventry, 2005), it is not always clear if the

suppression functions through the enhanced activity of the indigenous microbial community or through

introduced populations resident in compost. Kowalchuk et al. (2003) found with the use of DNA

fingerprinting that the suppression of Pythium was functioning through a biological community native to

the compost and that different microbial communities can lead to suppression against Pythium. This was

concluded since restoration of suppressiveness in compost-amended soils was associated with a different

microbial community than observed in untreated, suppressive soils. Pérez-Piqueres et al. (2006), in

microcosm lab experiments, studied the short term effect of non-amended, amended soil and the

amendments itself on soil microbial DNA profiles. They suggested that shifts in microbial community

structure and density were mainly due to amendment with new community members originating from the

compost, although there also was stimulation of the resident soil microflora. In a study on Fusarium wilt

suppression it was however shown that the resident soil microflora was more effective than the compost

microflora in limiting disease development (Cotxarrera et al., 2002).
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Pascual et al. (2002) concluded that control of Pythium ultimum with the humic fraction of municipal solid

waste compost was associated with increased Pseudomonas and Trichoderma colony forming units (CFU)

in the soil. They attributed the significant increases to the carbon and nutrients provided by the compost,

due to similar effects with sterilized and unsterilised compost. Application of the compost also resulted in

higher Pseudomonas and Trichoderma counts than when a water-soluble extract of the compost was

applied, indicating the importance of the carbon provided.

Distinction must furthermore be made between general and specific disease suppression. In systems

associated with general suppression, suppression typically occurs as a result of an overall increase in

microbial activity and biomass (Cook and Baker, 1983). Pythium and Phythophtora can in most cases be

controlled through general suppression (Hoitink et al., 1997). However, this general mechanism of

suppression is not universal as control of certain pathogens such as Rhizoctonia solani with compost

amendments, appears to have greater biological specificity (Hoitink and Boehm, 1999). Only about 20% of

compost tested, naturally suppress Rhizoctonia (Hoitink and Boehm 1999; Tuitert et al., 1998) and

suppression is normally generated through the activities of one or several specific populations of soil

organisms (Cook and Baker, 1983). To improve consistency in disease control, compost can be inoculated

with specific antagonists, such as Trichoderma and Gliocladium (Hoitink et al., 1991).

Pérez-Piqueres et al. (2006) in their study indicated that changes in community structure induced by

compost, related both to soil and type of organic amendment. Termorshuizen et al. (2006), in bioassays

involving 18 composts and 17 pathosystems, found significant disease suppression in 54% of cases and

disease suppression was related to the properties of compost-substrate mixes rather than just the pure

compost. Both these studies concluded that disease suppression will therefore be better predicted based on

evaluation of soil-compost mixes, rather than compost on its own.

One of the biggest impediments in disease suppression with compost is variability. Compost can be

expected to have variable effects as organic materials with variable properties are applied (Hoitink and

Fahey, 1986; Litterick et al., 2004). Maturity of the composting material is an important factor in disease

suppression. Addition of fresh material in early stages of decomposition can lead to temporary increases in

populations of pathogens such as Rhizoctonia and Pythium spp because they can reproduce easily in such

material (Rush et al, 1986; Van Bruggen and Termorshuizen, 2003). Metabolic by-products of microbial

decomposition of fresh material can also be phytotoxic, predisposing the plant to attack by pathogens

(Linderman, 1989). Synthesis of lytic enzymes involved in parasitism are also repressed in fresh organic

matter due to high concentrations of available nutrients (De la Cruz et al., 1993) and the same may be true

for antibiotic production.
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1.4.4.7 Soil inoculants and disease suppression

There are several factors hampering the large-scale inoculation of agricultural soil with beneficial

microorganisms. Firstly, to achieve the desired effect in the field, the inoculant organism must not only

survive but establish itself, as well as dominate in the soil or rhizosphere (Bünemann et al., 2006).

Effective use of soil inoculants also strongly depend on soil physical and chemical factors (e.g. adequate

nutrition), environmental conditions, as well as the plant involved (Kennedy et al., 2004). From literature it

is clear that the response with different AM fungal species and in vitro propagated rootstocks are variable

and that there are distinct genetic variations in responsiveness to AM fungi within plant species (Smith et

al., 1992; Allen 1996). Inoculant strains can also be restricted to the plant roots of certain species because

of special nutritional needs such as high sugar concentration (Kennedy et al., 2004). A high degree of crop,

as well as site specificity are exhibited by various microbial isolates towards controlling different

pathogens, as well as producing biologically active substances (Martin 2003; Zahir et al., 2004).

The addition of multiple microorganisms to a given system appears attractive, considering the multifaceted

beneficial effects of various rhizosphere organisms (Avis et al., 2008). Several reports have shown

potential in combining different biocontrol agents with various disease-suppression mechanisms in the

field (De Boer et al., 2003). However, in trials on strawberries testing different inoculation patterns on the

effect of five diverse rhizosphere microorganisms, Vestberg et al. (2004) found that the biocontrol fungi

did not establish well, while Bacillus bacteria were the most promising PGPR. Growth promotion effects

were not consistent and dual inoculation did not seem to provide a significant additional benefit. Growth

promoting effects of some PGPR can also be significantly reduced in the presence of other rhizobactera

and possible competitiveness between microorganisms must be taken into account (Barea et al., 2005; Avis

et al., 2008). Combinations of rhizobacteria which individually produce beneficial levels of plant hormones

may also in combination produce inhibitory amounts (Bent et al., 2001).

Compost and other substrates can be used as carriers to augment survival and function of introduced

inoculants (Hoitink and Boehm, 1999). Another strategy which may help contribute to the establishment of

introduced organisms is through the use of selected communities of endophytic microorganisms (Sturz and

Nowak, 2000). These microorganisms for part of their life cycle invade tissue of living plants and cause

unapparent and asymptomatic infections entirely within plant tissue, but cause no disease symptoms.

However, much research is still needed regarding their community structures, principal functions and

ecological stability.

1.4.5 Control of pests

1.4.5.1 Plant parasitic nematodes

Similar mechanisms are involved in the nematicidal effects of biological amendments than with biocontrol

of plant pathogens (Rodriguez-Kabana, 1986; Stirling, 1991; D’Addabbo, 1995; Akhtar and Malik, 2000).

Amending soil with organic material has been associated with decreased population densities of plant
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parasitic nematodes in various vegetable crops (Abawi and Widmer, 2000). In apple orchards, shredded

paper mulch as well as alfalfa straw decreased Pratylenchus penetrans (root lesion nematode) population

densities in roots (Forge et al., 2008). Also in apple, nematodes were lower in compost treated soil

compared to control plots for eight months after application (Leinfelder and Merwin, 2006), which is

consistent with results from Forge et al. (2008) and Hoitink and Fahey (1986). Daneel et al. (2000)

concluded that the direct effect of HS on parasitic nematode populations was insignificant, but that HS

products could render the plant more resistant to nematode attacks, by allowing plants to compensate for

root damage. Some studies have also reported nematicidal activity and insect resistance with seaweed

extracts. (Featonby-Smith and Van Staden, 1983; Whapman et al., 1993). Jenkins et al. (1998) concluded

that betaines present in the seaweed extract played a major role in the reduction of root knot nematodes

invading roots of tomato plants and egg recovery from plants was also significantly lower.

Several soil microorganisms are known for their biological control activity against root parasites. These

include various Bacillus rhizobacteria as well as Burkholderia cepacia (Akhtar and Malik, 2000). Another

group of nematode antagonists, the endospore-forming bacteria Pasteuria penetrans, are obligate parasites

of nematodes and currently appear to have the greatest potential as economically practical biological

control agents (Chen et al., 1996). Nematicidal fungi include Trichoderma, Hirsutella spp., Paceilomyces

lilacinus as well as various others (Spiegel and Chet, 1998; Akhtar and Malik, 2000; Sharon et al., 2001).

Nematicidal properties of antibiotics produced by actinomycetes (Streptomyces spp.) have also stimulated

interest (Samac and Kinkel, 2001). Furthermore, free-living nematodes promote rhizosphere colonization

of beneficial rhizobacteria (Knox et al., 2003). Nahar et al. (2006) found that the incorporation of either

raw or composted manure increased the abundance of bacterial and fungal feeding nematodes as well as

omnivorous and predatory nematodes, while decreasing plant parasitic nematode populations.

Nematode-suppressive cover crops through phytochemical based strategies have also received much

attention in nematode control (Chitwood, 2002). These crops produce natural compounds that are toxic to

nematodes and are released from roots of living plants or by incorporation of plants into soil as green

manures. Marigold (Tagetes species) is one of the most highly studied crops for its ability to suppress

nematodes with antagonistic phytochemical exudates, namely the polythienyls. Research also demonstrates

that rhizobacteria living in association with Marigold roots are suppressive to root lesion and other

nematodes (Siddiqui and Alam, 1987; Sturz and Kimpinski, 2004). Furthermore, Marigolds can act as a

trap crop preventing nematodes from maturing or reproducing once they have entered the root. Brassica

spp. (e.g., rapeseed and mustard) also show a nematode-supressive effect that is attributed to glucosinolate

compounds contained in plant residues (Brown and Morra, 1997). Toxicity with these crops is attributed to

enzymatically induced breakdown products of glucosinolates, a large class of compounds known as

isothiocyanates and nitriles that suppress nematodes by interfering with their reproductive cycle. Mazzola

et al. (2001) also observed that soil amendment with Brassica napus seed meal reduced the lesion
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nematode P. penetrans. However, effects were cultivar dependant and some Brassica spp. can even

support high populations of parasitic nematodes.

1.4.5.2 Insect pests

Lower pest pressure with the use of organic amendments could result from the abundance of beneficial

insects, or alternatively the production of healthy plants that are more resistant to insects. Drinkwater et al.

(1995) found that the abundance of arthropod herbivores was similar in organic and conventional systems

but natural enemy communities were distinct. The use of compost as a mulch reduced herbivores and

increased predatory arthropods in apple orchard ecosystems, making them beneficial to insect pest

management (Brown and Tworkoski, 2004). Compost application increased biodiversity of arthropods

inhabiting the orchard floor and also increased soil detritivores by six fold (Matthews et al., 2002). This

abundance in detritivores could aid in predator stabilization, by providing an alternative food resource for

predators and subsequently enhance biocontrol of orchard pests that spend part of their life-cycle on the

orchard floor. Damavandian (1999) showed that the physical effect of a mulch can affect migration of

Eriosoma lanigerum (woolly apple aphid). Fewer nymphs were found in the canopy, possibly due to more

predators on the orchard floor, although infestation of roots was not affected by compost application.

However, the relationship between SOM and the ability of a crop to resist aboveground losses to insects

and diseases are not simple. Reduced insect damage is not always associated with increased predator

densities, or changes in herbivore behavioural preferences. Evidence has been found suggesting that plant

physiology may possibly mediate differences in pest levels (Phelan et al., 1995) and that plants from

organically managed sites differ biochemically. The concept of biological buffering was proposed, which

asserts that a sustained influx of SOM provides the resource base needed for the soil community, whose

interaction act to lessen the changes in the soil environment. Phelan (1997) asserted that the primary

mechanism for biological buffering of plant health is the modulation of mineral availability in the soil

solution by the SOM decomposer food web. They proposed a mineral balance hypothesis, similar to the

plant stress hypothesis of White (1984), to explain lower pest pressure in organic systems. Plants require

an optimal balance of mineral nutrients, therefore not only absolute levels are important but also ratios of

nutrients. Mineral nutrition effects most plant chemistry and also the external communication systems.

Imbalances block certain paths, potentially resulting in slower growth, too low levels of certain

metabolites, or build up of soluble precursors such as amino acids. These changes in plant physiology can

increase host quality for insect herbivores (Cockfield, 1988). Phelan (1997) suggested that organically

managed soils are better able to approximate the optimal plant nutrient balance because they are closer to

the natural soil environment that the plant evolved in. Furthermore, one of the most beneficial aspects of

organic matter is its capacity to buffer mineral availability.
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1.4.6 Production of phytohormones

The positive effect of PGPR on plant growth is generally correlated to remarkable changes in root

morphology and architecture (Arshad and Frankenberger, 1998). It is assumed that this developmental

response is triggered by phytohormone or plant growth regulating substance production by rhizosphere

organisms. Microbial production of phytohormones is one of the major and most plausible mechanisms in

modifying growth and yield of plants (Glick et al., 1998). The stimulatory effects of seaweed extracts on

plant growth, especially root growth, were mostly attributed to phytohormones being the main active

ingredient in these extracts (Crouch and van Staden, 1993). Furthermore, the hormone-like activity of HS

has been investigated intensively (Cacco and Del’agnola, 1984; Vaughan and Malcom, 1985; Piccolo et

al., 1992; Nardi et al., 1996; 2002).

The exogenous supply of plant hormones can provide supplemental quantities to the plant’s endogenous

levels, stimulate endogenous changes in plant phytohormone levels via a chemical signal, affect the

sensitivity of the plant to phytohormones, resulting in altered plant growth or affect plant growth indirectly

through modifying the rhizosphere environment (Glick, 1995; Arshad and Frankenberger, 1998). It should

be emphasized that phytohormones do not act alone but rather interact with one another in a variety of

ways. Therefore, plant response is regulated by the net balance of applied phytohormones as well as

endogenous ones. Since endogenous levels of phytohormones vary with the different stages of growth,

responses would also depend on time of application (Arshad and Frankenberger, 1998). Furthermore,

under certain conditions plants may not have the capacity to synthesize sufficient endogenous

phytohormones for optimal plant growth and then respond more favourably to exogenous application.

1.4.6.1 Microbial production

Production of all major plant hormones by rhizosphere microflora has been reported. Data indicated that

several known pseudomonad strains, shown to increase root growth in the absence of pathogens (Glick,

1995), produced the cytokinin (CK) dihydrozeatin riboside (DHZR) in pure culture (Garcia de Salamone et

al., 2001). Results from Patten and Glick (2002), using indole acetic acid (IAA) deficient mutants of the

bacterium Pseudomonas putida, suggested that bacterial produced IAA (auxin) plays a major role in the

development of the host plant root system. It is also clear that auxin production by microorganisms

proceeds via more than one pathway (Gaudin et al., 1994). Among natural sources, soil microbiota are the

most potent producers of ethylene (Arshad and Frankenberger, 1989). Barea et al., (1976) reported that

among 50 bacterial isolates collected from the rhizosphere of various plants, 86, 58 and 90% produced

auxin, gibberellins and CK-like substances respectively. Protozoa can also stimulate plant growth by

altering concentrations of plant hormones such as auxin (Jentschke et al., 1995). The free-living

diazotrophs Azotobacter and Azospirillum, as well as the micro-symbiont Rhizobia, have significant effects

on plant growth and development which has been attributed to production of auxins, gibberellins and CK

(Arshad and Frankenberger, 1998). The ability of Azospirillum species to produce auxin-type

phytohormones may even be more important than their N2 fixing activity (Dobbelaere et al., 1999).
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Production of abscisic acid is also a common characteristic of soil and rhizosphere microflora (Neill et al.,

1982; Crocoll et al., 1991) although they have not been evaluated extensively. Microbially released

phytohormones can be of valuable ecological significance to the agricultural industry in providing a

continuous supply that may prove better than one-time applications of synthetic phytohormones (Arshad

and Frankenberger, 1998).

The type and amount of phytohormones produced varies between different microorganisms (Zahir et al.,

2004). Aslantas et al. (2007) found that several PGPR species were capable of producing IAA, but amounts

varied between species and higher amounts of both IAA and CK production appeared to be directly

correlated with plant growth and yield. Bent et al. (2001) also observed bacteria species-specific affects in

root hormone levels, where auxin levels were elevated in roots inoculated with Pseudomonas polymyxa

while CK levels were elevated with P. fluorescens. Furthermore, not all strains of Pseudomonas

fluorescens tested by Jeon et al. (2003) produced IAA.

Although the direct benefit of phytohormone production by soil microorganisms is not clear, it is possible

that their production may benefit the microorganism through control of its environment (Bent et al., 2001).

By affecting plant metabolism, the microbe in turn affects the chemical composition of plant exudates and,

hence, its nutritional supply. Beyrle (1995) reviewed the role of phytohormones in the function and biology

of mycorrhizae. Auxin production is widespread among many mycorrhizal fungi which may indicate that

this hormone plays a role in the symbiosis (Arshad and Frankenberger, 1998). Barker and Tagu (2000)

suggested that CK is involved in signalling between AM fungi and the host cell. Their research on AM

fungi has shown that CK accumulation throughout the plant is specifically enhanced by the symbiosis and

a pathway was proposed linking enhanced CK to development of AM fungal associations.

The involvement of enzymes such as aminocyclopropane carboxylic acid (ACC) deaminase, produced by

Pseudomonas putida have also been suggested in modifying the root growth of different plants (Glick et

al., 1998). This bacterium hydrolyses ACC, a precursor of ethylene in higher plants, thereby lowering

endogenous ACC levels with a subsequent increase in root elongation. This effect is due to reduced

inhibition caused by ETH, resulting in plant growth promotion (Gravel et al., 2007).

1.4.6.2 Hormone-like activity of humic substances

Humic substances affect plant nutrient uptake, but can also show a specific, direct effect on plant

metabolism (Pinton et al., 1992; Varini et al., 1993; Chen et al., 2004) through the active uptake of LMW

components of HS (Vaughn et al., 1985; Valdrigi et al., 1995). Humic substances have also been reported

to act as electron donors, intervening in the respiratory chain of cells thereby increasing the energy supply

to cells (Sanchez-Sanchez et al., 2002). Both the photosynthesis and respiration rate of plants were

enhanced by the presence of HS (Vaughan et al., 1985), and Vaughan and Malcolm (1979) also observed

interaction of HS in the production of nucleic acids. The effects of HS on plant physiology include
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modification of root morphology, proliferation of lateral roots and root hairs and higher differentiation rate

of root cells (Concheri et al., 1996; Canellas et al., 2002). Hormone-like activity has been suggested for

several humic fractions whose biological action appears to mimic the response induced by various

phytohormones, such as gibberellic acid and IAA. The fact that HS exhibit regulatory effects on enzyme

activity and plant cell growth and development also indicates possible hormonal activity (Cacco and

Del’agnola, 1984; Vaughan and Malcom, 1985; Piccolo et al., 1992; Nardi et al., 2002). Enzyme activity

effects have been investigated particularly in IAA metabolism. (Mato et al., 1972 a, b; Chen and Aviad,

1990). Inhibition of the catabolic enzyme IAA oxidase hinders IAA destruction, thereby causing an

increase of endogenous hormone concentration in plant tissue. Cacco and Del’agnola (1984) showed

quantifiable auxin- and CK-like action of soluble humic complexes, although at low activity. Nardi et al.

(1994) concluded that the LMW fraction was the component with hormone-like activity.

The hormone effect of HS has been debated for almost a century, with mainly indirect evidence being

provided (Muscola et al., 1998; Canellas et al., 2002, Nardi et al., 2002; Dobbs et al., 2007; Zandonadi et

al., 2007). Chen et al. (1994) directly examined the presence of auxin, gibberellins, CK and abscisic acid in

HS extracts and failed to provide evidence of their presence. Schmidt et al. (2007) provided evidence that

LMW fractions alter root development without significantly affecting the auxin homeostasis of the plant.

They demonstrated that water-extractable HS could induce an increase in the root absorptive surface by

affecting genes involved in epidermal cell fate specification, but could not find evidence for a role in the

expression of auxin-related genes. However, HS acting as plant growth regulating hormones can not be

ruled out and further research continues (Chen et al., 2004).

Frankenberger and Arshad (1995) found that the active ingredients in humus were organic substances and

biologically-active metabolites of various microbes and proposed that HS could perhaps be considered as a

‘memory’ of microbial population and plant cover. Nardi et al. (2002) therefore concluded that it was not

clear if the hormonal effect of HS is strictly linked to the chemical structure of HS or whether it depends

on hormones of microbial origin forming a bioactive part of the HS molecule.

1.4.6.3 Hormones as active ingredients of seaweed extracts

De Villiers et al. (1983) stated that if the observed effects with liquid seaweed extract (LSE) are induced

through plant hormone action, it could explain the dependence of effects on crop type, plant growth stage

with application, concentration, as well as composition of the extract. Results from various studies indicate

that CK are involved in the activity of seaweed extracts (Blunden and Wildgoose, 1977; Featonby-Smith

and Van Staden, 1984; Finnie and van Staden, 1985; Chouliaras et al., 1997). There are several reports

suggesting that the accumulation level of CK and export by the roots is closely correlated with the

nutritional status of the plant (Menary and van Staden, 1976; Sattelmacher and Marschner, 1978, Horgan

and Wareing, 1980; Samuelson and Larsson 1993; Wagner and Beck, 1993; Takei et al., 2001).
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The wide range of physiological effects obtained after application of seaweed extracts imply that more than

one group of plant growth regulators are possibly involved (Crouch and van Staden, 1993). Auxins were

also identified from seaweed extracts (Sanderson et al., 1987; Crouch and van Staden, 1992). Results from

Stirk and van Staden (1997) indicated that levels of CK- and auxin-like activity were similar for six

commercial seaweed extracts tested.

1.5 EFFECT ON HORTICULTURAL PERFORMANCE OF THE CROP

Although the beneficial effects of biological management practices on microbial activity and other soil

functions have been extensively documented and a combination of mechanisms studied through which the

plant can be affected, it is not always easy to demonstrate influence on crop yield under field conditions.

However, improved root growth proliferation and better fruit quality is of equal importance, although

economic benefits may not always be immediate.

1.5.1 Root growth proliferation

Changes in root architecture and physiology affect water and nutrient absorption, therefore the activity of

the root system plays a central role in adaptation to environmental conditions and ultimately, plant

performance. Organic matter application increased root number, root length, growth rate and branching

indices in maize seedlings (Sangakkara et al., 2008). The effect of HS on root growth, especially in annual

crops, are widely documented (Bryan, 1976; Mylonas and McCants, 1980; Rauthan and Schnitzer, 1981;

Chen and Aviad, 1990; Crouch and van Staden, 1991; van de Venter et al., 1991; Adani et al., 1998) and

both increases in root length and stimulation of the development of secondary roots have been observed

(Vaughan and Malcolm, 1985). Application of seaweed extracts also increased root growth in various

studies (Finnie and van Staden 1985; Metting et al., 1990; Crouch and van Staden, 1991). Furthermore, soil

inoculants such as PGPR and AM fungi were shown to cause changes in root morphology and architecture

(Glick, 1995; Azcón-Anguilar and Barea, 1997; Van Loon et al., 1998; George, 2000; Zahir et al., 2004;

Gravel et al., 2007).

Few detailed root studies have been executed on the effect of biological amendments on root growth in

fruit crops. Mulching has been shown to increase fine feeder root biomass (Boynton and Oberly, 1966;

Yao et al., 2005; Forge et al., 2008) with greater root density beneath the mulch near the soil surface and

roots extending into the mulch itself (Baker, 1943; Pinamonti, 1998). Moore-Gordon et al. (1996) found

more prolonged and extensive root growth in mulched plots. In vineyards, Reynolds et al. (1995) noted that

fresh and dry weight responses of roots to increasing levels of humate application followed a quadratic

trend. Webb and Bings (1988) observed favourable effects of humate soil amendments in mature, declining

Valencia orange trees that showed enhanced water uptake one year after application. Field observations in

fruit trees with compost application also showed increased rooting densities in the top 30cm (Kotze and

Joubert, 1992).
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1.5.2 Growth and yield

1.5.2.1 Organic matter application

Strickling (1975) found that SOM levels accounted for more than 80% of the variation in corn yield,

regardless of fertilisation levels. Improvement of tree vigour and maximisation of fruit yield has generally

been reported with mulching of fruit trees, as reviewed by Cockroft and Tisdall (1974) and Hogue and

Neilsen (1987). Much less research has been conducted on the effects of incorporated organic matter on

fruit tree yield and results in general are more variable, due to great variability in compost quality factors.

Mulching has also been combined with other organic matter applications such as compost, biosolids and

manure.

The importance of increased vigour to initial yield has been indicated by various researchers. Kotzé and

Joubert (1992), in a sandy soil, achieved significant increases in annual trunk circumferences of apricot

trees, when applying an organic mulch and concluded that tree responses to mulching could be expected to

be higher for young trees, where the surface exposed to radiant energy is higher. The bigger trees had

increased cumulative yield by 22% compared to non mulched plots. In the same study, it was also found

that tree growth and production were significantly increased by pre-plant compost application, mixed with

the soil to a depth of 30 cm. Tree growth improved from the first year after planting, and cumulative yield

over four years increased by 55% compared to plots not receiving compost. Shribbs and Schroch (1986a)

found in non-irrigated plots that first year growth of apple trees was significantly increased with rye straw

mulch and that in the fourth year of application, trunk diameter was still significantly greater compared to

control plots, despite similar relative growth rates.

In a high density, fertigated apple orchard, Neilsen et al. (2003a) found that vigour and yield over the first

five fruiting seasons was increased by soil management practices of various surface mulches (alfalfa,

biosolids, paper) widely differing in nutrient contents. Yield was lowest for the plots receiving the standard

commercial practice of maintaining a 2 m-wide weed free strip with multiple glyphosate applications. In a

similar study (Neilsen et al., 2007), trunk cross-sectional area was consistently greater for trees with paper

mulch each year for the 6-year trial period, but effects on yield was less pronounced compared to the study

of Neilsen et al., (2003a). In both the above studies, maintenance of paper mulch affected vigour more than

periodic applications of biosolids. However, potential benefits of the high nutrient content of biosolids in

terms of plant nutrition may have been masked by a strong fertigation regime used. In another experiment

where municipal compost was rotovated into the top 30 cm prior to planting, first year shoot growth of

Braeburn apple was improved (Neilsen et al., 2004), however the effect on yield was not established.

Niggli et al. (1990), in a field study using various organic mulches, also showed lowest fruit yield for un-

mulched, herbicide treated plots. Furthermore, mulching reduced strong annual yield fluctuations in a

cultivar where this poses a problem. Marsh et al. (1996) in a study on orchard understorey management in

apple, found that in three years mulching induced greater growth than trees with a mown understorey and

yield was increased more by mulch treatments than compost application. Van Schoor et al. (2009) found
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that compost in combination with a straw mulch significantly increased growth of newly established apple

trees.

In a study by Varga et al. (2004) cumulative yield over the first two bearing seasons of apple were

significantly greater for trees with pine bark mulch, but not with straw mulch and livestock manure

application. Trunk circumference area of trees planted with these various organic mulches differed only

slightly from clean cultivation plots after four seasons. Pinamonti et al. (1995) studied the effect of

compost mulch applications on growth and yield of apple and vines and found significant effects in the

early years of the trial period. Autio et al. (1991) in two studies on newly planted apple trees showed that

peat moss amendment in the planting hole significantly increased growth compared to the controls in the

establishment years of the orchard. Composted horse manure only had an effect on tree growth in one of

the studies.

Although results on growth and yield have been favourable in general, some studies have shown little or no

significant effect of mulching on yield, despite increased growth with organic mulches (Merwin et al.,

1994; Merwin et al., 1995). Hartley and Rahman (1994) found no significant effect on tree branch

extension, trunk growth or yield over a 3-year period with application of various mulches, including

compost, to two and 3-year old orchards. In pear, yield was not increased by biosolid compost applied to

the soil surface (Korcak, 1986). In a study on grapevine, Pinamonti (1998) found that two different

composts, applied twice over 5 years improved growth only during the first year and over four cropping

seasons only plastic mulch had a significant effect on yield. Neilsen et al. (2004) observed that effects were

also not observed at sites with strong fertigation regimes, fertile soils, or when sites had overriding growth

limitations unaffected by the treatment. Compost and other organic amendments have also been reported

by some researchers to be ineffective in improving growth of apple trees on sites with apple replant disease

(ARD) (Granatstein and Mazzola, 2001; Rumberger et al., 2004; Neilsen et al., 2004; Wilson et al., 2004).

Yield can also be negatively affected when mulching creates conditions favourable for pest and disease

development (Merwin et al., 1992), or reduced aeration (Robinson and O’Kennedy, 1978). Furthermore,

Marsh et al. (1996) stated that sustained tree vigour with organic mulch application can become

problematic in high-density plantings. Faber et al. (2001) also noted that irrigation had to be adjusted with

mulching to accommodate higher soil moisture contents that could be conducive to root rots. Neilsen et al.

(2004) concluded that an adjustment in irrigation regime may be required to maximise the benefits of

mulching, since it is difficult to maintain sufficient N in the root zone under these conditions.

With the application of raw or composted organic materials, rate of application, maturity of the material,

heavy metal content and nutrient content are all factors that can influence the effect on yield negatively

(Linderman, 1989; Roe, 1998; Van Bruggen and Termorshuizen, 2003). Planting should therefore be

delayed after incorporation of fresh organic matter, to reduce possible negative effects on yield. Ros et al.

(2003) found that the incorporation of compost seems to be more effective than fresh organic matter due to
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its stabilized organic matter content. Gallardo-Lara and Nogales (1987) found that combining mineral

fertilizer with compost generally resulted in higher yield than either alone. It is also advised to use N

fertilizer for the first few years after introducing organic mulches to prevent N-immobilisation (Hogue and

Neilsen, 1987; Geiger et al., 1992).

1.5.2.2 Microbial inoculants

Crop yield and quality are affected by microorganisms associated with the rhizosphere (Glick, 1995;

Rodriguez and Fraga, 1999). However, little research has been done on the use of microbial inoculants in

promoting growth and yield in fruit tree crops. Their effect in horticulture has mostly been studied in

relation to disease suppression, thereby indirectly affecting plant growth.

The AM fungi are one of the most researched groups of soil microorganisms. Since AM symbiosis can

benefit plant growth and health there is an increasing interest in their incorporation into plant production

practices (Azcón-Aguilar and Barea, 1997). In this regard, fruit crops have received more attention than

vegetables and ornamentals. It is accepted that the first evidence of positive influence of AM symbiosis on

horticultural field production was provided from a study by Menge et al. (1977) on establishment of citrus

plants in nursery beds. Growth stimulation with AM fungi in apple trees has also been observed in

different stages of plant development (Plenchett et al., 1981; Morin et al., 1994; Von Bennewitz, 2006).

Several reports have shown that AM fungi are more efficient in promoting growth of apple plants than

applying fertiliser only (Geddeda et al., 1984; Miller et al., 1985). Plenchette et al. (1981) demonstrated

increased growth and mineral uptake of apple trees colonized by mycorrhizal fungi in conventionally

managed apple orchards. Apple growth responses to mycorrhiza have also been shown in various pot

studies (Covey et al., 1981; Koch et al., 1982; Gnekow and Marschner, 1989).

Generally, results seem to be more favourable when AM inoculum is introduced into a sterile environment

where the introduced strains do not have to compete with other soil microbial communities or already

established strains (Plenchette et al., 1981; Menge et al., 1983; Catska and Taube-baab, 1994; Forge et al.,

2001). Lack of positive results with AM fungi in some studies may be ascribed to inoculum containing low

numbers of viable propagules or incompatibility with the host plant (Abbott and Murphy, 2003).

Futhermore, effects may be masked in soils with high P (Geddeda et al., 1984; Runjin, 1989; Morin et al.,

1994; Marschner and Dell, 1994), as well as by indigenous AM fungi (Dodd et al., 2000; Meyer et al.,

2004). However, in other studies AM fungi was shown to be a factor even under high P levels

(Wooldridge, 1999; Schubert and Lubraco, 2000; Douds and Reider, 2003; Douds et al., 2007) and their

effect should therefore not be ignored in these systems.

Several studies indicate that PGPR may act as natural elicitors for improving the growth and yield of

wheat, maize and potato (Xia et al., 1990; Zahir et al., 1996; Zahir and Arshad, 1996; Javed and Arshad,

1997; Javed et al., 1998; Dobbelaere et al., 2001). In various studies it was also found that PGPR could
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stimulate growth and increase yield and fruit quality in citrus, apricot, sweet cherry and raspberry

(Kloepper, 1994; Esitken et al., 2003; Orhan et al., 2006). In a recent study on young apple trees and the

effect of PGPR, Aslantas et al. (2007) found Pseudomonas and Bacillus spp. effective in promoting shoot

growth and yield of different apple cultivars. The various rootstock-cultivar combinations responded

differently to inoculation with the various PGPR isolates, indicating very specific plant-microbe

interactions. In floriculture, Bacillus subtilis increased flower fresh weight as well as total inflorescence

production significantly and produced higher numbers of mature flowers than uninoculated plants (Flores

et al., 2007).

Few effects on yield of fruit tree crops with EM and compost teas are documented in the scientific

literature. However, preliminary results from a study in South Africa showed significant increases in tree

growth when compost extract was applied in addition to compost (Van Schoor et al., 2008).

Microbial inoculants can also affect plants negatively. According to Johnson et al. (1992), AM fungal

species, and even isolates within species, may vary from mutualistic to neutral to pathogenic. When

nutrients and water are in unlimited supply and pathogens absent, the cost of AM symbioses may outweigh

their benefits and plant growth can be depressed (Johnson et al., 1997). Furthermore, co-inoculation does

not always provide synergistic effects. Flores et al. (2007) found that the increase in inflorescence

production was higher when a B. subtilis strain was applied alone, than when applied in combination with

an AM fungus. In cases where the plant and PGPR strain are incompatible, a decline in yield may be

associated with inoculation (Nguyen et al., 2002).

1.5.2.3 Humic substances and seaweed extracts

Positive effects on plant growth with HS can be summarised as general stimulation of plant biomass

production (Vaughn and Malcolm, 1985; Chen et al., 2004). Increased yield with the use of commercial

HS has been demonstrated for various herbaceous annual crops (Lee and Bartlett, 1976; Brownell et al.,

1987; Gonet et al., 1996). Commercial HA applications on tomato also improved growth in hydroponics

culture (Adani et al., 1998).

Few scientific studies have focused on the application of HS on fruit tree crops, although some studies

have been conducted on grapevines. Brownell et al. (1987) found increased yield with applications of

commercial leonordite extracts. The most pronounced effects were obtained using a combination of early

soil treatment with a post-emergence foliar spray. They hypothesised that a flowering response was

triggered. Reynolds et al. (1995) investigated the effect of granular and liquid humates on growth of

Chardonnay vines in pots at various concentrations and found that shoot growth responded to increasing

levels of humate application in a predominantly cubic trend, with higher concentrations showing negative

effects. Zachariakis et al. (2001) showed that grapevine rootstocks grown in calcareous soil in the presence
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of HS had increased growth and total leaf chlorophyll content. Significant increases in shoot and root dry

matter, as well as shoot carbohydrate content were also documented.

Webb and Bings (1988) found favourable effects of humate soil amendments on citrus trees under stress as

well as in new plantings. After application on mature trees, growth flushes and productivity were enhanced

after two years. Mature, declining orange trees, treated with humates, were greener with more vigorous

growth flushes than control plots. In newly planted trees, treatment with humate at various concentrations

significantly increased stem cross-sectional area one year later. In contrast to this, Nemec (1992) found no

significant increase in trunk diameter or yield of Valencia orange trees after the first three growing seasons,

when applying humates before planting. In a study by Van Zyl (1996), growth of citrus seedlings in sand

was significantly increased when a humate was applied in combination with bark, but not when applied

alone. Fallahi et al. (2006) could show no consistent effect on yield with apple trees receiving a granular

formulation of HA, and the only significant difference in yield during the three years of application, was

after two years of application where the product was applied in combination with a high N rate.

Most published results consistently show that high concentrations and excessive applications of HS can

negatively influence plant growth (Vallini et al., 1993; Reynolds et al., 1995; Valdrighi et al., 1995; Atiyeh

et al., 2002). Lee and Bartlett (1976) also showed that if HS levels are already high in the soil, addition of

more may not necessarily benefit the crop. Chen and Aviad (1990) concluded that commercial humates

applied to normally productive agricultural soils at rates recommended by their promoters would not

appear to contain sufficient quantities of the necessary ingredients to produce the claimed beneficial

effects. The most benefit is typically obtained in high pH, calcareous soils, that are low in available iron

and with low organic matter content and extractable HA (Chen and Barak, 1982; Zachariakis et al., 2001).

Soils high in Fe and Al (mostly acidic soils in humid areas), may inactivate humates (Rowberry, 1977).

Beneficial effects on plants can therefore be expected to be more effective in arid and semi-arid regions

than humid regions (Chen et al., 2004).

Improved growth and yield have also been reported with the application of seaweed extracts, as well as

earlier production and reduced fruit drop (Finnie and van Staden 1985; Metting et al., 1990; Crouch and

van Staden, 1991; Passam et al., 1993; Fornes et al., 1993; Koo and Mayo, 1994; Nabati et al., 1994;

Chouliaras et al., 1997; Isaac, 2000). Positive effects have mainly been indicated with seedlings (Nelson

and van Staden, 1986; Van Staden et al., 1995; Rijkenberg, 1994) However, the majority of research has

been conducted on the effect of seeweed extract on fruit quality.

1.5.3 Fruit quality

In studies comparing different management systems, the majority of results show higher fruit firmness for

apples produced in organic systems (DeEll and Prange, 1992; Andrews et al., 2001; Renagold et al., 2001;

Peck et al., 2006). Compost applications on their own have shown few significant effects on fruit quality
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(Kotzé and Joubert, 1992; Pinamonti et al., 1995; Neilsen et al., 2003a; Neilsen et al., 2007). However,

Kotzé and Joubert (1992) found that fruit size was not influenced negatively, despite heavy crops on trees

treated with compost. Furthermore, increased N with the addition of compost can reduce fruit firmness

(Marsh et al., 1996). Results from Moore-Gordon et al. (1996) showed that a vigorous root system,

ameliorated by mulching, can result into more and bigger fruit. Bark mulches also improved fruit quality in

a study by Niggli et al. (1990). Specific Bacillus strains applied to young apple trees in a study by Aslantas

et al., (2007) improved fruit size significantly. In field trials on grapevines with seaweed extract, Norrie et

al. (2002) showed a consistent increase in berry size, weight and firmness for several grape varieties and

locations.

Increased shelf- life with seaweed extracts have also been found for peaches (Skelton and Senn 1969).

Mamaguti et al. (2002) found that foliar sprays of seaweed extracts improved red colour intensity and

percentage of fruit skin covered by red colour in Gala, but not Fuji. However, applications had no effect on

yield, fruit weight, or vegetative growth. In floriculture, Flores et al. (2007) found improvements in flower

quality with enhanced xanthophyll content when an AM fungus was applied. Plants inoculated with a

Bacillus or Bacillus in combination with an AM fungus, showed improved intensity and clarity of colour.

According to de Jager (1994), CK in seaweed extracts can be a major factor when applied to apple in

promoting growth of fruiting spurs, and can reduce premature dropping of fruit as well as improve fruit

firmness and skin colour. Seaweed extracts have also been applied in combination with Ca sprays required

to prevent bitter pit in apples to aid in the uptake of Ca. However, North and Wooldridge (2003) found no

beneficial effects that could specifically be attributed to LSE applications where it was applied in addition

to calcium nitrate sprays. De Villiers et al. (1983) concluded that seaweed foliar sprays over two seasons in

a field trial did not have an effect on yield and fruit quality of apples, peaches and table grapes.

In a study by Fallahi et al. (2006) investigating the effect of HS and N on ‘Early spur Rome’ apple, a

significant effect on fruit quality was found. Fruits where soil was treated with HS once a year for three

years had higher soluble solid concentrations compared to the control. Some studies also found higher TSS

(total soluble solid) levels with organic treatments in apple (DeEll and Prange, 1992; Andrews et al., 2001;

Renagold et al., 2001). However, Norrie et al. (2002) found that TSS levels tended to be lower in seaweed

extract treated grape berries. Kangueehi (2008) found increases in TSS, malic and citric acid with

application of humates and also application of compost in combination with compost extract. Effects of

biological amendments on fruit nutrition and polyphenol content are not widely documented. Peck et al.

(2006) found that organically grown apples contained a higher percentage total antioxidant activity, while

Fauriel et al. (2007) found higher fruit polyphenol content of peaches produced from organically managed

orchards, compared to conventionally managed orchards. It is has also been suggested that EM can

improve produce quality (Daly and Stewart, 1999; Cao et al, 2000).
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1.5.4 Relationship between soil microbial activity and plant performance

Few studies have been conducted relating changes in microbial activity to tree performance. Renagold et

al. (2001) compared the sustainability of various apple management systems and found no difference in

cumulative yield, despite major differences in soil quality. Carrera et al. (2007) found that tomato yield

was not significantly increased by hairy vetch cover cropping, although microbial community structure

was significantly affected. Drinkwater et al. (1995), comparing conventional and organic tomato

agroecosystems, found no distinct difference in fruit yield, although differences were demonstrated in

nitrogen mineralization potential and microbial diversity. Hoagland et al. (2008), in newly established

organic apple orchards, found that maintenance of a living cover understory increased soil N concentration

and availability as well as soil biological activity; however tree growth was less than with tillage weed

control where soil biological properties were not improved. On the other hand, application of wood chip

mulch, providing substantial inputs of total C, resulted in exceptional tree growth although soil N as well

as tree leaf N was lower and soil biological activity not improved.

In fertigated apple orchards, Neilsen et al. (2003b) found that rankings of treatments based on optimum

soil physical parameters and soil fertility (Forge et al., 2003), favoured treatments involving the application

of biosolids while herbicide treated control plots, not receiving organic matter, ranked lowest. These

control plots also showed lowest yield efficiency, compared to treatments where the orchard floor was

covered with organic matter. However, biosolids applied alone did not improve vigour or yield compared

to herbicide treated control plots. Furthermore, yield did not differ significantly from treatments receiving

paper mulch without biosolid application. Although few of the soil chemical and physical properties

measured in their study could be directly related to long term tree performance, soil pH related parameters

appeared most important to tree performance and improved with paper mulch treatments, probably due to

high Ca content. An important factor in improving yield with shredded paper mulch applications was

possibly also the reduction in population densities of Pratylenchus penetrans (Forge et al., 2003).

.

In a study by Varga et al. (2004) numbers of cellulose decomposing bacteria and microscopic fungi was

higher under pine bark mulch and highest with livestock manure application. Tree performance did not

confirm the advantage of manure in terms of soil microbial activity and cumulative yield over the first two

bearing seasons and yield efficiency were higher only for the pine bark mulch. However, manure

applications significantly reduced mycorrhizal colonisation of roots, possibly affecting yield negatively.

Investigating the effect of various orchard ground management systems in apple, Yao et al. (2005) found

that bacterivorous and fungivorous nematodes as well as soil respiration rates were consistently higher in

mulched plots compared to herbicide treated plots. Soil DNA studies of the soil microbial communities

making use of DGGE profiles, also showed that mulched plots harboured a unique fungal community

compared to the other treatments. However, trunk circumference growth after 11 years was similar for

mulch treatments and control plots treated with post-emergence herbicides. Over nine harvesting seasons,
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both these treatments also showed the most consistent, positive effect on yield. Grass treatments were

generally least productive, despite similar microbial community profiles, and microbial activity, compared

to post-emergence herbicide treatment. However, looking at root growth measured from excavated trees,

fine feeder root biomass was lowest for grass treatments. In a bioassay using orchard soil from these

various treatments, Laurent et al. (2008) found that widely accepted factors of soil quality indicators, such

as soil respiration rate, populations sizes of culturable bacteria and fungi, SOM content and nutrient

availability, were not significant predictors of apple seedling biomass in these soils. However, growth of

apple seedlings was closely linked with bacterial community composition of orchard soil in each ground

cover management system. Furthermore, in the bioassay, in contrast to field trial results, apple seedlings

grown in soil from plots treated with pre-emergence residual herbicides performed the best.

In studies by Rumberger et al. (2004) and Yao et al. (2006) on the use of different rootstock genotypes in

ARD management, results showed that bacterial communities of susceptible rootstocks differed from

tolerant rootstocks (Rumberger et al., 2007) and correlated with improved yield (Leinfelder and Merwin,

2006).

1.6 APPLICATION OF BIOLOGICAL AMENDMENTS IN DECIDUOUS FRUIT PRODUCTION

In deciduous fruit production, interest in organic and microbial amendments in integrated disease

management and plant growth stimulation is increasing due to environmental, as well as economic

pressures. Application of biological amendments can improve tree efficiency in soil of low or marginal

suitability for crop production. Furthermore, the economics of intensive planting systems depend on rapid

establishment of orchard canopy and precocious cropping (Foote et al., 2001). In addition to improved tree

performance, reduced chemical and fertiliser application, as well as protection of non-renewable resources

are all possible prospects with biological management systems.

1.6.1 Improving tree efficiency under unfavourable conditions

Hogue and Neilsen (1987) concluded that mulch application can be especially important in improving fruit

tree performance under adverse soil conditions. In shallow soils, Baxter (1970) found greater blossom

density per unit of tree circumference, double the yield, as well as larger fruit size with mulch compared to

clean cultivation in peach and apple orchards. Autio et al. (1991), when mulching in an ARD site, only

found a dramatic effect on growth and bloom when rainfall was below normal. At a site where leaf N was

generally low, first year trunk circumference increment were significantly increased by compost mulch

treatments (Neilsen et al., 2004). Results from various researchers have also indicated that the effects of

organic matter applications and biostimulants are most beneficial when the plant is coping with adverse

environmental conditions, or nutrient stress (Mooney and van Staden, 1985; Beckett and van Staden, 1989;

Nus, 1993).
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1.6.2 Orchard establishment

Although many studies indicate a short term stimulation of tree vigour by organic amendments, it has been

suggested that any advantage given to the young tree at establishment is maintained throughout the lifespan

of the tree. Propagation, especially micro-propagation is one of the target systems in horticulture where

AM fungal inoculation can be most practically applied (Azcon-Aquillar and Barea, 1997). Moderate

amounts of AM fungal infection are achieved before transfer to the field, which is an environment much

lower in nutrients. Colonisation in micro-propagated apple plants significantly increased plant growth and

P concentration of shoots (Cavallazzi et al., 2007). Wooldridge (1999) found that the presence or absence

of AM fungi is a factor that may affect early growth of in vitro-propagated apple plants even under high P

levels, although young fruit trees do not respond uniformly to AM under conditions of adequate nutrition.

Schubert and Lubraco (2000) also found that inoculation of transplanted micro-propagated apple

rootstocks enhanced growth and increased P uptake, despite high P levels in the substrates. However,

rather than being propagated in vitro, many apple rootstocks are grown under field conditions where roots

become naturally infected with indigenous AM fungi (Wooldridge, 1999). According to Marschner (1995)

indigenous AM-infected rootstocks will not necessarily show growth reactions following inoculation,

unless indigenous AM are damaged or weakened. Mycorrhizal inoculation has been used to enhance plant

growth and production in orchard establishment after fumigation (Menge et al., 1978).

In apple, Neilsen et al. (2004) found that the application of a high P organic amendment in the root zone

prior to planting can stimulate first year growth more that supplying mineral P fertiliser in the early stages

of root growth. Previous research by Neilsen and Yorston (1991) also indicated that high P is important in

accelerating establishment, early growth and fruiting of apple.

1.6.3 Reduction of chemical inputs

1.6.3.1 Alternatives to fumigation in ARD management

Apple replant disease (ARD) is a disorder associated with poor growth of young apple trees planted on

previous apple sites. Symptoms include stunted growth and reduction in tree vigour and productivity

(Savory, 1966; Hoestra, 1968; Mai and Abawi, 1981). Although the disease is not lethal, it has great

economic importance due to its lasting effect on production. The economics of intensive planting systems

depend on rapid establishment of orchard canopy and precocious cropping (Foote et al., 2001), therefore

any growth-retarding factor is adversely felt. In South Africa in 1998, it was estimated that 40% of apple

orchards suffered from ARD (Honeyborne, 1996). It was also identified as one of the biggest problems in

establishing an economically viable apple orchard by the deciduous fruit industry. However, no direct

economic value has been associated with ARD in South Africa. The etiology of ARD is still not fully

understood, but accumulated research results point to a biological origin, involving a shift in microbial

community composition in ARD development, towards pathogens dominating the soil microbial profile

(Mazzola 1998; 1999; Manici et al., 2003). Apple replant disease is successfully controlled through routine

fumigation prior to orchard establishment. However, due to the biological nature of ARD etiology,
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integration of various biological and cultural practices can possibly provide alternative control methods to

broad spectrum fumigation. In field trials, under marginal production conditions for apple, Van Schoor, et

al. (2009) found that compost in combination with a straw mulch consistently increased growth to the same

or greater extent as the standard fumigant treatments. These results confirmed results from Engel et al.

(2001) who found that compost mixed with replant soil at planting and subsequent mulching with apple

wood chips was the most effective treatment in improving vegetative and reproductive growth. In a study

by Autio et al. (1991), during the first season, peat moss and composted manure treatments in the planting

hole resulted in significantly greater increases in trunk circumference and shoot growth than controls. The

effect dissipated and growth was similar to the controls in the third season, but peat treated trees were still

significantly larger.

Several studies have shown that inoculation of apple seedlings or rootstocks with beneficial rhizosphere

bacteria including Agrobacterium radiobacter (Catska and Hudska, 1993), Bacillus subtilis (Utkhede and

Smith, 1992), Enterobacter agglomerans (Utkhede and Smith, 2000) and Pseudomonas putida (Biró et al.,

1998; Mazzola et al., 2001) has potential for biological management of ARD. The causal complex of ARD

include pathogenic fungi from the genera Cylindrocarpon, Phytophthora, Pythium and Rhizoctonia (Jaffee

et al., 1982; Dullahide et al., 1994; Braun, 1995; Mazzola, 1998; Manici et al., 2003; Tewoldemedhin et

al., 2007; Van Schoor et al., 2009). Bacillus subtilis has the potential to control crown rot caused by

Phytophthora cactorum (Utkhede et al., 2001) while the frequency of root colonization by Cylindrocarpon

destructans was effectively reduced by fluorescent pseudomonad spp (Caesar and Burr, 1987), also

correlating with increased growth of apple. The humic fraction of municipal solid waste compost was

highly effective in controlling Pythium ultimum (Pascual et al., 2002), possibly associated with increased

Pseudomonas and Trichoderma colony forming units (CFU) in the soil. Greenhouse trials also showed a

significant increase in seedling growth when ARD soil was inoculated with a mycorrhizal strain (Utkhede,

1992). These AM fungi could be inoculated at the time of replanting or possibly used in apple nurseries, to

establish infection before replanting.

Changes in the rhizosphere microbial communities through the effect of rootstock exudates as well as root

exudates from specific cover crops can also induce ARD suppression (Gu and Mazzola, 2003; Rumberger

et al., 2004, 2007). However, effects are cultivar specific and more research is needed.

1.6.3.2 Reduced inorganic fertilizer application

The amount of fertiliser application can be reduced either through an increase in availability of nutrients

through biological amendment application or improved nutrient uptake or fertilizer use efficiency.

Compost mulches in vineyards and apple orchards, (Pinamonti et al., 1995) substituted for chemical

fertilizer with no resulting loss of tree vigour or fruit yield and quality. Drinkwater et al. (1995) concluded

that differences between agroecosystems with and without organic matter input suggested that biological

processes can compensate for reductions in the use of synthetic fertilisers through enhanced nutrient
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cycling. Mulching with organic material can also significantly contribute to nutrient cycling (Akhtar and

Malik, 2000; Kayuki and Wortmann, 2001; Forge et al., 2003).

Better fertiliser use efficiency is essential where costs can constrain production as well as for reducing

environmental pollution through nutrient leaching. Ma et al. (1999) found that available N in a manured

system was better synchronized with plant demand than N from inorganic fertiliser systems, therefore

reducing N losses. Increased root proliferation in the top soil with organic amendment application can also

reduce leaching as well as result in improved nutrient uptake. An increased leaf K concentration is one of

the most frequently recognized consequences of mulching with organic materials (Boynton and Oberly,

1966; Kotzé and Joubert, 1992; Merwin et al., 1994; Marsh et al., 1996; Smith et al., 2000; Neilsen et al.,

2003a; Neilsen et al., 2007). Available P has also been shown to increase with the use of organic mulches

(Hogue and Neilsen, 1987; Merwin et al., 1994; Pinamonti, 1998; Smith et al., 2000; Yao et al., 2005). In

addition, mulches suppress competition for nitrogen by weeds (Lanini et al., 1988; Niggli et al., 1990;

Autio et al., 1991; Faber et al., 2001; Neilsen et al., 2003b) and also reduce chemical weed control

(Pinamonti et al., 1995). In field trials, Kotzé and Joubert (1992) found improved fertiliser use efficiency

with compost application to fruit trees.

Russo and Berlyn (1990) suggested that the use of organic biostimulants shows most potential for

improving fertiliser use efficiency, by reducing fertiliser application without negatively affecting plant

growth. Results are also favourable for the combined use of HS and mineral fertiliser. The presence of HS

substantially increases effective assimilation of mineral nutrient elements (Chen and Aviad, 1990).

Pandeya et al. (1998) observed that the efficiency of Fe-FA as a fertiliser is much greater than that of

FeCl3. Reynolds et al., (1995) found that humates increased petiole and lamina Fe in Chardonnay vines. Fe

nutrition is a big problem in arid and semi-arid regions and HS application can possibly be a remedy for

lime induced iron chlorosis in these soils (Chen and Barak, 1982; Zachariakis et al., 2001).

Increased P fertiliser use efficiency has frequently been found in soils amended with organic matter

(Violante and Gianfreda, 1993). Delgado et al. (2002) found an increase in recovery of applied P with the

application of a HA-FA mixture. They furthermore stated that manures and other organic sources of P were

more efficient in increasing available P than inorganic P fertilizers. The use of P solubilising bacteria as

inoculants can simultaneously increase P uptake and crop yield (Rodriguez and Fraga, 1999) and strains

from the genera Pseudomonas, Bacillus and Rhizobium show most potential. The most prominent and

consistent effect of AM fungi is to improve the uptake of nutrients that are scarce, diffusion-limited and

immobile, particularly P, Cu and Zn (Habte, 2006). Karlidag et al. (2007) and Jeon et al. (2003) found

specific Pseudomonas and Bacillus strains capable of dissolving insoluble phosphates.

The use of EM inoculum along with organic or inorganic materials was found to be an effective technique

for stimulating release of nutrients from these nutrient sources (Khaliq et al., 2006). Economic analyses
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suggested the use of half of the mineral NPK with organic matter and EM, saves the mineral N fertiliser by

almost 50% compared to a system with only mineral NPK application.

1.6.4 Natural resource conservation

1.6.4.1 Soil Carbon

Evaluations of the agricultural impact on soil carbon sequestration emphasize the importance of the return

of carbon to the soil (Freibauer et al., 2004). Knorr et al. (2005) claim that rising temperatures brought

about by climate change will cause microorganisms in soils to decompose organic matter more rapidly,

releasing extra CO2 and over the long term accelerating climate change. Depletion of soil organic C from

the root zone will in addition to environmental quality, strongly affect soil productivity. By adapting

management practices that accumulate carbon or slow down the decomposition process, CO2 emissions

from agricultural fields can be reduced (Termorshuizen et al., 2004). Recommended management practices

for soil C sequestration includes; reduced tillage, surface residue management, mulching of bare soil,

manure application, the use of cover crops, as well as use of composted material including a fraction

resistant to decomposition (Follett et al., 2005). However, it is important to keep in mind that soil organic

C is reactive and an increase may also have negative impacts on the local environments if the soil is not

properly managed (Komatsuzaki and Ohta, 2007).

1.6.4.2 Water conservation

Globally, the pressure on water resources is increasing dramatically. Therefore, any management practice

that can lead to water saving could play an important role in improving sustainability. One of the most

beneficial factors of mulching is soil moisture conservation, due to protection from extreme temperature

fluctuations, improved water permeability and storage and reduced evaporative losses. Pinamonti et al.

(1995) found in vineyards and apple, as well as Kotzé and Joubert (1992) in grapevines and apricots

respectively, that soil moisture was consistently higher with compost applied as a mulch. Lakatos et al.

(2000), also in apple, showed that straw and pine bark mulch resulted in better uniformity of distribution of

water as opposed to clean cultivation, while Neilsen et al., (2003b) found improved water distribution in

the root zone of irrigated crops receiving a mulch treatment. In a study by Wooldridge (1992), mulching

with hay more than doubled the irrigation cycle length and reduced the amount of water needed to sustain

pear trees through the season by 55%. Neilsen et al. (2003a) found that application of biosolids to apple

trees increased water infiltration rate, but of more practical significance was the increase in water retention

capacity when applied in combination with a shredded paper mulch. Furthermore, in a study by Fallahi et

al. (2006), apple trees receiving a granular formulation of 70% HA showed significantly higher water

retention in the root zone.

1.6.5 Economic considerations

Producers’ acceptance of the implementation of biological strategies in commercial agriculture will

involve practical as well as economic considerations such as transportation and labour costs, availability of
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organic material and efficacy of treatments compared to conventional treatments. It is therefore important

to determine if benefits from these amendments compensate for additional expenses.

Cost of initiation and maintenance of mulching or compost application may seem high (Shribbs and

Schroch 1986a; b), however with modern, high density orchard systems, these inputs can be optimised for

maximum production. Furthermore, although crop yield is important, benefits of improved soil and

environmental quality achieved through biological inputs are equally valuable without showing immediate

reward in the market place (Renagold et al., 2001). Reduction in chemical fertiliser usage and pesticides

also need to be taken into account. The amount of material needed for mulching can create severe logistical

problems and is both time consuming and labour intensive to apply and maintain (Lipecki and Berbec,

1997). Therefore ways need to be investigated to improve plant biomass production in the orchard to use

the residue as mulch. More research is needed on the use of cover crops in orchard systems.

Improvements in soil fertility through biological amendment applications and water conservation under

mulches are potential long-term benefits that eventually may compensate for greater establishment and

maintenance costs (Merwin et al., 1995). Neilsen et al. (2003b) also speculated that improved soil

conditions may have greater impact only for future orchards planted on the same site. Future challenges are

the incorporation of the value of ecosystem processes into the traditional market place, as well as

financially supporting producers in their attempts to employ both economically and environmentally

sustainable production practices.

1.7 CONCLUSION

Soil is the substance in which the majority of biochemical reactions occur which are critical to soil

functioning. These processes are mediated by soil microorganisms, which in turn are sustained by SOM.

Any cultivation practice executed or amendment applied, either directly or indirectly affect soil biology

and thereby plant health and productivity. There is much controversy surrounding the sustainability of

conventional practices. Complete loss of soil function due to conventional management practices is the

exception rather than the rule (Bünemann et al., 2006). However, loss of specific soil functions carried out

by only a few species, as well as effects on soil organisms critical in nutrient cycling, is a big threat to

agroecosystem functioning. Therefore more emphasis needs to be placed on the ability of soil to recover

from external inputs or environmental factors (Griffiths et al., 2001). The role of biodiversity in securing

crop protection and soil fertility seems clear and most agriculturists would agree that implementing

strategies to enhance SOM, will improve soil quality, and aid in the movement towards more sustainable

production practices.

Research on the use of biological amendments in deciduous fruit crops is limited, and due to various

applications methods, and different rates and materials used, it is difficult to draw exact conclusions.
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However, there are indications from the literature on amendments used and expected outcomes. It can be

summarised that various biological amendments affect soil microbial activity positively, and are certainly

of value in improving plant nutrition as well as attaining disease suppression. Furthermore, effects on root

growth development and proliferation are pronounced. Although beneficial effects on yield are not always

apparent, in terms of fruit quality some benefit has been shown. With the emphasis on getting young trees

off to a good start, there is also definite scope for application of biological amendments in orchard

establishment, especially in orchards with replant problems or marginal production conditions.

Furthermore, increased fertiliser use efficiency with some biological amendments can lead to significant

reductions in fertiliser application.

According to Bünemann et al., (2006), much of the potential for microbial inoculants is yet to be realised.

More research is also needed on the effects of compost extracts. These inoculants are easy to apply and not

very costly. Microbial inoculants often struggle to compete in complex field situations. Therefore, it seems

plausible that persistence of disease suppressiveness operating through a biological mechanism will be

greater if the organic amendment functions through enhanced activity of the resident soil microbial

community (Mazzola, 2004). Research need to be expanded on the effects of cover crops and their root

exudates on resident rhizosphere communities.

Baker et al. (1967) previously stated that ‘considering the great amount of inherent variability across

various organic amendments, specific microbial isolates, plant susceptibility, soil characteristics and other

environmental factors that influence microbial processes, a lack of uniform, concise management

recommendations is not surprising’. Consequently, effective use of biological amendments strongly

depends on the type of soil as well as the environmental conditions. Furthermore, extrapolation of results

from greenhouse or controlled studies to field application can lead to inconsistent effects. Therefore, the

evaluation of biological amendments in field conditions is of great importance. A much better

understanding of the mechanisms involved in generating positive or negative functioning in field

environments is necessary to develop management strategies that can be applied in commercial agricultural

systems. In the past few years there has been a dramatic increase in the number of publications studying

the effect of various biological management practices on soil microbial activity, however, our knowledge

of soil ecosystem functioning is limited in part by the complexity of measuring soil microorganisms.

Although various methods are available and literature is abundant, no single method has been widely

accepted, since each method has its own limitations. Furthermore, the relationship between plant

performance and microbial activity is not well studied in fruit trees.
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1.8 RESEARCH OBJECTIVES

1.8.1 Overall objective

The main objective of the study was to investigate the effect of organic material, microbial inoculants and

biostimulants, most widely used in the study area, on tree performance and selected soil microbial

properties in conventional management systems of commercial pome fruit production.

It was hypothesised that the application of biological amendments can affect soil microbial numbers,

activity or function, thereby having a positive effect on tree growth, yield or fruit quality. Literature has

shown that the mechanisms through which these amendments affect plant growth is mainly through either

direct or indirect effects on root development and soil microbial communities, leading to improved plant

nutrition, crop protection against pests and diseases or changes in plant phytohormone balances.

1.8.2 Specific objectives of the study were the following:

1) To establish if biological management practices can improve tree performance in a pear orchard

established on BP1 rootstock, that suffers from poor root development in the initial years after

planting.

2) To evaluate the potential use of biological soil amendments for use as alternative management

practices to soil fumigation in reducing the effects of apple replant disease under South African

conditions.

3) To determine whether application of biological amendments in an optimally managed, high density

apple orchard can lead to complimentary improvement in tree performance.

4) To establish if changes in the soil microbial properties measured can be related to effects on tree

performance.

5) To extract general conclusions on the changes to be expected with biological amendments on selected

soil microbial properties.

6) To extract general conclusions on the use of biological amendments in pome fruit orchards in South

Africa.
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CHAPTER 2

EFFECT OF ORGANIC MATERIAL AND BIOLOGICAL AMENDMENTS ON PEAR TREE

PERFORMANCE, NUTRIENT AVAILABILITY AND SOIL BIOLOGICAL PROPERTIES

ABSTRACT

The long-term effect of continued applications of organic material (straw mulch, compost), various

microbial inoculants (compost extract, Bacillus inoculants, Effective Microorganisms) and biostimulants

(seaweed extracts, humates) on tree performance was investigated in a conventional management system.

A field trial was conducted in a commercial ‘Early Bon Chretien’ (Williams) pear orchard established on

BP1 rootstock (generally suffering from poor root development) in the Vyeboom region (34° 08' S; 019°

02' E), Western Cape, South Africa. The experimental layout was a split-plot design consisting of straw

mulched and non-mulched plots (main treatments) and nine biological management practices (sub

treatments). Organic material and biological amendments were applied from orchard establishment in 2002

and then every season up till the harvest of 2008. The effect of these biological management practices on

nutrient availability, uptake and soil microbial properties was investigated in order to aid in the

interpretation of tree performance effects. Soil microbial properties were measured by making use of soil

enzyme activity assays (urease, acid phosphatase and β-glucosidase), conventional microbial plate counts

(Bacillus spp. and actinomycetes) and community level physiological profiles (Biolog). Over the six year

trial period maintaining a wheat straw mulch in the tree row showed few effects on nutrition and no effect

on tree performance, despite significant changes in soil microbial functioning and activity. Annual compost

applications improved soil microbial, as well as chemical properties. However, tree performance, in terms

of vigour and yield, was only improved when in addition to compost, compost extract was applied

monthly. It was suggested that monthly compost extract applications resulted in maximum efficiency of

nutrient utilisation through synchronisation of nutrient release with plant demand. Results indicated that no

simple relationship was apparent between yield and the parameters measured in this study.

Keywords: compost, compost extract, Bacillus, seaweed extract, manure, humate, straw mulch
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2.1 INTRODUCTION

Environmental pressures in combination with escalations in production costs have renewed interest in the

integration of biological soil amendments into standard agricultural management systems. Conventional

agriculture has mainly relied on inorganic nutrient applications with low organic matter input and intensive

use of pesticides to maximise crop productivity. Much less attention has been given to the importance of

soil biological processes in maintaining plant health and yield. The development of soil structure (Tisdall

and Oades, 1982; Gupta and Germida, 1988; Beare, 1997; Wright and Upadhyaya, 1998; Miller and

Jastrow, 2000), soil fertility and plant nutrition, (Jenkinson and Ladd, 1981; Jeffries et al., 2003; Glick,

1995; Zahir et al., 2004), as well as disease suppression (Baker and Cook, 1974; Bowen and Rovira, 1999;

Whipps, 2001) are regulated by the interactions of a highly diverse and complex web of soil flora and

fauna that is sustained by the influx of organic matter into the soil (Alexander, 1977; Larson and Pierce,

1991; Tisdall, 1996; Murphy et al., 2003; Davet, 2004; Magdoff and Weil, 2004). Although complete loss

of soil function due to conventional management practices are highly unlikely (Bünemann et al., 2006),

loss of specific soil functions carried out by only a limited number of species, as well as shifts in soil fauna

and flora communities, can have a significant effect on agroecosystem functioning (Griffiths et al., 2001),

affecting plant growth and yield negatively.

Microbial activity is generally carbon-limited in agricultural soil (Campbell, 1989; Magarey, 1999;

Bünemann et al., 2006) and it is widely accepted that management practices providing a range of organic

compounds on a regular basis, will tend to maintain an active and diverse microbial population (Kennedy

and Gewin, 1997; Magdoff and Weil, 2004). The connection between soil organic matter application and

biological functioning in agroecosystems is clearly shown when comparing chemically intensive and

organic or biologically integrated farming practices (Bolton et al., 1985; Doran et al., 1987; Fraser et al.,

1988; Reganold et al., 1993; Wander et al., 1994; Drinkwater et al., 1995; Katayama et al., 1998; Mäder et

al., 2002; Flieβbach et al., 2007). Improvement of tree performance in deciduous fruit have been found

with organic amendment application either as mulches or incorporated into the top soil (Hogue and

Neilsen, 1987; Autio et al., 1991; Wooldridge, 1992; Kotzé and Joubert, 1992b; Reganold et al., 1993;

Marsh et al., 1996; Pinamonti, 1998; Neilsen et al., 2003a, 2007; Van Schoor, et al., 2009).

The addition of biostimulants, such as seaweed extracts and humic substances (HS) is also widely

advocated in biological management systems (Russo and Berlyn, 1990; Chen and Aviad, 1990; Verkleij,

1992). However, the effects of these amendments in fruit production have received relatively little

attention, although some positive effects have been found in citrus (Webb and Bings, 1988) and grapevine

(Reynolds et al., 1995; Zachariakis et al., 2001) with the application of commercial HS. Application of soil

inoculants has shown benefits especially in improving plant health and improved uptake of nutrients

(Glick, 1995; Zahir et al., 2004). Plant growth promoting rhizobacteria (PGPR) have furthermore been

shown to increase yield and crop quality (Kloepper, 1994; Zahir and Arshad, 1996; Rodriguez and Fraga,
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1999; Dobbelaere et al., 2001; Esitken et al., 2003; Orhan et al., 2006). In a recent study on young apple

trees, Aslantas et al. (2007) found that Pseudomonas and Bacillus spp. could effectively promote shoot

growth and yield of different apple cultivars. Furthermore, the use of microbial inoculant mixtures

containing a diversity of unspecified soil microorganisms are being promoted with little scientific literature

to back up claims made. Effective microorganisms (EM Technology™) and more recently the use of

compost extracts or compost teas, has been advocated as microbial inoculants that can stimulate and

enhance the soil microflora (Higa, 1994; Ingham, 1999; Litterick et al., 2004). These inoculants are used

locally in organic agriculture to a wide extent and since virtually no scientific literature is available on their

use in deciduous fruit production it is important to establish their value in terms of improving tree

performance.

Although research on deciduous fruit crops is limited, it was proposed that the potential of soil for

deciduous fruit production can be increased considerably by biological amendment application. The

mechanisms through which these amendments affect plant growth is mainly through either direct or

indirect effects on root development (Glick, 1995; Moore-Gordon et al., 1996; Pinamonti, 1998; Yao et al.,

2005; Forge et al., 2008) and soil microbial communities, leading to improved plant nutrition (Jenkinson

and Ladd, 1981; Glick, 1995; Ferris et al., 1998), crop protection against pests and diseases or changes in

plant hormonal balances (Elliott and Prevatte, 1996; Arshad and Frankenberger, 1998). Optimal fruit

production and sustained high fruit yield are associated with good root proliferation and high soil fertility

consequently rendering the plant more tolerable to stress.

We hypothesised that the application of various biological amendments can affect soil microbial numbers

and function, thereby having a positive effect on fruit tree growth and yield. The objective of the study was

to investigate the long-term effect on tree performance of continued applications of organic material,

various microbial inoculants and biostimulants, in a conventional management system. For this purpose, a

field trial was conducted in a pear orchard established on BP1 rootstock that generally suffers from poor

root development in the initial years after planting. Furthermore, the effect of these amendments on

nutrient availability and uptake and soil microbial properties was investigated in order to aid in the

interpretation of tree performance effects.

2.2 MATERIALS AND METHODS

2.2.1 Orchard study site and experimental design

The experiment was conducted in a newly established commercial orchard in the Vyeboom region (34° 08'

S; 019° 02' E), one of the main pome fruit production regions in the Western Cape, South Africa. The

study site consisted of ‘Early Bon Chretien’ (Williams) pear (Pyrus communis) trees on BP1 rootstock

planted in the winter of 2002 at a spacing of 4.5 m x 2.0 m (within row) on a soil not previously planted to

apple or pear. The soil was a gravelly, sandy loam soil (7% clay, 30% silt, 63% sand and 45% stone) and
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with orchard establishment pH (KCl) values averaged 6.5, total soil carbon 1.5%, and cation exchange

capacity (CEC) (pH 7) 4.5. Plots were separated by two guard trees. The experimental layout was a split-

plot design consisting of two main treatments and nine sub treatments, blocked three times, with an

experimental unit consisting of six trees. Irrigation was supplied through a micro irrigation system

(discharge rate 54 L.h-1), 2-3 times per week by C-probe scheduling to keep water between field capacity

and 50% plant available water. An approximate amount of 6000 m3.ha-1 was applied yearly to bearing

trees. All treatments were treated equally in terms of fertiliser and pesticide application, as per the standard

orchard practice. Glyphosate (4L.ha-1) was applied to all treatments in spring and again in autumn to

control weeds. Organic material and biological amendments were applied from orchard establishment in

2002 and then every season up till the harvest of 2008.

2.2.2 Treatment application

Main treatments consisted of a 10 cm thick wheat straw mulch application, maintained throughout the trial

period, and a non-mulched treatment. Subplot treatments consisted of organic material application, soil

inoculants and biostimulants and included:

1) Untreated control plots, managed to industry norm.

2) Chicken manure applied at planting at (5 ton.ha-1) to a 1 m2 soil surface area around the tree as a once-

off application.

3) Commercial compost, applied at 15 ton.ha-1 of which a third was mixed with soil in the planting hole

and the rest was applied as a top dressing in spring. Surface application of compost was repeated annually

in spring at 15 ton.ha-1. Compost consisted of aerobically composted chipped garden waste material (60%),

horse manure (15%), grape waste (5%), vegetable waste (5%), mature compost (10%) clay (5%) and a

powdered inoculum (produced locally, BioEarth, Stellenbosch) sprayed onto the rows with the first turn of

the compost row.

Soil inoculants were applied as a drench with planting and thereafter annually, on a monthly basis

throughout the growing season and included:

4) Compost extract (BioEarth, Stellenbosch, SA) applied at 500 L.ha-1, diluted 50:1 sprayed onto the soil

with each application. The compost extract was prepared by adding 1000 L of water to 50 kg of re-

composted compost (same as used previously) and actively aerating the suspension for 48 h, with no

additional additives.

5) Effective miroorganisms (EM) were applied as a diluted suspension (1:1000) of stock EM in

combination with molasses (1 L.ha-1) for each application. EM primarily consists of photosynthetic and

lactic acid bacteria, yeasts, actinomycetes and fermenting fungi (Higa, 1994).

6) Biostart® (Microbial Solutions, Kya Sand, SA) inoculant was applied at 1 L.ha-1. Biostart® is a soil

applied, liquid three-strain, living Bacillus bacterial formulation consisting of Bacillus laterosporus, B.

chitinosporus and B. licheniformis. The liquid living bacterial formulations were applied in combination

with a Microboost® Activator as a carbon source to sustain the activity of the introduced bacteria. From
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the third growing season this product was applied in combination with a low dosage humic acid product, a

14% Potassium humate liquid, at 10 L.ha-1. Humic substances comprise a major part of soil organic matter

(SOM) and are classified into humic acids (HA), fulvic acids (FA) and humin on the basis of their

solubility in water as a function of pH (Swift, 1999). Humic acid salts are termed humates.

Biostimulants applied, included two liquid seaweed extracts and a humate product:

7) A potassium humate product was applied anually, at 50 L.ha-1 split into a spring and an autumn

application (Omnia, SA).

8) Kelpak (Kelp Products, Simonstown, SA) derived from Ecklonia maxima and containing natural auxins

(11 mg.L-1) and cytokinins (0.031 mg.L-1) were applied annually, as an initial soil drench in spring at 25

L.ha-1, followed by three foliar sprays at a 1:500 dilution.

9) Goëmar (Goëmar Laboratoires, St. Malo, France) a product specifically formulated for soil application

and derived from Ascophyllum nodosum (auxins, cytokinins, gibberellins ca 200 µg.kg-1 and traces of

amino acids and betaïnes) were applied as four soil drenches at 2 L.ha-1 each for the first two growing

seasons and replaced with Goëmar FoliphosE (containing P2O5 340 g.L-1 and K2O 65 g.L-1 in addition to

the original product) applied twice at 5 L.ha-1 for the last four seasons of the trial period.

Chemical properties of the compost and compost extracts used are shown in Appendix A. The structure of

the microbial consortium within the compost and compost tea was not determined. Recently, it was found

that the functional diversity among microorganisms within an ecosystem may outweigh the diversity

among taxonomic entities (Dinsdale et al., 2008). Thus, it was decided to rather determine the effect of

these biological amendments on the soil ecosystem, than to compare their microbial composition to that of

the soil. Also, previous experience with compost extracts, of which the microbial composition was

monitored using molecular analyses of taxonomic informative gene-sequences, indicated that the microbial

consortium within these extracts continually changes. (Prof A. Botha, personal communication).

2.2.3 Tree performance evaluation

Trees were permanently marked 20 cm above the graft union and trunk circumference measured every year

during winter. Total growth (shoot growth and leader growth) were measured at planting and at the end of

each growing season for the first to fourth season (trees were cut back at planting, and again after the

second growing season). Annual yield on a per tree basis was recorded for the 2006/2007 season (the first

season trees were allowed to bear) and the 2007/2008 season, after five and six seasons of applications

respectively. Cumulative yield efficiency for the past two seasons were calculated by adding 2007 and

2008 yield and dividing by trunk section area as measured with the 2008 harvest. The number of harvested

fruit was determined for each tree in order to calculate average fruit mass per plot for each treatment

replicate. Fruit quality parameters were measured for the 2007 and 2008 season and included fruit

firmness, total soluble solids (TSS) and total titratable acids (TTA). These parameters were evaluated at

harvest, after 8 weeks (2007) and 12 weeks (2008) storage at -0.5 ºC under regular atmosphere (RA), and
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then after 7 days at room temperature (21-24 ºC) (shelf life period). For each treatment combination 35

fruit were evaluated from each plot for each evaluation.

2.2.4 Leaf nutrient analyses

In order to relate leaf nutrient content to effects on tree performance, leaf nutrient analyses were done for

treatments showing contrasts in tree performance. Control plots and biological amendments showing the

most potential for improving tree performance according to shoot and trunk growth measurements were

selected. Leaf nutrient analyses were done for the last three seasons (2006-2008) to provide insight into

tree performance effects after continued application over three seasons. A combined 50 leaf sample of

mature leaves in the mid shoot section of the current years growth was collected at the end of January from

the six trees in each plot. Leaf samples were washed in 1% v/v HCL solution and then rinsed twice, first

with tap water and then with deionised water, after which it was dried at 80 ºC. Samples were analysed for

both macro- and micronutrients by a commercial laboratory (Bemlab®, Strand, SA) using an inductively

coupled plasma-optical emission spectrometer (ICP-OES) (Varian MPX-OEX, Varian Inc. Co., Palo Alto,

California, USA) and a nitrogen analyzer (LECO FP528 Nitrogen analyzer, LECO Cooperation, St.

Joseph, Michigan, USA).

2.2.5 Soil sampling and analyses

Due to economical constraints, only control treatments and treatments with biological amendments

showing the most potential in terms of growth improvement based on shoot growth measurements, were

sampled. Soil was sampled within the root zone of the top soil where microbial activity is expected to be

greatest, at a depth of 0-25 cm. Samples were taken at a distance of 30-40 cm from the tree base, from two

holes beneath four trees in each plot and composite samples prepared for each treatment from the eight

sub-samples in each of the three block replicates. Soil samples were taken from selected biological

amendment treatments in Oct 2006 (spring), after 5 seasons of annual application of biological

amendments, but before commencement of the next seasonal applications. Soils were again sampled in

Dec 2006 (summer), Apr 2007 (two weeks after the last application of the season in autumn) and again in

Dec 2007.

Sub-samples of all the soil samples taken in Oct 2006, Apr 2007 and Dec 2007 were analysed for chemical

soil properties by Bemlab® soil analyses laboratory (Strand, SA), using standard methods (Soil Science

Society of South Africa, 1990; Soil and Plant Analysis Council, 1999). Soil pH (in 1M KCl), resistance

(ohm), available macro- and micronutrients (ICP-OES), organic carbon (Walkley-Black method) and total

N% (LECO Analysis) were measured. The resistance of a saturated soil/water paste was determined in a

standard USDA soil cup. Soil P was determined using the Bray II method. K, Mg and Ca were extracted in

ammonium acetate, Cu, Fe, Mn, and Zn in 0.1 M HCl and B in hot water. Bulk density (BD) was measured

for the Dec 2007 sampling date. Field moist sub-samples were sieved through a 2 mm mesh screen for
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microbial analyses. Visible root pieces and un-decomposed organic matter were removed and soil stored at

4ºC for no more than two weeks before analyses.

2.2.6 Soil microbial analyses

2.2.6.1 Plate counts. Conventional dilution spread-plating on laboratory media was performed to assess

total Bacillus bacteria and actinomycetes only after treatments were applied. Numbers of Bacillus bacteria

were counted on 1/10 strength tryptone soy agar (TSA, Difco) after pasteurization of soil samples for 10

min at 80 ºC. Sodium caseinate agar (Du Plessis et al., 2005) was used for enumeration of actinomycetes.

Plates were inoculated in triplicate and incubated at 25 ºC. Total heterotrophic numbers were counted after

72 h incubation and actinomycetes were counted after 7-10 days depending on colony growth. Since less

than 1%, of soil microorganisms can be cultured, these techniques can underestimate population size and

diversity (Amann et al., 1995) and therefore additional methods were applied.

2.2.6.2 Soil enzyme activity. Soil enzyme systems are associated with organic residue management, and

therefore affect the rate at which nutrients become available to crop and other soil organisms (Tabatabai,

1982; Perruci et al., 1984). Enzymatic activities have therefore been used as an indicator of the overall

microbial activity in soils while also producing useful functional information on the capacity of a soil to

carry out specific activities important in maintaining soil fertility (Dick, 1994, 1997; Garcia et al., 1997;

Pascual et al., 2001; Ros et al., 2003; Caldwell, 2005; Bastida et al., 2008). Acid phosphatase, β-

glucosidase and arylsulfatase activity were determined based on the release and spectrophotometric

detection of p-nitrophenol (Tabatabai and Bremner, 1969; Tabatabai, 1982). Urease hydrolysing activity

was determined by the non-buffered method of Kandeler and Gerber (1988). Controls were performed for

all enzymes assayed by the addition of the substrate after incubation, but prior to analysis of the reaction

product.

2.2.6.3 Substrate utilisation profiles. In addition to the functional formation provided by enzyme activity,

substrate utilisation of the soil microbial community can be assessed. Commercially available Biolog®

EcoPlates (Biolog® Inc., Hayward, USA) was used to provide community level physiological profiles

(CLPPs) as an indication of community function, according to a modified procedure described by Buyer

and Drinkwater (1997). The Biolog plates contain 31 ecologically relevant carbon sources replicated three

times within each plate to help account for variability in inoculum density. Soil suspensions were prepared

by shaking 10 g of field moist soil in 90 mL sterile deionised water for 30 min on a rotary shaker and

allowing it to settle for 2 h to remove larger soil particles. Using sterile deionised water the supernatant

was subsequently diluted to a final dilution of 1:1000 and each well inoculated with 125 μL. Plates were

incubated at 25 ºC and tetrazolium violet reduction measured spectrophotometrically after 24 h, as well as

38 h at 595 nm using a Biorad microtiter plate reader. Incubation for 24 h was used to estimate substrate

utilization of soil microbial communities with a fast metabolism and 38 h incubation to also detect
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microbial communities with a slower metabolism. Analyses of each sample were performed in triplicate.

Optical density (OD) values from the Biolog plates were analysed using the average well colour

development (AWCD) technique as described by Garland and Mills (1991). AWCD were calculated as the

average OD across all wells per plate. OD values were corrected by subtracting values of the control well

(blank). Substrate utilisation ability was calculated as the number of substrates metabolised per 31

substrates as done by Zak et al., (1994). Data were then transformed to eliminate variation in AWCD

caused by different cell densities, by calculating AWCD for each plate and then dividing the values of the

individual wells by the AWCD value of the plate. The transformed data were then used to analyse

microbial community function.

2.2.7 Statistical analysis

A standard split-plot analysis of variance (ANOVA) was performed on tree performance data, microbial

plate counts, soil enzyme activity, as well as soil physiochemical characteristics using, SAS Statistical

Software (SAS, 2002-2003). Trunk circumference measurements over the trial period were analysed as

repeated measurements by comparing the slopes (b values) of linear regressions fitted to the data (R2 =

0.99) in an ANOVA. Student’s t-LSD was calculated at a 5 % significance level to compare the treatment

means. Profiles of carbon substrate utilisation were statistically analysed by principal component analysis

(PCA) (Garland and Mills, 1991; Palojärvi et al., 1997; Buyer and Drinkwater, 1997; Larkin, 2003), using

the correlation matrix (Rencher, 2002). Pearson Product Moment correlation coefficients (r) were

calculated (SAS, 2002-2003) for averages of parameters measured over the trial period, as well as for the

last sampling date of soil, leaves and yield of 2008. In addition, a Stepwise regression was performed to

predict yield (SAS, 2002-2003). Furthermore, stepwise discriminant analysis (SDA) was used to select a

sub-set of variables from an initial of 36 variables including leaf nutrient contents, soil chemical and

biological parameters, as well as yield parameters. The subset of variables contained those variables which

best differentiate or discriminate between the soil amendments and were used for canonical discriminant

analysis (CDA). A PCA bi-plot was constructed, illustrating the relationship between the variables and

their association to the different soil treatments. Multivariate analyses were performed using XLStat

software.

2.3 RESULTS

2.3.1 Growth measurements

There was no significant interaction between mulching and the various biological treatments for trunk

circumference or shoot growth and therefore only the main effects are presented (Table 1). Trunk

circumference measurements showed that all trees were of a similar size at planting. No significant effect

on trunk circumference or shoot growth was measured with maintaining a wheat straw mulch in the tree

row over six seasons (Table 1). However, with biological amendment application, plots receiving compost

both with and without compost extract, as well as plots treated with Biostart, Goëmar or EM, significantly
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increased the rate of trunk circumference increase during the trial period when compared to the control and

plots treated with manure. Shoot growth was significantly increased by compost extract application in the

first season when compared to all other treatments, as well as in the second year after establishment in

comparison to all treatments except Goëmar (Table 1). After the third growing season, although results

were not significant, compost extract treated trees still showed the most shoot growth, improving growth

by 45% compared to control plots. A positive trend was also noted with Biostart application on shoot

growth after three growing seasons when compared to the control.

2.3.2 Yield and fruit quality

There was also no significant interaction between the main and sub treatments for yield and main effects

are presented in Table 2. The first yield was recorded in 2007 and second yield in 2008 after five and six

seasons of application, respectively. There were no significant differences in yield (kg.tree-1) of trees

between mulched and non-mulched plots (Table 2). Application of the various biological amendments did

also not result in significant differences in yield. However, there was a clear trend with compost extract

application showing highest yield and yield efficiency, for both harvest seasons. The addition of compost

extract with compost application resulted in a 51% increase in cumulative yield on a per tree basis when

compared to control trees. It was observed that most of the biological treatments had a positive effect on

cumulative yield and yield efficiency over the two seasons, when compared to the control. Application of

manure, as well as EM in combination with molasses resulted in similar cumulative yields than the control

trees over the two harvest seasons. There were no significant differences in fruit mass with mulching or

any of the biological amendments. However, the greater number of fruit yielded by the compost extract

treated plots did not affect fruit size negatively.

Fruit quality parameters for the 2007 harvest season showed no significant interaction. There were also no

significant treatment differences with mulching or biological amendment application on fruit quality at

harvest or directly following storage (Table 3). Evaluation after the shelf-life period did show significantly

firmer fruit for mulched compared to non-mulched plots, but differences were very small and of no

commercial value (Table 3). Fruits were stored for 12 weeks during the 2008 season, compared to the 8

weeks of the 2007 season. In the 2008 season there was significant interaction between mulching and the

biological amendments for fruit firmness at harvest, as well as TTA following a shelf-life period (Table 4).

Although differences in fruit firmness with harvest were small, in the non-mulched system all biological

amendments except Goëmar improved firmness significantly compared to controls (Table 4). Compost

extract application in the mulched system resulted in significantly lower firmness compared to controls,

compost treatment on its own, as well as Biostart treatment. Furthermore, mulched control plots resulted in

significantly firmer fruit than the non-mulched control. Biostart treatment resulted in significantly lower

fruit TTA than the control when applied in combination with a mulch. However, although not significant,

results were opposite in the non-mulched system and Biostart treatment increased TTA. When there was

no interaction, main effects showed that between mulched and non-mulched plots the only significant
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difference in fruit quality was found for TSS evaluation after 12 weeks storage, where results showed

higher TSS levels for fruit from mulched plots (Table 4). Biological amendments showed no significant

differences at harvest and after storage, but following a shelf life period, TTA was significantly higher for

fruit from control plots compared to most of the biological amendments, with the exception of K-Humate.

2.3.3 Microbial analyses

Due to the laborious nature of these analyses and to reduce storage effects of soil to a minimum, treatments

that showed the most improvement in growth when compared to untreated trees were selected for

microbial analyses, in order to compare contrasts in tree performance. These treatments included Biostart,

Göemar, compost and compost extract applied in combination with compost.

2.3.3.1 Plate counts. There were no significant interaction between mulching and biological amendments

and only main effects are presented in Table 5. Actinomycete counts showed no significant sub or main

treatment differences over the four sampling dates (Table 5). Bacillus counts also showed no significant

difference between mulch and non-mulched plots for any of the sampling dates. Bacillus counts for Dec

2007 showed significantly higher counts for compost application on its own, as well as in combination

with compost extract, in comparison to the control, Goëmar and Biostart treated soil. When taking average

counts over all four sampling dates (Table 5), Bacillus counts were significantly higher in the two

treatments receiving compost, than the control and Biostart treatments. There was no significant interaction

with time for both the main and the sub treatments.

2.3.3.2 Enzyme activity. There was significant interaction between mulching and the biological treatments

with urease activity for both summer samples in 2006 and 2007 (Table 6). The interaction indicated that in

Dec 2006 increases in urease activity with compost extract was significant in a non-mulched system, but

generally high for all the treatments if compared in the mulched system (Table 6). Application of mulch to

the control plots also resulted in significantly higher urease activity. In Dec 2007, compost extract

application again had a significant effect when applied in a non-mulched system, but in the mulched

system compost application on its own performed superior to all other treatments and significantly

increased urease activity compared to all treatments except Biostart. Furthermore, in Dec 2007 mulched

soil showed significantly higher urease activity with all treatments, except compost extract application,

when compared to non-mulched soil. There were no significant differences in urease activity between

mulched and non-mulched plots for the other sampling dates. There was a general trend over the four

sampling dates for urease activity to be higher with treatments where compost was applied. Biostart and

Göemar application did not result in significant changes in urease activity levels compared to the control.

Acid phosphatase activity only showed a significant interaction between mulching and the biological

treatments in Dec 2006 (Table 6). The interaction indicated that compost application, as well as Goëmar

treatment when combined with mulching, resulted in significantly higher phosphatase activity compared to
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mulched controls. However, without mulch application phosphatase activity were similar between the

various treatments, except for compost extract application resulting in significantly lower phosphatase

activity compared to the control. In Dec 2006, mulch application also significantly increased phosphatase

activity in the control, as well as the Biostart treatment. Similar to urease activity in Dec 2007, phosphatase

activity in Dec 2007 was significantly higher in mulched soil compared to non-mulched soil. Phosphatase

activity was similar between mulched and non-mulched plots for the first three sampling dates. Biological

amendments applied as sub treatments had no significant effect on phosphatase activity.

β-glucosidase activity showed no significant difference between mulched and non-mulched plots or the

various biological amendments and the control for the Oct 2006, Dec 07 and Apr 07 sampling dates. β-

glucosidase activity showed significant interaction between main and sub treatments for the Dec 2007

sample (Table 6). This was similar to the interaction found with urease activity in Dec 2006, showing a

significant increase in enzyme activity with compost extract application in the non-mulched system

compared to the control, while in a mulched system β-glucosidase activity was similar for all treatments,

except compost extract showing significantly lower enzyme activity compared to Biostart treatment.

Similar to phosphatase activity in Dec 2006, mulch application significantly increased phosphatase activity

in the control, as well as the Biostart treatment.

Arylsulfatase activity was determined for the last two sampling dates and was consistently higher for

mulched plots, but results were only significant in Dec 2007 (Table 6). No significant treatment differences

were found for the sub treatments.

2.3.3.3 Substrate utilisation. Results obtained after 24 h incubation of inoculated Biolog plates, showed

that there was a significant interaction between mulching and the biological amendments only in Dec 2007

(Table 7). For this sampling date, in a mulched system, microbial communities from all treatments utilised

a similar number of substrates, except Goëmar, which utilised less substrates compared to the control and

compost treatment. Mulching in combination with control plots, as well as both compost treatments,

resulted in more substrates utilised when compared to non-mulched plots (Table 7). However, in a non-

mulched system, significantly more substrates were utilised by soil microbial communities subjected to

Biostart treatment when compared to all other treatments. The number of substrates utilised by microbial

communities subjected to Biostart without mulch application was also similar to the number of substrates

utilised in the mulched system. Mulching as a main effect showed a similar trend for the Oct and Dec 2006

sampling dates although results were not significant (Table 7). After 38 h incubation of plates differences

in the number of substrates utilised between soil microbial communities from mulched and non-mulched

soil were only significant for the Dec 2006 sample. There were no significant effects for the number of

substrates utilised with the various biological amendments.
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Average well colour development (AWCD) values of the 31 carbon substrates contained by the Biolog

plates were analysed by PCA using the mean AWCD values over the four sampling dates to compare

community level physiological profiles (CLPPs) of the selected treatments. Incubating the inoculated

Biolog plates for 24, as well as 38 h, revealed that mulching did not result in microbial communities with

similar substrate utilisation profiles, when subjected to different biological amendments in addition to the

mulch (Figures 1A and 1B). Furthermore, microbial communities from soil treated with the same

biological amendment, either with or without the addition of a straw mulch, did not always show similar

CLPPs.

After 24 h incubation of Biolog plates (Figure 1A) there were clear differences in CLPPs between compost

with and without mulch application, as well as Biostart with and without mulch, while compost extract and

Goëmar treatments showed similar profiles irrespective of mulching. The variation in substrate utilisation

of microbial communities not subjected to any biological amendment (control treatment without a mulch)

was very high but CLPPs still differed significantly from microbial communities subjected to compost

treatment, with and without compost extract, Biostart treatment with mulch, as well as Goëmar treatments.

Specifically looking at the microbial communities from the four treatments receiving compost, it was

observed that after 24 h incubation of inoculated plates, the addition of compost extract resulted in

different substrate utilisation in the mulched management system, but not in the non-mulched system. The

percentage accounting for total variability in substrate utilisation was only 34%. This may be due to the

execution of the PCA on data including block replicates (in order to calculate standard deviations) showing

more variability than when analysing average values.

Incubating inoculated Biolog plates for 38 h, revealed that microbial communities from control plots not

receiving a mulch showed distinct CLPPs from all treatment combinations, except Goëmar applied with

mulch (Figure 1B). For all biological amendments, as well as controls, the addition of a straw mulch

changed CLPPs of the soil microbial community. Differences in CLPPs with and without mulching were

most distinct for controls and treatments not receiving compost and less distinct with the addition of

compost extract. It was noted that for CLPPs from the microbial communities subjected to compost

treatments, results were similar than for 24 h incubation, with the addition of compost extract resulting in

different CLPPs in the mulched system, but not in the non-mulched system. The percentage accounting for

total variability was again only 35%.

2.3.4 Soil chemical analyses

In general, Ca and K were high in soil for all treatments including the control, while Mg was low when

compared to industry norms (Kotzé, 2001) (Table 8). Soil extractable P increased from low in Oct 2006 to

high in Dec 2007 in control soils. Furthermore, Mn was generally high for all treatments, while Cu, Zn and

B were low compared to industry norms. The main effects of treatments on soil chemical parameters

measured in Oct 2006, Apr 2007 and Dec 2007 are presented in Table 8. However, there was significant



105

interaction between the main and sub treatments for soil carbon (%), Mg, Ca, the T value and

micronutrients Zn, Mn and B. Sub treatment effects showed that compost application, either with or

without the addition of compost extract, was the only biological amendment that had a significant effect on

soil chemical properties for some sampling dates, although not for all parameters measured.

There was no significant difference in soil pH or resistance between mulched and non-mulched plots for

any of the sampling dates. However, resistance was lower in compost treated soil than for any of the other

biological treatments in both the 2007 samples, although results were only significant in Dec 2007. The

only significant treatment effects on pH when compared to controls, was with compost extract application

in Dec 2007. The interaction for soil carbon was significant in both Apr 2007 and Dec 2007 (0-5 cm

sample). Results showed that total soil carbon was similar for all treatments in a mulched system, with the

exception of the Biostart treatment in Apr 2007 showing lower soil carbon compared to all other mulched

treatments. In a non-mulched system the addition of compost significantly increased soil carbon, as well as

Biostart application in Apr 2007 (Table 8). Mulching significantly increased soil carbon for control and

Goëmar treatment in both Apr 2007 and Dec 2007 (0-5 cm sample), and also with Biostart application in

Dec 2007 (0-5 cm sample). Main effects showed significant increases in carbon % with compost

application for all sampling dates and both soil depths in Dec 2007 (Table 8). Furthermore, straw mulch

application significantly increased carbon % in Oct 2006. There was no significant difference in total N

(%) between mulched and non-mulched plots, except for the 0-5 cm sample. In general, for all sampling

dates, total N was amongst the highest for treatments receiving compost. However, results were only

significant in Dec 2007 and in Apr 2007 and for Apr 2007 only where compost was applied without

compost extract.

Soil extractable P was higher in mulched soil for the first two sampling dates, differing significantly from

non-mulched soils, only in Apr 2007. Soil extractable K showed similar trends with mulching as soil P.

Levels of soil extractable P showed no significant difference between sub treatments for the first two

sampling dates, although soil P was much higher with compost extract application in Apr 2007 compared

to all other treatments. This could possibly be due to high variation between samples. There was a dramatic

increase in soil P from Oct 2006 to Apr 2007 in all treatments and a further increase in P with compost

application for Dec 2007. In Dec 2007 soil extractable P was significantly higher for both treatments

receiving compost and P levels were very high compared to the industry norm (Kotzé, 2001). Soil K was

significantly increased by compost application for the last two sampling dates. Furthermore, soil

extractable Ca was higher with compost application and results were significant for the Dec 2007 sample.

There was a significant interaction between the main and sub treatments for Ca in Apr 2007. In the non-

mulched system compost application without the addition of compost extract significantly increased soil

Ca compared to all other treatments. However, in the mulched system treatment application did not affect

soil Ca significantly. Mulching resulted in significantly lower soil Ca when applied in combination with

compost and significantly higher soil Ca when applied with Goëmar. There were no significant differences
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in Ca and Mg content of soils when comparing mulched and non-mulched plots, except for interaction

between mulching and biological amendment application for both Mg and Ca in Apr 07. The interaction

showed significantly higher soil extractable Mg from compost treated soil compared to al other treatments

in both mulched and non-mulched systems. However, in the non-mulched system compost without the

addition of compost extract also significantly increased soil Mg when compared to compost with compost

extract treatment. Soil extractable Mg was significantly increased by compost treatment compared to the

control in both Oct 2006 and Dec 2007. The T value was significantly higher with compost application and

results were significant in Dec 2007. There was also a significant interaction between main and sub

treatments in Apr 2007. The interaction data showed that effects of compost application on the T value was

similar in the non-mulched system as found for Mg, while there were no significant treatment differences

in T values in the mulched system, except for Biostart which showed a significantly lower T value

compared to compost treatment.

There were no consistent differences in soil micronutrients with mulching, except possibly for soil

extractable Cu which was generally lower in mulched soil and the effect was significant for the Oct 2006

sample (Table 8). Soil micronutrients Zn and Cu were significantly higher in compost treated plots for all

three sampling dates when compared to controls. There was a significant interaction between mulching and

the biological treatments for Zn in Apr 2007. Mulching resulted in significantly lower soil Zn when applied

with compost. Furthermore, in both the mulched and non-mulched system compost application

significantly increased soil Zn. Soil extractable Mn and B showed significant interactions between main

and sub treatments. In Oct 2006 soil Mn levels were only significantly higher with compost application

when applied in combination with a mulch. Although Mn was generally higher in compost treated soil, sub

treatment effects were only significant compared to the control in Dec 2007 when compost extract was

applied in combination with compost. Soil B showed significant interaction in both Oct 2006 and Apr

2007. In Oct 2006 compost applied on its own was the only treatment to significantly increase soil

extractable B in the mulched system and results were significant compared to all other treatments. In Apr

2007 compost in combination with compost extract was the only treatment to significantly increase soil B

in the non-mulched system compared to the control. For this sample date soil B levels of plots receiving

biological amendments in addition to a mulch did not differ significantly from mulched controls.

Bulk density (BD) was measured for the last sampling date (data not shown). Differences between

mulched and non-mulched treatments were small (1.23 vs 1.30 kg.L-1) but statistically significant (P =

0.0263), while no differences were found between the various biological amendments.

2.3.5 Leaf nutrient analyses

Values of macronutrients were mainly within the acceptable range for pear production (Kotzé, 2001),

except for leaf K and Mg levels that were low for all treatments in the 2007 and 2008 season (Table 9). A

significant interaction between main and sub treatments were only found for leaf P content in 2007. The
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interaction showed that leaf P levels differed significantly with biological treatment application only in a

mulched system and was significantly higher with Biostart application and significantly lower with

compost and humate application compared to controls. Mulching also significantly increased leaf P

concentrations when applied to the control, compost extract treatments, as well as Biostart. There was also

a general decrease in leaf macronutrient content from 2006 to 2008, especially for P. However, no

significant differences in leaf P were found in 2006 and 2008. In general, the majority of significant

treatment differences were found in 2008. No significant differences with main effects were found between

leaf nutrient content of mulched and non-mulched plots.

Sub treatment effects showed that leaf N was significantly lower in compost extract and humate treated

trees in 2008 compared to the control. Results were similar for 2007, although only leaf N from humate

treated plots differed significantly from the control. Leaf K content did not differ significantly between

treatments, while leaf Ca content was significantly higher in 2006 with both treatments where compost was

applied, as well as Göemar treatments compared to the control. In 2008, for leaf Mg content and most of

the macronutrients leaf nutrient contents were lower for the compost extract and humate treatments,

compared to the control, although effects were generally not significant and nutrient levels within the

acceptable range. Furthermore, compared to the 2007 analyses, this was only consistent for N and Mg. In

2008 for leaf Mg, nutrient content of compost extract and humate treated trees was also significantly lower

than with compost applied on its own.

Leaf micronutrient concentrations of Mn, Fe and Zn were consistently very high compared to industry

norms, for all treatments across the three sampling dates (Table 9). There was a general decrease in Cu and

B levels over the three seasons and in 2008 levels were in the lower range for both elements despite foliar

applications. Biological soil amendments did not have a consistent effect on leaf micronutrients and results

were again mainly significant for the 2008 season. During this season leaf B was significantly lower for

compost extract and humate treated trees compared to control, as well as compost treated plots. Leaf Cu

was lower for all treatments compared to the control in 2008, and the effect was significant with the

majority of treatments, except compost. Leaf Mn levels in 2008 showed similar results to leaf Cu.

2.3.6 Correlations and multivariate analyses

Pearson’s correlation coefficients were calculated for the averages of the different sample dates over which

parameters were measured during the trial period. The most significant correlation was between Bacillus

numbers in the soil and soil Zn content (r = 0.640; p = 0.0001). A significant negative correlation was

found between arylsulfatase and BD (r = -0726; p <0.0001). Furthermore, correlation coefficients were

calculated for data recorded for the Dec 2007 soil sample, yield measured in Jan 2008, as well as leave

nutrient analyses in Jan 2008 after harvest. Correlations of Bacillus numbers were again significant with

soil Zn content (r = 0.727; p < 0.0001), but also soil Mg (r = 0.704; p = 0.0001), soil K (r = 0.603; p =

0.0004), and soil P (r =0.750; p <0.0001), and soil Ca (r = 0.589; p = 0.0006). In addition, Cu showed a
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significant negative correlation with Bacillus numbers (r = -0.617; p = 0.0003). There were significant

correlations between total soil C% and urease (r = 0.474; p = 0.0094), β-glucosidase (r = 0.474; p =

0.0093), phosphatase (r = 0.568; p = 0.0013) and Bacillus numbers (r = 0.467; p = 0.0093). Yield

efficiency was negatively correlated to leaf N content (r = -0.600; p = 0.0020), as well as leaf K content (r

= -0.669; p = 0.0001).

Principal component analysis (PCA), as well as a SDA were also performed on the averages of the

different sample dates over which parameters were measured during the trial period. The PCA bi-plot

illustrating the relationship between the various parameters measured and their association to the different

soil biological amendments are presented in Figure 2. The percentage accounting for total variability in the

data was 65%. All mulched treatments were found to group in the top two quadrants of the ordination axes,

and non-mulched treatments in the bottom quadrants. Furthermore, both treatments receiving compost

showed distinct differences from other treatments. Soil receiving compost and mulch associated more

closely with the biological parameters measured, except for Bacillus counts, which was more closely

related to compost applications without mulching and the association was even closer when compost

extract was added. Yield parameters were most closely associated with leaf Ca and Zn content, as well as

soil pH and were grouped in the same quadrant as the two treatments receiving compost without mulching.

Furthermore, soil N content and leaf N showed a negative relation to yield and were associated with

treatments that were mulched but did not receive compost. When evaluating the variables as predictors of

yield with Stepwise regression, only leaf N content remained in the model (Cumulative Yield = 814.57 –

290.43 x Leaf N) and explained 62% of the variation.

Eight discriminant elements (variables) which had the most discriminatory powers for subsequent analysis

were identified by SDA. These included leaf P content, soil pH, N%, Ca%, actinomycete and Bacillus

counts, as well as urease and β-glucosidase enzyme activities. The selected variables were subjected to

CDA analysis to establish whether discrimination between the various biological soil amendments could be

achieved. Canonical variants 1 and 2 explained 94% of the total dispersion (Canonical variant 1 explained

75% of the variation, while canonical variant 2 explained the remaining 19% of the variation) (Figure 3).

Standardised canonical discriminant function coefficients for canonical variant 1 was highest for soil pH,

Ca%, N% and urease, while for canonical variant 2 coefficients were highest for β-glucosidase, urease and

soil pH. Compost applications without mulch could be separated on the first canonical variable from all

other treatments not mulched. Variables associated with soil pH and N was most likely responsible for this

discrimination. Furthermore, all treatments receiving compost could be separated from other treatment

combinations on canonical variable 2. Urease, β-glucosidase and soil pH was responsible for this

separation. Control plots and soil treated with Biostart or Göemar without mulch could not be clearly

separated from each other.
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2.4 DISCUSSION

2.4.1 Effect of biological management practices on tree performance

Over the six year trial period, regular application of compost extract in addition to annual compost

applications significantly improved shoot growth, as well as trunk circumference growth over the trial

period. After the third growing season the addition of compost extract resulted in 46% more total growth

compared to the control. Additional growth possibly resulted in an increase in bearing positions, resulting

in the increase in yield and fruit number per tree with compost extract application in the 2007 and 2008

season. Application of Biostart (applied in combination with a low dosage humate), Goëmer and compost

on its own, also resulted in a significant increase in trunk growth tempo and Biostart treated trees also

showed increased shoot growth after three growing seasons. Furthermore, all the biological amendments

showed a positive effect on cumulative yield over the two seasons, in comparison to the control, although

effects were only significant for compos extract. Manure was only applied in the first two seasons, and

may have resulted in significant positive effects if applied seasonally over the whole trial period, or at

higher concentrations. No significant effects were observed on tree performance with maintaining a wheat

straw mulch in the tree row.

Although no consistent significant effects on fruit quality were found over the two harvest seasons, there

was significant interaction between mulching and Biostart, as well as compost extract, for some parameters

measured. Further investigation is needed to confirm these effects. High N levels in fruit were shown to

reduce fruit firmness (Marsh et al., 1996), however no negative effects on fruit quality were found with

increased soil N resulting from the addition of compost. In literature, compost application on its own has

shown few significant effects on fruit quality (Kotzé and Joubert, 1992b; Pinamonti et al., 1995; Neilsen et

al., 2003a; Neilsen et al., 2007). In studies comparing different management systems, the majority of

results show higher fruit firmness for apples produced in organic systems, higher TSS and lower acidity

(DeEll and Prange, 1992; Andrews et al., 2001; Renagold et al., 2001; Peck et al., 2006). This corresponds

with our results only for the 2008 season, where higher TSS values were found in mulched plots after 12

weeks storage.

2.4.2 Effect of mulching and biological amendments on nutrition

Straw mulching had little influence on soil chemical parameters or leaf nutrient content after six years of

maintaining a wheat straw mulch, when compared to soil that was not mulched. In contrast to this, compost

application in the planting whole with establishment, followed by a top soil dressing every season (total

amount applied = 90 ton.ha-1), significantly improved total soil N, as well as extractable P, K, Ca, and Mg.

Soil P levels increased dramatically throughout the trial period. This was ascribed to the cumulative effects

of repeated compost applications, containg P, as well as a possible increase in P-solubilising

microorganisms resulting in higher extractable P levels. High soil extractable P can negatively affect

uptake of K (Kotzé, 2001). Although leaf nutrient levels did not show K deficiency, it was within the lower
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range for the 2008 season and high soil P content may therefore pose problems in future, in trees receiving

regular compost applications, unless supplemental K is applied. In literature, increases in soil N (Neilsen et

al., 2003b), P (Pinamonti, 1998; Marsh et al., 1996; Neilsen et al., 2003b), K (Kotzé and Joubert, 1992a;

Marsh et al., 1996; Pinamonti, 1998), and Ca (Marsh et al., 1996) have been reported with compost

application. However, effects of organic matter on soil chemical properties depend to a great extent on the

mineral content of constituent organic material, and are therefore variable (Gallardo-Lara and Nogales,

1987; Neilsen et al., 2003b).

Micronutrients were less affected by the various biological management practices, although soil extractable

Zn and B was increased with compost application. Soil Zn was generally low, but in 2008 increased with

compost application to levels within the acceptable range for pear production (10-15 mg.kg-1). However,

leaf Zn concentrations were not deficient. Soil B content was very low in general and corresponded with

low leaf B content in the 2008 season, in spite of foliar B applications. In compost extract treatments in

2008, low leaf B content indicated possible B deficiency, although soil B was highest in compost extract

treated soil. Results from Yermiyahu et al. (2001) indicated that organic matter plays an important role in

controlling B concentration in the soil solution, and that it has a prominent effect on reducing B uptake by

plants. However, the form in which B occurs in soil, and plant B uptake, are highly pH dependent. The

reduced B uptake observed in the extract treatment, relative to the compost, may therefore have been

brought about by a pH shift induced by the extract in the rhizosphere.

Changes in soil extractable nutrients did not always correspond with changes in leaf nutrient content.

Furthermore, no consistent effects on leaf nutrient content were observed over the trial period. Our results

are in agreement with various other studies on organic matter application in fruit trees that found increased

soil extractable nutrients, with no clear effect on leaf nutrient content (Kotzé en Joubert, 1992a; Gallardo-

Lara and Nogales, 1987; Pinamonti, 1998; Roe 1998; Marsh et al., 1996; Andrews et al., 2001; Neilsen et

al., 2003b). However, these increased levels of soil extractable nutrients are available to the plant and can

therefore potentially have a positive effect on plant performance. Additionally, increased soil extractable

nutrients can lead to reduced fertiliser application, reducing input costs, thereby increasing the economic

benefits of these biological amendments.

Humate, Biostart, EM, seaweed extracts and chicken manure application had no significant effects on

nutrition compared to untreated controls. Chicken manure was only applied at planting and it is possible

that more regular applications or higher application rates would have resulted in more significant changes

in nutrition.

2.4.3 Effect of mulching and biological amendments on soil microbiology

Total soil C% showed most significant increases with the application of organic material (straw mulch and

compost). Organic material application was also the treatments that significantly affected soil microbial
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activity. Mulching conditions provide a favourable environment for microbial activity and fine feeder root

development, especially in surface soil (Boynton and Oberly, 1966; Kotze and Joubert, 1992a; Pinamonti,

1998). Our results were in agreement with other studies which generally found increased soil respiration

and total microbial biomass, as well as soil organic matter content with mulch application (Hogue and

Neilsen, 1987; Merwin et al., 1994; Marsh et al., 1996; Niggli et al., 1990; Werner, 1997; Tiquia et al.,

2002; Yao et al, 2005). In our study, although numbers of actinomycetes, as well as Bacillus bacteria

remained similar, mulching resulted in a general increase in soil enzyme activity. There was a significant

interaction between mulching and some of the biological amendments and increased urease activity were

mainly significant in a non-mulched system. This may be due to an overriding effect of the mulch on

enzyme activity. In addition, BD with mulch application was negatively correlated to arylsulfatase activity.

Arylsulfatase activity can be used as an indicator of fungal activity (Tabatabai, 1982), therefore these

results suggest that increased fungal activity resulted in reduced BD, which could lead to improved root

performance and nutrient uptake. Furthermore, increases in phosphatase enzyme activity with mulch

application could also be related to higher soil P content with mulching. Although increases in leaf P

content were not significant, these P-hydrolysing enzymes can play a major role in the mineralisation of

organic P in soil (Rodriques and Fraga, 1999). High soil P values did not seem to have a negative effect on

soil phosphatase activity. Similar results have been observed in other trials in the Western Cape

(Wooldridge, 2009, personal communication). Furthermore, in various studies AM fungi, which also

produce phosphatase enzymes, were shown to be a factor even under high P levels (Wooldridge, 1999;

Schubert and Lubraco, 2000; Douds and Reider, 2003; Douds et al., 2007).

Compost application consistently increased Bacillus numbers in soil, as well as urease actvity. It was

shown in numerous studies that application of composted material can rapidly improve biological aspects

of soil quality and positively affect soil microbial communities as documented for a diversity of

agricultural systems, including fruit trees, grain crops and vegetables (Fraser et al., 1988; Parr and Hornick,

1992; Temple et al., 1994; Angers et al., 1995; Drinkwater et al., 1995; Gunapala and Scow, 1998;

Carpenter-Boggs et al., 2000; Reganold et al., 2001; Mäder et al., 2002; Flieβbach et al., 2007). In general,

an increase in various soil enzyme activities have been reported with application of organic amendments in

long-term field experiments (Martens et al., 1992; Masciandaro et al., 1997; Albiach et al., 2000; Garcia-

Gill et al., 2000; Ros et al., 2003; Bastida et al., 2008). Urease plays an important role in the N cycle by

hydrolysing urea and producing CO2 and NH3 (Tabatabai, 1982). Increased urease activity could therefore

result in increased availability of soil N, which corresponds with our soil chemical analyses. Bacillus

species, as thermophillic bacteria, form an integral part of composted material (Phae et al., 1990; Hatsu et

al., 2002) and the increased numbers of these bacteria in soil treated with compost therefore suggest that

microbial communities from the compost could have established in the orchard soil.

Results from the PCA bi-plot in our study also showed that soil microbial properties related mainly to soil

applications including both compost and mulch. The exception was Bacillus numbers, which were only
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associated with treatments where compost was applied without a mulch and the association was even

closer when compost extract was added. Compost extracts was shown by EL-Masry et al. (2002) to contain

various Bacillus spp. Lejon et al. (2007), Pérez-Piqueres (2006), as well as Marschner et al. (2003), found

that the size of carbon biomass was increased whatever the type of organic matter input or agricultural

practice (surface application vs. incorporation), but that specific changes in the soil microbial community

were more dependent on the type of organic amendment. Direct inoculation with Bacillus species

(Biostart) showed no consistent effect on numbers of Bacillus colony forming units (CFU) in soil.

However, the interaction between these various Bacillus spp. in these various amendments, as well as

resident Bacillus spp. is complex and changes in Bacillus counts do not reflect changes in species

composition.

There was an indication of decreased availability of Cu in soil with mulch, as well as compost application,

although soil extractable Cu were not very high overall. Soil organic matter affects the mobility of heavy

metals by forming insoluble organometal complexes or through absorbing metal ions and thereby

decreasing its availability (Sauve et al., 1998; Magdoff and Weil, 2004). This may have had a positive

effect on soil microbial activity, since soil microorganisms and microbial processes are generally sensitive

to soil Cu (Giller et al., 1998; Vulkan et al., 2000; Du Plessis et al., 2005). In our study a significant

negative correlation was found between soil Cu content and Bacillus numbers in soil.

Significant effects on soil microbial community structure have been found with organic amendments in

various studies (Bolton et al., 1985; Doran et al., 1987; Reganold et al., 1993; Wander et al., 1994;

Drinkwater et al., 1995; Katayama et al., 1998; Mäder et al., 2002; Marschner et al., 2003; Yao et al., 2006;

Lejon et al., 2007). In our study, changes in community function, as indicated by CLPPs and enzyme

activity, were more pronounced between mulched and non-mulched soils, than changes in microbial

numbers. The addition of a straw mulch changed substrate utilisation of the soil microbial community after

38 h incubation of Biolog plates, when added to the various biological amendments, including compost.

Biostart application induced the most drastic differences in CLPPs between mulched and non-mulched

soils and compost extract, the most similar CLPPs. Although Biostart had no effect on microbial activity or

numbers, it is possible that the introduced Bacillus spp. could not compete with the resident microbes, but

that the soil microbial community function was changed by the carbon source with which the Biostart was

applied, or the addition of the low dosage HS. Visser (1985) showed that HA could increase the growth of

a wide range of soil bacteria, as well as introduce a change in metabolism, allowing organisms to

proliferate on substrates which previously they could not utilise.

Incubation of the inoculated Biolog plates for 38 h, showed that microbial communities from control

treatments where no mulch and no biological amendments were applied, showed different metabolic

function from microbial communities originating from all other treatment combinations, except Göemar

applied with a mulch. Addition of compost extract to compost on its own changed the metabolic
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functioning of the soil microbial community in the mulched system, but not the non-mulched system. This

was in contrast to results with soil enzyme activities, where increase in activity was only significant when

mulch was not applied. It is however important to keep in mind that due to the functional redundancy of

soil microorganisms (Marschner et al., 2003), one function in soil can be performed by a range of different

microorganisms and therefore microbial communities showing similar CLPPs may show very different

species composition and enzyme activity.

Furthermore, it has to be kept in mind that differences in soil microbial properties between mulched and

non-mulched systems may have partly resulted from herbicide application. Although glyphosate, a

systemic herbicide, was applied conservatively and is broken down fairly rapidly in the soil, its effect on

the soil microbial community can not be excluded. Glyphosate was applied to all treatments, and the mulch

layer, also providing some degree of weed control, may have reduced possible negative effects on the soil

biology. Differences in root exudates associated with weeds compared to where soils were mulched could

also lead to significant differences in soil rhizosphere communities and activity.

2.4.4 Relation of variables measured to tree performance

Over the six year trial period maintaining a wheat straw mulch in the tree row showed few effects on

nutrition parameters measured, as expected, and no effect on tree performance, despite significant changes

in soil microbial properties and lower BD. Annual compost applications improved soil microbial, as well

as chemical properties, but when compost extract was added no additional effects on soil microbial

parameters was observed. Nevertheless, vigour and yield was only significantly improved when in addition

to compost, compost extract was applied on a monthly basis. Biostart application also showed positive

results on tree performance. However, this treatment did not result in significant improvement in nutrition

or soil microbial properties measured, although differences were shown in substrate utilisation profiles. In

RDA and subsequent CDA analysis, separation of the various management practices was mainly caused by

soil pH and urease activity, which showed high canonical discriminant coefficients for both canonical

variables. Soil pH, but not urease, was also positively associated with yield in the PCA bi-plot. Separation

of the various treatments in the CDA could not be related to yield differences.

Other studies using broad level measurement, as well as studies using DNA extraction methods, have also

recognised the difficulty of relating the performance of deciduous fruit crops to specific soil microbial

properties (Renagold et al. 2001; Forge et al., 2003; Neilsen et al. 2003b; Varga et al., 2004; Yao et al.,

2005; Hoagland et al., 2008). It is therefore clear that factors determining yield are complex and that the

effect of biological amendments on general microbial activity or functioning cannot consistently predict

tree performance across a wide range of soil conditions and environments, even in the same crop. These

results from literature also show the importance of site-specific effects and that although certain soil

microbial properties are improved by soil management strategies, associated negative effects on nutrition

or pest and disease development are more critical in affecting plant performance.



114

It is also possible that, although differences in soil community functioning did not always result in

improved yield in the current study, effects on productivity may be more pronounced under conditions of

stress. Although considerable functional redundancy exist at species level (Andren et al., 1995; Marschner

et al., 2003), diverse systems have higher resilience to stress and provide better protection against pests and

diseases, since distinct physiological and environmental requirements drive species of the same functional

group to play widely different roles in soil ecosystem processes (Beare et al., 1995; Giller et al., 1997). In

our study, root systems were healthy and there were no indications of nematode or disease problems.

Furthermore, soil nutrient levels were high in general. Also, irrigation scheduling was based on non-

mulched plots which could have masked possible benefits on plant productivity due to conservation of soil

moisture with mulching (Hogue and Neilsen, 1987; Wooldridge, 1992; Merwin et al., 1994; Walsh et al.,

1996; Neilsen et al., 2003b).

2.4.5 Possible mechanisms of improved yield and shoot growth

The application of compost extract showed a consistent positive effect on tree performance, although there

were no differences in nutrition, soil microbial numbers or enzyme activity when compost extract was

applied in combination with compost. Little research has been conducted on the mechanisms through

which compost extracts can improve plant performance. The majority of research has focused on the use of

compost extracts in disease suppression (Litterick et al., 2004), through mechanisms of biological control.

However, in our study no difference in disease incidence was observed between the various treatments.

Improved tree performance with compost extract application could also not be explained by improved

plant nutrition parameters as indicated in leaf nutrient contents of the various treatments. However,

depending on soil physical properties (Pinamonti et al., 1995), fertiliser regimes (Neilsen et al., 2003a,b)

and competition from either weed or fruit load (Andrews et al., 2001), leaf nutrient analyses may not

always reflect differences in soil nutrient content in perennial fruit crop systems. Due to the higher fruit

load with compost extract treatments, improvement in plant nutrition may not have manifested in improved

leaf nutrient contents. It is also possible that improved synchronisation of nutrient release and plant uptake

may have resulted in better tree performance. One of the biggest problems in soil biotic management is the

relative unpredictability of system performance (Hendrix et al., 1990). Nutrient availability that is

synchronised with the plants phenologic development, plays a key role (McGill and Myers, 1987; Myers et

al., 1994). Furthermore, the presence of nutrients in a form available for plant uptake plays a decisive role

in nutrient acquisition. It therefore makes sense that synchronisation should be easier with regular

application of solubilised nutrients available for plant uptake, as contained in the monthly compost extract

applications. Additionally, compost significantly increased soil nutrients available to the trees that can

affect tree performance positively if nutrient uptake is improved. Bacterial secretion of phytohormones can

impact root architecture, increasing nutrient and water uptake, thus contributing to growth (Persello-

Cartieaux et al., 2003). Actively growing root tips are an important source of CK production and

translocation (Salisburry and Ross, 1992) and the production of CK by plant-associated bacteria has been

well documented (Nieto and Frankenberger, 1990; Garcia de Salamone et al., 2001). Specific effects on
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plant growth promotion and yield, related to CK production, has recently been shown with Ballicus

inoculation (Arkiphova et al., 2005; Aslantas et al., 2007; Flores et al., 2007; Ortiz-Castro et al., 2008).

Several studies have indicated a positive effect of the Bacillus spp on growth and yield of fruit trees

(Kloepper, 1994; Esitken et al., 2003; Arkhipova et al., 2005; Orhan et al., 2006; Aslantas et al. 2007).

Furthermore, specific effects on plant growth promotion and yield, related to CK production, has recently

been shown with Ballicus inoculation (Arkiphova et al., 2005; Aslantas et al., 2007; Flores et al., 2007;

Ortiz-Castro et al., 2008). In our study, although correlations between soil biological properties measured

and yield were not significant, the PCA bi-plot showed a relationship between Bacillus numbers and yield

parameters. These bacteria are also among the most powerful phosphate solubilisers (Rodrigues and Fraga,

1999). Our results showed increased soil extractrable P in Dec 2007 where compost and compost extract

was applied. This could indicate a positive effect on yield through root associations with Bacillus bacteria

from compost and compost extracts, resulting in increased nutrient availability and affecting plant growth

hormone production and translocation.

2.5 CONCLUSION

The application of a compost extract in addition to compost treatment improved growth and yield in a

conventionally managed pear orchard compared to untreated controls and results were consistent for the

2007 and 2008 season. Long-term maintenance of a straw mulch, as well as annual compost applications

from orchard establishment, indicated that the application of organic material increased soil enzyme

activity. Furthermore, organic material and the application of biological amendments affected substrate

utilisation of the soil microbial community. Application of compost also significantly increased numbers of

Bacillus bacteria in soil. Although compost extract application did not result in additional changes in

Bacillus counts and urease activity when compared to compost applied on its own, other effects on the soil

microbial community can not be excluded. Compost extracts are dynamic products, consisting of a diverse

microbial community. Application of compost extract to compost treated plots in a mulched system

resulted in changes in substrate utilisation and therefore possibly community function. It was suggested

that monthly compost extract applications resulted in maximum efficiency of nutrient utilisation through

synchronisation of nutrient release with plant demand.

Crop productivity represents the outcome of complex interactions among plant, soil and management

practices. In our study, performance of trees in sites where organic material and biological amendments

were applied, did not always differ significantly from untreated controls and no simple relationship was

apparent between yield and microbial properties. Soil was sampled from soil in the root zone, but not

specifically the rhizosphere. Since release of carbon from roots has always been considered to be a major

factor controlling microbial growth in soil, more research needs to be focused on effects in the rhizosphere.

This includes investigation of the role of microbially produced phytohormones in affecting tree

performance in these biological systems. Maximum efficiency of nutrient utilisation occurs when nutrient
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release from organic residues are synchronised with plant demand. Therefore, knowledge on the

breakdown rate and the rate of nutrient release from residues will enable management systems to utilise

biological amendments more effectively.
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Table 1. Effect of various biological management practices on trunk circumference over the five year
trial period and total shoot growth for the first three growing seasons of ‘Early Bon Chretien’ pear trees
planted on BP1 rootstock. Probability values shown at the bottom of the table are according to a split-
plot ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means.
Treatment means in a column followed by the same or no letter are not significantly different.

Trunk circumference (cm) Shoot growth (cm)

Treatment

Mainx

Subz

At planting
(2002)
(cm)

Rate of
increase over

the trial periody

Total
growth

2003

Total
growth

2004

Total
growth

2005

No Mulch

Mulch

4.18

4.40

3.75

3.80

293.9

312.7

837.4

921.8

1706

1777

Control

Manure

Compost

Compost + extract

Kelpak

Goëmar

Biostart

K-humate

EM

4.25

4.45

4.13

4.36

4.35

4.43

4.44

4.32

4.33

3.52 bc

3.45 c

3.90 a

3.98 a

3.79 ab

3.84 a

3.92 a

3.77 ab

3.78 a

269.3 b

303.0 b

263.2 b

440.2 a

262.8 b

309.7 b

326.5 b

301.7 b

253.5 b

784.5 b

821.6 b

814.8 b

1199.5 a

804.7 b

985.3 ab

890.1 b

806.7 b

808.4 b

1451

1421

1714

2112

1737

1847

1960

1702

1683

P values

Main Treatment

Sub Treatment

Main x Sub

0.3276

0.3304

0.4510

0.6641

0.0185

0.6425

0.4743

0.0386

0.1968

0.1049

0.0165

0.0907

0.6626

0.1142

0.2886
x Values for the main treatments are means from the nine biological amendments in each of three block replicates,
with measurements from four trees in each treatment plot for each replicate.
z Values for the sub treatments are means from two main treatments (mulched and non mulched) in each of three
block replicates, with measurements from four trees in each main treatment plot for each replicate.
y Slope (b value) of linear regressions (R2 = 0.99) fit to trunk circumference measured from 2002 to 2008,
indicating growth tempo.
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Table 2. Yield parameters, fruit number and fruit mass for the 2007 and 2008 harvest seasons of ‘Early Bon Chretien’ pear trees planted in 2002 on BP1
rootstock under various biological management practices. Probability values shown at the bottom of the table are according to a split-plot ANOVA.
Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means followed by no letters are not significantly
different.

Fruit number per tree Average Fruit Mass

(g/fruit)

Yield
kg.tree-1

Yield Efficiency

(kg.cm-2)

Treatment
Main

Sub
2007 2008 2007 2008 2007 2008 2007 2008

Cumulative
Yield

(kg.tree-1)

Cumulative
Yield

Efficiency

(g.cm-2)

No Mulch

Mulch

69

67

119

109

156

159

158

159

10.46

11.12

18.66

17.22

1.138

1.128

695

634

28.90

28.29

1.082

1.039

Control

Manure

Compost

Compost + extract

Kelpak

Goëmar

Biostart

K-humate

EM

54

62

64

88

69

70

71

71

63

103

108

114

136

111

113

114

118

105

159

163

158

155

155

157

159

155

156

154

159

157

156

159

158

164

157

157

8.32

10.10

10.47

13.50

10.89

11.01

11.52

10.83

9.93

15.10

17.27

17.66

21.83

17.46

18.12

18.79

18.33

16.36

0.958

1.107

1.089

1.350

1.125

1.145

1.211

1.170

1.030

551

672

646

771

652

673

679

684

621

23.42

26.91

28.28

35.33

28.11

28.67

29.93

29.51

25.93

0.886

1.043

1.038

1.249

1.051

1.065

1.088

1.095

0.982

P value

Main Treatment

Sub Treatment

Main x Sub

0.6715

0.1358

0.6906

0.2382

0.5124

0.1945

0.2603

0.5309

0.4962

0.4695

0.2676

0.6193

0.5042

0.0870

0.6716

0.2356

0.2853

0.2839

0.9013

0.1951

0.7370

0.2412

0.4005

0.0966

0.8016

0.1330

0.5670

0.6377

0.2680

0.3615
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Table 3. Effect of biological management practices on fruit quality parameters for ‘Early Bon Chretien’ pear planted on BP1 rootstock as
determined during the 2007 harvest season, at harvest, after cold storage (at -0.5 ºC for 8 weeks), as well as cold storage following a shelf life
period of 7 days at room temperature (21-24 ºC) (shelf life period). Probability values shown at the bottom of the table are according to a split-plot
ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the
same or no letter are not significantly different. TSS = Total soluble solids, and TTA = Total titratable acids.

Evaluation at harvestZ Evaluation after storage Evaluation after shelf lifeTreatment

Main

Sub
TSS

(%)

TTA

(%)

Firmness

(kg.cm-2)

TSS

(%)

TTA

(%)

Firmness

(kg.cm-2)

TSS

(%)

TTA

(%)

Firmness

(kg.cm-2)

No Mulch

Mulch

12.97

12.64

0.54

0.51

9.69

9.62

13.49

13.47

0.46

0.47

9.62

9.60

14.02

13.68

0.35

0.33

1.03 b

1.05 a

Control

Compost

Compost + extract

Goëmar

Biostart

K-humate

12.77

12.63

12.92

12.87

12.92

12.73

0.57

0.60

0.55

0.49

0.47

0.49

9.75

9.44

9.67

9.62

9.85

9.63

13.42

13.35

13.58

13.43

13.45

13.65

0.46

0.47

0.46

0.46

0.42

0.48

9.63

9.65

9.29

9.72

9.64

9.69

13.80

13.70

14.52

13.63

13.60

13.83

0.35

0.32

0.35

0.34

0.34

0.34

1.00

1.09

1.08

1.03

1.05

1.02

P value

Main treatment

Sub treatment

Main x Sub

0.1242

0.6629

0.0507

0.4318

0.2572

0.4238

0.5067

0.2362

0.3246

0.7128

0.7780

0.7841

0.1912

0.9739

0.9838

0.8702

0.4131

0.8925

0.3975

0.2961

0.7431

0.5008

0.9810

0.2669

0.0399

0.3235

0.4171
z For each main x sub treatment combination 35 fruit from each block were analysed per evaluation.
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Table 4. Effect of biological management practices on fruit quality parameters for ‘Early Bon Chretien’ pear planted on BP1 rootstock as determined during
the 2008 harvest season, at harvest, after cold storage (at -0.5 ºC for 8 weeks), as well as cold storage following a shelf-life period of 7 days at room
temperature (21-24 ºC). Probability values shown at the bottom of the table are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 %
significance level to compare the treatment means. Treatment means in a column followed by the same or no letter are not significantly different.

Evaluation at harvestz Evaluation after storage Evaluation after storage and shelf-lifeTreatment

Main
Sub

TSS

(%)

TTA

(%)

Firmness

(kg.cm-2)

TSS

(%)

TTA

(%)

Firmness

(kg.cm-2)

TSS

(%)

TTA

(%)

Firmness

(kg.cm-2)

No Mulch

Mulch

11.55

11.53

0.60

0.61

-

-

12.96 b

13.21 a

0.55

0.55

8.41

8.45

13.60

13.55

0.30

0.29

1.04

1.06

Control

Compost

Cextract

Goëmar

Biostart

K-humate

No Mulch*

Mulch

No Mulch

Mulch

No Mulch

Mulch

No Mulch

Mulch

No Mulch

Mulch

No Mulch

Mulch

11.68

11.50

11.25

11.65

11.53

11.63

0.58

0.60

0.59

0.61

0.60

0.61

8.89 e

9.49 abc

9.30 abcd

9.65 a

9.30 abcd

9.13 de

9.20 bcde

9.34 abcd

9.27 bcd

9.55 ab

9.41 abcd

9.26 bcd

13.13

13.20

12.88

13.23

13.25

12.93

0.55

0.55

0.56

0.54

0.56

0.55

8.50

8.49

8.47

8.31

8.49

8.40

13.83

13.22

13.63

13.87

13.40

13.23

0.33 ab

0.27 c

0.28 c

0.28 c

0.29 bc

0.34 a

1.03

1.03

1.02

1.08

1.05

1.10

Main treatment

Sub treatment

Main x Sub

0.6167

0.2857

0.4252

0.2156

0.5390

0.6795

0.0998

0.3835

0.0476

0.0247

0.6006

0.9602

0.7680

0.9773

0.9974

0.6848

0.6599

0.0827

0.7880

0.1266

0.7767

0.2660

0.0067

0.0251

0.2148

0.4476

0.5919
z For each main x sub treatment combination 35 fruit from each block were analysed per evaluation.
*Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments.
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Table 5. Effect of biological management practices on actinomycete and Bacillus numbers of colony forming units (CFUs) in soil, measured at four sampling
dates, Oct 2006, Dec 2006, Apr 2007 and Dec 2007. The average numbers over the four sample dates are also shown. Probability values shown at the bottom
of the table are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a
column followed by the same or no letter are not significantly different.

Actinomycetes x106 CFU/g soil Bacillus x105 CFU/g soilTreatment
Main

Sub Oct 2006 Dec 2006 Apr 2007 Dec 2007 Average Oct 2006 Dec 2006 Apr 2007 Dec 2007 Average

No Mulch

Mulch

67.53

71.91

53.47

70.18

60.80

57.07

80.0

80.3

65.5

69.7

35.07

34.75

25.86

25.50

33.00

27.87

30.8

35.7

32.5

29.7

Control

Compost

Compost +extract

Goëmar

Biostart

69.00

67.50

64.00

65.33

81.00

61.17

52.67

66.33

61.67

61.60

58.50

59.50

57.67

62.83

56.17

81.3

89.3

84.2

66.7

79.3

67.5

67.3

68.0

64.3

69.4

32.00

44.17

32.67

34.00

31.33

22.83

33.17

26.00

23.00

21.67

23.33

33.83

32.33

33.17

29.50

26.8 b

41.5 a

44.0 a

27.8 b

26.2 b

26.3 c

38.2 a

33.8 ab

30.2 bc

27.2 c

P value

Main Treatment

Sub Treatment

Main x Sub

0.6887

0.6302

0.1825

0.1028

0.6199

0.2705

0.8005

0.9887

0.5059

0.8437

0.2730

0.6520

0.5877

0.9916

0.9073

0.9114

0.2447

0.6233

0.8511

0.0742

0.4542

0.4490

0.5217

0.4780

0.0699

<0.0001

0.3567

0.0607

0.0019

0.2879

Values are means from three plate replicates performed for each sub treatment and main treatment combination in each block.
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Table 6. Effect of biological management practices on urease, phosphatase, β-glucosidase and arylsulfatase soil enzyme activities at four sampling dates, Oct 2006,
Dec 2006, Apr 2007 and Dec 2007. Probability values shown at the bottom of the table are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 %
significance level to compare the treatment means. Treatment means in a column followed by the same or no letter are not significantly different.

Ureasez

(µg N/g soil/2h)

Acid phosphatasex

(mg PNP/kg soil/h)

β-Glucosidase

(mg PNP/kg soil/h)

Arylsulfatase

(mg PNP/kg soil/h)

Treatment

Main

Sub Oct06 Dec06 Apr07 Dec07 Oct06 Dec06 Apr07 Dec07 Oct06 Dec06 Apr07 Dec07 Apr07 Dec07

No Mulch

Mulch

39.83

42.75

-

-

50.04

52.29

-

-

315.8

325.9

-

-

382.3

401.2

305.5 b

361.9 a

249.2

264.2

281.8

276.4

239.2

235 .0

-

-

97.5

125.1

80.47 b

122.29 a

Control

Compost

CExtract

Goemar

Biostart

NMulch*

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

35.56

43.69

44.29

45.35

38.87

30.43 c

40.52 ab

39.90 ab

40.52 ab

44.25 a

37.88 abc

39.90 ab

39.85 ab

33.38 bc

41.92 a

48.46

55.47

49.27

55.47

47.17

33.31 e

42.36 bcd

39.14 cde

56.93 a

44.44 bc

44.74 bc

35.13 de

47.39 bc

31.04 e

50.57 ab

318.1

323.4

322.7

322.4

315.9

322.4 c

428.2 a

397.8 ab

392.2 abc

432.8 a

347.9 bc

412.2 ab

400.1 ab

321.9 c

398.1 ab

384.5

390.9

383.6

408.5

391.2

300.0

365.0

342.6

318.9

331.8

232.3

252.1

263.7

263.7

271.3

258.1

285.6

291.2

283.4

280.7

226.5

240.5

221.8

257.4

239.5

175.0 c

216.8 ab

182.9 bc

208.8 abc

217.2 ab

179.6 bc

179.7 bc

210.8 abc

183.3 bc

239.4 a

108.2

111.0

118.2

120.9

98.1

97.52

109.37

107.58

90.85

101.58

P value

Main treatment

Sub treatment

Main x Sub

0.3378

0.0788

0.6609

0.2977

0.1775

0.0179

0.6165

0.3168

0.6405

0.0064

0.0379

0.0316

0.1983

0.9896

0.5749

0.7125

0.3158

0.0060

0.6102

0.9457

0.2595

0.0078

0.2857

0.1435

0.1478

0.2261

0.4853

0.5729

0.6933

0.0960

0.6292

0.5492

0.6666

0.0727

0.6118

0.0298

0.0890

0.2029

0.6802

0.0151

0.3633

0.5414
z Urease hydrolysing activity was determined by the non-buffered method of Kandeler and Gerber (1988).
x Acid phosphatase, β-glucosidase and arylsulfatase activity were determined based on the release and spectrophotometric detection of p-nitrophenol (Tabatabai and Bremner, 1969;
Tabatabai, 1982).
*Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments
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Table 7. Number of substrates utilised after 24h and 38h incubation of Biolog® Ecoplates inoculated with soil microbial communities
subjected to various biological management practices. Biolog Ecoplates contain 31 different carbon sources, replicated three times on a plate
and substrates utilised were assayed Oct 2006, Dec 2006, Apr 2007 and Dec 2007. Probability values shown at the bottom of the table are
according to a split-plot ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in
a column followed by the same or no letter are not significantly different.

Number of substrates utilised after 24 h Number of substrates utilised after 38 hTreatment

Main

Sub Oct 2006 Dec 2006 Apr 2007 Dec 2007 Oct 2006 Dec 2006 Apr 2007 Dec 2007

No Mulch

Mulch

8.2

12.2

2.6

7.0

9.3

9.2

-

-

21.2

21.9

17.2 b

19.4 a

19.6

19.7

18.9

20.0

Control

Compost

CExtract

Goëmar

Biostart

No Mulch*

Mulch

No Mulch

Mulch

No Mulch

Mulch

No Mulch

Mulch

No Mulch

Mulch

9.5

11.2

9.5

11.7

10.8

3.4 b

4.2 b

3.8 b

3.5 b

7.4 a

9.0

9.2

9.3

9.8

9.1

0.8 d

4.0 a

1.5 cd

4.0 a

1.2 d

3.5 ab

1.2 d

2.0 bcd

3.2 abc

2.5 abcd

20.8

21.3

22.0

23.0

21.5

17.8

18.6

18.2

17.2

18.8

21.1

18.9

19.5

18.8

19.8

20.3

19.8

18.3

19.1

19.9

P value

Main treatment

Sub treatment

Main x Sub

0.1197

0.8142

0.0930

0.0511

0.0197

0.1214

0.9628

09846

0.5060

0.0268

0.3101

0.0426

0.1660

0.5863

0.0743

0.0103

0.7499

0.3622

0.9024

07327

0.9033

0.1150

0.3109

0.5995
*Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments.
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Table 8. Effect of various biological management practices on soil chemical properties of the top 0-25 cm of a gravelly, sandy loam soil measured at three times
throughout the trial period, Oct 2006, Apr 2007 and Dec 2007. Total C% was also measured in the top 0-5 cm for the last sampling date. Probability values shown
at the bottom of the table are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment
means in a column followed by the same or no letter are not significantly different.

pH (KCl) Resistance (ohm) Total C (%) Total N (%)Treatment

Main
Sub

Oct06 Apr07 Dec07 Oct06 Apr07 Dec07 Oct06 Apr07 Dec07
0-25 cm

Dec07
0-5 cm

Oct06 Apr07 Dec07
0-25 cm

Dec07
0-5 cm

No Mulch

Mulch

7.00

6.94

6.78

6.71

6.79

6.69

551

496

875

619

570

479

1.88 b

2.17 a

-

-

1.79

1.94

-

-

0.24

0.23

0.250

0.239

0.247

0.278

0.296 b

0.324 a

Control

Compost

CExtract

Goëmar

Biostart

Nmulch*

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

7.03

7.02

6.95

6.97

6.90

6.73 ab

6.88 a

6.88 a

6.63 b

6.60 b

6.73 bc

6.85 ab

6.93 a

6.62 c

6.57 c

550

513

492

543

543

832

613

635

848

808

672 a

394 b

357 b

656 a

578 a

1.70 b

2.31 a

2.22 a

1.87 b

1.89 b

1.48 d

1.81 bc

2.24 a

2.00 ab

2.06 ab

1.87 bc

1.59 cd

1.98 ab

1.92 b

1.47 d

1.56 b

2.15 a

2.17 a

1.62 b

1.85 ab

1.35 c

2.16 ab

2.52 a

2.41 ab

2.21 ab

2.50 a

1.64 c

2.09 b

1.65 c

2.41 ab

0.215

0.255

0.245

0.220

0.233

0.225 b

0.280 a

0.242 b

0.243 b

0.231 b

0.226 b

0.324 a

0.292 a

0.231 b

0.240 b

0.269 b

0.342 a

0.361 a

0.278 b

0.294 b

Main Treatment

Sub Treatment

Main x Sub

0.4474

0.3456

0.6726

0.4444

0.0055

0.3052

0.2136

0.0016

0.4854

0.4680

0.6795

0.5510

0.0780

0.0907

0.1127

0.3894

0.0023

0.2441

0.0122

0.0023

0.8776

0.7030

0.0011

0.0019

0.3485

0.0044

0.0845

0.0930

0.0002

0.0156

0.4775

0.2647

0.3068

0.4016

0.0256

0.0633

0.2688

0.0008

0.5317

0.0201

<0.0001

0.0522

*Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments
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Table 8. (Continue)

P BrayII (mg.kg-1) K (mg.kg-1) Ca (cmol.kg-1) Mg (cmol.kg-1) T-Value (cmol.kg-1)Treatment

Main
Sub

Oct06 Apr07 Dec07 Oct06 Apr07 Dec07 Oct06 Apr07 Dec07 Oct06 Apr07 Dec07 Oct06 Apr07 Dec07

No Mulch

Mulch

19.93

30.40

51.93 b

81.00 a

98.5

106.1

328.0

379.8

319 b

364 a

350.0

339.5

10.73

11.00

-

-

10.38

10.52

1.10

1.28

-

-

1.05

1.14

12.80

13.37

-

-

12.52

12.71

Control

Compost

CExtract

Goëmar

Biostart

Nmulch*

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

9.83

26.6

29.0

27.7

30.5

56.50

53.33

93.00

74.83

54.67

55.8 b

161.5 a

175.2 a

61.3 b

57.8 b

333.5

383.3

359.5

334.7

335.8

287.5 b

449.7 a

421.5 a

272.2 b

278.2 b

225.8 b

504.5 a

535.5 a

238.3 b

219.8 b

10.53

11.41

11.30

10.75

10.21

8.84 d

10.22 bcd

12.24 a

10.53 bc

10.34 bcd

9.67 bcd

8.93 cd

10.85 ab

9.04 cd

9.34 bcd

9.62 b

11.64 a

12.04 a

9.47 b

9.47 b

0.85 c

1.54 a

1.37 ab

1.01 bc

1.04 bc

0.84 e

1.03 de

1.70 a

1.31 b

1.25 bcd

1.29 bc

0.92 e

1.18 bcd

0.87 e

1.04 de

0.75 b

1.44 a

1.47 a

0.87 b

0.95 b

12.34

14.10

13.72

12.74

12.22

10.4 e

12.24 b-e

15.3 a

13.19 b

12.78 bc

12.29 bcd

10.64 de

12.89 bc

10.67 de

11.3 cde

11.06 b

14.61 a

15.22 a

11.07 b

11.11 b

Main Treatment

Sub Treatment

Main x Sub

0.1826

0.1511

0.1693

0.0148

0.2163

0.9656

0.6016

<0.0001

0.4778

0.0756

0.4091

0.2902

0.0251

<0.0001

0.4839

0.8355

<0.0001

0.0761

0.4258

0.2788

0.8678

0.7263

0.0109

0.0267

0.6483

0.0010

0.5238

0.2215

0.0055

0.7872

0.2551

<0.0001

0.0102

0.2086

<0.0001

0.3837

0.1562

0.0864

0.8863

0.5678

0.0006

0.0167

0.6483

<0.0001

0.3580

*Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments
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Table 8. (continue)

Cu (cmol.kg-1) Zn (cmol.kg-1) Mn (cmol.kg-1) B (cmol.kg-1)Treatment

Main
Sub

Oct06 Apr07 Dec07 Oct06 Apr07 Dec07 Oct06 Apr07 Dec07 Oct06 Apr07 Dec07

No Mulch

Mulch

2.62 a

2.17 b

1.429

1.226

1.83

1.66

5.947

7.092

-

-

6.79

7.22

38.63 b

40.12 a

24.34

23.42

36.2

34.7

-

-

-

-

0.89

0.84

Control

Compost

CExtract

Goëmar

Biostart

Nmulch*

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

2.86 a

1.69 b

2.08 b

2.96 a

2.77 a

1.57 a

0.86 c

1.12 bc

1.48 ab

1.61 a

2.46 a

0.93 b

1.01 b

2.05 a

2.30 a

4.70 b

8.37 a

7.65 a

5.67 b

5.50 b

4.47 d

4.87 cd

9.30 a

6.93 b

7.03 b

6.73 b

4.90 cd

6.10 bc

4.23 d

4.67 d

4.65 b

10.32 a

10.47 a

4.73 b

4.87 b

40.87 ab

37.27 b

39.27 b

41.27 ab

37.30 b

45.20 a

38.80 b

37.85 b

36.90 b

36.77 b

23.17 ab

25.45 a

25.47 a

23.87 a

21.45 b

34.45 bc

36.72 ab

38.35 a

33.14 c

34.53 bc

0.737 b

0.657 b

0.730 b

1.303 a

1.220 a

0.680 b

1.177 a

1.223 a

0.700 b

0.587 b

1.17 bc

1.43 abc

1.40 abc

1.41 abc

1.65 a

1.14 c

1.18 bc

1.53 ab

1.49 abc

1.20 bc

0.77

0.99

1.14

0.66

0.76

Main Treatment

Sub Treatment

Main x Sub

0.0206

0.0014

0.7658

0.0680

0.0017

0.0747

0.0630

<0.0001

0.2066

0.2626

0.0030

0.4988

0.8429

<0.0001

0.0086

0.6451

<0.0001

0.4391

0.0243

0.2102

0.0409

0.4139

0.0134

0.4529

0.6447

0.0430

0.7898

0.0589

0.0057

0.0018

0.7288

0.9292

0.0184

0.8172

0.1193

0.7018

*Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments
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Table 9. Leaf nutrient analyses as affected by the various biological management practices for the 2006-2008 seasons. Results are expressed as percentage for
macronutrients and mg.kg-1 DW for micronutrients. Probability values shown at the bottom of the table are according to a split-plot ANOVA. Student’s t-LSD was
used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the same or no letter are not significantly different.

Leaf-N (%) Leaf-P (%) Leaf-K (%) Leaf-Ca (%) Leaf-Mg (%)Treatment
Main

Sub 2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008

No Mulch

Mulch

2.78

2.83

2.522 b

2.565 a

2.618

2.579

0.208

0.221

-

-

0.151

0.163

1.25

1.31

1.172

1.192

1.124

1.152

1.721

1.646

1.488

1.421

1.348

1.309

0.394

0.362

0.273

0.276

0.293 a

0.266 b

Control

Compost

CExtract

Goemar

Biostart

Humate

Nmulch*

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

NMulch

Mulch

2.805

2.750

2.902

2.783

2.783

-

2.547 ab

2.560 a

2.478 bc

2.622 a

2.593 a

2.460 c

2.680 a

2.633 ab

2.530 bc

2.678 a

2.563 abc

2.505 c

0.200

0.217

0.225

0.207

0.223

-

0.157 d

0.180 bc

0.175 bcd

0.157 d

0.163 cd

0.180 bc

0.167 bcd

0.185 ab

0.167 bcd

0.200 a

0.167 bcd

0.157 d

0.152

0.164

0.137

0.193

0.162

0.134

1.25

1.24

1.37

1.29

1.25

-

1.19

1.15

1.20

1.19

1.19

1.17

1.21

1.19

1.06

1.17

1.09

1.11

1.488 b

1.788 a

1.733 a

1.752 a

1.657 ab

-

1.455

1.488

1.445

1.415

1.448

1.475

1.378

1.487

1.232

1.343

1.245

1.287

0.380

0.387

0.357

0.380

0.387

-

0.283

0.297

0.258

0.270

0.255

0.282

0.313 a

0.300 a

0.245 c

0.292 ab

0.272 abc

0.253 bc

Main treatment

Sub treatment

Main x Sub

0.6637

0.3256

0.6450

0.0315

0.0019

0.3095

0.4193

0.0275

0.2564

0.6808

0.8327

0.3221

0.1764

0.0180

0.0084

0.3418

0.1549

0.6727

0.5948

0.5814

0.7159

0.8204

0.9533

0.0744

0.4351

0.6013

0.7729

0.1631

0.0208

0.5643

0.3276

0.9584

0.1712

0.2782

0.1040

0.4697

0.4596

0.9307

0.9316

0.6525

0.5805

0.0938

0.0480

0.0258

0.2816

Footnotes: Kotzé (2001) norms: N (2.1-2.6%), P (0.14-0.19%), K (1.2-1.4%), Ca (1.45-1.60%), Mg (0.30-0.40%), Na (500 mg.kg-1), Mn (20-90 mg.kg-1), Fe (80-150 mg.kg-1), Cu (5-10 mg.kg-1), Zn
(30-50 mg.kg-1), B (30-35 mg.kg-1). Each leaf sample consisted of 50 leaves. Samples were analysed by a commercial laboratory (Bemlab®, Strand, SA) using an inductively coupled plasma-optical
emission spectrometer and a nitrogen analyzer.

*Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments
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Table 9. (Continue)

Leaf-Mn (mg.kg-1) Leaf-Cu (mg.kg-1) Leaf-Zn (mg.kg-1) Leaf-B (mg.kg-1)Treatment
Main

Sub 2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008

No Mulch

Mulch

139

126

318

310

229 b

254 a

10.4

10.7

9.83

9.94

7.61

7.50

48.6

40.7

52.7

47.5

44.2

41.4

42.4

41.9

35.6

33.9

29.0

28.2

Control

Compost

Compost +Extract

Goemar

Biostart

Humate

125

143

145

127

124

-

308

325

312

312

302

325

274 a

246 ab

243 b

226 b

231 b

231 b

11.2

10.0

10.5

10.3

10.8

-

10.2

9.8

9.7

10.2

10.2

9.3

8.67 a

7.83 ab

7.00 b

7.50 b

7.33 b

7.00 b

41.7

46.3

46.5

43.2

45.7

-

50.2

51.8

50.2

49.5

48.3

50.7

42.7

46.8

41.5

43.3

40.0

42.3

41.1

42.2

42.2

43.3

42.0

-

35.5

34.0

34.3

34.0

35.3

33.7

31.0 a

30.5 ab

26.2 c

28.3 bc

28.5
abc

27.2 c

Main treatment

Sub treatment

Main x Sub

0.2444

0.2177

0.5520

0.5509

0.7487

0.5201

0.0126

0.0495

0.8982

0.5598

0.5121

0.5662

0.7735

0.5461

0.7051

0.6349

0.0048

0.6796

0.0731

0.2741

0.7552

0.1210

0.9400

0.9672

0.1912

0.3988

0.2304

0.4825

0.9265

0.9639

0.1562

0.6135

0.2269

0.5286

0.0073

0.4565
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Figures 1A-B. Ordination plots of principal components (PCs) 1 and 2 community level physiological
profiles (CLPP) of soil where organic material and biological amendments were applied. Principal
component analysis was conducted on 24h incubation data from Biolog EcoPlates for the average
substrate utilisation of samples taken in spring 2006, summer 2006, autumn 2007 and summer 2007.
Error bars represent ±1 standard error of the mean. Values in brackets indicate the percent of total
variation accounted for by each principal component axis.
BiostM: Biostart with mulch, BiostNM: Biostart without mulch, CExtM: compost with compost extract and
mulch, CExtNM: compost with compost extract wtihout mulch, CompM: compost with mulch, CompNM:
compost without mulch, ContrlM: control with mulch, ContrlNM: no organic or biological amendments (control
without mulch), GoemM: Goemar with Mulch, GoemMN: Goemar without mulch.
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Figure 2. Principal component analysis (PCA) Bi-plot of the different variables (chemical and biological
soil properties, leaf nutrient content and yield) in relation to the various soil treatments. Values in brackets
indicate the percent of total variation accounted for by each principal component axis.
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Figure 3. Plots of the first two canonical variables (CVs) from a canonical discriminant analysis (CDA),
showing separation of the various soil treatments. Values in brackets indicate the percent of total dispersion
explained by each CV.
Biostart with mulch, BiostNM: Biostart without mulch, CExtM: compost with compost extract and mulch, CExtNM:
compost with compost extract wtihout mulch, CompM: compost with mulch, CompNM: compost without mulch,
ContrlM: control with mulch, ContrlNM: no organic or biological amendments (control without mulch), GoemM:
Goemar with Mulch, GoemMN: Goemar without mulch.
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CHAPTER 3

BIOLOGICAL SOIL AMENDMENTS AND THEIR EFFECTS ON TREE PERFORMANCE AND

SOIL MICROBIAL PROPERTIES IN MANAGING APPLE REPLANT DISEASE

ABSTRACT

The effects of biological soil amendments were investigated for use as alternative management practices to

reduce the effects of apple replant disease (ARD) under marginal South African apple production

conditions. The study site consisted of ‘Fuji’ and ‘Ruby Gala’ apple trees on M793, in a commercial

orchard with a history of ARD problems in Vyeboom (34° 08' S; 019° 02' E), Western Cape, South Africa.

The trial was conducted as a randomised complete block design with nine biological soil management

treatments. Organic material and biological amendments were applied from orchard establishment in 2003,

for every season up till the 2008 harvest season. Tree performance was measured in terms of growth, yield

and fruit quality. Furthermore, changes in selected soil chemical properties, as well as leaf nutrient content

were measured after four years of treatment application. Additionally, the effect of treatments on soil

microbial properties was measured by making use of soil enzyme activity assays (urease, acid phosphatase

and β-glucosidase), conventional microbial plate counts and community level physiological profiles

(Biolog). Methyl bromide fumigation showed the most significant and consistent response in terms of early

growth improvement and yield. However, regular application of Bacillus soil inoculant (Biostart®) in

combination with a labile C-source and low dosage of humate, as well as compost extract applied with

compost, showed improved yield over the four year trial period when compared to untreated plots. Changes

in soil microbial properties were most significant with compost extract treatment in increasing Bacillus and

actinomycete numbers in soil, as well as soil phosphatase activity. After 38h incubation of inoculated

Biolog plates, microbial communities from compost extract treated soil showed the most distinct

community level physiological profile, when compared to the other soil treatments. Biostart® application

also resulted in significant increases in soil enzyme activity. Pre-plant fumigation had no effect on broad-

scale soil microbial properties three years after methyl bromide application, but persistent effects on

substrate utilisation of the microbial community was indicated.

Keywords: Actinomycetes, Bacillus, Biostart®, Biolog®, compost, compost extract, humate, methyl

bromide, mustard gas, soil enzyme activity
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3.1 INTRODUCTION

There is a general movement in agriculture in the direction of more environmentally friendly, sustainable

production practices. This is mainly due to the adverse effect on soil biological activity and diversity

through conventional management practices. Monoculture practices, intensive use of chemicals and low

organic matter input (Grace et al., 1994) has over the long term resulted in shifts in soil fauna and flora

communities, affecting agroecosystem functioning (Griffiths et al., 2001) and thereby plant growth and

yield, negatively (Grayston et al., 1996; Loveland and Webb, 2003; Phelan, 2004). Soil microbial

rehabilitation is of prime importance in orchards suffering from apple replant disease (ARD). This disorder

is associated with poor growth of young apple trees planted on previous apple sites. Symptoms include

stunted growth and reduction in tree vigour and productivity and root systems are typically small with few

functional root hairs (Savory, 1966; Hoestra, 1968; Mai and Abawi, 1981). Although the disease is not

lethal, it has great economic importance due to its lasting effect on production (Mazzola, 1998). The

economics of intensive planting systems depend on rapid establishment of orchard canopy and precocious

cropping (Foote et al., 2001), therefore any growth-retarding factor is adversely felt.

The etiology of ARD is still not fully understood, but accumulated research results point to a biological

origin involving a complex of soil fungi, bacteria, as well as nematodes that can vary across geographic

regions or even between orchards in the same region (Savory, 1966; Hoestra, 1968; Covey et al., 1979; Mai

and Abawi, 1981; Sewell, 1981; Jaffee et al., 1982; Slykhuis and Li, 1985; Utkhede et al., 1992; Dullahide

et al., 1994; Braun, 1995; Mazzola, 1998; Manici et al., 2003). Studies by Mazzola (1998; 1999) indicated

a shift in microbial community composition in ARD development, towards pathogens dominating the soil

microbial profile. Due to its complex etiology, ARD has been controlled successfully in most cases by the

application of a broad spectrum fumigant of which methyl bromide is the most effective and extensively

used. However, due to environmental and economic pressures biological alternatives are needed. The

biological nature of ARD etiology, has initiated research into induction of soil suppressiveness as a more

sustainable approach in ARD management (Gu and Mazzola, 2003). Furthermore, due to the adverse

effects of ARD on root proliferation and development, stimulation of root growth can play an important

role in improving plant performance and managing ARD symptoms.

The disease-suppressive effects of compost have received growing attention (Hoitink et al., 1997; Ristaino

and Thomas, 1997; De Ceuster and Hoitink, 1999; Pascual et al., 2002; Noble and Coventry, 2005).

Furthermore, general biological activity of soil is stimulated by addition of labile organic material

(Campbell, 1989; Magarey, 1999) and soils with a diversity of beneficial microorganisms are more likely

to be suppressive to disease development (Lazarovits, 2001; Van Elsas et al., 2002). Positive effects have

been found with the use of compost in ARD management (Autio et al., 1991; Engel et al., 2001; Moran and

Schupp, 2001; Van Schoor, et al., 2009). Humic substances (HS) comprise a major part of soil organic

matter (SOM) and in recent years there have been increasing interest in amending soil with commercial HS
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to increase soil fertility (Mann, 1986). Positive effects of HS on root growth (Bryan, 1976; Mylonas and

McCants, 1980; Rauthan and Schnitzer 1981; Vaughn and Malcolm, 1985; Chen and Aviad, 1990; Crouch

and van Staden, 1991; Adani et al., 1998) and soil microbial activities (Visser 1985 a, b; Vallini et al.,

1993; Lizarazo et al., 2005) have been shown.

Application of soil inoculants has shown benefits in improving plant health and yield through changes in

root development (Van Loon et al., 1998; George, 2000; Gravel et al., 2007), improved uptake of nutrients

(Glick, 1995; Rodriguez and Fraga, 1999; Zahir et al., 2004), as well as phytohormone production (Arshad

and Frankenberger, 1998; Aslantas et al., 2007). Under greenhouse conditions, several studies have shown

that inoculation of apple seedlings or rootstocks with plant growth promoting rhizobacteria (PGPR) of

Pseudomonas and Bacillus spp. (Utkhede and Smith, 1992; Catska and Hudska, 1993; Biro et al., 1998;

Utkhede and Smith, 2000; Mazzola et al., 2001), as well as arbuscular mycorrhizal (AM) fungi (Utkhede,

1992) has potential for biological management of ARD. Furthermore, the use of compost extracts, also

referred to as compost teas, has been advocated as an inoculant to stimulate and enhance the soil microflora

(Ingham, 1999; Litterick et al., 2004). However, very little scientific research has been done to confirm or

quantify these benefits. In pot trials, the application of sterilised and unsterilised compost extracts,

significantly increased growth of apple seedlings in ARD soils in addition to nutritional effects (Van

Schoor et al., 2009).

The objective of the study was firstly, to evaluate the potential use of various biological soil amendments

for use as alternative management practices to reduce the effects of ARD under marginal South African

apple production conditions. Secondly, in an attempt to establish if reduced ARD effects can be associated

with changes in soil microbial properties, the effect of treatments on soil microbial community activity was

measured by making use of soil enzyme activity assays, conventional microbial plate counts and

community level physiological profiles (CLPPs).

3.2 MATERIALS AND METHODS

3.2.1 Orchard study sites and treatment application

The experiment was conducted in a newly established commercial orchard with a history of ARD

problems, in Vyeboom (34° 08' S; 019° 02' E), one of the main pome fruit production regions in the

Western Cape, South Africa. Annual rainfall in the area is 600 mm and Utah chill units have averaged 700

for winter months the past 10 years. The average maximum temperature in summer is 28ºC, with an

average minimum 14ºC. The study site consisted of ‘Fuji’ and ‘Ruby Gala’ apple (Malus domestica) trees

on M793 planted in 2003 at a spacing of 4.0 m x 1.5 m (within row) on a site with ARD. The site was

selected based on a bioassay using apple seedlings and showing more than 100% growth increase with

fumigation. The soil is a loamy sand (3% clay, 11% silt and 86% sand). With orchard establishment, the

top 30 cm pH (KCl) values averaged 6.6, total soil carbon 2.0%, and stone 9%. The experimental layout
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was a randomised complete block design with nine treatments applied to plots consisting of six trees,

replicated in three blocks for each of the cultivars. Plots were separated by two guard trees. Irrigation was

supplied through a micro sprinkler system (discharge rate 37 L.h-1), 2-3 times per week. Irrigation

scheduling was done using a wetting front detector that was calibrated to keep soil moisture above 50%

plant available water. The total amount of water applied was between 6000 m3.ha-1 and 7000 m3.ha-1. All

treatments were treated equally in terms of fertiliser and pesticide application, as per the standard orchard

practice. Glyphosate (3L.ha-1) was applied to all treatments twice a year to control weeds.

3.2.2 Treatment application

Treatments consisted of organic material application, soil inoculants and biostimulants and included:

1) Untreated control plots, managed to industry norm.

2) Methyl bromide treated plots fumigated (300 g per running m) the autumn before planting. Fumigated

plots were covered with plastic as a standard practice with fumigation and trees planted into the plastic at

orchard establishment. Plastic was left intact until the autumn of 2006.

3) and 4) A product derived from mustard seed (TA, Nematrol Inc.) applied as a biofumigant, releasing

alyll isothiocyanate with the addition of water. The standard recommended dosage (TA1) and double the

standard dosage (TA2) was applied as a post plant treatment for the first two seasons.

5) Commercial compost A (CompostA), applied at 15 ton.ha-1 of which a third was mixed with soil in the

planting hole and the rest was applied as a top dressing in spring. Surface application of compost was

repeated annually in spring at 20 ton.ha-1. CompostA was applied on its own for the first growing season

and from the second growing season, because of positive results in the study site from Chapter 2, compost

extract was applied seven times during the growing season, on a monthly basis, in combination with the

annual compost application. Turned aerobic windrow composting was used and CompostA consisted of

aerobically composted peat (15%), straw (15%), wood shavings (5%), chicken manure (30%) and 35% of

pre-composted, inoculated green garden waste material, used as a starter. A commercial compost extract

(BioEarth, Stellenbosch, SA) was applied at 500 L.ha-1, diluted 50:1 and sprayed onto the soil with each

application. The compost extract was prepared every month by adding 1000 L of water to 50 kg of re-

composted compost and actively aerating the suspension for 48 h, with no additional additives. Field

applications were made within 6 hours after preparation.

6) CompostA in combination with EM Bokasi (250 g.m-2). EM Bokashi is produced through EM

Technology (see Chapter 2), and contains anaerobically fermented organic material with a high nutrient

content (Higa, 1994).

7) Commercial compost B (CompostB) applied on its own, at the same dosage as CompostA. Forced

aerated static pile composting was used to produce CompostB and it consisted of chipped green garden

waste material (60%), grape rests (10%) and a mixture of cow manure and straw (20%). CompostB was

also coarser than CompostA.

8) A potassium humate product was applied annually at an initial rate of 100 L.ha-1 in both spring and

autumn. However, due to adverse effects on growth, application rates were reduced to 50 L.ha-1 in the
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second year. Humic substances are classified into humic acids (HA), fulvic acids (FA) and humin on the

basis of their solubility in water as a function of pH (Swift, 1999). Humic acid salts are termed humates.

9) Biostart® (Microbial Solutions, Kya Sand, SA) Bacillus inoculant was applied at 1 L.ha-1, in

combination with a Microboost® Activator (Microbial Solutions) as a carbon source to sustain the activity

of the introduced bacteria. In addition to the inoculant, a low dosage humic acid product, a 14% potassium

humate liquid, was applied at 10 L.ha-1, in October, December and March of each season.

Organic material and biological amendments were applied from orchard establishment in 2003 (except for

compost extract, which were only applied from 2004), in every season until the 2008 harvest season. Soil

inoculants (Biostart, EM and compost extract) were applied as a drench with planting and thereafter

monthly throughout the growing season. Chemical properties of the compost and compost extracts used are

shown in Appendix A. Biological properties were not measured (see Chapter 2).

3.2.3 Tree performance evaluation

Trees were permanently marked 20 cm above the graft union and trunk circumference measured at planting

and every year during winter. Total shoot growth was measured at the end of the first and second growing

season. Annual yield was recorded as the average yield (kg/tree) of the six trees from each plot for the first

commercial yield in 2006/2007 and again in 2007/2008 season, after four and five seasons of applications

respectively. The number of harvested fruit was determined for each tree in order to calculate average fruit

mass per plot for each treatment replicate. Yield efficiency was calculated by dividing yield by trunk cross

section area at harvest. Fruit quality was evaluated for the 2007/2008 season and parameters measured

included fruit firmness, total soluble solids (TSS) and total titratable acids (TTA). Evaluations were done at

harvest, after 12 weeks storage at -0.5 ºC under regular atmosphere (RA), and then following 7 days at

room temperature (21-24 ºC) (shelf life period). For each evaluation 35 fruit from each treatment and block

combination was analysed.

3.2.4 Leaf nutrient analyses

Leaf nutrient analyses were done for the last three seasons (2006-2008) to provide insight into tree

performance effects with continued application after three seasons. Leaf nutrient analyses were done for the

control plots, fumigated plots and the majority of the biological amendments, except TA2. TA1 was

selected because it resulted in a more positive effect on shoot growth. A combined 50 leaf sample of

mature leaves in the mid shoot section of the current years’ growth was collected at the end of January

from the six trees in each plot for the 2006-2008 seasons. Leaf samples were prepared and analysed as

described in Chapter 2.

3.2.5 Soil sampling and analyses

Only five selected treatments from a total of five replicates were sampled within the two cultivars due to

the labour intensive nature of the microbial analyses and in order to limit the effect of storage on soil
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microbial properties. Soil was sampled from experimental plots where treatments showed the biggest

contrasts in growth improvement after two seasons, control plots, as well as from plots where treatments

performed similar to controls. Furthermore, treatments were selected that showed similar tree performance

in both cultivars. The treatments selected were fumigation, CompostA+Extract, CompostA+Bokashi and

Biostart. Soil was sampled within the root zone of the top soil where microbial activity is expected to be

greatest, at a depth of 0-25 cm. Samples were taken at a distance of 30-40 cm from the tree base, from two

holes beneath four trees in each plot and composite samples prepared for each treatment from the eight sub-

samples in each of the five block replicates. Soil samples were taken in autumn 2006 (May06), after 3

seasons of annual application of biological amendments, in spring 2006 (Oct06), before commencement of

the seasonal applications, in summer 2006 (Dec06) and again in autumn 2007 (May07), two weeks after the

last application of the season.

Sub-samples of soil sampled in summer 2006 were analysed for selected soil chemical properties using the

methods described in Chapter 2. Field moist sub-samples of all four sampling dates were sieved through a 2

mm mesh screen for microbial analyses. Visible root pieces and un-decomposed organic matter were

removed and soil stored at 4 ºC for no more than two weeks before analyses.

3.2.6 Soil microbial analyses

3.2.6.1 Plate counts. Conventional dilution spread-plating was performed to assess total heterotrophic

counts, bacilli and actinomycetes. Medium R2A (Difco) was used for total heterotrophic counts, and

Bacillus numbers were counted on 1/10 strength tryptone soy agar (TSA, Difco) after pasteurization of soil

samples for 10 min at 80 ºC. Sodium caseinate agar (Du Plessis et al., 2005) was used for enumeration of

actinomycetes. Plates were inoculated in triplicate and incubated at 25 ºC. Total heterotrophic numbers

were counted after 72 h incubation and actinomycetes were counted after 7-10 days depending on colony

growth.

3.2.6.2 Soil enzyme activity. Acid phosphatase and β-glucosidase activity were determined based on the

release and spectrophotometric detection of p-nitrophenol (Tabatabai and Bremner, 1969; Tabatabai, 1982).

Urease hydrolysing activity was determined by the non-buffered method of Kandeler and Gerber (1988).

Controls were performed for all enzymes assayed by the addition of the substrate after incubation, but prior

to analysis of the reaction product. Urease activity was only measured for three of the four sampling dates.

3.2.6.3 Substrate utilization profiles. Soil microbial community function within each of the soil samples

was determined using substrate utilization profiles from commercially available Biolog® EcoPlates

(Biolog® Inc., Hayward, USA) according to a modified procedure of Buyer and Drinkwater (1997),

described in Chapter 2.
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3.2.7 Nematode analyses

Nematode community structure was assessed and classified into trophic levels according to the scheme of

Yeates et al. (1993). Data for the separate taxa were summarised into the abundance of bacterivore,

fungivore-root hair feeder, omnivore–predator and plant-parasitic trophic groups. Abundance of enrichment

opportunist nematodes was calculated as the sum of Rhabditidae, Diplogasteridae and Panagrolaimidae

(Forge et al., 2003).

3.2.8 Statistical analysis

A standard analysis of variance (ANOVA) was performed on tree performance data, using the general

linear means (GLM) procedure of SAS Statistical Software (SAS, 2002-2003). Trunk circumference

measurements over the trial period were analysed as repeated measurements by comparing the slopes (b

values) of linear regressions fitted to the data (R2 between 0.97 and 0.99) in an ANOVA. Results were

analysed separately for the two cultivars. Data from the two cultivars were pooled for soil chemical and

microbial parameters, as well as leaf nutrient concentration after homogeneity of the cultivar variances was

established by Levene’s homogeneity test. A combined ANOVA was then performed on the data. Student’s

t-LSD was calculated at a 5 % significance level to compare the treatment means. Profiles of substrate

utilisation were statistically analysed by principal component analysis (PCA) (Garland and Mills, 1991;

Buyer and Drinkwater, 1997; Palojärvi et al., 1997; Larkin, 2003), using the correlation matrix (Rencher,

2002). Pearson Product Moment correlation coefficients (r) were calculated (SAS, 2002-2003) for averages

of parameters measured over the trial period, as well as for the last sampling date of soil, leaves and yield

of 2008. Furthermore, stepwise discriminant analysis (SDA) was used to select a sub-set of variables from

an initial of 36 variables including leaf nutrient contents, soil chemical and biological parameters, as well

as yield parameters. The subset of variables contained those variables which best differentiate or

discriminate between the soil amendments and were used for canonical discriminant analysis (CDA). A

PCA bi-plot was constructed, illustrating the relationship between the variables and their association to the

different soil treatments. Multivariate analyses were performed using XLStat software.

3.3 RESULTS

3.3.1 Tree performance

3.3.1.2 Growth

Fuji. Trunk circumference measurements showed that all trees were of a similar size at planting (Table

1A). Increase in trunk circumference from planting showed significant increases with MeBr fumigation for

the first season (Table 1A). Biostart application also significantly increased trunk circumference after the

first growing season compared to the control, as well as compost extracted treatment, TA2 application and

humate treatment. However, there were no significant treatment differences in trunk circumference growth

tempo over the trial period. Total growth from MeBr treated plots were significantly more after only one

growing season (2004), and growth was still significantly more (48% growth improvement) after two
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growing seasons compared to all other treatments. None of the biological treatments had a significant effect

on growth after one season of application relative to controls. However, after two growing seasons, Biostart

application significantly improved growth and a positive effect was also observed with compost extract

application, as well as CompostB although results were not significant. CompostA applied with Bokashi at

planting, as well as two seasons of mustard gas (TA) at both a higher and lower dosage, resulted in similar

shoot growth as control trees. Humate application appeared to have a negative effect on first year growth,

and dosages were lowered in the second growing season.

Ruby Gala. Trunk circumference measurements showed that all trees were of a similar size at planting.

Fumigation with MeBr significantly improved trunk circumference after the first growing season compared

to all other treatments (Table1B). However, similar to results from ‘Fuji’, there were no significant

treatment differences in trunk circumference growth tempo over the trial period. Total growth from MeBr

treated plots were significantly more after the first, as well as the second growing season when compared to

the control. None of the biological treatments had a significant effect on shoot or trunk growth compared to

control plots after two seasons of application. However, compost in combination with compost extract

application produced similar shoot growth than trees from fumigated plots after the second growing season.

CompostB, CompostA applied with Bokashi, humate application, as well as mustard gas applications had

no significant effect on growth compared to the control.

3.3.1.3 Yield and fruit quality

Fuji. Methyl bromide fumigation had a significant effect on yield parameters. Fumigation significantly

increased the number of fruit per tree in both seasons compared to all other treatments and more than

doubled yield in 2008 compared to control plots (Table 2A). None of the biological treatments improved

yield or yield efficiency significantly in the 2007 or 2008 seasons compared to control trees. However,

biological treatments showing the most potential for improving yield were Biostart and CompostB, as well

as TA1. None of the treatments showed a negative effect on yield. Average fruit mass calculated at harvest

did not show significant differences between the treatments. However, in the fruit quality analysis (Table 3)

both CompostA treatments, TA1, MeBr, as well as Biostart significantly increased fruit size compared to

fruit from control plots.

Ruby Gala. Yield for 2007 varied between trees in the same plot and none of the treatments improved yield

compared to trees from the control plots (Table 2B). However, in 2008 yield was significantly higher for

trees from fumigated plots, as well as Biostart treated plots compared to the control, with yields for

fumigation being significantly higher than yields with Biostart. Although compost with compost extract

application did not significantly improve yield in any one of the seasons, cumulative yield was significantly

higher than from control plots. Cumulative yield was again highest for trees planted in fumigated soil.

Biostart did not show significant improvement in cumulative yield, because of very low yield in 2007.

However, it was not clear what caused this. Although some treatments showed a negative effect on yield in
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2007, it was not consistent for 2008. Except for MeBr, Biostart and compost extract application, none of

the other soil treatments showed a positive effect on yield. Average fruit mass calculated at harvest in both

2007 and 2008, showed no significant differences between the treatments. Results were similar for fruit

size evaluations with fruit quality analysis in 2008 (Table 3).

Fruit quality parameters measured showed no significant effect for ‘Ruby Gala’ apples and few significant

effects for ‘Fuji’ (Table 3). Furthermore, few consistent trends could be observed between the two cultivars

over the three evaluation periods. Fruit firmness at harvest was lowest with compost extract for both

cultivars, but results were only significant for ‘Fuji’. Results were significant compared to all treatments,

except MeBr and Biostart. After storage differences in fruit firmness were not significant in either of the

cultivars. TSS showed no significant differences with any of the evaluations for ‘Fuji’. For ‘Ruby Gala’

lower TSS was observed in MeBr treatment after storage compared to all other treatments, but results were

not significant. There were no significant differences in TTA, background and red colour, or starch

conversion for ‘Fuji’ or ‘Ruby Gala’. However, for ‘Ruby Gala’ there was a trend for fruit from compost

extract treated plots to ripen earlier than control fruit when comparing higher TSS, lower TTA and fruit

firmness and higher starch conversion at harvest. This was in contrast to greenest skin colour (background

colour) at harvest with compost extract application.

3.3.1.4 Soil chemical properties

Soil extractable P and K were generally very high for all treatments and levels were already high when the

trial was established (P 150 mg.kg-1, and K 183 mg.kg-1). Although differences in pH were minor, MeBr

fumigation resulted in soil with significantly higher pH compared to the control and soil treated with

CompostA with Bokashi, as well as Biostart (Table 4). Soil resistance was significantly lower in soil

sampled from plots where compost was applied when compared to all other treatments and there was no

significant difference between application of CompostA with Bokashi and CompostA in combination with

compost extract. Total soil C and N, as well as ammonium- and nitrate-N showed no significant differences

between the treatments. There was great variation in soil extractable P between samples from the same

treatment, possibly resulting in non-significant statistical difference between the various treatments.

However, after four seasons of biological amendment application, soil extractable P from MeBr fumigated

plots was the lowest. Soil extractable K was significantly higher in soil treated with compost compared to

all other treatments and application of CompostA in combination with compost extract resulted in

significantly higher soil extractable K compared to CompostA with Bokashi. Results were similar for Na.

There were no significant differences between the treatment means for soil extractable Ca and Mg.

Treatments where compost was applied, showed lower Ca% due to high Na and K%. Soil micronutrients

showed no significant differences among the soil treatments. Soil extractable Zn and Cu were low

compared to industry norms for all treatments, possibly as a result of high soil extractable P. There were no

significant differences in bulk density (BD) and water holding capacity. However, Biostart treatment

resulted in both highest water holding capacity and lowest BD.
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3.3.1.5 Leaf nutrient analyses

Analyses over the 2006-2008 seasons showed consistent trends for most of the macronutrients, although

results were not always significant for all seasons. Leaf N content was high in general and there were no

significant differences between treatments for all three seasons (Table 5). Leaf P content was within

industry norms for most of the treatments and although results were not significant there was a consistent

trend for leaf P content to be highest with application of compost extract in addition to CompostA. This

was significant compared to the controls only for the 2006 season. Leaf K content showed a similar trend

than P and was significantly higher in 2006 with compost extract application compared to all treatments

where compost was not added. Leaf Ca content was low for all treatments, but not under the critical

minimum level, and results varied among seasons. In both 2006 and 2008, leaf Ca content was highest in

trees from fumigated plots and results were significant for the 2008 season compared to all treatments

except compost extract and Biostart application. In the 2008 season, leaf Ca content was also significantly

higher in trees from Biostart treated plots when compared to untreated control trees. There were no

significant differences in 2007 in leaf Ca content between the treatments. Leaf Mg content showed no

significant differences in among the treatments and Mg levels decreased in all treatments from 2006 to

2008.

Leaf micronutrient concentration showed less consistent trends over the three seasons than macronutrients

(Table 5). No significant differences in leaf Mn were found. Leaf Fe concentrations showed inconsistent

results over the three seasons. In 2006 leaf Fe was significantly higher compared to control plots in both

treatments where CompostA was applied, as well as where humate was applied. There were no significant

differences in 2007 in leaf Fe between the treatments. However, in 2008, with the exception of compost

extract application, leaf Fe was significantly lower in most treatments compared to the control. Leaf Cu

concentration showed a general decline from 2006 to 2008, but was still within the industry norms for

apple and treatments did not result in significant effects for 2006 or 2007. In 2008 leaf Cu was significantly

higher for CompostA with Bokashi and TA1 treatment, compared to controls and the other compost

treatments. Leaf Zn concentration showed no significant treatment differences in any of the seasons, but a

trend was noted with fumigated plots, as well as Biostart treated plots showing highest leaf Zn in 2006 and

2008. In the 2008 season leaf Zn concentration of all the treatments were very high compared to industry

norms. Leaf B concentration also showed no significant differences between the treatments.

3.3.1.6 Nematode analyses

Although Xiphinema counts were not at a high enough level to cause concern, counts from Biostart treated

soil were significantly lower compared to all other treatments (Table 6). No other significant differences

were observed in nematode counts among the various treatments. This may be attributed to the

characteristic variation found in counts from field sites. However, several trends were noted. For plant

parasitic nematodes, Pratylenchus counts from roots were generally high for all treatments, including MeBr

fumigation (Table 6). It was observed that fungivorous nematodes were also more abundant in soil treated
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with Biostart. Bacterivorous nematodes were highest in compost treated soil, followed by Biostart and

compost extract treated soil, respectively. Omnivorous and predacious nematodes were generally low, but

were lowest in control soil and highest in fumigated soil and compost extract treated soil. Abundance of

enrichment opportunist nematodes was used by Forge et al. (2003) as indicator of enhanced nutrient fluxes.

Results showed that counts from compost amended soil were highest for enrichment opportunist

nematodes, followed by compost extract and Biostart treated soil, respectively.

3.3.1.7 Soil microbial analyses

3.3.1.7.1 Plate counts. Plate counts of colony forming units (CFUs) for actinomycetes showed few

significant differences among treatments, except for the last sampling date (autumn 2007), where counts

were significantly increased with compost extract application (Figure 1). This was also a general trend over

the four sampling dates. Bacillus numbers was consistently higher with compost extract application

compared to control plots and Biostart treated plots and the effect was significant in spring 2006 and

autumn 2007 (Figure 2). When calculating the averages of the Bacillus numbers over the four seasons,

compost extract significantly increased Bacillus numbers compared to all other treatments (Figure 2).

Fumigation, addition of CompostA with Bokashi and Biostart application had no significant effect on

microbial numbers measured throughout the sampling period.

3.3.1.7.2 Enzyme activity. Urease and β-glucosidase activity showed similar trends for the various

treatments across the sampling period and results were only significant for the autumn 2006 sample, with

Biostart treatments showing higher urease activity compared to all treatments except compost extract

application (Figures 3A and B). It was observed that for the average urease activity over the three sampling

dates, enzyme activity was significantly increased by Biostart application, as well as the addition of

compost extract in combination with compost compared to the control and fumigated plots. Results for the

first sampling date showed that fumigation in combination with plastic had a negative effect on soil urease

activity. Over the four sampling dates, effects on enzyme activity were most consistent for phosphatase

activity, with compost extract significantly increasing activity in autumn 2006 and autumn 2007. Similar

trends where noted in the other two sampling dates. Average phosphatase activity over the sampling period

was significantly higher with compost extract, as well as Biostart treatment, when compared to the control

(Figure 3C). Average phosphatase activity was also significantly higher for CompostA with extract

compared to CompostA with Bokashi, as well as MeBr fumigation. There was no significant negative

effect of fumigation and plastic cover on phosphatase activity in autumn 2006, or any of the sampling

dates.

3.3.1.7.3 Substrate utilisation. Results obtained after 24 h incubation of inoculated Biolog plates, showed

that soil microbial populations with higher metabolic activity, originating from soil treated with compost

extract, were capable of utilising the most substrates in three of the sampling dates (Table 7). The number

of substrates used was significantly more compared to substrates used by microbial communities from
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control soils in autumn and spring 2006. In the autumn 2006 sample, microbial communities from Biostart

and fumigated soil utilised a similar number of substrates as those from compost extract treated soil. In

spring 2006, microbial communities from soil treated with CompostA either with Bokashi or compost

extract, showed significantly more substrates utilised compared to all other treatments. However, this was

not consistent for the other three sampling dates. In autumn 2007, Biostart showed a lower number of

substrates utilised compared to fumigated, compost extract treated and control plots (Table 7). There were

no significant differences in summer 2006. Results obtained after 38 h incubation of inoculated Biolog

plates were similar to results after 24 h incubation, but effects were not significant in spring 2006.

Average well colour development (AWCD) values of the 31 carbon substrates on the Biolog plates were

analysed by PCA using the mean AWCD values over the four sampling dates to compare community level

physiological profiles (CLPPs) of the selected treatments. Incubating the plates for 24 h, revealed that

CLPPs of the selected treatments differed from profiles of the microbial communities of untreated control

plots (Figure 4A). Microbial communities from soil treated with Biostart and those treated with compost

extract in addition to CompostA, showed similar CLPPs, while profiles from microbial communities

treated with CompostA and Bokashi were more similar to CLPPs of microbial communities from

fumigated soil. In comparison to profiles from control soils, CompostA with Bokashi showed most similar

CLPPs. Incubating the plates for 38 h, resulted in different CLPPs than that after 24 h incubation, with

microbial communities from compost extract treated soil showing the most distinct profile (Figure 4B).

Fumigated soil still showed CLPPs most similar to CompostA with Bokashi treatment, but both were

distinct from the control. Microbial communities from control and Biostart treated soil showed similar

CLPPs when inoculated plates were incubated for 38 h.

3.3.1.8 Correlations and regressions

Pearson’s correlation coefficients were calculated for the averages of parameters measured over the trial

period, and showed most significant correlations between microbial properties measured. There was a

significant positive correlation between Bacillus numbers in soil and urease activity (r = 0.5495; p =

0.0020), as well as urease activity and enrichment opportunist nematodes (r = 0.5809; p = 0.0037).

Furthermore, phosphatase activity was significantly correlated with actinomycete (r = 0.5238; p = 0.0042),

as well as Bacillus numbers (r = 0.5156; p = 0.0050) in soil. Yield only showed significant correlations

with leaf nutrient content. Cumulative yield was positively correlated to leaf Na (r = 0.7061; p = <0.0001)

and leaf Ca content (r = 0.4639; p = 0.0148). When calculating correlations for each cultivar separately, the

correlation with leaf Ca was most significant for the 2008 yield (‘Ruby Gala’: r = 0.7225; p = 0.0035;

‘Fuji’: r = 0.6653; p = 0.0010).

Principal component analysis (PCA) was performed on the averages of yield, nutrition and microbial

parameters measured over the trial period. The PCA bi-plot illustrating the relationship between the various

parameters measured and their association to the different soil treatments are presented in Figure 5. The
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percentage accounting for total variability in the data was 62%. Soil treatments on the two PC components

showed distinct differences between controls, compost extract treatment, Biostart application and

fumigation with MeBr. Treatment with CompostA and Bokashi could also be distinguished from compost

extract treatment, as well as fumigation, but could not clearly be separated from Biostart application and

controls. Yield parameters were more closely associated with fumigation, as well as leaf Na content, soil

pH and tree size. Biological amendments were closely associated with soil microbial properties measured.

From the various microbial parameters measured, compost extract treatment was most closely associated

with Bacillus and actinomycete counts, phosphatase enzyme activity, as well as the amount of substrates

utilized on inoculated Biolog plates by microbial communities from this soil treatment. Furthermore, soil

extractable K and ammonium N showed association to compost extract treatment. Biostart treatment was

most closely associated with β-glucosidase activity and fungivorous nematodes, while CompostA with

Bokashi was associated with bacteriovorous nematodes. Leaf Fe content, as well as soil extractable P, also

showed a strong association to Biostart treatment.

Ten discriminant elements (variables) which had the most discriminatory powers for subsequent analysis

were identified by SDA. These included cumulative yield, phosphatase activity, actinomycete counts,

amount of substrates utilized by soil microbial communities after 38 h incubation of biolog plates, leaf N,

leaf P and leaf Cu and soil extractable P, K and Mg. The selected variables were subjected to CDA analysis

to establish whether discrimination between the various biological soil amendments could be achieved.

Canonical variants 1 and 2 explained 99% of the total dispersion (canonical variant 1 explained 93% of the

variation, while canonical variant 2 explained the remaining 6% of the variation) (Figure 6). Standardized

canonical discriminant function coefficients for canonical variant 1 was highest for cumulative yield, soil

extractable P, actinomycete counts and soil extractable K while for canonical variant 2 coefficients were

highest for Leaf N content, soil extractable K and Mg. Soil fumigation treatment could be separated from

all biological treatments, as well as the controls. Furthermore, treatments receiving compost extract in

addition to CompostA could be separated from the other biological treatments, as well as the control.

Control plots, and Biostart treatments were most closely associated.

3.4 DISCUSSION

3.4.1 Effect of fumigation on soil microbial properties

Pre-plant soil fumigation with MeBr showed no reduction in actinomycete and Bacillus numbers, beneficial

nematode levels, or enzyme activities, measured three years after fumigation. Plastic sheeting applied as

part of the fumigation process, seemed to have a more negative effect on enzyme activity, since β-

glucosidase and urease activity returned to levels of the control plots after removal of the plastic in autumn

2006. This may have been attributed to high temperatures reached in the top soil with the black plastic

sheeting affecting microbial activity negatively. Results with fumigation are in agreement with literature,

showing few persistent effects on broad-scale properties such as total culturable bacteria, microbial
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biomass and soil respiration (Ridge, 1976; Sinha et al., 1979; Toyota et al., 1999; Stromberger et al., 2005;

Yao et al., 2006). Some negative effects on enzyme activity were shown in a trial period of 37 weeks

(Stromberger et al., 2005), but results varied with different fumigants and enzymes and recovery of activity

after 37 weeks was not recorded. Wada et al. (2008) suggested that fumigation effects may be temporary

and that soil microbial function recovered significantly during cropping. However, in our study fumigation

still showed different CLPPs for microbial communities after three years when compared to the control.

This is in agreement with various studies that found significant effects of soil fumigation on soil microbial

community composition and diversity (Toyota et al., 1996; Zelles et al., 1997; Xiao and Duniway, 1998;

Ibekwe et al., 2001; Porter et al., 2005; Klose et al., 2006; Yao et al., 2006). However, few studies have

shown persistent effects with fumigation in the field after more than two years.

3.4.2 Effect of biological soil treatments on soil microbial properties

Biological activity in soil can be promoted by stimulation of the resident soil microbes through addition of

an available carbon source (Campbell, 1989; Magarey, 1999; Termorshuizen et al., 2004), by improving

root growth proliferation and plant health, thereby affecting rhizosphere organisms and root exudates

(Cook and Baker, 1983; Bowen and Rovira, 1999; Sturz and Christie, 2003), or by direct addition of

microbes to the soil.

In our study PCA bi-plots showed that soil microbial properties were closely associated with biological

treatments, in contrast to control and fumigation treatments. Furthermore, the majority of the biological

parameters where more closely associated with compost extract application. Results also showed that the

same compost applied annually for four seasons, did not have a similar effect on soil microbial properties

when combined with different amendments under ARD conditions. Bokashi (a high nutrient source) was

applied as a once-off application with planting and its effect on microbial properties was probably

negligible after 3 seasons, when soil was sampled. Soil microbial properties measured were therefore

mainly the resulting effect from the compost application, which did not lead to significant changes in soil

microbial numbers or activity. However, where compost extract was combined with the same compost and

a continued source of soil microbes applied monthly, significant changes were found in soil microbial

properties. In contrast to these results, Drenovsky, et al. (2005) found that application of compost, as a

source of labile organic matter, was the main factor that influenced microbial populations when applied in

combination with microbial soil inoculants. This is in agreement with results found in Chapter 2. Lejon et

al. (2007), as well as Marschner et al. (2003) found that the size of carbon biomass was increased by

various sources of organic matter input, while specific changes in the soil microbial community were more

dependent on the type of biological amendment applied. Few composts are therefore universally effective

and specific compost properties, as well as inherent soil microbial properties can have effects on disease

suppressiveness and affect tree performance (Hoitink and Fahey, 1986; Litterick et al., 2004).
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Bacillus and actinomycete counts, as well as phosphatase and urease activity were significantly increased

by compost extract application when added to compost. Furthermore, significant correlations were found

between these microbial parameters. Furthermore, incubation of Biolog plates inoculated with soil

communities obtained from the various treatments, revealed higher utilisation ability of substrates by soil

microbial populations from plots treated with compost extract. However, in contrast to our findings with

compost in Chapter 2, soil analyses from the current study did not show significant changes in soil

carbon% and could therefore not be related with increased microbial activity. However, Wander et al.

(1994) concluded that qualitative rather than quantitative changes in soil organic carbon are important

during the first decade of organic management.

Compost applications, as well as Biostart treatments increased numbers of bacteria-feeding nematodes,

including enrichment opportunists which make an important contribution to nutrient cycling (Forge et al.,

2003.) Bacterial numbers were not directly affected by Bacillus application with the Biostart treatment, but

increased urease and phosphatase activity were found. Effective use of soil inoculants strongly depend on

their survival and establishment (Kennedy et al., 2004) in the soil or rhizosphere. Furthermore, a high

degree of specificity are exhibited by various microbial isolates towards controlling different pathogens, as

well as producing biologically active substances (Martin, 2003) and growth responses to microbial

inoculation have been reported to involve strain to crop, as well as site specificity (Zahir et al., 2004). It

therefore seems likely that the increase in enzyme activity observed in our study with Biostart application

was an indirect effect on the resident soil microbial population due to the regular addition of carbon sources

applied in combination with the Biostart (HS and a labile carbon source). Various studies have shown

increased soil enzyme activities associated with HS application (Visser, 1985 a,b, Vallini et al., 1993;

Lizarazo et al., 2005).

Herbicides were applied to all treatments and possible effects on broad-scale microbial parameters can

therefore not be excluded. This may be if more significance in plots where biological amendments were not

applied regularly, and may partially explain differences between effects of compost on its own and in

combination with compost extract.

Significant effects on soil microbial community composition were found with organic amendments in

various studies (Bolton et al., 1985; Doran et al., 1987; Reganold et al., 1993; Wander et al., 1994;

Drinkwater et al., 1995; Katayama et al., 1998; Mäder et al., 2002; Marschner et al., 2003; Yao et al., 2006;

Lejon et al., 2007). Results from our study revealed that the use of substrates represented by CLPPs of

microbial communities differed for the various treatments. Results also differed when incubating the

inoculated plates for either 24 h or 38 h, indicating differences in reaction of soil microbial populations

with higher metabolic activity (already active after 24 h) and slower metabolic activity (only utilising

substrate after 38 h incubation). Community level physiological profiles after 24 h incubation showed a

distinct profile for soil microbial populations from control soils from both fumigation, as well as biological
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treatments. After 38 h incubation of inoculated plates, microbial communities from compost extract treated

soil showed the most distinct substrate utilisation profile of the 31 carbon substrates, when compared to the

other soil treatments. Microbial communities from soil treated with Biostart showed similar profiles to

control soils. However, CLPPs only indicate functional aspects of the cultivable fraction of the soil

community that grows on the C sources used in the plates (Widmer et al., 2001) and results need to be

interpreted in combination with other microbial parameters measured.

3.4.3 Relation to tree performance and mechanisms involved

3.4.3.1 Fumigation

In our study, MeBr fumigation before orchard establishment (with the addition of plastic cover) had an

immediate positive effect on plant growth in both ‘Fuji’ and ‘Ruby Gala’ from the first growing season.

Trees from fumigated plots also produced the highest cumulative yields after the first two harvest seasons,

for both cultivars. These positive effects of fumigation on tree growth and yield in replanted apple orchards

are well documented (Mai and Abawi, 1981; Traquair, 1984). Results from the PCA-biplot showed that

MeBr fumigation was the only treatment that could be associated with yield parameters. Furthermore,

separation of the various soil treatments in the CVA was based partially on yield effects, significantly

separating fumigation treatments from biological treatments and controls.

Fumigation in our study showed few direct effects on soil available nutrients, three years after

establishment. Results by Porter et al. (2005), showed large increases in ammonium N following

fumigation. However, in South Africa, orchards are fumigated 3-4 months before apple trees are planted. In

this period it is likely that soil microorganisms will utilise these nutrients before orchard establishment and

the effect at planting is therefore unclear. The only significant effect on leaf nutrient concentrations with

fumigation was higher leaf Ca. Leaf Ca was low in general when compared to critical norms, possibly due

to high soil extractable K. This indicates a potential advantage in Ca uptake with MeBr application, which

may be ascribed to improved root proliferation and an increase in the number of root tips, improving Ca

uptake. Leaf Ca was also significantly correlated to yield for both cultivars.

Improved yield with MeBr is usually ascribed to its broad spectrum biocidal activity, resulting in improved

root growth and plant health. Pathogen status associated with the various soil treatments in our study where

not quantified, but since increased pathogen effects are characteristic of ARD development the control of

soilborne pathogens probably resulted in increased growth with fumigation. However, apart from its direct

effect on plant pathogens and soilborne pests, fumigation affects microbial activity, as well as the structure

and functionality of the soil microbial community (Zelles et al., 1997; Ibekwe et al., 2001; Klose et al.,

2006). From literature it is clear that the effect of fumigation on soil microbial properties is most significant

in the initial months after fumigation. Porter et al. (2005) showed reduced fungal and bacterial colonization

on roots for at least 17 weeks after fumigation, and found a significant correlation with increased root

growth. Although in our study no changes in microbial numbers and activity, or nematodes were found
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three years after fumigation, effects were probably significant with orchard establishment, which represents

a critical period for initial root proliferation. Microbes generally out-compete plants for nutrients in the

presence of sufficient carbon sources (Jackson et al., 1989). Therefore, improvement in growth with

fumigation may be ascribed to reduction in competition for resources from microbes in the early stage of

root development. In our study substrate utilisation profiles also still showed differences with fumigation

after three years, suggesting more long-term effects, even in cropped systems.

3.4.3.2 Biological treatments

Since ARD mainly develops through changes in soil microbial populations, there is merit in the integration

of biological soil amendments into production systems in order to shift the balance of the microbial

communities towards a population structure more conducive to increased plant health and productivity (Gu

and Mazzola, 2003; Avis et al., 2008). In our study, significant effects on trunk and shoot growth were

mainly found with fumigation. However, Biostart treatment also significantly increased shoot growth in

‘Fuji’ after three growing seasons. Positive effects on shoot growth were also observed in both cultivars

with compost extract, in 2005 after it was first applied in 2004. Furthermore, trees from all treatments

showed a similar rate of trunk circumference increase over the trial period. Cumulative yield of ‘Ruby

Gala’, but not ‘Fuji’ trees were significantly increased with compost extract application compared to the

control. Biostart application showed a positive effect on yield for both cultivars, but only after the second

harvest. Although both cultivars were planted on the same rootstock, cultivar differences can be expected

due to differences in trees size and growth habit of different cultivars, affecting nutrient as well as plant

growth hormone translocation in the plant. Differences in cultivar susceptibility to replant problems have

also been indicated for various deciduous fruit crops (Yadava and Doud, 1980).

Improved growth with organic amendments in ARD orchards was indicated in another field study in South

Africa (Van Schoor et al., 2009). In this study compost applied as a soil dressing in combination with a

straw mulch significantly increased shoot growth, but not trunk circumference, over three seasons, and

results compared favourably to fumigation. Pot trials forming part of this same study, also showed that the

application of compost, as well as sterilised and unsterilised compost extracts, significantly increased

growth of apple seedlings in six ARD soils. In contrast to positive effects with Biostart and compost extract

application in our study, application of CompostA with Bokashi at planting, as well as CompostB did not

result in significant changes in tree performance in either of the cultivars. This is in agreement with other

studies reporting compost to be mainly ineffective in controlling ARD (Granatstein and Mazzola, 2001;

Neilsen et al., 2004). Furthermore, Leinfelder and Merwin (2006) found that pre-plant treatments with

compost had no significant effect on tree growth or yield of trees planted on an old orchard site. However,

in their study soil fumigation also did not result in growth improvement, but effects of ARD tolerant

rootstocks were significant and results explained by changes in the rhizosphere soil microbial communities

associated with the various rootstocks.
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Application methods can also influence results with organic amendments. Wilson et al. (2004) found no

positive effect with incorporation of organic matter into the top 20 cm of orchard soil but replacing soil

from the planting hole with soil not previously planted to an apple orchard, improved growth significantly.

In our study, compost was initially mixed with soil in the planting whole. Direct protection of roots from

pathogens or favourable conditions for root establishment may explain these positive effects. Differences in

results with compost in various studies can also be explained by compositional variability of the organic

material applied, as well as site specific effects. Furthermore, ARD effects can be aggravated by site

specific abiotic factors. Engel et al. (2001) found that compost mixed with replant soil at planting and

subsequent mulching with apple wood chips was effective in improving vegetative and reproductive

growth mainly due to abiotic factors putting the plant under stress. In our study irrigation was scheduled on

plant available water percentage and trees were therefore not subjected to water stress. To reduce effects of

compositional variability on disease suppression due to the site specific etiology of ARD, inoculation of

composts was suggested (Kuter et al., 1988; Hoitink et al., 1997). Our results also suggest that application

of soil inoculants and biostimulants in combination with organic material, showed more promise in

managing ARD than applying compost on its own.

Although Biostart application showed little effect on soil chemical properties and leaf nutrient

concentration, urease and phosphatase activity were increased in some seasons. Increased enzyme activity

can lead to increased availability of nutrients. It was noted in the previous section that bacterial numbers

were not directly affected by Bacillus application and that improved microbial properties were possibly

related to the effect of the labile carbon sources and HS applied in combination with the inoculant. The

effect of HS on root growth has been widely documented (Vaughan and Malcolm, 1985; Chen and Aviad,

1990; Crouch and van Staden, 1991; Van De Venter et al., 1991; Reynolds et al., 1995). Effects on soil

structure, such as increased total porosity, reduced BD, as well as improved soil water conditions (Tester,

1990; Roe, 1998; Neilsen et al., 2003; Magdoff and Weil, 2004) have been indicated as accurate predictors

of root system performance (Thompson et al., 1987). In our study, soil structure seemed to be more

favourable with Biostart application, possibly having a positive effect on root development. Furthermore,

fungi-feeding nematodes were highest in soil where Biostart treatment was applied. Increased capacity and

complexity of the mesofauna with organic amendments are well documented (Freckman and Caswell,

1985; van Bruggen, 1995; Drinkwater et al., 1995; Ferris et al., 1998; Bulluck et al., 2002; Mäder et al.,

2002; Mulder et al., 2003) and free living nematodes that feed on microbes contribute significantly to

nutrient mineralisation (Ekschmitt et al., 1999; Nahar et al., 2006).

Application of a humate product on its own did not show a positive effect on yield and even retarded early

growth to some extent. This could possibly be ascribed to a too high dosage applied initially. The typical

response curve with HS applications shows increased growth with increasing concentrations of HS,

followed by a decrease in growth at high concentrations (Chen and Aviad, 1990). The net direct effect of

humic materials on growth probably involves interactions of a series of biochemical stimulations and
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inhibitions (Chen and Aviad, 1990), thereby partially explaining the dependence of effects on HS

concentration. High concentrations of humates may also reduce the availability of chelated nutrients

(Ruthann. and Schnitzer, 1981), thereby having a negative influence on plant growth.

Compost extracts contain a diverse group of microbes, as well as easily available nutrients and in our study

its addition to compost was associated with higher Bacillus and actinomycete numbers, as well as

phosphatase and urease enzyme activity. Compost water extracts were found to contain Bacillus spp. and

various actinomycetes in a study by EL-Masry et al. (2002). In our study extractable soil macronutrients

were also highest with compost extract application. Furthermore, increased leaf K, P and to a lesser extent

Ca content, was found with this treatment. CLPPs of microbial communities from compost extract treated

soil also indicated an effect on microbial community function, especially the microbes with slower

metabolic activity. Soil microorganisms play an important role in changing root morphology and

architecture (Azcón-Anguilar and Barea, 1997; Glick et al., 1998; Van Loon et al., 1998; George, 2000;

Zahir et al., 2004; Gravel et al., 2007), as well as directly improving nutrient solubilisation and supply

(Rodriguez and Fraga, 1999; Habte, 2006). The use of P solubilising bacteria as inoculants, specifically

Bacillus spp., can increase P uptake and crop yield (Rodriguez an Fraga, 1999; Jeon et al., 2003; Karlidag

et al., 2007). Phosphatase enzymes play a major role in the mineralisation of organic P in soil (Rodriques

and Fraga, 1999; Joner et al., 2000; Ezawa et al., 2005). In our study, improved uptake of P was possibly

caused by increased phosphatase activity with compost extract application, which in turn may have been

linked to increased Bacillus numbers. Furthermore, actinomycetes (Carpenter-Boggs et al., 1995), as well

as Bacillus spp. (Xavier and Germida, 2003) can facilitate mycorrhizal root colonization through

associations with AM fungi and are therefore termed mycorrhiza helper bacteria (MHB) (Garbaye, 1994).

Although effects on pathogens were not measured in this study, both actinomycetes and Bacillus spp. are

capable of inducing biological control of fungal pathogens (EL-Tarabily et al., 1997; Van Loon et al., 1998;

Utkhede et al., 2000; Cohen et al., 2005; EL-Tarabily, 2006), as well as parasitic nematodes (Akhtar and

Malik, 2000; Samac and Kinkel, 2001) implicated in ARD development. In our study levels of lesion

nematodes were approaching damaging levels and it is possible that plants were protected from nematode

attack by changes in the soil microbial populations with biological amendment. Biostart has specifically

been formulated to control plant parasites and soil pathogens. With Biostart application increases in fungal

feeding nematodes were found. Xiphenema counts were also significantly lower in these soils. Although

counts were not at damaging levels in 2006, numbers may have increased in the following years, giving

Biostart treated trees an advantage in terms of yield. Daneel et al. (2000) concluded that the direct effect of

HS on parasitic nematode populations was insignificant, but that HS products could render the plant more

resistant to nematode attacks, by allowing plants to compensate for root damage.

Changes in phytohormone levels mainly control growth and developmental processes in plants (Davies,

1995; Weyers and Paterson, 2001). Various Bacillus strains have been found to produce plant growth

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1287740#r38#r38
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promoting hormones (Arshad and Frankenberger, 1998; Gutierez-Mañero et al., 2001; Arkhipova et al.,

2005; Aslantas et al., 2007). In a recent study by Aslantas et al. (2007) it was found that PGPR strains,

including Bacillus spp., were effective in promoting growth and yield of different apple cultivars and that

the plant growth promoting effect appeared to be related partly to the production of IAA and CK.

Hormone-like activity has also been suggested for several humic fractions (Cacco and Del’agnola, 1984;

Vaughan and Malcom, 1985; Piccolo et al., 1992; Nardi et al., 1996, 2002). In deciduous fruit, CK plays a

crucial role in regulating lateral bud burst and development (Pillay and Railton, 1983; Faust et al., 1997;

Cook et al., 2001; Zhang et al., 2003), the quality of fruiting spurs (de Jager, 1994) and fruit set (Stevens

and Westwood, 1984; Zhang et al., 2008). Furthermore, there are several reports suggesting that the

accumulation level of CK and export by the roots is closely correlated with the nutritional status of the

plant (Menary and van Staden, 1976; Sattelmacher and Marschner, 1978; Horgan and Wareing, 1980;

Wagner and Beck, 1993; Samuelson and Larsson, 1993; Takei et al., 2001). Although increased shoot

growth was not always significant with biological amendment application, it is possible that there were

changes in bud break or spur development which could have a significant effect on future yield.

Phosphatase activity was the microbial parameter showing the most discriminative power in separating the

various treatments from each other in the CVA analysis. However, phosphatase activity could not be

related to yield. In our study soil were sampled within the root zone, but not from the rhizosphere directly.

In recent studies by Yao et al. (2006) on the use of different rootstock genotypes in ARD management,

results showed that bacterial communities in the rhizosphere of susceptible rootstocks differed from

tolerant rootstocks (Rumberger et al., 2007) and correlated with improved yield (Leinfelder and Merwin,

2006).

3.5 CONCLUSION

Fumigation was the treatment that showed the most significant and consistent response in terms of tree

performance in this ARD site. However, regular application of Biostart® soil inoculant in combination

with a labile C-source and low dosage of humate, as well as compost extract applied with compost, showed

significant improvement in tree performance compared to untreated plots.

Changes in broad-scale soil microbial properties were significant with biological amendments that was

applied monthly every season, but not with fumigation three years after MeBr application. Fumigated sites

also did not show differences in parasitic nematode counts when compared to untreated soil. Effects with

fumigation therefore seem to be dramatic and immediate, allowing trees to establish in an environment with

little microbial competition, and in the absence of soil pathogens. However, in a study by Mazzola (1999) it

was shown that cultivation of apples can induce microbial communities capable of inciting ARD within

two to three years, having negative implications for the next orchard to be established. Effects with

biological amendments are more gradual and long term. Early application is therefore important, in order
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for trees to be colonized by beneficial organisms protecting them from pathogen attack. Furthermore,

young trees still trying to establish an efficient root system can benefit from improved nutrient

solubilisation and microbial growth hormone production in the rhizosphere. With repeated application,

changes induced in soil microbial communities should prevail, making it more difficult for soilborne

pathogens to dominate. This can possibly have more positive implications for the next orchard.

Biological approaches to ARD control are knowledge and management intensive and ultimately should

form part of an integrated biological management system to maximise benefits. More research is needed on

the effects of compost extracts. These inoculants are easy to apply and not very costly. The use of ARD

tolerant rootstocks in combination with these biological amendments may also result in more favourable

effects compared to fumigation. However, many issues remain to be addressed before there can be

sufficient confidence in the reliable use of these biological amendments. Furthermore, a trade-off between

short and long term advantages and/or disadvantages must be considered for sustainable management.
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Table 1A. Effect of biological soil management practices in comparison with methyl bromide fumigation
on trunk circumference growth from orchard establishment in 2003 to 2008 and effect on total shoot
growth for the first two growing seasons of ‘Fuji’ apple trees planted on M793 rootstock in a replant site
(loamy sand soil). Probability values shown at the bottom of the table are according to a standard ANOVA.
Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in
a column followed by the same or no letter are not significantly different.

Trunk circumference (cm) Shoot growth (cm)
Treatment

At planting
2003

Growth
03-04

Growth
tempo over

trial period**

Total growth

2004

Total growth

2005

Control

Methyl bromidex

CompostA+Extracty

CompostA+Bokashi*

CompostB

Biostart

TA1z

TA2

Humate

5.47

5.77

5.34

5.37

5.50

4.89

5.28

5.43

5.13

2.96 cd

5.20 a

3.04 cd

3.48 bc

3.14 bcd

3.81 b

3.26 bcd

2.97 cd

2.72 d

3.86

3.98

4.05

3.97

4.26

3.75

3.88

3.54

3.49

423.9 bc

970.9 a

466.5 bc

502.1 b

445.8 bc

485.1 b

376.9 bc

364.2 bc

250.6 c

1571.3 cd

2484.1 a

1972.2 bc

1582.9 cd

1848.4 bc

2037.7 b

1600.1 cd

1310.2 d

1268.1 d

Treatment (P value) 0.6619 <0.0001 0.1173 0.0011 0.0007

Treatment means are the average of three block replicates, with measurements from six trees in each treatment plot for
each replicate.

x Plastic cover applied with fumigation was left intact with planting and removed in the autumn of 2006.
y Biological treatments were applied from establishment, except for compost extract which was only applied from the
second growing season.
z A product derived from mustard seed (TA, Nematrol Inc.) applied as a biofumigant. TA1 = standard dosage, TA2 =
2 x standard dosage
* EM Bokashi is produced through EM Technology (Higa, 1994), and contains anaerobically fermented organic
material with a high nutrient content.
** Slope (b value) of linear regressions (R2 between 0.97 and 0.99) fit to trunk circumference measured from 2003 to
2008, indicating growth tempo.
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Table 1B. Effect of biological soil management practices in comparison with methyl bromide
fumigation on trunk circumference growth from orchard establishment in 2003 to 2008 and effect on
total shoot growth for the first two growing seasons of ‘Ruby Gala’ apple trees planted on M793
rootstock in a replant site (loamy sand soil). Probability values shown at the bottom of the table are
according to a standard ANOVA. Student’s t-LSD was used at a 5 % significance level to compare
the treatment means. Treatment means in a column followed by the same or no letter are not
significantly different.

Trunk circumference (cm) Shoot growth (cm)

Treatment At planting
2003

Growth
03-04

Growth tempo
over trial
period x

Total growth

2004

Total growth

2005

Control

Methyl bromide

CompostA+Extract

CompostA+Bokashi

CompostB

Biostart

TA1

TA2

Humate

4.46

4.93

5.17

5.37

5.13

4.67

5.12

5.16

4.64

3.43 bc

5.30 a

3.70 bc

3.51 bc

3.40 bc

4.18 b

3.41 bc

3.15 c

3.39 bc

4.61

4.79

4.22

3.96

3.81

4.03

4.12

4.14

4.38

506.6 bc

1138.1 a

589.9 bc

567.7 bc

433.0 c

469.0 bc

652.0 b

424.8 c

443.7 bc

1615.9 bcd

2316.4 a

2002.6 ab

1547.1 cd

1323.6 d

1694.7 bcd

1837.1 bc

1704.7 bcd

1494.2 cd

Treatment (P value) 0.1991 0.0044 0.1677 <0.0001 0.0025

x Slope (b value) of linear regressions (R2 between 0.97 and 0.99) fit to trunk circumference measured from 2003
to 2008, indicating growth tempo.
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Table 2A. Effect of methyl bromide fumigation and various biological treatments on yield and fruit size of ‘Fuji’ apple trees planted in 2003 on
M793 rootstock in a replant site (loamy sand soil). Probability values shown at the bottom of the table are according to a standard ANOVA.
Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the same or no
letter are not significantly different.

Fruit size (g) Fruit number per tree Yield (kg.tree-1) Yield efficiency (kg.cm-2)Treatment

2007 2008 2007 2008 2007 2008 2007 2008

Cumulative

Yield

(kg.tree-1)

Control

Methyl bromide

CompostA+Extract

CompostA+Bokashi

CompostB

Biostart

TA1

TA2

Humate

161

164

177

163

159

168

185

152

164

144

149

159

142

156

153

151

153

151

109 b

219 a

104 b

109 b

146 b

121 b

118 b

102 b

96 b

84 b

216 a

110 b

108 b

115 b

134 b

119 b

98 b

78 b

20.3

36.4

18.7

19.9

26.1

23.9

23.2

17.1

18.3

12.5

30.6

17.3

15.2

16.9

20.3

17.9

14.4

11.8

1.147

1.766

1.052

1.087

1.404

1.282

1.306

1.020

0.985

0.482

1.119

0.728

0.583

0.726

0.893

0.769

0.656

0.544

32.8 bc

66.9 a

36.1 bc

35.1 bc

43.0 bc

44.2 b

41.1 bc

31.5 bc

30.0 c

Treatment (P value) 0.2772 0.2556 0.0334 0.0458 0.1733 0.0502 0.3442 0.1407 0.0008
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Table 2B. Effect of methyl bromide fumigation and various biological treatments on yield and fruit size of ‘Ruby Gala’ apple trees planted in 2003 on M793
rootstock in a replant site (loamy sand soil). Probability values shown at the bottom of the table are according to a standard ANOVA. Student’s t-LSD was
used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the same or no letter are not significantly
different.

Fruit size (g) Fruit number per tree Yield (kg.tree-1) Yield efficiency (kg.cm-2)Treatment

2007 2008 2007 2008 2007 2008 2007 2008

Cumulative

Yield

(kg.tree-1)

Control

Methyl bromide

CompostA+Extract

CompostA+Bokashi

CompostB

Biostart

TA1

TA2

Humate

129

139

137

128

123

124

126

129

132

126

124

127

122

125

124

125

127

127

173 abc

165 abc

205 a

188 ab

96 d

134 bcd

189 ab

148 bcd

119 cd

114 c

388 a

184 bc

124 bc

80 c

107 bc

133 bc

151 bc

114 bc

24.3 ab

22.6 abc

27.7 a

23.0 ab

11.8 e

16.5 cde

23.2 ab

20.4 bcd

15.7 de

14.33 c

48.14 a

23.35 bc

15.21 bc

16.58 bc

27.59 b

16.74 bc

19.32 bc

20.66 bc

1.312 ab

1.094 bcd

1.466 a

1.279 abc

0.719 e

0.947 de

1.279 abc

1.150 abcd

0.921 de

0.531 c

1.648 a

0.892 bc

0.591 c

0.627 bc

1.046 b

0.670 bc

0.573 c

0.756 bc

38.6 c

70.7 a

51.1 b

38.3 c

27.5 d

44.1 bc

40.9 bc

39.7 c

36.4 cd

Treatment (P value) 0.6588 0.9374 0.0196 0.0019 0.0037 0.0116 0.0183 0.0016 <0.0001
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Table 3. Effect of fumigation and biological treatments on fruit quality parameters for ‘Fuji’ and ‘Ruby Gala’ planted in 2003 on M793 as determined
during the 2008 harvest season, after cold storage (at -0.5 ºC for 8 weeks), as well as cold storage following a shelf life period of 7 days at room
temperature (21-24 ºC). Probability values shown at the bottom of the tables are according to a standard ANOVA. Student’s t-LSD was used at a 5 %
significance level to compare the treatment means. Treatment means in a column followed by the same or no letter are not significantly different.

Evaluation at harvest After storage After shelf life

Treatment Fruit size

(mm)

Firmness

(kg m-2)

TSS

(%)

TTA

(%)

Skin

Colour

Red

Colour

Starch* Firmness

(kg m-2)

TSS

(%)

TTA

(%)

Firmness

(kg m-2)

TSS

(%)

TTA

(%)

Fuji

Control

Methyl bromide

CompostA+Extract

CompostA+Bokashi

CompostB

Biostart

Humate

TA1

71.41 d

73.38 a

72.84 ab

73.39 a

71.63 cd

73.70 a

70.82 d

72.35 bc

8.13 ab

7.83 abc

7.47 c

8.03 ab

7.93 ab

7.73 bc

8.23 a

8.17 ab

15.13

15.90

14.93

15.23

15.47

15.13

14.75

15.20

0.79

0.75

0.76

0.75

0.75

0.77

0.70

0.74

5.83

5.67

4.00

7.00

3.83

1.83

3.00

4.83

6.83

4.33

5.67

3.00

1.33

5.00

4.00

5.83

40.4

47.7

50.5

53.0

50.7

47.8

49.7

47.4

7.5

7.4

7.6

7.7

7.8

7.5

7.8

7.6

15.4

15.9

15.4

15.7

15.6

15.7

16.0

15.7

0.61

0.59

0.58

0.53

0.53

0.57

0.54

0.57

7.77

7.67

7.47

7.73

7.70

7.63

7.60

7.80

16.2

15.9

15.5

15.7

15.7

15.5

15.7

15.9

0.51

0.51

0.49

0.53

0.51

0.46

0.51

0.47

Treatment (P value) <0.0001 0.0313 0.2460 0.6637 0.1043 0.1087 0.2244 0.1380 0.5544 0.9038 0.3549 0.2261 0.5912

Ruby Gala

Control

Methyl bromide

CompostA+Extract

CompostA+Bokashi

CompostB

Biostart

Humate

TA1

66.47

65.96

66.91

66.17

65.68

66.77

65.35

66.04

8.9

8.7

8.4

8.8

8.8

8.8

8.6

8.7

12.9

12.6

13.1

12.8

12.8

12.9

12.5

12.7

0.92

0.84

0.78

0.80

0.88

0.80

0.78

0.88

5.2

5.0

6.2

4.0

3.3

3.8

3.5

2.3

5.3

4.2

4.2

5.8

4.0

3.5

2.5

3.7

27.3

39.3

34.8

28.9

29.9

31.0

26.8

31.2

8.4

8.0

8.3

8.2

8.2

8.0

8.0

8.1

14.0

13.3

13.7

13.9

13.6

13.9

13.9

13.6

0.73

0.66

0.69

0.68

0.70

0.71

0.72

0.72

7.4

6.9

7.1

7.3

7.5

7.2

7.2

7.3

14.1

13.8

14.1

14.0

14.0

14.1

13.9

13.9

0.54

0.60

0.61

0.60

0.63

0.57

0.64

0.63

Treatment (P value) 0.4023 0.3042 0.4070 0.0947 0.4831 0.7920 0.8152 0.0738 0.0546 0.9323 0.4821 0.7847 0.4749

*Percentage starch converted to sugar

For each cultivar 35 fruit from each treatment and block combination were analysed per evaluation.
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Table 4. Soil chemical properties from fumigated soil, as well as soil amended with biological applications (loamy sand soil). Soil samples were taken in
December 2006 in the top 0-25 cm soil layer from both cultivars. Data from the two cultivars were pooled after homogeneity of the cultivar variances was
established. A combined analyses of variance indicated no significant cultivar and treatment interaction and only main effects are presented. Probability
values are shown at the bottom of the table. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a
column followed by the same or no letter are not significantly different.

Treatment

pH

(KCl)

Resist.
(ohm)

C

%

NO3--N

(mg.kg-1)

NH4+-N

(mg.kg-1)

N

%

P Bray II

(mg.kg-1)

K

(mg.kg-1)

Na

(cmol.kg-1)

Ca

(cmol.kg-1)

Mg

(cmol.kg-1)

T-value

(cmol.kg-1)

Control

Methyl bromide

CompA+Extract

CompA+Bokashi

Biostart

6.88 b

6.98 a

6.93 ab

6.88 b

6.85 b

767 a

738 a

417 b

433 b

703 a

1.82

2.12

2.06

1.79

1.71

28.07

29.96

25.95

31.30

33.18

9.65

10.10

11.44

10.31

9.71

0.176

0.189

0.190

0.185

0.188

205.8

156.8

200.4

219.6

214.6

266.3 c

283.3 c

532.0 a

402.8 b

285.0 c

0.065 c

0.065 c

0.187 a

0.145 b

0.073 c

11.5

12.4

12.6

11.6

11.8

1.51

1.61

1.74

1.66

1.49

13.70

14.81

15.89

14.42

14.04

P Value 0.0404 <0.0001 0.3211 0.2368 0.6192 0.8203 0.3152 <0.0001 0.0010 0.7522 0.6217 0.2243

Water holding capacity

Treatment

Cu

(mg.kg-1)

Zn

(mg.kg-1)

Mn

(mg.kg-1)

B

(mg.kg-1)

Na

%

K

%

Ca

%

Mg

%

BD

kg.L-1

10 kPa % mm.m-1

Control

Methyl bromide

CompA+Extract

CompA+Bokashi

Biostart

1.18

1.02

0.78

1.02

0.94

6.00

6.63

5.75

6.75

5.38

20.68

20.78

19.32

19.53

19.07

0.99

0.91

1.06

0.91

0.97

0.48 b

0.46 b

1.21 a

1.01 a

0.52 b

4.95 b

5.02 b

8.76 a

7.15 a

5.20 b

83.7 a

83.7 a

79.1 b

80.5 b

83.6 a

10.90

10.86

10.94

11.39

10.64

1.268

1.270

1.255

1.268

1.248

9.8

7.2

9.2

6.6

11.2

146

151

148

154

143

P Value 0.8418 0.5255 0.7507 0.5612 <0.0001 0.0002 0.0032 0.8419 0.6536 0.3422 0.1774
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Table 5. Comparison of leaf nutrient analyses of macro and micro elements for three consecutive seasons from fumigated soil, as well as soil amended
with biological applications. Data from the two cultivars were pooled after homogeneity of the cultivar variances was established. A combined analyses of
variance indicated no significant cultivar and treatment interaction and only main effects are presented. Probability values are shown at the bottom of the
table. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the same or no
letter are not significantly different.

Leaf N (%) Leaf P (%) Leaf K (%) Leaf Ca (%) Leaf Mg (%)Treatment

2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008

Control

Methyl bromide

CompostA+Bokashi

CompostA+Extract

CompostB

Biostart

Humate

TA1

2.96

3.05

3.08

2.96

3.10

3.10

3.00

3.03

2.42

2.41

2.41

2.42

2.44

2.37

2.45

-

2.43

2.47

2.39

2.51

2.55

2.66

2.50

2.56

0.178 b

0.186 b

0.194 b

0.230 a

0.188 b

0.200 ab

0.180 b

0.204 ab

0.150

0.158

0.148

0.206

0.195

0.158

0.158

-

0.173

0.136

0.186

0.218

0.218

0.222

0.154

0.188

1.76 bc

1.60 c

1.79 ab

1.93 a

1.82 ab

1.77 b

1.73 bc

1.76 bc

1.57

1.55

1.52

1.71

1.64

1.46

1.47

-

1.52

1.50

1.65

1.66

1.61

1.49

1.60

1.57

0.926

1.094

0.914

1.012

0.934

0.940

0.864

0.950

1.238

1.285

1.182

1.352

1.208

1.180

1.175

-

1.023 c

1.182 a

1.046 c

1.093 abc

1.020 c

1.150 ab

1.044 c

1.078 bc

0.344

0.336

0.344

0.370

0.334

0.373

0.306

0.326

0.294

0.293

0.308

0.278

0.293

0.305

0.295

-

0.213

0.222

0.232

0.225

0.223

0.238

0.230

0.235

P value 0.3774 0.8521 0.1013 0.0331 0.1490 0.2342 0.0295 0.2807 0.5721 0.0889 0.1992 0.0241 0.6297 0.7287 0.8062

Leaf Mn (mg.kg-1) Leaf Fe (mg.kg-1) Leaf Cu (mg.kg-1) Leaf Zn (mg.kg-1) Leaf B (mg.kg-1)Treatment

2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008

Control

Methyl bromide

CompostA+Bokashi

CompostA+Extract

CompostB

Biostart

Humate

TA1

82

87

84

83

73

82

75

74

186

190

188

200

178

183

181

-

317

361

322

324

303

349

327

307

191 c

195 bc

231 a

220 ab

191 c

203 bc

241 a

198 bc

168

167

178

162

170

169

171

-

151 a

97 c

100 c

144 ab

96 c

120 bc

102 c

103 c

6.8

7.0

6.0

6.6

6.4

6.2

7.0

6.6

5.8

5.3

5.2

5.4

5.5

5.5

5.3

-

4.3 c

5.2 abc

6.0 ab

4.7 c

4.8 c

5.0 bc

5.4 abc

6.3 a

67

79

65

59

58

73

65

62

39.6

41.3

41.6

41.2

40.6

40.5

42.3

-

97.2

115.0

97.4

97.8

87.3

105.7

97.4

89.0

39

38

41

39

40

43

39

42

32.6

33.3

32.8

34.2

36.0

33.3

34.3

-

30.7

31.6

32.0

32.5

33.0

34.0

31.2

31.0

P value 0.9288 0.9200 0.2274 0.0010 0.7784 0.0042 0.1318 0.3586 0.0118 0.7665 0.9967 0.0692 0.3612 0.6548 0.0976

Footnotes: Kotzé (2001) norms: N (2.1-2.6%), P (0.14-0.19%), K (1.2-1.4%), Ca (1.45-1.60%), Mg (0.30-0.40%), Na (500 mg.kg-1), Mn (20-90 mg.kg-1), Fe (80-150
mg.kg-1), Cu (5-10 mg.kg-1), Zn (30-50 mg.kg-1), B (30-35 mg.kg-1). Each leaf sample consisted of 50 leaves. Samples were analysed by a commercial laboratory
(Bemlab®, Strand, SA) using an inductively coupled plasma-optical emission spectrometer and a nitrogen analyzer.
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Table 6. Effect of fumigation and biological treatments on the abundance of parasitic nematodes, as well as fungivore, omnivore–
predator, bacterivore nematode trophic groups and enrichment opportunists in an apple replant disease site (loamy sand soil). Data
from the two cultivars were pooled after homogeneity of the cultivar variances was established. A combined analyses of variance
indicated no significant cultivar and treatment interaction and only main effects are presented. Probability values are shown at the
bottom of the table. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a
column followed by the same or no letter are not significantly different.

Treatment
Xiphinema Pratylenchus Fungivores Omnivore-

predators
Bacterivores Enrichment

opportunists

Control

Methyl bromide

CompostA+ Extract

CompostA+ Bokashi

Biostart

52 a

36 a

48 a

43 a

6 b

512

688

784

852

734

22

36

43

54

77

6

47

40

17

10

532

510

749

1268

797

339

276

536

1075

486

P value 0.0171 0.9234 0.5592 0.2271 0.7347 0.6934

Nematode counts per 250 cm3 soil, except Pratylenchus which is per 5g of roots
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Table 7. Number of substrates utilised after 24 h and 38 h incubation of Biolog Ecoplates inoculated with soil microbial communities
subjected to various biological management practices, as well as fumigation. Biolog Ecoplates contain 31 different carbon sources,
replicated three times on a plate and substrates utilised were assayed in May 2006, Oct 2006, Dec 2006 and Apr 2007. Data from the
two cultivars were pooled after homogeneity of the cultivar variances was established. A combined analyses of variance indicated no
significant cultivar and treatment interaction and only main effects are presented. Probability values are shown at the bottom of the table.
Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the
same or no letter are not significantly different.

Number of substrates utilised after 24h Number of substrates utilised after 38h
Treatment

Autumn
2006

Spring
2006

Summer
2006

Autumn
2007

Autumn
2006

Spring
2006

Summer
2006

Autumn
2007

Control

Methyl bromide

CompostA+ Extract

CompostA+ Bokasshi

Biostart

9.9 bc

11.1 abc

13.4 a

8.7 c

12.5 ab

3.4 b

4.2 b

10.0 a

9.3 a

3.4 b

4.3

8.1

5.4

3.4

5.8

11.9 a

11.1 a

14.1 a

10.7 ab

7.4 b

20.7 c

23.9 ab

25.7 a

22.6 bc

24.7 ab

19.2

18.4

22.6

22.0

20.4

18.7

19.9

21.1

18.0

19.0

22.9 ab

20.8 bc

23.8 a

20.1 c

19.7 c

P value 0.0087 0.0121 0.0815 0.0189 0.0139 0.1736 0.0921 0.0202
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Actinomycete counts
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Figure 1. Effect of biological amendments and fumigation on number of colony forming
units (CFUs) of actinomycete bacteria isolated from soil at four sampling dates. The
average over the four sampling dates is also shown. Data from the two cultivars were
pooled after homogeneity of the cultivar variances was established. A combined analyses
of variance indicated no significant cultivar and treatment interaction and only main
effects are presented. Probability values are shown for each sampling date. Bars within
sampling dates topped by the same or no letter are not significantly different according to
Student’s t-LSD at a 5 % significance level.
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Figure 2. Effect of biological amendments and fumigation on number of colony forming
units (CFUs) of total Bacillus bacteria isolated from soil at four sampling dates. The
average over the four sampling dates is also shown. Data from the two cultivars were
pooled after homogeneity of the cultivar variances was established. A combined analyses of
variance indicated no significant cultivar and treatment interaction and only main effects
are presented. Probability values are shown for each sampling date. Bars within sampling
dates topped by the same or no letter are not significantly different according to Student’s t-
LSD at a 5 % significance level.
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Urease activity
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Figures 3A-C. Effect of biological soil amendments and methyl bromide fumigation on soil enzyme activity; A)Urease activity, B) β-Glucosidase activity,
C) Phosphatase activity. Soil from the top 0-25 cm soil was sampled in May 2006, Oct 2006, Dec 2006 and Apr 2007. The average soil enzyme activity of
the four sampling dates is also shown. Data from the two cultivars were pooled after homogeneity of the cultivar variances was established. A combined
analyses of variance indicated no significant cultivar and treatment interaction and only main effects are presented. Probability values are shown for each
sampling date. Bars within sampling dates topped by the same or no letter are not significantly different according to Student’s t-LSD at a 5 % significance
level.
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CLPP (24h)
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Figures 4A-B. Ordination plots of principal components (PCs) 1 and 2 from community level
physiological profiles (CLPP) of Biolog Ecoplates inoculated with soil from the various treatments.
Principal component analysis was conducted on the average values of four sample dates for A) 24h and B)
38h incubation. Error bars represent ±1 standard error of the mean. Values in brackets indicate the percent
of total variation accounted for by each principal component axis.
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Figure 5. Principal component analysis (PCA) Bi-plot of the different variables (chemical and
biological soil properties, leaf nutrient content and yield) in relation to the various soil
treatments. Values in brackets indicate the percent of total variation accounted for by each
principal component axis. CompostA with bokashi (CompA+Bok); CompostA with compost
extract (CompA+Ext).
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Figure 6. Plots of the first two canonical variables (CVs) from a canonical discriminant analysis
(CDA), showing separation of the various soil treatments. Values in brackets indicate the percent
of total dispersion explained by each CV. CompostA with bokashi (CompA+Bok); CompostA with
compost extract (CompA+Ext).
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CHAPTER 4

POTENTIAL USE OF COMPOST EXTRACT AND BACILLUS INOCULANTS IN

COMBINATION WITH COMPOST IN MANAGING APPLE REPLANT DISEASE

ABSTRACT

Dual application of compost with compost extract or Bacillus inoculants were evaluated for its potential

use to reduce the negative effects of apple replant disease (ARD) on early growth of apple. Differences in

effects on plant growth of compost extract produced with additives (ExtractB) and without (ExtractA) were

also investigated. Effects on tree performance with biological amendments were compared to methyl

bromide fumigation treatment effects. Three trials were established in commercial orchards with a history

of ARD problems in the Vyeboom (34° 08' S; 019° 02' E) and Elgin region (34° 10' S; 018° 85' E), Western

Cape, South Africa. The first two study sites were sandy soils planted with ‘Fuji’ apple trees on M793

(Graymead) and M7 (Eikenhof). The third site (Monteith), with higher clay content, consisted of ‘Royal

Gala’ apple trees on M793 rootstock. In the Graymead site where ARD symptoms were most severe and

fumigation showed the most significant response, biological amendments resulted in little improvement in

yield when compared to untreated plots. In the other two sites ARD was less severe and biological

amendment application improved tree growth to the same extent as fumigation over three growing seasons.

Results showed no clear indication of which amendment in addition to compost resulted in the best tree

performance, except possibly the treatment where compost application was combined with compost extract

treatment, as well as Bacillus inoculants and humic substances. This treatment was also the only biological

amendment treatment that showed increased enzyme activity. Compost, and not the inoculant added,

seemed to be the dominant factor affecting CLPPs, as well as soil extractable nutrients at these sites.

Results suggest that in replant disease orchards improvement in microbial activity or changes in microbial

community function can not be used to predict effects on tree performance.

Keywords: Biological management, soil enzyme activity, Biostart®, Biolog®
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4.1 INTRODUCTION

The development of apple replant disease (ARD) and its control through fumigation is possibly one of the

most extreme examples of the negative effect of monoculture combined with low organic matter inputs on

plant performance. The ARD disorder is associated with poor growth of young apple trees planted on

previously cultivated apple sites (Hoestra, 1968). Symptoms include stunted growth and reduction in tree

vigour, resulting in delayed productivity. Root systems are typically small with few functional root hairs

and a marked reduction in lateral root development (Savory, 1966; Hoestra, 1968; Mai and Abawi, 1981).

Although the disease is not lethal, it is of great economic importance because of its lasting effect on

production. Furthermore, the problem is intensified as suitable land, not previously planted to apple

becomes limited. In South Africa serious ARD symptoms occur in approximately 40% of replantings

(Honeyborne, 1996). Although ARD is one of the major impediments to the establishment of an

economically viable apple orchard on sites previously planted to apple, its economic effect has not been

quantified in South Africa.

In spite of extensive research on ARD, the etiology remains to be fully elucidated. The problem is rarely

caused by a single agent, but rather a complex of factors that vary across geographic regions or even

between orchards in the same region. Numerous soilborne organisms including plant parasitic nematodes,

pathogenic fungi, actinomycetes and bacteria have been implicated as being potential causal factors

(Savory, 1966; Hoestra, 1968; Covey et al., 1979; Mai and Abawi, 1981; Sewell, 1981; Jaffee et al., 1982;

Slykhuis and Li, 1985; Utkhede et al., 1992; Dullahide et al., 1994; Braun, 1995; Mazzola, 1998; Manici et

al., 2003). Studies by Mazzola (1998; 1999) indicated a shift in microbial community composition in ARD

development, towards pathogens dominating the soil microbial profile. A complex of pathogenic fungi

including the genera Cylindrocarpon, Phytophthora, Pythium and Rhizoctonia was implicated (Dullahide et

al., 1994; Braun, 1995; Mazzola, 1998; Manici et al., 2003). A biological origin of ARD in South Africa

was also suggested by Tewoldemedhin et al. (2007), as well as Van Schoor et al. (2009), since isolates of

Pythium and Cylindrocarpon spp. were consistently isolated from replant soils indicating that these fungi

may play a role in ARD etiology in South Africa.

Due to the uncertain and complex etiology of ARD, control has traditionally been achieved through the use

of biologically broad-spectrum soil fumigants (Mai and Abawi, 1981), and in particular the application of

methyl bromide. However, the high cost of chemical control and its potential hazard to human health and

the environment, necessitates the development of more sustainable means of ARD control. There is strong

evidence that shifts in microbial community composition can influence the growth and health of plants

(Barea et al., 2005) and that this could possibly be established through the implementation of suitable soil

management practices (Reeves, 1997; Cohen et al., 2005; Yao et al., 2006). The disease-suppressive effects

of compost have received growing attention (Hoitink et al., 1997; Ristaino and Thomas, 1997; De Ceuster

and Hoitink, 1999; Pascual et al., 2002; Noble and Coventry, 2005). Results reported in literature on the
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use of compost in ARD management vary from positive (Autio et al., 1991; Engel et al., 2001; Moran and

Schupp, 2001; Van Schoor, et al., 2009), to no effect (Granatstein and Mazzola, 2001; Neilsen et al., 2004;

Rumberger et al., 2004; Wilson et al., 2004). However, the site-specific etiology of ARD means that

elements implicated in disease development in other countries may have only a limited role locally, and

vice versa.

The use of compost extracts or compost teas have been advocated as an inoculant to stimulate and enhance

the soil microflora (Ingham, 1999a; Litterick et al., 2004). Various methods have been proposed in the

production of compost extracts (Bess, 2000; Scheurell and Mahaffee, 2002), however it is unclear to which

extent the efficacy of the extract is affected by different production processes. The use of additives to

compost, intended to increase microbial population densities during compost extract production has been

recommended (Ingham, 1999b). Molasses, kelp and humic-based additives in compost extract production

were shown to positively affect disease suppression (Scheurell and Mahaffee, 2004). This could be

important for widespread application, since additives can be standardised, whereas the properties of

compost vary to a great extent. In previous studies in South Afica the application of sterilised and

unsterilised compost extracts, significantly increased growth of apple seedlings in pot trials with six ARD

soils in addition to augmenting nutrition (Van Schoor et al., 2009), however results were not verified under

field conditions. Positive effects of compost in combination with compost extract, as well as the use of a

Bacillus inoculant on tree performance were also shown in previous studies in newly established pear

orchards (Chapter 2), as well as an ARD site (Chapter 3). Furthermore, positive effects on growth and yield

of apple with Bacillus inoculants have also been indicated by other studies (Utkhede and Smith, 1992;

Utkhede and Smith, 2000; Aslantas et al., 2007).

The objective of this study was to establish if dual application of compost with compost extract or Bacillus

inoculants could be used to reduce the negative effects of ARD if used with orchard establishment under

South African conditions. Differences in effects on plant growth of compost extract produced with

additives and without were also investigated. Furthermore, the effect of treatments on soil microbial

communities was measured by making use of soil enzyme activity assays, and community level

physiological profiles (CLPPs).

4.2 MATERIALS AND METHODS

4.2.1 Orchard study sites and treatment application

Three trials were established in commercial orchards with a history of ARD problems. Two of the sites

were conducted in the Vyeboom (34° 08' S; 019° 02' E) region, and one in the Elgin/Grabouw region (34°

10' S; 018° 85' E), both in the Western Cape, South Africa. The first two study sites consisted of ‘Fuji’

apple (Malus domestica) trees planted in 2006 at a spacing of 4.0 m x 1.5 m (within row) on M793

rootstock in the first site (Graymead) and M7, in the second site (Eikenhof). Graymead had a sandy soil
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(2% clay, 10% silt and 88% sand) and at orchard establishment, in the top 30 cm, pH (KCl) values

averaged 6.5, total soil carbon 1.6% and stone 43%. Eikenhof also had a sandy soil (2.5% clay, 9.5% silt

and 88% sand) and at orchard establishment, in the top 30 cm, pH (KCl) values averaged 6.1, total soil

carbon 1.9% and stone 48%. The third site (Monteith) consisted of ‘Royal Gala’ apple trees on M793

rootstock planted in 2006 at a spacing of 4.0 m x 1.5 m (within row). The soil was a clay loam (20% clay,

26% silt and 54% sand) and at orchard establishment, in the top 30 cm, pH (KCl) values averaged 6.0, total

soil carbon 1.8%, and stone 55%. The experimental layout for all trials was a randomised complete block

design with either five or six treatments, applied to plots consisting of nine trees, replicated in eight blocks.

Plots were separated by two guard trees. Irrigation in all three sites was supplied through a micro sprinkler

system and scheduling done using specific crop factors and a standard class-A pan. The Graymead site

received a total of 4562 m3.ha-1 water for the 2008/2009 season. Monteith received 5548 m3.ha-1 and

Eikenhof approximately 6000 m3.ha-1, respectively. Furthermore, all treatments at each site were treated

equally in terms of fertiliser, pesticide and herbicide application, as per the standard orchard practice of that

specific site. Glyphosate (3L.ha-1) was applied at the Graymead and Eikenhof sites, twice a year, to control

weeds. At the Montieth site Gramoxone (Paraquat) (2L.ha-1) was initially applied to young trees and from

the third growing season Glyphosate (3L.ha-1) was applied. In the spring of 2008 all treatments from the

Monteith site was treated with a single fenamiphos application (2.5 ml.m-2 ), due to high levels of lesion

nematode (Pratylenchus).

4.2.2 Treatment application

Biological amendment treatments consisted of compost application in combination with soil inoculants and

included the following:

1) Untreated control plots, managed as per the standard orchard practice.

2) Methyl bromide treated plots fumigated (300 g per running m) the autumn before planting.

3) Compost application in combination with Biostart® (Microbial Solutions, Kya Sand, SA). This Bacillus

inoculant was applied as described in Chapter 2, with an activator and in combination with a low dosage

humic acid product (Superguard®, Microbial Solutions, Kya Sand, SA). In adition, the first applications of

each season consisted of a single strain Bacillus (DPress®, Microbial Solutions) applied at 1L.ha-1, with

antagonistic activity against various soilborne pathogens, applied in combination with a fulvic acid product

(MS® Humate Liquid, Microbial Solutions, Kya Sand, SA) at 10 L.ha-1.

4) Compost application in combination with an aerobically produced compost extract (ExtractA). This

extract was prepared by adding 1000 L of water to 50 kg of re-composted compost (Bioearth, Stellenbosch,

SA) and actively aerating the suspension for 48 h, with no additional additives.

5) Compost application in combination with an aerobically produced compost extract (ExtractB). This

extract was produced from a mixture of the same compost, molasses, fish extract and kelp.

6) The Eikenhof site had an additional treatment consisting of a combination of compost, the Bacillus

programme and ExtractA.
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Compost was applied at 20 ton.ha-1 as a top dressing with planting. Surface application of compost was

repeated annually in spring at 20 ton.ha-1. Turned aerobic windrow composting was used to prepare the

compost. Compost consisted of aerobically composted peat (15%), straw (15%), wood shavings (5%),

chicken manure (30%) and 35% of pre-composted, inoculated green garden waste material, used as a

starter (same compost as CompostA in Chapter 3). Soil inoculants were applied as a drench with planting

and thereafter monthly throughout the growing season. Properties of the compost and compost extracts

used are shown in Appendix A.

4.2.3 Tree performance evaluation

Trees were permanently marked 20 cm above the graft union and trunk circumference measured at planting

and every year during winter. Total shoot growth was measured at the end of the first growing season.

After the second growing season total extension growth of one scaffold branch was used as an indication of

vigour and after the third growing season total extension growth of two scaffold branches and leader

growth were measured. Trees were allowed to bear fruit in the Graymead site from the third growing

season, but for the other two sites fruit were removed in the second and third growing seasons to improve

growth. Annual yield was recorded as the average yield (kg.tree-1) of the centre six trees from each plot

after three seasons of biological applications. Yield efficiency was calculated as yield per trunk cross

section area. The number of harvested fruit was determined for each tree in order to calculate average fruit

mass per plot for each treatment replicate. Fruit quality was evaluated from 35 fruit sampled at harvest and

parameters measured included fruit size, fruit firmness, total soluble solids (TSS) background colour and

red colour development. Percentage starch conversion was also measured as an indication of ripeness at

harvest.

4.2.4 Leaf nutrient analyses

Leaf nutrient analyses were done for all treatments. A combined 50 leaf sample of mature leaves in the mid

shoot section of the current year’s growth was collected at the end of January from the six trees in each plot

for the 2008 and 2009 season, to allow for at least two seasons of biological amendment application.

Samples were prepared and analysed by a commercial laboratory (Bemlab, Strand, SA), as described in

Chapter 2).

4.2.5 Soil sampling and analyses

Soil samples were taken in autumn 2008 and 2009 for soil chemical analyses of the Graymead and

Eikenhof sites and only in 2008 for the Monteith site, due to economic constraints. Microbial analyses were

performed on the 2008 samples of all the sites. Soil was sampled within the root zone of the top soil where

microbial activity is expected to be greatest, at a depth of 0-25 cm. Samples were taken at a distance of 30-

40 cm from the tree base, from two holes beneath four trees in each plot and composite samples prepared

for each treatment from the eight sub-samples in each of the five experimental plots. Soil were analysed for

chemical soil properties and prepared for soil microbial analyses as described in Chapter 2.



188

4.2.6 Soil microbial analyses

4.2.6.1 Soil enzyme activity. Acid phosphatase and β-glucosidase activity were determined based on the

release and spectrophotometric detection of p-nitrophenol (Tabatabai and Bremner, 1969; Tabatabai, 1982).

Urease hydrolysing activity was determined by the non-buffered method of Kandeler and Gerber (1988).

Controls were performed for all enzymes assayed by the addition of the substrate after incubation, but prior

to analysis of the reaction product.

4.2.6.2 Substrate utilization profiles. Soil microbial community function within each of the soil samples

was determined by generating community level physiological profiles (CLPPs) from commercially

available Biolog® EcoPlates (Biolog® Inc., Hayward, USA) containing different carbon sources,

according to a modified procedure of Buyer and Drinkwater (1997), described in Chapter 2.

4.2.7 Statistical analysis

A standard analysis of variance (ANOVA) was performed on tree performance data, soil enzyme activity,

as well as soil physiochemical characteristics using the general linear means (GLM) procedure of SAS

Statistical Software (SAS, 2002-2003). Trunk circumference measurements over the trial period were

analysed as repeated measurements by comparing the slopes (b values) of linear regressions fitted to the

data (R2 between 0.94 and 0.99) in an ANOVA. Student’s t-LSD was calculated at a 5% significance level

to compare the treatment means. Profiles of substrate utilisation were statistically analysed by principal

component analysis (PCA) (Garland and Mills, 1991; Buyer and Drinkwater, 1997; Palojärvi et al., 1997;

Larkin, 2003), using the correlation matrix (Rencher, 2002). Stepwise discriminant analysis (SDA) was

used to select a subset of variables from the initial group of variables from all three sites, including leaf

nutrient content and soil chemical and biological parameters. The subset of variables contained those

variables which best differentiate or discriminate between the soil amendments and were used for canonical

discriminant analysis (CDA). A PCA bi-plot was constructed on data from the Graymead site where yield

was measured, using XLStat. This plot illustrates the relationship between the variables and their

association to the different soil treatments.

4.3 RESULTS

4.3.1 Tree performance

Graymead. Trunk circumference measurements showed that all trees were of a similar size at planting

(Table 1). Trunk circumference growth tempo over the trial period was only significantly increased by

fumigation, and effects were significant compared to the biological amendments, as well as the control.

Biological amendments resulted in no significant effect on trunk circumference growth compared to the

control. After the first growing season, fumigation significantly increased total shoot growth compared to

all other treatments. Compost with ExtractB was the only biological soil treatment that improved total

growth significantly when compared to the control, but not compared to other biological amendments.

Shoot extension growth with compost application in combination with Biostart® after two growing seasons
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was significantly more compared to the control, but growth was still more favourable on trees from MeBr

fumigated plots compared to all other treatments. After three growing seasons, shoot extension growth for

all biological treatments were similar to that of controls and MeBr was the only treatment showing a

significant increase. The addition of compost extracts induced more shoot growth after three growing

seasons than Biostart application, but results did not differ significantly.

Trees from MeBr treated plots yielded significantly more fruit than all other treatments, more than doubling

fruit number compared to control plots (Table 2). Despite higher yield, fumigation also resulted in the

biggest fruit, but fruit were only significantly bigger compared to compost extract treated trees. When

taking into account tree size, trees from fumigated plots showed highest yield efficiency and results were

significant compared to all other treatments. Fruit quality parameters at harvest showed little significant

differences between the soil treatments (Table 3). Fruit size was significantly increased in trees from

fumigated plots compared to all other treatments. Fruit TSS levels were significantly lower for fruit from

trees treated with MeBr compared to all treatments except compost with Biostart. Fruit firmness at harvest

was highest for control fruit compared to both biological treatments and fumigation, which was in

agreement with higher starch conversion with these treatments compared to control fruit, but results were

not significant. No significant differences in background colour, or red colour development were found.

Eikenhof. Trunk circumference measurements showed that all trees were of a similar size at planting

(Table 4). Trunk circumference growth tempo over the trial period showed no significant differences

between the various soil treatments, although growth tempo was highest for the compost, ExtractA and

Biostart combination. Total growth after the first growing season was significantly increased by

fumigation, as well as compost with the two treatment combinations including Biostart, when compared to

the control. Shoot growth from these treatments also did not differ significantly from each other (Table 4).

Shoot extension growth after the second growing season was significantly more with fumigation, as well as

all biological treatments when compared to control trees. After the third growing season none of the soil

treatments resulted in significant differences in shoot growth. However, similar to shoot growth effects

with biological amendments after the first season of establishment, treatments where Biostart was applied

showed more growth compared to all treatments, including fumigation.

Monteith. Trunk circumference measurements showed that all trees were of a similar size at planting

(Table 5). Trunk circumference growth tempo over the trial period showed significantly higher growth

tempo with fumigation, as well as all biological amendments compared to the control. Furthermore, there

were no significant differences on growth tempo between the biological amendments and fumigation. Total

growth in the first growing season, showed significantly more shoot growth on trees from fumigated plots

compared to all treatments, except where Biostart was applied. There was also a significant improvement in

first season growth with both the compost extract treatments when compared to the control, and growth

with ExtractB compared favourably to that of the fumigation treatment. Shoot extension growth in the
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second growing season was only significantly increased by fumigation and compost with ExtractB,

compared to the rest of the treatments and the amount of growth was similar for these two treatments.

Shoot growth in the third growing season showed no significant differences and was similar for all

treatments.

4.3.2 Soil chemical properties

Graymead. Extractable soil nutrients were generally higher in soils where compost was applied for both the

2008 and 2009 season (Table 6). Soil pH was significantly increased by biological treatments compared to

fumigation, as well as control soil, except with ExtractA application in 2008. The only significant

difference measured in soil chemical properties between control and fumigated plots was for soil

resistance. Fumigated soil showed highest soil resistance, significantly higher than all treatments, with

control plots showing significantly higher resistance compared to the various biological amendments.

There was no significant difference in total C% of the top 0-25 cm soil layer between the various

treatments in 2008 or 2009. However, total C% for the top 0-5 cm soil was higher with biological

amendments, although significant differences were only recorded with the addition of ExtractB when

compared to controls and fumigated plots, but not compared to other biological amendments. Total soil N

content (%) was significantly higher with biological amendments compared to both control and fumigated

plots in the 2008 season, and a similar trend was noted in 2009, although not significant. In both seasons,

soil extractable P, and K were significantly higher with biological amendment application compared to

control and fumigated plots. Results were similar for soil Ca, with the exception of ExtractA in 2008,

where treatment did not result in significant increased in soil Ca compared to control and fumigated plots.

Mg showed no significant differences between the treatments for either of the years.

Soil micronutrients Zn, Mn and B were generally also higher with compost application in both 2008 and

2009, although results were not always significant. Soil Cu was significantly lower with biological

amendments in both years compared to controls. Soil Mn was significantly higher in 2009 with compost

applications compared to treatments not receiving compost. In 2008, only compost with Biostart or

ExtractB significantly increased soil Mn. Soil B was low in the 2008 season in all treatments and no

significant differences were found. In 2009 soil B levels increased, but were still low in control and

fumigated plots compared to soil where biological amendments were applied. However, only compost with

either ExtractA or B significantly increased soil B. Cation exchange capacity (CEC) was lowest with

fumigated and control plots, but results were not significant (Table 6).

Eikenhof. Treatment effects on soil chemical properties were very similar to effects found at the Graymead

site. Soil pH was significantly higher in soil where compost was applied and for 2009 soil pH of MeBr

treated soil was also significantly lower compared to controls (Table 7). Soil resistance levels were

significantly lower with compost application in both years and results for 2009 were similar to that found

for soil pH. Total soil C% showed no significant differences in 2008. In 2009, soil C% was higher with
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biological amendments and effects were significant with the application of ExtractA when compared to

fumigated and control plots. Total C% in the top 0-5 cm soil, showed lowest C% in fumigated soil and

significantly higher C% for all soil treated with biological amendments, but compared to the controls

results were only significant for compost with ExtractB or Biostart. In contrast to the Graymead site, soil

extractable P showed no significant treatment differences, although it was noted that biological

amendments showed highest soil P levels in the 2008 season, as well as the 2009 season, with the exception

of compost with Biostart. Total soil N% and soil extractable K and Ca were consistently higher with

compost application although differences were not always significant compared to the control for all

biological amendments. Similar to the Graymead site, soil Mg levels showed no significant differences

between the treatments.

Soil treatments in 2008 did not result in significant differences in soil Cu, although compost application

resulted in higher soil Cu. However, in 2009 soil Cu was lower with these amendments and significantly

lower compared to controls for compost and ExtractA, as well as compost and Biostart treatment. No

significant differences in soil Zn or Mn were recorded in 2008 or 2009. Soil extractable B was increased

with compost application and highest in 2008 and 2009 for both treatments where ExtractA was applied,

although results were only significant in 2008. In 2009 all biological treatments showed significantly

higher soil B levels than fumigated soil. Cation exchange capacity showed no significant treatment

differences (Table 7).

Monteith. This site showed less significant treatment effects with compost application and for some

nutrients fumigation resulted in a decrease in soil extractable content when compared to control plots.

There were no significant differences found in soil pH and soil resistance (Table 8). However, lowest soil

resistance was found in control soil, which is in contrast to the other sites showing lowest resistance with

compost applications. Total C% was highest with the addition of ExtractA, but differences between the

treatments were not significant. No significant differences in macronutrient content were found between the

treatments, although soil extractable K and total soil N was lower in fumigated soil compared to controls.

Soil micronutrient levels only showed significant effects for soil extractable Zn, for which fumigation

resulted in significantly lower soil Zn levels compared to the control and compost with Biostart. Soil

extractable B was highest with compost and Biostart application, although results were not significant.

Bulk density and water holding capacity showed no significant treatment differences (Table 8).

4.3.3 Leaf nutrient analyses

Graymead, Leaf nutrient concentrations related to the various treatments was not consistent for the 2008

and 2009 season. In 2008, no significant treatment effects were found for leaf N and P (Table 9). All

treatments increased leaf K significantly compared the control. Furthermore, leaf K was significantly

higher for MeBr treatment, compost with ExtractB and compost with Biostart, compared to compost

applied with ExtractA. The opposite trend was found for leaf Mg, showing significantly higher
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concentrations for MeBr treatment, compost with ExtractB and compost with Biostart, compared to the

control and compost with ExtractA. Leaf Ca levels were significantly higher in plants treated with compost

and ExtractA compared to all other treatments. In 2008 leaf micronutrient levels of Mn, Zn and B were also

significantly higher for methyl bromide, compost with ExtractB and compost with Biostart treatment,

compared to control plots, as well as soil treated with compost and ExtractA. Leaf Cu levels showed a

similar trend, except for Biostart treatment which only differed significantly compared to the control.

In the 2009 season leaf N content was significantly higher with compost application when compared to the

control and also significantly higher for the combination with Biostart, when compared to both controls and

fumigated plots. No significant differences in P and K content were observed with treatment application.

Leaf Ca content was significantly higher for fumigated soil compared to all other treatments. Leaf Mg

content was generally lower with compost application and significantly lower with Biostart application

compared to controls and fumigated plots. Micronutrient levels were generally high for all treatments in

2009 and Mn levels very high compared to industry norms (Kotzé, 2001). However, no significant

treatment effects were observed with Mn, Cu and Zn. Leaf B content was significantly lower in fumigated

soil compared to all treatments, except compost with ExtractB.

Eikenhof. Leaf N content was highest for methyl bromide treated trees in 2008, and significantly lower

compared to all other treatments for compost with ExtractA application (Table 10). This was not consistent

with 2009 when compost with ExtractA and B showed significantly higher N content compared to controls

and fumigated plots. ExtractB application also resulted in significantly higher N levels compared to

Biostart treatment, as well as the combination of Biostart with ExtractA. No significant differences in leaf P

content were found in either of the seasons. In 2008 soil extractable K was significantly higher for all

treatments when compared to the control and compost with ExtractA. However, in the 2009 season all

biological amendments increased leaf K content significantly compared to fumigated plots and ExtractB,

showing highest leaf K in 2008, was the only biological treatment that did not significantly increased leaf K

compared to controls. Few significant differences were found in leaf Ca content over the two seasons. In

2008 Ca was lowest in plants where the combination of compost, Biostart and ExtractA was applied and

results were significant compared to the control and compost with ExtractB. Similar to results from the

Graymead site in 2008, leaf Mg content in 2008 showed an opposite trend to leaf K, with leaf Mg found to

be higher in controls and with compost and ExtractA application. However, results were not significant. In

2009, leaf Mg also showed the opposite trend of leaf K in that season, with all biological treatments

showing significantly lower leaf Mg content compared to fumigated and control plots.

Leaf Na content differed significantly only in the 2008 season and MeBr treatment, as well as compost with

ExtractB showed significantly higher leaf Na compared to all other treatments. Leaf micronutrient levels

were very high in both seasons compared to industry norms (Table 10). No significant treatment
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differences in micronutrient contents were found in either of the seasons. In 2009 a trend was observed

with compost with ExtractB treatment showing highest leaf Mn, Cu and Zn levels.

Monteith. Results were not consistent for the 2008 and 2009 season. There were no significant differences

in N, P and Ca in either of the seasons (Table 11). Leaf K also did not show significant differences in 2008,

however lowest levels were found with MeBr treatment. In 2009, leaf K content was significantly lower in

trees treated with MeBr and compost with Biostart compared to all other treatments. In 2008 leaf Mg levels

were significantly lower with compost and ExtractB application compared to all treatments except

ExtractA. In the 2009 season compost treatment resulted in significantly lower leaf Mg content compared

to plants from fumigated plots, but not the control.

Few significant differences in micronutrients were found. Leaf Cu was higher with compost application,

but only for the 2008 season and results were not significant. In 2008, Zn levels were significantly lower in

control soils compared to all treatments except compost with ExtractA. Leaf Zn concentrations was

significantly higher with fumigation compared to all treatments except compost with ExtractB. In 2009,

leaf B content of plants subjected to compost with Biostart treatment showed lowest leaf B content and

results differed significantly from all treatments except fumigation.

4.3.4 Soil microbial analyses

4.3.4.1 Enzyme activity.

Urease activity in fumigated soil was either lowest or similar to the control levels for all three trials (Figure

1). Differences were not significant in the Monteith site possibly due to great variation in urease activity

across the trial area. For the Eikenhof site, urease activity was significantly higher for all biological soil

applications compared to the control and MeBr treated plots. Urease activity was highest for the

combination of compost, Biostart and ExtractA, but within the biological treatments only differed

significantly from compost with ExtractB application. The Graymead site showed significantly lower

urease activity with fumigation compared to al other treatments, but no significant effect of the biological

treaments were observed compared to the control. β-Glucosidase activity was similar for fumigated soil

compared to the controls in the three sites (Figure 2). The Eikenhof site again showed that the combination

of compost, Biostart and ExtractA resulted in highest enzyme activity, but results were not significant.

Differences were again not significant in the Monteith site, although ExtractA showed highest β-

glucosidase activity. Enzyme activities of the control plots of the Graymead site were high compared to

other treatments, and β-glucosidase activity was significantly lower with ExtractA, as well as compost with

Biostart compared to the control. Phosphatase activity showed very similar effects than β-glucosidase

activity for all three sites (Figure 3). Results from the Eikenhof trial showed a significant increase in

phosphatase activity with the compost, Biostart and ExtractA treatment combination compared to all other

treatments. There was no indication of a negative effect of fumigation with MeBr on phosphatase activity

in any of the trials.
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4.3.4.2 Substrate utilisation profiles

Average well colour development (AWCD) values of the 31 carbon substrates on the Biolog Ecoplates

were analysed separately for each site by using PCA to generate CLPPs of microbial communities

associated with the selected soil treatments.

Incubation for 24 h. Incubating the inoculated plates for 24 h, revealed that CLPPs of the biological soil

treatments differed from profiles of the microbial communities of untreated control plots (Figure 4A-C). In

the Graymead (Figure 4A) and Monteith (Figure 4C) site, CLPPs of the untreated plots also differed from

CLPPs of microbial communities associated with fumigated soil. The Graymead site also showed distinct

CLPPs for the biological soil treatments compared to CLPPs of microbial communities associated with

fumigated soil. In the Eikenhof site (Figure 4B), CLPPs of microbial communities of soil treated with

biological amendments, also differed from CLPPs of communities from fumigated soil. In both the

Graymead and Eikenhof sites, biological treatments showed similar CLPPs, except for profiles of soil

microbial communities subjected to compost with Biostart treatment, which for the Eikenhof site showed a

distinct profile compared to the other biological treatments. In the Monteith site, CLPPs of microbial

communities from soil with biological amendments generally showed distinct profiles, although profiles

from microbial communities subjected to ExtractA treatment were similar to CLPPs from microbial

communities of fumigated soil. The percentage of total variation accounted for by PC 1 and 2 were very

low in all sites (25-37%). This may be due to the execution of the PCA on data including block replicates,

in order to calculate standard deviations.

Incubation for 38 h. After incubation of the inoculated plates for 38 h, CLPPs of microbial communities

from the Graymead and Eikenhof sites were remarkably similar (Figures 5A and B). Community level

physiological profiles from microbial communities of fumigated soil, as well as control soil were different

from CLPPs from microbial communities subjected to biological treatments. At Graymead, compost with

Biostart showed distinct CLPPs, with the two compost extract applications resulting in similar CLPPs. At

the Eikenhof site substrate utilisation with compost and ExtractB was distinct from all other treatments.

Compost with either ExtractA or Biostart, as well as the combination of all three these treatments, showed

similar substrate utilisation profiles by the microbial communities associated with them. In the Monteith

site (Figure 5C) differences in CLPPs were less clear between microbial communities from the various soil

treatments. Soil microbial communities subjected to compost with ExtractA showed most distinct CLPPs.

Soil treated with compost and Biostart also resulted in microbial communities with different CLPPs

compared to most treatments, except compost treated with ExtractB. The percentage of total variation

accounted for by PC 1 and 2 were 30-35%.

4.3.5 Correlations and regressions

Principal component analysis (PCA) was performed on the soil biological and chemical parameters, as well

as leaf nutrient content and yield parameters measured for the Graymead site. The PCA bi-plot illustrating
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the relationship between the various parameters measured and their association to the different soil

treatments are presented in Figure 6. The percentage accounting for total variability in the data was 78%.

Soil treatments showed distinct differences between fumigated soil, untreated soil (controls), and soil

treated with biological amendments. The biological treatments could not be distinguished from each other

based on the variables measured. Tree performance parameters, as well as leaf Cu and leaf Ca content were

closely associated with the fumigation treatment. Biological amendments were closely associated with soil

chemical properties measured, as well as leaf N, Mn and Zn content. There was no clear association of

microbial parameters measured with any of the treatments.

Stepwise discriminant analyses (SDA) was performed on combined variables of the three sites. Nine

discriminant elements (variables) which had the most discriminatory powers for subsequent analysis were

identified. These included clay %, pH, soil resistance, soil extractable P and K, soil Zn and Mn, as well as

trunk circumference growth from planting till 2008 and shoot growth in 2007. The selected variables were

subjected to CDA analysis to establish whether discrimination between the various soil treatments could be

achieved. Canonical variants 1 and 2 explained 85% of the total dispersion (canonical variant 1 explained

57% of the variation, while canonical variant 2 explained the remaining 28% of the variation) (Figure 7).

Soil treatments from the three sites could be separated from each other and the Graymead and Eikenhof

sites were more closely associated. There was no clear separation of the biological treatments within each

soil. However, for the Monteith site control soils were separate from most other treatments, while in the

Graymead and Eikenhof site, fumigated soil could be distinguished from all other treatments.

4.4 DISCUSSION

4.4.1 Effect of soil treatments on microbial communities

Two years after MeBr fumigation, enzyme activity was significantly reduced only for urease activity and

only in one of the three trial sites. However, this is in agreement with a previous study, also in an ARD

orchard (Chapter 3), where urease activity was negatively affected in the first sampling date by fumigation

and plastic sheeting. Negative effects on enzyme activity were also reported in strawberry field plots over a

trial period of 37 weeks (Stromberger et al., 2005), but results varied with different fumigants and enzymes

and recovery of activity after 37 weeks was not recorded. Wada et al. (2008) suggested that soil microbial

function recovered significantly during cropping and the majority of literature has showed few persistent

effects of fumigation on broad-scale properties such as total culturable bacteria, microbial biomass and soil

respiration (Ridge, 1976; Sinha et al., 1979; Toyota et al., 1999; Stromberger et al., 2005; Yao et al., 2006).

However, in the current study fumigation still affected substrate utilisation (CLPPs) of microbial

communities from inoculated biolog plates after two years, compared to functioning of the microbial

community of control soil, as well as those subjected to biological treatments. Similar results were found in

the previous chapter three years after fumigation. Yao et al. (2006) found persistent effects of soil
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fumigation on soil microbial community composition and diversity of bacterial communities up to 22

months. Our results indicate a persistent effect on soil functioning, even after three years of cropping.

With the application of biological amendments, it was clear that the treatment combination of compost,

ExtractA and Biostart showed highest soil microbial activity, based on enzyme activity measurements. A

high degree of specificity is exhibited by various microbial isolates towards controlling different pathogens,

as well as producing plant growth promoting substances (Bent et al., 2001; Jeon et al., 2003; Martin, 2003;

Zahir et al., 2004). The addition of multiple microorganisms to a given system therefore appears attractive,

considering the multifaceted beneficial effects of various rhizosphere organisms (Avis et al., 2008).

Furthermore, compost and other substrates serve as carriers to augment survival and function of introduced

inoculants (Hoitink and Boehm, 1999). In our study, metabolic function of the community as measured

through CLPPs, generally showed distinct substrate utilisation profiles for the biological treatments

compared to control soils, as well as fumigated soils. Distinction between the various biological

amendments was less clear in the Graymead and Eikenhof sites. It is therefore suggested that compost was

the dominant factor affecting microbial community function in these two sites. In the Monteith site CLPPs

from microbial communities in soil treated with ExtractA differed from the other biological treatments.

However, the CDA showed little separation between soil and growth parameters of soil treated with

biological amendments at the three different sites. Drenovsky et al. (2005) in a study on replanted peach

orchards found that compost application and not additional amendments, was the main factor that

influenced microbial communities. They suggested that the application of labile carbon masked the effect

of the inoculants and also that in relation to the compost the diversity of the inoculant community was low,

therefore not affecting overall function or diversity of the soil microbial community. However, in the

previous study (Chapter 3) compost extract application was the dominant factor affecting soil microbial

parameters. It is therefore clear that the combination of resident soil microbes, microbes in the compost,

microbes in the inoculant, as well as site specific abiotic effects will determine ultimate changes in soil

microbial properties.

Results from the CDA further showed that treatments from the different sites grouped together. Soil

chemical properties, soil clay percentage and to a lesser extent effects on growth, were mostly responsible

for the separation. Pérez-Piqueres et al. (2006) in their study indicated that changes in community structure

induced by compost, related both to soil and type of organic amendment. Few composts are therefore

universally effective and specific compost properties, as well as soil chemical and microbial properties play

a role in the effect of compost on tree performance. Therefore, results can be expected to be site-specific

and site-specific knowledge is needed to predict potential effects.

4.4.2 Relation to tree performance and mechanisms involved

In all three sites, application of biological amendments generally increased growth already in the first year

after establishment, when compared to untreated control plots. However, despite initial positive effects on
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growth with compost and ExtractB at the Graymead site, fumigation was the only treatment that showed

increased shoot growth, as well as yield after three seasons when compared to untreated sites. Hoestra

(1968) stated that ARD does not affect all apple soil equally and that growth increases with fumigation

compared to untreated soil can be used as an indication of ARD severity. Apple replant disease seemed to

be most severe in the Graymead orchard, which showed the biggest improvement in growth with MeBr

treatment (68% growth increase). This may explain the lack of positive results with biological amendments

at this site. Furthermore, abiotic factors can aggravate ARD effects. Irrigation scheduling at all these sites

was done with the use of an evaporation pan and not directly measuring soil moisture by probes. The

Graymead site received a total amount of water applied of 4563 .ha-1, which is lower than the average of

6000-7000 applied generally. This may indicate that trees in this site were subjected to water stress,

showing a more negative effect on biological treatments where root system development was probably

shallower due to organic material applied to the soil surface. The PCA-biplot from the Graymead site also

showed no association between biological treatments and changes in soil microbial properties.

In the Eikenhof and Monteith sites, growth improvement with biological treatments provided similar

effects than broad spectrum fumigation. There was also a trend for trunk growth tempo to be higher than all

other treatments, including fumigation, where compost+ExtractA+Biostart was applied. In the Monteith

site shoot extension growth was similar for all treatments after the third growing season. This could be due

to the effect of the nematicide application obscuring growth difference between the various treatments for

that season. However, in this site both fumigation, as well as all the biological treatments significantly

increased trunk growth tempo to a similar extent, compared to the control. The importance of large trees to

initial apple yield has been indicated by various researchers. Addition of different compost extracts or

Biostart to compost, resulted in similar growth effects and showed no clear indication of which amendment

in addition to compost resulted in the best tree performance. The exception was possibly where all three

amendment types were combined, but this treatment was only applied in one of the sites. In a similar study

in peach replant orchards, Drenovsky et al. (2005) found that compost application and not additional

amendments, was the main factor that influenced microbial communities, however these amendments had

little effect on tree growth and vigour. Few other studies have combined compost with soil inoculant

application.

Compost applied on its own were reported to be mainly ineffective in controlling ARD either when applied

as an orchard floor management practice (Neilsen et al., 2004), worked into the top soil, (Granatstein and

Mazzola, 2001; Wilson et al., 2004) or applied as a pre-plant treatment (Rumberger et al., 2004; Leinfelder

and Merwin, 2006). However, it was clear from our results that combining compost with a diverse

microbial inoculant, such as compost extract, or a mixture of various Bacillus strains, could significantly

improve growth in ARD orchards. Results from Chapter 3 also suggested that monthly application of soil

microoganisms and labile nutrients in combination with organic material, showed promise in managing

ARD, although fumigation was still the treatment that resulted in the most significant yield improvement.



198

Furthermore, Hoitink et al. (1997) maintained that inoculation of composts with specific microbial

organisms is a procedure that can induce more consistent effects, especially regarding disease suppression.

Additionally, positive results from our studies compared to other studies, can be explained by the site-

specific etiology of ARD, combined with general and specific disease suppression. General suppression is

mainly related to high microbial activity and biomass of many types of organisms and plays a role in the

suppression of Pythium, and Phythophtora (Hoitink et al., 1997). However, only a narrow group of

microorganisms are capable of eradicating pathogens such as Rhizoctonia, in which case specific

suppression is needed. In the USA, Mazzola and co-authors reported the aggressive pathogen Rhizoctonia

solani AG 5 to play a major role in ARD disease development in various sites (Mazzola, 1998; 1999; Gu

and Mazzola, 2003). However, in a study on ARD etiology in South Africa conducted in the same orchards

as our study (Tewoldemedhin, 2008, personal communication), soilborne pathogens isolated mainly

included Cylindrocarpon, Pythium, and Phytophthora. These pathogens can more easily be controlled by

general increases in microbial activity.

Mechanisms through which plant performance is affected by biological amendments can not be easily

separated and result from a number of direct and indirect effects. These include changes in soil chemical

and physical properties, as well as microbial populations, which through disease suppression and

production of biologically active substances affect root proliferation and nutrient availability and uptake.

The Graymead and Eikenhof site, both sandy soils, showed increased soil extractable nutrients with

compost application. This probably resulted from a combination of the chemical and biological properties

of the compost applied. The Monteith site, a soil consisting of higher percentage clay, showed less

significant effects of compost on soil chemical properties. This may be due to already high inherent

nutrient retention of soil containing more clay particles. At all three sites there were few significant

changes with inoculant application on soil chemical properties in addition to compost. However, these

inoculants can significantly effect the possible utilisation of these nutrients by the plant (Glick, 1995; Jones

et al., 1998; Zahir et al., 2004). Although similar differences in chemical parameters were induced with

compost amendment at the Graymead and Eikenhof site, MeBr was the treatment that performed best in the

Graymead site, but performed similar to biological treatments in the Eikenhof, as well as the Monteith site.

Leaf nutrient content did not reflect the differences found in soil extractable nutrients. Furthermore,

treatment effects on leaf nutrient content were inconsistent over the two seasons and between the three

orchards, and could not be related to improved growth or yield. Leaf Ca was higher with MeBr treatment in

one of the sites, which was also in agreements with results from the previous study (Chapter 3). In this

study leaf Ca was significantly correlated to yield in both cultivars studied.

Since ARD has mainly been ascribed to biological causes, biological control mechanisms may have caused

increased growth in some of these ARD affected sites. Although similar pathogens were isolated from all

the trial sites (Tewoldemedhin, 2008, personal communication), their association with roots was not



199

quantified. It is therefore possible that disease pressure was higher in the Graymead orchard, increasing

with cropping in non-fumigated soils and affecting growth to a similar extent than control soils after three

seasons. Lesion nematode levels also showed sporadic high counts in this orchard. In the Eikenhof site, the

combination of compost, ExtractA and Biostart had the most significant effect on tree vigour after three

seasons. This site had no nematode problems and it is possible that disease incidence was low. Increased

microbial activity with compost, ExtractA and Biostart application could therefore have shown positive

effects on growth by aiding in nutrient uptake from increased soil extractable nutrients from compost

application, or production of plan growth hormones (Arshad and Frankenberger, 1998). Zahir et al. (2004)

stated that application of a mixture of beneficial organisms can have more significant influence on plant

performance due to a reduction in variability and effectiveness with a wider range of microorganisms. The

Monteith site also showed improvement in growth with biological amendments. Apple roots from this site

showed high levels of lesion nematode infestation and it is possible that plants were protected from

nematode attack or soilborne pathogens by changes in the soil microbial populations with biological

amendment application.

Drenovsky et al. (2005) in peach replant orchards found that, although organic carbon amendments

increased microbial biomass and influenced microbial community composition, they had little effect on tree

growth and vigour. Yao et al. (2006) found that growth and yield of apple trees were not improved by

compost treatments in ARD sites, although community composition was altered to some extent. However,

they concluded that fungal and pseudomonad populations in the rhizosphere of different rootstocks were an

important factor influencing tree growth and yield in ARD. In this study, orchard sites showing similar

substrate utilisation and possibly microbial function, resulted in significantly different effects on tree

performance. This illustrates the importance of site-specific effects when applying organic amendments, as

well as differences in ARD severity.

4.5 CONCLUSION

In the site where ARD symptoms were most severe, and fumigation showed the most significant response,

biological amendments showed little improvement in initial yield when compared to untreated plots. In the

other two replant sites biological amendment application from orchard establishment improved tree growth

to the same extent as fumigation over three growing seasons. Although it is believed that any advantage

given to the young tree at establishment could be significant throughout the life of the orchard, effects on

yield in these two orchards need to be assessed to provide evidence of long-term improvement in tree

performance. However, results showed no clear indication of which amendment in addition to compost

resulted in the best tree performance, except possibly the treatment where compost application was

combined with compost extract treatment and Bacillus inoculants combined with humic substances. This

treatment was also the only biological amendment treatment that showed increased enzyme activity.
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However, at these sites compost seemed to be the dominant factor in affecting microbial community

substrate utilisation (CLPPs), as well as soil extractable nutrients.

Results suggest that in replant disease conditions improvement in microbial activity or changes in microbial

community function can not be used to predict effects on tree performance. The site-specific etiology and

different degrees of ARD severity experienced at the three sites can possibly explain different effects found

with soil treatments at the various sites.
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Table 1. Effect of biological soil amendments in comparison with methyl bromide fumigation on growth
over three growing seasons of ‘Fuji’ apple trees planted on M793 in 2006 at Graymead, an apple replant
disease site (loamy sand soil). Probability values shown at the bottom of the table are according to a
standard ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means.
Treatment means in a column followed by the same or no letter are not significantly different.

Trunk circumference (cm)Treatment

At planting
(2006)

Growth
tempo*

Total growth

(cm) 2007

Shoot growth**

(cm) 2008

Shoot growth

(cm) 2009

Control

Methyl bromide

Compost+ExtractA

Compost+ExtractB

Compost+Biostart

5.25

5.11

5.14

5.31

5.22

2.75 b

4.36 a

2.80 b

2.99 b

2.73 b

349 c

588 a

416 bc

434 b

430 bc

248.8 c

274.8 a

252.3 bc

255.7 bc

258.6 b

116.3 b

406.8 a

153.7 b

164.1 b

116.9 b

Treatment (P value) 0.5555 <0.0001 <0.0001 <0.0001 <0.0001

* Slope (b value) of linear regressions (R2 between 0.94 and 0.99) fit to trunk circumference measured from 2006 to
2009, indicating growth tempo.
**Measured as total extension growth of one scaffold branch in 2008, and the sum of total extension growth of two
scaffold branches and leader growth in 2009

Table 2. Effect of biological soil amendments in comparison with methyl bromide fumigation on yield
parameters in 2009 of ‘Fuji’ apple trees planted on M793 in 2006 at Graymead, an apple replant
disease site (loamy sand soil). Probability values shown at the bottom of the table are according to a
standard ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment
means. Treatment means in a column followed by the same letter are not significantly different.

Treatment Fruit number Fruit mass

(g)

Yield

(kg.tree-1)

Yield Efficiency

(kg.cm-2)

Control

Methyl bromide

Compost+ExtractA

Compost+ExtractB

Compost+Biostart

22.9 b

72.5 a

33.8 b

32.4 b

30.4 b

160 ab

173 a

147 b

142 b

153 a

3.30 b

12.29 a

4.79 b

4.54 b

4.56 b

0.333 b

0.779 a

0.437 b

0.386 b

0.420 b

Treatment (P value) <0.0001 <0.0001 0.0389 <0.0001
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Table 3. Effect of biological soil amendments in comparison with methyl bromide fumigation on fruit
quality parameters measured in 2009 with harvest of ‘Fuji’ apple trees planted on M793 in 2006 at
Graymead, an apple replant disease site (loamy sand soil). Probability values shown at the bottom of the
table are according to a standard ANOVA. Student’s t-LSD was used at a 5 % significance level to
compare the treatment means. Treatment means in a column followed by the same letter are not
significantly different. Where no significant treatment differences were found with Student’s t-LSD, no
letters are indicated following the treatment means.

Treatment Fruit size

(mm)

Firmness

(kg.cm-2)

TSS

(%)

Starch
conversion

(%)

Background

Colour

Red

Colour

Control

Methyl bromide

Compost+ExtractA

Compost+ExtractB

Compost+Biostart

70.24 b

75.10 a

69.76 b

69.41 b

70.14 b

7.43

7.03

7.11

7.13

7.13

16.53 a

15.87 b

16.60 a

16.96 a

16.42 ab

82.3

90.3

94.6

91.4

93.4

3.14

3.14

2.79

3.14

2.79

2.5

2.2

3.9

3.3

3.1

Treatment (P value) 0.0002 0.1368 0.0251 0.0838 0.8952 0.1821

Table 4. Effect of biological soil amendments in comparison with methyl bromide fumigation on growth
over three growing seasons of ‘Fuji’ apple trees planted on M7 in 2006 at Eikenhof, an apple replant
disease site (sandy soil). Probability values shown at the bottom of the table are according to a standard
ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means.
Treatment means in a column followed by the same or no letter are not significantly different.

Trunk circumference (cm)Treatment

At planting
(2006)

Growth
tempo*

Total growth

(cm) 2007

Shoot growth**

(cm) 2008

Shoot growth

(cm) 2009

Control

Methyl bromide

Compost+ExtractA

Compost+ExtractB

Compost+Biostart

Comp+Biost+ExtA

4.75

4.76

4.78

4.72

4.78

4.70

3.40

3.70

3.72

3.78

3.60

4.12

574 c

711 a

599 bc

606 abc

648 ab

685 ab

227.1 b

249.6 a

239.5 a

239.3 a

243.1 a

241.7 a

356.0

410 8

426.6

444.7

476.0

468.1

Treatment (P value) 0.9534 0.1166 0.0131 0.0045 0.2521

* Slope (b value) of linear regressions (R2 between 0.94 and 0.99) fit to trunk circumference measured from 2006 to
2009, indicating growth tempo.
**Measured as total extension growth of one scaffold branch in 2008, and the sum of total extension growth of two
scaffold branches and leader growth in 2009
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Table 5. Effect of biological soil amendments in comparison with methyl bromide fumigation on growth
over three growing seasons of ‘Ruby Gala’ apple trees planted on M793 in 2006 at Monteith, an apple
replant disease site (sandy clay loam). Probability values shown at the bottom of the table are according to
a standard ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment
means. Treatment means in a column followed by the same letter are not significantly different. Where no
significant treatment differences were found with Student’s t-LSD, no letters are indicated following the
treatment means.

Trunk circumference (cm)Treatment

At planting
(2006)

Growth
tempo*

Total growth

(cm) 2007

Shoot growth**

(cm) 2008

Shoot growth

(cm) 2009

Control

Methyl bromide

Compost+ExtractA

Compost+ExtractB

Compost+Biostart

4.38

4.24

4.33

4.51

4.37

3.59 b

4.12 a

3.92 a

3.89 a

3.95 a

311.5 c

485.5 a

399.4 b

410.9 ab

383.9 bc

258.6 b

273.3 a

258.0 b

273.8 a

263.6 b

446.2

465.5

472.4

455.4

478.1

Treatment 0.1276 0.0020 0.0040 0.0381 0.8238

* Slope (b value) of linear regressions (R2 between 0.94 and 0.99) fit to trunk circumference measured from 2006 to
2009, indicating growth tempo.
*Measured as total extension growth of one scaffold branch in 2008, and the sum of total extension growth of two
scaffold branches and leader growth in 2009
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Table 6. Soil chemical properties from fumigated soil, as well as soil amended with biological applications at the Graymead site (loamy sand soil). Soil samples
were taken in May 2008 and 2009 in the top 0-25 cm soil layer. Total soil carbon % was also measured in the top 0-5 cm. Probability values shown at the bottom
of the table are according to a standard ANOVA. Student’s t-LSD was used at a 5% significance level to compare the treatment means. Treatment means in a
column followed by the same or no letter are not significantly different.

pH (KCl) Resistance (ohm) Total C (%) Total N (%) P BrayII (mg.kg-1) K (cmol.kg-1)Treatment

2008 2009 2008 2009 2008 2009
(0-25 cm)

2009
(0-5 cm)

2008 2009 2008 2009 2008 2009

Control

MeBr

Comp+ExtA

Comp+Biost

Comp+ExtB

6.40 bc

6.22 c

6.68 ab

6.92 a

6.86 a

6.18 b

6.14 b

6.76 a

6.78 a

6.86 a

1615 b

2036 a

832 c

1038 c

1008 c

2076 b

2646 a

1302 c

1394 c

1342 c

1.61

1.66

1.58

1.56

1.57

1.40

1.34

1.56

1.49

1.62

1.72 bc

1.39 c

2.19 ab

2.06 ab

2.22 a

0.143 b

0.141 b

0.165 a

0.168 a

0.177 a

0.132

0.116

0.169

0.166

0.161

46.5

38.6

57.2

92.2

91.6

38.2 b

44.0 b

104.8 a

103.2 a

101.4 a

0.27 b

0.24 b

0.63 a

0.62 a

0.58 a

0.318 b

0.250 b

0.738 a

0.696 a

0.722 a

P-Value 0.0028 <0.0001 <0.0001 <0.0001 0.9428 0.2355 0.0118 0.0025 0.1013 0.0545 0.0016 <0.0001 <0.0001

Ca (cmol.kg-1) Mg (cmol.kg-1) Cu (cmol.kg-1) Zn (cmol.kg-1) Mn (cmol.kg-1) B (cmol.kg-1)Treatment

2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009

CEC* (cmol.kg-1)

2009

Control

MeBr

Comp+ExtA

Comp+Biost

Comp+ExtB

5.08 b

4.78 b

5.69 b

7.04 a

6.93 a

5.39 b

5.31 b

7.62 a

7.32 a

7.54 a

0.843

0.856

0.756

0.862

0.880

1.008

0.984

1.022

0.956

1.010

3.50 a

3.46 ab

2.57 bc

2.29 c

2.22 c

4.01 a

4.09 a

2.50 b

2.31 b

2.11 b

9.60

11.88

13.03

12.72

12.84

12.26

14.22

18.04

18.16

18.20

11.0 b

10.5 b

11.7 b

14.9 a

14.7 a

13.16 b

13.80 b

19.10 a

19.30 a

19.60 a

0.47

0.42

0.42

0.47

0.48

0.772 c

0.784 c

1.056 ab

0.914 bc

1.144 a

11.32

10.31

12.55

12.71

12.26

P-Value 0.0023 0.0013 0.1854 0.9184 0.0160 <0.0001 0.2114 0.1385 0.0088 0.0102 0.3782 0.0116 0.2812

* CEC = Cation exchange capacity
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Table 7. Soil chemical properties from fumigated soil as well as soil amended with biological applications at the Eikenhof site (sandy soil). Soil samples were
taken in May 2008 and 2009 in the top 0-25 cm soil layer. Total C% was also measured in the top 0-5 cm. Probability values shown at the bottom of the table
are according to a standard ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column
followed by the same or no letter are not significantly different.

pH (KCl) Resistance (ohm) Total C % Total N % P BrayII (mg.kg-1) K (cmol.kg-1)Treatment

2008 2009 2008 2009 2008 2009
(0-25 cm

2009
(0-5cm)

2008 2009 2008 2009 2008 2009

Contro1

MeBr

Comp+ExtA

Comp+ExtB

Comp+Biost

CompBioExtA

6.18 b

5.88 b

6.58 a

6.60 a

6.74 a

6.74 a

6.25 b

5.78 c

6.68 a

6.68 a

6.93 a

6.58 ab

2528 a

2706 a

1140 b

1288 b

1234 b

1288 b

2055 b

2565 a

1063 c

1100 c

1140 c

1143 c

1.79

2.05

2.00

2.00

2.03

1.99

1.81 b

1.80 b

2.35 a

2.05 ab

2.24 ab

2.37 ab

2.35 bc

2.06 c

2.64 ab

2.67 a

2.69 a

2.64 ab

0.159 c

0.179 bc

0.200 bac

0.236 a

0.220 ba

0.238 a

0.140 bc

0.129 c

0.184 ab

0.161 abc

0.208 a

0.189 ab

136.8

157.6

205.4

182.2

213.8

222.0

173.8

182.0

271.8

202.5

173.8

256.3

0.282 c

0.260 c

0.970 a

0.964 ba

0.808 b

0.918 ba

0.203 b

0.183 b

0.663 a

0.625 a

0.620 a

0.578 a

P-Value 0.0006 0.0004 <0.0001 <0.0001 0.8204 0.0366 0.0019 0.0158 0.0478 0.2244 0.2638 <0.0001 0.0007

Ca (cmol.kg-1) Mg (cmol.kg-1) Cu (cmol.kg-1) Zn (cmol.kg-1) Mn (cmol.kg-1) B (cmol.kg-1)Treatment

2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009

CEC* (cmol.kg-1

2009

Contro1

MeBr

Comp+ExtA

Comp+ExtB

Comp+Biost

CompBioExtA

6.08 b

6.22 b

8.73 a

8.44 a

9.36 a

9.67 a

7.38 bc

6.24 c

10.89 a

9.15 ab

11.55 a

10.10 ab

1.08

1.20

1.21

1.20

1.25

1.37

1.39

1.25

1.50

1.27

1.57

1.43

1.86

1.84

2.51

2.52

2.30

2.41

6.81 ab

7.72 a

2.61 c

3.63 bc

2.80 c

5.28 abc

3.04

3.06

4.60

5.00

2.62

4.86

21.9

13.0

14.2

16.3

14.8

20.9

8.04

16.82

12.36

11.70

9.10

12.16

22.4

13.1

16.3

19.9

17.2

27.9

0.610 c

0.590 c

0.836 ab

0.774 bc

0.706 bc

1.020 a

0.723 ab

0.455 b

1.003 a

0.833 a

0.935 a

0.988 a

11.04

11.08

13.49

12.26

12.62

11.31

P-Value 0.0020 0.0180 0.5868 0.6351 0.4531 0.0115 0.6694 0.1665 0.4044 0.0597 0.0055 0.0171 0.1038

* CEC = Cation exchange capacity
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Table 8. Soil chemical properties from fumigated soil as well as soil amended with biological applications at the Monteith site
(sandy clay loam). Soil samples were taken in May 2008 in the top 0-25cm soil layer. Probability values shown at the bottom of the
table are according to a standard ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means.
Treatment means in a column followed by the same or no letter are not significantly different.

Treatment pH

(KCl)

Resistance
(ohm)

N
(%)

C
(%)

P (BrayII)

(mg.kg-1)

K

(cmol.kg-1)

Mg

(cmol.kg-1)

Ca

(cmol.kg-1)

Control

MeBr

Comp+ExtractA

Comp+Biostart

Comp+ExtractB

6.05

6.05

6.15

6.17

6.07

542

922

708

1005

847

0.222

0.185

0.225

0.204

0.180

1.99

1.85

2.37

1.84

1.68

69.8

47.0

83.0

85.8

61.7

0.645

0.457

0.610

0.615

0.647

1.820

1.665

1.847

1.777

1.647

7.94

7.99

8.17

7.22

6.77

P value 0.8931 0.1182 0.3489 0.2613 0.1423 0.4354 0.7979 0.5588

Water holding capacityTreatment Cu

(cmol.kg-1)

Mn

(cmol.kg-1)

Zn

(cmol.kg-1)

B

(cmol.kg-1)

BD*

kg.L-1

kPa 10 kPa 100 mm/m

Control

MeBr

Comp+ExtractA

Comp+Biostart

Comp+ExtractB

1.89

1.54

2.03

1.92

2.09

16.27

11.85

16.02

14.05

13.43

13.25 a

7.63 c

11.00 abc

11.82 ab

9.26 bc

0.692

0.762

0.792

1.076

0.783

1.162

1.182

1.130

1.140

1.140

15.45

13.68

20.56

17.99

16.12

9.93

8.51

13.14

11.58

10.59

70.85

75.90

58.15

65.05

71.13

P value 0.7826 0.1033 0.0470 0.2330 0.4127 0.2850 0.2685 0.2190

*
BD = Bulk density
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Table 9. Leaf nutrient analyses of the various soil treatments from the Graymead site for samples taken in January 2008 and 2009. Results are
expressed as % for macronutrients and mg.kg-1 DW for micronutrients. Probability values shown at the bottom of the table are according to a
standard ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed
by the same or no letter are not significantly different.

N (%) P (%) K (%) Ca (%) Mg (%)
Treatment

2008 2009 2008 2009 2008 2009 2008 2009 2008 2009
Control

Methyl bromide

Comp+ExtractA

Comp+Biostart

Comp+ExtractB

2.720

2.705

2.695

2.825

2.743

2.824 c

2.847 bc

2.939 ab

2.964 a

2.940 ab

0.188

0.180

0.193

0.167

0.193

0.160

0.156

0.153

0.137

0.146

1.342 c

1.827 a

1.490 b

1.908 a

1.807 a

1.406

1.319

1.459

1.417

1.437

0.918 b

1.003 b

1.182 a

0.982 b

0.987 b

1.377 b

1.651 a

1.483 b

1.441 b

1.431 b

0.245 a

0.190 b

0.240 a

0.185 b

0.182 b

0.306 ab

0.3100 a

0.294 abc

0.271 c

0.286 bc

P value 0.5102 0.0203 0.3690 0.3256 <0.0001 0.5659 0.0016 0.0252 <0.0001 0.0143

Na (mg.kg-1) Mn (mg.kg-1) Cu (mg.kg-1) Zn (mg.kg-1) B (mg.kg-1)
Treatment

2008 2009 2008 2009 2008 2009 2008 2009 2008 2009
Control

Methyl bromide

Comp+ExtractA

Comp+Biostart

Comp+ExtractB

144.7

155.0

143.5

140.5

130.3

203.9 a

128.0 c

167.0 b

168.1 b

162.1 b

147.3 b

205.8 a

131.5 b

187.2 a

200.2 a

574.7

545.7

592.7

642.6

615.0

17.2 c

23.7 a

18.3 bc

21.8 ab

23.7 a

7.286

7.571

6.857

7.000

6.857

51.0 b

71.2 a

45.7 b

64.7 a

69.0 a

163.8

178.7

179.1

192.6

174.3

45.7 b

50.8 a

45.2 b

51.3 a

50.0 a

44.3 a

39.4 b

42.4 a

43.1 a

41.7 ab

P value 0.4035 0.0004 0.0007 0.1301 0.0107 0.7625 0.0005 0.5043 0.0027 0.0231

Footnotes: Kotzé (2001) norms: N (2.1-2.6%), P (0.14-0.19%), K (1.2-1.4%), Ca (1.45-1.60%), Mg (0.30-0.40%), Na (500 mg.kg-1), Mn (20-90 mg.kg-1), Fe (80-
150 mg.kg-1), Cu (5-10 mg.kg-1), Zn (30-50 mg.kg-1), B (30-35 mg.kg-1). Each leaf sample consisted of 50 leaves. Samples were analysed by a commercial
laboratory (Bemlab®, Strand, SA) using an inductively coupled plasma-optical emission spectrometer and a nitrogen analyzer.
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Table 10. Leaf nutrient analyses of the soil treatments from the Eikenhof site for samples taken in January 2008 and 2009. Results are expressed
as % for macronutrients and mg.kg-1 DW for micronutrients. Probability values shown at the bottom of the table are according to a standard
ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the
same or no letter are not significantly different.

N (%) P (%) K (%) Ca (%) Mg (%)Treatment
2008 2009 2008 2009 2008 2009 2008 2009 2008 2009

Control

Methyl bromide

Compost+ExtractA

Compost+Biostart

Compost+ExtractB

Compost+ Biost+ExtrA

2.637 b

2.800 a

2.497 c

2.702 ab

2.707 ab

2.708 ab

2.638 c

2.630 c

2.777 ab

2.708 bc

2.807 a

2.682 bc

0.192

0.190

0.180

0.182

0.180

0.175

0.218

0.218

0.232

0.222

0.218

0.232

1.477 c

1.767 a

1.477 c

1.608 b

1.843 a

1.735 a

1.368 bc

1.363 c

1.608 a

1.613 a

1.555 ab

1.612 a

1.102 ab

1.025 bc

1.062 abc

1.058 abc

1.153 a

1.000 c

1.407

1.413

1.310

1.347

1.420

1.313

0.310

0.252

0.312

0.275

0.293

0.255

0.283 a

0.298 a

0.255 b

0.238 bc

0.223 c

0.247 bc

P value <0.0001 0.0036 0.8645 0.9942 <0.0001 0.0146 0.0469 0.3599 0.0665 0.0001

Na (mg.kg-1) Mn (mg.kg-1) Cu (mg.kg-1) Zn (mg.kg-1) B (mg.kg-1)Treatment

2008 2009 2008 2009 2008 2009 2008 2009 2008 2009
Control

Methyl bromide

Comostp+ExtractA

Compost+Biostart

Compost+ExtractB

Compost+Biost+ExtrA

96 bc

124 a

96 bc

96 bc

117 a

94 c

222.5

233.7

196.0

224.2

184.0

201.8

370

408

366

345

372

363

327.7

305.3

315.8

314.8

355.8

328.7

79

84

70

76

76

82

38.0

39.0

40.3

39.0

45.0

42.3

133

144

130

119

127

1125

198.2

180.5

187.7

197.3

215.5

191.3

46

44

45

45

46

44

65.2

64.7

66.5

67.8

64.5

65.5

P value <0.0001 0.1722 0.4354 0.3278 0.3348 0.0879 0.4227 0.4009 0.7243 0.7750

Footnotes: Kotzé (2001) norms: N (2.1-2.6%), P (0.14-0.19%), K (1.2-1.4%), Ca (1.45-1.60%), Mg (0.30-0.40%), Na (500 mg.kg-1), Mn (20-90 mg.kg-1), Fe
(80-150 mg.kg-1), Cu (5-10 mg.kg-1), Zn (30-50 mg.kg-1), B (30-35 mg.kg-1). Each leaf sample consisted of 50 leaves. Samples were analysed by a commercial
laboratory (Bemlab®, Strand, SA) using an inductively coupled plasma-optical emission spectrometer and a nitrogen analyzer.



213

Table 11. Leaf nutrient analyses of the soil treatments from the Monteith site for samples taken in January 2008 and 2009. Results are expressed as
% for macronutrients and mg.kg-1 DW for micronutrients. Probability values shown at the bottom of the table are according to a standard ANOVA.
Student’s t-LSD was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the same or no
letter are not significantly different.

N (%) P (%) K (%) Ca (%) Mg (%)Treatment
2008 2009 2008 2009 2008 2009 2008 2009 2008 2009

Control

Methyl bromide

Compost+ExtractA

Compost+Biostart

Compost+ExtractB

2.782

2.633

2.742

2.705

2.653

2.517

2.583

2.453

2.605

2.323

0.196

0.215

0.208

0.223

0.195

0.150

0.138

0.165

0.153

0.155

1.802

1.660

1.793

1.858

1.838

1.728 a

1.505 b

1.727 a

1.598 b

1.723 a

0.908

0.890

0.904

0.895

0.873

0.923

0.867

0.840

0.793

0.883

0.298 a

0.298 a

0.273 ab

0.287 a

0.243 b

0.278 ab

0.292 a

0.263 b

0.258 b

0.265 b

P value 0.4994 0.1034 0.4739 0.3711 0.1653 0.0198 0.7960 0.2565 0.0141 0.0353

Na (mg.kg-1) Mn (mg.kg-1) Cu (mg.kg-1) Zn (mg.kg-1) B (mg.kg-1)Treatment

2008 2009 2008 2009 2008 2009 2008 2009 2008 2009
Control

Methyl bromide

Compost+ExtractA

Compost+Biostart

Compost+ExtractB

187

194

176

180

147

239.0

235.7

264.2

262.2

196.3

90

153

128

135

134

165.8

168.5

168.7

153.2

163.3

15.6

17.3

20.2

22.2

22.3

82.7

86.8

83.0

82.0

89.3

18.0 c

29.7 a

23.3 bc

24.0 b

25.0 ab

142.7

146.7

153.0

140.0

149.8

34.0

33.8

34.3

34.3

32.3

32.5 a

31.2 ab

33.2 a

29.3 b

31.8 a

P value 0.6970 0.6138 0.0787 0.6274 0.5010 0.8400 0.0078 0.5941 0.9358 0.0241

Footnotes: Kotzé (2001) norms: N (2.1-2.6%), P (0.14-0.19%), K (1.2-1.4%), Ca (1.45-1.60%), Mg (0.30-0.40%), Na (500 mg.kg-1), Mn (20-90 mg.kg-1), Fe
(80-150 mg.kg-1), Cu (5-10 mg.kg-1), Zn (30-50 mg.kg-1), B (30-35 mg.kg-1). Each leaf sample consisted of 50 leaves. Samples were analysed by a commercial
laboratory (Bemlab®, Strand, SA) using an inductively coupled plasma-optical emission spectrometer and a nitrogen analyzer.
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Figure 1. Effect of biological soil amendments and methyl bromide fumigation on
soil urease activity at three replant disease sites, Eikenhof, Monteith and Graymead.
Soil samples were taken in May 2008. Probability values from the standard ANOVA
are shown at the top of each replant site’s graph. Bars within replant sites topped by
the same or no letter are not significantly different according to Student’s t-LSD at a 5
% significance level.
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Figure 2. Effect of biological soil amendments and methyl bromide fumigation on
soil β-glucosidase activity at three replant disease sites Eikenhof, Monteith and
Graymead. Soil samples were taken in May 2008. Probability values from the
standard ANOVA are shown at the top of each replant site’s graph. Bars within
replant sites topped by the same or no letter are not significantly different according to
Student’s t-LSD at a 5 % significance level.
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Phosphatase Activity
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Figure 3. Effect of biological soil amendments and methyl bromide fumigation on
soil phosphatase activity at three replant disease sites Eikenhof, Monteith and
Graymead. Soil samples were taken in May 2008. Probability values from the
standard ANOVA are shown at the top of each replant site’s graph. Bars within
replant sites topped by the same or no letter are not significantly different according to
Student’s t-LSD at a 5 % significance level.
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Figures 4A-C. Ordination plots of principal components (PCs) 1 and 2 from community level physiological
profiles of soil treated with biological amendments and methyl bromide. Principal component analysis was
conducted on 24 h incubation data from Biolog EcoPlates for samples taken in autumn 2008 from three
orchard sites, (A) Graymead, (B) Eikenhof, (C) Monteith. CBiost: compost with Biostart, CExtA: compost
with ExtractA, CExtB: compost with ExtractB, MeBr: methyl bromide fumigation. Error bars represent ±1
standard error of the mean. Values in brackets indicate the percent of total variation accounted for by each
principal component axis.
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Figures 5A-C. Ordination plots of principal components (PCs) 1 and 2 from community level physiological
profiles of soil treated with biological amendments and methyl bromide. Principal component analysis was
conducted on 38 h incubation data from Biolog EcoPlates for samples taken in autumn 2008 from three
orchard sites, (A) Graymead, (B) Eikenhof, (C) Monteith. CBiost: compost with Biostart, CExtA: compost
with ExtractA, CExtB: compost with ExtractB, MeBr: methyl bromide fumigation. Error bars represent ±1
standard error of the mean. Values in brackets indicate the percent of total variation accounted for by each
principal component axis.
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Figure 6. Principal component analysis (PCA) Bi-plot of the different variables (chemical and biological
soil properties, tree performance parameters)measured at the Graymead site in relation to the various soil
treatments. Values in brackets indicate the percent of total variation accounted for by each principal
component axis. CBiost: compost with Biostart, CExtA: compost with ExtractA, CExtB: compost with
ExtractB, MeBr: methyl bromide fumigation. L_ indicates leaf nutrient content.
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CHAPTER 5

EFFECT OF ORGANIC MATERIAL AND BIOLOGICAL AMENDMENTS ON SOIL ENZYME

ACTIVITY AND TREE PERFORMANCE IN AN OPTIMALLY MANAGED APPLE ORCHARD

ABSTRACT

Organic material (compost, wood chips) and biological amendments (compost extract, humates) were applied

in an optimally managed high density orchard, to determine possible complimentary effects on tree

performance with use of these biological management practices in a controlled fertigation system. It was also

investigated whether the concentration of nitrogen (N) in the nutrient solution can be reduced with the use of

organic mulches and biological amendment application without affecting tree performance negatively. The

study site was a commercial ‘Brookfield Gala’ apple orchard in second leaf, planted on M793 rootstock at

2000 trees.ha-1 in the Greyton region (34° 03' S; 019° 37' E) Western Cape Province, South Africa. The trial

consisted of three N levels (main treatments) and nine biological orchard practices (sub treatments). Organic

material was applied with trial establishment, biological amendments from third leaf and N levels adjusted

after the first harvest. Changes in selected soil chemical properties, as well as leaf nutrient content were

measured at the end of the four year trial period. Furthermore, the effect of biological management practices on

soil enzyme activity was determined as an indicator of soil quality. Results showed a significant interaction

between biological amendments and the inorganic N levels applied. With continued application of the

biological amendments, humate treatment in combination with compost application significantly increased

yield when applied with the full N application (N100). Furthermore, a significant increase in yield was also

found with compost extract applied in combination with compost at the lowest N application. Application of

the N85 regime possibly resulted in the best balance between root growth, shoot growth, bud quality and fruit

set as indicated by showing highest yield in 2008, as well as cumulative yield. Compost treatments showed

positive effects on soil extractable nutrients. Effects on enzyme activity were not significant, although some

tendencies were noted. The significant interactions found between inorganic and organic applied nutrients need

further investigation.

Keywords: compost, compost extract, fertigation, humates, mulch, nitrogen, wood chips



220

5.1 INTRODUCTION

In response to environmental concerns and escalations in production costs there has been renewed interest in

the integration of biological soil amendments into standard agricultural management systems. The application

of organic material and biological amendments also need to be investigated in combination with the more

intensive cultivation practices. In high density orchards the controlled application of fertiliser directly through

the irrigation system (fertigation) is becoming increasingly popular. Fertigation offers potential to synchronise

nutrient application with plant requirements, as influenced by plant age, physiological stage and environmental

conditions (Stassen et al., 1999). Lebese (2008) found a 80% increase in the dry weight of fine and medium

roots and a 26% increase in yield of apple trees using a daily drip fertigation system compared to a

conventional micro-irrigation system. However, Neilsen et al. (1999) stated that fertigation through drip

systems concentrates root development in smaller soil volumes, increasing tree reliance on applied nutrients

and requiring optimum soil quality in the root zone. Application of organic and biological amendments could

possibly aid in improving soil conditions in the root zone of fertigated trees.

The importance of soil biological processes in maintaining plant health and yield has largely been neglected in

agricultural systems. Since microbial activity is generally carbon-limited in agricultural soil (Campbell, 1989;

Magarey, 1999; Bünemann et al., 2006) it is widely accepted that management practices providing a range of

organic compounds on a regular basis, will tend to maintain an active and diverse microbial population

(Kennedy and Gewin, 1997; Magdoff and Weil, 2004). The development of soil structure (Tisdall and Oades,

1982; Gupta and Germida, 1988; Beare, 1997; ; Wright and Upadhyaya, 1998; Miller and Jastrow, 2000), soil

fertility and plant nutrition, (Jenkinson and Ladd, 1981; Glick, 1995; Jeffries et al., 2003; Zahir et al., 2004), as

well as disease suppression (Baker and Cook, 1974; Bowen and Rovira, 1999; Whipps, 2001) are regulated by

the interactions of a highly diverse and complex web of soil flora and fauna that is sustained by the influx of

organic matter into the soil (Alexander, 1977; Larson and Pierce, 1991; Tisdall, 1996; Murphy et al., 2003;

Davet, 2004; Magdoff and Weil, 2004).

Improvement of tree performance in deciduous fruit was found after organic amendment, either in the form of

mulch application or incorporated into the top soil (Hogue and Neilsen, 1987; Autio et al., 1991; Kotzé and

Joubert, 1992b; Reganold et al., 1993; Marsh et al., 1996; Pinamonti, 1998; Neilsen et al, 2003a, 2007; Van

Schoor et al., 2009). Mulching conditions provide a favourable environment for microbial activity and fine

feeder root development, especially in surface soil and can reduce leaching, and improve nutrient uptake

(Boynton and Oberly, 1966; Kotzé and Joubert, 1992a; Pinamonti, 1998). Furthermore, if in addition to organic

amendments, nutrients can be applied regularly through fertigation (Neilsen et al., 2007), competition for

nutrients between the plant and microorganisms can be minimised (Hogue and Neilsen, 1987; Lipecki and

Berbec, 1997). Drinkwater et al. (1995) concluded that differences between agroecosystems with and without
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organic matter input suggested that biological processes can compensate for reductions in the use of synthetic

fertilisers through enhanced nutrient cycling.

The addition of biostimulants, such as humic substances (HS), is widely advocated in biological management

systems (Chen and Aviad, 1990). Humic substances comprise a major part of soil organic matter (SOM) and

are classified into humic acids (HA), fulvic acids (FA) and humin on the basis of their solubility in water as a

function of pH (Swift, 1999). Commercial HS products are mostly derived from brown coal (leonordite or

lignite), or peat and applied as humates, which are the salts of humic acids that hold ions, such as K or Na.

Their most important role is the chelation of ions, increasing their availability to organisms, including plants.

Humic substances can also directly stimulate plant biomass production, especially root growth (Vaughan and

Malcolm, 1985; Visser, 1985a, Chen and Aviad, 1990; Nardi et al., 2002). The stimulatory effect of HS on

plant nutrition and growth might, at least in part, be explained on the basis of both a direct action of low

molecular weight (LMW) humic molecules on plasma membrane H+-ATPase activity (Varanini et al., 1993;

Canellas et al., 2002) and specific modification of cell membrane permeability (Vaughan et al., 1985).

Furthermore, various studies have shown positive effects of HS on soil microbial activity and function (Visser,

1985 a, b; Vallini et al., 1993; Valdrighi et al., 1996; Lizarazo et al., 2005).

Application of soil inoculants was shown to improve plant health and uptake of nutrients (Glick, 1995; Zahir

and Arshad, 1996; Rodriguez and Fraga, 1999; Zahir et al., 2004), as well as increase yield and crop quality

(Kloepper, 1994; Dobbelaere et al., 2001; Esitken et al., 2003; Orhan et al., 2006; Aslantas et al., 2007).

Furthermore, the use of compost extracts or compost tea, have been advocated as microbial inoculants that can

stimulate and enhance the soil microflora (Ingham, 1999; Litterick et al., 2004). These inoculants are used

locally in organic agriculture to a wide extent and since virtually no scientific literature is available on their use

in deciduous fruit production it is important to establish their value in terms of improving tree performance.

Biological amendments can affect plant nutrition directly by supplying bulk nutrients (Ashworth and Harrison,

1983; Roe, 1998; Neilsen et al., 2003a) or indirectly through increasing the availability and uptake of nutrients

(Jenkinson and Ladd, 1981; Chen and Aviad, 1990; Glick, 1995; Ferris et al., 1998) or preventing leaching

(McKenzie et al., 2001; Davet, 2004; Ball, 2006). Microbial activity in the rhizosphere is a major factor that

determines the availability of nutrients to plants and has a significant influence on plant health and productivity

(Jeffries et al., 2003). It is therefore possible that the application of inorganic fertilizer can be reduced when

applied in combination with these amendments.

The objective of this study was to determine whether the integration of biological amendments into a optimally

managed drip fertigation system can lead to complimentary improvement in tree performance. It was also

investigated whether the concentration of nitrogen (N) in the nutrient solution can be reduced with the use of
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organic mulches and biological amendment application without affecting tree performance negatively.

Furthermore, the effect of these amendments on soil enzyme activity was determined as an indicator of soil

quality.

5.2 MATERIALS AND METHODS

5.2.1 Orchard study site and experimental design

The experiment was conducted in a young commercial ‘Brookfield Gala’ apple orchard on M793 rootstock.

The orchard was planted in 2003 at a spacing of 4.0 m x 1.25 m (within row) on a virgin loamy sand soil (clay

3%, silt, 11%, sand 86%), in the Greyton region (34° 03' S; 019° 37' E) in the Western Cape Province, South

Africa. Trees were trained to a central leader spindle with lateral shoots bent horizontally according to the

solaxe principle, and implementing both summer and winter pruning. With trial establishment in October 2004,

pH (KCl) values averaged 6.6, total soil carbon 1.2% and the soil contained 0% stone. The experimental layout

was a split-plot design consisting of three main treatments and nine sub treatments, blocked three times, with

an experimental unit consisting of three trees. Plots were separated by two guard trees. A drip fertigation

system was used to supply a nutrient solution to the trees once or twice daily. Drippers were spaced 600 mm

apart and had a discharge rate of 2.3 L.h-1. Annual macro- and micronutrient requirements were based on a

local study by Stassen and North (2005), and divided into five phenological periods. Water requirements were

calculated using long term evaporation data from two nearby weather stations and locally developed apple crop

factors (Kotzé, 2001). Watermark sensors and C-probes were used to adapt the predicted water requirements

into actual water requirements according to plant available soil water. A total amount of water between 3800

and 4000 m3.ha-1 was applied for the various seasons. A glyphosate herbicide (3-4 L.ha1) was applied in

autumn and a paraquat (3-5 L.ha1) containing herbicide in spring to all treatments.

5.2.2 Treatment application

The trial was established in October 2004, when trees were going into third leaf. Main treatments consisted of

three various nitrogen (N) regimes; 70%, 85% and 100% of the standard N in the nutrient solution applied.

Application of the various N levels only commenced in February 2006. Subplot treatments consisted of organic

material application, commencing in October 2004. Soil inoculants and biostimulants were applied from the

2005/2006 season. The subplot treatments included the following combinations:

1) Untreated control plots, managed according to the standard orchard practices used at this site.

2) Compost extract (BioEarth, Stellenbosch, SA) applied at 500 L.ha-1, diluted 50:1 and sprayed onto the tree

row with each application. The compost extract was prepared by adding 1000 L of water to 50 kg of compost

and actively aerating the suspension for 48 h, with no additional additives. Compost extracts were applied

monthly throughout the growing season in all treatments.
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3) Compost extract in combination with commercial compost applied at 30 ton.ha-1 as a mulch. Compost

application was repeated annually in spring. The same commercial compost was used as CompostA in Chapter

3.

4) Compost extract applied in combination with a 10 cm thick pine wood chip mulch. Wood chips were

applied with trial establishment in 2004 and again in spring 2006.

5) A potassium humate product was applied anually, at 75 L.ha-1 split into a spring and an autumn application.

6) Humate application as in treatment 5, in combination with compost applied annually at 30 ton.ha-1 as a

mulch.

7) Humate application as in treatment 5, in combination with pine wood chip mulch of 10 cm thick.

8) Compost extract in combination with the humate product, as well as commercial compost applied at 30

ton.ha-1 as a mulch (CE+H+C).

9) Compost extract in combination with the humate product, as well as a wood chip mulch (CE+H+W).

Properties of the compost and compost extracts used are shown in Appendix A.

5.2.3 Tree performance evaluation

Trees were permanently marked 20 cm above the graft union and trunk circumference measured with trial

establishment in 2004 and from then on every year during winter. Pruning mass was recorded as a further

indication of tree vigour in 2006. Annual yield was recorded on a per tree basis in February 2006, 2007 and

2008. Yield efficiency was calculated by dividing yield (kg.tree-1) by trunk cross-sectional area as measured

with harvest. Fruit quality parameters included fruit firmness, total soluble solids (TSS), total titratable acids

(TTA), starch conversion and fruit colour. Due to economic reasons, these parameters were only evaluated for

selected treatments at harvest, after 12 weeks storage at -0.5 ºC under regular atmosphere (RA), and then after

7 days at room temperature (21-24 ºC) (shelf life period) in 2006 and 2008. For each evaluation 35 fruit from

each treatment and block combination were analysed.

5.2.4 Leaf nutrient analyses

Leaf nutrient analyses were conducted for control treatments, where compost was applied in the treatment

combination, as well as humates and compost extract applied on its own. This was due to economic constraints.

A combined 50 leaf sample of mature leaves in the mid shoot section of the current years growth was collected

at the end of January 2008 from the three trees in each plot. Leaf samples were prepared and analysed as

described in Chapter 2.

5.2.5 Soil sampling and analyses

Control treatments, as well as treatments with biological amendments showing the most potential based on

yield parameters in 2008 were sampled. Soil was sampled within the root zone of the top soil where microbial

activity is expected to be greatest, at a depth of 0-25 cm. Samples were taken at a distance of 30-40 cm from
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the tree base, between the two drippers, from two holes beneath the three trees in each plot and composite

samples prepared for each treatment from the six sub-samples in each of the three block replicates. Soil

samples were taken in May 2008 one month after the last application of the season. Samples were analysed for

selected soil chemical properties using the methods described in Chapter 2. Field moist sub-samples were

sieved through a 2 mm mesh screen for microbial analyses. Visible root pieces and un-decomposed organic

matter were removed and soil stored at 4 ºC for no more than two weeks before analyses.

5.2.6 Soil enzyme activity analyses

Acid phosphatase, β-glucosidase and arylsulfatase activity were determined based on the release and

spectrophotometric detection of p-nitrophenol (Tabatabai and Bremner, 1969; Tabatabai, 1982). Urease

hydrolysing activity was determined by the non-buffered method of Kandeler and Gerber (1988). Controls

were performed for all enzymes assayed by the addition of the substrate after incubation, but prior to analysis

of the reaction product.

5.2.7 Statistical analysis

A standard split-plot analysis of variance (ANOVA) was performed on the data using, SAS Statistical Software

(SAS, 2002-2003). Trunk circumference measurements over the trial period were analysed as repeated

measurements by comparing the slopes (b values) of linear regressions fitted to the data (R2 between 0.98 and

0.99) in an ANOVA. Student’s t-LSD (least significant difference) was calculated at a 5% significance level to

compare the treatment means.

5.3 RESULTS

5.3.1 Growth measurements

Trunk circumference measurement at the start of the trial period showed that all trees were of similar size.

There was no significant interaction between the different rates of N application and the various biological

treatments for trunk circumference growth tempo over the trial period, or pruning mass measured in 2006

(Table 1). Furthermore, biological amendments and various levels of N application did not result in a

significant increase in trunk growth tempo, although compost extract with wood chips and humates with

compost showed the highest growth tempo over the trial period. Pruning mass was measured in the 2006

season in September, as an indication of tree vigour and although there were no significant differences between

the various treatments, some tendencies were noted. Highest shoot mass was found for trees treated with the

CE+H+C, as well as trees only treated with humates and compost (Table 1).
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5.3.2 Yield and fruit quality

The first yield was recorded in February 2006, after two seasons of organic material application and only one

season of compost extract and humate application. Furthermore, application of the various N levels only

commenced in February 2006 after harvest. Therefore no significant differences in yield were expected

between trees in the various N regimes in the 2006 yield. There were no significant differences in yield

between trees treated with organic material and biological amendments (Table 2). However, yield and yield

efficiency was highest with the humate and compost treatment. In the 2007 season yield was very low. This

was due to abnormal cold and wet weather conditions experienced in this area during the fruit set period.

Furthermore, there was considerable variation between trees of the same plot and no significant treatment

effects were found.

There was a significant interaction between the N levels and the biological treatments for yield in 2008, as well

as cumulative yield (Table 2). Compost extract applied with compost increased yield significantly under N70

fertigation compared to all treatments except CE+H+W. Yield was also significantly higher compared to

compost applied with compost extract under N100 fertigation. Yield was generally highest at the N85 level for

all treatments, although results were not always significant. Application of CE+H+C at N85 significantly

increased yield compared to applications at N100. Results were similar for compost extract applied in addition

to wood chips. Furthermore, there was no significant effect of the biological amendments compared to the

control under N85 fertigation. With the N100 application humates with compost resulted in significantly higher

yields than the control, compost extract with wood, as well as the combinations CE+H+C and CE+H+W.

Humates applied with wood chips, as well as humates applied on its own, at the N70 level showed significantly

lower yield compared to application in the N85 level. In contrast to this, CE+H+W applied at the N100 level,

showed significantly lower yield compared to the lower N levels. Results for cumulative yield were similar to

yield effects in 2008. However, CE+H+C, compost extract with wood and compost extract with compost,

showed no significant differences between the N levels although trends were similar compared to yield in

2008. Yield efficiency in 2008 showed no significant treatment effect, but there was a clear tendency that yield

efficiency was highest for treatments with compost and also compost extract applied on its own (Table 2).

Fruit quality data for 2006 are presented in Table 3 only for sub treatments, since the different N levels were

only introduced after the harvest of 2006. Only selected treatments were sampled due to economic constraints.

No significant treatment differences were found in fruit size and TSS levels for any of the evaluations. In

general, differences in fruit quality were most significant for the evaluation at harvest. Based on fruit firmness

and starch conversion, there was an indication that treatments receiving compost was more mature at harvest

than control fruit. Fruit firmness was significantly lower with compost applications when compared to the

control, as well as humate with wood chips. Starch breakdown was significantly lower in fruit from control

plots compared to all other treatments and where compost was applied starch breakdown was highest.
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However, this effect was not consistent for TTA measured at harvest. Treatments receiving compost extract in

combination with either wood chips or compost, as well as humate with wood chips, had significantly higher

acidity (TTA) levels compared to the control. At harvest, no significant differences in colour were found

between the treatments. There were no significant differences between the treatments for any of the parameters

measured after storage evaluations.

In 2008, there was no significant interaction between the main and sub treatments (Table 4). Furthermore, no

significant differences were found for the biological treatments or between the three nitrogen regimes at any of

the evaluation times (Table 4). However, it was observed that fruit size was bigger with the two treatment

combinations including both humates and compost. Results found in 2008 were not consistent with results

found for compost application at harvest in 2006.

5.3.3 Soil enzyme activity analyses

Treatments that showed a favourable effect on yield in the 2008 season were selected for enzyme analyses in

order to relate increased tree performance with microbial activity. There were no significant interaction

between the different N regimes and biological amendments (Table 5) and only main effects will be discussed.

No significant differences were found between the treatments for urease, phosphatase, β-glucosidase or

arylsulfatase activity. This may be attributed to a small number of replicates when evaluating only selected

biological treatments. In general, differences between the N100 and N85 applications were more pronounced

than for the various biological amendments. Application of the full N level consistently showed higher enzyme

activity for all four enzyme analyses. The combination of CE+H+C generally resulted in highest enzyme

activity, except for β-glucosidase activity which was highest with humate and compost application when

applied without the extract. It was also noted that phosphatase activity was highest for soil treated with

compost. Humate application on its own showed lowest soil enzyme activity for all enzyme assays.

5.3.4 Soil chemical properties and leaf nutrient analyses

Soil chemical parameters measured in May 2008 for the top 0-25 cm soil are presented in Table 6. The same

treatments sampled for enzyme activity analyses were also analysed for soil chemical properties. Application

of the lower N level (N85) showed significantly lower total soil N, as would be expected, but no other

significant differences were found between soil properties of the two N levels sampled. There was a significant

interaction between main and sub treatments for C%, as well as soil extractable P (Table 6). At the N100 level,

although there was no significant treatment differences compared to the control, CE+H+C treatment resulted in

highest C% and results were significant compared to compost with humate treatment. At the N85 level,

treatment differences were also not significant compared to the control, but compost with humate treatment and

compost with extract treatment showed highest C% and results were significant compared to CE+H+C and

compost extract applied on its own. This was in contrast to results found with N100. Soil C% in the N100
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system was also significantly higher with compost extract application on its own, compared to its application in

the N85 system. The interaction for soil P showed that extractable P levels were significantly higher with the

CE+H+C combination when applied with the full N level (N100), than when applied with the lower N level

(N85). Furthermore, this treatment resulted in highest soil P under N100 fertigation, compared to lowest soil P

under N85 application. In the N100 system, compost extract applied on its own, humate applied with compost,

as well as the combination of these treatments (CE+H+C) significantly increased soil extractable P compared

to the control, and for the treatments including humates also compared to humates applied on its own. In the

N85 system, compost application significantly increased soil P, except for the CE+H+C combination.

However, soil extractable P was high in general, including soil from the control plots.

Compost application had the most significant effect on soil chemical properties for the main effects (Table 6).

Soil pH, K, as well as total soil N% and C% were highest with compost application, while soil resistance was

lowest. However, differences were not always significant compared to the control. Soil pH with compost

extract treatment on its own was significantly lower than both treatments where compost extract was applied in

combination with compost. The same results were found with humate application on its own. Soil extractable

K was significantly higher for all compost treatments compared to the control, as well as treatments not

receiving compost. No significant effects were found for Soil N%, Ca, Mg, Zn, or Cu, although similar trends

were found with application of compost, with the exception of soil Cu. Soil extractable B was also higher with

compost application, but results were only significant compared to humate applied on its own.

Few significant differences were found in leaf nutrient content between the different treatments in 2008 (Table

7). Few significant differences were also found between leaf nutrient content of trees subjected to the different

N levels, although results did show a slight decrease in leaf N content with lower levels of N application. Leaf

Cu concentrations were significantly higher for the N100 and N85 application, compared to the lowest N

application. There was a significant interaction between N applications and the sub treatments for Leaf P

content. At N100 level, compost extract application significantly increased leaf P compared to all other

treatments. With both the lower N applications, leaf P levels in control trees were highest and significantly

higher than all treatments except when compost extract was applied on its own, or in combination with

compost only. Leaf K content was significantly higher compared to untreated controls with application of all

biological treatments, except compost extract applied on its own. Leaf Mg content was significantly lower with

application of compost extract on its own compared to the control, humate applied on its own, and CE+H+C.

There were no differences in leaf micronutrient content between the biological amendment treatments (Table

7).
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5.4 DISCUSSION

5.4.1 Effect of organic material, biological amendments and various N levels on tree performance

Results from the study showed limited significant effects on tree performance with initial application of

organic material and biological amendments in a fertigated apple orchard. Results were more favourable in the

2008 season (five year old trees) with continued application of the biological amendments and there was a

significant interaction between the sub and main treatments for yield. There were no significant treatment

differences with the N85 levels and yield was generally in the higher range for all treatments. The application

of 85% of the standard N concentration showed the most positive effect on cumulative yield over three

seasons, as well as yield efficiency in the 2008 season. Application of the N85 regime possibly resulted in the

best balance between root growth, shoot growth, bud quality and fruit set, thereby showing optimal yield

effects.

The effect of humate with compost was significant at the full N application, increasing cumulative yield from

80 ton.ha-1 for the control, to 108 ton.ha-1. However, at the lower N levels this treatment did not significantly

increase yield. The effects of humate application in fruit production have received relatively little attention,

although some positive effects on yield have been found in citrus (Webb and Bings, 1988) and grapevine

(Reynolds et al., 1995; Zachariakis et al., 2001) with the application of commercial humates. In previous

studies on pome fruit (Chapters 2, 3 and 4) high concentrations of applied HS products negatively influenced

tree performance (Chapter 3). However, low dosages applied in combination with a Bacillus inoculant, was

suggested to be an important factor in positively affecting tree performance (Chapter 2 and 3). Furthermore,

application of Bacillus inoculant, low dosage HS and compost, significantly improved tree growth in apple

replant disease orchards (Chapter 4). A significant increase in cumulative yield from 84 ton.ha-1 in the control

to 109 ton.ha-1, was also found with compost extract applied in combination with compost at the lowest N

application, but not the higher N levels. This is in agreement with positive effects found with compost and

compost extract application in previous studies (Chapter 2, 3 and 4). Furthermore, trees treated with compost

showed higher yield efficiency in the 2008 harvest season.

In 2008, with the higher N applications, humates with wood chips, as well as humates applied on its own,

showed a more positive effect on yield than with N70 application. In material with a high C:N ratio, such as

wood chips, N can be temporarily immobilised in microbial biomass which can create N-deficient conditions at

critical stages in plant development. The higher levels of N fertiliser in combination with the wood chips

possibly compensated for N-immobilisation (Hogue and Neilsen, 1987; Geiger et al., 1992; Lipecki and

Berbec, 1997).
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No consistent treatment effects were found on fruit quality and no negative effects on fruit colour or firmness

were observed with the full N application (N100). Additional K uptake in compost treated trees did not show

lower leaf Ca levels, however Ca levels was in the lower range of the norm (Kotzé, 2001) and possible

negatives effects on fruit Ca uptake can not be excluded and may result in future problems with fruit quality.

5.4.2 Relation of soil chemical properties and leaf nutrient concentrations to tree performance

Fertigation leads to the development of a more restricted root zone (Bravdo, 1993; Neilsen et al., 1999),

possibly making it easier to manage effects in the root zone. It was hypothesised that the application of organic

material and biological amendments to these restricted root volumes may lead to conditions that improve

nutrient uptake, as well as microbial activity and thereby affect yield positively. Significant interaction was

found between the application of these biological management practices and different N levels on yield, soil

C% and extractable P, as well as leaf P concentrations. At N100 levels, soil extractable P was significantly

increased with compost application when applied to humates, but not when applied to compost extract.

Compost extract application on its own also significantly increased soil P levels when compared to the control.

This indicates direct effects on soil extractable P from both the compost and the compost extracts. These

amendments contain available P and additionally its microbial content, although not measured, can contribute

to P solubilisation, also increasing plant available P. In combination with N85 application, compost treatment

showed the dominant effect on soil P and compost extract resulted in no significant effects. This interaction

between lower N and compost extract can not be easily explained. However, soil C% with compost extract

application did show significantly lower C% at the lower N level. A positive relationship has generally been

found between the microbial biomass and soil organic carbon levels (Fraser et al., 1988; Houot and Chaussod,

1995; Burgos et al., 2002; Magdoff and Weil, 2004). Soil organic carbon has therefore become an important

indicator of soil quality and lower soil C% may therefore reflect decreased microbial activity and diversity,

which can affect soil P status.

Furthermore, leaf P concentrations showed significantly higher P uptake from trees treated with compost

extract on its own, but not when combined with other amendments. This was again only found when applied in

combination with the N100 level. Since all treatments including compost extract showed similar soil P levels,

these results indicate improved uptake of P in soil treated with compost extract on its own. This could be an

indication of microbial effects, improving root proliferation and affecting P uptake (Glick, 1995; Moore-

Gordon et al., 1996; Jones et al. 1998; Pinamonti, 1998; Yao et al., 2005; Forge et al., 2008). Results are in

agreement with effects found in Chapter 3, where application of compost extract to compost resulted in

increased leaf P levels. In the current study, leaf P concentrations was significantly lower than in control plots

for soil treated with the combination of humates and compost, when applied with the lower N levels. Results

are in contrast to increased nutrient uptake generally reported with HS application (Chen and Aviad, 1990).
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However, soil and leaf P was generally high for all treatments when compared to industry norms and therefore

probably explains the lack of tree performance effects, despite significant changes.

In this study, soil extractable macronutrients were mainly within the suggested range for apple production,

except for soil K which was low when compost was not applied. However, K uptake was sufficient and leaf K

content relatively high for all treatments, as well as controls. Increased soil extractable K with compost

application also resulted in increased K uptake and higher leaf K content. Increased leaf K concentration is one

of the most frequently recognized consequences of mulching with organic materials (Boynton and Oberly,

1966; Kotzé and Joubert, 1992a; Merwin et al., 1994; Marsh et al., 1996; Smith et al., 2000; Neilsen et al.,

2003a; Neilsen et al., 2007). However, too much available K may adversely affect Ca and Mg uptake (Klein,

1992; Callan and Westcott, 1996). Leaf Ca and Mg in our study was in the lower range of the norms for apple

(Kotzé, 2001) in all treatments, but additional K uptake in compost treated trees did not seem to have a

negative effect on Ca and Mg leaf nutrient concentrations. Leaf nutrient analyses also showed that leaf Cu, Zn,

Mn and B content were within industry norms. Nevertheless, although differences in soil extractable nutrients

and leaf nutrient concentrations could not directly be related to improved tree performance, it may show

positive effects in future, or under stress conditions. Neilsen et al. (2003a, 2007) found increased yield with

application of biosolids and paper mulch in a high density fertigated apple orchard, but in a different study

concluded that these organic amendments may be ineffective in orchards with high fertility and good nutrient

management (Neilsen et al., 2004). The effects of organic matter application may therefore have not affected

yield dramatically due to already favourable nutrient and soil moisture conditions due to the fertigation

management system. Furthermore, optimal nutrient application and favourable conditions for uptake are most

critical in the first year after planting in order to improve establishment (Neilsen et al., 1990). In our study trees

were already in their second leaf when applications were started. It is also possible that more significant effects

will only be seen with continued application over a longer period than 3 years, since the tree will take time to

adjust to changes in management practices.

5.4.3 Relation of soil microbial activity to tree performance

Soil enzyme systems are associated with organic residue management, and therefore affect the rate at which

nutrients become available to the crop and other soil organisms (Tabatabai, 1982; Perrucci et al., 1984). In our

study the activity of various enzymes important in nutrient cycling was used as an indicator of soil quality

(Dick, 1994, 1997; Fließbach and Mäder, 1997; Garcia et al., 1997; Pascual et al., 2001; Caldwell, 2005). In

general, an increase in various soil enzyme activities have been reported with application of organic

amendments in long-term field experiments (Martens et al., 1992; Masciandaro et al., 1997; Albiach et al.,

2000; Garcia-Gill et al., 2000; Ros et al., 2003; Bastida et al., 2008). The lack of significant effects found on

soil enzyme activities with organic material and biological amendments in our study was probably a result of

large variation observed between measurements of different samples of the same treatment (sub-plot error
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variation, as a percentage of the total variation of the model, accounted for more than 57%). However, a clear

trend was noted with the combination of C+CE+HS, which consistently showed highest enzyme activity, with

the exception of β-glucosidase. This treatment also showed highest soil C% in the N100 system. Furthermore,

phosphatase activity was higher with compost application. These P-hydrolysing enzymes play a major role in

the mineralisation of organic P in soil (Rodriques and Fraga, 1999). The extra-radical hyphae of AM fungi also

have phosphatase activity associated with their cell walls (Joner et al., 2000). This may have resulted in

increased soil extractable P indicated with compost application. Enzyme activity was higher with the full N

application, indicating increased microbial activity in this treatment. However, yield was generally more

positively affected by N85 application. Bünemann et al. (2006) in a review on the impacts of agricultural inputs

on soil organisms, found variable effects of mineral fertiliser on soil organisms.

Our results, in agreement with result from previous chapters, and various other studies in fruit trees (Renagold

et al., 2001; Neilsen et al., 2003b; Varga et al., 2004; Yao et al., 2005; Hoagland et al., 2008), confirm the

difficulty of relating specific soil properties to fruit tree performance. However, in other studies it was shown

that microbial community composition of the rhizosphere show close relations to yield (Porter et al., 2005; Yao

et al., 2006). Although variable results with enzyme activity were found in our study when sampling in the root

zone, it is possible that effects of organic material and biological amendments were more significant in the

rhizosphere. Furthermore, effects on enzyme activity can not be related to soil microbial diversity or

community composition. Changes in microbial community composition with biological amendment

application could have affected yield positively either through improved uptake and availability of nutrients or

changes in plant growth hormone levels by exogenous production or affecting translocation in the plant. In our

study, increased extractable P was shown with compost, humates and compost extract application. Compost

extract also resulted in improved P uptake. However, the significant interactions found between inorganic and

organic applied nutrients need further investigation in order to explain varied effects on yield.

5.6 CONCLUSION

There was a significant interaction between organic material application and biological amendments and

various inorganic N levels applied. Humate treatment in combination with compost application significantly

increased yield when applied with the full N application (N100). Furthermore, a significant increase in yield

was also found with compost extract applied in combination with compost at the lowest N application.

Application of the N85 regime possibly resulted in the best balance between root growth, shoot growth, bud

quality and fruit set as indicated by highest yield in 2008, as well as cumulative yield.

Compost treatments showed positive effects on soil extractable nutrients. It was also indicated that compost

extract application improved uptake of P. Effects on enzyme activity were not significant, although some

tendencies were noted. It is clear that future research should focus on effects in the rhizosphere, since root
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exudates are the main factor determining soil microbial community composition and can possibly better relate

to effects on tree performance.

It is possible that due to the high fertility regime required for tree establishment, effects of these biological

management practices will be more significant when applied with or even before orchard establishment.

Furthermore, effects on tree performance may be more pronounced under conditions of stress.
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Table 1. Effect of organic material, compost extract and humate application on tree
vigour of ‘Brookfield Gala’ apples planted on M793 rootstock in 2003 (loamy soil) at
2000 trees.ha-1 under fertigation. The trial was established in October 2004 when trees
were between second and third leaf. Probability values shown at the bottom of the table
are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 % significance
level to compare the treatment means. No significant differences are indicated by ns
following the treatment means.

Trunk circumference (cm)Main Treatmentz

Sub Treatmenty
October 2004 Growth tempo*

Pruning mass

2006 (kg)

N100

N85

N70

10.82 ns

10.49

10.53

3.83 ns

3.72

3.76

0.914 ns

0.773

0.794

Control

CExtract+Compost

CExtract+Wood

CExtract

Humate+Compost

Humate+Wood

Humate

CE+H+Cx

CE+H+W

10.45 ns

10.64

10.54

10.57

10.86

10.60

10.57

10.58

10.67

3.66 ns

3.77

4.11

3.77

3.99

3.67

3.69

3.50

3.76

0.807 ns

0.807

0.854

0.824

0.911

0.683

0.886

1.040

0.854

P value

Main Treatment

Sub Treatment

Main x Sub

0.1850

0.8571

0.3485

0.6049

0.2149

0.1053

0.7501

0.3722

0.2754

z Differential nitrogen applications commenced in February 2006, after harvest.
y Organic matter application commenced from October 2004, and biological amendment
application in 2005.
x CE+H+C = Compost extract + Humates + Compost, and CE+H+W = Compost extract+
Humates + Wood chips
*Slope (b value) of linear regressions (R2 = 0.99) fit to trunk circumference measured from 2004
to 2008, indicating growth tempo.
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Table 2. Effect of organic material, compost extract and humate application on yield and yield efficiency of
‘Brookfield Gala’ apples planted on M793 rootstock in 2003 (loamy soil) at 2000 trees/ha under fertigation.
The trial was established in October 2004 when trees were between second and third leaf. Probability values
shown at the bottom of the table are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 %
significance level to compare the treatment means. Treatment means in a column followed by the same or no
letter are not significantly different.

Yield (kg.tree-1) Yield efficiency (kg.cm-2)Main Treatmentz

Sub Treatmenty

2006 2007 * 2008 2006 2008

Cumulative
yield 2008

(kg.tree-1)

N100

N85

N70

16.16

17.51

16.55

4.46

3.33

3.51

-

-

-

0.993

1.100

1.041

0.876

1.172

0.922

-

-

-

Control

CE+Comp

CE+Wood

CExtract

H+Comp

H+Wood

Humate

CE+H+Cx

CE+H+W

N100**

N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70

16.77

16.79

16.25

16.65

18.07

15.88

17.60

15.49

17.09

4.05

4.15

4.88

3.68

4.27

2.73

4.46

3.26

2.43

19.69 hij
26.56 a-h
23.36 c-j
22.64 e-j
27.40 a-g
32.14 a
20.19 g-j
29.99 a-d
22.99 d-j
25.72 b-j
30.93 ab
23.83 b-j
29.77 a-e
30.42 abc
23.44 c-j
23.81 b-j
29.28 a-f
18.82 j
23.55 c-j
28.88 a-f
18.04 j
20.33 g-j
28.62 a-f
22.01 f-j
16.79 j
31.68 a
26.43 a-h

1.050

1.034

1.030

1.033

1.124

1.004

1.093

0.971

1.058

0.964

1.070

0.912

1.041

1.040

0.948

0.964

1.019

0.959

40.11 c-f
51.73 abc
41.81 b-f
43.01 a-f
43.41 a-f
54.39 ab
39.73 cdef
51.81 abc
47.29 abcd
43.53 a-f
50.08 abc
47.01 a-e
53.88 ab
51.62 abc
46.17 a-e
44.69 a-f
51.01 abc
34.47 ef
51.95 abc
49.07 abc
35.03 def
42.46 a-f
47.01 a-e
44.61 a-f
32.48 f
54.82 a
47.21 a-e

P values

Main Treatment

Sub Treatment

Main x Sub

0.8241

0.8615

0.5984

0.1909

0.3150

0.0578

0.1479

0.2667

0.0311

0.6988

0.8902

0.8164

0.0859

0.8218

0.2578

0.4179

0.2242

0.0312

z Differential nitrogen applications commenced in February 2006, after harvest.
y Organic matter application commenced from October 2004, and biological amendment application in 2005.
x CE+H+C = Compost extract + Humates + Compost, and CE+H+W = Compost extract+ Humates + Wood chips
* Poor weather conditions during fruit set
** Were significant interaction was found treatment means are shown for the interaction between the N levels and the
biological amendment treatments
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Table 3. Effect of organic material, compost extract and humate application on fruit quality parameters of selected treatments for ‘Brookfield Gala’ apples
planted on M793 rootstock in 2003 (loamy soil) at 2000 trees/ha under fertigation. Evaluation was done in the 2006 season at harvest, after cold storage (at
-0.5 ºC for 8 weeks), as well as cold storage and a shelf life period of 7 days at room temperature (21-24 ºC). The trial was established in October 2004
when trees were between second and third leaf. Probability values shown at the bottom of the table are according to a standard ANOVA. Student’s t-LSD
was used at a 5 % significance level to compare the treatment means. Treatment means in a column followed by the same or no letter are not significantly
different. (TSS = Total soluble solids and TTA = Total titratable acids).

Evaluation at harvest After storage After shelf lifeTreatmenty

Fruit size

(mm)

TSS

(% Brix)

TTA

(%)

Firmness

(kg.m-2)

Colour Starch

breakdown

(%)

TSS

(% Brix)

TTA

(%)

Firmness

(kg.m-2)

TSS

(% Brix)

TTA

(%)

Firmness

(kg.m-2)

Control

CExtract+Compost

CExtract+Wood

Humate+Compost

Humate+Wood

CE+H+Cx

68.7

70.1

69.6

70.3

69.4

68.9

13.40

13.10

13.33

12.98

13.37

13.37

0.63 d

0.76 ab

0.78 a

0.67 cd

0.71 bc

0.66 cd

8.24 a

7.67 bc

7.97 abc

7.59 c

8.05 ab

7.55 c

6.03

6.63

6.67

6.27

6.28

5.97

49.3 c

59.3 ab

57.9 b

65.0 ab

58.5 ab

65.7 a

14.07

13.78

13.92

13.48

14.10

13.90

0.67

0.63

0.61

0.61

0.63

0.64

6.47

6.26

6.41

6.04

6.41

6.35

13.67

13.83

13.85

13.40

13.77

13.75

0.52

0.52

0.51

0.53

0.54

0.51

5.72

5.32

5.59

5.43

5.67

5.70

P values 0.0705 0.5981 0.0011 0.0218 0.4313 0.0024 0.1252 0.4301 0.1424 0.5033 0.8372 0.1917

y Organic matter application commenced from October 2004, and biological amendment application in 2005.
x CE+H+C = Compost extract + Humates + Compost
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Table 4. Effect of organic material, compost extract and humate application on fruit quality parameters of selected treatments for
‘Brookfield Gala’ apples planted on M793 rootstock in 2003 (loamy soil) at 2000 trees/ha under fertigation. Evaluation was done in
the 2008 season at harvest, after cold storage (at -0.5 ºC for 8 weeks), as well as cold storage and a shelf life period of 7 days at
room temperature (21-24 ºC). The trial was established in October 2004 when trees were between second and third leaf. Probability
values shown at the bottom of the table are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 % significance level
to compare the treatment means Treatment means in a column followed by the same or no letter are not significantly different. (TSS
= Total soluble solids and TTA = Total titratable acids).

Evaluation at harvest After storage After shelf lifeTreatment

Main

Sub

Fruit size

(g)

TSS

(% Brix)

Firmness

(kg .m-2)

Colour Starch

breakdown

TSS

(% Brix)

Firmness

(kg.m-2)

TSS

(% Brix)

Firmness

(kg.m-2)

N100

N85

N70

127.3

124.9

126.4

12.31

12.13

12.03

7.48

7.48

7.40

7.81

10.32

9.00

65.30

60.17

70.83

12.44

12.44

12.49

6.48

6.19

6.19

12.20

12.51

12.33

5.77

5.96

5.87

Control

CExtract+Compost

CExtract

Humate+Compost

Humate

CE+H+Cx

125.7

123.8

125.5

131.5

120.5

130.2

12.10

12.02

12.21

12.16

12.19

12.78

7.43

7.62

7.34

7.28

7.71

7.34

10.83

9.89

8.39

9.07

8.17

7.63

66.89 ab

59.56 b

71.11 a

65.89 ab

57.33 b

71.89 a

12.39

12.30

12.58

12.54

12.27

12.67

6.13

6.87

6.48

6.21

5.71

6.34

12.31

12.22

12.54

12.30

12.10

12.60

5.49

5.69

6.20

5.98

5.89

5.94

P values

Main

Sub

MainxSub

0.2847

0.0602

0.5181

0.4305

0.8138

0.1116

0.8334

0.0917

0.5863

0.4970

0.7494

0.4326

0.0683

0.0192

0.4029

0.9756

0.5056

0.9855

0.6414

0.1320

0.8543

0.4175

0.1401

0.6043

0.7672

0.1995

0.1758

z Differential nitrogen applications commenced in February 2006, after harvest.
y Organic matter application commenced from October 2004, and biological amendment application in 2005.
x CE+H+C = Compost extract + Humates

From each treatment and block combination 35 fruit were analysed per evaluation.
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Table 5. Effect of organic material, compost extract and humate application on soil enzyme activity
associated with selected treatments for ‘Brookfield Gala’ apples planted on M793 rootstock in 2003
(loamy soil) at 2000 trees/ha under fertigation. The trial was established in October 2004 when trees were
between second and third leaf. Probability values shown at the bottom of the table are according to a split-
plot ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means No
significant differences are indicated by ns following the treatment means.

Main Treatment

Sub Treatment

Ureasez

(ug N/g soil/2h)

Phosphatasey

(mgPNP/

kg soil/h)

β-Glucosidase

(mgPNP/

kg soil/h)

Arylsulfatase

(mgPNP/

kg soil/h)

N100

N85

25.0 ns

20.5

342.5 ns

274.7

55.6 ns

42.7

57.7 ns

43.2

Control

CExtract

CExtract+Compost

Humate

Humate+Compost

CE+H+Cx

22.2 ns

23.9

23.0

20.1

22.2

24.9

297.3 ns

281.5

324.6

275.5

323.2

349.4

48.0 ns

48.1

47.3

39.3

58.9

52.5

50.2 ns

47.8

51.9

41.1

51.6

59.9

P values

Sub Trt

Main Trt

Main x Sub

0.8670

0.0691

0.8904

0.7211

0.0580

0.8837

0.4970

0.1781

0.4094

0.5875

0.1528

0.8242
z Urease hydrolysing activity was determined by the non-buffered method of Kandeler and Gerber (1988).
y Acid phosphatase, β-glucosidase and arylsulfatase activity were determined based on the release and
spectrophotometric detection of p-nitrophenol (Tabatabai and Bremner, 1969; Tabatabai, 1982).
x CE+H+C = Compost extract + Humates
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Table 6. Effect of biological management practices in combination with different nitrogen regimes on soil chemical properties for ‘Brookfield Gala’
apples planted on M793 rootstock in 2003 (loamy soil) at 2000 trees/ha under fertigation. Soil was sampled from the top 0-25 cm in May 2008 at the
end of the trial period. Probability values shown at the bottom of the table are according to a split-plot ANOVA. Student’s t-LSD was used at a 5 %
significance level to compare the treatment means Treatment means in a column followed by the same or no letter are not significantly different.

Main treatment

SubtTreatment

pH

(KCl)

Resist.

(ohm)

P (BrayII)

mg.kg-1

K

cmol.kg-1

Ca

cmol.kg-1

Mg

cmol.kg-1

Zn

mg.kg-1

B

mg.kg-1

Cu

mg.kg-1

N

%

C

%

N100

N85

6.56

6.62

1752.4

2008.9

-

-

0.294

0.389

5.44

4.70

0.955

0.870

0.91

2.94

0.328

0.285

1.144

0.897

0.113 a

0.082 b

-

-

Control N100z

N85

Cextract N100

N85

CE+Comp N100

N85

Humate N100

N85

H+Comp N100

N85

CE+H+C N100

N85

6.57 ba

6.52 bc

6.70 a

6.36 c

6.65 ab

6.70 a

2135.0 a

2083.3 a

1838.3 ab

2210.0 a

1591.7 b

1501.7 b

103.0 cd

112.0 bcd

145.7 abc

183.3 a

154.3 ab

99.3 cd

167.3 a

166.7 a

108.7 bcd

88.3 d

178.0 a

85.3 d

0.218 b

0.168 b

0.507 a

0.118 b

0.530 a

0.508 a

5.19

4.82

5.56

4.05

5.45

5.36

0.952

0.805

0.977

0.782

1.017

0.943

1.45

1.82

2.20

1.55

2.35

2.18

0.298 ab

0.286 ab

0.366 a

0.213 b

0.333 a

0.340 a

0.763

1.310

0.822

0.865

1.088

1.222

0.098

0.089

0.106

0.083

0.108

0.101

0.747 abc

0.737 abc

0.900 ab

0.487 c

0.793 abc

1.013 ab

0.837 abc

0.617 bc

0.653 bc

1.133 a

1.140 a

0.563 c

Main Trt

Sub Trt

Main x Sub

0.4062

0.0021

0.2684

0.0749

0.0116

0.1577

0.4446

0.0010

0.0085

0.6910

<0.0001

0.3108

0.2490

0.1027

0.0599

0.0597

0.2819

0.2085

0.1287

0.8129

0.0639

0.1630

0.0340

0.1740

0.4673

0.6764

0.2976

0.0270

0.4067

0.3663

0.3620

0.5873

0.0185

zWere significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments
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Table 7. Leaf nutrient analyses of trees sampled in January 2008 as affected by the various biological management practices and nitrogen regimes. Results
are expressed as g.kg-1 DW for macronutrients and mg.kg-1 DW for micronutrients. Probability values shown at the bottom of the table are according to a
split-plot ANOVA. Student’s t-LSD was used at a 5 % significance level to compare the treatment means Treatment means in a column followed by the
same or no letter are not significantly different.

Main treatmentz

Sub treatmenty

N

(%)

P

(%)

K

(%)

Ca

(%)

Mg

(%)

Na

(mg.kg-1)

Mn

(mg.kg-1)

Fe

(mg.kg-1)

Cu

(mg.kg-1)

Zn

(mg.kg-1)

B

(mg.kg-1)

N100

N85

N70

2.103

2.054

2.027

-

-

-

1.774

1.674

1.835

1.143

1.224

1.258

0.340

0.333

0.316

148

154

145

201

221

229

249

241

221

5.8 a

5.6 a

5.2 b

31.3

32.6

33.8

34.2

33.2

34.1

Control

Cextract

CE+Comp

Humate

H+Comp

CE+H+C

N100*

N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70
N100
N85
N70

2.078

1.978

2.073

2.043

2.064

2.109

0.210 def
0.317 b
0.315 bc
0.425 a
0.230 b-f
0.265 b-f
0.220 b-f
0.287 b-e
0.217 c-f
0.210 def
0.300 bcd
0.190 ef
0.243 b-f
0.185 f
0.190 ef
0.220 b-f
0.185 f
0.215 def

1.509 b

1.688 ab

1.932 a

1.798 a

1.813 a

1.840 a

1.254

1.114

1.190

1.202

1.310

1.144

0.353 ab

0.286 c

0.307 bc

0.390 a

0.310 bc

0.334 b

154

146

149

150

152

143

225

238

228

181

268

162

238

213

242

235

238

247

5.3

5.7

5.4

5.7

5.4

5.6

34.7

36.0

35.8

27.0

38.5

23.8

33.8

33.5

34.8

36.0

32.1

33.0

Main trt

Sub trt

Main x Sub

0.4261

0.6678

0.4134

0.8243

0.0218

0.0078

0.1107

0.0128

0.2194

0.3251

0.5198

0.5439

0.6720

0.0075

0.7356

0.2598

0.9757

0.9385

0.5283

0.1278

0.8887

0.5211

0.9625

0.2331

0.0275

0.8831

0.7725

0.5930

0.1104

0.6743

0.8800

0.4442

0.2345

Footnotes: Kotzé (2001) norms: N (2.1-2.6%), P (0.14-0.19%), K (1.2-1.4%), Ca (1.45-1.60%), Mg (0.30-0.40%), Na (500 mg.kg-1), Mn (20-90 mg.kg-1), Fe (80-150
mg.kg-1), Cu (5-10 mg.kg-1), Zn (30-50 mg.kg-1), B (30-35 mg.kg-1). Each leaf sample consisted of 50 leaves. Samples were analysed by a commercial laboratory
(Bemlab®, Strand, SA) using an inductively coupled plasma-optical emission spectrometer and a nitrogen analyzer.
z Differential nitrogen applications commenced in February 2006, after harvest.
y Organic matter application commenced from October 2004, and biological amendment application in 2005.
x CE+H+C = Compost extract + Humates
* Were significant interaction was found treatment means are shown for the interaction between the N levels and the biological amendment treatments
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CHAPTER 6

CRITICAL ASSESSMENT OF THE ROLE OF BIOLOGICAL AMENDMENTS ON POME

FRUIT CULTIVATION SYSTEMS

6.1 INTRODUCTION

There has been tremendous interest in the application of more sustainable, biologically orientated

management practices over the past decade as a result of increased sensitivity to environmental issues

among fruit producers. The role of biodiversity in ensuring crop production and soil fertility and the

importance of soil microbial functions in agricultural systems has become more evident. Since microbial

activity is generally carbon-limited in agricultural soil, it is widely accepted that management practices

providing a range of organic compounds on a regular basis will tend to maintain an active and diverse

microbial population. Although there has been a vast increase in the number of scientific publications on

this subject in the past five years, clear guidelines on the use of biological management practices are

lacking. The wide scope of the field, and the very variable nature of amendments and different orchard

conditions make the subject extremely complex. Furthermore, biostimulants such as seaweed extracts and

humic substances, as well as microbial inoculants in the form of compost extracts and effective

microorganisms (EM) are used locally to a wide extent with limited scientific literature available on their

effects on deciduous fruit crops. The evaluation of biological amendments under local, field conditions is

of extreme importance, since extrapolation of results from greenhouse or laboratory studies to the field are

often inconsistent.

Apple replant disease (ARD) is a disorder associated with the poor growth of young apple trees planted on

previous apple or pear sites and is one of the major impediments in establishing an economically viable

apple orchard and maintaining a successful local industry. It is becoming an increasingly important

problem since apple producers are forced to replant old orchard soil due to limited availability of suitable

virgin soil sites. The problem is further exacerbated by the market demand for new cultivars and the

release of improved rootstocks which necessitates new plantings. Although the etiology of ARD is still not

fully understood, it is mainly a problem of biological origin involving a shift in the microbial community

composition towards pathogens dominating the soil microbial profile. Apple replant disease has been

controlled successfully in most cases by the application of methyl bromide, a broad spectrum fumigant.

However, due to its impeding phase-out, biological alternatives are needed.

The objective of this study was to investigate the long-term effect of continued applications of organic

material, various microbial inoculants and biostimulants on tree performance in conventional management

systems. For this purpose, field trials were established under various orchard conditions. A trial was

conducted in a pear orchard established on BP1 rootstock that generally suffers from poor root
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development in the initial years after planting. It was also investigated whether application of biological

amendments in an optimally managed orchard could lead to complimentary improvement in tree

performance. Furthermore, trials were established to investigate the potential use of biological soil

amendments as an alternative management practice to reduce the effects of ARD under South African

conditions. The use of compost, compost extracts, a Bacillus inoculant and humates were investigated

intensively. In all trials, the effect of amendments on nutrient availability and uptake was investigated in

order to aid in the interpretation of tree performance effects. Furthermore, to improve our understanding of

soil biological functioning and adapt current soil management practices to be more sustainable, it is

important to know the effect of management practices on the soil microbial community. However,

although literature is abundant and various methods are available, no single method has been widely

accepted, since each method has its own limitations. In this study we applied a combination of simple,

practical methods that have been used extensively in literature, to establish the effect of amendments on

soil microbial properties. Methods used included conventional culture-based plate counts of actinomycetes

and Bacillus bacteria, measurement of the activity of various enzymes important in nutrient cycling, as

well as carbon source substrate utilisation as an indication of soil microbial community function. Effects

on soil microbial properties were also related to tree performance.

6.2 GENERAL DISCUSSION

6.2 1 Effect of fumigation and inorganic fertilizer application on soil microbial community

It is generally perceived that use of chemicals in fruit production has negative effects in terms of

sustainable production practices and must therefore be replaced with more natural, biological amendments.

However, complete loss of soil function due to conventional management practices is unlikely and if

inorganic fertilizer is not excessively applied, its effects on microbial activity can be stimulating. Many

producers embrace the move towards more biological management systems, while others are forced to use

alternatives due to environmental legislation. The phase-out of methyl bromide, because of its impact on

the ozone layer, has caused major concern due to its very effective control of ARD. Therefore, an

important part of this study was to evaluate biological alternatives in managing ARD. Improved yield with

MeBr is usually ascribed to its broad spectrum biocidal activity, resulting in improved root growth and

plant health, possibly due to pathogen control and reduced competition for resources from microbes during

the establishment phase of the orchard. Achieving the latter through biological management practices has

proved to be a major challenge. Various studies in literature show few persistent effects of fumigation on

soil microbial properties over the long term. In our study effects on soil enzyme activity was not significant

three years after fumigation, however, long term effects on soil microbial community substrate utilisation

were found. Appe replant disease studies in Washington State (USA), has shown that cultivation of apples

induces microbial communities capable of inciting ARD within two to three cropping years. Therefore,

although MeBr does provide consistent reduction in ARD over a wide scope of soil types and orchard

conditions, the repeated use of fumigants is necessary when the next orchard is to be established.
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6.2.2 Effect of biological management practices on microbial parameters

Results from this study showed that application of biological amendments will not necessarily result in

increased microbial activity or function. However, application of labile organic matter (straw mulch and

compost) showed the most significant effect on microbial parameters and generally resulted in significant

changes in soil microbial function and activity. Additionally, compost extract application resulted in

increased numbers of Bacillus bacteria, as well as activity of various soil enzymes. The effect of Biostart

applications was generally less significant, with increased enzyme activity only observed in one of the

trials. Effective use of soil inoculants strongly depend on soil physical and chemical factors, environmental

conditions, as well as the plant type involved. The inoculant organism must not only survive, but establish

itself and dominate in the soil or rhizosphere. Therefore, results with inoculants containing a diverse group

of organisms may be more beneficial. In three ARD sites, compost and not inoculants, showed the

dominant effect on soil microbial function, while a combination of compost, compost extract and Biostart

with humic substances was the only treatment to show significant effects on soil enzyme activity. Under

controlled fertigation conditions, it was also clear that the combination of compost, compost extract and

humates consistently showed highest enzyme activity.

6.2.3 Effect of soil applications on tree performance

Regular application of compost extract in combination with compost was the biological amendment

showing most significant effect in improving tree performance in commercial pome fruit orchards under

various conditions. In a conventionally managed pear orchard planted on BP1 rootstock, application of

compost extract in addition to compost for five growing seasons improved yield, as well as yield efficiency

and resulted in a 51% increase in cumulative yield over two harvest seasons. In a high density (2000

trees.ha-1) optimally managed apple orchard, results showed a significant interaction between biological

amendments and inorganic N levels applied. In this orchard the application of compost extract applied in

combination with compost at 75% of the standard N application significantly increased yield. Other

biological amendments which showed positive effects on yield were application of Bacillus inoculants

(Biostart®) in combination with a labile C source and a low dosage humate product, as well as a

combination of compost and humates.

Biological amendments also showed improved growth in orchards suffering from stunted growth

symptoms typical of ARD. In an ARD site, application of Biostart soil inoculant in combination with a

labile C-source and low dosage of humate, as well as compost extract applied with compost, over a five

year period, showed significant improvement in tree performance compared to untreated plots. Compost

extract application also showed a possible benefit in increasing fruit size. In three additional ARD trials, it

was noted that effects on yield with these biological amendments were mostly significant in orchards

showing mild ARD effects and not in cases of severe ARD. Furthermore, there was no clear indication of

which amendment in addition to compost resulted in the best tree performance, except for the trial where
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compost application was combined with compost extract treatment and the application of Biostart

combined with humic substances.

Application of humates without labile organic material generally showed no effect on tree performance in

any of the trials.

6.2.4 Use of soil parameters measured as indicators of yield

The use of microbial measures as indicators of soil health and soil quality is becoming increasingly

popular. However, although certain microbial parameters may indicate the production potential of soil, the

difficulty of relating soil properties to fruit tree performance has been recognised throughout this study, as

well as in literature. Crop productivity represents the outcome of complex interactions among plant, soil

and management practices. In our study, yield of trees from soils receiving biological amendments could

not always be distinguished from those of conventionally managed controls. Although for some specific

treatments, increased microbial numbers and activity may have resulted in improved tree performance, in

general, changes in culture-based plate counts, soil enzyme activity and carbon utilisation profiles could

not be used as an indicator of yield. Recent literature suggests a more dominant effect of microbial

community dynamics in the soil rhizosphere. In our study, soil was sampled from soil in the root zone, but

not specifically the rhizosphere. It is therefore possible that better correlations with yield can be found by

investigating microbial properties in the rhizosphere.

From the various soil management practices applied in the different trials, compost was the dominant

factor affecting nutrition and consistently resulted in increased soil extractable macronutrients in the more

sandy soils. Although this did not show a direct relationship with yield, these increased levels of soil

extractable nutrients are available to the plant and therefore have potential benefits to plant performance.

6.2.5 Use of biological strategies in managing apple replant disease

Although biological amendments showed promise in managing ARD symptoms, fumigation was still the

treatment that showed the most significant and consistent response in terms of tree performance in ARD

sites. This could be ascribed to the broad-spectrum activity of methyl bromide and its effectiveness

therefore under various soil biological conditions. Effects with fumigation are dramatic and immediate. In

contrast to this, effects with biological amendments are more gradual and long term and require regular use

in management systems. With continued application, long term changes are induced in soil microbial

communities, making it more difficult for soilborne pathogens to dominate. This can possibly have more

positive implications for the next orchard to be established. However, effects with these biological

amendments are site-specific and many issues remain to be addressed before they can be relied on for use

in ARD control. Furthermore, a trade-off between short and long term advantages and/or disadvantages

must be considered. As with other soilborne diseases, it seems that orchards showing severe ARD

symptoms need intensive treatment and that a combination of biological strategies can play a positive role

in inducing soil suppressive effects.
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6.2.6 Possible mechanisms involved in effects with biological amendments

The mechanism through which biological amendments affect plant growth is through either direct or

indirect effects on root development and soil microbial communities, leading to improved plant nutrition,

crop protection against pests and diseases or changes in plant hormonal balances. Limited research has

been conducted on the mechanisms through which compost extracts can improve plant performance. The

majority of research has focused on the use of compost extracts in disease suppression and their role in

biological control. However, it is also possible that improved synchronisation of nutrient release and plant

uptake may play an important role in improving tree performance with application of compost extracts. It

makes sense that synchronisation should be easier with regular application of solubilised nutrients readily

available for plant uptake, as occurs with monthly compost extract applications.

Changes in phytohormone levels mainly control growth and developmental processes in plants. Plants

may, under certain conditions, for example stress, not have the capacity to synthesize sufficient

endogenous phytohormones for optimal plant growth and they then respond favourably to exogenous

sources. Various plant growth promoting rhizobacteria (PGPR), including Bacillus strains, have been

found to produce phytohormones and even promote growth and yield of plants. Hormone-like activity has

also been suggested for several humic fractions. The exogenous supply of plant hormones can in addition

to providing supplemental quantities to the plant’s endogenous levels, stimulate endogenous changes in

plant phytohormone levels through long distance messaging in plants, as well as local signaling.

Furthermore, exogenous supply of plant hormones can affect the sensitivity of the plant to phytohormones,

or affect plant growth indirectly through modifying the rhizosphere environment.

Since root meristems are possibly the main site of cytokinin (CK) production, this phytohormone plays an

important role in linking root growth proliferation and effects on plant performance. In deciduous fruit, CK

plays a crucial role in regulating lateral bud burst and development, the quality of fruiting spurs, fruit set

and controlling the balance of roots and shoots. Furthermore, there are several reports suggesting that the

accumulation level of CK and export by the roots is closely correlated with the nutritional status of the

plant. The production of CK by Bacillus bacteria has been well documented. It is possible that

phytohormones, especially CK, may play an important role in the mechanism of action of biological

amendments.

6.3 RECOMMENDATIONS

Based on results from this study, as well as recent findings in literature, the following recommendations

are made:

 Optimal nutrient application and favourable conditions for nutrient uptake are most critical in the

first year after planting in order to improve establishment. Furthermore, protection of roots from
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soil pathogens and parasites can improve early root proliferation. Therefore, application of

biological amendments is recommended with or even before orchard establishment. A high degree

of specificity is exhibited by various microbial isolates towards controlling different pathogens, as

well as producing plant growth promoting substances.

 Application of a mixture of beneficial organisms in combination with organic material serving as a

carbon source to augment survival and function of introduced inoculants, can have more

significant influence on plant performance due to reduction in variability and increased

effectiveness with a wider range of microorganisms.

 However, practical, as well as economic considerations such as transportation, labour costs and

availability of organic material need to be taken into account. Therefore ways need to be

investigated to improve plant biomass production in the orchard to use as organic material.

 Furthermore, much more research is needed on the effects of compost extracts and the mechanisms

involved in generating positive functioning in a field environment in order to develop management

strategies that can be applied in commercial agricultural systems. These inoculants are easy to

apply and not very costly.

 The integration of chemicals with a less toxic effect on non-target organisms and biological

management systems also needs intensive investigation to control severe soilborne problems.

 The importance of rhizosphere conditions to plant growth and development needs to be

recognised. Recently, research has focused on modification of resident soil rhizosphere

communities through the use of cover crops, as well as different rootstocks. These management

practices can be combined with biological amendment application to form part of an integrated

management strategy.

 The role of microbially produced phytohormones in affecting tree performance in these biological

systems needs more attention and changes in phytohormone levels may provide better correlation

to yield than broad-scale microbial properties. Plant response is regulated by the net balance of

exogenous and endogenous phytohormones. Since endogenous levels of plant phytohormones vary

with different stages in plant development, responses with biological amendments would depend

on the time of release or production of these phytohormones, possibly explaining variable results

found with biological amendment application.

 Lastly, the effects of biological amendments on root morphology and proliferation of root tips can

provide valuable information in relating effects to tree performance. Actively growing root tips are

an important source of cytokinin (CK) production and translocation. In deciduous fruit production,

CK plays a crucial role in regulating lateral bud burst and development, the quality of fruiting

spurs, fruit set, delay of senescence, and controlling the balance between roots and shoots.
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6.4 GENERAL CONCLUSION

Applciation of biological amendments can improve tree performance under various conditions, including

orchards suffereing from mild ARD symptoms. Results with compost extract in combination with compost

are encouraging and the beneficial effects on soil extractable nutrients are clear. Furthermore, the

combined application of a diverse group of microbial inoculants in combination with organic material

seems to result in more consistent positive effects on pome fruit tree performance. However, in some cases,

application of biological amendments did not result in improved yield. Effects with chemicals are

predictable and consistent, while effects with biological amendments are gradual and long term, requiring

intensive management and increased knowledge of the plant-soil system. In this study, results were based

on four to five year trial periods. Long term studies are needed to determine eventual benefits.

Furthermore, no simple relationship could be shown between the broad-scale microbial properties

measured in this study, and tree performance. The high degree of specificity of beneficial microorganisms

towards controlling different fungi and improving nutrient uptake and plant growth, as well as influences

of soil type and environmental conditions, makes more research essential for application of these biological

management strategies with confidence.
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Appendix A1. Selected physical and chemical properties of commercial composts used in the various trials in Chapters 2-5. Average values for 
compost analyses conducted each year are shown. 
 

Compost  pH Resist. Moist. Density N C P K Ca Mg Na Mn Cu Zn B 

      KCl Ohm % kg/m3 % % % % % % Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg 

Pear trial     (Chapter 2) 7.2 85 28.4 651 0.84 17.5 0.24 0.50 1.16 0.16  950 102 2.55 76.5 9.25 

CompostA  (Chapters 3-5) 7.3 70 25.3 549 1.15 20.0 0.40 0.96 1.28 0.27 1973 186 2.94 120 9.75 

CompostB (Chapter 3) 7.0 90 25.6 411 0.89 21.7 0.22 0.52 0.95 0.15 1252 87 3.08 118 7.55 

 
Appendix A2. Macro- and micronutrient content of the different compost extracts used 
in Chapter 4. Average values for compost extract analyses performed each year are 
shown. 
 

N P K Ca Mg Na Mn Fe Cu Zn B Extract 

mg.L-1

ExtractAz 427 7.53 76.6 17.7 7.3 27 0.151 9.47 0.29 0.1709 1.35 

ExtractBx 348 8.62 94.8 15.2 6.7 32 0.105 7.45 0.34 0.109 0.78 
z ExtractA was used in Chapters 2-5 
x Extract B was anly used in Chapter 4 and contained additives, including molasses,  kelp 
and fish extract. 
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